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Abstract 

The aim of supervised learning is to approximate an unknown target function 
by adjusting the parameters of a learning model in response to possibly noisy 
examples generated by the target function. The performance of the learning model 
at this task can be quantified by examining its generalization ability. Initially the 
concept of generalization is reviewed, and various methods of measuring it, such as 
generalization error, prediction error, PAC learning and the evidence, are discussed 
and the relations between them examined. Some of these relations are dependent 
on the architecture of the learning model. 

Two architectures are prevalent in practical supervised learning: the multi -layer 
perceptron (MLP) and the radial basis function network (RBF). While the RBF 
has previously been examined from a worst -case perspective, this gives little insight 
into the performance and phenomena that can be expected in the typical case. 

This thesis focusses on the properties of learning and generalization that can be 
expected on average in the RBF. 

There are two methods in use for training the RBF. The basis functions can be 
fixed in advance, utilising an unsupervised learning algorithm, or can adapt during 
the training process. For the case in which the basis functions are fixed, the 
typical generalization error given a data set of particular size is calculated by 

employing the Bayesian framework. The effects of noisy data and regularization 
are examined, the optimal settings of the parameters that control the learning 
process are calculated, and the consequences of a mismatch between the learning 
model and the data -generating mechanism are demonstrated. 

The second case, in which the basis functions are adapted, is studied utilising the 
on -line learning paradigm. The average evolution of generalization error is calcu- 
lated in a manner which allows the phenomena of the learning process, such as the 
specialization of the basis functions, to be eludicated. The three most important 
stages of training: the symmetric phase, the symmetry- breaking phase and the 
convergence phase, are analyzed in detail; the convergence phase analysis allows 
the derivation of maximal and optimal learning rates. Noise on both the inputs 
and outputs of the data -generating mechanism is introduced, and the consequences 
examined. Regularization via weight decay is also studied, as are the effects of the 
learning model being poorly matched to the data generator. 

iv 



Contents 

1 

2 

Introduction 
1.1 Supervised Learning in Neural Networks 

1.2 The RBF Network 

1.3 Structure of the Thesis 

Generalization 

1 

1 

3 

7 

9 

2.1 What is Generalization? 9 

2.2 Measuring Generalization Ability 11 

2.2.1 Prediction Error 11 

2.2.2 Generalization Error 14 

2.2.3 PAC Learning 15 

2.2.4 Evidence 17 

2.3 Relating Measures of Generalization 18 

2.3.1 Prediction Error vs Evidence 18 

2.3.2 Prediction Error vs Generalization Error 20 

2.3.3 Generalization Error vs Evidence for the RBF 21 

3 Stochastic Learning 22 

3.1 RBF Architecture and Training Methodology 23 

3.1.1 Data Generation 25 

3.1.2 The Training Algorithm 26 

3.2 Generalization Error 27 



3.3 

3.4 

Calculation of Generalization Error 

Analysis of Generalization Error 

30 

38 

3.4.1 Noiseless Training Data 38 

3.4.2 No Weight Decay: the ry -+ 0 limit 38 

3.4.3 The General Case: Noise and Weight Decay 40 

3.4.4 Analytic Determination of Optimal Parameters 43 

3.4.5 Interactions Between Hidden -Layer Units 47 

3.5 Summary 48 

4 Stochastic Learning 2 49 

4.1 Finding the Generalization Error 50 

4.2 Analysis of Generalization Error 55 

4.2.1 The Effects of Regularization 55 

4.2.2 The Over -Realizable Scenario 56 

4.2.3 The Unrealizable Scenario 56 

4.2.4 Dependence of Estimation Error on Training Set Size 59 

4.3 Removing the Dependence on a Specific Teacher 60 

4.4 Validation of the Analytic Results 62 

4.5 Summary 63 

5 On -line Learning 66 

5.1 Training Paradigms and Non -linear Optimization 67 

5.2 On -line learning in RBF networks 68 

5.3 Calculating the Generalization Error 70 

5.4 System Dynamics 71 

5.5 Analyzing the Learning Process 73 

5.5.1 The Importance of the Learning Rate 73 

5.5.2 An Example of System Evolution 74 

5.5.3 Task Dependence 76 

5.5.4 The Over -realizable Case 78 

vi 



5.6 

5.5.5 Analysis of the Symmetric Phase 

5.5.6 Analysis of the Convergence Phase 

Summary 

81 

83 

85 

6 Extensions to On -line Learning 88 

6.1 System Dynamics 88 

6.2 Variance and the Thermodynamic Limit 89 

6.3 Analysing the Learning Process 91 

6.3.1 Analysing the Symmetric and Symmetry- Breaking Phases 91 

6.3.2 Calculating the Convergence 95 

6.3.3 Quantification of the Variance 97 

6.3.4 Simulations 101 

6.4 Summary 101 

7 On -line Noise and Regularization 104 

7.1 System Dynamics 105 

7.2 Corrupting Examples With Additive Output Noise 106 

7.2.1 System Evolution 108 

7.2.2 Convergence Phase 112 

7.3 Corrupting Examples With Input Noise 114 

7.3.1 System Evolution 115 

7.4 Regularization 118 

7.4.1 System Evolution 119 

7.5 Summary 124 

8 Conclusion 127 

A Stochastic Learning Quantities 134 

B On -line Learning Quantities 137 

vii 



List of Figures 

1.1 RBF Network Architecture 4 

3.1 Simulations examining the validity of the assumption of form 
for A -1 37 

3.2 EG as a function of number of examples P and error sensitivity 
ß for cr2 -+ 0 39 

3.3 Generalization error EB as a function of number of examples 
P and error sensitivity ,ß 41 

3.4 Generalization error EB as a function of number of examples 
P and weight decay parameter 'y 42 

3.5 Generalization error EG as a function of number of examples 
P and error sensitivity ,ß 43 

3.6 Generalization error EG as a function of number of examples 
P and weight decay parameter -y 44 

3.7 The effects of strongly versus weakly interacting hidden units . 47 

4.1 Regularization and the Over -realizable Case 57 

4.2 The Unrealizable Case and the Belief Parameter 58 

4.3 Simulation results showing the validity of the calculation of 
EG and EB. 64 

5.1 The exactly realizable scenario with positive TBFs 77 

5.2 The exactly realizable scenario defined by a teacher network 
with a mixture of positive and negative TBFs 79 

5.3 The over -realizable scenario 82 

5.4 Convergence and symmetric phases 86 

viii 



6.1 Generalization error for a realistic learning task showing the 
existence and importance of the symmetric phase 94 

6.2 Convergence Phase with Adaptive Hidden -to- Output Weights 98 

6.3 Quantification of the Variances 100 

6.4 Comparison of theoretical results with simulations 102 

7.1 The noiseless, unregularized control case 107 

7.2 On -line learning with output noise 110 

7.3 On -line learning with high levels of noise 111 

7.4 Asymptotic error as a function of noise level 114 

7.5 On -line learning with input noise 117 

7.6 Regularization in noisy on -line learning 121 

7.7 Regularization in the noiseless over -realizable case 123 

7.8 Regularization in the noisy over -realizable case 124 

ix 



Chapter 1 

Introduction 

1.1 Supervised Learning in Neural Networks 

The aim of supervised learning in neural networks is to approximate an un- 

known target mapping fT : X -+ Y, where X and Y represent the input 

and output space respectively, as closely as possible given a set of possibly 

noise -corrupted examples (the training set D) generated from fT. To quan- 

tify the performance of a network at this task, one would ideally like to be 

able to measure how accurately the network reproduces the target function 

- this is known as generalization ability. From a practical perspective, gener- 

alization ability is unavailable as the target mapping is unknown, although 

attempts can be made to estimate it using further data generated from the 

target mapping. It would be very useful if it were possible to make general 

statements concerning the generalization ability that could be expected in 

the average case. 

While many neural network architectures have been proposed, in the context 

of supervised learning there are two models which predominate: the multi- 

1 



Introduction 2 

layer perceptron (MLP) and the radial basis function network (RBF). Until 

recently, very little theory existed which addressed the problem of determin- 

ing the properties of supervised learning for these architectures, particularly 

in the average case. While worst -case bounds have been determined under 

various limiting assumptions for both models (see, for instance, Barron, 1993; 

Haussier, 1994; Barron, 1994; Niyogi and Girosi, 1994), these bounds are in 

general insufficiently tight to be any guide to the typical performance that can 

be expected from these networks. If this were known, it would be possible to 

estimate the amount of data required to achieve desired performance levels, 

and to optimize training procedures. Further, there are many heuristic tech- 

niques that have been proposed to improve the performance of supervised 

neural networks. If the average -case properties could be calculated analyt- 

ically, it would be possible to evaluate these heuristics in a well- founded 

manner, and to propose new theory -based procedures and tèchniques. 

Several frameworks exist which facilitate the analytic investigation of the 

properties of supervised learning, such as the statistical physics methods 

(see Watkin et al., 1993, for a review), the Bayesian framework (e.g. Mackay, 

1992; Bishop, 1995), the PAC method (Haussler, 1994) and the Extended 

Bayesian Framework (Wolpert, 1996a), which is claimed by its author to 

subsume the others. These methods have primarily been applied to the 

simpler neural networks, such as linear and Boolean perceptrons, and various 

simplifications of the committee machine (see Nilsson, 1965; Schwarze, 1993, 

and references therein). It has proved very difficult to obtain results for the 

MLP and the RBF. One aspect of this thesis is the discovery of the typical 

learning properties of the RBF via the Bayesian theory. 

Recently, another approach to investigating supervised learning, based on 

studying the dynamics of on -line gradient descent learning, has become promi- 
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nent. Initially employed by several authors to study learning processes pri- 

marily in the asymptotic regime, it has been successfully applied to the study 

of 'soft committee machines' (Saad and Solla, 1995a,b) and extended to MLPs 

(Riegler and Biehl, 1995). With extensions designed to take into account the 

nature of the RBF, it is possible to modify this approach to determine the 

average -case learning properties of the fully adaptive RBF; this is explored 

as another strand of the thesis. 

One question that arises from examining these various frameworks is the 

precise meaning of the performance of a learning algorithm. There are various 

quantities that can be employed to calculate this performance, including 

generalization error, prediction probability, prediction error and the evidence. 

These measures are related in various ways; a further aim of the thesis is to 

elucidate these relationships in as much generality as possible. 

1.2 The RBF Network 

The RBF network consists of two layers of units which perform computation: 

an output layer and a hidden layer, and an additional input layer which 

plays no role beyond propagating the input vectors to the hidden layer. For 

simplicity, throughout the thesis the output layer will consist of a single 

unit (see figure 1.1). The number of units in the input layer, and hence the 

dimensionality of input space, is denoted by N, while the number of hidden 

units in the learning model is signified by K. 

The units of the hidden layer have a transfer function that is radially sym- 

metric in input space; this transfer function is constructed by considering the 

distance between a point in input space and the centre of the basis function, 
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OUTPUT NODE 

HIDDEN NODES 
1..K 

INPUT NODES 
1..N 

Figure 1.1: RBF network architecture. N denotes the number of input units, 
and the dimensionality of input space, while K signifies the number of basis 
functions in the learning model. 

which is represented by the weights from the input layer to the hidden layer. 

The output layer simply performs a linear combination of the basis functions. 

Thus, in a general form, RBF networks perform a mapping: 

f = wbq(llmb -SII) (1.1) 
b 

where wb represents the hidden -to- output weight of basis function b, and 

0 is some function of the distance between input vector and the basis 

function centre mb. The properties of the resulting interpolation function 

f are, to a large extent, not dependent on the precise form of the transfer 

function 0 (Powell, 1987). Usually, localized transfer functions are used, 

in which O(x) -+ 0 as x -+ oo; in particular, the Gaussian basis function 
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0(x) = exp(- x2/2a2) is very common. Non -local basis functions also exist, 

such as thin plate splines Mx) = x2 log x). These are not considered in the 

thesis; further information can be found in Lowe (1995). 

The architecture originally stems from attempts to solve the problem of ex- 

actly interpolating a set D of P datapoints in multi -dimensional space (Pow- 

ell, 1987). The method involves creating a basis function centred on each 

datapoint. This has two obvious problems: firstly, with a large dataset, many 

basis functions are required, with a corresponding prohibitive computational 

cost. Secondly, exact interpolation is (by definition) not robust in the face of 

noise on the data. Accordingly, the procedure was modified (Broomhead and 

Lowe, 1988; Moody and Darken, 1989); the most significant changes were to 

allow fewer basis functions than datapoints, and to remove the constraint 

that the basis functions are centred on datapoints. The resulting model is 

the one generally referred to in the context of RBF neural networks. RBFs 

are closely related to Parzen kernel estimators (see Scott, 1992), and can also 

be motivated by the theory of interpolation of noisy data (Webb, 1994), and 

from regularization theory (Poggio and Girosi, 1990a,b). 

The RBF network is representationally powerful, being a universal approxi- 

mator for continuous functions in that, given a sufficient number of hidden 

units, any continuous function can be approximated to desired accuracy; this 

is proved by Hartman et al. (1990) for RBFs with Gaussian hidden units, 

and Park and Sandberg (1993) under more general conditions on the transfer 

functions. It has been successfully employed in a number of real -world ap- 

plications, including chaotic time -series prediction (Casdagli, 1989), speech 

recognition (Niranjan and Fallside, 1990) and data classification (Musavi 

et al., 1992). 
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There are two commonly utilized methods for training RBFs, which are dis- 

cussed in detail in chapters 3 and 5. One approach involves fixing the pa- 

rameters of the hidden layer before training the hidden -to- output weights; 

these parameters are fixed without regard to the target values, relying only 

on the input values in the training set. This allows the use of unlabelled 

data', which other supervised learning architectures generally cannot em- 

ploy. Once the hidden layer parameters are fixed, the problem is quadratic 

in the hidden -to- output weights and thus only requires the solution of a set 

of linear equations. This approach must in general result in sub -optimal so- 

lutions as the basis functions are fixed without regard to the targets. The 

alternative training paradigm is to adapt the hidden -layer parameters during 

training, either just the centre positions or both centres and widths. This 

renders the problem non -linear in the adaptive parameters and this requires 

an optimization technique, such as gradient descent, to estimate these param- 

eters. This approach is computationally more expensive, but usually leads 

to greater accuracy of approximation. Obviously the first method could be 

used to establish a good starting position for the optimization procedure of 

the second. 

The fact that RBF transfer functions are usually chosen to be localized gives 

the RBF properties that are quite distinct from the MLP. Firstly, the RBF 

escapes the charge often levelled at neural networks that they are uninter- 

pretable - that it is impossible to tell what the hidden units represent. Since 

the area of input space covered by each basis function is known and lim- 

ited, the responsibility of each hidden unit for the overall mapping is simple 

to determine. Localization also allows fast training: as discussed above, 

the centres can be fixed in position and width in advance of adapting the 

'Unlabelled data has no associated target value. 
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hidden -to- output weights, or in the full supervised learning mode in which 

all weights are adapted, it is possible to determine efficiently which units 

need updating and which are not significantly affected for each datapoint 

(Omohundro, 1987). This has the result that, particularly in large networks, 

only a small fraction of hidden units need to be considered at each update 

step. However, localization renders the RBF susceptible to the curse of di- 

mensionality: generally, given an N- dimensional input space, and given that 

this space can be considered to be divided into KN hypercubes, the number 

of hypercubes required to fully partition the space grows exponentially in 

the number of dimensions. With localized basis functions, the scaling of the 

number of basis functions required is also exponential in N, with the result 

that in high -dimensional spaces, not only does the computation time become 

prohibitive, but the amount of data required to determine the network pa- 

rameters properly also becomes very large. This makes it very important 

to be sure that each input dimension is relevant to the determination of the 

output values; further, it is possible that some of the input variables are 

correlated, which may allow a reduction of the dimensionality. 

1.3 Structure of the Thesis 

The thesis is organised as three logical units. In the first unit, consisting of 

chapter 2, various analytical definitions of the performance of a learning algo- 

rithm are presented, discussed and related in as much generality as possible. 

The second unit, encompassing chapters 3 and 4, concerns the calculation of 

average -case properties for RBFs in which only the hidden -to- output weights 

are adjustable, using the Bayesian framework. The final unit, spanning chap- 

ters 5, 6 and 7, deals with average -case analyses of RBFs in which, in addition 



Introduction 8 

to the hidden -to- output weights, the positions of the centres are adaptive. 



Chapter 2 

Generalization 

2.1 What is Generalization? 

The generalization ability of a learning system is a measure of how accurately 

it can estimate or predict data that it has not been exposed to in the training 

process. Generalization ability does not exist independently of the task to 

be learnt; this can seem surprising, but consider the task of fitting a function 

to a finite set of datapoints (even without the complications of noise). In 

the absence of a- priori knowledge concerning the properties of the function 

underlying the data, all functions that exactly fit the data are equally valid. 

Note that the error made by the student on datapoints that are not in the 

training set (the off -training set error) is not necessarily correlated with the 

the performance on the training set, and, given a finite training set with 

inputs drawn from a space of infinite cardinality, such as the real numbers, 

the of training set error is essentially equal to the error over the whole space. 

Further discussion of these points can be found in Wolpert (1992, 1996a,b). 

Within the context of supervised learning, one is primarily interested in min- 

9 



Generalization 10 

imizing the average deviation of the estimate of the learning model from the 

target mapping over the entire space of possible inputs, as weighted by the 

measure defined over this space by the input distribution. No matter how the 

deviation may be defined, this quantity is termed generalization error; it is 

not available empirically with finite training data, and so must be estimated 

in practical use. 

Analytically, generalization error can be investigated by making an assump- 

tion concerning the form of the function that is to be learnt. In general, a 

more specific assumption allows tighter results to be found, and vice versa. 

The different frameworks that exist for examining generalization error in- 

corporate different strengths of assumptions, and thus different strengths of 

results: for instance, both the Bayesian approach followed in chapter 3 and 

the statistical mechanics approach (Watkin et al., 1993) require knowledge 

of the input distribution, but allow average case results to be derived, while 

the PAC method and derivatives thereof (Haussler, 1989, 1994) (see Holden 

and Rayner, 1995, for an attempt to apply PAC learning to RBFs) are in- 

dependent of the input distribution, but only provide weak bounds on the 

generalization error. 

If one is unwilling to assume a functional form for the teacher, but knowl- 

edge is available concerning the conditional probability of a particular output 

value given an input value, then analytic properties of generalization can still 

be investigated by considering the prediction error, which is derived from 

the probability of the learning mechanism correctly predicting a data -point 

drawn from the known input- output distribution. Note that there is a many - 

to -one relation between the combination of teacher functional form and noise 

model, and the conditional probability of the output given an input; they are 

not equivalent. 
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2.2 Measuring Generalization Ability 

Several different ways of measuring generalization are discussed in the follow- 

ing sections, including prediction probability, prediction error, generalization 

error and the PAC theory. The evidence (Mackay, 1992), which has been 

conjectured to be highly correlated with generalization ability in certain cir- 

cumstances, is also examined. 

2.2.1 Prediction Error 

Prediction error is defined via the prediction probability, which is the prob- 

ability that a learning system, trained on a particular set D of P examples 

drawn from the Cartesian product of inputspace with outputspace, X x Y, 

according to some probability PX xY, will correctly predict another input - 

output pair, termed the test point T, drawn independently from that distri- 

bution. The prediction probability is defined as P(TID); denoting the vector 

of parameters of the learning model by w, the prediction probability can be 

written in terms of the model: 

P(TID) = jdw7'(wjD)P(Tw) (2.1) 

Imposing the constraint that minimization of the training error is equivalent 

to maximising the likelihood of the data (Levin et al., 1989) leads to the 

following form for the probability of the dataset given the learning model 

parameters and training algorithm parameters:1 

1Note that, strictly, P(DI w, ß) should be written P( (yl, ... , yP) 
1 

( 1, ... ,G), w, ß) as 
it is desired to predict the output terms from the input terms, rather than both jointly. 
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P(Dw ) = 
ex p(-,ED(w)) 

ZD 
(2.2) 

This form resembles a Gibbs distribution over the space of parameters; it also 

corresponds to modelling the data set as being subject to zero -mean additive 

Gaussian noise. The /3 term serves as a hyperparameter, and controls the 

error sensitivity - with ,ß large, P(D1w, ,ß) will be sharply peaked around the 

parameter values with lowest error, while with ß small, error is tolerated to 

a greater extent and the distribution will be relatively spread out. 

fyP dPy exp (- 0ED(w)) simply normalizes the distribution. 

