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Preface

While some of the research reported in this thesis was completed during my

employmenton theAlvey/Edinburgh speech recognitionproject, themajormotivations and

methodological issues had been worked out before the project began. The first report of

thatwork (Johnstone & Altmann 1984) was incorporated in theprojectproposal.

The programming work and the system tests formed part of the project's first

prototype, RM1. Any mention of the acoustic-phonetic front-end, SEGLAB, or the

syntactic component refers to work done in other sectors. As regards the Lexical Access

component, I was the only person employed in the Lexical Access sector during the first

three years of the projectwhen this researchwas done.

Ideclarethat:

a) this thesis has been composed bymyself, and

b) the work is substantially my own. Any contributions from other members of the

project arenoted in the acknowledgements and at the relevantpoints in the text
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Abstract

The results of human speech processing are rarely ambiguous, in that people are
usually clear about the words they have heard. Yet there are numerous sources of
confusion which make the automatic access of lexical items a very difficult search problem.
Our understanding of the relationship between acoustic signal and useful linguistic
representations is still very limited. It is also unclear how people use linguistic and general
contextual knowledge to overcome errors and ambiguities in the acoustic input, although
they are undoubtedly able to do so. One particularly difficult problem is the ambiguity
caused by lack of acoustic cues to word boundaries.

Chapter 1 formulates these problems at a level of abstraction which is general enough to
capture the common processing aims of very different computational systems, yet also
allows detailed analysis of the search problems. Graph-search terminology proved to be a
useful framework both for analysing past systems and for guiding research on our own
system. Chapters 2 and 3 describe the implementation of a lexical access component using
a general graph management system, the Chart parser.

In Chapters 4, 5, and 6 the system was used to assess the effect of word boundary
ambiguity on parsing a graph of phonological units into words. We showed that, even
when all 44 phonemes of Received Pronunciation were used, a correctly transcribed input
utterance of 4 - 10 words could be parsed into in excess of 10,000 word strings. When a
less specific, mid-class phonemic representation was used, 71 of 115 test sentences could
be parsed in over 10 million different ways. These results imply that, even with accurate
mid-class labelling, strong syntactic and semantic constraints must be applied as early as
possible in order to prevent a combinatorial explosion ofword strings.

In the final chapter we look at the implications of these results for search strategies. We
analyse several algorithms and show that certain strategies, such as the island driving
strategies used in HWIM and Hearsay-El, are highly inappropriate for this kind of search
space, while others, such as beam search will only be effective under certain conditions.

This thesis shows that study of the interactions between knowledge sources reveals
problems that would not otherwise be apparent. Attempts to reduce the search space can
then be directed to areas where they will be most effective.
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Chapter 1. Lexical Access as a Search Problem

1

1.1. Introduction

Continuous speech processing requires the application of very many sources of

knowledge in order to decode the utterance. Even if the signal were transcribed into a

perfect description of the sound, the utterance might remain partially ambiguous without the

application of further sources of information. A major cause of ambiguity is the lack of

acoustic cues to word boundaries. For example /t o m ii t s/ could be heard as either Tom

eats or Tom meets depending on its context

The constraints from diverse knowledge sources are also needed to recover from

underspecified or errorful input. For example, we would want to be able to recover bracelet

from the input bwacelet. One of the major areas of research in speech recognition concerns

the ways in which general linguistic knowledge can compensate for such errorful or

ambiguous acoustic input

The ARPA project of the mid-seventies relied heavily on the use of domain-specific

syntactic and semantic knowledge to constrain the search space. It was generally believed

that the poor performance of the front-end systems required this. Cole et al write:

"Considering the amount of effort that has been devoted to speech
recognition research, the "front-end" performance of speech recognition
systems is surprisingly poor. Systems developed during the ARPA speech
understanding project achieved first choice segmental recognition accuracies of
50% to 60% (Klatt 1977). This is not accurate enough to recognise words
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unless vocabulary choice is highly constrained, and the items at each choice
point are acoustically distinct." (Cole, Stem & Lasry 1983)

However, advances in speech science and computer science since the ARPA project

had encouraged the belief that front-end processing could be substantially improved. Such

an improvement should permit recognition systems with larger vocabularies and generally

weaker top-down constraints.

In addition, research on large lexicons seemed to imply that lexicon-based constraints

could constrain the identity of a word on the basis of very little phonemic information.

Nusbaum & Pisoni (1986) experimented with variable-grained encodings of a huge

126,000 word lexicon. They report:

"These results demonstrate that detailed phonetic information about some
of the segments in a word provides enough constraint, in general, that other
segments can be completely obscured or ambiguous without significantly
impairing recognition. Moreover, to the extent that some phonetic information
is available about other segments, the candidate set will be reduced further,
probably to the extent of uniquely specifying the correct word."

The implication of these results and those of Zue (1985) was that, so long as the correct

phonemes were in the set of input descriptions, lexical and higher-level knowledge sources

would be able to distinguish the correct words.

However, these studies had been carried out on words in isolation, and we felt that,

given the ambiguity of word boundaries, the search space might prove much larger and

more complex than these studies implied. The ARPA project had already shown that

controlling the search in speech processing could be extremely hard.

We also felt that the interactions between different sources of knowledge was still far

from clear. On the one hand some psycholinguistic data seemed to point to word-by-word

recognition (Cole & Jakimik 1980; Marslen-Wilson & Welsh 1978). On the other hand

there was evidence implying that even human listeners needed to hear stretches of speech

several words long for accurate recognition (Pollack & Pickett 1963). Again, some
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psycholinguists maintained that top-down constraint merely facilitated recognition, while

others argued that top-down information had to produce hypotheses to compensate for

inaccurate acoustic information.

1.2. The Alvey/Edinburgh Project

The implementation of a large scale speech recognition machine proposed by the

Alvey/Edinburgh project would allow a number of the interaction issues to be explored. In

particular, the lexical access component could be used to test the following hypothesis:

Structural constraints in the lexicon are sufficient to substantially reduce the number of

word candidates in a string ofunderspecifiedphonemic units.

Our first aim was to examine the lexical access components of a number of existing

speech recognition systems. We chose three systems from the ARPA project, HARPY,

HWIM and HEARSAY-H, and a more recent, connectionist system, TRACE.

HARPY (Lowerre & Reddy 1980) was a highly constrained system, in terms of both

architecture and task domain. Although the knowledge sources in HARPY were designed

separately, they were subsequently compiled into a unified directed graph representation

which was then used to decode the utterance.

HEARSAY-II (Erman & Lesser 1980) used the same constrained vocabulary and

grammar as HARPY but had a more flexible architecture. The knowledge sources
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communicated through a blackboard data structure. The major constraint on architecture

was the decision to use production rules to represent knowledge.

HWIM (Woods et al 1976) used a 1,000 word domain specific vocabulary like

HARPY and HEARSAY-H, but a far more general grammar. The system can be described

as a set of cascaded ATN networks which communicated via an ordered agenda.

TRACE (McClelland & Elman 1986) is a more recent system whose aims are in some

ways similar to ours. The designers also emphasise the interactions between components,

and the relevance of psychological models of human speech processing. However, their

architecture — a connectionist network — limits them to a small vocabulary of 211 words.

This is because current connectionist networks must duplicate all the nodes and connections

for each unit in the system in order to represent temporal aspects of the problem. No

higher-level knowledge source is used.

There are a number of reasons why it is difficult to compare lexical access systems.

Normally the lexicons that they use differ in size and content, so the number and type of

lexical hypotheses generated may vary greatly. Moreover, the lexical access mechanisms

are usually embedded in larger systems, and their success depends on both the performance

of the lower level acoustic-phonetic components and on the predictive or selective abilities

of the higher level syntactic and semantic components. In addition, most systems use

search strategies to eliminate some partial hypotheses from consideration, and it is not

always easy to determine the relative importance of the various components of these

strategies.
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Thus performance statistics alone are not very useful for comparing different systems,

since they do not necessarily provide any indication of the superiority of one system over

another, nor any insight into the strengths and weaknesses of the various components.

1.3. Graph theory and speech recognition

At a certain level of abstraction there is a sense in which any speech processing

mechanism is trying to solve the same search problem (see Goodman & Reddy 1980). The

interpretation of an utterance involves the integration of information across different levels

of linguistic description and across time. Ascending levels of abstraction (i.e. phonetic,

lexical, syntactic, semantic) typically deal with temporally longer stretches of the utterance.

Since information is locally ambiguous, at various stages of processing there will be

competing interpretations which require disambiguating information from other knowledge

sources and from temporally earlier or later parts of the utterance. We can represent this as

a three-dimensional search space (see Fig. 1.1). The search process can then be defined as

follows:

Combine information during the extension of a hypothesis (along the x
axis), and during processing by different knowledge sources (along the y axis),
in order to create a set of competing hypotheses (along the z axis).

We define a validpath within this space as:

A hypothesis which fits the constraints of the knowledge sources. Most
systems also have some method of assigning scores which rank competing
hypotheses according to how well they match the constraints, or according to
their probability given the evidence.

The goal of the search can now be formulated as:

Find the path spanning the utterance (along the x axis) which fits the
constraints of the levels (along the y axis) better than any of the other paths
(along the z axis).
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In HARPY, all the possible paths are specified explicitly before processing begins and

collapsed into two dimensions, while in HWIM and Hearsay-II they are generated

dynamically according to rules which combine partial descriptions linearly (across time)

and hierarchically (across levels of linguistic description). In TRACE, the links between

levels of description are explicit, hard-wired connections, and the links across time are

represented by the simultaneous activity of sets of nodes in different time slices.

In each case, the goal is to find the best scoring path through an (explicit or implicit)

three-dimensional space of phonemes, diphones, syllables, words, whatever, according to

the descriptions of valid paths stored in the knowledge bases.

z | competitors
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Figure 1.1

Speech recognition viewed as a three dimensional search space.
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We can view the space of possibilities at the lexical access level as a horizontal slice

through the search space, representing a graph of word hypotheses. This graph can be

linked recursively to a graph of lower-level hypotheses and a graph of higher-level

hypotheses.

Graph search terminology allows us to give a breakdown of the minimum requirements

of the sort of mechanism required to search this space, regardless of (i) how information

about valid paths is retrieved, (ii) how the search space is constructed and stored, and (iii)

the specific strategies used for searching that space.

1) We need some way of deciding where in the graph we should start.

2) We need some way of deciding where to go next. That is, we need
rules or descriptions of some sort defining valid paths. This is what Nilsson
calls the implicit graph. (Nilsson 1980 p 63)

3) We need some way of deciding where to go at any particular point in
processing. We need a successor operator of some sort that matches the
current state against the possible states described by the rules in order to decide
which of these should be extended. In Nilsson's terminology this process
would create the explicit graph.

4) We will probably need to keep a record of this explicit graph in order to
represent and resolve competing interpretations which may be disambiguated
by later information.

5) Finally, we need some way of knowing when to stop.

Describing the lexical access task in these very general terms provides a common

vocabulary for comparing design decisions in each of the areas listed above. This will help

to distinguish those decisions which are required by the general graph-searching

characteristics of the task, those required by the specific nature of the speech processing

task, and those required by the particular system architecture.
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1.4. Summary and Thesis Outline

The speech processing task consists of co-ordinating many diverse sources of

knowledge in the search for an interpretation of an utterance. The graph-based analysis

proposed here focuses on the dynamic aspects of this task. The complexity of a

recognition system is often described in terms of its components: the goodness of the

acoustic model, the confusability of items in the lexicon, the amount of constraint provided

by the grammar. By concentrating on the kind of search space produced during lexical

access, we provide a way of analysing the interactions between these sources of

complexity.

As we shall see this method reveals a serious problem, one that a component-by-

component analysis tends to conceal. The problem is one of word boundary ambiguity. It

is known that there are few, if any, reliable acoustic cues to word boundaries. I argue that

the effect of this on the size of the search space was concealed during the ARPA project as

much by the design of the systems as by poor front-end processing.

In the first chapter we examine four lexical access components (HARPY, HWIM,

HEARSAY-II, and TRACE) using the graph-based terminology outlined above. This

analysis provided some useful insights which guided (i) the design of a system architecture

described in Chapter 2, and (ii) a model of lexical access to be implemented within the

architecture. The lexical access component, described in Chapter 3, incorporates some of

the best features of the previous systems. It is also motivated by psycholinguistic evidence,

although we make no claims of psychological reality for the model.

Chapter 4 describes the evaluation of the lexical access component over data provided

by the Alvey project's front-end processor. The evaluation suggested some further

experiments which are described in Chapters 5 and 6. These experiments show that the
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recognition strategies suggested by structural analysis of large lexicons do not, in their

present form, extend to continuous speech recognition.

The final two chapters look more closely at the interaction between top-down and

bottom-up information given the experimental results. We are able to explain why certain

search strategies (such as island-driving) are fundamentally misguided, and why other

strategies (such as beam search) require certain specific conditions for success. The

analysis of the search space together with the experimental results indicates why general

speech recognition is not possible without highly sophisticated syntactic, semantic and

prosodic information.



Chapter 2. A Graph Search Analysis of Four Systems

10

In the previous chapter we listed the five principal areas of choice for any graph search

mechanism. In this chapter we shall analyse the decisions made in each area by the four

speech processing systems, HARPY, HWIM, HEARSAY-II, and TRACE. We are

interested in distinguishing common problems which cast light on the nature of the speech

processing task, and in examining the effectiveness of each system's solution.

2.1. Deciding where to start

Some search problems have a choice about where to begin. While it may seem

intuitively obvious that lexical access should start right at the beginning of the utterance and

soon after its onset, the four systems tried a number of different approaches.

HARPY

HARPY's unified graph design leaves the system with little alternative but to work left-

to-right through the utterance, since there are no individual components whose attention

might be directed to one portion or another of the utterance. The input is segmented and

labelled and these phone labels are then matched to the initial states in the knowledge

network. Each match to a legal state is given a score. Illegal phone labels (i.e. states not

specified at the beginning of the network) can be ignored. Each path that matches the input
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is extended in parallel from left to right. In theory, HARPY could maintain a path for each

legal sequence through the network. In practice, this overloaded the system and various

methods were used to prune paths from the search tree.

HWIM

HWIM's architecture permitted its designers to experiment with a number of

approaches to this question. It differs from systems such as HARPY in that the search

space is fully 3-dimensional, graphs of words and phrases being produced on top of a

graph of phoneme hypotheses.

This independence of knowledge sources during processing meant that the lexical

access component could be directed to any part of the phoneme graph, and thus left to right

strategies as used in HARPY could be compared with island-driving strategies which began

anywhere along the time dimension of the search space.

All the search strategies tested with HWIM fall within a common hypothesise and test

framework. An initial scan of the phoneme graph produces some number of best matching

words bottom-up which are ordered by score on an agenda for processing by higher level

components. Island-driving strategies perform this initial scan over the entire utterance.

Left to right strategies consider only those word matches whose left-hand end corresponds

to a possible utterance initial boundary. Hybrid strategies perform the scan over some

specified initial portion of the utterance and work middle-out from any seed words found

within this region.

Since HWIM's acoustic-phonetic component cannot be relied upon to correctly segment

and label at the phonetic level, a number of alternative hypotheses have to be maintained to

ensure that the right word has a chance of being considered. In HWIM, all 71 possible

labels are given a probability score. These alternative phoneme labels could support a large
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number of word hypotheses, depending on the number and phonetic closeness of items in

the lexicon, and these in turn could be combined into a number of different word strings,

depending on the constraints of the grammar.

Since HWIM's grammar was far less tightly constrained than the finite state grammar

used in HARPY, the system hypothesised a considerable number of words at the beginning

of an utterance. Unfortunately, the beginnings of utterances appear to be particularly

unconstrained by either the acoustic material or the linguistic interpretation. This, together

with HWIM's poor acoustic-phonetic labelling, caused a combinatorial explosion of

hypotheses. Therefore, the designers explored alternative means of getting started.

The rationale behind island-driving was the expectation that some words in the

utterance would be pronounced sufficiently clearly to be recognised out of context, and

could therefore be used as islands of comparative certainty from which to build an

interpretation of the rest of the utterance. This would seem to overcome the problem of

segmenting and labeling areas of poor acoustic quality, and so minimise the problem of

deciding which and how many of the alternatives should be maintained during left to right

processing.

Woods (1982) reports that, with the addition of certain efficiency techniques to island-

driving, there was little difference in the success rates of their hybrid strategy starting near

the left of the utterance, and their island driving strategy starting anywhere along the time-

dimension. We will return to this issue in later chapters.

Hearsay-II

The Hearsay-II system also has both left-to-right and island-driving capabilities.

Words are first matched against the input on the basis of their syllable structure. These

words are then scored on the basis of their match to a HARPY-like pronunciation network.
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Finally a control component proposes the best scoring words over the utterance. This is

limited to the lefthand end of the utterance when a left-to-right strategy is used. Words are

proposed anywhere in the utterance when island-driving is used.

The test runs described by Erman and Lesser (1980) use an island-driving strategy.

Erman and Lesser point out one potential advantage of island driving over left-to-right

strategies: when more than one initial island is correct this should increase the probability of

finding the correct spanning interpretation, since each island represents an alternative

possible derivation of the interpretation. However, this must be weighed against the

possibility that the island is afalse peak, i.e. it scores well but is in fact incorrect (Hayes-

Roth & Lesser 1977). In order to reduce the likelihood of this happening Hearsay-II

(unlike HWIM) used initial islands consisting of word pairs rather than single words.

TRACE II

The search space in TRACE II is also three-dimensional in that several distinct levels of

linguistic description are represented, and the information from all these sources must be

combined dynamically to form an interpretation. Unlike HWIM and HEARSAY-II

however, these different levels of processing cannot be controlled independently. TRACE

II has no choice but to start at the beginning and work rightwards, since input directed to

feature detectors automatically results in activity at the phonetic and lexical levels through

the hard-wired connections. Lexical access is not an autonomous process which a central

processor can direct towards any part of the utterance.

TRACE II maintains competing partial interpretations through the use of massive

parallelism. The entire lexicon is duplicated every few time slices. This is feasible because

TRACE II has only 211 items in the lexicon. Furthermore the designers are mainly
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concerned with lexical access, rather than speech recognition as a whole and the

"utterances" are at most a few words long.

2.1.1.Conclusions

The performance of these systems indicated that poor acoustic quality together with lack

of top down constraint could cause the graph to grow rapidly, to be very "wide" from the

beginning of the utterance. In Hearsay-II for example, the average number of words that

can follow any initial portion of the utterance is thirty-four. The average ranking of the

correct word is only three, and a number of words (between 5 and 25) have to be

hypothesized in the hope of including the correct word. This quickly leads to a very large

number of partial hypotheses as words are combined.

The assumption was that later information would allow some of these paths to be

eliminated; the graph would "narrow" because hypotheses at some point were acoustically

clearer and/or limited by top-down information. The designers were facing the question:-

Can the search space be kept within manageable proportions until this disambiguating

information is reached, or should one try to find the "narrow" point and start from there?

HARPY and TRACE II took the first option. As we shall see in later sections,

HARPY made sure, by structuring the grammar in particular ways, that a narrow portion

would occur soon enough to prevent a combinatorial explosion of hypotheses. TRACE II

does not have a syntactic component, but has amechanism for such information to be used.

The search space is of a manageable size because TRACE II has a small lexicon and short

test utterances. Although HARPY and TRACE II "hard-wired" the left-to-right decision,

they did so for very different reasons. HARPY was primarily concerned with achieving

near real-time speech recognition for a specific, constrained task. TRACE II was primarily
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concerned with exploring a very slow but psychologically plausible simulation of speech

processing.

Both HWIM and Hearsay-II used an architecture which allowed them to experiment

with alternative means of getting started. The island-driving strategy in HWIM looked for

"narrow" points based on acoustic quality. Hearsay-H also looked for "narrow" points but

used word adjacency scores as well as acoustic quality scores for the initial islands.

The case for island-driving is often argued in terms of efficiency. Goodman & Reddy

(1980) for example, write:

"Proponents of island driving argue that extending the globally best
interpretation is more efficient since it approaches the recognition goal in the
obvious, direct manner. Further, accuracy is better because the method does
not consider portions of the utterances with low credibility until they become
possible extensions of the current best interpretation, whereas a left-to-right
strategy is forced to deal with unpromising portions as they occur in the
utterance, if this happens at the beginning of an utterance, a left-to-right
strategy may consume a great amount of time examining interpretations which
look good initially, but cannot be completed.

Proponents of left-to-right strategy argue that it is much simpler, requiring
far less bookkeeping , and thus leads to greater efficiency. Also, this method
can achieve the same accuracy by using a best-few search which explores more
alternatives during portions of the utterances where credibility is low." (p 243)

Chapters 5 and 6 of this thesis question the validity of these assumptions. I show that

the occurrence of false peaks can be far more frequent than was previously thought. The

problem is not just one of poor acoustic input but also of ambiguous word boundaries.

Not only are there many accidental matches to parts of the intended utterance (e.g. ermine

in terminal), these false matches can form paths several words long. An island-driving

strategy will be seriously misled by these extraneous word matches.

Was the rapid expansion of the search space due to the nature of speech itself, or to our

limited understanding of speech processing?
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It is undoubtedly the case that HARPY, HWIM and Hearsay-II suffered from poor

bottom-up processing, and that this was the major reason why early identification of the

initial portion of the utterance was so difficult. However there is psycholinguistic evidence

indicating that human listeners also have problems identifying the first few words in an

utterance. Pollack & Pickett (63 ), presenting listeners with stretches of conversational

speech in a gating experiment, found that samples of about 140 csec (i.e. about seven

words) were required before intelligibility reached 90%, despite the fact that listeners knew

how many words were in each sample, and, for later samples, were hearing repetitions of

the initial context.

Thus it would appear that there is not always enough information in the speech wave

for identification to take place immediately. Later information is necessary to disambiguate

earlier stretches. Such right-context effects (Thompson 84) are not limited to just the initial

portion of the utterance. I shall discuss these effects further in section 2.3.

2.2 Deciding where to go next

Having decided upon a starting place, what can follow from the current state? Earlier

we defined a valid path in terms of some higher-level knowledge source. One can think of

laying a graph of words over a graph of lower-level units such as phonemes. The

restrictions embodied in the lexical graph will eliminate some of the paths through the

phoneme graph. Similarly, a graph of syntactic categories will eliminate some of the

possible word sequences. With reference to the three-dimensional search space shown in

Figure 1.1, we are building a recursive graph along the time and the knowledge-level axes.

There are two main problems in constructing this portion of the search space:
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1) The access problem: how do we establish a correspondence between elements at

different levels of description? (i.e. between a sequence of phonemes or syllables, and a

word).

2) The integration problem: how do we combine knowledge from different levels?

Should the search for a valid path be data-driven or goal-driven?

As Lowerre and Reddy (1980)remark;

"An interesting aspect that distinguishes the speech problem from many
other knowledge intensive systems in AI is the diversity of the knowledge
sources (KSs). Each deals with a different aspect of the problem, and each
'speaks a different language.' Yet the KSs must cooperate somehow in
decoding an unknown utterance." (p. 146)

HARPY

In HARPY's case the implicit graph, the complete set of utterances permitted by the

phonetic, phonological, lexical, and syntactic knowledge sources, can be made fully

explicit. The use of a carefully structured finite-state grammar allows all the utterances to

be specified ahead of time. All the information from each knowledge source is then

compiled together in a unified graph representation. The higher levels are "collapsed"

during an extensive pre-compilation period giving a two-dimensional graph bounded by the

x (time) and z (competitors) axis. Thus the validity of a particular phoneme's identity can

be judged immediately within its lexical and sentential context

HARPY's organisation imposes an essentially goal-driven or top-down approach to

recognition. Whereas a bottom-up or data-driven system such as HWTM can hypothesize

any of the 1,000 or so items in its lexicon at the beginning of the utterance, HARPY can

only hypothesize those words permitted at that point by the grammar. And as the grammar
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allows on average only 10 possible choices the potential search space is considerably

restricted. However, HARPY's acoustic-phonetic identification is still not perfect even

with the top-down constraint provided by left context, and HARPY is forced to maintain a

considerable number of paths through the search graph. A final decision is made at the end

of the utterance. This use of later-occurring information or right context is discussed in the

next section.

Since HARPY laid out each potential utterance as a path it had no need to segment the

input into phonetic units before matching. The system compares input segments to spectral

templates associated with states in the graph.

The most common criticism ofHARPY is that its approach cannot be extended to larger

vocabularies and/ormore habitable grammars. In the Chapter 7 of this thesis I will discuss

the restrictions of the HARPY system in more detail as well as a more flexible system

which uses a bi-gram based finite-state grammar.

HWIM

The HWIM system initially took a bottom-up, data-driven approach, at least as far as

the lexical level, but encountered serious problems in matching the phonetic input to the

stored lexical representations. The matching process had to be relaxed considerably, both

by allowing numerous competing phonetic labels, and by changing the lexical access

procedure, in order for the correct word to be output at all (Klovstad 1976). This led to a

large increase in the number of false positives, yet still did not ensure that the correct word

was always the highest scoring.

HWIM's solution was to look for a number of best-scoring seed words bottom-up and

then to predict possible extensions (words or word classes) at either end of the seed word.

If one of the possible extensions scored well, i.e. the top-down prediction appeared to be
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correct, then the island would be extended further, otherwise the seed would be abandoned

for the next best seed word generated bottom-up over that area.

Particular search strategies had to be designed to compare, order and extend the

different partial hypotheses at different parts of the utterance. These strategies are

discussed in more detail in the next section.

In theory, areas of acoustic clarity would be identified on the basis of bottom-up

information as seed words. Areas of poor acoustic quality but tightly constrained by local

syntactic and semantic information would be identified through top-down prediction.

Areas which were both ambiguous acoustically and relatively unconstrained by higher-level

knowledge sources would not be processed until a more global interpretation of the

utterance had been built up through the extension of various islands. The interpretations

would then be predicted from this context.

In practice HWIM found only 2.17 correct words per sentence bottom-up. When

doing anchored scans1, the correct word scored highest less than 40% of the time. If the

system were to recover from such poor bottom-up information, it would have to rely

heavily on syntactic and semantic constraints. In fact the HWIM system had one of the

least constrained grammars with an average branching factor of 196 and its performance

suffered accordingly. The reasons for this are discussed in detail in Chapter 7.

HEARSAY-II

Hearsay-II had the largest number of contributing knowledge sources. The search

space was organised around a global uniform data-base, the blackboard, and so different

configurations of knowledge bases could easily be tested. This is in contrast to HWIM

which designed individual interfaces for each of its components.

1 An anchored scan looks for words to the right of a correctly identified word.
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All the knowledge bases in Hearsay-II, ideally working in parallel and reacting as soon

as relevant data appeared, would bombard the blackboard with knowledge, adding and

modifying hypotheses, and thus triggering other knowledge sources in turn. The strategy

was essentially data-driven, rather than centrally controlled like HWIM. However the

explosion of hypotheses forced the designers to devise various strategies that focused on

just some subset of the search space.

Hearsay-ITs bottom-up lexical access appears to have been slightly more successful

than HWIM's, though still very errorful. According to Mostow and Hayes-Roth (1978):

"For a typical utterance, the word recogniser hypothesizes 20 incorrect
words in the same time interval as each correct word, 4 of them with higher
confidence ratings. Of the correct words 20% are not hypothesized at all." (p
472)

Like HWIM, Hearsay-II would have to rely on top-down information to recover the

correct interpretation. The best performance results were obtained using the same

constrained finite state grammar as HARPY with an average branching ratio of 10.

Even with such a highly constrained grammar, Hearsay-II fell foul of a combinatorial

explosion of partial hypotheses. Mostow & Hayes-Roth (1978) attributed the problem to

the rigidity of the production system rule schema. They write:

"Although the data often contained grammatical sequences several words
long (e.g. ME ABOUT BEEF), which would have made highly reliable
predictors, these sequences seldom corresponded to complete templates and
hence could not be detected by the precomputed production conditions.
Instead, subsequences (eg ME) corresponding to lower-level templates ($ME)
were used most frequently as predictors. These subsequences were usually
only one or two words in length, and (...) appeared no more reliable as
predictors than the large number of incorrect one- and two-word sequences. To
fill in the unrecognised words, it was necessary to make many incorrect
predictions along with the correct ones. The execution of an excessive number
of unreliable productions tended to explode the search space combinatorially."
(p. 479)
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Their solution was to insert a new knowledge source. This knowledge source,

WOSEQ, looked for highly rated, pair-wise grammatical words based on the bottom-up

hypotheses. These multi-word islands were then used, much as the seed words in HWIM,

as the basis for expanding the interpretation according to top-down predictions.

Hearsay-Hs problems with its syntactic/semantic component highlights the difficulties

of accessing pre-defined processing units in speech.

TRACE II

TRACE II consists of a large number of nodes organised into three levels

corresponding to features, phonemes and words. Nodes on different levels which are

mutually consistent have excitatory connections between them. Nodes at the same level

which are mutually exclusive have inhibitory connections between them. Information flow

in TRACE is very elegantly and easily controlled, but the system is, in some ways, far less

ambitious than the three previous systems. It concentrates just on lexical access — there is

no syntactic or semantic component» and its lexicon contains only 211 words. In addition

TRACE II makes a number of simplifying assumptions about the input, although another

version of the system, TRACE I, deals with real speech.

In discussing the previous three systems it was possible to say something about their

knowledge sources and data structures in isolation from the processing performed over

them. This was because these systems employ passive memory inspected by a sequential

central processor. In TRACE n, a parallel architecture is employed in which each of the

nodes is a relatively simple processing element which continues to send activation and

inhibition to other nodes for as long as it remains active. Given this view of representation

as activity, the discussion about what lexical and phonological knowledge TRACE II uses,

will be discussed in the following section which deals with how such knowledge is used.
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2.2.1. Conclusions

HARPY compiled all its knowledge into a graph of valid paths. This was an effective

method of recognition, but it is generally agreed that the method works only for highly

constrained tasks.

