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ABSTRACT 

Heterosexual transmission of human immunodeficiency virus (HIV) is increasing in 

many Western societies and is the major mode of transmission world-wide. Knowledge of 

factors which protect individuals who remain uninfected after exposure to HIV (exposed 

uninfecteds, (EUs)), aid our understanding into the mechanisms of transmission and hence, 

help prevent further spread. The aim of this thesis was to investigate a broad variety of 

factors, in a cohort of EU heterosexual partners of }ilV individuals (indexes), which may 

affect heterosexual transmission. 

The immune function of the EUs was assessed and compared to normal controls, by 

monitoring proliferative responses to mitogen, recall and alloantigens and a combination of 

recombinant HIV proteins. Cytokine responses to these stimuli were also monitored. The EUs 

were also confirmed to be uninfected by polymerase chain reaction (PCR). The EUs had 

similar proliferative responses to controls for both the allogenic and recall antigens and 

showed a minor difference in the response to the mitogen, phytohaemagglutinin (PHA), which 

may reflect differences in the kinetics of the response. An increase in the amount of interferon-

y (IFN-y) produced in response to alloantigen was seen in EUs compared to controls, which 

could potentially inhibit HIV replication. The proportion of lymphocytes expressing the MHC 

Class II protein, human leucocyte antigen-DR (HLA-DR), was also elevated in the EUs 

compared to controls and may reflect an overall increase in the activation status of the EUs' 

lymphocytes. 

Genetic factors which were investigated included the HLA antigens and the recently 

reported mutations in the CC chemokine receptors (CCR), CCR-2 and CCR-5, utilised by 

certain strains of HIV as co-receptors for entry. The HLA allele DR5 was elevated in 

frequency in the EU cohort compared to population controls and to HIV individuals who 

were infected by heterosexual exposure. The DR6 allele was decreased in the EUs compared 

to population controls, but this was not confirmed as a risk factor for heterosexual infection, 

as no increase in frequency was seen in the HIV individuals. A significant difference was 

observed between the degree of HLA mis-match between the index and their partner, with 

couples discordant for HIV serostatus showing a higher degree of HLA mis-match than 

concordant couples (P=0.02). This suggests allogenic responses may be increased and 

protective in the EUs. No difference in the frequency of the 32 base pair deletion (i.32) in the 

CCR-5 gene was seen in the EUs compared to heterosexually infected HIV individuals, or 
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population controls. In contrast, heterozygosity for a valine to isoleucine mutation at position 

64 (641) of CCR-2 was shown to be acting as a risk factor (P=0.02, RR=1.6) for HIV 

infection of females following heterosexual contact, as a higher frequency of 641 heterozygotes 

were observed in HTV than EU females. The 641 mutation may be mediating its effect by 

linkage disequilibruim with other mutations in the CCR genes, including those in the promoter 

regions of the CCR-5 gene. However, no differences were seen in the frequencies of several 

polymorphisms in the CCR-5 promoter region between the HIVs and BUs. 

In studies of a male index and his four female partners, two HIV and two EUs, it 

was investigated whether viral variation in the index could account for the lack of 

transmission in the later EU contacts. No major differences in the viral variants were seen 

later in the index's infection which would explain the differences in transmission. The first EU 

partner, was homozygous for the LS.32 mutation in the CCR-5 gene and her lymphocytes were 

shown to be infectible with T-tropic virus, but not M-tropic virus. 

These studies of factors influencing susceptibility to heterosexual transmission 

suggest that the genetic background, immune response, as well as the disease status of the 

H1V partner may all influence transmission in a multifactorial way, indicating future studies 

of cohorts of this kind should incorporate a broad interdisciplinary approach. 
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1.1. HISTORY 

Even before the discovery of the human immunodeficiency virus (HIV), it was 

apparent that the disease, later named AIDS (acquired immunodeficiency syndrome), was 

intricately involved with the immune system. A group of previously healthy, homosexual men 

presented with Kaposi's sarcoma and pneumocystis carinii pneumonia (PCP)(Centers for 

Disease Control (1982a)), diseases previously restricted to the severely immunocompromised 

such as transplant recipients. Later, reports of these and other such illnesses: persistent 

cytomegalovims (CMV) infection, persistent generalised lymphadenopathy and neoplasias, 

were identified in haemophiliacs, blood transfusion recipients, injecting drug users (IDUs), 

children born to HIV-infected mothers and heterosexual partners of infected individuals 

(Centers for Disease Control (1982b); Centers for Disease Control (1982c); Centers for 

Disease Control (1982d); Centers for Disease Control (1982e); Spira et al. (1984)). Such risk 

groups implied that sexual, vertical and blood borne transmission routes were all possible. As 

well as these AIDS defining illnesses, patients showed a massive decline in a subset of 

immune cells, namely the CD4 lymphocytes, from normal adult ranges of 1000-2000 

cells/mm3  to levels of <200. 

The discovery of the causative agent soon followed (Barré-Sinoussi et al. (1983); 

Gallo et al. (1983); Levy et al. (1984)) and was shown to infect cells expressing the CD4 

receptor, via an interaction with the viral surface glycoprotein, gpl2O (Dalgleish et al. (1984); 

Klatzmann et al. (1984))(see Section 1.5). - 

1.2. CLINICAL MANIFESTATIONS 

It is estimated that between 50-70% of individuals infected with HIV develop an 

acute, symptomatic primary HIV infection (reviewed in Tindall & Cooper (1991)). However, 

the 'mononucleosis like' symptoms are often ignored and ascribed to other causes. Clinical 

features last from 1 to 2 weeks and include: fever, lethargy, malaise, myalgias, headaches, 

retro-orbital pain, mucocutaneous ulceration, lymphadenopathy and a maculopapular rash. 

During this phase, virus and viral antigens are detectable in the bloodstream of the infected 

individual, viraemia and antigenemia respectively, and finally HIV-specific antibody is 

detectable. Screening for HIV-specific antibody is the primary test for an individual's 

infection status and if present is deemed seropositive, or HIV +  

Seroconversion is followed by an asymptomatic period, the length of which is variable 

depending upon the individual. Some subjects can progress rapidly to AIDS, so called rapid 
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progressors; others have been known to remain disease free for prolonged periods (Lifson et 

al. (199 1)) and are termed long term non-progressors (LTNPs). 

During progressive HIV infection, the extent and number of diseases suffered by an 

individual increases and this is used to define the onset of AIDS. Many of the diseases are 

normally rare in the general population, such as PCP and Kaposi's sarcoma, others are 

common infections, which rarely cause disease, e.g. CMV infections. A major concern in 

developing countries is the upsurge of Mycobacterium tuberculosis infection (TB) in HIV-

infected individuals. Most of the diseases associated with the development of AIDS are caused 

by secondary infections and malignancies normally controlled by the host immune system and 

not caused by FIIV infection per Se. One important exception is HIV dementia (Navia, Jordan 

and Price (1986)) and another is cachexia (weight loss) and diarrhoea (Smith et al. (1992)). 

HTV disease is now staged according to both the diseases suffered and the CD4 cell count of 

an individual (Centers for Disease Control (1992)). 

1.3. TRANSMISSION 

Since the start of the global epidemic until July 1996, approximately 28 million 

people have been infected with lily (Expert Group of the Joint United Nations Programme of 

HIV/AIDS (1997)). The major mode of transmission has been unprotected heterosexual 

intercourse (approximately 70%). The enormity of this proportion is often surprising when 

one considers that much of the published work in lily-infected individuals centres around 

homosexuals. This is a minority risk group globally, but became the first and primary cohorts 

in Western societies. However, even in the USA and Europe, heterosexual exposure is the 

most rapidly increasing risk factor for new infections (Balfe (1998)). The contribution of other 

modes of transmission globally are as follows: vertical transmission (mother-to-child) 8-10%, 

homosexual intercourse 5-10%, needle sharing amongst IDUs 5-10%, transfusion of blood 

and blood products 3-5% (Expert Group of the Joint United Nations Programme of 

HJV/AIDS (1997)). 

1.3.1 Transmission by Blood and Blood Products 

Prior to the screening of blood for anti-HIV antibodies, transfusion recipients and 

haemophiliacs were infected with contaminated blood (Centers for Disease Control (1982c); 

Donegan et al. (1990)), or products such as Factor Vifi and TX (Bartz, Rogel and Emerman 

(1996)). Following the introduction of routine screening for blood donors, the risk of 
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transfusion acquired infection is now extremely rare; heat inactivation of Factor VIII and IX 

has virtually eliminated the transmission to haemophiliacs. 

Needle-stick injuries and other occupational exposures of health care workers also 

carry a risk of infection with H1V (Marcus and the CDC Cooperative Needlestick 

Surveillance Group (1988)) and strict guidelines for the prevention of such transmissions have 

now been implemented (Centers for Disease Control (1989)). 

IDUs are a further population at risk from blood borne HIV infection, due to the 

sharing of needles (Spira et at. (1984); Robertson et at. (1986)). Increased availability of 

clean needles and education has reduced the level of transmission in these cohorts; the number 

of newly acquired IDU infections in Scotland in 1986 was 242/351(68.9%) compared with 

50/165 (30.3%) in 1991 and only 29/173 (16.8%) in 1996 (Scottish Centre for Infection and 

Environmental Health (1997)). 

1.3.2 Vertical Transmission 

Transmission of HIV from an infected mother to her child can occur during pregnancy 

(Backé et al. (1993)), at birth (Goedert et al. (1991)), or even from breast feeding (van de 

Perre et al. (1991)) and is the predominant form of paediatric HIV infections. Caesarean 

section, as opposed to vaginal delivery, was shown to reduce the risk of transmission 

(European Collaborative Study (1992)) and recent trials administering the antiviral drug, 

azidodeoxythymidine (AZT), has further reduced vertical transmission (Sperling et at. 

(1996)), at least in Western societies. AZT is given during the last trimester of pregnancy and 

to the child during the first six weeks following birth, although, a short course of AZT has 

now been shown to be effective in Thailand too (Centers for Disease Control (1998); Morris 

(1998)) 

1.3.3 Sexual Transmission 

AIDS was first noted in homosexuals (Centers for Disease Control (1982a)), but was 

also soon identified in heterosexually exposed individuals (Centers for Disease Control 

(1982b)). The risk of transmission varies from study to study depending upon the criteria of 

the investigation. In a Swedish cohort of homosexuals and heterosexuals, anal intercourse was 

found to be twice as infectious as vaginal (Giesecke et at. (1992)). This was determined by 

studying heterosexual and homosexual couples with a HIV partner and it was found that 

more homosexual couples were concordant for lily serostatus, i.e. the sexual contact was 
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infected, than heterosexual. In general, this same trend is seen in all studies (reviewed in 

Royce et al. (1997)). 

HIV is detectable in seminal cells and plasma (Zagury et al. (1984); Ho et al. (1984); 

Borzy, Connell. and Kiessling (1988)) and lily deoxyribonucleic acid (DNA) has also been 

detected in sperm cells (Bagasra et al. (1994)). For females, the glandular epithelium in the 

cervix has been shown to harbour H1V (Nuovo et al. (1993)) and both cervical and vaginal 

swabs yield H1V (Vogt et al. (1986); Wofsy et al. (1986); Hënin et al. (1993); Clemetson et 

al. (1993)); although the latter less readily (Clemetson et al. (1993)). 

Susceptibility to infection obviously differs for homosexual and heterosexual 

intercourse and for male-to-female and female-to-male transmission. This is reflected in the 

risk levels associated with the respective mode of infection. As outlined earlier, sex between 

men carries a greater risk of infection than heterosexual exposure (Giesecke et al. (1992)), but 

amongst homosexuals, transmission from a seropositive insertive partner is more likely than 

from a receptive (Moss et al. (1987); Detels et al. (1989); Giesecke et al. (1992)). The same 

principal applies to heterosexuals: male-to-female transmission is more common than female-

to-male (0.19-0.28 versus 0.06-0.12)(Johnson et al. (1989); European Study Group (1992); 

Giesecke et al. (1992)). 

1.3.4 Epidemiology of Heterosexual HIV Transmission 

The epidemiology of H1V and AIDS in the developed world is dramatically different 

from that of developing world, in particularly in sub-Saharan Africa. The epidemic in the 

United States (US) and later Europe, initially centred around male homosexuals, IV drug 

users, their sexual partners, haemophiliacs and small numbers of children. As homosexuals 

modified risky sexual behaviours, it was feared that the epidemic would then spread to the 

heterosexual population, including the partners of IDUs. Indeed, the sex ratio of AIDS cases 

in the US in 1992 was 8:1 male to female compared to 16:1 in the early 1980s (Hunt (1996)). 

In direct contrast, the African epidemic has maintained an almost constant sex ratio of 

1:1 since the early discovery of AIDS in Africa (Hunt (1996)). Here the major transmission 

route is heterosexual contact and due to the large numbers of infected women at child-bearing 

age, a considerable number of children are also HIV (Chin (1990)). 

Many theories exist to try and address the differences in the risk and prevalence of 

BIN in heterosexuals in the developed versus the developing world. These fall into biological 

theories, such as that based on the natural history of the infection, and social theories, 
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encompassing cultural and economic factors (reviewed in (Hunt (1996))). However, no one 

theory has fully encompassed and accounted for all the known epidemiology. To try and 

highlight some of the factors involved in the different regions, I will describe three 

heterosexual epidemics; 1) Uganda, a well established and high prevalence region; 2) a 

European Collaborative Study, to highlight the factors involved in heterosexual transmission 

in the developed world; and 3) Thailand, a newly emerging and rapidly spreading heterosexual 

epidemic. 

13.4.a Uganda 

As already mentioned, heterosexual transmission accounts for a vast majority of HIV 

infections in Africa and lily has already been shown to be the major cause of death in many 

African cities (De Cock et al. (1991); Gregson, Garnett and Anderson (1994)). Sexually 

transmitted diseases (STDs) are particularly important; the presence of both ulcerative 

(Greenblatt et al. (1988)) and non-ulcerative STDs (Laga et al. (1993)) have been shown to 

increase the risk of sexual H1V transmission. STDs are poorly controlled and treated in many 

African countries and this is thought to have accelerated the rapid spread of HIV. Indeed, in a 

study in rural Uganda, over 90% of HIV infections were attributed to STDs (Robinson et al. 

(1997)). 

Reasons for the high incidence of STDs, later including HIV, may involve cultural 

factors. Polygamy is more widespread and accepted in African cultures, with often concurrent 

sexual networks existing both in urban and rural areas (Hudson (1993); Obbo (1993)). A high 

level of concurrent sexual mixing is perhaps an additional factor for the rapid spread of HIV, 

a factor also thought to be involved in the infection of highly promiscuous US homosexuals in 

the 1980s (Jacquez etal. (1994)). 

It is also common for older men to have sex and form partnerships with younger 

women, often due to both matters of status and economic gain on the part of the young girl 

(Konde-Lule, Musagara and Musgrave (1993); Potts, Anderson and Boily (1991); Vos 

(1994)). It is thought that this is one of the, main reasons for the high incidence of HIV 

infection in young females; women outnumbered men in the 15-24 age band, compared to men 

out numbering women in the 30+ age groups in a Ugandan study from 1985-89 (Berkley et at. 

(1990)). Some young girls then form more stable relations with men nearer their own age and 

hence perpetuate the transmission network The high incidence of HIV infection in young 
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women of child bearing age, also means that more children are likely to be subsequently 

infected through vertical transmission. 

Studies in Uganda have shown a gradient of infection from towns, predominately 

along the trans-African highway, to smaller trading towns and finally to rural villages, with 

incidences of over 40% to approximately 25% to 8-9% respectively (Nunn et al. (1994); 

Wawer et al. (1991); Nunn et at. (1996)). It is thought that economic factors, including civil 

wars, caused the migration of male workers from agriculture to factory work (Hunt (1996)). 

Along with traders (Pickering et al. (1996)) and truck drivers (Carswell, Uoyd and Howells 

(1989)), it is thought that the migrant workers, away from home for long periods, frequented 

prostitutes and accounted for the high incidence in the urban areas. The returning migrant 

worker is then thought to have transferred the virus to more rural areas. However, studies on 

the prostitutes have highlighted a grading, with the low grade migrant workers frequenting 

different women from the more wealthy traders and truck drivers (Pickering et al. (1997)). 

This may help to explain the slow spread to the rural areas. 

A further possible factor involved in transmission is differences in the infecting virus. 

Subtype B is known to predominate in Western populations, but a wide degree of subtypes are 

found in other areas such as Africa (Myers et al.(1995)) and may vary in their transmission 

rates. 

Intervention has had mixed results, with some showing effective STD control (Laga et 

al. (1994)) and others reportiiig little change in behaviour, despite substantial knowledge of 

AIDS (Wawer et al. (1994)). It is clear that health education to reduce the numbers of sexual 

partners and promote the use of condoms is required to prevent further transmissions and 

control the epidemic. 

13.4.b Thailand 

The HIV epidemic in Thailand is of recent origin and two main risk groups have been 

identified: IDUs and female sex workers along with their heterosexual contacts (Weniger et al. 

(1991)). Studies of the molecular epidemiology of HIV in Thailand found distinct genotypes 

present in these two risk groups, suggesting they were not epidemiologically linked; genotype 

A predominated in the heterosexuals and genotype B in the IDUs (Ou et al. (1993)). Later, 

genotype A was defined as HIV-1 subtype E and genotype B as HIV-1 subtype B 

(Kunanusont et at. (1995)). The different subtypes in these different risk groups adds further 

debate to the theory that subtype differences are involved in the vast heterosexual spread of 



}flV in Africa, compared to much slower spread in Western countries where subtype B 

predominates. 

Epidemiological studies of the heterosexual contacts of HIV individuals, revealed 

that the transmission rate from an infected IDU by sexual contact was significantly lower than 

that from a heterosexually infected index (48% (27% excluding individuals with an additional 

IDU-risk) versus 69% respectively) and this was more pronounced when the subtype was 

considered (52% (26% excluding individuals with an additional IDU-risk) subtype B versus 

70% subtype E) (Kunanusont et al. (1995)). This suggested that subtype E may be associated 

with a higher risk of heterosexual transmission. In support of this the estimated risk of female-

to-male transmission in the Thai population has been reported to be 3 1-56 fold greater than 

estimates for the US population, where subtype B predominates (Mastro etal. (1994)). 

It is possible that the distinct subtype distribution was one of a founder effect, i.e. the 

infection of sex workers and their contacts with subtype E, followed by rapid spread such that 

all HIV-susceptible individuals became infected with this strain and later exposure to other 

strains was then unimportant. A similar process could then have occurred in the IDUs with 

subtype B virus, but this whole theory needs further investigation (Mastro et al. (1997)). A 

similar pattern of subtype distinction has also been reported in South Africa, with male 

homosexuals predominately infected with subtype B virus and heterosexuals with subtype C 

(Williamson et al. (1995)). 

A massive public health campaign was initiated in Thailand in 1989, known as the 

100% condom campaign, to try and curtail the rapidly growing epidemic, but this only became 

nation-wide in 1992 (Rojanapithayakorn and Hanenberg (1996)). A decrease in reported visits 

to sex workers and increased condom usage followed (Rojanapithayakorn and Hanenberg 

(1996); Nelson etal. (1996)), probably associated with the subsequent fall in reports of S1I)s 

and the rate of newly acquired H1V infections reported in 1995 (Nelson etal. (1996)). 

1.3.4.c Europe 

The first national survey of sexual attitudes and lifestyles in the United Kingdom 

(UK) (Johnson et al. (1992)), based on a random selection of households, found that young 

people (16-34), in particular men, were the most likely of all age groups to have had recent 

multiple heterosexual partners. It was clear therefore that the public health message needed to 

be focused predominately at this higher risk group. Those with multiple partners were more 

likely to have attended an SiT) clinic, suggesting a higher incidence of 'at risk' exposure in 
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this group. This was reflected in the numbers who reported to have had an HIV test 1 in 10, 

of those with 5 or more heterosexual partners in the past 5 years, sought a test for reasons 

other than blood donation, pregnancy, or insurance purposes. This rose to 1 in 4 among 

homosexuals.. 

From this national survey, it seemed that a proportion of individuals were at risk from 

heterosexually acquired infection and studies into the transmission rates were needed to assess 

how many of these individuals would subsequently be expected to be, or become HIV. A 

European Collaborative Study was established from 9 countries across Europe (European 

Study Group (1992)). 563 stable couples (400 male and 156 female HIV index patients) 

were recruited where the contacts only risk factor was sexual contact with the index. A total of 

12% of male contacts and 20% of female contacts were HIV + 
 , suggesting male-to-female 

transmission is almost twice as frequent as female-to-male. Factors increasing the risk of 

male-to-female transmission were stage of disease, anal sex and advanced age (>45) of the 

female partner. The latter seems to differ from that seen in African populations, where 

younger females are more likely to be infected, but this may be due to a bias in HIV exposure 

in the African women (see Section 1.3.4.a). Risk factors for female-to-male transmission were 

identified as advanced stage of disease in the index and sex during menses. 

The vast majority of the index patients had acquired their infection from IV drug use 

(65% - 66% female; 64% male) and were all probably infected with subtype B virus, 

highlighting an important difference from that seen in the other two mentioned heterosexual 

epidemics. However, further evidence would be required to confirm any theories regarding the 

effect of subtype and viral variation on heterosexual transmission. 

1.3.5 Mode of Heterosexual Transmission 

Transmission of HIV requires the infection of a susceptible cell, predominately cells 

expressing the CD4 receptor. These include: the CD4 T lymphocytes, Langerhans' cells 

(LCs) and macrophages. Studies using monkeys have begun to clarify the complex and 

unresolved mechanism of sexual transmission. Iniravaginal simian immunodeficiency virus 

(SN) inoculation, in rhesus macaques, showed that the first cellular targets of infection were 

in the lámina propria of the cervicovaginal mucosa and appeared to be dendritic in nature 

(Spira et al. (1996)). In vitro studies involving dendritic cells (DCs) have yielded conflicting 

results (Pope et al. (1997b); Essex et al. (1997)); this may reflect the different modes of 
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isolation and source of the dendritic cell. Hence, the precise mechanism of infection of these 

cells is unclear, but a hypothetical model is outlined in Figure 1.1. Essentially, the infected DC 

migrates to the draining lymph node where it infects CD4 T lymphocytes. 

It is important to note that heterosexual and homosexual infection probably occur by 

different mechanisms. The mode of sexual contact is different, with anal sex carrying an 

increased risk of tissue damage and exposure to blood than vaginal intercourse. Primate 

studies also revealed that the oral, cervicovaginal and foreskin epithelia all contained LCs, but 

they were absent from the rectal and urethral epithelia (Hussain and Lehner (1995)). 

Furthermore, intestinal epithelial cells form tight junctions unlike that found in vaginal 

epithelium, which has intercellular gaps sufficient to allow viral transfer (Fantini a al. 

(1997)). Intestinal epithelial cells have also been shown to be susceptible to in vitro infection 

(Fantini et al. (1993)). 

Factors known to effect the transmission of HIV heterosexually include: circumcision 

(Royce (1992)), probably due to the removal of the LC-rich foreskin (Hussain and Lehner 

(1995)); sex during menses (Lazzarin et al. (1991); European Study Group (1992)); 

reproductive tract infections, both non-ulcerative and ulcerative (Laga et al. (1993); 

Greenblatt et al. (1988)); and hormonal contraceptives (Clemetson et al. (1993)), shown in 

rhesus macaques to thin the vaginal epithelium and enhance SW transmission (Marx a al. 

(1996)). The clinical stage of the  infecting partner has also been shown to be important, with 

late stage infection showing an increased risk of transmission (Laga et al. (1989)). Models of 

early epidemics (Alilgren, Gorny and Stein (1990)) and the high viral loads found during 

primary infection (Piataic a al. (1993)), suggest that acutely infected individuals also are more 

likely to transmit. 

Another factor which may effect transmission is the subtype of the infecting virus and 

in vitro studies of lily infection of DCs were performed to try and explain the contrasting 

epidemiology in areas such as Thailand (see Section 1.3.4.b). Soto-Ramirez a al. (1996) 

reported that primary isolates from Thai heterosexuals (subtype E) replicated more readily in 

DCs than those from US homosexuals (subtype B). Several groups contested this finding 

(Dittmar a al. (1997); Pope a al. (1997a); Pope a al. (1997b)), but in response Essex et al. 

(1997) suggested that two different mechanisms of DC infection can occur. The first involving 

DCIT cell conjugates as reported by Pope and colleagues (Dittmar et al. (1997); Pope et al. 

(1997b)) and the second involving the productive infection of DC alone (Soto-Ramirez et al. 

(1996); Blauvelt et al. (1997); Dittmar et al. (1997)). Essex also noted that Dittmar et al. 
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Figure 1.1. 

Hypothetical model of IIILV infection following heterosexual transmission. 

Adapted from Zambruno etal. (1995). 

Invading virus must first penetrate the mucosal epithelium, surviving mechanisms 

of host resistance (see section 1.6). 

Virus can then infect Langerhans' cells (LC) present in the epithelium and these 

activated cells then migrate through the lamina propria. 

Alternative route: the virus may diffuse through the vaginal epithelium (Fantini et 

al. (1997)) and infect the LC in the lamina propria, as seen in SW-infected 

macaques (Spira et al. (1996)). It is also theoretically possible that HIV can infect 

the other CD4+  cells present here, namely the T cells and also macrophages, but 

this has yet to be confirmed. 

The infected LCs could produce new virus to infect other cells in the lamina 

propria, such as CD4 T cells. The LCs differentiate and migrate to the draining 

iliac lymph node. 

The differentiate LCs, now dendritic cells (DCs), can then produce virus to infect 

the circulating naive CD4 T cells. DCs are also antigen presenting cells (APCs); 

APCs present antigens to T cells to initiate immune responses (see section 1.6.2), 

hence virus-specific immune responses could also be generated. 
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(1997) did show a difference in DC infection, with their non-subtype B viruses replicating 

better in DCs than subtype B ones. 

1.4. THE VIRUS 

HIV is a member of the Retroviridae, a family of viruses that infect a variety of 

different hosts. The genome of all retroviruses is composed of single stranded ribonucleic acid 

(ssRNA) and they share a similar mode of replication, virion structure and genomic 

organisation. The Retroviridae family is now divided into 7 distinct genera (Coffin (.1992)); 

the Avian Leukosis-Sarcoma virus group (e.g. Rous sarcoma virus), mammalian C-type virus 

group (e.g. feline leukaemia virus), B-type virus group (e.g. mouse mammary tumour virus), 

D-type virus group (e.g. Mason-Pfizer monkey virus), spumavirus group (e.g. human foamy 

virus), lentivirus group (e.g. HIV) and human T cell leukaemia (HTLV)- bovine leukaemia 

virus group (e.g. HTLV-l). 

HIS! is currently the only known member of the lentivirus genus to infect man and is 

sub-divided into two types, HIV-1 and HIV-2, based on serology and sequence analysis (Fauci 

and Desrosiers (1997)). Lenti, meaning slow, denotes the long period between infection and 

disease, which can be up to 10 years or more with 11EV infection (Lifson et at. (1991)). Other 

lentiviruses, particularly SIV, have been used to aid research into their human counterpart, 

although none exactly mimics it. SW has been isolated from chimpanzees in the wild (SIVcpz) 

and has homology to HIV-1 (Hiiet et al. (1990)), whereas HIV-2 has more homology to other 

SW isolates, such as those found in African Green monkeys (SW A( ) (Hirsch et at. (1989)). 

MV-1 can be further divided into 10 subtypes, or clades A-I (Leitner (1996); 

Kostrikis et at. (1995)) and the more diverse subtype 0 (Gtirtler et at. (1994)). HIV-2 has so-

far only been divided into 5 clades, A-B (Gao et at. (1994)). This diversity is based 

predominately on sequence variation in the env gene, which encodes for the envelope proteins 

of the virus (see Section 1.5). Within subtype variation is also seen, reflecting the vast 

potential for change due to high levels of viral replication and the error-prone reverse 

transcriptase, a feature of all retroviruses (see Section 1.4.1c). Recombination, between 

viruses of different subtypes, is also a means for generating further variation in areas of 

diverse subtype array such as Central Africa, South America and Southeast Asia (Robertson 

et al. (1995)). 11EV-1 subtype B is the predominant subtype in Europe and America and 11EV-

2 is mainly restricted to West African countries (Clavel et at. (1986)). 
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1.4.1 Genome 

H1V contains two identical copies of 9.5 kilobases (kb) long, positive sense ssRNA, 

i.e. they contain the correct coding sequence for protein translation to occur directly, although 

this does not occur in retroviruses. As for all retroviruses, the basic genome is composed of 

three genes gag-pol-env and encodes for structural proteins and enzymes (see Figure 1.2). The 

gag-pol transcript is translated to precursor proteins (see Figure 1.3); these are cleaved by 

virus derived proteases into the structural and regulatory proteins. Smaller accessory proteins 

are obtained by multiple splicing, occasionally in other open reading frames, maximising the 

potential number of proteins from a relatively small genome; the herpes viruses contain 

genomes of approximately 200kb by comparison. 

1.4.2 Structure 

A schematic representation of the HI-i virion is shown in Figure 1.4. The envelope 

proteins associate as 4 heterodimers to form 'knobs', or 'spikes', of which there are 

approximately 72 in the 11 Omn  diameter host derived lipid bi-layer. The extracellular gpl2O is 

non-covalently associated to the transmembane gp4l. 

The lipid membrane encloses the cone shaped nucleocapsid composed of the the 

capsid protein (p24), which provides the main structural framework for the virion. The matrix 

(p 17), located between the capsid and envelope, also provides structural support and 

associates with the viral envelope (Hoglund et al. (1992)). The nucleocapsid proteins, p7/9 

and p6, are contained within the capsid too. 

The two strands of viral RNA are linked at the 5' end and are associated with a 

transfer RNA (tRNA) molecule, which acts as a primer for the reverse transcriptase enzyme 

(RT) to initiate viral replication (see Figure 1.5). The viral genome may also be associated 

with the nucleocapsid. As well as the RT complex, the virion also contains the integrase and 

protease enzymes and the regulatory protein, VPR. 

1.4.3 The Structural Genes 

1.4.3.a Env 

The envelope glycoproteins, gpl20 and gp4l, are cleaved from the gp160 precursor 

(see Figure 1.3) and form a non-covaiently linked heterodimer. The extracellular gp120 

contains the binding domain for CD4, the principal receptor for entry of the virus, and 

interacts with the transmembrane gp4l. CD4 independent entry has been shown (Harouse et 
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Figure 1.2. 

HIV-1 genomic organisation 

The proviral genome, highlighting the coding regions for the respective genes. 

The 5' and 3' long terminal repeat (LTR) contain identical U3-R-U5 repeats in the integrated form of the genome (see Figure 
1.5). The 5' LTR contains the promoter region required for transcription to occur. The following list describes the various 
proteins encoded in the respective regions: 

gag - capsid protein (p24), the matrix protein (p 17) and the nucleocapsid proteins (p7 and p9). 

poi- viral enzymes (including reverse transcriptase (RT) and intergrase. 

env - envelope glycoproteins (gpl2O and gp41). 

vf - Viral Infectivity Factor (VIF), involved in viral infectivity 

vpr - VPR, a factor involved in nuclear localisation of the virus and control of cellular gene expression. 

vpu - VPU, a factor possibly involved in the extracellular release of the virus and/or CD4 degradation. 

tat - Trans-Activator of Transcription (TAT), transcriptional activator of viral gene expression 

rev - Regulator of Expression of the Virus (REV), involved in the control of the structural genes expression and RNA transport 

nef- Negative Effector Function (NEF), involved in the down-regulation of gene regulation, including CD4. 
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Figure 1.3. 

HILV-1 mRNA Transcripts and Expression 

Full length mRNA transcript, complete with the 5' cap, Transactivation Response 

Element (TAR), the Rev Response Element (RRE) and the 3' poly AAA tail. The 

regulatory proteins TAT and REV bind to TAR and RRE respectively. 

mRNA transcripts produced during FIIV replication, showing the splice sites 

(dotted lines) and the products following translation (arrow). For the gag-pol-env 

genes the polyprotein precursors are shown, along with the products produced 

following cleavage with the viral protease. 

The first transcripts to be produced during replication are the multiply spliced tat, 

rev and nefT These are then translated in the cytoplasm and return to the nucleus to 

exert their effects (see Section 1.4.4 and 1.4.5.d). TAT binds to the TAR, 

stabilising and increasing the number of full length and singly spliced transcripts. 

REV binds to the RRE, only present in the full, or singly spliced transcripts and 

aids transport to the cytoplasm, where translation of the gene products can occur. 

In order for production of the poi gene products to occur, a -1 frameshift in 

translation is required which occurs in about 5% of gag transcripts. 
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Figure 1.4. 

The ETV-1 Virion 

A diagrammatical representation of the structure of the I-IIV-1 virion (not to scale) 

The host proteins shown included the Major Histocompatibility Complex (MI-IC) 
Class I and Class II proteins and the Class I associated 13-2 microglobulin (Arthur et 
al. (1992)). 
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al. (1989); Tateno, Gonzalez-Scarano and Levy (1989); Harouse et al. (1991)), but its 

importance in vivo is unclear. Gp41 is involved in membrane fusion, allowing entry of the 

virus once CD4-gp 120 binding has occurred. The envelope protein and its role in infection 

will be discussed in more detail later (see Section 1.5) 

HIV-1 Env is encoded from a bicistronic (vpu and env) singly spliced transcript found 

later than the multiply spliced messenger RNAs (rnRNAs) (see Figure 1.3) and its production 

is dependent on the regulatory proteins TAT and REV (see 1.4.4.b). The resulting Env protein 

is extensively glycosylated and cleaved to form gpl20 and gp4l. The highly glycosylated 

gp 120 protein is the hydrophilic external protein and the relatively hydrophobic gp4 1 is a type 

1 integral transmembrane protein. 

1.4.3.b Gag 

The gag gene encodes for the structural components of the FIIV virion. The pr53 

precursor protein is derived from the unspliced gag-pol mRNA transcript (see Figure 1.3). 

The polyprotein is then cleaved into p24 (capsid), p17 (matrix), p15 (nucleocapsid), the latter 

of which is further cleaved into p7/9 (nucleocapsid protein) and p6. 

As well as providing structural support, the GAG proteins have other suggested 

functions. The capsid, p24, is known to bind cyclophilins A/B (Luban et al. (1993)), which 

function to mediate the correct assembly of other proteins and hence may be involved in 

assembly of the virion. The basic, hydrophilic nucleocapsid protein, binds genomic viral RNA 

(vRNA) and may condense it during packaging (Sakaguch et al. (1993)). 

1.4.3.c Pol 

The virally encoded enzymes are derived from the gag-pol transcript by a -1 

ribosomal frameshift, occurring at 5% of translations (Jacks et al. (1988)). The resulting 

pr 160 precursor protein is then cleaved by the viral protease into: p51/66 (RT complex), p 1 

(protease) and p32 (integrase) (see Figure 1.3). 

The RT complex is a heterodinier of the RNA dependent DNA polymerase enzyme, 

encoded by the p51 protein and the RNase H enzyme. RNase H degrades the RNA moiety of 

the RNA/DNA complexes formed during replication (see Figure 1.5) and generates 

oligonucléotide primers for the RT enzyme to initiate transcription. The RT of retroviral 

polymerases lack the 3'-5' exonucleotide proof-reading activity found in other DNA 

polymerases. This and the high error rate of the enzyme are the main accountable factors for 
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Figure 1.5. 

A schematic representation of reverse transcription. 

Adapted from Boucher (1993). 

The tRNA primer associates with the primer binding site (PBS) just downstream of 

the U5 region of the 5' LTR, allowing a -ye strand DNA copy to be made, using 

the reverse transcriptase enzyme (RT). 

As reverse transcription occurs RNAse H, part of the RI complex, degrades the 

RNA template. 

The short intermediate ('strong stop' -ye strand) jumps to 3' end of the second 

copy of RNA, facilitated by the identical repeat sections (R) at the 5' and 3' LTR 

(Coffin and Haseltine (1977); Resnick, Omer and Faras (1984)). Elongation of the 

strong stop -ye DNA strand then continues to the PBS. 

A primer is generated by the RNAse H activity of the RI enzyme, which is called 

Polypurine Track (PPT) (Panganiban and Fiore (1988)). This allows +ve strand 

DNA synthesis to occur until the tRNA molecule. 

The tRNA is then removed by RNAse H. 

In order for full double stranded DNA (dsDNA) to be formed, the -ye strand DNA 

strand circularises, or a second strand jump occurs (Resnick, Omer and Faras 

(1984)). The -ye strand then contains a U3/R/U5 motif at both the 5'and 3' ends. 

7. The strong stop +ve strand is then completed and a ds linear DNA genome formed. 
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the high degree of diversity seen in the retrovirus family. Approximately 1 inaccurate 

base/1700-4000 incorporated nucleotides occurs (Preston, Poiez and Loeb (1988); Roberts, 

Bebenek and Kunkel (1988)), relating to a possible 1-3 mis-incorporations/ replication cycle 

for the 9.5kb genome. However, the in vivo error rate has been reported to be up to 20-fold 

less than that of these purified cell-free studies (Mansky and Temin (1995)). 

The protease enzyme is responsible for the cleavage of the precursor proteins and is 

related to cellular aspartyl proteases, with which it shares homology and hence, its active form 

is most likely to be a dimer (Loeb et al. (1989)). 

The integrase enzyme possesses DNA cleavage and joining activities and its function 

is the covalent linkage of double stranded viral DNA (ds vDNA) into the host genome, a key 

feature of reiroviral replication (see Figure 1.6). The central domain of the integrase enzyme is 

conserved across retroviruses, retrotransposons and the transposons of bacterial transposable 

elements. Further understanding of this and all the viral enzymes will improve the discovery of 

inhibitors and potential therapeutic agents (Pommier et al. (1997)). 

1.4.4 The Regulatory Genes 

The regulatory genes, tat and rev are both essential for HIV replication and are 

derived from multiply spliced transcripts early in infection (see Figure 1.3). 

L4.4.a Tat 

TAT, or the trans-activator of transcription, is a l5kiloDalton (kDa) protein. TAT 

mediates its effect by binding to a cis-acting RNA element, TransActivation Response element 

(TAR), located at the start of all viral transcripts (Berkhout, Silverman and Jeang (1989)). 

The binding of TAT to TAR has a positive effect on the elongation of transcription, allowing 

the formation of full length transcripts required for the production of the structural proteins 

(Feinberg, Baltimore and Frankel (1991)). 

1.4.4.b Rev 

In the absence of any protective mechanism, all viral transcripts would be spliced by 

the splicesome recognising the 5-6 splice Sites present in the genome. The function of REV, or 

the regulator of expression of the virion, is to control this. 

REV is a l3kDa protein, which binds to the REV Response Element (RRE) (Daly et 
al. (1989)). RRE is another cis-acting RNA element, located in the env exon, 3' to the 
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junction between gpl2O and gp41, and hence is only expressed on unspliced and singly spliced 

transcripts (see Figure 1.3). REV binding to RRE allows the transport of these unspliced and 

singly spliced transcripts from the nucleus to the cytoplasm (Felber et al. (1989)). Once in the 

cytoplasm, translation can occur and the relevant proteins produced. REV contains a nuclear 

export signal sequence and interacts with cellular nudeoporins to allow transport (Fischer et 

al. (1995)). 

1.4.5 The Accessory Genes 

The accessory genes (vif, vpr, vpu and nef) are encoded from spliced mRNA in 

different open reading frames (see Figure 1.3). Early in vitro tissue culture studies deemed 

these proteins non-essential. for replication, although more recent reports have highlighted 

some critical functions. The precise role in vivo of these proteins is still not clearly resolved. 

L4.5.a Vjf 

Encoded downstream of the pol gene, vzf is found in all lentiviruses with the exception 

of EIAV. The 23kDa protein accumulates in the cytosol and cytoplasmic membrane of 

infected cells and early studies revealed a lack of VIF resulted in reduced infectivity 

(Goncalves, Jallepalli and Gabuzda (1994)). Hence, the protein became known as viral 

infectivity factor, or VIF. Two proposed functions for VIP are to transport the infecting virus 

to the nucleus (Karczewski and'Strebel (1996)) and stabilise newly synthesised vDNA (Simon 

and Malim (1996)). 

1.4.5.b Vpr 

VPR is a l5kDa protein translated from singly spliced REV dependent mRNA and 

associates with the nucleocapsid of mature virions. Vpr is encoded by HIV- 1 and some SW 

strains; other SW strains along with HIV-2 also encode a homologous gene vpx. Vpx is 
thought to be a repeat of vpr in HIV-2 and the SW strains expressing both (Tristem et al. 

(1990)), although a recent report suggests that a latter recombination event may have occurred 

(Sharp et al. (1996)). Sharp et al. (1996) suggest that the two genes in HIV-2/SW may have 

divergent functions (see below for VPR functions), providing a potential selective advantage. 

A mutant virus (HIV-l) lacking both functional VPR and matrix protein, showed a 

block in nuclear localisation of the pre-integration complex, suggesting both are redundantly 

involved in nuclear localisation in non-dividing cells (Heinzinger et al. (1994)). Therefore, in 



non-dividing cells, such as macrophages, VTR is required for efficient infection and 

integration of the virus. 

In dividing cells, such as CD4 T cells, VPR has been implicated as a regulator of 

viral and cellular gene expression. By maintaining cell cycle in G2 arrest, VPR allows 

enhanced virus production (Bartz, Rogel and Emerman (1996)). 

1.4.5.c Vpu 

Vpu encodes a l6kDa protein from a singly spliced REV dependent mRNA. The N-

terminal amino acids of VPU are hydrophobic in nature and the rest are hydrophilic and its 

structure suggests it to be an aniphipathic integral membrane protein (type 1) (Maldarelli et 

al. (1993)). In infected cells, VPU is seen in the perinuclear region of the cell, associated with 

the endoplasmic reticulum (ER) and Golgi. Suggested functions for the protein are the 

degradation of CD4 in the ER (Wiley et at. (1992); Bour, Schubert and Strebel (1995)) and 

enhanced release of virions from infected cells (Gottlinger et al. (1993)) 

1.4.5.d Nef 

NEF is translated from two multiply spliced early transcripts and produces a 27kDa 

protein. It is postranslationally modified by the addition of myristic acid, required for 

attachment to the cell membrane. The functions of NEF are multiple, with pleotropic effects. 

Early in vitro studies suggested the misnomer that nef mutant viruses replicated to higher 

levels than wild type viruses, hence the name 'negative effector function'. Conversely, NEF-

mediated enhancement of viral infectivity has been seen (Miller et al. (1994); Spina et at. 

(1994)) and supported by findings of nef mutants that appear attenuated and less pathogenic 

(Deacon et at. (1995); Kestler et al. (1991)). NEF has also been shown to reduce surface 

CD4 levels (Garcia, Alfano and Miller (1993)), which is presumed to occur early in 

replication to prevent superinfection. 

1.4.6 Life Cycle 

The replication cycle of HIV-1 is summarised in Figure 1.6, along with a brief 

explanation of the various stages. The production of dsDNA from the ssRNA genome is 

described in more detail in Figure 1.5. 
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Figure 1.6. 

The replication cycle of HIV-1. 

A schematic representation of the replication cycle of HIV- 1. The various stages are described 
in more detail below, with the order indicated by arrows (—..). 

BINDING - The virion attaches to the susceptible cell, via the external glycoprotein, gpl2O, 
binding to the cell surface receptor, CD4 (Dalgleish et al. (1984); KJaizmann et al. 
(1984)). It has recently been shown that entry also requires interaction with a co-receptor 
and this will be described in more detail later (see Section 1.5). 

ENTRY! FUSION - The binding of gpl2O to the host cell causes conformational changes in 
the gpl20/gp41 proteins, exposes the fusion peptide of gp4l. This causes the viral 
envelope to fuse with the host cell membrane and release the nucleocapsid into the 
cytoplasm (Brasseur et al. (1988)). 

C.) UNCOATING - Reverse transcription begins before the RNA genome is released from the 
nucleocapsid and at some point during this process the capsid is broken down and the pre-
integration complex transported to the nucleus. The precise components of this complex 
are not yet known, but include: the integrase enzyme, the matrix protein and the dsDNA, 
produced following reverse transcription. 

REVERSE TRANSCRIPTION - A more detailed description of this procedure is shown in 
Figure 1.5. However, the basic process is the production of dsDNA from the ssRNA 
genome, by the viral reverse transcriptase enzyme. 

INTEGRATION - The virally encoded integrase enzyme nicks the viral dsDNA and host 
cell genome forming 'blunt ends' (Engleman, Mizuuchi and Craigie (1991)) These are 
overhangs of oligonucleotide bases, which allow insertion of the viral dsDNA into the cell 
genome. Host cell enzymes are presumed to fill in any gaps and ligate the ends. 

TRANSCRIPTION! TRANSLATION - Following activation, usually cell activation, cellular 
transcription factors, e.g. NF-iB, Spl, bind to the promoter region located in the U3 
region of the viral 5' LTR (see Figure 1.5) and initiate transcription. Full length transcripts 
are multiply spliced by host machinery in the nucleus, producing the early transcripts, tat, 
rev and nef (see Figure 1.3). These are translated in the cytoplasm by cellular processes 
and then return to the nucleus to aid production of the late transcripts. These late 
transcripts encode for the structural proteins and viral enzymes (see Figure 1.3). Some of 
the full length RNA transcripts act as new RNA genomes. 

ASSEMBLY - The newly formed proteins are assembled into virions and the RNA genome 
and enzymes packaged inside. The glycoproteins gp120 and gp4l insert into the cell 
membrane and the completed capsid is then targeted to this area by an unknown 
mechanism. 

BUDDING! RELEASE - The nucleocapsid then buds out of the cell membrane, acquiring a 
glycoprotein studded lipid bi-layer envelope. The virus is then able to infect farther -
susceptible cells by binding to the cell receptor C134. 
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1.5. THE ENVELOPE GLYCOPROTEIN 

As described earlier (see Section 1.4.1), the envelope proteins are encoded from the 

env gene of the [liv genome. A schematic representation of the secondary structures of the 

envelope proteins is shown in Figure 1.7. 

The gp120 protein contains six conserved regions (C 1-6) interspersed with five 

hypervariable regions (V1-5) (see Figure 1.7.a)(Starcich et al. (1986); Wiley et al. (1986); 

Modrow et al. (1987)). Intrachain disulphide bonds have been postulated to be important in 

the structure and function of gp120, with the finding of conserved cysteine residues across 

diverse HIV-1/2 and SW strains (Leonard et al. (1990); Hoxie (1991)). The regions involved 

in the gp 120-CD4 interaction are found within the conserved regions and form a discontinuous 

binding region (Olshevsky et al. (1990)) (see Figure 1.7.a). 

The diversity seen in the V1-5 regions is a major factor involved in distinguishing  the 

viral subtypes (Leitner (1996)) and strains (Hahn et al. (1985)); differences in the viral 

population of an infected individual (intrapatient variation), termed a quasispecies, are also 

seen in these hypervariable regions (Hahn et al. (1986); Simmonds et al. (1991); Holmes et 

al. (1992)). The heterogeneity seen in an individual patient is most likely caused by the 

selective pressures of the host immune response and adaptation of the virus to infect different 

cell types. The host immune response to the virus will be addressed in more detail later (see 

Section 1.6), but involves escape from neutralising antibodies, a large proportion of which are 

directed against the envelope proteins. The principal neutralising domain (PND) for tissue 

culture adapted strains of HIV, is found within the third hypervariable region, V3 (Javaherian 

et al. (1989); Carrow et al. (1991)), although other domains are also involved (Chanh et al. 

(1986)). 

1.5.1 The V3 Loop 

This domain was first shown to be important with the discovery that antibodies 

directed against this region prevented infection (Javaherian et al. (1989); Carrow et al. 

(1991); Fmini et al. (1992)) and was later shown to play a crucial role in cell tropism, 

cytopathicity and fusogenicity (Cairn et al. (1992); Cheng-Mayer et al. (1990)). The region 

contains 35 amino acids arranged in a loop from a disulphide bond (see Figure 1.7.b). The 

crown of the loop contains a highly conserved GPGRAF motif (subtype B) flanked by 

variable regions either side, with the sequences towards the base of the loop becoming more 

I, £. 



Figure 1.7. 

Diagrammatic Representation of fflV-1 Env 

The predicted folding pattern of gp120 and gp4l adapted from Luciw (1996) 

Gp120 is shown in black, with the hypervariable domains V1-5 shown in blue. The 

disulphide bonds are represented as three lines and the amino acids involved in binding 

C134 are shown in red. The amino and carboxyl termini are labelled as (2) and ® 

respectively. Gp4 1 is shown in light blue, with the fusion peptide, F, represented as a 

box and the leucine zipperlike region, Z shown as a helix. The transmembrane portion, 

TM is indicated by a hatched box. The diagram does not consider any interactions of 

gpl2O with gp41, which may affect the precise structure from that shown here. 

The V3 loop of HIV-1. 

The amino acid sequence shown in the centre is the subtype B consensus sequence, 

with common alternatives shown outside (>10 sequences of 1078; (Dighe, Korber and 

Foley (1997)). The conserved crown motif GPGRAF is shown in blue. The potential 

glycosylation signal NNT is highlighted with a bracket, the disulphide bridge linking 

the two cysteine (C) residues is shown with a stripe and the prominent amino acids 

involved in cell tropism are shown in red. 
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conserved again (Dighe, Korber and Foley (1997)). The variation seen between viruses is not 

completely random and involve amino acid substitutions with similar chemical properties. 

1.5.1.a V3 and Cell Tropism 

Early definitions of viral phenotypes were dependent upon the ability to induce 

syncytia, or formation of large multmucleate cells in CD4 T cells lines, such as MT-2 

(Lifson et al. (1986a); Lifson et al. (1986b); Koot (1992)). Viruses able to form syncytia in 

in vitro culture were termed syncytium-inducing, or SI, and those unable to were called non-

syncytium inducing, or NSI (Tersmette et al. (1988); Koot (1992)). SI viruses grew faster and 

to higher titres in both T cell lines and primary peripheral blood mononuclear cell (PB MC) 

cultures and were thought to be more virulent. The presence of a basic amino in one or more 

of the following positions in the V3 loop: 11, 24, 25 and 32 (see Figure 1.7.b), confers an SI 

phenotype and if uncharged, or acidic amino acids are present an NSI phenotype is seen (de 

Jong et at. (1992b); de Jong et al. (1992a); Fouchier et at. (1992); Mulch, Margolin and 

Swanstrom (1993)). The overall charge of the V3 loop is also used to predict the viral 

phenotype (Fouchier et al. (1992); Milich, Margolin and Swanstrom (1993); Donaldson et al. 

(1994)), as is the degree of variability (Chesebro et at. (1992); Mulch, Margolin and 

Swanstrom (1993); Donaldson et at. (1994)); SI isolates have a higher overall charge and are 

more heterogeneous than NSI isolates. A combination of these two properties, charge and 

variability, was used by Donaldson and colleagues (1994) to predict the phenotype of different 

isolates. Variations in VI and V2 have also been shown to be involved in tropism to a lesser 

extent (Boyd et al. (1993); Groenink et al. (1993); Sullivan et al. (1993)). 

Chimeric viruses, constructed between different viruses, found that the V3 region was 

involved in the distinction between macrophage tropism, or M-tropism, and T cell line 

tropism, or T-tropism (O'Brien etal. (1990); Westervelt, Gendelman and Ramer (1991); Cann 

et al. (1992)). Generally, the terms are interchangeable with the NSJJSI phenotype; NSI 

viruses generally are M-tropic and SI viruses are T-tropic. However, care should be taken as 

an isolate deemed NSI, due to its lack of ability to induce fusion in T cell lines, is not 

automatically a M-tropic virus. The terms M and T-tropic are also confusing as many M-

tropic and T-tropic isolates will grow in primary PBMC cultures, composed primarily of 

CD4 T cells, i.e. the term M-tropic means an isolate will not replicate in continuous T cell 

lines. Another term for T-tropic cell isolates is T Cell Line Adapted (TCLA), which is slightly 

less ambiguous. 
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The V3 loop does not interact with CD4 on the host cell, as seen by the fact that 

antibodies against V3 (Linsley et al. (1988)) and mutations in V3 (Page, Stearns and Littman 

(1992); Griniaila et al. (1992)) do not affect gpl2O-CD4 binding, but do prevent entry and 

infection. It was proposed many years ago that the V3 region of gpl2O may interact with other 

cell surface molecules, or a co-receptor (Hunter (1997)) and may even be cleaved by a cellular 

proteináse (Hattori et al. (1989); Clements et al. (1991)). Such an interaction may play a 

crucial role in conformational changes required to expose the fusion peptide in gp4l and hence 

allow viral entry. A potential co-receptor was proposed by Callebaut and colleagues 

(Callebaut et al. (1993)) as the dipeptidyl peptidase IV, CD26. They reported that co-

transfection of murine NIH 3T3 cells with CD4 and CD26 rendered them permissive to HIV 

infection, but this failed to be reproduced by others (Broder et al. (1994); Patience et al. 

(1994); Camerini, Planelles and Chen (1994); Alizon and Dragic (1994); Lazaro et al. 

(1994)). It has long been known that CD4 alone is insufficient for HIV infection (Maddon et 

al. (1986)) and that some other factor(s) expressed on human cells is(are) required. This was 

verified by the fusion of the uninfectible murine NIH 373 cells co-transfected with human 

CD4 and non CD4 human cells, as the heterokaryons formed were permissive to HIV 

infection (Dragic et al. (1992)). 

Other suggested co-receptors include the adhesion molecules, leukocyte functional 

antigen-1 (LFA-l) and CD44, but although a role in viral adhesion and fusion was identified 

(Pantaleo et al. (1991); Dukes et al. (1995)), a direct role in infection was not seen. 

The recent identification of a role for a group of G-protein linked receptors, involved 

in inflammation, in HIV infection has had a substantial impact on HIV research. The 

receptors normally bind a group of cytokines called chemokines, but have also been shown to 

act as co-receptors for entry of HIV. 

1.5.2 Chemokines and Their Receptors 

These chemotactic cytokines, or chemokines are a group of small polypeptides, which 

chemotactically attract different cells involved in inflammation (Baggiolini, Dewald and 

Moser (1997)). They are divided into two distinct subgroups based on the positions of the first 

two highly conserved cysteine residues: the CC chemokines, where the residues are continuous 

and the CXC chemokines, where they are separated by another amino acid. The chemokines 

induce the adherence and migration of various white blood cells, or leucocytes to a site of 

inflammation. In humans, the CXC chemokines are encoded on chromosome 4 and primarily 



activate neutrophils and the CC chemokines are localised to chromosome 17 and generally 

activate monocytes, lymphocytes, basophils and eosinophils. 

The chemokines mediate their function by binding to specific receptors found on the 

susceptible cells. The chemokine receptors belong to a family of G-protein coupled seven 

transmembrane receptors. Five CC chemokine receptors (CCR) are known to date, CCR-1-5 

and four CXC chemokine receptors, CXCR-l-4 (Baggiolini, Dewald and Moser (1997)). The 

known ligands are summarised in Table 1.1 and the seven transmembrane structure is shown 

in Figure 1.8. 

1.5.2.a Chemokine Receptors and lily 

The recent discovery, by Berger's group, of a co-receptor for entry of H1V (Feng et 

al. (1996)) injected new energy into HIV research. The receptor termed 'fusin' by Berger was 

identified by construction of a complementary DNA (cDNA) library from the mRNA of the 

HeLa cell line, a known permissive cell once transfected with CD4. After extensive screening, 

a single plasmid clone was identified which was capable of allowing the normally non-

permissive CD4-NIH 3T3 cells undergo to fusion with NIH 3T3 cells expressing env and a 

lacZ gene under a T7 promoter. Fusion was identified by substrate hydrolysis of 13-

galactosidase, which in the presence of both the 'F? polymerase (CD4-NIH 3T3 cells) and the 

lacZ gene under the 17 promoter (ENV-NIH 3T3 cells) is utilised and a change in absorbance 

recorded. The done was sequenced and found to encoded a protein with homology to a family 

of G protein linked seven transmembrane receptors. 

Later classified as CXC chemokine receptor-4 (CXCR-4), fusin was shown to act as 

a co-receptor for entry of TCLA strains of HP). Non-human cells transfected with CD4 and 

CXCR-4 were permissive for HJV binding and fused with cells expressing TCLA gpl2O 

proteins. Later, its ligand was identified as stromal cell derived factor-i (SDF-1) (Bleul et al. 

(1996); Oberlin et at. (1996)) and it was shown to block entry of TCLA strains of virus, 

further proof of the receptor's role as a co-receptor. A monoclonal antibody against CXCR-4 

(McKnight et at. (1997); Strizki et al. (1997)) was also shown to inhibit entry of some, but 

not all TCLA strains, suggesting that different strains of virus may interact in varying ways 

with the receptor. 

It was discovered many years ago, that CD8 cells release a factor which inhibits lily 

replication (see Section 1.6.2.g). Much controversy surrounds the identity of this 'non-lytic' 

suppressive factor, but it was suggested that the CC chemokines, macrophage inflammatory 



Table 1.1 

Chemokine Receøtors and Their Ligands 

Group 	j Receptor Ligand 

CCR-1 MIP-laJ RANTESJMCP-3 

CCR-2 MCP-l/ 2/3 

CC Receptors CCR-3 Eotaxinl RANTES/ MCP-3/4 

CCR-4 RANTES/ MW-la 

CCR-5 RANTES/ MEP-la/ 13 

CXCR-1 (11L-8RA) 1L4 
CXC Receptors CXCR-2 (IL-8RB) ELR-CXC chemokines 

CXCR-3 IP1O/MIEG 
CXCR-4 SDF-1 

M[P - Monocyte Inflammatory Protein 

RANTES - Reduced upon Activation Normal T cell Expressed and Secreted 

MCP - Monocyte Chemoattractant Protein 

IL - InterLeukin 

ELR-CXC chemokines - majority of CXC chemokines with the amino acid motif ELRCXC 

IP1O - Interferon-inducible Protein 10 

MIG - Monokine Inducible by interferon-Gamma 

SDF - Stromal cell Derived Factor 
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Figure 1.8. 

Dia2rammatical Representation of a Chemokine Receptor 

The seven transmembrane G-protein linked receptors all have similar structures. The amino and carboxyl termini are labelled as 

N and C respectively and the length of these segments varies in each receptor. 
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Proteins (MIIP) - lGVP and RANTES (Reduced upon Activation, Normal T cell Expressed and 

Secreted) were responsible for the suppressive effect of the supernatant from a CD8 cell line 

(Cocchi et al. (1995)). HIV replication was inhibited in the CD4 cell line, PM 1, a continuous 

line infectible with both T and M-tropic strains of HIV (Lusso et al. (1995)). A cocktail of the 

three chemokines was able to reproduce the suppression caused by the cell supernatant. This 

inhibition was not effective against the TCLA strain HIV, but was highly effective against 

the non-TCLA and M-tropic strain HIV. These three chemokines all utilise CCR-5 as a 

receptor (see Table 1.1) and with the discovery of the CXCR-4 as TCLA virus' co-receptor, 

the logical progression was soon confirmed that CCR-5 acted as a co-receptor for non-TCLA/ 

M-tropic strains of virus (A]khatib et al. (1996); Choe et al. (1996); Deng et al. (1996); 
Doranz etal. (1996); Dragin etal. (1996)). CCR-2 and CCR-3 were also shown to be utilised 

by a few strains of virus (Choe et al. (1996); Doranz et al. (1996); Frade et al. (1997)). One 
important involvement of CCR-3 in vivo could be in the infection of microglia in the brain, 

which have been shown to express both CCR-3 and CCR-5 (He etal. (1997)). 

Further analysis of a broad range of HIV isolates has shown that M-tropic strains of 

virus use CCR-5 as the major co-receptor, but dual tropic isolates, many primary isolates and 

TCLA isolates can use a more varied range of co-receptors (Doranz et al. (1996); BjOrndal et 
al. (1997); Cheng-Mayer et al. (1997); Speck et al. (1997); Dittmar et al. (1997); Zhang et 
al. (1996)), including CCR-5. CCR-5 usage does not therefore completely correlate with the 

ability to infect macrophages (Dittmar et al. (1997); Cheng-Mayer et al. (1997); Bjomdal et 
al. (1997); Speck et al. (1997)). 

1.5.2.b Chemokine Receptors and Gp120 

Sensitivity to CC chemokine mediated suppression, shown to inhibit M-tropic, but not 

TCLA virus replication, was mapped to env and more specifically the V3 loop (Cocchi et al. 

(1996)). The ability to utilise CCR-5 and CCR-3 was found to be dependent upon the 

sequence of the V3 loop (Choe et al. (1996)) and antibodies against V3 blocked the interaction 
of gp120 with CCR-5 (Trkola et al. (1996a); Wu et al. (1996); Hill et al. (1997)). It might 

seem therefore that the long reported association of V3 with viral phenotype and tropism may 

reflect chemokine receptor binding. However, although an association of gp 1 20/CD4 and 

CCR-5/CXCR-4 has been seen (Lapham et al. (1996); Trkola et al. (1996a); Wu et al. 

(1996)), no direct interaction of V3 with either co-receptor has yet been reported. It may be 

that other regions of gp120 are involved in actually binding to the co-receptor and some 
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conformational requirement, influenced by the V3 structure and/or charge, is needed. This is 

supported by the fact that diverse subtypes and other lentiviruses, with differing V3 

sequences, use CCR-5 and CXCR4 as co-receptors for entry (Zhang et al. (1996); Hill et al. 
(1997); Cheng-Mayer et al. (1997); Bron et al. (1997); Sol et al. (1997)). Therefore, the idea 

that a more conserved region is actually involved in physically binding to the co-receptor 

seems more feasible. It is interesting to note that, using chimeras of CCR-5 and other 

receptors, differing regions of CCR-5 have been found to be involved in binding M-tropic 

from dual tropic strains (Rucker et al. (1996); Doranz et al. (1997)). The use of CCR-5 by 

dual tropic strains may therefore differ from that of M-tropic ones. A similar prediction was 

seen for CXCR4, as TCLA and dual tropic viruses showed varying susceptibility to a 

monoclonal antibody to CXCR-4 (McKnight et al. (1997); Strizki et al. (1997)), suggesting 

that different regions of CXCR-4 are perhaps involved in binding with different strains of 

virus. 

Hence, while the discovery of the co-receptors has clarified some earlier questions, it 

has not provided a simple answer, or complete explanation of the questions of tropism and the 

role of V3, but has added many more. It has also added a further classification system based 

on co-receptor usage; R5 isolates using CCR-5, X4 using CXCR-4 and R5X4 using both 

(Berger et al. (1998)). 

1.6. THE IMMUNE RESPONSE 

Primary infection with }IIV is characterised by a transient viraemia (see Section 1.2), 

which declines concordant with the onset of a specific immune response; most notably 

seroconversion, the production of HIV-specific antibody. A long infection then ensues before 

the onset of AIDS. The length of this could be determined either by the effectiveness of the 

control of infection by the host immune system, or latent infection, via the integration of the 

virus into the host genome (see Section 1.4.6). In fact it was recently shown that, in contrast to 

that previously believed, rapid viral dynamics of infection, replication and cell turnover during 

the asymptomatic phase of infection did in fact occur (Ho et al. (1995); Wei etal. (1995)). 

The human immune system is primarily divided into non-specific, innate defences and 

specific, acquired ones. Innate responses, such as phagocytic cells and the skin, which imposes 

a physical barrier, do appear to be involved in protection from HIV infection. For example, at 

mucosal surfaces, such as the vagina, the risk of infection appears to be enhanced by the 

presence of ulcerative lesions that disrupt the epithelial barrier (Laga et al. (1993)). Also in 
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vitro, activated neutrophils have been shown to have virucidal actions on cell-free virus, via 

the toxic effects of myeloperoxidase and hydrogen peroxide (Kiebanoff and Coombs (1992)). 

Hence, if stimulated at mucosal surfaces, or inflammatory sites, neutrophils may provide some 

protection from cell-free virus. If the innate barriers are overwhelmed, specific defences are 

then relied upon. Historically, the acquired immune response is divided into the humoral and 

cell-mediated arms and they will be considered separately here. 

1.6.1 Humoral Immunity 

Humoral immunity involves the activation and differentiation of B lymphocytes into 

plasma cells. These produce glycoproteins known as antibodies, that are specific for the 

invading pathogen and act in a variety of ways including: neutralisation of molecules that 

allow cell entry, or damage; opsonisation, which involves the dumping of antigenic substances 

and enhancing ingestion by phagocytic cells like macrophages; complement activation, which 

leads to the formation of membrane attack complexes and the destruction of the antigenic cell, 

or organism and antibody dependent cell cytotoxicity (ADCC), which involves the lysis of 

antigenic cells, or organisms via non-specific mechanisms, e.g. natural killer (NK) cells, using 

antibody for specific recognition (see Section 1.6.2.b). 

For a viral infection, the principal role of antibody is neutralisation preventing cell 

entry. With most viral infections that are acute and self limiting, initial infection 'primes' the 

induction of antigen-specific antibody, therefore an effective antibody-mediated control is 

delayed until antibody production commences, some 4-6 days following antigenic stimulation. 

For a secondary infection, antigen specific B cells are already primed; antibody production is 

therefore more rapid and more effective at controlling infection and can often occur before 

symptoms are established. However, following primary infection, HIV induces a life-long 

persistent infection despite the presence of a strong, measurable antibody response (Brun-

Vézinet etal. (1984); Cheingsong-Popov et al. (1984); Safai et al. (1984)). 

1.6.1.a Humoral Immunity and HIV 

Early research on the immune response to lily infection concentrated on the role of 

humoral immunity, due to the strong, easily measurable antibody response seen in infected 

individuals. The PND for TCLA strains is encoded by a highly variable region of the env 

gene, V3 (Javaherian et al. (1989); Zwart et al. (1991); Moore and Ho (1993)) (see Section 
1.5.1), with Vl/V2 (McKeating etal. (1993); Moore et al. (1993)), C4 (Lasky etal. (1987)) 
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and the CD4 binding site (Moore and Ho (1993); Trkola et al. (1996b); Lasky et al. (1987)) 

also acting as targets for neutralisation in gpl20. Several epitopes in gp4l have also been 

described (Chanh et al. (1986); Muster et al. (1993)). Many of these epitopes were identified 

using TCLA strains of virus and antibodies directed against such regions have been shown to 

be ineffective at neutralising primary isolates. A rare CD4 binding site epitope (Burton et al. 

(1994)), a conformational epitope denoted by the antibody, 2G12 (Trkola et al. (1996b)) and 

the main gp4l epitope, which binds the antibody, 2175 (Muster et al. (1993)), are the three 

main epitopes which have been shown to be broadly reactive across a range of primary 

isolates. 

It has frequently been proposed that the presence of specific antibody provides a 

strong selective pressure for 'escape' mutants to arise, which avoid neutralisation and keep the 

virus one step ahead of the antibody response (Nara et al. (1990)). The virus has also been 

shown to spread directly from cell to cell, hence avoiding neutralisation (Sato et al. (1992)). A 

further theory, questioning the role of HIV-specific antibody as an effective control 

mechanism, is the 'original antigenic sin' hypothesis (reviewed in Kohler, Muller & Nara 

(1994)), whereby initial infection drives a vigorous, yet inappropriate immune response to 

later viral variants. H1V has also been postulated to induce 'enhancing antibodies', which 

allow increased viral entry into cells expressing Fc receptors (Robinson, Montefiori and 

Mitchell (1988)). These receptors bind the constant region (Pc) of antibody and trigger 

endocytosis of the antigen: antibody complex following binding. 

The strong antibody response detected as seroconversion closely follows the decline in 

primary viraemia. When the nature of the response was analysed in two seroconverters, no 

antibody capable of neutralising the virus was present (Ariyoshi et al. (1992)). This and the 

other potential problems associated with antibody responses and the persistence of the virus, 

despite the presence of a strong anti-HIV antibody response, questions the protection offered 

by humoral immunity against HIV infection. 

1.6.2 Cell Mediated Immunity (CMI) 

Classically, cell mediated immunity is the principal controlling/ eliminating force 

against intracellular pathogens (McMichael et al. (1983); Moss, Rickinson and Pope (1978); 

Rickinson et al. (1981); Zinkernagel and Welsh (1976)). CMI is composed of four main 

facets: delayed type hypersensitivity (DTH) reactions; ADCC; non-antigen specific 
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cytotoxicity, via NK cells; antigen specific cell cytotoxicity, mediated by cytotoxic T 

lymphocytes (CTLs). 

DTH reactions involve the activation of macrophages, by the production of molecules 

called cytokines from antigen specific T cells. This activation enhances the macrophage's 

phagocytic and bacteriocidal functions. The protective role this would play in HIV infection is 

questionable and shall not be discussed further. 

1.6.2.a Natural Killer (NK) Cells 

NK cells represent a discrete lymphocyte subset defined by CD 16/56 expression. 

They can be induced to proliferate at high concentrations of the cytokines, interleukin-2 (IL-2) 

and IL-12 (Chehinii et al. (1992)). NK cell lysis of tumour and virally infected cells is 

mediated in an major histocompatibility complex (MHC)-unrestricted and as yet undefined 

manner (see Section 1.6.2.c/d). Lysis occurs essentially as CTh mediated lysis (see Section 

1.6.21), i.e. perforin release, etc. The lytic activity is enhanced by the following cytokines: 

type 1 interferon (JFN), IFN-y, tumour necrosis factor (TNF), 1L-2 and IL-12 and when 

activated they produce the type 1 cytokines, TNF and TFN-'y (see Section 1.6.2.e). NK cells 

are an important initial control of viral infections, shown by an individual who, despite normal 

B and T cells, lacked NK cells and suffered severe viral infections (Biron, Byron and Sullivan 

(1989)). 

1.6.2.a.iNK Cells and HIV 

NK cells have been shown to be effective in killing HIV-infected cells (Weinhold et 

al. (1988); Malkovsky et al. (1988)). However, in early phase H1V infection, there appears to 

be a decrease in NK cell function, which decreases further with progression to AIDS (Brenner 

et al. (1989); Cat et al. (1990)). The defect appears to be in the lytic ability and can be 

partially restored in vitro by the addition of IL-2 (Brenner et al. (1989); Bonavida, Katz and 

Gottlieb (1986)), or IL-12 (Chehinii et al. (1992)). Such findings are consistent with the 

decrease in TL-12 production by macrophages following HIV infection (Yoo et al. (1996)), the 

impaired production of EL-12 from PBMCs of infected individuals (Chehimi et al. (1994)) and 

with Clerici and Shearers' switching hypothesis (see Section 1.6.2.e). NK cells are also 

important mediators of ADCC (see Section 1.6.2.b). 
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1.6.2.b ADCC 

Many cells capable of cytotoxicity, express membrane receptors for the Fc portion of 

antibody including: neutrophils, eosinophils, NK cells and monocytes / macrophages. This 

allows non-specific cells to specifically lyse infected cells, via the release of lytic components. 

Macrophages and NK cells can also induce apoptosis, or programmed cell death (PCD) of an 

infected cell by the release of TNF. 

1.6.2.b.i ADCC and HIV 

ADCC has been shown to be important in the control of viral infections, including 

retroviral infection in cats (De Noronha et al. (1978)). Both NIK and neutrophil mediated 

ADCC has been shown in HIV infection (Lyerly et al. (1987); Tyler et al. (1989); Szelc et al. 

(1992)). The antibody involved, cytophilic antibody, is generally specific for more conserved 

epitopes than neutralising antibody (Lyerly et al. (1987); Tyler et al. (1989)), with important 

implications for vaccine design. However, the dominant epitope remains controversial, as does 

the level of ADCC during disease progression (Lyerly et al. (1987); Ljunggren et al. (1987); 

Rook et al. (1987); Szelc et al. (1992)). 

1.6.2.c T Lymphocytes 

T cells 'see' antigen, in association with the MHC proteins, via their T cell receptor 

(TCR). MBC proteins are encoded by highly polymorphic genes, hence every individual 

possesses an almost unique 'fingerprint-like' pattern of MHC proteins (see Section 1.7.3.b). T 

cells are selected in the thymus early in development, for their ability to recognise the specific 

MHC pattern of the individual. This 'thymic education' ensures that self reactive T cells are 

not present, which would otherwise destroy host tissues in a similar manner to that which 

causes graft rejection in transplant recipients. 

Two classes of MHC exist, Class I and II. Class I is encoded for by the A, B and C 

genes and Class II the DP, DQ, DR genes. Other MHC genes exist, but their function extends 

beyond the scope of this thesis. 

Class I is expressed on the majority of cells and is recognised by T cells expressing 

the CD8 molecule. In contrast, Class II expression is restricted to B cells, dendritic cells, 

macrophages, monocytes, epithelial cells and activated T cells and is recognised by CD4 T 

cells. 
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1.6.2.d Antigen Presentation 

CD4 T cells predominately respond to exogenous antigens presented in conjunction 

with MHC Class II on the surface of specialised antigen presenting cells (APCs). Class II 

antigen presentation involves the uptake of exogenous antigen, enzymatic degradation into 

peptides, which then binds to Class II and is presented on the cell surface. For efficient antigen 

presentation, co-stimulatory molecules must also interact, such as intracellular adhesion 

molecule (ICAM-1) and LFA-l. Without these co-stimuli, antigen specific anergy, or loss of 

responsiveness, can be induced. 

Class I presentation involves endogenous antigen within the cell. These are processed 

into peptides by the cellular proteasome, which are then transported to the endoplasmic 

reticulum by transporter associated proteins (TAP) and then bind MHC Class I and an 

additional protein, 132 microglobulin, before presentation on the surface. 