ZD = 

This distribution can be realised practically by employing the Langevin train- 

ing algorithm, which is simply the gradient descent algorithm with an appro- 

priate noise term added to the weights at each update (Rögnvaldsson, 1994). 

Denoting standard gradient descent by the equation: 

Ow = -17VED (w) (2.3) 

where 77 is the learning rate, the Langevin variant is: 

Ow = -77DED (w) + ,/277/019 (2.4) 

where is a Gaussian noise term, drawn from a distribution of zero mean 

and unit variance. 

Furthermore, it has been shown that the gradient descent learning algorithm, 

considered as a stochastic process due to random order of presentation of 

the training data, solves a Fokker -Planck equation for which the stationary 

distribution can be approximated by a Gibbs distribution (Radons et al., 
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1990). 

To obtain the individual terms of equation (2.1), one can firstly apply equa- 

tion (2.2) to the test point T: 

P(T1wß) = 
exp(-/3ET(w)) 

ZT 
(2.5) 

where ET is the error on T and ZT = fy dy exp(- ßET(w)) is the normaliza- 

tion. 

Denoting a general prior distribution over the parameter space of the learning 

model W by P(w), the posterior distribution can be constructed: 

P(wI D, ß) - P(w) 
exp(-,ßED(w)) 

Z 
(2.6) 

where ED is the error on the dataset and the normalization Z is the partition 

function over parameter space given by Z = fw dwP(w) exp(- 0ED(w)). 

Then prediction probability can be written as: 

P(T1D0ß) = f dwP(T1w ß)P(wIDß) 
fj,j, dw 2(w) exp(-/3ET - OED) 

Z ZT 
(2.7) 

Prediction error is defined as the negative log of the prediction probability: 

EPRE = - log P(T ID). This can also be interpreted as the average number 

of bits required to encode a novel example, given a system trained on D, so 

in a sense it measures the surprisingness of a new example to the system; it 

is connected to the Minimum Descriptive Length (see Levin et al., 1989). 
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2.2.2 Generalization Error 

There are several similar definitions of generalization error; a common theme 

amongst definitions is that the error is the average difference between the 

desired output and the estimate of the learning model: taking ET as any 

measure of an error at a single point, 

EG = fXdSP (CET =(ET) 

where ( ) represents an average over input space. 

(2.8) 

When utilising a stochastic training method, such as that employed in chap- 

ters 3 and 4, analytically one obtains a distribution over the space of param- 

eters. To obtain average -case results in this situation, this distribution must 

be taken into account. In this case, equation (2.8) becomes: 

EG = ( fwdw 
// 

P(wD)ET ) 2.9) 

Some authors (e.g. Hansen, 1993) consider the test point to be noisy. Through- 

out this thesis, generalization error will be defined as the error between the 

student and the noise -free teacher, as the aim is to study how well the student 

emulates the underlying mapping. The effect of a noisy teacher is to alter 

the ability of the student to correctly learn the underlying mapping; there is 

no need to take this into account explicitly in the generalization error. 
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2.2.3 PAC Learning 

The PAC framework, introduced by Valiant (Valiant, 1984), derives from a 

combination of statistical pattern recognition, decision theory and compu- 

tational complexity. The basic position of PAC learning is that to learn an 

unknown target function successfully, an estimator should be devised which, 

with high probability, produces a good approximation of it, with a time com- 

plexity which is at most a polynomial function of the input dimensionality of 

the target function, the inverse of the accuracy required, and the inverse of 

the probability with which the accuracy is required. In its basic form, PAC 

learning deals only with two -way classification, but extensions to multiple 

classes and real -valued functions do exist (e.g. Haussler, 1989). PAC learn- 

ing is distribution-free; it does not require knowledge of the input distribution, 

as the Bayesian framework does. The price paid for this freedom is much 

weaker results - the PAC framework produces worst -case results in the form 

of upper bounds on the generalization error, and these bounds are usually 

weak. It gives no insight into average -case performance of an architecture. 

The basic PAC learning framework is defined as follows. A concept class C, 

is a set of subsets of input space X. Each concept c E C represents a task to 

be learned. A hypothesis space H is also a set of subsets of X, which need not 

equal C. For a learning model which performs a mapping f : X Y, where 

in the simplest case of two -way classification, output space Y = { -1, +1 }, 

a hypothesis h E H is simply the subset of X for which f (C = +1. Each 

setting of the parameters of the learning model corresponds to a function 

f ; hence, by examining all possible parameter settings, one can associate a 

class of functions F with a particular model, and, through this, associate a 

hypothesis space with the model. 
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In the learning process, one is provided with a dataset D of P training 

examples, drawn independently from Px, and labelled +1 if the input pattern 

is an element of concept c, and -1 otherwise. The model, during training, 

forms a hypothesis h via parameter adjustment, and the error of h w.r.t c is 

quantified as the probability of the symmetric difference A between c and h: 

error(h, c) = E PXW (2.10) 
EhOc 

From this, one can define PAC learnability: the concept class C is PAC 

learnable by a model if, for all concepts c E C and for all distributions Px, 

it is true that when the model is given at least p(N, e, 6) training examples, 

where p is a polynomial, then the model can form a hypothesis h such that: 

Pr[error(h, c) > e] < b (2.11) 

One can think of 8 as a measure of confidence, and of e as an error tolerance. 

This is a worst -case definition, as it requires that the number of training 

examples must be bounded by a single fixed polynomial for all concepts 

c E C and all distributions Px. Thus, for fixed N and S, plotting e as a 

function of training set size gives an upper bound on all learning curves for 

the model; this bound may be very weak as compared to an average case. 

The PAC framework has been extended to deal with models with a single 

real -valued output and adjustable hidden units (Haussler, 1994), which re- 

quires a redefinition of error as the expected absolute difference between the 

prediction of the learning model and the target. As with the basic PAC 

framework, results describe the worst -case scenario. The framework has also 

been modified by Niyogi and Girosi (1994) to make explicit the difference be- 
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tween errors caused by having insufficient training data and those that arise 

from a mismatch between the learning model and the task being learned. 

2.2.4 Evidence 

The evidence (for the hyperparameters) is defined in this context as the prob- 

ability of a given dataset given certain values of the hyperparameters that 

control the learning process. The evidence has been postulated by Mackay 

(1992) to be well -correlated with generalization ability, at least when the 

space of possible models is appropriate to the problem in question and in the 

presence of sufficient data. 

Although any set of hyperparameters can be employed depending on the ex- 

act type of learning system, learning will be considered to be controlled by 

two hyperparameters, as in Mackay (1992): -y, a parameter controlling the 

prior probability of a weight vector, which can be interpreted as a regular- 

ization parameter, although strictly this is outside the Bayesian framework 

from which the evidence arises, and 0, which, as in section 2.2.1, is an error - 

sensitivity parameter. 

The evidence term is defined as the probability of a dataset given the hy- 

perparameter settings, P(DIry ß), and it arises from an examination of the 

posterior probability of a set of learning model parameters given the dataset 

and the hyperparameters. Re- writing the prior over weight space in terms of 

¡y as P(wiry), by Bayes' theorem: 

7'(w)D, ß) = P(DI w, Î)P(w1y) 
P(DIy,0) 

(2.12) 

The evidence term is the normalization for the posterior, which is often 
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omitted as it is irrelevant to the selection of w. 

Recall that P(D1w, ß) = exp(- ßED(w)) /ZD and 

Z = f dw P (wiry) exp ( -ßED) (w) . Employing a quadratic error term, ZD 

becomes a Gaussian integral and thus is independent of w: ZD = (27r /,ß)P2. 

Using this, it is simple to obtain: 

P(DI`y, /3) = 
ZD 

(2.13) 

Thus the evidence is proportional to the partition function over parameter 

space, and is therefore closely related to the free energy, F = -(1/0) log Z, an 

important quantity in the statistical mechanics framework (see, for instance, 

Hertz et al., 1989). It is of interest to relate analytically the evidence to 

generalization error, as certain conjectures concerning this relation have been 

made on intuitive grounds (MacKay, 1992). 

2.3 Relating easures of Generalization 

2.3.1 Prediction Error vs Evidence 

It is possible to elucidate a straightforward relationship between prediction 

error and evidence by exploiting the fact that the likelihood of the data has 

a form corresponding to a Gibbs distribution over parameter space. 

Calculating the probability of a test point conditioned on the dataset by 

inserting the prior 7'(wlry) into equation (2.7): 

P(T I DP, ry, ,ß) = fw dw P(wI'Y) eXp(- - QET) 
ZPZT 

(2.14) 
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where the dataset D and error ED have been explicitly labelled with the num- 

ber of datapoints P, and ZP denotes the partition function over weightspace 

in which the dataset has P elements. 

The error function is additive, so ED +1 = ED + ET. The numerator of (2.14) 

is then the partition function over weightspace of a dataset of size P + 1, so 

the prediction probability can be rewritten as: 

ZP+1 
P(TIDP,70) = ZPZT 

(2.15) 

Eliminating the partition functions over weightspace by combining this with 

the definition of the evidence from equation (2.13), and recalling that ZD is 

simply the normalization for the likelihood, as discussed in section 2.2.1, one 

obtains: 

P(T I DP,7,P)= P y (DPI r, I 

ZEzT 
(2.16) 

When the test point and the dataset are drawn from the same distribution 

and when ZD can be factored, such as in the case where the error measure 

is quadratic2, then 4+1 ZDZT, and: 

P(TIDP,7,I) = P(DPIIry,,) P(D P 
I'Y, 0) 

(2.17) 

This equation relates prediction probability to the ratio of the evidence for 

a dataset of size P +1 to that for one of size P. 

Converting the prediction probability into prediction error gives a simple 

21n this case ZD is a Gaussian integral. 
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relationship between prediction error and evidence: 

- log P(T I DP, 7, ß) = log P(DP I7, ß) - log P(DP +1 1'y, )3) (2.18) 

The prediction error on predicting a new example is equal to the change in 

log evidence caused by adding the new example to the dataset. 

2.3.2 Prediction Error vs Generalization Error 

It is extremely difficult to obtain a relationship between prediction error 

and generalization error that is architecture -independent. Analytic consid- 

erations of generalization error rely on having or assuming information con- 

cerning the form of the function that generated the data, such as a teacher 

model, while prediction error is concerned with the conditional density of the 

output given an input. 

If the learning model in question is reasonably well- trained or the error - 

sensitivity /3 is small, an equivalence of ordering relations can be developed, 

showing that if and only if the prediction probability for a test point T given a 

learning model trained on an arbitrary dataset D1 is greater than that for the 

learning model trained on another arbitrary dataset D2, then generalization 

error for the learning model trained on D1 is lower than that for D2: 

P(TIDl) > P(TID2) - EG(Dl) < EG(D2) (2.19) 

Making explicit the dependence of prediction probability on the parameters 

of the learning system: 
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P(TID) = f dwP(w1D)P(T1w) 

where P(T1w) = exp(- /3ET(w)) /ZT. 

(2.20) 

With a reasonably well- trained model, or with the error -sensitivity ,ß small, 

the term /3ET will be small for all weight vectors with significant probability, 

and thus exp( -0ET) 1 -ßET. The relation P(T D1) > P(T1D1) becomes: 

P(TID1) > P(T1D2) _ fw'131)ET < fwdw7P(w1D2)ET (2.21) 

Since the test point was arbitrary, this proves eqn.(2.19). 

2.3.3 Generalization Error vs Evidence for the RBF 

It is possible in some cases to relate generalization error to the evidence, and 

hence to prediction error and prediction probability, if one has knowledge of 

the data -generating mechanism. In Bruce and Saad (1994), this is performed 

for the case of a perceptron student learning a noise -corrupted perceptron 

teacher. In the course of calculating average -case generalization error for 

the RBF in chapter 3, an analytic relation between generalization error, the 

evidence and prediction error will be constructed for that architecture. 



Chapter 3 

Stochastic Learning 

This chapter investigates average case generalization ability for the RBF ar- 

chitecture, utilising the Bayesian approach in which a probability distribution 

is constructed over the space of possible weights of the network, conditioned 

on the dataset and the parameters that control the learning process. During 

the course of the investigation, generalization error is analytically related to 

the evidence, and thereby to prediction error. 

Analytic investigations of generalisation error which focus on average -case 

results have primarily considered the one -layer perceptron, either in boolean 

or linear form (Bruce and Saad, 1994), and on simple extensions of this, such 

as the committee machine (see, for instance, Schwarze (1993)), as these archi- 

tectures are analytically tractable unlike the general multi -layer perceptron. 

Generalization error for the RBF has been considered analytically from a 

worst -case perspective by several authors: Niyogi and Girosi (1994) derive a 

bound on generalization error under the assumption that the training algo- 

rithm always finds a globally optimal solution, but require only weak con- 

straints on the function that generated the training set; they do not consider 

22 
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regularization. The paper also contains an extensive bibliography pertaining 

to the topic of generalization. Haussier (1994) finds worst case bounds by 

employing the PAC framework (see section 2.2.3). Some empirical studies 

also exist; for instance, Botros and Atkeson (1991) compare the performance 

of various choices for the basis functions. 

3.1 RBF Architecture and Training Method- 

ology 

The RBF architecture consists of a two -layer fully -connected network (see 

figure 1.1). Each hidden node is parameterised by two quantities: a centre 

m in input space, corresponding to the vector defined by the weights between 

the node and the input nodes, and a width 4. 
The role of the hidden units is to perform a non -linear transformation of the 

input space into the space of activations of the hidden units; it is this trans- 

formation that gives the RBF a much greater representational power than 

the linear perceptron. The output layer computes a linear combination of 

the activations of the basis functions; to simplify the analyses in the thesis, a 

single output node is utilised, parameterised by the weight vector w between 

hidden and output layers. 

Within this model, the basis functions are taken to be Gaussian; each hidden 

node has an identical width 4 corresponding to the variance of the Gaussian. 

The overall function fs computed by the network is therefore: 

fs() _wbexp g 2mblll1 w ,S() 
61 B J 

(3.1) 
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where s() denotes the vector of responses of the hidden units to the input 

vector ¿. 

One typical training methodology employed for the RBF is to fix the param- 

eters of the first layer utilising some algorithm to ensure that the positions 

of the training data in input space are adequately represented by the ba- 

sis functions, and then either to solve a system of linear equations or use 

some training algorithm such as gradient descent to set the parameters of 

the second layer. Training is computationally inexpensive as compared to 

multi -layer perceptrons. 

There have been many schemes proposed for setting the parameters of the 

hidden units. These methods are usually unsupervised; they pay attention 

only to the input values of the data, and ignore the output values. Thus the 

problem is really the same as mixture density estimation. Note that there is 

no guarantee that modelling the input distribution will be useful for the task 

of modelling the input- output mapping; an optimal procedure for this task 

must set the hidden unit parameters with regard to the output values. 

The simplest scheme is simply to set the basis function centres to a random 

subset of the input vectors in the training set. While extremely fast, this 

method is crude and usually leads to the use of a large number of basis 

functions to give reasonable performance at the function approximation task. 

A more refined method is forward selection (Rawlings, 1988), in which one 

starts with an empty set of basis functions, and then continues adding the 

most explanatory basis function until a heuristic stopping criterion is met. 

This method is applied to RBFs in (Chen et al., 1989, 1991), employing an 

efficient implementation termed orthogonal least squares. In (Orr, 1993), the 

method is refined to include a more principled stopping criterion; in the case 
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of (Chen et al., 1989, 1991), this is simply a threshold on the proportion 

of variance that the RBF explains. Further improvements and variations 

are introduced in (Chen et al., 1996) and (Orr, 1995). The alternative path 

may also be employed, which begins with a basis function on each datapoint, 

and reduces the number so as to affect the network performance as little as 

possible (Devijver, 1982; Fununaga and Hayes, 1989). 

Instead of being constrained to place basis functions on the datapoint input 

values, a clustering algorithm can be employed. K -means clustering, applied 

to the RBF by Moody and Darken (1989), partitions the data set into K 

disjoint subsets where similar vectors are represented by a single centre. Ko- 

honen maps (Kohonen, 1982) have also been utilised. A more principled 

method of performing density estimation is the Gaussian mixture model, in 

which it is assumed that the input distribution was generated by a weighted 

mixture of Gaussians. The parameters of the mixture model can be esti- 

mated by a non -linear optimization technique, such as the EM algorithm 

(Dempster et al., 1977). 

In this chapter the hidden units have centres that are presumed to be fixed 

in place by a suitable process as described above; there is a single output 

unit with a vector of adjustable weights. 

3.1.1 Data Generation 

The training data D consists of P input- output pairs indexed 1 P: (t,, yp). 

In order to have full control over the task to be learned, the data is assumed 

to be generated by a teacher RBF, and then corrupted under some noise 

process, with the N- dimensional input vectors being drawn from a symmetric 

Gaussian distribution of variance a . The teacher consists of M centres each 
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with a position vector nt,, and an identical width QBt, while the student 

consists of K centres with position vector mi and width a'B. In general, 

the centres of the teacher need not correspond in position, number or width 

to those of the student, which implies that the learning problem may not 

be realizable. In this chapter, the teacher has a set of centres identical to 

those of the student (this is relaxed in chapter 4). Thus in the language of 

learning theory (Niyogi and Girosi, 1994), the approximation error is zero, 

and generalization error is equivalent to estimation error. The weight vector 

of the teacher output node is denoted by w °, so the teacher computes: 

ivr 

fT(t) _ wú eXP 
I 

2aBulI2J 
wo 

. 
t() 

u J 
(3.2) 

where t() represents the vector of responses of the teacher hidden units to 

the input vector . 

3.1.2 The Training Algorithm 

The training algorithm for the weights that impinge on the student output 

node is considered stochastic in nature; modelling the noise process as zero - 

mean additive Gaussian noise leads to the following form for the probability of 

the dataset given the weights and training algorithm parameters, as discussed 

in section 2.2.1: 

P(DI w, [3) = exP(-DD(w)) 
(3.3) 

Labelling the noise on example p as 19p, the data is therefore generated by: 

2.Íp = fT(Cp) +19P. 
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To prevent over -dependence of the distribution of student weight vectors on 

the details of the noise, it is necessary to introduce a regularising factor, 

which can be defined in terms of the student weights, as a prior distribution 

over weight space: 

= exp(-yEw) 
(3.4) 

where Eye is a penalty term based, for instance, on the magnitude of the 

student weight vector' and Zw = fw dw exp ( -yEw) . 

Employing Bayes' theorem, one can derive an expression for the probability 

of a student weight vector given the training data and training algorithm 

parameters (this is a specialization of equation (2.12)): 

P(wl D, ry ß) = 
P(D1w, Q) P(wi'y) 

P(DIy,0) 
exp (-0ED - 'yEw) 

ZM 

(3.5) 

Here, ZM = f dw exp( -,ßED - ¡yEw) is the partition function over student 

space. 

3.2 Generalization Error 

Following section 2.2.2, generalization error EG will be defined as the average 

error between the desired and actual network output. The square of the 

'Note that for the ubiquitous Ew = z w2 penalty term, Zw = (2ir /y) . 
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difference between desired and actual output is the typical error measure 

employed, which for a particular student network gives': 

(fT(S) - fs02 (3.6) 

From a practical viewpoint, one only has access to the empirical risk, or test 

error, which is the mean -sum -squared error on a set of points not employed 

during training. This quantity is an approximation to the expected risk, 

defined as the expectation of (y- fs())2 with respect to the joint distribution 

P(, y). With an additive noise model, the expected risk simply decomposes 

to E + a2, where cr2 is the variance of the noise. Some authors equate the 

expected risk with generalization error by considering the squared difference 

between the noisy teacher and the student (see, for instance, Hansen, 1993). 

A more detailed discussion of these quantities can be found in (Niyogi and 

Girosi, 1994). 

If a stochastic training algorithm is employed, such as the Langevin variant 

of gradient descent, the resulting probability distribution over weight space 

(conditioned on the training data) must be taken into account. Two possibili- 

ties for average generalization error arise. If, as is usually the case practically, 

the algorithm selects a single weight vector from the ensemble, a procedure 

which will be termed Gibbs learning, then equation (3.6) becomes3: 

'This definition is equivalent to the distance in the L2(P) norm between fr(e) and 
fs(e), where OP) is the set of functions whose square is integrable with respect to the 
measure defined by P. 

