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Dedication 

To all sheep munching away on this planet and 

against all who dare to call them stupid! 



The treachery of Finella 

The treachery of Finella 

K enneth, Malcolm's son, reigned for twenty-four years and two months. And he 

was killed by his own men in Fettercairn, through the treachery of Finella, the 

daughter of Cunthar, earl of Angus. This Finella's only son had been killed by the 

aforesaid Kenneth. 

Translated from the Chronicle of the Kings of Scotland by A.O. Anderson (1990). 

H er name was Finella; Kenneth had long before ordered her only son to be slain 

at Dunsinnan, I know not whether by severity of the law, or for some deed, or 

for any other cause. Therefore this crafty woman, eagerly aspiring after the king's 

death, caused to be made in a remote cottage a kind of trap never seen before. The trap 

had attached to it on all sides crossbows, always kept wound up, each with its cord, and 

fitted with the sharpest bolts and in the middle of them stood a statue like a boy, 

cunningly attached to the crossbows, so that if any one touched and moved it in any 

way he should loosen the catches of the crossbows on all sides, and immediately be 

pierced by the bolts discharged. 

Also after completing her work for the accomplishment of this crime, the wicked 

woman mentioned above kept always a cheerful countenance before the king, and at 

last deceived him, flattering him with treacherous words. The king went hunting one 

day with a few followers, not far from his own dwelling, with dogs raising the beasts 

here and there among the woods. And he chanced to turn aside near the village of 

Fettercairn, where the traitress lived; and when she saw him she bent her knees, and 

begged him importunately to go to her house. 'Otherwise,' she said, 'I must necessarily 

consider that I am suspected by your Majesty's Grace. But God knows, and thou, king, 

shalt soon know, that although the talk of malignant men repeats many lies about me, I 

have always been loyal to thee, and always shall be, so long as life remains with me. For 

I know very well that all thou hast done recently to my most wicked son was done not 

undeservedly, but justly.' And she ran up to him and whispered in the king's ear. 'If but 

thou wilt come with me, I will expose to thee, my lord, thy betrayers, my cursed son's 

accomplices, and the manner of their treason; they hoped to associate me with them in 
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The treachery of Finella 

their deceit, under an oath; but I refused at once to consent to their wicked treachery. 

They have forced me, however, to swear, touching the Gospels, that I should never 

betray their secrets; and although I promised them this under oath, I should 

nevertheless have been most false and a traitress to thee, my lord king, to whom before 

all others is due firm and loyal fealty, if I hid the danger of thy person. For who is 

unaware that no oath holds against the safety of royal majesty?' 

Thus did the treacherous woman cunningly beguile the king's mind, and lead him 

with her, alas ! too trustful in her, to the dwelling, in spite of the opposition of all. Why 

dilate, why dwell upon grievous things? After the king had dismounted from his horse, 

she led him alone by the hand very swiftly to the house where the trap was concealed. 

And as if for the purpose of revealing the secrets of the traitors, as she had promised, 

she closed the door behind them, and showed him the statue, which was the lever of the 

whole trap. Upon his asking what this statue had to do with him, she answered, 

smiling: 'My lord king, if any one should touch and move the top of the head of this 

statue that thou seest, a marvellous and pleasant show will spring from it.' 

Wholly ignorant of the hidden treachery, he drew easily towards him with his hand 

the head of the machine, and loosened the levers and catches of the crossbows; so that 

he was suddenly pierced from all sides by the bolts released, and died without uttering 

another word. 

Then the traitress went out quickly by the back-door, and hid herself for the time in 

the shadows of the woods; but soon afterwards she came safely to her supporters. Also 

the king's followers waited long for his return from the house, and wondered why he 

delayed there. At last they beat persistently upon the door, and, hearing nothing, in 

rage broke it open. As soon as they knew of his death, a great outcry was raised, and 

they ran hither and thither searching for the wicked woman, but in vain; not finding 

her, and not knowing what to do, they burned the town with fire, reducing it to ashes. 

And they carried away with them the king's blood-stained body and shortly afterwards 

buried it in the royal fashion with his fathers, in Iona. 

Translated from Fordun, Chronica by A.O. Anderson (1990). 

x 



The treachery of Finella 

Fordun's story of Finella is semi-mythical. Tradition in the Mearns says that Finella 

walked on the tree-tops from Finella Hill, near Fordoun, down to Finella Den, near St 

Cyrus: this suggests that she was a wholly mythical personage, possibly the stream-

goddess of Finella Burn. Perhaps the stream's name (? find-ela "white swan") has 

influenced the form of a woman's name (Findguala "white shoulder"). 

Taken from Anderson, Alan Orr (1990). 

Anderson, Alan Orr (1990). Early sources of Scottish history: A.D. 500 to 1286. Volume 1. 

Paul Watkins, Stamford, pp.  512-515. 

xi 



Abstract 

Abstract 

Grazed ecosystems, in which large mammalian herbivores interact with vegetation mosaics, 

account for one fifth of the earths land surface and provide both food and economic resources. 

Although grazed ecosystems have provided a fruitful base for scientific study for many decades, 

due to the complexity of these systems and the lack of appropriate tools, analysis of the spatial 

aspects of plant-herbivore interactions is still in its infancy. The aim of this study was to 

contribute to the understanding of spatial aspects of plant-herbivore interactions within a grazed 

grass-shrub system, using heather moorland - an internationally important ecosystem 

dominating much of the Scottish uplands - as the object of investigation. 

A three-year field experiment was conducted to observe plant-herbivore interactions 

between Scottish Blackface sheep and heather-grass mosaics. Due to the complexity of grazing 

systems, traditional experimentation is limited in providing insights into the complexity of 

interactions occurring. Therefore modelling tools were also employed to allow for virtual 

experimentation, thus complementing and extending the field data. 

The results of the field experiment showed the importance of a spatially explicit approach to 

understanding the interactions. The pattern of use of the vegetation mosaics by sheep was 

strongly heterogeneous, with spatially limited areas of intensive use intermixed with large areas 

of extensive use. Foraging and ruminating behaviour showed distinctively different patterns of 

impact, indicating that multiple processes determine herbivore use of vegetation mosaics and 

their concomitant impacts on the dynamics of the vegetation. 

Application of a spatial interaction model, previously used in human geography, to the field 

data revealed that the amount of grass in an area was a good predictor of the local heather 

defoliation. Heather defoliation was highest near large grass patches and lowest away from small 

grass patches. The virtual experiment showed further that cognitive aspects of foraging 

behaviour could play an important role in determining the pattern of use by herbivores. 

Performance of foraging strategies was strongly affected by the heterogeneity of the vegetation, 

suggesting that herbivores could adapt their foraging strategies depending on the pattern of 

vegetation. 

This study provides new insights into the spatial aspects of plant-herbivore interactions in 

grass-shrub mosaics and offers a starting point for more detailed investigations. At the same time 

the results necessitate the increased use of spatially explicit approaches in the management of 

grazed ecosystems. 
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Chapter 1 
Introduction 

To have the ultimate even if idealistic objective of fusing the 
shattered fragments into the original unity is of great scientific 

and practical importance; practical because so many problems 
in nature are problems of the ecosystem rather than of soil, 

animals or plants, and scientific because it is our primary 
business to understand. 

A.S. Watt (1947) 



Introduction 

I Introduction 

1.1 Plant herbivore interactions 

Rangeland ecosystems cover 20% of the earth's surface. They provide a means of 

existence for a large proportion of its inhabitants, while at the same time they include 

many of the more fragile areas of the world (Hodgson & Illius, 1996). Rangeland 

ecosystems are typically semi-natural ecosystems used for extensive grazing of large 

herbivores. They occur around the world both in temperate and semi-arid regions and 

frequently comprise complex mosaics of vegetation over which the grazing animals 

range freely. Due to their marginality and complexity, rangeland ecosystems have 

received relatively little attention from scientists in comparison with highly productive 

agricultural systems (Hodgson & Illius, 1996). 

In the last decade, there has been a shift in attention in the science of plant-herbivore 

interactions. New insights into the functioning of ecosystems and the concomitant 

development of new research tools have inspired a new approach in understanding 

plant-herbivore interactions. In the late 1980s, scientists investigating range 

management realised that for a better understanding of plant-herbivore interactions, 

and therefore for a better support of management decisions, spatial aspects of plant-

herbivore interactions had to be considered more explicitly (Bailey et al., 1996; 

Coughenour, 1991; Senft et al., 1987). The investigation of spatial aspects of plant-

herbivore interactions was accelerated by the development of Geographical 

Information Systems (GIS), which allowed the handling of large spatial data sets, and 

the development of modelling tools. Models are increasingly used as scientific tools to 

investigate plant-animal interactions and to support management decisions. 

Improvement of these models continues to demand a better understanding of spatial 

aspects of plant-herbivore interactions (Bailey et al., 1998; Illius & O'Connor, 1999; 

Weber et al., 1998; Wiens et al., 1993). 

A large body of review papers covers the many aspects of plant-herbivore interactions. 

An overview is given here for completeness, but more detailed literature reviews are 
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included at the start of each individual chapter. From the animal perspective, Pyke 

(1984) provided the first comprehensive review of optimal foraging theory. This review 

was followed by a more specific review on diet selection by Allison (1985). Senft et tzL 

(1987) introduced the hierarchical scales approach to plant-herbivore interactions. This 

paper was followed by reviews considering spatial aspects of diet selection (Stuth, 

1991), foraging behaviour at feeding site and station scale (Roguet et al., 1998), and the 

role of cognition in foraging behaviour (Bailey et al., 1996). The spatial aspects of 

modelling plant-herbivore interactions were reviewed by Coughenour et al. (1991) and 

Bailey et aL (1996). 

The plant perspective was covered in a largely separate body of reviews. Briske (1991) 

gave an overview of morphological and physical plant responses to herbivory, 

considering the tiller and genet scale, with implications for the population and 

community scales. At the plant community scale, aspects of herbivory were reviewed 

by Archer and Smeins (1991). Rosenthal and Kotanen (1994) argued that tolerance and 

defence can not be viewed independently, and that some plant traits affecting plant-

animal interactions might have evolved as a result of herbivory. Briske (1996) linked 

plant ecology and entomology to come to a more functional explanation of plant 

resistance to grazing. Implications for grass population dynamics were discussed by 

Bullock (1996), while competition between grasses and woody plants was reviewed by 

Archer (1996). 

Management implications of the spatial aspects were reviewed by Vavra and Ganskopp 

(1998). Rangeland management has multiple objectives, optimizing both economic 

returns and long term maintenance of resources (Heady & Child, 1994). Rangeland 

ecosystems are typically of low input, so stocking densities are optimised to maintain 

long-term plant production. Successful management of the balance between palatable 

and unpalatable vegetation requires a spatially explicit understanding of the plant-

animal and plant-soil interactions (Archer, 1996). 

Foraging theory has traditionally focused on the physiological aspects of diet selection 

(e.g. Laca & Demment, 1996; Pyke, 1984), while range management has focused on 
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animal production (Allison, 1985). With the increased importance of multiple objectives 

in grazed ecosystems, such as biodiversity and soil conservation (Heady & Child, 

1994), a more detailed understanding of the interactions between herbivores and the 

ecosystem is required. Concurrent with the realisation that the spatial pattern of 

defoliation should be considered explicitly (Senft et al., 1983) came the theoretical 

acknowledgement of the importance of spatial aspects in grazed ecosystems (Archer, 

1996; Bailey et al., 1996; Coughenour, 1991; McNaughton, 1984; Senft et al., 1987). 

A large body of papers considers why the world is green, or why only 10-20% of the 

annual net primary production in terrestrial ecosystems is consumed by herbivores 

(Drent & Prins, 1987; Hartley & Jones, 1997; Lawton & McNeill, 1978). Although both 

top-down and bottom-up arguments, i.e. herbivore control by predators or vegetation 

respectively, have been put forward, Hartley & Jones (1997) conclude that the lack of 

control of herbivores over the vegetation is mainly due to the general poor quality and 

high temporal and spatial heterogeneity of the resource. Processes determining 

vegetation quality and spatial and temporal variation, are still poorly understood 

(Hartley & Jones, 1997). 

The importance of spatial heterogeneity in the stability of predator-prey systems has 

been investigated intensively (e.g. Hastings, 1977; Huffaker, 1958). Schrag & Mittler 

(1996) showed that, in a controlled lab experiment with a bacteria-phage system, the 

existence of spatial refuges was the primary factor explaining long-term stability 

between predator and prey. However, the role of spatial interactions in the stability and 

the existence of multiple stable states of plant-herbivore systems has received little 

attention. Woodin (1978) distinguished five types of refuge from disturbance: 

1) temporal refuge outside the activity range of disturbance, 2) temporal refuge within 

the activity range of disturbance resulting from temporal heterogeneity, 3) spatial 

refuge outside the activity range of disturbance, 4) spatial refuge within the activity 

range of disturbance resulting from physical heterogeneity, and 5) 'biological refuges' 

within the activity range of disturbance resulting from biological structures that buffer 

the disturbance effect. An example of the refuge type resulting from physical 

heterogeneity has been suggested for plant-herbivore systems based on field 
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observations (McNaughton, 1984) and model simulations (Mime et al., 1992). This 

spatial refuge could influence the stability of ecosystems by providing protection from 

herbivory for the vegetation that is not part of the plant-herbivore interface 

(McNaughton, 1984; Milne et al., 1992). However this suggestion has not been pursued 

so far in experimental studies. The role of spatial heterogeneity in the functioning of 

plant-herbivore systems is therefore the main focus of this study. 

1.2 Carrying capacity on heather moorland 

The role of spatial heterogeneity in the functioning of plant-herbivore systems is 

investigated in the context of heathlands. Heathlands are dominated by ericaceous 

dwarf-shrubs (such as Calluna vulgaris (L.) Hull) and have a restricted distribution in 

north-west Europe along the North Atlantic coast and across Britain (Gimingham, 

1972; Webb, 1998). Apart from providing a forage resource for livestock, heathiands are 

increasingly valued as an internationally important natural resource for recreation and 

wildlife conservation (Gimingham, 1972; Thompson et al., 1995) and for their aesthetic 

and historical value (Diemont & Jansen, 1998; Kaland, 1998; Webb, 1998). However 

heathiands have for some time been under threat from atmospheric nitrogen deposition 

(Aerts & Berendse, 1988; Aerts, 1989) and changes in management practices such as 

'plaggen', burning and grazing (Diemont, 1996; Thompson et al., 1995; Welch, 1984) 

and their range has greatly declined. 

Grazing reportedly plays an important role in heathland management in Britain, 

whether through 'over-grazing' on upland moorlands (Thompson et al., 1995; Welch, 

1984) or through 'under-grazing' in lowlands (Webb, 1990). Over- and under-grazing 

are subjective terms based on observations of a system from a particular objective. Thus 

a similar grazing pressure could be perceived as over-grazing in the context of one 

objective and under-grazing in the context of another objective. To successfully manage 

heathlands for a complex of multiple objectives, a good understanding of the herbivore 

carrying capacity of the vegetation is required in order to define, recognise and avoid 

over- or under-grazing within the context of the objectives. 
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However, carrying capacity, in the context of hill farming, has in the past been 

expressed as fixed stocking rate thresholds for the management unit or a fixed level of 

herbivore impact based on the proportions of heather and grass in the mosaic averaged 

over the heft (Grant et al., 1988; Grant & Armstrong, 1993; Hunter, 1962; Welch, 1984), 

thus assuming that herbivore impact is spread evenly across the vegetation mosaic. 

Conversely, earlier research had already suggested that herbivore impact on vegetation 

is strongly influenced by spatial heterogeneity of the vegetation (Grant et al., 1978) and 

this has since been quantified in successive experiments (Clarke et al., 1995; Hester & 

Baillie, 1998). HeathMod, a model simulating impact of sheep on upland heaths, 

successfully predicted sustainable levels of heather defoliation, but the authors 

concluded that an important omission of the model is the possible unevenness of 

defoliation patterns (Read et al., 2002). Similarly the Hill Grazing Management Model 

(Armstrong et al., 1997a; Armstrong et al., 1997b; Grant & Armstrong, 1993) and its 

successor HiliPlan (Milne & Sibbald, 1998), aimed at supporting rangeland 

management, do not consider spatial heterogeneity. Thus, a spatially explicit 

understanding of herbivore carrying capacity could contribute to a more effective 

management of heather moorland. 

1.3 Project aims and objectives 

In summary, current scientific understanding is rarely spatially explicit. Although the 

role of spatial heterogeneity in plant-herbivore interactions is recognised, few have 

made an attempt to quantify the impact of spatial heterogeneity on grazed ecosystems 

through experimentation. Several unexplained phenomena in grazing ecology could 

have their justification in spatial aspects of plant-herbivore interactions. As a 

consequence, support for the grazing management of rangeland ecosystems in general 

and heather moorland in particular, also does not take into account spatial 

heterogeneity of herbivore impact. Furthermore, increased multiple objectivity of 

management requires an increased understanding of the implications of plant-herbivore 

interactions. To address these questions, this study has the following aims and 

objectives. 
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Aims 

To understand the processes behind the pattern of defoliation of the less preferred 

vegetation type by large herbivores across rangeland vegetation mosaics. 

To understand the herbivore foraging behaviour that creates and maintains mosaics 

in the vegetation resource. 

To increase the understanding of the spatial aspects of plant-herbivore interactions 

to facilitate further research. 

To provide spatially explicit understanding to support management decisions for 

the sustainable management of heather moorland and grass-shrub mosaics in 

general. 

Objectives 

To describe quantitatively the pattern of heather defoliation by sheep in a heather-

grass mosaic 

To measure the spatial pattern of vegetation change in the heather-grass mosaic. 

To ascribe the patterns of vegetation change to interactions between the behaviour 

of sheep and the spatial pattern of the vegetation. 

To construct a simulation model of the interactions between herbivores and 

vegetation mosaics and use this to evaluate the potential role of spatial perception in 

the development of defoliation patterns. 

1.4 Outline of the thesis 

The first three chapters of this thesis are based on the results from a three year grazing 

experiment within a heather dominated vegetation in north-east Scotland. The thesis 

starts (Chapter 2) with an investigation of the spatial pattern of heather defoliation 

across the heather-grass mosaic as observed during this experiment. A spatial 

interaction model is applied to the field observations to describe the main patterns of 

defoliation. The spatial interaction model predicts the probability of defoliation as a 

function of heather-grass mosaic characteristics. This global pattern is then refined in 

the next chapter (Chapter 3), in which the heather defoliation across grass-heather 

boundaries is investigated in more detail. The impact of defoliation and other herbivore 

foraging behaviour are examined (Chapter 4) through spatially explicit analysis of 
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vegetation change over the course of the field experiment. The field experiment is then 

extended in the penultimate chapter (Chapter 5) with a virtual experiment, using a 

simulation model, to investigate the role of animal foraging strategies in the 

development of foraging patterns. The general discussion (Chapter 6) summarises the 

results of the individual chapters and discusses implications in the wider context of 

heathiand management and the understanding of plant-herbivore interactions in grass-

shrub mosaics in general. 

References have been added to each chapter. Lists of figures, tables, and abbreviations 

have been added at the end of this thesis. Appendix A and B provide background 

information about the modelling environment HOOFS, which are necessary to 

understand the work described in Chapter 5. Note that these appendices are largely 

based on the work of A.J. Beecham. 
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Chapter 2 
Spatial interaction models: From human 

geography to plant-herbivore interactions 

However, despite the progress in making spatial interaction models more 
behaviourally based, it is probably the case that many geographers still associate 

spatial interaction modelling with its early social physics background [ ... ]. This is 
unfortunate for two reasons. The first is that, despite its very widespread application to 

many facets of the real world, these geopgraphers ignore or even dismiss spatial 
interaction modelling, not because of what it is but because of what it was 20 or 30 

years ago. The second, and more important, is that spatial interaction modelling 
provides a very fertile area for understanding spatial behaviour and for developing 

theories which are explicitly spatial. It is an area that is quitessentially geographical; it 
is an area where geographers should be leading the way by exporting their ideas to 

other disciplines. 

A.S. Fotheringham (2000) 
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2 Spatial interaction models: From human geography to 

plant-herbivore interactions 

2.1 Introduction 

This chapter considers the spatial pattern of shrub defoliation by a large mammalian 

herbivore across a grass-shrub mosaic. Grass-shrub mosaics are an example of a two-

phased vegetation mosaic, in which a spatially localised (preferred) plant community 

fulfils nutritional needs, whilst a spatially extensive (less preferred) plant community 

meets energy requirements but is nutritionally marginal (McNaughton & Banyikwa, 

1995). The less preferred plant community plays a crucial role in the stability of plant-

herbivore systems, as the herbivores can switch to the less preferred plant community 

when the preferred plant community is unavailable (Illius & O'Connor, 2000; Wallis de 

Vries, 1991). This is the case for example in heather-grass mosaics, where both the 

quantity and the quality of the preferred vegetation type (i.e. grass) declines rapidly in 

autumn, forcing the animals to switch to a diet of mostly heather during the winter 

months (Armstrong & Milne, 1995). Relying on the less preferred plant community, 

allows the animals to survive long periods of poor forage availability. Thus the 

management of these two-phased mosaics requires different strategies for different 

range management objectives. Sustainable animal production requires a balance 

between preferred and less preferred plant communities that is favourable to the 

herbivore (Archer, 1996), whilst nature conservation is aimed at maintaining or 

increasing important flora and fauna. Limited understanding of the complexity of these 

ecosystems can lead to inappropriate management strategies (Bailey et al., 1998). 

Spatial heterogeneity plays an important role in ecological processes (e.g. Kolasa & 

Pickett, 1991; Kotliar & Wiens, 1990).The study of plant-herbivore interactions in two 

phased vegetation mosaics requires a spatial approach (Archer, 1996; Bailey et al., 1996; 

Coughenour, 1991; McNaughton, 1984; Noy-Meir, 1981; Senft et al., 1987). Although 

the spatial pattern of defoliation is influenced by both abiotic and biotic factors (Bailey 

et al., 1996), here we considered only the biotic factors: forage biomass, digestibility and 

nutritional content. Based on these biotic factors, Senft et al. (1987) predicted spatial 
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patterns of defoliation at community, landscape and regional scale. Focusing on the 

community scale, herbivores are predicted to select for the highest quality plant 

community, resulting in overmatching (Staddon, 1983) as the proportion of the plant 

community in the diet exceeds the proportion of that plant community in the 

vegetation mosaic. 

The prediction of overmatching at the community scale has implications for the spatial 

pattern of defoliation of preferred and less preferred plant communities at this scale. As 

herbivores focus their grazing on the preferred community, their use of the mosaic will 

be concentrated on those areas of the mosaic where the preferred community is 

abundant. Further, the defoliation of the less preferred community will be strongly 

influenced by the pattern of use of the mosaic. Thus the spatial pattern of defoliation of 

the less preferred community is expected to be strongly correlated with the distribution 

of the preferred community. 

Spatial heterogeneity in defoliation patterns has been discussed and modelled in several 

two-phased vegetation mosaics (Archer, 1994; Bokdam & Gleichman, 2000; Morellet & 

Guibert, 1999; Ring et al., 1985; Wallis de Vries, 1996; Weber et al., 2000), but the 

spatial pattern of defoliation has, as far as we can ascertain, only been quantified for 

heather moorland (Clarke et al., 1995b; Hester & Baillie, 1998). 

A series of experiments in the north-east of Scotland has investigated the spatial plant-

herbivore interactions within heather moorland, an internationally important natural 

resource for recreation and wildlife conservation (Gimingham, 1972; Thompson et al., 

1995). This heather moorland consisted of grass (mainly Agrostis capillaris L. and 

Festuca ovina L.) dominated patches in a heather (Calluna vulgaris (L.) Hull) 

dominated matrix. Grass patches were either artificially created in the heather matrix 

(Clarke et al., 1995b) or part of a natural heather-grass mosaic (Hester & Baillie, 1998). 

The proportion of grass in the vegetation mosaics varied between 15% and 20%. For 

both experimental sites, Cuartas et al. (2000) found that sheep (Ovis aries) and red deer 

(Cervus elaphus L.) showed overmatching of grass consumption, as the proportion of 
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grass in the diet was at least a factor of two higher than the proportion of grass in the 

vegetation mosaic. 

Clarke et al. (1995b) found that heather defoliation by sheep is higher near the edge of 

grass patches than further away. This is confirmed for natural grass patches (Hester & 

Baillie, 1998) and for paths (Oom & Hester, 1999). Clarke et al. (1995b) also found that 

heather defoliation at the edge of grass patches increases with grass patch size. This 

effect is confirmed for red deer, but not for sheep, foraging in natural heather-grass 

mosaics (Hester & Baillie, 1998). 

To investigate the correlation between the spatial pattern of defoliation and vegetation 

pattern, we employed a spatial analysis method originating from human geography. 

Many questions in human geography involve interactions between spatial patterns of 

resources and consumers. In order to study and predict spatial patterns of consumer 

behaviour as a function of resource patterns, a range of spatial interaction models (sIM) 

has been developed (see for review: Fotheringham et al., 2000; Sen & Smith, 1995). 

Geographers realized that many individual spatial behaviour decisions by consumers 

can lead to an aggregated pattern of movement. This aggregation effect has also been 

suggested for foraging decisions by herbivores (Staddon, 1983). SIMs attempt to 

describe these aggregate patterns. SIMs are regression equations, deriving an index of 

attraction based on characteristics of a mosaic or network from a spatial response 

variable. The SIM applied here could also be considered a weighted proximity analysis 

or a multiple regression analysis. 

SIMs have been successfully used to predict road network usage, to predict optimal 

locations for supermarkets and petrol stations in relation to urban areas and to predict 

the felling probability of a patch of forest depending on the distance to wood mills. The 

first equations used in SIMs resembled Newton's Law of Gravity, and were thus named 

gravity models. The basic SIM uses this gravity analogy to calculate an index of 

attraction, at a given location, based on the distance between the current location and 

the resource, and the attractiveness of a resource (where attractiveness is the product of 

the resource magnitude and the attractiveness per unit resource). A quadratic distance- 
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decay function is included, which creates an index of attraction of a resource will 

decrease with distance. This leads to the following index of attraction: 

attractiveness of resource 
index of attraction = 	 Equation 2.1 

distance 2  

Using the quadratic distance-decay function assumes the resource of attraction to be a 

point source. Figure 1 illustrates the relationship between the index of attraction, the 

distance and the attractiveness of the resource as calculated using Equation 2.1. The 

index of attraction is then used as a predictor for a response variable. For instance, the 

probability that people from a suburb will be customers of a particular supermarket can 

be used to estimate the number of potential customers in supermarkets around a city. A 

regression analysis, the actual SIM, determines the relationship between the response 

variable and the index of attraction. 

Index of 

5 

4 

3 

2 

0 1 

ness 

Figure 2.1. Surface plot of the index of attraction (as calculated from Equation 2.1) 
against the distance to and the attractiveness of a resource. 
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SIMs are powerful tools for describing the aggregate pattern resulting from many 

individual behaviour decisions. At the same time the models are poor in revealing the 

underlying mechanisms as individual decisions are obscured by the aggregation 

(Fotheringham et al., 2000). But in the quest to understand spatial foraging behaviour, 

the SIM can be used to investigate the spatial pattern of vegetation defoliation by 

herbivores. 

The following section describes the process of introducing more complexity in the 

index of attraction only when the fit between the index of attraction and the data was 

improved. Several distance-decay functions were tested, but none performed better 

than the quadratic distance decay function used in the basic index of attraction. In the 

methods and results sections I only present the SIM based on the final index of 

attraction. 

2.2 Theory 

As the defoliation of a less preferred plant community is strongly correlated with the 

pattern of the preferred community (Clarke et al., 1995b; Hester & Baillie, 1998), we 

used grass as the attraction resource to calculate the index of attraction at a given 

location. We assumed a positive correlation between attraction and habitat use and 

hence defoliation of the less preferred community. We used grass patch area to 

represent the magnitude of the attractiveness of the resource. The attractiveness per unit 

resource was considered to be constant in the model. Within the heather-grass mosaics, 

the grass patches are connected by paths to form a network within a heather matrix. 

Because habitat use by sheep is strongly confined to this network (Hester et al., 1999), 

distances were determined as shortest path-distance to the nearest grass patches. This 

leads to the first index of attraction for location j: 

- grass patch area 
index of attraction - 

 

distance' 
Equation 2.2 

As reviewed in the previous section, heather defoliation generally declines away from 

the grass-heather edge. But what is the heather defoliation at a given location on the 
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grass-heather edge? To answer this question we investigated the correlation between 

the index of attraction at a given location on the network (at the edge of a patch or a 

path) and the heather defoliation in a 0.50 m wide zone bordering this location (heather 

edge zone). The index of attraction is based on the nearest patch only. Entering the 

basic index of attraction (Eq. 2.2) gave the following regression equation, in which a 

and b are the regression slope and intercept respectively, which both can be estimated 

by regression of observed heather defoliation on the index of attraction: 

heather defoliation = a + b x index of attraction 	 Equation 2.3 

Although it has been shown that herbivores use a mental map of grass patches (Dumont 

et al., 2000; Edwards et al., 1996; Roguet et al., 1998), it is unknown how they perceive 

clusters of patches surrounding a given location. We therefore assumed that sheep 

consider grass patches within a certain radius from their current location (specified in 

the methods section), and calculated a cumulative attraction value for all grass patches 

within the radius. The index of attraction is now based on the sum of the attraction of 

all patches within the radius. This second index of attraction (n is the number of patches 

in the cluster) for location  is: 

index of attraction s  = 	
grass patch area 1  

distance 
Equation 2.4 

The performance of this regression depends on the ability of herbivores to estimate 

patch area and distance accurately. However, animals and humans tend to mentally 

underestimate a stimulus when the stimulus is strong and the underestimation increases 

with increasing strength of the stimulus (Bateson & Kacelnik, 1998; Carlson, 1990; 

Stevens, 1957; 1975). This leads to a logarithmic relationship between the perceived and 

the objective strength of a stimulus. Therefore in this third SIM we use a logarithmic 

transformation on the assumption that sheep underestimate larger values of both area 

and distance, leading to the third index of attraction: 

20 



Spatial interaction models 

index of attraction s  = 	
log(grass patch area 1 ) 

' (log(distance1 ))2  Equation 2.5 

Although the individual foraging decisions will be influenced by grass patch area and 

distance, the level of the aggregated heather defoliation will depend on the number of 

sheep present per unit grass area. We therefore introduced a measure of global grazing 

intensity, leading to the final index of attraction which predicts the spatial pattern of 

heather defoliation at the edge zone in heather-grass mosaics: 

	

index of attraction 
= sheep number 	

__________________ 

	

_____________ 	
log(grass patch area 1 ) 

	

total grass area 	j=1 	(log(distance1 ))2  

Equation 2.6 

Now we consider the regression between observed heather defoliation and the index of 

attraction as presented in Equation 2.6. In parallel with theory and observation we 

expected heather defoliation at the heather edge zone to be higher at the edge of large 

grass patches than at the edge of small grass patches and heather defoliation, along grass 

paths, to be higher near grass patches as compared to further away. This would predict 

a positive correlation between heather defoliation and the attraction predicted by the 

SIM. 

As for the effect of season and the grazing intensity, we would expect differences in the 

slope and intercept of the regression of heather defoliation and the attraction. Grass 

quantity and quality drop significantly during the winter (Armstrong & Milne, 1995), 

leading to a decrease in contrast between grass and heather. As the relative attraction of 

grass decreases, the sheep are expected to be less biased by the grass patch area in that 

season, leading to a decrease in the slope. The increased heather defoliation in the 

winter would lead to an increase in the intercept (Figure 2.2a). When increasing grazing 

intensity within a season, we would also expect an increase in heather defoliation 

leading to an increase in the intercept, but we would also expect sheep to remain biased 

towards the grass, leading to a stronger increase at high attraction values, i.e. near large 

grass patches, and thus an increase in the slope (Figure 2.2b). As larger grass patches 
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become exhausted with higher grazing intensity, sheep are forced on the less attractive 

areas of the mosaic, leading to an increase in the intercept and thus a decrease in the 

slope (not shown). 

A 	Season effect 	 B 	Grazing intensity effect 

0 

.2 a, 

a, 

a, 
I 

- Winter 

Summer 

High grazing intensity 

Medium grazing intensity 

- - - Low grazing intensity 

<i1 
Index of attraction 

Figure 2.2. Hypothetical effects of season (A) and grazing intensity (B) on the linear 
regression of heather defoliation on the index of attraction. 

2.3 Methods 

Heather defoliation was observed during a three year experiment (1998-2001) of sheep 

grazing natural heather-grass mosaics. The experimental site, at the Macaulay Institutes 

Glensaugh Research Station, consisted of six one-hectare plots, containing natural 

heather-grass mosaics (described in: Hester & Baillie, 1998). The plots were located on 

a north north-west facing slope with a slope angle of 17 ° . Three grazing intensity 

treatments, 4, 3 and 2 sheep per hectare, were applied year round on plots 1 and 5, 2 and 

6, and 3 and 4 respectively (Figure 2.3). In spring and autumn heather defoliation away 

from grass-heather boundaries was measured along transects laid out in the field using 

measuring tapes. To determine transect locations, seven lOOm lines were laid out across 

each plot along the slope (Figure 2.3). 
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Study site on Strathfinella Hill 
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Figure 2.3. Vegetation map of the experimental site at Macaulay Institute's Glensaugh 
Research Station. Dotted lines indicate the lines used to determine transect locations for the 
measurement of heather defoliation away from grass/heather edges. Numbers indicate the 
respective plots. 

23 



Chapter 2 

A transect was then allocated to each grass-heather boundary, either at a path or a grass 

patch, crossed by a line. Transects were drawn from the edge of the grass into the 

heather perpendicular to the grass-heather edge. As the geometry of the paths and 

patches generally followed the contours, the majority of transects were up- and 

downhill. Transects going off the same path or grass patch, on any one line, were 

grouped together into a 'transect location'. This resulted in a total of 358 transect 

locations. Because of the different mosaics in each plot, the total number of transect 

locations per plot varied between 36 and 78. Heather defoliation was measured at fixed 

distances along each transect (0, 0.25, 0.50 m) according to the method described by 

Hester and Baillie (1998), providing an estimate of the percentage of current year's 

growth removed at each distance. 

A vegetation map was created using colour aerial photographs, specially taken in 

October 1998 at the start of this experiment, which were digitally scanned from 

negatives. The resulting digital images were orthorectified, mosaiced and classified 

using Erdas Imagine (ERDAS Inc., USA; Version 8.3). The classification resulted in a 

vegetation map containing grass patches in a heather matrix. As much as possible, grass 

patches were defined by the classification process. Where the classification resulted in a 

conglomerate of individual patches (in approximately 10 cases), individual patches were 

manually defined according to assumed sheep perception of the mosaics, as derived 

from previous work on these plots (Hester and Baillie 1998; Hester et al. 1999). 

