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FREFACE

In 1960 Smart ([30]) introduced the concept of & well-bounded
operator on a Banach space. Around the same time Krabbe {[21], [22])
obtained spectral theorems for certain bounded and unbounded
operators on Lp(g) ; the case where the bounded operators are of
semigroup type is of especlal inter:est. We have attempted to indes
interpret these results in the light of the theory of well-bounded
operators, d.eveioped. in [3¢), [26], [27], [3] and [32], which we
summarise in Ghapter 1.

We have developed the thebry of an unbounded analogue of the
well-bounded operator, which we term "well=boundable". This material
is presented in Chapter 2. A well-boundable operator ha,s real
spectrﬁm, and boasesses a bounded spectral family with ;-espect to
which 1t satlsfies a Riemann-Stieltjes form of the spectral theorem.
Ve brove the unlqueness of such a family (Theorem 2.2.8), identify
the spectrum of the well-boundable éperatOr as the éupport of its
spectral family (Theorem 2.2.13) and obtain versions for well~bound-
able operators of various other standard spectral £h601y results.
This enables us to prove a generalisation to well-bounded operators
of type B of the Hille=Sgz.-Nagy theorem (Theorem 2.3.2). | |

The main theorem of Chaf!ter 3, Theorem 3.2.4, shows tha.it., fc;r a
real-valued Fourier transform multiplier of IF(G) , the existence
gnd. unifom boundedness of the appropriate multiplier projections is

necegsary and sufficlent for the multiplier to define a well-bounded
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operator. Examples .and counterexamples are glven..-..

In Chapter 4 we study.well-bounded Riesz operators, The Riesz
operators form a larger class of operators which satisfy the Rlesz
theory of compact operators, but we are able to prove, in Theorem
4.2.5, that a well-bounded Riesz operator 1s neceassarily compact. As
an application, we use this theorem and our characterisation of well-
bounded multiplier operators to show that the singular multipiier of
Figa-Talamanca and Gaudry does not define a well-bounded operator.'

' The layout of this thesis is as folloms. Fach chapter is divided
into three or four sectiona, numbered consecutively within esch
chapter only. All cross-references give the full chapter, section and
result numbef. Display numbers are consecutive within each section
only; on only.one or two occasions is a display beionging to another

section referred to.
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CHAPTER 1

PRELIMINARTES

In this chapter we review the basic notions used in the thesis. |
The theory of well-bounded operators requires careful discussion of
Stleltjes integration in a vector-valued setting, a definitive
account of which was given by Spain [.3_2], based.’on ideas of EKrabbe
[23]. We outline this material in §1.2. In $1.5 we summarise the

theory of well~bounded operators.

8.1. Basilc notions

{

We denote the real mmbers, the complex numbers, the integers,
the rationals and the unit cirole by R, G, 2, ¢ and T respectively,
Throughout the thesis X will be a complex Banach space., The norm

of an element x € X will be denoted by ||x|l By a linear subspace

of X we shall mean simply a subset of X which is itself a linsar
space; we do not assume a linear subspace to be closed.

If X and Y are Banach spaces, a linear operator between X

and Y will be a linear map T 3 O(T) +Y , where the. domain o(T)
is a linear subgpace of X . When X =Y we refer to T as a

" linear operator on X . The set of (everywhere defined) bounded

.linea.r operators between X and Y will be denoted by B(X,Y) » &and
B(X,X) will be abbreviated- to B(X). We denote the dual of X by

xi » and the adjoint of T ¢ B(X,Y) by T™ . If ¢ ¢X* and x € X,
then we shall sometimes use <¢,x to stand f_or the evaluation
¢(z)ﬂ._We denote the speotrum of T by o(T) and the resolvent set

of T by p(T).
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A linear subspaoe 11 CX is invariant for a llnear operator
T on X if, forall x € X MT) , Tx € X, . The restriction T|X,
of T to an invarlant subspace xi is the operator T|x1 s
x,N 0('1") +X, given by (Tix1)x = Tx (x « XN ©(T)). If for the
linear operators 8, T we have O(S) < ©(T) and Sx = T™x (x €
9(5)) then we shall write SCT .

If 0CC and ¥ 13 an algebra of 00mplex-va1u;d functions on
) which contains the unit function 1 t w + 1 (w € Q) and the

identity function J 3 w *w (@ € Q), then an ¥ —functional calculus

for an operator T on X 1s & mapping f + £(T) from ¥ to
operators on X , which takes 1 to the identity operater I and
J to T , and has the following properties:

(1) (x)(1) = M£(D)) (A €€) ;

(i1) (£+)(T) D £(T) + &(T) ;

(111) (£e)(T) 2 £(1)s(T) ,
forall £, g € ¥ o |

If QA is a subset of B(X) , then (X* will denote the
commutant of Ol , that is, the subalgebra of B(X) consisting of
all T € B(X) suoh that AT = T4 for every K“;in O\, The commtant
of ' is denoted by a''.

§1.2. Integration theory

DEFINITION 1.2.1. We shall be considering the following spaces

~of complex-valued funotions:
(1) Bv[a,b] 4is the space of all functions of bounded variation

on the compact real interval [a,b] . BV[a,b] beoomes a Banach
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algebra when given either of the equivalent norms

"lfm[a,b] = |£(b)] +[:a§]f .

”|f|“['a,b] = tef:fb] [£(t)] + [::I)' £ (£ ¢ Bv{a,b)) ,

where var f is the total variation of £ over [a,b] . It is
[anb]

" obvious that the norm Hlfﬂlfa’b] 1s submultiplicative, but the
fact that ||| I”[a,b] 1s also submultiplicative requires proof. An
indirect and exceedingly oomplicgted_ proof, whioh gives muoh
additional information, is given in [29], Theorem 5.2. We give an
elementary proof in an appendix to this chapter.
(1i) NBV{a,b] 1s the subalgebra of BV[a,b] oohsigting of those
functions which are oonfinuous on the left at eaoh point of (a,b] .
(1i4) Ac[a,B] C BV{a,b] 4s the algebra of absolutely contimuous
functions on [a,b] . For £ ¢ AG[a,b] , we can write
b
var £ = j' (£e(t)]at .
[a,b] a ‘
Hence the polynomials are norm dense in AC[a,b] .
(iv) BV( R) 41e the Banach algebra of functions on R whioﬁ have
finite total varistion. We use the norm ‘

el = s I#(8)] 4 ver £ (£ e BW(R) .
= teR. R

(y) LBV(R) 1s the épaoe of funotions £ : R +C suoh that f is
of bounded variation on each ocompact interval.
NLBV(R)} consists of those functions in LBV(R) whioh are
continuous on the left at each point of R .
LAG(I_Q) C LBV'(E) congists of those functions whioh are

ebsolutely continuous on each oompaot interval,
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'DEFINITION 1.2.2. A subdivision of the compact real interval

[a,b] 15 a finite sequence t= ltk}k:{) of points of [a,b] such
that

B=to<t1<oo.<tmﬂb. |
We denote the set of all subdivisions of [a,b] by ©[a,b] (ab-
breviated to © when [a,b] 41s understood).

A marked partition of [ae,b] 1s & pair (t,t*) , where t ¢

¥[a,b] and E#. is a saquence {t;!k21 such that tp e [tk_1,tk]
(k=1,...,m). We denote the set of all marked partitions of [a,b)
by ©*[a,b] . |

If 3 and 1. are subdivisions, we say that 8 1s a refine-
ment of t if t 1s a subsequence of s . The relation € , where
8 &t if and only if t 45 a refinement of E ,-ia a partlal order
on P[a,b] . We order P*[a,b] by setting (_t_;_,_q*) < (_‘E,_E') if and
only if s <t .,

We consider the subsets ?;[a,b] and_?;[a.,b] of ©*[a,b],
where

(t,t*) (P;[a.,b] if and only if tf =t forall k;
(t,t*) c?;[a,b] if and only if t o« (tk-1’tk) for all k .
Under the order « , @, ©*, @;,?; are all directed sets, and tP;

and?.; are oocfinal in P»* .

DEFINTTION 1.2.3. Let f and g be functions on [a,b] , one
taking complex values, and the other taking wvalues either in € or

in B(X) for some Banach space X . For each (t,t*) ¢ ®*[a, b] ,

28,8, t*) = zfctk)cg(t,g - &(t,_)) .
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Then the following integrals are defined as net limits in the strong

operator topology, whensver the limits exist:.

b
(i)f fdg = Z(r g, £,t*) ;

(%, t*)e?

ii = ’ *
( )[fdg (ttu@-z(‘f“s £,4%) ;

[a,b

i
(ii1) [fd_g =  1lim Z(f Ag,_,t*)
[a,b) (g1)etg

DEFINITION 1.2.4. Let E be a B(X)-valued function on an

interval containing [a,b] . For g ¢ BV[.a,b] » 1
| @*[a,b] 1f g ¢ NBV[a,b]
©+(g) =
?{[&,b] 1f g € BV{a,b]\NBV{a,b] .

Then, if the 1imit exists in the atrong operator topology, we define

the integral
?ﬁmg a  lin Z(EAg_t).
(£,1*)eP*(g)
[a:b]

PROPOSITION 1.2.5:([32], Theorem 1). If E : R +B(X) isa

function such that

(1) 1im E(s)x = ©®(t)x ‘(x €cX, teR);
s+ta0 '

(i1) 1im E(a)x exists in X (x €X t ¢ R) ;
s*t-0

(111) B(¢) =0 (t < a) ; B(t) = B(b) (¢t > b) ;

then, for each g ¢ BV[a,b] , 95 Edg exists and

.[&ab]
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I ?éaasu < swp |IE(H)|| var & .
tefa,b] [a,b]
[e,b] _

PROR)SITION 1.2.6 ([52], Theorem 2)0 et E be ags in 1.2.5,

and let [ga]a ‘be a bounded net in BV{a,b] and g € BV{a,b] a

function such that ga(t) + g(t) (t « [a,b]) . Then

%Ed.g = lim %Edga
7 4

[aab] ‘ [2,0]

in the strong operator topology.

DEFINITION 91.2.7, For B as in 1.2.5 and g € BV{a,b] , let

jEBsdE = s(ﬁ)B(h) - 7g Bdg .

[ayb] [Bsb]

PROPOSITION 1.2.8 ([52], Theorem 3 and Lemma 6). Iet E be as

in 1--205, and g € BVI[B,b] . Thﬁn

»
® g(a)e(e) + fagax (g € NBV[a,b])
gdR =
[a,b] fos(e) + [em (o ¢ e plumHL,)
[&:bJ

and

@ )
I j exll < e lsCl sl ) -
[3sbJ 7 “ o

: ®
N.B. When applying the operator [ gdE to a vector x we

[a,b]
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] o
shall use the notation f g(A)aB(AM)x , with similar variants for

[a’b]

the other integrals defined.

&1.5. Summary of the theory of well-bounded operators

DEFINITION 1.3.1. An operator T ¢ B(X) is woll-bounded if

there exist a oompact interval {a,b] and a constant K> 0 such
that : , 7
el < Kl g, g (1)
for every complex polynomial p ., If (1) 4is satisfied, then we -
shall say that t_he woll-bounded operater T 3is implemented by
(%,{a,0]). |

Obviously, if T 4s implemented by (x,[a,b]), then it is also
implemented by (X,[a!,b']) whenever a' ¢a , b' 2 -b .

It follows immediately from Definition 1.5.1, and the faot that
the polynomials are dense in AC[a,b] , that there exists a
continuous AG[a,b]-functional caleulus into B(X) for T ; further-
more, f£(T) € {T}'*, for every f ¢ AC[a,b] . |

It is also immediate that, if T is well-bounded and implement-
ed by .(K,[a,b]),. then sc is T* , and the ﬁmctianal oalculus for

T 43 related to that for T by f£(T*¢) = £(T)* (£ € ac[a,b]) .

DEFINITION 1.3.2. A spectral family for X is a projection-
valued funotion E : R +B(X) which satisfies the following |
conditions:

(1) “E(A][ G'KI (r» € R), for Vsome constant K < o ;
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(11) E(ME(p) = B(u)E(A) = E(min(A, 1)) (A,p € R) ;

(111) (a) 1im E(u)x = E(Mx (A e¢R, x € X ;

240
(b) 1im E(u)x exists in X (A €R, x € X) ;
pA-0 | |
(iv) 1im B(AM)x=20(x € X) ; 1 E(A)x=x(x€ X) .
Ar—c0 Ao

If E sati‘sfie_s the stronger condition
(iv’) there exist a,b ¢ B such that

E(A) =0(rca); E(N)=2I(rAz20D),

then we shall say that E has oompact support.

Remark, There is some redundancy here. Conditions (11)~(iv)
together imply (i). If X 4s reflexive, (1) and (i) 4mply the

existence of lim E(u)x and 1lim E(px, for all A €¢R, x ¢ X,
A0 urA—=0 ‘

by a well-known theorem of Lorch ([25], Theorem 3.2).
The left=hand 1limit E(A=0) 1s itself a projection in B(X)

with norm at most K , for each A €¢R .

We shall sometimes refer to a spectral family in thls sense as

a gtrong spectral family.

Well-bounded operators on reflexive spaces were characterised

by Smart and Ringrose, [50] and [26], in the following way:

PROPOSITION 3.3.5. Let X be reflexive and T € B(X) . Then

T is well-bounded if and only if there exists a spectral family E,

satisfying 1.3.2(iv’), such that

_b...e }
X = ME(MNzx (xeX), (2)
B g WE _
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where 6 > 0 1is arbitrary. We may write (2) 1n the alternative

form
Tx = aE(a)x + ] ME(Mx (x¢X) . (3)
H a_ .
The well-bounded operator T 1is then implemented by (K,[a,b]),
and f£(T) 4is given by

b |
£(A)ag(M)x (x ¢ X, £ ¢ ac[a,b]). (4)
a .

f(T)x = f(a)E(a)x. + j

Furthermore, E 1s unique, and E(A) « {T}'* (A ¢R) .
When X 4s not reflexive, the characterisation is less simple,
and in general we can only obtain projections in B(X*) with much

weaker continuity properties.,

- DEFINITION 1.3.4. A dual spectral family for X 1s a projection-

valued funotion F s R =+ B(X*) satisfying the following conditions:

-

(1) [IE(AJl & (A € R), for some oonstant K < =
(1) FOF(K) = F(WF(A) = Fuin(Au)) (Au € B)
| (111) there exist a,b ¢ R such that
F(A) =0 (A<s) 5 B(A) =T (A1) ;

(iv) for each ¢ € X* , x € X, the funotion A -+ <F(A)$,x> 1is

-e

Lebesgue measurable;
(v) forany ¢ e X* , x ¢ X and u € [a,b), 1f

: H+h ‘
lim % j <F(A)¢,0dA exists, then ths valus of the limit is
h->0+h : '

<F x> ;
(vi) for each x ¢ X, the map . X* -+ Lw[a,b] a L} [a,b]* which -

sends ¢ to (A + <®(A)¢,») 1is continuous when both spaces are
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| Ringrose [27] introduced:thia concept and called it a
"decompoasition of the identity", but we prefer not to use the term in
order to avoid confusion with the Colojoara-Foiag theory of decompos-
able operators ([7], Chapter 2). Well-bounded operators are examples

of "decomposable operators®™ in that sense.

PROPOSITION 1,3.5. T € B(X) is well-bounded if end only if

there exists a dusl spectral family P such that T 1s the unique

operator in B(X) satisfying

<¢,i‘n a bep, > - [h-:F(A)cp,r.»dA (¢ex*, xeX), (5)
a _
where a,b are the mmbers in 4.3.4(iii)s T is then implemented
by (x,[a,b]), and the functional caleculus is given by
_ b
<$,£(T)o> = £(b)<¢, > - / <F(A) ¢, > (A)aa | (6)
| ' (cpc;‘,xcx,chc[a,b]).
Proof. The result is 6btained by combining Theorems 4, 2 and 6

of [27]. .

Remark, If the well-bounded operator T 1s implemented by

verse 1s also true (Lemma 4.2.1).

In general, the dual speotral family P associated with a “3117-
bounded operator by (5) need not be unique, nor need the F(A)'s be

adjoints of projections in B(X).

DEFINITION 1.3.6. A projection-valued function E 3 R =+ B(X) is
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a wosk speotral family if E* s R + B(X*) (where E*(A) = B(A)*) 1is

a dual spectral famlily,

PROPOSITION 1.3.7 ([27], Theorem 8)e If E 1is a weak spectral

fomily, then E* is the unique dual speotral family associated with
the well-bounded operator T given by

' b
<$,Txp = b<g, 0> - j <HEMNDar (pex ,xeX) . (7)
a .

Purthermore, E(A) € (T} (A e R).

PROPOSITION 4.3.8 ([27], Theorem 9)., If X ia weakly oomplete,

then a well-bounded operator T € B(X) has a unique dual spectral
. family if and only if is has a weak speotral femily (i.e. if and only

if there is a weak spactral family satisfying (7)).

A weak speotral family need not be a strong spectral family,

(Examples are given in §6 of [3].)

DEFINITION 4.5.%. A well-bounded operator 1s said to be of

me]i:.f it has a strong spectral famlly which satisfiles (7) ,
i.e. if 1t has a (unique) dusl spectral family which is the adjoint

of a strong spectrel fam:llt.

This concept was introduced in [3]. Well-bounded operators of

type B are characterised as follows,

'PROPOSTTION 1.3.10 ([32], Theorem 5). Let T ¢ B(X) . Then the

following statements are equivalent:
(1) T 1s a well-bounded operator of type B, implemented by

(K, [%b]) .



(11) there exists a -(_btrong) spectral family E 3 R + B(X) ’

satiafying 1.3.2(iv°"), such that

Tx = jem(x)x (x € X); (8)
fa,b] | .

(111) T 1is a well-bounded cperator, implemented by (K,[a,b]),
~such that the functional calculus ¢ : AC{a,b] » B(X) takes bounded
sets to sets which are relatively oompaot In the weak operator
topolégy; |

(iv) T is a well-bounded operator, implemented by (_K,[a.,b]) ’
such that, for each x ¢ X, themap ¢ 3 f + £(T)x (£ ¢ aC[a,b])
is weakly oompaot; |

(v) T 1is a well-bounded operator, implemented by (X,[2,b]),
such that, for eaoh x ¢ X, the map ¢ 13 ¢ +2(T)x (£ ¢ AC[a,b])
1s oompact.

