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Abstract

Inductive definitions are the most natural means by which to represent many families of struc-

tures occurring in mathematics and computer science, and their corresponding induction / re-

cursion principles provide the fundamental proof techniques by which to reason about such

families. This thesis studies formal proof systems for inductive definitions, as needed, e.g., for

inductive proof support in automated theorem proving tools. The systems are formulated as

sequent calculi for classical first-order logic extended with a framework for (mutual) inductive

definitions.

The default approach to reasoning with inductive definitions is to formulate the induction

principles of the inductively defined relations as suitableinference rules or axioms, which are

incorporated into the reasoning framework of choice. Our first system LKID adopts this direct

approach to inductive proof, with the induction rules formulated as rules for introducing atomic

formulas involving inductively defined predicates on the left of sequents. We show this system

to be sound and cut-free complete with respect to a natural class of Henkin models. As a

corollary, we obtain cut-admissibility for LKID.

The well-known method ofinfinite descent̀a la Fermat, which exploits the fact that there are

no infinite descending chains of elements of well-ordered sets, provides an alternative approach

to reasoning with inductively defined relations. Our secondproof system LKIDω formalises

this approach. In this system, the left-introduction rulesfor formulas involving inductively

defined predicates are not induction rules but simple case distinction rules, and an infinitary,

globalsoundness conditionon proof trees — formulated in terms of “traces” on infinite paths

in the tree — is required to ensure soundness. This conditionessentially ensures that, for

every infinite branch in the proof, there is an inductive definition that is unfolded infinitely

often along the branch. By an infinite descent argument basedupon the well-foundedness of

inductive definitions, the infinite branches of the proof canthus be disregarded, whence the

remaining portion of proof is well-founded and hence sound.We show this system to be cut-

free complete with respect to standard models, and again infer the admissibility of cut.

The infinitary system LKIDω is unsuitable for formal reasoning. However, it has a natural

restriction to proofs given by regular trees, i.e. to those proofs representable by finite graphs.

This restricted “cyclic” proof system, CLKIDω, is suitable for formal reasoning since proofs

have finite representations and the soundness condition on proofs is thus decidable.

We show how the formulation of our systems LKIDω and CLKIDω can be generalised to

obtain soundness conditions for a general class of infinite proof systems and their correspond-

ing cyclic restrictions. We provide machinery for manipulating and analysing the structure of

proofs in these essentially arbitrary cyclic systems, based primarily on viewing them as gen-

erating regular infinite trees, and we show that any proof canbe converted into an equivalent

proof with a restricted cycle structure. For proofs in this “cycle normal form”, a finitary, lo-
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calised soundness condition exists that is strictly stronger than the general, infinitary soundness

condition, but provides more explicit information about the proof.

Finally, returning to the specific setting of our systems forinductive definitions, we show

that any LKID proof can be transformed into a CLKIDω proof (that, in fact, satisfies the finitary

soundness condition). We conjecture that the two systems are in fact equivalent, i.e. that proof

by induction is equivalent to regular proof by infinite descent.
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Chapter 1

Introduction

1.1 Overview

Inductive definitions are frequently encountered throughout mathematics and computer sci-

ence, and the corresponding use of inductive proof methods to reason about inductively defined

structures constitutes a fundamental part of mathematicalreasoning. In all cases the aim of in-

ductive reasoning is to exploit recursion in the definition of the inductively defined structures

under consideration in order to prove general properties about those structures. The canonical

example of an inductively defined structure occurring in mathematics is the setN of natural

numbers, which can be given by the following inductive definition:

• 0 is a natural number;

• if n is a natural number, then so iss(n) (thesuccessorof n, i.e.n+1).

Mathematical reasoning about inductively defined structures is most often formulated in

one of two main styles. The default approach, commonly termed mathematical induction,

explicitly applies an induction principle derived from theinductive definition. For example,

the induction principle for the natural numbers states thatin order to prove that a general

propositionP is true of every natural number, it suffices to demonstrate, firstly, thatP is true of

the number 0 and, secondly, that ifP is true of an arbitrary natural numbern then it is also true

of s(n). The second approach, calledinfinite descent, appeals directly to the well-foundedness

of inductively defined structures. For example, one way of stating the infinite descent principle

for the natural numbers is that in order to prove thatP is true for every natural number, it

suffices to demonstrate that ifP is not true of a particular natural numbern, then there exists

an infinite strictly decreasing chain of natural numbers, which is impossible. (Typically, one

shows that there exists a strictly smaller natural numberm < n such thatP is not true ofm,

which implies the existence of such a chain.)
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Chapter 1. Introduction 2

In computer science the use of inductive definitions is, if anything, perhaps even more

widespread than in mathematics taken as a whole; many of the data structures ubiquitous

throughout the subject, such as lists and trees, are most naturally given by inductive defini-

tions. There has also been considerable effort devoted to the area of mechanised inductive

theorem proving, that is to say, the formalisation and automation of inductive mathematical

proofs using theorem proving tools. Despite considerable progress in this area, the automation

of inductive reasoning still poses significant problems forthe theorem-proving community. In

particular, the simulation of the creativity required in inductive proofs in the selection of an

appropriate induction schema and in the choice of appropriate induction hypotheses and inter-

mediate lemmas causes huge difficulties for mechanical proof search, even when the search

procedure is guided by heuristics derived from human proof attempts. For a survey article on

inductive theorem proving see e.g. [12].

While there remain formidable obstacles in the way of successful automated theorem prov-

ing with inductive definitions, we believe that it is potentially useful as well as interesting to

gain a clearer picture of the main relevant proof principles, i.e. mathematical induction and

infinite descent, from a proof-theoretic standpoint. Accordingly, the goal of this thesis is to

develop proof-theoretic foundations for reasoning with inductive definitions, in particular the

methods of mathematical induction and infinite descent, andto thereby undertake a formal

analysis and comparison of these methods. Although such a study has the benefit of being free

from mechanical constraints, we hope that our theoretical analysis will nevertheless impact

upon (some of) the practical considerations driving inductive theorem proving.

1.2 Mathematical induction

Although the method of induction has been employed in mathematical proofs for (at least)

several centuries, according to theEncyclopaedia Britannica[2] the method was not formally

identified under the term “mathematical induction” until 1838 by Augustus de Morgan [20]:

The method of induction, in the sense in which the word is usedin natural
philosophy, is not known in pure mathematics. . .

There is however one particular method of proceeding which is extremely com-
mon in mathematical investigation, and to which we propose to give the name
“successive induction”. It has the main character of induction in physics, because
it is really the collection of a general truth from a demonstration which implies
the examination of every particular case; but it differs from the process of physics
inasmuch as each case depends on one which precedes . . .

An instance of mathematical induction occurs in every equation of differences,
in every recurring series, &c.

Augustus de Morgan, “Induction (Mathematics)”, 1838

The usual schema for mathematical induction over the natural numbers (N) is the following:
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P(0) ∀x∈ N. (P(x) → P(sx))

P(t)

whereP(x) is a statement of the underlying language (e.g. set theory) containing a free variable

x, andt is an arbitrary term of the language. In an application of theinduction schema above,

the induction is said to take place on the variablex, the premiseP(0) is usually called thebase

caseof the induction and the premise∀x∈N (P(x)→ P(sx)) is called thestep case. In the step

case, the formulaP(x) is called theinduction hypothesisand normally plays an essential role

in the deduction ofP(sx).

Despite the near-certainty that the reader is already familiar with proof by induction, we

include an easy example here for the purposes of illustration and comparison with proof by

infinite descent, which we survey in the next section. The following proof of the commutativity

of addition over the natural numbers is a standard example whose mechanisation can be found

in the libraries of most (if not all) inductive theorem proving tools:

Example 1.2.1.Define the operation+ on pairs of natural numbers by the following:

0+y = y (1)

sx+y = s(x+y) (2)

We claim that+ is commutative, i.e.x+y = y+x.

Proof. We first prove by induction ony that:

y = y+0 (3)

In the base case, we have to prove that 0= 0+ 0 which follows immediately from(1). In the

step case, we havey= sy′ and require to provesy′ = sy′ +0, i.e.sy′ = s(y′+0) by (2). Now by

the induction hypothesis, we havey′ = y′ +0 and are thus done.

Next, we prove by induction onx that:

x+sy= s(x+y) (4)

In the base case, we have to prove that 0+sy= s(0+y) which follows by applying(1) to both

sides of the equation. In the step case, we havex= sx′ and require to provesx′+sy= s(sx′+y),

i.e.s(x′ +sy) = s(s(x′ +y)) by (2) applied to each side of the equation. Now by the induction

hypothesis, we havex′ +sy= s(x′ +y) and are thus done.

Now we can prove the main conjecturex+ y = y+ x by induction onx. In the base case,

we have to prove that 0+x = x+0, which follows from(1) and(3). In the step case, we have

x = sx′ and have to prove thatsx′ +y= y+sx′, i.e.s(x′ +y) = s(y+x′) by (2) and(4). Now by

the induction hypothesis, we havex′ +y = y+x′ and are thus finished.
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Of course, mathematical induction is not limited to the natural numbers. Any inductively

defined relation gives rise to a related induction proof principle which can be extracted from the

definition in a wholly mechanical way. Similarly, from mutually inductively defined relations

one obtains corresponding mutual induction proof principles, whose complexities increase in

proportion with the complexity of the mutual definitions. For the purposes of carrying out

proofs by mathematical induction, these induction principles are typically codified either as

axioms or as inference rules and incorporated into the proofframework of choice. Because

the use of an inductive proof principle in such proofs is always thus made explicit, we will

sometimes refer to this approach as theexplicit inductionapproach.

Most of the inductive theorem proving tools available at thepresent time employ the ex-

plicit induction approach; the major contemporary systemsinclude ACL2 [37], INKA [3], the

Isabelle-based proof planner IsaPlanner [21], Oyster-Clam [14] and to an extent also the logical

framework-based system Twelf [61]. It is difficult to directly compare the relative success of

these systems because of significant areas of non-overlap inthe problems they address. How-

ever, despite the relative success of approaches based on heuristics such as Bundy’s “rippling”

technique [13, 22], it is unequivocally the case that the difficult challenges posed to mecha-

nised theorem proving by inductive reasoning have not yet been overcome. These challenges

largely manifest themselves in the choices made by a mathematician when attempting to prove

a conjecture by mathematical induction:

• One needs to select an appropriate schema for the induction,which need not be the

“usual” schema for the considered inductively defined relation derived from its defini-

tion. For example, the following alternative induction principle for N can be derived

from the usual one:

P(0) ∀x∈ N. (P(x) → P(ssx)) ∀x∈ N. (P(sx) → P(x))

P(t)

so that the fact thatP is true of all even numbers follows from the first two premises,

whence the fact that it is also true of all odd numbers followsfrom the third premise. In

general, it may be the case that particular theorems may be proved (much) more easily

by using a suitably chosen induction principle.

Gow [31] demonstrates a technique for mechanising inductive proof search using proof

planning whereby a proof attempt by induction starts by applying a “blank schema”

containing metavariables which are incrementally instantiated during the remainder of

the proof attempt. The final step in the proof then consists inshowing that the induction

rule thus generated is sound. (Of course, this is not necessarily the case.)

• One also needs to select an appropriate induction hypothesis or, in the case of mutually

defined relations, hypotheses, and a variable (or variables) in the hypothesis over which
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to induce. This is a particularly difficult issue for automated proof since there are many

natural examples of theorems whose inductive proof requires the use of a “strengthened”

induction hypothesis, i.e., a generalisation of the theorem (see e.g. [12]). There have

been attempts within the theorem proving community to synthesize the necessary induc-

tion hypotheses for a proof either byrecursion analysis— a syntactic analysis of the

conjecture and the inductive definitions [7, 64, 81] — or by lazy generation schemes

which attempt to delay the choice of induction hypotheses until an exploration of the

proof makes it evident which hypotheses are required for theproof [31, 54]. While the

techniques used in the former approach are sometimes quite ingenious, they are known

to have significant limitations in the type and complexity ofthe problems that they can

solve [54]. The latter approach shares some similarities with the method of infinite de-

scent, described more fully in Section 1.3.

• Finally, one also needs to identify appropriate intermediate lemmas, as in, e.g., our proof

of the commutativity of addition (Example 1.2.1 above). Thequestion of whether such

lemmas are strictly necessary essentially amounts to the question of whether cut is elim-

inable in the native proof system. However, even if intermediate lemmas are not tech-

nically required in order to give an inductive proof, in practice one may still need to

identify and prove them because, as is well-known, cut-freeproofs may bemuchlarger

in general than proofs containing cuts.

Despite some fairly widespread impressions to the contrary, cut-elimination is known to

be possible in the presence of induction, at least for intuitionistic systems; Martin-Löf demon-

strated cut-elimination for an intuitionistic natural deduction system with iterated inductive

definitions [44], and the proof method used there has more recently been applied to an intu-

itionistic sequent calculus system with definitions and natural number induction by McDowell

and Miller [48], and subsequently to further extensions of this system by Miller, Momigliano

and Tiu [73, 49, 74]. Jervell [35] also gives a normalisationresult for Heyting arithmetic, the

intuitionistic version of Peano arithmetic (which includes natural number induction). The key

point is that the induction rules in these systems are formulated in such a way as to allow the

generalisation of induction hypotheses which, as we remarked earlier, is known to be necessary

in general. For example, one way of writing a sequent calculus natural number induction rule

so as to allow generalisation is as follows:

Γ ⊢ F0,∆ Γ,Fx⊢ Fsx,∆ Γ,Ft ⊢ ∆

Γ,Nt ⊢ ∆

where we writesequentsof the formΓ ⊢ ∆, whereΓ and∆ are finite multisets of formulas,F

is an arbitrary formula and the predicateN is used to stand for the property of being a natural

number. (The rule above is a sequent calculus version of Martin-Löf’s elimination rule for
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the N predicate in his natural deduction system [44].) The induction rule above can thus be

thought of as containing a cut in the sense that it introducesinto its premises a formula (F) that

need not be a subformula of any formula appearing in the conclusion, but this does not render

cut-elimination meaningless in systems containing such rules. Rather, cut-free proofs in these

systems enjoy the property that “new” formulas are only introduced as the result of the need to

generalise an induction hypothesis when performing an induction. Martin-Löf summarises the

situation as follows:

The opinion seems to have been generally accepted that therebe no real cut
elimination theorem for first order arithmetic and that sucha theorem could only
be obtained by eliminating the induction schema in favour oftheω-rule. However,
when arithmetic is formulated as a theory of inductive definitions, it becomes pos-
sible to formulate and prove a cut elimination theorem whichis just as natural and
basic as the one for pure first order logic, although, like in second order logic, the
subformula principle is necessarily lost.

Per Martin-Löf, “Hauptsatz for the Intuitionistic Theory of Iterated Inductive
Definitions”, 1971

One of the contributions of this thesis will be to show that the eliminability of cut in the

presence of suitably formulated induction rules extends tothe classical case. However, the

proof techniques used to establish cut-elimination in the intuitionistic case are seemingly not

sufficient, and we rely instead on semantic methods. In Chapter 3 we formulate a classical

sequent calculus for general inductive definitions, in which the induction rules support general-

isation as above, and demonstrate cut-eliminability for the calculus through semantic methods.

1.3 Infinite descent

Infinite descent, expressed as a self-contained proof principle, is considerably older than math-

ematical induction, having been precisely formulated by Fermat in 1659 in correspondence

exchanged with Pierre de Carcavi. However, usage of the technique appears to date back as far

as the ancient Greeks; Euclid’s original proof of the irrationality of
√

2 essentially relies upon

an infinite descent argument, and Wirth [85] reports that thefirst known usage of an infinite de-

scent argument occurs in a proof of the irrationality of the number1
2(1+

√
5) due to Hippasos

in the 5th century BC. Nevertheless, Fermat is generally credited with (re)inventing and artic-

ulating the method of infinite descent1, which he described — in the context of its application

to a proof of the fact that the area of a right-angled trianglecannot be a square number — as

follows (c.f. [43]):

Because the ordinary methods now in the books were insufficient for demon-
strating such difficult propositions, I finally found a totally unique route for arriv-
ing at them. . . which I called infinite descent . . .

1For this reason, infinite descent is still often known by its French namedescente infinie.
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If there were any integral right triangle that had an area equal to a square,
there would be another triangle less than that one which would have the same
property . . . Now it is the case that, given a number, there arenot infinitely many
numbers less than that one in descending order (I mean alwaysto speak of inte-
gers). Whence one concludes that it is therefore impossiblethat there be any right
triangle of which the area is a square. . .

Pierre de Fermat, “Relation des nouvelles découvertes en la science des nom-
bres”, letter to Pierre de Carcavi, 1659

One way of expressing the principle of infinite descent for the natural numbers as an inference

rule is the following:
P→∃(xi ∈ N)i≥0.∀i ≥ 0. xi+1 < xi

¬P
whereP is any proposition and the existential quantifier ranges over infinite sequences of nat-

ural numbers. This rule interprets Fermat’s infinite descent principle for the natural numbers

as follows: if in some case of a proof we construct an infinite descending sequence of natural

numbers, that case may be disregarded.

Example 1.3.1.
√

2 is not a rational number.

Proof. To say that
√

2 is not rational is to say that there do not existx,y∈ N such that
√

2 =

x/y. We shall construct an argument of this fact by infinite descent by assuming the contrary

and using the denominator variabley to construct the required infinite decreasing sequence of

natural numbers. Suppose that there existx,y∈ N such that
√

2 = x/y, i.e.x2 = 2y2. From this

we obtainx(x−y) = y(2y−x), so that:

2y−x
x−y

=
x
y

=
√

2.

Now definex′ = 2y−x andy′ = x−y whence we havex′/y′ =
√

2 by the above. Now observe

that we have 1< x2/y2 < 4, from which it follows thaty < x < 2y, and so 0< y′ < y. It is

then readily seen that we havex′,y′ ∈ N such that
√

2= x′/y′, andy′ < y. So given an arbitrary

counterexample we can construct another counterexample with a strictly smaller denominator.

This implies the existence of an infinitely decreasing chainof natural numbers, and hence
√

2

cannot be rational by the infinite descent principle forN.

In the example above, and many other natural examples, the infinite descent takes a special

“cyclic” form: to prove that the statementP is true of all natural numbers one demonstrates

that if P is not true of an arbitrary natural numbern then it also is not true of a smaller number

m< n, from which the existence of an infinite decreasing sequenceof natural numbers can be

inferred. As an inference rule this can be written:

∀x∈ N. (¬P(x) → (∃y < x∈ N.¬P(y)))

P(t)



Chapter 1. Introduction 8

where, as in the induction principle,P(x) is a statement of the language under consideration

with a free variablex, andt is an arbitrary term of the language. This is classically equivalent

to the principle ofcomplete inductiononN:

∀x∈ N. ((∀y < x∈ N. P(y)) → P(x))

P(t)

which is interderivable with the ordinary mathematical induction scheme forN (i.e. each is

derivable from the other) in Peano arithmetic. Hence infinite descent forN subsumes complete

induction forN and thus also ordinary induction forN.

Just as in the case of mathematical induction, the infinite descent principle can be applied

not just to natural numbers but to arbitrary (mutually) inductively defined relations, as follows:

if in some case of a proof we unfold a particular inductive definition infinitely many times, then

that case may be disregarded. This is because unfolding a definition infinitely often induces an

infinite descending sequence of ordinals (via the ordinal-indexed approximants of inductively

defined relations), which contradicts the fact that the ordinals are well-ordered.

At the present time, infinite descent — while it remains, for mathematicians, a standard

technique for reasoning with inductively defined relations— is not generally employed in

(mechanised) inductive theorem proving, presumably because it was considered impractical

or less useful than explicit induction by the developers of the major theorem provers. The

notable exception to this rule seems to be the QUODLIBET system of Wirth et al [4, 85],

which does employ an approach based on infinite descent to inductive reasoning, and whose

successful treatment of the technique indicates potentialfor its future development in theo-

rem proving [86]. Additionally, although explicit induction is the default approach to induc-

tive reasoning, various forms of cyclic (or circular), reasoning have been employed in: local

model checking (see e.g. [65, 8]); theorem proving tools andframeworks including Hamilton’s

Poı̀tin [32] and, to a lesser extent, Schürmann’s TWELF [61] as well as type-theoretic ap-

proaches [17, 27]; in Turchin’s supercompilation [77]; andin program verification based on

automata [79]. Typically, a proof containing repeating sections is presented as a graph con-

taining loops and a “guardedness” condition is imposed on proofs to ensure their soundness,

which is often of the form “the eventx happens infinitely often along every infinite path in

the graph”. An example of such a condition is the so-called size change principle for program

termination of Lee et al [42]. Such conditions can be seen essentially as encoding generalised

infinite descent arguments. Recently, tableau-style proofsystems for theµ-calculus employing

cyclic proofs were developed first by Dam and Gurov [19] and then investigated further by

Schöpp and Simpson [58] and by Sprenger and Dam [62, 63]. These systems embody an infi-

nite descent principle for theµ-calculus, based upon an ordinal indexing of the approximants by

which the least and greatest fixed points of a formula can be iteratively approached. They also

are closely related to theµ-calculus “refutations” of Niwinski and Walukiewicz [52],which
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are infinite tableaux for theµ-calculus satisfying a similar guardedness condition. (Niwinski

and Walukiewicz showed that for any refutation there is an equivalent refutation that is regular

and thus representable as a cyclic graph, so their refutations are really another manifestation of

cyclic reasoning in theµ-calculus.)

It is sometimes claimed that infinite descent and explicit induction are equivalent as proof

principles, i.e., that any mathematical proof by inductioncould equally well be expressed as

a proof by infinite descent and vice versa. Unfortunately, itis far from clear what exactly is

meant by equivalence in this situation and, in fact, one of the contributions of this thesis will

be to give formal precision to this claim by framing it as a conjecture of the equivalence of the

two formal proof systems.

1.4 Our approach

The aim of this thesis is to undertake a rigorous proof-theoretic investigation of the proof prin-

ciples of mathematical induction and infinite descent, not just for the natural numbers but for

general inductively defined relations. We think that such ananalysis is of independent interest,

and of special interest to the inductive theorem proving community since it has implications

for the provision of proof support for reasoning with inductively defined relations.

In order to undertake a formal analysis of induction and infinite descent in proofs, our

first task is to formulate a language in which inductively defined relations can be expressed.

The obvious choice seems to be to extend the language of standard first-order logic with an

inductive definition schema by which to define (some chosen subset of) the predicates of the

language. Of the many possible frameworks for the latter, wechoose to work with ordinary

(mutual) inductive definitions as formulated by Martin-Löf [44]. This choice keeps the logic

relatively simple, thus allowing us to bring out the main interesting proof-theoretic issues that

arise with inductive definitions, while including many important examples. (However, we claim

that our techniques should be quite straightforwardly extensible to richer systems of inductive

and coinductive definitions.)

Having fixed a language in which to study inductive definitions, our next objective is to

formulate formal proof systems that capture the notions of induction and infinite descent. We

opt to formulate our systems in thesequent calculusstyle due to Gentzen [25], as it provides an

elegant system that is widely acknowledged as both amenableto proof-theoretical analysis and

well-suited to a natural expression of the goal-directed proof construction employed in most

proof assistants. In Gentzen’s original sequent calculus LK for classical first-order logic, each

logical connective is specified by two basicintroduction rulesintroducing the connective on

the left and on the right of sequents respectively. His well-known cut-elimination theorem then

states that any LK-derivable sequent is provable without detours, that is, using these rules only
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and without the use of intermediate lemmas. This constrainsthe locally applicable rules in

any proof search attempt in LK to those rules that introduce alogical connective appearing in

the current goal sequent. (However, this does not imply thatprovability in first-order logic is

decidable, because in general there are infinitely many choices for the instantiation of a formula

involving a quantifier.)

In this thesis, we extend Gentzen’s LK to obtain similarly canonical sequent calculus proof

systems for induction and for infinite descent in our first-order logic with inductive definitions.

This allows us to undertake a formal analysis of these systems, and thus of the proof principles

of induction and infinite descent themselves, in a setting with minimal additional complication

(in the shape of other axioms or proof principles). In formulating the proof system formalising

proof by infinite descent, a major issue is the question of howto build in the capacity for

constructing infinite descending sequences of unfoldings of inductively defined predicates. We

address this by allowing proofs to be non-well-founded, i.e. to contain infinite branches, and

imposing an additional soundness condition on proofs ensuring that some inductive definition

is unfolded infinitely often along each infinite branch. Thusthe infinite branches in a non-well-

founded proof represent the cases that can be disregarded bythe infinite descent principle for

inductively defined relations.

Example 1.4.1. Let the setsE and O of even and odd numbers be given by the following

inductive definition:

• 0 is an even number;

• if n is an even number, thens(n) is an odd number;

• if n is an odd number, thens(n) is an even number.

We give an infinite descent proof that every natural number isthen either even or odd. (Of

course, this proposition can also easily be proved using induction. We include this proof for

illustrative purposes, and defer harder examples until later in the thesis.)

Proof. Informally, the justification of the result is as follows. Let n be a natural number, and

consider the two possible cases: eithern is 0 or it is the successor of some natural number

m. If n = 0 then we are immediately finished as 0 is an even number, so letus consider

the case wheren = s(m) for some natural numberm. We can then repeat the argument by

considering cases onm: if m = 0 then we are done asn = s(0) is an odd number, so we

need only consider the case wherem= s(m′) for some natural numberm′. By repeating this

argument infinitely often, we are left only with the case in which we have an infinite descending

sequencen> m> m′ > m′′ > .. . of natural numbers. But the natural numbers are well-ordered,

i.e. there are no infinite descending sequences of natural numbers, and so by contradiction this

case may be disregarded. Thus every natural number must indeed be either even or odd.
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The corresponding formal infinite proof can be given as follows, writing Nx, Ex andOx

to mean respectively thatx is a natural, even or odd number, and using⊢ for the provability

relation:

(ER1)⊢ E0,O0
(=L)

n = 0⊢ En,On

(ER1)⊢ O0,E0
(=L)

m= 0⊢ Om,Em

(etc.)
...

Nm′ ⊢ Os(m′),Es(m′)
(=L)

m= s(m′),Nm′ ⊢ Om,Em
(CaseN)

Nm⊢ Om,Em
(OR1)

Nm⊢ Om,Os(m)
(ER2)

Nm⊢ Es(m),Os(m)
(=L)

n = s(m),Nm⊢ En,On
(CaseN)

Nn⊢ En,On

The rule label (CaseN) is used to indicate a division into cases based on the definition of the

predicateN, the label (=L) denotes rewriting according to an equality in the conclusion and

the rule label (PRi) indicates a right-unfolding of the definition of predicateP (the i is an index

indicating which clause of the definition was used). Informally speaking, the infinite proof

tree above is a proof in our infinitary system because the inductive predicateN is “unfolded

infinitely often” (on the left) along the only infinite branchin the tree.

The infinitary proof system for infinite descent is rather powerful, and there are infinite

proofs with no useful finite representation. For practical purposes, it makes sense to con-

sider a restriction of the system in which proofs do have a convenient representation. In our

case, we consider the restriction of the full infinitary systen to those proofs given byregular

trees, i.e. trees having only finitely many distinct subtrees. It is well known that such trees are

representable by finite graphs, and thus the restricted system is suitable for practical formal

reasoning.

Example 1.4.2.The argument given above in Example 1.4.1 that every naturalnumber is either

even or odd can be written as a “cyclic proof”:

(ER1)⊢ E0,O0
(=L)

n = 0⊢ En,On

Nn⊢ On,En (∗)
(Subst)

Nm⊢ Om,Em
(OR1)

Nm⊢ Om,Os(m)
(ER2)

Nm⊢ Es(m),Os(m)
(=L)

n = s(m),Nm⊢ En,On
(CaseN)

Nn⊢ En,On (∗)
where (Subst) denotes a use of a rule for substitution and(∗) indicates the “loop” in the graph.

Except for the uses of substitution, the tree obtained by unfolding the loop in this graph is the

infinite proof tree given in the previous example, and the justification for soundness is similar.
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1.5 Synopsis

The remainder of this thesis is structured as follows:

Chapter 2: We define the syntax and semantics of the language FOLID obtained by extending

standard first-order logic with a schema for (mutual) inductive definitions. As well as

the standard semantics for the latter obtained by considering the least fixed point of a

monotone operator constructed from the definitions, we alsodefine a more general, non-

standard semantics based on considering Henkin models for the inductive definitions.

Chapter 3: We define a sequent calculus, LKID, for proof by induction in FOLID, which

extends Gentzen’s LK by adding new left- and right-introduction rules for the inductively

defined predicates. The right-introduction rules for such apredicateP are just sequent

versions of the productions definingP. The left-introduction rule forP embodies the

natural principle of “rule induction” over the definition ofP. This division between the

roles of the left and right rules is closely related to Martin-Löf’s natural deduction system

for intuitionistic logic with (iterated) inductive definitions [44], in which induction rules

were included as elimination rules for inductively defined predicates. (This observation

subsequently became a cornerstone of the treatment of inductive types in Martin-Löf’s

type theory [45].) As is well known, elimination rules in natural deduction serve the

same purpose as left-introduction rules in sequent calculus.

We establish that LKID is sound with respect to the non-standard Henkin semantics of

FOLID (and thus, in particular, the standard semantics), and thenshow that the cut-free

fragment of LKID is complete with respect to the Henkin semantics. The latter result is

of interest in its own right, and we also obtain a semantic proof of the eliminability of cut

in LKID by combining the soundness and cut-free completeness results. The consistency

of Peano arithmetic is subsequently derived as a corollary of cut-eliminability in LKID.

Readers familiar with [35, 44, 48, 73] will not be surprised that cut is eliminable in our

system, since these papers contain analogous normalization/cut-elimination theorems for

related intuitionistic systems. Their proofs, however, are based on Tait’s “computability”

method, and do not adapt to the classical setting, hence our reliance on semantic methods.

As far as we are aware, our proof is the first demonstration of the eliminability of cut in

a classical proof system for induction to appear in the literature.

Chapter 4: We define a second proof system, LKIDω, for proof by infinite descent in FOLID.

In this system, the left-introduction rule for an inductively defined predicate is not an

induction rule but rather a weaker “casesplit” rule. (The other rules of the system are

the same as the rules for LKID.) However, we allow proofs in LKIDω to be infinite

(i.e. non-well-founded) so long as they satisfy the condition that some inductive predicate
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is unfolded infinitely often along every infinite branch in the proof. By an infinite de-

scent argument using the well-foundedness of the inductivedefinitions, any such branch

can be disregarded. Thus the remaining portion of the proof is well-founded and hence

sound. (However, the formal justification for the soundnessof LKID ω is somewhat more

complicated than this.)

After defining the system and formulating the “infinite descent” soundness condition on

proofs, we prove that LKIDω is sound and cut-free complete, this time with respect to

the standard semantics of FOLID . It follows that the infinitary proof system LKIDω is

strictly more powerful than the finitary proof system LKID. Both the soundness and

completeness proofs have elements in common with their LKIDcounterparts, but the

necessity of accounting for the global soundness conditionin LKID ω proofs entails some

interesting twists in both proofs. A semantic proof of the eliminability of cut in LKIDω is

then obtained from the soundness and cut-free completenesstheorems, just as for LKID

in the preceding chapter.

We also show how the soundness condition on LKIDω proofs, based ontraceson paths

in the proof, can be extended to other settings to yield a sound notion of infinite proof,

in circumstances that permit the formulation of a similar infinite descent argument.

Chapter 5: As infinitary proof systems are generally unsuitable for practical formal reason-

ing, we consider the restriction of such systems to those proofs given byregular trees,

i.e. trees representable by finite cyclic graphs. Infinitarysystems restricted in this way

are suitable for formal reasoning, because the global soundness condition on proofs is

decidable in this restricted setting. In particular, we consider the cyclic proof system

CLKIDω obtained as the restriction of the system LKIDω to regular trees. As CLKIDω

arises as a simple restriction of a complete infinitary system, it is a highly natural system

in its own right, although we conjecture that the eliminability of cut no longer holds.

Chapter 6: We develop machinery for analysing the structure of proofs in cyclic proof sys-

tems of the type considered in chapter 5, and obtain a naturalnotion of equivalence

between such proofs: two cyclic proofs are considered equivalent if they represent the

same infinite tree (up to isomorphism). We then show thecycle-normalisationproperty

for cyclic proofs: for every cyclic proof there is an equivalent proof with a restricted

cycle structure, said to be incycle normal form. We first give a proof based on unfolding

the proof into an infinite tree, and then folding the infinite branches on this tree to obtain

an equivalent proof in cycle normal form. We also give an alternative proof of cycle-

normalisation which shows algorithmically how to iteratively “untangle” a proof into an

equivalent one in cycle normal form, and also gives an improved complexity bound of

the proof thereby obtained.



Chapter 1. Introduction 14

Chapter 7: We analyse the trace condition ensuring soundness of proofsin infinitary proof

systems of the type considered in chapter 4 and, in particular, their cyclic restrictions

as formulated in chapter 5. We formulate an alternative soundness condition for cyclic

proofs in cycle normal form, which is more restrictive than the general trace condition

but appears simpler from a combinatorial perspective, and provides more explicit infor-

mation about the proof. Two alternative formulations of this trace manifoldcondition

are considered, and demonstrated to be equivalent.

Finally, we return to the specific setting of our proof systems for inductive definitions,

and show that an arbitrary LKID proof can be transformed intoan CLKIDω proof satisfy-

ing the trace manifold condition, thus demonstrating that CLKID ω is at least as powerful

as LKID. We conjecture that LKID and CLKIDω are in fact equivalent, i.e., that proof

by induction is equivalent to regular proof by infinite descent. However, the problem of

establishing whether CLKIDω proofs are subsumed by LKID proofs appears a difficult

one, and we leave this as the main open question arising from the work in this thesis.

Chapter 8: We present our conclusions and outline what we consider to bethe main directions

for future work arising from the thesis.

The formulation of the systems LKID and CLKIDω, together with the material appearing in

chapters 6 and 7, has previously been published in a TABLEAUXpaper [9] by the author. The

material in chapters 3-5 forms the basis of a second article by the author and Alex Simpson,

currently in preparation [10].



Chapter 2

First-order logic with inductive

definitions ( FOL ID)

In this chapter we introduce the language FOLID of (classical) first-order logic with inductive

definitions. The syntax of FOLID is essentially that of ordinary first-order logic with equality

(see e.g. [6]), with the constants, functions and predicates of a language interpreted in a first-

order structure and the variables interpreted in an environment mapping variables to elements

of the domain of the structure. However, we designate a finitenumber of predicate symbols in

the language asinductive, and interest ourselves only in those structures in which the inductive

predicates have a special interpretation, determined by a given set of inductive definitions. The

essentials of first-order logic with equality are reviewed in Section 2.1. In Section 2.2 we intro-

duce our inductive definition schema, based on Martin-Löf’s “ordinary productions” [44], and

definestandard modelsof FOLID. In standard models, the inductive predicates of a language

are interpreted as (components of) the least prefixed point of a monotone operator constructed

from their definitions (see e.g. [1]). This least prefixed point can be constructed in iterative

stages calledapproximants. The approximant approach to least prefixed point construction will

be essential to our consideration of infinitary proof systems for FOLID in subsequent chapters.

However, it happens that the inductive predicates of a language also have a class of natural

interpretations which generalises the standard interpretation. In these non-standard interpreta-

tions, the least prefixed point of the monotone operator for the inductive predicates is obtained

inside a class of subsets of tuples over the domain of interpretation (as opposed to the pow-

erset of tuples over the domain). This approach is based on anidea originally employed by

Henkin [33] who obtained a completeness theorem for the second-order functional calculus by

considering validity with respect to his more general notion of model, in which second order

variables of arityn are interpreted as ranging over a selected class of subsets of n-tuples in the

domain. Henkin extended this approach to obtain a completeness result for a simple type the-

ory. We introduce a corresponding notion of aHenkin modelfor FOLID in Section 2.3 (and go

15
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on to obtain an analogous completeness theorem in Chapter 3). The material on Henkin mod-

els in this section is somewhat novel (though obviously influenced by Henkin’s own work); the

material in the earlier sections is completely standard.

Throughout this chapter and the remainder of the thesis, we use the following notational

conventions and mathematical definitions:

• the powerset of a setX is denoted by Pow(X);

• vectors are set in bold type, e.g.x. For convenience, we will often use vector notation to

denote finite sequences, e.g.x for (x1, . . . ,xn);

• for any setX, n > 0 andi ∈ {1, . . . ,n}, we define the projection functionπn
i : Xn → X by

πn
i (x1, . . . ,xn) = xi ;

• we extend the usual set inclusion, union and intersection totuples of sets(X1, . . . ,Xn) by:

(X1, . . . ,Xn) ⊆ (Y1, . . . ,Yn) = X1 ⊆Y1∧ . . .∧Xn ⊆Yn

(X1, . . . ,Xn)∪ (Y1, . . . ,Yn) = (X1∪Y1, . . . ,Xn∪Yn)

(X1, . . . ,Xn)∩ (Y1, . . . ,Yn) = (X1∩Y1, . . . ,Xn∩Yn)

• a graph Gis a pair(V,E) whereV is the set ofverticesof G andE ⊆V ×V is a set of

edgesof G.

2.1 First-order logic with equality

In this section we briefly review the syntax and semantics of classical first-order logic with

equality. The only difference from the standard presentations is that we designate finitely

many predicate symbols of our languages as specialinductivesymbols, in order to distinguish

those predicates whose intended interpretation we wish to be given by an inductive definition.

(The number of inductive predicate symbols is restricted tobe finite for reasons of technical

convenience, although this restriction is not strictly necessary.) Our use of two-sorted predicate

symbols allows us to extend the language of (first-order) formulas without altering the under-

lying language of terms, which is the standard approach usedin other extensions of first-order

logic (such as second-order logic).

The remainder of this section can be safely skipped by the reader familiar with first-order

logic; we review the fundamentals here for completeness andfor the purpose of fixing notation.

Definition 2.1.1(First-order language with inductive predicates). A (first-order) language with

inductive predicatesΣ is a set of symbols including:

• denumerably many constant symbolsc1,c2, . . .;
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• denumerably many function symbolsf1, f2, . . ., each with associated arityk > 0;

• denumerably manyordinary predicate symbolsQ1,Q2, . . ., each with associated arity

k≥ 0;

• finitely manyinductivepredicate symbolsP1, . . . ,Pn, each with associated arityk≥ 0.

We also assume the existence of a denumerably infinite setV of variablesx1,x2, . . ., each of

which is distinct from any symbol ofΣ.

Throughout this thesis, when we refer to a “first-order language”, we shall mean a first-

order language with inductive predicates, in the sense of Definition 2.1.1 above.

Definition 2.1.2(Terms). The set oftermsof a first-order languageΣ, Terms(Σ), is the smallest

set of expressions ofΣ closed under the following rules:

1. any variablex∈ V is a term;

2. any constant symbolc∈ Σ is a term;

3. if f ∈ Σ is a function symbol of arityk, andt1, . . . , tk are terms, thenf (t1, . . . , tk) is a term.

We write t[u/x], wherex∈ V is a variable andt,u are terms, to denote the term obtained by

substitutingu for all occurrences ofx in t. We writeVar(t) for the set of variables appearing in

the termt, and writet(x1, . . . ,xn) for a termt such thatVar(t) ⊆ {x1, . . . ,xn}, wherex1, . . . ,xn

are distinct. In this case we may writet(t1, . . . , tn) to denote the term obtained by substituting

t1, . . . , tn for x1, . . . ,xn respectively.

The interpretations of the symbols in a first-order languageare given by a first-order struc-

ture in the standard way:

Definition 2.1.3(First-order structure). Given a first-order languageΣ, a(first-order) structure

for Σ (also called aΣ-structure) is a tuple:

M = (D,cM
1 ,cM

2 , . . . , f M
1 , f M

2 , . . . ,QM
1 ,QM

2 , . . . ,PM
1 , . . . ,PM

n )

whereD is any set of objects (called thedomainof the structure) and:

• eachcM
i ∈ D;

• eachf M
i : Dk → D, where fi is a function symbol of arityk;

• eachQM
i ⊆ Dk, whereQi is an ordinary predicate symbol of arityk;

• eachPM
i ⊆ Dk, wherePi is an inductive predicate symbol of arityk.
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Note that we consistently writeQMd, whereQ is a predicate symbol (either ordinary or in-

ductive), to meand ∈ QM. Also, if t(x1, . . . ,xk) is a term ofΣ, thentM(x1, . . . ,xk) : Dk → D is

obtained by replacing every constant symbolc by cM and every function symbolf by f M in

t(x1, . . . ,xn).

We interpret variables as elements of the domain of a structure using environments:

Definition 2.1.4 (Environment). Given aΣ-structureM = (D, . . .), anenvironmentfor M is a

function ρ : V → D. Whereρ is an environment forM, x∈ V andd ∈ D, we writeρ[x 7→ d]

for the “substituted” environment defined by:

ρ[x 7→ d](y) =

{

d if y = x

ρ(y) otherwise

We extend the domain of any environmentρ to all terms ofΣ by:

• ρ(ci) = cM
i

• ρ( fi(t1, . . . , tk)) = f M
i (ρ(t1), . . . ,ρ(tk))

(We also extendρ to vectors of terms in the obvious way:ρ(t1, . . . , tk) = (ρ(t1), . . . ,ρ(tk)).)

Lemma 2.1.5(Environment substitution sanity). Let ρ be an environment for M= (D, . . .).

Then for any term t and for any variable x∈ V :

1. for all d∈ D, if x 6∈Var(t) thenρ[x 7→ d](t) = ρ(t);

2. for all terms u,ρ[x 7→ ρ(u)](t) = ρ(t[u/x]).

Proof. Both parts of the lemma follow by straightforward structural inductions ont.

The formulas of FOLID are just the formulas of first-order logic with equality:

Definition 2.1.6(Formulas). Given a first-order languageΣ, the set ofΣ-formulas of FOLID is

the smallest set of expressions closed under the following rules:

1. if t1, . . . , tk are terms ofΣ, andQ is a predicate symbol inΣ of arity k, thenQ(t1, . . . , tk)

is a formula;

2. if t andu are terms ofΣ thent = u is a formula;

3. if F is a formula then so is¬F;

4. if F1 andF2 are formulas then so areF1∧F2, F1∨F2 andF1 → F2;

5. if F is a formula andx∈ V is a variable, then∃xF and∀xF are formulas.
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We use the standard precedences on the logical connectives,and use parentheses to disam-

biguate where necessary. Any formula of the formQ(t1, . . . , tk) or t = u is called anatomic

formula, and formulas not of this form are callednon-atomicor compoundformulas. We write

F ↔ G, whereF andG are formulas, to abbreviate the formula(F → G)∧ (G→ F).

Definition 2.1.7(Free variables). The set offree variablesoccurring in a formulaF of FOLID,

FV(F), is defined by recursion on the structure ofF as follows:

1. FV(Q(t1, . . . , tk)) =
S

1≤i≤kVar(ti)

2. FV(t = u) = Var(t)∪Var(u)

3. FV(¬F) = FV(F)

4. FV(F1∧F2) = FV(F1∨F2) = FV(F1 → F2) = FV(F1)∪FV(F2)

5. FV(∃xF) = FV(∀xF) = FV(F)\{x}

(Informally, a variable inV is in FV(F) if it has an occurrence inF that is outside the scope

of every quantifier inF with the same name.)

Definition 2.1.8 (Satisfaction relation for FOLID). Let M be aΣ-structure and letρ be an

environment forM. We define the satisfaction relationM |=ρ F on formulas by:

M |=ρ Qt ⇔ QM(ρ(t)) (Q ordinary or inductive)

M |=ρ t = u ⇔ ρ(t) = ρ(u)

M |=ρ ¬F ⇔ M 6|=ρ F

M |=ρ F ∧G ⇔ M |=ρ F andM |=ρ G

M |=ρ F ∨G ⇔ M |=ρ F or M |=ρ G

M |=ρ F → G ⇔ M 6|=ρ F or M |=ρ G

M |=ρ ∀xF ⇔ M |=ρ[x7→d] F for all d ∈ D

M |=ρ ∃xF ⇔ M |=ρ[x7→d] F for somed ∈ D

(Informally, M |=ρ F means: “the formulaF is true inM under the environmentρ”.)

Lemma 2.1.9(Formula substitution sanity). For any x∈ V , for any term t ofΣ, and for any

formula F, the following hold:

1. for all d∈ D, if x 6∈ FV(F) then M|=ρ F if and only if M |=ρ[x7→d] F;

2. M |=ρ F[t/x] if and only if M |=ρ[x7→ρ(t)] F.

Proof. Both results follow by a straightforward structural induction onF , using the appropriate

part of Lemma 2.1.5 for the cases whereF is an atomic formula or an equality formula.

We introduce our inductive definition schema and the standard interpretation of inductive

predicates in the following section, and give a natural class of non-standard interpretations in

Section 2.3.
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2.2 Inductive definitions and standard semantics for FOL ID

As mentioned previously, we shall only be interested in those structures in which the inductive

predicates of the language are given a specific interpretation obtained from their definitions.

In this section we introduce our schema for inductive definitions, which is based upon Martin-

Löf’s “ordinary production” schema [44], and define the corresponding notion of astandard

modelin FOLID. For this section, and indeed the remainder of the chapter, we consider a fixed

first-order languageΣ with (exactly)n inductive predicatesP1, . . . ,Pn.

Definition 2.2.1 (Inductive definition set). An inductive definition setΦ for a languageΣ is a

finite set ofproductions, which are rules of the form:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

i.e.,Q1, . . . ,Qh are ordinary predicates andPj1, . . . ,Pjm,Pi are inductive predicates ofΣ.

It is possible to generalise the schema for “ordinary inductive definitions” in Definition 2.2.1

to more expressive schemas by allowing non-atomic formulasto appear in the premises of a

production. However, appropriate restrictions must then be placed upon the productions to

ensure that the inductive definitions are well-founded. Forexample, Martin-Löf obtains “it-

erated inductive definitions” [44] by associating to each inductive predicate symbolP a level,

l(P) ∈ N, setting the level of a non-atomic formula to be the maximum of the levels of the

inductive predicates occurring within it, and then allowing productions of the form:

F(x) → Pju(x)

Pit(x)

j, i ∈ {1, . . . ,n},F an arbitrary formula,

l(Pi) ≥ l(Pj), l(Pi) > l(F)

∀y(Pju(x,y))

Pi t(x)
j, i ∈ {1, . . . ,n}, l(Pi) ≥ l(Pj)

and ordinary productions of the form of the production in Definition 2.2.1 above also receive

the restriction thatl(Pi) ≥ max(l(Pj1), . . . , l(Pjm)).

In this thesis, however, we shall not consider such schemas,and instead confine our atten-

tion to the ordinary (mutual) inductive definitions given bythe schema in Definition 2.2.1. This

schema is already powerful enough to admit the definition of many familiar inductively defined

structures (we give some examples below). Furthermore, when we consider the incorporation

of inductive definitions into formal proof systems, the maininteresting issues arise even in

the case of ordinary inductive definitions, and the relativesimplicity of the induction schema

makes the analysis of such issues somewhat more manageable.

We now define the standard interpretation of the inductivelydefined predicates in a first-

order structureM for Σ. Following [1], we take the usual approach of constructing amonotone

operator from a given inductive definition setΦ:
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Definition 2.2.2(Monotone operator). Let A be a set, letf : A→ A be a function and let≤ be

a partial ordering onA. Then f is said to be amonotone operatorif x≤ y implies f (x) ≤ f (y).

x is said to be aprefixed pointof a monotone operatorf if f (x) ≤ x.

Definition 2.2.3(Definition set operator). Let M be a first-order structure forΣ, let Φ be an in-

ductive definition set forΣ, and fori ∈ {1, . . . ,n} (wheren is the number of inductive predicate

symbols ofΣ), let ki be the arity of the inductive predicate symbolPi. Then partitionΦ into

disjoint subsetsΦ1, . . . ,Φn ⊆ Φ by:

Φi = {u
v
∈ Φ |Pi appears inv}

Now let each definition setΦi be indexed byr with 1≤ r ≤ |Φi |, and letΦi,r ∈ Φ be an arbitrary

production inΦi , say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

Now we define a corresponding functionϕi,r : (Pow(Dk1)× . . .×Pow(Dkn)) → Pow(Dki ) by:

ϕi,r(X1, . . . ,Xn) = {tM(x) | QM
1 uM

1 (x), . . . ,QM
h uM

h (x), tM
1 (x) ∈ Xj1, . . . , t

M
m(x) ∈ Xjm}

(Note that any variables occurring in the right hand side butnot the left hand side of the set ex-

pression above are, implicitly, existentially quantified over the entire right hand side of the ex-

pression.) Then thedefinition set operator forΦ is the operatorϕΦ, with domain and codomain

Pow(Dk1)× . . .×Pow(Dkn), defined by:

ϕΦ(X1, . . . ,Xn) = (ϕ1(X1, . . . ,Xn), . . . ,ϕn(X1, . . . ,Xn))

whereϕi(X1, . . . ,Xn) =
S

r ϕi,r(X1, . . . ,Xn) for eachi ∈ {1, . . . ,n}

Proposition 2.2.4. For any inductive definition setΦ, the operatorϕΦ is monotone (with re-

spect to the subset ordering⊆ on its domain).

Proof. To show thatϕΦ is monotone, one needs to prove that(X1, . . . ,Xn)⊆ (Y1, . . . ,Yn) implies

ϕΦ(X1, . . . ,Xn)⊆ ϕΦ(Y1, . . . ,Yn), i.e. thatXk ⊆Yk for all k∈ {1, . . . ,n} impliesϕi(X1, . . . ,Xn)⊆
ϕi(Y1, . . . ,Yn) for all i ∈ {1, . . . ,n}.

Supposey∈ ϕi(X1, . . . ,Xn) =
S

r ϕi,r(X1, . . . ,Xn) for somei ∈ {1, . . . ,n}. So there is a pro-

ductionΦi,r ∈ Φ such thaty∈ ϕi,r(X1, . . . ,Xn), say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

So we have:

y∈ {tM(x) | QM
1 uM

1 (x), . . . ,QM
h uM

h (x), tM
1 (x) ∈ Xj1, . . . , t

M
m(x) ∈ Xjm}



Chapter 2. First-order logic with inductive definitions (FOLID) 22

and sinceXi ⊆Yi for all i ∈ {1, . . . ,n} by assumption, we have:

y∈ {tM(x) | QM
1 uM

1 (x), . . . ,QM
h uM

h (x), tM
1 (x) ∈Yj1, . . . , t

M
m(x) ∈Yjm}

i.e. y∈ϕi,r (Y1, . . . ,Yn) and thusy∈ϕi(Y1, . . . ,Yn). This shows thatϕi(X1, . . . ,Xn)⊆ϕi(Y1, . . . ,Yn)

and thusϕΦ(X1, . . . ,Xn) ⊆ ϕΦ(Y1, . . . ,Yn) as required.

