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1 INTRODUCTION

Researchers have been investigating methods for retrieving the articulation underlying an acoustic
speech signal for more than three decades. A successful method would find many applications,
for example: low bit-rate speech coding, helping individuals with speech and hearing disorders by
providing visual feedback during speech training, and the possibility of improved automatic speech
recognition.

A good deal of work has been based on analytical techniques, such as inverse filtering, or on the
use of articulatory synthesis models. However, thanks to technologies such as as X-Ray microbeam
(XRMB) cinematography and electromagnetic articulography (EMA), measured human articulatory
data has become increasingly accessible. This real, human data is arguably preferable to the use
of analytical or articulatory synthesis models, where intrinsic flaws in the models themselves can
confuse the picture.

A relatively small number of empirical learning models applied to human articulatory data have been
described in the literature. These include extended Kalman filtering ([5]), artificial neural networks1

([14]), self-organising HMMs ([16]) and codebook methods ([7]). However, these efforts have mostly
been limited to some subsection of full speech, such as a few stop-consonants or vowel transitions.

In previous work at CSTR, we have investigated using both feed-forward and recurrent neural net-
works to model the inversion mapping during full, continuous speech. In such network models, where
the aim of training is to minimise a sum-of-squares error function, the outputs approximate the aver-
age of the target data, conditioned on the input vector. However, this conditional average can provide
only a very limited, and in many cases problematic, description of the variables in the target domain.
This limitation is particularly acute for ill-posed problems where the mapping may be multi-valued,
such as in the case of the acoustic-to-articulatory inversion mapping. For this task, the average of
several correct target values is not necessarily itself correct.

Mixture density networks (MDN) represent a principled method to model full probability density func-
tions over the positions of the target variables in the articulatory domain, conditioned on acoustic
input vectors. This is achieved by modelling the conditional distribution for each target vector with

1Hereafter referred to simply as “neural networks” or ANNs
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a Gaussian mixture model, the parameters for which are generated using a multilayer perceptron
(MLP) trained using a standard optimisation technique, but with specialised error functions.

We report here on applying MDNs to acoustic-to-articulatory inversion. The data used for the ex-
periments we describe comprise 460 (British) TIMIT sentences read by a female speaker, which
were recorded at the EMA facility located at Queen Margaret College, Edinburgh. This corpus is
designed to capture wide phonetic diversity, and hence maximises the potential for investigating the
one-to-many problem inherent in the inversion mapping.

This paper will first provide a brief introduction to the difficulties inherent in the acoustic-to-articulatory
inversion mapping. Specifically, we shall look at non-uniqueness. Next, we introduce the human
articulatory data that has been used in the experiments described, and how it was processed for
use as training data for the neural networks. The characteristics of two networks for performing
the acoustic-to-articulatory inversion mapping are then compared. The first of these is a standard
feedforward multi-layer perceptron (MLP). The second is a mixture density network. As MDNs are
not as well known as the more common neural network models, we include a short description of the
model itself for the reader’s convenience.

2 NON-UNIQUENESS

Human experimental evidence from as early as the 1920’s has demonstrated that a speaker is ca-
pable of producing acoustic signals very close to the intended sound even when the jaw is fixed in
an unnatural position by a bite-block. For example, [11] compared the formant frequencies for four
Swedish vowels (/i,u,o,a/) produced by six speakers both when the jaw was free to move and when
fixed in a certain position by a bite block (2.5 and 22.5mm thick). They found that despite the physio-
logically unnatural position of the jaw enforced by the bite block, the speakers were able to produce
vowels with formant patterns well within the range of variation of a set of vowels spoken under normal
conditions. Moreover, they comment that to achieve this, the speakers did not require any training
time or practice. The capability of a speaker to vary their articulation in order to produce the desired
speech sound has been termed articulatory compensation. As an extreme, if somewhat anecdo-
tal, example of articulatory compensation, consider the ventriloquist, who can produce an intelligible
speech stream while appearing to not to be articulating anything!

The existence of articulatory compensation suggests that a given acoustic speech frame may have
been produced by any of a number of articulatory configurations. In fact, a significant amount of
evidence has accrued from other research areas which supports this view of speech production, for
example mathematical theory, manipulation of articulatory synthesis models and analysis of human
articulatory data.

