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PREFACE 

In 1960 Smart ([30])  introduced the concept of a well-bounded 

operator on a Banach space. Around the same time El-abbe ([211, [221) 

obtained spectral theorems for certain bounded and unbounded 

operators on LP(R) ; the case where the bounded operators are of 

semigroup type is of especial interest. We have attempted to iMa 

interpret these results in the light of the theory of well-bounded 

operators, developed in [30], [26]0 [27],  [3] and [32], which we 

summarise in Chapter 1. 

We have developed the theory of an unbounded analogue of the 

well-bounded operator, which we term "well-boundable". This material 

is presented in Chapter 2. A well-boundable operator has real 

spectrum, and possesses a bounded spectral family with respect to 

which it satisfies a Riemann-Stieltjes form of the spectral theorem. 

We prove the uniqueness of such a family (Theorem 2.2.8), identify 

the spectrum of the well-boundable operator as the support of its 

spectral family (Theorem 2.2.13) and obtain versions for well-bound-

able operators of various other standard spectral theory results. 

This enables us to prove a generalisation to well-bounded operators 

of type B of the Hille-sz.-Nagy theorem (Theorem 2.3.2). 

The main theorem of Chapter 3, Theorem 3.2.4, shows that, for a 

real-valued Fourier transform multiplier of LP(G) , the existence 

and uniform boundedness of the appropriate multiplier projections is 

necessary and sufficient for the multiplier to define a well-bounded 
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operator. Examples and counterexamples are given. 

In Chapter 4 we study well—bounded Raesz operators. The lUesz 

operators form a larger Class of operators which satisfy the R.iesz 

theory of compact operators, but we are able to prove, in Theorem 

4.2.3, that a well—bounded Rlesz operator is necessarily compact. As 

;an application, we use this theorem and our characterization of well—

bounded multiplier operators to show that the singular multiplier of 

Fig!—Talamanca and Gaudry does not define a well—bounded operator. 

The layout of this thesis is as follows. Each chapter is divided 

into three or four sections, numbered consecutively within each 

chapter only. All cross—references give the full chapter, section and 

result number. Display numbers are consecutive within each section 

only;, on only. one or two occasions is a display belonging to another 

section referred to. 
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CHAPTER 1 

In this chapter we review the basic notions used in the thesis. 

The theory of well-bounded operators requires careful discussion of 

Stieltjes integration in a vector-valued, setting, a definitive 

account of which was given by Spain [32],  based on ideas of Krabbe 

[23). We outline this material in §1.2. In §1.3 we summarise the 

theory of well-bounded. operators. 

§i.i. Basic notions 

We denote the real numbers, the complex numbers, the integers, 

the rationals and the unit circle by It, C, 2, and! respectively. 

Throughout the thesis I will be a complex Banach space. The norm 

of an element x c I will be denoted by flxfl; 1br a linear subspace 

of I we shall mean simply a subset of I which is itself a linear 

space; we do not assume a linear subspace to be closed. 

If I and Y are Banach spaces, a linear operator between I 

and Y will be a linear map T S V(T) r, where the. domain v(T) 

isa linear subspaceof I.When I=Y we refer to T as  

linear operator on I • The set of (everywhere defined) bounded 

linear operators between I and Y will be denoted by s( xa) , and. 

B(I,X) will be abbreviated to *x). We denote the dna]. of I by 

r, and the aajothtof TCB(X,Y) by T.if •cr and XCI, 

then we shall sometimes use <,n' to stain for the evaluation 

We denote the spectrum of T by 0(T) and, the resolvent set 

of P by p(T). 
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A linear subspaoe X C I is invariant for a linear operator 

T on I if, for all xcX1Cfl(T),TxEX1 . The restriction T111  

of T to an invariant subspace I is the operator TIX1  

X1flV(T) -4I I given by (T111)x = Tx (x ex1nv(T)). If for the 

linear operators 3, T we have s(s)  CP(T) and. Sx = Tx (x C 

v(s)) then we shall write SC T 

If Q C C and f is an algebra of complex-valued functions on 

0 which contains the unit function l:w.l(wco) and the 

identity function j  a w -. w (s e 0), then an f-functional calculus 

for an operator T on I is a mapping f -, f(T) from If to 

operators on I , which takes I to the identity operator I and 

j to T , and has the following properties: 

(Af)(T) A(f(T)) (x cc) ; 

(f+g)(T) D f(T) + g(T) ; 

(fg)(T) Df(T)g(T) 

for all f, gET. 

If C) is a subset of B(I) , then G' will denote the 

commutant of Ct, that is, the subalgebra of B(I) consisting of 

all T cB(I) such that AT = TA for every K ti Q • The camnutant 

of Ut' is denoted by CL". 

§1 .2. Integration theory 

DEFINITION 1.2.1. We shall be considering the following spaces 

of compleic-valued functions: 

(i) BV[a,b] is the space of all functions of bounded variation 

on the compact real interval [a,b] . BV[a,b] becomes a Banach 
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algebra when given either of the equivalent lions 

b] 
= Lf(b)I + var f , a, 

[a,b] 

111th' sup jf(t)j + var f (r Bv[a,b]) [a,b] = 

tc[a,b] [a,bj 

where var f is the total variation of f over [a,b] . It is 
[a,b] 

obvious that the norm J' 'l(a,b] is submultiplicative, but the 

fact that is also submultiplicative requires proof. An 

indirect and, exceedingly complicated proof, which gives much 

additional information, is given in [29]; Theorem 5.2. We give an 

elementary proof in an appendix to this chapter. 

NBV[a,b] is the subalgebra of BV[a,b] consisting of those 

functions which are continuous on the left at each point of (a,b] 

AC[a,b] C BV[a,b] is the algebra of absolutely continuous 

functions on [a,b] . For f e AC[a,b] , we can write 

var f = j (f'(t)dt 
[a,b] Ja 

Hence the polynicials are norm dense in AC[a,bj 

BV( fl) is the Banach algebra of functions on R which have 

finite total. variation. We use the norm 

HlfIIl = sup It)I + var t (f t BV(R)) . 

- tel 

LBv(R) is the space of functions f : It -'C such that f is 

of bounded, variation on each compact interval. 

NLBv() consists of those functions in LBV(R) which are 

continuous on the left at each point of K 

Iac(R) C Lav(it) consists of those functions which are 

absolutely continuous on each compact interval. 
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DEFINITION 1.2.2. A subdivision of the compact real interval 

[a,b] is a finite sequence t of points of [a,b] such 

that 

a=t 
0 1 in 

Ct c . . • ct rib 

We denote the set of all subdivisions of [a,b] by Q[a,b] (ab- 

breviated, to P when [a,b] is understood). 

A marked partition of [a,b] is a pair (t,t) , where t c 

[a,b] and t* is a sequence ft}k  m  such that t C Etk_ltLJ 

(k=1,...,m). We denote the set of all marked partitions of [a,b] 

by ([a,b] 

If .! and S are subdivisions, we say that a is a refine-

ment of t if t is a subsequence of a • The relation 4 , where 

s 'S if and only if t is a refinement of a, is a partial order 

on ?[a,b] . We order [a,b) by setting (a,as) ' (sr) if and 

only if A'5 
We consider the subsets i[a,b]  and 'P1[a,b] of ?[a,b], 

where 

(t,t) CQ*[a,b] if and only t=tk  for all k; 

CQ1[a,b] if and  only it tk.  c (_1 Q for all k 

Under the order c , Q, , 
*, are 

and P1 are cofinal in t 

all directed sets, and 

DEFINITION 1.2.. Let f and g be functions on [a,b] , one 

taking complex values, and the other taking values either in C or 

in B(X) for some Banach space X • For each (t,t) c (a,b) , let 

t*) k
tk - s(tk)) 
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Then the following integrals are defined as net limits in the strong 

operator topology, whenever the limits exist: 

b 
(i) 

 f
fdg Jim (f,A€,S,S*) ; 

a 

(ii) lfd = liz  
J r [a,b] 

i 

J 
f&g = urn (f,Ag,,t*) 

[a,b] 

DEFINITION 1.2.4. Let E be a B(X)-valued function On an 

interval containing [a,b] . For g C BV(a,b] , let 

re[a,b) if g C NBV[a,b] 
= 

if € C BV[a,b]\NBV[a,b] 

Then, if the limit exists in the strong operator topology, we define 

the integral 

Edg liz  
- -. 

[a,b] 

fltOsITION 1.2.51(152), Theorem i). If E lit -'B(x) is a 

function such that 

urn E(s)x = E(t)x (x c I,, t c R) ; 
s-'t+O 

liz E(s)x exists in x (rex, t cR); 

E(t):=r 0 (t c a) ; E(t) = s(b) (t b) ; 

then, for each g C BV(a,b) , Ed.g exists and 

[a,b) 



-6- 

ii; 
I 

Ea.g c sup !k(t)Il var g 
te[a,b] (a,b] 

[a,b] 

PROPOSITION 1.2.6 ([32], Theorem 2). let E be as in 1.2.5, 

and let kl be  a bounded net in BV(a,b] and g C BV(a,b] a 

function such that g(t) - g(t) (t c [a,b]) . Then 

Mg a Un j  Mg 

(a,b] (a,b] 

in the strong operator topology. 

DEFINITION 1.2.7. For S as in 1.2.5 and g C BV(a,b] , let 

J
OR = g(b)E(b) - Mg 

[a,b) [a,b) 

PROPOSITION 1.2.8 ([32], Theorem 3 and Lemma 6). Let S be as 

in 1.2.5, and g C BV(a,b] . Then 

18(a)5(t) 

[a,b] Jg(a)19(a) 

b 
+ 
 J

gdS (g C NBV[a,bj) 
a 

+ 

gdX  (g c BV[a,b]\NBV[a,b]) , 

ta,b] 

il 
J 

&E II sup JIs(tl HI . QI[,]  
t4a,b] 

[a,b] 

e 
N.B. When applying the operator j gds to a vector x we 

[a,b] 
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shall use the notation J€(A)dE(x , with similar variants for 

[a,b] 

the other integrals defined. 

§1.5. Summary of the theory of well-bounded, operators 

DEFINITION 1.5.1. An operator T E B(X) is well-bounded if 

there exist a compact interval [a,b] and a constant K> 0 such 

that 

itp(TII 4 Kill lli [a,b] 

for every complex polynomial p • If (0 is satisfied, then we 

shall say that the well-bounded operator P is implemented by 

Obviously, if T is implemented. by (K,[a,b]), then it is also 

implemented by (k,[a',b'])  whenever a' a , b' t b 

It follows immediately from Definition 1.5.1, and the fact that 

the polynomials are dense in AC[a,b] , that there exists a 

continuous AC[a,b3-functional calculus into B(I) for T ; further-

more, f(T) C IT111, for every f C AC[a,b] 

It is also immediate that, if P is well-bounded and implement-

ed by (K,[a,bj),  then  so  is T , and the functional calculus for 

Pt is related to that for P by f(T) = f(T) (f £AC[a,b]) 

DEFINITION 1.5.2. A spectral family for I is a projection-

valued function E : It ~ B(X) which satisfies the following 

conditions; 

(i) Ik(AM 4 K (A c R), for some constant K c 
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(ii)E(A)E(p) E(p)S(A) = E(min(X,p)) (A,p i it) ; 

(ill) (a) ]Jn E(p)x E(A)x (Act, xix); 

(b) iSa E(p)x exists in x (AiR, xcX) ; 

(iv) limB(A)x=O(xcx) ; liinE(A)x=x(xfx) 
A-s-to 

If E satisfies the stronger condition 

(iv') there exist a,b C R such that 

s(A)zO(Aca); s(A)rI(Ab), 

then we shall say that B has compact Support. 

Remark. There is some redundancy here. Conditions (ii)-(iv) 

together imply (i).. If X is reflexive, (i) and (ii) imply the 

existence of iSa E(p)x and. iSa B(p)x, for all AiR, xix, 
rA-O 

by a well-known theorem of Lorch ((251, Theorem .2). 

The left-hand limit (x-o) is itself a projection in B(x) 

with norm at most K , for each A c  

We shall sometimes refer to a spectral family in this sense as 

a strong spectral family. 

Well-bounded operators on reflexive spaces were characterised 

by snart and Ringroae, [so] and [a],  in the following way: 

PROPOSITION 1.3.5. Let I be reflexive and P c B(X) . Then 

1! is well-bounded if and only if there exists a spectral family B, 

satisfying 1..2(iv'), such that 

Tx = AdS(A)x (Z n), (2) 
Ja-6 
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where 0 > 0 is arbitrary. We may write (2) in the alternative 

form 

b 
Tx = as(a)x 

+ J 
Ad (xcx). (3) 

a 

The wefl-bounded. operator T is then implemented by (x:,[a,b]), 

and t(r) is given by 

b 
f(T)x = f(a)E(a)r 

+ j f(A)&a(A)x (x E X, f (AC(a,b]). (4) 
a 

Furthermore, B is unique, and. E(A) C ETI"  (An) 

When I is not reflexive, the characterisation is less simple, 

and in general we can only obtain projections in B(r) with much 

weaker continuity properties. 

• DEFINITION 1.3.4. A dual spectral family for I is a projection-

valued function F S R -' B(r) satisfying the following conditions: 

IlR(i K (A c it), for some constant K c ; 

flA)r(p) = F(p)F(A) = F(min(A,p)) (A,p c a) ; 

there exist a,b c it such that 

F(A) =0 (A c a) ; F(A) =i(A b) 

for each •cr , XCX, the function Ai'<F(A)çb,x> is 

Lebe sgue measurable; 

for arw q5 e r , x C X and p C [a,b), if 

Urn j j cF(A),x>dA exists, then the value of the limit is 
h-'Oi-'R 

for each x e I, the map P ~ C[a,b) L'[a,b)* which 

sends 0  to (A -, cF(A)4,x>) is continuous when both spaces are 
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given the weak* topology. 

Riñgrose [27] introduced this concept and cafled. it .a 

"decomposition of the identity", but we prefer not to use the text in 

order to avoid confusion with the Colojoaia-Yoiag theory of decompos-

able operators ([71, Chapter  2). Well-bounded operators are examples 

of "decomposable operators" in that sense. 

PROPOSITION 1.5.5. T e B(X) is well-bounded if and only if 

there exists a dual spectral family F such that T is the unique 

operator in B( x) satisfying 

b 
= b<4,r - J<F(A)odA (# c r , x c x) , (5) 

where a,b are the numbers in 1.3.4(iii). T is then implemented. 

by (K,[a,b]), and the functional calculus is given by' 

b 
= f(b)<#,x 

- f 
.cF(A),nf'()L)dx (6) 
a 

(cxs ,xCI, fEAC[a,b]) 

Proof. The result is obtained by combining Theorems 4, 2 and 6 

Remark. If the well-bounded operator T is implemented by 

(K,[a,b]), then 6(T) C [a,b] ([271, p.6209  Coronary t). The con-

verse is also true (Lemma 4.2.1). 

In general, the dual spectral family F associated with a well-

bounded operator by ,  (s) need not be unique, nor need the F(J)'s be 

adjoints of projections In B(X). 

DErINnION 1.3.6. A projection-valued function E I K 4  B(X) is 
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a weak spectral family if B' S K -. B(r) (where s'(x) R(X)*) is 

a dual spectral family. 

PROPOSITION 1.3.7 ([27], Theorem 8), If B is a weak spectral 

family, then K' is the unique dual spectral family associated with 

the well-bounded operator T given by 

b - 
 J

<4,E(A)raA (er , xix). (7) 
a 

Furthermore, E(A) C In'' (A c 

PROPOSITION 1.3.8 ([271,  Theorem ). If I is weakly complete, 

then a well-bounded operator T C B(I) has a unique dual spectral 

family if and only if is has a weak spectral family (i.e. if and, only 

if there is a weak spectral family satisfying (7)). 

A weak spectral family need, not be a strong spectral family. 

(Examples are given in §6 of [s].) 

DEFINITION 1.3.9. A well-bounded operator is said, to be of 

type if it has a strong spectral family which satisfies (7) , 

i.e. if it has a (unique) dual spectral family which is the a*Ljoint 

of a strong spectral family. 

This concept was introduced in [5].  Weil-bounded operators of 

type B are characterised as follows. 

