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This is what the Lord says, He who made the earth, the Lord who formed it and 

established it-the Lord is His name: 

"Call to me and I will answer you and tell you great and unsearchable things you 

do not know". 

Jeremiah 33:2,3 

All things were created by Him and for Him. He is before all things and in Him 

all things hold together. 

Colossians 1:16,17 



ABSTRACT 

A novel linker for the Merrifield solid phase synthesis of peptide amides is 

described. 

This linker, based on 2-a]koxydibenzocycloheptadiene, enables release of the 

peptide derivative under very mild conditions and is compatible with base labile NU 

protecting groups. 

The efficacy of this linker in generating C-terminal peptide amides has been 

demonstrated in the synthesis of the natural products, little gastrin, big gastrin, 

substance P and bombesin. 

Modification of the linker allows peptide hydrazides to be prepared. The use of 

the linker in producing unprotected peptide hydrazides has been exemplified by the 

synthesis of the ubiquitin fragments (43-47) NHNH2  and (67-76) NHNH2. Use of the 

linker for the synthesis of fully protected peptide hydrazides requires further 

development. 

Initial experiments indicate that the linker, when substituted appropriately, may 

also be useful for the solid phase synthesis of fully protected peptide free acids to be 

used in fragment condensation. 
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Chapter 1. 

INTRODUCTION 

1.1. Hormones and the Endocrine System. 

The endocrine system' in humans and other higher organisms is a complex and 

highly efficient system through which multifarious bodily functions and metabolic 

processes are regulated. This system of biochemical administration consists of a 

number of glands and organs organized together which synthesise and secrete the 

chemical messengers known as hormones (hormone is derived from the Greek 

hormao meaning to excite or arouse). The hormone producing glands and organs 

include the hypothalamus, the pituitary gland, the thyroid gland, the pancreas, the 

intestine, the adrenals and also the gonads. 

The hypothalamus is believed to be of fundamental importance in the regulation 

of the endocrine system. It is located within the brain and itself receives messages 

from other parts of brain. These signals initiate a number of events which ultimately 

result in other glands increasing or decreasing production and release of hormones. 

The hypothalamus secretes a number of hormones whose primary function is to 

regulate the release of other hormones from the pituitary gland. The pituitary gland in 

turn releases chemical messengers which elicit responses from other glands within the 

endocrine system and thus is responsible for the control of numerous physiological 

processes within the body. 

The pituitary gland is divided into two separate parts, the anterior and posterior 

regions. The posterior region is responsible for the secretion of vasopressin and 

oxytocin which control water retention and uterus contraction respectively. These 
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Figure 1.1 The major hormone producing regions of the human body.2 



Introduction 

hormones are manufactured in the hypothalamus, packaged into storage granules and 

then moved down through nerve axons into the posterior pituitary. They are stored in 

axon terminals and then are released into cirulation upon demand. The anterior region 

of the pituitary is responsible for the release of a number of hormones which regulate 

body functions and these include growth hormone (OH), thyroid stimulating hormone 

(TSH), and follicle stimulating hormone (FSH). These hormones are synthesised in 

the pituitary itself and are then secreted directly into the bloodstream upon requiral. 

The release of anterior pituitary hormones is regulated by hormones produced in the 

hypothalamus which are then released into the hypothalamic-pituitary portal 

circulation. These include thyrotropin releasing hormone (TRH) which controls the 

release of TSH, luteinising hormone releasing hormone (LHRH) which controls the 

release of luteinising hormone and growth hormone releasing hormone which 

mediates in the secretion of OH. 

The thyroid gland is responsible for the release of thyroxine which is a messenger 

that controls the rate of metabolism in a myriad of cell types. Thyroxine release is a 

prime example of the cascade of events which occurs under hormonal control. This 

cascade begins with the synthesis and release of TRH by the hypothalamus. TRH 

then travels to the pituitary gland via the portal circulatory system where it initiates 

the release of TSH. TSH is then secreted into the bloodstream through which it 

travels until it binds to its corresponding receptor in the thyroid gland and causes the 

release of thyroxine. Thyroxine is then distributed around the body where as 

mentioned it regulates physiological metabolism in a variety of cells. The level of 

thyroxine in serum also serves to regulate the production and secretion of TRH and 

TSH through feedback inhibition. Low levels of thyroxine actuate an increase in TRH 

and TSH levels through synthesis and release whereas high levels bring about the 

opposite effect. 

3 
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Introduction 

The adrenal glands are responsible for secretion of steroid hormones including 

cortisol, aldosterone and epinephrine which regulate body preservation, salt 

conservation and stress response respectively. Hormone release from these glands is 

controlled by adrenocorticotropic hormone (ACTH) which is released from the 

pituitary and again is an element in the cascade which is initiated in the 

hypothalamus. 

Figure 1.2 Events involved in the thyroxine cascade. 3  

The gonads are glands which produce and secrete the sex hormones estradiol, 

progesterone and testosterone. These steroid hormones are responsible for 

reproduction and for the development and maintenance of sexual characteristics. 

Hormones are also responsible for controlling the rate of assimilation of food. 

These chemicals are synthesised for the most part in the intestine and pancreas and 

-A 



Introduction 

then released into circulation. Insulin and glucagon are manufactured and released by 

the pancreas and function in the regulation of carbohydrate, fat and protein 

metabolism. Gastrin is a hormone, produced in the gut, which exists in a number of 

forms and has an intrinsic role in the regulation of gastric secretion, pancreatic 

secretion and gastro-intestinal tone and motility 4. Pure gastrin was first isolated in 

1964 by Gregory and Tracy5  and its primary stucture determined soon after. Upon 

anticipation or ingestion of food, gastrin is released from the antral region of the 

stomach into the bloodstream through which it travels to the fundic region and effects 

secretion of gastric acid. In humans, gastrin is synthesised in nascent form as a 101 

amino acid precursor known as preprogastrin 6. This precursor then undergoes a 

number of post-translational modifications before its advent as the active hormone. 

These include several proteolytic cleavages at pairs of basic residues i.e. Arg-Arg or 

Lys-Lys, conversion of the C-terminal glycine extended peptide to its des-glycine 

amide and sulphation of tyrosine. 

(LVSLYSJ 	 JGI,ArQAr9j 

__________________ 	yl Signal 	Amino 
T.ion  

rmin.t 
Peptide 	 Extens 	 G34 	

Carbox I 	T.rminsl 
21 as 	 37 as 	 Extension 

9 as I_ 017 

Figure 1.3 Schematic representation of preprogastrin showing cleavage sites. 

Gastrin as a biologically active hormone exists as two peptides known as big 

gastrin (034) consisting of 34 amino acids and little gastrin (017) which has 17 

residues. Little gastrin is approximately five times more active than big gastrin 8  and is 

produced by proteolytic cleavage of 034 on the C-terminal side of a pair of lysine 

residues, followed by cycisation of the N-terminal glutamine to pyroglutamic acid. 

Both 017 and 034 exist in sulphated and unsulphated forms and this modification is 
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believed to protect the peptide from degradation9 . It has been shown through 
synthetic studies that the C-terminal tetrapeptide amide of little gastrin exhibits 

complete physiological activity in vivo .o This is the minimum size in order for 

complete manifestation of biological activity. 

Figure 1.4 Primary structure of Little and Big Gastrin. 

Gastrin releasing peptide (GRP) has been shown to stimulate the release of 

gastrin 1 ' and apparently acts directly on the gastrin producing cell. GRP is the 

mammalian analogue of bombesin, a peptide first isolated from frog skin. 12  The 

bombesin family of peptides have a wide spectrum of biological activity acting as 

neurotransmitters, autocrine hormones and thermoregulators. 13  In the stomach of 

mammals, bombesin like peptides (i.e. GRP and its derivatives) are found for the 

most part in the nerve fibres of stomach mucosa. 14  No bombesin like peptides have 

been found in the endocrine cells indicating that these peptides are part of the 

autocrine system. 

Figure 1.5 Sequence of human GRP-homology with bombesin is underlined. 13  

It can be seen that the endocrine system is paramount in the cohesive maintenance 

of physiological functioning. In the treatment of disorders of the endocrine system, it 

may be relevant to intervene as early as possible in the cascade of events which occur 

in the regulation of many physiological processes. This may lead to more efficient 
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remedies and fewer unwanted side effects. As almost all known hormones which 

initiate these cascades are peptide hormones, this provides the impetus for the 

chemical synthesis and study of these biologically significant molecules. 

1.2. Neuropeptides. 

With the discovery of enkephalins by Hughes and Kosterlitz 15  in 1975, a 

revolution in brain chemistry had its beginning. They isolated two small peptides 

from pig brain extracts which exhibited potent agonism of opicI receptors. From the 

study of enkephalins (designated leucine and methionine enkephalin), it became 

apparent that these peptides were localised in nerve endings. 16  This was an indication 

that these compounds were acting as neurotransmitters, a role previously assumed to 

be performed only by monoamines and amino acids. It was also demonstrated that 

enkepha]in is released in a calcium dependant fashion 17, thus giving further 

corroboration of its role as a neurotransmitter. Until this time, it had not been known 

that peptides were involved in the propagation of nerve signals and the discovery of 

Hughes and Kosterlitz initiated a whole new sphere of interest in neuropeptides. 

At present over one hundred neuropeptides have been identified and it has been 

estimated that the total number may be over two hundred. This group of 

neuropeptides embodies several other peptides which are an integral part of the 

endocrine system. These include ACTH, LHRH, TRH, oxytocin, cholecystokinin 

and gastrin. 18  The discovery of these hormones in the brain has dispelled the theory 

that peptide hormones have a discrete function and has paved the way for research 

into their multiple role in mammalian systems. 

7 
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Among the peptides discovered in the brain which have a primary role in the 

central nervous system are the enkephalins, the endorphins, the dynorphins, substance 

P and neurotensin. Of these, substance P (SP) is one of the most extensively studied. 

Substance P 

It was originally isolated in 1931 from extracts of horse intestine 19  however it was 

not until 1970 that SP was isolated in pure form and shown to be a peptide amide of 

11 residues.20  SP is prevalent in approximately 20% of dorsal root ganglia which 

have extensions to the skin and spinal cord. 18  This distribution supports the assertion 

of SP's role as a sensory nerve transmitter i.e. in transmission of pain signals. This 

conjecture has been further validated through experiments demonstrating that SP is 

released from sensory nerves upon stimulation and that it causes powerful excitation 

of certain spinal cord neurones. 21  SP has also been found in small diameter nerve 

fibres which transmit nociceptive information to the central nervous system.fla 

Although this evidence may be circumstantial, it adds further weight to the putative 

role of SP as a pain transmitter. 

Substance P is one of many neuropeptides which exist in the brain. Due to 

improved methods of isolation, the number of neuropeptides which have been 

isolated and characterised is constantly increasing. The elucidation of the structure 

and biological role of these peptides should lead to a better understanding of the 

many neurological disorders which occur and may conceivably result in efficacious 

treatments for these maladies. 

8 
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Introduction 

1.3. Post-translational processing of peptide precursors. 

Peptide hormones and neurotransmitters are seldom if ever synthesised in their 

biologically active form. Bioactive peptides are produced on ribosomes as dormant 

precursors which in the case of hormones are known as preprohormones. These large 

polypeptides are then subjected to a number of processing steps before emerging as 

their corresponding fully active peptide. It is very likely that this processing plays a 

significant role in the regulation of the physiological activity of the final secretory 

product. 

Nucleus 

DNA 

PreProPTH 

Blood Wssel 

Figure 1.7 Schematic representation of post-translational processing of parathyroid 

hormone (PTH). 23  

13.1. Proteolytic processing. 

In most cases, precursors contain initially a sequence of amino acids at their 

amino terminus which is later removed. This is known as the signal sequence and 

10 
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serves in translocation of the precursor across the membrane of the endoplasmic 

reticulum.24  Once the peptide has been translocated, it is submitted to a trypsin-like 

proteolytic cleavage at a basic residue such as arginine or lysine 25  and the signal 

sequence is thus removed. This precursor may then undergo several more proteolytic 

cleavages before ending as the ultimate bioactive molecule. These transformations 

mostly occur through proteolysis of an amide bond usually on the C-terminal side of 

a pair of basic residues. This trypsin-like cleavage may then be followed if necessary 

by a carboxypeptidase-like cleavage of the two basic residues if they occur on the 

C-terminal side of the active molecule.' 1  In the case of many endocrine hormones, 

the bioactive molecule is packaged into storage granules subsequent to proteolysis 

where it is stored until it is required to be released into circulation. 26  This final 

proteolytic step often occurs only after other post-translational modifications which 

may include suiphation, acetylation, phosphorylation and C-terminal on. 25  

13.2. C-terminal amidation. 

It has been estimated that approximately half of the known peptide hormones and 

neurotransmitters have a C-terminal amide functionality 27  in contrast to the 

carboxylic acid function which is found with the majority of peptides and proteins in 

nature. This feature is found almost exclusively with neuropeptides and endocrine 

peptides and in most cases is essential for the biological activity of the secretory 

product.28  It is plausible that the amide function is involved in receptor recognition 

and binding and that it contributes stability towards C-terminal exopeptidases. 29  

The mechanism through which cz-amidation occurs has been demonstrated to 

involve the generation of a precursor to the bioactive peptide which is extended by a 

glycine residue at the C-terminus. 29  The glycine extended peptide is then subjected to 

transformation into the C-terminal amide through involvement of a class of enzymes 

11 
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known as peptidyl a -amidating monooxygenases. 30  These enzymes have been shown 

to require copper, 02  and ascorbate 31  and they also appear to have a requirement for a 

neutral amino acid in the position next to the C-terminal glycine. 32  This is consistent 

with the fact that most natural peptide amides indeed have a neutral amino acid 

C-terminal residue. 

H2N-PEPTIDE-CO-NH-CH 2-COOH 

OH 

HP-PEPTIDE-CO-NH-CH-COOH 

H2N-PEPTIDE-GO-NH2  

0 
11 

+ H- i -COOH 

Scheme 1. Proposed mechanism of C-terminal amidation. 

The above mechanism has been verified through the use of substrates containing 

C-terminal radiolabelled glycine. 33  The enzyme mediated generation of the amide 

occurs with accompanying formation of glyoxylate. Use of substrates labelled with 

14C-glycine resulted in incorporation of the radiolabel into glyoxylate. Incubation of 

the enzyme with substrates labelled with 15N-glycine led to incorporation of the label 

into the C-terminal amide function. As further evidence, the amidation reaction has 

been shown to be unaffected by the presence of ammonium ions, glutamine or 

asparagine.33  Peptidyl a -amidating monooxygenases have been shown to be present 

in secretory granules 3 ' which may indicate that a -aniidation plays a role in the 

12 
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regulation of physiological activity although no direct evidence has been obtained to 

substantiate this assertion. 

13.3. Other post-translational modifications. 

Other modifications of inactive or active precursors of hormones and 

neuropeptides include acetylation, phosphorylation and suiphation. 

Acetylation of the amino terminus of bioactive peptides is common however its 

physiological role is not well understood. Acetylation of a-melanotropin greatly 

increases its skin darkening capability however conversely, acetylation of 

-endorphin markedly decreases its opiate potency.M 

Phosphorylation has been demonstrated to occur shortly after synthesis of peptide 

precursors and has been observed in ACTH. 35  Many other bioactive peptides have 

potential sites for phosphorylation, i.e. serine residues, however less is known about 

these. 

Suiphation of tyrosine residues has been observed in the various forms of 

cholecystokinin (CCK) and gastdn. 25  Suiphation of CCK is essential for its functions 

i.e. stimulation of gall bladder emptying and pancreatic secretion. 36  Suiphation of 

gastrin is not a prerequisite for its physiological activity although it is believed it may 

prevent its degradation by enzymes. 9  

13 
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1.4. Solid phase peptide synthesis. 

1.4.1. Overview. 

As a consequence of the innovation of Merrifield 37  and the subsequent 

developments of many researchers 38, the synthesis of peptides has in many respects 

become routine. The solid phase technique lends itself especially well to peptide 

synthesis and has been applied successfully countless times in the assembly of many 

naturally occurring molecules and their analogues. Solid phase peptide synthesis 

(SPPS) is conducive to automation due to the repetitive nature of chain elongation 

and currently there are several automatic peptide synthesisers available. Each set of 

reactions and procedures which constitute the coupling of one amino acid is 

designated as a cycle. These reactions include deprotection of the Na amine, coupling 

of the next amino acid and capping of any unreacted amine function. 

The solid support most commonly used today is the original Merrifield resin 

which is polystyrene crosslinked with divinylbenzene. 37  Many other resins have been 

evaluated for their swelling properties and usefulness as solid supports. One other 

support in widespread use is the polyamide resin developed by Sheppard. 39  

In order to attach an amino acid to a solid support for the purpose of synthesising 

a desired peptide, the resin must first be functionalised. This is accomplished through 

use of a linker or handle. The linker is itself designed so as to facilitate removal of the 

completed peptide from the resin under conditions which are compatible with other 

facets of peptide synthesis such as Na  and side chain deblocldng. The linker can thus 

be varied depending upon the requirements of the overall synthetic strategy. One 

conventional linker which is widely used is the p -aikoxybenzylalcohol resin 

developed by Wang. (1) 

14 
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Solid phase synthesis is currently accomplished mainly using either one of two 

approaches. These are the Fmoc and Boc methodologies. 

1.4.2. Boc methodology. 

The Boc approach4 ' involves the use of graded acidolysis for the removal of N 

and side chain protection and cleavage of the peptide-resin link. This involves the use 

of a linker and side chain protecting groups which are stable to the acidolytic 

conditions used for removal of the Na protection which is Boc or t -butyloxycarbonyl 

(2). 

CH3 	9 
CH3-C-O-C---

CH3  

(2) 

The side chain protecting groups employed with Boc syntheses are for the most 

part benzyl based derivatives however histidine and arginine differ in that they are 

usually protected with the tosyl group. The indole group of tryptophan is usually 

protected with the formyl group in order to preclude aikylation of the indole ring. 

These groups require treatment with hydrogen fluoride for removal and thus are 

stable to trifluoroacetic acid which is used for repetitive removal of Ncl protection. 

The linkers commonly used in Boc methodology, as with side chain protection, 

are based on benzyl derivatives with the peptide C-terminus forming a benzyl ester 

with the solid support. Tam 42  has developed the high-low BF or TFMSA procedure 

for the final removal of side chain protection and cleavage of the peptide-resin link. 

Using this protocol, the side chain protection is removed with low BF concentrations 

15 
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and thus the side reactions which are likely to occur at this stage are minimized. The 

side reactions which may occur during BF cleavage include anisylation of glutamic 

acid, 3-aspartamide formation, N-O shift in serine and threonine, aikylation of 

tryptophan, tyrosine and cysteine and oxidation of cysteine. 43  The low BF or TFMSA 

cleavage results in S2 cleavage of benzyl blocking groups and thus obviates 

reactions between side chain functionality and benzyl carbenium ions. 44  The high BF 

or TFMSA cleavage involves the use of a high concentration of these acids to release 

the resin bound peptide. 

1.4.3. Fmoc methodology. 

The Fmoc method involves an orthogonal approach to SPPS as Naand side chain 

protection are base and acid labile respectively. The Na  protection used is the 

urethane, 9-fluorenylmethyloxycarbonyl (Fmoc) (3) developed by Carpino 45  and 

exemplified in peptide synthesis by Sheppard. 46  One other base labile NU  protecting 

group developed recently by Ramage 47 '48  is the bis-nitrophenylethyloxycarbonyl 

(Bnpeoc) group (4). These groups are removed by piperidine through a E1cB 

n-elimination mechanism. 

(3) 
	

(4) 

16 
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The side chain protecting groups currently employed with the Fmoc strategy are 

mostly r -butyl based with the exception of histidine and arginine where recent 

advances490  have done a great deal to resolve the complications associated with 

these residues. All of these protecting groups are removed with trifluoroacetic acid. 