Work done using articulatory synthesis models has raised several doubts concerning the overall
viability of acoustic-to-articulatory inversion. For example, [1] placed significant emphasis on investi-
gating what they called “fibers” in the articulatory space, and applied a numerical inversion method to
studying them. A fiber is defined as a region in articulatory space within which movement produces
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no change in the corresponding acoustic output. They demonstrated, for example, that the mouth
opening of their articulatory model can vary considerably without affecting the formants characteristic
of an /i/ vowel. As an additional example, they presented multiple vocal tract area functions that have
identical first three formant frequencies for several vowels.

Although bite block experiments and articulatory synthesis models indicate in theory that multiple
configurations of the articulators are capable of producing a single speech sound, it is not necessarily
the case that this should occur in normal human speech. For this reason, the empirical evidence put
forward by Roweis ([16]) is most compelling. Roweis had at his disposal a database of approximately
175,000 midsagittal articulatory “snapshots”, along with the simultaneous audio signal, recorded
by X-ray microbeam cinematography at Wisconsin University. From this he compiled a data set of
acoustic-articulatory vector pairs. The acoustic feature vectors consisted of line spectral pairs (LSP)
calculated over a 23.5ms window centred on each articulatory sample time point. The articulatory
feature vector comprised the x- an y- coordinates of eight articulator points.

One of these acoustic-articulatory vector pairs was then selected and its 1000 nearest neighbouring
vector pairs in the acoustic domain were found. This was done using a Mahalanobis distance metric
based on the global covariance of the acoustic data. The vector pairs found in this way could be
plotted in the articulatory domain (i.e. the x- coordinate against the y- coordinate separately for each
of the eight articulatory points) to produce scatter plots. If the points in articulatory space fell within a
tightly constrained area, it would mean the that the relationship between acoustics and articulation is
a straightforward mapping. However, the plots produced in [16] feature wide spreads and multimodal
distributions for the points in articulatory space corresponding to neighbouring points in acoustic
space.

If humans do use a range of articulations to produce a single given acoustic signal, then the inversion
mapping is a classic example of what is termed an ill-posed problem, as the solution may be non-
unique. It raises the question of how an inversion algorithm should decide between all the possible
configurations that might be associated with a given acoustic feature vector.

Among all the different approaches to performing the inversion mapping described in the literature,
we can identify a common strategy for attempting to disambiguate one-to-many mappings:

1. perform an instantaneous mapping from the acoustic domain to the articulatory domain

2. perform some sort of post processing or smoothing on the resulting trajectories on the basis of
some articulatory constraints.

In other words, researchers have sought ways to use the continuous and relatively slow movements
of the articulators to disambiguate instantaneous uncertainty. This is done by incorporating addi-
tional constraints on the articulatory configurations recovered from acoustics and their dynamic be-
haviour from one time frame to the next. However, within this common strategy of using articulatory
constraints, there is a dichotomy in philosophy. On one hand, some researchers choose to ignore
instantaneous non-uniqueness in the hope that errors introduced by doing so will be minimised by
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the continuity constraints. On the other hand, researchers take instantaneous non-uniqueness into
account and build into their model some means for dealing with multiple candidate output articula-
tory configurations for each acoustic input time frame. In this case, the intention is that articulatory
constraints can chart some optimum course through the series of possibilities; correct information
pertaining to articulator positions recovered when the mapping is not ill-posed when taken with con-
straints on articulatory movements will disambiguate problematic sections of speech where the map-
ping is non-unique.

The constraints used can vary widely in complexity. Lowpass filtering the articulatory trajectories im-
poses an articulatory constraint of sorts when the pass band is set to equal the bandwidth observed
for human articulatory movements. A whole range of more complex articulatory constraints have also
been employed. One example of the constraints used is [15], who as part of a dynamic programming
search through the output of their networks used a cost function constraining articulatory trajectories
to be a smooth as possible. Meanwhile, others, e.g. [10] suggest employing the constraint of econ-
omy of effort. The ideal trajectory under this constraint is one where the articulators move as little
as possible. More elaborate techniques have been suggested, such as [4], whose system features
a recurrent algorithm that takes into account the dynamic properties of the articulators. At time �,
the position of the articulators at time � � � is forward estimated using the current position together
with the velocity and acceleration of the articulatory parameters. Then, at time � � �, the candidate
positions for the articulators given the acoustics (they use a codebook approach in this case) are
compared to the estimate calculated at the previous time step, and the best is selected.