PROPOSITION 1.3.10 ([521,  Theorem 5). Let T cB(X) . men the 

following statements are equivalent: 

(i) T is a well-bounded operator of type B. implemented by 

(x, [a,b]). 
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there exists a (strong) spectra]. family S : R -, B(x) 

satisfying 1.3.2(iv'), such that 

Tx = JlaE(x)x (xix) ; (8) 

[a,b] 

T is a well-bounded operators  implemented by (K,[a,b]), 

such that the functional calculus 4' : AC[a,b] -. B(X) takes bounded 

sets to sets which are relatively compact in the weak operator 

topology; 

T is a well-bounded operator, implemented by (K,[a,bfl, 

such that, for each x c I., the map 4' z f -'f(T)x (f c AG[a,b]) 

is weakly compact; 

T is a well-bounded, operator, implemented by (K,[a,b]), 

such that, for each x C X , the map # 8 f -f(T)x (r C AC[a,b]) 

is compact. 

If T satisfies (i)-(v), then f(T) is given by 

= Jf(A)dE(A)x (x £ x) (e) 

[a,b] 

for all f c AC[a,b) 

Every well-bounded, operator on a reflexive space is of type B. 

Berkeon and Dowson ) also define an intermediate concept, that of 

"type A", when there is a weak spectral family which need only 

satisfy 1..2(iii)(a), and not necessarily 1.3.2(iii)(b). However, 

the operator P given in Example 6.2 of (] is of type A but not of 

type B, whereas -T is not of type A; it follows from 1.3.10 (see 

2.2.6) that, if T isof type B, then sois -P. 
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PROPOSITION 1..11 ([210  Theorem 6). Let T c B(X) be a well-

bounded operator of type B, implemented by (K,[a,b]). Then the 

AC[a,b]tunctional calculus for T extends to BV[a,b],  with the 

seine norm K , and t(w) is given by () for all f EBV[a,b] . 

is a bounded net in BV(a,b) converging pointvrise to f C 

BV[a,b] , then f a(T)x tf(T)x (x c 

For an arbitrary well-bounded operator it is possible to obtain 

extensions of the homomorphism f + r(t) : AC[a,b] -, B(x') to the 

subalgebra of NBV[a,b] consisting of those functions whose con- 

tinuous singular parts vanish (see [27), Lemma 5). However, these 

extensions need not be unique. 

§1.4. Appendix: BV[a,b] as a Banach algebra 

We prove here the remark made in 1.2.1(1). We presume this proof 

to be known, but have been unable to locate it in the literature. 

THEOREM 1.4.1.. With the norm 'II"r 
- La, 

defined in  

BV[alb] is a Banach algebra. 

Proof. It is slightly more convenient to prove the result for 

the norm 

ta,bJ It(a)I + var f 
[a, b) 

From standard Banach algebra considerations, it is sufficient to work 

in the maximal idea]. BV0[a4b]  of functions vanishing at a , and, to 

prove that var fg r. var f var g forall fo g CBV0[a,b] 
(a,b] [a,b) [a,b) 

Let fo g c BV0[a,b] , and fix t cP[a,b] . We split f in the 

following way. Let 
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f

:

f 

0 t 4 tk _I  

- f(tk_i )  tk•••l t 4 tk  

(tk) - f(tki) t 

for k=2,...,m-1, and 

t(t) 04t4t1  

t t1  , 

0 4 t 4 40 

(t) 
- 
t(t 1) t tm_i 

vy 

f 

tart = var f 
k=i[a,b] k 

var f 
k=1[tkjltk] k 

ro j < k 

tk(t) = 

tf(t) - f(tk_l) ,j Ic 

Now, 

- 

= )T I Etk(t )g(t ) ef (t 
- 

)g(t )]j 
.Wik=l .1 .1 ii i-I 

S in 
' h kk(t)&(tj) - tk(tj_l tjTl  

in in 
= I J Itk(tj)&(tj) - 

ltg!I j=1 

in 
= (It) -f(t_1)J(t)l 

+ '! I[f(tk) - f(tk_I)J[€(tj) - (tj_1))i) 
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m 

E - r(t )Ktk) - 01 + 
k=1 k-i j=ic+1 

T Lr(tk) - f(t )L var g 
I&'i 3d [a,b] 

.r f var g . 

(a,b) [a,b) 

Since this is true for all S c ?[a,b] , it follows that tar fg 
[a,b] 

var f var g for all f o g c nv [a,b] , and so the theorem is 
(a,b] [a,b] 0 

proved.. 

N 
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CHAPTER 2 

SEMIGROUPS OF WELL-BOUNDED OPERATORS - 

In this chapter we discuss an unbounded analogue of the well—

bounded operator. Such an operator, to be termed well-bounilable, 

satisfies a form of the spectral theorem, with respect to a spectral 

family whose support (Definition 2.1.1)  may be an unbounded subset 

of R • The construction of the well-boundable operator may be 

thought of as the development of integrals similar to those of 

but with an unbounded range of integration. It is also a parallel for 

well-bounded operators to the passage from bounded to unbounded 

scalar type spectral operators considered in (to], Chapter XVIII. In 

§20 we carry out the construction, and develop a functional calculus 

for the well-boundable operator. 

In §2.2 we employ the functional calculus and various standard 

techniques to develop the spectral theory of the well-boundable 

operator. The main results are that the spectral family is unique 

(Theorem 2.2.8), and, that its support is equal to the spectrum of the 

operator (Theorem 2.2.13). 

There are some interesting examples, to be discussed in Chapter 

8, of well-bounded operators which constitute strongly continuous 

semigroups. The final theorem of this chapter (Theorem 2.8.2) is a 

generalisation to semigroups of well-bounded operators of type B of 

the IIille-5s .-Nagy theorem on strongly continuous semigroups of self-

a&joint operators. It turns out that the infinitesimal generator of 

such a semigroup is a well-boundable operator. 
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§2.1. Construction of unbounded -operators 

In this section Z will be a fixed spectral family for I 

with the bound K as in 1.5.2(i). 

DEFINITION 2.1.1. If Z is a spectral family, then the support 

of E , denoted by supp B , is the set 

suppZ =.s\IA CRiB is constant ma neighbourhood of A I 

Obviously supp E is always closed; in §i .3 we assumed supp E 

to be compact, but we now drop that assumption. 

The following lemma is fundamental in ensuring that Our unbound-

ed operators have the correct domains. before stating it, let us 

remark that if B is a spectral family, and 

Tx U (B(b)-E(a))x -, 
a, b d 

is a linear operator, then E(A)D(T) C(T) (A C it) . (Obviousi,y 

'(T) is a linear space.) if, in additions  s(A)Tx = TE(A)x (A C R, 

x c V(T)), then T(B(b) - z(a))x C (s(b) - E(a))x (a,b cR) 

IBLOtA 2.1.2. Let B be a spectral family for I , and 

U (E(b)-s(a))x -'1 
a,bcR 

a linear operator. Suppose that E(A)T0X = T0E(A)x (A C It , x 

and that the restrictions T01(E(b) - s(a))x are all bounded. Let 

[an b) j be an increasing sequence of bounded real intervals, such 

that a
n 
 e and b i. Define the operator T by 

= {x : lisi T0(B(b) 
- 

an))x exists in x 

Tx = lim T0(E(b) - E(a))x (x eV(!I)) 
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Theft -  T is a closed, densely defined linear operator, Independent of 

the choice of sequence E[a,b]}  and satisfying 

E(A)t(T) CV(T) (x C it) 

It(A)x = E(A)Tx (A c a , x c V(T)) ; 

T((b) - E(a))x T0(2(b) - E(a))x (a,b C it , x c x) 

Proof. Clearly T is linear. ChQO8e a1b X C I , and let 

y = ((b) - E(a))x . There exists an N such that [a,b] C [abn] 

forall flN.If nN,thenwehave 

- E(a.))y = T0((b) - E(a))(E(b) - E(a))x 

= T0(s(b) - E(a))x 

Toy 

Therefore urn T0(E(b) L E(a))y exists and equals Toy . Hance 

tD(T0) CV(T) and (iii) is proved. 

For all xcl,E(b)x-'x as b-*+oo and s(a)x -"o as a-  - 

—, 30 ç(T0) , and hence also (D(T) , is dense in I • Since 

T0(S(b) - E(a ))E(x)x = E(A)T0(E(b ) - 

for all x Ct)(T) , Ac it , we have (i) and (ii). 

To check that T is closed, let Ix  al be a sequence in D(T) 

such that X -' x and Tx + y • For fixed n, T0($(b) - 

= (E(b) - E(a))T% j by (ii), so T0(S(b) 
- 

(s(b) - E(a))y as in -' • But since.. TaI(E(b) E(an))I is 

bounded, T0(E(b) .E(aH))x also tends to T0(2(b) - E(a))x , as 

In -* • Therefore, for all - n 

T0(E(b). tE(a ))x = (E(b) E(a))y 

ás-n-w, and -so, rcQ(T) and Tr=y .. Therefore TI Is closed. 
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For the uniqueness, suppose that [o',d] } is another 

increasing sequence of real intervals, with c 
-, ' and d + 

and let the corresponding operator be: P • let x C • Then 

Tx = Jim T0(E(d) - E(c))x 

= Jim T(E(d) - 

-' -' 
811108 P is closed. 3o TCT.Similarly TCT,giving T=T. 

e 
We now aim to give a meaning to the expression 

f 
adS when E 

It 

is an arbitrary spectral family, and, a c LBV(R) . It will turn out 

to be equal to a closed operator P constructed by the method of 

Lemma 2.1.2. There are two possible ways to construct this Integral. 

Firstly, we can consider the strong limit as a -. of integrals 

over [-a,a] . Alternatively, we can look at limits of nets of 

Stieltjes sums over partitions of the extended real line T = 

This second method may not work if a ,d BV(R) . However, we shall 

show in 2.1.14 that when a c BV(h) the two versions coincide, and 

the common value is a bounded operator. 

Recall from 1.2.8 the value of the integral 

b 

fa(a)E(a)x 

a)E(a)x 
+a   

a(A)dg(x)x (a C NBV[a,b]) 

(a,bj + I a(A)dE(x)x (a c 
J NBV(a,b]) 

(a,b) 

In subsequent arguments we shall use 
J u

Z to denote the 

[a,b] 
rb 

integral which is defined by / ag when a c NBV[a,b] and, by 
Ja 
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adE when a c BV[a,b]%JThV[a,b] 

[a,b) 

DEFINITION 2.1.. For a c LBV(R) , x E I., let 

J a(A)aE(x)x 11w j'  a(X)dE(A)x 
JR u-icoJ 

- [-u,u] 

whenever the Unit exists. When a c uav(R) , we shall denote this 

integral by 

DEFINflION 2.1.4. For a c iv(it) , define 

U (E(b)-E(a)) x = U (2(u) -E(-'u)) x + I 
a,bER u>0 

by 

T )x ja(A)d*))x (x C (E(u) - 

[-u,u] 

If x c (s(u) - E(-u))r and ± e ((v) - E(-v))X, where 

0 c u c v , then the integrals over [-u,u] and [-v,v] have the 

game value, since 

+ 
j a(A)as(A)x 

(-v,v] [-v,vj 

= o 
+ ( [+ J+ 

J)a(A)(x)x 

[-v,-u] [-u,u] [u,v] 

ED 
= 0 + fa(A)d3(A)x - a(-u)s(-ü)x + 0 

(-u,u] 
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J
a(A)dE(A)x 

• [-u,u) 

and so T is well-defined. 

Clearly z(A)T ° x TE(A)x (A , x E 

and, if [a,b] C [-u,uJ , then 

IiTxII a  11 f cz(A)oE(A)±II 4 KOIaIIi j JI4i (i) 

[-u,u] 

for all x C (E(b) - s(a))x , by 1.2.80  and so á[(E(b) - E(a))X is 

bounded for all a,b C It 

The operator therefore satisfies the hypotheses of Lemma 

2.1.2; hence there exists a closed, densely defined linear operator 

Ta v  extending T , corresponding to the operator T of 2.1.2. 

We now consider the operators (u > o), where 

Tx fx(,UJ(A)a(A)d(A)x (x C') 

[-u,uj 

(Here XA  denotes the indicator function of the set A ; XA(k)_1 if 

ACAS and  cA(A)=O  if A/A .) It follows from the next 

proposition and (i)  that T C B(X) for all a C LBv(R) , u > 0. 

PROPOSITION 2.1.5. For all a c IBV(!) , u> 0 and x  x., 

Tx 
= f 

a(A)dE(A)(E(u) -z)) 

[-u,u) 

= T(E(u) -E(-u))x 

Ja(A)az(A)x - a(-u)$-u)x 

[-u,uj 
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Proof. Letting (!,w*) range over 

[-u,u] if x(-u,u] a/NBV(-u,u]) ,we have 

(u) 
* 

T a X = 0 
+ f 

x(,U](A)a(X)dE)x 

[-u,u] 

= Em 'C' (x L (-u,u] 
2Am (-'u,u] (w1.)a(w*

'1
)(z(w

1 
 )-E(-u))x 

(or Over 

+ 2Am 

= 

(-u,u] 

f 

* 

[-u,u] 

= 0 + liz E(a,AE,w,t)x . 

The difference between corresponding sums in the two nets is 

, which tends to zero, proving 

equality between the first two members of the assertion. 

The fact that 

= T(E(u)-E(-u))x 

[-u,u] 

is immediate by definition. 

Fiimfly, 

I 
a(X)d3(A)x - Tz 

[-,u] 
I 

S 
x) 

[-u,u] 

= a(-u)s(-u)x 

= a(-u)E(-u)z . 
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COROLLARY 2.1.6. For a c LBV(R) , x CV(T) if and only if 

lJiflT(u)X exists in las u+w.In  that case Tx=]imTx. 

Proof. The result follows from the first two equalities in 

2.1.5. 

COROLLARY 2.1.7. If a C LBV(R)r, then x if and, only 

ED 

if 
f 

a(X)dz(X)x exists, in which case T a 
J 

x ( a(X)az(A)x 
R 
- 

Proof. The result follows from 2.1.6, the definition of J , 

and the last equalit in 2.1.5. - 

We now consider integrals defined as net limits of Stieltjes 

sums over subdivisions of R . 

DEFINITION 2.1.8. A subdivision of R is a finite sequence. 

t =it k1kmO of points such that 

—=t 0 1 m <t C... <t =+w 

The set of all subdivisions of R will be denoted by (R) 

A marked partition of R is a pair (s,$) , where S C 

and t*  is a sequence jtJ such that t C [tk_l ,tk] (k=4,.. 

we allow t=-co, t*=+oo .'?(R) denotes the set of all marked 

partitions of 1. The relation c and the subsets p(R) , 

have similar meanings tothose in 1.2.2, and sums (f,Ag,t,t*) are 

defined analogously to those in 1.2.5. 

DEFINITION 2.1.9. For a c BV(R) i let 

if a cNBV(R) 

1? if a e BV(R)\NBV(R) 
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We define s(a,as,R) to be the integral 

= Urn  
- (s,s*)4e*(a,&. - 

in the strong operator topology. (we take a(r) = Urn a(t) , 
t++- 

= 0 , E(iao) = I .) 

PROPOSITION 2.1.10. Let (a,b) be arw bounded, open interval 

and, z (a,b) -, R an increasing homeomorphism with liz (t) 
t-.a+O .  

liz #(t) = +m • Then the mapping (t,t) -0' (v,vt) , where vkr4(tk), 

, determines a one-to-one correspondence from *[a,b) onto 

*(a) , which preserves the partial order, and also takes [a,b] , 

onto S& respectively. 

PROPOSITION 2.1.11. Let • be as in 2.1.10. For each a c 

BV(R) , define tBV[a,b] by 

(A) = a((A)) (Ac (a,b)) ; (a) = a(-co) ; (b) (co) 

Similarly, set 

tA) =E(4'(A)) (Ac (a,b)) ; (a) 0 ; (b) = I. 
(3) 

Then s(a,aE,a) exists and equals 
J 

ad  

[a,b] 

Proof. The result follows immediately from 2.1.10, since a 

preserves the continuity properties of a , and so the corresponding 

limits are taken over the correct nets of stieltjes sums. 

W3fMk2.1.12. For acBV(R) and u>0,let a = a. u (-u,u] 
Then 

S(a,dE,R) liz s(a,dz,k) , 
Ut 
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in the strong operator topology. 

Proof. The net is bounded in the topology of BV(R) , 

with a(t) -. a(t) as u - , for all t c it . Consequently 

1Z 1U>O 
is a bounded net in BVEa,bj with 

-' (A) - (x) (Ac [a,b]) , 

where 

a) 
A 

= a(b) a a(+co) (A=b) 

(acx<b) 

By 1.2.6, therefore, 

r p 
Edanlim thEda + Bda 

Ut J U 

[a,b] (a,b] [a,b] 

S 
= lint (b)Itb) - lirn 

J 
a + 

Ut Use - 

[a,bj [a,bj 

We have ',jb) = 0 (u , o) ,  and 

l £da int  

(a,b] 

= lint 

= a(co)I. 