1.6.2.e T helper (TH) cells 

CD4 cells interact with MHC Class II and peptide and the relevant co-stimulatory 

molecule, resulting in the activation of the cell. The activation induces the production of 

cytokines (low molecular weight messenger peptides), which play an important role in the 

activation of B cells, CTLs, macrophages, as well as facilitating their own proliferation and 

maturation. Activated cells clonally expand to produce more effector cells and memory cells; 

memory cells persist and respond more readily upon re-encounter with the same antigen. 

Studies in mice have identified two distinct subsets of 'F 11  cell: T111 and Tm (Mosmann 

and Coffman (1987)). The subsets differ in their cytokine profiles and the subsequent' 

responses they aid, as shown in Figure 1.9. TE, cells produce IL-2, 1FN-y and are associated 

with cell mediated responses; Tm cells produce IL-4, IL-5, IL-6, IL-10 and IL-13 and are 

associated with humoral responses. Controversy still surrounds their existence in humans, 

with Tm and Tin possibly exhibited a chronically stimulated population (Mosmann and Moore 

(1991)). Under normal stimulation, cells perhaps produce an increased level of one, or more 

T, or Tm cytokines, giving Tm-like  and Tm-like profiles (Mosmann and Moore (1991)). 

A recent modification to the theory, to incorporate the role of cytokines produced 

from other cells such as NK cells and macrophages, resulted in the terms 'Type 1' and 'Type 

2' responses (Clerici and Shearer (1994)). This nomenclature mostly encompasses the 

previously described TH, and Tm  cytokines, but takes into consideration that they are often 



Figure 1.9. 

Type 1 and Type 2 Responses 

The two subsets of CD4 cells, Tm and T 2, have a suggested common progenitor, THO  and downregulate each other, via the 

production of cytokines. The Type 1 cytokines, IL-2 and IL-12, activate and augment the actions of the cells involved in cell 

mediated immunity (CMI). Type 2 cytokines activate B cells, which then differentiate into plasma cells and produce specific 

antibody. 

Differentiation is indicated by 	secretion is indicated by 	 indicates downregulation; and activation is 

indicated by TTTT- 
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also produced by other cell types too. A notable exception is IL-12 which is a Type 1 

cytokine, not produced by T cells, but produced predominately by monocyte/ macrophages 

(Chehimi and Trinchieri (1994)). 

1.6.2. e. i THResponses and liv 

It was shown in macaques, using recombinant HIV proteins, that the virus was 

immunogenic for T cells (Zarling et al. (1986)) and this was supported with the finding of 

HIV-specific T cell responses in HIV uninfected vaccine recipients (Clerici et al. (1991); 
Kovacs et al. (1993)). HIV-specific T cell responses in HIV-infected individuals were shown 

to whole virus, viral antigens and peptides (Kelker et al. (1992); Ranki et al. (1989); 

Pontesilli et al. (1995); Clerici et al. (1993b); Borkowsky et al. (1990); Clerici et al. 

(1989a)). However, it has been reported that even before the loss of CD4 T cells in HIV 

infection, T cell dysfunction occurs (Pontesilli et al. (1995); Ranki et al. (1989); Clerici et al. 

(1989b); Miedema et al. (1988); Teeuwsen et al. (1990)). Clerici and co-workers (Clerici et 

al. (1989b)) classified the loss of reactivity, via IL-2 production and proliferation studies, to 

recall antigens (Flu antigen, tetanus toxoid antigen and later HIV (Clerici et al. (1989a))), 

alloantigens and mitogens (e.g. phytohaemagglutinin, (PHA)). They noted a sequential loss of 

reactivity in vitro first to recall antigens (-1+1+), indicating a loss of MHC self restricted 

CD4 cell activity; then to alloantigens (-1-1+); and finally to mitogens (-I-f-). Some of the in 

vitro reactivity to recall antigens has been shown to be recoverable in cells from HIV 4' 

individuals, by the addition of the cytokine IL-12 and anti-IL-12 antibodies suppressed the 

responses seen in normal individuals (Clerici et al. (1993a)), suggesting a limitation of this 

cytokine in HIV individuals. 

The cytokine pattern induced in response to infection can greatly influence the disease 

outcome, as typified by the parasitic infection of leprosy; a strong THI response is associated 

with the resistant tuberculoid form and a Tm response characteristic of susceptible 

lepromatous leprosy (Yamamura et al. (1991)). Clerici and Shearer proposed the hypothesis 

of a T - Tm switch occurring during I{1V infection, supported by their findings of a loss of 

type 1 cytokines and an increase in type 2 cytokines concurrent with disease progression 

(Clerici and Shearer (1993); Clerici and Shearer (1994)). These observations have been 

verified by some (Diaz-Mitoma et al. (1995); Barcellini et al. (1994)) and questioned by 

others (Graziosi et al. (1994); Maggi et al. (1994)), possibly due to the use of different 



protocols (reviewed in Clerici and Shearer (1994)). An alternative hypothesis of a Tm -4 T 
switch was proposed (Maggi et al. (1994)). The lack of a predominant Tm response seems to 

be the consistent factor and is supported with the finding of cell mediated (T m) responses in 

potentially protected HIV exposed uninfected individuals (EUs)(see Section 1.7.2). 

1.6.21Cytotoxic T Lymphocyte cells (CTLs) 

CD8 cells recognise peptides in association with MHC Class I and, in order to be 

activated, also require 'help' in the form of IL-2 from activated T 11  cells. Once activated, the 

Cm lyses the infected cell, via one of several suggested mechanisms (Isaaz et at. (1995)). 

The first involves the release of intracellular granules from the CTh to the target; these 

contain proteoglycans, various cytokines (e.g. TNF-(3), a pore forming protein (perform) and a 

family of seven esterases (granzymes A-G). The alternative mechanism is the induction of 

PCD, or apoptosis, occurring either via signal transduction, or the release of mediators like 

TNF-P. 

1.6 .2 f.i CTLs and HIV 

REV-specific CTLs were first identified in the PBMCs of seropositive individuals 

using recombinant vaccinia viruses (rVV) expressing REV proteins in autologous Epstein Barr 

virus (EBV)-transformed B cell lines (BCLs) (Walker et al. (1987)) and a chromium (51Cr) 
release assay. Reactivity to env (Koenig et at. (1988); Walker et at. (1987); Koenig et at. 
(1988); Koup et at. (1989); Lamhamedi-Cherradi et at. (1992)), gag (Walker et at. (1987); 
Nixon et al. (1988); Koup et at. (1989); McFarland et at. (1993); Lamhamedi-Cherradi et al. 
(1992)) and poi (Walker et at. (1988); Koenig et at. (1988); McFarland et at. (1993); 
Lamhamedi-Cherradi et at. (1992)), as well as the regulatory proteins such as vif, nef and tat 
(Borrow et at. (1994); Lamhamedi-Cherradi et at. (1992)) have been reported. Hence, CTLs 

to HIV show a wide degree of reactivity to external and internal proteins, of both a structural 

and regulatory nature. 

CTLs have been detected in peripheral blood, cerebral spinal fluid (Sethi, Nher and 

Stroehmann (1988)), broncho-alveolar lavage (Plata et al. (1987); Auiran et al. (1995)) and 
even in the cervical mucosa (Musey et at. (1997)). The CTLs exhibit the classic CTh 

phenotype, CD3, CD8 and MHC Class I restricted. CD4 CTLs have also been reported 

(Orentas et at. (1990)), but their role in vivo is uncertain; although they have been reported in 

other viral infections, such as herpes simplex virus (HSV) (Yasukawa and Zarling (1984)). 
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The number of HIV-specific CTLs is often surprisingly high, with the CTLs in PBMCs 

responding directly in vitro without the need for prior stimulation (Hoffenbach et al. (1989)). 

Cm activity has been monitored in monkeys infected with SlY and the presence and 

the level of HIV-specific CTh activity has been shown to confer a favourable prognosis 

(Bourgault et al. (1993); Miller et al. (1990)). A direct role in containing HIV viraemia was 

assessed by Castro et al. (1992), who in vivo depleted the CD8 cell population in two lILY- 

infected chimps. Following the depletion, virus isolation from the chimps was achieved, an 

event that had only occurred once in the previous four years. However, HIV/ SW infections in 

monkeys, although similar to I{IV infection in humans, do have their differences. 

The presence of HIV-specific CTLs early in infection have also been shown in 

humans and correlate to a rapid control of viraemia (Borrow et al. (1994); Koup et al. 

(1994)). Generally, HIV-specific CTLs have been interpreted as causing a rapid control of 

primary infection, slower disease progression and they appear to decline with the loss of CD4 

cells and progression to AIDS (Joly et al. (1989); Pantaleo et al. (1990); Carmichael et al. 

(1993); Ferbas et al. (1995); Klein et al. (1995)). A direct association of CTL activity with 

control of viraemia was always difficult to quantify and involved limit dilution approaches, 

but a novel method was recently reported by Ogg et al. (1998). Using tagged MHC proteins 

binding peptide, they were able to analyse the numbers of antigen specific CTLs using a 

fluorescent activated cell sorter and confirmed the previously held belief of the inverse 

correlation of the HIV-specific Cm frequency with plasma viral load. Others have failed to 

see a correlation of CTh with a lack of progression (Rinaldo et al. (1995); Froebel et al. 

(1997)) and a model of HIV dynamics has shown that the control of primary viraemia may not 

be caused by immune control (Phillips (1996)). However, the detection of HIV-specific CTLs 

in EUs has added further support to their potential as a protective control mechanism (see 

Section 1.7.2). 

It has been argued that CTLs may have a deleterious effect in HJV individuals, with 

the detection of CTLs in the cerebral spinal fluid (Sethi, Näher and Stroehmann (1988)) and 

alveolitis (Autran et al. (1995)), thought to be participating in the inflammatory reactions 

found there. It has also been suggested that CThs contribute to the decline in CD4 T cells 

(Grant, Smail andRosenthal (1994)), but this remains to be clarified. 

As with humoral responses, the virus has been shown to mutate to evade the CTh 

response. These mutants result in a lack of lysis, either by the loss of the critical peptide 
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sequence, or changes which may effect antigen processing (Phillips et al. (1991); Rowland-
Jones et al. (1992); Couillin et al. (1994)). Naturally occurring 'altered peptide ligands' 

(APLs), which antagonise the normal peptide by competing for MHC binding and can also 

trigger ineffectual responses, have also been seen in HIV-infected individuals (Klenerman et 

al. (1994); Kienerman et al. (1995)). The fact the virus attempts to evade the CTL response 

suggests it does provide a strong selective pressure against the virus, but the presence of 

escape mutants does have important implications for vaccine design. A broad, 

multideterminant response would reduce the risk of escape mutants arising (Borrow et al. 

(1997); Goulder et al. (1997)). This is supported by the findings of an HLV individual who 

was adoptively transferred a single expanded CTh clone, directed against the NEF protein, 

and unexpectedly showed a rapid deterioration (Koenig et al. (1995)). However, a broader 

CD8 cell adoptive transfer is being evaluated (Torpey et al. (1993)). 

1.6.2.g Non-Lytic Suppression 

An antiviral effect by CD8 cells was first noted by Walker et al. (1986), who 

demonstrated that the removal of CD8 cells from PBMC cultures allowed the recovery of 

previously undetectable virus. The factor was soluble, but more efficient inhibition was 

achieved when direct cell contact was permitted (Walker and Levy (1989)), although this was 

not MZHC restricted (Walker et al. (199 1)); The effect did not alter CD4 cell activation, but 

seemed to block HIV RNA expression (Mackewicz and Levy (1992)). The level of activity 

seems to vary between individuals and its presence was shown to correlate with a slower rate 

of progression (Mackewicz, Ortega and Levy (1991)). The activity is broadly cross reactive to 

a variety of strains, including SW (Mackewicz, Ortega and Levy (1991); Mackewicz and 

Levy (1992); Walker et al. (1991)). African green monkeys (AGM) naturally infected with 

SIVAGM, which does not lead to an AIDS related illness, have been shown to produce a 

suppressive factor from CD8 cells, which also inhibits HIV replication (Ennen et al. (1994)). 

Much controversy surrounds the identity of the factor, but many suggestions have 

been proposed. IL-l6, which is secreted by CD8 cells (Laberge et al. (1995)) and thought to 

bind to CD4 (Cruickshank et al. (1994)), was shown to inhibit HIV sj, infection in the CD4 

cell line, MT4 (Baler et al. (1995)). IL-16 from AGMs was shown to be more effective than 
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human IL- 16. The mechanism of inhibition was unclear, but may function like a neutralising 

antibody directed against CD4. 

The -chemokines, RANTES, MIP-la and 13, were isolated from a CD8 cell 

supernatant, shown to have inhibitory properties on HIV infection in CD4 T cells (Cocchi et 

al. (1995)). Recombinant proteins were shown to induce a dose dependent inhibition and 

monoclonal antibodies against the three proteins reduced the inhibitory effect of the CD8 cell 

supernatant. Only M-tropic strains were inhibited and this was explained later by the 

discovery of the M-tropic virus co-receptor, CCR-5 (see Section 1.5.2), the natural receptor 

for these ligands. The 13-chemokines mediate their inhibition by blocking the co-receptor, 

CCR-5. The natural ligand for the TCLA co-receptor CXCR-4, SDF-1, blocks infection of 

TCLA strains of HIV in a similar manner (Bleul etal. (1996); Oberlin et al. (1996)). 

The inhibitory effect of the 13 -chemokines on infection of CD4 T cells has been 

confirmed by several groups (Schmidtmayerova, Sherry and Bulcrinsky (1996); Verani et al. 

(1997)), but their effect on inhibiting infection of macrophages has been seen by some (Verani 

et al. (1997)), but not others (Moriuchi et al. (1996); Schmidtmayero'va, Sherry and 

Bukrinsky (1996)). One group even showed an enhanced infection in the presence of the 13-

chemokines (Schmidtmayerova, Sherry and Bukrinsky (1996)). The differences may reflect 

differences in the macrophage cultures, or the viruses used. 

It is claimed that the original CD8 T-cell antiviral factor (CAF) is not any known 

cytokine, including those suggested above (Levy, Mackewicz and Barker (1996)). It is 

reported to mediated suppression of M and T-tropic strains of virus and inhibit infection of 

both T cells and macrophages (Levy, Mackewicz and Barker (1996); Moriuchi et al. (1996)), 
unlike the 13 chemokines (Moriuchi et al. (1996); Schmidtmayerova, Sherry and Bukrinsky 

(1996)). The factor, although soluble, also mediates a contact mediated effect, which may 

differ to that from the soluble factor (Levy, Mackewicz and Barker (1996)). 

A precise factor may yet to be elucidated, but the non-cytotoxic nature of this 

suppression and the discovery of its potential role in protecting EUs (Paxton et al. (1996))(see 

Section 1.7.2), hold great potential as a therapeutic strategy. 



1.7. EXPOSED UNINFECTED INDIVIDUALS (EUS) 

1.7.1 'Silent Infection'? 

Not everyone exposed to HIV, even those with high risk exposures, becomes infected 

(Burger et at. (1986)), as reflected in the risk values (see Section 1.3.2). Due to the known 

time lapse that occurs between infection and seroconversion, it was initially feared that many 

exposed individuals, although seronegative, could be harbouring a 'silent infection' and that 

initial estimates of transmission may be an underestimate. As the polymerase chain reaction 

(PCR) first came into use for diagnosis, reports began to appear of 'at risk' individuals who 

were seronegative, but producing virus in culture and were PCR positive for HIV DNA 

(Imagawa et al. (1989); Pezzella et al. (1989); Ensoli et at. (1991); Coutlëe et al. (1994)). 

Later reports showed this to be extremely rare, with the few exceptions eventually 

seroconverting (Gibbons et at. (1990); Lee et at. (1991); Pan et at. (1991); Brettler et al. 

(1992); Coutlëe et al. (1994); MacGregor et at. (1995)). Although one report showed a high 

level of persistently seronegative individuals (Imagawa et al. (1989)) and others have reported 

only transient seropositivity in exposed individuals. (Farzadegan et al. (1988); Brettler et at. 

(1992)). However, a recent study by Frenkel et at. (1998), on reported transient HIV infection 

in children born to HLV mothers, highlighted that most were mistaken samples, or 

contamination, casting doubt on many of the other reports which mostly occurred many years 

ago (Farzadegan et al. (1988); Imagawa et al. (1989); Pezzella et at. (1989); Ensoli et at. 

(1991); Brettler et al. (1992); Coutlée et al. (1994)). 

The exposed seronegative state may be a transient, or stable state, but if the reports of 

virus is indeed true, suggests that these individuals may harbour a low level latent infection. It 

is not however apparent from such individuals if viral clearance is possible. 

1.7.2 Immune Responses 

The discovery of HIV-specific T cell responses in high risk EUs raised the possibility 

of exposure and subsequent clearance of HIV infection. Responses to whole virus, viral 

proteins and viral peptides have been reported by proliferation and IL-2 production in a 

variety of risk groups: sexual partners of H1V individuals (Ranki et al. (1989); Clerici et at. 

(1992); Kelker et al. (1992); Mazzoli et al. (1997)); children born to HIV mothers 

(Borkowsky et al. (1990); Clerici et at. (1993b)); and health care workers occupationally 

exposed to contaminated blood (Qerici et al. (1994b)). However, TH  responses can be 
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generated to viral peptides and proteins and may not reflect actual infection, but merely 

exposure to viral antigens. Whether these responses will then provide protection is difficult to 

determine. 

Recently, HIV-specific immunoglobulin (Ig)-A was detected in the urine and vaginal 

washes of heterosexually exposed uninfected females (Mazzoli et al. (1997)), suggesting that 

local mucosal immunity may also play a role in protection from infection with HIV. 

CTLs are generated to endogenous antigens and the presence of antigen specific CTLs 

generally involves at least one round of viral replication. So the discovery of HIV-specific 

CTLs in a child born to a HLV mother finally provided some suggestive evidence of infection 

and clearance of HIV (Rowland-Jones et al. (1993)). However, the reactivity was only 

transient, possibly reflecting the loss of persistent antigenic stimulation. Further reports soon 

followed of HIV-specific CTLs in exposed children (de Maria, Grillo and Moretta (1994)), 

heterosexually exposed individuals (Langlade-Demoyen et al. (1994); Rowland-Jones et al. 

(1995)) and even in occupationally exposed health care workers (Pinto et al. (1995)). 

Protection from infection by HIV-specific immune responses also supports Clerici and 

Shearers' type 1 -4 type 2 switching hypothesis (Clerici and Shearer (1993); Clerici and 

Shearer (1994)) (see Section 1.6.2.e), with EUs potentially retaining a protective type 1 

response to HIV and controlling the infection. A study of uninfected high risk IDUs, who 

appeared to show increased levels of in vitro stimulated type 1 cytokines and a decrease of 

type 2 compared to low risk controls (Barcellini et al. (1995)), supports this theory. 

It is possible that such EUs were exposed to a defective, or replicatively impaired 

virus. However, in a group of individuals exposed to a defective virus, with a deletion in the 

nef gene, they still are infected, although they are long term non-progressors (Deacon et al. 

(1995)). The persistently exposed prostitutes (Rowland-Jones et al. (1995)) will have 

undoubtedly been exposed to a variety of isolates, not all of which could have been defective. 

Also, the recent reports of the clearance of infection in previously infected children born to 

Inv 4' mothers suggests that this is possible, although cell mediated responses were not 

determined in these studies (Bryson et al. (1995); Roques et al. (1995)). 

The protective role of T cell responses is further supported by a study in macaques 

exposed to a subinfectious dose of SW (Clerici et at. (1994a)). The exposure resulted in virus 

specific proliferative responses and subsequent protection from lethal challenge. It would seem 

that the low dose exposure, although not sufficient to induce infection, or seroconversion, was 

sufficient to induce protective cell mediated responses. Models of infections inferred from 
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mouse studies, suggest that once a low dose exposure has primed immune responses, infection 

is unlikely to occur, even with repeated exposure (Salk et al. (1993)). 

In another macaque study, where a low dose intrarectal exposure to SW also 

protected from a high dose challenge, the protection correlated with a CD8-dependent antiviral 

factor (Salvato et al. (1994)). This may be similar to the non-lytic suppressive factor 

produced by CD8 cells of AGMs following natural infection with SIVAGM and the CAP 

factor reported by several groups to prevent lily infection in culture (see Section 1.6.2.g). 

CD8 cell antiviral activity was found to be elevated in a group of highly exposed homosexual 

men (Paxton et al. (1996)) and found to relate to the levels of the 3-chemokines, RANTES, 

MIP-la and P . CD4 T cells and macrophages of two such individuals, EU2 and EU3 

(referred to below), were found to resist macrophage tropic virus infection (Connor et al. 

(1996)). 

1.7.3 Genetic Factors 

1.7.3.a Chemokine Receptor Polymorphisms 

1.7.3.a.i CCR-5 

EU2 and EU3, along with other EUs were later found to be homozygotes for a 32 

base pair (bp) deletion within the coding region of the CCR-5 gene (Liu et al. (1996)). The 

deletion (M2), in the region corresponding to the second extracellular loop of the receptor, 

causes a frameshift which results in premature termination of translation just downstream of 

the deletion site (see Figure 1. 10. a). Homozygotes for the mutation do not express the CCR-5 

receptor (Liu et al. (1996)). 

Population studies have shown the mutant allele to occur at a high frequency in 

Caucasians, but it is absent from all other ethnic backgrounds studied (Liu a al. (1996); 

Samson a al. (1996b); Huang a al. (1996)). Earlier reports of an allele frequency of 9.2-

9.8% in Continental Europeans (Liu et al. (1996); Samson et al. (1996b)) and 8% in 

Caucasian Americans (Huang et al. (1996)) showed the mutation to be highly prevalent in 

these populations. 

Homozygotes for the deletion (i32/.32) were found to be highly protected in studies 

of homosexuals and haemophiliacs (Liu a al. (1996); Dean et al. (1996); Huang a al. 

(1996)) and have been thought-to be uninfectable with M-tropic strains of HIV. Table 1.2.a 

summarises the results of two reports by Dean a al. (1996) and Huang a al. (1996). The 

study by Dean et al. (1996) is composed of several homosexual and haemophiliac cohorts (see 
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Figure 1.10. 

jgrammatical Representation (not to scale) of the Chemokine Receptor Mutations. 

a.) 32bp Deletion in CCR-5 (A32) - Adapted from Liu et al. (1996) and Samson etal. (1996) 

The diagram shows the nucleic acid sequence (black) of the region flanking the deletion site (blue) along with the corresponding 

amino acid sequence (pink). The deletion (nucleotide 794 to 825) causes a frameshift during translation (codon 185) which results 

in a premature termination downstream (* denotes stop codon). The nucleic acid sequence underlined is a lObp direct repeat 

thought to be responsible for the deletion. 

b,) Valine to Isoteucine Mutation in CCR-2 (641) 

The diagram shows the nucleic acid sequence (black) flanking the G-->A (blue) mutation (nucleotide position 190). This results in a 

valine to isoleucine (V--->I) mutation in the amino acid sequence (pink) at position 64 (641, blue). 
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Table 1.2. 

Genotypes for CCR-5 in Exposed Uninfected (Ells) and RW cohorts 

A32/A32Homozv2OteS in Cohort Studies 

32/i32* 	 i32 Allele 
(%) 	Total 	Frequency (%) 

Dean Paper 

EUs 	 3.0 	 573 	 10.6 

}HVs 	 0.0 	 877 	 10.6 

Huang Papert 

EUs 	 3.6 	 446 	 12.8 

IHVs 	 0.0 	 461 	 10.1 

Controls 	 1.4 	 637 	 8.1 

Effect of Increased Risk in The MACS Study 

Distribution of CCR-5 Genotype According to Risk (%)t 

All Caucasian EUs 	 Followed> 8 years 
Genotype* Any Risk >3 ARI >6 ARI >3ARI >6ARI 

WT/WT 78.0 71.7 63.3 67.4 50.0 

WT/A32 18.4 18.2 16.7 20.9 16.7 

A32/i32 3.6 10.1 20.0 11.6 33.3 

Total 446 99 30 43 12 

* Genotype for the 32bp deletion in the CCR-5 gene (32); homozygous wild-type (WT/WT), 

homozygous mutant (32/32) and heterozygote (WT/i32). 

#Dean etl  (1996) 

Combined data from the DC Gay cohort (DCG), Multicenter AIDS Cohort Study (MACS. 

homosexuals), San Francisco City Clinic (SFCC) Cohort (homosexuals), Hemophilia Growth and 

Development Study (HGDS), Multicenter Hemophilia Cohort Study (MHCS) 

Huang et al. (1996) 

* Reported number of partners of whom had anal receptive intercourse (ART) in preceding 6 months 
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Table 1.2.a, excluding ALIVE Study data, as predominately non-Caucasians), some of which 

did not show an effect when considered separately (DC Gay (DCG), Hemophila Growth and 

Development Study (HGDS)). However, the combined effect, of individuals exposed to HIV 

who remained uninfected compared to those who became HIV 4 , revealed a substantial 

difference (P=5.8 x lO) in the distribution of genotypes for the A32 mutation when 

Caucasians only were considered. 

The study by Huang et al. (1996) on the Chicago Multicenter AIDS Cohort Study 

(MACS) of homosexuals (Kaslow et al. (1987)) was more in depth. It involved more 

extensive knowledge of the actual exposure of the individuals concerned, in terms of the 

number of partners with whom they had anal receptive intercourse (ART) in the preceding six 

months. With increasing numbers of partners came an increased risk of infection and when 

graded in this way revealed an even greater outcome of the protective effect of homozygosity 

for the i32 mutation in CCR-5 (see Table 1.2.b, P=6.0 x 10 77 for those with >6 ART in last 6 

months who had remained seronegative for> 8 years compared to all other seronegative 

cases). 

A few reports of 32/i32 HLV individuals have now been seen, although they are 

extremely rare (Biti et al. (1997); Balotta et al. (1997); O'Brien et al. (1997); Theodorou et 

al. (1997)). It is not clear if these individuals were infected with a CXCR-4 dependent strain, 

hence removing the requirement for CCR-5, or if the i32/32 state is not 100% protective. 

}{ 	individuals heterozygous (wild type (WT)/32) for the CCR-5 mutation have 

been found to progress to AIDS at a slower rate than WT/WT individuals (Huang et al. 

(1996); Dean et al. (1996); Stewart et al. (1997); Eugen-Olsen et al. (1997); Meyer et al. 

(1997)). Heterozygotes have been shown to express less CCR-5 on the surface of their cells 

(Wu et al. (1997b)), which may result in reduced rate of viral replication. If this is the case it 

would explain the effect of heterozygosity on progression to AIDS, as early viral load has 

been shown to be related to the rate of progression (Ruiz et. al. (1996)). An early report of a 

decrease number of heterozygotes in the HIV group, suggesting a mild protective effect from 

infection (Samson eral. (1996b)), was not confirmed by others (Dean et al. (1996); Huang et 

al. (1996)), who reported heterozygosity for b.32 was not protective following homosexual 

contact. 
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1.7.3.a.ii CCR-2 

A mutation in the CCR-2 gene has also been identified (see Figure 1.10.b) (Smith et 

al. (1997)). This is a single point mutation (G-,-4A position 190), which causes a valine to 

isoleucine amino acid substitution (641) in the second transmembrane loop region of the 

receptor (Smith a al. (1997)). This mutation results in this domain becoming identical to the 

corresponding region of CCR-5, with which it shares most homology (76%; Figure 1.11). 

Much of the homology is shared in the transmembrane regions and when these regions are 

considered alone, the homology increases to 92% (Samson a al. (1996a)). The least homology 

is shared at the amino terminal of the receptors and is reflected in the different ligands which 

bind the two receptors (see Table 1.1). 

CCR-2 occurs as two RNA-splicing variants, CCR-2a and CCR-2b, which differ in 

their COOH-terminal regions and may effect signal transduction, but not ligand binding 

(Steinberg, Crumpacker and Chatis (1991); Folks a al. (1988)). Envelope chemokine receptor 

interactions appear not to require the signalling functions of the CCRs (Atchison et al. (1996); 

Rucker et al. (1996); Doranz et al. (1997)), therefore this difference will not effect HLV 

binding. CCR-2 only functions as a co-receptor for a restricted number of viral isolates, in 

selected in vitro systems (Doranz a al. (1996); Frade et al. (1997)). 

The CCR-2 and CCR-5 genes are both encoded in chromosome 3 (Baggiolini, Dewald 

and Moser (1997)) and are very closely located ('-17.5bp apart). This perhaps explains why 

mutations resulting in the i32 and 641 changes are in linkage disequilibrium and are never 

found together on the same chromosome (Smith et al. (1997)). In order that mutations may 

become freely distributed amongst the population, recombination between two chromosomes 

needs to occur and as the CCR-2 and CCR-5 genes are so closely located, the chance of a 

recombination event occurring within such a small area is almost impossible. Hence, 

individuals homozygous for both mutations are never seen and heterozygotes for both 

(WT/32 and 641/WT) were rarer than if the mutations were randomly associated. Unlike the 

CCR-5 i32, the 641 mutation is also present in a variety of ethnic backgrounds (Smith a al. 

(1997)), suggesting that it is a more ancient mutation in the human population (Mununidi et 

al. (1998)). 

The amino acid change (V--->I) is a conserved mutation and has not shown to effect 

expression, ligand binding, or usage as a co-receptor (Kostrikis a al. (1998)). With all this in 

mind, it is surprising that an effect of the mutation was seen on progression in a homosexual 

cohort (Smith et al. (1997)), with individuals expressing the 641 mutant form of the receptor 
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Figure 1.11. 

Amino Acid Sequence Alignment for CCR-512a and 2b Genes 

Adapted from Raport et al. (1996) and Baggiolini, Dewald & Moser (1997) 

The sequences are aligned with to CCR-5, with identical amino acids denoted with a dot. Dashes signify gaps placed to align the 

sequences correctly. The putative transmembrane regions (TM1 -7) are indicated with a line above the sequence. The valine (V) which 

is mutated to give isoleucine (I) in some forms of CCR-2 is at position 64 and makes this TM1 region identical to that of CCR-5. 

CCR-2a and 2b are mRNA splice variants, which are identical until the carboxy terminal end (371 end) at amino acid 319 onwards. 

The numbering given is essentially for CCR-2a as the CCR-5 and CCR-2 are shorter (CCR-2a: 374 amino acids; CCR-2b: 360 amino 

acids; CCR-5: 352 amino acids). The frame shift which results from the 32 base pair deletion occurs after the FPY at position 195-7 on 

diagram (position 182-4 of CCR-5 amino acid sequence) (see Figure 1.10). 
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showing a slower progression to AIDS. The effect was questioned by another study (Michael 

et al. (1997)) and it now seems that the mutation shows a protective effect only in cohorts 

where the date of seroconversion is known ('seroconvertor cohorts')(Rizzardi et al. (1998); 

Kostrikis et al.(1998)). No protective effect against infection has been reported, with WT/641 

heterozygotes and 641/641 homozygous individuals occurring in EU and H1V 4  homosexuals 

(Michael et al. (1997); Smith etal. (1997); Kosirikis et al. (1998)). 

A possible explanation for how the mutation may effect progression was later 

revealed by Kostrikis et al. (1998), who showed that the 641 mutation was in 100% linkage 

disequilibrium with a mutation in a putative promoter region of CCR-5 (C-->T at nucleotide 

59653 for whole of chromosome 3, also referred to as nucleotide 927 of CCR-5; Figure 1.12) 

(Mummidi et al. (1997); Guignard et al. (1998)). The mutation is in fact in a putative intron, 

but it is possible that the CCR-2 641 mutation is merely acting as a marker for this, or other 

mutations, which may effect the level and distribution of expression of CCR-5. Several 

polymorphisms have now been reported in the newly described promoter region for the CCR-5 

gene (Figure 1.12), but their affects on the expression of CCR-5 and on HIV infection / 

disease have yet to be truly clarified (Samson et al. (1996a); Kostrikis et al. (1998); 

Miimmidi et al. (1998)). 

L7.3.bHLA 

As described earlier, the genes encoding the MHC are highly polymorphic and are 

critical to acquired cell mediated immune responses (see Section 1.6.2.c). The discovery and 

definition of the human leucocyte antigens (LILA) came from observations of multiparous 

women and individuals who had received several blood transfusions. Such individuals 

harboured antibodies against the 'foreign' antigens which they were exposed to, in a similar 

manner to that of the ABO blood group antigens. With widespread international collaboration 

of both knowledge and reagents, the HLA groups were established and have help revolutionise 

transplantation surgery, previously restricted by massive graft rejection. To date 164 

serological and cellular IILA specificities have been defined, including: 28-A, 61-B, 10-Cw, 

26-Dw, 24-DR, 9-DQ and 6-DP (Bodmer etal. (1997)). 

The majority of typing has been performed using serological techniques involving 

antigen specific anti-sera and complement mediated cell cytotoxicity (Klein (1986a)). If the 

cells of the individual tested express the antigen to which the antisera is specific for, the 

antibody will bind the antigen and will activate the complement cascade to form the membrane 
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Figure 1.12. 

Dia2rammatical Representation (not to scald ) of the CCR-5 Gene and Promoter. 

Adapted from Mummidi etal. (1998). 

The diagram shows the CCR-5 locus on chromosome 3. The four exons (open boxes) and two introns (pink boxes) are shown and 

numbered. Arrows indicate the polymorphisms identified in the promoter region, contained within the region from exon I to the end of 

exon 3. It is unknown if the 927 C-->T mutation, out with this region, has any functional role. The CCR-5 open reading frame (CCR-5 

ORF) is marked in exon 4. 
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attack complex, which will then lyse the cell. This can be monitored in several ways, but often 

involves the 51Cr release assay described earlier (see Section 1.6.211). As the methodology 

became more advanced, several 'splits' of broader serologically defined lILA types were 

identified (Hurley et al. (1997)). The advent of molecular techniques has seen the use PCR 

based technologies to further define more and more precise antigens, which will probably 

replace serological techniques in a few years (Bidwell (1994)). 

Every individual possesses two copies of each chromosome, one from each of their 

parents. Hence, the exact combination of HLA antigens which an individual encodes for in the 

MHC loci, is defined as the genotype. The genes encoded for by each chromosome, are 

therefore defined as a haplotype, or hail genotype. Several alleles at different loci tend to 

occur on the same chromosome at a higher than expected frequency due to linkage. 

disequilibrium (see Section 1.7.3.a.ii). 

1 .7.3.a.i HLA and HIV Progression 

Several infectious diseases are known to have HLA associations, either in a 

protective, or susceptible role and include: hepatitis B and C (Czaja et at. (1993); Carbonara 

et al. (1983)), malaria (Hill et al. (1991)) and the mycobacterial infections tuberculosis and 

leprosy (Mehra (1990)). The ethnic and geographical diversity of HLA antigens (Klein 

(1986b)), was undoubtedly shaped by exposure to the variety of environment exposures 

including infectious diseases. Individual variation seen in lIly infection and AIDS, lead to 

investigations of the influence of HLA on lIly infection and disease (reviewed in (Just 

(1995))). 

One of the earliest reports of an HLA haplotype association came from a study of 

Edinburgh haemophiliacs exposed to Factor Vifi contaminated with HIV. Steel and 

colleagues (1988) noted a strong association of the haplotype A1B8DR3 with rapid 

progression to AIDS and AIDS related illnesses. Additional studies have also seen 

associations of A1B8DR3 with rapid progression (Fabio et al. (1990); Kaplan et at. (1990); 
Kaslow et al. (1990); MalIal et at. (1990); McNeil et al. (1996)). Other associations have 

been reported, such as B27 with a slow progression (McNeil et al. (1996)) and DR5 with 

Kaposi's sarcoma (Pollack, Safai and Dupont (1983); Friedman-Kien et al. (1982)), but are 

rarely widely reported due to limited sample sizes, the large number of HLA antigens and 

ethnic variations which can occur depending on the population studied (Just (1995)). 
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Kaslow et al. (1996) attempted to devise a system by which a variety of genes could 

be assessed and the combined effects noted. They identified 6 HLA types with an associated 

decreased time to AIDS (A25, A32, B18, B27, B51 and B57) and 5 and association with a 

shorter time to AIDS (A23, B37, B49 and the TAP alleles 1400-0101-0503 and 1300-0102-

0604 (see Section 1.6.2.d)). These associations were confirmed in a second cohort and proved 

that HLA haplotype can effect the course of HIV infection and disease. 

1.7.3.b.ii HLA and HIV Infection 

A1B8DR3 was weakly associated with an increased risk of seroconversion in the 

Edinburgh haemophiliacs (Steel et al. (1988)) and several ELLA types, including: B52, B44, 

Cw4, DR4 and DR6 have been shown to be associated with protection from HIV infection, 

although none were seen in more than one study (Fabio et al. (1990); Fabio et al. (1992); 

Cruse et al. (1991)). The lack of a dear association of ELLA with protection from infection 

probably results from the often restricted numbers in EU cohorts and the large degree of 

potential lILA alleles. HLA discordance between mother and child was also seen to be 

protective, presumably reflecting an allogeneic infant anti-maternal MHC immune response 

(MacDonald et al. (1998)). The TAP proteins involved in antigen presentation (see Section 

1.6.2.d) have also been reported to affect susceptibility, with the variants TAP 1.4 and TAP 1.4 

and 2.3 being increased in exposed seronegative individuals (Detels et al. (1996)). 

1.8. THE EDINBURGH HETEROSEXUAL COHORT 

1.8.1 The Edinburgh Epidemic 

Due to a hepatitis B outbreak in heroin users, in 1982, routine blood sampling of 

IDUs was being carried out in the early 1980s in Edinburgh. With the discovery of a high 

incidence of REV seropositivity in Edinburgh IDUs (Peutherer et al. (1985)), stored samples 

were retrospectively tested for REV antibodies. An alarming 51% of 164 heroin users were 

HIV, higher than that reported elsewhere in the UK, and the first cases were traced back to 

1983 (Robertson et at. (1986)). The major factor involved in the rapid dissemination of the 

virus in this population was thought to be needle sharing, caused by the lack of availability of 

'dean' needles at that time (Robertson et al. (1986); Brettle et al. (1987)). 

Later, phylogenetic studies revealed that the majority of individuals were infected with 

a closely related subtype B virus (Holmes et at. (1995); Leigh Brown et at. (1997)), 

presumably reflecting needle sharing networks thought to involve many individuals (Robertson 
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et al. (1986)). The virus was genetically divergent from that which infected the Edinburgh 

haemophiliacs, implying different sources of infection (Holmes et al. (1995); Leigh Brown et 

al. (1997)). However, virus from heterosexually infected individuals clustered with the IDUs 

(Holmes et al. (1995)), suggesting that they were the source of the heterosexually acquired 

infection. 

1.8.2 The Heterosexual Partner Study Group 

The Edinburgh Heterosexual Partner Study was established to monitor factors 

associated with heterosexual transmission. As the index cases were infected with genetically 

related viruses (Holmes et al. (1995); Leigh Brown et al. (1997)), this provided a study group 

which did not have the added factor of variations (e.g. subtype differences) in the infecting 

virus, which may also influence transmission as suggested by studies in Thailand (see Section 

1.3.4.b). 

Individuals were recruited to the study by partner tracing through a general practice, 

an infectious diseases out patient department and in the home as required.. Couples comprised 

of an index, who was a known infection risk for HIV, i.e. was the }{IV potentially 

transmitting partner and allowed interview contact with their heterosexual partner (contact). 

All interviews and recruitment were performed by a qualified research nurse, who was also 

able to take blood samples when required. This allowed home visits and a level of trust to be 

obtained which was fundamental to this study, involving often very non-compliant individuals. 

Interviews with the contact were arranged, or the contact traced by the research nurse, where 

detailed knowledge of their past sexual behaviour with the index was obtained for the 5 years 

preceding the interview. An example of the interview used is given in Appendix 1.1 and 

involved the interviewer asking and completing the form, which ensured continuity. 

The sexual behaviour was recorded in yearly intervals and periods of abstinence and 

condom usage were assessed to deduce the proportion of the year at which unprotected 

intercourse was occurring. Abstinence included periods of time spent apart (often in prison), 

or short break-ups of the relationship. An HIV test was offered along with counselling and 

advice on safe sex and 'at risk' activities was also provided. If discordant for H1V serostatus 

after testing (contact was HIV-negative), the contact was followed up, by interview, at 

approximately 6 monthly intervals. During follow-up, the sexual behaviour was re-assessed 

and an HIV test offered as previously. If the relationship terminated, the contact was also 

encouraged to attend a final follow-up interview and an HIV test offered several months later. 
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A detailed analysis of the cohort was performed from October 1987 to April 1993 by 

Fielding et al. (1995). This analysis was a longitudinal approach where the risk of 

seroconversion over time was modelled and a behavioural and biological profile constructed 

over yearly blocks. An example of the information considered is given in Figure 1.13 for 

several couples. The basic information concluded for the study over this time is given in Table 

1.3 and includes the number of concordant couples with respect to sex and the length of 

relationship. A total of 125 couples were assessed at this time and 18 were excluded for either 

a lack of lily testing (8 couples), or consistent condom use/ abstinence during their 

relationship (8 couples). This left a remaining 109 couples which were used in the analysis. 

During cross-sectional analysis of the 109 couples, only 'high risk' sexual practises 

and the length of the relationship were significant risk factors for seroconversion (P=0.0009 

and P=0.02 respectively). 'High risk' sexual practises were ever engaged in anal sex, or 

experience post coital bleeding for female contacts and sex during menstruation for male 

contacts, all previously defined risk factors (Royce et al. (1997)). In multifactorial cross 

sectional analysis only 'high risk' sexual practices was significant (P=0.0009). Longitudinal 

analysis attempted to control for the periods and extent of sexual practises andiehaviour over 

the study period, therefore factors such as the age of the contact were not affected, but 

unprotected intercourse then became a significant factor (P=0.040). This is presumably 

because the periods where the contact was most at risk (immediately following seroconversion 

of the index) and the frequency of exposure were considered in this form of analysis. The 

square root of the CD4 count of the index, was also a significant risk factor for 

seroconversion of the contact (P=0.033) and suggests a more advanced stage of disease to be 

a significant risk factor. The effect of a low CD4 count remained in the multifactorial 

longitudinal analysis (P=0.009). 'High risk' sexual practises also remained a significant factor 

in both the single factor and multifactorial analysis (P=0.001 and P=0.013 respectively). 

The final recruitment data for the whole study was reported by Robertson et al. 

(1998) and is summarised in Table 1.4. Following exclusion for IOU risk, only 120 discordant 

contacts remained and some of these individuals had no known 'at risk' exposure, i.e. no 

periods of unprotected intercourse. Others did not have a sample available for research 

purposes; either stored, or provided. The precise numbers studied in this thesis vary depending 

upon the ,  availability of samples. Some of the study required fresh blood samples and was 

therefore limited to individuals still involved in the study and willing to provided a sample at 



Figure 1.13. 

Information Determined by Interview from Couples in Heterosexual Partner Study 

Adapted from Fielding et at (1995) 

Information established from interview and HIV testing on several couples enrolled in the Heterosexual Partner study. 

Line indicates the length of the relationship. [indicates the last negative HIV test of the index, ] indicates the first positive test 

for the index and S indicates the index knowledge of their seropositivity, often after first positive due to retrospective testing of 

stored samples. { indicates the last negative of the contact and } indicates the first positive of the contact. A marks the initial 

interview of the contact and V indicates the last follow-up, which sometimes occurred after the relationship had ended. 
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Table 1.3. 

Summary of Heterosexual Partner Study Group Data 19871993* 

Male Female 

Number of Indexes 82/105 23/105 

Number of Contacts 23/109 86/109 

Number of Contacts Concordantt 

At recruitment 3/23 (13.0%) 21/86 (24.4%) 

Follow-up 1 1 

Mean Age of Contact at 
Recruitment* (years (range)) 

32(22-51) 26(17-58) 

Median Length of Relationship 41.1 (9.4-109.6) 44 (1.8-304.9) 
(months (range)) 

Concordant Discordant 

Median Length of Relationship* 47.5 (2.9-133.8) 41.1 (1.8-304.9) 
(months (range)) 

* 
as published in Fielding et al. (1995) for period 1987-1993 

* Two contacts with the same index were considered as two independent couples 

~ Contact was concordant for fflV serostatus, i.e. 1IIV, having acquired the infection from 

heterosexual contact with the H1V index. 

§ No statistical difference between the two group (Mann-Whitney test) 



Table 1.4. 

Summary of Heterosexual Partner Study Group Data 19871996* 

Male Female 

Number of Indexes 145/202 57/202 

Number of Contacts 66/246 180/246 

IDU riskt 32/94 62/94 

Non-1DUrik 34/152 118/152 

Number of Contacts Concordant'  

At recruitment 14/66(21%) 

IDU risk 7/32(22%) 

45/180(25 - %) 

20/62(32%) 

Non IDU risk 7/34(21%) 25/118 (21%) 

Follow-up (non-IDU risk) 5 (l) 1 (1) 

Mean Age of Contact at 
Recruitment (years(range)) 

30 (±6) 29 (±5) 

Median Length of Relationship 
(months (Max)) 

42(172) 52 (313) 

* as published in Robertson etal. (1998) for period 1987-1996 

Two contacts with the same index were considered as two independent couples 

t  Known risk for injecting drug use 

Contact was concordant for HIV serostatus, i.e. Hilt, having acquired the infection from 

heterosexual contact with the }HV index. 

No statistical difference whether contact also had IDU risk. 
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that time. Other sections relied on identifying retrospectively stored samples and was limited 

by the availability relative to potential clinical uses, which obviously took precedence. 

Some of the discordant contacts had high levels of unprotected intercourse, over 1000 

'at risk' exposures in some cases, yet they  remained uninfected. With the ever increasing 

reports of factors present in such exposed uninfected individuals, individuals were recruited 

into a study of host factors of resistance to heterosexual transmission. 

1.9. WORK PRESENTED IN THIS THESIS 

The aim of this thesis was to investigate a wide variety of factors in the Edinburgh 

Heterosexual Partner Study Group which may affect heterosexual transmission. Most studies 

focus on one aspect of immunity, or a particular genetic factor, so it was intended to ascertain 

the effect of several different aspects in the one cohort. Immune functions investigated 

included proliferative responses to mitogen, recall and alloantigens, as well as HIV-specific 

proliferative responses. The cytokine responses to these antigens was also analysed to see if 

the responses to different antigens differed in  EUs compared to that of normal controls. It was 

also hoped to investigate the presence of HIV-specific CTh responses in the EUs, using 

naturally infected cells to enable the stimulation of a broad range of responses and not 

restricting to known CTL epitopes, as if responses were present in the EUs they may differ 

from those of HIV individuals. 

The effect of HLA type of the risk of transmission was investigated by comparing the 

antigen frequencies in the EU group to that of IilV individuals who acquired their infection 

heterosexually and a group of population controls. The  HLA frequencies of the indexes were 

also compared to assess their effect on transmission, by comparing the indexes who 

transmitted to their heterosexual partner (Transmitting Index (TRI)) to those who did not 

transmit (non-TRIs). The level of HLA mismatch between the index  and contact was also 

compared to ascertain if a higher degree of HLA discordance may reduce the risk of 

heterosexual H1V transmission. This was achieved by comparing the mean level of HLA mis-

match in concordant compared to discordant couples with respect to lily serostatus. 

The frequency of the recently described mutations in the chemokine receptors, CCR-2 

and CCR-5 (see Section 1.7.3.a), were compared in the EUs to that of heterosexually infected 

R[Vs and population controls, to assess if these mutations had any affect upon heterosexual 

HIV transmission, in contrast to the known associations in homosexual cohorts (see Section 
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1.7.1a). The frequency of these mutations in the TRI and NTRIs was also compared to assess 

if they influenced transmission too. Recently described polymorphisms in the CCR-5 promoter 

region were also investigated to see if they differed in frequency in EUs compared to Hilt 

and population controls. 

Finally, an index and his four heterosexual partners were studied to see if changes in 

the viral population present in the index may account for differences in transmission, as the 

first two partners were HIV and the final two were EUs. It was hoped to infect cells of the 

EU contacts to ascertain if virus isolated from the index was capable of infecting these and 

other EUs, or if they were intrinsically protected from HTV infection. The co-receptor usage, 

SI/NSI phenotype of the index's virus was investigated over time and the degree of relatedness 

of these isolates deduced by sequence analysis and phylogenetic reconstructions. 

The importance of all different aspects with the findings were discussed in the context 

of heterosexual HIV transmission and related to that of differed populations. Also how 

contrasting findings from that of homosexual cohorts may be explained by differences in the 

mode of transmission, highlighting the importance of investigating different risk groups and 

different populations. 
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CHAPTER 2- MATERIALS AND METHODS 

2.1. GENERAL EQUIPMENT AND REAGENTS 

2.1.1 Areas of Work 

2.1.2 General Supplies 

2.2. INDIVIDUALS STUDIED 

2.2.1 Edinburgh Heterosexual Partner Study 

2.2.1.a Exposed Uninfected (EUs) Contacts 

2.2.1.b Concordant Contacts 

2.2.1.c Index Patients 

2.2.2 MRC Molecular Epidemiology Repository, Edinburgh 

2.2.3 Low Risk Controls 

2.2.4 Blood Samples 

2.3. ISOLATION OF PBMCs 

2.4. FREEZING AND THAWING OF CELLS 

2.4.1 Freezing Cells 

2.4.2 Thawing Cells 

2.5. ESTABLISHMENT OF B CELL LINES (BCLS) 

2.5.1 Transformation of PBMCs 

2.5.2 Production of EBV containing Supernatant 

2.5.3 Titration of EBV containing Supernatant 

2.6. CELL LINES AND CELL CULTURE 

2.6.1 EBV Transformed BCLs 

2.6.2 Continuous CD4 Cell Lines 

2.6.3 Primary T Cell Lines (PHA blasts) 

2.6.4 CD8 Cell Depletion 

2.6.5 Primary Macrophage Culture 

2.6.6 U87-CD4 Cells + Chemokine Receptors 

2.7 FUNCTIONAL T CELL STUDIES 

2.7.1 Lymphoproliferation Assays 

2.7.1.a Recombinant HIV Cocktail 

2.7.1.b Allo-Reactive BCLs 

2.7.2 Cytokine ELISAs 
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2.7.2.a IL-4 

2.7.2.b IFN-y 

2.8. FLOW CYTOMETRY AND IMMUNOFLUORESCENT MICROSCOPY 

2.8.1 FACScan Analysis 

2.8.2 Immunofluorescent Staining of HIV-infected Cells 

2.8.2.a Fixing and Permeabiisation 

2.8.2.b KC57 Staining 

2.8.2.c Preparation of Mounting Medium 

2.9. HIV VIRUS CULTURE 

2.9.1 HIV Virus Strains Used 

2.9.2 Primary Isolations 

2.9.2.a PHA blast co-culture 

2.9.2.b PM1 cell co-culture 

2.9.2.c Isolations from Plasma 

2.9.2.d U87-CD4-CCR-5 Cells 

2.9.3 HIV. Viral Stocks 

2.9.4 Other Viral Stocks 

2.9.5 TCID50  Quantitation in PM! Cells 

2.9.6 Co-receptor usage of viral stocks 

2.9.7 Infectivity Assay of PHA blasts 

2.10. HIV DETECTION ASSAYS 

2.10.1 Immunofluorescent Staining 

2.10.2 p24  ELISA 

2.10.2.a Coating of Plates 

2.10.2.b ELISA 

2.10.3 Reverse Transcriptase (RT) Assay 

2.11. EXTRACTION 

2.11.1 Phenol! Chloroform DNA Extraction 

2.11.2 Estimating DNA Concentration 

2.11.2 Plasma DNA Extraction 

2.11.2 Plasma RNA Extraction 
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2. 1. GENERAL EQUIPMENT AND REAGENTS 

2.1.1 Areas of Work 

All DNA/RNA extractions, tissue and viral culture were performed in a BioMat Class 

II Microbiological Safety cabinet (Medical Air Technology, Manchester, UK) under Category 

II or ifi safety conditions as appropriate (Butler (1995)). 

cDNA synthesis and PCR reactions were performed in a separate area from 

extractions, with secondary, nested PCRs and gel electrophoresis done in two further separate 

areas. These procedures were to reduce the risk of nucleic acid contamination (Krogstad and 

Zack (1995)). 

2.1.2 General Supplies 

Unless otherwise stated all chemicals were obtained from Sigma (Sigma-Aldrich 

Company Ltd, Poole, Dorset, UK) and all plasticware was obtained from Costar (Corning 

Costar, High Wycombe, Bucks, UK) at tissue culture grade. The following list of supplies and 

equipment were common to most procedures. 

Gilsons (P20, P200, P1000, Gilson Medical Electronics, Villiers-le-Bel, France) 

Multichannel pipette (25-2001.11, Anachem Ltd, Luton, Beds, UK) 

Pipetboy acu (Integra BioSciences, Letchworth, Herts, UK) 

Gilson Tips (1-10111, 10-2001.11, 20-1000j.d, sterilsed, Alpha Laboratories Ltd, Eastleigh, 

Hampshire, UK) 

Pastettes (imi sterile, Alpha) 

Sthpettes (5ml, lOmI, 25ml sterile) 

1.5m1 screw capped tubes (flat and conical, sterilised, Alpha) 

Small and large Treff tubes (500j.0 and 1 .5rnl, sterilised, Treff Lab ®  from Scotlab Ltd, 

Coatbridge, Scotland, UK) 

Cryotube®  (1.8m1 internal thread sterile, Nunc from Life Technologies, Paisley, Scotland, 

UK) 

Polystyrene, round bottomed tubes (Falcon tubes, 12 x 75mm, Falcon®, Becton Dickinson 

(BD), Oxford, UK) 

7m1 Bijouxs (sterile, Bibby Sterilin, Stone, Staffordshire, UK) 

100 x 16mm conical tubes (sterile, Bibby Sterilin) 

30m1 Universals (sterile, Bibby Sterilin) 

50m1 Centrifuge Tubes (sterile, Corning Costar) 



96 well plates (U, V and flat bottomed sterile) 

Tissue culture plates (48 well, 24 well and 6 well sterile) 

Tissue culture flasks (25, 75, 175 cm2  sterile) 

Cell Counting Chambers (Bio-Stat Diagnostics, Manchester, UK) 

Rose Park Memorial Institute 1640 medium (RPMI, Hyclone, Cramlington, UK and later 

Sigma) 

Dulbecco's Modified Eagle's Medium (DMEM, Hyclone and later Sigma) 

Heat inactivated foetal calf serum (FCS, Advanced Protein Products Ltd, Brockmoor, Brierley 

Hill, West Midlands, UK and later Sigma) 

Heat inactivated human AB serum (Scottish National Blood Transfusion Service (SNBTS), 

Edinburgh, Scotland, UK) 

10% RPM! (RPMJ medium supplemented with 10% (v/v) FCS, 20j.tM L-glutamine 

(HyClone), 501U/ml penicillin and 50p.g/ml streptomycin (GibcoBRL, Life Technologies) 

(pen/strep/glutamine)) 

10% DMEM (DMEM medium supplemented with 10% (v/v) FCS, pen/slrep/glutaniine 
5% AB RPM! (RPMI medium supplemented with 5% (v/v) AB serum, pen/sirep/glutainine) 

IX phosphate buffered saline (PBS, (10mM phosphate buffer, 2.7mM KC1, 137mM NaCl), 

Oxoid, Ltd, Basingstoke, Hampshire, UK) 

0.1% (w/v) diethyl procarbaniine in distilled water (d1120) and sterilsed (DEPC-treated dH 20) 

Bench-top centrifuge (Cenira 3C, IEC from Life Sciences International, Basingstoke, 

Hampshire, UK) 

Microfuge (Biofuge 15, Heraeus, Brentwood, Essex, UK) 

Thermal Cycler (GeneE, Techne, Cambridge, UK) 

HEPA filtered, CO2 incubator (37 °C, IR incubator, Forma Scientific from Life Sciences 
International) 

Vortex (Vortex Genie, Scientific Industries, NY, US) 

Hot Block (BT1 Block Thermostat, Grant Instruments, Cambridge, UK) 

Autoclave (Double Entry Herald, Rodwefl Scientific Instruments, Bentalis, Basildon, Essex, 

UK). 
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2.2. INDIVIDUALS STUDIED 

2.2.1 Edinburgh Heterosexual Partner Study 

The Edinburgh Heterosexual Partner Study was established to look at factors 

associated with heterosexual }{IV- 1 transmission. Further details of the cohort can be found in 

Section 1.8. 

Index patients were assigned a study number prefixed with the letter I, e.g. 13881, and 

the contact, irrespective of serostatus was assigned the same number prefixed with the letter 

C, e.g. C3881. Any further contacts of the same index were increased by one, e.g. C3882. 

2.2.1.a Exposed Uninfected (EUs) Contacts 

Heterosexually exposed individuals were selected for their continued seronegative 

status, despite high risk exposure to HIV-l. The level of exposure was derived from initial 

interview data. The number of sexual episodes was deduced from the frequency of 'at risk' 

sexual activity reported for the 5 years preceding the interview, or the duration of the 

relationship if shorter than this. Any periods of abstinence during this time were subtracted, as 

were the number of 'protected' sexual episodes, estimated from the reported frequency of 

condom usage. Follow up data were analysed similarly and added to the value obtained for the 

initial interview. This provided an estimated level of exposure in these EU individuals. The 

number of individuals studied, varied in the different aspects of this thesis and details are 

given at the relevant sections. 

2.2.1 .a.i HIV-specfic Antibody Testing 

Individuals were tested for the presence of HIV-specific antibody using the Abbott 

IMX HIV-l/2 Third Generation kit (Abbott Diagnostics, Chicago, IL, USA), with positive, or 

indeterminate results confirmed using the Abbott Biostat HIV-1/2 third generation plus ETA 

kit. Positive, or indeterminate results from the second kit were confirmed by western blot 

using Cambridge Biotech Western Blot kit (from Ortho Diagnostics, Raritan, NJ, US). All 

tests were performed in the Department of Medical Microbiology, University of Edinburgh. 

2.2.1.b Concordant Contacts 

Contacts (n= 24, 4 male, 20 female) who became IflV following heterosexual 

contact were part of the }{IV control cohort, used to assess the effect of genotypic variation 

in CCR-2 and CCR-5 on heterosexual infection. 
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2.2.1.c Index Patients 

KEV index patients were divided into those who transmitted virus heterosexually 

(Transmitting Indexes (TRIs), n=19, 19 male, 3 female) and HlV partners of th e  EU 

individuals (Non-TRIs (NTRIs), n=38, 28 male and 10 female). These individuals were 

analysed to ascertain if mutations in the CCR-2 and CCR-5 gene had any effect upon the 

transmission of HIV during heterosexual exposure. One patient (13151), who had transmitted 

to his first two partners (C3151, C3152), but not his later two (C3153, C3154), was assessed 

further to see if variation in the circulating virus had any effect upon the transmission of HIV. 

2.2.2 MRC Molecular Epidemiology Repository, Edinburgh 

The Repository was established to provide an archive store of patients infected with 

HIV. Samples were collected from all over Scotland, the North of England and Ireland and 

PBMCs, serum and plasma stored. Seroconversjon dates, if known, were recorded along with 

details concerning the risk group, country of infection, antiviral therapy history and a recent 

CD4 count. 

Caucasian patients were selected (n=62, 17 male and 45 female) who were infected 

heterosexually from the Central Scotland area and were used in the HIV control cohort, used 

to assess the effect of genotypic variation in CCR-2 and CCR-5 on heterosexual infection. 

Samples from many of the index patients analysed from the Heterosexual Partner Study were 

also obtained from the Repository, including Sample 2 and 3 from 13151 studied in Chapter 5 

(see Section 5.2.1). 

2.2.3 Low Risk Controls 

DNA samples (n=50) were kindly provided by Dr. Alan Wright (MRC Human 

Genetics Unit, Edinburgh, Scotland, UK) from individuals selected for a study of polycystic 

kidney disease without regard for risk of HIV infection. All were Caucasian in origin and 95% 

reside in Central Scotland. These individuals were used as a low risk control group in studies 

of CCR-2 and CCR-5 genotyping. 

Samples for infectivity assays, controls for proliferation assays and PBMCs for 

making phytohaemagglutinin (PHA)-blasts for HIV culture work were obtained from either 

fellow laboratory workers, not involved in Category ifi Ely culture work, or from blood 

donors, kindly provided from the SNBTS. The blood from the SNBTS was either in the form 
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of blood packs (buffy coats), used for viral culture work, or small samples from 

plasmapheresis donors for controls in proliferation assays. 

2.2.4 Blood Samples 

All blood samples were collected in tubes containing anti-clotting agents for collection 

of PBMCs and plasma. For functional T cell studies, samples were collected in heparin and all 

remaining samples were collected in ethylenediamine tetraacetic acid (EDTA), with the 

exception of buffy coats from the SNBTS which were collected with sodium citrate. Serum 

was obtained from clotted blood. All samples were processed within 12 hours of being taken 

and PBMCs isolated by density gradient centrifugation. 

2.3. ISOLATION OF PBMCs 

PBMCs were isolated by density gradient centrifugation (Lymphoprep, Nycomed, 

Birmingham, UK). 8-15m1 of heparinised/EDTA treated blood was carefully layered over an 

equal volume of warmed Lymphoprep (= 37°C) and centrifuged at 2 100rpm for 30 minutes. 

After this time, a discrete band of PBMCs was visible at the interface, which was carefully 

removed using a pastette and placed into a clean tube. The cells were then washed twice in 15-

20ml of lX PBS by resuspending the cells, centrifuging at 1 500rpm for 10 minutes and 

discarding the supernatant. Cells were then used for further analysis, or cryopreserved in 

liquid nitrogen. 

2.4. FREEZING AND THAWING OF CELLS 

2.4.1 Freezing cells 

Viable cells were stored in liquid nitrogen, by resuspending 5 x 106  2 x 10 cells in 

freezing medium (10% (v/v) dimethysulphoxide (DMSO), 40% (v/v) RPMI medium and 50% 

(v/v) FCS). The cell solution was quickly placed in internal threaded cryovials (Nunc) and 

into in a freezing box (Nalgene, Hereford, UK). The freezing box is designed to lower the 

temperature gradually, when placed at -70°C overnight, to increase later viability. Finally, the 

cells were stored in liquid nitrogen in the vapour phase. 

2.4.2 Thawing Cells 

Cells were removed from liquid nitrogen and allowed to thaw. When almost melted, 

an equal volume of 1X PBS was added, left for 15-30 seconds and mixed to dilute the DMSO, 
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which is toxic to the cells at room temperature. The diluted mixture was then added drop-wise, 

using a pastette, to 10-20m1 of lx PBS. This was centrifuged at 1 200rpm for 5 minutes to 

form a pellet and the cells resuspended in the relevant media. 

2.5. ESTABLISHMENT OF B CELL LINES (BCLS) 

2.5.1 Transformation of PBMCs 

PBMCs were resuspended in 2m1 of 10% RPMI containing 0. lpg/mi Cyclosporin A 

(Sandoz Chemicals Ltd (UK), Horsforth, Leeds, West Yorkshire) to inhibit T cell growth and 

EBV-containing supernatant (see Section 2.5.2) (1:10 dilution). The cells were left for a week 

at 37°C, 5% CO2 and then fed twice weekly with fresh media. The cells were fed by removing 

lml of the existing media and adding imi of fresh 10% RPMI media. This procedure was 

repeated until transformation had occurred, usually within 1-2 months. The cell line was then 

expanded and aliquots frozen (see Section 2.4.1). 

2.5.2 Production of EBY supernatant 

EBV containing supernatant was obtained from the EBV infected Marmoset cell line, 

B95-8 (Miller and Lipman (1973)). The cell line was cultured to confluence and starved (i.e. 

no fresh medium added) for 7 days. The supernatant was then harvested by removal of any 

cells by centrifugation and the resulting cell-free solution filtered through a 0.451m filter 

(Sartorius, Epson, Surrey, UK) and stored in liquid nitrogen. 

2.5.3 Titration of EBV containing supernatant 

PBMCs were obtained as described previously (see Section 2.3), from cord blood and 

incubated at 37 °C for 1 hour, in various dilutions of EBV containing supernatant. 6 x 10 6  

cells were incubated in 1.2m1 of either neat, 1:10, 1:100, 1:1000 supernatant diluted in 10% 

RPMI. The cells were then placed in a 96 well U-bottomed microtitre plate in 6 x 200il 

aliquots/ dilution, i.e. 1 x 106  cells/ well and left for a week at 37°C. The cells were then fed 

twice weekly with fresh media for 4 weeks. A 1:10 dilution of supernatant yielded 6/6 

transformed wells and was therefore used for future transformations to ensure success. 
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2.6. CELL LINES AND CELL CULTURE 

2.6.1 EBV Transformed BCLs 

EBV transformed BCLs were obtained as outlined in Section 2.5. Once transformed, 

cells were cultured in 10% RPM! at approximately 5 x iø S cells/ml and were split (1:5-10) 

and fed with fresh media twice weekly, or as required if bulking up cell numbers. Cells were 

incubated in a moist environment at 37°C in 5% CO2 . 

2.6.2 Continuous CD4 Cell Lines 

T cell tropic viruses were propagated in continuous CD4 T cell lines. Early viral 

stocks were made in the cell line C8166 (Lee et al. (1984)), which was obtained from the 

AIDS Reagent Project (NIBSC, South Mimms, Hertfordshire, UK donated by Dr. G. Farrar, 

CAMR, Porton Down, Salisbury, Wiltshire, UK). C8166 cells are a CD4 human T -

lymphoblastoid cell line. 

Later, following the discovery of the cell line PM1 (Lusso et al. (1995)), which can 

support the growth of T cell and some macrophage tropic isolates, viral stocks were 

propagated in this cell line. PM1 cells are a clonal derivative of the HUT-78 cell line, a CD4 

human cutaneous T-cell lymphoma and was also obained from the AIDS Reagent Project 

(kindly donated by Dr. M. Reitz, Institute of Human Virology, MD, USA). 

Both C8166 and PM1 are non-adherent and are cultured in 10% RPM! as for BCLs 

(see Section 2.6.1). The BCL Preiss (Hurley et al. (1982)) was also cultured in the same way. 

The promonocytic cell line, Ui (Folks et al. (1987)) was obtained from the AIDS 

Reagent Project (kindly donated by Dr. T. Folks, CDC, Atlanta, USA) to perform sensitivity 

studies of HIV PCR methods. The Ui cell line is a sub-clone of U937, a human monocyte-like 

cell from a histocytic lymphoma, infected with a single copy of integrated HIV DNA per cell 

and hence was used to determine the end point level of methods used (see Section 2.12). 

The promonocytic cell line, U87.MG, transfected with CD4 and also the chemokine 

receptors, CCR- 1/2b/3/5 and CXCR4 were obtained from the AIDS Reagent Project (see 

Section 2.6.6). 

2.6.3 Primary T cell Lines (PHA blasts) 

PBMCs were established as outlined in Section 2.3 and cultured in 10% RPM! with 

lOp.gfml of the mitogen PHA for 24-48 hours at 37°C, 5% CO2. After this time, the media 
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was replaced with 10% RPMI supplemented with 59gmnil PHA and IOU/ml recombinant IL-2 

(AIDS Reagent Project), or 5% (v/v) Lymphocult-T®  (LC, Biotest, Shirley, West Midlands, 

UK). Cells were cultured at approximately 5 x 105  cells/ml, fed twice weekly and split as 

required. PHA blasts were maintained in this way for 2-3 weeks before being discarded. 

2.6.4 CD8 Cell Depletion 

CD8 cells were removed from PHA blasts for HIV infectivity studies (see Section 

2.9.6) by magnetic depletion. 2 x 10 7  cells washed twice in lx PBS, resuspended in SOOj.d of 

IX PBS and placed in a Falcon tube. To this 50pd of washed (1% (vlv) FCS in lx PBS) anti-

CD8 coated Dynabeads (Dynal, Bromborough, Merseyside, UK) were added, mixed and 

incubated on ice for 30 minutes with mixing halfway. 4-5m1 of lx PBS was added, half of the 

cell suspension placed in another tube and both tubes topped up. The tubes were then placed 

on a magnet (Immunotech, Marseilles, France) for 5 minutes and the supernatant carefully 

removed with a pastette and placed into another tube on the magnet for a further 5 minutes. 

The supernatant was again carefully removed and the cells pelleted by centrifugation, then 

washed twice in 1X PBS. The cells were then resuspended in the respective culture 

supernatant and used accordingly (see Section 2.9.6). 

2.6.5 Primary Macrophage Cultures. 

PBMCs were separated as described previously (see Section 2.3). Macrophages were 

isolated by plastic adherence by culturing 5 x 106  PBMCs/ml of serum free Iscove's Modified 

Dulbecco's media (Gibco BRL) in a tissue culture flask laid flat for 90 minutes. Non-adherent 

cells were removed and pelleted by centrifugation. Macrophages were then cultured in 

Iscove's with 5% human serum. For macrophage tropic virus culture, the non-adherent cells 

were added back with l0.Lgfml PHA for two days prior to infection (see Section 2.9.3). 

2.6.6 U87-CD4 Cells + Chemokine Receptors 

U87.MG-C])4 (U87-CD4) cells are human glioma cells transduced with an 

amphotrophic retrovirus, expressing CD4 and a neomycin selectable marker (Clapham, Blanc 

and Weiss (1991)) kindly donated by Dr. P. Clapham. CD4 expression was selected for by 

geneticin (G418, GibcoBRL) and hence the adherent cell line was cultured in 10% DMEM 

supplemented with 250 j.Lgfml G418. 
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The U87-CD4 cell line was then transduced with aniphotrophic retrovimses encoding 

the following chemokine receptors, CCR- 1/2b/3/5 and CXCR-4, under puromycin selection 

(BjOrndal et al. (1997)). The chemokine receptor expressing cells were also obtained from the 

AIDS Reagent Project and were kindly donated by Dr. D. Littman (New York University 

Medical Center, NY, USA). Chemokine receptor expression was selected for by puromycin 

resistance, thus, these cells were grown in 10% DMEM supplemented with 250j.tgfml G418 
and 0.5.tgfml puromycin. 

The cells were cultured at 37°C, 5% CO2  until approximately 3090% confluent and 

then split (1:4 for maintenance, less for bulking up) as necessary. The cells were split by 

removing the media and washing with 1X PBS to remove all traces of serum and then 

incubated with enough lx tiypsin (0.25% (wtv) GibcoBRL) to cover the cells and left at 37°C 
for approximately 5 minutes. The trypsin was 'quenched' with excess lx PBS, the cells 

pelleted by centrifugation and resuspended in 10% DMEM. The cells were fed 2-3 times a 

week with fresh media and trypsinised at least every 7-10 days. 

2.7. FUNCTIONAL T CELL STUDIES 

2.7.1 Lymphoproliferatjon Assays 

Freshly isolated PBMCs were incubated in 5% AB RPMI (1 x 10 cells/well) in a 96 

well U-bottomed microtiire plate in the presence of various antigens : the mitogen PHA 

(5/lj.tg/ml), mycobacterium purified protein derivative (PPD, lOOU/ml, Evans Medical Ltd, 

Leatherhead, UK), tetanus toxoid (TT, 2.5/1.25.tg/mi, Calbiochem-Novobjochem Ltd, 

Nottingham, UK), a recombinant Hil/ protein 'cocktail' (l.2S/O.625/0.l25jg/m1 see Section 

2.7. La) and Mitomycin C fixed allo-reactive BCLs (allo, 1:1 ratio, see Section 2.7. Lb). 

Plates were incubated at 37°C, 5% CO2  for 7 days, with the addition of 0.lmCj/nij 
3H-thymidine (85Ci/mmol stock specific activity, Amersham International plc, Little Chalfont, 

Bucks, UK) 18 hours prior to harvesting using a Skatron cell harvestor (Skatron, Lier, 

Norway) and 1205/401 filtermats (Wallac UK, Milton Keynes, UK). Prior to harvesting 100- 

150 jil of supernatant was transferred to a new plate and stored at -20°C for later cytokine 

analysis (see Section 2.7.2). Thymidine incorporation was measured using a Wallac Beta plate 

counter (1205 Beta Liquid Scintillation Counter) and Stimulation Indices (SI) determined by 

mean value/ mean background (no antigen added). A value was deemed significant if an SI>2 

was achieved. Each antigen was performed in triplicate to quintu plicate (most in the latter) 

and the geometric mean deduced from these (see Section 2.19) 
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2.7.1.a Recombinant HIV Cocktail 

A cocktail of recombinant HIV proteins was made from the following proteins, all 

obtained from the AIDS Reagent Project: gp120 from the MN strain derived in Baculovirus, 

gp120 from the SF2 strain derived in CHO cells kindly provided by Dr. K. Steimer (Chiron 

Corporation, CA, USA), p24 derived in Baculovirus kindly provided by Dr. I. Jones (Institute 

of Virology, Oxford, UK), tat, nef and reverse transcriptase (p66) all derived in E.Coli (tat - 

kindly provided by Dr. J. Raina, Agmed Corps, Bedford, MA, USA; nef - kindly provided by 

Dr. V. Erfie, GSF, Munich, Germany; RT - kindly provided by Dr. D. Stammers, Glaxo 

Wellcome, Beckenham, Kent, UK). 

2.7.1.b Preparation of Allo-Reactive BCLs 

The allo-reactive BCLs were a mixture of two cell lines, the Preiss cell line and a line 

made from an individual of oriental descent, hence less likely to share MHC homology with 

the Caucasian cohort studied. 5 x 106  cells of each cell line (10 cells) was incubated with 

1009/ml of Mitomycin C (lmi) in 1X PBS at 37°C for 1-2 hours. The 'fixed'cells were then 

washed three times in 1X PBS and resuspended to 106  cells/mi in 5% AB RPMI. 

