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Abstract

We examine the task of feature selection, which is a method of forming simplified

descriptions of complex data for use in probabilistic classifiers. Feature selection typ-

ically requires a numerical measure or metric of the desirability of a given set of fea-

tures. The thesis considers a number of existing metrics, with particular attention to

those based on entropy and other quantities derived from information theory. A useful

new perspective on feature selection is provided by the concepts of partitioning and

encoding of data by a feature set. The ideas of partitioning and encoding, together

with the theoretical shortcomings of existing metrics, motivate a new class of feature

selection metrics based on conditional entropy. The simplest of the new metrics is

referred to as expected partition entropy or EPE.

Performances of the new and existing metrics are compared by experiments with

a simplified form of part-of-speech tagging and with classification of Reuters news

stories by topic. In order to conduct the experiments, a new class of accelerated feature

selection search algorithms is introduced; a member of this class is found to provide

significantly increased speed with minimal loss in performance, as measured by feature

selection metrics and accuracy on test data. The comparative performance of existing

metrics is also analysed, giving rise to a new general conjecture regarding the wrapper

class of metrics. Each wrapper is inherently tied to a specific type of classifier. The

experimental results support the idea that a wrapper selects feature sets which perform

well in conjunction with its own particular classifier, but this good performance cannot

be expected to carry over to other types of model.

The new metrics introduced in this thesis prove to have substantial advantages over

a representative selection of other feature selection mechanisms: Mutual information,

frequency-based cutoff, the Koller-Sahami information loss measure, and two different

types of wrapper method. Feature selection using the new metrics easily outperforms

other filter-based methods such as mutual information; additionally, our approach at-

tains comparable performance to a wrapper method, but at a fraction of the computa-

tional expense. Finally, members of the new class of metrics succeed in a case where

the Koller-Sahami metric fails to provide a meaningful criterion for feature selection.
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Chapter 1

Introduction

‘There are some perceptions which do not call for any further exercise of
thought, because sensation alone can judge them adequately; but others
which demand the exercise of thought because sensation cannot give a
trustworthy result.’ — Plato, The Republic

1.1 The Feature Selection Problem

1.1.1 Simple Descriptions of Complex Data

In attempting to understand the world, we are often faced with an overwhelming num-

ber of possible variables. A fully detailed description of our environment may contain

more information than can be effectively processed by a computer, or understood by a

human being.

For example, if carrying out image recognition one could easily have a million

pixels, each with a thousand possible colours and a thousand possible intensities, for a

total of 1012 conceivable images. If we wished to construct a classifier which compared

two images – for instance, to see if they were photographs of the same person – there

would be some 1024 possible image pairs. In physics, a macroscopic sample of a gas

contains on the order of 1023 individual particles, each with a distinct position and

velocity. For Web page classification, Google records in excess of 8 � 1012 individual

pages, each of which may itself contain a large quantity of data.

When dealing with complicated environments such as these, it is usually neces-

17



18 Chapter 1. Introduction

sary to find a simplified representation of the data. We wish to obtain such a descrip-

tion without losing relevant information. There is a basic tension between seeking

shorter descriptions, which are easier to process and understand; and longer descrip-

tions, which can in principle contain more information about the data. The idea of

finding a simple representation can be viewed as an application of Occam’s Razor,

which advocates adopting the simplest available theory that is consistent with our ob-

servations.

Feature selection involves choosing characteristics of the data which are relevant

to a particular task – for instance, constructing a model for the classification of data

points. We formalise the idea of a feature by defining feature functions which map

the data space to some other set. The number of possible feature functions is typically

very large. If our feature functions map a set of N possible data points to another set

with k elements, then there are kN possible feature functions. In general, the set of all

possible features is very large and unwieldy, and many features may be of little use for

classification. We therefore seek a smaller and more informative subset of the available

feature functions; but this is a challenging task in itself, as a set with n elements will

have 2n distinct subsets. Nonetheless, effective feature selection techniques exist and

can give rise to simple yet informative descriptions of data; this thesis aims to extend

and improve existing methods of feature selection.

Feature selection is a very general technique applicable to a wide variety of do-

mains: Computational linguistics, image recognition, medical diagnosis, statistical

physics, bioinformatics, and even the detection of buried land mines [AZ00]. This the-

sis is primarily intended as a contribution to the mathematical foundations of feature

selection. The theoretical work presented herein should, in principle, be applicable to

many different domains, including but not limited to the ones just mentioned. In order

to provide an empirical assessment of the effectiveness of the mathematical methods

in this thesis, we also present experiments with a simplified form of part-of-speech

tagging and with the classification of Reuters news articles by topic.
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1.1.2 Basic Concepts in Feature Selection

In the context of feature selection, a feature can be thought of as an identifiable charac-

teristic of the data. Finding a ‘good’ set of features will in general require three steps:

Definition, extraction, and selection. Definition involves specifying the general form of

our features; extraction, finding a comparatively large collection of available features

which satisfy our definition and have at least some relevance to the data; and selection,

choosing a subset of the initial pool of features which we find useful. ‘Usefulness’

may be defined qualitatively, as improving our understanding of the phenomenon at

hand; or quantitatively, as giving rise to a faster or more accurate probabilistic model.

In practice, careful feature selection can bring about significant improvements in all

these respects.

For example, suppose that we wish to construct a probabilistic model for classify-

ing web pages by subject; and we have a training set of pages which we believe to be

a representative sample of the ones our classifier will encounter. We begin by defining

our features to be the presence of particular words or phrases. Extraction of a broad

pool of features might be accomplished by finding all distinct words, and all distinct

phrases of four words or fewer, in a set of training data. This pool of features is likely

to be inconveniently large. A model which took account of all the features present in

a large set of training data would be comparatively slow and difficult to understand; it

might also be less accurate than one which concentrated on a small number of more

informative features.

The above example considers a classification task. Feature selection usually re-

volves around classification, and classifiers will be the primary focus of this thesis.

However, there is no reason to believe that the results of the thesis will not generalise

to other settings, such as sequencing.

Irrelevant and Redundant Features: Feature selection is the process of finding a

‘good’ set of features. Exactly how we may characterise a ‘good’ feature set is one

of the key questions of feature selection, and will be one of the main topics addressed

by this thesis. Generally speaking, we would like to avoid the inclusion of irrelevant

and redundant features. Intuitively, an irrelevant feature is one which gives no useful
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information; for instance, the presence or absence of the word ‘the’ is most unlikely to

help us determine the subject of a given document.

A redundant feature is one which, while it may be useful in isolation, does not pro-

vide much additional information given that a particular other feature is already present

in our chosen subset. For example, the phrase ‘annual gross domestic product’ will be

strongly associated with documents whose subject is ‘economics’; but it will be largely

redundant for the purpose of document classification if we are already looking for the

phrase ‘gross domestic product’. Broadly speaking, redundancy is to be avoided; but

as we discuss in Section 4.5, a certain amount of redundancy may be desirable as an

error-correcting measure.

Feature selection typically requires a numerical measure of the desirability of a

feature set. A wide variety of such metrics have been proposed; most of them attempt

to capture these intuitive ideas of irrelevance and redundancy in a precise, quantita-

tive fashion. This thesis examines a number of existing measures and introduces new

ones, as Section 1.2 describes in greater detail. The new measures are theoretically ap-

pealing due to their solid foundation in information theory, and prove to have superior

empirical performance to a representative selection of existing metrics.

Search Strategies: Another important task in feature selection is the formulation of

an appropriate search strategy. A set with n elements will have 2n distinct subsets; even

with a modest number of available features, we will therefore have a very large num-

ber of possible subsets. Exhaustively evaluating all the possible subsets is generally

impractical; however, effective algorithms exist for finding reasonably good subsets

(according to our chosen definition of ‘good’) without an exhaustive search. Again,

this thesis surveys existing search strategies and proposes some new ones, as described

in Section 1.2. A member of a new class of accelerated search algorithms proves to

significantly increase the speed of feature selection with minimal loss in performance.

Definition and Extraction: The initial stages of definition and extraction are seldom

explicitly considered in the literature; the presence of a large pool of available features,

from which we wish to select a smaller subset, is often assumed as a given. In some

cases, there may be little or no choice to be made at the first two steps. For instance, if
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our pool of available features consists of all the possible features which fit our defini-

tion, then the extraction step has effectively been omitted; and similarly, there may be

only one reasonable definition of a ‘feature’ for our chosen data set.

More often though, there is a genuine choice as to how we define our feature func-

tions and how we select our initial pool. These decisions are usually much easier than

the final stage of feature selection itself, and correspondingly less interesting; but they

should not be ignored altogether. For instance, in the document-classification example

above we could have restricted ourselves to single words, or expanded our scope to

include larger phrases or entire sentences; and we could have chosen a more or less

restrictive method of generating our pool of available features.

Thus, definition and extraction may constitute a ‘pre-selection’ of features accord-

ing to some a priori criteria. Such pre-selection may itself be based on a rigorous,

quantitative analysis of the data; but it is often conducted on a more qualitative basis,

and it may be quite arbitrary. In the document-classification example, we did not have

any compelling reason to restrict ourselves to phrases of four words or fewer; it merely

‘seemed reasonable.’ There is nothing wrong with making our initial choices on quali-

tative grounds; however we should be aware when we are doing it, and that the results

of feature selection may be dependent on our pre-selection choices.

Mathematical Framework: The above discussion helps to motivate the feature se-

lection idea, but it is somewhat vague and imprecise. It is very helpful to adopt a

clear mathematical framework for feature selection. Such a framework has a number

of benefits: It enables us to think more precisely about feature selection; and it permits

the definition of very general methods of feature selection, which can be applied to

practical tasks in many different domains. This thesis will review previous efforts to

establish a theoretical framework for feature selection, and suggest some additions and

clarifications.

One of the key elements of a rigorous treatment of feature selection is the defini-

tion of feature functions. A feature function maps the data space to some other set,

usually but not necessarily a simpler one. The function takes values based on some

characteristic of the data point which is considered to be important. Feature functions

therefore serve as effective tools for formalising our intuitive notion of a feature as
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being an identifiable characteristic of a data point.

As discussed in Chapter 2, any feature selection problem can be represented in

terms of feature functions. It is common to abuse terminology slightly by referring to

the feature functions simply as features; this is convenient, but can cause some confu-

sion if we do not clearly distinguish between feature functions and the characteristics

of data points.

1.2 Outline of Thesis

1.2.1 Preliminaries and Literature Survey

The thesis begins by establishing some basic definitions and terminology in Chapter 2.

Feature functions are defined, as are schemes for combining them and incorporating

them into probabilistic models. In the process, some new concepts are introduced:

Specifically the idea of a non-informative value taken by a feature when it obtains

no significant information on a given data point, and a formal definition of the model

architectures used to form feature-based probabilistic models. Two commonly used

model architectures are the naive-bayes (NB) and maximum-entropy (ME) schemes,

which are used for the experiments detailed in Chapters 5, 6, 7, and 8. Chapter 2 defines

both the NB and ME model architectures and discusses their properties and previous

applications. The chapter concludes with a discussion of the important subclass of

binary features, which were employed in our experiments.

Chapter 3 surveys the existing literature on feature selection. It outlines the com-

monly accepted theoretical framework for the feature selection problem, including

general classes of evaluation metric and search strategy. An especially important dis-

tinction is the division of evaluation metrics into wrappers and filters; a further sub-

division of filters into hierarchical and non-hierarchical measures is proposed. Par-

ticular attention is paid to filter metrics drawn from information theory: Information

gain, the Koller-Sahami (KS) information loss metric, and two distinct types of mutual-

information measure are defined, and their theoretical properties are discussed. Finally,

the survey briefly outlines two topics closely related to feature selection: Dimension-

ality reduction and model selection by minimum description length.
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1.2.2 Theoretical Developments

Chapter 4 introduces new perspectives on feature selection based on partitioning and

encoding of data by a feature set. These new ideas, together with the theoretical short-

comings of existing metrics, motivate a new class of feature selection metrics based

on conditional entropy. The new metrics are similar to the Koller-Sahami (KS) in-

formation loss measure; they share its solid foundation in information theory, but are

theoretically more appealing.

The KS metric can be thought of as taking the pool of available features as a ref-

erence point; but as noted in Section 1.1.2, this pool will in general be dependent on

the ‘pre-selection’ choices of feature definition and extraction and in particular on the

set of available training data. It is therefore doubtful whether the pool of available

features is a sufficiently general reference point; the new metrics avoid this problem

by adopting the uniform distribution as their benchmark. There are also theoretical

reasons to expect that the conditional-entropy metrics will perform well in compari-

son with other existing measures, such as information gain, mutual information, and

wrapper methods.

The simplest of the new metrics is referred to as Expected Partition Entropy or

EPE; as the name suggests, it is based primarily on the concept of partitioning. Ideas

drawn from coding theory, and a desire to more explicitly capture interactions between

features, motivate the extension of EPE to a family of metrics called Expected Covering

Entropies or ECEs. The ECE metrics provide an interesting perspective on the use of

redundant features as an error-correcting measure. In addition, they can be expected

to be more effective than EPE in environments with very sparse training data; this is

demonstrated in Chapter 8, which describes situations in which ECE succeeds where

EPE and the KS metric fail to provide meaningful criteria for feature selection.

1.2.3 Experiments and Analysis

The new conditional-entropy metrics are evaluated in two different experimental do-

mains: A simplified form of part-of-speech (POS) tagging with data drawn from the

Penn treebank, and classification by topic of news articles from the Reuters corpus.
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The former setting is discussed in Chapters 5, 6, and 7, and the latter in Chapter 8.

Part-of-Speech Tagging: Chapter 5 outlines the general setting and parameters of

the POS-tagging experiments, and introduces a new class of accelerated feature se-

lection search algorithms. Feature selection is carried out using an accelerated search

algorithm with the new EPE metric and a variety of existing ones: Mutual information,

the KS measure, a simple frequency-based metric, and two different types of wrapper

metric. (The ECE metrics are too slow to be effectively used for feature selection in-

vestigated in this setting. However, as discussed below, they are successfully evaluated

for POS-tagging from a slightly different perspective in Chapter 7, and used for fea-

ture selection in Chapter 8.) Random feature selection, and evaluation of the set of

all available features, are also carried out for comparison. The feature sets obtained

in experiments are incorporated into NB and ME models, and the performance of the

models on held-out test data is assessed in Chapter 6.

Although the primary goal of the POS-tagging experiments is to assess the perfor-

mance of the EPE metric, some interesting subsidiary results arise. Brief investigation

of the properties of the new accelerated search algorithms indicates that they give rise

to significant decreases in computational expense with minimal loss of performance. It

is also noted that wrapper metrics – which are fundamentally tied to particular model

architectures – perform particularly well when selecting features for ‘their own’ type

of model, but this good performance does not necessarily carry over to other evalua-

tion methods. It is shown that feature sets selected by wrappers are in general closely

attuned to a particular type of classifier, whereas filters obtain more broadly applicable

feature sets.

The new EPE metric obtains very good results in comparison with two different

types of wrapper metric, and with a selection of filter metrics: Frequency-based cutoff,

mutual information, and Koller-Sahami information loss. A wrapper metric based on

the NB learner outperforms EPE in selecting features for an NB model, in keeping

with the ‘specialisation’ hypothesis mentioned above; but EPE obtains clearly better

performance with an ME model. EPE and an ME wrapper give rise to comparable

accuracies, but EPE is considerably faster.

While the frequency-based and mutual-information filters outperform EPE when
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selecting very small feature sets, EPE is significantly better when selecting larger fea-

ture subsets. For medium-sized subsets, EPE obtains accuracies up to 12% greater

than its frequency-based and mutual-information counterparts. Finally, the theoretical

concerns raised for the KS metric prove to be justified in this setting. The KS metric

frequently attains its optimal value for feature sets which are far from optimal in terms

of their performance on held-out test data, whereas EPE does not suffer from this prob-

lem; in this experimental setting, EPE has all the advantages of KS with none of its

drawbacks.

The question implicitly addressed in Chapter 6 was whether feature sets selected by

a conditional-entropy metric – specifically EPE – will give rise to better performance

on held-out test data. Chapter 7 evaluates the conditional-entropy EPE and ECE met-

rics from a slightly different perspective. The values of EPE and three different variants

of ECE are computed on feature sets obtained using EPE, the NB and ME wrappers,

mutual information, and the KS metric. In other words, the family of conditional-

entropy metrics are used for assessment of existing feature subsets, rather than selec-

tion of new subsets. Computation of the EPE and ECE metrics shows a strong corre-

lation between improvement in EPE/ECE and greater accuracy on test data, regardless

of the metric used to select the feature set. Hence, the conditional-entropy metrics are

good general indicators of classification accuracy in this experimental setting.

Document Classification: Additional insight into the properties of the EPE/ECE

and Koller-Sahami metrics is provided by experiments with classification of Reuters

news articles by topic, detailed in Chapter 8. This setting is very similar to one used

by Koller and Sahami to evaluate their information-loss metric. It is found that the

KS metric suffers from limitations in the document-classification setting which did not

become apparent in KS’ initial experiments, such that when selecting subsets of more

than about 40 features from an initial pool of about 2400, the KS metric is equivalent to

choosing features at random. The EPE metric suffers from a similar problem; however

its extension to ECE overcomes these difficulties, and proves to be a useful method

of feature selection for the Reuters document-classification task. Feature selection

by ECE gives rise to feature sets which, in comparison with the pool of all available

features, are as little as one-tenth the size and give rise to an increase of up to 4.3% in
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classification accuracy on test data.

Discussion: The thesis concludes with Chapter 9, which discusses the theoretical

developments and experimental results and suggests a number of topics for future re-

search.



Chapter 2

Preliminaries

2.1 Introduction

In addressing the topic of feature selection in probabilistic modelling, it is natural

to begin by defining what features are and how they relate to probabilistic models.

Definitions in the literature are often very informal; often there is no explicit definition

of a feature at all. Instead the word ‘feature’ is used in its obvious, intuitive sense,

to mean some identifiable characteristic of individual data points [DL97]. ‘Feature

selection,’ then, is the process of choosing the particular characteristics that interest us,

and somehow incorporating our chosen feature set into a probabilistic model.

The intuitive definition often proves adequate to obtain interesting results, includ-

ing a number of successful approaches to practical tasks. However, a more formal defi-

nition of features can be useful. In this chapter we follow John et al. in defining feature

functions which allow us to formalise our intuitive notion of a feature [JKP94]. We

also formally define means of incorporating features into a model; this includes defi-

nitions of model architectures and the feature-based probabilistic models produced by

them, which are not part of the standard literature on feature functions but prove useful

in later discussions. The formal system presented in this chapter aims to be compatible

with intuitive ideas, while giving rise to interesting ways of extending them.

Creating a more formal framework for feature selection has a number of advan-

tages. It enables us to think about features in a more precise and systematic way, and

27
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thereby gives rise to ideas which can prove very useful in practical feature selection

tasks. Concepts developed in this chapter will provide useful terminology for dis-

cussing the existing methods surveyed in Chapter 3, as well as helping to motivate the

novel feature selection techniques developed in Chapter 4.

The existence of formal definitions and notation also allows us to see connections

between feature selection and other fields of mathematics (or computer science, de-

pending on one’s point of view). Such connections might not have been apparent in

the absence of a rigorous mathematical framework, and can prove very enlightening

and useful. Given our theoretical setting, we can see that feature selection is closely

connected to several well-established areas of study, such as quantization and coding

theory, as we discuss in Chapter 4.

In this chapter, we will begin by defining feature functions, which constitute a

mathematical representation of our intuitive idea of a feature; and feature-based prob-

abilistic models, which are methods of incorporating sets of feature functions into a

probability distribution. We then consider various extensions and consequences of

these ideas, which will set the stage for our discussion of existing feature selection

algorithms in Chapter 3 and the development of new ones in Chapter 4.

2.2 Feature Functions

2.2.1 Data Points and Features

First, we establish some basic terminology and notation. We denote data points by x

and the set of all possible data points by X . We also have a set of training data; we

denote the training set and its individual elements respectively by X̃ and x̃. The data

set X is often very large, and may be infinite, while the training set X̃ is typically a

finite subset of X .

Example 2.1: If our data points are English sentences together with their parse

trees, then the set of all possible data points is infinite; meanwhile, we have a finite set

of parsed sentences available with which to construct a probabilistic model.
�

A feature function f : X �� Y is a function that maps data points x � X to some other
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set Y . We refer to Y as the feature image set. For the sake of brevity, we often refer to

feature functions simply as features. We may think of the value of f
�
x � as representing

some identifiable characteristic of the data point x.

Example 2.2: Suppose that each ‘data point’ x is a web page. We might then

define a feature f � � x � , whose value is the length in words of the web page x. Clearly,

f � � x � can be any whole number greater than zero; hence, the feature image set Y is the

set of positive integers.
�

If we are dealing with more than one feature, then for convenience we place them

in some arbitrary order to form a feature list F � �
f1 � f2 ��������� fn � . The feature list can

be thought of as a vector-valued function:

F : X �� Y1
� Y2

� ����� � Yn

where Y1 ��������� Yn are the respective feature image sets. Hence, feature lists are some-

times called feature vectors. It is usual to abuse notation slightly by using F
�
x � (and

the term ‘feature vector’) to refer to both the feature list function in general, and its

value on a particular data point x.

2.2.2 Comments on the Definition of a Feature List

Shared image sets: Features will often share the same image set Y , so that F
�
x �

maps X to Y n (or some subset of Y n). For example, we could have each feature fi take

values in the non-negative integers. If we suppose further that we have five features in

total, then the feature vector of a given data point x would be a list of five non-negative

integers – it might look something like
�
12 � 0 � 1 � 18 � 23 � . This is the most common

situation, and it will henceforth be assumed to be the case unless otherwise stated.

However, it is worth noting that other feature sets are possible. For instance, we might

add a sixth feature that can take any value in the real numbers; a sample feature vector

might then be
�
8 � 14 � 3 � 0 � 22 ��	 0 � 475 � .

Feature ‘vectors’: The set of possible feature lists is not a true vector space, because

in general it is not meaningful to add the lists together or multiply them by scalars.
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Indeed it is not necessary for the features to be ordered at all, as long as each is uniquely

labelled in some fashion. Nonetheless the vector analogy is a useful one, and some

related concepts – such as the scalar product – remain relevant in the feature list setting.

Surjectivity: Note that F may not be surjective; in other words, there may be points

in Y n which do not correspond to any point in X . More simply, just because a par-

ticular feature vector can be defined does not mean that it will actually be observed.

Some feature vectors may simply be very unlikely: For instance, we are unlikely to

find documents which mention both ‘Britney Spears’ and ‘Hilbert space theory.’ (As

of 10 May 2005, there were no Google hits for this pair of phrases; of course, this

paragraph contains a rare mention of both topics in the same document.) Other feature

vectors may not appear for some deeper reason; for example, if our data points repre-

sent weather reports, we will not find snow coexisting with temperatures well above

freezing. Examining ‘forbidden’ combinations of feature values can thus improve our

qualitative understanding of the data.

Injectivity: The feature vector F may also not be injective; that is, F may send dif-

ferent points in X to the same point in Y n. If F
�
x1 � � F

�
x2 � � y, then the feature set

represented by F is unable to distinguish between the data points x1 and x2; it assigns

them both the same ‘description’ y. This is quite a common situation. Again, it may

be useful to examine data points which receive the same combination of features. Ob-

serving a pair of data points with identical feature vectors may motivate us to introduce

additional features, so as to be able to distinguish these two points; or it may simply

alert us to the fact that the two data points are in some sense quite similar.

2.2.3 Non-Informative Values

Individual features fi will often have a non-informative value. As the name suggests, a

non-informative value is one indicating that a feature provides no significant informa-

tion on a given data point.

Example 2.3: If our data points are web pages then we may define features which

return the number of occurrences of a given key word: flogic
�
x � counts the occurrences
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of the word ‘logic’ on the web page denoted by x, and so on. We will often have

flogic
�
x � � 0; in these instances, knowing the value of the ‘logic’ feature does not bring

us significantly closer to knowing the topic of the web page.
�

In the above example, the non-informative value of the feature was zero, but that

does not have to be the case. For instance, we may have a feature which looks at

a company’s stock price over the last year, and classifies it as good (growth much

better than the overall growth of the stock market), mediocre (roughly in line with

average growth), or poor (much worse than average). In this case it is natural to think

of ‘mediocre’ as the non-informative value. A non-informative value, then, can be

viewed as a default output for our features. If a feature often takes a non-informative

value, then we can think of it as being quite specialised, and only providing information

on a few data points. Such specialised features can be very useful in practice.

However, problems may arise if all features take their non-informative value on

a given data point – particularly if this occurs on a great many data points which are

otherwise unrelated. For instance, it may be that none of the key words we are looking

for occur in certain web pages, and the nature of these web pages varies radically.

We refer to the feature list composed entirely of non-informative values as the non-

informative vector.

Occurrence of the non-informative vector may not seriously trouble us; if we are

interested in specifically classifying financial news, then web pages which do not con-

tain any financial key words could simply be discarded as irrelevant. On the other

hand, if we are trying to construct a more general document classifier it will be a sig-

nificant handicap if we often find that none of our key words are present. Hence, very

frequent occurrence of the non-informative vector may indicate that our feature set is

inadequate for the task at hand.
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2.3 Feature-Based Probabilistic Models

2.3.1 Model Architectures

We refer to a scheme for incorporating features into a probabilistic model as a model

architecture. The resulting feature-based probabilistic model (FBPM) is a probability

distribution over possible feature values. Most model architectures allow considerable

flexibility in the choice of feature set.

A model architecture may also include a number of free parameters; if one pa-

rameter is assigned to each feature, then the parameters are known as feature weights.

Feature weights are used to assign different relative importances to the members of a

feature set. We usually denote the set of free parameters by λ and its individual mem-

bers by λi. The collection of all possible sets of parameters is denoted by Λ. As with

features, it is usually convenient to place the parameters in some consistent order and

think of them as a vector. In particular, if we have one parameter affecting each of our

n features then it is convenient to think of our parameter set as a vector:

λ � �
λ1 � λ2 ��������� λn �

where the parameter λi corresponds to the ith feature.

In practice, we would like to set the parameters to values which are in some sense

optimal. There are many possible definitions of ‘optimal.’ One of the most common

is the principle of maximum likelihood or ML, which dictates that we maximise the

likelihood of the training data with respect to the model. The ML principle is used

to train the maximum-entropy models described in Section 2.3.4. Another possible

criterion is the principle of minimum description length, which is briefly discussed in

Section 3.4.

Having defined the optimum parameter values, we require a method of achieving

them in practice. Setting the parameters to the best possible values is a problem in

n-dimensional optimisation, and is unlikely to have an analytic solution. Instead, we

generally use an iterative training algorithm which we hope will approach the optimal

parameter values.

In order to construct an FBPM, we require a feature set F . For convenience, we

assume that the features have been ordered into a list:
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F � �
fi : i � 1 ��������� n �

fi : X �� Y

As noted in Section 2.2.1 above, it is useful to think of F as a vector-valued func-

tion sending points in X to points in Y n. An important characteristic of many model

architectures is the ability to incorporate a variable set of features into a probabilistic

model of feature values. There are typically very few restrictions on the feature set. In

the examples we consider in Sections 2.3.4, and 2.3.3, the number of features n has a

lower limit of zero and no upper limit; and the features themselves may take any form,

as long as the possible feature values y are real numbers.

A feature-based probabilistic model or FBPM arises when, having chosen a model

architecture, we specify a particular feature set and any appropriate parameters. The

resulting FBPM is a probability distribution over possible combinations of feature val-

ues y � Y n. More formally, let G denote the FBPM and λ � Λ our free parameters (if

any – if our model architecture includes no additional parameters, then λ can of course

be omitted from the notation). We then have:

Gλ
�
y � :

�
Y n � Λ � ��

�
0 � 1 �

So given any appropriate parameters λ, our FBPM is a function Gλ
�
y � that assigns

a probability to each possible combination of feature values. Of course, the points y

themselves arise from the value taken by our feature set on particular data points. For

each data point x, there exists some y � Y n such that y � F
�
x � . Hence, the FBPM can

be used to form a probability distribution over data points:

Pλ
�
x � � Gλ

�
F

�
x ���

Note that in order for the probabilities Pλ
�
x � to sum to 1, we must have Gλ

�
y � � 0 for

any ‘forbidden’ vector y which does not equal f
�
x � for any x in X .

It is worth emphasising that our FBPM is not directly modelling the data points,

but instead models the combinations of feature values which can arise from them. It

is inherently incapable of distinguishing between different data points which have the

same vector of feature values.
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Two popular and effective examples of model architectures are the naive-bayes and

maximum-entropy schemes, which we discuss respectively in Sections 2.3.3 and 2.3.4.

These two architectures were employed for the experiments outlined in Chapter 5.

Before discussing them, we briefly consider the distinction between conditional and

unconditional models.

2.3.2 Conditional Models

This thesis concentrates on the use of FBPMs for classification although, as noted in

Chapter 1, feature selection can be applied to other tasks as well. In a feature-based

classification task, the FBPM is a conditional probability distribution which we refer to

as a classifier. We aim to assign a data point to one of several categories C1 � C2 ��������� Cm.

The set of categories is usually, but not necessarily, finite.

Each data point x � X then consists of a predicate π and a label c. For instance,

the predicate might be an English word, with a part-of-speech tag as its label; a

data point would then be of the form (bank, NOUN). A conditional FBPM assigns

a conditional distribution over labels to each predicate: For instance, we might have

Pr
�
NOUN � bank � � 0 � 8 and Pr

�
VERB � bank � � 0 � 2. The features used in a conditional

FBPM will usually have values dependent only on the predicate. The model can then

be used to estimate the probable categories of unlabelled data points.

Example 2.4: If our data points are web pages, then we might define a number of

features which take the value 1 if a particular key word is present and 0 if it is absent.

(We are thus using binary features; see Section 2.4 below.) Suppose that we wish to

classify web pages by subject; in this case, the predicate is the web page itself while

the label is its subject.

For instance, we could define binary features f1 and f2 whose truth conditions are

the occurrence of the words ‘bank’ and ‘river’ respectively. If the feature vector F
�
x � ��

1 � 0 � – that is, the page contains ‘bank’ but not ‘river’ – there is a high probability that

the category is ‘finance’. If F
�
x � � �

1 � 1 � then the probability of the subject being

finance is much lower.
�
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2.3.3 Naive-Bayes

The Naive-Bayes model architecture gives rise to a family of simple feature-based clas-

sifiers. It arises from Bayes’ rule for conditional probabilities, which may be expressed

as follows for two events A and B [GW86]:

Pr
�
A � B � � Pr

�
B � A � Pr

�
A �

Pr
�
B �

In the case of feature-based classification, we suppose as usual that the data space is

partitioned into countably many classes Ci, and we have a feature set F � �
f1 � f2 ��������� fn �

chosen from a pool of available features F . We are interested in finding the category

of data points x, given their vectors of feature values y � F
�
x � . Bayes’ rule gives us:

Pr
�
x � Ci � F �

x � � y � � Pr
�
F

�
x � � y � x � Ci � Pr

�
x � Ci �

Pr
�
F

�
x � � y �

The probabilities Pr
�
x � Ci � and Pr

�
F

�
x � � y � can be easily estimated from our set

of training data – see Section 3.3.1 for further discussion of how this may be accom-

plished. However, the conditional probability Pr
�
F

�
x � � y � x � Ci � will in general be

much more difficult to find. We simplify matters by assuming that the individual fea-

tures fi are independent of one another; this is known as the Naive-Bayes assumption.

The conditional probabilities can then be rewritten as follows:

Pr
�
F

�
x � � y � x � Ci � �

n

∏
i � 1

Pr
�
fi � yi � x � Ci �

where yi is the ith component of the vector of feature values y.

The Naive-Bayes assumption makes it much easier to estimate the required con-

ditional probabilities. However, as the name suggests, it is in general only a rough

approximation to the real situation. In practical tasks, we may well find that feature

values are dependent on one another; indeed, modelling such dependencies may be cru-

cial for effective classification. Nevertheless, naive-bayes techniques have been used

extensively and with considerable success in text classification; see McCallum and

Nigam for a survey [MN98]. A more general overview of the naive-bayes assumption

in machine learning is provided by Lewis [Lew98].
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2.3.4 Maximum Entropy

Our second model architecture is the maximum-entropy scheme. Maximum-entropy

classifiers are a variant of the minimum-divergence, maximum-entropy (MDME) fam-

ily of models. A typical MDME model takes the form:

pλ
�
v � u � � 1

Z
�
λ � q

�
v � exp

�
n

∑
i � 1

λi fi
�
u � v ���

where v is an event occurring in a context denoted by u, q
�
v � is a regularising prob-

ability distribution, fi is the ith feature function, λi is a real-valued free parameter or

weight, λ � �
λ1 � λ2 ��������� λn � , and Z

�
λ � � ∑v exp∑i λi fi

�
u � v � is a normalisation constant

chosen to ensure that the probabilities sum to 1. (Della Pietra et al. establish that the

MDME scheme can be extended in a rigorous fashion to allow the λi to equal ‘mi-

nus infinity’; this allows the model to assign an expected value of zero to particular

features [DPDPL97].)

MDME models have a number of appealing theoretical properties, as described

by Della Pietra, Berger et al. [BDPDP96, DPDPL97]. In particular, it can be shown

that there is a unique value for the vector of weights which gives rise to a model p �
satisfying the following criteria:

1. The expected value of each feature fi with respect to the model is the same as its

expected value on the training set.

2. Among all models satisfying constraint (1), p � has the greatest conditional en-

tropy. The conditional entropy is defined in Section 3.3.2, and can be thought

of as a measure of the uncertainty inherent in a conditional probability distri-

bution. In a sense then, a maximum-entropy model is the hypothesis consistent

with our data which makes as few assumptions as possible, in accordance with

the principle of Occam’s Razor.

3. The model p � is the model in the parametric family pλ
�
v � u � which maximises

the likelihood of the training data.

Efficient algorithms exist to find a close approximation to the optimal model p � ;
see Della Pietra et al. and Malouf for details [DPDPL97, Mal02]. MDME models have
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have been applied to a very wide variety of problems; for their application specifi-

cally to text-based natural language processing, see Berger et al., Rosenfeld and Rat-

naparkhi [BDPDP96, Ros96, Rat96, Rat98].

The maximum-entropy (ME) models used in the experiments detailed in Chap-

ters 5, 6 and 7 take the following form:

pλ
�
x � Ci � F � i � � x � � y � � 1

Z
�
λ � exp

�
n

∑
j � 1

λ j f � i �j

�
x � �

� 1
Z
�
λ � exp

�
λ � F � i � � x ���

Notice that the sum ∑n
j � 1 λ j f � i �j

�
x � can be naturally expressed as the scalar product

of the ‘vectors’ λ and F � i � . As usual, x is a data point, Ci is one of countably many

categories, y is a vector of feature values, and Z
�
λ � is a normalising constant. In our

chosen setting, the data points are words and the categories are part-of-speech tags.

A given feature f � i �j takes the value 1 if the jth indicator (in our setting, a substring)

is present on a data point which falls into the ith category, and 0 otherwise. These

category-dependent features are used together with labelled training data to optimise

the values of the parameters λ j. The model can attempt to classify unlabelled data by

assuming that all features f � i �j are active in any word containing the jth substring, and

assigning the category with the highest probability pλ
�
x � Ci � F � i � � x � � y � .

The Forbidden Vector Problem: Notice that, in order for the probabilities Gλ
�
F

�
x ���

in an ME model to sum to 1, any ‘forbidden’ combinations of feature values y (that is,

those that do not correspond to any data point x) must satisfy Gλ
�
y � � 0. In some cases

our model may not be flexible enough to arbitrarily assign zero probability to particular

combinations of features.