3It is worth noting that by taking á -+ oo, the distribution of student weight vectors 
becomes a delta function centred on the weight vector that minimises the empirical risk. 
This situation is commonly considered in the computational learning theory literature, 
but is unrealistic for neural networks, where often only locally optimal solutions are found 
in practice. 
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EG = ( f dw P(wI D, ry0) (.ÎT() - fs())Z ) (3.7) 
\ W 

Note that in order to obtain average -case results, an average over the poste- 

rior weight distribution in included in the definition of EG. 

A second possibility arises from considering a Bayes -optimal approach. This 

requires one to take the expectation of the estimate of the network, which 

is impractical due to the computation involved, but can be approximated by 

Monte -Carlo methods (Neal, 1992), or more crudely by performing a succes- 

sion of training runs: 

EB = ((fT ( C - dw (w I D y)3) fs(C 

These two quantities are related by: 

(3.8) 

EG - EB ( Lw P(wI D) 7) a) fs(0 - (Lw P(wI 
D, 7, 13) fs(C) 

2 

= Var(fs(C) (3.9) 

where Var ( ) is the variance with respect to the posterior distribution. 

In order to investigate the generic performance of the architecture, it is de- 

sirable to eliminate the dependence of generalization error on the particular 

data -set used. An average over possible data -sets, denoted by « », will 

be utilised for this purpose. Thus, with additive Gaussian noise V on the 

data, one obtains: 
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« E »= f (C,) f 
P 

dP P(p) ( (.fT() - .fs())2 ) (3.10) 

3.3 Calculation of Generalization Error 

The calculation of generalization error will focus on both EG and EB; a link 

to prediction error is developed via an analytic relation between EG and 

the evidence. Initially EG is found, as EB can be derived easily once EG is 

known. 

Recalling that the teacher centres are equal in number and position to those 

of the student and signifying the difference between student and teacher 

weight vectors, w -w °, by w *, the definition of EG becomes: 

EG = 
fWdwP(wID,¡y,/3) 

( (w 

Since w* is independent of the input distribution, 

2) (3.11) 

EG = f dw P(wID, ry, 0) w *T Gw* (3.12) 
W 

where G = s sT) is a matrix describing the average responses of pairs of 

student basis functions to an input point. Taking the input vectors to be 

drawn from a symmetric Gaussian distribution with mean 0, variance 

allows G to be calculated explicitly; the full expression is given in appendix 

A. 

Employing the definition of P(w ID, ry, ,ß) as in eqn.(3.5), taking ED as sum - 

squared training error with i9p as the noise on training example p, and defining 
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E141 = lw I2 as the prior over weight space allows eqn.(3.5) to be re- written 

as: 

P(wI D, ) = 
exp(- 

2 
w*TA-lw* - w*TP - 2 p p - 2 

11 w°112) (3.13) 
Znr 

where: 

A-1 PI 
P 

spsp 

p 

P = ywo + 19pSp 

p 

with sp being the vector of responses of the student basis functions to data - 

point p. 

At this point one can proceed in two ways: EG can be found directly via eqn. 

(3.12) by integrating over the posterior distribution, or a more circuitous 

route can be followed which relates EG to the evidence and prediction error 

in passing. Since it is much simpler, EG will ultimately be found by direct 

integration, but first it will be related to the evidence. 

Substituting eqn. (3.13) into eqn. (3.12), and rewriting by substituting into 

the resulting equation the derivative of the numerator of eqn. (3.13) with 

respect to the elements of the matrix A -1, EG becomes: 

= 
2 1 á 

ff 

1 

EG P Gbc ZM áAbl Lfw 
dw exp(-¡yEw - OED)] (3.14) 

The evidence is proportional to the modified partition function ZM, so one 
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can immediately relate the evidence to the generalization error: 

EG =- PE Gbc 
aAbcl 

[log P(D I7, 0)] 
bc 

(3.15) 

At this point it is also possible to relate generalization error to prediction 

error. It is relatively simple to derive the relationship between prediction 

error and evidence (see section 2.3.1): 

logP(yZ D, -y, )3) = logP(D, yl ̀Y, )3) - logP(DI`y (3.16) 

Employing this relationship in equation (3.15), one arrives at: 

EG = -2E Gbc P [logP(D, y `, )l aá [logP(ylC D,Y, a)] 
anbc nc 

bc 

(3.17) 

These relations are not immediately intuitive, but it is possible to write the 

evidence in terms of A and some constants: recalling that the evidence is 

proportional to ZM and rewriting ZM in a manner similar to 3.13: 

log ZM = -2 log det A-1 + pT Ap 

K 27r 
log P -2- .11111°112 

(3.18) 

One could then substitute this expression into eqn. (3.15) and find the deriva- 

tives analytically, but as discussed, it is simpler to find generalization error 

by integrating directly over the posterior. Substituting the expression for the 
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posterior, eqn. (3.13), into that for EG, eqn. (3.12), and integrating: 

EG 
trGA pTAGAp 

P2 
(3.19) 

It remains to consider the average « over datasets and the Gaussian 

noise on the datasets. Performing the noise average, recalling that only p 

contains noise terms: 

fdP19 P(19p) pAGAp = (3.20) 

E(AGA)de (72WoWo 
+ 

02Q2 E 
Sdse/ de 

To progress further and perform the dataset average, it is necessary to know 

the form of A. To this end, it will be assumed that A -1 is of the form: 

B B B 

B B B 
(3.21) 

H B o 

That is, all diagonal entries are equal to 0, and all off -diagonal entries are 

equal to 9. 

This induces A to take on the form: 
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where: 

.. 

0 ... 

B 

B + B(K -1) 

(3.22) 

The implications of this assumption for the RBF model are twofold: firstly, 

the equality of diagonal entries corresponds to all the centres receiving an 

equal amount of activation via the training data4. For the particular case 

of a symmetric input distribution centred at the origin of input space, this 

assumption breaks down only for the case in which the centres are dissimilar 

in distance from the origin and the variance of the input distribution is not 

of sufficient magnitude for the distribution to be approximately uniform in 

the regions covered by the basis functions. Secondly, the equality of off - 

diagonal entries requires each pair of basis functions to receive a similar joint 

activation via the training data. This assumption is satisfied except for the 

case in which the centres are not approximately equidistant from each other 

4A common procedure for selecting basis function parameters is to maximise the likeli- 
hood of the inputs of the training data under a mixture model given by a linear combination 
of the basis functions; constraining the priors of the mixture model to be equal encourages 
this property of equal activation to be satisfied. 
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and the spread of the basis functions is not sufficient to allow considerable 

overlap between each pair of receptive fields to occur. 

Unfortunately, this selection of form for A -1 is not sufficient to allow the 

dataset average to be carried out, as the terms do not separate into inde- 

pendent factors. One can approximate A -1 as: 

A-1 pI + P spSp 
p 

pI+ ß p « ESpSP 
p 

= pI+ßG 

(3.23) 

Utilising the central limit theorem, the neglected variance in the distribution 

of P >p Spsp decreases as P. Note that this implies that the calculation of 

generalization error holds strictly only in the asymptotic regime of large P, 

but it will be shown in chapter 4 via simulations that the results are a very 

good approximation for non -asymptotic P. 

The integral over datasets can now be performed as a straightforward Gaus- 

sian, yielding the final expression for generalization error: 

« EG »= (trGA+ P 
tr AGAT) (3.24) 

where, for notational convenience, the matrix defined by Tbc = 72w°w° + 
020'2 PGbe has been introduced. 

From this, via equation (3.9), one can calculate « EB » : 
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« EB »= -p2( tr AGAT) (3.25) 

To examine the validity of the assumptions for A -1, simulations were con- 

ducted in which the empirical value of EG was calculated via equation (3.20) 

by generating random training data and numerically evaluating A. The sim- 

ulations were carried out for three scenarios: firstly, the case in which the 

conditions for the assumption of form of A -1 were exactly satisfied; secondly, 

for certain basis functions receiving an impoverished supply of training data, 

thus violating the equality of diagonal entries; finally, for the interactions 

between different pairs of basis functions being unequal, which violates the 

equality of off -diagonal entries. 

Comparisons of the mean values of EG found by simulation, EGIM, with those 

found analytically via equation (3.24) are shown in figure 3.1. Note that the 

variances of the simulation distributions quickly become negligible. 

When the assumptions are satisfied, EGI M rapidly converges to EG. Viola- 

tion of the assumption of diagonal equality gives rise to a systematic error, 

while violation of the off -diagonal assumption causes the convergence to slow, 

but introduces negligible systematic error. This lack of significant effect is 

explicable by an examination of the expression for G (eqn.A.3): the result 

of introducing differing interactions between the basis functions is simply to 

vary limb + ma; the effect of this will always be overwhelmed by that of 

other terms, particularly if the ratio of al to is large. It can be con- 

cluded, therefore, that the calculation of generalization error is invalid only 

for the cases in which P is near to 0 or in which the basis functions receive 

significantly different levels of activation via the training data. 
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Figure 3.1: Analytic EG (unbroken line) versus mean of EGrna (dashed line) 
examining the validity of the assumption of form for A -1 under various dis- 
tributions of the centres of the basis functions. The error bars are plotted 
at 1 standard deviation of the simulation mean. Each simulation was run 50 

times with the following parameter settings (denoting the angle between ma 
and mcaseb,c): 
Common to all simulations (see section 3.1 for a reminder of symbol defini- 
tions): N= 3,K= M= 4,u2= 1,)ß= 0.5,ry =1,o = 2,ol =1 
Assumptions satisfied: `db : limb II = 1, Vb,c:b #c : Ob,c = 27r/3 

Diagonal violation: = m2ii = 1, 11m3II = iIm4ll = 4, Vb,c:b¢c: eb,c = 
27r/3 
Off -diagonal violation: Vb : 11774 = 1, 01,2 = e3,4 = 7r/6, e1,4 = 02,3 = it 
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3.4 Analysis of Generalization Error 

The equations derived for EG and EB do not admit to a straightforward 

intuitive understanding of the effect of varying parameters such as the number 

of training patterns, noise level and training parameters ry and 0. 

In order to promote such an understanding, the behaviour of the expressions 

for generalization error will initially be examined under simplifying limiting 

conditions. 

3.4.1 Noiseless Training Data 

Taking the a2 -+ 0 limit while treating ,ß as a free parameter leads to the 

conclusion that, for both EG and EB, optimal training occurs when ,ß -+ oc 

(see figure 3.2). This is intuitively plausible; if the training data is not noisy 

then no training error should be tolerated, so forcing the distribution over 

student space to become a delta function centred on the value of w that sets 

the error to zero is reasonable. Note that in the ,ß -* oo limit, the prior on 

student space becomes irrelevant. 

3.4.2 No Weight Decay: the -y 0 limit 

Considering the -y -* 0 limit allows one to analyse the dependence of EG and 

EB on the number of training examples, P. The assumption of the diagonal 

versus off -diagonal form for A -1 induces a similar form on the matrix G; the 

diagonal and off -diagonal elements of G will be referenced by GD and Go 

respectively. 

Proceeding from the final expression for generalization error, eqn. (3.24), the 
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F.0 Surface - 

0 

Figure 3.2: EG as a function of number of examples P and error sensitivity 
3for a2O 

form of A is known from eqn. (3.21). Thus the 'y -* O limit of A can be found: 

defining, for notational convenience, the matrix St by 0bc = 6bc G+ o(1 -1) 

lim A = 
7.-*0 ,3(GD - Go) 

SZ 
(3.26) 

then, straightforwardly, lim7,0 « EG » and lim7,0 « EB » can be found: 

7o tr GSZ a2 tr WSW « EG >722 
Ql,(GD 

+ P(GD - G0)2 

and 

(3.27) 
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« EB »7'0 (72 tr SZGSZG 

P(GD - Go)2 
(3.28) 

It is apparent that both EG and EB are inversely proportional to the number 

of training examples. This result is somewhat similar to that found for the 

linear perceptron in this limit, whereby EG and EB are inversely proportional 

to P -N - 1 (Hansen, 1993; Bruce and Saad, 1994). 

In addition, the y -+ 0 limit brings to light an interesting difference between 

EG and EB. Examining EB, it is apparent that ,ß plays no role; the expression 

is independent of the error sensitivity. This result is in contrast to that for 

EG, in which the first term is minimised by taking 13 --> oo. This hints that, 

in the Bayes generalizer, it is only the ratio of y to ,ß that is important, 

as is the case for the linear perceptron (Bruce and Saad, 1994), while the 

Gibbs generalizer is dependent on both ,@ and y separately. This discrepancy 

is explicated by recalling equation (3.9); EG consists of a term due to the 

variance of the student output with respect to the posterior, minimised by 

taking ,ß - oo, and a term identical to EB. 

Both EG and EB are independent of N, the dimensionality of input space, 

in this limit. 

3.4.3 The General Case: Noise and Weight Decay 

To gain some understanding of the variation of EG and EB with P, y and ,Q 

in the general case, consider figures 3.3, 3.4, 3.5 and 3.6. 

Examining first figure 3.3, in which EB is plotted against P and ß for a con- 

stant value of y, it is apparent that there is a minimum in the generalization 
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Figure 3.3: Generalization error EB as a function of number of examples P 
and error sensitivity ,ß. The minimum in EB with respect to 0 is independent 
of P. 

error surface at a constant value of 0. When 'y is set to its optimal value, the 

value of ß at the minimum can be shown empirically to be inversely propor- 

tional to the variance of the noise, a2. Similarly, plotting EB against P and 

¡y (figure 3.4) demonstrates a minimum in the generalization error surface at 

a constant value of ¡y. This minimum, for a set to an optimal value, is a 

function of both IIw 
°II2 and >bcw ¿w °. 

An entirely different pattern of results emerges for EG. Considering figure 

3.5, the optimal value of ,ß rapidly becomes infinite as P increases. This is 

due to the fact that the Gibbs generalizer requires the selection of a single 

weight vector from the ensemble of students, so it is advantageous to penalise 

any training error maximally once a reasonable amount of training data is 
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Figure 3.4: Generalization error EB as a function of number of examples P 
and weight decay parameter 'y. The minimum in EB with respect to -y is 

independent of P. 

available. The Bayes generalizer, on the other hand, employs a weighted 

average of students in order to make a prediction; noise on the training data 

output values can to some extent be compensated for by this average, and so 

it is not desirable to force the ensemble to become a delta function. Focussing 

on EG as a function of P and 'y (figure 3.6), an analogous result is apparent: 

the optimal value of -y is initially infinite, but as P oo, the optimal value 

of 7 tends to an expression similar in dependence to that for EB. 
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Figure 3.5: Generalization error EG as a function of number of examples P 
and error sensitivity 0. At the minimum in EG with respect to ß, ,ß -+ oo as 
P -3 oo. 

3.4.4 Analytic Determination of Optimal Parameters 

It is not possible to find closed -form analytic expressions for the optimal 

settings of /3 and -y for either EG or EB generally, but for the case in which 

there is no interaction between the basis functions, as may occur when the 

variance of the input distribution is large compared to the width of the basis 

functions, such expressions can be obtained; these can then be elaborated 

upon to some extent in order to suggest the form of the actual dependencies 

of 3opt and ryopt. 

For the Bayes -optimal generalizer, by minimising EB with respect to the 

training parameters, the optimal settings were determined to be: 
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Figure 3.6: Generalization error EG as a function of number of examples P 

and weight decay parameter ¡y. As P -* oo, the value of -y at the minimum 

in EG with respect to 'y becomes constant. 

and: 

wo 2 

% 
h'Opt = /2I 

KQ2,ß 

7opt 
= IIw0II2 

(3.29) 

(3.30) 

The form of equations (3.29) and (3.30) proves that only the ratio of ry to /3, 

III IÌ2 7 

determines whether the parameter settings are optimal. 

For the Gibbs generalizer the expressions for optimal parameters are a little 
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more complicated: 

ß °pt = II2 y(27IIw ° + K) 
K(27u2 - GDP) 

y°pt 
2IIw°II2ßGDP - K 
GDKPß(2ß0-2 + 1) 

(3.31) 

(3.32) 

Under this assumption of no interactions between the basis functions, the 

results for optimal parameters closely resemble those found for the perceptron 

(Bruce and Saad, 1994), an architecture which can also be viewed as having 

no interactions between units of the layer immediately preceding the output 

layer. 

Allowing terms linear in the interaction parameter, Go, leads to optimal 

parameters which have an additional dependence on the cross -correlation of 

the teacher RBF weight vector, Ebc wbw °. For instance, the optimal ratio of 

7 °pt to f3 opt for EB becomes (with GD small): 

y°pt 2ßa2KGD 

ß°pt (GD - Go)Go 
Ebcwbw° + (GD - C-'o)2IIW°II2 

(3.33) 

The effect of admitting all terms in Go for EB can only be examined empir- 

ically. As in the Go = 0 case, Po* was found to be linearly dependent on 'y, 

and vice versa, with the gradient of the y °pt versus ß dependence being the 

reciprocal of that for Ow versus y. This form of relationship implies that EB 

can still be minimised by finding the correct ratio of y to ß; it is unnecessary 

to find absolute values for these quantities. Thus, the optimal values define 
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a straight line in training parameter space. 

In the case of EB, the dependence of `opt and Nopt on the noise variance u2 

can also be found; again, as in the Go = 0 case, i'opt is proportional to o.2 

while Nopt is inversely proportional to u2. 

Mackay (1992) also studied noisy interpolation on a linear model. His goal 

was to find the optimal parameters by maximising the posterior probability 

P(y, ßID) of the hyperparameters y and ,ß, while the approach taken in this 

thesis is to minimise generalization error with respect to the hyperparam- 

eters. Despite this difference in method, some comparison between results 

can be made. Working from eqn. (2.22) of (Mackay, 1992), one can rewrite 

MacKay's expression for the optimal value of y as: 

T 
y (3.34) 

where T is a measure of the effective number of parameters supported by the 

data. Since here the teacher is known, T = K, and since in the standard 

Bayesian formulation employed by MacKay there is no distinction between 

teacher and student as such, eqn. (3.34) becomes: 

K 
y Ilwoll2 

(3.35) 

If the noiselevel is known, then ,ß can be set to51 /u2. The optimal setting for 

y derived previously in eqn. (3.30), by minimising the Bayes generalization 

error, then matches that of eqn. (3.35) exactly. No such obvious connection 

could be found for ,ß, however. 

5This matches MacKay's definition. 
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Figure 3.7: The effects of strongly versus weakly interacting hidden units. 
EG versus number of training pairs is plotted for weakly- interacting hidden 
units (top curve) and strongly- interacting hidden units (bottom curve). 

3.4.5 Interactions Between Hidden -Layer Units 

The effect of joint activations between hidden -layer units, whereby a single 

training pair simultaneously contributes to the activation of every hidden - 

layer unit, is to reduce the number of training patterns required to achieve a 

certain level of generalization error as compared to a network in which there 

are no such interactions. Consider figure 3.7, in which EG is plotted for an 

RBF network with highly -overlapping hidden units and for a network with 

small overlap: the generalization error for given P is considerably lower for 

the highly -overlapping version. This phenomenon is due to the fact that high 

overlaps allow every hidden unit to learn from every training pair, while small 

overlaps prevent some units from benefiting from certain training pairs. 
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3.5 Summary 

Learning and generalization in RBF networks has been investigated via the 

assumption of a form for the function which generated the training data. By 

fixing the centres of the student basis functions to be equal to those of the 

teacher and employing a stochastic training paradigm for the output node 

weights, it has been possible analytically to derive expressions for the gener- 

alization error induced by utilising two separate generalization measures: the 

Gibbs and Bayesian generalizers. These expressions are generic in that they 

are independent of the particular dataset employed; instead they indicate the 

typical performance that can be expected from the RBF architecture. 

In the -y -+ 0 limit, in which the distribution of student weight vectors is ef- 

fectively induced solely by the training data, both measures of generalization 

error, EG and EB, were found to be inversely proportional to the number of 

training pairs, P. 

The optimal settings of the training parameters 7 and a have been exam- 

ined; it was determined, empirically for the general case and analytically 

for the simplified situation of no interactions between basis functions, that 

minimisation of EB occurs when 7 and a are merely set in the correct ratio. 

However, this result does not apply to EG, for which each parameter must 

be optimised separately. 