However, as the SIM model used in this study (Equation 2.6) evaluates conglomerates of 

patches in the same way as clusters of individually-defined patches, any division of 

conglomerates did not affect the results of the SIM analysis. Despite the high resolution 

of the image (cell size 0.05 m x 0.05 m), the lighting condition and spectral reflectance 

characteristics of the vegetation (generally low grass cover) prevented the classification 

of paths. Paths, indicated by an interruption of the heather canopy, were therefore 

surveyed in the field and manually digitized. The vegetation map and path elements 

were joined to get a map of a connected grass network in a heather matrix. The starting 

point of each transect, at the grass-heather boundary of the path or grass patch, was 

manually digitized onto the grass network. For each of these transect positions, the 

distance to the edge of the nearest grass patch, measured along the grass path, and the 
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associated patch area were determined using the 'cost-distance' function in Arclnfo 

(ESRI, USA; Version 8). To accommodate the model, the distance was set to one metre 

for all distances less than one metre. In order to calculate the cumulative attraction of 

the cluster of neighbouring patches, we repeated the 'cost-distance' method for each 

successive larger patch connected with the transect position along the grass network. 

Because attraction declines rapidly with distance (i.e. distant patches contributing little 

to the cumulative attraction) we only considered patches within a 25 m radius from the 

location. All attraction values were summed to get a cumulative attractions for each 

transect location. 

The severity of heather defoliation at the edge of grass patches and paths is known to be 

higher uphill than downhill (Hester & Baillie, 1998; Oom & Hester, 1999). But the data 

analyzed here showed no significant difference in the spatial pattern of heather 

defoliation up- and downhill. Therefore, a single mean was calculated for the six 

observations at each transect location (i.e. combining the heather defoliation 

measurements at 0, 0.25 and 0.50 m away from the heather for both the uphill and 

downhill transects). Because about 90% of the observations had a heather defoliation of 

less than 25%, i.e. the data were negatively skewed, the percentage heather defoliation 

was angular transformed before averaging. The transformation resulted in residuals not 

significantly different from a normal distribution. Values presented in tables and figures 

are based on transformed data. 

The purpose of this analysis was to determine the relationship between the heather 

defoliation and the attraction predicted by the SIM. A regression analysis was 

considered most suitable for this purpose, producing slope and variation in slope, while 

allowing for known effects of the grazing treatment and season. The experimental 

design was unbalanced, due to the varying number of transects per line. Because of the 

hierarchical design of transects within lines within plots, correlation in the data may 

have arisen due to effects of plot, line and transect. To take into account the 

hierarchical, unbalanced design, we used the Residual Maximum Likelihood (REML) 

method available in Genstat (Lawes Agricultural Trust; 5th  Edition Release 4.22, Service 

Pack 2, GenStat Procedure Library Release PL13). REML treats factors, giving rise to 
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different slopes and intercepts, as fixed effects and handles the correlations via the 

variance components associated with the random effects. 

We analyzed the heather defoliation data using treatment, season and SIM as fixed 

effects and plot, line, and transect as the random effects. The regression analysis was 

based on the mean angular heather defoliation per transect location. For presentation 

purposes, the scatter plots are based on the average mean angular heather defoliation for 

ten classes (containing equal numbers of transect locations), calculated with REML, 

using the same random model as used for the regression analysis. 

The output from REML gave a Wald statistic for each fixed effect added to the model, 

which provided a significance estimate equivalent to the F-test in an ANOVA (Elston, 

1998). To obtain an estimate of the variance explained by the fixed effects model, an 

Adjusted R2  was calculated based on the stratum variance provided by REML. The 

stratum variances estimate the unexplained variances of means of the different levels for 

each random effect and are adjusted for the degrees of freedom in the fixed effects 

model. Because of the hierarchical nature of the random model, a separate Adjusted R 2  

had to be calculated for each random effect (plot, line, transect). The stratum specific 

Adjusted R2  were calculated using the following formula: 100%X(1SV a/SVn). Where 

SVa  and SV are the stratum variances for the alternative model (with fixed effects) and 

the null model (without fixed effects) respectively. 

2.4 Results 

Across all plots, values for distance ranged from 0 to 23 m, while the values for grass 

patch area ranged from 1 to 441 m 2 . Figure 2.4 shows that the values for patch area and 

distance were not equally represented across the six plots. The analysis for SIM was 

therefore strongly unbalanced at the plot level, i.e. confounded with the grazing 

intensity treatment. 
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Figure 2.4. Scatter plot of grass patch area against distance (for the nearest grass patch) for 
each transect location (labelled by plot). 

There were significant effects for season and the SIM (Table 2.1), but no significant 

interactions between fixed effects (not shown). As the season effect was well balanced, 

with all transects having all seasons, the Wald statistic came out very high. On the other 

hand the treatment effect (sheep per plot) was not well balanced, with only a third of 

the transects having any one treatment, leading to a non-significant Wald statistic. 

Table 2.1. Significance of fixed effects of the REML model based on the Wald 
statistic as calculated by REML. P values have been calculated using the 
F-value, based on the Wald statistic divided by numerator degrees of freedom. 

Fixed effect Wald statistic Numerator df Denomerator df P 

SIM 	 28.1 1 1571 <0.001 
Treatment 	4.6 2 3 NS 
Season 	296.8 1 1571 <0.001 
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Figure 2.5. Scatter plot of mean angular heather defoliation against attraction (as predicted 
by the Sim). Values are average mean angular heather defoliation for ten classes calculated 
using REML. 

The character of the significant effect of the SIM is revealed by Figure 2.5. As expected, 

the relationship between heather defoliation and the attraction predicted by the SIM 

showed a positive correlation. When the data were analyzed according to season, the 

same relationship is found for both summer and winter (Figure 2.6). The intercept for 

winter was significantly higher than that for summer, but the slopes were not 

significantly different (Table 2.2). The results for treatment and season x treatment 

interactions, although not significant, have been included for completeness (Table 2.2). 

Much of the variance explained by the fixed model was explained in the plot stratum 

(42%), with less variance explained in the plot.line (12%) and plot. line. transect (7%) 

strata (Table 2.3). The low Adjusted R 2  for SIM, despite the high significance of the 

regression, was a result of the high variability of the heather defoliation about the 
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regression line (see example Figure 2.7). This small-scale heterogeneity in foraging 

intensity could be caused by a high variability in the defoliation of individual plants. 

Hartley et al. (1995) showed that herbivores can use chemical cues to differentiate the 

quality of individual plants within a species. This was confirmed by visual observation 

on the experimental plots, which showed that individual heather plants may be heavily 

grazed whilst neighbouring plants are untouched. 

Table 2-2. Slopes and intercepts for SIM and the interactions between SIM and treatment, 
and season, including mean standard error of differences (sED). All fixed effects contain the 
interactions between treatment and season; these have been averaged in the table to 
match the level at which the regression on SIM has been estimated. 

Fixed effects 	 Slope 	SED 	Intercept 	SED 

SIM 	 5.0 	 12.8 

Low 4.6 10.8 
SIM.Treatment 	Medium 3.8 	2.4 13.3 	2.5 

High 6.9 14.0 

Winter 4.6 16.0 SIM.Season 1.1 0.7 
Summer 5.3 9.6 

Winter Summer Winter Summer 
Low 	 4.8 4.5 14.2 7.4 

SIM.Treatment. Medium 	2.6 4.6 16.7 1.2 a   
10.0 

Season 	High 	 6.7 7.0 17.0 
26b 

11.0 

a SED within plot (i.e. Season within Treatment); b 
 SED between plots (i.e. all other 

comparisons); Degrees of freedom for SIM and Season ; Degrees of freedom for 
Treatment = 3. 

Table 2-3. Stratum variances and Adjusted R2  for fixed effects based on the 
approximate stratum variances as calculated using REML. Adjusted R2  are 
calculated for each model compared with the null model (without fixed 
effects) for each random stratum (plot, plot.line and plot.line.transect). 

Stratum 	 Adj. R2 (relative to null model) % 
Treatment Season SIM SIM*Treatment*Season  

Plot 44 1 7 42 
Plot.Line 0 0 12 12 
Plot.Line.Transect 0 0 7 7 
Units 0 18 0 18 
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three years. Observations included are for winter defoliation in plots with the high grazing 
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2.5 Discussion 

In this chapter we have shown that a simple SIM based on distance from a grass patch 

and grass patch area could successfully predict heather defoliation in natural heather-

grass mosaics. As foreseen by theory and observations, heather defoliation and the 

attraction predicted by the SIM were strongly positively correlated. This implies that the 

heather defoliation was not spread homogeneously across the heather-grass mosaic, but 

that high heather defoliation locally coincided with low defoliation elsewhere. 

Furthermore, the positive slope of the regression showed that heather defoliation was 

positively associated with grass patch area, i.e. heather defoliation decreased with 

distance away from grass patches and increased with grass patch area. 

The SIM approach worked well for sheep foraging in heather-grass mosaics, as their 

habitat use is strongly confined to the grass network (Hester et al., 1999). When 

extending the approach to other herbivores, differences in foraging characteristics, such 

as diet selection and body size (i.e. the ability to walk through high vegetation), might 

influence the correlation between the SIM and heather defoliation. For example, the 

correlation might be weaker for red deer, as their use of the heather-grass mosaics is less 

influenced by the grass network (Hester et al., 1999). On the other hand the strong 

decline of heather defoliation away from the grass-heather edge suggests that heather 

defoliation by deer is also strongly influenced by the pattern of grass (Clarke et al., 

1995a; Hester et al., 1999). 

When extending the approach to other grass-shrub mosaics, the correlation between 

shrub defoliation and attraction will depend on the contrast in preference between the 

preferred and less preferred plant community. A decrease in contrast is expected to lead 

to a decrease in the slope of the regression. The same effect would be expected when 

comparing two vegetation mosaics of different contrasts in preference. This effect was 

not shown in this study, despite the fact that the contrast between heather and grass 

communities decreases during the winter, with grass quality and quantity falling 

sharply and heather quantity and quality falling only slowly (Armstrong & Milne, 

1995). We can only speculate that the grass availability was low throughout the year, or 

that patch geometry had an overruling influence on sheep foraging behaviour. 
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The SIM can be applied in three ways in addition to the application described above. 

Firstly the model could be used to derive a spatially explicit sampling scheme for a 

grazing impact study. The model from Equation 2.5 (i.e. without considering grazing 

intensity) could be used to calculated attraction values for a given vegetation map. 

Based on this map, a sampling scheme could be deployed to quantify the slope of the 

regression between heather defoliation and the attraction. The slope of the regression 

will differ with different plant communities, different herbivores and different grazing 

intensities. Secondly the SIM provides a tool to extrapolate heather defoliation 

measurements from part of a mosaic across the whole mosaic, using the regression 

between heather defoliation and the attraction. The result is an interpolation surface of 

predicted heather defoliation based on locations with known heather defoliation. 

Thirdly the predictions of the SIM can be used to test predictions of more mechanistic 

spatially explicit foraging models, such as SAVANNA (Coughenour, 1993), EASE 

(Moen et al., 1997) and the model developed by M.G. Turner, et al (1993). None of 

these models consider grass-heather mosaics, but do consider other grass/shrub 

combinations. The interpretation of these model outputs has focussed on the animal 

performance as a result of the interaction between foraging behaviour and the spatial 

pattern of the resources. However, these models do produce spatially explicit output 

which could be tested against the predictions of the SIM. Again, the strength of the SIM 

is in predicting the pattern of defoliation, such that the testing of model predictions 

should be through correlation. 

The results of this study have two major implications for the management of grass-

shrub mosaics. Firstly, the management of the balance between preferred (grass) and 

less preferred plant communities (shrub) strongly depends on the characteristics of the 

vegetation pattern. In highly fragmented mosaics, in which grass and shrub are 

intimately mixed, a large proportion of the less preferred community cover will be 

affected by herbivores, whilst in lightly fragmented mosaics large areas of the less 

preferred community will be little affected. This supports the more detailed discussions 

in Hester and Baillie (1998) and Clarke et al. (1995b). Secondly, as the spatial pattern of 

herbivore foraging is dictated by the spatial pattern of resources, it is expected that the 

spatial pattern of defoliation can be influenced by changing the spatial characteristics of 
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the resources. For example, creating a grazing lawn dominated by a preferred species in 

one location, might relieve grazing intensity elsewhere in the mosaic, which in fact is 

what Clarke et al. (1995b) did in their experiment. 

The results of the regression analysis show that the pattern of heather defoliation is 

affected by the pattern of grass in the heather-grass mosaic, such that heather around 

large grass patches is more likely to be grazed than heather around small grass patches. 

As the number of paths radiating from a patch increases with patch size (Hester & 

Baillie, 1998), it could be argued that the heather is more likely to be grazed because the 

patch is more connected, thus the observed correlation could be a causal effect of 

connectivity, not patch area. Thus patches are attractive because of their connectivity 

which leads to increased heather defoliation, subsequent heather fragmentation and 

thus increased patch size. However the initialisation of a network will be determined by 

the presence of large grass patches. For example on the scale of the Finella hill side, a 

network of paths was developed by sheep and cattle to connect two improved grass 

areas on either side of a deep gully. Patches along the new network then developed as a 

result of their position in the network. Results from previous experiments on Finella 

showed that after establishing the plot fences, sheep adapted the path network to 

restore cut off paths to attractive grass patches (Hester & Baillie, 1998). 

In conclusion this study shows that a simple SIM can be used to describe the spatial 

pattern of heather defoliation in heather-grass mosaics. The method could be applied to 

other grass-shrub mosaics and to other habitat use indicators (e.g. dung distribution, 

trampling). The method could thus serve as a simple but powerful tool to describe the 

spatial patterns of habitat use. Insights generated by the description of spatial patterns 

should then be used to develop more mechanistic hypotheses, which can then be tested 

in experimental studies. Only with increased mechanistic understanding of spatial 

plant-herbivore interactions, could SIMs ultimately be dismissed as being too 

descriptive. 
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Chapter 3 
Defoliation across grass-heather 

boundaries: evidence for multiple stable 

states? 

The fundamental nature of the climax and its significance in the life- 
history of a vegetation are indicated by the fact that it is the mature or 
adult stage of the latter. As stated elsewhere, the climax formation is 

the fully developed community, of which all initial and medial 
communities are but stages of development. The general behavior of 

the formation as a complex organism resembles very closely that of 
the simple organism, the individual. The recognition of the latter is so 
natural and necessary a prelude to the study of its development and 

organization that it is taken for granted. 

F. E. Clements (1916) 
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3 Defoliation across grass-heather boundaries: evidence for 

multiple stable states? 

3.1 Introduction 

This chapter presents the results of a field experiment investigating the spatial pattern of 

herbivore impact on heather-grass mosaics. Herbivore impact on vegetation is an 

important process determining plant-herbivore interactions. Results are presented in 

the context of current understanding of plant-herbivore dynamics, in particular the 

concept of multiple stable states in grazed ecosystems. 

Multiple stable states and carrying capacity 

In the quest to understand plant-herbivore interactions scientists and managers alike 

have made use of succession and vegetation dynamics models. The traditional 

equilibrium-based successional model considered a linear succession with an ultimate 

climax state (Clements, 1916). A site would reach this climax through succession, and 

would return to this state after being deflected from it. The succession could be halted 

at any state by specific management, such as burning, mowing or grazing. The 

understanding of potential natural communities was based on this. Because this model 

poorly described observations of events in rangeland, particularly in semi-arid systems, 

people moved on to the model of multiple stable states or to the state-and-transition 

model (e.g. Holling, 1973; Westoby et al., 1989). It is argued that multiple stable states 

can exist as a result of positive feedbacks occurring when switching from one state to 

another, prohibiting or hampering the return to the original state (Holling, 1973). 

Stability of states is determined by their ability to return to their equilibrium state after 

a temporary disturbance (Holling, 1973). In contrast with such equilibrium systems, 

non-equilibrium systems are dominated by environmental stochasticity, such that the 

system is never in equilibrium (Tainton et al., 1996): It is argued that equilibrium range 

ecology theory is not applicable in these systems (Behnke & Scoones, 1993). The 

importance of herbivory might therefore be small relative to the role of rainfall in 

determining vegetation dynamics (Tainton et al., 1996). However in areas favourable 
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for plant growth, herbivory is expected to be an important driver of vegetation 

dynamics (Tainton et al., 1996). 

The role of spatial interactions in the existence of multiple stable states has received 

little attention, although it has been suggested that the spatial plant-herbivore interface 

can influence stability of ecosystems by creating a spatial refuge for part of the 

vegetation (McNaughton, 1984; Mime et al., 1992). Tainton et al. (1996) explores the 

spatial complexity of the plant-herbivore interface and the role of selective grazing, but 

fails to make a link with stability. Although, in general, a reduction in system 

heterogeneity is considered beneficial to facilitate management of the rangeland. In a 

review, Archer (1996) suggests that lack of spatially explicit information hampers our 

ability to monitor and manage grazed ecosystems appropriately. 

The existence of multiple stable states has strong implications for rangeland 

management. The climax succession model assumes that the state of the ecosystem 

varies directionally with the impact of management and that the state can be changed 

with little effort. Thus, establishing the carrying capacity for the management of 

grazing systems (Roe, 1997), here considered as the maximum stocking rate which does 

not considerably affect the shrub cover in grass-shrub mosaics, could be a matter of 

trial and error. On the other hand, the multiple stable state model predicts that certain 

state transitions can only be made by powerful management efforts (Laycock, 1991). 

Thus, each alternate stable state can have its own carrying capacity. Overstocking at one 

stable state could lead to transition to another, possibly less preferred, stable state. 

Determining carrying capacity then strongly depends on the current state of the 

system. The understanding of multiple stable states is therefore important in relation to 

sustainable management of grazing systems. 

Carrying capacity of heather-grass mosaics 

The system under study is that of upland heather (Calluna vulgaris (L.) Hull) moorland 

in Scotland. The international importance of upland heather moorland has recently 

been reviewed by Thompson et al. (1995). Although overall loss of heather moorland 

can be ascribed to both grazing and establishment of coniferous plantations, grazing by 
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sheep and red deer is singled out as the single factor causing shifts from heather 

moorland to unimproved grassland (Thompson et al., 1995). Several dramatic shifts 

from heather moorland to grassland, as a result of heavy grazing by sheep and cattle, 

were documented by Welch (1984). 

Based on the observed changes resulting from grazing by herbivores at a range of 

different study sites, Welch (1984) provided threshold stocking rates for sheep and deer. 

An alternative rule of thumb often used is the '40% rule' (Grant et al., 1988). This 

suggested that no reduction in heather cover would occur when overall defoliation of 

heather did not exceed 40% of the current years growth. Thus, carrying capacity of 

heather moorland was expressed as a fixed stocking rate or a fixed level of herbivore 

impact and was based on the proportions of heather and grass in the mosaic 

(Armstrong et al., 1997), but assuming that herbivore impact was spread evenly across 

the vegetation mosaic. However, earlier research had already suggested that herbivore 

impact on vegetation is strongly influenced by spatial heterogeneity of the vegetation 

(Grant et al., 1978). 

In order to improve the understanding of plant herbivore interactions and to improve 

the predictions of carrying capacity, a series of experiments in north-east Scotland was 

designed to investigate plant-herbivore interactions within heather-grass mosaics, and 

in particular the interaction between herbivores and the ecotone between grass and 

woody vegetation (heather). In order to show the contributions of the individual 

studies, results are reviewed chronologically. An overview of these experiments is 

presented in Table 3.1. All these experiments considered the impact of herbivores on 

heather and define heather defoliation as the proportion of current year's heather 

shoots grazed. 

The Cairn Henney experiment studied defoliation impact on recently burned heather. 

Three grazing pressures (expressed as fixed levels of observed heather defoliation: 0%, 

40% and 80%) were applied in two seasons (summer and autumn). At 40% overall 

defoliation, changes in heather cover were slight, while at 80% the reduction in cover 

was only significant in the case off autumn grazing. However, new shoot production in 

the following season was affected by the 80% defoliation treatment independent of the 
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season. The authors concluded that young heather can withstand defoliation of at least 

40% of current years shoots (Grant et al., 1978). Despite careful formulation, the 40% 

figure presented was subsequently interpreted by some authors as a maximum 

threshold and became widely accepted as the recommended maximum grazing level for 

heather in general (e.g. Clarke et al., 1995a). Because it was appreciated that heather 

response to defoliation depends on the age of the heather stand, the levels were later 

adjusted to 10% and 5% for intermediate and old heather respectively (Sibbald et al., 

1987). These adjusted figures were based on expert judgement for the purpose of 

predicting impact of grazing management strategies on heather moorland through 

modelling. 

Table 3.1. Summary of controlled heather defoliation experiments in eastern Scotland. See 
text for review of experiments. Heather phases based on Watt (1947). 

Location 	Year Treatment, periods 
and design 

Heather-grass 
mosaic 

References 

Cairn 	1973- sheep density adjusted to natural heather-grass (Grant et al., 1978; 
Henney 	1977 achieve 0, 40, 80% mosaic; pioneer Grant et al., 1982; 

defoliation; summer and heather (burned in Milne et al., 1979) 
autumn; random 3 x 3, no 1971) 
replicates 

Birnie 1 	1992 sheep, deer; 3 x 14 days: artificial heather- (Clarke et al., 
early summer; 2 replicates grass mosaics; 1995a; 1995b) 

mature heather; grass 
patches sown in 1990 

Birnie 2 	1992 2 sheep densities; 3 x 14 artificial heather- (Clarke et al., 
days: late summer; grass mosaics; 1 995a; 1 995b) 
2 replicates mature heather; grass 

patches sown in 1990 
Finella 1 	1991- sheep, deer, sheep + deer; natural heather-grass (Cuartas et al., 

1995 8 weeks: autumn (1991), mosaic; building or 2000; Hester et al., 
summer (1992), split mature heather 1996; Hester & 
summer (1993-1995); Baillie, 1998; 
2 replicates Hester et al., 1999; 

Oom & Hester, 
1999) 

Finella 2 	1998- sheep density; year round; natural heather-grass this thesis; 
2001 2 replicates mosaic; building or (Oom et al., 2002) 

mature heather 

Grant et al. (1978) noted that the distribution of grazing was not homogeneous across 

the experimental plots, but that heather defoliation was negatively correlated with 

heather cover. In two subsequent experiments (Birnie 1 and 2) the pattern of defoliation 

and the pattern of vegetation were more closely observed. The Birnie experiments 
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showed that heather defoliation was strongly correlated with distance from the grass-

heather boundary, with defoliation higher near grass patches than further away over a 

5 m zone (Clarke et al., 1995a). In addition, the distribution of heather, either in one 

large patch, four medium patches or twelve small patches strongly affected the temporal 

use of the mosaic by sheep and to a lesser extent for red deer (Clarke et al., 1995b). The 

time sheep spent grazing heather increased strongly with decreasing patch size. This 

shows that for an area with a given heather-grass ratio, the impact of the sheep strongly 

depends on the distribution of patches of grass within the heather matrix. An 

experiment comparing stocking rates showed no difference in heather defoliation 

between treatments (Clarke et al., 1995a), however defoliation was low at only 3% per 

period. The implication of these results is that for complex heather-grass mosaics the 

ratio of grass to heather is a poor predictor of heather defoliation (Clarke et al., 1995b). 

The Birnie experiments considered three sizes of artificial grass patches in a regular 

pattern within a heather matrix. However, patch size and pattern of patches in natural 

heather-grass mosaics vary strongly. Thus, the Finella experiments were established to 

expand the experimental approach into natural heather-grass mosaics. 

Declining heather defoliation with increasing distance from grass at Finella confirmed 

results from the Birnie experiments (Hester & Baillie, 1998). Although treatments 

considered herbivore species (either sheep, deer, or sheep and deer mixed), results 

across years showed strong variation in grazing intensity. Analysis showed that grazing 

intensities affected the width of the impact zone from 1 m at low overall intensity to 3 

at high overall intensity (Hester & Baillie, 1998). However, the background 

defoliation, at maximum distance from grass patches or paths, was not significantly 

different between years (Hester & Baillie, 1998), indicating that an increase in overall 

grazing intensity led to a disproportionate increase in defoliation in areas already 

affected by grazing. While the Birnie experiments considered different sized grass 

patches between treatments, the natural heather-grass mosaics of the Finella 

experiments provided varying grass patch size within treatments. Thus, within the 

herbivore species treatments, heather defoliation was observed around three classes of 

grass patch size. Although across treatments overall heather defoliation was higher 

around large and medium grass patches compared to small patches, the results varied 
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between treatments (Hester & Baillie, 1998). Heather defoliation was highest around 

small patches for the sheep treatment and highest around medium patches for the sheep 

and red deer treatment (Hester & Baillie, 1998). The current study was initiated in 

order to investigate the relationship between pattern of vegetation and pattern of 

defoliation further. 

Herbivore impact on vegetation 

Grazing is generally considered synonymous with defoliation despite the fact that 

herbivore impact on vegetation can occur through several processes, i.e. the collateral 

damage associated with defoliation. In order to avoid confusion, a distinction is made 

here between the following types of impact of herbivores on vegetation: defoliation, 

trampling, uprooting and foraging. Foraging impact is defined here as the combined 

effects of defoliation and that part of trampling and uprooting that is directly associated 

with defoliation. The term grazing impact has often implicitly included both defoliation 

and trampling impact. 

Although the experiments reviewed here focus on the defoliation impact of herbivores, 

all suggest that other forms of impact can be important. Uprooting was mentioned by 

Gimingham (1972). Later Grant et al. (1978) provided strong evidence of the increase of 

collateral damage caused by sheep density. In their experiment the number of uprooted 

or broken shoots was almost five times higher for a high sheep density treatment than 

for a low density treatments, with the effect most profound during autumn. The effect 

of trampling has more often been mentioned in the context of impact of human activity 

(Bayfield, 1979; Harrison, 1981). Bayfield (1979) suggested that, due to water stress on 

heather shoots, even partially damaged shoots can die of frost during winters following 

the initial impact. Clarke et al. (1995a) reported that, even at low rates of defoliation, 

numbers of both dead heather shoots and gaps in the heather were higher in a 5 m zone 

around grass patches than further away. Hester and Baillie (1998) found differing 

effects of trampling and defoliation as a result of prevailing slope. While heather 

defoliation is mainly uphill and across the hill from grass patches, trampling damage 

was primarily downhill from grass patches. It was also suggested that, on sloping 

grounds, trampling is more important than defoliation but with the relative importance 

of defoliation increasing with increased herbivore densities (Hester & Baillie, 1998). 
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3.2 Methods 

Site description 

The experimental site was established for a previous experiment (Hester & Baillie, 1998) 

on Strathfinella Hill (National Grid reference N0677782) at the Macaulay Institute's 

Glensaugh Research Station, Aberdeenshire, Scotland (Figure 3.1). The experimental 

site was located at an altitude of 200-250 m, on a north-west facing slope with a slope 

angle of about 17°. The soils are humus-iron podsols (Strathfinella Series) derived from 

Old Red Sandstone on the slopes and acid igneous rocks near the top. Bulked soil 

sample analysis resulted in the following measures: pH = 4.9, organic matter= 11%, 

lime content 2.8 mg MgO per 100 g (Gimingham, 1949). 
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Figure 3.1. Map of the location of the experimental site in Aberdeenshire, Scotland. 

OS data © Crown copyright 2002. All rights reserved Macaulay Institute GD27237X 2002. 

Gimingham (1949) reported that the whole hillside was burned twice in spring 1944. 

More localised burning occurred between 1957 and 1963 (Grant & Hunter, 1968). 

There is no documentation about later burning, although it is likely that the hill side 

was burned after the 1940s. Many years of grazing by cattle and sheep created a highly 

fragmented vegetation mosaic (Hester & Baillie, 1998; Nicholson & Robertson, 1958). 

Part of the bottom of the hillside consists of improved grassland. The experimental site 

consisted of six one-hectare plots (Figure 3.2). The vegetation mosaics within the 

experimental site was dominated by two plant communities (following Rodwell, 1991; 
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1992): Calltna v1lgaris - Vaccinium niyrtillus heath (H12) and Festuca ovina - Agrostis 

capillaris - Galium saxatile grassland (U4), with some patches of Nardus stricta - 

Galium saxatile (U5) and Juncus squarrosus - Festuca ovina grassland (U6). Plots were 

originally fenced with rabbit proof netting and rabbits were controlled during the first 

year of this experiment, leading to no further sightings of rabbit in the second and third 

year. 

Experimental design 

Replicated in two blocks (bottom and top), three stocking rate treatments (2, 3 and 

4 sheep ha'), were applied year round on plots B2 and T2, B3 and T3, and B4 and T4 

respectively (Figure 3.2). Sheep were removed from plots between December and 

February, the period with lowest temperatures and highest probability of snow cover, 

following common agricultural practice. Thus, true stocking rates, based on actual 

grazing days, were considerably lower. Because of the importance of group size in 

foraging behaviour (Penning et al., 1993), all treatments were applied using groups of 

six sheep. Therefore, in order to achieve different grazing treatments, the groups of six 

sheep were removed from plots at regular intervals, depending on the grazing intensity 

treatment required. Consequently, under high sheep density, plots were grazed for two 

weeks and then rested for one week, resulting in the total number of days during the 

summer (May-September) and the winter (October-April) presented in Table 3.2. 

Table 3.2. Number of days of sheep present (in groups of six) on plots for each treatment 
per year, total number of days per treatment and subsequent stocking rates based on actual 
days. Summer and winter cover the periods May-September and October-April respectively. 
Stocking rate is the calculated as the number of sheep grazing days per year. 

Year 	 Season 	 Treatment (sheep ha") 

4 	 3 	 2 

1998 - 	 Summer 60 50 30 
Winter 40 20 25 

1999 Summer 80 60 40 
Winter 40 30 20 

2000 Summer 112 60 40 

Winter 56 30 20 

Average (days) 129.3 83.3 58.3 
Stocking rate (days year 1 ) 2.13 1.37 0.96 
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Figure 3.2. Map of Finella experimental site. Plot codes indicate block (B = bottom and 
T = top) and treatment (2, 3 and 4 sheep ha - 1 ). 
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Heather defoliation during the summer and during the whole year was measured for 

three subsequent years in October and May respectively, starting October 1998 and 

finishing May 2001. Heather defoliation was measured at fixed locations along transects 

away from grass-heather boundaries. To determine transect locations, seven 100 m 

sampling lines were laid out across each plot along the slope (Figure 3.2) at regular 

distances. A transect was then allocated to each grass-heather boundary, either at a path 

or a grass patch, crossed by one of the sampling lines. Some paths were bare, leading to 

a bare-heather boundary, however for clarity the term grass-heather boundary is used 

for all observed boundaries. Transects were laid out from the edge of the grass out into 

the heather perpendicular to the grass-heather boundary. The transect was ended when 

the next distance along the transect exceeded the distance from that point to a 

neighbouring grass-heather boundary or at 5 m. As the geometry of the paths and 

patches generally followed the contours, the majority of transects were up- and 

downhill. On any one sampling line, any two transects going off the same path or grass 

patch were grouped together into a 'transect location. 

Heather defoliation was measured at fixed distances (0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 

2.00, 3.00, 4.00, 5.00 m) along each transect according to the method described by 

Hester & Baillie (1998), providing an estimate of the percentage of current year's 

growth removed (i.e. percentage defoliation) at each distance. While dead shoots had 

previously been recorded (Hester & Baillie, 1998), here only live shoots were 

considered, thus the number of shoots considered in estimating the percentage 

defoliation was always equal to ten. Transect locations were classified in the field either 

as grass patches (n=698) defined as areas dominated by grasses, or paths (n=652) 

connecting these grass patches. Potential misclassification could have occurred where 

grass patches expanded in the direction of paths, or where part of an expanded path was 

partly covered by grasses. In these ambiguous situations a value judgement was made in 

the field on how to classify that transect location. Incidence of ambiguous locations was 

rare at approximately 5% of all 360 transect locations, therefore possible 

misclassification of a small number of transect locations was assumed not to affect the 

results. 
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A total of 19,046 heather defoliation observations were made on 675 transects over the 

course of the experiment. Based on previous experiments, it was assumed that the 

distinct pattern of growth of heather (Figure 3.3 and Mohamed & Gimingham, 1970) 

facilitates the assessment of defoliation. While this was true for autumn observations, 

when ungrazed current years growth shoots provide good reference, spring 

observations (i.e. considering whole year defoliation) were hampered by shoot 

browning (Watson et al., 1966) during the winter months. 
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Figure 3.3. Annual growth and branching in Calluna vulgaris: a) condition at the end of the 
growing season (early October); b) shoot tip early in the growing season (June) to show new 
long-shoots developing from overwintered end-of-season short-shoots. From Mohamed & 
Gimingham, 1970. (Reproduced with permission from New Phytologist) 

The spring defoliation was considered to represent the whole year grazing. However, in 

case of shoots grazed and subsequently browned, it was difficult to assess whether the 

shoots had been dead all year or died after initial grazing. This possibly led to an 

underestimation of the whole year defoliation, making it impossible to distinguish 

winter defoliation as the difference between autumn and spring measurements. Due to 

the number of observations it was not feasible to label shoots for controlled 
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measurements. Throughout this thesis autumn and spring measurements are therefore 

used separately as summer and whole year heather defoliation respectively. Note that in 

Chapter 2, summer and whole year heather defoliation are referred to as summer and 

winter, respectively. 
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Figure 3.4. Histogram of percentage defoliation for each sheep density treatment. 

Statistical analysis 

Due to the design of the experiment and the characteristics of the natural mosaics under 

study, the data were unbalanced both in the number of transects per stocking rate 

treatment and the number of observations within each transect. The total number of 

transect locations (combination of uphill and downhill transect) per plot varied 

between 36 and 78. Due to the characteristics of the heather-grass mosaics, i.e. the 

proximity to other paths or patches, the majority of the transects were one metre or less 

in length with only a few transects exceeding two metres (Table 3.3). This distribution 

was consistent across the stocking rate treatments. For part of the analysis, individual 

observations of heather defoliation were averaged within distance zones (Table 3.3): 

edge (0.00, 0.25, 0.50 m), centre (0.75, 1.00, 1.50 m), distant (2.00, 3.00, 4.00, 5.00 m). 
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Table 3.3. Number of sample points per distance along the transects per plot. Plot codes 
indicate block (B = bottom and T = top) and treatment (2, 3 and 4 sheep ha -1 ). 

Distance B4 T4 B3 T3 B2 T2 Overall Distance zone Overall 
0 93 104 132 123 153 70 675 

25 93 104 132 123 153 70 675 Edge 1985 
50 93 98 127 106 143 68 635  
75 85 84 113 64 124 49 519 
100 65 62 95 41 102 37 402 Centre 1196 
150 45 41 69 27 65 28 275  
200 35 31 48 23 47 17 201 
300 14 14 22 8 19 6 83 Distant 323 
400 2 5 9 3 4 2 25 
500 1 3 4 2 3 1 14 

Because of the unbalanced design, statistical analysis was carried out using the Residual 

Maximum Likelihood (REML) method in GenStat (Lawes Agricultural Trust; 

5th Edition Release 4.22, Service Pack 2, GenStat Procedure Library Release PL13). 

Means presented in tables and figures are means as estimated by REML, considering plot 

and transects within lines (Plot ± Line / Transect) as the random model. All heather 

defoliation results presented are angular transformed (degrees) unless stated otherwise. 