This can be illustrated as follows: Suppose that, as in Example 4 above, our data

points are English words and we have binary features whose indicators are particular

substrings. We then incorporate those features into an MDME model – for instance, a

conditional model that assigns probabilities to a word’s part-of-speech tags given the

features active on the word.1

1This is the setting for the extensive experimental investigation of feature selection methods in Chap-
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Recall that in MDME models, assigning a weight of ‘minus infinity’ to a feature

means that any word containing this feature has probability zero. In this instance,

we may not want the binary features ing], [z, ja, and (where the left and right square

brackets are the beginning- and end-of-word markers, respectively) to have weights of

minus infinity, but intuitively we would like the non-word ‘zjaing’ to have zero (or at

least very low) probability. It may in fact be desirable to ensure that all possible combi-

nations of feature values receive non-zero probabilities. In the case of English words,

combinations of letters never before seen may well turn up in recorded utterances – as

new words or perhaps as abbreviations. (They need not even be pronounceable, as the

adoption of VCR and DVD in English demonstrates.)

For practical purposes, though, we would like combinations of feature values that

never occur in our available data to receive extremely low probabilities. Unfortunately,

arbitrarily giving ‘zjaing’ very low or zero probability cannot be achieved except by

defining more features – such as [zja, which would be active on words beginning with

the three letters ‘zja’ – and assigning them negative weights of large (or infinite) mag-

nitude. There are of course infinitely many combinations of commonly occurring sub-

strings which do not correspond to English words, so the ‘extra features’ strategy will

not get us far. We must instead choose our features carefully, so as to avoid giving

too much probability mass to feature combinations which do not occur in our data set.

Solving this ‘forbidden vector problem’ may present a significant challenge in practi-

cal feature selection tasks. It is similar to the challenge of smoothing a model, in that

we must decide how much probability mass to assign to unseen data points.

2.4 Binary Features

2.4.1 Definitions

The set of possible feature values Y is typically quite simple. In particular, it is common

for Y to be the binary set
�
0 � 1 � . A feature f which maps data points x to the binary

set is said to be a binary feature. The feature then takes the value 1 on a given data

point if that data point has a given characteristic, in which case the feature is said to be

ter 4.



2.4. Binary Features 39

active. Otherwise the feature takes the value 0 and is said to be inactive. (Obviously,

we consider 0 to be the null value.) We refer to the quality whose presence or absence

is used to decide whether a feature is active as the feature’s indicator.

Example 2.5: Suppose that our data points are English words. We might define

a feature f1 which is active on words containing the three-letter substring gre. For in-

stance, we have f1
�
green � � 1 and f1

�
ideas � � 0. The indicator is simply the presence

of the string gre.

If we additionally define a feature f2 which is active on words containing the sub-

string de, then F
�
green � � �

1 � 0 � and F
�
ideas � � �

0 � 1 � . �

In the case of binary features, it is common to abuse terminology slightly by using

the word ‘feature’ to refer to both the feature function itself and its indicator. Using

the above example, it is natural to refer to the three-letter substring gre as a ‘feature’

of the word ‘green’. It should be emphasised that the indicator is not a function in its

own right; it is simply an identifiable characteristic of a data point. In this instance, our

indicator is the substring gre. The substring is distinct from f1, which is a function

mapping words to the binary set.

It is sometimes useful to adopt other feature image sets which have only two val-

ues, for instance ‘positive’ and ‘negative.’ Such features are of course very closely

related to true binary features (those whose image set is
�
0 � 1 � ). Hence, we will some-

times use the term ‘binary feature’ in a slightly looser sense to mean any feature whose

image set contains only two elements. Although binary features are particularly com-

mon, it should be noted that for most model architectures there are very few a priori

restrictions on the feature image set Y , and other image sets are entirely possible.

2.4.2 Approximation of Multi-valued Features

It is important to note that combinations of binary features can be used to mimic the

effect of more complicated features. This can be very useful, as binary features are

particularly simple to deal with.

If a feature takes finitely many values, our model architecture may permit us to

reproduce its behaviour perfectly. This requires assigning one binary feature to each
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possible value of the original, multi-valued feature function. Suppose that our original

function f
�
x � takes one of m different values

�
y1 � y2 ��������� ym � . If f is well-defined, then

for each possible input x there will be exactly one output yk � f
�
x � . Hence, we can

define subsets Xk of the data space X as follows: A given data point x is a member of

Xk if and only if f
�
x � � yk. Each data point x then falls into one and only one subset

Xk.2 Let us also suppose that there is a null value, which we denote by y0.

For each possible output yk, then, we define a new feature fk
�
x � :

fk
�
x � ��� f

�
x � � yk if x � Xk

y0 otherwise

Some care is needed here, as the collection of binary features may not behave in

exactly the same way as the original multi-valued feature. Whether we can duplicate

the original feature exactly depends on the nature of our model architecture. In ME

models, though, this scheme can work very well. Let the initial multi-valued func-

tion be denoted by f
�
x � and its weight by γ. For each x, we are replacing the initial

feature/weight pair:

γ f
�
x �

with the same weight and a sum of binary features:

γ

�
m

∑
k � 1

fk
�
x � �

In the MDME case, our non-informative value is 0. Thus, for any given x, all but

one of the binary features fk is equal to zero and the sum takes the same value as the

initial function. The fk are not ‘true’ binary features; each fk takes the values 0 and

yk, not 0 and 1. Since the yk are real numbers, we could of course replace each fk with

a true binary feature f �k, multiplied by the fixed real number yk. The sum of binary

features is then:

2A feature thus has the effect of partitioning the data space X – it divides it into disjoint subsets Xk

whose union is the whole of X . (It can be shown that this happens even if the feature image set Y is
infinite.) The feature set as a whole has a similar partitioning effect, which will be examined in depth in
Chapter 4.
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γ f
�
x � � γ

�
m

∑
k � 1

yk f �k � x � �
�

m

∑
k � 1

γyk f �k � x �
Notice that, while the overall weight γ may be allowed to vary, the individual

‘weights’ yk must remain fixed for the sum to be equal to the original feature func-

tion. Unless we are very careful, our training algorithm may view the quantities γy j

and γyk (where j �� k) as parameters which may be varied independently, irrespective

of the need to keep y j and yk fixed. The process of training may thus distort our binary

sum so that it is no longer an accurate duplication of the original, multi-valued feature

function.

In other cases, it may be possible to use binary features to adequately approximate

a feature function with an infinitely large image set. Continuing the previous example,

we might divide the range of possible document lengths into a number of intervals

and assign one binary feature to each interval; we would then have indicators such

as ‘between 100 and 200 words’ or ‘more than 1000 words’. Obviously, we cannot

perfectly duplicate a feature that takes infinitely many values using finitely many binary

features; but we may be able to form a satisfactory approximation.

The above discussion helps illustrate that combinations of features can be powerful

tools for modelling data, but must be treated with care as the features may interact in

ways which are difficult to predict.

2.5 Summary

In this chapter we have discussed the need for, and advantages of, creating precise def-

initions of features and the models which may incorporate them. We have continued

by presenting suitable definitions of feature functions and discussing their properties;

and by formally defining feature-based probabilistic models. Finally, we have exam-

ined the commonly occurring special case of binary features, indicating how binary

features relate to the more general setting of feature functions.
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Chapter 3 will survey the existing literature on feature selection, and where ap-

propriate will discuss it in terms of the theoretical framework developed in Chapter

2.



Chapter 3

Literature Survey

3.1 Introduction

In Chapter 2 we established formal definitions for features and their relationship to

feature-based probabilistic models (FBPMs). Recall that a model architecture is a

scheme for incorporating a set of feature functions into a probabilistic model; and that

most model architectures place very few restrictions on the feature set. It is therefore

natural to ask what constitutes a good set of features, and how we may find such a set.

In this chapter we carry out a survey of existing feature selection literature. We

begin by defining the feature selection problem and describing a general classification

system for feature selection algorithms, based on the one established by Dash and Liu

and later updated by Liu and Yu [DL97, LY02]. We then examine some commonly

employed feature selection techniques, concentrating on methods derived from infor-

mation theory: Information gain, the Koller-Sahami criterion, and mutual-information

measures.

Throughout this chapter, we will make use of the terminology presented in Chap-

ter 2 where appropriate. In particular, many of our examples will employ the binary

features defined in Section 2.4. Recall that a binary feature function takes the value 1

if its indicator is present for a given data point, and 0 if the indicator is absent. Many

studies, such as that by Yang and Pedersen, restrict themselves to the binary case and

use the word ‘feature’ for both the function and its indicator [YP97]. However, these

43
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are really two different things; an indicator is some identifiable characteristic of a data

point, whereas a feature function is a mapping from the data space to the binary set. In

this survey, we follow the more general approach of Blum and Langley and John et al.,

which allows the extension of our ideas to non-binary features [JKP94, BL97].

A number of general surveys of feature selection have been carried out. Studies by

John et al., Blum and Langley, and Dash and Liu have already been mentioned; Yang

and Pedersen provide an overview of feature selection for the specific area of text cat-

egorisation [JKP94, BL97, DL97, YP97]. An earlier examination of feature selection

by Langley is also of interest [Lan94]. In addition, a useful survey of recent develop-

ments in feature selection – including application to domains with tens or hundreds of

thousands of features – has been carried out by Guyon and Elisseeff [GE03].

3.2 General Concepts

The setting of the general feature selection problem is as follows: We assume that

we have specified our data space X and a particular model architecture, and that we

possess a set of training data X̃ . We also have a large and possibly infinite pool of

available feature functions, which we denote by F .

Example 3.1: Suppose that we are attempting to construct an FBPM for classi-

fying Web pages. Our data space X is the infinite set of all possible Web pages; the

training set X̃ is a finite collection of pages, each labelled by subject. Now suppose that

we wish to use binary features, which take the value 1 if a particular word or phrase is

present in the page and 0 if it is absent. Our pool of possible features F may contain

one feature function for each possible word or phrase which might be encountered in a

Web page; so in principle, F is astronomically large. Naturally, for practical purposes

we can only incorporate a smaller subset of these features into our model.
�

Even if it is possible to incorporate all available features into the model, we may

not wish to do so. The reasons for this may include a desire for greater computa-

tional efficiency; for greater accuracy of classification, and in particular the avoidance

of overfitting; for a smaller and more easily understood feature set; or to exclude cer-
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tain features which are known to be irrelevant or misleading. Choosing a good set of

features will give rise to a simpler, faster and more accurate model.

We therefore need a method for selecting a smaller feature set F , a subset of the

pool of available features F . (For this reason, the problem of feature selection is

sometimes known as feature subset selection.) We would like our chosen feature subset

to be in some sense optimal; this usually requires a quantitative definition of how

‘good’ a given feature subset is.

Furthermore, there are typically a great many subsets to choose from. An infinite

set will of course have infinitely many, and even a finite set with a elements has 2a

distinct subsets. With a very modest pool of 30 possible features, we have in excess of

109 distinct subsets; and it is common for the available features themselves to number

in the thousands or millions. In general then, it is impossible to carry out an exhaustive

assessment of the possible feature subsets, and we need a more sophisticated strategy

for finding a good one.

Dash and Liu identify four distinct elements of a typical feature selection algo-

rithm [DL97]:

1. Generation procedure: A means of generating candidate feature subsets.

2. Evaluation function: A function which produces a numerical ‘score’ for each

candidate feature subset.

3. Stopping criterion: A means of deciding when to terminate the search.

4. Validation procedure: Any feature selection method must be validated by as-

sessing the performance of the FBPM which arises from it.

The process of feature selection essentially consists of repeatedly generating a fea-

ture subset and assessing it using our evaluation function. If our stopping criterion is

met by the current feature subset, then we halt our search; otherwise, we continue to

generate and assess new feature subsets. Taken together, the first three items can be

thought of as a strategy for navigating through the immense space of feature functions.

Our choice of each one of these three will be influenced by our choices for the other

two, and perhaps by our chosen model architecture as well. Validation of the model
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is not part of the feature selection process as such, but it is an essential component of

any practical use of feature selection. We now consider these four elements in greater

detail.

3.2.1 Generation Procedures

The generation procedure is a means of generating subsets of our pool of available

features. It is worth stressing that the generation of feature subsets is distinct from

their evaluation. In general the choice of a particular generation procedure does not tie

us to a specific evaluation method, and vice versa. Failure to keep this distinction in

mind can result in significant confusion, as noted in the discussion of work by Acuna

in Section 3.2.2.1 and by Koller and Sahami in Section 3.3.4 [Acu03, KS96].

Blum and Langley note that a generation procedure requires us to specify two

things: A starting point in the space of feature subsets, and a means of organising

a search through the space [BL97].

Starting Point: We could begin with the empty feature set; at the other extreme, if

our pool of candidate features F is finite, we could start with the set of all available fea-

tures. Searches which begin with the empty set and iteratively add features are known

as forward selection; those which begin with the maximal feature set and iteratively

remove features are known as backward elimination. These two simple techniques can

prove very effective in practice, and are quite popular in the literature; see Dash and

Liu or Blum and Langley for details [DL97, BL97]. An empirical comparison between

the two methods is carried out by Aha and Bankert [AB96]. They conclude that, as

one might expect, forward selection is superior when the optimal number of features

is small while backward elimination is more effective in selecting large feature sets.1

However, their study is carried out in a comparatively restricted domain and is far from

definitive.

Another possibility is to begin with a feature subset of some intermediate size,

chosen randomly or by some other appropriate method. Such a subset may have been

sampled uniformly from the collection of available features F (that is, all features in

1‘Small’ and ‘large’ are generally defined with respect to the total number of available features.
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F are equally likely to be included in our initial subset); or we may introduce a bias

into the sampling, in order to favour features which we expect to be useful on some a

priori grounds.

Example 3.2: Consider an FBPM which classifies English words by their part-

of-speech tag. Each feature is defined by a particular substring; it takes the value 1

on a word in which the substring is present, and 0 on a word in which it is absent.2

We might wish to select our initial feature set at random, subject to the constraint that

at least one feature in our initial subset should take the value 1 on each word in the

training set.
�

A more elaborate approach is to start with multiple feature subsets. This is the set-

ting of the canonical genetic algorithm; see Goldberg for details [Gol89]. In a genetic

search algorithm we apply a ‘survival of the fittest’ strategy: Feature subsets which are

particularly good, with respect to our chosen evaluation function, are used to form the

next generation of subsets. The new generation contains subsets made up of features

from two or more of the ‘fittest’ sets from the preceding generation; it may also contain

exact copies of the best previous feature sets.

Genetic algorithms have been applied to several feature selection tasks [YH98,

ILS01, SYBL02]. Although they have produced effective results, they have the obvious

drawback of requiring us to assess a very large number of candidate feature subsets.

If our evaluation function is difficult to compute, search by a genetic algorithm may

be impractical. This problem may be eased somewhat if the assessment of different

subsets can be carried out in parallel on different machines or processors. Vafaie and

De Jong report that search by a genetic algorithm can significantly reduce the chance of

a sequential search (in this case, backward elimination) becoming ‘stuck’ in a less than

optimal region, with minimal decrease in computational efficiency [VD93, VD95].

However, their experiments are carried out with a pool of only 30 candidate features;

scaling genetic algorithms up to domains with tens of thousands of features – such as

the setting for the experiments in this thesis – presents considerable difficulty.

2We are therefore using binary features; see Section 2.4.
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Search Strategy: In addition to choosing a starting point, we must specify a strategy

for adding and/or removing features with the aim of improving the initial subset. Gen-

erally speaking, the basic idea is as follows: We consider a number of local changes

to the existing subset; adopt the best one (with respect to the evaluation function); and

iterate until our stopping criteria are satisfied.

The simplest technique is to carry out a greedy search. If we are using forward

selection, then at each step we assess all remaining candidates for addition to our ex-

isting feature set, and add the one which gives rise to the highest-scoring new set. With

backward elimination we consider all features in our existing set and remove one, again

with the aim of maximising the score of the new set.

Several variations on the simple, greedy search have been employed. One obvious

variant is to allow our search to ‘backtrack’, by both adding and removing features.

For example, in the forward selection case we might add k features and then remove

one. This would allow our search to discard features which initially seem promising,

but later interact with other features in undesirable ways. Another possibility is to

consider all possible features which may be added to or removed from our existing

set, and add or remove the feature which gives rise to the best-scoring new set; this is

known as a stepwise search [BL97].

We can also add or remove more than one feature at a time. This is especially useful

for very large feature sets, where selecting features one at a time can be prohibitively

slow. In Chapter 5, we introduce a new technique which we refer to as accelerated

forward selection. This method obtains good results with sets of between 10000 and

40000 feature functions by randomly selecting several blocks of features, each roughly

1% the size of our existing feature subset, and adding the one which brings about the

greatest improvement in our evaluation function; it will be discussed in greater depth

in Section 5.5.2.3

Regardless of how the local changes are generated, there are two distinct ways of

deciding how many to evaluate. One is to assess a fixed number of possible changes

3A much more extreme randomising approach is the ‘Las Vegas’ method employed by Liu and
Setiono; at each step, a new feature subset is chosen entirely at random, compared to the existing one,
and adopted if it is found to be superior [LS98]. This is somewhat more efficient than an exhaustive
search, but needless to say it is a poor way of navigating through very large spaces of feature subsets.
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(possibly all of them) and choose the best one. Alternatively, we can simply generate

and assess local changes one by one, and adopt the first one which gives rise to an

improvement over the current feature set. The latter technique sacrifices a thorough

investigation of possible improvements at each step in favour of speed. It also presup-

poses that we expect an improvement at each step, which is not necessarily the case;

for instance, in backward elimination we may wish to force our algorithm to discard a

feature at each step, so as to arrive at a smaller and more efficient feature set.

The generation procedure we choose to adopt will depend on a number of factors.

The most crucial tend to be the size of our pool of available features; the expected

size of our final feature subset relative to the collection of possible features; and the

difficulty of computing our evaluation function.

3.2.2 Evaluation Functions

3.2.2.1 Wrappers versus Filters

An evaluation function is a quantitative measure which enables us to assess the desir-

ability of a given feature subset. It is typically a function which maps a given feature

subset F � F to the non-negative real numbers:

µ
�
F � : 2F ��

�
0 � ∞ �

where 2F denotes the set of subsets of F .4 The evaluation function may also map

2F to some subset of
�
0 � ∞ � . Some evaluation functions are maximised for optimal fea-

ture sets; others are minimised. We must of course be clear and consistent about what

our objective is. However, whether we are maximising a measure of ‘goodness’ or

minimising a measure of ‘badness’ is not of much general significance. (Maximising

µ is equivalent for most practical purposes to minimising 1 � µ.) A more important dis-

tinction is the one between wrapper and filter evaluation functions, which we describe

below.

Example 3.3: Suppose that each data point x falls into exactly one of countably

many categories Ci. Assume that we have access to a collection of correctly labelled

4The notation is indicative of the fact that, if F is finite with a elements, it has 2a distinct subsets.
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data points. We divide the collection into a training set which will be used to assign

values to any free parameters in our model, and a test set which will be used to assess

the performance of the model.

Now suppose that a given feature set F gives rise to a classifier:

Cλ
�
x � F �

Having chosen a feature set F , we first set the free parameters λ using the training set

and an appropriate training algorithm. The classifier then assigns each data point x to

a particular category Ci.

We define an evaluation function w
�
F � to be the fraction of the test set which is cor-

rectly labelled by the trained classifier Cλ
�
x � F � . (Equivalently, w

�
F � is the probability

that a data point, randomly sampled from the test set according to the uniform distribu-

tion, will be correctly classified.) The evaluation function w
�
F � will therefore be a real

number between 0 and 1. If w
�
F � � 0 then our classifier does not correctly classify

any point in the test set; if w
�
F � � 1 then it correctly classifies them all. Obviously, we

wish to maximise the value of w
�
F � . �

The evaluation function w
�
F � is an example of a wrapper scheme. In a wrapper,

the trained model itself serves as our method of assessing a candidate feature set; the

feature selection is ‘wrapped’ in the process of training and assessing a feature-based

probabilistic model. The more accurate the model, the better the feature set is deemed

to be. Wrappers were first presented by John, Kohavi and Pfleger [JKP94]. They have

been further developed and applied by John, Kohavi and many others [KJ97, KS95,

KJ98, LS6a, SH98, LS94, Ska94].

Conversely, a filter method is independent of our model architecture; it attempts to

‘filter’ out irrelevant and redundant features before we attempt to train the model.

Example 3.4: A very simple example of a filter measure is frequency-based cutoff

(FBC). When applied to binary features, frequency-based cutoff prefers features which

frequently take the value 1 on the training data. The ‘score’ of a particular feature is

simply the number of times it takes the value 1 in the training set; the score of a feature

subset is the sum of the scores of its individual features.5
�

5If extended to features which can take more than two values, FBC prefers those which do not often
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Examples of more sophisticated filters are discussed in Sections 3.2.2.3, 3.2.2.4,

and 3.3. An interesting empirical study of filter evaluation metrics applied to text

categorisation, including information-gain and frequency-based cutoff measures, has

been carried out by Forman [For03].

An experimental comparison of filter and wrapper procedures has been carried out

by Acuna [Acu03]. Regrettably, Acuna does not fully control for generation proce-

dures. Only in the case of forward selection is there a direct comparison between

filter and wrapper metrics operating under the same generation procedure; the fully

randomised ‘Las Vegas’ generation procedure of Liu and Setiono6 is evaluated for a

filter measure only, whereas backward elimination is carried out for a wrapper only.

A more systematic comparison between wrapper and filter methods of feature selec-

tion in combination with different generation techniques was conducted by Aha and

Bankert [AB96]. Investigations such as these two, along with the detailed study of

wrapper methods by Kohavi and Joun and broader surveys of feature selection carried

out by Dash, Liu, Blum, Langley and others, allow us to draw some general conclu-

sions about the differences between wrappers and filters [KJ98, DL97, BL97, LY02].

Wrapper methods consistently give rise to very accurate models, which is to be

expected if the criterion used to assess the accuracy of the model is the same as the one

used to select its features. However, the good performance of a wrapper in selecting

features for its own learner will not necessarily carry over to other model architec-

tures. This was the case in the experiments described in Chapter 5; the implications

for feature selection are discussed further in Section 6.8.

Wrappers also tend to be rather slow and computationally expensive, as a model

must be trained and evaluated for every feature set we wish to assess. Furthermore,

each wrapper is by its nature tied to a particular model architecture. This means that

few general lessons can be drawn from a wrapper; it does not significantly improve our

understanding of feature selection in other domains, and often gives little qualitative

indication of why one feature set performs better than another.

Filter methods are usually faster than a wrapper, and tend to be more broadly ap-

plicable; they may be able to partially compensate for any weaknesses in our model

take their null value. (Null values are defined in Section 2.2.3.)
6Las Vegas methods were first presented in [LS98].
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architecture; they often have a theoretical foundation which can help us understand

why some features are better than others; but they frequently give rise to less accurate

models. A wide variety of filter measures have appeared in the literature. As Dash

and Liu note, filters fall into four general categories: Information measures, distance

measures, correlation or dependence measures, and consistency measures [DL97]. For

reasons described in Section 3.2.2.3, we will concentrate on information measures and

consider the others only briefly. Before considering further examples of information

metrics, we briefly discuss the distinction between hierarchical and non-hierarchical

filters.

3.2.2.2 Hierarchical versus Non-Hierarchical

Filter metrics for feature selection can be divided into hierarchical and non-hierarchical

measures. (As we shall see, all wrapper metrics are non-hierarchical.) A hierarchical

metric is one which places features in a fixed order of desirability, regardless of how

they are combined in a feature subset. Hence, a hierarchical metric cannot effectively

consider interactions between features. The frequency-based cutoff measure described

in Section 3.2.2.1 is an example of a hierarchical measure; another is the naive mutual-

information metric described in Section 3.3.5.

Conversely, a non-hierarchical metric takes account of how features are combined.

Rather than assessing feature functions in isolation, it evaluates a feature subset as a

whole. In many cases this is accomplished by assigning scores to possible combina-

tions of feature values, as with the metrics discussed in Section 3.2.2.3 and Chapter 4.

Implicitly or explicitly, a non-hierarchical metric is capable of considering the influ-

ence of features upon each other.

Wrappers also effectively consider interactions between features. Interestingly, as

we discuss in Chapter 7, this holds true even for the naive-bayes model architecture

– which formally assumes that features are independent of one another. If there are

dependencies between features – as there almost always will be – then taking account

of such dependencies gives rise to more accurate classification, in spite of the indepen-

dence assumption incorporated in the model.

Hierarchical metrics in general give rise to much more rapid feature selection than
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non-hierarchical ones. It is usually quite easy to evaluate a hierarchical metric for ev-

ery member of our collection of available features; then, the most desirable subset of n

features is simply the one containing the n features with the highest individual scores.

Conversely, it is almost never possible to evaluate a non-hierarchical metric for every

possible feature subset, and we must resort to heuristic searches which cannot be guar-

anteed to find a global maximum for the metric. However, non-hierarchical metrics

do have the advantage of being able to consider interactions between features. In the

experiments detailed in Chapter 5, non-hierarchical metrics gave rise to considerably

greater accuracy than their hierarchical counterparts, even with relatively crude search

techniques.

3.2.2.3 Information Measures

Information measures are based on entropy and related concepts drawn from informa-

tion theory, such as Kullback-Liebler divergence and mutual information. (See Cover

and Thomas for definitions of these quantities [CT91].) Such measures are very pop-

ular in the literature, and they have demonstrated significant practical success in a

variety of applications. They are also theoretically appealing, due to their foundations

in the well-developed field of information theory – which is itself closely connected

to probability theory. Specifically, information measures can be seen as measuring the

distances between probability distributions. (Exactly where these distributions come

from will be discussed in detail in Section 3.3.1.) Because of their sound theoretical

background, information measures are typically very general; they can be applied to

wide classes of problems, instead of being closely tied to a particular model architec-

ture.

The new evaluation functions presented in Chapter 4 and experimentally investi-

gated in Chapters 5, 6, and 7 are based on information theory. Later in this chapter,

Section 3.3 will consider existing information measures in greater depth.

3.2.2.4 Other Types of Filter

Distance Measures: These are similar to information measures, but they do not de-

fine the distance between probability distributions in terms of information theory. For
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instance, they might use measures based on Euclidean distance or the Lp distances of

real analysis.7

Correlation Measures: Also known as dependence measures, these measure our

ability to predict the value of one variable from the value of another. For instance,

one might examine the correlation between particular binary features and a class we

are interested in; if the event fi
�
x � � 1 is more strongly correlated than with class C

than the event f j � 1, then fi is preferred to f j.

Dash and Liu note that dependence measures can themselves be divided between

distance and information measures [DL97]. However, they argue that dependence mea-

sures should be given their own category, as they represent a distinct way of thinking

about feature selection.

Consistency Measures: These make use of the Min-Features bias defined by Al-

muallim and Dietterich [AD91]. Consistency measures seek consistent hypotheses

about the training data, using as few features as possible.

3.2.3 Stopping Criteria

Recall that a feature selection algorithm begins by choosing a starting point somewhere

in the space of feature subsets. It then attempts to navigate through that space, guided

by an evaluation function which gives a quantitative definition of how ‘good’ a given

feature subset is. Naturally, we need some method of deciding when to terminate our

search. Possibilities include:

Number of Iterations: We may simply halt our feature selection process after a pre-

determined number of steps.

Subset Size: Stop when our feature subset reaches a particular fixed size. This is

particularly appropriate for forward selection or backward elimination.

7See Priestley for definitions and discussion of Lp distances [Pri97].
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Optimum Subset: In some domains we can reasonably expect to find a feature sub-

set which is ‘perfect’ with respect to our evaluation function; it is natural to halt when

this is achieved. For example, a wrapper method with a small test set may be able

to correctly classify every member of the test set. In many cases though, it will be

unlikely or impossible for our evaluation function to reach its optimum value within a

reasonable amount of time.

No Visible Improvement: Stop when none of the local changes we have surveyed

is better than our existing feature set. We may wish to generate some additional local

changes before halting the feature selection process. For instance, if we cannot obtain

a better subset by adding one feature, we might also consider adding pairs of features

before we halt the process. Another slight variation is to stop when the improvement

falls below a certain threshold; for instance, the Expected Partition Entropy metric

presented in Chapter 4 can be expected to asymptotically approach zero for medium-

sized feature sets, but is unlikely to attain it except for very large ones.

Notice that the first two measures are independent of our evaluation function, while

the others are not. We may wish to combine more than one stopping criterion. For

instance, we might halt when no improvement is visible or when our feature subset

reaches a certain size, whichever comes first.

3.2.4 Validation

A validation process tests the success of an FBPM which arises from a given feature

set, usually with reference to its accuracy on unseen test data. It is not part of the feature

selection process itself, but is an important guide to whether the process has been

successful. Wrapper methods already perform this to some extent. Another important

aspect of validation is contrasting the effectiveness of our FBPM with that of other

models for the same phenomenon, perhaps ones obtained using other feature selection

methods.
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3.3 Examples of Information Measures

In this section, we describe information gain, the Koller-Sahami filter, and mutual in-

formation, three popular examples of evaluation functions based on information theory.

In order to do so, we first need to define approximate distributions. We then introduce

the key concepts of entropy, conditional entropy, relative entropy, and mutual infor-

mation, and discuss the evaluation functions which arise from them.

3.3.1 Background – Approximate Distributions

It is important to note that information theory, and the measures derived from it, fun-

damentally involve properties of and relationships between probability distributions.

In order to employ an information measure, we need some idea of the probability dis-

tribution governing the data points and their associated feature values.

In practice of course, we do not have access to the ‘true’ distribution which is as-

sumed to govern the phenomenon that we are modelling. Instead we have a set of

training data X̃ � �
x̃1 � x̃2 ������� x̃N � ; our training data points are assumed to be indepen-

dently sampled from an identical distribution. We can use this data to form a relatively

crude approximation to the ‘true’ distribution p
�
x � , which in turn can help us select fea-

tures to form what should be a better model. (Some other methods of feature selection

also require an approximate distribution; see Section 3.2.2.4.)

It is customary to use the empirical distribution of data points as our approxima-

tion. Indeed, it is so conventional that many authors treat the two terms as synonymous

– it is simply assumed that any probabilities required for an information measure are

derived from the empirical distribution. As we shall see though, other approximations

are possible.

The empirical probabilities are defined as follows: Suppose that our training set

X̃ consists of N points x̃1 ������� � x̃N . Points in the training set are not necessarily unique;

that is, we may have x̃i � x̃ j for i �� j. For example, if our data points are English words

and the training data consists of all the words in a given sample of text, many words

will occur more than once. Let c
�
x � be a ‘count function’ that returns the number of

times the distinct data point x occurs in the training data. We now define the empirical
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data distribution p̃
�
x � :

p̃
�
x � � c

�
x �

N

In other words, the empirical probability of a particular data point is the number of

times it occurs in the training set, divided by the total size of the training set.

Notice that we can similarly define an empirical distribution of feature vectors:

q̃
�
y � � c

�
y �

N

Each data point x will have a vector of feature values y � F
�
x � assigned to it by

our feature set; if we now let c
�
y � be the number of times that a given feature vector y

appears in the training set, the empirical probabilities of feature vectors are defined in

exactly the same way.

In classification tasks, it is often necessary to use more complicated distributions

than the simple empirical probabilities. If we are principally interested in the con-

ditional probability Pr
�
x � Ci � F �

x � � y � , where F is a feature set and Ci is one of the

possible classifications for the data point x, then the simple empirical probabilities p̃
�
x �

are not immediately of use to us; but they can be used to derive distributions which are.

For instance, see the discussion of information gain in Section 3.3.3.2 and by Yang and

Pedersen [YP97]. In the conditional case, information gain requires us to compute such

probabilities as Pr
�
Ci � (the probability that a randomly sampled data point will fall into

the ith category) and the conditional probability Pr
�
Ci � Fk

�
x � � y � (where Fk

�
x � is the

feature set obtained at the kth stage of a forward selection algorithm). Approxima-

tions to these probabilities can be derived from the simple empirical probabilities –

assuming, of course, that we know the category of each data point in our training set.

There has been little investigation of approximate distributions other than the em-

pirical distribution, with the significant exception of the work of Zaffalon and Hut-

ter [ZH02]. They note that the empirical distribution does not carry information about

the reliability of the training data; Bayesian techniques are employed to address this

problem by adopting a suitable prior distribution, and using the posterior distribution

as their approximation. Good results are obtained by combining this more sophisti-

cated approximation with a filter based on mutual information.8 An interesting possi-

8Mutual information is defined in Section 3.3.5.
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ble topic for future research is the use of the Zaffalon-Hutter approximation with other

filter measures.

Approximations defined in other ways are theoretically possible; indeed, we could

use any computable distribution over the data space. One possible alternative to the

empirical distribution is the trained model. Using the trained model as an approxima-

tion would give rise to a hybrid filter/wrapper method of feature selection. Essentially,

we train the model with a feature set which is known to be less than optimal. Such a

feature set could be the full feature set; a randomly chosen subset; or a subset chosen

according to some other criterion, perhaps the one from the previous step in our fea-

ture selection process. We then use this sub-optimal model as the approximation to the

‘true’ distribution which is needed in order to employ a particular filter method.

Hybrid methods of this type have not been extensively investigated, although a

similar idea of combining a filter and wrapper is used by Sebban and Nock [SN02].

(Indeed, a filter method might be combined with a wrapper in other ways; for instance,

we could carry out forward selection using a quick filter measure, while periodically

stopping and removing a few features using a slower wrapper measure.) A more thor-

ough examination of filter-wrapper combinations is a possible topic for future research.

In practice though, the empirical distribution is generally an adequate approxima-

tion to the ‘true’ distribution. It has the advantages of simplicity, clarity, and ease of

computation. Employing a more elaborate approximation would result in a significant

decrease in speed, without necessarily producing a significant increase in accuracy.

3.3.2 Entropy

Entropy is in a sense the fundamental concept in information theory; more elaborate

ideas such as information gain arise directly from it. The entropy of a probability

distribution p
�
u � is defined as:

H
�
p � � 	 ∑

u
p
�
u � log p

�
u �

It is conventional to take logs to base 2, but the choice of base is not crucial; chang-

ing from one base to another is equivalent to multiplying the entropies by a constant.

See Cover and Thomas for further details [CT91]. For simplicity, we usually omit the
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log base from our notation. 0 log 0 is conventionally taken to be zero, on the grounds

that u logu � 0 as u � 0. Hence, adding terms with probability zero does not change

the entropy.

Entropy may be thought of as the uncertainty inherent in a given probability dis-

tribution. More specifically, if we sample a point according to a given probability

distribution, the entropy represents our degree of certainty as to which point will ap-

pear. For example, a distribution which assigns probability 1 to a single data point and

0 to all others has an entropy of zero. Conversely, the uniform distribution over n data

points – which assigns a probability of 1 � n to each point – has an entropy of logn.

The more data points in a uniform distribution, the less certain we are which one will

be sampled, and the greater the entropy. Intuitively, the outcome of a fair coin toss is

in some sense ‘more certain’ than the roll of a fair die, because fewer outcomes are

possible.

Another important quantity is the conditional entropy. For two random variables

U and V with joint distribution p
�
u � v � , it is defined as:

H
�
V � U � � ∑

u
p
�
u � H �

V � U � u �

� 	 ∑
u

∑
v

p
�
u � v � log p

�
u � v �

� 	 Ep � u � v � log p
�
U � V �

where as usual Ep denotes an expectation over p. Again, see Cover and Thomas

for further details [CT91]. Chapter 4 defines new methods for feature selection based

on conditional entropy.