Example 2.2.5.Let N be an inductive predicate symbol of arity 1 and letΦN be the definition

set consisting of the productions:

N0

Nx

Nsx
The definition set operator forΦN is then:

ϕΦN(X) = {0M}∪{sMx | x∈ X}

Example 2.2.6. Let E and O be inductive predicate symbols of arity 1 and letΦEO be the

definition set consisting of the productions:

E0

Ex

Osx

Ox

Esx

The definition set operator forΦEO is then:

ϕΦEO(X,Y) = ({0M}∪{sMy | y∈Y},{sMx | x∈ X})

Example 2.2.7.Let Rbe an ordinary predicate symbol of arity 2, letR+ be an inductive pred-

icate symbol also of arity 2, and letΦR+ be the definition set consisting of the productions:

R(x,y)

R+(x,y)

R+(x,y) R+(y,z)

R+(x,z)

The definition set operator forΦR+ is then:

ϕΦR+ (X) = {(x,y) | RM(x,y)}∪{(x,z) | ∃y.(x,y) ∈ X,(y,z) ∈ X}

It is a standard result for inductive definitions that the least n-tuple of sets closed under

the productions inΦ is the least prefixed point of the operatorϕΦ (see e.g. [1, 50]), and that

this least prefixed point can be approached in iterativeapproximantstages. Since such approx-

imants are essential to understanding the proof systems we present in Chapters 4 and 5, we

include here full details of their construction and fundamental properties.

Definition 2.2.8(Approximants). Let M = (D, . . .) be a first-order structure forΣ, let Φ be an

inductive definition set and for eachi ∈ {1, . . . ,n}, let ki be the arity of the inductive predicate

Pi. Define a chain of ordinal-indexed sets(ϕα
Φ ⊆ Pow(Dk1)× . . .×Pow(Dkn))α≥0 by transfinite

induction:ϕα
Φ =

S

β<α ϕΦ(ϕβ
Φ) (note that this impliesϕ0

Φ = ( /0, . . . , /0)). Then fori ∈ {1, . . . ,n},

the setπn
i (ϕα

Φ) is called theαth approximant of Pi, written asPα
i .
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Proposition 2.2.9. For any inductive definition setΦ, and for all ordinalsα, we haveϕα
Φ ⊆

ϕΦ(ϕα
Φ).

Proof. By transfinite induction onα. We then have:

∀β < α.ϕβ
Φ ⊆ ϕΦ(ϕβ

Φ) by induction hypothesis

i.e. ∀β < α.ϕβ
Φ ⊆ S

γ<α ϕΦ(ϕγ
Φ) sinceϕΦ(ϕβ

Φ) ⊆ S

γ<α ϕΦ(ϕγ
Φ)

i.e. ∀β < α.ϕΦ(ϕβ
Φ) ⊆ ϕΦ(

S

γ<α ϕΦ(ϕγ
Φ)) by Proposition 2.2.4

i.e.
S

β<α ϕΦ(ϕβ
Φ) ⊆ ϕΦ(

S

γ<α ϕΦ(ϕγ
Φ))

i.e. ϕα
Φ ⊆ ϕΦ(ϕα

Φ)

Corollary 2.2.10. For any inductive definition setΦ and for all ordinalsα, ϕα+1
Φ = ϕΦ(ϕα

Φ).

Proof. By definition,ϕα+1
Φ =

S

β<α+1ϕΦ(ϕβ
Φ)=

S

β<α ϕΦ(ϕβ
Φ)∪ϕΦ(ϕα

Φ)= ϕα
Φ∪ϕΦ(ϕα

Φ). How-

ever, sinceϕα
Φ ⊆ ϕΦ(ϕα

Φ) by Proposition 2.2.9, we can deduceϕα+1
Φ = ϕΦ(ϕα

Φ) as required.

Corollary 2.2.10 implies that for anyα, we haveϕα+1
Φ = ϕα

Φ, i.e. α is a stationary point

of the sequence1(ϕα
Φ)α≥0, if and only if ϕΦ(ϕα

Φ) ⊆ ϕα
Φ, i.e. iff ϕα

Φ is a prefixed point of the

monotone operatorϕΦ.

Note that the corollary also implies that instead of Definition 2.2.8, we could equivalently

define the approximant sequence(ϕα
Φ)α≥0 by the following, as is sometimes used:

ϕ0
Φ = /0

ϕα+1
Φ = ϕΦ(ϕα

Φ)

ϕλ
Φ =

S

β<λ ϕβ
Φ (λ a limit ordinal)

Our next result, which is again standard, tells us that all our inductive definitions “close” at

the first limit ordinalω. (This is emphatically not the case for more complex definition schemas

such as iterated inductive definitions.)

Lemma 2.2.11.For any inductive definition setΦ, the least prefixed point ofϕΦ is ϕω
Φ.

Proof. We make use of the equalityϕα+1
Φ = ϕΦ(ϕα

Φ) given by Corollary 2.2.10 throughout this

proof. We first show thatϕω
Φ is a prefixed point ofϕΦ, i.e. thatϕΦ(ϕω

Φ) ⊆ ϕω
Φ. We require to

prove thatϕi(ϕω
Φ)⊆ πn

i (ϕω
Φ) for all i ∈{1, . . . ,n} (wheren is the number of inductive predicates,

i.e. the arity ofϕΦ). Supposey∈ ϕi(ϕω
Φ) for somei ∈ {1, . . . ,n}. By construction ofϕi , there

is a ruleΦi,r such thaty∈ ϕi,r(ϕω
Φ):

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

1Technically,(ϕα
Φ)α≥0 is not a sequence but a chain of ordinal-indexed sets. However, we shall show that it is

sufficient to consider the subchain(ϕα
Φ)0≤α≤ω, which can certainly be considered a sequence.
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So we have:

y∈ {tM(x) | QM
1 uM

1 (x), . . . ,QM
h uM

h (x), tM
1 (x) ∈ πn

j1(ϕ
ω
Φ), . . . , tM

m(x) ∈ πn
jm(ϕω

Φ)}
i.e. y∈ {tM(x) | QM

1 uM
1 (x), . . . ,QM

h uM
h (x),

tM
1 (x) ∈ πn

j1(
S

k<ω ϕΦ(ϕk
Φ)), . . . , tM

m(x) ∈ πn
jm(

S

k<ω ϕΦ(ϕk
Φ))}

Then there existk1, . . . ,km ∈ N such that:

y∈ {tM(x) | QM
1 uM

1 (x), . . . ,QM
h uM

h (x), tM
1 (x) ∈ πn

j1(ϕΦ(ϕk1
Φ )), . . . , tM

m(x) ∈ πn
jm(ϕΦ(ϕkm

Φ ))}

Now let k be the maximum ofk1, . . . ,km. Note by that Proposition 2.2.9 and Corollary 2.2.10

we thus haveϕki
Φ ⊆ ϕk

Φ for all i ∈ {1, . . . ,m} and henceϕΦ(ϕki
Φ)⊆ ϕΦ(ϕk

Φ) for all i ∈ {1, . . . ,m}
by monotonicity ofϕΦ (Proposition 2.2.4). Thus we have:

y∈ {tM(x) | QM
1 uM

1 (x), . . . ,QM
h uM

h (x), tM
1 (x) ∈ πn

j1(ϕΦ(ϕk
Φ)), . . . , tM

m(x) ∈ πn
jm(ϕΦ(ϕk

Φ))}
i.e. y∈ {tM(x) | QM

1 uM
1 (x), . . . ,QM

h uM
h (x), tM

1 (x) ∈ πn
j1(ϕ

k+1
Φ ), . . . , tM

m(x) ∈ πn
jm(ϕk+1

Φ )}

So y ∈ ϕi,r (ϕk+1
Φ ), i.e. y ∈ πn

i (ϕΦ(ϕk+1
Φ )) = πn

i (ϕ
k+2
Φ ). It is obvious thatϕk+2

Φ ⊆ ϕω
Φ and so

y∈ πn
i (ϕω

Φ) as required. Soϕω
Φ is a prefixed point ofϕΦ.

To see thatϕω
Φ is in fact the least prefixed point ofϕΦ, let (X1, . . . ,Xn) be an arbitrary pre-

fixed point ofϕΦ. We show thatϕω
Φ ⊆ (X1, . . . ,Xn), i.e. that

S

m<ω ϕΦ(ϕm
Φ) ⊆ (X1, . . . ,Xn). As

ϕΦ(X1, . . . ,Xn) ⊆ (X1, . . . ,Xn) by assumption, it suffices to showϕΦ(ϕm
Φ) ⊆ ϕΦ(X1, . . . ,Xn) for

eachm< ω, i.e. for allm∈ N. SinceϕΦ is monotone (Proposition 2.2.4), we then just need to

showϕm
Φ ⊆ (X1, . . . ,Xn) for all m∈ N. We proceed by induction onm:

Casem= 0: We trivially haveϕ0
Φ = ( /0, . . . , /0) ⊆ (X1, . . . ,Xn).

Casem= k+ 1: By induction hypothesisϕk
Φ ⊆ (X1, . . . ,Xn). By monotonicity ofϕΦ (Propo-

sition 2.2.4 again) we haveϕΦ(ϕk
Φ) ⊆ ϕΦ(X1, . . . ,Xn) and, using Corollary 2.2.10 and the fact

that (X1, . . . ,Xn) is a prefixed point ofϕΦ, we obtainϕk+1
Φ ⊆ (X1, . . . ,Xn) as required. This

completes the induction and thus the proof.

Definition 2.2.12(Standard model). WhereΦ is an inductive definition set forΣ, a structure

M for Σ is said to be astandard modelfor (Σ,Φ) if for all i ∈ {1, . . . ,n}, PM
i =

S

α Pα
i .

Definition 2.2.12 thus fixes within a structure a standard interpretation of the inductive

predicates ofΣ that is uniquely determined by the other components of the structure. Actually,

by Lemma 2.2.11, we know that
S

α Pα
i is justPω

i , but we keep the more general notation for

modularity with more complex forms of inductive definition which may not close atω.
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Example 2.2.13.Let ΦN be the definition set containing only the productions forN given in

Example 2.2.5). We obtain the sequence ofN-approximants:

N0 = /0

N1 = {0M}
N2 = {0M ,sM0M}

...

Nk = {0M ,sM0M, . . . ,(sM)k0M}
...

If all “numerals” (sM)k0M for k ≥ 0 are interpreted inM as distinct elements, the predicateN

is thus interpreted as the property of being a natural number.

Example 2.2.14.Let ΦEO be the definition set given in Example 2.2.6. We obtain the following

sequence of approximants ofE andO:

(E0,O0) = ( /0, /0)

(E1,O1) = ({0M}, /0)

(E2,O2) = ({0M},{sM0M})
(E3,O3) = ({0M ,sMsM0M},{sM0M})

...

(E2k,O2k) = ({0M ,sMsM0M, . . . ,(sMsM)k0M},{sM0M , . . . ,sM(sMsM)k−10M})
...

If all “numerals” (sM)k0M for k≥ 0 are interpreted inM as distinct elements, the predicatesE

andO are interpreted as the property of being an even and odd natural number respectively.

Example 2.2.15.Let ΦR+ be the definition set given in Example 2.2.7. We obtain the sequence

of approximants ofR+:

R+0 = /0

R+1 = {(x,y) | RM(x,y)}
R+2 = {(x,y) | RM(x,y)}∪{(x,z) | ∃y.RM(x,y),RM(y,z)}
R+3 = {(x,y) | RM(x,y)}∪{(x,z) | ∃y.RM(x,y),RM(y,z)}∪

{(x,z) | ∃y∃y′.RM(x,y),RM(y,y′),RM(y′,z)}∪
{(x,z) | ∃y∃y′∃y′′.RM(x,y),RM(y,y′),RM(y′,y′′),RM(y′′,z)}

...

R+ is thus interpreted inM as the property of being in the transitive closure of the interpretation

of R in M.

Here one sees that it might be useful to allow non-atomic formulas in the premises of in-

ductive productions, in order to allow the definition of the transitive closure of an arbitrary
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formula in two variables. However, allowing arbitrary formulas in the premises of productions

leads to possible non-monotonicity of definitions, as can beimmediately seen by considering

the “production”
¬R+xy

R+xy
. To prevent this, we would need to impose conditions on the formulas

appearing in the premises of productions, such as those for iterated inductive definitions dis-

cussed above. (Doing so would be perfectly feasible, but would unnecessarily complicate the

general framework we consider.)

2.3 Henkin semantics for FOL ID

As well as the standard interpretation of inductive predicates within a structure defined in

the previous section, we shall also be interested in certainnon-standard interpretations. As

seen previously, the standard way of interpreting inductive predicates defined by an induc-

tive definition setΦ is as the least fixed point of the definition set operatorϕΦ in its do-

main Pow(Dk1)× . . .×Pow(Dkn) (whereki is the arity of the inductive predicatePi for each

i ∈ {1, . . . ,n}). However, one can also consider constructing this least fixed point in certain

restricted classes of subsets of Pow(Dk1)× . . .×Pow(Dkn), known asHenkin classes:

Definition 2.3.1 (Henkin class). A Henkin classfor a Σ-structureM = (D, . . .) is a family of

setsH = {Hk | k∈ N}, whereHk ⊆ Pow(Dk) for eachk∈ N and:

(H1) {(d,d) | d ∈ D} ∈ H2;

(H2) if Q is a predicate symbol (either ordinary or inductive) of arity k then

{(d1, . . . ,dk) | QM(d1, . . . ,dk)} ∈ Hk;

(H3) if R∈ Hk+1 andd ∈ D then{(d1, . . . ,dk) | (d1, . . . ,dk,d) ∈ R} ∈ Hk;

(H4) if R ∈ Hk and t1(x1, . . . ,xm), . . . , tk(x1, . . . ,xm) are terms (containing only variables in

{x1, . . . ,xm}) then{(d1, . . . ,dm) | (tM
1 (d1, . . . ,dm), . . . , tM

k (d1, . . . ,dm)) ∈ R} ∈ Hm;

(H5) if R∈ Hk thenR= Dk \R∈ Hk;

(H6) if R1,R2 ∈ Hk thenR1∩R2 ∈ Hk;

(H7) if R∈ Hk+1 then{(d1, . . . ,dk) | ∃d.(d1, . . . ,dk,d) ∈ R} ∈ Hk.

Our next result states, essentially, that Henkin classes contain sufficiently many relations to

interpret any formula of FOLID. We obtain the result first with a restriction on the free variables

of the formula, and subsequently without this restriction:

Lemma 2.3.2. If H = {Hk | k ∈ N} is a Henkin class for a structure M,ρ is an environment

for M, F is aΣ-formula of FOLID and x1, . . . ,xk ∈ V are distinct variables, then:

FV(F) ⊆ {x1, . . . ,xk} implies{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F} ∈ Hk
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Proof. We proceed by structural induction on the formulaF:

CaseF = Q(t1, . . . , tm), whereQ is either an ordinary or an inductive predicate symbol . By

assumptionFV(F) =
S

1≤i≤mVar(tm)⊆{x1, . . . ,xk}, so we can write eachti (for i ∈{1, . . . ,m})

asti(x1, . . . ,xk). Now by (H2) we have{(d1, . . . ,dm) | QM(d1, . . . ,dm)} ∈ Hm and, ast1, . . . , tm

are terms whose variables are contained in{x1, . . . ,xk}, we obtain by applying (H4):

{(d1, . . . ,dk) | QM(tM
1 (d1, . . . ,dk), . . . , t

M
m (d1, . . . ,dk))} ∈ Hk

and sinceρ(ti) = tM
i (ρ(x1), . . . ,ρ(x j)) for eachi ∈ {1, . . . ,m}, we thus have as required:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] Q(t1, . . . , tm)} ∈ Hk

CaseF = (t1 = t2). As in the previous two cases, we write eachti asti(x1, . . . ,xk) for i ∈ {1,2}.

By (H1) we have{(d,d) | d ∈ D} ∈ H2, i.e.{(d1,d2) | d1 = d2} ∈ H2. Sincet1, t2 are terms

whose variables are contained in{x1, . . . ,xk}, we obtain by applying (H4):

{(d1, . . . ,dk) | tM
1 (d1, . . . ,dk) = tM

2 (d1, . . . ,dk)} ∈ Hk

and sinceρ(ti) = tM
i (ρ(x1), . . . ,ρ(xk)) for i ∈ {1,2}, we thus have as required:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk,] t1 = t2} ∈ Hk

CaseF =¬F ′. NoteFV(F ′) = FV(F)⊆{x1, . . . ,xk} and so by induction hypothesis we have:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F ′} ∈ Hk

SinceHk is closed under complement by (H5) we thus have:

{(d1, . . . ,dk) | M 6|=ρ[x1 7→d1,...,xk 7→dk] F ′} ∈ Hk

i.e. {(d1, . . . ,d j) | M |=ρ[x1 7→d1,...,xj 7→dj ] ¬F ′} ∈ Hk

which completes the case.

CaseF = F1∧F2. SinceFV(F1)∪FV(F2) = FV(F1∧F2) ⊆ {x1, . . . ,xk}, we haveFV(F1) ⊆
{x1, . . . ,xk} andFV(F2) ⊆ {x1, . . . ,xk} and so by induction hypothesis we have:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F1} ∈ Hk and{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F2} ∈ Hk

SinceHk is closed under intersection by (H6), we then have as required:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F1 andM |=ρ[x1 7→d1,...,xk 7→dk] F2} ∈ Hk

i.e. {(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F1∧F2} ∈ Hk
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CaseF = F1∨F2. Notice thatHk is closed under union since it is closed under complement

(H5) and intersection (H6), by the identityA∪B = A∩B. This case then follows by the induc-

tion hypothesis in a similar manner to the previous case.

CaseF = F1 → F2. This case follows from the induction hypothesis in a similar manner to the

previous two cases.

CaseF = ∃xF′. SinceFV(F)= FV(F ′)\{x} ⊆{x1, . . . ,xk}, we haveFV(F ′)⊆{x1, . . . ,xk,x},

wherex is distinct from all ofx1, . . . ,xk. Thus by induction hypothesis:

{(d1, . . . ,dk,d) | M |=ρ[x1 7→d1,...,xk 7→dk,x7→d] F ′} ∈ Hk+1

and by applying (H7) we obtain:

{(d1, . . . ,dk) | ∃d ∈ D. M |=ρ[x1 7→d1,...,xk 7→dk,x7→d] F ′} ∈ Hk

i.e. {(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] ∃xF′} ∈ Hk

as required.

CaseF = ∀xF′. Note that for any environmentρ, we haveM |=ρ ∀xF′ ⇔ M |=ρ ¬∃x¬F ′. This

case then follows from the casesF ≡ ¬F ′ andF ≡ ∃xF′ above.

Proposition 2.3.3. If H = {Hk | k∈N} is a Henkin class for a structure M,ρ is an environment

for M, F is a formula of FOLID and x1, . . . ,xk ∈ V are distinct variables, then:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F} ∈ Hk

Proof. First notice that ifFV(F)⊆{x1, . . . ,xk} then we are immediately done by Lemma 2.3.2.

So suppose thatFV(F) 6⊆ {x1, . . . ,xk} and letFV(F)\{x1, . . . ,xk}= {y1, . . . ,y j}, wherey1, . . . ,y j

are all distinct (and necessarily distinct from all ofx1, . . . ,xk). ThenFV(F)⊆{x1, . . . ,xk,y1, . . . ,y j},

so by applying Lemma 2.3.2 we obtain:

{(d1, . . . ,dk,e1, . . . ,ej) | (M,H ) |=ρ[x1 7→d1,...,xk 7→dk,y1 7→e1,...,yj 7→ej ] F} ∈ Hk+ j

Obviouslyρ(y1), . . . ,ρ(y j) ∈ D, so by applying (H3)j times it holds that:

{(d1, . . . ,dk) | (M,H ) |=ρ[x1 7→d1,...,xk 7→dk,y1 7→ρ(y1),...,yj 7→ρ(yj )] F} ∈ Hk

and by applying part 2 of Lemma 2.1.9 (againj times), we then have:

{(d1, . . . ,dk) | (M,H ) |=ρ[x1 7→d1,...,xk 7→dk] F[y1/y1, . . . ,y j/y j ]} ∈ Hk

i.e. {(d1, . . . ,dk) | (M,H ) |=ρ[x1 7→d1,...,xk 7→dk] F} ∈ Hk

as required.
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Proposition 2.3.3 will be important when establishing soundness of proof systems with

respect to our Henkin models in the next chapter. The next result shows essentially the converse

of the proposition: that the interpretations of formulas inFOLID in a particular structure and

interpretation actually form a Henkin class.

Proposition 2.3.4. Let M = (D, . . .) be aΣ-structure and letρ be an environment for M. Then

the classH = {Hk | k∈ N} defined by:

Hk = {{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F} | F a formula, x1, . . . ,xk distinct variables}

for each k≥ 0 is a Henkin class for M.

Proof. We need to verify that the 7 closure conditions on Henkin classes (c.f. Definition 2.3.1)

hold forH :

(H1) For any distinct variablesx1,x2 of Σ, x1 = x2 is a formula ofΣ, so we have:

{(d1,d2) | M |=ρ[x1 7→d1,x2 7→d2] x1 = x2} ∈ H2

i.e. {(d1,d2) | ρ[x1 7→ d1,x2 7→ d2](x1) = ρ[x1 7→ d1,x2 7→ d2](x2)} ∈ H2

i.e. {(d1,d2) | d1 = d2} ∈ H2

i.e. {(d,d) | d ∈ D}

as required.

(H2) Let Q be a predicate symbol (either ordinary or inductive) of arity k, and letx1, . . . ,xk be

distinct variables. ThenQ(x1, . . . ,xk) is a formula ofΣ, so by definition ofHk we have:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] Q(x1, . . . ,xk)} ∈ Hk

i.e. {(d1, . . . ,dk) | QM(d1, . . . ,dk)} ∈ Hk

as required.

(H3) Let R∈ Hk+1 and letd ∈ D. By definition ofHk+1, there is a formulaF such that:

R= {(d1, . . . ,dk+1) | M |=ρ[x1 7→d1,...,xk+1 7→dk+1] F}

wherex1, . . . ,xk+1 are distinct variables. Now letz be a variable distinct from any of

x1, . . . ,xk and not occurring inF. Without loss of generality, we may setρ(z) = d. Since

F[z/xk+1] is a formula ofΣ, we have by definition ofHk:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F[z/xk+1]} ∈ Hk

i.e. {(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk,xk+1 7→ρ(z)] F} ∈ Hk by Lemma 2.1.9

i.e. {(d1, . . . ,dk) | (d1, . . . ,dk,d) ∈ R} ∈ Hk

as required (note that we can combine the substitutions in the environment in the second

step sincexk+1 is distinct from each ofx1, . . . ,xk).
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(H4) Let R ∈ Hk so that, by definition ofHk, there is a formulaF and distinct variables

x1, . . . ,xk such that:

R= {(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F}

Now let t1(y1, . . . ,ym), . . . , tk(y1, . . . ,ym) beΣ-terms whose variables are all contained in

{y1, . . . ,ym}. Without loss of generality, we may assume thaty1, . . . ,ym do not occur in

F and are distinct from all thexi . SinceF[t1(y1, . . . ,ym)/x1, . . . , tk(y1, . . . ,ym)/xk] is a

formula, we have by definition ofHm:

{(d1, . . . ,dm) | M |=ρ[y1 7→d1,...,ym7→dm] F[t1(y1, . . . ,ym)/x1, . . . , tk(y1, . . . ,ym)/xk]} ∈ Hm

Now, writing ρ′ to abbreviateρ[y1 7→ d1, . . . ,ym 7→ dm], we have by Lemma 2.1.9:

{(d1, . . . ,dm) | M |=ρ′[x1 7→ρ′(t1(y1,...,ym)),...,xk 7→ρ′(tk(y1,...,ym))] F} ∈ Hm

i.e. {(d1, . . . ,dm) | M |=ρ′[x1 7→tM
1 (d1,...,dm),...,xk 7→tM

k (d1,...,dm)] F} ∈ Hm

and sincey1, . . . ,ym do not occur inF, we have again by Lemma 2.1.9:

{(d1, . . . ,dm) | M |=ρ′[x1 7→tM
1 (d1,...,dm),...,xk 7→tM

k (d1,...,dm)] F} ∈ Hm

i.e. {(d1, . . . ,dm) | (tM
1 (d1, . . . ,dm), . . . , tM

k (d1, . . . ,dm)) ∈ R} ∈ Hm

as required.

(H5) Let R ∈ Hk so that, by definition ofHk, there is a formulaF and distinct variables

x1, . . . ,xk such that:

R= {(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F}

Then as¬F is a formula, we have:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] ¬F} ∈ Hk

i.e. {(d1, . . . ,dk) | M 6|=ρ[x1 7→d1,...,xk 7→dk] F} ∈ Hk

i.e. {(d1, . . . ,dk) | (d1, . . . ,dk) 6∈ R} ∈ Hk

i.e. R∈ Hk as required.

(H6) Let R1,R2 ∈ Hk, so that there are formulasF1,F2 such that:

R1 = {(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F1}
R2 = {(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F2})

where x1, . . . ,xk are distinct variables. Note that we can choose the same variables

x1, . . . ,xk for R1 andR2 without loss of generality. SinceF1∧F2 is a formula, we have:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F1∧F2} ∈ Hk

i.e. {(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F1 andM |=ρ[x1 7→d1,...,xk 7→dk] F2} ∈ Hk

i.e. {(d1, . . . ,dk) | (d1, . . . ,dk) ∈ R1 and(d1, . . . ,dk) ∈ R2} ∈ Hk

i.e.R1∩R2 ∈ Hk as required.
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(H7) Let R∈ Hk+1 so that there is a formulaF and distinct variablesx1, . . . ,xk+1 such that:

R= {(d1, . . . ,dk+1) | M |=ρ[x1 7→d1,...,xk+1 7→dk+1] F}

Then since∃xk+1F is a formula, we have:

{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] ∃xk+1F} ∈ Hk

i.e. {(d1, . . . ,dk) | for somed ∈ D, M |=ρ[x1 7→d1,...,xk 7→dk,xk+1 7→d] F} ∈ Hk

i.e. {(d1, . . . ,dk) | ∃d ∈ D.(d1, . . . ,dk,d) ∈ R} ∈ Hk

as required.

We now move on to defining Henkin models, which are simply Henkin classes inside which

a least prefixed point of the inductive operatorϕΦ exists:

Definition 2.3.5 (H -point). Let M be a structure forΣ, let Φ be an inductive definition set for

Σ and letH be a Henkin class forM. Also letki be the arity of the inductive predicate symbol

Pi for eachi ∈ {1, . . . ,n}. Then(X1, . . . ,Xn) is said to be anH -point (of ϕΦ) if Xi ∈Hki for each

i ∈ {1, . . . ,n}.

Lemma 2.3.6.LetH be a Henkin class for aΣ-structure M= (D, . . .) and letΦ be an inductive

definition set. Then if(X1, . . . ,Xn) is anH -point ofϕΦ then so isϕΦ(X1, . . . ,Xn).

Proof. By definition ofϕΦ, we are required to show
S

r ϕi,r(X1, . . . ,Xn) ∈ Hki for an arbitrary

i ∈ {1, . . . ,n}, whereki is the arity of the inductive predicate symbolPi. Note thatHki is closed

under complement and intersection by clauses (H5) and (H6) of Definition 2.3.1. Hki is thus

closed under union sinceA∪B= A∩B. It therefore suffices to prove thatϕi,r(X1, . . . ,Xn)∈Hki ,

whereΦi,r ∈ Φ is a production withPi in its conclusion:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

i.e. we require to show:

{tM(x) | QM
1 uM

1 (x), . . . ,QM
h uM

h (x), tM
1 (x) ∈ Xj1, . . . , t

M
m(x) ∈ Xjm} ∈ Hki

First write t1(x1, . . . ,xl ), . . . , tki (x1, . . . ,xl ) for t(x) with x1, . . . ,xl all distinct. Lety1, . . . ,yki be

variables ofΣ distinct from each other and fromx1, . . . ,xl , let j ∈ {1, . . . ,ki} and note that

y j and t j(x1, . . . ,xl ) are terms whose variables are contained in{y1, . . . ,yki ,x1, . . . ,xl}. Since

{(d,d) | d ∈ D} = {(d1,d2) | d1 = d2} ∈ H2 by (H1), we can apply (H4) to obtain:

{(d1, . . . ,dki ,e1, . . . ,el ) | d j = tM
j (e1, . . . ,el )} ∈ Hki+l for all j ∈ {1, . . . ,ki} (1)
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Now let j ∈ {1, . . . ,h}, and note that by (H2) we have{d | QM
j d} ∈ Hk wherek = |d| is the

arity of Q j . Since the variables ofuj (x) are again contained in{y1, . . . ,yki ,x1, . . . ,xl}, we have

by (H4):

{(d1, . . . ,dki ,e1, . . . ,el ) | QM
j uj (e1, . . . ,el )} ∈ Hki+l for all j ∈ {1, . . . ,h} (2)

Next, letz∈ {1, . . . ,m} and note that by assumption we haveXjz ∈ Hkjz
, i.e. {d | d ∈ Xjz} ∈

Hkjz
. Since the variables oftz(x) are again contained in{y1, . . . ,yki ,x1, . . . ,xl}, we have by

(H4):

{(d1, . . . ,dki ,e1, . . . ,el ) | tz(e1, . . . ,el ) ∈ Xjz} ∈ Hki+l for all z∈ {1, . . . ,m} (3)

Now sinceHki+l is closed under intersection, we can combine (1), (2) and (3)above to

obtain:

{(d1, . . . ,dki ,e1, . . . ,el ) | d1 = tM
1 (e1, . . . ,el ), . . . ,dki = tM

ki
(e1, . . . ,el ),

QM
1 u1(e1, . . . ,el ), . . . ,QM

h uh(e1, . . . ,el ),

t1(e1, . . . ,el ) ∈ Xj1, . . . , tm(e1, . . . ,el ) ∈ Xjm} ∈ Hki+l

By applying (H7)l times, we thus obtain:

{(d1, . . . ,dki ) | ∃e1. . . . .∃el .d1 = tM
1 (e1, . . . ,el ), . . . ,dki = tM

ki
(e1, . . . ,el ),

QM
1 u1(e1, . . . ,el ), . . . ,QM

h uh(e1, . . . ,el ),

t1(e1, . . . ,el ) ∈ Xj1, . . . , tm(e1, . . . ,el ) ∈ Xjm} ∈ Hki

which can be rewritten to:

{(tM(e) | QM
1 u1(e), . . . ,QM

h uh(e), t1(e) ∈ Xj1, . . . , tm(e) ∈ Xjm} ∈ Hki

as required.

Given a Henkin classH and a structure, a non-standard interpretation of the inductive

predicates is then obtained by considering the least prefixed H -point of ϕΦ. Note that, by

Lemma 2.3.6,ϕΦ(X1, . . . ,Xn) is anH -point if (X1, . . . ,Xn) is, so this least prefixed point, if it

exists, is constructed entirely insideH .

Definition 2.3.7 (Henkin model). Let M be a structure andΦ be an inductive definition set

for Σ, and letH be a Henkin class forM. Then (M,H ) is said to be aHenkin modelfor

(Σ,Φ) if the operatorϕΦ has a least prefixedH -point, which we write asµH .ϕΦ, and for each

i ∈ {1, . . . ,n}, PM
i = πn

i (µH .ϕΦ).

We observe that any standard modelM for (Σ,Φ) can be viewed as a special case of a

Henkin model for(Σ,Φ), by taking as the Henkin class for the structure the powersetof tuples

over the domain ofM:
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Proposition 2.3.8. If M = (D, . . .) is a standard model for(Σ,Φ) then(M,{Pow(Dk) | k∈ N})
is a Henkin model forΦ.

Proof. We writeki for the arity of the inductive predicatePi for eachi ∈ {1, . . . ,n}. First, we

observe that{Pow(Dk) | k∈ N} trivially satisfies the conditions necessary for it to be a Henkin

class (c.f. Definition 2.3.1). Secondly, we observe that theresults of Section 2.2 show thatϕΦ

has a least fixed point in Pow(Dk1)× . . .×Pow(Dkn) ⊆ ({Pow(Dk) | k ∈ N})n, as required by

Definition 2.3.7.

One sees by Proposition 2.3.8 that there are at least as many of our Henkin models as there

are standard models for a given language and set of inductivedefinitions. However, we can also

give a direct construction of a non-standard Henkin model, thus demonstrating that the class

of Henkin models is more general than the class of standard models. We start by recalling the

standard definition of Peano arithmetic (PA):

Definition 2.3.9(Peano arithmetic). Let ΣPA be the first-order language consisting of the con-

stant symbol 0, unary function symbols, and binary function symbols· and+. ThenPeano

arithmetic(PA) is the theory in the languageΣPA axiomatized by the following:

(PA1) ∀x. ¬(sx= 0)

(PA2) ∀x∀y. sx= sy→ x = y

(PA3) ∀x. 0+y = y

(PA4) ∀x∀y. sx+y = s(x+y)

(PA5) ∀x. 0·y = 0

(PA6) ∀x∀y. sx·y = x·y+y

(PA7) ∀z1 . . .∀zn∀z. F[0/z]∧∀y(F [y/z] → F[sy/z]) →∀xF[x/z]

whereF is a formula andFV(F) ⊆ {z1, . . . ,zn,z}

Proposition 2.3.10.LetΣ′
PA be the language obtained by extendingΣPA with a unary inductive

predicate symbol N, and letΦN be the inductive definition set consisting of the “natural num-

ber” productions for N defined in Example 2.2.5. Then from every ΣPA-structure in which all

of the axioms of PA are true, one can construct a Henkin model of (Σ′
PA,ΦN).

Proof. Let M = (D, . . .) be a structure in which all the axioms of PA are true and extendM to

Σ′
PA by definingNM = D. Now define a Henkin classH = {Hk | k∈ N} by:

Hk = {{(d1, . . . ,dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F} | F a formula,x1, . . . ,xk distinct variables}
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By Proposition 2.3.4,H is a Henkin class forM. We claim NM = D is the least prefixed

H -point of the definition set operatorϕΦN (given in Example 2.2.5). By clause (H2) of the

definition of a Henkin class,{d | NMd}= D ∈H1, and trivially we haveϕΦN(D)⊆ D, soNM is

a prefixedH -point of ϕΦN . Now letX be a prefixedH -point of ϕΦN . SinceX is aH -point of

ϕΦN , i.e.X ∈H1, there exists a formulaF and a variablez∈V such thatX = {d | M |=ρ[z7→d] F}.

Also, we haveϕΦN(X) ⊆ X, i.e. 0M ∈ X andd ∈ X impliessMd ∈ X for all d ∈ D by definition

of ϕΦN . By definition ofX, we then have:

M |=ρ[z7→0M ] F andM |=ρ[z7→d] F impliesM |=ρ[z7→sMd] F for all d ∈ D

By Lemma 2.1.9, part 2, it follows that:

M |=ρ F [0/z] andM |=ρ ∀y(F[y/z] → F[sy/z])

Now, since the induction axiom (PA7) is true inM by assumption, we have:

M |=ρ ∀xF[x/z]

i.e. M |=ρ[x7→d] F[x/z] for all d ∈ D

i.e. M |=ρ[x7→d][z7→ρ[x7→d](x)] F for all d ∈ D, by part 2 of Lemma 2.1.9

i.e. M |=ρ[x7→d,z7→d] F for all d ∈ D

Without loss of generality, we can choosex not to occur free inF, whence we haveM |=ρ[z7→d] F

for all d ∈ D by part 1 of Lemma 2.1.9. Thusd ∈ X for all d ∈ D, soX ⊆ D. SoD = NM is the

least prefixedH -point of ϕΦN , whence(M,H ) is indeed a Henkin model for(Σ′
PA,ΦN).

Corollary 2.3.11. There are Henkin models that are not standard models.

Proof. It is well-known that there are first-order structures forΣPA in which all of the axioms

of PA are true, but which are not isomorphic toN (for examples of the construction of such

structures, which are often called “nonstandard models of PA”, see e.g. [38]). LetM = (D, . . .)

be such a structure and let(M,H ) be the corresponding Henkin model of(Σ′
PA,ΦN) constructed

by Proposition 2.3.10.

Now if (M,H ) were a standard model for(Σ′
PA,ΦN), we would haveNM = D = ϕω

ΦN
(using

Lemma 2.2.11). But then, by inspection of theN-approximants as given in Example 2.2.13,

D could clearly contain no element not of the form(sM)n0M for somen ∈ N. The lack of

such “nonstandard elements” impliesM is isomorphic toN, contrary to assumption (the simple

argument that structures non-isomorphic toN must contain a “nonstandard element” appears

in [38]). So(M,H ) is a Henkin model of(Σ′
PA,ΦN), but not a standard model.

In general, a sufficiently powerful (finitary) proof system for FOLID cannot be complete

with respect to standard models because PA can be formalisedwithin it. We will demonstrate

this in detail in Section 3.4.2. The completeness of such a system with respect to standard
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models would then imply that the true statements of arithmetic are recursively enumerable via

an enumeration of all proofs, which is known not to be the case. However, the fact that the

class of Henkin models is strictly larger than the class of standard models raises the possibility

of finding completeness results for such a system with respect to Henkin models, as Henkin

himself did for second-order logic. Indeed, we obtain just such a result in the next chapter.



Chapter 3

LKID : a proof system for explicit

induction in FOL ID

In this chapter we formulate a proof system, LKID, for the logic FOLID in the sequent calculus

style originally developed by Gentzen in 1935 [25]. Our system can be seen essentially as

a classical sequent calculus adaptation of Martin-Löf’s intuitionistic natural deduction proof

system in [44]. McDowell, Miller, Momigliano and Tiu have considered similar intuitionistic

sequent calculi, albeit with somewhat different rules for induction and definitional unfolding

[47, 48, 49, 73, 74]. In Section 3.1 we give the proof rules of LKID, which are essentially

the rules of Gentzen’s original sequent calculus for first-order logic LK, augmented with rules

for equality and rules (adapted from [44]) for introducing atomic formulas involving inductive

predicates on the left and right of sequents. The right-introduction rules for inductive predicates

correspond to definitional unfolding and the left-introduction rules correspond to induction over

a definition. In Section 3.2 we show that our proof rules are sound with respect to the Henkin

semantics for FOLID (and hence in particular sound with respect to the standard semantics)

given in the previous chapter. We also introduce our technical apparatus for formally defining

proofs in an arbitrary system — although proofs in LKID are just the usual finite trees of

sequents — for use in the development and analysis of infiniteand cyclic proof systems in

subsequent chapters.

In Section 3.3, we show that LKID is complete with respect to Henkin model validity, i.e.

that any sequent true in every Henkin model has a proof in LKID. Moreover, this result is

obtained for the cut-free part of LKID, and so from the soundness and completeness results we

obtain a semantic proof of the eliminability of the cut rule for LKID. This result is perhaps not

entirely surprising, as proofs of cut-elimination have been given previously for the analogous

intuitionistic natural deduction and sequent calculus proof systems mentioned above [44, 48,

73], but the proof technique used for these systems does not straightforwardly adapt to the

classical setting. We believe our result to be the first of itskind for a classical system. Finally,

36
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in Section 3.4, we give a wider context to this result by showing, firstly, that LKID can be

embedded into Takeuti’s sequent calculus for second-orderlogic [69] and, secondly, that the

eliminability of cut in LKID implies the consistency of Peano arithmetic. It follows from the

latter that there can be no elementary proof of cut-eliminability for LKID.

Throughout this chapter, we shall assume a fixed languageΣ with exactlyn inductive pred-

icate symbolsP1, . . . ,Pn, and a fixed inductive definition setΦ for Σ.

3.1 Sequent calculus proof rules for FOL ID

In this section we shall give the rules of a proof system for FOLID presented in thesequent

calculusstyle invented by Gentzen [25]. We use sequent calculus because it is by now well-

established as a convenient formalism for proof-theoreticreasoning, which is our focus. It also

serves as an elegant framework in which to write formal proofs; in fact, similar formalisms

typically underlie automated theorem-proving tools.

A sequentof FOLID is written in the formΓ ⊢ ∆, whereΓ and ∆ are finite multisets of

formulas of FOLID. A sequent calculusproof rule(R) is written in the form:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n
(R)

Γ ⊢ ∆
wheren ∈ N; the sequents above the line are called thepremisesof the rule and the sequent

below the line is called theconclusionof the rule. If a rule has no premises then it is said to be

anaxiom.

In Figure 3.1 we give a version of the proof rules of Gentzen’soriginal sequent calculus

LK for classical first-order logic [25]. Note that in an instance of any of the non-structural

rules, the distinguished formula that is introduced in the conclusion, i.e., that does not appear

in any of the premises, is called theactive formulaof the rule instance. (We shall maintain this

convention in our rules for equality and for inductive predicates below.) Also, in instances of

the rules (∀R) and (∃L), the “fresh” variablex used for the introduced quantifier is called the

eigenvariableof the rule instance. For convenience, our version of LK exhibits some minor

deviations from Gentzen’s original formulation, specifically:

• Gentzen’s original “exchange” rules, governing the ordering of formulas within a se-

quent, are rendered redundant by our use of multisets in sequents;

• Gentzen’s original logical axiomsA⊢ A, for A an atomic formula, have been generalised

so that a logical axiom is just one in which a (possibly non-atomic) formula occurs on

both the left and right of a sequent;

• Gentzen’s original left- and right-weakening rules have been combined into a single

weakening rule (Wk) allowing the weakening of a sequent by anarbitrary number of

formulas simultaneously on the left and/or right;
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• we have included an explicit substitution rule (Subst), which is easily proven admissible

in LK. (However, this rule will be important for our cyclic proof system in Chapter 5,

and it is convenient to include it here.)

These differences are inessential, and are commonly adopted for the purposes of convenience.

It is easily seen that a sequent is provable in Gentzen’s original formulation of LK just in case

it is provable in our variant.

In FOLID we treat equality= as a primitive logical symbol. Accordingly, we give rules for

introducing equality formulas on the left and right of sequents in Figure 3.2, and write LKe

for the sequent calculus for first-order logic with equalityobtained by adding these rules to

LK. The first such rules seem to have been formulated by Wang [83] in 1960, and were later

investigated more fully by Kanger [36]. It is also quite usual to formulate versions of LKe by

adding axioms governing equality to LK (see e.g. [15, 70]). However, cut is not eliminable in

LKe formulated this way whereas cutis known to be eliminable when equality is treated using

inference rules similar to those in Figure 3.2 [6, 75, 51]. (We shall incidentally provide our

own demonstration of this fact later.)

Our right-introduction rule for equality merely states theaxiom that equality is reflexive (in

an arbitrary context). The left-introduction rule embodies the principle that if two termst andu

are equal then one can replace any occurrence oft in a sequent byu and vice versa. From these

rules the usual symmetry and transitivity properties of equality are immediately derivable:

(=R)
⊢ t = t

(=L)
t = u⊢ u = t

(Ax)
t1 = t3 ⊢ t1 = t3

(=L)
t1 = t2, t2 = t3 ⊢ t1 = t3

However, it should be noted that our formulation of (=L) is not well-suited to proof search,

because of the many different ways in which it can be applied to a given sequent. Given a

sequent containingmoccurrences oft andnoccurrences ofu as well as the active formulat = u,

there are 2m+n possible premises that can be obtained by applying (=L), working bottom-up

(i.e. from conclusion to premises). On the other hand, our rule permits a compact treatment of

equality which is of advantage in writing shorter proofs here and, as we have already observed,

it also admits cut-elimination.

Our proof system, which we call LKID (the “LK” part being derived from Gentzen’s orig-

inal system and the “ID” part standing for “inductive definitions”), is then obtained from LKe

by adding proof rules for introducing inductively defined predicates on the right and left of

sequents. First, for each productionΦi,r ∈ Φ, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}
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there is a sequent calculus right introduction rule forPi:

Γ ⊢ Q1u1(u),∆ . . . Γ ⊢ Qhum(u),∆ Γ ⊢ Pj1t1(u),∆ . . . Γ ⊢ Pjmtm(u),∆
(PiRr)

Γ ⊢ Pit(u),∆

Example 3.1.1.The right introduction rules for the “natural number” predicateN defined in

Example 2.2.5 are:

(NR1)
Γ ⊢ N0,∆

Γ ⊢ Nt,∆
(NR2)

Γ ⊢ Nst,∆

Example 3.1.2. The right introduction rules for the “even/odd number” predicatesE andO

defined in Example 2.2.6 are:

(ER1)
Γ ⊢ E0,∆

Γ ⊢ Ot,∆
(ER2)

Γ ⊢ Est,∆

Γ ⊢ Et,∆
(OR1)

Γ ⊢ Ost,∆

Example 3.1.3. The right introduction rules for the predicateR+ (the transitive closure of a

binary predicateR) defined in Example 2.2.7 are:

Γ ⊢ Rtu,∆
(R+R1)

Γ ⊢ R+tu,∆

Γ ⊢ R+tt ′,∆ Γ ⊢ R+t ′u,∆
(R+R2)

Γ ⊢ R+tu,∆

Before giving the rules for introducing inductive predicates on the left of sequents, we

first give a formal definition of what it means for two inductive predicates to have a mutual

definition inΦ:

Definition 3.1.4(Mutual dependency). Define the binary relationPremon the inductive pred-

icate symbols{P1, . . . ,Pn} of Σ as the least relation satisfying: wheneverPi occurs in the con-

clusion of some productionΦi,r ∈ Φ, andPj occurs amongst the premises of that production,

then Prem(Pi,Pj) holds. Also definePrem∗ to be the reflexive-transitive closure ofPrem.

Then we say two predicate symbolsP andQ aremutually dependentif both Prem∗(P,Q) and

Prem∗(Q,P) hold.

We remark that by the definition above, mutual dependency between inductive predicate

symbols is immediately reflexive, symmetric and transitive, and thus gives an equivalence re-

lation on inductive predicate symbols.

Now to obtain an instance of the induction rule for any inductive predicatePj , we first

associate with every inductive predicatePi a tuplezi of ki distinct variables (calledinduction

variables), whereki is the arity ofPi. Furthermore, we associate to every predicatePi that is

mutually dependent withPj a formula (called aninduction hypothesis) Fi, possibly containing

some of the induction variables. Next, define the formulaGi for eachi ∈ {1, . . . ,n} by:

Gi =

{

Fi if Pi andPj are mutually dependent

Pizi otherwise
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Structural rules:

Γ∩∆ 6= /0 (Axiom)
Γ ⊢ ∆

Γ′ ⊢ ∆′
Γ′ ⊆ Γ,∆′ ⊆ ∆ (Wk)

Γ ⊢ ∆

Γ,F,F ⊢ ∆
(ContrL)

Γ,F ⊢ ∆

Γ ⊢ F,F,∆
(ContrR)

Γ ⊢ F,∆

Γ ⊢ F,∆ Γ,F ⊢ ∆
(Cut)

Γ ⊢ ∆

Γ ⊢ ∆
(Subst)

Γ[θ] ⊢ ∆[θ]

Propositional rules:

Γ ⊢ F,∆
(¬L)

Γ,¬F ⊢ ∆

Γ,F ⊢ ∆
(¬R)

Γ ⊢ ¬F,∆

Γ,F,G⊢ ∆
(∧L)

Γ,F ∧G⊢ ∆

Γ ⊢ F,∆ Γ ⊢ G,∆
(∧R)

Γ ⊢ F ∧G,∆

Γ,F ⊢ ∆ Γ,G⊢ ∆
(∨L)

Γ,F ∨G⊢ ∆

Γ ⊢ F,G,∆
(∨R)

Γ ⊢ F ∨G,∆

Γ ⊢ F,∆ Γ,G⊢ ∆
(→L)

Γ,F → G⊢ ∆

Γ,F ⊢ G,∆
(→R)

Γ ⊢ F → G,∆

Quantifier rules:

Γ,F[t/x] ⊢ ∆
(∀L)

Γ,∀xF ⊢ ∆

Γ ⊢ F,∆
x /∈ FV(Γ∪∆) (∀R)

Γ ⊢ ∀xF,∆

Γ,F ⊢ ∆
x 6∈ FV(Γ∪∆) (∃L)

Γ,∃xF ⊢ ∆

Γ ⊢ F[t/x],∆
(∃R)

Γ ⊢ ∃xF,∆

Figure 3.1: Proof rules for the sequent calculus LK for classical first-order logic. The formulation

here is equivalent to Gentzen’s original formulation.

Γ[u/x, t/y] ⊢ ∆[u/x, t/y]
(=L)

Γ[t/x,u/y], t = u⊢ ∆[t/x,u/y]
(=R)

Γ ⊢ t = t,∆

Figure 3.2: Sequent calculus proof rules for equality.
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For convenience, we shall writeGi t for Gi[t/zi ], wheret is a tuple ofki terms. Then an instance

of the induction rule forPj has the following schema:

minor premises Γ,Fj t ⊢ ∆
(Ind Pj )

Γ,Pj t ⊢ ∆

where the premiseΓ,Fj t ⊢ ∆ is called themajor premiseof the rule, and for each production of

Φ having in its conclusion a predicatePi that is mutually dependent withPj , say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

there is a correspondingminor premise:

Γ,Q1u1(x), . . . ,Qhuh(x),G j1t1(x), . . . ,G jmtm(x) ⊢ Fit(x),∆

wherex 6∈ FV(Γ∪∆∪{Pjt}) for all x∈ x.

Example 3.1.5.The induction rule for the natural number predicateN defined in Example 2.2.5

is:
Γ ⊢ F0,∆ Γ,Fx⊢ Fsx,∆ Γ,Ft ⊢ ∆

(Ind N)
Γ,Nt ⊢ ∆

whereF is the induction hypothesis associated withN, which is one way of writing the familiar

induction scheme forN in sequent calculus style.

(One might intuitively expect our induction rule forN to be the following:

Γ ⊢ F0,∆ Γ,Fx⊢ Fsx,∆

Γ,Nt ⊢ Ft,∆

However, this formulation does not give cut-elimination, which we obtain for LKID later in the

chapter, essentially because it does not allow an arbitraryinduction hypothesis to be introduced

in the premises, and thus forces generalisation to be performed separately from induction. Note

that our induction rule (IndN) can be seen as combining the rule above with a cut on the

formulaFt.)

Example 3.1.6.The induction rule for the “even number” predicateE defined mutually with

the “odd number” predicateO in Example 2.2.6 is the following:

Γ ⊢ FE0,∆ Γ,FEx⊢ FOsx,∆ Γ,FOx⊢ FEsx,∆ Γ,FEt ⊢ ∆
(Ind E)

Γ,Et ⊢ ∆

whereFE andFO are the induction hypotheses associated withE andO respectively. (Note that

E,O are mutually dependent, c.f. Definition 3.1.4.)

