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ABSTRACT

This investigation of mainly Scottish rainfall is in two parts:
studies of space variations (first part) and of time variations
(second part). Matrices of mean monthly rainfall for networks of
stations in Central Scotland are decomposed using T-mode eigenvector
analysis to identify common spatiél variations;' and daily rainfall
values for selected "pure" synoptic situations, and also annual
values over a gauge network in the Sclway region; are rggressed with
physical parameters. The most important set of eigenvector-spatial
multipliers, describing over 95 per cent of the variance of the
matrix, is used to interpolate between stations and "predict™ mean
monthly rainfall for new sitesf Multiple linear regression relation-
ships between rainfall on the one hand and altitude and distance
from South and West coasts-on the other, are compared for different
cases. The validity of a linear approximation to rainfall variations
in relation to physical parameters is discussed, using values of
regression and correlation parameters and station regression
residuals.

In the second part of the thesis, aspects of rainfall time-
serieé, in particular the persistence of spells of welt and dry days
and périodicities in annual and monthly series, are investigated.
The simple Markov model aﬁd various modifications to it are used
to describe both the distribution of spells of all lengths, and algo
of those greater than a specified length. Two furtéér meodels, relat-
ing respectively to persistence patterns and to thé ogccurrence of
rare events, are also diécussed.

The methods of filtering, and power spectrum, of time-series
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are employed to identify periodicitiés; the results for different
stations are compared to help assess the significance of iﬁdividual
results and also to distinguish variations common to "West" and
NRast! siations respectively. S-mode eigenvector analysis is also
uééd to derive.common time variations in different raiﬁfall records.
The results of filtering and power spectrum analysis of individual
rainfall records and of eigenvector multiplier time series are
compared with those of similar analyses of P and C atmospheric cir-
culation indices (which describe the frequency of WEither types
effecting most rainfall); relationships between oscillations and
the above indices are also investigated using cross spectrum
analysis. The most important results of these time series analyses
are the confirmation of the presence of an oscillation of period
close to 2.0 jears which occurs in series of P and C indices and
~rainfall; aléo, the revelation of a significant 3.1 year period-~

icity in C index and "East" station rainfall.
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CHAPTER 1

1. INTRODUCTION TO TEE STATISTICAL ANALYSIS OF RAINFALL

VARTIATIONS

1.1 Purpose

_This thesis which investigates in a statistical manner, basic
variations of mainly Scottish rainfall in time and space, falls
into two parts. The first pért investigates rainfall space vari-
ations using eigenvector analysis of mean monthly rainfall data
and regression analysis between daily rainfall and physical para-
meters. Inherent patterns in rainfall distribution are‘distin&
guished which may be used to answer some of the problems cauéed
by the inadequacy of distribution of rainfall measuring ststions,
perhaps also to facilitate the interpoiation between rainfall
gauges in other situations.

The second part of the thesié investigates the non-randomness
" of rainfall time series, in particular the persistence of spellé
of wéf and dry days, and the periodicities in annual and monthly
rainfall time series. The underlying dim is to find, if possible,
statistical properties which are of predictive vaiue.

Rainfall is notoriously the most difficult meteorological
element to measure and to predict. The attempt is here made to
apply statistical techniques to extract the maximum amount of
information in relation to its space and time variations. The
process of analysis of rainfall data may be seen as an iterative
one, derived spatial and temporal patiterns being used to analyse
new data.
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1.2 Data

Availability of daia hés played a part in the selection of .
data for study. .Spatial variations are examined for two areasin
Scotland whose rainfall has not previously been extensivelyr
studied. These two area - a belt across Central Scotland from the
Clyde to the Forth, and the area surrounding the Solway Firth -
have relatively dense gaﬁge networks: the latter region experi-
ences rainfall from apprﬁaching systems which are almost unmodified
by their path over land.