3.3.3 Relative Entropy and Information Gain

3.3.3.1 Relative Entropy

Information gain evaluation functions are based on the concept of relative entropy,

which is an information-theoretic distance between probability distributions. Relative

entropy is also known as cross-entropy, or as Kullback-Liebler (or K-L) distance (or

divergence). For two probability mass functions p
�
u � and q

�
u � , it is defined as:
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D
�
p � � q � � ∑

u � U
p
�
u � log

p
�
u �

q
�
u �

As usual, U is the set of all possible u. By convention 0log 0
q � 0 and p log p

0 � ∞,

based again on continuity arguments. It can be shown that relative entropy is always

non-negative, and equals zero if and only if p � q. It is not symmetric (in that D
�
p � � q �

may not equal D
�
q � � p � ) and does not satisfy the triangle inequality, so is not a true

metric in the same sense as Euclidean distance; nevertheless, it is useful to think of it

as a ‘distance’ between probability distributions. D
�
p � � q � can be thought of as measur-

ing the error that arises through approximating p
�
z � by q

�
z � ; hence, p

�
x � is generally

taken to be the ‘more informative’ distribution. (See Cover and Thomas for proofs and

discussion of the properties of relative entropy [CT91].)

Equipped with this distance and a suitable approximate distribution,9 we can for-

mulate a number of feature selection measures. We denote the approximate distribution

over feature vectors which arises from a given feature set F by qF
�
y � . In addition, we

must choose a suitable ‘reference’ distribution over feature vectors y.

Feature selection by information gain involves maximising the relative entropy

from some less informative reference distribution to qF
�
y � . The concept of entropy al-

lows us to precisely define ‘less informative’: The greater the entropy of a distribution,

the less information it contains. There are two natural choices of reference point for

information gain. One of them gives rise to the commonly employed metric which we

call local information gain; it is often referred to in the literature as simply ‘informa-

tion gain.’ The other is discussed briefly in Section 3.3.3.3 below; it ultimately gives

rise to the new class of entropy-based metrics presented in Chapter 4.

3.3.3.2 Local Information Gain

Local Information Gain (LIG) is usually called simply ‘information gain’ in the liter-

ature, for instance by Yang and Pedersen [YP97]. LIG assumes that we are carrying

out feature selection by forward selection (see Section 3.2.1), in which we start with

9Approximate distributions, which are conventionally derived from empirical distributions, are dis-
cussed in Section 3.3.1.
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the empty feature set and iteratively add features. In LIG, our reference point is the

distribution which arises from the previous feature set.

Suppose that our initial pool of available features F contains N elements. At the

kth step of our forward selection algorithm, we have a set Fk containing k features; and

a set F
�

Fk, containing N 	 k candidates for addition to Fk. Adding a particular feature

f j gives rise to a new feature set:

F � j �
k � Fk �

�
f j �

The existing feature set Fk and candidate F � j �
k give rise to empirical distributions

over vectors of feature values, which we denote by qk
�
y � and q � j �

k

�
y � respectively. In

LIG, we attempt to maximise the relative entropy from the existing distribution to the

new one. Hence, at each step we seek:

argmax
j

D
�
qk

�
y � � � q � j �

k

�
y ���

The above definition assumes that we are dealing with an unconditional model

– one which simply seeks to assign a probability to each data point x, rather than

attempting to classify it. A conditional model is of the form Pr
�
x � Ci � Fk

�
x � � y � ,

where each data point is in exactly one of finitely many categories Ci and Fk
�
x � is our

existing feature set. As before, let F � j �
k denote a new feature set obtained by adding f j

to Fk. In the conditional case, we similarly attempt to maximise the relative entropy:

γ j
�
x � � D

�
Pr

�
x � Ci � Fk

�
x � � y � � � Pr

�
x � Ci � F � j �

k

�
x � � y � � �

or in simpler notation,

γ j
�
x � � D

�
Pr

�
Ci � Fk � y � � � Pr

�
Ci � F � j �

k � y � � �
� D

�
Pk

�
Ci � � � P � j �

k

�
Ci ���

Notice that the relative entropy γ j is dependent on a choice of data point x; this is

because the conditional distribution Pk depends on the vector of feature values:

Fk � �
fk1 � fk2 ������� fkk �
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where fkn is the nth feature in our existing feature set Fk. Similarly, P � j �
k depends

on the value F � j �
k � �

fk1 � fk2 ������� fkk � f j � takes on a given data point x.

We would of course like to compare feature sets as a whole, not individual vectors

of feature values. As Koller and Sahami note, simply considering the sum, maximum,

or minimum of the relative entropies which occur on distinct data points in our training

set is not appropriate, because some points are more likely to occur than others; an

error in classifying a common data point is more troublesome than one in classifying

a rare one in [KS96]. We therefore take the expectation with respect to the empirical

distribution of possible feature vectors q̃
�
y � � :

Γ j � ∑
y �

q̃
�
y � � D �

Pr
�
Ci � Fk

�
x � � y � � � Pr

�
Ci � F � j �

k

�
x � � y � � �

where in each term, y is the projection of y � onto the reduced feature set Fk.10

We are thus computing a conditional relative entropy; see Cover and Thomas [CT91][p.

22]. As mentioned in Section 3.3.1, suitable approximations to probabilities such as

Pr
�
Ci � Fk

�
x � � y � can be derived from the empirical distribution, provided that the data

points in our training set are labelled by category. We also note that Pr
�
x � Ci � Fk

�
x � �

y � is an example of the partition-conditional distributions which will be defined in

Chapter 4.

This conditional relative-entropy measure is unfortunately quite computationally

expensive, being exponential in the number of features employed. This can be mit-

igated by the ‘Markov blanket’ methods discussed by Koller and Sahami, or by the

accelerated feature selection technique presented in Chapter 4 [KS96]. Notice that

instead of using the empirical distribution of possible feature vectors, we could take

expectations with respect to the empirical distribution of data points p̃
�
x � and com-

pute the respective values of Fk
�
x � and F � j �

k

�
x � for each x. The two approaches are

equivalent although the latter is slightly more cumbersome.

LIG thus attempts to maximise the information gained by adding a new feature, us-

ing our current feature set as a benchmark. There is at least one significant drawback

to this approach: The existing feature set Fk has no global significance as a refer-

10The “gamma” notation here is analogous to the ‘delta’ notation used to define the similar Koller-
Sahami metric, which is discussed in Section 3.3.4 [KS96].
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ence point. The largest possible step away from Fk will not necessarily be the largest

possible step towards some desirable endpoint. Koller and Sahami argue in greater

detail that this lack of a global frame of reference is a significant flaw on the part of

LIG [KS96].11

3.3.3.3 Global Information Gain

One could also choose the uniform distribution u
�
y � as our reference point. (If there are

N possible values for y, then u
�
y � � 1 � N for all y.) It can be shown (see [CT91]) that,

of all possible distributions over a given set, the uniform distribution has the greatest

entropy. The uniform distribution, then, has the greatest possible uncertainty; any

other distribution can be thought of as providing more information than the uniform

one. Choosing it as a benchmark therefore addresses the theoretical flaws of LIG which

were described above; the uniform distribution is certainly a reference point of global

importance.

The Kullback-Liebler divergence to the uniform distribution can be thought of as

‘global information gain.’ As discussed in Section 4.3.2, optimising the new entropy-

based metrics presented in Chapter 4 can be thought of as maximising the global in-

formation gain; or equivalently, as minimising entropy. Feature selection algorithms

based on minimising entropy have been employed by Toews and Arbel and Dash et al.,

but these are quite closely tailored to specific problems; the methods in Chapter 4 are

far more general [TA03, DCSL02].

3.3.4 The Koller-Sahami Criterion

The Koller-Sahami (KS) evaluation metric first appeared in 1996; it has since received

considerable attention, and been applied in a number of settings including the hybrid

filter-wrapper method of Sebban and Nock and the construction of hidden Markov

models for video structure discovery by Xie et al., and later experiments by Sahami et

al. [KS96, SN02, XCDS02, Sah99, IGS01].

11Although some portions of Koller and Sahami’s discussion of information-theoretic metrics are
themselves flawed (see Section 3.3.4), its criticism of LIG is valid.
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The KS metric can be thought of as ‘global information loss.’ It is defined in an

analogous way to local information gain in Section 3.3.3.2, except that our reference

point is derived using the set F of all available feature functions.12 In the same way as

above, we define a distribution:

PΩ � Pr
�
Ci � F �

x � � y �
Similarly, the jth candidate feature set F � j � gives rise to a distribution Pr

�
Ci � F � j � �

y � � .
The idea behind the KS metric is that the distribution arising from the pool of

all candidate features F is the most informative one available to us. Each feature

will provide a non-negative amount of information about the data space; at the very

worst, a feature function which takes the same value on all data points provides zero

information. Note that an informative feature set – in the strict sense of information

theory – is distinct from one which will give rise to good performance in a model.

Simply put, not all information is useful.

Instead of maximising the divergence from an uninformative distribution, the KS

criterion seeks to minimise the divergence from PΩ:

δ j � D
�
Pr

�
Ci � F �

x � � y � � � Pr
�
Ci � F � j � � y � � �

We now take expectations over the empirical distribution of maximal feature vec-

tors, q̃
�
y � :

∆ j � ∑
y

q̃
�
y � D

�
Pr

�
Ci � F �

x � � y � � � Pr
�
Ci � F � j �

k � y � � �
In this instance, the y � in each term is the projection of y onto the reduced feature

set F � j � . As with local information gain, computing the global information loss ∆ j

is exponential in the number of features. KS present a method which uses so-called

Markov blankets to reduce the computational expense of the KS metric; their method

can equally well be applied to the family of information-gain measures [KS96]. As

KS note, the Markov blanket unfortunately requires some naive assumptions about the

data which may decrease performance.

12We could also define a measure of ‘local information loss’ in which we carried out backward elim-
ination of features and attempted to minimise the divergence from the previous feature subset, but this
would suffer from the same theoretical weaknesses as local information gain.
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Assessment of the KS Metric: The KS metric avoids the principal theoretical prob-

lem of local information gain; the set of all candidate features is a more significant

reference point than the feature set obtained at the previous step of a forward selection

search. KS claim that their experimental results demonstrate that the performance of

the KS metric is superior to that of LIG [KS96]. However, in practice our chosen set

of candidate features is not necessarily the only one possible. For instance, if we are

categorising documents by key words or phrases, then we can hardly assess all avail-

able phrases in the English language using an information-theoretic metric. We may

well have carried out some form of ‘pre-selection’ in order to obtain our collection of

candidate features.

KS also suggest that their metric is theoretically optimal, due to its foundations in

information theory and superiority to local information gain. The KS metric is cer-

tainly appealing, but ‘optimal’ seems to be too strong a word. It is far from clear

whether it is better than other metrics based on information theory, such as absolute-

entropy and mutual-information measures and the novel metrics presented in Chap-

ter 4.

KS Metric and Search Strategy: KS incorrectly claim that the superiority of the KS

metric over local information gain demonstrates that backward elimination of features

is inherently better than forward selection. (See Section 3.2.1 for definitions of these

search strategies.) In order to use LIG we must search by forward selection; but this is

not true of the KS metric and backward elimination. Indeed, the experiments described

in Chapter 5 successfully implement a variant of forward selection using the KS metric.

Seeking a final feature set which is as close as possible to F , the set of all candidate

features, does not mean that we must start at F and move away from it. We could

equally well start far away from F , for instance with the empty feature set, and attempt

to move towards it. In the case of the KS metric (as with most others – LIG is an

unusual exception), the metric for evaluating feature sets can be chosen independently

of the method of generating them.
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3.3.5 Mutual Information

The mutual information between two random variables U and V , with a joint probabil-

ity mass function p
�
u � v � and respective marginal probability mass functions p

�
u � and

p
�
v � , is defined as:

I
�
U ;V � � D

�
p
�
u � v � � � p �

u � p
�
v ���

That is, mutual information is the relative entropy between the joint distribution

and the product distribution. It can be shown that:

I
�
U ;V � � H

�
U � 	 H

�
U � V �

� H
�
V � 	 H

�
V � U �

where H
�
U � and H

�
U � V � respectively denote the entropy and conditional entropy,

as defined in Section 3.3.2. (See Cover and Thomas for more details [CT91].) Notice

that, unlike relative entropy, mutual information is symmetric in its arguments U and

V . Mutual information can be thought of as the information that p
�
u � provides about

p
�
v � and vice versa.

Feature set evaluation measures can be defined using mutual information, in a sim-

ilar way to those that employ relative entropy. The most commonly employed method

is generally referred to simply as ‘mutual information’; however, we will refer to it as

naive mutual information, in order to distinguish it from the alternative metric of joint

mutual information.

Naive Mutual Information: The naive mutual information (NMI) criterion defines

a ‘good’ feature as one whose value has a high mutual information with the class

variable. More formally, let X be the set of all possible data points, denote individual

data points by x, and suppose that each data point falls into exactly one category C j. Let

fi denote our feature functions (where i � 1 � 2 ��������� n), where each fi maps data points

x to values y. As usual, let I
�
U ;V � be the mutual information between two random

variables U and V and H
�
p
�
u ��� be the entropy of a probability distribution p

�
u � . We

then have:
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I
�
fi ;x � C j � � H

�
Pr

�
x � C j ��� 	 H

�
Pr

�
fi
�
x � � y � x � C j ���

If we simplify our notation by letting x j denote the event x � C j and writing fi � y

instead of fi
�
x � � y, we have:

I
�
fi ;x j � �

�
	 ∑

j
Pr

�
x j � logPr

�
x j � � 	

�
	 ∑

j
Pr

�
x j � ∑

y
Pr

�
fi � y � x j � logPr

�
fi � y � x j � �

We seek to maximise the mutual information I
�
fi;x j � between the feature and the

class variable. This gives a score to each feature in isolation, and does not take account

of how features are combined in a subset; naive mutual information is therefore a

hierarchical measure (see Section 3.2.2.2). The name is analogous to that of the naive-

bayes learner described in Section 2.3.3, which also assumes that the feature functions

are independent of one another.

Feature selection by NMI is quite popular; see Dash and Liu, or Zaffalon and Hut-

ter [DL97, YP97, ZH02]. Yang and Pedersen’s survey of feature selection for text

categorisation includes a comparison between the performance of information-gain

and mutual-information metrics [YP97]. NMI is a fairly effective technique, although

as noted by Tourassi et al. and in Chapter 6, it is often outperformed by more compu-

tationally intensive hierarchical metrics [TFMF01].

Joint Mutual Information: This is an alternative to NMI, first presented by Tourassi

et al.[TFMF01]. It is non-hierarchical, and hence capable of considering interactions

between features.

Joint Mutual Information (JMI) makes use of the chain rule for mutual informa-

tion.13 For a collection of random variables
�
U1 � U2 ��������� Un � V � , the chain rule states:

I
�
U1 � U2 ��������� Un;V � �

n

∑
i � 1

I
�
Ui ;V � Ui � 1 � Ui � 2 ������� � U1 �

In the feature selection case, V is the class variable arising from the event x � C j,

and the individual variables Ui are our feature functions fi
�
x � . We are interested in the

13See page 22 of Cover and Thomas for a proof of the chain rule [CT91].
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distribution of vectors of feature values F
�
x � � �

f1
�
x � ��������� fn

�
x ��� . The JMI is therefore

equal to:

I
�
F

�
x � � �

y ;x � C j � �
n

∑
i � 1

I
�
fi � yi ;x � C j � fi � 1 � yi � 1 � fi � 2 � yi � 2 ������� f1 � y1 �

Tourassi et al. note that JMI can be expected to outperform NMI, as it combines

all the advantages of NMI with the ability to consider relationships between features.

They also present reliable methods of approximating the JMI for large feature sets.

3.4 Related Topics

In this section we briefly outline a few areas which are closely related to feature se-

lection. It is by no means an exhaustive list of related topics. As we have noted,

feature selection is a very general technique applicable in a wide variety of domains;

and conversely, many different problems can in principle be seen in terms of feature

selection.

3.4.1 Dimensionality Reduction

The field of dimensionality reduction (DR) is very closely related to feature selection.

The basic goal is the same: We attempt to reduce the number of variables – and so

reduce the dimensionality of the data space – while losing as little information as pos-

sible. However, the term ‘dimensionality reduction’ conventionally implies a slightly

different perspective from that of feature selection.

DR takes an essentially geometric approach to simplifying the description of data.

Data points expressed using a set of n variables are regarded as points in an n-dimensional

space. The points composing a typical data set will often occupy a lower-dimensional

surface or manifold within the n-dimensional space. DR typically seeks a suitable

rotation of our coordinate axes which will allow the manifold to be projected into a

lower-dimensional space with little or no loss of information. See Seung and Lee for a

simple introduction to the use of DR in image recognition [SL00]; Kambhatla and Lee

for a definition of the popular DR technique of Principal Component Analysis [KL97];

and Tenenbaum et al. for a discussion of some recent developments in DR [TdSL00].
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If we regard our features as variables, then DR can be employed as a form of feature

selection – and has been, for instance by Globerson and Tishby [GT03]. Conversely,

DR can be used to bypass feature selection altogether. For example, if we are carrying

out image recognition and have a space of 1012 possible combinations of pixel values,

we could use DR directly to find a simplified representation of the pixel space – rather

than first defining features and using DR or some other technique to select a ‘good’

feature set.

Feature selection is more flexible than DR, in that it allows a much wider variety

of techniques for constructing a representation of the data. It may also be more useful

in providing a qualitative understanding of the phenomenon we are studying. This is

particularly true when the features have some inherent significance.

For instance, in document classification we may well be interested in which words

or phrases are good indicators of the category of a given document. We could regard

a document containing n words as a point in n-dimensional space by placing our vo-

cabulary in some fixed order, and seeking to rotate and project the representation of

the document in this space; but interpreting these results to discover which key words

are most useful would be very difficult at best. Conversely, feature selection allows us

to easily make use of any prior knowledge of the domain by tailoring our features and

selection strategy accordingly; this is considerably more difficult with geometric DR

techniques.

Another consideration is that DR is only useful when the data points are confined

to a relatively simple manifold. If they are evenly scattered in the n-dimensional data

space, then classical DR will not be appropriate; but feature selection can still give

useful results.

3.4.2 Minimum Description Length and Coding Theory

Another perspective on constructing efficient representations of data is provided by the

minimum description length (MDL) criterion for selecting statistical models; Hansen

and Yu provide a useful introduction to MDL [HY01]. As the name suggests, MDL

instructs us to choose the model which provides the shortest possible description of

data. Trying to find a small yet informative feature set can be seen as a specialised
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form of MDL.

The ‘length’ of a description in MDL is defined using measures of its information

content drawn from information theory. Hence, MDL can be seen as seeking the sim-

plest possible description of data. More specifically, MDL draws heavily upon coding

theory, which deals with the problem of representing and transmitting data using a

finite set of code symbols [CT91].

Coding theory can also be applied to feature selection. The key insight is that fea-

ture selection involves constructing a representation of the data, using a set of finitely

many features. The relationship between feature selection and coding theory is partic-

ularly interesting, and will form the basis of the Expected Covering Entropy metrics

introduced in Chapter 4 and experimentally evaluated in 7. Conversely, it can be use-

ful to apply ideas from feature selection to problems traditionally defined in terms of

coding theory; in Chapter 4, we establish that the classification technique of error-

correcting output coding can be viewed as a special case of feature selection.

3.5 Summary

In this chapter we have outlined existing literature on feature selection. We concentrate

on the conventional, general framework for feature selection, based on a division into

generation and evaluation of candidate feature subsets, combined with an appropriate

halting criterion. This includes the key distinction between generation by forward se-

lection and by backward elimination; and that between filter and wrapper methods of

evaluation. We continue with case studies of typical evaluation filters based on infor-

mation theory; such measures are very popular in the literature, and highly relevant

to the new theoretical work presented in Chapters 4 and experimentally investigated in

Chapters 5, 6, and 7. Finally, we briefly consider the topics of dimensionality reduction

and model selection by minimum description length, both of which are quite closely

related to feature selection.



Chapter 4

Partitioning and Encoding

4.1 Introduction

In this chapter we present a new perspective on feature selection, based on the ideas

of partitioning and encoding. As noted in Chapter 3, any feature selection process

requries an evaluation function or metric which provides a quantitative measure of the

desirability of a given feature subset. We begin by discussing the concept of partition-

ing, and using it to motivate a new metric which we call expected partition entropy or

EPE. As we shall see, EPE can also be motivated by consideration of Kullback-Liebler

divergence, in a similar way to the Local Information Gain and Koller-Sahami metrics

discussed in Chapter 3. We then present the idea of encoding and use it to extend EPE,

defining a class of metrics which we call expected covering entropy or ECE. Through-

out the chapter, we will use terminology and notation from Chapters 2 and 3 where

appropriate.

The concepts described in this chapter, and the metrics derived from them, are

almost completely general; they can in principle be applied to any feature selection

problem. In Chapters 5, 6, and 7, the new EPE and ECE metrics will be tested in

practical experiments with a simplified form of part-of-speech tagging.

71



72 Chapter 4. Partitioning and Encoding

4.2 Feature Selection as Partitioning

A useful perspective on feature selection is provided by the observation that feature sets

partition the data space X . That is, the features decompose the data space into disjoint,

non-empty subsets whose union is all of X . This fact is most easily established by

considering equivalence relations.

An equivalence relation � on a set A satisfies the following conditions:

1. a � a
�

a � A

2. a � b if and only if b � a
�

a � b � A

3. If a � b and b � c then a � c
�

a � b � c � A

Suppose that we have a feature set F : X �� Y n. Clearly, x1
� x2 if and only if

F
�
x1 � � F

�
x2 � defines an equivalence relation on X . Hence, the feature set divides X

into partitions, such that each data point x is contained in one and only one partition.

(See Chapter 12 of Armstrong for further details on equivalence relations [Arm97].)

There is one partition for each possible feature vector y. For the sake of brevity

we will often refer to a given feature vector y � F
�
x � as the name of the data point x.

The members of the partition corresponding to a particular vector y � Y n are the points

x satisfying F
�
x � � y. Data points x in a given partition will all share the same name

y; we can therefore regard y as also being the name of the partition. As discussed in

Section 2.2.1, there may be points in Y n which are not the name of any data point in X .

Example 4.1: Suppose that our data points are English words and we define

binary features with the presence of particular substrings as their indicators. Let us

define features fa, fb, and so on corresponding to each letter of the alphabet. We have

fa
�
x � � 1 on words x which contain the letter a, fa

�
x � � 0 otherwise; and so on for the

rest of the alphabet.

Many combinations of these features can be guaranteed never to occur, as they

correspond to words which contain only consonants. For instance, there will be no

‘partition’ corresponding to ‘ fz � 1, fx � 1, all other features are zero’ since no English

word will contain only z’s and x’s.
�
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A number of feature selection metrics consider the behaviour of vectors of feature

values; these include the EPE and ECE metrics developed in this chapter, as well as

the Local Information Gain and Koller-Sahami metrics described in Chapter 3. Such

metrics can now be seen as examining the characteristics of partitions. This insight

may prove helpful in understanding the behaviour of metrics which partition the data

space. In a more concrete sense, it serves as motivation for the new EPE and ECE

metrics defined in this chapter.

Because they directly consider and exploit the effect of partitioning, it was hoped

that the new metrics would be effective tools for feature selection – particularly in the

sense of giving rise to high accuracy on test data with feature sets much smaller than the

pool of all available features. Furthermore, the new metrics can be used to measure the

ways in which other metrics partition the data space, giving us additional information

as to why any given metric succeeds or fails. As discussed in Chapters 6, 7, and 8, our

experiments demonstrate that the new partitioning-based metrics can offer significant

benefits in these respects.

Intuitively, we wish to find a feature set which partitions the data space in an infor-

mative way. It is natural to turn to information theory to define what might constitute

an ‘informative partition.’ The partitioning idea then serves to motivate a new metric

which we refer to as expected partition entropy.

4.3 Expected Partition Entropy

4.3.1 Motivation and Definition

In the standard classification problem, each data point x � X falls into exactly one cate-

gory C j. Suppose that we wish to construct a feature-based classifier which predicts the

categories of previously unseen data points. A set of feature functions assigns a vector

of feature values y to each data point x; we refer to y as the name of x. In attempting to

classify data points, the model relies solely on the information it can derive from their

names.

As we have seen, the feature set can be seen as partitioning the data space. Intu-

itively, we would like each name induced by the data set to be strongly associated with
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a particular category C j. Also observe that we do not necessarily mind if two different

data points x1 and x2 have the same name (vector of feature values) y, as long as they

fall into the same category.

Information theory allows us to formalise this idea as follows: Consider the points

in the partition defined by the vector of feature values y. We can establish a conditional

distribution over categories:

Py
�
j � � Pr

�
x � C j � F �

x � � y �

We refer to this as the partition-conditional distribution or PCD. In general we

cannot determine the PCD exactly, but it can be reliably approximated by the empir-

ical distribution or other methods; see Section 3.3.1 for details. Partition-conditional

distributions have already been used to define the Local Information Gain (LIG) and

Koller-Sahami (KS) metrics discussed in Sections 3.3.3.2 and 3.3.4, both of which

make use of relative entropy (also known as Kullback-Liebler divergence). The rela-

tionship between relative entropy and the new Expected Partition Entropy metric will

be discussed in Section 4.3.2 below. For the time being, we will take a different ap-

proach by simply considering the entropy of the PCD induced by a candidate feature

set.

As discussed in Section 3.3.2, entropy can be thought of as a measure of the uncer-

tainty inherent in a given probability distribution. The entropy of a distribution p
�
u � is

defined as:

H
�
p � � 	 ∑

u
p
�
u � log p

�
u �

Now consider the entropy of a partition-conditional distribution, H
�
Py

�
j ��� . Given

the vector of feature values y, we would like to be as certain as possible of the category

C j. In terms of information theory, this is equivalent to minimizing the entropy of the

partition-conditional distribution. The quantity H
�
Py

�
j ��� attains its minimum value of

zero when we have Py
�
j � � 1 for one partition C j, and Py

�
j � � 0 for all others – that is,

when we are absolutely certain of the category C j given the vector of feature values y.

We would like to combine the entropies for the different partitions (each of which

corresponds to a particular name y) into a single quantity. We might naively take the
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sum or product of the individual entropies. However, it is more appropriate to take

the expectation over the names y; the idea is that uncertainty on an uncommon name

is less troubling than uncertainty on a common one. (This is the same approach to

combining partition-conditional distributions as the one taken for the Koller-Sahami

metric [KS96].)

The expected partition entropy or EPE of a candidate feature set F is therefore

defined as:

ε � ∑
y

Pr
�
F

�
x � � y � H � Pr

�
x � C j � � F �

x � � y ���
� 	 ∑

y
∑

j
Pr

�
F

�
x � � y � Py

�
j � logPy

�
j �

where as usual x is a data point drawn from a set X , C j is one of countably many

categories, and F
�
x � is a set of feature functions which maps data points x to vectors

of feature values Y � Y .

Comments on the Definition of EPE: Notice that the EPE is a conditional entropy,

as defined in Section 3.3.2 or by Cover and Thomas [CT91]. It is the entropy of

the conditional distribution Pr
�
x � C j � � F �

x � � y � . EPE thus has a solid grounding in

information theory; it is very much a natural way of quantifying the information about

categories conveyed by a given feature subset. Hence, we will sometimes refer to

EPE simply as the entropy of a feature subset, or as its absolute entropy if we wish to

emphasize the distinction between EPE and metrics based on relative entropy. It is also

worth noting that EPE is a completely general metric, which can be used for feature

selection in any classification domain.

Intuitively, a feature set with high (that is, poor) EPE will have a broad spread of

labels in a typical partition. Conversely, if our feature set has low EPE then knowing

the name of a data point will typically give us a great deal of information as to its

label. From the perspective of EPE, the best possible partition is one containing points

which have only one label; two equally probable labels are less good; ten equally

probable labels are worse still; and so on. Because we are taking an expectation,

greater importance is placed upon the ‘goodness’ of particularly common partitions.
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EPE is a type of (non-hierarchical) filter, as defined in Section 3.2.2.1. Hence, it is

capable of considering the interactions between features, and it is independent of any

particular model architecture. We can therefore expect EPE to give rise to somewhat

lower accuracies than a wrapper method, but higher than a hierarchical filter (such as

naive mutual information). In practice, EPE performs better than expected in compar-

ison with wrappers; it outperforms a naive-bayes wrapper in particular circumstances

and achieves similar performance to a maximum-entropy wrapper at far lower compu-

tational cost, as discussed in Chapter 6.

4.3.2 EPE and Relative Entropy

The relative entropy or Kullback-Liebler (K-L) divergence is an information-theoretic

distance between probability distributions. For two probability mass functions p
�
u �

and q
�
u � over a set U , it is defined as:

D
�
p � � q � � ∑

u � U
p
�
u � log

p
�
u �

q
�
u �

Relative entropy can be thought of as measuring the error that arises from replac-

ing p
�
u � by q

�
u � ; hence, p

�
u � is conventionally taken to be the ‘more informative’

distribution. For additional details, see Section 3.3.2 or Cover and Thomas [CT91]. As

discussed in Sections 3.3.3.2 and 3.3.4, the local information gain (LIG) and Koller-

Sahami (KS) metrics make use of K-L divergence. LIG attempted to maximize the

expected divergence to the PCDs obtained at the previous step of forward selection;

the KS metric, to minimize the expected divergence from the PCDs derived from the

collection of all available features. Both combine the relative entropies for PCDs into

a single quantity by taking the expectation over the names y.

Although it has been motivated and defined in terms of straightforward entropy

and conditional entropy, EPE can also be viewed in terms of relative entropy. Doing

so suggests reasons why EPE may be superior to both LIG and the KS metric.

Suppose that instead of adopting another PCD as our reference point – as with

both LIG and KS – we measure distances from the uniform distribution. The uniform

distribution U over N points assigns a probability of 1 � N to each point; it can be shown

(see Cover and Thomas) that it is the distribution with the greatest possible entropy
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over a given set, and so the least possible amount of information [CT91]. We would

like to maximize the divergence from the PCD Py
�
j � induced by our candidate feature

set to U
�
j � , the uniform distribution over categories. Hence, we seek to maximize:

D
�
Py

�
j � � � U �

j ��� � ∑
j

Py
�
j � log � Py

�
j �

U
�
j ���

The uniform distribution is constant for all j. Denoting this constant by k, we have:

D
�
Py

�
j � � � U �

j ��� � ∑
j

Py
�
j � log � Py

�
j �

k �
� ∑

j
Py

�
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�
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�
j ��� 	 logk �

� ∑
j
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�
j � log

�
Py

�
j ��� 	 logk∑

j
Py

�
j �

� ∑
j

Py
�
j � log

�
Py

�
j ��� 	 logk

� 	
�
	 ∑

j
Py

�
j � log

�
Py

�
j ��� � 	 logk

� 	 H
�
Py

�
j ��� 	 logk

Hence, maximizing the relative entropy to the uniform distribution is equivalent

to simply minimizing the entropy H
�
Py

�
j ��� . Furthermore, the constant k is equal to

1 � N, where N is the number of possible categories; it is therefore the same for all

partitions. Maximizing the expected divergence from the uniform distribution – in an

analagous way to LIG or the KS metric – is therefore equivalent to optimising (that is,

minimising) the EPE. EPE can thus be thought of as a measure of global information

gain, in contrast with local information gain.

Koller and Sahami identify an important weakness of LIG: The PCD obtained at

the previous step of a forward selection algorithm has little global significance as a

reference point. They instead advocate measuring divergences from the pool of all

available features. However, as noted in Chapter 1 and Section 3.3.4, the collection of

available features itself is not necessarily an ideal reference point. We may well have

carried out some form of ‘pre-selection’ in order to establish the pool, and it may not

be feasible to work with the true set of all possible features – the number of possible

features may be astronomically large or even infinite.
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Moreover, our understanding of the partition-conditional distributions is limited

by the quality of our training set. We cannot find the ‘true’ distributions governing the

data, and instead must approximate them using the empirical distribution or some other

probabilities derived from a set of labelled training data. Our training set will almost

never be comparable in size to the set of all possible data points. Often, labelling

training data will be difficult or unreliable, and the training set will be too small give

us more than a rough idea of the behaviour of the data.

This presents a serious problem for the KS metric, since the mean divergence it

computes is heavily dependent on the training data and any ‘pre-selection’ of features.1

EPE has a very important advantage in this respect: We generally know exactly what

the possible categories are, so the uniform distribution over categories is completely

independent of the training data. As discussed in Chapter 6, these concerns were borne

out by experiments. Feature sets which attained an optimal value for the KS metric

were not optimal with respect to the EPE metric or their performance on held-out test

data.

4.4 Feature Selection as Encoding

4.4.1 Encoding – Basic Ideas

We have noted that an FBPM can only obtain information about data points by ob-

serving their feature vectors. For instance, an FBPM utilising a feature set F cannot

distinguish between two data points x1 and x2 such that F
�
x1 � � F

�
x2 � . Intuitively,

then, we would like our feature vectors to provide good descriptions of data points. In

seeking to quantify the idea of a ‘good description,’ we can make use of ideas from

coding theory.

We begin with the observation that our features can be thought of as encoding data

points. Given a feature set F , each data point x is assigned a ‘code word’ consisting of

its vector of feature values F
�
x � , whose ith ‘letter’ is simply the value of the feature fi.

We will sometimes refer to the vector F
�
x � as the name of x.

1The same is true for LIG, which also suffers from having a less general reference point than KS.
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In traditional coding theory (see Cover and Thomas, chapters 5 and 13), we assign

code words to ‘data points’ such as English words or sentences. A code word is a string

of finitely many symbols, usually chosen from a finite alphabet.

Code words are selected with two principles in mind:

1. We would like to be able to reconstruct the original data point from its code word

with as little expected loss of information as possible.

2. We would like the expected length of a code word to be as short as possible.

Information theory provides us with well-defined numerical measures of the ‘ex-

pected loss of information.’ Information loss may arise because our vocabulary has

fewer code words than distinct data points; because the process of encoding the data

points (or transmitting or storing the code) is noisy and leads to errors; or from some

combination of the two.

In feature selection our task is slightly different, because we are usually not inter-

ested in reconstructing data points from their feature vectors. However, the goals of

feature selection can be defined in a way that is clearly analagous to coding theory:

1. We would like our feature set to maximise the usefulness of an FBPM. ‘Useful-

ness’ may be defined quantitively, by the performance of the FBPM on unseen

test data; or qualitatively, by its contribution to understanding the phenomenon

we wish to model.

2. We would like our feature set to be as small as possible in order to maximise

speed, reduce overfitting, and enable the features to be more easily understood.

In both coding theory and feature selection, we have a basic trade-off: Longer code

words reduce information loss and large feature sets generally improve the accuracy

of a model, but at the cost of reduced computational efficiency and – in the feature

selection case – possible overfitting and the difficulty of understanding the behaviour of

a large feature set. In both cases, we wish to provide the simplest possible description

of our data space without sacrificing important information. This is in accordance

with the ancient principle of Occam’s Razor: ‘Plurality should not be posited without

necessity’; in other words, one should make no unnecessary assumptions.
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General connections between coding theory and feature selection will be discussed

in Section 4.4.3; they help to motivate the new class of expected covering entropy

metrics discussed in Section 4.5. First, we examine the specific technique of error-

correcting output coding (ECOC), which can be seen as a special case of feature se-

lection; examination of ECOC also serves to illustrate the ideas of coding theory in

greater depth.