Example 3.1.7. The induction rule for the predicateR+, the transitive closure of the binary

predicateR, defined in Example 2.2.7 is the following:

Γ,Rxy⊢ Fxy,∆ Γ,Fxy,Fyz⊢ Fxz,∆ Γ,Ftu⊢ ∆
(Ind R+)

Γ,R+tu⊢ ∆
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whereF is the induction hypothesis associated withR+. Note that, even ifR is an inductive

predicate,RandR+ are not mutually dependent (becausePrem∗(R,R+) does not hold, although

Prem∗(R+,R) does).

In [44], Martin-Löf uses the following auxiliary definition of a predicate symbol being

“linked” with another in deciding which productions have corresponding minor premises in

the induction rule for a predicate:

“First, every predicate is linked with itself. Second, ifP occurs in the conclu-
sion of an ordinary production

Qq(x) . . .Rr(x)

Pp(x)

thenP is linked with every predicate symbol which is linked with one ofQ, . . . ,R.”

The induction rule forP then has a minor premise for every production which in its conclusion

has a predicate symbol which is linked withP. However, this definition can lead to redundant

minor premises appearing in induction rules. For example, consider the usual productions for

the natural number predicateN together with a single production for a second predicateQ:

N0

Nx

Nsx

Nx

Qx

According to the definition above,Q is linked withN by virtue of the third production, and the

induction rule forN then has a minor premise for every production withQ in the conclusion:

Γ ⊢ F0,∆ Γ,Fx⊢ Fsx,∆ Γ,Fx⊢ Gx,∆ Γ,Ft ⊢ ∆
(Ind N)

Γ,Nt ⊢ ∆

The third minor premise corresponding to the production forQ is clearly redundant in the rule

above. Our motivation for using Definition 3.1.4 to generateminor premises, as opposed to

Martin-Löf’s definition, is to avoid having redundant minor premises such as the one above

appear in our induction rules.

As we remarked previously, we treat equality as a primitive logical symbol in FOLID, with

corresponding left- and right-introduction LKID proof rules (given in Figure 3.2). However,

as demonstrated in [44], it is also possible to formulate equality as an inductively defined

predicate. Assuming that= is a binary inductive predicate symbol in our language and writing

as usualx = y for = (x,y), consider the following production for=:

x = x

If we stipulate that= may not appear in the conclusion of any other productions of our inductive

definition set, then the inductive definition of= gives the following introduction rules in LKID:

Γ ⊢ Fxx,∆ Γ,Ftu⊢ ∆
(=L)

Γ, t = u⊢ ∆
(=R)

Γ ⊢ t = t,∆
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wherex 6∈FV(Γ∪∆∪{t = u}). So we obtain an identical right-introduction rule, but a different

left-introduction rule for= involving an arbitrary induction hypothesisF in the premises. As

this has obvious implications for proof search control in the system, we prefer to take= as

primitive.

An LKID proof of a sequentΓ ⊢ ∆ is, as usual, a finite tree labelled with sequents and con-

structed according to the proof rules of LKID. For now, we just give some examples by way of

illustration, and defer formal definitions and considerations of soundness until the next section.

Because it is used so frequently, and to make our written proofs smaller, we use a double line

between premises and conclusion to indicate (possibly multiple) uses of the weakening rule

(Wk). For example, the following would indicate a use of the rule (∧R) and some weakenings:

Γ′ ⊢ F Γ ⊢ G,∆
============ (∧R)
Γ,Γ′ ⊢ F ∧G,∆

Example 3.1.8.Let N,E andO be the “natural number”, “even” and “odd” predicates given

by the productions in Examples 2.2.5 and 2.2.6 (and whose corresponding rules in LKID are

given in the examples above). Then the following is an LKID proof of ⊢ ∀x(Nx→ Ex∨Ox):

(ER1)⊢ E0,O0
(∨R)

⊢ E0∨O0

(Ax)
Ey⊢ Ey

(Ax)
Oy⊢ Oy

=================== (∨L)
Ey∨Oy⊢ Oy,Ey

(OR1)
Ey∨Oy⊢ Oy,Osy

(ER2)
Ey∨Oy⊢ Esy,Osy

(∨R)
Ey∨Oy⊢ Esy∨Osy

(Ax)
Ex∨Ox⊢ Ex∨Ox

===================================================== (Ind N)
Nx⊢ Ex∨Ox

(→R)
⊢ Nx→ Ex∨Ox

(∀R)
⊢ ∀x(Nx→ Ex∨Ox)

Note that at the application of induction onNx, we associate withN the induction variablez

(say) and the induction hypothesisEz∨Oz.

Example 3.1.9. Let R be an ordinary binary predicate and letR+ be the “transitive clo-
sure” predicate given by the productions in Example 2.2.7 (and whose corresponding rules
in LKID are given in examples in Section 3.1 above). Then the following is an LKID proof of
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⊢ (∀x∀y(Rxy→ Ryx)) → (∀x∀y(R+xy→ R+yx)):

(Ax)
Rxy⊢ Rxy

(Ax)
Ryx⊢ Ryx

(R+R1)
Ryx⊢ R+yx

======================= (→L)
Rxy→ Ryx,Rxy⊢ R+yx

(∀L)
∀y(Rxy→ Ryx),Rxy⊢ R+yx

(∀L)
∀x∀y(Rxy→ Ryx),Rxy⊢ R+yx

(Ax)
R+zy⊢ R+zy

(Ax)
R+yx⊢ R+yx

========================== (R+R2)
R+yx,R+zy⊢ R+zx

(Ax)
R+yx⊢ R+yx

============================================================================ (Ind R+)
∀x∀y(Rxy→ Ryx),R+xy⊢ R+yx

(→R)
∀x∀y(Rxy→ Ryx) ⊢ R+xy→ R+yx

(∀R)
∀x∀y(Rxy→ Ryx) ⊢ ∀y(R+xy→ R+yx)

(∀R)
∀x∀y(Rxy→ Ryx) ⊢ ∀x∀y(R+xy→ R+yx)

(→R)
⊢ (∀x∀y(Rxy→ Ryx)) → (∀x∀y(R+xy→ R+yx))

Note that at the application of induction onR+xy, we associate withR+ the induction variables

z1,z2 and the induction hypothesisR+z2z1.

3.2 Henkin soundness of LKID

Definition 3.2.1(Henkin validity of sequents). Let (M,H ) be a Henkin model for(Σ,Φ). Then

a sequentΓ ⊢ ∆ is said to betrue in (M,H ) if for all environmentsρ, we haveM |=ρ J for all

J∈Γ impliesM |=ρ K for someK ∈∆. Γ ⊢ ∆ is said to beHenkin validif it is true in all Henkin

models for(Σ,Φ).

We now prove that the proof rules of LKID arelocally soundwith respect to the Henkin

semantics of FOLID , i.e., they preserve Henkin validity from premises to conclusion:

Lemma 3.2.2(Local soundness of LKID). Let (M,H ) be a Henkin model for(Σ,Φ). If all of

the premises of a rule of LKID are true in(M,H ), then the conclusion of the rule is also true

in (M,H ).

Proof. Of course, we just need to check that each rule of LKID has the desired property. The

main interesting cases are the rules for inductive predicates. Although the proof is in the re-

maining cases fairly standard, we nevertheless treat them comprehensively here for the sake of

completeness.

Case (Ax):

Γ∩∆ 6= /0 (Axiom)
Γ ⊢ ∆

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ. SinceΓ∩∆ 6= /0, there is aK ∈ ∆

such thatK ∈ Γ, i.e. M |=ρ K as required.
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Case (Wk):
Γ′ ⊢ ∆′

Γ′ ⊆ Γ,∆′ ⊆ ∆ (Wk)
Γ ⊢ ∆

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ. SinceΓ′ ⊆ Γ, M |=ρ J for all

J ∈ Γ′, and sinceΓ′ ⊢ ∆′ is true in(M,H ) by assumption, there is aK ∈ ∆′ such thatM |=ρ K.

Then, since∆′ ⊆ ∆, there is aK ∈ ∆ such thatM |=ρ K as required.

Cases (ContrL), (ContrR): Immediate.

Case (Cut):
Γ ⊢ F,∆ Γ,F ⊢ ∆

(Cut)
Γ ⊢ ∆

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ. Since the first premiseΓ ⊢ F,∆

is true in(M,H ), there is aK ∈ {F}∪∆ such thatM |=ρ K. If K ∈ ∆, then we are done; oth-

erwiseK = F and since the second premiseΓ,F ⊢ ∆ is true in(M,H ), there is aK′ ∈ ∆ such

thatM |=ρ K′, as required.

Case (Subst):
Γ ⊢ ∆

(Subst)
Γ[θ] ⊢ ∆[θ]

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ[θ], i.e. M |=ρ J[θ] for all J ∈ Γ.

By Lemma 2.1.9, part 2, it therefore holds thatM |=ρ◦θ J for all J∈ Γ. Since the premiseΓ ⊢ ∆

is true in(M,H ), we haveM |=ρ◦θ K for someK ∈ ∆, and applying part 2 of Lemma 2.1.9

again, we thus haveM |=ρ K[θ] for someK ∈ ∆. HenceM |=ρ K for someK ∈ ∆[θ] as required.

Case (=L):
Γ[u/x, t/y] ⊢ ∆[u/x, t/y]

(=L)
Γ[t/x,u/y], t = u⊢ ∆[t/x,u/y]

Suppose for contradiction that the premise is true and the conclusion false in(M,H ). Since

the conclusion is false in(M,H ), there is an environmentρ such thatM |=ρ J for all J ∈
Γ[t/x,u/y] ∪ {t = u} and M 6|=ρ K for all K ∈ ∆[t/x,u/y]. That is, we haveρ(t) = ρ(u),

and M |=ρ J[t/x,u/y] for all J ∈ Γ and M 6|=ρ K[t/x,u/y] for all K ∈ ∆. By Lemma 2.1.9,

part 2, it therefore holds thatM |=ρ[x7→ρ(t),y7→ρ(u)] J for all J ∈ Γ and M 6|=ρ[x7→ρ(t),y7→ρ(u)] K

for all K ∈ ∆. But sinceρ(t) = ρ(u), we then haveM |=ρ[x7→ρ(u),y7→ρ(t)] J for all J ∈ Γ and

M 6|=ρ[x7→ρ(u),y7→ρ(t)] K for all K ∈ ∆. So for allJ ∈ Γ and for allK ∈ ∆, M |=ρ J[u/x, t/y] and

M 6|=ρ K[u/x, t/y], which contradicts our assumption that the premiseΓ[u/x, t/y] ⊢ ∆[u/x, t/y]

is true in(M,H ). So the conclusion of the rule is true in(M,H ) as required.
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Case (=R):

(=R)
Γ ⊢ t = t,∆

Let ρ be an environment. Since triviallyρ(t) = ρ(t), we haveM |=ρ t = t, which shows that

the conclusion of the rule is true in(M,H ).

Case (∧L):
Γ,F,G⊢ ∆

(∧L)
Γ,F ∧G⊢ ∆

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ∪{F ∧G}. ThenM |=ρ J for all

J ∈ Γ∪{F,G}, and since the premiseΓ,F,G ⊢ ∆ is true in(M,H ) by assumption, there is a

K ∈ ∆ such thatM |=ρ K, which completes this case.

Case (∧R):
Γ ⊢ F,∆ Γ ⊢ G,∆

(∧R)
Γ ⊢ F ∧G,∆

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ. As the premisesΓ ⊢ F,∆ and

Γ ⊢ G,∆ are true in(M,H ) by assumption, there existK ∈ {F}∪∆ andK′ ∈ {G}∪∆ such that

M |=ρ K andM |=ρ K′. If K ∈ ∆ or K′ ∈ ∆ then we are done; otherwiseK = F andK′ = G,

whence we haveM |=ρ F ∧G and we are likewise done.

Cases (¬L) , (¬R), (∨R), (∨L) , (→L) , (→R): Similar to the cases (∧L) and (∧R) above.

Case (∃L):
Γ,F ⊢ ∆

x 6∈ FV(Γ∪∆) (∃L)
Γ,∃xF ⊢ ∆

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ∪{∃xF}, wherex 6∈ FV(Γ∪∆).

So M |=ρ J for all J ∈ Γ and for somed ∈ D (whereD is the domain ofM), M |=ρ[x7→d] F.

Sincex 6∈ FV(Γ), by part 1 of Lemma 2.1.9, it also holds thatM |=ρ[x7→d] J for all J ∈ Γ. Now

as the premiseΓ,F ⊢ ∆ is true in(M,H ), there is aK ∈ ∆ such thatM |=ρ[x7→d] K, and since

x 6∈ FV(∆) we have, again by Lemma 2.1.9, thatM |=ρ K as required.

Case (∃R):
Γ ⊢ F[t/x],∆

(∃R)
Γ ⊢ ∃xF,∆

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ. Since the premiseΓ ⊢ F[t/x],∆ is

true in (M,H ), there is aK ∈ {F[t/x]}∪∆ such thatM |=ρ K. If K ∈ ∆ we are immediately

finished; otherwiseM |=ρ F[t/x] and by part 2 of Lemma 2.1.9, we then haveM |=ρ[x7→ρ(t)] F,

i.e. M |= ∃xF, which completes this case.
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Cases (∀L) , (∀R): Similar to the cases (∃R) and (∃L) above.

Case (PiRr):

Γ ⊢ Q1u1(u),∆ . . . Γ ⊢ Qhum(u),∆ Γ ⊢ Pj1t1(u),∆ . . . Γ ⊢ Pjmtm(u),∆
(PiRr)

Γ ⊢ Pit(u),∆

where there is a productionΦi,r ∈ Φ:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

Let ρ be an environment and supposeM |=ρ J for all J ∈ Γ. Since all of the premises are true

in (M,H ), it follows that either there is aK ∈ ∆ such thatM |=ρ K, in which case we are done,

or:

M |=ρ Q1u1(u), . . . ,M |=ρ Qhum(u),M |=ρ Pj1t1(u), . . . ,M |=ρ Pjmtm(u)

i.e. QM
1 (ρ(u1(u))), . . . ,QM

h (ρ(uh(u))),ρ(t1(u)) ∈ πn
j1(µH .ϕΦ), . . . ,ρ(tm(u)) ∈ πn

jm(µH .ϕΦ)

i.e. QM
1 uM

1 (ρ(u)), . . . ,QM
h uM

h (ρ(u)), tM
1 (ρ(u)) ∈ πn

j1(µH .ϕΦ), . . . , tM
m (ρ(u)) ∈ πn

jm(µH .ϕΦ)

Now we have by the construction ofϕΦ (c.f. Definition 2.2.3):

ϕi,r(X1, . . . ,Xn) = {tM(x) | QM
1 uM

1 (x), . . . ,QM
h uM

h (x), tM
1 (x) ∈ Xj1, . . . , t

M
m(x) ∈ Xjm}

It follows by the above thattM(ρ(u))∈ϕi,r(µH .ϕΦ)⊆ϕi(µH .ϕΦ), i.e. tM(ρ(u))∈ πn
i (ϕΦ(µH .ϕΦ)).

SinceµH .ϕΦ is a fixed point ofϕΦ, it then holds thattM(ρ(u)) = ρ(t(u)) ∈ πn
i (µH .ϕΦ), i.e.

M |=ρ Pit(u), which shows the conclusion of (PiRr) to be true in(M,H ).

Case (IndPj ):
minor premises Γ,Fj t ⊢ ∆

(Ind Pj )
Γ,Pj t ⊢ ∆

First, let ρ be an environment and supposeM |=ρ J for all J ∈ Γ andM |=ρ Pj t, i.e. ρ(t) ∈
πn

j (µH .ϕΦ). Suppose for contradiction thatM 6|=ρ K for all K ∈ ∆.

Now, for eachi ∈ {1, . . . ,n}, let zi andGi be, respectively, the induction variables and the

formula associated withPi in the description of the induction rule (IndPj ) in section 3.1 above.

We writeki for the arity ofPi. Next, letx be the fresh variables appearing in the minor premises

and lete be a tuple of arbitrary elements ofD such that|x| = |e|. Define an environmentρ′

by ρ′ = ρ[x 7→ e], and note that sincex 6∈ FV(Γ∪∆) for all x∈ x by the rule side condition, it

holds by part 1 of Lemma 2.1.9 thatM |=ρ′ J for all J ∈ Γ andM 6|=ρ′ K for all K ∈ ∆.

Now define ann-tuple of sets(Y1, . . . ,Yn) ∈ Pow(Dk1)× . . .×Pow(Dkn) by:

Yi =

{

{(d1, . . . ,dki ) | M |=ρ′[z1 7→d1,...,zki 7→dki ]
Gi} if Prem∗(Pj ,Pi)

Dki otherwise
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for eachi ∈ {1, . . . ,n}, wherezi = (z1, . . . ,zki ) are the induction variables forPi. We assert the

following:

CLAIM: (Y1, . . . ,Yn) is a prefixedH -point of ϕΦ.

Then, sinceµH .ϕΦ is the least prefixedH -point of ϕΦ, it holds thatπn
j (µH .ϕΦ) ⊆Yj . As

the major premiseΓ,Fj t ⊢ ∆ is true in(M,H ), and asM |=ρ′ J for all J ∈ Γ but M 6|=ρ′ K for

all K ∈ ∆, we must haveM 6|=ρ′ Fj t. By part 2 of Lemma 2.1.9 we then haveM 6|=ρ′[zj 7→ρ′(t)] Fj ,

i.e. ρ′(t) 6∈Yj , so alsoρ′(t) 6∈ πn
j (µH .ϕΦ). As x 6∈ FV(Pj t), i.e. x 6∈Var(t) for all x∈ x by the

rule side condition, we must haveρ′(t) = ρ(t) by part 1 of Lemma 2.1.5. But then we have

ρ(t) 6∈ πn
j (µH .ϕΦ), which contradicts our original assumption, soM |=ρ K for someK ∈ ∆ as

required.

To finish the proof, it suffices to prove the claim above that(Y1, . . . ,Yn) is a prefixedH -

point of ϕΦ. First, writingH = {Hk | k ∈ N}, observe that by Proposition 2.3.3,Yi ∈ Hki for

eachi ∈ {1, . . . ,n}, i.e. (Y1, . . . ,Yn) is aH -point. (Note that the proposition does indeed show

thatDki ∈ Hki , becauseDki can be expressed as e.g.{(d1, . . . ,dki ) | M |=ρ′[z1 7→d1,...,zki 7→dki ]
t = t},

wheret is any term.) It remains to show that(Y1, . . . ,Yn) is a prefixed point ofϕΦ, i.e. that

ϕi(Y1, . . . ,Yn) ⊆Yi for eachi ∈ {1, . . . ,n}. We argue by cases oni as follows:

1. ¬Prem∗(Pj ,Pi) holds. It is then trivial thatϕi(Y1, . . . ,Yn) ⊆ Dki = Yi .

2. Prem∗(Pj ,Pi) and¬Prem∗(Pi ,Pj) hold. AsPj andPi are thus not mutually dependent,

Gi = Pizi and we have:

Yi = {(d1, . . . ,dki ) | M |=ρ′[z1 7→d1,...,zki 7→dki ]
Pizi}

= {(d1, . . . ,dki ) | M |=ρ′[z1 7→d1,...,zki 7→dki ]
Pi(z1, . . . ,zki )}

= {(d1, . . . ,dki ) | ρ′[z1 7→ d1, . . . ,zki 7→ dki ](z1, . . . ,zki ) ∈ πn
i (µH .ϕΦ)}

= {(d1, . . . ,dki ) | (d1, . . . ,dki ) ∈ πn
i (µH .ϕΦ)}

= πn
i (µH .ϕΦ)

It suffices to show thatϕi,r(Y1, . . . ,Yn)⊆Yi = πn
i (µH .ϕΦ) for an arbitrary productionΦi,r :

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

We are thus required to show:

{tM(d) | QM
1 uM

1 (d), . . . ,QM
h uM

h (d), tM
1 (d) ∈Yj1, . . . , t

M
m(d) ∈Yjm} ⊆ πn

i (µH .ϕΦ)

Note that for each of the inductive predicatesPjk appearing in the premises of the pro-

duction Φi,r , Prem∗(Pj ,Pjk) holds (becausePrem∗(Pj ,Pi) andPrem(Pi,Pjk) hold), and

¬Prem∗(Pjk,Pj) holds (because otherwisePrem∗(Pi,Pj) would hold, which contradicts
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the case assumption), and we therefore haveYjk = πn
jk(µH .ϕΦ) by the argument above.

We can therefore rewrite the statement we need to prove as:

{tM(d) | QM
1 uM

1 (d), . . . ,QM
h uM

h (d),

tM
1 (d) ∈ πn

j1(µH .ϕΦ), . . . , tM
m(d) ∈ πn

jm(µH .ϕΦ)} ⊆ πn
i (µH .ϕΦ)

i.e., ϕi,r(µH .ϕΦ) ⊆ πn
i (µH .ϕΦ), which is true sinceµH .ϕΦ is a prefixedH -point of ϕΦ.

This completes the case.

3. Prem∗(Pj ,Pi) andPrem∗(Pi ,Pj) both hold, i.e.Pi andPj are mutually dependent. As in

the previous case, we require to showϕi,r(Y1, . . . ,Yn) ⊆Yi , i.e.

{tM(d) | QM
1 uM

1 (d), . . . ,QM
h uM

h (d), tM
1 (d) ∈Yj1, . . . , t

M
m(d) ∈Yjm} ⊆Yi

As Pi andPj are mutually dependent, there is a minor premise of the instance of (IndPj ):

Γ,Q1u1(x), . . . ,Qhuh(x),G j1t1(x), . . . ,G jmtm(x) ⊢ Fit(x),∆ ( j1, . . . , jm ∈ {1, . . . ,n})

As each minor premise is true in(M,H ) by assumption and we haveM |=ρ′ J for all

J ∈ Γ andM 6|=ρ′ K for all K ∈ ∆, it holds that:

M |=ρ′ Q1u1(x), . . . ,M |=ρ′ Qhuh(x),M |=ρ′ G j1t1(x), . . . ,M |=ρ′ G jmt1(x)

impliesM |=ρ′ Fit(x)

and by applying the semantic definitions and part 2 of Lemma 2.1.9 we obtain:

Q1uM
1 (ρ′(x)), . . . ,QhuM

h (ρ′(x)),M |=ρ′[zj 1 7→tM
1 (ρ′(x))] G j1, . . . ,M |=ρ′[zjm 7→tM

m (ρ′(x))] G jm

impliesM |=ρ′[zi 7→tM (ρ′(x))] Fi

Note that for each inductive predicatePjk appearing in the premises of the production

in question,Prem∗(Pj ,Pjk) holds (sincePrem∗(Pj ,Pi) andPrem(Pi,Pjk) hold). Recalling

thatρ′(x) = e, we thus have:

Q1uM
1 (e), . . . ,QhuM

h (e), tM
1 (e) ∈Yj1, . . . , t

M
m(e) ∈Yjm implies tM(e) ∈Yi

which, asewas arbitrarily chosen, completes the case and thus the proof.

We now proceed to give a fully formal definition of an LKIDproof in line with our previous

informal definition, i.e., as finite trees labelled with sequents and constructed according to the

proof rules of LKID. We define proofs here with more formalitythan is usual in order to

facilitate a precise comparison first withinfinite proofsin Chapter 4 and then withcyclic proofs

in Chapter 5. Our formal definition of proof will also be useful when analysing proof structure

in detail in Chapters 6 and 7. We first definederivation graphs, which capture formally what it

means to be a graph constructed according to the rules of someproof system:
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Definition 3.2.3 (Derivation graph). Let Seqsdenote the set of all well-formed sequents and

Rulesdenote the set of rules of some proof systemS. Then anS derivation graphis given by

(V,s, r, p), where:

• V is a set,s : V → Seqsis a total function, andr : V → Rulesand p : N×V → V are

partial functions (we writep j(v) for p( j,v));

• for all v∈V, p j(v) is defined just in caser(v) is a rule withm premises, 1≤ j ≤ mand:

s(p1(v)) . . . s(pm(v))
(r(v))

s(v)

is an instance of ruler(v).

A derivation graphG can be seen as a conventional graph whose vertex set isV and whose

edge set isE = {(v, p j (v)) |v∈V andp j(v) is defined}.

A path in a derivation graph is a (possibly infinite) sequencev0 j0v1 j1v2 j2 . . . such that for

eachi ≥ 0, vi+1 = p ji (vi). (We often write paths simply asv0v1v2 . . .)

Next, we definederivation trees, which bear the same relationship to derivation graphs as

ordinary trees do to ordinary graphs:

Definition 3.2.4(Derivation tree). An Sderivation graphD = (V,s, r, p) is anS derivation tree

if there is a distinguished noderoot(D) ∈V such that for allv∈V, there is a unique path inD

from root(D) to v. The sequents(root(D)) is called theendsequentof the tree. A path inD is

said to berooted iff its first vertex isroot(D). D is said to be aninfinite treeiff V is infinite.

For v,v′ ∈V, v′ is anancestorof v if v′ is on the unique path fromroot(D) to v in D, and

is astrict ancestorof v if v′ is an ancestor ofv andv′ 6= v. v is said to be adescendantof v′ just

in casev′ is a strict ancestor ofv.

We shall sometimes drop the prefixS from the term “S derivation graph/tree” when the

proof systemS is clear from the context. It shall also be useful to have an easy way to distin-

guish between those derivation trees that are “finished” in the sense that every path in the tree

ends in an axiom instance, and those that are “unfinished”, and for this purpose we introduce

the notion ofbud nodesin a derivation tree1:

Definition 3.2.5 (Bud nodes). Let D = (V,s, r, p) be a derivation tree. Abud nodeof D is a

vertexB∈V such thatr(B) is undefined, i.e.B is not the conclusion of any proof rule instance

in D. (Notice that ifB is a bud node thenp j(B) must be undefined for allj.) We write Bud(D)

to denote the set of all bud nodes occurring inD.

1Thanks to René Vestergaard for suggesting the terminology“bud node”, which is intended to be suggestive of
a part of the tree not yet expanded.
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We remark that buds differ from the usual notion of aleaf of a derivation tree; leaves are

generally considered to be the conclusions of axiom instances.

We are now in a position to define formally the meaning of aproof in our system LKID

(which coincides exactly with the usual meaning of proof in asequent calculus proof system):

Definition 3.2.6(LKID proof). An LKID proof of a sequentΓ ⊢ ∆ is a finite LKID derivation

treeD whose endsequent isΓ ⊢ ∆ and such that Bud(D) = /0 (i.e. every sequent in the proof

tree is the conclusion of some proof rule application, so thederivation is “finished”).

When we write actual proofs in LKID, we use the standard representation for sequent

calculus proofs as per our earlier examples, from which suitable definitions of(V,s, r, p) can

obviously be recovered if required.

It follows from the local soundness of our proof rules that the system LKID is sound with

respect to the Henkin semantics of FOLID, i.e. that any sequent which is provable in LKID is

Henkin valid. The proof is fairly trivial, but we spell out the details anyway for the sake of

completeness:

Definition 3.2.7 (Height). If D = (V,s, r, p) is a derivation tree, then theheight (inD) of a

nodev∈V is defined to be the length of the unique path inD from root(D) to v. The height of

a derivation tree is defined to be the maximum of the heights ofthe nodes occurring within it.

Proposition 3.2.8(Soundness of LKID). If there is an LKID proof ofΓ ⊢ ∆ then Γ ⊢ ∆ is

Henkin valid (i.e. true in all Henkin models).

Proof. By induction on the heighth of the LKID proof of Γ ⊢ ∆ (which is a derivation tree).

Consider the last rule used to deriveΓ ⊢ ∆, say:

...
...

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n
(R)

Γ ⊢ ∆

where(R) is a rule of LKID. The derivations ofΓ1 ⊢ ∆1, . . . ,Γn ⊢ ∆n each have height< h,

so by the induction hypothesisΓ1 ⊢ ∆1, . . . ,Γn ⊢ ∆n are all Henkin valid. Thus by the local

soundness of rule (R) (Lemma 3.2.2),Γ ⊢ ∆ is Henkin valid as required.

3.3 Cut-free Henkin completeness of LKID

We now present a proof of theHenkin completenessproperty of LKID, namely that the converse

of Proposition 3.2.8 holds: ifΓ ⊢ ∆ is Henkin valid, then there exists an LKID proof ofΓ ⊢ ∆.

Moreover, this proof does not use the rules (Cut), (Subst) or (Wk); hence we obtain via our

soundness and completeness theorems a proof of the eliminability of these rules.
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A cut-eliminability result for a classical proof system with induction rules does not seem

to have appeared previously in the literature, but is not entirely surprising, as proper cut-

elimination theorems2 have been already been established for related intuitionistic proof sys-

tems. The first such was Martin-Löf’s proof of normalisation for a natural deduction system

for intuitionistic logic with iterated inductive definitions [44], adapted from a method used

by Tait to prove normal form theorems for primitive recursive functionals of finite type [68].

Around the same time, Jervell proved normalisation for Heyting arithmetic, the intuitionistic

version of Peano arithmetic [35]. The Tait/Martin-Löf proof method has been adapted to prove

cut-elimination for an intuitionistic sequent calculusFOλ△N with natural number induction

and definitions by McDowell and Miller [47, 48], and subsequently for Linc, an extension of

FOλ△N including both induction and coinduction, by Tiu and Momigliano [49, 73]. How-

ever, this proof method cannot easily be adapted to a classical setting because the definition

of “computability” of a derivation, on which the proof method depends, crucially relies on

the derivation having a single end formula (which in sequentcalculus corresponds to at most

one formula appearing on the right hand side of sequents). Urban and Bierman have given

a strongly normalising cut-elimination procedure for sequent calculus for classical first-order

logic [78] using an adaptation of Barbanera and Berardi’s symmetric reducibility candidates

for λ-calculus [5]. This technique could possibly be adapted to give cut-elimination in LKID,

but is already rather complicated in the setting of first-order logic, and would presumably be-

come considerably more so in the presence of inductive definitions. In any case, our semantic

approach has some advantages: it gives quite a clean proof ofcut-eliminability, and also estab-

lishes completeness with respect to validity in Henkin models, which is of independent interest.

We now turn to our completeness proof, which employs an extension of the direct style of

completeness proof for calculi for standard first-order logic as given in e.g. [15, 80]. When we

say a sequentΓ⊢ ∆ is cut-free provable, we mean that there is an LKID proof ofΓ ⊢∆ that does

not contain any instances of the rules (Cut), (Subst) or (Wk), and we show that every sequent

that is Henkin valid is cut-free provable in this sense. (We thus establish via soundness and cut-

free completeness a very slight sharpening of the usual notion of cut-eliminability. However,

the rules (Wk) and (Subst) are easily shown eliminable in anycase.) The structure of our proof

is then roughly as follows:

1. Assume thatΓ ⊢∆ is not cut-free provable, and, using ascheduleon which every formula

of FOLID appears infinitely often, construct fromΓ ⊢ ∆ a limit sequentΓω ⊢ ∆ω, where

Γω and∆ω are infinite sets, such that no finite subsequent ofΓω ⊢ ∆ω is cut-free provable;

2. Define an equivalence relation∼ on the terms ofΣ that essentially “factors out” the

2The term “cut-elimination” usually refers to the syntactictransformation of a proof containing cuts to a
proof without cuts; therefore, what we deduce from our soundness and cut-free completeness theorems is not
cut-elimination but, more weakly, theeliminabilityof cut (and of the weakening and substitution rules).
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equality formulas appearing inΓω and useΓω ⊢ ∆ω to construct a first-order structure

Mω on the terms ofΣ modulo∼ and an environmentρω interpreting the terms ofΣ

modulo∼ as elements ofMω;

3. Prove thatΓω ⊢ ∆ω is false inMω under the environmentρω;

4. UseMω andρω to define a Henkin classHω for Mω, and prove(Mω,Hω) is a Henkin

model for(Σ,Φ);

5. It now follows from steps 3 and 4 that every finite subsequent of Γω ⊢ ∆ω is false in the

Henkin model(Mω,Hω), includingΓ ⊢ ∆, soΓ ⊢ ∆ is not Henkin valid.

Steps 1,2,3 and the analogous version of step 5 for standard models also appear in the stan-

dard completeness proof for first-order logic (although theequivalence relation∼ constructed

in step 2 need only be defined if one considers first-order logic with equality). However, in our

setting, the construction of the limit sequent in step 1 musttake account of the induction rules.

Applications of right-introduction rules for inductive predicates must also be accounted for in

step 3. That said, the bulk of the new work in our proof goes into establishing that(Mω,Hω)

defined in step 4 is indeed a Henkin model.

Definition 3.3.1(Schedule). For eachi ∈ {1, . . . ,n}, letki be the arity of the inductive predicate

symbolPi. Then anLKID-schedule elementof Σ is defined as follows:

• any formula of the form¬F, F1∧F2, F1∨F2, or F1 → F2 is a LKID-schedule element;

• for any termt of Σ, any variablex∈V , and any formulaF, the pairs〈∀xF, t〉 and〈∃xF, t〉
are LKID-schedule elements;

• if Pi is an inductive predicate symbol,t is a sequence ofki terms ofΣ and, for each

j ∈ {1, . . . ,n}, zj is a sequence ofk j distinct variables andFj is a formula, then the tuple

〈Pit,z1,F1, . . . ,zn,Fn〉 is an LKID-schedule element.

An LKID-schedulefor Σ is then an enumeration(Ei)i≥0 of schedule elements ofΣ such that

every schedule element ofΣ appears infinitely often in the enumeration.

Note that since we assume that our languages are countable (c.f. Definition 2.1.1), it fol-

lows via an argument à la Cantor (i.e. a diagonal traversal of a two-dimensional grid of all

possible term constructions) that the terms ofΣ are enumerable. By the same type of argu-

ment, theΣ-formulas of FOLID are enumerable, and hence the LKID-schedule elements ofΣ

are enumerable, so an LKID-schedule indeed exists forΣ.

Definition 3.3.2 (Limit sequent). Suppose thatΓ ⊢ ∆ is not cut-free provable. We define an

infinite sequence(Γi ⊢ ∆i)i≥0 of sequents such that for eachi ≥ 0, Γi ⊢ ∆i is not cut-free prov-

able andΓi ⊢ ∆i is a subsequent ofΓi+1 ⊢ ∆i+1. We setΓ0 ⊢ ∆0 = Γ ⊢ ∆, so this is trivially true
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for i = 0. We inductively assume we have constructed(Γ j ⊢ ∆ j)0≤i≤ j with Γi ⊢ ∆i not cut-free

provable for alli ∈ {0, . . . , j}, and show how to construct the next sequentS= (Γ j+1,∆ j+1).

We first remark that no formula can be in bothΓ j and ∆ j , otherwiseΓ j ⊢ ∆ j would be

cut-free provable via (Ax). LetE be the( j +1)th element in the schedule. We proceed by case

distinction onE:

• E = ¬F. If ¬F 6∈ Γ j ∪∆ j then just defineS= Γ j ⊢ ∆ j .

If ¬F ∈ Γ j then consider the rule applications:

Γ j ⊢ F,∆ j
(¬L)

Γ j ,¬F ⊢ ∆ j
(ContrL)

Γ j ⊢ ∆ j

It is clear thatΓ j ⊢ F,∆ j is not cut-free provable since otherwiseΓ j ⊢ ∆ j would be cut-

free provable. We defineS= Γ j ⊢ F,∆ j .

If ¬F ∈ ∆ j then consider:
Γ j ,F ⊢ ∆ j

(¬L)
Γ j ⊢ ¬F,∆ j

(ContrR)
Γ j ⊢ ∆ j

Again, it is clear thatΓ j ,F ⊢ ∆ j cannot be cut-free provable, and we defineS= Γ j ,F ⊢
∆ j .

• E = F1∧F2. If F1∧F2 6∈ Γ j ∪∆ j then just defineS= Γ j ⊢ ∆ j .

If F1∧F2 ∈ Γ j then consider the rule applications:

Γ j ,F1,F2 ⊢ ∆ j
(∧L)

Γ j ,F1∧F2 ⊢ ∆ j
(ContrL)

Γ j ⊢ ∆ j

It is clear thatΓ j ,F1,F2 ⊢ ∆ j is not cut-free provable, since otherwiseΓ j ⊢ ∆ j would be

cut-free provable via the rule applications above. We thus defineS= Γ j ,F1,F2 ⊢ ∆ j .

On the other hand, ifF1∧F2 ∈ ∆ j then consider:

Γ j ⊢ F1,∆ j Γ j ⊢ F2,∆ j
(∧R)

Γ j ⊢ F1∧F2,∆ j
(ContrR)

Γ j ⊢ ∆ j

From the above it is clear that one ofΓ j ⊢ ∆ j ,F1 or Γ j ⊢ ∆ j ,F2, is not cut-free provable.

We defineS to be Γ j ⊢ ∆ j ,F1 if Γ j ⊢ ∆ j ,F1 is not cut-free provable andΓ j ⊢ ∆ j ,F2

otherwise.
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• E = F1∨F2. If F1∨F2 6∈ Γ j ∪∆ j then just defineS= Γ j ⊢ ∆ j .

If F1 ∨ F2 ∈ Γ j then, by a similar argument to the previous case, one ofΓ j ,F1 ⊢ ∆ j ,

Γ j ,F2 ⊢ ∆ j is not cut-free provable. We defineS to beΓ j ,F1 ⊢ ∆ j if this is not cut-free

provable andΓ j ,F2 ⊢ ∆ j otherwise.

Similarly, if F1∨F2 ∈ ∆ j then defineS= Γ j ,F1,F2 ⊢ ∆ j , which can similarly be seen to

be not cut-free provable.

• F = F1 → F2. If F1 → F2 6∈ Γ j ∪∆ j then just defineS= Γ j ⊢ ∆ j .

If F1 → F2 ∈ Γ j then, by a similar argument to the previous two cases, eitherΓ j ,F2 ⊢ ∆ j

or Γ j ⊢ F1,∆ j is not cut-free provable. We defineSto beΓ j ,F2 ⊢ ∆ j if this is not cut-free

provable andΓ j ⊢ F1,∆ j otherwise.

On the other hand, ifF1 → F2 ∈ ∆ j then defineS= Γ j ,F1 ⊢ F2,∆ j , which can similarly

be seen to be not cut-free provable.

• E = 〈∃xF, t〉. If ∃xF 6∈ Γ j ∪∆ j then just defineS= Γ j ⊢ ∆ j .

If ∃xF ∈ Γ j then consider:
Γ j ,F[z/x] ⊢ ∆ j

(∃L)
Γ j ,∃xF ⊢ ∆ j

(ContrL)
Γ j ⊢ ∆ j

wherez 6∈ FV(Γ j ∪∆ j). It is clear thatΓ j ,F [z/x] ⊢ ∆ j cannot be cut-free provable and

we thus defineS= Γ j ,F [z/x] ⊢ ∆ j .

On the other hand, if∃xF ∈ ∆ j then consider:

Γ j ⊢ F[t/x],∆ j
(∃R)

Γ j ⊢ ∃xF,∆ j
(ContrR)

Γ j ⊢ ∆ j

It is clear thatΓ j ⊢ F[t/x],∆ j cannot be cut-free provable and we thus defineS= Γ j ⊢
F[t/x],∆ j .

• E = 〈∀xF, t〉. If ∀xF 6∈ Γ j ∪∆ j then just defineS= Γ j ⊢ ∆ j .

If ∀xF ∈ Γ j then defineS= Γ j ,F [t/x] ⊢ ∆ j . If ∀xF ∈ ∆ j then defineS= Γ j ⊢ F[z/x],∆ j ,

wherez 6∈ FV(Γ j ∪∆ j). The justification thatS is not cut-free provable is similar to the

previous caseE = 〈∃xF, t〉.

• E = 〈Pi t,z1,F1, . . . ,zn,Fn〉, wherei ∈ {1, . . . ,n}. If Pit 6∈ Γ j then just defineS= Γ j ⊢ ∆ j .

If Pit ∈ Γ j then consider:

minor premises Γ j ,Fi t ⊢ ∆ j
(Ind Pi)

Γ j ,Pit ⊢ ∆ j
(ContrL)

Γ j ⊢ ∆ j
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where for each rule withPk in the conclusion such thatPi andPk are mutually dependent,

say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pkt(x)
j1, . . . , jm,k∈ {1, . . . ,n}

there is a minor premise:

Γ j ,Q1u1(x), . . . ,Qhuh(x),G j1t1(x), . . . ,G jmtm(x) ⊢ Fkt(x),∆ j

wherex 6∈ FV(Γ j ∪∆ j) for all x∈ x, G j is defined for eachj ∈ {1, . . . ,n} by:

G j =

{

Fj if Pj andPi are mutually dependent

Pjzj otherwise

and for all i ∈ {1, . . . ,m}, G ji t i(x) is obtained by substitutingt i(x) for zi in the obvious

way. (In other words, we use (some of) the variablesz1, . . . ,zn as the induction variables

and (some of) the formulasF1, . . . ,Fn as induction hypotheses in the instance of (IndPi).)

SinceΓ j ⊢ ∆ j is not cut-free provable, it follows that eitherΓ j ,Fit ⊢ ∆ j is not cut-free

provable, or else some minor premise is not cut-free provable. If the former holds, we set

S= Γ j ,Fit ⊢ ∆ j , and otherwise we defineS to be a minor premise which is not cut-free

provable (any will do).

Observe that by construction, we haveΓ j ⊆ Γ j+1 and∆ j ⊆ ∆ j+1 for all j ≥ 0. Let Γω =
S

j≥0Γ j and ∆ω =
S

j≥0∆ j . Then thelimit sequent forΓ ⊢ ∆ is defined to beΓω ⊢ ∆ω. Of

course, the limit sequent is not strictly speaking a sequent, since in generalΓω and∆ω will be

infinite sets. When we say that e.g.Γω ⊢ ∆ω is provable, we mean thatΓ′ ⊢ ∆′ is provable for

some finiteΓ′ ⊆ Γω and∆′ ⊆ ∆ω.

We remark that the rules for equality and the right-unfolding rules for inductive predicates

are not used when constructing the limit sequent in the definition above. The roles of equality

and of right-unfolding of inductive predicates are insteadaccounted for by separate lemmas to

appear below.

For the remainder of this section, until the statement of ourcut-free completeness theorem,

we shall assume that some fixed sequentΓ ⊢ ∆ is not cut-free provable, and thatΓω ⊢ ∆ω is the

limit sequent forΓ ⊢ ∆ constructed according to Definition 3.3.2.

Definition 3.3.3. Define the relation∼ on terms ofΣ by:

t1 = t2 ∈ Γω
(∼ Base)

t1 ∼ t2
(∼ Refl)

t ∼ t

t1 ∼ t2
(∼ Sym)

t2 ∼ t1

t1 ∼ t2 t2 ∼ t3
(∼ Trans)

t1 ∼ t3

t1 ∼ u1 . . . tk ∼ uk
(∼ Cong)

f (t1, . . . , tk) ∼ f (u1, . . . ,uk)



Chapter 3. LKID: a proof system for explicit induction in FOLID 57

where f is an arbitrary function symbol of arityk in Σ in the rule∼ Cong). We call∼ the

equivalence relation induced byΓω ⊢ ∆ω, and write [t] for the equivalence class oft with

respect to∼, i.e. [t] = {u | t ∼ u}.

Definition 3.3.4(Counter-interpretation). Define a first-order structureMω for Σ by:

• the domain ofMω is Terms(Σ)/ ∼, the set of∼-equivalence classes ofΣ-terms;

• for any constant symbolc, cMω = [c];

• for any function symbolf in Σ of arity k, f Mω([t1], . . . , [tk]) = [ f (t1, . . . , tk)];

• for any ordinary predicateQ in Σ, QMω([t1], . . . , [tk]) ⇔ ∃u1, . . . ,uk.t1 ∼ u1, . . . , tk ∼ uk

andQ(u1, . . . ,uk) ∈ Γω;

• the interpretations of the inductive predicate symbolsP1, . . . ,Pn of Σ is defined by:

(PMω
1 , . . . ,PMω

n ) is the smallestn-tuple of sets of tuples ofTerms(Σ)/ ∼ closed under the

following conditions:

1. for eachi ∈ {1, . . . ,n}, if Pi(t1, . . . , tki ) ∈ Γω thenPMω
i ([t1], . . . , [tki ]);

2. ϕΦ(PMω
1 , . . . ,PMω

n )⊆ (PMω
1 , . . . ,PMω

n ) (i.e. (PMω
1 , . . . ,PMω

n ) is a prefixed point ofϕΦ).

whereϕΦ is constructed with respect toMω andΣ. Note that this is not a circular def-

inition, since the definition ofϕΦ (c.f. Definition 2.2.3) only requires the interpretation

given to the constants, function symbols and ordinary predicates ofΣ by Mω, which we

have already defined.

Also define an environmentρω for Mω by ρω(x) = [x] for all variablesx. Then(Mω,ρω) is

called thecounter-interpretation forΓω ⊢ ∆ω.

Proposition 3.3.5. For all terms ofΣ we haveρω(t) = [t].

Proof. By induction on the structure oft.

Caset = x. We haveρω(x) = [x] by definition ofρω.

Caset = c. We haveρω(c) = cMω = [c] by definition ofρω andMω.

Caset = f (t1, . . . , tk). We have:

ρω( f (t1, . . . , tk)) = f Mω(ρω(t1), . . . ,ρω(tk)) c.f. Definition 2.1.4

= f Mω([t1], . . . , [tk]) by induction hypothesis

= [ f (t1, . . . , tk)] by definition ofMω
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Proposition 3.3.6. If t (x1, . . . ,xk) is a term (whose variables are all contained in{x1, . . . ,xk}),

and t1, . . . , tk are terms, we have[t(t1, . . . , tk)] = tMω([t1], . . . , [tk]).

Proof. By induction on the structure oft.

Caset = x. As the variables oft are all contained in{x1, . . . ,xk}, we havet = xi for some

i ∈ {1, . . . ,k}. We therefore require to prove[xi ] = [xi ], which is trivial.

Caset = c. We are required to prove[c] = cMω , which is immediately the case by definition of

Mω.

Caset = f (u1, . . . ,um). By assumption we haveVar(ui) ⊆ {x1, . . . ,xk} and so we can writeui

asui(x1, . . . ,xk) for all i ∈ {1, . . . ,m}. Then we have:

[( f (u1, . . . ,um))(t1, . . . , tk)] = [ f (u1(t1, . . . , tk), . . . ,um(t1, . . . , tk))]

= f Mω([u1(t1, . . . , tk)], . . . , [um(t1, . . . , tk)]) (defn ofMω)

= f Mω(uMω
1 ([t1], . . . , [tk]), . . . ,uMω

m ([t1], . . . , [tk])) (by IH)

= ( f (u1, . . . ,um))Mω([t1], . . . , [tk])

which completes the proof.

Lemma 3.3.7. If t ∼ u then, for any formula F, it holds thatΓω ⊢ F [t/x] is cut-free provable

iff Γω ⊢ F[u/x] is cut-free provable.

Proof. By rule induction ont ∼ u.

Case(∼ Base). We havet = u∈ Γω. SupposeΓω ⊢ F [t/x] is cut-free provable, i.e.,Γ′ ⊢ F[t/x]

is cut-free provable for some finiteΓ′ ⊆ Γω. Without loss of generality, we can assumet =

u∈ Γ′ (for if not, we can weaken the derivation ofΓ′ ⊢ F[t/x] everywhere byt = u on the left,

possibly renaming some eigenvariables). Then we can deriveΓ′ ⊢ F [u/x] as follows:

...

Γ′ ⊢ F [t/x]
(=L)

Γ′, t = u⊢ F[u/x]
(ContrL)

Γ′ ⊢ F[u/x]

whence it follows thatΓω ⊢ F[u/x] is cut-free provable becauseΓ′ ⊆ Γω. The converse is sim-

ilar.

Case(∼ Refl). We require to prove thatΓω ⊢ F[t/x] is cut-free provable iffΓω ⊢ F[t/x] is

cut-free provable, which is trivially the case.
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Case(∼ Sym). By induction hypothesis, we have thatΓω ⊢ F[t1/x] is cut-free provable iff

Γω ⊢ F[t2/x] is cut-free provable. It immediately follows thatΓω ⊢ F[t2/x] is cut-free provable

iff Γω ⊢ F[t1/x] is cut-free provable.

Case(∼ Trans). By induction hypothesis, we have thatΓω ⊢ F[t1/x] is cut-free provable iff

Γω ⊢ F[t2/x] is cut-free provable iffΓω ⊢ F[t3/x] is cut-free provable. It immediately follows

thatΓω ⊢ F [t1/x] is cut-free provable iffΓω ⊢ F[t3/x] is cut-free provable.

Case(∼ Comp). By induction hypothesis we have that for all formulasF and alli ∈ {1, . . . ,k},

Γω ⊢ F [ti/x] is cut-free provable iffΓω ⊢ F[ui/x] is cut-free provable. We require to show that

Γω ⊢ F[ f (t1, . . . , tk)/x] is cut-free provable iffΓω ⊢ F[ f (u1, . . . ,uk)/x] is cut-free provable. By

successively applying the induction hypotheses, we obtain:

Γω ⊢ F[ f (t1, . . . , tk)/x] cut-free provable

⇔ Γω ⊢ F[ f (u1, t2, . . . , tk)/x] cut-free provable

⇔ Γω ⊢ F[ f (u1,u2, t3, . . . , tk)/x] cut-free provable
...

⇔ Γω ⊢ F[ f (u1, . . . ,uk)/x] cut-free provable

which completes the case.

Lemma 3.3.8. For any i∈ {1, . . . ,n}, if PMω
i ([t1], . . . , [tki ]) thenΓω ⊢ Pi(t1, . . . , tki ) is cut-free

provable.

Proof. Define ann-tuple of sets(X1, . . . ,Xn) by:

Xi = {([t1], . . . , [tki ]) | Γω ⊢ Pi(t1, . . . , tki ) is cut-free provable}

for eachi ∈ {1, . . . ,n}, whereki is the arity ofPi. First, note that if([t1], . . . , [tki ]) ∈ Xi, then by

definition ofXi there exist termsu1, . . . ,uki such thatt1 ∼ u1, . . . , tki ∼ uki andΓω ⊢Pi(u1, . . . ,uki )

is cut-free provable. Then by Lemma 3.3.7 appliedki times, it holds thatΓω ⊢ Pi(t1, . . . , tki ).

We shall use this fact more than once in what follows.