Finally, the interactions between basis functions were shown to be important 

for rapid learning: strong interactions allow each hidden node to adapt to 

every training point, while weak interactions imply some training data is 

effectively ignored by some hidden units. 
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Stochastic Learning 2 

In real learning scenarios, it is rare that the precise functional form of the 

data -generating mechanism is known. Therefore it is vital to understand 

how a student architecture such as the RBF reacts to cases in which it is not 

matched to the teacher. The student may have more representational power 

than the teacher, which is known as the over -realizable case, or it may not 

be able to emulate the teacher exactly even in the limit of infinite training 

data; this is known as the unrealizable case. 

This chapter extends the student -teacher framework introduced previously 

to allow the investigation of not only the exactly realizable case, but also the 

unrealizable and over -realizable cases. The data -generating mechanism is a 

teacher RBF in which the centres and widths of the basis functions need not 

match those of the student, so that mismatched cases can be investigated. 

To facilitate understanding of these cases, generalization error will be viewed 

as consisting of two components: approximation error and estimation er- 

ror. Given a particular student architecture, approximation error is the error 

made by the optimal student of that architecture, and is due to the architec- 

49 



Stochastic Learning 2 50 

ture having insufficient representational power to emulate exactly the process 

that generated the problem to be learnt; it is an asymptotic quantity in that 

it cannot be overcome during the training process even in the limit of infi- 

nite training data. If the approximation error is zero, the problem is termed 

realizable; if not, it is termed unrealizable. Estimation error is the error due 

to not having selected an optimal student of the chosen architecture; it is 

a dynamic quantity as it changes during training, and is caused by having 

insufficient data, noisy data, or a learning algorithm which is not guaranteed 

to reach an optimal solution in the limit of infinite amounts of data. There is 

a trade -off between representational power and the amount of data required 

to achieve a particular error value (the sample complexity) in that the more 

powerful the student, the greater the likelihood that the approximation error 

can be eliminated but the larger the amount of data required to reduce the 

estimation error to a particular level. 

Also in this chapter the limitation induced by the requirement that the po- 

sitions of the basis functions of the teacher RBF are known is eliminated by 

introducing the idea of the degree of confidence in the student basis function 

positions. 

4.1 Finding the Generalization Error 

The learning scenario examined is similar to that in chapter 3; the aim is 

again to analyze average case performance, so a posterior distribution over 

the space of student weights is constructed, conditioned on the training data 

and hyperparameters of the learning process. Recapping, 
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P(wI D, y, Q) = 
P(DIw) P(wl y) 

P(DI y, a) 
exp (-QED - yEiv) 

Zn1 

(4.1) 

The error measure is again taken to be quadratic; both the Gibbs and Bayes 

algorithms defined in section 3.2 are analyzed, and the dependency on a 

particular dataset is eliminated by averaging over all possible datasets. The 

input distribution is a zero -mean Gaussian with variance 4. The calculation 

is slightly more complicated than its counterpart in chapter 3 as the sets of 

teacher and student basis functions are no longer identical in general, so 

it is no longer possible to combine the student and teacher weight vectors 

into the single vector w *. Thus, working from eqn.(3.7), generalization error 

becomes: 

« EG »=« 
\ 

¡dWP(WD,'y,ß)(w0.tw.$)2)» (4.2) 

Defining the prior over student weight space as Ew = á I 

I 

w I I2 and the error 

on the training data as ED = Ep {wsp- w °tp +79p }2, where, as in previous 

chapters, :§p and are the counterparts of s and t for training point p such 

that spi = exp( -II p - milI2 /2o1), and where i9p is additive Gaussian noise 

of variance cr2 on example p, one can calculate the posterior P (w ID, y, M. 

Substituting this into eqn.(4.2) leads to: 

(ST As + 2(w° t)pTAs pTAssTAp o 2 « EG »_« + p2 (w t) 

Fe../ i;\ 

m Gy l 
x 

(4.3) 
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where: 

A-1 = pI p r ¡¡ 
Spsp 

¡¡ 
p 

P N l19p - w° tp)sp 
p 

Note that this definition of p is different to that given in chapter 3 due to 

the possibility of the teacher and student having different numbers of basis 

functions. 

Calculating the expectation of this quantity over both input space and the 

noise on the dataset, 

= GG E c » GG 
tr GA o.202 Ep sP AGAsp 

p2 

02 Epg tpsT AGAsgtg 20 Ep tpsT AL 
K-} w° 

P2 P 

(4.4) 

where G = (s sT ), K = ( t tT) and L = (s tT) are matrices concerning 

student, teacher and both student and teacher respectively; these matrices 

represent the positions of the centres via the average pairwise responses of 

the hidden units to an input. Full expressions for these quantities can be 

found in appendix A. 

It remains to perform the average over the positions of the training data. 

This requires the use of the large P regime, but the simulations presented in 

section 4.4 show the validity of the results for all values of P except for P 

small. For some of the results that follow, it is also necessary to know the 
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form of A; as in chapter 3, where required it will be assumed that A -1 has a 

diagonal versus off -diagonal form, such that each diagonal entry is equal to 

B, and each off -diagonal entry is equal to B. This induces a similar form on 

A, where: 

Abc = 

The equality of diagonal entries implies that each basis function receives 

an equal amount of activation via the training set, while the equality of 

off -diagonal entries requires each pairwise correlation between basis function 

activations to be equal: the ramifications of these restrictions are explored via 

computer simulations in chapter 3. One can find 9 and B from the definition 

of A -1: 

A-1 = + pI p 

pI + « P 
E `ps 

n 

= pI+,ßG 

(4.5) 

where variance in the mean of the distribution of P Er srsp of magnitude 

1/P has been neglected 

The average over datasets can now be performed , yielding the final expres- 

sion for generalization error: 
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«EG» = P {trGA+Q2,ß2tr[(GA)2]} + (4.6) 

w°T {ß2 
[131 tr AGAJ + (1 -P l LT AGALJ - 2.3LTAL + ICI w° 

where J is a four -dimensional tensor dealing with student and teacher centre 

positions in the same manner as L (defined in appendix A)1. 

From « EG », recalling that the difference between EG and EB is simply 

the variance of the student output with respect to the posterior distribution, 

one can readily calculate « EB »: 

«EB»=«EG»-trGA (4.7) 

The expression for « EG » appears complicated, but it can be understood 

by decomposing it into components. The first term represents the variance 

of the student output, as can be seen from equation (4.7), while the second 

term is the error due to noise on the training data, which becomes zero in the 

a 2 -+ 0 limit. These two terms are purely estimation error. The final term 

deals with the relationship between the student and teacher, and includes 

both estimation error and approximation error. 

'The trace over AGAJ is over the first two indices of J, resulting in a M by M matrix. 
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4.2 Analysis of Generalization Error 

4.2.1 The Effects of Regularization 

While the effects of regularization are similar for EG and EB, the optimal 

parameter settings, as found by minimising generalization error with respect 

to ¡y and 0, are quite different. As discussed in chapter 3, for EG it is 

necessary to optimise ry and Q jointly, while for EB, only the ratio of ry to ,ß 

need be considered; this optimal ratio is independent of P. The discrepancy 

in optimisation requirements is due to the variance term in EG, which is 

minimised by taking ,ß -+ oo. These findings hold for both realizable and 

unrealizable cases. 

To illustrate the effects of regularization in a realizable scenario, consider 

figure 4.1(a) where EB, calculated from equation (4.7), is plotted versus 

P for three cases. The solid curve results from optimal regularization and 

demonstrates the lowest value of generalization error that can be achieved on 

average; the dot -dash curve represents the over -regularized case, in which the 

prior is dominant over the likelihood, showing how reduction in generalization 

error is substantially slowed. The dashed curve is for the highly under - 

regularized case, which in the -y /,ß -+ 0 case gives a divergence in both EG 

and EB. Similar behaviour is also found in the linear perceptron2 (Dunmur 

and Wallace, 1993). 

It is important to note that in the P - oo limit (with N fixed), the settings of 

'y and ,ß are irrelevant as long as 0 O. All results dealing with optimization 

of training require the assumption of form for A. 

2The comparison is not exact, however, as the work of Dunmur and Wallace employs 

the thermodynamic limit (N -> co, P - oo, P/N held constant) and focusses exclusively 

on EG. 
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4.2.2 The Over -Realizable Scenario 

Operationally, selecting a form for the student implies that one is prepared 

to believe that the teacher has an identical form. Therefore optimisation of 

training parameters must be performed on the basis of this belief. When the 

student is overly powerful this leads to under -regularization, as the magnitude 

of the teacher weight vector is believed to be larger than the true case. This is 

illustrated in figure 4.1(b); the dashed curve represents generalization error 

for the under -regularized case in which the training parameters have been 

optimised as if the teacher has the same form as the student, while the solid 

curve below represents the same student, but with training optimised with 

respect to the true teacher. 

Employing an overly -powerful student can drastically slow the reduction of 

generalization error as compared to the case where the student matches the 

teacher. Even with training optimised with respect to the true teacher form, 

the matching student greatly out -performs the overly -powerful version due 

to the necessity to suppress the redundant parameters during the training 

process. This requirement for parameter suppression becomes stronger as 

the student becomes more powerful. The effect is shown in figure 4.1(b); 

generalization error for the matching student is given by the dotted curve, 

while that of the overly - powerful but correctly optimised student is given by 

the solid curve directly above. 

4.2.3 The Unrealizable Scenario 

An analogous result to that of the over -realizable scenario is found when 

the teacher is more powerful than the student. Optimisation of training 
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(a) The effects of regularization: the solid curve rep- 
resents optimal regularization (7 = 2.7, ß = 1.6), the 
dot -dash curve illustrates the over- regularized case (7 = 
2.7, ß = 0.16), and the dashed curve shows the highly 
under -regularized case (ry = 2.7, ß = 16). The student 
and teacher were matched, each consisting of 3 cen- 
tres at (1, 0), ( -0.5, 0.866) and ( -0.5, -0.866). Noise of 
variance 1 was employed. Note that this is a realizable 
scenario, as in chapter 3. 
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(b) The Over -realizable Case: the dashed curve shows 
the over -realizable case with training optimised as if 
the student matches the teacher (7 = 3.5903 = 2.56), 
the solid curve illustrates the over -realizable case with 
training optimised with respect to the true teacher (7 = 
3.59,# = 1.44), while the dotted curve is for the student 
matching the teacher (7 = 6.52, ß = 4.39). All the 
curves were generated with one teacher centre at (1, 0); 

the over -realizable curves had two student centres at 
(1, 0) and ( -1, 0). Noise with variance 1 was employed. 

Figure 4.1: Regularization and the Over -realizable Case 

parameters under the belief that the teacher has the same form as the student 

leads to over -regularization, due to the assumed magnitude of the teacher 

weight vector being greater than the actual magnitude. This effect is shown 

in figure 4.2(a), in which the dot -dash curve denotes generalization error for 

the over -regularized case based on the belief that the teacher matches the 

student, while the solid curve below shows the error for an identical student 

when the parameters of the true teacher are known; this knowledge permits 

optimal regularization. 

The most significant effect of the teacher being more powerful than the stu- 
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(a) The Unrealizable case: the dot -dash curve denotes 
the case where the student is optimised as if the teacher 
is identical to it (y = 2.2200 = 1.55); the solid curve 
demonstrates the student optimised with knowledge of 
the true teacher (y = 2.22, (3 = 3.05), while, for compar- 
ison, the dotted curve shows a student which matches 
the teacher (y = 2.2203 = 1.05). The curves were gen- 
erated with two teacher centres at (1, 0) and ( -1, 0); the 
unrealizable curves employed a single student at (1, 0); 
noise of variance 1 was utilised. 

(b) Approximation Error versus the belief parameter, 
o- . 

uncertainty in teacher centre position, but as the un- 
certainty increases, the teacher centres become further 
from the centre of the input distribution. This causes 
the target function to eventually approach zero in the 
region in which input is likely, and thus approximation 
error will also reduce to zero. This process can be seen 
to begin from cr . 7.6 in this particular example. 

Figure 4.2: The Unrealizable Case and the Belief Parameter 

dent is the fact that the approximation error is no longer zero, as the teacher 

can never be exactly emulated by the student. This is illustrated in figure 

4.2(a), where the dotted curve represents the learning curve when the stu- 

dent matches the teacher (and has a zero asymptote), while the two upper 

curves show an under -powerful student, and have non -zero asymptotes. 

In order to consider the effect of a mismatch between student and teacher, 

the infinite example limit was calculated. In this limit, the variance of the 

student output and error due to noise on the training data both disappear, as 

do transient errors due to the relation between student and teacher, leaving 
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only the error that cannot be overcome within the training process. Note that 

since the variance of the student output vanishes, « EG » = « EB » 
The asymptotic generalization error can be found from equation (4.6) via 

equation (4.5): 

«EG »P-$°° w°7 {K - LTG-1L} w° (4.8) 

Recalling that G, L and K represent the average correlations between pairs 

of student -student, student- teacher and teacher -teacher basis functions re- 

spectively, the asymptotic generalization error is essentially a function of the 

correlations between hidden unit responses. There is a also a dependence on 

input -space dimension, basis function width and input distribution variance 

via the normalisation constants, and on the hidden -to- output weights of the 

teacher. In the realizable case G = L = K, and so it can be seen that 

the asymptotic error disappears. Note that this result is independent of the 

assumption of diagonal -offdiagonal form for A. 

4.2.4 Dependence of Estimation Error on Training Set 

Size 

In the limit of no weight decay, it is simple to show that the estimation error 

portion of the generalization error is inversely proportional to the number of 

training examples. 

From equation (4.6), using equation (4.5), the estimation error is: 
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C EG »EST= P 
{1 

-r Q2 + P w°T { tr G-1./ - LTG-1.0 w° (4.9) 

Taking ly -+ 0, the only P- dependencies are in the 1/P prefactors. This 

result has been confirmed by simulations, carried out in the same manner 

as those described in section 4.4; plotting the log of the averaged empirical 

generalization error versus log P gives a gradient of -1. It is also apparent 

that, with no weight decay, the best policy is to set ,ß -f oo, to eliminate the 

variance of the student output. This corresponds to selecting the student 

weight vector most consistent with the data, regardless of the noise level. 

This result is also independent of the form of A. 

4.3 Removing the Dependence on a Specific 

Teacher 

The results described so far still have a dependence on knowing the weights 

and centre positions of the teacher RBF. Since this scenario is rarely the case 

practically, it is preferable to relax this assumption, while bearing in mind 

that it is impossible to examine generalization without some a priori belief 

in the data generation mechanism (Wolpert, 1996a,b). 

The requirement that the teacher centres are known will be replaced by a sin- 

gle parameter, corresponding to degree of confidence in the student centres; 

each teacher centre will be considered to be drawn from a Gaussian distri- 

bution centred on a specific student with variance given by the confidence 

parameter o-c2 . Thus, for each student centre, regions are defined centred on 
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the student in which the corresponding teacher centre is believed to lie with 

a certain probability3. 

For simplicity, the exact knowledge of the teacher weight vector will be re- 

placed by the belief that it is drawn from a Gaussian distribution of mean 

zero and variance al. 

By varying the degree of confidence parameter, one can smoothly control 

the severity of the unrealizability, which supersedes the dichotomy between 

realizable and unrealizable cases. Absolute realizability is only regained in 

pathological cases, such as ac -+ oo or at = O. 

The typical generalization performance of the network can now be found 

by averaging EG and EB with respect to the teacher centres and weights, 

producing4: 

K EG » 

and, again, 

= 
P 

{ tr GA + o-2132 tr GAGA} + 

02Q2u,(1CiA)cb 1 pJócuu + (1- -pi ) Lbcuu} - 
2 13 

ll 

0-L w wcbLbcuu + tr 

tr GA 
«EB »_« EG» P 

(4.10) 

(4.11) 

3Mathematically, it is quite feasible to postulate a different degree of confidence in each 

student centre; however, this complicates the analysis and increases the number of free 

parameters without adding much in the way of insight, and so is not presented. 
4The Einstein summation convention of summation over all repeated indices is 

employed 
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where J' , K' and L' (defined explicitly in appendix A) are the counterparts 

of J, K, and L averaged with respect to the teacher centres and weights. 

As before, « EG » consists of three parts: student variance, noise effects 

and the relationship between student and teacher, consisting of both approx- 

imation and estimation error. Only the latter part is affected by the belief 

parameter, o,2. Figure 4.2(b) demonstrates the variation of the approxima- 

tion error with ßc2: the approximation error initially increases monotonically 

with ßc2, but as the uncertainty increases, the teacher centres become further 

from the centre of the input distribution. This eventually causes the aver- 

aged approximation error to decrease, as the target function approaches zero 

in the region where input is likely. 

4.4 Validation of the Analytic Results 

In order to validate the analytic results, simulations were carried out for three 

realizable scenarios: well -regularized, over -regularized and under -regularized 

training. The simulations involved exhaustive training of RBF networks us- 

ing the Langevin update procedure. Specifically, a network of three units in 

two -dimensional input space was employed, the centres of both student and 

teacher being at (1, 0), ( -0.5, 0.866) and ( -0.5, -0.866) and having width 

0.707. The noise in the update step was set to 2/0. For each simulation 

curve, 100 training runs were performed, with the generalization error being 

approximated by the error on a large, noiseless test set. The results for the 

well -regularized and under -regularized cases are presented in figure 4.3; the 

over -regularized case was qualitatively similar to the well -regularized case. 

An excellent fit between analytic and simulated results for all curves is ap- 

parent for P > 100, where the effects of ignoring the variance in the dataset 



Stochastic Learning 2 63 

average become negligible. In the region where P is small, the means of the 

simulations fluctuate about the analytic curves for the well -regularized case, 

but for the under -regularized case, the analytic mean is somewhat larger than 

the simulation result. In the small P region, the under -regularized case is 

particularly vulnerable to the approximation employed in the dataset average 

as A will be dominated by the correlations between hidden unit responses to 

the dataset, rather than by the prior. Note that the errorbars are also large in 

this region, as the distribution of student weights is relatively unconstrained. 

The simulations presented are for the case of a specific teacher network but 

simulations have also been carried out for the situation where a belief pa- 

rameter was specified, with similar results. 

4.5 Summary 

Learning and generalization in RBFs has been analysed within a stochastic 

training paradigm by assuming that the training data has been generated 

by a teacher RBF, but one for which the centre positions and widths need 

not correspond to those of the student RBF, thus allowing the analysis of 

unrealizable and over -realizable cases. 

The effects of regularization have been examined: under -regularization ini- 

tially causes very poor generalization, but this can be overcome rapidly with 

the addition of more training data. Over -regularization is initially less dam- 

aging, but requires a large quantity of training data in order to overcome the 

effect. 

The case in which the student is of greater representational power than the 

teacher has been examined; it was found that there is a tendency to under- 
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Figure 4.3: Simulation results showing the validity of the calculation of EG 

and EB. The curves are for a realizable case with three centres at (1, 0), 

( -0.5, 0.866) and ( -0.5, -0.866), with centre width 0.707 and noise of vari- 
ance 2/0. The empirical curves were generated by exhaustive training at each 
value of P, and represent averages over 100 trials. The error bars denote 1 

standard deviation of the empirical distribution. 

regularize due to over -estimating the complexity of the teacher. Even when 

optimal regularization is applied, the power of the student causes an increase 

in sample complexity as compared to the correct student. An analogous 

effect was found when the teacher has greater representational power than 

the student, in that under -estimating the complexity of the teacher leads to 

over -regularization. The primary effect of the unrealizable case is that the 

generalization error does not become zero in the limit of an infinite number 

of examples; the remaining component, the approximation error, has been 

exactly calculated. 
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The requirement that the exact positions of the teacher centres is known 

has been relaxed in favour of a single parameter indicating degree of belief 

in the student centre positions. Expressions for generalization error have 

been derived for this case, and the effect of varying the degree of belief on 

generalization error has been demonstrated. 

Finally, in order to validate the analytic results, simulations have been car- 

ried out in which RBFs are trained and the resultant generalization error 

approximated by test error on a noiseless data set, with good correspondence 

between the analytic and simulation results. 



Chapter 5 

On -line Learning 

The previous chapters on the subject of RBF learning focussed on the analysis 

of networks with a single adaptive layer. While representationally powerful, 

being capable of universal approximation of continuous functions, in general 

it is impossible to fully optimize the parameters of such networks. This is due 

to the two -stage training process in which the parameters of the hidden layer 

are fixed, usually without regard to the labels of the training data, before 

adapting the hidden -to- output weights. 