2.7.2 Cytokine ELISA 

Supernatant from proliferation assays was stored at -20°C and then thawed and 

pooled with other replicates to allow enough volume to assay for the presence of cytokines by 

enzyme linked immunosorbant assay (ELISA). Genzyme Duoset IL-4 and IFN-y ELISAs 

(Genzyme Diagnostics, West Mailing, Kent, UK) were performed essentially as per the 

manufacturer's instructions. Initial checkerboard plates were performed using recombinant 

standard cytokines to check the recommended reagent concentrations were suitable. 

2.7.2.a IL-4 

Plates were coated (ImmunorM plate,. Nunc) overnight at 4°C with 100il/well of 

capture mouse anti-human IL-4 monoclonal antibody (2j.tg/ml; coating buffer - 0.1M 

NaHCO3  (pH 9.5)). The following day the plates were washed 6 x 200.LI/well with wash 

buffer OX PBS, 0.05% Tween 20) using a plate washer (Hancliwash, Dynatech Laboratories 

Ltd, Billingshurst, West Sussex, UK), then blocked with 2501.11/ well of blocking buffer (IX 

PBS, 4% bovine serum albumin (BSA) for 2 hours at 37°C. 

Ell 



The blocking buffer was removed and lOOIfl/well of sample was added, including 

diluted standards (8 x 1:2 dilutions from 1500pg/ml rIL4), and incubated for 1 hour at 37°C. 

Plates were again washed and lOOj.U/well of biotinylated polyclonal sheep anti-human EL-4 

detection antibody added for 1 hour at 37°C (EL-2 - 1.25igIml; 1L4 - 1.tg/nil; diluted in lx 
PBS, 0.05% Tween 20, 1% BSA). The excess antibody was removed by washing and 

100ji/*ell of horseradish peroxidase (IIRP) conjugated to streptavidin (1:1000 in 1X PBS, 

0.05% Tween 20, 1% BSA) for 15 minutes at 37°C. 

Excess detection reagent was removed by washing and lOOpi/well of 

tetramethylbenzidine (TMB) added for 10 minutes at room temperature. After this time the 

reaction was stopped with 100111/well of stop solution (1M 11250 4) and the absorbance read at 
450nm on a Multiskan Biochromatic, spectrophotometer (Labsystems from Life Sciences 

International). The concentration in each sample was determined by comparison to the 

standards using Genesis (Genesis, Version 2.12, Life Sciences (UK) Ltd). 

27.2.b IFN-y 

Plates were coated as for IL-4 (IFN-y - 1:800). The following day the plates were 

washed and blocked as before, then samples and standards added (8 x 1:2 dilutions from 

1000pg1ml r1FN-y) and incubated for 2 hours at 37°C. Plates were again washed and 

100111/well of anti-human IFN-y conjugated to }IRP (2g/m1 diluted in 1X PBS, 0.05% 

Tween 20, 1% BSA) for 30 minutes at 37°C. The excess antibody was removed by washing 

and lOOjil/well of TMB substrate added for 10 minutes at room temperature. The reaction 

was then stopped with 100j11/well of stop solution and the absorbance read at 450nm of a 

spectrophotometer. The results were processed as outlined for 1L4. 

2.8. FLOW CYTOMETRY AND IMMUNOFLUORESCENT MICROSCOPY 

2.8.1 FACSCaIITM Analysis 

All flow cytometry work was performed by the use of a FACScanTM (BD) using 

LysisTM II software (BD). Stained cells were resuspended in 300-500W of 1% (w/v) 

paraformaldehyde (PAP) and stored in the dark at 4°C for not more than 24 hours after 

staining. 

All staining was performed using directly conjugated monoclonal antibodies (BD, 

unless otherwise stated) with either fluorescein isothiocyanate (FITC) for single staining, or 
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FITC and phycoerythrin (PE) for double staining. Live cells were gated for analysis as 

determined by forward and side scatter sizes. 

Approximately 2 x 105  cells added to a Falcon tube. The cells were washed twice in 
lx PBS by centrifugation and the pellet resuspended in lOOpl of 1X PBS. To this 3p.l of the 

respective antibodies were added, including the control (anti IgG2-FITC; anti IgGi-PE) and 

incubated at room temperature for 15 minutes in the dark. Excess antibody was removed by 

washing three times in 45nil of lx PBS and finally the pellet resuspended in 300-500j.0 of 
1% PAP. 

Monoclonal antibodies used for staining were against CD3-FITC: CD4-PE, CD3- 

FITC: CD8-PE, CD45-F1TC:CD14-PE (leucogate control), HLA-DR-FJTC, CD45RO-PE 

(BD). 

2.8.2 Immunofluorescent Staining of lilY-infected Cells 

To determine HIV infection in endpoint dilution experiments (see Section 2.9.5) the 

FITC conjugated monoclonal antibody, KC57 (Coulter, Luton, Beds, UK), was used on 

permeabilised fixed cells and visualised under an UV immunomicroscope (Nikon phase 

contrast 1.25UV photomicroscope). KC57 reacts to the core proteins of HIV, including p24. 

Cells were scored as positive, or negative, with the degree of staining being irrelevant and the 

uninfected cell were always co-stained to ensure no non-specific staining had occurred. 

2.8.2.a Fixing and Permeabiisation 

Cells were removed from the culture supernatant by centrifugation and washed twice 

in 1X PBS. The cells were rendered permeable by resuspending the cell pellet in 50.0 of 
PBS:dH20 (4:6) and 15t1 of the resulting cell suspension was spotted onto a PTFE coated 

multispot microscope slide (Hendley, Loughton, Essex, UK). The slide was then dried in a 

Class I/il hood for 45-60 minutes. The cells were then fixed in methanol: acetone (1:1) for 10 

minutes at room temperature. Slides were then either stored at -20°C, or stained immediately. 

If stored at -20°C, slides were warmed to room temperature prior to staining. Fixed cells could 

also then be removed from the Categoiy III. 



2.8.2.b KC57 Staining 

15111 per well of diluted KC57:FITC (1:150 in lx PBS) was spotted onto the slides 

and incubated in the dark for 30 minutes at room temperature. The antibody was then rinsed 

off with 1X PBS and washed for 30 minutes in 1X PBS in a staining rack. Slides were then 

blotted dry and coverslips added (22 x 64mm, BDH, Lutterworth, Leicestershire, UK) after 

the addition of Mowiol (see Section 2.8.2.c). After storing overnight at 4°C in the dark, the 

slides were examined under a Nikon phase contrast 1.25UV photomicroscope with a filter to 

monitor green fluorescence and using a 50X water immersion UV lens. Photographs were 

taken with a Nikon FX 3A camera using 1600 ASA colour negative film. 

2.8.2.c Preparation of Mounting Medium 

2.4g of Mowiol-4-88 was mixed in 6nil of glycerol, then 6m1 of dH20 for 2 hours at 

room temperature. Finally, 12m1 of 0.21W TrisfHCl (pH 8.5, ICN, Biomedjcajs Ltd, Thame, 

Oxfordshire, UK) was added, mixed and incubated at 50°C until dissolved. The solution was 

then stored at -20°C until use, where 2-3 grains of 1,4 diazabicyclo(2,2,2)octane was added as 

an anti-fade agent. 

2.9. HIV Vmus CuLTuRe 

All liv culture work was performed under Category Ill conditions in a Class II Hood 

(see Section 2.1). Viral cultures were assayed to be positive by either p24 ELISA or reverse 

transcriptase activity (see Section 2.10). High titre viral stocks were then made by successive 

culturing and quantified by 50%-tissue culture infectious dose (TCID), i.e. the dose of virus 

that will infect 50% of cells in the PM1 cell line, which allows both infection of T cell line 

adapted strains and some macrophage tropic strains. 

2.9.1 HIV Virus Strains Used 

The strains of virus used were two TCLA, SI strains: HIV, JuvmB  and two M_ 
tropic, NSI strains: HIVB.L and HIVl396b. IHV (Antoni, Stein and Rabson (1994)) was 

obtained from the AIDS Reagent Project (kindly donated by Dr. R. Gab, National Cancer 

Institute, MD, USA and Dr. M. Popovic Institute of Human Virology, MD, USA) and was the 

original isolate of HIV-l. HIV c98  is an isolate derived from an Edinburgh haemophiliac patient 

and is now available from the AIDS Reagent Program (called IVn). 



IRVB.L was also obtained from the AIDS Reagent Project (donated from the NIH 

AIDS Research and Reference Reagent Program, USA) and was originally derived from 

human infant lung tissue (Gartner et al. (1986)). 

H1V139.6b  cloned virus, with a patient derived env gene cloned in H1V 2  background. 
The env gene was derived from an Edinburgh haemophiliac patient and was made by Dr. 

Sarah Ashelford (Ashelford (1996) PhD thesis). 

2.9.2 Primary Isolations 

Several attempts, by different methods, were tried to isolate virus from the index, 

13 15 1, studied in Chapter 5 (see Section 5.2. 1) 

2.9.2.a PHA blast co-culture 

PHA blasts were produced from donor cells (see Section 2.6.3) and then co-cultured 

with PBMCs from an HIV individual in 10% RPMI with 5.tg/rnl PHA and IOU/ml rIL-2, at 

an approximate ratio of 1:2 HIV-infected PBMCs: PHA blast. The culture was fed twice 

weekly with fresh 10% RPMI with IL-2 and samples of culture supernatant stored at -70°C 

and tested for p24 antigen (see Section 2.10.2) and RT activity (see Section 2.10.3). Fresh 

PHA blasts were added as required, approximately once a week. 

2.9.2.b PM1 cell co-culture 

PBMCs from an HIV individual were co-cultured with the cell line PM  (see Section 

2.6.2) at an approximate ratio of 3:1 PBMC:PM1 in 10% RPMI with 599/nil PHA and 

lOU/mi IL-2 and incubated at 37°C and 5% CO2. The culture was fed twice weekly with fresh 

10% RPM! and split as required. Samples of culture supernatant were taken and stored 

outlined above (see Section 2.9.2.a). 

2.9.2.c Isolations from Plasma 

5 x 106  CD8 depleted PHA blasts (see Section 2.6.4), or 1 x 106  PM1 cells (see 

Section 2.6.2), were incubated for 1 hour at 37°C with 0.5 ml of plasma from 'an F11V 4  

individual. Then the volume was adjusted to 4-5ml with 10% RPM! with 59g/ml PHA and 
lOU/mi rIL-2, transferred to a .6 well plate and incubated at 37°C and 5% CO2. Fresh media 

was added twice weekly by removal of lnil and addition of fresh and further CD8 depleted 



cells were added after a week and samples of culture supernatant stored as outlined above. 

PM1 cultures were split as required. 

2.9.24 (187-CD4-CCR-5 Cells 

U87-CD4-CCR-5 cells were seeded in 6 well plate (see Section 2.6.6) in 10% DMEM 

and until approximately 60-70% confluent, then either lml of, or 2-3 x 106 PBMCs, or 

plasma from an HJV individual were added in 10% DMEM with 5j.tgfml and IOU/ml rIL-2. 

The plasma was left for 1 hour at 37°C, then the final volume adjusted to 5ml; 10% DMEM 

for plasma culture and 10% DMEM with 5p.g/ml PHA and 10U/ml rIL-2 for PBMC culture. 

Cultures were fed twice weekly with fresh media and samples stored and tested as outlined 

above (see Section 2.9.2.a). 

2.9.3 HIV. Viral Stocks 

IHVBaL stocks were made in primary macrophage cells (see Section 2.6.5). 

Macrophages were isolated by plastic adherence and non-adherent cells were removed then 

added back with 10ig/ml PHA. After 2 days, the culture supernatant was removed and 2-

3mls of virus containing supernatant was added to the macrophages and incubated at 37°C for 

1 hour. The original supernatant, containing the PBMCs, was then added back and incubated 

for 7 days. At 7 days post infection, half the volume of supernatant was removed and replaced 

with fresh 5% normal human serum supplemented Iscove's and cultured for a further 7 days. 

At 14 days post infection, the supernatant was removed and clarified by centrifugation at 

2000rpm for 10 minutes. Aliquots of the virus containing - supernatant were stored at -70°C 

and tested for the presence of p24 (see Section 2.10.2) and later the TCID SO  (see Section 
2.9.5) obtained. 

2.9.4 Other Viral Stocks 

All the other viral stocks for use in an infectivity assay (see Section 2.9.7) were 

produced by co-culture of virus containing culture supernatant with the PM1 cell line (see 

Section 2.6.2). The TCLA strains EIIVcw and HIVmB were previously cultured in C&166 cells 

to obtain a high titre stock. The method is analogous to that described for PM1 cells. 

Approximately 5 x 106 cells were pelleted and resuspended in 0.5-lnil of virus 

containing supernatant for 1 hour at 37°C. After this time the cells were washed in 1X PBS 

and resuspended in 10% RPMI and incubated at 37°C, 5% CO2  for 2-3 days. The cells were 



then fed with fresh 10% RPMI and a sample of the discarded media stored for and RT testing 

(see Section 2.10.2 and 2.10.3). This was repeated 2-3 days later, until visual signs of syncitia 

were seen for the TCLA strains and for approximately 14 days for NSI strains. The cells were 

then co-cultured with fresh cells at a ratio of approximately 1:3-5 cells from the viral culture: 

uninfected cells and treated as above. After 2-3 co-cultures, the culture supernatant was 

harvested as outlined for the IffvB L  stocks. When high p24 counts were obtained, the TCID 50  

of the stock was determined (see Section 2.9.5). 

2.9.5 TCID50  Quantitation in PM1 Cells 

Due to the variability of infection in PHA blasts from different donors and the 

inability to infect many CD4 T cell lines with macrophage tropic viruses, the cell line PM1 

was chosen to perform repeatable quantitation studies and could be used for all viral isolates 

used. The method used was based on that by Johnson and Byington (1990). 

PM1 cells were prepared at 4 x 10 5  cells/ml in 10% RPMI. 1331l of 10% RPMI was 

added to the first six wells of a 96 well U-bottomed microtitre plate (only the central 60 wells 

were used and one plate per isolate) and 150111 to the rest. 67111 of virus containing 

supernatant was added to the first six wells (1:3 dilution, sextuplicate) and mixed using a 

multichannel pipette. 50 p1 of this was transferred to the next row of wells and the processes 

repeated, until the final row where 50111 was discarded. 50.t1 of the PM1 cell suspension was 

added (2 x 104 cell/well) making a 1:4 dilution of the viral stock in row 1, 1:16 in row 2, etc. 

The plate was then incubated in a humidified environment at 37°C, 5% CO2 for 4 days, 

On day 4, the wells were mixed and 100p1 removed and replaced with fresh 10% 

RPMI. The plate was fed with fresh media in this way twice weekly. On day 14 the cells were 

fixed and stained for p24 by immunofluorescent microscopy as outlined in Section 2.8. Wells 

were scored as either '+' or '-', with the degree of staining considered irrelevant. The TCID 

was calculated by the method of Reed and Muench (Dulbecco (1988)). 

2.9.6 Co-receptor usage of viral stocks 

To determine the co-receptor usage by the viral stocks used for the infectivity assay 

(see Section 2.9.7), the U87-CD4 cells transfected with the various chemokine receptors (see 

Section 2.6.6) were infected at a multiplicity of infection (m.o.i) of 0.01. The m.o.i relates to 

TCID units (see Section 2.9.5) / cell, hence a m.o.i of 1, is 1 TCID unit! 1 cell. Cells were 

seeded overnight in 6 well plates (3 x 10 cells/ well) in 3 ml of 10% DMEM + 250p.g/ml 



G418 and 0.5.tg/nil puromycin (except CD4 only cells which were without puromycin). The 

next day the media was removed and lml of diluted virus stock added (in 10% DMEM + 

G418), resulting in a m.o.i. of 0.01 and incubated at 37°C for 2 hours and then a further imi 

of media added and incubated overnight. The following day the supernatant was removed and 

the cells washed with 1X PBS to remove any unbound virus and 3nil of fresh media added and 

incubated at 37 °C, 5% CO2. Supernatant was removed at day 5 and 8 of infection and 

replaced with fresh media. The cultures were terminated at day 8 of infection. P24 production 

was monitored by ELISA (see Section 2.10.2) and each sample tested in duplicate and the 

final value represented by the average of these two values and the average of the two 

experiments, as each experiment was performed in duplicate. 

2.9.6 Infectivity Assay of PHA blasts 

Cyropreserved PBMC samples were thawed (see Section 2.4.2) and cultured in 10% 

RPMI with 10.tg/ml PHA for 48 hours at 37°C and 5% CO2 at approximately 35 x 106  

cells/nil. The cells were then pelleted by centrifugation and half the media replaced with fresh 

10% RPMI with 5xg/ml PHA and LC added to a final concentration of 5% and incubated. 

Following a further 48 hours, fresh media was added by removal of half of the supernatant 

and addition of fresh 10% RPM! + 5pg/mi PHA +5% LC. The volume was increased if the 

culture growing well to expand the cell yield further. 

After a total of 8 days of culture (6 days after the addition of LC), the cells were 

counted and CD8 depleted by magnetic depletion (see Section 2.6.4). Following depletion the 

cells were resuspended in media (10% RPM! + PHA + LC) at 6 x 10 cells/ml and left at 

37°C for an hour to recover. The cells were then seeded at 3 x 10' 5 cells/ well (500p1) in a 48 

well plate and SOOtil of the appropriate virus dilution added. Viruses were diluted to obtain a 

m.o.i. of 0.001, with HIV. at both 0.01 and 0.001. The viruses used were HIV, }llV, 

1-HVB,L  and H1V139 .6b  (see Section 2.9.1). 

At day 3, 6, 9, 12 and 15 post infection, 300111 of supernatant was removed and 

stored at -70°C for p24 analysis (see Section 2.10.2). 300111 of fresh 10% RPM! + PHA + LC 

was added at day 3 and 9 and 350111 at day 6 and 9 (to account for evaporation); the cultures 

were terminated at day 15 post infection. 



2.10. HIV DETECTION ASSAYS 

2.10.1 Immunofluorescent Staining 

H1V infection in the PM1 TCID5()  assay (see Section 2.9.5) was determined by 

imniunofluorescent microscopy using an anti-p24 monoclonal antibody as outlined in Section 

2.8.2. 

2.10.2 p24 ELISA 

Based on an assay developed by Dr. W. James (Sir William Dunn School of 

Pathology, University of Oxford, UK) as provided by the AIDS Reagent Project and 

quantifies the amount of the core gag protein, p24, in the supernatant of HIV-infected cells 

relative to a standard curve of recombinant p24 protein. 

2.10.2.a Coating of Plates 

MicroELISA strip plate-8 iinmunosorbant strips were coated with 100.tl/well affinity 

purified sheep anti-HIV-1 p24 (D7320, 1:100 in 150mM NaHCO 3  (pH 9.0), Aalto 

BioReagents Ltd, Dublin, Eire) and left overnight. The plate was washed 6 x 200ii/well with 

a lx TBS (0.144M NaCl, 25mM Tris-HC1 (pH 7.5)) using a plate washer. Once the final 

wash had been done, excess liquid was removed by banging the plate upside down on tissue. 

The wells were then blocked by the addition of 200j.tl/well of a milk solution (2% 

(w/v) Marvel in 1X TBS) for 30 minutes at room temperature. This was then removed and the 

plates dried in at 37°C. The plates were then sealed into plastic bags with silica gel sachets 

and stored at -20°C until use. 

2.10.2.b ELISA 

The anti-p24 coaled strips were removed from the -20°C freezer and allowed to thaw 

to room temperature. Then the blocking protein was removed by washing six times in lX 

TBS. 

Whilst the plate was thawing, the virus in the samples was lysed to release the internal 

p24 protein and inactivated by incubation at 56°C for 30 minutes. This was done by the 

addition of 1% (w/v) Empigen solution in 10% RPMI at a 1:10 dilution, i.e. final 

concentration of 0.1% Empigen in 10% RPM!, or the relevant culture medium. The samples 

were diluted, if necessary in 0.1% Empigen in 10% RPM! and placed lOOj.tl/well in the 

washed plates. p24 standards (recombinant p24 obtained from the AIDS Reagent Project, see 



Section 2.7.l.a) were also added in ½ log dilutions (1000, 316, 100, 31.6,. 10, 3.16, 1 and 0 

ngfml), and one well was left empty as a blank. The plate was sealed using a plate sealer and 

incubated overnight at room temperature. 

Next day, the plate was washed six times as before, but this time in 0.05% (v/v) 

Tween 20 in IX TBS and blotted thy. Then lOOpI/well of biotinylated mouse anti-p24 

monoclonal antibody (1:1000 in lx T.BS, 20% (v/v) FCS, 0.05% (v/v) Tween 20, AIDS 

Reagent Project, kindly donated by Dr. W. James, Sir William Dunn School of Pathology, 

Oxford) to all wells except the blank. The plate was sealed and incubated for 2 hours at room 

temperature, then washed six times in 0.05% (v/v) Tween 20 in lx TBS. 

100pI/ well of Extravidin-alkaline phosphatase (1:4000 in lx TBS, 0.05% Tween 20) 

was then added to all but the blank and incubated at room temperature for an hour. The plate 

was then washed as before in 0.05% Tween 20 in 1X TBS and lOOjiJ/well of TMB substrate 

added to all wells, including the blank. After 15 minutes the reaction was stopped with 

50p1/well of 2N sulphuric acid and the optical density read at 450nm on a spectrophotometer 

(see Section 2.7.24. 

2.10.3 Reverse Transcriptase (RT) Assay 

The presence of p24 protein does not prove the presence of virus, therefore to confirm 

this an RT assay was performed. Reverse transcriptase is a virally encoded enzyme that 

converts ssRNA to dsDNA. The following assay provides all the materials to perform this 

reaction, apart from the enzyme. If HIV RT was present dSDNA would be formed including 

radioactively labelled 3H-Thymidine (3H-TTP), which can be then monitored on a beta plate 

counter. 

A 5X RT mix (750mM KC1, 50mM MgC12, 50mM Tris-IIC1 (pH 8.0) (ICN), 2.5mM 

ethylene glycol tetraacetic acid, 0.5% (v/v) Triton X-100, 125.tg/m1 BSA, 10% (v/v) ethane 

diol) was made and stored in aliquots at -20°C until required. A 2.5X RT mix was then made 

by the addition of 10mM dithiothreitiol (DTF), 75f.tg/ml polyrA.oligo dT (12-18, Pharmacia, 

St Albans, Herts, UK), 0.lp.Ciflil of 3H-TTP and DEPC-treated dH20. lOpI of 2.5X RT mix 

was then added to a 96 well V-bottomed microtitre plate with 15p.1 of culture supernatant, 

yielding a 1X RT solution. The plate was sealed and incubated at 37°C for 48 hours. 

Any DNA produced was then precipitated by the addition of 150pi/well of 10% (w/v) 

trichloroacetic acid (TCA) with 504g/ml yeast RNA and incubated on ice for 15 minutes. The 

DNA was then harvested onto DEAE impregnated mats (1205/405, Wallac) using a Skairon 



cell harvestor. The first wash was 5% (w/v) TCA, then 3% (w/v) sodium pyrophosphate and 

finally 70% (vfv) ethanol. The filter mat was dried in the microwave and placed in a bag with 

liquid scintillant (Betaplate Scint, Wallac) and sealed. 3H activity was then measured using a 

beta plate counter in counts per minute (cpm). Samples were performed in triplicate or 

quintuplicate and the mean and standard deviation determined. A sample was deemed RT 

positive and hence virus positive if the mean was at least twice the value of the negative 

control (lily free cell culture supernatant). 

2.11. EXTRACTION 

2.11.1 Phenol! Chloroform DNA. Extraction 

DNA was extracted from PBMCs, or BCLs essentially as outlined previously 

(Simmonds et al. (1990a)). Cells were pelleted (approximately 5 x 105 -1 x 107  cells) and 

incubated in 400.tl of TNE buffer (0. lM NaCl, 50mM Tris-HQ (pH 8.0), 1mM EDTA (pH 

8.0)) with 0.5% (w/v) sodium dodecyl sulphate (SDS), 1mg/mi proteinase K (Boehringer 

Mannheim Ltd, Lewes, East Sussex, UK) and 40p.g/ml poly A (Boehringer Mannheim) for 2 

hours at 37°C. The resulting viscious solution was pipetted repeatedly through a fine tip, 

helping to shear the DNA. 450111 of TE (10mM Tris-HC1 (pH 8.0), 1mM EDTA)-saturated 

phenol was added, vortexed three times extensively and centrifuged for 15 minutes at 13 

000rpm. 

The upper aqueous layer was transferred to a clean tube containing 450pl of phenol! 

chloroform (1:1) and 7511 of TNE buffer with 0.1% (w!v) SDS, taking care not to disturb the 

interface. This was vortexed vigorously and centrifuged at 13 000rpm for 10 minutes. The 

upper aqueous layer was again removed and transferred to a fresh tube containing 4500 

chloroform! isoamylalcohol (50:1), vortexed and centrifuged at 13 000rpm for 10 minutes. 

Following removal of the aqueous layer to a clean tube, containing 401.t.l of 3M sodium acetate 

(pH 5.2), 800p.1 of chilled ethanol (-20°C) was added, mixed and incubated overnight at - 

20°C, or at -70°C for 30 minutes. 

Nucleic acid was collected by centrifugation at 13 000rpm for 30 minutes and the 

resulting supernatant discarded. The pellet was washed in chilled 80% (v/v) ethanol (-20°C) 

and then dried on a hot block at 40°C for 15-20 minutes. Finally, the nucleic acid was 

resuspended in 30-501.11 of DEPC-treated dH20. To ensure through mixing of the DNA, this 

was then heated at 68°C for 10 minutes and then pipetted up and down several times to shear 

the DNA. 



2.11.2 Estimating DNA Concentration 

5 1.11  of the resulting DNA solution was added to 700J.1 of DEPC-treated dH 2O and the 

absorbance recorded on a spectrophotometer (CE 594, Cecil from Jencons (Scientific) Ltd. 

Leighton Buzzard, Bedfordshire, UK) at 260 and 280nm. The ratio of the absorbance at 

260:280 determines the purity of the DNA and should be greater than 1.5. The absorbance 

value obtained at 260nni can then be used, with the following formula, to estimate the 

concentration of DNA in the sample. 

Concentration of DNA in sample (p.g4tl) = Absorbance 260nm x dilution 

factor (e.g. 140) x 50 (1 OD mo  unit a 50xgfml of DNA) - 1000 (to convert to 

.tg DNA flu). 

Therefore for an absorbance value of 0.100 at 260nm, the concentration of DNA = 

0.100 x 140 x 50 —. 1000 = 0.7.tg of DNA 11.11.  The concentration of samples was then 

adjusted so that they were approximately the same and divided into several smaller aliquots 

before storage at -70°C. 

2.11.3 Plasma DNA Extraction 

The low concentration of DNA in plasma and the lack of other available samples, 

required an alternative, more sensitive method of extraction. The protocol used is essentially 

as described by Boom et al.( (1990)) and relies on the ability of silica to bind nucleic acid. 

2001.11 of plasma was incubated with 9001.1.1 of warmed Lysis buffer (lOM 

Guanidinium thiocyanate (GuSCN, Fluka Chemicals, Gillingham, Dorset, UK), 0. 1  Tris-

HC1 (pH 6.4), 35mM EDTA, 0.02% (v/v) Triton X-lOO) and 100111 of silica coarse (60g 

silica oxide! 500ml dH20, pH 2.0, vortexed prior to use), mixed and left at room temperature 

for 10 minutes, mixing every two. The silica-DNA complex was then collected by 

centrifugation at 1 500rpm for 2 minutes and the supernatant discarded. The pellet was 

washed twice in Wash buffer (lml lOM GuSCN, 0. lM Tris-HO (pH 6.4)) by vortexing, 

centrifuging at 10 000rpm for 15 seconds and then discarding the supernatant. Further washes 

were performed in the same manner, but twice with 70% (v/v) ethanol and once with acetone. 

The pellet was then dried at 56°C for 10 minutes and the nucleic acid eluted from the 

silica using 10-20j11 of DEPC-treated dH20, followed by incubation at 56°C for a further 10 

minutes. The silica was then removed by centrifugation at 10 000rpm for 2 minutes and the 

DNA/RNA containing supernatant transferred to a clean tube and stored at -70°C until use. 



2.11.4 Plasma Viral RNA Extraction 

Viral RNA was extracted from plasma by a different GuSCN based extraction 

method modified from the Stratagene Micro RNA isolation kit (Stratagene, Cambridge, UK). 

250111 of plasma was added to an equal volume of denaturing solution (6M GuSCN, 0.04M 

sodium citrate, 1% (w/v) sarcosyl, 1.44% (vfv) 13-mercaptoethanol) on ice. 50p.l of 2M 

sodium acetate (pH 4.0) and 500 p.1 of water saturated phenol were added, followed by lOOj.fl 

of chloroform:isoamylalcohol. The mixture was vortexed vigorously, incubated on ice for 15 

minutes, then centrifuged at 13 000rpm for 5 minutes. 

Two phases were then formed and the upper phase transferred to a dean tube. 5001.1.1 

of isopropanol was added with lp.1 of glycogen as a carrier and the solutions mixed. This was 

then incubated at -20°C for 30 minutes and centrifuged at 13 000rpm for 30 minutes to pellet 

the RNA. After careful removal of the supernatant, the pellet was washed with 75% (v/v) 

ethanol and air dried at room temperature. The pellet was then resuspended in 101.11 of DEPC-

treated cIH20. Two identical extractions were performed for each sample and like samples were 

pooled and stored at -70°C until use. 

2.12. REV PCR 

2.12.1 Sensitivity Testing 

To define the level of sensitivity of the HIV PCR method by which to say the EUs are 

111V PCR negative, the cell line Ul (see Section 2.6), which contains a single copy of REV 

DNA per cell, was mixed with uninfected Preiss cells (see Section 2.6). Ui cells were mixed 

at a level of 0/10 6,  1/106, 2.5/10, 5/106,  10/106,  50/106,  100/106,  1000/106,  106/0 uninfected 

cells and 5 x 106  cells of the mixture was pelleted and extracted by phenol: chloroform 

extraction (see Section 2.12.2). 

As all the EUs were expected to be REV PCR negative, the same DNA was amplified 

with primers specific for the MHC locus HLA-DQa, primers 26 and 27 (see Section 2.20). 

The reaction was set up and performed at the same time as the HIV PCR (see Section 2.12.4), 

but with the IRA specific primers. Identical reaction conditions were used, but only a single 

round PCR was necessary. 



2.12.2 Extraction 

DNA was isolated from infected cells by phenol:chloroform extraction, as outlined in 

Section 2.11.1. Where plasma derived H1V RNA was assayed, a GuSCN based extraction 

method was used (see Section 2.11.4). 

2.12.3 cDNA Synthesis 

When }IIV RNA was assayed, primer specific cDNA was made using the outer 

antisense primers, 534 for gag (see Section 2.20) and 633 for V3 env (see Section 2.20) and 

Expand RT (Boehringer Mannheim) essentially as outlined by the manufacturer. 

The RNA and primer (40 pmoles) were first denatured at 65°C for 10 minutes, then 

immediately placed on ice. The reaction was performed after the addition of the following: 

Expand RT Buffer (1X final, Boehringer Mannheim), DTF, 00mM final), deoxynucleotide 

triphosphates (dNTPs, 1mM final of each nucleotide, deoxy adenosine triphosphate (dATP), 

deoxycytidine triphosphosphate (dCTP), deoxyguanosine Iriphosphate (dGTP), thymidine 

triphosphate (dTTP), Promega, Southampton, UK), RNase Inhibitor (20U final, Promega), 

Expand RT (50 units). The total reaction (20pd) was then incubated at 42°C for 1 hour. 

2.12.4 PCR 

PBMCs from EUs were screened by PCR for the presence of HIV p17 gag using 

nested PCR. Plasma derived fflV RNA from HIV-infected individuals was also amplified by 

nested PCR in both p17 gag and V3 env. Primer specific cDNA was limit diluted to ensure 

amplification from a single molecule for sequencing. Positive primary PCR reactions were 

then reaniplified with biotinylated primers for 17 sequencing (see Section 2.13). 

All reactions were performed in essentially the same way. For the screening of the 

EUs 1-1.5.tg of DNA was added and for cDNA amplification ipi of the respective cDNA 

dilution was used. Primary PCR amplifications were performed in a 20j.d reaction mixture 

containing 1X Storage Buffer B (Promega), 33tM dNTPs, 0.251.tM of each primer, 0.05 

units/p.l of Taq DNA polymerase (Promega), or later with the use of Taq Supreme and lX 

Reaction buffer PC2 (Helena BioSciences, Sunderland, Tyne and Wear, UK). For p17 gag 

outer primers used were 531 and 534 (see Section 2.20) and for V3 em', 634 and 332 (see 

Section 2:20). The reaction was overlaid with paraffin and subject to 30 cycles of 94°C for 25 

seconds, 55°C for 35 seconds and 68°C for 2.5 minutes, followed by a final extension at 68°C 

for 7 minutes. 
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1 111  of the primary reaction was then transferred to the secondary reaction mix which 

was identical to the primary mixture, but for the use of inner, nested primers, 532/533 for p17 

gag (see Section 2.20) generating a 390bp fragment and 306/634 for V3 env (see Section 

2.20) generating a 436bp fragment. The mixture was again overlaid with paraffin and subject 

to a further 30 cycles of the same conditions as for the primary amplification. 

The product of the secondary reaction was then visualised on a 1% TBE agarose gel 

(see Section 2.17.1). For H1V sequencing, any positive, secondary reactions occurring in :9 

20% of reactions is deemed to be derived from a single molecule of HIV RNA (Leigh Brown 

and Simmonds (1995)). The corresponding primary PCR product was then reaniplified with 

biotinylated primers (see Section 2.13). 

2.13. HIV SEQUENCING 

Sequences were generated using a direct solid phase automated sequencing approach 

(Leigh Brown and Sinimonds (1995)) for both the sense and antisense strands of the gag and 
env generated products. Once biotinylated strands were formed by the use of labelled primers, 

the products were bound to streptavidin coated magnetic beads, then single stranded DNA 

magnetically purified. Sequencing was performed by the use of an Applied Biosystems 

PRISM Sequenase Terminator Single Stranded DNA Sequencing Kit (PE Applied 

Biosystems, Warrington, Cheshire, UK) and an Applied Biosystems 373A automated DNA 

sequencer. 

2.13.1 Production of Biotinylated PCR Product 

3j11 of primary PCR products (see Section 2.12.4) were amplified in a 120p.1 

secondary reaction using internal primers, one biotinylated primer and one normal primer 

(532/533 for gag, 306/634 for env), therefore two reactions per sample. The conditions were 

identical to that outlined in Section 2.12.4. 10-15il were run an a 1.5% TBE agarose gel (see 

Section 2.17. 1) and only samples where both sense and antisense reactions were positive were 

continued. 

2.13.2 Purification of Single Stranded DNA and Dynabead Complex 

Streptavidin coated magnetic beads (200.tg/PCR product (20j.t.l), Dynal Dynabeads 

M280) were washed in an equal volume of binding and washing buffer (B & W; 10mM Tris-

HC1 (pH 7.5), 1mM EDTA, 3.5M NaCl) and resuspended to twice their initial volume in B & 
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W buffer. 40111 of the resulting bead solution was added to 1001.11 of biotinylated secondary 

amplification product and incubated for 30 minutes at 48°C. The dynabead/PCR product 

complex was then placed on a magnetic separator (MPC, Dynal), supernatant removed and 

the complex washed with 401.11 of B &W buffer. 

The DNA strands were separated in 0.1M NaOH at room temperature for 10 minutes 

and the supernatant and non-biotinylated strand removed using the MPC as before. The single 

biotinylated strand/ dynabead complex was washed once with B & W buffer (50111) and once 

with TE buffer (50111). Finally, the complex was resuspended in 14111 of DEPC-treated dH20. 

2.13.3 T7 Dye Terminator Sequencing 

8 pmoles (1111) of the complementary non-biotinylared primer was incubated with the 

single biotinylated strand/ dynabead complex (141.11) in ix SS MOPS Buffer (5111 of 5X 

buffer, equal volume of MOPS and Mn Isociirate) at 65°C for 2 minutes, then slowly cooled 

to 30°C. 41.11  of T7 dye terminator mix was added and incubated at 37°C for 2 minutes, then 

the extension performed at 37°C for a further 10 minutes after the addition of 11.11  of T7 DNA 

polymerase (l.5U). The resulting products were washed twice in Tris/ Twee  (50jil, 0.01M 

Tris-HC1 (pH 8.0), 0.1% (v/v) Tween 20) and once with TE buffer (50111). Finally, the beads 

were resuspended in 3-4t.L1 of FE, denatured at 90°C for 2 minutes and placed on ice until 

loaded on a 6% (w/v) acrylamjde sequencing gel (see Section 2.18). 

2.14. CCR-5 GENOTYPING PCR 

2.14.1 Extraction 

Genomic DNA was extracted from either EBV transformed BCLs (see Section 2.5), 

derived from individuals, or archive cryopreserved PBMCs by phenol/chloroform extraction 

(see Section 2.11.1). Where only plasma samples were available, a more sensitive extraction 

method was required based on binding of nucleic acid to silica particles (see Section 2.11.3). 

2.14.2 Pilot Approach 

2.14.2a PCR Amp4flcation of the Whole CCR-5 Gene 

A 1.2kb fragment containing the entire coding region of the CCR-5 gene was 

amplified using primers 28 and 29 (see Section 2.20), in total volume of 501.11 containing lx 
Reaction Buffer PC2 (50mM Tris-110, pH 9.1, 16mM Ammonium sulphate, 3.5 mM MgC12, 
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150'ml BSA, Helena BioSciences), 331M dNTPs, 0.25 jiM of each primer, 0.125U/p.l of 

Taq Supreme (Helena BioSciences), 3.Ongfjil of DNA and overlaid with paraffin. 

Amplification conditions were 1 cycle of 94°C for 5 minutes, 60°C for 5 minutes, followed by 

30 cycles of 72°C for 2 minutes, 94°C for 1 minute, 60°C for 1.5 minutes and a final 

extension at 72 °C for 10 minutes. The PCR product was purified using a Wizard 114  PCR 

Preps DNA Purification System (Promega) as described below. 

2.14.2.b Purification of PCR Product 

Amplified PCR product was purified prior to restriction digest using a Wizardm 1  PCR 

Preps DNA Purification System (Promega) essentially as outlined by the manufacturer. 

The lower aqueous phase of the PCR reaction was transferred to a clean tube and 

l00i1 of Direct Purification Buffer added and vortexed briefly to mix. To this lml of warmed 

(37°C ) resin was added and vortexed three times over a one minute period. The resultant 

resin/PCR mix was then pipetted into a 3m1 syringe barrel with a WizardTM Minicolumn 

attached. Via insertion of the syringe plunger, the mix was gently pushed into the Minicolumn. 

With the syringe detached from the column prior to removal of the barrel, the column was then 

washed with 2m1 80% (v/v) isopropanol and then dried by insertion of the Minicoluinn into a 

1.5m1 microcentiifuge tube and centrifugation for 2 minutes at 13 000rpm. The minicolumn 

was then transferred to a clean tube and 50111 of DEPC-treated dH 20 added and left for 1 

minute at room temperature. The DNA was eluted from the column by centrifugation at 13 

000rpm for 20 seconds. 5p1 of the cleaned-up product was run on a 1% TBE agarose gel (see 

Section 2.17.1) to confirm the reaction and clean-up had worked. The remaining 45j.i.1 was 

then digested with the restriction enzyme Asp700 (Boehringer Mannheim) as outlined below. 

2.14.2.c Restriction Digest 

The purified whole CCR-5 gene was digested with the restriction enzyme Asp700 

which for a wild type gene should have generated products of 56, 201, 328 and 527bp and for 

a i.32 deleted gene 225, 328 and 527bp. 45111 of purified PCR product was digested with 

20U of Asp700 in Buffer B (Boehringer Mannheim) for 3 hours at 37°C in a total volume of 

60111. The resulting products were then precipitated with 150i1 of chilled absolute alcohol (-

20°C) and 6111  of 3M sodium acetate (pH 5.2) and incubated at -70°C for 30 minutes. The 

precipitate was collected by centrifugation at 13 000rpm for 30 minutes, washed in chilled 
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70% (v/v) alcohol and dried at 40°C for about 15-20 minutes. Next, the pellet was 

resuspended in 16p.l of DEPC-treated dH 20 and the fragments resolved on a 4% Metaphor gel 

(see Section 2.17.2). 

Due to the inability to completely digest the whole product, despite lots of enzyme and 

a long incubation with Asp700, a combination of two restriction enzymes, EcoRI and Bglll 

was also developed. The same PCR, purification and digest was used as outlined for Asp700, 

but the digest was performed in Buffer D (Boehringer Mannheim) with 20U of EcoRI 

(Boehringer Mannheim) and IOU of BgllI (Boebringer Mannheim). Fragments of 282, 319 

and 51 lbp were generated for wild type and 250, 319 and 51 lbp for A32 gene. 

With the advice of Dr. Linqi Zhang (Aaron Diamond Institute, NY, USA) a more 

direct and less laborious method was used to screen all the cohorts, as outlined below. 

2.14.3 PCR 

Genotypes were determined by PCR amplification of the region of the CCR-5 gene 

where the deletion site is located, using the following primers, C and D (see Section 

2.20)(Huang et al. (1996)). PCR amplifications were performed in a 20p.l reaction mixture 

containing IX Storage Buffer B (50mM KC1, 10mM Tris-HCI (pH 9.0 at 25 0C), 1.5mM 

MgC12, 0.1% (v/v) Triton X-100)(Promega), 331iM dNTPs, 0.251iM of each primer, 0.04 

units/fil of Taq DNA polymerase (Promega), 1.5ngfli1 of DNA (except for plasma derived 

DNA, where the DNA concentration was unknown) and overlaid with paraffin. Later samples 

were amplified with Taq Supreme (Helena BioSciences) under identical conditions apart from 

the use of IX Reaction Buffer PC2 (Helena BioSciences) instead of Storage Buffer B. This 

was then subject to 5 cycles of 94°C 1 minute denaturation, 55°C 1 minute annealing and 

extension at 72°C for 1.5 minutes, then a further 35 cycles of 94°C for 30 seconds, 60°C for 

30 seconds and 72°C for 45 seconds and a final extension at 72°C for 10 minutes. The 

resulting 189bp (wild type, WT/WT), 157bp (mutant i32/32), or 157 and 189bp 

(heterozygotes, WT/A32) fragments were resolved an a 3% Metaphor gel (see Section 2.17.2). 

2.14.4 Confirmation PCR and Digest 

To confirm the results obtained in the above PCR reaction, random samples were 

selected and amplified with the sense primer 29 (See Section 2.20) and the antisense primer D 

from the CCR-5 genotyping PCR, under identical conditions. The resulting 706bp product 

was digested with IOU of BgLII in storage Buffer D (Boehringer Mannheim) for 2 hours at 
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37°C, resulting in fragments of 195, 51 lbp for WT/WT, 163, 51 lbp for i32/L32 and 163, 

195, 51 lbp for WT/i.32. These products were also resolved on a 3% Metaphor gel (see 

Section 2.17.2). 

2.15. CCR-5 SEQUENCING 

2.15.1 PCR Amplification of the Whole CCR-5 Gene 

A 1.2kb fragment containing the entire coding region of the CCR-5 gene was 

amplified using primers 28 and 29 (see Section 2.20), in total volume of 200111 (2 x 100tl) as 

described in Section 2.14.2.a. 5111  of the final product was nm on a 1% TBE agarose gel (see 

Section 2.17. 1) to confirm the reaction had worked and the remaining product was purified 

using a Wizardm PCR Preps DNA Purification System (Promega) as described in Section 

2.14.2. b, with the two reactions pooled. 5p1 of the purified product was also nm on a 1% TB  

agarose gel (see Section 2.17. 1) to confirm success prior to sequencing. 

2.15.2 Sequencing of CCR-5 Gene 

The purified products were then sequenced using an ABI PrismlM Dye Terminator 

Cycle Sequencing Ready Reaction Kit, with AmpliTaq® DNA Polymerase, FS (PE Applied 

Biosystems), as outlined by the manufacturer and using an Applied Biosystems 373A 

automated DNA sequencer. All four of the CCR-5 primers (29, 28, C, D (see Section 2.20)) 

were used for sequencing each sample to form overlapping segments, spanning the whole of 

the amplified gene. 

A reaction mix containing 8111  of Terminator Ready Reaction Mix (A-dye Terminator, 

C-dye Terminator, G-dye Terminator, T-dye Terminator, dITP (deoxyinosine triphosphate), 

dATP, dCTP, dTlP, Tris-110 (pH 9.0), MgC1 2, thermal stable pyrophosphate and AmpliTaq 

DNA Polymerase, FS), 3.2pmoles of primer, 8111  of PCR template and the volume adjusted to 

20111 with DEPC-treated dH20, was overlaid with mineral oil and thermal cycling performed. 

A total of 25 cycles of 96°C for 30 seconds denaturation, 50°C for 15 seconds annealing and 

60°C for 4 minutes extension were performed. Due to the light sensitive nature of the 

Terminators, the tubes were covered with foil during the cycles. 

The excess Terminators were then removed by ethanol precipitation. The products 

from thermal cycling were placed in a clean tube, taking care to avoid carry over of mineral 

oil and precipitated by the addition of 50111 of 95% (v/v) ethanol and 2111  of 3M sodium 

acetate (pH 5.2) and left on ice for approximately 30 minutes. The precipitate was collected 
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by centrifugation at 13 000rpm for 30 minutes, washed in 75% (v/v) ethanol and dried at 

40°C for 15-20 minutes. The sample was then kept on ice in the dark until ready to load in the 

gel, when it was resuspended in 4-5jl of formainidefEDTA (FE, deionised formamide and 

25mM EDTA (pH 8.0)), vortexed, spun, denatured at 90°C for 2 minutes and placed on ice 

until loaded (see Section 2.18 for details of gel and sequencer preparation). 

2.16. CCR-2 GENOTYPING PCR 

2.16.1 Extraction 

Genomic DNA was obtained as for CCR-5 genotyping (see Section 2.11. 1) 

2.16.2 PCR 

A 128bp fragment of the CCR-2 gene was amplified using primers A and Z (see 

Section 2.20). Primer A contains a mis-match base (C-+A position 184), which in the 

presence of a mutation in the CCR-2 gene (G-4A position 190, causes a V—I amino acid 

substitution at a-a 64)) generates a restriction site for the enzyme BsaBI in the amplified 

product. 

A 25ji1 reaction containing 1X Reaction Buffer PC2, 33j.tM dNTPS, 0. 1jM of each 

primer, 0.05 units/p.1 of Taq Supreme (Helena BioSciences), 1.5ng4tl of DNA (except for 

plasma derived DNA, where the DNA concentration was unknown) was mixed and overlaid 

with paraffin. This was then subject to 5 cycles of 94°C 1 minute denaturation, 60°C 1 minute 

annealing and extension at 72°C for 1.5 minutes, then a further 35 cycles of 94°C for 30 

seconds, 60°C for 30 seconds and 72°C for 45 seconds and a final extension at 72°C for 10 

minutes. 5p.l of the PCR product was run on a 2% TEE agarose gel (see Section 2.17. 1) to 

confirm success. 

2.16.3 Precipitation of PCR Product. 

The remaining 20p.l was transferred to a clean tube and the nucleic acids precipitated 

by the addition of SOjil of chilled absolute alcohol (-20°C) and 2j.il of 3M sodium acetate (pH 

5.2) and incubated at -20°C overnight. The precipitate was collected by cenirifugarion at 13 

000rpm for 30 minutes, washed in chilled 70% (v/v) alcohol and dried at 40°C for about 15-

20 minutes. Next, 8j.tl of DEPC-treated dH 20 was added, heated to 60°C for a few minutes to 

ensure resuspension of the DNA and spun. 
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2.16.4 Restriction Digest. 

The precipitated product was digested with 5U of BsaBI (New England BioLabs, 

Hitchin, Heits, UK), by diluting the enzyme to 5U/P1 in 1X NEBuffer 2 (50mM NaCl, 10mM 

Tris-HO, 10mM M902,  1mM DTI' (pH 7.9 at 25°C) and adding l±l lox NEBuffer 2 and 

lpl of diluted enzyme to the 81±1  product. The digestion was performed at 60°C for 2 hours. 

The samples were then stored at -20°C until they could be run on a 3% Metaphor gel (see 

Section 2.17.2). 

DNA of individuals encoding the mutation in the CCR-2 gene, the mis-match base in 

primer A allows digestion of the 128bp PCR product to 18 and 1 lObp fragments. Individuals 

homozygous wild-type (WT/WT) will only show the uncut 128bp product, homozygous 

mutant individuals (641/641) show only the digested 1 lObp fragment, as the 18bp fragment 

was too small to resolve and heterozygous individuals (WT/641) will show both the 110 and 

128bp fragments. 

2.17. AGAROSE GEL ELECTROPHORESIS 

2.17.1 TBE Agarose Gels 

Varying % gels (w/v, i.e. ig/lOOmi E 1% gel) were made by the addition of routine 

electrophoresis grade agarose (Flowgen, Litchfield, Staffordshire, UK) to lx Tris-Borate 

(TBE), made from a lox stock (890mM Tris-borate, 20mM EDTA (pH 8.0)) and dH20, 

which were then microwaved for 5 minutes to melt the agarose and stirred for 5-10 minutes to 

cool. Once cooled, ethidium bromide was added at a final concentration of 0.3.tg/m1 and the 

gel cast and allowed to set. 

Typically 300m1 gels were cast using four 22-tooth combs/ gel. Samples were loaded 

and gels ran for 40-90 minutes at 100- 150V depending upon the resolution required and % of 

the gel. Gels were run with 1X TBE as running buffer and electrophoresis equipment used 

was either a GNA 200 electrophoresis tank (Pharmacia) and a BioRad Model 250/2.5 power 

pack (BioRad Laboratories, Hemel Hempstead, Herts, UK), or a Hybraid Maxi Gel 

electrophoresis tank and a Microgel PSU power pack (Hybraid, Teddington, Middlesex, UK). 

DNA bands were visualised using a UV transilluminator (Vilber Lourmat, Marne la Vallee, 

France).' 



2.17.2 Metaphor Gels 

To resolve the smaller products and to distinguish between the small differences 

generated by the CCR-5 and CCR-2 genotyping PCRs (see Sections 2.14 and 2.16), 

Metaphor agarose (FMC Bioproducts supplied from Flowgen) gels were used. Typically, 3% 

gels (w/v) were made by sprinkling 9g of Metaphor agarose into 300m1 of chilled lx TBE in 

a beaker of at least 3 x this volume (1000ml), and left for approximately 10 minutes for the 

agarose to hydrate. This was then weighed and microwaved until the mixture began to boil 

and carefully swirled to cool. Care was taken when the gel was swirled as 'hot spots' can 

cause the gel to boil over. This process was repeated until the agarose was completely 

dissolved and the gel adjusted back to its original weight with the addition of warmed dH20. 

Any bubbles were removed by placing the beaker in warm water for a few minutes. After 

allowing the gel to cool for a few minutes, it was then cast. For the genotyping assays, due to 

the large numbers screened at once, 2 x 30-tooth combs were used/ gel, rather than the normal 

22-tooth comb, to allow more samples/ gel. 

Samples were loaded with 6X Loading buffer (15% (wtv) Ficoll (type 400) in dH20 

with 0.25% (wtv) Bromophenol blue and 0.25% (w/v) Xylene cyanol) in a final volume of 10- 

15111. 300m1 gels were run for 1.5-2 hours at 80- 100V in lX TBE for the CCR-5 genotyping 

PCRs and if smaller gels were ran the voltage was adjusted accordingly. Due to the small 

difference in fragment size for the CCR-2 genotyping PCRs, a 300 ml gel was ran at 90V for 

3-4 hours at approximately 10 0C, with fresh IX TBE added halfway. 

As the gels were run for a long time and ethidium bromide is positively charged so 

eventually runs out of the gel, the Metaphor gels were stained after electrophoresis. This was 

done by placing the gel in approximately 300ml of lX TBE containing 0.5 pg/mi of ethidium 

bromide and gently swirled on a shaker (Gyrotory ®  model G2, New Brunswick Scientific Co, 

Inc, Edison, NJ, USA) for about 20-30 minutes. The gel was then 'destained' in dH 20 for a 

further 10 minutes, to reduce the background staining, and the DNA visualised on a UV 

transilluminator. 

2.17.3 Photography of Gels 

Gels were photographed as a long term record of results using a Polaroid CU-5 land 

camera with the gel on the transilluminator. Black and white Polaroid ISO 3000/30 0  film was 

used and where a more permanent record was required postive and negative film was used and 

a clearer, enlarged picture taken from the negative. 



2.18. ACRYLAMIDE SEQUENCING GEL ELECTROPHORESIS 

Both 17 and Taq sequencing products were run on an Applied Biosystems 373A 

DNA sequencer using 6% (w/v) acrylamide gels. 

Prior to assembly, glass plates, spacers and the comb were washed thoroughly with 

Alconox (Alcono, Inc, NY, USA), rinsed with hot water, then dH 20 and allowed to air dry. 

Plates were then assembled and sealed with electrical tape. 

Meanwhile, the gel was made by dissolving 30g of Urea in 9ml of 40% (w/v) 

acrylainide/bis (19:1) solution (BioRad), 20nil of dH 20 and 0.5g of Amberlite MB-150 

resin (Supelco, Bellefonte, PA, USA) for approximately one hour. 6m1 of filtered lOX TBE 

was added and the volume adjusted to. 60m1. The solution was then filtered through a 0.2p.m 

cellulose acetate filter unit under vacuum and degassed for a few minutes. 

300t.il of freshly made 10% (w/v) ammonium persuiphate and 33il of TEMED (IBI, 

Ltd, A Kodak Company, Cambridge, UK) were added to the aciylamide solution and gently 

mixed. This was poured immediately, using a 50m1 syringe, up to 3-5cm from the top of the 

plates. The casting comb was then added and secured with clamps. The gel was left to set 

horizontally for at least 1.5 hours, after which time the clamps and tape were removed and any 

excess aciyiamide removed by thorough washing in tap water and then dH 20. The plates were 

again left to air dry. 

The sequencing machine was then prepared for running the samples. Firstly, a sample 

sheet was set up on the Macintosh. Next, the lower buffer chamber and the gel were placed in 

the machine. The filter set was selected from the configuration menu on the sequencing 

machine ('Main Menu', then 'Calibration', then 'Configuration', then 'more' until 'Filter 

Set', where appropriate filter set was selected); filter set A was used for Taq sequencing and 

filter set B for 17 sequencing. To ensure the plates were sufficiently clean, a plate check run 

was performed ('Main Menu', then 'Start Pre Run', then 'Plate Check', then 'Full Scan'). 

Once a flat base-line was established after any necessary plate cleaning, the PMT setting was 

checked on the Macintosh. This should be between 800-1000 and adjusted on the sequencing 

machine if not. 

The rest of the gel equipment was then assembled, the 24 sharks-tooth comb inserted 

and the gel firmly clamped in place. The upper and lower buffer chambers were next filled 

with lx TBE and the wells rinsed of any build up of urea with a syringe and buffer. The gel 

was then checked again after plugging in both the positive and negative electrodes ('Main 
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Menu', then 'Pre Run Gel', then 'Start Scan'). Once a flat trace was again obtained, the 

samples were placed in FE loading buffer. 

The wells were rinsed again with 1X TBE and odd samples loaded and run for 5 

minutes ('Main Menu', then 'Choose Run', then 'Sequence Run', then 'Full Scan', then 'Start 

Run'). After 5 minutes, 'Interrupt Run' was selected, wells washed out once more, even 

samples loaded and 'Resume Run'. The data collection was then commenced by selecting 

'Collect' on the Macintosh and the machine left to run overnight. Sequences were then 

processed as outlined in Section 2.19. 

2.19. SEQUENCE ANALYSIS 

Sequences were transferred from the Macintosh to a Sun SPARC station using 

Columbia Apple Talk Package (CAP). Raw nucleotide sequences were preliminarily edited 

(ends cut) via TED (part of the STADEN computer package (Staden (1993))) using the 

SEQPROCESS script (written by Dr. C. Wade, Centre for HIV Research, Edinburgh). 

Further editing and assembly of sequences was then performed using the Xbap software 

(STADEN package). Sequences were then aligned and translated using version 2.2 of the 

Genetic Data Environment (GDE) package (Smith et al. (1994)). 

Phylogenetic analysis of the nucleotide sequence data was carried out using the 

neighbour-joining method (NEIGHBOR taken from version 3.52c of the Phylogeny Interface 

Package (PHYLIP)). Bootstrap resampling was performed to assign support with 100 

replicates using SEQBOOT and CONSENSE (Felsenstein (1985))). Distances were estimated 

for each pairwise nucleotide sequence comparison using the method of Kimura (1980). 

2.20 STATISTICS 

For lymphoproliferarive data (Chapter 3) the geometric mean was calculated and 95% 

Confidence Intervals deduced using Microsoft Excel. These data were then used to calculate 

the Stimulation Indexes given (see Section 3.2.4). 

Parametric comparisons between data (Chapter 3 and 4) were performed using the t 

test (two-tailed) for normally distributed unpaired data using SPSS (SPSS for Windows, 

version 6.0, Chicago, Illinois, USA). Data were normalised by either taking the square root of 

the values, or log transformed values where required. 
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The non-parametric test, Mann-Whitney U/Wilcoxon Rank Sum W Test (SPSS) was 

used to assess the HLA mismatch scores (see Section 4.3.2), to confirm the t test data, due to 

the small data set which therefore meant the normal distribution was less significant. 

95% Binomial CI for allele frequencies (Chapter 4) were interpolated from Table W 

of Rohif and Sokal (Rohif and Sokal(1969)) and the difference between the groups obtained 

from the standardised normal deviate (z). 

2x2 contingency tables were assembled to assess for differences of a particular 

property, between two groups (Chapter 3 and 4). These were tested by x2  with Yate's 

correction for contingency and also by Fisher's Exact test. The Exact test was performed 

manually and involved lengthy calculation, therefore only when the actual 2x2 table gave a 

probability (P) of less than 0. 10, were more extreme tables constructed. Therefore, the Exact 

test values when P>0. 10 were an underestimate of the precise significance and hence the use 

of x2. However, the Exact test has greater accuracy for low values, which were often seen for 

the data analysed here, so was performed when significance was approached. Other 

contingency tables were assessed by x2 • 

2.21. PRIMER SEQUENCES 

2.21.1 HIV gag (p17) Primers 

2.21.1.a Outer 

531 sense 	: 	5'-GCGAGAGCGTCAGTATFAAGCQG-3' 

(7958l7*) 

534 	antisense 

(12961318*) 

2.21.1.b inner 

532 	sense 

(833856*) 

533 	antisense 

(12471270*) 

2.21.2 lilY env (Y3) Primers 

2.21.2.a Outer 

332 	sense 

5' -TCTGATAATGCTGAAAACATcj3G-3' 

5' -GGGAAAAAATrCGGTFAAGGCC-3' 

5 '-CTrCTACTAC'1 -ITIACCCATGC-3' 

5' -TACAATGTACACATGGAATF-3' 
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(69576976*) 

633 antisense 	: 	5'-GGAGGGGCATACATFGC-3' 

(75207537*) 

2.21.2.b Inner 

306 sense 	: 	5'-TGGCAGTCTAGCAGAAGAAG-3' 

(70097028*) 

634 antisense 	: 	5'-ATFCTGCATGGGAGTGTG-3' 

(74657482*) 

* position of primer on H1V-HXB2 genome 

2.21.3 HLA Primers 

26 	sense 	 5'-GTGCTGCAGGTGTAAACTFGTACCAG-3' 

27 	antisense 	: 	5 '-CACGGATCCGGTAGCAGCGGTAGAGTF-3' 

Obtained from the AIDS Reagent Project. 

2.21.4 CCR-5 Primers 

2.21.4.a Genotyping 

C 	sense 

(747-77C 4*) 

D 	antisense 

(91 2-935") 

5' -CAAAAAGAAGGTCTFCATFACACC-3' 

5' -CCTGTGCCTCTrCTFCTCA1TFCG-3' 

2.21.5.b Whole Gene 

29 	sense 	: 	5' -CTCGGATCCIGGTGGAACAAGATGGATFAT-3' 

(229-248) 

28 	antisense 	: 	5'-CTCGTCGAICATGTGCACAACTCTGACTG-3' 

(1324- 13430*) 

4* position of primer on CCR-5 consensus sequence (Genbank accession number: X91492). 

£ counting from line onwards as cloning primers with additional sequence. 
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2.21.6 CCR-2 Primers 

A 	sense 	 5'-TFGTGGOCAACATGATGG-3' 

(2O9-226) 

Z 	antisense 	 5'-GAGCCCACAATGGGAGAGTA-3' 

(318-337$) 

$ position of primer on CCR-2 consensus sequence (Genbank accession number: U80924). 

104 



Chapter 3 

Immunological Factors 



CHAPTER 3- IMMUNOLOGICAL FACTORS 

3.1. INTRODUCTION 

3.2. MATERIALS AND METHODS 

3.2.3 Subjects 

3.2.4 Antibody and PCR Testing 

3.2.5 Lymphocyte Subset Analysis 

3.2.6 Lymphoproliferation Assays (LPA) 

3.2.7 Cytokine ELISAs 

3.2.8 CTL Proposal 

3.3. RESULTS 

3.3.1 Confirmation of Exposed Uninfected (EU) State 

3.3.1.a Antibody Testing 

3.3.1.b Polymerase Chain Reaction 

3.3.1.c Samples 

3.3.1.d Lymphocyte Subsets 

3.3.2 Lymphoproliferation Assays 

3.3.2.a Mitogen Responses 

3.3.2.b Allogeneic Responses 

3.3.2.c Recall Responses 

3.3.2.d HIV-Specfic Responses 

3.3.3 Cytokine Production 

3.3.4 Combined Effects of IFN-y and Proliferations 

3.4. DISCUSSION 

3.4.1 Exposed Uninfected Status 

3.4.1.a Lymphocyte Subsets 

3.4.2 Proliferations 

3.4.2.a Mitogen Responses 

3.4.2.b Recall Responses 

3.4.2.c Allo Responses 

3.4.2.d HIV-specific Responses 

3.4.3 CTL Proposal 

3.4.4 Conclusions 



3.1. INTRODUCTION 

Heterosexual contact with an }ilV individual was recognised as a risk factor for 

acquiring HIV infection in 1982 (Centers for Disease Control (1982b)). Following this 

discovery, it was feared that a world-wide heterosexual epidemic of HIV would occur. 

Epidemiological studies were established to monitor the prevalence of and factors associated 

with heterosexual HIV transmission. These studies included a European Collaborative Study 

(European Study Group (1992)) (see Section 1.3.4.c), of which the Edinburgh Heterosexual 

Partner Study was part (see 1.8.2). Important risk factors were established from such cohort 

studies, including: anal sex, sex during menses, ulcerative STDs and it was also discovered 

that barrier methods of contraception dramatically reduced the risk of infection (see Section 

1.3.4). It became apparent that while in some Western cohorts the incidence of heterosexual 

transmission was low (see Section 1.3.4), heterosexual transmission is an immense and 

growing problem in developing countries, particularly in Africa (van de Perre (1995)) (see 

Section 1.3.4.a). An increased understanding of heterosexual transmission is therefore 

paramount for controlling HIV infection on a global scale. 

From epidemiological studies it was also apparent that some individuals remained 

uninfected despite high risk exposure. If the factors which protected these individuals could be 

determined, it may help in the struggle towards finding a vaccine. It was initially thought that 

perhaps a proportion of EUs were merely harbouring a low level infection and would 

eventually produce detectable levels of virus and virus specific antibody, known as 

seroconversion. Individuals who are seronegative, but show evidence of HIV infection, either 

by PCR, or virus culture have been reported (Imagawa et at. (1989); Pezzella et at. (1989); 

Ensoli et al. (1991); Coutle et al. (1994)) and a few have been shown to persist in this state 

without seroconversion (Imagawa et at. (1989)). 

Many other viral infections are acute and self limiting and control is often due to 

specific immune responses to the virus in question (Zinkemagel and Welsh (1976); Moss, 

Rickinson and Pope (1978); Rickinson et al. (1981); McMichael et at. (1983)). Immune 

responses in HIV individuals have been detected, with the presence of HIV-specific CMI 

correlating with a more favourable prognosis (see Section 1.6.2). A progressive loss of CD4 

T cell reactivity, first to recall antigens and later even mitogenic responses has been seen to 

correlate with progression to AIDS (Miedema et at. (1988); Clerici et al. (1989b); Ranki et 

al. (1989); Teeuwsen et al. (1990); Pontesill.i et al. (1995)). Also, the presence of HIV- 
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specific CTLs has been shown to relate to increased AIDS-free survival (Bourgault et al. 

(1993); Miller et al. (1990)). 

The correlation of CMI with disease progression lead to a hypothesis by Clerici and 

Shearer (Clerici and Shearer (1993)) (see Section 1.6.2.e). They proposed that progression to 

AIDS related to a switch from a predominately TH, response, inducing CMI, to a TM  

response, associated with antibody production. The theory was later modified to encompass 

other cells and cytokines and became termed a type 1 to a type 2 switch (Clerici and Shearer 

(1994)). 

Clerici and Shearer also postulated that EUs may remain uninfected by retaining a 

protective type 1 response. This was supported by the finding of Ely-specific proliferative 

responses (Ranki et al. (1989); Borkowsky et al. (1990); Clerici et al. (1992); Kelker et al. 

(1992); Clerici et al. (1993b); Clerici et al. (1994b); Mazzoli et al. (1997)) and later with the 

discovery of HIV-specific CTLs in a few EUs (de Maria, CirUlo and Moretta (1994); 

Langlade-Demoyen et al. (1994); Pinto et al. (1995); Rowland-Jones etal. (1995)). 

This study was established to determine if the EUs present in the Edinburgh 

Heterosexual Study showed any immunological responses, including those against HIV, which 

might explain their apparent lack of infection, despite continued high risk exposure. It was 

also necessary to ensure that these individuals were truly uninfected and not harbouring a 

persistent low level infection, whilst remaining seronegative. 

3.2. MATERIAL AND METHODS 

3.2.1 Subjects 

Details regarding the Edinburgh Heterosexual Partner study, including interview data 

and recruitment criteria are given in Section 1.8.2. DNA samples for PCR testing were 

obtained from cryopreserved PBMCs (see Sections 2.4.2 and 2.11). Fresh blood samples were 

required for lymphoproliferation assays (see Section 3.2.4) and were collected with informed 

consent specifically for research purposes by the research nurse (see Section 2.2.1 .a and 

2.2.4). 

A total of 15 samples from 15 EUs were obtained over the period January to 

November 1996, at which time further funding was not forthcoming and the Heterosexual 

Study came to a close. One of the EU individuals (C5571) was subsequently shown to be 

HIV at the time of sampling and was excluded frOm further analysis. A sample was also 

obtained from an individual known to be undergoing acute seroconversion (C575 1). 
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Control samples from 18 low risk controls (Donors) were obtained from the Blood 

Transfusion Service where they were plasmapheresis donors (see Section 2.2.3). Details of the 

EUs and Donors analysed are summarised in Table 3.1. 

3.2.2 Antibody and PCR Testing 

HIV antibody testing was performed by ELISA and confirmed by western blotting 

(see Section 2.2.1.aJ). PCR testing was performed on PBMC derived DNA (see Section 2.11) 

with HIV-specific primers to the gag gene by nested PCR (see Section 2.12). Nested PCR 

allows the detection of genes to a copy number as low as one per PCR reaction (Simmonds et 

al. (1990b)). 

To defme the detection level of the PCR reaction under the conditions used, serial 

dilutions of the Ui cell line, which contains a single HJV genome per cell, were performed 

with HIV-negative Preiss cells (see Section 2.12.1). DNA was then extracted and the PCR 

performed (see Section 2.12.4). Samples from EUs were assessed in an identical manner. As 

the EUs were expected to yield a negative result, a positive control PCR reaction was 

performed in parallel to confirm the presence of DNA. This was achieved using primers 

specific for the HLA gene, HL4-DQa gene (see Section 2.12.1). 

3.2.3 Lymphocyte Subset Analysis 

The percentage of lymphocytes was determined by two colour flow cytometiy using 

two fluorochromes: FITC and PE (see Section 2.8.1). Lymphocytes were gated, as determined 

by size and granularity (forward and side scatter) and confirmed using a leucocyte marker, 

CD45:FITC and CD14:PE. Only CD45 is present on the lymphocytes, thus distinguishing 

them from the CD45 CD 14' monocytes. 

3.2.4 Lymphoproliferation Assays (LPA) 

PBMCs were isolated from heparinised blood samples (see Section 2.2.4) and 

incubated for 7 days with a variety of antigens (see Section 2.7.1). The antigens used included 

the rnitogen PHA which was used as a positive control to determine reactivity in the assay. 

The recall antigens were included to assess whether normal recall immune responses 

were present in the EUs. As most adults have been vaccinated against mycobacterium and 

Clostridium tetani, the PPD frOm mycobacterium and the toxin from Clostridium retani (Ti') 

were chosen to monitor the recall responses of the cohort. 

109 



Details of Individuals Studied 

EUs DOB Age Sex All Donors DOB Age Sex fflVs DOB Age Sex 

C3153 08.04.62 34 F D14  21.03.57 39 F C5571 24.05.68 27 M 

C3154 09.06.78 17 F D24  06.02.56 40 M C5751 29.08.69 27 M 

C3942 15.11.65 30 F D3 23.02.52 44 M 

C4051 01.01.59 37 M D'V 04.12.35 60 M 

C4371 24.08.62 33 F D5 30.11.61 34 M 

C4401 02.06.60 28 F D6 02.08.64 31 M 

C4712 21.07.66 29 F D7+$  04.02.69 27 F 

C5191 25.01 .62 34 F D8`3  14.09.59 36 M 

C5411 21.01.61 35 F 1)91  06.02.56 40 M 

C5451 19. 12.67 28 M D10 22. 12.60 35 M 

C5621 03.02.51 45 F D11 21.08.56 39 M 

C5711 28.08.67 28 F D12 27.06.71 25 M 

C5721 25.01.71 25 F D13 13.03.49 47 F 

C5731 14.09.64 31 M D14 02.08.64 31 M 

D15 12.07.49 46 F 

D16 02.11.75 20 F 

D17 09.05.44 51 F 

D18 11.06.66 29 M 

All Subsef LPA 

Mean Age  31.0  37.4 38.2 36.2  

Range  1745  20-60 25-60 20-51  

MaIe:FemaleRatio 3:11  12:6 10:3 7:5  

Date of Birth 

at time of Sampling 

* Donors used in Subset Analysis (Subset) 

Donors used in Lymptxpmliferation Assays (LPA) 
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An alloantigen (AIlo) was made from a mixture of BCLs and included to investigate 

the presence and extent of allo reactivity in the EUs. A strong response to mismatched MBC 

proteins, expressed on an invading infected cell, or virus, has been suggested as a potential 

protective mechanism from HIV infection (see Section 1.7.3.b). 

Finally, to assess if any of the EUs had proliferative responses to ITV, a cocktail of 

recombinant proteins was made which included all the major viral proteins: ENV derived from 

two different strains (gpl20, IHV`mN and }ilVs ), GAG (p24), NEF, reverse transcriptase 

(p66, R1) and TAT (see Section 2.7.1 .a) 

Proliferations were considered significant if a stimulation index (SI) of greater than 2 

was achieved as determined by the geometric mean value counts per minute (cpm)/ geometric 

mean background value (cells with no antigen added) (see Section 2.7.1). 

3.2.5 Cytokine ELISA 

Prior to harvesting, lOOJiJ/well of supernatant was removed from all the wells of the 

proliferation assay and stored at -20°C. This was subsequently thawed and the wells for each 

particular antigen were pooled to give a sufficient volume of supernatant to assay. The 

cytokine content was analysed by Genzyme's Duoset ELISAs for IL-4 and IFN-y essentially 

as outlined by the manufacturer, with checkerboard assays performed previously to optimise 

the reagent concentrations. All samples were analysed in duplicate undiluted, except for the 

mitogen, PPD and allo assays, which were also assessed at both 1:25 and 1:50 dilutions. 

3.2.6 CTL Proposal 

A strategy was also established for assaying CTh activity in follow up samples. It 

was planned to infect stored autologous CD8 depleted PHA blasts with HIV, which were then 

to be used as stimulators to expand HIV-specific CTLs. It was decided that this method would 

be more likely to detect HIV-specific responses in the EUs than polyclonal stimulation with 

PHA, as the numbers of 1{IV-specific CTh circulating in the EUs may be much lower than 

that of HIV individuals, who would have wide scale in vivo stimulation. Peptide specific 

stimulation (Rowland-Jones et al. (1995)) would have required detailed knowledge of the 

reactive peptides in these individuals which may differ from those of HIV individuals. A 

broader stimulation was also thought to be more likely to detect responses in a wide variety of 

individuals, rather than being limited to those of certain HLA types. 
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Following specific stimulation, it was hoped to monitor CTh activity in a standard 

chromium release assay using either recombinant vaccinia virus (rVV) infected autologous 

BCLs, expressing specific HIV proteins, or HIV-infected autologous PHA blasts. Again it 

was hoped that a broader target may detect a wider degree of reactivity than peptide based 

detection methods. 