4.4.2 Error-Correcting Output Coding

4.4.2.1 Definitions and Notation

The technique of error-correcting output coding or ECOC is a method of solving multi-

way classification problems which has been successfully applied to a number of tasks

in machine learning [Ber99]. As the name suggests, ECOC draws upon ideas from

coding theory; and as we shall establish, ECOC can be viewed as a special case of

feature selection.

Suppose that each data point x falls into one (and only one) of m categories:

C1 � C2 ��������� Cm

This is the standard setting for a conditional probabilistic model, as described in Sec-

tion 2.3; the categories are also known as labels. We wish to construct a classifier

which can predict the category of any point x in our data space X .

In order to implement ECOC, we begin by assigning a unique n-bit vector to each

label Ci, where n � log2 m.

Example 4.2: Suppose that we wish to place Web pages in one of four categories:

News, business, scientific/technical, and entertainment. We assign each category a

bitvector as described in Table 4.1.
�

One can view the ith vector as a unique code word for the ith label. We refer to

the ordered set of bitvectors as a code, denoting the ith vector by vi and its jth digit by

vi j. In the above example, v1 � 00111001 and v23 � 0. For obvious reasons, the set of

bitvectors is also sometimes referred to as a coding matrix.
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Label Coding

News 00111001

Business 10010010

Sci/Tech 01001101

Entertainment 11100110

Table 4.1: Example of ECOC bitvectors for news categories.

Each data point has one and only one correct category; given a data point x, we de-

note the code word for its category by v
�
x � and the jth digit of that code word by v � j � � x � .

If the category of x is Ci, then v
�
x � � vi. In our example, v

�
news � bbc � co � uk � � v1 and

v � 3 � � news � bbc � co � uk � � 1 (being the third digit of the code word for the ‘News’ cat-

egory). Notice that the bitvectors can be thought of as inducing a new set of ‘super-

classes’ V1 � V2 ��������� Vn on the data space X . A data point x belongs to the superclass V j

exactly when v j � x � � 1.

The basic idea of ECOC is as follows: We construct a set of m independent bi-

nary classifiers, one for each column of the code.2 We denote the jth classifier by c j.

These binary classifiers are generally known as ‘plug-in classifiers’ or PiCs. Given a

data point x, c j classifies v � j � � x � – the jth digit of the code word v
�
x � . In terms of the

superclasses, the jth classifer is attempting to distinguish data points in the superclass

Vj from those in its complement V̄j. In our Web classification example above, the clas-

sifier c4 attempts to distinguish between pages in the category ‘News’ or ‘Business’,

and those in the category ‘Sci/Tech’ or ‘Entertainment.’

Our classifiers can be viewed as functions – given a data point x, the jth PiC returns

its predicted classification c j
�
x � . The classification c j

�
x � may be chosen from the

binary set
�
0 � 1 � ; in this instance, c j

�
x � is simply a guess at one of the two possible

values of v j
�
x � . Alternatively, c j

�
x � may be a real-valued probability measuring the

classifier’s confidence that v j � x � � 1.

For any given data point x, we can form a classification vector c
�
x � from the results

2As established by Berger, a Naive-Bayes model can be a suitable binary classifier for ECOC mod-
els [Ber99].
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of the individual PiCs:

c
�
x � � �

c1
�
x � � c2

�
x � ��������� cn

�
x ���

The classification vector c
�
x � is unlikely to be equal to any of the code words vi –

particularly if the data point x was not in the set of examples used to train the individual

classifiers c j. Intuitively though, if c
�
x � is ‘close to’ some code word vi, then x is likely

to fall into the ith category.

Example 4.3: Continuing our Web page classification example, suppose that x

denotes the page www.reuters.com, our classifiers are binary, and c
�
x � � 10011001.

Also, recall that the code word for ‘News’ was v1 � 00111001. Six of the eight bits

in c
�
x � match the corresponding bits in v1. Therefore, our collection of classifiers is in

some sense quite confident that x denotes a news page (as we would hope).

Notice that the first and third bits of c
�
x � are different from the corresponding bits

of v1; this implies that the first and third classifiers have misclassified x – the first

believes that it is in the category ‘Business’ or ‘Entertainment’ rather than ‘News’

or ‘Sci/Tech’, while the third believes it to be in ‘Business’ or ‘Sci/Tech’ rather than

‘News’ or ‘Entertainment.’3 ECOC is therefore quite robust to mistakes made by indi-

vidual classifiers, as we discuss in greater detail below.
�

We will now formalise the notion of a classification vector c
�
x � being ‘close’ to

a code word vi. Recall that both c
�
x � and vi are n-dimensional vectors; the compo-

nents of vi are chosen from the binary set
�
0 � 1 � , while those of c

�
x � are from either

the binary set (if the plug-in classifiers c j are binary) or the unit interval (if the PiCs

are probabilistic). We therefore choose a metric which defines distances between the

appropriate vectors. If our classifiers are binary then we select a metric defined on

bitvectors, such as Hamming distance (see below); if they are real-valued then one of

the class of Lp metrics on the unit interval (see Priestly) is appropriate [Pri97].

Example 4.4: The Hamming distance ∆
�
w � w � � between two bitvectors w and w � is

defined as the minimum number of bits that need to be changed in order to transform w

into w � ; in other words, it is the number of places in which w and w � differ. In the case

3Of course, in practice it might be appropriate to assign more than one category to a web page – but
we are examining the simpler problem in which each data point falls into exactly one category.
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Label vi ∆
�
c
�
x � � vi �

News 00111001 2

Business 10010010 3

Sci/Tech 01001101 4

Entertainment 11100110 7

Table 4.2: Hamming distances between ECOC bitvectors.

of c
�
x � � 10011001, we have distances between c

�
x � and each codeword vi as given in

Table 4.2.

Therefore, according to our collection of binary classifiers, www.reuters.com is

most likely to be in the category ‘News’ and least likely to be in ‘Entertainment.’
�

An ECOC classifier assigns a given data point x to the category Ci whose codeword

vi is closest to c
�
x � , the vector of outputs from the individual binary classifiers. If two

categories are equally close, then we select one arbitrarily. Of course, ‘closeness’ is de-

fined by our chosen metric. So long as the codewords vi are widely spaced with respect

to the metric, ECOC is robust to errors by a small number of the binary classifiers.

4.4.2.2 Comments on ECOC

One Versus Rest: Closely related to ECOC is the ‘one versus rest’ strategy for com-

bining binary classifiers, which works as follows: For each of the m categories Ci, we

train a binary classifier ci such that ci � 1 if x � Ci, and ci � 0 otherwise. This is a

special case of ECOC in which our coding matrix is the m � m identity matrix. There

are sound theoretical reasons to expect that a more general ECOC approach (using a

coding matrix other than the identity matrix – it can be shown that a randomly gener-

ated coding matrix is appropriate) will outperform ‘one versus rest,’ as discussed by

Berger [Ber99].

Lower Bound on Code Word Length: Notice that if we wanted our code words to

be as short as possible, 2-bit vectors would suffice for a set of 4 categories; an example

is given in Table 4.3.
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Label Coding

News 00

Business 10

Sci/Tech 01

Entertainment 11

Table 4.3: ECOC bitvectors of minimum length.

The lower bound of log2 m for the length of a code word (where m is the number of

labels) is thus the minimum number of bits required to assign a unique code word to

each category. Reducing the length of code words increases computational efficiency,

but at the cost of greater vulnerability to errors by one or more of the plug-in classifiers.

4.4.2.3 ECOC and FBPMs

An ECOC classifier is a special case of a feature-based probabilistic model (FBPM).

Each PiC ci can be thought of as a feature function, taking data points x and mapping

them to a set Y (where Y is either the binary set or the unit interval). The number of

features is fixed at n, where n is the number of bits in the category code words vi; but

the features themselves can vary according to how the PiCs are selected and trained.

Our pool of available features, then, is equivalent to a set of PiCs – such as the set of

possible Naive-Bayes binary classifiers. The classification vector c
�
x � is equivalent to

a vector of feature values F
�
x � .

Recall that an FBPM maps vectors of feature values F
�
x � � Y n to probabilities. In

the classification case, it therefore takes the form:4

p
�
i � y � � Pr

�
x � Ci � F �

x � � y �

Given a data point x, the standard ECOC classifier simply returns a category Ci.

Such a model can be thought of as a conditional probability distribution p
�
i � y � � Pr

�
x �

Ci � F �
x � � y � in which, for any given y, p

�
i � y � � 1 for one particular value of i and

4Notice that an ECOC classifier – or indeed an FBPM – may also include a number of free parame-
ters. The free parameters have been left implicit here, in order to simplify our notation.
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p
�
i � y � � 0 otherwise. In other words, the ECOC is a conditional probability distribution

which is absolutely certain of the category Ci of any given data point x. (It should be

noted that ‘certain’ is not the same as ‘correct’; the standard ECOC is always precise,

but it may be precisely wrong.)

The ‘absolutely certain’ FBPM arising from an ECOC can be easily extended to a

more sophisticated probability distribution. Recall that under the ECOC scheme, the

‘most likely’ category for any given data point x is the category C � whose code word

v � satisfies:

v � � arg min
i

d
�
vi � c

�
x ���

where d is our chosen metric, and c
�
x � is the classification vector. Recall also that

c
�
x � is equivalent to a feature vector.

Now, we are already computing the distances d
�
vi � c

�
x � for each i. Intuitively, the

greater the distance between c
�
x � and vi, the less likely it is that x belongs to cate-

gory Ci. We can easily define a probability distribution in which, for each possible

value of c
�
x � , categories whose code words are more distant from c

�
x � receive lower

probabilities. For instance, we could have:

ψ
�
i � x � � γ

1
d
�
vi � c

�
x ���

where γ is a normalisation constant chosen so that the probabilities sum to 1.

Example 4.5: Returning to the Web page classification example, the distances of

www.reuters.com from the code words for categories 1, 2, 3, and 4 were 2, 3, 4, and

7 respectively. The FBPM ψ
�
i � x � defined above then assigns (un-normalised) proba-

bilities of 1/2, 1/3, 1/4 and 1/7 to ‘News’, ‘Business,’ ‘Sci/Tech,’ and ‘Entertainment’

respectively; the normalisation constant is equal to 84/103.
�

To sum up, an ECOC classifier naturally gives rise to a family of FBPMs, in which

the plug-in classifiers play the role of feature functions. This relationship arises from

the fact that both ECOC and FBPMs are based on encoding data points.
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4.4.3 Coding Theory and Feature Selection

In this section we discuss more general connections between coding theory and feature

selection. We examine the key concepts of redundancy and spacing of code words;

these concepts can also be profitably applied to vectors of feature values.

Redundancy: The notion of redundancy is very important in coding theory gener-

ally, and ECOC in particular. Simply put, a lengthy description of our data has the

advantage that, if one or more digits are corrupted, we will still be likely to reconstruct

our data point with reasonable accuracy. Redundancy means that an ECOC classifier

with longer code words is robust to errors by one or more of its PiCs; an inaccuracy in

one can be compensated for by the others. Of course, a high degree of redundancy in

a code may be an inefficient use of available computational resources.

In terms of feature selection, the coding perspective provides some insight into

why large feature sets tend to perform better than small ones: If our FBPM receives a

lengthy description of each data point, then it is less likely to misclassify the point (or

to assign it an incorrect probability, in the case of an unconditional model) because of

the presence of a few irrelevant or misleading feature values.

For instance, suppose again that we are trying to classify Web pages by sub-

ject, and we have binary features whose indicators are the presence of certain key

words. We run across a page on cooking, which mentions ‘recipes’ and ‘Jerusalem

artichokes.’ Unfortunately, our classifier was trained on a number of pages which

referred to ‘numerical recipes.’ The classifier (erroneously) associates occurrence of

the word ‘recipe’ with the category ‘Science/Technology,’ and (understandably) asso-

ciates the word ‘Jerusalem’ with ‘News/Current Events.’ If only these two features

were active then our model would certainly misclassify the cooking page; but if many

other features noticed the occurrence of food-related terms, then the classifier would

be much more likely to reach the correct conclusion.

Notice that the ‘Jerusalem’ feature will in general be a very good one for distin-

guishing news reports from (say) cookery. An important challenge in feature selection

is choosing appropriate combinations of features, in such a way as to compensate for

the weaknesses of individual features.
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Spacing: Another crucial concept in coding is that our code words should be as

widely spaced as possible, with respect to Hamming distance or some other appropriate

measure. In the ECOC setting, widely spaced code words again reduce the chances of

misclassification; they can reasonably be expected to do the same in terms of feature

selection. Obviously, if our code words are longer then it is easier to ensure that they

are widely spaced.

The ideas of redundancy and spacing help to motivate an extension of Expected

Partition Entropy, as discussed in Section 4.5.

4.5 Expected Covering Entropy

In this section we define an extension of EPE, which we refer to as expected covering

entropy or ECE. The extension is motivated by ideas from coding theory, and from a

wish to more explicitly consider the interactions between features.

Two of the key ideas of coding theory are redundancy and spacing, as detailed in

Section 4.4.3. Essentially, we would like our code words to remain useful if errors

occur in one or more places. In order to apply these concepts to feature selection, we

note that EPE – and related metrics such as LIG and the KS metric – are motivated by

the desire for each partition to be strongly associated with a particular category. More

precisely, we would like knowing the vector of feature values y � F
�
x � for a particular

data point x to give us as much information as possible about the category of x. The

EPE metric addresses this question in a theoretically appealing fashion by making use

of the conditional entropy.

However, as it stands EPE is vulnerable to misleading values taken by one or more

features. For instance, if we are carrying out part-of-speech tagging for English words

using binary features, we may find that the feature vector 10101001 is strongly associ-

ated with the NOUN tag; but that 10101101 always occurs with the VERB tag.5 In order

to distinguish between certain nouns and verbs, our classifier is totally dependent on

the value of the sixth feature:

5Chapter 5 outlines an extensive investigation of a simplified form of feature-based part-of-speech
tagging, and discusses appropriate binary features in this setting.
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f6
�
x � : X ��

�
0 � 1 �

Because of the limitations of our training data, we may not have an entirely accu-

rate picture of the behaviour of f6. This places our model at some risk of incorrectly

classifying a noun as a verb or vice versa. Intuitively, we would like our model to be

robust to errors taken by one or more features. In the above example, we would like to

introduce additional features to ‘check’ that the feature f6 was arriving at the correct

verdict – perhaps by replacing some of the other features, if necessary.

We formalise this idea by drawing upon coding theory, and attempting to ensure

that the vectors of feature values are robust to ‘errors’ by one or more features, and

that they are well-spaced with respect to Hamming distance or some other appropriate

measure. Hamming distance is the standard measure for distance between bitvectors,

such as vectors of values of binary features; for the sake of brevity, we will hence-

forth assume that Hamming distance is being used. Recall that the Hamming distance

between two bitvectors is defined as the number of places in which they differ.

In the above example, the vectors 10101001 and 10101101 are very similar; this is

reflected by the fact that the Hamming distance between them is only 1. Therefore, the

partitions with respective names 10101001 and 10101101 can be thought of as being

similar; they are ‘close neighbours’ in Hamming distance. It follows that our classi-

fier may not be able to reliably distinguish between points in the two partitions. We

therefore consider merging these two partitions into a single ‘super-partition’ or re-

gion. We are interested not so much in the information provided by the exact values of

the names 10101001 or 10101101; we are more interested in the information obtained

by knowing that the name is either 10101001 or 10101101.

The idea of merging partitions into regions can be generalised as follows. Let y

be a vector of feature values; y is therefore the name of a partition, as discussed in

Section 4.2. Let P
�
y � denote the set of points in the partition defined by y – that is,

P
�
y � � �

x : F
�
x � � y � . Finally, let δ

�
y1 � y2 � be the Hamming distance between a pair

of bitvectors y1 and y2.

We define the kth-order region of the feature vector y as the union of partitions

whose names y � are at a Hamming distance from y of less than or equal to k:
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Rk
�
y � � �

y � :δ � y � y ��� k � P
�
y � �

� �
x : δ

�
y � F

�
x ����� k �

The greater the value of k, the larger the regions. (Notice that δ
�
y � y ��� 0, so P

�
y �

will be contained in Rk
�
y � for all y and for any value of k.) Regions will certainly

overlap, but in general two regions Rk
�
y1 � and Rk

�
y2 � need not be exactly the same,

even if y1 and y2 themselves are separated by a Hamming distance of less than k. The

regions form a covering of the data space: Each data point is contained in at least one

region, and may be contained in more than one.

We can now construct region-conditional distributions in an analagous way to the

partition-conditional distributions of EPE. The region-conditional distributions take

the form:

Pr
�
x � C j � x � Rk

�
y ���

We can compute the entropies of the region-conditional distributions and take the

expectation over vectors of feature values y, in exactly the same way as for EPE. We

can therefore define the kth-order expected covering entropy:

εk � ∑
y

Pr
�
F

�
x � � y � H �

Pr
�
x � C j � x � Rk

�
y �����

Notice that if k � 0, ECE is equivalent to EPE. Hence, we will sometimes refer to

EPE as the zeroth-order entropy of a feature set, and ECEs as entropies of first order,

second order, and so on. ECE can be thought of as an extension to EPE, in which one or

more features are permitted to take misleading values. The order k of the entropy can

be thought of as the maximum number of features which are permitted to be ‘wrong.’

Appropriate values for k will depend on our feature set and data space. For instance,

if we only have five features, then setting k � 5 renders ECE meaningless as each

‘region’ will contain the entire data space. In general, higher orders of ECE are more

difficult tests for the ‘robustness’ of our feature set. As with a code, a feature set can

be made highly robust to errors, but only at the cost of including massive redundancy.
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Further theoretical properties of ECE will be discussed in Section 7.2, with ref-

erence to the part-of-speech tagging experiments outlined in Chapter 5; and in Sec-

tion 8.5, regarding the Reuters document-classification experiments of Chapter 8. The

latter is particularly interesting, as it provides a practical example of a situation in

which ECE succeeds where the EPE metric fails to provide a useful criterion for fea-

ture selection.

4.6 Summary

In this chapter we have presented the concepts of partitioning and encoding, which

provide two novel perspectives for feature selection. These concepts respectively mo-

tivate a new class of metrics using conditional entropy: We refer to these as Expected

Partition Entropy (EPE) and Expected Covering Entropy (ECE). EPE can be motivated

by considering either the conditional entropy or the expected relative entropy; ECE is

an extension of EPE, which attempts to make our feature selection process robust to

misleading values taken by one or more feature functions.



Chapter 5

Part-of-Speech Tagging: Experimental

Setting

5.1 Introduction

In this chapter we describe the setting and parameters of experiments conducted to

evaluate the relative performance of existing feature selection metrics described in

Chapter 3, and new metrics introduced in Chapter 4. The setting is based on a modified

form of part-of-speech tagging for English words, using labelled training data derived

from the Penn Treebank [MSM95]. As we shall see, the setting is rich enough for

feature selection to be an interesting problem, and for the differences between metrics

to become apparent; but not so complex as to render feature selection prohibitively

difficult or time-consuming.

It is worth noting that the experiments make very little attempt to employ any prior

knowledge of the part-of-speech tagging domain. The metrics used characterise ‘good’

feature sets in quite general terms: The wrappers simply seek feature sets which give

rise to high accuracy in predicting the tags of unseen words with a particular classifier,

and the filters measure the ‘goodness’ of a feature set using feature frequencies or

information-theoretic quantities. None of the metrics used is based on any special

properties of the part-of-speech tagging problem; hence, the relative performance of

the metrics can be expected to generalise to other domains.

91
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After establishing some definitions and notation, we discuss the properties of the

data and features. We continue by briefly reviewing the classifiers and feature selection

metrics used; the classifiers were introduced in Chapter 2, existing metrics in Chap-

ter 3, and new metrics in Chapter 4. We then introduce a new class of accelerated

feature selection search algorithms, and detail the exact parameters for our selection of

feature subsets. The subsets obtained are assessed according to classification accuracy

on test data in Chapter 6; and using the EPE and ECE metrics in Chapter 7.

5.2 Data Points and Features

5.2.1 Basic Definitions

The general setting chosen for the experiments is a simple form of unknown-word part-

of-speech tagging for English words. The training and test data were derived from sets

of pre-tagged text files taken from the Penn Treebank WSJ corpus [MSM95]. Each

word constitutes one data point, with the part-of-speech tag as its label. Non-words

consisting only of digits or punctuation marks were excluded from the training data;

capitalisation was ignored, with all words being treated as entirely lower-case; however

proper names were included. The training data consisted of 992 157 data points, with

38 438 distinct words and 41 different tags.

Features are defined by substrings of five letters or less, including beginning-of-

word and end-of-word symbols. A given feature takes the value 1 if its substring is

present, in which case the feature is said to be active; otherwise the feature takes the

value 0 and is said to be inactive. In the terminology of Chapter 2, we are using binary

features with the presence of particular substrings as their indicators. Models using

these features are implementing a simplified form of traditional part-of-speech tagging

since, as we discuss further in Section 5.2.3, they do not consider the surrounding

context in which a word occurs.

As usual when dealing with binary features, we sometimes abuse terminology by

using the word ‘feature’ for both a feature function and its indicator. However, it

is important to keep in mind that indicators and feature functions are two different

things. The former are events – in this case, particular substrings being present – while
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the latter are functions mapping the set of possible words to the binary set
�
0 � 1 � .

In order to reflect this, we write strings and substrings in the form red; the feature

function with the presence of red as its indicator is written f
��������� �

x � , or more simply

as [red].

For purposes of actually incorporating our features into models, things are some-

what more complicated. Strictly speaking, the features included in our model archi-

tectures are active on predicate/label pairs (in which the predicates are substrings),

not simply on predicates. Hence, f
���	����� �

x � is really shorthand for a class of features,

one for each possible part-of-speech tag: f
���	�
�

���	����
� �

x � , f
�������

���������
� �

x � , and so on.

However, all of our feature selection algorithms treat each equivalence class of fea-

tures as a unit; we either include or exclude the entire class f
���	���
� �

x � . We therefore

use simplified notation and terminology in which a ‘feature’ is a function of the form:

f
���	���
� �

x � � � 1 if x contains the substring red

0 otherwise

Example 5.1: Consider the English word writing, which can be either a

noun or a verb. Let 1 and 9 be the universal beginning-or-word and end-of-word

markers. The string 1writing9 contains the following 34 substrings of five sym-

bols or fewer: 1, w, r, i, t, n, g, 9, 1w, wr, ri, it, ti, in, ng, g9,

1wr, wri, rit, iti, tin, ing, ng9, 1wri, writ, riti, itin, ting, ing9,

9writ, writi, ritin, iting, ting9.

Each substring gives rise to a binary feature: [ting9], [iting], and so on. Notice

that given feature cannot be active ‘more than once’; the [i] feature takes the value

1 on this data point, despite the fact that the letter i occurs twice. In other words, our

features take the value 1 if their substring occurs at least once on the word, and 0

otherwise.
�

5.2.2 Properties of Features

We can at once make several observations regarding the properties of our features.

First of all, the set of all possible features is very large. Given that any string of letters

could in principle occur in a document – if only as an abbreviation – we immediately
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have 265 � 264 � 263 � 262 � 26 or more than twelve million possible features. This

figure will be multiplied still further when beginning- and end-of-word symbols for

a given substring are included. In order to reduce our pool of available features to a

more manageable size, we consider only those substrings which occur in our training

set. As we shall see, this reduces the size of our pool of possible features to about 7000

for a typical 5000-word training set, rising to about 35 000 for a set containing roughly

800 000 words.

Notice that, even if we use only the substrings which occur in our training set, we

still have a great many irrelevant and redundant features. For instance, in Example 1

above [ting9] is almost redundant if our feature set also contains [ing9], as the

former feature is unlikely to give us much additional help in predicting part-of-speech

tags. Furthermore, the features [1] and [9] are entirely irrelevant, since every word is

guaranteed to have a beginning and end. They are part of a broader class of irrelevant

features; ones such as [ri] and [ng] are unlikely to give us any useful information

about the part-of-speech tag of the word. Indeed, they could well lead to overtraining;

if our training set happens to include a large number of nouns containing the substring

ng, our learner could erroneously associate this substring with nouns. The task of

weeding out such irrelevant features is an important challenge for any feature selection

algorithm.

Using all 34 possible features to describe the data point 1writing9 seems exces-

sive, to say the least. In the case of a common word such as this, it might be advanta-

geous to choose features that give us a good chance of identifying the word uniquely.

It seems reasonable to suppose that in a typical training or test set, 1writing9 is likely

to be the only point on which the features [1writ], [riti] and [ting9] are active.

For most practical purposes, these three features provide as much information about

the data point 1writing9 as the full set of 34 features. However, we should not re-

ject the remaining 31 features out of hand; for instance, the feature [ing9] – that is,

the one corresponding to the suffix -ing – may well prove useful for distinguishing

between nouns and verbs.

Striking an appropriate balance between ‘specialised’ features which are good for

identifying particular common data points, and ‘generalist’ features which can iden-
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tify uncommon and unseen data points, is an important task for any feature selection

process. The above discussion also illustrates the importance of choosing good combi-

nations of features, not just features which perform well in isolation.

Example 5.2: In our chosen setting, words of three letters or less can be identi-

fied with no ambiguity by a single feature: For instance, 1and9, 1for9, and 1a9. In

principle, this allows a learner to efficiently recognise and classify short words, many

of which are very common.
�

It should be noted that, even if our feature set allows us to uniquely identify a

particular word, this does not guarantee that the word will be correctly classified. One

possible problem is the presence of misleading features; for instance, while [1and9]

uniquely identifies a data point as being the conjunction ‘and,’ our classifier may also

note the features [1an] and [nd], which could be associated with different part-of-

speech tags. Not all classifiers will be sufficiently sophisticated to assign the correct

tag to 1and9 in this case. This danger can be reduced somewhat by careful feature

selection.

5.2.3 Context-Sensitive Features

The accuracy of our classifiers could be increased by introducing features which con-

sidered the context of a given word. For instance, we might find that ‘writing’ was

more likely to be a noun if it was immediately preceded by the word ‘new.’ It would

be simple enough to introduce a feature [1new9-] which was active exactly when a

word was immediately preceded by ‘new’. Alternatively, we could define a feature

[1new9-1writing9] which was active on the word-pair ‘new writing’.

The introduction of context-sensitive features would be particularly useful in deal-

ing with words which have more than one possible tag. Suppose that the word ‘writing’

is classified as a verb in 80% of the instances in our training set, and as a noun in the

other 20%. A classifier will give each data point what it deems to be the most probable

part-of-speech tag, given the set of features active upon it. If it always classifies ‘writ-

ing’ as a verb – which is intuitively the ‘best it can do’ without considering context –

then it will still be wrong about 20% of the time.
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However, the use of context-sensitive features would significantly complicate the

task of feature selection, and it was not attempted in our experiments. The introduction

of context-sensitive features in this setting is a possible topic for future research.

5.3 Classifiers

The classifiers employed in this chapter are types of feature-based probabilistic model

or FBPM; FBPMs are defined in Chapter 2. We suppose that each data point x falls into

exactly one of countably many classes Ci. As we have already indicated, the classifiers

take the form Pr
�
x � Ci � F �

x � � y � ; that is, they assign a probability distribution over

categories to a data point, given the value of our feature set on the data point.

The classifiers arise from model architectures, which are schemes for incorporating

a variable set of features into a probabilistic model. We use a collection of labelled

training data to choose what we hope will be a good feature set. Having chosen a

feature set, a classifier can then be used to predict the label of previously unseen data

points; its accuracy can be assessed by running it on a held-out set of labelled test

data. We employ two different types of classifier in our experiments: These are the

Naive-Bayes and Maximum-Entropy model architectures. The theoretical properties

and previous applications of these models are discussed in Sections 2.3.3 and 2.3.4.

In Sections 5.3.1 and 5.3.2 we briefly review the model architectures, with particular

attention to their implementation in our chosen experimental setting.

5.3.1 Naive-Bayes

The naive-bayes (NB) model architecture gives rise to a family of simple feature-based

classifiers, as detailed in Sections 2.3.3. At this point, it is worth noting that naive-

bayes models do not contain any free parameters; and that they assume that features

take values independently of one another.

The naive-bayes models live up to their name in our chosen setting of part-of-

speech tagging with features defined by substrings. The presence of a given substring

will certainly be dependent on the presence or absence of other substrings; indeed,

modelling such dependencies may be crucial for successful classification. While NB
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classifiers can be moderately successful in this setting, they are drastically outper-

formed by the more sophisticated maximum-entropy models which we discuss in Sec-

tion 5.3.2. On the other hand, NB models do have the advantage of simplicity; they can

be trained and evaluated significantly more quickly than maximum-entropy models.

The code used to implement the naive-bayes classifier in this chapter was written

by Miles Osborne.

5.3.2 Maximum Entropy

Our second model architecture is the maximum-entropy (ME) scheme, which was in-

troduced in 2.3.3. In contrast to NB models, ME classifiers can model dependencies

between features; and they include a set of real-valued free parameters or weights,

which can be used to assign different relative importances to the members of a feature

set.

The same set of labelled training data used to select a feature set is also employed

to adjust the weights to optimal or near-optimal values. We take a ‘black box’ approach

to the weights; they are adjusted by a training algorithm which remains fixed, and we

instead try to optimise performance of the classifier by varying its feature set. The

code used to implement the maximum-entropy models in this chapter was written by

Rob Malouf [Mal02].

5.3.3 Aside – Classification with Maximal Feature Set

Classification was carried out with the set of all available features, including a separate

feature for each distinct word, in order to to provide a reference point for our results.

This maximal feature set contained some 83 000 features. The mean percentage ac-

curacies obtained with tenfold cross-validation were 84.96 and 86.11 for the NB and

ME classifiers, respectively. If we include data points consisting only of digits and

punctuation marks – which are very common and easy to classify – then the accura-

cies increase to 90.02 for NB and 89.65 for ME, which is in line with typical baseline

results for part-of-speech tagging.

Selecting smaller feature sets with the techniques described in this chapter led to
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lower classification accuracy. However, moderately high accuracies of approximately

70% were achieved with as few as one-tenth the maximum number of features. Fur-

thermore, the objective of our feature selection was not really to develop new methods

of part-of-speech tagging, but rather to provide a suitable arena in which the rela-

tive performance of different feature selection metrics could be assessed. In the latter

respect the experiments were very successful, as clear differences between the met-

rics became apparent and interesting properties of the new conditional-entropy metrics

could be observed.

5.4 Feature Selection Metrics

As discussed in Chapter 3, any feature selection process requires an evaluation function

or metric which provides a quantitative measure of the desirability of a given feature

set. By attempting to optimise the value of our metric, we hope to obtain a feature set

which gives rise to a more effective model. In this section, we briefly describe the met-

rics employed in this chapter, with particular attention to their implementation in our

chosen experimental setting. Section 3.2.2 includes a more detailed consideration of

the role of a feature selection metric, and the properties of existing metrics. Chapter 4

gives motivation for and definitions of the new feature selection metrics and discusses

their theoretical properties.

Table 5.1 summarises the metrics used in this chapter, including abbreviations for

their names and a rough indication of their complexity. Selection of features was also

carried out entirely at random in order to provide a baseline for our results. It should

be noted that the two simplest measures, frequency-based cutoff and naive mutual in-

formation, are hierarchical metrics; that is, they place the features in a fixed order of

desirability, effectively ignoring any possible interactions between them. (See Chap-

ter 3 for further details.) The other metrics used are non-hierarchical.

As Table 5.1 indicates, several of the metrics used in this chapter are information

filters – that is, they make use of measures derived from information theory such as

entropy, relative entropy, or mutual information.1 Information measures generally re-

1See Chapter 3 or Cover and Thomas for formal definitions of these quantities [CT91].
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Name Full Name Type New Complexity

RND Random selection Not applicable No Very low

FBC Frequency-based cutoff Distance filter No Very low

NMI Naive mutual-information Information filter No Low

KS Koller-Sahami metric Information filter No Moderate

NB Naive-Bayes Wrapper No Moderate

ME Maximum-entropy Wrapper No High

EPE Expected Partition Entropy Information filter Yes Moderate

ECE Expected Covering Entropy Information filter Yes Very high

Table 5.1: Summary of Metrics Used in Experiments

quire estimates of the probability distributions for data points and their associated fea-

ture values. In all cases, the estimate used is the empirical distribution:2 If a data point

x̃ appears c
�
x̃ � times in a training set with N elements, then its empirical probability is

simply c
�
x̃ � � N.

A quantitive assessment of the computational cost of each metric, in terms of the

time required to select a fixed number of features with our chosen experimental param-

eters, appears in Section 5.6.3.

5.4.1 Existing Metrics

Frequency-based Cutoff: Keep the features which occur most frequently in the

training set, and discard the others.

Naive Mutual Information: Compute the mutual information of each feature with

the class variable. The greater the mutual information, the more desirable the feature.

Let I
�
U ;V � denote the mutual information between two random variables U and V . In

our chosen setting, we have:

I
�
fi;x � C j � � H

�
Pr

�
x � C j ��� 	 H

�
Pr

�
fi
�
x � � y � x � C j ���

2The empirical distribution and other possible approximations for use in information measures are
discussed further in Chapter 3.
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If we simplify our notation by letting x j denote the event x � C j and writing fi � y

instead of fi
�
x � � y, we have:

I
�
fi;x j � �

�
	 ∑

j
Pr

�
x j � logPr

�
x j � � 	

�
	 ∑

j
Pr

�
x j � ∑

y
Pr

�
fi � y � x j � logPr

�
fi � y � x j � �

Notice that the first term in the above expression is constant for all features; and

that in the second term, y can take only two possible values – 0 and 1. The naive

mutual-information is therefore quite simple to compute.

Koller-Sahami Metric: Find the partition-conditional label distribution for the pool

of all available features F :

pmax
�
Ci � y � � � Pr

�
x � Ci � � F �

x � � y � �
Then find the partition-conditional label distribution for the candidate feature set F:

pF
�
Ci � y � � Pr

�
x � Ci � � F �

x � � y �
where y is the projection of y � onto the the reduced feature set F . Minimise the expected

Kullback-Liebler divergence between the two:

∑
y �

Pr
�
y � � D � pmax

�
Ci � y � � � � pF

�
Ci � y ���

Naive-Bayes Wrapper: Assessment using the Naive-Bayes learner with the training

set, candidate feature, set and a held-out test set. The higher the accuracy of the learner,

the better the feature set.

Maximum-Entropy Wrapper: Exactly the same as the Naive-Bayes wrapper, except

that the maximum-entropy learner is used for assessment.

5.4.2 New Metrics

Expected Partition Entropy: Minimise the expected entropy of the partition-conditional

label distributions arising from the candidate feature set:

∑
y

Pr
�
y � H �

pF
�
Ci � y ���

where as before, pF
�
Ci � y � � Pr

�
x � Ci � � F �

x � � y � .
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Expected Covering Entropy: As above, but instead of partitions we use regions,

which are defined in terms of Hamming distance. (Recall that the Hamming distance

between two bitvectors is the number of places in which they differ.) Each partition is

defined by a vector of feature values y; the region Rk
�
y � of a given partition is made

up of the partitions whose defining vectors are at a Hamming distance δ of less than or

equal to some fixed value k:

Rk
�
y � � �

x : F
�
x � � ŷ � δ �

y � ŷ ��� k �

Reasonable values for the maximum Hamming distance k are 1, 2, or 3; if k � 0 then

ECE is equivalent to EPE.

5.5 Search Strategies

5.5.1 Background

We seek to evaluate the performance of each feature selection metric by finding feature

sets which receive good scores with respect to the metric, and evaluating their perfor-

mance. A pool of available features with n elements will have 2n distinct subsets.

Given that between 7000 and 35000 features are available in our chosen setting, the

number of possible subsets is astronomically high, and exhaustively evaluating each

distinct subset is effectively impossible.