If T satisfies (i)-{v), then f£(T) 1is given by

A«
£(1)x = f £(A)aE(A)x (x € X) (9)
[2,b]

for all f e AC[a,b] .

Every woll-bounded operator on a reflexive space is of type B.
Borkson and Dowson [3] also define an intermediate concept, that of
"type A", when ther-e.is a weak spectral family which need only - -~
satisfy 1.3.2(1i1)(a), and not necessarily 1.5.2(i11)(b). However,
ths. operﬁ.tor T given in Example 6,2 of [3] 1s of type A but not of
type B, whereas =T 1s not of type A; it follows from 1.3.10 (see

2.2.6) that, if T is of type B, then so 1s -T .,
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PROPOSTTION 1.3.11 ([32], Theorem 6)s let T € B(X) be a weoll-
bounded operator of type B, imp}emented by (X,{a,b]). Then the |
AC[a,b]-fgnctional caloulus for T extends to BEV[a,b], with\the
same norm K , and ff(w)m_iﬂ given by (9) for all f ¢ BV{a,b] .

Ir {fal is a bOunde& net in- Bvia,b] converging pointwise‘to f e

Bv{a,b] , then fa(T)x +2(T)x (x ¢ X) .

F;r an arﬁitrany well-bounded operator it is possible to obtain
extensions of the homomorphism £ + £(T*) s AG[a,b] + B(X*) to the
subalgebrae of NBV[a,b] conaisting of those functions whose con-
tinuous singulﬁr parts vanisgh (see [27), Lemma 5). However, these

extensions need not be unique.

$1.4.  Appendix: BV[a,b] as a Banach algebra

We prove here the remark made in 1.2.1(1). We presume this proof

to be known, but have been unable to locate it in the literature,

THEOREM 1.4.1. With the norm ||l-|l|[a p) defined in 1.2.4(1),
- »

BV[a,b] 1is & Banach algebra.
Proof. It is slightly more convenient tc prove the result for
the norm

Nelly, oy = le@l ;[m;. £ .

From standard Banach algebra consliderations, it is sufficiaﬁf to work
in the maximal ideal BVb[uub] of funotions vanishing at a , and to

prove that - var fg € var £ var g forall f,g ¢ BVb[a,b] .
' [E:b] [&,b] [a’b] .

Let £,g ¢ BVo[a.,b] » and fix t ¢P[a,b] . We split £ 1n ths

following way. Let



for k=2,..

Then

o Now,

£ (t) = £ ‘ mn=1
. (6) -2t ) t2t .
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k-1

£(t) -2t _ )t 4

E, i
o £stsg L
£.(8) = qe() - £(s, ) b <tst

ep=1, and

£ () ,{-f(t) 0Ost<t
! f(t)t;t1 ,

0<stst

m-1{

f. = f »
2y T
ar I = f = £ ’
’ i) k;[t;iftk] k
0 J<k
£(t,) = {
S ey - #(e ) dsk

)ni)-'.lf(f Ye(t,) - £(t;_ ety )]

AR

B

—

=

N
ﬁ
¥
-

B

m

-l
Q-l

]
fvam

|5

k=

Ifk(tj)g(tj) - £,(t,_Je(t

[, (¢, )s(t ) - £ (¢ j,_1)s(t_,,_1)]l

l£. (¢ )g(t ) -

k' J Elty ety )]

3=l

(_l [e(t,) = £(t,_)1e(t )]

+ j=§+1l[f(tk) - f(tk_j)][g(tj) - s(tj_1)]|)



< i l'.f(*‘k) - f(tk_1)l(| g(t,) - 0l _+j=i+1|g(tj) - g(tj_1)|)

k=1
> le(s) - var
< ];1 lf(tk. f(tH)l il

[asb]  [a,b]

Since this 1s true for all t €®{a,b] , it follows that [va.r] fg «
' a,b

var £ var g for all f,g ¢ BVb[a,b] , and 30 the theorem 1s
[a:b] [&ab] :

proved,
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CHAPTER 2

SEMIGROUPS OF WELL~BOUNDED OPERATORS

In this chapter we discuss an unbounded analogue of the well=-

bounded operator. Such an operator, to be termed well-boundable,

satisfles a form of the spectral theorem, with respect to a spectral
family whose support (Definition 2.1.1) may be an unbounded subaet
.of R « The oonstruction of the well-boundable operator may be
thought of as the development of integrals similar to those of §t.2,
but with an unbounded range of integration. It 1s also a parallel for
ﬁell-bounded operators to the passage from bounded t0 unbounded
sﬁalar type spectral operators considered in {10], Chapter XVIII. In
$2¢1 we carry out the construction, and develop a functional calculus
for the well-boundable operator. _

In §2.2 we employ the functionsl calculus and various standard
techniques to develop the spectral theory of the well-boundable
operator, The maln results are that the spectral familyris unique
(Theorem 2.2.8), and that its support is equal to the aspectrum of the
operator (Theorem 2.2.13).

There are aome interesting ezampleé, to be disoussed,in Chapter
S, of well-bounded operators which constitute strongly contimuous
semigroups. The final theorem of this chapter (Theorem 2.3.2) is a
generalisation to semigroups of well-bounded operators of type B of
the Hille-Sg.-Nagy theorem on strongly continuous semigroups of self-
adjoint operators. It turns out that the infinitesimal generator of

suoh a semigroup is a well-boundable operator.



§2.1.  Construction of unbounded operators

In this section E will be a fixed spectral family for X ,

with the bound K as in 1.3.2(1).

DEFINITION 2.1.1« If E 1is a spectral family, then the support

of E , denoted by supp E , is the set

supp E = E\fA € R°¢'E is constant in a neighbourhood of A ] .

Obviously supp E is always closed; in §1.$ we assumed supp E
to be compaot, but we now drop that assumption,

The foliowing lemma is fundamental in ensuring that our unbound-
ed operators have the oorrect domains. Before stating it, let us .
remark that if E is a spectral family, and

T: U (B(0b) ~E)) X » x
a.,b(_R_

is a linear operator, then E(AD(T) C®(T) (A € R) . (Obviously
®(T) 1s a linear space.) If, in addition, E(A)Tx = TE(A)x (A € R,

x € tb(T)). _theﬁ T(E(b) - B(a))X < (E(b) - E(a))X (a,b ¢ R)

IMA 2+1.2. Let E be a speo‘l:l.'al family for X » angd

Tg: U (B(b) -E(a)) X » x
a,beR

a linear OPemfor. Suppoae that E(A.)TOI = TOE().)x (AeR, x e@(T)) .

and that the restrictions TOI(E(b) - E(a))X' are all bounded. Let

{[a,n,'bn] } Vbe an increasing sequence of bounded real intervals, such

| that &, e and bn >y, Dafipe the operator T by

©(1) = [x 1 Mn T (R ) - E(a ))x extsts in X},

Tr = lin T (E(b ) - B(a ))x (x ¢0(1)) .
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Theh T 1s a closed, denarely defined linear 0p§rator, independent of
the choice of sequence {[an,bn]] and satisfying -

(1) B(AO(T) <(1) (A €R);

(11) m(MD)x =E(M)T™x (A e R, x € O(T)) ;

(iii) ™(B(b) - B(a))x = TO(E(b) -~ E(a))x (a,b €R, x € X)

Proof. Clearly T 1s linear, Choose - a,b €¢ R, x ¢ X, and .1et
v = (E(b) - E(a))x . There exists ari N such that [a,b) < [a b ]

forall n2N.If n2N, then we have

T (2(b ) - B(a )y = T(8(v ) - E(a ))(E(®) - E(a))x

7 (5(b) - B(a))x

='_fx°y.

Therefore lim T (E(b ) - E(a ))y exists and equals T - Henoe

tD(To) CO(T) and (iii) is proved.
For all x ¢ X, E(b)x +x as b + 4+~ and E(a)x +0 as a +
—= , 80 ©(Ty) » and henoe also D(T) , is dense in X . Since
TO(E(bn) - E(an) YE(A)x = E(A)TO(E(bn) - E_(an))z
+B(M1x , :
for all x €D(T) , A ¢ R, we have (i) and (ii).

To check that T 1s closed, let {xnl be a' sequence in O(T)
such that x +x and Tx +y . For fixed n, ITO(E('bn) - E(a ))x
= (E(b,) = B(a)))Tx, , by (i), so Ty (E(b)) - E(e ))x =
((v ) - B(a ))y as m -+« ,But since. Tol(B(b ) = E(a ))X is
bounded, TO(E(bn') s-'E(a_ﬁ))xm also tends to TO(E(bn) -E(an))x , a8
m + @ . Therefore, for all .n ,

To(ECb, ) ~B(a))x = (8(3,) - E(a )y
.Y

as-n *=, and 30 x ¢O(T) and Tx =y . Therefore - T is closed.



For the uniqueness, suppose that {[oﬁ,dn]} is another
increasing sequence of real intervals, with c, * ~= and dn‘ * 4oy
and let the corresponding operator be. T . Let x e ®?) . Then

Tx = 1in To(B(a,) - E(e ))x |
= 1im T(E(dn) - E(cn) )x
= Tx , -

‘ - -
since T 1s closed. So T CT o Similarly T CT, giving T = T .
‘ 8
We now aim to give a meaning to the expression / edE when E
' R

1s an arbitrary spectrel family, amd a e LBV(R) « It will turn out
to be equal to a closed operator Ta construoted by the method of
Lemma 2.1.2+ There are two possible ways to construct this integral,
Firgtly, we can consider the strong_}.j.mit as a + « of integrals
over [-a,a] . Altermfively, we can look at limits of nets ﬁf
Stieltjes sums over partitions of the extended real line R = [~,=],
This second method may not work if a £ BV(R) . However, we shall
show in Z.1.14 that when a ¢ BV(R) the two versions coincide, and
the common value is a bounded operator.

Recall from 1.2.8 the value of the integral

| / GBa(A)dE(A)x =

[a,b] a(a)E(a)x + [ A NENx (a € 5Va,b]\
fob] NBV{a,b]) .
a,

b
a(a)E(a)x + / o(A)aE(M)x (a € NBV{a,b])

. .
In subsequent arguments we shall use [ odE to denote the
[a,b]

C b
integral whioh 1s defined by [ adE when a ¢ NBV[a,b] and by
. a . N
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jradE when a € BV[a,b]\NBV[e,b] .

[a,b]

DEFINITION 2.1.3, For a € LBV(R) , x € X, let

@ .
/R a(A)dB(A)x = 1lim a{ A)aE( M) x

{—u,u]

whenever the limit exists. When a ¢ NLBV(R) , we shall dencte this

 integral by joa()L)dE()L)z .

DEFINITION 2.1.4. For a ¢ LBV(R) , define

T(g) : U (BEM®) -B)) X « v (E(uw) «B(=)) X » X
&, beR w0

by

® .
T(g)x = / a{ A)aB(ANx (x € (E(u) - B(=))X ) .

[-_usu]

If x ¢ (B(u) ~E(—u))X and x ¢ (E(v) -~ B(=v))X , where
0 <u< v, then the integrals over [-u,u] and [-v,v] have ths

same value, since
@ | ' »
[ sz = dmsnx [ a0as(s

[~v,v] [~v,v]

o ([ [ ] e

- [=v,=u] [-u,u] [u,v]

» 53]
= 0 4+ j a(A)aB(A)x - a(-w)E(=u)x + ©

[~u,u)
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- / ®a(m<,\>x .
(-u,u]
and 80 T(g) 1s well-défined.
Clearly E(A)T(g)x = T(S)E(A.)x (AeR, x¢ \D(T(g))) ,

and, if [a.,b]. C [-u,u] , then

(RS T / “a a0l < Kllalitp_, Jidl (1)
[-u,u] A 1ﬁa '
for all x ¢ (E(b) - EB(a))X , by 1.2.8, and so H(E(b) - E(a))X 1is
bounded for all a,b ¢ R .
The operator T(g) therefore satisfi;es the hypotheses of Lemma
2.1.2; hence there.exists a closed, densely defined linear operator
(0)

T, » extending T q * corresponding to the operator T of 2.1.2.

We now conslder the operators T(‘:) (u> 0), where'

®
Wy . / X(c,u(WANENx (x € D) .

[-1.1,11]
(Here X, denotes the indicator function of the set A 3 xA(A.)=1 if
Ae€hA, and xA(A.)=0 if A £ A .) It follows from the next

proposition and (1) that T(:) € B(X) forall ac¢ LBV(.]Q s > 0.

PROPOSTTION 2,1.5. For ell a € LBW(R) , u> 0 and x e X,
® B
Wy o f a(A)aE(A) (B(u) = B(=u))x .
[=u,u]

(% (5(u) - B(-u))x

@ _
- / a(A)aB(M)x - o =u)E(=u)x .

(=u,u]
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Proof. Letting (w,w*) range over ®*[-u,u)] (or over

?;[-u,u] if x(_u’u]a.[ NBVT_-u,u]) , We ham

*

T(‘;)x a 0 4 [ X( g, u) (M () aB(A)x
[—u,u]
= lim ) ('X(_u.u]“’ A, m,w* )x
= 1lim x(_u'u](w;)a(w;)(ﬁ:(w1)—E(~u))x

+ lim k;;(wp(E(wk)-E(wk_1))x .
@ . .
[ a( A)AE(A) (E(w)E(~u))x = of-u)E(-u)(B(w)E(-u))x

[-u:u] *

RO ICOLCHLE
{-u,ul]
- 0 4+ la ¥ (e,8mx)x .

The difference between corresponding sums in the two ﬁets is
X(._u’u](W;)a(W;)(E(W.l )=B(-u))x , which tends to zero, proving
equality between the first two members of the assertion.

The faot that |

o )
[ ) (e-B(w)x = K Pm(w)-2())x

["lau] .

is immediate by definition. -

Finally,

& ®
[ a(})dE(A)x - T(:)x = /xl_u;(h)a(h)dE(A)x
[~ul [-u,u)

- e o [ g ea

= a(-u)E( -‘Il)x .
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COROLLARY 2.1.6. For a ¢ LBVW(R) , x cO(Ta) if and only if

(u)_

limT(z)x exists in X as u + e« , In that ocase Tax=limTax.

N

Proof. The result follows from the first two equalities in

2+1.5.

COROLIARY 2.1.7. If & ¢ LBV(R)., then x eO(Ta) 1f and only

® : @B '
ir / a A)aB(M)x exists, in which case TX = [ a(A)aE(A)x .
)3 R
: - @
Proof., The result follows from 2.1.8, the definition of [ ’
R

and the last equality in 2.1.5.

We now conslder integrals defined as net limits of Stleltjes

sums over subdivisions of E .

DEFINITION 2.1.8. A subdivision of R 1s a finite sequence

t= {tk;kn;o of points such that
‘”=to<t1<.¢o (tm=+°°-

The set of all subdivisions of R will be denoted by P(R) .

A marked partition of "R 1is a pair (t,t*) , where t ¢ ©(R)

i1
]

and t* 1s a sequence 1"1}31::1 such that t; € [tk_1,tk] (k=4,..
.om); we allow ti==w , t¥sie ,@*(R) denotes the set of all marked
partitions of R . The relation € and the subsets (P;(_R_) » ®4(R)
have similar meanings to:those in 1.2.2, and sums 3 (£,8g,t,t*) are

defined analogously to those in 1,2.3,

DEFINITION 2,1.9, For a ¢ BV(R) , let

¢*(R) if a ¢ NBV(R)

?'(G’B) ={
®x(R) 1f a e BW(R\NBV(R) .



We define 5(a,dE,R) t0 be the integral

$(a,dE,R) = (a,48,t,1*)
- (t, t*)cﬁ’*(a. 2

in the strong operator topology. (We take ﬂ(:”) = linm a(t) ,
. t+40

E(-W) =0, E(-i-w) =TI.)

PROPOSITION 2.1.10. Let (a,b) be any bounded open interval

and ¢ 3 (a,b) + R an inoreasing homeomorphlam with 1lim ¢»(t) = =,
- teasl

lim qb(t) = 4o o Then the:mapping (t, t*) + (v,v*) , where ‘v =¢(t, ),
£+b=0 Tk

v§=q,b(jt;) » determines a one=-to-one correspondence from P*[a,b] onto
®*(R) , which preserves the partial order, and also takes ?;[a,b] .

@;[a,b] onto ?;(g) ,t’i’;(g_) reapéctively.

PROPOSITION 2.1.11. Let ¢ be as in 2.1.10. FPor each a ¢

BV(R) , define ‘a ¢ BVia,b] by

@A) = og(A) (A€ (a,b) ; Gla) = al=) ; D) = (4=) &
S:unila.rly, ast |

BN = 5() (e (o) 5 Ha)-0 5 BB -1,
Then S(d,dE,g_) exigts and equals f aaE .

[a,b]
Proof. The result follows immediately from 2.1.'10,- since a ]

preserves the continuity propertles of « , and so the corresponding

limits are taken over the correct nets of Stieltjes sums.

1

1EWMA 2.1.12. For a ¢ BV(R) and u> 0, let a = X(m,u]® *
Then

S(a,dE,B._) = lim S(aﬁsdEs_k)‘ ’

U
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in the strong operator topology.
Proof. The net [“ulﬁo 1s bounded in the topology of BV(R) , .
with au(t) +>a(t) as u-+w, for all t € R . Consequently

Irs

b 15 & bounded net in Bv[a,b] with

T+ T -3 (relan])
where
Ha) = a~) (r=a)
a(A) = <ab) = al+x) (A =1D)
| 0 (a<A<d) .

By 1..2;6, tharefore,

¥ = 142 Raa + jg Faa
[a,b] [3nb] [5-ab]
3 &
= lm T (b)) - lin T jg s .
W U+
(a,b] [4,b]
We have '&'u(b)z-.o(u)o),and
Fas = lim E,Aa,t,t*
f : (3,1:,')@*&.1:]2( 55
[apb] -
= Lo (A(b)E(t)~Ha)F(t1))
) = G(G)I .
Thus
@ : @
[ WE = Yp)Eb) + lim / A - % Faa
[a,b] | | {a,b]  [a,b]

- ® .
a2 of=)I + 1im / adE = a«)I

[33b].
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= 1ling s(au,dE,g) ,
o

-+ in the afrong operator topology. The result therefore follows from .