In order to illustrate the effect of grazing intensity on the decline of heather defoliation 

away from the grass-heather boundary, linear regressions were fitted. The percentage 

heather defoliation data was negatively skewed (Figure 3.5). Therefore percentage 

heather defoliation was angular transformed for analysis. The correlation between 

heather defoliation and distance from the edge was assumed to be negatively 

logarithmic (Clarke et al., 1995a) thus the regression was estimated against log-

transformed distance (cm). A constant of 1 cm was added to cope with zero distances 

and because 1 cm represents the level of precision used in placing the quadrats, leading 

to: LogDistance = Log io(Distance+1). Regressions were fitted using REML with the 

following fixed models: 

- Transect defoliation + Transect defoliation x LogDistance 

- Transect defoliation x Direction + Transect defoliation x Direction x LogDistance 

- Transect defoliation x Season ± Transect defoliation x Season x LogDistance 

This analysis was at the level of transects, so no random model was specified. 
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Due to the design of the experiment and the characteristics of the vegetation mosaics, 

transect length could not be controlled for. Because areas of high herbivore impact are 

generally characterised by clusters of grass patches, average transect length was 

expected to be lower in these areas. However regressions of transect length on mean 

transect defoliation were only significant for minimum transect length of 0 m and 

0.75 m for patches and paths respectively (Table 3.4). Due to the low coefficients and 

small Adjusted R2, transect length was assumed not to affect the results presented here. 

Table 3.4. Regression results for transect length (m) versus mean 
transect defoliation (°). Average transect length for patches and paths 
was 1.29 m and 1.43 m respectively. 

Type 	Minimum 
transect length 

Coefficient 
(mI°) 

Adjusted R 
(%) 

P value 

Patch 	 all -0.007 0.3 <0.001 
~ 0.50 -0.002 0.0 0.155 

Path 	 all -0.004 0.1 0.001 
~ 0.50 -0.004 0.1 0.003 
~ 0.75 -0.003 0.0 0.048 

3.3 Results and discussion 

Summary statistics showed that, even at the highest stocking rates, the percentage of 

shoots suffering 40% or more defoliation did not exceed 10% (Table 3.5). It should be 

noted that, due to the sampling design, the observations in this experiment were 

concentrated in the area where defoliation was expected to be most severe, such that the 

percentage of observations above the 40% threshold would be considerably less when 

averaged across the total heather area. 

Table 3.5. Percentage of observations for which the 
percentage heather defoliation is equal to or exceeds 40%. 

Defoliation (%) 	Sheep density (sheep ha') 

2 	 3 	 4 

<40% 	 2.8 	2.8 	4.1 
~! 40% 	 6.3 	6.8 	 9.6 

Figure 3.5 shows that both the number of shoots grazed and the severity of defoliation 

was highest for whole year defoliation. Due to the method of measuring cumulative 

defoliation over extended periods, it was not possible to know whether the defoliation 
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was a result of one single bite or repeated bites. Thus, it was not possible to distinguish 

increased bite depth from repeated defoliation or the spread of defoliation of one shoot 

over time. Two diagrams show the distribution of observations separated in grazed 

(defoliation > 0) or ungrazed (defoliation = 0) for grass patches (Figure 3.6a) and paths 

(Figure 3.6b) in uphill and downhill directions. Ungrazed observations were more 

frequent for paths and more frequent for downhill than for uphill. 
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Figure 3.5. Number of observations in defoliation classes per sheep density treatment and 
season: A) summer, B) whole year. 
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Figure 3.6. Histograms of heather defoliation (%) showing the distribution of observations 
divided into grazed (defoliation > 0) and ungrazed (defoliation = 0) for grass patches 
(n = 9922) (A) and paths (n = 9124) (B) and direction of slope either uphill (Distance > 0) or 
downhill (Distance <0). 

The Wald statistics of the REML analysis showed significant effects on angular heather 

defoliation for sheep density (2, 3, 4 sheep ha 1 ), season (whole year or summer), type of 

transect location (grass patch or path), direction (up- or downhill), distance zone (edge, 
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centre or distant) and the interactions (Table 3.6). Defoliation was higher around grass 

patches as compared to paths (p <0.001). Defoliation was higher uphill of the grass 

patches than downhill (p <0.001) and higher closer to the edge of grass patches or paths 

than further away (p < 0.001). These results confirm results from Hester & Baillie 

(1998) and Oom & Hester (1999) on the same site. In addition, the results show that 

increasing sheep density increases heather defoliation (p = 0.003) and that heather 

defoliation was higher for the whole year than in summer (p <0.001). 

Table 3.6. Effects of fixed terms on angular heather defoliation. Wald statistics, 
degrees of freedom (DF) and P values from the REML analysis when sequentially 
adding fixed terms and interactions. P values are Chi-squared probabilities as 
calculated by REML. Only significant interactions (P <0.05) are shown. 

Fixed term and interactions Wald DF P values 

Distance zone 65.47 2 <0.001 
Direction 77.97 1 <0.001 
Type 11.50 1 <0.001 
Sheep density 11.97 2 0.003 
Season 157.74 1 <0.001 
Distance zone x  Direction 36.29 2 <0.001 
Distance zone x  Type 19.70 2 <0.001 
Distance zone x  Sheep density 17.25 4 0.002 
Distance zone x  Season 6.23 2 0.044 
Direction x  Season 38.88 1 <0.001 
Distance zone x  Direction  x  Season 10.11 2 0.006 
Distance zone x  Direction  x  Type  x  Sheep density 10.54 4 0.032 

The interaction between distance zone and type (P < 0.001) was caused by a high 

defoliation at the edge zone of grass patches compared to path edges (Table 3.7), which 

confirmed the difference previously found between grass patches (Hester & Baillie, 

1998) and paths (Oom & Hester, 1999). 

Table 3.7. Mean angular defoliation for Direction and Type versus 
Distance zone. Means were calculated using REML. Numbers within 
the same Type with same superscript are not significantly different 
(p < 0.05 and average SED = 0.70). 

Distance Zone Patch Path 

Up Down Up Down 
Edge 12.3a 97b 1001) 75C 

Centre 93bc 8 . 0c 8 . 2c 8 . 0c 

Distant 74C 89bc 79C 8.0c 
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Because previous experiments had not compared seasons, the interaction between 

season and direction was also a new finding. Although defoliation was higher uphill 

than downhill in summer, as found by Hester et al. (1998), there was no significant 

difference during the whole year. The interaction between season, direction and distance 

zone showed that the effect in summer was caused by a low defoliation at the edge zone 

in the downhill direction (Table 3.7). Contrary to other combinations, the defoliation 

downhill in summer was not significantly higher for the edge zone than for the middle 

or centre zones. The interaction between treatment, type, direction and distance zone 

showed another new finding. Previous experiments showed that heather defoliation 

declined rapidly with distance from the grass-heather boundary (Clarke et al., 1995a; 

Hester & Baillie, 1998; Oom & Hester, 1999). Clarke et al. (1995a) suggested that the 

relationship was negatively logarithmic, i.e. showing an exponential decline (R 2  = 81.9; 

P < 0.0001). However, the interaction between treatment, type, direction and distance 

zone suggests that defoliation is not always negatively correlated with distance. 

Figure 3.7b shows that heather defoliation even increased with increased distance 

downhill from the grass-heather boundary of paths at 3 and 4 sheep ha'. It should be 

noted that results presented here are angular transformed data and distances have been 

amalgamated for ease of interpretation. 
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So far the analysis did not reveal how and why the decline of heather defoliation with 

distance varies. Thus, further investigation was required. An analysis using a spatial 

interaction model (Chapter 2), showed that heather defoliation at the grass-heather 

boundary at a given location is dependent on the index of attraction, based on the size 

and proximity of grass patches, of that location. This demonstrates that local grazing 

pressure is not only determined by global grazing pressure (in this case sheep density 

treatments), but that it also depends on the local availability of grass, i.e. proximity and 

size of grass patches. 

In order to investigate the decline of heather defoliation away from the grass-heather 

boundary as a function of actual grazing pressure at the grass-heather boundary, the 

sheep density per treatment (global grazing intensity) in the data set was replaced by 

the estimated mean grazing pressure on each individual transect (local grazing 

intensity). The grazing pressure at each transect was defined as the average angular 

heather defoliation of the whole transect (here after called transect defoliation). In other 

words a heavily grazed transect in a plot with a sheep density of 4 sheep ha- ' was now 

grouped together with a similarly grazed transect from a plot with 2 sheep ha - '. 

Table 3.8. Percentage of observations per bin. The total number of 
observations for patches and paths were 9922 and 9124 respectively. 

Bin Transect defoliation (°) Observations (%) 
Patch Path Patch Path 

0-1 0.0 0.0 20.2 26.0 
1-2 1.6 1.6 1.1 3.3 
2-4 2.9 3.0 8.0 9.3 
4-6 5.0 4.9 8.3 10.3 
6-8 6.9 7.0 10.2 8.0 

8-10 9.1 9.0 8.3 9.4 
10-12 11.1 10.9 8.1 5.6 
12-15 13.4 13.5 10.6 7.2 
15-18 16.5 16.5 7.7 6.8 
18-21 19.4 19.5 5.0 4.9 
21-24 22.4 22.4 4.5 3.2 
24-27 25.4 25.4 3.3 2.6 

27-max 32.0 30.9 4.7 3.6 
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Figure 3.8. The coefficient of the angular heather defoliation and log distance for each 
transect defoliation bin. Figures split for grass patches (I) and paths (II), and for all data (a), 
direction of slope (b), season (c) and treatment (d). Error bars are based on standard errors 
as estimated by REML. 
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Assuming an exponential decline of heather defoliation with increased distance from 

the grass-heather boundary, following Clarke et al. (1995a), the relationship between 

defoliation and log transformed distance is linear. In order to fit linear equations, all 

transects, previously grouped per treatment, were now regrouped by transect 

defoliation in variable bins to accommodate the number of observations while at the 

same time achieving the same number of bins for both patches and paths (Table 3.8). 

The coefficient of the regression of angular heather defoliation on the log transformed 

distance (cm) (logio(Distance + 1)) was determined for each bin and plotted against 

transect defoliation. The resulting figures are shown for patches (Figure 3.8 I) and paths 

in (Figure 3.8 II). 

At low transect defoliation the coefficient was negative, thus confirming that the 

heather defoliation was negatively correlated with log distance. Increased transect 

defoliation led to a more negative coefficient, i.e. a higher rate of decline of defoliation 

with distance from the grass-heather boundary. But with increasing transect 

defoliation, results did not fit previous findings. At moderate transect defoliation, the 

coefficient reached a minimum and then increased again. This indicates that increased 

transect defoliation led to a disproportionate increase of defoliation away from the 

grass-heather boundary than at the edge, thus reducing the contrast between edge and 

distant defoliation. At a transect defoliation of 100  (18%) and 20° (26%) for paths and 

patches respectively, the rate of decline was zero again, i.e. the heather defoliation 

remained constant with increased distance from the edge. Further increase of transect 

defoliation showed different responses for patches and paths, with the coefficient for 

paths continuing to increase and for patches to remain close to zero. 

The uphill response of transect defoliation for paths was different from the downhill 

response (Figure 3.8 II B). Downhill from the paths the coefficient was predominantly 

positive. For patches the response showed no clear pattern. The results for season 

suggest that a negative interaction occurs between summer and whole year 

(Figure 3.8 C). Strong negative coefficients in one season coincided with weak negative 

or positive coefficients in another season. This could indicate that when a transect was 

mainly grazed at the edge in one season this led to more grazing further away from the 

edge in the next season (Figure 3.8 C) and vice versa. 
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There was no clear effect of the three treatments on the response of defoliation to 

distance from paths. However, where the global sheep density (at the plot scale) was 

only 2 sheep ha', the slope of the regression was more negative than in the other 

treatments where the local defoliation levels (at the scale of a grass patch) were low or 

intermediate, but the slopes were more positive in areas of high local defoliation 

(Figure 3.8 D). 

Where edge (0 - 0.5 m) defoliation (!~ 60) was low, there was usually no defoliation at 

the distant end of the transect (4 and 5 m) (Figure 3.9). At higher levels of defoliation, 

however, the background defoliation increased linearly with edge defoliation with a 

coefficient close to 1. Thus, the background angular defoliation was roughly 6° (14%) 

lower than edge defoliation. 
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Figure 3.9. Scatter plot and regression between edge defoliation (0 + 0.25 + 0.50 m) and 
background defoliation (4 + 5 m) indicated by the solid circles. Solid line indicates regression 
line, based on points with crosshairs as discussed in the text (y = -6.6 + 0.90 x x; Adjusted 
R2  = 0.88). 
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3.4 Hypothesis 

Defoliation edge versus defoliation zone 

The results presented here (Figure 3.8) suggest that heather defoliation can either 

decrease, increase or remain constant with distance (over a zone of 5 m) from the grass-

heather boundary. A strong decrease or increase with distance means a high contrast in 

the level of defoliation near the edge than further away, thus causing a narrow zone of 

impact, while a constant level of defoliation with distance indicates a wide zone of 

impact. 

Previous experiments concluded that heather defoliation was always negatively 

correlated with distance from the edge of grass (Clarke et al., 1995a; Hester & Baillie, 

1998; Oom & Hester, 1999). Moreover, Clarke et al. (1995a) suggested an exponential 

decline away from the grass-heather boundary. This is called Hypothesis 0 

(Figure 3.10-0). Hypothesis 0 predicts that increasing transect defoliation (i.e. the 

grazing pressure on the grass-heather boundary) will lead to an increased edge 

defoliation and more-or-less constant background grazing, because increasing 

defoliation at the edge will have little influence on distant defoliation. This will lead to 

increased contrast between edge and distant defoliation with increasing transect 

defoliation. It would also predict a skewed distribution of heather defoliation, such that 

at high stocking rates a large proportion of the edge heather defoliation exceeds the 

40% threshold. Although an exponential decline allows for changes in the width of the 

impact zone as observed by Hester & Baillie (1998), it can not explain the decreasing 

contrast between edge and distant defoliation nor can it explain the increase in the 

width of the impact zone as observed in this study (Figure 3.8). Therefore three 

alternative hypotheses are suggested. 

In order to facilitate the development of alternative hypotheses, grazing pressure is 

defined at three spatial scales. The first is the global grazing pressure (sheep ha') at the 

scale of the plot (100 m), determined by the number of sheep in a given area of heather 

moorland. The global grazing pressure determines the heather defoliation for the whole 

plot. Next is the local background grazing pressure translating the global grazing 

pressure to a scale between 5 and 100 m. The pattern of local background grazing 
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pressure shows spatial structure at scales larger than five metres, and is the result of 

sheep selecting feeding sites within the plot (Bailey et al., 1996). Following the results of 

the spatial interaction model in Chapter 2, the local background grazing pressure is 

expected to be higher than the global grazing pressure in areas of high grass abundance 

and vice versa. The local background defoliation is equivalent to the transect 

defoliation. Third are the local edge and distant grazing pressure at a the scale below 

five meters. Grazing pressure at this scale is strongly influenced by the distance of the 

heather from the grass-heather boundary (Clarke et al., 1995a; Hester & Baillie, 1998). 

The local edge grazing pressure is expected to be higher than the local background 

grazing pressure near the grass-heather boundary, while the distant grazing pressure is 

expected to be lower. 
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Figure 3.10. Graphs indicating the relationship between heather defoliation and distance 
from the grass-heather boundary for Hypothesis 0, Hypothesis 1, Hypothesis 2 and 
Hypothesis 3. Numbers in the graph correspond with the numbers of the hypotheses. Doted 
lines indicate the relationship as hypothesised in the previous hypothesis. 

Hypothesis 1 (Figure 3.10-1) is a spatial extension of Hypothesis 0. It is suggested that 

wide impact zones occur as a result of the spatial interaction of two grass-heather 
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boundaries at close proximity (i.e. less than 10 m apart). The observed decline away 

from the grass-heather boundary is thus a cumulative effect of two (or possibly more) 

grass-heather boundaries. This hypothesis would suggest less contrast between edge 

and distant heather defoliation and it could explain how defoliation can increase with 

distance when a transect runs away from a grass-heather boundary with low local 

grazing pressure (i.e. transect defoliation) to a boundary with high local grazing 

pressure. However, as the exponential decline still predicts high probabilities of 

extreme defoliation at the edge, it does not explain why so few observations are higher 

than 40% (or 39°) defoliation. 

Hypothesis 2 (Figure 3.10-2) suggests a different response of heather defoliation to 

distance. Instead of the exponential decline, a sigmoidal decline is assumed. This 

hypothetical curve shows a wide zone of high defoliation near the grass-heather 

boundary, a decline over some distance and a zone of distant defoliation. Figure 3.11 

shows sigmoidal response curves for increasing transect defoliation. At low levels of 

transect defoliation, the curve closely resembles an exponential decline. This could 

explain the choice of Hypothesis 0 in previous experiments, which had a considerably 

lower global grazing pressure than the current study had. This hypothesis is consistent 

with a strong correlation between local edge and distant heather defoliation. Increase in 

the local edge defoliation indicates increased potential herbivore impact. The distant 

defoliation could be a function of the local background grazing pressure, thus 

explaining the correlation between edge and distant heather defoliation. This 

hypothesis can explain the wide zone of impact independent of spatial interactions 

between grass-heather boundaries. As the sigmoidal curve does not rapidly increase 

near the grass-heather boundary, it also explains why so few heather defoliation 

observations are higher than 40% (Table 3.5). 

The sigmoidal response curve could be explained as the result of the interaction 

between a spatial process and a functional response (Solomon, 1949; Spalinger & 

Hobbs, 1992) for sheep foraging on heather away from the grass-heather boundary. 

Considering a moving front, sheep would start foraging on the grass-heather boundary. 

How far sheep will penetrate the heather depends on the trade-off between reward and 

cost. A cost could be going away from the preferred vegetation type or the physical 
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resistance of the heather, while a reward could be intake rate of heather. With 

increasing grazing pressure at a grass-heather boundary, herbivores could initially 

increase their defoliation of the edge, avoiding the cost of walking into the heather. This 

would lead to a decrease in the intake rate of heather as the heather is depleted, while 

the intake rate of the more distant heather remains constant. At some point the animals 

should reach a break-even point when the difference in intake rate between edge and 

distant heather equals the cost of entering the heather. In other words, the decreased 

intake rate at the edge makes it viable to overcome the cost of entering the heather. The 

level of the break-even point would de indicated by the observed edge defoliation. As 

the local background grazing pressure (transect defoliation) increases and heather is 

being depleted over a increasingly wide zone, the level of distant heather defoliation 

could approach that of the edge defoliation. At the same time the heather defoliation at 

the edge would still be at the threshold intake rate. 
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Figure 3.11. Change of sigmoidal response of heather defoliation versus distance from the 
grass-heather boundary as determined by transect defoliation.. 
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The functional response between herbivore impact and plant abundance could also be 

explained as a plant defence mechanism against high-levels of herbivore impact (Laca et 

al., 2001), such that plant structure limits intake rate. In this proposition, plant structure 

could play a role in both physical resistance and intake rate, leading to a concentration 

of herbivore impact at the edge with grass but at the same time limiting high levels of 

impact. The result is a spatial refuge for a large proportion of the vegetation 

(McNaughton, 1984; Milne et al., 1992). It has however been argued that it is difficult to 

prove that a plant trait is induced exclusively by herbivory as many other ecological 

functions could possibly explain the same trait (Rosenthal & Kotanen, 1994). 

Hypothesis 3 is the spatially explicit version of Hypothesis 2 (Figure 3.8 D). Similar to 

Hypothesis 1, heather defoliation away from the grass-heather boundary could be the 

result of an interaction between two grass-heather boundaries at close proximity. Due 

to the shape of the sigmoidal curves, the cumulative effect of defoliation in this case 

would be even stronger than in the case of Hypothesis 1. Thus a constant defoliation 

with distance would occur more frequently than in the other hypotheses. 

Unfortunately, based on the current data it is not possible to conclusively distinguish 

between any of the alternative hypotheses. However, the existence of wide impact 

zones has strong implications for the plant-herbivore interactions in grass-heather 

mosaics and this phenomena is therefore explored in more detail. 

Implications of the impact zone on the role of trampling versus defoliation 

The findings of this study show that narrow zones of defoliation occur at low transect 

defoliation, while wide zones of defoliation occur at high levels of transect defoliation 

(Figure 3.8). The width of the defoliation zone has strong implications for the impact of 

herbivores on heather through trampling. In a narrow defoliation zone, animals can 

reach the heather while standing on the grass, thus limiting trampling damage on the 

heather. When the animals reach the break-even point of defoliation at the edge, they 

start moving into the heather. Increasing transect defoliation then leads to an increasing 

zone of heather affected by defoliation. But much more crucial, as the width of the 

zone increases, the trampling impact at the edge of the zone increases with the width of 
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the zone, as a result of the sheep passing through to the distant heather. This could 

imply that, for the heather near the edge of grass, the impact of trampling could exceed 

the impact of defoliation (Figure 3.12). 
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Figure 3.12. Hypothetical response of grazing and trampling impact which implies a 
sigmoidal response of defoliation with distance, but a linear response of trampling with 
distance. As animal densities increase the trampling causes a progressive increase in the 
amount of heather above the trampling threshold. However, an increase in the defoliation 
impact, following Figure 3.11, affects a wide impact zone at critical animal densities. 

The balance between defoliation and trampling impact depends on the response of the 

width of the zone of impact and therefore differs between hypotheses. If heather 

defoliation declined exponentially with distance following Hypothesis 0 (causing 

narrow zones of defoliation) and if defoliation was the main cause of damage, one 

would expect heather plants at the edge to die first. The death of one plant would 

increase the defoliation of its neighbours, ultimately leading to their death. As heather 

plants at the edge of the grass die first, the resulting grass-heather boundary would be 

smooth. Because defoliation would always be highest on plants at or near the grass-

heather boundary, isolated heather plants would not be able to survive within a grass 

patch. 
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If defoliation levels are rarely high enough to kill the heather (considering the low 

incidence of heather defoliation > 40% in this study), but cumulative trampling at the 

edge does cause fragmentation, plants would also die near the grass-heather boundary. 

However the death of one plant might now reduce the trampling impact on its 

neighbours as animals can walk through the gap left by the dead plant. Because the 

defoliation at the edge will not reach lethal levels, the plants can survive. This would 

lead to a rough grass-heather boundary with individual heather plants surviving in an 

edge zone of the grass. 
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Figure 3.13. Example map of grass patch in plot 13. 

Grass patches resulting from defoliation impact would therefore have a low 

perimeter : area ratio, while grass patches resulting from cumulative trampling would 

have a high perimeter : area ratio. Grass patches from the study site are characterised by 

rough edges, as shown by an example of a grass patch in plot T3 (Figure 3.13), and high 

perimeter : area ratios, as illustrated by a scatter plot of perimeter versus area for 

individual grass patches in the experimental plots (Figure 3.14). The difference with 

perfect circles is slightly exaggerated, because the grass patches are often formed from 
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several individual grass patches converging through expansion. These observations 

suggest that trampling by sheep is the dominant cause of fragmentation in these 

heather-grass mosaics. A more detailed investigation of the interaction between 

herbivores and the vegetation mosaic is presented in Chapter 4. 
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Figure 3.14. Scatter plot of perimeter versus area for all individual grass patches on the 
experimental site. The solid line indicates the perimeter: area response of perfect circles. 

Implications of an impact zone for carrying capacity 

In order to appreciate the implications of an impact zone on carrying capacity and 

stability, it is necessary to step up from one dimension (the transect) to two dimensions 

(the mosaic). How does the zone of impact as described above translate to grazing 

impact across a mosaic? At low grazing intensity, the impact zone will be narrow, 

leading to only a small proportion of the landscape suffering defoliation. Damage 

resulting from trampling will be limited to the formation of clearly defined paths as a 

result of sheep navigating through the mosaic (Hester & Baillie, 1998). Initial increase 

in grazing intensity will lead to higher edge defoliation, but a constant impact zone 

width. As grazing pressure increases, the impact zone widens, which means that a larger 
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area of the landscape suffers defoliation. But because the increase in heather defoliation 

is buffered by an increase in the area of the mosaic affected, the defoliation impact 

remains low. Due to the width of the impact zone, some fragmentation as a result of 

trampling now occurs at the edge of the heather vegetation. This situation persists over 

a large range of grazing intensity values, as the increased grazing pressure is buffered by 

the increase of the zone of impact. Although the increasing impact zone initially buffers 

the increased grazing intensity, the defoliation in the impact zone eventually increases, 

following Figure 3.11. As grazing intensity is further increased, there will be a point 

when the level of defoliation within the impact zone exceeds the maximum defoliation 

tolerance of the plant. This would also occur in case of Hypothesis 0, but with a crucial 

difference. When, in Hypothesis 2, the heather defoliation in the impact zone exceeds 

the defoliation tolerance limit, suddenly the whole impact zone would be affected and 

thus a large area of the landscape would be damaged by grazing. This could lead to 

sudden and widespread loss of heather and is contrary to the effects of trampling 

damage which are associated with the grass-heather boundary only. 

0000 
0000 
0000 
0000 

a 	 b 

Figure 3.15. Level of mixing of grass within the heather matrix either in many small patches 
(a) or one large patch (b). The total area of grass is the same in (a) and (b). 

The proportion of the area within a heather-grass mosaic that is potentially part of the 

impact zone, will depend directly upon the amount of grass-heather boundaries in the 

mosaic. An intimately mixed mosaic of heather with many small evenly spread grass 

patches will have more edge than a mosaic consisting of one big grass patch surrounded 
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by heather (Figure 3.15). Clarke et al. (1995b) showed that fragmentation of grass into 

progressively smaller patches leads to an increase in the use of heather away from the 

edge, as a result of increased movement between grass patches, while the overall heather 

in the diet is not affected by the amount of fragmentation (Cuartas et al., 2000). Thus an 

increase in fragmentation leads to a larger area of heather being affected by grazing. 

The role of the amount of grass-heather boundary within a mosaic can be illustrated 

effectively using a cusp catastrophe (Lockwood & Lockwood, 1993). Lockwood & 

Lockwood (1993) review the cusp catastrophe and its use as a theoretical framework for 

the study of multiple stable states in grazed ecosystems. The cusp catastrophe has been 

used successfully to describe catastrophic events in grazed ecosystems (Rietkerk et al., 

1996). Central to the cusp catastrophe is a discontinuity of a system due to a positive 

feedback mechanism. In the case of semi-arid grazing systems, a positive feedback exists 

between herbivory and plant density. As herbivores decrease plant density, water 

infiltration decreases, which in turn decreases plant growth. Decreasing plant growth 

will increase grazing intensity on remaining plant density, leading to a catastrophic 

decrease of plant density. Rietkerk et al (1996) suggest that the observed discontinuity 

does not occur when rainfall is plentiful. 

In the system under study, grass and heather are considered the multiple stable states. In 

case of high global grazing intensity, grass is the dominant vegetation type in the system. 

At very low grazing intensity heather is the dominant vegetation type. This can be 

explained with a cusp catastrophe diagram (Figure 3.16). The cusp model predicts a 

catastrophic change from heather to grass when continuously increasing the grazing 

intensity on the mosaic. Due to the uneven spread of the grazing intensity, local grazing 

thresholds are exceeded at relatively low global grazing intensities, leading to a small 

decrease in the proportion of heather in the mosaic. As the grazing intensity increases 

and the proportion of heather decreases, due to the fragmentation process, more 

heather is exposed to grazing by the herbivores. This leads to a positive feedback 

between fragmentation and increased grazing intensity, leading to a catastrophic change 

in the vegetation at the global grazing threshold. One could say that the system is poised 
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across a range of grazing intensities, due to the initial small area of heather which is 

affected by the herbivores. 

Global grazing threshold 

Global grazing pressure 
Figure 3.16. A two dimensional cusp catastrophe diagram illustrating two stable states: I) 
low global grazing intensity and heather dominance, II) high global grazing intensity and 
grass dominance. 

However, results from this study suggest that due to the uneven spread of defoliation 

of heather across grass heather mosaics, highly fragmented mosaics can be more 

sensitive to grazing as a larger proportion of the heather is exposed to the impact of 

herbivory. Thus, in line with the role of rainfall in semi-arid grazing systems, a 

discontinuity might only occur when the initial vegetation is heterogeneous. We thus 

apply a second axis in the cusp diagram based on the homogeneity of the system 

(Figure 3.17). Now the cusp catastrophe is indicated by a three dimensional folded 

surface (Figure 3.16). In this case, the surface is determined by the sheep stocking rate 

(i.e. global grazing pressure), the homogeneity of the vegetation mosaic and the 

proportion of heather in the mosaic. In contrast with the semi-arid application 
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(Rietkerk et al., 1996) in which rainfall is the second and independent explanatory 

variable, here we used a feature of the state variable as the second explanatory variable. 

The system is still considered to have the same two stable states as described before. 

Consider a homogeneous mosaic, location 1 in Figure 3.17, consisting of mostly 

heather with the grass distributed across few patches (as in Figure 3.15 b). If the global 

grazing pressure is increased but homogeneity is maintained, i.e. following the green 

line, the few grass patches will grow as a result of trampling and defoliation, reducing 

the amount of heather in the mosaic. Because the small amount of grass-heather 

boundary in the mosaic limits the potential impact zone area, when the defoliation 

threshold is crossed, the transition from heather to grass goes smoothly. 
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Figure 3.17. Diagram of a cusp fold surface of the state variable proportion of heather as a 
function of global gazing pressure and the homogeneity of the vegetation. Characters are 
explained in the text. 
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However, starting with a highly heterogeneous mosaic, location 3 in Figure 3.17, 

containing a large number of tiny grass patches in a heather matrix (as in Figure 3.15a), 

the mosaic contains a large amount of grass-heather boundary. As a result of the large 

amount of boundary, the increasing grazing pressure is buffered by a slowly increasing 

impact zone area, while trampling only has a small impact as the sheep can reach a large 

part of the heather while standing on the grass. Increasing global grazing pressure leads 

to increasing width of the impact zone and eventually to the crossing of the defoliation 

threshold. When the defoliation threshold is exceeded in this case, a large proportion of 

the heather in the mosaic is part of the impact zone. The defoliation impact thus causes 

a sudden widespread loss of heather, reaching location 4 through the drop illustrated by 

the blue line. 

Through interactions between heterogeneity and global grazing pressure, alternative 

paths are possible. For example, starting at Location 1, but now increasing the number 

of grass patches (decreasing homogeneity) and at the same time slightly increasing the 

global grazing pressure, the vegetation smoothly transforms from a heather to a grass 

dominated mosaic (B in Figure 3.17). The slight increase in global grazing pressure is 

enough to fragment the heather before the amount of edge increased the impact zone 

area. In contrast, when increasing the heterogeneity faster than the global grazing 

pressure, the grazing pressure is buffered by the impact zone area (A in Figure 3.17). 

Thus the grass patches barely grow and the heather remains the dominant vegetation 

type. 

Not only does the cusp catastrophe diagram using the second explanatory variable 

illustrate the discontinuity, it also illustrates that the heterogeneity of the initial 

vegetation mosaic could determine the timing of the catastrophe, i.e. the global grazing 

threshold. In highly heterogeneous vegetation, a large area of heather is exposed to the 

impact of herbivores. As the defoliation is spread thinly, it takes a very high global 

grazing pressure (at the scale of the whole mosaic) to cause the local grazing pressure (at 

the scale of a grass patch) to exceed the grazing threshold and subsequently for the 

system to collapse. When the vegetation is more homogeneous, i.e. the heather 

defoliation is more concentrated, the local grazing pressure could be exceeded at lower 
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global grazing pressure. When the vegetation is highly homogeneous, heather 

defoliation is so concentrated that the local and global grazing pressure are 

synchronised. A catastrophe could therefore be avoided because fragmentation starts 

even at low grazing pressure. When starting from the grass dominated state, recovery of 

the heather follows a similar process. At high homogeneity, heather recovers 

continuously with decreasing global grazing pressure. At low homogeneity, the recovery 

of heather could be delayed as a result of the large area of heather affected by herbivory. 

Once the global grazing pressure threshold is passed, recovery could occur rapidly. This 

complex of behaviours can only be illustrated by explicitly including heterogeneity in the 

cusp diagram. 

3.5 Conclusions 

The aim of this experiment was to increase our insight into the spatial aspects of plant-

herbivore interactions in grass-heather mosaics grazed by sheep which determine the 

distribution of heather defoliation within the heather-grass mosaic. Previous 

experiments showed that heather defoliation is strongly correlated with the proximity 

of grass. Thus, this study focussed on the distribution of heather defoliation away from 

the grass-heather boundary. Because the sampling scheme of this experiment was not 

based on pre-defined classes of factors, such as grass patch size, but instead used a 

random spatial grid of observations, the data provided an opportunity to consider 

factors as continuous variables. This resulted in new insights presented here and in 

Chapter 2. 

The results of the spatial interaction model (Chapter 2) showed that, in an area of fixed 

stocking rate, heather defoliation (expressed as the mean defoliation across a 0.5 m wide 

zone away from the grass-heather boundary) at a given location at a grass-heather 

boundary is correlated with the local abundance of grass and the distance between the 

grass and the boundary location. The current experiment then allowed an investigation 

of the distribution of heather defoliation away from the grass-heather boundary. 
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The results (Figure 3.8) showed that the distribution of heather defoliation away from 

the grass-heather boundary was strongly influenced by the grazing pressure on the 

grass-heather boundary zone (here expressed as the mean defoliation across the 

observed zone). Interactions occurred with the type of grass-heather boundary (path or 

patch), the direction relative to the slope (uphill and downhill), the sheep density (2, 3, 

and 4 sheep had) and season (summer and whole year). Surprisingly, despite high sheep 

densities, only a small proportion, less than 10% in case of 4 sheep ha 1 , of the 

observations of heather defoliation was ~! 40%. Results showed that increased grazing 

pressure on the grass-heather boundary more often led to an increase in the width of 

the zone of impact than an increase in the level of defoliation. This could explain the 

small proportion of observations of high levels of heather defoliation. The results 

suggest that the role of defoliation in the fragmentation of heather might be smaller 

than previously assumed. Through a logical argument, trampling of heather by sheep is 

brought forward as a potentially important factor in the fragmentation of heather. This 

is in addition to the importance of trampling in relation to slope (Hester & Baillie, 

1998). Whether trampling could be more important than defoliation in causing loss of 

heather, needs to be tested through field trials. 

Questioning the relative role of defoliation versus trampling and the role of vegetation 

heterogeneity in the fragmentation of heather, has strong implications for agri-

environmental policies, scientific experimentation, or monitoring programs. 