HWIM and Hearsay-II define sets of rules describing parts of valid utterances. These

rules are applied to the data to construct, over the input, a graph of partial valid paths from

which an interpretation of the entire utterance can be extracted.

Both systems were faced with a combinatorial explosion of partial solutions since the

input data matched very many rules or partial descriptions. The causes of this explosion,

outlined below, make speech processing particularly difficult.

The first problem is that a graph of units is being layed over a continuum. Not only do

we not know what these units should be (e.g. phones, diphones, syllables, etc), there are

few if any acoustic cues to the boundaries between such units. (Nakatani & Dukes 1977,

Cole & Jakimik 1980 ). In addition, the information required to identify perceptual units

such as phonemes overlaps in time with information about preceding and following

phonemes. Thus segmentations of the speech wave necessarily exclude some information

about the unit under consideration and include information about its neighbours. The cues

to a phoneme's identity also vary depending on its context Coarticulatory and other effects

are increased with faster speaking rates. In addition to acoustic-phonetic effects, there are

also phonological effects such as the deletion of /s t/ in the phrase list some.

HWIM and Hearsay-H's acoustic and language models were not good enough to map

accurately the relationship between the input and linguistic descriptions of the utterance.

The HWIM system in particular drastically relaxed matching constraints in order to ensure
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that the correct phoneme or word was not excluded. Thus there were very many false

positive matches indistinguishable from the correct match.

The solution forced on each system (apart from TRACE II) was to hypothesize as many

words as possible top-down. The more constrained the grammar the greater the reduction

in the number of incorrect partial solutions.

Even with such constraints the systems still generated too many partial solutions and

had to devise scoring methods and control strategies to prune the search space further.

These strategies are discussed in the following section.

Clearly there are times when information at one level can and does guide the

interpretation of a lower-level unit. Lieberman (1963), for example, found that speakers

pronounce words less clearly when they are more predictable from their linguistic or

pragmatic contexts. And accordingly, listeners process acoustic information less carefully

when dealing with predictable words. Marslen-Wilson and Welsh (1978) found a

significant effect of contextual constraint on the rate of fluent restorations of excised

phonemes. Furthermore, the same acoustic information can be perceived differently

depending on its higher-level context. Ganong (1980) found that the identification of a

phoneme on a continuum between /k/ and /g/ varied according to whether it was the first

phoneme of kiss or gift.

It is an open question whether this higher-level information dictates the lower-level

interpretation (as in HARPY, HWIM and Hearsay-II) or enhances it through some sort of

feedback mechanism (as in TRACE), or selects it from a pool of candidates. I shall return

to this question in Chapter 3.
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2.3. Deciding where to go now

In the previous section we concentrated on two axes of the search space: time and level

of abstraction. We were concerned with the access and integration over time of

information from different levels during the extension of individual hypotheses. In this

section we are concerned with the integration over time of information which allows the

discrimination of competing hypotheses at the same level. With reference to Fig. 1.1 we

are looking at the search space bounded by the x and the z axis.

The top-down prediction of hypotheses to be matched can be a way of eliminating large

parts of the potential search space altogether. The remainder of the search space can be

ordered by using scoring techniques to rank competing hypotheses and to schedule the

exploration of the possible extensions. The problem in devising a search strategy is to

discover what information justifies focusing on just some of the many possible

interpretations, and then to decide how that information can be obtained and used. We

shall look at these issues in greater detail in the final chapters of the thesis. The following

section give an overview of each system's approach.

HARPY

HARPY uses a form of breadth-first search based on a dynamic programming

technique called the Viterbi algorithm (Viterbi 1964). Certain structural aspects of

HARPY's finite-state network allows many hypotheses to be eliminated after a few words.

Any partial hypotheses which end at the same node are equivalent as far as further right

context is concerned, and only the highest scoring need be kept.
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In addition, HARPY limited the average number of competitors over a stretch of speech

and also constrained their identity, thereby ensuring that the items were easily discriminable

as measured by their acoustic match scores.

However, the search still proved too expensive, even given the constraints of the data

and the knowledge graph, and only a band or 'beam' of hypotheses was pursued in parallel

through the graph. The finite state grammar allowed the width of the beam to be calculated

with very little chance that the correct hypothesis would be eliminated.

HWIM

HWIM experimented with several strategies (Woods 1982), some designed to process

left-to-right, others designed to work with island-driving strategies. Unlike HARPY, all

the strategies fall into the category of algorithm known as best-first. That is to say, they

attempt to follow up the best scoring hypothesis depth-first and back-track to earlier

interpretations only if the current interpretation appears to be failing.

The shortfall algorithm, which worked left-to-right, kept abandoning paths and

backtracking to shorter partial interpretations. It was excessively breadth-first and failed to

find a solution in all ten trials. The shortfall density algorithms, which worked outwards

from seed words, were more successful, finding the correct interpretation in half of the ten

trials. The remaining test utterances were not incorrectly identified; the system simply

generated too many partial interpretations and so failed to give a response within the

resource limits of the trial.

Paxton's SRI trials (Paxton 1977) found that island-driving improved performance for

shorter sentences but decreased it for longer ones. Woods does not believe this invalidates

the island-driving approach, however. He suggests that the addition of various features

used in HWIM would be sufficient to improve the overall performance of Paxton's island-
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driving strategies. HWIM and HARPY's search algorithms are discussed in detail in

Chapter 7.

Hearsay-II

Hearsay-ITs search strategies are highly complex, involving heuristics representing

such global properties as:

the competition principle: the best of any local alternatives should be performed

first.

the validity principle: KSs operating on the most valid data should be executed

first.

the significance principle: those KSs whose responses are most important

should be executed first.

the efficiency principle: those KSs which perform most reliably and

inexpensively should be executed first

the goal-satisfaction principle: those KSs whose responses are most likely to

satisfy processing goals should be executed first.

(Hayes-Roth & Lesser 1977).

The two main strategies tested were phrase-specific (P) and word-specific (W). P was

designed to be more depth-first. If the quality of bottom-up information was good, the

algorithm could quickly home in on the correct sequence of words. However, if bottom-up

recognition was poor, P could easily be misled by extraneous words into following

incorrect hypotheses. The W algorithm was designed to be more breadth-first, and more

consistent results were expected regardless of the input conditions. The designers found

that W performed significantly better than P. They write:
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"A significant amount of tuning of the focusing parameters has been
attempted. Nevertheless, the current parameter values are probably not optimal,
and it seems clearly impossible to determine what the optimal values are. In
addition, owing to the interesting relationships between the desirability of
breadth- or depth-first searches and the specific performance characteristics of
the particular KSs used in the system, no absolute conclusions are warranted.
Only the general focusing problem and our suggested general approaches
appear universally valid; statements regarding the validity of particular
parameter settings must await major breakthroughs in the development of our
mathematical models and analytical techniques."( p 34)

I tentatively infer from the paper cited above that the strategy which worked best for

Hearsay-II — the W algorithm — explored the search space in a manner very similar to

HARPY's beam search, particularly as the same finite-state grammar was used in both

cases.

TRACE II

As we saw in the previous section, a great problem for rule-based hypothesize-and-test

systems is the difficulty of matching a higher-level description to a partially determined

representation of the input. Such systems, working strictly left to right, match unit by unit.

Subsequent matches depend on where one has got to in the description. This makes

recovery, especially from word initial errors, extremely difficult, since the matching

process has no way of realigning itself correctly with the input. This led HWIM and

HEARSAY-II to relax the matching constraints, and to try multi-key lexical access and

island-driving strategies.

In TRACE II, recovery is possible through an anti-clockwise circle of excitation.

Information to the right of an errorful or missing region could still activate a higher-level

unit through its own bottom-up excitatory links. This activation of a hypothesis through

connections to any part of it is enough in itself to recover the missing information, but

TRACE II also has feedback from the higher level which can increase the activity of all the
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lower level descriptions which support it. TRACE II thus combines "loose" left to right

processing with a form of island driving limited to the length of the spanning higher level-

units.

In addition, inhibitory links between competitors at the same level allow better scoring,

more active nodes to depress any competitors.

Although this is bought through a massive number of connections it seems to have a

number of advantages over previously mentioned strategies:

1) It should have fewer problems with extraneous words than island-driving strategies

since it "prefers" to work left to right. For example, it would find disk in discovery, but

notfour in California.

2) Rightwards flowing information predominates only where left context has proved

inadequate for disambiguation. In island-driving left context is unavailable, while in the

left-to-right strategies discussed previously right context is only available if some match,

even if only a poor one, has been made to the beginning of the unit in question.

3) HWIM and HEARSAY-II have only rough measures of the usefulness of the right

context, while in TRACE II the amount of feedback is tightly controlled by the number and

activity of the higher-level units. The tighter the constraint provided by the context, the

greater the excitations and feedback at the higher level. For example, an ambiguous stop

segment at the beginning of /ip/ would be less likely to be identified as /d/ than if it were at

the beginning of /im/. The excitation of /ip/ would be shared out between tip, dip, pip, and

kip, whereas in the latter case, dim would receive most, if not all, of the activation.
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2.3.1 Conclusions

The problem each system faced was that the matching process created a large number of

partial solutions, and various heuristics had to be used to cut down the search space.

Hypotheses were scored on their goodness of fit to the input. But frequently the correct

partial solution scored less well than other incorrect interpretations over the same stretch of

sound, though later information was able to raise the score of the path that included the

correct partial solution. This is what we have termed a right context effect. The pruning

methods therefore had to cut out a band that was neither too narrow (and thus pruned the

correct solution) nor too broad (resulting in a combinatorial explosion of hypotheses).

The systems essentially devised two ways of incorporating these right context effects.

1) All systems delay identification, thus giving later information time to raise the score

of earlier portions of a unit

2) In addition, HWIM and Hearsay-H can use the right context provided by islands.

While poor segmenting and labelling contributed greatly to the problem, there is

psycholinguistic evidence that people can and do use later information to recover from

errors and ambiguities in the input. (Ganong, 1980; Warren & Sherman, 1974). This

evidence shows that not only does the identity of a particular unit constrain what follows

that unit, it in turn is modified by subsequent higher-level information. Therefore some

time must elapse before a unit's identity is fixed. It is not clear how long this delay should

be. If it is too long it could lead to an explosion of potential interpretations.

The scores used by the computational systems discriminate between hypotheses in two

ways. Firstly, they are used in focusing the search on promising hypotheses, but
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ultimately they are needed for choosing the final interpretation of a unit The system must

contain enough information for a single solution to be found.

2.4. Representing and Resolving Ambiguity

We have seen that each system was forced to delay making a decision about the identity

of a stretch of sound. Indeed, HARPY, HWIM and HEARSAY-II did not make final

decisions about hypotheses until the end of the utterance.

Language is made up of units that may be repeated sequentially (e.g. papa) or

combined recursively (e.g. Bill saw John in the car) and so a way of recording competing

interpretations is needed which distinguishes between different tokens of the same unit.

HWIM, Hearsay-II, and HARPY, examples of the Symbol Processing paradigm, can

construct representations of the processing that has been done so far and operate on the

individual hypotheses within that space. The central processor then orders hypotheses,

adds, deletes and modifies them.

TRACE II, on the other hand, belongs to the Parallel-Distributed Processing paradigm.

The nodes in the network provide both the knowledge representation and the process by

which knowledge is applied. A major difficulty with this approach is that structural

relations cannot be represented, and so the type/token relationship of items in permanent

memory and in working memory cannot be represented. The TRACE II designers had to

duplicate the entire knowledge network over and over in order to represent the time course

of speech processing. This was only feasible because of the smallness of the lexicon and

the shortness of the phrases processed.

The kind of representation used is very important, since different representations will

make different aspects of the search space more or less apparent.
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HARPY

HARPY takes the types represented by its finite state grammar and compiles out all the

tokens — the possible utterances in the system — ahead of time. When processing a

particular utterance HARPY creates a search tree whose branches are consistent with the

connections in the knowledge graph. The search tree is just a sub-tree of the knowledge

graph with scores on its branches reflecting the goodness of the match between the input

data and the branch description.

HWIM

HWIM was concerned with developing a fixed interconnection of components within

which different control strategies could be tested. The system does not use a single data

structure to represent the search. As the flow of information was fixed, data structures

could be tailored to the specific knowledge bases using them. For example, at the lowest

level a phoneme lattice was produced for processing by the lexical access component.

Lexical access in turn produces a list of word matches over some portion of the utterance

which are ordered by score.

A major drawback with this design strategy was that testing of the complete system had

to wait until all the components and their interfaces had been completed.

In addition, the separation of data structures made it difficult to follow the interactions

between the knowledge bases in the pursuit of a hypothesis. It was hard to tell, for

example, whether the acoustic-phonetic component, the lexical component or the

syntactic/semantic component was responsible for the elimination of a correct word.
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Hearsay-II

Hearsay-II's blackboard architecture was designed to allow experimentation with the

number and type of knowledge sources, as well as with strategies for controlling the

knowledge processing. Compatibility between components was ensured by using a

structurally uniform global database, the blackboard.

The designers chose to use a production rule format for communication between

knowledge sources; a pre-determined stimulus would provoke a particular response.

Mostow & Hayes-Roth (78) found that this formalism was inappropriate for many speech

tasks. In a review ofHearsay-II they write:

"... while the uniformity and lack of explicit organization of production
systems are touted as their most desirable features, attendant difficulties of
dynamically organising and controlling coherent problem solutions must be
seriously considered in problem domains requiring careful allocation of
computational resources." (p 471)

However, using a global data space does have certain advantages. It makes it easier, in

principle, to "see" how many hypotheses are competing for some portion of an utterance,

for example, and to decide which are the most promising given the evidence. As we shall

see TRACE II takes this principle several steps further. HEARSAY-II, in the sequential

central processor paradigm, designed specific strategies to detect and affect such global

properties of the search space.

TRACE II

The first incarnation of TRACE II was the COHORT model (Elman and McClelland

1984) In this model current activity was represented in the knowledge structure itself. This

caused problems connected with type/token distinctions. For example, the word cocoa
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would receive twice as much activation as the word code, after the input of fk ou/ because

the former contains two occurrences of these phonemes.

TRACE-II solution to this problem was to create a bank of phoneme and word

detectors in which units were duplicated again and again, but as McClelland & Elman

(1986) point out there are numerous objections to such a scheme. They write:-

"It seems that we need to have things both ways: we need a central
representation that plays a role in processing every phoneme and every word
and that is subject to learning, retuning and priming. We also need to keep a
dynamic trace of the unfolding representation of the speech stream, so that we
can continue to accommodate both left and right contextual effects." (p 77)

The most interesting aspect of the trace representation is the use of excitatory and

inhibitory links to control dynamically the relative weight given to different kinds of

evidence. We mentioned earlier the problem of relaxing phonetic constraints without

knowing the lexical context, and whether such relaxation was required. The working

memory representation in TRACE can quickly and effectively brings such information to

bear. For example, if there was some slight uncertainty about whether an input segment

was /jh/ as legion or /zh/ as in lesion the ambiguity at the lexical level would not be enough

to resolve the ambiguity at the phoneme level. One word would not have enough activation

to inhibit the activation of its competitor. If, on the other hand, the ambiguous segments

were /g/ and /k/, followed by /i s/ kiss would probably win out over such competitors as

kick, kitsch, etc and give, Gish, etc.

2.4.1. Conclusions

Why did all the systems find it necessary to use a working memory? The reason was

that they could not resolve ambiguity between competing lexical interpretations on a word-

by-word basis, and so had to maintain possible interpretations in a representation that was
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separate from the lexicon. Even HARPY, which brought its full syntactic and semantic

knowledge to bear immediately, could not make a decision on a word-by-word basis.

Such a representation is essential for any adequate model to represent overlapping,

ambiguous hypotheses such as car go/ cargo (Cole & Jakimik 1980; Nakatani & Dukes

1977). It is also essential when there are local errors'in the'graph search. If we delay

making a decision about an interpretation we can allow later, high-scoring information to

pull up the score of the earlier element. This allows recovery from errorful or missing

segments (Miller, Heise & Lichten 1951). It permits right context effects of the type

reported by Warren & Sherman (1974) where listeners tended to hear /- ii 1 / differently

depending on whether the following phrase was: —eel of the shoe, of the orange, of the

car, etc.

Psychological models of speech recognition (Cole & Jakimik 1980, Marslen-Wilson

1975) at first concentrated on the way in which sentential context could speed up the

process of word recognition in fluent speech. For example, Marslen-Wilson & Welsh

(1978) contrasting isolated word recognition with recognition in context (p 56ff.) show no

awareness of the problems introduced by word boundary ambiguity.

Similarly Cole & Jakimik (1980) while pointing out the ambiguity of /p 1 a n s @ m/

(plant some/plan some) assume that top-down constraints will always be sufficient to

disambiguate on a word-by-word basis. They assume that plant some will be preferred

over plan some in the context Tell the gardener... because planting and gardeners are

semantically related.

If this were the case there would be no need for a working memory. If recognition

proceeded on a word-by-word basis we would know the beginning and end points of each

word, and recognition could indeed take place entirely within the lexicon as these earlier

models seem to assume.
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However, the Pollack & Pickett experiments (1963) cited earlier seem to suggest that

word-by word recognition is not the norm. More recent work (Grosjean 1985; Shillcock,

Altmann & Bard 1987) has concentrated on late recognition of words and their implications

formodels of lexical access.

Whereas one would expect the lexicon to be organised in a way that facilitates the

access of items, one would expect working memory to be organised in a way that facilitated

the discrimination of competing hypotheses. The TRACE system is particularly interesting

from this point of view.

2.5. Deciding when to stop

When involved in any kind of search we obviously need to be able to recognise what

we are looking for, the goal state. Without a terminating condition the search could

continue indefinitely or at least until the space of hypotheses was exhausted. All the

systems used scores of various kinds in order to choose the goal state. The highest

interpretation at some point was taken to be the correct answer.

HARPY

HARPY's goal is to find the path through the knowledge graph which best matches the

input. 'Goodness of fit' is measured by matching the spectral characteristics of each

segment to the templates in the graph, and at each point marking the template with the

highest acoustic match probability. At the end of the utterance HARPY traces the optimal

path back through the tree. The main reason for the backwards trace is that decisions about

the optimal labelling on the forward pass might prove to be local maxima. There may be an

overlapping path which later proves to be a better choice. Breadth-first search is
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admissible, i.e. guaranteed to find the highest scoring path through the graph. This

guarantee is lost when paths are eliminated during beam search. However, the marked path

is still the highest scoring of the paths considered, and it can be shown that, if all the paths

had been considered, it would still have a high probability of being the highest scoring.

HWIM

HWIM, like HARPY, was concerned that the first spanning theory returned by the

linguistic component should be the highest scoring, and much research was devoted to

devising scoring and scheduling techniques that guaranteed this result.Woods (82) argues

that admissible algorithms (i.e. algorithms which give this guarantee), or near-admissible

ones which relax the constraints in a principled way, are to be preferred over what he calls

the ad-hoc, arbitrary strategies used by Hearsay-II. His main argument is that, without the

guarantee of admissibility ,there is no obvious reason why the first answer should not be

amongst the least probable. With admissible or near-admissible algorithms the search can

end as soon as a spanning hypothesis has been found. With non-admissible algorithms the

order in which spanning hypotheses are found is unknown, and there is, therefore, no

principled way of knowing when to stop.

Hearsay-II

Goodman & Reddy (1980) distinguish explicit control strategies (as used by HARPY

orHWIM) from distributed strategies. Distributed strategies, they say, are necessary when

knowledge sources are independently activated as in Hearsay-H

The equivalent of an admissible algorithm in a distributed processing system would be

one that was guaranteed to settle into an optimum stable state. This is not the case in
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Hearsay-II. As we saw in the previous section, the model is extremely complicated. The

various parameters were tuned by hand in order to get the desired behaviour.

When a complete spanning hypothesis has been found, competing hypotheses are

rejected (deleted) if they fall below a certain threshold relative to the spanning theory.

Other hypotheses are deactivated unless they are the highest scoring in their region in which

case processing is allowed to continue. Processing stops when all hypotheses have been

rejected, or when time or space limits are reached. Thus it is possible for the system to run

out of resources before finding the highest overall spanning hypothesis.

TRACE II

The TRACE II system is an example of distributed parallel processing. While

acknowledging their debt to Hearsay-H, they point out a number of differences. Firstly,

the blackboard is a passive data structure in so far as it is updated by a central processor,

while the TRACE II is active, composed of many, very simple, independent, processing

units. Secondly, the communication between knowledge sources (levels of units) consists

of fixed connections in TRACE n, while in Hearsay-II the system's KSs can easily be

reconfigured. In TRACE II the search process is built into the system through the

excitatory and inhibitory connections within and between levels. In Hearsay-II focusing is

applied through the activation of a focusing knowledge source.

TRACE II, like Hearsay-II had no guarantee that the correct weights had been chosen

but found that the behaviour of the system was very robust under parameter variations.

The TRACE II designers acknowledge that the decision mechanisms have not been

fully enough elaborated. Most of their examples show the activation of a single word or a

short phrase. They are more interested in the search process than in the goal of the search,

and record the rise and fall of activity in competing units over a number of processing
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cycles. A particularly interesting feature of TRACE II is the way in which the hypotheses

create the "path" through the graph. HWIM and Hearsay-II segment the input and then try

to fit the lower level hypotheses into predefined sequences. In TRACE II units at the same

level fight amongst themselves for the available supporting evidence. A path is (implicitly)

created when a set of adjacent hypotheses dominates all others. Or as the designers would

put it, segmentation is a result of recognition.

2.5.1. Conclusions

HARPY, HWIM and Hearsay-II all have, as part of their definition of the goal-state,

the condition that the interpretation should span the entire utterance. This condition is not

sufficient to guarantee that the correct answer has been found because more than one

hypothesis may span the entire utterance. But, used in conjunction with a scoring

algorithm, it can guarantee that the first answer is one of the optimal ones. (There may be

more than one.) The difference between admissible and inadmissible algorithms in speech

processing is discussed in greater detail in Chapter 7.

Obviously people do not wait until the end of the utterance before deciding on an

interpretation. That human listeners can find the correct interpretation extremely rapidly is

dramatically illustrated in Marslen-Wilson &Welsh's (1978) close shadowing experiments.

On the other hand, people will make errors if they are forced to make a decision too early.

Grosjean (1985) shows that subjects were uncertain of the identity of infrequent

monosyllables until, on average, the end of the following word.

It is not clear what conditions must hold in order to decide upon the word's identity. In

a later version of the COHORT theory (Marslen-Wilson 86) writes:-
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"...to discriminate the correct candidate it is not necessary to systematically
reduce the cohort to a single member. Selection does not depend on simple
presence or absence in the cohort, but on relative goodness of fit to the sensory
input." (p 35)

What happens when candidates overlap? Their relative goodness of fit cannot properly

be judged because the hypotheses do not cover the same input.

The TRACE II system looks at these issues but in a fairly limited way. The lexicon

contains only 211 words and so most items will be phonetically distinct. Secondly,

TRACE II deals mainly with isolated words and very short phrases. The paper does not

specify how a decision can be made about a word's identity during continuous speech. A

major problem in speech processing is determining the point at which all the relevant

information has been applied and the answer found.

2.6. Conclusions

We have seen that graph-search terminology provides a useful framework for clarifying

and examining issues involved in automatic speech processing.

Firstly, the analysis helped to distinguish those requirements of the task which were

influenced by the specific nature of the problem from the more general requirement of

searching a large problem space.

Secondly, it provided a common vocabulary for describing a variety of complex

systems. We could thus highlight the problems faced by each system, and discuss the

extent to which each system's approach was influenced by its architecture. We could show

when design decisions were forced by that architecture, and when the systems seemed to

be facing common problems. We drew on data from speech science and psycholinguistic

experiments to discuss what properties of speech might be causing these processing

problems.
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Finally, the graph search perspective helped to focus on the dynamic aspects of speech

processing. In particular it highlighted the necessity of delaying decisions about

interpretations at the word level, due to ambiguities in labelling and segmenting. This raised

questions about when (and how) enough information could be applied to distinguish a

single hypothesis from competing interpretations. The remainder of this thesis is is devoted

to that problem.
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3.1. Introduction

This chapter will discuss the usefulness of the graph-search approach, not just as an

analytical tool to be used after the fact, but also as a practical tool to be used in the

development of a speech understanding system. I will describe a computational

framework, the Active Chart Parser (Kay 1977; Thompson & Ritchie 1984). Since this

type of parser is well documented, I will simply outline its main features. My main

concern is to illustrate why it is a useful framework for speech recognition research.1

I will emphasize the graphical nature of the Chart data structure, and the usefulness of

such a structure both for representing linguistic data, and for analyzing the results of

linguistic processing. I will also discuss the main attributes of the chart parsing process

with reference to the dynamics of speech recognition.

3.2 Architectural Requirements

Firstly, perhaps the most important lesson to be learned from the ARPA project was

that the system architecture should impose no a priori constraints on the development of

individual components. Speech processing is so complex and so little understood that we

want as few assumptions built into the development architecture as possible. As we saw in

1 This chapter is based on my contribution to a paper by Johnstone & Altmann (1984). The paper later
formed part of the ALVEY speech demonstrator proposal.
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the previous chapter, properties of the blackboard model developed for HEARSAY-II

turned out to be incompatible with certain characteristics of the speech processing task.

Secondly, we would also like the system architecture to be an already well-understood

computational tool. Designing, implementing and understanding a brand new architecture,

such as the blackboard system, is complicated enough without trying to solve the problems

of speech processing at the same time. And we would like the architecture to be as simple

as possible, the idea being that such a self-effacing architecture would help lay bare the

problems of speech processing.

Another important lesson from the ARPA project was that the task of controlling the

interactions between the knowledge bases is at least as problematic as that of defining the

knowledge bases. Psychological studies (e.g. Marslen-Wilson & Tyler 1980) have shown

very close interactions between different types of linguistic knowledge in speech decoding,

though the nature of these interactions is still obscure. An architecture is therefore required

which will allow flexible and easily visible control over these interfaces.

Finally, the architecture should permit the parallel and fairly independent development

of different component knowledge bases and methods of deploying them computationally.

This would help ensure that the design of one component would not unduly influence the

design of another. It would also allow individual components to be tested, using simulated

data, before the entire system is complete. According to Woods et al (1976), the HWIM

system, with its individually tailored interfaces, ran into problems because of this kind of

delay.

3.3. The Chart Parser

An architecture which seemed to fulfill these requirements was the Chart parsing

system (Thompson and Ritchie 1984). Firstly, the chart parser was an existing
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framework, originally developed for use in the syntactic domain, but also used in other

areas of the speech chain, e.g. acoustic-phonetic analysis (Church 1983) It was specifically

designed for automatically building a graph of possibilities, these possibilities being

determined by the component knowledge sources, not by the parser. It thus posed few a

priori constraints on the individual knowledge bases.

Secondly, the components of the Chart parser are few and relatively simple:

1) A uniform global data structure (the Chart).

2) A multi-level task queuing structure (the Agenda).

3) An algorithm for automatically scheduling additions to the Chart onto the Agenda for

subsequent processing (the Fundamental Rule).

This economic and fairly sparse architecture fulfilled the need for simplicity mentioned

above. Yet it had also already proven to be a powerful and flexible tool for tackling

complex system building tasks as set out in Bobrow et al (1977).

Thirdly, the existence of a global data structure allowed the interfaces between

components to be specified in an orderly manner. The global data structure, the Chart,

would provide an easily accessible record of what exactly was going on between the

different components. The Agenda could be used to test various scheduling strategies.

The Fundamental Rule could in principle allow any component to interact with any other

component.

Finally, the Chart parser permitted the implementation (both in serial and in parallel) of

different rule systems, and the evaluation of strategies for using these rule systems. Since

all components communicated via the global data structure, individual components could

easily be designed and tested using simulated data. Further components could be added

whenever their stage of development warranted it
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The graph-search terminology which proved useful in Chapter 1 could easily be

applied during testing of this system. Since the Chart is just a recursive, directed, labelled

graph, we could use graph-based techniques to probe the extent of the search problem.

The Chart could represent the input, output, and intermediate results of the parsing process.

It could, in principle, compute all possible relationships between different parts and

subparts of an utterance, and also provide a record of failed interpretations.

The Chart parser thus fulfills the architectural requirements outlined above and, in

addition, reflects the paring down of the graph-searching task to its barest requirements

with few restrictions on how the graph should be constructed and explored.

3.4. Details of the Chart System.

3.4.1 The Nature of the Graph

The Chart data structure (see Fig. 3.1) is used to represent and extend pathways

through time and level of abstraction through a search space. It consists of a set of

vertices, which may be thought of as marking off temporal units along the x axis, and a set

of edges linking these vertices. This graph of vertices and edges is acyclic and directed.

Each vertex may have a number of edges emanating from it. These edges can be

consideredmutually exclusive interpretations of some stretch of the utterance defined by the

z and x axis. Each edge is labelled and can carry whatever information is needed for the

parsing task.

Within the Chart there can be different types of path corresponding to different levels of

abstraction (the y axis), each of which is associated with a particular knowledge source

(i.e. acoustic-phonetic, phonemic, morphemic, syntactic, etc). New pathways, giving a
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different level of description by spanning existing constituent pathways, can be added

according to the knowledge bases' rules.

One advantage of the Chart is that it allows one to represent both complete analyses (as

inactive edges) and partial analyses (as active edges).

Inactive edges may span, and hence have pointers to, supporting lower level inactive

edges. For instance, a syntactic edge may span a number of lexical edges, each of which

may span a number of phonemic edges, and so on.

Active edges, on the other hand carry with them a specification of the supporting edges

which they need, but as yet have not found, in order to become complete. Thus they carry

a specification of what kind of inactive edge they will become on completion, what kinds of

lower level inactive edges they require in order to become complete, and just which inactive

edges constitute the partial analysis derived so far. The structure of the chart can be fully

defined by four functions2:

EDGESET (vertex) = edgeset-of-vertex

For any vertex, EDGESET returns the list of all edges originating from that vertex.