2,1.11.

LEMMA 244,153, If a ¢ BV[-u,u] 1s considered as a member -of

BV(R)' by letting a(t) = 0 (t £ [~u,ul) , then'

®

(1) s(a,dE,R) = f adE ~ a(=u)E(-u~-0) ;
. . [-u,u] _
(1) s(x_, ,]%9EsR) = 5(a,a8,R) = a(-u)(B(-u)-8(-u-0)) .

In particular, 1f g € BV(R) , then

®
(132) s(hpamp) = [ pas

["'u:u]

Proo:lf. Consider w = {wklk:.o ¢P(R) , where w, = -u and

Wog S U A typicel refinement of w is of the form v , where

=V, <V . < v -u < € W
e 0 1 < ¢ n1 = Yn1+1 <

0.<vn -=u<...(!n = 0,
m=1 m

and v_ = " (3=1,2,00s,m)0 A corresponding sum 1s

3 | n
_ | "
) (a,88,7,7*) = °(v;1)(3(-u)-_E(vn;ﬂ)) ; Z';ia(vi)(E(vk)-B(vk_1))

1 :

Cralver )E(v u : ,
( Y (=( n o) EW)

all-other terms vanishing. The last term tends to 0 , since E is
.
right-continuous, and the sum in the middle tends to / adE .

["'u’“]

If a 1 left-contimuous on R , them a{t) = 0 (t & =u), and if not
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then each v; = =u , 30 in elther case the first term tends to
’ .

a(-u)(E( -u)-E(-u~0)) . Therefore

5(a,dB,R) = / adE + a-u)(E(-u)-E(-u~0))
[—u,u]

- @
= adE - a{-u)B(u-0) ,

(—u,u]
and so (i) 4s proved. To obtain (ii), we see that

&
S(x(_u’u]a,dﬂ,‘g)‘ = / x(-u,u]m»xE

“t."“ou]

/ odE - a(-w)E(=1) ,

['u:u]

by 2445, Fart (11i) follows immediately from (1) .

We summarise the result for a ¢ BW(R) 4n the following

-l-.he_orem H

THEOREM 2.1.14. ¥or each a € BV(R) ,D(T) = X and

T X = lim T(g)(E(u)-E(m))x
U

P
= [ a(A)dE(A)x
Y
= 3(a,dE,R)x (x € X) .
Thus T, ¢ B(x) » and moreover “T I} < K"I“I”
Proofs For each x €X and u> 0 we ha.ve, by 24445 and

2.1.13(14d),
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T(‘;)x a T(g) (E(u)-E(~u))x

@
- f a (Aa(A)x
[=2,u]
= S(a ,dB,R)x . !
Letting u -+ = , therefore, the equalities in the statement follow
£rom 2.%.6, 2.4.7 and 2.4.12. _
To obtain the bound for IT |l » note that from (1) of 2.1.4
we have |
II'I'(O)xlI < Kllalll_, Jixh < xllallg lell (x € (B(u)-E(-v))X ) ’
and therefore “T(ogxll g Kl|| a lll ||x[| (x cO(T(O))) ; hence in this

case 'I‘ 1s Jjust the extansion by continuity of T( 0) to X, and

s Nzl < Ellally

- We next obtain the multiplicative property of the representation

a"Tao

PROPOSITION 2.3.15. If a,f ¢ LBV(R) , x € X and u> 0, then

(u) (u) (;) |
Proof.l Iet 3(“)(;0 E(A)l(E(u)-E(‘u))x (A € R) . Then
of (B(u)-E(~u))x (A& =)
W0y - (E(A)-E(_-u).” (E(u)-E(~u))x (=1 < A < u)
1| (B(u)-E(=u))x (A>u) .

Since F(u) clearly has the required oontinuity property, 1t is a
spectral fam:l_'l\v for (E(u)-E{~u))X , with supp F( u) C [=u,u] » Hanoe,

by 3.3.10 and 1.3:11, the operator S( u) € B((E(u)-E(-u))x) , where

S /m(“)(a)x (x € (B(u)E(-u))x) ,

['u.vu]
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1s a well-bounded operator of type B, with functional calculus given

by

& ' ‘
:(s(“))x = j f(A)ap(‘,‘)(A)x (£ € BV[~u,u], x € (E(u)-E(=u))Xx) .
[-u,u]

SMB, -whenl ¥y = (E(u)-E(-u))x »

® ® , .
] a(NaEV(y = / a(A)aE(A) (B(w)5(-u)x = Ve

[~u,u] {~u,u]

by 2.%.5, it follows that

@
égx = / MMﬂMaW%My

{~u,u]

@
- f a(a)u(“’ca)(gcu)-s(-u)) f RTINS
[=u,u] [~u,u]

(), (u)
TaTﬁx.

PROPOSITION 2.1.16. For all a,f8 € LBV(R) ,

() 7 DT +T

a+f -
(i1) Tog 2 T g sud O(TT) =‘D(Tq8) no)(T)
Proof. (i) If xc‘D(T +T)_D(T)nw('r), then

B
(n) T(:) ()x > Tx + Tpx

x + T
Therefore xetb('.c ) and T, ox =T X+ Tgx .
(1) Ir x tD(T T.) then for n=1,2,...,
T(l;; x = § (n)
. T(a)(z(n)-nc-n))T(g)(E(n)4E(-n))x
= T (B(n)-8(-n))T4(E(n)-E(~n))x

= T (B(n)-&(~n))T &
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e ()T,
+ T Tﬁx

using 2.1.15, 2.1.5, 2.1 Z(iii) and finally 2.1.2(11) twioe, noting

that =x e'Q)(Tﬁ) and Tﬂx e‘[D(Ta) o Therefore lim T(;% x exlsts and
n :

equals TaT,ﬂx s 80 X e'D(Taﬁ) and Ta-p.x =TaTﬁx

If xe®(T ) N®(T,) , then

B
T(z)Tﬁx - {8 (E(n)-E(-n))Tﬁx

= (n) (E(n) ~R(-n))x

= (n) (n) (B(n)-B(~-n))x
(n)

,(“’?

-» Taﬁx

usingz15 2.1.2(11), 2145 and 2.1 «2(11), 2.1.15 and 2.1.5 in the

(E(n) “E(-n))x

respeotive steps. Therefore 1lim T( )Tﬁx exists and equals Taﬁx ’

s0 Tgx ctD(Ta) and T Tg% = Tapx .

I:B.OPOSH‘ION 2.1.1i7- T1 = I .Q

Proof. Let a,band E be as in 2.1.11. Then

T, = 5(1,dE,R)
‘ @
= f 188

[a,b]

() b e
= E(a) + f 1dE
a

0 + E(b) - E(a)
.=.I,. |



In the applica._tior&. we shall need to use certain integration by
parts, change of variable and éhange of order of integration .
processes. We have not inveatigated the best poesible results along
these lines, but Lemmas 2.1.18, 2,1.20 and 2.1.25 will suffice for

the applioations we shall make,

LEMMA 2.1.18. If a € LBV(R) with a{t) bounded as t -+ == ,

and a(t) +0 as t » w, then

fR a(A)dE(A)x = =~ lim E(Mxda(A) (x cm(ra)) .

U-wo
[-u,u]

Proof. If x c{D(Ta) » then

lim ‘a(/\)dE(?L)x

U0

)

@
/ a{ AAE(A) x
r

[-uJu]

=1112 [ /@a().u)dE(A)x -' o ~)E(-u)x | (2)

['u:u]

= lim { a(u)E(u)x - f (A)Jﬂiﬂ(?\):l

U0
(~u,u]

= = 1lin E(AM)xda(d) ,
[-u:u]

the equality betwsen (2) and (3) following from 1.2.7.

DEFINITION 2.1,19. For a € NLBWR) and x €O(r ) , we define

/“E(A)xda()«.) to be 1lim uE(A.):nia(A) .

- ’ U J -1



Thuas, .if a satisfles the hypotheses of 2.,1.18, we have

D @ E(A)x doglA)
fR ANaEN)x = - /_:ea@%e.r ‘

It is easily "seen that the method used in 2.1.11 generalises in

the following way:

IEMMA 2.1.20. If ¢ : [¢,d] + [a,b] (where a,b,c,d may take

the values :w) is an increasing homeomorphism, and E and P are
spectral families, with supports contained respectively in [a,b]
and [e,a] , such that F(A) = E({N)) (A € [¢,d]) , then for each «

¢ BvV[a,b] we have

/a(mgu) - fdﬂx))ar(x) ,
[B;Jb] [c,d] |

where, if either interval is infinite, [ 13 a net integral with a

similar meaning to the finite case (see remarks before 2.1.3).

Proof, (t,t*) =+ (!?.';.") s where w_ = ¢(tk) and Wi = #t;)
sets up an order-preserving correspondence between ¥*[c,d] and
€*[a,b] , and since ¢ 1s a homeomorphism, the integrals for a and

ae¢ are taken over comctly'oomspohﬂing nets of Stleltjes sums,

LEMMA 2.1.21. Let [a,b] be a compact interval and g s [a,b]
+ C a continuously differentisble function. Then, for each x ¢ X,
b b
f g'(ME(M)xir exists and equals f E(A)xig(r) .
a : :

a

‘Proof. let €> 0, and lot (s,5*) «©*[a,b] be such that
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| b
I3 (2,de,t,80)x - f E(Nxag(V]| < €

a .
whenever (t,t*) » (s,5*) « et & > 0 be such that le'(8)-g' (t)|
< e if |s-t| <5 and s,t € [a,b] . Let ¥ be a refinement of 3

such that max (vi-'v ) < &« Lot (uu*) eP*fa,b] with ‘uz v .

11
Then, if J(A) = A,
| I aemu)x - T (e'%a,mu)xl
= Iy E(ug) (et (ug*) =g (ug)) (05 v, _ )|
¢ E|xje(o-a) ,

each uj* belng a point in (ui_1,ui) whose existence is given by

the mean value theorem. Thua

b
Iy Ce'B,ad,m,u0)x - '[E(?t)xdg(k)ll < (klkl(b-a) + 1)e

whenever u » ¥ , glving the required result.

.'.CﬂROLIiARY?'Z_ai .22,. If £ 3 [a,b] + C is continuous, then

b .
[ £(A)E(A)xdA exists,
a _

: A
Proof, Take g(A) =f £(t)dt 1in 2.1.21.
a :

LEVMA 2.1.285, Let f : R +C be continuous, with

j || <= o« Then 1im | £(A)E(A)xdA exlsts for each x € X,
= U J = ’ '

defining a bounded linear operator, to be denoted by f(A)E(A)dA .

—

A sinilar desult holds with R replaced by (-=,b] .



A
Proof. Let g(A) = [ f(t)dt . Then g 4is continuously

&iffemntiable and belongs to B’V‘(E) . Using 2.1.24, we have

u

/ £(ME(M)xar = uE(A)xds(A)

- SR - (- [ ea)s

- (j_:f(x)dx x - jjg(k)dE(A)x .

- This givesa the required result,

COROLIARY 2.1,24. If g : R+C 1is a function such that g

is continuous and integrable, then
/ Eme(N = j “g (NR(V=A

A sinmilar result holds with R replaced by (=,b] .

LEMMA 2.1.25. Let g : R x {¢,d] +C ([e,a] 'bqq:paot) be con-

tinuous, and let x ¢ X . Suppose' that

(i5 /:j jlg(t,.u)l:d}}t‘i_ﬁ cos

(11) for each u ¢ [e¢,d] the function g('+,u) is integrable

over (=w,») , and the X-valued function

u -+ -/wg(t,u)_E(t):uit

-

is continuoug on [c,d_] « Then the integrals

| / : U:;(t,u)E(t)xdt:l a |
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| f_: U zg(t,u)du:l E(t)xdt

are defined and equal. A similar result holds with R replaced by
l("“’:b] .

Proof,'_: The first integral exlsts sinoce the integrand

f-g(t,u)E(t)xﬂ.t is, by hypothesis, a contimuous X-valﬁed function

—,

on [e,d] . The seoond is defined, by 2.1.23, since the function

d
t -+ [ g(t,u)du
: o

is continuous and integrable on R . For each x* € X* ,

<x*, f j -U_:g(t,u)E(t)xdt] dw = f i D_:x*,g(t,u)n(f)pat] du

and

@,f_: D ig(,t,u)du] E’( t)xit> = [_: U ':.<z*,g(t,u)E(t)¥>du:| ;t .

since  <x*,g(t,u)E(t)> € x|l liell le(t,u)l , nypotnesis (1) ana
Fubini's theorem, together with the Hahn-Banach theorem, give the

required equality of integrals.

§2.2. éﬁeotra.l theory of well-boundable ope-rators

DEFINITION 2.2.4. A closed linear opermtor T :O(T) C X + X

(in general unbounded) is well-boundable if there exlsts & speotral

family E : R > B(X) for which T =T, , where J 1s the function

N =a(rep) .

The aim of this seotion i1s to demonstrate the uniqueness of ths

spectral family of a well-boundable operator, and to identify o(T)
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as the support of the spectral family of " T , Until the unlqueness
~ has been proved, we shall describe a spectral family E satiafying
2.241 a5 & “apectral family for T ", As in §2.1, we shall denote

sup {E(A)} by K.
AR .

If T 39(T) CX+X isa closed linear operator, and u e

p(T) , then we shall denote the resolvent, (uI~T)™*, by R(w;T) «

PROPOSTTION 2,2.2, If T :9(T) C X+ X is a well-boundable

operator and E 1s a speotral family for T , then o(T) CR and,

for u € G\R , R(#;T) 1is given by

e -
R(u;T)x = [ (=) 'aB(Dx (xex) .
' pid
Furthermore,
IRCsl = o(jm u|™) .

Proof. Let a(A) = p=r, B(A) s (u=2)"' (A € R) . Note that

g = N d'A.',"”_';_-'Aa X ’
B /- A2 [T ol
so £ € BY(R) . By 2.1.16, Top 2 Tlp and 'D(Tarﬁ) = 9(T,5) nqa(rﬁ).
Using 241417, this gives I =T, DTP_JT(p_J)-1 and. ‘D(T“_dT(p_a)—.,)
=9-('T1) n‘:D(T‘(F_J)_1) = X . Thus o ,

I = (=TT gy : (1)
Similarly, I = T, 2 'r(“_j)-ap_d and O(T(p_J)ﬂTp_J) gRD('r1) N
9(T,.;) = NT) . Tms '

x = T(#‘J)"1("I-T)x (x ¢9(1)) . (2)
Combining (1) and (2), we have

T - = iT) = Nae(n) .
()t = R = [ GeR) ()
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By 2.1.14,
HRCGsT

n

sl -5,

(™ fmuiﬁ )

K(1 + v)l-In; 7

DEFINITION 2.2.3. A closed linear operator T 4is said to

satlisfy condition (Gi)- i o(T) CR a.mi there exists a constant K1

such that |Im p| ||R(;T){ < K, (1 e 9_\3_) .

This definition is due to Bartle [1]. Proposition 2.2.2 there-

fore says that a well-boundable operator satisfies (G 1) .

DEFINITION 2.2,4.  For x ¢ X, an analytic extension of R(y;T)x

is an analytie fl.inction F:D(F) Dp(T) » X (where ©(F) 4is open),
such that |

(I-MP(u) = x (u<P(F) . (3)
A point By € C is said to be in the analytio point spectrum of T

if there exist a neighbourhood V of Ho ~and an analytic function
G :V-~+X, such that G(po);éo,aml |

(bI-1}6{p) = 0 (nevV) . | ()
E‘q_uivalently, Ho is in the analytio point spectrum of T if there
exists a veetor x € X for which (p + R(¢#;T)x) has analytic exten-
siona. !‘1, P, satisfying (8) but not agreeing at ‘Mg » por, there-

fore, on some neighbourhood V of Hyo V D‘D(Ft) n@(rz) .

T has the single-valued extension property (s.vee.p.) if its
analytic point spectrum is empty. If T has S.Vee.pe, then, for
~each x € X, R(u;T)x has a unique maximal analytic extension

%(u;T) , whose domain p(x;T) 1s called the local resolvent set of
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x o The complement, o{x;T) , of p(x;T) is called the local spectrum

of x %

- REMARKS 2.2.5. (1) If o(T) 4s nowhere dense in C , then T

has 8.v.e.p. In particular, this holds when o(T) CR .

(41) If T has B.veesp., then it is implicit in the definition
that X p;T) €¢D(T) (x € X, it € p(x;T)) ;1) is defined for all
x € X , not merely for x é@(T) .

(iii) If T has s.vee.ps and A € B(X) commutes with T ,
then (Ax) (#;T) = A(p;T) (u € p(#;'l‘)) » AX(p;T) being analytic,

and so o{ax;T) C o(x;T) &

PROPOSITION 2.2.6. Let Te B(X) be a well-bounded operator of

type B, with spectral family E . : .
(1) I E(A) = 0 (A< a) and E{(A) = I (A>Db), then the
functional calculus R Bvia,b] +» B(X) for T gives
HX[,p)) = E(W (e cusd)
(1) =7 is also a well-bounded operator of type B, with spectral
famlly E' given by |
E'(A) = 1 - E(-A-d) (reR) .
(311) (E(»)-E(u=0))X = {x € X ¢ o(x;T) C [mv]} (wsv)
Proofs (1) We have, noting that X[a,u] € NBV{a,b] ,

| ®
X[, (% = f X[, u)(NE(N)x

[Enb]

o b
- E(a)x + fax[a,“]_(mm)x
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= E(a)x + '[udE(A)x

= E(p)x (acugsdh, xeX) .
(14) It follows from $.3.11 that
x[a’”)(Ti) = E(p=0) (a<musb) .
Consider the map f » t » Where ?()L) = f(-‘i\._). We see that the maps
AC[-b,~a)] -5 acla,b] -¥ B(%)

satisfy

LY

7

j -y —t
1 =5y ¢

-T
»y I,
‘; = o~ 18 a functional

where 3(A) = A (A € [~b,-a)), Therefore
calculus for the well-bounded operator ~-T , and it clearly satisfies
any of the coﬁpactneas properties (iii)~(v) of 1.35.10, Hence -T is
of type B, and ;’r. glives

1 _,A = ry
E { ) ¢(x[-b,—A]) = x[_b’_‘\](-’l‘)

R VN e

I = X[, (D

= I = E(A0) (a<Arsghd) ,
with E'(-A) = I (A € a) and B'(-A) = 0 (A > b). Thus (i1) is
proved. |

(i11) We have E(A)X = jx € X : o(x;T) C (~=,A)} (A ¢ R), from

[3], Theorem 5,7. It follows that E'(A)X = {x ¢ X : o(x;-T) C
(—<,Al} (A € R). Therefore, if x € (BE(v)-E(u=0))X, then x € E(¥)X
and x ¢ B'(~=u)X , hence o(x;T) C(—=,¥] amd o(x;-T) C (~op-u] ,
which implies o(x;T) C [p,v] .