It has proved very difficult to analyze the learning and generalization prop- 

erties of networks with more than one adaptive layer. As discussed, while 

several tools exist which facilitate the analytic investigation of learning and 

generalization in supervised neural networks, such as the statistical physics 

methods (see Watkin et al., 1993, for a review), the Bayesian framework (e.g. 

MacKay, 1992) and the PAC method (Haussier, 1994), these tools have prin- 

cipally been applied to simple networks, such as linear and boolean percep- 

tions, and various simplifications of the committee machine (see, for instance, 

Schwarze (1993) and references therein). 

66 
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Recently an approach based on studying the dynamics of on -line gradient de- 

scent training scenarios has been used by several authors (Heskes and Kap- 

pen, 1991; Leen and Orr, 1994; Amari, 1993) to examine the evolution of 

system parameters primarily in the asymptotic regime. A similar approach, 

based on examining the dynamics of overlaps between characteristic sys- 

tem vectors in on -line training scenarios has been suggested in Saad and 

Solla (1995a,b) for investigating the learning dynamics in the SCM ( Biehl 

and Schwarze, 1995). This approach provides a complete description of the 

learning process, formulated in terms of the overlaps between vectors in the 

system, and can be easily extended to include general two -layer networks 

(Riegler and Biehl, 1995). 

This chapter presents a method for analyzing the behaviour of RBFs in an 

on -line learning scenario whereby network parameters are modified after each 

presentation of an example, which allows the calculation of generalization er- 

ror as a function of a set of variables characterizing the properties of the 

adaptive parameters of the network. The dynamical evolution of these vari- 

ables in the average case can be found, allowing not only the investigation of 

generalization ability, but also allowing the internal dynamics of the network, 

such as specialization of hidden units, to be analyzed. This tool has also been 

applied to MLPs (Saad and Solla, 1995a,b; Riegler and Biehl, 1995). 

5.1 Training Paradigms and Non - linear Op- 

timization 

Although the single adaptive layer training method investigated in the previ- 

ous RBF- related chapters generally gives sub -optimal solutions, the problem 
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is linear in the adaptive weights, and thus is fast to solve and amenable to 

analysis. Adopting the alternative method in which the hidden layer param- 

eters (either just the centre positions or both centre positions and widths) 

are adapted simultaneously renders the problem non -linear in the adaptable 

parameters, and hence requires an optimization technique, such as gradient 

descent, to estimate these parameters. This second approach is computation- 

ally more expensive, but usually leads to greater accuracy of approximation. 

This chapter investigates the non -linear approach in which basis function cen- 

tres are continuously modified to allow convergence to more optimal models. 

There are two common methods in use for gradient descent. In batch learning, 

one attempts to minimize the additive training error over the entire dataset; 

adjustments to parameters are performed once the full training set has been 

presented. The alternative approach, examined here, is on -line learning, 

in which the adaptive parameters of the network are adjusted after each 

presentation of a new datapointl. There has been a resurgence of interest 

analytically in the on -line method, as technical difficulties caused by the 

variety of ways in which a training set of given size can be selected are 

avoided, so complicated techniques such as the replica method (Hertz et al., 

1989) are unnecessary. 

5.2 On -line learning in RBF networks 

This chapter examines a gradient descent on -line training scenario on a con- 

tinuous error measure. As in previous chapters, the trained model (student) 

is an RBF network consisting of K basis functions. The centre of student 

'Obviously one may employ a method which is a compromise between the two extremes. 
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basis function (SBF) b is denoted by mb while the hidden -to- output weights 

of the student are represented by w. Training examples will consist of input - 

output pairs ( , y). The components of are uncorrelated Gaussian random 

variables of mean 0, variance 4, while y is generated by applying to a 

deterministic teacher RBF, but one in which the number M and position 

of the hidden units need not correspond to that of the student, which al- 

lows investigation of over -realizable and unrealizable cases2. The mapping 

implemented by the teacher is denoted by IT, and that of the student by 

fs. The hidden -to- output weights of the teacher are w° while the centre of 

teacher basis function u is given by nu. The vector of student basis function 

responses to input vector is represented by s(e), while those of the teacher 

are denoted by t(). The overall functions computed by the networks are 

therefore3: 

fs(C _E wb exp II 
2ambII2 

)=w.s() 
b=1 B 

2a7uIl2 
w° t() 

u=1 B 

(5.1) 

(5.2) 

This notation is the same as in chapters 3 and 4, but note that the stu- 

dent centre vectors m are now adaptive. As previously, N will denote the 

dimensionality of input space and P the number of examples presented. 

While the centres of the basis functions (input -to- hidden weights) and the 

hidden -to- output weights are considered adjustable, for simplicity the widths 

of the basis functions are fixed to a common value aB. The framework allows 

the investigation of the case where these widths are also adaptive, but this 

2This represents a general training scenario since, being universal approximators, RBF 

networks can approximate any continuous mapping to a desired degree. 

3lndices b,c,d and e will always represent SBFs, while u and y will represent those of 

the teacher. 
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adds greatly to the complexity of the analysis. For analytical convenience, 

the evolutions of the centres of the basis functions are redescribed in terms 

of the overlaps Qbc - mb mc, Rbu - mb nu and TuZ1 - nu nv, where Tu 

is constant and describes characteristics of the task to be learnt. 

Previous work in this area (Biehl and Schwarze, 1995; Saad and Solla, 1995a,ó; 

Riegler and Biehl, 1995) has relied upon the thermodynamic limit4. This 

limit allows one to ignore fluctuations in the updates of the means of the 

overlaps due to the randomness of the training examples, and permits the 

difference equations of gradient descent to be considered as differential equa- 

tions. The thermodynamic limit is hugely artificial for local RBFs; as the ac- 

tivation is localized, the N -+ oo limit implies that a basis function responds 

only in the vanishingly unlikely event that an input point falls exactly on its 

centre; there is no obvious reasonable rescaling of the basis functions5. The 

curse of dimensionality, discussed on section 1.2, is at its most potent here. 

The price paid for not taking this limit is that one has no a priori justifica- 

tion for ignoring the fluctuations in the update of the adaptive parameters 

due to the randomness of the training example. In this chapter and chapter 

6, both the means and variances of the adaptive parameters are calculated, 

showing that the fluctuations are practically negligible. 

5.3 Calculating the Generalization Error 

Generalization error measures the average dissimilarity over input space be- 

tween the desired mapping fT and that implemented by the learning model 

4P -+ co, N --> oo and P/N = a, where a is finite. 

5For instance, utilizing exp ( III Ñ ól12) eliminates all directional information as the 
/ 

cross -term mb vanishes in the thermodynamic limit. 
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fs. This dissimilarity is taken as quadratic deviation: 

EG = ( [fs - .fT]2 > (5.3) 

where ( ) denotes an average over input space with respect to the measure 

P() 
Substituting the definitions of equations (5.1) and (5.2) into (5.3) leads to: 

EG = 
2 

{7.11T ( ssT ) w + w°T (UT ) 
w0 - 2wT ( swOr ) w°} (5.4) 

Since the input distribution is Gaussian, the averages are Gaussian integrals 

and can be performed analytically; the resulting expression for generalization 

error is given in appendix B. Each average has dependence on combinations 

of Q,R and T depending on whether the averaged basis functions belong to 

student or teacher. 

5.4 System Dynamics 

Expressions for the time evolution of the overlaps Q and R can be derived 

by employing the gradient descent rule, mr1 = mb + N AB 
6b( - mb), where 

Sb = (fT - fs)wbsb and 77 is the learning rate which is explicitly scaled with 

1/N: 

(OQbc) = 
No-2B 

( [.5b( - mb ) mP + (5c( - 
2 

B 
( Sbbc( - 77/16) - ml()) ) 

NQ 
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( ORbw ) = ;al ( bb( - mb) ' n ) (5.6) 

The hidden -to- output weights can be treated similarly. In general one may 

choose different learning rates for the dynamics of the centres and of the 

hidden -to- output weights. Here, the same learning rate is used, but it is 

scaled differently (with 1 /K, in agreement with results obtained by Riegler 

(1997) for the MLP, yielding: 

( Owb ) - K ( (.fT - .fs)sb (5.7) 

Note that scaling the learning rate with 1/K does not make a significant 

difference in this case, since the thermodynamic limit has not been employed 

for N, in comparison to the exact MLP calculation where adiabatic elimi- 

nation should be employed for restoring the self -averaging properties of the 

overlaps (Riegler, 1997). 

These averages are again Gaussian integrals, so can be carried out analyti- 

cally. The averaged expressions for OQ, OR and Ow are given in appendix 

B. 

By iterating equations (5.5), (5.6) and (5.7), the evolution of the learning 

process can be tracked. This allows one to examine facets of learning such 

as specialization of the hidden units. Since generalization error depends on 

Q, R and w, one can also use these equations in conjunction with equation 

(5.4) to track the evolution of generalization error. 
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5.5 Analyzing the Learning Process 

The set of system evolutions described in the following sections are obtained 

by iterating the difference equations (5.5), (5.6) and (5.7) from random initial 

conditions sampled from the following distributions: Qbb and wb are sampled 

from U[0,10 -4], while Qbc,b #c and Rbc from a uniform distribution U[0,10 -5], 

which represent random correlations expected by arbitrary initialization of 

systems of the size employed. The evolution describes the mean behaviour 

of the overlaps and hidden -to- output weights, assuming the variances are 

negligible; these mean behaviours can then be used to find the evolution of 

generalization error via equation (5.4). 

5.5.1 The Importance of the Learning Rate 

With all the teacher basis functions (TBFs) positive, analysis of the time 

evolution of the generalization error, overlaps and hidden -to- output weights 

for various settings of the learning rate reveals the existence of three distinct 

behaviours. If q is chosen to be too small , there is a long period in which there 

is no specialization of the SBFs, and no improvement in generalization ability: 

the process becomes trapped in a symmetric subspace of solutions; this is 

the symmetric phase. Given asymmetry in the student initial conditions 

(i.e. in R, Q or w), or of the task itself, this subspace will always be 

escaped and the task eventually solved, but the time period required may 

be prohibitively large (figure 5.1(a), dotted curve, 77 = 0.1). The length of 

the symmetric phase increases with the symmetry of the initial conditions. 

At the other extreme, if n is set too large, an initial transient takes place 

quickly, but there comes a point from which the student vector norms grow 
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extremely rapidly, until the point where, due to the finite variance of the 

input distribution and local nature of the basis functions, the SBFs are no 

longer activated during training (figure 5.1(a), dashed curve, with 'q = 7.0). 

In this case, the generalization error approaches a finite value as P -+ o0 

and the task is not solved. Between these extremes lies a region in which 

the symmetric subspace is escaped quickly, and EG 0 as P -* oo for the 

realizable case (figure 5.1(a), solid curve, with 77 = 0.9). The SBFs become 

specialized and, asymptotically, the teacher is emulated exactly. 

These results for the learning rate are qualitatively similar to those found 

for SCMs and MLPs (Biehl and Schwarze, 1995; Saad and Solla, 1995a,b; 

Riegler and Biehl, 1995). 

5.5.2 An Example of System Evolution 

There are four distinct phases in the learning process, which are described 

with reference to an example of learning an exactly realizable task. This task 

consists of a network of 3 student basis functions (SBFs) learning a graded 

teacher of 3 TBFs, where graded implies that the square norms of the TBFs 

(diagonals of T) differ from one another; for this task, T00 = 0.5, T11 = 1.0, 

and T22 = 1.5. As previously stated, the widths of the student basis functions 

are considered fixed and equal to those of the teacher for simplicity; also 

note that the teacher always produces a continuous mapping, and noise is 

not employed. 

For this particular task the teacher is chosen to be uncorrelated, with the 

off -diagonals of T set to 0, and the teacher hidden -to- output weights w° to 

1. The learning process is illustrated in figure 5.1; figure 5.1(a) (solid curve) 

shows the evolution of generalization error, calculated from equation (5.4), 
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while figures 5.1(b) to 5.1(d) show the evolution of the equations for the 

means of R, Q and w respectively, calculated by iterating equations (5.5), 

(5.6) and (5.7) from random initial conditions as described above. Input 

dimensionality N = 8, learning rate ri = 0.9, input variance o = 1 and basis 

function width QB = 1 were employed. 

The picture that emerges mirrors that of the SCM and MLP (Saad and 

Solla, 1995b; Riegler and Biehl, 1995). Initially, there is a short transient 

phase in which the overlaps and hidden -to- output weights evolve from their 

initial conditions until they reach an approximately steady value (P = 0 to 

P = 4000). The symmetric phase then begins, which is characterized by a 

plateau in the evolution of the generalization error (see figure 5.1(a), solid 

curve, P = 4000 to P = 5 x 104), corresponding to a lack of differentiation 

amongst the hidden units; they are unspecialized and learn an average of the 

hidden units of the teacher, so that the student centre vectors and hidden - 

to- output weights are similar (figures 5.1(b) to 5.1(d)). The difference in 

the overlaps R between student centre vectors and teacher centre vectors 

(figure 5.1(b)) is only due to the difference in the lengths of various teacher 

centre vectors; if the overlaps were normalized, they would be identical. The 

symmetric phase is followed by a symmetry -breaking phase in which the SBFs 

learn to specialize, and become differentiated from one another (P = 5 x 104 

to P =1.7 x 105). Finally there is a long convergence phase, as the overlaps 

and hidden -to- output weights reach their asymptotic values. Since the task is 

realizable, this phase is characterized by E - 0 (figure 5.1(a), solid curve), 

and by the student centre vectors and hidden -to- output weights approaching 

those of the teacher (i.e. Qoo = Roo = 0.5, Chi = R11 = 1.0, Q22 = R22 = 1.5, 

with the off -diagonal elements of both Q and R being zero; Vb, wb = 1). The 

arbitrary labels of the SBFs were permuted to match those of the teacher. 
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These phases are generic in that they are observed, sometimes with some 

variation such as a series of symmetric and symmetry- breaking phases, in 

every on -line learning scenario for RBFs so far examined. 

One should point out that the formalism describes the evolution of the means 

(and the variances) from certain initial conditions. Convergence of the dy- 

namics to sub -optimal attractive fixed points (local minima) may occur if 

the starting point is within the corresponding basin of attraction. No local 

minima have been observed in the solutions, which may be an artifact of the 

system dimensionality. 

5.5.3 Task Dependence 

The symmetric phase is a phenomenon which depends on the symmetry of 

the task as well as that of the initial conditions. One would expect a shorter 

symmetric phase in inherently asymmetric tasks. To examine this, a task 

similar to that of section 5.5.2 was employed, with the single change being 

that the sign of one of the teacher hidden -to- output weights was flipped, 

thus providing two categories of targets: positive and negative. The initial 

conditions of the student remained the same as in the previous task, with 

77 = 0.9. 

The evolution of generalization error and the overlaps for this task are shown 

in figures 5.2(a) and 5.2(b) respectively. The dividing of the targets into two 

categories effectively eliminates the symmetric phase; this can be seen by 

comparing the evolution of the generalization error for this task (figure 5.2(a), 

dashed curve) with that for the previous task (figure 5.2(a), solid curve). 

There is no longer a plateau in the generalization error. Correspondingly, the 

symmetries between SBFs break immediately, as can be seen by examining 
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Figure 5.1: The exactly realizable scenario with positive TBFs. Three SBFs 
learn a graded, uncorrelated teacher of three TBFs with T00 = 0.5, T11 = 1.0 

and T22 = 1.5. All teacher hidden -to- output weights are set to 1. Figure 
(a) describes the evolution of the generalization error as a function of the 
number of examples for several different learning rates (77 = 0.1, 0.9, 7.0); (b) 

and (c) follow the evolution of overlaps between student and teacher centre 
vectors and among student centre vectors respectively, while (d) monitors 
the evolution of the mean hidden -to- output weights. 
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the overlaps between student and teacher centre vectors (figure 5.2(b)); this 

should be compared with figure 5.1(b) which denotes the evolution of the 

overlaps in the previous task. Note that the plateaus in the overlaps (figure 

5.1(b), P = 4000 to P = 5 x 104) are not found for the antisymmetric task. 

The elimination of the symmetric phase is an extreme result caused by the 

extremely asymmetric teacher. For networks with many hidden units, one 

can find a cascade of sub -symmetric phases, each shorter than the single sym- 

metric phase in the corresponding task with only positive targets, in which 

there is one symmetry between the hidden units seeking positive targets and 

another between those seeking negative targets. 

This suggests a simple and easily implemented strategy for increasing the 

speed of learning when targets are predominantly positive (negative): elimi- 

nate the bias of the training set by subtracting (adding) the mean target from 

each target point. This corresponds to an old heuristic among RBF prac- 

titioners; it follows that the hidden -to- output weights should be initialized 

from a zero -mean distribution. Alternatively, a bias unit could be employed, 

but this adds another parameter to the training process. 

5.5.4 The Over -realizable Case 

In real -world problems the exact form of the data -generating mechanism is 

rarely known. This leads to the possibility that the student may be overly 

powerful, in that it is capable of fitting surfaces more complicated than that 

of the true teacher. It is important to gain insight into how architectures will 

respond given such a scenario in order to be confident that they can be used 

successfully when the true teacher is unknown. 
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Figure 5.2: The exactly realizable scenario defined by a teacher network 
with a mixture of positive and negative TBFs. Three SBFs learn a graded, 
uncorrelated teacher of three TBFs with Top = 0.5, Tll = 1.0 and T22 = 1.5. 
wg = 1, w° = -1, w2 = 1. (a) describes the evolution of the generalization 
error for this case and presents for comparison the evolution in the case of all 
positive TBFs, while (b) shows the evolution of the overlaps between student 
and teacher centres R. 

Intuitively, one might expect that a student that is well- matched to the 

teacher will learn faster than one which is overly powerful. Figure 5.3(a) 

shows two tasks, each of which compares the over -realizable scenario with 

the well- matched case. The first task, consisting of 3 TBFs, is identical 

to that detailed in section 5.5.2, and hence has only positive targets. The 

performance of a well- matched student of 3 SBFs is compared with an over - 

realizable scenario in which 5 SBFs learn the 3 TBFs. Comparison of the 

evolution of generalization error between these learning scenarios is shown 

in figure 5.3(a); the solid curve represents the well- matched scenario, while 

the dot -dash curve illustrates the over -realizable scenario. The length of the 

symmetric phase is significantly increased with the overly -powerful student. 

150 200 
x103 
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The length of the convergence phase is also increased. 

The second task deals with the alternative scenario in which one TBF has 

a negative hidden -to- output weight; the task is identical to that defined in 

section 5.5.3, and the student initial conditions are again as specified in 

section 5.5.2. In figure 5.3(a) the evolution of generalization error for both 

the over -realizable scenario (dashed curve) in which 5 SBFs learn 3 TBFs, 

and the corresponding well- matched case in which 3 SBFs learn 3 TBFs 

(dotted curve) is shown. There is no well- defined symmetric case, due to 

the inherent asymmetry of the task. The convergence phase is again greatly 

increased in length; this appears to be a general feature of the over -realizable 

scenario. 

Given that the student is overly powerful, there appears to be, a priori, 

several remedies available to the student. It could: eliminate the excess 

nodes, form cancellation pairs (in which two students exactly cancel one 

another), or devise more complicated fitting schemes. 

To examine the actual responses of the student, the evolution of the overlaps 

between student and teacher and of the hidden -to- output weights for the 

particular scenario described by the second trial detailed above are presented 

in figures 5.3(b) and 5.3(c) respectively. Looking first at figure 5.3(c), it is 

apparent that w3 approaches zero (short- dashed curve), indicating that SBF 

3 is entirely eliminated during training. Thus 4 SBFs remain to emulate 3 

TBFs. The negative TBF 1 is exactly emulated by SBF 0, as T11 = 1, w° = 

-1 and Rol = 1, wo = -1 (solid curve on both figure 5.3(b) and 5.3(c)), 

while, similarly, SBF 2 exactly emulates TBF 2 (long- dashed curve, both 

figures). This leaves SBF 1 and SBF 4 to emulate TBF O. Looking at figure 

5.3(c), dotted and dot -dash curves, both student hidden -to- output weights 



On -line Learning 81 

approach 0.5, exactly half that of the hidden -to- output weight of TBF 0; 

looking at 5.3(b), both SBFs have 0.5 overlap with TBF 0. This indicates 

that the sum of both students emulates TBF 0. Thus elimination and fitting 

involving the non -cancelling combination of nodes was found; in these trials 

and many others, no pairwise cancellation was found. One presumes that 

this could be induced by very careful selection of the initial conditions, but 

that it is not found under normal circumstances. 