The data used to study the persisténce of dry spells relate
to various parts of the British Isles. Days are described as
elther "wet" or "dry" and a spell of dry (or wet) days of length
r is defined as & spell of r such days. The analysis attempts to
model the frequency of the occurrence of such spells by Markov
rersistence and modifications to it. Reéional variations in spell
distribution and model parameters are investigated, using 4O years
of data from each station.

Monthly and annual time series for 11 stations, distributed
over the whole of Scotland, which have available data for at least
80 years and which do not éuffer from sevére inhomogeneities, or
gaps in records, are investigated for non-randomness.. Stations
are classed as "West" or "East" and results are compared within
each group, between groups, and also with the results of applying
similar analysis to circulation indices. These indiceé were first
derived by Murray and Lewils (1966) from Lamb's (1950) daily class-
ification and synoptic types for the period 1861 to 1971, and were
subsequently revised by Murray and Benwell (1970) in the light of
“Lamb's (1972a) reclassification.
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The P (progressive) index is a measure of the difference in
frequency between days of progressive and btlocked synoptic types,
positive values indicating a predominance of the former type.
Similarly, the S (Southerly) index measures the difference in
frequency between days with Southerly and Northerly circulation.
The C (cyclonic) index is positive when cyclonic days predominate
over anticyclonic days. The M (meridional) index measures the
frequency of meridional types. The P and C indices describe the
frequencies of weather types particularly associated with rainfall.

Murray and Benwell-(19?0), in their regression analyﬁis bet-
ween réinfall and circulation indices showed that rainfali over
England and Wales was very significantly correlated with C, while
over Scotland the correlations between P and rainfalllwere the more
marked. The Scottish rainfall data seems therefore to be related
to the progression of rain-bearing synoptic systems to a greater
extent than that of England and Wales. Within Séotland ifself
regional variations are perhaps to be expected with "West" station
rainfall showing the closer relationship with P, and "East" station
rainfall with C. The extent to which this is true is investigated

in Chapter 5.

1.3 Problems in the statistical analysis of rainfall

variations

1.3.1 -Lack of data in space and the assessment of

gauge representativeness

The chief problem which hinders the successful statist-
ical analysis of rainfall variations is, as already mentioned,
the lack of adequate data in time and spsce. In the first half
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of the fhesis, gauge networks are required of sufficient density
to permit the derivation of spatial variations in mean monthly
rainfall using eigenvector analysis, and to assess the regression
relationship between sets of daily rainfall values and physical
parameters. On a larger scale, analysis of non-random variations
in.rainfall requires rainfall stations with such separation that
similar temporal vériations are found in several records. As
common variafions found in several gauge recofds over pericds of
years are .more significant than those found in a single gauge
record, it is desirable to have gauges sufficiently close together
that they may be expected to show similar variations. Also gaps
in individual records may then be filled by using readings from
comparable neighbouring gauges.

Even when data are available with the required separation,
it is desirable to ascertain the representativeness of a given
gauge to the rainfall falling over the surrounding area. The
difficulty of precise rainfall measurement and the differences
that‘mgy arise between gauges separated by very small distances
mean that representativeness is difficult to assess.

‘The geographical position of & gauge, its exposure, the
height and aspect of the particular land on which it is sited, :
affects its instantaneous reading, and to a lesser extent, its
monthly or annual reading. Over a perioﬁ of a month or a year
random variations are averaged out and the gauge reading is deter-
mined by systematic effects, and in particulzr by the position
of the gauge relative to topography and to the prevailing wind.

Various methods have been employed in an attempt to assess

the representativeness of a gauge to a given area. Rhodda (1967,

L-



1970) calculated correlation coefficients between a series of
station gauge values. These coefficients in gene%al decreased

as station separation-increased but the decrease was not uniform
as other factors such as topography, gauge exposure, and prevail-
ing ﬁind direction must be considered. Tt was possible to perform
further correlation analysis between gauge correlation coefficients
(derived from a series of measurements at each gauge ) aﬁd the
separation between gauges. Attempts to correlate the gauge correl-
ation coefficients with other physical parameters describing the
relative positions of the gauges, elg. the difference in height
between the gauges did not produce significant results.