3.3. RESULTS 

3.3.1 Confirmation of Exposed Uninfected (EU) State 

3.3.1.a Antibody Testing 

All individuals recruited into the Heterosexual Partner study were offered a HIV test. 

These tests were performed by staff in the Department of Medical Microbiology, University of 

Edinburgh. Unless otherwise stated, consistent negative results were obtained for the EUs 

within the cohort. 

3.3.1.b Polymerase Chain Reaction (PCR) Testing 

To investigate the possibility of a 'silent' latent infection in the seronegative contacts, 

PCR analysis of the gag gene of HIV was performed on PBMC derived DNA. Dr. David 

Yirrell and Pamela Robertson, Centre for HIV Research, analysed 41 seronegative contacts by 

PCR and found them all to be negative. However, the sensitivity of the reaction and the input 

of nucleic acid was not controlled for, so 22 contacts, for whom PBMC derived DNA was 

available, were re-assessed. 

The sensitivity of the reaction was determined using the Ui cell line, which contains a 

single copy of the HIV per cell. The cell line was mixed with the uninfected B cell line, Preiss, 

at ratio of: 0/10 6;  1/106;  2.5/106;  5/106;  10/106;  50/106;  100/106;  1000/106;  106/0 Ui cells/ 

uninfected Preiss cells. 

1{LA amplifications were routinely positive (see Figure 3.1). The lily DNA was 

repeatedly detected to a level of 1 copy/jig of DNA, equivalent to approximately 1 copy/ 10 5  

cells (see Figure 3.2.a). At some of the higher concentrations of Ui cells and hence, HIV 

DNA, the larger 480bp primary PCR product was also detected, seen as a second band above 

the main 390bp one (see Figure 3.2.a). Occasionally, lower concentrations were detected (as 

low as 1 copy/ 106  cells, lane 18 in Figure 3.2.a), but not routinely. None of the EU 

individuals tested gave a positive PCR amplification for }IIV (see Figure 3.2.b) with 

112 



Figure 3.1. 

HLA-DO-a Amplification 

Typical results obtained from a HLA-DQa PCR (see Section 2.12.1), showing the 

242bp fragment marked with an arrow, run on a 1.3% Agarose gel, 80-1Oy, for 

approximately 1 hour. 

a.) Results from the Ul/Preiss titrated DNA. Lane 1 contains pGEM markers; Lane 2 

is a no primer control; Lane 3 is a no DNA control; Lanes 4-12 contain Ul/Preiss 

titrated DNA. 

Lanes Ul/Preiss cell ratio 
4 106/0 
5 1000/106  
6 100/106  
7 50/106  
8 10/106  
9 5/106  
10 2 .5/106  
11 1/106  
12 0/106  

b.) Typical results obtained from EU derived DNA. Lane 1 contains pGEM markers; 

Lane 2-11 EU DNA. 
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Figure 3.2. 

HTV jeae Amplification 

Typical results obtained after a nested HIV gag PCR (see Section 2.12), showing the 

390bp fragment marked with an arrow, run on a 1.3% Agarose gel, 80-1Oy, for 

approximately 1 hour. 

Results from the Ul/Preiss titrated DNA. Lanes 10 & 29 contain pGEM markers; 

Lane 1 & 3 contain no DNA controls (1 for 10  reaction; 3 for 2° reaction); Lane 2 

contains a no primer control (1° & 2° reaction). Lanes 11-19/20-28/ 30-38 are direct 

repeats of the U 1/Preiss titrated DNA, with 4-9 lacking the highest three 

concentrations of Ui cells. 

Lanes Ul/Preiss cell ratio 
11/20/30 106/0 
12/21/31 1000/106  
13/22/32 100/106  
4/14/23/33 50/106  
5/15/ 24/34 10/106  
6/16/25/35 5/106  
7/17/26/36 2 .5/106  
8/18/27/37 1/106  
9/19/28/38 0/106  

Typical negative results obtained from EU derived DNA. The positive control 

amplification for HLA-DQ-a for these individuals is shown in Figure 3.1.b. Lane 1 

contains pOEM markers; Lanes 2-11 EU DNA. 
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duplicates for each individual, although all were positive for HLA-DQa (see Figure 3.1.b). 

The much smaller band seen in some of the lanes is the unused primer, or 'primer front'. 

The EUs tested were therefore confirmed to be both HIV-negative in terms of HIV-

specific antibody and for the presence of virus as assessed by PCR to at least a level of below 

1 copy of HIV/ iø cells. 

3.3.14 Lymphocyte Subsets 

Blood samples were obtained from 13 of the 14 individuals assessed for proliferative 

responses and were also analysed for lymphocyte subsets. The remaining sample was not 

analysed due to mechanical problems with the FACscan. Thirteen normal donors were also 

assessed, along with the known seroconvertor, C575 1. 

A typical scatter can be seen in Figure 3.3.a., with the region marked Ri indicating 

the gated region of lymphocytes. Using irrelevantly conjugated controls, the unstained cells 

were selected (see Figure 3.3.b). This allowed the percentage of populations expressing the 

antigen in question to be determined. The percentage of CD3 CD4 and CD3 CD8 were 

obtained in this manner (see Figure 3.3.c and d). Typically, >90% of the gated cells were 

lymphocytes (93-100%) (see Figure 3.3.e), as determined by the leucogate marker 

(CD 14/CD45). 

For 9/13 EU samples, 9/13 donor samples and the seroconvertor sample, the 

percentage of lymphocytes expressing HLA-DR and CD45-RO were also assessed (see Figure 

3.3.1). The total percentage of cells expressing one of the markers was the sum of cells 

expressing the molecule alone and those expressing both. 

The mean percentages of CD4 and CD8 expressing cells for the EUs did not differ 

from that seen in normal donors, as assessed by a t-test of mean values following log 

transformation (see Table 3.2 and Appendix 3.1 for actual values). Although a few EUs 

showed increased percentages of CD8 cells (C4051, C4401, C5191, C5451, C5731) (see 

Figure 3.4.a), this was also seen in some donors (D6, Dl0, Dli) (see Figure 3.4.b) and was 

much less marked than in the seroconverter (C5751), whose lymphocytes consisted of over 

70% CD3 CD8 cells (see Figure 3.4.a). Although, C4051 did show a marked decrease in 

CD4 (17%) and elevated CD8 cells (53%), he remained seronegative. 

The mean percentage of cells expressing the memory marker, CD45-RO, did not 

differ in the two groups, as assessed by a t-test of mean values following log transformation 
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Figure 3.3. 

Flow Cytometry of Lymphocyte Subsets 

A typical scatterplot obtained from PBMCs using Lysis II software (see Section 

2.8.1). The x-axis shows side scatter and is dependant on the granularity of cells. 

The y-axis shows forward scatter, dependent on size. The lymphocytes are gated 

(Ri) and subsequent analysis is performed on the gated region of cells. The 

population of cells above the Ri region are activated, dividing cells and the 

population of cells below the Ri region are dead cells and debris. 

The remaining plots show the staining pattern obtained at 660nm (FITC on FL1) and 

560nm (PE on FL2). The flurochromes are directly conjugated to monoclonal 

antibodies specific for specific cell surface molecules. The % values are calculated as 

the % of the total number contained within that quadrant. 

The gates are set with two irrelevant conjugated antibodies (see Section 2.8.1). 

CD3:FITC and CD4:PE. 

CD3:FTTC and CD8:PE 

CD45:FITC and CD14:PE (Leucogate marker). 

Q HLA-DR:FITC and CD45RO:PE. 
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Table 3.2. 

Lymphocyte Subsets of EUs and Controls and T-test Results 

% of 

Lymphocytes Mean 

EUs 

Standard 
Deviation 

Number Mean 

Controls 
Standard 
Deviation 

Number t P 

CD3:CD4 38 12 13 40 9 13 0.66 0.52 

CD3:CD8 28 11 13 24 7 13 0.97 0.34 

DR 20 8 9 14 4 9 2.33 0.03 

CD45RO t  35 11 9 32 10 9 0.45 0.66 

DR:RO 1  4 2 9 4 2 9 0.17 0.87 
CD4:CD8 Ratio 1.49 1.0 13 1.98 0.7 9 

* t-test performed on log transformed values 

Probability (P) value of difference between log transformed mean values. 



Figure 3.4. 

Lymphocyte Subsets 

The following graphs show the % composition of lymphocytes, as determined by co-
staining (FITC and FE) and flow cytometry, using Lysis II software (see 2.8.1). 

EUs and Seroconvertor (C5751) 

Low risk donor controls 
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(see Table 3.2 and actual data presented in Figure 3.4.a and b and Appendix 3.1). In contrast, 

the seroconverting patient, C5751, showed an expansion of HLA-DR (75%) and CD45-RO 

cells (65%), as well as HLA-DR CD45-RO cells (53%) (see Figure 3.4.a). The mean 

percentage of cells expressing the HLA-DR marker was increased significantly in the EUs 

compared to donors (see Table 3.2; EUs: 20%; Donors: 14%; t=2.33, P=0.03). 

The mean ratio of CD4:CD8 cells was also compared (see Table 3.2 and Appendix 

3.1 for actual data). The ratio of CD4:CD8 cells in the HIV seroconverting individual was 

completely reversed at 0.22 compared to an average of 1.66 seen in the normal donors. The 

average in the EUs (1.36), did not differ significantly from the normal donors. C405 1, who 

showed the large increase in CD8 cells, had a ratio of 0.32, but did not show the abnormal 

levels of HLA-DR, or CD45-RO cells seen in the seroconverting patient. 

3.3.2 Lymphoproliferation Assays 

14 EUs were assessed for proliferative responses to mitogen, alloantigens, recall 

antigens and I{IV antigens. 12 normal donors were also analysed. The full SI data are 

presented in Appendix 3.2 and the range of actual geometric mean values obtained for each 

antigen are given in Appendix 3.3 with the 95% Confidence Intervals. 

3.3.2.a Mitogen Responses 

Activity to the mitogen PHA was monitored as a positive control, to assess if cells 

were reactive in the assay. Mitogenic responses peak at 3-4 days at an optimal PHA 

concentration of lOj.tg/ml. However, recall responses peak later (6-7 days) and in order that 

the assay could be harvested as a whole, suboptimal concentrations of the mitogen were used 

(5ig/ml and lig/ml) and left for the full 7 days. 

All but one EU (C5721, 13/14) and all of the donors (12/12) had significant responses 

to both concentrations of PHA, i.e. a SI greater than 2 and most had SI values over 100 and 

25 for the 5pg/ml and ltg/ml concentrations respectively (see Figure 3.5.a and b). C5721 had 

a poor response to the higher concentration of PHA (S 1=0.53), but at the time of harvesting 

few cells were seen and the media had turned yellow, reflective of exhaustion rather than 

unresponsiveness. In support of this, measurable levels of cytokine were detected from this 

assay (see Section 3.2.3). The range of responses varied between individuals, but the pattern 

of variation did not differ between the two groups (see Figure 3.5.a and b). 
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Figure 3.5. 

Lymphoproliferations - Mito2en and Alloenic Responses 

The following graphs show the stimulation indices (SI) plotted on a log scale obtained 

from culturing PBMCs with various antigenic stimuli (see Section 2.7.1). Values 

shown are those obtained from BUs and low risk donor controls (Donors). SI was 

determined by the following equation: 

SI = CPM obtained from cells alone (medium only) 

CPM obtained cells with antigen 

a.) Values obtained with the mitogen, PHA, at a concentration of 5.Lg/ml. 

b.)Values obtained with the mitogen, PHA, at a concentration of 1Lg/ml and a mix of 

mitomycin C inactivated BCLs at a ratio of 1:1 BCLs: PBMCs (Allo). 
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Two of the BUs had SI>1000 (C4051: 1085; C4712: 2065) not seen in any of the 

donors and to determine if this was due to an earlier peak of responses in the donors compared 

to the EUs, some of the later samples were assessed over a time course (see Figure 3.6). Of 

the donors analysed, all but one had a decline in responses from day 4 through to 7. The 

remaining donor (Donor 13) had a small increase in SI at day 7, but the actual values at each 

time point were much closer than that for the other donors and the increase was in fact due to 

a decline in the background proliferation, rather than an increase in activity. Only two BUs 

were able to be assessed (see Section 3.2.1); C4401 did show a later peak than the donors 

(day 5), but by day 7, the value dropped considerably and was not above that seen for donors. 

C5761 had relatively similar values at days 4 and 5 and this had declined by day 7 in a similar 

manner to the donors (see Figure 3.6). 

No difference was seen between the mean SI obtained in EUs compared to donors for 

either concentration of mitogen, assessed by a t-test following log transformation (see Table 

3.3; 5tg/m1 - EUs: 453; Donors: 283; 1=0.03, P=0.98; ltgfml - BUs: 103; Donors: 47; 

1=1.25, P=0.23). Using cut off values of SI>2, 10 or 100 and analysed by Fisher's Exact test, 

there were also no differences between the proportion of responders versus non-responders 

(see Table 3.4). 

3.3.2.b Allogeneic Responses 

More of the EUs showed high responses to allo (SI - C4051: 448; C5191: 379; 

C5621: 306; C5731; Donor 7: 441; Donor 17: 227)(see Figure 3.5.b), no significant 

difference in the proportion of non-responders versus responders was observed between BUs 

and donors, even with a cut off of Sb 100 (see Table 3.4). The range of SI values was similar 

for both groups (EUs: 12-448; Donors: 10-411) and there was no difference in the mean SI 

obtained for each group, assessed by a t-test following log transformation (See -Table 3.3; 

EUs: 144; Donors: 100; t=0.73, P=0.47). 

3.3.2.c Recall Responses 

A PPD concentration of 100U/ml was found to be optimal and induced cell 

proliferation in several control individuals. Reactivity to TT was found to be more variable 

and hence two concentrations of this antigen were used, 2.5pgfnil and 1 .25 p.gfml. 

Generally, more individuals were reactive to PPD than Ti' (SI>2, PPD: 22/26; TT 

2.5ig.nil:15/26; Ti' 1.25g(m1: 16/26) (see Figure 3.7.a and Table 3.4). The responses to 

1')') 



Fi2ure 3.6. 

Lvmphoproliferations - Mitoen Time Course 

The following graph shows the stimulation indices (SI) obtained from culturing 

PBMCs with the mitogen, PHA, at 5p.g/ml (see Section 2.7.1). Values shown are 

those acquired, from named BUs and low risk donor controls (Donors), after 

harvesting the cultures at day 4,5 and 7. SI was determined by the following 

equation: 

SI = CPM obtained from cells alone (medium only 

CPM obtained cells with antigen 
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Table 3.3. 

E Us Don ors 	 - 

n' Mean  
SD# ] _Range n Mean_] SD Range 

PHA (5p.g/mI) 14 452.73 538.46 1-2065 12 28343 253.29 38-837 0.03 0.98 
PHA (1J.g!m!) 14 103.06 86.10 3-262 12 47.06 35.15 8-127 1.25 0.23 
Allo(1:1) 13 143.55 155.64 12-448 12 100.34 120.40 10-411 0.73 0.47 
PPD(100/mI) 14 98.98 117.97 1-440 12 311.37 459.95 2-1427 0.86 0.40 
TT(2.5tgIm1) 14 37.00 54.01 1-182 12 34.19 69.20 1-226 1.20 0.24 
TT(1.25igIm1) 14 51.16 77.87 1-273 12 21.50 34.33 1-110 1.08 0.29 
rHIV(1.25.gIml) 12 2.68 2.34 0-8 12 2.96 1.67 1-7 1.14 0.27 
rHIV(0.625p.g/ml) 12 3.91 3.80 1-13 12 3.06 1.97 1-7 0.10 0.92 
rHIV(0.125.1g/ml) 7 5.53 5.07 1-141 12 10.15 9.13 2-26 1.36 0.19 

* Number of Individuals in Group 

Standard Deviation 

T-test value (1) for difference between means of log transformed values, obtained using SPSS (see Section 2.20) 

£ Probability (P) for difference between means of log transformed values 
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SI>2*  SI>10   SI>iOOt  

EUs Donors] p" EUs Donors] P# EUs Donors P" 

PHA(51g/m1) 13/14 12/12 0.54 13/14 12/12 0.54 12/14 11/12 0.40 
PHA (1g/ml) 14/14 12/12 1.00 13/14 11/12 0.52 5/14 1/12 0.10 
Allo(1:1) 13/13 12/12 1.00 13/13 11/12 0.48 5/13 4/12 0.31 
PPD(100/mI) 11/14 11/12 0.29 10/14 8/12 0.32 6/14 6/12 0.29 
TT(2.5i.g/m1) 10/14 5/12 0.10 7/14 3/12 0.14 2/14 2/12 0.40 
TT(1.25p.g/ml) 9/14 7/12 0.30 9/14 4/12 0.095 3/14 1/12 0.29 
rHIV(1.25tg/ml) 5/12 8/12 0.16 0/12 0/12 1.00 NT NT NT 
rHIV (0,625LWml) 6/12 8/12 0.23 1/12 0/12 0.50 NT NT NT 
rHIV (0.125ig/nil) 1 5/7 10/121 0.36 2/12 5/121 0.33 NTJ NT NT 

* Number of Individuals with a Stimulation Index (SI)>2/10/100 compared to total numbers of Individuals 

Probability of difference between the two groups assessed by Fisher's Exact test. Exact test for 2x2 table only. 

$ Sum of more extreme tables than initial 2x2 P0.119 

1  Not Tested 



Figure 3.7. 

Lvmphoproliferations - Recall and HIV specific Responses 

The following graphs show the stimulation indices (SI) plotted on a log scale obtained 

from culturing PBMCs with various antigenic stimuli (see Section 2.7.1). Values 

shown are those obtained from EUs and low risk donor controls (Donors). SI was 

determined by the following equation: 

SI = CPM obtained from cells alone (medium only 

CPM obtained cells with antigen 

Values obtained with the recall antigens, purified protein derivative from 

Mycobacterium (PPD: 1 OOIJ/ml) and tetanus toxoid (TT: 2.5 Lg/ml, 1.25 .Lg!ml). 

Values obtained with a recombinant MV protein 'cocktail' (1.25 4g/m1; 

0.625.4m1; 0. 125J4ml for each of the constituent proteins). 
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PPD were also greater in magnitude than those to Yr (SL>100, PPD: 12/26; IT: 4/26 both 

concentrations) (see Figure 3.7.and Table 3.4). 

The range of responses to PPD was greater for the donors (SI: 2-1427) than the EUs 

(SI:1-440) (see. Figure 3.7.a), but the mean SI for the two groups (BUs: 99; Donors: 311) did 

not differ significantly, as assessed by t-test following log transformation (see Table 3.3; 

t=0.86, P=0.40). There was also no difference between the proportion of non-responders 

versus responders using cut off values of SI>2, 10 or 100 and analysed by Fisher's Exact test 

(see Table 3.4). 

The range of responses to rr was similar in both groups (2.5.LgJrn1 - EUs: 1-182; 

Donors: 1-226; 1.25p.g/ml - BUs: 1-273; Donors: 1-110) (see Figure 3.7.a and Table 3.3) and 

the mean SI did not differ significantly (see Table 3.3; 2.5.Lgfm1 - BUs: 37; Donors: 34; 

t=1.20, P=0.244; 1.25.Lg/m1 - EUs: 51; Donors: 22; 1=1.08, P=0.29). The proportion of 

responders compared to non-responders, at the lower concentration of antigen (1.25 jig/mi) and 

a basal level of SI>10, gave a difference of 9/14 EUs compared to only 4/12 donors, but this 

was not significant for the limited sample size analysed here (see Table 3.4; P=0. 12, Exact 

test). 

3.3.2.d HIV-Spec/ic Responses 

As control individuals would not be expected to show responses to HIV and HIV 

individuals soon lose HIV-specific reactivity, control experiments could not be performed to 

assess the optimal concentration of antigen. Hence a broad range of concentrations was 

chosen (1 .25p..gIml, 0.6259glml and 0.1 25j.tg/mi for each of the representative proteins) and 

preliminary experiments showed no reactivity to the recombinant H1V cocktail (rHIV) in 

control subjects. 

Reactivity was detected in 5/12; 6/12; 5/7 EUs, but also 8/12; 8/12; 10/12 donors to 

1.25; 0.625; 0.125j.Lg/ml respectively (see Figure 3.7.b and Table 3.4) with an Sb2. 

Although, more donors than EUs appeared to react to the cocktail at concentrations of 1.25 

and 0.625jig/ml, the range of responses were similar in both groups (see Figure 3.7.b and 

Table 3.3). The range of responses in donors was greater than that of the BUs for the lowest 

concentration of antigen (0.125jig/ml) (BUs: 1-14: Donors: 2-26)(see Figure 3.7.b). The 

proportion of individuals responding to the I{IV proteins did not differ between the groups, as 

assessed by Fisher's Exact test using a cut of value of SI>2, or SI>10, for any concentration 

(see Table 3.4). 
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The mean SI for the Donors and EUs, as assessed by a t-test of log transformed 

values, was not significantly different for any concentration of the HIV cocktail (see Table 

3.3; 1.25.tgfml - EUs: 2.7; Donors: 3.0; t=1.14, P=0.27; 0.625.tgIml - EUs: 3.9; Donors: 3.1; 

t=0.10, P=0.92; 0.125j.Lg/ml - EUs: 5.5; Donors: 10.2; t-- 1.36, P=0.19) 

The high proportion of apparent HIV-specific activity in the donors was unexpected 

and implied that cross reactivity of some sort maybe occurring. Further investigation of the 

antigens suggested that the cross reactivity was due to responses to NEF, RT and TAT, which 

were all recombinant, E.coli-derived proteins (Table 3.5). No responses were seen to the 

Baculovirus-derived gp120 (HIV ENV) and p24 protein (GAG), or the gp120 (}IV 

ENV) derived in Chinese hamster ovary cells (CHO) (Table 3.5). Subsequent samples were 

then assessed for reactivity to the GAG and ENV proteins alone. However, due to the 

cessation of the Heterosexual Partner Study (see Section 3.2.1), only 2 EU samples were 

received during this time and neither showed reactivity to this modified cocktail. No further 

samples were then available for analysis to determine if this modification would have allowed 

HP/-specific responses to be detected. 

Several of the EUs did show responses to the HIV proteins (see Figure 3.7.b). One of 

the EU individuals (C5451) showed marked responses to all the concentrations of the HIV 

cocktail (see Figure 3.7.b, SI= 8, 13 and 11 for 1.25, 0.625, 0.125.tgfml concentrations 

respectively). This was greater than that seen in of any of the other EUs, or the donors (for the 

lowest two concentrations), but due to the aforementioned problems, it was impossible to 

determine if this was in fact a true, HIV-specific response, or not. 

3.3.3 Cytokine Production 

Measurable levels of cytokine were only obtained for IFN-'y and some assays 

produced over the maximal amount i.e were greater than the range defined by the standard 

curve (>1500pg/ml if neat and >75000pg1ml if 1:50 dilution). For statistical calculations, 

values >1500pg/nil and >75000pgfml were taken as just 1500pgfml and 75000pg/ml. As this 

underestimates the value obtained, the values were also assessed as the proportion responding 

versus not responding using a range of cut of points (Any response, >1500pg/ml, 

>10000pgfml and >75000pg/nil). Where duplicate values were inconsistent (>20% difference 

between samples), the values were ignored as they could not be repeated due to a lack of 

further culture supernatant for testing. Actual data is presented in Appendix 3.4. Spontaneous 

IFN-y production in the wells without antigen were detected in 4/11 EUs and 3/8 Donors (see 

1 



Table 3.5. 

Donor Stimulation Indices to Recombinant HIV Proteins 

ANTIGEN DONOR A DONOR B DONOR C 

PHA 190 1394 310 
5igImJ 

gpl20mN 
1 1 1 1 .25jigJnil 

gp 1 2 OmN 
1 1 1 

0. 125 jig/mi 

gp 120sF2 
1 1 1 

1.25 jig/mi 

gp 120sF2 
1 1 1 

0. 125 jig/mi 

p24 
1 1 1 

1.254g/ml 

p24 
1 3 1 

0. 125 jig/mi 

nef 
8 11 19 

1.25 jig/nil 

nef 
3 17 9 

0. 125 jig/nil 

RT 
2 12 9 .  

1.25 jig/mI 

RT 
2 10 5 

0.125 jig/mI 

tat 3 	. 13 6 
1.25 jig/mI 

tat 
1 1 1 

0.125 jig/mI  
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Table 3.6) and for individuals with a recorded value of the spontaneous IFN-y production, the 

values were recalculated subtracting this background and the statistics re-calculated. The 

adjusted data are shown in Appendix 3.5. 

The amount of IFN-y produced in response to mitogen was similar for both EUs and 

donors (see Figure 3.8), with no difference observed between the square root (to normally 

distribute the data) of the means, assessed by a t-test (see Table 3.7; PHA 5p.gfml: t=0.75, 

P=0.46; lig/ml: t=0.80, P=0.43). However, responses to allo were very different in the BUs 

compared to donors (see Figure 3.8). The donors either produced a large amount of N-y in 

response to the aliogeneic stimulus, or very little. In contrast, there was a broad range of 

responses within the EUs, all producing over 1500pg/ml (14/14), which was significantly 

different to the number of donors, as only 4/10 produced more than this amount (see Table 

3.6; P=0.002, Exact Test). The number of EUs that produced over 10000pg/ml differed too, 

although not formally significant (see table 3.6; BUs: 10/14; Donors: 3/10, P=0.055, Exact 

test). The difference between the square root of the mean values for both groups also 

approached significance (see Table 3.7; EU: 34499; Donors: 20275; t=1.84, P=0.079). 

The range of IFN-y produced in response to the recall antigens, PPD and TT was 

similar for both groups (see Figure 3.8 and 3.9.a) and as for the proliferative response, the 

maximal responses to PPD were higher than that to 'FT (see Table 3.6; >1500pg/ml IFN-'y - 

PPD: 10/23; Ti' (2.5tgIml): 4/20; 'FT (1.25.tgfml): 3/22). No significant difference was seen 

for the proportion of individuals producing IFN-'y in EUs compared to donors for either 

antigen (see Table 3.6). 

Responses to the higher concentrations of the rHIV cocktail used were generally poor 

in the donors, consistent with the proliferation results (see Figure 3.9.b), with only 2/7 and 

2/10 showing measurable levels of IFN-y for 1.25Lgfml and 0.625jiglml of rHIV respectively. 

A higher proportion of EUs showed a response at these concentrations (1.25igfml: 4/9; 

0.625ig/ml: 3/9) and two recorded values over lSOOpg/ml (see Figure 3.9.b), but the 

difference between the two groups was not significant (see Table 3.6). 

Of the EUs responding, C3154, C5411 and C5731 did not show a corresponding 

proliferative response to these antigens (see Figure 3.9.b) and this was consistent for all the 

concentrations tested, as all lacked a recordable response to one concentration. Of the donors 

who produced a measurable LFN-y response to rHIV, all but one (D3 0.625p.g/ml rHIV) had a 

consistent proliferative response, especially at the lowest concentration of antigen, which also 

gave the highest proliferative responses (see Figure 3.9.b). 
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Table 3.6. 

Responders/Total >1 500pgIml >10000pg/ml >75000pg/ml 
EUs_J Donors P# EUs Donors P# EUs Donors P# EUs Donors 

No Antigen 4/11 3/8 0.37 0/11 0.8 1.00 NT NT NT NT NT NT 
PHA(5j.tg/ml) 13/13 10/10 1.00 13/13 10/10 1.00 7/13 8/10 0.16 1/13 0/10 0.57 
PHA (l.Lg/m1) 13/13 10/10 1.00 11/13 6/10 0.16 6/13 3/10 0.25 0/13 0/10 1.00 
Allo(1:1) 14/14 8/10 0.16 14/14 4/10 £0002  10/14 3/10 $0,055 2/14 1/10 0.45 
PPD (100/nil) 13/14 7/9 0.29 6/14 4/9 0.33 3/14 2/9 0.39 0/14 0/9 1.00 
TT(2.5g/ml) 7/12 3/8 0.24 3/12 1/8 0.36 NT NT NT NT NT NT 
TT(1.25g/m1) 8/13 4/9 0.25 3/13 0/9 0,19 NT NT NT NT NT NT 
rHIV(1.25xg/ml) 4/9 2/7 0.24 1/9 0/7 0.56 NT NT NT NT NT NT 
rH1V(0.625.tg/nil) 3/9 2/10 0.33 1/9 0/10 0.47 NT NT NT NT NT NT 
rH1V(0.125g/ml) 1 5/7 6/61 0.27 1/7 3/61 0.20 NT NT NT NT NT NT 

* Number of Individuals producing IFN-y to defined level compared to total number of Individuals 

Probability of difference between the two groups assessed by Fisher's Exact test. Exact test for initial 2x2 table only, 
unless P<0. 10, then one tailed test for sum of more extreme tables ($) 

£ r'<o.os 
NT - Not Tested 



Figure 3.8. 

IFN-'y Production in LvinyhoDroljferatjon Assays: Mito2en. Allo and PPD 

The following graph shows the amount of the cytokine, IFN-y, produced as 

monitored by ELISA (see Section 2.7). The results shown are for EUs and low risk 

donor controls (Donors) for the following antigenic stimuli: PHA: 5/1j.tg/ml; allogenic 

response (allo) and the recall antigen PPD (100U/ml). 
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Table 3. 7. 

EUs  Donors 
n Mean SD' Range n Mean SD Range  P 

No Antigen 11 218.9 362.4 0-1109 8 136.6 236.4 0-672 0.33 0.75 
PHA(5.tg/mt) 13 21217.7 20475.4 1978->75000 10 26171.5 19806.9 3727-70100 0.75 0.46 
PHA (1ig/ml) 13 10210.1 10697.9 144-36400 10 7259.3 8576.1 362-24100 0.80 0.43 
Alto (1:1) 14 34498.7 28990.1 >1500->75000 10 20275.1 32289.3 0->75000 1.84 0.08 
PPD (100/mi) 141 4213.5 6304.1 0-19800 9 6952.2 10902.5 0-26300 0.27 0.79 
Tf(2.5p.g/mI) 121 580.7 650.6 0->1500 8 290.0 542.8 0->1500 1.08 0.30 
TT(1.25.tg/mI) 13 599.5 627.5 0->1500 9 220.7 612.4 0-939 1.42 0.17 
rHIV(1.25p.g/nil) 9 297.6 493.1 0->1500 7 73.2 127.3 0-298 1.05 0.31 
r1-llV(0.625g/ml) 9 323.5 552.8 0->1500 10 37.0 78.0 0-187 1 1.38 0.18 
rFllV(0.125g/mi) 5 917.6 552.9 265->1500 6 904.1 653.3 265->1500 1.04 0.32 

* Number of Individuals in Group 

Mean value taking >1500 and >75000 as 1500 and 75000 respectively 

Standard Deviation 

T-test value (t) for difference between square root of means, obtained using SPSS (see Section 2.20) 

£ Probability (P) for difference between the square root of means 



Figure 3.9. 

IFN-y Production in Lvmphoproljferatjon Assays: TT and rHIV 

The following graphs show the amount of the cytokine, IFN-y, produced as 

monitored by ELJSA (see Section 2.7). The results shown are for EUs and low risk 

donor controls (Donors). 

a.) Results obtained with the recall antigen tetanus toxoid, TI', at 2.5tg/m1 and 

1 .25.tg(ml. 

b.)Results obtained with the recombinant HIV 'cocktail' (rHIV), at 1.25/0.625 and 

0. 125.tg/m1 for each of the constitutive proteins. Individuals responding have been 

noted as producing IFN-y and proliferating in response to rHIV (SI>2), denoted as 

'+', or producing IFN-y, but not showing a consistent proliferative response to the 

cocktail, marked as '-'. 
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Despite increased mean values for the EUs for the higher concentrations of antigen, 

the difference was not significant with the small numbers analysed (see Table 3.7). In 

contrast, for the lowest concentration (0. 125.tg/m1), the donors had the highest mean, but 

again this did not differ significantly between the two groups (see Table 3.7). 

3.3.3.a Adjusted Values 

For individuals who had a recorded result for the spontaneous production of IFN-y, 

i.e. 'no antigen' value (EUs n=10, Donors n=8), the values were re-calculated deducting any 

spontaneous IFN-y production (see Appendix 3.5). Despite minor fluctuations in the mean 

values for the two groups, from that obtained in the unadjusted data, no major differences 

were seen in the adjusted data (see Table 3.8). The proportion of responders versus non-

responders was also not greatly altered in these adjusted figures (see Table 3.9). The only real 

difference to the data in was seen for the IFN-y production in response to alloantigen. The 

difference between the means between the EUs and Donors was closer to significance in the 

adjusted data (EUs: 38669; Donors: 16561; t=2.07, P=0.054; see Table 3.9). Also the 

proportion of individuals producing >lSOOpg/ml, was still significant (EUs 10/10; Donors 

2/8; P<0.002; see Table 3.9) and the proportion producing >10000pg/ml was significant in 

the adjusted values (EUs 8/10; Donors 2/8; P=0.003; see Table 3.9). Therefore, the level of 

background IFN-'y production did not greatly affect the outcome of the data and was not 

altering the apparent increase in IFN-y production seen in response to alloantigen. 

3.3.4 Combined Effects of IFN-y and Proliferations 

Regression plots were calculated for the log transformed SI values and the square root 

of the JFN-'y production for each of the respective antigens. For all the individuals assessed 

(donors and EUs pooled together) a significant positive association between the level of 

proliferation and the amount of IFN-'y produced was seen for both concentrations of mitogen 

(5 and 1.tg/m1 P<0.05), both recall antigens (P.cz0.01 for all) and for the alloantigen (P<0.02). 

These associations were maintained for the recall antigens when the two cohorts were assessed 

separately (P<0.01 for all, except donors TI' 1.25p.g/ml; P<0.02). 

When the donors and EUs were considered separately, there was no significant 

difference observed, between the two groups, for any antigen. This was particularly pertinent 

for the allo responses, which had shown a significant difference in the IFN-y production of the 

two groups. Although most of the donors produced little, if any, IFN-'y, despite a proliferative 
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Table 3 8 

EUs   Donors  
n I . Mean SD11_ ] Range n Mean SDRange t $ 

PHA(5p.g/ml) 9 26061.0 21805.1 3105->75000 8 30211.9 19873.8 5138-69897 1.07 0.30 
PHA (1g/ml) 10 12381.7 11148.6 557-36117 8 7628.0 9328.4 362-23897 0.94 0.36 
Allo(1:1) 10 38668.9 30519.7 >1500->75000 8 16560.6 30742.6 0-74797 2.07 0,05 
PPD(100/ml) 10 5508.3 7016.4 0-19517 7 8878.4 11714.7 63-26097 0.73 0.47 
TF(2.5g/m1) 9 551.0 680.6 0->1500 6 216.1 529.4 0-1297 0.91 0.38 
Tf(1.25tg/m1) 9 542.6 649.8 0->1500 7 161.3 292.7 0-736 1.19 0.25 
rI-llV(1.25igJml) 6 250.0 612.4 0->1500 7 42.6 112.6 0-298 0.43 0.68 
rI-llV(0.625.tg/m1) 5 388.2 650.2 0->1500 8 23.4 66.2 0-1871 1.191 0.26 
r1-JJV(0.125tg/m1) 51 586.3 586.5 0->1500 61 812.6 691.4 0->15001 1 	141 0.28 

* Number of Individuals in Group 

Mean value taking >1500 and >75000 as 1500 and 75000 respectively 

' Standard Deviation 

T-test value (1) for difference between square root of means, obtained using SPSS (see Section 2.20) 

£ Probability (P) for difference between the square root of means 



Table 3.9. 

Responders/Total >1 500pg/m! 

— 

> 1 0000pg/ml 
EUs_] Donors j_P11 BUs I  DonorST P11  EUs ]_Donors P" 

PHA (5.tg/mi) 9/9 8/8 1.00 9/9 8/8 1.00 7/9 7/8 0.42 
PHA (1g/m1) 10/10 8/8 1.00 9/10 4/8 10.09 6/10 3/8 0.24 
Allo(1:1) 10/10 6/8 0.18 10/10 2/8 10002 8/10 2/8 "0.003 
PPD (100/ml) 9/10 7/7 0.59 5/10 4/7 0.36 3/10 2/7 0.41 
TT (2.5p.g/ml) 4/9 1/6 0.25 2/9 0/6 0.34 NT NT NT 
TT (1 .25.tg/m1) 5/9 2/7 0.23 2/9 0/7 0.30 NT NT NT 
rHIV (1.25p.gIml) 1/6 2/7 0.44 1/6 0/7 0.46 NT NT NT 
rI-IIV (0.625j.tg/ml)  2/5 1/8 0.28 1/5 0/8 0.38 NT NT NT 
rHTV (0. 125p.g/ml) 3/5 5/6 0.36 1/5 2/6 0,45 NT NT NT 

* Number of Individuals producing IFN-y to defined level compared to total number of Individuals 

Probability of difference between the two groups assessed by Fisher's Exact test. Exact test for initial 2x2 table only, 
unless P<0. 10, then one tailed test for sum of more extreme tables ($) 

£p,(005 

NT - Not Tested 



response to allo, three donors did produce IFN-y and hence, the donor population as a whole 

gave a similar pattern of responses to the EUs (see Figure 3.10). 

3.4. DISCUSSION 

3.4.1 Exposed uninfected status 

The individuals recruited into this study had been shown to be antibody negative, 

despite repeated heterosexual exposure to HIV. A subset of individuals were assessed by PCR 

to be negative for HIV below a level of 1 copy! 10 5  PBMCs, which is lower than that 

normally found in asymptomatic patients (Simnionds et al. (1990b)). It is unlikely that these 

individuals were harbouring a very low level infection as most were monitored over a 

prolonged period and were persistently seronegative. One report claimed to find a high 

proportion of persistently PCR4  seronegative individuals (Imagawa et al. (1989)), but this has 

not been found in other, more recent studies (Gibbons et al. (1990); Lee et al. (1991); Pan et 

al. (1991); Brettler et al. (1992); Coutlée et al. (1994); MacGregor et al. (1995)); even with 

the use of a high-input PCR methodology designed to detect low level infection (Lee et al. 

(1991)). Frenkel et al. (1998) recently looked extensively at transient infection in children 

born to HTV mothers and highlighted that many earlier reports of such cases could in fact be 

attributed to contamination, or sample mixing. It is thought that this is also possible for many 

of the early reports of PCR, yet persistently seronegative individuals. 

3.4.1.a Lymphocyte Subsets 

The lymphocyte subset composition of the PBMCs was determined to further confirm 

the uninfected status of the EUs. Perturbations in the CD4:CD8 ratios are known to occur 

before seroconversion and relate to massive expansion of CD8 cells, including cells co- 

expressing the memory/activation markers, HLA-DR and CD45-RO (Yagi et al. (1991); 

Zaunders et al. (1995)). 

The percentage of CD4 and CD8 cells varied from individual to individual, but did 

not differ from the range seen in normal donors. In contrast, the level of CD8 cells was 

markedly increased in an individual known to be undergoing seroconversion (C575 1). The 

same individual showed a concurrent increase in the percentage of lymphocytes expressing 

HLA-DR and CD45-RO and a large proportion expressing both. 
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Figure 3.10. 

Regression Plot of IFN-y Production versus Proliferation to Alto Antigen 

The following graph shows the regression plot, obtained using SPSS, of the square 

root of the amount of IFN-y produced (pg/mi) compared to the logio of the 

stimulation index obtained after allo antigen stimulation. 

Responses by individual Donors are represented by triangles and EUs by closed 

circles. The population regression is' shown by a dashed line for the Donors, dotted 

line for the EUs and a solid line for all individuals. The regression value r 2  is shown 

for these three lines and the significance of the correlation are: Donors and EUs; P= 

not significant; All individuals: P<0.02. 
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The percentage of lymphocytes from EUs expressing the memory marker CD45-RO 

also did not differ from the range seen in normal donors. The seroconvertor, in contrast, 

showed a large percentage of lymphocytes expressing these markers and although the cells 

were not co-stained for CD8, the fact that over 70% of the lymphocytes are CD8, a large 

proportion must be CD8 cells. This pattern is in concordance with that observed in other 

seroconverting (Yagi et al. (1991); Zaunders et al. (1995)) and HLV individuals (Prince and 

Jensen (1991); Ho et al. (1993); Wairet et al. (1993)). 

The percentage of cells expressing the activation marker, HLA-DR, was significantly 

elevated in the BUs compared to donors and may reflect differences in the lifestyles of the two 

groups (see Section 3.4.2.a). 

A perturbed CD4:CD8 ratio was seen in one contact (C405 1), although no increase in 

HLA-DR and CD45-RO was seen in the lymphocytes overall. However, if the CD8 cells had 

been co-stained with HLA-DR, or CD45-RO, it may have help explain if this was also due to 

widespread activation. The increased expression of HLA-DR and CD45-RO on CD8 cells is 

thought to represent an increase in immunologically reactive cells, namely CTLs (Ho et al. 

(1993); Rowland-Jones et al. (1993); Watret et al. (1993)). Although, similar patterns are 

seen in other viral infections (Fauci et al. (1991); Zaunders et al. (1995)), the population of 

activated CD8 cells tends to decline following recovery from infection. In HIV infection in 

contrast, these activated cells persist (Prince and Jensen (1991); Zaunders et al. (1995)), 

probably reflecting the persistence of viral antigen. 

The activation markers, lILA-DR and CD45-RO, reflect the activation status of 

lymphocytes, in particular co-expression of lILA-DR and CD45-RO. However, if used in 

conjunction with CD4 and CD8 staining, this may have been more informative. Co-expression 

of HLA-DR and CD45-RO was shown in early infection by Prince and Jensen (1991), who 

reported a decrease in CD8 cells singly expressing HLA-DR, or CD45-RO, but an increase 

in those expressing both. Dual staining for CD8 and HLA-DR/CD45-RO would not therefore 

have shown this and triple staining would have been required. A proportion of the HLA-DR 

. CD45-RO + cells m the seroconvertor may also have been CD4 +  , as this subset has also been 

shown to be elevated during HIV infection (Kestens et al. (1994)). 

The addition of the marker CD38 with CD8 may also provide further indication of 

infection. CD38 is a multilineage marker and is thought to be involved in activation and! or 
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adhesion (Malavasi et al. (1994)). However, although CD38 is elevated on CD8 cells early 

in infection (Prince and Jensen (1991); Yagi et al. (1991); Kestens et al. (1992); Giorgi et al. 

(1994); Zaunders et al. (1995)), }ILA-DR has been shown to be increased before this 

(Kestens et al. (1992)). 

Although the infection state of an individual could not have been deduced from such 

analysis, it would have been a significant indicator and highlighted any potential cases prior to 

the presence of HIV-specific antibody (Yagi et al. (1991); Rowland-Jones et al. (1993); 

Giorgi et al. (1994); Zaunders et al. (1995)), as can be seen in the seroconverting individual. 

3.4.2 Proliferations 

3.4.2.a Mitogen Responses 

To determine whether the EUs possessed any proliferative capacity which enabled 

them to remain protected from heterosexual infection, lymphoproliferation assays were 

performed using various antigens. The mitogen, PHA, which non-specifically activates cells 

through both the T cell receptor and CD2 (Coligan et al.(1996)), was used as a positive 

control to confirm reactivity in the assay. There was no observed difference between the 

response in EUs compared to normal donors, although two of the EUs had higher responses. 

To ascertain if this was due to a difference in the time taken to achieve a maximal response, a 

time course was assessed. However, despite one of the EUs showing a delay in peak response 

from day 4 to day 5, too few samples were able to be assessed in this way. If this had been 

confirmed in larger numbers, it may reflect a difference in the proportion of CD45-RA to 

CD45-RO cells. CD45-RO cells have been shown to respond more slowly to mitogen than 

CD45-RA cells (Merkenschlager et al. (1988); Merkenschlager and Beverley (1989); 

Morimoto et al. (1985)) and this could have been confirmed by flow cytomeiry staining for 

CD4/8 and CD45-RO/RA. 

The CD45-RO isoform is expressed on memory cells (Clement (1992)) and a higher 

proportion of cells expressing this marker could suggest persistent activation. Persistent 

activation from exposure to I11V could theoretically lead to a difference in the two groups, 

although it seems unlikely that the EUs would have a constant level of exposure to H1V, which 

would induce an overall difference in all EU individuals at all times. No difference in the 

percentage of CD45-RO cells was seen in the two groups either. However, the level of HLA-

DR expression was elevated in the BUs, suggestive of possible on going activation. 
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It is possible that there are differences in life-style and socio-economic factors 

between the EUs and donors. Most of the EUs are recruited from one of the poorer regions of 

Edinburgh which may lead to differences in nutritional status and hence overall health, 

allowing increased occurrence of infectious diseases and hence more immune activation. 

However, socio-economic differences are less likely to lead to such changes in a modem 

society than they would have in the past, or in a less developed society, such as in Africa. The 

possibility that such differences occur still exists, but it would require a large scale study just 

to assess nutritional differences alone and extends well beyond the scope of this study. 

A further difference between the groups is the age range. The average age of the EUs 

is 31.0 (range 1745) and 37.4 (20-60) for all donors, which is a significant difference 

(&2.11, P=0.04). However, when only. the donors used in the LPA were assessed, the mean 

age was 36.2 (20-51) which was not significantly different from the EUs (t=l.72, P=0.10). 

Age-related effects on the immune system include: a decrease in naïve T cells (CD45-RA), 

an increase in memory T cells (CD45-RO) and a decrease in IL-2 production (Miller 

(1996)). However, studies are often conflicting and are mostly concerned with the more 

elderly individuals than those studied here (60+)(Miller (1996)). The age difference in the EUs 

and Donors is not marked and may therefore not be an important issue, but an aged-matched 

control population would have ruled out the potential age effect if they had been available. 

An important difference, which could not be controlled for is the effect of circadian 

rhythms, the daily fluctuations which occur in lymphocyte recirculation and populations (Levi 

et at. (1985); Malone et al. (1990)). The donors were bled in the morning and most of the BUs 

were bled from lunch-time onwards, although this did vary. The lymphocyte counts and 

CD4% are lower in the morning, rising to a peak at around 10pm (Malone et al. (1990)). The 

effect of such circadian rhythms was highlighted in a study looking at subset populations in 

different risk groups (Bofill et al. (1992)): increased lymphocyte, CD4 and CD8 counts and 

percentages were seen in heterosexual (HIV-negative) women compared to heterosexual men 

and other controls, but when the time of sampling was considered it was found that these 

women were bled in the afternoon, unlike most of the other individuals who were bled in the 

morning. In the present study, such differences may have affected the proliferation results, 

causing the donors to have lower numbers of reactive CD4 cells, although no differences 

were seen between the percentage of CD4 cells in the two groups. However, the circadian 

rhythms may explain the difference in HLA-DR expression between the two groups. 

142 



To gain a clearer insight into the immune function of the EUs an ideal control cohort 

would have been sex, aged and lifestyle matched, sexually active individuals, who only 

differed from the EU cohort by lacking exposure to an H1V 4  partner and were bled at the 

same time. 

3.4.2.b Recall Responses 

Reactivity to the recall antigens, PPD and Ti', varied greatly between individuals and 

the level of responses to PPD were generally higher than to Ti'. This may be due to the 

vaccination which primed this immunity, i.e. the BCG vaccine is perhaps a better vaccine at 

eliciting TH cell immunity than the tetanus vaccine. Indeed, the BCG vaccine is only given 

once, but the tetanus vaccine requires regular life long boosts to maintain activity (Mims et al. 

(1993)). 

The PPD antigen, used in this assay, may have just been a better antigen than the Ti'. 

An alternative source of Ti' would help ascertain this, although some of the Ti' reactive 

individuals did show good responses and children, who have received a vaccine more recently, 

did respond well to this antigen (Dr. M. Aidhous, personal communication). 

The amount of IFN-y produced was also higher in response to PPD than Ti', and this 

may reflect either the increased proliferative response, or the differing cytokine profiles known 

to be induced by these antigens (ElGhazali et al. (1993)); PPD induces a type 1 response, with 

IPN-y, but no 1L-4 and in contrast, Ti' is thought to induce a more Tm response, inducing 

both IFN-y and IL-4. Alternative monitoring of the cytokines produced would be required to 

confirm if the two antigens induced different profiles in this study, as the IL-4 assay used did 

not appear to be sensitive enough. The standards for the 1L4 ELISA worked well, but the 

samples either had a factor in the culture supernatant which interfered with the assay in some 

way, or the level of IL-4 was just not high enough to be detected by this method. 

3.4.2.c Alto Responses 

Reactivity to alloantigens was first shown highlighted as a potential protective 

mechanism in vaccine trials in macaques. Several groups (Stott (1991); Langlois et al. (1992); 

Chan et al. (1995)) showed that protective immunity could be accounted for by anti-MHC 

responses and this correlated with measurable anti-MBC antibodies (Chan et al. (1995)). 

However, a recent study of Nairobian prostitutes (Luscher et al. (1998)) showed that although 

anti-HLA class I antibody was seen in a small percentage of these high risk individuals (12%), 
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the proportion of these individuals did not differ who were H1V compared to HIV-negative. 

Alloantigen-specific T cells have also been shown to affect HIV replication in vitro (Brtthl et 

al. (1996)), predominately mediated by CD8 cells. The inhibition of HIV replication in PHA 

blasts occurred for both cells from a different donor and from the same donor (autologous). 

The suppression effect could also be seen when the cells were physically separated by a semi-

permeable membrane, hence in a non-lytic mechanism comparable to that reported by others 

(Walker et al. (1986); Moriuchi et al. (1996); Walker et al. (199 1))(see Section 1.6.2.g). 

Despite a modest increase in the numbers of EUs in this cohort responding to the 

alloantigen compared with donors, this was not statistically significant and may reflect the 

limited numbers assessed. However, there was a significant increase in the amount of IFN-'y 

produced in response to the alloantigen by the EUs. This is consistent with results of 

Barceliini and colleagues (1995), who assessed the cytokine production of high risk, yet HIV-

negative IDUs, following PHA stimulation. They showed increased IFN-y production in the 

IDU-EUs in response to mitogen, compared to controls. Unlike the difference seen for allo 

stimulation, no differences in IFN-y production in response to mitogen was observed in the 

Edinburgh cohort. However, the assay was not optimal for mitogenic responses, unlike that of 

Barcellini et al. (1994), and this may explain the difference, as the IFN-y may have all be 

degraded, or utilised in the longer unoptimal assay. 

Barcellini et al. (1995) also reported impaired PHA-induced 1L4 and IL-10 and 

increased EL- 12 production in the EU IDUs compared to normal healthy controls. This pattern 

of cytokine production is consistent with a predominant type 1 response, but they also showed 

a decreased, although not significant, IL-2 production. A reduction in IL-2 suggests impaired 

CD4 T cell function in the EUs. However, injecting drug misuse has been shown to cause 

impaired T cell function (Mientjes et al. (1991)) which may explain the suppression seen. 

Proliferative responses were not monitored, which would have confirmed the apparent 

impaired lymphocyte function. 

If the IFN-y responses to alloantigen in the EUs reflect real differences compared to 

low risk controls, could this be a potential protective mechanism from heterosexual REV 

transmission? Classically, the response to alloantigens is of a TH, phenotype, including the 

production of IL-2 and IFN-y (Woloszczuk etal. (1986); Kotlan etal. (1988)). Interferons are 

known to induce antiviral activity against a range of viruses (Aboud and Huleiliel (1981); 

Chatterjee, Cheung and Hunter (1982); Whitaker-Dowling et al. (1983)). IFN-y has been 
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shown to inhibit HIV replication in macrophages (Hammer et at. (1986); Koyanagi et al. 

(1988); Hartshorn et al. (1987); Kornbluth et al. (1990); Meylan et at. (1993)) and some T 

cell lines (Hartshorn et at. (1987); Nakashima, Yoshida and Yamamoto 0986)), but in 

PBMCs IFN-y only has anti-HIV effects in the presence of other mediators (Wong et al. 

(1988)). 

Reports concerning the inhibition of HIV replication in macrophages have been 

conflicting, with regard to the timing of infection relative to IFN-y treatment. Koyanagi et al. 

(1988) reported enhanced infection with pretreatment of cells with lEN prior to HIV infection, 

compared to a reduced infection in post-treated cells. In contrast, Meylan and colleagues 

(1993) showed a reduction in replication for both pre-and post-treated cells. The discrepancy 

may reflect differences in both the length of IFN-'y pretreatment before infection (3 days 

versus 18 hours) and the protocol for macrophage culture. Using a single replication cycle 

study, Meylan (1993) also showed that the effect of interferon occurred at an early step of the 

virus life cycle. However, others (Emilie et al. (1992)) have reported an antagonistic effect of 

IFN-'y on TAT mediated transactivation of the viral LTR, which occurs later in the viral 

replication cycle. It is possible that interferon has multiple effects on both the cell and the viral 

life cycle. 

Despite current controversies, IFN mediated inhibition would suppress further viral 

synthesis and perhaps allow immune control mechanisms time to contain the infection. As 

macrophage infection is though to be an important reservoir for viral dissemination 

(Gendelinan et al. (1989)), mechanisms which prevent this spread could be critical in 

controlling initial infection. IFN-y is produced by both CD4 and CD8 cells and is 

potentially a factor involved in in vivo non-lytic suppression of liv replication; overlooked by 

in vitro methods of non-lytic suppression, involving PBMCs in which little suppression is seen 

(Wong etal. (1988)). 

lENs are also known to upregulate MHC Class I and II expression, further 

augmenting any immune response to control the infection. High levels of IFN-y would also 

create a selection for a type 1 response and against a type 2 response (see Section 1.6.2), 

thought to be protective in HIV infection (Clerici and Shearer (1993); Clerici and Shearer 

(1994)). Further analysis of the other cytokines, including IL-12, by more sensitive methods 

such as ELISPOT (Versteegen, Logtenberg and Ballieux (1988)), or RT-PCR for niRNA 

would confirm if a type 1 response is occurring. Intracellular fluorescent staining for 
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cytokines is also now possible (Caruso et al. (1996)) and co-staining would also allow the 

responding cells to be identified as either CD4, or CD8 cells. 

However, before attributing a major role to alloantigen induced IFN-T production in 

protection from heterosexual HTV transmission, it should be noted that three of the donors also 

produced high levels of IFN-y in response to alloantigen. Therefore the response in the EUs is 

not unique and may reflect priming to alloantigens. Previous priming of allo-specific 

responses may have selectively expanded, or induced cells to produce a strong type 1 

response, hence explaining the lack of a difference in proliferative responses to alloantigen in 

the two groups, but a difference in the IFN-y production. Sexually active women are exposed 

to alloantigens in the form of sperm and other cells in the seminal fluid. The EUs may also 

have encountered alloantigens from exposure to HIV too, which has been seen to carry high 

quantities of cellular proteins, including those of the MHC, on the viral membrane (Henderson 

et al. (1987); Arthur et al. (1992)). A strong allogeneic response may therefore protect from 

HIV infection by destroying allogeneic virally-infected cells, or virus. As the sex ratio differed 

in the Donors and EUs, mostly men in the donor group and mostly women in the EUs (see 

Table 3. 1), it is possible that the cohorts may have differences in the level of allogeneic 

responses, due to differences in exposure. However, of the three donors with high IFN-y 

production in response to alloantigen, two were male, although they may have other factors in 

their life which may have lead to alloantigen exposure, such as a blood transfusion. 

The age difference, as discussed previously (see Section 3.4.2.a) may also effect the 

chance of heterosexual exposure, as younger people are known to be more sexually active and 

also promiscuous (Johnson et al. (1992)). However, the sexual activity of the donors was not 

assessed and the EUs are not known to be highly promiscuous as they were often in long term 

relationships. 

Allogeneic responses have also been suggested to be involved in protection from 

vertical transmission, as children with a higher degree of discordant HLA types to their mother 

have been shown to have a reduced risk of infection from HIV (MacDonald et al. (1998)). As 

children inherit half of their genetic material from their mother and hence will be homologous 

for half of their HLA alleles, presumably unrelated heterosexual couples are more likely to 

have different liLA haplotypes and will inevitably mount some form of allogeneic response. 

Factors which control the level of protection from this are unclear, but may involve the dose 

and type of exposure, virally infected cells, or free virus. Perhaps previous heterosexual 
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exposure to alloantigens may boost the level of response, but as the promiscuity of the EU 

cohort compared to the donors is unknown, this could not be addressed. 

Expression of a rare liLA type, less likely to be shared with the partner, may also be 

involved. The latter point is supported by Plummer and colleagues (Plummer Cr al. (1993)), 

who in a study of prostitutes in Nairobi, Kenya, showed that the 'resistant' individuals seemed 

to possess rare HLA types for the local population. More detailed analysis would be needed to 

confirm the observations made here, including: studying more individuals, extended cytokine 

analysis, determination of the responding cell population, and the level of discordant HLA 

types in concordant compared to discordant couples in the Heterosexual Study. 

3.4.2.d HIV-spec ft Responses 

Proliferative responses to H1V have been reported in EUs, including health care 

workers (Clerici et al. (1994b)), IDUs (Beretta et al. (1996)), sexually exposed individuals 

(Mazzoli et al. (1997); Ranki et al. (1989); Clerici et al. (1992); Kelker et al. (1992)) and 

children born to infected mothers (Borkowsky et al. (1990); Clerici et al. (1993b)). To 

monitor the presence of any HIV-specific reactivity in the Edinburgh cohort, a recombinant 

HIV protein cocktail was developed. Preliminary experiments in controls showed little 

reactivity to the concentrations of antigens used, but later, following the use of the cocktail in 

assays using EUs and donor controls, a high degree of reactivity in the donor population was 

seen. The donor responses were particularly marked in the lowest concentration of the proteins 

and perhaps reflects a more optimal level of reactivity to the antigen they were responding to. 

This was found to be due to the recombinant proteins derived from E.coli, suggesting 

reactivity to a contaminant E.coli protein, but when the E.coli derived proteins were 

subsequently removed, few samples were then available for screening. However, reactivity to 

the modified gpl2Ofp24 cocktail was seen in some HIV-infected children (Dr. M. Aldhous, 

personal communication), suggesting that this modified cocktail functioned as a REV-specific 

antigen. 

Coincident with the change of the proteins in the cocktail, it was also decided to make 

an alternative antigen for inclusion in the assay. REV was cultured in the CEM cell line, 

known to not to express MEC Class II and hence reducing any potential allogeneic reactivity 

to the virus. The strain of virus used was a patient derived virus from an Edinburgh infected 

haemophiliac (HIVc ). The virus was heat inactivated, then purified by ultracentrifugation 

over a sucrose gradient. The amount of total protein and p24 protein was then assessed and 
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preliminary results showed no cross reactivity in the donors tested. However, during the time 

taken to produce the antigen, the samples from the BUs were no longer available. 

Some of the EUs did show responses to the initial HIV cocktail, in particular C5451, 

who showed marked responses to all concentrations of the proteins. It is possible that some of 

these responses were genuine anti-HIV responses, but due to the non-specific activity in the 

donors this could not be confirmed. Others have shown that to detect HIV-specific responses, 

IL-2 production needs to be measured (Mazzoli et al. (1997); Clerici et al. (1992); Clerici et 

al. (1993b); Clerici et al. (1994b)), although proliferative responses have been shown to 

reactive H1V peptides (Kelker et al. (1992)), proteins (Borkowsky et al. (1990); Ranki et al. 

(1989); Kelker et al. (1992)) and inactivated virus (Ranki et al. (1989)). Cytokine production 

in the absence of proliferation was suggested by the numbers of EUs responding to the rHIV 

cocktail with measurable IFN-y production, but without comparable proliferation. Some of the 

responses were perhaps due to spontaneous IFN.-y production, also seen when no antigen was 

included (see Appendix 3.4), but this was not true for all and even those who did have 

spontaneous production of cytokines, supernatant from some of the other antigens gave 

negative IPN-y results. More detailed analysis would be needed to confirm any association of 

cytokine production with anti-HIV reactivity. 

As well as including a whole virus antigen, one could also add reactive peptides as a 

further source of HIV-specific antigen, although the initial rationale for using whole proteins 

was to provide a broadly reactive antigen to all individuals. The peptide approach is limited by 

the restricted number of T cell and MHC-binding epitopes included, which may not be bound 

by the HLA molecules of an individual. The addition of anti-IL-2 receptor to measure IL-2 

production, may allow detection of 11EV-specific responses, which some have suggested can 

not be by proliferation assays (Clerici et al. (1992); Pinto et al. (1995)). 

3.4.3 CTL Proposal 

The cessation of sample collection prevented a strategy established for assaying CTh 

activity in follow up samples from being performed. This meant that the best targets, HEy-

infected PHA blasts, or rVV infected BCLs expressing HIV proteins was not established. 

3.4.4 Conclusions 

The exposed, uninfected individuals within the Edinburgh Heterosexual Partner Study 

were shown not to be harbouring a low level infection in the absence of seroconversion, as 
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confirmed by PCR. This was further supported by analysis of the lymphocyte, which as 

highlighted by a known seroconvertor, would have shown a marked perturbation from normal 

if a pre-seroconversion sample had been obtained. 

The expression of the activation marker HLA-DR was elevated in EUs compared to 

donors and may explain some of the differences in immune function suggested by some of the 

proliferation assays. However, perhaps due to restricted sample size, no significant differences 

in immunological responses to the mitogen, PHA, or recall antigens, PPD and Yr were seen in 

the EUs compared to normal donors. In contrast, the EUs had elevated IFN-y production in 

response to alloantigen when compared to normal donors, supportive of the suggested 

protective role of allo responses in transmission and also of the type 1 response in EUs. 

However, this requires further investigation, including analysis of other cytokines. HIV-

specific reactivity was investigated, but due to problems of antigen contamination, no 

conclusions could be drawn from this and the cessation of sample collection prevented further 

investigation of modifications made. However, the persistent reactivity to the H1V cocktail of 

one EUs in particular (C545 1) shows that the cohort warrants further study, making one, or 

all of the suggested changes. 

Other factors may also be involved in protecting individuals from HIV infection. 

These include the many known risk factors associated with heterosexual transmission (Spira et 

al. (1984)) and genetic factors such as lILA type, which has been seen to affect progression to 

AIDS (Just (1995)). Also, viral factors may influence the transmission, including the viral 

strain and dose of virus, both of which are influenced by the infection status of the 

transmitting individual. Some of these factors will be addressed in later chapters. 
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4.1. INTRODUCTION 

Individuals in a population differ in their fertility and viability and the combined 

effect results in the individual's fitness in the population and environment. It is known that for 

most infectious diseases individuals vary in their susceptibility, or viability to that disease and 

it is theoretically possible that within a population some individuals will be resistant to that 

agent. However, unless the whole population is exposed to the agent the resistant traits may go 

undiscovered, as lack of infection does not therefore mean resistance. Since the beginnings of 

HIV research, factors which protect individuals have been sought, in the hope that they may 

aid our understanding of the disease and in so doing help to find a cure. This has been 

impeded by the fact that, due to the nature of the infection, it would be impossible to 

distinguish individuals that had been exposed and were resistant to the virus. Studies of high 

risk individuals do not always guarantee actual exposure and may again mask true factors, but 

cohort studies of individuals with a known risk may help overcome this. 

The genes of the MHC are some of the most polymorphic known (Klein (1986b)). 

The human genes and the proteins they encode, the HLA, are distributed in both an ethnic and 

geographical manner and the diversity generated by exposures to a vast array of antigens, 

including infectious diseases (Klein (1986b)). Several infectious diseases are known to have 

FILA associations, either in a protective, or susceptible role and include: hepatitis B and C .  

(Czaja et al. (1993); Carbonara et al. (1983)), malaria (Hill et al. (1991)) and the 

mycobacterial infections, tuberculosis and leprosy (Mehra (1990)). 

Studies of the murine model to AIDS have shown that susceptibility was affected by 

the H-2 genes,.the mouse equivalent to HLA (Makino et al. (1990)). HLV individuals have 

also been investigated widely to ascertain if any HLA types correlate with HIV infection, or 

its associated illness (reviewed in (Just (1995))). 

Studies of highly HIV exposed, yet uninfected individuals, have recently highlighted 

an additional genetic factor, which is involved in protection from infection in these EUs. 

Paxton and colleagues (1996) identified two homosexual men, who despite extensive exposure 

to HIV, remained persistently seronegative. Purified CD4 T cells from these men were 

resistant to in vitro infection with a range of primary isolates, but infectable with TCLA 

strains. It was subsequently shown that non-TCLA strains use the C-C chemokine receptor-5 

(CCR-5, see Section 1.5.2) as a co-receptor (Alkhatib et al. (1996); Choe et al. (1996); Deng 

et al. (1996); Dragic et al. (1996)) and these two EU individuals were homozygous for a 32bp 

deletion (i32) in the CCR-5 gene (Liu et al. (1996)). This mutation results in a frame-shift 
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leading to premature termination of translation (see Section 1.7.3.a). The deletion is present in 

Caucasian populations at an allele frequency of 10% (Liu et al. (1996); Dean et al. (1996); 

Samson etal. (1996b)), but absent from all other ethnic backgrounds studied. 

Extensive screening of HIV-exposed uninfected and infected cohorts revealed that 

homozygosity for the A32 deletion conferred a significant level of protection from infection in 

homosexuals and haemophiliacs, being present almost exclusively in the uninfected individuals 

(Dean et al. (1996); Biti et al. (1997); O'Brien et al. (1997); Theodorou et al. (1997); Balotta 

et al. (1997)). In addition, heterozygosity was shown to correlate with a slower progression to 

AIDS in }{IV homosexuals, although it conferred no protection against infection following 

homosexual contact. Another mutation, in the CCR-2 chemokine receptor, (G-+A position 

190; valine to isoleucine change position 64 (641)) has also been shown to affect progression 

(Smith et al. (1997); Kostrikis et al. (1998); Rizzardi et al. (1998)) (see Section 1.7.1a), 

although no protective effect from infection was seen for this mutation in homosexual and 

haemophiliac cohorts (Smith et al. (1997)). The effect of this mutation was only detected in 

seroconvertor cohorts (Michael et al. (1997)), indicating that it acts early in infection. 

Kostrikis et al. (1998) showed that the CCR-2-641 mutation was in 100% 

disequilibrium with a mutation in the putative promoter region for CCR-5 (C-+T at nucleotide 

927 of CCR-5 gene; see Section 1.7.3.a). Hence, postulating a possible mode of action on 

delaying progression, which is otherwise unclear from the apparent conserved mutation in 

CCR-2. Dr. Mary Carrington and colleagues (Martin et al. in preparation) have recently 

described some addition polymorphisms in the CCR-5 promoter (see Figure 4.1) and identified 

a particular combination of these polymorphisms. (termed P1 allele; see Figure 4. 1), which 

when homozygous leads to more rapid progression. Both the CCR-5 A32 and CCR-2 641 

mutations were shown always to occur on a P1 allele, hence creating a CCR-21P1/CCR-5 

haplotype. P1 alleles were therefore ascribed to be either WT/P1/WT, 64IfPl/WT, or 

WT[Pl/&32, as 641 and A32 never occur on the same gene (Smith et al. (1997)). The Pl,Pl 

homozygotes which were seen to rapidly progress were all of homozygotes for the WTIP l/WT 

haplotype. 

The risk of acquiring H1V following heterosexual exposure has been shown to be less 

than that for homosexual contact (Giesecke et al. (1992)), presumably reflecting differences 

between the two modes of transmission. In Edinburgh, a cohort of heterosexual couples 

discordant for HIV serostatus and selected for repeated exposure to HIV, but who remain 

uninfected have been identified. In order to assess the effect of genetic variation at the CCR-5 
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Figure 4.1. 

Diagrammatical Representation (not to scale) of the CCR-5 Gene and Promoter Showing Polymorphisms 

Adapted from Mummidi etal. (1998) and Martin et a!, in preparation. 

The diagram shows the CCR-5 locus on chromosome 3. The four exons (open boxes) and two introns (pink boxes) are shown and 

numbered. Arrows indicate the polymorphisms identified in the promoter region, contained within the region from exon 1 to the end of 

exon 3. It is unknown if the 927 C-->T mutation, out with this region, has any functional role. The CCR-5 open reading frame (CCR-5 

ORF) is marked in exon 4. 

The region amplified +18-+841, indicated with a dashed line, shows the polymorphisms found by Dr. Mary Carrington and colleagues 

(Martin et al., in preparation). The polymorphisms are divided into alleles, P 1-10, depending upon the combination. P1-4 are the most 

common and P5-10 are derived from single mutations from one of the more common P1-4. 
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locus on heterosexually acquired infection, these EUs have been screened for the presence of 

the CCR-5 deletion. The frequency obtained was then compared to those observed in 

heterosexually HIV-infected individuals and low risk controls. The effect of the recently 

described mutation in the CCR-2 was also assessed and, in collaboration with Dr. Carrington, 

the group was also screened for the CCR-5 promoter polymorphisms (P1-10) described above. 

Finally, to determine if any HLA types correlated with HIV infection following 

heterosexual exposure in the Edinburgh cohort, the heterosexual contacts with HLA types 

available were also compared, in terms of those who became infected and those who remain 

uninfected. The HIV index partners were also assessed to see if any of the above genetic 

factors correlated with heterosexual transmission. 

4.2. METHODS 

4.2.3 HLA Typing 

The majority of samples were typed by serological methods by a standard two-stage 

complement dependent microlymphocytotoxicity technique (Klein (1986b)) using sera from 

the UK National Transplant Service. This serotyping was performed by Dr. P.L.Yap and staff 

(SNBTS, Edinburgh). Some of the EUs were typed by PCR-sequence-specific oligonucleotide 

typing based methodology (Bidwell (1994)) at the Northern Ireland Regional Tissue Typing 

Service, Belfast (service kindly provided by Dr. D. Middleton). 

4.2.2 Development of CCR Genotypirig Assays 

4.2.2.a CCR-5 Pilot Approach 

Following the discovery of the 32bp deletion in the CCR-5 gene, a method was sought 

to genotype the Edinburgh EU cohort, as the deletion was too small to detect a difference by 

standard PCR methods. Primers to amplify the whole CCR-5 gene were obtained (see Section 

2.14.2) and a restriction enzyme sought, using the published gene sequence (Genbank 

ascension number X91492) and Gene Jockey Sequence Processor (for the Apple Macintosh, 

Biosoft, Cambridge, UK), which would provide discrete banding patterns in the three different 

genotypes (WT/WT, WT/32, i32/32). The restriction fragment length polymorphisms 

(RFLP) would then allow the groups to be screened and genotyped. The restriction enzyme 

Asp 700 was found to cut within the i32 deletion site, hence when the deletion was present 

different fragments would be produced. 
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Figure 4.2 shows the CCR-5 gene and the amplification products produced. More 

detailed description of the methods can be found in Section 2.14. Primers for the whole CCR-5 

gene were 28 and 29 and the Asp 700 restriction sites and fragments produced are shown for 

the WT and A.32 alleles. Individuals heterozygous for the i.32 deletion would generate both 

sets of fragments and hence be distinguishable from wild types. However, when performed 

only partial restriction digests of some of the fragments occurred making genotyping difficult 

to perform. Alterations in the amount of enzyme and the incubation time were made, but only 

partial digestion was still achieved. 

A combined restriction digest of Bglll and EcoRI was explored as an alternative. 

Each enzyme had one restriction site in the amplified CCR-5 gene and the region containing 

the potential A32 site was small enough so the difference between the WT and M2 alleles 

could be distinguished (see Figure 4.2). 

4.2.2.b Direct PCR approach 

Following the successful establishment of a RFLP based genotyping assay, a less 

laborious direct PCR approach was adopted after collaboration with Dr. Linqi Zhang (Aaron 

Diamond Research Center, NY). This involved PCR amplification of a smaller region 

encoding the potential A32 site, using primers C and D (see Figure 4.2.a) and resolution of the 

products on special high resolution agarose gel (3% Metaphor gel). Standard agarose would 

have been too brittle for use at the high concentration required. Fragments of 1 89bp were 

generated for the WT allele and 157bp for the i32 allele and could easily be distinguished 

along with heterozygotes. Figure 4.3.a shows a typical result obtained for WT/WT, WT/M2 

and 32/32 individuals. 

4.2.2.c Conflrmati9n Digest 

To confirm the results obtained above, random samples from each experiment were 

amplified using different primers in a different laboratory. The primers used were 29 and D 

and Figure 4.2.a shows the amplification products formed. These were then digested with 

Bglll and the resulting fragments resolved on a 3% Metaphor gel. Figure 4.2.b shows the 

fragment sizes formed and Figure 4.3.b shows a typical result for a WT/WT, WTb32 and 

32/i32 individual. 
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Figure 4.2. 

A diarammatjca1 representation (not to scale) of the CCR-5 gene. 

The PCR amplification product and restriction digest fragment sizes from genes wild 

type (WT) at the CCR-5 gene are given in black and those from genes containing a 

32bp deletion in the CCR-5 gene are given in red. 

Shows the primer locations () and a schematic depiction of the PCR products 

and their sizes (... 189bp 

Shows the various restriction digests performed on the various PCR products 

(indicated by their size and primers shown on the ends). The vertical lines 

correspond to the point of the restriction site for the enzyme. The sizes of the 

resultant fragments (_ J1 
B gill 

) are shown above the line for the WT gene in 

black and below for the i32 gene in red. The restriction enzymes used to digest 

the fragments are shown at the end of the fragment and are colour coded with their 

corresponding cut; Asp700-black, EcoRl-green, Bglll-pink. 
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Figure 4.3. 