5.5.5 Analysis of the Symmetric Phase 

The symmetric phase, in which there is no specialization of the hidden units, 

be analyzed by employing a few simplifying assump- 

tions. It is a phenomenon that is predominantly associated with small values 

of î /N, so terms of (77/N)2 are neglected. The hidden -to- output weights are 

clamped to +1. The teacher is taken to be isotropic: TBF centres have iden- 

tical norms of 1, each having no overlap with the others, therefore Tuv = bu,,. 

This has the result, also observed in the numerical solutions, that the student 

norms Qbb are very similar in this phase, as are the student -student correla- 

tions, so Qbb - Q and Cbc,b #c -C where Q becomes the square norm of the 

SBFs, and C is the overlap between any two different SBFs. 

Following the geometric argument of Saad and Solla (1995b), in the sym- 

metric phase, the SBF centres are confined to the subspace spanned by the 

TBF centres. Since Tu = buy, the SBF centres can be written in the or- 

thonormal basis defined by the TBF centres, with the components being the 

overlaps R: mb = EM 1 Rbunu. As the teacher is isotropic, the overlaps are 

independent of both b and u and thus can be written in terms of a single 

parameter R. Further, this reduction to a single overlap parameter leads to 
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Figure 5.3: The over -realizable scenario. Figure (a) describes the evolution 
of the generalization error in two tasks; each task is learnt by a well- matched 
student (exactly realizable), and an overly -powerful student (over -realizable). 
Figures (b) and (c) show the evolution of the overlaps R and the hidden -to- 

output weights w for the over -realizable case in the second task, in which the 
teacher RBF includes a mixture of positive and negative hidden -to- output 
weights. In this scenario, five SBFs learn a graded, uncorrelated teacher of 

three TBFs with T00 = 0.5, T11 = 1.0 and T22 = 1.5. wg = 1, w? = -1, w° = 
1. 
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Q = C = MR2, so the evolution of the overlaps can be described as a single 

difference equation for R. The analytic solution of equations (5.5), (5.6) and 

(5.7) under these restrictions is still rather complicated. However, it can be 

solved for large systems, i.e. large K, by examining the dominant terms in 

the solution. Expanding in 1/K and discarding second order terms renders 

the system simple enough to solve analytically for the symmetric fixed point: 

R* = // 1 

[241(343+2) 

(5.8) 
KI1+vB-Bexp1 

Jl \\ 

One should point out that this expression breaks down for certain values of 

ga as the first order term in 1/K as well as higher order terms diverge (an 

approximate expression may also be derived for the divergence point). 

The stability of the fixed point, and thus the breaking of the symmetric 

phase, can be examined via an eigenvalue analysis of the dynamics of the 

system near the fixed point; this analysis can be found in chapter 6. To show 

that the symmmetric phase is not an artificial product of tasks with inbuilt 

symmetries, or merely a function of highly symmetric initial conditions, it is 

demonstrated in chapter 6 to exist prominently in random tasks with random 

initial conditions. 

5.5.6 Analysis of the Convergence Phase 

To gain insight into the convergence of the on -line gradient descent process in 

a realizable scenario, a similar simplified learning scenario to that utilized in 

the symmetric phase analysis was employed. The hidden -to- output weights 

are again fixed to +1, and the teacher is defined by Tu,, = 8uv 
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The scenario can be extended to adaptable hidden -to- output weights; this is 

presented in chapter 6. As in the symmetric phase, the fact that 71, = Su 

allows the system to be reduced to four adaptive quantities: Q = Qbb, C = 

Q bc,boc, R = Rbb and S = Rbc,b #c 

Linearizing this system about the known fixed point of the dynamics, Q = 

1, C = 0, R = 1, S = 0, yields an equation of the form Ox = Ax where 

x = { 1 - R, 1 - Q, S, C} is the vector of deviations from the fixed point. 

The eigenvalues of the matrix A control the converging system: these are 

presented in figure 5.4(a) for K = 10. In every case examined, there is a 

single critical eigenvalue Ac that controls the stability and convergence rate 

of the system (shown in bold), a non -linear subcritical eigenvalue, and two 

subcritical linear eigenvalues. The value of ij at Ac = 0 determines the 

maximum learning rate for convergence to occur; for Ac > 0 the fixed point 

is unstable. 

The convergence of the overlaps is controlled by the critical eigenvalue, there- 

fore, the value of n at the single minimum of )c determines the optimal 

learning rate (n opt) ) in terms of the fastest convergence of the system to the 

fixed point. An examination of globally optimal learning rates for the SCM, 

calculated via variational methods, can be found in (Saad and Rattray, 1997). 

Examining Tic and ijopt as a function of K (figure 5.4(b)), one finds that 

both quantities scale as 1 /K; the maximum and optimal learning rates are 

inversely proportional to the number of hidden units of the student. Numer- 

ically, the ratio of r)opt to rc is approximately 2/3. 

Finally, the relationship between basis function width and 1c is plotted in 

figure 5.4(c). When the widths are small, is is very large as it becomes 

unlikely that a training point will activate any of the basis functions. For 
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C > U,77 c ^ 1-1 (j3 

5.6 Summary 

On -line learning, in which the adaptive parameters of the network are up- 

dated at each presentation of a data point, was examined for the RBF using 

gradient descent learning. The analytic method presented allows the calcu- 

lation of the evolution of generalization error and of the specialization of the 

hidden units. 

This method was used to elucidate the stages of training and the role of the 

learning rate. There are four stages of training: a short transitory phase 

in which the adaptive parameters move from the initial conditions to the 

symmetric phase; the symmetric phase itself, characterized by lack of dif- 

ferentiation amongst hidden units; a symmetry- breaking phase in which the 

hidden units become specialized, and a convergence phase in which the adap- 

tive parameters reach their final values asymptotically. Three regimes were 

found for the learning rate: small, giving unnecessarily slow learning, inter- 

mediate, leading to fast escape from the symmetric phase and convergence 

to the correct target, and too large, which results in a divergence of SBF 

norms and failure to converge to the correct target. 

Examining the exactly realizable scenario, it was shown that employing both 

positive and negative targets leads to much faster symmetry breaking. The 

over -realizable case was also studied, showing that over -realizability extends 

both the length of the symmetric phase and that of the convergence phase. 

The symmetric phase for realizable scenarios was analyzed and the value of 

the overlaps at the symmetric fixed point found. 
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Figure 5.4: Convergence and symmetric phases. Figure (a) shows the eigen- 
values controlling the dynamics of the system for the convergence phase (de- 
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The convergence phase was also studied; both maximum and optimal learning 

rates were calculated and shown to scale as 1 /K. The dependence of the 

maximum learning rate on the width of the basis functions was also examined, 

and, for aB > 4£, the maximum learning rate scales approximately as 1 /a2B. 

An analysis of the variances in the system dynamics, demonstrating that 

under most circumstances the means of the update equations are sufficient 

to characterise the learning process, is presented in chapter 6, along with 

extensions of the analyses of the symmetric and convergence phases, and 

simulations demonstrating the validity of both the mean updates and the 

variance calculations. 



Chapter 6 

Extensions to On -line Learning 

This chapter significantly expands on the on -line learning analysis of chapter 

5. The use of the mean update equations is justified via an analytic calcu- 

lation of the average fluctuations in the system dynamics; the results of this 

analysis are confirmed by experiments of actual learning in RBF networks. 

The behaviour of the system in the symmetric phase is further understood 

by analysing the properties of the symmetric fixed point, which sheds light 

on major differences between RBFs and MLPs. The convergence phase anal- 

ysis is extended to the more realistic situation of adaptive hidden -to- output 

weights. Finally, further simulations are presented which show the excel- 

lent correspondence between the theoretical results obtained by iterating the 

mean update equations and results from training real RBF networks. 

6.1 System Dynamics 

The system dynamics derived in chapter 5 are employed unchanged. Re- 

capping, the gradient descent rule mrl mb + Nv$ bb( - mb) (where 

88 
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bb = (fT - fs)wbsb and learning rate 77 is explicitly scaled with 1 /N) is 

used as the basis from which expressions for the time evolution of the mean 

overlaps of Q and R are derived. The hidden -to- output weights are treated 

similarly, except that the learning rate is scaled with 1/K rather than 1 /N. 

The averaged equations for OQ, OR and Aw can be found in appendix B. 

6.2 Variance and the Thermodynamic Limit 

Other recent work in this area (Biehl and Schwarze, 1995; Saad and Solla, 

1995a,b; Riegler and Biehl, 1995) has relied upon the thermodynamic limit 

(i.e., P -* oo, N -+ oo and P/N = a, where a is finite). Taking this limit 

allows one to ignore fluctuations in the updates of the means of the overlaps 

due to the randomness of the training examples, and permits the difference 

equations of gradient descent to be considered as differential equations. As 

discussed in chapter 5, the thermodynamic limit is hugely artificial for local 

RBFs as the activation is localized. The price paid for not taking this limit 

is that one has no a priori justification for ignoring the fluctuations in the 

update of the adaptive parameters due to the randomness of the training 

example. 

By making assumptions as to the form of these fluctuations, it is possible 

to derive equations describing their evolution; the method is mentioned in 

(Heskes and Kappen, 1991) and also in (Barber et al., 1996) for the simpler 

case of the SCM, and is based on the Van Kampen small fluctuation ex- 

pansion (Kampen, 1992); it is extended in this thesis to deal with adaptive 

hidden -to- output weights (see also Riegler and Biehl, 1995). 

To quantify the effect of the variances, a set of dynamical equations will 
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be derived, parallel to those representing the dynamics of the means, for 

describing the dynamics of the variances. To simplify the explanation, the 

update equations (5.5), (5.6) and (5.7) are cast here into a general form, 

where a represents a generic system parameter and the scaling parameter La 

is set to N for Q and R, and to K for w. As the scaled learning rate is 

usually small, the focus will be on first order terms in ri /La, which dominate 

the dynamics, and update terms of order (ri/La)2 will be ignored. 

Thus the update equations can all be represented by a single generic equation: 

aP+l aP + 17--F 
L a a 

(6.1) 

It is then assumed (similar to Barber et al., 1996) that the update function 

F and the parameter a can be written in terms of a mean and fluctuation 

such that: 

Fa=Fa+Fa and a=á+L â (6.2) 

where á denotes an average value and â represents a fluctuation due to the 

randomness of the example. The bias term that arises from the Van Kampen 

expansion is neglected (as in Heskes and Kappen, 1991) as it is typically an 

order /77/L smaller than the fluctuation term; it is caused by the interac- 

tion between the non -linear learning rules and the fluctuations, whereby if 

a fluctuation in a particular direction in parameter space does not result in 

the same restoring effect as that in the opposite direction, there is a net bias 

(see Wiegerinck and Heskes, 1996). 

Combining eqns (6.1) and (6.2), and averaging with respect to the input 

distribution, gives a set of coupled difference equations which describe the 
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evolution of the variances: 

0(âb)=L (âc)aáb+(bc) aa+(FaFb) (6.3) 
aLb c 

The update to the variances is composed of an instantaneous fluctuation 

which depends only on the current example, denoted by (FaFb ), and a set 

of terms dependent on the current variances. Thus eqn. (6.3) describes the 

evolution of the cumulative variances, not merely those due to the randomness 

of the current example. 

Applying this general method to each pair of adaptive quantities allows the 

evolution of the variances for the entire system to be calculated. The averages 

are again Gaussian and so are analytically tractable; the expressions that 

result for the instantaneous variances are given in appendix B. 

It has been shown that the variances must vanish asymptotically for re- 

alizable cases (Heskes and Kappen, 1991); the equations derived above are 

employed in section 6.3.3 to demonstrate that the variances are small enough 

throughout the evolution of the system to allow a description of the system 

dynamics in terms of the evolution of the means. 

6.3 Analysing the Learning Process 

6.3.1 Analysing the Symmetric and Symmetry- Breaking 

Phases 

The symmetric phase analysis of chapter 5 is extended in this section to 

examine the dynamics of the evolving system near the symmetric fixed point. 
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The same assumptions employed previously are used here: terms of ij2 are 

neglected as the symmetric phase is predominantly associated with small n; 

the teacher is isotropic (Tu = bu ), so the student norms Qbb are similar 

(denoted by Q) as are the student correlations Qbc (denoted by C). 

In the symmetric phase, the SBF centres are mostly confined to the subspace 

spanned by the TBF centres. Since Tu = 8u , the SBF centres can be written 

in the orthonormal basis defined by the TBF centres, with the components 

being the overlaps R: mb = M 1 Rbunu. As the teacher is isotropic, the 

overlaps are independent of both b and u and thus can be written in terms of 

a single parameter R. Further, this reduction to a single overlap parameter 

leads to Q = C = MR2, so the evolution of the overlaps can be described 

as a single difference equation for R. The analytic solution of this equation, 

giving the value of R (and thus Q, C and S) at the symmetric fixed point is 

given in eqn (5.8); fixed point values will be denoted like R *. 

The stability of the fixed point, and thus the breaking of the symmetric phase, 

can be examined via an eigenvalue analysis of the dynamics of the system 

near the fixed point. The equations of motion (5.5), (5.6) are mapped to 

equations of deviations from the symmetric fixed point via r = R -R *, s = 

S -S *, q = Q -Q *, c= C -C *. Remembering the geometrical argument 

above, the student weight vectors can be expanded in terms of the student - 

teacher overlaps; as the calculation is in the small ri regime, components 

which are orthogonal to the space spanned by the teacher vectors, mb , may 

be neglected, so that the student norms Q and overlaps C are completely 

determined by the student -teacher overlaps. Writing these overlaps as: Rbu = 

Rbbu + S(1 - 8bu) gives the relations Q = R2 + S2 (K - 1) and C = 2RS + 

82 (K - 2). If these relations are expanded to first order in the deviations r 

and s, it can be seen that q = c = 2R* (r + s(K - 1) ), so that Q* = C* is 
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preserved to first order; this is also consistent with the truncated equations of 

motion if they too are expanded to first order. Thus the dynamical quantities 

reduce to three: r, s and c. 

Performing an eigenvalue analysis on the resulting system reveals one domi- 

nant positive eigenvalue (A) that scales with K and represents a perturbation 

which breaks the symmetries between the hidden units by amplifying asym- 

metries in the initial conditions (see (Biehl et al., 1996) for a detailed analysis 

of this for the SCM); the remaining modes, which also scale with K, are ir- 

relevant as they preserve the symmetry. This result is in contrast to that for 

the SCM (Saad and Solla, 1995b), in which the dominant eigenvalue scales 

with 1 /K. This implies that for RBFs the more hidden units in the network, 

the faster the symmetric phase is escaped, resulting in negligible symmetric 

phases for large systems, while in SCMs the opposite is true; this result has 

been confirmed by simulations in which, for the RBF, the length of symmet- 

ric phase is found to scale as 1 /K. This difference across architectures is 

caused by the contrast between the localized nature of the basis function in 

the RBF network and the global nature of sigmoidal hidden nodes in SCM. In 

the SCM case, small perturbations around the symmetric fixed point result 

in relatively small changes in error since the sigmoidal response changes very 

slowly as one modifies the weight vectors. On the other hand, the Gaussian 

response decays exponentially as one moves away from the centre, so small 

perturbations around the symmetric fixed point result in massive changes 

that drive the symmetry breaking. When K increases the error surface looks 

very rugged emphasising the peaks and increasing this effect, in contrast to 

the SCM case where more sigmoids means a smoother error surface. Note 

that this result applies to realizable tasks, in which the student is of the same 

complexity as the teacher, and to isotropic teachers. Whether the length 
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Figure 6.1: Generalization error for a realistic learning task showing the 
existence and importance of the symmetric phase. A student of 10 hidden 
units learns a realizable task in which the teacher also has 10 hidden units, 
with N = 5. The symmetric phase is a prominent feature of the learning 
dynamics. 

of the symmetric phase scales as 1/K for more complex teachers remains a 

subject for research. 

This does not mean that the symmetric phase can be ignored for realistically - 

sized networks, however. Even with a teacher that is not particularly sym- 

metric, this phase can play a significant role in the learning dynamics. To 

demonstrate this, a teacher RBF of 10 hidden units with N = 5 was con- 

structed with the teacher centres generated from a Gaussian distribution 

N[0, 0.5]. Note that this teacher must be correlated as the number of centres 

is larger than the input dimension. A student network, also of 10 hidden 

units, was constructed with all weights initialised from N[0, 0.05]. 
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The networks were then mapped into the corresponding overlaps, and the 

learning process was run with 77 = 0.9. The evolution of generalization error 

is shown in figure 6.1: the symmetric phase, extending here from P = 2000 

to P = 15000, is a prominent phenomenon of the learning dynamics. It is not 

merely an artifact of a highly symmetric teacher configuration (the teacher 

was random and correlated), nor of a specially chosen set of initial conditions, 

as the student was initialised with realistic initial conditions before being 

mapped into overlaps. 

6.3.2 Calculating the Convergence 

The convergence analysis of chapter 5 is extended in this section to include 

adaptive hidden -to- output weights. 

Again an isotropic teacher is used, defined by Ti = 6,v and w° = 1. This 

means the evolution of each student hidden unit will be very similar, so the 

evolving system can be simplified to 5 adaptive variables Q, C, R, S and w, 

defined by: Qbc = Q6bc + C(1 - (5bc), Rbu = RBbu + S(1 - 6bu) and wb = w; 

these quantities are controlled by equations (5.5), (5.6) and (5.7). Note 

that the variances are not expected to play a significant role in defining the 

maximal and optimal learning rates as they have been shown to vanish in 

the asymptotic regime. 

Linearizing these equations about the known fixed point of the dynamics, 

Q = 1,C = 0, R = 1, S = 0, w = 1 yields the eigenvalues controlling the 

rate of convergence and the stability. There is a single (non -linear in 77) crit- 

ical eigenvalue, Ai, which controls stability, a linear eigenvalue, )12, which 

can influence convergence rate, and three further eigenvalues which play no 

significant role, being much smaller for all values of 77. The eigenvalues are 
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illustrated in figure 6.2(a) for a network of 10 hidden units with input di- 

mension N = 10. The maximum learning rate, defined by the crossing of the 

zero line, can be seen to be controlled solely by Al; note that this maximum 

only applies during convergence, not necessarily during the other phases of 

learning. The theory predicts a maximum learning rate of ri = 33 for this sce- 

nario; the accuracy of the method was tested by training real RBF networks 

by initializing them near the known fixed point, and determining the value 

of 77 at which convergence failed to occur, which in this case was 77 = 32.3 

with standard deviation of 0.8. 

The rate of convergence, defined for particular n by the smaller of Al and A2i 

is optimized either by setting 77 to the minimum of Al or to the intersection of 

Al with A2, depending on the exact learning scenario (e.g., for other teacher 

vector lengths or basis widths). 

It is interesting to compare the convergence of the system with adaptive 

hidden -to- output weights to that where the hidden -to- output weights are 

fixed (chapter 5). Figure 6.2(b) shows the two significant eigenvalues for both 

cases in identical scenarios. Al is unchanged, so the maximum learning rate 

is unaffected and is therefore a function of the hidden layer, not the output 

layer (this is also true for the MLP (Riegler and Biehl, 1995)). This implies 

that the exact form of the learning rule for the hidden -to- output weights is 

irrelevant to the maximum learning rate. Further, even if the correct values 

of the hidden -to- output weights were known in advance, this would not affect 

the maximum learning rate. Note that with fixed hidden -to- output weights, 

the gradient of A2 becomes much steeper and in fact does not affect the rate 

of convergence, which is controlled solely by Al. 

The scaling of the maximum and optimal learning rates with the number 
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of hidden units can also be found. For both fixed and adaptive hidden -to- 

output weights, the maximum learning rate scales as 1 /K. For fixed hidden - 

to- output weights, the optimal learning rate also scales as 1 /K, while for 

adaptive hidden -to- output weights, the situation is more complicated. In 

parameter regions where the convergence rate is optimized by minimising 

Ai, the optimal learning rate again scales as 1 /K; however, in regions where 

optimization is achieved by finding the intersection of Al and A2, rj changes at 

a slower rate than 1 /K. These effects are illustrated in figure 6.2(c), in which 

maximum and optimal learning rates are plotted against 1 /K. Note that as 

K increases, rlopt approaches rlc rapidly for the adaptive hidden -to- output 

case (A2 becomes less steep), implying that it becomes difficult to optimize 

the process and still obtain convergence to the correct fixed point. 