FIRSTEDGE and EDGEALT return for each edgeset the first edge in the list and the

remaining edges in the list respectively. GETI gives access to information contained on

any edge. (Active and inactive edge sets are maintained separately.)

A typical portion of a Chart showing vertices, active and inactive edges and different

levels of description is given in Fig. 3.1.

2 This definition is taken from Varile (1983).

FIRSTEDGE (list)

EDGEALT (list)

GEH (edge label)

= first-edge-in-list
= rest-of-list

= value of label
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S: NP. [VP]

S: NP [VP]

Figure 3.1

A simplified Chart representation of a portion of an

utterance which is interpretable either as this new display or as this nudist

play. Note that the /t/ in nudist would tend to be omitted when followed by a

stop consonant such as /p/ - hence permitting the above ambiguity.

Complete hypotheses (inactive edges) are represented as continuous lines.

Phonemic edges are labelled with the corresponding phonemic character.

Lexical edges are labelled with the orthographic form, and in brackets the

syntactic label associated with the hypothesized word. The labels on

syntactic edges correspond to a syntactic category (DET - determiner; ADJ -
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adjective; NOUN - noun; NP - nounphrase; VP - verbphrase; S - sentence).

Partial hypotheses (active edges) are represented as dotted lines. They carry

on them a specification of what is hypothesized (e.g. NP), what

information currently supports this hypothesis (e.g. DET ADJ) and what

information is needed to confirm this hypothesis (e.g. NOUN). The

arrows represent pointers connecting a spanning edge with those edges

which support it. Normally, edges would have associated with them a

confidence score; however for sake of clarity these have been omitted as

have been some of the edges which would otherwise have been created.

The Chart is an economical structure since common subparts are shared by competing

higher level interpretations, (i.e. the first word of the two nounphrases in the diagram

above.) In this respect it can be related to the idea of a well-formed substring table which

records all the legal subparts of a sequence of symbols. It is also economical in terms of

processing since partial interpretations are computed only once, and can be returned to if an

alternative interpretation fails further down the line, thus guaranteeing that all possible

parses are found.

Another consideration is that preserving such partial interpretations allows us to see

where the recognition process went wrong, either in failing to pursue the correct

interpretation, or in abandoning the correct one for some other interpretation. This is a

necessity given the ambiguous and errorful nature of speech. We shall see how useful this

is in Chapters 4, 5 and 6 where the Chart is used to identify word strings from various

kinds of phonemic input.

In choosing the Chart system which allows various models and strategies to be

implemented and evaluated, we ensure that no design decision at any level in the system is

irrevocable. Thus at the acoustic-phonetic level the Chart could represent, for example, a
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segment lattice, which as the project progressed, could contain segmentation and labelling

information of increasing complexity. And at the syntactic level we are not committed to

any one particular formalism, but rather can consider a number of different formalisms.

Since the input and output of each component is defined (though not constrained) by the

Chart data structure, such independent design and interfacing is made much more simple.

3.4.2 Searching the Graph

Having described what the Chart qua graph looks like we must now consider its

properties as a process. As I mentioned above, the Chart parser has two other components

in addition to the global data structure: a task queuing structure, the Agenda, and an

algorithm for automatically extending interpretations on the Chart, the Fundamental Rule.

The Fundamental Rule is defined by Thompson & Ritchie (1984) as follows:

"Whenever the far end of an active edge A and the near end of an
inactive edge I meet for the first time, if / satisfies A's conditions for
extension, then build a new edge as follows:

— Its near end is the near end of A
« Its far end is the far end of I
— Its contents are a function (dependent on the grammatical formalism

employed) of the contents ofA and the category and contents of /
— It is inactive or active depending on whether this extension completes

A or not."

Note that the Rule does not presuppose a left-to-right strategy. The terms near andfar

are used to emphasize the direction-independent nature of the Rule. This is important in

speech processing for reasons discussed in section 3.4.2.1. One can also choose between

a top-down or hypothesis-driven strategy and a bottom-up or data-driven strategy

depending on whether the rule expansion is driven by the addition of active edges or

inactive edges. The relevance of this to speech processing is discussed in section 3.4.2.2.
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Finally, the rule says nothing about the order in which hypotheses are to be pursued. The

placing of additional edges onto an Agenda means that the search can proceed depth-first,

breadth-first or according to some more complicated algorithm that might, for example,

take into account the scores of different hypotheses. This is discussed in section 3.4.2.3.

Sections 3.4.2.4 and 3.4.2.5 address the handling of ambiguity. The fact that the active

edge in the Rule above is not modified means that, in principle, all interpretations will be

found regardless of the order in which operations are carried out.

In Chapter 21 gave a breakdown of the five minimum requirements of the graph search

mechanism. These were:

1) Deciding where in the graph we should start.

2) Deciding where to go next. That is, rules or descriptions of some sort

defining valid paths.

3) Deciding where to go at any particular point in processing.

4) Recording processing to date in order to represent and resolve competing

interpretations which may be disambiguated by later occurring information.

5) Deciding when to stop.

I will now discuss the Chart parsing process with reference to these requirements. We

shall see that the Chart does not force a commitment in any of the five areas of choice. It is

as flexible, in terms of processing and information flow, as the blackboard system used in

Hearsay-H. But unlike Hearsay-H's production system framework it does not impose any

constraints on the way knowledge is represented. I shall also begin to sketch the model

that will be implemented within the Chart architecture. In each section a decision will be

made about the parameters of the model based on the experience of the systems analysed in

Chapter 2.
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3.4.2.1 Where to begin

The first decision to be made is whether to add and extend paths strictly from left-to-

right through the utterance; or whether to allow a middle-out strategy that extends

hypotheses both to the left and to the right of some island of comparative certainty; or

whether to implement a combination of these. The chart framework permits any of these

strategies to be implemented. This is accomplished through the ordering of edges on the

Agenda, and through the direction-independent nature of the Fundamental Rule which

looks for possible extensions to hypotheses.

Both HWIM and Hearsay-II support a middle-out strategy, while the other systems in

the ARPA project opted for strictly left-to-right processing, variously constrained to follow

only valid sequences in a specified network. Strict left-to-right strategies, while intuitively

similar to the way we perceive our recognition of fluent speech, force computational

systems to tackle immediately stretches of sound, which are of poor acoustic quality, or

which are relatively unconstrained by higher level knowledge. Systems such as HARPY

have tried to alleviate these problems by relying heavily on the properties of finite state

grammars, applying all higher level knowledge constraints simultaneously through pre¬

compiled knowledge networks, and delaying decisions about the correct acoustic-phonetic

interpretation until the end of the utterance. Middle-out strategies, which have been used

with more powerful grammars, have an advantage over strict left-to-right strategies in that

they can use areas of better acoustic quality as islands of comparative certainty from which

to tackle areas of poorer quality. They can also, in principle, build up more global analyses

at different points in the utterance, and thus use syntactic and semantic constraints from the

right, as well as from the left, in the analysis of uncertain areas. On the other hand,

middle-out strategies are computationally explosive methods of search requiring highly
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tuned scoring methods and matching strategies to constrain the exploration of all the myriad

combinations of possible hypotheses.

Much of the power of middle-out strategies derives from the quickness with which an

analysis of some stretch of sound has access to information in a later stretch of sound.

Furthermore, experimental data suggest that the human speech processing mechanism also

makes use of later occurring information in analyzing earlier parts of sentences (e.g.

Pollack & Pickett 1963; Warren & Warren 1970; Nakatani & Dukes 1977). The HARPY

strategy can amend low level descriptions in view of right context effects, but only in the

final backwards search after the entire utterance has been processed left-to-right. HWIM or

Hearsay-II on the other hand can proceed leftwards from any island of certainty. In

HWIM, however the best results, in terms of efficiency, seemed to be obtained using a

predominantly left-to-right strategy with middle-out analysis permitted only on the initial

portion of the utterance where the acoustic material is generally less well specified.

We decided to use a left-to-right strategy in the experiments described in Chapters 4, 5

and 6. The results were then analyzed to see where this approach was causing problems

and whether a more flexible approach was needed. The data concerning word boundary

ambiguity raised considerable doubts about the efficacy of island-driving approaches.

3.4.2.2 Where to go next

The type and complexity of descriptions specifying valid paths is determined by the

knowledge bases defined for the task and not by the parser. For example, in the Chart

diagram in Fig 3.1., valid paths at the syntactic level are defined as groups of syntactic

categories. This could be expressed in terms of a formal grammar. A path not described

by those rules would be rejected. An alternative definition of valid paths used in the

ALVEY project's RM1 was based on pair-wise combinations of syntactically tagged
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words. Each combination was given a probability score based on its occurrence in a large

corpus. In this case, any path is "valid", though more or less probable.

We are also concerned here with the interactions between components. The validity of

a particular string is usually judged within the context of a higher level knowledge source.

For example, the validity of a string of phonemes depends on what is in the lexical data

base. A word, or perhaps just a certain pronunciation of a word, may not be contained in

the lexicon. The flow of information between a lower level and a higher level can be

handled in a number of different ways which will have markedly different consequences

for the speech recognition task. A system may permit strong interactions or weak

interactions between knowledge sources. With the latter, the only permissible interaction

involves the filtering out, by one component, of alternatives proposed by other

components, so in hierarchical terms, no component determines what is produced by any

other component beneath it. A strong interaction, on the other hand, allows one component

actively to direct, or guide a second component in the pursuit of a particular hypothesis.

As we saw in the previous chapter, HARPY, HWIM and Hearsay-H relied heavily on

strong interactions. Unlike HARPY, HWIM and Hearsay-II were faced with the problem

of specifying explicit schemes for controlling the flow of information between knowledge

sources. This was a highly complex and difficult task. (Reddy & Ermann 1975; Goodman

& Reddy 1980)

Within the psychological literature there has been a growing tendency away from strong

interactions towards weak interactions. Marslen-Wilson (1986), describing the evolution

of his COHORT model of speech recognition, writes:

"Early statements of the model (e.g., Marslen-Wilson & Welsh (1978))
assert that candidates drop out of the pool of word-candidates when they do not
fit the specifications of context, in the same way as when they do not fit the
accumulating sensory input. This runs into similar problems to the all-or-none
assumptions about sensory matching that I have just discussed. For the
sensory input, the problem was to explain how mispronounced, or otherwise
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deviant words could nonetheless still be correctly identified. For context, the
problem is to explain how contextually anomalous words can be identified
(e.g., Norris, 1981).... The implication of this is that context does not function
to exclude candidates from the cohort. There is no all-or-none matching with
context, and no all-or-none inclusion or exclusion of candidates on this basis.
This parallels the points made earlier... prohibiting top-down influences upon
initial access. It looks as if contextual factors can neither determine which
candidates can enter the cohort, nor which candidates must leave it"

A weak interaction between knowledge sources necessarily gives a hierarchical flow of

information from one level of description to the next, as activation proceeds bottom-up

through the system. This is by far the easiest model of information flow to control.

Standard hierarchical models, however, allow too little interaction between the knowledge

sources: within a strictly hierarchical system, one cannot interleave the processes associated

with each different level of knowledge, and hence one cannot allow the very early filtering

out by higher-level components of what might only be partial analyses at lower levels.

This situation (considered disadvantageous for reasons of speed and efficiency) arises

because of the lack of any common workspace over which the separate components can

operate.

The Chart-based model used in the following experiments can be considered a hybrid

between the blackboard and the hierarchical models. Unlike the blackboard model, it

embodies only weak interactions, whilst unlike the hierarchical model it uses a uniform

global data structure.

Alternative pathways at one level of description can be filtered hierarchically through

attempts to build pathways at the next higher level. This filtering process can be applied as

soon as data becomes available if necessary, since all components are using the Chart to

post results.

The problems of defining valid word strings will be discussed in detail in the following

chapter, as will the problem of finding such word strings from underspecified or errorful

data. The feedback model (i.e. TRACE II) is closer to the weak interaction type in that it is
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primarily data driven, rather than hypothesis driven, but it does allow some top-down

filling in of gaps, and some correction of errors in the input data. The Chart model has a

far larger lexicon, however, containing 4,000 lexical items. We were interested to see how

the hierarchical model would scale up, given better input data than that used in the ARPA

project.

3.4.2.3 Where to go now

Rather than explore all the possible pathways we need some method of ordering the

search. In terms of the Chart this means controlling the order in which hypotheses are

taken off the Agenda and added to the search space. The ordering of the Agenda can be

done in any number of ways, breadth first, depth-first or, in most instances, based on

scores of some kind.

In the ARPA project, most of the search strategies relied on properties of finite state

grammars to limit the search. A drawback here is that such processes are limited in terms

of the power of the grammars they permit. In a less constrained system, such as HWIM or

Hearsay-II, the task is to find some method of reflecting the "goodness" of a path,

according to the various knowledge sources which contribute to it. A number of issues

arise in deciding how to combine such priority scores and how to use them to pursue a

complete interpretation.

One of the most important factors is the reliability of the individual sources which

contribute to the search space, and particularly the performance of the components involved

in lower level analysis of the speech waveform. In Chapter 41 discuss the performance of

the lexical access component based on real input from the RM1 front-end processor. In

Chapter 5 and 6 I show the extent of the search problem given (i) perfect acoustic-phonetic

input, and (ii) error-free but underspecified input.
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The problem in designing an optimal search strategy is both how to combine scores

across paths representing different levels of description (derived from the component

knowledge sources), and how to combine scores across time (during the extension of a

path), such that promising paths are given higher priority.

When processing through time, choices have to be made about how good a hypothesis

looks now. But what happens if it fails to fulfill its initial promise? What happens if a

hypothesis which looked poor initially benefits from later right context information?

When processing across levels of description, choices have to be made about the

relative contributions of each knowledge source. Should top-down predictability affect the

score of a hypothesis directly? Should it at times carry more weight than bottom-up

acoustic quality? Or should the higher levels simply filter out invalid strings? It is possible

that the higher level knowledge sources will have to contribute to the scores of the paths

being extended since, at present, no psychological or computational model of bottom-up

analysis is powerful enough to guarantee correct recognition based on acoustic quality

alone.

3.4.2.4 Representing and Resolving Ambiguity

The Chart provides a uniform global data structure, thus making information about the

current state of processing easily accessible to, and modifiable by, any of the knowledge

sources used in processing. The amount of information on each edge is determined by

how much information a higher level needs in order to decide between competitors. For

example, suppose the syntactic component used the pair-wise parsing process mentioned

above to decide between different lexical hypotheses. Each lexical hypothesis would carry

its current score and its syntactic tag. The syntactic component could look at all the word-

pairs for each tag ending at some vertex in the graph and discard all but the highest scoring,
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method, no later information is relevant to the decision. A more complex syntactic

component might need both more grammatical information and more time to make a

decision. These, too, could easily be represented on the Chart.

A further argument for a graph-based analysis of the issues, as well as for the using the

Chart system specifically, is that, although the Chart was designed for use with rule-based

systems, it has been used as the basis of a connectionist model of parsing (Waltz & Pollack

1985). The edges in the graph output by the parser can be linked by excitatory and

inhibitory connections permitting a connection-activation resolution of competing

interpretations.

3.4.2.5 When to stop

Unless some task-specific terminating condition has been specified the parser will

automatically explore every possible pathway determined by the knowledge sources, the

input, and the procedures for constructing extensions to interpretations. In Chapters 5 and

6 the Chart is allowed to run to completion in order to determine the worst-case effects of

lexical ambiguity. It is important to know just how difficult a task the higher levels are

facing. One of the main achievements of this thesis is to show that, even with very good

input, the search space of possible word strings can range from the large to the impossibly

large. The consequences of limiting the search are discussed in Chapter 7.

3.5 Conclusions

In summary, the main features of the architecture are as follows: the problem is viewed

as one of directed search of a graph, this search space being contained within a single
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essentially hierarchical flow of information is imposed which allows for a weak interaction

between the knowledge sources. This interaction is under the control of the Chart parser:

an existing framework which allows the exploration of various search strategies and input

conditions. The benefits and disadvantages of such a model will be explored in detail in the

following chapters, which deal with the development and evaluation of the lexical access

component of the system.

The general and flexible nature of the framework ensures that no design decisions made

early on in the course of development are irrevocable at a later date. It also ensures that the

development of each of the system's components can be pursued in parallel, no one stream

of research imposing any a priori constraints on any other. In chapter 4, the lexical access

component is tested against input from the RM1 front-end, and in chapters 5 and 6 it is

tested against simulated data.

The graphical nature of the Chart allows all the results (complete and partial paths) to

be represented in a perspicuous manner. Studying the graphs helps us analyze the

performance of the component, the problems the component faces given certain types of

speech input, and the problems the component will present to higher levels of processing.
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Chapter 4. A Chart-based Lexical Access Component

4.1. Introduction

The first part of this chapter will discuss in more detail the three main problems of

lexical access that were outlined in sections 2 and 3 of Chapter 2. These are:

1) accessing hypotheses,

2) discriminating between competing hypotheses,

3) integrating information with other levels of processing.

We will discuss some of the major theoretical problems presented by each of these

tasks, referring back to the systems described in Chapter 2. We arc concerned with the

theoretical and practical motivations behind the development of the lexical access

component used here. In developing the component, w e drew on the successes and

failures of the earlier systems, and incorporated some of their best features. The

component is original in its use of the Chart-based architecture described in the previous

chapter. However, the primary aim of this research is to explore some of the problems of

speech processing, rather than to explore new computational techniques. To that end, the

lexicon is four times larger than any used in the ARPA project. Its content is not

determined by a particular task domain, nor do we assume much grammatical constraint.
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The transparent architecture should allow us to see where problems of scale become

overwhelming.

4.2. The Accessing Function

Lexical access in automatic speech processing is central to the process of transforming

a description of a physical event into a description which is composed of units of

meaning. The representation must allow us to compute a link between descriptions of

acoustic input and stored descriptions. E.g. we must be able to access a word such as

environment from its many and varied phonetic realisations. In addition, the representation

must allow us to key into the meaning or function of those descriptions. We must be able

to get at all the different ways in which a lexical item transcribed as /m iit t/ is used.

4.2.1 Units of Recognition

It might seem obvious that the units which provide the interface between sounds and

meanings should be words. It is clear, however, from the variety of lexicons used in the

systems in Chapter 2 that there is still little agreement about how lexical items should be

represented.

4.2.1.1. Phonological Variation

One of the major problems is that of phonological variation both within and across

word boundaries. While there may be many advantages in terms of space, processing

time, productivity, and so on in using abstract units which capture regularities about, say,
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derivational and inflectional morphology in English, it is not clear how such knowledge

should be used in speech processing. That is, it is not clear how we get from the spoken

word to the kind of abstract representations linguists use. Sounds within words may

change or be missed out altogether:

actually -> /a k t y u@ 1 if /a k ch u@ 1 i/ /a sh 1 ii /

If words were represented as fairly abstract morphemic forms a speech recognition

system of the conventional matching type would have to derive these forms somehow

from the acoustic input by the application of phonological rules in reverse. The HWIM

system experimented briefly with this method (Woods et al 1976), but it soon became

clear that such an approach was unrealistic. An example might be a rule, /d y / -> /jh/.

This would allow the matching of did you., but the reverse rule /jh/ -> /d h/ would

overgenerate if the input was, say, judge.

Thus it seemed clear that the lexical representation used for matching should already

include a great deal of information about the word's possible phonetic realisations. One

could begin with a base-form pronunciation of each word in the dictionary, and then apply

phonological rules to generate valid variations in pronunciation. One possibility is to

generate this information as needed during processing; most of the systems took the

computationally more efficient approach of pre-compilation. This brings us to the

problem of phonological recoding within sentence context.



60

4.2.1.2. Word boundary effects on pronunciation

The phonemic representation of a word will vary considerably with its context. Klatt

(1979) gives the following example:-

Would you hit it to Tom

/w uh jh @ h i d i t@ t am/

1. Palatalization of /d/ before /y/.

2. Reduction of unstressed /u/ to schwa in you.

3. Flapping of intervocalic /t/ in hit it.

4. Reduction of schwa and devoicing of /u/ in to.

5. Reduction of geminate /t/ in it to.

Rules 1, 3 and 5 apply across word boundaries. In order to know which rules apply,

one would need to know the context in which the word is appearing. But, of course, that

is precisely what one is still trying to find out ~ what the words are. Is the /jh/ in the input

embedded in would you or is it the first phoneme ofjudge?

Both HARPY and HWIM essentially solved this problem by removing word

boundaries from the lexicon: HARPY by precompiling a network of the possible

utterances in the system, HWIM by creating a wrap-around lexicon. Thus the lexicon

contained explicit paths which mapped from the end of would into the beginning of you

via /jh/, or from /d/ to the beginning of the lexicon if there was no boundary effect.

However, this makes nonsense of the notion of having word units stored at this level.

The structure now reflects the continuum rather than the discrete units we perceive.
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This was not a problem for HARPY since it represented and recognised complete

utterances. But HWIM needed to segment words in order to represent and rank competing

partial interpretations. A number of different segmentation and scoring strategies were

used (Woods et al 1976), but none were entirely satisfactory.

An alternative to encoding word-boundary assimilations in the lexicon itself, is to try

to find primitive units which are less sensitive to such effects. This approach was used by

HEARSAY-H and will be discussed in the next section.

4.2.2 The Primitives of the Representation

The primitives of the representation are the results of earlier processing which are used

to access words or phrases. The primitives must carry enough information to allow us to

discriminate between words. (That is to say, even if it were the case that e.g. broad-class

syllables were easy to find, it would be pointless to use them for lexical access if the

number of words described by a string of such units was huge.) This information must

also be readily and reliably available from earlier processing. (E.g. if fine-class

phonemic descriptions unambiguously described spoken utterances, it would still be

pointless to use them if it took the processor weeks to find them in the acoustic input and

half the time it got them wrong.)

Phonemes are obviously sensitive enough to make fine discriminations between lexical

descriptions since this is their function by definition. They represent the set of minimal

units required to uniquely specify a word, with the exception of homophones. However,

precisely because they can make such fine distinctions at the lexical level, they may well

prove unstable for the purposes of recognition. A small change in pronunciation by the

user, or a small error in earlier processing will have a large effect on the description at the
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lexical level. If there are any missing, extra or erroneous segments with respect to the

stored representation then access will fail. If for example the result of acoustic front end

processing on the word actually was out by a single feature, (either through error, or just

because the speaker had pronounced it that way), and reported the string /a g ch@ 1 ii/ the

match would fail, even if the information following the /g/ allowed the word actually to be

hypothesized with a fair degree of confidence.

Trying to segment the speech signal into phonemes is in fact likely to be a very

errorful process for the following reasons.

4.2.2.1. Non-invariance of acoustic-phonetic cues

The acoustic characteristics of a phonetic segment can vary considerably depending

on its context. For example, the last segment in French piques and Paques differ in form

but function as the same phoneme in the language. This particular difference does not

appear to be a physical requirement of the articulatory system since the last segments in

English peak and park do not show the variation associated with the different vowel

environments.

It appears that listeners don't just ignore allophonic variations that "don't matter", they

can actually use the context-dependent information to identify phonemes. (See Klatt

1979). As Abercrombie writes,

"Allophones are not grouped into phonemes by nature, but by the
phonology of a particular language." (1967 p.87)

So conversely, the form may be the same or similar, but the function might be

different. The acoustic differences between the initial segments in gift and kift or giss

and kiss distinguish lexical items from non-words. Experimental evidence indicates that if
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the acoustic cues specifying these segments are varied along a continuum with /g/ at one

end and /k/ at the other, the same ambiguous segment is much more likely to be interpreted

as /g/ in the context of /ift/ and as /k/ in the context of /iss/ (Ganong 1980). This evidence

is particularly interesting because it shows an effect of right-context information, that is

information received after the segment in question.

A further complication is that the function of a particular segment may depend on just

which interpretations are most likely at that point in processing rather than on the language

system as a whole. The function of the initial segments in gilt and kilt for example is to

distinguish between two lexical items. In the sentence context, Henry isn't Scottish but he

wears a , this function may not be important. The semantic constraint may take

precedence over acoustic information.

4.2.2.2. Parallel encoding of acoustic-phonetic cues

The acoustic cues to one segment frequently overlap with cues to other segments.

Information necessary to the decoding of a segment may lie outside the arbitrary

boundaries imposed for the analysis of that segment, and some of the information within

the boundaries may only be relevant to what precedes or follows the segment. If the

system makes too early a commitment on segmentation, recovery will be well nigh

impossible.
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4.2.2.3. Other problems

Some of the most marked differences between two tokens of speech may not be

linguistically significant. They may be the result of such factors as speaker variation,

temporal variation, or a noisy environment.

Many of these problems seem to have a parallel in vision processing. Marr (1982)

writes:-

"What was wrong with the idea of segmentation? The most obvious flaw
seemed to be that "objects" and "desirable regions" were almost never visually
primitive constructions and hence could not be recovered ... without additional
specialised knowledge. Edges that ought to be significant are either absent from
an image or almost so and the strongest changes in an image are often changes in
illumination and have nothing to do with meaningful relations in a scene." (p 272)"

It is clear, given all these factors, that too early a commitment to a phoneme's identity

would be disastrous. One way of overcoming the problem is to bet on every horse, so to

speak, by assigning a score to every phoneme in the system for every possible

segmentation. This was the approach taken by the HWIM system. The possible

phonemic function of each allophonic description found by HWIM's Acoustic Phonetic

Recognizer was scored by looking up in a long term confusion matrix the vector of 71

phoneme labels that could be associated with the segment's feature description. The

resulting search space, given so many possible combinations of phonemic labels, is

obviously extremely large, and the scores were rarely indicative of the correct phoneme.

In HWIM the correct phoneme was included in the top two scores of the vector only 65%

of the time.

Another approach is to try to fix the race by removing some of the uncertainty, using

primitives which are less informative but more robust. The HEARSAY-II system defines
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words in terms of syllable types, which are described as groupings of broad class

phonemes. The keys for lexical access are stressed syllables in the word corresponding to

the input syllable type. It should be noted, however, that the problems discussed above

with reference to phoneme recognition apply to other units such as syllables as well.

As we saw earlier, the designers of TRACE would say that these approaches are based

on some fundamental misconceptions about the nature of speech recognition. They would

argue that the input should not be segmented into primitive units and then matched against

the lexical representation. The segmentation should be a consequence of recognition

rather than a means to it. They argue that segmentation at distinct levels of description is

bound to be an errorful process given the highly parallel encoding of information in the

acoustic waveform. Instead of trying to specify keys to units in advance, access should

be achieved through possibly partial descriptions of their content

TRACE assumes a single pronunciation per word and relies on the activation of

features and the inhibition between words and phonemes to recover a word from some

variant pronunciation. While this method may work for some differences, it will not be

sufficient to account for major variations in a word's pronunciation such as the -- /dh@/

and /dh ii/, orfor — /f @/ and /f oo r/.

4.3 Discriminating between Hypotheses

4.3.1. Lexical Recognition Point

As Marslen-Wilson (1986) has pointed out, the concept of a recognition point, i.e.

the point at which a word becomes discriminable within the language system, cannot be
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determined for a word in isolation. The fact that /p/ is the recognition point for trespass

depends on the knowledge that there are no other words beginning with tresp in the

language. A representation or process which allows sets of word candidates to be

considered will allow such early discrimination points to be used as soon as possible,

even before the remaining acoustic information about trespass is present. There is

considerable evidence from psycholinguistic experiments that people can and do make

decisions about a word's identity before they have access to its complete phonological

specification.

A tree-structured representation of words as phoneme sequences is one way of

implementing this discrimination between all the possible words in the language. If the

input segments were correctly and uniquely specified then the tree structure could be used

to process left to right through the input, gradual eliminating whole sub-trees through the

mismatch of a branch of the tree with the acoustic input, thus exploiting the syntagmatic

relations of the language system. Eventually, this matching process would ideally reduce

the cohort of possibilities to one, whose functional definition is retrieved from the terminal

node reached in the tree. This function of the discrimination tree is basically a set-splitting

method of looking up words.

4.3.2. The Recognition Point in Continuous Speech

A major problem in lexical access concerns the registration of the input descriptions,

whether they be phonemes, diphones or syllables against the representations in the

lexicon. There are few if any reliable physical cues to word boundaries. People's cavalier

attitude towards word boundaries can be seen in the derivation of the word tawdry, the

result of syllable merging across a word boundary in St. Audrey.
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Some psycholinguistic models (e.g. Cole & Jakimik 1980) assume that the beginning

of a word is known, either because it is at the beginning of the utterance or because the

previous word has been identified. This is unlikely to be the case, partly because of the

indeterminacy in the acoustic input that we have just discussed, partly because, as we shall

see, a particular string of phonemes may be parsed into a number of different word

strings. Thus, the lexical access component may have to match each word against every

possible alignment of the input with the lexicon. Even if lexical information can be used

to limit subsequent registrations, it will not be done on a word-by-word basis.

The discrimination function inherent in the tree is suitable only for words heard in

isolation. In continuous speech the lack of acoustic cues to word boundaries, together

with phonological variations in pronunciation, means that many stretches of speech can be

parsed into words in more than one way. The partial utterance

/n y uu d i s /

can be interpreted as,

new dis..

nude is..

nudist ...

Furthermore, the above is transcribed into fine-class phonemes and, as we saw in the

previous section, we cannot expect the front end to be so accurate, and indeed we may not

want it to try.

The set of all labels which the acoustic front end must decide between is the set of all

phonemes in the language. At the lexical level the frame of discernment consists of words
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expressed as ordered sets of phonemes. We can, and should, be able to make use of the

syntagmatic and paradigmatic relations between these ordered sets to constrain possible

identities of input phonemes. As discussed above, a more robust recognition system may

result from allowing multiple interpretations of a segment, and letting lexical access make

the final decision about whether a segment is /s/ or /f/, for example, in the context of / g i /

or /k i/, since neither gis, nor kif aie valid lexical sequences. Similarly we might not want

any hard and fast decisions about /g/ and /k/ to be made if the subsequent input is /i s/,

since giss is not a valid word, unlike kiss, which differs by only one phonetic feature.