Where researchers have turned to articulatory constraints in an effort to circumvent instantaneous
non-uniqueness, the underlying motivation generally seems to be to recover the position of each
articulator as accurately as possible at all times. However, it is not guaranteed whether following
this path, by incorporating more and more constraints, will lead to a perfect method for performing
the inversion mapping. In other words, it may be the case that no number of constraints that may
be reasonably formulated and applied will be able to disambiguate completely the movements of
articulators recovered from the acoustic signal.

Consider the case where a range of articulatory configurations (or articulatory “fiber”) may produce
an acoustic vector, but that within this range, one or more of the articulators may be well defined,
while others may vary as has been proposed by [1]. This may be demonstrated by the hypothetical
example of the production of an /m/ segment. The lips and the velum are critical to the production
of this sound. However, the movement of the tongue is not critical to producing an /m/ segment.
During the bilabial closure, the tongue could take any number of positions. The exact movements
of the tongue will presumably depend to a large extent on the neighbouring sounds (anticipatory
articulation, coarticulation and so on). Knowing these, it might be possible to make a best guess at
how the tongue moves during the time where it is non-critical, however, there will arguably always be
a some degree of uncertainty in this estimate.

The motivation for the approach described in this paper differs significantly from the apparent aim of
previous work. In addition to employing methods to disambiguate instantaneous non-uniqueness, it
is the intention of this approach to explicitly model the uncertainty, or variance, around an estimate
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of an articulator’s position. This approach is motivated by the view that, if inferred articulation is to
provide useful application, we need to know how much confidence to ascribe to the accuracy of the
inferred articulatory parameters at each point in time.

3 HUMAN ARTICULATORY DATA

In order to investigate the acoustic-to-articulatory inversion mapping, researchers have turned to an-
alytical methods and articulatory synthesis models among others. Unfortunately, these approaches
are typically afflicted by certain fundamental difficulties. First, there is no obvious way of assessing
the accuracy of the inferred vocal tract area function. Second, there is the related difficulty in deciding
whether a given estimate of the vocal tract area function is even physiologically possible, let alone
likely! Third, there exists the danger that limitations of the analysis or articulatory synthesis models
can exert a deleterious effect and impede progress. For example, inverse filtering methods are only
really suited to a subset of phone types: vowels and voiced consonants. Major difficulties arise for
analysis during nasalised sounds, where the velum lowers and the oral and nasal cavities become
coupled. Voiceless sounds are likewise ill-suited to analysis.

Measured human articulatory data is an extremely valuable resource for helping to develop an inver-
sion mapping method. It is arguably much more useful than data generated by articulatory synthesis
models. Synthesised data may contain artifacts resulting from limitations and inaccuracies in the gen-
erating model. What is more, we are not left with the same difficulties in assessing how an inversion
method is really performing. There is no more accurate production model for a speech signal that
the vocal tract that actually produced it! We can assess the performance of an inversion algorithm by
comparing the output with how the speaker actually articulated an utterance.

Despite the obvious advantages, surprisingly limited work has been done on the inversion mapping
using measured human articulatory data. The studies that have been done have focused almost
entirely on a restricted set of speech sounds only. There is fortunately little overlap between these
restricted sets, and therefore we are taken some way to hoping that inversion is possible for all speech
sounds. However, there is no substitute for actually attempting inversion for all speech sounds at once
and for continuous speech. Attempting this and reporting the results is a very necessary research
step.

3.1 MOCHA

The Multichannel Articulatory (MOCHA) database is currently being recorded in the sound damped
studio at the Edinburgh Speech Production Facility based in the department of Speech and Language
Sciences, Queen Margaret University College, UK ([18]). By May 2001, the MOCHA database is
intended to feature forty speakers with a variety of regional accents. So far, two speakers have been
made available, one male (with a Northern English accent) and one female speaker (with a Southern
English accent).
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While the subject speaks, four data streams are recorded concurrently straight to computer: the
acoustic waveform (16kHz sample rate, with 16 bit precision) together with laryngograph, elec-
tropalatograph and electromagnetic articulograph data. The electromagnetic articulograph samples
the movement of receiver coils attached to the articulators in the midsagittal plane at 500Hz. Coils
are attached to the top lip, bottom lip, bottom incisor, tongue tip, tongue body, tongue dorsum and
velum. Additional coils are attached to the bridge of the nose and the upper incisor, but the signals
from these coils, which should have minimal movement relative to each other, are only used as part
of an algorithm which processes the other EMA channels to correct for head movement.