Thus 

e 
I - p -- 

j 
am = (b)(b) + lint ads 

- 

Ed.a 

[a,b] [a,b] [a,b] 

= aC -. - I + lint adE  
U! "  

[a,bJ 
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= liz S(a,dE,R) , 
U 

in the strong operator topology. The result therefore follows from 

2.1 .11. 

LEMMA 2.1.0. If a c BV[-u,u) 18 considered as a member of 

BV(R) by letting a(t) 0 (t/ (-u,u]) , then 

(:1) s(a,aE,rt) fadE - a(-u)E(--u-O) ; 

[-Ulu] 

s(x(...I4 ]aaED!) = s(a,,R) - a(-u)(E(-u)-E(-u--o)) 

In particular, if fi C BV(R) , then 

s(PU,dE,R) PudE 

[-u,uJ 

Proof. Consider w !Wk eP(R) , where w1  = -u and. 

w_1 fl.A typical refinement of w is of the form v,where 

c...cv — =v0 cy1 n  = -uc v  

..<vn U<...CV 
rn-i a 

and T nj = Wj  (J1,2, ... ,m). A corresponding sum is 
U 

(a,t&,br) = a(v )(:s(-U)-E(v )) + 
+1 

+ a(y* )(3( )-(u)) 
rn-i rn-I 

all - other terms vanishing. The last ten tends to 0 , since K is 

right-continuous, and the sum in the middle tends to 
f 

adE 

1-11,11) 

If a is left-continuous on ! , then a(t) = 0 (t 4 -u), and if not 



-27- 

then each v -u , so in either case the first term tends to 
1 

. Therefore 

s(a,5E,R) •n 

J 
ME + 

[-Ulu] 

adE - à(—u)i—o) , 

[-Ulu] 

and so (i) is proved. To obtain (ii), we see that 

ED 

= fads - a(-u)s(-u) 

[-u,u) 

by 2.1.5. Part (in) follows immediately from (i) 

We summarise the result for a C BV(R) in the following 

theorem: 

THEO1M 2.1.14. For each a C BV(R) , V(T) I and 

TX = Ha 

[ a(A)az(X)x 
JR 

= s(a,dz,!)x ( xc x) . 

Thus T C B(X) , and moreover J I T  all 4 Kill aDIR  

Proof  It- each x CI and u>O we have, by2.1.5and 

2.1.13(iii), 
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() T x=T a a 

= Ja(A)aE(A)x 

[ -us  u] 

= s(a,dE,R)x . 

Letting u , therefore, the eivalitiea in the statement follow 

from 2.1.6, 2.1.7 and 2.1.12. 

To obtain the bound. for LIT II , note that from (1)  of 2.1.4 

we have 

xQ[afl JI xjj Killalti lixti (x c (E(u)-E(-tO)X ) a 

and therefore IITL( xlIlaIIJR!IxH (x cV(T)) ; hence In this 

case Ta  is just the  extension by continuity of to I , and. 

° uTaH ( xIIIaIIIR 

We next obtain the multiplicative property of the representation 

a -' T 

PROPOSITION 2.1.15. if aj c zav(R) , x c x and. u > 0 , than 

() (i), 

Proof. Let F u (A) s(A)j(E(u)-E(-u))I (A c A) . Then 

III(E(u)-E(-U))X 

ot(E(u)-B(-h'))x (A c-u) 

F(u)(A) = su(Eu)-.(-u))x (1* c A < 

(A u) 

Since (u) clearly has the required continuity property, it is a 

spectral family for (B(u)E(-u))X,, with supp t) c [-u,u) . Hence, 

by 1.3.10 and ii.5ett, the operator (t') B((E(u)-E(-u))I) , where 

S = 
(u)x  

J 

u)p (xc (x(u)-(-u))x ) 

[-u,uJ 
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is a wefl-boundea operator of type B, with functional calculus given 

by 

f(3(U)) 
= (r e BV[-u,u],  x c (s(u)-E(-u))x ) 

[-u,u] 

Since, when y n (B(u)-E(-u))x , 

ED Jo = Ja(A)aE(AXE(u)s(.-u))x = Tx 

[-u,u] [-u,u] 

by 2.1.5, it follows that 

T x 
= J 

a(A)p(A)dP'(A)y 

[-u,u] 

G 

J
a(x)ap(11)(A)(E(u)_s(-.fl)) 

[-u, U] 

T(u)T (u) x = 2 18 
. 

J 
 ED 

o 

[-u,u) 

PROPOSITION 2.1.16. For all a,fl c LBv(R) , 

(3 )Ta4.pDTa +Tp; 

(ii) TGPDTUTP and  ETaTp) v() fl!ETp) 

Proof. (i) If XEV(Ta +Tp) ttt>(T)flV(Tp) ,then 

+. T(;)X ' TX + Tpx 

Therefore x E 'flT 4 ) and Tx= Tx + Tpx 

(ii) It x CV(TUT ) then for n=1,2,..., 

x = T0$r0 x 

= T° (2(n)-E(-n))T(E(n)-E(-n))x 

= 

= T(E(n)'E&'fl))TpX 

I,  
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(E(n)_E(-n))TT, 

-. TTpX t 

using 2.1.15, 2.1.50  2.1.2(111), and. finally 2.1.2(1) twice, noting' 

that x c V(T) and Tx EtD(9?) . Therefore liz T x exists and. 

equals TaTpX I  so x c C(Tap) and. Tx TaTpX 

If xc1(T)flV(T),then 

TT
a 66

x = 

= 

= 

= T (s(n)-E(-n))x 
(ii)  =.T ( x aft 

using 2.1.5, 2.1.2(1), 2.1.5 and, 2.1.2(11), 2.1.15 and. 2.1.5 in the 

respective steps. Therefore ifin TTx exists and equals T px 

so Tx cD(T) and ;TaT? = Tx 

PROPOSITION 2.1.17. T1  = I 

Proof. Let a,b and R be as in 2.1.11. Then 

= s(1,oE,R) 

= J 
IdE 

[a,b] 

b 
= (a) 

+ f 
a  

a 

= •I . 
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In the applications we shall need to use certain integration by 

parts, change of variable and, change of order of integration. 

processes. We have not investigated the best possible results along 

these lines, but Lemmas 2.1.18, 2.1.20 and 2.1.25 will suffice for 

the applications we shall make. 

LEMMA 2.1.18. If ac LBV(R) with a(t) bounded as t -* - 

and a(t) -O as t -+oo, than 

I a(x)1(x)x = - 1dm E(A)xda(A) (x crp(T)) 
J R u-*oo 

[-u, u] 

Proof. If x c)(T) , then 

P s 

[ a(i)a(i)x = an J a(A)(x)x 
JR u-.c J 
- (-u,u] 

= lin r [ a(A)dE(A)x• 
- a(-u)s(-u)xl (2) 

u-*vLJ ED  J 
( -us  u] 

= lim[a(u)E(u)x 
- f E(A)xdcx(A)] (3) 

[-u,u] 

-liju E(A)xda(A) , 

[-u,u] 

the equality between (2) and  (3) following from 1.2.7. 

DEFINITION 2.1.19. For a c NLBV(R) and x cV(T 
a) , we define 

u 

J
E(A)xda(A) to be Urn 1,B(A)xda(A)  

—c. U_.  
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Thus, if a satisfies the Iwpotheses of 2.1.180  we have 

[a(x)as(x)x -(44cW*-. 
JR  

It is easily -seen that the method used In 2.1 .11 generalises in 

the following ways 

IEWA 2.1.20. If : [co d] -, [a,b) (where a,b,c,d may take 

the values is an increasing hcceomorphism, and E and F are 

spectral families, with supports contained respectively in [a,b] 

and [c,&) , such that F(A) = E(()L)) (x c [c,d]) , then for each a 

c BV[a,b] we have 

f
a(4dE(x) 

= f 
[a,b] [co d] 

10

where, if either interval is infinite, f is a net integral with a 

similar meaning to the finite case (see remarks before 2.1.3). 

Proof. (ss) + (bt) , where wk = lf(tk) and wk = 

sets up an order-preserving correspondence between (F*[c,t] and 

*[a,b] 
, and since • is a homeomorphi&i, the integrals for a and 

are taken over correctly corresponding nets of Stieltjes sums. 

LEMMA 2.1.21. Let [a,b] be a compact interval and g s [a,b] 

-, C a. continuously differentiable function. Then, for each x C X 

b 
f g'(A)E(A)xdA. exists and equals / E(A)zdg(A) 
Ja Ja 

Proof. Let £ > 0 , and let (a,a*) c ?[a,b]  be such that 
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II(E,dg,1,S*)x - 

b 

J
E(A)xd.g(A) c C 

a 

whenever (t,t) (a,s*) . Let & > 0 be such that g'(s)-g'(t) 

<(if Is-tl<& and a,tc(a,b].Let ! bea refinement of a 

such that max (vj vj...1) < 6 • Let (u,u*) ctF*[a,b].  with U x 

Then, if j(x) aX, 

I (E,dg,,u)x - 
(gIE,aj,,u*)xfl 

j E(u )(gt 

Kfrflc(b-a) , 

each ul*  being a point in (uj_1,u)  whose existence is given by 

the mean value theorem. Thus 

b 
[(g'E,d.j,u,u*)x - JE(X)xd.(X)Q r. (KOxtj(b-a) + 

whenever u z' giving the required result. 

.:COROLI&RY2.j.22.. If f : (alb) C is continuous, then 

b 

J
f(A)g(X)xfl exists. 

a 

A 
Proof. Take g(A) 

= f 
f(t)d.t in 2.1.21. 

a 

IMMA 2.1.23. Let f : R C be continuous, with 

U 

I VL c -. Then liz ( f(A)E(A)xdX exists for each x I , 
u-eJ-u 

: 
defining a bounded linear operator, to be denoted by 

ff(A)(X)dA 

A similar result holds with R replaced by (—,b] 
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A 
Proof. Let g(A) = [ f(t)a.t . Then g is continuously 

differentiable and belongs to BV(R) . Using 2.1.21, we have 

u U 

I
f(A)E(4& = 

J 
E(A)xdg(A) 

u -U 

= g(u)2(u)x - g(-u)E(-u)x 
- j g(A)os(A)x 

J-u 

e 
-0 fOJax"

/ 
 x - [ g(A)as(A)x 

-  

This gives the required result. 

COROLLARY 2.1.24. If g I R.-C is a function such that g' 

is continuous and integrable, then 

= 

A similar result holds with R replaced by (-oo,b] 

LEMMA 2.1.25. Let g : R x {c1d] -'C ((cod] compact) be con- 

tinuous, and let x c I • Suppose that 

Idt,u)IdMtc 003 

(ii) for each u 1 E [co d) the function g(.,u) is integrable 

over (-CD, 00) , and the I-valued function 

-0 

 1 9 
(tu)s(t)xz1t 

is continuous on [cod] . Then the integrals 

ci 

1/ 
c - 

g(t,u)E(t)ntt.jdu 
J  
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" a 

I
g(t,u)du IE(t)tht 

- C 

are defined and, equal. A similar result holds with It replaced by 

(-,b] 

Pi'oop: The first integral exists since the integrand 

1; by hypothesis, a continuous X-valued. function 

on [c,d] . The second is defined, by 2.1.23, since the function 

a. 
t 
 • f

g(t,u)du 
C 

is continuous and integrab]e on R • For each x c r , 

a Pd 
<'f (tu)s(t)xa.t] U / c,g(t,u):E(t)odt ley  - 

a. ", r d. 
g(t,u)d.0 IE(t)xdt = / <x,g(t,u)E(t)rdu tat 

J—co C C 

Since <x*,g(t,u)s(t)r  C dX*H lint Ig(t,u)I , hypothesis (i) and. 

Fubini's theorem, together with the Hahn-Banach theorem, give the 

required equality of integrals. 

§2.2. Spectral theory of well-boundable operators 

DEFINITION 2.2.1. A closed linear operator T D(T) C- I X 

(in general unbounded) is well-bouxdable if there exists a spectral 

family E :It-.'B(X) for which T = Tj  ,wbere j is the function 

j(x) a A (x c it) 

The aim of this section is to demonstrate the uniqueness of the 

spectral family of a well-boundable operator, and to identify c(T) 
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as the support of the spectral family of T • Until the uniqueness 

has been proved, we shall describe a spectral family Z satisfying 

2.2.1 as a "spectral family for T ". As in §2.1., we shall denote 

sup LIE(Afl by K 
MR 

If T t(T) CI -'X is a closed linear operator, and pc 

P(T) , then we aba].] denote the resolvent.. (PI-'r), by R(p;T) . 

PROPOSITION 2.2.2 If T t V(T) C I -* I is a well-boundable 

I operator and E is a spectral family for T , then a(T) C K and, 

for p c C\R , R(p;T) is given by 

R(p;T)x n /

R 
(p-?L) (x c x) 

J 

Furthermore, 

iIR(p;TI = O(IIm p 1) 

Proof. Let a(A) = p-A , p(x) = (p-A 1  (A c R). Note that 

p 00 ax..  varfl = i—co IrAl [Tm 111 

SO ft ' BV(R) . By 2446, T D TaTp and. c (TaTp) =9(T ap) flfl). 

Using 2.1.1.79  this gives I T1  ) T_jT(p_J ) -1  and. 

=9(T) fl(T( _ )_l) = x • Thus 

i (PI-T)T()...1  • ('0 
Similarly, I = T1  D T(J)_1T •••j  and @(T(_ )_lT) T1) fl 

• Thus 

x = T(3)_l(PI-T)x (x C ID (T)) . (2) 

Combining (0 and (2), we have 

T(p_j)•_1 R(p;T) 
= J 

(rA)-1on(A) 
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By 2.1.14, 

ItR(p;T)II KIIj(p—j)'II 

i_I 
K(llm . 11; 

+ 

dA

2  

= K(1. + r)j.im 1 1  

DEFINITION 2.2.3. A closed linear operator T 18 said, to 

satisfy condition (a  1 j if 0(T) C.R and there exists a constant 

such that ['in Ail IIR(p;T)U 4 x1  (p C 

This definition 18 due to Bartle [i]. Proposition 2.2.2 there-

fore says that a well-boundable operator satisfies (a) 

DEFINITION 2.2.4. For x c X , an analytic extension of R(p;T)x 

is an analytic function F : V(F) D p(T) -.' x (where V(F) is open), 

such that 

(PI-T)F(p) = x (p cP(ff)) (3) 

A point p0  c C is said to be in the analytic point spectrum of T 

if there exist a neighbourhood, V of p0  and an analytic function 

G : V -. X , such that G(p0 ) p 0 , and 

(pI-r)r,(p) = 0 (p cv) . (4) 

Equivalently, p
0  is in the analytic point spectrum of T if there 

exists a vector x c I for which (p 
-. R(p;T)x) has analytic erten-

sbus IF,' 
2  satisfying (3) but not agreeing at p0  , nor, there-

fore, on some neighbourhood V of p0  , V D)(F) nQ(F2) 

T has the single-valued, extension property (s.v.e .p.) if its 

analytic point spectrum is empty. If T has s.v.e.p., than,, for 

each x C I , R(p;T)x has a unique maximal analytic extension 

(p;T) , whose domain p(x;T) is called the local resolvent set of 
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x . The complement, o(x;T) , of p(x;T) is called the, local spectrum 

of x. 

REMARKS 2.2.5. (i) If a(T) is nowhere dense in C , then T 

has a.v.e.p. In partióular, this holds when o(T) C R 

If T has s.v.e.p., then it is implicit in the definition 

that x(p;T) CID(T) (x c X , ii e p(x;T)) . (p;T) is defined for all 

x c I , not merely for x 

If T has a.v.e.p. and A C B(X) commutes with T 

then (Ax)(p;T) = Ax(p;T) (p € p(x;T)) , A(p;T) being analytic, 

and so o(ax;T) C a(x;T) 

PROPOSITION 2.2.6. Let T€ B(X) be a well-bounded operator of 

type B, with spectral family E 

If E(A) = o (x'< a)  and z(A) I (A ) b) , then the 

functional calculus # 2 BV[a,b] -' B(X) for T gives 

*(xr ) = B(A) (ap  r. b) 

- is also a well-bounded operator of type B, with spectral 

family B' given by 

E'(A) = I - E(-A-O) (AcR) 

(E(v)-s(p-0))1 = I x c I : or(x;T) C (p,vfl (p 4  v) 

Proof. (i) We have, noting that[a,p] € NBV[a,b] , 

e 
(T)x = 

J 
x (A)ds(A)x 

[a,b] 

E(a)r + 
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'p 
= E(a)x + I di(A)x 

Ja 

= E(p)x (acpb,xex) . 