If we ask the acoustic front end to leave some of the labelling to lexical access it will

do so with a vengeance since it has no way of knowing what dilemmas need resolving at

the lexical level. If we are not to have too few choices at some point, then we are bound

to have too many at others. The ability to mark discrimination points is lost since

ambiguity of word boundaries in connected speech, together with multiple choices of

phoneme labels, means that a variable number of paths through the tree will be pursued

more or less in parallel at any particular point in processing. The discrimination function

must therefore be removed from the knowledge representation.

In place of the set splitting inherent in the tree, we will require a dynamic memory

structure such as the Chart for recording the multiple word tokens under consideration,

and a process which is capable both of rating the goodness of fit of numerous possibly

overlapping word hypotheses to the current input, and of determining when enough

information has been gathered to select one of them.

The ability of speech recognition systems to discriminate words from acoustic

information alone is not encouraging. HWIM attempts to find just the n highest scoring

"seed" words anywhere in the utterance, the remainder being predicted top-down by the

syntactic/semantic component using the seed words as starting points. With n set to 12
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and using a 1097 word dictionary, the word hypothesizer typically finds two correct

words bottom-up. The correct word is the highest scoring 65% of the time, and within

the top five 85% of the time. The utterances used were about six words long. The "fan

out" of possible paths from highly rated, but incorrect word hypotheses is considerable,

and we have no easy way of telling when the correct hypothesis has been reached.

The relative strengths of competing hypotheses may be relevant to the decision about

how many words to select for higher level processing, but unfortunately sequential

hypothesize and test systems favour the collection and evaluation of evidence for a

particular hypothesis in isolation from its competitors. It is difficult to obtain an overall

view of the search space at any particular time.

Smith and Sambur (1980) who built the NOAH system have suggested that the

discrimination function could be improved by categorising words into four sets based on

their acoustic discriminability and semantic content or usefulness. Words could then be

rated on their a priori distinctness as well as on their goodness of match. Results of

psycholinguistic experiments to do with the intelligibility of words spliced out of context

seem to cast doubt on the usefulness of the categorization, however, Lieberman (1963)

found that, the word borrower was recognised by 80% of subjects when isolated from the

context, The borrowers were all imprisoned, but was only 45% intelligible in the context

Neither a borrower nor a lender be. That is to say, the acoustic evidence for the word

seemed to be much weaker when the semantic evidence for it was stronger. The

discrimination of a word is inextricably linked to its integration with other types of

knowledge.
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4.4. Integrating Lexical Processing with Other Levels.

One way of coping with the dilemma of too much or too little bottom-up acoustic

information is to use broad, and hopefully robust representation primitives initially to

access a number of word hypotheses bottom-up and subsequently use a word verifier for

more accurate matching and rating of the hypotheses against the input. Zue (1986)

proposes the following:

"...acoustic parameters are extracted and used to classify the utterance into
broad phonetic categories. The coarse classification also includes prosodic
analysis that identifies regions where the speech signal is likely to be more
robust. The outcomes of these analyses are used for lexical access. The
constraints imposed by the language on possible sound patterns should
significantly reduce the number of word candidates. Once the phonetic context
has been established, detailed acoustic cues can then be used to select the correct
answer from the small set of candidate words."

A similar,method was used in Hearsay-H but was costly and required careful control.

Moreover it may sometimes be the case that the acoustic input is simply insufficient to

discriminate between hypotheses. Lieberman's experiment cited above suggests that

acoustic clarity decreases with predictability from context. In such cases, lexical access

would be unable to distinguish the correct word without considerable input from the

syntactic and semantic levels. Yet lexical access stands in the same relation to these levels

as the acoustic front end stands to lexical access. Its function is to filter the words the

higher levels need consider, yet its favourite words may be completely inappropriate from

a syntactic and semantic point of view. It may need more general contextual information

to discriminate between words, yet it has to provide the words that determine that context.

This view is supported by the experiments on late recognition of Pollack and Pickett

(1963), Grosjean (1980,1985), Shillcock, Altmann & Bard (1987). The latter report, for
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example that, in their experiments with spontaneous conversational speech, 21% of

successful word identifications were not based solely on left context together with the

word's acoustic description. Subsequent context was required for recognition of the

word. Yet this is not to say that lexical decisions should always be left open until the end

of the utterance, as in HARPY. Indeed, in the later chapters we will show that this is

impractical for any relatively unconstrained speech recognition system. It is also at odds

with psycholinguistic evidence on speech processing. People seem to be able to use prior

syntactic and semantic context to select a word even before the discrimination point

specified by the phonological description (Marslen-Wilson & Tyler 1980, Cole & Jakimik

1980). It would appear to be the case that, for this kind of effect to take place, the word's

function must be made available to the syntactic and semantic processes very early on in

the access process.

The syntactic and semantic components must select from word hypotheses that are

constantly changing their status or score as more acoustic information becomes available.

Some of these early possibilities will drop out of sight completely as processing

continues. Others may become more plausible as the over-all interpretation of the

utterance proceeds. If this is the kind of filtering we require then we must develop an

architecture which allows such changes of activity to be constantly monitored and

responded to by the higher levels.

4.5 The Lexical Access Component

This section describes the chart-based lexical access component and the theoretical and

practical considerations which motivated certain choices in its design.
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4.5.1. The Lexicon

4.5.1.1 The Content of the Lexicon

The lexicon contains 4000 words which have the highest frequency of occurrence

according to the American HeritageWord Frequency Book (Carroll, Davies & Richman,

1971). A set of phonological reduction rules was applied to this lexicon to derive fast

speech forms, which were stored together with the citation form under the corresponding

orthographic entry. The application of these rules resulted in the generation of 5300

reduced forms from the 4000 word citation form lexicon. The reduction rules are

described in detail in Harrington et al (1986). Since there is no morphological

decomposition in this lexicon, there are separate entries for words that are morphologically

related. Each lexical item was also tagged with a syntactic category.

4.5.1.2. The Structure of the lexicon

We decided upon a tree-structured lexicon for both computational and linguistic

reasons. It has been used in previous systems such as HWIM and Klatt's LAFS system,

and so the ways in which it can be modified to deal with certain requirements of the

speech processing problem have already been explored. For example, as in HWIM, both

phonological variations within words and across words can be represented. Expected

phonological variations within words can be captured through the pre-compilation of

reduction rules mentioned above. And at least some of the (unpredictable) variations

caused by error and ambiguity in the input can be dealt with during the matching process.

This is described in the next section. Phonological variations across word boundaries can
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be captured by creating a "wrap-around" tree. In such a representation each terminal

branch in the tree is linked back to the branches for word beginnings. This creates a

network of all possible word sequences rather than just a tree of isolated words. The

transitions between word ending states and word beginning states are then modified

according to word boundary phonological rules. (See Klovstad 1976 for a full

description.)

This extension of the lexical representation from single words to pathways opens up a

number of possibilities. Firstly, a pathway through the tree need not be a single word; it

could be a phrase such as Dear Sir, Yours faithfully, or over and out. That is, rather

than automatically re-entering the tree after a word ending, the path could continue through

the tree establishing a close correspondence between certain words, independently of

syntactic and semantic processing.

Secondly, pathways do not have to weave their way in and out of a single tree. A

number of trees could be linked together, each tree representing (e.g.) a morphological

class such as prefixes, stems and so on, thus allowing a word to be decomposed into

morphological units. Thus two paths could be followed for the string /y uu n ii @ n ai z/,

one for the stem union plus the suffix -ise and the other for the prefix un-, the stem ion

and the suffix -ise. (See Thompson 1984 for a discussion.)

The primitives in the lexicon are fine-class phonemes, but of course other descriptions

can be used on the branches of the tree. The LAFS system, for example, transforms a tree

of phonemic descriptions into one based on spectral representations of diphones.

It is clear that the lexical representation is flexible enough to meet at least some of the

demands of real speech, and certainly adequate for the experiments that will be described

in the following chapters.
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The main objections to the tree-structure are as follows. Firstly, alternative

pronunciations of the same word are not distinguished in the lexicon from pronunciations

of different words. However, word hypotheses compete on the Chart, not in the lexicon,

so this similarity of status should not matter from a processing point of view. Hypotheses

are checked for redundancy before they are added to the Chart. Different pronunciations of

the same word are only added if they cover different portions of the input and therefore

provide different word boundary segmentations.

Secondly, if a straightforward match, phoneme for phoneme, is made between the

input and the branches of the tree, a failed match would prevent further recognition. To

avoid this problem the match can be done on the basis of a segment's features.

Finally, a word's syntactic and semantic properties cannot be accessed until all (or

most) of its acoustic material has been processed. Early access appears to be a property of

human speech processing, but it seems unlikely that it is a necessary characteristic. No

current automatic speech recognition system uses early access. Only TRACE has the

capacity to do so, but a connectionist lexicon of 4,000 words is not feasible given current

technology.

4.5.2.3. Creating the lexicon

The input to the lexicon building process is a list of items containing, for each item, a

written form, one or more transcriptions in MRPA units (see Appendix 1), and a key for

accessing syntactic information. This list was compiled into a discrimination tree in

which, working from left to right, phonemic entries with identical phoneme sequences

share the same branch. The first MRPA symbol in the transcription of an item is matched

against the first set of branches in the tree. If a match is found, the process matches the
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next MRPA symbol in the transcription against the set of branches following the initial

branch. This process is continued until either the end of the input item or a terminal node

in the tree is reached. If the end of the input has been reached, then one of two conditions

might hold.

1) The pronunciation may have been stored before, but as part of a longer word (e.g.

tea as part of teacher). In this case a terminal branch containing appropriate written and

syntactic information about tea is attached to the node containing the pronunciation of

teacher, at the point where the input word ended.

2) The pronunciation may have been stored before but the written and/or syntactic

information may differ (e.g tea and tee), in which case the new information is appended to

the existing written and syntactic forms.

If a terminal node has been reached then a new non-terminal branch is created, labelled

with the first unmatched symbol. Other terminal word branches off this node are checked

to see if they have remaining MRPA symbols which have to be distinguished from the

current input by creating new non-terminals. Once this has been done, any remaining

input MRPA symbols and the graphic and syntactic information associated with the new

item are stored on a terminal branch. For example, the last syllable of teacher may not

need to be distinguished in the tree until the addition of another word of two or more

syllables such as tedious.

The result of this process is a discrimination tree, any of whose sub-trees contain a set

of words beginning with the same phonemic description. Fig. 4.1 represents a fragment

of the structure generated, containing the examples mentioned above.
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Figure 4.1

A fragment of the tree-structured lexicon

4.5.2. Lexical Processing

4.5.2.1. The Access Function

The ways in which the phonological information in the lexicon constrains

interpretations of the phonemic input is as follows.

\
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Input to the process is a graph of inactive edges marked with phoneme labels and

possibly other information such as acoustic probability score. If the graph is output from

the acoustic front-end it will contain alternative segmentations and labellings.

Lexical access begins as soon as inactive edges are posted onto the Chart by the

acoustic front end. This might be integrated with lower level processing, or after all lower

level processing has been performed on the entire utterance. Each symbol posted onto the

chart is matched against the set of initial branches in the tree. For each match, a new

active word edge is created carrying the phonemic symbol just matched, and a pointer to

the node in the tree which follows that phoneme branch, indicating the set of phonemes

which are expected to follow such a beginning. At each extension a new active word edge

is created. The fundamental rule described in Chapter 2 ensures that each possible path in

the tree which matches the input string will be followed up. If a match is not found then

that path is abandoned.

When a node is reached which has a terminal branch, an inactive word edge is posted

for the attention of higher levels of processing, and an active word edge is created with a

pointer into the beginning of the tree. i.e. a word boundary is hypothesized. If the node

has continuation branches then that path will continue to be followed.

Possible extensions to active word edges are not added to the Chart as soon as they are

found but are placed on the Agenda. This means that the order in which hypotheses are

followed up can be manipulated. Processing can continue until all possible word matches

have been removed from the Agenda and placed on the Chart.

Fig. 4.2 shows one stage of the lexical processing of the fine class input /t ii ch @/

recorded on the Chart
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Figure 4.2

The state of the lexicon and the chart at a particular point during processing of

the input teaching.

In the earlier section on primitives, we discussed the use of (possibly) more robust

units such as broad-class phonemes to access words, this approach being used by both

Hearsay-II and NOAH. The lexical component described here falls somewhere between

this approach and the one used in HWIM. Each word and its anticipated variations in

pronunciation are given explicitly in the lexicon, as in the HWIM system, while the

acoustic input to the lexical access process may be described in terms of broad-, mid-, or

fine-class descriptions. Before lexical access can take place, any broad- and mid-class

symbols posted onto the Chart must be superseded by the addition of a fine class label for

each fine class description in that set. If the acoustic front end provides a fine class
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description, this is used directly, otherwise the required set members are accessed from a

look-up table and added to the Chart. The system thus has the ability to access words

from variably fine-grained descriptions of their phonological characteristics. If only

manner of articulation and voicing are known, but not place of articulation, then all those

words or parts of words corresponding to this mid-class description can be accessed.

This relieves earlier levels of the obligation to fully specify the phonetic characteristics

of the input, and allows words to be considered as hypotheses through gradual

accumulation of evidence, rather than through the binary decisions inherent in the tree

structure. However, the less able the front end is to specify the full characteristics of the

phonetic input, the more difficult it becomes to distinguish lexical hypotheses.

Experiments with mid-class descriptions of isolated words have shown that the resulting

equivalence classes are fairly small (Shipman & Zue 1982, Huttenlocher & Zue 1984). As

we shall demonstrate in later chapters the word boundary ambiguities present in

continuous speech, together with the increased number of homophones produced by the

application of phonological rules for variations in pronunciation, relax the lexical

constraints to the point where a very large number of paths through the lattice are equally

plausible. The extent of such effects is explored in Chapters 6 and 7, where a mixture of

broad- mid- and fine-class primitives are used during access.

4.5.2.2. The Discrimination Function

Given the ambiguity of word parses discussed in the previous section, we must keep a

dynamic record of hypothesized word tokens that is distinct from the representation of

word types stored in the lexicon. This record is the Chart. The edges at one level of

description can be seen as mutually exclusive interpretations of the data. They may give
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different interpretations of the same piece of lower-level information. For example, the

phonetic string /p 1 ii z 1 e t@ s n ou/ can be parsed into word strings such as please let us

know, please lettuce know, pleas lettuce know, please letter snow, pleas let us no, and

so on. These strings are (acoustically) equally plausible; syntactic and semantic

information would be required to decide between them.

In addition, the edges at one level can bring both left and right contextual information

to bear on different interpretations of lower-level information. For example if the first two

phonemes in the string are /r ii / the set of possible interpretations will be reduced to all

words beginning re- such as repudiate, rebuke, etc. If the next segment is ambiguous

between /p/ and Pol then the possibilities of repudiate and rebuke will be maintained as

separate competing active edges and will continue in competition until the incoming

acoustic-phonetic information serves to discriminate between them.

This right context information can change the interpretation of a particular segment.

For example, suppose the acoustic front-end provided confidence scores. The third

segment might look very like a /b/ and be assigned a high score on the basis of its

acoustic-phonetic features. Say, /b/ is given .8 and /p/ .2. If the process was stopped at

that point and the Chart was examined, /b/ would be best interpretation of that segment.

If, however, the following segments were those of repudiate the score of the word as a

whole would serve to lift the interpretation of /p/ over /b/. Thus, the final decision on

segmentation and labelling is made as a result of recognition at a higher level.

4.5.2.3. The Integration Function

As can be seen from the above two examples, the process of discriminating between

words cannot easily be separated from the process of integrating lexical access with other
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levels. Just as the identity of the /p/ or /b/ segment was affected by its integration into a

lexical hypothesis, so the identity of a word will depend on its integration into a sentence

context. Even a perfect phonetic transcription such as the /p 1 ii z 1 e t@ s n ou/ example

generates many ambiguous words and word parses, and requires integration with a higher

level to discriminate between the possible interpretations. If we decrease the specificity of

the acoustic-phonetic information, we are likely to find an increase in word boundary

ambiguity, as well as an increase in homophonic strings over the same stretch of sound.

In the next chapter, we describe a series of experiments designed to explore the extent of

this problem. This is followed by a discussion of how integration with other levels may

be used to control the search space.

4.6. Conclusions

A review of previous lexical access components together with an examination of

relevant psycholinguistic and linguistic data influenced our design of the lexical access

model. The lexicon contained 4,000 citation forms and approximately, 5,300 reduced

forms. Inter-word boundary effects were not implemented for the first prototype. The

model of lexical access assumes a left-to-right, bottom-up strategy, with word boundaries

being hypothesised through the accessing of the previous word. A final decision about

segmentation would not be made until at least some words had been integrated into a

higher level. The bottom-up status of a unit's identity (phonemes or words) could be

changed through its incorporation into a higher-level, spanning hypothesis.
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5.1. Introduction

The evaluation reported in this chapter attempted to quantify three aspects of Lexical

Access's performance: (i) success in identifying words, (ii) reasons for failure and (iii)

contribution to the overall recognition process. However it must be emphasized that the

primary aims of the evaluation were to review the architectural assumptions outlined in

Chapters 2 and 3 and to guide further research.

In Chapter 2,1 argued that it is very important to test the system as a whole as early as

possible rather than to develop components in isolation. This means that in the early stages

of a project the components tested will be very rudimentary. The evaluation reported here

is of the first versions of the lexical access component (LA) and of the project's acoustic-

phonetic front-end (SEGLAB).

The evaluation exercise was mainly concerned with the following:

(i) identifying and implementing useful measures of performance.

The performance of lexical access is often measured by number of words correctly

identified. We were also interested in the number offalse positives (i.e. incorrect words

identified as correct). We grouped false positives into two classes: words identified

because of errors in scoring and labelling acoustic-phonetic segments (e.g. girl, curl), and

homophonic phrases caused by word boundary ambiguity (e.g. party, par tea).
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(ii) identifying problems, and determining what was causing those

problems.

Was it, for example, the front-end component, the lexical access component, the

model of interaction between the two, or some combination of these? We found indications

that homophonic phrases were more of a problem than had previously been thought.

Firstly, it was not simply a question of poor front-end processing because even a

substantial improvement in the front-end performance would have had little effect on

reducing the problem. Secondly, the phrases extended over the entire utterance thus

causing a potential combinatorial explosion of partial interpretations at higher levels of

processing.

5.2. Success in Identifying Words

5.2.1 Methods and Materials

The first question we asked was, how many of the words spoken by the subject were

posted at the correct place in the word lattice? This needed some clarification before we

began to look for an answer. Words spoken' can mean two things: (i) the words intended

by the speaker, the ones a human listener would recognize, but also (ii) the many other

perfectly good word hypotheses generated by the same acoustic input. For example, there

are straightforward homophones such as meet/mete/meat. The sizes of such equivalence

classes of words under different phonemic representations can be determined off-line, but

typically these are fairly small. There are also equivalence classes of word strings created

by lack of word boundary information, e.g.
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Patty cut a /pat eke utter.

It is important to realize that since these words use exactly the same phonemes as the

intended words they are as valid, acoustically, as the intended words, and have the same

acoustic score. We cannot expect to detect boundaries bottom-up, since there seem to be

few reliable cues to word boundaries. It will be the task of higher level components to

bring the intended words to the surface, according to their syntactic and semantic

plausibility. Just as syntax or semantics must determine whether the correct word is meat

or meet , such considerations must ultimately decide whether the correct response is

recognise or wreck a nice.

There is no way of telling in advance how many of these partial matches will occur in

any particular utterance. The hope is that they occur infrequently and that most would be

eliminated after a word or two by mismatches to the acoustic input

This evaluation examined LA's performance with respect both to intended words and to

the equally valid words. In order to do this we first ran a fine-class transcription through

LA. This gave us two kinds of 'correct' lattice: (i) a single path lattice containing only the

words intended by the speaker and (ii) a lattice containing all the homophones and

homophonic phrases that were valid under the fine-class description.

The phrase 'correct place in the lattice', also requires some more definition. In isolated

word recognition only substitution errors of the meet/meat kind are possible since the

beginning, ending, and duration of the word are known. In connected speech, however, in

addition to the two kinds of substitution error mentioned above a correct word may be

omitted or an incorrect word may be inserted into the string. How do we determine exactly

where a word should begin and end if hypotheses on either side are incorrect? Does it have
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to form a continuous path with other correct words? We need to have some idea of the

word's relation to surrounding hypotheses.

A typical measure based on dynamic programming techniques aligns the recognised

word string with the correct word string and reports correct, missing, substituted and

inserted words. As we mentioned above, it only makes sense to count substitutions as

errors when a grammar is used. The results reported in this section look at the percentage

of correct words with and without substitutions. Section 5.3 looks at reasons why words

were missed or inserted, and section 5.4 looks at the effect of substitutions.

When examining the lattice for correct word hypotheses, we simply checked to see if

there was a hypothesis matching a word in one of the 'correct' lattices and within its time¬

frame. "Correct place" was measured according to Least Linear Distance. This is simply

the sum of the distances between the corresponding end-points of the actual and

hypothesized word durations.

Hs He :Word Hypothesis

Ws We :Actual Word

Linear Distance = Modulus(Hs - Ws) + Modulus (He - We)

Figure 5.1.

Matching the Word Lattice against the Required Words.

The hypothesis having the minimum value of linear distance is chosen as the closest
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The following description of the materials is excerpted from Bard et al (1987 p. 2). A

list of the utterances is given in Appendix 2. The fine-, mid- and broad-class symbol sets

used are given in Appendix 1.

"The materials consisted of five sets of grammatical sentences read by a
single RP speaker at a normal, but careful rate, and recorded under laboratory
conditions. Each set serves a slightly different purpose:

Set A: 16 phonemically dense sentences, each containing numerous
examples of a single MidClass. Another reading of these sentences by the same
speaker was used in the development of RM1 and is a concise test of acoustic-
phonetic rules. It is unlikely that most of these sentences would be uttered in a
conversation or used in a meaningful text.

Set B: 16 MidClass-unique sentences, containing only words whose
MidClass transcription corresponds to a unique entry in the RM1 lexicon. Thus
if the acoustic-phonetic rules and the accompanying normalization procedures
work perfectly, lexical access should work at its maximal efficiency. These
sentences seem unnatural perhaps because they lack short words like in and the
and because consequently their rhythmic foot structure is irregular.

Set C: 16 sentences from the Golden Passage. This passage was
adapted from an existing text (a horticultural manual) so as to provide sentences
in a natural and communicative style which contained among them an unusually
broad distribution of MidClasses across environments. Only strings consisting
entirely of items in the RM1 lexicon were selected.

Set D: 16 sentences from Section H of the Lancaster-Oslo-
Bergen corpus of written English. The 'LOB-H' texts are business and
government documents such as might be dictated to a speech input workstation.
They were used in the development of the syntax and collocational components
of RM1 and provide data on which these should do well, while offering a
naturally occurring distribution of segments. All words in these sentences were
in the RM1 lexicon and most sentences contained at least two words present in
the RM1 list of collocations.

Set E: 16 sentences from the Basic Corpus of business
dictations collected during this project. As a sample of typical input,
these provide the most 'realistic' test of a recognition system. Again all words
in the sentences occurred in the RM1 lexicon and words in the collocations list
were as heavily represented as possible."
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5.2.2 Results

Figure 5.2. below gives words correctly accessed by RM1 against words in the

utterance. The five groupings correspond to the five sets of evaluation utterances. Within

each grouping, the two columns correspond to the two definitions of 'correct' given above.

That is to say:

(i) The column to the left records information about the intended words in the utterance,

the words the speaker thought he was saying.

(ii)The column to the right refers to words accessed by running a fine-class hand

transcription through Lexical Access. That is to say, it includes homophones and

homophonic phrases.

The taller, paler columns show, for each test set, the number of words in the utterance

given these two definitions of 'correct lattice'. It can easily be seen by comparing the two

sets of columns that fine-class homophones together with lack of word boundary

information result in a large increase of valid words.

The darker overlays shows the number of these words contained in the lattices output

by RM1. This information is also given in terms of percentage words correct in Figure

5.3. The B set did particularly badly on number of words correctly accessed according to

definition (i) i.e. intended words (1%), but did better on definition (ii) i.e. valid words

(20%). We conjecture that this happened because the B set contain only mid-class unique

words (as isolated words) and these words tend to be quite long. Long words are less

likely to be identified given current performance, but parts of these words will be, and they

will correspond to homophones in the second set of valid words.
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It is interesting to compare RMl's performance with the final performance of BBN's

HWIM system (Woods et al. 1976). The number of phonemes correctly identified by

RM1 cannot be directly compared with HWIM's figures since the phoneme lattice in

HWIM essentially had a label for every phoneme in the system, given as a matrix of

probability scores. In HWIM, the correct phoneme was one of the two highest scoring

52% of the time. RM1 correctly identified 48% of the phonemes in the test utterances,

though of course, these labels stood for a set of phonemes (Bard et al 1987).

Table 5.1. below gives some performance figures for the HWIM and RM1 lexical

access components. HWIM's evaluation was on the basis of the 15 highest scoring

words found anywhere in the utterance. They do not include possibly correct but low

scoring word matches. RM1, on the other hand, returns all possible word matches, but

performs the search strictly left to right.

HWTM1 RM1 HWIM2 RM1

'A' Set All Sets

No. Test Sentences 124.00 16.00 99.00 80.00

Av. No. Words 6.20 6.375 9.21 9.60

Av. No. correct words per utt. 2.17 1.25 2.25 0.98

Av. No. incorrect words per utt. 10.13 216.00 *i *

% words correctly identified 35.00 20.00 23.7 10.29

Table 5.1.

Performance Figures for HWIM and RM1

1Figures unavailable
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5.3. Reasons for Failure

The aim of this part of the evaluation was to see what effects the performance of the

front-end had on LA. It was intended to complement the evaluation of SEGLAB

documented in (Bard et al 1987). We were not concerned with the front-end's overall

ability to recognise phonemes but with the kinds of problems it presented to LA. Although

we could expect considerable improvement in front-end processing, we were unlikely ever

to have a phoneme lattice which reflected exactly both what the speaker said and the

pronunciations in the lexicon. The system must be able to recover from input which

deviates from the stored representations. This evaluation should help direct modifications

to LA.

5.3.1 Evaluation Method

I examined 48 of the evaluation utterances by hand. The intention was to see what

sorts of problems seemed to be occurring and then to create automatic procedures, where

possible, for gathering further information. The output from the front-end was compared

with the hand transcriptions and used to gather data about a number of classes of problem

(Appendix 3). In addition, the reason why each word failed was documented (Appendix

4).

Each portion of the phoneme graph corresponding to a hand-transcribed phoneme was

classified, with respect to the intended words, as one of the following:-
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There is a hypothesized phoneme bearing the

same mid-class label as the hand transcription

and overlapping it by at least 50%.

2) Mislabelled There are one or more hypotheses covering

the region, none with the correct label.

3) Missing The region is covered by hypotheses

centered over adjacent phonemes.

The correct phonemes were further classified as:-

4) Merged One hypothesis covered two or more

phonemes.

5) Split There were two or more correct hypotheses

in sequence over the region of the hand-

transcribed phoneme.

6) Path Error The right hand end of one correct hypothesis

did not correspond to the left hand end of the

following one.
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5.3.2. Results

The results of this analysis are shown in the Figs. 5.4. and 5.5. below. The number

of times a region was labelled as one of the above classes is shown as a percentage of the

actual phonemes in the hand transcriptions.

The analysis indicates the problems LA must cope with even when a large percentage of

the individual phonemes have been correctly identified. For example, the utterance

EvalAl 1, Three chefs face a thief, provided the most correct lattice with thirteen phonemes

out of fourteen correctly identified. However, none of the words were accessed by LA

(See Appendix 4). The missing mid-class liquid, L, in three caused an FF phoneme

sequence (two voiceless non-sibilant fricatives), which blocked all word recognition. Even

if this had been overcome, a path sequence error between a and thief would have caused

problems further on.

Some errors could be fixed fairly easily. One example is the FF block mentioned

above. In this case, it is easy to see that there is an errorful patch in the lattice, because all

active word edges have been blocked before the end of the lattice has been reached. LA

could try a number of strategies, such as assuming a missing or inserted phoneme, in order

to get over the mislabelled portion. There are also a few cases where we can roughly

predict the location of a particular error. For example, extraneous voiceless stops are often

hypothesized at utterance onset. We could modify either LA or SEGLAB to reduce this

problem.

We mentioned earlier that HWIM performed slightly better than RM1 in accessing the

intended words correctly. This was partly because HWIM incorporated a mechanism for

coping with split or merged phonemes. LA assumes that a word can be present only if all

of its constituent phonemes are present for one of its pronunciations. This is an extremely

unrealistic expectation.



It will undoubtedly be necessary to implement a partial matching access mechanism to

account for these and missing segment errors. Such a strategy would have to be very

carefully designed, however, if it were not to result in a huge explosion of word

hypotheses. The HWIM system had only 1,362 entries whereas we had 4,000 potential

candidates in the lexicon (excluding reduced forms), with plans to increase this to 20,000.
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5.4 Contribution to the Recognition Process

LA passes several hundred word hypotheses to the higher level components, most of

which are false positives. Some are produced because of errorful labelling at the phonemic

level, but others are simply homophones under some phonemic representation. In this part

of the evaluation, we were interested in finding out what sorts of problems this generates

for the levels above LA.

I mentioned above that, in addition to single word confusions such as meat/meet, there

are also confusions generated by lack of word boundary information. So not only do we

have to take account of the confusability of individual words in the lexicon, but also of

word strings. This is particularly so in the case of a recogniser with a very general
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phrase wreck a nice, instead of the item recognise, at a particular point in processing; a

more general grammar might have to consider both interpretations.