> 

HN%/ NH  

NH 

Figure 1.8 The pentamethylchromansulphonyl group for arginine NO protection. The 

chroman ring holds the oxygen electron lone pair in the plane of the aromatic ring and 

thus allows delocalisation into the d-orbitals on sulphur. This facilitates acidolysis of 

the S-N bond, broken in the rate determining step. 

The Wang linker (1) is extensively used in Fmoc chemistry and effects release 

of the resin bound peptide under conditions similar to those involved in side chain 

deprotection. The p -aikoxy group of this linker facilitates acidolysis by stabilising 

the incipient carbonium ion involved in the release of the resin bound peptide. 

HocH2__-(_- OCH2-resin 

(1) 

17 
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Amino Acid Fmoc methodology Boc methodology 

Arg Pmc Tosyl 

Asp,Glu OtBu OBzl 

His Bum, Trt Born, Dnp 

Lys Boc 2C1-Z 

Ser,Thr 'Bu Bzl 

Tyr 'Bu BrZ 

Trp none Formyl 

Cys Tn, Acm MeBzl, Mm 

Table 1. Commonly used side chain protecting groups in Fmoc and Boc chemistry 38  

1.4.4. Activation of amino acids. 

In effecting peptide bond formation during chain assembly, there is a plethora of 

reagents which have been developed and used. 5 ' Despite this abundance, there are 

only a few such coupling reagents which are in widespread use. The mainstay of 

these activating agents is the preformed symmetrical anhydride (6). These are formed 

by the treatment of a protected amino acid with a carbodiimide such as 

diisopropylcarbodiimide or dicyclohexylcarbodiimide and have been demonstrated to 

give reliably efficient amide bond formation. 52  Another extensively used activated 

species is the N-hydroxybenzotriazole ester of a protected amino acid (5) which also 

undergoes efficient condensation with the Naamine of the growing peptide. 53  

18 
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+ 

N.) 

R-COOC 

II 
N-R' 

+ 

N 

N 

+ 

R ' SJLNR,  

A-COO 

r"r N 

I 	N 

02CR 

(5) 
A 	(6) 

+ R'-HN-CO-NH-R' 

Scheme 2. Mechanism of formation of HOBt active ester and symmetrical 

anhydride. 
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More recent additions to the growing number of coupling reagents include the HOBt - 

tetraméthyluzea derivative TBTIJ (2-( 1H-benzotriazol- lyl)- 1,1 ,3,3-tetra 

methyluronium tetrafluoroborate) (7) and its hexafluorophosphate analogue HBTUM 

and the HOBt-phosphoramide derivatives B01 ,55  (benzotriazol -l-yl-oxy-tris-( 

dimethylamino)phosphonjum hexafluorophosphate) (8) and PyBOP (the tiis 

pyrrolidino derivative of BOP). These compounds have been shown to be extremely 

efficient at generating the HOBt active ester and thus have found extensive use in 

sPPs. 

N 

N ~NX 

0 

Me2N- C.NMe2  BF4  - 

(7) 

N 
N" 

0 PF6  
1 +  

Me2N— P— NMe2  

NMe2  

(8) 

Capping is performed subsequent to coupling to preclude the occurrence of 

deletion peptides. This involves blocking irreversibly any unreacted free amine of the 

N-terminus of the growing peptide. It is usually accomplished using a vast excess of 

acetic anhydride. This reagent has less steric hindrance at the electrophilic carbonyl 

than does an activated amino acid and thus may be able to react more readily with 

any free amine. The acetylated peptide will then be terminated and also should have 

different chromatographic properties from the desired final product 

It can be seen that the concept of peptide synthesis on a solid support is both 

feasible and desirable. As a consequence of the repetitive nature of peptide synthesis 

and the large excesses of reagents used in each step of chain elongation, it is desirable 

to alleviate the problems associated with purification at each stage. Thus by 

immobilizing the peptide upon a solid support, any excess reagents can simply be 
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washed away, therefore circumventing the need for intermediate purification. It is 

this methodology which has streamlined peptide synthesis and greatly facilitated the 

technique as a tool in the study of multifarious biologically significant and active 

molecules. 

1.5. The synthesis of C-terminal amides on a solid phase. 

Due to the widespread incidence of natural peptides terminating with a 

carboxamide function, these compounds are interesting both in their structure and in 

their use as biological probes. As mentioned previously, peptide amides almost 

exclusively function as endocrine hormones and as neurotransmitters. Also, in the 

study and use of peptides, it is often desirable to remove the charge forming 

capability of the C-terminal free acid. Fragments of proteins to be used for 

immunological purposes will have an 'unnatural charge' at their C-terminus which 

may have an undesirable affect on the immune response. By synthesising these 

peptides as their corresponding amide, the C-terminus will be neutral and thus be 

similar to the amide backbone of the parent molecule. In conformational studies of 

peptides which are subunits of larger molecules, it may be desirable to again 

synthesise these molecules as their C-terminal amides since the free acid may 

contribute an undesired effect to their folding and stability. These factors along with 

their significance in nature, give impetus to the chemical synthesis of C-terminal 

amides and their use in the study of biological systems. 

The first milestone in the synthesis of peptide hormones came with the synthesis 

of oxytocin by du Vigneaud and colleagues. 56  Since this time, the methodology in 

peptide synthesis has been progessively refined and the emphasis has shifted from 

solution to solid phase synthesis. Solid phase synthesis has facilitated rapid and 

efficient synthesis of peptides while advances in chromatography and other 
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purification techniques have led to the isolation of peptides in very high purity. 

In the synthesis of C-terminal peptide amides by SPPS, the rational approach is to 

functionalise the linker so as to generate the C-terminal amide upon cleavage of the 

peptide-resin link. 

Several linkers have been developed that afford peptide amides upon lysis of the 

peptide-resin link and these employ a variety of conditions to accomplish this 

including ammonolysis and varying degrees of acidolysis. Ammonolysis of a benzyl 

ester linkage has been used by Sheppard and Atherton" in the synthesis of oxytocin 

derivatives. The rate of cleavage however, has been shown to be slow at hindered 

amino acids and this is undesirable as prolonged exposure of peptides to ammonia 

may cause deleterious side reactions such as partial racemisation, 0 -aspartimide 

formation and lysis of amide bonds.58  

Linkers which liberate peptide amides upon acidolysis are mostly based upon 

benzylamine or benzhydrylamine derivatives. Tam 59  has reported the synthesis of 

peptide amides using the p -acyloxybenzhydrylamine (9) resin. This resin liberates 

the peptide amide upon treatment with BF or TFMSA and thus is compatible with the 

Boc methodology. Pedroso and coworkers 6O have reported the use of a benzylamine 

resin in the synthesis of LHRH using Boc chemistry. 

NH2  

(9) 
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With the widespread use of Fmoc chemistry in recent years, there developed a 

need for an amide linker whose cleavage conditions were compatible with the 

different conditions used for side chain deblocking with this approach. One of the 

first such linkers was the dimethoxybenzhydrylamine resin (10) developed by Penke 

and Rivier. 58  The electron donating methoxyl groups facilitate acidolysis of the 

peptide-resin link and thus enable cleavage of the peptide amide in trifluoroacetic 

acid. A similar methoxyl substituted benzhydrylamine system (11) was used by 

Breipohl6 ' and its use was demonstrated by the synthesis of oxytocin and LHRH. 

H3CO NH2  

H300"á'1 0 CH2 .reSjn  

(10)  

NH2  

H3CY0 '1 0OCH2CO res i n  

(11) 

Several amide linkers have been reported that exhibit high acid lability. These 

typically employ low concentrations of TFA in a chlorinated solvent in order to effect 

release of the peptide amide from the solid support. The Sieber handle 62  based on the 

alkoxyxanthenyl system (12) allows cleavage of the peptide-resin link in 2% TFA in 

1,2-dichloroethane. The Rink linker 63  for the synthesis of protected peptides has been 

shown to manifest acid lability under very mild conditions. It would seem probable 

that the amide linker variant of this molecule 63  (13) would exhibit high acid 

sensitivity although the cleavage conditions have not been optimised. 

NH2  

cóo—  OCH2-resin 

(12)  

H3CO NH2  

H3CO á1 L0 OCH2.resin  

(13) 
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A recent comparison of acid labile linkage agents for the synthesis of C-terminal 

amides64  reports that the PAL linker (14) developed by Albericio et al.65  exhibits the 

fastest rate of cleavage of the peptide-resin link among those compounds studied. The 

linkers described also included those developed by Rink 63  (13) and Yajiina. 66  (15) 

This study was accomplished by treatment of each Fmoc-valine loaded resin with 

TFA containing 5% phenol by weight for various times and then quantifying the 

remaining protected amino acid left on the resin. 

CH2-NH-Fmoc 

H3CO OCH3  

r 
	

(14) 

O(CH2)4C0-resin 

Fmoc-NH OCH3  

(15) 

H3CO---C  
(CH2)200-resjn 

Another approach to the synthesis of C-terminal amides incorporates the use of 

photolabile linkers. One such handle is the a-methylphenacylamido resin (16) 

proposed by Ajayaghosh and Pillai 67  which affords the peptide amide upon 

photolysis. 

CH3  

HP-CH-CO_____ CH2-resin 

(16) 
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It can be seen that C-terminal amides are desirable substances to synthesise from 

a chemical and biological perspective and that many approaches utilising a variety of 

conditions have been used in their synthesis. Despite the array of methods available, 

there still exists scope for improvements in the methodology for the solid phase 

synthesis of these important peptides. 

1.6. Fragment condensation in peptide and protein synthesis. 

In the total synthesis of peptides and proteins, there are generally two principal 

methods which are used. These are solid phase stepwise elongation and fragment 

(segment) condensation. Neither method can be said to be consummate in peptide 

synthesis since depending upon the requirements of an individual synthesis either one 

or both may have inadequacies. The advantages of fragment condensation lie in the 

convergent nature of this type of synthesis. Subunits of the target molecule can be 

synthesised quickly and efficiently, purified with relative ease and then covalently 

attached in the appropriate manner to obtain the desired product. One limitation of 

stepwise elongation on a solid phase is the size of the peptide to be synthesised. With 

current methodology, stepwise synthesis is routine for peptides up to about 40 

residues. In larger molecules, purification may become intractable due to side 

reactions and the generation of by-products with similar chromatographic properties 

to the desired compound. In the synthesis of proteins it can thus be expedient to 

synthesise substituent fragments of the required molecule 30 to 40 amino acids in 

length in a stepwise manner, purify them and then condense them to generate the 

larger molecule. 

1.6.1. Synthesis using maximally protected fragments. 

In order to prevent the occurrence of deleterious side reactions during fragment 
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condensation, it is desirable to protect amino acid side chains. These include the 

C-amino group of lysine, the guanidino group of arginine, the hydroxyls of serine, 

threonine and tyrosine, the carboxyls of aspartic and glutamic acid and the suiphydryl 

group of cysteine. 

In the solid phase synthesis of protected peptide fragments, it is necessary to 

release the completed peptide from the solid support without removal of side chain 

blocking groups. This inevitably involves orthogonal conditions for the removal of 

Naprotection, side chain protection and the cleavage of the peptide-resin link. The 

two main approaches to this have been graded acidolysis and the use of fluoride ion 

to release the peptide from the resin. 

In the graded acidolysis approach, several linkers have been developed which 

allow cleavage of the peptide-resin link under very mildly acidic conditions. With 

base labile Fmoc Naprotection, r -butyl based esters, ethers and urethanes are 

typically used to protect side chain functionality. Since t -butyl blocking groups 

require treatment in 50% TFA/DCM for 15 minutes, criteria must be selected in the 

design of the peptide-resin link which allow a greatly increased rate of acidolysis. A 

linker developed by PjrJ 63  (17) fulfills these requirements in that it allows release of 

the peptide in 10% acetic acid in DCM and thus obviates removal of side chain 

protecting groups. 

H3CO OH 

OCH2-resin 

(17) 
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Another linker useful in the preparation of protected fragments by graded acidolysis 

employs the chiorotrityl group.68  (18) 

ki)  
CI w ?
61~0

-<- RESIN 

a 
Fmoc-AA-OH 

Fmoc-AA-O 	C 	 resin 

6

rLrci 
(18) 

Figure 1.9 Loading of the first amino acid onto chlorotrityl resin. 

Fluoride ion cleavage of the peptide-resin link is another orthogonal approach 

which has been applied successfully to the synthesis of protected fragments. Linkers 

which allow this type of cleavage are generally derivatised with silicon which is 

particularly susceptible to attack by the fluoride ion. One such linker has been 

developed by Ramage 69  and is based on a trimethylsilyl derivative of methyl 

4-methylcinnamate (19). This handle affords fully protected peptide fragments upon 

treatment of the resin bound peptide with teirabutylammonium fluoride in DMF for 5 

minutes and is compatible with base labile Na protection. 

CO-NH-resin 
HOCH2 

—0—<Sime3 
(19) 
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Another variation of this concept was devised by Barany 70  (20). This linker utilizes a 

t -butyldiphenylsilyl group and thus facilitates cleavage with the fluoride ion. 

C(CH3 )3  

HQCH2__0__0 
- I 	NH-00-(CH2)3-CO-NH-resin 

Si 

(20) 

Other approaches to the solid phase synthesis of fully protected fragments include 

the use of photolabile linkers71  and handles cleaved by nucleophiles such as 

hydrazine72  and N-hydroxypiperidine.73  

1.6.2. Synthesis using minimally protected fragments. 

A major drawback to the fragment condensation approach is the insolubility of 

fully protected peptides in aqueous and organic systems. This is assuredly a 

consequence of the non polar, non ionic nature of protected fragments. One approach 

which has been used to circumvent this problem involves the use of minimal 

protection of fragments. 74' 75  In this strategy, only the residues with the most reactive 

side chains are protected while all the others are left free. With the acyl azide method 

of coupling,76  the C-terminus can be activated without affecting other side chain 

carboxylic acids. This method therefore gives scope to the coupling of fragments with 

unprotected aspartic and glutamic acid residues. Serine, threonine and tyrosine 

residues can also be left unprotected as their side chain hydroxyls are not nucleophilic 

enough to react at an appreciable rate under normal coupling conditions. Arginine 
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can be effectively protected simply by protonation 77  however cysteine is normally 

protected mainly to prevent dimerisation during purification and to allow selective 

disulphide formation. Lysine protection is essential in almost all circumstances due 

to the high nucleophilicity of the c-amino group. Typical protecting groups which 

have been used include formyl, Boc and chlorobenzyloxycarbonyl depending on the 

requirements of the synthesis. Development of a lysine protecting group which does 

not confer hydrophobicity to a peptide would be a desirable asset in fragment 

condensation. 

It can be seen that partial protection of peptide fragments should help to alleviate 

the problems of solubility of protected fragments although in any individual synthesis 

this will obviously be sequence dependant. Side chain functionality such as the 

guanidinium group of arginine and the carboxyls of aspartic and glutamic acid will be 

free to ionize and thus should add hydrophilicity to the fragment. This will make it 

more amenable to aqueous based purification methods as well as increasing solubility 

in organic solvents such as DMF used in coupling reactions. 

1.6.3. Activation of the fragment C-terminus. 

In the coupling of peptide fragments to generate larger peptides or proteins, the 

C-terminus of the requisite fragment must first be activated. This has been done by a 

number of methods which include the use of acyl andes 78, DCC(HOBt79, 

DCC/ethyl-2-(hydroxyamino)-2-cyanoacetate 73  (EACNO) and N-hydroxy 

succinimidyl esters. 80  Each of these methods have been shown to give low 

racemisation with high coupling yields and have been exemplified in a number of 

syntheses. 

The acyl azide method is perhaps one of the most extensively used and has been 

applied with a high degree of success. The azide is generated through a hydrazide 
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intermediate76 ' 82  which itself can be produced in a variety of ways by solid phase 

methods. These include hydrazinolysis of the peptide-resin link 72  and also the use of 

hydrazide resins. One such hydrazide resin which has been developed is the 3-(p 

-benzyloxyphenyl)- 1,1 - dimethylpropyloxycarbonythydrazjde resin. 81  (21) This resin 

employs a r -butyl based linker and treatment of the resin bound peptide with 50% 

TFA in DCM liberates the free peptide hydrazide. 

CH3  

H2N-NH-002 — C— CH2CH2_Q....-._OCH2 resin 

CH3  

(21) 

1.6.4. Coupling of peptide fragments. 

As mentioned previously, a number of types of activation have been used in the 

condensation of fragments. The azide method was used by Denkewalter and 

coworkers 75  in the synthesis of ribonuclease-S-protein (104 residues). This group 

prepared 19 constituent fragments of this enzyme and condensed them through acyl 

azides to give material which exhibited significant ribonuclease activity. The success 

of this synthesis was undoubtedly in part attributable to Honzl and Rudinger. 82  These 

workers developed methodology allowing azide coupling reactions to be performed 

under anhydrous conditions at low temperatures thus minimizing side reactions such 

as the Curtius rearrangement. 83  Significantly, this synthesis was achieved using 

minimal side chain protection as only cysteine and lysine were protected. 
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Scheme 3. Mechanism of azide formation and Curtius rearrangement. 
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In the synthesis of subunits of a lysozyme analogue by Ramage and coworkers 80, 

fragments were successfully coupled using DCCIN-hydroxysuccinimide 

methodology. 

Kaiser73  has reported the use of oxiine resin (22) in the synthesis of protected 

peptide fragments and the coupling of segments while attached to the solid phase. 

OH 
.1•' 

N 

O2 CH2  ' 	 -resin 
(22) 

The C-terminal fragment was coupled to the oxime resin using DCCIHOBt or 

DCC/EACNO and then subsequent fragments coupled to this using the same 

reagents. A 44 residue model peptide of apolipoprotein A-i was successfully 

prepared by this methodology in a convergent manner in which a 21 residue fragment 

was coupled to a 22 amino acid fragment attached to the solid phase. This was then 

liberated from the solid phase by nucleophilic displacement with the C-terminal 

amino acid and following removal of side chain blocking groups and purification, the 

desired peptide was obtained in good yield. Coupling of the fragments on the solid 

phase is advantageous as excess reagents can simply be washed away and thus 

purification is simplified. This method also allows excess reagents to be recovered if 

necessary. 

It can be seen that fragment condensation when used in conjunction with solid 

phase stepwise elongation can offer greater scope to the synthesis of large peptides 

and small proteins. The limitations can in some instances be severe however with 

further improvements in methodology, these will undoubtedly be overcome in the 

near future. 
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1.7. Conjugation of peptides with proteins. 

In many areas of biological science, there is a demand for efficient coupling of 

synthetic peptides and proteins to larger proteins which often serve as carriers. This is 

especially true in the field of immunology where synthetic peptides are conjugated to 

a large carrier protein (such as bovine serum albumin or keyhole limpet 

haemocyanin) in order to increase their immunogenicity. 4  Conventional methods of 

accomplishing this include ligation through the N-terminus, the C-terminus and also 

through certain amino acid side chains. 

Coupling through the peptide N-terminus: Glutaraldehyde 85  is the' reagent 

which is most commonly used to couple the N-terminus or in some cases, the Ne of 

lysine to a carboxyl group of a protein. 

Coupling through the peptide C-terminus: The water soluble reagent 

1-ethyl-3-(3-dimethylaminopropyl )carbodiimide hydrochloride has been extensively 

used in C-terminal activation. 86  This reagent allows coupling reactions to be 

performed in aqueous systems which is often essential in maintaining the 

conformational integrity of biological molecules. Ligation occurs primarily on lysine 

side chains and on the N-terminus of the carrier protein. 