6.3.3 Quantification of the Variance 

To demonstrate that it is reasonable to consider only the mean of the updates 

of the system parameters, results are presented which quantify the effect of 

the variance for a typical case, showing that its contribution is negligible in 

comparison with the mean values. In pathological cases in which the task 

and the initial conditions of the system are highly symmetric, it is possible 

to obtain variances which are much larger than those which typically occur 

- this issue is explored for the SCM by Barber et al. (1996). 

In order to quantify the variances, a training scenario is constructed in which 

a student network comprising two SBFs is trained on examples generated by 

a two node teacher. The initial conditions were constructed by randomly 

initialising the weights of an RBF network by drawing each input -to- hidden 

and hidden -to- output weight from U[0,0.1], and then mapping the network 
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Figure 6.2: Convergence Phase with Adaptive Hidden -to- Output Weights. 
Figure (a) shows the eigenvalues for the system with adaptive hidden -to- 
output weights. Only Al and A2 are significant; Ai controls the maximum 
learning rate, while a2 can influence the optimal learning rate. Figure (b) 

compares the eigenvalues for systems with adaptive and fixed hidden -to- 
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rapidly approaches ric. 

25 30 35 
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into the appropriate system parameters, so as to provide realistic conditions. 

The input dimension N was set to 10, and the learning rate i to 0.1. The 

mean and variance update equations (5.5), (5.6), (5.7) and (6.3) were iterated 

from these initial conditions until the means had reached an approximately 

steady state, thus providing a trajectory for each variance. The TBF centres 

were set to T00 = 1.0, T11 = 0.5, which makes the problem quite asymmetric 

and results in no significant symmetric phase. 

In figures 6.3(a) and 6.3(b), the fluctuations are plotted as error bars on the 

mean for the dominant student -teacher overlaps R and for the hidden -to- 

output weights w (fluctuation magnitudes for Q are very similar to those of 

R) . The magnitudes of the fluctuations are very small, particularly so for 

R. For w, the peak ratio of fluctuation magnitude to mean is approximately 

0.012, while for R, it is 0.008. These ratios are typical for non -pathological 

scenarios. Note that for realizable cases, the fluctuations must eventually 

disappear. 

To demonstrate that the theoretical calculation of the evolution of the vari- 

ances gives valid results, gradient descent learning was used to train actual 

RBF networks 1000 times for the configuration and initial conditions de- 

scribed above. The average evolutions of the parameters were employed to 

calculate empirical fluctuations about the means. The results of this are 

plotted in figures 6.3(c) and 6.3(d), in which the theoretical fluctuations are 

shown versus the simulation fluctuations - it can be seen that there is very 

good agreement between the theory and simulation. The slight discrepancy 

up to about P = 1.5 x 106 is believed to be due to the fact that terms of 772 

are discarded in the theory. 
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Figure 6.3: Quantification of the Variances. Figures (a) and (b) show the 
theoretical variances, plotted as errorbars on the mean, for the dominant 
overlaps Roo and R11 and for the hidden -to- output weights wo and w1 re- 
spectively, for a realizable task involving two SBFs learning two TBFs. The 
fluctuations are negligible; this is typically true, unless the task and initial 
conditions are highly symmetric. Figures (c) and (d) compare the theoretical 
variances to those from simulations in which RBFs were trained 1000 times 
on the above task. The variances for the dominant overlaps and hidden - 
to- output weights are shown, and it can be seen that there is an excellent 
correspondence. 
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6.3.4 Simulations 

To demonstrate the validity of the theoretical average -case results, the evo- 

lution of the system found by iterating equations (5.5), (5.6) and (5.7) was 

compared to empirical results found by training real RBF networks via on- 

line gradient descent. The empirical values of Q, R and w were calculated 

from the trajectories of the weights during training. Generalization error was 

empirically estimated via the average error on a 1000 -point test -set, and the 

results were averaged over 50 trials, with the arbitrary labels of the SBFs 

permuted appropriately to ensure the averages were meaningful. 

The results presented reflect a typical set of trials: in this realizable scenario, 

3 SBFs learn 3 TBFs with 7/ = 0.9 and N = 5. The excellent correspondence 

between the theory and simulations is demonstrated in figure 6.4. Figure 

6.4(a) shows theoretical versus empirical generalization error - the theoretical 

value is always within one standard deviation of the empirical value. In 

figures 6.4(b), 6.4(c) and 6.4(d), the theoretical trajectories of Q, R and w 

are plotted versus their empirical counterparts; again, the correspondence is 

excellent. Error bars are not shown here as they are approximately the size 

of the symbols. 

6.4 Summary 

On -line learning using the gradient descent algorithm has been examined for 

the RBF by employing a method which allows the calculation of generaliza- 

tion error as well as the elucidation of the features of the learning process, 

such as the specialization of the hidden units. 

The symmetric phase was analysed (for the realizable case), and the value of 
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Figure 6.4: Comparison of theoretical results with simulations. The simula- 
tion results are averaged over 50 trials; the labels of the student hidden units 
were permuted where necessary to make the averages meaningful. Empirical 
generalization error was approximated with the test error on a 1000 point 
test set. Error bars on the simulations are at most the size of the larger 
asterisks for the overlaps (figures (b) and (c)), and at most twice this size 

for the hidden -to- output weights (figure (d)). Input dimensionality N = 5, 

learning rate ri = 0.9, input variance a = 1 and basis function width 4 = 1. 
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the system parameters at the symmetric fixed point found. The breaking of 

the symmetric phase was also examined via an eigenvalue analysis - there is a 

significant behavioural difference between the RBF and the SCM in that the 

more hidden units, the greater the length of the phase in the SCM, but the 

shorter its length in the RBF. This is due to the difference in the properties of 

the activation function for the networks - the RBF has a localized activation 

function, while that of the SCM is global. 

The convergence properties of the system in the realizable case were also ex- 

amined via eigenvalue analysis. A single critical eigenvalue controls stability 

of the target fixed point, and thus determines the maximum value of 77 that 

can be employed (roc). The optimal setting ]opt of n can also be found, which 

depends on a combination of the critical eigenvalue and a second (linear in 77) 

eigenvalue. The results were compared to those previously found for the RBF 

using non -adaptive hidden -to- output weights; 77c was unchanged, and is thus 

a function of the hidden layer. 77opt with adaptive hidden -to- output weights 

approaches 77c as the number of hidden units increases, so it becomes very 

hard to optimize the convergence correctly. For both cases, 77c was found to 

scale as 1 /K. 

As the thermodynamic limit could not be employed, it was necessary to 

quantify the variances of the system parameters to ensure that the average 

value was meaningful. Equations describing the evolution of these variances 

were derived, and it was shown that, for a typical case, the variances are 

small. The equations for the evolution of the means and the variances were 

shown to be valid descriptions of the real system via simulations. 



Chapter 7 

On -line Noise and 

Regularization 

The on -line learning framework studied in chapters 5 and 6 addresses the 

properties of learning in the noise -free case. This chapter extends the analysis 

of on -line learning to the more realistic scenario in which the training data 

is corrupted by noise, and also adapts the framework to allow the study of 

regularization. 

The situation of learning from corrupted examples in neural networks has 

been examined from a variety of perspectives, including the Bayesian ap- 

proach employed in chapters 3 and 4, equilibrium statistical mechanics (Watkin 

et al., 1993, and references therein), which has been used primarily to inves- 

tigate simple networks, and non -equilibrium approaches (Amari et al., 1996). 

Noisy on -line learning in the SCM has recently been examined from a similar 

perspective to that considered here (Saad and Solla, 1997). 

The student -teacher framework employed previously is once again exploited 

in this chapter. Two classes of noise are examined: additive Gaussian output 

104 
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noise, which is added to the output of the teacher to corrupt the dataset, and 

Gaussian input noise, which is applied to the inputs of the teacher, rather 

than directly to the dataset; for RBFs, input noise can also be seen as a 

type of model noise in which the basis function positions of the teacher are 

corrupted. The addition of each type of noise affects the system dynam- 

ics differently, although at low noise levels the familiar phases of learning 

described in chapter 5 remain qualitatively similar. 

The issue of regularization via weight decay (also known as zero -order regu- 

larization or ridge regression) is examined, both in the noisy cases and in the 

over -realizable case in which the student has more representational power 

than the teacher. 

Section 7.1 briefly recaps on the on -line learning framework and introduces 

the particular learning scenario that is employed throughout most of this 

chapter, sections 7.2 and 7.3 discuss output noise and input noise respectively, 

while section 7.4 details the effects of regularization in both noisy and over - 

realizable cases. This chapter has a more phenomenological flavour than 

those that precede it, as much of the work is exploratory and the addition of 

noise and regularization complicate the analysis. 

7.1 System Dynamics 

The framework employed is similar to that studied previously in chapters 

5 and 6. The hidden unit positions of the student and teacher are again 

mapped onto the overlaps Qbc - mb mc, Rbu - mb nu and TuT1 - nu n,,, 

where Tuv is constant and describes the characteristics of the task. The 

generalization error is calculated as a function of these overlaps and of the 
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hidden -to- output weights via eqn. (5.3). The time evolutions of the overlaps 

and hidden -to- output weights are found by calculating the average updates 

to these quantities using the gradient descent algorithm; in the noiseless, 

unregularized case, these average updates are identical to those found in 

eqns. (5.5), (5.6) and (5.7). However, to investigate the various types of noise 

and regularization, these equations must be modified; these modifications are 

detailed separately for each case in the appropriate section. 

As a control for the effects of noise and regularization, a base case is first es- 

tablished in which the standard update equations of chapter 5 are employed. 

This realizable case involves a student of 3 SBFs learning an ungraded, un- 

correlated teacher of 3 TBFs, with Tuu = 1, T,,,,0 = 0 and w° = 1; the 

input dimension N = 5 and the learning rate 77 = 0.5. Throughout the chap- 

ter, the adaptive parameters were initialized in the same way as detailed in 

section 5.5. 

The evolution of generalization error for the control case is depicted in figure 

7.1(a), The system passes through the usual four phases of transient (P = 0 

to 1000), symmetric (P = 1000 to 6000), symmetry- breaking (P = 6000 to 

13000) and convergence (P = 13000 and onwards). Figures 7.1(b), 7.1(c) 

and 7.1(d) show the evolution of the SBF -SBF overlaps (Q), the SBF -TBF 

overlaps (R) and the hidden -to- output weights (w), respectively. 

7.2 Corrupting Examples With Additive Out- 

put Noise 

To understand the effects of learning under noisy conditions, this first sce- 

nario deals with the addition of uncorrelated Gaussian noise to the output 
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Figure 7.1: The noiseless, unregularized control case. Figure (a) shows the 
evolution of generalization error; figures (b), (c) and (d) illustrate the evolu- 

tion of Q, R and w respectively. Note the familiar 4 phases: the transient, 
symmetric, symmetry- breaking and convergence phases. 
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of the teacher network. The training examples are of the form (e), yP) where 

the input vector ¿' is, as before, drawn from a Gaussian distribution of zero 

mean and variance 4, and the outputs yP are calculated by applying e 
to the teacher and corrupting it with the scalar 19P drawn from a Gaussian 

distribution of mean zero and variance o-2: 

yp - w° t(Sp) +19p (7.1) 

Employing this new definition, the evolutions of the overlaps, hidden -to- 

output weights, and therefore generalization error, can be calculated in a 

similar manner to chapter 5. The effect of output noise is to add a term 

to the evolution equation for the SBF -SBF overlaps Q; the evolution of the 

SBF -TBF overlaps R and of the hidden -to- output weights is not affected. 

Throughout the chapter, the addition of a hat symbol to a quantity (e.g. 

Qbc) denotes that it is the noise -corrupted version, while the average ( ),,y 

signifies an average over the noise: 

( \ ',Qbc ) )a = ( AQ6c ) + (:2 
B 

7.2.1 System Evolution 

) 2 

QZwbwc ( sbsc ) (7.2) 

To illustrate the effects of output noise, the evolution of generalization error, 

the overlaps and hidden -to- output weights for the test scenario presented 

above are plotted in figures 7.2(a) to 7.2(d). Generalization error for vari- 

ous settings of the noise variance a2 is depicted in 7.2(a); qualitatively, for 

low noise levels, the system undergoes the same four -phase process as in the 

noiseless case. The most salient difference is that the asymptotic generaliza- 
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tion error is non -zero and increases with noise level. Certainly for low noise 

levels, the asymptotic error is proportional to the noise variance Q2. 

The effect of the noise on the Q and R overlaps is revealed in figures 7.2(b) 

and 7.2(c) respectively, for a noise level of a2 = 1. Both the norms and other 

overlaps of Q are increased beyond their levels in the noiseless case, the 

norms from 1.0 to 1.05 and the other overlaps from 0.0 to 0.05, showing that 

the lengths of the hidden unit centre vectors are increased. The dominant 

overlaps between the SBFs and TBFs, however, are decreased from 1.0 to 

0.95, indicating a failure to learn the correct directions of the TBF weight 

vectors. The hidden -to- output weights are indirectly affected during the 

earlier stages of learning via the dependence of w on Q, but asymptotically 

take on the same values as in the noise -free case. 

Increasing the noise level has the effect of changing the qualitative behaviour 

of the system: figures 7.3(a) and 7.3(b) show the evolution of the overlaps 

Q and R respectively for systems affected by high levels of noise (a2 = 5). 

The symmetric phase is eliminated, and generalization error increases after 

the transient phase until it reaches a plateau; this increase corresponds to 

increasing the lengths of the SBF norms in arbitrary directions until they sta- 

bilise due to lack of activation as they become further from the area of input 

space with significant probability mass (figure 7.3(a)). The SBF -TBF over- 

laps all collapse to a single value, indicating that no specialization has taken 

place (figure 7.3(b)), while the lack of correlation between SBFs indicates 

norm growth in arbitrary directions. 
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Figure 7.2: On -line learning with output noise. Figure (a) shows the evolu- 
tion of generalization error for 5 levels of noise. With a fixed learning rate, 
the asymptotic error is non -zero when output noise is present. Figures (b), 
(c) and (d) illustrate the evolution of Q, R and w respectively for (72 = 1.0. 

The SBF norms and overlaps are increased; the overlaps between the SBFs 
and the TBFs they emulate (labelled dominant overlaps on figure (c) ) are 
decreased while those between SBFs and the other TBFs are increased. The 
hidden -to- output weights are not significantly affected. 
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Figure 7.3: On -line learning with high levels of noise. Figures (a) and (b) 

illustrate the effects of high levels of output noise (a2 = 5) on the SBF -SBF 

and SBF -TBF overlaps respectively. The SBF -SBF norms increase dramati- 
cally, while the SBF -TBF overlaps all collapse to the same value, indicating 
that the problem is not solved. With high levels of input noise (U2 = 0.25), 

the SBF -SBF overlaps (figure (c)) are not distinguished and become small, 

and the SBF -TBF overlaps (figure (d)) also collapse to similar values. 



On -line Noise and Regularization 112 

7.2.2 Convergence Phase 

Asymptotic Values 

For an ungraded teacher such as that used in the system evolutions in the 

preceding sections, one can assume that in the asymptotic regime, the sys- 

tem can be simplified into one of five parameters, four of which represent the 

typical hidden unit overlaps, and one which represents the hidden -to- output 

weights. Similarly to section 6.3.2, for all b, c: Rbb = R, Rbc,b0c = S, Qbb = 

Q, Qbc,boc = C and wb = w. Denoting the asymptotic values of these quanti- 

ties by R *, S *, Q *, C* and w *, these values can be obtained for the regime in 

which a.2 is small by expanding the solutions for these parameters around the 

known noiseless solutions, so that R* = 1 +o2r, S* = a2s, Q* = 1 +a-2q, C* = 

cx2c and w* = 1 + a2w. The equations for the deviations are very involved, 

and their presentation would add no insight, but their derivation via the ex- 

pansion about the noiseless solutions is straightforward, so the expressions 

are omitted. 

Substituting the expressions for the asymptotic overlaps and hidden -to- output 

weights into the equation for the generalization error (5.3) allows the calcu- 

lation of asymptotic generalization error as a function of noise level; this 

expression is given explicitly as a function of the fixed point values in ap- 

pendix B. Figure 7.4(a) shows this error as a function of noise level; certainly 

for low levels of noise, the error is proportional to the amount of noise (solid 

line). Also plotted are the values of asymptotic error found via the full sys- 

tem evolution (star symbols), showing an excellent correspondence between 

the analytic and dynamic results for low noise levels, and a slight mismatch 

at high noise levels in which the error from the system evolution is lower than 

that found analytically, due to the fact that the expansion employed to find 
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the asymptotic values becomes less valid as the noise increases. 

Maximal Learning Rates 

While training with a finite learning rate in the output noise case, there will 

always be a non -zero asymptotic error, the magnitude of which depends on 

the noise level and the value of the learning rate. However, above a certain 

learning rate, even convergence to a suboptimal solution does not occur. This 

maximum value of the learning rate can be calculated in a similar manner 

to that presented in section 6.3.2 by linearizing the dynamical equations 

for output noise (7.2), (5.6) and (5.7) about their asymptotic values. The 

eigenvalues of the resulting Jacobian of the system describe the exponential 

convergence characteristics of the overlaps and hidden -to- output weights; the 

value of 77 at which one of these eigenvalues becomes zero defines the value 

of 97 at which the asymptotic fixed point becomes unstable, and thus defines 

the maximal learning rate ric for convergence to occur. The relationship 

between 77c and Q2, derived from this procedure, is plotted in figure 7.4(b); 

ric decreases with increasing noise level. The precise relationship between the 

quantities is difficult to determine because of the complexity of the derived 

expression, but plotting 77c versus log a2 produces a linear graph, implying 

that 77c is a linear function of log a2. These results have been confirmed 

by simulations by iterating the full system dynamics from initial conditions 

very close to the asymptotic fixed point, and varying the learning rate until 

convergence failed to occur, thus giving roc. 
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Figure 7.4: Asymptotic error as a function of noise level. Figure (a) shows 
the asymptotic generalization error as a function of noise level, calculated by 
expanding the asymptotic overlaps and hidden -to- output weights around the 
noiseless solutions (solid line) . The asymptotic values found by the full sys- 
tem evolution are shown for comparison (star symbols). Figure (b) denotes 
the maximum learning rate qc, also as a function of noise level; the solid line 
represents the analytic solution, while the star symbols show the excellent 
correspondence with results based on the full system evolution. 

7.3 Corrupting Examples With Input Noise 

The second type of noise considered is additive input noise, which is imple- 

mented here by adding uncorrelated Gaussian noise to each component of the 

input vector of the teacher. Note that for the RBF, input noise is equivalent 

to a form of model noise in which the positions of the TBFs are corrupted. 

Denoting the noise on example p by the vector 19P, generated by sampling each 

component from a uncorrelated Gaussian distribution of mean 0, variance a2, 

the function computed by the teacher becomes: 

0.4 05 
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fT = w°exp -Ilnu- - 
24 )_>wo (7.3) 

This change of definition of the function computed by the teacher has far - 

reaching effects upon the equations governing the evolution of the system: 

every term which involves a TBF is altered, which changes the evolution 

equations for Q, R and w. 

((oQbc»,9 = NCI\ \ sb) /9(-mb) .mp+ (5c),9(-mp) -mb / + 
2 

(22B) b m ) ' m) (7.4) )6, 

K (AkiL))a N0_B 
((sbiv(-mb).nu) 

Owb)),9- K(((fT),9-fS)Sb> 

(7.5) 

(7.6) 

The full averaged expressions for Q, R and w are presented in appendix B. 

7.3.1 System Evolution 

Examples of system evolution under conditions of input noise are presented 

in figure 7.5. The evolution of generalization error for various levels of noise 

variance is depicted in figure 7.5(a). For low noise levels, the system passes 

through the same four stages of training (transitory, symmetric, symmetry - 

breaking and convergence) as found in the noiseless case. In contrast to the 
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effects of output noise, the length of the symmetric phase increases as the 

noise level increases (although it is somewhat less sharply delineated). 