The speaker is recorded reading a set of 460 British TIMIT sentences. These short sentences are
designed to provide “phonetically-diverse” material to maximise the usefulness of the data for speech
technology and speech science research purposes. It is intended to capture with good coverage the
main connected speech processes in English, for example assimilation.

For this paper, the acoustic waveform and EMA data recorded for the female speaker (�����) has
been used.

3.2 Processing

In order to render the raw parallel articulatory and acoustic data into a format suitable for use with
neural networks, several processing steps were carried out. First, filterbank analysis was carried out
on the acoustic signal, using a Hamming window of 20ms with a shift of 10ms. For each time frame,
the acoustic vector consisted of 20 mel-scale filterbank coefficients. These were normalised across
all 460 utterances to lie within the range [0.0, 1.0]. The EMA traces were downsampled to match the
10ms shift rate of these acoustic feature vectors. This was done by first lowpass filtering the signal
(forwards, then backwards to counteract phase distortion). The articulatory feature vectors were
normalised to lie in the range [0.1, 0.9] for training the MLP. This is because the logistic activation
function of the output units in this network has the unrealisable asymptotic limits of 0.0 and 1.0. For
the mixture density network, which we shall see has a linear activation function for the equivalent
output units, the articulatory feature vectors were normalised to lie in the range [-1.0, 1.0]. From the
460 utterances contained in the database of speaker �����, 368 files were included in the training
set, 46 files in a validation set, while 46 files were put aside for the test set. The training set contained
92,557 pairs of acoustic and articulatory feature vectors.

4 INVERSION BY MLP

A neural network, once trained, requires only modest computational resources relative to other mod-
els in terms of both memory space and speed of execution. This factor has spurred interest in
neural networks for several researchers working on the acoustic-to-articulatory inversion mapping.
For example, [15] cite this as a major motivation for working with neural networks. The total memory
requirement of their trained assembly of neural networks was just 4% of that required by the code-
book they used for comparison, without any perceived loss of quality. In addition, the network system
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Figure 1: Feedforward MLP for performing the inversion mapping. This network shows the presenta-
tion of an acoustic input vector, made up of 10 time frames of 20 filterbank coefficients. Each frame
of filterbank coefficients was computed with a shift of 10ms, therefore the total context window of
acoustic input applied to the network is approximately 100ms.

provided a mapping from acoustics to articulatory parameters 20 times faster than the codebook
lookup.

The low computational cost of neural networks relative to other methods is still a highly desirable
property, even in this day of ever more powerful computers. The work described by [14], [19], [15]
and [9] in particular, has provided very useful insight into how we might expect neural networks to
perform the acoustic-to-articulatory inversion mapping, and that there is a strong case for attempting
a neural network mapping on greater quantities of phonetically diverse speech.

4.1 Architecture

The topology of the feedforward MLP used in this paper is shown in Figure 1. As discussed in Section
2, the instantaneous mapping from acoustics to articulation is liable to contain multiple solutions. The
use of a context window in the acoustic input domain is intended to alleviate this instantaneous non-
uniqueness.
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Figure 2: Comparison of real and estimated articulatory trajectories. The test utterance shown here
is “Masquerade parties tax ones imagination”. The real articulatory trajectory is shown as the solid
line, while the trajectory estimated by the MLP is shown as the dashed line. The silence at the
beginning and end of the utterance within the file have been removed.

4.2 Training

The MLP shown in Figure 1 was trained using the Scaled Conjugate Gradients ([12]) algorithm until
the error ceased to reduce on the separate validation data set. First order optimisation algorithms,
such as standard backpropagation gradient descent, only make use of the first derivatives of the
error function. Conjugate gradient optimisation algorithms on the other hand make use of the sec-
ond derivatives of the error function. As with standard backpropagation, conjugate gradient methods
iteratively approach a minimum in the error function. However, whereas standard backpropagation
always proceeds in the direction of the gradient of the error function, a conjugate gradient method
will proceed in a direction which is conjugate to the directions of the previous steps. Thus, the min-
imisation performed at one step is not partially undone by the next. It is the generally held view that
second order techniques find a better way to a (local) minimum than first order techniques, although
they incur higher computational cost at each cycle of training. Scaled Conjugate Gradients has been
shown to be considerably faster than standard backpropagation and other conjugate gradient meth-
ods ([12]).
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Articulator RMSE (mm)
upper lip x 0.8
upper lip y 1.0
lower lip x 1.0
lower lip y 2.2

lower incisor x 0.7
lower incisor y 1.0

tongue tip x 2.1
tongue tip y 2.2

tongue body x 1.9
tongue body y 1.9

tongue dorsum x 1.8
tongue dorsum y 2.1

velum x 0.4
velum y 0.4

Table 1: Root mean square error (in millimetres) between real and network estimated trajectories for
the unseen test set.