Practical feature selection methods use a variety of heuristics for searching the pos-

sible subsets more quickly, while still having a reasonable chance of finding a ‘good’

feature subset. As noted in Chapter 3, a typical feature selection procedure has four

distinct elements:

1. Generation procedure: A means of generating candidate feature subsets.

2. Evaluation function: A function which produces a numerical ‘score’ for each

candidate feature subset.

3. Stopping criterion: A means of deciding when to terminate the search.
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4. Validation procedure: Any feature selection method must be validated by as-

sessing the performance of the FBPM which arises from it.

Our evaluation functions are the ones described in Section 5.4. Our principal val-

idation procedure is finding the accuracy on held-out test data of naive-bayes and

maximum-entropy models with our chosen feature sets, as described in Chapter 6.

We will also explore the use of our new metrics to assess feature sets obtained using

existing metrics, as we describe in Chapter 7. We seek to assess the performance of our

metrics on twenty different subset sizes for each training set. This determines our stop-

ping criterion: We will halt when all twenty subsets are obtained or when our chosen

metric reaches its optimum possible value, whichever comes first.

A suitable generation procedure now needs to be chosen. Recall that generation

procedures include a starting point somewhere in the space of available subsets, and a

search strategy for moving through the space. In our experiments we employ a novel

generation procedure which we call accelerated forward selection.

5.5.2 Accelerated Forward Selection

In a standard forward selection algorithm, we begin with the empty feature set and add

features one at a time. At each step we assess all the candidate features available for

inclusion in our model and add the one which gives rise to the highest-scoring feature

set, with respect to our chosen metric.3 Unfortunately, the non-hierarchical metrics

used in this chapter – that is, all of them apart from frequency-based cutoff and naive

mutual information – are too slow for traditional forward selection to be practical with

the data sets used in this chapter.

We therefore speed things up by introducing an element of randomness to our fea-

ture selection process. The basic idea is simple: Start with the empty feature set, but

instead of adding one feature at a time assess a number of randomly selected blocks of

features, and adopt the best one for use in our model. This can result in significantly

faster feature selection, as the following example illustrates.

3Forward selection and its relation to other search techniques are described in greater detail in Sec-
tion 3.2.1.
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Example 5.3: Suppose we have a pool of 1000 available features and wish to

obtain a subset of 100 features. If we were using forward selection, we would have to

call our evaluation metric for 1000 � 999 � 998 � ����� � 901 or 95050 distinct subsets.

On the other hand, if we evaluate 100 randomly chosen blocks of 10 features each,

choose the one whose addition gives rise to the best feature set, and repeat 10 times, we

only have to call the evaluation function 1000 times. All else being equal, the feature

selection process has been sped up almost a hundredfold, and we can still reasonably

hope to obtain a ‘good’ subset with respect to our chosen metric.

Note that at each of 10 steps, we are evaluating 100 randomly chosen blocks of 10

features each. A total of 100 000 features are therefore considered for inclusion in our

model – inevitably with some repetition. Thus, each of our 1000 available features is

almost certain to be considered for inclusion at least once.
�

It is important to note that accelerated selection offers a means of employing feature

selection metrics which would otherwise be prohibitively slow. For instance, Koller

and Sahami note that the KS metric is extremely complicated; they propose an elabo-

rate means of approximating it through so-called Markov blankets, one which requires

us to make a number of undesirable assumptions [KS96]. Accelerated feature selection

allows us to precisely calculate the KS metric – and others of similar complexity, such

as wrapper approaches and EPE – at the cost of significantly reducing the scope of our

search.

Accelerated forward selection has not to our knowledge been used before, although

it is somewhat similar in spirit to the random recombination of parameters in genetic

algorithms. (The use of genetic feature selection algorithms is discussed further in Sec-

tion 3.2.1.) Indeed, one could define an accelerated genetic algorithm which assessed

multiple feature subsets obtained by addition or removal of randomly selected blocks.

However this would suffer from the usual drawback of genetic algorithms – namely,

that of requiring the assessment of a very large number of feature subsets. Accelerated

genetic algorithms were therefore rejected in favour of a ‘higher-resolution’ use of ac-

celerated forward selection – that is, applying the available computational resources to

assessing more blocks and reducing the size of block added at each step.

An accelerated approach will in general produce less useful feature sets than a tra-
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ditional forward selection algorithm, as it is carrying out a less extensive search of the

space of available subsets. However, while the results of using a given metric with ac-

celerated forward selection will probably be quantitatively worse than the same metric

applied to traditional forward selection, one would not expect a qualitative difference

in the relative usefulness of different metrics. In simpler terms, if metric A is better

than metric B at traditional forward selection – in the sense of giving rise to a model

with greater accuracy on held-out test data – then this should still hold true in the

accelerated setting.

The hypotheses of quantitative improvement and no qualitative change are borne

out by the experiments described in Section 6.9. If the size of block added is reduced,

then in an important sense the accelerated selection process becomes closer to tradi-

tional forward selection – after all, the classic forward selection algorithm is equivalent

to simply having a ‘block size’ of 1. In practice, reducing the block size while keeping

the metric fixed has little effect on performance, and the relative success of different

metrics with the same block size remains unchanged. It is also worth noting that use

of an accelerated algorithm is more than sufficient to attain an optimal value for the

Koller-Sahami metric, and to improve metrics such as EPE to near-optimal values.

Hierarchical Metrics: It should be noted that accelerated feature selection is inap-

propriate for hierarchical metrics. If features are ranked in a fixed order of desirability,

independently of how they are combined in a feature subset, then there is no point in

evaluating randomly selected blocks of features. With a hierarchical metric, we know

what the highest-scoring subset of n features is; it is simply the subset containing the

n features with the highest individual scores. We therefore employ conventional for-

ward selection and backward elimination with the hierarchical FBC and NMI metrics.

Interestingly, the hierarchical metrics are significantly outperformed by more complex

metrics which require the use of accelerated selection. It would seem that in this set-

ting, the advantage of adopting a more sophisticated evaluation function more than

offsets the disadvantage of being able to assess comparatively few feature subsets.

Other Accelerated Techniques: Several obvious variations on accelerated forward

selection are possible. One of them is accelerated backward elimination, in which we
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start with the set of all available features and iteratively remove randomly selected

blocks. Another is to allow our algorithm to ‘backtrack’ by periodically removing a

block of features instead of adding one (or vice versa for accelerated backward elim-

ination). In our experiments, however, we restrict ourselves to accelerated forward

selection without backtracking. Because of the large random element already present

in the search process, it seems very implausible that the choice of starting point or

introduction of backtracking will have a drastic effect.

5.6 Parameters for Part-of-Speech Tagging Experiments

5.6.1 Training and Test Data

Our set of labelled data for these experiments was derived from 25 sections of tagged

text from the Penn Treebank WSJ corpus, each approximately 35 000 words in length. [MSM95]

(Recall that for our purposes, each word is one data point.) We conducted experiments

with two different sizes of training set. In the larger of the two, we merged 23 of the

files into a large training set of approximately 800 000 words, while holding out two

files as test sets. One test set was used for feature selection by wrappers, which them-

selves require a test set; the other was used for evaluation. This setting was used for

evaluation of the FBC, NMI, KS, NB, and EPE metrics.

The maximum-entropy wrapper was too slow for use in feature selection with the

large training set. We therefore conducted a second set of experiments in which the

training set was a sequence of 5000 words from one of the files, and sequences of 1000

words from two other files were used as test sets. This reduced training set was small

enough to allow implementation of the ME wrapper. For comparison, feature selection

was also carried out in this setting using EPE and the NB wrapper. The same test sets

were used for both small and large training sets.

As noted in Section 5.2, the experiments employed binary features with the pres-

ence of substrings of 5 letters or less (including beginning- or end-of-word symbols)

as their indicators. For each training set, the collection of features appearing in the

training set was adopted as the pool of candidate features for inclusion in the model.

This resulted in approximately 7200 possible features for a 5000-member training set,



106 Chapter 5. Part-of-Speech Tagging: Experimental Setting

and approximately 36 000 for an 800 000-member training set. The maximum size of

subsets examined were 7000 and 35 000, respectively.

5.6.2 Accelerated Forward Selection

The experiments used accelerated forward selection, returning results for twenty dif-

ferent subset sizes. The selection process was halted when it reached the maximum

subset size or the optimum possible value for the metric. (In practice the latter did

not occur except for the Koller-Sahami metric.) In each instance, 100 feature selection

steps were carried out, each time adding a number of features equal to 1% of the de-

sired final subset size. At each step 10 randomly chosen blocks were assessed the one

which gave rise to the highest-scoring feature set was added to the feature set. Every

five steps, the feature set was output for later assessment, for a total of twenty outputs.

The parameters are summarised in Tables 5.2 and 5.3. See Table 5.1 for a summary of

the metrics’ properties and a key to the abbreviations for their names.

Parameter Value

Size of block to add at each step 350

Number of blocks assessed at each step 10

Number of steps 100

Size of final feature set 35000

Frequency of output 5

Total outputs 20

Metrics not used ME, ECE

Table 5.2: Parameters for Large Training Sets

Even with the use of accelerated techniques, the ECE metrics were too slow for

practical feature selection in this domain; the same was true of the ME wrapper for the

larger feature set. For the part-of-speech tagging problem, these slow metrics were re-

served for evaluation rather than selection of feature sets. Evaluation by the maximum-

entropy and naive-bayes learners is described in Chapter 6, and assessment by ECE
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Parameter Value

Size of block to add at each step 70

Number of blocks assessed at each step 10

Number of steps 100

Size of final feature set 7000

Frequency of output 5

Total outputs 20

Metrics not used RND, FBC, NMI, KS, ECE

Table 5.3: Parameters for Small Training Sets

in 7. Successful feature selection by ECE in the Reuters document-classification do-

main is presented in Chapter 8.

Tenfold cross-validation was carried out by repeating the feature selection process

10 times for each of the remaining metrics, each time with a different split between

the training and test sets, and finding the mean of the results. This enabled us to

control for the effect of different test sets, as well as the random element present in

accelerated forward selection. In the case of completely random selection, it seemed

prudent to increase the number of runs in order to ensure an accurate baseline; we

therefore carried out feature selection twice for each of the 10 training/test splits, for a

total of 20 different results to be averaged instead of the usual 10.

5.6.3 Computational Cost of Metrics

Table 5.4 quantifies the computational cost of the metrics used in the part-of-speech

tagging domain. It records the time in hours required to select a given number of

features using a Pentium 4 PC, giving mean values across the ten training/test splits.

The parameters used for feature selection are those given in Tables 5.2 and 5.3; see

Table 5.1 for a summary of the metrics’ properties and a key to abbreviations of their

names.

Recall that the FBC and NMI metrics are hierarchical measures; they rank features

in a fixed order of desirability, irrespective of how they are combined in a feature set.
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Therefore, in feature selection by FBC or NMI we only have to compute the metric

value over the pool of all available features; in order to select a subset of n features,

we simply choose the n highest-ranked members of the pool. In our chosen setting,

selection by hierarchical metrics could be accomplished in at most a few minutes.

For non-hierarchical metrics such as KS, EPE, and the NB and ME wrappers, the

metric must be recalculated for each candidate feature set. Feature selection with these

metrics was therefore much slower. However, as discussed in Chapter 6, in many

instances the non-hierarchical metrics gave rise to considerably greater accuracy on

test data than the hierarchical ones.

Metric Time to select features (hours)

7000 features 30000 features

FBC N/A Negligible

NMI N/A Negligible

EPE 6.3 28.7

KS N/A 29.0

NB 8.4 41.1

ME 35.8 N/A

Table 5.4: Computational cost of metrics.

The difference in speed between the EPE and KS metrics was comparatively minor,

and is probably not of general significance; in theory, the two metrics are of very

similar computational complexity. It can be seen though that both the EPE and KS

filters were considerably faster than the naive-bayes (NB) wrapper, which in turn was

faster than the maximum-entropy (ME) wrapper.

5.7 Summary

In this chapter we have outlined the setting and parameters used to carry out feature

selection in a part-of-speech tagging domain. More specifically, the task considered

in these experiments was a simplified version of part-of-speech tagging for English
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words, in which features were defined by the presence or absence of particular sub-

strings within each word, and words were considered in isolation from their contexts.

Training data was derived from the Penn Treebank WSJ corpus. We began by pre-

senting a novel feature selection strategy called accelerated forward selection. This

strategy enabled significantly faster feature selection, at the expense of carrying out a

less extensive search of the space of subsets.

Accelerated forward selection was carried out using the new EPE metric, and for

comparison with the existing FBC, NMI, KS, NB and ME metrics. Selection of fea-

tures at random was also conducted in order to provide a baseline for other results. In

most cases, accelerated forward selection was fast enough for us to use large training

sets of about 800 000 words, which contained about 37 000 features. However, the

ME metric was prohibitively slow in this setting; we therefore carried out feature se-

lection using the ME, NB, and EPE metrics with smaller training sets of 5000 words,

which each contained approximately 7200 features. Feature selection using the exten-

sion of the EPE metric to ECE was too slow to be practical in this setting; successful

experiments with ECE are presented in Chapter 8.

The properties of the feature sets obtained for the part-of-speech tagging task will

be assessed in Chapter 6, which will examine the classification accuracy they obtain on

test data; and in Chapter 7, which will examine the behaviour of the new conditional-

entropy metrics on feature sets selected by a variety of methods.





Chapter 6

Part-of-Speech Tagging: Accuracy on

Test Data

6.1 Introduction

This chapter is primarily devoted to comparing EPE to the baseline provided by ran-

dom selection, and to existing feature selection metrics: FBC, NMI, KS, NB and ME.

(A brief explanation of these abbreviations is contained in Table 5.1; detailed defini-

tions of the metrics are given in Chapters 3 and 4.) We also compare the ME and NB

wrappers to one another, and briefly consider the effect of varying our search parame-

ters. The results in this section are largely presented in graphical form; more complete

tables of results are contained in Appendix A.

Recall that EPE and NB were used for both large and small training sets; random

selection, FBC, NMI and KS for large ones only; and ME for small ones only. As-

sessment was carried out using both the ME and NB learners. Accuracy of the ME

models was consistently better than that of the NB ones; it was also less subject to

change according to the feature selection metric used. This was to be expected, as

the ME model architecture is considerably more sophisticated. However, interesting

variations occurred within the results for each method of assessment, according to the

metric used for feature selection.

111



112 Chapter 6. Part-of-Speech Tagging: Accuracy on Test Data

6.2 EPE and Random Selection

Figure 6.1 compares the mean accuracies attained by EPE with random feature se-

lection. In the ME setting, EPE is clearly better than random selection; with the NB

learner, the advantage of EPE is less pronounced but still noticeable for most sizes of

feature set.

Random selection performs particularly well in combination with the NB learner

for relatively small and large feature sets. Indeed, it is on average better than EPE for

the final subset size of 35 000. This may reflect the fact that overtraining will not occur

with random selection, as well as the relative crudeness of the NB learner. In general

these results should be treated with some caution because of the large random element

present in both feature selection processes. In particular, the mean results for feature

selection by EPE for the NB learner for between about 31 000 and 35 000 features

appear to have been dragged down by some particularly bad ‘worst-case’ results; these

results may not be indicative of generally poor performance of EPE for NB on very

large feature sets.
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Figure 6.1: Mean accuracy for 10 runs with EPE metric and random selection.
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6.3 EPE and Frequency-Based Cutoff

Figure 6.2 displays the mean accuracies for the EPE and FBC filters. When imple-

mented using the ME learner, feature sets selected using EPE have a clear advantage.

With the NB classifier, the results are somewhat less conclusive, with FBC sometimes

performing better than EPE and sometimes not. It may be that FBC is particularly

well-suited to the NB learner because, in different ways, they both ignore any possible

interactions between the features.

However, EPE is still reasonably effective in the NB setting; it seems that con-

sidering interactions between features in our feature selection process can still be an

effective strategy, even when the learner does not attempt to model these interactions

directly. It is also worth noting that the best results of EPE are usually much better than

the best results for FBC, as illustrated by Figure 6.3. This suggests that a more exten-

sive search of the possible feature subsets with the EPE metric would significantly

outperform FBC, even in combination with the NB learner.

Another occurrence worth noting is the drastic improvement in FBC results with

the NB learner between 33 000 and 35 000 features. It seems that for the NB learner,

discarding the least common 2000 or so features is a particularly effective strategy.

This has interesting implications for the ideal size of training set; if including very

uncommon features is a significant drawback, then perhaps using a small training set

for feature selection will lead to an increase in accuracy as well as speed. This will be

considered further in Section 6.9.
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Figure 6.2: Mean accuracy for 10 runs with EPE and FBC metrics.
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6.4 EPE and Naive Mutual Information
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Figure 6.4: Mean accuracy for 10 runs with EPE and NMI metrics.

Figure 6.4 gives the mean accuracies for feature sets obtained using the EPE and

NMI metrics. EPE clearly outperforms NMI for more than about 5000 features with

the ME learner, and about 8000 features with the NB learner. Feature selection by EPE

results in a steady rise in accuracy as the subset size increases, whereas the accuracy

arising from NMI tends to remain static or actually decline. This is a very important

result; it demonstrates that EPE can significantly outperform the very popular feature

selection technique of NMI, despite the fact that NMI – being a hierarchical metric –

can be optimised exactly, whereas with EPE we are forced to rely on a randomised

search which in general will not attain the optimal possible EPE values.

In fact, for more than about 10 000 features NMI does worse than random selection.

This may be because NMI positively encourages redundant features. Feature functions

which provide virtually the same information as ones already in the feature subset will

nevertheless be favoured by NMI, as long as they have a high mutual information with

the class variable.
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The performance of the NMI metric combined with the NB learner for small sets

of up to 3500 features is particularly good, being unequalled by EPE until it reaches

approximately 15 000 features. With the ME learner, NMI has a less dramatic but still

noticeable advantage for sets of less than about 5000 features. However, it should be

noted that there is significant variation in the results, illustrated by Figure 6.5.

Nevertheless, it seems that NMI generally has a slight advantage over EPE for

selection of small feature sets, particularly in combination with the NB classifier. We

hypothesise that the generally poorer performance of EPE with small feature sets may

be due to overtraining. As with FBC, the advantage of NMI for small feature sets

with the NB learner may be particularly strong because both NMI and NB ignore

any possible interactions between features; NMI selects features which are ‘good in

isolation,’ so it seems reasonable that the best such features are particularly well suited

to an NB model.
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Figure 6.5 gives the minimum and maximum accuracies over ten runs for the NB

learner. (Results for the ME learner were very consistent, with no substantial depar-

tures from the mean.) The much larger variation in results for EPE is unsurprising, as

feature selection by NMI was completely deterministic; the only scope for variation

arose from the different splits between training and test data. Beyond about 13 000

features, the worst results of EPE were still an improvement over the best ones of

NMI.
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6.5 EPE and the Koller-Sahami Metric
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Figure 6.6: Mean accuracy for 10 runs with EPE and KS metrics.

Figure 6.6 compares mean results for the EPE and KS metrics. When carrying

out accelerated forward selection, the KS evaluation function reached its optimal value

for feature sets as small as 15 000 features and always reached it before attaining 32

000 features. The feature selection process was halted when the KS metric reached

its optimal value; the additional points for the KS metric denote these final feature

sets. The first of these terminations was at 15050 features; six occurred at or before 24

850 features; and the maximum size attained was 31 150. Table 6.1 gives the subset

sizes at which they occurred, together with the accuracy of the maximum-entropy and

naive-bayes learners on the final subsets.

As a result of the early halts to feature selection, the mean figures for the KS metric

used to produce Figure 6.6 were over fewer and fewer feature sets as the number of

features increased. This helps account for the rather erratic results for KS with the NB

learner and large feature sets.

At first glance, the results of EPE and KS with the ME learner are virtually indis-



6.5. EPE and the Koller-Sahami Metric 119

Size of Final Subset Maximum-Entropy Naive-Bayes

15050 81.90 39.10

20650 83.52 41.24

21350 83.24 41.94

22050 83.15 42.75

22400 83.35 49.91

24850 83.84 43.71

26600 83.76 54.76

28000 84.32 50.64

29050 84.48 62.34

31150 84.59 56.48

Table 6.1: Final subsets for KS with large training set

tinguishable, and KS is noticeably better for the NB learner. However, the results for

KS with more than 25 000 or so features should be treated with considerable caution,

as they are the averages of four runs or fewer and each run contains a significant el-

ement of randomness. In short, the apparently superior performance of KS with NB

for large feature sets may be a coincidence. This is illustrated by Figures 6.7 and 6.8,

which give the minimum and maximum accuracies over ten runs for the two evaluation

methods.1 Even with this note of caution, though, it appears that the KS metric gives

rise to slightly higher accuracies on the NB learner.

However, the KS metric suffers from a very damaging drawback in comparison

to EPE. KS tends to reach an ‘optimal’ value of zero for comparatively small feature

sets, which are by no means optimal with respect to their performance on held-out test

data. It may be possible to obtain considerable improvement by adding more features,

particularly if a KS score of zero is reached for a relatively small feature set. Indeed,

a feature subset optimal with respect to KS is not necessarily the best subset of its

size; better results for a given subset size were sometimes obtained by EPE. This result

clearly demonstrates an important general advantage of EPE over the KS metric.

1The ranges have been reduced slightly in Figure 6.7 so that the results for more than 5000 features
can be clearly seen.
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Recall that the KS metric seeks to minimise the expected Kullback-Liebler di-

vergence from the partition-conditional distribution arising from the pool of available

features to the one from our chosen feature subset.2 In practice, a feature set with zero

divergence (in terms of the KS metric) will in general be less than optimal in terms of

its performance on held-out test data. In contrast, EPE can be thought of as having the

uniform distribution as its reference point. It seems that the objective of EPE, which is

both more general and more difficult to attain, gives rise to a more reliable method of

feature selection. It appears that the concerns raised in Chapters 3 and 4 about the pool

of available features not being a sufficiently general reference point are well justified

in this setting.

2The pool of available features and the set of all possible features may be very different. In these
experiments for instance, we have carried out a ‘pre-selection’ of 35 000 features from a set of over 12
million possible ones.
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Figure 6.8: EPE and KS: Min/max NB accuracy for 10 runs.



122 Chapter 6. Part-of-Speech Tagging: Accuracy on Test Data

6.6 EPE and the Naive-Bayes Wrapper
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Figure 6.9: Mean EPE/NB accuracy for 10 runs with large training set.

Recall that the EPE and NB metrics were used with both small and large training

sets; the respective mean results are given in Tables 6.9 and 6.10. It can immediately

be seen that for both sizes of training set, EPE performs better in combination with

the ME classifier, whereas the the NB wrapper outperforms EPE in selecting features

for the NB classifier. It is not particularly surprising that NB outperforms EPE with

the NB learner, since accuracy of an NB learner on held-out test data is precisely the

criterion that the NB wrapper uses for feature selection; in a sense, the NB wrapper is

optimised for such a task.

Much more interesting is the fact that the advantage of the NB wrapper does not

carry over into the ME setting. It is our hypothesis that the optimisation of the NB

wrapper for its own learner comes at the expense of comparatively poor performance

on other learners. This may be particularly pronounced with ME and NB classifiers

because the former takes account of possible dependencies between features, while the

latter does not. It seems plausible that the two model architectures require qualitatively
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Figure 6.10: Mean EPE/NB accuracy for 10 runs with small training set.

different feature sets in order to attain good performance: NB requires features which

are ‘good in isolation,’ whereas ME can better exploit relationships between features.

In short, it appears that ‘like should select for like.’ This hypothesis is supported

by the comparisons of EPE with the ME wrapper and of the two wrapper methods with

each other, as discussed in Sections 6.7 and 6.8.
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6.7 EPE and the Maximum-Entropy Wrapper

In Figure 6.11 we present mean results for EPE and the ME wrapper. Because of the

comparative slowness of the ME wrapper, it was used for feature selection only with

small training sets. The two metrics gave rise to very similar results on both the ME

and NB learners. Little additional commentary is needed at this point; however, it

should be noted that the EPE metric was very much faster in this setting.
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Figure 6.11: Mean EPE/ME accuracy for 10 runs with small training set.
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6.8 Comparison of ME and NB Wrappers

Figure 6.12 gives mean results for the ME and NB wrappers. We can immediately

see that the ME wrapper outperforms the NB wrapper when assessed using the ME

learner; conversely, the NB wrapper performs better in assessment with the NB learner.

This supports the hypothesis that ‘like should select for like,’ which was introduced in

Section 6.6.
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Figure 6.12: Mean ME/NB accuracy for 10 runs with small training set.
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6.9 Aside – Search Parameters and Training Sets

It is interesting to compare the results obtained on equivalent subset sizes with the

small and large training sets; they are shown in Figures 6.13 and 6.14 for ME and

NB assessment, respectively. The accuracy obtained with the small training set is

dramatically greater in the NB case. At their final subset size of 7000, feature sets

obtained using the small training sets had accuracies more than 30% greater than those

of their counterparts obtained with large training sets. The difference in accuracy under

ME assessment was less marked but still clearly noticeable.

It is not immediately obvious whether the faster improvement in performance with

the small training set was due to the training set itself, the different search parameters,

or a combination of both. (Recall that the same test sets were used for both sizes

of training set.) We therefore investigated the effect of different search parameters

with the same training set. This was done by repeating feature selection with the

small training sets for the EPE metric, with the number of features added at each step

increased from 70 to 350. The exact parameters used are given in Table 6.2; as usual,

we carried out tenfold cross-validation. The results are given in Figure 6.15.

Parameter Value

Size of block to add at each step 350

Number of blocks assessed at each step 10

Number of steps 20

Size of final feature set 7000

Frequency of output 2

Total outputs 10

Metrics used EPE

Table 6.2: Large-Block Parameters for Search Strategy Comparison

It is interesting, and perhaps surprising, to see that the block size has very little ef-

fect on accuracy. It would seem that the more rapid improvement in performance with

small training sets was primarily due to the properties of the training sets themselves.

The clearest difference between the small and large training sets is that while very
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Figure 6.13: NB results for small and large training sets over 10 runs.
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Figure 6.15: Effect of block size on accelerated forward selection by EPE.

common features are likely to be contained in both, the large training sets will contain

many more uncommon features. In using a small training set we are favouring common

features; effectively, we are carrying out a form of ‘pre-selection’ by frequency-based

cutoff (FBC).

As Section 6.3 notes, FBC is a reasonably good feature selection metric, particu-

larly for the NB learner. It therefore seems plausible that combining FBC and EPE by

reducing the size of the training set leads to a more rapid improvement in results than

EPE alone. However, the larger training sets (and correspondingly larger feature sets)

do allow higher maximum accuracies to be obtained; for instance, the accuracy of the

ME model levels off at about 85% for large training sets, compared to about 70% for

small ones.

In summary, it seems that uncommon features should be handled with care, but can

be useful if chosen well. It would be interesting to experiment with more sophisticated

ways of combining FBC and EPE, or indeed FBC and other feature selection metrics.

For instance, one could start with the 2000 or so most common features out of 35 000

and select additional features by EPE. Investigation of such techniques is a possible
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topic for future research.

6.10 Summary

In this section we have investigated the classification accuracy arising from feature

sets derived with the new EPE metric; and existing metrics including FBC, NMI, and

KS filters and ME and NB wrappers. Accuracy was assessed by incorporating the

feature sets into NB and ME classifiers, and evaluating the performance of the models

on test data. Tenfold cross-validation was carried out in each case, and the results

presented are average values for ten different runs of accelerated forward selection,

with different splits between training and test set. The behaviour of the metrics was

consistent in each repetition of accelerated forward selection, and relative differences

between the metrics are clearly visible from the mean accuracies. Hence, our results

can be regarded as a very reliable illustration of metric behaviour.

The primary goal of the experiments was to investigate the properties of EPE, but

the behaviour of other metrics was also examined. The NB wrapper was found to be

superior to EPE in selecting features for the NB classifier, but not for the ME model.

This result suggested a more general hypothesis: That a wrapper approach to feature

selection produces feature sets which are optimised for use with the learner which

provided the wrapper metric, but this good performance will not necessarily carry over

to other model architectures. This conjecture that ‘like should select for like’ was

supported by a direct comparison of the ME and NB metrics. As a slight diversion, the

effect of varying the parameters for accelerated forward selection was also investigated.

It was found that the size of ‘step’ was not crucial, but that varying the size of training

set could significantly alter the results.

The new EPE metric performs very well in comparison with the other measures

examined. Broadly speaking, it is faster than ME; more reliable than KS (which, unlike

EPE, suffers from premature attainment of its optimal value); leads to greater accuracy

than FBC or NMI (except for very small feature sets); and produced greater accuracy

than NB on the ME learner. The advantages of EPE were clearly visible in each case.





Chapter 7

Part-of-Speech Tagging: Assessment

by Conditional-Entropy Metrics

7.1 Introduction

In this chapter, we investigate the behaviour in the part-of-speech tagging domain of

the new conditional-entropy metrics: Expected Partition Entropy (EPE) and its exten-

sion Expected Covering Entropy (ECE). Recall that EPE is sometimes called zeroth-

order entropy, while the ECEs are referred to as entropies of first order and higher.

The results in this chapter do not entail using the conditional-entropy metrics to select

new feature sets; rather, we compute the EPE and ECE values for existing feature sets

selected using EPE and other metrics.

We concentrate on feature subsets obtained by accelerated forward selection using

the NMI, EPE, and NB metrics and the large training sets. These three metrics were

chosen in order provide a reasonably representative sample of the measures used: NMI

is a hierarchical metric, EPE is a non-hierarchical information-based filter, and NB is

a wrapper. We begin by briefly examining the properties of ECE in our experimental

setting, and then present results for the entropy-based metrics in graphical form. Tables

containing more complete results, including those for other metrics and training sets,

are given in Appendix B.

It was our conjecture that reducing the entropy of our feature set will lead to better
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accuracy on held-out test data; and conversely, that feature sets giving rise to better

accuracy have low entropy. The first part of the conjecture is strongly supported by

the success of EPE in comparison to other metrics for accelerated forward selection,

as discussed in Chapter 6. We now examine the second part: That regardless of how

they were obtained, feature sets giving rise to more accurate models will have lower

entropy.

Assessing the entropy of feature sets which had already been obtained required

significantly fewer computational resources than selecting new feature sets. Evaluation

by entropy thus allowed the use of the ECE family of metrics.

Aside – Evaluation by Entropy for Other Metrics: Entropies were also computed

for feature sets obtained using the other metrics: FBC and KS for large training sets,

and NB, EPE and ME for small training sets. Complete tables of entropy results are

contained in Appendix B. The results for other metrics were essentially consistent

with the conclusions drawn below; in this section we have concentrated on only three

metrics for the sake of clarity.

7.2 Properties of ECE

The new Expected Covering Entropy (ECE) metrics are considerably more difficult to

compute than EPE.1 The basic reason is that ECE requires us to consider the Hamming

distances between all distinct pairs of vectors of feature values which appear in the

training set. Using the terminology of Chapter 4, we will sometimes refer to a vector

of feature values as a name.

Recall that ECE requires us to specify a maximum Hamming distance k. Each

region is defined by a vector of feature values y. The region Rk
�
y � consists of exactly

the data points whose names are at a Hamming distance from y of less than or equal to

k. The regions form a covering of the data space, in that each data point is in at least

one region and may be in more than one. The regions of ECE play the same role as the

partitions of EPE. If k � 0, then ECE is equivalent to EPE. Therefore, we sometimes

1See Chapter 3 for formal definitions of these metrics.
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refer to EPE as the zeroth-order entropy of a feature subset; ECE with k � 1 is the

first-order entropy, and so on.

Example 7.1: Suppose that we have a set of binary features:

F ��� f1
�
x � � f2

�
x � � f3

�
x � � f4

�
x ���

Each of the fi maps the set of possible data points X to the binary set
�
0 � 1 � . The

feature set F can be thought of as a vector-valued function:

F : X ��
�
0 � 1 � 4

So, for two particular data points x1 and x2 we might have names y1 � F
�
x1 � � 1001

and y2 � F
�
x2 � � 0101. Recall that the Hamming distance δ between two bitvectors

is defined as the number of places in which they differ; hence, δ
�
y1 � y2 � � 2. If k � 2

then x1 � Rk
�
y2 � and x2 � Rk

�
y2 � , because δ

�
F

�
x1 � F

�
x2 ��� � k.

Conversely, x1 is not in R1
�
y2 � and x2 is not in R1

�
y1 � . However, if we had a

third data point x3 such that y3 � F
�
x3 � � 1101, then x1 and x2 would be contained in

R1
�
y3 � because δ

�
y1 � y3 � � δ

�
y2 � y3 � � 1. Notice that if y1 � y2 then δ

�
y1 � y2 � � 0. So

by definition, every data point x is contained in Rk
�
F

�
x ��� for any value of k.

For a more concrete example of how this works in our chosen setting, suppose that

the indicators for our four features are the substrings 1un, re, bar, and ing9, where as

usual 1 and 9 respectively denote the beginning and end of a word. Let the data points

x1 and x2 be the words undoing and redoing. As before, we have y1 � F
�
x1 � �

1001 and y2 � F
�
x2 � � 0101, with δ

�
y1 � y2 � � 2. The maximum Hamming distance k

can be thought of as the greatest allowable difference between two points which are

considered to be ‘close together’ with respect to our chosen feature set. If k � 2, then

undoing and redoing are ‘similar enough’ to be regarded as neighbours; otherwise

they are not.
�

For a set of N distinct names, finding the ECE requires the computation of N2 	 N

Hamming distances. The number of distinct names can itself be very large; if we

have a set of n features, each taking r values, then N is at most rn. The difficulty of

evaluating the ECE therefore grows very quickly with the size of the feature set. It

proved impractical to carry out feature selection by ECE for sets of thousands or tens
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of thousands of features. Instead, we investigate its behaviour on feature sets obtained

using other metrics.

We can in general expect the ECE of a given feature set to be greater than its EPE,

as the following example illustrates:

Example 7.2: Suppose that our feature set contains the following features: [foo],

[1g], [in], [n9], [gr]. The data points green and grin then have names 01011 and

01111, respectively. For the purposes of this example, we simplify things by assuming

that the two data points have the same empirical probability p0, green is the only data

point with the name 01011, and grin is the only point named 01111.

The Hamming distance between the names is 1; green and grin are thus consid-

ered ‘near neighbours’ for the purposes of first-order entropy. However, the distribu-

tions of part-of-speech tags for green and grin will be very different. Suppose that

we have Pr
�����	�����

�����	� � � 0 � 95, Pr
���������
�

���	�� � � � 0 � 05, Pr
�����	���

� ������� � � 0 � 6, and

Pr
�����	���

���	 ��� � � 0 � 4.

Recall that the entropy of a probability distribution p
�
u � is defined as:

H
�
p � � 	 ∑

u
p
�
u � log p

�
u �

Given the simplifying assumptions above, entropy of the partition with name 01011

is:

	
�
0 � 6log0 � 6 � 0 � 4log0 � 4 � � 0 � 466

to 3 decimal places, where logs are taken to base e. Similarly, the partition with

name 01111 has an entropy of 0.199. The contribution of these two partitions to the

zeroth-order entropy or EPE is thus:

p0
�
0 � 466 � 0 � 199 � � 0 � 665 � p0

Now let us consider the first-order entropy. As usual, we denote the kth-order

region of a name y by Rk
�
y � . Because the Hamming distance between 01011 and

01111 is 1, 01011 falls into R1
�
01111 � and 01111 is contained in R1

�
01011 � . For

simplicity, assume that R1
�
01111 � and R1

�
01011 � contain only the data points green

and grin.2

2In general the two regions could well contain different sets of points.
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A point in either of the two regions then has the tag NOUN with probability 0.225,

ADJ with probability 0.475, and VERB with probability 0.3. The entropy of the region

R1
�
01111 � is therefore:

	
�
0 � 225log0 � 225 � 0 � 475log0 � 475 � 0 � 3log0 � 3 � � 1 � 050

By symmetry, the region R1
�
01011 � also has an entropy of 1.050. The contribution

of the two regions to the first-order entropy is therefore:

p0
�
1 � 050 � 1 � 050 � � 2 � 100 � p0

So in regarding these two points as equivalent, we have increased our uncertainty.