The inherent confusability of the lexicon is also affected by the specificity of the input

representation. The broader phonetic representation used in the RM1 front-end will

produce more homophones and homophonic phrases than a fine-class representation. We

were interested in seeing if this increase was significant from the point of view of higher-

level processes. Did such substitutions produce very many alternative word parses

stretching from beginning to end of the utterance? Or did the partial substitutions usually

fail causing dead-ends in the lattice? For example, the phoneme string /t ii ch i ng w i 1/

initially produces the word hypotheses tee, tea, and teach but these quickly drop from

consideration because there are no lexical items matching / i ng w/.

5.4.1. Evaluation Method

LA was run over three types of input. These were (i) the fine-class transcription of the

utterance, (ii) this transcription translated into mid-class symbols, and (iii) the output of

SEGLAB. A path-counting algorithm determined the number of words strings for each of

the lattices.

5.4.2. Results

The results listed in Appendix 5 clearly show that lack of word boundary information

together with acoustic-phonetic uncertainty result in a huge increase in the possible word

parses of an utterance. Even the perfect fine-class transcriptions resulted in extremely large

numbers of paths (an astonishing average of 862,300), making it very difficult for the

syntactic component to distinguish the correct inteipretation.



This will lead to even greater problems when there are errors in scoring or labelling

some portion of the lattice. It seems impossible to decide when one string out of so many

millions should be 'rescued' either by LA or by some higher-level component. A good

example is Evala7 (Patty cut up a potato cake) in the development set. Patty, cut, up, a,

and cake are all on the word lattice. Potato failed to be accessed only because the first

vowel was missing. However, there were many other words and word strings covering

the region of potato, so why should LA apply special procedures to rescue this particular

word? At a higher level there was a string Patty cut up a, but the extension of this string

over the errorful portion lowered the score of the string relative to other interpretations.

Again, why should higher level components not abandon this string in favour of the many

thousands of better scoring strings?

It seemed probable that the number ofword paths would increase substantially with the

length of the utterance, and some of the test utterances were very long. Evald08, for

example, contained over 63 million paths, but the utterance —You may wonder what

happens to our boys and girls and the answer can best be found in the pages of the old

boys and girls magazine — is 22 words long. Clearly, we could expect some sort of

boundary indication, such as a pause, to occur long before the end of this utterance.

Therefore, in the test runs described in the next chapter we cut down the utterance length to

no more than 10 words.

5.4.3. Discussion

This experiment shows how different components can work together to compound a

problem. The number of phonemically equivalent words returned by LA seems to be

affected by the factors discussed below.
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5.4.3.1 The content of the lexicon.

It would be possible, though extremely limiting, to exclude all homophones. The

number of homophones is increased by allowing reduced pronunciations. The figure

below shows a portion of the word lattice for a fine-class representation of EvalA2 (I'm

naming one man among many). Many of the hypotheses are generated because of reduced

pronunciations such as /n/ for and. However, such reduction pronunciations appear to be

necessary in order to access and represent alternative alignments (e.g. a name for...Iand

aim for).

Although we could not remove all homophones, we could treat differently certain

classes of words which are frequently accessed erroneously. One such class includes letter

names. These are often homophonous with other words, e.g.

t tea, tee

b be, bee

c sea, see

When a run was done using a lexicon without letter names, the number of paths

produced was a few orders of magnitude less than when these words were included.1

Similarly function words could be treated differently from content words. This was

suggested by the NOAH team (Smith & Sambur 1980) who found that short function

words, which made up only 1% of their lexicon accounted for 30% of errorful hypotheses

and only 10% of correct ones.

*Maggie Cooper suggested this change and provided the updated lexicon.
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I 'm naming one man

Figure 5.6

Word Lattice for EVALA02

5.4.3.2. Characteristics of the utterance.

The size of the word lattice is increased by homophones which fall within, or cut

across, the boundaries of the input utterance, as in:

associate —> a sew see ate

recognize speech —> wreck a nice peach

This would seem to be more likely to occur in longer input utterances. However later

tests (Harrington and Johnstone 1987) found that it was not necessarily the case that longer

input utterances (where length is defined as number of phonemes or number of words

intended by the speaker) necessarily gave the greatest number of parsings into word

strings: there was no correlation between number of phonemes in the utterance and number

of parses into words (r = -0.07, not significant); neither was there a significant correlation
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between number of words produced by the speaker and number of possible parses of its

phonemic representation into words strings (r = 0.11), although there is a trend to show

that these two variables are positively correlated.

Some long utterances may contain phoneme sequences which only match the intended

words. An example is utterance Evalal6.

Does John believe you were measuring the gun.

This sentence only has one interpretation given a fine-class transcription. The

constraint that word beginnings only occur at the point where a previous word ends,

prevents leave being found in believe and a ring being found in measuring.

5.4.3.3. The phonemic representations.

There is always the possibility that the input pronunciation will differ from the

pronunciation in the lexicon. If we impose too stringent constraints on the match, then we

will fail to access the correct word. On the other hand, if we relax constraints, we are

trading discriminability against robustness. In other words, we might not throw the baby

out with the bath water, but we might keep so much water in the bath, the baby drowns.

There have been a number of studies on isolated words which explore the trade-off

between discriminability of lexical items, and the amount of phonemic information used in

their representation. The evaluation runs mentioned above indicate that the results with

mid-class representations do not hold for connected speech. The next chapter reports a

more systematic study of these effects.
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5.4.3.4. The constraining power of the grammar

In the above runs no grammar was used. Any word could follow any other word, just

so long as it matched the phonetic input description. A grammar could, of course, be used

to reject certain word candidates or to assign higher probability to some over others, and

thus reduce the number of paths. However, the grammar must be able to correctly

distinguish word hypotheses or the number of paths will grow exponentially. By correctly

distinguish I mean that the correct phrase must be the only phrase with a certain score, and

it must have the highest score. If either of these conditions is not met locally, the search

algorithm will have to pursue a number of hypotheses in parallel for some length of time.

If there are just seven equally probable choices on average at any given point after 2

decision points we will have 7^ paths, after 8, 7^ = 5,764,801 paths. These issues are

discussed in more detail in the following three chapters.

5.5. Conclusions

This evaluation highlighted one of the points made in Chapter 2: what goes on between

components is as important as what goes on within any component. There are two reasons

why it is important to look at the interactions.

The first reason is obviously that the performance of, say, the syntactic component

depends on the performance of other, lower-level components. If we know that there are a

few billion equally plausible lexical paths through a mid-class lattice, we may cease to

wonder why syntax failed to produce the intended utterance in its top ten.

Secondly, the interaction of different components may also indicate that less work can

be done at some other level. If higher level components can sort out the intended string

from the many false positives, then LA can take fewer risks when matching word
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hypotheses to the acoustic input. It can aim for a high probability of having the right word

somewhere in the cohort without worrying too much about the size of the cohort.

This opens up for debate the question of what can be done, at each level of the system,

to fix some problem. The first step has been to start classifying the problems. The kinds

of problems faced by LA were discussed in section 5.3. A rough list is reproduced below.

1) Missing phonemes

2) Mislabelled phonemes

3) Merged phonemes

4) Split phonemes

5) Overlapping phonemes

6) Gaps between utterance onset and first phoneme

7) Gaps between phonemes

8) General lack of robustness at lexical level

In addition, lack of word boundary information and of acoustic cues to a word's

identity created very large word lattices.

The question then arises, whose problem is all this? Some problems such as the

(possibly labelled) gap between utterance onset and the first phoneme may have an obvious

solution. SEGLAB could include a "lip-smackin" rule as in HWIM which detected the sort

of voiceless burst which precedes many utterances. Other problems do not have such

obvious solutions, nor is the locus of the problem as easy to identify. The potato error in

EVALA07 will serve to illustrate this.
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The acoustic front-end failed to detect the first vowel. Should we then insist that it is

all SEGLAB's fault and sit back waiting for it to improve? Given the nature of fluent

speech we might have to wait indefinitely.

Alternatively, should LA implement a matching strategy that would allow for the

missing schwa? If so should LA instruct SEGLAB to look for evidence of a schwa or

should it just make one up? Would the acoustic signal contain any evidence anyway or

does the speaker just talk like that?

Why should LA relax constraints on that particular word when there are other

hypotheses covering the same region? (i.e. /@ p t ei t @/ --> up to eight a). Should LA

leave well alone, and let syntax or semantics choose from the competing hypotheses?

These questions concern the model of speech processing. In Chapter 2,1 made the

distinction between the architecture and the model implemented within that architecture and

argued that the graphical nature of the Chart framework would facilitate the evaluation of

the model's components both together and separately. The present chapter provides

concrete examples of such an evaluation. Section 5.3 shows how the graphs can be

studied by hand to find evidence of particular problems, problems that may not have been

anticipated during the design stage. Once a problem has been identified, automatic

procedures can be designed to provide information on the extent of the problem.

Sections 5.2 and 5.4 show how such statistical information can easily be gathered by

running automatic graph-searching procedures over the Chart output. Section 5.2

measures the performance of LA in terms of the percentage of words correctly recognised.

Section 5.4 is more interesting, however, in that it gives some indication of the problem

that false positives could cause even if LA succeeded in accessing all the intended words.

Section 5.4 is also interesting because the problem it raises cuts across the boundaries of

linguistically defined levels of analysis. The next two chapters examine this problem in

more detail.
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6.1. Introduction

In earlier chapters we discussed the possibility that poor acoustic-phonetic processing

was primarily to blame for delays or errors in automatic speech recognition. People could

transcribe phonemes with a high degree of accuracy, even without syntactic or semantic

context, whereas the ARPA systems only achieved bottom-up recognition rates of around

50%. Psycholinguistic models also concentrated on how good people were at recognising

speech. Fast word-by-word recognition was often assumed as the basis of the model.

However, we also saw that there were good computational and psycholinguistic

reasons for supposing that the phonemic interpretation of a stretch of sound would often be

left ambiguous for some time. The evidence indicated that, given the nature of continuous

speech, a robust system would not make too early a decision, but would allow higher

levels to inform the process of identification. I argued that on some occasions there might

simply not be enough acoustic information to make a decision, and cited psycholinguistic

experiments on the intelligibility of words in certain contexts. Furthermore, on other

occasions the acoustic-phonetic information might be misleading; we would want to be able

to recover from /a g ch u @ 1 i/ or some other minor mispronunciation. Therefore, it

becomes necessary to allow several lower level interpretations to remain active, at least for

a while.
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However, we found indications in the last chapter that this could lead to a very large

number of possible word strings. This chapter explores in more detail the effect of such

equivalence classes on parsing phonemes into words.

6.1.1. Graph Depth

In Chart-parsing terms, leaving the lower-level interpretation open effectively means

increasing the depth of the phoneme graph. While this makes it easier for the acoustic-

phonetic component to guarantee the inclusion of the target phoneme, the task of the

syntax/semantic component is made considerably more difficult since it has to choose from

many more word candidates. It is important to choose a phoneme graph depth which is

optimum from both the acoustic-phonetic and syntax/semantics point of view.

The HWIM system did not limit phoneme identity at all in the early acoustic-phonetic

stages; each of the phoneme labels used by the system was a possible candidate for each

segmentation. In addition, alternative segmentations were permitted thus increasing the

lexical access component's chances of finding a suitable path. Of course, it was necessary

to come to a decision at some point, and to do this the system relied primarily on the

acoustic probability scores attached to each labelling.

The Hearsay-II system used segments categorized by manner of articulation features

only, avoiding the more difficult task of specifying place of articulation. These segments

can be viewed as descriptions of sets of phonemes (i.e. those sharing the same manner of

articulation).

One of the aims of this chapter is to look at the effect on word discriminability in

continuous speech of increasing the depth of the phoneme graph. We shall compare graphs

of depth one with graphs described in terms of sets of phonemes.
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6.1.2. Graph accuracy

One of the major criticisms of the ARPA systems concerned the poor performance of

the front-end processors. The systems failed to identify an acceptable percentage of the

correct phonemic labels, and also hypothesized too many incorrect labels. Klatt writes:

"Recent experiments by Mark Liberman and Lloyd Nakatani suggest that
listeners can transcribe English nonsense names embedded in sentences (and
obeying the phonological constraints of English) with better than 90%
phonemic accuracy. It is likely that machine performance must approach this
figure before very powerful speech understanding systems are realized." (1977
p.1356).

In this chapter, I look at what would happen if the acoustic-phonetic front-end did

achieve near perfect performance. We will assume that the correct phoneme label is in there

somewhere; 100% recognition is achieved in that sense. The system will not have to

contend with errors in either labelling or scoring. We will also assume that perfect

segmentation has taken place; there are no competing alignments of overlapping phonemes

in the graph. Using this input we will examine the effects of word boundary ambiguity and

homophonic word ambiguity on the number of possible word strings.1

6.2. Input to the Lexical Access Process

Zue (1985) defines a collection of words having the same representation as an

equivalence class. A number of words are homophonous in this way (e.g. sew/so,

meat/mete/meet), but the size of such equivalence classes is very small. When we start to

put these words together things start to get a little trickier. A string such as /s ou # m ii t/

1 This chapter summarises work reported in Harrington & Johnstone 1987.
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can be parsed into six different word strings even when the word boundary is known.

When the boundary is not known, we begin to get equivalence classes of phrases. As I

pointed out earlier, the phonemic description of This nudist is ambiguous (at least

temporarily) between This nudist..., This new dist... and This nude is t.... Part of this

study looks at the effect, using such fine-grained phonetic descriptions, of this kind of

ambiguity on the whole utterance.

Since we do not expect the front-end to recognize only the correct phonemes we also

look at less informative representations. The expansion of phonemes into mid-classes

(Table 6.1. See also Appendix 1) might provide a suitable balance between acoustic-

phonetic processing and syntactic/semantic filtering of the competing word-strings for two

reasons.

Firstly, mid-classes are groups of phonemes which are easily confused at an acoustic-

phonetic stage of processing: thus /m/ and /n/ are grouped into one mid-class, since [m] and

[n] are are often nearly identical from an acoustic point of view. The substitution of a

phoneme /m/ by its mid-class N (i.e. the inclusion of /n/ and /ng/ as alternatives to /m/ in

the phoneme graph) will therefore increase the probability of a correct correspondence

between the phoneme graph and the acoustic signal.

Secondly, from the point of view of lexical discrimination, Zue in the above paper

summarizes studies which looked at equivalence class sizes for a 20,000 word lexicon

represented using six broad phonetic categories. Since the phonemes are distributed among

only six categories (approximately half the number of mid-class categories), there is a

considerable loss of information, and one would expect an increase in the size of the

equivalence sets. Table 6.2 is taken from Zue's summary.
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Phoneme members

p voiceless stop /p, N, M
B voiced stop /b/,/d/,/g/
S voiceless sibilant fricative /s/, /sh/, /ch/
Z voiced sibilant fricative M, /zh/, /jh/
F voiceless non-sibilant fricative /f,/th/,/h/
V voiced non-sibilant fricative /v/,/dh/
N nasal /m/, /n/, /ng/
L liquid N,M
G glide lyl, /w/
D dipthong /ai/, /ei/, /oi/, /au/, /ou/, /i@/,

/e@/, /u@/
FV front vowel Ai/,/e/,/a/
BV back vowel /aa/, /o/, /oo/, /u/, /uu/
CV central vowel /i/,/@@/,/@/,/uh/

Table 6.1.
The relationship between mid-classes and phonemes as described in Dalby et al

(1986).

Equally Weighted Frequency Weighted

Expected class size
Median class size
Maximum class size
% unique (single word) classes

22
4

223
32

34
25

223
6

Table 6.2.
Representing words by broad phonetic classes (from Zue 1985).

According to table 6.2, nearly a third of the words are still uniquely identifiable, and

one would expect the number to be considerably greater under a mid-class representation.

Furthermore, the mean size of the equivalence classes is only 0.15% of the size of the

lexicon, and the largest class is only equivalent to about 1% of the size.

On the face of it, these results look very promising for word recognition but what are

the implications of these results for a syntactic/semantic component? If we strung together a
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sequence of these sets the sequence would be, in the best case, completely unambiguous: a

sequence of uniquely identifiable words. In the worst case, if we had two adjacent

maximum sets in the sequence then the parser would have to consider 223 * 223 = 49,729

possible word-pairs. And this would increase exponentially if a further maximum set

followed. The average set size is quite small, however, even in the frequency weighted

case.

But these statistics do not take account of the fact that, in continuous speech, word

boundaries are more difficult to identify from a given mid-class string compared with a

phonemic string. Thus, while at a phonemic level the sequence /m g 1/ (e.g. same glass)

can only be parsed into /m # g 1/ (Lamel & Zue, 1984) at a mid-class level (i.e. /N B L/),

the unambiguous identification of the word boundary is no longer possible. Since the mid-

class category N include /n/ and B includes /dJ, N B L could also be parsed as N B # L

(e.g. sand layer), or indeed N B L (e.g. sandal). And since phonemic constraints across

word boundaries often no longer successfully apply at the mid-class level, the total number

of ways of parsing a given mid-class string into words is likely to increase considerably,

despite the fact that the lexicon remains highly discriminable when represented in mid-

classes. The experiments in this chapter are designed to determine the magnitude of this

increase and to assess whether this would place an unmanageable burden on syntactic and

semantic filtering.

All of the analyses reported here were based on hypothetically perfect transcriptions of

the target utterances into whatever recognition units were implemented. So none of the

experiments take account of the possible errors and ambiguities that can arise as a result of

processing the acoustic waveform by the acoustic-phonetic front-end. Furthermore, while

it was possible to take into account many of the phonological variations attributable to fast

speech production, the analysis excluded a consideration of phonological assimilation

across word boundaries. If such effects were included, the number of homophones would
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probably be still greater. Even using fine-class representations, a word such as hand, for

example, becomes homophonous with other lexical items in certain contexts:

/ham/ — asin/ham#mi#dhap#buk/ (handme that book)

/hang/~asin/hang#krisps#araund/ (hand crisps around)

This effect is likely to be greater with mid- and broad-class representations.

To summarize, we expect there will be homophones and over-lapping, homophonic

phrases at various places in the input and that the size of such equivalence classes will

increase with a decrease in the specificity of the acoustic-phonetic information. If such

phrases always fail to extend more than a few words, through failing to match the input,

then we can afford to delay the interpretation without placing too much of a burden on

higher level components. However, if this is not the case we may find a combinatorial

explosion ofword strings. Our objective is to see how many more word strings there are,

other than the correct interpretation, spanning a fair portion of the utterance. We have

chosen to limit the input utterances to an average of seven words, though a speaker could

easily say more words without pausing.

6.3 Method

Phonemic transcriptions were made by a trained phonetician of the 80 sentences listed

in Appendix X. All utterances that were more than 10 words in length were broken down

into clauses of less than 10 words thereby producing a total of 115 utterances with an

average of 7.07 words and 26.56 phonemes per utterance.

These phonemic transcriptions were then converted automatically to their corresponding

mid-class representations. In addition, since we suspected that the mid-class utterances

would parse into an exceptionally large number of word-strings, the phonemic utterances
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were also automatically converted to a mixed broad and phonemic representation. Only the

voiceless stops, voiced stops, non-sibilant fricatives, and nasals were converted to the

classes shown in Table 6.3, but all other segments were left in their phonemic form. As a

result, 37.6% of the phonemes in the 115 utterances were converted to broad-classes in the

"mixed" utterances. The choice of the broad-classes in the mixed case reflects the finding

of a high degree of confusability in the separation of their respective members in the

acoustic-phonetic analysis of the speech waveform (Dalby, Laver & Hiller, 1986).

Broad-class Phoneme members

P voiceless stop /p, /t/, M
B voiced stop Pot, !dj, /g/
NSF non-sibilant fricative /f/, /v/, /th/, /dh/
N nasal /m/, /n/, /ng/

Table 6.3.
The broad classes in the mixed sets

For the purpose of comparison the three different types of representation for the

utterance The order goes in by late November are shown below:

[Henceforth the following abbreviations will be used: Pu (unstressed phonemic); Xu

(unstressed mixed); Mu (unstressed mid).]

/dhiood@gouzinbaileitn@vemb@/ (Pu)

/NSF iooB@BouziNBaileiPN@ NSF e N B @/ (Xu)

/VCVBVBCVBDZCVNBDLDPNCVVFVNBCV/ (Mu)
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It is emphasized that all the input utterances were based on hand transcriptions, rather

than the output of acoustic-phonetic processing. As such, the hand transcriptions can be

considered to be a perfect analysis by the acoustic-phonetic component into a string of

phonemic, mixed, ormid units, excluding any representation for word or syllable

boundaries and excluding the effects of assimilation across word-boundaries. The parsing

process takes place as described in the previous chapter. Only complete parses of the

phonemic string from beginning to end of the utterance were counted.

6.3.1 Path counting1

We want complete paths because these are equal competitors, acoustically and lexically,

with the final, correct interpretation. Partial paths compete temporarily but then drop out

because of a mismatch with the incoming phonemic material. While a profusion of partial

paths may strain the resources of the computing machinery, they need not affect the

interpretation of the complete utterance.

The paths through the graph are calculated through a process of graph reduction. The

following reductions are applied iteratively until there are only two vertices, one defined by

the start of the first word in the utterance, the second by the end of the last word. These

vertices are joined by a single edge labelled with the number of paths between the vertices.

ReduceEdge (a, b) Replace the edges between a and b with a single edge a-b

whose label is the sum of the paths between a and b.

(Fig.6.1)

ReduceVertex (a) If a has just one incoming edge x-a and one outgoing edge a-

y replace a and all its edges with an edge x-y whose label is

the product of the paths on x-a and a-y (Fig 6.2)

1 This algorithm was written by Julian Kupiec
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ReducePaths (a be) If b has one outgoing edge, b-c and two or more incoming

edges with different start points a-b and x-b, replace edge a-

b with an edge a-c labelled with the product of the a-b edge

and the b-c edge. (Fig. 6.3)

Sub-graphs that are disjoint to the main graph (i.e. do not have a continuation through

to the utterance final vertex) are not included on the final edge count.
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1

Figure. 6.1. ReduceEdge

Figure. 6.2 ReduceVertex

Figure. 6.3 ReducePaths

Graph reduction functions in the path counting algorithm
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6.4. Results

Figures 6.4 « 6.6 show histogram distributions for the total number of derived word-

strings when the input utterances are matched against the lexicon.

The results show that in the mid and mixed sets at least, some utterances were parsed

into an exceptionally large number of word-strings. For Mu, 71/115 (62%) of the

utterances were parsed into 10 million or more word-strings (Fig. 6.4), but only

9/115(8%) utterances were parsed into 1000 or less word-strings. The average number of

word-strings for Mu was 3.88 x 1016- For Xu, 15/115 (13%) of the utterances were

parsed into 100,000 or more word strings (Fig. 6.5), and 34/115 (29%) of the utterances

were parsed into 100 or less word-strings. The average number of word-strings for Xu

was 6,228,298.1. For Pu, 18/115 (16%) of the utterances were parsed into 1000, or

more word-strings (Fig 6.6) and 30/115 (26%) of the utterances were parsed into 10 or

less word-strings. The average number of word-strings for Pu was 1790.9. An example

of one of the unstressed phonemic utterances which produced just under 16,000 alternative

word-strings is given below.

/braansh@zaar@muuvd@ntildhe@izjhuhstwuhnleft/

(branches are removed until there is just one left)
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Figure 6.4.

Distribution of the numbers of word strings derived from the mid-class

representations (Mu) of the 115 utterances.
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Figure 6.5.

Distribution of the numbers of word strings derived from the mixed

representations (Xu)of the 115 utterances.
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Figure 6.6.

Distribution of the numbers of word strings derived from the phonemic

(Pu) representations of the 115 utterances.

6.5 Discussion

6.5.1. The problem of errors

This study has shown that when phonemes are selectively encoded as broad classes

(the mixed sets) or entirely encoded as mid-classes, utterances are sometimes parsed into

over a million word-strings. This places an unmanageable burden on syntactic and

semantic filtering which has to select the target word-string from all its competitors.

Considerably fewer word-strings are derived in the phonemic sets, in which all utterances

are parsed into less than 70,000 word-strings. But it must be remembered that these results
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are based on hand transcriptions which represent a perfect analysis by the acoustic-phonetic

component into whatever recognition units are used. If the acoustic waveform is

incorrectly analyzed at certain points, the lexical access component may fail to derive the

target word string from the imperfect string of recognition units. In this case, the

syntactic/semantic component not only has to filter out many improbable word strings, but

also to identify the location of possible word errors. Therefore, if

/thangksfoosendingniiyoolet @/

were incorrectly derived from an acoustic waveform that in fact corresponded to an

intended production of thanksfor sending me your letter, the syntactic/semantic component

would not only have to reject all the improbable competitors such as thanks force ending

knee your letter, but also to identify that the word knee has been incorrectly derived instead

of me.

6.5.2. Reducing the size

The results of this experiment would seem to preclude an analysis of the acoustic

waveform by the acoustic-phonetic component into anything other than a single string of

phonemes. Since, in reality, a phonemic string that is the output of phonetic processing of

the acoustic waveform is likely to contain many errors, it is necessary to allow phonemic

competitors to guarantee the inclusion of the correct phoneme. But if phonemic

competitors are included, some means of resolving the phonemes identity and filtering out

improbable words must be applied as quickly as possible to stop the proliferation of word

strings.

In the following chapters we discuss possible ways of reducing the number of word

strings. The methods may be roughly grouped under the following headings.
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(i) increasing the specificity of the acoustic information.

(ii) using lexicon-based constraints.

(iii) bringing syntactic/semantic information to bear.

These options are not, of course, mutually exclusive. However research efforts in the

past have tended to concentrate on one or the other.

The TRACE system has explored the use ofmutually exclusive lexical constraints. It

may be the case, as McClelland argues that this type of constraint requires a certain type of

architecture.

The use of tight syntactic/semantic constraints with lexical access was fundamental to

some of the recognition systems developed on the ARPA project, and indeed was part of

the original specification of the task. (Klatt 1978, Lea 1980). In HARPY, for example, all

higher level knowledge constraints are pre-compiled into a recognition network. Since no

words are hypothesized other than those expected by the syntactic and semantic component

at that point in the network, a large number of words in the vocabulary need never be

considered as possible hypotheses. HWIM and Hearsay-II focus the search by predicting

the words on either side of a seed word found bottom-up; only this subset of the lexicon is

matched against the phoneme graph. In a less restrictive system such a top-down approach

would not be feasible. In the Edinburgh system, all word possibilities are stored on the

word graph and higher level knowledge is used only to filter out possibilities, rather than to

dictate the set of possibilities. These and other search strategies will be examined in more

detail in the next chapter. However, it is worth pointing out here why we have counted

complete strings from one end of the utterance to the other.
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863111 seem 863111 seem seam

Figure. 6.7.

A word graph containing some of the alternative possible parsings of the phoneme

string Is ou @/ai s ii ml.

One version of the Edinburgh syntactic component used pair-wise transition

probabilities between words. Word pairs were scored on acoustic-phonetic probability and

syntactic tag transition probability and all but the highest scoring hypotheses were pruned

from the graph at each decision point. In Fig. 6.7 therefore, a choice has to be made at the

top of the tree between so and sew based on the transitional probability scores to the

following words a and I. If for example, so is preferred, the entire right hand side of the

tree (i.e. the continued paths from sew ) is no longer considered. Since this strategy

enables the elimination of many word strings as the transition probabilities between

successive words are calculated, it may provide a solution to the problem of the large
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number of word strings that are derived when words are hypothesized from a mid-class

input.

However, a knowledge of pair-wise transitional probability is often insufficient to

select the target word string. In Fig 6.7 for example, the selection of the target (sew a)

from the four possibilities so a, so I, sew a , sew I, must be based on a knowledge of the

third word seam (i.e. we can only choose between so a and sew a once we know that the

following word is seam).

If, as this example suggests, partial word strings ofmore than two words are necessary

to guarantee selection of the correct word-string, then the number of alternative partial word

strings that has to be considered at any one time will increase correspondingly, particularly

when words are hypothesized from a mid-class input. In this chapter, we have assumed

the worst possible case — i.e. the syntax/semantics component needs up to ten words of

the utterance in order to prefer one of the alternatives — and this is why the statistics are

based on the total number of complete word strings derived from the different kinds of

input to the lexical access component. We do not think this is excessive since Pollack &

Pickett report that human listeners sometimes require 140 csecs of conversational speech

before reaching high accuracy. If we allow 200 msecs per spoken word, on average, then

the human listener can require up to 7 words before being sure of an interpretation.

6.5.4. Number of paths vs average branching factor

There are a number of reasons why I have chosen to express these findings in terms of

number of word-strings rather than in average number of words at each choice point

(branching factor). The latter term is usually applied to the average number of word

choices permitted by the system's grammar. As no grammar is used above — any word can

be followed by any other word ~ the number of word choices in the system is potentially
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equal to the number of words in the lexicon. That is, 4,000 x 4,000 words have to be

checked against the acoustic, phonological and syntactic constraints.

As far as the actual word graphs output from a particular utterance, it is hard to give a

clear answer to the question: what are the average number of choices on the word graph at

any particular point? This is because it is not clear what we mean by "choice point". The

test sentences had an average intended word length of about 7, and an average phoneme

length of 26, but the word graph contained many overlapping words. Do we take the

intended words as choice points? Every word boundary as a choice point?

Indeed, average number of words could be a misleading measure of the search

complexity. To see the extent of the overlap effect, compare the following figures for two

hypothetical seven word utterances:

1) Assume no overlapping words and an average number of competitors per word

(average branching factor), b = 4, which is the average equivalence class size for a broad

class lexicon given by Zue (1985). The number of paths according to our path counting

algorithm would be b" where n is the number of words in the utterance:

47 = 16,384.