We shall show that(X1, . . . ,Xn) satisfies:

1. for eachi ∈ {1, . . . ,n}, if Pi(t1, . . . , tki ) ∈ Γω then([t1], . . . , [tki ]) ∈ Xi;

2. ϕΦ(X1, . . . ,Xn) ⊆ (X1, . . . ,Xn).

Since(PMω
1 , . . . ,PMω

n ) is defined to be the smallest tuple of sets satisfying these properties, it

follows that if PMω
i ([t1], . . . , [tki ]), then([t1], . . . , [tki ]) ∈ Xi and thus by the argument above, it

holds thatΓω ⊢ Pi(t1, . . . , tki ) is cut-free provable. We now proceed to verify that 1 and 2 above

do indeed hold:
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1. Let i ∈ {1, . . . ,n} and supposePi(t1, . . . , tki ) ∈ Γω. It follows that Γω ⊢ Pi(t1, . . . , tki ) is

cut-free provable (via an application of (Ax)), and hence([t1], . . . , [tki ]) ∈ Xi by definition

of Xi.

2. By definition ofϕΦ, we are required to show
S

r ϕi,r (X1, . . . ,Xn)⊆Xi for eachi ∈{1, . . . ,n}.

Let i ∈ {1, . . . ,n} and letΦi,r be an arbitrary production withPi in the conclusion, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

It suffices to show thatϕi,r(X1, . . . ,Xn) ⊆ Xi, i.e.

{tMω(x) | QMω
1 uMω

1 (x), . . . ,QMω
h uMω

h (x), tMω
1 (x) ∈ Xj1, . . . , t

Mω
m (x) ∈ Xjm} ⊆ Xi

which, by Proposition 3.3.6, rewrites to:

{[t(x)] | QMω
1 [u1(x)], . . . ,QMω

h [uh(x)], [t1(x)] ∈ Xj1, . . . , [tm(x)] ∈ Xjm} ⊆ Xi (∗)

SupposeQMω
1 [u1(x)], . . . ,QMω

h [uh(x)] all hold and[t1(x)] ∈Xj1, . . . , [tm(x)] ∈Xjm. By the

argument at the start of the proof, there then exist cut-freeproofs ofΓω ⊢ Pj1t1(x), . . . ,

Γω ⊢ Pjmtm(x). Similarly, for eachi ∈ {1, . . . ,h}, letting Qi have arityki and writ-

ing ([u1(x)], . . . , [uki (x)]) for [ui(x)], we have by the definition ofMω that there exist

termsw1, . . . ,wki such thatu1(x) ∼ w1, . . . ,uki (x) ∼ wki and Qi(w1, . . . ,wki ) ∈ Γω. So

Γω ⊢ Qi(w1, . . . ,wki ) is cut-free provable by an application of (Ax) and, by applying

Lemma 3.3.7ki times, so isΓω ⊢ Qi(u1(x), . . . ,uki (x)), i.e.,Γω ⊢ Qiui(x).

We now observe that we can obtain a cut-free proof ofΓω ⊢ Pit(x) using the right-

unfolding rule corresponding to the production under consideration as follows:

Γω ⊢ Q1u1(x) . . .Γω ⊢ Qhuh(x) Γω ⊢ Pj1t1(x) . . .Γω ⊢ Pjmtm(x)
(PiRr )

Γω ⊢ Pit(x)

Hence we have[t(x)] ∈ Xi as required. This proves the set inclusion(∗) above and thus

completes the proof.

Lemma 3.3.9. If F ∈ Γω then Mω |=ρω F, and if F∈ ∆ω then Mω 6|=ρω F.

Proof. By induction on the structure ofF.

CaseF = P(t1, . . . , tk). There are two subcases to consider: eitherP is an ordinary predicate or

an inductive predicate.
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SubcaseP = Q, whereQ is an ordinary predicate symbol ofΣ. SupposeQ(t1, . . . , tk) ∈ Γω. As

ti ∼ ti for all i ∈ {1, . . . ,k} by (∼Refl), we thus haveQMω([t1], . . . , [tk]) by definition ofMω, i.e.

Mω |=ρω Q(t1, . . . , tk) as required.

Now supposeQ(t1, . . . , tk) ∈ ∆ω, and suppose for contradiction thatMω |=ρω Q(t1, . . . , tk),

i.e. QMω([t1], . . . , [tk]) holds. Then there exist termsu1, . . . ,uk such thatt1 ∼ u1, . . . , tk ∼ uk

and Q(u1, . . . ,uk) ∈ Γω. So there is a cut-free proof ofΓω ⊢ Q(u1, . . . ,uk) (via an applica-

tion of (Ax)). By Lemma 3.3.7 (appliedk times), it follows that there is a cut-free proof of

Γω ⊢ Q(t1, . . . , tk). SinceQ(t1, . . . , tk) ∈ ∆ω, there is a cut-free proof ofΓω ⊢ ∆ω, which is a

contradiction. HenceMω 6|=ρω Q(t1, . . . , tk) as required.

SubcaseP = Pi, wherePi is an inductive predicate symbol ofΣ. If Pi(t1, . . . , tk) ∈ Γω then

PMω
i ([t1], . . . , [tk]) by definition of PMω

i . By Proposition 3.3.5,PMω
i (ρω(t1), . . . ,ρω(tk)), i.e.

Mω |=ρω Pi(t1, . . . , tk) as required.

Now supposePi(t1, . . . , tk) ∈ ∆ω and suppose for contradiction thatMω |=ρω Pi(t1, . . . , tk),

i.e. PMω
i (ρω(t1), . . . ,ρω(tk)). By Proposition 3.3.5,PMω

i ([t1], . . . , [tk]) and so by Lemma 3.3.8,

Γω ⊢Pi(t1, . . . , tk) is cut-free provable. SincePi(t1, . . . , tk)∈ ∆ω, it holds thatΓω ⊢ ∆ω is cut-free

provable, which is a contradiction. SoMω 6|=ρω Pi(t1, . . . , tk) as required.

CaseF = (t1 = t2). If t1 = t2 ∈ Γω then we havet1 ∼ t2 (by (∼Base)) and thus[t1] = [t2]. By

Proposition 3.3.5 it follows thatρω(t1) = ρω(t2) and soMω |=ρω t1 = t2.

Now supposet1 = t2 ∈ ∆ω, and suppose for contradiction thatMω |=ρω t1 = t2, i.e. ρω(t1) =

ρω(t2). By Proposition 3.3.5,[t1] = [t2] and sot1 ∼ t2. Now, observe thatΓω ⊢ t1 = t1 is cut-

free provable via an application of (=R). Hence by Lemma 3.3.7,Γω ⊢ t1 = t2 is also cut-free

provable. But sincet1 = t2 ∈ ∆ω, we would then have a cut-free proof ofΓω ⊢ ∆ω, which is a

contradiction. HenceMω 6|=ρω t1 = t2.

CaseF = ¬F ′. If ¬F ′ ∈ Γω, then by the construction ofΓω ⊢ ∆ω (c.f.. Definition 3.3.2),

there is ani ≥ 0 such that for allj ≥ i, ¬F ′ ∈ Γ j . Furthermore, as the element¬F ′ appears

infinitely often on the schedule according to whichΓω ⊢ ∆ω is constructed, it follows that

F ′ ∈ ∆ j for some j ≥ i and henceF ′ ∈ ∆ω. By induction hypothesis, we thus haveMω 6|=ρω F ′,

i.e. Mω |=ρω ¬F as required.

Now suppose¬F ′ ∈ ∆ω. By construction ofΓω ⊢ ∆ω, F ′ ∈ Γω so by induction hypothesis

we haveMω |=ρω F ′, i.e. Mω 6|=ρω ¬F ′ as required.

CaseF = F1∧F2. If F1∧F2 ∈ Γω then by construction ofΓω ⊢ ∆ω, F1 ∈ Γω andF2 ∈ Γω. By

induction hypothesisMω |=ρω F1 andMω |=ρω F2, i.e. Mω |=ρω F1∧F2 as required.

Now if F1∧F2 ∈ ∆ω then by construction we haveF1 ∈ ∆ω or F2 ∈ ∆ω. In the former case
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we have by induction hypothesisMω 6|=ρω F1 whence it is clear thatMω 6|=ρω F1∧F2; the other

case is similar.

CasesF = F1∨F2, F = F1→F2. These cases are similar to the previous caseF = F1∧F2 above.

CaseF = ∃xF′. If ∃xF′ ∈ Γω then by construction ofΓω ⊢ ∆ω, we haveF ′[z/x] ∈ Γω for

some variablez, whenceMω |=ρω F ′[z/x] by induction hypothesis. By part 2 of Lemma 2.1.9,

Mω |=ρω[x7→ρω(z)] F ′, i.e. Mω |=ρω ∃xF′.

Now suppose∃xF′ ∈ ∆ω, and observe that by construction ofΓω ⊢∆ω (c.f. Definition 3.3.2)

there is then ani ≥ 0 such that∃F ′ ∈ Γ j for all j ≥ i. Now consider an arbitrary termt

of Σ and note that the element〈∃xF′, t〉 appears infinitely often on the schedule(Ei)i≥0 ac-

cording to whichΓω ⊢ ∆ω is constructed. So there is aj ≥ i such thatE j = 〈∃xF′, t〉 and

thus we haveF ′[t/x] ∈ ∆ω. As t was chosen arbitrarily, it follows that for every termt,

F ′[t/x] ∈ ∆ω. So by induction hypothesisMω 6|=ρω F ′[t/x] for every termt. Suppose for contra-

diction thatMω |=ρω ∃xF′. Then for somet ∈ Terms(Σ), we would haveMω |=ρω[x7→[t]] F ′,

i.e. Mω |=ρω[x7→ρω(t)] F ′ by Proposition 3.3.5. By part 2 of Lemma 2.1.9, it follows that

Mω |=ρω F ′[t/x], which contradicts our induction hypotheses. HenceMω 6|=ρω ∃xF′.

CaseF = ∀xF′. This case is similar to the caseF = ∃xF′ above.

Definition 3.3.10(Henkin counter-class). DefineHω = {Hk | k∈ N} by:

Hk = {{([t1], . . . , [tk]) | Mω |=ρω F[t1/x1, . . . , tk/xk]} | F a formula,x1, . . . ,xk distinct variables}

for eachk≥ 0. (Notice that we do not place any restrictions on the free variables of the formula

F.) ThenHω is said to be theHenkin counter-class forΓω ⊢ ∆ω.

Lemma 3.3.11.The Henkin counter-classHω for Γω ⊢ ∆ω is indeed a Henkin class for Mω.

Proof. By Proposition 2.3.4, the class{Hk | k∈ N} defined by:

Hk = {{(d1, . . . ,dk) | Mω |=ρω[x1 7→d1,...,xk 7→dk] F} | F a formula,x1, . . . ,xk distinct variables}

for eachk ∈ N is a Henkin class forMω. Now since the domain ofMω is Terms(Σ)/ ∼, an

arbitrary elementdi of the domain can be written as[ti], whereti is a term ofΣ, and thus we

can write an arbitrary member ofHk in the Henkin class above as:

{([t1], . . . , [tk]) | Mω |=ρω[x1 7→[t1],...,xk 7→[tk]] F}
i.e. {([t1], . . . , [tk]) | Mω |=ρω[x1 7→ρω(t1),...,xk 7→ρω(tk)] F} by Proposition 3.3.5

i.e. {([t1], . . . , [tk]) | Mω |=ρω F[t1/x1, . . . , tk/xk]} by Lemma 2.1.9, part 2

and thusHω is a Henkin class forMω as required.
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Lemma 3.3.12.(Mω,Hω) is a Henkin model for(Σ,Φ).

Proof. First observe thatHω is indeed a Henkin class forMω by Lemma 3.3.11. Now for each

i ∈ {1, . . . ,n}, lettingki be the arity ofPi andx1, . . . ,xki be distinct variables,Pi(x1, . . . ,xki ) is a

formula ofΣ, so by definition ofHki :

{([t1], . . . , [tki ]) | Mω |=ρω Pi(t1, . . . , tki )} ∈ Hki

i.e. {([t1], . . . , [tki ]) | PMω
i ([t1], . . . , [tki ])} ∈ Hki

i.e. PMω
i ∈Hki , so(PMω

1 , . . . ,PMω
n ) is aHω-point. We also note that by definition of(PMω

1 , . . . ,PMω
n )

we haveϕΦ(PMω
1 , . . . ,PMω

n ) ⊆ (PMω
1 , . . . ,PMω

n ), so(PMω
1 , . . . ,PMω

n ) is a prefixedHω-point of ϕΦ.

It therefore remains to show that(PMω
1 , . . . ,PMω

n ) is theleastprefixedHω-point ofϕΦ. Sup-

pose that(X1, . . . ,Xn) is a prefixedHω-point ofϕΦ. We shall prove that(X1, . . . ,Xn) necessarily

satisfies:

1. for eachi ∈ {1, . . . ,n}, if Pi(t1, . . . , tki ) ∈ Γω then([t1], . . . , [tki ]) ∈ Xi;

2. ϕΦ(X1, . . . ,Xn) ⊆ (X1, . . . ,Xn).

Since(PMω
1 , . . . ,PMω

n ) is defined to be the smallest tuple of sets satisfying these properties, it

then follows that(PMω
1 , . . . ,PMω

n )⊆ (X1, . . . ,Xn), and so(PMω
1 , . . . ,PMω

n ) is the least prefixedHω-

point of ϕΦ. We observe that(X1, . . . ,Xn) immediately satisfies 2. since it is a prefixed point

of ϕΦ by assumption. Also, since(X1, . . . ,Xn) is anHω-point (again by assumption), we have

Xi ∈ Hki for all i ∈ {1, . . . ,n}, so for eachi ∈ {1, . . . ,n} there exists a formulaFi and a tuple of

ki distinct variableszi = (z1, . . . ,zki ) such that:

Xi = {([t1], . . . , [tki ]) | Mω |=ρω Fi[t1/z1, . . . , tki /zki ]}

We now show that 1. above holds, that is, for eachi ∈ {1, . . . ,n}, Pi(t1, . . . , tki ) ∈ Γω im-

plies ([t1], . . . , [tki ]) ∈ Xi. We inductively assume that the statement holds for all predicates

Pj such thatPrem∗(Pi,Pj) and¬Prem∗(Pj ,Pi) hold, and show that the statement holds forPi.

(Technically, one is inducing over the ordering≺ of inductive predicate symbols defined by

Pj ≺ Pi ⇔ Prem∗(Pi ,Pj) and¬Prem∗(Pj ,Pi); one can easily see that≺ is irreflexive, anti-

symmetric, and transitive, and that there are no infinite decreasing≺-chains as there are only

finitely many inductive predicate symbols.) SupposePit ∈ Γω (writing t for (t1, . . . , tki )), so

that by construction ofΓω ⊢ ∆ω, there is aj ′ such thatPit ∈ Γ j for all j ≥ j ′. Now note that

the element〈Pi t,z1,F1, . . . ,zn,Fn〉 occurs infinitely often on the scheduleE according to which

Γω ⊢ ∆ω is constructed, so there is aj ≥ j ′ such thatE j = 〈Pit,z1,F1, . . . ,zn,Fn〉 andPit ∈ Γ j ,

and soΓ j+1 ⊢ ∆ j+1 is one of the premises obtained fromΓ j ⊢ ∆ j by applying the rule (IndPi)

with induction hypothesesF1, . . . ,Fn and induction variablesz1, . . . ,zn (c.f. Definition 3.3.2). It

follows that either:
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1. Γ j+1 ⊢ ∆ j+1 is the major premiseΓ j ,Fit ⊢ ∆ j of the induction rule instance, or

2. there is a productionΦk,r ∈ Φ:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pkt(x)
j1, . . . , jm,k∈ {1, . . . ,n}

such thatPk andPi are mutually dependent, andΓ j+1 ⊢ ∆ j+1 is the minor premise:

Γ,Q1u1(x), . . . ,Qhuh(x),G j1t1(x), . . . ,G jmtm(x) ⊢ Fkt(x),∆

whereG j is defined for eachj by: G j =

{

Fj if Pj andPi are mutually dependent

Pjzj otherwise

In the former case, we haveFit ∈ Γω and thusMω |=ρω Fit by Lemma 3.3.9, so by definition of

Xi we have[t] = ([t1], . . . , [tki ]) ∈ Xi and are finished. In the latter case, we have:

Q1u1(x) ∈ Γω, . . . ,Qhuh(x) ∈ Γω,G j1t1(x) ∈ Γω, . . . ,G jmtm(x) ∈ Γω,Fkt(x) ∈ ∆ω

Now, firstly we haveMω |=ρω Q1u1(x), . . . ,Mω |=ρω Qhuh(x) by Lemma 3.3.9 and so, by def-

inition of Mω and Proposition 3.3.5,QMω
1 [u1(x)], . . . ,QMω

h [uh(x)] all hold. Secondly, we have

Mω 6|=ρω Fkt(x), again by Lemma 3.3.9, and so[t(x)] 6∈ Xk by definition ofXk. Now consider

the remaining statementsG jl t l(x) ∈ Γω (wherel ∈ {1, . . . ,m}). If Pjl andPi are mutually de-

pendent, thenG jl = Fjl and soMω |=ρω Fjl t l(x) by Lemma 3.3.9, i.e.[t l(x)] ∈ Xjl by definition

of Xjl . Otherwise, note thatPrem∗(Pi,Pjl ) and¬Prem∗(Pjl ,Pi) both hold, i.e.Pjl ≺ Pi, because

Prem(Pk,Pjl ) holds andPk andPi are mutually dependent, butPjl andPi are not mutually de-

pendent. SincePjl t l(x) ∈ Γω we then have[t l(x)] ∈ Xjl by induction hypothesis. In summary,

we have the following:

QMω
1 [u1(x)], . . . ,QMω

h [uh(x)], [t1(x)] ∈ Xj1, . . . , [tm(x)] ∈ Xjm, [t(x)] 6∈ Xk (∗)

But sinceϕΦ(X1, . . . ,Xn) ⊆ (X1, . . . ,Xn), we must haveϕk,r(X1, . . . ,Xn) ⊆ Xk, i.e.

{[t(x)] | QMω
1 [u1(x)], . . . ,QMω

h [uh(x)], [t1(x)] ∈ Xj1, . . . , [tm(x)] ∈ Xjm} ⊆ Xk

using Proposition 3.3.6, which contradicts(∗) above. This completes the case and thus the

proof.

Theorem 3.3.13(Cut-free Henkin completeness of LKID). If Γ ⊢ ∆ is Henkin valid, then it is

cut-free provable in LKID.

Proof. Suppose for contradiction thatΓ ⊢ ∆ is Henkin valid, but not cut-free provable, and

let Γω ⊢ ∆ω be the limit sequent forΓ ⊢ ∆ (c.f. Definition 3.3.2) with counter-interpretation

(Mω,ρω) and Henkin counter-classHω (c.f. Definitions 3.3.4 and 3.3.10). By Lemma 3.3.12,

(Mω,Hω) is a Henkin model for(Σ,Φ), and by Lemma 3.3.9, we haveMω |=ρω F for all F ∈ Γω
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andMω 6|=ρω F for all F ∈ ∆ω. As Γ ⊆ Γω and∆ ⊆ ∆ω, we thus haveMω |=ρω F for all F ∈ Γ

andMω 6|=ρω F for all F ∈ ∆.

In other words, we have constructed a Henkin model(Mω,Hω) of (Σ,Φ) such thatΓ ⊢ ∆ is

not true in(Mω,Hω) and we have the required contradiction. HenceΓ ⊢ ∆ is cut-free provable

in LKID.

Theorem 3.3.14(Eliminability of cut for LKID). If Γ ⊢∆ is provable in LKID then it is cut-free

provable (i.e. provable without using the rules (Cut), (Subst) or (Wk)).

Proof. SupposeΓ ⊢ ∆ is provable in LKID. By soundness (Proposition 3.2.8),Γ ⊢ ∆ is Henkin

valid. Thus by cut-free completeness (Theorem 3.3.13),Γ ⊢ ∆ is cut-free provable in LKID.

3.4 LKID , second-order logic, and Peano arithmetic

In order to put our results about LKID into a wider context, wenow demonstrate, firstly, that

LKID can be viewed as a subsystem of Takeuti’s sequent calculus for classical second order

logic and, secondly, that Peano arithmetic PA (c.f. Definition 2.3.9) can be formalised within

LKID. It follows that the consistency of PA follows from the eliminability of cut in LKID,

whence we deduce that there can be no elementary proof of Theorem 3.3.14.

3.4.1 Embedding LKID in L2K

The main features of Takeuti’s second-order sequent calculus L2K (our name for the calculus is

taken from Girard [29], although the system is namedG1LC in Takeuti’s original formulation

[69]), are as follows:

• the underlying languageΣ has two types of objects: (first-order) individuals, and sets of

individuals;

• we have accordingly two types of variables: standard (first-order) variablesx,y,z, . . .,

which range over individuals; and second-order variablesX,Y,Z, . . ., which range over

sets of (tuples of) individuals, and two versions of the∀ and∃ quantifiers:∀x,∀X,∃x,∃X;

• there is a special binary predicate∈ that takes as arguments one individual and one set

(the intended interpretation ofx∈ X is, of course, “x is a member ofX”);

• we may buildabstraction termsfrom formulas: ifF is a formula, andx is a first-order

variable, thenλx.F is an abstraction term (whose intended interpretation is “the set ofx

such thatF”), and we may interchangeably writeFt andt ∈ F;
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• the rules for L2K are the rules of LK, augmented by the obvious rules for the second-

order quantifiers:

Γ,F [T/X] ⊢ ∆
(∀2L)

Γ,∀XF ⊢ ∆

Γ ⊢ F,∆
X /∈ FV(Γ∪∆) (∀2R)

Γ ⊢ ∀XF,∆

Γ,F ⊢ ∆
X 6∈ FV(Γ∪∆) (∃2L)

Γ,∃XF ⊢ ∆

Γ ⊢ F[T/X],∆
(∃2R)

Γ ⊢ ∃XF,∆

whereT is an abstraction term in the rules (∀2R) and (∃2L), and the set of free variables

of a formulaF, FV(F), is defined in the obvious way (that is to say, analogously to

Definition 2.1.7).

We claim that LKID is subsumed by the second-order sequent calculus L2K. To see this, we

translate equality and the inductive predicates ofΣ as abstraction terms (i.e. sets) so that atomic

formulas involving equality or inductive predicates are translated as membership statements for

their respective sets. The (translations of the) rules for equality and for inductive predicates are

then derivable in L2K, whence the translation of every LKID-provable sequent isprovable in

L2K.

To begin with, we translate equality,=, as the abstraction termλx.λy.∀X(x∈ X ↔ x∈Y),

and as usual writet = u for = tu (this is often known asLeibnitz equality). The rule (=R)

is then straightforwardly derivable in L2K (we use the rule label (≡) in proofs for rewriting

according to a definition):

(Ax)
t ∈ X ⊢ t ∈ X

(→R)
⊢ t ∈ X → t ∈ X

(Ax)
t ∈ X ⊢ t ∈ X

(→R)
⊢ t ∈ X → t ∈ X

(∧R)
⊢ t ∈ X ↔ t ∈ X

(∀2R)
⊢ ∀X(t ∈ X ↔ t ∈ X)
=============== (≡)

Γ ⊢ t = t,∆

Now we define the abstraction terms:

F1 ≡ λz.
V

Γ[z/x,u/y] → W

∆[z/x,u/y]

F2 ≡ λz.
V

Γ[u/x,z/y] → W

∆[u/x,z/y]
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whence we start the L2K-derivation of the rule (=L) as follows:

Γ[t/x,u/y], t ∈ F1 ⊢ ∆[t/x,u/y]

(Ax)
u∈ F2 ⊢ u∈ F1

Γ[u/x, t/y] ⊢ ∆[u/x, t/y]
(∧L)

...
(∧L)

V

Γ[u/x, t/y] ⊢ ∆[u/x, t/y]
(∨R)

...
(∨R)

V

Γ[u/x, t/y] ⊢ W

∆[u/x, t/y]
(→R)

⊢ V

Γ[u/x, t/y] → W

∆[u/x, t/y]
(≡)

⊢ t ∈ F2
=============================== (→L)

t ∈ F2 → u∈ F2 ⊢ u∈ F1
================== (∧L)
t ∈ F2 ↔ u∈ F2 ⊢ u∈ F1

(∀2L)
∀X(t ∈ X ↔ u∈ X) ⊢ u∈ F1 ≡

t = u⊢ u∈ F1
============================================ (→L)

Γ[t/x,u/y], t = u,u∈ F1 → t ∈ F1 ⊢ ∆[t/x,u/y]
================================== (∧L)
Γ[t/x,u/y], t = u, t ∈ F1 ↔ u∈ F1 ⊢ ∆[t/x,u/y]

(∀2L)
Γ[t/x,u/y], t = u,∀X(t ∈ X ↔ u∈ X) ⊢ ∆[t/x,u/y]

≡
Γ[t/x,u/y], t = u, t = u⊢ ∆[t/x,u/y]

(ContrL)
Γ[t/x,u/y], t = u⊢ ∆[t/x,u/y]

Notice that in the above,u ∈ F1 ⊢ u ∈ F2 is a logical axiom becauseu ∈ F1 = u ∈ F2 =
V

Γ[u/x,u/y] → W

∆[u/x,u/y]. To complete the derivation of (=L), we observe that the up-

per sequent on the left-hand branch is L2K-derivable as follows:

(Ax)
{Γ[t/x,u/y] ⊢ F | F ∈ Γ[t/x,u/y]}

(∧R)
...

(∧R)
Γ[t/x,u/y] ⊢ V

Γ[u/x, t/y]

(Ax)
{F ⊢ ∆[t/x,u/y] | F ∈ ∆[t/x,u/y]}

(∨L)
...

(∨L)
W

∆[u/x, t/y] ⊢ ∆[t/x,u/y]
=================================================== (→L)

Γ[t/x,u/y],
V

Γ[u/x, t/y] → W

∆[u/x, t/y] ⊢ ∆[t/x,u/y]
(≡)

Γ[t/x,u/y], t ∈ F1 ⊢ ∆[t/x,u/y]

We now show how to translate the “natural number” predicateN defined in Example 2.2.5

into an abstraction term in L2K and derive the corresponding LKID rules forN. Extending

the translation to general inductive predicates is somewhat messy because of (possible) mutual

dependency between inductive predicates, but should nevertheless work similarly. We translate

the inductive predicateN as the abstraction term:

N = λx.∀X(0∈ X∧∀y(y∈ X → sy∈ X)→ x∈ X)

We next show how to derive in L2K any instance of the induction rule (IndN) for N defined in

Example 3.1.5. If the induction hypothesis of the rule instance isF and the induction variable is
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z, we create an abstraction termλz.F , whence we can derive the instance of (IndN) as follows

(we write C[X] for the formula 0∈ X∧∀y(y∈ X → sy∈ X)):

Γ ⊢ F0,∆

Γ,Fx⊢ Fsx,∆
(→R)

Γ ⊢ Fx→ Fsx,∆
(∀R)

Γ ⊢ ∀y(Fy→ Fsy),∆
(∧R)

Γ ⊢ F0∧∀y(Fy→ Fsy),∆
(≡)

Γ ⊢C[F],∆ Γ,Ft ⊢ ∆
(→L)

Γ,C[F ] → Ft ⊢ ∆
(∀2L)

Γ,∀X(C[X]→ t ∈ X) ⊢ ∆
(≡)

Γ,Nt ⊢ ∆

The first right-introduction rule (NR1) is derivable in L2K as follows:

(Ax)
0∈ X ⊢ 0∈ X

=========================== (∧L)
0∈ X∧∀y(y∈ X → sy∈ X) ⊢ 0∈ X

(→R)
⊢ 0∈ X∧∀y(y∈ X → sy∈ X)→ 0∈ X

(∀2R)
⊢ ∀X(0∈ X∧∀y(y∈ X → sy∈ X)→ 0∈ X)

(≡)
Γ ⊢ N0,∆

The second right-introduction rule (NR2) is likewise L2K-derivable:

(Ax)
C[X] ⊢C[X]

(Ax)
t ∈ X ⊢ t ∈ X

(Ax)
st∈ X ⊢ st∈ X

============================= (→L)
t ∈ X, t ∈ X → st∈ X ⊢ st∈ X

(∀L)
t ∈ X,∀y(y∈ X → sy∈ X) ⊢ st∈ X

(∧L)
t ∈ X,0∈ X∧∀y(y∈ X → sy∈ X) ⊢ st∈ X

(≡)
t ∈ X,C[X] ⊢ st∈ X

======================================== (→L)
C[X]→ t ∈ X,C[X] ⊢ st∈ X

(∀2L)
∀X(C[X]→ t ∈ X),C[X] ⊢ st∈ X

(→R)
∀X(C[X]→ t ∈ X) ⊢C[X] → st∈ X

(∀2R)
∀X(C[X]→ t ∈ X) ⊢ ∀X(C[X]→ st∈ X)

(≡)
Nt ⊢ Nst Γ ⊢ Nt,∆
============================================== (Cut)

Γ ⊢ Nst,∆

We remark that (NR2) is not derivable in L2K without the use of (Cut). If it were, then in

particular it would be derivable for the caseΓ = ∆ = /0. Working backwards from⊢ Nst, one is

forced to initially apply the rules (∀2R), (→R) and (∧L), thereby obtaining the upper sequent

0∈ X,∀y(y∈ X → sy∈ X) ⊢ st∈ X. But there is clearly no way to introduce a second-order



Chapter 3. LKID: a proof system for explicit induction in FOLID 69

quantifier from this sequent without a cut and thus we cannot obtain the rule premise⊢ Nt as

required. So our translation does not in general map cut-free proofs in LKID to cut-free proofs

in L2K. (However, there might exist a cleverer translation that does have this property.)

In 1953, Takeuti stated his well-known conjecture that cut-elimination holds in L2K [69].

The conjecture was eventually proven correct by Tait [67] using semantic methods in 1966,

although the first syntactic proof was not given until later by Girard [28]. Since L2K subsumes

LKID, one might think that cut-elimination for LKID followsfrom cut-elimination in L2K.

However, as cut-free proofs in LKID seemingly cannot be easily translated into cut-free proofs

in L2K, this would appear not to be the case. Even if cut-free proofs in LKID could be translated

into cut-free proofs in L2K, the result would not follow straightforwardly since existing proofs

of Takeuti’s conjecture (which are already complicated) donot give a strong normalisation

result. However, the work of Parigot on strong normalisation for second order classical natural

deduction may be applicable [53].

3.4.2 LKID and Peano arithmetic

LKID subsumes LK and LKe by construction, and is subsumed by L2K as shown above. This

just confirms our intuition that the logic FOLID extends first-order logic but stops short of the

full quantification over second-order variables permittedin second-order logic. We can do

somewhat better than this rough characterisation, however: as advertised previously, we now

show that Peano arithmetic can be translated into LKID augmented with some extra axioms

(i.e. proof rules with no premises). We then obtain the consistency of Peano arithmetic from

the eliminability of cut in LKID (Theorem 3.3.14) using a standard argument (as given in e.g.

[29]).

For this section, we recall the definition of Peano arithmetic (PA) given in Definition 2.3.9.

Further, we letΣ′
PA be the language obtained by extendingΣPA with a unary inductive predicate

symbolN, and letΦN be the inductive definition set consisting of the “natural number” pro-

ductions forN defined in Example 2.2.5. (The corresponding right- and left-introduction rules

for N are given respectively in Examples 3.1.1 and 3.1.5.)

Lemma 3.4.1. Let t be a term ofΣ′
PA. If Var(t) ⊆ {x1, . . . ,xk} then the sequent Nx1, . . . ,Nxk ⊢

Nt is provable in LKID (using the definition setΦN).

Proof. By structural induction ont. In the base cases,t is either the constant 0 or one of

the variablesx1, . . . ,xk, and we are immediately done by an application of (NR1) or (Ax) re-

spectively. In the induction step case, we havet = st′, where the sequentNx1, . . . ,Nxk ⊢ Nt′

is provable in LKID by the induction hypothesis, and we are then done by an application of

(NR2).
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Definition 3.4.2. Define the functionRby induction on the structure ofΣ′
PA-formulas of FOLID

as follows:
R(Nt) = Nt

R(s= t) = s= t

R(¬F) = ¬R(F)

R(F1∗F2) = R(F1)∗R(F2) (∗ ∈ {∧,∨,→})
R(∀xF) = ∀x(Nx→ R(F))

R(∃xF) = ∃x(Nx∧R(F))

We extendR to multisets of formulas in the obvious way:R(Γ) = {R(F) | F ∈ Γ}.

We remark that the effect of applying the functionR to a formulaF is to “relativise” all the

quantifiers appearing inF so that they quantify over the predicateN. The functionR gives an

embedding of PA into LKID, constructed in the next lemma. Note that we write LKID+ (PA1)–

(PA6) for the “augmented” proof system obtained by adding toLKID the axioms:⊢ (PAi)
for

i ∈ {1, . . . ,6}.

Lemma 3.4.3. If a sequentΓ ⊢ ∆ is provable in PA, and FV(Γ∪∆) ⊆ {x1, . . . ,xk}, then the

sequent Nx1, . . . ,Nxk,R(Γ) ⊢ R(∆) is provable in LKID+ (PA1)–(PA6), where the language for

LKID is Σ′
PA and the inductive definition set isΦN.

Proof. (Sketch) The proof is by induction on the height of the PA derivation of Γ ⊢ ∆. For

the PA axioms, we note that for eachi ∈ {1, . . . ,6} the sequent(PAi) ⊢ R(PAi) is derivable in

LKID, and that⊢ R(PA7) is provable in LKID using the induction rule (IndN). The remaining

cases follow straightforwardly by the induction hypothesis; the cases (∃R) and (∀L) require the

use of Lemma 3.4.1.

Theorem 3.4.4.Eliminability of cut in LKID implies consistency of PA.

Proof. Suppose PA is inconsistent, i.e., there is a proof of the empty sequent⊢ in LKe from

the Peano axioms (PA1)–(PA7). By Lemma 3.4.3,⊢ is then provable in LKID+ (PA1)–(PA6).

Since (PA1)–(PA6) are closed first-order formulas, it follows that the sequent (PA1), . . . , (PA6)⊢
is provable in LKID, and thus cut-free provable by cut-eliminability in LKID (Theorem 3.3.14).

But every rule of LKID, except (Cut), having an inductive predicate in one of its premises also

has an inductive predicate in its conclusion. Since the sequent (PA1), . . . , (PA6)⊢ contains no

inductive predicates, there are no instances of the rules for inductive predicates occurring any-

where in its cut-free proof. We thus have a cut-free proof of (PA1), . . . , (PA6)⊢ in the system

LKe, and so⊢ is derivable in LKe from the axioms (PA1)–(PA6), i.e. the axioms (PA1)–(PA6)

are inconsistent. But this system can be proved consistent by elementary means (see e.g. [29]).

Hence we have the required contradiction and conclude PA is consistent.
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It is reasonably obvious that the proof of Lemma 3.4.3 and thus the proof of Theorem 3.4.4

given above can be formalised in PA, whence we can infer the following:

Corollary 3.4.5. The eliminability of cut in LKID (Theorem 3.3.14) is not provable in PA.

Proof. The eliminability of cut in LKID implies the consistency of PA by Theorem 3.4.4. If

the eliminability of cut in LKID is provable in PA, then the consistency of PA would thus be

provable in PA (via a formalisation in PA of the proof of Theorem 3.4.4). However, we know by

Gödel’s famous second incompleteness theorem that PA cannot prove its own consistency.

Gentzen’s original proof of PA-consistency [26], as well asmodern versions (see e.g. [70]),

requires the use of transfinite induction up to the ordinalε0; ordinals less thanε0 are assigned

to proofs and it is shown that if there is a proof of the empty sequent then there exists an infinite

sequence of “reductions” between proofs such that each successive proof has a lesser ordinal

than its predecessor, contradicting the well-ordering property of ε0. Unfortunately, the fact

that such proofs exploit the many special simplifying properties of the consistency problem

suggests that the techniques they use are not, by themselves, sufficient to establish a full cut-

elimination result for LKID.

There is an analogy between cut-elimination in LKID and normalisation in Gödel’s system

T [30]; the latter roughly corresponds to cut-elimination for an intuitionistic version of LKID

with just the “natural number” predicateN. It has been established that normalization in system

T can be proved by transfinite induction up toε0 (see e.g. [34, 84]). However, such proofs are

significantly more complicated than proofs of PA-consistency. It seems plausible that a direct

proof of cut-elimination for LKID along these lines would bemore complex still, due to the

fact that LKID is a classical system.



Chapter 4

LKID ω: a proof system for infinite

descent in FOL ID

In this chapter we formulate a second proof system, LKIDω, for reasoning in the logic FOLID.

Whereas the system LKID formalised proof by induction inside FOLID by adding explicit in-

duction and unfolding rules for the inductively defined predicates of the underlying language,

LKID ω can instead be seen as formalising (an extension of) Fermat’s notion of proof by “infi-

nite descent”. In Fermat’s original formulation, infinite descent arguments exploit the fact that

the natural numbers are well-founded, which is to say that there are no infinite strictly decreas-

ing sequences of natural numbers. Thus any case in a proof leading to the construction of such

a sequence can be ignored as contradictory.

For LKIDω, we generalise the idea above to arbitrary inductively defined predicates by

replacing the induction rules of LKID by simple “casesplit”rules on inductive predicates, but

allowing proofs to be infinite trees, i.e., to contain infinite branches. While such proofs are

not sound in general, the well-foundedness of inductive definitions allows us to disregard any

infinite branch along which some inductive definition is unfolded infinitely often. Thus, by

requiring that all infinite branches satisfy this property,we ensure that the remaining portion

of proof is well-founded, and hence sound. (However, to formulate this requirement precisely

and provide a formal proof of soundness is somewhat more complex.)

In Section 4.1, we formulate the casesplit rules of LKIDω which replace the LKID in-

duction rules. Similar rules have been considered previously by Schroeder-Heister [59, 60].

Otherwise, the rules of LKIDω are as for LKID, and proofs in the system are infinite trees

(in general) satisfying a global condition which ensures soundness by an infinite descent ar-

gument, as discussed above. We formulate the global condition on infinite proofs and prove

the soundness of LKIDω in Section 4.2. In Section 4.3 we prove that the cut-free fragment of

LKID ω is complete, this time with respect to standard models. Thusthe infinitary proof system

LKID ω is (unsurprisingly) more powerful than the finitary proof system LKID. As is usual,

72
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the completeness argument involves the construction of a model in which a given underivable

sequent is false. However, there are interesting twists in the argument, due to working with

infinite proofs satisfying a global soundness condition. Cut-admissibility for LKIDω is then

obtained as a corollary of soundness and completeness, justas for LKID.

As for the previous chapter, we assume a fixed languageΣ with exactlyn inductive predi-

cate symbolsP1, . . . ,Pn, and a fixed inductive definition setΦ for Σ.

4.1 Sequent calculus proof rules for LKID ω

The proof rules of the system LKIDω are the rules of LKID described in Section 3.1, except

that for each inductive predicatePi of Σ, the induction rule (IndPi) of LKID is replaced by the

following casesplit rule:

case distinctions
(CasePi)

Γ,Piu ⊢ ∆

where for each production having predicatePi in its conclusion, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

there is a corresponding case distinction of the form:

Γ,u = t(x),Q1u1(x), . . . ,Qhuh(x),Pj1t1(x), . . . ,Pjmtm(x) ⊢ ∆

subject to the restriction thatx 6∈ FV(Γ∪∆∪{Piu}) for all x∈ x. For any instance of (CasePi),

the formulaPiu occurring in the conclusion is said to be theactive formulaof the rule in-

stance and the formulasP1t1(x), . . . ,Pmtm(x) occurring in a case distinction are said to be

case-descendentsof Pu.

Example 4.1.1. The casesplit rule for the “natural number” predicateN defined in Exam-

ple 2.2.5 is:
Γ, t = 0⊢ ∆ Γ, t = sx,Nx⊢ ∆

(CaseN)
Γ,Nt ⊢ ∆

wherex 6∈ FV(Γ∪∆∪{Nt}).

Example 4.1.2. The casesplit rule for the “even number” predicateE defined mutually with

the “odd number” predicateO in Example 2.2.6 is:

Γ, t = 0⊢ ∆ Γ, t = sx,Ox⊢ ∆
(CaseE)

Γ,Et ⊢ ∆

wherex 6∈ FV(Γ∪∆∪{Et}).
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Example 4.1.3.The casesplit rule for the predicateR+ (the transitive closure of the predicate

R) defined in Example 2.2.7 is:

Γ, t = x,u = y,Rxy⊢ ∆ Γ, t = x,u = z,R+xy,R+yz⊢ ∆
(CaseR+)

Γ,R+tu⊢ ∆

wherex,y,z 6∈ FV(Γ∪∆∪{R+tu}).

Lemma 4.1.4.For any inductive predicate symbol Pi, the casesplit rule (Case Pi) is admissible

in LKID.

Proof. We show how to derive an instance of (CasePi) whose conclusion is the sequentΓ,Piu⊢
∆. First, for eachj ∈ {1, . . . ,n}, let k j be the arity of the inductive predicatePj and letzj be

a vector ofk j distinct variables. Then, to the predicatePi we associate the induction variables

zi and the induction hypothesis formula:Fi = (
V

Γ ∧ u = zi →
W

∆)∧Pizi . Further, to all

predicatesPj such thatPj 6= Pi andPi andPj are mutually dependent, we associate the induction

variableszj and induction hypothesis formulaFj = Pjzj .

To begin the derivation of (CasePi), we apply the rule (IndPi) to the conclusion of (CasePi)

with the induction variables and hypotheses given above. (As before, double line inferences are

used to indicate uses of the weakening rule (Wk), and we use the rule symbol (≡) to indicate

the expansion of an abbreviated formula.) We then prove the major premise of the induction

rule instance outright as follows:

minor deductions

(Ax)
{Γ ⊢ J | J ∈ Γ}

(∧R)
...

(∧R)
Γ ⊢ V

Γ
(=R)

Γ ⊢ u = u
(∧R)

Γ ⊢ V

Γ∧u = u

(Ax)
{K ⊢ ∆ | K ∈ ∆}

(∨R)
...

(∨R)
W

∆ ⊢ ∆
================================== (→L)

Γ,
V

Γ∧u = u → W

∆,Piu ⊢ ∆
(∧L)

Γ,(
V

Γ∧u = u → W

∆)∧Piu ⊢ ∆
(≡)

Γ,Fiu ⊢ ∆
(Ind Pi)

Γ,Piu ⊢ ∆

Note that there is a minor premise for every production having in its conclusion a predicate

that is mutually dependent withPi. However, we only require a case distinction for every pro-

duction havingPi in its conclusion. Now, for every productionΦ j,r ∈Φ having in its conclusion

a predicatePj such thatPj andPi are mutually dependent butPi 6= Pj , say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pj t(x)
j1, . . . , jm, j ∈ {1, . . . ,n}

we observe that the corresponding minor deduction in the instance of (IndPi) above can also

be proved outright as follows:
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(Ax)
{Qkuk(x) ⊢ Qkuk(x) | k∈ {1, . . . ,h}}

(Ax)
{Pjktk(x) ⊢ Pjktk(x) | k∈ {1, . . . ,m}}

============================================================ (PjRr )
Q1u1(x), . . . ,Qhuh(x),Pj1t1(x), . . . ,Pjmtm(x) ⊢ Pj t(x)
====================================== (∧L)

...
======================================= (∧L)
Q1u1(x), . . . ,Qhuh(x),G j1t1(x), . . . ,G jmtm(x) ⊢ Pj t(x)

(Wk)
Γ,Q1u1(x), . . . ,Qhuh(x),G j1t1(x), . . . ,G jmtm(x) ⊢ Pj t(x),∆

Note that eachG jk is by definition either the atomic formulaPjkzjk or the induction hypoth-

esis formulaFjk defined above (c.f. the induction rule description in Section 3.1). In the latter

case, noteFjk is, again by definition, either the formulaFi or the atomic formulaPjkzjk . So each

formula G jktk(x) in the above derivation is either the atomic formulaPjktk(x) or the formula

Fitk(x, i.e.(
V

Γ∧u = tk(x) → W

∆)∧Pi tk(x), in which casePitk(x) can be obtained from it by

applying (∧L) and (Wk). This justifies the transformation of eachG jk into Pjk via applications

of (∧L) and weakenings in the derivation above.

Finally, for each productionΦi,r havingPi in its conclusion, the corresponding minor de-

duction in the instance of (IndPi) above yields the desired case distinction as follows (we

abbreviate the set of formulasQ1u1(x), . . . ,Qhuh(x) byQ ):

Γ,u = t(x),Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ ∆
(∨R)

...
(∨R)

Γ,u = t(x),Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ W

∆
(∧L)

...
(∧L)

V

Γ∧u = t(x),Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ W

∆
(→R)

Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ V

Γ∧u = t(x) → W

∆
(PiRr ), (Ax)

Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ Pi t(x)
(∧R)

Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ (
V

Γ∧u = t(x) → W

∆)∧Pit(x)
(∧L)

...
(∧L)

Q ,G j1t1(x), . . . ,G jmtm(x) ⊢ (
V

Γ∧u = t(x) → W

∆)∧Pit(x)
(Wk)

Γ,Q ,G j1t1(x), . . . ,G jmtm(x) ⊢ (
V

Γ∧u = t(x) → W

∆)∧Pit(x),∆

Note that the justification for obtaining eachPjk from G jk is as for the previous case. To

complete the proof, we simply observe that we have obtained aderivation of the rule (CasePi)

within the system LKID.

The local soundness of the proof rules of LKIDω with respect to the Henkin semantics of

FOLID now follows immediately from the soundness of LKID:
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Lemma 4.1.5(Local Henkin soundness of LKIDω). Let(M,H ) be a Henkin model for(Σ,Φ).

If all of the premises of a rule of LKIDω are true in(M,H ), then the conclusion of the rule is

also true in(M,H ).

Proof. We just need to check that each rule of LKIDω has the desired property. All of the

rules apart from the casesplit rules are already covered by Lemma 3.2.2; the fact that the rule

(CasePi) is sound for each inductive predicatePi follows from Lemma 4.1.4 and the fact that

the rules of LKID are locally sound with respect to Henkin models (Lemma 3.2.2 again).

We remark that, although the proof rules of LKIDω are locally sound with respect to Henkin

models of FOLID , we will eventually obtain soundness of the full (infinitary) system LKIDω

only with respect to standard models. In order to establish this soundness property, we will only

actually use the fact that the proof rules of LKIDω are locally sound with respect to standard

models.

It is worth noting that the casesplit rule for an inductive predicatePi may also be formulated

without the use of equality, as follows:

case distinctions
(CasePi)(2)

Γ[u/y],Piu ⊢ ∆[u/y]

wherey is a vector of appropriately many variables and for each production havingPi in its

conclusion, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

there is a corresponding case distinction:

Γ[t(x)/y],Q1u1(x), . . . ,Qhuh(x),Pj1t1(x), . . . ,Pjmtm(x) ⊢ ∆[t(x)/y]

subject to the restriction thatx 6∈ FV(Γ∪∆∪{Piu}) for all x∈ x. In the presence of equality,

the two formulations of the casesplit rule for an inductive predicate are interderivable (in LKID

or LKIDω). The formulation of casesplit without equality is obtainable using the formulation

with equality via the derivation:

. . . Γ[t(x)/y],Q1u1(x), . . . ,Qhuh(x),Pj1t1(x), . . . ,Pjmtm(x) ⊢ ∆[t(x)/y] . . .
(=L)

. . . Γ[u/y],u = t(x),Q1u1(x), . . . ,Qhuh(x),Pj1t1(x), . . . ,Pjmtm(x) ⊢ ∆[u/y] . . .
(CasePi)

Γ[u/y],Piu ⊢ ∆[u/y]

and the formulation using equality is derivable from the formulation by first using a cut:

Γ,u = u,Piu ⊢ ∆
(=R)

Γ,Piu ⊢ u = u,∆
(Cut)

Γ,Piu ⊢ ∆
and then continuing on the left branch as follows:

. . . Γ,u = t(x),Q1u1(x), . . . ,Qhuh(x),Pj1t1(x), . . . ,Pjmtm(x) ⊢ ∆ . . .
(CasePi)(2)

Γ,u = u,Piu ⊢ ∆
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4.2 Infinite proofs in LKID ω

The main feature of LKIDω is that we allow infinite derivation trees to be proofs. However, it

is readily seen that there are infinite derivation trees in LKIDω with invalid endsequents, so not

every such tree is a proof. For this reason, we call infinite LKIDω derivation treespre-proofs:

Definition 4.2.1 (LKID ω pre-proof). An LKIDω pre-proof of a sequentΓ ⊢ ∆ is a (possi-

bly infinite) LKIDω derivation treeD = (V,s, r, p) whose endsequent isΓ ⊢ ∆ and such that

Bud(D) = /0 (i.e. every sequent in the proof tree is the conclusion of some proof rule applica-

tion and soD is “finished”).

At this point, it may be helpful for the reader to recall our example of an infinite proof from

the introduction:

Example 4.2.2.Let N,E andO be the “natural”, “even” and ”odd number” predicates given

in Examples 2.2.5 and 2.2.6. (The casesplit rule forN is given in Example 4.1.1 above.) The

following is then (an initial part of) an LKIDω pre-proof of the sequentNx⊢ Ex,Ox:

(ER1)⊢ E0,O0
(=L)

x = 0⊢ Ex,Ox

(ER1)⊢ O0,E0
(=L)

y = 0⊢ Oy,Ey

(etc.)
...

Nz⊢ Osz,Esz
(=L)

y = sz,Nz⊢ Oy,Ey
(CaseN)

Ny⊢ Oy,Ey
(OR1)

Ny⊢ Oy,Osy
(ER2)

Ny⊢ Esy,Osy
(=L)

x = sy,Ny⊢ Ex,Ox
(CaseN)

Nx⊢ Ex,Ox

Whereas when dealing with LKID we were concerned with Henkinvalidity of sequents,

i.e. truth in all Henkin models of(Σ,Φ), for LKIDω we shall only be concerned with the

standard notion of validity, i.e. truth in allstandardmodels. We shall say a sequent isvalid

just in case it is true in all standard models of(Σ,Φ). Of course, in a finite derivation tree,

the validity of the endsequent is guaranteed by the local soundness of the proof rules (see

e.g. Proposition 3.2.8). However, this argument does not extend to LKIDω pre-proofs as they

may be non-well-founded, i.e. contain infinite branches. Inthis situation, if the endsequent of

the pre-proof is false in some modelM, the local soundness of the proof rules implies the exis-

tence of an infinite path through the pre-proof such that eachsequent along the path is also false

in M (under some environment). Our aim is to formulate a soundness condition on pre-proofs

that ensures that we can obtain a logical contradiction in such a circumstance.