CCR-5 Genotypin2 

The photographs show a typical result from analysis of the PCR products of the CCR-

5 gene on a 3% Metaphor gel. PCR product and fragment sizes are shown in black for 

wild-type CCR-5 genes and red for the 32bp deletion in the CCR-5 gene. 

Typical results using primers 'C' and 'D'. Lane 1 contains pGEM markers and 

lanes 2-4 the products from various individuals; lane 2 (32Ii32) a homozygote 

for the 32bp deletion in CCR-5; lane 3 (WT/i32) a heterozygous individual and 

lane 4 (WTIWT) a homozygous wild-type individual. 

Typical results using primers '29' and 'D' (lanes 5-7) and the products obtained 

from its subsequent digest with Bglll (lanes 9-11). Lane 8 contains pGEM 

markers. Lanes 5/9 show a A32/32 individual; lanes 6/10 show a WT/I32; lanes 

7/11 show a WT/WT individual. 
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4.2.2.d CCR-2 

Following the reports of the 641 mutation in CCR-2, it was decided to assess the 

Heterosexual cohort, screened for the A32 mutation in CCR-5, for this mutation too and 

analyse if it had any effect on heterosexual HIV transmission. The primers used were already 

published (Smith et al. (1997)) and it was found that identical conditions to the CCR-5 PCR 

genotyping assay gave successful amplification if the annealing temperature was increased to 

60°C for all cycles and the primer concentration was reduced to 0.1 p.M. 

The A primer was designed to contain a mis-matched A base, shown in Figure 4.4, 

which was then present in the amplified 128bp product. If the mutation which caused the V641 

mutation (position 190, G-+A) was present in the amplified product with the mis-match A 

from the primer, a restriction site for the BsaBI enzyme was formed. Subsequent digestion 

with this enzyme results in a RFLP when the mutation (position 190, G-*A) was present. The 

restriction digest products are shown in Figure 4.4.b and a typical result for a WT/WT, 

WT/641 and 641/641 individual shown in Figure 4.5. As the restriction fragments were 

relatively small, the gels had to be run for prolonged periods and under chilled conditions to 

maintain resolution (see Section 2.17.2). The 18bp fragment was too small to be clearly 

resolved. 

4.2.3 CCR-5 Sequencing 

The whole CCR-5 gene was amplified using primers 28 and 29 and the product 

purified as outlined in the Material and Methods (see Section 2.15.1). The gene was then 

sequenced using Taq cycle sequencing (see Section 2.15.2) and the four primers, 28, 29, C 

and D. This resulted in 4 pieces of overlapping sequence that were joined and the resulting 

sequenced translated and aligned with the CCR-5 consensus sequence for comparison (see 

Section 2.19). 

4.2.4 CCR-5 Promoter Polymorphisms 

CCR-5 promoter polymorphisms were performed by Dr. Mary Carrington and 

colleagues (National Cancer Institute, Frederick, MD, USA) using samples described above 

(see Section 4.1). The polymorphisms were defined as alleles P 1-10, as described earlier (see 

Section 4.1 and Martin et al. in preparation). The alleles were determined by PCR-single 

stranded conformation polymorphism analysis, where PCR amplified products are digested 

with a panel of restriction enzymes to generate a unique pattern for each allele. 
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Figure 4.4. 

A dia2rammaticaj representation (not to scale) of the CCR-2 2ene. 

a.) Shows the primer locations () and a schematic depiction of the PCR product 

(,. 

Is9bP_)• The enlarged segment of the gene and PCR product depicts the mis-

match base in the primer 'A', depicted by a lower case letter (a) and this and the 

remaining primer sequence are shown in turquoise. The G—~A (position 190) 

mutation in the CCR-2 gene is shown in red and the restriction site for the BsaBI 

enzyme given in purple. 

b.)The PCR amplification product and restriction digest fragment sizes from 

individuals wild type (WT) at the CCR-2 gene are given in black and those from 

individuals containing the G—A (position 190) in the CCR-2 gene are given in red. 

The BsaBI restriction enzyme cut is coloured in purple ( B  ) 
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Figure 4.5. 

CCR-2 Genotyping 

The photographs show a typical result from resolving the PCR products of the CCR-2 genotyping assays on a 4% Metaphor gel. PCR 

product and fragment sizes are shown in black for wild-type CCR-2 genes and red for the G-->A (position 190) mutation causing a valine to 

isoleucine a-a change (a-a 64, 641) in CCR-2. 

Typical results using primers 'A' and 'Z' (lanes 1-3) and the products obtained from its subsequent digest with BsaBI (lanes 5-7). Lane 8 

contains pGEM markers. Lanes 1/5 show an individual who is homozygous for the 641 mutation in CCR-2 (641/641); lanes 2/6 show a 

heterozygous individual (WT/641); lanes 3/7 show a homozygous wild-type individual for CCR-2 (WT/WT). 
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4.3. RESULTS 

4.3.1 HLA Phenotypes 

HLA results were available for many of the individuals in the Heterosexual Study. 

Table 4.1 lists the number and the extent of typing for the individuals of interest. The full 

HLA phenotypes for these individuals are listed in Appendix 4.1-4.4. 

Of the EUs, 23 had been solely DNA typed, 22 solely serotyped and 11 had been 

typed by both methods. Six of the 11 gave the same HLA type and 5 gave either different, or 

an unclear HLA type, usually for only one allele. Four of the solely DNA typed individuals (2 

M; 2 BIDR) also had ambiguous results at one or more locus (see Appendix 4.1). These 

unclear results were excluded from the analysis when a clearly defined HLA type was 

required, but included when analysing for mis-match if the possible choices clearly differed 

from the other individual's HLA type (see later). 

Three of the indexes were represented in both groups as they had concordant and 

discordant relationships. They were excluded for comparisons of the two groups, but included 

in the mis-match analysis between couples (see later). 

For comparisons of the heterosexually exposed groups, HIV concordant contacts and 

EUs, any EUs PCR-typed as A68 were included in the broader A28 group from which it was 

split (Hurley et al. (1997)). Likewise DR 12 was grouped with DR5 and DR 13/14 with DR6 

(see Table 4.2). For comparisons of EUs to published population control frequencies from the 

area, further limiting groups were needed as the control population had been less clearly 

typed. Individuals expressing A30 and A31 were pooled as in the control group and the 

following narrower specificities used: B62=>B 15; B39-->B 16; B57=>B 17; B40/50=>B2 1; 

B55=>Bw22; B60=>B40 and DRI 1/12=>DR5 (see Table 4.2). The individual expressing 

A33 (C378 1: A2,33) was excluded from this analysis as this allele was not typed and could 

not be grouped with a broader specificity, as was the B53 expressing individual (C463 1: 

B51,53) and the individual expressing DR9 (C5212: DR9,13). The numbers in each group are 

shown in Table 4. 1, with the actual numbers in the two groups compared shown in Table 

4.l.b. 

4.3.1.a Heterosexually Exposed HW and Uninfected Contacts 

The numbers of individuals expressing each A, B and DR allele in the two groups 

were compared by Fisher's Exact test on a 2x2 contingency table. An example of the tables 

formed is shown below (see Table 4.3) along with the calculation. 
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Table 4. 1. 

Details of Groups in ITLA Analysis 

Numbers Typed 
Full A/B/DR 

Total 	Typing 	 Others 

Contacts 
EUs 	56 	 35 	A+ DR: 4 	13:2 

B+DR:14 	DR:1 
17 	16 	A+B:1 

Indexes 
TRIs 	22 	19 	DR:1 	A+B:1 

NTRJs 	34 	32 	A+B:2 

* Individuals with only partial typing. 

Numbers Used in Analysis 

Total Numbers of Individuals in Comparisons* 

EUs In-V's J_EUs 	
] 

Controls TRI NTRI  

A 39 17 38 264 18 

B 51 17 50 264 18 30 

DR 54 16 53 264 17 28 

Numbers of individuals remaining due to partial typing and alter exclusions due to unclear 
typing. 

tiwo  individuals removed, one from each group, due to lack of equivalent typing in control group. 
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Table 4.2. 

Details of Relationships of Broad and Narrow lILA Types Used 

Broad 1-ILA Narrow Split 

A28 A68# 

A30'   A30/31 
A3 I' 

B15 B62t 

B16 B39t 

B17 B57t 

B49t 
B21 

B 5O 

Bw22 B55t 

B40 B60t 

DR11t 
DR5 

DR12# 

DR13! 
DR6 

DRI4# 

Described in Hurley et al. (1997). 

Grouped with broader HLA type in comparisons of EUs versus HPts and EUs versus Controls 

t Grouped with broader HLA type in comparison of EUs and Controls only. 
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Table 4.3. 

?x2 Contin2ency Table for EUs and HIVs for HLA B27 

	

A 	Number of 
	

Numbers not 	Total 

Individuals 	expressing B27 

Expressing B27 

	

BUs 	 2 
	

49 	 51 

	

}IIV 	 3 
	

14 	 17 

P=0.0832, Exact test. 

To calculate the probability of observing the actual number, or a more extreme distribution, 

when the initial 2x2 table had a P<0. 10, the values were shifted as in Table 4.3.b. 

	

B 	Number of 	Numbers not 	Total 

Individuals 	expressing B27 

Expressing B27 

	

EUs 	 1 	 50 	 51 

	

HIV 	 4 	 13 	 17 

P=0.016, Exact test. 

This was continued until one group was zero, in fact the next one in this case. The exact 

probability is then the sum of all the values obtained, i.e. 0.0832 + 0.0116 + 0.0006 = 0.0954, 

which becomes P=0. 10, Exact test (one tailed). A similar analysis was performed for all the 

antigens compared, but only to more extreme values when the initial 2x2 revealed a P<0. 10. 

Only DR1 1 was significantly different in the two groups (EUs 14/56, HIVs 0/16; 

P<0.02, Exact test (one tailed)), but once corrected for the number of tests (P= original P x 

number of antigens tested (Hawkins (1981))) was no longer so (P." '=0.18, Exact test (one 

tailed)). Those which although not formally significant, but showed a difference, included B27 

which was increased in the lily-infected contacts compared to EUs (BUs 2/5 1, HIVs 3/17; 

P=0. 10. Exact test (one tailed)). Also increased in the infected group was A26 (EUs 1/39, 

HIVs 2/17; P<0.09, Exact test (one tailed)) and DR3 (EUs 16/54, }iIVs 8/16; P=0.1 1, 
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Exact test (one tailed)). Both expression of A3 and DR4 was increased in EUs compared to 

the infected contacts (A3: EUs 13/39, HIVs 2/17; P<z0.09, Exact test (one tailed); DR4: EUs 

19/54, HIVs 2/16; P=O. 07, Exact test (one tailed)). However, as for DRI 1, all of these were 

even less significant once the correction for the number of tests was performed (data not 

shown). 

4.3.1.b EUs and Population Controls 

The main problem with analysis of MRC data arises from the large number of alleles 

at each locus, such that the numbers of each allele are typically small and large numbers of 

individuals are required to show differences between two groups. As the number of 

heterosexually infected contacts typed was so low, it was unlikely to show any small 

differences that existed between the groups. It was therefore decided to compare the antigen 

frequencies of the EUs to those of a published population control study in the Edinburgh area 

(Jazwinska and Kilpatrick (1987)). This study involved 264 parents of babies born in the 

maternity ward of an Edinburgh hospital. The antigen frequencies reported are shown in 

Appendix 4.4 and as explained earlier involved a more limited typing than performed on the 

heterosexual cohort. This meant several antigens had to be grouped in the EUs to broader 

specificities (see Section 4.3.1). 

The more significant results are summarised in Table 4.4. The most striking 

differences are in the frequencies of DR5 and DR6 (see Table 4.4; DR5: P=0.005; DR6: 

P=0.002, Exact test (one tailed)), with DR5 being higher in EUs and DR6 higher in Controls. 

The majority of the EUs expressing DR5 were in fact DR  1 (14/15). However, as the control 

population was typed with a lower specificity and hence, the numbers of Controls expressing 

DRI 1/12 was unknown, it could not be confirmed that the difference was due to DR1 1 alone. 

B7 and DRI were also significantly different in the two groups (see Table 4.4; B7 

P=O.Ol; DR1 P=0.03), with B7 increased in Controls and DR1 increased in EUs. However, 

the corrected values were not significant for B7 and DR 1, but remained so for DR5 and DR6 

(see Table 4.4; B7: P=O. l8; DR 1: P.,,=0. 24; DR5: P=O. O4; DR6: P<O.O2). 

4.3.1.c Indexes 

The indexes were divided into those who transmitted HIV heterosexually 

(Transmitting Indexes (TRIs)) and those who did not transmit (Non-TRIs (NTRIs)). The 

numbers HLA typed in each group are shown in Table 4.1 and the actual HLA types for the 

167 



Table 4.4. 

Comparisons of HLA Antigen Frequencies in EUs and Population Controls 

Number of Number of 
EUs Controls P P 

cm 

Expressing Expressing 
Antigen/Total Antigen/Total 

Exact Test Exact Test 

(%) (%) (one tailed) (one tailed) 

All 9/38(32) 33/264(13)  0.06 0.72 

B7 8/50(16) 86/264(33) o.ol' 0.18 

B14 8/50(16) 22/264(8) 0.08 NS 

B18 4/50(8) 6/264(2) 0.06 NS 

B35 10/50(20) 32/264(12) 0.10 NS 

DR1 11/53 (21) 27/264(10) 0.03# 0.24 

DR4 19/53 (36) 66/264 (25) 0.07 0.56 

DR5 15/53 (28) 33/264(13) 0 . 005# 0 . 04# 
(11/12) 

DR6 8/53 (15) 93/264 (35) 0 . 002# 0 . 02# 
(13/14) 

Corrected for the number of tests by multiplying the original P value by the number of antigens 
tested (Hawkins (1981)). 

P<O.05 

NS - non-significant, i.e. P,>1.00 
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individuals are shown in Appendix 4.2-4.3. Only A24 showed any remote difference between 

the two groups, but this was not significant (TRIs 1/18, NTRIs 7/30; P=O. 11, Exact test (one 

tailed)). 

4.3.2 Mismatch HLA Types 

Full HLA-AIB/DR types were available for 11 concordant couples and 30 discordant 

couples. The HLA types were scored according to the degree of mismatch of the contact to the 

index (see Table 4.5). For example, Index 4681 (14681) - A1,33; B7,37; DRI,1 and Contact 

4681 (C4681) - Al,!; B62,62; DR 1,1 would be scored 3, as C4681 would have been 

mismatched at the A33, B7 and B37 of her partner. The minimum mismatch would have 

theoretically been 0, but was in fact 1 and the maximum was 6. Individuals with unclear HLA 

typing were included if the possible phenotypes differed, e.g. C3022 was typed B44, 40/41, 

but her partner was B 13,14, so either would have been a mismatch. 

The mean scores were 3.5 for the concordant couples and 4.5 for the discordant 

couples (see Table 4.5) and this difference was significant following a t test of the square root 

of the mismatch scores (t=2.51, P<0.02), or using the non-parametric Mann-Whitney UI 

Wilcoxon Rank Sum W Test (z=2.34, P<0.02). This shows that discordant couples had a 

significantly higher degree of mismatch at the HLA loci than concordant couples. 

4.3.3 CCR-5 

4.3.3.a Genotypes 

A total of 58 (44 female, 14 male; see Appendix 4.5 for individual results) EUs and 

86 (65 female, 21 male; see Appendix 4.6 for individual results) heterosexually infected HTV 

individuals were genotyped by PCR for a 32 bp deletion (A32) CCR-5 (see Section 2.14.3). 

Control samples from 50 individuals (see Appendix 4.7 for individual results), selected for a 

study of polycystic kidney disease without regard for risk of HIV infection, were also analysed 

(kindly provided by Prof. Alan Wright, MRC Human Genetics Unit, Edinburgh). All subjects 

were of Caucasian origin and 95% reside in Central Scotland. 

Individuals were either homozygous wild type (WT/WT) at this locus, homozygous 

for A32 (32/i32), or heterozygous for the mutation (WT/.32). A total of three homozygotes 

for the A32 mutation were observed; all were HTV-negative, two were from the control group 

and one in the EUs (see Table 4.6). 
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Table 4.5. 

LILA Mismatch Scoring for Heterosexual Couples 

Concordant Pairs (n=11) 	Discordant Pairs (n=30) 

ID Mismatch ID Mismatch 
Score Score 

3152 4 3021 6 
3891 5 3022 4 
4101 5 3061 6 
4151 6 3073 1 
4241 3 3141 5 
4461 3 3241 6 
4681 3 3311 5 
4691 3 3351 5 
4831 1 3372 5 
4901 2 3672 4 
5291 3 3723 5 

3781 4 
3791 4 
3961 6 
4051 5 
4141 6 
4191 4 
4311 4 
4331 5 
4401 5 
4431 4 
4441 4 
4471 4 
4631 3 
5051 3 
5052 4 
5191 5 
5231 4 
5351 4 

1 5411 5 
Mean 3.5 Mean 4.5 

Median 3 Median 4.5 
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Table 4.6. 

CCR-5 Genotypes and Allele Frequencies in Controls. EUs and ff[V Cohorts 

I 
WTI 
WT 

Number 

WT/ 
A32 

i32/ 

z32 

'NTI 
WT 

WTI 

A32 
A32/ 

z32 

z32 Allele 
Freq (%) 

(95% CI)t 

EUs 16 

n=5 8 
40 17 1 69 29 2 (10-24) 

HIV 13 
n=86 63 23 0 73 27 0 (8-19) 

Controls 14 
n=50 38 10 2 76 20 4 (8-22) 

* WT/WT: homozygous wild-type CCR-5 genotype: 32/i32 for the homozygous mutant for the 
32bp deletion in the CCR-5 gene and WT/E32 for the heterozygote. 

95% Binomial Confidence Intervals (CI). 
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Table 4.7 summarises all the combinations and comparisons of genotype frequencies 

performed. There was no difference in the genotype frequencies amongst the EUs, 

heterosexually infected and control individuals (see Table 4.7.a; %2=O.69,  P=0.71, combining 

homozygous mutant individuals with heterozygotes, due to low numbers of homozygotes; 

x2= 1. 12, P=0.57, comparing WT/WT and heterozygotes only, i.e. excluding A32/A32 

homozygotes). 

Direct comparison of the groups heterosexually exposed to HIV (EUs and HTV + 
 s), 

also revealed no difference in the CCR-5 genotype frequencies (see Table 4.7.c), neither were 

there any difference between the control group and either the EUs, or HIVs (see Table 4.7.b). 

The apparent discrepancy in the two tests used (see Table 4.7.b/c; Chi-squared/ Fisher's 

Exact Test) comes from computational differences. The  Exact test was computed manually 

and following the test on the initial 2x2 square, requires that more extreme tables are 

constructed and the sum of all the results giving the 'exact' test (see Section 4.3.1 for an 

example). This was therefore only performed on results which gave an initial P<0. 10. The X2 

result therefore provides a more accurate reflection of the probability in the non-significant 

results, but generally has reduced power for smaller sample sizes, hence the use of the Exact 

test. 

4.3.3.b Allele Frequencies 

The mean allele frequencies were obtained from the following formula: 

Mutant Allele frequency = 	Number of mutant alleles 

(p) 	 Total number of alleles (N) 

where the mutant allele frequency is p and the wild type allele frequency is q and p+q= 1. The 

Hardy Weinberg theory states that, in the absence of selection, migration, or mutation 

affecting the locus in question the relationship between the allele frequencies and genotype 

frequencies is given by: p 2  + 2pq+ q2  =1, where p2  is the proportion of homozygotes for the 

mutant allele, 2pq is the proportion of heterozygotes and q2  is the proportion of homozygous 

wild type individuals. 

The difference between the mean allele frequencies are summarised in Table 4.6. 

Allele frequencies obtained of 16% for EUs, 13% for HIVs and 14% for Controls were 

obtained (see Table 4.6) and no significant differences were detected between any group (see 
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Table 4.7. 

Probabilities obtained from Comparisons of Genotype Frequencies 

EUs/ HPts and Controls 
	 x2  

P 
CCR5tl 

WT/WT vs WT/32 + 32/32 	 0.71 
WT/WT vs WTh32 	 0.57 
CCR-2 11  

WT/WT vs WT/641 + 6411641 	 0.25 
WT/WT vs WT/641 	 0.30 

CCR-2/CCR-5 

WT/WT vs WT/32, 641/WT, 6411A32, 32/32, 6411641 	 0.83 

Control / EU 	Control I HIV 
Control Versus x2  Fisher Exact X 

2 Fisher Exact 
EUs and ffLVs Test Test 

CCR5tI 

WT/WT vsWT/32+32/32 0.55 0.12 0.88 0.15 
WT/WT vsWTA32 0.41 0.10 0.58 0.13 
CCR2tl 

WT/WT vs WT/641 +6411641 0.37 0.12 0.91 0.19 
WT/WT vs WT/641 --- 

--- 0.96 0.20 
CCR-2/CCR-5 

WT/WT 	vs 	WT/32, 	6411WT, 0.86 0.15 1.00 0.14 6411A32. 	32/32, 6411641 

Chi-squared/ Fisher's Exact test analysis of genotyping data 

WT/WT: homozygous wild-type CCR-5 genotype: 32/32 for the homozygous mutant for the 32bp 
deletion in the CCR-5 gene and W7/zX32 for the heterozygote. 

§ WT/WT: homozygous wild-type CCR-2 genotype; 641/641 for the homozvgous mutant for the valine to 
isoleucine a-a change and WT/641 for the heterozygote. 

Calculated from 2x2 table by either pooling, or excluding homozygous mutants with heterozvgotes. 

$ 
Calculated with Yate's correction for contingency 

£ 
Probability for Exact test is underestimated when P>0. 10, see Section 4.3. l.a for explanation. 

I 
1 '1 
I .) 



Both Sexes 	Females Only 	Males Only 
C. EUs versus HIVs X Fisher Exact X 

2 Fisher Exact X 
2 Fisher Exact 

p$ 
Test 

FIE p$ 
Test 

pE p5 
Test 

pL 
CCR5tl 

WT/WT ysWT/32+32/32 0.71 0.13 0.86 0.16 0.94 0.26 
WT/WT vsWTh32 0.83 0.14 0.98 0.17 
CCR2tI 

WT/WTVSWT/641+6411641 0.16 0.08L 0.06 0.02k 0.32 
WTfWTvsWT/641 0.21 0.13k  0.08 0.04 N.o CCR-2/CCR-5 

WT/WT 	vs 	WT/M2, 	641!WT, 0.66 0.12 0.61 0.13 0.27 641/M2, M2/M2, 641/641 	1 I  

* Chi-squared and Fisher's Exact test of genotyping data 	 P<0.05 

WT/WT: homozygous wild-type CCR-5 genotype: M2/M2 for the homozygous mutant for the 32bp deletion in the CCR-5 gene and WT/32 for the heterozygote. 

* WT/WT: homozygous wild-type CCR-2 genotype; 641/641 for the homozygous mutant for the valine to isoleucine a-a change and WT7641 for the heterozygote. 

Calculated from 2x2 table by either pooling, or excluding homozygous mutants with heterozygotes. 

$ Calculated with Yate's correction for contingency 

L 
Probability for Exact test is underestimated when P>O.1O, see Section 4.3.1.a for explanation. 



Table 4.8.a). Combining all groups, the overall frequency of the i.32 allele in this population 

was 14% (9-23% (95% Binomial Confidence Intervals (Cl))). 

From the allele frequencies obtained, Hardy Weinberg predicted genotype frequencies 

were calculated for the three groups (data not shown). The actual values obtained fitted the 

expected ones from the various allele frequencies. 

4.3.3.c Single Sex Analysis 

Due to the known heterogeneity in the relative risk of male-to-female and female-to-

male heterosexual transmission (see section 1.3.3), the contacts were assessed separately 

according to sex (see Table 4.9). The sex of the Controls was not known and comparisons 

with them was therefore not performed. 

As the majority of the contacts were female, the analysis of males only carried little 

statistical weight due to the low numbers (see Table 4.7.c). However, there was still no 

significant difference when female only contacts were analysed separately (see Table 4.7.c). 

The allele frequencies (see Table 4.9; females only - EUs 16%, HIVs 13%; males only - EUs 

18%, HIV +s  14%), also did not differ between the groups for either sex (see Table 4.8.a; 

females only - z=0.59, P=0.56; males only - z=0.40, P=0.69). 

4.3.4 CCR-2 

4.3.4.a Genotypes 

The same groups screened for the deletion in the CCR-5 gene (see Section 4.3,3; see 

Appendix 4.5, 4.6 and 4.7 for individual results) were also assessed for their genotype for a 

mutation in CCR-2, causing a valine to isoleucine amino acid change at position 64 (641). 

Only one homozygote for the 641 mutation was seen and this was in the 1{IV group 

(see Table 4.10). As for CCR-5, no significant heterogeneity was observed among the 

genotype frequencies of the three groups (see Table 4.7.a; %2=2.79,  P=0.25, combining 

6411641 individuals; x2=2.38,  P=0.30, excluding 6411641 individuals). However, a higher 

frequency of heterozygotes were observed in H1Vs than EUs (see Table 4.10); a difference 

which was close to significance (see Table 4.7.c; P<z0.08, Exact test (one-tailed) pooling 

641/641 homozygotes, P=0. 13, Exact test (one-tailed) excluding them). 
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Table 4.8. 

Probabilities Obtained When Comparing Allele Frequencies 

A. CCR-5 

Both Sexes 	Females Only 	Males Only 

CCR-5 J 	z pt J I 	' 
EUvsH1V 0.71 0.48 0.59 0.56 0.40 0.69 

EU vs Control 0.48 0.63 

IHVvs Control 0.15 0.88 --- --- 

TRivsNTRJ 1  0.93 0.35 0.10 0.92 1.08 0.28 

B.CCR-2 

Both Sexes 	Females Only 	Males Only 

CCR-2 I 	z P z p z p 

EUvs}iIV 1.77 0.08 2.33 0.02 0.16 0.87 

EUvs Control 1.18 0.24 

HTV vs Control 0.50 0.62 

TRJvsNTRJ 1.47 0.14 0.81 0.42 1.27 0.20 

* Standardised normal deviate (z) obtained after comparing allele frequencies 

tProbffity  (P) of obtaining z in two-tailed test 

§ TRansmitting Index 

H Non-TRansmittmg Index 

P<0.05 
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Table 4.9. 

CCR-5 Genot'vnes and Allele Frequencies in EUs and HW Cohorts - Single Sex 

Females only 

Number % 

32 Allele 
WT/ 	WT/ 	A32/ WT/ 	WTI 	t32/ Freq (%) 

Females only 	WT* 	A32 	L32 WT 	i32 	L32 (95% CI)t 

EUs T 71 
16 

__A A 31 	12 	1  27 	2 (9-25 
1199 
	 \_ --, 

HIV 
	

13 
n=65 	48 
	

17 	0 I 74 	26 
	

0 	(8-20) 

Males only 

Number % 

A32 Allele 
WT/ WT/ i32/ WT/ WT/ i32/ Freq (%) 

Males only WT i32 z32 WT A32 A32 (95% CI) 

EUs 18 
n14 9 5 0 64 36 0 (6-36) 

HIV 14 
n=21 15 6 0 71 29 0 (6-28) 

* WT/WT: homozygous wild-type CCR-5 genotype: 32/32 for the homozygous mutant for the 
32bp deletion in the CCR-5 gene and WT/32 for the heterozygote. 

95% Binomial Confidence Intervals (CI). 
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Table 4.10. 

CCR-2 Genotynes and Allele Frequencies in Controls, EUs and B1IV Cohorts 

WT/ 
WT* 

Number 

WT/ 
641 

6411 
641 

WT/ 
WT* 

% 

WT/ 
641 

6411 
641 

641 Allele Freq
(%) 

(95% CI)t 

54 4 0 93 7 0 (1-8) 

HI V+  9 
n=86 72 13 1 84 15 1 (5-14) 

Controls 7 
n=50 43 7 0 86 14 0 (314) 

* WT/WT: homozygous wild-type CCR-2 genotype; 641/641 for the homozygous mutant 
for the valine to isoleucine a-a change and WT/641 for the heterozygote. 

95% Binomial Confidence Intervals (Cl). 
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43.4.b Allele Frequencies 

Allele frequencies of 3% for EUs, 9% for HI'Vs and 7% for Controls (see Table 

4.10) were obtained. The statistical differences between the groups are summarised in Table 

4.8.b. The frequency obtained for the control group did not differ from either group, but the 

difference between the heterosexually exposed cohorts (EUs and liiVs) approached 

significance (see Table 4.8.b; z=1.77, P=0.08). 

Hardy Weinberg predicted frequencies did not differ from those obtained, except for 

the CCR-2 frequencies of the NTRIs (both sexes). Expected frequencies of 30.4, 7.1 and 0.4 

for WT/WT, WT/641 and 641/641 respectively were calculated from the allele frequencies 

(WT: 89%; 641: 11%) which differed significantly from the observed frequencies of 32, 4 and 

2 (P<0.04, Exact test calculated as outlined in Weir (1990)). The departure was a higher than 

expected frequency of homozygotes for the 641 mutation in the NTRIs. When males only were 

analysed, a significant departure was no longer seen. 

4.3.4.c Single Sex Analysis 

As for CCR-5, the genotypes and allele frequencies were determined for males and 

females separately (see Table 4.11). The increased number of heterozygotes seen when both 

sexes were used, was more marked in the female only analysis (see Table 4.11 .a; 2% 

heterozygotes in EUs compared to 14% in HIlts) and the difference was significant (see 

Table 4.7.c; P=0.02, Exact test (one-tailed), pooling 641/641 homozygotes; P=0.04, Exact test 

(one tailed) excluding them). The CCR-2 641 mutant allele thus appears to be a risk factor for 

heterosexual infection of females (RR= 1.6 (95% CI 1.3-2.1)). No difference between the two 

groups was seen when males only were included (see Table 4.11. b; 21% heterozygotes in EUs 

compared to 19% in HIV +  s (see Table 4.7.c)). 

The allele frequencies also differed significantly between the female EUs and Hilts 

(see Table 4.1 1.a; 1% in EUs, 8% in Hilts; see Table 4.8.b; z=2.33, P<0.02), but not when 

males only were considered (see Table 4.11. b; 11% in EUs, 10% in HPts; see Table 4.8.b; 

z--0. 16, P=0.87). 

4.3.5 Combined CCR-2/5 Analysis 

Individuals WT at both the CCR-2 and CCR-5 loci were compared to those of all 

other possible genotypic combinations (WT/i32, WT/641, 64I/A32, .32/32 and 641/641). 
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Table 4.11. 

CCR-2 Genotypes and Allele Frequencies in ETJs and HW Cohorts - Single Sex 

Females only 

Number % 

641 Allele Freq 
WT/ 	WT/ 	641/ WT/ 	WT/ 6411 	(%) 

Females only 	WT* 	641 	641 WT* 	641 641 	(95% CI)t 

EUs 
..._A A 43 	1 	0 98 	2 0 (0-6 

' - I 

HI't 
	

811 
n=65 	55 
	

9 	1 	I 85 	14 
	

2 	(4-14) 

Males only 

Number 	 % 

WT/ WT/ 641/ WT/ WT/ 6411 641 Allele Freq(%) 
Males only 	WT* 	641 	641 	WT* 	641 	641 	(ocoL ('T\t 

EUs 	 11 
n=14 	11 	3 	0 	79 	21 	0 	(2-28) 

HIV 	 10 
n=21 	17 	4 	0 	81 	19 	0 	(3-22) 

*WT/WT: homozygous wild-type CCR-2 genotype; 641/641 for the homozygous mutant 
for the valine to isoleucine a-a change and WT/641 for the heterozygote. 

95% Binomial Confidence Intervals (CI). 

§ P<0.02, Exact test comparing the CCR-2 genotype frequencies in the two cohorts, 
pooling samples to avoid low expected values. 

z=2.33, P<0.02, difference between the allele frequencies established from the 
standardised normal deviate. 
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No significant difference was observed between the three groups (see Table 4.7.a; %2=0.38, 

P=0.83), or between the Controls and either the EUs, or HIVs (see Table 4.7.b). The 

difference between the heterosexually exposed cohorts only (EUs and Hilts) was also not 

significant, even during single sex analysis (see Table 4.7.c). 

4.3.6 HIV + Index Partners 

Samples were obtained from HIV index partners from the Heterosexual study and 

divided into those who transmitted virus to their heterosexual partner (TRIs; n=19 (3 female, 

16 male; see Appendix 4.8 for individual results) and those who did not transmit (NTRIs; 

n=38 (10 female, 28 male; see Appendix 4.9 for individual results). 

4.3.6.a CCR-5 Genotypes 

No homozygotes for the i32 deletion in CCR-5 were seen (see Table 4.12) and 

despite an increased number of WT/E32 heterozygotes in the NTRIs (NTRIs 34%, TRIs 

21%), no significant difference between the CCR-5 genotypes in two groups was seen (see 

Table 4.13). 

When the groups were divided into single sexes (see Table 4.14), the low numbers of 

females meant analysis of them carried little statistical weight (see Table 4.13). In the males 

only group (see Table 4.14.b) .  the increase in heterozygotes in the NTRIs was more marked 

(NTRIs 36%, TRIs 19%), but this was again not significant (see Table 4.13). 

4.3.6.b CCR-5 Allele Frequencies 

Allele frequencies for the A32 mutation of 11% in TRIs and 17% in NTRIs were 

obtained, but the difference was not significant (see Table 4.8; z=0.93, P=0.35). When males 

only were considered, the difference was again increased (see Table 4.14; TRIs 9%, NTRIs 

18%), but this was also not significant (see Table 4.8; z=l.08, P=0.28). 

4.3.6.c CCR-2 Genotypes 

Two homozygous 641/641 individuals were seen in the NTRIs (see Table 4.15) and an 

increased number of WT/641 heterozygotes were seen (see Table 4.15; NTRIs 11%, TRI5 

5%), but this was not significant (see Table 4.13). As for CCR-5, separate analysis of the 
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% 

A32 Allele 
L32/ 	WT 	WT/ 	32/ Freq (%) 

32 	WIT 	z32 	i32 (95% CI)t 

11 
0 79 	21 	0 (3-24) 

Number 

WT/ WT/ 
WT 	i32 

15 	4 

17 
25 	13 	0 	66 	34 	0 	(10-27) 

Table 4.12. 

CCR-5 Genotypes and Allele Frequencies in HIV Indexes 

TRI 
n7-19 

NTRI 
n=3 8 

* WT/WT: homozygous wild-type CCR-5 genotype: 32/32 for the homozygous mutant for the 
32bp deletion in the CCR-5 gene and WT/E32 for the heterozygote. 

95% Binomial Confidence Intervals (CI). 

§ TRansmitting Index 

Non-TRansmitting Index 
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Table 4.13. 

Probabilities obtained from Comparisons of Genotype Frequencies 

Both Sexes 	Females Only 	Males Only 
Tifi versus NTRI Fisher Exact X2  Fisher Exact j2  Fisher Exact 

Test Test Test 
p$ pE ps pE p5  p 

CCR5tl 

WT/WT vsWT/32+M2/L32 0.47 0.15 XXX 0.50 0.40 0.14 
WT/WT vsWTh32 --- . 	 --- --- 

CCR-2 10  
WT/WT vsWT/641+641J641 0.48 0.20 XXX 0.77 0.53 0.22 
WT/WT vs WT/641 0.82 0.32 XXX 1.00 0.72 0.29 

CCR-2/CCR-5 
WT/WT 	vs 	WT/i32, 	641/WT, 0.21 010r XXX 0.49 0.19 
641k32,_32/E32,_641164! 

* 
Chi-squared and Fisher's Exact test of Tables 4.X., 4.X, etc 	 P<0.05 

tWT/WF: homozygous wild-type CCR-5 genotype: A32/32 for the homozygous mutant for the 32bp deletion in the CCR-5 gene and WT/32 for the heterozygote. 

WT/WT: homozygous wild-type CCR-2 genotype; 641/641 for the homozygous mutant for the valine to isoleucme a-a change and WT1641 for the heterozygote. 

I Calculated from 2x2 table by either pooling, or excluding homozygous mutants with heterozygotes. 

$ Calculated with Yate's correction for contingency 	 XXX - n_-~ 1 for one of groups so test not valid 

£ Probability for Exact test is underestimated when P>0. 10, see Section 4.3.1 .a for explanation. 



Table 4.14. 

CCR-5 Genotypes and Allele Frequencies in HW Indexes - Single Sex 

A. Females only 

Number % 

32 Allele 
WT/ WT/ A32/ WT/ WT/ M2/ Freq (%) 

Females only WT* 32 A32 WT*  A32 A32 (95% CI)t 

TRP 17 

n =3  
2 1 0 67 33 0 (0-60) 

NTRF 15 
n=10 7 3 0 70 30 0 (3-38) 

B. Males only 

Number % 

M2 Allele 
WT/ i32/ WT/ WT/ 32/ Freq (%) 

Males only WT i32 z32 WT A32 z32 (95% CI)t 

TRV 9 
n=16 13 3 0 81 19 0 (2-25) 

NTRIU 18 
n=28 18 10 0 64 36 0 (9-30) 

* 
WT/WT: homozygous wild-type CCR-5 genotype: i32/t32 for the homozygous mutant for the 

32bp deletion in the CCR-5 gene and WT/E32 for the heterozygote. 

95% Binomial Confidence Intervals (CI). 

§ TRansmitting Index 

I Non-TRansmitting Index 
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2 	I 84 	11 	5 

0 	I 95 	5 

% 

WT/ WTI 
WT* 641 

Number 

WT/ WT/ 6411 
WT* 	641 	641 

TRI 
18 	1 

n--19 

NTRII 
n=38 	32 	4 

641 Allele Freq 
6411 	(%) 
641 	(95% CI)t 

3 
0 	(0-14) 

11 
(5-20) 

Table 4.15. 

CCR-2 Genotypes and Allele Frequencies in E1W Indexes 

* WT/WT: homozygous wild-type CCR-2 genotype; 641/641 for the homozygous mutant 
for the valine to isoleucine a-a change and WT/641 for the heterozygote. 

95% Binomial Confidence Intervals (Cl). 

§ TRansmitting Index 

Non-TRansmitting Index 
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females only (see Table 4.16.a) was inhibited by the low numbers (see Table 4.13) and the 

differences between the males only (see Table 4.16.b) was not significant (see Table 4.13). 

4.3.6.d CCR-2 Allele Frequencies 

Allele frequencies of 3% in TRIs and 11% in NTRIs were obtained (see Table 4.15), 

but the difference was not formally significant (see Table 4.8.b; z= 1.47, P=O. 14). Analysis of 

males only yielded the same allele frequencies (see Table 4.16.b), but the lower numbers 

reduced the significance (see Table 4.8.b; z=1.27, P=0.20). 

43.6.e Combined CCR -2 /5 Analysis 

When comparing the frequency of individuals WT at both the CCR-2 and CCR-5 loci 

to all other genotypic combinations (as outlined above) (20 WT:WT, 18 non-WT/WT for 

NTRIs; 14 WT/WT, 5 non-WT/WT for TRIs) the difference between the two groups was 

increased (see Table 4.13; P=0. 10, Exact test (one tailed)), thus the two mutations appeared to 

have an additive effect on the probability of heterosexual transmission from HIV indexes. 

4.3.7 CCR Genotypes and Exposure 

The availability of quantitative data on exposure levels with the EU group allowed us 

to investigate whether the CCR-2 and CCR-5 genotypes differed with respect to the average 

'at risk' exposures accumulated without seroconversion. 

The level of 'at risk' exposure, determined as outlined in Section 2.2.1.a, ranged from 

less than 50 contacts to over 1000. For CCR-5, the range of exposures for both WT/WT and 

WT/i32 was evenly spread with no difference with respect to genotype (see Figure 4.6.a). 

Median values of 131 and 118 for the WT/WT and WT/i32 respectively were obtained. The 

accumulated mean exposure for WT/WT and WT/E32 heterozygotes did not differ 

significantly (WT/WT: 280, WT/z32: 216; t=0.14, P=0.89 following log transformation). 

When the female contacts were analysed separately, the median accumulated exposures were: 

WT/WT - 100, WT/.32 - 129, but the difference was again not significant (Mean values 

WT/WT: 222, WT/32: 217; t=0. l9, P=0.85 following log transformation). 

The low numbers of EUs expressing the CCR-2 641 mutation (4 WT/641) meant that 

little could be concluded from the exposure data relative to the CCR-2 genotype. Figure 4.6.b 

shows the distribution with median values of 127 WT/WT and 150 WT/641. The mean 



Table 4.16.' 

CCR-2 Genotvnes and Allele Frequencies in E1W Indexes - Sin2le Sex 

Females only 

Number % 
641 Allele Freq 

WT/ WT/ 6411 WTI WT/ 6411 (%) 
Females only WT 641 641 WT*  641 641 (95% CI) 

TRI 0 
3 0 0 100 0 0 (0-43) 

NTRP 10 
n7-10 9 0 1 90 0 10 (132) 

Males only 

Number % 
641 Allele Freq 

WT/ WT/ 6411 WT/ WT/ 6411 (%) 
Males only WT* 641 641 %\rf*  641 641 (95% CI)t 

TRI 3 
n=16 15 1 0 94 6 0 (0-16) 

NTRP '11 
n=28 23 4 1 82 14 4 (4-22) 

* WT/WT: homozygous wild-type CCR-2 genotype; 641/641 for the homozygous mutant 
for the valine to isoleucine a-a change and WT/641 for the heterozygote. 

t95% BiIiOIniaI Confidence Intervals (CI). 

§ TRansmitting Index 

I Non-TRansmitting Index 
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Figure 4.6. 

fflV Exposure AmOfl2 EUs Related to CCR-2 and CCR-5 Genotvne 

MV exposure levels (plotted on a log scale) are the number of 'at risk' exposures for 

each contact individual, estimated as outlined in Section 2.2.1. a.  Median values are 

represented as horizontal bars. 

CCR-5 genotypes 

WT/WT for homozygous wild type, i32/z32 for the homozygous mutant for the 

32bp deletion in the CCR-5 gene and WT/32 for the heterozygote. Median 

exposure values shown: WT/WT: 131, WTh32: 118. Mean exposure values: 

WT/WT: 280, WT/i32: 216 (t=0.14, P=0.89). 

CCR-2 Genotypes 

WT/WT for homozygous wild type and WT/641 for the heterozygote for the 

isoleucine mutation at amino acid position 64. Median exposure values shown: 

WT/WT: 127, WT/641: 150. Mean exposure values: WT/WT: 252, WT1641: 295 

(t=0.57, P=0.57). 
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accumulated values (WT/WT: 252, WT/641: 295) did not differ significantly as expected from 

the low numbers of heterozygotes (t-0.57, P-0.57 following log transformation). 

4.3.8 CCR-5 Sequencing 

Following the discovery that the i32 deletion in CCR-5 had no effect on heterosexual 

transmission in this cohort, it was decided to sequence several of the EUs with the highest 

exposures to see if they had any other alterations in their CCR-5 locus that may explain their 

seronegative status. Five individuals were chosen: C3361 (female; WT/WT CCR-2 and 5; 

Exposures: 990); C4191 (female; WT/L32 CCR-5, WT/WT CCR-2; Exposures: 756); 

C4331 (male; WT/WT CCR-5, WT/641 CCR-2; Exposures: 798); C4421 (male; WT/WT 

CCR-2 and 5; Exposures: 1096); C5191 (female; WT/WT CCR-2 and 5; Exposures: 1132). 

The whole CCR-5 gene was amplified, as described earlier (see Section 4.2.3). All 

four individuals homozygous wild-type for the A32 mutation in CCR-5 had identical amino 

acid sequence to that of the consensus, with no other deletions, insertions, or mutations 

apparent. The resulting amino acid sequences are given in Appendix 4.10. The WT/i32 

individual (C4191) gave an unclear signal after the mutation site as expected, as bail of the 

products would have been from the WT gene and half from the A.32 gene. Limiting dilutions, 

to allow amplification from a single allele, were not performed. 

4.3.9 CCR-5 Promoter Mutations 

The heterosexually exposed individuals (EUs and fflVs) and the populations controls 

were screened, in collaboration with Dr. M. Carrington, for the presence of different CCR-5 

promoter alleles (see Appendix 4.5, 4.6 and 4.7 for individual results). The alleles which Dr. 

Carrington and co-workers have described relate to different combinations of polymorphisms 

in the CCR-5 promoter region (see Section 4.1 and Figure 4.1). The frequencies obtained for 

the alleles are shown in Table 4.17 and the numbers screened are slightly lower than those 

previously screened for the CCR-2 and CCR-5 mutations, due to limited samples remaining 

(see Table 4.17). 

Of the 10 alleles described by Dr. Carrington (P1-10), P5-10 are rare and were not 

seen for any of the Edinburgh cohort screened. The frequency of the P3 allele is also rare in 

Caucasians (0.14%, Martin et al. in preparation) and was also not seen for any individual in 

the Edinburgh cohort (see Table 4.17). 



Table 4.17. 

Frequency of CCR-5 Promoter Mutation Alleles and Composite 

CCR-2/P1/CCR-5 Bearing Haulotvpes. 

Number %# 

EU 	Control 	HTVs EU 	Control 	HIVs 

(n=51) 	(n=48) 	(n=70) 

WT/P1/WT 41 35 52 40 36 37 

P1 	641/P1/WT 3 7 15 3 7 11 

WT/P1/32 19 13 22 19 14 16 

P1 63 55 89 62 57 64 

P2 6 13 9 6 14 6 

P4 33, 28 42 32 29 30 

Totalt 102 96 140 

* Number of Alleles in different risk groups 

Allele Frequency as % of total 

$ Frequency of CCR-5-P1 bearing haplotypes: CCR-2/P1/CCR-5 

t Total Number of Alleles (2 x number of individuals) 
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For the P1, P2 and P4 alleles, similar frequencies were obtained between the groups, 

except for the P2 allele, which was elevated in the population controls (14% Controls 

compared to 6% in EUs and HIVs; see Table 4.17). The same difference was reflected when 

the allele frequencies were compared and the P2 allele approached a significant difference 

when the Controls were compared to HLVs and EUs (z=1.83, P=0.067 EUs verses Cohtrols; 

z=1.85, P=0.064 HIVs versus Controls; see Table 4.18). No other comparison revealed a 

significant difference (see Table 4.18). 

When the distribution of the three alleles (P 1,2,4) were compared between all three 

groups together and two groups separately, no significant differences were seen, although 

lower probabilities were obtained when comparing the Controls (see Table 4.19). In contrast, 

the EUs and 1-IVs were very similar, reflected in the very high probability 
( 2=0. 16, P=0.92; 

see Table 4.19) and hence the lower probabilities seen in the analysis including the Controls, 

probably reflects the observed difference in the P2 allele (see Table 4.19). 

As described earlier (see Section 4.1), the CCR-2-641 and CCR-5-i32 mutations, 

only occur on a P1 allele. This was supported by the lack of any individuals homozygous for 

the P2, or P4 alleles which expressed the 641, or the A32 mutations and all the 641/641 and 

M2/32 homozygotes were also homozygous for the P1 allele. The P1 allele could therefore 

be divided into three different CCR-21P1/CCR-5 haplotypes: WT/P1/WT, 641/P l/WT and 

WTJPl/32, as the CCR-2 and CCR-5 mutations never appear on the same allele (see Section 

1.7.3.a). The frequency of the three P1 haplotypes for the three groups are summarised in 

Table 4.17. As expected from the previous analysis in this Chapter, the haplotype expressing 

the CCR-2-641 mutation was elevated in the HIVs and decreased in the EUs (x 2=5 . 22,  

P=0.07 and z=2.28, P=0.02 for EUs and HIVs alone; see Table 4.18 and 4.20). No other 

significant differences were seen for the CCR-2fPl/CCR-5 haplotypes (see Table 4.18 and 

4.20). 

The distribution of the genotypes for the promoter alleles are summarised in Table 

4.20 for the three groups. As for the allele frequencies, the most striking difference is again in 

the population controls, which show a significantly higher frequency of the P1,P2 genotype 

than the other two groups (21% Controls; 8% EUs and 7% BWs (see Table 4.20); X 2-6.19, 

P=0.045 (see Table 4.21)). The comparisons between just Controls and one of the other 

groups also approach significance and extent of significance may just reflect the smaller 
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Table 4.18. 

Probabilities Obtained When Comparing CCR-5 Promoter Mutation Allele 
Frequencies 

A 	 P1 	 P2 	 P4 

z  L Pt  p 

EUvsHJV 0.29 0.77 0.17 0.87 0.39 0.70 

EUvsControl 0.64 0.52 1.83 0.067 0.49 0.62 

HTV vs Control 0.97 0.33 1.85 0.064 0.14 0.89 

B 	 WT/P1/WT 	641P1/WT 	WT/P1/32 

Pt p 

EU vs HIV 0.48 0.63 2.28 0.02w  0.60 0.56 

EUvsControl 0.54 0.60 1.40 0.16 0.97 0.33 

HIVvsContro1 0.11 0.87 0.89 0.37 0.46 0.65 

* Standardised normal deviate (z) obtained after comparing allele frequencies 

tProbjIjty  (P) of obtaining z in two-tailed test 

P<0.05 

§ Composite P1 haplotypes for CCR-2/P1/CCR-5 mutations (see Section 4.X) 
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Table 4.19. 

Probabilities for Comparisons of CCR-5 Promoter Mutation Alleles 

P1IP2/P4* 

P 

EUIHPts/Controls 0.28 

EUfHLVs 0.92 

EU/Controls 0.19 

ControI/HJVs 0.18 

CCR-2/CCR-5-P1/CCR-5 
2 

P 

EU/I11Vs/Controls 0.25 

EU/H1Vs 0.07 

EU/Controls 0.26 

ControJIHWs 0.76 

* Comparisons of distribution of promoter mutation alleles in different groups 

tComparisons  of distribution of CCR-5-P1 bearing haplotypes: WT/P1/WT, 64J/P1/WT, WT/P1/32 

1 011  



Table 4.20. 

Frequency of CCR-5 Promoter Mutation Genotypes. 

Number* % 

EU 	Control j HWs EU 	Control 	IFHVs 

P1,P1 	19 16 29 37 33 41 

P1,P2 	4 10 5 8 21 7 

P1,P4 	21 13 26 41 27 37 

P2,P2 	1 0 1 2 0 1 

P2,P4 	0 3 2 0 6 3 

P4,P4 	6 6 7 12 13 10 

Totalt 	51 48 70 

Number of Individuals bearing given genotypes for CCR-5 Promoter Mutations Alleles 

tTotal number of Individuals in each group. 
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Table 4.21. 

Probabilities obtained from Comparisons of CCR-5 Promoter Mutation Genotype Frequencies 

EIJsIHI'ts/Controls EIJsIHIV 4 s EUs/Controts Controls/HIlts 
Fisher Exact Fisher Exact Fisher Exact 

Test Test Test 
p p$ 	pE p5 	 pE p5 	 pE 

P1,P1 0.67 0.78 0.13 0.84 0.15 0.49 0.10 
vs not P1,P1 
P1, P2 0.045 0.84 0.27 0.12 0.06' 0.056 0.0290  
vs not P1,P2 
P1,P4 0.32 0.79 0.14 0.21 0.10E  0.35 
vs not P1,P4  

P2,P2 0.65 0.62 0.49 0.98 0.52 0.85 0.59 
vs not P2,P2 

P2,P4 0.19 0.62 0.33 0.22 0.11 0.66 0.24 
vs_  not _P2,P4  

0.91 0.99 0.22 0.84 0.24 0.90 0.21 
vs_  not _P4,P4 

* Chi-squared and Fisher's Exact test of genotyping data 	 5 Calculated with Yate's correction for contingency 

£ Probability for Exact test is underestimated when P>O.1O, see Section 4.3.1.a for explanation. 	 P<0.05 



numbers compared (see Table 4.21). The elevated P2 allele frequency in the Controls seems 

therefore to reflect • an increase in the P1 ,P2 genotype. No other significant differences were 

seen for any other genotype (see Table 4.21). 

Analysis of the fflVs and EUs for male and females only did not show any 

differences from the close associations seen for the analysis of both sexes together. The only 

exception was the difference in the 641/P 1/WT haplotype and this merely reflected the 

previous results seen for the CCR-2 mutation (see Section 4.3.4.c). 

4.4. DISCUSSION 

4.4.1 Establishment of Chemokine Receptor Genotyping Assay 

The use of the restriction enzyme Asp 700 in generating RFLPs to genotype 

individuals for the z32 mutation in CCR-5 was confounded by the inability to completely 

digest the product. This can often be due to too little enzyme, or too much product, or too 

short an incubation time. These factors were investigated and still only a partial digest was 

achieved. It was decided that a 'difficult' site may exist for this enzyme and an alternative 

strategy involving different enzymes used instead. 

The decision to use the direct PCR method to screen the cohorts was due to the saving 

in cost and time in the less laborious approach. It also enabled the screening of individuals 

who only had plasma samples available, as it required lower concentrations of DNA to 

amplify from. 

4.4.2 HLA 

The HLA phenotypes in individuals heterosexually exposed to HIV were compared 

according to infection status, either }ilV, or EU. A striking difference was seen for DRJ 1, 

which was increased in the BUs compared to HTV contacts (P<0.02). DR  1 is a split from 

DR5 (Hurley et al. (1997)) which has been linked in many studies to Kaposi's sarcoma (KS), 

both classical (Pollack, Safai and Dupont (1 983)) and AIDS related (Pollack, Safal and 

Dupont (1983); Friedman-Kien et al. (1982)). DR5 has also been linked to the presence of 

persistent generalised lymphadenopathy PGL (dePaoli et al. (1986); Raffoux et al. (1987)) 

and thromobocytopenia (Raffoux et al. (1987)) in IHV individuals. The genetic background 

seems to affect the associations, with individuals of a Black, Ashkenazi Jewish, or Hispanic 

background apparently showing the association of DR5 and KS and other ethnic backgrounds 
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not (Friedman-Kien et al. (1982); Prince et al. (1984)). The ethnic effect on DR5 as a risk 

factor for HIV infection was further supported by a study involving non-KS Hilt individuals 

of both Caucasian and African American decent (Cruse et al. (1991)). They showed an 

association of DR5 with HIV serostatus in both groups, but this was not significant in either 

group in corrected values. However, while the two splits of DR5, DR1 1 and DR 12, were 

significant as risk factors for HIV infection in African Americans in corrected values, only 

DR12 was in Caucasians. As the individuals investigated in the Edinburgh cohort were all 

Caucasians, this may explain the discrepancy of DR5 being a risk factor for FIIV infection in 

other studies, but one of its splits, DR1 1, apparently acting as a protective factor in this study. 

As DR 12 was not typed in the infected individuals, one can only infer from the DR5 frequency 

that this was elevated in the heterosexually infected individuals (2/16) compared to EUs 

(1/54), but this not significant. Once corrected for the number of tests, the DR1 1 frequency 

difference was also not significant. This highlights the major limitation of this study, in that 

the number of individuals HLA typed was limited, particularly in the HTV individuals, 

relative to the number of antigens tested making it difficult to establish statistical significance. 

When compared to population control frequencies the DR5 levels in the EUs (15/53, 

14/15 DR1 1) were also significantly increased, even after correction for the number of tests 

(P=0.005, P=0.04). What is not clear is if the association is related to DR  1, as the control 

group was typed for only DR5, rather than DR1 1 and DR 12, but it certainly warrants more 

investigation to establish whether the DR1 1 antigen is acting as a protective factor in the EUs. 

It is possible an opposing effect of the components of the DR5 group, DR  1 and DR 12, may 

be occurring, which would explain the discrepancy of this study which appears to suggest a 

protective effect of DR5 rather than as a risk factor. One study on mother to child 

transmission revealed an association of DR1 1 in the mother with an increase risk of 

transmission (Fabio et al. (1992)). However, the factors affecting transmission may differ 

from those affecting infection. 

The antigens A3 and DR4 were also increased in EUs compared to heterosexually 

HIV-infected individuals and although not formally significant, DR4 as a protective factor 

was in agreement with a study of Italian haemophiliacs (Fabio et al. (1990)). Antigens 

increased in the HiVs, i.e. potential risk factors, were A26, B27 and DR3, but none were 

formally significant. DR3 has been widely reported as a factor associated with disease 

progression in Hilts and also as a risk factor for infection, usually in association with Al 
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and B8 with which it is in linkage disequilibrium (Steel et at. (1988); Fabio et al. (1990); 

Kaplan et al. (1990); Kaslow et al. (1990); Mallal et al. (1990); McNeil et al. (1996)). The 

numbers expressing A1B8DR3 did not differ in the two heterosexually exposed groups 

examined here (EUs 5/35; HIV+  s 3/17). 

Other risk factors could be inferred from their under representation in BUs compared 

to population control frequencies, although I feel care should be taken in such conclusions, 

especially if they are not supported in H1V individuals. DR6 was significantly higher in 

Controls than EUs, even after correction for the number of tests (P=0.002, P<0.02), but this 

was not seen in the HlV contacts. The difference may reflect differences in the methods used 

to obtain the results and highlights a problem in the use of these controls. The potential 

differences in the both the different typing methods and also the fact that the results were 

generated in different laboratories, are a major limitation. Different conditions, although 

unlikely, may yield different results and therefore all of the apparent differences seen in this 

study would need to be confirmed, by re-analysis of the cohorts studied, using the same 

methods and under the same conditions. 

In contrast, Cruse and colleagues (1991) showed DR6 as a protective factor, but only 

in African Americans. DR6, like DR5, is a broader antigen type and is composed of the splits 

DR13 and DR14 and it is possible that the protective effect seen in the African Americans is 

due to one of these splits and DR6 as a risk factor in the Edinburgh cohort is due to the other. 

This could not be confirmed as only some of the Edinburgh EUs were typed specifically for 

these splits. In support of this is an Italian study of children born to HIV mothers, who 

showed DR13 as a risk factor for infection and DR14 as a protective factor (Greggio et al. 

(1993)). More extensive typing in the Edinburgh groups would be required to explain the 

apparent decrease of DR6 in the EUs. B7 was also increased in the Controls and DR1 in the 

BUs, but neither were significant in corrected values. 

No antigen was shown to correlate with transmission when comparing HlV indexes 

who had either transmitted heterosexually (TRIs), or not transmitted (NTRIs). This may 

reflect the limited numbers available for comparison. Only one other study has reported an 

effect of liLA on transmission and this was the mother child report mentioned earlier (Fabio et 

at. (1992)), which found DR1 1 to be associated with increased infectiousness. No association 

was found in the same study when looking at heterosexual couples, but this study may also 

have been limited by its size. 



An effect of lILA on transmission may be merely a reflection of disease status in the 

transmitting individual. Associations of disease status and HLA have been widely reported 

(Mann et al. (1991); Steel et al. (1988); Jeannet et al. (1989); Cruse et al. (1991); Kaplan et 

al. (1990); Kaslow et al. (1990); MaJial et al. (1990); Louie, Newman and King (1991); 

Donald et al. (1992); McNeil et al. (1996)), as has the effect of disease status on transmission 

risk (Laga et al. (1989); Fiore et al. (1997)). This is suggested in the indexes, for example 

A1B8DR3 is increased in the TRIs (TRIs 4/16; NTRIs 3/28) and B27 increased in the NTRIs 

(TRIs 0/17; NTRIs 3/30), both having been shown to be important disease progression 

markers in the Edinburgh area (Steel et al. (1988); McNeil et al. (1996)). However, no 

significant differences were seen. 

The associations of HLA with lIlY infection and disease may act in a variety of ways 

and be dependent on the HLA type and the strain of the infecting virus. Both of which may 

account for the regional and ethic differences in HIV/HLA associations. The most apparent 

mechanism for HLA to affect lIlY infection and disease is by a direct affect on antigen 

presentation. The HLA antigens have discrete differences in the peptides they bind and present 

to the immune system to induce responses. The peptides corresponding to HLA antigens may 

be absent from some strains, or more prevalent in others. Some may induce different 

responses, such as cytotoxicity versus suppressor phenotypes of CTLs. This could then have a 

positive, or negative effect on the course of HIV infection. The affinity of peptide binding may 

also be important, whereby precise peptide sequences could also effect antigen presentation 

(Callahan et al. (1990)). 

Molecular mimicry between HIV proteins, particularly gpl20 (Golding et al. (1988); 

Young (1988)) is another possible mechanism by which HLA phenotype can influence the 

response to the virus. This may even induce a potential autoimmune response, suggested by 

some as the cause of AIDS (Kion and Hoffman (1991)). Studies of individuals genetically 

susceptible to autoimmune diseases, such as rheumatoid arthritis (Klein (1986b)), suggest that 

certain lILA types might be associated with aberrant immune responses and could thus affect 

susceptibility to HIV infection and disease. Notably, the A1B8DR3 phenotype has been linked 

to increased antibody production (Kallenberg et al. (1988)), perhaps reflecting a 

predisposition to a strong Type 2 response and hence a poor prognosis (Clerici and Shearer 

(1993); Clerici and Shearer (1994)). It is most likely that a variety of mechanisms are 

responsible for the diversity of effects of HLA on lIly, with different alleles associated with 

each mechanisms. 
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4.4.2.a Mismatch HLA Types 

To investigate if discordance at the HLA loci between heterosexual couples had any 

effect on HIV transmission, the HLA types of the concordant and discordant couples of the 

heterosexual study were investigated. Mismatched HLA types could induce a stronger 

allogeneic immune response to the index partner's cells, which if infected may destroy a 

potential source of infection. The virus itself is known to 'acquire' host proteins as it buds 

from cells, including those of the MHC (Henderson et al. (1987); Arthur et al. (1992)). Virus 

from the index partner will hence contain HLA molecules of that individual. Therefore even if 

the contact is exposed to free virus, as opposed to cell-associated, they may still mount an 

allogeneic immune response to the host proteins contained within the viral envelope. It is 

perhaps of particular importance that the majority of the couples in the heterosexual study are 

in long term relationships rather than multiple single contacts. So if allogeneic responses are 

protective, then they could have a long term protective mechanism. Despite restricted 

numbers, the EUs had a clearly higher degree of discordance at the liLA-A/B and DR loci 

than the heterosexually lilY-infected contacts. It is perhaps also pertinent that several of the 

contacts, with multiple relationships in the study, became infected shortly after a partner 

change (Rona Wyld, personal communication). This may then reflect a lack of protective 

allogeneic responses, although other factors are also possible, such as a change in the 

frequency of sexual intercourse and a potential change in sexual practises with the new 

Partner. 

A similar report of mother-child transmission noted that Class I concordance was 

associated with an increased risk of perinatal HIV transmission, with increased concordance 

carrying an increased risk (MacDonald et al. (1998)). Earlier studies in macaques had also 

revealed an association of anti-human MHC responses, induced by immunisation with human 

cells, correlating with protection from SW challenge, if the virus was grown in the same cell 

line as they were immunised with (Stott (1991); Chan et al. (1992)). Direct immunisation with 

purified Class I molecules was later shown to protect macaques from a cell-free virus 

challenge when the virus expressed the same Class I molecule (Chan et al. (1995)), 

confirming the role of MHC in the protection. Although the monkeys were protected by a 

xenogenic response, studies in humans have shown that allogeneic responses are in fact more 

vigorous than xenogenic anti-pig ones (Dorling, Binns and Lechler (1996)). 
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No study of heterosexual transmission has previously shown an association of HLA 

discordance and protection from infection, although Plummer and colleagues (Plummer et al. 

(1993)) reported in a study of Nairobi prostitutes, that those with rare HLA types for the area, 

which would probably have had a high mismatch as defined in this study, had a reduced risk 

of HIV infection. Anti-lymphocyte antibodies have been detected in women immunised with 

their husband's cells as treatment for recurrent spontaneous abortions. When investigated their 

serum had in vitro anti-HIV activity in a complement independent manner, suggesting direct 

virolysis (Beretta et al. (1996)). 

Further study of the Edinburgh cohort would further confirm the effect of HLA 

concordance between couples on HIV transmission, including trying to gain more complete 

typing to increase numbers and also extend to further HLA loci such as Cw, DQ and even the 

TAP alleles. However, the strong association, even with the limited numbers, provides clear 

evidence of a potential protective mechanism from heterosexual HIV transmission and support 

for the investigation of anti-HLA vaccine strategy (Shearer, Clerici and Dalgleish (1993)). 

4.4.3 Chemokine Receptor Polymorphisms. 

4.4.3.a CCR-5 

An overall frequency for the mutant CCR-5 allele of 14% (9-23%) was obtained, which is 

higher than that previously published for Continental European Caucasian populations (9.2%, 

n=704 and 9.8%, n=122) (Samson et al. (1996b); Liu et al. (1996)) and significantly higher than 

the 8% found in an American population (n=637) (Huang et al. (1996)). The global distribution of 

the A32 allele is now known (Martinson et al. (1997)) and appears to decrease from Iceland south-

easterly across Europe, to lower frequencies in the Middle East. It is possible that, although the 

American sample was of Caucasians, the allele frequency was reduced in this population due to 

racial admixture. Africans, along with several other non-Caucasian races studied (Huang et al. 

(1996); Liu et at. (1996); Samson et al. (1996b)) lack the i.32 mutation in CCR-5 and when racial 

mixing occurs, as may have occurred in the United States, the frequency of such a mutation is 

reduced in the total population. The subsequent departure from Hardy-Weinberg Equilibrium, seen 

in the US population (Huang et al. (1996)) is probably due to admixture, a process known as the 

Wahlund effect (Hard and Clark (1997)). 

Previous results established a substantial protective effect of homozygosity for the CCR-5 

mutant allele from HIV-1 infection following homosexual contact (Dean et al. (1996); Huang etal. 

(1996)). However, reports of several 32/32 111V individuals now exist (Balotta et al. (1997); 
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Bid et al. (1997); O'Brien et al. (1997); Theodorou et at. (1997)), but they are extremely rare and 

may involve infection with a virus dependent on CXCR-4 usage. We also only found 32/M2 

individuals in our HIV-negative groups, but we did not observe the departure from Hardy-

Weinberg predicted frequencies seen •in EU homosexuals (Huang etal. (1996)), possibly because of 

a lower sample size. However, due to the increased occurrence of the deletion in the Scottish 

population, it would have been more likely that i32/i32 individuals were exposed and hence a 

greater chance of seeing an effect. 

While individuals heterozygous for the z32 in CCR-5 have been shown to have a slower 

rate of progression in several US cohorts (Dean et al. (1996); Eugen-Olsen et al. (1997); Meyer et 

al. (1997); Stewart et at. (1997)), no clear effect of heterozygosity on transmission risk has been 

seen in homosexuals, or haemophiliacs, despite an early report of a reduced frequency of 

heterozygotes in 1W individuals (Samson et al. (1996b)). Recently, Hoffman et al. (Hoffman et 

al. (1997)) reported from a small scale study that heterosexual (n=29), but not homosexual couples 

(n=25) showed an increase in WT/E32 heterozygotes in the exposed uninfected partners versus the 

partners. Our study group is substantially larger and we have found no significant difference 

in the CCR-5 L32 genotype distribution of our heterosexually exposed uninfecteds compared to 

heterosexually infected individuals. Hoffman and colleagues did not compare equally exposed 

cohorts, as some of their H1V subjects became infected by other modes of transmission, thus they 

were not able to directly assess the effect of heterozygosity on heterosexually acquired infection. 

In order to address the effects of heterozygosity at the CCR-5 locus on infection more 

sensitively, the distribution of WT/i32 heterozygotes was analysed with regard to the level of 'at 

risk' exposure, as it has been shown that increased exposure confers to an enhanced risk of infection 

in this cohort (Fielding et al. (1995); Robertson et at. (1998)). There was no evidence for any 

increase in the mean exposure accumulated for WT/E32 heterozygous EUs. Indeed, the highest 

levels of exposures (>1000 unprotected contacts) were seen in individuals who were wild-type at 

the CCR-5 locus. Thus heterozygosity for the z32 mutant CCR-5 does not appear to provide 

significant protection against heterosexual HIV transmission in this study. As the frequency of 

homozygotes for the mutant CCR-5 does not appear to be greater than 1% in any Caucasian 

population and it is absent from non-Caucasian populations, the i32 mutation may not therefore 

contribute substantially to variation in susceptibility to heterosexual infection. 

The dear effect of the i32 mutation on homosexual transmission, but not on 

heterosexually acquired infection may result from differences in infection in these two risk 
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groups. Both involve transmission to a mucosal surface, but the mucosa at the two sites, 

vaginal and rectal, have been reported to be different. The vaginal epithelium has been shown 

to contain Langerhans' cells (LCs), but these were absent from the rectal epithelium (Hussain 

and Lehner (1995)). In monkey studies, using intravaginal inoculation of SIV, the first cells to 

be infected are dendritic in nature and most likely are LCs (Spira et al. (1996)). The primary 

cells infected via rectal exposure are most likely macrophages and T cells. Anal sex is also 

more likely to involve trauma and hence exposure to blood, which may again alter the cell type 

infected following exposure. 

It is possible that there are differences in co-receptor usage by the virus infecting the 

different cells and the level of expression may also differ in different cell types and tissues. In 

vitro studies have shown that dendritic cells (DC5) do express CCR-5 and CCR-3, but not 

CXCR-4 (Rubbert et al. (1998)). However, the culturing process may change the expression 

patterns and this may therefore not reflect the in vivo expression. This was supported by a 

study of infection of DCs with viruses of different tropisms (Graneffi-Piperno et al. (1998)). 

Immature DCs, for example LCs, were only able to support M-tropic viral infection, but 

mature DCs were infectible with M-tropic and T-tropic virus. The inferred difference in CCR 

expression in the latter study was confirmed by a recent study of the CCR expression on 

epidermal LCs (Zaitseva et al. (1997)). The freshly isolated cells, which resembled resident 

mucosal LCs, only expressed CCR-5, where as cultured cells expressed both CCR-5 and 

CXCR-4. 

It is possible that other, as yet unknown, receptors maybe more important in LC 

infection, as suggested by Ruppert et al. (1998). They showed that although DCs did not 

express CXCR4, they were still sensitive to SDF-1 and that DCs from t32/z32 individuals 

were still infectible with M-tropic virus, which was sensitive to SDF-1 inhibition. This infers 

than a non-CXCR-4 SDF receptor may be present in DCs and important for HIV infection. 

Despite potentially different mechanisms, most primary infections involve a macrophage 

tropic, or NSI, non-TCLA strain of virus and which continue to be abundant in most 

individuals throughout infection (Zhu et al. (1993); Zhang et al. (1993)), but the co-receptor 

requirements still may differ. For example, while CCR-2 and CCR-3 have been shown to act 

as co-receptors in only a few in vitro systems (Choe et al. (1996); Doranz et al. (1996); Frade 

et al. (1997)), it is possible that they may be involved in vivo. 

To determine if other mutations in CCR-5 existed in this cohort, which would account 

for the lack of infection, five individuals with the highest exposure were chosen and the entire 
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1.1kb coding region of the CCR-5 gene was sequenced. All four WT/WT individuals had 

amino acid and nucleotide sequences identical to the published consensus and the WT/i32 

heterozygote had a mixed sequence as expected. This confirmed that no further mutations, 

such as the recently reported point mutation (T-->A, position 303) (Quillent et at. (1998)), or 

other rarer ones (Ansari-Lari et al. (1998)), were involved in the lack of infection in these four 

individuals. 

It is possible that polymorphisms in the recently described promoter region of the 

receptor (Mummidi et al. (1997); Guignard et al. (1998)), upstream of the region sequenced, 

may be present in the EUs and several have been reported (Mumniidi et al. (1997); Kosirikis 

et al. (1998); Muniniidi et al. (1998)) and have been shown to effect progression in HIV 

individuals. Some of these mutations were screened in this  cohort and will be discussed later 

(see Section 4.4.3.b). 

Such mutations may effect the level of receptor expression, which has been shown to 

be important in infection (Moore (1997)). Wu and colleagues (1997b) showed that the level of 

CCR-5 receptor expression varies widely between individuals and heterozygotes for the i32 

deletion had reduced expression. Low CCR-5 expression then correlated with reduced 

infectability of T cells with M-tropic NW in in vitro studies. It is therefore possible that the 

EUs have altered expression levels of co-receptor, either due to promoter polymorphisms, or 

differences in the factors which regulate and induce expression and this may then account for 

their apparent lack of infection. This was recently confirmed by Paxton et al. (1998), who 

showed that WT/WT EUs had reduced CCR-5 expression and increased susceptibility to the 

3-chemokines, known to have H1V suppressive properties. Similar studies of the level of 

CCR-5 expression in the Edinburgh cohort, to determine if this is also involved in 

heterosexual transmission, would be of value. 

The choice of cell type for such studies remains a subject of debate. For practical 

purposes, PBMCs would be an obvious choice, but resting T cells do not express measurable 

level of receptor, this requires mitogenic and IL-2 activation (Bleul et al. (1997)) and resting 

T cells can not be infected. Is this then a true reflection of in vivo expression? The cells under 

such stimuli would most likely be producing maximal levels and may mask any true natural 

difference that may occur physiologically. One could also question the relevance of PBMCs 

when trying to look at heterosexually acquired infection, as these are most likely not the 

primary cell type infected (Spira et al. (1996)). STDs are a major risk factor for infection 

(Greenblatt et at. (1988); Laga et al. (1993)) and most likely involve recruitment of T cells 
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and could therefore explain the enhanced risk. However, the level of STDs was low in the 

Edinburgh Study (Fielding et al. (1995)), probably due to the low rates of partner change and 

therefore T cells are not likely to be the primary infected cell type in this cohort. 