It follows from 1.3.11 that 

Xr IA., (r) = E(p-0) (acpcb) 

Consider the map f -. f , where f(A) = f(-A). We see that the maps 

AC[-b,--al —4 AC[a,b) -L B(X) 

satisfy 

where j(x) = A (A c [-bp -a]), Therefore = çfro- is a functional 

calculus for the well-bounded operator -T , and it clearly satisfies 

any of the compactness properties (iii)-(v) of 1.3.10. Hence -'P is 

of type B. and 0 gives 

E'(-A) = *(t[_b,_A))  = 

= I - X(-X,—,al   1(-T) 

= I — X[a A)(T) 

= I - E(A-O) (a<Acb) , 

with E'(-)L) = I (A c a) and E'(-A) = 0 (A> b). Thus (ii) is 

proved. 

We have E(A)X = Ix E x : o(x;T) C (-co,A)j (A 
, from 

(3], Theorem 5.7. It follows that E'()L)X = Ix e X : c(x;-r) c 

(_oo,A]1 (A C it). Therefore, if x c ((v)-E(p-0))X, then x C 

and x c E'(-p)x , hence a(x;T) C('-co,v] and u(x;-T) C (-oo,--p] , 

which implies o(x;T) C (po w] 

Conversely, if o(x;p) C (p,v] , then x c E(v)X ; also, 
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o(xy) C [-V,-P) , so x c El(p)X, . Hence x c E(v)(I-E(p-0)X r 

(E(v)-E(p-0))X. 

PROPOSITION 2.2.7. let T :(t) C  -'x be a well-boundable. 

operator and IS a spectral family for P • Then 

X'( A) = I - E(-)rO) is a spectral family for the well-

boundable operator -T 

(E(v)-E(p-o))x = Ix e x : or(x;T) C [p,v]j (p c v) 

Proof. (i) Firstly, note that IS' actually is a spectral 

family, the order and continuity properties being obvious. Let S be 

the well-boundable operator as8ociated with the spectral family IS' 

Suppose that x CV(T) ; then Tx lim T(?)x , where 

= J 
M.E(A)(z(u)-E(-u))x 

[-u,u] 

and ml is any increasing sequence of positive numbers such that 

U -' 
n . We recall from 2.1.2 that Tx is independent of the actual 

choice of the sequence {u • In view of the Lemma on p.30 of [30], 

the function A • E(A)x has only countably many discontinuities. It 

is possible, therefore, to choose tul in such a way that E(.sc)x 

- E(:4%-o)z = 0 for all n. (This choice of lul depends on x., 

of course.) 

Each T"I(B(u)-5(-u))x is well-bounded of type B and has 

spectral family E(A)I(E(u)-.E(-u))x; consequently each 

is also of type B and has spectral family 

E'(A)I(E(u)-E(-u))I = E'(A)I(r(u -o)-'(-u-o))x . Hence, with the 

obvious notation, 
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[-u,uJ 

J. 

[-u,u] 

= . 

Since '-Tx, it follows that x c%(s) and Si = -Tx • By 

interchanging the roles of S and. T , and, noting that (V)' = B , 

we see that 5=-T. 

Suppose a(x;T) C [p,v] . Then 

x (x/ [p,v)) 

Using 2.1.2(11) and. 2.2.5(11.1), we see that for any KsK 2 C 

(AI-T) (E(K 2 )—s(K1 ) )(AT) = (E(ic2)-E(,c1) )( A-'r)(A;T) 

= (E(c2)-E(x1))x . 

ibnce o((E(K 2 )-E(! t ))x ; TI(E(K2)-E(K1))X) C [p,v] . since 

TI(E(K2)-E(K1))X has unique spectra]. family EI(E(K2)—E(K))X , it 

follows from 2.2.6(111) that 

C (E(v)-E(r0))(E(K2)€(K1))x , 

hence 

(s(K 2)- (ic1))x (E(v)-(p-0))(E(K2)-B(K1 ))x 

Letting K ' Co, K 2 gives x C 

Conversely, if x  -c(( v)-E(p-0))X , then, since the spectrum of 

the type B operator Tl(E(v)-E(p-0))X is contained in [p,v) , we 

have 

(AI"T)k(AT((z(v)-E(p-o))x)x = x (A/ [p,v]) 

and therefore o(x;T) c [p,v] 
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THEOREM 2.2.8. The spectral family of a well-boundable 

operator is unique. 

Proof. Let T:(D(T)Cx-i.x beweU-boundable, and B,? be 

spectral families for T • Choose real numbers pa y with p C  vs  

and let 

I! Ix c X : clr(x;T) C [p,v]J lil y 

Then, by 2.2.7, 

Ii, V 

Moreover, in view of 2.2.5(iii), IL is an invariant subspace for 

both B(A) and F(A), for all AcR. 

Consider the spectral family G , where 

G(A) = (x cR) , pl y 

so that 

rIJIL Ay 
I P, 

= I (R(IQ-B(p-o))jM p4 A .c V 

Acp • - 

If xcM ,then 
U, P 

J MG(A)x p(s(p)-E(p-0))x 
+ J AaE(A)x 

[pl y] 

+ 
/ AdE(A)(E(v)E(p_O))x . (s) 

Now IL CV(T) ; if x  IL , than by 2.1.6, Tx w lixn pl y pl y 
Ut 

where 

T 
(n) 

J AdE(A)(E(fl)-(-n))x 

[-n,n] 



-43- 

Suppose that n > v and -ncp •Then 

Tx -nE(-n) ((n)-E(-n) )x + 

1 
Ad3(A)(E(n)_'E(_n))x 

r u  
• (6) 

J-n 

We have 

(E(n)-E(-n))x = (E(u)-E(-n))çE(v)€(P-O))x 

= (E(v)-(p—O))x 

• () 

Therefore 

P 

1 z(x)(E(n)-E(-n))x 
-n 

= urn A(E(p)-E(A ))(E(v)-E(p-O))x 
(&At)ct*[_n,p] in 

M-1 

p(E(p)-(p-O))x , (8) 

and, since E(A)(E(v)-E(p-O))x 0 ()L v) , 

I A4E(A)(E(n)-(-n))x = 0 • (9) 
iv 

On comparing (5) with (6)49) , we obtain 

= I AdC.(A)x (xc M p,v , n> max(-p,v)) • 

J  
[p,v) 

Therefore, by t.&sO, TIM PR Y 
is a well-bounded operator of type B 

with spectral family C. = ELM ,  

The above calculation can be repeated with E replaced by F 

throughout, yielding that ijw II, V 
is also a spectral family for 

TIM • Since the spectral family for TIM 12,v is unique, we have 
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E(A)y = F(A)y (y C M ,. A C 
I4P 

Therefore 

F(A)(s(v)-E(p-0))x (x e , A CR) 

Letting v -. + , p -. - gives E(A)x = P(X)x (x C I, A C B,) , and. 

so S 

TIEOREM 2.2.9. let T :t)(T)cx-*x be a. well-boundable 

operator with spectral fathily B • Then, for each A C R , 

(E(X)-E(4-0))X = lx C X ci(x;T) C A] 

= [xcx:xcD(T) and. Tx=Axi • 

Proof. Equality between the first two members was proved in 

2.2.7. 

If (Al-T)x = 0 , then 

p-A 

satisfies 

x  

and, so o(x;T) C [Aj 

conversely, suppose a(x;T) C J AI . Since x C (E(A)-E(4-0))x 

x c't(T) . We have 

x (p/A) 

Therefore, since B commutes with T 

(pI-T)(z(n)€(-n))p;T) = (S(n)-E(-n))x (p/ A) 

As in 2.2.5(111), then, 

o((E(n)_E(_n))x; T[(E(n)-E(-n))I) C JAI 

Since TI (E(n)-S(-n))x is a well-bounded operator of type B.  it 

follows from Theorem 4.5(111) of ES] that 
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T(E(n)-E(-n))x = 

Now let n-øoo;aince T is closed, we have Tx=Ax0 

The next theorem is a special case of a result proved, by Kocan 

([is], Corollary 1.15(1)), where it is proved under the assumption 

that P is an operator satisfying a condition (as) which includes 

(G). We give here a proof depending on the properties of well-

bound.able operators, and not involving use of the integrals 1 

considered in [18]. 

THEOREM 2.2.10. Let T ;D(T) CX -' X be a well-bound.able 

operator, and let x e X such that a(x;T) C [a,b] , where 

--  c a c b c . Let r be a closed, rectifiable, positively 

oriented Jordan contour with or(x;T) contained in the interior of 

r • Then 

X = I[ p;T)dp 
2riJr 

Proof. Let E be the spectral family of P • For n=t,2, ... , 

denote (s(n)-E(-n))z by x and TI(s(n)-E(-n))x  by P • By the 

same argument as in 2.2.9, we have 

a(x;T) C [a,b] , 

= (PI-•T)(E(n)€(-fl)Y(P;T) 

= x n 

MM 

x(p;T) = x (p ) = (E(n)-E(-n)Y(p;T) (pg [sb]) 
21 U U 

Therefore 
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j (p;T)4 i 
2ir1J 

[ 
F 27u.Jr 

= i[(p;T)ap 
2n1JT n 

where F is a suitable contour in I z e c : I z I > nj with F in 

the Interior of r • But, since P is a bounded operator with 

a(T) C [-nn] , 7  (p;T) = R(p;T)x on r , and. so  

1 [x(flT)dp' I R(p;T)x dp = x n I 
2flFn 

As +x,and a 

Jr 
x  n(p;T)dp = (E(n)-E(-n))f p;T)dp 

-* x(p)a.p jrJ 

and so t). result follows. 

LEMMA 2.2.11. Let f : ! -X be bounded and have left and 

right hand limits at each point. Let 

f(re ) = i P(O-t)f(e 
io 

)do (OErc1.,04tc2n) 
FT-  fo

2r 

 

where P is the ibissonkernel p(t)= 1-r 
r 

1*.2r cost +r 

re it tends to z = et0 along a continuously differentiable path 

in {z ; Izi cli whose tangent at z0 is radial, then 

?() -. j[f(et0+) 
+ 

Proof. This is a standard result for scalar-valued functions 

([MJ, Theorem ]I1.6.15). We sketch the argument here, giving details 
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where the validity for vector-valued functions needs to be stressed. 

Let 

= max P (t) (o c 8 c 
ktn r 

In view of the estimate 

Pr(t) (o c t ir , 0 4 r c i) 
2 

([341, 111.6.9), it follows that 

Pr(8) 
A(t-r) (o c ó v , 0 c r < 

a 

hence 

!pr( 8) + 0 as r -'1 (10) 

for each fixed 6 

For each z c T , consider the function • , where 

(u) = f(einz) + f(e iti) - 2f(z) (u 0) 
2 

(o) a 

is continuous at u = 0 , provided we normalise f(s0) = 

j[f(e t0) + f(ei(to_0))] Cs0 = e1t0) 

Suppose f is continuous at z • Let e > 0 • Then there is an 

arc C = Is it z t1  c t 4 t2j;, with t1  Ct0  <it
2 
 ,and a 6 = a(e) , 

independent of £ c C , such that 

110£  (uI < £ (0 4 Jul <a, z cc) 
2 

Then by standard manipulation, taking into account that Pr(s) is an 

r2r 
even function and 1 / P (t)atri 1 , we reach 

- 2rJ r 
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?tit) it) 21 
s' - f(e I P(i(u)au 

mfor z 

whore z = a it  . Therefore 

8 11 

ILf(re ) f .
"8 

( it)11 I P(u)dn + JikiILJt 
71'r i 27 

c c ..  
27 

CE, 

provided r is near I , since the not  hand side of (ii)  is in-

dependent of a C C , and by (10) its second term tends to zero as 

r I , independently of a • This shows that the function equal to 
-. it it f(re ) for 04rc1 and f(e ) when r1 is continuous at 

a0 . 

Now $2pose f is not continuous at a0  • Without loss of 

generality we may assume La = 1 • We again assume f(i) to be norm- 

alised as the average of the upper and lower limits along I • Let 

d = f(e °° ) - f(eM 0 ) 

be the discontinuity at 1 , and let 

4(t) — sin nt 

Then, exactly as in [54], p.SB,  we apply the result of the case where 

f is continuous at I to the function g=f -d, 
r 

which satisfies 

( it)  = 1it) 
arctaQrSint 

)d 
(ig) 

1icos.t ir 

Along a continuously differentiable path, arotan (_r sin t 
roost 

tht 

tends to the ang].e between the tangents to the path and So the,cSrcle• 

at j • The result now follows from (12) 
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THEOREM 2.2.12. Let T : V(T) C X -' X be a well-'boundable 

operator with spectral family E.Let -ca<bcco and O<c 

.c 17 , and, let the contour A be the union of the directed, polygonal. 

contours [b+ic,b+i'72a+l77,a+icj and [a-ic2a-i7?,b-iq,b-ic) 

I I 
3 I 

I —t 
1- 

— 

•j, [E(b) +(b"O) #&èe*e]x = Umj_ / R(jAJT)xdp (xci). 
2 E4O2iTiJIs 

Remark: ICocan ([191, Appendix) proved this formula under the 

assumption that E is strongly continuous. 

Proof. For y / R we have, by 2.2.2, 

66 
 R(p;T)x 

= J 
(p-AY1oE(A)x 

= f 
(p-AY1a,(A)x (x c z) 

a - 
Since A (p-A 1  satisfies the hypotheses of 2.1.18 and 2.1.24, and. 

have 

R(p;T)x - (rEx,  
J-.<P-A)2  

Therefore 

I I R(p;T)xxip = -i ( . 
Jts 2n1 JA (-') -' 

To justify the change of order of integration In (14)2  we put 

g(A,p) = (p-kY"2  in 2.1.25. Condition 2.1 .25(i) becomes 

[7 1 2 om(p)akcco,where in is  linear ineasureon A it is 
J_ooJAt p-Af 

easily verified that this integral is finite. For each p c A , 
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r ax 
and the continuity requirement is given by 

j llmpl 

(is), so 2.1.25(U) is also satisfied. Therefore 

I I R(p;T)xxIp = - i I U'M 21 2vi 

We have 

b+ic b-it 
(is) = 

- 217i 
_i_. [I a+icf a-ic (p_A)2i' 

since the integrals round the rectangles [b+içb+ii'70a+i7,a+i] and 

1b-ic,a-iça-i17,b-i7] are z. Therefore, evaluating the right hand 

side of (is), 

dp 

Ni  JA(p-A)2  

1 
Lb_A)2.p2 

- 

1 
2]' (a-A) c 

Mqm 

1  f R(p;T)o1 C t E(A)miA r E(A)xdx 
2u1 (b-  + 

= ;! 
A) 2 c2  - _______ 

J- (a-A)2 +c2  

In order to obtain the limit as C -* 0 , we make the conformal 

transformation 

• : z -, 1+iz 
1 -iz 

Of C, which takes R to I , and the upper half plane to the unit 

disc. If An, then 

•(A) = i+iA = e16 
, where -ir c 0(A) c v 

i-iA 

and if z =a+it , c>0, then 4(z) =rett ,where •r ci , Oct 

c2tr.Let 

7(0) = E(4(e1O)) (-it c 0 c r) 

Then 
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IT 

becomes 
r

-ir J
P (o-t)F(o)xdO 

a-A; c 
2 2 2r1 r 

+  

since 

1 1 
- - 

2 dA 

1.0
+ 
 it p (o-t) = Re re re = 2 2 

•j itL (a-A) +c L.Ô Z9 ._ 

As C -t  Q , a-i-it - a C ! along a vertical line; therefore re 
 it 

-, ei0(9) along a (continuously differentiable) path in I : jzj c ii 

whose tangent at 01-o(a) is radial, since the transformation 0 is 

conformal. It now follows from Lemma 2.2.11 that the limit as C - 0 

is f[p(o(a)) + F(o(a)-O)]x = fEE(a).*(a-O)]x ,. thus completing the 

proof of the theorem. 

Remark. The formula proved in 2.2.1.2 can be used to provide an 

alternative proof of the uniqueness of the spectral family for a 

well-bound.able operator. 

THEOREM 2.2.13. Let T : 9) (T) C I -. I be a well-boundable 

operator with spectral family S • Then a(T) = supp S 

Proof. Let s-' c R and 8 > 0 such that S is constant On 

[p-6,p+6] . Then for all a C LBV(R) , 

J
x( _8,8](x)a(x)a(x) = 0 

In particular, 

JR(r8 M+6] 
0 (xci) 
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Let 

X/ (p-S,p+6) 
a( )L) 

io A c (p-&,p+S] 

R)  

Y, 

 

= t 
- 
X( 

A) (x e B) 
Then aft = y, and T I . Applying the argument of 2.2.2, and 

noting that a c BV(B) , we see that To  = R(p;T) . Therefore p c 

p(T). 