While the assessment of gauge representativeness is not con-
sidered further below, it should be remembered when studying the
results of analyses in this thesislthat a given gauge network may
not necessarily be representative-of possible rainfall spatial

variations.

1.3.2 TLack of data in time

In the regression analysés between physical parameters
and fainfall of a "pure" type, continuous or hourly gauges are,
ideally, required to isolate the rainfall of a particular sub-

. system from that of other sub-systems. The distribution of such
gauges is very sparse in most rggioné. Usually there are only two
or three autographic gauges within an area of 1000 kmz. Recently,
magnetic tape recorders (MTER) have been introduced to measure
rainfall continuously as a supplement to the traditional Dymes
recbrders. However, it is only in the area of the Dee Weather

Radar Project that a comprehensive network of MIER recorders has
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been installed. Daily rainfall gauge records can be used to
describe rainfall of a pure type if most of the rainfall occuring
on that day resulits from the passage of a well-defined subsystem.
‘Most daily fainfall figures feflect several different symoptic
influences, and even in cases where.days may appeér to be of a
pure type it cannot be certain ﬁhat all the rainfall over the area
under study bn that day results from a particular subsystem. A
similar doubt relates to the regression equétions which define the |
rainfall variations. Thus-the lgck of data over very short
periods tends to higder therisolation of rainfall distributions
resulting from a particular subsystem;

Whgn analysing spells of dry days, sufficient data are
required to measure the frequencies of rarer long spells and to
"predict" their future ocgﬁrrence. The task of predicfing rare
long spells is facilitated by long continuous records from a given -
station as does the existence of gauges with similar spell-
frequency distributions. Récords of-éufficient length (at‘least
.30 years) are often not readily avéilable from several sites in a
given area.

.In the case of studies of rainfall time variations, continuous
homogeneous records of suffiEient 1ength to assess the significance
of a given rainfall variation sre required. In order to study low
frequency oscillations of period, séy, 20 years, at least 80_years
of data are requirea. It is important to know if such periodicities,
or any apparent trends, occur contlnuously throughout a given |
record, and whether the phase éf‘the pericdicities is constant
throughout the record.

~ In the case of short time series an apparent trend (trend being
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‘defined as the monotonic increase or decrease of members of a
series) may reflect a long-term perioéicity. While a parameter
may increase in an almost linear fashion over the period of
observation, it may subsequently decrease in value. Apparent
trends in meteorologicail.records over a few'decades may reflect

oscillations of period of the order of a century.

1.3.3 Discontinuities and inhomogeneities

The ideal of having continuous homogeneous rainfall
redords available to study variations in time series, and the .
possibiliﬁy‘of filling sume gaps in records by the use of neigh-
bouring gauges with similar records, have already been mentioned.
The problems raised by the gauge inhomogeneity, namely the assess-
ment of where the inhomogeneities in the gauge record Qccurred,
and of how these inhomogeneities may be allowed for, are not easy
to sclve. Any change'in the site, height, or local exposure of
the gauge will meén that values from the two sités are not strictly
comparable. In order to make the values comparable an overlap of
several years will be necessary. 1t may however bé permissible,
where no overlap of data exists, to ignore site changes if the
apparent change in.mean gauge value is less than five per cent,
the likely systematic error of the gauge.

Changes of observer may lead to erroneous variations in gauge
records. If each cobserver systematically over- or underestimates
reédings'then true variations remain intact but if the observer
subsequently changes the systematic errors may show as a slippage
in the mean value of the record, or in the case of smoothed or

filtered data, as an apparent trend.
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To reveal inhomoéeneities in safies, subsections of a record
may be compared with its long-term mean using Cramer's test and
anamalous values for a se&tion of a given record'may be  compared
with carresponding values of other records; or Kohler's (1949)
test may be ﬁsed to cc.ipare directly records from different gauges.

The former method is used in the analysis in Chapter 5.