Ubiquitin, a protein which has been implicated in an array of cellular processes 87  

has been coupled via an acyl azide to various nucleophiles and proteins- 98  This was 

accomplished by transpeptidation of the C-terminal Gly-Gly sequence with ethyl 

glycyiglycinate followed by hydrazinolysis and subsequently azide formation. 
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(iii) Coupling through the peptide side chains: This form of conjugation is 

primarily achieved by coupling through the side chains of tyrosine and cysteine. 

Tyrosine is coupled using bis diazobenzidine85  and cysteine with 

N-succinimidyl-3-(2-pyridyldithio)propjonate 89  or maleimidobenzoic acid 

N-hydroxysuccinimidyl ester.90 
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Chapter 2. 

DISCUSSION 

2.1. Solid phase synthesis of peptide amides. 

2.1.1. Strategy in the synthesis of peptide amides. 

In the synthesis of peptide amides by the solid phase method, it is expedient to 

functionalise the solid support using a linker so as to produce the amide upon 

cleavage of the peptide-resin link. It is also necessary that the peptide amide be 

liberated under mild conditions so as to minimise the occurrence of side reactions. In 

order to satisfy these requirements, the Fmoc methodology should be used and the 

linker must therefore be compatible with this orthogonal approach. Since the Fmoc 

Na protection is removed using an organic base, the linker can be cleaved under 

acidolytic conditions. Due to the stability of the amide bond which would 

undoubtedly link the peptide to the linker, features must be incorporated into the 

linker that facilitate the release of the peptide amide under the required conditions. In 

an SN1  process, by which the acidolytic cleavage of the peptide-resin link should 

occur, an intermediate carbenium ion will be generated in the rate determining step. 

Since carbenium ions are stabilised by electron donation through both inductive and 

resonance effects, these features then should be requisite in the design of an amide 

linker. Since benzyl carbenium ions are stabilised effectively by resonance, it would 

be desirable to have this type of system as an intrinsic feature of the handle. 

A number of benzhydryl derivatives were studied by Pless 9 ' in 1976 (Figure 2.1). 

He quantified the relative stabilities of these systems by measuring their PKR+  values. 

This value is an indication of the stability of the carbenium ion generated from the 

corresponding alcohol of the aromatic system. Of the systems that he studied, he 
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pK R+ 

	

(23) 	
-3.7 

	

C)OD-- O-R (24) 	
-5 

(25) 	 -6.6 

	

C~Co (26) 	

-8.0 

	

(27) 	 -13.3 

I 	H 	II 	I 	(28) 	 -14.0 

Figure 2.1 Relative stabilities of some aromatic carbenium ions. 

KR+  

R+ + H20 	 R-OH + H+ 

Equation 1. 
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reported that the dibenzocycloheptatrienyl ion (23) was the most stable, followed 

successively by the irityl cation (25), the dibenzocycloheptadienyl cation (26), the 

benzhydryl cation (27) and lastly the fluorenyl cation (28). It can be seen from 

equation 1 that the more negative the pKR+,  the more the equilibrium will lie to the 

left in the given equation, i.e. the system will exist in its ionized form. The relative 

stabilities of the corresponding carbenium ion of these carbinols is a consequence of 

their aromaticity and the ability of the positive charge to delocalise through the 

aromatic system. 

In the design of an amide linker which would release the completed peptide under 

mildly acidic conditions, dibenzocycloheptadiene was chosen as the parent system. 

The two carbon bridge of this system prevents free rotation of the two benzene rings 

and thus allows both to stabilise the positive charge which would be generated in the 

5 position. It was decided also to incorporate an alkoxy substituent onto one aromatic 

ring para to the position of the potential carbenium ion. In this position, the oxygen 

is able to donate electrons by resonance and further stabilise the incipient carbenium 

ion upon acidolysis, thus facilitating cleavage of the carbon-nitrogen bond. The 

mechanism given in figure 2.2, shows how the oxygen in the 2 position stabilises the 

developing carbenium ion and thus facilitates acidolysis. Protonation of the amide 

carbonyl occurs in a rapid step, followed by breakage of the carbon-nitrogen bond in 

the rate determining step. Since the formation of the carbenium ion occurs in the rate 

determining step, the more stable this cation is, the faster it will be formed. The 

carbenium ion is then quenched by the counter ion of the acid and this step again may 

be rate limiting. 

It was thought that the alkoxy substituent would have a similar stabilising effect 

on the carbenium ion as the extra double bond in the dibenzocycloheptatriene system. 
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+ 	 peptide-NH 

H O=C 

CdGL~
res  

-resin 

."O~ 

0-resin 

02CF3  

CF3C0S..  Otol-- O-resin 

Figure 2.2 Mechanism of acidolytic cleavage with proposed linker. 

Having the alkoxyl group would therefore simplify the synthesis while probably 

giving a cation of similar stability. This conjecture was in part substantiated by the 

work of Deno.92  He demonstrated that the PKR +  of 4-methoxytrityl was -3.40 

compared with -6.63 for the unsubstituted trityl. In a very approximate correlation of 

this data to the dibenzocycloheptadienyl cation, this would give the alkoxy 

substituted system (24) a PKR+  of approximately -5, bringing it close to the value of 

-3.7 obtained for the dibenzocycloheptatriene system. With these factors in mind, the 

2-aikoxy-5-aminodibenzocycloheptadjene system (29) was proposed as an amide 
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linker. The amine in the 5 position would form an amide bond with the first amino 

acid of the desired peptide while the 2 position would be functionalised so as to 

provide the linkage to the solid support. This linkage would either be an ether or 

amide bond and would be stable under the conditions employed for the cleavage of 

the peptide-resin link. 

NH 

10 11 

(29) 

2.1.2. Synthesis of a novel amide linker. 

It was decided that the most facile route to the substituted tricyclic 

dibenzocycloheptadiene system was through the joining of two substituted benzene 

derivatives. Dibenzocycloheptadiene and triene systems are commercially available 

however these are mostly unsubstituted and derivatising the aromatic rings would 

likely have proved to be synthetically demanding. The two carbon bridge between 

the two aromatic rings (which would eventually comprise the 10 and 11 positions of 

the dibenzocycloheptadiene system) could be constructed in an unsaturated form 

using a Wittig or analogous reaction. After saturation of the bridge, the 

dibenzocycloheptadiene system could possibly be formed via an acid catalysed 

cycisation proceeding through an acylium ion. A ring closure occurring through this 

mechanism would leave a ketone at position 5 which could then be converted to an 

amine, thus allowing attachment of an amino acid through an amide bond. Position 5 
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would also be the site of potential carbenium ion formation resulting from lysis of the 

carbon-nitrogen bond upon release of the resin bound peptide. The 

dibenzocycloheptadiene system would be substituted with an alkoxyl group in 

position 2 and this would eventually provide the linkage to the polymer support. 

NH 
	

0 

QáOR  — 

moo  

0(CO2MG + 

CH= PPh3  

q CHO 

0-A 

Scheme 4. Retrosynthesis of proposed amide linker. 

For the Wittig approach to the joining of the two ring systems, the starting 

material was chosen as methyl 2-methylbenzoate (30). This compound was 

a-brominated in a light initiated free radical reaction. This reaction was complete in 

under 2 hours using a slight excess of N-bromosuccinimide as the halogen radical 

source. A small amount of dibromo compound was observed by L1.c., however the 

crude mixture obtained after separation of the succinimide by-product and 

concentration was used without further purification. The methyl 

2-bromomethylbenzoate (31) obtained was then stirred overnight along with 

triphenylphosphine in toluene to generate the bromo-phosphonium salt (32) as a 

precipitate. This compound was then recrystallised to obtain 2-(methoxycarbonyl 
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)benzyltriphenylphosphonium bromide (32) in 73% overall yield from methyl 

2-methylbenzoate. 

CO2Me 
NBS

0(CO2 MO 

a- 

CH2Br 
(30) 	 (31) 

This compound was then used in a standard Wittig reaction for the formation of the 

two-carbon bridge. This involved conversion of the phosphonium salt to its 

corresponding ylide in situ, followed by reaction with the requisite aldehyde. 

+ 

CO2Me 	KOC(CH3)3 
__410 

CC2Ma' 

CH2PPh3  Br 

(32) 
	

(33) 

Several bases were used in this reaction before the conditions were optimised for 

maximum yield of the desired olefin. These included diazabicyclooctane, lithium 

methoxide and n-butyllithium. n-Butyllithium was found to give a low yield of 

product due to a competing side reaction. This involved the SN2 attack of the butyl 

anion on the methyl ester giving a significant amount of the butyl ketone (34). The 

use of potassium tert - butoxide as a base at -78°C gave efficient proton abstraction 

with no apparent side reactions. Condensation of the ylide with m -anisaidehyde 

afforded the expected stilbene derivative (33) in 85% yield. It was noted that a 

significant amount of Iransesterification occurred, producing ester (35) subsequent to 

the addition of r -butoxide, if the reaction mixture was not cooled effectively. To 

counteract this problem, the phosphorane was generated at -78°C for 1.5 hours and 

the reaction mixture stirred at this temperature for a further 0.5 hours subsequent to 

addition of the aldehyde. 
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CC2Me .# 

OCH3  

2 O  
II 

LccL OCH3  

(34)  

t 

CC2BU

.,J.rJLL..S OCH3 

(35) 

Figure 2.3 Side reactions encountered with Wittig reaction. 

Although this reaction gave a high yield of the required compound, isolation 

proved to be onerous due to the presence of triphenylphosphine oxide. This was 

eventually separated from the desired material using dry flash chromatography. A 

more facile synthesis of this compound may involve the use of a Homer-Emmons 

reaction which would give a water soluble by-product and thus could easily be 

separated by extraction. The stilbene (33) was then hydrogenated in the presence of 

palladium on charcoal in aqueous methanol to give the saturated derivative methyl 

2-(3'-methoxyphenylethyl)benzoate (36) in quantitative yield. The methyl ester of 

this compound was then hydrolysed with sodium hydroxide in aqueous methanol to 

afford the corresponding carboxylic acid 2-(3'-methoxyphenylethyl)benzoic acid 

(37). This was obtained in a yield of 97%. This benzoic acid derivative was then 

treated with polyphosphoric acid at 120°C for two hours in order to effect cycisation 

and generate the tricyclic system. 2-Methoxydibenzocycloheptadien-5-one (38) was 

obtained in 74% yield after purification by flash chromatography and 

recrystallisation. 
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CC2"' ,., H2,Pd/C OiCc OCH3 	
I 	

OCH3 
(36) 

<H 

C(:H aOCH3  
(37) 

1 + 4H 

0 

1/0 OCH3  

(38) 

0 OCH 

c63 
(39) 

Scheme 5. Synthesis of tricyclic system showing two possible isomers. 

In the acid catalysed ring closure, it is possible for two isomers to be formed. Due 

to free rotation of the methoxyl substituted aromatic ring, the cycisation can occur 

either ortho or para to the methoxyl group. It was observed however that only one 

isomer was obtained and this corresponded to the para cycisation. The position of 

the methoxyl group was confirmed by inspection of the aromatic splitting pattern and 

coupling constants in a 360 MHz 1H n.m.r spectrum of ketone (38) (figure 2.4). 

These were found to correspond to dibenzocycloheptadien-5..one substituted in the 2 

position (2 isomer) (38) and not in the 4 position (4 isomer) (39). 
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Discussion 

For the 2 isomer, the aromatic proton in position 1 (An) would have only a meta 

coupling. The aromatic proton in position 3 (Ar3) would have both an ortho and a 

meta coupling while the aromatic proton in position 4 (Ar4) would have only an 

ortho coupling. Arl and Ar3 would be shielded by the methoxyl while Ar4 should be 

deshielded by the carbonyl in position 5. For the 4 isomer, Arl would have a ortho 

and a meta coupling, Ar2 would have two ortho couplings and Ar3 would have an 

ortho and a mew coupling. An4 was observed as a doublet with a typical ortho 

coupling of 8.8 Hz. Arl was observed as a fine doublet with a typical meta coupling 

of 2.6 Hz. Ar3 was observed as a doublet split  finely into a quartet. This splitting 

pattern was indicative of an ortho and a meta coupling and was confirmed by the 

observed coupling constants of 8.8 and 2.6 Hz. The splitting pattern, coupling 

constants and chemical shifts for these and all other aromatic protons were consistent 

with those expected, therefore this confirmed unequivocally that the isomer obtained 

was substituted in the 2 position. The selectivity in the cyclisation reaction is most 

likely due to unfavourable steric interactions between the methoxyl and the acylium 

ion, thus precluding formation of the 4 isomer. 
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Since the methoxy ketone (38) was obtained in good yield, it was decided to 

functionalise the 2 position so as to allow loading of the linker onto the solid support. 

The two standard methods of doing this are through an ether linkage (40) or through 

an amide bond (41). 

0 

0  z 
0CH2-resin 

 

0 

C  z "0 )tO___ OCH2-CONH-resin 

 

In order to couple the linker through an ether linkage, it would be desirable to use a 

Williamson type reaction. The methoxyl would thus be converted to a hydroxyl, the 

salt of this formed and then reacted with a halogenated solid support. In order to 

accomplish this, ketone (38) was converted to phenol derivative (42) by treatment 

with aluminium bromide in benzene whilst heating under reflux for several hours. 

2-Hydroxydibenzocycloheptadien-5-one (42) was obtained in 94% yield after 

work-up and purification. This compound was then attached to polystyrene resin 

crosslinked with divinylbenzene. This was accomplished by stirring the caesium salt 

of phenol (42) with chloromethylpolystyrene(l%-divinylbenzene) (CMP) in DMF for 

several days. After isolation of keto resin (40), the loading was shown to be 

essentially complete through the use of chlorine analysis. 
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With the dibenzocycloheptadien-5-one system loaded onto the solid support, the 5 

position was now ready to be derivatised in order to allow attachment of the first 

amino acid via an amide bond. It had originally been intended to functionalise the 5 

position prior to loading onto the resin however this proved to be impractical by the 

methods used. It was proposed to convert ketone (38) directly to an amine. This was 

attempted firstly through oxime formation (43) and then by a Leuckart reaction (44). 
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Qz 
1)i:;L OCH3 

HO0H4  

f H20H 	

NH2  

N-OH 

(44) 

(43) 
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Neither of these methods were useful in generating the desired compound and in both 

cases the starting material was recovered almost quantitatively. It is conceivable that 

this was attributable to the vinylogous nature of the 2-alkoxy 

dibenzocycloheptadien-5-one system. The electron donating effect of the oxygen in 

the 2 position is propagated through the aromatic system thus making the carbonyl 

very electron rich. This electron dense ketone is therefore less susceptible to 

nucleophilic attack. As this approach had failed, it was decided to load ketone (38) 

directly onto the resin before further functionalisation. This would allow a large 

excess of reagents to be used since they could be easily washed away. In using 

forcing conditions, the desired reaction could theoretically be driven further towards 

completion. 

In order to functionalise the 5 position in the desired manner, the ketone was 

reduced to an alcohol. Keto resin (40) was treated with lithium borohydride in THF 

for 1 hour. This reaction was judged to be complete by the disappearance of the 

carbonyl absorbance at 1640 cnr' in the infrared spectrum. 2-Copoly 

(styrene- 1 %-divinylbenzene)methoxydibenzocycloheptadien-5-ol (45) was obtained 

after filtration, washing and drying under vacuum. The nitrogen was introduced into 

the 5 position in protected form by reaction of the carbinol resin (45) with 5 

equivalents of 9-fluorenylmethylcarbamate at 60°C in an acid catalysed reaction 

(These reactions could have been performed on ketone (38) whilst in solution 

however purification would have undoubtedly have proved onerous due to the large 

excess of reagents used). This reaction was shown to have proceeded in quantitative 

yield through the use of a UV monitoring method. 93  This involves removal of the 

Fmoc group using piperidine in DMF. The UV absorbance of the piperidine adduct of 

dibenzofulvene is measured at 300 nm and then used to calculate the number of 

moles of Fmoc originally on the resin (This procedure has become routine and the 

data is now processed by computer). The protected amino resin 
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2-copoly(styrene- 1 %-divinylbenzene)methoxy-5-(9 '-fluorenylmethoxycarbonylainino) 

dibenzocycloheptadiene (46) was then treated with 20% piperidine in DMF with 

sonication to generate the free amino resin (47) quantitatively. The success of this 

reaction was confirmed by disappearance of the urethane carbonyl peak in the 

infrared spectrum. 

OH 

OCH2-resin 

LiBH4 	

'OCH2-resin

or 	

(45) (40) 	

1 Fmoc-NH2 

NH2 	 NH-Fmoc 
piperidine 

c1I I?CH 	 OCH2rosjn 2-resin  

(47) 	 (48) 

As mentioned previously, the linker can also be coupled to the resin via an amide 

bond. This would involve derivatising the dibenzocycloheptadiene system with a 

carboxylic acid and then coupling this to arninomethylpolystyrene. In order to test 

this methodology, a series of model compounds were synthesised (scheme 6). Firstly 

keto phenol (42) was alkylated by a Williamson reaction using 

benzyl-2-bromoacetate. This was achieved by stirring these two compounds in a 1:1 

ratio with excess potassium carbonate using acetone as the solvent. 

2-(BenzyIoxycarbony1methoxy)thbenzOcyc1ohepjen..5..0ne (48) was obtained in 

quantitative yield after isolation and crystallisation. This compound was then 

hydrolysed to give its corresponding carboxylic acid (49) along with benzyl alcohol 
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0CH2C0NH-BzI  

Scheme 6. Synthesis of model compound for amide linkage. 
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using sodium hydroxide in aqueous methanol. The reaction was complete as judged 

by t.l.c. after heating under reflux for 1 hour and the carboxylic acid 

2-(carboxymethyloxy)dibenzocycloheptadjen-5-one (49) was isolated in a high yield 

of 97%. This was then converted to its benzylamide derivative (50) through activation 

as its acid chloride and then treatment with benzylamine. This tranformation was 

accomplished by stirring acid (49) with 40 equivalents of thionyl chloride followed 

by addition of 2 equivalents of benzylamine after removal of the excess SOC1 2  and 

then stirring overnight at room temperature. Amide (50) was obtained in quantitative 

yield after work up and recrystallisation. The structure was confirmed as expected by 

elemental combustion analysis and by the presence of the required NH and carbonyl 

stretching frequencies in the infrared spectrum. This compound was synthesised as a 

model in order to test the viability of joining the linker to a solid support via an amide 

bond. In order to introduce the nitrogen in the 5 position, the ketone must first be 

reduced to its corresponding carbinol. The amide bond providing the link to the resin 

must therefore be stable to conditions used for reduction. This assumption was 

corroborated through the conversion of 2-(benzylaminocarbonylmethoxy) 

dibenzocycloheptadien-5-one (50) to its analogous carbinol (51). The keto group was 

successfully reduced using LiBH4  in THF with no evidence of concomitant reduction 

of the amide to the alcohol. The amide was shown by n.m.r. spectroscopy to be 

unaffected as there was no diminution in the benzyl aromatic resonances or in the 

benzylic methylene signal. 2- (B enzylaminocarbonylmethoxy)dibenzocyclohepta 

dien-5-ol (5 1) was obtained in poor yield, however this was attributable to the 

difficulty of performing the reaction on a small scale. The crude product obtained 

upon work up was shown to be essentially homogeneous by t.1.c., also indicating that 

the amide bond was unaffected by the reduction conditions. This series of model 

reactions demonstrate that attaching the linker to the solid support through an amide 

bond is viable. 
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2.1.3. Application of the amide linker in SPPS. 