2) Take the 7th root of the average number of paths through ourmid class utterances in

order to estimate the average number of words over each region of the intended word:

234.3? = 3.88 x 10*6

The two numbers should not be compared because the first refers to words which have

the same word boundaries, and the second refers to words in the same region. But both

could be (confusingly) described as average number of competitors over the same region as

the intended word.



Table 6.4 below gives a series of nth root of the average number of paths for the mid-

class, mixed and fine-class sets. This gives a rough idea of the number of choices that

have to be carried forward in order to produce word graphs of this size. For example, if

after every 3 phonemes there are on average seven hypotheses of equal probability, the

number of paths will exceed 5 million in an utterance of 27 phonemes.

1 ph. 2 ph. 3 ph. 4 ph.

Av. Paths n=26 n=13 n=8 n=6

MU 3.88 x 1016 4.34 18.88 118.46 581.84

XU 6,228,298 1.82 3.33 7.06 13.56

PU 1,791 1.33 1.77 2.55 3.38

Table 6.4.

Average choice points for each utterance type

6.6. Conclusions.

Although the study of Huttenlocher & Zue (1984) suggests that words in the lexicon

remain highly discriminable when represented in broad-classes, or a mixture of broad-

classes and phonemes, an excessively large number of word-strings can be derived when

these kinds of phonological representations are parsed in continuous speech.

The results suggest that there is insufficient information in a mid-class representation

(or average phoneme graph depth of around three equally ranked phonemes) for post-

lexical processing to select the target word-string. Therefore, either the acoustic-phonetic

component must reduce the phoneme graph depth further while still guaranteeing the
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inclusion of the target phoneme in all successive vertical slots in the graph — but it would

be optimistic to suggest that this will be possible in the foreseeable future - or else, lexical

and post-lexical processing must be enriched to constrain further the alternative number of

derived word strings. In the following chapters I will look at different methods of applying

other sources of knowledge to constrain the search.



Chapter 7. Reducing the Size of the Word Graph
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7.1 Introduction

In this chapter I discuss two possible approaches to reducing the size of the word

graph:

(i) increasing the specificity of the acoustic information, and

(ii)) using lexicon based constraints.

We increased the acoustic information by incorporating lexical stress into the

representation. This resulted in a decrease in the number of word paths, though the

numbers were still extremely high. We incorporated lexicon based constraints by

implementing a heuristic which preferred longer words over short ones. This also resulted

in a slight decrease in the number of word paths, but often resulted in the loss of the correct

word.

7.2. Increasing the specificity of the acoustic information.

As a means towards reducing the number of word paths, we considered the possibility

of increasing the number of 'sound units' by using allophones in both the input utterance

and the lexicon. The fact that the number of word paths should decrease using an

allophonic representation is easily demonstrable. Phonemically, plea is represented as /p 1
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ii/ which also embeds the lexical item lee, phonemically /I ii/. On the other hand, /ee would

not be embedded within plea in an allophonic representation since these would be encoded

as [li] and [pli] respectively.

However, this advantage would be lost if the allophones that were the product of word-

internal context-effects were also caused by context-effects across word boundaries: thus if

H/ in lee were realised as a voiceless [1] in a moderately fast production of ...tip leewards..,

lee would once more be embedded within plea even at an allophonic level of representation.

There is some experimental evidence (Bladon & Al-Bamerni 1976) to suggest that such

word-boundary coarticulation of /V is possible. If the majority of identifiable allophones

can occur as a result of coarticulation both across word boundaries and word-internally, the

case for introducing this kind of phonetic representation is considerably weakened.

7.2.1. Lexical Stress

An alternative means of increasing the number of units in the input utterance, and

thereby decreasing the number of word paths found, would be to include stress in the

lexicon and input utterance. It is generally recognised that there is a great deal of

information in the speech wave - particularly prosodic information - which we are not yet

able to isolate and use. We therefore assumed some identification of lexical stress.

Three stressed sets of test utterances were included, derived from the corresponding

unstressed sets. In the phonemic utterances, lexically stressed vowels were differentiated

from lexically unstressed vowels by inserting a "*" symbol before the vowels of the

former. No distinction was made between different levels of stress and only primary and

secondary stressed vowels are differentiated from the remainder of the vowels. Thus,

conversation, which is normally marked for secondary stress on/kon/ and primary stress

on /s ei/ is represented as /k *o n v @ s *ei sh @ n/ in stressed, phonemic form.With this
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type of representation, in which each vowel phoneme (except schwa) can be marked for

stress, an additional 19 units are introduced into the phoneme inventory. The unstressed

mixed and unstressed mid utterances were converted to their corresponding stressed

representations in the same way. The three different stressed representations for the

utterance The order goes in by late November are shown below:

[The following abbreviations will be used: Ps (stressed phonemic); Xs (stressed

mixed); Ms (stressed mid).]

/dh i *00 d@ g *ou z i n b *ai 1 *ei t n@ v *e m b @/ (Ps)

/NSF i *00 B @ B *ou z i N B *ai 1 *ei P N@ NSF *e N B @/ (Xs)

/V CV *BV B CV B *D Z CV N B *D L *D P N CV V *FV N B CV/ (Ms)

The method of generating and counting the word paths is as described in Chapters 4

and 5. For all types of input, the entries in the tree-structured lexicon have Ps

representations [the lexical entries in the tree for conversation include, therefore, /k *0 n v

@ s *ei sh @ n/ (citation form), /k *0 n v @ s *ei sh n/ (reduced form), /k *0 m v @ s *ei

sh n/ (reduced form)]. Accordingly, when either mid or mixed input utterances are

matched against the lexicon, they are first expanded into all possible phonemic

representations and each such representation is matched against the tree as described above.

For example, the Xs representation of teaching, /P *ii ch i N/, (teaching) is first expanded

into the forms shown in. 1 - 9:

1 /p *i ch i m/

2 /t *i ch i m/

3 /k *i ch i m/

4 /p *i ch i n/

5 /t *i ch i n/

6 /k *i ch i n/
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7 /p *i ch i ng/

8 /t *i ch i ng/

9 /k *i ch i ng/

and each of these forms is then matched against the lexicon. The corresponding Xu

representation (/P ii ch i N/) would be expanded into all possible Pu and Ps forms (thus / p

*ii ch i m/, / p ii ch i m/, /1 *ii ch i m/, /t ii ch i m/ etc); each such form is then matched

against the lexicon.

7.2.2. Results
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•g 50

1 40
Z 30

20
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H I

2-100 100-10
3 4

10-10
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Unstressed

6 7
10-10

Number of word strings

Figure 7.1.

Distribution of the numbers of word paths derived from the mid-representations

(Ms & Mu) of the 115 utterances.
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3 34 45 56 6
2-100 101 - 10 10 - 10 10 - 10 10 - 10 >10

Number of word strings

Figure 7.2.

Distribution of the numbers of word paths derived from the mixed representations

(Xs & Xu) of the 115 utterances.

1 2- 10 11 -50 51 - 100 101-500 501- 1000 >1000

Number of word strings

Figure 7.3.

Distribution of the numbers of word paths derived from the phonemic

representations (Ps &Pu) of the 115 utterances.
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Figures 7.1 - 7.3 show histogram distributions for the total number of derived word-

paths when the input utterances are matched against the lexicon. I have reproduced the

unstressed results from the last chapter for the purposes of comparison.

The results show that for Ms, 40/115 (35%) of the utterances were parsed into 10

million or more word-paths (Fig. 7.1), but only 13/115 (11.3%) utterances were parsed

into 1000 or less word-paths. The average number of word-paths for Ms was 3.73 x

1013 . For Xs, 10/115 (9%) of the utterances were parsed into 100,000 or more word

paths (Fig. 4.2), and 46/115 (40%) of the utterances were parsed into 100 or less word-

paths. The average number of word-paths for Xs was 518,058.3. For Ps, 10/115 (9%)

of the utterances were parsed into 1000, or more word-paths (Fig 7.3) and 40/115(35%) of

the utterances were parsed into 10 or less word-paths. The average number of word-paths

for Ps was 475.8.

The stressed sets produce fewer parsings into word-paths compared with their

corresponding unstressed sets in all three cases. A paired sample t-test showed that there

were significantly fewer word-paths derived from Xs compared with Xu (t + 2.01,

significant at the 97.5% level for a one-tailed test) and fewer word paths from Ps compared

with Pu (t = 2.08, significant at the 97.5% level for a one-tailed test).

7.2.3. Discussion

This study has shown that the inclusion of lexical stress reduces the number of word-

paths derived from input utterances, significantly so for the mixed and phonemic sets. As

suggested in Harrington and Johnstone (1987), the finding that fewer word-paths are

derived from stressed utterances may be attributable to the fact that there are more

phonemes in these stressed, compared with unstressed, representations.



The problem remains of whether the identification of stress is possible; some

experimental work reported in Lea (1980) points to some progress in this field.

It is interesting to compare this work with that of Lee (1988) on Hidden Markov

Modelling of speech recognition. Lee found that function words were a considerable

problem for his SPHINX system. He writes:

"Among the 684 errors in our system when no grammar was used, 334
were function word errors. Function words take up only 4% of the
vocabulary, or about 30% if weighted by frequency, yet they are accountable
for almost 50% of the errors." (p. 91)

Lee's solution was to train certain phonemes within the context of the function words.

Thus the system would differentiate between a context independent unit for /a/ as in band

and a unit that had been trained on just the instances of /a/ occurring in the context of such

words as and or an. Lee selected 42 words (see Table 7.1) including some non-function

words such as find, show, give, etc. Lee found a significant improvement in bottom-up

word recognition — 45.3% to 53.4%.

When we introduced lexical stress we found that all content words but only a small

proportion of function words were marked for lexical stress, and that the number of word

paths was reduced primarily because these function words no longer matched parts of

content words. The selected function-word-dependent phone models in SPHINX are

perhaps distinguished from content words by similar stress and co-articulatory information,

which we have represented explicitly in the lexicon.

Of course, the stressed representations do not take account of the distribution of

sentence stress in the utterances. Since can (auxiliary) is marked as unstressed in our

lexicon, the parse of an utterance such as,yes, he can, sir (with the emphasis on can) could

contain confusions with lexical items such as cancer, can, etc.
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A ALL AND ANY ARE AT BE

BEEN BY DID FIND FOR FROM GET

GIVE HAS HAVE HOW IN IS IT

LIST MANY MORE OF ON ONE OR

SHOW THAN THAT THE THEIR TO USE

WAS WERE WHAT WHY WILL WITH WOULD

Table 7.1.

The list or 42 function words that SPHINX models separately taken from Lee

1988.

7.3. Lexicon-based constraints

As we have seen many inappropriate parsings are constructed primarily from function

words and their reduced forms. For example, since /@/, /i/, /d/, /m/, /z/, and /uu/ are

reduced forms of alher, he, had/would, am ,is and who, the short word parsings shown in

Fig. 7.4 at the end of this chapter can be derived from associated andMissourifarms when

the input utterances are matched against the lexicon.

A possible modification to the word parsing strategy, which is designed to eliminate

many short word parsings, is shown in Fig. 7.5. In the first stage of this modified word-

parsing strategy, only those matching words which are greater than two phonemes in

length are stored on the word lattice; all other one and two phoneme words which match the

phonemic input are stored in a temporary buffer. If a match to long words fails, then the

short words are retrieved from the buffer and stored on the word graph at the appropriate

point In I'm naming one man among many, therefore, an initial attempt is made to match a

long word to the sequence / ai m n ei../ (Fig 7.5.1). Since there are no long words that
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begin in this way, the short word I, /ai/, is retrieved from the buffer and stored on the

word graph (Fig 7.5.2). Subsequently, since there are no long words beginning with the

sequence /m n ei.../, the short word am, /a m/, is retrieved and added to the word graph

(Fig. 7.5.3).

Following am, both the long words name and naming can be matched (Fig. 7.5.3).

However, since only the continued path from naming can be matched to a long word, the

path from name is discontinued (without storing the short word he on the word graph). If

there are several competing paths, only those paths that can be matched to long words are

continued, and a short word will only be retrieved from the buffer if none of the possible

paths can be matched to a long word.

It is clear that such a strategy would produce an incorrect parsing when a short word

followed by a long word is homophonous with a long word followed by a short word.

Consider for example, that /y oo r @ p 1 ai/ (Fig. 7.6) will be parsed as Europe lie rather

than your reply, since /y oo r @ p 1 ai/ is matched to the long word Europe and /1 ai/ is

matched to lie.

Recovery from this son of error is possible by increasing the size of the buffer. When

continued parsing from a given long word fails, not only could all shon words that

immediately follow the long word be retrieved from the buffer, but also all short words that

are subsumed within the span of the long word. Thus, in Fig 7.6.3 when the short word

lie is retrieved from the buffer, so is the short word your which is subsumed by the

preceding long word Europe. Paths could then be continued from all new short words that

are stored on the word graph.
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7.3.1. Results

This modified strategy was run over the same sets of mid, mixed and phonemic

utterances reported in the previous section. The results in Table 7.2 clearly show a

reduction in the number of word-paths for all sets; however there were also many

utterances for which the correct word-path was not included as one of the alternative word-

paths (Table 7.3). The correct word-path is excluded frommany mid and mixed utterances

because an alternative parsing into a long word is preferred. For example, the mixed

representation of a briefaccount, /@ B r ii NSF @ P au N P/, will be parsed into agree the

count, because the first four phonemes can be matched to the long word agree and because

there is a possible parsing into words of the remaining phonemes.

Modified Original

Mid S 1,555,278 3.73 * 10J3

U 1,036,274 3.88 * 1016

Mixed S 4,106.7 518,058.3

U 6,455.3 6,228,298.1

Phonemic S 181.1 475.8

u 315.0 1,790.9

Table 7.2.

Mean number of words for two parsing strategies
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Stressed Unstressed

Phonemic

Mixed

Mid

2 (1.7%) 4 (3.5%)

3 (2.6%) 12 (10.4%)

27 (23.5%) 59 (51.3%)

Table 7.3

Incorrectly parsed utterances using the modified parsing strategy

7.3.2. Discussion

Other systems have used different strategies and have obtained similar results; In the

SPHINX system, for example, the HMM's erroneous assumption about independence

between adjacent phonemes means that the acoustic evidence is underestimated. That is to

say, the Bayesian multiplication of adjacent phoneme probabilities penalises longer words

unnecessarily. SPHINX uses a language model match factor, to compensate. If this

parameter is set high, SPHINX prefers longer words to shorter ones. Lee writes:

"In general, we found that most of the errors are reasonable confusions
between similar words or sequences of words, such as arriving -> arrive in,
were in -> weren't, on first -> Connifer's, that are in -> centering. These types
of errors are most frequent when no language model was used, because there
were many more combinations of word sequences that may be confusable.
When the language model match factor ... was large, these errors tended to
swallow smaller words (or phones) into larger ones; when the language model
match factor was small, these errors tended to split larger words (or phones)
into smaller ones. We have found that better recognition was obtained with a
larger language model match factor, which prefers longer words over shorter
ones, and deletions over insertions." (p. 119)
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We discuss SPHINX's performance in more detail in Chapter 8.

Much interesting work has been done in the PDP paradigm on the use of lexicon-based

constraints to reduce the word graph size. The buffer-based heuristic implemented in the

Chart could probably be recast in terms of a delayed activation model, or an activation-

inhibition model by having weighted links between edges. If level of activation rather than

presence on the Chart defined a word's status, we could perhaps more easily allow top-

down effects to over-ride the preference for longer words.

The TRACE model uses activation and inhibition to suppress certain words. In the

case ofparty, for example, par will start off at a higher activation level than party because

of inhibition effects, but as the model begins to process /t ii/, party will be sufficiently

active to suppress tea.. McClelland & Elman (1986) write:

"In 189 of the 211 word pairs tested in the simulation experiment, the model
came up with the correct parse, in the sense that no other word was more active
than either of the two words that had been presented. Some of the failures of
the model occurred in cases where the input was actually consistent with two
parses, either a longer spanning word rather than a single word (as in party) or
a different parse into two words, as in part rust for par trust. In such cases
TRACE tends to prefer parses in which the longer word comes first. There
were, however, some cases in which the model did not come up with a valid
parse, that is, a pattern that represents complete coverage of the input by a set of
nonoverlapping words. For example, consider the input /parki/. Though this
makes the two words par and key, the word park has a stronger activation than
eitherpar or key." (p64).

To summarise, we used a large lexicon and a sizeable number of utterances, to test an

heuristic which preferred long words over short ones, and found that the strategy reduced

the number of word paths in all cases. However, the number of missing words was

unacceptably high in the mid-class case.
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7.4. Conclusions

We tested two strategies for reducing the word graph which used different kinds of

information. In the first test, we applied acoustic-phonetic constraints by introducing

lexical stress into the representations. In the second, we applied lexicon-based constraints

by implementing an heuristic which preferred longer words over short ones. Although

both strategies eliminated some incorrect interpretations, the number of word paths was still

very high, especially in the mid-class case.

It is clear that the derivation of the high number ofword paths from mid-classes and the

problem of filtering them out at the lexical access stage means that syntactic/semantic

information must be brought to bear as soon as words are accessed. We shall discuss the

application of higher level constraints in the next chapter.



associated

missouri fams

Figure.7.4.

Some of the possible short word parsings of associated and Missouri
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naming one

Figure. 7.5.

The modified parsing strategy in which words of greater than 3 phonemes are

preferred over shorter words
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Figure 7.6.

The parsing strategy in Fig. 7.5. modified to retrieve from the buffer all words

subsumed by the long words.
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8.1. Introduction

The experiments in the previous chapter showed the effects that word boundary

ambiguity can have on the size of the word graph given different phonemic inputs. We

now face the important question, how do these results affect our understanding of the

search problem in speech processing?

This chapter will analyse the abstract nature of the search space drawing on relevant

aspects of state-space search theory. I will discuss the two major admissible search

algorithms used in state-space search — breadth first and A* — and the complexity issues

associated with each algorithm.

The following chapter will look at specific strategies in the context of the speech search

problem. I will examine the strategies used in HARPY, HWIM and two more recent

systems, SPHINX and RM1, and discuss how each system has adapted one or the other of

the basic admissible algorithms in order to reduce the potential combinatorial explosion of

word string hypotheses. The results of Chapters 5 and 6, together with the abstract

analysis of graph search in this chapter, will give us a clearer understanding of why these

strategies performed as they did.
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8.2. Admissible Search Algorithms

The most efficient search algorithm to use is determined by (i) the goal of the search

and (ii) the nature of the search space. Let us say that our goal is to find the highest

scoring1 interpretation spanning the utterance. In that case, it is usually best to use an

algorithm which has been proved admissible. Admissible algorithms guarantee that the

first spanning path found will be the highest scoring. If the algorithm is not admissible

then the decision to end the search is fairly arbitrary. Even if the best of the top n

interpretations is taken, there is no guarantee that it is the best of all possible interpretations.

The type of admissible algorithm used depends on the nature of the search space.

There are two standard classes of A.I. algorithm which are guaranteed admissible: (i)

breadth-first strategies which explore every possible path in pseudo-parallel, and (ii) A*

type algorithms which try to take the score of the whole path into account. Most speech

systems have used variations on these two types of admissible search algorithm.

However, breadth-first and A* are not unrelated. In the next section we will look at the

relationship between breadth-first and A*, and a third algorithm, uniform cost, which is

also related.

8.2.1. Breadth-first search

Breadth-first search extends all the paths at one level of the search tree (the siblings)

before going on to the next level (the descendants). The space requirement is an

exponential function of the length of the path at any time. If the goal of our search is to

find the highest scoring path that spans the complete utterance a straightforward breadth-

1 Speech literature usually takes "best' to mean highest score. Search literature refers to the best path as
having the lowest cost It should be clear from the context which sense is being used.
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first algorithm would have to check approximately b71 paths, where b is the average number

of words at each choice point and n is the length of the utterance. In other words, a

breadth-first search of one of the mid-class word graphs could produce a tree with millions

of terminal nodes representing each of the equally valid word-string paths.

8.2.2. Uniform Cost

Rather than explore a tree in layers of equal depth like breadth-first, uniform cost

expands nodes in layers of equal, cheapest cost. c(n, n') is the cost associated with a path

from node n to n'. If the costs on the paths are non-decreasing with length then this

algorithm is guaranteed to find the cheapest path first. When all paths have the same cost

associated with them, equal cost will be synonymous with equal depth and the algorithm

will perform breadth-first

8.2.3. The A* Algorithm

The A* algorithm is given in Pearl (1984, p 64) as follows:

1. Put the start node 5 on OPEN.

2. If OPEN is empty, exit with failure.

3. Remove from OPEN and place on CLOSED a node n for which/is

minimum.

4. If n is a goal node, exit successfully with the solution obtained by

tracing back the pointers from n to s.

5. Otherwise expand n, generating all its successors, and attach to them

pointers back to n. For every successor n' of n:
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a. If ri is not already on OPEN or CLOSED, estimate h*(ri) (an

estimate of the cost of the best path from ri to some goal node), and

calculate

f(n') = g(n') + h*(n') where g(n') = g(n) + c(n, ri) and g(s) = 0.

b. If ri is already on OPEN or CLOSED, direct its pointers along

the path yielding the lowest g(n').

c. If ri required pointer adjustment and was found on CLOSED

reopen it.

6. Go to step 2.

A formal proof of the admissibility of A* can be found in Pearl (op cit.) or Nilsson

(1971). Informally, the idea is that every path in a graph which passes through a node n

can be thought of as having a score f(n) consisting of the cost from the start of the search to

that node g(n), and the cost from the node to the terminal state, h(n). Since h(n) is not

known during the search we can try to estimate it in some way. The algorithm chooses for

expansion the node having the best actual score so far, together with the best estimated

score, h*(n). If the estimate of the cost is guaranteed always to be optimistic, i.e. less

than or equal to the actual cost for that path, we are guaranteed to find the optimal path,

since no node will be left unexplored for which

g(n) + h(n) < C

where C is the cost of the best path through the search space. To see how this works,

let us assume that we have reached the penultimate node in the search space, as in Figure

8.1 below.
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4 4

Figure 8.1

The estimated costs, h*(n), are given in brackets. In this case the estimate is

pessimistic: h*(n) is greater than the actual cost, h(n).

If the estimates of the costs on paths from the penultimate node to the terminal node are

greater than the actual costs on each path, as in Fig. 8.1., then the algorithm might be

misled into taking a non-optimal path. Even if the actual cost turned out to be quite high, it

might still appear better than the other paths for which we have high estimates, estimates

which may be considerably greater than their actual cost. In Fig. 8.1. the algorithm is

misled into taking the leftmost path because its actual cost, 3, is less than the estimate, 4,

(though not the actual cost, 2) of the correct, rightmost path.

If, on the other hand, the estimates are always equal to or less than the actual cost for a

path, as in Fig. 8.2., then even if the algorithm initially takes the wrong path, its actual

cost will be worse than the other, optimistically estimated paths. It will therefore backtrack

to try those paths.
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Figure 8.2

In this case the estimate is optimistic: h*(n) is equal to or less than the actual

cost.

In Figure 8.2 the algorithm will initially take the leftmost path but will then backtrack

and eventually take the correct, rightmost path, because the estimate for the rightmost path

is less than the actual cost of any other path.

The value of this algorithm lies in its behaviour on off-track nodes, i.e. nodes not on

the correct path. Whenever the cost of such a path increases, the algorithm will backtrack

to a better looking node. In general, the closer the heuristic estimate to the actual path

costs, the fewer off-track nodes will be explored.

8.3. Complexity Issues

At first sight A*, and breadth-first search appear to be quite different: the former tries to

keep close to the correct path by comparing costs, the latter blindly and exhaustively

explores each level. However, it can be shown that breadth-first and uniform-cost are just

special cases of A*.
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Uniform cost is equivalent to A* with the heuristic estimate h*(n) = Q. Thus the cost

of a path is:

f(n) = g(n) + 0

and the algorithm is guided just by the cost so far, g(n).

Breadth-first behaviour is obtained when h*(n) = 0 and the cost c(n,n') = 1 for each

branch. Uniform cost is now the same as uniform depth.

Thus under certain conditions we can expect A* to behave in the same way as breadth-

first search. If h*(n) is wildly optimistic (i.e. the cost estimate is essentially 0) then the

algorithm will be guided by g(n) the cost computed so far.

If many paths pick up additional cost at each expansion, then the cost of a path will

increase with its length. Under these conditions, however good the heuristic estimate, the

algorithm will keep abandoning paths that fail to live up to their initial promise in favour of

untried paths that are promising a little more than they will deliver (Pearl 1984). Equal

cost will start to look like equal depth (i.e. breadth-first search) and the algorithm will

explore a broad band of hypotheses.

Pearl (1984) proves that, for a binary tree model whose branches have a cost of 1 or 0

with probability p and 1-p respectively, if p > 1/2 then any admissible algorithm will run in

exponential time.

In the section on specific speech systems, we shall see under what conditions the

speech search problem is of this type. If the search problem in speech is indeed such that

A* starts to behave like breadth-first, then the only way out of the combinatorial explosion

produced by breadth-first search is to keep the search tree small.
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8.4. Reducing the Search Space

The number of paths through a search tree is bn where b is the average branching

factor, and n is the length of the path to a solution. We can think of the word graph as a

search tree with each path through the tree corresponding to each of the word strings, b

would correspond to the average number of word choices at each choice point, and n

would correspond to the average number of choice points in the utterance. However, we

have already noted that the definition of "choice point" is not easy. We shall return to this

point later.

One way to reduce the size of a search tree is to split it into smaller sub-trees

representing more manageable sub-problems. The sub-problem must have certain

properties if the correct solution to the whole problem is still to be found. It must be:

(i) self-contained — it must not need information from another part of the problem.

(ii) small — a solution must be recoverable within the resource limits of the system.

(iii) solvable — a solution to the sub-problem, preferably a unique one, must exist.

This kind of problem reduction can be performed over stretches of speech if we can

define the problem in such a way that the stretch is self-contained. That is to say, the

lexical interpretations are supported by the same acoustic evidence and need no further

acoustic information, and the syntactic/semantic interpretations require no further acoustic-

phonetic, lexical, prosodic, or other information. A stretch such as/men / would not be

self-contained if the system allowed utterances to begin with Men.. Many.. Mental... It

would be self-contained if the system only allowed Men..
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8.4.1. Backwards Pruning

One way to define a sub-tree is to reduce the depth to a partial solution. Depth in the

context of the speech problem can be taken to mean time. If a decision can be made about

a partial solution after every three words, say, then a search space with two words at every

choice point could be searched with 23 + 23 + 23 ... = 24 paths instead of 23 x 23 x 23 ...

= 512 paths, an exponential saving. We will call this backwards pruning because, at the

point where more than one path has the same successor, the algorithm can look back the

way it has come, and mark or retain only the highest scoring path.

These decision points can be thought of as nooses that pull together two or more nodes

in a tree. (See Fig. 8.3). They reduce the average branching factor and hence the

potential combinatorial explosion of paths through the graph. But they also reduce the

flow of information through that node. For example, a decision after the competing pair of

hypotheses^ atsew a would mean that only the path so a was available by the time the

competing pair seem!seam was processed.

Figure 8.3.

Joining nodes which have the same successors gives exponential savings.
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If some paths have the same successor then the tree can be redrawn as a graph as in the

righthand side of Fig. 8.3 and in Fig. 8.4. The backwards pruning decision point is

marked by line A in Fig. 8.4. At each such decision point only the highest scoring path

need be retained since what follows has no influence on the scores of paths leading up to

A.

Backwards pruning decision points can often be determined off-line by analysing and

structuring the problem in a certain way. For example, HARPY uses a finite-state machine

which allows many sub-parts of an utterance to be treated as a self-contained recognition

problem.

Delete all but highest scoring
Does not affect admissibility

A

Figure 8.4.

Backwards pruning decisions do not affect the optimum path
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We shall discuss ways of structuring the speech problem in more detail in the next

chapter. But looking at the diagram in Fig. 8.4 we can identify two general methods of

keeping the search space small:

1) Reduce the average branching factor by keeping the number of arcs spanning n(l,2),

n(2,3), and n(3,4) low and thus limit the combinatorial explosion of paths.

2) Reduce the depth to a (partial) solution. The more frequent the decisions, the

smaller the search space. If we could place decisions at nodes 2 and 3 as well as at node 4

there would be 5 paths through the graph instead of 12.

In general, the following savings apply:-

1) The number of paths in a tree with branching factor b at depth d = b^
2) The number of paths in a graph with a join at depth j = b^ - b^-J
3) The number of paths in a graph with n joins at depth j = b^ - n(bd-j)
4) The number of paths in a graph with a join ofm nodes at depth j

= b^ - (m-l)bd-j

As we noted above forwards pruning decisions must be solvable if the method is to

usefully reduce the search space. That is, the paths leading up to the decision point must

be differentiated by score. If they all have the same score then the decision to cany just
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one forward is arbitrary, or they must all be carried forward just as though a tree were

being searched.

Secondly, the decisions must be about units which are self-contained according to the

problem definition. That is, any information after the decision point must be irrelevant to

the question which is the best path leading up to the decision point. An admissible

algorithm such as breadth-first or A* is guaranteed to find the optimal path through a graph

such as the one in Figure 8.4. However, we may decide, after the fact, that the optimal

path through the graph is not the answer we want. That is, we may find that we do need a

flow of information through the backwards pruning decision points, that we need

information about seem/seam to make a decision about solsew.

8.4.2. Forwards Pruning

Delete all below a certain threshold

Figure 8.5.

Forwards pruning may prune the optimum path
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The search space may be such that we need to prune paths early before we have all the

information relevant to their identification. At decision point B in Fig. 8.5. we do not

know the full scores of the paths, but we can try to look ahead and estimate them or

extrapolate from current scores. A* algorithms make a decision at point B about which

path to follow up'. However, the algorithms are admissible because they do not prune any

of the arcs at B, and may backtrack to them later.