More specifically, if we do not permit ourselves to rely on the single feature [in] to

distinguish these two data points, our uncertainty as to the labels of green and grin

goes up significantly.
�

In order to investigate ECE, we concentrate on feature sets derived using the NMI,

NB and EPE metrics for large training sets. We present the first-, second-, and third-

order entropy for each of our chosen feature sets; for comparison, we also include

the zeroth-order entropy or EPE. Computing the ECE on large training sets containing

some 800 000 words proved impractical; instead, we found the ECE for the first 5000

words of each training set. Even this simplified measure produced interesting results,

as we discuss below.
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7.3 Results

ECE was used to assess the results obtained by the NMI and EPE filters and NB wrap-

per in combination with large training sets. For each combination of metric and train-

ing set size there were 20 different feature subset sizes and 10 different runs of acceler-

ated forward selection, for a total of 200 outputs. For each metric ECE was calculated

on the first 5000 data points in each training set for all 200 outputs, and the mean

values were found for each subset size. The zeroth- through third-order entropies of

feature sets obtained using NB and EPE are displayed in Figures 7.1 and 7.2; results

for NMI are in Figure 7.3, with the third-order entropies omitted as they were virtually

identical to the second-order ones. Entropies of the same order for the three different

metrics are compared in Figures 7.4, 7.5, and 7.6.

All entropies use logarithms taken to base e. Note that the graphs use base-10 log

scales to display the entropy, as entropies initially declined quite rapidly and then very

slowly as the size of feature set increased.
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Figure 7.1: Entropies of order 0 through 3 for NB selection.
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Figure 7.2: Entropies of order 0 through 3 for EPE selection.
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Figure 7.3: Entropies of order 0 through 2 for NMI selection.

0.001

0.01

0.1

1

0 5000 10000 15000 20000 25000 30000 35000

E
nt

ro
py

Number of Features

EPE, NMI, and NB:  Zeroth-Order Entropies

EPE filter NMI filter NB wrapper

Figure 7.4: Zeroth-order entropies for EPE, NMI, and NB.
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Figure 7.5: First-order entropies for EPE, NMI, and NB.
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Figure 7.6: Second-order entropies for EPE, NMI, and NB.
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7.4 Discussion

7.4.1 Interpretation of Subset Entropy

Entropy is fundamentally a measure of uncertainty. The greater the entropy of a proba-

bility distribution over a set of events, the less certain we are of which event will occur.

This is the case for the entropies of region-conditional distributions of labels; hence,

the entropy metrics can be seen as the expected uncertainty of labels given our feature

set. (So for our purposes, a low entropy metric is desirable.)

Ideally, we would like each name to be strongly associated with a particular label.3

Strong association of distinct names with labels is equivalent to having a low zeroth-

order entropy. For entropies of first order, we wish to keep a strong association of

names and labels even if one feature value is changed. For second order, we wish the

association to be kept even if two feature values change, and so on.

Recall that, as discussed in Chapter 4, the names can be seen as encoding our data

points. From the perspective of error-correcting output coding, we would like our code

names to be widely spaced with respect to Hamming distance. Then, even if some

digits in the code name are changed, we still have a good change of being able to

decode the name correctly. In the feature selection setting, attaining a wide spacing of

names means that our feature set is robust to misleading values taken by one or more

features. The order of entropy can thus be thought of as a maximum permitted error

rate.

With this theoretical motivation in mind, we can now draw some conclusions from

the results in Section 7.3. In this particular setting the zeroth-order entropy continues

to decline as features are added but does not approach zero; instead it generally stays

above about 0.004. The entropies of first order and higher remain above about 0.1;

they attain this lower bound quite rapidly in the case of selection by EPE, somewhat

more slowly for NB, and not at all for NMI.

It is not surprising that the entropies stay well above zero. As we have noted,

there is an irreducible element of uncertainty in the labels of data points with a given

name; this might be true in any event, but it will certainly be the case in our chosen

3Recall that in this context, a ‘name’ is shorthand for a vector of feature values.
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experimental setting. Because our features do not take account of context, and many

words can have more than one label, a degree of uncertainty is inevitable. Entropy

measures this uncertainty, and so there is a lower bound on the entropy-based metrics.

It is interesting that the first, second, and third-order entropies all attain the same

lower bound when selection is carried out by EPE or NB. If entropies of more than one

order have the same value, then increasing the permitted error rate – from one feature

to two, or even from one to three – does not result in additional uncertainty as to the

label. This suggests that, in the cases of forward selection by EPE and NB, we have

also achieved the objective of ECE by ensuring that the code names are widely spaced.

The situation with the NMI metric is very different. In this case, increasing the

permitted error rate from 0 to 1 results in a dramatic increase in label uncertainty, as

does increasing it from 1 to 2. Increasing it from 2 to 3 has no significant effect; this

may simply indicate that things are so bad with a permitted error rate of 2 that the

uncertainty is unlikely to become any worse.

In summary, low values of the ECE metrics are associated with good performance

with respect to the EPE and NB metrics. As we shall see, low ECE is also associated

with good performance of the ME learner.

7.4.2 Relation to Accuracy of ME learner

The results in Figures 7.1 through 7.6 indicate a significant relationship between high

accuracy on held-out test data and low entropy. The correlation appears stronger for

results on the ME learner than for those with the NB classifier. This is unsurprising,

as the entropy-based measures – and in particular ECE – attempt to explicitly consider

interactions between features. The ME classifier is much more capable of modelling

such interactions than its NB counterpart. For ease of reference, we reproduce the ME

accuracies for NMI, EPE, and NB in Figure 7.7.

The first- and second-order entropies appear to be particularly good indicators of

ME performance, in that they ‘level off’ at about the same point that ME performance

does. It is particuarly interesting to see that in the case of NMI, the entropies start off

better than those for EPE and NB but are rapidly overtaken; and that the first-order

entropy of feature sets selected by NMI improves slightly between about 32 000 and
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Figure 7.7: ME accuracies for EPE, NMI, and NB.

35 000 features, just as the ME accuracy does.

7.5 Summary

In this chapter, the behaviour of the conditional-entropy EPE and ECE on feature sets

obtained by accelerated forward selection using the EPE, NMI, and NB metrics was in-

vestigated. Mean results were found for ten different repetitions of accelerated forward

selection, in order to account for the element of randomness in our search strategy. A

strong correlation was found between low conditional entropy and good performance

on held-out test data; this correlation was particularly strong in the case of implemen-

tation with the ME classifier.

The results in this chapter show that the values of the conditional-entropy metrics

on a given feature set are a good indicator of the feature set’s performance on test data,

regardless of how that feature set was initially obtained. This strongly supports the

ideas of EPE and ECE, and also provides some insight into how existing wrapper and
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filter methods optimise a feature set. In particular, it seems that any successful feature

selection metric seeks low partition-conditional entropies as dictated by EPE. Further-

more, the convergence of first-, second-, and third-order ECEs for feature sets which

perform well in classification supports the theoretical ideas behind ECE, suggesting

that achieving widely spaced vectors of feature values is a valid and important goal.





Chapter 8

Document Classification Experiments

8.1 Introduction

In this chapter, we present experiments with feature-based probabilistic models for

classification of news articles from the Reuters corpus [Reu]. The task considered

provides a different perspective on feature selection from the experiments with part-

of-speech (POS) tagging discussed in Chapters 5 and 6, and allows further comparison

with the work of Koller and Sahami (KS). [KS96] The KS metric is discussed further in

Section 3.3.4, and it is closely related to the new EPE metric introduced in Chapter 4.

Hence, it is interesting to evaluate EPE and compare its performance with that of the

KS metric in the document classification setting.

In particular, KS report that feature selection for document classification can give

rise to a feature-based probabilistic model (FBPM) which classifies unseen test data

with greater accuracy than one which simply uses the pool of all available features (also

referred to as the maximal feature set). These increases in accuracy stand in contrast

to the POS-tagging experiments discussed in earlier chapters, in which the maximal

feature set gave rise to greater accuracy than any of the subsets resulting from feature

selection. The POS-tagging experiments were still very useful for demonstrating the

differences between feature selection metrics, and the slight reduction in accuracy with

the smaller feature sets was offset by gains in speed and efficiency. Nevertheless,

it is a general objective of feature selection to create probabilistic models which are

145
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more accurate, as well as simpler, than those which employ the set of all available

features. In addition to the general interest of the comparison between EPE and KS,

the experiments described in this chapter were intended to demonstrate an increase in

classification accuracy obtained using EPE.

In practice, it became apparent that both EPE and the KS metric suffer from limi-

tations in the document-classification setting. If either metric is used to select subsets

of more than about 40 features (from a maximal feature set of over 2000), afterwards

they prove to be equivalent to selecting features at random.

In response to the problems faced by the EPE and KS metrics, we make use of

the extension of EPE to extended covering entropy (ECE) defined in Section 4.5. The

definition of ECE was motivated by the concept of encoding of data points by vectors

of feature values, and in particular by the idea of spacing between vectors, as discussed

in Section 4.4.3. ECE proves far more robust in this setting than EPE or the KS metric,

providing a meaningful criterion for the selection of arbitrarily large subsets of the

maximal feature set.

8.2 Data Points and Features

The experiments in this chapter are based on classification of news articles from the

Reuters corpus. [Reu] Each article in the corpus consists of a main body of text accom-

panied by a number of tags, including zero or more topics. Other tags such as ‘places’

and ‘exchanges’ were ignored; for the purposes of these experiments we focus solely

on the body text (which we refer to as a document) and the topic.

Two separate three-way classification problems were considered. In the first, the

training data was derived from articles with the topics coffee, iron-steel, and

livestock, while in the second the topics were gold, reserves, and gross domestic

product. Only articles with a single relevant topic were included in the training data:

An article with the topics coffee and tea would be included in the training set for the

first task, as would one with the single topic coffee, but one with the topics coffee

and livestock would not. There were no articles relevant to both classification tasks

– for instance, no news stories in the corpus had both coffee and gold as their topics.
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Each body/topic pair constituted one data point. In the terminology of Chapter 2,

the body text describes the predicate while the topic is its label, and we define binary

features with the presence of words in the body text as their indicators. For example,

let the feature function with the word stock as its indicator be denoted by [stock].

Suppose that a document is denoted by x. We then have:

���������	��� �
x � � � 1 if document x contains the word ‘stock’

0 otherwise

Features for other words are defined similarly. As discussed in Chapter 2, a given

set of features can be incorporated into an FBPM, which can in turn be used to attempt

to predict the labels of previously unseen data points. In selecting the words which

would define the initial pool of features available for feature selection (also referred to

as the maximal feature set), the approach of KS was followed as closely as possible.

Words for the maximal feature set were obtained as follows:


 A ‘word’ was defined as a string of two or more letters delimited by non-word

characters. This had the effect of breaking hyphenated pairs of words into their

two components, and rendering a possessive such as ‘London’s’ equivalent to

‘London.’


 Case was ignored: ‘Coffee’ and ‘coffee’ were regarded as equivalent.


 Words which occurred fewer than three times in the set of relevant articles were

ignored. This approach was taken by KS; in their work, there is some ambigu-

ity as to whether a word included in the feature set must occur in three different

articles, or could occur (for instance) three times in one article but not in any oth-

ers. [KS96] The latter interpretation was chosen for the experiments described

in this chapter – this would allow the inclusion of words which, say, occurred in

only two documents but were still of some general use for classification.

Clearly, a number of somewhat arbitrary decisions had to be made in order to de-

fine a suitable maximal feature set. Various permutations of the above choices were

considered in an attempt to reproduce the feature set used by KS. Unfortunately, none

of them resulted in feature sets of the same size as those reported by KS; all the sets
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obtained were significantly larger or smaller. It is unclear why this may have occurred,

unless KS used a very large test set and the features in their pool were derived only

from the training set – they do not give any details of the training/test split employed.

It is somewhat disappointing that the maximal feature sets used by KS could not be

reproduced exactly. Nevertheless, the setting employed in this chapter is very similar

to the one used by KS, and the experiments described in Section 8.3 below are a valid

investigation of the KS and EPE metrics in their own right.

8.3 Feature Selection Procedure

8.3.1 Training and Test Sets

The files of news articles which made up the Reuters corpus were concatenated into a

single file. Articles whose topic was empty or not relevant to either of the classification

tasks were discarded; for relevant articles, the features which satisfied the above defini-

tion were recorded, together with their topics. This resulted in sets of 313 labelled data

points for the first classification task (coffee/iron-steel/livestock), and 344 for

the second (gold/reserves/gdp). The total numbers of features present were 2368

and 2435 for the first and second tasks, respectively.

These sets of data points were split into ten subsets of roughly equal size, where

the first subset contained the first, eleventh, twenty-first. . . from the initial file, and so

on. Tenfold cross-validation was carried out, with one of the ten subsets held out as

a test set and the other nine making up the training data. The pool of features used

for feature selection was derived solely from the training set; therefore, the maximal

feature set varied slightly with the training/test split.

8.3.2 Search Strategy

In order to select features, we used the method of accelerated forward selection pre-

sented in Section 5.5.2; at each step, a number of blocks of features were considered

for addition to our existing subset, and the block which gave rise to the best value of

our chosen feature selection metric was adopted.
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In their 1996 experiments, KS reported that feature selection using their metric

was computationally intractable, and instead employed an approximation to it. [KS96]

However, with modern facilities it has proved feasible to compute both the EPE and

KS metrics exactly. (In fact KS may have been too pessimistic, even given their lim-

itations on available computing power; see Section 8.4 below for further discussion.)

As detailed in Chapter 6, good results were obtained in part-of-speech tagging exper-

iments by using the EPE and KS metrics with the technique of accelerated forward

selection; the search attained optimal values of the KS metric, and near-optimal values

of EPE.

In the document-classification experiments, the EPE and KS metrics were again

computed exactly. Accelerated forward selection was carried out with the parameters

given in Table 8.1. KS used backward elimination in their 1996 experiments. [KS96]

However, as discussed in Chapter 3, this was motivated by an erroneous belief that

their metric required the use of backward elimination. In general there is no inherent

reason to prefer one method over the other; but in this setting forward selection proved

to be far more efficient, because the metrics reached their optimal values for very small

feature subsets. Indeed, for reasons discussed in Section 8.4, it can be shown that the

EPE and KS metrics do not provide meaningful criteria for backward elimination in

the setting of this chapter.

Parameter Value

Blocks evaluated at each step 1000

Features in each block 5

Total steps 400

Table 8.1: Parameters for initial accelerated forward selection.

The parameters in Table 8.1 would have resulted in a final subset of 2000 features,

chosen from the maximal subset of approximately 2400 features, although in practice

feature selection was terminated earlier when the metrics reached their optimal value.

Notice that at each step, a total of 5000 features were considered for inclusion in the

model, inevitably with some repetition. Thus, the random element in selection was

highly unlikely to cause a particularly good feature to be ‘missed out,’ particularly over
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the course of 400 steps. Such optimism proved more than justified from the perspective

of optimising EPE and the KS metric.

8.4 Behaviour of the EPE and KS Metrics

8.4.1 Optimal Metric Values

Both the EPE and KS metrics rapidly attained their optimal value of zero in this setting.

For every training/test split and for both metrics, a zero value was reached at between

35 and 45 features chosen from the maximal set of about 2400. In other words, the

metrics were minimised at between 7 and 9 steps of accelerated feature selection with

the parameters given in Table 8.1.

This rapid convergence was not particularly surprising for either EPE or KS. Its

implications for selection of larger feature sets will be discussed in Section 8.4.4. First,

we will briefly examine why the metrics attained their optimal value so quickly.

It should be noted that in the cases of both EPE and KS, the value of the metric

is dependent on our training set. Both the metrics are defined with reference to prob-

ability distributions over the data; but in practice we do not have access to the ‘true’

distribution, and must instead approximate it using a set of training data. These ap-

proximate distributions are discussed further in Section 3.3.1. Therefore, the feature

subsets which attained zero values of EPE or KS are only ‘optimal’ with respect to the

available training data; given a different training set, the same feature subsets might

well be assigned different metric values.

8.4.2 Minimisation of EPE

Recall that EPE can be viewed as measuring the entropies of partition-conditional

distributions (PCDs). Using the notation introducted in Chapter 2, let data points be

denoted by x, and their vectors of feature values by F
�
x � , with respect to a given feature

set F . The PCD for a vector of feature values y is defined as the distribution over labels

of the data points x such that F
�
x � � y. (For the sake of brevity, we sometimes refer to

a vector of feature values as a name.) In assessing feature subsets by EPE, we seek to
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minimize the expected value of the entropies of the PCDs.1

The minimum possible value for entropy is zero, and this value is attained by a

distribution which assigns the probability 1 to a single point and 0 to all others. (See

Cover and Thomas for further details [CT91].) In the context of feature selection,

the PCD for a given name y will have zero entropy exactly when the data points x

satisfying F
�
x � � y all share the same label.2 In particular, if only one data point x

satisfies F
�
x � � y – that is, x is the only data point with the name y – then the PCD for

y will automatically have zero entropy.

Recall that a data point is a predicate/label pair; for instance, a word and its part-

of-speech (POS) tag, or a document and its category. In the POS-tagging setting of

Chapter 3.3.1, we were very likely to encounter data points with the same predicate

and different labels. This was simply because many words have more than one possible

POS tag; for instance, ‘fall’ could be a noun or a verb.

Conversely, in the document-classification setting of this chapter it is likely that

there will be a one-to-one correspondence between names and training data points.

Our feature values are determined by the presence or absence of particular words, and

we are very unlikely to find two documents with different topics which contain exactly

the same set of words. It is plausible that we could find two such documents in a large

training set, particularly as we are excluding features based on very rare words, but

this did not occur in the training data used for these experiments.

Notice that with 35 binary features, we have at most 235 or about 3 � 4 � 1010 possible

names, while the training set only contains about 300 data points. Assigning a different

name to each point in our training set should therefore be quite straightforward; this

will be sufficient for all PCDs to have an entropy of zero, and hence for zero EPE to

be attained. So, it is not surprising that we were easily able to find a set of 35 or 40

features which assigned a unique name to each data point in the training set.

1The definition of EPE is considered in much greater depth in Chapter 4; partition-conditional dis-
tributions are considered in greater detail in Sections 4.3.1 and 8.5.

2In this instance we are only concerned with data points which are assigned non-zero probability by
our approximate distribution p � x � . (Approximate distributions are defined in Section 3.3.1.) The label
of a data point x such that p � x ��� 0 will not affect the PCD for y � F � x � .
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8.4.3 Minimisation of the KS Metric

In this document-classification setting, the situation for the KS metric is very similar

to that for EPE. As we have noted, no two documents in the training set shared exactly

the same set of words. Hence, the maximal feature set assigned a different vector of

feature values to every point in our training set.

Recall that in selecting features with the KS metric, we seek to minimize the ex-

pected value of an information-theoretic divergence (known as Kullback-Liebler or

KL divergence) from the PCDs induced by the maximal feature set to those induced

by our candidate subset. (See Chapter 3 or Koller and Sahami’s 1996 paper for de-

tails [KS96].) Because the maximal set assigns a different name (vector of feature

values) to each training point, zero expected divergence will be reached if our candi-

date feature set also assigns a unique name to each training point. Again, this proved

quite easy to achieve with the training set employed in this chapter.

It is worth noting that, for a very similar task, KS did not report the attainment of

optimal values for their metric. This appears to be because they were not computing

the KS metric exactly, but instead used an approximation to it. The approximation

would not necessarily have revealed whether the KS metric had reached zero. KS

were in a sense too pessimistic; as the results in this chapter demonstrate, even a very

limited search through the space of feature subsets is sufficient for their metric to reach

its optimal value of zero.

8.4.4 Optimal Metric Values and Continued Feature Selection

Attaining the optimal value for our metrics on such small feature sets is undesirable, to

say the least. One would not expect a set of only 35 features to attain good performance

in classifying unseen test data; and indeed, this proves to be the case in our chosen

setting. Furthermore, for reasons we now consider, the EPE and KS metrics are no

better than random selection for choosing additional features once their optimal values

have been attained.

If a given feature set has attained the minimal value of zero for EPE or KS, the

metric value will remain at zero if we add new features to the set. This is essentially
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because our estimate of the probability of a given data point (that is, a predicate/label

pair) is provided by the empirical distribution, and as such is independent of our chosen

feature set. Recall that the empirical distribution p̃
�
x � is defined by p̃

�
x � � c

�
x � � N,

where c
�
x � is the number of times that the data point x occurs in the training set X̃ , and

N is the total number of data points in X̃ . Hence, data points which do not appear in

our training set receive zero probability.3

As discussed in Chapter 4 and Section 8.4.2, a feature set has the effect of par-

titioning the set of possible data points. If each training data point is in a different

partition, then adding more features will not change matters: Each training data point

will still have a partition to itself. As noted above, assigning a different vector of fea-

ture values to each training data point is sufficient to attain zero values of EPE and

the KS metric. In the case of the experiments in this chapter, this is exactly how zero

values were achieved.4

Therefore, if we add any feature to a set with zero EPE, the EPE will remain at

zero; and matters are similar for the KS metric. Intuitively, the criteria set by the EPE

and KS metrics are ‘too easy’ in the document-classification setting of this chapter.

Many feature subsets, of any given size greater than about 35, are optimal with respect

to these two metrics. The ‘optimal’ subsets may well vary widely in their usefulness

for classifying test data, and the metrics provide no guidance whatsoever in choosing

between them. If we are to select feature subsets of a larger size, then a new means of

deciding which features to include in our set is required.

8.5 Expected Covering Entropy: Preliminaries

In response to the limitations of the EPE and KS metrics discussed in Section 8.4, we

select features using the Expected Covering Entropy (ECE) metric introduced in Sec-

3The estimate of probabilities is known as an approximate distribution, and is considered further
in Section 3.3.1. Other approximate distributions are possible; for instance, we could use a smoothed
version of the empirical distribution, with the aim of reducing overfitting to the training data. However, it
is common practice to use the empirical distribution for the sake of simplicity, and this was the approach
taken in this chapter.

4The situation is somewhat more complicated if some partitions contain more than one training data
point; but it can still be shown that adding features to a set with zero EPE will not cause the EPE to
increase, and similarly for the KS metric.
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tion 4.5. Section 8.5.1 briefly reviews the definition of ECE and provides an example

to illustrate its potential advantages in the setting of this chapter. We then record the

parameters used for feature selection using ECE and evaluate the results, in terms of

accuracy of an FBPM on unseen test data and the behaviour of the ECE metric itself.

8.5.1 Background

ECE is based on regarding vectors of feature values as equivalent if they are ‘close

together’ with respect to some appropriate distance measure. In the case of vectors

of binary values such as the ones employed in this chapter, the conventional measure

is Hamming distance; the Hamming distance δ
�
a � b � between two bitvectors a and b

is simply the number of places in which they differ. With non-binary features other

measures, such as the Euclidean distance, could be used instead.

Let us fix a distance k such that two names y1 and y2 are regarded as equivalent

if δ
�
y1 � y2 � � k. The partition corresponding to a given name y is then replaced by a

‘fuzzy partition’ or region, denoted by R � k �y and defined as follows:

R � k �y � �
x : δ

�
y � F

�
x ����� k �

The regions form a covering of the data space; each data point x is in at least one region,

and may be in more than one. We can now define region-conditional distributions or

RCDs in exactly the same way as the partition-conditional distributions discussed in

Sections 4.2 and 8.4.2. The RCD for a region R � k �y is the distribution over labels of

points x such that δ
�
y � F

�
x ��� � k. The Expected Covering Entropy or ECE is defined as

the expectation of the entropies of the RCDs; k is referred to as the order of the ECE.

Notice that if k � 0, ECE is equivalent to EPE.

Example 8.1: Suppose that we have fifty labelled training points corresponding to

Reuters news articles, of which twenty-five have the topic coffee and twenty-five the

topic iron-steel; and suppose that we wish to select a subset of six binary features

from a much larger maximal feature set. Hence, each candidate feature subset gives

rise to at most 26 � 64 distinct vectors of feature values. Now assume that we have two

candidate subsets: F1, which assigns a different vector of feature values to each point
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in the training data; and F2, which satisfies F2
�
x � � 111000 for all the training points x

whose topic is coffee, and F2
�
x � � 000111 for all those with the topic iron-steel.

Both F1 and F2 will have zero EPE with respect to the empirical distribution of our

training data, since knowing the name assigned by either F1 or F2 to any point in the

training set gives us absolute certainty as to its label. However, the ECE of orders 1

and 2 will be zero for F2, and non-zero for F1. In other words, if we ignore the values

of any two features in F2, knowing F2
�
x � is still sufficient to tell us the label of any

point x in the training set; but this is not the case for F1.

Notice that the first three features in F2 are active on points in the training set

exactly when they have the topic coffee, and similarly for the last three and the topic

iron-steel. We can therefore be quite confident that the features in F2 will generalise

to unseen data points. Conversely, many of the features in F1 will be active on both

coffee and iron-steel articles from the training set, and will not necessarily be good

general indicators of a data point’s topic.
�

8.5.2 Choosing the Order of ECE

We now need a means of deciding which order of ECE to use. As discussed in Sec-

tions 4.5 and 8.5, the order is the maximum number of feature values by which two

names can differ if they are to be regarded as equivalent. The higher the order, the more

widely spaced the names must be in order to optimise the ECE and the more ‘fuzzy’

the covering of the data space that is considered. If the order is too low, then the metric

may be too easily minimised – as we have seen with EPE, which is equivalent to ECE

of order zero. On the other hand, if the order is too high then achieving sufficiently

wide spacing may be too difficult, resulting in the rejection of useful feature sets. For

instance, the feature set F2 in the example in Section 8.5.1 would receive the highest

possible (that is, worst) ECE for any order of three or greater.

In carrying out forward selection, we set the order using a scheme which we refer

to as ascending ECE. The idea is to begin with an order of zero; if the ECE of a given

order reaches its optimal value, then we increase the order by one. Notice that if the

ECE metric reaches its optimal value of zero for a given order k, then the ECE is also
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equal to zero for all orders less than k.

As we add more features, the mean spacing between names of points in the training

set can be expected to increase, and hence the order to which the ECE can be optimised

will increase as well. This seemed particularly likely to be the case in the setting of this

chapter, given that ECE of order zero could be optimised with as few as 35 features.

In practice, while selecting 1500 features from a maximal set of about 2400 using this

scheme, the order of ECE increased from zero to between 20 and 30. (The behaviour

of ascending ECE will be discussed further in Section 8.6.)

Aside – Descending ECE: If we wished to carry out backward elimination using

the ECE metric, then a similar idea can be used to determine the order. Recall that in

backward elimination, we start with the maximal feature set and progressively remove

features. We may find that the maximal feature set has optimal ECE up to a high order;

this will certainly be the case in the setting of this chapter. We can then set the initial

order to the highest value at which the maximal feature set does not have optimum

ECE.

As the feature set becomes smaller, the high initial order of the ECE may give

rise to ‘too much fuzziness,’ such that all candidate feature sets receive the same high

value of ECE. As a very simple example, if we have only twenty binary features, then

setting the order of ECE to 20 is pointless; the distance between names cannot exceed

20 in this instance, so all names will be regarded as equivalent and all feature sets will

receive the same ECE value. If the ECE levels off in this fashion, then it would be

reasonable to reduce the order.

8.5.3 Search Parameters

As previously noted, feature selection by ECE in the part-of-speech tagging setting

described in Chapter 5, was prohibitively slow. The difficulty of computing ECE in-

creases roughly with the square of the size of our training set. At most, ECE requires

us to compute the distance δ between the vectors of feature values assigned to each

pair of points in the training set; in a set with N data points, there are
�
N2 	 N � � 2 pairs

to consider. (We already know that δ
�
a � a � � 0 and δ

�
a � b � � δ

�
b � a � for all vectors a
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and b.)

In practice we may be able to reduce the number of computations further by ex-

ploiting the triangle inequality: δ
�
a � b � � δ

�
b � c � � δ

�
a � c � , so if δ

�
a � c � 	 δ

�
a � b � � k

then δ
�
b � c � � k. Hence, if k is the order of the entropy and we know that δ

�
a � c � 	

δ
�
a � b � � k, we know that c will not be in the same region as a. This simplification

was not attempted in the experiments described in this chapter, but could potentially

be useful. It is also worth noting that feature selection of any kind lends itself very

well to parallel processing; a large number of candidate feature sets can be assessed in

parallel, and the best one adopted.

Even computing all
�
N2 	 N � � 2 distances proved feasible in our setting. Given that

our training sets contained at most 344 data points, there were at most 58,996 pairs of

vectors of feature values to be considered. Accelerated forward selection was carried

out using the parameters in Table 8.2.

Parameter Value

Blocks evaluated at each step 50

Features in each block 10

Total steps 150

Table 8.2: Parameters for accelerated forward selection by ECE.

The final feature set therefore contained 1500 features, chosen from the maximal

feature set of about 2400. Feature selection was rather slow; selecting a full set of 1500

features required about 32 hours on a Pentium 4 PC. Notice that only 500 features were

evaluated at each step, rather than 5000 as with feature selection by EPE. This resulted

in slightly less rapid improvement in the metric; EPE (that is, ECE of order zero)

reached zero at about 80 features out of 2400 in these experiments, as opposed to 40

with the more extensive search described in Section 8.3. Nonetheless, the parameters

in Table 8.5.3 were sufficient to produce interesting results in terms of both ECE and

accuracy on test data, as described in Sections 8.6.1 and 8.6.2.
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8.6 Expected Covering Entropy: Results

8.6.1 Behaviour of the ECE Metric

Feature selection began with the ECE at order zero; if the ECE reached its minimal

value, then the order was increased by one. In the coffee/iron-steel/livestock

classification task, the greatest order of ECE used for feature selection was 22 for 8 of

the 10 training/test splits; for the other two, the maximum orders were 27 and 28. In the

gold/reserves/gdp task, a maximum order of 31 was attained for all 10 training/test

splits. So, in the latter task, the values of up to 31 features were ignored in computing

the expected entropy for large feature sets.

The maximum order for which the ECE reached its optimal value of zero was one

less than the highest order used for feature selection. For instance, in the gold/reserves/gdp

case, an expected entropy of zero was attained at order 30 for each training/test split.

Figure 8.1 shows the mean size of feature set at which each order of ECE was min-

imised. For instance, in the gold/reserves/gdp task, ECE of order 0 was minimised

with an average of 62 features, and of order 30 with an average of 1015 features. Full

tables of results are given in Appendix C.

Notice that little or no increase in the order of ECE occurred with subsets of more

than about 800 features for coffee/iron-steel/livestock data, and of more than

about 1000 features for gold/reserves/gdp. After the order levelled off at a particu-

lar value, feature selection continued with the objective of minimising the ECE for this

fixed order. However, the expected entropy itself soon levelled off at a non-zero value,

which remained unchanged even as several hundred features were added.

By definition of the ascending ECE scheme, the expected entropy could never reach

zero; if it did, then the order would simply be increased until we attained a non-zero

ECE value. (It is impossible for a feature set to have zero ECE for all orders; as the

order approaches the number of features, the ECE will always attain a non-zero value.)

Therefore, the feature selection process never became equivalent to selecting features

at random. However, it appears that improving the ascending ECE metric becomes

very difficult for large feature sets. The implications of the behaviour of ECE will be

discussed with reference to accuracy on test data in Section 8.6.2.
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Figure 8.1: Order of ECE minimised, by task and mean size of feature set.

8.6.2 Accuracy on Test Data

Evaluation was conducted using the naive-bayes (NB) learner described in Section 2.3.3.

As previously noted, tenfold cross-validation was carried out. Figure 8.2 shows the

mean accuracy of classification by the NB learner on test data, over each of the ten

training/test splits, and for both classification tasks. The relationship between the or-

der of ECE and the accuracy on test data, and connections with KS’ experimental work,

will be considered later in this section; first, we present the mean results together with

some general commentary.

The mean accuracy of classification using the maximal set of approximately 2400

features was 90.09% for the coffee/iron-steel/livestock task, and 89.60% for

gold/reserves/gdp. In the former task, the greatest mean accuracy attained using

feature selection by ascending ECE was 92.32% with 800 features; in the latter, the

greatest mean accuracy was 93.92% with 200 features. Hence, the gains in mean

accuracy over that with the maximal feature set were respectively 2.23% and 4.32%.

The improvement in accuracy in comparison with the maximal feature set is par-
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Figure 8.2: Mean accuracy on test data for feature selection by ECE.

ticularly striking given that, because of the difficulty of computing the ECE metric,

relatively few candidate feature subsets were assessed. In spite of the limited nature

of our search, superior accuracy to the maximal feature set was consistently attained

for subsets of between 700 and 1200 features with coffee/iron-steel/livestock

data, and between 200 and 1500 with gold/reserves/gdp. It is also notable that the

best accuracy attained in the second task was with a feature subset less than one-tenth

the size of the maximal feature set.

Comparison with KS Results: The results in this chapter are not directly compa-

rable to those in KS’ 1996 paper. [KS96] This is partly because it was not practical

to reproduce the exact maximal feature sets and training/test splits employed by KS.

Much more importantly, as discussed in Section 8.4.4, the KS metric itself fails to pro-

vide a meaningful criterion for selecting sets of more than about 40 features from the

maximal sets defined in Section 8.3.

Given how easily the KS metric reached an optimal value in the setting of this chap-

ter, it seems almost certain that similarly rapid optimisation would occur in the setting
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used by KS. Certainly, one would expect the KS metric to attain an optimal value on

any set of more than 600 features; this would render it equivalent to random selection

for reducing a set of about 1600 features to about 600 by backward elimination, as

described by KS.

However, it is important to note that KS did not compute their metric exactly, but

instead employed an approximation to it. KS report some instances of subsets of about

600 features giving rise to greater classification accuracy than their maximal feature

sets. Discovering why these improvements came about would require further investi-

gation of the properties of the KS approximation, which it was not feasible to conduct

as part of this thesis.

Order of ECE and Accuracy on Test Data: It is interesting to consider what rela-

tionship, if any, there is between increase in the order of ECE and improvement in

classification accuracy on test data. Recall that if the order of ECE levels off at a par-

ticular value, the addition of more features does not give rise to drastic increases in

spacing between names; so, from the perspective of the ECE metric, the additional

features do not add much in the way of useful redundancy. In light of this observa-

tion, and the results with POS-tagging experiments discussed in Chapter 7, it seemed

plausible that a levelling-off of the order of ECE would be accompanied by a lack of

improvement in classification accuracy.

This hypothesis was only partly borne out by the document-classification exper-

iments. In the coffee/iron-steel/livestock classification task, mean accuracy

does peak at 800 features, which is also the point at which the order of ECE stopped

increasing for 8 of the 10 training/test splits; there is then a second, smaller peak

at 1100 features, just before the order stopped increasing altogether at 1200 features.

However, in the gold/reserves/gdp task, maximum accuracy was obtained with 200

features, well before the order of ECE levelled off at just over 1000 features.