Conversely, if o(x;T) C [u,v] , then x € E(¥)X ; also,
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o x;T) C[-v,~u] , s0 x ¢E'(~w)X o Hence x € E(v)(I-B(p-0)X =

(B(v)-E(1-0))x..

PROPOSITION 2.2.7. Let T :®(T) € X +X be a well-boundable

operator and E a spectral family for T . Then -
(1) 'E'(A) = I = B(~»0) 1is a spectral family for the Qeu-
boundable operatdr -T . .

(11) (B(M-E(#-0))X = [x € X s o{x;T) CLuvl} (uew) .
Proof. (1) Firstly, note that E' actually is a spectral
family, the order and contimuity properties being obvious. Let 8 be
the well~boundable operator associated with the spectral family E!' ,

Suppose that x €9(T) ; then Tx = lim T(.‘;")x s Where
n

@D
7 0 [ ) aw,))x
[-*un,un] |

and iunl is any increasing sequence. of positiﬁ rumbers such that
un + @ , Wo recall from 2.1.2 that Tx is independent of the a.ctual
choice of the sequence !un} « In view of the Lemma on p.330 of [30],
the function A +E(A)x has only countably many discontinuities. It
is possible, therefore, t§ dhoosq {u#l in such .alway that E(iun)x
- E(:nn-{))x- = 0 for all n. (This choiecs of iunl depehda eon x,
of course.) _ |

Each T(‘;") I(E(un)-E(-‘un))X 1s woll-bounded of type B and has
speotral family E(A)|(E(un)-E(-un))x ; consequently eaoh
-T(_?")I(E(un)a(-un))x is also of type B and has spectral family
E'(A)I(E_(un)-m(-un))x = E'()L)|(E'(un-0)-E'(-un-0))I « Honce, with the

obvious notation,



®

_T(:;n)x‘ = j A.d.E'(A)(E(un)"E(".“n))xl

["‘Jn: un]

Y
- f AE' (A)(B* (v )-5" (-u_))x

Since -’I.'(:;“)x + -Tx , it follows that x €3(8) and Sx = ~Tx o By
interchanging the roles of S and T , and noting that (E')' =k,
wo seo that § = =T .

(i1) suppose o(x;T) C [p,v] . Then

(-DANT) = x (A4 [pv]) o
Usaing 2.71.2'(11) and 2.2.5(1ii), we see that for any x_l',xz‘e R,
(AT-) (Be, ) (e NENT) = (B(x,)5(e, ) TDR257)
= (B(k)E(k,))x .
Henoe o((E(xz)-E(xt))x 3 Tl(E(xz)—E(K1))X) C {uyv] . Since
7| (E(xz)#E(x1))x has unique spectral family 2| (k) B(x,))X , it
follows from 2.2.6(11i) that _
(E(eg)B(c ))x € (B(v)-E(0))(B(x,)E(c ))X ,
hence . '
(Be )8k ))x = (B(v)-2(1-0))(E(x )-E(x))x .
Letting k, + =, Ky + 4o gives x € (E(v)-E(p-0))X .

Conversely, if x ¢ (E(v)-E(p~0))X , then, since the spectrum of
the type B operator T|(E(v)=E(p~0))X 1s contained in [u,v] , we
- .

(AT)R(AT(B(W=E(p=0))X)x = x (A £ [uv]) ,

and therefore o{x;T) C [y,v] .



- 42 -

THEOREM 2.2.8. The spectrel family of a well-boundsble -

operator is unique,
Proof. Tet T :0(T) CX+X be well-boundable, and E, F be
spectral femiiiea for T . Chooge real mmbers g,v with H< v,
and let _ | |
Mp,v = {xe€Xs: ofx;T) C‘[,u,v.]} .
Then, by 2.2.7,
¥, , = (E(G)=(-0))x = (F(v)-F(p-0))x .
Moreover, in view of 2.2.5(1ii), MH , isan invaria.nt subspace for

»
both E(A) and F(A) , for all AeR.
Consider the speotral family G , where
G(A) = E(A)xM (reRr) ,
CHy ¥ -
ao that
I|M Az v
H,V _ :
G(A) = (E(A.)-E(p-o))ll!u HEA<Y
»
0 A<y o

Ir x eup’v s then

@ o v
j Me(Nx = u(E(H)E(u-0))x + ] ME( A)x
4

[F’ v]

W(E W) E(1-0))x 4 ['vME(A)(E(V)-E(u-O))x- (5)
H

’ .

’ N

wa

where

"

@D
n(2)y [ NE(A) (E@)=(-0))x .

{—n,n]
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Suppose that n > v arﬁ'?n<p.Then

K%y o (o) (B(n)(-n))x + | AGE(A)(E(n)E(-n))x

= f_:ME(A)(E(n)-E(-n))x . (8)
We have _
(e(n)-E(-n))x = (E(n)-E(-n))(E(v)E(n-0))x
= (B(v)E(s-0))x
= X . (7)
Therefore |
j-:AdE(A)(E(n)-E(-n))x
= lim A (B(m-B(A _ I(E(v)-E(r-0))x
(A A%) e@*[-n,p] © n
o u(E(E(-0)x , | C(®

and, since E(AY(E(v)-E(p-0))x =0 (A3 v),
[ *AE(A) (B(m)E(0))x = 0 . (9)
On comparing (5) with (6)-(9) , we obtain

S

T(n)x - j MAe(A)x  (x e HP’V , n> max(~p,v)) .

[#,v] |

Therefore, by 1.5.10, Tal’v 1s a well-bounded operator of type B
* with spectral famlly G = Elnp,v .
" The above caloulation can be repeated with E replaced by F
throughout, yielding that Flu,u,v' is also a spectral family for
TIM o Since the spectral family for T|Hu v is unique, we have

Hy ¥ ’
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E()L)}.] = F(Ny  (y cn.u,v ssA€R) .
Therefore
E()(E()-E(-0))x = HNEWB(-0)x (xe€X, reR) o
Letting v + 40 , g+~ givea E(M)x=FAN)x(x €¢X, A €R) , and

g0 E=F .

- THEOREM 2.2.9, Let T :®(T) CX X be a well-boundable
operator with spectral family E ., Then, for each A ¢R,
(E(A)E(A0))X = {x € X3 o{x;T) C {A} }
= {xeXsx e0(T) é.nd Tx = Ax}
Proof, Equality between the first two members was proved in
20247
If (AI-T)x = 0 , then

X iT) = _x_
L=A

satisfles

(I-Mx(17) = = (nfA ,
Cand so o{xT) C (A} | |

Gonversely, suppose o{x;T) C {A} « Since x ¢ (E(A)-E(A~0))X,

x GQ(T) . We have |

(EDEHmT) = x (WAN .
Therefore, since E- gbmmutas with T,

(M) (EE)E(-)H D) = E)E(-0))x (1A .
As in 2,2,5(i1i), then,

o{ (E(n)-E(-n))x ; TH(E(n)E(-n))X) C {A} .
Since T} (E(n)—E(-n))x is a woll-bounded operator of type B, it

follows from Theorem 4.5(iii) of [3] that
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™E(n)-E(-n))x = -A.(El_(‘n)_-E(-n))x .

Now let n + = 3 since T 13 closed, we have Tx = Ax o

The next theorem 1s a special case of a result p_:_'owed by Kocan
([18], Corollary 1.15(i)), whsre it is proved under the assump_t.ion
that T is an operator satisfying a condition (Gn) which includes
(G1). We give here a proof depending on the properties of well-
boundable operators, and not dnvelving use of the integrals I

considered in [18].

THEOREM 2.2.10. Lat T :P(T) C X + X be a well-boundable

operator, and let x € X such that ofx;T) C [a,b] , where
-v¢<a<bce, Lat T be a closed, rectifiable, positively
oriented Jordan contour with o{x;T) contained in the interior of

I‘.Then

x = __H X m)ae .
- T

Proof, Let E be the speg;l:ral family of T o FOr n=1,2,ees,
denote (E(n)-=E(-n))x by E T|(E(n)E(-n))X by T_ - By the
same argument as in 2.2.9, we have

o(x_s7) < [a,0] ,
(uI-T)(E(n)E(-0))x(15T) = (I-T_)(E(n)-E(-n))x(p;T)
= (6T = x () = (E()E()HmT) (44 [ad]) .

" Theref ore



1| X (whap = i/‘"i(u;T)du
"é}TI[r o wijp »  m

= 1 | x(uT)ay ,
2L .[r non
n -

where I‘n i1s a suiteble contour in [z € [ {g] >n} with T in
the interior of I‘n « But, since Tr; 1s a bounded operator with
o(Tn)'C [-n,n] , xh(y;Tn) = R(";T)xh on T, and 80

-’;L:f---'in('p,;r)c’iu a1 f R(iT)x dp = x

el | 5wl JT_
As n*w, xn-"_'z, and

[;n(u;T)d.u = (E(n)-E(-n))f ¥ p;T)dy
r | T

d [ RH?T)@ ’
r
and 80 the result follows,

LEMMA 2.2,11. Let £ : T + X be bounded and have left and

right hand 1imits at each point. Let

o 1t 2w N, 16 :

f(re™") = __‘I_f Pr(H)f(e Jaé (0sr<i1, 0<stcam ,
22 J 0 :

‘ 1 -1'.-2

where Pr is the Folsson kernel Pr(t) = « If 2 =

1:%.2r cost + r°

re't tends to g, = otto along a continuously differentiable path

in {z s |2] < 1] whose tangent at 25 is raedial, then
r0)) - %[f(ei(to-l-o)) +f(ei(to"0))] .
Proof. This is a standard result for scalar-valued functions

([34], Toorem IIT.6.15)s We sketch the argument hore, giving details



- 47 -

where the validity for vector~valued functions needs to be stressed.
Let '

p(8) = max P(t) (0<sg7w) .
T r
Sgtgw
In view of the estimate

Pr(t) € Alr) (0O<t<cw,O0crc<i)
43
([34], 1IX.6.9), it follows that

pr(a)sA1';r (0<sgs7,08r<1q) ,
6
hence
:pr(ﬁ) + 0 as r -+1 (10)

for each fixed & ,

For each gz ¢ T , consider the funotion ¢z ,‘ where

qsz'(u) = £(e™2) 4+ £(e™ %) - 2¢(z) (u £ 0)
p)

¢ (0) = 0 .

¢, is continmwus at u = 0 , provided we normalise f(zo) =
0 ,

i i(t,~ it
z (e (t°+0)) + f(e (%o 0))] (zo =e 9 ,
Suppose f 1is continucus at Zy e Let ¢ > 0 . Then there is an

arc c.—.'ieitzt stetl, with t, <t <.Z't2,_anda 8= 8(e) ,

1 1%

independent of 2z ¢ C , such that

"‘#z(“]l < € (0gju <é,5ecC) .
2

Then by standard manipulation, taking into account that P ( ) is an

2x N
even function and _1 [ Pr(t')dt- =1 3 we reach
’ 27 0 C



27
Are't) - £ & [ pldg e,
| 28 J 0

it
e

whore g « Therefore

Fmit-.eit ‘ 6Pun + i
[1F(relt) - 2(el®)] ‘2—15/01‘()& ,gré%z“lguwat

o+ ggsz.n.dlfllm. (11) |

a7

4

rola

< € ,

provided r is near 1 , since the right hand side of (14) 1s in-
dependent of 3 €C , and by (40) 4its second term tends to zero as
r*1, independentiy of 2 « This shows that the funotion equal to
F(reit) for 0 €r <1{ and f(eit) when r = 1 is continuous at

20

Now suppose f i3 not continuocusg at £y o Without loss of

generality we may assume g, =1 . We again assume £(1) to be norm~

Q
alised as the average of the upper and lower limits along T . Let
i = 1,(B:L(om)) _ f‘(ei(o-o)),

be the discontinulty at 1 , and let
oD

#t) ~ Vasinnt .

n
Then, exactly as in {34], p.98, we apply the result of the case where
£ is continuous at 1 to the function g=+¢f -¢ad,

v
which satlsfies

£(re t) = E(re ) + arctan ( o sint )g . {12)
: 1 ="rcost

Along a continuously &ifferentiable pa_th, arota.n( r sint )
. . IR $4 - roost
s d u-a..!. 3 rst t"\&

tends to the a.ngle between ths tangenta to the pa.th. and, » the o:l.rcle-

at 4 . The result now follows from (12) »



THEOREM 2.2.12. Let T : ®(T) CX +* X be a well=boundable

4

operator with spectral family E . Let —*<a<bc®© and 0 < €
< 7, and let the contour A‘ be the union of the directed polygonal

contours [b+ie€,b+in,a+in,a+i€] and [a-ie€,a-in,b-in,b-ie] .

R
L, | 'I-;
Then
a-<)
1 12(0) ¢ E(be0) 3Bty 3 Bl )z = Mo 1 | R(uDaap (x € 0.
0 27l Ac ‘

'Remark: Kocan ([19], Appendix) proved this formula under the
assumption that E 1s strongly continuous.
Proof. For M £ R we have, by 2.2.2,

& "
R(#T)x = /R(u-l)-1dE(A)x = () am(Nx (xex) .

Since A - (u-h)-1aatisfies the hypotheses of 2.1.18 and 2,1.24, and

"1 in NBV(R), we have

R(T)x = - /ﬂ&))—xa«d)\ (xex, nfRrR) . (19)
u-}L

Therefore

. = E!)Qx .
5111-{ jAcR(”,T)xﬂu 21!'1 f l:[-w (p-)&.)z ar | (14)

To justify the change of order of integration in (14), we put

g(An) = (1=A)"2 in 2.1.25. Condition 2.1.25(1) becomes

/ ’ dm(ﬂ)d.h <~ , where m 1is linear measure on A  ; it is
A lp—A

easily verified that this integral is finite, For each u ¢ A »
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/ l dklz = ]Imf mi < e« , and the continulty requirement is givén by

(13), 20 2.1.25(i1) 1s also satisfied. Therefore

b .[A Rty = "o /-m UA (12 E(IA)-m )
€

We have

_au bsic . b-ic ‘
- 1 l: [ f » (15)
oy 2
ami JA (H-A) 21r1 a+le J a-ie (u-A)

since the integrals round the rectangles [b+i€,bsin,a+in,atie] and
: ’ TeTo
[b-ie,a~i€,a=in,b~in] are sme0, Therefore, evaluating the right hand

side of (15),

- e € 1 - 1
i = 7 R T3 |

ZuL Ja_(u-2)* b-A) 4 € (a=M)2 4 €
and so
[ RGmn o £ [ EM T ENmr
oni o (b=A)% 4 €2 —o a.-)L) +€

In order to obtain the limit as € =+ 0 » we make the conformal
transformation

¢ ¢ z -+ 441z
1-1_;

of G , which takes E to T , and the upper half plane to the unit
disc. If A € R, then

$(A) = 144A = eia(") s where -7 < 6(A) <1,

1-
it
and if 5 = a4dle , € > 0, then ¢(z) =re” , where .r <4, 05 t
(21"1'.1!6t

#8) = E(¢ () (wr<o<m) .
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'/._w (amn) +€2 becomes %Ef_:Pr(G-t)F(B)xdﬁ ,
since

148 1 _1

2 AA n.‘1'r;-A2
and

2 ‘ .
(!1 + A ! 19 it
= Re[ e 4re a P (e~t)
(a-n)? 4 €2 [ 16 It':\_-.' r
_ 8 =re
it
As €+ 0, atle » a€¢ R along a vertical line; therefore re
eie(a) along a (continuously differentiable) path in [z 3 |z} < 1}
whose tangent at aie(a) is radial, since the transformation ¢ 1s
conformal., It now follows from Lemma 2.2.11 that the 1imit as € + 0
15 3{F(6(a)) + P(8(a)=0)]x = %{E(a)«E(a-0)]x , thus oompleting the

proof of the theorem,.

Remark. The formula proved in 2.2.12 can be used to provide an
alternative proof of the uniqueness of the spectral family for a

well=boundable operator.

THEOREM 2.2.13. Let T :9(T) C X+ X be a well-boundable

operator with gpectral family E . Then o(T) = supp E &
Proof, let.-u ¢R and & > 0 such that E is constant on

[;_,:—8,u+3] o Then for all a ¢ LBV(B) »

®
.[n X( o5, s )N ANEQ) = 0

In particular,

® | '_
.[R X(p_a’u+a](l)63(x)x = 0 (x c_x) .
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Let . -

[T A £ (s ]
(N = { -

0 A e (=5, pu+6)

AN = =2 (reR)
XA = 1 '-x(p_a'mﬁ](l) (reRr) .
Then af = y , and Ty‘: I . Applying the argument of 2.2.2, and
noting that a ¢ BV(R) , wo see that T, = R(i;T) « Therefore pu €
p(T) » | |

Conversely, suppose p € p(T) « Then, aince no point in & neigh-
bourhood of pu 1s an eigenvalue of T , 2,2.9 shows that E 1s con-
timous in a neighbourhood (u~8,u+8) of y . Choose a,b such that
H-8 ca <M <b<psd, amd let 7> 0 , If A& is the rectangular
contour joining [a+in,bsin} , then a neighbourhood of A and its
interior is contained in p(T) . Let & ¢ be the contour defined in
242012+ Then, by 2.2.12,

(E(v)=(a))x = 1im 1| R(AT)xar
e+ 2ri Ac

= __1_[ R(A;T)xdA
2ri Ja

‘s 0 (xeXx) ,

and s0 E is constent in (u-5,u+8) .