Conversely, suppose p C p(T) . Then, since no point in a neigh-

bourhood of p is an aigenvalue of P , 2.2.9 shows that E is con-

tinuous in a neighbourhood (p-&,p+S) of p • Choose a,b such that 

p-6 <acpcb<p+6, and let q>O.if A is the rectangular 

contour joining 1a4n,b+ii7j , then a neighbourhood of A and, its 

interior is contained in p(T) . Let A be the contour defined in 

2.2.12. Then, by 2.2.129  

(E(b)-E(a))x = urn 1 [ R(AT)]cdX 
E40 21,1, JA 

C 

• = ._i R(AT)xd.A 
2vi 

I
A 

= o •(xcx) , 

and so B is constart in  

THEOM 2.2.14. If a C LAC(!) , than u(T) D a(o(T)) 

Proof. Let A0  c a(T) . Then the function p : A -, a(A0)-a(A) 

is also in &AC(R) . IM. c 0 • By the definition of absolute con- 

tinui17, there exists 81 > 0 such that, 
k' tk)  c, is a 

disjoint collection of intervals contained in some fixed compact 
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interval. [a,b] with Y,(t-s) c 61 , then la(tk)_a(sk)I c t 

Consequently, if S c [Ao-.F1A0+Sj] , tn.. Ia(tk)_a(t l )1 = 

IP(t)—P(tk-j )1 <c ; therefore the variation of P over 
2 

is bounded, by e • It follows also that, if tA—A0 1 c 
2 2 2 

& , then Ia(A)—a(A0  )J < c Therefore there áxists 6>0 such 1 2 

that !LIPIJ  c C v  where 3 = (A0-S,A0+81 

By 2.2.13, there exist A19 A2  with A1  c A0  c A2  c 

and E(A1 ) /B(A2) . Hence there is y  X such. that E(A1 )y = 0 

and E(A2)y=y .,40.Then 

= 111 (?4)L0)-a(A))aE(A)yj 

= II 
[A2(a(Ao)a(A))(A)yQ 

J 

C KIIIPDIJI&II 

c K4jyjj , 

and zo a(x0) C 0(T) 

§2.5. An extension of the H1fle-Ss.-?agy theorem to well- 

bounded operators 

We recall some basic notions from the theory of semigrOUps of 

operators. 

By a strongly continuous semigroup in B(X) we mean a set 

C B(X) which satisfies 
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T(s+t) T(s)T(t) (s,t o) ; 
1 

(o) = I ; 00 

T( .)x is continuous for each x c x . J 

(The apparently weaker hypothesis of right continuity for each T( .)x 

is in fact equivalent: see [s], Proposition 1.1,2.) It follows from 

the uniform boundedness theorem that flT(t)II is bounded on every corn-

pact interval. We als have 

= liz log ILT(t)D c (2) 
t-I°° t 

A strongly continuous semigroup LT(t)j is characterised by its 

infinitesimal generator A, where 

Ax liz T(t)x: — x 
t-)o+ t 

whenever the limit exists. The operator is closed, and t(A) is 

dense in X; A C  B(X) if and only if t T(t) is norm continuous. 

The spectrum of A is contained, in the left half plane J X : Re A 

I , where w is as in (2), and the resolvent is given by 

a. 

WO 

R(A;A)x 
/ 

etT(t)ya1t (ReX > w0 , x c x) , () 
J 

([51, Theorem 1.5.5). 

T(t) can be recovered from A by 

T(t)x = liz e t? (At)k((X;A)]kx (xc x) , 
A-oc. •ttjkl 

([51, Proposition  i..i0. 

The well-knot theorem of Hills and. 8z.-Nagy ([1610 Theorem 

22..1.) states that if X is a filbert space, and {T(t)} is  

strongly continuous semigroup of self-adjoint operators, then A 
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is self-ad.joint, and 

T(t) [
R
eAtK() 

, 

J 

where K is the spectral measure of A • This representation for 

T(t) is unique. Sz.—Nagy generaliged the result to normal operators 

([16], Theorem 22.4.2). A similar result for scalar type spectral 

operators on a weakly complete space was given by sourour (see [2] 

and. [511). We give here a version of the tJeorem for well—bounded. 

operators of type R. 

PROPOSITION 2.3.1 • Let A and. B be two linear operators on 

X • suppose there exists p c p(s)np(B) such that R(gt;A) = R(p;B) 

Then A = B 

Proof. Denote the common value R(p;A) = R(p;B) by Q • Then 

Q(pl—A)x = x (x c 

Q(pl—B)x = x (x e 

(PI—A)Qx x (xcx), 

(pI—B)Qx = x (x E x). 

In particular, Qx € V(A)n (B) aM AQx = BQx , for all x e I 

Consequently x CV(A) implies x = Q(pI—A)x c(B) ,and Ax = 

AQ(pl—A)x = BQ(pl—A)x = Bx • Therefore A C B . Similarly B C A , so 

A=B 

THEOREM 2.3.2. Let T(t)}0 be a strongly continuous semi—

group in B(X) , with each T(t) a well-bounded operator of type B 

whose spectral family is Et . Let A be the infinitesimal generator 

of IT(t)} . Then A is well-boundsble, and its spectral family is 
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C , where Q(A) E1(e1') (A c R) . Furthermore, 

T(t)x JeAtdaAx (x C x , t o) , (4) 

and C is the unique spectral family which satisfies (4) 

Proof. Since c(T(t)) = o(T(t/2)2) = [a(T(t/2))]2  , by the 

spectral mapping theorem, we have o(T(t)) CR (t > 0) . Choose a 

> 0 such that a(T(1)) C [O val . iàt a = al/n  ; then o(T(l/n)) C 

[O,a] , nz'1,2,... • We have 

T(1)x = JME 1(A)x (xc x) , 

[O,a] 

T(1/n)x = j )4E1/ (A)x (x cx) 

[0, a] 

By the functional calculus in 1.5.10, 

T(1)x = [ T( 1/n)nj 3c JAfo j/ (x)x (x c x) 

[0,a  n] 

We claim that 

= s1(x') (A 0 ; n=1,2,... ) . Cs) 

To see this, let 

$A) = Ej/(A1'h1) (Aa. o) , 

P(X) =E ,/ (A) o (A<o) 

Then P is a spectral family, and, for each x ¶ x 

f 
AzLF(A)x Urn i.(FQ-P(Ak 

(A,A)c[0,a] -1 
[O,a] 

= Urn 
(A,A)cr(08a] 
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(Me)c''[oa] 

fe 
[0, a] 

using the correspondence between [0,a] and ?*EO,a] (2.1.20) 

Therefore 

1 = 

[0,a] [O,aj 

= T(j)x 

= fACM  i(A)x (xc x) 

[0,a] 

Since the spectral family of *T(1) is unicpie, p = E , and so (o) 

holds. It follows that 

T(1/n)x = fM 11 (A)x 

[0,a] 

= f A11) 1/'ndE$A)X 

[O,a] 

=- fv1/fl(P)x (x ci; n=1,2,...) , 

EO,a] 

and therefore, by the functional calculus, 

T(ny'n)x = ffihidEj(P)x (x c x) 

[0,a] 

fbr each rational m/n>0. 
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If t>O and ç-+t,vhere 1%) isa sequence in f, 
then (it C [O,a]) . Since iIII [O,a]1  are bounded, it 

follows from 1.5.11 that 

G 
T(Qx 

j t 
(x c x) 

[0, a] 

as n -. . Hence, by the strong continuity of T(t) 

T(t)x JPt(P)x (t > 0 ; x c x) 

[0,a] 

We next consider C , defined by G(A) = E1(e1') . It is clear 

that C(A) = i (x log a) and that C inherits the order, contin—

uity and boundednesa properties from B1  , sè in order to show that 

C is a spectral family we have only to establish that Urn C(X)x = 0 

(x c x) . For this we need to show E1 (0) = 0 • Let x C E1(0)X . 

Then x=E1(0)x, and 

T(t)x = f PtdE
1
( P)E

1
(0)X  

[0,a] 

= 0.B I (o)x •+ 
1at 

dE 1 1 (p)E (0)x 

= 0 (t>o) . 

By the strong continuity of T(t) , x = T(o)x = Urn T(t)x = 0 • mere— 
t-)0 

fore E1(0) =0. 

It follows from 2.1.20 that 

T(t)x = 
f t 

I 0,a] 
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I
a r I 

= I II
t  dE (p)x 

Jo 

log a 

= J 
e 

f

eta(x)x (t 
> 0 3  x ( x) , 

since a(A) =1 (A log a) 

Let H be any spectral family such that 

T(t)x =. feAtdH(A)x (t > 0 ; xc x) . (6) 

Form the corresponding well-boundable operator B , where 

00 

Bx = fAd.H(A)x (x cV(B)) (7) 

and V (B) is precisely the set of x C X for which (7) converges. 

By Theorem 2.2.14, u(a'(l))Dexp(o(B)). since 0(B) = supp H, by 

2.2.15, and. PCi) is bounded, there exists d ER such that n(x) = 

I (A ) i). Hence, when p > d. , similar considerations to 2.2.13 

allow us to write 

a. 
R(p;B)x = I (p-A)a1j(A)x (x cx) 

i—co 

Using (5) , and substituting for T(t) from (e) , we obtain 

R(P;A)x = I lie 
J o 

for all real gi>w0 .Lot p>•ciax(d,w0). For each fixed t)O, 

the function h(A) = e(M)tx(..c,d](A) is bounded and left-continuous 

and vanishes at +o' • Therefore we can apply 2.1.18, obtaining 
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R(p;A)x = - I I / H(A)rlht(A)]d.t 
ioU-co 

co 
e1tr  àt 

J 0 u-co 

d. 
= - I I I 

tetfi(A)x1XIdt 
4  

JoU JA  - 

(A 

I = - urn [ I I to  

N-c0J cu-c. 
using 2.1.24 in the penultimate step. Let 

= te t (-co c A d , 0 t ( N) 

It is easily verified that g satisfies 2.1.25(1), and that g( .,t) 

is integrable over (-co,&J for every t C [o,N] . Furthermore 

t = 
 j

fi(A)xdht(A) 
= -co 

-Pt , .. 
= -e T¼t)x$ e 

which is a continuous function of t • Thus the conditions of 2.1.25 

are satisfied, and  so 

a N (x- -1 '" R(p;A)x =# ha ri te "t 1I(X)A # __ 

N-ooJ-ocUO J 

him [ 
d. -(p-A)N 

- I 21H(A)zzIA . () = t 
N j [ p-A + 2 

(r)L) J 
Since t. 

I
c we <' ' N rd -(p-A)N 

______ 

p-A dA C p4je dA= -'0 

and - 



- 61 - 

cI -(p-A)N 
-(u-x)r 2 

If e I- (rx) = N(p)2  

the first two members of the right-hand side of (a) tend, to zero. 

Therefore, using 2.1.18, 

R(p;A)x - 
dH(x) dA 

f rA)2  

j (Px)_1x(dJ(A)dH(x)x 

d. 
= (rA)-'a.ji(x)x I 

- 

= R(p;B)x (p > max(d,w0) ; x 
Therefore, by 2.34, A B 

Thus A is aW811-boundable operator with spectral family H , 
for any H satisfying (6). Since is such a spectral family, and 

the spectral family of a well-boundable operator is unique,. G must be 

the spectral family of A and the unique spectral family which satis-

fies (4). This completes the proof of the theorem. 
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CHAPTER 5 

WELL-BOUNDED ORATORS AND MULTIPLIERS 

In this chapter we discuss a number of interesting examples of 

well-bounded, operators which are multiplier operators, i.e, bounded 

operators on some 11(a) which commute with all translations. The 

relevant notions are reviewed in §i.i. Well-bounded multiplier opera-

tors are characterised in §3.2; the criterion is simply the existence 

and uniform boundedness of certain multiplier projections. In §3.5 we 

assemble some known facts about the existence of such projections to 

obtain examples and counterexamples on well-bounded multiplier opera-

tn rs • Some of these operators satisfy the cemigroup property, and so 

Theorem 2.5.2 can be applied to them. 

Certain of the operators considered here have been studied by 

previous authors, notably G. L. Krabbe [20-22], who obtained -spectral 

theorems both for bounded and for a class of unbounded operators. In 

§5.4 we use our theorem on semigroups of well-bounded operators to 

clarify these earlier results. 

§5.t. Multipliers 

Let G be a locally compact abelian group, with dual group F 

We denote the pairing between elements of g and r by (y,x) , 

ycr,xca. Choose Haar measures in on.G and r on F,norm-

alised so that the Plancharel identity holds. For 1 4 p c w , let 

denote the usual spaces of equivalence classes of functions 

Ii 



- 63 - 

modulo null sets. For P. = , the appropriate space to use is the 

apace of equivalence classes of bounded measurable functions modulo 

locally null sets. (This technicality takes account of the possibility 

that in may fail to be c-finite: for an example and discussion on 

this point, see [15],  note 11.350  Theorem 12.2 and Definition 12.11.) 

The Fourier transform 

(y) 
f 

(y,x)f(x)dm(x) (y e r) 

is defined for all f c L1(&) . The Hausdorff-Young theorem states 

that if 1 4 p 4 2 and f c I)(G)(t(G) , then il?IL,, IlfII, (where. 

p p' 
and therefore the mapping f + f extends by continuity 

to an operator in B(JY(G),IY(G.)) , which will also be denoted, by 
A 

f - f.Wben p>2., f exists for all f in the dense subspace 

of LP(G) , although it need not then be an element of 

L2 (G). and the transform will not.. In general, extend to the whole 

of iY(&) 

By a multiplier operator in B(IP(G)) (i 4 p 'c ) lye shall mean 

a bounded linear operator which commutes with each translation opera-

tor. Multiplier operators are characterised. by the following: 

PROPOSITION 5.1.1 ([41,.meorem 4.4). An operator T C  B(IY(G)) 

C p c cc) is a multiplier operator if and, only if there exists a 

bounded measurable function 4 : r + C such that 
(ff)A 

= . () 

for all f c L2()nIflG) . The equivalence class of • in i7(r) is 

unique. 



- 64 - 

The function 4) of 5.1.1 will be referred to as a p-multiplier. 

If I ( p 4 2.9  relation (i) holds for all f C 1?(G) . For each p 

we denote the set of p-multipliers by ii
2
(r) ; it q5 e M(r) , then 

the multiplier operator in B(L2(C.)) satisfying (i) will be denoted 

by T (or by T when the particular value of p is to be 

stressed). 

In the proof of 5.1.19  the following duality relation is 

established. We shall require this result in §5.2. 

• PaOPoslnoN 5.1.2. If 1 c p c , then M(F): M
21

(r) . If 

the operators corresponding to the multiplier. 4) are , 

with nolrn3: lIT 
, 

IL , lIT • respectively, (sf)(x) = f(-x) for 

a measurable function f:Q-.C, and cf,g>f fg, then 

<T?sf,3 
<f,')9 Cr 

C  L(G), g eL '(a)) ; 

lIT?Il2 , lips 

Proof. See [t], .6, or [24]2  Theorem 4.1.2. 

it iswell-known that M2( r) L( r) , and that it1  (r) . is the 

set of all Fourier-stieltjes transforms of bounded regular complex 

Borel meastres on C • If C is infinite, then M (r) is properly 
21 

contained in II (1') when I - .1. 1. ([24], 
Th

eorem P2  2 p 1  
,, 

1.21 
 
 P2  

4.5.5). 

Remark. We have reserved the term "multiplier" for the function 

4) rather than the operator T maqy authors define a multiplier as 

an operator in B(IP(C)) which commutes with translations. 
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§5.2. Characterisation of well-bounded multiplier operators 

I81!MA 5.2.1. Let (n,E,p) be a measure space and. If 1 
sequence in ii(O,Z,p) (i 4 p < 

It lit -nc -' 0 , then there exists a subsequence 
such that f(w) -* f(w) almost everywhere (a.e.). 

if iiç-Ii2  • OeM. f(w) -. g(w) a.e., then f(w) = 

g(w) a.e. 

Proof. (i) Combine 111a.6(1) and I11.6.13(i) of [9). Part 

(n) follows immediately. 