The experimental results do support a weaker hypothesis that maximum accuracy

will be obtained before the order of ECE levels off. Regrettably, time did not permit

a thorough investigation of the relationship between order of ECE and classification

accuracy, or assessment of subsets of between 1500 and 2400 features selected using

ascending ECE. Such investigations would be an interesting topic for future research.
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8.7 Summary

This chapter has presented experiments with classification of Reuters news stories by

topic, very similar to the ones carried out by Koller and Sahami for the evaluation

of their information-theoretic metric. [KS96] Unlike KS, we computed the KS metric

exactly, rather than employing an approximation to it. It transpired that both the KS

metric, and the Expected Partition Entropy (EPE) metric presented in Chapter 4, suf-

fered from limitations in the document-classification setting. Specifically, for subsets

of more than about 40 features chosen from a maximal set of about 2400, both metrics

were equivalent to selecting features at random.

In response to the difficulties faced by the EPE and KS metrics, we conducted

a second set of experiments using the extension of EPE to the Expected Covering

Entropy (ECE) metric. In order to do so, we defined a scheme called ascending ECE,

which provides a means of setting the parameter of the ECE metric known as the order

to an appropriate value. This second set of experiments proved far more successful;

we obtained subsets as little as one-tenth the size of the maximal feature set, which

nonetheless gave rise to greater classification accuracy on test data than the maximal

set.



Chapter 9

Discussion

9.1 Introduction

This chapter presents the conclusions of the thesis. It begins with a discussion of new

theoretical ideas for feature selection, including some extensions to the existing gen-

eral framework for the feature selection task; a critique of feature selection metrics

based on information theory, particularly the Koller-Sahami evaluation function; and

motivation for and discussion of a novel family of metrics based on conditional en-

tropy. We then consider two interesting side issues which arose from our experimental

evaluation of entropy-based metrics: Accelerated search algorithms and the ‘like-for-

like’ hypothesis for wrapper evaluation functions. Finally, we discuss the experimental

evaluation of the new conditional-entropy metrics. On both theoretical and empirical

grounds, the new metrics appear very promising as a method of feature selection.

Throughout the chapter, possible extensions and further research will be suggested

where appropriate. At this point, it is important to note that most of the techniques in

this thesis, and the questions which they raise, are completely general. The theoreti-

cal developments, accelerated search algorithms, examination of wrapper metrics, and

novel absolute-entropy metrics can in principle be applied to any problem in feature

selection; such problems include not only part-of-speech tagging and document classi-

fication but bioinformatics, image recognition, medical diagnosis, and even detection

of land mines.

163
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General applicability is a significant strength of the work presented in this thesis.

Virtually all of the theories and techniques considered would benefit from having their

effectiveness investigated in other domains. One obvious possibility is to extend our

experiments with simplified part-of-speech tagging to a more sophisticated scheme

which makes use of context-sensitive features.

9.2 Theoretical Developments

In Chapter 2, we presented preliminary definitions and ideas, including some suggested

extensions to the standard theoretical framework for feature selection. Throughout the

thesis, we stress the importance of keeping a clear distinction between the colloquial

use of the word feature as simply meaning an identifiable characteristic of a data point;

and a feature function, which maps the set of data points to another set with the goal

of providing a simpler – or otherwise more effective – description of the data.1

Equally important is the distinction between evaluation functions2 which provide a

numerical measure of the desirability of a given feature subset; and generation proce-

dures. Even a modestly sized pool of possible features will have a very large number

of subsets; in general, exhaustively evaluating all the possible subsets will be pro-

hibitively slow. As the name suggests, a generation procedure is a strategy for finding

‘good’ subsets with respect to our chosen evaluation function without carrying out an

exhaustive search. With a few specialised exceptions, our choice of generation proce-

dure does not tie us to a particular evaluation function and vice versa.

Extensions to the general framework for feature selection included the definitions

of a non-informative value, an output which indicates that a particular feature function

obtains no significant information from a particular data point; and a model archi-

tecture, a scheme for incorporating variable sets of feature functions into a family of

probabilistic models. A more significant development is the proposed division of eval-

uation functions into hierarchical and non-hierarchical metrics. A hierarchical metric

such as naive mutual information ranks the members of a pool of possible features in

1Unless specifically noted otherwise, we use the word ‘feature’ as an abbreviation for ‘feature func-
tion.’

2Evaluation functions are also known as feature selection metrics, or simply as metrics.
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a fixed order of desirability. Conversely, a non-hierarchical metric such as the Koller-

Sahami (KS) measure or a wrapper scheme assigns a score to a feature subset as a

whole, rather than its component features; such metrics implicitly or explicitly con-

sider possible dependencies and interactions between features.

Chapter 3 surveys the existing literature on feature selection, with particular atten-

tion to the Koller-Sahami metric and other evaluation functions based on information

theory. Information-theoretic measures are fundamentally based on relationships be-

tween probability distributions. However, we do not have access to the ‘true’ distri-

bution which governs our data, and so must approximate it in some way. The empir-

ical distribution is usually used as an approximation; other possibilities have gener-

ally not been considered in the literature, with the exception of Zaffalon and Hutter’s

proposal of a new class of approximate distributions for a particular feature selection

task [ZH02]. Applying Zaffalon-Hutter approximations to other feature selection do-

mains, along with some new methods which we suggest, would be an interesting topic

for future research.

A rigorous consideration of information-theoretic metrics leads to some interest-

ing observations. It is worth noting that the KS metric is not inherently tied to the

generation procedure known as backward elimination, as its originators claim. Indeed,

we later successfully implement a variant of the alternative forward selection proce-

dure using the KS metric. Furthermore, there are theoretical reasons to suspect that,

contrary to the assertions of its originators, the KS metric is not an optimal method

of feature selection. In particular, the KS metric can be thought of as measuring the

Kullback-Liebler information-theoretic distance from the set of features available for

inclusion in our model; we raise the question of whether this is a sufficiently gen-

eral reference point. As we discuss in Section 9.5, these concerns were supported by

experimental data.

In Chapter 4 we continue by presenting a new class of feature selection metrics

based on conditional entropy. The new metrics can be motivated in at least two differ-

ent ways. One is a similar motivation to that of the KS metric, in terms of information-

theoretic distances from a chosen reference point; in this context, minimising the ab-

solute entropy is equivalent to maximising the Kullback-Liebler divergence from the
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uniform distribution. An alternative motivation is provided by the related concepts of

partioning and encoding. A feature set can be thought of as dividing the data space

into a number of compartments or partitions; alternatively, it can be seen as assign-

ing a code word of feature values to each data point. This insight enables us to apply

ideas from the fields of discretization (also known as quantization) and coding theory

to feature selection.

Theoretical considerations give rise to a family of conditional-entropy metrics.

Zeroth-order entropy or expected partition entropy (EPE) can be thought of as an al-

ternative to the KS metric, with the uniform distribution as its reference point; alterna-

tively, optimising the EPE can be seen as trying to find the feature set which provides

the most informative partition of our data space. We then draw upon ideas from coding

theory to extend EPE to entropies of first order and higher, which we refer to as ex-

pected covering entropies or ECE. Coding theory seeks to encode data in a form robust

to transmission errors; similarly, optimising the ECE gives rise to feature sets which

remain informative if one or more features take misleading values. The order of the

ECE can be thought of as the number of features which are permitted to be ‘wrong.’

The solid theoretical foundation of EPE and ECE is appealing in itself, and also

ensures their applicability to a wide variety of feature selection domains.

9.3 Accelerated Search Algorithms

Although non-hierarchical metrics are generally more sophisticated than hierarchical

ones and can be expected to give better results, they suffer from the drawback of being

much slower. In order to implement feature selection with non-hierarchical metrics for

large sets of training data and available features, a new variant of forward selection

known as accelerated forward selection was developed. The basic idea is simple:

Instead of adding features one at a time, at each step we evaluate several randomly

chosen blocks of features and add the best one. This leads to significantly faster feature

selection.

Accelerated forward selection proved successful at improving the values of feature

selection metrics, which in turn led to better accuracy on held-out test data. The KS
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metric reached its optimal value of zero under accelerated forward selection – in many

cases quite quickly – and other metrics attained near-optimal values. In most cases, we

assessed ten blocks at each step in the part-of-speech tagging domain; each block was

equal in size to 1% of the pool of available features. However, small-scale experiments

in which the block size was increased to 5% of the pool of available features did not

lead to any decline in performance. Similarly, out of necessity we evaluated compar-

atively few candidate subsets while selecting features in the document-classification

domain by ECE, but significant improvements in accuracy over that obtained with the

set of all available features were obtained nonetheless.

It would be interesting to investigate this matter further. In simple terms, how quick

and careless a search can we get away with? If the block size was very large or very

few sets were assessed at each step, one would expect a decline in performance; but it

would be interesting to see when and how rapidly this decline occurred.

Other variants of accelerated feature selection are possible: For instance acceler-

ated backward elimination, feature selection with backtracking, or selection by genetic

algorithm. Because of the large element of randomness present in accelerated selec-

tion, the choice between (for instance) forward and backward elimination was thought

unlikely to have a significant effect. Nevertheless, it might be worthwhile to carry out

experiments to confirm this hypothesis.

9.4 Specialisation of Wrapper Metrics

An interesting observation arose from the results of our feature selection experiments.

We used two different types of classifer: These were the naive-bayes (NB) and maximum-

entropy (ME) model architectures. Classifiers were used to assess the usefulness of

feature sets; but they were also used as wrappers for feature selection in their own

right. Selecting features using the NB wrapper gave rise to greater accuracy on the NB

classifier than the ME wrapper; but the ME wrapper outperformed the NB wrapper in

selecting features for the ME classifier. Similarly, the EPE filter outperformed NB in

selecting features for an ME model, but not for an NB model.

This supports the hypothesis that ‘like should select for like.’ In other words, a
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wrapper metric – which is based on a particular model architecture – is very good at

selecting features for classifiers using the same model architecture. But a wrapper is

highly specialised; its superior performance in ‘selecting features for itself’ comes at

the cost of lower accuracy in other domains. More extensive testing of the like-for-like

hypothesis, using different learning tasks and other model architectures besides the NB

and ME schemes, is a possible topic for future research.

9.5 Entropy-Based Metrics in Practice

The theoretical appeal of the conditional-entropy metrics suggested that they would

be effective techniques for feature selection. More specifically, we hypothesised that

improving the absolute entropy of feature sets would lead to better performance on

held-out test data; and conversely, that feature sets with better performance on held-

out test data – regardless of how they were obtained – would have lower values of

the metrics. Experiments were carried out in two different domains: One involved

a simplified form of part-of-speech tagging, the other classification of Reuters news

stories.

9.5.1 Part-of-Speech Tagging

In the part-of-speech tagging setting, we began by investigating the effectiveness of

accelerated forward selection by EPE in comparison with other metrics: Frequency-

based cutoff (FBC), naive mutual information (NMI), the Koller-Sahami metric (KS),

a naive-bayes wrapper (NB), and a maximum-entropy wrapper (ME). The feature sets

obtained were assessed by using them to implement NB and ME classifiers on held-

out test data. ECE proved too slow for practical feature selection in this domain, even

using accelerated techniques. However, we were able to evaluate feature sets obtained

using EPE and the other metrics by both EPE and ECE, in order to determine whether

ECE was a good general indicator of classification accuracy on test data.

Feature Selection by EPE: The general setting for the first set of experiments was

a simplified form of part-of-speech tagging for English words, using training data de-
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rived from the Penn Treebank WSJ corpus. [MSM95] EPE was found to perform well

in comparison with all of the existing metrics employed. In short, it was significantly

faster than ME while providing comparable accuracy on both classifiers; more reliable

than KS; led to greater accuracy in most cases than FBC or NMI; and produced greater

accuracy than NB on the ME learner.

Some of the above comments deserve a little further explanation. As we have

noted, the KS metric tended to reach its optimal value of zero quite quickly; but this

was not necessarily an advantage. If a given feature subset has a KS score of zero, then

the KS metric gives us no guidance as to how we can improve it further; but there may

be considerable room for improvement in terms of its performance on held-out test

data, and the feature set may not even the best possible set of its size. It seems that the

theoretical concerns about KS not having a sufficiently general reference point were

well justified in this setting. EPE did not suffer from this problem in the POS-tagging

experiments; instead it exhibited gradual improvement without attaining its optimal

value of zero.

FBC and NMI generally fared worse than EPE, but they were noticeably better at

selecting relatively small feature sets – particularly for the NB classifier. This suggests

that they could be usefully combined with the EPE metric, or indeed with other feature

selection metrics: For instance, we could constrain our feature set to include a small

number of features which scored best according to FBC or NMI, and select additional

features by a different method.

Evaluation by EPE and ECE: When the new metrics were used for evaluation of

pre-selected feature sets, it was found that they were strongly associated with good

performance on held-out test data. First and second-order ECE appeared to give par-

ticularly good indications of the accuracy arising from a given feature set. The success

of ECE seems to indicate its theoretical motivation – that our vectors of feature values

should be widely spaced, and so robust to misleading values taken by one or more

features – is sound. The value of ECE was further confirmed by experiments in the

Reuters document-classification domain.
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9.5.2 Document Classification

We hypothesised that ECE would be particuarly useful in environments with very

sparse training data. If we only have one data point in a typical partition, then EPE

will be of very limited use; given the information available in the training data, it will

(perhaps erroneously) be absolutely certain of the label associated with a given parti-

tion, and so will rapidly attain its ideal value of zero – but this optimisation may not

reflect good performance on held-out test data. It was expected that extending the par-

titions of EPE to the larger regions of ECE would get around this problem, because the

regions would contain more data points; in effect, optimising ECE is a more difficult

challenge than optimising EPE.

This is exactly the situation which occurred in the Reuters document-classification

experiments: EPE and the KS metric rapidly attained their minimum values, as each

point in the training set was assigned a different vector of feature values. In the

document-classification domain, it was possible to directly use the ECE metrics for

feature selection. As expected, there was a very wide variation in size and classifi-

cation accuracy between feature sets with zero values of EPE and the KS metric; but

ECE proved an effective tool for discriminating between them. Feature selection by

ECE produced feature sets somewhat larger than the smallest ones for which minimal

values of EPE and the KS metric were attained, and considerably smaller than the pool

of all available features, which gave rise to better accuracy than either in classifying

test data.

A particularly interesting question which arose from our experiments is the rela-

tionship between the order of ECE, and classification accuracy on test data. Recall

that the order of ECE is the maximum distance between two vectors of feature values

which are regarded as equivalent; the greater the order, the more difficult it is to op-

timise the metric. If ECE reaches its optimal value of zero for a particular order, it is

also optimal for all lower orders. It seems that optimisation of ECE to a high order

will give rise to high accuracy in classification of test data; and conversely, that feature

subsets giving high accuracy are likely to have optimal or near-optimal ECE to a high

order. However, the exact nature of this relationship remains an open question, and

would be a suitable topic for future research.
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It would also be interesting to further consider the idea of seeking widely spaced

vectors of feature values. This could perhaps be investigated in other ways besides

ECE. For instance, we could compute the mean Hamming distance between pairs of

vectors and attempt to maximise its mean value for those with different labels, while

minimising it for those with the same one. Moreover, in this thesis we have only

considered a few of the ideas and techniques contained in quantization and coding

theory. Many such concepts may be applicable to feature selection; this thesis has laid

the groundwork for further investigation of the connections between quantization and

coding theory on the one hand, and feature selection on the other.





Appendix A

Tables of Results: Part-of-Speech

Tagging and Accuracy

A.1 Large Training Sets

In this section we give the minimum, maximum, and mean percentage accuracy over

ten runs of stepwise forward feature selection in the part-of-speech tagging domain, for

large training sets of about 800 000 data points, with a maximum of 35 000 features.

Additional detail on the experimental setting and parameters is given in Chapter 5.

Both the maximum-entropy and naive-bayes learners were used for assessment, with

a different split between held-out test data and training data on each run. Graphs and

discussion of the results are presented in Chapter 6.
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A.1.1 Random Selection

Subset size Maximum-Entropy Naive-Bayes

Minimum Maximum Mean Minimum Maximum Mean

1750 18.10 35.98 26.77 13.98 22.31 16.72

3500 29.20 51.92 44.19 13.60 23.26 17.22

5250 47.29 60.95 55.64 13.09 23.69 17.41

7000 56.49 68.37 63.48 12.95 21.54 17.00

8750 60.86 73.08 69.25 14.46 23.42 17.86

10500 68.70 77.79 73.15 14.40 24.73 19.47

12250 70.97 78.83 75.27 15.95 25.69 20.90

14000 73.50 79.54 77.42 17.57 28.66 22.58

15750 77.80 80.53 79.31 19.62 29.04 24.25

17500 78.78 81.26 80.51 23.41 33.24 28.05

19250 80.18 82.10 81.21 24.65 34.54 30.49

21000 80.06 82.72 81.79 23.94 36.61 31.53

22750 81.60 83.30 82.42 26.54 40.94 34.47

24500 81.17 83.80 82.77 31.75 45.81 36.95

26250 81.34 83.78 83.34 33.18 44.56 38.69

28000 82.85 84.10 83.62 35.89 51.22 43.85

29750 82.85 84.66 84.14 37.30 52.95 46.74

31500 83.90 84.77 84.39 41.80 58.51 51.07

33250 84.05 84.90 84.54 42.24 67.63 54.60

35000 84.38 85.06 84.73 48.09 70.84 61.62

Table A.1: Random selection with large training set
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A.1.2 Frequency-Based Cutoff

Subset size Maximum-Entropy Naive-Bayes

Minimum Maximum Mean Minimum Maximum Mean

1750 24.95 25.24 25.11 17.28 17.33 17.31

3500 50.67 51.18 50.87 24.62 25.45 24.80

5250 56.25 58.50 57.80 18.56 19.68 18.95

7000 63.55 63.87 63.69 17.71 18.72 17.95

8750 65.72 66.31 66.11 20.84 22.24 21.83

10500 74.34 74.62 74.52 25.46 27.08 26.71

12250 76.31 78.20 77.30 22.86 25.22 24.17

14000 78.85 79.82 79.29 24.52 27.76 26.97

15750 79.62 80.41 80.04 27.38 30.41 29.63

17500 80.46 81.70 80.93 30.26 37.46 36.16

19250 81.21 82.39 81.72 40.95 42.81 41.64

21000 81.58 82.23 81.93 41.40 45.42 43.47

22750 82.14 83.55 83.00 43.64 52.08 47.46

24500 82.53 84.06 83.34 37.80 42.87 40.38

26250 82.93 84.01 83.53 39.90 44.15 41.50

28000 83.30 84.20 83.69 41.90 47.81 43.32

29750 83.56 84.28 83.97 44.25 48.36 47.65

31500 83.87 84.69 84.28 50.01 53.64 53.14

33250 83.83 84.86 84.37 54.61 59.00 56.58

35000 84.09 84.92 84.74 72.11 72.94 72.65

Table A.2: FBC with large training set
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A.1.3 Naive Mutual Information

Subset size Maximum-Entropy Naive-Bayes

Minimum Maximum Mean Minimum Maximum Mean

1750 67.27 67.77 67.53 19.13 30.64 29.29

3500 70.21 70.43 70.32 20.97 31.47 30.08

5250 71.04 71.46 71.26 20.47 25.32 24.51

7000 71.56 72.01 71.80 20.57 25.39 23.35

8750 72.02 72.45 72.21 20.81 22.39 21.99

10500 72.26 72.65 72.43 19.49 23.89 22.67

12250 72.43 72.86 72.60 22.05 24.57 24.15

14000 72.52 72.89 72.67 22.93 24.52 24.31

15750 72.58 72.92 72.71 22.24 24.67 24.33

17500 72.61 72.96 72.74 22.72 24.53 24.23

19250 72.70 73.09 72.85 22.26 24.06 23.72

21000 72.70 73.09 72.85 22.20 24.10 23.72

22750 72.70 73.09 72.85 22.26 24.08 23.73

24500 72.70 73.09 72.85 22.20 23.98 23.68

26250 72.70 73.10 72.85 22.29 23.99 23.72

28000 72.74 73.14 72.89 22.39 23.98 23.72

29750 72.91 73.29 73.09 22.35 23.94 23.68

31500 73.34 74.03 73.52 23.12 24.17 23.89

33250 74.29 75.07 74.52 23.64 24.52 24.24

35000 75.70 76.49 75.88 29.78 31.60 30.93

Table A.3: NMI with large training set
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A.1.4 Koller-Sahami Metric

In all ten runs with large training sets, the Koller-Sahami (KS) metric attained its op-

timal value of zero before the feature set reached its maximum size of 35 000. The

feature selection process was halted when a KS score of zero was attained, as any

further addition of features could not improve the KS score of the feature set.

Table A.4 reproduces Table 6.1. It gives the subset sizes at which selection by

the KS metric was halted, together with the accuracy of the maximum-entropy and

naive-bayes learners on the final subsets.

Size of Final Subset Maximum-Entropy Naive-Bayes

15050 81.90 39.10

20650 83.52 41.24

21350 83.24 41.94

22050 83.15 42.75

22400 83.35 49.91

24850 83.84 43.71

26600 83.76 54.76

28000 84.32 50.64

29050 84.48 62.34

31150 84.59 56.48

Table A.4: Final subsets for KS with large training set

Table A.5 gives results for the ‘standard’ subset sizes obtained using the KS filter.

Feature selection by the KS filter was halted before the maximum subset size of 35 000

was achieved, as the KS metric attained its optimal value of zero; this phenomenon is

discussed further in Section 6.5. As the subset size becomes larger, the minimum,

maximum, and mean values are for fewer and fewer runs; no run obtained feature sets

with a size greater than 31150.
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Subset size Maximum-Entropy Naive-Bayes Total Runs

Min Max Mean Min Max Mean

1750 41.69 47.09 44.28 11.34 25.95 16.79 10

3500 56.32 65.08 61.37 11.03 24.24 16.68

5250 67.74 71.69 70.36 12.39 25.54 18.81

7000 74.17 76.03 75.11 12.97 26.89 20.94

8750 76.70 78.50 77.59 17.66 34.88 27.15

10500 78.13 80.12 79.14 21.75 37.33 29.48

12250 79.30 81.04 80.10 26.78 41.39 33.18

14000 79.86 81.50 80.98 28.80 42.96 36.47

15750 80.81 82.35 81.45 28.85 42.14 36.62 9

17500 81.02 82.97 82.19 35.42 49.58 39.80

19250 82.14 83.35 82.80 35.60 48.13 40.17

21000 82.44 83.65 83.05 36.62 52.08 42.52 8

22750 82.92 84.04 83.50 38.74 58.08 47.75 5

24500 82.48 84.04 83.47 39.15 59.96 50.71 4

26250 83.90 84.19 84.00 49.74 58.34 52.61 3

28000 83.88 84.32 84.04 50.64 61.89 54.83 2

29750 84.39 84.39 84.39 54.85 54.85 54.85 1

Table A.5: KS metric with large training set
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A.1.5 Naive-Bayes Wrapper

Subset size Maximum-Entropy Naive-Bayes

Minimum Maximum Mean Minimum Maximum Mean

1750 21.75 39.23 31.22 17.77 23.91 20.63

3500 35.79 56.58 46.21 19.99 31.17 25.23

5250 49.78 64.20 57.07 20.62 36.97 27.83

7000 55.71 69.91 64.63 21.15 42.27 30.25

8750 60.71 74.75 69.06 25.64 46.16 31.97

10500 69.95 76.83 73.09 24.74 46.83 34.01

12250 71.68 77.86 75.45 28.85 48.12 36.30

14000 73.91 78.94 77.08 31.86 50.61 39.09

15750 76.45 80.17 78.84 36.19 51.06 41.98

17500 76.48 81.13 79.76 37.15 51.34 43.75

19250 77.65 81.64 80.48 39.09 52.77 45.69

21000 80.47 82.38 81.56 42.08 55.12 48.39

22750 79.99 83.13 81.95 46.83 56.73 50.21

24500 81.29 83.04 82.30 48.71 58.64 53.40

26250 82.22 83.42 82.92 50.20 62.13 55.79

28000 82.60 83.75 83.20 50.92 63.28 57.77

29750 82.73 84.20 83.66 52.83 64.24 59.19

31500 82.93 84.62 83.89 53.03 66.39 60.11

33250 83.53 84.71 84.13 56.73 70.13 63.73

35000 84.19 85.16 84.59 57.17 76.67 69.07

Table A.6: NB wrapper with large training set
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A.1.6 Expected Partition Entropy

Subset size Maximum-Entropy Naive-Bayes

Minimum Maximum Mean Minimum Maximum Mean

1750 39.82 54.94 44.37 14.25 23.22 17.49

3500 58.97 67.60 62.37 12.77 21.16 17.04

5250 67.29 73.41 70.32 14.36 28.09 18.78

7000 73.00 75.99 74.75 14.69 22.82 19.49

8750 76.06 78.90 77.76 17.06 29.39 22.62

10500 78.42 79.81 79.17 20.80 31.88 25.93

12250 79.50 80.99 80.23 24.02 37.35 30.02

14000 80.38 81.04 80.64 25.95 34.66 32.09

15750 80.62 82.46 81.43 26.34 38.40 33.51

17500 81.49 82.83 82.08 28.88 45.19 37.89

19250 81.90 83.43 82.74 29.34 45.47 39.16

21000 81.77 83.28 83.02 31.72 47.53 40.21

22750 82.00 83.76 83.33 31.99 52.75 44.27

24500 83.39 83.97 83.67 34.64 53.26 44.46

26250 83.56 84.13 83.88 40.44 56.03 48.71

28000 84.00 84.40 84.16 38.36 57.23 49.74

29750 83.98 84.69 84.30 38.74 57.75 51.35

31500 83.98 84.83 84.48 39.68 63.49 53.40

33250 84.39 84.86 84.66 34.97 66.23 56.12

35000 84.55 85.33 84.85 35.72 67.50 58.46

Table A.7: EPE with large training set
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A.2 Small Training Sets

This section contains the minimum, maximum, and mean percentage accuracy over ten

runs of stepwise forward feature selection for smaller training sets of 5000 data points,

with a maximum of 7000 features. This setting allowed use of the maximum-entropy

wrapper method; we compare it with the naive-bayes wrapper and EPE filter. Both the

maximum-entropy and naive-bayes learners were used for assessment, with a different

split between held-out test data and training data on each run.
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A.2.1 Naive-Bayes Wrapper

Subset size Maximum-Entropy Naive-Bayes

Minimum Maximum Mean Minimum Maximum Mean

350 23.25 40.80 29.39 18.14 25.86 20.61

700 37.55 48.87 45.04 19.66 32.76 26.84

1050 44.47 59.26 54.28 20.06 33.20 28.19

1400 51.28 64.70 59.70 26.72 38.86 32.28

1750 54.54 67.65 63.19 25.68 40.19 32.72

2100 58.37 70.20 65.62 26.40 39.45 33.35

2450 62.31 69.80 67.06 30.77 39.33 34.19

2800 66.12 70.84 68.05 30.81 40.83 35.50

3150 67.04 71.39 69.56 30.93 43.38 36.72

3500 69.49 71.56 70.73 31.63 44.17 38.03

3850 69.88 73.85 71.70 29.75 47.90 39.61

4200 71.43 73.44 72.24 30.93 47.26 41.45

4550 71.97 74.90 73.00 30.42 48.82 43.41

4900 72.44 74.60 73.38 31.95 50.49 44.47

5250 72.36 74.31 73.39 37.62 51.68 46.79

5600 72.53 74.77 73.49 37.44 53.55 48.57

5950 72.52 75.35 74.00 45.43 58.09 51.45

6300 73.49 75.08 74.21 48.16 63.61 54.49

6650 73.14 75.29 74.30 45.87 67.78 58.43

7000 73.72 75.74 74.51 47.14 70.03 61.81

Table A.8: NB wrapper with small training set
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A.2.2 Maximum-Entropy Wrapper

Subset size Maximum-Entropy Naive-Bayes

Minimum Maximum Mean Minimum Maximum Mean

350 34.64 43.80 39.34 8.28 23.70 17.05

700 48.26 60.80 55.55 15.33 24.49 18.44

1050 55.97 65.53 61.82 13.52 26.18 18.90

1400 60.38 68.68 65.86 14.43 25.32 19.43

1750 65.89 69.85 68.52 13.38 32.59 21.41

2100 67.64 70.54 69.58 13.41 33.76 22.03

2450 69.06 71.36 70.64 16.14 33.47 22.69

2800 71.11 72.41 71.73 18.87 33.77 24.53

3150 70.97 72.92 72.17 20.48 34.57 26.29

3500 71.96 73.82 72.85 19.61 34.87 27.65

3850 72.58 74.58 73.22 20.20 36.42 30.18

4200 72.57 73.88 73.34 23.72 40.17 32.00

4550 73.28 74.35 73.75 24.50 40.85 34.16

4900 73.48 74.67 74.03 25.04 42.40 34.23

5250 73.71 74.63 74.23 27.37 43.73 35.28

5600 73.72 75.09 74.41 29.03 46.28 37.13

5950 73.39 75.25 74.46 32.71 49.30 38.05

6300 73.31 75.04 74.37 32.76 50.80 40.08

6650 73.64 75.10 74.56 31.07 53.33 43.15

7000 73.46 75.07 74.53 34.98 68.81 47.62

Table A.9: ME wrapper with small training set



184 Appendix A. Tables of Results: Part-of-Speech Tagging and Accuracy

A.2.3 Expected Partition Entropy

Subset size Maximum-Entropy Naive-Bayes

Minimum Maximum Mean Minimum Maximum Mean

350 37.56 46.14 41.15 14.83 24.59 18.53

700 53.33 63.03 57.81 13.74 22.86 18.70

1050 58.92 67.05 64.40 15.64 26.57 19.25

1400 65.47 69.14 67.37 15.44 29.71 20.56

1750 67.10 70.78 69.12 16.15 34.43 22.34

2100 68.80 70.79 70.02 17.60 34.23 23.28

2450 69.97 72.60 71.03 19.54 29.56 24.78

2800 70.87 72.98 71.94 23.00 34.09 27.16

3150 71.16 73.06 72.20 21.42 33.93 26.62

3500 71.19 73.29 72.27 22.79 36.38 29.45

3850 72.20 73.46 72.81 22.98 35.11 29.95

4200 71.62 74.45 73.01 26.46 35.17 30.25

4550 72.67 74.33 73.44 28.41 40.55 33.55

4900 72.87 74.25 73.67 28.27 43.13 34.78

5250 72.98 74.94 73.95 28.36 44.52 37.98

5600 72.51 74.95 73.96 30.86 46.74 40.46

5950 73.47 75.25 74.25 29.72 51.42 43.23

6300 72.58 75.02 73.89 34.48 51.94 44.11

6650 72.61 75.11 74.09 25.73 53.46 44.54

7000 72.92 75.03 74.29 25.38 62.53 49.23

Table A.10: EPE with small training set



Appendix B

Tables of Results: PoS Tagging and

Conditional-Entropy Metrics

This appendix contains results of using the Expected Partition Entropy/Expected Cov-

ering Entropy (EPE/ECE) family of conditional-entropy metrics to evaluate feature sets

obtained by stepwise forward selection in the part-of-speech tagging domain. EPE and

ECE are formally defined in Chapter 4; experiments in which the feature sets were ob-

tained are presented in 5; and Chapter 7 contains graphs and discussion of the results

in this appendix. Recall that EPE is also known as zeroth-order entropy; entropies of

first order and higher are ECEs.

Chapter 7 discusses the implications of selection by entropy; for the sake of clarity,

it concentrates on the examples of NMI, NB, and EPE for large training sets. Here we

present more complete results, which are essentially consistent with the conclusions

drawn in Chapter 7.

Entropies of zeroth, first, second, and third order were found for feature sets se-

lected using the naive mutual information (NMI), Koller-Sahami (KS), naive-bayes

(NB), maximum-entropy (ME), and EPE metrics. The NMI and KS metrics had been

used for feature selection only with large training sets of approximately 800 000 data

points which contained a maximum of about 37 000 features; ME small training sets

of 5000 data points, each of which contained at most about 7000 features; and EPE

and NB for both small and large feature sets. Calculating the ECEs was rather time-
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consuming, and so the feature sets produced using FBC and random selection were not

assessed using entropy.

Note that in order to speed up the computation of ECE, it was calculated only for

the first 5000 words in the large training sets. In calculating all entropies, logarithms

were taken to base e.
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B.1 Large Training Sets

B.1.1 Naive Mutual Information

Subset size Zeroth-Order Entropy First-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

1750 0.0038 0.6807 0.0776 0.3657 0.4034 0.3756

3500 0.0033 0.2986 0.0380 0.3257 0.3550 0.3314

5250 0.0031 0.1882 0.0264 0.3015 0.3270 0.3085

7000 0.0030 0.1356 0.0207 0.2826 0.3160 0.2926

8750 0.0029 0.1055 0.0173 0.2758 0.3053 0.2873

10500 0.0028 0.0867 0.0152 0.2714 0.2960 0.2812

12250 0.0027 0.0731 0.0136 0.2726 0.2944 0.2798

14000 0.0027 0.0635 0.0125 0.2682 0.2932 0.2773

15750 0.0027 0.0563 0.0116 0.2694 0.2929 0.2776

17500 0.0026 0.0504 0.0109 0.2694 0.2939 0.2770

19250 0.0026 0.0456 0.0103 0.2690 0.2941 0.2771

21000 0.0026 0.0418 0.0098 0.2692 0.2943 0.2772

22750 0.0026 0.0386 0.0093 0.2692 0.2943 0.2772

24500 0.0026 0.0358 0.0090 0.2692 0.2941 0.2772

26250 0.0025 0.0333 0.0086 0.2692 0.2896 0.2768

28000 0.0025 0.0310 0.0083 0.2682 0.2898 0.2763

29750 0.0025 0.0285 0.0079 0.2618 0.2837 0.2720

31500 0.0024 0.0251 0.0073 0.2595 0.2741 0.2643

33250 0.0022 0.0216 0.0065 0.2473 0.2551 0.2509

35000 0.0019 0.0167 0.0053 0.1814 0.1951 0.1905

Table B.1: NMI with large training set: Zeroth and first-order entropies
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Subset size Second-Order Entropy Third-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

1750 2.3618 2.4734 2.3896 2.4753 2.5436 2.4925

3500 2.3009 2.4644 2.3608 2.4474 2.5374 2.4749

5250 2.3133 2.4512 2.3395 2.4602 2.5333 2.4723

7000 2.3032 2.4690 2.3390 2.4593 2.5369 2.4757

8750 2.2969 2.4657 2.3470 2.4601 2.5301 2.4809

10500 2.3163 2.4568 2.3499 2.4663 2.5218 2.4817

12250 2.3146 2.4530 2.3534 2.4684 2.5222 2.4851

14000 2.3220 2.4599 2.3562 2.4684 2.5255 2.4874

15750 2.3211 2.4602 2.3536 2.4677 2.5271 2.4868

17500 2.3211 2.4615 2.3535 2.4682 2.5293 2.4869

19250 2.3245 2.4638 2.3588 2.4732 2.5316 2.4879

21000 2.3245 2.4647 2.3588 2.4734 2.5323 2.4881

22750 2.3253 2.4647 2.3596 2.4737 2.5321 2.4885

24500 2.3263 2.4648 2.3599 2.4744 2.5324 2.4891

26250 2.3263 2.4734 2.3609 2.4746 2.5380 2.4901

28000 2.3271 2.4745 2.3617 2.4760 2.5375 2.4908

29750 2.3372 2.4799 2.3689 2.4820 2.5352 2.4950

31500 2.3433 2.5233 2.3716 2.4838 2.5645 2.4974

33250 2.3507 2.5236 2.3813 2.4861 2.5689 2.5047

35000 2.3774 2.6042 2.4280 2.4961 2.6477 2.5365

Table B.2: NMI with large training set: Second and third-order entropies
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B.1.2 Koller-Sahami Metric

Note that feature selection by the Koller-Sahami (KS) metric was terminated when the

metric attained its optimal value; this often occurred for as few as 15 000 features.