THEOREM 2.2.44, If o € LaG(R) , then o{T ) D a(o(T)) .

Froof, Let Ay € o(T) . Then the function B s A -+ a(A.O)-a(A)

1s also in 1AC(R) . Let € 5.0 , By the definition of abgolute con=
- - m

tinuity, there exlsts 81 > 0 sueh that, if i("sk’tk)lkﬂ is a

disjoint collection of intervels contained in some fixed compact
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interval [a,b] with Z(tk-ak) < 51 , then Zla(tk)-a(ak)l <€,
; : 2

Consequently, if £ ¢ ["0:531"‘0*%1] ’ th?-'l Zla(tk)‘“(tk_.,)l =

2, lﬁ(tk)-ﬁ(tk-y)l < € ; therefore the variation of f over
2 :

[Ao-%,xo+%1] is bounded by ¢ . It follows also that, if |)L-)L0| <

51 » then la(A)'“(Ab)l < € Therefore there exists 5">'°' Sﬁch
‘ 2' ‘ . : I -

.~

that |||Bl}. < €, where: T = [A ~5,A 48] .
M 0 "0
By 2¢2.13, there exist )L1,)L2 with )"0.-8 % A1 < Ao < )L2 € )L°+8
and E(A1) ;‘E(Az) . Hnos there isa y € X such that E(A.1)y = 0

and E(Az)y =y A0 o Then

.t

| &
i)z )5l = i fR, (a(A)-a())a(Vy|

A
1] Hatrg)-a0)am(y|
A1

M

xlll sl ko
< xdisl ,

aﬁd 0 a(Ao) € o(Ta) .

§2.3. An extension of the Hille-Se.~Kagy theorem to wall-

bounded operators

We recall some basio notlons from the theory of semigroups of

- operators.

By a strongly continuous semigroup in B(X) we mean a set

{T(t)}tao C B(X) which satisfies -
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(1) T(est) = H(a)T(£) (st 3 0) ;

(11) 7(0) = I ; | ' - (1)

(1ii) T( «)x 1s continuous for each x € X .
(The apparently weaker hypothesis of right contimuity for .each T )x
is in faot equivalent: see [5], fropbsition'1.1.2.) It follows from
the uniform boundedness theorem that ||T(t)}] is bounded on every com-

pact Interval. We al®:d have
w, = iﬂ log ltigt}" <=, ' (2)

A strongly oontinuous semigroup {T(t)}] 1s oharacterised by its

infinitesimal generator A , where

Ax = 1lim Tgtzx -x
t+0+ t

whenever the limit exists. The operator is closed, and tI>(JBL) is
dense in X ; A € B(X) 1f and only 1f t + T(t) 41s norm contimous.
The spectrum of A 18 contained in the left half plans {A : Re A ¢

Wy } , where @5, is as in (2), and the resolvent 1s given by

R{A;a)x = -/‘:e-AtT(t)xﬂ.t (ReA > w_, x € X) , | (3)

0

([5], Theorem 1.3.5).
T(t) can be recovered from A by
“AtZ Lk k -
T(t)x = 1lim e Zogmz [R(MA)T ' (xeX) ,
Ao K=D kI | '
([5], Proposition 1.3.11).
The well-known theorem of Hille and Sz.—Nagy ([16], Theorem

22.3.1) states that if X 1s a Hilbert space, and |T(t)} is a

strongly continuous semigroup of self-adjoint operators, then A
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is self-adjoint, and

() = [e“x(d&) ,
R

where K 18 the spectral measure of A . This r-eprea'enta.tj;og for -
T(t)' 15 unique, Sz.-Nagy generalised the result to normal opefatora
([18], Theorem 22.4.2). A similar result for acalar type spectral

| operators on a weakly complete space was glven by Sourour (see [2]
and [31]). We give here a version of the theorem for well-.-'bouxide._d.

operators of type B.

FROPOSITION 2.3.1. Let A and B be two linga.r operators on
X . Suppose there exists u € p(A)p(B) such that R(p;A) = R(h;B) .
Then A =3B . | |
Proof., Denote the common value. R(u;A)‘ = R(u;B) by Q. Then
WuI-a)x = x  (x € %n),
uI-B)x = x (x ¢ 9P(B)),
(bI-A)ex = x (x € X),
(bI-B)ex = x (x € X).
In particular, Qx € D(a)N P(B) and AQx = Bgx, for all x ¢ X .
Consequently x t'?(.A) implies x = Q(pI-A)x ¢ D(B) , and Ax = .
AQ(uI~A)x = BQ(.uI-A)x = Bx o Therefore A CB . Similerly BC4, 59

A=B‘.

THEOREM 2.3.2. let iT(t)}t;o be a strongly continuous semi-

group in B(X) , with each T(t) =a well-bounded operator of type B

whose spectral family is E, + Let A be the infinitesimal genera.tor.

t
of {T(t)} . Then A 1s well-boundable, and its speotral family is
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G , where G(A) a E1(eA) ()« g) « Furthermore,

(t)x = ne"tdc;(x)x (xeX,t»0 , (&) |

and G 4s the unique spectral family which satisfies (4) .

Proof, simcs o(T(t)) = AR(t/2)%) = [a(t/2))1% , by the
spectral mapping theorem, we have o(T(t)) CR* (t > 0) . Choose e
" > 0 such that o(T(1)) C [0,a] . Let a_ = al/8 ; then o(T(1/m)) C

[O,an] » n=1’2’.-o « We have

D .
™M1)x = j ME1()L)x (xeX) ,
[0:3-]
@
(1/n)x = j AdE1/n()L)x (x e X) .
[onan]
By the functional caleulus in 1.5.10,
&
M(x = [N1/0)"lx = / N, (Nx (xeX) .
[O,a.n]

. We ¢laim that

o .
E1/n(A.) = E1()L) (A2 0 ; n=1,2ye00 ) (s) -
To see this, let
1/n
F(A) = E_'/n(A Y (Arz0) ,
MA) = E1/n(A) = 0 (A<0) .
Then F 1s a spectral family, and for each x ¢ X

©
[o[ ]MF(.A)x 7 uaneei, 125‘(?01‘)"1?“" P

- o Z Ai(E‘I./ n( A;/n)qﬁ /n( Ak :1) )x

(As2*)e]*[0,a]
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| .
i (E:E')i?if[O,an] 2t (Bl b By ol V)

&
= f }LndE1/n(A)x ,

[O’an]

using the correspondence between ¥ *[0,a] and ?*[O,an] (2.1.420) o

Therefore
D @D
| [ MF(AN)x = AndE1/n(A)x

: Fopal [osanl
= T(1)x
€2

= AdE1(A)x (xeXx) .
[O,a]

Since the speotral family of “T(1) 4s unique, F = E, , and so (5)

1
holds. It follows that

e .
™{1/n)x = / MEVn(A)x

[O,an]

B
- [ (An)'l/nd.E‘lth)x
[onan]

>
1/n

= [ H dE,I(H)F (x € X; n=1,2,00.") ,
[oaa] ‘
and therefore, by the funotional calculus,

D
™(m/n)x = [uwndE,l(u)x ) (x € )

[O,a]

for each rational m/n > 0 .
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If t> 0 and qn-vt,vhene {qn} is a sequence in _g"',
t ; q ;
then 43 & % (4 € [0,a]) . Since - Hll_lnq?"l[o,a]l are bounded, it
follows from 1.5.11 that -

Qt ‘
T(qn)x - ' / udE1(p)x -(xcx)

[o,ﬂ-]
as n + = , Hence, by the strong conginuity of T(t) ,

. ®
Mt)x = / ptdg_l(p)x (t>0

[0,&]

We next consider G , defined by G(A)

ICX) .

-e

E1(eA) « It 15 clear
that G(A) = I (A > loga) and that G dinherits the order, contin-

uity and boundedness propertiss from E, , 80 in order to show that

9 _
G 13 a speotral family we have only to establish that 1lim G(A)x = 0

(x € X) . For this we need to show E1(0) =0, let x eA;:(o(J)x .
Then x =E1(0)x , and
(& . ‘
(t)x = / utdE1(u)E1(0)x
(0,a]

a '0.E1(0)x + /:ptdE1(u)E1(0)x,

=0 (>0 .
By the strong continuity of T(t) , x = T0)x = lim T(t)x = 0 . There -
fore E1(0) =0 , o0
It follows from 2,4.20 that

5 -
(t)x = | / ptaE1(u)x

[o0,a]
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j aﬂtdE 1(u)z:
0 _

log a
= eM‘dc;( A)x

e

u

[we)‘tac;(k)x (t>0;3;xeXx) ,

since 6(A) =I (A2 loga).

Let H be any spectral family such that

Nt)x = “ehth(A.)x {(t >0 ; x‘t ) o (6)

-—lX)

Form the corresponding well-boundable operator B s where
Bx = [ MH(Mx  (z €9(8)) @)
-t .

and P(B) 1s pre'dia'ely the set of x ¢ X for which (7) converges.
By Theorem 2.2.14, o(T(1)-)'-:5 exp(o(B)). since oB) = supp H , by
242415, and. T(1) 1a bounded, there exists 4 ¢R sucﬁ that H(A) = . ..
I (A lb a). Hence, when ¢ > d , similar considerations to 2.2.13

allow us to write

a .
R(#;B)x = (=Nan(Mx (x e .

-—l

Using (3) , and substituting for T(t) from (6) , we obtain

R(iA)x = [:D_:e('\"p)tx(_w’a](l)dﬂ(l)x:ldt

for all real u > @y Let p > -ma.::(d.,wa) ¢ For each fixed t 2 0,
the functlon ht(A) = e(l—p)tx(;m d:I(JL) is bounded and left-contimious
? .

and vanishes at += . Therefore we can apply 2.1.18, obtaining



- =60 -

:[_:H( A)xih t( A):I dt
TR St
= ;fo,[-u (- ”)tH(A)mA:Idt +;3

2l R

using 2.1.24¢ in the penultimate step. Let

R(u;4)x

u
1
—
(=

g(Ht) = te(""“)t (w<Argsda,0ctsN .
It ig easily verifled that g satisfies 2.1.25(1), and that g(,t)

1s integrable over (-w,d] for every t ¢ [0,N] . Purthermore

L (=)t a > |
f te HA)XdA = H(A.)maht(h) = [ M x dh (A) 4 (@
d /. )t : e 4-p)e

= = Fip(t)x 4 ‘T

which is a continuous funotion of t , Thus the conditions of 2.1.25
are satiafiei_i, and s
. :
R(M.A)x = 1m f J (" “)t HA)xdA + =
—oo 0 M=d

. - -(A-A)N ={ p=A)N
Ne e 1
= 4 1m f_., = + =Y - (,.-'-A)z:]'H( A)xﬂ.)t. . (8)

Since : t. '—-—::
_ d
&~ (H=A)N N 2 ()N g\ Ha)N
[w-——x_p- dr preey ....: - d.A = = 0



a_~(#-2)N o [ N o~ ()N
— [ — Ao ——————=+0 ,

the first two members of the right-hand side of (8) tend to zero.

Therefore, using 2¢1.18,

. |
R(8)x = =~ ﬁﬁ)lzdh 4+ =
== p=2) A

j_:( ufk)-1x(_w’d](l)dﬂ( Ax

d -
[ (=2) "Nan( A)x

R(mB)x  (u > m.ax(d,wo) P X € ;c) .
Therefore, by 2.5.4, A =B .

Thus A 15 a well-boundable operator with spectral family H,
for any H satisfying (6). Since G is such a spectral family, and
the speotral family of a well-boundable operator 1s unique, G  muast be
the spectral family of A and the unique spectral family w'hich‘ satis~

fies (4). This completes the proof of ths theorem.,



CHAPTER &

WELL~BOUNDED OPERATORS AND MULTIPLIERS

In this chapter we discuss a mumber of intereating-exampleﬂ of
well-bounded operators which ére mulfiplier operators, i.e, bounded
_operators on some LY(G) which commute with all translations, The
relevant notions are reviewed in §3.1. Well-bounded multiplier opera=
tors are characterised in §3.2; the criterion is simply the 'existence-
and uniform houndedness of cértain multiplier projections. In §3.3 we
assemble some known facts about the existence of such projections to
obtain examples and-counterexamples on well~bounded multiplier opera-
tors. Some of these operators satisfy the eemigroup property, and so
Theorem 2.35.,2 can be applied to them,

Certain of the operatoré congidered here_have been studied by _
previous authors, notably G. L. Krabbe [20f22],.nho.obtainsd-spectral- :
theorems both for bounded and for a class of unbounded operators. In
§3.4 we use our theorem on semigroups of well-bounded operators to

clarify these earlier results.

§5e1« Multipliers

et G be a locally oompact abelian group, with dual group [ .
We denote the pairing between elements of g and I by (y,x) ,
y €T, x € G . Choose Hear measures m on G and 7 on T , norm-
~alised so that the Plancherel identity holds. For 1 € p < = , let

LP(G)_ denote the ususl spaces of eguivalence classes of functions
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modulo mull sets. For p = = , the appropriate space to use 1ls the
space of equivalence classes of bounded measurable f\mctiona_modulo
locally null sets, (This technicality takes account of the possibility
that xﬁ maé,r fail to be o-finite: for an example a.nd discussion on
thls point, see [15], note 11.33, Theorem 12.2'and Definition 12411.)

The Fourder transform

£y) = [G Gre(x)an(x) (y e I)

1s defined for all £ € L'(C) . The Hausdorff-Young theorem states
that 1f 1 < ps 2 and £ € L'(c)LP(c) , then II?HP, sIIpr (where

oy
o 1 ) » and therefore the mapping f + f extends by contimilty

L=l =8

1, .
p .

to an operator in B(LP(G),LP'(G)) » which will alao be denoted by
f +§ « When p > 2, ? exlsts for all f 1n the dense subapace
LZ(G)pr(G) o 1P(c) , although it need not then be an element of
LP'(G) ..and the -transform will not, in general, extend to¢ the whole
of IP(c) .

By a multiplier operator in B(IP(G)) (1 € p < =) we shall mean

a bounded linear operator which commutes with each translation opera-

tor. Multiplier operators are characterised by the followings

PROPOSTITION 3,1.1 ([4], Theorem 4.4). An operator T ¢ B(LP(G))

(1 € p < =) 1s a multiplier operator if and only if there exists a
bounded measurable funotion ¢ : I » C such ths;t

(1£)" = ¢f | ()
for a1l £ € L%(6)nLP(G) . The equivalence olass of ¢ in L(T) is

unique.



The function ¢ of S.1.1 will be referred to as a p-multiplier,

If 1 <p <2, relation (1) holds for all f € 1LP(g) . For each p
we denote the set of p-multipliers by M (I‘) if ¢ e XM (I‘) hen
the multiplier operator in B(L (G)) satisfying (1) will be dencted
by T¢ (or by T(g) | when the partioular value of p 1s to 'be
stressed),

In the proof of 5.1.1, the following duaiityr;elation is

established, We shall require this result in §3.2.

" PROPOSTTION S.1.2. If 1 <p < ©, then M (r) =y (D).

the operators corresponding to the multiplier . ¢ are T g) R T(g )

with noms HT(P)ﬂ ,||T(P )“ respeotively, (Sf)(x) s £(=x) for

any measurable function £ : G +C, and <«<f,p = [ fg , then

(1) <Tg£)sf,Sg> = <f, T(p ) (£ «1P(c), g € 1°' () ;
(1) [17PH_ =112,

Proof, see [4], §4.6, or [24], Theorem 4.1.2.

Tt is well-lmown that X (1‘) =L (), and that M (I‘) is the
‘set of all Pourier—Stieltjes transforms of bounded regular complex
Borel measures on G , If G 4s infinite, then H (I‘) is properly

contained in ¥, (r) when I_'g__l_l 5 ___’ ([24-], Theoren

2 2 'P.'

4’.5.5) -

Remark, We have reserved the term "multiplier" for the funotion

¢ rather than the operator T ¢ H ma.qy authors define a multiplier as

en operator in B(LP(¢)) which commutes with translations,
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§3.2, Characterisation of well-bounded multiplisr operators

| VM° Let (0,I,1) be a measure space and Ifn] a
sequence in LP(Q,E,p) (1 sp <),
(1) 1 ”fn-fllp + 0 , then there exists a subsequence !fnk]

such that fnk(w) -+ f(w) almost everywhere (a.8.)e

(id) If “fn-fllp + 0 .and. fn(w_) + g(w) a.e., then 2£(u) =
g(w) a.e. _ . |
Proof. (i) Combine IIT.5.6(i) and ITI.6.15(s) of [9). Part

(11) follows immediately,

PROPOSITION 3.2.2. Let ¢ € up(r) (1 € p < =) be real=valued,

and suppose that T, € B(1P(6)) is well-bounded. Let T, be
implemented by (K,[a,b]), where [a,b] 48 large enough so that
(-lkok, el )] < [a,b] . Then the 46[a,b]~funotional caloulus for T,
is given by |

[(r)e]" = (@$)F  (a < acla,b], £ € PLO)UH(C)) .

Proof. In view of 3.1.2, we mgy assume 1 €« p s 2 , For each «
€ AC[a,b] , -a(Tqb) € {Tqb]'f and 80 _conﬁnutes with translations., Hence
there exlsts §_ € up(r) sach that [afT ¢)f]" = ¢ 2 forall fe
1*(¢) . I q 1s a polynomial then obviously [q(Tq'b)f]“ = (qed)f »
Let [q } be a sequence of polynomials such that |“qn-a"|[a’b] - 0,
Then 1t follows that q {(A) +a(A) for'ell A ¢ [a,b], and ®

LMY + o(dMEy) (veTy 2 e1R@) .