Environmental schemes aiming to reduce impact of agricultural practises on semi-

natural habitats, such as the Rural Stewardship Scheme (Scottish Executive Rural 

Affairs Department, 2000), often use recommended area based stocking rates. To ensure 

the effectiveness of these schemes, the recommended stocking rate should take into 

account the heterogeneity of the vegetation, as this study suggests that impact of a fixed 

area based stocking rate can vary strongly with the heterogeneity of the vegetation 

mosaic (Henderson et al., 1995). Monitoring methods should include a measure of both 

defoliation and trampling, such as the impact assessment method developed by 

MacDonald et al. (1998a; 1998b), while in scientific experiments defoliation can not be 

considered equivalent to total grazing impact. 
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Combining the results from the spatial interaction model (sIM) (Chapter 2) and the 

distribution of heather away from the grass-heather boundary (this chapter) provided 

strong evidence for the existence of a three-dimensional defoliation surface across a 

vegetation mosaic. This surface can be seen as an emergent property resulting from the 

interaction between sheep and the grass-heather mosaic. The surface can be 

characterised by peaks at locations of high grass abundance and depths in areas of high 

heather abundance. Global patterns of decline of defoliation from peaks to depths along 

the grass-heather boundary were predicted by the SIM, while results presented here 

predicted local patterns of decline of heather away from the grass-heather boundary as 

a function of transect defoliation and trampling. Results presented in Chapter 6 show 

that vegetation change was correlated with defoliation impact, such that low levels of 

impact were associated with expansion of heather while high levels of impact were 

associated with grass expansion. 

Several factors were not considered in this experiment which could also affect the 

distribution of heather defoliation directly or interact with the factors observed in this 

experiment. Firstly, there might be an interaction between defoliation and plant 

production. Moderate levels of defoliation can lead to increased shoot productivity, 

while high levels of defoliation can lead to decreased productivity (Grant et al., 1978). 

Grant et al. (1978) showed that although grazing decreased standing crop, the 

proportion of standing crop accounted for by current year's shoots increased. However 

when increased shoot productivity coincides with increased shoot density but 

decreased mean shoot length, the availability to the herbivore might remain constant or 

go down depending on the effect of sward structure on intake rate (Spalinger & Hobbs, 

1992). 

Secondly, there might be an interaction between herbivore impact, plant morphology 

and age. Moderate levels of grazing (60%) of heather lead to increased compactness of 

structure and decreased height (Grant & Hunter, 1966). However both height and 

compactness of growth are likely to be negatively correlated with physical resistance of 

heather to penetration by sheep. Furthermore, herbivore impact on heather depends on 
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the age, or phase (Watt, 1947), of the heather, as older heather is more sensitive to 

herbivore impact compared to younger heather (Grant et al., 1981). 

Thirdly, there might be an interaction between defoliation and concentration of 

secondary compounds in heather shoots. Concentration of secondary compounds is 

known to affect foraging decisions (Launchbaugh et al., 2001), but no references have 

been found on the concentration of secondary compounds in heather and the 

relationship with grazing impact. 

Lastly, there are many interactions between plants, herbivores and soils which could 

have important implications for the plant-herbivore interactions. Gradients of 

defoliation can affect vegetation dynamics through direct impacts on plant structure or 

indirectly through the creation of nutrient gradients, while vegetation dynamics can 

affect soil properties and vice versa, resulting in feed-back mechanisms affecting the 

distribution of defoliation (Pastor & Cohen, 1997; Pastor et al., 1997). Further 

investigation into these factors, across gradients of defoliation, vegetation and soil 

properties, is required to understand their role in plant-herbivore interactions with 

heather-grass mosaics in particular and with grass-shrub mosaics in general. 

Further investigation of plant-herbivore interactions on grass-heather mosaics should 

be considered both through field and virtual experiments (i.e. modelling). Results from 

this experiment can help to design future experiments. Important processes for 

investigation, considered in a spatially explicit context, would be the response of the 

vegetation to impact by herbivores (both trampling and defoliation) and the resulting 

effect of plant abundance and quality on herbivore foraging. The existence of a 

defoliation surface as an emerging property of plant-herbivore interactions provides a 

challenge for virtual experiments. Both individual-based models (e.g. Beecham et al., 

2002) and reaction-diffusion models (Farnsworth & Anderson, 2001; Okubo, 1980) 

should be applied to develop the criteria for the existence of defoliation surface and 

investigate their characteristics. A synthesis of spatial ecological processes and 

mathematical theory would be a major advance in the investigation of plant-herbivore 

interactions. 
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Results and hypotheses presented in this chapter have implications for the spatial 

heterogeneity of grass-heather mosaics. The importance of heterogeneity in vegetation 

pattern in the context of ecosystem functioning was argued by Watt (1947) and was 

recently reviewed by Adler et al. (2001). The findings presented here suggest that 

selective grazing of sheep on grass and associated heather will eventually lead to an 

increase in spatial heterogeneity as predicted by Adler et al. (2001) as selective grazing 

by sheep on the preferred vegetation type increases the contrast between grass and 

heather. However, the existence of rough edges around expanding grass patches 

indicates that the contrast at this scale is actually decreased during the fragmentation 

process at grass-heather boundary. Thus, short-term and small-scale herbivore impact 

might differ from long-term and large-scale impact. This suggests that temporal and 

scale aspects of herbivore impact could be important in the management of grazed 

ecosystems. Based on increased understanding, the need for grazing control (Grant & 

Hunter, 1968) can thus be specified as variation in the temporal and spatial impact of 

herbivores. 

In conclusion, two different processes seem to determine the impact of herbivores on 

the boundary between grass and heather. Trampling impact on vegetation can occur 

across a wide range of stocking rates, but impact, at least for sheep, is possibly limited 

to a small area near the boundary. Considerable defoliation damage, on the other hand, 

is likely to occur only at higher stocking rates, but could potentially affect larger areas. 

The type, probability and extent of the impact has implications for monitoring and 

managing heather-grass mosaics and grass-shrub mosaics in general. Maintaining a 

system at carrying capacity by adjusting stocking rates to achieve maximum population 

density consistent with sustaining vegetation resources, may therefore be a risky 

business. In a system close to carrying capacity, a slight increases in herbivore impact, 

for instance in a year of low plant production, could lead to fragmentation of the shrub 

vegetation across a large area. This could suggest that the system has multiple stable 

states, depending on the spatial plant-herbivore interactions. An effective management 

strategy aimed at sustainable management of grass-shrub mosaics (Archer, 1996) should 

therefore consider the spatial aspects of the interface between plants and herbivores. 

77 



Chapter 3 

3.6 References 

Adler, P.B., Raff, D.A. & Lauenroth, W.K. (2001). The effect of grazing on the spatial 
heterogeneity of vegetation. Oecologia 128 (4): 465-479. 

Archer, S. (1996). Assessing and interpreting grass-woody plant dynamics. In: The ecology 
and management of grazing systems. Hodgson, J. & Illius, A.W. (eds.). CAB 
International, Wallingford, Oxon, pp  101-134. 

Armstrong, H.M., Gordon, I.J., Hutchings, N.J., Illius, A.W., Milne, J.A. & Sibbald, A.R. 
(1997). A model of the grazing of hill vegetation by sheep in the UK. II. The 
prediction of offtake by sheep. Journal of Applied Ecology 34: 186-207. 

Bailey, D.W., Gross, J.E., Laca, E.A., Rittenhouse, L.R., Coughenour, M.B., Swift, D.M. & 
Sims, P.L. (1996). Mechanisms that result in large herbivore grazing distribution 
patterns. Journal of Range Management 49 (5): 386-400. 

Bayfield, N. (1979). Recovery of four montane heath communities on Cairngorm, Scotland, 
from disturbance by trampling. Biological Conservation 15: 165-179. 

Beecham, J.A., Oom, S.P. & Birch, C.P.D. (2002). HOOFS: a multi-scale, agent-based 
simulation framework for studying the impact of grazing animals on the environment. 
In: iEMSs 2002: integrated assessment and decision support, Lugano, Switzerland. 
International Environmental Modelling and Software Society. 

Behnke, R.H. & Scoones, I. (1993). Rethinking range ecology: implications for rangeland 
management in Africa. In: Range ecology at disequilibrium: new models of natural 
variability and pastoral adaptation in african savannas. Behnke, R. H., Scoones, I. & 
Kerven, C. (eds.). Overseas Development Institute, London, pp  1-30. 

Clarke, J.L., Welch, D. & Gordon, I.J. (1995a). The influence of vegetation pattern on the 
grazing of heather moorland by red deer and sheep. II. The impact on the heather. 
Journal of Applied Ecology 32 (1): 177-186. 

Clarke, J.L., Welch, D. & Gordon, I.J. (1995b). The influence of vegetation pattern on the 
grazing of heather moorland by red deer and sheep. I. The location of animals on 
grass/heather mosaics. Journal of Applied Ecology 32 (1): 166-176. 

Clements, F. E. (1916). Plant succession: an analysis of the development of vegetation. 
Carnegie institution of Washington, Washington, DC. 

Cuartas, P., Gordon, l.J., Hester, A.J., Pérez-BarberIa, F.J. & Hulbert, I.A.R. (2000). The 
effect of heather fragmentation and mixed grazing on the diet of sheep \textit{Ovis 
aries} and red deer \textit(Cervus elaphus}. Acta Theriologica 45 (3): 309-320. 

Farnsworth, K.D. & Anderson, A.R.A. (2001). How simple grazing rules can lead to 
persistent boundaries in vegetation communities. Oikos 95 (1): 15-24. 

Gimingham, C.H. (1949). The effects of grazing on the balance between Erica cinerea L. and 
Calluna vulgaris (L.) Hull. in upland heath, and their morphological responses. 
Journal of Ecology 37(1): 100-119. 

Gimingham, C.H. (1972). Ecology of heathlands. Chapman and Hall, Oxford. 
Grant, S.A. & Hunter, R.F. (1966). The effects of frequency and season of clipping on the 

morphology productivity and chemical composition of Calluna vulgaris (L.) Hull. New 
Phytologist 65: 125-133. 

Grant, S.A. & Hunter, R.F. (1968). Interactions of grazing and burning on heather moors and 
their implications in heather management. Journal of the British Grassland Society 
23: 285-293. 

Grant, S.A., Barthram, G.T., Lamb, W.I.C. & Milne, J.A. (1978). Effects of season and level 
of grazing on the utilization of heather by sheep. 1. Responses of the sward. Journal 
of the British Grassland Society 33: 289-300. 

Grant, S.A., Hamilton, W.J. & Souton, C. (1981). The responses of heather dominated 
vegetation in north-east Scotland to grazing by red deer. Journal of Ecology 69: 189-
204. 

Grant, S.A., Milne, J.A., Barthram, G.T. & Souter, W.G. (1982). Effects of season and level 
of grazing on the utilization of heather by sheep. 3. Longer-term responses and 
sward recovery. Gras and Forage Science 37: 311-320. 

78 



Defoliation across grass-heather boundaries 

Grant, S.A., Milne, J.A. & Sibbald, A.R. (1988). Heather moor/and: a guide to grazing 
management. Scottish Agricultural Colleges, Perth. Report number T120. 

Harrison, C. (1981). Recovery of lowland grassland and heathland in southern England from 
disturbance by seasonal trampling. Biological Conservation 19 (2): 119-130. 

Henderson, D.J., Lilly, A., Madden, S. & Still, M.J. (1995). Heather moorland monitoring in 
the Loch Lomond Environmetally Sensitive Area, Scotland. In: Heaths and 
moor/and: cultural landscapes. Thompson, D.B.A., Hester, A.J. & Usher, M.B. (eds.). 
HMSO, London, pp  334-339. 

Hester, A.J., Mitchell, F.J.G., Gordon, I.J. & Baillie, G.J. (1996). Activity patters and resource 
use by sheep and red deer grazing across a grass/heather boundary. Journal of 
Zoology 240 (Pt4): 609-620. 

Hester, A.J. & Baillie, G.J. (1998). Spatial and temporal patterns of heather use by sheep 
and red deer within natural heather/grass mosaics. Journal of Applied Ecology 35 
(5): 772-784. 

Hester, A.J., Gordon, l.J., Baillie, G.J. & Tappin, E. (1999). Foraging behaviour of sheep and 
red deer within natural heather/grass mosaics. Journal of Applied Ecology 36 (1): 
133-146. 

Holling, C.S. (1973). Resilience and stability of ecological systems. Annual Review of 
Ecology and Systematics 415: 1-23. 

Laca, E.A., Shipley, L.A. & Reid, E.D. (2001). Structural anti-quality characteristics of range 
and pasture plants. Journal of Range Management 54 (4): 413-419. 

Launchbaugh, K.L., Provenza, F.D. & Pfister, J.A. (2001). Herbivore response to anti-quality 
factors in forages. Journal of Range Management 54 (4): 431-440. 

Laycock, W.A. (1991). Stable states and thresholds of range condition on north-american 
rangelands: a viewpoint. Journal of Range Management 44 (5): 427-433. 

Lockwood, J.A. & Lockwood, D.R. (1993). Catastrophe theory: a unified paradigm for 
rangeland ecosystem dynamics. Journal of Range Management 46 (4): 282-288. 

MacDonald, A., Stevens, P., Armstrong, H., lmmirzi, P. & Reynolds, P. (1998a). Background 
information and guidance for surveyors. A guide to upland habitats: surveying land 
management impacts. Volume 1. Scottish Natural Heritage, Battleby, Perth. 

MacDonald, A., Stevens, P., Armstrong, H., lmmirzi, P. & Reynolds, P. (1998b). The field 
guide. A guide to upland habitats: surveying land management impacts. Volume 2. 
Scottish Natural Heritage, Battleby, Perth. 

McNaughton, S.J. (1984). Grazing lawns: animals in herds, plant form, and coevolution. 
American Naturalist 124 (6): 863-886. 

Milne, B.T., Turner, M.G., Wiens, J.A. & Johnson, A.R. (1992). Interactions between the 
fractal geometry of landscapes and allometric herbivory. Theoretical Population 
Biology 41(3): 337-353. 

Milne, J.A., Bagley, L. & Grant, S.A. (1979). Effects of season and level of grazing on the 
utilization of heather by sheep. 2. Diet selection and intake. Gras and Forage 
Science 34: 45-53. 

Mohamed, B.F. & Gimingham, C.H. (1970). The morphology of vegetative regeneration in 
Calluna vulgaris. New Phytologist 69 (3): 743-750. 

Nicholson, I.A. & Robertson, R.A. (1958). Some observations on the ecology of an upland 
grazing in north-east Scotland with special reference to Callunetum. Journal of 
Ecology 46 (2): 239-270. 

Okubo, A. (1980). Diffusion and ecological problems: mathematical models. Biomathematics 
Volume 10. Springer Verlag, Berlin. 

Oom, S.P. & Hester, A.J. (1999). Heather utilization along paths by red deer and sheep in a 
natural heather/grass mosaic. Botanical Journal of Scotland 51(1): 23-38. 

Oom, S.P., Hester, A.J., Elston, D.A. & Legg, C.J. (2002). Spatial interaction models: from 
human geography to plant-herbivore interactions. Oikos 98: 65-74. 

Pastor, J. & Cohen, Y. (1997). Herbivores, the functional diversity of plants species, and the 
cycling of nutrients in ecosystems. Theoretical Population Biology 51(3): 165-179. 

79 



Chapter 3 

Pastor, J., Moen, R. & Cohen, Y. (1997). Spatial heterogeneities, carrying capacity, and 
feedbacks in animal- landscape interactions. Journal of Mammalogy 78 (4): 1040-
1052. 

Penning, P.D., Parsons, A.J., Newman, J.A., Orr, R.J. & Harvey, A. (1993). The effects of 
group-size on grazing time in sheep. Applied Animal Behaviour Science 37 (2): 101-
109. 

Rietkerk, M., Ketner, P., Stroosnijder, L. & Prins, H.H.T. (1996). Sahelian rangeland 
development; a catastrophe? Journal of Range Management 49 (6): 512-519. 

Rodwell, J.S., ed. (1991). Mires and heaths. British Plant Communities. Volume 2. 1st 
edition. Cambridge University Press, Cambridge. 

Rodwell, J.5., ed. (1992). Grasslands and montane communities. British Plant Communities. 
Volume 3. 1st edition. Cambridge University Press, Cambridge. 

Roe, E.M. (1997). Viewpoint: on rangeland carrying capacity. Journal of Range Management 
50 (5): 467-472. 

Rosenthal, J.P. & Kotanen, P.M. (1994). Terrestrial plant tolerance to herbivory. Trends in 
Ecology and Evolution 9 (4): 145-148. 

Scottish Executive Rural Affairs Department (2000). The rural stewardship scheme. Scottish 
Executive, Rural Affairs Department. 

Sibbald, A.R., Grant, S.A., Milne, J.A. & Maxwell, T.J. (1987). Heather moorland 
management: a model. In: Agriculture and conservation in the hills and uplands, ITE, 
Merle wood Research Station. Bell, M. & Bunce, R.G.H. (eds.). ITE, Merlewood 
Research Station, pp  107-108. 

Solomon, M.E. (1949). The natural control of vertebrate populations. Journal of Animal 
Ecology 18 (1): 1-35. 

Spalinger, D.E. & Hobbs, N.T. (1992). Mechanisms of foraging in mammalian herbivores: 
new models of functional-response. American Naturalist 140 (2): 325-348. 

Tainton, N.M., Morris, C.D. & Hardy, M.B. (1996). Complexity and stability in grazing 
systems. In: The ecology and management of grazing systems. Hodgson, J. & Illius, 
A.W. (eds.). CAB International, Wallingford, Oxon, pp  275-299. 

Thompson, D.B.A., Macdonald, A.J., Marsden, J.H. & Galbraith, C.A. (1995). Upland heather 
moorland in Great Britain: a review of international importance, vegetation change 
and some objectives for nature conservation. Biological Conservation 71 (2): 163-
178. 

Watson, A., Miller, G.R. & Green, F.H.W. (1966). Winter browning of heather (Calluna 
vulgaris) and other moorland plants. Transactions and Proceedings of the Botanical 
Society of Edinburgh 40 (2): 195-203. 

Watt, S.A. (1947). Pattern and process in the plant community. Journal of Ecology 35: 1-22. 
Welch, D. (1984). Studies in the grazing of heather moorland in northeast Scotland. 2. 

Response of heather. Journal of Applied Ecology 21(1): 197-207. 
Westoby, M., Walker, B. & Noymeir, I. (1989). Opportunistic management for rangelands not 

at equilibrium. Journal of Range Management 42 (4): 266-274. 



Chapter 

Remote sensing of plant-herbivore 

interactions at the patch scale: impact 

of sheep on heather-grass mosaics 

[Heathland]... a type of vegetation which has provided 
fascinating insights into the repercussions of man's 

impact upon natural systems. 

C.H. Gimingham (1972) 



Remote sensing of plant-herbivore interactions 

4 Remote sensing of plant-herbivore interactions at the 

patch scale: impact of sheep on heather-grass mosaics 

4.1 Introduction 

It is more than half a century since Watt (1947) successfully argued that vegetation 

mosaics should not be considered static; they are the result of dynamic processes that 

shape the current pattern of vegetation and in return the vegetation mosaics influence 

other processes. Processes that lead to spatial heterogeneity in vegetation mosaics are 

vegetation interactions with: climate, soil, vegetation dynamics, and herbivores (see 

review by Archer & Smeins, 1991). In this chapter attention is focussed on the 

interaction between vegetation and large mammalian herbivores. 

An early description of a spatial plant-herbivore interaction was by Bell (1970), but 

quantification of links between pattern and process in plant-herbivore interactions 

started to emerge in the literature only recently (Adler et al., 2001; Milchunas & 

Lauenroth, 1993; Pastor et al., 1999). Initially, the emphasis was put on the herbivore 

response to heterogeneity in the vegetation (see for review: Bailey et al., 1996; Pastor et 

al., 1999; Senft et al., 1987). When considering the impact of the animal distribution on 

the vegetation, conflicting results were reported (Adler et al., 2001). Adler et al. (2001) 

therefore proposed a framework to classify the impact of grazing on spatial 

heterogeneity in vegetation mosaics. 

The framework predicts whether heterogeneity in the vegetation will increase or 

decrease with herbivory from: the effect of the vegetation pattern on herbivore 

distribution; any pattern of herbivory independent of the vegetation pattern; and the 

effect of herbivory on the contrast between vegetation types. Spatial heterogeneity, as 

defined by Adler et al. (2001), is associated with high spatial dependence, non-

randomness, and high contrast. Adler et al. (2001) include non-randomness, because 

their definition describes spatial pattern across two scales. The spatial heterogeneity 

applies to a mosaic consisting of several homogeneous (i.e. non-random) patches, with 

high contrast between the patches. The term patchiness or aggregation would have been 
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more appropriate, but the suggested terminology is used here to avoid confusion. 

Spatial heterogeneity decreases either when the pattern of herbivory is independent of 

the pattern of vegetation but not strong enough to affect the pattern, or when the 

pattern of herbivory is dependent on the pattern of vegetation but the impact leads to a 

decrease in contrast between vegetation types. Spatial heterogeneity increases when the 

pattern of herbivory is independent of the pattern of vegetation and the pattern of 

herbivory is stronger than the pattern of vegetation, or when the pattern of herbivory is 

dependent on the pattern of vegetation and the impact leads to an increase in contrast 

between vegetation types. 

In order to create a simple framework to predict the effect of herbivores on vegetation 

pattern, Adler et al. (2001) used the term grazing to indicate all forms of herbivore 

impact. Despite the existence of a strict definition, the partial removal of herbage by a 

herbivore (Spedding, 1971), the term grazing is generally used to describe the complex 

of processes associated with herbivory (Heady & Child, 1994), such as defoliation, 

trampling, and nutrient and seed redistribution. Moreover, herbivore impact on 

vegetation is considered synonymous with grazing, thus assuming a linear spatial 

correlation between individual processes (i.e. trampling is linearly correlated with 

defoliation and showing the same spatial pattern). In agricultural grazing systems, in 

which the vegetation consists of plant species highly tolerant of grazing (such as most 

grasses) and spatial heterogeneity is actively reduced (Heady & Child, 1994), impact 

resulting from both defoliation and other processes could be strongly spatially 

correlated. However in natural vegetation mosaics, spatial heterogeneity is high and 

grazing tolerant species are intermixed with grazing intolerant species (consider grass-

shrub mosaics). In these systems, processes other than defoliation become increasingly 

important and their spatial interactions increasingly complex. Considering these 

individual processes as one single process, as Adler et al. (2001) did, hinders the 

progress of understanding plant-herbivore interactions in grazing systems. 

Therefore, strict definitions are applied for each of these terms based on the 

physiological and behavioural needs of large mammalian herbivores (Stafford Smith, 

1988): thirst, temperature, nutrition, night time location (orientation and predator 
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avoidance) and rest (rumination, sleep, energy conservation). Grazing (or browsing) is 

the activity, motivated by hunger, leading to food intake (Briske & Heitschmidt, 1991). 

Side effects of grazing are trampling, and nutrient redistribution. Foraging behaviour is 

more loosely defined as the combination of all behaviours leading to, and including, 

grazing. Thus foraging includes any trampling associated with searching behaviour. 

Defoliation is the removal of physiologically active material through eating (Heady & 

Child, 1994). Aspects of defoliation are: intensity, frequency, seasonality and selectivity 

(Heady & Child, 1994). Trampling can effect vegetation directly and also indirectly 

through effects on soil and micro climate conditions (Archer & Smeins, 1991). 

Trampling of vegetation, as defined here, includes any physical damage to plants, 

including defoliation resulting from treading as opposed to eating. 

While the pattern of defoliation is driven by the spatial pattern of food items, the search 

for water (thirst) and shelter (temperature, night-time, rest) are driven by other, non-

food related, features in the landscape. Because herbivores generally forage on a low 

quality highly dispersed food resource, the pattern of use of non-food resources will 

influence the pattern of use of the food resource. For example, in semi-arid grazing 

systems, the distribution of defoliation will be influenced by the distribution of 

watering points (e.g. Weber et al., 1998). Similarly, many herbivores can be considered 

central place foragers (Bell, 1991), as they return to the same resting place between 

foraging bouts, subsequently affecting the pattern of defoliation. Thus, it is unlikely 

that the impacts of different processes will show the same pattern. 

Considering this, it seems more appropriate to speak of the pattern of utilization, 

instead of grazing, when indicating the pattern resulting from the combination of 

several processes. Thus utilization of a vegetation mosaic is used here to describe the 

combination of behaviour resulting from the motivation to satisfy the different physical 

needs. In order to understand and correctly predict the impact of the pattern of 

utilization on the vegetation mosaic, analysis should be focussed on individual 

processes and the interactions between these processes. 
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Another complication overlooked by Adler et al. (2001) is the importance of temporal 

aspects of plant-herbivore interactions, such as plant life history traits and grazing 

history. Herbivore impact on plants strongly depends on the age and characteristics of 

the plants and whether the plant has been grazed before and to what extent. In the 

context of heather-grass mosaics, the growth phase of heather determines the impact of 

herbivory. Impact of herbivory on heather plants is strongly determined by the life 

history and the state of the vegetation (Grant et al., 1981; Welch, 1984), as old heather 

can withstand grazing less well than younger heather (Grant et al., 1981). 

Three main processes emerge from the literature when considering sheep foraging 

behaviour: defoliation, trampling and resting behaviour. The pattern of defoliation by 

sheep grazing heather-grass mosaics has been intensively studied (Clarke et al., 1995; 

Grant et al., 1978; Hester & Baillie, 1998). Although trampling is often mentioned in 

these studies, quantification of the impact of trampling on heather-grass mosaics has 

primarily been done in the context of human impact (Bayfield, 1979; Gallet & Roze, 

2001). It is well known that sheep have a voluntary limited home range (Hunter, 1962) 

and that they establish night-time resting areas in part of the home range (Hunter, 

1962). As animals spend a large amount of time in a small area, this can lead to 

concentrated trampling, soil compaction and defecation (Hunter, 1962). 

This study investigates the spatial pattern of impact of sheep on heather-grass mosaics. 

Through remote sensing the changes in vegetation during a three-year grazing 

experiment are quantified. A detailed description of the experiment is given in 

Chapter 3. The observed patterns of heather defoliation by sheep are described in 

Chapters 2 and 3. For this chapter, additional animal observations and the heather 

defoliation observations have been used to quantify herbivore impact by linking 

herbivore behaviour to vegetation change. These data sets enabled the investigation of 

the impact of ruminating behaviour as well as heather defoliation. Several other 

processes of plant-herbivore interactions have been investigated through qualitative 

examples. Maps of the vegetation have been used to explore the possible role of each 

process in the vegetation change. 
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4.2 Methods 

4.2.1 Aerial Photography 

In order to detect vegetation change over the course of the three-year grazing 

experiment, the vegetation mosaic was recorded by aerial photography at the start and 

end of the experiment. To minimise differences in vegetation caused by season and light 

conditions, a set of anniversary dates was chosen and images were recorded at the same 

time of day. Because the anticipated vegetation change over the three-year experiment 

was limited in extent and frequency, a high spatial resolution was considered crucial. 

Therefore the aerial photography was commissioned especially for this experiment. 

The photography dates were 20t h  October 1998 and 28th  October 2001. The aerial 

photographs were taken by W.H. Ekin (Engineering) Co. Ltd. Photographs were taken 

on Kodak Portra 400 Vivid Color using a Rolleimetric 6006 (medium format) with a 

Planar 2.8/80 mm lens. The target resolution was specified as 1:1.000 scale on 

16" prints. This gave a flying height of approximately 500 m above ground level 

(AGL). As the elevation at the holding area in the middle of the study site on 

Strathfinella Hill is approximately 250 m above sea level, this meant a flying height of 

750 m above sea level. Due to the scale of the photography it was difficult to accurately 

align the photography with the experimental site. As it was considered too dangerous 

to repeat the flying height used in 1998, the 2001 photography was done at 

approximately 1000 m above sea level. However, in order to compensate for this, the 

negatives were digitally scanned at a higher resolution than originally planned, thus 

maintaining the target resolution for the 2001 photography. 

Weather conditions have a strong influence on the ability to classify aerial photographs 

successfully. Images should have a high level of brightness, but no strong shadows 

resulting from direct sunshine. Flying dates were thus selected for the presence of high 

altitude cloud cover (Figure 4.1). 

The aerial photographs were digitally scanned from the original negatives by Peak 

Imaging Ltd. using a Flextight Precision II Scanner. The negatives were scanned for 
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three bands (1 =Red, 2=Green, 3=Blue) at a resolution of 3600 dpi (dots per inch). This 

scanning resolution is the maximum advised resolution for the type of film used 

(Kodak, pers. comm.). With a film size of 2 1/4 x 2 14 inch at 3600 dpi, the digital image 

size was approximately 7300 x 7300 pixels. Although the resulting maximum ground 

resolution was 0.0210 in and 0.0325 m for 1998 and 2001 respectively, the pixel size was 

set to 0.05 x 0.05 m. for all analyses. 

A 	 B 
Figure 4.1. Weather satellite images (AVHRR) for photography dates on 20/10/1998 (A) and 
28/10/2001 (B). Courtesy of Dundee Satellite Receiving Station, Dundee University, UK. 

Due to the difference in flying height and altitude and because of the slope of the hill 

side (roughly 17), to enable a comparison of the spatial pattern of the vegetation, the 

aerial photographs had to be ortho-rectified. Two air photos from the 1998 runs and 

four air photos from the 2001 runs were needed to enable this process. In order to 

rectify the aerial photographs to a common co-ordinate system, a set of ground control 

points was surveyed at the study site. Using a Wild T2a theodolite and D14 Distomat, 

two orientation points and all corner fence posts were surveyed. For the purpose of this 
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study, a local co-ordinate system was used based on the two orientation points, but 

using the projection of the Ordnance Survey National Grid. Using OrthoMAX (Vision 

International, USA; Version 8.3), a module available in Erdas Imagine (ERDAS Inc., 

USA; Version 8.3), these ground control points provided the reference data for the 

ortho-rectification of the aerial photographs. Table 4.1 shows the properties of the 

aerial photography resulting from the triangulation. The x, y, and z co-ordinates 

indicate the position of the camera relative to the co-ordinate system defined. The 

Omega-Phi-Kappa values indicate the roll, pitch and yaw of the camera in degrees. 

Comparison of these values for the two dates indicates that both the flight altitude and 

the yaw differ considerably. Table 4.2 shows the accuracy of the triangulation based on 

the ground control points for each axis both in metres and as the root mean square 

(RMS). 

Table 4.1. Orientation of the aerial photographs relative to the co-ordinate system used 
(resulting from the triangulation of the ground control points). The x, y, and z co-ordinates 
indicate the position of the camera relative to the co-ordinate system defined. The Omega, 
Phi and Kappa values indicate, in degrees, the roll, pitch and yaw respectively. 

Year 	Photo 	X 	Y 	Z 	Omega 	Phi 	Kappa 

1998 1 988.47 1024.78 516.74 -0.49 0.01 5.40 
1998 2 994.54 1174.68 511.72 -0.90 -0.99 7.27 
2001 1 953.99 759.27 735.19 -0.48 -2.38 -25.09 
2001 2 975.20 907.46 741.23 -1.48 -2.74 -22.54 
2001 3 997.06 1073.75 748.85 -0.72 -1.52 -18.93 
2001 4 1000.88 1215.08 752.39 -0.77 0.08 -15.09 

Table 4.2. Triangulation results for the ground 
control points. Average point residuals in 
metres and as the root mean square (RMS). 

Axis 	 X 	Y 	Z 

Average (m) 	0.177 	0.192 	0.290 
RMS 	 0.209 	0.235 0.349 

To facilitate the ortho-rectification process, a Digital Elevation Model (DEM) was 

created. The 2001 photography covered a larger ground area (i.e. each individual 

photograph covered a larger area), thus the DEM of the site was created using this set of 
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imagery. Four air photos, i.e. three stereo pairs, provided the necessary stereo cover 

required for DEM collection. The DEM collection was done using OrthoMAX (see for 

detailed description Gooch et al., 1999; Gooch & Chandler, 2001). The DEM can be 

collected from any of the three colour bands (red, green, or blue). The aim of the DEM 

collection was to achieve the best possible match between years, through minimising 

the horizontal error in the ortho-photos. The DEM based on the green band showed the 

lowest variation in surface height, thus ensuring the minimum amount of horizontal 

error when ortho-rectifying the aerial photographs. 

Although OrthoMAX provides several collection parameters, it is neither practical nor 

necessarily beneficial to vary all parameters (Gooch & Chandler, 2001). In order to 

improve DEM results, a conservative approach to the selection of parameter values was 

adopted, only varying the maximum parallax and the minimum and maximum template 

(Gooch et al., 1999). The resulting DEMs were then mosaiced together to form one DEM 

('2001 DEM') covering the whole study site. The spatial resolution of the DEMs was one 

metre. A higher resolution would have been possible, but was not required for the 

purpose of ortho- rectifying the air photos. 

The air photos of both years were ortho-rectified using the 2001 DEM, using the 

composite colour images of all three bands (red, green and blue). The ortho-

photographs showed both systematic and variable misalignment. Because only the 

fence posts were suitable as control points, only the systematic misalignment was 

corrected. Thus, the 1998 ortho-photograph was geometrically corrected to correspond 

with the 2001 ortho-photograph. A first order polynomial transformation was applied 

using a set of control points based on the fence posts. With a minimum of three control 

points, a polynomial transformation produces a linear translation, scale change, and 

rotation for x and y co-ordinates. As a higher-order polynomial correction might 

overcorrect for areas away from the control points and because the variation was 

limited (based upon a visual evaluation), a first order polynomial correction was 

considered most appropriate. In addition, a two-metre wide band was clipped from the 

edge of each plot before further analysis to mask out the fences. 
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4.2.2 Classification 

The aim of the classification was to derive a vegetation map of the heather-grass mosaic. 

The detection of vegetation change during the experiment was aimed at these two 

dominant vegetation types. However, it was anticipated that change in vegetation 

would be slow, therefore it was important to monitor the cover of mixed vegetation 

types considered indicative of a change-in-progress between the main vegetation types. 

The ortho-photographs of 1998 and 2001 were characterised by a limited number of 

intimately mixed vegetation types with a large within-type variation in colour and 

intensity. The combination of the large within-type variation and the scale of the ortho-

photographs, with each cell having an extent of 0.05 x 0.05 m, would require a very 

detailed ground survey. This was beyond the scope of this study. Therefore the ortho-

photographs were classified using the unsupervised classification algorithm in Erdas 

Imagine. 

The unsupervised classification within Erdas Imagine uses an isodata clustering method 

(Jensen, 1996). This iterative method allocates individual pixels to clusters based on 

their spectral characteristics, starting with arbitrary initial cluster means. After 

allocating all pixels to clusters, the means for the clusters are recalculated. In subsequent 

iterations, pixels are reallocated based on new cluster means, until a pre-set proportion 

(in this case 95%) of the pixels remain in their assigned cluster from one iteration to the 

next. Using a fully automated classification approach avoids all the errors associated 

with traditional manual classification of images (Green & Hartley, 2000). The 

classification was based on all three colour layers in the ortho-photograph and was set 

to distinguish 15 classes (i.e. clusters). To facilitate the classification, only the actual 

experimental plots were classified (also masking out the fences). Classification was done 

separately for 1998 and 2001. 

The unsupervised classification creates classes starting with the lowest spectral values in 

the image (i.e. the darkest elements). Thus, the first class coincided with the black 

crosshairs originating from the metric camera lens. Classes 2 to 11 coincided with 

heather on the ortho-image. Lower classes generally covered heather away from grass 
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patches, while higher classes were near to grass patches. The distribution of heather 

classes varied strongly between plots and locations within plots, both as a result of 

differences in photography and possibly differences in heather canopy characteristics. 