Thus, the results for more than 15 000 features given below are the average of fewer

than 10 runs, and should be treated with some caution. See Section 6.5 for discussion

of the early halting of feature selection by KS. In addition to the ‘standard’ feature

subset sizes, Tables B.3 and B.4 contain figures for the ‘non-standard’ subset sizes at

which selection by KS was halted.
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Subset size Zeroth-Order Entropy First-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

1750 0.0102 1.3704 0.1668 1.7115 1.9833 1.8323

3500 0.0040 0.2629 0.0394 0.9229 1.4969 1.1699

5250 0.0022 0.1069 0.0175 0.3733 0.7961 0.5789

7000 0.0018 0.0638 0.0115 0.1701 0.3900 0.2299

8750 0.0018 0.0485 0.0096 0.0969 0.1578 0.1192

10500 0.0018 0.0401 0.0085 0.0842 0.1041 0.0923

12250 0.0017 0.0344 0.0078 0.0833 0.1008 0.0889

14000 0.0017 0.0301 0.0072 0.0832 0.1009 0.0876

15050 0.0267 0.0267 0.0267 0.1009 0.1009 0.1009

15750 0.0017 0.0136 0.0045 0.0832 0.0863 0.0852

17500 0.0017 0.0128 0.0044 0.0832 0.0862 0.0846

19250 0.0017 0.0122 0.0043 0.0831 0.0862 0.0839

20650 0.0029 0.0029 0.0029 0.0832 0.0832 0.0832

21000 0.0017 0.0116 0.0043 0.0831 0.0861 0.0839

21350 0.0017 0.0017 0.0017 0.0845 0.0845 0.0845

22050 0.0034 0.0034 0.0034 0.0831 0.0831 0.0831

22400 0.0062 0.0062 0.0062 0.0832 0.0832 0.0832

22750 0.0020 0.0111 0.0045 0.0831 0.0832 0.0832

24500 0.0019 0.0106 0.0044 0.0831 0.0832 0.0832

24850 0.0025 0.0025 0.0025 0.0832 0.0832 0.0832

26250 0.0019 0.0101 0.0047 0.0831 0.0832 0.0832

26600 0.0021 0.0021 0.0021 0.0831 0.0831 0.0831

28000 0.0019 0.0097 0.0054 0.0832 0.0832 0.0832

28350 0.0093 0.0093 0.0093 0.0832 0.0832 0.0832

29050 0.0019 0.0019 0.0019 0.0832 0.0832 0.0832

29750 0.0043 0.0043 0.0043 0.0832 0.0832 0.0832

31150 0.0043 0.0043 0.0043 0.0832 0.0832 0.0832

Table B.3: KS: Zeroth and first-order entropies
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Subset size Second-Order Entropy Third-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

1750 2.1539 2.4236 2.3019 2.3790 2.6183 2.5162

3500 1.7011 2.1499 1.8810 2.1331 2.4546 2.2499

5250 0.9802 1.7690 1.3519 1.6177 2.2065 1.8841

7000 0.4004 1.1253 0.6832 0.8799 1.7528 1.2483

8750 0.1964 0.4626 0.3116 0.4174 1.0296 0.7443

10500 0.1307 0.2598 0.1800 0.2796 0.6227 0.4003

12250 0.1068 0.1746 0.1349 0.1964 0.3939 0.2790

14000 0.0929 0.1252 0.1069 0.1415 0.2836 0.1999

15050 0.1107 0.1107 0.1107 0.2089 0.2089 0.2089

15750 0.0862 0.1141 0.0980 0.1115 0.1731 0.1475

17500 0.0848 0.0973 0.0903 0.0929 0.1426 0.1215

19250 0.0831 0.0940 0.0852 0.0864 0.1206 0.0999

20650 0.0832 0.0832 0.0832 0.0862 0.0862 0.0862

21000 0.0830 0.0909 0.0848 0.0830 0.1138 0.0922

21350 0.0882 0.0882 0.0882 0.0965 0.0965 0.0965

22050 0.0831 0.0831 0.0831 0.0830 0.0830 0.0830

22400 0.0831 0.0831 0.0831 0.0858 0.0858 0.0858

22750 0.0826 0.0832 0.0830 0.0841 0.0867 0.0855

24500 0.0831 0.0832 0.0831 0.0841 0.0859 0.0848

24850 0.0831 0.0831 0.0831 0.0841 0.0841 0.0841

26250 0.0831 0.0832 0.0832 0.0832 0.0859 0.0847

26600 0.0831 0.0831 0.0831 0.0846 0.0846 0.0846

28000 0.0831 0.0832 0.0832 0.0830 0.0853 0.0838

28350 0.0832 0.0832 0.0832 0.0830 0.0830 0.0830

29050 0.0832 0.0832 0.0832 0.0832 0.0832 0.0832

29750 0.0831 0.0831 0.0831 0.0853 0.0853 0.0853

31150 0.0832 0.0832 0.0832 0.0831 0.0831 0.0831

Table B.4: KS: Second and third-order entropies
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B.1.3 Naive Bayes Wrapper

Subset size Zeroth-Order Entropy First-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

1750 0.0108 1.8003 0.2034 1.3999 2.3648 1.8125

3500 0.0073 0.5579 0.0702 1.1224 2.2803 1.6378

5250 0.0041 0.2454 0.0338 0.8372 2.0537 1.2452

7000 0.0023 0.1219 0.0186 0.6397 1.5037 0.8700

8750 0.0018 0.0755 0.0123 0.3689 0.9395 0.5844

10500 0.0016 0.0509 0.0089 0.2683 0.5943 0.3840

12250 0.0015 0.0409 0.0074 0.1851 0.3977 0.2666

14000 0.0014 0.0338 0.0064 0.1434 0.2391 0.1845

15750 0.0013 0.0286 0.0057 0.1056 0.1678 0.1321

17500 0.0013 0.0243 0.0052 0.0987 0.1217 0.1082

19250 0.0013 0.0220 0.0049 0.0909 0.1135 0.0988

21000 0.0012 0.0201 0.0047 0.0836 0.1101 0.0923

22750 0.0012 0.0185 0.0045 0.0836 0.1031 0.0895

24500 0.0012 0.0172 0.0043 0.0836 0.1058 0.0901

26250 0.0012 0.0160 0.0041 0.0835 0.0926 0.0868

28000 0.0012 0.0150 0.0040 0.0832 0.0926 0.0867

29750 0.0012 0.0141 0.0039 0.0832 0.0926 0.0864

31500 0.0012 0.0134 0.0037 0.0832 0.0926 0.0859

33250 0.0012 0.0127 0.0036 0.0832 0.0926 0.0859

35000 0.0012 0.0120 0.0035 0.0832 0.0926 0.0852

Table B.5: NB with large training set: Zeroth and first-order entropies
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Subset size Second-Order Entropy Third-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

1750 2.2915 2.5472 2.3951 2.4300 2.6172 2.5148

3500 2.0249 2.4907 2.2977 2.3395 2.6457 2.4937

5250 1.6833 2.3944 2.1286 2.0932 2.5951 2.3944

7000 1.5262 2.2835 1.9339 1.9721 2.5571 2.2807

8750 1.1875 2.0748 1.7544 1.6754 2.3579 2.1628

10500 0.9582 1.8040 1.4195 1.4588 2.1175 1.9428

12250 0.6788 1.4997 1.0674 1.2758 1.9383 1.6910

14000 0.4100 1.0815 0.7729 1.0429 1.6705 1.4540

15750 0.2949 0.7432 0.4749 0.7814 1.3058 1.0645

17500 0.1858 0.5560 0.3224 0.5732 1.1290 0.7978

19250 0.1392 0.5226 0.2346 0.3960 0.8967 0.5950

21000 0.1171 0.4668 0.2014 0.2862 0.6948 0.4638

22750 0.0952 0.3957 0.1598 0.1699 0.5906 0.3635

24500 0.0843 0.1723 0.1141 0.1237 0.4734 0.2670

26250 0.0831 0.1319 0.0985 0.0913 0.3125 0.1807

28000 0.0850 0.1201 0.0949 0.0892 0.2177 0.1374

29750 0.0847 0.0926 0.0877 0.0892 0.1835 0.1219

31500 0.0832 0.0926 0.0862 0.0851 0.1361 0.1074

33250 0.0832 0.0926 0.0859 0.0831 0.1238 0.0951

35000 0.0832 0.0926 0.0852 0.0831 0.0926 0.0855

Table B.6: NB with large training set: Second and third-order entropies
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B.1.4 Expected Partition Entropy

Subset size Zeroth-Order Entropy First-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

1750 0.0067 1.2463 0.1409 1.4021 2.0487 1.8505

3500 0.0027 0.2508 0.0321 0.9668 1.4435 1.1651

5250 0.0016 0.1017 0.0142 0.3748 0.8052 0.5387

7000 0.0014 0.0621 0.0095 0.1660 0.4798 0.2391

8750 0.0013 0.0484 0.0079 0.0987 0.1603 0.1313

10500 0.0013 0.0401 0.0070 0.0860 0.1121 0.0965

12250 0.0013 0.0344 0.0064 0.0831 0.0995 0.0882

14000 0.0013 0.0301 0.0059 0.0826 0.0934 0.0860

15750 0.0013 0.0267 0.0055 0.0827 0.0926 0.0848

17500 0.0013 0.0240 0.0052 0.0831 0.0926 0.0848

19250 0.0013 0.0219 0.0049 0.0832 0.0926 0.0846

21000 0.0012 0.0200 0.0047 0.0830 0.0926 0.0843

22750 0.0012 0.0185 0.0045 0.0831 0.0926 0.0842

24500 0.0012 0.0172 0.0043 0.0832 0.0926 0.0841

26250 0.0012 0.0160 0.0041 0.0832 0.0926 0.0841

28000 0.0012 0.0150 0.0040 0.0832 0.0926 0.0841

29750 0.0012 0.0141 0.0039 0.0832 0.0926 0.0841

31500 0.0012 0.0134 0.0037 0.0832 0.0926 0.0841

33250 0.0012 0.0127 0.0036 0.0832 0.0926 0.0841

35000 0.0012 0.0120 0.0038 0.0832 0.0926 0.0842

Table B.7: EPE with large training set: Zeroth and first-order entropies
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Subset size Second-Order Entropy Third-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

1750 2.2266 2.4961 2.3209 2.3919 2.6533 2.5218

3500 1.6924 2.1015 1.8448 2.0943 2.4192 2.2160

5250 1.0169 1.6043 1.2454 1.5282 1.9897 1.7555

7000 0.5239 1.2313 0.7017 1.0101 1.8104 1.2463

8750 0.2522 0.6020 0.3833 0.5485 1.1207 0.8405

10500 0.1760 0.2750 0.2201 0.3675 0.6398 0.5342

12250 0.0941 0.1725 0.1352 0.2237 0.4838 0.3239

14000 0.0888 0.1446 0.1116 0.1586 0.3303 0.2248

15750 0.0866 0.1362 0.0970 0.1018 0.2505 0.1603

17500 0.0836 0.1294 0.0926 0.0930 0.2165 0.1286

19250 0.0831 0.1232 0.0892 0.0861 0.1730 0.1059

21000 0.0830 0.0926 0.0855 0.0829 0.1294 0.0952

22750 0.0830 0.0926 0.0850 0.0829 0.1125 0.0907

24500 0.0830 0.0926 0.0849 0.0825 0.0940 0.0871

26250 0.0830 0.0926 0.0847 0.0830 0.0936 0.0865

28000 0.0830 0.0926 0.0841 0.0830 0.0931 0.0847

29750 0.0832 0.0926 0.0841 0.0830 0.0931 0.0841

31500 0.0832 0.0926 0.0841 0.0830 0.0926 0.0841

33250 0.0832 0.0926 0.0841 0.0830 0.0926 0.0841

35000 0.0832 0.0926 0.0842 0.0830 0.0926 0.0842

Table B.8: EPE with large training set: Second and third-order entropies
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B.2 Small Training Sets

B.2.1 Naive-Bayes Wrapper

Subset size Zeroth-Order Entropy First-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

350 0.00999 1.80181 0.20269 1.18245 2.39227 1.75819

700 0.00503 0.55546 0.06646 0.84441 1.74106 1.21650

1050 0.00256 0.25666 0.03137 0.55755 1.26301 0.80442

1400 0.00133 0.12859 0.01617 0.37125 0.91046 0.53351

1750 0.00084 0.08367 0.01046 0.19170 0.49920 0.30209

2100 0.00065 0.04379 0.00591 0.12880 0.28596 0.19331

2450 0.00060 0.02802 0.00418 0.08388 0.27271 0.15228

2800 0.00052 0.01620 0.00291 0.07448 0.21590 0.11641

3150 0.00042 0.01388 0.00258 0.06242 0.13891 0.09524

3500 0.00041 0.00959 0.00210 0.04914 0.10346 0.06836

3850 0.00041 0.00816 0.00192 0.04796 0.09427 0.06570

4200 0.00040 0.00748 0.00183 0.04796 0.08411 0.06179

4550 0.00040 0.00690 0.00176 0.04287 0.08411 0.06106

4900 0.00040 0.00641 0.00169 0.04287 0.08411 0.06105

5250 0.00039 0.00598 0.00163 0.04275 0.08411 0.06158

5600 0.00039 0.00561 0.00158 0.04275 0.08411 0.06103

5950 0.00039 0.00528 0.00153 0.04275 0.08411 0.06103

6300 0.00039 0.00499 0.00149 0.04275 0.08411 0.06103

6650 0.00039 0.00472 0.00145 0.04275 0.08411 0.06103

7000 0.00038 0.00449 0.00141 0.04275 0.08411 0.06103

Table B.9: NB with small training set: Zeroth and first-order entropies
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Subset size Second-Order Entropy Third-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

350 2.33643 2.60023 2.44137 2.40541 2.71950 2.54463

700 2.07167 2.60959 2.25634 2.36345 2.71304 2.49786

1050 1.74912 2.30093 2.00706 2.17489 2.53670 2.37010

1400 1.50563 2.07225 1.77784 2.05291 2.43055 2.24068

1750 1.07139 1.73184 1.36310 1.64476 2.27620 1.98932

2100 0.51472 1.59859 1.05667 1.30659 1.94411 1.71848

2450 0.22868 1.17215 0.74160 0.71033 1.80518 1.39276

2800 0.23164 0.92522 0.53379 0.77775 1.50323 1.15664

3150 0.18174 0.70569 0.39732 0.56071 1.28395 0.92539

3500 0.07334 0.59829 0.25650 0.31076 1.12019 0.68688

3850 0.06578 0.56065 0.17408 0.20093 1.10281 0.48635

4200 0.06381 0.16242 0.10314 0.19230 0.48432 0.31443

4550 0.06018 0.12767 0.08925 0.10387 0.45543 0.24817

4900 0.05286 0.12767 0.08153 0.07123 0.44098 0.18299

5250 0.05121 0.12028 0.07146 0.06815 0.22099 0.11874

5600 0.04736 0.09667 0.06656 0.06815 0.12028 0.08862

5950 0.04736 0.09667 0.06656 0.06018 0.10387 0.07777

6300 0.04275 0.09667 0.06555 0.05270 0.09667 0.07031

6650 0.04275 0.08411 0.06103 0.04145 0.09667 0.06755

7000 0.04275 0.08411 0.06103 0.04275 0.08411 0.06316

Table B.10: NB with small training set: Second and third-order entropies
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B.2.2 Maximum-Entropy Wrapper

Subset size Zeroth-Order Entropy First-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

350 0.00844 1.06906 0.12375 1.32562 2.09197 1.75880

700 0.00274 0.20720 0.02763 0.87124 1.57415 1.22989

1050 0.00136 0.07198 0.01091 0.52899 1.24708 0.78299

1400 0.00084 0.03785 0.00586 0.23695 0.76229 0.42385

1750 0.00060 0.02552 0.00408 0.16585 0.34762 0.24718

2100 0.00046 0.01781 0.00311 0.11866 0.29732 0.16645

2450 0.00044 0.01431 0.00266 0.06563 0.23987 0.11844

2800 0.00043 0.01187 0.00236 0.05659 0.14551 0.08249

3150 0.00041 0.01045 0.00220 0.04796 0.12585 0.07327

3500 0.00040 0.00940 0.00207 0.04306 0.11237 0.06925

3850 0.00040 0.00855 0.00196 0.04306 0.08671 0.06382

4200 0.00040 0.00784 0.00187 0.04306 0.08411 0.06108

4550 0.00040 0.00690 0.00176 0.04287 0.08411 0.06106

4900 0.00040 0.00641 0.00169 0.04287 0.08411 0.06104

5250 0.00039 0.00598 0.00163 0.04275 0.08411 0.06103

5600 0.00039 0.00561 0.00158 0.04275 0.08411 0.06103

5950 0.00039 0.00528 0.00153 0.04275 0.08411 0.06103

6300 0.00039 0.00499 0.00149 0.04275 0.08411 0.06103

6650 0.00039 0.00472 0.00145 0.04275 0.08411 0.06103

7000 0.00038 0.00449 0.00141 0.04275 0.08411 0.06103

Table B.11: ME with small training set: Zeroth and first-order entropies
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Subset size Second-Order Entropy Third-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

350 2.13045 2.46302 2.32540 2.41287 2.61951 2.52242

700 1.65177 2.28672 2.01163 2.09289 2.59921 2.36409

1050 1.24143 2.15681 1.71657 1.76964 2.48543 2.17805

1400 0.82022 1.94443 1.26849 1.40216 2.35299 1.86815

1750 0.62222 1.30959 0.91216 1.10899 1.94842 1.58134

2100 0.28718 1.08471 0.61372 0.75247 1.78582 1.21127

2450 0.23776 0.55638 0.38333 0.62462 1.20261 0.90026

2800 0.13525 0.37781 0.23225 0.36836 0.76324 0.60545

3150 0.11118 0.23638 0.16398 0.25000 0.67098 0.49360

3500 0.06742 0.21353 0.11741 0.16759 0.62021 0.36203

3850 0.04306 0.14621 0.08475 0.10415 0.42975 0.23932

4200 0.04306 0.09838 0.07341 0.08815 0.36218 0.17164

4550 0.04287 0.08411 0.06830 0.07167 0.22063 0.13351

4900 0.04287 0.08411 0.06869 0.05286 0.17047 0.09375

5250 0.04275 0.08411 0.06103 0.05286 0.12938 0.07485

5600 0.04275 0.08411 0.06103 0.04275 0.09555 0.06751

5950 0.04275 0.08411 0.06103 0.04275 0.08974 0.06364

6300 0.04275 0.08411 0.06103 0.04275 0.08974 0.06239

6650 0.04275 0.08411 0.06103 0.04275 0.08411 0.06103

7000 0.04275 0.08411 0.06103 0.04275 0.08411 0.06103

Table B.12: ME with small training set: Second and third-order entropies
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B.2.3 Expected Partition Entropy

Subset size Zeroth-Order Entropy First-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

350 0.00689 0.87186 0.10271 1.08095 1.92845 1.71987

700 0.00146 0.09949 0.01451 0.59409 1.44773 0.95618

1050 0.00078 0.03394 0.00539 0.16272 0.73279 0.39121

1400 0.00061 0.02270 0.00360 0.10530 0.34139 0.16390

1750 0.00043 0.01795 0.00304 0.07700 0.16466 0.10772

2100 0.00041 0.01496 0.00271 0.05146 0.11090 0.08539

2450 0.00041 0.01282 0.00247 0.05146 0.08411 0.07094

2800 0.00041 0.01122 0.00229 0.04414 0.08411 0.06353

3150 0.00041 0.00997 0.00214 0.04414 0.08411 0.06280

3500 0.00040 0.00898 0.00202 0.04414 0.08411 0.06218

3850 0.00040 0.00816 0.00192 0.04298 0.08411 0.06130

4200 0.00040 0.00748 0.00183 0.04275 0.08411 0.06128

4550 0.00040 0.00690 0.00176 0.04275 0.08411 0.06129

4900 0.00040 0.00641 0.00169 0.04275 0.08411 0.06103

5250 0.00039 0.00598 0.00163 0.04275 0.08411 0.06103

5600 0.00039 0.00561 0.00158 0.04275 0.08411 0.06103

5950 0.00039 0.00528 0.00153 0.04275 0.08411 0.06103

6300 0.00039 0.00499 0.00149 0.04275 0.08411 0.06103

6650 0.00039 0.00472 0.00145 0.04275 0.08411 0.06103

7000 0.00038 0.00449 0.00141 0.04275 0.08411 0.06103

Table B.13: EPE with small training set: Zeroth and first-order entropies



B.2. Small Training Sets 201

Subset size Second-Order Entropy Third-Order Entropy

Minimum Maximum Mean Minimum Maximum Mean

350 2.16026 2.49560 2.33069 2.38906 2.71052 2.55185

700 1.33751 2.10093 1.71875 1.91439 2.41208 2.18651

1050 0.56193 1.71432 1.13308 1.14531 2.27878 1.73270

1400 0.31358 0.93414 0.54084 0.70094 1.60337 1.12966

1750 0.22895 0.55852 0.30651 0.48029 1.16343 0.74407

2100 0.15700 0.28071 0.20454 0.34346 0.74723 0.53890

2450 0.10788 0.19958 0.15271 0.30350 0.59131 0.41250

2800 0.07799 0.16561 0.11570 0.19677 0.41086 0.31162

3150 0.05156 0.14921 0.09362 0.13617 0.28012 0.22522

3500 0.04406 0.14063 0.08265 0.10642 0.27163 0.19200

3850 0.04291 0.14063 0.07652 0.07900 0.22372 0.14563

4200 0.04275 0.13667 0.07200 0.07099 0.19015 0.12961

4550 0.04275 0.08411 0.06229 0.04598 0.19050 0.10611

4900 0.04275 0.08411 0.06181 0.04268 0.19050 0.08844

5250 0.04275 0.08411 0.06082 0.04275 0.14935 0.07664

5600 0.04275 0.08411 0.06100 0.04275 0.12028 0.06761

5950 0.04275 0.08411 0.06103 0.04275 0.12028 0.06681

6300 0.04275 0.08411 0.06103 0.04275 0.08411 0.06103

6650 0.04275 0.08411 0.06103 0.04275 0.08411 0.06103

7000 0.04275 0.08411 0.06103 0.04275 0.08411 0.06103

Table B.14: EPE with small training set: Second and third-order entropies





Appendix C

Tables of Results: Reuters Document

Classification

The following tables refer to the experiments with classification of Reuters news stories

by topic presented in Chapter 8; see that chapter for additional details.

C.1 Order of the ECE Metric

Tables C.1 and C.2 give the mean size of subset at which ECE of each order reached

its minimal value of zero, and the number of training sets for which this minimization

occurred, for the coffee/iron-steel/livestock and gold/reserves/gdp classi-

fication tasks. As discussed in Sections 4.5 and 8.5, the order is the maximum number

of feature values by which two vectors of feature values can differ, if they are to be

regarded as equivalent for the purposes of calculating the expected entropy.

The final order of ECE used was one greater than the highest order at which opti-

misation occurred. So for the first classification task, the final order was 22 for eight

training/test splits, 27 for one split, and 28 for one split. For the second, the final order

was 31 in all cases.
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ECE Order Mean Size for Optimisation Number of Sets

0 81 10

1 115 10

2 145 10

3 172 10

4 208 10

5 232 10

6 260 10

7 290 10

8 318 10

9 354 10

10 384 10

11 414 10

12 445 10

13 473 10

14 504 10

15 540 10

16 580 10

17 620 10

18 659 10

19 707 10

20 762 10

21 844 10

22 825 2

23 875 2

24 905 2

25 980 2

26 1060 2

27 1190 1

Table C.1: Behaviour of the ECE metric with coffee/iron-steel/livestock training

data.
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ECE Order Mean Size for Optimisation Number of Sets

0 62 10

1 93 10

2 116 10

3 142 10

4 170 10

5 194 10

6 219 10

7 242 10

8 268 10

9 293 10

10 321 10

11 348 10

12 372 10

13 401 10

14 427 10

15 456 10

16 485 10

17 508 10

18 539 10

19 570 10

20 603 10

21 635 10

22 667 10

23 703 10

24 734 10

25 770 10

26 804 10

27 844 10

28 886 10

29 953 10

30 1015 10

Table C.2: Behaviour of the ECE metric with gold/reserves/gdp training data.
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C.2 Accuracy on Test Data

Evaluation was conducted with the naive-bayes learner described in Section 2.3.3, and

tenfold cross-validation was carried out. Tables C.3 and C.4 give the mean accuracy

over each of the ten training/test splits for each size of feature subset. The mean

accuracy for the maximal sets of approximately 2400 features was 90.09% for the

coffee/iron-steel/livestock task and 89.60% for gold/reserves/gdp.

Number of Features Mean Pecentage Accuracy

100 78.63

200 83.71

300 88.78

400 89.75

500 88.19

600 89.77

700 91.36

800 92.32

900 91.04

1000 91.36

1100 92.00

1200 90.72

1300 90.08

1400 89.76

1500 89.12

Table C.3: Classification accuracy with coffee/iron-steel/livestock training data

and feature subsets selected by ECE.
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Number of Features Mean Accuracy

100 90.13

200 93.92

300 92.76

400 91.59

500 92.46

600 92.76

700 92.76

800 92.77

900 92.76

1000 92.19

1100 92.19

1200 92.77

1300 91.63

1400 91.06

1500 91.34

Table C.4: Classification accuracy with gold/reserves/gdp training data and feature

subsets selected by ECE.





Bibliography

[AB96] D.W. Aha and R.L. Bankert. A comparative evaluation of sequential

feature selection algorithms. In D. Fisher and J.H. Lenz, editors, Artificial

Intelligence and Statistics. Springer-Verlag, 1996.

[Acu03] Edgar Acuna. A comparison of filters and wrappers methods for feature

selection methods in supervised classification. In Interface 2003: Secu-

rity and Infrastructure Protection, Salt Lake City, Utah, 2003.

[AD91] H. Almuallim and T. G. Dietterich. Learning with many irrelevant fea-

tures. In Proceedings of the Ninth National Conference on Artificial In-

telligence (AAAI-91), volume 2, pages 547–552, Anaheim, California,

1991. AAAI Press.

[Arm97] M.A. Armstrong. Groups and Symmetry. Springer-Verlag, 1997.

[AZ00] D. Antonic and M. Zagar. Method for determining classification sig-

nificant features from acoustic signature of mine-like buried objects.

In Landmine Detection Workshop, 15th World Conference on Non-

Destructive Testing, Rome, Italy, October 2000.

[BDPDP96] A. Berger, S. Della Pietra, and V. Della Pietra. A maximum entropy

approach to natural language processing. Computational Linguistics,

22(1):39–71, 1996.

[Ber99] A. Berger. Error-correcting output coding for text classification. In IJ-

CAI’99: Workshop on machine learning for information filtering, 1999.

Stockholm, Sweden.

209



210 Bibliography

[BL97] Avrim Blum and Pat Langley. Selection of relevant features and examples

in machine learning. Artificial Intelligence, 97(1-2):245–271, 1997.

[CT91] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley

Interscience, 1991.

[DCSL02] M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature selection for

clustering – a filter solution. In Proceedings of IEEE International Con-

ference on Data Mining (ICDM), pages 115–122, December 2002.

[DL97] M. Dash and H. Liu. Feature selection for classification. Intelligent Data

Analysis, 1(3), 1997.

[DPDPL97] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of

random fields. IEEE Transactions on pattern analysis and machine in-

telligence, 19(4):380–393, April 1997.

[For03] George Forman. An extensive empirical study of feature selection met-

rics for text classification. The Journal of Machine Learning Research,

3:1289–1305, March 2003.

[GE03] Isabelle Guyon and Andre Elisseeff. An introduction to variable and

feature selection. Journal of Machine Learning Research, 3:1157–1182,

March 2003.

[Gol89] David E. Goldberg. Genetic algorithms in search, optimization, and ma-

chine learning. Addison-Wesley, 1989.

[GT03] Amir Globerson and Naftali Tishby. Sufficient dimensionality reduction.

Journal of Machine Learning Research, 3:1289–1305, Mar 2003.

[GW86] G. Grimmett and D. Welsh. Probability: An Introduction. Oxford Uni-

versity Press, 1986.

[HY01] M.H. Hansen and B. Yu. Model selection and the principle of mini-

mum description length. Journal of the American Statistical Association,

96:746–774, 2001.



Bibliography 211

[IGS01] Panagiotis G. Ipeirotis, Luis Gravano, and Mehran Sahami. Probe, count,

and classify: Categorizing hidden web databases. In SIGMOD Confer-

ence, 2001.

[ILS01] I. Inza, P. Larranaga, and B. Sierra. Feature subset selection by bayesian

networks: a comparison with genetic and sequential algorithms. Interna-

tional Journal of Approximate Reasoning, 27(2):143–164, 2001.

[JKP94] George John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the

subset selection problem. In Machine Learning: Proceedings of the

Eleventh International Conference, pages 121–129. Morgan Kaufmann,

July 1994.

[KJ97] Ron Kohavi and George H. John. Wrappers for feature subset selection.

Artificial Intelligence, 97(1-2):273–324, 1997.

[KJ98] R. Kohavi and G.H. John. The wrapper approach. In H. Liu and H. Mo-

toda, editors, Feature Selection for Knowledge Discovery and Data Min-

ing, pages 33–50. Kluwer Academic Publishers, 1998.

[KL97] Kambhatla and Lee. Dimension reduction by local principal component

analysis. Neural Computation, 9:1493–1516, 1997.

[KS95] Ron Kohavi and Dan Sommerfield. Feature subset selection using the

wrapper model: Overfitting and dynamic search space topology. In The

First International Conference on Knowledge Discovery and Data Min-

ing, pages 192–197. AAAI Press, Menlo Park, California, August 1995.

Journal version in AIJ, available at http://citeseer.nj.nec.com/13663.html.

[KS96] Daphne Koller and Mehran Sahami. Toward optimal feature selection. In

International Conference on Machine Learning, pages 284–292, 1996.

[Lan94] Pat Langley. Selection of relevant features in machine learning. In Pro-

ceedings of the AAAI Fall Symposium on Relevance, New Orleans, USA,

1994. AAAI Press.



212 Bibliography

[Lew98] David Lewis. Naive bayes at forty: The independence assumption in

information retrieval. In Proc. 10th European Conference on Machine

Learning ECML-98, pages 4–15, 1998.

[LS94] Pat Langley and Stephanie Sage. Oblivious decision trees and abstract

cases. In Working Notes of the AAAI-94 Workshop on Case-Based Rea-

soning. AAAI Press, 1994.

[LS98] H. Liu and R. Setiono. Some issues on scalable feature selection. In

4th World Congress of Expert Systems: Application of Advanced Info.

Technologies, 1998.

[LS6a] H. Liu and R. Setiono. Feature selection and classification - a probabilis-

tic wrapper approach. In Proceedings of the Ninth International Confer-

ence on Industrial and Engineering Applications of AI and ES, 1996a.

[LY02] H. Liu and L. Yu. Feature selection for data mining. Survey draft avail-

able at http://www.public.asu.edu/ huanliu/, 2002.

[Mal02] Robert Malouf. A comparison of algorithms for maximum entropy pa-

rameter estimation. In Proceedings of the Sixth Conference on Natural

Language Learning (CoNLL-2002), pages 49–55, 2002.

[MN98] Andrew McCallum and Kamal Nigam. A comparison of event models

for naive bayes text classification. In AAAI-98 Workshop on Learning for

Text Categorization. 1998.

[MSM95] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz.

Penn treebank release 2. Linguistic Data Consortium (LDC), University

of Pennsylvania, 1995. CD-ROM catalogue number LDC95T7.

[Pri97] H.A. Priestley. Introduction to Integration. Oxford University Press,

1997.

[Rat96] Adwait Ratnaparkhi. A maximum entropy part-of-speech tagger. In Pro-

ceedings of the Empirical Methods in Natural Language Processing Con-

ference, 1996.



Bibliography 213

[Rat98] Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language

Ambiguity Resolution. PhD thesis, University of Pennsylvania, 1998.

[Reu] Reuters. Reuters text categorization corpus 21578. Available from

http://www.daviddlewis.com/resources/testcollections/reuters21578/.

See also http://about.reuters.com/researchandstandards/corpus/available.asp.

[Ros96] Ronald Rosenfeld. A maximum entropy approach to adaptive statistical

language modeling. Computers, Speech and Language, (10):187–228,

1996.

[Sah99] M. Sahami. Using Machine Learning to Improve Information Access.

PhD thesis, Computer Science Department, Stanford University, 1999.

[SH98] D. H. Schuschel and C.N. Hsu. A weight analysis-based wrapper ap-

proach to neural nets feature selection. In Proceedings of the 10th IEEE

International Conference on Tools with AI (ICTAI-98), pages 89–96,

1998.

[Ska94] David B. Skalak. Prototype and feature selection by sampling and ran-

dom mutation hill climbing algorithms. In International Conference on

Machine Learning, pages 293–301, 1994.

[SL00] H.S. Seung and D.D. Lee. The manifold ways of perception. Science,

290:2319–2323, 2000.

[SN02] Marc Sebban and Richard Nock. A hybrid filter/wrapper approach of fea-

ture selection using information theory. Pattern Recognition, 35(4):835–

846, 2002.

[SYBL02] Z. Sun, X. Yuan, G. Bebis, and S. Louis. Genetic feature subset selection

for gender classification: A comparison study. In Sixth IEEE Workshop

on Applications of Computer Vision, December 2002.

[TA03] M. Toews and T. Arbel. Entropy-of-likelihood feature selection for image

correspondence. In Proceedings of the Ninth IEEE International Confer-

ence on Computer Vision, pages 1041 –1047, October 2003.



214 Bibliography

[TdSL00] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric

framework for nonlinear dimensionality reduction. Science, 290:2319–

2323, 2000.

[TFMF01] G. D. Tourassi, E. D. Frederick, M. K. Markey, and C.E. Floyd, Jr.

Application of the mutual information criterion for feature selection in

computer-aided diagnosis. Medical Physics, 28:2394–2402, 2001.

[VD93] H. Vafaie and K. DeJong. Robust feature selection algorithms. In

Proceedings of the Fifth Conference on Tools for Artificial Intelligence,

Boston, MA, pages 356–363, 1993.

[VD95] H. Vafaie and K. DeJong. Genetic algorithms as a tool for restructuring

feature space representation. In Proc. of the International Conference on

Tools with Artificial Intelligence. IEEE Computer Soc. Press, 1995.

[XCDS02] L. Xie, S.F. Chang, A. Divakaran, and H. Sun. Learning hierarchical

hidden markov models for video structure discovery. Technical Report

2002-006, ADVENT Group, Columbia Univ., December 2002.

[YH98] Jihoon Yang and Vasant Honavar. Feature subset selection using a genetic

algorithm. IEEE Intelligent Systems, 13:44–49, 1998.

[YP97] Yiming Yang and Jan O. Pedersen. A comparative study on feature se-

lection in text categorization. In Douglas H. Fisher, editor, Proceedings

of ICML-97, 14th International Conference on Machine Learning, pages

412–420, Nashville, US, 1997. Morgan Kaufmann Publishers, San Fran-

cisco, US.

[ZH02] M. Zaffalon and M. Hutter. Robust feature selection by mutual informa-

tion distributions. In A. Darwiche and N. Friedman, editors, UAI-2002:

Proceedings of the 18th Conference on Uncertainty in Artificial Intelli-

gence, pages 577–584, 2002.