_ We also have, for each f ¢ L°(c) ,

e dF =¢ 2L, = Illa(r)el™=La(z el Il ,
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< llq (T e ol )el
< Kllla,=alllp, il
> 0 .
By 3.2.1(1i), therefore, zpa(y)f(y) = o(¢{y))¥(y) a.e., and so 4:(1?

~ . . L}
= (a-¢)f as elements of LF (T) , for all f € LF(c) .
| - \

LEMMA 3.2.,3. In the notation of 1.2.,3, if

fAr * = »
(tt*)m*z( ot 2) .

then there is a sequence (t(n) t*(n)) in @* , with max (t(n) (n))
+0 as n + =, guch that Z (f,Ag,g(.-")_,y(“)) *h., k.

Froof. We construct the sequence inductively as follows. Let
1‘._(1) be any partition such that max (t(1) (1)) <% . For each n =

1,2, ¢ve; 8uppose we have found a partition 3( ) such that max
k

(¢ (n) (n)) <27, The Stielt;]és sums converge, by assumption, so
there exlsts 2( n) ¢ ® such that “z (f,%,g,_g‘)-h“g 2 0 for all
(E,_a_*) €®* guch that g 2 _e_l(n) « Since ® is a directed set, there is
a E(n) €® with _u_(n) ?E(n) R y_(n) > _s_(n) . Wo can find a refine-

(nﬂ) of y_(n) with m;.x (t(;+1)-t(§::)) <2™ ., Then

ment t

(n"_1) u® 5 g™ g o w12, 0Py epr patisries
115 (e, 8 .t(’“’) t*(n+1)) nf < 2™ .
Thus we have partitions {j_c_(n) ;n=1 such that max (t(i)-t(n)) <2 ™®

(n21) am ||} (f,bz,z(n?,r(n))-hll <2 (n3>2) , and so the

b

resul_.‘t is proved,
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THEOREM 3.2.4., Let ¢ € up(r) (1 <p < ©) be real=valued. Then

Tqb is well-bounded if and only if each X(=o A]oq': € np(r) and there °
»

exlsts K < « such that ||;Tx ‘¢|[ $ K(A €R) . The spectral
A

»

family E of T, 4a then given by E(A) = T (A eRr) o (0
¢ : x(_“’:A-]°¢ -
course, T‘p is self-adjoint when p = 2 .)
Proof, As in 3.2.2, wo may assume 1 < p € 2 . Suppose T(.b is

well-bounded, and implgmented by (K,[a,b]) , where [a,b] 1s large
enough so that [-[ig|i, [kll_] < [a,b] « since E(A) € |T S forall
A e€R, each E(A) commutes with all translations. Therefore, for
. ~ ~
sach A € R, there exlats ¢, ¢ mp(r) sach that [E(A)f]™ = £
P , o
(f € L°(G)) + We nbed to show that ¥y = X, 2] ¢ bocolly ce.

since LP(G) 1s reflexive, T, 1is of type B, and therefore.

¢

there is a BV[a,b]-functional calculua for T,'s By 2.2.6(1)

¢
E(A) = x[a",d(%) (e € X<b) .
Fix A € [a,b) . Let B, € AC[a,b] be the function which is 1 on

{es2) , © on [A+b=A, b] and linear on [A, A+b=A ] . Then
n n

ﬁn(p) -’x[a,)t.](u) for e1l u € [a,b] , and Illﬁnlll[a’b] =1 for.all
n . By 1.3.11%, f.herefore, _ .
(T2 =x, (T el » 0 (£ e17a) .
For each n , by 3.2,2,
(B,(T 21" = (Bed)E (£ erP(e)) ,
and 30
a2 =g Fll, = 108 (T e =(=NEI"],
< g (T e-E(Nell,
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= 18,z )e=-x(, y(z el
-+ 0 .
Since B, () » ‘X.[ A](“) for all u € [g b] , wo also have that
O BLOEG) » xp, OOEY) (yer, fe (@) .
. . . L A P'
From 3.2.1(ii) it follows that g,f = (x[a"\]oqb)f in 7 (I) , for
all f ¢ LP( ) '« Therefore, taking into account the assumption on

(0] an [l9l, , wo bave E(A) =7, (AR .

("‘”:A]”ﬁ
Conversely, supposs the stated condition is satisfied. For each

A€R, lot L,={y €T : ¢(y) s A] and set

CE(A) = T"LA a Tx(-w’A].‘p . (1)
By hypothesisa, |
HE) <« & (repr) . (2)
Obviously (1) implies '
EME() = Ewin(Ae) (ueR) . (5)
It 15 also clear that, if a = ess inf ¢(y) and b = ess .sup #(y) ,
: yel yel'

then

B(A) = 0 (Aca); E(A) = I (A2b) .  (4)
Propertiss (2) , (3) and the reflexivity of IP(G) imply, by
Loreh's theorem ([25], Theorem 3.2), that thelinits E(A+0) and
E(A~0) exist in ths strong operator topology, for all A € R ., We
claim that

E(A)f = E(MO)f (£ er1P(a),reRr) . (5)

To obtain (5) , let g = 1im E(u)f € LP(g) . Let {n} bea
S MO

sequence of real numbers decreasing to A . Then
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ECu)e=el, = 0

Consequently
_ n n
o )T =
||(x(_w’”n] ¢) el

and 30 by 3.2.1 a subsequence {pnk} exists for which

X(co, JBONED) + &) .
( o

But x(-”’”nk](X) > X( e, A](x) (x eR), hencé

[E(M)£]” (y) = X(eo, A](qb(v))f(v)

= lim ($(x))£( y)
X~ ”1;]

= gly) sa.e. |

“Thus [E(AF]" = § in Lp'(r) » hence by the injectivity of the

' Fourier transform, E(A)f =g«

Properties (2)=(5) mean that B 1s a spectral familj, 80 by

10343,
b
T = aE(a) «+ j. AdE(AJ

exists, the integral belng strongly convergent, and 1s a well-

bounded opersator. We must show that T = T¢ .

For any £ € LF(g) , N ' R
(A,

T = aE(a)f + !I’%-lm a *(E(A)E(A N,

— (2% )Re*[q,b] 15 A

(M)

1(A) being the mmber of intervals of the subdivision A = i"klk_o .

" Therefore,

Y = ‘a[E(a)e]” =1im NEN .
(re [E(a)f] +(blll|£ A aIE(A)=(A_ ))e |
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By 342.5 there exists a seguence iA(n) ?L*(n)] in (?"‘[a,b] with

(A(n) "1(:n) ) + 0, gich that

k .
(1) = alz(@))" ¢ |1l -its k; @) 2P,
By 3.2.4(1) there 1s a subsequence, also to be denoted by {}_(h),

_)_L-(n); , such that
PRV ¢S FOTDIN ) NP - NG 98
a[E(2)e]"(y) + ]‘;1 at e LE(AL )BT ()

- (Tf)h()') A e (6)
Each of the expmssiona on the left hand side of (6) is of ths form

&‘X(_w’a](‘ib()f))f()’) + Z )]‘[XI‘Ak(Y) xLAk WY . (@

=1

Ie ¢(y) > a , then, for each A , Ao o < #(y) < A for some
: 0 0

ko.Thus YGL)Lk for kako,a.nd ){/L)Lk for k<ko,a.niso

(7) has the value Ai £(y) . For esch n , 25((“_)_ < #(y) < Al(:“) and
0

Al(cg_)_" € A.,"i:) < &f[z) » 80 since m;x (A(n) ﬁ(cn)) +0, 1t f°1-1°W-'-"

that Av( n) , ¢(y) If ¢(y) = a , then for each subdivision (7)
ko

has the value a[E(e.)f]“(y) = af'(y) = qb(y)?(y) , all1 other terms

vanishing,

| Therefore the left hand side of (7) tends to | '¢(y)§(y) BeCay

and 80 (T£)"(y) = (Tqbf)"‘()') a.e. Since this 1s trus for all £ e

17(6) , we have T =T, , |
Finally, we relate the result for p > 2 to that for the

'conjugé.te index by using 3.1.2. Since T(;) is similar, via the
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1
invertible lsometry 3, to T(P )' » it is well-bounded. Furthermore,
the spectral family of T®) is A +E(A)(p) , E()L)(P) being similar

. (Pl)*
in the same way to E(A) , for 811 A €R .

COROLLARY 3.2,5. Let ¢ 3 R + R be bounded and piecewlse mono-

m-1
§=1 "

S o, X3 4w, such that ¢ 18 monoione and

tone; that is, there exlste a finite set of resl points [x‘,l

- togethsr with X,

‘bounded on each interval KJ = (xJ_1,xJ) (J = 4,25 00.,m) o (The valuss

¢(xj) (J = 3,2, .04,m1) can be assigned arbitrarily.) Then ¢ € HP(_Z@)

p)
¢

Proof. Obviously ¢ ¢ BV(R) , and s0o, by a theorem of Steckin

(1 <p<w, and T( is a well-bounded operator.
([12], Theorem 6.2.5), ¢ € Mp(_R_) (1 <p<w ,Foreach A ¢R, the

set L, introduced in the proof of Theorem 3.2.4 differs by only a

A

finite set from a union E} L , where each L is a subinterval
J=1 TihA : JrA _

of K, , possibly empty. Thus

J m
Henl#O) = T ) e

Each Tx is the difference of two operators of the form P_B ’
L.

_ JsA

where

()" = x(_m’a)? (s¢R, fe L’(_Ig)mp(g_)) .

Let

(v f)(x) = o T5%p(x)
for almost all x ¢R, and all s € R, f ¢ I’(R) « Then, for all £
e 'RINP(R) , |

(00" = Z(zes)

(2, 9°()

(u P £)°(y)

x(_,_o)(y-a)?(y)
(P £)(y+s)
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X( e, 0) (P Er40)
'x(_m’o)(Y)_(U'f)h(Y)
e (WU O see.,

where H is the Hilbert tranaform oPerétoi-, which ia. the multiplier
operator corresponding to #(y) = ~1sgny (y € R) + The faot that &
« np(g) (1<p <i w) is a theorem of M. Riesz ([12], Theorem 6.2.3).
It follows that |
P = %U'__B(I-iJ-I)UB (s ¢ R)

I, < i{1+l|H|[p) (seR,1<pP<w) .
Consequently, if we set
(p) (p) |
) = ’ (8)
EY/(a Tx(_m ° ¢ 5;% XL

then

1

| ”E(p)(A)HP < ma(iflHL) < o (AeR) . (9)
(8) ana (9) d4mply that the condition of Theorem 3.2.4 is
" satisfied, and so T(g) 1s well=bounded end has spectrel family
=P, . |
Let by be tha space of all sequences l§n] of camplex

mumbers such that Z 'En | < @ o By another theorem of Stetkin

n-1{
([12], Treorem 6.5.5_), bv cup(g) (1<pcw).

COROLLARY 3.2.64 If ¢ = i&n} ® 1sa p,ieoewise monotone

bounded sequence of real numbers, then ¢ € M (z) (1 <P <« and
(P ) is a well-bounded operator,

Froof., The proof is exactly analogous to Corollary 3.2.5, with

the con.j.ugate operator for funotions on T replacing the Hilbert

transform on R .
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COROLLARY 3.2.,7. If ¢ 3 T *R 1s plecewlse monotons and

bounded, then ¢ € MP(E) (1<p<w and T(i) 1s a well-bounded
operator,

Proof, 1In-this case there 1s anofher Steckin theorem which
states that BV(D) CH (D) , witn [|7¢B]] < K el (o « v()
([12], i‘heonem 6.4.4). (It 15 immaterial which norm we give BV(T) )
In particular, when 8 = X[0,A] (0 s Agom), HT 3 2K and @ it
follows as in Corollary 5.2.5 that the appropriate projections E(A)

(A e R) will be uniformly bounded.

$3.3. Examples of well-bounded multij;:lier operators

In this sectlon we give examples and counterexamples to

I1lustrate Seledt =3 «2e7 e

THEOREM 3,3.1. (i) The Poisson operators P(t) , where

[P(t)£)(x) = —E/mf:%’ﬂz)- . (0ctew,felP(R)
. e +# :

o) = I
are well-bounded operators in B(LP(_E)) (1 <p<w .
(1) If D 1s the operator on- L'(R) (1 < p < =) vhere
{f ¢ IP(RNLAC(R) : £' € I°(R)] ,
£ (£ (D) ,
and H 1s the Hilbert transform, then DH 1s a well=boundable

©(p)

ot

operator on LY B) .

1_t has Fourier transform
T, 2 2
t +x

Proof, (i) The kernel p(t;x) =

3(tiy') = e-tlsyl » therefore
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((£)e)°G) = o 3G €R, 2 eL'(®RTP(R) , 08t <)
stnce &t satisfles the condition of 5.2.5, 1t 15- immediate that
P(t) 1s well-bounded. -

(i1) The operators {P(t)} ts0 FoT™ & strongly continuous semi-
group in B(LP(R)) , whose infinitesimal generator A 1s given by

©(a) = [f ¢ IP(R) s HF ¢ TAC(R) and (nE)' € LP(R)]
Af = <DHf (f ¢®(a)) ,
which also satiafies
O(a) = if e IP(R) s (v » yIE(x) € PRI

)Ny = -lyley)
when 1 < p & 2 . These faots are proved in [5], Theorem 4.2.10 and
Lemma 4.2.11. It follows from Theorem 2.3.2 that +«DH 4s wc;ll-bOund-

sble, and from 2.2.7(i) that DH 3is also well-boundable,

THEOREM 35.5.2+4 (i) The Gauss-Welerstrass operators W(t) s where

[w(t)£)(x) = f-—_’— f(x-u)e-u2/4tdu (0O<t<ew, f. « 1°(»))

wo) = 1
i3 a well-bounded operator in B(LP(E)) (1 <p< = .
(ii) The operator p? on LP(B._) (1 <p<w) , where D is as

in 3.5.1, is well-boundable.

_ 2
Proof. (1) The kernel w(t;x) = _1_e-x /4 has Fourier trans-

P Yyant
form w(t;y) = oW , therefore '

2 |
W(t)elly) = o @ ?(y)_ (yer, £ e L (RIMPQR) , 0 ¢t <o),

. 2 . .
Sinoce e ty satisfies 5.2.5, the result follows,

(i1) The operators [wW(t)} tyo fom a strongly contimuous semi-
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group whose infinitesimal generator is D2 {[5], Theorem 4.3.11) ’

80 the result again follows from 2.3.2.

. ﬂ'EOIEM Je3.3s The following periodie analogues of 3.3.1 and

33,2 hold:

(1) the periodic Poisson semigroup [T(t)} , where

2r -2t |
oo - [

(ftLp(g) » L €T ,0<tcw)
™o) =1 ,
is a strongly continuous semigroup of well-bounded operators in
B(Lp(g‘_)) (1 <P < ») corresponding to the multipliers n - e-t|n|
in Hp(g) ; |
(i1) the periodic Gauss~Welerstrass semigroup {V(t)] , where

2
(W()1(e) = & oﬂf(g-qb)es(qb;t)asp (ferP(D, ez,

27
0<tcw
V(O) = I
L 2
(95( 'it) is the Jacobl theta function ¢ "fz,"’ k teik‘# ) , 1s a

K=o
strongly continuous semigroup of well-bounded operators in B(LF (D)
(1 < p < =) ocorresponding to the multipliers n -+ e-n?t in H;P(‘g.’_)- ;
(ii1) the infinitesimal genmerators A of [T(t)] and B of

{v(t)] are given by

9(a) = (£ eIP(T) 1 7 € ac(T) and (F)' € 1)}
= £ € 15D : (a - |alfa)) € (IP(DIN ,
A = ~(B) (£ e®) , |
(a£)*(n) = -|n|§(n) (£ e®(a) ,nez) ,



where f. 18 the conjugate function of £ , and

©(B) = [f ¢ I%(T) s £,2* € ac(D) amad £ € IP(T)} .
= (£ € 17(D) 1 (n 0% (a)) € [IP(DI"} ,
Bf = £ (£ ¢9(3)) D
(3¢)"(n) = -n%#(n) (£ €®(B) ,nez) ,
and ‘are well-boundable operators. |
Proof. The relevant facts about {T(t)] and {V(t)] are
given in [5]), Proposition 1.5.1 and Theoreims 1.5;5, 1.5.10, It is
clear that the muitiplier sequences [e—lnltl and !e-nzt] satisfy
3.2.6, 80 T(t) and V(t) are well-bounded. The fact that A and

B are well-boundable follows from 2,3.2.

THEQOREM S5.5.4. The Poisson and Gauss-Welerstrass operators on

P(B") (1 <p <=, pf2) glven by

[F(t)f]l(x) = ont/Rn 7. ru(rz-;?mﬂ/z du (0<tcew,
- f e LP(EPb)_ ’

T
vdnez-ecun+12,and

n n+1)/2
kA

2
=hal %85, (0<te<m,

W) = Loy [ n F=we
o - f e LP(E?)) ’
are not well-bounded if n > 9 .
Proof, Let 1 < p < 2 + When expressed in the multiplier
operator'fom (T¢f)h = ¢f P(t) and W(t) become \

(B0 = o )

]

2
wW(t)el"(y) = o @ ¥y) -
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for all f e LP(_gn) o Bach set |y ¢ EI-I t Hy) s A} , for both Kt)
~and w(t) s 1s therefore the exterior of e sphere in I_In ¢« It was
proved by Fefferman [13), that, if B = {x e gn t |x| € 1} , then

xg £ MP(_En) for any p A2, if n> 1 , It therefore follows from
n _

3+244 that neither P(t) nor W(t) can be well-bounded when n > 4 .

Not a1l real-valued functions in BV(R) yield well-bounded
operators when oonsidered as multipliers., To obtain a oounterexemple,

we need the following concept:

DEFINITION JeJeSe A set of uniqueness for LP(I‘) ia & measur—-

able set F C G sguch that, if £ € L'(G) , £ = 0 a.e. on G\F , and

£ e1P(r) , then £ = 0 a.e.

tontairned iw a
tompnak sak,

FROPOSITION 5.3.6, If F 4a a set of uniqueness for LF(G)_

with 0 < n(F) < » , then xF;’nP(-r) (1<p<g).