With the synthesis of solid support (47) completed, this was now available for use 

in the synthesis of peptide amides. In order for peptide synthesis to be undertaken, it 

was first necessary to load the C-terminal amino acid residue onto the resin, which 

involves the facile formation of an amide bond. This is in contrast to the loading of 

resins to be used in the synthesis of C-terminal free acids, where because the 

peptide-resin link consists of an ester linkage,. NN-dimethylaminopyridine is required 

to actuate condensation of the first protected amino acid with the resin. In a general 

method, Fmoc amino acids were loaded using standard symmetrical anhydride 

methodology. This involved sonication of 0.5 mmol of resin (47) with 2.0 mmol of 

preformed symmetrical anhydride (PSA) for 2 hours. The activated species was 

formed by agitation of 4.0 mmol of amino acid with 2.0 mmol of DIC in DMF for 15 

minutes. This method was found to give very high efficiency in loading with coupling 

yields in the range 95 to 100%. The loading was assessed using the UV monitoring 

method93  as previously mentioned. As this resin was intended for use on an 

automated peptide synthesiser, it was found to be possible to incorporate the loading 

of the first amino acid through use of a programmed cycle on the machine. This 

would simplify the synthesis of the peptide amide as all manipulations are carried out 

by the machine, thus obviating manual operations. Use of the automated method 

typically involved 0.5 mmol of Fmoc protected amino resin (46) which was then 

washed several times with DMF in order to pre-swell the resin. A capping cycle was 

incorporated to block any unreacted free amine therefore preventing the formation of 

a deletion peptide deficient in the C-terminal residue. After washing of the capped 

resin, the Fmoc protection was removed by 4 successive treatments with 20% 

piperidine in DMF. This was again followed by thorough washing with DMF to 

remove all traces of piperidine. The free amino resin (47) was then loaded with the 
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first amino acid in a double couple cycle. This is the same cycle as was involved in 

chain elongation and entails an initial coupling of 2.0 mmol of an Fmoc amino acid as 

its preformed symmetrical anhydride, followed by a second coupling of 1.0 mmol of 

the amino acid as its HOBt ester. The loaded resin (52) was then washed with DMF 

and capped with acetic anhydride in pyridine as before. One disadvantage of the 

automated loading method is that the loading cannot be accurately measured unless 

the synthesis is interrupted and a sample of the resin is removed. This is not a major 

drawback however as the loading reaction was shown by the UV monitoring method 

in most cases to proceed quantitatively. 

NH2 	 NH-AA-Fmoc 

Fmoc-AA-OAct 

0C-resin 	 OCH2-resin 

(47) 
	

(52) 

Once the solid support has been loaded with the first amino acid either outwith 

the machine or as a programmed cycle on the synthesiser, it is ready for stepwise 

elongation to generate the desired peptide. This was accomplished by repetitive 

cycles with the required amino acids incorporating deprotection of the Na amine, 

activation, coupling and capping procedures. All amino acids were double coupled 

with the exception of glycine which was single coupled with a four fold excess. This 

precaution is taken with glycine to preclude Gly-Gly formation which may occur as a 

consequence of the greater reactivity of the amino group of this residue compared 

with other amino acids. With all amino acids that were double coupled, symmetrical 

anhydride followed by HOBt activation was used, with the exception of asparagine, 

glutamine and arginine. These amino acids are incorporated as their HOBt active 

esters to prevent dehydration of the amide side chains with asparagine and glutaxnine 

53 



Discussion 

and to minimize the cost with arginine. As a consequence of its high cost, arginine is 

incorporated as an HOBt ester as with this method only hail as much amino acid 

derivative is used as with the symmetrical anhydride method. In the case where 

pyroglutamic acid was incorporated as the N-terminal amino acid, it was used in 

ready activated form as a pentachiorophenyl ester and due to poor solubility in DMF, 

it was coupled in N-methylpyrrolidone. 

2.1.3.1. Monitoring the progress of SPPS. 

One significant advantage of SPPS using Fmoc Naprotection is the chromophoric 

nature of the fluorenyl system. This chromophore has a characteristic absorbtion 

maximum at 300 nm in the ultraviolet spectrum and thus enables the monitoring of 

the fluorenyl species during the course of the synthesis. In order to do this, the 

filtrate from deprotection and coupling reactions is passed through a UV flow cell and 

absorption versus time is recorded (figure 2.5). When this is done in conjunction with 

integration of the peak obtained, it is useful in giving a semi-quantitative evaluation 

of the efficiency of the various steps in SPPS. 

This method has been applied with a high degree of success in the monitoring of 

Nadeprotection. The Fmoc group, upon deprotection, affords a piperidine adduct of 

dibenzofulvene which is then monitored at 313 rim. This is useful in the estimation of 

coupling efficiency if one assumes that deprotection is quantitative in all cases due to 

the large excess of base used. Thus by comparing the peak integration arising from 

the deprotection of the coupled amino acid with that of the previous residue, a relative 

value can be obtained for the coupling yield. 
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Figure 2.5 Monitoring of Fmoc deprotection at 313 run. 

Through the use of this UV monitoring method, the rate of deprotection can also 

be observed. Each residue is given four successive deprotections and the effluent 

from each one is passed through the flow cell. If peaks are observed in the second, 

third or fourth deprotections, then this is an indication that the deblocking reaction is 

proceeding at a slower than normal rate. This may also be an indication that the 

coupling reaction of the next amino acid will also proceed slowly and thus the 

coupling conditions can be altered accordingly. Through use of this monitoring 

method, an overall picture of the synthesis is obtained and in the event of a disastrous 
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synthesis, it can be repeated with some knowledge of where it went wrong. This 

monitoring method was used to follow the progress of the synthesis of the C-terminal 

amides made using solid support (47). 

2.1.3.2. C-terminal peptide amides synthesised. 

Several peptide amides were synthesised using solid support (46). These included 

little and big gastrin, bombesin, substance P and also fragments of ubiquitin 48, Cro 

protein", interleukin 10 94  and nerve growth factor. 95  

Little gastrin (55) was synthesised using 0.5 mmol of solid support (46) however 

0.25 mmol of resin was removed subsequent to the coupling of the penultimate amino 

acid (this was used in the synthesis of big gastrin at a later stage). Pyroglutamic acid 

was then coupled to complete the synthesis of little gastrin. Through the use of 

deprotection monitoring, the relative efficiencies of each coupling were assessed and 

it was noted that each one proceeded in high yield with the exception of a small 

number of residues where a slight drop was observed. Deprotection of the residues 

between G1u9  and G1y2  occurred at a slow rate with relatively large 2nd, 3rd and 4th 

deprotection peaks being obtained. This was probably due to the steric interactions of 

the bulky : -butyl side chain protection used in the preceeding five consecutive 

glutamic acids. 

The synthesis of big gastrin (56) was carried out as a continuation of little gastrin 

using the 0.25 mmol of resin previously retained. Deprotection monitoring showed 

generally efficient couplings throughout the synthesis however a slight drop was 

noted for the coupling of Gly 3  onto Pm4. Unlike the little gastrin synthesis, the 

deprotection. reaction did not proceed slowly. This was likely to be a consequence of 

the greater excess of piperidine as half of the resin had been removed. 
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SUBSTANCE P (53) 

H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH 2  

BOMBESIN (54) 

Glp-Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-cJly-His-Leu-Met-NH 2  

LITTLE GASTRIN (55) 

•Glp-Gly-Pro-Trp-Leu-Glu-GIu-Glu-Glu-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH 2  

BIG GASTRIN (56) 

Glp-Leu-Gly-Pro-Gln-Gly-Pro-Pro-His-Leu-Val-Ala-Asp-Pro-Ser-Lys-Lys-Gln 

-Gly-Pro-Trp-Leu-Glu-Glu-GIu-Glu-Glu-Ala-Tyr-Gly-Trp-Met-Asp-phe-NH 2  

Figure 2.6 C-terminal amides synthesised using solid support (46). 
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The synthesis of bombesin (54) was accomplished using 0.5 mmol of resin (46). 

Monitoring of the deprotection reaction showed efficient coupling and deprotection at 

each stage. 

The synthesis of substance P (53) was found to be without problem if the correct 

strategy for side chain protection was used. A number of syntheses were attempted 

using varying methods of protection on the side chain of glutamine. These included 

use of the trityl group (TRT), the dibenzocycloheptatrienyl group (DBSE) and the 

dimethoxybenzhydryl group (MBH). 

The use of MBH for glutamine protection in the synthesis of substance P 96  was 

found through monitoring of the deprotection reaction to give poor results. Coupling 

of Gin6  onto Phe7  went only in about 75% yield and the following coupling of Gin5  

onto Gin6  occurred in a very poor yield of less than 50%. Subsequent couplings were 

found to proceed almost quantitatively. 

The synthesis of substance P using the DBSE group 96  proceeded better, however 

this was still not satisfactory. Coupling of Gin 6  went in approximately 80% yield and 

that of Gin5  occurred in roughly 70% yield. Subsequent couplings tailed slowly off 

so that the final deprotection peak was approximately one third of the initial peak. 

The synthesis using trityl to protect the side shain of glutamine was found to 

proceed satisfactorily as only minor decreases in coupling efficiency were noted to 

occur during chain elongation. These results can not be explained on a steric basis 

alone as they appear to show an inverse correlation to the size of the side chain 

protecting group. One possible explanation could be that there is a hindrance in the 

coupling reaction as a result of van der Waals stacking interactions between the side 

chain of phenylalanine and the aromatic side chain protecting group of glutainine. 

These interactions could be precluded in the trityl case as this group exists in a 
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propeller-like conformation and therefore stacking would be sterically impossible. 

2.1.3.3. Cleavage of the peptide-resin link. 

The rationale behind the use of the alkoxydibenzocycloheptadiene system as a 

handle for the synthesis of peptide amides lies in its ability to stabilise a positive 

charge and thus facilitate the acidolytic release of the resin bound peptide. In order to 

determine the exact minimum conditions for release of the peptide, Fmoc-glycine 

loaded resin (57) was submitted to varying concentrations of trifluoroacetic acid in 

DCM (figure 2.7) . Using 1% TFA in DCM, the amino acid amide was found to be 

quantitatively released from the resin after 2 hours of acid treatment. The rate of 

cleavage was found to be greatest in the first 30 minutes of acid treatment 

with 58% of the glycine amide being released after this time. The rate of cleavage 

slowed appreciably in the next 30 minutes with only a further 17% of the amide being 

released. The remainder of the glycine amide was released after a further 1 hour 

under these conditions. By doubling the concentration of trifluoroacetic acid to 2% in 

DCM, the rate of cleavage during the first 10 minutes was almost tripled with 56% of 

the glycine amide being released from the resin. Acidolysis of Fmoc-Gly-resin in 3% 

TFA/DCM resulted in a rate 3.6 times that at 1%. Cleavage in 4% TFA/DCM 

exhibited a rate 4.3 times as fast as at 1% and twice as fast as the rate in 2% 

TFA/DCM. Since the rate increased by approximately 3 times from 1 to 2% 

TFA/DCM, this would indicate that the order of the reaction is somewhere between 

first and second order at these concentrations, with respect to the trifluoroacetic acid 

concentration. As the acid concentration is increased to 4%, the rate is approximately 

4 times the rate at 1% TFA/DCM and thus the order of the reaction is roughly one at 

this concentration. Thus the order of the reaction would appear to be changing from 

between first and second order to closer to first order kinetics as the concentration of 

the acid is increased and becomes in greater excess. 
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Figure 2.7 Plot of cleavage of Fmoc-Gly-NH 2  from solid support (47) against time at 

different acid concentrations. 
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The results obtained for the release of peptide amides from the 

dibenzocycloheptadiene functionalised solid support indicated that the target of 

producing a linker which allowed mild cleavage of the peptide-resin link had been 

achieved. This linker would be compatible with other side chain blocking groups 

which are removed under mild conditions. Current methodology used in Fmoc 

chemistry however, dictates the use of 50% trifluomacetic acid to remove r -butyl 

based side chain protecting groups and thus the resin bound peptide would have to be 

treated with at least this concentration of acid to liberate the fully deblocked peptide. 

Therefore it may' ossible to achieve a differential acidolysis and obtain a fully or 

selectively partially protected peptide amide after peptide synthesis on solid support 

(47). 

2.1.3.4. Cleavage, purification and characterisation of peptide ainides. 

Each peptide amide synthesised using solid support (46) was deprotected and 

released from the resin by treatment with TFA and the appropriate combination of 

scavengers. These peptides were subsequently purified using a variety of 

chromatographic techniques and then characterised mainly by amino acid analysis 

and fast atom bombardment mass spectrometry (FAB MS). 

Little gastrin was deprotected and removed from the solid support by treatment 

with TFA along with water, thioanisole, ethyl methyl sulphide and 

N-acetyllryptophan. Thioanisole was added as a carbenium ion scavenger, ethyl 

methyl sulphide was added to prevent oxidation of methionine and 

N-acetyltryptophan was added to prevent oxidation and aikylation of tryptophan 

residues. Little gastrin was initially deprotected for 2 hours however it was found that 

after this time some r -butyl protecting groups remained intact. This was detected by 

the use of FAB MS as peaks were noted in the spectrum corresponding to the 
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molecular weight of the peptide with one, two and three blocking groups intact. It 

was likely that these were on the five consecutive glutamic acids in the sequence of 

little gastrin as this region is sterically crowded and so may be partially inaccessible 

to the acid. Treatment of the isolated peptide for a further 2 hours in TFA resulted in 

completely deprotected little gastrin. At this point, the crude peptide was examined 

by reverse phase HPLC and a major peak constituting approximately 80% of the total 

material was observed. The crude material was then purified firstly by gel 

permeation chromatography. This removed all traces of scavengers and left the crude 

peptide in a more soluble form. This material was then applied to an anion exchange 

column and eluted with a buffer gradient of increasing ionic strength. The material 

obtained from this column was shown to be in a good state of purity however it was 

purified to homogeneity by semi-preparative reverse phase HPLC. This material was 

found to give a single peak on HPLC after being isolated in 16% yield. Analysis by 

FAB MS and amino acid analysis confirmed the presence of the correct product. 

Big gastrin was released from the solid support and deprotected by use of similar 

conditions to those for little gastrin. Analysis of the crude peptide by HPLC showed 

the presence of a major peak which constituted approximately 70% of the total peak 

area. Big gastrin was purified through the use of gel permeation chromatography, ion 

exchange chromatography and semi-preparative HPLC and was shown to be 

homogeneous by analytical HPLC (figure 2.8). Characterisation of this material by 

FAB MS and amino acid analysis verified the presence of big gastrin. 

The presence of the C-terminal amide in each of these peptides was confirmed by 

two methods. Accurate mass FAB MS showed the exact mass of the molecular ion to 

be within 1 part per million. The biological activity of the two peptide amides was 

also assessed. This was done through the use of radioimmunoassay to measure the 

antibody binding to the N and C termini of each peptide. 97  
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Figure 2.8 Analytical HPLC of crude big gastrin (top) and purified big gastrin 

(bottom). 
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Since the C-terminal amide is necessary for binding of the antibody then this will be a 

direct indication of the presence of this moiety. Little and big gastrin were found to 

have relative immunochemical potencies of 0.7 and 0.4 respectively at the C-terminus 

compared to the natural material. These values although slightly low, show that 

significant antibody binding has occurred and thus confirm the presence of the 

C-terminal amide. The lower value obtained for big gastrin is likely to be due to its 

larger size and thus its greater tendency to retain solvent molecules. This would lead 

to inaccurate weighing of the peptide and would be reflected in the potency obtained. 

Substance P was released from the solid support and the side chain protection 

removed by treatment with TFA, water, thioanisole and ethyl methyl sulphide for 3 

hours. The scavengers were removed from the crude peptide by passing it down a gel 

permeation column. The crude peptide was then purified to homogeneity through the 

use of cation exchange chromatography and semi-preparative HPLC. Cation 

exchange chromatography proved essential in this case as a significant amount of 

material was separated which was shown to be deficient in arginine. Since arginine is 

a charged amino acid, this technique was especially conducive to the separation of 

these two peptides. The material obtained from cation exchange was finally purified 

by semi-preparative HPLC and a 22% yield of the desired peptide was obtained. The 

authenticity of synthetic substance P was shown through characterisation with 

accurate mass FAB MS and amino acid analysis. This was further corroborated by 

showing that the synthetic material had an identical retention time to genuine 

substance P on analytical HPLC. Substance P was further characterised by 2 

dimensional 'H n.m.r. at 600 MHz. A complete assignment of the spin systems of 

each amino acid was made and no spurious peaks were present (figure 2.9). The 

methionine C-terminal amide protons were observed at 7.10 and 7.49 ppm in 

Substance P. 
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Figure 2.9 TOCSY spectrum of substance P showing a-NH correlations. 

Bombesin was side chain deprotected and removed from the solid support by 

treatment with TFA, water, thioanisole, ethyl methyl sulphide and 

N-acetyltryptophan. The crude material obtained was purified using gel permeation 

chromatography and semi-preparative HPLC. The purified material was obtained in 

21% yield and was shown to be homogeneous by analytical reverse phase HPLC. The 

purified synthetic bombesin was found to co-elute with the genuine material on 

analytical HPLC and was further characterised by FAB MS and amino acid analysis. 

A complete assignment of all resonances within the molecule was accomplished by 2 
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dimensional proton n.m.r. spectroscopy (TOCSY) at 600 MHz and no extra peaks 

were found. The methionine C-terminal amide protons in bombesin were observed at 

7.17 and 7.55 ppm. 

The synthesis of these peptides demonstrates the utility of solid support (46) for 

the facile generation of peptide amides under mild conditions. These peptide amides 

were all present in high proportion in the crude cleavage mixtures and were also 

isolated in good yield after several purification steps. The merit of this amide linker 

was particularly exemplified in the synthesis of the 34 amino acid peptide big gastrin 

which was synthesised and purified with few problems and was obtained in excellent 

yield. 

2.2. Solid phase synthesis of protected peptides. 

As a consequence of the results obtained for the release of peptide amides from 

the dibenzocycloheptadiene linker, it was envisaged that this linker could be adapted 

for use in the synthesis of protected peptides with a C-terminal free acid. This linker 

would require a hydroxyl group at the 5 position of the dibenzocycloheptadiene 

system instead of an amino function. Therefore in this case an ester bond would 

constitute the peptide-resin link in contrast to the Amide linkage used previously. The 

ester bond would be very much more acid sensitive than the corresponding amide 

bond and thus would have application in the synthesis of peptides with fully protected 

side chains. 

OH 

OCH2-resin 

(45) 
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Carbinol resin (45) which had already been synthesised as the immediate precursor of 

amide linker (46), was chosen for the synthesis of protected peptide acids. This resin 

was loaded with Fmoc-glycine by reaction with 4 equivalents of its preformed 

symmetrical anhydride along with a catalytic amount of NN-dimethylaminopyiidine 

(DMAP). The catalyst is required in this case as the 5 position hydroxyl is not 

sufficiently nucleophilic to react with the symmetrical anhydride. Solid support (45) 

was found to be 60% loaded with Fmoc-glycine after 3.5 hours of reaction. 

Fmoc-AA 	
O/ '1(CH3)2 

 C2 
O 	 Fmoc-AA- C - 

(3 	 ; '
j(CH3)2 

Fmoc-AA 

Resin-OH 

O 
II 

Fmoc-AA- C—O-resjn 

+ N3—N(CH3 )2  

Figure 2.10 Mechanism of catalytic action of DMAP. 

Treatment of the glycine loaded resin (58) with 10% acetic acid in DCM resulted 

in the amino acid being released quantitatively in less than 5 minutes. Release of the 

peptide from the solid support with this strength of acid would leave side chain 

protecting groups such as t -butyl and Boc intact and therefore this linker would be 

amenable to the synthesis of protected peptides to be used later in fragment 

condensation. As a result of the extreme acid sensitivity of the peptide-resin link one 

drawback however, is the limitation on the use of HOBt as a coupling reagent during 
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peptide synthesis with resin (45). HOBt is itself a mild acid and thus would effect 

premature release of the resin bound peptide during peptide synthesis, resulting in a 

undesirable low yield of peptide. As a measure of the stability of the peptide-resin 

link, the resin bound peptide H-Thr(r -Bu)-Ile-Phe-Ala-Gly (59) was synthesised 

using loaded resin (58). Through the use of HOBt active ester acylation and 

quantitative UV measurement of the deprotection effluent, it was found that the 

amount of resin bound material at the end of the synthesis was only half of that 

present at the beginning. The loss of this material was due to the acidic properties of 

HOBt, however this could be circumvented by buffering the reaction mixture with an 

appropriate base or avoiding the use of HOBt esters as activated species. 