Definition 4.2.3 (Trace). Let (vi) be a path in an LKIDω pre-proofD = (V,s, r, p). A trace

following (vi) is a sequence(τi) such that, for alli:
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• τi = Pji t i ∈Γi , wherePji is an inductive predicate (i.e.j i ∈ {1, . . . ,n}) ands(vi) = Γi ⊢ ∆i;

• if r(vi) is (Subst) thenτi = τi+1[θ], whereθ is the substitution associated with the rule

instance;

• if r(vi) is (=L) with active formulat = u then there exists a formulaF and variablesx

andy such thatτi = F[t/x,u/y] andτi+1 = F[u/x, t/y] (i.e. τi+1 is obtained by (possibly)

swapping some occurrences oft andu in τi);

• if r(vi) is some casesplit rule (CasePk) then eitherτi+1 = τi, or τi is the active formula

of the rule instance andτi+1 is a case-descendant ofτi. In the latter case,i is said to be a

progress pointof the trace;

• if r(vi) is not (Subst), (=L) or a casesplit rule, thenτi+1 = τi.

As mentioned above, given the invalidity of the endsequent of an LKIDω pre-proofD we

can construct an infinite path inD and an infinite sequence of falsifying environments for the

sequents on this path. Furthermore, any trace on (part of) this path can be understood as a

monotonically decreasing sequence of ordinals via the approximant construction for inductive

predicates in standard models (c.f. Definition 2.2.8). Thisproperty is made precise in the

following lemma:

Lemma 4.2.4. LetD be an LKIDω pre-proof ofΓ0 ⊢ ∆0, and let M be a standard model such

that Γ0 ⊢ ∆0 is false in M under the environmentρ0 (say). Then there is an infinite path(vi)i≥0

in D and an infinite sequence(ρi)i≥0 of environments such that:

1. for all i, s(vi) = Γi ⊢ ∆i is false in M underρi;

2. if there is a trace(τi = Pji t i)i≥n following some tail(vi)i≥n of (vi)i≥0, then the sequence

(αi)i≥n of ordinals defined by:

αi = least ordinalα such thatρi(t i) ∈ Pα
ji

for all i ≥ n, is a non-increasing sequence. Furthermore, if j is a progress point of(τi)i≥n

thenα j+1 < α j .

Proof. Throughout this proof, we writeΓ 6|=ρ ∆ to mean that the sequentΓ ⊢ ∆ is false in the

modelM under the environmentρ.

First note that the ordinal sequence(αi)i≥n defined in property 2 of the lemma is well-

defined, for, by the definition of trace, we haveτi = Pji t i ∈ Γi for eachi ≥ n, and sinceΓi 6|=ρi ∆i

for all i by property 1 of the lemma we must have|=ρi Pji t i , i.e. ρi(t i) ∈
S

α Pα
ji , for eachi ≥ n.

Now ρi(t i) ∈
S

α Pα
ji iff ρi(t i) ∈ Pα

ji for some ordinalα, and there is a least suchα by the well-

ordering property of the ordinals, soαi is defined for eachi ≥ n.
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The two properties required by the lemma are trivially true of the 1-element sequences

(v0 = root(D)) and(ρ0). We assume we have sequences(vi)0≤i≤k and(ρi)0≤i≤k satisfying the

two properties of the lemma and show how to constructvk+1 andρk+1. We always choosevk+1

to bep j(vk) for some j (i.e. such thats(vk+1) is a premise of the rule instance of whichs(vk)

is the conclusion) so that(vi)i≥0 is an infinite path inD as required. To establish that property

2 holds of the constructed sequence, it suffices to assume theexistence of an arbitrary trace

(τk,τk+1) following (vk,vk+1), and show thatαk+1 ≤ αk, and that ifk is a progress point of the

trace thenαk+1 < αk. It is clear that this process can be repeated infinitely often, thus yielding

the required infinite sequences.

We note that sinceD is an LKIDω derivation tree, the sequents(vk) is the conclusion of an

instance of the LKIDω rule r(vk), which clearly cannot be a rule with no premises, as the con-

clusion of every such rule is a valid sequent by Lemma 4.1.5. We therefore distinguish a case

for each of the remaining proof rules. In all cases the falsifiability of vk+1 by ρk+1 follows im-

mediately from the local soundness of the proof rule in question (Lemma 4.1.5). Furthermore,

ρk+1 can always be constructed in a manner consistent with the requirement for the second

property. We examine only the interesting cases here:

Case r(vk) = (Subst): s(vk) is the conclusionΓ[θ] ⊢ ∆[θ] of an instance of (Subst) and by

induction hypothesisΓ[θ] 6|=ρk ∆[θ]. We choosevk+1 to be the node ofD labelled with the

only premiseΓ ⊢ ∆ of the rule instance, and chooseρk+1 = ρk ◦ θ. The sequents(vk+1) is

thus falsifiable byρk+1 (satisfying property 1) sinceΓ 6|=ρk◦θ ∆ iff Γ[θ] 6|=ρk ∆[θ] by part 2 of

Lemma 2.1.9.

For property 2, we must have by the the definition of trace thatτk = τk+1[θ], i.e. if τk = Pit

thenτk+1 = Pit′ andt = t′[θ]. Note thatρk+1(t′) = (ρk ◦θ)(t′) = ρk(t′[θ]) = ρk(t). Thus, for

anyα, ρk+1(t′) ∈ Pα
i iff ρk(tk) ∈ Pα

i and soαk+1 = αk.

Caser(vk) = (=L): s(vk) is the conclusionΓ[t/x,u/y], t = u⊢∆[t/x,u/y] of an instance of (=L)

and by induction hypothesisΓ[t/x,u/y], t = u 6|=ρk ∆[t/x,u/y]. In particular,M |=ρk t = u, so

ρk(t) = ρk(u). We choosevk+1 to be the node ofD labelled with the only premiseΓ[u/x, t/y] ⊢
∆[u/x, t/y] of the rule instance, and chooseρk+1 = ρk. It then follows thatΓ[u/x, t/y] 6|=ρk+1

∆[u/x, t/y] sinceρk+1(t) = ρk(t) = ρk(u) = ρk+1(u), so property 1 of the lemma is satisfied.

For property 2 of the lemma, we must have that by the definitionof trace thatτk+1 and

τk are the same atomic formula, up to some possible swappings ofoccurrences oft and u.

So we can writeτk+1 = Pit1 andτk = Pit2, whereρk(t1) = ρk(t2) sinceρk(t) = ρk(u), and so

ρk+1(t1) = ρk(t2). Thus, for anyα, ρk+1(t1)∈Pα
i iff ρk(t2)∈Pα

i and soαk+1 = αk as required.

Caser(vk) = (CasePi): s(vk) is the conclusionΓ,Piu ⊢ ∆ of an application of rule (CasePi)
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(wherei ∈ {1, . . . ,n}). As s(vk) is false inM underρk by induction hypothesis, we haveM |=ρk

Piu, i.e. ρk(u)∈S

α Pα
i . Letα′ be the least ordinalα such thatρk(u)∈Pα

i = πn
i (ϕα

Φ). By Defini-

tion 2.2.8 we thus haveρk(u)∈ πn
i (

S

β<α′ ϕΦ(ϕβ
Φ)). By construction ofϕΦ (c.f. Definition 2.2.3),

there is then aβ < α′ and a productionΦi,r ∈ Φ such thatρk(u) ∈ ϕi,r(ϕ
β
Φ). Now Φi,r is a pro-

duction withPi in its conclusion, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

so by definition ofϕi,r we have:

ρk(u) ∈ {tM(d) | QM
1 uM

1 (d), . . . ,QM
h uM

h (d), tM
1 (d) ∈ πn

j1(ϕ
β
Φ), . . . , tM

m(d) ∈ πn
jm(ϕβ

Φ)}

i.e. ∃d. ρk(u) = tM(d) andQM
1 uM

1 (d), . . . ,QM
h uM

h (d), tM
1 (d) ∈ Pβ

j1, . . . , t
M
m(d) ∈ Pβ

jm (∗)

Now definevk+1 to be the node ofD such thats(vk+1) is the (case distinction) premise:

Γ,u = t(x),Q1u1(x), . . . ,Qhuh(x),Pj1t1(x), . . . ,Pjmtm(x) ⊢ ∆

wherex 6∈ FV(Γ∪∆∪{Piu}) for all x ∈ x, and defineρk+1 = ρk[x 7→ d]. For property 1 we

need to shows(vk+1) is falsified byρk+1. It is clear that we haveM |=ρk+1 J for all J ∈ Γ

andM 6|=ρk+1 K for all K ∈ ∆ by the induction hypothesis and part 1 of Lemma 2.1.5, since

ρk+1 agrees withρk on all variables free inΓ∪∆. Also by part 1 of Lemma 2.1.5, we have

ρk+1u = ρku sincex 6∈ FV(Piu) = Var(u) for all x ∈ x. Now ρk+1(t(x)) = tM(ρk+1(x)) =

tM(d) = ρk(u) by the definition ofρk+1 and the statement (*) above, so we haveρk+1(u) =

ρk+1(t(x)), i.e. M |=ρk+1 u = t(x) as required. We then just need to show each ofM |=ρk+1

Q1u1(x), . . . ,M |=ρk+1 Qhuh(x),M |=ρk+1 Pj1t1(x), . . . ,M |=ρk+1 Pjmtm(x), which is clear from

the statement(∗) above together with the definition ofρk+1. For property 2, there are two

possibilities to consider:

• k is not a progress point of the trace(τk,τk+1) and so, by the definition of trace, we have

τk+1 = τk. Now, sinceτk = Pj t (say) is a formula occurring ins(vk) = Γ,Piu ⊢ ∆, and

ρk+1 agrees withρk on variables free inΓ∪∆∪{Piu}, we haveρk+1(t) = ρk(t) and so

ρk(t) ∈ Pα
j iff ρk+1(t) ∈ Pα

j , i.e. αk+1 = αk and we are done.

• k is a progressing position of the trace(τk,τk+1). In that case,τk is the active formulaPiu

of the rule instance andτk+1 is a case-descendant ofPiu, i.e. τk+1 is one of the formulas

Pj1t1(x), . . . ,Pjmtm(x). Now the discussion above shows that there is an ordinalβ such

thatρk+1(t1(x)) ∈ Pβ
j1, . . . ,ρk+1(tm(x)) ∈ Pβ

jm and that furthermore,β is smaller than the

least ordinalα satisfyingρk(t) ∈ Pα
i . We thus haveαk+1 < αk as required.
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Lemma 4.2.4 immediately gives rise to a natural soundness criterion for LKIDω pre-proofs:

Definition 4.2.5 (LKID ω proof). An LKID ω pre-proofD is said to be an LKIDω proof if, for

every infinite path inD, there is an infinitely progressing trace following some tail of the path.

For convenience, we may restrict the quantification over allinfinite paths in Definition 4.2.5

to all rooted infinite paths. It is obvious that there is an infinitely progressing trace on a tail

of every infinite path in a pre-proof if and only if there is oneon the tail of every infinite path

starting from the root of the pre-proof, because every vertex is reachable from it.

Proposition 4.2.6(Soundness of LKIDω). If there is an LKIDω proof of Γ ⊢ ∆ thenΓ ⊢ ∆ is

valid (i.e. true in all standard models for(Σ,Φ)).

Proof. Suppose that we have an LKIDω proofD of Γ ⊢ ∆ but Γ ⊢ ∆ is not valid, i.e. there is a

standard modelM of (Σ,Φ) such thatΓ ⊢ ∆ is not true inM. We can then apply Lemma 4.2.4

to obtain infinite sequences(vi)i≥0 and(ρi)i≥0 satisfying properties 1 and 2 of the Lemma. By

the definition of LKIDω proof, as(vi)i≥0 is an infinite path throughD, there is an infinitely

progressing trace following some tail of(vi)i≥0. So by property 2 of the Lemma, there is thus

a non-increasing sequence of ordinals(αi)i≥n that decreases infinitely often. As this contra-

dicts the well-foundedness property of the ordinals we obtain the required contradiction and

conclude thatΓ ⊢ ∆ must be valid.

4.2.1 Generalised trace-based infinite proof systems

The ideas used to develop the proof system LKIDω for FOLID above have been used previously

to develop (sound) infinite proof systems for other logics, notably theµ-calculus (see e.g. [63,

58, 19, 52]). To show the versatility of the method, we now consider an essentially arbitrary

infinite proof system Sω and show that a sound notion of infinite proof exists for the system

providing that an appropriate notion of “trace” exists. We shall make only the following general

assumptions about the proof system Sω:

• The rules of Sω are of the form:
S1 . . .Sn

(R)
S

wheren∈N. S,S1, . . . ,Sn are called “sequents”. We writeSeqsfor the set of well-formed

sequents of Sω andRulesfor the set of proof rules of Sω.

• There is a setI of interpretations, and we have a semantic notion of satisfaction between

interpretations and sequents. We writeI |= S to mean that the sequentS is satisfied by

the interpretationI . We say a sequentS is valid if S is satisfied by every interpretationI .

(Observe that for our systems LKID and LKIDω, an interpretation of a sequent is given

by a first-order structureM and an environmentρ. In many systems, such asµ-calculus,

an interpretation will just be a environment interpreting variables in some domain.)
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An Sω pre-proof is then just a possibly infinite Sω derivation tree (with no buds). In general,

as we saw previously, such pre-proofs are sound if the invalidity of the endsequent implies the

existence of an infinite path in the proof from which an infinite descending chain of ordinals can

be constructed. This motivates the formulation of the following definition of atrace function,

which generalises the notion of trace for LKIDω from Definition 4.2.3:

Definition 4.2.7 (Trace function). Let T be a set, and letTVal ⊆ T ×Seqssatisfy: for any

S∈ Seqs, there are only finitely manyτ ∈ T such thatTVal(τ,S). Let TPair : (T × T ) →
(Seqs×Rules×Seqs) →{0,1,2} be a computable function satisfying:

∀τ,τ′,s, r,s′.¬TVal(τ,s)∨¬TVal(τ′,s′) ⇒ TPair(τ,τ′)(s, r,s′) = 0

Also suppose there exists a functionσ : T × I → O, whereO is some initial segment of the

ordinals, such that for any Sω pre-proofD = (V,s, r, p):

I 6|= s(v) ⇒ ∃I ′,v′, j. v′ = p j(v)

and I ′ 6|= s(v′)

and TPair(τ,τ′)(s(v), r(v),s(v′)) = 1⇒ σ(τ′, I ′) ≤ σ(τ, I)

and TPair(τ,τ′)(s(v), r(v),s(v′)) = 2⇒ σ(τ′, I ′) < σ(τ, I)

ThenTVal is called atrace value relationandTPair is called atrace pair functionfor the

proof system, andσ is theordinal trace functionassociated withTPair andTVal. (τ,τ′) is

said to be avalid trace pair on(v,v′) if TPair(τ,τ′)(s(v), r(v),s(v′)) 6= 0, and is said to be a

progressing trace pairon (v,v′) if TPair(τ,τ′)(s(v), r(v),s(v′)) = 2. Further, a sequence(τi) is

said to be atraceon a path(vi) if for all i, (τi ,τi+1) is a valid trace pair on(vi ,vi+1). A trace

(τi) is said toprogressat j if (τ j ,τ j+1) is a progressing trace pair, and is said to beinfinitely

progressingif there are infinitely many points at which it progresses.

Notice that, due to the properties required of a trace pair function, a trace pair function

exists for Sω only if the rules of Sω are locally sound. We shall suppose there exists a trace pair

function for the proof system Sω, in which case an analogous version of Lemma 4.2.4 holds

for Sω:

Lemma 4.2.8. LetD be a Sω pre-proof of a sequent S0, and suppose that for some interpreta-

tion I0, S0 is false in I0. Then there is an infinite path(vi)i≥0 in D and an infinite sequence I0

of interpretations such that:

1. for all i, Ii 6|= s(vi);

2. if there is a trace(τi)i≥n following some tail(vi)i≥n of (vi)i≥0, then the sequence of

ordinals(αi)i≥n defined byαi = σ(τi, Ii), whereσ is the ordinal trace function associated

with the trace pair function for Sω, is non-increasing. Furthermore, if j is a progress

point of(τi) thenα j+1 < α j .
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Proof. First note thats(root(D)) = S0 is false inI0 by supposition, so the sequences(v0 =

root(D)) and(I0) trivially satisfy the properties required by the lemma. We inductively assume

that we have constructed a path(vi)0≤i≤k in D and a sequence(Ii)0≤i≤k of interpretations satis-

fying the two properties of the lemma. In particular,s(vk) is false inIk, so by the definition of

a trace pair function, we can findvk+1 such that(vk,vk+1) is an edge ofGP andIk+1 6|= s(vk+1).

Furthermore, if there is a trace following some tail(vi)n≤i≤k+1 of this path, then there is a trace

(τi)n≤i≤k following (vi)n≤i≤k and a trace pair(τk,τk+1) on (vk,vk+1). By induction hypothe-

sis there is a non-increasing sequence(αi)n≤i≤k that decreases whenever the trace progresses.

By the definition of trace pair function, we haveαk+1 = σ(τk+1, Ik+1) ≤ σ(τk, Ik) = αk since

(τk,τk+1) is a valid trace pair on(vk,vk+1). Furthermore, ifk is a progressing point of the trace,

then(τk,τk+1) is a progressing trace pair, and we haveαk+1 < αk by the definition of trace pair

function as required. This completes the induction step.

Definition 4.2.9 (Generalised infinite proof). An Sω pre-proofD is said to be an Sω proof if,

for every infinite path inD, there is an infinitely progressing trace following some tail of the

path.

Proposition 4.2.10(Soundness of generalised infinite proof). If there is a Sω proof of S then S

is valid.

Proof. Suppose that we have a Sω proofD of Sbut S is not valid, i.e. there is an interpretation

I0 such thatI0 6|= S. We can then apply Lemma 4.2.8 to obtain infinite sequences(vi) and

(Ii) satisfying properties 1 and 2 of the lemma. By the definition of Sω proof, as(vi) is an

infinite path throughD, there is an infinitely progressing trace following some tail of (vi). So

by property 2 of the lemma, there is thus a non-increasing sequence of ordinals(αi)i≥n that

decreases infinitely often. As this contradicts the well-foundedness property of the ordinals we

obtain the required contradiction and conclude thatSmust be valid.

4.3 Cut-free completeness of LKID ω

We now present a proof of cut-free completeness for LKIDω with respect to standard models.

The structure of the proof is similar to that of the cut-free Henkin completeness proof of LKID

given previously (c.f. Section 3.3), but without the need toconstruct Henkin models. However,

additional complications arise from the need to consider the soundness condition imposed on

LKID ω proofs.

As for the LKID completeness proof, we shall say that a sequent is cut-free provable(in

LKID ω) if there is an LKIDω proof of the sequent that does not include any instances of the

rules (Cut), (Subst) or (Wk), and we shall show that every valid sequent (with respect to stan-

dard models) is cut-free provable in this sense. Thus, as before, we shall obtain from our sound-
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ness and completeness results very slightly more than the usual notion of cut-eliminability, but

the rules (Wk) and (Subst) are in any case easily shown admissible in LKIDω. Since LKIDω

proofs are infinite objects, it is of interest to consider thestructural complexity of proof objects.

In this regard, we show that every valid sequent actually hasrecursivecut-free LKIDω proof,

which is to say that the LKIDω proof is a recursive tree in the standard sense (for a definition

see e.g. [55]). The outline of the cut-free completeness proof for LKID ω is as follows:

1. Given an arbitrary (possibly provable) sequentΓ ⊢ ∆ we construct a recursivesearch

treecorresponding to an exhaustive infinitary search for a cut-free LKIDω proof of Γ ⊢
∆. This tree is constructed according to a schedule similar tothat used in the LKID

completeness proof, except that we also schedule the application of the rules for equality

and for right-unfolding of inductive predicates.

2. If the search tree forΓ ⊢ ∆ is not an LKIDω proof, then either it is not a pre-proof, and

thus contains a bud node, or it contains anuntraceable branch— an infinite path such

that there is no infinitely progressing trace on any tail of the path. In the former case, we

can straightforwardly construct a model in whichΓ ⊢ ∆ is false. We continue with the

remaining case.

3. We may now assume that the search tree contains an untraceable branch. We can then

prove that no sequent on this branch, includingΓ ⊢ ∆, is cut-free provable, by showing

essentially that the existence of a cut-free proof would imply the existence of an infinitely

progressing trace on the untraceable branch, which is a contradiction.

4. The untraceable branch in the search tree is used to construct a limit sequentΓω ⊢ ∆ω,

which in turn is used to construct a first-order structureMω and an environmentρω.

The construction of thiscounter-interpretationis very similar to the construction in the

LKID completeness proof, except that the interpretation ofthe inductive predicates in

Mω is defined so as to ensure thatMω is a standard model for(Σ,Φ).

5. We show thatΓω ⊢ ∆ω is false inMω under the environmentρω. This proof is identical to

the analogous step in the LKID completeness proof except in the case where an inductive

predicate formula occurs inΓω, where the argument needs an extra twist relying on the

soundness condition. In particular,Γ ⊢ ∆ is false in the standard modelMω since it is a

subsequent ofΓω ⊢ ∆ω.

6. Now given any sequentΓ ⊢ ∆, if the search tree forΓ ⊢ ∆ is not an LKIDω proof then it

follows by steps 2–5 thatΓ ⊢ ∆ is invalid. Thus ifΓ ⊢ ∆ is valid, then the search tree is a

recursive cut-free LKIDω proof of Γ ⊢ ∆.

Definition 4.3.1(Schedule). An LKIDω-schedule elementof Σ is defined as follows:
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• any formula of the form¬F, F1∧F2, F1∨F2, or F1 → F2 is an LKIDω-schedule element;

• for any termt of Σ, any variablex∈V and any formulaF, the pairs〈∀xF, t〉 and〈∃xF, t〉
are LKIDω-schedule elements;

• for any termst,u of Σ, any variablesx,y∈ V , and any finite multisets of formulasΓ,∆,

the tuple〈t = u,x,y,Γ,∆〉 is an LKIDω-schedule element;

• for any inductive predicate symbolPi of arity k, any termst1, . . . , tk of Σ, and for every

productionΦi,r ∈ Φ, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

such that(t1, . . . , tk) = t(t′) for somet′, the pair〈Pi(t1, . . . , tk), r〉 is an LKIDω-schedule

element.

An LKIDω-schedulefor Σ is then an enumeration(Ei)i≥0 of schedule elements ofΣ such that

every schedule element ofΣ appears infinitely often in the enumeration.

An LKID ω-schedule is similar to an LKID-schedule (c.f. Definition 3.3.1) with two major

differences. First, we have schedule elements for equalityformulas, with appropriate extra in-

formation enabling the left rule for equality to be applied.Second, the extra information stored

with atomic formulas involving inductive predicates is nowsimply an index which allows a

particular right-unfolding rule for the inductive predicate to be selected. (The extra condition

on this index ensures that only the indices of right-rules which can be applied to the inductive

predicate formula are considered.) The justification for the existence of an LKIDω-schedule is

similar to that for an LKID-schedule.

Definition 4.3.2(Search tree). Let Γ ⊢ ∆ be an arbitrary (possibly provable) sequent; note that

there is an LKIDω-schedule forΣ.

We then define an infinite sequence of(Ti)i≥0 of LKID ω derivation trees such thatTi is a

subtree ofTi+1 for all i ≥ 0. Moreover, eachTi has the property that the sequent at any nodev

of Ti is a subsequent of the sequent at any descendant ofv. We defineT0 to be the single-node

treeΓ ⊢ ∆ so, in particular, the endsequent ofTi will be Γ ⊢ ∆ for all i ≥ 0. We inductively

assume we have constructed the treeTj and show how to constructTj+1.

In generalTj+1 will be obtained by replacing certain bud nodes ofTj with finite LKIDω

derivation trees, whence it is clear thatTj+1 is also a finite LKIDω derivation tree as required.

Firstly, we replace any budΓ′ ⊢ ∆′ of Tj such thatΓ′∩∆′ 6= /0 with the derivation tree:

(Ax)
Γ′ ⊢ ∆′
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and we likewise replace any budΓ′ ⊢ ∆′ such thatt = t ∈ ∆′ for some termt with the derivation

tree:

(=R)
Γ′ ⊢ ∆′

We then proceed by case distinction onE, the( j +1)th element in the schedule forΣ:

• E = ¬F. Then we replace every bud nodeΓ′ ⊢ ∆′ such that¬F ∈ Γ′ with the derivation

tree:
Γ′ ⊢ F,∆′

(¬L)
Γ′,¬F ⊢ ∆′

(ContrL)
Γ′ ⊢ ∆′

We also replace every bud nodeΓ′ ⊢ ∆′ such that¬F ∈ ∆′ with the derivation tree:

Γ′,F ⊢ ∆′
(¬R)

Γ′ ⊢ ¬F,∆′
(ContrR)

Γ′ ⊢ ∆′

• E = F1∧F2. Then we replace every bud nodeΓ′ ⊢ ∆′ such thatF1 ∧F2 ∈ Γ′ with the

derivation tree:
Γ′,F1,F2 ⊢ ∆′

(∧L)
Γ′,F1∧F2 ⊢ ∆′

(ContrL)
Γ′ ⊢ ∆′

We also replace every bud nodeΓ′ ⊢ ∆′ such thatF1∧F2 ∈ ∆′ with the derivation tree:

Γ′ ⊢ F1,∆′ Γ′ ⊢ F2,∆′
(∧R)

Γ′ ⊢ F1∧F2,∆′
(ContrR)

Γ′ ⊢ ∆′

• E = F1∨F2. Then we replace every bud nodeΓ′ ⊢ ∆′ such thatF1 ∨F2 ∈ Γ′ with the

derivation tree:
Γ′,F1 ⊢ ∆′ Γ′,F2 ⊢ ∆′

(∨L)
Γ′,F1∨F2 ⊢ ∆′

(ContrL)
Γ′ ⊢ ∆′

We also replace every bud nodeΓ′ ⊢ ∆′ such thatF1∨F2 ∈ ∆′ with the derivation tree:

Γ′ ⊢ F1,F2,∆′
(∨R)

Γ′ ⊢ F1∨F2,∆′
(ContrR)

Γ′ ⊢ ∆′

• F = F1 → F2. Then we replace every bud nodeΓ′ ⊢ ∆′ such thatF1 → F2 ∈ Γ′ with the

derivation tree:
Γ′,F2 ⊢ ∆′ Γ′ ⊢ F1,∆′

(→L)
Γ′,F1 → F2 ⊢ ∆′

(ContrL)
Γ′ ⊢ ∆′
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We also replace every bud nodeΓ′ ⊢ ∆′ such thatF1 → F2 ∈ ∆′ with the derivation tree:

Γ′,F1 ⊢ F2,∆′
(→R)

Γ′ ⊢ F1 → F2,∆′
(ContrR)

Γ′ ⊢ ∆′

• E = 〈∃xF, t〉. Then we replace every bud nodeΓ′ ⊢ ∆′ such that∃xF ∈ Γ′ with the

derivation tree:
Γ′,F[z/x] ⊢ ∆′

(∃L)
Γ′,∃xF ⊢ ∆′

(ContrL)
Γ′ ⊢ ∆′

wherez 6∈ FV(Γ′∪∆′).

We also replace every bud nodeΓ′ ⊢ ∆′ such that∃xF ∈ ∆′ with the derivation tree:

Γ′ ⊢ F[t/x],∆′
(∃R)

Γ′ ⊢ ∃xF,∆′
(ContrR)

Γ′ ⊢ ∆′

• E = 〈∀xF, t〉. Then we replace every bud nodeΓ′ ⊢ ∆′ such that∀xF ∈ Γ′ with the

derivation tree:
Γ′,F [t/x] ⊢ ∆′

(∀L)
Γ′,∀xF ⊢ ∆′

(ContrL)
Γ′ ⊢ ∆′

We also replace every bud nodeΓ′ ⊢ ∆′ such that∀xF ∈ ∆′ with the derivation tree:

Γ′ ⊢ F[z/x],∆′
(∀R)

Γ′ ⊢ ∀xF,∆′
(ContrL)

Γ′ ⊢ ∆′

wherez 6∈ FV(Γ′∪∆′).

• E = 〈t = u,x,y,Γ,∆〉. Let Γ′ ⊢ ∆′ be a bud node such thatt = u∈ Γ′, Γ′ ⊆ Γ[t/x,u/y]∪
{t = u} and∆′ ⊆ ∆[t/x,u/y]. SoΓ′ = Γ′′[t/x,u/y]∪{t = u} for someΓ′′ ⊆ Γ and∆′ =

∆′′[t/x,u/y] for some∆′′ ⊆ ∆. Then we replace the bud nodeΓ′ ⊢ ∆′ by the derivation

tree:

Γ′′[u/x, t/y],Γ′′ [t/x,u/y], t = u⊢ ∆′′[t/x,u/y],∆′′ [u/x, t/y]
(=L)

Γ′′[t/x,u/y],Γ′′ [t/x,u/y], t = u, t = u⊢ ∆′′[t/x,u/y],∆′′ [t/x,u/y]
(ContrL)

...
(ContrL)

Γ′′[t/x,u/y], t = u⊢ ∆′′[t/x,u/y],∆′′ [t/x,u/y]
(ContrR)

...
(ContrR)

Γ′′[t/x,u/y], t = u⊢ ∆′′[t/x,u/y]
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• E = 〈Piu, r〉, wherePi is an inductive predicate symbol,u is a tuple of terms ofΣ and

r ∈{1, . . . , |Φi |}. We replace every bud nodeΓ′ ⊢∆′ such thatPiu∈Γ′ with the derivation

tree:
case distinctions

(CasePi)
Γ′,Piu ⊢ ∆′

(ContrL)
Γ′ ⊢ ∆′

Now note thatΦi,r is a production inΦ, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

and we haveu = t(t′) for somet′. Then we replace every bud nodeΓ′ ⊢ ∆′ such that

Piu ∈ ∆′ with the derivation tree:

Γ′ ⊢ Q1u1(t′),∆′ . . . Γ′ ⊢ Qhuh(t′),∆′ Γ′ ⊢ Pj1t1(t′),∆′ . . . Γ′ ⊢ Pjmtm(t′),∆′
(PiRr )

Γ′ ⊢ Pit(t′),∆′
(ContrR)

Γ′ ⊢ ∆′

Thesearch tree forΓ ⊢ ∆ is defined to be the (possibly infinite) treeTω =
S

i≥0Ti (note that it

makes sense to consider the union of the derivation treesTi sinceTi is a subtree ofTi+1 for all

i ≥ 0).

If Tω is not an LKIDω proof then either it is not even an LKIDω pre-proof, or it is an LKIDω

pre-proof but does not satisfy the proof condition. The nextproposition addresses the former

situation.

Proposition 4.3.3. If the search tree Tω for Γ ⊢ ∆ is not a pre-proof thenΓ ⊢ ∆ is invalid.

Proof. SinceTω is clearly an LKIDω derivation tree, it must contain a bud node, sayΓ′ ⊢ ∆′.

Now by construction ofTω, it is clear that none of the rules for the logical connectives (in-

cluding equality) or for the inductive predicates can be applied to it, otherwise there would be

an element on the schedule allowing a rule to be applied to thebud. ThereforeΓ′ can contain

only atomic formulas involving non-inductive predicates,and∆′ can contain only atomic for-

mulas to which no rule can be applied, although they may stillcontain inductive predicates.

Also, again by construction ofTω, the endsequentΓ ⊢ ∆ of Tω is a subsequent of every node

occurring inTω, i.e.Γ ⊆ Γ′ and∆ ⊆ ∆′. Therefore we have:

Γ ⊢ ∆ = Q1t1, . . . ,Qmtm ⊢ R1u1, . . . ,Rkuk

whereQ1, . . . ,Qm are ordinary predicates andR1, . . . ,Rk are either ordinary or inductive predi-

cates. To see thatΓ ⊢ ∆ is invalid, we construct a standard model of(Σ,Φ) in which the sequent
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is false. Define a first-order structureM for Σ whose domain isTerms(Σ), and define:

cM = c for each constant symbolc

f M = f for each function symbolf

QMt ⇔ Qt ∈ Γ for each ordinary predicate symbolQ

PM
i =

S

α Pα
i for each inductive predicatePi

Note that the last clause of the definition ensures thatM is a standard model for(Σ,Φ) as

required. Now define an environmentρ for M by ρ(x) = x for each variable symbolx. It is then

clear thatρ(t) = t for all termst of Σ, and thus all the formulas ofΓ are obviously true inM

underρ. Similarly, all the formulas of∆ not involving inductive predicates are false inM under

ρ. It remains to show that any formulaPiu occurring in∆, wherePi is an inductive predicate, is

false inM underρ, i.e., thatu 6∈ S

α Pα
i . But this is clear from the fact that no right-unfolding

rule can be applied toPiu, and thusu 6∈ ϕα
Φ for anyα.

Now, suppose thatTω is an LKIDω pre-proof, but not a proof. From Definition 4.2.5 we

immediately have that there must exist an infinite path inTω such that there does not exist

an infinitely progressing trace following any tail of the path. (This path can then trivially be

extended to a rooted path as required.) For the remainder of this section, up until the statement

of the cut-free completeness result, we shall letTω be the search tree for a fixed sequentΓ ⊢ ∆,

and we shall assume thatTω is an LKIDω pre-proof but not a proof, i.e., there is an infinite

(rooted) path ofTω such that there does not exist an infinitely progressing trace following a tail

of the path.

Definition 4.3.4 (Untraceable branch / Limit sequent). Let π = (vi)i≥0 be the rooted infinite

path inTω such that there is no infinitely progressing trace followingany tail of the branch. (Of

course, there may be more than one such branch, in which case we make an arbitrary choice.)

π is said to be theuntraceable branchof Tω andΓω ⊢ ∆ω is said to be thelimit sequentfor

Γ ⊢ ∆, wheres(vi) = Γi ⊢ ∆i for eachi andΓω =
S

i≥0Γi and∆ω =
S

i≥0 ∆i. (Notice that these

are well-defined since, by construction of the search treeTω, we haveΓi ⊆ Γi+1 and∆i ⊆ ∆i+1

for all i ≥ 0.)

As for the LKID completeness proof, we observe that the limitsequentΓω ⊢ ∆ω is not

technically a sequent asΓω and∆ω are, in general, infinite multisets of formulas. Our notion of

(cut-free) provability in LKIDω for an infinite “sequent” is, as before, (cut-free) provability for

some finite subsequent1. For example, if we say thatΓω ⊢ ∆ω is cut-free provable in LKIDω

1This notion of provability for an infinite sequent implies but does not coincide with validity. For example, the
infinite sequentNt ⊢ t = 0,t = s0,t = ss0, . . . ,t = sn0, . . ., is valid even though every one of its finite subsequents
is invalid — a typical failure of compactness. Interestingly, if one instead were to allow infinite sequents to appear
in LKID ω proofs, a more powerful notion of cut-free provability would be obtained, which would coincide with
validity by our completeness proof.
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then we mean there exist finiteΓ′ ⊆ Γω and∆′ ⊆ ∆ω such that the sequentΓ′ ⊢ ∆′ is cut-free

provable in LKIDω.

Lemma 4.3.5. Let π = (vi)i≥0 be the untraceable branch of Tω. Then for all i≥ 0, the sequent

s(vi) is not cut-free provable in LKIDω.

Proof. The intuition behind this proof is that every possible attempt is made when construct-

ing Tω to either close a given proof branch or, if this is impossible, to construct an infinitely

progressing trace following some tail of it (since formulasare never “thrown away” when con-

structing the search tree). Any putative proof of a sequent occurring on the untraceable branch

would yield either a way of closing the branch or constructing an infinitely progressing trace

following a tail of it, which is impossible.

We writeΓi ⊢ ∆i for s(vi). Suppose for contradiction that for somei ≥ 0, Γi ⊢ ∆i has a cut-

free proof in LKIDω. So there is a (possibly infinite) LKIDω derivation treeT = (V ′,s′, r ′, p′)

such thatT has no bud nodes,s′(root(T)) = Γi ⊢ ∆i , and there is an infinitely progressing trace

following a tail of every infinite path inT.

Now let j ≥ i, let v′ ∈ V ′ ands′(v′) = Γ′ ⊢ ∆′, and supposeΓ′ ⊆ Γ j and∆′ ⊆ ∆ j . Recall

that by construction ofTω, we haveΓk ⊆ Γk+1 and∆k ⊆ ∆k+1 for all k ≥ 0, and every LKIDω

schedule element occurs infinitely often on the schedule according to whichTω is constructed.

There is therefore a point alongπ where exactly the same rule is applied (with the same active

formula and side conditions, if applicable) as is applied toΓ′ ⊢ ∆′ in the proofT. (It is for

this reason that it is crucial that we also schedule the rulesfor equality and right-unfolding of

inductive definitions in the construction of the search tree.) It follows that there is ak≥ j such

that the ruler ′(v′) is applied atvk (i.e. r(vk) = r ′(v′)) with the same active formula as in the

rule instance atv′ , and there is some premisep′x(v
′) of the rule instance atv′ such that, writing

s′(p′x(v
′)) = Γ′′ ⊢ ∆′′, we haveΓ′′ ⊆ Γk+1 and∆′′ ⊆ ∆k+1. (Notice thatp′x(v

′) must exist since

otherwiseπ is not an infinite path, which is a contradiction.) This situation is illustrated in

Figure 4.1. SinceΓi ⊆ Γi+1 and∆i ⊆ ∆i+1 for all i ≥ 0, and(τ,τ) is always a valid trace on any

edge(vi ,vi+1) such thatτ∈Γi andτ∈Γi+1 (except when the rule (Subst) is applied, which does

not occur here since we consider cut-free proofs), it follows that if(τ,τ′) is a (progressing) trace

following (v′, p′x(v
′)), then(τ, . . . ,τ,τ′) is a (progressing) trace following(v j , . . . ,vk,vk+1).

Now sinces′(root(T)) = Γi ⊢ ∆i, and triviallyΓi ⊆Γi and∆i ⊆∆i, we can repeatedly iterate

the argument in the preceding paragraph to obtain a pathπ′ = (v′i)i≥0 in T and a sequence

i < k1 < k2 < .. . of natural numbers such that, for alln≥ 1, if (τ,τ′) is a (progressing trace)

following (v′n,v
′
n+1), then(τ, . . . ,τ,τ′) is a (progressing) trace following(vkn, . . . ,vkn+1).

SinceT is a proof, there is an infinitely progressing trace following some tail of the path

π′ in T. It follows that there then is an infinitely progressing trace following some tail of the

untraceable pathπ in Tω. But this contradicts the defining property ofπ. So there cannot exist

a cut-free proof ofΓi ⊢ ∆i in LKID ω.
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Γ′ ⊆ Γ j ⊢ ∆ j ⊇ ∆′

...

T
...

. . . Γ′′ ⊢ ∆′′ . . .
(R)

Γ′ ⊢ ∆′

...

π
...

Γ′′ ⊆ Γk+1 ⊢ ∆k+1 ⊇ ∆′′
(R)

Γ′ ⊆ Γk ⊢ ∆k ⊇ ∆′

Figure 4.1: Part of the proof of Lemma 4.3.5. Given Γ j ⊢ ∆ j and Γ′ ⊢ ∆′ with Γ′ ⊆ Γ j and

∆′ ⊆ ∆ j , we can construct Γ′′ ⊢ ∆′′, Γk ⊢ ∆k and Γk+1 ⊢ ∆k+1 as shown.

Definition 4.3.6. Thecounter-interpretation forΓω ⊢ ∆ω is defined to be(Mω,ρω), whereMω

is a first-order structure forΣ and ρω is an environment forMω both defined exactly as in

Definition 3.3.4 except that for eachi ∈ {1, . . . ,n}, we definePMω
i =

S

α Pα
i . (This ensures that

Mω is thus a standard model for(Σ,Φ).)

Lemma 4.3.7. If Mω |=ρω Pi(t1, . . . , tki ), thenΓω ⊢ Pi(t1, . . . , tki ) is cut-free provable in LKIDω.

Proof. Define ann-tuple of sets(X1, . . . ,Xn) by:

Xi = {([t1], . . . , [tki ]) | Γω ⊢ Pi(t1, . . . , tki ) is cut-free provable in LKIDω}

for eachi ∈ {1, . . . ,n}. Suppose(X1, . . . ,Xn) is a prefixed point ofϕΦ and thus, since theωth

approximantϕω
Φ is the least prefixed point ofϕΦ by Lemma 2.2.11, we haveϕω

Φ ⊆ (X1, . . . ,Xn).

Then, for anyi ∈ {1, . . . ,n}:

Mω |=ρω Pi(t1, . . . , tki ) ⇔ (ρω(t1), . . . ,ρω(tki )) ∈
S

α Pα
i = πn

i .ϕω
Φ

⇔ ([t1], . . . , [tki ]) ∈ πn
i .ϕω

Φ by Prop. 3.3.5

⇒ ([t1], . . . , [tki ]) ∈ πn
i (X1, . . . ,Xn)

⇔ ([t1], . . . , [tki ]) ∈ Xi

⇔ ∃u1, . . . ,uki . u1 ∼ t1, . . . ,uki ∼ tki

andΓω ⊢ Pi(u1, . . . ,uki ) cut-free provable in LKIDω

⇔ Γω ⊢ Pi(t1, . . . , tki ) cut-free provable (by Lemma 3.3.7)

It thus suffices to show that(X1, . . . ,Xn) is a prefixed point ofϕΦ, i.e.ϕΦ(X1, . . . ,Xn)⊆ (X1, . . . ,Xn).

The proof of this fact is very similar to the second part of theproof of Lemma 3.3.8.

Lemma 4.3.8. If F ∈ Γω then Mω |=ρω F, and if F∈ ∆ω then Mω 6|=ρω F.

Proof. First note thatΓω ⊢ ∆ω is not cut-free provable by Lemma 4.3.5. The proof proceeds

by structural induction onF . All of the cases are then exactly as in Lemma 3.3.9 except forthe

caseF = Piu, wherePi is an inductive predicate. This case is dealt with as follows:



Chapter 4. LKIDω: a proof system for infinite descent in FOLID 92

CaseF = Piu, wherePi is an inductive predicate symbol ofΣ (so i ∈ {1, . . . ,n}). Suppose first

thatPiu ∈ ∆ω and suppose for contradiction thatMω |=ρω Piu. Then by Lemma 4.3.7,Γω ⊢ Piu

is cut-free provable in LKIDω and, sincePiu ∈ ∆ω, it holds thatΓω ⊢ ∆ω is cut-free provable,

which is a contradiction. SoMω 6|=ρω Piu as required.

Now suppose thatPiu ∈ Γω, and suppose for contradiction thatMω 6|=ρω Piu. Let (v j) j≥0

be the untraceable branch ofTω, and writeΓ j ⊢ ∆ j for s(v j). Note that by construction ofTω,

there is anj ≥ 0 such that for allj ′ ≥ j, Piu ∈ Γ j ′ . Furthermore, since every schedule element

occurs infinitely often on the schedule according to whichTω is constructed, there is ak ≥ j

such that the rule (CasePi) is applied atΓk ⊢ ∆k with active formulaPiu in the construction of

Tω. So for some production inΦ, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pit(x)
j1, . . . , jm, i ∈ {1, . . . ,n}

we have the following:

Γk+1 ⊢ ∆k+1 = Γk,u = t(x),Q1u1(x), . . . ,Qhuh(x),Pj1t1(x), . . . ,Pjmtm(x) ⊢ ∆k

wherex 6∈ FV(Γk∪∆k) for all k. So the formulasu = t(x),Q1u1(x), . . . ,Qhuh(x),Pj1t1(x),. . . ,

Pjmtm(x) are all in Γω. Note that sinceu = t(x) ∈ Γω, we haveu ∼ t(x) by definition of

∼ (c.f. Definition 3.3.3) and so[u] = [t(x)]. Also, sinceQ1u1(x), . . . ,Qhuh(x) ∈ Γω, all of

QMω
1 [u1(x)], . . . ,QMω

h [uh(x)] hold by definition ofMω. Thus ifPMω
j1 [t1(x)], . . . ,PMω

jm [tm(x)] also

all hold thenPMω
i [t(x)] holds by definition ofPMω

i andϕΦ, i.e. PMω
i u holds soMω |=ρω Piu,

which contradicts our initial assumption thatMω 6|=ρω Piu.

Therefore, for somek ∈ {1, . . . ,m}, we have thatPMω
jk

[tk(x)] does not hold. Note that

(Piu, . . . ,Piu,Pjktk(x)) is a progressing trace following some finite segment of the untraceable

branchπ of Tω (starting with the first sequent on the branch such thatPiu occurs in its left-

hand side, and finishing with the above premise of the considered instance of (CasePi) in

Tω). By repeating the argument, this time starting withPjktk(x), we can find a point on the

untraceable branch wherePjktk(x) is unfolded using the rule (CasePjk) and another progressing

trace, beginning withPjktk(x), following some further segment of the untraceable branch.By

iterating the argument, we obtain an infinite sequence of atomic formulas(Fi)i≥0 occurring on

π, with F0 = Piu, F1 = Pjktk(x), etc., such that for alli ≥ 0, Fi+1is a case-descendant ofFi.

Thus there exists an infinitely progressing trace(F0, . . . ,F0,F1, . . . ,F1,F2, . . .) following some

tail of π, which contradicts the fact thatπ is the untraceable branch ofTω. Thus we must have

Mω |=ρω Piu as required, which completes the case and thus the proof.

Theorem 4.3.9(Cut-free completeness of LKIDω). If Γ ⊢ ∆ is valid with respect to standard

models of(Σ,Φ), then it has a recursive cut-free proof in LKIDω.
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Proof. Suppose thatΓ ⊢ ∆ is valid, i.e. true in every standard model of(Σ,Φ), but that the

search treeTω for Γ ⊢ ∆ is not an LKIDω proof. So eitherTω is not even an LKIDω pre-proof

— in which caseΓ ⊢ ∆ is invalid by Proposition 4.3.3,which is a contradiction — or Tω has an

untraceable branch (c.f. Definition 4.3.4). In the latter case, letΓω ⊢ ∆ω be the limit sequent for

Γ ⊢ ∆ with counter-interpretation(Mω,ρω) (c.f. Definition 4.3.6). By Lemma 4.3.8, we have

Mω |=ρω F for all F ∈ Γω andMω 6|=ρω F for all F ∈ ∆ω. As Γ ⊆ Γω and∆ ⊆ ∆ω, we thus have

Mω |=ρω F for all F ∈ Γ andMω 6|=ρω F for all F ∈ ∆. In other words, we have constructed a

standard modelMω of (Σ,Φ) such thatΓ ⊢ ∆ is false inMω, soΓ ⊢ ∆ is again invalid, which is

a contradiction.

ThusTω is an LKIDω proof of the sequentΓ ⊢ ∆. By construction, it is both recursive and

cut-free.

Theorem 4.3.10(Cut-eliminability in LKIDω). If Γ ⊢ ∆ is provable in LKIDω then it has a

recursive cut-free proof in LKIDω (i.e. a recursive proof that does not employ the rules (Cut),

(Wk) or (Subst)).

Proof. SupposeΓ ⊢ ∆ is provable in LKIDω. By soundness (Proposition 4.2.6),Γ ⊢ ∆ is valid

with respect to standard models of(Σ,Φ). Thus by Theorem 4.3.9, the search tree forΓ ⊢ ∆ is

a recursive cut-free proof ofΓ ⊢ ∆ in LKID ω.

The fact that LKIDω is complete with respect to standard models, together with the fact that

LKID cannot have this property, means that the infinitary system LKIDω is more powerful than

the finitary system LKID, because there are sequents that arevalid in the standard sense but not

Henkin valid (this essentially follows from the fact that there are non-standard Henkin models,

c.f. Corollary 2.3.11). The fact that LKIDω is complete in the standard sense, and can interpret

Peano arithmetic via a translation similar to that used for LKID in the previous chapter, implies

by Gödel’s incompleteness theorem that it is impossible torecursively enumerate a complete set

of LKID ω proofs. Moreover, cut-free proofs in LKIDω enjoy a property akin to the subformula

property for cut-free proofs in LK, when the notion of subformula is appropriately generalised.

That is to say, if one allows that an “inductive-subformula”(say) of a formulaF is either a

subformula ofF in the usual sense or related to such a subformula by equalityor by unfolding

of inductively defined predicates, then every formula occurring in a cut-free LKIDω proof of a

sequentΓ ⊢ ∆ is an inductive-subformula of a formula occurring inΓ ⊢ ∆. The eliminability of

cut in LKIDω thus corresponds, at least in some sense, to Girard’s ideal of “purity of methods”

[29] for FOLID.



Chapter 5

Cyclic proofs in trace-based infinitary

proof systems

In the previous chapter, we considered an infinitary proof system LKIDω for FOLID whose

soundness is guaranteed by a global proof condition based ontraces in the proof, and we

established that any valid sequent of FOLID has a recursive cut-free LKIDω proof. Unfortu-

nately, the system LKIDω is not suitable for practical formal reasoning. Note that itis not

possible to recursively enumerate the set of LKIDω proofs, for otherwise — via an embed-

ding of Peano arithmetic into LKIDω similar to that in Section 3.4.2 — it would be possible

to recursively enumerate the true statements of arithmetic, which is impossible. In particular,

although recursive LKIDω proofs can be encoded as natural numbers (for example), it isnot

even semidecidable whether a given natural number encodes an LKIDω proof for, if this were

the case, we could recursively enumerate the set of LKIDω proofs. Thus we do not have a

usefulfinite representation for LKIDω (pre-)proofs in general.

We saw in Section 4.2.1 that the LKIDω proof condition — that an infinitely progressing

trace exists on some tail of every infinite path in the proof — yields a sound notion of infinite

proof for any proof system Sω for which a suitable notion of trace can be found (c.f. Defi-

nition 4.2.7). For sufficiently powerful systems Sω, the same practical problems for formal

reasoning arise as in the case of LKIDω above.

We recall that an infinite tree is said to beregular if it contains only finitely many distinct

subtrees [18], and it is well-known that a tree is regular exactly if it can be represented as a finite

(cyclic) graph [16, 46, 76]. Since formal reasoning requires a convenient finite representation

for proofs, it is natural to consider the restriction of an infinitary trace-based system Sω to

those (pre-)proofs given by regular derivation trees, i.e., those derivation trees representable by

finite cyclic graphs. We use the generic termcyclic proof systemsfor systems obtained from

infinitary proof systems in this way.

In Section 5.1, we show how to obtain the restricted proof system CSω, which is suitable

94
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for formal reasoning, from an arbitrary trace-based proof system Sω, and we also show that

in the setting of CSω, the proof condition for Sω is decidable. In Section 5.2, we consider

the particular case of the system CLKIDω obtained by so restricting LKIDω, and give some

illustrative examples of cyclic CLKIDω proofs. We conjecture that cut is not eliminable in the

restricted system CLKIDω (despite being eliminable in the full infinitary system LKIDω).