4.3 Results

Figure 2 shows a comparison between the real and MLP estimated EMA trajectories for an unseen
sentence from the test set. The sentence reads “Masquerade parties can tax ones imagination.” It
is important to note that these trajectories (both the estimated and real EMA in fact) have been low-
pass filtered at 15Hz. Smoothing in this way can be viewed as applying an articulatory constraint to
the sequence of articulatory configurations recovered by the network at each time frame ([7]).

As evident in this example, the MLP is typically capable of estimating the trajectories of some articu-
lators with a good level of accuracy at some times, but less so at other times.

Table 1 gives a more quantitative impression of how the MLP performs the acoustic-to-articulatory
inversion mapping. The average of the RMSE values shown is 1.4 millimetres. These results com-
pare favourably with previous reports comparing estimated articulatory trajectories with measured,
human trajectories; [7] report an error around 2mm for the tongue points; [5] reports average RMS
error of around 2mm; [13] report RMS error between estimated and actual articulatory trajectories of
about 1.65mm on average.

5 MIXTURE DENSITY NETWORKS

We saw in Section 4 that the MLP performed on a par with other inversion methods reported in the
literature. However, it is very apparent that the network was better in some places than in others, and
better for some articulators than for others.
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It is well understood that the output of an MLP trained by minimising the sum-of-squares error function
approximates the conditional average of the target values in the training data ([3]). This is problematic
in two respects. First, what if the target data were to have a bimodal distribution? The average of
those points according to the least squared error solution may not actually be close to either cluster!
The MLP does not have the power to model distributions of target points any more complex than
a unimodal Gaussian. Second, the MLP only provides the mean value. We do not receive any
indication as to the variance around that mean. For example, the MLP is not able to distinguish
between the case where the target values corresponding to a given input are clustered tightly round
their mean and the case where they are spread throughout a large region about the mean. In short,
there is unfortunately no way of knowing when the MLP output is likely to be accurate and when to
believe it less.

In this section, we describe an approach which allows us to capture both the multimodal aspects of
the inversion mapping, as well as give the variance around the estimated articulatory positions. Since
mixture density networks are not commonplace in the speech field, for the reader’s convenience we
shall first briefly introduce the theory underpinning the model. For a complete description, the reader
is directed to [3], [2].

5.1 Theory

A mixture density network is obtained by combining a conventional neural network with a mixture
density model. An example MDN is shown in Figure 3. In this example, the MDN takes an input vector
� of dimensionality 5 and gives the conditional probability density of a vector � of dimensionality 1 in
the target domain. This density function is modelled by a Gaussian mixture model with 3 components,
so that it is given by:

������ �

��
���

������������ (1)

where � is the number of mixture components (in this example, 3), ������� is the conditional proba-
bility density given by the �th kernel, and ����� is the mixing coefficient for the �th kernel. The mixing
coefficients can be thought of as the prior probability that a target vector � has been generated by
the �th kernel. Note that any of a number of different kernel functions may be used in the mixture
model, but only Gaussian kernel functions are considered here. In theory, any neural network with
universal approximation capabilities can be used to map from the input vector to the mixture model
parameters. In this example, we see a feedforward MLP with 5 input units, a hidden layer of 2 units
with sigmoidal activation and 9 linear output units for the mixture parameters. In general, the total
number of network outputs is given by ������� , where � is the dimensionality of the target domain,
and � is the number of mixture components. In other words, each mixture component has 1 unit for
its prior, 1 unit for its variance and � units for the mean of the component in the target space. Notice
that here we are using Gaussian components with spherical covariance (hence only 1 variance pa-
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Figure 3: The mixture density network is a combination of a mixture model and a neural network.
In a trained MDN, the neural network maps from the input vector � to the control parameters of the
mixture model, which in this case uses Gaussian components (priors �, means � and variances 	�)
but in theory could be any number of kernel functions. The mixture model gives a full pdf description
of the target domain conditioned on the input vector ������.
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rameter for each component). In principle, the MDN is not limited to using only spherical covariance;
both a diagonal or full covariance matrix could be used for each component. However, complicating
the model in this way is avoidable, because a mixture of Gaussians is theoretically able to model any
distribution function with arbitrary accuracy assuming enough components are available ([2]).