PROPOSITION 5.2.2. ' Let C M(F) (i  4 p c be real-valued., 

andsuppose that 7
0 

C B(IF(G)) is well-bounded. Let T be 

implemented by (K,[a,b]), where [a,bj is large enough so that 

[-lWt,iiiL] (a,b) . Then the AC[a,b]-functional calculus for 

is given by 

= (a.e) (a c Ac(a,bj, f C JPtG)flL2(G)) 

Proof. In view of 5.1 .2, we my assume I E p 4 2 • For each a 

C AC[a,b] , a(r4,) c and so commutes with translations*  hence 

there exists # C 31(r) such that [a(T)fl'  = for all f 

IY(G) . It q is a polynomial then obviously [q(p)f]A = (q.4)2 

Let Jqn j be a sequence of polynomials such that Iiiq-aIIl,. b1 -, 
La, . 

Then it follows that -. a(x) for all A c (a,b) , and  so 

qMy))(y) 4 a(4(y))?(y) (y c f C 11(c)) 

We also have, for each f c 11(c) 

11(ç°)2 -Mc1 
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' 

Kill q
.— alili b]  LIII 

-, 0. 

By 3.24(U), therefore, sfr(y)f(y) = a((y))?(y) a.e., an  so O) 

= (a.#)i as elements of 11(r) , for all f C 

LEM}LA 3.2.3. In the notation of 1.2.3, if 

Urn (f,Ag,t,t*) = h , 

then there is a sequence (s,r) in 'e , with max (t-t) 

-' 0 as n -' , such that h 

Proof. We construct the sequence inductively as follows. Let 

be any partition such that max (t(V_41 ) c . For each n 

1,2,..., suppose we have found a partition such that mat 

(t
(n)_t) < • Thestieltjes sums converge, by assumption, so 

there exists a c (P such that ii (f,Esg, a, st) -hit < 2-n  for all 

(s,st) CT* such that a ) • Since (F is a directed set, there is 

a £ with (n)  ? (n) (n) 
. We can find, a refine- 

ment s(nf1) of U (n) with MA X (t(n+1)_(n:1)) c f" . Then 
k I 

(n+1) (n) 
and so any (t(t),t*(1))C1I)t satisfies 

Ii(f,tg,t,tt "1 5_hU c 

Thus we have partitions such that (n) (n) -n 
- 'r (t k  -

t (n) < 2 

(n i) and. JJZ(f,ag,t(n),t.(n))_hn so the 
-11+1 ) , and, <2 ¼fl)2 

result is proved. 
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THEOREM 3.2.4. Let • c ii(r) (i < p c  to) be real-valued.. Then 

T is well-bounded if and only if each x co, j p 
£ M (r) and there (  

exists X<co such that liT 
°

lkK(AE& .The spectra]. 

family E of T is then given by E(A).=T (AcR) .(or 

course, T 
41 

is self-adjo:lnt when p 2 

Proof. Asin5.2.2, we may assume 1<p(2. Suppose T is 

well-bounded, and implemented by (K,.(a,bj) , whore (a,b] is large 

enough so that (-flIL,IHlj C [a,b] . Since E(A) £IT 
 0 1 for all 

A E B. , each E(A) commutes with all translations. Therefore, for 

each A c B., there exists OX  C M(r) sich that [E(X)fl' = 

(f C iY(a)) . We need, to show that 4' = X 
x]° 

kcc.% a.e, 

Since iY(c) is reflexive, T.  is of type B. and therefore 

there is a BV[a,b]-functional  calculus for T. By 2.2.6(1) 

E(A) Xra, i(T) (axcb) L 
Fix A c [a,b) . Let ft c  AC[a,b]  be the function, which is I on 

(a,XJO on [A+b-A,b] and .linear on [A,A+b-A].Then 
n n 

fin(p) •XEa,Aj(P) for all si c [abJ , and = 1 ftrafl 

n • By 1.3.11, Therefore, 

IIPfl(T.p)t'_X[a,A](T0
)t'112  .-' o (f C 12(G)) 

For each xi , by 3.2.22  

[p(T)fJ" = (p.p)I (f c 

and so 

= 

4 11P(T)f—E(x)fll2 
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5 ItPfl(Tq,)f_X{ax)(T )rlj 

•0. 

Since flU L(gi)-t'xra,  (i) for all  pc [a. , vw also have that  

fl.Wy))~f (y) -, xl (y c F , f c L(a.)) 

From 3.2.1(11) it follows that *) in L(r) for 

all f C 1F(G) Therefore, taking into account the assumption on 

(a,b) and IIfl,wehave E(A)=T (Acit) 

Conversely, suppose the stated condition is satisfied. For each 

AcR, let Lx= lye, r : o(y)  4 )LI anti set 

E(A). = T T . (i) 
XL  

By krpothesis, 

IIE(A)O c K ()L C it) . (2) 

Obviously (i) :Implies 

E(A)E(p) = E(min(A,p)) (A,p e it) . (3) 

It is also clear that, if a= ass inf(y) and b= ass sup (y), 
ycF yer 

then 

E(A) = 0 (kca) ; E(k) = i (Ab) . (4) 

Properties (2) , () and the reflexivity of Ii(c) imply-, by 

Lorch'a theorem ([251, Theorem 8.2), that thelimits E(X4) and. 

E(A-O) exist in the strong  operator topology, for all A c it • We 

claim that 

E(A)f = E(A+o)f (r c L(G) , A C it) . (s) 

To obtain (5) , let g Urn E(p)f c LP(G) . Let jp
n

j be a 
rA+O 

sequence of real numbers decreasing to A • Then 
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IIs()r - zII -0 0 

Consequently 

II(x(....,11 j0)f. €112, -. 0 

and so by 3.24 a subsequence EP%1 exists for which 

,, 

.((v))() - (y) a.e. 

But j(x) 
-, X(x)(x) (x C & , hence 

[E(l)f]"(y) = 

111R 

= (y) a.e. 

Thus (E(xr]" = :In i?(r) , hence by the injectivity of the 

Fourier transform, B(A)f = g 

Properties (2)—(5) mean that E is a spectral family, so by 

1.3 • 3, 

b 
T = aE(a) + 

f 
ME(A) 

a 

exists, the integral being strongly convergent, and is a well—

bounded. operator. We must show that T = 

For any f eL2(c.) , 
1(x) 

1? = as(a)f + —Urn 
(e.,A*)Ie'[a,b] ' 

1(A) being the number of intervals of the subdivision 
. = 

Therefore, 
i(x) 

(Tr)*' = 'a(E(a)f]" + 11I 1irn ((-E(_1 ))r]4  
(A,X)[a,bJ iM 
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By 3.2.3 there exists a sequence in (F*[a,b] with 

MAY (x_4'9)  •* 0 , such that 

1 
(if)"  = a[E(a)f' + il'I' ,—]:1n E 

MOW k=j 

By 5.2.1(1) there Is a subsequence, also to be denoted by 

, such that 

a[E(a)f]"(y) 4 .  V' 

-' (Tr)'(y) a.e. (6) 

Each of the expressions on the left hand side of (o) is of the form 
a A 

ax(j(c6(Y))f(v) + A1j (Y)— xL (y)]f(y) . (7) 
Ak 

If 4(y)>a,then, for each A, ?Lk  _ c(y).A for some 
0 0 

k0 .Thus y e for kk01and Y/LAk  for k<k0 , and so 

(q) has the value lt f(Y) . For each n , c /(y) C and 

(n) (n) 4n) , so since max (i5'-4) -, 0 , it follows 

that -, ç1(y). If ,(y) = a j. then for each subdivision (7) 
0 

has the value a[E(a)fj"(y) = a?(y) = #(y)?(y) , all other terms 

vanishing. 

Therefore the left hand side of (7) tends to •(y)(y)  a.e., 

and so (Tf)^(y) = (Tf)'(y) a.e. since this is true for all f c 

xY(a) ,wehave T=T. 

Finally, we relate the result for p > 2 to that for the 

conjugate index by using .1..2. Since T is similar, via the 
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invertible isometry S , to T (p'), 
, it is well-bounded. Furthermore, 

the spectral family of T is A - E(A)(1 , E(A) being similar ,  

in the same way to E(X)
(pt)*

, for all AcR. 

COROLLARY 5.2.5. Let 4) : It -, K be bounded and piecewise mono— 

tone; that is, there exists a finite set of real points a  

together with xO = —a', x = tw, such that 4) is monotone and 

bounded on each interval K
, 
 = (x_1 x) (j = 1,2, ... ,m) . (The values 

4)(Xj) (i 1,2,...,m-1) can be assigned arbitrarily.) Then 4) c M,(R) 

Ci c p c , and is a well-bounded operator. 

Proof. Obviously 4) E BV(R) , and so, by a theorem of Stec1c1n 

([121,, Theorem 6.2.5), 4) e M(R) (i c p c a')  . For each A c ! v  the 

set Lx  introduced in the proof of Theorem 3.2.4 differs by only a 

finite set from a union 
, 

ihere each Lj,x  is a subinterva]. 

of K , possibly empty. Thus 

L "Li (Y) 

Each T is the difference of two operators of the form P.
XL  

, 

j,A 

where 

(P 5 
 f' 

= 
(sc f e L1 (R)nt?(R)) 

Let 

(Uf)(x) = 

for almost all
,  xeR, and all scfl,fcl?(It).Then,for all f 

c L1(R)fllflR) , 

(U5fY'(y) = 2(y+s) 

(PfY' 5  (y) = x(,0)(ra)fCY) 

(uP5fY(y) 
= (Pf),'(y+s) 
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= X(. 0)(Y)(U5f) (Y) 

j-((I-th)uffly) a.e., 

where ii is the Hilbert transform operator, which is the multiplier 

operator corresponding to fr(y) = -isgñy (y cit) . The fact that 4' 

c M2(!) (i c p <) is a theorem of M. Riesz ([121, Theorem 6.2.). 

It follows that 

= ju(i-in)u (a C.  a 
and 

U 8  II2  r.  i<i+Jjn1j2) (3cR, icp<4 

Consequently, if we set 

E(A) = T = 
Is 

j XL 
i VA 

T (e) 

then 

IIE'(A)Ii2  4m(1+I1nt) c cc (A ER) . (9) 

(8) and () imply that the condition of Theorem 3.2.4 18 

satisfied, and so is well-bounded and has spectral family 

Let by be the space of all sequences of complex 

numbers such that Ien en_i I c cc . By another theorem of 3te1dn 

([12], Theorem 6.3.5), by cw(,) (i <p< cc) 

COROLLARY 3.2.6.. If E = Ifni w  is a piecewise monotone 

bounded sequence of real numbers, then e cM(Z) (i c p c cc) and 

is a well-bounded operator. 

Proof. The proof is exactly analogous to Corollary 3.2.5, with 

the conjugate operator for functions on T replacing the Hilbert 

transform on P. 
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COROLLARY 5.2.7. If ç& : T -, R is piecewise monotone and 

bounded, then ç& c M(T) (1 c p c 00) and is a well-bounded 

operator. 

Proof. In this case there is another Ste1cIn theorem which 

states that BV(T) CM(T) , with IITl4 K 1118111 (° C BV(1)) 

([121, Theorem 6.4.4). (it is 1nmaterial which norm we give BV(T) 

In particular, when B = 
V 

xr,
I J 

(0 4X 2r) ,II 0II P 
2K and it 

L  
follows as in Corollary 3.2.5 that the appropriate projections E(X) 

C 10 will be uniformly bounded. 

§.3. Examples of well-bounded multiplier operators 

In this section we give examples and counterexamples to 

illustrate 3.2.4-3.2.7. 

THEOREM 3.3.1. (i) The Poisson operators P(t) , where 

[P(t)fl(x) t r 00 
 

r(,-) 
 du = - 

2 2 (0 < t < 1' E I%)) 
H 

P(o) =1 

are well-bounded operators in B(L(i)) (i c p c 

(ii) If D is the operator on 11(R) (i c p c where 

= if c IY(R)fl14aC(R) : f' c IP(R)J 

Df = 1" (f cc(D)) 

and H is the Hilbert transform, then DH is a well-bounilable 

operator on 

Proof. (i) The kernel p(t;x) 
= I t has Fourier transform 
1T22 • t+x 

p(t;y) e , therefore 
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A _tIIA I p [P(t)r] (y) e f(y) (yR,fcL(R)n,(R) ,otc

ly  

co) 

Since etI satisfies the condition of 3.2.5, it is immediate that 

P(t) is well-bounded. 

(ii) The operators [P(t)j>0  form a strongly continuous semi-

group in B(L1'(R)) , whose infinitesimal generator A is given by 

1t(A) = if E IY(R) : Hf c LAC(R) and (Hf)' C IY(R)J 

A! -DHf (f cW) , 

which also satisfies 

flA) = If C IY(R) : (y. yj?(y)) C 

(Af)'(y) = -IyIf(y) 

when 1 c p  41 2 • These facts are proved in [s],  Theorem 4.2.10 and 

Lemma 4.2.11 • It follows from Theorem 2.3.2 that -DR is well-bound- 

able, and from 2.2.7(1) that DR is also well-bounilable. 

THEOREM 3.3.2. (i) The Gauss-weierstrass operators w(t) , where 

I 

00 2 
[w(t)fl(x) = -- f(x-u)e" /4t du  (o c t c , f c IP(R)) 

141t—. 

W(0) = x 

is a well-bounded operator in B(1Y(R)) (j c p c 

(ii) The operator D on IY(R) Ci c p c , where D is as 

in 3.3.1, is well-boundable. 
2 

Proof. (i) The kernel ,y(t;x) = je' '4t  has Fourier trans- 

2 
form (t;y) = e' , therefore 

[w(t)r)'ty) = e_tY?(y) (y C B. , f c L1(R)(t(R) , 0 t c 00) 

2 
since S satisfies 3.2.5, the result follows. 

(ii) The operators Iw(t)0 form a strongly continuous semi- 
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group whose infinitesimal generator is D2  ([530  Theorem 4.3.11) , 

so the result again follows from 2.3.2. 

THEOREM 3.3.5. The following periodic analogues of 5.3.1 and 

5.5.2 hold: 

the periodic Poisson semigroup IT(t)J , where 

29 —2t I (1—e 
)  n - 

2i 
 J0 t-2e cos 4) + e 

(r E iI() C C T , 0 c t c oo) 

T(0) i 

is a strongly continuous semigroup of well—bounded operators in 

B(11(T)) (i  c p c oo)  corresponding to the multipliers n e t1 111 

in M(Z); 

the periodic Gauss—Weierstrass semigroup Lv(t)j , where 

21, 
 [v(t)](c) = -i I f(C-9)05(4);t)d4) (r LP(j)  , c 27 J o 

oct.c.) 

V(0) = i 

(ø( .;t) is the Jacobi theta function 4) e'2e iko ) , is a 

strongly continuous semigroup of well—bounded operators in B(9(1')) 

c p c °°) corresponding to the multipliers it in M() ; 

the infinitesimal generators A of Er(t)1 and. B of 

v(t)} are given by 

T(A) = If C iY(p) s c AC(T) and (1)' 

= If  c 9(j) : (n -* InI2(n)) c (i1()]"} , 

Af = —(1)' (fc(A)) 

(.M)"(n) = -In f(n) (f cV(A) ,n ez) , 
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where ? is the conjugate function of t , and 

V(B) = if  c r,r' c AC(j)  and V' C  Owl 

= If c JP(T) : (n.' n 2k)) C [iY(t)]"j , 

• Bf = f'' (fc'D(B)) •,, 

" (Bf(n) = —n 2 f(n) (r EV(3) , n C z) , 

and are well—boundable operators. 

Proof. The relevant facts about {T(t)I and {v(t)J are 

given in [5), Proposition 1.5.1 and Theorems 1.5.50  1.5.10. It is 

clear that the multiplier sequences Ie nit1 and. Ie j satisfy 

5.2.6, so T(t) and V(t) are well—bounded, The fact that A and 

B are well—boundable follows from 2.5,2. 

THEOREM 5.5.4, The Poisson and Gauas-'Vteierstrass operators on 
pn 

L CR ) (i < p < , p A 2) given by 

çn 
f(x-u) [P(t)fl(x) = 0ntJ du (a c t <  2 2)(n+1)/2 

t)) 
(t +uui 

f CL (  

where C 
= 

r[(n+1)/2]  

oo, [w(t)fl(x) 
(4nt)1V2 f f(x u)e 

jul 2/4tdii (octc 

f e iPOt)) 

are not well—bounded if n> I 

Proof. Let I c p c 2 • When expressed. In the multiplier 

operator fort (TfY' = , ?(t) and w(t) become 

e—tly12(y) 

[W(t)fj"(y) = e f(y) 
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for all f e 9(e) . Fach set 1Y C Rn  : 95(y) 4 Aj for both P(t) 

and w(t) , 18 therefore the exterior of a sphere in • It was 

proved by Fefferinan [is], that, if B = {x e 0 : lxi r i I , then 

X A M(R') for any p / 2 , if n> I • It therefore follows from 

3.2.4 that neither (t) nor w(t) can be well-bounded when n> I 

Not all real-valued functions in BV(R) yield well-bounded 

operators when considered as multipliers. To obtain a counterexample,, 

we need the following concept: 

DEFINITION 3.5.5. A set of uniqueness for IY(r) is a measur- 

able set F C G such that, if f c , f = 0 a.e. on G\P , and. 