Two classes were associated with the zone around the grass-heather boundary: one 

adjacent to the heather (Class 12), the other adjacent to the grass patches (Class 13). 

Two classes coincided with the grass in the ortho-image (Class 14 and 15). Differences 

between these two classes appeared to coincide with grass sward height and was most 

obvious in the 1998 photography. 

The results of the classification for 1998 and 2001 were visually consistent, with the 

same classes indicating the same vegetation type in both years. For each year, the 

15 resulting classes were then grouped based upon a visual interpretation of the ortho-

photographs and observations in the field. Following structural differences in 

vegetation composition or life history, four grouped classes were defined as: grass, 

mixed, degraded heather, and shrub. The grass class was formed from the two original 

classes coinciding with short and tall grass swards dominated by Agrostis capillaris L., 

Agrostis canina L., Deschampsia flexuosa L. Trin., and Festuca ovina L (NVC= U4; 

Rodwell, 1992). The mixed class was formed from a single class coinciding with mixed 

vegetation types bordering the grass class. The degraded heather class, dominated by 

Calluna vulgaris (L.) Hull (heather), was also based on a single class and was associated 

strongly with heather in the degenerate phase (Watt, 1947). This class was characterised 

by a partly dead heather canopy with low cover and little undergrowth and generally 

occurred at the edge of the shrub class. The shrub class was formed from 10 original 

classes all dominated by the shrubs Calluna vulgaris and/or Vaccinium myrtillus L. 

(blaeberry) (NVC= H12; Rodwell, 1991). There were indications that some of the 10 

original classes were associated with either blaeberry or heather. Only an extensive 

ground survey would provide an accurate basis upon which to split the classes, but this 

was beyond the scope of this study. Although the blaeberry was much lower in total 

area cover compared to heather, observations in the field showed that it did occur more 

frequently at the edge of the shrub class, neighbouring the grass patches. Thus, the 

mixed class consisted predominantly of a mixture of grass and blaeberry as opposed to 

a mixture of grass and heather. 
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The classification results showed a strong 'salt and pepper effect' (Lillesand & Kiefer, 

1999) for the shrub class. This effect, which is characterised by single pixels or small 

clumps of one class interspersed within large areas of another class, can result from high 

spectral variability in the original imagery. A possible cause of this spectral variability is 

the alternation of brightly lit and shadow areas in the shrub canopy (Quilter & 

Anderson, 2001). Because the presence of many individual pixels or small clumps is 

undesirable in this analysis, a post-classification image smoothing (Lillesand & Kiefer, 

1999) was applied using the majority filter function in the ARC GRID module 

available in Arclnfo (ESRI, USA; Version 8). The majority filter scans the image with a 

fixed window size (in this case 3 by 3 pixels). The class of the central cell in the window 

is changed to the class with the majority in the window, but if there is no majority the 

cell stays unchanged. The smoothing reduces the number of single pixels and decreases 

roughness of edges. Majority filters are often applied several times, depending upon the 

characteristics of the classification. As the filter generally leads to a decrease of minority 

classes, increasing the cover of the dominating class (in this case heather), it should be 

applied with care. A satisfactory reduction of the 'salt and pepper effect' was achieved 

by applying the majority filter twice. Table 4.3 shows the changes in cover of the four 

classes for 1998, with changes for 2001 being of the same order. 

Table 4.3. Changes in the percentages of cells in each class (for 1998) in relation 
to application of the majority filter: before and after the first application, after the 
second application and after the elimination of the crosshairs. 

Name Before Majority I Majority 2 After 

Grass 10.76 10.86 10.89 10.98 
Mixed 3.45 3.28 3.20 3.17 

Degraded heather 3.33 2.50 2.23 2.12 
Shrub 80.38 81.92 82.46 83.74 

Cross hairs 2.08 1.44 1.21 0.00 

4.2.3 Animal observations 

In the summer of 2001, a secondary experiment was carried out on the experimental site 

to study the social behaviour of sheep on natural heather-grass mosaics (A.M. Sibbald, 

personal communication, July 2001). This study made use of the existing sheep density 

treatments and grazing schedule and thus did not interfere with the primary 
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experiment. I contributed to this experiment, during a four month suspension of my 

PhD, in the design, planning, execution and geographical analysis of the data. Although 

not an official part of this PhD, the data obtained from this experiment provided an 

excellent opportunity to gain insight into the behaviour of the sheep in relation to the 

vegetation mosaic. 

During the experiment six sheep were present on each plot. Animal behaviour on the 

experimental plots was observed from a position facing the hill side, at a distance of 

roughly 500 m. Scan samples (Martin & Bateson, 1986) were taken over an 11 day 

period in June for each sheep in each plot, with 25 scan samples each day (07:30 to 21:30 

hours). During a scan sample the location and orientation were marked on a vegetation 

map and the activity was noted. Such scan samples provide a basis for determining time 

budgets of behaviour and, combined with the spatial location, they enable analysis of 

the spatial pattern of behaviour. The locations were subsequently digitised using 

ArcView (ESRI, USA; Version 3.2). The following activities were distinguished: 

drinking, grazing, lying, standing, and walking. 

4.2.4 Analysis 

Four approaches have been used to provide insights into the changes in the pattern of 

vegetation as a result of herbivory. The first approach considers each individual cell in 

the 1998 classification and its successor in the 2001 classification. A pair-wise 

comparison gives a quantitative but non-spatial insight into the change between 

classifications. The second method calculates changes in the total area of each class 

within each plot. In the third approach a grid overlay is used to sample individual cells 

to allow for an analysis at a larger scale. The final approach uses the grass patches as a 

functional description of the spatial heterogeneity and the analysis aims to link 

herbivore impact to vegetation response based on the functional heterogeneity. Grass 

patches are an appropriate description of the vegetation mosaic as sheep tend to focus 

their behaviour on patches (Hester & Baillie, 1998). 

The pair-wise comparison was done on the individual pixels in both classifications. The 

grid overlay was done using a grid with a 2 m cell size. Changes in vegetation between 
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years were based on cell counts and not on actual area. To facilitate the analysis based 

on the functional heterogeneity, individual grass patches had to be derived from the 

classifications and because several grass patches were connected by pathways, they had 

to be divided manually. 

Figure 4.2. Illustration of the effect of misalignment on the extent of overlap of one patch in 
the two years. The arrow indicates the shift between years. The union patch used for 
sampling is indicated by the thick line. 

As described in the previous section, a variable misalignment between the two years 

remained after ortho-rectification and geometric correction. To overcome the problem 

of misalignment of patches, a 'union patch' was created for each grass-mixed patch in 

the mosaic, covering the combined area of the patch in both years (Figure 4.2). This 

union patch was then used to calculate the area of each class within the patch in each 

year. Because the union patch was bigger than the patch in one year, the sample could 

also include a proportion of the shrub or degenerate heather class. The patch analysis 

was based on actual area of the patch (taking slope into account) instead of on cell 

count. This was necessary because, contrary to claims by Lillesand & Kiefer (1999), 

ortho-photographs do not give true area in sloping terrain. 
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4.3 Results 

Cell-based analysis 

The pair-wise cell-based analysis resulted in the transition matrix shown in Table 4.4. 

The transition matrix shows the total cell-by-cell changes from one class to another 

across all blocks and treatments. Overall changes indicate a decline of the shrub class 

(1.6%), and increases in the mixed (35.6%) and degraded heather (9.4%) classes. Large 

changes occurred from the shrub to mixed class, from the shrub to degraded heather 

and from the mixed to shrub class. The total area of the grass class remained unchanged 

during the experiment. 

Table 4.4. Pair-wise cell-based changes (%) from class to class (grass, mixed, 
degraded heather, shrub) between 1998 and 2001 (1% 600 m). 

Year 

Grass 
2001 

MixedDegraded Shrub Total 1998 
Grass 8.61 1.17 0.16 1.04 10.98 

1998 	
Mixed 0.90 0.73 0.13 1.41 3.17 

Degraded 0.44 0.44 0.14 1.10 2.12 
Shrub 1.04 1.95 1.89 78.86 83.74 

Total 2001 10.98 4.30 2.32 82.40 100.00 

The transition matrix indicates net change and thus provides no insight into local 

increases and decreases in classes. Because the two classifications were not exactly 

spatially registered, a cell-by-cell comparison should be interpreted with caution. For 

instance the changes from shrub to mixed and mixed to shrub from 1998 to 2001 could 

be the result of the misalignment between ortho-images. These data are based on cell 

counts and not on actual area. The study site was on a convex slope, such that the plan 

area of cells varied with the slope of the cell. These statistics are for all plots, covering 

approximately six hectares, so one percent is roughly equal to 600 m2 . 

Although the pair-wise comparison showed a constant area of grass and a decreasing 

area of shrub, when switching to the total cover of each class based on true area per plot 

(i.e. per treatment within each block), results show large differences between plots 

(Table 4.5). Due to the characteristics of the vegetation mosaics at the time of fencing 

and the grazing treatments of previous experiments, initial cover of classes varied 

strongly between plots (Table 4.5). Grass class cover ranged from 3% to 18% and the 
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degraded heather cover ranged from 0.5% to 4.7%. Initial conditions strongly 

influenced the impact of the sheep density treatments. For example plot T4 was 

characterised by a strongly fragmented heather cover of generally visually poor quality. 

The combination of the initial state of the vegetation and the sheep density treatment 

led to a strong increase in the mixed class at the cost of the shrub class. In contrast, plot 

B4, characterised by a visually more vigorous heather cover, showed a slight increase of 

the shrub class. To better understand the causes of differential changes within each plot, 

a more spatially explicit analysis was pursued. 

Table 4.5. Percentage cover of each class (grass, mixed, degraded heather, shrub) in 1998 
and the absolute change in percentage cover of each class between 1998 and 2001. Data 
are presented per sheep density treatment (2, 3, 4 sheep ha -) within each block (bottom, 
top) indicated by codes B2, B3, B4, 12, T3, 14. 

Plot Class cover in 1998 (%) Class change (%) 
Grass Mixed Degraded Shrub Grass Mixed Degraded Shrub 

62 7.65 1.65 0.97 89.74 -1.71 0.86 1.17 -0.32 
B3 8.98 1.44 1.70 87.88 -0.92 1.42 0.44 -0.93 
64 18.50 4.30 2.77 74.44 -0.85 -0.02 -1.23 2.10 
T2 3.12 2.62 0.53 93.72 -0.19 -0.65 0.07 0.78 
T3 14.11 4.96 1.23 79.70 1.19 -0.63 1.02 -1.57 
14 13.16 3.53 4.71 78.61 2.12 6.12 0.88 -9.12 

Total 10.92 3.08 1.98 84.01 -0.38 7.09 2.35 -9.07 

Grid-based analysis 

Sampling the classifications with a lower resolution grid (2 m) provided a spatially 

explicit insight into the local changes in the vegetation (Figure 4.3). Maps per class 

present the percentage change of the cover of a class within each cell between 1998 and 

2001. This map does not correct for the variable misalignment, such that changes 

between years might result from shifts in the imagery. The maps show that herbivore 

impact was strongly heterogeneous, with small changes (< 10%) spread evenly around 

the mosaic and large changes limited to small areas. Returning to the example of plot 

T4, the maps show that the changes from the shrub class to the mixed class occurred 

mainly in two areas of the plot. To investigate the processes causing the changes and to 

filter out the possible effects of misalignment, the functional heterogeneity of the 

change between classes needed to be considered. 
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Figure 4.3 (Opposite page). Maps showing the change in the percentage of each class 
within 2 m grid cells between 1998 and 2001; (A) grass, (B) mixed, (C) degraded heather, 
(D) shrub. The underlying vegetation map is shown above for reference, together with the 
legend of the percentage change. 
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Patch-based analysis 

The functional heterogeneity was described by the grass patch structure of the 

vegetation mosaics. The grass patches within the mosaic provided a link between the 

vegetation changes of the grass patches and the observations of animal behaviour and 

heather defoliation on and around these patches. Patches were sampled using the union 

patch as described in the methods section. For each union patch, the percentage of each 

vegetation class in each year was determined and the change in percentage from 1998 to 

2001 calculated. The data suggested that large clumped changes were associated with 

ruminating behaviour, while smaller wide spread changes were associated with heather 

defoliation. 

Changes associated with ruminating behaviour 

The behavioural study of the sheep foraging the plots in 2001 resulted in 8678 

combined observations of location and behaviour. Data show that sheep spent the 

majority (95%) of their time either grazing (69%) or lying (26%). The remaining time 

(5%) was spent walking (2%), standing (3%) or drinking (0.06%). For the purpose of 

this analysis foraging was defined as the activities grazing and walking, while lying was 

defined as ruminating. Standing could be interpreted as either foraging or ruminating 

and was thus not included in the analysis. Drinking was rarely observed and thus was 

not expected to affect the pattern of foraging. The map of observations (Figure 4.4) 

shows that the distribution of ruminating behaviour was clumped. 

To estimate the effect of the clumped distribution of ruminating activities on the 

changes in the vegetation pattern, all grass patches (grass class) were classified into 

ruminating or non-ruminating patches such that ruminating patches were defined as 

those patches where the percentage of observations of ruminating activity exceeded 

30% (i.e. higher than the average of 26% across the plots). The areas of grass patches 

classified as ruminating patches were 20% and 24% of the total grass area in 1998 and 

2001 respectively. The data showed that the ruminating areas were strongly associated 

with an increase in both the grass and mixed classes. While the total net grass cover 

across all plots decreased h 113 m 2  (with 1141 m 2  of the total area affected by change 

from and to grass), the area of grass in the ruminating areas increased by 211 m 2 . Of the 
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total amount of transitions from and to grass during the three years, 19% was 

associated with the ruminating areas. However, of the total amount of transitions to 

grass, 41% was associated with the ruminating areas. 
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Figure 4.4. Map of observations of sheep behaviour. Each cross is an individual 
observation. Colours of crosses indicate the observed activity: red = lying, green = all others. 
Stars indicate gate entrances to the plots. 
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Table 4.6 shows that the changes associated with ruminating areas varied between plots. 

Plot T4 shows a strong increase in the grass and mixed classes. This is likely to be a 

result of an interaction between ruminating behaviour and the degenerate growth phase 

of the heather (note the percentage cover of the degraded heather class of 5% for this 

plot in 1998, Table 4.5). The vegetation changes in this plot were generally characterised 

by a sequence of changes from shrub to mixed to grass, thus explaining the high 

percentage change to grass and mixed for the plot as a whole. In contrast, Plot B4 

showed an increase in grass for the ruminating areas, but a decrease in grass for the plot 

as a whole. 

Table 4.6. Percentage change in the cover of the grass and mixed 
classes for ruminating areas and for the whole plot. The data only 
take into account patches that existed both in 1998 and in 2001. 

Plot 	 Grass (%) 	 Mixed (%) 

Ruminating 	Plot 	Ruminating 	Plot 

B2 0.07 -1.46 0,19 1.69 
B3 0.20 -0.82 0.24 1.52 
B4 0.32 -0.68 -0.24 -1.15 
T2 0.06 -0.14 0.01 -0.50 
T3 0.14 0.34 -0.06 0.66 
T4 1.32 1.63 1.26 5.76 

Total 2.11 -1.13 1.39 7.96 

Changes associated with heather defoliation 

While large vegetation changes occurred in the areas associated with ruminating 

behaviour, smaller changes occurred across all plots without there being any pattern 

apparent from the map output from the grid sampling (Figure 4.3). To investigate small 

changes across the plots, the change in the percentage of each vegetation class per patch 

were correlated with the heather defoliation measurements (as described in Chapter 3). 

The angular transformed heather defoliation measurements for each transect were 

averaged across all years and seasons, for all distances less or equal to 0.5 m from the 

grass-heather boundary. 

Figure 4.5 shows the relationship between heather defoliation and percentage change 

for all four vegetation classes. All grass patches for which heather defoliation data were 
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available are included in the figures (n = 137). Regression lines have been added when 

slope was significantly different from zero (p < 0.05), with a dashed line indicating a 

trend. Note that the mixed and degraded classes generally covered a smaller percentage 

of the region, producing smaller changes and a lower variance around the regression 

line. The scatter plots show the change in the percentage of each class within each patch 

from 1998 and 2001. Both scatter plots and regression analysis show that change in the 

mixed class was positively correlated with heather defoliation, while change in the 

shrub class was negatively correlated with heather defoliation, i.e. increasing heather 

defoliation generally led to an increase in the mixed class at the cost of a decrease in the 

shrub class. The decrease in the shrub class seems to be compensated also by an increase 

in the grass class. However, the slope of the regression was not significantly different 

from zero in the latter case. 
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Figure 4.5. Scatter plots and corresponding regression lines (dashed if p > 0.05) showing 
change in the percentage cover of classes in the patches (n=137) between 1998 and 2001 
versus mean angular heather defoliation for a 0.5 m zone away from the grass-heather 
boundary: (A) grass (R2  = 1.1%, p = 0.115), (B) mixed (R2  = 8.9%, p  <0.001), (C) degraded 
heather (not significant), (D) shrub (R2  = 5.2%, p = 0.004). 

60 

40 

20 

00 

0 

U 
-20 

-40 

-60 

60 

40 

20 

00 

0 

0 
-20 

-40 

-60 

103 



Chapter 4 

B 
T3  

T4 

A 

I 
	

" p 

[D 
	

B2 

T2 

o.  

B4 

4 
1 

%06. 1 

Figure 4.6. Map of the grass patch structure on the experimental plots; highlighted are the 
areas that are shown in the following figures: (A) Figure 4.7a, (B) Figure 4.7b, (C) 
Figure 4.7c, (D) Figure 4.7d, (E) Figure 4.7e, (F) Figure 4.7f. 
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Graphical examples of changes in pattern of vegetation 

Although the experimental design did not allow further quantitative analysis, 

considering specific areas in the experimental site in greater detail revealed interesting 

changes in pattern. For several example areas (see Figure 4.6 for an overview) the 

changes in vegetation pattern and possible processes are hypothesised. Further 

experimentation would be required to test these hypotheses. Vegetation changes are 

illustrated for key patches in the example areas (Table 4.7). 
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Figure 4.7a. Example area of part of the vegetation mosaic in plot 14, used to illustrate 
vegetation change between 1998 (A) and 2001 (B). See text for a description and discussion 
of changes. See Figure 4.6 for the location of the example in the experimental site. Colours 
indicate: green = grass; yellow = mixed; red = degraded heather, brown = shrub. 

The first example (Figure 4.7a) shows a strongly expanding grass patch. Expansion of 

the patch, as indicated by the change in percentages of classes in the union patch 

between 1998 and 2001, resulted from increases in the grass and mixed classes at the 

cost of the degraded heather and shrub classes (Table 4.7). The heather in this area was 

generally in the degenerate growth phase (Watt, 1947), which is indicated by the large 

amount of degraded heather (red coloured patches within the brown heather matrix) 
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within the shrub class (Figure 4.7a). The heather was moderately grazed. Considering 

the life history (growth phase) and the proximity of a ruminating area, it is 

hypothesised that trampling, and not defoliation, has driven the change in this area. The 

increase in the degraded heather within the shrub class between 1998 and 2001 (Figure 

4.7a) indicates that, under the current grazing pressure, the fragmentation of the heather 

will continue. 

Table 4.7. Angular heather defoliation and changes in the percentage of classes in the 
patches in the enlargements. 

Example Plot Defoliation 
(0)  

Grass 

(%) 

Mixed 

(%) 

Degraded 
heather (%) 

Shrub 

(%) 

A 14 15.13 20.25 24.85 -6.86 -38.24 
B 13 10.18 8.11 -8,80 -0.83 1.53 
B 13 10.93 -0.87 -8.26 -0.85 9.97 
D B2 9.83 -14.50 4.43 1.89 8.18 
E 12 9.19 20.54 -15.75 -3.74 -1.05 
E 12 9.16 1.75 -8.48 -2.25 8.99 
F 14 14.62 -0.27 11.66 -5.39 -6.01 

r 
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Figure 4.7b. Example area of part of the vegetation mosaic in plot T3, used to illustrate 
vegetation change between 1998 (A) and 2001 (B). See text for a description and discussion 
of changes. See Figure 4.6 for the location of the example in the experimental site. Colours 
indicate: green = grass; yellow = mixed; red = degraded heather, brown = shrub. 
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The second example shows a mosaic that is stabilising (Figure 4.7b). Data for two 

patches have been included (Table 4.7) to illustrate that in this area both grass and shrub 

classes increased as a result of a decline in the mixed class. Both the shrub and grass 

became more homogeneous and, with the decrease of the extent of the mixed class, the 

contrast between the two vegetation types increased. This process presumably would 

lead to the disappearance of small patches (of both grass and shrub) and the 

consolidation of large grass patches. 
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Figure 4.7c. Example area of part of the vegetation mosaic in plot T4, used to illustrate 
vegetation change between 1998 (A) and 2001 (B). See text for a description and discussion 
of changes. See Figure 4.6 for the location of the example in the experimental site. Colours 
indicate: green = grass; yellow = mixed; red = degraded heather brown = shrub. 

The third example illustrates the effect of ruminating behaviour (Figure 4.7c). This area 

also has a history of ruminating impact (particularly due to red deer) as measured in 

previous experiments (Hester & Baillie, 1998). The sheep continued to use the area for 

ruminating during the current experiment. The core areas of grass thus expanded, but at 

the edges blaeberry became dominant in areas where heather had been killed. Thus, the 

cover of both the grass and mixed classes increased as the shrub class declined. Existing 
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degraded heather largely disappeared as a result of the expansion of the grass patch but 

new patches of degraded heather appeared within the shrub class, possibly indicating 

continued fragmentation under the current stocking rate. The increase in the mixed 

class (with a large proportion of blaeberry), could again indicate that an interaction 

between the life history of the heather and trampling has driven changes in this area. If 

defoliation impact had been high, blaeberry would not have been expected to increase 

so strongly. 

A 	 B 

Figure 4.7d. Example area of part of the vegetation mosaic in plot B2, used to illustrate 
vegetation change between 1998 (A) and 2001 (B). See text for a description and discussion 
of changes. See Figure 4.6 for the location of the example in the experimental site. Colours 
indicate: green = grass; yellow = mixed; red = degraded heather brown = shrub. 

The fourth example (Figure 4.7d) shows an area where the shrubs were apparently 

recovering from previous heavier herbivore impact as compared to the current stocking 

rate (2 sheep ha 1 ). This area is characterised by the absence of blaeberry, thus the 

increase in the shrub class is only associated with heather increase. The heather is 

recovering at the cost of the grass class, generally causing large grass patches to get 
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smaller and small grass patches to disappear. From field observations, most heather 

recovery seemed to be the result of increased plant size and rerooting of collapsed 

branches. There was little sign of new heather shoots appearing in the grass sward. The 

expanding heather led to smoother edges, but the increase in the mixed class led to 

lower contrast. At the current treatment, the heather in this area would presumably 

continue to expand at the cost of grass. 

Ma 
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Figure 4.7e. Example area of part of the vegetation mosaic in plot 12, used to illustrate 
vegetation change between 1998 (A) and 2001 (B). See text for a description and discussion 
of changes. See Figure 4.6 for the location of the example in the experimental site. Colours 
indicate: green = grass; yellow = mixed; red = degraded heather, brown = shrub. 

The fifth example illustrates the consolidating effect of continued but decreased 

herbivore impact (Figure 4.7e). In 1998, the mosaic showed signs of fragmentation in 

progress, with a large proportion of mixed class, many small patches and rough edges. 

Following the experiment the shrub class had recovered, but the grass class had also 

expanded. Thus, core areas of grass remain, leading to the disappearance of small 

patches of mixed and shrub classes within the grass and the decrease of mixed class at 
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the edge. The pattern of both grass and shrub classes is now more homogeneous and the 

contrast has increased. These observations agree with the concept of selective grazing 

coinciding with increasing contrast as suggested by Adler et al. (2001). 

A 	 B 

Figure 4.7f. Example area of part of the vegetation mosaic in plot T4, used to illustrate 
vegetation change between 1998 (A) and 2001 (B). See text for a description and discussion 
of changes. See Figure 4.6 for the location of the example in the experimental site. Colours 
indicate: green = grass; yellow = mixed; red = degraded heather, brown = shrub. 

The last example shows the role of connectivity in heather-grass mosaics (Figure 4.7). 

This area lies between two large grass patch conglomerates and sheep regularly passed 

through the area. The result was a distinctive pattern of fragmentation along paths 

connecting both areas. Although narrow paths were not detected by the ortho-

photograph classification in 1998, the effect of continued trampling along these paths 

was clearly visible after three years. The data for the central patch show a fragmentation 

of the shrub edge, indicated by an increase in the mixed class. A visual interpretation of 

the image suggests that along the paths both the mixed class and the degraded heather 

classes increased. Continued trampling would probably lead to increased width of the 

paths and subsequent expansion of the grass class. 
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4.4 Discussion 

Results presented in this chapter provide new and interesting insights into the 

distribution of herbivore impact across heather-grass mosaics. Starting from the scale of 

the whole experimental site, analysis has zoomed in on smaller detail. At the largest 

scale, results indicate that the experimental sheep density treatments have led to changes 

in the vegetation mosaic from vegetation types dominated by heather (shrub) to 

vegetation type dominated by a mixture of grasses and blaeberry (mixed) and degraded 

heather (degraded heather). At the scale of individual plots, results showed large 

variations which could not be explained by the sheep density treatments alone. Spatial 

analysis showed that vegetation change was heterogeneous with large changes limited 

to small areas. Analysis of the drivers of vegetation change indicated that ruminating 

behaviour could partly explain the spatially clumped changes, while heather defoliation 

rates could explain more evenly spread changes in the vegetation. 

Description of the characteristics of initial vegetation and subsequent changes for 

several examples indicated that life history of plants and the history of herbivore impact 

could play an important role in plant-herbivore interactions. Although they did not 

provide quantitative correlations, it was clear that the response of vegetation mosaics to 

herbivore impact depended on several processes, of which defoliation was only one. 

Remote sensing methodology 

The aerial photography and subsequent remote sensing analysis provided an excellent 

opportunity to observe changes in the vegetation at a very fine resolution. Comparison 

of the two sets of ortho-photographs enabled the successful detection of small scale 

changes between vegetation types. While cell-based analysis was affected by geometric 

misalignment between ortho-images, taking into account the misalignment (through the 

use of union patches) allowed effective analysis at the scale of individual grass patches. 

The scale of photography for this study was chosen on the basis of expected changes in 

the vegetation. Results show that the scale of change depends on the process under 

study. Ruminating behaviour was associated with large changes in the vegetation 

concentrated in small areas (< 100 m 2). Measuring these changes would be possible at 
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lower resolution. The changes associated with heather defoliation were spread widely 

across the mosaic and changes were small. Thus, a fine resolution will be crucial for the 

effective evaluation of heather defoliation impact. A trade-off also exists between 

resolution of photography and errors associated with the remote sensing analysis. The 

extreme resolution of this photography led to the variation in flying height and flight 

angle, hampering successful ortho-rectification and subsequent alignment of ortho-

photographs for the two years. An increased flying height could reduce errors 

associated with the ortho-rectification and thus facilitate more accurate alignment albeit 

at the cost of reduced resolution. 

Three sources can be distinguished when analysing aerial photographs in order to 

detect vegetation change between years: 1. change in photography (e.g. weather, light, 

film, processing), 2. change in vegetation characteristics (e.g. seasonality, standing 

biomass, water content), 3. changes in vegetation composition (i.e. the change of 

interest in this study). The changes in photography were successfully kept to a 

minimum by seeking similar suitable (cloud cover) weather and standardising film 

processing and scanning for both years. Changes in the characteristics of the vegetation 

were tried to be avoided by repeating the photography close to the original day of the 

year. However, changes occurred as a result of the experimental treatment and weather 

patterns. The autumn of 1998 was colder than the autumn of 2001. Thus, in 1998 the 

vegetation had partly died , while in the autumn of 2001 most of the vegetation was still 

green. A change in standing biomass also occurred over the three years of the 

experiment, such that the standing biomass was higher in 1998 as compared to 2001. 

However, due to the high contrast in spectral reflectance of heather and grass, these 

changes were expected to have little effect on the classification of grass and heather. 

The colour photography, with negatives scanned at high resolution, allowed for the 

successful classification of vegetation types. Combined with an extensive ground survey 

the ortho-photographs would provide opportunities for extended image analysis for the 

purpose of distinguishing vegetation types such as heather and blaeberry. Seasonality of 

production and digestibility of the different vegetation types (Armstrong & Milne, 

1995) might play an important role in herbivore nutrition. To increase the effectiveness 
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of the classification of shrubs, the photography should occur at a time with the greatest 

contrast between the species. As blaeberry is deciduous, May or June might be the best 

period. A potentially interesting application of high resolution imagery was suggested 

by Quilter & Anderson (2001). They successfully correlated spectral reflectance with 

shrub defoliation. The use of imagery for the evaluation of herbivore impact across 

vegetation mosaics should be investigated further. 

Plant-herbivore interactions and heterogeneity 

Following the framework of Adler et al. (2001), the interactions between sheep and 

grass-shrub mosaics could best be classified as selective grazing. Results of the analysis 

here and in Chapters 2 and 3 show that the pattern of grazing' of sheep across heather-

grass mosaics was based on the pattern of the vegetation. However, different processes 

had distinctively different patterns of impact. The pattern of heather defoliation and 

subsequent impact on the vegetation was driven by the pattern of grass, resulting in a 

wide spread pattern within the mosaic. In contrast, the pattern of impact resulting from 

ruminating behaviour showed a highly clumped distribution with areas of high impact 

spatially limited. 

As outlined in the introduction, Adler et al. (2001) associate spatial heterogeneity with 

high spatial dependence, non-randomness, and high contrast. Whether herbivore 

impact increased or decreased the spatial heterogeneity of the vegetation strongly 

depended on other aspects of the plant-herbivore interactions and the scale of 

perception. Areas which previously suffered high herbivore impact showed 

consolidation of vegetation types, increased contrast (resulting from decreased 

heterogeneity within patches) and thus increased spatial heterogeneity at the scale of the 

vegetation mosaic. On the other hand areas with increased herbivore impact or areas 

where the vegetation was more sensitive to herbivore impact showed fragmentation of 

the vegetation, leading to decreased contrast between patches and subsequently 

decreased spatial heterogeneity at the scale of the vegetation mosaic. 

The observed complexity of possible interactions between herbivores and vegetation 

and the subsequent effect on spatial heterogeneity of the vegetation might suggest that 
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the framework proposed by Adler et al. (2001) is too simplified. As pointed out by 

Adler et al. (2001), spatial heterogeneity is dependent on the scale of observation. 

Likewise functional heterogeneity, i.e. the spatial heterogeneity within the context of a 

process, will depend on the scale of the process. For example, insects might be affected 

by within-patch heterogeneity or heterogeneity of boundaries between patches, while 

birds might respond to heterogeneity of patches within a mosaic. 

Heather defoliation methodology 

In order to correlate heather defoliation with vegetation change, transects were laid out 

at the edge of grass patches (Chapter 3). To capture information on a large number of 

patches across the whole experimental area, only two transects (one uphill and one 

downhill from the patch) were laid out from each patch. Capturing the variability 

across the whole area in this way, inevitably compromised insights into local 

heterogeneity. Thus one set of transects was used to represent a grass patch, not taking 

into account that each grass patch is a complex mosaic in its own right. This led to a 

large variability in the observations of vegetation change versus heather defoliation and 

thus a low proportion of explained variance around the regression lines. Although 

reduction in variability would be expected when increasing the intensity of sampling of 

each patch, variability would be expected to remain high due to the high variation in 

heather defoliation at the scale of individual heather plants (as discussed in Chapter 2). 

Ruminating behaviour 

The clumped distribution of ruminating behaviour as observed during this experiment 

contrasts with patterns observed on the same site in a previous experiment (Hester et 

al., 1999). Hester et al. (1999) found that sheep generally ruminated in grass patches, 

with a preference for smaller patches, while in this experiment the sheep congregated on 

the large grass patches in the corners of the plots. Arnold & Dudzinski (1978) explain 

the different resting patterns on the basis of climatic factors. In mild weather, sheep are 

expected to rest at the location where a foraging bout ends, while in cold weather sheep 

are expected to return to a sheltered area (Arnold & Dudzinski, 1978). Another 

possible explanation is that herbivore impact of previous experiments, such as deer 

trampling of heather along fences and heather trampling at gate entrances creating large 
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grass patches in corner, creating a suitable resting area which attracted the sheep in this 

experiment. 

Conclusions 

This chapter reports on an investigation of the changes in vegetation mosaics using high 

resolution aerial photography and digital air photo processing. Changes in the 

vegetation mosaics were related to herbivore impact during the three year experiment. 

It was not just the 'grazing, i.e. the actual defoliation of plant material, that caused 

changes in vegetation types. Ruminating behaviour was shown to be associated with 

strong increases in grass cover. Moreover several aspects of life history and grazing 

history will have affected the amount and type of vegetation change resulting from 

herbivore impact. Different processes affecting the mosaic are likely to have different 

spatial impacts. It is therefore clear that herbivory should not be considered as a single 

process in plant-herbivore interactions, but that individual processes should be 

considered when studying the impact of herbivores on vegetation mosaics. 
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Chapter 5 
Spatial pattern of defoliation by herbivores 

across grass-shrub mosaics: 

a virtual experiment 

Behaviour of complex adaptive systems is not well described by 
trajectories around global optima. Even when a relevant global 
optimum can be defined, the system is typically so far from that 

optimum that basins of attraction, fixed points, and other apparatus 
used in studying optima tell little about the system behaviour. 

Instead competition between components of the system, aimed at 
'getting and edge over neighbouring competitors', determines 

aggregate behaviour. 

J.H. Holland (1992) 



Distribution of defoliation: a virtual experiment 

5 Spatial pattern of defoliation by herbivores across grass-

shrub mosaics: a virtual experiment 

5.1 Introduction 

This chapter considers the role of perceptional abilities of herbivores in the patterns of 

defoliation resulting from plant-herbivore interactions. It has been suggested that 

herbivore foraging strategies could determine emergent patterns of defoliation, but so 

far no spatially explicit investigation has been carried out. Here, a computer based 

simulation model is used to carry out a virtual experiment investigating the potential 

impact of perceptional ability on patterns of defoliation in relation to animal 

performance and impact on the vegetation. The term 'animal' is used throughout the 

text when referring to the simulated agents in the model. To facilitate the understanding 

of the text, reference is made to sheep and deer as analogies to the virtual animals in the 

model. Similarly, the vegetation types simulated in the model are considered to have 

analogies with heather and grass. 