Some algorithms forward prune any paths which fall below a certain threshold. This

method, which is commonly known as staged search , does affect the admissibility of the

algorithm. There is no longer any guarantee that the optimal path through the graph will

not be pruned. However, if certain conditions hold, it can be shown that the algorithm is

near admissible. If the search space is such that the optimal solution is almost always

within a narrow band of competitors throughout the length of the path, then all the paths

which fall outside this band can be pruned (see Pearl 1984).

8.5. Conclusions

We have looked at two admissible graph search algorithms: breadth-first and A*. We

have noted that, given a certain type of search space, the A* algorithm may behave in the

same way as breadth-first search, since the latter is a special case of the former.

We saw that the combinatorial explosion of hypotheses produced by breadth-first

search could be limited by cutting down the depth or the branching factor of the search

space, and we described two general methods of doing this:-

(i) Backwards pruning: the problem is formulated in such a way that the average

branching factor and/or the depth of the tree are kept low. Decisions can be made
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periodically on the basis of information gathered so far. An admissible algorithm can then

be used to find the optimal path according to the problem definition.

(ii) Forwards pruning: estimates are made on-line of the possible utility of later

information. If the estimates are used to prune paths, the algorithm is no longer

guaranteed to find the optimal path, though it may be possible to prove that the probability

of doing so approaches 1. Again, it must be born in mind that the definition of optimal

path depends on the problem.

Finally we discussed the conditions under which each method could best be applied.

We shall now examine the performance of four actual speech processing systems and

explain their performance in the light of this theoretical discussion. We will show how

these systems use branching factor, depth and scores in attempts to limit the search, both

by formulating the recognition problem in a particular way, and by pruning during the

search process itself.
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9.1 A* or Breadth-First?

We are interested first of all in the question, is the search space in current speech

processing such that A*, or indeed any admissible algorithm, behaves like breadth-first

search? If this is the case, then we must concentrate on formulating the problem in such a

way as to avoid the combinatorial explosion of hypotheses associated with unrestricted

breadth-first search.

9.1.1. HWIM's shortfall algorithm

In the case of the HWIM system the answer seems very clearly to be "yes". The first

admissible algorithm1 used in HWIM was the shortfall algorithm (Woods 1982). This

algorithm computes the shortfall score of a hypothesis f(n) = g(n) + h(n) [see the A*

algorithm above] from its score so far:

g(n) = m(n) - q(n)

where q(n) is the acoustic probability score of the hypothesis and m(n) is the maximum

probability achievable by any hypothesis for this region. The estimated shortfall is

computed as:

iFull details of the algorithm and the scoring methods can be found in Woods (1982). The argument
presented here applies to any admissible algorithm, so we are mainly concerned with the fact that it can be
proved to be admissible.
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h*(n) = T - m(n)

where T is the maximum score possible for the whole spanning hypothesis.

Hypotheses are ranked by decreasing shortfall, the goal being to find the path with the

smallest shortfall covering the whole utterance. As the estimate is simply the maximum that

any hypothesis can achieve for the remainder of the utterance, the estimate is always

optimistic and the algorithm is admissible.

In all trials, the shortfall algorithm failed to produce an interpretation. Woods writes:

"Unfortunately, experience with the HWIM system has shown that the
shortfall algorithm is excessively conservative. It amounts to assuming that any
theory will obtain the maximum possible scores in the regions not yet covered.
This is clearly overly optimistic in almost all cases, and it in fact leads to an
excessively breadth first search." (Woods 1982 p304).

Woods assumes here that the estimate, h*(n), is at fault in being too optimistic. Short

hypotheses looked more promising than long ones simply because more of their score was

an estimate; they had not picked up actual shortfall.

However, as we have seen in the previous section, there may be an alternative

explanation for the breadth-first behaviour. If there are too many hypotheses with the same

or very similar scores, and the cost of the path increases with its length then the algorithm

will explore the search space on a broad front, regardless of the accuracy of the estimate.

But first let us follow up the possibility that the problem is entirely to do with the estimate.

9.1.2. Improving the heuristic estimate

Woods tried to improve the estimate by devising the shortfall density algorithm. This

averages the current score of a path over its length. The score of a path is calculated as:

f(n) = [d(n) *l(n)] + [d(n)*L(n)]
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where l(n) is the the length of the utterance covered by the current hypothesis, L(n) is

the length of the remainder of the hypothesis, and d(n) is the shortfall score divided by l(n).

Since l(n) + L(n) is a constant, only the d(n) term of each hypothesis need be considered.

Dividing the current score by its length means that shorter hypotheses no longer

necessarily have a much more optimistic estimated score than longer ones. This should

reduce the breadth-first tendency of shortfall algorithms.

But since only the score achieved so far is used, no account is taken of the possibility

of right context effects increasing the score of the whole path. Later information could

score better than the path so far, the estimated score (extrapolated from the current score)

therefore no longer functions as a reliable upper bound, and so the algorithm is no longer

admissible.

Woods solution was to use this algorithm with the island-driving search strategy.

Since this strategy works outwards from the highest scoring words, it is possible to show

(see Woods 1982) that islands always incorporate words which have a density score no

greater than the words already in the island. Thus the cost of a path cannot increase, it can

only stay at the same level or decrease, and the algorithm is admissible.

Woods reports that the shortfall density algorithm is superior to the shortfall method

alone, returning the correct interpretation in 5 out of 10 trials. The reason for the density

method's increased efficiency is that there has indeed been some improvement in the

estimate of h*(n). The algorithm is not continuously diverted from depth-first into breadth-

first search simply by virtue of picking up additional cost, as is the shortfall method.

Provided the correct path does in fact score markedly better than other paths, the algorithm

will return the correct solution without exploring the entire search tree.

How do we explain the instances when the density algorithm failed to return an

interpretation as was the case in half of the trials? WToods writes of the shortfall density

method:
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"This promotes the refocusing of attention from a region where there may
happen to be high quality accidental word matches to events whose word
match quality may not be as great, but are the best matches in their regions. If
this were not done, then many second best, third best, etc matches in the high
scoring region could be considered before any theories worked their way
across the low scoring regions." (Woods 80 p306)

Woods seems to assume in the passage cited above that there are only a few regions

where high quality accidental word matches take place. But as we saw in Chapters 5 and 6

there may be very many extraneous word strings which are homophonous with the correct

words, and which extend some if not all of the way through the utterance. Although

HWIM's lexicon contained only 1000 words, the grammar was very general: an ATN with

an estimated branching ratio of 196. This high branching ratio together with the fairly poor

performance of the acoustic-phonetic component could easily produce lattices with very

many overlapping, highly probable word strings. Many of these will include one or more

of the intended words. So the middle-out density algorithm may proceed breadth-first on

many island fronts trying out possible combinations of phonemically equivalent words.

This hypothesis about the reason for the density algorithm's failure is born out by

Paxton's results (Paxton 1977). He found thatmiddle-out methods decreased performance

on longer sentences solely because of space requirements, not because of poor hit-rate of

initial seed words. He writes:

"The bad effects of island driving on the long sentences were not caused by
an increase in the number of false alarm seeds. The average rank of the first hit
in the sequence of words for use in forming islands was 4.8, and the rank did
not increase with sentence length... For sentences 1.7 seconds or longer,
instead of an increase in the number of seeds necessary to get a hit, there was an
increase in the amount of storage consumed per island. Perhaps the greater
length allowed the islands to grow in both directions, whereas in shorter
sentences the sentence boundaries blocked one direction or the other." (p. 204)
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We noted in Chapter 4 that it is hard to predict which sentences will have very many

overlapping interpretations, that it depends on many factors including the phonemes in the

utterance, the content of the lexicon, and so on. I would conjecture that the longer

sentences tested by Paxton, and the unsuccessful sentences in the HWIM trials happened to

contain many alternative interpretations. These words would all have the same or a very

similar score and would combine exponentially into word paths.

know that

letters

no that

please let a snow that

know that

let us

no that

Figure 9.1

A partial tree of word strings

Let us see how the shortfall algorithm would search the tree in Fig. 9.1. Assume all the

branches, except the ones with that, have an actual cost of .2 and an estimated cost of .1.

that has an actual cost of .3 and an estimated cost of .2. At the beginning, all the paths

would have an estimated cost of .1 + .1 + .1 + .2 = .5. Whichever path the algorithm
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took, that path would pick up shortfall or cost of .1. Its path score would be .2 + .1 + .1 +

.2 = .6. which is greater than the estimated cost, .5, of any of the other paths. Thus, the

algorithm would backtrack to one of the apparently cheaper paths and extend that one. Even

if the estimated cost of a branch costing .1 was .0999999, the algorithm would backtrack,

exploring the search space breadth-first.

The shortfall density algorithm would pursue one interpretation depth-first until it came

to an area that scored less well, such as that.. The cost of the path would increase to (.6 +

.3)/ 4 = .225 as a word from this region was incorporated, and the algorithm would

backtrack to one of the apparently better extensions where the cost was .8/4 = .2. Each path

would be expanded in a depth-first, backtrack, depth-first, backtrack pattern until each

possible combination had been extended over the poor patch.

It is important to realise that we are not taking into account all the competing paths

produced by poor acoustic-phonetic labelling. These may well be ignored by the algorithm

if they score sufficiently poorly. We are concerned just with the exponentially increasing

"top band" of word paths which are homophonous with the correct interpretation.

In addition to the acoustic-equivalence problem, we would also expect the island-

driving aspect of the density algorithm to exacerbate the search problem. In Chapters 5 and

6 we counted only those paths which spanned the entire utterance, anchoring the beginning

of the search at the left-hand end and ignoring all paths that failed to match through to the

right-hand end. An island-driving algorithm will explore those paths that ultimately fail to

match the beginning and ending of the utterance. We would expect an anchoring of the

path at one end or the other to reduce at least a portion of the breadth-first search. Paxton's

remarks in the above passage seem to support this supposition.
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9.1.3. Conclusions

Thus it does appear that the search space can be such that an admissible algorithm will

perform in an excessively breadth-first manner. Many utterances can be parsed in a

number of ways which are phonemically similar though lexically different. This

uncertainty about lexical identity which is reflected in the acoustic scores, means that, even

when a good heuristic estimate is used, an admissible algorithm will proceed breadth-first

on a large front.

At first it seems plausible that admissible algorithms such as A* fail because the score

of incoming speech h*(n), is hard to estimate. However Pearl (1984) has shown that there

is a crucial relationship between the heuristic estimate h*(n), and the costs on the paths of a

binary tree search space and that, when most of the branches have a cost associated with

them, exponential search is inevitable. I have shown that these conditions can apply in

speech processing.

Is it possible to arrange the search space such that these conditions do not arise? We

shall now look at ways of reducing the potential combinatorial explosion of breadth-first

search.
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Delete all below a certain threshold

Figure 9.2.

Points at which the graph may be pruned

9.2. Breadth-First Search in Speech Processing

We will now discuss the breadth-first search algorithms used in HARPY, SPHINX

and RM1. We are interested in the conditions under which each system is able to reduce

the search space, and the effect of these reductions on their performance.

All three systems use search algorithms based on a dynamic programming algorithm

known as the Viterbi algorithm (Viterbi 1967). The algorithm is breadth-first; each state at

time t is advanced before updating states at t+1.
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9.2.1. HARPY: a constrained system

It is well known that HARPY avoided the combinatorics of breadth-first search by an

advantageous structuring of the search space. HARPY's use of a finite-state grammar

permitted backwards pruning since a finite-state grammar has the property that any string of

words leading to a given state is equivalent to any other string leading to that state as far as

future states are concerned. Only the highest scoring of such strings need be remembered.

In addition, the combinatorics of paths between such decision points was controlled in

HARPY by using a grammar with a low average branching ratio. The average number of

choices at each point was only 10.

However, even with such limitations the search space was too large to search

exhaustively. The algorithm was modified to allow forward pruning. This modified

algorithm is known as beam search. As we have seen an algorithm which prunes at point

B (Fig. 9. 2) can produce very similar behaviour to one which orders at these points. Why

was such forward pruning successful in HARPY and not in HWIM? The reason is that the

recognition network was arranged in such a way that acoustic similarities were minimized.

Woods writes:

"For example, What are their affiliations is in the grammar, but no other
sentences starting with What are their are possible. The only two sentences
starting with What are the are What are the titles of the recent ARPA surnotes
and What are the key phrases. These three sentences will almost certainly find
some robust difference beyond the initial three words that will reliably tell them
apart." (Woods 1982 p314)

So the HARPY search space fulfilled the conditions for successful pruning. Firstly,

most of the competing hypotheses scored sufficiently less than the correct hypothesis and
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so could be eliminated by forwards pruning from the search on acoustic grounds (see Fig.

9.2, point B), thus preventing the growth of an increasingly large band of hypotheses.

Secondly, even when some paths did have to be pursued in parallel because their scores

were above the threshold, the finite-state arrangement of hypotheses restricted the

candidates for any particular slot, and cut short the combinatorics through backwards

pruning (Fig. 9.2, point A).

9.2.2. SPHINX and RM1: more general systems

It was thought that the kind of strong reliance on grammatical structuring used in

HARPY was necessary to compensate for the generally poor level of acoustic-phonetic

processing achieved during the DARPA project (see Klatt 1977). Therefore the designers

ofmore recent systems hoped that an improvement in bottom-up recognition would permit

them to achieve good recognition rates even with less advantageously arranged grammars.

The SPHINX system (Lee 1988) and the RM1 syntactic component use similar filtering

methods at the syntactic level. Both systems use transition probabilities between

syntactically tagged form class pairs to prune the search. Unlike HARPY and HWIM

which used only acoustic scores, SPHINX and RM1 combine the a priori scores with the

conditional acoustic probabilities. The average branching ratios of these grammars were

reasonably high, compared with HARPY1.

It must be noted that the syntactic filter would first add complexity to the search space

by providing alternative syntactic tags for certain lexical items. Order, for example can

function as a noun or as a verb and the transition probabilities of both senses to following

*SPHINX's word pair grammar had a perplexity of 60. Its bi-gram grammar had a perplexity of 20.
HARPY's perplexity is 4.5 Lee defines test-set perplexity as the geometric mean of probabilities at each
decision point for the test set sentences. (Lee 1988).
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words would have to be computed. However, because both systems used information just

about adjacent words, they were able to make backwards pruning decisions after every

word pair. (i.e. they chose between so and sew after so/sew a.) Since partial

interpretations did not have to be kept distinct over stretches longer than two words the

combinatorial explosion ofword string hypotheses should have been considerably reduced.

However Fig. 9.2 reminds us of the conditions under which such pruning would not

be successful. Firstly, backwards pruning at point A is only possible without loss of

accuracy if the correct hypothesis is the highest scoring. Secondly, word hypotheses might

overlap and leapfrog each other's backwards pruning decision points. This was the case

with SPHINX and so the designers implemented beam search using forwards pruning.

However, this kind of pruning is only feasible if few of the word hypotheses have

similarly high probabilities.

The SPHINX system could prune large numbers of competing hypotheses without loss

of accuracy because the competitors were sufficiently differentiated by score. This was due

in part to the goodness of the acoustic model, but also to the smallness of the lexicon and to

the restrictions of the grammar (in comparison with RM1). The SPHINX system was

designed round a specific resource management task. It uses a 997 word lexicon, and a bi-

gram grammar extracted from 900 test sentence templates. These templates model mainly

questions and commands relating to a database system. When the syntactic component was

switched off, the error rate rose from 4% to 30%. On average one in three words of the

utterance was incorrect

In contrast, the RM1 system uses a 4,000 word lexicon and a bi-gram grammar, whose

probabilities were extracted from a large corpus of general business and government

documents. We shall now see how this larger system failed to prune successfully.
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The RM1 syntactic component was run over mid-class and fine-class transcriptions and

achieved 65.6 and 97.2 recognition rates respectively. These results (Bard et al 1987)

appear to be very good, but when one looks at the ranking of the output utterances from

which the recognition rates were computed, 30 out of the 79 best-matching utterances were

not output first, although they ranked equal first in score.

The table for the fine-class E Set is reproduced below (Table 9.1.) to show the extent

of the problem. The lowest best match was at position 27 of equally ranked hypotheses.

In the mid-class runs, 43 best-matches out of 73 utterances were not output first; 16 of

these were at or below position 10. Even when the correct word was given a high

probability, there were many other words with an equally high probability.

Even with fine-class input the syntactic component was unable to discriminate between

the intended utterance and various homophonic utterances produced by lack ofword

boundary information. (It is possible that the SPHINX system also has some of these

problems but is unaware of it Markov processes typically retain pointers only to a single

best path. The path that is output might have been any one ofmany equal interpretations.)

These results show that the problem of overlapping lexical items is pervasive even with

fine-class data and a fairly small lexicon. The bi-word filter eliminated some possibilities

but was not good enough to find a single interpretation. Although the syntactic filter could

no doubt be improved, it probably could not compensate for a 20,000 word lexicon and/or

poorer acoustic-phonetic discrimination.

It is important to bear in mind that HWIM and HARPY used only acoustic probability

scores and so were particularly susceptible to the effects of homophonic word strings.

SPHINX and RM1, which used syntactic a priori probability scores in addition to

conditional acoustic probability scores, could, in principle, tease apart the acoustically

similar strings. SPHINX was much more likely to successful in this than RM1, since

SPHINX computed its scores from a specific, limited, task domain. RMl's use of a
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general corpus could even cause the correct words in a particular utterance to be depressed

below the scores of competing homophonic phrases.

9.3. Conclusions

In this chapter we have applied graph search theory to the performance of four speech

systems. One of the aims of this thesis was to use graph search terminology to clarify

certain speech processing problems and the method has proved itself in a number of ways.

Firstly, we were able to pinpoint a particular problem that arose only in the context of a

complete system. The extent of the overlapping homophones problem was not apparent

from reports of earlier systems, which assumed the search problems were caused almost

entirely by poor front-end processing. Nor could these problems be predicted from studies

of the inherent confusability of the lexicon which concentrated on isolated words.

Secondly, the analysis of the search space showed precisely why these hypotheses fell

through the net of syntactic constraints, and what effect this had on performance. Our

analysis of the search space showed how a potentially depth-first search strategy could be

diverted into breadth-first, even given good bottom-up processing. We drew on this

analysis to explain the performances of HWIM and HARPY.

We then discussed the conditions under which breadth-first strategies with forward and

backward pruning techniques would be successful. Although bi-gram grammars allow

pruning after every two words, overlapping, acoustically similar word strings may escape

both backward and forward pruning efforts. The forward and backwards pruning points

define the limits of left and right context for a system. They are the points at which further

information will have little or no effect on the ranking of the current set of hypotheses.

SPHINX did not need more information than that provided over word pairs to distinguish
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the correct hypothesis. A larger, more general system would need considerably longer

stretches of the utterance, and/or considerably more complex top-down information.

The analysis of the search space carried out in this chapter should help to focus

attention on the discriminating requirement of top-down information in terms of the number

and similarity of hypotheses competing over a stretch of the utterance, and of the distance

between pruning points (i.e. the grammar "chunks'"), the two factors which determine the

potential combinatorial explosion of hypotheses.

Woods writes of the ARPA project:

"Although it seemed natural to expect that some word match scores should be
good enough that they could be considered correct, thereby eliminating attempts to
find alternatives to them, in fact all attempts to implement such an intuition seemed
to have led to at best indifferent results and usually to positive degradation. In
retrospect, the fact that perfect matches of other words or short word sequences can
occur by accident in completely accurate transcriptions of sentences (e.g. 'four'
within 'California') should suggest that there is no magic threshold above which
one can consider a given hypothesis correct without verifying its consistent
extension to a complete spanning theory. It seems, therefore that the absolute value
of the local quality score is not what matters in deciding the most likely
interpretation. The relative scores of competing hypotheses are more relevant, but
what really counts is the eventual quality of the complete spanning theory." (Woods
1982 p. 321)

We have shown that these word matches occur so frequently that competing hypotheses

cannot be pursued and compared over the length of the entire utterance. Sophisticated

higher-level procedures must prune these perfect, accidental word matches before they

combine exponentially into a huge space of alternative partial interpretations.



Sentence Position Correct Percentage

El 3 12/12 100.0

E2 1 13/13 100.0

E3 1 11/11 100.0

E4 1 16/16 100.0

E5 19 14/14 100.0

E6 2 10/10 100.0

E7 4 14/15 93.3

E8 15 17/17 100.0

E9 27 9/10 90.0

E10 13 18/22 81.8

Ell 1 7/7 100.0

E12 9 12/12 100.0

E13 1 6/6 100.0

E14 1 17/17 100.0

E15 1 8/8 100.0

E16 14 23/23 100.0

Table 9.1

Results of running a syntactic filter over the word graph produced from the fine'

class E set.
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10.1. Summary of Research Aims

One of the the most obvious difficulties encountered during the ARPA project was the

problem of specifying and controlling the interactions between the contributing knowledge

sources. The most successful system, HARPY, owed much of its superior performance to

the fact that the interactions were pre-compiled, "fixed" into the knowledge network.

HEARSAY-II, using the same grammar and vocabulary, performed less well. This

difference in performance was caused mainly by the explosion of partial interpretations on

the blackboard, and the difficulty of focusing attention dynamically on the best hypothesis.

The control problem was greater for larger or more general systems. HWIM, for example,

performed less well than HEARSAY-II, partly because it used a far more general grammar.

In addition to the explosion of valid, partial solutions caused by local ambiguity, there

was also the problem of error caused by poor acoustic or linguistic knowledge. It was not

obvious where to lay the blame for an error. Was poor acoustic-phonetic processing always

to blame, or were the acoustic cues sometimes simply missing from the signal?

The primary aim of this thesis was to develop a methodology that highlighted the

dynamic aspects of the speech processing task. We needed ways of representing and

analysing the interactions between the knowledge sources. This would help us to explore

ways of reducing the combinatorial explosion of valid partial hypotheses.
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In addition , since the knowledge sources not only co-operate in finding the correct

solution but also co-operate in finding incorrect solutions, we wished to study the genesis

and development of particular processing errors. We wished to explore the ways in which

left and right context from different knowledge sources could interact to reduce the search

space without excluding the correct interpretation.

In the ARPA project, a great deal of weight had been given to the contribution of

higher-level knowledge sources. All the systems used lexicons of only around 1,000

words and domain-specific vocabularies and grammars. It was felt that such constraints

were necessary to compensate for the poor understanding of bottom-up speech processing.

However, in the fifteen or so years since the project, there had been considerable

advances in speech science and phonetics. It was thought that these improvements could

support much more ambitious speech recognition machines.

We decided to focus on the interactions of various knowledge sources during the

bottom-up processing of words. We used both real speech input from an acoustic-front

end that looked for broad-, mid- and fine-class phonemes, and simulated data which

assumed the successful recognition of these categories. We used a lexicon which was four

times the size of the ones used in the ARPA project.

10.2. Results and Main Contributions

Research on the content of large lexicons encouraged the belief that an improvement to

the broad-class level could be sufficient to reduce the cohort of word candidates to a

manageable size. Zue (1985, 1986) and Nusbaum & Pisoni (1986) showed that the

structural properties of words in the lexicon could constrain considerably under-specified

phonemic input. They also claimed that these results could be extended to continuous

speech.
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Zue (1986) writes:

While the discussion leading to this model has focused on isolated words, the
model can, in principle, deal with continuous speech as well. Instead of working
with a set of word candidates, the verifier would deal with a lattice of word
candidates. Provisions would then be made to determine and compare the relative
goodness of words and word strings, subject to phonological, syntactic , and
semantic constraints."

We found that:

(i) even an accurate transcription into mid-classes or a mixture ofbroad- and

fine-class phonemic categories led to a combinatorial explosion of overlapping

word strings that spanned the entire utterance. If the transcription contained errors,

the search space would be even harder to manage.

(ii) any admissible algorithm would tend to search this space breadth-first,

unless very sophisticated higher-level knowledge was available to prune or order

the hypotheses.

The main practical contributions of this thesis are:

(i) The implementation of a specific model of Lexical Access within a flexible, graph-

based architecture.

(ii) Experimental results, using a large lexicon and different input conditions, which

have important consequences for any speech processing mechanism.
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The main theoretical contributions are:

(i) The application of graph theory to the analysis of several very different speech

processing systems.

(ii) The analysis of the major search algorithms used in speech processing in the light of

the experimental results, and a discussion of the conditions under which each algorithm

would fail.

We analysed the search space and discovered how overlapping words caused by

ambiguous word boundaries contributed to the pruning problem. The analysis made

explicit the ways in which bottom-up and top-down information, and left and right context

effects are linked, and showed how such information can be used to limit the search space.

10.3. Further Work

Lexical access models can incorporate a huge number of variables (e.g. the size of the

lexicon, its content, the specificity and accuracy of the input, the length of the utterances,

the number and complexity of the grammatical rules, etc). For the experiments described in

this thesis, we made a number of simplifying assumptions. We chose not to vary the

lexicon; a 4,000 word lexicon with multiple pronunciations was used throughout. We

devised simple but plausible (according to current linguistic opinion) input descriptions and

varied these. We did not use syntactic or semantic information, but rather discussed in the

abstract the possible constraining influences of such knowledge sources.

Thus, there are many further areas of work suggested by varying these parameters. A

few are listed below.
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1) We could use the fairly large body of data from the experimental tests to evaluate

different syntactic and semantic schemes. In particular it would be interesting to compare

different methods of parsing word graphs produced from mixed or fine class inputs.

2) We could vary the lexicon in several ways. Both TRACE and SPHINX use one

pronunciation per word together with fuzzy matching to capture many phonological

variations. We could see whether such a representation would reduce the number of

mismatched words without eliminating the correct word.

3) We could vary the processing e.g. by implementing some of the characteristics of the

TRACE system on the larger scale permitted by the Chart. Some researchers in

connectionism are becoming interested in graph-based solutions to the stable-state problem.

Shastri, at a recent seminar, discussed one pass, acyclic, directed, graph search as a more

promising solution than e.g. the computationally expensive alternative of simulated

annealing. We could connect the competing and confirmatory edges in the word graphs

using inhibitory and excitatory links, and then test different distributed search methods. It

is interesting that the graph-based methods which have proved so useful here also appear to

have an application in the parallel distributed processing paradigm.

10.4. Final Comments

Some of the results presented here may appear to be negative, but there are also many

positive aspects to the work. Firstly, we have demonstrated the usefulness of the Chart

architecture in exploring reasonably large and general speech processing problems. Most

importantly, however, we have shown how important it is to discover the potential limits of

an area of research. While acoustic-phonetic and other lower-level areas of research present
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a great many challenges, the higher-levels of the system should not be neglected. We have

shown that, even with a substantial improvement in front-end processing, general speech

recognition will fail without the immediate application of syntactic, semantic and prosodic

constraints.



Appendix 1. Phonemic Symbols

Phonemes

Vowels Dipthongs Consonants

N bid /ei/ day /P/ pea
M bead /ou/ go bee
M bed /au/ cow N tea

/a/ bad /ai/ eye /d/ dye
/aa/ bard /oi/ buy fcl key
/uh/ bud A@/ beer /§/ guy
l@@l bird /e@/ bare /m/ me

/<§>/ the /u@/ tour M name

/o/ pot /ng/ sing
/oo/ port /fj fan
M put M van

/uu/ boot /th/ thin
/dh/ then
/s/ sea

hi zoo

/shJ she
/zh/ beige
/chJ chew
rp judge
M hat
/w/ way
ly,l yes
N lay/
Irl ray



1

Mid-class Phoneme members

P
B
S
Z
F
V
N
L
G
D

FV
BV
CV

voiceless stop
voiced stop
voiceless sibilant fricative
voiced sibilant fricative
voiceless non-sibilant fricative
voiced non-sibilant fricative
nasal
liquid
glide
dipthong

front vowel
back vowel
central vowel

/p,/t/,/k/
lb/, /d/, Igl
/s/, /sh/, /ch/
/z/,/zh/,/jh/
/f,/th/,/h/
/v/,/dh/
/m/, /n/, /ng/
NJ.r/
/y/, /w/
/ai/, /ei/, /oi/, /au/, /ou/, /i@/,
/e@/, /u@/
/ri/, /e/, /a/
/aa/, /o/, /oo/, /u/, /uu/
/i/, /@@/, /@/, /uh/

Broad-class Phoneme members

P
B
NSF
N

voiceless stop
voiced stop
non-sibilant fricative
nasal

/p,/t/,/k/
/b/, /d/, Igl
/f/,/v/,/th/,/dh/
/m/, /n/, /ng/



Appendix 2. Test Sentences

SET A. Phonetically Dense Sentences

1. Our lawyer will allow your rule.

2. I'm naming one man among many.

3. I'm well known among men.

4. When will our yellow lion roar?

5. Bobby did a good deed.

6. Did George do a good job?

7. Patty cut up a potato cake.

8. Katie tacked up a cute picture.

9. Which tea party did judge Baker go to?

10. They use our azure vials.

11. Three chefs face a thief.

12. His vicious father has seizures.

13. Weave me a web above a poppy.

14. The judge's short decision really touched the youth

15. A thick-set officer pitched out her hash.

16. Does John believe you were measuring the gun?
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SET B Mid-Class Unique Sentences

1. Using natural speech causes problems that differ from those that occur with

careful speech.

2. If everyone helped, this wouldn't require tremendous effort!

3. Such industries seldom survive without government aid.

4. Yesterday English professional football attracted splendid newspaper reports.

5. Especially complicated programs often involved several tests.

6. Perhaps additional laboratory research wasn't altogether necessary.

7. Monkeys enjoy apples, oranges, bananas, etc.

8. Staff with serious difficulties sometimes leave rather suddenly.

9. Scientists couldn't identify that particular skeleton correctly.

10. Generally speaking, adult education classes receive huge public support.

11. Nobody noticed its wonderful flowers.

12. Various international market figures indicate considerable growth.

13. Examine that patient quickly.

14. Throughout Africa farmers face terrible conditions with few resources.

15. Shorter sentences appear helpful.

16. Under that system, studying complex subjects presents little trouble.
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SET C. Golden Passage Sentences

1. Those species which make trees are trained to a central leader.

2. There are many kinds.

3. Remove all the branches growing between these as well as any growing in other

directions.