1.3.4 The statistical significance of results

of time series

While the statistical significance of the results of
eigenvector analysis and of regression analysis cén bé gauged from
relative values of eigenvalues and values of correlation
coefficients, the significance’ of non-random variations in time
series is less easy to assess. This further problem needs to be
borne in mind throughout the analysis of time~series.

In the analysis of the persistence of spells of wet and dry
days, model parameters for five of the seven models used are
adjusted to give‘the best fit to the data under consideration. The
"predicted" distribufiops of spell frequencies according to a given
model is then compared with the observed distribution usiqg the_?(‘2
test, frequencies of long spells being pooled. The efficiency of
)fz test in assessing the goodness of fit is less with (infrequent)
longer spells than with (frequent) shorter spells, while model
Parameters are themselves much influenced by shorter spells.

Thus "predictions" of the occurrence of long spells and the
precise assessment of probabilities of a given day continuing for
a further day are subject to uncertainty.

In the analysis of monthly and annual time series, the effects
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of a given non-random variation; whether a periodicity, trend,
or form of persistence, must be isolated from those of all other
variations before its significance can be tested.

Analysis of raw data by powéf ;péctrum analysis will reveal
effects of periodicitius, trend, and persisténce. In order to
investigate & particular periodicity, its effect on spectral
estimates must be isclated from those of other non-random vari-
ations. Raw data maﬁ be "detrended" and effects of persistence
may be accounted for by plotting a "persistence only" spectruﬁ
for comparison with the actual spectrum, if fhe form of persist-
ence cén be determined. Persistence is defined as the ability of
successive members of a series to remember their antecedent value
or values. With the simplest form of persistence - Markov per-
sistence of first order - the value of each member of the series
is determined linearly from the previcus member only and serial
correlation coefficients at lag r are given byrthe r th power of
that a4t lag one. The spectrum of Mgrkov persistence, known as
the -"red noise" spectrum, has a decay of power from high to low
frequencies, similar to the exponential decay of serial correl-
ation coefficients in the correlogram, the exact shape of the
spectrum being easily determined from the spectral window and the
"lag one" correlation:coefficient. Other forms of persistence
and their effects are less easy to determine and model.

Leakage of power from épectral peaks, interference effects
between peaks, and harmonics of other peaks are effects which all
hinder the isolation of a given periodicity and the assessment of

its significance.



1.1, Methods

1.4.1  T-mode eigenvector analysis

In Chapter 2 T-mode eigenvector anaiysis is used to
dgrive inherent patter.s of mean monthly rainfall data of Central
Scotland aﬁd of the Solway region. The analysis proceeds on
‘similar lines to Stidd's analysis of Nevada mean monthly rainfall.
Independent temporal eigenvectors with associated indeﬁendent
spatial eigenvector multipliers are constructed. The most signif-
icant'eigeﬁvector and its set of multipliers are used to "predict™
mean ménthly rainfall at new sites, spatial components which are
"smoothed" for topography by linear regression being interpolated
to new sites.

Predictions made for a series of stations with short;period
data are compared with estimates of long-term ﬁeans made from their
short-period records using the method described by Bleasdale (1963),
In this latter method ratios of short-period to standard period
means are determined for long-term gauges surrounding a short-
period gauge. These ratios are interpolated to short-period sites

and are used to adjust the short-pericd means to standard periods.

1.4.2 Regression between daily rainfall and physical

parameters’

In Chapter 3 regression relationships are derived between .
the physical parameters of altitude, distance from the South coast,
distance from the West coast, and daily rainfall values or mean
annual rainfall. - The days are chosen such that rainfall from one
particuiar systenm, é.g. a front or warm sector could be described
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as being of a "pure'" type. While numerous attempts have been made
to correlate mean monthly aﬁd annual rainfall with altitude, none
has been made, to the author's knowledge, for daily rainfall.