5.1 The cyclic restriction of a trace-based infinitary proof system

Given an infinite proof system Sω equipped with a suitable trace pair function (c.f. Defini-

tion 4.2.7), we obtain its cyclic restriction, CSω, as follows. A CSω pre-proof is a finite Sω

derivation tree, possibly containing bud nodes, together with a function assigning to each bud

node an interiorcompanionnode in the tree with the same sequent labelling; this allowsus to

identify cyclicity in derivation trees. Note that equalityon formulas is standard syntactic equal-

ity, and so equality on sequents is defined by extending this notion to multisets in the standard

way. CSω pre-proofs can be viewed as finite (cyclic) graph representations of regular infinite

trees, i.e., regular Sω pre-proofs, by identifying bud nodes with their assigned companions. The

soundness condition on Sω pre-proofs can thus be straightforwardly applied to CSω pre-proofs,

and moreover, this condition is decidable in the restrictedsetting of CSω.

Definition 5.1.1(Companion). LetD = (V,s, r, p) be a derivation tree and letB∈ Bud(D). A

nodeC ∈V is said to be acompanion for Bif r(C) is defined ands(C) = s(B).

We remark that, in contrast to some other formal systems employing notions of cyclic or

circular proof (e.g. [63, 32]), we do not require companionsto be ancestors of the bud nodes

to which they are assigned, i.e.C need not appear on the unique path inD from root(D) to B

in the definition above. (However, we show in the next chapterthat any CSω pre-proof can be

transformed into an “equivalent” pre-proof in which the buds and companionsare arranged in

this form.)

Definition 5.1.2(CSω pre-proof). A CSω pre-proof of a sequentSis a pair(D = (V,s, r, p),R ),

whereD is a finite Sω derivation tree with endsequentS, andR : V →V is a partial function

assigning a companion to every bud node inD.

Next, we show how a CSω pre-proof can be understood as a cyclic graph. We writef (x) ≃
g(y), where f andg are (partial) functions, to mean thatf (x) is defined iffg(y) is defined and

if f (x) is defined thenf (x) = g(y).

Definition 5.1.3(Pre-proof graph). LetP = (D,R ) be a CSω pre-proof, whereD = (V,s, r, p).

Then thegraphof P , writtenGP , is the derivation graph obtained fromD by identifying each

bud nodeB ∈ Bud(D) with its companionR (B). That is to say,GP = (V ′,s, r, p′), where
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V ′ = V \Bud(D) andp′ is defined by:

p′j(v) ≃
{

R (p j(v)) if p j(v) ∈ Bud(D)

p j(v) otherwise

for each j ∈ N. (Note thatGP contains no bud nodes, i.e., the rule labelling functionr is total

onV ′.) A pathv0v1v2 . . . in GP is said to berooted iff v0 = root(D).

We now demonstrate how a CSω pre-proof can be understood as a Sω pre-proof. Note that

we use the symbol· to indicate concatenation of sequences.

Definition 5.1.4(Tree-unfolding). LetP = (D = (V,s, r, p),R ) be a CSω pre-proof with graph

GP = (V ′,s, r, p′). DefinePath(GP ), the set of rooted finite paths throughGP , as follows:

Path(GP ) = {(vi)0≤i≤n | n∈ N andv0 = root(D) and∀i ∈ {1, . . . ,n}.∃ j. vi = p′j(vi−1)}

Then thetree-unfoldingof P is TP = (Path(GP ),s∗, r∗, p∗), where:

• s∗((vi)0≤i≤n) = s(vn)

• r∗((vi)0≤i≤n) = r(vn) (note thatr is total onV ′, sor(vn) is always defined)

• p∗j ((vi)0≤i≤n) ≃ ((vi)0≤i≤n · p′j(vn))

Lemma 5.1.5. For any CSω pre-proofP , its tree-unfoldingTP is a Sω pre-proof.

Proof. Let GP = (V ′,s, r, p′) andTP = (Path(GP ),s∗, r∗, p∗). First we need to establish that

TP is a derivation graph. To see this, we observe that:

p∗j ((vi)0≤i≤n) is defined

⇔ p′j(vn) is defined

⇔ r(vn) = (R) and 1≤ j ≤ mand
s(p′1(vn)) . . . s(p′m(vn))

s(vn)
is an instance of rule(R)

⇔ r∗((vi)0≤i≤n) = (R) and 1≤ j ≤ mand

s∗(p∗1((vi)0≤i≤n)) . . . s∗(p∗m((vi)0≤i≤n))

s∗((vi)0≤i≤n)
is an instance of rule(R)

as required. (Note that the second equivalence holds sinceGP is a derivation graph.)

Now we define the root ofTP to be the one-element sequence(root(D)), and need to

establish that there is a unique path from(root(D)) to any other node(vi)0≤i≤n ∈ Path(GP ).

We proceed by induction onn. In the casen = 0 there is clearly a unique path (of length 0)

from (root(D)) to (root(D)) in TP and we are done. For the step case, we assume there is a

unique path from(root(D)) to any node of the form(vi)0≤i≤k and proceed as follows:
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(vi)0≤i≤k+1 ∈ Path(GP ) ⇒ ∃ unique j. vk+1 = p′j(vk)

⇔ ∃ unique j. (vi)0≤i≤k+1 = (vi)0≤i≤k · p′j(vk)

⇔ ∃ unique j. (vi)0≤i≤k+1 = p∗j ((vi)0≤i≤k)

The uniqueness of the path from(root(D)) to (vi)0≤i≤k+1 follows from the uniqueness of the

path from(root(D)) to (vi)0≤i≤k together with the uniqueness ofj in the above. SoTP is

indeed a derivation tree. It is clear that it is a Sω derivation tree, becauseD is a Sω derivation

tree, and the sequent and rule labellings appearing inTP are just those appearing inD. Finally,

to see thatTP is a Sω pre-proof, we just need to establish thatTP has no bud nodes, which is

clear sincer∗((vi)0≤i≤n) is defined wheneverr(vn) is defined, andr is total on the nodesV ′ of

GP .

Definition 5.1.6 (CSω proof). A CSω pre-proofP = (D,R ) is said to be a CSω proof if, for

every infinite path inGP , there is an infinitely progressing trace following some tail of the path.

Of course, as in the case of our infinitary systems in the previous chapter, we can restrict to

rooted infinite paths in the definition above without loss of generality.

Proposition 5.1.7. For any CSω pre-proofP , P is a CSω proof if and only ifTP is a Sω proof.

Proof. LetP = (D,R ) be a CSω pre-proof and note that its tree-unfoldingTP is a Sω pre-proof

by Lemma 5.1.5 above. We then require to show that there exists an infinitely progressing

trace on some tail of every infinite path inGP = (V ′,s, r, p′) just in case there is one on some

tail of every infinite path inTP = (Path(GP ),s∗, r∗, p∗). Without loss of generality, we may

restrict our attention torooted infinite paths inGP andTP (c.f. our remarks immediately after

Definition 4.2.5).

Now supposeTP is a Sω proof, and letπ = (vi)i≥0 be a rooted infinite path inGP . Now we

have for alli ≥ 0 and for all j ∈ N:

vi+1 = p′j(vi) ⇔ (vk)0≤k≤i+1 = p∗j ((vk)0≤k≤i)

and since(v0) = (root(D)) = root(TP ), it follows that((vk)0≤k≤i)i≥0 is a rooted infinite path

in TP . Moreover, we have for eachi ≥ 0:

s∗((vk)0≤k≤i) = s(vi) andr∗((vk)0≤k≤i) = r(vi)

so the sequent and rule labelling of the path((vk)0≤k≤i)i≥0 in TP is identical to the sequent

and rule labelling of the path(vi)i≥0 in GP . SinceTP is an Sω proof, there is an infinitely

progressing trace following some tail of((vk)0≤k≤i)i≥0, whence it is immediate by the above

that this trace is also a infinitely progressing trace following a tail of(vi)i≥0, because the trace

pair function for the system only depends on the sequents andrule labelling a given edge
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(c.f. Definition 4.2.7). Hence there is an infinitely progressing trace on some tail of every

infinite path inGP as required.

The argument that ifGP is a CSω proof then one can construct an infinitely progressing

trace on a tail of any rooted infinite path inTP is very similar to the above.

Corollary 5.1.8 (Soundness of CSω). If there is a CSω proof P of a sequent S then S is valid

(according to the semantics of the infinitary system Sω).

Proof. If P is a CSω proof then its tree-unfoldingTP is a Sω proof by Proposition 5.1.7. The

endsequentSof P is the endsequent ofTP (sinces∗(root(TP ))= s∗((root(D)))= s(root(D))=

S), soS is valid by soundness of the full infinitary system Sω (Proposition 4.2.10).

Proposition 5.1.7 establishes that a CSω (pre-)proofP can be considered a finite represen-

tation of the Sω (pre-)proofTP . In fact, a CSω pre-proof always represents aregular Sω proof,

and every regular Sω proof can be so represented; this follows from the well-known fact that

a tree is regular exactly if it is representable by a cyclic graph [16, 46, 76]. We therefore only

state, and do not prove, the following proposition:

Proposition 5.1.9. LetD be a Sω pre-proof. ThenD is a regular tree if and only if there exists

a CSω pre-proofP with TP =D.

The condition for a CSω pre-proof to be a proof (c.f. Definition 5.1.6) is of course a global

condition in the sense that it can be determined only by examining the entire pre-proof structure

(in general, anyway). However, in contrast to the situationof Sω — as discussed at the start

of this chapter, it is not decidable whether a given Sω pre-proof is a proof — the soundness

condition for CSω is decidable:

Proposition 5.1.10. It is decidable whether a CSω pre-proof is a CSω proof.

Proof. (Sketch) We show that the property that every infinite path possesses a tail on which

an infinitely progressing trace exists is anω-regular property (similar arguments appear in [52,

62, 42]), and hence reducible to the emptiness of a Büchi automaton.

We writeL(B) for the language accepted by a Büchi automatonB. Given a CSω pre-proof

P , we first construct a Büchi automatonTrace such thatL(Trace) is the set of strings of

vertices ofGP such that an infinitely progressing trace can be found on a suffix of the string

(irrespective of whether the string is actually a path inGP ). We then construct the automaton

Trace accepting the complemented languageL(Trace), i.e. the set of strings of vertices of

GP such that no infinitely progressing trace exists on any suffixof the string. FromTracewe

build a final Büchi automatonPr f Decaccepting only those strings that are inL(Trace) and

that also are valid paths inGP . One can then easily see thatP is a CSω proof if and only if

L(Pr f Dec) = /0, which is a decidable problem.
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A full proof of Proposition 5.1.10 is given in Appendix A. It contains full details of the

construction of the Büchi automatonPr f Dec for proof decision in CSω, and thus may be of

interest to the reader concerned with the implementation oftrace-based cyclic proof systems.

5.2 CLKID ω: a cyclic proof system for FOL ID

In this section, we consider the cyclic proof system CLKIDω for FOLID obtained as the re-

striction of the full infinitary system LKIDω to regular trees, as per Section 5.1 above. We

give some concrete examples of cyclic proofs in CLKIDω, and state our conjecture that the

cut-eliminability property of LKIDω does not hold in the restricted system CLKIDω.

Example 5.2.1.Let ΦNEO be the inductive definition set consisting of the productions for the

“natural number” predicateN given in Example 2.2.5 and the productions for the “even and

odd number” predicatesE andO given in Example 2.2.6. The following is then a CLKIDω

proof of Nx⊢ Ex∨Ox:

(ER1)
⊢ E0,O0

Nx⊢ Ox,Ex(†)
(Subst)

Ny⊢ Oy,Ey
(OR1)

Ny⊢ Oy,Osy
(ER2)

Ny⊢ Esy,Osy
(=L)

x = sy,Ny⊢ Ex,Ox
(CaseN)

Nx⊢ Ex,Ox(†)
(∨R)

Nx⊢ Ex∨Ox

We use the symbol(†) to indicate the pairing of the bud in the pre-proof above witha suitable

companion. To see that the pre-proof satisfies the CLKIDω proof condition, observe that any

infinite path through the pre-proof graph necessarily has a tail consisting of repetitions of the

path(†) . . . (†) from the companion to the bud in this proof, and there is a progressing trace

following this path: (Nx,Ny,Ny,Ny,Ny,Nx). By concatenating copies of this trace one can

thus obtain an infinitely progressing trace on a tail of any infinite path as required.

Example 5.2.2.The following is a CLKIDω proof of the converse statement to the previous

example,Ex∨Ox⊢ Nx (we use the symbols(†) and(∗) to indicate the pairing of companions

with buds):

(NR1)
⊢ N0

(=L)
x = 0⊢ Nx

Ox⊢ Nx(†)
(Subst)

Oy⊢ Ny
(NR2)

Oy⊢ Nsy
(=L)

x = sy,Oy⊢ Nx
(CaseE)

Ex⊢ Nx(∗)

Ex⊢ Nx(∗)
(Subst)

Ey⊢ Ny
(NR2)

Ey⊢ Nsy
(=L)

x = sy,Ey⊢ Nx
(CaseO)

Ox⊢ Nx(†)
(∨L)

Ex∨Ox⊢ Nx
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To see that this satisfies the CLKIDω proof condition, observe that any infinite path through

the pre-proof graph necessarily has a tail consisting of repetitions of the “figure-of-8” loop

(†) . . . (∗) . . . (†) in this proof, and there is a trace with two progress points following this path:

(Ox,Ey,Ey,Ey,Ex,Oy,Oy,Oy,Ox). (Note that bud nodes are identified with their companions

in the pre-proof graph.) As in the previous example, we can construct the required infinitely

progressing trace on this tail by concatenating copies of this trace.

Example 5.2.3(“The P&Q Example”, Wirth [85] pp. 43–47). Let ΦNPQ be the inductive defi-

nition set consisting of the usual productions for the “natural number” predicateN (c.f. Example

2.2.5) together with the following productions for the unary predicateP and binary predicate

Q:

P0

Px Q(x,sx)

Psx Q(x,0)

Q(x,y) Px

Q(x,sy)

We wish to provide a CLKIDω proof of the sequentNx,Ny⊢ Q(x,y), and begin as follows:

(QR1)
Nx⊢ Q(x,0)

(=L)
Nx,y = 0⊢ Q(x,y)

Nx,Ny⊢ Q(x,y) (†1)
(Subst)

Nx,Nz⊢ Q(x,z) Nx⊢ Px(∗)
============================= (QR2)

Nx,Nz⊢ Q(x,sz)
(=L)

Nx,y = sz,Nz⊢ Q(x,y)
(CaseN)

Nx,Ny⊢ Q(x,y) (†)

We then continue on the rightmost branch of the proof(∗) as follows:

(PR1)
⊢ P0

(=L)
x = 0⊢ Px

Nx⊢ Px(∗)
(Subst)

Nz⊢ Pz

Ny,Nx⊢ Q(x,y) (†2)
(Subst)

Nsz,Nz⊢ Q(z,sz)
============================= (PR2)

Nsz,Nz⊢ Psz
(=L)

Nx,x = sz,Nz⊢ Px
==================================== (CaseN)

Nx,Nx⊢ Px
(ContrL)

Nx⊢ Px(∗)

Note that both of the buds(†1) and(†2) are assigned the companion(†). The following is a

schematic representation of the pre-proof given above (solid lines denote paths in the derivation

tree and dashed arrows indicate the assignation of companions to buds):

(†)

(†1) (∗)

(†2)(∗)

To see that this pre-proof is a CLKIDω proof, consider an infinite pathπ through the pre-

proof graph. There are two cases to consider:
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• Neither the bud(∗) nor the bud(†2) occur infinitely often onπ, in which caseπ has a

tail π′ consisting only of repetitions of the tree path from the companion(†) to the bud

(†1). Note that there is a progressing trace following this path:(Ny,Nz,Nz,Nz,Ny), and

we can construct an infinitely progressing trace onπ′ by composing copies of this trace.

• At least one of the buds(∗),(†2) occur infinitely often onπ. Note that we have:

– a non-progressing trace(Nx,Nx,Nx,Nx,Nx) following the path from(†) to (†1);

– a progressing trace(Nx,Nx,Nx,Nx,Nx,Nz,Nz,Nz,Nx) following the path from(†)

to (†2);

– a progressing trace(Nx,Nx,Nz,Nz,Nz,Nx) following the path from(∗) to (∗).

Noting that the first two of these traces have the same value atthe companion node(†),

and the last two traces have the same value at the companion node (∗), it is then clear

by inspection of the pre-proof that one can construct a tracefollowing a tail of π by

composing components of these traces as required. This trace is infinitely progressing

because at least one of the two progressing traces above mustoccur infinitely often in it.

(In fact, the above is an informal argument that the pre-proof above has atrace manifold, which

is sufficient to ensure it is a CLKIDω proof. See Section 7.2 for full details.)

In the two previous chapters, we obtained cut-eliminability results for the finitary sys-

tem LKID and for the infinitary system LKIDω. However, it seems probable that cut is not

eliminable in the system CLKIDω, though providing a proof of this fact is apparently rather

challenging. Note that the eliminability of cut in LKIDω does not imply the eliminability of

cut in CLKIDω. If a sequent has a CLKIDω proof then this proof is also a LKIDω proof,

and thus there exists a cut-free LKIDω proof of the same sequent; but there is no guarantee

that the cut-free proof is a regular tree, and so need not be a CLKID ω proof in general. In

Chapter 7 we show that LKID proofs can be translated into CLKIDω proofs by replacing each

induction rule instance in an LKID proof with a CLKIDω derivation. However, the CLKIDω

derivation of an induction rule necessarily involves an instance of the cut rule (because the

induction rule for a predicate introduces an arbitrary formula in its premises). This does not

mean that cut is not eliminable in CLKIDω, because there might nevertheless exist a different

cut-free CLKIDω proof of an arbitrary LKID-provable sequent. In any case, cut-free LKID

proofs do not straightforwardly correspond to cut-free CLKIDω proofs, and so even if LKID

and CLKIDω were equivalent systems (as is conjectured formally in Chapter 7), it would seem

that the eliminability of cut in CLKIDω would not follow from its eliminability in LKID. Also,

note that CLKIDω cannot be complete with respect to standard models (becausethe set of

CLKIDω proofs can be recursively enumerated), and in particular itis not cut-free complete
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with respect to standard models so a semantic proof of cut-eliminability by soundness and

cut-free completeness (as in the cut-eliminability proofsfor LKID and LKIDω) is impossible.

Conjecture 5.2.4. Cut is not eliminable in the system CLKIDω. That is to say, there exists a

sequentΓ ⊢ ∆ of FOLID which is provable in CLKIDω, but is not provable without the use of

the rule (Cut).

The discussion above provides some indication that Conjecture 5.2.4 is likely to hold, but

it is nevertheless far from clear how to supply a formal proofof the conjecture. Of course, one

would need to demonstrate that there is a sequent that is provable in CLKIDω, but not prov-

able without cut. A suitable candidate sequent might be one whose standard inductive proof

(in LKID, say) requires the induction hypothesis to be a generalisation of the sequent, i.e. the

inductive proof necessarily uses a formula of strictly greater logical complexity than any for-

mula occurring in the root sequent. For examples demonstrating the need for generalisation in

inductive proof see e.g. [12]. However, it does not immediately follow that a similar generali-

sation of the root sequent is then required for the construction of a CLKIDω proof. Since any

LKID-provable sequent is also cut-free LKIDω-provable, the crux of the argument would pre-

sumably lie in showing that noregular cut-free proof of the sequent can exist. Unfortunately,

it is not completely obvious how one would make such an argument, and Conjecture 5.2.4 will

for now have to be left as a possible direction for future work. Of course, while cut-elimination

is a desirable property for proof systems generally, the non-eliminability of cut for CLKIDω

(if established) would not necessarily be disastrous. Rather, it would imply that the search for

appropriate generalisations of inductive conjectures must be performed via cuts in CLKIDω,

and not necessarily in conjunction with the application of induction, as is the case in LKID.

There is also a question of whether the substitution rule (Subst) is admissible in CLKIDω.

In the example proofs given above, it is used as the last rule on a particular branch in order

to ensure that a bud sequent is syntactically identical to a particular interior node, which can

then be used as a companion for the bud. It appears very likelythat this is a necessary step in

general (at least in cut-free proofs), i.e. that (Subst) is not an eliminable rule in CLKIDω, but

we have not investigated this in detail1.

1It would be possible to work with a much weaker definition of companion (c.f. Defn 5.1.1) incorporating
substitution and / or weakening, so that a companion for a budlabelledΓ ⊢ ∆ would be any node labelledΓ′ ⊢ ∆′

such that, for some substitutionθ, we haveΓ′ ⊆ Γ[θ] and∆′ ⊆ ∆[θ] (similar definitions are used by Sprenger and
Dam [62] and Schöpp and Simpson [58]). In this case, it is easy to see that (Subst) is then eliminable, and the system
may be more suitable for proof search; but from our theoretical standpoint there is the technical inconvenience that
buds cannot be straightforwardly identified with their companions when forming the pre-proof graph, and in order
to view cyclic proofs as representations of infinite proofs,one would have to add extra rule applications between
bud nodes and their companions, or use some other suitable conversion.
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Cycle normalisation for cyclic proofs

In this chapter we shall examine the structure of (pre-)proofs in an arbitrary cyclic proof sys-

tem CSω obtained as the cyclic restriction of an infinitary proof system Sω equipped with a

suitable trace pair function, as discussed in Chapter 5. As many CSω pre-proofs can represent

the same infinite Sω pre-proof, i.e. have the same tree-unfolding (up to isomorphism), these

tree-unfoldings give us a natural notion of equivalence on CSω pre-proofs. Our primary tool

for establishing such equivalences between pre-proofs is thederivation graph homomorphism

(which is analogous to homomorphism on ordinary graphs). Wedevelop the necessary proof

machinery for establishing equivalences between CSω pre-proofs in Section 6.1.

Our definition of a CSω pre-proof allows essentially arbitrary complexity in their cycle

structure; to form a pre-proof, bud nodes in a derivation tree may be assigned companions

occurring anywhere in the tree. For example, in Example 5.2.2 of the previous chapter we saw

a natural example of a cyclic proof in the system CLKIDω with a “figure-of-8” structure. It is

natural to investigate the extent to which this complexity is necessary: can the structure of an

arbitrary CSω (pre)-proof be simplified in general? We give a positive answer to this question

by demonstrating thecycle-normalisationproperty: every CSω pre-proof can be transformed

into a pre-proof in which the repeat function assigns to eachbud node an ancestor of the bud as

a companion. Such pre-proofs are said to be incycle normal form. Furthermore, the pre-proof

thus obtained is equivalent to the original pre-proof in theaforementioned sense of having

the same tree-unfolding. In one sense, cycle-normalisation is almost an obvious property:

intuitively, since a CSω pre-proof represents a regular (infinite) tree, one can obtain a pre-proof

in cycle normal form by traversing each infinite branch of thetree-unfolding and forming a

cycle as soon as one encounters the same subtree twice along the branch. However, providing

a formal proof along these lines is somewhat intricate and involves the consideration of many

details. We give a complete proof of the equivalence-preserving cycle-normalisation property

for arbitrary CSω pre-proofs via a folding operation on the infinite Sω pre-proof represented by

a CSω pre-proof in Section 6.2.

103
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Finally, in Section 6.3 we give an alternative proof of cycle-normalisation via an iterative

unfolding operation on pre-proofs (again yielding an equivalent pre-proof). Despite a large

complexity bound on the size of the pre-proof thereby obtained, this proof nevertheless gives a

direct algorithm for transforming a pre-proof into anotherin cycle-normal form.

6.1 Tree-unfolding equivalence on cyclic proofs

Definition 6.1.1(Derivation graph homomorphism). Let G = (V,s, r, p) andG′ = (V ′,s′, r ′, p′)

be derivation graphs. Aderivation graph homomorphism from G to G′ is a total function

f : V →V ′ satisfying, for allv∈V:

s′( f (v)) = s(v)

r ′( f (v)) ≃ r(v)

p′j( f (v))) ≃ f (p j(v)) (for each j ∈ N)

If G,G′ are derivation graphs, we writef : G→ G′ to mean thatf is a derivation graph homo-

morphism fromG to G′.

Proposition 6.1.2(Composition of derivation graph homomorphisms). Let f1 : G1 → G2 and

f2 : G2 → G3 be derivation graph homomorphisms. Then their composition, f2◦ f1 : G1 → G3,

is also a derivation graph homomorphism.

Proof. The proof is an easy verification, but we include the details for completeness. For

i ∈ {1,2,3}, let Gi = (Vi ,si , r i , pi). We just need to check the properties required forf2 ◦ f1

to be a derivation graph homomorphism, which all follow fromthe fact that f1 and f2 are

derivation graph homomorphisms:

• s1(v) = s2( f1(v)) = s3( f2( f1(v)))

• r1(v) ≃ r2( f1(v)) ≃ r3( f2( f1(v)))

• for any j ∈ N, f2( f1(p1j (v))) ≃ f2(p2j ( f1(v))) ≃ p3j ( f2( f1(v)))

The fundamental property of derivation graph homomorphisms is that they preserve the

sequent and rule labellings of paths in a derivation graph, and thus traces following those paths:

Lemma 6.1.3(Path preservation under homomorphism). Let G= (V,s, r, p) and G′ = (V ′,s′, r ′, p′)

be derivation graphs such that there exists a derivation graph homomorphism f: G→G′. Then

for every infinite path v0v1v2 . . . in G there is an infinite path x0x1x2 . . . in G′ with the same rule

and sequent labelling, i.e. s(vi) = s′(xi) and r(vi) = r ′(xi) for all i ≥ 0. Furthermore, if f is

surjective, then the converse holds.
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Proof. First, letπ1 = v0 j0v1 j1v2 j2 . . . be a path inG so thatr(vi) is defined andvi+1 = p ji (vi)

for all i ≥ 0. As f (vi+1) = f (p ji (vi)) = p′ji ( f (vi)), it holds that thatf (v0) j0 f (v1) j1 f (v2) j2 . . .

is a path inG′. Furthermore, we haves(vi) = s′( f (vi)) andr(vi) = r ′( f (vi)) as required.

Now supposef is surjective and letπ2 = x0 j0x1 j1x2 j2 . . . be a path inG′ so thatxi+1 =

p′ji (xi) for eachi. Consider the path inG inductively defined by: letv0 ∈V be such thatf (v0) =

x0 and definevi+1 = p ji (vi) for eachi ≥ 0. We prove by induction oni thatvi is well-defined and

satisfiesf (vi) = xi for all i ≥ 0. If i = 0 we are immediately done by the surjectivity off . For

i = k+1 we havexk+1 = p′jk(xk) = p′jk( f (vk)) (by IH) = f (p jk(vk)) = f (vk+1) and are done. So

v0 j0v1 j1v2 j2 . . . is indeed a path inG. Furthermore, asf is a derivation graph homomorphism,

we haves(vi) = s′( f (vi)) = s′(xi) andr(vi) = r ′( f (vi)) = r ′(xi) as required.

Lemma 6.1.4(Trace preservation under homomorphism). Let G and G′ be derivation graphs

and suppose there exists a derivation graph homomorphism f: G → G′. Then if there is an

infinitely progressing trace on some tail of every infinite path in G′, then there is an infinitely

progressing trace on some tail of every infinite path in G. Moreover, if f is surjective then the

converse implication also holds.

Proof. Let G= (V,s, r, p) andG′ = (V ′,s′, r ′, p′). Suppose there exists an infinitely progressing

trace on some tail of every infinite path inG′, and consider an infinite pathv0v1v2 . . . in G.

By Lemma 6.1.3 above, there exists an infinite pathx0x1x2 . . . in G′ such thats(vi) = s′(vi)

and r(vi) = r ′(xi) for all i ≥ 0. By assumption, there exists an infinitely progressing trace

τ = τnτn+1τn+2 . . . on some tailxnxn+1xn+2 . . . of this path. Now for anyi ≥ n:

(τi ,τi+1) is a valid trace pair on(vi ,vi+1) ⇔ TPair(τi ,τi+1)(s(vi), r(vi),s(vi+1)) 6= 0

⇔ TPair(τi ,τi+1)(s′(xi), r ′(xi),s′(xi+1) 6= 0

⇔ (τi ,τi+1) is a valid trace pair on(xi ,xi+1)

whereTPair is the trace pair function for Sω (c.f. Definition 4.2.7). Similarly,(τi,τi+1) is a

progressing trace pair on(vi ,vi+1) exactly if it is on(xi ,xi+1). Thusτ is the required infinitely

progressing trace on a tail ofv0v1v2 . . ..

For the converse implication, suppose that the derivation graph homomorphismf is surjec-

tive and that there is an infinitely progressing trace on sometail of every infinite path inG, and

consider an infinite (rooted) pathx0x1x2 . . . in G′. Since f is surjective, by Lemma 6.1.3 there

is an infinite pathv0v1v2 . . . in G such thats(vi) = s′(vi) and r(vi) = r ′(xi) for all i ≥ 0. The

remainder of the argument is then similar to the case above.

As indicated previously, we obtain a natural notion of equivalence on CSω pre-proofs by

considering isomorphism (i.e. invertible derivation graph homomorphism) between their re-

spective tree-unfoldings (c.f. Definition 5.1.4). Any two pre-proofs that are equivalent in this

sense are also equivalent in the weaker sense that one satisfies the CSω proof condition if and

only if the other does.
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Definition 6.1.5(Equivalence for cyclic pre-proofs). Two CSω pre-proofsP andP ′ are said to

beequivalent, written P ≈ P ′, if there is an invertible derivation graph homomorphism from

TP to TP ′ .

Proposition 6.1.6. LetP andP ′ be CSω pre-proofs such thatP ≈ P ′. ThenP is a CSω proof

iff P ′ is.

Proof. First note that, by Proposition 5.1.7,P is a CSω proof iff TP is an Sω proof, andP ′

is a CSω proof iff TP ′ is an Sω proof. It therefore suffices to show thatTP is an Sω proof iff

TP ′ is. Now sinceP ≈ P ′, there is a surjective (and injective) derivation graph homomorphism

from TP to TP ′ . By Lemma 6.1.4, there is an infinitely progressing trace on some tail of every

infinite path inTP if and only if there is an infinitely progressing trace on sometail of every

infinite path inTP ′ , and thus indeedTP is an Sω proof iff TP ′ is.

Having defined a notion of equivalence between CSω pre-proofs, we now naturally are

interested in transformations on a CSω pre-proof that yield an equivalent pre-proof. It turns out

that two pre-proofs are equivalent if there exists a surjective derivation graph homomorphism

between them that also preserves the root of their underlying derivation trees.

Proposition 6.1.7. For any CSω pre-proofP , there is a surjective derivation graph homomor-

phism fP fromTP toGP .

Proof. LetP = (D = (V,s, r, p),R ), so we haveGP = (V ′,s, r, p′) andTP = (Path(GP ),s∗, r∗, p∗)

constructed according to Definitions 5.1.3 and 5.1.4 respectively. Now definefP : Path(GP )→
V ′ by: fP ((vi)0≤i≤n) = vn. It is clear thatfP is well-defined and total onPath(GP ). Now for

any v ∈ V ′, there is a unique path inD from root(D) to v (becauseD is a derivation tree).

Sincev∈V ′ = V \Bud(D), it is not a bud node ofD, so this path is also a path inGP and thus

there exists(vi)0≤i≤n in Path(GP ) with v = vn. So fP is surjective.

Now let (vi)0≤i≤n be an arbitrary element ofPath(GP ). We need to check thatfP satisfies

the properties required of a derivation graph homomorphism:

• By definition, we haves∗((vi)0≤i≤n) = s(vn) = s( fP ((vi)0≤i≤n));

• Likewise, we haver∗((vi)0≤i≤n) = r(vn) = r( fP ((vi)0≤i≤n));

• For any j ∈N, we havefP (p∗j ((vi)0≤i≤n))≃ fP ((vi)0≤i≤n.p′j(vn))≃ p′j(vn)≃ p′j( fP ((vi)0≤i≤n))

as required, which completes the proof.

Lemma 6.1.8. Let G be a derivation graph, and T1, T2 be derivation trees, and let f1 : T1 → G

and f2 : T2 → G be derivation graph homomorphisms such that f1(root(T1)) = f2(root(T2)).

Then there is a map h such that f1 = f2 ◦h and h(root(T1)) = root(T2), and furthermore h is

the unique root-preserving derivation graph homomorphismfrom T1 to T2.
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Proof. Let G = (V,s, r, p), T1 = (V1,s1, r1, p1), andT2 = (V2,s2, r2, p2). Recall that theheight

of a nodev in a treeT is the length of the unique pathroot(D) . . .v in T. Now for all v∈V1,

we defineh(v) satisfying f1(v) = ( f2(h(v))) andh(root(T1)) = root(T2) by induction on the

heightn of v in T1 as follows:

Casen = 0: We havev = root(T1) and defineh(v) = root(T2), which is clearly the unique

choice satisfyingh(root(T1)) = root(T2). We also havef1(root(T1)) = f2(root(T2)) by as-

sumption, i.e.f1(v) = f2(h(v)) as required.

Casen > 0: We havev = p1j (v
′) for a unique j ∈ N andv′ ∈V1, wherev′ has heightn−1 in

T1, and so by the induction hypothesis,f1(v′) = f2(h(v′)), whereh(v′) is uniquely defined. We

thus havef1(v) = f1(p1j (v
′)) = p j( f1(v′)) = p j( f2(h(v′))) = f2(p2j (h(v′))) by the derivation

graph homomorphism properties off1 and f2 and by the induction hypothesis.

p1j (v
′)

v′

p2j (h(v′))

h(v′)

p j( f1(v′))

f1(v′)

T1

T2

G

h

f1

f2

Figure 6.1: Inductive step of the construction of the map h in Lemma 6.1.8. The mappings

assumed for the induction hypothesis are denoted by dashed arrows and those we construct by

solid arrows.

We thus defineh(v) = h(p1j (v
′)) = p2j (h(v′)) which clearly satisfiesf1(v) = f2(h(v)) by

the above. Note thath(v) is thus uniquely defined sinceh(v′) and j are uniquely defined, and

T2 is a derivation tree. The construction ofh in this case is illustrated in Figure 6.1. We also

haveh(root(T1)) = root(T2) by induction hypothesis and are therefore done.

We show thath is a derivation graph homomorphism fromT1 to T2. First, for allv∈V1, we

haves1(v) = s( f1(v)) = s( f2(h(v))) = s2(h(v)) by the construction ofh and using the derivation
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graph homomorphism properties off1 and f2. By a similar argument we also haver1(v) ≃
r2(h(v)). We then just need to substantiateh(p1j (v)) = p2j (h(v)), which follows immediately

from the step-case definition ofh. This completes the proof.

Lemma 6.1.9. Let G be a derivation graph, and T1, T2 be derivation trees, and let f1 : T1 → G

and f2 : T2 → G be derivation graph homomorphisms such that f1(root(T1)) = f2(root(T2)).

Then there is an invertible derivation graph homomorphism from T1 to T2.

Proof. By applying Lemma 6.1.8 there are unique root-preserving derivation graph homo-

morphismsh,h′ from T1 to T2 and fromT2 to T1 respectively, and there are also unique root-

preserving derivation graph homomorphisms fromT1 to T1 and fromT2 to T2. This situation is

illustrated in Figure 6.2:

T1 T2 T1 T2

G

f1 f2 f1 f2

h! h′! h!

(h′ ◦h)! (h◦h′)!

Figure 6.2: Proof of Lemma 6.1.9. The dashed lines denote the derivation graph homomor-

phisms assumed for the theorem and the solid lines denote the unique derivation graph homo-

morphisms constructed by applying Lemma 6.1.8.

As h′ ◦h is a (root-preserving) derivation graph homomorphism fromT1 to T1 by Propo-

sition 6.1.2, and the identity functionid is trivially a (root-preserving) derivation graph ho-

momorphism fromT1 to T1, we must haveh′ ◦ h = id by uniqueness of the derivation graph

homomorphism fromT1 to T1. Similarly, we deduceh◦h′ = id, and soh is an invertible deriva-

tion graph homomorphism (with inverseh′) from T1 to T2.

Theorem 6.1.10(Pre-proof equivalence theorem). LetP = (D,R ) andP ′ = (D ′,R ′) be CSω

pre-proofs. If there exists a surjective derivation graph homomorphism g:GP ′ →GP satisfying

g(root(D ′)) = root(D), thenP ≈ P ′.

Proof. The proof is illustrated in Figure 6.3. By Proposition 6.1.7we have a surjective deriva-

tion graph homomorphismsfP ′ : TP ′ → GP ′ and fP : TP → GP such that fP ′(root(TP ′)) =

root(D ′) and fP (root(TP )) = root(D). By Proposition 6.1.2, we can composefP ′ and the
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given homomorphismg to obtain a surjective derivation graph homomorphism(g◦ fP ′) : TP ′ →
GP such that(g◦ fP ′ )(root(TP ′)) = g(root(D ′)) = root(D) = fP (root(TP )). Hence we can ap-

ply Lemma 6.1.9 to obtain an invertible derivation graph homomorphism fromTP to TP ′ .

TP ′ TP

GP ′

GP

fP ′

g
fP(g◦ fP ′)

Figure 6.3: Proof of Theorem 6.1.10. The dashed arrows denote the surjective derivation graph

homomorphisms given by Proposition 6.1.7 and by assumption, and the solid arrows denote the

invertible derivation graph homomorphisms constructed by applying Lemma 6.1.9.

6.2 Cycle normalisation via tree-unfoldings

In this section we give a formal proof of the approach to the cycle-normalisation problem

informally described at the beginning of the chapter. Givena CSω pre-proofP , we show how

to perform a folding operation on its infinite tree-unfolding TP (which is an Sω pre-proof) to

obtain a new CSω pre-proof, equivalent to the original one, incycle normal form:

Definition 6.2.1(Cycle normal form). Let P = (D,R ) be a CSω pre-proof.P is said to be in

cycle normal formif, for all B∈ Bud(D), the companionR (B) is an ancestor ofB in D.

Our main result of this section states that an Sω pre-proof can be “folded” into an equivalent

CSω pre-proof in cycle normal form provided one can find suitable“folding points” on each

infinite branch of the Sω pre-proof. In particular, for any CSω pre-proofP , folding points

are given for its tree-unfoldingTP by the homomorphismfP , whence it follows that any CSω

pre-proofP can be transformed into an equivalent pre-proof in cycle normal form by folding

TP .

Theorem 6.2.2(Tree-folding theorem). Let T be an Sω pre-proof, let G be a finite derivation

graph, and let f be a surjective derivation graph homomorphism from T to G. Also, for each

infinite rooted branchπ = v0v1v2 . . . in T , let mπ,nπ ∈ N be such that mπ < nπ and f(vmπ) =

f (vnπ). Note that mπ,nπ must exist since G is finite.



Chapter 6. Cycle normalisation for cyclic proofs 110

Then there exists a CSω pre-proofP in cycle normal form (whose endsequent is the end-

sequent of T ), and there are surjective derivation graph homomorphisms T→ GP → G. Fur-

thermore, the homomorphism fromGP to G maps root(D) to f(root(T)).

Proof. Let T = (VT ,sT , rT , pT) andG = (VG,sG, rG, pG), and defineD = (V,s, r, p) andR as

follows:

• V = {v∈VT | for all infinite rooted branchesπ = v0v1v2 . . . .in T, if v = vk thenk≤ nπ};

• s(v) = sT(v) for all v∈V;

• if v ∈ V andv = vnπ for some infinite rooted branchπ = v0v1v2 . . . in T, thenr(v) and

p j(v) (for all j) are undefined, i.e.v is a bud node ofD and we defineR (v) = vmπ . (If

there is more than one branchπ meeting this criterion, we may choose any suitablemπ.)

Otherwise we definer(v) = rT(v) andp j(v) ≃ pTj (v) (for all j).

First, to verify thatP = (D,R ) is a CSω pre-proof we need to show thatD is a finite Sω

derivation tree whose buds are assigned suitable companions byR . D is clearly a Sω derivation

graph; to see that it is a derivation tree, we observe that asroot(T) is clearly inV, and since

p≃ pT except on bud nodes ofD, the unique path inT from root(T) to v∈V is the unique path

in D from root(D) = root(T) to v. SinceD is a derivation tree, it is finitely branching, and as

every infinite branchπ = v0v1v2 . . . in T is “cut off” at the pointvnπ inD (or before), it contains

no infinite branches.D is thus a finite tree by the well-known König’s Lemma (which states

that any finitely branching tree is infinite iff it contains aninfinite branch). To verify thatR is

a repeat function forD, we need to show that each bud nodeB of D is assigned a companion

C such thatr(C) is defined ands(C) = s(B). Observe that, asT is an Sω pre-proof and so has

no bud nodes, each bud ofD is of the formvnπ for some infinite rooted branchπ = vov1v2 . . .

in T and we have by constructionR (vnπ) = vmπ , wheremπ < nπ and f (vnπ) = f (vmπ). Thus

R (B) is always an ancestor ofB as required. Asmπ < nπ, we have thatvmπ cannot be a bud

node ofD, and sor(vmπ) = rT(vmπ) is defined (notice thatrT is defined on allv ∈ VT since

T is an Sω pre-proof). Also, sincef is a derivation graph homomorphism fromT to G we

havesT(vnπ) = sG( f (vnπ)) = sG( f (vmπ)) = sT(vmπ), i.e. s(vnπ) = s(vmπ) as required. Thus

P = (D,R ) is indeed a CSω pre-proof in cycle normal form as claimed.

Now, to establish the existence of the required derivation graph homomorphismsT →
GP → G, we first establish the following auxiliary property:

∀v∈VT .∃x∈V. f (v) = f (x)

To see this, we letv∈ VT and proceed by induction on the heighth of v in T. If h = 0, then

v = root(T), which is clearly inV, so we are immediately done. Ifh > 0 thenv = pTj (v
′) for
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some j ∈ N andv′ ∈VT . Sincev′ has heighth−1 in T, by induction hypothesis there exists

x′ ∈V such thatf (x′) = f (v′). Note that we havef (v) = f (pTj (v
′)) = pG j ( f (v′)) = pG j ( f (x′)),

using the induction hypothesis and the fact thatf is a derivation graph homomorphism fromT

to G. It therefore suffices to show thatf (x) = pG j ( f (x′)) for somex∈V. Now there are two

cases to consider:

• Suppose thatx′ is not a bud node ofD and letx = pTj (x
′). As f is a derivation graph

homomorphism fromT to G, we havef (x) = f (pTj (x
′)) = pG j ( f (x′)), and asx′ is not a

bud node ofD, we thus havex = pTj (x
′) ∈V and are done;

• If x′ is a bud node ofD, then there is an infinite branchπ in T such thatx′ = vnπ . Let

x = pTj (vmπ) and observe that sincef is a derivation graph homomorphism fromT to G,

we have f (x) = f (pTj (vmπ)) = pG j ( f (vmπ)) = pG j ( f (vnπ)) = pG j ( f (x′)). Also, asvmπ

is a companion node inD, it is not a bud ofD and thus we havex = pTj (vmπ) ∈ V as

required.

This completes the proof of the auxiliary property and we cannow show the existence of the

required derivation graph homomorphisms.

We claim thatf (restricted toV ′) is a surjective derivation graph homomorphism fromGP =

(V ′,s, r, p′) to G. (Note thatGP is obtained by identifying bud nodes with their companions

in P , c.f. Definition 5.1.3.) We just need to check the three homomorphism properties and

surjectivity:

• For all v∈V ′, we haves(v) = sT(v) = sG( f (v)), since f is a derivation graph homomor-

phism fromT to G;

• For allv∈V ′(=V \Bud(D)), v is not a bud ofD and so we haver(v) = rT(v) = rG( f (v))

since f is a derivation graph homomorphism fromT to G;

• For all v ∈ V ′ and j ∈ N, v is not a bud node ofD and so we havep j(v) ≃ pTj (v)

by construction. Asf is a derivation graph homomorphism fromT to G, we have

f (p j(v)) ≃ f (pTj (v)) ≃ pG j ( f (v)). It therefore suffices to showf (p′j(v)) ≃ f (p j(v)).

If p j(v) is not a bud ofD then p′j(v) ≃ p j(v) and we are done. Ifp j(v) is a bud

of D, then p′j(v) ≃ R (p j(v)) and by construction ofR (as discussed above) we have

f (R (p j(v))) = f (p j(v)) and are likewise done. This completes the proof thatf is a

derivation graph homomorphism fromGP to G.

• For all v∈VG, there existsv′ ∈VT such thatf (v′) = v since f is surjective fromT to G.

By the auxiliary property proven above, there is then anx∈V such thatf (x) = f (v′) = v.

If x is not a bud ofD, thenx∈V ′ and we are done. Ifx is a bud ofD, then notice that
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R (x) ∈V ′ and by construction ofR we havef (R (x)) = f (x) = v as required.f is thus

surjective fromGP to G.

Next, we define a total functiong : VT →V ′ by induction on the heighth of v∈VT in T,

and simultaneously prove that it satisfiesf (g(v)) = f (v) for all v∈VT as follows:

For h = 0, we havev = root(T) and we defineg(v) = g(root(T)) = root(T), which is

clearly in V ′. Note that we thus havef (g(root(T))) = f (root(T)) as required. Forh > 0,

we havev = pTj (v
′) wherev′ has a height ofh− 1 in T and so by the induction hypothesis,

g(v′) ∈V ′ is defined and we havef (g(v′)) = f (v′). Note that, using the induction hypothesis

and the fact thatf is a derivation graph homomorphism, we have:

f (v) = f (pTj (v
′)) = pG j ( f (v′)) = pG j ( f (g(v′))) = f (pTj (g(v′)))

so pTj (g(v′)) ∈ VT is defined. Now we defineg(v) = p′j(g(v′)). Sinceg(v′) ∈ V ′, we have

that g(v′) is not a bud ofD, so p j(g(v′)) = pTj (g(v′)), and sop′j(g(v′)) ∈ V ′ is also defined

(since p′j(v) is defined iff p j(v) is for all v ∈ V ′). To see thatf (g(v)) = f (v), it suffices by

the above to establish thatf (p′j(g(v′))) = f (pTj (g(v′))). If p j(g(v′)) is not a bud ofD, then

p′j(g(v′)) = p j(g(v′)) = pTj (g(v′)) and we are immediately done. If on the other handp j(g(v′))

is a bud ofD, then we havep′j(g(v′)) = R (p j(g(v′))), and by construction ofR we thus have

f (p′j(g(v′))) = f (R (p j(g(v′)))) = f (p j(g(v′))) = f (pTj (g(v′))

as required.

Finally, we just need to show thatg is a derivation graph homomorphism and surjective

from T toGP :

• For all v ∈ VT , since f is a derivation graph homomorphism fromT to G, we have

sT(v) = sG( f (v)) = sG( f (g(v))) by construction ofg, and sincef is also a derivation

graph homomorphism fromGP to G, we havesG( f (g(v))) = s(g(v)). ThussT(v) =

s(g(v)) as required;

• By a similar argument to the above,rT(v) = rG( f (v)) = rG( f (g(v))), andrG( f (g(v))) =

r(g(v)), sorT(v) = r(g(v)) for all v∈VT as required;

• By construction ofg we haveg(pTj (v)) ≃ p′j(g(v)) for all v∈VT as required.

• It is not hard to see thatg is the identity function on allv∈V ′ ⊆VT and is thus surjective

fromVT toV ′. We prove this by induction on the heighth of v in T; if h= 0, v= root(T)

and we haveg(root(T)) = root(T). If h > 0, thenv = pTj (v
′) for somev′ ∈ V ′ and

j ∈ N, and by the induction hypothesis we haveg(v′) = v′. Thus by definition ofg we

haveg(v) = g(pTj (v
′)) = p′j(g(v′)) = p′j(v

′). Now, v′ is not a bud ofD sincev′ ∈V ′ =

V \Bud(D), so we also havev= pTj (v
′) = p j(v′) = p′j(v

′) and are done (the final equality

holds sincev∈V ′ and sop j(v′) is not a bud ofD).
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This completes the proof.

Corollary 6.2.3 (Equivalence-preserving cycle-normalisation). For any CSω pre-proofP not

in cycle normal form, there exists an CSω pre-proofP ′ in cycle normal form such thatP ≈ P ′.
Furthermore, if n is the number of nodes in the derivation tree ofP , then the derivation tree of

P ′ contains no more thanΣ0≤i≤n+1ci nodes, for some constant c.

Proof. Let P be a CSω proof not in cycle normal form, and takeT = TP , G = GP and

f = fP in Theorem 6.2.2 above (note thatfP is indeed a surjective derivation graph homo-

morphism by Proposition 6.1.7). LetP ′ be the “folded” CSω pre-proof in cycle normal form

constructed by the theorem, and note that, by the theorem,P ′ has the same endsequent asP

and we have a surjective derivation graph homomorphism fromGP ′ to GP mappingroot(D ′)

to fP (root(TP )) = root(D). Thus we haveP ≈ P ′ by Theorem 6.1.10.

For the complexity bound, we observe that the length of each branch of the derivation tree

D ′ need be no more thann+ 1, since we only need to find for each infinite branchπ of TP

distinct nodesv,v′ on the branch such thatfP (v) = fP (v′), i.e. such thatv andv′ correspond

to the same original node ofP . Thus the size of the treeD ′ is bounded above byΣ0≤i≤n+1ci ,

where the constantc is the maximum branching factor ofD ′, i.e., the maximum number of

premises of any rule of Sω.

6.3 Cycle normalisation via iterated unfoldings

(a)

s(root(D))

S1 S2

S2 S1

(b)

s(root(D))

S1 S2

S2 S1

S1 S2

Figure 6.4: (a) A schematic pre-proof not in cycle normal form. Solid lines denote paths in the

derivation tree and dashed arrows indicate the assignation of companions to buds. By unfolding

this pre-proof we can obtain one that is in cycle normal form (b). Moreover, the unfolded pre-

proof clearly has the same infinite tree-unfolding as the original pre-proof.

In this section, we give an alternative proof of the cycle-normalisation property that yields

an algorithm for transforming an arbitrary CSω pre-proof into an equivalent pre-proof in cycle

normal form. Figure 6.4 shows how a CSω pre-proof with 2 buds and companions arranged
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in a “figure-of-8” configuration may be unfolded so that each bud node in the unfolded pre-

proof has an ancestor node as companion (recall that we gave an example of a CLKIDω proof

in this form in Example 5.2.1). Furthermore, it is clear thatthe unfolded pre-proof has the

same infinite tree-unfolding as the original pre-proof, i.e. the unfolded pre-proof is equivalent

to the original one. This example motivates our alternativecycle-normalisation proof, which

transforms a cyclic pre-proof into an equivalent pre-proofin cycle normal form via a finite

number of such unfoldings. Before we supply the proof, we first develop some machinery for

describing the unfolding process:

Definition 6.3.1 (Tangled companion). Let P = (D,R ) be a CSω pre-proof and letC be a

companion node appearing inP . ThenC is said to betangled(in P ) if there is a bud node

B∈ Bud(D) such thatR (B) = C andC is not an ancestor ofB in D.