Emergent properties and individual-based modelling 

The importance of spatial interactions in predator-prey systems has been recognised as 

early as the sixties, through a classic experiment using mites and oranges (Huffaker, 

1958). Theoretical explanations were developed in the seventies (Hassell & May, 1974; 

Hassell & Southwood, 1978), finding a wide audience in the context of plant-herbivore 

interactions through the review by Senft et al. (1987). The role of cognition in the 

foraging behaviour of herbivores has been reviewed by Bell (1991) and later by Bailey 

et al. (1996). Despite many theories, experimental progress has been slow due to the 

complexity and resource demands of hypothesis-testing experiments (Dunning et al., 

1995; Kareiva, 1989). It is recognised that models enable the investigation of hypotheses 

at a range of spatial and temporal scales with limited resource requirements and no 

ethical limitations, such as animal welfare issues (Dunning et al., 1995). At the same 

time, models used to study spatial patterns of defoliation must be spatially explicit 

(Dunning et al., 1995; Pyke, 1983). 
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The distribution of defoliation by a population of grazing herbivores across a 

vegetation mosaic can be seen as an emerging property resulting from the interactions 

between vegetation pattern and individual foraging strategies. An emergent property 

arises from the interaction between higher level patterns and lower level entities 

(Kawata & Toquenaga, 1994). The emergent property is not apparent at the lower level, 

but is a direct result of the properties of the individual entities. A large number of single 

and local foraging decisions (entities at lower level) made by individuals in a population 

will accumulate to an emerging global pattern of defoliation (emergent property). This 

understanding has led to the development of several individual-based models. While a 

population-based model can be used to investigate the best possible distribution of 

foragers across a vegetation mosaic, an individual-based model can be used to ask what 

defoliation patterns result from specific individual-based foraging strategies 

(Grunbaum, 1998). The importance of the individual-based approach is slowly being 

realised by ecologists (Bolker etal., 1997; Huston et al., 1988; Judson, 1994; Uchmanski 

& Grimm, 1996). 

Although a range of models consider spatial aspects of foraging herbivores, only two 

explicitly model the role of foraging behaviour and particularly the role of perception 

in foraging decisions (Moen et al., 1997; Turner et al., 1994). These conceptual models 

investigate the performance of animals using alternative foraging strategies in complex 

heterogeneous landscapes. The 'EASE model (Moen et al., 1997) considers the foraging 

behaviour of moose (A Ices alces). The model is spatially explicit only at the level of 

neighbouring cells. The foraging strategies in EASE are a combination of stopping and 

movement rules, determining how much animals eat in the current patch and when they 

leave. For example with the 'Fixed stopping rule' the animals eat 33% of the current 

browse in the feeding station and then move to a new feeding station. When deciding 

where to go the animals only consider their neighbouring feeding stations and thus do 

not use information about the environment at a larger scale. The model focuses on 

energy budgets, ignoring the spatial pattern of defoliation. Non-random foraging 

strategies, i.e. where movement is biased towards better browse, performed better than 

random foraging strategies. The differences between strategies increased with 
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decreasing browse density. This is in line with theoretical predictions (e.g. Stephens & 

Krebs, 1986). 

The model, developed to simulate the grazing system of northern Yellowstone Park 

(Turner et al., 1994), uses multiple-scale foraging rules. Apart from a random, one-step 

rule, the animals can either select the nearest resource site, or select the best direction 

based on knowledge of the environment. To get there animals can move multiple cells 

in one time step. The search radius of the animal is set to the maximum moving distance 

per day. Again strategies are most divergent in their effects at low resource density. 

Variability of forage intake increases with increased heterogeneity. Turner et al. (1994) 

also do not consider the spatial pattern of defoliation resulting from the different 

strategies. 

Observed emergent patterns of defoliation 

When considering plant-herbivore interactions in heather-grass mosaics, a clear pattern 

of defoliation emerges (see Chapters 2, 3 and 4 for details). Patchy distributions of 

animals across these heather-grass mosaics have been described as early as the 1960s 

(Hunter, 1962; Job & Taylor, 1978) and a series of experiments in the 1990s provided 

more valuable insights mosaics (Clarke et al., 1995b; Cuartas et al., 2000; Hester et al., 

1999). In the latter studies, herbivores (sheep and red deer) showed a preference for 

grass, resulting in a large proportion of grass in the diet despite relatively low 

abundance of grass in the vegetation. Any heather defoliation was strongly spatially 

correlated with the availability of grass, such that the heather defoliation decreased 

rapidly with distance from the grass-heather edge (Clarke et al., 1995a; Hester & Baillie, 

1998) and heather defoliation at the edge decreased with distance from grass patches 

and increased with the size of the nearest grass patch (taking into account clusters of 

grass patches) (Chapter 2; Oom et al., 2002). These results suggest that only a small area 

of the mosaic is intensively used and that the use concentrates around areas with high 

grass abundance. 

Investigating emergent patterns through virtual experimentation 

Possible emergent properties in grazed ecosystems include: energy intake rate of the 

herbivores, time spent grazing, diet composition, spatial pattern of defoliation, and 
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severity of defoliation. The emergent properties shared by both the experimental 

observations and the HOOFS simulations, were the spatial pattern and severity of 

heather defoliation. In order to facilitate comparison between observed and simulated 

results, these emergent properties were quantified using the semi-variogram and the 

frequency distribution of the heather defoliation. 

Thus this study investigates whether the observed emergent pattern of defoliation in 

heather-grass mosaics can be explained by the foraging strategies used by herbivores as 

they forage the vegetation mosaics. In order to fulfil these aims, we ran three virtual 

experiments considering different perceptional parameters forming foraging strategies 

used by herbivores grazing in an artificial vegetation mosaic. The experiments were 

executed using the HOOFS model (Beecham & Farnsworth, 1998). Parameterisation was 

based on the grazing system found in the highlands of Scotland, considering a 

herbivore, such as sheep Ovis aries or red deer Cervus elaphus L., foraging heather-

grass mosaics. 

5.2 Methods 

5.2.1 Vegetation map 

The foraging model used in this virtual experiment is driven by an underlying 

vegetation map. The spatial patterns of defoliation are the result of the interaction 

between the specific foraging behaviour characteristics and the characteristics of the 

vegetation. Although technically possible, due to computational constraints it was not 

feasible in this study to vary both the foraging behaviour and the vegetation pattern. 

Therefore we have chosen to give priority to the different foraging strategies applied to 

a single vegetation map. 

In order to test the foraging strategies in a realistic vegetation mosaic, we have used the 

heather-grass mosaic (Figure 5.1) from one of the plots in the field site (see Chapter 3 

for details). This vegetation pattern has developed over time as a result of foraging by 

sheep, deer and cattle (Hester & Baillie, 1998). The plot contained a large number of 

small and medium sized grass patches in a heather matrix, with local clustering of 

patches and isolated patches elsewhere in the mosaic. Patches were connected by an 
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extensive network of paths. The vegetation mosaic provided a good example of a 

complex heather-grass mosaic, which was considered a suitable mosaic to test the 

foraging strategies. 

The vegetation composition of the vegetation map (see Chapter 4 for detailed 

description of methods) contained 10.7% grass patches and 89.3% heather 

(Figure 5.1a). Paths were surveyed separately in the field and added to the vegetation 

map. The width of the paths was adjusted to get paths on the hexagonal map of at least 

one hexagon width. The vegetation map was sampled with the hexagonal grid such that 

each hexagonal cell was allocated the vegetation type present in the centre of the 

hexagon. As the hierarchical hexagonal grid is not square, the hexagonal grid was scaled 

such that most of the hexagonal grid was occupied by the vegetation map. The resulting 

scale of the hexagonal map gave a distance of 0.43 m between neighbouring hexagonal 

cells and a cell area of 0.14 m 2 . The resulting vegetation map (Figure 5.1b) contained 

11% grass patches, 5% grass paths and 84% heather. 
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Figure 5.1. Vegetation map (A) and derived hexagonal vegetation map (B) of the 
experimental plot on Strathfinella Hill used as the vegetation mosaic in the virtual 
experiments. Colours correspond as follows: grass = green, paths = yellow, heather = white. 
Plot size is roughly 100 m by 100 m. 
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Table 5.1. Number of cells and the total biomass in the vegetation 
mosaic at the start of the simulation. 

Vegetation Cells Biomass 
% % 1O6 gDM 

Grass patches 11 2.4 0.7 
Grass paths 5 1.1 0.3 
Heather 84 96.5 27.7 

Total 100 100 28.7 

The initial total above ground biomass (g Dry Matter) of cells is set to 100 g of grass in 

16% of cells (patches and paths) and 500 g (current year's growth) of heather in 84% of 

cells. Values were determined through an iterative process of balancing biomass 

availability and consumption. As a result 3.5% of the total biomass is grass and 96.5% 

is heather. The total dry matter of the whole vegetation mosaic at the start of the 

simulation is 28.7 tons in a vegetation mosaic of one hectare (Table 5.1). The biomass of 

the grass during the simulation increases slightly due to a faster growth rate (Appendix 

B). The total production of grass during the simulation depends on the foraging 

pattern. 

5.2.2 HOOFS model 

The HOOFS acronym stands for Hierarchical Object Oriented Foraging Simulator 

(Beecham & Farnsworth, 1998; Beecham et al., 1999). HOOFS is a spatially-explicit, 

individual-based model. Individuals can have different states and different responses to 

each other and their environment. Although HOOFS also provides an extensive social 

sub-model, this was switched off for the purpose of this study. Parameters for the 

foraging strategies were all part of the foraging sub-model. A detailed description of the 

foraging sub-model is given in Appendix A. The HOOFS model uses a spatial hierarchy 

based on the hexagonal map. Each individual cell, the lowest level in the hierarchy, is a 

member of a super-cell, consisting of a central cell and its six neighbours. In turn these 

first order super-cells are grouped in second order super-cells and so on (Figure 5.2). 

Several parameters in the foraging sub-model make use of this spatial hierarchy. 
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Figure 5.2. The first three levels in the hexagonal hierarchy used in HOOFS. 

The initial biomass (dry matter) in heather cells was considered representative of the 

total amount of current year's production, but grass was allowed to grow during the 

simulation. The grass production was determined by the Birch equation (Birch, 1999). 

The Birch equation does not have an integrated form, therefore in Hoofs the new 

biomass is estimated using the mid-point method (Birch, 1999). Parameter values are 

given in Appendix B. 

5.2.3 Input parameters and output variables 

The foraging submodel is a conceptual model of animal foraging behaviour. Although it 

is known that animals have knowledge of their environment and that some of this 

knowledge is used in foraging decisions, it is largely unclear how these perceptional 

processes work (see reviews Bailey et al., 1996; Bell, 1991). The foraging sub-model is 

thus an attempt to investigate possible interactions between perceptional abilities and 

resource heterogeneity. 

To allow the animals to scan and sample the vegetation mosaic efficiently, both a 

foraging and a walking mode are considered. The foraging mode can include movement 
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and subsequent eating, while the walking mode exclusively involves walking. 

Depending on the foraging strategy and the quality of resources in the vicinity, animals 

can choose to either walk or forage. A foraging bout is defined as a continuous period 

spent in foraging mode. These modes are supported by data on rates of movement of 

sheep in heather-grass mosaics (Hester et al., 1999). 

The input parameters used as treatments in the three experiments are explained below. 

Others, that were held constant throughout, are summarised in Appendix B. 

Determinism: The foraging strategy of the animals is driven by the quality of the 

vegetation in the vegetation mosaic. How biased animals are towards the best 

quality vegetation is set by their determinism. When the determinism is zero, the 

animals forage at random. Animals that are fully deterministic have a theoretical 

determinism of infinity. 

Distance coefficient: The distance coefficient determines what part of the landscape the 

animals take into account when taking decisions. The distance coefficient is similar 

to the reactive distance as defined by Bell (1991). The distance coefficient describes a 

relationship between the weighting of cell quality versus distance. A distance 

coefficient of zero means that all distances are weighted equal, while a distance 

coefficient between 0 and -1 leads to a lower weighting for distant cells, i.e. a bias 

towards cells nearby. Using a coefficient still allows very high quality cells in the 

distance to influence animal decisions when the cells in their vicinity are of low 

quality. 

Discriminitive ability: The decisions of an animal foraging in HOOFS are, among others, 

affected by the availability of high quality food resources in their environment. The 

way the animal perceives its environment will strongly influence its decision 

making. The distance coefficient determines how the animal weighs resources near 

and further away. But when evaluating the food resources, the animal is unlikely to 

perceive near and distant resources with the same resolution. To accommodate for 

this, HOOFS summarises the resource environment by calculating mean quality of 

food resources at each super-cell level. The discriminitive ability determines how 

the mean resource quality is calculated at each level using the individual cells within 

it. Either the mean is calculated equally across all cells (discriminitive ability = 1), or 
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the mean is biased towards the higher quality cells among the group of cells 

(discriminitive ability > 1). In ecological terms that means that with a high 

diso-iminitive ability, animals will perceive small high quality resource cells in the 

distance even when these cells are surrounded by poor quality cells. The 

discriminitive ability can be set for each level in the hierarchy separately. 

Mode error: The mode error affects the choice between walking and foraging mode. 

When mode error is one, the best choice (highest potential net energy intake rate) is 

always chosen. When mode error is greater than one, the less than optimal choice is 

selected with a probability based on the value of the mode error. 

Movement cost: Each time the animal moves from one cell to another, a movement cost 

is incurred. This is a fixed time penalty and is thus subtracted from the foraging 

time. 

Relative resistance: The relative resistance determines the resistance when travelling 

from one cell to another and affects the movement cost. An indication for different 

perceptions of resistance' is shown by Hester (1999) as deer cross grass-heather 

boundaries more often than do sheep. The resistance encountered is calculated as 

the average relative resistance of the vegetation types in both cells. For example, if 

the relative resistance of grass and heather are one and five respectively, then going 

from grass to heather will give a resistance of three. Going from grass to grass or 

heather to heather will result in a resistance of one and five respectively. 

Distance sensitivity: The distance sensitivity determines the willingness of animals to 

walk long distances when local resources are of low value compared to resources in 

the distance. Low distance sensitivity facilitates the exploration of isolated patches 

of high quality resource, while at high distance sensitivity animals tend to forage 

locally. 

Output variables 

Time (s): HOOFS does not presume any time unit. Instead the time unit is determined 

by the units used in rate variables, such as the intake rate. Time is expressed as 

simulation time. All rates are expressed per second, thus simulation time is 

expressed in the same units. 
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Standing biomass (g): The vegetation quantity is expressed as the amount of standing 

biomass (dry matter) per cell at the end of the simulation. 

Energy intake rate (J s'): The energy intake is expressed as the average energy intake in 

Joule per animal per second. 

Net Energy intake U s'): The net energy intake is the difference between the energy 

intake rate and the energy cost rate of foraging. 

Energy efficiency (%): The energy efficiency is the proportion of net energy intake rate 

in the total energy intake rate. 

Movement (step): The movement is expressed as the average number of steps taken per 

foraging bout. Continuous grazing in one cell or its neighbour gives a movement of 

one. Walking several steps before grazing will give a movement value larger than 

one. As a result of the scaling of the vegetation map, one step is equivalent to 0.43 m 

in the vegetation mosaic. 

Residence time (s): The average time a cell was grazed by an animal across all animals. 

Grazing time (%): The grazing time is expressed as the proportion of simulated time 

spend grazing. 

Biomass intake (gs'): The average dry matter intake per second across all animals. 

Digestibility (J g'): The average digestibility of the biomass consumed by all animals 

during the simulation. 

Heather proportion (%): The diet composition is expressed as the proportion of dry 

matter of heather in the diet. 

Grazed area proportion (GAP) (%): The proportion of cells of a vegetation type 

grazed, calculated for the whole mosaic (total) and for each vegetation type (grass 

patch, path, heather). 

Adjusted grazed area proportion (%): The proportion of cells of a vegetation type 

grazed relative to the proportion of the vegetation type in the mosaic. For example, 

the adjusted grazed area proportion for grass is calculated as the proportion of 

grazed grass cells in the total number of grazed cells in the landscape, divided by the 

proportion of grass in the mosaic. This gives an indication of the proportion of a 

vegetation type affected relative to the impact on the whole landscape. When the 

impact on a vegetation type is close to, or the same as, the impact on the whole 

landscape, the adjusted grazed area proportion will tend to 100%. 
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5.2.4 Experimental design 

Three experiments (Table 5.2) were carried out using determinism, distance coefficient, 

relative resistance (see Table 5.3 for levels used), discriminative ability (see Table 5.4 for 

levels used), mode error, movement cost and distance sensitivity as treatments. The 

experimental design was based on expected interactions between different parameters. 

Experiment I considers the interaction between perception and motivation and the 

resistance of the landscape. Experiment 2 considers the role of perception across scales. 

Experiment 3 considers the directional choices and the trade-off between distance 

moving and movement cost. 

Table 5.2. Overview of the three experiments. Each experiment applies three values for 
each of three parameters. 

Exp 

1 

2 

3 

Treatment I 
Determinism 

1 	2 	3 
Determinism 

1 	2 	3 
Mode error 

1 	0.8-1.2 0.6-1.4 

Treatment 2 

Distance coefficient 

	

-0.75 	-0.50 	-0.25 
Discriminative ability 

Low Medium High 
Movement cost 

	

0.3 	0.5 	0.7 

Treatment 3 

Relative resistance 
Low Medium High 

Distance coefficient 

	

-0.75 	-0.50 	-0.25 
Distance sensitivity 

	

0.3 	0.5 	0.7 

Table 5.3. Treatments for the relative resistance 

Treatment 

Low 
Medium 

High 

Grass 

1 
1 
1 

Vegetation type 

Path 	Heather 

1 	 5 
1 	 10 
1 	 15 

Table 5.4. Treatments for the discriminative ability. 

Treatment Level in hierarchy 

2 3 	4 	5 	6 

Low 1 1 	1 	1 	1 
Medium 3 3 	2 	1 	1 

High 5 5 	3 	2 	1 
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5.2.5 Spatial statistics 

In order to determine the effect of foraging behaviour on the spatial pattern of 

defoliation, a spatial statistic was needed. The semi-variogram was chosen because it 

provides a good method of describing spatial continuity of complex spatial patterns 

(Isaaks & Srivastava, 1989). The semi-variogram, generally shortened to variogram 

(Isaaks & Srivastava, 1989), is a widely used spatial statistic. The variogram has its 

origin in mining, but is slowly being adopted by environmental scientists. This is 

reflected by recent publications on the application of geostatistics in environmental 

science (Goovaerts, 1997; Legendre & Fortin, 1989; Legendre & Legendre, 1998; 

Webster & Oliver, 2001). 

The variogram shows the variation of a variable between two points as a function of the 

distance between the two points. The sample variogram (called experimental variogram 

in GenStat) is a scatter plot of the variance calculated for a group of point pairs in a 

distance class called a lag, with a fixed lag size. For spatially auto-correlated variables, 

the sample variogram is expected to increase with increasing distance, i.e. the variance 

between point pairs increases with distance, with the lowest variance at the lowest lag 

distance. Generally, the sample variogram reaches a maximum at the a priori variance of 

the variable, i.e. ignoring any spatial structure. 

The model variogram is a function fitted to the sample variogram to provide estimates 

for the nugget, sill and range (Figure 5.3). These values are then used as descriptors of 

spatial structure of the variance. The nugget is the variance at minimum lag distance and 

suggests unexplained variance at a scale smaller than the minimum lag distance for 

which the variogram is calculated. The nugget is the variance that remains after 

accounting for the spatially structured variance (the partial sill). Either this variance is 

intrinsic to the data, this variance was caused by sampling or measurement error, or the 

sampling was done at an inappropriate spatial scale (Isaaks & Srivastava, 1989; Webster 

& Oliver, 2001). The sill is the maximum variance between points at any distance. The 

sill is the sum of the nugget (the spatially uncorrelated variance) and the spatially 

correlated variance (called the partial sill). The range is the distance at which the sill is 

reached. This is the spatial extent of the structure in the data, or points further apart 
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than the range are not spatially autocorrelated. The sample variogram was calculated 

and the model variogram was fitted using the GenStat procedures Fvariogram and 

Mvariogram respectively (Lawes Agricultural Trust; 5th  Edition Release 4.22, Service 

Pack 2, GenStat Procedure Library Release PLI3). 

Distance 	
Range 

Figure 5.3. Example of model variograms indicating range, nugget and sill: A) spherical 
model, B) exponential model. The partial sill is the difference between the sill and the 
nugget. 

The sample variogram was calculated using a maximum lag distance of 50 m and a lag 

size of 2.5 m. The effect of chosen lag size was tested, but there was no significant effect 

on the range, nugget or sill. Directional sample variograms were calculated for 300 

sectors centred on the map's north axis: 0, 30, 60, 90, 120, 150 o  

Sample variograms across the contours showed a hole effect (Isaaks & Srivastava, 1989), 

as the sample variogram had a dip at intermediate distance (Figure 5.4). The hole effect 

is caused by the directionality and regularity in spacing of the underlying pattern of 

paths and patches. The directionality in the vegetation pattern was caused by the 
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interaction between slope of the hill and the defoliation and trampling impact by sheep. 

As sheep prefer to follow the contours of a hill, paths generally follow the contours 

(Hester et al., 1999; Oom & Hester, 1999). Thus the variance between points decreases 

at the average distance between paths. 
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Figure 5.4. Example of six sample variograms of a vegetation defoliation pattern resulting 
from a model simulation run. The sample variogram was calculated for six directions: 0, 30, 
60, 90, 120, 150 ()with a lag size of 2.5 m and a maximum lag distance of 50 m. 

The variograms also showed anisotropy (Isaaks & Srivastava, 1989) as a result of the 

non-stationary mean across scales, i.e. some areas of the landscape were more heavily 

grazed than others at the larger measured scale. As a result the variance increased or 

decreased with increased distance, not approaching an asymptote. This can be avoided 

by increasing the size of the landscape (assuming the landscape is homogeneous at 

larger scales), or by increasing the length of the simulation. The first option would lead 

to a stabilising sample variogram at a higher sill and longer range, while the latter would 

lead to a lower sill and range. 
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No attempts were made to correct for either the hole effect or the anisotropy, as all 

foraging strategies were applied to the same vegetation map (suffering the same 

anisotropy) and because the hole effect did not influence the estimates for the sill, 

nugget and range. In order to accommodate the directionality, sample variograms were 

calculated for six directions and one model variogram was then fitted to all six 

directional sample variograms. Several model variograms were fitted to the sample 

variograms, but the exponential model variogram consistently showed the best fit. 

The exponential model variogram (Equation 5.1) provides estimates for the nugget (ca), 

the partial sill (ci) and theoretical range (a) of the variogram (, for a given lag 

distance (h). Because the exponential model variogram approaches the sill 

asymptotically, the range cannot be determined as the distance at which the sill is 

reached. Therefore the practical range (also referred to as effective range) is defined, by 

convention, as the distance at which 95% of the partial sill is reached (Isaaks & 

Srivastava, 1989). Note that, as the partial sill is used, the nugget does not effect the 

estimation of the range. The practical range is then approximately three times the 

theoretical range (Isaaks & Srivastava, 1989; Webster & Oliver, 2001). For exponential 

models, GenStat estimates the theoretical range. To avoid confusion, all range values 

reported in this study are theoretical ranges as calculated by GenStat. 

h 

y(h)=c0  +ci[i_eaj 	
Equation 5.1 

RNE= Co 
Equation 5.2 

CO  + C 1  

The relative nugget effect (Legendre & Legendre, 1998) was calculated (Equation 5.2) as 

a measure of the contribution of the nugget to the sill, the latter being the sum of the 

nugget and the partial sill. The relative nugget effect provides insight into the amount of 

variance in the data explained by spatial autocorrelation (the partial sill) relative to the 

spatially uncorrelated variance (the nugget). 
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5.2.6 Observed emergent properties 

In order to compare the observed and simulated  heather defoliation, two emergent 

properties are quantified. The first emergent propern -  is the variogram of the spatial 

pattern of heather defoliation. Figure 5.5 shows the sample variogram and the fitted 

model variogram based on the heather defoliation pattern observed on Plot 3, i.e. the 

vegetation mosaic used for the virtual experiment. The model variogram is based on an 

exponential equation resulting in a range of 15.9 m, a nugget of 49.51 and a sill of 66.43. 

The relative nugget effect is 75 O•  Because the variograms of the simulated heather 

defoliation are based on average consumption per time step, sill and nugget are not 

directly comparable with the variogram results of the observed heather defoliation 

(based on percentage defoliation per year). However the range is calculated in metres for 

both the simulated and observed variograms, while the relative nugget effect is 

dimensionless. 
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Figure 5.5. Variogram based on the observed heather defoliation pattern in Plot 3, i.e. the 
vegetation mosaic used for the virtual experiment. 
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The second emergent property is the frequency distribution of heather defoliation. 

Figure 5.6 shows the frequency distribution of percentage defoliation of individual 

observations in Plot 3 of winter observations only. As the simulation model did not 

include seasonality, winter observations, representing a full year of grazing, were 

considered most comparable to the simulated defoliation. Only grazed locations were 

considered and data were averaged by location or transect. In order to compare 

observed and simulated frequency distributions, a distribution function was fitted to the 

histogram. A gamma function generally provided the best fit for both the observed and 

simulated histograms. 
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Figure 5.6. Frequency distribution of percentage defoliation for all observations in Plot 3. 

The gamma function provides two variables describing the shape and the scale of the 

fitted curve. The scale variable b determines how stretched the distribution is along the 

x-axis. A decreasing b leads to a distribution increasingly skewed to the left (i.e. the peak 

is skewed to the left with a long tail to the right). The shape variable k determines the 
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shape of the distribution. For k = 1, the distribution is exponential, i.e. the distribution 

is biased to the left. For b = I and k tending to infinity, the gamma distribution tends to 

a standard normal distribution. The gamma functions were fitted using the Distribution 

procedure in GenStat (Lawes Agricultural Trust; 5Th  Edition Release 4.22, Service 

Pack 2, GenStat Procedure Library Release PLI 3). The gamma function fitted to the 

observed frequency distribution (Figure 5.6) resulted in 0.078 and 1.69 for the b and k 

variables, respectively. In comparison the frequency distribution variables for heather 

defoliation in Plot I gave 0.09 and 2.22 for the b and k variables, respectively. 

5.2.7 Statistical analysis 

The virtual experiments were analysed as individual experiments. The random walks 

have been simulated to provide a comparison with the different strategies. All 

experiments were done using a 3x3 latin square design, with five replicates. Although an 

alternative statistical analysis has been proposed for virtual experiments (Parysow & 

Gertner, 1997), the ANOVA was used in this study. The ANOVA not only provides 

significance estimates for treatments, but it also provides insights into the interactions 

between treatments. The experimental design led to 108 degrees of freedom for all the 

treatment means presented in the tables. Results are marked non-significant (italic in 

tables) when the p-value is greater than 0.05. Generally p-values were less than 0.001, 

and were thus not presented in tables. Several interactions were significant and are 

mentioned in the text. 

To bring across the main findings of these experiments, mean values of output variables 

are presented across the duration of the simulation. Unfortunately this averaging 

conceals the underlying dynamics of the output variables. However HOOFS does 

provide continuous information on all output variables. For example, Figure 5.7 shows 

the different dynamics of energy intake rate between different foraging strategies. 

Animals with low determinism generally have higher variability in their energy intake 

rate, as they wander through the mosaic more randomly than more determined animals. 

The relative resistance constrains animals in their movement, leading to lower energy 

intake rates as they stay longer in the same areas. 
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Many output variables show correlation across time. Figure 5.8 shows the coincidence 

of peaks and troughs in some pairs of variables during a simulation. Obviously, biomass 

intake and energy intake rate are highly correlated. An increase in movement generally 

leads to a decrease in energy intake rate. The correlation between output variables in 

the experiments was investigated through principal components analysis. 

5.3 Results 

The individual experiments are covered in separate sections, but some general points are 

covered first. Differences between output variables for the different treatments and 

different experiments are small. This is a result of the constraints of the vegetation 

mosaic. As the availability of high quality grass is limited, the long-term results of 

different strategies converge. However, instantaneous performance (performance across 

a small time period) of strategies differ more strongly. Here, we have focussed on the 

longer term performance as we are interested in the resulting cumulative defoliation 

pattern. In reality, as in the model, animals are also strongly limited by the availability 

of resources. Constraints in the availability of grass and heather in the simulated 

vegetation mosaic determine the diet composition, with around 60% heather in the diet, 

despite high determinism or perceptional abilities. 

The variogram results generally show a large relative nugget effect. Generally the nugget 

is assumed to be caused by spatial variation below the smallest spatial scale considered 

in the analysis, or by a measurement or sampling error (Isaaks & Srivastava, 1989; 

Webster & Oliver, 2001). However, this is a virtual experiment using a computer 

simulation model, so measurement error is negligible. At the same time the spatial 

pattern of defoliation is not sampled in the experimental sense. The spatial pattern of 

defoliation based on the hexagonal grid and the sampling population are the same. This 

allows us to calculate the sample variogram for the smallest possible scale, i.e. that of 

neighbouring cells. Although we calculated the variogram with a lag distance of 2.5 m, 

testing of smaller lag sizes showed no significant effect on the nugget. Possible 

explanations are mentioned in the discussion. 
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5.3.1 Random walks 

In order to evaluate the performance of the different foraging strategies relative to a 

non-cognitive or random strategy, the model was run with a foraging strategy using 

zero determinism. Because the walking mode is not directly influenced by the lack of 

determinism, the random foraging strategy was run both with and without the walking 

mode. When animals are able to walk as an alternative to foraging, they will walk 

longer distances and visit more cells. The walking mode is affected by the cost of 

alternative routes, and therefore leads to a bias towards low resistance. This results in an 

increased use of path and patches. Because walking animals endure travel costs while 

not taking in biomass, they will perform less well compared to the animals that only 

forage. This is reflected by the results: movement and the grazed area proportions are 

higher, while the energy intake rate is lower (Table 5.5). 

Table 5.5. Treatment effects for the two random strategies either including both walking 
and foraging modes, or limited to foraging only. The determinism is set to zero for both 
strategies. 

Variable Walking and foraging mode Only foraging mode 

Mean SD  Mean SD 

Energy intake rate 4.93 0.07 5.20 0.05 
Net energy intake rate 4.56 0.08 5.11 0.05 
Energy efficiency 92.6 0.2 98.3 0.0 
Movement 5.34 0.13 1.00 0.00 
Foraging time 63.4 0.7 91.1 0.1 
Residence Time 2.71 0.04 3.71 0.06 
Range 12.7 5.48 10.2 4.57 
Sill (x 10) 0.31 0.03 0.65 0.04 
Partial Sill (x 10) 0.11 0.03 0.39 0.03 
Nugget ( x 10) 0.19 0.01 0.27 0.06 
RNE 63.1 5.60 40.7 7.96 
Biomass intake 6.64 0.08 8.26 0.04 
Digestibility 74.2 0.21 62.9 0.32 
Heather proportion 63.4 1.7 69.0 2.6 
Freq. distribution b 0.28 0.03 0.11 0.006 
Freq. distribution k 2.78 0.25 1.99 0.09 
GAPb Total 35.1 1.4 29.2 0.7 
GAP Patch 76.8 6.4 31.1 3.5 
Adjusted GAP Patch 218.6 14.3 106.6 11.5 
GAP Path 74.0 3.1 31.4 1.7 

Adjusted GAP Path 210.8 2.9 107.7 7.6 

GAP Heather 27.7 1.2 28.8 0.9 

Adiusted GAP Heather 79.0 1.753 98.8 1.5 

a SD = Standard deviation; b  GAP = Grazed area proportion. 
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Because the animals do not consider food quality in their foraging strategy, their 

performance is poor. Notable is the large relative nugget effect (RNE). This illustrates 

that most of the variation in the defoliation is a result of a non spatial process, which is 

not surprising for a random foraging strategy. The remaining correlated variance is a 

result of the fact that the animals still move from cell to cell. 

Table 5.6. Biomass (%), per vegetation type, available in vegetation mosaic at the start of 
the simulation and biomass consumed per vegetation type during random walks. 

Vegetation 	Biomass at start (%) - 	 Biomass consumed (%) 
Walking and foraging 	Foraging only 

Grass patches 	 2.4 	 92.8 	 22.5 
Grass paths 	 1.1 	 27.3 	 10.9 
Heather 	 96.5 	 4.6 	 8.3 
Total 	 100 	 6.9 	 8.6 

The diet, indicated by the proportion of heather in the diet, is determined by the 

biomass intake rate of grass and heather, 30 and 10 g DM s 1  respectively, and the 

encounter rate of both vegetation types. Therefore, if sheep were given equal amounts 

of grass and heather, the intake rates would result in a diet of 25% heather, but with a 

heather cover of 90% the ratio of encounter rate of heather to grass is 9 : 1. This would 

be expected to give a diet of 75% heather, but because the animals start off on the grass, 

the percentage heather in the diet is 69% (for the animals with only foraging mode). 

This discrepancy would decrease with increased simulation time. When animals have 

the choice of the foraging or walking mode, the animals are still biased (due to the 

relative resistance) to walk on the grass even if their foraging mode is random. This 

decreases the amount of heather in the diet to 63% and shifts consumption to the grass 

patches and grass paths (Table 5.6). 

When the walking mode is added to the random foraging mode, the animals perform 

significantly less well. Their energy intake rate drops by 5%, mostly as a result of a 

sharp decline in biomass intake (20%). The animals manage to make up for part of the 

decrease in biomass intake by increasing the digestibility of the diet. This is because the 

walking mode is always biased towards grass, leading to an increase in the proportion 

of grass in the diet. 
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5.3.2 Experiment 1: determinism, foraging extent, relative resistance 

Principal component analysis 

The plot of the first and second axis resulting from the principal components analysis 

(Figure 5.9) shows clusters of: 1) energy and net energy intake rate, biomass intake, 

grazing time and movement, 2) heather proportion, range and nugget. The spread of 

variables would suggest that the first axis is related to the mobility of the animals, while 

the second axis could be interpreted as the selectivity of the animals. The selectivity 

affects the diet (heather proportion) and the spatial pattern of defoliation (range and 

nugget). 
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Figure 5.9. First and second axis scores resulting from the principal component analysis of 
Experiment 1. Labels are as follows: en = energy intake rate, ne = net energy intake rate, 
mo = movement, gt = grazing time, rt = residence time, ra = range, sip = partial sill, sif = full 
sill, flu = nugget, rn = relative nugget effect, bi = biomass intake, hp heather proportion, 
fB = frequency distribution variable B, fK = frequency distribution variable K. The meaning of 
the axes is explained in the text. 
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Table 5.7. Treatment means for Experiment 1, with treatments: determinism, distance coefficient, relative 
resistance. The standard error of differences (SED) presented are averages for all treatments. Treatment 
means are printed in italics when treatment effect was not significant (p > 0.05) for that variable. See 
methods section for explanation and units of variables. 