Dendritic cells are difficult to culture, with methods varying widely and are likely to 

influence the expression of receptors. As in most cases such compromises are probably 

necessary to unravel the answers and animal models can help clarify and confirm the findings. 

An extensive study recently described by Zhang and colleagues (1998) provided 

further understanding into the in vivo expression of the chemokine receptors, CXCR-4, CCR-

3 and CCR-5. They showed evidence to support the theory that the receptors may be 

differentially regulated both in different tissues and different cell types within the same tissues. 

In support of the lack of association of i32 in CCR-5 in heterosexually compared to 

homosexually acquired infection, they saw no CCR-5 cells in the vagina and very few in the 

cervix (T lymphocytes), but CCR-5 + 
 cells were frequently identified in the rectum (T 

lymphocytes) and colon (T lymphocytes and macrophages). Perhaps other receptors, such as 

CCR-3, or others not screened in this study, are therefore utilised as co-receptors following 

heterosexual HIV transmission. 

4.4.3.a.i Indexes 

Despite an increased number of WT/i32 heterozygotes in the NTRIs, no statistical 

difference was seen from TRIs. This probably reflects the limited sample size studied here, but 

was an attempt to see if the affect seen on progression (Dean et at. (1996); Eugen-Olsen et al. 

(1997); Meyer et at. (1997); Stewart et at. (1997)) was mirrored in transmission. If the 

difference was supported in a larger study, it may highlight a potential correlation of the affect 

of A32 on viral load and progression (Meyer et al. (1997)) and the effect of viral load on 

transmission (Fiore et at. (1997)). The viral load in these individuals could not be assessed 

due to the lack of suitable samples, but a low CD4 count in the index was found to correlate 

with increased risk of HIV transmission in this study (Fielding et al. (1995)). 

The mechanism by which heterozygosity for A32 may effect viral load and 

progression is unresolved, but probably involves the kinetics of replication, particularly 

following primary infection. If heterozygosity for A32 reduces the receptor level expression on 

average per cell (Wu et at. (1997b); Paxton et at. (1998)) and thus reducing the probability of 

infection per cell, it would be expected to have profound effects on the resulting viral load and 

205 



hence potential 'seeding' of the individual prior to immune control (Phillips (1996)). A lower 

viral load in primary infection has been seen as a significant indicator of an extended survival 

time and lack of progression (Ruiz et al. (1996)). A reduced viral load has also been seen to 

reduce the risk of transmission (Fiore et al. (1997)), which might lead to the expectation that 

the i32 heterozygotes would be less infectious, on average. 

This was supported by a study of the humanised mouse, whereby human lymphocytes 

are adoptively transferred to a mice lacking it's own, forming a mouse with a human T cell 

system. Mice derived from T cells of WT/i32 heterozygotes showed delayed replication of M-

tropic HIV compared to mice derived from WT/WT individuals (Picchio, Gulizia and Mosier 

(1997)). This was in contrast to only a small and varied effect seen in in vitro cultures of M-

tropic infection of T cells from M2 heterozygotes compared to WT/WT cells, suggesting that 

the in vivo replication dynamics can not be inferred from in vitro cultures (Picchio, Gulizia 

and Mosier (1997)). 

4.4.3.b CCR-2 

A more recently discovered point mutation in CCR-2, causing a single amino acid change 

(1/641) has been described and shown to occur in individuals of most ethnic backgrounds: allele 

frequency - 9.8% Caucasians, 15.1% African Americans, 17.2% Hispanics and 25% in Asians 

(Smith et at. (1997)). The mutation has also been shown to affect the rate of progression in 

seroconversion cohorts (Smith et al. (1997); Kostrilds et al. (1998); Rizzardi et at. (1998)), but not 

seroprevalent cohorts (Kostrikis et al. (1998); Michael et at. (1997)). This is possibly due to the 

lack of recruitment of a few rapidly progressing individuals in seroprevalent cohorts, who may have 

died before referral to such as study. We have analysed the distribution of the CCR-2 mutation in 

our groups and have found a significant difference between genotypes at CCR-2 in heterosexually 

exposed females. In this case, a lower frequency of individuals heterozygous for the 641 mutation in 

CCR-2 was observed in EUs compared to heterosexually infected Hilt subjects, when females 

only were analysed. Thus, CCR-2 641, instead of giving protection, is acting as a risk factor for 

heterosexual infection of females in this cohort (RR=1.6, P<0.05). 

Female-to-male transmission is less frequent than male to female (European Study Group 

(1992); Fielding et at. (1995); Giesecke et al. (1992)), so substantially larger numbers of male 

contacts would be required to detect any effect of genotype. This difference justifies the analysis of 

the sexes separately. The majority of contacts in this study were female and the significance of the 

difference between genotypes is reduced (P<0.08) when male contacts were included. The 
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difference in the infection risk for 641 heterozygotes was not seen in homosexual contacts either 

(Kosthkis et al. (1998); Michael etal. (1997); Smith et al. (1997)) and perhaps reflects contrasting 

mechanisms of transmission in these risk groups as discussed previously for CCR-5 (see 4.4.3.a). 

The effect of the 641 mutation on progression and heterosexual infection is dear, but the 

mechanism by which it exerts its effect is not. The valine to isoleucine mutation makes the first 

transmembrane domain of the receptor identical to the corresponding region in CCR-5 (Smith et al. 

(1997)). This raised the possibility that this mutation makes CCR-2 more like CCR-5 and perhaps 

then more utilisable as a co-receptor for entry of HIV. However, in vitro studies have shown that 

the 641 mutation does not alter the receptor's properties, either as a chemokine receptor, or as an 

HIV co-receptor (Kosthkis et al. (1998); Lee et al. (1998)). A study of CCR-2 and CCR-5 

chimeras has shown that the amino terminal domain and the first extracellular loop seem to be the 

critical regions involved in M-tropic H1V binding to CCR-5 (Rucker et al. (1996)). Chimeras 

containing the first transmembrane domain of CCR-5 in a CCR-2 background were utilisable by 

the M-tropic JR-FL, but only if the CCR-5 amino terminal was also present. Other studies 

(Atchison et al. (1996); Dora.nz et al. (1997); Kiihmann et at. (1997); Picard et al. (1997); Wu et 

at. (1997a); Dragic et al. (1998); Rabut et al. (1998)) have also showed the amino terminus and 

first and second extraceflular loops to be the critical ones in the virus: co-receptor interaction. 

It is also apparent that different strains of virus have different requirements on the region of 

the co-receptor they bind to, with dual tropic viruses being less tolerant to changes in CCR-5, 

particularly in the amino terminus (Rucker et al. (1996); Doranz etal. (1997); Picard et al. (1997); 

Wu et at. (1997a); Rabut et al. (1998)). However, although the conserved valine to isoleucine 

substitution occurs in a region not apparently involved in HIV binding, it is possible that such a 

mutation can affect the overall function, as seen in other proteins (Dawson, Morris and Latchman 

(1996)), possibly by altering the secondary structure. Further studies into the properties of the 

mutant CCR-2 receptor will help confirm, or contrast the apparent lack of effect of this mutation on 

its co-receptor usage by HIV. 

While a direct mechanism by which a single base substitution in the transmembrane region 

of CCR-2 may affect transmission is not obvious, a recent discovery by Kostrikis et al. (1998) 

raised an alternative possibility. They showed that the 641 mutation in CCR-2 is in 100% linkage 

disequilibrium with a mutation, 59653T, in the promoter region of the CCR-5 gene, although rare 

exceptions have recently been shown (Miimmidi et al. (1998)). The dose association of the two 

receptors' genes (-17.5kb apart (Samson et al. (1996a))) means that mutations arising in one 

chromosome are unlikely to be transferred to the other by recombination. Thus if a thither mutation 

207 



arises in the background of the other, then they will always be present together. A similar 

phenomenon is seen for HLA genes, e.g. A1B8DR3. The 641 mutation and the A32 mutation are 

never seen on the same chromosome, confirmed by the absence of double homozygous mutants 

(641/641 with M2/A32) (Smith etal. (1997)). 

A mutation in the CCR-5 gene promoter region may affect the level of CCR-.5 expression, 

which has been seen as being important for infection (Wu et al. (1997b)) and clearly CCR-5 

promoter mutations could have various effects on CCR-5 tissue expression and distribution. Thus, 

the CCR-2 641 mutation may act as a marker for this, or possibly other mutations affecting the 

expression of CCR-5 in this population and explain the apparent increased risk of heterosexual 

infection in individuals bearing the 641 mutation. 

Mummidi and colleagues (1998) recently described several mutations in the promoter 

region and the history of their occurrence in the hnman  population. For example, the z32 mutation 

in CCR-5, being limited to Caucasians, is probably a much more recent mutation than the 641 

mutation in CCR-2, which is present in a wide variety of different ethnic backgrounds. 

Recently, some of these mutations were screened for in this cohort in collaboration 

with Dr. Mary Carrington. None of the three alleles seen in this cohort (P1,2,4) were found to 

be different in heterosexually HIV individuals compared to the EUs. However, the P2 allele, 

in particular the P1,P2 genotype was found to be elevated in the population controls compared 

to the heterosexually exposed groups. The population controls were from a study of polycystic 

kidney disease, which was not previously thought to be effected by CCR-5 (Dr. Alan Wright, 

personal communication). Whether this genotype has any clinical significance in their disease, 

is completely unknown and requires further investigation of this unexpected finding. The 

effect of all the promoter mutations is as yet still unclear and it is possible that certain 

combinations may relate to different levels of CCR-5 expression. If some related to increased, 

or decreased expression, they may reveal differences if grouped, but this requires further 

study. The 59653, or 927 C—T mutation in the CCR-5 promoter region (Kostrikis et al. 

(1998); Mumniidi et al. (1998)) in disequilibrium with the CCR-2-641 mutation has not yet 

been screened in for in this cohort 

The actual relevance of these polymorphisms in the CCR-5 promoter region have yet 

to be clarified, in terms of the CCR-5 expression level. Mummicli et al. (1998) assessed the in 

vitro CCR-5 expression in 641/641 individuals compared to matched controls and no difference was 

seen, in support of preliminary reports earlier by Kóstrilds et al. (1998). This was recently 

confirmed in 641 heterozygotes (Lee et al. (1998)), where CCR-5 expression was not affected, but 



CXCR4 expression was decreased. A decrease in CXCR-4 may increase the chance of interaction 

with CCR-5 and hence, increase the chance of infection. However, as noted earlier (Zhang et al. 

(1998)), the in vivo expression of the chemokine receptors can vary in different tissues and cell 

types and this may be masked in these in vitro studies of PBMCs. 

Differential regulation in various cells and tissues may also explain the apparent 

contradiction between 641 acting as a risk factor for infection and a marker for a slower disease 

progression in HLVs. Perhaps the LCs involved in heterosexual infection have an increased 

expression of CCR-5 in the presence of other stimuli present, but that T cells and macrophages are 

stimulated to reduce the expression. It could be that the mutation causes exhaustive expression of 

CCR-5 following infection and the level of CCR-5 may then be reduced via a negative feed-back 

mechanism. 

In conclusion, the presence of the 641 alteration in CCR-2 appears to have an increased 

risk for infection in heterosexual transmission. This mutation appears to act as a marker for a 

mutation in the regulatory region of the CCR-5 gene (Kostrikis et al. (1998); Munimidi et al. 

(1998)), but further understanding of the functional effects of both mutations are required before 

this result can be more clearly defined. However, it is possible that a mutation of this kind in the 

regulatory region of the CCR-5 gene, or other mutations in the CCR-5 gene, may alter the level and 

expression of CCR-5 in different tissues and cell types and hence may effect the risk of heterosexual 

transmission. Alternatively, the imitation may effect the expression of other co-receptors, such as 

the decrease in CXCR-4 seen in PBMCs (Lee et al. (1998)) and may increase the potential 

interaction with the CCR-5 receptor, hence increase the chance of infection in CCR-2-641 

heterozygotes. 

4.43.b.i Indexes 

As mentioned previously, host factors acting in the index, such as the HLA type and the 

A32 mutation in CCR-5, have been shown to influence progression (Steel et al. (1988); Dean et al. 

(1996); Kaslow et al. (1996); McNeil et al. (1996); Eugen-Olsen et al. (1997); Meyer et al. 

(1997); Smith et al. (1997); Stewart et al. (1997); Kosthkis et al. (1998); Rizzardi et al. (1998)). 

More recently, a mutation in the CXCR4 ligand, SDF, was also reported and shown to affect 

progression (Winkler et al. (1998)). The effects of the CCR-2 genotype of the H1V index patients 

on the probability of transmission were also then assessed. As for the i32 deletion in CCR-5, no 

significant effect was seen for the 641 mutation either. Although when 641 and z32 mutations were 

analysed together an additive effect was seen. This suggests that both mutations are having a 
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positive effect on a lack of heterosexual transmission and that perhaps the study is too small to 

detect this effect for each mutation, but the combined effect is more significant due to greater 

numbers. Larger studies would be needed to confirm this. As described earlier for CCR-5 (see 

4.4.3.a.i), this most likely reflects a more stable clinical status in the NTRIs, possibly by a stable 

low viral load, although this was not monitored for this cohort. 

Viral strains from the Edinburgh IDUs have been shown to be closely related and fall into 

a single duster within the B subtype (Leigh Brown et al. (1997)), indicating viral variation is 

unlikely to be an important factor affecting the probability of transmission in this cohort. The 

disease status of the transmitting index has been shown to affect the transmission probability, as 

discussed previously for CCR-5 (see 4.4.3.a.i). 

4.4.4 Conclusions 

4.4.4.à HLA 

DR5 appears to be acting as a protective genetic factor in heterosexual HIV transmission, 

possibly through the DR  1 split and DR6 is suggestive of a risk factor, although this was not 

reported in heterosexually infected }ilVs. These associations need contirmatioii through more 

complete HLA typing using the same methodology for all groups. 

Mismatch HLA types between heterosexual couples also appears to protect heterosexual 

transmission and is perhaps mediated by allogeneic responses in the contact and requires 

further elucidation. 

4.4.4.b CCR Mutations 

The i32 deletion in the CCR-5 does not seem to be involved in protection from infection 

in this cohort. However, the 641 mutation in CCR-2 appears to act as a risk factor for male to 

female heterosexual HIV transmission, by an as yet undefined mechanism. 

Polymorphisms in the CCR-5 promoter region also do not appear to be involved in 

heterosexual HIV transmission. 

The work described in this chapter has been submitted in part for publication in the Journal of 

Infectious Diseases (Lockett et al. submitted for publication). 
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5.1. INTRODUCTION 

Many studies have revealed differences in susceptibility to heterosexual infection for 

the contact, be that genetic (see Section 1.7.3), immunological (see Section 1.7.2), or due to 

other risk factors, such as anal sex, sexually transmitted diseases (see Section 1.3.5 and 

reviewed in Royce et at. (1997). Similar studies have identified factors which relate to 

increased infectiousness of the index, such as the disease status, which appears to relate to the 

viral load, sexually transmitted diseases and sex during menses (female-male transmission) 

(see Section 1.3.5 and reviewed in Royce et at. (1997). Indexes are often found to be 

transmitters (or Transmitting Index (TRI)), or non-transmitters (or NTRI), but the factors 

which govern this, other than the already mentioned properties are unclear and difficult to 

examine. Some studies have investigated the presence of HIV in semen and vaginal/cervical 

secretions (see Section 1.3.3), but these studies are often met with poor compliance and the 

precise relationship with transmission is poorly understood. 

Molecular epidemiological studies of transmission sets (Kleim et al. (1991); Holmes 

et at. (1992); Wike et al. (1992); Wolinsky et al. (1992); Scarlatti et al. (1993); Zhang et at. 

(1993); Thu et al. (1993); van't Wout et al. (1994); Briant et al. (1995); Zhu et al. (1995); 

Janini et al. (1998); Wade, Lobidel and Leigh Brown (1998)), have shown that the virus 

found in the contact is highly related to the index and while in some cases can reflect only a 

minor variant in the index (Wolinsky et at. (1992)), this is not always the case (Scarlatti et al. 

(1993)). The transmitted variant is almost always a predicted NSI variant (Roos et al. (1992); 

Zhu et al. (1993); van't Wout et at. (1994)) and only rarely have SI transmissions been seen 

(Roos et al. (1992)). It is therefore possible that as well as the amount of virus present in the 

index, reflected by the viral load, the type of virus present in the index may be involved in 

transmission. This may be of particular importance where infection is restricted to a particular 

cell type, such as may occur in sexual transmission (Spira et al. (1996); Graneui-Piperno et 

al. (1998)). 

As part of a molecular epidemiological study of father-mother-child transmission, Dr. 

Christopher Wade (Wade (1997) PhD thesis) identified potential transmitted variants from the 

father, the Index. The Index had heterosexually transmitted virus to two female Contacts and 

they had subsequently infected their offspring. It seemed therefore that the Index was a clear 

'TRI' and the viral variants seen by Dr. Wade were transmissible by both heterosexual and 

subsequently by vertical modes. However, during the study of the discordant contacts in the 

Edinburgh Heterosexual Study, two additional Contacts were found, who despite 'at risk' 
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exposure, remained uninfected. One of the Contacts, C3 153, was a homozygote for the S.32 

mutation in the CCR-5 gene and was therefore expected to be protected from infection with 

CCR-5 restricted virus (see Section 1.7.3). The final Contact was a heterozygote for the A32 

mutation, but there is little evidence to suggest this may protect from infection (see Section 

1.7.3). 

The purpose of the first part of this study was to isolate virus from the Index to 

determine if the later uninfected Contacts were truly protected from infection with this virus. 

To try and elucidate whether this protection was CCR-5 restricted, other viruses with known 

co-receptor usage were also to be investigated. In order to determined whether other 

individuals in the EU cohort were also resistant to infection, it was intended that they would 

also be screened, where samples were available. 

The second side of this study was to expand on the sequence information gained by 

Dr. Wade during his study, to see if the potential transmission variants were still present, or if 

the lack for them may account for the change in status of the Index from a TRI, to a NTRI. 

This would then also allow the predicted NSI/SI phenotype of the virus present at the time of 

exposure to the two later Contacts to be determined, to see if this also related to the lack of 

transmission. 

5.2. METHODS 

5.2.1 Background 

The Index, 13151, had 4 relationships during the Heterosexual Study; two were 

concordant (C3151 and C3152), i.e. they became HTV following heterosexual contact with 

the Index and the remaining two were discordant (C3153 and C3 154). Dates of relationships 

are detailed in Table 5.1 and the course of the Index's infection relative to the Contacts' 

exposure times are shown in Figure 5. 1, along with the time of sampling. Detailed sequence 

analysis of the virus infecting the three HIV '  individuals (1315l/C3 151/C3 152) as they were 

investigated as part of a transmission group of father-mother-child transmission; both infected 

Contacts gave birth to HIV children (Wade (1997) PhD thesis and in preparation). 

Genotypes for the CCR mutations are given in Table 5.1. C3 153 was homozygous for 

the A32 mutation in the CCR-5 gene and C3 154 was heterozygous. C3152 was wild type for 

both mutations, but no sample was available to test the genotype of C315 1, who died in 1989. 

13151 was wild type for both mutations. 
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Table 5.1. 

Details of Index (13151) and Heterosexual Contacts 

IEIV 	DOB* 	Dates of 	CCR5t 	CCR-2 
Serostatus 	 Relationship Genotype Genotype 

13151 + 	09.05.64 WT/WT WT/WT 

C3151 + 	06.05.63 12/82-08/87 unknown unknown 

C3152 + 	20. 12.72 12/89-06/92 WT/WT WT/WT 

C3153 - 	08.04.62 02/93-06/93 32/32 WT/WT 

C3154 - 	09.06.78 10/9405/95 1  WT/A32 WT/WT 

Date of Birth (DOB). 

WT/WT: homozygous wild-type CCR-5 genotype: .32/32 for the homozygous mutant for the 
32bp deletion in the CCR-5 gene and WT/L32 for the heterozygote. 

wT/wr: homozygous wild-type CCR-2 genotype; 641/641 for the homozygous mutant 
for the valine to isoleucine a-a change and WT/641 for the heterozygote. 

Date from start of relatio nship to last interview. Both relationships were ongoing at the time of 
interview, but no follow-up was achieved and the relationships were only considered during these 
dates, although the actual relationship extended beyond these dates. 
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Figure 5.1. 

Time Scale of Index and Contacts Relationships, Infection Times and Sampling Points 

The diagram shows the 12 year period 13 151 HIV+  status relating to his contacts with the four heterosexual partners; shown with a 

line. The relationship with C3151 commenced prior to seroconversion, shown with a dot. The year of seroconversion is shown for 

13 151 and C3151 and the date of discovery of seropositivity of C3152 are shown with an open arrow. The approximate dates of 

available samples are shown with a closed arrow and samples analysed by Dr. Wade are indicated by F (father) followed by the year 

after seroconversion. Later samples assessed in this study are indicated with a * and numbered 1-3. Sample 1 was obtained on the 

17/09/94 (10 years post seroconversion); Sample 2 was obtained on 26/02/95 and Sample 3 was obtained on 24/07/95 (both 11 years 

post seroconversion). 
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5.2.2 Infectivity Assay 

5.2.2.a Virus isolation From Index 

Several attempts were made to isolate virus from two cyropreserved samples stored in 

the Molecular Epidemiology Respository, Edinburgh for use in an infectivity assay. Both 

plasma and PBMCs were available for both samples. Early attempts involved a standard co-

culture with donor PHA blasted PBMCs with the Index's cells (see Section 2.9.2.a), including 

attempts made in collaboration with Dr. Myra Arnott (Department of Medical Microbiology, 

University of Edinburgh). Further attempts, involving co-culture of PBMCs with the cell line, 

PM1, known to be permissive to growth of NSI and SI HIV viral isolates, were also tried (see 

Section 2.9.2.b). 

Additional attempts at isolation were carried out using plasma and PM1 cells (see 

Section 2.9.2.0, CD8 cell depleted PBMCs (see Section 2.9.2.c) and the U87-CD4-CCR-5 

cell line with both plasma and PBMCs (see Section 2.9.2.d). 

5.2.2.b Viral Stocks 

High titre stocks were produced as outlined in the Material and Methods (see Section 

2.9.3 and 2.9.4). The TCID 50  was determined in the PM1 cell line as it was reproducible and 

allowed TCLA and non-TCLA adapted strains to be grown in the same cell line (see Section 

2.9.5). Infection was determined by p24 staining and ininiunofluorescent microscopy (see 

Section 2.10.2 and 2.8.2). Representative results for the different viruses are shown in Figure 

5.2. The p24-FITC staining usually occurs just under the plasma membrane and often occurs 

in bright 'blobs' of concentrated staining. The SI virus shown in Figure 5.2.b shows a 

syncytium of two fused cells, resulting in a larger than average cell; this was only seen for the 

SI virus stocks. The mock infected and negative controls were repeatedly negative. Wells were 

scored as positive, or negative; variation in the extent of staining was not considered 

significant. 

5.2.3.c Co-receptor Usage by Viral Strains 

The co-receptor usage of the strains used in the infectivity assay were determined by 

growth the U87 cell line stably transduced with the CD4 receptor and transfected with the 

chemokine receptors, CCR- 1/2/3/5 and CXCR4. These were kindly obtained from Dr. Paul 

Clapham (Chester Beatty Laboratories, ICRF, London) via the MRC ADDS Repository, South 
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Figure 5.2 .,  

hnrnunoihioresceii( 04 Staining of PMI Infected Cells 

The following pictures show representative immunofluorescent staining of PMI cells infected with various HIV isolates, stained with 

anti-p24 monoclonal antibody conjugated to the fluorochrome FITC (KC57:FITC, see Section 2.8.2). The staining was used to 

calculate the 50% Tissue Culture Dose (TCID50) of the viral stocks for use in an infectivity assay (see Section 2.9.5 and 2.9.7). 

Mock infected cells to ensure no no-specific staining. 

HIVcq8 infected cells (SI isolate). 

H[V11a1, infected cells (NSI isolate). 

H1Y139.6b infected cells (NSI isolate). 
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Minims. Further details of the cell lines and their culture can be seen in. the Material and 

Methods (see Section 2.6.6). 

Cells were infected and performed in duplicate (see Section 2.9.6) and the values 

obtained were consistent for each replicate. Culture supernatant was stored and p24 antigen 

detected by ELISA (see Section 2.10.2). 

5.2.24PBMC Samples for infection 

22 PBMC samples from EUs were obtained from cryopreserved storage (16 at 

Medical Microbiology and 6 from storage at the Centre for HIV Research, King's Buildings). 

All samples were thawed and PHA stimulated and subsequently cultured with Lymphocult 

which contains IL-2 (see Section 2.6.3). Of the 16 samples from Medical Microbiology, none 

grew despite every effort. Of the remaining 6 samples, all grew successfully and were 

expanded for a total of 8 days of culture, following which they were CD8 depleted (see 

Section 2.6.4). Samples from three Donors (blood packs, see Section 2.2.3) were expanded 

and depleted in parallel and in duplicate as the EUs samples were performed in batches. This 

allowed the Donors to reflect the reproducibility of the assay. The EUs and the Donors are 

listed in Table 5.2 along with the genotypes for the chemokine receptor polymorphisms (see 

Chapter 4). The EUs were assayed across the three batches; Batch 1 - C3153; Batch 2 - 

C4311, C5052, C5191; Batch 3- C5411, C5491. 

5.2.2.e CD8 Cell Depletion 

To assess the efficiency of the CD8 cell depletion, cells were stained with an anti- 

CD8 monoclonal antibody conjugated to the fluorochrome FITC and assessed by flow 

cytometry for the presence of staining (see Section 2.8.2). An irrelevantly conjugate antibody 

was used to assess the background fluorescence. 

5.2.2,f Infectivity Assay 

The infectivity assay involved infection of CD8 cell depleted PHA blasted PBMCs 

using the following viral stains: HLV, HIV, fflV, HIV 1396 , (see Section 2.9.7). All 

infections were performed at a m.o.i. of 0.001, equivalent to 1 TCID 5o  unit/ 1000 cells, except 

IUVB,L which was also performed at a m.o.i =0.01. Further details of the infection are given in 

the Materials and Methods (see Section 2.9.7). At various time points throughout the 
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Table 5.2. 

CCR Genotypes of Individuals Used in Infectivity Assay !  

CCR-2 Genotype* 	CCR-5 Genotypet 

C3153 

C4311 

C5052 

C5191 

C5491 

C5411 

BCA# 

BCB 

BCC 

WT/WT 

WT/WT 

WT/WT 

WT/WT 

WT/WT 

WT/WT 

WT/WT 

WT/WT 

WT/641 

A32/A32 

WT/WT 

WT/WT 

WT/WT 

WT/32 

WT/WT 

WT/WT 

WT/WT 

WT/WT 

* Genotype for valine to isoleucine amino acid mutation at position 64 of CCR-2 (641); wild 
type homozygous (WT/WT), mutant homozygous (6411641) and heterozygous (WT/641). 

tGenotype  for 32 base pair deletion in CCR-5 gene (32); wild type homozygous (WT/WT), 
mutant homozygous (i32/A32) and heterozygous (WT/32). 

Exposed uninfected heterosexual contact of H1V index patient. 

Donor (buffy coat derived). 
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infection, supernatant was removed and stored at -70°C and fresh culture media added. The 

culture supernatants were later assessed for p24 production via ELISA (see Section 2.10.2). 

5.2.3 Sequence Analysis 

5.2.3.a Polymerase Chain Reaction (PCR) 

Viral RNA was extracted from plasma (see Section 2.11.2) and primer specific 

cDNA synthesis performed using primers HIV gag (p 17) and env (V3) specific primers (see 

Section 2.12.3). Limit dilution nested PCR was performed to gain products from a single 

molecule (see Section 2.12). 

5.2.3.b Sequence Analysis 

The PCR amplified products were then sequenced using a direct solid phase 

automated sequencing approach for both the sense and antisense strands of gag and env (see 

Section 2.13). The completed sequences were processed using the STADEN package and 

aligned and translated using the ODE package (see Section 2.19). The sequences were then 

compared to those previously obtained from the Index (Wade (1997) PhD thesis) and to those 

of other subtype B HIV-1 isolates, including potential contaminants from cloned material from 

within the Centre. 

5.2.3.c V3 Loop Analysis 

The predicted NSI/SI phenotype was deduced from the predicted amino acid sequence 

obtained for the V3 loop by the method of Donaldson et al. (Donaldson et al. (1994)). A 

model to predict the CCR-5 co-receptor usage was deduced by alignment of V3 loops from 

isolates with known co-receptor usage and then applied to that of the V3 loop from the Index. 

5.2.3.d Phylogenetk Analysis 

Phylogenetic reconstructions were performed by the neighbour joining method, using 

the subtype D isolate BIVEu as an outgroup (see Section 2.19). Bootstrap resampling was 

calculated to assign support with 100 replicates (see Section 2.19). Mean pairwise distances 

for the Index were calculated within samples (intra) and between samples (inter) (see Section 

2.19). 
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5.3. RESULTS 

5.3.1 Infectivity Assay 

53.1.a Index Virus Isolation 

Several different methods were used to try and isolate virus from the Index for use in 

the infectivity assay (see Section 5.2.2). Initial attempts using a standard PHA blast co-culture 

failed on repeated attempts and even when performed in collaboration with Dr Myra Amott 

(Medical Microbiology, University of Edinburgh). The SI and NSI permissive cell line, PM1, 

was then used in case the problems were associated with the use of PBMCs, but this also 

failed. Attempts to isolate virus from plasma both using PM1 and CD8 depleted PHA blasts 

also failed and a final attempt using the U87-CD4-CCR-5 cell line with both plasma and 

PBMCs failed yet again. 

5.3.1.b Co-receptor usage of viral stocks 

The NSI/SI phenotype of the viral stocks was known, but with the discovery of the 

co-receptors, it was considered important to determine which co-receptors the viruses were 

capable of utilising. This was particularly important with reference to the S32/b.32 individual, 

whose cells may be infectible with a CCR-5 dependent virus, if it could utilise another 

receptor too. The results are given in Table 5.3 for each virus with each cell line. Mock 

infected cells were repeatedly negative. 

HIVifiB  showed weak p24 production following infection of the U87-CD4 cells alone 

and those expressing CCR- 1 at day 5 of infection, but this was very low for this normally very 

virulent strain and probably represents values below physiological levels. In contrast, the 

replication in the cell line expressing CXCR-4 was extremely high and the p24 production was 

greater than that measurable by this assay, as precise values were not required a dilution 

series was not performed. Therefore, H1V8 is primarily restricted to usage of the co-receptor 

CXCR-4. The other TCLA-adapted strain, HIVc98 also replicated well in the cell line 

expressing CXCR-4, but in contrast to HlV nm , replicated well in the cell line expressing 

CCR-5 and weakly in the cell line expressing CCR-3 too. 

The M-tropic strain HIV replicated less virulently than the TCLA strains, as shown 

by reduced levels of p24 produced and was restricted to CCR-5 usage. The patient derived 

clone, fflV 13961,, showed persistent low levels of p24 in all assays, possibly representing 

excessive protein compared to competent virus, which was not efficiently removed by the 

washing stage (see Section 2.9.6). However, as predicted by the non-TCLA phenotype, only 
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Table 5.3. 

P24 ELISA Results following Infection of U87-CD4 Cell Lines* 

U87-CD4 	CCR-1 	CCR-2b 	CCR-3 
HIVt  D5t D8 D5 D8 D5 D8 D5 D8 D5 D8 D5 D8 
ifiB 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 Max4  Max 0.0 0.0 
C98 0.0 0.0 0.0 0.0 0.0 0.0 0.8 2.8 129.2 Max 28.9 Max 
BaL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 3.9 
139.6b 0.3 0.3 0.4 0.3 0.2 0.1 0.2 0.2 0.2 0.1 2.2 4.1 

* Results of p24 ELISA (see Section 2.10.2), following infection of U87-CD4 cell line with and without chemokine receptors 

(see Section 2.6.6) 

Strains of FITV used to infect cells at an multiplicity of infection of 0.01 (see Section 2.9.6). 

Values recorded as average of duplicate in ng/ml at day 5 and day 8 of infection. 

Greater than saturating amount of p24 for ELISA (3 l6ng/ml). 



cells expressing CCR-5 showed efficient replication and an increase of p24 over time, 

reflective of active replication. 

5.3.1.c CD8 Cell Depletion 

Representative staining for the Donors before and after depletion are shown in Figure 

5.3. A monoclonal antibody specific for CD4 was also used in later samples and is also 

shown. The depletion clearly has removed the vast majority of the CD8 cells and the batch to 

batch and sample to sample variation was low for the Donors shown here and Donor B gave 

similar results. It appears that a very small proportion of CD8 cells may have remained, 

although most of these are staining with a much lower intensity than the main population seen 

in the undepleted sample (intensity >10 2) .  

The BUs show a more varied efficiency of CD8 depletion, with some individuals 

showing good depletion (C5191, C54 11 and C549 1) and others showing less efficient 

depletion (C3 153 and C4311 and C5052) (see Figure 5.4). Due to limited numbers of cells, a 

pre-depletion sample was only assessed for C5411 and shows that a similar number, to that 

seen for the Donors, of the expanded population were CD8 and therefore does not mean that 

more cells needed depletion in this EU, but this can not be ruled out for the remaining 

individuals. 

5.3.1.d Infectivity Assay 

As a final check on the validity of the protocol, two Donors were used as controls 

prior to commencing the main assay (see Figure 5.5). The infection with IHVum  and H1V139.b 

showed a transient rise in p24 levels, followed by a dip, which rose again by day 13 (see 

Figure 5.5). Infection with IHVc98  resulted in a constant rise in infection, peaking as for 

HTVmj  and 13IV 1 39.6b  at day 13 (see Figure 5.5.a). The p24 production from HIV. infected 

cells was much lower than the other strains, but showed a steady rise in p24 production over 

the course of infection in both Donors (see Figure 5.5.b). 

The two Donors showed similar replication dynamics, but different levels of infection, 

with Donor D showing an increased in p24 production following infection with }HV, 

MVc98 and HIV. and Donor E showing increased production for I{lV 1396b  (see Figure 5.5.a 

and 5.5.b). This could reflect either variation in experiments, or individual variation from 
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Figure 5.3 

C1l)8 Cell Depletion of Donor Cells 

The cells were stained before and after CD8 cell depletion of PHA-blasts (see Section 2.6.4) with CD8 specific monoclonal antibody 

conjugated to the fluorochrome FITC and analysed on a FACScan (see Section 2.8.1). The intensity of the fluorochrome and hence the 

CD8 staining is shown on the x-axis and the number of cells staining at the given intensity is shown on the y-axis. The intensity is 

compared to an irrelevantly conjugated control antibody to assess the background fluorescence (Control - shown in grey). CD8 

staining is shown in green and some of the later samples were also stained with an anti-CM monoclonal:FITC (blue). Undepleted and 

post CD8 depletion staining is shown for Donor A and Donor C for the Batch I (A - top row) and Batch 3 (B - bottom row). 
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Figure 5.4! 

CI)81  Cell Depletion of FIJ Cells 

The cells were stained following CD8 cell depletion of PILA-blasts (see Section 2.6.4) with CD8 specific monoclonal antibody 

conjugated to the fluorochrome FITC and analysed on a FACScan (see Section 2.8.1). The intensity of the fluorochrome and hence the 

CD8 staining is shown on the x-axis and the number of cells staining at the given intensity is shown on the y-axis. The intensity is 

compared to an irrelevantly conjugated control antibody to assess the background fluorescence (Control - shown in grey) CD8 

staining is shown in green and some of the later samples were also stained with an anti-CD4 monoclonal:FITC (blue). Undepleted and 

post CD8 depletion staining is shown for C541 I and the remaining individuals the post-depletion staining only is given. 
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Figure 5.5. 

Infectivity Assay - Control Assay 

The graphs show the p24 production (n1m1) following infection of CD8 depleted 

PBMCs from two donors (Donor D (dashed line) and Donor E (solid line) with 

different strains of HIV at a m.o.i. of 0.001 (see Section 2.9.7). This assay was 

performed prior to the main assay to confirm the validity of the protocol. 

a.) Shows the results for EIV (3B), BlV cgg  (C98) and HJV 	(139.6b) 

b.) Shows the results for HTV (BaL) 
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person to person. However, the assay clearly resulted in measurable infection and if the EUs 

were resistant to infection, then this would be expected to be apparent. 

The cultures by the end of the infection period were overgrown and the media 

appeared yellow, reflective of exhaustion, so it was decided to reduce the cell concentration 

from 5 x iø to 3 x 105, which was well within the range which would result in cell growth 

and viral culture. This would also increase the number of parameters able to be investigated as 

cell number was very limiting for the EUs. 

To try and establish peak infection and to make sampling easier with multiple 

experiments, it was decided to sample the main assay every 3 days from day 3 until day 15. 

To account for variation from experiment to experiment, where sufficient cells were available 

following depletion, duplicates were also performed. Also, as the initial numbers of 

individuals to be assayed were to be fairly large, the assays were performed in three batches 

on three consecutive days. To rule out day to day differences, three Donors (Donor A, B and 

C) were used repeatedly with the first and last batch. 

Finally, to assess if the i32/E32 homozygous individual (C3 153) was truly resistant 

to CCR-5 restricted infection a higher m.o.i. was also performed for mv (m.o.i.=0.01, as 

well as the standard m.o.i =0.001 used for all the other strains). The day 0 value was the 

average of the p24 value obtained for the innoculum used for batch one and two, as the sample 

from the third batch was inadvertently stored incorrectly and was therefore not assayed. 

5.3.1 .d.i Mock Infection 

The mock infections were negative for all individuals at all times. 

5.3.1 .d.ii HIVBOL Infection 

The results are summarised in Figure 5.6 and show that the variation in infection is 

similar for both EUs and Donors and with, or without CD8 depletion (for the Donors). The 

range of responses is similar to that seen in the test assay (test assay: max - 0.9-1.6 ng/ml; 

main assay - 1.4ngfml). Of those assays which showed apparent infection, most peaked at day 

12 and often dipped by day 15. Some of the individuals in all groups clearly did not show 

productive infection, but this is unclear when all the data is presented. Figure 5.7 shows the 

data in the three groups: Donors undepleted/ Donors CD8 depleted and EUs depleted. 

Overall the undepleted Donors did not show a vast production of p24 (see Figure 

5.7.a), but a clear rise can be seen for Donor A and almost identical results are obtained on 
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Figure 5.6. 

Infectivity Assay with I1IY 	(m.o.i.=O.OQfl 

The following graph summarises all the p24 results (ng/ml) obtained following infection with MVB,,L at a multiplicity of infection 

(m.o.i) of 0.001 (see Section 2.9.7). For the Donors (A-C) results are presented for both undepleted PBMCs (tin) and CD8 depleted 

PBMCs (see Section 2.6.4) and for assays performed on different days (batch 1 (1) and batch 3 (3) to assess day to day variation. All 

the EU samples are for CD8 depleted assays and they are identified by their Heterosexual Study number (C -contact) followed by the 

partner number (see Section 2.2.1 .a). Where sufficient cells were available, duplicate experiment s were performed and are indicated by 

/1 and /2 respectively. I lence DonorB3un/l indicates Donor B, for batch 3, with undepleted cells and the first of two duplicate assays 

performed on the same day. 
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Figure 5.7. 

Infectivity Assay with H1V (m.o.i.=0.001) - Separate Groups 

The graphs show the p24 production (ng/ml) following infection with HIV g . at a 

multiplicity of infection (m.o.i) of 0.001 (see Section 2.9.7). For the Donors (A-C) 

results are presented for undepleted PBMCs (un) and CD8 depleted PBMCs (see 

Section 2.6.4) and for assays performed on different days (batch 1 (1) and batch 3 

(3)) to assess day to day variation. All the EU samples are for CD8 depleted assays 

and they are identified by their Heterosexual Study number (C - contact) followed by 

the partner number (see Section 2.2.1.a). Where sufficient cells were available, 

duplicate experiments were performed and are indicated by /1 and /2 respectively. 

Hence DonorB3unll indicates Donor B, for batch 3, with undepleted cells and the 

first of two duplicate assays performed on the same day. 

Shows the results for undepleted PBMCs (un) for Donors A-C 

Shows the results for CD8 depleted PBMCs for Donors A-C. 

c.) Shows the results for the EUs for CD8 depleted PBMCs. 
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the two separate occasions (batch 1 and 3). Donor B gave similar results up to day 6 and then 

one of the duplicate experiments shows a rise in infection and the other a small drop. This 

perhaps shows the well to well difference which could occur, one may have more CD8 

suppressor cells for instance. The final Donor, Donor C, does not appear to be infected with 

HIV, as no apparent rise in p24 production was seen over the period of infection. 

For the assays where the CD8 cells were depleted (see Figure 5.7.b), the Donors 

show a range of responses. Donor A shows an intermediate level of p24 production and the 

batch to batch results are similar, although not identical. Donor B gave a similar result to 

Donor A for batch 1 and a higher level of replication in batch 3, further indicating the 

presence of batch to batch variation. Donor C, as for the undepleted cells, does not show an 

apparent infection with fflV, with similar results obtained for each of the two assays. 

The most obvious result for the BUs following infection with fflV (see Figure 

5.7.0, is that the z32/i32 homozygote, C3153, showed no evidence of infection. C5052 and 

C54 11 also do not appear to show evidence of productive infection. C4311 and C5191 in 

contrast do appear to have become infected with BlVi3.L and C5491 shows evidence of a low 

level of p24 production, as otherwise the level of p24 would continue to fall, due to the 

removal and addition of fresh media at each of the time points. 

5.3.1.d.iii HJVc98 Infection 

The overall level of infection with HIV, was markedly lower than that seen in the 

test assay (test assay: max - 15.6-43.0 ngfml; main assay: max - 4.3ng/ml) (see Figure 5.8 and 

5.5). As for HIV. most infections peaked at day 12 and were often starting to dip by day 15. 

The further obvious difference for this data, is that the majority of EUs showed enhanced 

infection over the Donors. This was not a batch difference as representatives from all three 

batches were present in this elevated set. 

The undepleted Donors generally showed a poor level of infection, with this normally 

virulent strain (see Figure 5.9.a). Donor A showed little evidence of infection and again, as for 

IUVB,L gave very similar results from batch to batch. Donor B showed a small rise in p24 

production, although only very slightly. In contrast, Donor C which was not infected with 

}IV, showed the clearest evidence of infection with HIV, but this was not much above 

the other two Donors. 

Consistent with the undepleted assay, Donor A showed no apparent infection with 

}{I\'cm (see Figure 5.9.b). Donors B and C did show a small rise in p24 production over the 
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Figure 5.8. 

!nfectjyjtyjsay with 1!IYc (ql.Q.i.=O. tin  1) 

The following graph summarises all the p24 results (ng/ml) obtained following infection with HIV98 at a multiplicity of infection 
(m.o.i) of 0.001 (see Section 2.9.7). For the Donors (A-C) results are presented for both undepleted PBMCs (tin) and CD8 depleted 

PBMCs (see Section 2.6.4) and for assays performed on different days (batch 1 (1) and batch 3 (3) to assess day to day variation. All 

the EU samples are for CD8 depleted assays and they are identified by their Heterosexual Study number (C -contact) followed by the 

partner number (see Section 2.2. La). Where sufficient cells were available, duplicate experiment s were performed and are indicated by 

/1 and /2 respectively. Hence DonorB3unll indicates Donor B, for batch 3, with undepleted cells and the first of two citiplicate assays 
performed on the same day. 
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Figure 5. 9.  

Infectivity Assay with ffrV (m.o.i.=O.001) - Separate Groups 

The graphs show the p24 production (n/rnl) following infection with HIV  at a 

multiplicity of infection (m.o.i) of 0.001 (see Section 2.9.7). For the Donors (A-C) 

results are presented for undepleted PBMCs (un) and CD8 depleted PBMCs (see 

Section 2.6.4) and for assays performed on different days (batch 1 (1) and batch 3 
(3)) to assess day to day variation. All the EU samples are for CD8 depleted assays 
and they  are identified by their Heterosexual Study number (C - contact) followed by 

the partner number (see Section 2.2.1.a). Where sufficient cells were available, 

duplicate experiments were performed and are indicated by /1 and /2 respectively.  
Hence DonorB3urijl indicates Donor B, for batch 3, with undepleted cells and the 
first of two duplicate assays performed on the same day. 

Shows the results for undepleted PBMCS (un) for Donors A-C. 

Shows the results for CD8 depleted PBMCs for Donors A-C. 

Shows the results for the EUs for CD8 depleted PBMCs. 
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period of infection, but this was again, not as marked as that expected from the test assay (see 

Figure 5.9.b and 5.5.a). 

The EUs appeared to fall into two different groups with regard to RlV infection 

(see Figure 5.9.c). One group, including: C3153, C5052, C5411 and C5491, showed a clear 

rise in p24 production over the course of infection and this was still well below the values 

recorded for the test assay (see Figure 5.5.a). The other group including: C4311 and C5 191, 

only showed a very slight rise in p24 production, but did not show a progressive decrease 

expected from the lack of any p24 production, due to the sequential sampling and addition of 

fresh media. Hence, the second group appear to be undergoing a very low level of replication. 

5.3.1 .d.iv HIV/11B Infection 

Only one individual assay appeared to show a persistent, although only small, rise in 

p24 production, after day 9 (C541 1) and this was not mirrored in the repeat sample for this 

assay (see Figure 5.10). The high values seen early in infection for some of the assays are in 

fact all from the same batch (batch 3) and apart from one slight blip at day 12 for C5491/1, 

then all still show no evidence of productive infection. These results are in stark contrast to 

those of the test infection with KlV (see Figure 5.4.a), which showed a large production of 

p24 in both of the Donors tested. This suggests a significant problem in these later assays. 

Analysis of the groups separately (see Figure 5.11) reflects the results shown when all the data 

were presented together. 

5.3.1.d.v HIVBaL  Infection - m.o.i.=O.O1 

A higher multiplicity of infection for the CCR-5 restricted I-HV B.L  was included to 

confirm the expected resistance of the i32/.32 individual (C3153). As for HIV, some of 

the earlier results showed markedly higher values than other assays and again were from the 

third batch of assays (see Figure 5.12); although not all of the results from batch 3 behaved in 

this way. Apart from these outliers, the rest of the assays show similar variation between the 

EUs and Donors and for undepleted and depleted assays (see Figure 5.12). 

The analysis of the groups separately, shows the results more clearly (see Figure 

5.13). For the undepleted samples from the Donors, no apparent infection was seen (see 

Figure 5. 13.a) and the depleted samples gave similar results, if the apparent increase at day 3 

for Donor B and C for batch 3 is ignored (see Figure 5. 13.b). Not surprisingly all but one of 
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Figure 5.10. 

ilfectjyjty ASSAy With !I!Yffln (m.o.i.=O.00iI 

The following graph summarises all the p24 results (ng/ml) obtained following infection with MVwB at a multiplicity of infection 

(m.o.i) of 0001 (see Section 2.9.7). For the Donors (A-C) results are presented for both undepleted PBMCs (tin) and CD8 depleted 
PBMCs (see Section 2.6.4) and for assays performed on different days (batch 1 (1) and batch 3 (3) to assess day to day variation. All 

the EU samples are for CD8 depleted assays and they are identified by their Heterosexual Study number (C -contact) followed by the 

partner number (see Section 2.2. La). Where sufficient cells were available, duplicate experiment s were performed and are indicated by 

/1 and /2 respectively. Hence DonorB3un/1 indicates Donor B, for hatch 3, with undepleted cells and the first of two duplicate assays 
performed on the same clay. 
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Fiure 5.11. 

Infectivity Assay with fff\TTTTR (m.c,.j.=O 001) - Separate Groups 

The graphs show the p24 production (nglml) following infection with BIVim at a 

multiplicity of infection (m.o.i) of 0.001 (see Section 2.9.7). For the Donors (A-C) 

results are presented for undepleted PBMCs (un) and CD8 depleted PBMCs (see 

Section 2.6.4) and for assays performed on different days (batch 1 (1) and batch 3 

(3)) to assess day to day variation. All the EU samples are for CD8 depleted assays 

and they are identified by their Heterosexual Study number (C - contact) followed by 

the partner number (see Section 2.2.1.a). Where sufficient cells were available, 

duplicate experiments were performed and are indicated by /1 and /2 respectively. 

Hence DonorB3unjl indicates Donor B, for batch 3, with undepleted cells and the 

first of two duplicate assays performed on the same day. 

Shows the results for undepleted PBMCs (un) for Donors A-C. 

Shows the results for CD8 depleted PBMCs for Donors A-C. 

C.) Shows the results for the EUs for CD8 depleted PBMCs. 
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Figure 5. 12, 

Infectivity _y with 1 1lV11L ffi.o.i.=o.ol. 

The following graph summarises all the 1)24 results (ag/mi) obtained following infection with III V[3,1, at a multiplicity of infection 
(In 0-0 of 0.01 (see Section 2.9.7). For the Donors (A-C) results are presented for both undepleted PBMCs (tin) and CD8 depleted 

PBMCs (see Section 2.6.4) and for assays performed on different days (batch 1(l) and batch 3(3) to assess day to day variation All 

the EU samples are for CD8 depleted assays and they are identified by their heterosexual Study number (C -contact) followed by the 

partner number (see Section 2.2. La). Where sufficient cells were available, duplicate experiment s were performed and are indicated by 

/1 and /2 respectively. Hence Donorfl3un/l indicates Donor B, for batch 3, with undepleted cells and the first of two duplicate assays 

performed on the same (Jay. 
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Fiaure 5.13. 

Infectivity Assay with HIV (m.o.i.=O.01) - Separate Groups 

The graphs show the p24 production (ng/mI) following infection with HIV at a 

multiplicity of infection (m.o.i) of 0.01 (see Section 2.9.7). For the Donors (A-C) 

results are presented for undepleted PBMCs (un) and CD8 depleted PBMCs (see 

Section 2.6.4) and for assays performed on different days (batch 1 (1) and batch 3 

(3)) to assess day to day variation. All the EU samples are for CD8 depleted assays 

and they are identified by their Heterosexual Study number (C - contact) followed by 

the partner number (see Section 2.2. 1.a). Where sufficient cells were available. 

duplicate experiments were performed and are indicated by /1 and /2 respectively.  
Hence DonorB3un]1 indicates Donor B, for batch 3, with undepleted cells and the 

first of two duplicate assays performed on the same day. 

Shows the results for undepleted PBMCs (un) for Donors A-C. 

Shows the results for CD8 depleted PBMCs for Donors A-C. 

C.) Shows the results for the ETJs for CD8 depleted PBMCs. 
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the assays for the EUs (C5411/2) also showed no apparent rise in p24 production and the rise 

in this individual was not repeated in the duplicate (see Figure 5. 12.c). 

5.3. 1. dvi HJV1396b Infection 

Similarly unexpected results were obtained for some of the batch 3 assays following 

infection with 1ilV 139  (see Figure 5.14). However, for the assay as a whole, no real evidence 

of productive infection was seen for any individual, unlike that seen for the Donors assessed in 

the test assay (see Figure 5.5.a). This is shown more clearly when the groups are presented 

separately (see Figure 5.15). There were insufficient cells from C3 153 to infect with this 

isolate. 

5.3.2 Sequence Analysis of Virus Present in Index 

Due to the inability to obtain virus by culture from the Index for use in the infectivity 

assay, it was decided to sequence the env gene, containing the region encoding the V3 loop. 

The likely NSI/SI phenotype of the virus was then ascertained, to determine if, at the times of 

the Contacts' exposure, the Index was infected with viral variants which would be able to 

infect them. This was of particular interest for C3 153, who was homozygous for the A32 

mutation in CCR-5. A predicted pattern of V3 amino acid sequences, which related to CCR-5 

co-receptor usage, was also constructed from published data and applied to the viral variants 

found in the Index, to determine if lack of CCR-5 usage may have accounted for the lack of 

transmission. 

In addition, due to extensive sequence data on the Index from Dr. Wade's study 

(Wade (1997) PhD thesis), it was possible to relate viral variants present at the times of 

transmission to the first two Contacts (C3151 and C3152) to later variants. This then allowed 

investigation of whether major change had occurred between the time when the Index did and 

did not transmit, to determine if this could account for the lack of transmission to the later 

Contacts. To support the env sequencing, the p17 region of the gag gene was also sequenced 

and compared in an analogous way to that of env. Phylogenetic analysis was performed on the 

sequence data to determine the degree of relatedness of the virus at the different time points 

and to screen for potential contamination. 

The phylogenetic analysis was initially used to check for potential contamination, or 

mis-labelling. This revealed that the last sample (Sample 3; see Figure 5.1) was not from the 

Index as thought and was excluded from all other analysis of this data. A single contaminant 
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Figure 5.14. 

Infectivity Assay with IIjV j jq6b  (m.o.i.=O.00I 

The following graph summarises all the p24 results (rig/ml) obtained following infection with I llVi39ob at a multiplicity of infection 

(m.o.i) of 0.001 (see Section 2.97). For the Donors (A-C) results are presented for both undepleted PBMCs (tin) and CD8 depleted 

PBMCs (see Section 2.6.4) and for assays performed on different days (batch 1 (1) and batch 3(3) to assess (lay to day variation. All 

the EU samples are for CD8 depleted assays and they are identified by their Heterosexual Study number (C -contact) followed by the 

partner number (see Section 2.2. La). Where sufficient cells were available, duplicate experiment s were performed and are indicated by 

/1 and /2 respectively. Hence DonorB3un/1 indicates Donor B, for batch 3, with undepleted cells and the first of two duplicate assays 

performed on the same day. 
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Figure 5.15. 

Infectivity Assay with HTVI396bIm.o.j.=0,001) - Separate Groups 

The graphs show the p24 production (ng/ml) following infection with }\T . 6b at a 

multiplicity of infection (m.o.i) of 0.001 (see Section 2.9.7). For the Donors (A-C) 

results are presented for undepleted PBMCs (un) and CD8 depleted PBMCs (see 

Section 2.64) and for assays performed on different days (batch 1 (1) and batch 3 

(3)) to assess day to day variation. All the EU samples are for CD8 depleted assays 

and they are identified by their Heterosexual Study number (C - contact) followed by 

the partner number (see Section 2.2. 1.a). Where sufficient cells were available. 

duplicate experiments were performed and are indicated by /1 and /2 respectively. 

Hence DonorB3un/1 indicates Donor B, for batch 3, with undepleted cells and the 
first of two duplicate assays performed on the same day. 

Shows the results for undepleted PBMCs (un) for Donors A-C. 

Shows the results for CD8 depleted PBMCs for Donors A-C. 

Shows the results for the EUs for CD8 depleted PBMCs. 
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was also found for one of the env sequences from sample 1 and was also excluded (see Section 

5.3.2.e). 

5.3.2.a NSI/SI Phenotype 

The predicted NSI/SI phenotype was determined, relating the net charge of the V3 

loop and degree of variation from the subtype B consensus sequence. Figure 5.16 shows the 

predicted association of the charge and heterogeneity to NSI/SI phenotype as deduced by 

Donaldson et al. (1994), along with the locations of several well defined isolates. The 

properties of predicted V3 isolates sequenced from samples P0-9, along with isolates from 

sample 1 and 2 of this study (see Figure 5.16) are shown. The number with each property are 

summarised in Table 5.4. 

The majority of isolates from sample 1 and 2 and F0-9 are predicted to be of an NSI 

phenotype (see Figure 5.16 and Table 5.4; 42/51 F0-9 and 21/23 Sample 1-2). One isolate 

from both F0-9 and sample 1-2 was a borderline value of +4 charge and 5 amino acid 

differences from subtype B and 8 isolates from F0-9 and 1 from sample 1-2 gave a predicted 

SI phenotype, although still relatively borderline compared to the clear SI isolates such as 

MVNIN  and HIV. From the F9 sample, when C3 153 was exposed, none of the isolates 

sequenced had a predicted SI phenotype (0/12). In fact, all the potential and borderline SI 

isolates were only found in the P5 and F6 time points and none in the later samples (F7-9). 

5.3.2.b CCR-5 Co-receptor Usage 

Due to the inability to isolate virus from the Index patient, it could not be ascertained 

by culture, what the co-receptor usage of virus present around the time of exposure of the 

uninfected Contacts was. From published sequence and co-receptor usage, a model of 

important amino acid residues was constructed which related to CCR-5 co-receptor usage in 

vitro. By alignment of V3 loop sequences, potential residues involved in CCR-5 usage were 

determined (see Table 5.5). 

From the work of Speck et al. (1997) studying the effects of amino acid substitutions 

in the V3 loop on the effect of co-receptor usage, it is apparent that a change from the subtype 

B consensus at position 13 of the loop from bistidine (H) when present with a change from 

isoleucine at position 32 (I), appears to result in a loss of CCR-5 co-receptor usage. Other 

mutations also seem to affect the properties of the viruses and CXCR-4 usage, but with less 

consistancy. To test if the association with CCR-5 usage was true for other isolates, the V3 
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Jiigiire 5.16. 

Predic4ej SI/NSI Phenotype of Vir& Variants of Index Based on '/3 Loop Segnences 

Graph based on that complied by Donaldson el al (1994). 

Diagram shows the predicted SIINSI phenotype of virus present in the Index based on the predicted overall charge and the degree of 

difference from the subtype B consensus sequence (CTR PNNNTRKS II IGPGRAFYTTGEIIGDDJ RQA I IC) (Dighe, Korber and Foley 

(1997). The charge was deduced by assigning a +1 for arginine and lysine (R and K) and -I charge to glutamate and aspartate residues 

(F and D) The potential charge contribution by lustidine residues was (liSColirited (It) The line divides the estimated spill between an 

SI and NSf phenotype. Several well defined isolates are shown with * followed by their name. Isolates from the Index sequenced by 

Dr. Chris Wade (Wade (1997) PhD Thesis) are shown with a dot and those sequenced in this study are shown with a X. Where two 

samples gave the same values, the symbols were placed side by side. The actual number of sequences with the predicted values shown 

are given in Table 5.4. 
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Table 5.4. 

Number of Seauences Obtained with Given Charge and Heterogeneity From Subtype B 
Consensus of V3 Loop as Shown in Figure 5.16. 

Number of 
	

Number of Sequences from Index with 

Overall Charge 
	

Differences from 
	 These Properties 

(+) 
	

Subtype B 
	

FO-F9 Samples I Sample 1 and Z 
Consensus 
	

(F9 only) 

2 3 4(4) 14 
2 4 2 0 
2 5 5 0 
3 6 2 0 
3 7 17(2) 4 
3 8 11(5) 3 
3 9 1 0 
4 5 1 1 
4 6 7 0 
4 7 1 1 

* Samples sequenced by Dr. Wade. Number in brackets indicates number of sequences 
obtained at 9 years post seroconversion, the time of exposure of C3 153 (see Figure 5.1). 

Spies sequenced in this study at time of exposure of C3154 (see Figure 5.16). 
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Table 5.5. - Published V3 Loop Sequences and Growth and Co-receptor Properties 

1 	 11 	 21 	 31 
I 	I 	I P 

I 
M T CCR-5" CXCR-4 1' SL1NSI Score s  Reference' 

Consensus CTRPNNNTRKsIHI --GPGRAFYTTGEIIGDIRQAHC  
NL43 R.QR......V.I.K.—.NM + - + - + SI 0 1,2 
123 R. .S ......... R. .—Q.V.NL + - + - + SI 0 1 
126 R. .—Q.V.NL + + - + - NSI 1 1 
134 S ......... R. .—Q.V.NL + - + - + SI 0 1 
241 

....................... 

+ + + + + SI 1 1 
242 + + - + - NSI 1 
254 

R. .S ......... R. .—Q............ 

+ + + + + SI 1 1 
255 

. 

R. .S .........R. .—Q.V. .L + - + - + SI 0 1 
256 R. .S ......... R. .—Q.V.N + + + + + SI 1 1 
HXB2RJIIIB ......V.I.K.—.NM . 	

..Y.........H. . .R ...... K 
+ - + - + SI 0 3.4.5,6.7,8.9 

SF-2 + - + + + 51 1 3 
SF2Mu3 

R. 	.S ......... R. 	. - ........... .. 

R. .S ......... R. .—Q.V.......... 

........R.R.QR 

Y..........A. .D ......K + + + + + SI 1 3 
SF-162 + + - + - NSI 1 3.4.6 
SF162Db1 + - + + + SI 1 3 
BaL 

T .......... A. 	.D ............ 
............ 

+ + - + - NSI 2 4,6.9 
JR-CSF 

TR ...... V. .A. .D ............ 

+ + - + - NSI 2 1,2 JR-FL + + - + - NSI 2 2.4.5.6.9 89.6 

. 	. 	. 	.s 	................................ 

+ + + + + Si 1 5 
YU2 

. 

+ + - + NT NSI 1 10 ADA 
RF 

N ........L ................ 

. 

+ + - + - NSI 2 4.5.6.8.9. 10. 
TK ......VI.A. .Q...... K + - + + + SI 1 4.6 GUN WT T .........HAIEK. . .N + + + + + SI 1 7 

GUN-1V 

RRLS ..........ARRN ........... 

T....S....HAIEK.. .N + - + -1+ + 51 1 7 

.. 

T.........HAIEK. . .N 

. 

+ + + + + SI 1 7 
GIJNV.Es.2 
GUN V.Es.1 . . 

T. . . .S.. .INAIEK. . .N 

. 

+ + + + + 51 1 7 
GUN V.Es.3 .T.. . .S .T.QAIEK. . .N 
. 

+ - + + + SI 1 7 
GUN V.Es.4 .T... .S.. .LHAIEK. . .N....... -  - - + + SI 1 7 

Replication in PBMCs (P), Macrophages (M), or T cell lines (T). 0  Replication in cell line expressing CD4 and CCR-5, or CXCR-4. 	 or Non-SI (SI) 

Presence of histidine (H) at position 13 and isoleucine at position 32, shown in bold. If both present score =2, if one score =1, etc. 	 NT - not tested 

• 1: Speck etaL (1997); 2: Mang et aL (1996); 3: Cheng-MayerefaL (1997); 4: Fengef al. (1996); 5: DoanzetaL (1996); 6: Alkhatibetal. (1996); 7: Dittmar etal. (1997); 8: Bjomdal efal. (1997); 9: Deng et al. (1996); 10: 
Choe Cf aL (1996). 

$ Subte B consensus from Dighe, Korber and Foley (1997) Identity with the consensus is shown with a dot and alignment gaps are shown with a dash. 



loops of published viruses with known co-receptor usage were aligned. As can been seen from 

Table 5.5, of the isolates able to utilise CCR-5 as a co-receptor, all had either the H at 

position 13 and/or I at position 32. Those isolates unable to use CCR-5 had changes from 

both H and I at position 13 and 32 respectively. 

No other association could be seen from this analysis and it was clear that CCR-5 

usage by both T-and M-tropic viruses was possible. It also seemed to be the case that CCR-5 

usage did not relate to an ability to infect macrophages in the studies assessed here and no V3 

loop sequences were apparent from this analysis that related to the ability to infect 

macrophages. 

Having confirmed the H/I association in other isolates, the predicted V3 loop regions 

of viral isolates sequenced from the Index were aligned and assessed for the predicted CCR-5 

receptor usage (see Table 5.6). Of the samples sequenced by Dr. Wade (F5-9 for env), all had 

both H at position 13 and I at position 32, hence predicted to be able to utilise CCR-5 as a co-

receptor. The sequences for F9, around the time of C3153's exposure and isolates from 

sample 1 and 2 of this study (see Figure 5.1) are shown in Table 5.6, where it shows that all 

isolates found in later samples also had a predicted ability to utilise CCR-5 on this basis. 

53.2.c Changes in Virus from Index 

During a father-mother-child transmission study involving the Index, four subgroups 

of viral populations were found for gag and env during the nine years from seroconversion (A-

D) (Wade (1997) PhD thesis). Representative predicted amino acid sequences across this 

study time for each of these groups are given in Figure 5.17 for env and 5.18 for gag 

(nucleotide sequence given in Appendix 5.1 and 5.2). To determine if any major changes in the 

viral population infecting the Index had occurred, during the later stages of infection, which 

may explain the lack of transmission to his later partners (C3153 and C3 154), sequences from 

the later time points (10 and 11 years post seroconversion; sample 1 and 2 respectively) were 

aligned to the earlier ones. From the predicted amino acid sequences, the group with which the 

sequence bore most homology is indicated, unless similarity to more than one is seen, when 

both are given, or if too much divergence was seen, no group was assigned (see Figure 5.17 

and 5.18). 

More variation was seen in env than gag, both during the previous study and also in 

the later samples studied here. For env, the A subgroup was only seen in the earliest samples 
(P5 and F6), but in the F9 sample, during C3 153's exposure, all the remaining groups were 
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Table 5.6. 

Predicted CCR-5 Usage by Viral Isolates of Index from V3 Loop Seciuence 

1 	 11 	21 	31 
I 	 I I 	 I Score 

Predicted 
CCR_5# 

Consensus' CTRPNNNTRXS IHI --GPGRAFYTTGE I IGD IRQAHC 
F9.1* ... .G.. .S.G...........HA.ER.T 2 + 
F9.2 S.G ............ A ......... L.Y 2 + 
F9.3 S.G ............ A ......... L.Y 2 + 
F9.4 . .. .G.. .S.G...........HA.ER.T 2 + 
F9.5 ... .G.. .S.G...........HA.ER.T 2 + 
F9.6 .. . .G.. .S.G...........HA.ER.T 2 ± 
F9.7 . .. .S.. .S.G............A.DR.T 2 + 
F9.8 .. . .G.. .S.G...........HA.ER.T 2 + 
F9.9 . . . .G.. .S.G...........HA.ER.T 2 + 
F9.10 S.G ............ A ......... L.Y 2 + 
F9.11 S.G ............ A.........L.Y 2 + 
F9.12 . . . .S. . .SRG............A.ER.T 2 + 
1.1 . .. .G.. .S.G............A.ER.T 2 + 
1.2 2 + 
1.3 

... 	.S. . .S.G............A. .A............ 
S.G ............ A ......... L.Y 2 + 

1.4 S.G ............ A ......... L.YF 2 + 
1.5 S.G............A .........L.Y 2 + 
1.6 S.G ............ A ......... L.Y 2 + 
1.7 S.G ............ A ......... L.Y 2 + 
1.8 S.G ............ A ......... L.Y 2 + 
1.9 S.G ............ A ......... L.Y 2 + 
1.10 S.G............A .........L.Y 2 ± 
1.11 S.G............A .........L.Y 2 + 
1.12 S.G ............ A ......... L.Y 2 + 
1.13 S.G ............ A ......... L.y 2 + 
1.14 S.G ............ A ......... L.Y 2 + 
2.1 S.G ............ A ......... L.Y 2 + 
2.2 . . . .G. . .S.G...........HA.ER.T 2 + 
2.3 S.G ............ A ......... L.Y 2 + 
2.4 . . . .G. . .S.G...........HA.ER.T 2 + 
2.5 . . . .S. . .SRG............A.ER.T 2 + 
2.6 . . . .S. . .S.G............A.DR.T 2 + 
2.7 . . . .G. . .S.G............A.ER.T 2 + 
2.8 . . . .S. . .SRG............A.ER.T 2 ± 
2.9 . . . .G. . .S.G...........HA.ER.T 2 + 

Presence ofhistidine (H) at position 13 and isoleucine at position 32, shown in bold. If both present score =2, if one score 
1, etc. 

Score >1 predicts CCR-5 usage as deduced from Table 5.5. 
Subtype B consensus from Dighe, Korber and Foley (1997). Id entity with the  consensus is shown with adot and alignment 

gaps are shown with a dash. 

Isolates sequenced from Index from respective samples (see Figure 5.1) 

a. 



Figure 5.1 . 7. 

Aflignrneiits of the Predicted Amino Acid Sentience of the Y3 Loop and Flanking Regions 

The diagram shows the predicted amino acid sequences for the sequenced region of the em' gene for multiple sequences at the given 

sample pOints (see Figure 5.1). The sequences are aligned to the first variant sequenced at 5 years post seroconversion (F5), with 

identical amino acids to this sequence shown with a dot. Alignment gaps are noted with a dash and stop codons represented with an 

asterisk. The sequences provided by Dr. Wade are examples of the 4 major subgroups found during his study (A-D). The remaining 

sequences are those analysed here with the sample point and the sequence number both given. The sub-group with which they bear 

most homology to are given after the sequence, although most show addition variation from these initial sub-groups. Where similarity 

to more than one sub-group is seen, both are indicated. 
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1 11 21 31 41 51 61 71 81 91 101 111 121 

F5.A 
I 
WIRSSNFTD 

I 
NAXVIIVQLN 

I 
ETVEINCTRP 

I 
HSNTSKGIHI 

I 
GPGRAFYATG 

I 
RITGDIRQAH 

I 
CNLSRTKWND 

I 
TLQRIVIKLR 

1 
EQFGNNKTIA 

I 
FNRSSGGDPE 

I 
IVMHSFNCGG 

I 
EFFYCNSSQL 

I 
FNSTW 

F6.A .......... ... I ...... .......... SN ........ .......... E.I ....... ..... A .... ..R ....... .......... ..Q ....... .......... .......... ... S. 
F6.B .......... .......... .......... SN ........ ......... H ....... L.Y ..... A .... ..K. .A. . .G .. 	.K- ....... Q ................................ 
F7.B ....... I 	...................... NN .................. HI... .L.Y ..... A .... ..K. .A. . .G .. 	.K- ....... Q ....... V ......... ...... T.K ...... 
F9.0 .......... .......... ... EL ..... GN ........ ...... H. .H .............. HA .... ..H ....... .......... ..H ....... .......... ...... T.K ...... 
F9.0 .......... ... I  ...... ... K ...... GN  ........ ...... H. .E .............. HA .... ..R ....... K ........T ..H ....... .......... ...... T.K ...... 
F6.D .......... .......... .......... SN ........ .......... .......... .......... .. KW.AT  ... .......... .. Q ....... .......... ...... T ........ 
F9.D .......... .......... ... K ...... SN ... R............. H .......... .... S ..... ..KW.AT  ... .......... .. Q ....... .......... ...... T.K ...... 

1.1 ---... . .S . .......... .......... GN ........ .......... E .......... .... S ..... ..K ................... 0 ....... .......... ...... T.K ...... 
1 .2 -----. . .S . .......... ... K ...... SN ........ .......... A.I ....... .... S ..... ..K ....... .... S ..... ..Q ....... .......... ...... T.K ...... 
1.3 ---- 	......................... NN ........ .......... E.I .... L.Y .1. 	.A .... ..K. .AT ... .......... .......... .......... ...... T.K ...... BID 
1 .4 ---- 	......................... NN ........ .......... E.I .... L.Y Fl. .A .... ..K. 	.AT ............... 0 ....... .......... ...... T.K ...... BID 
1.5 ---- 	......................... HN ........ .......... E.I .... L.Y . 	.1. 	.A .... ..K. .AT ... .... D ..... .......... .......... ...... T.K ...... B/D 
1 .6 --- 	.......................... NH ........ .......... H.I .... L.Y .1. .A .... ..K. .AT ... .......... .......... .......... ...... T.K ...... B/D 
1 .7 ---- 	......................... NH ........ .......... E.I .... L.Y . 	.1. 	.A .... ..K. 	.A........................................ T.K . ..... B 
1 .8 ---- 	......................... NH ........ .......... E.I .... L.Y .1. 	.A .... ..K. 	.A........................................ T.K . ..... B 
1.9 --- . NN ........ .......... E.I .... L.Y .1. 	.A .... ..K. 	.A........................................ T.K . ..... B 
1.10 ---------- ---------- - - -------- NH ........ .......... E.I .... L.Y .1. .A.. .N . .K. .AT ... .......... .. Q ....... .......... ...... T.K ...... B/D 
1.11 --- 	.......................... NN .................. HI... .L.Y .1. .A .... ..K. .A .... .......... ..K ....... .......... ...... T.K . ..... B 
1 .12 --- 	.......................... NH ........ .......... E.I .... L.Y .1. .A .... ..K. 	.A........................................ T.K . ..... B 
1.13 -P-- 	......... T ...... .S.V ...... NH. .R........ S ...... 0.1 ....... ..I. .A.. .E . .KQ. .T ... ......... V . .Q ....... .......... ....... T ....... 
1.14 --- 	.......................... NH ........ .......... H.I .... L.Y .1. .A. . .N . .K. .AT ... .......... .......... .......... ...... T.K ...... B/D 
1 .15 --- 	.......................... NH .................. HI... .L.Y .1. .A. .K . .K. .AT ... .......... .......... .......... ...... T.K ...... B/D 
2 .1 ---------- ---------- - - -------- NH .................. HI... .L.Y .....A .... ..K. .AT ... .......... .. Q ....... .......... ...... T.K ...... BID 
2.2 --- 	......... I ...... ... K ...... GH ........ ...... H. .H .............. HA .... ..H ....... K ......... ..H ....... .......... ...... T.K . ..... C 
2.3 --- 	.......................... NN .................. HI... .L.Y .....A .... ..KW.AT  ... .......... .. Q ....... .......... ...... T.K ...... BID 
2.4 ---- 	.................. K ...... GN ........ ...... H. .E .......... .... EANGMT LYIG* 
2.5 ---....... .......... .......... SN ... R............. H .......... .... S ..... ..KW.AT  ... .......... ..Q ....... .......... ...... T.H ...... 0 
2 .6 --- 	.......................... SN ........ ......... D .......... .... S ..... ..RW ...... .... H ....... 0 ....... .......... ...... T.K . ..... A/D 
2 .7 --- 	.......................... SN ........ ......... E .......... .... S ..... ..K ................... 0 ....... .......... ...... T.K . ..... C/D 
2.8 ---- 	......................... SN.. .R............. H .......... .... S ..... ..KW.AT  ... .......... ..Q ....... .......... ...... T.H . ..... D 
2.9 ---- 	.................. K ...... SN ........ ...... H. .H .............. HA .... ..H ....... .......... ..H ....... .......... ...... T.K . ..... C 



Moire 518. 