Clearly, the mixing coefficients must lie in the range � � ����� � � and sum to one in order to
represent probabilities. This is achieved by using the softmax function to relate the mixing coefficients
of the mixture model to the output of the corresponding units in the neural network:

�� �
�	
�
�� ���

��� �	
�

�
� �

(2)

where 
�� is the output of the neural network corresponding to the mixture coefficient for the �th
mixture component. The variances of the mixture model are related to the corresponding outputs of
the neural network according to the following function:

	� � �	
�
�� � (3)

where 
�� is the output of the neural network corresponding to the variance for the �th mixture com-
ponent. Finally, the means parameters for the mixture model are represented directly by the corre-
sponding outputs of the neural network:

��� � 

�
�� (4)

where 

�
�� is the value of the output unit corresponding to the �th dimension of the mean vector for

the �th mixture component.

The object of training the MDN will be to minimise the negative log likelihood of the observed target
data points given the mixture model parameters:

� � �
�
�

��

��
�

��
���

����
������

�����

��
� (5)

Since it is the neural network which provides the parameters for the mixture model for each input-
output vector training pair, this error function must be minimised with respect to the network weights.
Fortunately, the derivatives of the error at the network output units corresponding separately to the
priors, means and variances of the mixture model may be calculated (given in [2]). These error
‘signals’ may then be propagated back through the network as normal in network training to find the
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derivatives of the error with respect to the network weights. Thus, training is a non-linear optimisation
problem to which standard non-linear optimisation algorithms can be applied.

In essence, the mixture density network gives us a principled method for modelling a full conditional
probability density of the target data for each input vector.

5.2 Architecture

Like the MLP previously seen, the example MDN used in this paper uses a context window of ap-
proximately 100ms, which means it has 200 input units. The hidden layer contains 40 units, with
sigmoid activation function. In the target articulatory domain, 16 mixture components with spherical
covariance are used. These cover the 14 dimensions of the articulatory domain.

5.3 Training

The Mixture density network was trained on the same parallel acoustic-articulatory data as the pre-
vious MLP. The error function in Equation 5 was minimised using the Scaled Conjugate Gradients
non-linear optimisation algorithm until the error on a separate validation set was minimised. Prior to
training, the network was first initialised by a k-means based initialisation algorithm. For this initialisa-
tion algorithm, the weights for the network are first randomised by sampling from a Gaussian. Then,
a Gaussian mixture model of the same form as the MDN output is used to model the unconditional
density of the target data. The k-means algorithm is used to determine the component centres. The
priors are computed from the proportion of the target data belonging to each component, and the
variances are calculated as the sample variance of the target data points belonging to each compo-
nent from the associated mean. Finally, the network biases are adjusted so that the net will output
the values in the Gaussian mixture model. For the example MDN presented here, 10 iterations of the
k-means algorithm were used.

5.4 Results

Figure 4 gives a demonstration of the output of the MDN described above. Figure 5 shows the
probability density over the range of tongue dorsum y movement for one frame taken from the second
[s] in the utterance. Note that the MDN estimates that the value for the tongue dorsum height lies
within a fairly constrained range. Compare this distribution with that shown in Figure 6. This wider
distribution suggests the MDN finds it harder to estimate what exactly the tongue dorsum height will
be during the production of an [m] phone. This is not unreasonable; the back of the tongue is not
critical to the production of an [m], and it may vary without having a profound effect on the acoustic
signal produced.

Looking at Figure 4, it should be apparent that where the variance is low (i.e. during dark regions),
the accuracy of the inferred height of the tongue dorsum is fairly good. On the other hand, during
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Figure 4: A “probabilitygram” of part of the unseen test utterance “Hispanic costumes are quite
colourful.” This plot shows the probability density for the height of the tongue dorsum over its range of
movement as a function of time. Intense black indicates high probability density. The real, measured
trajectory of the tongue dorsum y parameter is overlaid for comparison.

sequences of framewise distributions where the centre of probability mass seems to err away from
the correct trajectory, we see larger variance (i.e. during lighter regions). This perspective is more
easily appreciated in Figure 7, where a plot of framewise variance is juxtaposed with framewise
square error. The error is calculated as the square of the distance between the real trajectory and
the conditional average trajectory. The conditional average trajectory may be computed from the
Gaussian mixture distribution at each time step as follows:

�
�

���������� (6)

where ����� is the prior, or mixture coefficient, for the �th mixture component, and ����� is the mean
for the �th mixture component. Meanwhile, the variance of the density function about the conditional
average at each time step is given by:

�
�

�����

��
�	����

� �

					������
�
�

����������

					
�
��
� (7)

The key point to note in Figure 7 is that there are roughly four sections of the utterance where the
conditional average value of the MDN output differs noticeably from the real articulatory trajectory.
However, these four sections are all accompanied by elevated variance, which can be interpreted as
a lack of confidence in the estimated conditional average position. There are also additional sections
of the utterance which exhibit a higher variance. However, during these sections, the conditional
average estimate given by the MDN may coincidentally be accurate.

Finally, Figure 8 demostrates that bimodal distributions are indeed present in the acoustic-to-articulatory
inversion mapping, and moreover that the MDN is able to model them.
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Figure 5: Probability density as a function of tongue dorsum height for one time frame extracted from
the [s] in the word [kostyumz]. Compared with the distribution shown in Fig. 6, this distribution has
a narrow width, indicating a higher degree of certainty that the tongue dorsum is located around the
centre of this distribution.
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Figure 6: Probability density as a function of tongue dorsum height for one time frame extracted from
the [m]. Compared with the distribution shown in Fig. 5, this distribution has a wide width, indicating
a lower degree of certainty that the tongue dorsum is located around the centre of this distribution.
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Figure 7: A comparison of accuracy and variance for the unseen test utterance “Hispanic costumes
are quite colourfull”. The bottom plot shows the square error between the trajectory of the conditional
average tongue dorsum y position calculated from the output of the MDN (see Equation 6) and the
real trajectory of the tongue dorsum. The top plot shows the overall variance around the conditional
mean (see Equation 7).
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Figure 8: Probability density as a function of tongue dorsum height for one time frame extracted from
the [kk] section. Note the bimodal distribution of the tongue dorsum for this phone.
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6 DISCUSSION

The MDN gives a whole description of the conditional probability density of the target domain in the
form of a mixture model. This density function may be used to compute several different “answers”.
For example, we can compute the conditional mean of the target data given the input vector. This
value approximates the output of a standard least-squares trained MLP. As we saw in Section 5.4, we
can also compute the variance around this conditional average, which goes beyond the capabilities
of a standard MLP. On the other hand, at each time frame, we could take the mean and variance of
the Gaussian with the highest prior. This approximates the mixture of experts model ([8]) as another
special case.

Hence, MDNs in some sense occupy an ideal middle ground between supervised and unsupervised
empirical learning models. They are trained in a way typical of supervised methods. However, at test
time, there are similarities with unsupervised techniques. In other words, the required “answer” is
postponed until testing time, and as such the MDN offers a powerful modelling advantage over other
supervised learning models.

7 CONCLUSIONS

A feedforward MLP has been presented and applied to the task of recovering articulatory trajectories
from acoustics during continuous, phonetically-rich speech. This network was trained and tested
using real, parallel articulatory-acoustic data.

While the performance of this network compared favourably with the results of other inversion meth-
ods reported in the field, there are at least two drawbacks. First, the MLP is limited to modelling
target data points roughly approximating a unimodal Gaussian, which is not a sound assumption to
make when modelling the inversion mapping. Second, the MLP gives no indication of the variance of
the distribution of the target points around the conditional average.

To address these issues, we have looked at an example of a feedforward mixture density network.
This preliminary investigation has shown that the mixture density network is very well suited to de-
livering the required functionality for performing the inversion mapping. For example, instances of
bimodality in the target domain have indeed been observed. Also, larger variances have been as-
sociated with sections of increased error for inferred articulator positions, which we might choose to
interpret as a confidence measure.

8 FUTURE WORK

A recurrent extension to the mixture density network has been described: the bidirectional recurrent
mixture density network ([17]). Previous experience with Elman-style recurrent networks has shown
that the trajectories recovered tend to be smoother and more consistent than those produced by an
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equivalent MLP. Therefore, it is envisaged that applying recurrent mixture density networks to the
inversion mapping may prove fruitful.

Future work will also focus on exploring how best to use mixture density network output for use as
a frontend for the articulatory based speech recogniser which is currently being developed at CSTR
([6]).
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