Variable 	 Determinism 	Distance coefficient 	Relative resistance 
1 	2 	3 	-0.75 	-0.5 	-0.25 	low 	medium 	high 	SED 

Energy intake 5.12 5.65 5.95 5.58 5.66 5.48 6.45 5.37 4.90 0.03 
Net energy intake 4.80 5.36 5.67 5.29 5.36 5.17 6.20 5.07 4.55 0.03 
Energy efficiency 93.4 94.6 95.2 94.6 94.5 94.1 96.1 94.3 92.7 0.0 
Movement 4.97 4.16 3.73 4.08 4.19 4.59 4.97 4.16 3.73 0.04 
Grazing time 67.3 70.1 72.1 71.0 70.1 68.5 67.3 70.1 72.1 0.1 
Residence time 2.15 1.80 1.62 1.89 1.82 1.85 1.39 2.05 2.12 0.02 
Range 12.05 9.85 7.23 10.08 8.75 10.30 4.30 12.70 12.13 1.17 
Sill 

( 
x 10) 0.51 0.57 0.60 0.50 0.55 0.63 0.60 0.55 0.53 0.02 

Partial Sill (x 10) 0.37 0.40 0.41 0.33 0.40 0.46 0.42 0.37 0.39 0.02 
Nugget ( x 10) 0.14 0.18 0.19 0.17 0.16 0.17 0.18 0.18 0.14 0.01 
RNE 28.5 31.4 32.0 35.5 29.1 27.4 31.0 32.9 28.0 1.7 
Biomass intake 6.75 7.14 7.36 7.15 7.15 6.97 7.76 7.03 6.47 0.02 
Digestibility 75.5 78.9 80.6 77.8 78.8 78.5 83.0 76.4 75.7 0.3 
Heather proportion 61.2 59.2 59.2 60.6 60.0 58.9 60.0 60.8 58.8 0.4 
Freq. variable b 0.20 0.22 0.23 0.22 0.23 0.20 0.24 0.21 0.20 0.005 
Freq. variable k 2.29 2.48 2.51 2.46 2.49 2.33 2.50 2.41 2.37 0.037 
GApa Total 28.9 29.6 29.9 30.4 29.9 28.1 30.4 30.5 27.5 0.4 
GAP Patch 68.0 75.8 81.9 77.3 76.8 71.6 91.0 71.6 63.1 1.4 
Adjusted GAP Patch 231.9 255.6 274.8 252.6 255.7 254.0 300.5 233.7 228.2 3.3 
GAP Path 66.4 74.9 80.7 74.0 75.8 72.1 90.5 70.8 60.6 1.1 
Adjusted GAP Path 226.5 252.5 270.8 241.3 252.5 256.0 298.8 231.9 219.1 2.6 
GAP Heather 21.9 21.3 20.5 22.1 21.4 20.2 19.4 23.1 21.1 0.3 
Adjusted GAP Heather 76.4 72.0 68.6 73.0 72.0 72.0 63.8 75.9 77.3 0.5 

a GAP = Grazed area proportion 
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A 	 B 
Figure 5.10. Defoliation maps resulting from animals foraging with different degrees of 
determinism: A) low determinism, B) high determinism. Values for the distance coefficient 
and the relative resistance are constant at -0.50 and low respectively. The grass patches 
and paths are indicated by their outline. Colours indicate amount of defoliation ranging from 
light (yellow) to heavy (red). 

Determinism 

Increased determinism leads to a decrease in the range and an increase in both the 

nugget and the partial sill (Table 5.7). The determinism reflects how flexible animals are 

when selecting their food. Highly deterministic animals will only eat from the best 

quality food resource, in this case the grass, and their grazing pattern thus becomes 

limited to areas with lots of grass. This means that their foraging will become spatially 

correlated across small distances, i.e. more clustered (Figure 5.10). This means a 

decreasing range and, as the contrast between grazed and ungrazed areas increases, an 

increasing sill. 

Increased determinism leads to an increase in both the frequency variables b and k. An 

increase of b indicates that the peak of the frequency distribution of the heather 

defoliation becomes less skewed to the left, while an increase of k indicates that the 

right tail has increased at the cost of the left tail. In other words, large values of heather 
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defoliation increase in frequency with increased determinism. This confirms the change 

in pattern observed through the decreasing range. A decreasing range indicates more 

intensive grazing on a smaller area of heather, leading to an increased frequency of 

larger values of heather defoliation. 

As the animals increase their determinism to eat high quality food resources, the need 

to move decreases. As their foraging time increases, the animals increase their biomass 

intake, their digestibility, their energy efficiency and subsequently their energy intake. 

Residence time decreases with foraging time because the animals graze the grass patches 

shorter and shorter. Determined to eat high quality food, the animals manage to 

decrease the proportion of heather in the diet slightly. 

As the determinism increases, both the digestibility and the foraging time increase, 

leading to higher energy efficiency. With increasing biomass intake, the animals increase 

their net energy intake rate by 18%. At the highest determinism, the animals perform 

11 % better than the animals using a random walk. 

Distance coefficient 

The distance coefficient has a strong effect on the mobility at the cost of the intake rates. 

Animals initially manage to keep biomass intake stable, but when the distance 

coefficient is highest biomass intake decreases (Table 5.7). A small distance coefficient, 

i.e. more weight given to local cells, leads to the maximum proportion of the landscape 

visited, coinciding with maximum biomass intake and maximum grazing time. With 

increasing distance coefficient, the animals walk more and across longer distances. As 

the biomass intake goes down, so does the energy efficiency. With a large distance 

coefficient, i.e. more weight given to distant cells, animals are more willing to walk, thus 

leading them away from poor or depleted areas. 

Increased distance coefficient leads to an increase in the contrast between high and low 

defoliation areas (higher sill) (Table 5.7). It leads to a decrease in the contribution of 

small scale heterogeneity in the variance (i.e. high defoliation zones become more 

evenly defoliated; decreasing relative nugget effect). It also leads to more movement 
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which leads to a higher energy intake rate at the intermediate distance coefficient, but 

increased distance coefficient results in a lower biomass intake. With energy cost 

increasing and digestibility stabilising, their net energy intake thus goes down 

The frequency distribution variables b and k both slightly increase initially and then 

decrease with increasing distance coefficient (Table 5.7). As the animals increase their 

walking, more heather patches are grazed at lower heather defoliation, leading to an 

increasingly skewed distribution. 

Although the thstance coetficwnt was e\pected to increase foraging success, the net 

energy intake rate drops by 2.3% at the high distance coefficient (Table 5.7). However, 

at the intermediate level, the net energy intake rate increases by 1.3%. The intermediate 

distance coefficient performs 4.9% better than the random walk (Table 5.5). Thus, while 

intermediate levels of perception are beneficial, responding to high perception of distant 

resource patches does not lead to better performance in this poor quality landscape. 

Relative resistance 

The animals' foraging success is strongly affected by the relative resistance of the 

vegetation (Table 5.7). Increased resistance leads to decreased biomass intake, decreased 

digestibility and thus a decrease in the net energy intake rate. Because the animals are 

forced to use the grass more as a result of the increasing relative resistance of heather, 

their diet contains increasingly less heather. Forced to eat the grass, the grass will get 

shorter and shorter. 

Increased relativc revivlamL' of the heather constrains the animals to the grass for their 

foraging and walking (Figure 5.11). At low and intermediate relative resistance of grass 

and heather animals manage to visit the same number of cells, but this drops where 

there is high contrast in relative resistance. The nugget drops as the grazed area 

proportion decreases, i.e. increased grazing pressure on a small area, as local contrast in 

defoliation decreases. 
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A 	 B 

Figure 5.11. Defoliation maps resulting from animals foraging with different degrees of 
relative resistance: a) low relative resistance, b) high relative resistance. Values for the 
determinism and the distance coefficient are constant at 2 and -0.50 respectively. Colours 
indicate amount of defoliation ranging from light (yellow) to heavy (red). 

Increasing resistance makes walking through the mosaic (largely dominated by heather) 

too costly. Animals therefore refrain from walking long distances and spend more time 

grazing. Despite this, foraging costs go up and energy efficiency goes down. This is 

because animals are forced to move because they overexploit their local environment. 

Animals perform 21.3% better than random, but the animals endure a decrease of 24% 

in net energy intake at the highest relative resistance of vegetation. The relative 

resistance seems to overrule the effect of other perceptional abilities. 

Relative resistance - distance coefficient interaction 

The interaction between the relative resistance and the distance coefficient shows that 

the importance of the distance coefficient decreases with increased relative resistance. 

This suggests that in a highly resistant landscape, the performance of strategies 

converges. 
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5.3.3 Experiment 2: determinism, discriminative ability, distance coefficient 

Principal component analysis 

The principal component analysis (Figure 5.12) shows an interaction between the first 

and second axis. While the first axis again seems to be related to mobility, with 

movement opposite to grazing time and biomass intake rate, the second axis seems to 

be indicating an interaction between the mobility, local heterogeneity (nugget) and diet 

(heather proportion and energy intake). Some clusters in the previous principal 

components analysis are now pulled apart by the two axes. 
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Figure 5.12. First and second axis scores resulting from the principal component analysis of 
Experiment 2. For explanation of labels see Figure 5.9. 

Determinism 

Performance, i.e. net energy intake rate, of the strategies is generally lower (Table 5.8) 

than in Experiment 1 (Table 5.7). Notable is also the higher range. The effects of the 

discriminative ability and/or the resistance are thus additive to the effect of the 

determinism and the distance coefficient. 
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Table 5.8. Treatment means for Experiment 2, with treatments: determinism, discriminative ability, and distance 
coefficient. The standard error of differences (SED) presented are averages for all treatments. Treatment means 
are printed in italics when treatment effect was not significant (p > 0.05) for that variable. See methods section 
for explanation and units of variables. 

Variable Determinism Discriminative ability Distance coefficient SED 

1 2 3 low medium high -0.75 -0.50 -0.25 

Energy intake 4.80 5.37 5.71 5.35 5.37 5.16 5.33 5.34 5.21 0.03 
Net Energy intake 4.45 5.06 5.43 5.13 5.08 4.73 5.02 5.03 4.89 0.03 
Energy efficiency 92.6 94.2 95.0 96.0 94.4 91.4 94.1 94.0 93.6 0.1 
Movement 4.88 3.96 3.52 2.72 3.85 5.78 3.97 4.09 4.30 0.04 
Grazing time 65.1 69.0 71.4 78.7 70.1 56.5 69.5 68.6 67.3 0.2 
Residence time 2.30 2.00 1.77 2.49 2.06 1.51 2.04 2.01 2.03 0.03 
Range 16.18 12.50 10.08 22.73 12.23 3.78 12.95 12.03 13.78 1.80 
Sill (x 10-5 ) 0.56 0.61 0.63 0.82 0.54 0.44 0.54 0.57 0.69 0.03 
Partial Sill (x 10) 0.45 0.47 0.46 0.70 0.36 0.32 0.40 0.43 0.55 0.03 
Nugget (x 10) 0.12 0.14 0.17 0.13 0.18 0.12 0.14 0.14 0.14 0.01 
RNE 27.2 24.8 28.0 17.4 33.8 28.8 29.4 26.5 24.1 1.4 
Biomass intake 6.48 6.98 7.24 7.52 7.04 6.14 6.97 6.94 6.79 0.02 
Digestibility 74.7 77.3 79.2 71.0 76.3 83.9 76.8 77.3 77.2 0.3 
Heather proportion 62.8 60.1 58.7 59.9 60.8 60.9 61.3 60.9 59.5 0.5 
Freq. variable b 0.21 0.21 0.22 0.14 0.21 0.29 0.22 0.21 0.20 0.005 
Freq. variable k 2.38 2.38 2.42 1.99 2.44 2.75 2.45 2.38 2.35 0.036 
GAPa Total 28.1 29.0 29.0 29.1 30.6 26.4 29.4 29.4 27.4 0.4 
GAP Patch 65.6 71.9 75.0 54.4 71.1 87.0 72.5 72.7 67.4 1.3 
Adjusted GAP Patch 234.5 250.9 262.5 186.2 231.5 330.2 248.2 250.6 249.1 3.2 
GAP Path 63.8 70.8 75.0 53.4 70.9 85.3 70.1 71.7 67.9 1.2 
Adjusted GAP Path 228.2 247.0 262.0 182.6 230.8 324.2 239.8 247.0 250.8 2.6 
GAP Heather 21.5 21.3 20.7 24.6 23.3 15.5 21.7 21.6 20.1 0.3 
Adjusted GAP Heather 76.0 72.9 70.6 84.6 76.2 58.7 73.7 72.9 72.9 0.5 

a GAP = Grazed area proportion 
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Discriminative ability 

The discriminative ability determines whether animals are sensitive to more distant and 

isolated high quality resource patches. The discriminative ability showed a very strong 

effect on the range of the variogram. At low discriminative ability the range is 22.7 m, 

while at high discriminative ability the range is 3.8 m. A low discriminative ability leads 

to a highly clumped pattern of grazing on a part of the mosaic (Figure 5.13a), as animals 

do not manage to distinguish good from bad. However with improved discriminative 

ability, animals successfully explore the whole complex mosaic, leading to a highly 

spread pattern of grazing (Figure 5.13b). High distance sensitivity enables the animals 

to find resource patches more effectively, leading to a better fit between defoliation and 

vegetation pattern. The discriminative ability also has an impact on the sill. As the range 

drops and the defoliation becomes more clumped, the correlated variance decreases. 

The nugget is high for the intermediate discriminative ability. The nugget is the 

unexplained variance below the minimum lag distance. As the animals find their way 

around the vegetation mosaic more effectively, the small scale heterogeneity initially 

increases, but at high discriminative ability the animals again zoom in on a small area, 

increasing grazing pressure and decreasing the small scale heterogeneity again. 

Both frequency distribution variables b and k increase rapidly with increasing 

discriminative ability (Figure 5.8). This coincides with the strong decrease of the range. 

As animals find their way around the mosaic more effectively, their use of the heather 

becomes more associated with the grass network. The area of heather affected (grazed 

area proportion) decreases while the severity of defoliation per patch increases, leading 

to an increase in the frequency of high heather defoliation. 

Because high quality resource patches are scattered around the environment, animals 

have to move more in order to visit these patches (Table 5.8). Although there is a cost 

associated with movement, their initial net energy intake remains high due to the 

increase in energy intake rate. The animals can sustain their energy intake rate as a 

result of the higher digestibility the animals achieve from the resource patches visited. 

This coincides with a decrease in biomass intake, as the animals spend more time 

walking. At the highest discriminative ability, the increased ability leads to strongly 
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decreased foraging time and increased movement over longer distances. The biomass 

intake thus collapses, resulting in a very poor energy efficiency. The animals endure a 

decrease in energy intake rate of 8% at the highest discriminative ability compared with 

the lowest ability. 

A 	 B 

Figure 5.13. Defoliation map resulting from animals foraging with different degrees of 
discriminative ability: A) low discriminative ability, B) high discriminative ability. Values for the 
determinism and the distance coefficient are constant at 2 and -0.50 respectively. Colours 
indicate amount of defoliation ranging from light (yellow) to heavy (red). 

Distance coefficient 

The results for the distance coefficient are similar to the results in Experiment 1. The 

combination of different treatments in this experiment leads to a 5.6% decrease in 

energy intake rate (for the intermediate distance coefficient) as compared to 

Experiment 1. Furthermore, several variables have no significant treatment effect. 

Although not surprising, it is good to be reminded that an experimental design using 

several treatments at the same time will influence both the significance and the strength 

of treatment effects. This is because the high determinism leads to an increased 

digestibility. 
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Interaction between determinism and discriminative ability 

The interaction shows that high discriminative ability works well with high 

determinism. The decrease in energy intake at the highest discriminative ability (as 

described above), does not occur at high determinism, mainly because the biomass 

intake does not decline as strongly. Instead the animals manage to sustain a 2% increase 

in energy intake. 

5.3.4 Experiment 3: mode error, movement cost, distance sensitivity 

Principal component analysis 

As in Experiment 2 the principal component plot shows interactions between the first 

and second axis (Figure 5.14). The first axis is defined by the cluster of energy intake, 

net energy intake and heather proportion in the diet, suggesting a selectivity factor. The 

second axis is defined by the clusters of the sill and range versus both frequency 

distribution variables b and k , indicating a spatial pattern factor. 
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Figure 5.14. First and second axis scores resulting from the principal component analysis of 
Experiment 3. For explanation of labels see Figure 5.9. 
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Table 5.9. Treatment means for Experiment 3, with treatments: mode error, movement cost, and distance 
sensitivity. The standard error of differences (SED) presented are averages for all treatments. Treatment 
means are printed in italics when treatment effect was not significant (p> 0.05) for that variable. See methods 
section for explanation and units of variables. 

Variable Mode error Movement cost Distance sensitivity SED 
1 0.8-1.2 0.6-1.4 0.025 0.050 0.100 0.3 0.5 0.7 

Energy 5.53 5.37 5.45 6.14 5.43 4.79 5.51 5.48 5.36 0.03 
Net Energy 5.26 5.04 5.17 5.92 5.14 4.42 5.17 5.20 5.10 0.03 
Energy efficiency 95.1 93.6 94.6 96.4 94.6 92.3 93.5 94.7 95.1 0.0 
Movement 2.87 4.23 3.61 4.26 3.59 2.86 4.56 3.48 2.67 0.02 
Grazing time 73.6 66.9 71.6 77.7 70.9 63.4 65.7 71.8 74.6 0.1 
Residence time 1.94 1.88 2.09 1.74 2.00 2.16 1.59 2.02 2.29 0.02 
Range 12.53 11.05 10.80 10.90 12.48 11.03 6.30 11.53 16.55 0.87 
Sill ( x 10-1) 0.74 0.63 0.59 0.72 0.66 0.58 0.58 0.63 0.74 0.02 
Partial Sill ( x 10) 0.56 0.46 0.43 0.52 0.49 0.44 0.42 0.45 0.58 0.02 
Nugget ( x 10) 0.18 0.17 0.16 0.20 0.17 0.13 0.17 0.18 0.16 0.01 
RNE 25.2 27.1 27.7 29.1 27.3 23.7 28.9 29.0 22.1 1.2 
Biomass intake 7.19 6.83 7.19 7.77 7.09 6.36 6.75 7.17 7.30 0.02 
Digestibility 76.9 78.6 75.8 79.2 76.8 75.4 81.5 76.4 73.4 0.2 
Heather proportion 59.5 58.0 58.9 59.5 59.4 57.5 59.2 58.9 58.4 0.4 
Freq. variable b 0.16 0.22 0.21 0.20 0.19 0.19 0.23 0.20 0.15 0.004 
Freq. variable k 2.09 2.42 2.39 2.33 2.29 2.28 2.47 2.34 2.09 0.033 
GApa Total 26.7 27.8 30.4 30.1 28.8 26.1 27.0 29.2 28.7 0.3 
GAP Patch 68.3 70.7 67.1 78.0 69.2 58.9 78.4 67.9 59.8 1.1 
Adjusted GAP Patch 258.4 255.4 220.8 265.6 243.0 226.0 294.5 231.8 208.3 2.7 
GAP Path 68.0 70.3 67.4 79.0 69.2 57.5 78.9 68.0 58.7 0.9 
Adjusted GAP Path 257.5 253.7 221.2 269.0 242.8 220.6 296.2 232.2 203.9 1.6 
GAP Heather 19.2 20.1 23.7 21.3 21.4 20.2 17.7 22.2 23.1 0.2 
Adjusted GAP Heather 71.4 72.0 78.1 69.8 74.1 77.5 64.7 76.1 80.7 0.4 

a GAP = Grazed area proportion 
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Mode error 

At moderate mode error animals walk more without improving their energy intake rate 

(Table 5.9). Biomass intake goes down and overhead cost goes up. At high mode error 

the extra walking leads to a recovery in intake. The mode error has no significant 

influence on the spatial pattern of defoliation (range), but the heterogeneity (sill) 

decreases with increasing mode error. Animals make more errors, i.e. more random 

decisions, leading to decreasing spatial structure in foraging pattern. 

Movement cost 

Increased movement cost makes the animals less willing to walk, leading to an increase 

in residence time. Although they stay longer in the same patch and travel less far, their 

time spent grazing goes down. This is because the movement cost is expressed as a time 

penalty and is taken off the time spent grazing. Increased movement cost leads to a 

decrease in the long distance walking, but also in the time spent grazing. Animals visit a 

smaller proportion of the mosaic. As a result, their biomass intake rate drops rapidly. 

As their energy efficiency goes down, their performance drops considerably. 

Distance sensitivity 

Increasing distance sensitivity leads to a strong decrease in the average distance walked, 

and an increase in grazing and residence time. The energy intake rate goes down, but 

net energy intake rate initially increases as a result of an strong initial increase in the 

biomass intake. Increasing distance sensitivity leads to an increase in the range, as 

animals make their decisions more dependent on local information. The relative nugget 

effect drops at the highest distance sensitivity, because increased grazing pressure on a 

small area decreases small scale heterogeneity. While animals manage to explore a large 

part of the mosaic at the low distance sensitivity matching the defoliation pattern to the 

grass pattern (Figure 5.15a), the high distance sensitivity hampers the perception of 

quality, leading to a widespread, poorly matched, pattern of grazing (Figure 5.15b). 

Increased distance sensitivity thus leads to a decrease in the correlation between the 

grazing and vegetation pattern. Both frequency distribution variables decrease rapidly 

with increased distance sensitivity, indicating that the distribution of heather 

defoliation becomes increasingly skewed (i.e. the peak of the distribution becomes 

increasingly skewed to the left). As foraging is increasingly disassociated with the 
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vegetation pattern, more heather patches are visited with a decreasing heather 

defoliation per patch. 

A 	 B 

Figure 5.15. Defoliation map resulting from animals foraging with different degrees of 
distance sensitivity: A) low distance sensitivity, B) high distance sensitivity. Values for the 
mode error and the movement cost are constant at 0.2 and 0.05 respectively. Colours 
indicate amount of defoliation ranging from light (yellow) to heavy (red). 

The distance sensitivity does not significantly influence the heather proportion in the 

diet, but digestibility goes down and biomass intake rate goes up. The heather 

proportion is constant, despite the strong decrease in the proportion of patch cells 

grazed. This implies that the grass patches that do get visited will endure a much greater 

defoliation. When the animals move less, their chance of finding high quality food 

decreases. Although this leads to a lower performance in the long run, the animals 

initially increase their net energy as a result of their increased biomass intake, resulting 

from increased grazing time. 

5.4 Discussion 

The results show a strong interaction between the effects of foraging strategies on the 

performance of the animals and the emergent pattern of vegetation defoliation. 
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Generally, strategies which led to a large proportion of the mosaic being visited by the 

animals increased their performance. However, a cost was involved in this exploration 

and strategies which over-stimulated mobility led to a decrease in energy efficiency. 

This suggests that high perceptional ability is not necessarily an advantage in complex, 

generally poor quality, vegetation mosaics. 

The pattern of vegetation defoliation was strongly affected by the selectivity of the 

animals and their mobility. Selectivity of the animals resulting from the determinism to 

eat high quality feed resources led to an increased correlation between the vegetation 

and vegetation defoliation pattern. Although the overall area grazed remained constant, 

grazing shifted from a locally dispersed pattern to a globally converged pattern, such 

that at high selectivity the majority of the defoliation occurred on the grass patches and 

paths. Higher mobility led to an increase in the small scale, i.e. local, heterogeneity. As 

mobility decreases, grazing becomes increasingly spatially limited leading to increased 

pressure on a small area, thus decreasing the variation in defoliation between cells in the 

grazed area. 

The aim of these experiments was to investigate foraging strategies, based on several 

perceptional parameters, which could explain observed foraging patterns. The frequency 

distribution and the range of the variogram of the spatial pattern of heather defoliation 

were used to relate simulated to observed patterns. In a direct qualitative comparison, 

the results suggest that an animal's foraging strategy would be based on low 

determinism, high distance coefficient, high relative resistance, low discriminative ability, 

low mode error, low movement cost and low distance sensitivity. This translates as a 

low perceptional, large scale foraging strategy. However a direct comparison was 

considered to be inappropriate, as the model was parameterised in order to produce 

varying spatial patterns, rather than to be quantitatively realistic. For example, no 

validation was made to ensure that observed and simulated patterns resulted from the 

same grazing pressure. During the simulations, grazing pressure, i.e. the number of 

animals, was kept constant. The difference between the frequency distributions for Plot 

I and 3 shows that grazing pressure could affect the characteristics of the heather 
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defoliation. The frequency distribution of Plot I was less strongly skewed as compared 

to Plot 3, and more similar to the frequency distributions of the simulated patterns. 

Results suggest that generally intermediate levels of selectivity and mobility lead to the 

best animal performance, while at the same time resulting in a strong correlation 

between the pattern of grass and the pattern of defoliation. Furthermore results show 

that perception across several scales can contribute to a better performance of the 

animal. This is complementary to the argument of Illius and Gordon (1993), that 

foraging decisions cannot be made on small scales in time and space. To achieve a high 

quality diet, animals have to be able to explore their environment. Although results 

suggest that highly perceptive strategies can lead to different diets and patterns of 

defoliation, differences in performance resulting from these strategies remained small. 

This indicates that resource heterogeneity, i.e. the complexity of the landscape, has a 

strong effect on strategy performance. This confirms earlier simulation studies in which 

performance of strategies converged with decreased abundance of the preferred feed 

resource (Moen et al., 1997; Turner et al., 1994). 

Experiments with sheep have shown that the animals can use spatial memory to locate 

previously visited food patches (Edwards et al., 1996; Edwards et al., 1997). It is 

expected that strategies including some form of spatial memory, will do better in 

heterogeneous/ complex mosaics when the strategy allows for a more effective 

exploration of the mosaic. However a trade off occurs between memory capacity and 

foraging success. Results from this simulation study suggest that the energy return of 

spatial memory could be limited due to the complexity of the landscape. Highly 

perceptional strategies were less successful. Animals could optimise the energy return of 

spatial memory by varying spatial resolution and extent of the memory. Moderate 

perceptional strategies might benefit from spatial memory at a low resolution and a large 

extent. Thus animals  would be more efficient in selecting better quality resource areas at 

a larger scale. 

The modelling approach used here provided an effective tool to investigate the role of 

perceptional parameters in an artificial plant-herbivore system. Contrary to field 
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experiments, the modelling environment allowed us to vary parameters at will and 

investigate the output in great detail. Both the animal performance and the resulting 

pattern of defoliation responded strongly to variation in the parameter values, allowing 

for a functional analysis of parameters and interactions. However, possible parallels 

between model and field observations can only be speculative and quantitative 

correlations can only be achieved through further field observation and 

experimentation. Emergent properties can provide the bridge between model 

parameters and variables measurable in the field. 

The spatial statistical analysis showed two interesting phenomena in the results from 

the virtual experiments. Firstly, the model variograms generally showed a large relative 

nugget effect, i.e. a large part of the variation in the vegetation defoliation was not 

spatially correlated. This also arose from the field observations of heather defoliation, 

which showed high variation at small spatial scales (see discussion Chapter 4). The large 

relative nugget effect could indicate that animals using strategies similar to biased 

random walks take random decisions at the smallest spatial scale and biased random 

decisions at larger scales. On the other hand the effect could be caused by the maximum 

fraction of biomass that can be consumed at once in a cell, possibly linked to a fixed 

amount eaten by herbivores per feeding station (Wallis de Vries et al., 1999). However, 

the pattern of defoliation of the simulation result considers both grass and heather, thus 

the effect could also be the result of the contrast in defoliation across the boundary 

between heather and grass. Therefore, further investigation is needed to understand the 

cause of the large relative nugget effect and possible ecological relevance. 

Secondly, the results showed sample variograms which increased up to the maximum 

lag distance. This suggests that the mean vegetation defoliation of one part of the 

vegetation mosaic is not equal to the mean at another part of the mosaic. This violates 

one of the main assumptions of the semi-variogram analysis, that of the stationary mean 

(Isaaks & Srivastava, 1989). A non-stationary mean suggests that the spatial pattern 

under study is the result of at least two processes operating at different spatial scales. To 

ensure a stationary mean, the appropriate scale of observation has to be selected 

carefully. It is however questionable whether complex ecological systems have 
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appropriate spatial scales. It is likely that any scale of observation is also affected by 

processes working either below or above the chosen scale. 

In this study three separate, latin square designed, experiments were carried out to 

investigate seven parameters. Although this resulted in convenient processing jobs and 

file sizes, facilitating the investigation of several parameters, a latin hyper-cube sampling 

design (McKay et al., 1979) would have provided a wider range of results. This was 

however not feasible given the amount of time and computer resources available. This is 

effectively a single latin square design, incorporating all parameters in one experiment. 

This provides insight into all parameters and all possible interactions, thus extending 

the approach used in this study. The latin hyper-cube sampling is often used in 

sensitivity analysis of simulation models. 
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Chapter 6 
Discussion 

If we are not careful to preserve a considerable area of heath as 
a memorial, then I do not doubt that our descendants will 
censure us for our short-sightedness and lack of feeling. 

C. Raunkir (1913) 

Translated by H. Gilbert-Carter in Raunkir et al. (1934) 



Discussion 

6 Discussion 

6.1 Results summary and synthesis 

The chapters in this thesis provide an insight into the spatial pattern of defoliation by 

sheep across heather-grass mosaics. Chapter 2 provides a statistical description, in the 

form of a spatial interaction model (Sim), of the pattern of heather defoliation. The SIM 

shows that the pattern of defoliation of the less preferred food resource was strongly 

driven by the distribution of the preferred food resource, in this case the heather and 

grass respectively. Heather defoliation at the grass-heather edge was predicted as a 

function of the availability and size of grass patches in the vicinity. The model shows 

that heather defoliation along the paths decreased with increasing distance from the 

grass patches and increased with increasing patch size. An implication of the model is 

that the amount of heather consumed will depend on how the preferred and less 

preferred species are mixed within the mosaic. As the pattern of grazing will depend on 

the pattern of vegetation, manipulating the pattern of vegetation could be used as a 

management tool to influence patterns of grazing. An example of manipulation of the 

pattern of vegetation is provided by Clarke et al (1995a; 1995b). The mosaics used in 

the experiments were artificially created through cutting and fertilising. 

Chapter 3 shows that the heather defoliation away from the grass-heather edge was 

strongly influenced by the grazing pressure at the edge zone. Increasing grazing 

pressure led to an increase in the width of the zone of impact, not only an increase in 

defoliation at the edge as previously assumed. The findings suggest that under high 

stocking densities, a large area of the heather could be affected, while at low stocking 

densities only a small area of the heather could be affected. Combining these results 

with those of the previous chapter would suggest that the area of heather affected by 

grazing would be highest for highly intermixed heather-grass mosaics at high stocking 

densities and lowest for lightly intermixed mosaics at low stocking densities. From the 

data I propose new hypotheses which involve the existence of multiple stable states. 

These propositions require further research. 
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Chapter 4 shows that, contrary to usual assumptions, defoliation was only one of a 

number of processes leading to fragmentation of heather (change from heather to 

grass) as a result of herbivore impact. Ruminating behaviour also appeared to be an 

important process in the fragmentation of heather. While the impact of ruminating 

behaviour occurred in a few large patches associated with the resting areas, the impact 

of heather defoliation was spread across the mosaic in small patches. Combined with 

results from the previous two chapters, this suggests that fragmentation of heather is 

more likely to occur near large grass patches and more likely to occur when grass and 

heather are intimately mixed within the mosaic. Qualitative findings suggested that life 

history and grazing history of plants also affected herbivore impact on vegetation, but 

this requires further investigation. As these factors are likely to be spatially correlated 

with the pattern of herbivore impact, they could play an important role in plant-

herbivore interactions. The role of ruminating behaviour in the distribution of 

herbivore impact on vegetation can easily be integrated into the SIM. Instead of a model 

with a single source of attraction, an extended SIM predicts the attraction of a point in 

the mosaic based upon the attractions of both resources. Through statistical modelling 

the appropriate model for predicting the attraction of the resting site needs to be 

determined. The total attraction would then be a function of the attractions of the two 

sources. This could be a simple summation, if the attractions are purely additive, or 

more complex equations, i.e. assuming interactions between the two sources of 

attraction. 

Chapter 5 shows, through a virtual experiment, a strong interaction between the 

vegetation pattern and the performance of foraging strategies, resulting in the emergent 

pattern of vegetation defoliation. Although increased perceptional abilities made the 

animals more successful in exploring their environment, increased mobility decreased 

energy efficiency. Thus moderate perceptual abilities enabled the highest animal 

performance. The patterns of defoliation resulting from foraging strategies using 

moderate perceptional abilities were qualitatively similar to patterns observed in the 

field experiment (see earlier chapters) and other field experiments. As discussed in 

Chapter 2, one of the strengths of the SIM is to evaluate the spatial patterns resulting 
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from individual-based models. This approach was considered but it was not possible to 

pursue further due to time limitations. 

6.2 Implications for plant-herbivore interactions 

The field experiment in this study used the Scottish Blackface sheep, as this is the breed 

most commonly used in upland hill farms. Scottish Blackface sheep are renowned for 

being hardy and more self-sufficient than many lowland breeds, thus being suited to 

survive in the extreme environment of the Scottish uplands (National Sheep 

Association, 1987). Apart from this physical adaptation, it is likely that the breed has 

adapted its foraging strategy to fit the complex heather-grass mosaics on offer. A telltale 

sign is that the nearest neighbour distance in Scottish Blackface sheep is one of the 

highest among sheep breeds (Arnold & Dudzinski, 1978). This allows the flock to 

spread out across a vegetation mosaic with sparse grazing (National Sheep Association, 

1987). Furthermore Scottish Blackface are hefted sheep, meaning that lambs are loyal to 

the area or hill side at which they are weaned (Hunter, 1962b; National Sheep 

Association, 1987). Over time the flock could increase their knowledge of the heft, thus 

increasing their grazing efficiency. As sheep often use fixed resting sites (Arnold & 

Dudzinski, 1978), they are likely to develop a central place foraging routine (Bell, 

1991). This will intensify the pattern of impact on the vegetation. 

This study focussed on the impact of foraging behaviour of sheep on heather-grass 

mosaics. However, experiments using the same experimental site also studied the 

behaviour of red deer (Hester & Baillie, 1998; Hester et al., 1999). Foraging behaviour 

and subsequent diet composition of red deer were generally less affected by the pattern 

of vegetation than were sheep (Hester et al., 1999). Although this can be partly 

explained by the increased ability of red deer to digest heather (Milne et al., 1978) and 

other characteristics related to body size (Gordon et al., 1996), difference in 

perceptional abilities (such as perception of resistance of heather) and foraging strategy 

(being less deterministic in foraging the preferred vegetation type) could also explain 

observed differences between sheep and red deer. Thus, while sheep might become 

encounter-limited as grass and heather get more intimately mixed, as suggested by 

Hester et al. (1999), red deer might be able to compensate for increased fragmentation 
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through perceptional abilities and foraging strategy. The results from the virtual 

experiment suggested that both a rigid highly deterministic foraging strategy and high 

resistance sensitivity (a perception ability) led to reduced performance of the animals in 

the highly fragmented mosaic. Willingness to eat a mixed diet and a more mobile 

foraging strategy led to increased net animal performance, despite reduced digestibility 

of the diet. 

The results of the virtual experiment suggest that the vegetation plays an important role 

in determining herbivore performance, but that perceptional abilities used in foraging 

strategies can improve performance. The emergent patterns of defoliation varied 

strongly with foraging strategy. Surprisingly, some foraging strategies resulting in 

similar herbivore performance showed very different patterns of defoliation. This could 

imply that spatial aspects of foraging strategies could play an important role in 

interspecific competition and facilitation between herbivore species in herbivore 

assemblages. For example a herbivore foraging randomly at a particular scale could 

facilitate a herbivore foraging selectively at that same scale. This is further discussed in 

the future research sections. 