Alignments of the Predicted Amino Acid Segnene of the pI7 Region of the Pao Gene and Flanking Regions 

The diagram shows the predicted amino acid sequences for the sequenced region of the gag gene for multiple sequences at the given 

sample points (see Figure 5.1). The sequences are aligned to the first variant sequenced at the year of seroconyersion (FO), with 

identical amino acids to this sequence shown with a dot. Alignment gaps are noted with a dash. The sequences provided by Dr. Wade 

are examples of the 4 major subgroups found during his study (A-D). The remaining sequences are those analysed here with the sample 

point and the sequence number both given. The sub-group with which they bear most homology to are given alter the sequence, 

although most show addition variation from these initial sub-groups. Where similarity to more than one sub-group is seen, both are 
indicated. 



1 	 11 	 21 	 31 	 41 	 51 	 61 	 71 	 81 	 91 	 101 	111 	121 	131 

FO .A GGKKRYKLKH IVWASBELEP. FAVNPGLLET SEGCRQILEQ LQPALQTGSE ELRSLFNTVA TLYCVHQKID \TKDTKEALEK IEEEQNKSKI< KAQQAAAGTG NSSQ --- VSQ NYPIVQNIQG QMVHQAISPR TLN 
F7.B 	.. . .K ..... 	.......... 	.......... 	.......... 	.......... 	.......... 	....... R.. 	.......... 	.......... 	.......... 	.......... 	....... M ................ 
F9.B 	.. . .K ..... 	.......... 	.......... 	.......... 	.......... 	.......... 	....... R .. 	.......... 	.......... 	.......... 	...... Q ... 	 ....... M ............... 
F6.0 	.. . .K ..... 	.......... 	.......... 	.......... 	... S.P .... 	.......... 	.......... 	.......... 	.......... 	.......... 	.......... 	..X .................... 
F8.0 	.. . .K ..... 	.......... 	.......... 	.......... 	... S.P .... 	.......... 	.......... 	.......... 	.......... 	.......... 	...... Q ... 	 .......... 	 .......... 	 ... 

F5.D 	.. . .K ..... 	.......... 	.......... 	.......... 	..... K ....................................................................................... 
F9.D 	.. . . ic................................ M .. 	..... K .... 	.......... 	.......... 	.......... 	.......... 	T ......... 	.......... 	....... M ............... 
1.1 	--- .K ..... 	.......... 	.......... 	.......... 	.......... 	........... 	....... R.. 	.......... 	.......... 	.......... 	.... VSQ ... 	....... L  .. 	.......... 	--- B 
1 .2 	---------- 	---------- 	---------- 	---------- 	--- s ...... 	.......... 	....... R.. 	.......... 	.......... 	.......... 	....VSQ ... 	........ .. ---------- --- B/C 
1 .3 	---------- 	---------- 	---------- 	---------- 	--- s ...... 	.......... 	....... ... 	.......... 	.......... 	.. ........ 	....VSQ ... 	....... --- ---------- --- B/C 
1 .4 	--- .K ..... 	.......... 	.......... 	.......... 	... S.P .... 	.......... 	.......... 	.......... 	.......... 	.......... 	....VSQ ... 	....... L .. 	.......... 	--- B 
1 .5 	--- .1< ..... 	.......... 	.......... 	.......... 	... S ...... 	.......... 	....... R.. 	.......... 	.......... 	.......... 	....VSQ ... 	....... L .. 	.......... 	--- B/C 
1 .6 	--- .K ..... 	.......... 	.......... 	....... M .. 	..... K .... 	.......... 	.......... 	.. ........ 	.......... 	T ......... 	.......... 	....... M.. 	.......... 	--- D 
1 .7 	--- .K ..... 	.......... 	.......... 	.......... 	... S ...... 	.......... 	....... R.. 	.......... 	.......... 	.......... 	....VSQ ... 	....... L .. 	.......... 	--- B/C 
1 .8 	--- .K ..... 	.......... 	.......... 	.......... 	... S ...... 	.......... 	....... R.. 	I ......... 	.......... 	.......... 	....VSQ ... 	....... L  .. 	.......... 	--- B/C 
1 .9 	--- .K ..... 	.......... 	.......... 	.......... 	.......... 	.......... 	....... R .. 	.......... 	.......... 	.......... 	....VSQ ... 	....... L .. 	......... 	--- B 
1 .10 	--- .K ..... 	.......... 	.......... 	.......... 	... S ...... 	.......... 	....... R .. 	.......... 	.......... 	.......... 	....VSQ ... 	....... L .. 	.......... 	--- B/C 
1 .11 	--- .1< ..... 	.......... 	.. ......... 	.......... 	... S ...... 	.......... 	....... R.. 	.......... 	.......... 	.... V ..... 	....VSQ ... 	....... M.. 	.......... 	--- B/C 

0 
	

2 .1 	---------- 	---------- 	---------- 	------- M  .. 	..... K .... 	.......... 	.......... 	.. ........ 	.......... 	T ......... 	.......... 	.......... 	.......... 	--- 
2.2 	---- .K ..... 	.......... 	.......... 	.......... 	... S ...... 	.......... 	....... ... 	.......... 	.......... 	.......... 	....VSQ ... 	.......... 	.......... 	--- B/C 
2 .3 	--- .K ..... 	.......... 	.......... 	..... H.M.H 	..... . .... 	.......... 	.......... 	.......... 	.......... 	T ......... 	.......... 	.......... 	.......... 	--- B 
2 .4 	.......... .......... 	.......... 	....... M.. 	..... K .... 	.......... 	.......... 	.. ........ 	.......... T ......... 	.......... 	....... M .. 	........ .. --- B 
2 .5 	.......... .......... 	.......... 	....... M.. 	..... K .... 	.......... 	.......... 	.. ........ 	.......... T ......... 	.......... 	.......... 	......... - --- B 
2 .6 	---------- 	---------- 	---------- 	---------- 	--- S ...... 	.......... 	....... R .. 	.......... 	.......... T ......... 	....VSQ ... 	.......... 	. --------- --- B/C 
2 .7 	---------- 	---------- 	---------- 	---------- 	--- S.P .... 	.......... 	.......... 	.......... 	.......... 	.......... 	...... Q ... 	.......... 	.......... 	.-- C 



seen (Wade (1997) PhD thesis). This was also reflected in the later time points where variants 

with homology to all groups were seen, along with some which showed similarity to two 

groups (see Figure 5.17). One variant was seen which had a stop codon in the V3 region (2.4; 

see Figure 5.17) and may not have produced a functional gpl2O protein. 

As for env, the first group seen for gag, A (FO), was only seen early in infection and 

was not seen in later samples (F5-F9) (Wade (1997) PhD thesis). The remaining groups were 

seen across the later time points, but at F9 only group B and D were seen, although only 3 

sequences were obtained for this time. However, group C was seen in the preceding sample 

(F8), where more sequences were analysed (Wade (1997) PhD thesis). In the samples 

analysed in this study (1 and 2), variants with homology to groups B-D were seen, along with 

B/C variants (see Figure 5.18). One additional change not previously seen was a VSQ 

insertion (position 105-8 as numbered in Figure 5.18). A Q insertion was seen previously, but 

not the VSQ which seems to predominate in the later time points. 

5.3.3.d Mean Pairwise Distances 

The intra sample diversity and the inter sample diversity was calculated over time for 

the V3 region of env and the p17 region of gag sequenced (see Table 5.7). Overall, the 

diversity in V3 was greater than gag (mean intra sample diversity: 3.7% env; 2.2% gag; see 

Table 5.7) and the variation early in infection is less than later time points (less than 5 years 

post seroconversion for env and less than 6 years for gag). However, most of these earlier 

time points had few sequences on which to perform the analysis. 

The greatest intra sample diversity was seen in the F8 sample 8 years post 

seroconversion for env (6.6%) and at sample 2 for gag (3.4%), although the overall variation 

seen was not that great at any of the time points. From the time when the three later 

partnerships occurred (F6 onwards, see Figure 5.1), the degree of intra sample variation in 

env was similar and despite a slight increase in the later samples, this was comparable for gag 

(see Table 5.7). 

The inter sample variation did not differ greatly from than of the intra sample values, 

reflected in the mean values (5.1% for env and 2.9% for gag) as there appeared to be as much 

variation within the sample points as there was over time (see Table 5.7). The greatest 

diversity was seen between the F8 and sample 2 time points (7.6% for env and 4.6% for gag; 

see Table 5.7), but as for the intra sample values these did not differ widely from the mean. 
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Table 5.7. 

Mean Pairwise Distances (%) for Intra and Inter Samnie Diversity from Index 

nt 

env 

MPD# t 

gag 
MPD# 

FO 0 --- 3 0.20 

F5 2 1.42 3 1.62 

F6 12 3.17 11 1.80 

F7 17 3.74 15 2.61 

F8 10 6.63 9 2.10 

F9 12 4.63 3 2.65 

1 14 2.31 11 3.25 

2 9 4.26 7 3.36 

Mean Intra sample 
Variations 3.74 2.20 

(Range) 1  1.42-6.63 0.20-3.36 

Mean Inter sample 
Variation 5.07 2.87 

(Range) 1  3.32-7.56 1.37-4.58 

Sample from Index (see Figure 5.1). 

tNumber of sequences for each sample. 

Mean Pairwise Distance (%) between sequences within sample (intra sample) calculated using a 

two parameter correction for multiple hits (Kimura (1980)). 

§ Mean of all % distances calculated for inter /intra sample variation, calculated as above. 

H Range of differences in analysis (samples with the given value). 

252 



5.3.2.e Phylogenesic Analysis 

Neighbour joining phylogenetic trees were reconstructed from the env and gag 

nucleotide sequence data sets of the Index (see Figure 5.19 and 5.20). The trees were rooted 

with the subtype D virus HIVELI  as the outgroup. Several reference subtype B strains were 

included in the analysis, along with some strains obtained from Scottish IDUs and related 

heterosexual transmissions (Holmes et al. (1995)). Due to work carried out at the Centre on 

cloned material from Edinburgh haemophiliacs, which involves high concentrations of viral 

DNA, sequences from these clones were included to check for potential contamination, 

although every effort was carried out to avoid this. As this work only involves the env gene, 
these were not included in the gag analysis, although a few sequences from Edinburgh 

Haemophiliacs were included for comparison. 

The four groups described by the father-mother-child transmission study (Wade 

(1997) PhD thesis) can be seen for the env tree (see Figure 5.19) and it is clear that the later 

samples 1 and 2 yielded variants which fall into all but the earlier A group. The grouping of 

the all the Index virus is very strongly supported, with an 80% bootstrap (>70% normally 

deemed significant) for the main branch node for the cluster. 

The final sample obtained and sequenced from the Index (sample 3; see Figure 5.1) is 

widely divergent from the other sequences and such strong departure would have been highly 

unlikely in the few months between the samples and suggests that that either contamination of 

the sample occurred, or a sample mix-up occurred and this sample was not from the Index. 

The sample did not cluster with the most likely source of contamination, the haemophiliac 

clones, unlike a single sequence from the first sample, which although not closely clustering 

with the clones, definitely appeared to be a contaminant and was excluded from all other 

analysis within this chapter. 

The diverse nature of the sequences from sample 3 were more marked in the gag tree 
(see Figure 5.20) and strongly suggest that the sample was not from the Index as the  chance of 
contaminating both gag and env without contaminating sample 2 which was processed in 

parallel is extremely unlikely. The sequences from this time point were excluded from all other 

analysis contained within this chapter. 

The four groups can also be seen in the gag tree (see Figure 5.20) and sequences from 

samples L and 2 do fall into these dusters. There is also an additional cluster, which appears 

to represent the divergent B/C group seen in the amino acid alignment (See Figure 5.18). The 
lower degree of diversity compared to env is reflected in the difference in the scale (shown on 
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Figure 5.19. 

Neighbour Joining Phvlogenetjc Tree for Env 

A rooted phylogenetic tree obtained by the neighbour joining reconstruction method 

(see Section 2.19) for the V3 sequences obtained from the Index. The tree is rooted 

with the subtype D virus HIV (ELI) as the outgroup. 

The scale bar corresponds to 10% nucleotide sequence divergence and % at the node 

is the % of bootstrap replicates in which the node occurs in this position in 100 

reconstructions (see Section 2.19). 

The subtype B reference strains are indicated by their name and the viruses derived 

from Scottish IDU and related heterosexual transmissions are indicated by IDU and 

HS respectively (Holmes et al. (1995)) The clones derived from Scottish 

Haemophilacs are grouped, as they fall into one discrete cluster (AsheLford (1996) 

PhD Thesis). 

The sequences obtained and analysed by Dr. Wade (Wade (1997) PhD Thesis) are 

labelled F (father) followed by the year of sampling post seroconversion (see Figure 

5.1). The four sub-groups identified in that analysis are shown labelled A-D. Later 

samples from the index are marked with an asterisk and the sample number 1-3 (see 
Figure 5.1). The sequence obtained from sample 1 which is a likely contaminant is 

marked with a #. 
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Figure 5.20. 

Nei2hbour Joining PhvIoenetjc Tree for Gag 

A rooted phylogenetic tree obtained by the neighbour joining reconstruction method 

(see Section 2.19) for the p17 gag sequences obtained from the Index. The tree is 

rooted with the subtype D virus HIV (ELI) as the outgroup. 

The scale bar corresponds to 1% nucleotide sequence divergence and % at the node is 

the % of bootstrap replicates in which the node occurs in this position in 100 

reconstructions (see Section 2.19). 

The subtype B reference strains are indicated by their name and the viruses derived 

from Scottish IDIJ and related heterosexual transmissions are indicated by IDU and 

HS respectively (Holmes et al. (1995)). Sequences derived from Scottish 

Haemophilacs are labelled as Ha (Ashelford (1996) PhD Thesis). 

The sequences obtained and analysed by Dr. Wade (Wade (1997) PhD Thesis) are 

labelled F (father) followed by the year of sampling post seroconversjon (see Figure 

5.1). The four sub-groups identified in that analysis are shown labelled A-D. Later 

samples from the index are marked with an asterisk and the sample number 1-3 (see 
Figure 5.1). 
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Figures 5.19 and 5.20). This also may explain the reason for the lack of the discrete cluster of 
Index variants seen for env, as other Edinburgh samples fall within  the Index sequences, 

although the bootstrap support for this is not significant. This intermingling of IDU and Index 

sequences has already been observed by Dr. Wade (personal communication). The bootstrap 

support for the node dividing the Scottish IDUs and their related heterosexual transmissions is 

not significant at 44%, but is high considering the low degree of variation in this region. 

5.4. DISCUSSION 

5.4.1 Infectivity Assay 

5.4.1.a Isolation of Virus from Index 

It is unclear why the repeated attempts at viral isolation failed. It is possible that some 

inhibitory factor was present in the culture media, most likely the serum. The C-C chemokine, 

RANTES, is a high concentration in human serum (Donald limes, personal communication) 

and it is possible that foetal calf serum may contain an analogous factor. However, the failure 

to isolate virus in collaboration with Dr. Myra Aniott at the Department of Medical 

Microbiology, using different reagents, which are frequently used for viral isolations in the 

same manner, suggests that this is unlikely to be true. 

It is possible that some process in the storage of the cells had reduced their viability, 

but all cells were stored continually in liquid nitrogen for PBMCs and -70°C for plasma, in an 

identical manner to those I stored and achieved reliable recovery from (see Section 5.2.2.d). 

The samples had been stored for at least a year before the first culture attempts and the length 

of storage time can also affect the ability to culture (Dr. Myra Arnott, personal 

communication). 

It is also possible that the copy number of virus present within the samples was very 

low and hence may explain the failure. In support on this the Index was known to be 

asymptomatic at the time of sampling and this is known to relate to a low viral load (Venet et 
al. (1991); Ruiz et al. (1996)) and low number of infected PBMCs (Simmonds et al. 
(I 990b)). An additional sample was found later (Sample 1; see Figure 5.1) and used in the 

sequence analysis, but as this was after the infectivity assay had been performed, viral 

isolation was not attempted. After repeated attempts, it was decided to perform the assay with 

only well, defined strains used within the Centre and an alternative, molecular, strategy was 

used to investigate the Index's virus. 
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5.4.1.b Co-receptor Usage 

In keeping with the expected co-receptor usage from published data of other primary 

isolates (Alkhatib et al. (1996); Doranz et at. (1996); Feng et al. (1996); Cheng-Mayer et al. 
(1997); Dittmar et al. (1997); Speck et al. (1997)), the SI primary isolate derived from an 

Edinburgh Haemophiliac (HIV), could utilise both CCR-5 and CXCR-4, a low level of 

infection was also seen for CCR-3 expressing cells. The TCLA strain HIV was restricted to 

CXCR-4, as shown by several other groups (Alkhaxib et at. (1996); Deng et al. (1996); 
Doranz et at. (1996); Feng et al. (1996); Bjomdal et al. (1997); Cheng-Mayer et al. (1997); 
Dittmar et al. (1997)) and the two NSI strains, HIVB.L and HIV 139 , were restricted to CCR-
5 usage as a co-receptor for entry. This is again in agreement with other reports regarding 

HIV (Alkhatii, et al. (1996); Deng et al. (1996); Feng et al. (1996)) and is agreement with 
other unpublished data for fflV 139  (Dr. Robert Walker, personal communication). This 

provided a range of viruses, with differing co-receptor restrictions, to assess the infectibilty of 

the EUs studied. 

5.4.2.c PHA Blasts for Infection 

The high degree of failure to grow the cells, obtained from the Department of Medical 

Microbiology, was surprising and severely limited the extent of the infectivity assay. It is most 

likely a reflection of both the age of the samples, some were stored for many years, and also 

the storage conditions. It was discovered that a proportion of samples were being incorrectly 

stored for a time and it is possible that other problems may have also effected the viability. 

The poor viability of these samples seems a more plausible explanation for the failure to 

culture than the culture conditions, as all the samples stored at the Centre for HIV Research, 

King's Buildings grew well. 

The numbers of individuals able to be assayed may have been increased if I had not 

mixed samples to maximise the number of cells achieved. This meant that cells stored at the 

Centre may have grown if not cultured with the Medical Microbiology cells. The final Contact 

of the Index studied here, C3154, was one such individual and meant that she was unable to 
be included in the infectivity assay. 

5.4.1.d CD8 Cell Depletion 

The depletion method used was not 100% successful and varied from individual to 

individual. However, it is a similar method to that used by others for similar assays (Connor et 
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al. (1996); Paxton et al. (1996); Pal et al. (1997); Schwartz et al. (1997); Wu et al. (1997b); 
Paxton et al. (1998)). Alternative methods could have been more successful, such as cell 

sorting, whereby a FACSCaII is used to actively positive, or negatively select cell populations 

that have been stained with particular antibodies. An alternative magnetic depletion based 

method is using a MiniMACS System (Miltenyi Biotec, Surrey). This has been shown to be a 

highly efficient method of depletion (Dr. Marian Aldhous, personal communication), but is 

very laborious and not well suited to large numbers of depletions. 

A further depletion of the depleted population, using the same technique may have 

improved the efficiency, but it may have also reduced the viability of the cells, which need to 

be manipulated as little as possible. 

5.4.1.e Infectivity Assay 

It is clear from the results for the majority of isolates, all but }{LV (m.o.i. =0.001) 

that something was clearly wrong with the assay. HIVc98 did appear to work, but only showed 

a much lower level of infection (p24 production) than was seen for the test run. It was not a 

problem of a particular batch as all behaved in an analogous manner, which was expected as 

all were treated identically. 

There are several possible reasons for the failure of the main assay. Most seem 

unlikely as they were controlled for, but can not be ruled out. The first possibility is variation 

in the culture conditions, i.e. .the medium and plastic-ware. The same source was used 

throughout and the same supplier was used for the media and PHA, etc. and therefore seems 

unlikely. In support of this is the fact that the cultures themselves did appear to be healthy and 

viable even at the end of the culture period. 

The depletion efficiency may have varied between the two main assay and the test 

assay and as this was not measured for the test assay can not be ruled out. However, routinely 

similar results have been achieved with this method, and the fact that the undepleted cells did 

show replication in the FHVB.L experiments suggests that this is unlikely to be the reason for 

the widespread failure of the other assays. Previous experiments have also shown infection in 

undepleted cells using these isolates. 

It is possible that the virus used in the assays may have lost activity during storage as 

the main assay was performed a few months after the test assay. To minimise variation in the 

viral stock, the high titre stock was pooled and mixed thoroughly and aliquoted into small 

volumes. This enabled a vial to be removed and used, to prevented freeze-thawing, which 
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would have reduced the viral titre. It seems unlikely that the viral stocks could have 

deteriorated over this time, when they had been correctly stored, throughout the time between 

assays. 

A more plausible explanation is a problem in the assay used to assess the viral 

replication, the p24 ELISA. New reagents were required during the time between the test and 

the main assay. However, all new reagents were tested in parallel with the old stocks, for 

variation in the standard curve using recombinant p24 and no vast difference was seen for the 

new reagents. It is possible that the viral derived p24 may behave in a different way to the 

recombinant, which will not have other proteins present which may interfere with the  binding 

of the p24 to the detection antibody. It is equally possible that the ELISA reagents used for the 

test assay, were perhaps incorrectly measuring the p24 content instead, but as only a limited 

amount of culture supernatant was available for all these cultures this could not be 

ascertained. 

The detergent (empigen) lysis of the virus, which is performed prior to the ELISA to 

release the viral p24, which is contained within the viral envelope (see Section 2.10.2) may 

have been a problem and was suggested by the early peak and subsequent drop in p24 content 

for the MVHIB and IEV139,6b in the test assay. The p24 values of the innoculum were far lower 

than those of the first time point and suggest, either an initial rise in infection, or an under 

estimate of the amount of p24 added. As the infection kinetics of a typical viral culture are 

thought to peak at 10-14 days (Coligan et al. (1996)), the latter seems a plausible explanation. 

Whether, the virus dilution was not mixed sufficiently, when the sample was taken, or whether 

the empigen lysis was not effective, is unclear, but either are possible, although both seem 

unlikely. I routinely took such samples after I performed the experiment, in case I ran out and 

routinely mixed dilutions of any sort. Also, the addition of empigen results in a clear colour 

change and hence would have been obvious if omitted and all the time points were analysed at 

the same point, so if the reagent had expired, all the results for that assay would have been 

effected. 

The unexpected results seen for some of the batch 3 assays, may reflect a mistake in 

the dilution, although it was checked and similiar to those performed for the first two batches. 

Again, it is possible that viral stock aliquots were different in some way, but as explained 

above this seems unlikely. Although, it does appear a higher amount of p24 was added to 

those cultures than others. However, in light of the poor response of this assay, the apparent 

increase in virus did not then result in a better infection. 
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A final possible explanation of the failure of the main assay was the decrease in the 

cell number from 5 x 105  to 3 x 105, hence the decrease in the amount of virus as the m.o.j. is 

dependent upon the cell number. However, the cells appeared to be growing throughout the 

culture and did not reach saturation, as in the test assay. There was also visible evidence of 

apparent syncytia in many of the BlV c98  infected wells and some of the IHV=  wells. Also the  

cell number and m.o.i was within range used by others (Paxton et al. (1996); Aarons et al. 
(1997); Pal et al. (1997); Wu Cr al. (1997b)) and some even perform the experiment on a 96-

well basis (Paxton et al. (1998)). 

In attempt to verify the results, I extracted the cell pellet stored at the termination of 

the culture, but I was unable to get consistent positive results for the control HLA-DQa (see 

Section 2.12.1), suggesting that the cell number was too low to enable a reliable extraction 

and PCR amplification. 

5.4.1 .e.i HJVB aL Infection 

In contrast to all the other viruses, the BIVB.L infection at the m.o.i. of 0.001 gave 

similar results in both the test and main assay, whether this was due to the low values, which 

meant that differences on the p24 ELISA were not seen, is unclear. 

What is clear is that the individuals studied here varied in their susceptibility, which 

was not limited to the EUs. This variation was unlikely to reflect the differences in the CD8 

depletion, as some of the individuals, who showed good depletion (Donor C; C541 1), did not 

show an apparent infection and others with a less efficient depletion (C431 1), showed a good 

infection. Also two of the undepleted Donors (A and C) also showed infection, comparable to 

that of others and even the worst depletion had many fewer CD8 cells than these undepleted 

samples. 

The lack of apparent I-HVB. L  infection in C3 153 supports the role of homozygosity for 

the i32 in the CCR-5 gene as being protective from infection with CCR-5 restricted virus 

(Dean et al. (1996); Liu et al. (1996); Samson et al. (1996b)). However, the other EUs 

(C541 1, C5052) which showed an apparent laôk of infection were wild-type for both the A32 

in CCR-5 and the 641 mutation in the CCR-2 receptor. C5491, who gave an indeterminate 

result was heterozygous for the i32 in CCR-5, but the result was not sufficiently dear in this 

assay to form any conclusion on the possible effect this may have had. The lack of infection 

was not restricted to EUs, as Donor C also showed no evidence of infection and they were 

found to be heterozygous for the 641 mutation in the CCR-2 receptor. It is still unclear if this 
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mutation has any physiological role (see Section 4.4.3.b) and contradicts the apparent 

additional risk of heterosexual infection in individuals bearing this mutation (see Section 

4.3.4). However, the effect on heterosexual infection may involve different cells, to the 

PBMCs studied here and any effect the CCR-2 mutation may have, be it as a marker for 

another mutation, or a direct effect itself, may differ in different cell types. 

A possible reason for the differences in infectibilty of these individuals is the level of 

surface CCR-5 expression. The level of CCR-5 expression is known to vary between 

individuals (Moore (1997)) and reduced expression has been shown to be related to reduced 

infectibilty with M-tropic strains (Wu et al. (1997b); Paxton et al. (1998)). Heterozygotes for 

the A32 deletion in the CCR-5 gene express lower levels of surface CCR-5 (Wu et al. 

(1997b); Paxton et al. (1998)) and a recent study by Paxton et al. (1998) showed that 

homozygous wild-type BUs also had reduced expression, which related to reduced infection 

with M-tropic strains of HIV. This may be related to, or have an additional effect to the 

reported association of resistance to infection being related to high levels of 13-chemokine 

production (Paxton et al. (1996); Pal et al. (1997); Zagury et al. (1998); Paxton et al. 

(1998)). Presumably, reduced receptor expression may relate to a reduction in targets for the 

chemokine and therefore show a higher level of free chemokine. Conversely, higher levels of 

chemokine production may mean that lower expression of receptor is needed to ensure correct 

signalling and receptor:chemokine interaction. The effectiveness of the chemokine inhibition 

on infection may also be increased in individuals expressing lower levels of surface receptor, 

due to increased competition for a reduced number of sites. All of these factors may be 

involved in some individuals, with differences from individual to individual too. Whether the 

differences in receptor level expression are due to polymorphisms in other areas, such as the 

CCR-5 promoter region, has not yet been fully elucidated, but screening of the CCR-5 

expression level in Edinburgh Heterosexual EU cohort may help explain the apparent 

protection from infection. 

The higher concentration of HIV (m.o.i.=O.Ol) did not show a clear infection and 

may require the removal of residual virus following infection, as this is the most likely reason 

that any infection was masked, as IllV only establishes a low level infection by comparision 

with HIVmB. 
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5.4.1 .e.ii HIVc8 Infection 

The infection with H1Vc98 showed an almost inverse relationship of successful 

infections from that of K[V. Of the EUs which showed a lack of, or poor replication with 

HLV, they then showed dear infection with HIV (C3 153, C5052, C5411 and C5491) and 

for those individuals which showed replication with HIV. (C4311 and C5191), poor 

replication with H1Vc98  was seen. A similar picture was seen for the Donors, with Donor A 

showing infection with HIVB L  and not HIVc98  and Donor C the opposite, but the difference 

was not as marked as seen in the EUs. This intriguing difference may again be related to the 

receptor expression levels, or even the presence of inhibitory chemokines. HlVcyg  is a Virus 

able to utilise either CCR-5, or CXCR4, but as seen from the infection studies with the U87-

CD4 cells (see Section 5.3.1.b), the replication with CXCR4 is apparently more virulent. If 

the level of CCR-5 was reduced, either due to competition from inhibitory chemokines, or due 

to reduced expression, the virus would have an increased chance of utilising the CXCR-4 

receptor, which it may do more readily and/or quickly. However, where the CCR-5 level is 

higher, then as the virus can bind to either receptor, the increased expression may mean that 

more virus infects the cells using CCR-5, hence slowing the infection. 

The culture conditions of the PBMCs are known to effect the level of receptor 

expression for both CCR-5 and CXCR-4 (Bleul et al. (1997)), but the cells in this study were 

treated in an analogous manner and batch to batch samples showed similar patterns of 

infection, therefore, this is unlikely to be the explanation for the differences in infections. A 

further interesting difference in expression was also reported by Bleul and co-workers (1997), 

they showed that naïve T cells (CD26" w  CD45RA CD45RO) expressed CXCR4 and 

memory/ activated T cells (CD26 CD45RK CD45RO) expressed CCR-5, hence a 

difference in the proportion of naïve versus memory cells may effect the response to in vitro 

activation and the final level of receptor expression. 

The despite the many problems with the infectivity assay, the differences in 

susceptibility to the CCR-5 restricted FHVB,,L and the CXCR4 and CCR-5 using HIV, 

highlight that important differences in receptor expression and chemokine inhibition may 

possibly be occurring. The receptor expression could be investigated by flow tytometry, 

utilising the co-receptor specific monoclonal antibodies which are now more widely available. 

The production of chemokines could be monitored by ELISA in response to stimulation, with 

and without infection. The infectivity assay would be better if it could be performed on a 

smaller scale too, such as performed by Paxton etal. (1998), but this would require the use of 
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a more sensitive p24 ELISA which could monitor smaller volumes at a more sensitive level. 

This may also improve the batch to batch variation of reagents which may have occurred for 

the in-house ELISA used in this study. 

A smaller scale study may also permit the study of the inhibitory effects of CD8 cells 

on REV infection, by performing assays with and without depletion. Depletion systems are 

also available which allow the detachment of the magnetic bead and hence the CD8 cells 

could even by titrated in to see at what level they exert an effect. A smaller study may also 

allow the inclusion of more viruses, which were limited by the cell numbers in this study. 

5.4.2 Sequence Analysis 

5.4.2.a NSIISI Virus 

Several studies have shown an association of NSI phenotype with transmission (Roos 

et al. (1992); Thu et al. (1993); van't Wout et al. (1994)) and it has been proposed to be 

linked to the initial infected cell type, thought to be a macrophage, or dendritic cell (Granelli-

Piperno et al. (1998)). During the period of time when infection of the first Contact occurred, 

the NSI/SI phenotype of the Index's virus could not be determined, due to the lack of env 

sequences. The majority of sequences obtained at all other time points were predicted to be 

NSI based on the V3 sequence using the method of Donaldson et at. (Donaldson et al. 

(1994)). A few borderline SI variants were seen, although none were found at the time of 

exposure to the 32/i32 homozygote, C3153. While this may reflect a sampling effect, 12 

sequences were obtained and no SI variants were seen in the preceding two samples either 

(both F8; 9 sequences). 

The lack of SI variants at the time of C3 153's exposure is important as homozygosity 

for the i32 mutation in the CCR-5 co-receptor has been strongly linked to protection from 

HIV infection (see Section 1.7.a.i; (Dean et al. (1996); Huang et at. (1996); Liu et al. (1996); 

Samson etal. (1996b))). The apparent NSI dependency and hence, presumed CCR-5 usage of 

transmitting viruses, is further supported by the protective effect of the CCR-5 mutation, as if 

CXCR4 was also utilised during transmission, more 32/32 homozygotes would be IHV 

instead of the very few rare reported events (Bin et al. (1997); O'Brien et al. (1997); 

Theodordu eral. (1997); Balotta etal. (1997)). It is not yet clear if infection of these 32/z.32 

individuals is due to SI, T-tropic variants, or if it is due to additional co-receptor usage, such 

as CCR-3, by NSI, M-tropic strains. However, the reports of protection in very highly 
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exposed uninfected homosexuals who were homozygous for A32 (Huang et al. (1996); Liu et 
al. (1996)), shows a strong dependency on CCR-5 usage during infection. As some of these 

EUs have had widespread exposure to HIV, if alternatives were possible one would have 

thought they would have been utilised in these individuals. 

5.4.2.b Co-receptor Usage Model 

If virus isolation from the Index had been successful, it would have been possible to 

determine if the virus was able to infect the EU contacts, or if they were intrinsically protected 

by 32/b32 homozygosity in the case of C3153, or some other mechanism in C3154. 

However, due to repeated failure to do this, an attempt to determine a model of co-receptor 

usage was investigated. This was based on the predicted amino acid sequence of the V3 loop, 

as it had been shown in culture that switching the V3 loop of a CCR-5 independent virus with 

a dependent virus, was sufficient for a change in co-receptor usage to that defined by the virus 

from which the V3 loop only was derived (Cocchi eral. (1996)). 

Variation at position 13 and 32 of the V3 loop from H and I respectively was found to 

correlate with a loss in ability to use CCR-5 as a co-receptor for entry in vitro. Many SI 

viruses, particularly primary isolates, have been shown to be able to use CCR-5 and CXCR-4 

as co-receptors for entry (Alkhatib et al. (1996); Doranz et al. (1996); Feng et al. (1996); 
Cheng-Mayer et al. (1997); Dittmar et al. (1997); Speck et al. (1997)) and only viruses very 

strongly adapted by long term passage in T cell lines (T Cell Line Adapted; TCLA) are unable 

to utilise CCR-5 in these in vitro systems (Alkhatib et al. (1996); Deng et al. (1996); Doranz 
et al. (1996); Feng et al. (1996); Zhang et al. (1996); BjOrndal et al. (1997); Cheng-Mayer et 

al. (1997); Dittmar et al. (1997); Speck et al. (1997)) It appears that these CXCR-4 

dependent strains have variation from both H at position 13 and I at position 32, but many 

other SI strains can still utilise CCR-5 and do not have these changes. It is also therefore 

apparent that CCR-5 usage is not restricted to those cells capable of infecting macrophages 

and other as yet undefined factors govern this. Therefore, SI viruses capable of using CCR-5 

are not all dual tropic viruses and some are still classical T-tropic strains. Hence the model 

which became apparent from the analysis of known V3 loops is more relevant to in vitro 

culture properties than to transmission. This is because the ability to utilise CCR-5 does not 

simply imply the ability to be capable of infecting cells, such as macrophages, which may 

depend upon CCR-5 usage and other factors. 
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A recent report by Foffis and colleagues (1998) also questioned the distinction of 

TCLA adapted strains being unable to utilise CCR-5. They adapted a primary SI isolate, 

which was able to utilise CCR-5 and CXCR-4 as expected, to become a TCLA strain, but this 

strain was still able to utilise CCR-5 and CXCR-4. The most obvious answer is that the 

adapted strain was not a classic TCLA, which are known to be sensitive to neutralisation by 

neutralising antibodies, unlike primary isolates, which are insensitive (Wrin and Nunberg 

(1994); McKnight et al. (1995); Wrin et al. (1995); Mascola et al. (1996)). However, in 

keeping with the TCLA association, the adapted strain was sensitive to neutralisation, unlike 

the primary isolate from which it was derived (Foffis et al. (1998)). It has also been shown by 

others that neutralisation sensitivity is independent of co-receptor usage (LaCasse et al. 

(1998); Montefiori et al. (1998); Trkola et al. (1998)). Hence, co-receptor usage is not a 

simple as M-tropism relating to CCR-5 usage, or TCLA strains, which become neutralisation 

sensitive, losing the ability to utilise CCR-5. It is apparent that these factors are anything but 

simple and are most likely multi-factorial and possibly independent of one another. Therefore, 

the likelihood of a model being broadly applicable seems, in light of these findings, highly 

unlikely, although the V3 loop of the TCLA strain, which was still able to utilise CCR-5, did 

only have a H—*R change a position 13 and was still I at position 32, so would have been 

expected to use CCR-5 by the model presented here. 

In order, to address the receptor usage of the viral variants found infecting the Index, 

further attempts at culturing virus could be tried from different samples, but if this still failed 

an alternative would be to clone the env gene into a vector and study the receptor usage of the 

env gene alone. This could then allow dissection of the regions of env associated with receptor 

usage, in that the minimal regions which conferred use could be determined. This would allow, 

for example, the different V3 loops to be put in a similar background and determine the co-

receptor usage relative to the original V3 loop. This approach would be more informative than 

a direct culture approach, which may select for specific variants and could also result in a 

mixed population. A mixed population could then yield confusing results, as it may contain 

variants which are capable of using CCR-5 and CXCR-4, or individual variants which can 

use only one. Both these situations would give the same result, as growth would be seen in 

CCR-5 and CXCR-4 cell lines with both such possibilities. This was shown recently by 

Scarlattiet al. (1997), who studied the evolution of co-receptor usage over time in a cohort of 

}ilV patients. They found some isolates which could use CXCR-4 and CCR-5, which when 
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Passaged in cells only expressing one receptor, could not always then grow in cells expressing 

the other, from which they concluded a mixed population had been present in the isolate. 

Scarlarti et at. (1997) also found that  virus present during the asymptomatic phase 

was usually CCR-5 dependent and that in individuals who progressed, the majority of later 

isolates could then use CXCR-4 and occasionally CCR-3 and gradually lost the ability to use 

ccR-5: A similar pattern was reported by Connor et al. (1997), who also showed a 

predominance of CCR-5 restricted usage during the asymptomatic phase and disease 

progression was associated with an expanded co-receptor repertoire to include: CXCR-4, 

CCR-5, CCR-3 and CCR-2b. These studies support the CCR-5 usage by the asymptomatic 

Index studied here. 

Scarlatti et at. (1997) also presented the V3 loop regions of some CXCR-4 restricted 

viruses which did not show the changes at positions 13 and 32, predicted by the model to 

relate to loss of CCR-5 usage. It is possible that a sequencing bias occurred, as they only 

sequenced the viral isolate cultured and not a single done, so it could not be directly 

confirmed that the culture properties of the viral isolate related exactly to that of the 

sequenced variant. However, as no CCR-5 usage was seen for the isolate and the consensus 

sequence would have most likely reflected the  major variant, then it is unlikely that a variant 

too low to establish infection in culture would then be the variant sequenced. This therefore 

casts doubt on the relevance of the model on patient derived isolates and seems to reflect the 

properties of highly adapted laboratory strains, which have little relevance to in vivo variants. 

The limitations of the V3-CCR-5 usage model was further highlighted by a study by 

Bjorndal and colleagues (1997), who assessed the co-receptor usage of a diverse panel 

previously described (Gao et at. (1996)) primary isolates representing a variety of different 

HIV- 1 subtypes. The model was again questioned as several of the different subtypes, which 

are diverse in the V3 region did not show changes at both position 13 and 32, but apparently 

were unable to utilise CCR-5. It is possible that the differences in the different systems, i.e. 

differences in the cells transfected with the chemokine receptors may be responsible for the 

apparent discrepancy and a well defined standardised cell type and system would be required 

to investigate any true association of V3 with co-receptor usage, much like the use of the MT -

2 cell line for defining SI phenotype (Koot (1992)). 

A different consensus model was recently proposed by Mao and colleagues (1998). 

They reported that CCR-5 usage correlated with an uncharged residue at position 11 of the V3 

loop (usually serine or glycine), the presence of the GPG motif and a negatively charged 
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residue at position 25 (usually glutamic, or aspartic acid) which was confirmed using site 

directed mutagenesis. When this motif was applied to the sequences used to form the model in 

this study (see Table 5.8), then many strains were unassigned and Mao's model seems less 

sound that the one proposed in this study. For the isolates in the study by Speck et at. 

(1997)(e.g. 123/126/134/241), some are identical in their predicted properties at position 

11/GPG and 25, but show actual differences in co-receptor usage (see Table 5.8 and 5.5). It 

therefore seems apparent that the predicted model is very dependent upon which sequences 

were used to form it and clearly the actual correlates of CCR-5 usage are not simply obtained 

from known associations. 

5.4.2.c Phylogenetic Analysis 

The heterosexual transmission to the first Contact, C3 151, occurred very early in the 

infection of the Index, around the time of seroconversion. This would therefore have coincided 

with the primary viraema in the Index and the high viral load found at this time (Jacquez et at. 

(1994)). It is clear from several studies that a high viral load in the index is associated with an 

increased risk of transmission (Lee et al. (1996); Fiore et at. (1997); Ragni, Faruki and 

Kingsley (1998)), presumably by an increase in the seminal viral load and hence potential 

innoculum to the Contact. Although only limited sampling occurred at this time, the virus is 

most likely to have been NSI in nature (Roos et at. (1992); Thu et al. (1993); van't Wout et 

at. (1994)). It is also known that a high degree of identity is present in the viral population in 

the early stages of infection (Kleim et al. (1991); Wike et at. (1992); Wolfs et at. (1992); 

Wolinsky et al. (1992); Scarlatti et al. (1993); Zhang et at. (1993); Thu et al. (1993); van't 

Wout et at. (1994)), although a few cases of transmission of multiple variants have been 

reported (van't Wout et al. (1994); Briant et al. (1995); Thu et al. (1995); Janini et al. 

(1998); Wade, Lobidel and Leigh Brown (1998)). Hence the virus sampled early in the Index 

is highly likely to be related to the transmitted variant, confirmed in the FO gag sample which 

was found to duster with the first mother-child pair in phylogenetic reconstructions (Wade 

(1997) PhD thesis). Even in the first sample for env (P5), the virus was still shown to cluster 

with the virus in the group A of Index variants, presumably linked to the earlier viral 

population which was transmitted (Wade (1997) PhD thesis). 

By the time the Index transmitted to the next Contact, C3 152, he had been infected for 

approximately 6-8 years, was clinically stable and in the asymptomatic stage of disease. It is 

therefore unlikely that transmission was related to a high viral load, as this has been shown to 
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Table 5.8.: Predicted CCR-5 Sequence from Model Predicted by Xiao et aL (1998) 

1 	 11 	 21 	 31 
I 	I 	I 	I i GPG 25 * 

Predicted 
CCR5t 

Actual 
CCR-5 t  

Consensus CTRPNNNTRKSIHI--GPGRAFYTTGEI IGDIRQAHC 
NL43 R.QR...... V.I.K.—.NM u v + 
123 R. .S ......... R. .—Q.V.NL u v u 
126 R. .—Q.V.NL u v u -I-i- + 
134 S ......... R. .—Q.V.NL u v u 
241 R. .S ......... R. .-Q........... u v u -1+ + 
242 R. 	.S ......... R .............. u v + + + 
254 u v u -I-i- + 
255 R. .S ......... R. .—Q.V. .L u v u 
256 

R. .S ......... R. .—Q.V.........

R. .S ......... R. .—Q.V.N u v u -1+ + 
FIXB2RJIIJB 

.. 

R.R.QR ... ...V.I.K.—.NM + v + - - 
SF-2 Y ......... H... R ...... K u v + -1+ + 
SF2Mu3 Y .......... A. .D ...... K u v - + + 
SF-162 u v - + + 
SF162Db1 u v - + + 
BaL 

. 

u 

. 

v + + + 
JR-CSF 

TR ...... V. .A. .D ........... 

....S ..................................

. 

+ + + 
JR-FL 

S 	 ........................ . 

. 

u  + + + 
89.6 

T .......... A. .D ........... 

+ v u -1+ + 
YU2 

.. 

. 

u v + + + 
ADA 

RRLS .......... ARRN ........... 

+ + + 
pj 

N ........L ................

TK...... VI.A. .Q ...... K u v u -1+ + 
GUN WT .T .........HAIEK.. .N 

. 

u v + -1+ + 
GUN-i V T. . . .S. . . .HAIEK.. .N u n + -1+ -1+ 
GUN V.Es.1 T .........HAIEK. . .N u v + -1+ + 
GUN V.Es.2 T. . . .S. . .INAIEK. . .N 

. 

u + -1+ + 
GUN V.Es.3 T. . . .S. .T.QAIEK.. .N 

. 

. 

u n + -1+ + 
GUN V.Es.4 .T. . . .S. . .LHAIEK.. .N.......  
. 

+ -1+ + 

Model predicts that CCR-5 usage correlates with an uncharged (u) residue at position 11, the GPO motif -y- yes/ n-no and a negatively (-) charged residue at position 25, rather 
than u, or positive (+). 

Predicted CCR-5 usage from Xiao et al. (1998) model (+: CCR-5 used!-: CCR-5 not used! -1+: unclear from properties. Actual CCR.5 usage as for Predicted except -1+: low level 
usage. 



be a strong prognostic marker of disease progression (Venet et al. (1991); Ruiz et al. (1996)). 

As the Index then remained asymptomatic during the remaining period of the study (until 

1996), the disease status does not reflect the difference in transmission compared to non-

transmission in the later HIV Contact as it did for the first. 

During the phylogenic reconstructions performed by Dr. Wade (Wade (1997) PhD 

thesis), the virus group which clustered with the second mother (C3152)-child pair was group 

D, so further sequence analysis of later time points was performed to see if this virus group 

was no longer represented in the Index at the time of the later relationships, which may explain 

the lack of transmission. However, at all time points relating to their exposure period, virus 

closely related to the group D variants, which were linked to the second heterosexual 

transmission by Dr. Wade, were still present in the Index. This was true for analysis of both 

gag and env regions of the virus. Hence, the loss of potentially transmissible virus was 

unlikely to be the reason for the lack of transmission to the later Contacts (C3153 and 

C3154), as genetically related virus to the transmitted variant was still present at the time of 

their exposure. 

5.4.2.c.i Contamination Screening 

The discovery of a single contaminant from other material present in the Centre, 

highlights the importance of such screening when forming conclusions from sequence data, 

particularly when working from single copy amplifications. The phylogenetic reconstruction 

also dearly highlighted that the Sample 3 sequences were too divergent, for both gag and env, 

to represent those from the Index. This sample was most likely a sample mix-up, which 

although every care is taken to avoid, can still happen. Sample mixing and contamination was 

recently described by Frenkel et al. (1998), who showed that most PCR-positive, yet antibody 

negative reports in an earlier study of children born to BiV mothers, were proved to either a 

sample mix-up, or contamination. This further highlights the importance of such checks when 

performing analysis of this kind (Learn etal. (1996); Frenkel etal. (1998)). 

5.4.3 Conclusions 

Two of the four heterosexual contacts of an HIV Index, have possible explanations 

for their serostatus. The first Contact, C3151, was HLV and most likely became infected 

during the primary infection of the Index coincident with a high viral load. The third Contact, 
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C3153, was uninfected and was probably protected by the fact that she was homozygous for 

the A32 deletion in the CCR-5 gene. As transmission seems to be limited to NSI variants and 

she was shown to be protected from in vitro infection with an NSI, but not SI variant, she was 

highly unlikely to have become infected from sexual contact with this Index. 

It is still unclear why the remaining two Contacts were HIV, for C3152, and HIV- 

negative for C3 154. It was shown that it was unlikely to be due to a change in the viral 

population in the Index, as virus, related to the variant transmitted to C3152, was still present 

when the final two uninfected Contacts were exposed. It may be that other factors than those 

studied here related to their increased, or decreased susceptibility, such as the level of co-

receptor expression. C3 154 was a heterozygote for the b.32 mutation in CCR-5 and C3 152 

was WT homozygous, which may mean that the level of CCR-5 expression differed in these 

two-individuals (Moore (1997); Wu et al. (1997b); Paxton et al. (1998)), but this could not be 

confirmed. Immune defence mechanisms controlled by the individual's lILA phenotype could 

also have explain the difference, but it is also possible that it could just been their good, or bad 

fortune. 

A study of the infectibiiity of other EUs revealed an inverse relationship between the 

infection with a CCR-5 restricted isolate and a CCR-5, or CXCR4 restricted one. This may 

reflect the level of co-receptor expression, but as the overall nature of this assay was poor, 

further study would be needed to clarify and confirm these findings. 
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Heterosexual transmission is by far the major mode of H1V transmission on a global 

scale (approximately 70%)(Expert Group of the Joint United Nations Programme of 

HIV/AJDS (1997)) and is the most rapidly increasing risk factor for new infections even in 

Western countries (Balfe (1998)), where transmission initially occurred predominately in 

homosexuals and IDUs. Although the transmission rate in the Edinburgh Heterosexual cohort 

was not high (Fielding et al. (1995); Robertson et al. (1998)), studying such a cohort can help 

to further our understanding of the factors which affect heterosexual HIV transmission. The 

mechanisms governing protection may differ from the more widely studied homosexual 

transmission, which globally is much less common. The Edinburgh Heterosexual Partner 

study was a well defined cohort and was not confounded by viral variation, as much of the 

index patients were infected with fairly similiar subtype B virus (Holmes et al. (1995); Leigh 
Brown et al. (1997)). 

6.1. HLA 

Several associations related to HLA have been found in this study which deserve 

attention in other cohorts. The increased frequency of DR5 in the EUs suggests that this HLA 

type may be a protective one for HIV transmission, possibly through DR 11, and warrants 

further study. The same is true for the decreased frequency of DR6 in the EUs, implicating 

DR6 as a potential risk factor for acquiring HIV infection through heterosexual contact and 

which requires confirmation in a larger cohort study. These lILA types may be more or less 

likely to mount a particular immune response to a particular antigen, with either a protective, 

or deleterious effect. The mimicry of HIV proteins to those of the MHC, may also be linked to 

a particular lILA type and again, may result in a protective response against a particular 

protein, perhaps due to prior exposure to a mis-matched lILA antigen. In contrast, the 

mimicry may induce inappropriate anti-self responses and increase the risk of HIV infection 

and disease. 

The other HLA based associations are potentially linked to each other. The finding of 

a higher degree of mis-matched HLA antigens .in discordant compared to concordant couples, 

if substantiated in a larger study, may reflect the increase of potentially protective allogeneic 

immune responses. This was supported by the finding of an increase in IFN-'y production in 

response' to alloantigen in BUs compared to controls and may reflect in vivo priming of 

allogeneic responses. Alternatively, it may be that the EUs mounted a strong type 1 CMI 

response to the antigen and this type of response has been suggested in other EU cohorts to be 
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a potential protective mechanism (Clerici and Shearer (1993); Clerici and Shearer (1994); 

Barcellini et at. (1995)). The IFN-y production may then be more likely in EUs with a high 

degree of HLA mis-match with their partner and could work in a variety of ways. IFN-y itself 

has been shown to be able to inhibit replication of HIV (Hammer et at. (1986); Nakashima, 

Yoshida and Yamamoto (1986); Koyanagi et al. (1988); Hartshorn et al. (1987); Wong et al. 

(1988); Kornbluth et at. (1990); Meylan et al. (1993)), particularly in macrophages and may 

also occur in DCs. IFN-y is also known to be a strong inducer of CMI and may augment lytic 

reactions to both virus and REV-infected cells, both of which would contain 'foreign' MHC 

proteins. Both macrophage and NK cell mediated lysis are activated by JFN-y and are 

therefore both potential protective mechanisms, because if an REV-infected cell, either self, or 

foreign (e.g. seminal lymphocyte) is destroyed, this would prevent further viral replication and 

hence, help control an infection. 

The importance of allogeneic responses has also been seen in monkey studies (Stott 

(1991); Langlois et at. (1992); Chan et al. (1995)) and the suggestion of an allogeneic 

vaccine, which may protect from REV infection, is further supported by the preliminary 

findings of this thesis. Despite a recent report which questioned the role of anti-MHC antibody 

responses (Luscher et at. (1998)), the increased production of IFN-y seen in this thesis 

suggests that CMI responses are also potentially induced and may be protective. The presence 

of proliferative response to alloantigen were not studied by Luscher and colleagues and 

therefore the potential of an allogeneic vaccine in light of these findings is still substantial. 

6.2. OTHER IMMUNE RESPONSES 

The role of HIV-specific immune responses in protection from HIV transmission 

could not be confirmed in this study, but the presence of both HIV-specific proliferative and 

CTLs in other EUs (Ranki et al. (1989); Borkowsky et al. (1990); Clerici et al. (1992); 

Kelker et al. (1992); Clerici et at. (1993); Clerici et at. (1994); de Maria, Cirillo and Moretta 

(1994); Langlade-Demoyen et al. (1994); Pinto et al. (1995); Rowland-Jones et at. (1995); 

Mazzoli et at. (1997)), suggest that such responses are protective in some individuals. It is 

possible that a strong allogeneic response may also delay viral replication long enough for 

REV-specific ones to be generated and the two may therefore complement each other in terms 

of protection. It was for this reason that I hoped to monitor a wide variety of responses and 

potentially different mechanisms to see if they had a combined, or additive effect. 
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The importance of non-lytic suppression in BUs was suggested by the high IFN-'y 

production in response to alloantigen. As described above, the IFN-y has anti-HIV activity in 

many cells, although has only been seen to be effective in inhibiting replication in PBMCs in 

.the presence of other factors (Wong et al. (1988)). The precise factors involved in non-lytic 

suppression are still controversial, although the role of the -chemokines clearly deserves 

investigation, in light of the findings of the potential protective role of a lack of, or reduced 

CCR-5 expression in homosexual EUs (Dean et al. (1996); Bill et al. (1997); O'Brien et al. 
(1997); Theodorou et al. (1997); Balotta et al. (1997); Paxton et al. (1998)). These and other 

chemokines to as yet undiscovered receptors could be used as receptor antagonists, blocking 

viral entry by preventing binding. Partial inhibitors, which lack the full functional properties 

of the chemokines may prove to reduce the potential side effects of the actual ligands. 

The multitude of effects, e.g. non-contact mediated versus contact mediated (see 

Section 1.6.2.g), suggests that several factors are involved in non-lytic suppression and may 

differ from study to study depending upon the culture conditions and the cell type used. Also, 

as cytokines are generally both pleiotropic and redundant in their other actions in the body it is 

likely that several factors are involved in the non-lytic suppression of HIV to explain the 

contrasting results reported. However, the broad cross reactivity with different stains of HIV 

and even other retroviruses (Mackewicz, Ortega and Levy (1991); Mackewicz and Levy 

(1992); Walker et al. (1991)), along with the discovery of a similar mechanism in the natural, 

non-pathogenic infection of African green monkeys with SWAM (Ennen et al. (1994)), stress 

the importance of this mechanism, being both a potential protective one and also one which 

could be utilised for both prophylactic and therapeutic purposes. 

Mucosal immunity may also be important in heterosexual transmission and lily-

specific secretory IgA have been reported in EUs (Mazzoli et al. (1997)). Cervical CTLs have 

been seen in fflv individuals (Musey et al. (1997)) and it could be investigated in EUs too. 

Other innate defence mechanisms may also prevent transmission, such as neutrophils which 

have been shown to have anti-HIV activity (Klebanoff and Coombs (1992)). NK cells are also 

a potentially very important defence against viral infections and may be involved in allogeneic 

responses too, as they are known to be both activated by and also to produce IFN-y. These 

innate mechanisms are often overlooked, often due to difficulties in studying them, but their 

importance is highlighted by the lower rate of heterosexual transmission compared to other 

modes. 
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6.3. CHEMOIUNE RECEPTORS 

No protective effect of the A32 mutation in the CCR-5 gene was seen in this 

heterosexual cohort, compared to the protective effect of homozygosity seen in homosexual 

cohorts (Dean et al. (1996); Biti et at. (1997); O'Brien et al. (1997); Theodorou et at. (1997); 

Balotta et at. (1997)) and may come from differences in the mode of transmission in these two 

different risk groups. LCs are lacking in the rectal mucosa (Hussain and Lehner (1995)) and 

suggests that different cell types may be infected following homosexual contact and hence may 

explain the increased frequency of the A32 mutation in the homosexual EU cohorts. Perhaps 

other factors are involved in heterosexual transmission, such as the receptor expression level, 

hence the lack of selection for A32 homozygotes and that receptor level expression is less 

Critical on the potential cells infected in homosexual HIV transmission. However, Paxton 

(1998) did note a decreased CCR-5 expression in EU homosexuals compared to normal 

controls, therefore this is not a simple answer. Perhaps the act of anal sex, which may be more 

likely to cause damage and contact with blood, could then induce an upregulated expression of 

the co-receptor, but this does not occur commonly during heterosexual contact. This is 

support with the finding that the practise of anal sex in heterosexual couples is seen as a high 

risk factor for HIV transmission (European Study Group (1992); Fielding et at. (1995)). 

It remains to be elucidated if heterosexual transmission is dependant upon CCR-5 

usage, or if other receptors may also be utilised, such as CCR-2 and CCR-3, or one of the 

newly described (Liao et at. (197)), or yet to be described receptors. This is supported by the 

finding by Zhang et at. (1998) of few CCR-5 cells in the vaginal and cervical mucosa, 

suggesting that some other factor may be involved, but that in the rectal mucosa, CCR-5 

cells were more common. 

Clearly, CCR-5 usage on its own does not confer M-tropism (Alkhatib et at. (1996); 

Doranz et al. (1996); Feng et at. (1996); Cheng-Mayer et al. (1997); Dittmar et at. (1997); 

Speck et al. (1997)), so perhaps this is limited by further factors, which are as yet unknown 

and may then differ in infection of macrophages, T cells and DCs. While tropism is strongly 

linked to the V3 loop, the Vi and V2 regions have also been shown to be important (Boyd et 

al. (1993); Groenink et al. (1993); Sullivan et al. (1993)) and the precise mechanisms of both 

co-receptor interaction and tropism determinants require further understanding. 

A much larger cohort would be required to detect an effect of homozygosity for i.32 

on heterosexual HIV transmission in the Edinburgh BUs. However, although the sample size 

was small, the allele frequency is elevated in this population, therefore any affect would have 
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been expected to be more detectable in this population. It is still not known why the frequency 

of i32 allele is so high in Caucasian populations. It is possibly just a founder effect and due 

to the apparent lack of a deleterious effect on individuals bearing it, no selection against it has 

allowed it to persist. It is also possible that it conferred a selective advantage to a previous, 

unknown pathogen, such as is seen by the similar mutation in the Duffy antigen, which is 

utilised by the malaria parasite (Mallinson etal. (1995)). 

With regard to CCR-2, further understanding as to the effect of the 641 mutation on 

heterosexual transmission is required, before the apparent increased risk to individuals bearing 

this mutation can be fully explained. Its linkage disequilibrium with the 927T mutation in the 

CCR-5 promoter (Kostrikis et al. (1998)) seems an incomplete explanation, in light of the fact 

it is in an apparent intron and no difference in CCR-5 expression was seen in cells from 641 

individuals. However, surprisingly a decrease in CXCR-4 was seen and may mean that other 

receptors may also be effected. As explained for the CCR-5 mutation, the cell type infected 

may differ from those studied and also differ in different risk groups and therefore the 641 

mutation as a risk factor needs confirming in other heterosexual cohorts and the effect of the 

mutation on HIV replication and receptor level expression needs to be studied in a variety of 

different cell types. 

6.4. FACTORS AFFECTING TRANSMISSION FROM THE HIV INDEX 

In an attempt to investigate if the known associations with disease progression, also 

affected transmission, the HLA types and CCR genotypes were determined in indexes who 

either transmitted to their heterosexual partner (TRI), or did not transmit (NTRI). No 

significant associations were found, although the sample size was limited. An additive effect 

of the two CCR mutations was seen, which suggested they were both associated with a 

reduced risk of transmission. The known relationship of these mutations with viral load 

(Meyer et at. (1997)) and the association of viral load on risk of transmission (Fiore et at. 

(1997)) is a possible explanation of this result which would require investigation in a larger 

cohort. 

The effect of viral variation was studied in more detail in an index with four 

heterosexual partners, to determine if changes in the viral population could account for the 

differences in transmission to the four contacts. The first contact was most likely infected 

during, or around the time of seroconversion of the index and hence explains the increased 

chance for transmission. The third contact was homozygous for the A32 mutation in CCR-5 

277 



and her PBMCs were shown to resist M-tropic, CCR-5 restricted virus infection in an in vitro 

assay. This may explain her apparent protection as CXCR-4 restricted strains were not seen in 

the index. The difference in transmission to the remaining two contacts was not obvious, but 

was shown not to be due to differences in potential transmissible viral variants. 

The final EU contact was heterozygous for the A32 mutation, but the effect this may 

have had on transmission was not clear from the results presented in this thesis. It is possible 

that other factors may have protected the final contact, or increased the risk of transmission to 

the second contact, such as the receptor level expression, the presence of immune responses, 

or other genetic factors. 

6.5. DIFFERENCES FROM AFRICAN COHORTS 

Despite the fact that may epidemiological based studies have been carried out in 

Africa, such studies are often difficult to perform and maintain in often difficult regions and 

important discoveries may come from studying a European cohort which could then aid our 

understanding of African cohorts. However, it should be noted that important differences 

between the cohorts may exist. For example, socio-economic differences which result in a 

lower standard of nutrition, healthcare and sanitation for an African population, could all 

affect the general health and well-being of individuals and make them more susceptible to 

infectious diseases in general. The higher incidence of disease may include sexually 

transmitted diseases, which are known to increase the risk of HIV transmission (Greenblatt et 

at. (1988); Laga et al. (1993)) and may even result in different cell types being exposed to 

HIV after recruitment to a site of inflammation. The importance of this is highlighted by the 

possible differences between homosexual and heterosexual infection (see Section 6.3). 

The different subtypes of HIV- 1 have been suggested to differ in their efficiency of 

heterosexual spread (Kunanusont et at. (1995); Williamson et at. (1995); Mastro et at. 

(1997)) and also DC-tropism (Soto-Ramirez et at. (1996); Essex et at. (1997)) although 

CCR-5 usage has been shown not to differ in different subtypes (Gao et at. (1996); Zhang et 

at. (1996); Cheng-Mayer et al. (1997); Dittmar et at. (1997)). It is therefore possible that this 

may also depend upon usage of other receptors, although potential differences in the ability to 

replicate in DCs still remain controversial (Dittmar et at. (1997); Pope et al. (1997b); Pope et 

at. (1997a)). The effect of subtype on transmission was recently reported in a Swedish cohort 

(Snnerborg et at. (1998)), where they saw an increase in non-subtype B infections and a 

concurrent increase in heterosexually acquired infections too. Although some of this data were 
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acquired from immigrants into Sweden and may be confounded by other factors associated 

with differences in susceptibility in individuals of different race. It remains to be seen if the 

introduction of non-subtype B virus into the Swedish population results in substantial spread. 

The different genetic makeup of African versus Caucasian populations may also 

affect the risk of transmission. This may result from differences in HLA types directing 

different immune responses, or even the CCR mutations. The A32 mutation in CCR-5 is not 

found in persons of African descent suggesting an explanation for the apparent increased 

heterosexual transmission of HIV in African populations. However, even in the Scottish 

population with a high A32 allele frequency (14%), only 2% of the population would be 

predicted to be homozygotes by the Hardy-Weinberg law. It seems unlikely that the difference 

in transmission can be accounted for by 2% of individuals. The lack of a protective effect of 

heterozygosity for the A32 mutation described in this thesis and recently in another 

heterosexual cohort (O'Brien et al. (1998)), suggests that the A32 mutation is unlikely to 

account for the intercontinental differences in HI-i incidence. 

Individuals of African decent have been shown to have an increased frequency of the 

641 mutation in CCR-2 (15.1% African Americans compared to 9.8% Caucasians (Smith et 

al. (1997))) and if this is a risk factor for acquiring HIV infection heterosexually may account 

for some of the increased incidence in African populations. This would require confirmation in 

an African heterosexual cohort, of HIV and HIV-negative individuals. 

6.6. CONCLUSIONS 

Several different mechanisms of protection from heterosexual HIV transmission were 

investigated in this thesis and both genetic and immunological differences were seen in EUs 

compared to HIV individuals and controls. It is unlikely that any one factor will be protective 

in all individuals, in all risk groups which stresses the importance of investigating several 

factors in several different cohorts. As with any infectious disease the paradigms of route, 

dose and susceptibility are also crucial to lily transmission and must be considered in a 

varied range of individuals if the most important protective factors are ever to be determined, 

with the long term aim of preventing, or reducing HIV transmission world-wide. 
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Appendix 1.1. 

Example of Interview Performed at Recruitment. 

The following interviews are examples of the questions asked at recruitment into the 

Heterosexual Partner Study (see Section 1.8.2). 

a.) Female Contact 

b.) Male Contact 



A. 	INITIAL INTERVIEW - FEMALE CONTACT 

1. Contact Code Number  

2 Fartiriating Centre 

3. Data of interview 	 fi 

44 Interviewer Code 	 ____ 

PERSONAL :DETAI:L.s 

I 'dlike  tO  ask7 c: i . t some question s a bout :vot€:Lf;: 

. What is your date of birth? 

. Where were you born? 

Uganda 5 Other African, specify  
= :r-r,  

7. Etmnic Origin 

= white 2  
Indian Sub-continent 4 = West md 

5 = Other or mixed,  

327 



FROBABLE 1CDE OF TRNSMIS3IOJ 

8.. Have :'oLt ever injected aj-ly sLtbs -tr-,LnC(',-' or dru:j ur:i(-z,, r 
:Your S k1n or in to xO'..tI Liein? 

O=Nc lYes 9 N 	 El 

9. When was the last time? (mmyy) 	9999 = NV'/NAL 

1<). Have you ever eared wcrke wi. th others? 

O=Nc 	1=Yss 	9=NK Li 

ii.. When did you 	last share? 	(mmy'i)  

12. Have you ever had a blood 	trafls - Ltsion or bld 
products? 	'n my 	'I never  

ycu 	ever 	htd 	•:t! 	inury 	whic:h 	brot.tct 	ou 	Ln 
contact with human 	blood? 	cc ncedlsstjc.: 
sharps 

I) j< 

 Uo you have S Current partner 	Cl ast 	months 
o = - 	=SS 

 Do you know hs HIV status? 
o = necative 	1 = positive 

er 	• - etd 	= 

I 	. How man 	other 	x ual oar tn rs have -you had in 

a) 	the last 6 mcnths  

Li ) 	the 	last S years  

17. How many of these were 	a) 	haemcphilj- 
b) 	bisexual 

r'-Lc users H 
d) 	HIV/Ajd s  
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IS. wi,t is you. r relationship to (Nine of  
:1. 	SPaus 
2 	Coabitee 
3 = Fular cirlfrind  
4 = Casual girlfriend 
5 = Other 1  speify  

girl -friend 	sex more 'than t hre times 
Cast.tai girl—friend = 	 tli -ee 'tes 

i. t.1'n• 1-iL 	rij.j-ij... i 

JOW 	J.I fr::. to ask you soi'ne C LtS ti. ors abc:u t your 
irai 1-1ea1'th- 

:L ' .. 1ave you eve r st.tffc'ed 'from 	c J. and ul. a r 'fever 
like illness? 	 Ii  

C) = N 	1 = Yes 	9 = D K 	 L__J 

f Yes when 	( mmyy ) L 	I 

20. 	w tha. c m nr-med 	b 	a iOC test? 

ave you had any of the 'fo.L .Lf:w'L ni:In the i:( :: ncr 

:ce Ci. : 	r.aiEh 1u LI 

= 	ci :L.ar- rhoe..  
iw 	 :L.:1• = 

Con d :i. t:ion Ode Ca t''tjted l'Ic 

4 
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22.. Ha• 	Vo'..' ever 	.tiered 1rcm::- 

Mo: t 
recen 1 

'L ::.I 

. Abnormal cervical smear 

Cervii ersjcn/ iervicitie 

SaIpinciti/F'.I.D. 
( Lr:reCt:Lor or the tubes)  

di Chi.rnydie./NSU contact 
e) Herpes simplex 

(around the vulva) 
) Warts 

(around the vulva)  

Gonorrhoea 

Syphli.s 

ii Hepatitis A 

Tirnein, 
:Ln 

0i'I 15yrs 
OONc 

•.=ik/bJA 99llt/lA 

77 

l i 	I 
LJ I 

III' 
LJ I 

II 
_ I!! 

II 
LJ _ 

I ,' 	I 
LJ I 

LJ 

! 	i 

...............3.0 wi. th ( name 1 

When did your sexual e1aticnshjD with 
(name) becin? (mrn/yy) 

Is ycur 	lationship con tinuino now? 

	

0 = no 1 = yes 	9 = 

If No when was the lastt.cr,e you had 
sexual contact? (mmyy 	NA = 999  

d) Have yOLt ever- been recnant by (name) 
o = no I 	yes 	= M  

If yestotal number c prenancies 
(including rniscarr2.ace and abcrt.cns) 

9 = NA 
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P 

24 When did you first learn that your partner was 
HIV infected. (rnrn/yy) 	DK = 9999  

25. During the Last 5 years of your relationship (or 
total period if less than 5 years) with (name) 	- 
what contraception have you used? 
Here is a list of method-:; 

198 198 199 199 199 199 ths  
of use  

L.j 
II 
L_J  Abstinence 

 Sheath or 
1' 

heath + 
sperrn:L ci'i':• 

II Ii II 
Pill 

 

Code 	Li'':•?r 	of 	months fc:: i' t: heat: h method was u.ecI in 
UJl(It: 	(I1(::Ie 	than one (n:t:D :1]. 	L •.IIi c::ii:I:n 

code both. Code abstinence for 	ç:.:L:IN; at no Eexual contact.. 

SEXUAL PRACTICES 

The 	next few 	questions are 	.J::':::'.t': 	 •(i_. J. activities  

relationshipyour 	with 	(Name). 	 ar:•Y: ver>- 	::I-:a:L 
t.i:L:tr-. :)&.1t they 	are ft t...i:.r"- important tart. 	...... 	c -f our rnesearci -.. 

as to how ::.ci::Le can be :I:t€.(:.ec from the A.I.D.S..i 
c:.:tr1 leave out any questions you want to, but all your answers 
are completely confidential.  

27. Over the period of your relationship  
on average 	 would you do thesethings'? 

Never Once 	•:;1/ •::.J/wk. i- 	:3,/ 	OK1' 
inI:h 	'tc' 	./'.k. 	,' i.,j.. 

Vaginal 	0 	1 	2 	3 	4 	5 	5 
intercourse 
in last 6/12 0 	1 	2 	3 	4 	59 	U 

2, On average how man y  times a year do you have 
unprotected intercourse with (Name) 
during menstruatan? 
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11 

Have YOU ever noticed any bleeding from the 
vulva or vagina after intercourse? (other than 	'. 
during period) 1 = No 2 = Yes 9 = DK 

On average during your re:Latiosish:Lp, how of.ten 
do you have u..nproteced rectal or anal 
:Ln te cc re with ( n<rne ) 

Never Once 

On average 	0 	1 
last ,'12 	0 	1 

M/ 1 /w k. 
rnt h 	to 

1 i •t h 

1-2 M/ 
/wk-. /wk NA 

Ii 

Have you ever noticed any 
bleeding after anal intercourse? 

Since 1979 have you had sexual intercourse 
with 	::/on e from aforeign country"? 

(:Cf.n l:r' 

HIV Antibody Test 	rc:in clinical r::t-') 

Last negative 

First Positive 

CLINICAL STATUS AT INTERVIEW (CDC codes) 
(from clinicalnotes) 
OOnot infected 
Oiacute infection ( I 
02asyrnptomat. c infection (1 1)  
03=FI3L (III) 
04=consti. tut:i.onal disease ( IVA ) 
05=neuro1ocii cal ci isease (IV.T9) 

secondary infectious disease (IV Cl) 
07other infectious disease (IV i::: 
OSAIDS cancers (lvi)) 
09other conditions (IVE) 
99 =N 1< 

/ 

No 

1 c: 

U--- 
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, INITIAL INTERVIEW - MALE CONTACT 

Contact Code Number 	 L 

Participating Centre 	 L 

:3. Date of Intervjw, 	 Li 

4. Intervj.c,Jer Code 	 L.LJ 

PERSCbIAL DETAILS 

First, 

 

I'd like to ask you some cu - estions about yourself: 

ihat is your (-ate of birth? 	 L± 	 7 

Where were you born? 
=2 	tire 3 	urcpean. specify________ 

- 

Ethnic Origin 
- 	 -- 

3 z Indian Sub-continent 4 West Indian/Guyana 
Other or mixed. specify____________ 

PROBABLE MODE OF TRANSMISSION 

Have you ever in.ec ted any substance or drug under 
you'll skin or into your vein? 

ONo lyes 	9='1K 

When was the last time? (mmyy) 	9999 	UK/NA 

Have you ever shared works with others?  
0 = No 1 = Yes 9 = NK/A 
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When did you last share? (rrjnyv) 

Have you ever had a blood transfusion or blood 
products? 	(mmyy) 

Have you ever had an injury which brought you 
in contact. with human blood? e.g. needle stick 
or sharps injury. 

0 = No, 1 = Yes 	 II  
U

71  If yes.. when 	(rnmyy) 	 I___________ 

Do you have a current artner? (last 6 months) 77  
0 = no 	I = yes 

no  you know her/his H1V status? 
0 	negative 	1 = positive 

	

2 = never tested 	2 = 

1E. How many oter se::ua1 	 ners ha.re you had in 
in the las: 6 rnnths? 	 - 

Female 

I ) in the last 5 years? 
M ' 

emai.e 

	

:7. jtyg many of these were 
	

hamophiliac 
bisexual 
drug users 
HIV/Aids 

18. Have you ever had sex with a man 
No iYes 2=DK 

If yes: 
When was the last time (ayy) 

9299 = DE/NA 

n 
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19 - What is your relationship to (Name of Inde: Case)? 