The preliminary results obtained using the dibenzocycloheptadiene system as a 

linker in the solid phase synthesis of fully protected peptides indicate that the 

peptide-resin link is extremely acid sensitive and thus would have application in 

producing peptides to be used for fragment condensation. 

2.3. Solid phase synthesis of peptide hydrazides. 

23.1. Introduction. 

Due to the preliminary success of using the dibenzocycloheptadiene system as an 

amide linker, it remained to further develop this system as a means of generally 

derivatising the C-termini of peptides generated by the solid phase method. It was 

envisaged that from one particular intermediate compound, a number of different 

linkers could be synthesised and used in solid phase peptide synthesis. These would 

be used in the synthesis of C-terminal peptide amides, fully protected peptide free 

acids, C-terminal secondary amides and C-terminal hydrazides. Since initial 

experiments attempted in the synthesis of secondary amides had been unsuccessful, 
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the use of the dibenzocycloheptadiene system was extended firstly to the synthesis of 

C-terminal hydrazides on a solid support. Peptide hydrazides are useful in the 

coupling of peptide or protein fragments as they can be easily converted to their 

corresponding azides, species which are highly reactive and lead to an efficient 

acylation reaction with minimal racemisation. They may also prove to be of use in the 

conjugation of peptides to proteins and proteins to other proteins. 

As with the synthesis of peptide amides, the most facile route to the production of 

C-terminal hydrazides is through the generation of these compounds upon cleavage of 

the peptide-resin link. This method obviates the use of hydrazine which is a powerful 

nucleophile (exhibits the a effect) and thus can cause deleterious reactions upon 

contact with the peptide. It was also desirable to generate the peptide hydrazide under 

the mildest conditions possible thus introducing scope for leaving the side chain 

protecting groups intact. Although desirable, this feature would not be essential as a 

minimal protection strategy could be adopted in the condensation of fragments 

activated by the azide method. Once generated, the peptide hydrazide can be readily 

converted to the acyl azide, through use of the optimised conditions developed by 

Honzl and Rudinger82  involving the use of butyl nitrite and hydrogen chloride, which 

would then be coupled to the amino terminus of another peptide. 

The rate of acidolysis facilitated by the methoxy dibenzocycloheptadiene linker 

suggests the use of this type of system for the generation of peptide hydrazides while 

the utility of the hydrazide linker can be assessed through the synthesis of model 

peptides. 

23.2. Synthesis of the hydrazide linker. 

In order to functionalise the dibenzocycloheptadiene system so as to produce 

peptide hydrazides upon cleavage of the peptide- resin link, it would be necessary to 
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introduce a hydrazine derivative at the 5 position of the tricyclic system. This 

hydrazine derivative would have to incorporate a temporary blocking group (P) on 

one nitrogen as both nitrogens of hydrazine are nucleophilic and would be susceptible 

to acylation (60). 

acylate 

NH-NH-P 

0  z C 	
'000 

OCH2-resin 

(60) 

A reaction analogous to the one used for introduction of the amine into the 

C-terminal amide linker (46) was envisaged for functionalising carbinol resin (45) 

with a masked hydrazide. Carbinol resin (45) was reacted with : 

-butyloxycarbonyihydrazine (Boc hydrazide) in the presence of a catalytic amount of 

benzenesulphonic acid to generate hydrazide resin (61). This reaction was intially 

attempted in DMP and was shown to have been successful by the presence of 

urethane NH and carbonyl absobtions at 3410 and 1710 cm -1  respectively. The 

reaction was shown to be only partially complete after combustion analysis of the 

nitrogen content. It was found to go to completion however, if the reactants were 

heated under reflux in DCM overnight. 
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rmi 

OH 

' OCH2-resin 

(45) 

oc-GIy 	,. NH-Boc 
N 

OCH2-resin 

(62)  

NH2  

NH-NH-Boc 

Q  z 
OCH2-resin 

(61) 

Nitrogen analysis of resin (61) in this case gave the expected value for 100% loading 

of Boc hydrazide. In order to elongate a peptide from this resin, it was first necessary 

to acylate the free nitrogen of the hydrazide linker (61) using an activated amino acid. 

Due to the steric bulk of the Boc protection on the second nitrogen of the hydrazide, 

difficulty in loading the first amino acid was envisaged. To overcome this, 

Fmoc-glycine was introduced, activated as its preformed acid chloride. It was found 

that reaction of Fmoc-glycyl chloride in DCM with hydrazide resin (61) in the 

presence of pyridine gave 50% loading of the amino acid. When the acylation 

reaction was performed in DCM while being heated under reflux, the loading was 

found to be quantitative after 5 hours. This loaded resin (62) was now ready to be 

used in the synthesis of peptide hydrazides. 

At this point, it was not known which of two possible isomers had been formed 

during the reaction of the carbinol resin with Boc hydrazide. It was conceivable that 

either nitrogen of the protected hydrazine could react with the 5 position of the 

dibenzocycloheptadiene ring. This would be of no consequence in the generation of 
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the protected hydrazide as acidolytic cleavage of the peptide from both isomers 

would give the correct peptide hydrazide in each case. However, proper 

characterisation of the intermediates was believed to be essential in order to approach 

the problem of synthesising peptide hydrazides in a systematic fashion. In order to 

achieve this, two model compounds were synthesised and characterised to further 

elucidate the mechanism of the reaction between Boc hydrazide and carbinol resin 

(45). 

OH 

0  z C 	OCH3 ..BOC-FH NH2  
(63) 

NH-NH-CO-0-Bu 

Fmoc-NHNH 	

OCH3 

(64) 

OCH3  

(68) 

Boc hydrazide was reacted with methoxy carbinol (63), which was produced by 

LiBH4  reduction of ketone (38), using the same conditions as with the analogous 

solid phase reaction. Hydrazine derivative (64) was obtained in an excellent yield of 

99% after isolation by flash chromatography and was shown to have similar infrared 

absorbances to the hydrazide resin (61) at 3400 and 1710 cm -1 . It was intended to 

grow crystals of this compound in order to elucidate its structure by X-ray analysis 

72 



Discussion 

however it did not prove to be conducive to crystallisation. The analogous Fmoc 

protected hydrazine derivative was envisaged as being a crystalline compound and 

therefore its synthesis was attempted. In order to accomplish this, the requisite Fmoc 

protected hydrazine derivative first had to be synthesised. This was achieved by 

reacting N-(9-fluorenylmethoxycarbonyloxy)succinjmjde (65) with excess hydrazine 

hydrate. Fmoc hydrazine (66) was obtained in a yield of 61%. The low yield was 

probably due to a competing side reaction through 0 elimination of the starting 

material. Since hydrazine is a strong base, it can abstract the acidic proton of the 

fluorenyl system and thus generate the corresponding olefin, dibenzofulvene (67). 

	

~\ /Y z 

	
- 

0 

	(65) 

0000~ 

/\ 	 /\ 	
0 

	

(67) 	 0010)LNHNH2 (66) 

The Fmoc protected hydrazine (66) was then reacted with carbinol (63), with acid 

catalysis, to afford hydrazine derivative (68) in 80% yield. This compound failed to 

produce crystals of sufficient quality for X-ray analysis however its structure was 

solved by n.m.r. The two possible isomers which might have been produced during 

the formation of this compound are (68a) and (68b). 
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NH-NH-Fmoc 
	 H2N. 

, Fmoc 

(68a) 
	

(68b) 

Isomer (68a) would have one proton on each of the two hydrazine nitrogens and these 

would be expected to have markedly different chemical shifts. Isomer (68b) would 

have two equivalent protons on one nitrogen of the hydrazine. 'H n.m.r. at 80 MHz of 

hydrazine derivative (68) showed the presence of two non-equivalent protons which 

both disappeared upon addition of deuterium oxide to the n.m.r. sample. This 

supported the structure as isomer (68a). 

2.3.3. Cleavage of the peptide-resin link. 

Initial results showed that in 1% trifluoroacetic acid in DCM, 

Fmoc-glycylhydrazide was released from the loaded solid support (62) in 64% yield 

after 90 minutes. Treatment of the resin bound amino acid with 100% trifluoroacetic 

acid however, resulted in instantaneous quantitative release of the protected amino 

acid from the resin. 

Although the peptide-resin link is labile to 1% TFA/DCM, a substantial amount 

of time is required for complete release of the peptide hydrazide. These conditions 

would not however, be suitable for the synthesis of maximally protected peptide 

fragments as partial loss of side chain protecting groups would undoubtedly result. 

Use of the methoxy dibenzocycloheptatriene system would introduce greater acid 

lability to the peptide-resin link and would allow the synthesis of maximally 
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protected fragments. In order to accomplish this however, a more acid sensitive group 

would have to be used for the protection of the second nitrogen of the hydrazine 

derivative. One such blocking group that could be used is biphenyl 

isopropyloxycarbonyl (69) or Bpoc.98  

CH3  
I 	0 

if 0-0-C-O-C- 
I 

 

(69) 	
CH3 

Another possible protecting group would be the p -toluenesulphonyl or tosyl group. 

This would be stable to mild acid however it may eliminate during the conversion of 

the protected hydrazide to the azide and thus would prove useful. 

0 
II 

R—C— NH— NH— S02-Ar 

N0+ 

0 
11 

A— 	NH— N— S02-Ar 

N=0 

1 
RCNçN= NyS02.Ar 

H4 

0 
II 	- 	+ 

R—C—N—NM N 

Figure 2.11 Proposed mechanism for azide generation with tosyl protection. 
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In the synthesis of minimally protected fragments, hydrazide linker (61) would prove 

very useful as most side chain protection could be removed. There would be a need 

however, for a lysine blocking group that was stable under the conditions used for 

side chain and Ncl protecting group removal i.e. it would be stable to piperidine and to 

trifluoroacetic acid. This would enable the protection of lysine while leaving other 

side chains free, thus enhancing the solubility of peptide fragments in aqueous and 

organic systems. 

23.4. Synthesis of C-terminal peptide hydrazides. 

Using solid support (61) loaded with Fmoc-glycine, peptide synthesis was 

accomplished using single coupling and HOBt activation in the synthesis of the 

pentapeptide Ubiquitin 43-47 (70). 

H-Leu-Ile-Phe-Ala-GIy-NH-NH 2  (70) 

Deprotection and capping cycles were as delineated in the solid phase synthesis of 

peptide amides. The completed peptide was released from the solid support and the 

hydrazide protection (Boc) removed by treatment with trifluoroacetic acid, water and 

anisole for 1 hour. In a refinement of the protocol for isolation of the crude peptide 

after removal from the solid support, an extraction procedure was used as an 

alternative to precipitation with diethyl ether. For this method, chloroform was added 

to a concentrate of the cleavage mixture, followed by 10% acetic acid in H 20. The 

biphasic system was then stirred for 0.5 hours and then the aqueous layer was 

separated and lyophilised. This procedure was effective in removing the scavengers 

and in leaving the crude peptide in a more soluble form. The crude material obtained 

was then purified to homogeneity through the use of semi-preparative HPLC. This 

afforded the peptide hydrazide in 25% yield and its structure was confirmed by 

76 



Discussion 

accurate mass FAB MS to within 1 part per million. Amino acid analysis also 

confirmed the amino acid composition. The crude mixture obtained from the resin 

was examined for the presence of a peptide with a free acid at the C-terminus. This 

could arise from the incomplete reaction of Boc hydrazide with the carbinol resin 

(45). The quantity of free acid peptide could be observed through the use of reverse 

phase analytical HPLC however it was found to be a minuscule amount. This was 

accomplished by comparing the retention time of the authentic free acid peptide with 

that obtained from the crude peptide hydrazide. 

As the synthesis of this initial peptide hydrazide proved successful, the 

methodology was further exemplified in the synthesis of the 10 residue peptide 

ubiquitin 67-76 (71). 

H-Leu-His-Leu-Val-Leu-Ag-LeuAgGlyly 2  (71) 

The synthesis of this peptide was achieved using the standard methodology of 

preformed symmetrical anhydride/HOBt activation. The completed peptide was then 

released from the solid support and the side chain and hydrazide protection removed 

by treatment with trifluoroacetic acid, H20, anisole and thioanisole for 3 hours at 

room temperature. The conditions used were those previously optimised for synthetic 

ubiquitin.99  The crude peptide was isolated using the extraction procedure previously 

outlined for ubiquitin 43-47 (70). 

The crude mixture obtained was then examined by analytical HPLC and found to 

have two major components (A and B) in the ratio of approximately 3:2 (figure 2.12). 

These were then separated by semi-preparative HPLC and then analysed using a 

variety of techniques. 
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Both components had identical amino acid analyses and this showed the amino acid 

composition for both to be as expected for the desired hydrazide peptide. Each 

component gave the requisite exact mass of 1147.75390 for C51145NO10  and the 

primary sequence of both was confirmed by Edman degradation. 

Figure 2.12 Analytical HPLC of crude decapeptide hydrazide (71). 

As these two components were indistinguishable by these analytical techniques, it 

was assumed that they must be isomers of each other. Both compounds were 

examined by proton n.m.r. at 600 MHz and found to differ markedly in one region of 

the spectrum. The resonances of all the amino acid spin systems for both components 

were assigned by the 2 dimensional technique, total correlation spectroscopy 

(TOCSY). Component A (Rt  11.2 mm.) was found to have unusual values for the y 
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Figure 2.13 1D 1H n.m.r. spectrum of components A & B, arrows indicate unusual 

leucine resonances. 
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hydrogens of leucines 67 and 69 i.e. the two leucines on either side of histidine 68. 

Component B (Rt  12.2 mm.) was found to have normal values for the y protons of 

these two leucines. The methyl region (8 protons) of component A were also 

significantly different from those of component B. In addition to this, the values for 

the 2H and 4H of the imidazole ring of histidine differed by about 0.1 ppm between 

the two compounds. All other resonances for the two peptides were comparable. 

These results indicate a difference in the histidine residue in component A causing a 

different enviroment for the two leucines on either side of it. 

Enzymatic hydrolysis of the two peptides using leucine aminopeptidase 

apparently showed the presence of an unnatural feature in component A. Amino acid 

analysis of the enzymatic hydrolysis mixture of this component showed the almost 

complete absence of histidine and valine and a lower amount of leucine than 

expected. Analysis of the hydrolysate for component B indicated the presence of all 

amino acids however leucine and arginine were slightly higher than expected. These 

results appear to indicate the presence of an unnatural characteristic in peptide A as it 

was not fully recognised by the enzyme. The optical rotations for the two peptides 

were comparable with the values -49.4 and -56.7 being obtained respectively. 

ROESY n.ms spectroscopy, in which through-space interactions of hydrogens can be 

detected (i.e. when two hydrogens are close in space, a signal is produced) showed 

that in component A the a CH of leucine 67 was closer in space to the a NH of 

histidine 68 than in component B. 

Although no concrete predication can be made at present about the difference 

between components A and B, several theories can be postulated. One suggestion is 

that racemisation of histidine has occurred since this residue is prone to this. The fact 

that component A is not fully recognised by the enzyme suggests the possibility of a 

D amino acid being present. The presence of the unusual y resonances for leucines 67 
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and 69 in peptide A indicates that they are in a different enviroment for those in 

peptide B. This could be explained by the presence of D-histidine as the different 

stereochemistry of this amino acid would place the leucines in a different enviroment 

and possibly result in different chemical shifts for the y  and B protons of these 

residues. Although the D isomer was present in greater proportion than the L isomer 

(if complete racemisation is the correct explanation) then this could have resulted 

from a faster rate of acylation of leucine 67 with the D histidine than the L histidine. 

One other possible explanation for the formation of two isomers during synthesis 

is the presence of a cis amide bond in one component Since peptide bonds are planar 

due to their partial double bond character, it is possible for them to exist in trans (Z) 

or cis (E) form. The majority of peptide bonds exist in the trans form which is of 

lower energy, however cis amide bonds do occur infrequently especially with proline 

residues. The existence of a cis amide bond between leucine 67 and hisddine 68 

could explain the difference between the two peptides. The cis amide bond may not 

have been recognised by the enzyme as it is an unusual occurrence in nature and thus 

it may be present in component A. The cis amide bond would also orient the histidine 

differently in relation to leucines 67 and 69 and could explain the unusual resonances 

observed in the proton n.m.r. of component A. Components A and B would be 

identical except for the presence of this bond and thus would have identical amino 

acid analyses and mass spectra. The presence of the cis amide bond in component A 

may also be indicated by the strong signal obtained for the leucine a CH to histidine 

a NH correlation in the ROESY spectrum. 

An n.m.r. investigation of a 17 residue peptide amide by Peggion et aL 100  showed 

the presence of a cis amide bond between the first two amino acids where the first 

three amino acids were Ile-Lys-Ile. The n.m.r. investigation of this peptide was 

carried out in the presence of sodium dodecyl sulphate micelles as a mimic for the 
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hydrophobic nature of a biological membrane. The cis amide bond however was not 

observed in the absence of the micelles. Similarity can be seen between the 

conditions for observance of the cis amide in this peptide and those in the ubiquitin 

fragment. A certain amount of homology can be seen between the first three amino 

acids in both peptides i.e. Leu-His-Leu is similar to Ile-Lys-Ile in that a basic amino 

acid is sandwiched between two bulky hydrophobic residues. Although components 

A and B were not studied in the presence of micelles, the sequence is in itself very 

hydrophobic and thus hydrophobic interactions may stabilise an otherwise 

unfavourable situation such as a cis amide bond. In addition to this, steric constraints 

may favour the existence of the E rather than the Z form. One piece of evidence 

pointing against the presence of a cis amide bond was discovered again through the 

use of proton n.m.r. Variable temperature 1 dimensional experiments between 30 and 

70°C of components A and B showed no interconversion of the two isomers which 

would probably be expected as energy is put into the system. These experiments did 

however show the appearance of two sets of histidine resonances in component A as 

the temperature was increased and which coalesced upon cooling of the sample. 

Due to the lack of further evidence, it was not possible to conclude the exact 

nature of the two isomers which were formed during the synthesis. Further n.m.r. 

experiments in different solvents may give greater corroboration to one of these two 

conjectures or give rise to a different and more appropriate explanation for the 

unusual occurrence observed. 

Despite the occurrence of these two isomeric peptides, it was confirmed by FAB 

MS that both were the required peptide hydrazide. Studies in this laboratory indicate 

that the occurrence of these two isomers is a consequence of the peptide sequence and 

not of the presence of the C-terminal hydrazide. 10 ' 

The synthesis of these two peptides exemplifies the use of hydrazide resin (61) in 
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the solid phase synthesis of C-terminal peptide hydrazides. Once the hydrazide has 

been generated, it simply remains to convert this to the acyl azide in order to actuate 

the condensation of the fragment with another peptide or protein. 
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Chapter 3. 