,then f=Oa.e. 

reek t. 

PROPOSITION 3.5.6, If F is a set of uniqueness for 

with 0 c '(F) c , then x é 11(r) Ci c p .c 2) 

Proof. Let H D F be a compact set with 77(H)c03.Itisa 

standard fact (see (28], 2.6) that there exists h 

L 
2
(G) such that li is equal a.e. to a continuous function of compact 

support which takes the value I on H 

If x7 eM(r)then 

X.Ff c [L'(a)]" Cr c 11(a)) . 

Hence c [IY(a)j" , aid so there exists g e I?(G) with 

= xF  . But since x.  c L"(r)nL2(r) , its inverse transform 
XF 

exists, and, we have

XF  

: 

'V 
= (g) = g c L(G) . 

Therefore F satisfies the conditions XF  c L(r) Xp = 0 a.e. On 
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1'\F , and. vX c  IY(G)  of 3.3.5. Since F is a set of uniqueness, we 

must have X = 0 a.e. But 77(F) > 0 , which is a contradiction. 

Therefore XF M(r) 

The existence of non-trivial sets of uniqueness was shown by a 

construction of Fig-Talamanca and Gaud.ry, reproduced in [24], 

Theorem 4.4.1: 

PROPOSITION 3.3.7. Let C be a nondiscrete locally compact 

abelian group, and HC C a measurable set such that 0 cm(H) < 

If c > 0 , then there exists a measurable set F C H such that 

m(F) > m(H)-c ; 

F is a set of uniqueness for 11(r) (i c p < 2) 

THEOREM 3.3.8. There is a real-valued function • c BV(R) C 

M(R) such that T C B(L(R)) is not well-bounded Ci < p < 

Proof. Let F be a set of uniqueness as in Proposition 3.3.7. 

By 3.3.60 XF /Mp(R) (i <pc co).  We refer to [24],  pp. 103-108, to 

examine the construction of F : it is an intersection F = fl F , 
n=1 n 

where each F is a finite union of dyadic subintervals of [0',1] 

The dyadic numbers being a countable set, we may assume that each 

is a closed set. Then F is also closed, and so F0  = 10,1]\(iai[o,ij) 

is an open subset of R , such that x / M 
p (!) (1 < p c 2) .Being 

0  

open, F0  can be expressed, as a union F = 1) of disjoint open 

intervals 1) = (a ,b ) 

Now let (x)= 0 (x / F) , (a+b)) = n 2  ,with 0 linear 

on each interval (a:,j(aitb)) and (j'(a+b),b) . Then 
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Ix C R : (x) c 0 n lt(—oo,oJu(i,00) . If T.  were well-bounded, then 

the spectral projection E(0) would be T ; but this does 
030 (l) 

not exist in n(9(&) since X C Ci c P  c 

and x.AM(R). 

It remains to check that 4P C BV(R) . Let t c flo,i] . If t, 

tk_i / F0  then (tk)_l)(tk_l ) = 0 • If t C F0  and tk_l  / F0  , 

then t  C  (a(k)b(k)) , say, and so IMtk)_(tk_l )I = (tk) 

• If t3  ,é F  and t,1  C FO  , then k(tk)_It(tkl)I 

n(k-1)-2  • Finally, if t,,t_1  c P0 , then either n(k) = n(k-J) 

in which ease ktk)_(tkl)I n(k) -2 , or else n(k) 4 n(k-1) , in 

which case there exists an a c (tki,tk)  such that (s) = 0  so 

that IP(tk)...ch(tk..l )I I4(tk)#(s)l + I#(s)_#(tk_l)I c n(k)-2  + 

n(k-1 )-2 • Therefore we see that tar q5 = 2n 2  

8.4. Connection with results of Krabbe 

The fact that operators of the type T arising in 3.2.5 and 

3.2.7 satisfy a Riemann-Stieltjes toxin of the spectral theorem is not 

new. Such theorems were established by Xrabbe in [20] and [21],  using 

direct calculations. Krabbe' a results are more general than ours in 

that he is able to handle two-dimensional integrals 'by using spectral 

projections associated, with rectangles, and so obtains results for 

complex-valued multipliers. However, for the real case, his treatment 

does not reveal that the mere existence and uniform boundedness of 



the spectral projections is itself necessary and sufficient for well-

boundedness, thus, in view of 1..5, reducing the problem of finding 

a uniformly bounded spectral family for T to the (difficult) 

harmonic analysis question of determining those sets whose character-

istic functions are Multipliers. 

In [20] it is shown that for. certain functions . 4; in BV(T) 

namely those for which c BV(T) whenever 3 is a half-open 

rectangle or a singleton, then, for 1 < P < 

cg,Tj> 
= f 

M.cg,E(X)f> (f C ]Y(z) , g C 1P'()) (i) 

where E(J) = T 
XJ 

• for all such 3 , and the integral, in (i) is 

a two-dimensional Stieltjes integral. However, the only functions 

actually identified in (20] as belonging to this class are those 

whose real and imaginary parts are piecewise monotone ((201, remarks 

on p.458 and Theorem 8.10). The special. case 4(j) a j (j c [O,2ir]) 

is studied in [s],  where it is shown that T is well-bounded, for 

this choice of 95 ; our general version is based on the ideas in [a]. 

The analogous results for the group P. are established in [21]. 

If 0 : R . C is a bounded function whose real and imaginary parts 

are piecewise monotone, then the multiplier operator T# C B(I)'(R)) 

Ci c p c satisfies 

Tf = 
J 

ME(lOf (f C 11(R)) (2) 

where this time the integral in (2)  is a strongly convergent two-

dimensional Stieltjes integral ([21],  Theorem 6.14). (we have not 
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examined in detail the reason for the discrepancy between the weak 

convergence in (i) and strong convergence in (2).) 

In [22] (Theorem 9.4, Corollaries 9.59  9.9) it is shown that 

when Q. is one of the operators ii) , 
3)2 

and DH (where D is as 

in 3.3.1) then 

Qf •= JME(A)f (r CO(Q)) () 

for a certain strongly convergent integral Over R which is similar 

to our / . A connection between the bounded and unbounded results 
JR 

is pointed out in [22], §9.10, via a form of functional calciulus, 

but the intimacy of the relation between the results for the semi-

groups jP(t)J , {w(t)j and their generators -DH , D  is obscured 

by the direct but independent constructions of the integrals in (2) 

and. (3) . In our case, however, Theorem 2.3.2, and in particular 

equation (4) of §2.8, give a direct interpretation of the form 

T(t) = exp (tk) when IT(t)] is one of the semigroups jP(t)I , 

jw(t)} . 

Finally, we remark that there is at present no satisfactory 

generalisation of the theory of well-bounded operators to operators 

with complex spectrum. In view of the above observations, such a 

theory would need to cover the complex-valued cases of Krabbe's 

I 
results, and to permit an extension of Theorem 2.3.2 in analog to the 

theorems for normal operators ([161, Theorem 22.4.2) and for scalar 

type operators (even for complex spectrum) ([31]0  Theorem 5.3). An 
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interpretation of Krabbe'a spectral theorem for W (since D is the 

infinitesimal generator of the group of translations) might then be 

possible. 
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CHAPTER 4 

WELL-BOUNDED RIESZ OPERATORS 

The class of Riesz operators in B(X) is defined, in such a way 

that it consists of all those operators which satisfy the Riesz 

theory of compact operators. We summarise this theory below in §4.1; 

the additional hypothesis of well-bound.edness permits a little 

simplification. The main result of this chapter is that a well-

bounded Riesz operator is necessarily compact; this is proved in 

§4.2 (Theorem 4.2.3). As an application, in §4.3 we use this result 

to show that the singular multiplier in (i c p c 2) con-

structed by Figa'-Talamanca and Gaudry (14], does not define a well-

bounded operator. 

§4.1. Preliminaries on Riesz operators 

DEFINITION 4.1.1 • An operator T C B(X) is a z'reaho]in operator 

if dim kor T and dim WTX are both finite. 

The second of these conditions implies that TX is closed: see 

[6], Corollary 3.2.5. 

If XD't is Fredhoim for all A E R\101 (which implies that T 

is not Fredho].ni unless dim 1< then T is called a Riesz 

operator. 

- We denote the set of Riesz operators in B(X) by R(X) , and 

the compact operators by K(X) ; of course, K(X) C R(X). 
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PROPOSITION 4.1.2. (i) If P C BOO , then P is Fred.holm if 

and only if T , the image of T under, the canonical map B( x) + 

B(X)/K(X) , is invertible. 

If TcB(I),then TR(X) if and only if is 

quasinilpotent. 

For TCB(X),T isFredholaif and only ff 1 is 

Pro d.ho]m. 

T c n(x) it and only if T* C R(r) 

Proof. (i) [6), Theorem 3.2.6. 

(ii) follows from (i) and the observation that o(T) ft 
(in) follows from the definition and [6],  Proposition 1.2.7. 

(iv) follows from (iii) 

Remark. The question as to whether T C R(I) can always be 

expressed in the form T = C + Q , with . C compact and Q quasi- 

nilpotent, is unsolved.. 

PROPOSITION 4.1.3. If P C R(X) and A C a(T)\101 , then A 

is a pole of (p R(p;T)) with order p/ 0 , and we have 

= 'A @1\4 a 

where 'A = (AZ-T)x and ker(AI-T) . This decomposition 

reduces P ; (Xr_T)ftA  is invertible, (AI_T)[TtA  is nilpotent and 

is finite-dimensional. Furthermore, A is an isolated point of 

0(T) , and the spectral projection 

A J [.R(p;T)d.p 
2171. J P 

where r is a contour in p(T) separating 4 from a(T)\! AJ * has 
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range Tt1  and nuil space 

Proof. These results are all in [6],  Chapter 5 • We use the 

the characterisation ([612  Theorem 5.2.2) as our definition, which is 

equivalent to (EG], Definition 3.1.1); the other results are in (163, 

Lemma 5.4.2). 

It follows that if T C R(X) , then a(T) is a sequence [XT) 

whose only limit point is zero. Unless dim X < w , we have 0 C 

a(T) , even if a(T) is finite, because T is not Fredhoim, and 

therefore cannot be invertible. 

If YCI and zCr,let 

er :(y)=O for all ycYj 

Exex:4(x)=O for all 

PROPOSITION 4.1.4, If T c R(X) is nfl-bounded, and. A c a(T) 

, then 

x (AI-T)xeker(AI-T) ; 

r = (x1*r)reicer(x1*_1rs) ; 

(1aT)X = [ker(AI*_T*)] ; 

(xi*_p*)xs = [ker(lCt-T)]t  ; 

dim ker (AI-T) = aim ker (AI-T) ; 

has range [(AI-T)X] = ker (AI*-T*) alA nufl space 

[ker (AI-T)] = (AI*-T*)r 

Proof. (i) follows from repeated applications of [30],  lemma 

2.7; alternatively, we can use [1]. Theorem 7, since a.xy wefl-bound.ed 

operator satisfies condition ((Q. 

(ii) is immediate from (i) , since T C R(r) is also well- 



bounded. 

(Hi) is true for any operator with closed range ([331,  Theorem 

4.6-D). 

(iv) We need only show that [ker (XD-T)] C (XE*_T*)x* , since 

the reverse inclusion is true for axy bounded operator. Let y c 

[ker (XtT)t . For each y c (xtar)x , define 0(y) = y(x) , where 

XEX is any vector for which (XE-T)x=y.Since yt C 

[ker (AI-T)] , 4,0(y) is well-defined, so 0 is a linear functional 

on (AI-T)x . Since (AI-T)I(XE-T)x is invertible, there is an M > 0 

such that, for each y c (XE-T)X , there is an x with (AI-T)x = y 

and lixil c 141yfl . Consequently is continuous. By the Hahn-Banach 

theorem, we can extend 00  to 4P c r • Then q,(AI-T)r = 

(x c x) , and so y = (AI*-T*)95  

Cv) The proof of this part is the same as that of the corres-

ponding result for compact operators ([3519  Theorem 5.5-H). We shall 

not present it in full, but make the following observation about its 

validity for Riess operators. The proof proceeds by constructing a 

suitable finite rank perturbation A of T (rasp. B of r') , 

showing that (AI-A)_ (re sp. (XT-B) 1) 
 exists, and obtaining a 

contradiction of the hypothesis m c n (reap. m > n) , where in. = 

dim ker (AI-T) , n = dim ker (Al*-TI) . The fact that A and B are 

Riesz operators in our case follows from 4. 1 92(1). Once we have shown 

that ker (AI-A) = 01 , then 4.1.5 implies that (AI-A)x = x , and 

so (Al-A) ' exists. A similar argument works for B . consequenUy 

the procedure for obtaining the contradiction is still valid. 

Finally, it should be. noted that we have also proved dim ker (AI-T)n 
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= dim ker (AIt_TS) ' , for all n, fox -any TCR(X) , since by 

4.1.2(11) and the spectral radius formula any polynomial in T with- 

out constant term is a Riesz operator, and. so  (XI-T)'  tI-S , where 

S E R(X) . (N.B. we have not used well-boundedness in this part.) 

(vi) For any projection P in a Banach space, ker P = (Px) 

and P*X* = [(I-P)x]'  . Therefore ker Pt4  = [ker (AI-T)1"' = 

(AI*_T*)x* by (iv) , and PX* = [(XI.T)x]t = [ker (AI*_T*))>  

ker (Ar_Tv) , so in view of (ii) we must have = ker (Xr*_T*). 

PROPOSITION 4.1.5. Under the hypotheses of 4.1.4, [(AI-T)x]* 

is isomorphic (but not isometric) to (AI*_T*)x* , and. [ker (AI-T)]* 

is isomorphic (but not isometric) to ker (AI*_T*) 

Proof. [(XI-T)x] is isometrically isomorphic to 

= X*/ker crTs) , which is clearly isomorphic to ()Lr_T*)xs be-

cause of 4.1.4(vi). It is easily seen that if 0 E (AI*_T*)x* and 

is the image of in [(A1-T)x]* , then = <0> (x c 

(NNT)X) , The other part is similar. 

§4.2. Compactness of well-bounded Riesz operators 

NOTATION, If T c R(X) is wefl-bounded, we shall denote the 

Positive and negative parts of the spectrum respectively by  JAJ 

and IM i I 
, arranged so that {A1J. 1  [Eu.I >1) is a decreasing 

[increasing] sequence, possibly finite, of positive [negative] 

numbers, which tends to zero if infinite. (Either sequence may be 

absent.) The spectral projections P [P 3 of §4.1 will hence-

forth be denoted by Qi  1 



LEMMA 4.2.1. Let T C B(X) be a well-bounded operator 

implemented, by (K,[a,b]) , and F a dual spectral family for T 

Let c=infc(T) and a= sup o'(T).Then F(A)O(A<c) and 

F(A) = P (A a) , so that T is implemented by (K,[c,d]) 

Proof. The lvpothesesof the lemma imply a4cd(b. 

Suppose that a c A c c . Then, by [27]9  Theorem 5, o(T*IF(A)r) c 

[a,A] . Since a(T*) does not separate C , o'(T*IF(A)r) c a(T*) c 

[cod] also. Therefore u(T*IF(A)X*) =% and so F(A)X* = 101 

c c) . similarly, PA(F(fl))r = 10] if d c A 4 b • Since 

(I-F(A))x C (PF(p))x* (p c A) it follows that (p-p(A))x = Ioi 

(a c A b) . Therefore by 1.5.4(v) F(A)X* = x° (A a a) . The fact 

that T is implemented, by (K,[c,d]) follows from 1.5.5. 

T}OREM 4.2.2. If T c R(X) is well-bounded and P is a dual 

spectral family for T , then 

0 Acp
1 

 

PO P A<p 
P(A) = 11 fl fl+1 

+ ... + ç) A 1  c A < An 

AA1 , 

leaving F(0) as the only value that is possibly not uniquely deter- 

mined. 