Eroof, Let HD F be a compact set with n(H) <w . It is e
standard faot (see [28], §2.6) that there exists h e L'(¢)tP(c)n
Lz(G) sich that b is equal a.e. t0 & continuous function of compaot
support which takes the valus 1 on H.

If xp € mp(r) s then

xf € [P (£ e1P(e) |
Henoe x. = xFﬁ e [IF(e)1™ » and s0 there exists g e LP(G)_ vd.th
g = Xp « But since x_ ¢ L1(I")nl.2(I‘) » its inverse transform {F
exists, and we have | |

e = (87 = ¢ ¢ P(e) .

Therefore F satisfles the conditions x_ e v, Ap = 0 a.e. on
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T\F , and ;F € 1P(G) of 3.35.5, Since F is a set of uniqueness, we
must have x; = 0 a.e. But 7(F) > 0, which 15 a contradiction.

Therefore g ¢ Mp(r) .

- The existence of non-trivial sets of unigueness was shown by a
construction of Figa-Telamanca and Gaudry, reproduced in [24],

Theorem 4.4,.%:

PROPOSITION 3.3.7. Let G be a nondiscrete locally compact

abelian group, and HC G a measurable set such that 0 < n(H) <= ,
If € > 0, then there exists a measurable set P C H such that
(1) o(F) > m(H} - ¢ ;

(1:.) F 1is a set of uniqueness for Lp(f) (1€ p<2) .

THEOREM 3,5,8, There is a real-valued function ¢ ¢ BV(R) C

Mp(_l_t_) sich that T, € B(LP(R)) 1s not well-bounded (1 < p < ©) .
Proof, Let F be a set of uniqueness as in Proposition 3.3.7.
By 343465 Xp £ Hp(_R) (1 < P <) . We refer to [24], pp. 103-108, to
examine the conatruction of F z.it 15 an intersectioz_z F = n§1 Fn s
where each F is a finite union of dyadic subintervals of [0,1] .
The dyadic numbers being a countable set, we may assume. that each Fn
1s a closed set. Thon F 18 slso closed, and so F, = [o,11\(rJ{0,1})

" 1s an open subset of R , such that Xp £ Hp(_}_t_) (1 < p < 2) +Being
' 0

open, Fo can be expressed as a union Fo a n§1 Dn of dlsjoint open

intervals D = (a b ) .
n n n

Now let ¢(x) = 0 (x £ F)) , #(Ha b)) =n"® , with ¢ Llinear
on each interval (aﬁ,%(a.n-hbn)) and (Ja"(a.n+'bn),bn) « Then



fx €R t $(x) & 0] = A ~o,0]f1,) , IFf T¢ were well-bounded, then

the spectral projeotion E(0) would be T ; but this does

P [~}
not exist in B(L(R)) , ainoe X(e0,0] * ¥[1,) € HP(E) (1 <p <)
and M(R) .

X £ ¥ (B) -
It remains to check that ¢ € BV(R) . let t ¢®[0,1] . If ¢,
tyq A Fg then o(t)-¢(t, ) =0.1If ¢ ¢F, end t_ AF,,

then ¢, € (a 1,0 1)) 5 say, and so |¢(t)-p(t,_ )| = ¢(t) <

n(k) © . If t AF) end t,_, €F , then |¢(tk)-_¢(tk_1)| <

n(k-1)"2 o Finally, if tk,tk_1 € F, , then either n(k) = n(k-1) ,
tn which case |#(t,)=#(t, )| «n(l)™ , or else n(k) £ n(k=1) , in
which case there exists an s ¢ (tk_1,tk). such that ¢(s) = 0 , so

that - [&(t,)~(t,_ Dl « [0t )~(s)] + le(a)p(t,_ )| < n(1)72 4

n(k-1)-2 +« Therefore wa see that wvar ¢ = 22 n-2 < ® ‘.
B R n=1{

8344, Connection with results of Krabbe

The faot that operators of the type T, arising In 3.2.5 and
3.2.7 satisfy a Riemann—Stielfjes form of the spectral theorem is not
new. Such theorems were established by Krabbe in [20] and [21], using
direct oaleulations. Krabbe's results are more general than ours in
that he 1s able to handle two-dimensional integrals by using spectral
projections associate@ wlth rectangles, and so obtains results for
complex-valued multipliers. However, for the real case, his treatment

" does not reveal that the mere existence and uniform boundedness of
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the spectral projections ié itself necessary and sufficient for well=-
boundedness, thus, in view of 1.3.3, reducing the problem of finding

& uniformly bounded spectral family for T, to the (@ifficult)

¢
harmonic analysis queation of determining those sets whose character-
istic functions are hultipliers.

In [20] it is shown that for certain fumctions ¢ in BV(T) ,
nemely those for which xJQ¢ ¢ BV(T) whenever J dis a half-open

rectangle or a singleton, then, for 1 < p < =,

@l = [NMesWe (@, e @) ()

where E(J) = T for all such J , and the integral in (1) 4s

Xgo®
a fwo-dimensional Stieltjes integral. However, the only functions
actually identified in [20] as belonging to this class are those
whose real and imaginary parts are piscewise monotone ([20], remarks
on p.458 and Theorem 8.10). The special case &(Jj) = § (§ e [0,27])
is studied in [8], where it is shoﬁn that T

¢
this choice of ¢ ; our general version is based on the ideas in [8].

13 well=boundsd for

The analogous results for the group R are established in [21].

If ¢ : R+C 1is a bounded function whose real and imaginary parts

are plecewise monotone, then the multiplier operator T¢ ¢ B(Lp(g))

(1 < p < =) satisfies
1 - ]aaz(a)f (¢ € P(m)) | (2)

where this time the integral in (2); is a strongly convergent two-

dimensional Stieltjes integral ([21], Theorem 6.14). (We have not



...81-

examined 1n detail the reason for the discrepancy between the weak
convergence in (1) and strong gonvergence in (2).)

In T22] (Theorem 9.4, Corollaries 9.5, 9.9) it is shown that
when Q 1s one of the operators 41D , D2 and DH (where D 1s as

in 3.3.1) then |
of = j ME(ME (£ €©(Q)) | (s)

for & oertain strongly convergent Integral over R which is similar

(+2] .
to our j' « A connection between the bounded and unbounded results
R

is pointed out in [22], §9.10, via a form of funotional calclulus,
but‘the intimacy of the relation between the results for the semi-
groups {P(t)} , {w(f)] and their generators -DH , D is obscured
by the direot but independent constructions of the integrals in (2)
end (3) . In our case,‘however, Theorem 2,3.2, and in particular
equation (4) of §2.3, glve a direot interpretation of the form
T(t) = exp (tA) when {T(t)] 4s one of the semigroups [F(t)} ,
w(t)} .

Finally, we remark that there 1s at present no satisfactory
generalisation of the theory of well-bounded operators to operators
with complex spectrum, In view of the above obsérvations, such a
theory would need to cover the complex-valued oases of Krabbe's
resulisy and to permit an extension of Theorem 2.3.2 in analogy to the

theorems for normal operators ([16], Theorem 22.4.2) and for scalar

type operators (even for complex spectrum) ([31], Thecrem 5.3). An
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interpretation of Krabbe's spectral theorem for 1D (sinee D is the
'infinitesimal generator of the group of translations) might then be

possible,
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CHAPTER 4

WELL-BOUNDED RIESZ OPERATORS

The class of Rissz operators in B(X) is defined in such a way
that it consists of ali those operators which satisfy the Rieéz
theony of oompaot operators. We summarise this theory below in $4.4;
the additional hypothesiﬁ of well-boundedness permits a little
simplification. The main result of this chapter is that a well-
bounded ﬁiesz operator is necessarily compact; this is proved in
§4.2 (Theorem 4.2.3). As an application, in §4.3 we use this result
to show that the singuiar multiplier in "M P(g) (1 <p <2 con-
struofed by Figa-Talamanca and Gaudry [14], does not define a well-

bounded operatbr.

§4.1. Preliminaries on Riesz operators

DEFINITION 4.1.1. An operator T ¢ B(X) 1s a Fredholm operator

if aim ker T and dim X/TX are both finite.

The second of these conditions implies that TX 1is closed: see
(el, Corolle&y 34245

If A-T 1s Fredholm for all A € C\[0] (which implies that T
1s not Fredholm unless dim X < =), then T is called & Riesz
operator.

We danote the set of Rlesz operators in B(X) by R(X) , and

the compact operators by K(X) ; of courase, E(x) CR(X).
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PROPOSTTION 4.1,2. (1) If T ¢ B(X) , then T 1is Fredholm if

and only if T, the image of T under the cenonical map B(X) -
B(X)/x(X) , is invertible.
(1) I* T €B(X) , then T € R(X) if and only if ¥ 1s
quasinilpotent, _ |
(1ii) Por T ¢ B(X) , T is Fredholm if and only if T* ig
Fredholm,
(iv) T ¢ R(X) 4if and only if T e R(X*) .
Proof. (1) [6], Theorem 3.2.8.
(11) follows from (i) and the observation that ofT) £ ¢ .
(1i1) follows from the definition and [6], Proposition 1.2.7.

(iv) follows from (iii) .

. Remark, The question as to whether T € R(X) can always be
expressed in the form T =C + Q , with C oompact and Q quasi~

nilpotent, 1s unsolved.

PROPOSITION 4.1.3, If T € R(X) and A € o{T)\[0} , then A

is a pole of (n -’R(.U;T)) with order p # 0 , and we have

= Q\A @ .“.J\ f ]
where “A = (M’.—T)Px and “A = ker(A.I-’I')P « This decomposition
reduces T ; (J&.'.l'.-’.[')lﬁ’\)L is invertible, (AI-T) ITIA _is'nilpotent . and
“A. is finite-dimensional. Furthermore, A is an isolated point of

o(T) , and the spectral projection .
P, = _1_[ R(yTap ,
2niJ T .

where T is a oontour in p(T) separating A from o(T)\[A] , has
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range “A and nullspace ‘R A

Proof. These msultg a.re all in [6], Chapter 3 . We use the
the characterisation ([6], Theorem 3.2.2) as our definition, which is
equivalent to ([6], Definition 3.1.1); the other results are in ([6],

Lemma 5;4.2) .

It follows that if T ¢ R(X) , then o(T) 1is a sequence {)Ln}
whose only limit point 1s zero. Unless dim X < = , we have (VI
o{(T) , even if o(T) 4is finite, because T 1is not Fredholm, and
therefore cannot be invertible,

If YCX and 2 C X, let

YV = [¢ex* s ¢(y) =0 forall ye¥Y] ,

Z, = [x € X3 ¢(x) = 0 for ell ¢l£z§.

PROPOSTTION 4.1.4. If T € R(X) is well-bounded, and A € o(T)
\{0} , then

(1) X = (AI-1)X @ ker(AI-T) ;

(i1) X* = (AT*=T*)X* @ ker(AT*-T*) ;

(i11) (AI-T)X = [ker(AT*-T*)]_

we .

(iv) (AT*-T*)X* = [ker(AT-T)]*

(v) dim ker (AI-T) = dim ker (AI*-T®) ; |

(v1) P has range [(AT-1)X]" = ker (AT*~T*) and nullspace
[ker (AT-T)] = (AT*-T¢)x* . |

Proof, (i) follows from repeated applications of [30], Lemma
2.7;/aljbernativ"ely, we -can use [1], Theorem 7, since any well-bounded
_ operator satisfies condition (G 1). |

(ii) is immediate from (1) , since T* ¢ R(X*) 1is also well-
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bomﬁed.

(1ii) 1s true for any operator with closed range ([33], Theorem
4,6-D), |

(iv) We need only show that [ker (a1-1)]" < (AT*-T*) 2+ , since
the rever se inclusion is trus for any bounded ope.rator. Let y"’ €
[ker (XI-T)]" . For each y € (AI~T)X , define ¢0(y) = y*(x) , where
x € X is any vector for which (AI-T)x =y . Since y* € |
[ker (XI-D)T" , ¢,(¥) 1is well-defined, so ¢, is a linear functional
on (AI-T)X . Since ()I-T)I(AI-T)X ig invertible, there iz en M > 0
such that, for each y ¢ (AI-T)X , there is an x with (AI-T)x =y
and “x" € hﬂy" o Consequently - gbo is continuous. By the Hashn-Banach
theorem, we oan extend ¢0 to ¢eX*., Then <¢,(AI—T)::> = <y*, x>
(x €X), and 80 y* = (XI*~T*)¢ . | |

(v) The proof of this part 1s the same as that of the corres-
ponding result for compaot operators ([33], Theorem.5.5-H). We shell
not present it in full, but make the following observation about its
validity for Riesz operators. The proof proceeds by constructing a |
suitable finite ramk perturbation A of T (resp. B of ™),
showing that (X-A)"' (resp. (AI-B) ') exists, and obtaining a
c;sntradiction of the hypothesis m <n (resps m>n) , where m =
dim ker (AI-T) , n = dim ker (AI*=T*) . The fact that A and B are
-Riesz operators in our case follows from 4..1.2(1). Onoe we have shown
that ker (AI-A) = {0} , then 4.4.5 implies that (AI-A)X = X , and
80 ()LI—A)-1 exlsts. A similar argument works for B . Consequently
the procedure for obtaining the oontradiction is still valid.

Finally, it should be.noted that we.have also proved dim ker (AI-T)"
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= dim ker (AI*~T*)" , for all n , for any T € R(X) , since by
'4.1.2(i1) and the spectral radius formule any polynomial in T with- .
out constant term 1s a Riesz operator, and so (AI—T)n = X5 s where
S € R(X) . (N.B. we have not used wall—bpundedness in this part.)

(vi) For any rrojection P in a Banach spaée,.ker P o= (PX)L
end Prxr = [(I-P)X]" . Therefore ker Pt = [ker (A1-T)]" =
(AI*-T*)x* by (iv) , and PEX* = [(AM-T)x]" = [ker (AI*-T*)]:D

ker (AI*-T*) , so in view of (ii) wo must have PAY* = ker (ATs-T¢),

PROPOSITION 4.1.5. Under the hypotheses of 4.1.4, [(AI-T)X]*

is isomorphic (but not isometric) to (AI*-T*)X* , and [ker (AI-T)]*
1s isomorphic (but not isometric) to ker (AI*~T*) .

Proof. [(AI-T)X]* is isometrically isomorphic to X"'/[(AI--T)X]L
= X*/ker (AI*-T*) , which is clearly isomorphic to (AI*~T*)X* be-
cause of 4.1.,4(vl). It 13 easily seen that if ¢ € (AT*~T*)X* and
¢° is the image of: ¢ m' [(AT-T)X]* , then <¢, % = <¢°,5r> (x ¢

(AT-T)X) « The other part is similar.

$4.2. Compactness of well-bounded Riesz operators

NOTATION, If T € R(X) 1s well-bounded, we shall denote the
positive and negative parts of the spectrum respectively by {Ai]
[{u.}

J=1 37 J=1
[increasing] sequence, possibly finite, of positive [negative]

izt

and ipjl , arranged so that _{A1! ] is a decreasing-

i

numbers, which tends to gero if infinite. (Either sequence may be

absent.) The spectral projections Py [Ph

] of §4.1 will hence-
i -

J
forth be denoted by Q, [PJ] .
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IEMMA 4.2.1. Let T € B(X) be a well-bounded operator
implemented by (K,[e,b]) , and P & dual épectral family for T .
Let ¢ = 1inf oT) and d = sup o(T) , Then F(A) = 0 (A< ¢) and
F(A) = I* (A2 d) , so that T 1s implemented by (K,[c,d]) .

Proof. The hypotheses of the lemma implj a G- © & d<b .
Suppose that a € A< oc . Theﬁ; by [27], Theorem 3, o T*|F(A)x*) C
[a,A] « Since o(T*) does not separate C , o(T*[F(A)x*) C o(T*) C
[c,d] also. Therefore o(T*|F(A)X*) =4 and so F(A)x* = {0]
(A<e) . Sinilarly, NQA(I-F(H))]C* = {0} if d<Asb, Since
(T*~F(A))x* € (I*-F(u))x* (1 < A) 4t Pollows that (I*~F(A))x* = {0}
(d < A €b) . Therefore by 1.3.4(v) F(A)X? = x* (A2 d) . The fact

that T 1s implemented by (K,[c,d]) follows from 1.3.5.

THEOREM 4.2.2. If T € R(X) is well-bounded and F is a dual

spectral family for T , then

70 A< .u1

P oo
J1+ +P:1 “n‘)‘(un-n

F(A.) =
- .
I* (Q:+...+Qh) A.+1()L<A

I* Az )L1 ’
leaving F(0) as the only value that is possibly not uniquely deter—
mined.

Proof. The required jralues of F(A) for A4 [.u’1,A1) are
given by 4;2.1. _Starting from the decomposition 4.4 .4(1) with A = u1
we consider T|(u1I-T)I « This operator is well-bounded, by definition,
and Riesz, by ['6], Lemma 3.5.1s We can therefore repeat the '

decomposition, and since it is easily shown that
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ker (#)I-T) = ker [(u,I-T)|(n I-1)x] ,
we have |
X= (p1I—T)(u2I-T)X@ker (:.!1I-T) @ ker (sz-T) | .
After n applications of 4.1,4(1) we get
X = (p1I—1')(sz—T) ---(pnI?-T)xQ ker‘(p1I-T) @ ves @ ker (unI—I) . (1)
Similarly,
X =(p1I‘—T°)(u2I*-’I‘*) ---(pnI"'-T‘)xeker (.u1I°-T*) @ oo

vee @ ker (,unP'—T‘) . (2)

Let
= (1,I-1) - o(p I-T)X ,
= ker (PJI-T) (J = 1)."Jn) } ]
(0), = (hTe-m) ooy Tem)e

= ker (u,I*=1*) (§ = 1,..05m) ,

= Tl Xn ’

v_,.d p'_] e_.F: bv e :lN

= Tl'N:l (J =1, ...,n) .
Then
cr(UJ) = lujl (3 =1,0000m) &
The decomposition (1) .reduces T , and Tn ’ UJ (J = 1,-..,n) are

all well-bounded Rleasz operators, If Fn s G ' are any dual spectral

J

families for Tn » U réspectively, then we have, by 4.2.1,

J

A) =
1i‘n( ) 0 A< 'un+1

0 A< U, (3)
GJ(A) ={ | J '
3
I HJ A pj

on ldentification of NJ* with Mj .
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The proof is complicated by the fact that, for an arbitrary spectral
family P for. T » We cannot assume a priori that F(A)'Pj" = Pj"F(A) .
(J = 150ae,m, A € [u1,A1]) , in which case the result would. follow
immedistely. We shall show, however, that there i1s a dusl Spectra.l
femily F' for T , which agrees with F on (-w,um__l) and

commutes with P1""""Pn. o« We do this by analysing the funotion

w introduced in [27], lemma 3, which states that glven any x ¢ X,

Xy

¢ € X* , there exists a function w_ , ¢ L“’[p1,,x1] , uniquely deter—

Xy
mined up to equivalence a.se., such that

A )
()¢, 0 = £(A )<p, = | Tw_ (A)ae(A) (£ eaclu,r 1) . (4)
1 u x,¢ 171
1

' The equivalenoe class of w depends linearly on both x and ¢ .