4. Spread the remaining branches out and tie them to horizontal training wires.

5. Their forms are also grown against walls.

6. Support the main stem.

7. If the main stem is not long enough, train in a leader.

8. Keep to a single leader.

9. Paint on a thick layer.

10. Branches are removed until there is just one left.

11. At the first signs of disease, cut the affected branches back to healthy ripe

wood.

12. After a few months, tie in more growth.

13. Cut hard back to this in spring.

14. Sometimes they are grown for their leaves and bark.

15. Burn all wood covered by silver leaf disease as soon as possible.

16. During the following growing season, remove all the larger branches until

sufficient length has been gained.
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SET D LOB-H Sentences

1. Their experience and knowledge in the wide field of business will be greatly

missed.

2. The price ranges for milk, cheese, sugar, bread and flour were very narrow.

3. Matters of particular medical interest are discussed in greater detail in the

industrial health report.

4. This will prove a useful source of income to the group.

5. Three systems of local government exist side by side.

6. A brief account of activities in this field during the year is given in the following

paragraphs.

7. This does not mean, however, that larger units would not be better if they could

be set up,

8. You may wonder what happens to our boys and girls and the answer can best be

found in the pages of the old boys' and girls' magazine.

9. This arrangement has proved helpful particularly when the teacher of the class

takes both sections.

10. The following paragraphs contain a brief account of the measures.

11. The authority which has to deal with the planning, traffic and road problems of

Greater London must exercise a real responsibility.

12. It will also depend on whether workers want to set their own standards.

13. We decided, however, not to take evidence from outside bodies.

14. It is to be expected that both parties will try to express these ideas in behaviour.

15. Training is too rarely continued and developed.

16.1 will touch upon that point again in a moment.
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SET E Basic Corpus Sentences

I.1 shall look forward very much to hearing from you about this.

2. Your name is mentioned in the first paragraph of the deed of trust.

3.1 am sorry you were unable to contact me by telephone.

4. Details still need to be filled in, because I was not sure how to do these.

5.1 have no doubt that it will be a most interesting and successful occasion.

6. Many thanks for sending me the copy of your letter.

7. We may only hope that the books will turn out to be ofmore use.

8. Although I like the approach very much myself, I have had no experience of

teaching with it.

9.1 look forward to your reply as soon as possible.

10. These are not far from each other and from the training point of view they more

or less represent a single unit.

II. The order goes in by late November.

12. Students will see it as a relatively fresh source of research material.

13. The next will be around January.

14.1 hope you will be able to attend this meeting and that your are now keeping

well.

15. The current building will no doubt be discussed.

16. It was, as you may remember, discussed at length a year ago and we hope the

interest shown then will still be there.



8
3
3
1
0
0
0

15

8
5
2
0
1
1
0

17

16
2
1
0
0
0
0

19

16
2
2
1
0
0
0

Category Initial Mid Final

Correct 332
Mislabelled 1 1 1

Missing 1 1 1
Merged 100
Split 0 0 0
Path-Error 000
Other 000

Totals 654

Correct 233
Mi siabel1ed 3 1 1

Missing 1 0 1
Merged 000
Split 010
Path-Error 100
Other 0 0 0

Totals 755

Correct 664
Mislabelled 0 0 2

Missing 0 1 0
Merged 0 0 0
Split 0 0 0
Path-Error 000
Other 000

Totals 676

Correct 574
Mislabelled 011
Missing 1 1 0
Merged 010
Split 0 0 0
Path-Error 000
Other 000

Totals 6 10 5



9
0
0
1
0
0

24

8
4

3
0
0
1
0

16

13
1
0
0
0
1
0

15

11
6
2
0
1
1
0

21

Category Initial Mid Final

Correct 554
Mislabelled 324

Missing 0 0 0
Merged 000
Split 0 1 0
Path-Error 000
Other 000

Totals 888

Correct 233
Mislabelled 1 1 2

Missing 2 0 1
Merged 000
Split 000
Path-Error 010
Other 000

Totals 556

Correct 544
Mi siabel1ed 0 1 0

Missing 0 0 0
Merged 000
Split 0 0 0
Path-Error 100
Other 000

Totals 654

Correct 452
Mislabelled 042

Missing 1 1 0
Merged 000
Split 0 1 0
Path-Error 010
Other 000

Totals 5 12 4



Utterance Category Initial Hid Final Totals
evala!3

Correct 2 •7 1 10

Mislabelled 5 0 1 6

Missing 0 0 2 2

Merged 0 0 0 0

Spl it 0 0 0 0
Path-E rror 0 0 0 0
Othe r 0 0 0 0

Totals 7 7 4 18

evalal4
Correct 2 6 3 11

Mislabelled 5 6 5 16
Missing 1 1 0 2
Me rged 1 0 1 2

Split 0 0 0 0
Path-E rror 0 0 0 0
Other 0 0 0 0

Totals 9 13 9 31

evala!5
Correct 6
Mislabelled 1

Missing 0
Merged 0
Split 0
Path-Error 0
Other 0

6
4
0
0
0
0
0

15
8
0
0
0
0
0

Totals 10 23

evalal6
Correct 3
Mislabelled 2

Missing 3
Merged 1
Split 0
Path-Error 0
Other 0

11
5
8
1
0
0
0

Totals 25



Utte ranee

evalbOl

Category Initial

Correct 7
Mi siabelled 3

Missing 4
Merged 0
Split 0
Path-Error 0
Other 0

Totals 14

Hid

15
4
8
0
2
1
0

30

Fi nal

5
g
4
0
0
0
0

18

Totals

27
16
16
0
2
1
0

62

evalb02
Correct 2
Mislabelled 4

Missing 2
Merged 0
Split 0
Path-Error 0
Other 0

Totals 8

4

11
4
0
0
0
0

19

9
2
1
0
0
0
0

12

15
17
7
0
0
0
0

39

evalb03
Correct 4
Mislabelled 2

Missing 1
Merged 0
Split 1
Path-Error 0
Other 0

Totals 8

5
7
8
0
0
0
0

20

7
4
0
1
0
1
0

13

16
13
9
1
1
1
0

41

evalb04
Correct 4
Mislabelled 2

Missing 2
Merged 0
Sp1it 0
Path-Error 1
Other 0

19
7
9
2
0
1
0

5
4
5
0
1
0
0

28
13
16
2
1
2
0

Totals 38 15 62



Utterance Category Initial Mid Final Totals

evalb05
Correct 5 14 8 27
Mi siabelled 2 4 10 16

Missing 0 2 3 5
Me rged 0 2 2 4

Split 0 0 0 0
Path-E rror 1 1 0 2
Othe r 0 0 0 0

Totals 8 23 23 54

evalb06
Correct 4 9 8 21

Mi siabel1ed 3 11 8 22

Missing 1 3 1 5
Me rged 1 2 0 3

Spl it 0 0 0 0

Path-E rror 0 0 1 1
Othe r 0 0 0 0

Totals 9 25 18 52

evalb07

evalb08

Correct 2 7 8 17
Mislabelled 3 7 4 14

Missing 1135
Merged 0303
Split 0000
Path-Error 1001
Other 0000

Totals 7 18 15 40

Correct 4 9 5 18
Mislabelled 1 11 3 15

Missing 3429
Merged 0213
Split 0000
Path-Error 0000
Other 0000

Totals 8 26 11 45



Utte ranee

evalcOl

evalc02

evalc03

evalc04

Category Initial Mid Final Totalj

Correct 6 11 4 21
Mi siabelled 3 1 7 11

Missing 2 2 2 6

Merged 0 0 2 2

Split 0 1 0 1
Path-Error 0 0 0 0
Other 0 0 0 0

Totals 11 15 15 41

Correct 3 2 2 7
Mi siabel1ed 1 1 2 4

Missing 0 1 1 2
Me rged 0 0 0 0

Split 0 0 0 0
Path-Error 0 0 0 0
Othe r 0 0 0 0

Totals 4 4 5 13

Correct 7 8 13 28
Mi siabel1ed 4 3 9 16

Missing 4 9 2 15
Me rged 0 0 0 0
S p 1 it 0 0 0 0
Path-Error 0 0 0 0
Othe r 0 0 0 0

Totals 15 20 24 59

Correct 5 7 10 22
Mislabel led 2 4 8 14

Missing 5 8 3 16
Me rged 0 0 2 2

Split 0 1 0 1
Path-E rror 0 0 0 0
Othe r 0 0 0 0

Totals 12 20 23 55



Utte ranee

evalc05

evalc06

Category Initial

Correct 3
Mislabelled 3

Missing 1
Merged 0
Split 0
Path-Error 0
Other 0

Totals 7

Correct 3
Mislabelled 0

Missing 1
Merged 0
Split 1
Path-Error 0
Other 0

Totals 5

Mid

5
1
1
0
0
1
0

4
0
1
0
0
0
0

Final

4
5
1
1
0
0
0

11

Totals

12
9
3
1
0
1
0

26

9
2
3
0
1
0
0

15

evalc07
Correct 4
Mislabelled 6

Missing 2
Merged 1
Split 0
Path-Error 0
Other 0

Totals 13

10
2
2
3
0
0
0

17

20
9
5
4

0
1
0

39

evalc08
Correct 4
Mislabelled 1

Missing 0
Merged 0
Split 0
Path-Error 1
Other 0

2
4
1
0
0
0
0

9
6
1
0
0
2
0

Totals 18



13
5
1
1
0

60

25
13
7
2
2
2
0

51

43
24
6
0
0
3
0

76

14
16
3
1
1
0
0

35

Category Initial Mid

Co rrect 3 6
Mi siabelled 8 7

Missing 3 4
Me rged 1 0

Split 1 0
Path-E rror 0 1
Othe r 0 0

Totals 16 18

Correct 7 8
Mislabelled 2 3

Missing 4 3
Me rged 0 0

Split 1 0
Path-Error 0 0
Othe r 0 0

Totals 14 14

Correct 10 17
Mislabelled 4 13

Missing 1 3
Me rged 0 0

Split 0 0
Path-E rror 0 1
Othe r 0 0

Totals 15 34

Correct 3 4
Mislabelled 6 4

Missing 2 1
Me rged 1 0
Split 0 0
Path-E rror 0 0
Othe r 0 0

Totals 12 9

Fi nal

10
6
6
4
0
0
0

26

10
8
0
2
1
2
0

23

16
7
2
0
0
2
0

27

7
6
0
0
1
0
0

14



Utterance

evald05

Category Initial Mid Final Totals

evald06

evald07

evald08

Correct 6 5 7 18
Mi siabel1ed 2 6 8 16

Missing 1 2 0 3
Me rged 2 0 1 3

Spl it 1 0 0 1
Path-Error 0 1 2 3
Othe r 0 0 0 0

Totals 12 14 18 44

Correct 4 7 9 20
Mislabelled 11 9 14 34

Missing 2 4 4 10

Merged 3 2 2 7

Split 0 0 0 0
Path-E rror 0 1 0 1
Othe r 0 0 0 0

Totals 20 23 29 72

Correct 5 7 7 19
Mislabelled 11 • 5 15 31

Missing 3 2 3 8
Me rged 8 2 5 15

Split 0 0 0 0
Path-Error 0 0 0 0
Othe r 0 0 0 0

Totals 27 16 30 73

Correct 11 4 10 25
Mislabel1ed 13 8 14 35

Missing 3 10 7 20
Me rged 8 6 4 18

Split 0 0 1 1
Path-Error 0 0 1 1
Othe r 0 0 0 0

Totals 35 28 37 100



Utterance

evaleOl

evale02

evale03

evale04

Category Initial Mid Final Total!

Correct 4 6 2 12
Mi siabelled 4 6 6 16

Missing 4 4 3 11

Me rged 0 2 2 4

Split 0 0 0 0
Path-E rror 0 0 0 0
Othe r 0 0 0 0

Totals 12 18 13 43

Correct 5 9 11 25
Mislabelled 6 1 3 10

Missing 2 2 4 8
Me rged 0 1 1 2

Spl it 0 1 0 1
Path-E rror 0 0 0 0
Othe r 0 0 0 0

Totals 13 14 19 46

Correct 6 6 8 20
Mi siabel1ed 2 3 5 10

Missing 2 2 2 6
Me rged 0 2 2 4

Spl i t 0 0 0 0

Path-E rror 0 0 0 0
Othe r 0 0 0 0

Totals 10 13 17 40

Correct 8 8 6 22
Mislabelled 4 2 6 12

Missing 4 2 4 10
Me rged 1 0 2 3
Sp 1 i t 0 0 0 0
Path-E rror 0 0 0 0
Othe r 0 0 0 0

Totals 17 12 18 47



Utterance

evale05

Category Initial Mid Final Totals

evale06

evale07

evale08

Correct 4 10 10 24
Mi siabel1ed 7 4 5 16

Missing 3 2 1 6
Me rged 4 0 1 5

Split 0 0 0 0
Path-E rror 1 0 0 1

Othe r 0 0 0 0

Totals 19 16 17 52

Correct 7 6 8 21

Mis1abelled 2 1 3 6

Missing 1 1 4 6
Me rged 0 0 1 1

Split 0 0 0 0
Path-E rror 0 0 0 0
Othe r 0 0 0 0

Totals 10 8 16 34

Co rrect 6 5 6 17
Mi siabel1ed 7 3 7 17

Missing 2 0 2 4

Me rged 1 0 2 3

Spl i t 0 0 0 0
Path-E rror 0 1 1 2
Othe r 0 0 0 0

Totals 16 9 18 43

Correct 5 9 7 21
Mislabel led 9 9 15 33

Missing 3 1 1 5
Me rged 4 3 3 10

Spl it 0 1 0 1
Path-E rror 0 1 0 1
Othe r 0 0 0 0

Totals 21 24 26 71



Utte ranee

evale05

evale06

evale07

evale08

Category Initial Mid Final Totals

Correct 4 10 10 24
Mi siabelled 7 4 5 16

Missing 3 2 1 6

Me rged 4 0 1 5

Split 0 0 0 0

Path-Error 1 0 0 1

Othe r 0 0 0 0

Totals 19 16 17 52

Correct 7 6 8 21
Mislabelled 2 1 3 6

Missing 1 1 4 6

Me rged 0 0 1 1

Split 0 0 0 0

Path-Error 0 0 0 0

Other 0 0 0 0

Totals 10 8 16 34

Correct 6 5 6 17
Mislabel1ed 7 3 7 17

Missing 2 0 2 4

Merged 1 0 2 3

Split 0 0 0 0

Path-Error 0 1 1 2

Othe r 0 0 0 0

Totals 16 9 18 43

Correct 5 9 7 21
Mi siabel1ed 9 9 15 33

Missing 3 1 1 5

Me rged 4 3 3 10

Split 0 1 0 1

Path-E rror 0 1 0 1

Other 0 0 0 0

Totals 21 24 26 71



Utterance Category Initial Mid Final Totals

TOTALS
Correct 216 318 279 813
Mi siabelled 170 186 243 599

Missing 83 117 87 287
Me rged 38 31 45 114

Split 5 9 4 18
Path-Error 8 14 10 32
Other 0 0 0 0

Totals 520 675 668 1863



Appendix 4

Description of LA Errors

EVALA01 Our lawyer will allow your rule

Our Correct and accessed

lawyer Failed on missing Glide and Final Cvowel
will No segments found
allow Initial two phonemes not found
your No segments found
rule Vowel found, but initial and Final Liquids missing.

EVALA02 I'm naming one man among many

I Mislabelled Dipthong
am Mislabelled Nasal

naming Missing initial and mid Nasals
one Missing initial Glide only
man Missing Final Nasal only
among Found First CVowel only
many Vowels found. Nasals mislabelled as B's.

EVALA03 I'm well known among men

I Mislabelled
am Correct, but as no match to initial word, no words found
well All Mislabelled
known Final Nasal Mislabelled

among Only First CVowel Correct
men Final Nasal Mislabelled

EVALA04 When will our yellow lion roar

When First Glide mislabelled
will All mislabelled
our Correct and accessed

yellow- Vowels correct
lion Last syllable correct
roar Correct but initial Liquid overlaps Final Nasal of lion

EVALA05 Bobby did a good deed

Bobby Both B's missing. Vowels correct
did Initial B correct.

a Mislabelled

good Correct and accessed
deed Initial B merged. Final B mislabelled

EVALA06 Did George do a good job

Did

George
do

None correct
BVowel split. Z's as F and S
B as P. Vowel correct



a

good
job

Merged with a previous CV labelling
Correct and accessed
Correct apart from first phoneme

EVALA07 Patty cut up a potato cake

Patty Correct and accessed
cut Correct and accessed

up P Mislabelled as B
a Correct and accessed

potato CVowel missing and BVowel mislabelled, otherwise correct
cake Correct and accessed

EVALA08 Katie tacked up a cute picture

Katie Correct and accessed
tacked Correct but final stops merged
up Correct and accessed
a Missing
cute D and BV mislabelled

picture Both CVowels mislabelled

EVALA09 Which tea party did judge Baker go to

Which Only final S correct
tea Correct and accessed
party Correct, but first vowel split
did Only initial B correct
judge Only CVowel correct
Baker Initial and final phonemes incorrect
go Correct
to Vowel incorrect

EVALA10 They use our azure vials

They V missing, FVowel correct
use Only D missing
our L missing
azure S for Z. Path error on too small initial vowel
vials Only CVowel found



EVALA11 Three chefs face a thief

Three Only the L was missing, but because the initial F was

split in such a way that it formed an FF path, no words
were accessed at all.

chefs Correct
face Correct
a Correct, but not long enough to form a path
thief Correct

EVALA12 His vicious father has seizures

His CVowel mislabelled,
vicious Second syllable correct
father First syllable correct
has Vowel approximately in right place. Z labelled as S and

merged with following S.
seizures First syllable correct

EVALA13 Weave me a web above a poppy

Weave Only FVowel correct
me Correct and accessed
a Given as BVowel
web Only FVowel correct
above Initial and Final phoneme incorrect
a Given as BVowel

poppy Correct and accessed

EVALA14 The judge's short decision really touched the youth

The Fricative missing and CVowel mislabelled
judge's Z's given as B's. Final Z merged with following S
short Correct and accessed despite previous errors
decision Initial B merged with previous P.
really CVowels given as Fvowels
touched Correct but not accessed because of previous errors
the Covered by FVowels
youth FVowel continues upto the F, which is correct

EVALA15 A thick-set officer pitched out her hash

A Correct but too far into utterance
thick-set Only the first CVowel mislabelled
officer Second and third vowels mislabelled otherwise correct
pitched Only CVowel incorrect
out P given as B
her Correct and accessed
hash Both fricatives mislabelled



EVALA16 Does John believe you were measuring the gun

Does Only CVowel correct. Final Z merged with following and
labelled P.

John Only BVowel correct
believe Vowels correct

you Vowel correct
were Correct
measuring FV and final N correct only
the Covered only by previous N
gun Final N given as B otherwise correct



splendid
newspaper
reports

First syllable correct apart from missing L
First syllable covered by FV.
First syllable covered by FV Final P and S correct

EVALB05 Especially complicated programs often involved several
tests

Especially

complicated

programs

often
involved
several
tests

Initial CV given as FV. Remainder correct apart from
mislabelled CV and L in 3rd syllable
Correct up to missing N. Remainder correct apart from
missing vowels and L
Inital P merged with hypothesis for previous phoneme
causing path error. Missing L's amongst other
problems
Correct but word beginning not hypothesized
Initial CV given as BV. N correct but also cover V
First 2 phonemes correct, the rest covered by N
All correct but gap between FV and S so not accessed

EVALB06 Perhaps additional laboratory research wasn't altogether
necessary

Perhaps
additional

laboratory
research

wasn't

altogether
necessary

All correct apart from F mislabelled as S
First 2 phonemes correct; mislabelled CV then correct
S. Last syllable given as BV
Missing L and CV.
Initial L and CV mislabelled Mid S and CV correct but
a gap betweeen them
Only N correct
Missing L, amongst others
First 2 syllables correct apart from missing CV. Last
syllable covered by S

EVALB07 Monkeys enjoy apples, oranges, bananas, etc.

Monkeys Initial N missing. First syllable covered by BV, but
second is correct

enjoy Initial CV mislabelled. Z covered by previous N
apples First 2 phonemes correct but large gap filled with Z's
oranges All mislabelled
bananas Initial P given as B. Of remaining 6, 4 correct
etc Initial syllable correct, then mislabelled FV, correct P,

last 2 phonemes missing

EVALB08 Staffwith serious difficulties sometimes leave rather suddenly



Staff PS sequence at utterance beginning stopped all access
otherwise staffwould have been correct

with Missing G and mislabelled F
serious First 2 phonemes correct. L missing. Both CV's

covered by previous FV
difficulties First 2 phonemes mislabelled
sometimes Initial S correct but also covers previous Z..

Following CV and N mislabelled
leave Whole word covered by (correct) FV hypothesis
rather Missing L and V, but vowels correct
suddenly Only initial S correct



EVALC01 Those species which make trees are trained to a central leader

Those Initial V mislabelled

species Correct apart from final Z
which Initial 2 phonemes labelled L
make Initial N mislabelled
trees Initial P merged with previous stop,

L missing, FV appears to be split, Z given as S
are Correct
trained Correct apart from mislabelled L
to BV mislabelled
a Correct
central Initial S missing. Only FV and X correct
leader Initial L missing. FV and B correct, but final CV

mislabelled

EVALC02 There are many kinds

There Initial V mislabelled
are Correct
many Correct apart from final FV given as BV
kinds Only first and last phonemes correct

EVALC03 Remove all the branches growing between these as well
as any growing in other directions

Remove Initial L and CV missing
all Both phonemes mislabelled
the Both labelled as BV
branches B and L missing
growing Initial B labelled P, L missing, otherwise

correct
between CV and G misssing otherwise correct
these Initial V missing
as CV correct, Z given as S
well All incorrect
as Correct and accessed
any Missing X" otherwise correct
growing Initial B correct but most of remainder

mislabelled
in C V missing
other Missing V only
directions First 2 syllables correct apart from mislabelled

CV and L.

EVALC04 Spread the remaining branches out and tie them to horizontal training
wires

Spread Initial 2 phonemes correct. L and final B missing
the V missing
remaining Initial L and CV mislabelled. Remainder correct

but FV split
branches Initial B correct. L missing. Last syllable



covered by S
out Correct and accessed
and Covered by B
tie Inital P given as B. D correct
them All incorrect
to CV given as BV
horizontal 2 BV's and P correct only
training Missing L between correct P and FV. Last syllable

mislabelled
wires Final S only correct

EVALC05 Their forms are also grown against walls

Their V mislabelled
forms F and B V correct but a gap between, N and Z covered

by B
are CV covered by previous B, L mislabelled
also Correct

grown Missing L
against Correct apart from First CV
walls Mislabelled

EVALC06 Support the main stem

Support Missing CV between correct S and P. Mislabelled BV
before correct P

the Missing
main Correct and accessed
stem Correct apart from last N given as B

EVALC07 If the main stem is not long enough, train a leader

If Missing initial CV. F correct. P F sequence means
no words accessed

the V labelled as F, merged with previous phoneme
main correct but FV overlaps with first N causing path

error

stem Correct apart from final N. FV continues on over next
word

is Covered by previous FV
not Correct but not accessed because of utterance initial

error

long Only BV correct
enough Initial CV, N covered by FV, rest correct
train P covered by previous F, and L missing
a Mislabelled as FV
leader Mislabelled L and Final CV

EVALC08 Keep to a single leader

Keep Correct, but gap between initial P and FV
to Correct and accessed
a Correct but overlaps last BV
single Mislabelled CV between correct S and N. 2nd syllable

mislabelled



leader Only first FV correct. L mislabelled



girls B, CV, L covered by B, Z as F
magazine Previous F continues upto B, which is correct. Rest

mislabelled



only Only N correct
hope F mislabelled. BV and P correct but separated

that
by gap
V and P mislabelled

the Missing
books Correct and accessed
will Mislabelled
turn Correct but gap between FV and N
out Correct and accessed
to P merged with previous P, FV for CV
be B correct, FV for CV
of Mislabelled
more Correct but gap between N and BV
use Mislabelled apart from S

EVALE08 Although I like the approach very much myself, I have had
experience of teaching with it

Although Mislabelled
I Mislabelled
like Mislabelled apart from P
the V mislabelled, FV correct
approach Only P correct
very Only FV correct
much Correct apart from A
myself Only S and F correct
I Covered by previous F
have Mislabelled
had Correct but FV split
no N correct, FV for BV
experience S,P correct, rest mislabelled
of Mislabelled
teaching First 3 phonemes correct, but gap between

FV and S. Rest mislabelled
with Mislabelled
Jt P correct



Appendix 5

Paths through Word Lattice

Utterance

EVALA01
EVALA02
EVALA03
EVALA04
EVALA05
EVALA06
EVALA07
EVALA08
EVALA09
EVALA10
EVALA11
EVALA12
EVALA13
EVA1.A14
EVALA15
EVALA16

EVALB01
EVALB02
EVALB03
EVALB04
EVALB05
EVALB06
EVALB07
EVALB08
EVALB09
EVALB10
EVALB11
EVALB12
EVALB13
EVALB14
EVALB15
EVALB16

EVALC01
EVALC02
EVALC03
EVALC04
EVALC05
EVALC06
EVALC07
EVALC08
EVALC09
EVALC10
EVALC11
EVALC12
EVALC13
EVALC14
EVALC15
EVALC16

FINE-CLASS

3.413E04
1.092E03
1.064E03
4.000E00
2.OOOEOO
3.000E00
3.OOOEOO
4.000E01
8.OOOEOO
2.OOOEOO
4.OOOEOO
3.200E01
6.OOOEOO
2.OOOEOl
1.OOOEOO

1.200E01
3.900E01
2.OOOEOO
1.080E02
4.OOOEOO
2.340E02
2.100E01
1.200E01
6.OOOEOO
2.400E01
1.OOOEOO
1.980E02
3.OOOEOO
1.080E02
1.800E01
2.400E01

1.440E02
1.900E01
2.700E04
4.082E04
3.OOOEOl
9.OOOEOO
2.376E03
2.400E01
6.OOOEOO
4.752E03
4.800E02
1.050E02
5.OOOEOO
1.440E03
1.800E03
3.534E06

NID-CLASS

1.971E08
3.47 IE 14
1.666E10
8.771E08
1.964E05
5.512E03
1.773E09
1.471E07
1.178E09
5.630E03
5.600E01
2.898E04
2.821E07
1.986E07
5.171E08
1.586E10

2.612E13
1.026E12
3.399E10
5.146E16
3. 651E12
2.835E19
3.378E15
5.424E09
4. 735E15
6.010E15
1.593E10
1.003E19
2.180E04
1.597E12
1.882E07
3.267EU

9.962E12
1.203E04
2.749E22
2.547E19
1.350E06
7.712E05
3.393E16
4.164E07
S.600E06
3.651E07
2.458E12
1.624E05
8.122E05
1.243E08
7.682E11
1.060E23

RM1-DATA

1.814E09
7.680E11

LA FAILURE
9.601E15
1.066E06
1.151E06
5.386E09
4.009E08
1.329E13
1.401E11

LA FAILURE
1.410E09
2.462E12
3.891E07
5.974E10
2.004E10

5.808E04
2.253E05
1.097E15
6.441E13
6. 707E18
6.687 E18
2.125E05

LA FAILURE
1.183E21
2.640E04
1.139E11

. 2.526E05
6.426E06
1.661E14
5.196E08
4.017E10

3.608E13
6.722E05
6.794E24
1.871E20
1.257E11
2.093E04

LA FAILURE
8.131E07
8.473E05
2.474E13
9.518E15
1.879E13
1.216E08
1.029E10
7.761E10
3.145E19



EVALD01 1.536E03 4.840E16

EVALD02 6,336E03 1.229E16 3.435E20

EVAL003 8.064E04 2.329E15 7.176E27

EVALD04 8,OOOEOO 9.737E08 3.600E17

EVALD05 3.200E01 5.463E07 LA FAILURE

EVALD06 3.552E05 1.102E22 1.592E25

EVALD07 8.160E02 7.372E17 3.691E09

EVALD08 6.370E07 1.589E32 3.136E03

EVALD09 1.152E03 1.334E16 5.750E19

EVALDIO 4.OOOEOl 6.077E16 2.927E11

EVALD11 7.782E04 5.027E31 5.650E16

EVALD12 2.400E02 7.482 E18 1 .921E25

EVALD13 1.800E01 3.853E12 7.750E15

EVALD14 .
1.728E03 8.753E13 5.774E05

EVALD15 9.600E02 2.094E13 1.472E14

EVALD16 1.992E03 7.396E14 3.576E12

EVALEOl 3.600E01 6.459E12 5.416E08

EVALE02 2.000E02 1.24 IE 14 3.590E15

EVALE03 5.760E02 3.765E16 9.591E13

EVALE04 1.000E02 8.153E13 6,581E18

EVALE05 4.480E02 1.129E17 1.063E06

EVALE06 8.640E02 5.365E14 8.980E15

EVALE07 6.720E02 2.146E15 2.136E19

EVALE08 1.79 2 E 0 3 1 . 012 E19 2.500E13

EVALE09 3.000E03 5 .402E10 4.554E07

EVALE10 6.336E04 1.122E28 8.095E19

EVALE11 3.OOOEOl 5.959E09 1 .205E06

EVALE12 1.600E02 2. 155E14 LA FAILURE

EVALE13 1.800E01 1.396E06 3.107E10

EVALE14 1.659E05 8.449E20 1.043E12

EVALE15 2.400E01 3.326E09 1.128E14

EVALE16 9.600E02 4.807E26 3.983E30

AVERAGE PATHS: 8.623E05 2.648E30 5.393E28
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