EXPERIMENTAL 

3.1. Notes. 

All amino acid derivatives were purchased from Novabiochem and were of the 

L-configuration. Melting points were determined on an electrically heated Buchi 510 

melting point apparatus in open capillary tubes and are uncorrected. Optical rotations 

were measured in a 10 cm cell using a AA1000 polarimeter. Thin layer 

chromatography (t.l.c.) was performed on commercially available plastic sheets 

precoated with silica gel 60 Gf-254 (Merck). Solvent systems are as quoted in the 

text. Detection of compounds was carried out using an appropriate combination of 

UV absorption at 254 run, iodine vapour, potassium permanganate and ninhydrin 

sprays. High pressure liquid chromatography (HPLC) was carried out mainly on an 

Applied Biosystems system ie. 2 x 1406A solvent delivery systems, a 1480A 

injector/mixer, and a 1783A detector/programmer. Analytical and semi-preparative 

separations were accomplished using the appropriate conditions as indicated in the 

text. Amino acid analysis was performed on an LKB 4151 amino acid analyser 

subsequent to Carius tube hydrolysis with constant boiling hydrochloric acid at 110°C 

for 18 to 36 hours. Peptide sequencing was performed by Welmet on an Applied 

Biosystems 477A protein sequencer. Infrared spectra were recorded between 4000 

and 600 cm-1  using a Perkin Elmer 781 spectrophotometer either in solution (CH20 2) 

or as a KBr disc. Polystyrene was used as the standard (1603 cm -1). Ultraviolet 

spectra were obtained using a Varian Cary 210 spectrophotometer and samples were 

dissolved in the appropriate solvent. High and low resolution fast atom bombardment 

(FAB) spectra were obtained on a Kratos MS5OTC machine. Proton n.m.r. spectra 

were obtained from a Bruker WP80 (80 MHz), a WP200 (200 MHz), a WP360 (360 
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MHz) or a Varian VXR 600 (600 MHz) machine in the solvent indicated using 

tetramethylsilane as the external standard (8 = 0.000). Carbon-13 n.m.r. spectra were 

recorded on a Bruker WP200 (50.3 MHz) or a WP360 (90.6 MHz) machine in the 

indicated solvent relative to TMS set at zero. Elemental analyses were performed on 

a Carlo Erba elemental analyser model 1106. All solvents used were either distilled 

before use or were of analytical grade (as supplied). The following solvents were 

dried prior to use using the drying agent indicated in parentheses: Benzene (sodium 

wire), dichioromethane (calcium hydride), toluene (sodium wire) and tetrahydrofuran 

(sodium with benzophenone indicator). 
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3.2. Experimental. 

Methyl 2-bromomethylbenzoate. (31) 

Methyl 2-methylbenzoate (5.0 g, 22.0 mmol) was dissolved in CC14  (50 ml) and to 

this was added N-bromosuccinimide (6.5 g, 37.0 mmol) and dibenzoylperoxide (0.05 

g, 0.21 mmol). The solution was then heated under reflux and irradiated for two hours 

using a 500 W lamp. The succinimide precipitate was then filtered off and the filtrate 

concentrated in vacuo to give the required compound as a yellow oil. This was then 

used without further purification. (crude yield 9.8 g): Vm  (CH202) 1720 (C=O), 

610 cm (C-Br); 8H (80 MHz, CDC1 3) 8.2 - 7.2 (4H, m, aromatic CH's), 4.9 (2H, s, 

li2Br), 3.85 (3H, s, -CO2CH3); m/z (El) 228, 149. 

2-(Methoxvcarbonvl)benzyltriphenylphosphonium bromide. (32) 

The crude product obtained from bromination (31) (9.78 g, 33.0 mmol) was dissolved 

in toluene (50 ml) together with triphenylphosphine (8.66 g, 33.0 mmol) and the 

mixture was stirred at room temperature overnight. The resulting precipitate was 

filtered off, washed with toluene and recrystallised from DCM/toluene to give the 

required compound as a white crystalline solid (11.8 g, 73%): m.p. 230-235°C; t.l.c 

(10% MeOH/CHC13) RI 0.26; Found: C, 66.0; H, 4.9. CaIc. for C 27H02PBr: C, 

66.0; H, 4.9%; v 	(CH2C12) 1715 (C=O), 1440 (CH 2), 1110 cm (C-O); 

(EtOH) 275, 268 rim (e 2550 dm3  mol4  cm-1 ), 226 nm (e 3.79x104  dm3  mol 1  CM-1 ); 

8H (80 MHz, CDC13) 7.85-7.25 (19H, m, aromatic CH's), 5.9 & 5.75 (2H, d, J 15 Hz, 

benzylic CE2),  3.4 (3H, s, CO2C113); ö  (50 MHz, CDC13) 165(-002CH3), 134-116 

(aromatic C's), 51 (-COQH3), 27-28 (-012PPh3); m/z (FAR) 411, 379, 315, 277, 

262. 
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2-Methoxycarbonyl-3 '-methoxystilbene. (33) 

2-(Methoxycarbonyl)benzyliriphenylphosphonium bromide (10 g, 20.0 mmol) was 

dissolved in THF (75 ml) under an atmosphere of dry nitrogen. The reaction mixture 

was then cooled to -78°C in a CO 2/acetone bath and potassium tertiary butoxide (2.28 

g, 20.0 mmol) was added, after which the solution turned deep yellow in colour. The 

temperature was then maintained at -78°C for 1.5 h. while stirring, after which time m 

-anisaldehyde (2.88 g, 21.0 mmol) in THF (25 ml) was slowly added. The solution 

was then stirred at -78 0C for a further 0.5 h. and then allowed to warm to room 

temperature. After stirring overnight, the solvent was then removed in vacuo , the 

triphenyiphosphine oxide precipitated with ether and filtered off, and the sample 

concentrated to leave the required product as a yellow oil. The crude product was 

then purified using flash chromatography (25% ether/n-hexane) to give stilbene (33) 

as a mixture of cis and trans isomers (4.56 g, 85%) : tIc. (25% ether/n-hexane) RI 

0.25; Found: C, 76.0; H, 5.9. CaIc. for C, 7H1603: C, 76.1; H, 6.0 %; v, (CH 2C12) 

1720 (C=O), 1600 & 1580 (aromatic C=C), 1135 & 1080 cm:' (C-O); 8H  (200 MHz, 

CDC13) 8.05-6.6(10H, .m, aromatic CH's + -CU=CH-), 3.9 (3H, S, -0O2CH3), 3.6 

(3H, s, -OCH3); 8C  (50 MHz, CDC13) 167 (-Q02CH3), 160 (aromatic Q-OCH3), 

139-112 (aromatic C's), 122 (cis -CH=CH-), 119 (trans -QH=CH-), 55 (-O(H3), 52 

(-COH3); m/z (El) 268,237, 209, 194, 165. 

Methyl 2-(3 '-methoxyphenylethyl)benzoate. (36) 

The above compound (33) (2.5 g, 9.3 mmol) was dissolved in methanol (25 ml) and 

hydrogenated in the presence of 10% palladium on charcoal (0.25 g). After 4 h. the 

catalyst was filtered off through celite and the solution was concentrated in vacuo to 

leave a colourless oil. This was then purified using flash chromatography (25% 

ether/n-hexane) to give the title compound (2.4 g, 90%): t.1.c. (25% ether/n-hexane) 

RI 0.26; Found: C, 75.7; H, 6.8; CaIc. for C17H1803: C, 75.5; H, 6.7%; v 
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(CH2Cl2) 1720 (C=O), 1600 & 1580 (aromatic C=C), 1490 cnrt (CH2); ? mu.  (EtOH) 

280 nm (e 3.16x103  dm3  mold cm-1) 273 rim (c 2.89x103  dm3  mo! 1  cm-1); 8H  (80 

MHz, CDC13) 8.0-6.7 (8H, m, aromatic CH's), 3.9 (3H, s, -0O 2CH3), 3.8 (3H, s, 

-0C113), 3.4-2.8 (4H, m, -CH2x2); 8C  (50 MHz, CDCJ3) 167 (-Q02CH3), 159 

(aromatic C-OCH 3) 143-111 (aromatic C's), 55 (-CO2QH3) , 51 (-OQH3), 38, 36 

(-CH2x2); m/z (El) 270, 238, 149, 121. 

2-(3 '-Methoxyphenylethyl)benzoic acid. (37) 

Methyl-2-(3'-methoxyphenylethyl)benzoate (36) (2.5 g, 9.2 mmol) was dissolved in 

MeOH/1'20 (4:1, 50 ml) along with 2 M NaOH (5 ml, 10.0 mmol) and heated under 

reflux for 2 h. The methanol was then removed in vacuo and the remaining aqueous 

solution washed with ether (2x25 ml). The solution was then acidified to pHi with 2 

M HC1 and extracted with ethyl acetate (2x50 ml). The organic layer was then dried 

over MgSO4  and concentrated in vacuo to leave the required compound as a white 

solid (2.3 g, 97%): m.p. 118-120 °C (lit., 102  120-121.5 °C); t.Lc. (25% 

ether/n-hexane) RI 0.10; Found: C, 75.3; H, 6.4; Calc. for C16H1603: C, 75.0; H, 

6.3%; Vm  (CH2C12) 3500 (OH), 1690 (C=O), 1605 (aromatic C=C), 1490 cm -1 ; 

(MeOH) 286 nm (e 3.85x103  dm3  mol' cm-1); S,., (80 MHz, CDC13) 10.75 (1H, 

s, -CO011), 8.2-6.7 (8H, m, aromatic CH's), 3.75 (3H, s, -OCfl 3), 3.5-2.75 (4H, m, 

-C112x2); 8c (50 MHz, CDC13) 173 (-COOH), 159 (aromatic C-OCH 3), 144-111 

(aromatic C's), 55 (-OCH308 & 37 (-912x2); m/z (El) 256, 238, 121. 

2-Methoxydibenzocycloheptadien-5-one. (38) 

This compound was prepared by the method of Gregori et al. 1  

The above compound (37) (1.0 g, 3.9 mmol) and polyphosphoric acid (11 g) were 

mixed and heated to 120°C while stirring mechanically. The mixture was maintained 

at 120 °C for 2 h. with stirring and then allowed to cool. Distilled water (50 ml) was 
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added and the aqueous solution was extracted with ether (2x50 ml). The organic layer 

was then washed with 10% Na2CO3  (2x50 ml), dried over MgSO4  and concentrated 

in vacuo to leave a bright yellow oil. The oil was then purified using dry flash 

chromatography (25% ether/n-hexane) and recrystallised from ether/n-hexane to give 

the title compound as a pale yellow crystalline solid (0.69 g, 74%): m.p. 74.0-75.0°C 

(lit.,102  74.5-76.0°C); t.l.c. (25% ether/n-hexane) RI 0.21; Found: C, 80.8; H, 6.0; 

Caic. for C16H1402: C, 80.6; H, 5.9%; v 	(CH2C12) 1640 (C=O), 16W. (aromatic 

C=C), 1115 cm -1  (C-O); 	(MeOH) 300 nm (e 1.49xlO4  dm3  moi1 CM-1); 8H (360 

MHz, CDC13) 8.17-8.14 (1H, d, 3J 8.8 Hz, Ar4), 8.01-7.99 (1H, q, 3J 7.8 Hz, 4J 1.4 

Hz, Ar6), 7.43-7.29 (2H, m, Ar7 + Ar 8), 7.21-7.19 (1H, q, 3J 7.5 Hz, 4J 1.0 Hz, Ar9), 

6.87-6.83 (1H, q, 3J 8.8 Hz, 4J 2.6 Hz, Ar3), 6.70-6.69 (1H, d, 4J 2.6 Hz, An), 3.85 

(3H, s, -OCH3), 3.17 (4H, s, -C.U2x2); 6c (50 MHz, CDC13) 193 (=O), 162 

(aromatic C2),145-112 (aromatic C's), 55 (-OCH3), 35 & 34 (-012x2); m/z (El) 238, 

210, 195, 165. 

2-Methoxydibenzocvcloheptadien-5-ol (63) 

Ketone (38) (0.5 g, 2.1 mmol) was dissolved in THF (15 ml) and L1BH 4  (0.18 g, 8.4 

mmol) added. The reaction mixture was then heated under reflux in an atmosphere of 

nitrogen for 1.5 h. The solution was then cooled to 0°C in an ice/salt bath and 

methanol (10 ml) followed by acetone (10 ml) were added very slowly with stirring. 

The mixture was then concentrated in vacuo , the residue was taken up in ethyl 

acetate (50 ml) and washed with water (3x25 ml). The organic layer was then dried 

over MgSO4  and concentrated in vacuo to leave a clear oil. This was then triturated 

with n-hexane and cooled to give the title compound as a white crystalline solid (0.38 

g, 75%): m.p. 78-80°C; t.l.c. (MeOH/CHC1 3/AcOH 10:90:0.05) RI 0.64; Found: C, 

80.1; H, 6.7; caic. for C 16H1602: C, 80.0; H, 6.7%; v (KBr disc) 3350 (OH), 

2940-2840 (CH2), 1615 (C=C), 1255 & 1050 cm -1  (C-O); %max.  (EtOH) 275 nm (e = 
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3033 dm3  mo1 1  cm-1); 8H  (80 MHz, CDC13) 7.45-6.62 (7H, m, aromatic CH's), 5.77 

(1H, s, Ca), 3.77 (3H, s, -OCH3), 3.67-2.83 (4H, m, -CH 2x2), 2.44 (1H, ci, -OE);  8C 
 

(50 MHz, CDC13) 159 (aromatic C2), 141-111 (aromatic C's), 77 (-H), 55 (-OQH3), 

33 & 32 (-CH2x2); m/z (El) 240, 223, 209, 179, 163. 

2-Hydroxydibenzocycloheptadjen-5-one. (42) 

This compound was prepared by the general method of Pfeiffer. 103  

2-Methoxydibenzocycloheptadien-5-one (38) (2.0 g, 4.2 mmol) was dissolved in 

benzene (20 ml) and anhydrous aluminium bromide (6.0 g, 22.0 mmol) in benzene 

(20 ml) was added. The reaction mixture was then heated under reflux in an 

atmosphere of nitrogen for 4 h. The solution was then cooled to 5°C in an ice bath 

and 2 M HC1 (20 ml) was added slowly with mixing. The aqueous and organic layers 

were then separated and the aqueous layer extracted with ether (2x25 ml). The ether 

and benzene solutions were then combined and extracted with 2 M NaOH (2x20 ml). 

The aqueous layer was then acidified to pH 1 with 2 M HC1 (40 ml) and extracted 

with ether (3x50 ml). The ethereal layer was then dried over MgSO 4  and concentrated 

in vacuo to leave a brown oil. This was then triturated with ether and recrystallised 

from ether/n-hexane to give the title compound as a white crystalline solid (1.76 g, 

94%): m.p. 141.0-141.5°C; t.l.c. (1:1 ether/n- hexane) Rf 0.096; Found: C, 80.5; H, 

5.4; Caic. for C 15H1202: C, 80.3; H, 5.4%; Vm  (CH2C12) 3560 (OH), 1640 (C=O), 

1600 (C=C), 1190 cm (C-O); A. (MeOH) 305 rim (e 1.28x10 4  dm3  mol' cm); 

8I1 (80 MHz, CDC13) 8.14-6.64 (7H, m, aromatic CH's), 6.4-6.1 (1H, s, -011),  3.12 

(-(ZH2x2); 8  (50 MHz, (CD3)2C0) 192 (=O), 161 (aromatic C2), 145-113 

(aromatic C's), 35 & 34 (-CH 2x2); m/z (El) 224, 196, 176, 165. 
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2-(Benzvloxycarbonylmethoxy)dibenzocycloheptadien5one. (48) 

2-Hydroxydibenzocycloheptadien-5-one (3.0 g, 13.4 mmol) was added to acetone 

(100 ml) along with K2CO3  (18.5 g, 134 mmol) and benzyl-2-bromoacetate (3.09 g, 

13.5 mmol). The mixture was then stirred at room temperature overnight The excess 

K2CO3  was then removed by filtration and the filtrate was concentrated in vacuo. 

The residue was then taken up in ethyl acetate (50 ml) and washed with saturated 

Na2CO3  (3x25m1) followed by water (1x25 ml). The organic layer was then dried 

over MgSO4  and the solvent was removed in vacuo to leave a clear oil. This was then 

triturated with ether to give the title compound as a white solid (4.78 g, 96%): m.p. 

81.5-82.0°C; t.l.c. (1:1 hexane/ether) RI = 0.21; Found: C, 77.7; H, 5.4; Calc. for 

CH2004: C, 77.4; H, 5.4%; v 	(CH2C12) 1760 (C=O ester), 1640 (C=O ketone), 

1600 & 1490 (C=C), 1190 & 1120 cm -1  (C-O); k 	(MeOH) 295 nm (e = 1.57x104  

dm3  moi 1  cm-1); 8H  (80 MHz, CDC13) 8.16-6.66 (12H, m, aromatic CH's), 5.22 (2H, 

s, benzyl CE!2), 4.69 (2H, s, -OCH2), 3.11 (4H, s, -qj2x2); 8c  (90 MHz, CDC13) 193 

(C=O), 168 (aromatic C2), 161-112 (aromatic C's), 67 & 65 (-OCH2  & benzyl CH2), 

35 & 34 (-CH2x2); m/z (El) 372, 237, 224, 207, 178. 

2-(Carboxymethyloxy)dibenzocycloheytadien-5-one. (49) 

Ketone (48) (3.3 g, 8.8 mmol) was dissolved in MeOH (40 ml) along with 2 M NaOH 

(8.8 ml, 17.6 mmol) and heated under reflux for 1 h. The methanol was then 

removed in vacuo and the solution was acidified to pHi with 2 M HC1. The aqueous 

layer was then extracted with ethyl acetate (2x50 ml). The organic layer was then 

dried over MgSO4  and removed in vacuo to leave the title compound as a white solid 

(2.41 g, 97%): m.p. 164-165°C; t.l.c. (n-butanol/AcOH/H 20 7:2:1) RI 0.66; Found: 

C, 72.2; H, 5.0; Calc. for C 17H1404: C, 72.3; H, 5.0%; v1  (KBr disc) 2920 (CH2), 

1730 (C=O acid), 1645 (C=O ketone), 1600 (C=C), 1115 cm -' (C-O); X.. (MeOH) 

295 nm (e 1.23x104  din3  mol 1  cm -1); 8 H  (80 MHz, D6  DMSO) 8.10-6.85 (7H, m, 
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aromatic CH's), 4.8 (2H, s, -OCH 2), 3.15 (4H, s, -C}12x2); 6c (50 MHz, D6  DMSO) 

192 (C=O ketone), 170 (C=O acid), 161 (aromatic C2), 145-113 (aromatic C's), 65 

(-OQH2), 35 & 34 (-0H2x2); m/z (FAB) 283. 

2-(Benzylaminocarbonylmethoxy)dibenzocycloheptadien-5-one. (50) 

Carboxylic acid (49) (1.0 g, 3.5 mmol) was dissolved in DCM (1O ml) along with 

SOC12  (10 ml, 137 mmol) under nitrogen. The reaction mixture was stirred overnight 

at room temperature and then concentrated under high vacuum. THF (20 ml) was 

then added to the residue along with benzylamine (0.77 g, 7.2 mmol) and the mixture 

was stirred overnight at room temperature under nitrogen. The solvent was then 

removed in vacuo and the resulting solid filtered off. This was then washed with ether 

and reciystallised from MeOH to give the title compound as a white solid (1.3 g, 

99%): m.p. 146-147°C; t.l.c. (MeOH/CHC1 3/AcOH 10:90:0.05) RI 0.65; Found: C, 

77.4; H, 5.7; N, 3.9; Calc.for CH21NO3: C, 77.6; H, 5.7; N, 3.8%, Vm  (KBr disc) 

3300 (NH), 2940 (Cl2), 1660 (C=O amide I), 1635 (C=O ketone), 1560 (C=O amide 

II), 1290 cm -1  (C-O); kmax.  (MeOH) 290 rim (e 1.49x104  dm3  mol1 CM-1); &H (80 

MHz, CDC13) 8.16-6.67 (13H, m, aromatic CH's & NU), 4.57 & 4.49 (4H, d+s, 

benzyl CH2  + -0Cjj2), 3.13 (4H, s, -CH2x2); 8C  (50 MHz, CDC13) 193 (C=O 

ketone), 167 (C=() amide), 160 (aromatic C2), 145-113 (aromatic C's), 67 (-OH 2), 

43 (benzyl 012), 35 & 34 (-QH2x2); rn/z (FAB) 371, 256, 217. 