Definition 6.3.2 (Entanglement set). Let P = (D,R ) be a CSω pre-proof and define theen-

tanglement set ofP , written Etgl(P ), by:

Etgl(P ) = {C | ∃B. R (B) = C and eitherC is tangled orC has a tangled descendant inD}

(Note thatEtgl(P ) is a subset of the companion nodes occurring inP .)

Lemma 6.3.3. A CSω pre-proofP is in cycle normal form iff Etgl(P ) = /0.

Proof. LettingP = (D,R ), it is clear thatP is in cycle normal form, i.e.R (B) is an ancestor

of B for all bud nodesB, iff no companion node inP is tangled. Now ifEtgl(P ) = /0, then we

immediately have that no companion node inP is tangled and we are done. Conversely, if no

companion node inP is tangled, then it is clear that also no companion node inP can have a

tangled descendant, and we thus haveEtgl(P ) = /0 as required.

Lemma 6.3.4. Let P be a CSω pre-proof with Etgl(P ) 6= /0. Then there is some companion

node C∈ Etgl(P ) such that C is tangled, but has no tangled descendants.

Proof. Let P = (D,R ). Pick anyC ∈ Etgl(P ) of maximal height inD (we can do so since

Etgl(P ) is non-empty); it is then clear that no descendant ofC can be inEtgl(P ), since any

descendant ofC would have a greater height inD. C must therefore be tangled inP .

We now prove the main lemma required for (equivalence-preserving) cycle-normalisation:

any CSω pre-proof not in cycle normal form can be transformed to an equivalent pre-proof with

the same endsequent and a smaller entanglement set. It follows that any CSω pre-proof can be

transformed into an equivalent pre-proof in cycle-normal form by iterating this transformation

a finite number of times.

Lemma 6.3.5. There is an operation, Untangle, defined on CSω pre-proofsP not in cycle

normal form such that all of the following hold:
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1. Untangle(P ) is a CSω pre-proof with the same endsequent asP ;

2. P ≈Untangle(P );

3. Etgl(Untangle(P )) ⊂ Etgl(P );

4. if n is the number of nodes in the derivation tree ofP , then the number of nodes in the

derivation tree of Untangle(P ) is bounded by n2.

Proof. LetP = (D,R ) be a CSω pre-proof not in cycle normal form, and note thatEtgl(P ) 6= /0

by Lemma 6.3.3. By Lemma 6.3.4, there is then a companion nodeC occurring inP such thatC

is tangled inP but has no tangled descendants. Now we define a non-empty subset of Bud(D)

by:

BC = {B∈ Bud(D) | R (B) = C andC is not an ancestor ofB}

and write∇C for the subtree ofD rooted atC. We then defineUntangle(P ) = (DU ,RU ), where

DU ,RU are obtained as follows:

• DU = (VU ,sU , rU , pU ) is the derivation tree obtained fromD = (V,s, r, p) by replacing

each bud nodeB∈ BC with a copy of the subtree∇C. Technically, for allB∈ BC and for

each nodev∈ ∇C we create a new node cpB(v) and define:

VU = V \BC∪{cpB(v) | B∈ BC,v∈ ∇C}

sU(v) =

{

s(v) if v∈V \BC

s(v′) if v = cpB(v′) for someB∈ BC andv′ ∈ ∇C

rU(v) ≃
{

r(v) if v∈V \BC

r(v′) if v = cpB(v′) for someB∈ BC andv′ ∈ ∇C

∀ j ∈ N. pU j (v) ≃















p j(v) if v∈V \BC andp j(v) ∈V \BC

cpB(C) if v∈V \BC andp j(v) = B∈ BC

cpB(p j(v′)) if v = cpB(v′) for someB∈ BC andv′ ∈ ∇C

• RU is defined on bud nodesBU ∈ Bud(DU) as follows:

RU (BU) =







































R (BU) if BU ∈ Bud(D)

R (B′)
if BU = cpB(B′) for someB∈ BC andB′ ∈ Bud(∇C),

andR (B′) 6∈ ∇C

cpB(R (B′))
if BU = cpB(B′) for someB∈ BC andB′ ∈ Bud(∇C),

andR (B′) ∈ ∇C
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(a)

B1 C1

C2

B2

C3

B3

root(D)

(b)

cpB1
(C1)

cpB1
(C2)

cpB1
(B2) cpB1

(B3)

C1

C2

B2

C3

B3

root(D)

Figure 6.5: (a) A schematic pre-proof containing a tangled companion node C1. Solid lines

denote paths in the derivation tree and dashed arrows indicate the assignation of companions

to buds. (b) The same pre-proof after applying the operation Untangledefined in Lemma 6.3.5.

The bud node B1 has been replaced by a copy of the subtree rooted at C1.

TheUntangleoperation on a pre-proof not in cycle normal form is illustrated in Figure 6.5.

It now remains to establish the properties ofUntangle(P ) required by the lemma:

1. Note thatDU has been obtained from the derivation treeD by replacing each bud node

B ∈ BC with a copy of the derivation tree∇C. This replacement does not change the

sequent labelling of the node being replaced, since for allB∈ BC, the endsequent of∇C

is C = R (B) and we haves(B) = s(C). It is thus clear thatDU is a finite Sω derivation

tree and thatroot(DU ) = root(D).

To show thatRU is a repeat function forDU , we must show thatsU(RU(BU)) = sU(BU)

for all bud nodesBU ∈ Bud(DU). If BU ∈ V \ BC then BU ∈ Bud(D), so we have

sU(RU (BU)) = s(R (BU)) = s(BU) (the last equality follows sinceR is a repeat func-

tion) andsU(BU) = s(BU ), and are done. Otherwise,BU = cpB(B′) for someB∈ BC and

B′ ∈ Bud(∇C). We thus havesU(BU) = s(B′). Now if R (B′) 6∈ ∇C then:

sU(RU (BU)) = sU(R (B′)) = s(R(B′)) = s(B′)

as required (note thatR (B′) ∈V \BC). Otherwise, ifR (B′) ∈ ∇C then:

sU(RU (BU)) = sU(cpB(R (B′))) = s(R (B′)) = s(B′)

and we are again done.

ThusUntangle(P ) = (DU ,RU) is a CSω pre-proof with the same endsequent asP .

2. By Theorem 6.1.10, it suffices to establish a surjective derivation graph homomorphism

from GUntangle(P ) = (V ′
U ,sU , rU , p′U) toGP = (V ′,s, r, p′) that mapsroot(DU ) = root(D)

to root(D). Note thatGP andGUntangle(P ) are obtained by identifying each bud node with
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its companion inD andDU respectively (c.f. Definition 5.1.3). Now definef : V ′
U →V ′

by:

f (v) =

{

v if v∈V ′

v′ if v = cpB(v′) for someB∈ BC andv′ ∈ ∇C

Note that we immediately havef (root(D)) = root(D) as required sinceroot(D) is ob-

viously in V ′. Now let v′ ∈ V ′ = V \Bud(D). As v′ is not a bud ofD, we must have

v′ ∈V \BC and sov′ ∈VU . As the only buds ofDU are buds ofD or copies of buds of

D, it holds thatv′ is not a bud ofDU sov′ ∈V ′
U =VU \Bud(DU) and, asv′ ∈V ′, we have

f (v′) = v′. Thus f is indeed surjective.

To show thatf is a homomorphism we require to prove, for allv∈V ′
U ,sU (v) = s( f (v)),

rU(v) ≃ r( f (v)) and f (p′U j(v)) ≃ p′j( f (v)) for all j. Let v∈V ′
U , and note that we have:

V ′
U = (V \BC∪{cpB(v′) | B∈ BC,v′ ∈ ∇C})\Bud(DU)

so asv is not a bud ofDU and not inBC, v cannot be a bud ofD. We now divide into

cases as follows:

• Casev ∈ V \BC. Note that, asv is not a bud ofD, we also havev ∈ V ′ and so

f (v) = v. We therefore require to provesU(v) = s(v), rU (v)≃ r(v) and f (p′U j
(v))≃

p′j(v) for all j. It is immediate from the definitions and the case assumptionthat

sU(v) = s(v) andrU(v) ≃ r(v). Note that sincep j(v) ∈V, eitherp j(v) ∈V \BC or

p j(v) ∈ BC, so we divide into further subcases.

First supposep j(v) ∈ V \BC, so we havepU j (v) = p j(v) and we require to show

f (p′j(v)) ≃ p′j(v). If p j(v) ∈ Bud(D) thenp′j(v) = R (p j(v)) ∈V ′, and if p j(v) 6∈
Bud(D) thenp′j(v) = p j(v) ∈V ′. In either case we thus havef (p′j(v)) = p′j(v) and

are done.

Now supposep j(v) = B∈ BC, so that we havepU j (v) = cpB(C). Note that cpB(C)

cannot be a bud ofDU sinceC cannot be a bud ofD, so:

f (p′U j
(v)) = f (p′U j

(v)) = f (cpB(C)) = C

But alsop′j(v) = R (B) = C, so we are done.

• Casev = cpB(v′) for someB∈ BC andv′ ∈ ∇C. We thus havef (v) = v′ and there-

fore require to provesU (v) = s(v′), rU (v) ≃ r(v′) and f (p′U j
(v)) ≃ p′j(v

′) for all j.

It is immediate from the definitions and the case assumption thatsU(v) = s(v′) and

rU(v) ≃ r(v′). We now divide into further subcases.
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First suppose thatp j(v′) is not a bud ofD, so p′j(v
′) = p j(v′). Then cpB(p j(v′))

cannot be a bud ofDU , and thus:

f (p′U j
(v′)) = f (pU j (v

′)) = f (cpB(p j(v
′))) = p j(v

′)

as required. Now suppose thatp j(v′) is a bud ofD, so p′j(v) = R (p j(v)). Then

cpB(p j(v′)) is a bud ofDU , so we have:

f (p′U j
(v′)) = f (RU(pU j (v

′))) = f (RU (cpB(p j(v
′))))

Now if p j(v′) 6∈ ∇C then:

f (RU (cpB(p j(v
′)))) = f (R (p j(v

′))) = R (p j(v
′))

sinceR (p j(v′)) ∈V ′ as required. On the other hand, ifp j(v′) ∈ ∇C then

f (RU (cpB(p j(v
′)))) = f (cpB(R (p j(v

′)))) = R (p j(v
′))

and we are likewise done. This completes the case.

Thus f is a derivation graph homomorphism, as required.

3. We first show the non-strict inclusion. Suppose for contradiction that some companion

is in Etgl(Untangle(P )) but not inEtgl(P ). So for some bud nodeBU ∈ Bud(DU),

RU(BU) 6∈ Etgl(P ) andRU(BU) is not an ancestor ofBU in DU . By definition ofRU ,

there are three cases to consider:

• BU ∈ Bud(D) andRU (BU) = R (BU), soR (BU) is not an ancestor ofBU in DU .

By construction ofDU , it is readily seen thatR (BU) cannot be an ancestor ofBU

in D either, i.e.,R (BU) is tangled inP . ThusRU (BU) = R (BU) ∈ Etgl(P ) and

we have a contradiction;

• BU = cpB(B′) for someB∈ BC andB′ ∈ Bud(∇C), andR (B′) /∈ ∇C, soRU(BU) =

R (B′). Now if R (B′) is an ancestor ofC in D, then asC is tangled inP , R (B′)

has a tangled descendant inP . On the other hand, ifR (B′) is not an ancestor ofC

in D then, asB′ ∈ ∇C, R (B′) is not an ancestor ofB′ in D, soR (B′) is tangled in

P . In either case,RU(BU) = R (B′) ∈ Etgl(P ) and we again have a contradiction.

• BU = cpB(B′) for someB ∈ BC andB′ ∈ Bud(∇C), andR (B′) ∈ ∇C. Note that

R (B′) is thus a descendant ofC and so must be an ancestor ofB′ in D, for oth-

erwiseR (B′) would be a tangled descendant ofC in P , contrary to our initial

choice ofC. In that case, it is clear thatRU(BU) = cpB(R (B′)) is then an ancestor

of BU in DU . But this is a contradiction, which finally establishes the inclusion

Etgl(Untangle(P )) ⊆ Etgl(P ).
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To see that the strict inclusion holds, we first observe that we haveC ∈ Etgl(P ) by con-

struction. Also, sinceC was chosen to have no tangled descendants inP , it cannot have

any tangled descendants inUntangle(P ), otherwise there would be some companion

node appearing in∇C that is inEtgl(Untangle(P )) but not inEtgl(P ). Finally, to see

thatC is not tangled inUntangle(P ), we observe thatRu only maps bud nodes appearing

in ∇C toC, since noB∈BC exists in the treeDU . We thus haveC 6∈ Etgl(Untangle(P ))

and are done.

4. Let n = |V|, b = |BC| andc be the number of nodes in∇C. Then|VU | = n− b+ bc=

n+ b(c− 1). Clearly we haveb+ c ≤ n, i.e. c ≤ n− b, so |VU | ≤ n− b+ n(n− b) =

(n− b)(1+ n). SinceP is not in cycle normal form we haveb ≥ 1, in which case

(n−b)(1+n) ≤ n2 and so|VU | ≤ n2 as required.

Theorem 6.3.6(Equivalence-preserving cycle-normalisation (2)). Any CSω pre-proofP not in

cycle normal form can be transformed into a CSω pre-proofP ′ in cycle normal form such that

P ≈P ′. Furthermore, if n is the number of nodes in the derivation tree ofP , then the derivation

tree ofP ′ has no more than n2
n/2

nodes.

Proof. Given a CSω pre-proofP not in cycle normal form, we define a sequence(Pi)i≥0 of CSω

pre-proofs byP0 = P andPi+1 =Untangle(Pi) if Pi is not in cycle normal form, andPi+1 = Pi

otherwise for eachi ≥ 0. The first 3 properties of Lemma 6.3.5 then respectively establish the

following, for all i ≥ 0:

1. Pi is a CSω pre-proof with the same endsequent asP ;

2. Pi ≈ P ;

3. if Pi is not in cycle normal form thenEtgl(Pi+1) ⊂ Etgl(Pi).

As Etgl(P ) is certainly finite, there is thus aj ≥ 0 such thatEtgl(P j) = /0, i.e. P j is in cycle

normal form by Lemma 6.3.3.

Finally, we observe that the operationUntangleneed be applied no more thane= |Etgl(P )|
times toP to obtain a proof in cycle normal form, i.e.,j ≤ e. By property 4 of Lemma 6.3.5,

the size of the derivation tree ofPi has size at mostn2i
for eachi ≥ 0. Notice that since there

is at least one bud for each companion, we must havee≤ n/2, so the derivation tree ofP j has

size bounded byn2n/2
.

We remark that we have undertaken only a very crude complexity analysis of cycle-normalisation

via theUntangleoperation in the proofs above, and we would expect cycle-normalisation to

yield proofs rather smaller than the bound given above mightsuggest.
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In concluding this chapter, we remark that cycle-normalisation is of interest for three main

reasons:

1. Cycle-normalisation has implications for proof search in implementations of CLKIDω

and related cyclic proof systems. In particular, the fact that every sequent provable in a

given cyclic proof system CSω also has an equivalent proof in cycle normal form implies

that it is sufficient, when searching for a proof, to consideronly ancestors of a bud node as

potential companions. However, our rough complexity analysis indicates that proofs in

cycle normal form are (in the worst case) exponentially larger than the smallest possible

proof not in cycle normal form.

2. Further, from the point of view of structural analysis of cyclic (pre-)proofs, it is conve-

nient to be able to assume a simplified proof structure. We canfrom now on assume that

a given cyclic pre-proof is in cycle normal form without lossof generality, which will be

essential to our definition of a simplified soundness condition for cyclic proof systems in

the next chapter.

3. Finally, the proof machinery developed in order to prove cycle-normalisation is of inde-

pendent interest and may turn out to be of use in the future forproving further results

concerning the structure of proofs.



Chapter 7

Trace manifolds

In this chapter we continue our investigation into the structure of cyclic proofs in an arbi-

trary cyclic proof system CSω equipped with an appropriate notion of trace, as defined in

Sections 5.1 and 4.2.1. Specifically, we shall be concerned with analysing the general trace

condition qualifying CSω pre-proofs as proofs (c.f. Definition 5.1.6), which is both computa-

tionally and combinatorially complex due to the quantification over all infinite paths in the

pre-proof graph. In order to simplify our structural analysis of cyclic proofs, we consider the

formulation of an alternative condition that implies the general trace condition while providing

a greater degree of explicit structural information on pre-proofs.

First of all, in Section 7.1 we analyse the composition of infinite paths in the graph of a

CSω pre-proof. Since pre-proofs can be assumed to be in cycle normal form by our results

in the previous chapter, every infinite path in the pre-proofgraph can be shown to have a tail

composed of segments of the elementary “cycles” from companions to buds in a pre-proof.

Furthermore, the involved cycles are weakly connected by a certain relation. In Section 7.2 we

exploit this fact in order to formulate an alternative soundness condition for CSω pre-proofs —

the existence of atrace manifoldfor the pre-proof — which is more restrictive than the general

soundness condition, but with the corresponding benefits ofbeing finitary and more explicit. A

trace manifold consists of traces following finite path segments in the derivation tree together

with conditions ensuring that for any infinite path, the segments can be “glued together” to

yield an infinitely progressing trace on a tail of that path. We give two formulations of a trace

manifold — the first employing a direct quantification over all strongly connected subgraphs

of the pre-proof graph, and the second employing the auxiliary notion of aninduction orderas

used in [57, 63, 62] — and prove them equivalent.

Finally, in Section 7.3, we return once more to the setting ofour original proof systems

for FOLID, and demonstrate that CLKIDω subsumes LKID by giving a translation from LKID

proofs to CLKIDω proofs. Furthermore, the translated proofs satisfy the trace manifold condi-

tion. We conclude the chapter by stating our main open conjecture, which is that a sequent is

121
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provable in LKID if and only if it is provable in CLKIDω. A positive answer to this conjecture

would give substance to a claim that proof by induction is equivalent to regular proof by infi-

nite descent, and clarify the status of the principles of induction and infinite descent as used by

mathematicians and in mechanised theorem proving.

7.1 Analysing the general trace condition

Definition 7.1.1(Strong / weak graph connectivity). A directed graphG with vertex setV and

edge setE is said to bestrongly connectedif for any v,v′ ∈ V, there is a path inG from v to

v′. G is said to beweakly connectedif its “undirected version”G′ with vertex setV and edge

setE∪{(v′,v) | (v,v′) ∈ E} is strongly connected.G is said to benon-trivial if |V| > 1 or if it

contains exactly one vertexv and there is an edge(v,v) ∈ E.

Definition 7.1.2 (Induced subgraph). Let G = (V,s, r, p) be a derivation graph and letV ′ ⊆V.

Then thesubgraph of G induced by V′ is defined to beS= (V ′,s, r, p′), wherep′ is defined by:

p′j(v) =

{

p j(v) if v∈V ′ andp j(v) ∈V ′

undefined otherwise

for each j ∈ N. Equivalently, viewingG as a (labelled) graph(V,E) (c.f. Definition 5.1.3), the

subgraph ofG induced byV ′ is (V ′,E′), whereE′ = {(v,v′) ∈ E | v ∈ V ′ andv′ ∈ V ′}. In a

slight abuse of notation, we writeS⊆ G to denote thatS is a subgraph ofG.

Note that a subgraph of a derivation graph is not technicallya derivation graph in general,

as it need not contain only well-formed proof rule instances.

The general CSω proof condition (c.f. Definition 5.1.6) requires that an infinitely progress-

ing trace exists on some tail of every infinite path in the pre-proof graph. We can analyse this

requirement in greater detail. First, we show that every infinite path has a tail that is a path in

some strongly connected subgraph of the pre-proof graph:

Lemma 7.1.3. LetP = (D,R ) be a CSω pre-proof. Then for every infinite pathπ throughGP

there is a non-trivial strongly connected subgraph Sπ ⊆ GP and a tailπ′ of π such thatπ′ is an

infinite path through Sπ on which every vertex of Sπ occurs infinitely often.

Proof. Let π be an infinite path throughGP and letV be the set of vertices ofGP . As V is

finite, at least one vertex inV occurs infinitely often onπ. Let V ′ ⊆ V be the set of vertices

which occur infinitely often onπ, and observe that there is a tailπ′ of π such that only the nodes

in V ′ appear onπ′. Now let Sπ be the subgraph ofGP induced byV ′ and note that, since all

vertices occurring onπ′ are inV ′, we must have thatπ′ is an infinite path inSπ. To see thatSπ

is strongly connected, letv,v′ ∈V ′, and observe that asv,v′ occur infinitely often onπ′, there is

a path fromv to v′ in Sπ. Further, there is a path of length> 0, soSπ is non-trivial.
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We remark that to satisfy the general proof condition it suffices to find, for any infinite

pathπ in the pre-proof graph, an infinitely progressing trace on the tail π′ of π constructed in

Lemma 7.1.3 above.

Definition 7.1.4 (Path composition). Let G be a graph, letπ1 = v0 . . .vm be a finite path inG

and letπ2 = x0x1x2 . . . be a (possibly infinite) path inG. We say thatπ1 composes withπ2 if

vm = x0, and define the composed pathπ1π2 to bev0 . . .vm−1x0x1x2 . . ..

Definition 7.1.5 (Basic cycle). Let P = (D,R ) be a CSω pre-proof in cycle normal form and

let B ∈ Bud(D). Then thebasic cycleCB in GP is the path inGP obtained from the unique

path fromR (B) to B in D by replacing the unique edge(v,B) on this path (for somev) with

the edge(v,R (B)) of GP . (Note thatCB is thus both a path inGP and a non-trivial strongly

connected subgraph ofGP .)

We remark that the notion of abasic cycleis only well defined for pre-proofs in cycle

normal form, as the existence of a path inD from R (B) to B requires thatR (B) is an ancestor

of B. The basic cycles of a graph then induce the following relation on its bud nodes (adapted

very slightly from its original usage in [63]):

Definition 7.1.6 (Structural connectivity, Sprenger and Dam [63]). Let P = (D,R ) be a CSω

pre-proof in cycle normal form. Define the relation≤P on Bud(D) by: B2 ≤P B1 iff R (B2)

appears on the basic cycleCB1 in GP .

We observe that the relation≤P is nota partial order in general. In particular, if two distinct

budsB1 andB2 share the same companion then we haveB1 ≤P B2 ≤P B1 but B1 6= B2, so≤P
is not necessarily antisymmetric. Also, as shown in Figure 7.1, it is not necessarily transitive

either.

R (B1)

R (B2)

B1R (B3)

B2 B3

Figure 7.1: A schematic pre-proof (in cycle normal form). Solid lines indicate paths in the

derivation tree and dashed arrows indicate the assignation of companions to buds. We have

B2 ≤P B1 since R (B2) occurs on the basic cycle CB1, and likewise we have B3 ≤P B2. However,

note that we do not then have B3 ≤P B1, because R (B3) does not occur on the cycle CB1.

Our next lemma establishes that any (non-trivial) stronglyconnected subgraph in the pre-

proof graph can be viewed as a union of basic cycles, and furthermore, that the bud nodes
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corresponding to these cycles are weakly connected by the relation≤P . (Note that cycles are

graphs, so a union of cycles is given by the usual union on graphs.)

Lemma 7.1.7. LetP = (D,R ) be a pre-proof in cycle normal form and let S be a non-trivial

subgraph ofGP . Then S is strongly connected if and only if there exists a non-empty set of buds

BS⊆ Bud(D) such thatBS is weakly≤P -connected and S=
S

B∈BS
CB.

Proof. Let S be a non-trivial subgraph ofGP . We prove each direction of the required bi-

implication separately:

(⇐) Let BS ⊆ Bud(D) be non-empty and weakly≤P -connected and letS=
S

B∈BS
CB. To

show thatS is strongly connected, we letv,v′ be vertices ofSand show that there exists a path

in S from v to v′. First note that asS=
S

B∈BS
CB, there existB,B′ ∈ BS such thatv occurs in

CB andv′ occurs inCB′ . Since any basic cycle is strongly connected andCB,CB′ are paths in

S, there are paths inS from v to R (B) and fromR (B′) to v′, so it suffices to show that there

is a path inS from R (B) to R (B′). Now asBS is weakly≤P -connected, there exists a chain

B0B1 . . .Bn in BS such thatB0 = B, Bn = B′ and, for all i ∈ {0, . . . ,n−1}, eitherBi ≤P Bi+1

or Bi+1 ≤P Bi. We proceed by induction on the lengthn of this chain. Ifn = 0 then we have

B = B′, and are done as there is trivially a path inS from R (B) to R (B). If n > 0, then by

the induction hypothesis there is a path inS from R (B) toR (Bn−1), so it suffices to show that

there is a path inS from R (Bn−1) to R (Bn) = R (B′). Now eitherBn−1 ≤P Bn or Bn ≤P Bn−1,

i.e., eitherR (Bn−1) occurs onCBn or R (Bn) occurs onCBn−1. In either case, there is a path in

CBn−1 ∪CBn from R (Bn−1) to R (Bn) and this path is a path inS sinceCBn−1 ∪CBn ⊆ S. This

completes the case.

(⇒) SupposeS is strongly connected. We require to prove that there existsa weakly≤P -

connected setBS⊆ Bud(D) such thatS=
S

B∈BS
CB. Suppose the following claims hold:

1. for every nodev in S, there existsB∈ Bud(D) such thatv occurs onCB andCB ⊆ S;

2. if CB ⊆ S andCB′ ⊆ S then there exists a chainB0B1 . . .Bn such thatCBi ⊆ S for all i,

B0 = B andBn = B′, and for alli, eitherBi ≤P Bi+1 or Bi+1 ≤P Bi.

Now defineBS = {B | CB ⊆ S}. Note thatBS is non-empty due to the non-triviality ofS.

We then have
S

B∈BS
CB ⊆ S sinceCB ⊆ S for eachB ∈ BS. By claim 1 above,v ∈ S implies

there is aB ∈ BS such thatv is onCB. ThusS⊆ S

B∈BS
CB and soS=

S

B∈BS
CB as required.

Now letB,B′ ∈ BS, so thatCB ⊆ SandCB′ ⊆ S. Then by claim 2 above, there is a chain fromB

to B′ in BS weakly connected by≤P , soBS is weakly≤P -connected as required. To finish the

proof, it remains to supply the proofs of claims 1 and 2 above:
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1. Letv be a node ofS. As S is strongly connected and non-trivial, there is a path of length

> 0 from v back tov in S. Let h be the height ofv in D, and note that sinceD is a tree,

every edge inD connects a node to one of strictly greater height. It followsthat there is

a path inS∩D from v to a nodev′ of height≥ h in D, and an edge inS\D from v′ to

a node of height≤ h in D. SinceS⊆ GP , this edge is of the form(v′,R (B)) for some

B∈ Bud(D), and there is a path inS from R (B) to v. Now sinceP is in cycle normal

form, R (B) is a strict ancestor ofB in D, and by construction ofGP , R (B) is therefore

an ancestor ofv′ in D. AsR (B) has height≤ h in D, andv is an ancestor ofv′ in D, it

holds thatR (B) is also an ancestor ofv in D. As there is a path inS∩D from R (B) to

v, and only edges inD connect nodes to nodes of greater height, the unique path inD

from R (B) to v in D is in S.

In summary, the unique paths inD from R (B) to v and fromv to v′ are inS, as is the

edge(v′,R (B)) not inD. In other words, we have aB∈ Bud(D) such thatv is onCB

andCB ⊆ Sas required.

2. LetB,B′ ∈ Bud(D) satisfyCB ⊆ SandCB′ ⊆ S. SinceS is assumed strongly connected,

there is a pathπ = v0v1v2 . . .vn in S with v0 = R (B) and vn = R (B′). Now define a

sequenceB0B1 . . .Bn+1 of bud nodes byB0 = B, Bn+1 = B′, and for eachi ∈ {1, . . . ,n},

let Bi be any bud such thatCBi ⊆ S and(vi−1,vi) is an edge ofCBi . (Note that there is

always such aBi, because we have established in 1. above that every node ofS is a vertex

of someCB ⊆S.) Note that the vertexvi is thus a vertex ofCBi for all i ∈ {0, . . . ,n}. Also,

since(R (B),v1) is an edge ofCB1, we have thatR (B) is a vertex ofCB1, soB= B0≤P B1.

Similarly, since(vn−1,R (B′)) is an edge ofCBn, we have thatR (B′) is a vertex ofCBn, so

B′ = Bn+1 ≤P Bn. It thus remains to show for eachi ∈ {2, . . . ,n} that eitherBi ≤P Bi−1

or vice versa, i.e. thatR (Bi) is a vertex ofCBi+1 orR (Bi+1) is a vertex ofCBi .

Now, we have for anyi ∈ {2, . . . ,n} thatCBi ∪CBi−1 ⊆ Sand(vi−1,vi) is an edge ofCBi .

Note thatR (Bi) is an ancestor ofvi−1 in D since(vi−1,vi) is an edge ofCBi . Also,

R (Bi−1) is an ancestor ofvi−1 in D sincevi−1 is a vertex ofCBi−1. AsD is a tree, either

R (Bi−1) is an ancestor ofR (Bi) inD or vice versa. In the former case,R (Bi) is a vertex

of CBi−1, and in the latter caseR (Bi−1) is a vertex ofCBi , so we are done. This completes

the proof.

Our aim is to formulate a localised notion of proof that is sufficient for the general CSω

proof condition to hold. (Of course, it would be most desirable to find such a notion that is both

sufficientand necessary, but it is not clear whether such a notion exists.)In other words, we

need a condition that for any infinite path in the pre-proof graph yields an infinitely progressing
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trace on some tail of that path. By Lemma 7.1.3, we can view a general infinite path inGP as

an infinite path through a non-trivial strongly connected subgraphS⊆ GP that visits all nodes

of S infinitely often. Furthermore, by Lemma 7.1.7,S is the union of the basic cycles of a set

of bud nodes weakly connected by the “structural connectivity” relation≤P . This allows us to

further analyse the composition of the infinite path throughS:

Lemma 7.1.8. LetP = (D,R ) be a CSω pre-proof in cycle normal form, and let S be a non-

trivial strongly connected subgraph ofGP . Note that S=
S

B∈BS
CB by Lemma 7.1.7. Then any

infinite path in S, starting from the companion of a bud inBS, is composed of paths (of length

> 0) each of the formR (B j) . . .R (Bk), where Bj ,Bk ∈BS andR (B j) . . .R (Bk) is a subpath of

some cycleCB ⊆ S.

Proof. By Lemma 7.1.7,S=
S

B∈BS
CB whereBS⊆ Bud(D) is a weakly≤P -connected set. It

follows that any infinite path throughS is composed of subpaths of the cycles{CB | B∈ BS}.

We just need to establish that we can confine our attention to subpaths of the form given above.

To see this, consider an infinite pathπ throughSstarting from some companion nodeR (B j),

whereB j ∈BS. Clearly we can write an initial finite segment ofπ asR (B j) . . .v,R (Bk), where

R (B j) . . .v is a path inS∩D andR (Bk) is the next companion of a bud inBS to occur onπ

afterR (B j). Now (v,R (Bk)) is an edge ofCB for someB∈ BS (sinceS=
S

B∈BS
CB andπ is a

path inS), and soR (B) is an ancestor ofv in D. AsD is a tree andR (B j) is also an ancestor

of v in D, andR (B) does not occur on theD-path betweenR (B j) andv by assumption, we

have therefore thatR (B) is an ancestor ofR (B j) in D and soR (B j) . . .v,R (Bk) is a subpath

of CB as required. It is clear that we can now repeat the argument starting from the tail ofπ

beginning withR (Bk), and soπ can be decomposed into paths of the required type.

Hence for a CSω pre-proof to satisfy the general proof condition it is both sufficient and

necessary to find, for each strongly connected subgraphS⊆GP , traces following all finite paths

of the form described in Lemma 7.1.8, together with the stipulation that there are sufficiently

many such traces to facilitate the composition of an infinitely progressing trace following any

infinite path inS. Thus we may obtain conditions that are merely sufficient to satisfy the general

proof condition by placing restrictions on the form and number of such traces.

7.2 Trace manifolds

In this section we develop two equivalent localised soundness conditions for CSω pre-proofs

that exploit our results of the previous section. While morerestrictive than the general sound-

ness condition, these so-calledtrace manifoldconditions are nevertheless combinatorially less
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complex, and provide a greater degree of explicit information on the form of the implicit infinite

descent arguments in pre-proofs.

Definition 7.2.1(Trace manifold). Let P = (D,R ) be a CSω pre-proof in cycle normal form,

and let Bud(D) be indexed byi. A trace manifoldfor P is a set of traces:

{τS,i | S=
[

B∈BS

CB whereBS⊆ Bud(D) weakly≤P -connected,Bi ∈ BS}

satisfying:

1. for all S and i, τS,i is a trace following the basicBi-cycle CBi in GP and furthermore

has the same value at both the instances ofR (Bi) on CBi . (Equivalently,τS,i is a trace

following the unique path inD from R (Bi) to Bi and takes the same value atR (Bi) and

Bi);

2. for all S, if Bi ,B j ∈ BS andB j ≤P Bi thenτS, j(R (B j)) = τS,i(R (B j));

3. for everyS, there is ani such thatτS,i has at least one progress point.

The property of a pre-proof possessing a trace manifold is, in a sense, more manageable

than the property of it possessing an infinitely progressingtrace on some tail of every infinite

path in its graph. Only a finite number of finite traces are required to specify a trace man-

ifold, and for any given pre-proof one can algorithmically recover a trace manifold (if one

exists). While the general proof condition can be checked using a (large) non-deterministic

Büchi automaton (c.f. Proposition 5.1.10), it is reasonably easy to construct an ordinary non-

deterministic finite automaton (on finite words) to decide whether a given pre-proofP has a

trace manifold. First, computing the non-trivial stronglyconnected subgraphs of the pre-proof

graph and the≤P relation on its buds is straightforward. Having done this, it is then obvi-

ous how to construct a deterministic finite automaton that checks whether a given set of traces

satisfies the trace manifold condition. Then a non-deterministic finite automaton can check

whether the pre-proof has a trace manifold by non-deterministically “guessing” a set of traces

and then checking whether this set forms a trace manifold. Wehave not investigated whether

such a construction yields a lower complexity bound than thegeneral condition, but it would

be interesting to do so.

For the purposes of illustration, we show how to construct a trace manifold for the CLKIDω

proof given in Example 5.2.3, whose soundness was justified informally in that example. (The

actual CLKIDω proof is also reproduced here for convenience.)

Example 7.2.2(“The P&Q Example Revisited”). Let ΦNPQ be the inductive definition set

consisting of the usual productions for the “natural number” predicateN (c.f. Example 2.2.5)

together with the following productions for the unary predicateP and binary predicateQ:

P0

Px Q(x,sx)

Psx Q(x,0)

Q(x,y) Px

Q(x,sy)
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We wish to provide a CLKIDω proof of the sequentNx,Ny⊢ Q(x,y), and begin as follows:

(QR1)
Nx⊢ Q(x,0)

(=L)
Nx,y = 0⊢ Q(x,y)

Nx,Ny⊢ Q(x,y) (†1)
(Subst)

Nx,Nz⊢ Q(x,z) Nx⊢ Px(∗)
============================= (QR2)

Nx,Nz⊢ Q(x,sz)
(=L)

Nx,y = sz,Nz⊢ Q(x,y)
(CaseN)

Nx,Ny⊢ Q(x,y) (†)

We then continue on the rightmost branch of the proof(∗) as follows:

(PR1)
⊢ P0

(=L)
x = 0⊢ Px

Nx⊢ Px(∗)
(Subst)

Nz⊢ Pz

Ny,Nx⊢ Q(x,y) (†2)
(Subst)

Nsz,Nz⊢ Q(z,sz)
============================= (PR2)

Nsz,Nz⊢ Psz
(=L)

Nx,x = sz,Nz⊢ Px
==================================== (CaseN)

Nx,Nx⊢ Px
(ContrL)

Nx⊢ Px(∗)

In the above, we shall writeB1 for the bud(†1), B2 for (†2) andB3 for (∗), so that the pre-proof

may be schematically illustrated as follows (solid lines denote paths in the derivation tree and

dashed arrows indicate the assignation of companions to buds):

R (B1) = R (B2)

B1 R (B3)

B2B3

Note that we haveB2 ≤P B1 ≤P B1 andB3 ≤P B2 (as well asBi ≤P Bi for i ∈ {1,2,3}), so

the weakly≤P -connected sets of buds in the pre-proof are the following:

S1 = {B1} S4 = {B1,B2}
S2 = {B2} S5 = {B2,B3}
S3 = {B3} S6 = {B1,B2,B3}

To give a trace manifold we therefore require to give, for each Si and eachB j ∈ Si , a trace

τi, j following the basic cycleCB j and taking the same value at both instances ofR (B j) on the

cycle, as required in order to satisfy condition 1 in the definition of trace manifold above. Fur-

thermore, the resulting set of traces must satisfy the further conditions 2 and 3 in the definition.

First, defineτ1,1 to be the progressing trace(Ny,Nz,Nz,Nz,Ny) following CB1 (i.e. the path

in the pre-proof above from(†) to (†1)). Also defineτ4,1 andτ6,1 to be the non-progressing

trace(Nx,Nx,Nx,Nx,Nx) following CB1. Next, for all i such thatB2 ∈ Si , defineτi,2 to be the
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progressing trace(Nx,Nx,Nx,Nx,Nx,Nz,Nz,Nz,Nx) following CB2. Finally, for all i such that

B3 ∈ Si , defineτi,3 to be the progressing trace(Nx,Nx,Nz,Nz,Nz,Nx) following CB3.

Note that each traceτi, j takes the same value at the start and end of the path it follows, as

required by part 1 of the trace manifold condition. Also, it is easily seen that for eachSi there

is a j such thatτi, j is a progressing trace, as required by part 3 of the condition(e.g.τ1,1, τ2,2,

τ3,3, τ4,2, τ5,2 andτ6,2 are all progressing traces).

Finally, we need to check that part 2 of the trace manifold condition holds, i.e. that if

B j ,Bi in Sk for somek andB j ≤P Bi thenτk, j(R (B j)) = τk,i(R (B j)). For k ∈ {1,2,3} this

is trivial. For the casesk ∈ {4,5,6} it follows from the fact, firstly, thatR (B1) = R (B2) and

τi,1(R (B1)) = τi,2(R (B1)) = Nx for i ∈ {4,6} and, secondly, thatτi,3(R (B3)) = τi,2(R (B3)) =

Nx for i ∈ {5,6}. So indeed we have constructed a trace manifold as required.

We now establish formally that a trace manifold for a pre-proof does indeed contain suf-

ficiently many trace segments to enable the construction of an infinitely progressing trace on

every infinite path, as previously indicated.

Proposition 7.2.3. Any CSω pre-proof (in cycle normal form) with a trace manifold is a CSω

proof.

Proof. Let P = (D,R ) be the pre-proof in question and consider any infinite pathπ through

GP . By Lemma 7.1.3, there is a tailπ′ of π and a non-trivial strongly connected subgraph

S⊆ GP such thatπ′ is an infinite path throughS that visits all vertices ofS infinitely often.

Furthermore, by Lemma 7.1.7, we haveS=
S

B∈BS
CB for some weakly≤P -connected setBS⊆

Bud(D). It suffices to construct an infinitely progressing trace onπ′, which we may assume

without loss of generality to have the companion of someB∈ BS as its first vertex. By Lemma

7.1.8,π′ is composed of finite paths inSof the formR (B j) . . .R (Bk), whereB j ,Bk ∈ BS and

R (B j) . . .R (Bk) is a subpath of some basic cycleCBi whereBi ∈ BS. To each such path, we

associate the portion ofτS,i that followsR (B j) . . .R (Bk).

To construct the required trace onπ′, we need to check that we can compose the traces as-

sociated with the component subpaths ofπ′. Suppose we compose two paths of the form above

to obtain the pathR (B j) . . .R (Bk) . . .R (Bm), whereR (B j) . . .R (Bk) is a subpath ofCB1 and

R (Bk) . . .R (Bm) is a subpath ofCB2. We have associated a portionτ1 of τS,1 toR (B j) . . .R (Bk)

and a portionτ2 of τS,2 to R (Bk) . . .R (Bm). To see thatτ1 and τ2 compose, we note that

Bk ≤P B1 andBk ≤P B2 sinceR (Bk) occurs on bothCB1 andCB2, and so by clause 2 in the

definition of trace manifold we haveτS,1(R (Bk)) = τS,k(R (Bk)) = τS,2(R (Bk)) as required.

The only remaining issue is to establish that the trace onπ′ obtained by composing the

traces on the individual path segments has infinitely many progress points. We note that by

clause 3 of the trace manifold definition, there is someBi such thatτS,i has a progress point on

CBi , and as every edge inSoccurs infinitely often inπ′, we need only ensure that the relevant

portion ofτS,i is used infinitely often in our construction.
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Suppose therefore that we are in the situation of assigning atrace portion to the path

R (B j) . . .R (Bk), whereB j ,Bk ∈ BS, and this path happens to be a subpath of bothCB1 and

of CB2 (whereB1,B2 ∈BS), so we are in the situation of assigning the relevant portion of either

τS,1 or τS,2 to the path. Now observe that we haveB j ≤P B1 andB j ≤P B2, soτS,1(R (B j)) =

τS, j(R (B j))= τS,2(R (B j)). Similarly,Bk ≤P B1 andBk ≤P B2, soτS,1(R (Bk))= τS,k(R (Bk))=

τS,2(R (Bk)). Thus the considered portions ofτS,1 andτS,2 both follow the pathR (B j) . . .R (Bk)

and agree atR (B j) andR (Bk), so we may equally well assign either trace to the path. It is

then clear that one can always assign a progressing segment to a path where there is a choice of

segments, and since every edge ofSoccurs infinitely often on the pathπ′, we can ensure that a

progressing segment ofτS,i is assigned to infinitely many path segment inπ′ as required.

We remark that the existence of a trace manifold for a pre-proof is a stronger requirement

than the general soundness condition. For example, it is easy to give a proof in CLKIDω for

which no trace manifold exists:

Example 7.2.4.Define the unary “natural number” predicateN by the usual productions given

in Example 2.2.5 and define the binary predicateN′ by the productions:

Ny

N′(0,y)

N′(y,x)

N′(sx,y)

(The intended interpretation ofN′xy is “Nx andNy”, although the definition ofN′ above is

not necessarily the most natural one.) The following is thena CLKIDω proof of the sequent

Nx,Ny⊢ N′(x,y):

(Ax)
Ny⊢ Ny

(N′R1)
Ny⊢ N′(0,y)

(=L)
Ny,x = 0⊢ N′(x,y)

Ny,Nx⊢ N′(x,y) (∗)
(Subst)

Nz,Ny⊢ N′(y,z)
(N′R2)

Nz,Ny⊢ N′(sz,y)
(=L)

x = sz,Nz,Ny⊢ N′(x,y)
(CaseN)

Nx,Ny⊢ N′(x,y) (∗)

We use(∗) to indicate the pairing of the bud in this proof with a suitable companion. To see that

this is a CLKIDω proof, notice that any infinite path in the pre-proof graph necessarily has a tail

consisting of repetitions of the basic cycleC(∗) (i.e. the path in the proof from the companion

to the bud). To construct the required infinitely progressing trace on this tail, we must compose

copies of the progressing trace(Nx,Nz,Nz,Nz,Ny) onC(∗) alternately with copies of the (non-

progressing) trace(Ny,Ny,Ny,Ny,Nx) onC(∗).

Notice that there does not exist a trace followingC(∗) that takes the same value at the

companion and the bud. If we takeNxas the initial trace value at the companion then the only

possible trace to the bud is(Nx,Nz,Nz,Nz,Ny) and so the trace value at the bud isNy, and sim-

ilarly if we takeNyas the initial trace value then the only possible trace is(Ny,Ny,Ny,Ny,Nx)
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and so the trace value at the bud isNx. However, the proof above can be unfolded into a larger

CLKIDω proof that does have a trace manifold. It is unclear to us whether this can be done in

general.

The quantification over strongly connected subgraphs in thedefinition of a trace manifold

is somewhat heavy-handed. A slightly more elegant version of the trace manifold condition can

be obtained by formulating the manifold with respect to a so-calledinduction orderon the buds

occurring in a pre-proof (a notion introduced by Schöpp [57] and subsequently employed by

Sprenger and Dam in their translation from circular proofs to finite proofs by explicit transfinite

induction for theµ-calculus [63, 62]):

Definition 7.2.5(Induction order). Let P = (D,R ) be a CSω pre-proof in cycle normal form.

A (non-strict) partial order⊳ on Bud(D) is said to be aninduction order forP if:

• B⊳B1 andB⊳B2 impliesB1 = B2 or B1⊳B2 or B2⊳B1 (i.e. ⊳ is forest-like);

• every weakly≤P -connected setB ⊆Bud has a⊳-greatest element, i.e. an elementBmax∈
B such thatB⊳Bmax for all B∈ B . (Note that, in particular, we then haveB1 ≤P B2 im-

pliesB1⊳B2 or B2⊳B1.)

Definition 7.2.6 (Ordered trace manifold). Let P = (D,R ) be a pre-proof in cycle normal

form and let⊳ be an induction order forP . An ordered trace manifoldwith respect to⊳ is a

set of traces:

{τ j,i | B j ,Bi ∈ Bud(D),Bi ⊳B j}

satisfying all of the following:

1. for all i and j with Bi ⊳ B j , τ j,i is a trace following the basicBi-cycle CBi in GP and

furthermore has the same value at both the instances ofR (Bi) onCBi . (Equivalently,τ j,i

is a trace following the unique path inD from R (Bi) to Bi and takes the same value at

R (Bi) andBi);

2. for all i, j,k, if B j ,Bi ⊳Bk andB j ≤P Bi thenτk, j(R (B j)) = τk,i(R (B j));

3. for all i, τi,i has at least one progress point.

Example 7.2.7. Consider the CLKIDω pre-proof given in Example 7.2.2, and recall that its

cycle structure has the following form:

R (B1) = R (B2)

B1 R (B3)

B2B3
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We give an induction order for the pre-proof. We define a partial order⊳ on {B1,B2,B3} by

B3 ⊳ B2, B1 ⊳ B2, andBi ⊳ Bi for i ∈ {1,2,3}. One can easily check that⊳ is a forest-like

partial order. Furthermore, note that every weakly≤P -connected subset of{B1,B2,B3} has a

⊳-greatest element. , so⊳ is indeed an induction order.

We can now give an ordered trace manifold for the pre-proof with respect to⊳. We require

to specify, for each pair of budsBi,B j such thatBi ⊳ B j , a traceτ j,i following the basic cycle

CBi and taking the same value at both instances ofR (Bi) on the cycle, as required in order to

satisfy condition 1 in the definition of ordered trace manifold above. In other words, we need

the following traces:

τ1,1,τ2,1,τ2,2,τ2,3,τ3,3

Furthermore, the resulting set of traces must satisfy the further conditions 2 and 3 in the defi-

nition.

First, defineτ1,1 to be the progressing trace(Ny,Nz,Nz,Nz,Ny) following CB1, and define

τ2,1 to be the non-progressing trace(Nx,Nx,Nx,Nx,Nx) following CB1. Next, defineτ2,2 to be

the progressing trace(Nx,Nx,Nx,Nx,Nx,Nz,Nz,Nz,Nx) following CB2. Finally, define both

τ2,3 andτ3,3 to be the progressing trace(Nx,Nx,Nz,Nz,Nz,Nx) following CB3.

Note that each traceτi, j takes the same value at the start and end of the path it follows,

as required by part 1 of the ordered trace manifold condition. Also, as required by part 3

of the condition,τi,i is a progressing trace for eachi ∈ {1,2,3}. Finally, we need to check

that part 2 of the trace manifold condition holds, i.e. that if B j ,Bi ⊳ Bk and B j ≤P Bi then

τk, j(R (B j)) = τk,i(R (B j)). This may easily be verified.

Lemma 7.2.8. A pre-proofP (in cycle normal form) has a trace manifold if and only if there

exists an induction order⊳ for P andP has an ordered trace manifold with respect to⊳.

Proof. (⇐) Let ⊳ be an induction order for the pre-proofP = (D,R ) and supposeP has an

ordered trace manifold with respect to⊳. Now letS=
S

B∈BS
CB whereBS⊆Bud(D) is weakly

≤P -connected. By the definition of induction order,BS has a⊳-greatest element, sayBk. We

defineτS,i = τk,i for eachi. We just need to check that this definition satisfies the properties of

a (standard) trace manifold:

1. By clause 1 of the definition of ordered trace manifold,τS,i = τk,i is a trace following the

basic cycleCBi , and takes the same value at both occurrences ofR (Bi) on this cycle;

2. SupposeB j ≤P Bi whereB j ,Bi ∈ BS. As Bk is the⊳-greatest element ofBS, we have

B j ,Bi ⊳Bk and thusτk, j (R (B j)) = τk,i(R (B j)) by clause 2 of the definition of order trace

manifold, i.e.τS, j(R (B j)) = τS,i(R (B j)) as required;

3. By clause 3 of the definition of ordered trace manifold, thetraceτS,k = τk,k has at least

one progress point as required.
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(⇒) SupposeP = (D,R ) has a trace manifold. We show how to construct an induction order

⊳ for P and an ordered trace manifold with respect to⊳.

Consider any maximal weakly≤P -connected setB ⊆ Bud(D) (so there is no weakly≤P -

connected subset of Bud(D) that is a strict superset ofB), and letS=
S

B∈B CB. By the defi-

nition of trace manifold, there is someBk ∈ B such thatτS,k progresses. (Of course, there may

be more than one such bud, in which case we chooseBk to be any suitable one.) For each such

maximal setB , we define some suitableBk to be the⊳-greatest element ofB (i.e. Bi ⊳Bk for

all Bi ∈ B) and defineτk,i = τS,i for eachBi ∈ B . Note thatBk is then also the⊳-greatest ele-

ment of any subset ofB that containsBk. We then consider all maximal weakly≤P -connected

subsets of Bud(D)\{Bk} and iterate the process of assigning⊳-greatest elements to these sets

until we obtain a⊳-greatest element for every weakly≤P -connected set. Furthermore, notice

that in this way we never assign two different traces toτk,i (for any fixedi andk).