2 Cohabitee 
3 = Regular boyfriend 
4 = Casual boyfriend 
5 = Other. secify 
9 = hissing 

Regular boyfriend = sex more than three times 
Casual boyfriend = sex less than three times 

GENERAL HEALTH 

Now I d like to ask you some questions about your 
general health:- 

20 - Have you ever suffered from 	a glandular fever 
like illness? II  

0 = No  1 	y 9 =DK 

If yes, when (minyy) 

21 - Was that confirmed by a blood test? 

22. 	Hre  you had any LC following in the Last months? 

Code: 	01 = rash 06 cold sores 
02 = fever 07 = shingles 
03 irrhoea = day or night swats 

swo1en gjancts  or a;zet its 
05 flu like 10 = fatie 

Condition Code Date started No. of 
weeks 

1 
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2:3. Have you ever suffered from:- 

Most 
recent 
year 

Ealariitis 

Proctitis 

NSU 

Herpes Simplex - penile 
per iana2. 

Warts 	 - pCfliiC 

Gonorrhoea 
- rectal 

Times 
in last 

	

OIo 	5yrs 
1=Yes OO=No 

9=NK/NA GG=NK/NA 

LJI_ 

f ill 

	

• 	Li 

I 	 1 

LJLr 

LJH 

i) Hepatitis A 
p 

2-t Ncw I would 1i1:e to alk about the lh of 
your relationship with (name) 

When did your sexual r e 1 -= t -JtDnzh i ',p 	 me 
begin? (mrn,/y:) 

Is your relationship continuing now? 
O=no lyes 2DK 

C ) If No, when was the last time you had 
sexual contact? (rnmyy) 

25. When did you first learn that your partner was 
HIV infected. (mm/yy) 

HH; 

n 
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26. During the last 5 years of your relationship (or 
total Period if less than 5 years) with (name) 
what contraception have you used? 
Here is a list of methods. 

198 198 199' 199 - 199- 199 	Mcnths  
of use 

I .  I'. 
Abstinence  

It It Ii 

Sheath or 
sheath  

•:t I I II I' 

spermic ide 

c)Pill E E Lii 

Code number of months for which each method was used in each 
year. Where more than one method used, eg, pill and condom, 
code both. Code abstinence for periods of no sexual contact. 

SEXtJAL PRACTICES 

The ne:'zt few uesticns are about yoursexual activities in 
your relationshjz with (Name). 	These are verr pers:'nai 
uestjons but thv are a very impc•rtant part of cur research 
as to how eole can he pt'otected from the A.LD.5. virus. You 
can leave cut any cuest ions :rou want to. but all your answers 
are completely confidential. 

27. Over the period of your re- at ionshj. with (nae on 
b.cw often would you do these things? - - 

Never Once <1/ < l/w-: 1-2 >3/ K/ 
rnth to 	,"w1: /wl: NA 

Vaginal 	0 1 2 3 	4 5 2 
intercourse 
inlast6/120 1 2 3 4 5 3 

28 - On average how many times a year dc you have 
unprotected intercourse with (Name) during 
Inenstruat ion? 

29. Have you ever noticed any bleeding from the 
vulva or vagina after intercourse? (other 
than during period) 	I) = No 1 = Yes 9 =DK 

6 
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30 
On avrag during your relationship, how often 
do you have unrQtecd rectal or anal 
interco2 	with (name)? 

Iever Once <1/ "L/wk 1-2 >3," DK,' 
mth to /wk /wk '1A 

-
I/ / ._ l-.

U mL 

On average  o 	1 	2 	3 	4 	5 	9 iast6/12 	0 	1 	2 	3 	4 	5 	9 	L9 
Have you &'er noticed any 	

I; bleeding after anal intercourse? 

Sjc 1979 have you had 5e.:ual interoour 	with anyone from a foreign country? 

Mo. of Country 

 

	

Code 	contacts 

__ 
Dl 

Lin _ 

HiZ Ant ibody 	(from clinical nc:e 	 Yr 
Last neg.ativ 

First 	
L_L 

CL:NICAL :3TATTJS AT INTERV:Ew (CDC codes' (frin clinical nc-:.es 
OOnt infeot 
O1acut. infect i-r ( ) 

OT.a3Y1Ptc.matic infect i - r (• II) O4ZPGL 
0 4-corLstitu -- jcr,al disease (IVA) 
O=neuro Logical disease (IVE) 
06=AIDS - se(_-cnda 	infectious disease IV Cl) 
O7zother in:ectiou5 disease (IV C2) 
O6AIDS cancers (PhD) 
O9other coridjtins. (PIE) 
99 

338 



ADpendix 3.1. 

Percentage Subset Population of Lymphocytes in PBMCs 

The following Tables show the % of lymphocytes of the subsets shown (see 2.8.1). 

The CD4:CD8 cell ratio is also given along with the number of inviduals assessed (n), 

the group mean and standard deviation (SD). Assays not performed are listed as Not 

Done (ND). 

a.) Results for the Exposed Uninfecteds (BUs) 

b.) Results for the Donors (D) 



V.  

% CD3:CD4 % CD3:CD8 % DR 	I %CD45 RO % DR:RO CD4:CD8 

C3154 	 37 30 ND1 	NDI NDI 1.23 
C3942 	 33 
C4051 	 171 

j.. 201 
531 

NDJ 	ND 
201 	441 

1 	NDJ 
51 

1.65 
0.32 

C4371 	 261 
C4401 	 431 

23 
471 

	

20 	23 

	

NDI 	NDJ 
31 

NDI 
1.13 
0.91 

C5191 	 391 
C5411j 51 

331 
27 

21 li 	30 
15 	47 

1 	61 
21 

1.18 
1.89 

C5451 	 29 271 401 	201 1 1.07 
C5621 	 601 17j 	511 8 4.00 
C5711 	 38 151 ND 1 	ND1 ND_ 2.53 
C5721 	1 	40 281 

271 

11 	241 
22 	33 

21 
4 

1.43 
1.04 

 49 

an

28 

22T 17 	39 3 2.23 

 _ 13 	13 	 91 	91 	9 13 
Mean 	3 7. 6  97, 	28.231 	22.171 	35.83)l 	4.17_ 1.49 

SD 	_11.53111.11 	9.02!13.20 	2.641 1:04 

[: 

% CD3:D41 % CD3:CD8 % DR 	F %CD45 RO % DR:RO 1 CD4:CD8 

Dl 
D2 
D3 

44 1 
45] 
501 

19 1 
201 
231 

12J 
141 
141 

22 
41 
42 1. 

3 
3 
4 

2.32 
2.25 
2.17 

D4 
D5 

421 
1 	391 

181 
131 

23)l 
14 

371 

321 
loj 

31 
2.33 
3.00 

D6 261 43 11 241 21 0.60 
D7 521 251 Ili 361 2i 2.08 
D8 
D9 

10 1 
411 

211 
251 

171 
121 

161 
451 

41 
31 

1.43 
1.64 

D10 231 241 ND! NDI NDI ND 
Dli 35 1 33 - ND1 NDI NDI ND 
D12 171 25 ND  ND, NDI ND 
D13 441 261 NDI ND 1  NDi ND 

n 13 131 9. 9 i 9 ! 9 
Mean 39.85 24.23 14.221 32.111 3.781 1.98 

SD 8.971 7.401 3.801 9.991 2.44! 0.68 
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Appendix 3.2. 

Stimulation Indices Obtained Following Lymphoproliferation Assays 

The following Tables show the stimulation indices (SI) obtained following 

proliferation to various given antigens at the concentrations shown (see 2.7.1). SI was 

determined by the following equation: 

SI = CPM obtained from cells alone (medium only) 

CPM obtained cells with antigen 

The geometric mean counts per minute (cpm) obtained for the medium only (No 

Antigen) are also given along with the 95% Confidence Intervals (CI). Assays not 

performed are listed as Not Done (ND). 

The number of individuals assessed for each antigen (n) are given along with the 

mean, standard deviation (SD) and the median of the group for each antigen. 

Results for the Exposed Uninfecteds (EUs) 

Results for the Donors (D) 



A 

PRA PHA ALLO PPD U U I 	rHIV ri-nV ri-LW No Antigen 5 1 1:1 100 2.5 1.25 123 0.623 0.125 cpm 
U/mi j.g/mi jig/mi jig/mi gmi j .95% CI) 

C
C

3
3

4
154 50.27! 

 163.441 11.061 
 15.41 1.041 49.991 33.32! 1301 1.171 ND! 88.92 	(8486.9 . 

	

3.16) 

C4051 1085.401 219.081 
21.651 

448.271 
0.621 

439.60! 
4.101 
4.58! 

1.031 
12.79! 

1.151 
3.85! 

1.461 ND! 77.42 	(63.11-94.96 

C4371 483.021 17998! 59.40! 6.94! 13.42! 11.87! 4.891 
4.31! 
3.97 1 

ND! 34.44 (26.90-44.11) 

C4401 185.681 122.09 1  164.601 164.84! 126.67! 107.821 ND! ND! 
3.231 
ND! 

55.55 	(46.32.66.62 )  
C4712 2064.871 225.361 11.921 29.591 1.161 1361 2.311 

65.39 	(50.77-84.22) 

469.46! 61.281 378.741 146.721 7.881 33.801 4.611 
1.931 
5.91! 

0.891 96.74(74.28.125.99) 

C3411 226.72! 41.35 51.53! 178.121 1.021 1.021 1.10 ! 

44.94 (34.23-59.01) 

C5451 238.24 91.421 39. 0.811 1.801 1.831 8.381 
1.101 

13.16! 
2.901 90.43(66.95-122.16) 

C5621 124.07 74.24 1 305.79 1 115.491 0.661 1.28 1  0.921 1.71! 
11.44! 
13.53! 

75.97 (60.03-96.16 

C5711 574.60 1 261.85! 66.641 40.42! 36.331 43 .23 ! 1.79 
112.73(97.66.130.12 

C5721 0.53! 16 . 87 1 ND! 98.451 41.831 272.62! 1.32 
2.521 
8.941 

ND! 95.81 (85.00-108.00 

C5731 338.27! 283.13! 134.001 181.611 152.93! 0.28 0.571 
NDj 

0.921 
32.31 	(26.29-39.71 

75761 333.67! 39.23 19.72 29.091 46.71! 4139! ND ND! ND 
113.68(90.88-142.19 

I 
129.82(79.20-203.07) 

n 14 14 13! 14! 14! 14! 12! 121 
! Mean 452.73 103.06 143.55 98.98 1  37.00 1  51.16 1  2.681 3.91 1  5.53! SD 538.46 86.101 155.641 117.971 54.011 77.871 2.34 1  3.801 5.071 Median 285.97 85.831 59.40! 69.44! 10.651 23.061 1.661 2.231 3.23! 

PHA PHA ALLO PPD U fl rHIV rHIV rHIV No Antigen 
5 1 1:1 100 2.5 1.25 	I 113 0.625 0.125 cpm 

jig/mi jig/mi jig/mi (+1-95% Cl) 

DI 96.80 1332! 1000.96! 3.351 6.891 2.44! 2.451 21.461 52.75 	(42.33.65.90) D2 142.20! 48.801 9.731 458.101 1.141 1.06! 4.631 6.971 10.221 80.4 (61.37-103.00) D3 
06 

199.58! 31.411 15.111 148.241 0.871 1.871 2.211 1.001 3.081 75.75 (31.04-184.88) 

D7 
252.36! 48.751 89.491 74.201 0.371 0.871 3.981 3.871 24.951 40.30 	(34.03-45.08) 

08 
611.131 126.75! 411.141 1426.791 226.457-11 -15-.33 1 2.82! 3.561 26.05! 37.79 (29.84.47.79) 

D9 
147.24 3231! 36.861 3.981 107.481 56.94! 1.86! 1.60! 4.171 66.28 	(36.82.77.79) 

83.05! 72.961 163.791 439.84! 1.531 2.131 7.311 6.391 13351 62.80 (46.794433) D14 107.52! 16.701 10.761 20.79! 1.021 1.731 2.151 2.821 5.101 69.65 	(58.84.82.45) 015 837.021 30.191 81.881 7.081 2.131 13.031 3.051 2.10! 1.841 32.03 	(22.08-16.46) 016 110.84 1  28.521 122.501 146.591 1.94 1  9.22 1  1.88 1  3.061 4.33 1  34.35 	(22.58-52.26) D17 
018 

38.12 1  8.20 1  227.261 1.611 1.66 1  1.15! 132! 1.04 1  1.78 1  57.76(32.64.103.05) I 5 73 .81 1  23.28 1  20.24! 8.22! 61.95 1  52.72! 1.88 1  L601 3.421 50 72 	(27.77-92.65) 

a 121 121 121 121 12! 121 121 12! 12! Mean 	1 283.431 47.061 100341 311.371 34.191 21.501 2.961 106! 10.151 SD 	I 253.29! 35.15! 120.40! 439.95! 69.20! 3433! 1.67! 1.971 9.131 Median 173.41! 31.86! 59.37! 110.40! 1.801 4.511 2.36! 2.641 3.261 
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Appendix 3.3. 

Range of Values Obtained for Lymphoproliferation Assays in Counts Per Minute (corn) 

The following table shows the range of geometric mean values (cpm) obtained for the different antigens. The lowest and highest 

values recorded are given for the EUs and Donors, with the individual indicated. 95% Confidence Intervals (CI) for the variation 

from the geometric mean. The geometric mean values were then used to calculate the Stimulation Index (SI) for each antigen 

(see Appendix 3.2). 



tJ 

EU Iow 95% CI EU high 95% CI 

Don7z] 

 95% CI Donor higbC 95% Cl (cpm)  (epm) (cpm) 
No Antigen C4051 34.4 26-44 C5761 126.8 79-203 D15 32.0 22-46 D2 80.4 62-105 PHA(5nig/mI) C3154 4470.2 4028-4961 C4712 199755.6 181514-219830 D17 2201.7 1750-2770 1)18 29103.7 25134-33701 1 1 1 -IA (1mg/mi) C3154 303.0 171-538 C4712 21801.1 17872-26574 1)17 473.5 426-525 DI 5106.4 3600-7243 Allo(1:1) C4712 1152.8 738-1801 C5621 34470.4 27367-43418 Dl 1702.0 408-1210 1)7 15524.7 14272-16887 I'M (lOU/nil) C5451 61.8 52-73 C5411 16107.1 11461-22637 1)17 93.2 69-127 D7 53875.6 38512-75369 Ti' (2.5mg/nil) C5621 74.2 35-157 C5731 20645.6 13373-31873 D6 22.8 15-36 1)7 8550.8 5891-12411 'II' (I .25mg/mi) C54 I I 92.6 52-164 C5731 17385.0 13265-22785 D6 34.9 26-46 1)7 4166.1 3131-5543 rHIV(1.25n1g/ml) C5731 31.9 29-35 C5451 636.7 537-755 1)16 64.7 49-86 1)9 459.4 rI-IIV (0.625wg/mI) C5731 64.2 28-148 C5451 869.2 390-1939 1)17 59.9 38-95 1)2 

343-615 

rHIV(0.125mgJmi) C4712 85.9 60-122 C5621 1525.2 	1  160-3060 1  D15 1  58.8 1 42-82 1 DI 
560.7 353-890 
1132.0 	1 613-2090 

Range ol' geometric mean counts per minute (cpm), lowest value for group (low) to highest value for group (high) 

95% Confidence Interval (Cl) ol variation from geometric mean 



Appendix 3.4. 

IFN-y Production Obtained Following Lymphoproliferation Assays 

The following Tables show the IFN-y produced (pg/mi) following proliferation to 

various given antigens at the concentrations shown (see 2.7). 

Assays not performed are listed as Not Done (ND) and data excluded due to 

inconsistent replicates are indicated with a blank. 

The number of individuals assessed for each antigen (n) are given along with the 

mean, standard deviation (SD) and the median of the group for each antigen. 

Results for the Exposed Uninfecteds (EUs) 

Results for the Donors (D) 



No 

Antigen 

PHA 
5 

ig/ml 

PHA 

1 

.g/mI 

ALL 1. O 
1:1 

PPD 

100 

U/mi 

IT 

2.5 

pg/mi 

IT 
1.25 

jig/mi 

rfflY 

1.25 

jig/mi 

rHlV 

0.625 

jig/mi 

rlllV 

0.125 

jig/m, 

C3154  1978.3 144.01 6584.7 189.7 994.0 1154.2 511.81 970.8 ND 
C3942 I  3688.2  22300.0 0.01 0.01 __ 0.01 ND 
C4051T 0.01 12450.0 >75000.0 15400.0! 0.01 0.0  441.0 ND 
C4371 0.0 29900.0 2625.2 56500.0 940.91 880.11 545.01 >1500.0  
C4401 421.5 28000.0 23400.0 42500.01 4588.4 >1500.0 >1500.01 ND ND ND 
C4712 0.0 17400.01 10500.0 >1500.01  1402.3 0.0 0.0 0.0 0.01 __ 
C5191 594.6 9780.01 5373.7 75000.0 1602.8 380.5 854.7 396.4  264.9 
C5411 283.2 31200.01 36400.0>75000.0 19800.0 0.0 0.0 270.3  549.5 
C5451 1108.6 4213.9 1665.5 12900.0 0.0 0.0 1473.1 
C5621 0.0 35300.0 19500.0 2096.5 >1500.0 0.0 

______ 
0.0 0.0 0.0 800.3 

C5711  29600.0 5183.0 59000.0 909.8 213.7 454.8 0.01 0.0 ND 
C5721 0.0 3606.8 1179.81 6000.9 1162.4 0.01 284.8 0.01 0.0 ND 
C5731 J O.075000.0 11700.01 12000.0 10200.0 >1500.0 >1500.0  >1500.0 >1500.0 
C5761 J 0.0 6163.0 2610.01 36600.0 947.8 >1500.0 >1500.0 ND ND ND 

n 111 131 131 141 141 121 13 9 91 5 
Mean 218.91 21217.71 10210.1 34498.71 4213.51 580.7 -599-5F 297.6 323.51 917.6 
SD 362.41 20475.41 10697.9 28990.11 6304.11 650.61 627.51 493.1 552.81 552.9 

Median 0.01 17400.01 5373.7 2-9450.01 1282.41 297.11 454.81 o.6 I 0.01 800.3 

1 1.1 

No 

Antigen 

PHA 
5 

jig/mi 

PHA 
1 

jig/m, 

ALLO 
1:1 

PPD 

100 

U/mi 

TT 

2.5 

jig/mi 

IT 

1.25 

jig/m, 

rHlV 
1.25 

jig/m, 

rfflV 
0.625 

jig/mi 

rfflV 
0.125 

jig/mi 

Dl 1 	0.01 19600.0 1102.6 0.01 8382.41 0.0 0.0 0.0 0.01 >1500.0 
D2 0.0 38600.0 15600.0 341.0 24900.0  393.3 297.9 187.31 314.3 
D3 672.2 25950.0 16450.0 0.0!  0.0 0.0! 182.51 345.4 
D6 0.0 33600.0 3019.2[ 56700.0 1807.9 0.0 0.0 0.01 0.01 >1500.0 
D7 203.3 70100.0 24100.075000.O 26300.0 >1500.0 939.2 214.6 0.01 >1500.0 
D8 15200.0 8960.01 68200.0 0.0! 683.1 570.0 0.01 
D14 0.01 36700.0 701.6 279.31 134.8 0.0 0.0 0 .0 ! 0.01 264.7 
D15 217.1 13100.0 782.5 233.61 280.51 136.6 84.2 0.0 
D16 0.0 5137.91 361.6 367.91 763.8 0.0 0.0 0.0 
D17 

377.4f 

1515.6 1629.5 0.0 0.0 1  0.0 0.01 

n 81 101 10 10 91 81 91 71 	101 6 
Mean 136.61 26171.51 7259.3 20275.1 6952.21 290.01 220.71 73.21 	37.01 904.1 
SD 	1 

Median I 
236.41 

0.0 

19806.9 

22775.0 

8576.11 

2267.41 

32289.31 

354.41 

10902.51 

763.8! 

542.81 

0.0! 

612.41 
nol 

	

127.31 	78.01 

	

0.0! 	0.01 

653.3 

922.7 
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Appendix 3.5. 

IFN-y Production Obtained Followini Lymphoproliferation Assays 
- Adjusted Values 

The following tables show the IFN-y produced (pg/mi) following proliferation to 

various given antigens at the concentrations shown (see 2.7), with any spontaneous 

production (No Antigen; see Appendix 3.4) subtracted. 

Assays not performed are listed as Not Done (ND) and data excluded due to 

inconsistent replicates are indicated with a blank. 

The number of individuals assessed for each antigen (n) are given along with the 

mean, standard deviation (SD) and the median of the group for each antigen. 

Results for the Exposed Uninfecteds (BUs) 

Results for the Donors (D) 



PHA 
5 

tg/ml 

PHA 
1 

g/ml 

ALLO 
1:1 

PPD 
100 

U/mi 

TT 
2.5 

tg/m1 

TT 
1.25 

tg/ml 

rfflV 
1.25 

tg/ml 

rHIV 
0.625 

tg/nii 

rHIV 
0.125 

tg/m1 

C4051 
C4371 29900.01 

 12450.0>75000.0 
2625.21 56500.01 

15400.01 
940.91 

0.01 
880.11 

0.0 
545.01 >1500.0 

 441.01 ND 

C4401 27578.51 22978.51 42078.51 4166.91 1078.51 1078.51 ND ND 
C4712 17400.01 10500.0 >1500.01 1402.31 0.0 0.0 0.0 0.0 
C5191 9185.41 4779.1 74405.4 1008.21 0.01 260.11 0.0  0.0 
C5411 30916.81 36116.8 74716.8 195 16.81 0.0' 0.0 0.0 _______ 266.3 
C5451 3105.31 556.9 11791.4 0.0] _______  0.0 0.01 364.7 
C5621 	1 35300.01 19500.0 2096.5 >1500.0 0.01 0.0 0.01 0.01 800.3 
C5731 	1>75000.01 11700.01 12000.0! 10200.0 >1500.0 >1500.0  >1500.0 >1500.0 
C5761 

f  
6163.01 2610.01 36600.0 947.8 >1500.0 >1500.0 ND ND NDf 

' 	L 91 101 101 101 91 9 61 51 5 
Mean 	I 26061.01 12381.71 3 8668.9! 5508.3 1 551.01 542.6 250.01 388.21 586.3 

SD 21805.1I 1148.61 30519.71 7016.4 680.61 649.8 612.4 650.21 586.5 
Median 27578.51 11100.01 39339.31 1451.2  0.01 260.1 0.01 0.0 364.7 

ri 

PHIA 
5 

tg/m1 

PHA 
1 

ttglnd 

ALLO 
1:1 

PPD 
100 

U/nil 

IT 
2.5 

tg/niI 

TT 
1.25 

tg/m1 

rHIV 
1.25 

tg/ml 

rHIV 
0.625 

RgInd 

' 	rHIV 
0.125 

ig/ml 

Dl 119600.01 1102.61 0.01 8382.41 0.01 0.0 0.0 0.01 >1500.0 
D2 38600.0 15600.01 341.0 24900.01 1 	393.3 297.9 187.31 314.3 
D3 25277.81 15777.81 0.0 O.o[ 0.0 0.01 0.0 
D6 1 	33600.01 3019.21 56700.0 1807,91 0.01 0.0 j 	0.0 0.01 >1500.0 
D7 69896.7 23896.71 74796.71 26096.71 1296.71 735 . 9 1 0.0 0.01 1296.7 

D14 36700.0 7 -0- 1.61 279.3 i 134.81 0.01 0.0 0.01 0.01 264.7 
D15 
D16 	1 

12882.9 
5137.91 

564.41 
361.61 

0.01 
367.9 

63.41 
763.81 

0.0 
0.0 

0.0 I 
 0.01 

0.0, 
o.o 

n 81 81 8 71 61 71 71 81 6 
Mean 30211.91 7628.0 16560761 8878.41 216.11 161.3 L 	42.61 23.41 812.6 
SD 198733.81 9328.41 307426I l 1714.71 529.41 292.7 11-2.61 66.21 691.1 

Median 29438.91 2060.91 310.11 1807.91 0.01 0.01 0.01 0.01 805.5 
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ID SEX A B I 	DR 
03021 F 2 24 J_7 62  J 	1 4 
03022 F 3 31 44 40/41 4 6 
03061 F 11 24 35 51 1 	11 11 
03073 F 2 11 8 35 3 3 
03131 M 2 11 7 37 4 11 
03141 I 	F 2 28 21 EE 44 11 15/2 
C3153 IF 7 35 1 7 
C3154 I 	FJ  49 351151501531 1 11 
C3241 F 1 3 8 35 3 13 
03292 F 8 15 2 3 
03311 M 3 24 5 57 4 7 
C3321 I 	F 3 3/11 35 44 1 2 
C3351 F 1 1/23 8 44 3 3/6 
C3361 F 44 44 7 7 
03372 F 2 32 I 	14 44-1 3 7 

F 1 	39 44 4 11 
03631 M 1 3 7 7 2 11 
03672 F 1 2 39 39 3 4 
03723 F 3 11 15 42,7/67 4 14 
03781 -  F 2 33 14 35 3 6 
03791 F 3 11 35 37 1 4 
C3851 F 1 29 8 44 3 7 

C394215041 I F1 2 24 44 44 4 11 
C3961/51911 FT 3 30 14 18 3 13 

04051 M 1 2 62 37 2 .6 
C4141 M 2 2 62 62 1 11 
04191 F 31 31132 14 60 4 7 
04261 F 15 55 J 	2 4 
C4272 F 39 40 1 	7 13 
04311 11 F 2 29 44 60 3 4 
04331 	I M 1 3 14 51 1 	2 6 
C4371 F 1 2 8 44 3 4 
C4401 F 	1 24 68 40 15 4 11 
C4421 M  27 44 4 4 
C4431 	TM 1 2 14 14 2 11 
04441 	TM 1 2 2 44 55 11 11 
04471 M 2 29 44 44 4 7 
C4631 Mt 1 2 51 53 3 3 
C4882 _M_ 8 18 3 3/6 
05051 F_1 2 11 	1 13 55 4 7 
05052 F 2 11 	1 35 8 1 3 
C5191 F 3 30 	j 14 18 3 13 
05211 F 2 3 	1 

_ 
50135 51152 2 7 

C5212 IFI 11 68 27 15 	I 9 13 
C5221 F 18 44 	T 1 3 
05231 IF_ 1 2 8 49 	1 3 4 
C5341 F 3 30 14 18 3 8 
05351 IFI 2 3 44 44 	1 2 11 
C5411 F 1 28/68 	1 8 3515 1 2 
05451 	J M 1 3 35 17 1 7 
C5471 	TM 1 3 7 8 3 11 
05491 F 1 23 8 44 2 7 
05531 	IFI 11 11 7 51 7 11 
05691 F!  I 7 44 4 12 
C5711 F 	_ 1 7 7 2 2 
C5721 FI ! 51 44 	I 1 7 
C5731 M I I 14 35 	1 7 13 

Numbers in italics indicate those with undefined/ inconsistant typing 
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Appendix 4.2. 

HLA Types of Individuals Studied 

The following tables show the HLA types of individuals studied (see Section 4.2.3) 

a.) Heterosexually HP/-Infected Contacts 

b.) Transmitting Indexes 



A. HLA Types of Heterosexuajjy BIM-Infected Contacts 

ID SEX A B DR 
C3152 F 29 29 35 35 2 6 

C3562/14631 F 1 2 8 39 1 3 
C3611 F 2 11 7 8 2 3 
C3891 F 25 29 44 51 4 5 
C41 M 2 28 7 27 3 8 
C4061 F 2 11 7 27 2 2 
C4101 F 24 26 14 60 3 7 
C4151 F 2 3 8 18 3 3 
C4211 F 2 2 7 8 2 3 
C4241 F 2 29 44 35 7 7 
C4461 M 1 9 8 13 3 5 
C4681 F 1 2 62 62 1 1 
C4691 F 26 28 35 44 2 6 
C4831 M 2 28 27 44 1 7 
C4901 F 2 30 13 13 4 7 
C5011 F 1 31 57 60 
C5291 F 1 3 8 14 3 

6 ___ 
 

B. HLA Types of Transmjftjn! Indexes 

HET No. SEX A B I 	DR 
3071* M 2 11 8 35 3 5 
13151* MF 2 2 49 55 2 4 
13372* M 1 31 44 27 4 11 
13562 M 1 2 8 39 1 3 
3571 M 2 2 47 47 1 4 
13711 F 2 11 7 60 2 2 
13891 M 3 26 39 53 1 4 
13991 M 1 24 8 60 3 4 
141 F 3 3 7 44  
14101 M 3 28 35 37 3 6 
14151 M 1 11 7 44 2 4 
14211 M  4 7 
14241 M 11 29 7 7 3 3 
14341 M 3 29 7 44  
14461 1 3 3 60 3 4 
14681 M 1 33 7 37 1 1 
14991 M 1 28 44 60 6 11 
4831 F 1 2 44 44 7 7 

14861 M 2 28 14 62 4 7 
14901 M 1 2 13 55 4 7 
15011 M 2 3 7 44 2 7 
5291 M 1 2 7 8 2 3 

Indicates indexes who had both concordant and discordant relationships 

and were excluded from some of the analysis 
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Appendix 43. 

HLA Types of Non-Transmittin2 Indexes (NTRIs) 

The following table shows the HLA types of individuals studied (see Section 4.2.3) 



HETNo. SEX I 	A I 	B I 	DR 
3021 MI 3 30 13 14 6 7 
13061 Mj 1 2 7 44 1 7 

2 11 J 	8 35 3 5 k MJ 
Ml 1 25 35 51 2 4 

 M] 2 2 
] 	

49 55 2 4 
13241 [M 11 24 7 14 4 7 
13311 F 2 11 62 38 4 11 
13321 jM 1 2 7 8 
13351 M 11 26 35 44 1 4 
13361 M 2 24 14 44 4 7 
13372* M 1 31 44 27 4 11 
13631 F 3 29 7 44  
13672 M 1 11 18 37 1 3 
13721 M 33 27 38 5 5 
3781 M 1 33 7 55 4 6 
13791 M3 10 7 18 1 3 
3961 M 1 31 22 37 1 	4 7 
14051 Fl 1 24 8 14 4 7 
14141 FJ 3 24 7 27 	1 3 5 
14191 M 1 24 8 8 	1 3 7 
14271 M 2 3 44 45 8 11 
14311 M 2 3 44 14 6 11 
4331 F 1 2 44 47 10 11 

14401 M 11 24 	1 7 57 5 6 
14431 F 11 33 	1 14 51 2 4 
4441 	IF 1 2 8 44 3 4 
4471 	]F 25 31 27 51 4 4 

14631/C3562 F 1 2 8 39 1 3 
4881 F 2 3 44 44 6 11 

15051 M 	1 2 30 57 47 	I 7 7 
5191 M[ 1 3 7 57I 2 7 
5231 Ml 3 11 7 7L 2 
5351 M[ 2 28 	I 44 62 	I 3 4 
5411 	1 MI 2 24 8 62 7 11 

Indicates indexes who had both concordant and discordant relationships 
and were excluded from some of the analysis. 
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ApDendix 4.4. 

Frequency of HLA Types in Population Controls 

The following table shows the frequency of HLA types in a group of population 

controls (see Section 4.3.1.b). 



HLA Antigen Frequencies In Population Controls 

Individuals 
Expressing Antigen 

Individuals Not 
Expressing Antigen 

Al 97 167 
A2 131 133 
A3 81 I 	183 
All 33 231 
A23 13 251 
A24 37 F 	227 
A25 11 253 
A26 11 253 
A28 17 247 
A29 18 246 
A30131 16 248 
A32 16 248 

B5 21 243 
87 86 178 
B8 80 184 
Bl3 14 250 
B14 22 242 
B15 27 1 	237 
B16 6 258 
B17 	1 27 237 

18 6 258 
B21 	J _19  245 

w22 1 ii 253 
27 22 242 
35 32 232 

837 5 259 
40 25 239 
w41 1 263 
44 73 191 
45 2 262 

847 5 259 

DR1 27 237 
DR2 77 187 

R3 83 181 
R4  T _ia 
R5 	I 33 231 
R6 93 171 
R7 	I 86 178 
R8 10 254 

Numbers derived from those published by Jazwinska and Kilpatrick (1987). 
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Appendix 4.5. 

Genotypes for CCR Polymorphisms and Mutations in EUs 

The following table shows genotypes of the individuals studied (see Chapter 4). 



ID I 	SEX CCR-5 

Gtype 

CCR-2 - 
Gotype# 

CCR-5 Promoter  

Genotype' 
C3021 F WT/WT WT/WT  
C3022 F WT/WT WT/641  
C3061 F WT/WT WT/WT 1,4 
C3073 F WT/WT WT/WT 1,4 
C3131 M WTIWT WT/WT 4,4 
C3141 F WT/WT WT/WT 1,1 
C3153 F i32/i32 \VT/W1' 1,1 
C3154 F WT/E32 WT/WT 1,4 
C3241 F WT/WT WT/WT 1,4 
C3292 F wr/WT WT/WT 1,2 
C3311 M WT/L.32 WT/WT 1,4 
C3321 F WT/,32 WT/WT 1,4 
C3351 F WF/E32 WT/WT 1,4 
C3361 F WT/WT WT/WT 2,2 
C3372 F \VT/W1' WT/WT 1,4 
C3561 F WT/WT WT/WT 1,1 
C3622 F WT/WT WT/WT 1,1 
C3631 M WT//j.32 WT/WT 1,4 
C3672 F WT/WT WT/WT 1,1 
C3721 F WT/wr W/WT NT 
C3723 F WT/L32 WT/WT 1,1 
C3781 F WT/VTF WT/WT 1,4 
C3791 F WT/WT WTIWT 1,4 
C3851 F WF/L32 WT/WT 1,4 

3942/504 F WT/L32 WT/WT 1,4 
C4051 M WT/WT WT/WT NT 
C4141 M WT/WF WT/WT 1,1 
C4191 F WT/A32 WT/WT 1,4 
C4261 F WT/WT WT/WT 1,1 
C4272 F WT/WT WT/WT 1,2 
C4311 F WT/WT WT/WT NT 
C4331 M WT/WT WT/641 NT 
C4371 F wr/WT WT/WT NT 
C4401 F VTF/WT WT/WT 1,1 
C4421 M WT/WT WT/WT 1,4 
C4431 M WT/t32 WT/641 1,1 
C4441 M . 	 WT/WT WT/WT 1,1 
C4471 M WT/WT WT/WT NT 
C4631 M WT/WT WT/WT 1,4 
C4882 M WT/A32 WT/641 1,1 
C5051 F WT/1s32 WT/WT 1,1 
C5052 F WT/WT WF/WT 1,4 
C5111 F WT/WT WTIWT NT 
C5191 F WT/WT WT/WT 4,4 
C5211 F WT/WT WT/WT 4,4 
C5212 F WT/WT WTIWT 1,1 
C5221 F WTIE32 WT/WT 1,4 
C5231 F WT/WT WT/WT 1,1 
C5341 F WT/WT WT/WT 4,4 
C5351 F WT/L32 WT/WT 1,1 
C5411 F WT/WT WT/WT 1,4 
C5451 M WT/i32 WT/WT 1,1 
C5471 M WT/WT WT/WT 4,4 
C5491 F WT/i32 WT/WT 1,2 
C5531 F WT/WT WT/WT 1,4 
C5691 F WT/WT WT/WT 1.4 
C571 1 F 9 WF/L.32 WTIWT 1,2 
C5721 F WT/WT WF/WT 4,4 

CCR-5 Genotype for i32 Mutation (see Section 4.2.3.b) 

CCR-2 Genotype for 641 -mutation (see Section 4.2.3.d) 

£ Genotype for CCR-5 Promoter mutations (see Section 4.1) 

NT - Not Ted 



Appendix 4.6. 

Genotypes for CCR Polymorphisms and Mutations in Heterosexually HIV-
infected Individuals 

The following table shows genotypes of the individuals studied (see Chapter 4). 



IL) SEX CCR-5 
Genotype* 

CCR-2 

Genotype# 

CCR-5 Promoter 

Hi F WT/WT WT/WT 1,2 
H2 F WT/i32 WT/WT 1,1 
H3 M WT/A32 WTIWT 1,1 
H4 F WT/A32 WT/WT 1,1 
H5 F WT/A32 WT/641 1,1 
H6 M WT/i32 WT/WT 1,4 
H7 F WT/WT WT/WT 1,4 
H8 F WT/WT WT/WT 1,4 
H9 M WT/WT WT/641 1,1 

H10 F WT/WT WT/641 1,4 
Hil F WTIà32 WT/WT 1,4 
H12 F WT/WT WT/WT 1,1 
H13 F WT/WT 6411641 1,1 
H14 M WT/32 WT/WT 1,1 
H15 F WT/WT WT1641 1,4 
H16 F WT/WT WT/WT 1,4 
H17 F WT/A32 WT/WT 1,1 
H18 F WT/WT WT/WT NT 
H19 F WTJWT WT/WT NT 
H20 F WT/A32 WT/WT NT 
H21 F WT/WT WT/WT NT 
H22 F WT/WT WT/WT NT 
H23 F WT/WT WT/WT NT 
H24 F WT/WT WT/WT NT 
H25 F WT/WT WT/WT 4,4 
H26 F WT/WT WT/WT 1,1 
H27 F WT/E32 WT/WT 1,4 
H28 F WT/WT WT/WT 4,4 
H29 F WT/WT WT/641 1,1 
H30 F WT/WT WT/WT 1,4 
H31 F WT/WT WT/WT 2,4 
H32 F WT/A32 WT/641 1.1 
H33 F WT/A32 WT/WT 1,2 
H34 F WT/WT WT/WT NT 
H35 F WT/32 WT/WT 1,4 
H36 F WT/WT WT/WT 1,2 
H37 F WT/i32 WT/WT 1,1 
H38 F WT/WT WT/WT NT 
H39 F WT/Wrr WT/WT 4,4 
H40 F WT/i32 WT/WT 1,4 
H41 F WT/WT WT/WT NT 
H42 F WT/WT WT/WT 1,1 
H43 F WT/WT WT/WT NT 
H44 F WT/WT WTIWT NT 
H45 F WT/WT WT/641 1,4 
H46 F WT/WT WT/WT 1,1 
H47 F WT/WT WT/WT 2,2 
H48 F WT/WT WT/WT 1,4 
H49 F WT/WT WT/WT 1,1 
H50 F WT/WT WT/WT 4,4 
H5 1 F WT/WT WT/641 1,4 
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ID =T CCR-5 
Genotype* 

CCR-2 

Genotype 
CCR-5 Promoter 

GenotypeL 

1152 F WT/A32 WT/WT 1,4 
H53 F WT/WT WT/WT NT 
H54 F WT/WT WT/WT 2,4 
H55 F WT/WT WT/WT NT 
H56 F WT/WT WT/641 1,4 
H57 F WT/WT WT/WT 1,4 
H58 F WTJWT WT/WT 4,4 
H59 F WT/WT WT/WT 1,2 
H60 F WTIA32 WTIWT 1,1 
H61 F WT/WT WT/WT 1,4 
H62 F W7/A32 WT/WT 1,1 
H63 F WT/WT WT/WT 1,4 
H64 F WT/WT WT/WT 1,1 
H65 F WT/WT WT/641 1,1 
H66 F WT/WT WT/WT 1,1 
H67 F WT/32 WT/WT 1,1 
H68 F W7/A32 WT/WT 1,1 
H69 M WT/WT WT/WT 1,4 
H70 M WT/WT WT/641 1,1 
H71 M WT/WT WT/WT NT 
H72 M WT/WT WT/WT 1,1 
H73 M WT/WT WT/WT 1,4 
H74 M WT/WT WT/WT NT 
H75 M WT/WT WT/WT 4,4 
H76 M WT/A32 WT/641 1,1 
H77 M WT/E32 WT/WT 1,1 
H78 F WT/WT WT/WT 1,4 
H79 M WT/WT WT/WT 4,4 
H80 M WT/WT WT/WT 1,4 
H81 M WT/WT WT/WT 1,4 
H82 M WT/i32 WT/WT 1,2 
H83 M WT/WT WT/WT 1,4 
H84 M WT/WT WT/WT 1,4 
H85 M WT/WT WT/WT 1,1 
H86 M WT/WT WT/641 1,1 

* CCR-5 Genotype for A32 Mutation (see Section 4.2.3.b) 

CCR-2 Genotype for 641 mutation (see Section 4.2.3.d) 

£ Genotype for CCR-5 Promoter mutations (see Section 4.1) 

NT - Not Tested 
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Appendix 4.7. 

Genotypes for CCR Polymorphisms and Mutations in Controls 

The following table shows genotypes of the individuals studied (see Chapter 4). 



ID CCR-5 

Genotypes  

CCR-2 
Genotype# 

CCR-5 Promoter 

GenotypeL 
Cl WT/WT WT/WT 1,1 
C2 WT/1x32 WT/WT 1,1 
C3 32/i32 WT/WT 1,1 
C4 WT/WT WT/WT 4,4 
C5 WT/WT WT/641 1,1 
C6 WT/WT WT/WT 1,4 
C7 WT/WT WT/641 1,2 
C8 WTIWT WT/WT 1,1 

CIO WT/WT WT/WT 2,4 
CII WT/WT WT/WT 4,4 
C12 WT/WT WT/WT 4,4 
C13 WT/L..32 WT/WT 1,1 
C14 WT/WT WT/WT 1,2 
C15 WT/WT WT/641 1,1 
C16 WT/WT WT/WT 1,4 
C17 WT/WT WT/WT 2,4 
C18 WT/i32 WT/WT 1,1 
C20 WT/WT WT/WT 1,4 
C21 WT/WT WT/641 1,4 
C22 WT/WT WT/WT 1,4 
C23 WT/WT WT/WT 1,2 
C24 WT/WT WT/WT 4,4 
C25 WT/WT WT/641 
C26 WT/WT WT/WT  ,1 
C27 WT/WT WT/WT  .1 
C28 WT/M2 WT/WT  ,2 
C29 t32/32 WT/WT 1,1 
C30 WT/WT WT/WT 2.4 
C31 WT/E32 WT/WT 1.4 
C32 WT/WT WT/WT 1,4 
C33 WT/i32 WT/WT 1,4 
C34 WT/WT WT/WT 1,1 
C36 WT/WT WT/WT 1,2 
C37 WT/WT WT/641 1.2 
C38 WT/WT WT/WT NT 
C39 WTIWT WT/641 1,1 
C40 WT/WT WT/WT 1,2 
C42 WT/L32 WT/WT 1,2 
C43 WT/WT WT/WT 4,4 
C44 WT/WT WT/WT 1,1 
C45 WT/WT WT/WT 1,4 
C46 WT/32 WT/WT NT 
C47 WTIWT WT/WT 1,4 
C48 WT/z32 WT/WT 
C49 WT/WT WT/WT 
C50 WT/z32 WT/WT  .4 
C51 WT/WT WT/WT  .4 
C52 WTIWT WT/WT 
C53 WT/WT WT/WT 1,2 
C54 WT/WT WT/WT 4,4 

* CCR-5 Genotype for A32 Mutation (see Section 4.2.3.b) 

CCR-2 Genotype for 641 mutation (see Section 4.2.3.d) 

£ Genotype for CCR-5 Promoter mutations (see Section 4.1) 

N1' - Not Tested 
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Appendix 4.8. 

Genotypes for CCR Mutations in Transmitting Indexes 

The following table shows genotypes of the individuals studied (see Chapter 4). 



ID SEX CCR-5 
 Genotype 

CCR-2 

J 	Genotypel# 

13071 M (WT/WT) (WT/WT) 
13 15 1 M (WT/WT) (WT/WT) 

M (WT/WT) (WTIWF) 
13451 M WT/32 WT/WT 
13 562 M WTIWT WT/WT 
13571 M WT/i32 WT/WT 
13611 M WTIWT WT/WT 
13711 F WT/WT WTIWT 
13891 M WT/WT WT/WT 
14061 M WT/WT WT/WT 
14101 M WT/WT WT/WT 
14151 M WT/WT WT/WT 
14211 M WT/WT 

--
WT/WT 

14241 M WT/WT WTIWF 
14341 M WT/WT WT/WT 
14461 F WT A32 WTIW'l' 
14691 M WT/WT WT/WT 
14831 F WT/WT WT/WT 
14861 M WT/WT WT/WT 
14901 M WT/WT WT/WT 
15011 M WT/A32 WT/WT 
15291 M WT/WT WT/641 

*CCR Genotype for A32 Mutation (see Section 4.2.3.b) 

CCR-2 Genotype for 641 mutation (see Section 4.2.3.d) 

£ Had both Concordant and Discordant 
relationships and were excluded from analysis 
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Appendix 4.9. 

Genotypes for CCR Mutations in Non-Transmitting Indexes 

The following table shows genotypes of the individuals studied (see Chapter 4). 



ID SEX CCR-5 

 Genotype 

CCR-2 

Genotype' 

13021 M WT/WT WT/WT 
13061 M WT/WT WT/WT 

M (WT/WT) (WT/WT) 
13131 F WT/WT WT/WT 
13141 M WT/A32 WT/WT 
13151 "  M (WT/WT) (WT/WT) 
13241 M WT/WT WT/WT 
13291 M WT/WT WT/641 
13321 M WT/WT WT/WT 
13351 M WT/A32 WT/WT 
13372L M (WT/WT) (WT/WT) 
13621 M WT/32 WT/641 
13631 F WT/WT WT/WT 
13672 M WT/i32 WT/WT 
13721 M WT/i32 WT/WT 
13781 M WT/WT WT/WT 
13791 M WT/A32 WT/WT 
13851 M WT/A32 WTIWT 
13942 M WT/WT WT/WT 
14051 F WT/WT WT/WT 
14141 F WT/WT WT/WT 
14191 M WT/WT 6411641 
14261 M WT/WT WT/WT 
14271 M WT/WT WT/WT 
14311 M WT/WT WT/WT 
14331 F WT/A32 WT/WT 
14371 M WT/WT WT/641 
14401 M WT/WT WT/WT 
14421 F WT/WT WT/WT 
14431 F WT/WT WT/WT 
14441 F WT/i32 WT/WT 
14471 F WT/i32 WT/WT 

1463 11C3562 F WT/WT 6411641 
14881 F WT/WT WT/WT 
15041 M WT/WT WT/WT 
15051 M WT/A32 WT/WT 
15111 M WT/A32 WT/WT 
15 191 - M WT/32 WT/WT 
15211 M WT/WT WT/641 
15231 - M WT/WT WT/WT 
15351 M WIT/WI WI/WIT 
15411 M 	I WT/WT WT/WT 

CCR-5 Genotype for A32 Mutation (see Section 4.2.3.b) 

CCR-2 Genotype for 641 mutation (see Section 4.2.3.d) 

L  Had both Concordant and Discordant 
relationships and were excluded from analysis 
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Appendix 4.10. 

Nucleotide Seauence of CCR-5 Gene 

Nucleotide sequences obtained following sequencing of the CCR-5 gene (see Section 

4.2.3). 

CCR-5 denotes the published consensus sequence (Genbank accession number: 

X91492). The sequences obtained for the four exposed uninfected individuals are 

given, identified by their contact identification (e.g. C5191) and does not start until 

position 248 on the consensus sequence (denoted with a dash). Dots indicate the 

sequence was identical to that of the consensus. 



1 	 11 	21 	31 	41 	51 	61 	71 	81 	91 	101 	111 	120 

I 	 I. 	I 	I 	 I 	 I 	 I 	I 	 I 	I 	I 	I OCR-S  GAATTCCOCCAhCAGAOCCAAGCTCTCCATCTAGTGGACAGGGAAGCTAGCAGCAAnCTTOCCTTCACTACAAAACTTCATTGCTTWWAMMGAGhGTTAATTCAATGTAGNCATC 
03361 
C4331 
C4421 
C1191 

121 	131 	141 	151 	161 	171 	181 	191 	201 	211 	221 	231 	240 

I 	 1 	 I 	I 	I 	 I 	1 	 I 	 I 	 1 	I OCR-5 
03361 
C4331 
C4421 
C51.91 

241 	251 	261 	271 	281 	291 	301 	311 	321 	331 	341 	351 	360 

I 	 1 	1 	1 	1 	 1 	I 	1 	 I 	I 	1 	I cCR-5 
C3361 ----. . ..................................................................... .......................................... 

C4331 -----. . .................................................................................... ........................... 
C4421 ------. ...................................................................................... .......................... 
C5191 ---.. . ................................................................... ............................................ 

361 	371 	381 	391 	401 	411 	421 	431 	441 	451 	461 	471 	480 

I 	 I 	 I 	I 	 I 	 I 	 I OCR-S 

. ... ...... .............. C3361 ................................................................................................  
04331 ........................................................................................................................ 
C4421.... .................................................................................................................... 
C5191 ........................................................................................................................ 

481 	491 	501 	511 	521 	531 	541 	551 	561 	571 	581 	591 	600 

I 	 I 	 1 	 I 	I 	 1 	I 	I 	 I 	 I 	I 	1 	I OCR-S 

........ ...... C3361 ......................................................................................................... .  
04331 ........................................................................................................................ 
04421 ........................................................................................................................ 
05191 ........................................................................................................................ 

601 	611 	621 	631 	641 	651 	661 	671 	681 	691 	701 	711 	720 

I 	 I 	 I 	I 	 I 	 I 	 I 	I 	I 	I OCR-5 

........... .. C3361 ...........................................................................................................  
04331 ........................................................................................................................ 
C4421.... .................................................................................................................... 
C5191. ....................................................................................................................... 

721 	731 	741 	751 	761 	771 	781 	791 	001 	811 	821 	831 	640 

I 	 1 	 1 	 I 	I 	 I 	 I 	I 	 1 	 1 	I 	I OCR-S ROTA TAGTCATCT 
03361 ................................................................................................................... 
C4331 ...................................  ..................................................................................... - 
04421 ........................................................................................................................ 
C5191 ........................................................................................................................ 

841 	851 	861 	871 	881 	891 	901 	911 	921 	931 	941 	951 	960 

I 	 I 	I 	I 	 I 	1 	I 	 I 	 I 	I 008-5 

....... ..... .... ... .. 03361 .............................................................................................. .. . 

.................................................................................................. 04421 ........................................................................................................................ 
05191  ........................................................................................................................ 

961 	971 	981 	991 	1001 	1011 	1021 	1031 	1041 	1051 	1061 	1071 	1080 

I 	 1 	 1 	I 	I 	 1 	I 	I 	 I 	 1 	1 	1 	I OCR-5 

... 	. ....... 03361 .................................................................................................. 	... . ...... 
C4331...................... .................................................................................................. 
04421 ........................................................................................................................ 
C5191................. ....................................................................................................... 

1081 	1091 	1101 	1111 	1121 	1131 	1141 	1151 	1161 	1171 	1181 	1191 	1200 

I 	 I 	 1 	 1 	 I 	 1 	I 
OCR-S 

...... 	... ..... 	....... C3361 ........................................................................................... .  
04331 ........................................................................................................................ 
04421 ........................................................................................................................ 
05191 ........................................................................................................................ 

1201 	1211 	1221 	1231 	1241 	1251 	1261 	1271 	1281 	1291 	1301 	1311 	1320 

I 	 I 	 I 	 I 	 I 	 I 	I 	I 	 I 	 I 	I 	I cOO-S GCAAATGCTGTTCTATTTTOCAGCAAGAGGCTOCCGAGOGh(;CAAGCTCAGTTTACACCCOATCCACTC~GGAAATATCTGTGGWTTGTr.ACACOGACTCAAGTGGGCTOGTG 
 C3361 ........................................................................................ . . 

C4331 ..................................................................... ..................................................
- 

04421 ........................................................................................................................ 
05191 ................................................................................................................. 

1321 	1331 	1341 	1351 	1361 	1371 

I 	 I 	1 	 1 	 I 	 I 
OCR-5 
C3361 
04331  -----------------------------------__-___ 
04421 . 

C5191 



1 	 11 	21 	31 	41 	51 	61 	71 	81 	91 	101 	111. 	120 

I 	 I. 	I 	 I 	 I 	 I 	 I 	 I 	 I 	 I cXR-5 
C3361 
C4331 
C4421 
C5191 

121 	131 	141 	151 	161 	171 	1.81 	191 	201 	211 	221 	231 	240 

I 	 I 	 I 	 I 	 I 	 1 	 1 	 I R-5 
C3361  
C4331 
C4421 
C5191 -_-_________________________________________  -------- 

241 	251 	261 	271 	281 	291 	301 	311 	321 	331 	341 	351 	360 

I 	 I 	 1 	 I 	 1 	 I 	 1 	 I 	 I 	 1 	 I cCo1.-5 
C3361

----.. ............................................................................................................... 
C4331 ---. 
	 ....................... C4421

----..... ............................................................................................................. 
C5191 

361 	371 	381 	391 	401 	411 	421 	431 	441 	451 	461 	471 	480 

I 	 1 	 I 	 I 	 I 	 I 	 I 	 1 	 I 	 I cCR-5 

........ .. . . ............... ............. 
C3361 ..............................................................................  

C4331................... ..................................................................................................... 
C4421.................... .................................................................................................... 
C5191.................... .................................................................................................... 

481 	491 	501 	511 	521 	531 	541 	551 	561 	571 	581 	591 	600 

I 	 1 	 1 	 1 	 I 	 1 	 I 	 I 	 I 	 I OCR-5  

. .... .............. 	 ........ ..... 
C3361 ................................................................................. . .  
C4331................. ....................................................................................................... 
04421 ........................................................................................................................ 
C5191 ........................................................................................................................ 

601 	611 	621 	631 	641 	651 	661 	671 	681 	691 	701' 	711 	720 

I 	 1 	 1 	 I 	 1 	 I 	 1 	 I 	 1 	 I 	 I OCR—S 

... .. ............ .... .......... 	 .... 
C3361 .............................................................................. . 
C4331....

.................................................................................................................... 
04421 ........................................................................................................................ 
C5191....

.................................................................................................................... 

721 	731 	741 	751 	761 	771 	781 	791 	001 	811 	821 	831 	840 

I 	 I 	 I 	 I 	 I 	 I 	 1 	 1 	 1 	 1 	 I OCR—S 

.. . ..... 	 .... . ... 	 . ........ 
C3361 ............................................................................... .. . .  
08331 ........................................................................................................................ 
04421 ........................................................................................................................ 

04191 ........................................................................................................................ 

841 	851 	861 	871 	881 	891 	901 	911 	921 	931 	941 	951 	960 

I 	 1 	 I 	 I 	 I 	 I 	I 	1 	I 	 1 	 1 	 I 	I OCR—S 
C3361 ................................................................................ .. . ... . ..... ......... .. 
C4331 ............ ............................................................................................................ 
04421 ........................................................................................................................ 
05191 ........................................................................................................................ 

961 	971 	981 	991 	1001 	1011 	1021 	1031 	1041 	1051 	1061 	1071 	1080 

I 	I 	I 	I 	I 	1 	1 	1 	I 	I 	I 	I OCR—S 

.... 	. ... ......... 	.. 	... 	. C3361 .......................................................................... ..... 
04331 ........................................................................................................................ 
04421 ........................................................................................................................ 
04191 ........................................................................................................................ 

1.081 	1091 	1101 	1111 	1121 	1131 	1141 	1151 	1161 	1171 	1181 	1191 	1200 

I 	I 	I 	I 	1 	I 	1 	I 	I 	1 	I OCR—S 

.. .. .. ..... ....... 	. . ... 	..... C3361 ........................................................................... . . 
C4331 ......... ............................................................................................................... C4421 ........................................................................................................................ 
04191 ........................................................................................................................ 

1201 	1211 	1221 	1231 	1241 	1251 	1261 	1271 	1281 	1291 	1301 	1311 	1320 

I 	 I 	I 	I 	 I 	I 	 I 	I OCR—S 

. .. 	. .............. . .... .... C3361 ............................................................................. .  
04331 .....................................................................................................................-
C4421 ........................... ............................................................................................. 
C5191 ......................... ........................................................................................ 

1321 	1331 	1341 	1351 	1361 	1371 

I 	I 	I 	I 	 I 
OCR—S ROCCAGTCRGRGTTGTOCAC?GOC7FAGDTTCATACOCTQI.00OC 
C3361 
C4331 ---------------.----. ---_-____..,..,.,._ 
04421 . 
C5191 



Appendix 5.1. 

Nucleotide Sentience of env Gene (V3) From 13151 

Nucleotide sequences obtained following sequencing of the env gene (see Section 

2.13 and 2.19). 

The sequences are aligned to the first variant sequenced at 5 years post 

seroconversion (F5), with identical nucleotides to this sequence shown with a dot and 

alignment gaps noted with a dash. The sequences are labelled according to the 

samples number (1/2) and the individual sequence (.X). 



I II 21 	 31 41 51 61 	 71 81 91 	 101 	 111 	120 

F5. 1 
I 
T?TCACG3AC 

.1 
AATGCTAAAG 

I 	 I 
TCATAATAGT ACMCTGAAT 

I 
G.P.ACTGThG 

I 
APLATTAATTG 

I 	 I 
TACMZACcC CACAGCMTh 

I 
CANTAAAGG 

I 	 I 
TATACAThTA 

I 

1.1 . .. .T.A . GG..A 
GGACCAGGCA GAATTCTA 

1•2 • .• •T.A .•..•.••.•••..•..•••.••..... A •.• ......... A 
• 

AG• 	A•..••.. • .. ••••• ..... •••••••••••••••••••••••••  
0 

1•3 .••.•..•••....••.......•.••.•....•.•.•.•.•. T A••.A•••.•.•... • .... •• ....... • . •••••••••••••••••••  
1.4 •...•• A T .••....•••.•.•.•..•....... A•..A •..••••.....•.•..... 
1•5 •........... ...............................T ...... .......... .......... 
1.6 T ...... .......... .......... 
1 .7 ..................................... I ...... .......... .......... 	A. 
1.8 T ...... .......... A...A. .... . ...... ........... .0 
1.9 .................................... A ... ... C  ...... .......... .......... 	 A ... A ..... .......... .......... 	 .......... ..... 1.10 ........................................ ... I ...... .......... .......... 	 A ... A................................... 

.....

.......... 1 .11 ........................................... I .......................... A. ..A............................................. 
1.12 .......... ................................. I ............  ... ...... ..... A.. .A........................... C ................. 
1 .13 A ... ......... A C ......... 	.......... ... r...... I................... A. ..A......... A....................... G T.. ........ 1 .14 C............................. ... I.......................... A.. .A............................................. 
1 .15 ............ 

.......... 
C......................................................... A. ..A............................................. 

2 .1 ....... .................................... T ................ .......... 	A ... A ..... .......... .......... 	.... ................ 2.2 A............ A ..........G.................. A .......... .......... 	GG..A ..... .......... .......... 	.... c. 2.3 ...................................................................... A.. .A............................................. 
.............. 

2.4 A. A.......................................... A .......... .......... 	GG..A ..... .......... .......... ......... ......... C. 2.5 
.0 

2.6 
2.7 A.................................  .......... .......... 

...... 
.......... 	..A............................................. 

2.8 

............................................................ 

A............................................................... 

.......... 
	

AG..A ..... 

AG..A ........... 

. ... .......... 

	

.......... 

G................................. 

........ .. 

2.9 A.......................................... A .................... GG..A ........................................... c. 

121 131 141 	 151 161 171 181 	 191 	201 	211 	221 	 231 	240 

F5.1 TGCAACWGA 
I 

AGAAIAACAG 
A..................... 

I 
GAGATATAAG ACAAACAI 

I 
TGTA6CCIIA 

I 
GTAGAACAAA 

I 	 I 
ATAATGAC ACTTTACAAC 

I 
AI0GTTAI AAAGTTAAGA GMCAATTTG GAAATAATAA 1.1 ......... C .......... .... T ..... .......... 	...... A ... .......... .......... 	.......... .......... 1 .2 .......... GC..... I ............................. ... .... I ..... .......... 	...... A ... .......... .......... 	.......... G.G ....... 1 .3 .......... GA .....T .............. I............. A ........ G .................... A. .A .... ..C. .0 .............................. 1 .4 .......... GA .....T .............. I............. A........ G .................... A. .A ......C. .0 .............................. 1 .5 .......... GA .....T..  ...... ......T....I..  ..... . A ........ G .................... A..A ......C..0 ............................. 1 .6 .......... GA.....T...................... ...... A ... .....G.............. 

 

...... 
A. .A ......C. .0 .............................. 1 .7 .......... GA.....I.............. I.......  ...... A ... ................. ... 	

...... 
A. .A ......C................................. 1 .8 .......... GA.....I.............. I............. A............................. A. .A ......C................................. 1 .9 .......... GA.....T .............. I............. A........ G .................... A. .A ......C................................. 1.10 .......... GA.....T.............. I... .T........ A........ G ........... A .. 

	

...... 
A..A ......C. .0 .................... .G........ 1.11 .......... 

GA 
 ..... 

T.. 
 GA .....I.............. T............. .......... 	

..I....... 
A........ G .................... A. .A ......C....................... .G........ 1 .12 .......... ...... A ... 

..... 
G.................... A. .A ......C................................. 

.• 

1 .13 .......... GAC....T............ G............... A........ G............. A 	......A... A ..... ...C .. .A.......................... 
1 .14 .. .0...... GA .....I............ G.T... .1 ........ .... 

C 
 ..... 	

..I....I ..  
A........ G ........... A........A..A ......C. .0 .............................. 1.15 ... G ...... GA ..... I ..  ...... A ... ..... G .......... A.........A..A ......C..0 .............................. 2 .1 .......... 

..0 .... A........... 
GA.................... .......... 	

.......... 
I...................... .......... G .................... A. .A ...... C. .0 .............................. 

2.2 
2.3 

..GA.G ...................... r..................... A ................... 
.......... GA .....T ................... I................. G .................... A. .7 ...... C. .c .............................. 

2.4 ...0 	..A......................................... ..GA.G.... N......... 	........ I. .......... .......... 	.......... .. ...... .. 2.5 .........A. .......... .......... 	.......... .......... .... P ..... .......... 	..C ... A. .T ...... C. .0 .............................. 
2.6 AC .......... .......... 	.......... .......... .... P ..... .......... 	...... AG.I .......... .......... .......... GG.G ...... 2.7 A.  .......... .......... 	.......... .......... .... T ..... .......... 	...... A ... .......... .......... .......... .......... 2.8 A............................................. P................. C.. A..? ...... C. .0 .............................. 2.9 ... C .... A. .......... .......... 	.......... .......... ..GA.G .... .......... 	........ T. .......... .......... 	.......... .......... 

241 
I 

251 261 	 271 281 291 301 	 311 321 331 	 341 351 

F5.1 AACPLATAGOC 
1 
IIPAAIAT 

1 	 I• 
OCTCAGGAGG GGACAGM 

I 
AITGTAATGC 

I 
ACAGTrTTAA 

1 	 I 
TTGTGGAGGG GMTTITICI 

I 
ACTGTAATTC 

1 	 I 
ATCACAACIG TTIAAIAGPA CTTGG 1.1 ................. A...................................................................... 

1 .2 ............... ..A ..............................................  
A..... ..... 

1 .3 ........................................................................................ 
... ..................... A..... A.................... 

1 .4 ................. A...................................................................... 

A . .... 

	

.... ...... 

A..... 
A..... 

A .................... 
A.................... 1 .5 ........................................................................................ 

A..... A....................  1 .6 ........................................................................................ 
A..... A ....................  1 .7 

1 .8 
........................................................................................ 

........................................................................................ 
A..... A............... ...... 

1 .9 ........................................................................................ 
A..... A.................... 

1.10 A ................................ ...................................... 
A..... A.................... 

................. 

............................. .......... ..................... 
A ..... A.................... 

1 .12 
.......... 

......... ............................................................................... 
.......... ....... A ..... A.................... 

1 .13 ........I........ A ................................................................................................. 
A ..... A.................... 

1 .14 ........................................................................................ 
1 .15 ........................................................................................ 

A ..... A....................  

2 .1 A ..... ............ ...................................................................... 
A ..... A.................... 

2.2 .......... . ......AC A .......... ...................................... 
A..... A .................... 

2.3 ................. 
........... 

A............... 
......  ... 

P 
A..... A.................... 

2.4 .......... ....... AC........... A ......................................................... 
...................................................... A..... A.................... 

2.5 ................. A .......................  ............................ 
A..... A.................... 

2.6 A 
......... .......... 

...................................................................... 
A..... G.................... 

2.7 
................. 
................. A ...............  ...... ................................................. 

A..... A.................... 

A........... 
 .... 

 

2.8 .............. ... A ......  ................ ................................................ 
A..... A.................... 

2.9 AC A 
A..... G.................... 

................. ........... ......................................................... A..... ..... 

355 



Appendix 5.2. 

Nucleotide Seciuence of 22 Gene (p17) From 13151 

Nucleotide sequences obtained following sequencing of the gag gene (see Section 

2.13 and 2.19). 

The sequences are aligned to the first variant sequenced at 5 years post 

seroconversion (P0), with identical nucleotides to this sequence shown with a dot and 

alignment gaps noted with a dash. The sequences are labelled according to the 

samples number (1/2) and the individual sequence (.X). 



1 	 II 	 21 	 31 	 41 	 51 	 61 	 71 	 81 	 91 	100 

FO.1 Q3GATAGA ACGAT?l1CA GTTMTICTG IOCTATThGA AACATCAGM GGCTGTAGAC AAAT8TGGA ACAGC?ACAA cCAGCTTC AGACN3GATC 
1.1 	 .0 	 .1 . 
1.2 	 .1.... G 	 .T . 
1.3 	.......... 	 .......... 	 .......... 	 .... C ..... .......... .......... ..... C .... .......... 	 ... T ...... 	 .......... 

1.4 	.......... 	 .......... 	 ..... C .... 	 .......... .......... ..C ....... 	 ..... C .... .......... 	 ... C ...... C ......... 

1.5 	...................0 .............. 0.............................. C .... .......... 	 ... C ...... 	 .......... 

1.6 	.......... 	 .......... 	 .......... 	 .......... .......... 	 .......... ..... A .... .......... 	......... A .......... 
1.7 	.......... 	 .......... 	 ..... C ...... ........ .......... 	 .......... .......... 	 .......... 	 ... C ...... 	 .......... 

1.8 	.......... 	 .......... 	 .......... 	 .... C ..... 	 .......... 	 .......... .......... 	 .......... 	 ... r ...... 	.......... 
1.9 	.......... 	 .......... 	 ..... C ........ C ..... 	 .......... 	 .......... .... . ..... 	 .......... 	 .......... 	 .......... 

1.10 	.......... 	.......... 	.. C..C.........................................................C................ 
1.11 	.......... .......... ..... C...... ........ .......... .......... ..... C.... C ......... 	... T ...... 	.......... 
2.1 	.......... 	.......... 	.......... 	.......... 	.......... .......... ..... A .... 	.......... 	......... A .......... 
2.2 	.......... .......... 	.......... 	.... C ..... 	.......... .......... ..... T .... 	.......... 	... C ................ 
2.3 	.......... .......... 	.......... .......... 	.......... .......... .. ... A .... 	... C ...... 	......... A .......... 
2.4 	.......... .......... 	.......... .......... 	.......... .......... ..... A .... 	.......... 	......... A .......... 
20 	................ .... 	.......... 	.......... 	.......... .......... ..... A .... .......... 	......... A .......... 
2.6 	.A ........ .......... 	.......... 	.. ........ 	.......... .......... .......... 	.......... 	... C ................ 
2.7 	.......... ... C ...... 	.......... 	.......... 	.......... .......... ..... C .... 	.......... 	... T ...... C......... 

101 	111. 	121 	131 	141 	151 	161 	171 	181 	191 	200 
I 	 I 	 1 	 I 	 1 	 I 	 1 	 I 	 I 

p0.1 AOAAGAACT? N3ATCATTAT TTAATACAGT AOCAACcCTC TATTGTGTGC ATCAAAA$2AT 8GATGTAAAA G#CAcCAAIS3 MTTTAGA GA#0A08090 
1.1 	.......... .......... 	.......... .......... .......... ...... C ... .......... 	..... C .... 	.... C ..... 	.......... 
1 .2 	.......... .......... 	.......... 	.......... 	.......... ...... G ... .......... .......... 	.......... 	... A ...... 
1 .3 	.......... 	.......... 	.......... .......... 	.......... ...... C ... .......... 	.......... 	.... C ..... 	.......... 
1 .4 	C ......... 	.......... 	.......... 	.......... 	.......... .......... .......... .......... 	.......... 	.......... 
1 .5 	.......... .......... 	.......... 	.......... 	.......... 	...... G ... .......... 	.......... 	.... C ..... 	.......... 
1.6 	.......... 	.......... 	.. ........ .......... 	.......... 	.......... ........ c. 	.......... 	.......... A ...... ... 
1.7 	.......... .......... 	.......... .......... 	.......... 	...... G ... .......... 	.......... 	.......... 	....... ..A 
1 .8 	.......... .......... 	.......... 	.......... 	.......... ...... G ... .... A ..... .......... 	.......... A......... 
1 .9 	.......... 	.......... 	.......... .......... .......... 	...... G ... .......... .......... 	.......... 	... A ...... 

1.10 	.......... .......... 	.......... 	.......... 	.......... ...... C ... .......... .......... 	.... C ..... 	.......... 
1 .11 	.......... .......... 	.......... 	.......... 	.......... 	...... G ... .......... 	.......... 	.......... 	... A ...... 
2.1 	.......... 	.......... 	.. ........ 	.......... 	........ A. .......... ........ C. .......... 	.......... A......... 
2.2 	.......... .......... 	.......... 	.......... .......... 	...... C ... .......... .......... 	.... C ..... 	.......... 
2.3 	.......... .......... 	.......... 	.......... .......... 	.......... .......... .......... 	.......... A ......... 
2.4 	.......... .......... 	.. ........ 	.......... 	........ A. 	.......... ........ C. .......... 	.......... A......... 
2.5 	.......... .......... 	.. ........ 	.......... ........ A. 	.......... ........ C. .......... 	.......... A......... 
2.6 	.......... .......... 	.......... 	.......... .......... 	...... C ... .......... .......... 	.... C ..... 	.......... 
2.7 

201 	211 	221 	231 	241 	251 	261 	271 	281 	291 	300 

E. 
I 	 I 	 I 	 I 	 I 	 I 

.1 GAACACCAAA ACAAAAGTAA CAAAAAACCA CAAAAC CATGAC 90GAAACA 80A0GTCA C------ CCAAAATTAC CCTATAGCCC 
1 .1 	.................................................. ........ A. ..... A.....AACTCAG .......... ..C....... 
1.2 	.......................................................... A ......A.....cCAACTCOC ............ .0....... 
1 .3 	.......... .......... ...... GA .. .......... .......... ........ A. ..... A..... AAGTCAG .................... 
1 .4 	.......... .......... ...... G.....A ....... .......... ........ A. ..... A .....A60TCA0 .......... ..C....... 
1 .5 	.......... .......... ...... G ... .......... .......... ........ A. ..... A.....M0TCAG .................... 
1 .6 	.......... .......... ..... C ... G .......... .......... .......... ........ - ...... CCAG .................... 
1 .7 	... ....... .......... ...... G ... 	.......... .......... ........ A. ..... A 
1 .8 	.......... .......... ...... G ... .......... .......... ........ A. ..... A.....AGTCA0 .................... 
1 .9 	...... ........................ ..A ....... .... C ..... ........ A. ..... A.....AA0TC0..................... 

1.10 	........................  ...... .......... .......... ........ A. ..... A.....CCAAGTCAG .......... ..C....... 
1.11 	.......... .......... .......... ....... C .. .......... ........ A. ..... A.....CCAAGTCAC .......... ..C ..... A. 

2 .1 	.......... .......... 	..... C .... 	.......... 	.......... 	.......... .......... .......... 	.......... 	....... ... 
2.2 	.......... .......... ...... C ... ... . ...... .......... ........ A. ..... A.... 	CCAAGTCAG  .................... 
2.3 	.......... .......... 	..... C .... 	.......... .......... 	.......... .......... ......... ..................... 
2.4 	.......... .......... ..... C .... 	.......... 	.......... 	.......... .......... 	......... ..................... 
2.5 	.........................C .... 	.......... 	.......... 	.......... .......... .......... .......... 	....... ... 
2.6 	.......... .......... ... G.0 .... .......... .......... ........ A. ..... A.....cA5AC .................... 
2.7 	.......... .......... ...... C ... .......... .......... .......... ...... ... .....GTCAC T ......... ..C....... 

301 	311 	321 	331 	341 
I 	 I 

F0.1 ACAACATCCA GG03CMATG GTACATCAI3 cCATATCAcC TAGA 
1.1 .....C.?.................................... 
1 .2 .......C.. ----- ----- 
1 .3 .......-- ----- ----- ------- -- 
1 .4 	.....C.?.................................... 
1 .5 	.....C.?.................................... 
1 .6 	....... G.. 	.......... .......... 	.......... 	.... 
1 .7 	.....C.?.................................... 
1 .8 	.....C.?.................................... 
1 .9 	.....C.?................................... 

1.10 	.....C.?.................................... 
1 .11 	....... G.. .......... .......... 	.......... 	.... 

2 .1 	.......C .................................... 
2.2 	....... C.. .......... .......... .. ........ 	.... 
2.3 
2.4 	....... G.. .......... .......... .......... -- 
2.5 	.......T .. .......... .... 

................ 	
...- 

2.6 ....... T.. ........ - ------ ------ 
2.7 	....... C.. .......... .......... 	.......... 	.... 

ACIC  