2-(Benzvlaminocarbonylmethoxy)dibenzocvcloheptadien-5-ol. (51) 

Amide (50) (0.10 g, 0.27 mmol) was dissolved in THF (15 ml) and LiBH4  (0.023 g, 

1.1 mmol) was added in one portion. The reaction mixture was then heated under 

reflux under nitrogen for lh. and then was cooled to 0°C with an ice/salt bath. MeOH 

(5 ml) followed by acetone (5 ml) were added very slowly with stirring. The solvents 

were then removed in vacuo and the residue was taken up in ethyl acetate (35 ml). 
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This was then washed with water (3x25 ml) and then was dried over MgSO4. The 

organic layer was then concentrated in vacuo to leave a clear oil which upon standing 

crystallised. This was then filtered off and washed with n-hexane to give the title 

compound as a white solid (0.05 g, 50%): m.p. 128-129°C; t.l.c. 

(MeOH/CHC13/AcOH 10:90:0.05) RI 0.5; v. (KBr disc) 3420 (OH), 2940 (CH2), 

1640 (C=O amide I), 1550 (C=O amide II), 1250 & 1075 cm-1  (C-O); 8H  (80 tvIHz, 

CDC13) 7.48-6.58 (13H, m, aromatic CH's + Nfl), 5.84 (1H, s, Cjj), 4.52 & 4.42 (4H, 

s+d, -0CH2  + benzyl Cfl2), 3.50-2.8 1 (5H, m, -Qj2x2 + Ofi); 8c  (50 MHz, CDC13) 

168 (C=O amide), 156 (aromatic C2), 141-111 (aromatic C's), 76 (-QH), 67 (-OQH2), 

43 (benzyl CHO, 33 & 32 (-CH2x2); m/z (El) 373, 356, 296, 225, 149. 

2-Copoly(styrene- 1 %-divinylbenzenemethoxydibenzocycloheptadien-5-one. (40) 

2-Hydroxydibenzocycloheptadien-5-one (5.0 g, 22.3 mmol) was dissolved in t 

-BuOH/H20 (1:1, 50 ml) and caesium hydroxide (3.75 g, 22.0 mmol) was added. The 

solution was then stirred for 10 mm. and the t -BuOH was removed in vacuo . The 

caesium salt was then dried by azeotropic distillation with pyridine (2x100 ml) and 

DMF (3x100 ml). The salt was then dissolved in DMF (50 ml) and added to 

chioromethylpolystyrene (CMP) (1.106 mmol/g; 5.38 g, 6.0 mmol) previously 

swollen in DMF (25 ml). The reaction mixture was then stirred mechanically at 60°C 

for 4 days. After this time, the resin was filtered off, washed with copious quantities 

of DMF, i -PiOH, H20, DMF and finally i -PrOH, and dried in vacuo to give the title 

compound as an off-white solid (excess starting material was recovered for reuse) 

(6.48 g, 92%): v (KBr disc) 3100- 3000 (aromatic CH stretch), 3000-2840 (CH 2  

stretch), 1640 (C=O), 1610-1560, 1490 (C=C), 1450 cm -1  (CH2); Cl analysis, Found: 

less than 0.3%; Expected for CMP: 4.2% 
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2-Copolv(styrene- 1 %-divinvlbenzene)methoxydibenzocycloheptadien-5-ol. (45) 

THF (100 ml) was added to the above compound (40) (0.91 mmol/g; 5.0 g, 4.5 mmol) 

along with LIBH4  (0.75 g, 34.4 mmol) and the mixture was heated at reflux for 1 h. 

under nitrogen while stirring mechanically. The reaction mixture was then cooled in 

an ice/ salt bath and MeOH (10 ml) and acetone (10 ml) were added slowly with 

mixing. The resin was then filtered off, washed with copious amounts of MeOH, 

0.001 M HC1, and MeOH, and dried in vacuo to give the title compound as white 

solid (4.95 g): Vm  (KBr disc) 3560 & 3450 (OH), 3100-2980 (aromatic CH), 

2980-2840 (CH2), 1600,1585 & 1490 (C=C), 1450 cm (cH2). 

2-Copolv(styrene- 1 %-divinvlbenzene)methoxy-5-(9'-fluorenylmethoxycarbonyl 

amino)dibenzocycloheptadiene. (46) 

DMF (100 ml) was added to the above compound (45) (0.91 mmol/g; 5.0 g, 4.5 

mmol) along with 9-fluorenylmethylcarbamate (prepared by the method of 

Carpino'°4) (4.0 g, 16.7 mmol) and benzenesulphonic acid (0.15 g, 0.95 mmol) and 

the reaction mixture was stirred mechanically for 6 h. under an atmosphere of 

nitrogen. The resin was then filtered off, washed with copious amounts of DMF & 

DCM, and dried in vacuo to leave the title compound as an off-white solid (5.42 g, 

functionality of resin 0.65 mmol/g by UV monitoring method" ): v (KBr disc) 

3420 (urethane NH), 3100-2980 (aromatic CH), 2980-2840 (CH 2), 1750-1680 

(urethane C=O), 1600,1585 & 1485 (C=C), 1445 cm -1  (CH2); X.. (20% 

piperidine/DMF) 300 & 290 nm. 

2-Copoly(styrene- 1 %-divinvlbenzene)methoxv-5-aminodibenzocvcloheptadiene. 

(47) 

20% piperidine/DMF (20 ml) was added to protected amino resin (0.65 mmol/g; 1.0 

g, 0.65 mmol) and the mixture was sonicated for 0.5 h. The resin was then filtered 
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off and washed with copious amounts of DMF followed by DCM and then dried in 

vacuo to give the title compound as a off-white solid (0.8 g): (KBr disc) 3020 

(CH), 2920 (2)'  1600 & 1490 (C=C), 1450 (CH 2), 1110 cm-1  (C-O). 

9-Fluorenylmethoxycarbonylhydrazjne. (66) 

N-(9-Fluorenylmethoxycarbonyloxy)succinimide (5.0 g, 14.8 mmol) was dissolved in 

1,4-dioxan (60 ml) and hydrazine hydrate (11.1 g, 220 mmol) was added slowly with 

stirring. The reaction mixture was then stirred overnight and then diluted with DCM 

(450 ml). This was then washed with water (3x150 ml) and dried over MgSO 4. The 

solvent was then removed in vacuo and the residue was then purified using dry flash 

chromatography (CHC13) to give the title compound as a white crystalline solid (2.3 

g, 61 %): t.l.c. (MeOH/CHC1 3/AcOH 10:90:0.05) RI 0.41; Found: C, 70.2; H, 5.5; N, 

10.9; Caic. for C 15H14N202; C, 70.8; H, 5.5; N, 11.0%; 	(KBr disc) 3320 (NH), 

1695 (C=O), 1645 (C=C), 1290 & 1195 cm -1  (C-O); ?L 	(EtOH) 300 rim (e 

6.66x103  dm3  mol1 CM-1); 8H (200 MHz, D6  DMSO) 8.36 (1H, s, -CO-Njj), 

7.90-7.29 (8H, m, aromatic CH's), 4.32-4.18 (3H, m, CH & Cfl2), 4.09 (2H, s, N1j2); 

(90 MHz, D6  DMSO) 158 (C=O), 144-120 (aromatic C's); 66 (-QH 2), 47 

m/z (FAB) 255, 179, 165, 149, 126; Firms found: 255.11333; C 15H15N202  requires: 

255.11334. 

j -Butvloxycarbonyl-N'-2-methoxydibenzocyloheptadien-5- ylhydrazine. (64) 

Carbinol (63) (0.10 g, 0.42 mmol) was heated under reflux in DCM (10 ml) along 

with t -butyloxycarbonyihydrazine (0.17 g, 1.3 mmol) and benzenesulphonic acid 

(0.015 g, 0.095 mmol) overnight. The solvent was then removed in vacuo and the 

residue purified by flash chromatography (0.5% MeOH/CHC13) to give the title 

compound as a off-white foam (0.15 g, 99%): t.1.c. (MeOH/CHC13/AcOH 10:90:0.05) 

RI 0.72; Found: C, 71.2; H, 7.2; N, 7.5; Calc. for C21H26N203: C, 71.2; H, 7.4; N, 
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7.9% V 	(KBr disc) 3400 (NH), 2930 (CH2), 1710 (C=O), 1610 & 1500 (C=C), 

1160 cm-1  (C-C)); X 	(EtOH) 274 nm (e 2.07x103  dm3  mol 1  CM-1; 8H  (200 MHz, 

CDCI3) 7.31-6.65 (7H, m, aromatic CH's), 5.86 (1H, s, -CO-NM, 5.13 (111, s, -CH), 

3.85-3.66 (511, s+m, -OCH3  + -CH2), 2.89-2.75 (2H, s, -CH2), 1.47 (9H, s, -C113x3); 

c (90 MHz, CDC13) 159 (aromatic C2), 157 (C=O), 143-111 (aromatic C's), 80 

(-Q-(CH3)3), 70 (-CH), 55 (-0Q113), 33 & 32 (-CH2x2), 28 (-9130); m/z (FAB) 353, 

297, 223; hrms found: 353.1865 1; C21HN203  requires: 353.18654. 

N-9'-FluorenyImethoxycarbonyl-N'-2-methoxydibenzocycloheadien 

-5-y1hydrazine. (68) 

Carbinol (63) (0.10 g, 0.42 mmol) was dissolved in DCM (10 ml) along with 

9-fluorenylmethoxycarbonyihydrazine (0.32 g, 1.3 mmol) and benzenesulphonic acid 

(0.015 g, 0.095 mmol) and heated under reflux overnight. The reaction mixture was 

then concentrated in vacuo and purified by flash chromatography (1% MeOH/CHC1 3 ) 

to give the title compound as a white solid (0.16 g, 80%): t.l.c. (MeOH/CHC1 3/AcOH 

10:90:0.05) RI 0.76; Found: C, 78.0; H, 5.8; N, 5.8; Caic. for C31H28N203: C, 78.1; 

H, 5.9; N, 5.9%; Vm  (KBr disc) 3300 (NH), 2940 (CH2), 1690 (C=O), 1615 (C=C), 

1270 & 1170 cm -1  (C-O); X. (EtOH) 295 nm (c 6.43x103  dm3  mol' cm-1); 8H  (200 

MHz, CDC13) 7.80-6.66 (15H, m, aromatic CH's), 6.12 (1H, s, -CO-N}j), 5.09 (1H, s, 

-j), 4.50-4.21 (3H, m, fluorenyl -CH & -CU2), 3.78-3.47 (5H, s+m, -OC}j3  & 

C112), 2.83-2.81 (2H, m, -CH2), 1.6 (111, s, -NH-NH-CO); 8c  (90 Mhz, CDC13) 159 

(aromatic C2), 157 (C=O), 144-111 (aromatic C's), 71 (-CH-NH), 67 (fluorenyl 

112), 55 (-OCH3), 47 (fluorenyl H), 33 & 32 (-912x2); m/z (FAB) 476, 325, 223; 

hrms found: 477.21777; C31H29N203  requires: 477.21780 (< 1 ppm). 
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-Butyloxvcarbonyl-N'-2-copoly(styrene- 1 %-divinylbenzene 

)methoxydibenzocycloheptadien-5-ylhydrazine. (61) 

Carbinol resin (45) (0.90 mmollg; 1.0 g, 0.90 mmol) was swollen in DCM (70 ml) 

and t -butyloxycarbonylhydrazine (0.84 g, 6.4 mmol) and benzenesulphonic acid 

(0.07 g, 0.44 mmol) were added. The reaction mixture was then heated at reflux 

overnight and then allowed to cool to room temperature. The resin was then filtered 

off and washed with copious amounts of DMF, DCM, and ether to leave the title 

compound as an off-white solid (0.80 g): v (KBr disc) 3410 (NH), 2920 (CH 2), 

1710 (C=O), 1600 & 1490 (C=C), 1450 (CH2), 1150 cm-1  (C-O); Found: N, 2.35; 

Expected for 100% loading: N, 2.29%. 

N-i' -Butyloxycarbonyl-N'-(N-9 '-fluorenylmethoxycarbonyiglycyl) 

-N'-2-copoly(styrene- 1 %-divinylbenzene)methoxydibenzocycloheptadien 

-5-ylhydrazine. (62) 

To Fmoc-Gly-OH (2.0 g, 6.7 mmol) was added DCM (5 ml) and SOC12  (5 ml, 68 

mmol). This was heated under reflux for 2 h. and then cooled to room temperature. 

The mixture was then concentrated in vacuo and then concentrated a further three 

times following dissolution in DCM (3x15 ml). The residue was then dissolved in 

DCM (15 ml) and added to resin (61) which had been pre-swollen in DCM (5 ml) and 

pyridine (2 ml). The reaction mixture was then heated under reflux for 5 h. under 

nitrogen. The resin was then isolated by filtration and washed with copious quantities 

of DMF, DCM, and finally ether to give the title compound as a pale yellow solid 

(0.98 g). The loading was found to be 0.84 mmol/g by a UV monitoring method 93 : 

vmax.  (KBr disc) 3420 (NH), 3030 (CH stretch), 2920 (CH 2  stretch), 1730-1670 (C=O 

x3), 1600 & 1490 (C=C), 1450 cm -1  (CH2); Found: N, 2.69; Expected for 100% 

loading: N, 2.80%; ? (20% piperidine/DMF) 290 & 300 nm. 
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2-Copoly(styrene- 1 %-divinylbenzene)methoxy-5-(N-9'- 

fluorenylmethoxycarbonylglycyloxy)dibenzocycloheptadiene. (58) 

DMF (5 ml) was added to Fmoc-Gly-OH (0.64 g, 2.2 mmol) along with DIC (0.17 

ml, 1.1 mmol). The mixture was then stirred at room temperature for 15 mm. and then 

added to resin (45) (0.90 mmol/g; 0.30 g, 0.27 mmol) along with 

N,N-dimethylaminopyridine (5 mg, 0.04 mmol). The reaction mixture was then 

sonicated for 3.5 h. followed by filtration of the resin. The resin was then thoroughly 

washed with large amounts of DMF, DCM, and ether to leave the title compound as 

an off-white solid (0.23 g, loading of the functionalised resin 0.49 mmol/g by UV 

monitoring93): 
Vm 

 (KBr disc) 2950 (CH2), 1720 (C=O x2), 1600 & 1490 (C=C), 

1440 cm-1  (CH2); X.. (20% piperidine/DMF) 300 & 290 run. 

2-Copoly(styrene- 1 %-divinylbenzene)methoxy-5-(N-9'-

fluorenylmethoxycarbonylglycylamino)dibenzocycloheptadiene. (57) 

Resin (46) (0.65 mmol/g; 0.20 g, 0.13 mmol) was treated with 20% piperidinelDMF 

(20 ml) for 0.5 h. and was then washed with DMF (5x50 ml). To this was added a 

mixture of Fmoc-Gly-OH (0.30 g, 1.0 mmol), DIC (0.078 ml, 0.5 mmol) and DMF (5 

ml) which had been stirred for 0.5 h. at room temperature. The reaction mixture was 

then sonicated for 5 h. followed by filtration of the resin. The resin was then washed 

with copious amounts of DMF, DCM, and ether to give the title compound as a light 

brown solid (0.18 g, functionality 0.67 mmol/g by UV method 93): Vm 
 (KBr disc) 

3440 (NH), 1750-1690 cm (C=O x2). 
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3.3. Solid Phase Peptide Synthesis. 

The following peptides were prepared using an Applied Biosystems 430A automated 

peptide synthesiser. All solvents used were peptide synthesis grade and commercially 

supplied by Applied Biosystems and Rathburn Chemicals. 

The solid support (46) was deprotected using 20% piperidinelDMF and the 

C-terminal residue coupled to the free amine via DIC/symmetiical anhydride/ HOBt 

methodology (Note. This could be performed either outwith the machine or as a 

programmed cycle on the synthesiser, both methods gave quantitative loading). 

The progress of the synthesis was monitored by passing the deprotection effluent 

through a UV flowcell (313 nm) and thus allowed a semi quantitative analysis of the 

deprotection and acylation cycles. 

Deprotection, activation, coupling and capping were accomplished using 

programmed cycles on the 430A synthesiser and are summarised below: 

(1) Washing and swelling of the resin: DMF (2x, total time = 6 min.). (2) Removal 

of the N  protecting group: 20% piperidinefDMF (9.0 ml) (4x, 5 + 3 + 3 + 1 min.). 

(3) Washing: DMF (13x, total time = 31 min.). (4) Activation: 1st coupling - 

Fmoc-AA-OH (2.0 mmol) in DMF (6.0 ml) + DIC (0.5 M in DMF; 2.0 ml) (15 min.), 

2nd coupling - Fmoc-AA-OH (1.0 mmol) in DMF (4.0 ml) + HOBt (0.5 M in DMF; 

2.0 ml) + DIC (0.5 M in DMF; 2.0 ml) (30 min.) (5) Coupling: activated species 

transferred to the 'reaction vessel' (90 min.) (6) Washing: DMF (5x, 6 mm. total). 

(7) Capping: acetic anhydride (0.5 M in DMF; 1.0 ml) + pyridine (0.5 M in DMF; 1.0 

ml) (2x, 2.5 + 3.7 mm.). (8) Washing: DMF (5x, 5 mm.). 
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Substance P ... (53) 

H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH 2  

The synthesis of peptide amide (53) was achieved using resin (46) (0.73 mmol/g; 0.5 

mmol) as the solid support, Fmoc NcI protected amino acids and symmetrical 

anhydride/HOBt activation. The guanidine function of arginine was protected with 

the Pine group, the NE  of lysine was protected with Boc and the side chain of 

glutamine with the trityl group. 

The completed peptide amide was released from the solid support and all side chain 

protection removed by treatment with TFA/ water/thioanisole/ethyl methyl sulphide 

(95:5:2.5:2, 100 ml) with stirring at room temperature for 3 h. The resin was then 

filtered off, the filtrate was concentrated in vacuo and the peptide was precipitated 

with ether. All solvents and aqueous buffers in the subsequent purification steps were 

removed by lyophilisation. The crude peptide (1 g) was then filtered, washed with 

ether, dissolved in 50% AcOHIH 20 and applied to a column of Sephadex G-15 (85 x 

1.4 cm) eluting with 30% AcOH/H 20 at 38 ml/h. The product eluted as a single peak 

at 150 -250 ml (0.343 g). This was then applied to a column of CM Sephadex resin 

(40 x 2.6 cm) and eluted with a linear gradient of ammonium acetate (0.025-0.5 M, 

pH 8.0) at 30 ml/h., followed by isocratic elution (0.5 M, pH 8.0). The product eluted 

as a single peak (0.087 g) (Gel permeation and ion exchange chromatography were 

monitored by UV at 254 and 280 nm). This was then further purified by 

semi-preparative HPLC on an aquapore C18  reverse phase column using a linear 

gradient of H20/CH3CN (0.1% TFA) as the eluant at a flow rate of 5 ml/min. and UV 

monitoring at 225 run (0.037 g, 22%): m/z (FAB) 1349 (MW), 1002, 854, 751; hrins 

found: 1347.73588; C63HN18013  S requires 1347.73592 (< 1 ppm); amino acid 
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analysis G1u2  2.20, Pr02  1.95, G1y1  0.95, Met1  0.83, Leu 1  0.93, Phe2  1.90, Lys 1  1.06, 

Arg 1  1.01; HPLC (aquapore C 18 , A=H20/B=acetonitrile (0.1% TFA), 10-50% B over 

30 mm.) Rt  16.4 mm; [a]D20  -57.8 (C =0.5,1120). 