The spatial pattern of herbivore impact has implications for the development of 

heather-grass mosaics. As sheep focus on the preferred vegetation type and herbivore 

impact is higher around larger patches of the preferred type, large patches of the 

preferred type are expected to grow faster than smaller patches. Pattern initialisation in 

heather-grass mosaics could be similar to pattern initialisation in physical processes, 

such as the formation of snow flakes or air bubbles in boiling water. Both processes 

need nucleation points as a starting point for the process. Nucleation points for heather 

fragmentation could be provided by collateral damage of the herbivores (for example 

trampling) or the activity of other animals. For example, rabbit burrows create an 

opportunity for grasses to invade the heather. Once the grass is established, this grass 

patch could initiate increased herbivore impact and subsequent growth of the grass 

patch. Another possible source of nucleation points could be degenerate heather 

bushes, in the sense of the cyclical process of heather stages (Watt, 1947). The role of 
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these processes can at this point only be hypothesised, and should be tested in field 

experiments. 

The main spatial scale considered in this study was that of grass patches within heather 

in plots of one hectare. The findings confirmed and extended results from previous 

studies (Clarke et al., 1995a; 1995b; Hester & Baillie, 1998) which showed that heather 

defoliation occurs predominantly in a narrow zone around the edge of grass patches. 

Scaling up from one hectare plots to hillsides or landscapes, i.e. at the scale of the 

feeding site, camp or home range (Bailey et al., 1996; Roguet et al., 1998), it is likely that 

selection of the preferred vegetation type remains an important driver for the 

distribution of habitat use (Bailey et al., 1996; Senft et al., 1987). Although aspects such 

as topography, shelter, water access, and seasonal movement might become more 

important (Bailey et al., 1996), the abundance of grass within the heather-grass mosaic 

is hypothesised to affect the pattern of heather defoliation. Thus in parallel with the 

zone of defoliation around grass patches with a heather-grass mosaic, heather 

defoliation is hypothesised to be spatially limited to an impact zone at higher scales. 

Heather-grass mosaics, occurring between larger areas of homogeneous grass and 

homogeneous heather (homogeneous at this larger scale), could therefore form an 

impact zone suffering most of the heather defoliation compared with the heather area 

behind it. This effect can be observed on Finella Hill where, at the larger scale, sheep 

select for the improved grasslands on the lower part of the hill, and heather defoliation 

and subsequent impact occurs in a zone neighbouring the improved grassland. The 

homogeneous heather at the top of the hill is rarely visited. To determine whether 

selection of the preferred vegetation type also affects patterns of heather defoliation at 

larger scales, the SIM approach could be applied. 

Although the insight into one ecosystem can be used to investigate other ecosystems, 

care should be taken to extrapolate results. Processes in one grass-shrub ecosystem can 

not be easily extrapolated to other systems without critical understanding of both 

systems and the drivers of the processes (Martinez & Fuentes, 1993). 
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6.3 Future research 

Important extensions of the current study are required to unravel the complex of 

interactions between plants, herbivores, and soils. Results from this study suggested 

that the behaviour of herbivores could be affected by the feedback processes of 

vegetation responding to previous grazing impact, such as shoot density and vegetation 

structure. Thus characteristics of the vegetation should be observed across the grass-

heather gradients following the same methods (i.e. a spatial grid of transects) deployed 

in this study, to quantify these responses. Some characteristics of interest are 

vegetation height, dry matter composition of plants (i.e. ratio of shoot to stem), shoot 

density, shoot length and shoot quality. Because these measurements are destructive, 

they can not be easily combined with animal observation studies. However the 

vegetation on Finella Hill provides ample opportunity to combine vegetation response 

data with the animal and vegetation observations presented in this study. 

Across the same grass-heather gradients, the impact of defoliation and trampling should 

be observed and quantified separately. Due to the possible delay in trampling impact 

(Bayfield, 1979), observations should be carried out across multiple years. Trampling 

impact could be observed directly from physical signs, such as damage to the bark and 

broken stems, or indirectly through observing animal locations. However, controlled 

experiments will be required to relate either physical damage or herbivore presence to 

actual impact on heather. It will be a challenge to design an appropriate sheep trampling 

simulator! 

Still considering the same grass-heather gradients, changes in soil properties, such as 

soil compaction, depth of litter layer and nutrient availability should be quantified and 

related to the other observed gradients. A pilot study to this effect has been carried out 

on the experimental site in 2002 (Campbell et al., unpublished). 

Finally, all these aspects should be considered in the study of the vegetation dynamics 

occurring across the grass-heather gradient. Findings in this study suggest that selective 

foraging by sheep led to increased contrast between vegetation types and reduced 

contrast, i.e. increased homogeneity, within vegetation types. This suggests that 
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competition between grass and heather will predominantly occur at the grass-heather 

edge. This has implications for the competition and possible coexistence of plant species 

(Murrell et al., 2001). The combination of all these different elements of the system 

would create a unique case-study to investigate the complex plant-herbivore-soil 

dynamics in grazed ecosystems (Pastor et al., 1997) and would be an empirical 

observation related to the theoretical advances made through reaction-diffusion theory 

in the context of grass-heather boundaries (Farnsworth & Anderson, 2001). 

A major question in grazing ecology is how a large number of different herbivores can 

coexist within an ecosystem (Farnsworth et al., 2002; Murray & Illius, 1996; 01ff et al., 

2002; Prins & 01ff, 1996; Sinclair, 2000). One of the best known examples is the 

Serengeti-Mara ecosystem (Sinclair & Norton-Griffiths, 1979; Sinclair & Arcese, 1995). 

The findings presented in this thesis suggest that the spatial pattern of habitat use by 

herbivores is strongly influenced by the pattern of vegetation and that the herbivore 

foraging strategy can affect herbivore performance. Thus spatial aspects of foraging 

behaviour could play an important role in the competition or facilitation of herbivores 

in large herbivore assemblages. In order to investigate this, either the behaviour of 

several herbivores can be spatially quantified simultaneously (following the method of 

animal observation described in Chapter 4), or the emergent pattern of herbivore 

impact can be observed for different subsets of the total herbivore assemblage 

(following the method of heather defoliation observation in Chapter 3). Different 

patterns of competition and facilitation should be expected at each spatial scale, such 

that the experimental sampling scheme should follow a nested design across several 

scales. 

The HOOFS model provides an excellent opportunity to investigate the role of 

numerous aspects of foraging behaviour and vegetation dynamics on emergent spatial -

patterns of herbivore impact. Currently in the model, foraging decisions made by the 

animals are independent of the state of the animal. An important extension of the model 

would therefore be a state dependent diet selection module (e.g. Newman et al., 1995). 

The investigation of state-dependent foraging behaviour could reveal shifts in foraging 

strategy across spatial and temporal scales. These changes can be difficult to observe in 
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diet composition field trials, as diet is an emergent property resulting from many single 

foraging decisions. The role of memory is already being investigated and early results 

suggest that animals with increased spatial memory forage more efficiently in complex 

mosaics than forgetful animals (Beecham et al., 2002). 

Early results suggest that livestock breeds can have different responses to vegetation 

mosaics and subsequently impact on vegetation (Bullock & Oates, 1998; Newborn, 

2000). With the increasing use of large herbivores as nature conservation management 

tools (van Wieren, 1995; Wallis de Vries et al., 1998), there is an urgent need to 

understand the role of breed differences in plant-herbivore interactions. An 

experimental facility such as present on Finella Hill, would enable the investigations of 

foraging behaviour of different breeds and quantify their foraging pattern and their 

pattern of impact. 

A potentially interesting application of high resolution aerial photography (such as 

used in this study) was suggested by Quilter & Anderson (2001). They successfully 

correlated heterogeneity in spectral reflectance with levels of shrub defoliation. The 

ortho-photographs prepared to detect vegetation change in this study would provide a 

good opportunity to investigate this application. If successful, large areas of habitat 

could be surveyed at very high detail with little effort relative to the effort needed to 

achieve the same detail through field observations. It would also facilitate repeated 

monitoring to investigate temporal aspects of plant-herbivore interactions. 

The SIM approach presented in Chapter 2 provides a new tool to investigate spatial 

aspects of plant-herbivore interactions in different ecosystems and at different spatial 

and temporal scales. As herbivores are selective across a range of scales (Roguet et al., 

1998; Senft et al., 1987), the sources for selection are likely to cause a characteristic 

pattern of attraction at various scales, which can be very effectively investigated using 

the SIM approach. The SIM used in this study considered one resource at one scale (grass 

patches), but there are no methodological limitations preventing an application of a SIM 

for multiple resources across multiple scales. Moreover, the applicability could be 

considered of the more mechanistic spatial interaction models based on spatial 
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information processing theory, including spatial cognition and hierarchical decision 

making (Fotheringham et al., 2000). 

To test whether selection of the preferred vegetation type affects the spatial pattern of 

heather defoliation across multiple scales, the SIM approach should be applied to 

observations of herbivore impact across several scales. The Macaulay Institute is in 

possession of such data sets resulting from very extensive habitat impact assessments. 

With the spatial data readily available and considering the simplicity of the SIM 

approach, this should be an attractive project to pursue. Relating emergent patterns at 

the landscape scale with individual foraging behaviour of red deer would be facilitated 

by the insight achieved through animal tracking studies in similar habitats (Sibbald et 

al., 2001). 

6.4 Implications for management of heather-grass mosaics 

Although this PhD considered a fundamental element of grazing ecology, an attempt is 

made here to suggest possible management implications of the increased understanding 

of the spatial aspects of plant-herbivore interactions. The spatial pattern of free ranging 

herbivores, their impact on vegetation and subsequent vegetation change could have 

implications for management of heather-grass mosaics and rangelands in general. 

Maybe counter intuitively, their impact could be either good or bad depending on the 

objectives of the management. Consider the example of heather moorland mentioned in 

the introduction where, from a conservation objective, 'over-grazing' by sheep has 

often occurred in the uplands and 'under-grazing' has often occurred in the lowlands. 

In the uplands where fragmentation of heather is perceived as a conservation problem, 

the results of this study suggest that 'over-grazing' by sheep can be effectively avoided 

by reducing grazing pressure, i.e. stocking densities. The findings from the SIM 

(Chapter 2) suggest that reducing animal numbers should lead to a rapid decrease in the 

area of heather affected by herbivores, thus limiting the herbivore impact and potential 

vegetation change. 

However the challenge for the lowland heathiands is very different. Here the 

disappearance of heather is often due to tree invasion. To halt this process successfully, 
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herbivores would have to visit a large part of the mosaic to visit all area subject to tree 

invasion. However, because free ranging sheep focus their grazing on the preferred 

food resources, a large part of the mosaic is likely to be frequented considerably less. 

Only extremely high stocking densities could force sheep to graze all corners of the 

mosaic. However these stocking densities are not sustainable from the herbivore's 

performance point of view (Wallis de Vries, 1991; Wallis de Vries & Schippers, 1994) 

and will be likely to cause negative impact (such as severe fragmentation or erosion) on 

and around the, by the herbivore, preferred vegetation type (Bokdam & Gleichman, 

2000; Gimingham, 1992; Hester & Baillie, 1998). 

Although a system of free ranging herbivores is most natural, it might be inappropriate 

for the achievement of some conservation objectives as illustrated above. An increased 

understanding of the processes determining the spatial pattern of herbivore impact, 

facilitates an active manipulation of the grazing pattern for the purpose of specific 

objectives. Many such manipulations have been used for centuries to try to achieve 

optimal production from grazing systems (Gimingham, 1972; Heady & Child, 1994). 

Five approaches are distinguished here: 1) periodic grazing; 2) shepherding; 3) different 

species and breeds of herbivores; 4) manipulation of vegetation; 5) other sources of 

attraction. 

To achieve a specific objective, grazing could be made periodical across several time 

scales. Limiting herbivores to daytime access only (as occurs in shepherding systems 

across the world), could create a gradient of herbivore impact, with herbivore impact 

decreasing with distance from the night time resting area (i.e. similar to central place 

foraging). A fixed resting area, outwith the grazing area, could also lead to a removal of 

nutrient from the grazed area to the night time area (Bokdam & Gleichman, 2000). 

Limiting grazing periods to certain seasons of the year could also affect spatial patterns 

of impact. As the pattern of defoliation is strongly correlated with the pattern of the 

preferred vegetation type, the herbivores are expected to concentrate on this vegetation 

type during the summer when quality is high, leading to a patchy pattern of herbivore 

impact, but grazing might be more evenly spread across a mosaic in winter when 

contrast in quality between the preferred and the less-preferred vegetation types is 
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smaller. However, this study did not conclusively show the difference in pattern of 

defoliation between summer and winter periods. This was likely due to the fact that 

winter observations considered whole year defoliation and were thus confounded with 

the summer observations. Further investigations are required to support this 

hypothesis. 

The spatial pattern of grazing could be actively managed through shepherding or 

through the creation of paddocks (Heady & Child, 1994). Shepherding limits the 

herbivore in its habitat selection at higher scales. Although animals are expected to be 

selective within the feeding site, animals could be forced to forage in areas of a 

landscape they would otherwise not select. A combination of herding and free ranging 

could be considered appropriate as it has been suggested that herding might force the 

herbivore to explore its home range (Hunter, 1962a). Temporary fencing or permanent 

paddocks could achieve the same result, but are unlikely to be compatible with nature 

conservation objectives. 

As described above, the spatial pattern of herbivore impact is hypothesised to depend 

on the herbivore species and, in the case of livestock, the breed. Taking into account the 

role of behavioural characteristics of Scottish Blackface and other upland breeds, such 

as hefting and their increased nearest neighbour distance, it is hypothesised that 

lowland breeds, not having these characteristics, will cause a different pattern of 

defoliation and subsequent pattern of impact on vegetation. Early results suggest a role 

of selected livestock breeds in nature conservation (Newborn, 2000), but more research 

is needed. Several studies have shown that different herbivore species can have different 

responses to and subsequently impact on vegetation mosaics (Bokdam & Gleichman, 

2000; Grant et al., 1987; Hester & Baillie, 1998). Implications for rangeland 

management have been extensively discussed elsewhere (van Wieren, 1995; Wallis de 

Vries et al., 1998). 

As the spatial pattern of habitat use by herbivores is strongly correlated with the 

vegetation pattern, it is likely that the pattern of habitat use can be altered through 

altering the vegetation mosaic. For instance, creating a large high quality patch of a 
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preferred vegetation type will attract herbivores and consequently reduce herbivore 

impact away from the artificial patch. Patches could be created by improving areas of 

less-preferred vegetation types, e.g. through burning or mowing, or herbivores could be 

given access to areas not currently part of the foraging area, such as neighbouring 

grassland (Wallis de Vries, 1991). 

Other sources of attraction could influence the spatial pattern of habitat use by 

herbivores. Water points are obvious sources of attraction in semi-arid regions (Weber 

et al., 1998), but supplementary feed or mineral licks can be used to the same effect in 

temperate regions. Artificial shelter, either from heat or cold, can also be applied to 

attract free ranging herbivores to specific areas of a landscape (Arnold & Dudzinski, 

1978). 

Together with grazing, fire is an important tool in the management of heather 

moorland (Gimingham, 1972). It is generally recommended that for the purpose of 

grouse management, a 10 to 15 year heather burning cycle is most appropriate 

(Gimingham, 1972). This cycle leads to a patchwork of heather stands of varying ages 

providing both food and shelter for grouse (Gimingham, 1972). Government guidelines 

have recently taken into account plant-herbivore interactions. For newly burned 

heather moorland grazed by livestock, an initial burning of 40% of the area is 

recommended (Scottish Executive, 2001). Although heather burning is nowadays 

mostly used as a tool for the management of red grouse (Gimingham, 1972), the pattern 

of burned patches will affect the pattern of defoliation by sheep (Gimingham, 1972; 

Grant & Hunter, 1968). As recently-burned heather patches have a higher nutritional 

value, sheep will focus at least part of their grazing on these patches, thus leading to a 

decrease in defoliation in other parts of the mosaic (Grant & Hunter, 1968). This is 

consistent with prediction of the SIM, considering the young heather as the preferred 

and the old heather as the less-preferred vegetation type. The findings of herbivore 

impact presented in this thesis suggest that, as sheep focus on the burned patches, 

heather fragmentation would be more likely to occur around these burned patches than 

further away. Thus fire could initiate the development of grass patches within a heather 

matrix. Under grazing by sheep, this mosaic would be expected to develop a network of 
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paths and patches connecting the originally burned patches. However, the 

characteristics of mosaics resulting from fire strongly depend on factors such as the 

timing of fire and the existing pattern of vegetation. Fire occurring in heather-grass 

mosaics could thus have a range of effects. 

Furthermore, little is known about the long term effects of such a burning cycle. 

Research on nutrient dynamics during heather burning suggest that nutrient loss could 

be important (Evans & Allen, 1971). As fire will probably have little effect on 

established grass patches, the spatial pattern of grass patches in heather could affect 

nutrient cycling. Nutrients lost from the heather stand through fire, could partly return 

as ash deposits on the grass patches, leading to a flow of nutrients from the heather to 

the grass. This effect could be strengthened by herbivory as sheep focus their 

movement and thus possibly their return of nutrients on the grass network (Hester et 

al., 1999). A combination of grazing and intensive heather burning could thus lead to a 

net flow of nutrients from the heather to the grass patches, affecting the longer term 

vegetation dynamics. It is clear that these are important questions which need further 

study both to increase our fundamental understanding of plant-herbivore-fire 

interactions and to increase our understanding in the role of fire in the context of 

moorland management. 

The distinction between trampling and defoliation impact and the spatial pattern of 

herbivore impact as observed in this study could have implications for monitoring 

techniques. Monitoring programmes, such as in the context of the UK 

'Environmentally Sensitive Area' scheme (Henderson et al., 1995; Thompson et al., 

1995), should include observations of both defoliation and trampling impact. Design of 

sampling schemes should take into account the spatial pattern of herbivore impact. The 

SIM could be used as a tool to increase the effectiveness of a spatial sampling design and 

to appropriately interpret the herbivore impact of a whole area based on the 

distribution and intensity of herbivore impact. 
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6.5 Heathlands: the past and the future 

In addition to the naturally occurring heathlands in coastal areas and above the tree line 

(Gimingham, 1972), extensive areas of heathiands in the Atlantic zone of Europe were 

created by humans from about 4000 years ago through forest clearances and subsequent 

agricultural practices that prevented regeneration to forest (Diemont & Jansen, 1998; 

Gimingham, 1972 ; Webb, 1998). Heathiands once covered possibly between 3-5 

million hectares, reaching from western Norway to Portugal, but conversion of these 

'wastelands' in the nineteenth century to agricultural land and forest reduced the area of 

heathlands to around 300-500 thousand hectares (Diemont & Jansen, 1998 ; Webb, 

1998). 

Although the conservation value of heathlands has been argued (e.g. Thompson et al., 

1995), due to their semi-natural character, the cultural value is emphasised more and 

more (Diemont & Jansen, 1998; Webb, 1998). The current revival of heathlands as the 

'Atlantic Cultural Landscape of Europe' (Diemont & Jansen, 1998) coincides with a 

general emphasis on regional cultural and environmental values within Europe and a 

serious crisis in intensive farming. Continued intensification of agriculture has led to 

overproduction and extensive environmental damage (Hindmarch & Pienkowski, 

2000). This process is no longer economically and politically sustainable (Bignal, 1998). 

In the case of heathiands, European sheep farmers were compensated (under the 

common agricultural policy - CAP) for market returns lower than target herds set by 

the European Community (EC) and also received a fixed premium per animal 

independent of stocking density (Baldock et al., 1996). The subsidy had the side effect 

of providing a strong incentive for overstocked farms to hold on to livestock and at the 

same time discouraging the reintroduction of livestock into area from where they had 

disappeared (Baldock et al., 1996). This subsequently created a divergence between 

financially attractive stocking rates and appropriate stocking rate for nature and 

environmental conservation objectives. Changes in the CAP and the increased attention 

on cultural and environmental heritage suggest new opportunities for extensive and 

traditional agricultural systems (Bignal, 1998; Hindmarch & Pienkowski, 2000; 

Thompson et al., 1995). The traditional grazing of heathlands is a prime example of an 

extensive agricultural system (Thompson et al., 1995). 

178 



Discussion 

A subsidy-driven reduction in sheep numbers might therefore suggest that knowledge 

of sheep impact on heather moorland becomes redundant, but to the contrary. 

Combining agricultural production with other objectives, such as soil conservation and 

biodiversity, will instead lead to a renewed demand for understanding of the complex 

interactions in grazed ecosystems and their implications for the management of grazed 

ecosystems in general and heathiands in particular. 
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Hoofs foraging sub-model 

Appendix A: Hoofs foraging sub-model 

Beecham, A.J. and Oom, S.F. 

The foraging sub-model contains the algorithms concerned with the animals' foraging 

strategy. The motivation for the strategy is maximisation of the quality of the resource 

cells from which they forage. Every time an animal is ready to forage it will go through 

a number of decisions. Through these decisions the animal will evaluate its 

environment, decide the best place to forage and choose how to get there. Although 

HOOFS has a social sub-model (Beecham & Farnsworth, 1998), this was switched off for 

the purpose of this study. Thus each individual in the model operated independent of 

the other animals in the environment. The decisions are summarised in a flow diagram 

(Figure A.1; numbers in figure correspond with text). 

1  
Update individual patch I 

I The patch value is calculated for all 

values 
patches in the environment. 

..  :.:::::::::::::.:::::::::::ss:::::::.:::::: 

2 The super patch values are updated 
Update super patch 

for all scales in the environment. 
values for all scales 

3 The bias is calculated based on the 
Determine best available best available patch or super patch 
patch and set direction and the given foraging strategy. 

4 The patch value of the patch and super 
Calculate best patch patches available in the chosen direction 
in chosen direction are corrected for the distance cost. 

5 If the best patch is in the distance, the 

animal will walk, else it will forage the 

current cell. 

Forage 	Walk 
If the animal has chosen a random 

direction earlier, it will still be biased 

whether to forage or walk. 

6 	 If the animal has decided to walk, it will 

Evaluate two alternative 	evaluate whether to walk straight or take 

walking directions 	 an alternative route with less travel cost 

I 	 (i.e. less resistance). 

Animal forages in 	 Animal walks 
current/neighbouring cell 	 to a neighbouring patch 

Figure Al. Flow diagram of the HOOFS foraging submodel. Numbers refer to numbers 
explained in the text. 
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Appendix A 

The measure of vegetation quality is the potential energy intake rate, which is 

determined by the potential specific net energy of a cell and the cost endured during a 

foraging bout. Firstly, the animal gathers the information on the environment for 

individual cells (1) and all super-cells (2). Then the animal determines a directional bias 

(3). After the animal has decided which direction to select, the animal determines the 

best patch in that direction (4), and determines whether to forage or walk (5) in the 

direction of that patch. If the animal decides to walk, the animal adjusts the direction in 

order to take the path of least resistance (6). 

1. Update of individual patches 

The quality of the environment is measured as the potential energy intake rate in each 

cell or super-cell. In order to evaluate the environment, the animal is provided with an 

update of the current environment. To save processing time, only the grazed patches 

are recalculated, and only every 100 time steps. The potential energy intake rate is 

determined by the digestibility of the vegetation in a patch and the travel, search and 

handling costs associated with the patch. 

The digestibility is expressed as the potential specific net energy (D; Equation A.1). As 

herbivores graze down vegetation, the proportion of dead stem increases, leading to a 

decrease in the digestibility. Thus the digestibility decreases when biomass is reduced 

and recovers with time since defoliation (Tdef). The recovery curve is sigmoidal set by 

the speed of recovery (Dsiope) and the recovery delay (Tdelay). The digestibility varies 

between the maximum (Dmax) and minimum digestibility (Dmin) for that vegetation type. 

Dmax  - Dmin  
D=D  max

l+_DSIOPe(Tdef_TdeIaY)J 	
Equation A.1 

Beaten  = Fbiomass  X (B - Bi nacc ) 	 Equation A.2 

Beaten 
razing = "handling + 	 Equation A.3 

rveg  
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Ra +Rb  
ravel = 'tep  

2 

Emaint = 'ravel x 'maint 

= (Beaten  x D x Fenergy  ) 

Tgraz i ng  + 7iraveI 

Equation A.4 

Equation A.5 

Equation A.6 

To determine the actual intake rate for a foraging bout, the animal evaluates costs 

incurred during the foraging bout. The costs are expressed as time penalties. The costs 

considered are: maintenance cost (Emaint), travel cost (Ttravei) and grazing cost (Tgrazing). 

The grazing cost (Tgrazing; Equation A.3) is the sum of the time it takes to consume the 

biomass, calculated as the biomass eaten (Beaten) divided by the intake rate (rveg), and a 

fixed handling cost (Thandling; putting head down). The biomass eaten (Beaten; 

Equation A.2) is calculated as the difference between the total above ground biomass in 

the patch (B) and the inaccessible biomass (below minimum sward height) for that 

vegetation type (Binacc), multiplied by the fraction of the biomass that can be consumed 

in one foraging bout (Fbiomass). Note that the biomass of heather only comprises the 

current years growth. The fraction of biomass available in each foraging bout was 

introduced to limit the time animals spent in any one cell, in particular in heather cells 

which have a whole current years growth as initial biomass. The travel cost 

(Equation A.4) is the product of the step cost (Tstep) and the average relative resistance 

(R) of the vegetation types travelled through, going from the current cell (a) to one of 

its neighbours (b), Ra and Rb respectively. The maintenance cost (Emaint) is the product 

of the travel cost (Ttravei) and a fixed maintenance energy rate (Imaint) (Equation A.5). 

The final potential energy intake rate (I) is then calculated using the endured costs and 

the fraction of the biomass that is indigestible (Equation A.6). As animal species can 

differ in their energy assimilation efficiencies, an energy fraction (Fenergy) is used to 

correct the energy return from the available biomass. 
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Update super-cell values 

With the individual cell quality recalculated, the super-cell values can now be updated 

(Equation A.7) for all higher levels in the hierarchy (h+1). The discriminative ability 

factor ( determines how animals perceive aggregation of cells across different levels. A 

high discriminative ability leads to a bias towards higher quality patches within a super-

cell. 

1 7 

=1 

L 7 J 
	 Equation A.7 

Note that the factor seven in the denominator is replaced by a lower value at the edges 

of the environment. This is to cope with the square vegetation map in a hexagonal 

hierarchy. Without the correction, the mean patch value would be higher at the edge of 

the map, leading to a bias towards the edge. The value is set to induce a slight bias 

towards the centre of the map. 

Calculating the foraging bias 

Now, the animal is ready to calculate its directional foraging bias, i.e. the bias part of 

the biased random walk. This is where the animals foraging strategy is applied to the its 

environment. The animal has six directions to choose from, and the directional bias will 

provide a probability of selecting each direction. A loaded dice will then be thrown 

taking into account the calculated probabilities (pd; Equation A.8) for each direction (d). 

5 

(AhII  +(l — Ah)I(d+1)h) 
h=O 

5 	6 

70/2(AJ +(l—Ah)I(d+I)6Y 
h=O 	d=1 

Equation A.8 

Pd, adjusted = Pd X  qJ or Pd  X q,, 	
Equation A.9 

The foraging bias is calculated using the potential energy intake rate (I) (Equation A.6) 

of the neighbouring individual cells and the super-cells at higher scales (Equation A.8) 
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(Beecham et al., 1999). The bias is influenced by the determinism (5) to select the best 

possible potential energy intake rate and the distance coefficient (u). The distance 

coefficient determines the weighting of cells near and further away. When distance 

coefficient is zero, all distances are rated equal, while a negative distance coefficient leads 

to bias towards cells closer by. Although the bias is calculated in the six directions (d) 

of the neighbouring cells, due to the hexagonal hierarchical system, the super-cells are 

not all aligned with these directions. Therefore, a correction factor (A) is applied to the 

six directions (d) for the six levels in the hierarchy (h). For alternate levels the 

correction factors are I and 0.682 respectively. This is illustrated by the arrows in 

Figure A.2. 

Figure A.2. The first three levels in the hexagonal hierarchy used in HOOFS. 

Finally the directional probability (pd) is multiplied with the directional persistence 

(qf or qw) (Equation A.9). The directional persistency controls the turning behaviour of 

the animal, making it more or less persistent in maintaining its current direction 

(compare with turn angle concentration; p  301 Bell, 1991). The directional persistence is 

set separately for the walking and foraging mode, to take into account which mode the 

animal selected previously. 
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Selecting the best patch in chosen direction 

When the potential energy intake rate (I) of the animal's local environment is low 

compared to its global environment, it is better for the animal to walk instead of graze. 

Thus, the animal can avoid grazing costs in any cells that it walks through. Therefore, 

the animal should evaluate whether to walk or forage. Therefore, it has to decide which 

patch to select in the chosen direction, which depends on the way it evaluates distance 

and resistance. The resistance is calculated cascading through the hierarchy 

(Equation A.10). The resistance at scale h+i is based on the resistance of cells at level h, 

corrected by the resistance sensitivity (Pr). The mean resistance (Rmean) is calculated as the 

average resistance for the total distance travelled. The resistance sensitivity determines 

how animals perceive the resistance across scales. 

Should the animal evaluate the step cost (Tstep) on the basis of one cell in the distance or 

should it spread the travel cost across a group of cells in the distance? If the walk results 

in just a single cell consumed followed by a walk back this would scale with distance. If 

more cells are eaten with greater distance this scaling is less, i.e. the cost of distance is 

spread across several cells visited (and thus less than when only a single cell is visited), 

down to no scaling (Oth  power) when the whole super cell is consumed before a further 

walk of the same or greater magnitude is undertaken. The animal is therefore provided 

with a distance sensitivity (pd). If the power is high the animal thinks that it is 

worthwhile to walk off into the distance, i.e. it assumes the grass is greener elsewhere. 

For all super-cell levels the value of the potential energy intake rate (Iforaging) is obtained. 

This value is corrected with the walking cost (Ewalking) and the fixed handling time 

(Thandlin g) (Equation A.12). The walking cost is based on maintenance energy rate (Imaint), 

the step cost (Tstep), the mean resistance (Rmean), the distance between the current animal 

location and the destination cell (Dist) and the distance sensitivity (pd) (Equation A.1 1). 

Leading to the corrected potential energy intake rate (Idlst). 

Checking for walking or foraging mode 

To simulate indecisiveness in the foraging behaviour, the potential energy intake rate is 

then adjusted by the mode error (Ew) (Equation A.13). The mode error is taken from a 
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uniform distribution between minimum and maximum mode error. A uniform 

distribution was chosen because this was the least computationally demanding. The 

animal then evaluates whether to forage or walk depending on the highest value, i.e. if 

the neighbouring cell is better than any distant cell it will forage and vice versa. If the 

animal decides to forage it will now make the necessary steps. If the animal decided a 

random direction, it will still be biased in the decision to walk or forage. Because it 

chose a random direction, it is more likely to walk, as it is likely to be directed to a less 

optimal direction. 

	

17 	/I/P'  

I 
D 	= h=1 	I I 

7 	

Equation A.10 

J 
Ewa lking  = 'maint Xl tep  XRmean  X (Dist P) 	

Equation A.11 

- Ewalithlg  
'dist = 'foraging 	 Equation A.12 

Thandling  

'walk = 'dist )< Sw 	 Equation A.13 

'path = 'dist >t 	 Equation A.14 

6. Choosing walking direction 

If the animal decides to walk, the walking direction is adjusted to facilitate the animal to 

follow paths. For the chosen destination cell value, three paths are evaluated. This is 

done by calculating the two alternative paths relative to the optimal path, taking one 

initial step to the left or to the right. The destination cell value is calculated as before. 

The two alternatives are then multiplied by allow turn () (Equation A.14), thus 

allowing the animal to either go left or right relative to the optimal direction in order to 

avoid high travel costs. The animal then chooses the highest of the three values and 

takes one step in that direction. A possible correction for slope could also be 

implemented at this stage. This was, however, beyond the scope of this study. 
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HOOFS parameters and variables description 

Appendix B: HOOFS parameters and variables description 

Parameters 

Description Symbol Unit Dim.a Range Default value(s) 

Animal parameters 

Population size N -  ani 1 	00 10 
Initial energy ani 0 5000 
Directional persistence (foraging) qf - hier 0 	1 1-1-0.5-0.2-0.5-1 
Directional persistence (walking) qw - hier 0 	1 1-1-0.2-0.2-0.2-1 
Allow turn Ct - ani 0 1 
Mode error - ani 0 	1 0.2 
Determinism a - ani 0 2 
Distance sensitivity Pd - hier 0 	00 0.5 
Distance coefficient p - ani 0 	-00 -0.25 
Discriminative ability y - ani 0 	on 3-3-2-1-1-1 
Step cost Tstep s ani 0 	oo 0.05 
Relative resistance R - veg 0 	oo 1-1-5 
Resistance sensitivity Pr - ani 0 	1 0.02 
Inaccessible biomass Binacc g DM 	b  veg 0 	oo 50-50-50 
Intake rate rveg  g DM s' veg 0 	on 30-30-10 
Handling cost Ihandling 5 veg 0 	oo 0.5-0.5-0.5 
Biomass fraction Fbjomass - veg 0 	1 0.3-0.3-0.1 
Maximum digestibility Dmin J DM' veg 0 	1 0.7-0.7-0.5 
Minimum digestibility Dmax J DM' veg 0 	1 1.0-1.0-0.6 
Digestibility recovery delay Tdelay  5 veg 0 	oo 500 - 500 - 500 
Speed of digestibility recovery Dsiope - veg 0 	1 0.001-0.001-0.001 
Energy fraction Fenergy - ani 0 	1 1 
Maintenance energy rate 'maint J s' ani 0 	00 1 

Runtime 
Potential energy intake rate I J s' cell 0 
Grazing cost Tg razing  S cell 0 
Travel cost Ttravet s cell 0 
Eating cost Tea ting  S cell 0 
Biomass eaten Beaten g DM cell 0 
Mean resistance Rmean - cell 0 
Maintenance energy Emaint J ani 0 

Vegetation parameters 

Maximum above ground standing K g DM m 2  veg 0 	oo 150-120-525 
biomass 

Maximum growth rate a 
S 

veg 0 	1 0.0013-0.0001- 

0.0001 
Standing biomass for maximum 	c 	 - 	 veg 	0 	00 6-6-3 
growth rate 

Runtime 
Standing biomass 	 B 	DM 	cell 	0 
Time since defoliation 	 Tdef 	s 	 cell 	0 

a 
Dimensions of parameters: hier = six levels of hexagonal hierarchy; veg = number of 

vegetation types (respectively: grass patch, grass path, heather); ani = number of animal 
species (this case one); cell = 117.649. 

b 
 DM = Dry matter content. 
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Variables 

Description Unit Dimens ion   

Animal variables 

Energy intake rate J s' ani 
Net energy intake rate J S 1  ani 
Energy efficiency % ani 
Movement step ani 
Residence time s ani 
Grazing time s ani 
Biomass intake g DM b 	 ani 
Digestibility J g' ani 
Heather proportion % ani 
Grazed area proportion (GAP) % veg 
Adjusted grazed area proportion % veg 

Vegetation variables 

Standing biomass g DM cell 

a 
Dimensions of variables: veg = number of vegetation types 

(respectively: grass patch, grass path, heather); ani = number of animal 
species (this case one); cell = 117.649. b 

 DM = Dry matter content. 
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