‘_x,qb
For x ¢ X, we obtain from (1) a unique decomposition

x = xo + I1 + s0e + ‘xn | .
where x, € X x, N.i (3 = 1,000,n) o Analogously for ¢ € X* we

obtain from (2) a wnique deoomposition

¢

with ¢o € (X‘)n » ¢j € HJ (j = i’ooo’n) -

¢0 + ¢1 + eee + ¢n

By 4.1.5 we can identify (xn)* with (X*) and N.* with
H;j , up to isomorphism. We shq.ll_writé X* for both (xn)' and
(I“)n » and <¢,x> (¢ € X, xe€ xn) for the oommon evaluation. It
is clear that |
<T*p, > = <Tn‘¢>,v (¢ « X, xc In) .
Therefore
(M) = (I *)d> (seXt,xeX) ,

and so



' A
(T %> = p(A )<t = [ Tu_ (Aap(A)
n 1 u p
for each polynomial p , from (4) . Since
, | A
£+ <, 0(T ) = £(A )<¢p, > + w_ L (A)ar(A)
n 1 Xy ¢
M
1s a continuous linear functional on AC[u1,A1] , which vanishes on
polynomials, and the polynomials are dense in Ac[u1,A1] » 1t follows

that
. | 3
<£(T *)¢,0 = f(A.1)<¢,x>-[ w, qb(it)titf‘()t) (£ e aclu,r]) , (5)
7 H

for all ¢><x*,xex .
We require an expression like (5) to hold with AC[u ,A. ] ana

[ 1 replaced by AG[J-l :A] and / s with the same o 6 *
u )

1 n+1
To show this is possible, let g ¢ Ac[pn+1,A1] and let f ¢ AC[u1.A1]

be equal to g on [,un+1,)L1] and identically equal to the constant

g(un+1) on [u,u ] o Then

A
<f(mn-)¢,x> _f()L1)<qb,D -.'[ wx’¢(h)df(k)
. U

g(1,)<p, > - [ EVLECV NN )

In the notatien of [27], Theorem 3, f-g (R” . Now, by 4,2.1, any
' n+1 :

dual spectral family for T is zero on (-m,pn+1) s 80 it follows

from [27], Theorem 5(ii) that

g = [q};ex;:h(f[‘n‘)_(pao for all ht’Rn+1l .
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Therefore (f-g)(Tn*)q‘: =0 forall ¢ ¢ x; ’ and 80 we can replace

f by g on the left of (8) to obtain

(T, = g )<p0 - / BRESLEOY

) (g EAC[Pn+1')L1] » ¢ f.x; » xcxn) ]
Thus if w( ) b is the function agsociated with ¢ ¢ I; s X € xn
’
by the well-bounded operator T , then we have o (A) = wlP)(A)
n . X, ¢ Xy
a.e, in [“n+1’l1] » Since (5) gives

0 = <h(Tn.)¢,JD = (h(T‘)tﬁ,D

M
= h()\.1)<¢,x> -j mx’qb(k)clh(k)
_ T

U
- [ ™ (Nan(y

u b Y-

1
for all ho:P.lu s it follows that for ¢,cx:l,xcxn we have

n+1
wx,qb(k) 0 a.e. on [y ’“n+1] R
For Jj = 1,¢eeyn , if chJ and c;beldj,then
<P, T> = <¢,ij> = «M¢,x> = <Uj"¢,x> = uj<¢,x>
and so clearly
()¢, = (p‘(U."')¢,:p
= p(ud)qb»

it

p(A, )<¢,x> f <y >ap( A)
for each palynomial p , It therefore follows _tha.t

o () = {0 a.e. On [u1,ud]
x,¢

<¢,> a.e. On [pj,)t1]
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In each of the cases x €Ny , ¢ €M (JAK) , x X , ¢ e My

(k=1y.4.,0) Oor x € Nj (J=1,00en) , ¢ € x; » it is easily verified

that <¢,x> = <¢,Tx> = 0 . Substitution in (4) glves

0 = <f(T‘)¢),D = (- '/‘ W ¢(¢\)df(:\) (f € AC[P1|7‘-1]) ’
u »

1
and s0 w A) = 0 a.e. ’
an x:¢( )

It follows from the bilinearity of w

and the foregoin
X, ¢ . &

calculations that
n

w = W
e T e,

b

m
> 8.0. '
J};1<¢J,xj 8.6. oOn [um.um+1]

= ¢

n
ey
lJ;lqu,x:f -+ c.;x{)’¢0 on [un+1,A1]

forell ¢ € X* , x€eX,
A+h
In particular 1lim w (pdp exists for all A €
haos J A %9

[p1, n+1) « Now, by the argument used in the proof of [27], Theorem 7,
it fol_'l.owsltha.t if F is any duel spectral family for T , then

<F(A)p, > = w_ qs()l) a.e., end 50, by 1.3.4(v), F(A) 4is vniquely
H

determined for A ¢ [p1,p ) « Now, sinece P.T = TP, (J=1,eee,m) ,

J
it follows from [27], Theorem 6, that there is a dual speotral family

n+i

F' , necessarily coinciding with F on [”1’“n+1) R sﬁch that

Pj*F'(A) = F'(,\)Pj*_ (9=1,25.005 A € [6,,21) , and of course T*F'(A)

= F{A)T* (A€ (12 1) o | |
Having eétablished that P , T'. , and Pj“' all commute, wo can

now write
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' A
p :
4 £(U.)P = * - * 1 4. P '
.<Pj #2(U,)P > = £(x )<, 4P, j'u <P *F' (A)P;*$,P 02" (A)ar
! (J 3110'-311) ’
with & similar expression holding with I—PHF...-Pn and T in

place of P} and UJ o Then F'P}* = PB‘F' is the dual spectral
family for u‘j » and F?(IP-IH--...-PH-) = (I*-PH'-...uPh')F' a dual
spectral family for T, " Since we know what.these are on fp1,pn+1)
(equations (3) ), the values of F = F' on [p1,pn+1) asgerted by
the theorem follow,

It 1s cléar that & similar calculation ecan be done on [Ah+1’Ai]

which yields the values I"--Q1".-...-QJ"I on [A3+1:A3) .

. i A i
Remark. Of course, the evaluation of S on [pn+1, 1] 8
not actually needed to prove the theorem, but it provides a little

more insight into what is going on.

THEOREM 4.2.3. If T € R(X) 1s well-bounded, then T ¢ K(X) .

Furthermore,

™ = AQ.X + uP.x (xe€X (7)
i;ii .1‘23_\"1"'j ’

each infinite sum in (7) econverging in norm, (Either the positive or
negative parts of . (7) could be abaent,)

Proof. sUPPOSe, without loss of generality, that Tl = 1 « For
each positive 8 £ 1, choose t such that 0 <t < s and that no
eigenvalue of T 1lies in (-s,~t] or in [t,s) . Let the function

7 € AG[~1,1] be defined by
8,1t
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" A -] € A £ -3
s({ At -
ot 35 Ag ~t
ns’t(A) =40 “t < A%t
a( A=t
e teAgs
LA 8€ A€ .
I j(M= A , then
0 -1 € A £ -3
-tsi:s -3 € A€ =t
A =g (N =4 . -t €A%t
8,t
tgs-)Q )
oot teAgs
No B‘A‘.I »

and so lllj-qutlll_[_hﬂ = 4t . Therefore IIJ(T)-ns,t(T)ﬂ =

ﬂT—ns (I < 4Kt < 4Ks +0 as .5 +0 ., Once we have demonstrated
] .

that
T.'s’t(T) = Z. MGy . ; .UJP'j (8)
A els,1] 4y €[-1,-s]

it will follow that T 1s a norm limit of finite rank operators, and
s0_is compact.

We know from 1.3.5 that for all- ¢ ¢ X* , x ¢ X,

1
‘4”"3,.1:(1')” =1, (1)<t - _1<F(A)¢,x>dns’t(?t)'
1 |
= <o = | F(M¢,pan (N . (9)

-1



.
/;1<F(A)¢,x>n' t(A)dA

U_" jJ<F(A)¢,x>dA+ [/‘t ft_]<F(A)¢’D . dn .

Let Ho péu, cee p - be the eigenvalues of T in [-1,-5] » and
Ma

A 2 Ay» eee, A the eigenvalues in [s,1] . Then substitution
: 8

from 4.2.2 gives the following equations

-3 ‘ .
_ j <F(A) ¢, 04\ = (;12-,u1 )<¢,P1x> + (ps“u2)<¢,(P1+P2)x> + one
-1

ees + (pmﬂ"yms_;l )1:¢,(P1+. . .+Pm3

-1 )D

+ (-B-“m )~:¢,(P1+...+Pm )

== (8+P1)<¢9P1D - (3+P2)<¢:PZD T see < (s+pm°)<¢'PmBD . (10)

1
f <F(A)¢,0dA = (1-A1)<¢,x> + (A1-A2)<¢.(I-Q1)D +
-] ’ )
+ (AZ-%)<¢’(I-Q1_Q2)D + sane
con + (N =N )<¢,(I—Q1-...-Ql'_1)x>
8 -] 8 '

+ (A =)<ty (10,00 eq I

= (1'3)<¢’,” - (A1-s)-<_¢>,Q1I> - (A2'5)<¢:_Q21> TE (?\1 '5);¢:Q1 x>

- _t (11)
<F(A-)¢,D_s_"dl ) / <¢,(P +...+P )x> 8 dA
-3 8-t -8 g 8=t
= S(¢,(P +.ooo+P )D . (12)

s ' K
<F()")¢,D__B_dh =/ <¢’(I-Q1 ...-Ql )D 8 dA
t . 8=t 8=t
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= B<¢,D - s<¢,(Q1+.-.+Ql )D . 7 (15)
‘ '8 ' -
Substituting (10)~(13) 1n (9) gives

. o 8
7<¢’nﬂ,t(T)D = <, x> + 521(81-”3)(?6,;’39 - (1""8)<¢,D

1 n
| a ‘
+ (A-s)<¢Qx‘>—s <¢,P x> = B<pp, >
. iZ‘l i H i J;1 » J ’-
1 ,
8
+ 8 ) «<$,Q, 0
P
1 m '
SA' ¥ P.o
= i;1 1<¢’Q1D + J;”J<¢’ j 2

for all ¢ € X* , x € X, and therefore (8) follows. This completes

the proof of the theorem,

§4.5. Application: the singular multiplier

We first require a characterisation of compact multiplier
operatOrs'on‘ LP(E) (1 €£p <= , The following theorem is apparently
well-known, and 1s hinted at in several plaoces in the litérature, but

we have been unable to find a published proof.

THEOREM 4.3.1. Let T € B(L®(T)) (1 € p < ») be & multiplier

operator. Then T is compaet if and only if it is a norm limit of

multiplier operators corresponding to sequences of finite support.
Proof. (p > 1). Suppose T 1is compact. For n = 1,2,..., let

Un be the operator given by .

~

{f(m) jn| € n

‘f)“m =
(B, (x) 0 im| >n .
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Then UnT = T'Un » and “Un“‘ g Kp < .un for all n ., Given ¢ > 0, for
any f € LP(__I_') there 18 a trigonometric polyﬁo:n_ial . q@ such 't.hai_: '
"f—-qﬂ < ¢ 4 For aui‘fici..e.ntly large n, Unq =q, and.so
Mo -1 <llo -0all « 15 a=sl +1la-e]
< ellUnII +0 + ¢
- % (“KP)G |
for sufficlently large n . Therefore .Un + I strongly, and so TUn
+ T strongly. '
let 8 be the unit ball of‘ Lp(g) « Let € > 0 . Then for each
g € & there exists n(g) such that
lo,re - el < ¢ (n>n(g)) .
Now | [f € LP(_I_‘) s lre-£ll < €}.: g ¢B] i3 an open cover of TG,
80 since T 1is cmnpa.ct there exist 51’""51: such ;:T:at
™ < b ir P s Ingtll < 3

let n = max n(gj) e Lot £ ¢ I’(T) be eny fumction with Jir|
d=1,e00,k '

=1 , 8o that “ng—TfH < € for some J o Then IfUnTgJ-TgJ” < € for
all n>n0>n(gj) » and so
o ze - zell < llo2e - 0 ve,ll + fhu Te, - e ll + lire, - T
< Kpt‘ +€4+6€= (2+KP)€ (n> no) . |

Since this is true for all f such that |l£|] = 1 , it follows that
UT-+>T in nem,
n N

The converse is obvious.

(p=1). H1(_Z_) is [M(T)]", the algebra of Fourier-stieltjea'

transferms of regular complex Borel measures on T, and "T;;u = "u"

(¢ € ¥(T)) . The closure of the trigonometric polynomials in M(T) is

[y
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L'(I) . The result now follows from the theorem of [17].

It ¢ e (LD, sy e=F, then T = teg (5 ¢ (D),
and ”Tgll g ”f’”1 ([458], Corollary 20,14). Since the trigonometrio
polynomials are dense in L! (1) , it follows from this that we can
replace multipliers of finite support (i.e. Fourier series of

trigonOmetric pdlynomiaia) by [L1(g)]" in 4.3.1:

THEOREM 4.3.1'. et T ¢ B(L®(T))(1 € p < =) be a multiplier
operators Then T 1s compaot if and only if it 1s a norm limit of

mul tiplier operators of the form T, , where & ¢ [L1(2)]h .

The space of multipliers in np(_;_) giving compact multiplier
operators will be denoted by mp(g) o (N.B. in the harmonic analysis
literature, e.ge in [11], p.276, tHe characterisation 4.3.1! is
usually taken as the definition of mp(_Z_) .) | |

stnce M (2) €17%(2) , loll, < linll , (¢ M (@) , ana [1'(D)]"
C¢,(Z) , it is obvicus that |

n(2) C ey nu(z) . o
The question arises as to whether the inclusion (1) is propers; in
fact, this is so for 1 € p< 2 ., When p =1 » thére exist singular
measures g on T such that E € co(g_) » although ﬁﬁm1(§) =
[L1(E)]A ! we can take u to be a Riesz product (see [54], &§V.7).
For 1 < p < 2 ,the counterexample, constructed by Figa-Talamanca and

Gaudry, is known as a singular multiplier, The construction of the

singular multiplier cpp € MP(;_a) is as follows ([14]; or [12], 89.3):
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() . n€0 )
¢ {n = - _ ' - _ - (2
F 3'3_1(11—2J 1y (=1 L L T
. where in (2) r = _2p/(2-p) and {pJ;JTO are the Rudin-Shapiro
polynomials, These are defined inductively by
po = 0'0 = 1
it it ne-1 it
KO BN G S P P PN Co

an(eit) _1(eit) - exp(izn_1t)an_1(eit) .

3n is therefore supported on {0,1,2,...,211-1} » where 1t takes only

the values _:1 .
la)

We use Theorem 4.2.3 to prove the (unsurprising) fact that P

is not well-bounded (unless ¢ = 2 Ye

THEOREM 4.8.2. For 1 <p<2, let ¢ «M (z) be as defined

in (2) . Then Téq) 1s not well-bounded for any q , p & q < 2.
P

Proof. The point of the example is, of course, that ¢ 4

mp(_z_) s 1.0, (P) is not compact ([12], Theorem 9.3.5). Howsver ¢§

€ mq(_?:) for all p,q, 1 < p,g< 2. Td see this, note that, aince
: ( )2 0 ngo .

¢ n = - - . - .

P 2 2(" 1l)/r 2J 1’000’2‘]"'1’ J z 1

the sequence {¢ (n)2} ®  is decreasing, Consequently, by the

remarks'before326¢€H(Z)(1<p,q<2) If U is as in 4.3.1

and. (UT¢f)()—¢(nf(m) (feLq(T),mcz,n_12,...) then

P
(n)

¥ P -+ qblf in the norm of bv , and therefore by [12], Theorem 6.3.5,
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||UnT§’Q)2 - TéQ)zllq + 0, 80 that, by 4.3.1, Tg‘-’-)z is compact
) P P
(1 < DPyq < 2) . |

Since q':f) € mp(g) » Tg’p) is a Riesz coperator, by 4,1.2(ii); but
: b

Tg’p) is not compect, so by 4.2.3 Tép) cannot be well-bounded.
P o) .
It remains to show that Téq) 1s not well-bounded for p < q
) P
< 2 « For supposs TéQ) is well-bounded; then 5.2.4 enables us to
D .

identify its spectral family E(q-)z we have E(q)()t) = T(q) : .

- P P X( o, A) ¢p :
. . »
‘Now the set of functions {x(_m A]°¢p t A € R} consists of exactly the
H

same functions as |y o¢ 3 A €R}l, sinoe changing from ¢ +to
(—-oo’A] q - ‘ !

qbq does not affect the fact that the welghts 2-(‘1—1)/1‘ decrease,

.and the distribution of the signs remains the same. But, again by

. ( ) . _ ()

34244, if [B'X(A) s A €R] = ITX?_m,A]"‘ibp { A en -
(a) . ' . "
[T"(.@,A]"qbq t A€ _131 . ‘is a bomxded set in B(L (E')) s then Tqb:

is well-bounded, which is a contradicticn. Therefore Téq) is not
P

well-bounded (p < g < 2) .
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