Proof. The reqilired values of p(A) for A/ [p,1 ,A,1 ) are 

given by 4.2.1. Starting from the decomposition 4.1.4(1) with A = 
we consider TI(p1I-T)I . This operator is well-bounded, by definition, 

and Riess, by [o], Lemma 5.5.1. We can therefore repeat the 

decomposition, and, since it is easily shown that 



ker (p21-T) ker [(p21-T)j(p
1
I-T)x] , 

we have 

x = (p I-T)(p I-T)xcker (p  1 I-T) ®ker (p  21-T) 

After 11 applications of 4.1.4(1) we get 

x (u1I-T)(P2I-T) ... (uI-T)xe ker (p11-T) . ... e1er (P 
 n'-T.)  

Similarly, 

X* (p
11*_Tc)(p2Is-.T*) ...(p I*_Ta)xeker 

(p
1
m*) ® 

,.. ®ker (pi*_T*) . (2) 

Let 

xn = (p11-T) ... (pI-T)x , 

= ker (PI-T) (j = i, .... n) 

(r) n (p I*_T*)...(p I*_T.)r 
-U i n 

21. 
a 

= ker (p4I*_T*) (j = i,...,n) 

T = TIX n n 

U.
a 
 = TjN. (j = i,...,n) 

Then 

= lAilbi  u {IIJIjZ,l  U  101 

a(u) jp
,
} (4  

The decomposition (i) reduces P , and. Tn , U (j = 1,...,n) are 

all well-bounded Riesz operators, If F ,Gj  are any dual spectral 

families for P , U
, 
 respectively, then we have, by 4.2.10  

F (A) = o A<p 
U n+i 

G 
~Jflu 

o Xcii (3) 
O') = 

Ap. 
i a 

on identification of Nj * with 21. 
a 
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The proof is complicated by the fact that, for an arbitrary spectral 

family F for T , we cannot assume a priori that F(A)P4  = PF(A) 

(i = 1, .... n, A c 1-'X1 1) , in which case the result would follow 

immediately. We shall show, however, that there is a dual spectra]. 

family F' for T , which agrees with F on 
°'ni 

and 

commutes with PiSi . We do this by analysing the function 

Introduced, in [27],  Lemma 3, which states that given any x C  Xp 

C , there exists a function w t C[p ,A ] , uniquely deter— 
XPO 1 1 

mined up to equivalence a.e., such that 

x, .l) 
= f(A

1 j )<0,X>,r 
- [ 1 i, (A)o.,f(A) (f C AC[p 12)'1  ]) . (4) 

The equivalence class of w depends linearly on both x and 4) 

For x c X, we obtain from (i)  a unique decomposition 

X = X1)  + +..s+ 

where x0  C X  j, X C N. (j = 1,.0,n) . Analogously for 4) c is we 

obtain from (2) a unique decomposition 

= 
00  + 01  +...+  On 

with 0.  E (is) 
, 

'p. c R (j 1,...,n) 

By 4.1.5 we can identify (x) with (is) and. N. with 

IL , up to isomorphism. We shall write for both (x) and 

(r) , an <09 3a (0 c is , x C In) for the common evaluation. It 

is clear that 

= <T x> (cxxci) . 

Therefore 

= .cp(T)4,x> (4) C P , z £ x) 

and, so 
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= P(Al)ø)O_f:øX#(A)aP(A) 

for each polynomial p , from (4) . since 

f <,f(T) - f(A1)c, 
+ I PI 

w  XPO (A)af(A) 

is a continuous linear functional on AC[p1,A1] , which vanishes on 

polynomials, and the polynomials are dense in AC[p1,A1] , it follows 

that I  

A 
= f(A

1
)c ir._f 1 w (A)ar(A) (f e AC[P1,A1]) , (5) 

PI  

for all 0 cr,xcx n n 
We require an expression like (5) to hold, with AC[p  ,A ] and 

A A 11 

I
replaced by AC[p 1 ,Al and I , with the same  w 

X20 

To show this is possible, let g c AC[1A1]  and let f e AC(p11Al l 

be equal to g on [z 1,x1 J and identically equal to the constant 

on . Then 

= f(A1)<#,r. 
- f :1  w(A)ar(A) 

n+1 

-j: w(A)dg(A) . (6) 

n+1 
In the notation of (27), Theorem 3, f-g c • Now, by 4.2.1, any 

n+1 

dual spectral family for T is zero on (—oo,p , so it follows 

from (27], Theorem 3(u) that 

= {eX*zh(T*)O for all hcR j • 
phl+1 
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Therefore (f_g)(T*)i  = 0 for all 4 C 1* , and, so we can replace 

f by g on the left of (6) to obtain 

= g(A1)c,D - 
X1 

to 
x,4)( X) dg (,k) 

I 14n+1  

(g E AC[p 1 3A1 ] , C X , X C xn) 

Thus if w is the function associated with lie P , x  I n n 
by the well—bounded operator Tn # then we have w 

, 

(X) c4ff,(  A) 

a.e. in ( 1 ,A1 ] . Since (5) gives 

0 = ch(T*)1,r = 

A 
= h(A1 )cli,x - f • 

(A)clh(A) 
J 

= - 

for all hER ,it follows that for licP,xcl we have p n n n+1 

X2
0 (;L) = 0 a.e. on 

) 

For j = 1,...,n , if X C N and 4) E Mi  , then 

= = = 

and so clearly 

= 

= p(p )q,r 

= 
A p(A1 )q, 

- f 

1<liapUi 

Pi 
for each pQLynoinial p • It therefore follows that 

0 a.e. on [p,p] 
to () 

= 
X, 

a.e. on 4) 
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In each of the cases XEN , cMk(i/k) ,xcx, 0 c M k 

(k=1,...,n) or x c N (j=1,...n) , c , it is easily verified 

that <4,r = <,T%'> = 0 • Substitution in (4) gives 

A 
0 cf(*)i1,r. = 0 - 1 i, (A)df(A) (t E AC[p19A1]) , 

J UI  
and so w (x) = 0 a.e. 

It follows from the bilinearity of 

calculations that 
n 

wx = 

W x, i/; and the foregoing 

a.e. on 

(n) 

for all 0 E r , x C 

[p,,i 3 -  
in m+1 

on [Un+iAi] 

A+h 
In particular Urn w(M)dz exists for all A C I 

h-'O+  A XPO 

• Now, by the argument used, in the proof of [27], Theorem 7, 

it follows that if F is any dual spectral family for T , then 

= w XP
(x)  a.e., and so, by 1.3.4(v), (x) is uniquely 

determined for A c (p 1,p1) . Now, since PT = TP (j=1, ... ,n) , 

it follows from [27],  Theorem 6, that there is a dual spectral family 

V , necessarily coinciding with P on 
1 

' such that 

PF'(A) = PI(A)P.* (j=4,29...9  A c [p1,A1]) , and of course T*F'(A) 

= Fe WT* (A c [p1,A1]) . 

Having established that V , , and P. all commute, we can 

now write 
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= f(A1)<P*Pn 
- J 1<PsF'(x)P*,pf.(x)dx 

p1 
1, ... ,n) , 

with a similar expression holding with IPr..  rP and T in 

place of P and tJ . Then F'Pf = P F' is the dual spectral 

family for U. , and Fi (i*_Pi *_••_Pn*) = (I*_Pin*)Ft  a dual 

spectral family for T • Since we know what these are on  

(equations (3) ), the values of F = F' on [p1 ,p 1 ) asserted by 

the theorem follow. 

It is clear that a similar calculation can be done on (A 1 , 

which yields the values I*_Q
1
*_..._Q* on 

Remark. Of course, the evaluation of a' on [P  ,A 1 is 
n+1 I 

not actually needed to prove the theorem, but it provides a little 

more insight into what is going on. 

TJEO1M 4.2.3. If T C R(X) is well-bounded, than T c 1(x) 

Furthermore, 

= iX + uPx (xcX) , (7) 
3)1 

each infinite sum in (7) converging in norm. (Either the positive or 

negative parts of (7) could be absent.) 

Proof. Suppose, without loss of generality, that 11T11 = I • For 

each positive a 4 I , choose t such that 0 c t c a and that no 

eigenva].ue of 1' lies in (-s,-t) or in (t,$) • Let the function 

77s,t C AC[-1,1) be defined by 
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If j(A) A , then 

'A -1Ac-a 

l s(t) -s  r. Ac-t 
Ist 

-tAt 

Is(Ar-t) 
js—t 

o 

-t()L+s) -•s 
s-t 

= A -t Act 

tAs 

o s4A41 

and SO IIIi'1  hr =  4t • Therefore Iti(T)-n (T)fl = [-III] so t 
IIT—q3,  t(Tl 4 4Kt c 41Cs . 0 as .s -), 0 • Once we have demonstrated 

that 

= AjQj  + . (a) 

A1C[s,j] 

it will follow that T is a norm unit of finite rank operators, and 

so, is. compact. 

We know from 1.3.5 that.for all 0 EP, xci, 

I 
= n5,( 1 )<ct ,x - 

J1 <F(A)#r.&713,t(A) . . 
(g) 

j(x) - 71 (A) so t 
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IcP(A),xni ,t( 

+ JJcF(A)rdA+ 
[ft 

+ fJcF(A) 3)osdA . 

Let p1 'Q' ' 1m be the elgenvalues of P in [-1,-a) , and. 
a 

A1  , A2  , ... , A1  the eigenvalues in Es,i] . Then substitution 

from 4.2.2 gives the following equations 

fI<Fx#sdA= 
(p2-p1)4,P1r' + (p-p2)q,(P1+P2

)x + 

... + 

+ (_8_Pm)<4i(Pi+...+P)r 

= - (s+p1)c,P1  z' - (s+p2)c,P2
r' - 

- . (10) 

i<p(x),d.A = (l-A1)4, + (A1-A2)4,(I 1)n + 

+ (A2-A3)<q,(I-Q
1

-Q
2
)o + ... 

... + 

+ (A1 1-...-Q1 )n 

-3)c,Q1  
S a 

-t -t 
I cp(A),r. adA= [ <'i"'m )rsaA 

- 

= s<#(P+...+P ) . (12) 
a 

I
a a 
<p(A),> a dA = [ ct,(x-11 —...—q1  )ZA 

Jt a a-t 
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- sc4',(Q1 +...+Q1  )x.  
S 

Substituting (io)-(is) in (g) gives 

= <#,r + - (1-3)4,x 

1 m 

+ (xi_a)<Qjr. 
- 

- 

+ 

m 

= XAi4,Qjr + 

for all 95 E P , x C X j, and, therefore. (8) follows. This completes 

the proof of the theorem. 

§4.3. Application: the singular multiplier 

We first require a characterisation of compact multiplier 

operators on LP(T) (i- p c • The following theorem is apparently 

well-known, and is hinted at in several places in the literature, but 

we have been unable to find, a published proof. 

THEOREM 4.5.1. Let T B(Ti(T)) (1(  p c to)  be a multiplier 

operator. Then T is compact if and only if it is a norm limit of 

multiplier operators corresponding to sequences of finite support. 

Proof. (p > i). Suppose T is compact. For n = 1,2,..., let 

be the operator given by 

rf(m) (ml c ii 
(UfY(m) = 

10 imi > n 



CNEE 

Then U 
n xi 

P = TU , ard H 
n  U H p 

K c for all n . Given c > 0 , for 

any f c L(T) there is a trigonometric polynomial q such that 

c C • For sufficiently large n , Uq = q , and so 

IiUf-f U 4 IIUfUqll +jIuq—qtI +flq-fI 

ejiull + 0 + e 

(i+K)c 

for sufficiently large n • Therefore U -' I strongly, and so TU 

•T strongly. 

Let % be the unit ball of IY(T).Let C>0. Then for each 

g C t there exists n(g) such that 

IIUT& - Tgjj < c (n > n(g)) 

Now I If Cg(j) : jjTg-f cCl. : g cBl is an open cover of It, 

so since T is compact there exist g1,...,g, such, that 

C 6 if e L"('T)a. IITtçfII < 

Let no 
 = max n(g.) . Let f e L9(T) be any function with 11f 11 

1 , so that IIT -TfH c C for some j • Then IiUT -TtI C e for 

an n> no  n(g.) , and so 

-! n!'f - UTg.J + iIUT - TJI + IIT - II 

CKC+C+C=(2+K)c (n>n0) 

Since this is true for all f such that Of II = 1 , it follows that 

U n  T -"T In norm, 

The converse is obvious. 

(p = i). w1  (z) is [M(T)]" , the algebra of Fourier-3tieltjes 

transforms of regular complex Borel measures on I , and IhO = IIs'H 
(p C M(T)) • The closure of the trigonometric polynomials in M(T) is 
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L1(T) . The result now follows from the theorem of [17]. 

If e , say C = I , then T,g = Pg (g C 11(T)), 
and jlTII c !jf Ij ([151, Corollary 20.14). Since the trigonometric 

Polynomials are dense in L1  (T) , it follows from this that we can 

replace multipliers of finite support (i.e. Fourier series of 

trigonometric polynomials) by [L1(T)1" in 4.5.1: 

THEOREM 4.3.11. Let 1' c B(IP(T))(1 4 p c to) be a multiplier 

operator. Then T is compact if and only if it is a norm limit of 

multiplier operators of the form T , where e c [L1(T)]" 

The space of multipliers in M(Z) giving compact multiplier 

operators will be denoted by m(z) . (LB. in the harmonic analysis 

literature, e.g. in Lii], p.276, the characterisation 4.3.1' is 

usually taken as the definition or zo(z) , 

Since M(Z) C 1 (z) , IW'L tE 11T1 (p c .M(Z)) , and [L (T)] 

C c(z) , it is obvious that 

m(z) cc0(z) rut(z) . (i) 
The question arises as to whether the inclusion (i) is proper; in 

fact, this issofor 1pc2.When p=1, there exist singular 

measures p on T such that P C c0(Z) , although A / m1(z) 

we can take p to be. a Riess product (see [54], §V.7). 

For I < p c 2 ,the counterexample, constructed by Piga—Talamanca and. 

Gauñry, is known as a singular multiplier. The construction of the 

singular multiplier 0,  C M
2
() is as follows ([141, or [12],  §9.5); 
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n(Q 

Ip 
(n) =A 2i-1)2-(i-1)/r = 2j-1 2j-1 12j_1 () 

[Pj-, (n- ,. 

where in (2) r = 2p/(2-p) and 1j1j:O  are the Rudin-Shapiro 

polynomials. These are defined inductively by 

PO  = a0  = I 

it it \  p(e ) n-ie i + exp(i2'1t) C 
n-I 

(e e it / 

it \ 
- (e it a(e p e / n i 
- n-I 

- exp(12't)a 
n-i 

(eit) 

n is therefore supported on {O,1,2, ... ,2n  -11 , where it takes only 

the values +1 

We use Theorem 4.2.3 to prove the (unsurprising) fact that 

is not well-bounded (unless q = 2 ). 
Op 

THEOREM 4.5.2. For 1 <p < 2, let 0 c M(Z) be as defined 

in (2).Then T is not well-bounded for any q,pcq<2. 

Proof. The point of the example is, of course, that  95 
p 

M (z) , i.e. is not compact ([1212  Theorem 9.3.5). However 
p p p  

C m (z) for all. p,q, 1 c p,q c 2 • To see this, note that, since 

2 nO 

2 
 (n) 

12 n = 2i-I,
.

12j_10 

the sequence 10  (n)21 1  is decreasing. Consequently, by the 

remarks before 5.2.6, C Mq(!) (i c p,q < 2) . If U is as in 4.3.1 

and. (UT 2f)"(m) = cft"(m) (r c L () , C Z , n = 1,2,...) then 

in the nom of by , d therefore by [12]9  Theorem 6.3.5, 
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IiUT)2 - T()2 • 0 , so that, by 4.3.1, T)2 is compact Op 
p q p 

Ci < p,q c 2) 

Since q52 
(z) , is a Riesz operator, by 4.1.2(u); but 

is not compact, so by 4.2.3 4P)  cannot be well-bounded. 

It remains to show that is not well-bounded for p c q. 

c 2 • For suppose is well-bounded; then :5.2.4 enables us to 
0. 

identify its spectral family we have E (q) ( A) 
P P X(....,AJ p 

Now the set of functions tX(. : A E RJ consists of exactly the 
% sa P 

same functions as {X( : A C R} , since changing from 0 to 

Oq does not affect the fact that the weights 2-(j-i)/r decrea
se., 

and the distribution of the signs remains the same. But, again by 

3.2.4, if JEA : AcRJ ACRI P X p 

: A c RI is a bounded set in B(L\T)) , then 
(-co,AJ q q 

is well-bounded, which is a contradiction. Therefore is not 
p 

well-bounded (p  c q .c 2) 
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