8H (600 MHz, 90% H20/D20) 

A.A 	a-NH 	a-CH 13 H's 7H's others 

Arg 	 4.43 1.95 1.73 e 3.23 
cNH 7.26 

Gin 	8.50 	4.19 1.95 2.28 6.88,7.51 

Gin 	8.33 	4.21 1.83 2.12 6.88,7.51 

G1y 	7.94 	3.82 

Leu 	8.16 	4.33 1.63 1.63 0.92,0.97 

Lys 	8.58 	4.52 1.81 1.50 81.69 
c2.98 
NH 7.57 

Met 	8.37 	4.42 2.05 2.52 82.09 
2.60 NH 7.10,7.49 

Phe 	8.28 	4.57 2.93 7.18-7.40 
3.16 

Phe 	8.25 	4.57 2.90 7.18-7.40 
3.03 

Pro 	 4.47 1.92 2.36 3.62,3.80 
2.06 

Pro 	 4.38 1.92 2.30 3.68,3.88 
2.06 

1I 
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Bombesin. (54) 

The synthesis of peptide amide (54) was accomplished using resin (46) (0.73 mmol/g; 

0.5 mmol) as the solid support, Fmoc Ncl protected amino acids and symmetrical 

anhydridefHOBt activation. The guanidine function of arginine was protected with 

the Pmc group, the imidazole function of histidine with the trityl group and the 

carboxamide of asparagine and glutamine with the Mbh group. 

The completed peptide amide was released from the solid support with concomitant 

side chain deprotection by stirring with TFA/H20/thioanisole/EMS/N-acetyl 

tryptophan (95:5:5:2:0.5, 110 ml) for 4 h. at room temperature. The resin was then 

removed by filtration, the filtrate was concentrated in vacuo and the peptide was 

precipitated with ether. All solvents in subsequent purification steps were removed by 

lyophilization. The crude peptide (0.9 g) was then filtered off, washed with ether, 

dissolved in 90% AcOH/H20 and applied to a column of Sephadex 0-15 (100 cm x 

2.6 cm i.d.) eluting with 30% AcOH/H20 at 28.5 ml/h. with UV monitoring at 229 

and 280 nm. The product (0.65 g) eluted between 152 & 285 ml. An aliquot (0.115 

g) was finally purified by semi-preparative HPLC on a aquapore C 18  reverse phase 

column with a linear gradient of H20/CH3CN (0.1% TFA) at a flow rate of 5 ml/min. 

with UV monitoring at 232 nm (0.030 g, 21%): m/z (FAB) 1619 (MH), 1265, 1095, 

966; hrms found: 1619.82282; C71H111N018S requires 1619.82283 (< 1 ppm); 

amino acid analysis Asp 1  1.01, G1u3  3.04, 01Y2  1.94, Ala1  0.99, Val1  1.02, Met1  1.02, 

Leu2  1.99, His 1  1.06, Tip, 0.81, Arg 1  0.95; HPLC (aquapore C18  A=H20 B=CH3CN 

(0.1% TFA), 10-50% B over 30 min.) Rt  16.4 min; [a]D20  -29.9 (C =0.8,1120). 
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6H (600 MHz, 90% H20/D20) 

A.A a-NH a-CH yH's others 

Ala 8.05 4.34 1.35 

Arg 8.56 4.40 1.80 1.60 e3.15 
eNH 7.19 

Asn 8.39 4.67 2.77 6.88,7.38 

G1y 8.48 4.02 

Gly 8.44 3.97 

Gin 8.56 4.38 2.06 2.40 6.94,7.57 

Gin 8.56 4.38 2.06 2.40 6.94,7.57 

Gip 8.48 4.25 1.93 2.17 

His 8.29 4.71 3.13 7.26 
3.27 8.48 

Leu 8.39 4.46 1.67 1.67 0.92 

Leu 8.34 4.37 1.65 1.65 0.94 

Met 8.40 4.51 2.06 2.58 c 2.17 
NH 7. 17,7.55 

Trp 8.05 4.72 3.24 7.28,7.62 
3.37 7.15, 7.24 

7.52 
NH 10.17 

Val 7.99 4.07 2.13 1.00 
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Little Gastrin. (55) 

The synthesis of peptide amide (55) was accomplished using resin (46) (0.73 mmol/g; 

0.5 mmol) as the solid support, Fmoc N  amino acids and symmetrical 

anhydride/HOBt activation. Pyroglutamic acid was incorporated by activation as its 

pentachlorophenyl ester. The carboxylic acid functions of glutamic and aspartic acid 

were protected their t -butyl esters and the hydroxyl function of tyrosine as its t -butyl 

ether. 

The synthesis was interrupted prior to coupling of the last amino acid and 0.25 mmol 

of resin removed to be used later in the synthesis of big gastrin (56). The peptide 

amide, once fully assembled, was removed from the solid support with simultaneous 

side chain deblocking by stirring with TFAIH20/thioanisole/EMS/N-acetyltiyptophan 

(95:5:5:5:1, 1 lOmi) for 4 h. at room temperature. The resin was then removed by 

filtration, and the filtrate concentrated in vacuo to leave a brown oil. From this, the 

peptide was precipitated using ether and isolated by filtration to give a crude mixture 

(1.0 g) (All solvents and aqueous buffers in the following purification steps were 

removed by lyophilization). This was then dissolved in 0.4% NH 4HCO3  and applied 

to a column of Sephadex 0-25 (100 cm x 2.6 cm) and eluted with 0.4% NH4HCO3  at 

a pump speed of 21 ml/h. with UV monitoring at 229 and 280 run. The product (0.32 

g ) eluted as a single peak between 40 and 70 ml. This was then applied to a column 

of DEAE DE-25 (40 cm x 2.6 cm) and eluted with a linear gradient of AcONH 4  (0.1 

- 1.0 M, pH 6.5) at a flow rate of 28 ml/h. with UV monitoring at 229 and 280 rim. 

The product (0.21 g) eluted between 849 and 1000 ml. This product was finally 

purified by semi-preparative HPLC on an aquapore C 8  reverse phase column using a 

linear gradient of H20/CH3CN (0.1% TFA) with UV monitoring at 280 nm and a 

flow rate of 5 ml/min. ( 0.084 g, 16%): m/z (FAB) 2097 (M+); hrms found: 

ITIM 
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2098.85729; C97H1 N20031S requires: 2098.85732 (< 1 ppm);amino acid analysis 

Asp1  0.86, G1u6  5.94, Pro 1  0.72, 01Y2  1.99, Ala 1  1.10, Met 1  1.00, Leu 1  0.93, Tyr1  

1.09, Phe1  1.09, Trp2  1.72; Biological activity (relative immunochemical potency 

measured by radioimmunoassay) C-terminus 0.7, N-terminus 0.7, Intact 1.4; HPLC 

(aquapore C8  A=H20 B=CH3CN (0.1% TFA) 10 - 60% B over 25 mm.) R 1  = 20.0 

mm; [a]D2°  -43.8 (C = 0.6, 1% NH4HCO3). 

B ig Gastrin. (56) 

The synthesis of Big Gastrin was achieved using solid support (46) (0.73 mmol/g; 

0.25 mmol), Fmoc Naprotected amino acids and symmetrical anhydridefHOBt 

activation. Pyroglutamic acid was incorporated by activation as its pentachiorophenyl 

ester. The carboxylic acid functions of aspartic and glutamic acids were protected as 

their r -butyl esters and the hydroxyl function of serine and tyrosine were protected as 

their t -butyl ethers. The NE  of lysine was protected with Boc and the imidazole 

function of histidine was protected with trityl. 

The completed peptide amide was detached from the solid support and all side chain 

protecting groups removed by treatment with TFA/H 20/thioanisolefEMS/ 

N-acetyltryptophan (95:5:5:5:1, 110 ml) for 4h. at room temperature. The resin was 

then removed from the cleavage mixture by filtration and the solution was 

concentrated in vacuo to leave a brown oil. The peptide was then precipitated by 

treatment with ether and was isolated by filtration to give a crude product (0.8 g) (All 

solvents and aqueous buffers in subsequent purification steps were removed by 

lyophilization and dialysis respectively). An aliquot of this (0.4g) was dissolved in 

1% NH4HCO3  and applied to a column of Sephadex 0-25 (100 cm x 2.6 cm) and 
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eluted with 0.4% NH4HCO3  at a flow rate of 33 ml/h. and with UV monitoring at 229 

and 280 nm. The product (0.257 g) eluted as a single peak between 176 and 253 ml. 

This was then further purified by semi-preparative HPLC on an aquapore C 18  reverse 

phase column. A linear gradient of H 20/CH3CN (0.1% TFA) was used to elute the 

product with a flow rate of 5 ml/min. and UV monitoring at 280 run. This material 

(0.12 g) was then finally purified by ion-exchange chromatography on DEAE DE-25 

resin eluting with a linear gradient of AcONH 4  (0.05 - 0.5 M, pH 6.8) at a flow rate 

of 33 ml/h. and UV monitoring at 229 and 280 nni. The product eluted as a single 

peak between 869 and 1584 ml (0.052 g, 11%): m/z (FAB) hrms found: 3848.81011; 

C176H 2N43053S requires: 3848.80985 (<lppm); Amino acid analysis Asp 2  2.04, 

Ser1  0.95, Glu8  8.92, Pro5  4.65, G1y4  3.91, Ala2  1.95, Va1 1  0.97, Met1  1.00, Leu3  

3.00, Tyr1  0.99, Phe 1  0.98, His 1  1.00, Trp2  1.77, Lys2  2.29; %max.  (0.1 M KOH) 280 

nm (e = 1.093 x 104  dm3  mol 1  cm4 , lit., 105  £ = 1.226 x 10) Biological activity 

(relative immunochemical potency measured by radioimmunoassay) C-terminus 0.4, 

N-terminus 0.3. HPLC (aquapore C 18  A=HO, B=CH3CN (0.1% TFA) 20 - 70% B 

over 30 min.) R = 15.0 min; [a]D2°  -81.7 (C = 0.5, 1% NH4HCO3). 

Ubiguitin 43-47 hydrazide. (70) 

H-Leu-Ile-Phe-Ala-Gly-NH-NH2  

The synthesis of Ubiquitin 43-47 hydrazide was accomplished using loaded resin (62) 

(0.84 mmol/g; 0.16 g, 0.13 mmol), Fmoc Na  protected amino acids and HOBt 

activation with single coupling. The cycles employed in the synthesis were as 

previously mentioned except as follows: (4) Activation: Fmoc-AA-OH (0.5 mmol) in 

HOBt (0.5 M in DMF; 2.0 ml) + DIC (0.5 M in DMF; 2.0 ml) (30 min.); (5) 

Coupling: activated species transferred to 'reaction vessel' (45 mm.). 

The fully assembled peptide hydrazide was released from the solid support by 
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treatment with TFA/H20/anisole (10:0.5:0.5, 11 ml) for lh. with stirring at room 

temperature. The resin was then removed by filtration and the filtrate was 

concentrated in vacuo . The residue was then dissolved in CHC1 3  (10 ml) and then 

added slowly to 10% AcOH/H20 (20 ml) with stirring. The aqueous layer was then 

lyophilised and subsequently purified by semi-preparative HPLC on an aquapore C 18  

reverse phase column with a linear gradient of H 20/CH3CN (0.1% TFA) at a flow 

rate of 5 ml/min. and with UV monitoring at 225 nm (0.017 g, 25%): m/z (FAB) 534 

(M}{), 445,404, 374, 199; hrms found: 534.34034; C26HN705  requires: 534.34037 

(<lppm); amino acid analysis: Gly 1  1.05, Ala 1  1.02, 11e 1  0.98, Leu 1  0.97, Phe 1  0.98; 

HPLC (aquapore C 18  A=H20 B=CH3CN (0.1% TFA) 10-40% B over 20 mm.) R1  

12.8 mm; [a]D20  -40.9 (C = 0.35, H20). 

UbiQuitin 67-76 hydrazide. (71) 

H-Leu-His-Leu-Val-Leu-Arg-Leu-Arg-Gly-Gly-NH-NH 2  

The synthesis of peptide hydrazide (71) was accomplished using loaded resin (62) 

(0.84 mmol/g; 0.60 g, 0.5 mmol) as the solid phase, Fmoc Ncl protected amino acids 

and symmetrical anhydride/ HOBt activation. The guanidine function of arginine was 

protected with the Pmc group and the imidazole function of histidine with trityl. 

The completed peptide hydrazide was detached from the solid support with 

concomitant side chain deprotection by stirring with TFA/H 20/anisole/thioanisole 

(85:5:5:5, 100 ml) for 3 h. at room temperature. The resin was then removed by 

filtration and the filtrate was concentrated in vacuo . CHC13  (50 ml) was then added 

to the residue which was then extracted with 10% AcOH/H 20 (3x100 ml). The 

aqueous solutions were then combined and lyophilised to give a crude mixture (0.4 

g). An aliquot (0.1 g) of this was then purified by semi-preparative HPLC on an 

aquapore C 18  reverse phase column with a linear gradient of H 20/CH3CN (0.1% 
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TFA) at a flow rate of 5 ml/min. and with UV monitoring at 225 nm. Two major 

products were isolated (A 0.021 g, B 0.005 g). 

The following data was obtained for compound A: m/z (FAB) 1147.8 (MH), hrms 

found: 1147.75390; C511 95N20010  requires: 1147.75395 (< 1 ppm); amino acid 

analysis 1. (acid hydrolysis): G1y 2  2.20, Va11  0.98, Leu4  3.95, His1  0.98, Ar92  1.92; 2. 

(enzymatic hydrolysis106): 01Y2  2.00, Va1 1  01  Leu4  2.04, His 1  0, Ar92  2.60; 

sequencing: Edman degradation of peptide hydrazide confirmed the sequence as 

expected; [a]D2 ' -49.4 (C = 0.2, H20); HPLC (aquapore C 18  A=H20 B=CH3CN 

(0.1% TFA) 5-50% B over 20 mm.) Rt  11.2 mm; 

6H (600 MHz, 90% H20/D20) 

A.A 	a-NH 	a-CH 	f3 H's 	yH's others 

Arg 	8.47 	4.35 	1.85 	1.67 83.24 
SNH 7.23 

Arg 	8.40 	4.37 	1.79 	1.62 63.20 
8NH 7.23 

Gly 	8.48 	4.00 

Gly 	8.34 	3.97 

His 	9.02 	4.85 	3.18 7.38 
3.30 8.72 

Leu 	 4.00 	1.60 	1.32 0.89 
67 

Leu 	8.54 	4.35 	1.55 	1.33 0.84 
69 0.91 

Leu 	8.42 	4.40 	1.61 	1.61 0.89 
71 0.94 

Leu 	8.33 	4.37 	1.63 	1.63 0.90 
73 0.95 

Val 	8.32 	4.08 	2.05 	0.93 
0.97 
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The following data was obtained for compound B: 

m/z (FAB) 1147.8 (MM), hrms found: 	1147.75390; C51H95N20010  requires: 

1147.75395 (< 1 ppm); amino acid analysis: 1.(acid hydrolysis): 01Y2  2.05, Va1 1  0.99, 

Leu4  3.97, His 1  1.02, Ar92  1.99; 2. (enzymatic hydrolysis'°6): 01Y2 100, Va1 1  1.16, 

Leu4  6.12, His1  1.02, Ar92  3.26; sequencing: Edinan degradation of peptide hydrazide 

confirmed the sequence as expected [a]D2'  -56.7 (C = 0.2, H20); }IPLC (aquapore 

C18  A=H20 B=CH3CN (0.1% TFA) 5-50% B over 20 mm.) R1  12.2 mm; 

8H (600 MHz, 90% H20/D20) 

A.A 	a-NH 	a-CH 13 H's 	yH's 	others 

Arg 	8.42 	4.38 1.78 	1.62 	83.22 
8 NH 7.31 

Arg 	8.47 	4.38 1.86 	1.66 	83.25 
8 NH 7.31 

Gly 	8.48 	4.01 

Gly 	8.33 	3.95 

His 	8.89 	4.85 3.20 	 7.32 
3.27 	 8.63 

Leu 	 4.03 1.72 	1.63 	0.96 
67 0.96 

Leu 	8.47 	4.38 1.56 	1.56 	0.88 
69 0.92 

Leu 	8.38 	4.39 1.59 	1.59 	0.87 
71 0.94 

Leu 	8.33 	4.39 1.62 	1.62 	0.92 
73 0.92 

Val 	8.34 	4.08 2.02 	0.92 
0.92 
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H-Thr(t -Bu)-Ile-Phe-Ala-Gly-O-Resin. (59) 

The synthesis of resin bound peptide (59) was achieved using resin (58) (0.49 

mmol/g; 0.19 g, 0.093 mmol) as the solid support, Fmoc Na protected amino acids 

and HOBt activation with single coupling. The cycles used in the synthesis were as 

mentioned previously except: (4) Activation: Fmoc-AA-OH (1.0 mmol) in HOBt (0.5 

M in DMF; 2.0 ml) + DIC (0.5 M in DMF; 2.0 ml) (30 min.). Through the use of UV 

monitoring of Fmoc deprotection, the final deprotection (threonine) was 40% of the 

area of the initial deprotection (glycine). 
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Determination of conditions for release Of  peptide derivative from the solid support. 

A sample of loaded resin (2-3 mg) i.e. Fmoc-Gly attached to the functionalised solid 

support, was accurately weighed and placed in a 10 ml volumetric flask. The requisite 

concentration of an organic acid/DCM solution was then added to the volumetric 

flask up to the mark and the timer started. The flask was then placed in an ultrasonic 

bath for the required amount of time after which the solution was filtered through a 

cotton plug (to remove the resin) into a UV cuvette. The UV absorbance at 302 rim 

was then recorded and used to calculate the percentage of amino acid derivative 

which had been released from the solid phase (in order to do this, the extinction 

coefficient of Fmoc-Gly-OH at 302 nm was used and assumed not to vary in each 

case). The cleavage conditions for each functionalised resin are tabulated below: 

2-opolv(stvrene- 1 %-divinv1benzene)methoxy-5-(N-9'-

fluorenvlmethoxycarbonylglycyloxy)dibenzocycloheptadiene. (58) 

ACID/CONC 
	

TIME FOR 100% 
RELEASE 

TFA/DCM 0.5% 
	

<5 mm. 

AcOH/DCM 10% 
	

<5min . 

j -Butyloxycarbonyl-N'-(N.-9 '-fluorenvlmethoxycarbonylglycyl) 

-N'-2-copolv(stvrene- I %-divinylbenzene)methoxvdibenzocycloheptadien 

-5-ylhydrazine. (62) 

TFA/DCM 
TIME(min.) % CLEAVED 

2.0 9.9 
15.0 31.3 
30.0 46.2 
90.0 63.5 
180.0 66.3 
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Experimental 

2-Copolv(stvrene- 1 %-diviny1benzene)methoxy-5-(N-9'-. 

fluoInyImethoxycarbony1g1ycy1amjno)djbenzocyc1ohe,tathene. (57) 

1% TFA/DCM 	 2% TFA/DCM 

TIME(min.) % CLEAVED 	 TIME 	% CLEAVED 

10.0 19.5 5.0 32.3 
30.0 57.8 10.0 56.0 
45.0 68.8 15.0 71.3 
60.0 75.2 20.0 82.2 
90.0 79.2 30.0 89.4 
120.0 92.2 60.0 95.5 

3% TFA/DCM 4% TFA/DCM 

TIME(min.) % CLEAVED TIME % CLEAVED 

5.0 48.3 2.0 31.5 
10.0 70.4 5.0 63.7 
15.0 84.0 7.0 79.6 
20.0 89.7 10.0 83.1 
30.0 96.2 15.0 91.2 

30.0 96.4 
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