The value of generalization error at convergence increases with noise level, 

as would be expected. The cause of this increase for the input noise case is 

not identical to that for output noise, however; figures 7.5(b) to 7.5(d) show 

the system evolution for a2 = 1/16: the SBF norms are decreased (figure 7.5) 

for input noise, whereas they are increased for output noise. The remaining 

SBF -SBF overlaps are increased, as with output noise. The dominant SBF - 

TBF overlaps are also decreased (figure 7.5(c)), while the other SBF -TBF 

overlaps are increased. These effects are caused by the SBFs being less able to 

distinguish between the TBFs due to the noise. Also in contrast to the output 

noise case, the hidden -to- output weights are asymptotically affected (figure 

7.5(d)), with their convergence value being reduced. The evolution of the 

system is far more sensitive to input noise than to output noise; corrupting 

the input vector affects all the hidden units of the teacher, altering the non- 

linear response of each unit in a correlated manner, while output noise affects 

only the weighted, summed output of the teacher network. 

Adding high levels of input noise (a2 = 0.25) causes a change in the behaviour 

of the system. The evolution of generalization error for this case is presented 

in figure 7.5(a), dot -dash line; the system does not escape the symmetric 

phase. As illustrated in figures 7.3(c) and 7.3(d), the SBF -SBF overlaps 

(Q) collapse to a single value (there is no specialization) as do the SBF -TBF 

overlaps (R). The system reaches a fixed point and the problem is not solved. 
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Figure 7.5: On -line learning with input noise. Figure (a) shows the general- 
ization error for 5 levels of noise (with a2 = 1/4, the problem is not solved). 

As with output noise, the asymptotic error is non -zero with a fixed learning 
rate. Figures (b), (c) and (d) illustrate the evolution of Q, R and w respec- 

tively for o-2 = 1/8. The SBF norms are decreased while the other SBF -SBF 

overlaps are increased; the dominant SBF -TBF overlaps are decreased, and 
the other SBF -TBF overlaps are increased. Unlike the output noise case, the 
hidden -to- output weights are significantly affected and reduced. 
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7.4 Regularization 

While there are many forms of regularization that exist, the most commonly 

employed is simple weight decay. This involves adding a penalty term to the 

error function of the form 711w112/ 2, where ¡y is a free parameter. The reg- 

ularization parameters for the SBF centre weights and the hidden -to- output 

weights can be chosen separately if required. As discussed in chapter 3, 

weight decay can be interpreted as believing the weights to be drawn from a 

prior Gaussian distribution of variance 1/7, in which case the choice of sepa- 

rate regularization parameters for the different classes of weights corresponds 

to the (usually valid) assumption that the classes of weights are drawn from 

different distributions. In addition, a consideration of the consistency of 

weight decay under linear transformations of the training data suggests that 

the each layer should have its own regularization parameter (Bishop, 1995). 

For simplicity however, the overlaps and hidden -to- output weights will share 

the same regularization parameter ry here. 

Analytically, weight decay affects the evolution of Q, R and w via the addi- 

tion of some extra terms (regularized quantities are denoted by a prime, i.e. 

R'). Note that the learning rates have been scaled with N for Q and R, and 

with K for w: 

( Qwb ) - Krywb (7.7) 

(7.8) 
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_ (OQbc) - 2Ñ7Qbc (7.9) 

+ {720c + `Y(wbsc + wcsb) (fs 

7.4.1 System Evolution 

There are many combinations of noise, regularization and realizability that 

can be examined within the framework. The base case employed previously, 

in which 3 SBFs learn 3 TBFs, is used as the foundation from which regular- 

ization of realizable systems corrupted by output noise and input noise are 

examined. Of particular interest is the regularization of over -realizable cases 

in which the student is representationally more powerful than the teacher: 

this is analysed for both noiseless and noisy scenarios by employing a new 

base case (detailed below) of 5 SBFs learning 2 TBFs. 

Generally, with low levels of regularization, the system passes through the 

usual four phases: transient, symmetric, symmetry- breaking and conver- 

gence. Regularization prolongs the symmetric phase, with a resultant de- 

crease in learning speed, by decreasing the instability of the symmetric fixed 

point. With higher levels of regularization, this can lead to the system becom- 

ing trapped in the symmetric phase in learning scenarios that are successfully 

solved without regularization. 

Examples Corrupted With Output Noise 

It has been claimed for the SCM that regularization via weight decay does 

not improve system performance in noisy cases, and been hypothesized that 
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this is a generic feature of on -line learning due to the absence of a additive, 

stationary error surface defined over a fixed, finite training set. However, 

certainly for the RBF, it is possible with careful selection of the regular- 

ization parameter to improve the asymptotic generalization error to some 

extent. A noisy training scenario was constructed by taking the base case 

and adding additive output noise of cr2 = 1. Various levels of regularization 

were applied, and the effect of this on generalization error is shown in figure 

7.6(a). With ry = 0.5 x 10 -3 (dashed line), which was found to be optimal, 

asymptotic generalization error falls from 3.5 x 10 -4 to 3.4 x 10 -4, a small 

improvement of 3 %. Note that regularization is still detrimental during most 

of the non -asymptotic phase. Over -regularization is extremely detrimental 

to learning (figure 7.6(a), dotted line); with ¡y = 2 x 10 -3, the symmetric 

phase is approximately trebled in length, and the asymptotic generalization 

error is increased from 3.5 x 10 -4 to 4.0 x 10 -4. 

Examples Corrupted With Input Noise 

By taking the base case and corrupting the teacher inputs with uncorrelated 

Gaussian noise on each component of variance o = 0.125, the effects of 

regularization of systems corrupted by input noise was examined. General- 

ization error for various levels of regularization ('y = 0, 1, 5 and 10 x 10 -3) 

is shown in figure 7.6(b): in each case, regularization increased the length 

of the symmetric phase, thus increasing the time required for learning, and 

also increased the asymptotic error. With ¡y = 10 x 10 -3 (figure 7.6(b), dot - 

dash curve), the system fails to solve the task and remains trapped in the 

symmetric phase, as the symmetric fixed point has become stable due to the 

regularization. 
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Figure 7.6: Regularization in noisy on -line learning. Figure (a) shows the 
effects of different levels of regularization when the teacher is corrupted with 
output noise of variance a2 = 1. Careful choice of the regularization pa- 
rameters allows a slight reduction in asymptotic generalization error, while 
over -regularization leads to a poor solution. Figure (b) illustrates the effects 
of regularizing the input noise case with input noise a.2 = 1/8; regulariza- 
tion is always counterproductive, and can lead to a failure to solve problems 
which are solved without regularization. 

The Over -realizable Case 

To investigate the over -realizable case, a new base case was established in 

which a student of 5 basis functions learns a teacher of 2 basis functions 

with Tati, = 1, Tutiuti = O and w° = 1 with N = 5 and 77 = 0.5. The initial 

conditions were as detailed in section 5.5. 

Typical results are presented in figure 7.7. Regularizing the system again 

leads to an increase in symmetric phase length and asymptotic error. The 

reason for this is that, a priori, weight decay encourages all weights to be 

small and equal; it does not promote the elimination of excess hidden units. 

Figures 7.7(b) and 7.7(c) compare the hidden -to- output weight evolutions 
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for the unregularized and regularized systems, respectively. Without weight - 

decay, the system eliminates the redundant hidden units, leaving 2 SBFs to 

emulate the 2 TBFs of the teacher. With weight- decay, the weights become 

small and approximately equal over time, achieving a sub -optimal solution. 

The Noisy Over -Realizable Case 

Combining the over -realizable case of section 7.4.1 with output noise of 

Q2 = 1 gives a complex learning scenario. Certain general conclusions can be 

drawn, however. If unregularized, the student, being more representationally 

powerful than the teacher, learns details of the noise and does not eliminate 

the redundant hidden units. This can be seen by comparing the hidden - 

to- output weights of the noisy case (figure 7.8(a)), in which the redundant 

weights do not approach 0, with those of the equivalent noiseless case (figure 

7.7(b)) in which the 3 redundant units are eventually eliminated. Applying 

regularization, with y = 5 x 10 -3, improves the separation between the nec- 

essary hidden -to- output weights of the student and those that are redundant 

(figure 7.8(b)), and can lead to a small improvement in generalization abil- 

ity. As discussed in (Bishop, 1995), with a quadratic error function it is easy 

to show that weight decay has the effect of suppressing the weight vector 

of the solution in the directions of weight space in which the error function 

changes only slowly; it has little effect in directions which are important to 

the solution (i.e. where the error changes rapidly). Thus components of the 

solution that are primarily due to noise are suppressed, while those that are 

based on the underlying structure are retained. 
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Figure 7.7: Regularization in the noiseless over -realizable case. Figure (a) 

shows the increase in generalization error and time required to solve the 
problem when regularization is used. The reason for this is illustrated in 

figures (b) and (c): with no regularization (b), the redundant hidden units 

are slowly eliminated. Weight decay encourages all the weights to be small 

and equal (c), leading to a sub -optimal solution. 



On -line Noise and Regularization 124 

- Hidden -to- Output Weights 

100000 P 200000 

(a) 

0.8 

0.6 

IN 
0.4 

0.2 

0.0 
300000 0 

- Hidden -to- Output Weights 

100000 P 

(b) 

200000 

Figure 7.8: Regularization in the noisy over -realizable case. Figure (a) shows 
the hidden -to- output weights for -realizable scenario with output 
noise o2 = 1, without regularization. There is little separation of weights, 
in contrast to the noiseless over -realizable case portrayed in 7.7(b). Weight 
decay is applied in (b), leading to more separation, and a small reduction in 
generalization error. 

7.5 Summary 

This chapter has extended the on -line analysis to cases in which the teacher 

is corrupted by noise, and in which regularization via weight decay is applied 

to the student. 

Both output noise and input noise have been examined. Output noise has 

the effect of increasing the magnitude of the SBF norms and overlaps, while 

decreasing the overlaps between the SBFs and the TBFs, thus reducing the 

specialization of the SBFs. The hidden -to- output weights were not signifi- 

cantly affected by the noise. High levels of noise caused a quantitative change 

in the system in that the symmetric phase was eliminated, yet the overlaps 

between SBFs and TBFs (R) became similar (so no specialization occurred). 

300000 
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The convergence of the system has been examined in the low noise region, by 

expanding the equations for the system evolution about the known noiseless 

solutions; this yielded the asymptotic values of the overlaps and hidden -to- 

output weights, and thus the asymptotic value of the generalization error, 

which was found to be proportional to the variance of the noise. The max- 

imum learning rate for convergence as a function of noise variance was also 

found via an eigenvalue analysis of the linearized converging system. 

The effects of input noise were found to be dissimilar to those of output 

noise in that the SBF norms were reduced, rather than increased. The SBF- 

TBF overlaps and hidden -to- output weights were also reduced. High levels 

of input noise led to the system becoming trapped in a symmetric phase in 

which there was no specialization of SBFs whatsoever. 

Regularization via weight decay was examined and applied to noiseless, noisy 

and over -realizable cases. In the noiseless case, regularization always de- 

graded generalization performance, and made the symmetric fixed point more 

attractive so that the RBF failed to solve some tasks that are solved without 

regularization as it remained trapped in the symmetric phase. In the case 

of output noise, a small improvement in generalization performance could be 

obtained via careful selection of the regularization parameters, although over - 

regularization was extremely detrimental to performance. However, with in- 

put noise, no improvement could be found, and again the symmetric phase 

became more attractive, to the point where scenarios which had been suc- 

cessfully solved without regularization becoming insoluble. Regularization 

of the over -realizable case was studied, but again no improvement could be 

obtained in the noiseless case; performance was degraded and the excess 

SBFs were no longer eliminated. Regularizing the complex (output) noise - 

corrupted over -realizable case led to minor improvements via increasing the 
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specialization of the dominant SBFs on the target TBFs while decreasing the 

hidden -to- output weights of the spurious SBFs. 



Chapter 8 

Conclusion 

Those Magicians, attempted to make the sword the sole 
or even the principal weapon, have only destroyed themselves, 
not by the destruction of combination, but by the destruction of 
division. 

Aleister Crowley, Magick 

The average -case properties of learning and generalization in the RBF net- 

work have been elucidated in a well- founded manner, and various methods 

of measuring generalization ability have been considered and related. 

The first unit of the thesis concerns the relations between measures of gener- 

alization. It proved straightforward to relate the prediction probability, and 

therefore prediction error, to the evidence measure: the prediction probabil- 

ity on estimating a new test point given a dataset is simply the ratio of the 

evidence given the union of this dataset with the test point to the evidence 

given the original dataset. Thus prediction error for the test point is the 

change in log evidence caused by adding the test point to the dataset. 

It is considerably more difficult to relate generalization error to the predic- 

127 
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tion probability, as calculating generalization error relies on having some 

functional knowledge of the data -generating mechanism. However, if the 

learning model is reasonably well -trained, such that the posterior distribu- 

tion over the parameters of the model is concentrated in regions which give 

a small error, an ordering relation is obtained which demonstrates that the 

prediction probability given dataset D1 being greater than that for D2 is 

equivalent to the generalization error on D1 being less than that on D2. If 

there is knowledge of the form of the data -generating mechanism, it is pos- 

sible in some cases to make much more precise statements concerning the 

relationship between prediction probability and generalization error. This is 

performed for the RBF in chapter 3, although the resulting relationship is 

not as intuitive as those above. 

The second unit of the thesis deals with the analysis of RBFs in which the 

parameters of the hidden units are fixed prior to training. By assuming a 

functional form for the teacher mechanism, which included Gaussian output 

noise, it proved possible to calculate the typical generalization error given the 

number of training points, within a stochastic training paradigm. By aver- 

aging over possible datasets, this average error was calculated independently 

of the exact data, and it was found that, with no weight decay, the error 

decreases as 1 /P. It was also possible to find the optimal settings of the hy- 

perparameters which control the learning process. The effects of setting these 

hyperparameters to suboptimal values was also examined: under -regularizing 

leads to very poor initial performance as the student models the noise rather 

than the underlying structure, but this is overcome rapidly with the addi- 

tion of more training data. Over -regularizing is less detrimental initially, but 

requires a great deal of data to recover from. 

By extending the framework to encompass the case in which the teacher 
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mechanism does not match that of the learning model, it was possible to 

examine the case in which the student had greater representational power 

than the teacher, and the converse. With the student more powerful, there is 

a tendency to under -regularize due to over -estimating the complexity of the 

teacher. Given sufficient data, this problem can be overcome, but far more 

data is required than if the student matches the teacher. When the teacher 

is more powerful, there is a component of the error that cannot be overcome 

through training, and there is also a tendency to over -regularize as the com- 

plexity of the teacher is under -estimated. The requirement that the teacher 

is known was relaxed by incorporating uncertainty into the knowledge of the 

teacher model; the error initially increases with the uncertainty, but then 

decreases with extreme uncertainty as, probabilistically, the teacher model 

has no structure in the region of space modelled by the student. Finally, 

simulations confirm the validity of the analytic results. 

The third thesis unit concerns the analysis of RBFs in which the positions 

of the basis function centres are adaptive, as well as the hidden -to- output 

weights. By employing the on -line learning paradigm, it proved possible to 

find equations for not only the average evolution of generalization error, but 

also the dynamics of the hidden units. These average equations were solved 

iteratively to elucidate the learning process. There are four typical stages 

of training: initially, there is a transitory phase as the parameters of the 

network adapt from their initial conditions; this is followed by the symmetric 

phase, characterised by a lack of differentiation between the basis functions. 

Given asymmetries in the task or initial conditions, the units specialize in 

the symmetry- breaking phase. Finally there is a exponential convergence 

phase as the network reaches its asymptotic state. There are three learning 

rate regimes: too small a learning rate leads to slow learning, an overly large 
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learning rate causes the system to fail to converge to the correct target, while 

between these extremes lies a region in which the problem is solved rapidly. 

The symmetric and symmetry- breaking phases were examined via an eigen- 

value analysis of the symmetric fixed point, with the result that a funda- 

mental difference between the soft committee machine and the RBF in the 

realizable case was uncovered. Increasing the number of basis functions de- 

creases the time taken to escape the symmetric phase in the RBF, while it 

has the opposite effect for the SCM. This difference is hypothesized to be 

due to the localized nature of the basis functions for the RBF model; unlike 

the SCM case, in which the basis functions are non -local, small perturba- 

tions about the symmetric fixed point result in massive changes in error, and 

increasing the number of basis functions emphasizes this effect by increasing 

the ruggedness of the error surface. The convergence phase was also anal- 

ysed by examining the properties of the asymptotic fixed point, allowing the 

calculation of the maximal and optimal learning rates. In the case where 

the hidden -to- output weights are clamped to a fixed value, both maximal 

and optimal rates scale as 1 /K. However, when the analysis is extended to 

cover adaptive hidden -to- output weights, the maximal learning rate remains 

unchanged while the optimal rate rapidly approaches the maximal rate as 

network size increases. This implies that the maximal learning rate is purely 

a function of the hidden layer, also noted by Riegler and Biehl (1995) for 

the MLP, and that it is hard to optimise learning rates for fully- adaptive 

networks, especially those with many hidden units. 

Quantification of the variances of the average on -line update equations demon- 

strates the validity of the approach for RBFs, while simulations confirm the 

accuracy of the results for both the mean equations and the variances. 
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The analysis of on -line learning in RBFs was extended to the cases in which 

the data -generating mechanism is corrupted by either output or input noise. 

Output noise has the effect of increasing the lengths of the SBF norms in 

arbitrary directions while decreasing the degree of specialization of the SBFs 

on their targets, with the result that, when employing a finite learning rate, 

asymptotic generalization error is non -zero. A high level of output noise 

eliminates the symmetric phase while maintaining the lack of specialization 

of the hidden units, and can lead to the SBF norms becoming so large that the 

units are no longer activated during training, effectively becoming redundant. 

An examination of the convergence properties of the system under conditions 

of output noise revealed that, at least for low noise levels with a fixed learning 

rate, the asymptotic generalization error is proportional to the variance of the 

noise. The maximum learning rate was found via an eigenvalue analysis of 

the asymptotic fixed point, and was shown to be a monotonically decreasing 

function of the noise variance. 

Corrupting the teacher with input noise has the opposite effect to that of out- 

put noise in that the SBF norms are suppressed. The degree of specialization 

of the SBFs is again reduced, however, as are the magnitudes of the hidden - 

to- output weights. Again this leads to non -zero asymptotic generalization 

error with finite learning rate. The addition of high levels of input noise 

causes trapping of the system in the symmetric phase with no specialization 

whatsoever of the hidden units. 

The use of regularization via weight decay was investigated for on -line learn- 

ing. In the exactly realizable case without noise, regularization significantly 

degrades generalization performance and learning speed; in some cases, tasks 

solved without regularization remain trapped in the symmetric phase with 

regularization. In the presence of output noise, weight decay can give a small 
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improvement in asymptotic generalization error with careful selection of the 

regularization parameter. However, no such improvement could be discerned 

in the case of input noise. Considering an over -realizable task in which the 

student has more representational power than the teacher, without noise, 

performance is again hampered by regularization. With the addition of out- 

put noise, again a small improvement in generalization performance can be 

obtained as regularization increases the specialization of the student hidden 

units on their targets. 

Several avenues suggest themselves for further exploration. The focus of the 

thesis has been on regression; classification could also be considered. Within 

the fixed hidden -unit paradigm, it may be possible to analyze the various 

methods for setting the hidden unit parameters to determine the implications 

for generalization performance. Empirical comparisons between methods can 

be found, but little analysis is so far available. 

Considering the on -line framework, scope exists for greater analysis of the 

effects of noise. While the convergence properties in the presence of output 

noise were calculated, this has not yet been performed for input noise. The 

noisy symmetric phase can also be examined in a similar manner to the 

analyses in chapters 5 and 6. The study of the effects of regularization could 

also be expanded: weight decay is a very simple form of regularization, and 

more complicated schemes such as soft weight- sharing, which can achieve 

significantly better results, could also be analysed. 

The symmetric phase is a significant yet undesirable portion of the learn- 

ing dynamics in realistic tasks. Since the phase is caused by undifferenti- 

ated overlaps between student and teacher, these could be artificially broken 

through the introduction of extra terms in the error function penalizing over- 
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lap similarity. The effect of these terms should be annealed over time, to allow 

convergence to the correct targets. 

Finally, the on -line framework considers datasets to be generated by applying 

the teacher function to a sample from the input distribution, providing a 

potentially infinite pool of datapoints; in practice, datasets are finite and 

on -line training often proceeds by cycling through the datapoints a number 

of times - the analysis of RBFs could be modified to deal with this case. 
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I, J and K: 

To render the notation more compact, a generic overlap parameter U is 

introduced; indices i, j, f, g and h may therefore apply to SBFs or TBFs as 

appropriate. 
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