We check first that⊳ as constructed is actually an induction order. It is obviousby construc-

tion that every weakly≤P -connected set has a⊳-greatest element, so we just need to check

⊳ is a forest-like partial order.⊳ is reflexive by construction. To see⊳ is transitive, observe

that if Bi ⊳ B j andB j ⊳ Bk, then there exist weakly≤P -connected setsB j ,Bk such thatB j ,Bk

are the⊳-greatest elements ofB j ,Bk respectively and furthermoreB j ⊆ Bk. As Bi ∈ B j (by

construction sinceBi ⊳B j) we thus haveBi ∈Bk and soBi ⊳Bk as required. For anti-symmetry,

supposeB j ⊳Bk andBk⊳B j . Then by construction there exist weakly≤P -connected setsB j ,Bk

such thatB j ,Bk are the (unique)⊳-greatest elements ofB j ,Bk respectively, and we must have

B j ⊆ Bk andBk ⊆ B j , soB j = Bk andB j = Bk as required. Lastly, we need to check⊳ is

forest-like. SupposeBi ⊳B j andBi ⊳Bk, so there exist weakly≤P -connected setsB j ,Bk such

that B j ,Bk are the (unique)⊳-greatest elements ofB j ,Bk respectively, and we haveBi ∈ B j

andBi ∈ Bk. By construction we must have eitherB j ⊆ Bk (in which caseB j ⊳Bk) orBk ⊆ B j

(in which caseBk ⊳B j) or both (in which caseB j = Bk).

It remains to check that the construction yields an ordered trace manifold with respect to⊳.

We note that by construction,τ j,i exists wheneverBi ⊳B j , and check the required properties:

1. By clause 1 of the definition of trace manifold,τ j,i = τS,i (for someS) is a trace following

the basic cycleCBi in GP , and takes the same value at both the instances ofR (Bi) on this

cycle;

2. SupposeB j ,Bi ⊳Bk andB j ≤P Bi. Then there is some weakly≤P -connected setB such

thatBk is the⊳-greatest element ofB andBi,B j ∈B , so thatτS, j(R (B j)) = τS,i(R (B j)),

i.e. τk, j (R (B j)) = τk,i(R (B j)) as required;

3. By construction,τk,k = τS,k is always a progressing trace.

This completes the proof.
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7.3 Translation of LKID into CLKID ω

We now return to the setting of our proof systems for FOLID . Recall that the proof system LKID

then contains, for each inductive predicate in the language, a rule which embodies the principle

of induction over the definition of the predicate in the inductive definition set. Proofs in LKID

are the usual finite trees of sequents and thus may straightforwardly be seen as capturing the

usual notion of proof by (explicit) induction. On the other hand, in the cyclic system CLKIDω,

the induction rule for an inductive predicate is replaced bya weaker case distinction rule and

proofs in the system may be viewed as regular infinite trees (as discussed in Chapter 5). The

soundness condition imposed on CLKIDω proofs (c.f. Definition 5.1.6) ensures that, if any

sequent occurring on an infinite branch were false, an infinitely decreasing chain of ordinals

(in fact, natural numbers) would exist, which is a contradiction. Proofs in CLKIDω can thus

be seen as embodying infinite descent arguments. (Of course,proofs in the general infinitary

system LKIDω likewise embody infinite descent arguments, but these proofs cannot be given a

useful representation in general.)

The use of infinite descent in mathematical proofs (which areimplicitly understood as

finite) is regarded in some quarters as essentially interchangeable with the explicit use of in-

duction, notwithstanding that one method or the other may bemore suited to the structure of a

particular problem. If this is true in the setting of FOLID then one would expect that an arbi-

trary sequent is provable in LKID just in case it is provable in CLKIDω. Moreover, if the two

methods are really interchangeable, then there ought to exist a procedure for transforming an

arbitrary LKID proof of a sequent into a CLKIDω proof of the same sequent and vice versa.

In this section we begin to address the problem of establishing the equivalence of induction

and infinite descent for FOLID , by giving a translation from LKID into CLKIDω, and explaining

why giving a translation from CLKIDω into LKID appears hard. We leave the equivalence

between LKID and CLKIDω as the main open conjecture of this thesis.

In what follows, we shall consider a fixed first-order language Σ with inductive predicates

{P1, . . . ,Pn}, and a fixed inductive definition setΦ for Σ.

Lemma 7.3.1. Any instance of the LKID induction rule (Ind Pj) for an inductive predicate Pj

is derivable in CLKIDω.

Proof. We recall the construction of the induction rule for an inductive predicate given in

Section 3.1. Letj ∈ {1, . . . ,n}; we show how to derive an arbitrary instance of the induction

rule (IndPj) in which the induction hypothesisFi and the induction variableszi have been

associated to the inductive predicatePi for eachi ∈ {1, . . . ,n}:

minor premisesΓ,Fj t ⊢ ∆
(Ind Pj )

Γ,Pj t ⊢ ∆
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Now defineM to be the smallest set of formulas satisfying: for each minorpremise of the

considered instance of (IndPj), say:

Γ,Q1u1(x), . . . ,Qhuh(x),G j1t1(x), . . . ,G jmtm(x) ⊢ Fit(x),∆

where j1, . . . , jm ∈ {1, . . . ,n} andQ1, . . . ,Qh are ordinary predicates, the formula:

∀x.(Q1u1(x)∧ . . .∧Qhuh(x)∧G j1t1(x)∧ . . .∧G jmtm(x) → Fi t(x))

is inM . (Recall that the formulaGi is defined for eachi ∈ {1, . . . ,n} by:

Gi =

{

Fi if Pi andPj are mutually dependent

Pizi otherwise

andGit is written to meanGi[t/zi ]). Now, consider the following derivation in CLKIDω:

M ,Pjy ⊢ Fjy
(Subst)

M ,Pj t ⊢ Fj t
(∧L)

...
(∧L)

V

M ,Pj t ⊢ Fj t
(→R)

Pj t ⊢
V

M → Fj t

minor premises
...

{Γ ⊢ M,∆ | M ∈M }
(∧R)

...
(∧R)

Γ ⊢ V

M ,∆ Γ,Fj t ⊢ ∆
(→L)

Γ,
V

M → Fj t ⊢ ∆
=========================================== (Cut)

Γ,Pj t ⊢ ∆

wherey is a tuple of appropriately many variables. We remark that obtaining each of the minor

premises of the considered instance of (IndPj ) from the sequents{Γ ⊢ M,∆ | M ∈M } is sim-

ply a matter of decomposing eachM using the rules (∀R),(→R) and (∧L). It thus suffices to

provide a CLKIDω proof of the sequentM ,Py⊢Fy, and we continue by showing how to do so.

First, we apply the CLKIDω casesplit rule (CasePj) to the sequentM ,Pjy ⊢ Fjy, thus

generating a case for each production which hasPj occurring in its conclusion. We show how

to treat a case arising from an arbitrary production, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjmtm(x)

Pj t(x)
j1, . . . , jm, j ∈ {1, . . . ,n}

We abbreviate the set of formulasQ1u1(x), . . . ,Qhuh(x) byQ . Now, as there is a minor premise

Γ,Q ,G j1t1(x), . . . ,G jmtm(x) ⊢ Fj t(x),∆ corresponding to this production in the considered in-

stance of (IndPj ), the formula∀x(
V

Q ∧G j1t1(x)∧ . . .∧G jmtm(x) → Fj t(x)) is in the setM .

This formula is the subject of the contraction in the following CLKIDω derivation:
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(Ax)
Fj t(x) ⊢ Fj t(x)

(Ax)
{Q ⊢ Qi | Qi ∈ Q }

{M ,Pj i y ⊢ G j i y | i ∈ {1, . . . ,m}} (†2)
(Subst)

{M ,Pj i t i(x) ⊢ G j i t i(x) | i ∈ {1, . . . ,m}}
================================================= (∧R)

...
============================================== (∧R)
M ,Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ V

Q ∧G j1t1(x)∧ . . .∧G jmtm(x)
================================================================ (→L)
M ,

V

Q ∧G j1t1(x)∧ . . .∧G jmtm(x) → Fj t(x),Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ Fj t(x)
(∀L)

...
(∀L)

M ,∀x.(
V

Q ∧G j1t1(x)∧ . . .∧G jmtm(x) → Fj t(x)),Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ Fj t(x)
(ContrL)

M ,Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ Fj t(x)
(=L)

(other cases). . . M ,y = t(x),Q ,Pj1t1(x), . . . ,Pjmtm(x) ⊢ Fjy
(CasePj )

M ,Pjy ⊢ Fjy (†1)

wherex /∈ FV(M ∪{Pjy}∪{Fjy}) for all x∈ x. We have thus far obtained a CLKIDω deriva-

tion with root sequentM ,Pjy ⊢ Fjy (†1) and bud nodes{M ,Pji y ⊢ G ji y | i ∈ {1, . . . ,m}} (†2),

and we observe that for eachi ∈ {1, . . . ,m} there is a progressing trace:

(Pjy,Pji t i(x), . . . ,Pji t i(x),Pji y)

following the path in this derivation from the root sequent(†1) to the budM ,Pji y ⊢ G ji y. Now

note that, for eachi ∈ {1, . . . ,m}, if the predicatesPji andPj are not mutually dependent, then

G ji = Pji , and so we may apply the rule (Ax) to the bud nodeM ,Pji y ⊢ G ji y. Thus we need to

consider only the bud nodesM ,Pji y ⊢ G ji y such thatPji andPj are mutually dependent, and

are thus of the formM ,Pji y ⊢ Fji y. We treat these as follows:

• if Pji = Pj , then the bud node is identical to the root sequent(†1), and we set the com-

panion of the bud to be(†1).

• if Pji 6= Pj , then note that asPji andPj are mutually dependent, there is a minor premise

(and corresponding formula inM ) for every production which hasPji occurring in its

conclusion. We thus can repeat the derivation above for the bud node under consideration

to obtain new bud nodes(†3), to which we may assign(†1) or any ancestor node of the

form (†2) as a companion.

We iterate this process as often as required, successively generating bud nodes of the form

(†3),(†4), . . ., noting that any bud node of the form(†k) may potentially be assigned an an-

cestral companion of the form(†k′) for any k′ < k, and that bud nodes are always assigned

ancestors as companions. This iteration is possible becauseM contains a formula correspond-

ing to each production having in its conclusion a predicate that is mutually dependent withPj

and, since mutual dependency between predicates is transitive, the predicatePji occurring on
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the left of any bud node(†k) is always mutually dependent withPj . Also, we observe that the

iteration process never produces bud nodes of the form(†n+ 2), because there are at mostn

inductive predicates that are mutually dependent withPj .

We thus obtain a CLKIDω derivation treeD with root sequentM ,Pjy ⊢ Fjy and a repeat

function R that assigns to every bud node ofD an ancestor of the bud as companion, i.e.

P = (D,R ) is a CLKIDω pre-proof in cycle normal form. Furthermore, for each bud nodeBi

in the tree, there is a traceτi following the unique path inD from R (B) to B that takes the

same value atB andR (B).

We claim that there exists a trace manifold forP . For anyS=
S

B∈BS
CB whereBS ⊆

Bud(D) is a weakly≤P -connected set, we defineτS,i = τi (so, in fact,τS,i is independent of

S). Note thatτi is a trace following the basic cycleCBi in GP taking the same value at both

instances ofR (Bi) on CBi , as required by clause 1 of the definition of a trace manifold.Also

notice that clause 3 of the definition is immediately satisfied sinceτi is a progressing trace.

Finally, supposeB1 ≤P B2 whereB1,B2 ∈ BS, i.e.R (B1) appears on the cycleCB2. To satisfy

clause 2 of the trace manifold definition we need to show thatτ1(R (B1)) = τ2(R (B1)). Note

that by construction,R (B1) is of the form(†k) (for somek ∈ {1, . . . ,n}) and thus is labelled

with a sequent of the formM ,Pji y ⊢ Fji y. It is then clear that any trace passing throughR (B1)

takes the valuePji y atR (B1), so in particularτ2 takes this value asR (B1) is a vertex ofCB2.

This completes the proof.

Theorem 7.3.2.Every LKID proof ofΓ ⊢ ∆ can be transformed into a CLKIDω proof ofΓ ⊢ ∆.

Furthermore, this CLKIDω proof has a trace manifold.

Proof. Given any LKID proofD of Γ ⊢ ∆ we can obtain a CLKIDω pre-proofP of Γ ⊢ ∆ by

replacing every instance of an induction rule inD with the corresponding CLKIDω derivation

constructed in Lemma 7.3.1. Furthermore, by inspection it is clear that the set of strongly

connected subgraphs ofP is the (disjoint) union of the sets of strongly connected subgraphs

of each inserted CLKIDω derivation. The union of the trace manifolds constructed for each

of the inserted derivations is thus a trace manifold forP , whenceP is a CLKIDω proof by

Proposition 7.2.3.

Theorem 7.3.2 shows how to convert a proof by induction to a proof by infinite descent

in the setting of FOLID. Essentially, as shown in Lemma 7.3.1, any use of induction over an

inductive formulaPt can be replaced by a cut on a formula which states that the combined

minor premises imply the induction hypothesisFt associated withPt, together with an infinite

descent proof of this formula. Unfortunately, transforming a CLKIDω proof into a LKID proof

appears to be a much harder problem, and we state it here as ourconjecture:

Conjecture 7.3.3. If there is a CLKIDω proof of a sequentΓ ⊢ ∆ then there is an LKID proof

of Γ ⊢ ∆.
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Conjecture 7.3.3 is stated in a relatively weak form. As remarked earlier, if proof by induc-

tion and proof by infinite descent are really equivalent proof techniques for FOLID then there

should exist a procedure for transforming an arbitrary CLKIDω proof into a LKID proof of the

same sequent. (A semantic proof of the conjecture would alsobe of interest, but we have no

idea how to obtain one.) We are aware of two main related developments in the literature, the

first being Sprenger and Dam’s equivalence result for cyclicand non-cyclic proof systems for

µ-calculus with explicit approximations [63], and the second being Walukiewicz’ complete-

ness result for theµ-calculus [82]. We examine these works in more detail in subsections 7.3.1

and 7.3.2 below, respectively.

We have observed that any LKID proof can be transformed into aCLKIDω proof with a

trace manifold, i.e. LKID provability⇒ trace manifold provability⇒ CLKIDω provability.

One approach to a proof of Conjecture 7.3.3 would thus be to establish that both the implica-

tions above hold in reverse, that is, to establish the two conjectures:

• if there is a CLKIDω proof of a sequent, then there is a CLKIDω proof of the same

sequent with a trace manifold;

• if there is a CLKIDω proof of a sequent with a trace manifold, then there is an LKID

proof of the same sequent.

A proof of either of these statements would be of clear independent interest, but both appear

hard. The second is a weaker version of Conjecture 7.3.3 and appears more approachable, as

the existence of a trace manifold for a CLKIDω proof gives much more structural information

about the proof than the general soundness condition. A proof would presumably have some as-

pects in common with Sprenger and Dam’s transformation fromcyclic proofs in theµ-calculus

to non-cyclic proofs by transfinite induction development (see below), but there are significant

complications in our FOLID setting entailed by the complex form of our induction rules,our

use of a trace-based soundness condition and our restriction to standard syntax. One could also

notice that our proof of Theorem 7.3.2 produces CLKIDω proofs with very constrained trace

manifolds, and it may be easier to translate proofs with similarly constrained manifolds into

LKID proofs. A proof of the first of the two statements above would establish that we can re-

strict our attention to CLKIDω proofs with trace manifolds (at the possible expense of needing

larger proofs), and could be seen as an analogue for traces ofour cycle-normalisation results in

Chapter 6. The main problem presented by this conjecture is that, as the infinitely progressing

traces on any two infinite paths in the pre-proof graph can behave entirely differently despite

potential overlap between the paths, it is not obvious that amanifold need exist. We speculate

that it may be possible to use the proof machinery of Chapter 6in conjunction with a combina-

torial argument about trace values to unfold a proof into onewith a trace manifold. However,

this and other possible approaches to establishing the status of Conjecture 7.3.3 will for now
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have to be left as the main avenue for potential future work stemming from this thesis.

7.3.1 The Sprenger-Dam translation from global to local pro of in the µ-calculus

Sprenger and Dam established effective translations between a cyclic proof system for the

µ-calculus and a non-cyclic system equipped with a local transfinite induction rule for the

ordinals. The syntax of formulasφ in theµ-calculus withexplicit approximantsis given by the

following definition:

φ ::= t = u | κ′ < κ | ¬φ | φ1∧φ2 | ∃x.φ | ∃κ.φ | X | µX(x).φ | µκX(x).φ

whereκ,κ′ range overordinal variables(i.e. variables whose interpretation ranges over the or-

dinals),t,u range over standard first-order terms, andX ranges over a set of predicate variables.

Theµ operator indicates least fixed points: the intended interpretation of the formulaµX(x).φ

is (roughly) “x is in the least predicateX such thatφ”. and the least fixed points given by theµ

operator can be approached by ordinal-indexed approximants in much the same way as the least

fixed points of our monotone operators for inductive definitions (c.f. Definition 2.2.8), whence

the operatorµκ indicates theκth approximant of the least fixed point under consideration.

Sprenger and Dam define two systemsSloc andSglob for the µ-calculus with explicit ap-

proximants. The systems are presented as Gentzen-style sequent calculi employing sequents

of the formΓ ⊢O ∆, whereΓ and∆ are finite multisets of formulas andO is a finite set of or-

dinal variables which acts as a kind of context for the system. The two systems share the same

basic rules, which are essentially the usual structural andfirst-order rules from LKe together

with rules governing the behaviour of ordinal variables, and unfolding rules for (approximated)

least fixed point formulas on the left and right of sequents. The rules for ordinal variables are

as follows:

Γ,φ ⊢O,κ ∆
κ 6∈ O (∃κ L)

Γ,∃κ.φ ⊢O ∆

Γ ⊢O φ[ι/κ],∆
ι ∈ O (∃κ R)

Γ ⊢O ∃κ.φ,∆

(<L)
Γ,κ < κ ⊢O ∆

Γ ⊢O κ1 < κ2,∆ Γ ⊢O κ2 < κ3,∆
(<R)

Γ ⊢O κ1 < κ3,∆

The rules for unfolding approximatedµ-formulas are as follows, and can be seen as ana-

logues of our right-unfolding and casesplit rules for inductive predicates:

Γ,∃κ′ < κ.φ[µκ′
X(x).φ/X, t/x] ⊢O ∆

(µκ L)
Γ,(µκX(x).φ)(t) ⊢O ∆

Γ ⊢O ∃κ′ < κ.φ[µκ′
X(x).φ/X, t/x],∆

(µκ R)
Γ ⊢O (µκX(x).φ)(t),∆

A cyclic proof in the systemSglob is then a pre-proof, constructed analogously to a CLKIDω

pre-proof (but always in cycle normal form), satisfying an appropriate global proof condition

ensuring soundness. Instead of directly employing a notionof trace as we do, Sprenger and
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Dam consider an alternative condition involving the derivability of ordering statements on or-

dinal variables along each basic cycle in the pre-proof. Roughly speaking, an ordinal variable

κ is said to bepreservedby a path if it is present in the context of every sequent on thepath

and whenever the substitution rule (Subst) is applied alongthe path with substitutionθ then

the statementθ(κ) ≤ κ is derivable, and is said toprogresson a path if it is preserved by the

path and there is a point on the path at which (Subst) is applied and the statementθ(κ) < κ

is derivable. The proof condition then states that for everystrongly connected subgraph of

the pre-proof there is an ordinal variable that is preservedeverywhere on the graph and pro-

gresses somewhere on the graph. This condition is then restated with respect to an induction

order (c.f. Definition 7.2.5), and can be seen as somewhat similar to our ordered trace manifold

condition.

Sprenger and Dam show that any proof inSglob can be translated into a proof in the finitary

proof systemSloc which adds the following transfinite induction rule to the rules ofSglob:

Γ,φ ⊢O,κ ∃κ′ < κ.φ[κ′/κ],∆
κ 6∈ O (Ind L)

Γ,∃κ.φ ⊢O ∆

The analogue of our Theorem 7.3.2 is straightforward to prove; one shows that uses of (Ind

L) in anSloc derivation can be replaced bySglob derivations and that the derivation so obtained is

anSglob proof. Translating fromSglob proofs toSloc proofs is much harder. First of all, Sprenger

and Dam show how to unfold a cyclicSglob proof into one that is “tree-compatible” — i.e. one

in which the induction order on buds matches their structural ordering given by the relation≤P .

They then demonstrate how to directly translate a tree-compatibleSglob proof into anSloc proof.

Essentially, for each basic cycle in the proof an instance ofthe induction rule (Ind L) is inserted

at the companion node, using an internalisation of the sequent itself — guarded by a bounded

existential quantifier on the progressing ordinal variableassociated with the cycle — as the

induction hypothesis. (The transformation is done bottom-up, so that induction hypotheses

occurring further down the tree are included as part of induction hypotheses occurring higher

up.) The fact that the induction variable progresses is thenused to give a directSloc proof of the

(modified) sequent occurring at the bud on the cycle. Crucially, given an induction hypothesis

H(κ) produced at some stage at the translation, and a derivable statementκ′ ≤ κ one can

produce the “regenerated” hypothesisH(κ′). This property, which relies on the explicit use

of the< relation on ordinal variables, is needed in order to successfully exploit the induction

hypotheses in theSloc proof.

Unfortunately, the problem of reducing cyclic reasoning onthe ordinary syntax of first-

order logic (CLKIDω) to induction over predicate definitions (LKID) seems significantly harder

than the transformation of cyclic reasoning on a syntax extended by ordinal variables (Sglob) to

the explicit use of ordinal transfinite induction (Sloc). This is partly because of our restriction

to standard syntax and thus the unavailability of< on ordinals (and thus the loss of the regen-
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eration property outlined above), but is also due to the morecomplex forms of our casesplit

and induction rules, and the complexity inherent in our proof condition, even when we restrict

to CLKIDω proofs having trace manifolds.

7.3.2 Connections with Walukiewicz’ completeness for the µ-calculus

Figure 7.2 shows the main aspects of Walukiewicz’ demonstration of the completeness of

Kozen’s axiomatisation for the propositional modalµ-calculus. The syntax for formulas of

this calculus is given by the following definition:

φ ::= ⊤ | ⊥ | p | X | ¬φ | φ1∧φ2 | φ1∨φ2 | 〈a〉φ | [a]φ | µX.φ(X)

where p ranges over a set ofpropositional constants, X ranges over a set ofpropositional

variablesanda ranges over a set ofactions. Judgements in the system are of the formφ1 ≤
φ2 with the intended meaning that the formulasφ1 ∧ φ2 and φ1 are semantically equivalent.

Kozen’s axiomatisation [40] then adds the following rules concerning the least fixed point

operatorµ to the standard axiomatisation of propositional modal logic K:

φ(µX.φ(X)) ≤ µX.φ(X)

φ(ψ) ≤ ψ

µX.φ(X) ≤ ψ

The second rule above is often calledPark induction. Niwinski and Walukiewicz first showed

that a formula of the calculus is unsatisfiable iff it has a (regular) refutation, and that every

formula with a refutation also has a regular refutation [52]. Then Walukiewicz showed that

a formula is unprovable from Kozen’s axiomatisation iff it has a refutation, from which the

completeness of Kozen’s axiomatisation immediately follows [82].

Our investigations into proof in FOLID can be seen as having aspects in common with theµ-

calculus completeness proof, as we attempt to show in Figure7.3. Firstly, the system LKID can

be seen as an analogue for FOLID of Kozen’s axiomatisation of theµ-calculus, which adds an

induction rule and an axiom governing theµ operator to the axiomatisation of the modal logic

K [40], as LKID adds rules for induction to the complete “axiomatisation” LKe of first-order

logic with equality. Of course, LKID is not complete with respect to the standard semantics of

FOLID, but it is (cut-free) complete with respect to the Henkin semantics. On the other hand,

Niwinski and Walukiewicz’ refutations are similar to proofs in the infinitary system LKIDω;

they are trees, possibly containing infinite branches and satisfying an analogous trace condition,

and both the system of refutations and LKIDω are complete for the standard semantics of their

respective languages. However, in contrast to the situation with µ-calculus refutations, not

every LKIDω-provable sequent is also provable in its restriction to regular trees, CLKIDω.

The problem of deciding whether LKID and CLKIDω are equivalent thus seems somewhat

reminiscent of the difficulties involved in Walukiewicz’ proof that everyµ-calculus formula
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with a regular refutation is unprovable in Kozen’s axiomatisation. However, it is far from clear

whether his methods are applicable in our setting.

unsatisfiability w.r.t

µ-calculus

semantics

existence of

a refutation

unprovability in

Kozen’s

axiomatisation

existence of a

regular refutation

completeness (Niwinski &

Walukiewicz 1997 [52])

equivalence

(Niwinski &

Walukiewicz

1997 [52])

completeness

(Walukiewicz

2000 [82])

(Walukiewicz 2000 [82])

Figure 7.2: A diagrammatic representation of the work of Niwinski and Walukiewicz ultimately

showing completeness of Kozen’s axiomatisation of the propositional modal µ-calculus. All ar-

rows represent implications.
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validity w.r.t.

standard semantics

of FOLID

validity w.r.t.

Henkin semantics

of FOLID

cut-free

provability

in LKID ω

cut-free

provability

in LKID

provability

in CLKIDω

Henkin semantics

subsume standard

semantics (Ch 2)

cut-free completeness

of LKID ω (Ch 4)

cut-free

completeness

of LKID (Ch 3)

restriction

to regular

proofs (Ch 5)

translation (Theorem 7.3.2)

Conjecture 7.3.3

Figure 7.3: A diagrammatic representation of (some of) our developments in the setting of

FOLID . The solid arrows represent implications, and the dashed arrow indicates the conjectured

implication.
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Conclusions

To conclude this thesis, we first summarise our main contributions in Section 8.1, and then

outline what appear to be the main promising directions for future research stemming from the

thesis in Section 8.2.

8.1 Summary of our contributions

In this thesis we address (some of) the foundational issues concerning the well-known meth-

ods of proof by induction and proof by infinite descent in the setting of first order logic with

ordinary (mutual) inductive definitions, FOLID.

Firstly, we give a classical sequent calculus LKID that supports proof by induction in

FOLID, and for which we have established cut-free completeness with respect to a natural

class of Henkin models. LKID can thus be viewed as being a canonical proof system for

FOLID in much the same way that the second-order functional calculus is a canonical system

for second-order logic. As well as being of independent interest, the completeness result yields

the eliminability of cut in LKID as a corollary. We believe this to be the first cut-elimination

result for a classical system incorporating induction rules, although it seems plausible that this

is because it previously appeared that such a result would be(a) relatively unsurprising in the

light of the cut-elimination properties of related intuitionistic systems, and also (b) rather dif-

ficult to prove; as we have shown, there is no elementary proofof cut-eliminability in LKID,

and a syntactic proof is likely to be very difficult. Our proofthus fills a fairly long-standing

gap in the literature.

Secondly, we give an infinitary proof system LKIDω that uses non-well-founded proofs to

model proof by infinite descent in FOLID. The system uses only the standard syntax of first-

order logic, in contrast to proof systems for cyclic or infinitary reasoning in other logics, in

which the logical syntax is typically extended by, e.g., ordinal variables or ordering annotations.

Soundness of the system is guaranteed by a trace condition that ensures that some inductive

144
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definition is unfolded infinitely often along every branch. The infinite branches in a proof thus

represent the cases of the proof which can be disregarded by the infinite descent principle. As

for the system LKID, we establish cut-free completeness — this time with respect to standard

models — and cut-eliminability for the system LKIDω. Because the system is in a sense “too

powerful”, and so it is impossible to recursively enumeratea complete set of LKIDω proofs, we

consider the natural restriction CLKIDω of the system to regular trees, in which it is decidable

whether a given pre-proof satisfies the soundness condition. Unfortunately, it seems likely

that cut is not eliminable in the restricted system. Nevertheless, CLKIDω arises as a simple

restriction of a well-behaved infinitary system, and is thusa highly natural system in its own

right, providing a powerful framework for (regular) proof by infinite descent in FOLID .

Thirdly, we show that CLKIDω subsumes LKID, giving rise to the important conjecture that

the two systems are in fact equivalent. This conjecture can be seen as a formal positioning of the

claim that proof by induction is equivalent to regular proofby infinite descent. Unfortunately,

to provide a proof of the conjecture appears hard. We provideproof machinery for analysing

the structure of proofs in CLKIDω (and related systems) and the soundness condition imposed

upon them, which has direct relevance for the machine implementation of such systems and

which may also be of help in eventually establishing the status of the conjecture.

Finally, this thesis collects together a substantial amount of material on sequent calculus

for inductive definitions, and we hope that it may serve as a useful reference for researchers

working in inductive theorem proving or concerned with inductive definitions more generally.

8.2 Future work

This thesis opens up several potential avenues for future work. Perhaps the most obvious gap

is to provide answers to the following presently open questions:

• Is every CLKIDω-provable sequent also LKID-provable? (Conjecture 7.3.3 states that

this is so.)

• Is every sequent that has a CLKIDω proof with a trace manifold also LKID-provable?

• Does every CLKIDω-provable sequent have a CLKIDω proof with a trace manifold?

• Is cut eliminable in the system CLKIDω? (Conjecture 5.2.4 states that it is not.)

It would also be interesting to generalise the proof systems, techniques and results of the thesis

to include more general forms of inductive definition (e.g. iterated inductive definitions [44]),

and coinductive definitions. In our opinion, the main technical issues arise seem to arise already

with ordinary inductive definitions as we consider them here, so one would hope that extending

the work to more general inductive schemas would not be too difficult.
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One could also look at more liberal subsystems of LKIDω that are nevertheless still useful

for formal reasoning, e.g. proofs representable by a regular grammar or by some type of au-

tomata. It would be particularly interesting to find whetherthere is some class of such proofs

that is closed under cut-elimination. Similarly, one couldexamine alternative proof conditions

for CLKIDω (and other general cyclic systems) and the relationship between them; finding

conditions whose computational complexity is strictly better than the complexity of the general

proof condition would be of special interest. Our trace manifold condition, or more restrictive

variants thereof, may be suitable candidates for the latter.

A strand of proof theory for inductive definitions that we have not covered at all in this

thesis is the ordinal analysis of systems of inductive definitions, as covered by e.g. Buchholz,

Feferman, Pohlers and Sieg [11]. It is not clear to us what theconnections are between this

work and our own; for example, it is not obvious how to assign ordinals to LKIDω proofs.

We have not yet said a great deal about inductive theorem proving. However, it would

be interesting to see an actual implementation of CLKIDω built in, or on top of an existing

proof assistant. An extremely desirable feature of such an implementation would be a check-

ing procedure that, given a pre-proof, either confirms that it is a proof or returns some finite

representation of an infinite path in the pre-proof on which no infinitely progressing trace ex-

ists. Such an algorithm would provide much more feedback to users about the reasons for

the failure of a particular proof attempt than a simple “yes/no” black box procedure. In the

most ideal of cases, a positive answer to Conjecture 7.3.3 that actually gives a translation from

CLKIDω proofs to LKID proofs would result in the situation where meta-level proof search

could be performed in some implementation of CLKIDω and the resulting cyclic proof could

then be transformed into a traditional (finitary) inductiveproof at the object level. However,

this appears to be a very challenging objective that would necessarily depend on a positive

answer to the conjecture (or at least a partial answer, giving a translation into LKID for some

class of cyclic proofs) as a first step. We have also given a general format for cyclic proof

systems CSω, of which CLKIDω is one instance, and it seems plausible that further variants

could possibly yield useful formal systems for, e.g., program verification or model checking.



Appendix A

Decidability of proof in trace-based

cyclic proof systems

In this appendix we give, in detail, a directly implementable construction based on Büchi au-

tomata for deciding whether a pre-proof is a proof in a cyclicproof system CSω equipped with

an appropriate notion of trace (c.f. Chapter 5 and Section 4.2.1). We first recall the definition

of a Büchi automaton from the literature. Note that we writeΣω for the set of all infinite words

over the finite alphabetΣ.

Definition A.1 (Büchi automaton). A (non-deterministic)Büchi automatonis a tupleA =

(Σ,Q,q0,∆,F), where:

• Σ is a finite alphabet;

• Q is a set of states;

• q0 ∈ Q is the distinguished initial state;

• ∆ ⊆ Q×Σ×Q is the transition relation;

• F ⊆ Q is a set of final (or accepting) states.

Given an infinite wordα = α0α1α2 . . . ∈ Σω, a run of A on α is a sequence of statesσ =

σ0σ1σ2 . . . such thatσ0 = q0 and∆(σi ,αi ,σi+1) for all i ≥ 0. Define the set of states occurring

infinitely often inσ, in f (σ), by:

in f (σ) = {q | ∃ infinitely manyi. σi = q}

Then a runσ of A on α is said to beacceptingif in f (σ)∩F 6= /0, i.e. if some final state occurs

infinitely often on the run. Thelanguage accepted byA , writtenL(A), is defined by:

L(A) = {α ∈ Σω | there is an accepting run ofA on α}

147
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In their investigation into proof conditions for cyclic proof in theµ-calculus [62], Sprenger

and Dam express the problem of deciding whether a pre-proof is a cyclic proof (with respect

to a similar, albeit less general trace condition) as a problem of whether a language inclusion

L(B1) ⊆ L(B2) holds between two Büchi automataB1, B2. Such problems are known to be

decidable [71]. In their construction,B1 accepts strings that correspond to rooted infinite paths

in a (fixed) pre-proof graph andB2 accepts strings over which infinitely progressing traces can

be found. Thus the inclusionL(B2) ⊆ L(B2) holds exactly when the pre-proof under consid-

eration is a proof. The standard method of checking such an inclusion is to build an automaton

accepting the languageL(B1)∩L(B2) and check that the language of this automaton is empty

(which can be done by e.g. depth-first search). However, thisconstruction is rather complex due

to the well-known difficulties involved in complementing B¨uchi automata [56, 71, 72, 41, 24].

Here we shall spell out the details of building a Büchi automaton from a CSω pre-proofP

whose accepted language is empty if and only ifP is a CSω proof. This gives rise to a directly

mechanisable way of deciding whether pre-proofs are proofsin CSω.

Our approach is as follows. Given a CSω pre-proofP , we first construct a Büchi automaton

Tracesuch thatL(Trace) is the set of strings of vertices ofGP such that an infinitely progress-

ing trace can be found on a suffix of the string (irrespective of whether the string is actually

a validpath in GP or not). Then, following the complementation method for Büchi automata

given by Kupferman and Vardi [41], we build an automatonTracewhose accepted language

is the complement ofL(Trace), i.e. the set of strings of vertices ofGP such that no infinitely

progressing trace exists on any suffix of the string. Finally, from Tracewe build another au-

tomatonPr f Decaccepting only those strings that are inL(Trace) and that also are valid paths

in GP . One can then easily see thatP is a CSω proof if and only ifL(Pr f Dec) = /0.

Definition A.2 (Trace automaton). Let P be a CSω pre-proof and letV be the (finite) set of

vertices of the pre-proof graphGP . Also let TVal be the trace value relation for the system

CSω as given in Definition 4.2.7. (Recall thatTVal(τ,S) holds iff τ is a valid possible trace

value for the sequentS.) Then thetrace automatoncorresponding toP is defined byTrace=

(V,Q,q0,∆,F), where:

• Q = {q0}∪{(v,τ, p) | v∈V,TVal(τ,s(v)), p∈ {1,2}};

• F = {(v,τ,2) | v∈V,TVal(τ,s(v))};

• the transition relation∆ is defined by:

∆(q0,v,q0)

∆(q0,v,(v,τ,1)) whereTVal(τ,s(v))

∆((v,τ, p),v′,(v′,τ′,1)) if (τ,τ′) is a trace pair on(v,v′)

∆((v,τ, p),v′,(v′,τ′,2)) if (τ,τ′) is a progressing trace pair on(v,v′)
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q0 (v,τ,1) (v,τ,2)
initialise trace

trace progresses

trace continues

follow initial segment trace continues trace progresses

Figure A.1: Schematic representation of the trace automaton for a pre-proof. The accepting

states are indicated by a double-circle. Note that the “meta-states” (v,τ,1) and (v,τ,2) corre-

spond to multiple states in the automaton.

Note that the state setQ is finite sinceV is finite and there are only finitely manyτ satisfying

TVal(τ,s(v)) for anyv∈V. We also note that whether or not(τ,τ′) is a valid (progressing) trace

pair on(v,v′) is decidable since the trace pair function for CSω is required to be computable.

This property is not necessarily dependent on(v,v′) actually being an edge ofGP , and so we do

not insist that this is the case, although doing so would not significantly affect our construction.

Figure A.1 shows a schematic representation of the trace automaton for a pre-proof. Infor-

mally, it proceeds on an inputw∈Vω by non-deterministically “guessing” an initial segment

of w on which it remains in the initial state, and then guessing aninfinitely progressing trace

following the remaining part ofw. We make this description precise by the following claim:

Proposition A.3. For any w∈Vω, Trace accepts w if and only if there is an infinitely progress-

ing trace following some suffix of w (irrespective of whetherw is a path inGP ).

Proof. (⇐) Suppose there is a suffix ofw, sayvivi+1vi+2 . . ., such that there is an infinitely

progressing traceτ = τiτi+1τi+2 . . . following the suffix. Now define a sequence(σ j) j≥0 by:

σ j =















q0 if 0 ≤ j ≤ i −1

(v j ,τ j ,1) if j ≥ i and j is not a progress point ofτ

(v j ,τ j ,2) if j ≥ i and j is a progress point ofτ

It is easy to see thatσ = σ0σ1σ2 . . . is a run ofTraceon w, and moreover, asτ has infinitely

many progress points, some final state (of the form(v,τ,2)) must occur infinitely often inσ,

i.e. σ is an accepting run ofTraceon w.

(⇒) Let σ be an accepting run ofTraceon w = v0v1v2 . . .. By the definition of accepting run,

some state of the form(v,τ,2) occurs infinitely often inσ. As the stateq0 is not reachable from
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any such state, there is a suffix ofσ, sayσiσi+1σi+2 . . ., in which the stateq0 does not occur,

so for all j ≥ i, we haveσ j = (v j ,τ j ,sj) (wheresj ∈ {1,2}). It is then easy to see that the

sequenceτ = τiτi+1τi+2 . . . is a trace following the suffixvivi+1vi+2 . . . of w. Moreover, as some

state(v,τ,2) occurs infinitely often inσ, this trace progresses infinitely often.

From now on, we shall work with reference to a fixed CSω pre-proofP = (D,R ) with

trace automatonTrace= (V,Q,q0,∆,F). Although the remaining definitions and results are

stated with respect to this automaton, they in fact do not depend on any special property of

Traceand apply equally to arbitrary Büchi automata. Our interest, however, lies specifically

in constructing an automaton for deciding the property of being a cyclic proof and we shall

proceed accordingly.

From Proposition A.3 we have:

L(Trace) = {w∈Vω | ∃ infinitely progressing trace following some suffix ofw}

We now show how to construct the complemented automatonTrace such thatL(Trace) =

L(Trace)(= Vω \L(Trace)). The construction here follows the one given by Kupferman and

Vardi [41] which, though fairly involved, offers a considerable simplification over previous

complementation procedures (see e.g. [56, 39]). We first define, for a particular inputw, a

DAG that represents all possible runs of the automatonTraceon inputw:

Definition A.4 (Run DAG). For a fixed inputw∈Vω, we define therun DAGof the automaton

Traceon w by Gw
run = (Vrun,Erun), whereVrun ⊆ Q×N andErun ⊆Vrun×Vrun are the smallest

sets closed under the rules:

• 〈q0,0〉 ∈Vrun;

• if 〈q, i〉 ∈Vrun and∆(q,vi ,q′), then〈q′, i +1〉 ∈Vrun andErun(〈q, i〉,〈q′, i +1〉).

Note thatGw
run is infinite. We say that a vertex〈q, i〉 of Gw

run is anF-vertexiff q∈ F.

Proposition A.5. For all v ∈Vω, Trace accepts w if and only if there exists a path in Gw
run in

which infinitely many F-vertices occur.

Proof. Given an accepting runσ = σ0σ1σ2 . . . of Traceon w, it is easy to see that(〈σi , i〉)i≥0

is a path inGw
run, and as some state inF occurs infinitely often inσ, there are infinitely many

F-vertices on this path. Conversely, given a path(〈qi , i〉)i≥0 in Gw
run in which infinitely many

F-vertices occur, it is easy to see that(qi)i≥0 is an accepting run ofTrace.

We now introduce the concept of arankingfor the run DAG ofTraceonw. A ranking is an

assignment of values to vertices ofGw
run such thatF-vertices are assigned only even values and

the values along every path inGw
run are monotonically decreasing. Anodd rankingis a ranking

in which every path eventually becomes “stuck” in an odd rank:
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Definition A.6 (Ranking / Odd ranking). A rankingfor Gw
run is a functionf :Vrun →{0, . . . ,2n},

wheren is the number of vertices of the automatonTrace(i.e.n = |V|), satisfying:

• if f (〈q, i〉) is odd thenq 6∈ F;

• if 〈q, i〉,〈q′, i +1〉 ∈ Erun then f (〈q′, i +1〉) ≤ f (〈q, i〉).

A ranking f is said to be anodd rankingiff for any path〈q0,0〉〈q1,1〉〈q2,2〉 . . . in Gw
run there is

a j ≥ 0 such thatf (〈q j , j〉) is odd andf (〈qk,k〉) = f (〈q j , j〉) for all k≥ j.

Lemma A.7. The automaton Trace rejects input w if and only if there exists an odd ranking

for the run DAG Gw
run of Trace on w.

Proof. (⇐) Let f be an odd ranking forGw
run. It is clear that there is no path inGw

run in which

infinitely manyF-vertices occur, asF-vertices can be assigned only even ranks by the defi-

nition of ranking, andf assigns even ranks to only finitely many vertices on any path by the

definition of odd ranking.Tracethus rejectsw by Proposition A.5.

(⇒) As Tracerejectsw, there is no path inGw
run in which infinitely manyF-vertices occur, by

Proposition A.5. In that case, one can construct an odd ranking fromGw
run. A full proof is given

in [41].

As a consequence of Lemma A.7, an automaton that complementsTracecan operate on

inputw by non-deterministically “guessing” an odd ranking forGw
run. This can be accomplished

in stages using the concept oflevel rankings:

Definition A.8 (Level ranking). A level rankingfor Traceis a functiong : Q→ {0, . . . ,2n}∪
{⊥} such that ifg(q) is odd thenq 6∈ F . We denote the set of all level rankings forTraceby

LR .

Definition A.9 (Complement trace automaton). The complement automaton ofTraceisTrace=

(V,LR ×Pow(Q),q′0,∆′,LR × /0) where:

• q′0 = 〈g0, /0〉, whereg0 is defined byg0(q0) = 2n andg0(q) = ⊥ for all q 6= q0;

• the transition relation∆′ is defined by:∆′(〈g,P〉,v,〈g′,P′〉) iff all of the following hold:

– for all q,q′ ∈ Q. g(q) ≥ 0 and∆(q,v,q′) impliesg′(q′) ≤ g(q);

– if P 6= /0 thenP′ = {q′ ∈ Q | ∃q∈ P.∆(q,v,q′) andg′(q′)is even}

– if P = /0 thenP′ = {q′ ∈ Q | g′(q′) is even}

Lemma A.10. L(Trace) = L(Trace)(= Vω \L(Trace)).



Appendix A. Decidability of proof in trace-based cyclic proof systems 152

Proof. We must show that for anyw= v0v1v2 . . .∈Vω, Traceacceptsw iff Tracerejectsw. By

Lemma A.7, it suffices to show thatTraceacceptsw if and only if there exists an odd ranking

for the run DAGGw
run of Traceonw.

(⇐) Let f be an odd ranking forGw
run. We define a sequence(σi)i≥0 by σ0 = q′0 andσi = 〈gi ,Pi〉

for i > 0, wheregi is a level ranking defined by:

gi(q) =

{

f (〈q, i〉) if 〈q, i〉 ∈Vrun

⊥ otherwise

andPi ⊆ Q is defined inductively oni by:

P0 = /0

Pi 6= /0 ⇒ Pi+1 = {q′ ∈ Q | ∃q∈ Pi. ∆(q,v,q′) andgi+1(q′)is even}
Pi = /0 ⇒ Pi+1 = {q′ ∈ Q | gi+1(q′) is even}

We claim thatσ = σ0σ1σ2 . . . is an accepting run ofTraceon w. To see thatσ is a run, we

show that∆′(〈gi ,Pi〉,vi ,〈gi+1,Pi+1〉) holds for all i ≥ 0, which just involves showing that the

three restrictions on∆′ given in Definition A.9 hold. The latter two restrictions obviously hold

by definition ofPi. To see that the first restriction holds, assumegi(q)≥ 0 and∆(q,vi ,q′). Now

sincegi(q)≥ 0, eithergi(q) = g0(q0) = 2n or gi(q) = f (〈q, i〉). Further, since∆(q,vi ,q′) holds,

(〈q, i〉,〈q′, i +1〉) ∈ Erun and sof (〈q′, i +1〉) is defined andgi+1(q′) = f (〈q′, i +1〉). Since f is

a ranking, we thus have 0≤ f (〈q′, i +1〉) ≤ f (〈q, i〉) ≤ 2n as required.

σ is thus a run ofTraceon w. To see that it is accepting, we require to prove that there are

infinitely many i for which Pi = /0. It suffices to show∀i.∃ j ≥ i. Pj = /0. If Pi = /0 we are of

course done. So assumePi 6= /0 and assume for contradiction thatPj 6= /0 for all j > i. But then,

by definition of thePj , there would be an infinite path〈qi , i〉〈qi+1, i +1〉〈qi+2, i +2〉 . . . in Gw
run

such thatgi+1(qi+1),gi+2(qi+2), . . . all are even. By definition of thegi , this would mean that

f (〈qi+1, i +1〉), f (〈qi+2, i +2〉) . . . all are even, which is a contradiction asf is an odd ranking.

So there must be somej > i such thatPj = /0, which establishes thatσ is accepting.

(⇒) SupposeTraceacceptsw and letσ = σ0σ1σ2 . . . be an accepting run ofTraceon w. We

write 〈gi ,Pi〉 for σi and define a functionf by f (〈q, i〉) = gi(q). We require to prove thatf is

an odd ranking forGw
run.

To establish thatf is a ranking, we first prove by induction oni that f (〈q, i〉) ∈ {0, . . . ,2n},

i.e. thatgi(q) ≥ 0 for all 〈q, i〉 ∈Vrun. For the base case, we just need to check thatg0(q0) ≥ 0

which is the case sinceg0(q0) = 2n by definition. For the step case, let〈q′,k+1〉 ∈ Vrun,

so there exists〈q,k〉 ∈ Vrun such that(〈q,k〉,〈q′,k+1〉) ∈ Erun, i.e. ∆(q,vk,q′) holds. Now

asσ is a run ofTraceon w, there is a transition∆′(〈gk,Pk〉,vk,〈gk+1,Pk+1〉), and asgk(q) ≥
0 by induction hypothesis, we have by the first of the restrictions on∆′ in Definition A.9
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that 0≤ gk+1(q′) ≤ gk(q) ≤ 2n as required. The step case argument also establishes that

(〈q, i〉,〈q′, i +1〉) ∈ Erun implies f (〈q′, i +1〉) ≤ f (〈q, i〉). So f is a ranking.

To see thatf is an odd ranking, let〈q0,0〉〈q1,1〉〈q2,2〉 . . . be a path inGw
run. As f is a

ranking we have 2n ≥ f (〈q0,0〉) ≥ f (〈q1,1〉) ≥ f (〈q2,2〉) . . . ≥ 0, so there must be a “limit”

j ≥ 0 such that for allk ≥ j, f (〈qk,k〉) = f (〈q j , j〉). Now suppose thatf (〈q j , j〉) is even, i.e.

g j(q j) is even. Then by definition of thePi, we would havePk nonempty for allk ≥ j, which

would contradict the fact thatσ is accepting. Every path inGw
run must therefore get stuck in

an odd ranking, and we conclude thatf is an odd ranking as required. This completes the

proof.

The final part of our construction is relatively straightforward and just involves a modifi-

cation of the automatonTraceto accept only those strings ofVω that are recognised byTrace

and that also are paths inGP :

Definition A.11 (Proof decision automaton). Theproof decision automatonfor the pre-proof

P is Pr f Dec= (V,V × (LR ×Pow(Q)),q′′0,∆′′,V × (LR × /0)), where:

• q′′0 = (root(D),q′0);

• ∆′′(〈v,〈g,P〉〉,v′,〈v′,〈g′,P′〉〉) iff ∆′(〈g,P〉,v′,〈g′,P′〉) and(v,v′) is an edge ofGP .

Proposition A.12. DefineLPath = {w ∈ Vω | w is a rooted path inGP }. ThenL(Pr f Dec) =

LPath∩L(Trace).

Proof. We establish the reverse inclusion first. Letw = v0v1v2 . . . be a rooted path inGP that

is accepted byTracevia the runσ = σ0σ1σ2 . . . Then it is clear that〈v0,σ0〉〈v1,σ1〉〈v2,σ2〉 . . .
is an accepting run ofPr f Deconw.

Conversely, letw = v0v1v2 . . . be a string accepted byPr f Dec via the runδ = δ0δ1δ2 . . .

and write〈vi ,σi〉 for δi. It is clear thatσ = σ0σ1σ2 . . . is then an accepting run ofTraceon w.

As δ0 = q′′0, we havev0 = root(D), and the restrictions placed on∆′′ ensure that for alli ≥ 0,

(vi ,vi+1 is an edge ofGP , andw is thus also a rooted (infinite) path inGP as required.

Theorem A.13. The pre-proofP is a CSω proof if and only ifL(Pr f Dec) = /0. Moreover, this

property is decidable.

Proof. We have:

P is a CSω proof ⇔ LPath⊆ L(Trace) by Proposition A.3

⇔ LPath∩L(Trace) = /0

⇔ LPath∩L(Trace) = /0 by Lemma A.10

⇔ L(Pr f Dec) = /0 by Proposition A.12
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Checking whether or not the language ofPr f Dec is empty amounts to searching for a final

stateq such thatq is reachable from the initial state andq is (non-trivially) reachable from

itself. If no suchq exists, thenL(Pr f Dec) = /0. This check is easily mechanisable and runs in

time linear in the size of the transition function∆′′ of Pr f Dec.
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[23] Solomon Feferman et al., editor.Kurt Gödel: Collected Works, Vol. II: Publications

1937–1944. Oxford University Press, 1990.

[24] Ehud Friedgut, Orna Kupferman, and Moshe Y. Vardi. Büchi complementation made
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