Bleasdale and Chan (1972) correlated mean annual rainfall
at various sites over _he British Isles with station-altitude and
in their discussion of observed relationships suggested that an
attempt should be made in future work to perform regression
analyses for weather types of a pﬁre form which‘would be likely
to produce heavy orographic rainfall. These analyses were to be
compared with those in which the rainfall v. altitude regression
relatiénships was expected to be absent or reversed, e.g.
thunderstorms. It is in answer to these suggestions that regression
analyses of daily rainfall values with physical parameters for
various pure synoptic types is performed below.

It should be noted that the relationship between rainfall and
topography is already used to interpolafe between rainfall gauges
indirectly. Mean annual rainfall isohyets are drawn using topo-
graphical maps as an overlay to determine the shape of the lschyets
where no gauge data are availsble. In the assessment of areal
rainfall for specific days, daily rainfall values are expressed as
& percentage of mean annual rainfall and are objectively inter-
polated to grid points (Salter 1972, English 19?3), the meén grnual
rainféll field effectively expressing the variation of rainfall

with topography.

1.h.3 Models of persistence for wet and dry days

The Markov model, in which serial correlation coefficients
at lag r are given by those at lag one f>1 587, raised to the r th
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power (2. > was the first model used to describe the per-

sistence of wet and dry spells (Gabriel and Reumarn 19L9). Two
other models were suggested which modified the exponential decéy
of serial correlation coefficients by a factor dependent on the
lag: William's (1952) log model and Green's (1970) modified dog

T
model in which serial correlstion coefficients becamef91 and
r

fDTr respectively. Another modification to the Markov model
Tr + 8

proposed by Yap (1973) incorporated Markov persistence but the
actual value of f31 was determined by the spell length, being
constent within a given spell.

Besides these four models, two other models proposed by
Lawrence (1957) to describe the distribution of dry spells are
used in Chapter L. These models do not incorporate persistence
bf a predetermined form as do those above by their model para-
meters. The "natural persistence" model compares the probabi}ities
of a spell of a given length continuing another day at different
stations and expresses these probabilities &s the sum of an ares
and a station-dependent term. The "Jenkinson probability“ model
attempts to predict the frequency of long sﬁells using return
period pfobability curves determined by the mean annual spell
length, its standard deviation, and its two-year standard deviation.

These seven models are used in Appendix 1 and in Chapter L,
to describe ffequencies of spells of any length and also those

greater than a given length.

T.4.4 Methods applied in time series analysis

General medium-term variations are investigated using
decadal means and low—péss filtering of data. Specific period-.
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 icities in monthly and annual rainfall are sought using power
spectrum analysis. Methods of spectfal anaiysis which give stable
results and which have been applied extensively to gecphysical
data are used. These are the Blackman-Tukey autocovariznce method
and the fast Fourier transform (FFT) method applied in the manner
suggested by Rayner (1971) nemely with filtering of data prior to
analysis and summation of estimates into bands. Other methods

of spectral analysis, such as the maximum entropy method (Ross
1975), and their application in locating low frequency period-
icities are discussed.

R;sults of these aﬁalyses are compared among themselves in
an attempt to distinguish common variations in "East" and "ﬁést"
stations and in éirculation indices similarly analysed. The
relationship between oscillations in rainfall and P and C indices
is further investigated using cross spectrum analysis. The
Blackman-Tukey cross covariance approach and the FFT method,
gimilar to the autocovariance and FFT methods of power spectrum
analysis, are used to compute cospectra and quadrature spectra
from which coherence and phase estimates between rainfall and
circulation indices are produced.

S-mode eigenvector analysis is used to construct independent
rainfall time-series which are §ets of eigenvector multipliers.
These series describe common time variations present in each
individual series to an extent determined by the value of the
elgenvector space element.‘ An attempt is made to correlate eigen-
vector space patterns with stétion positien and station mean
annual raiﬁfall in order to see which influences on climate are

described by a given eigenvector. The eigenvector multiplier time
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are also analysed in a similar way to those of indiﬁidual rain-
fall series using low-pass filtering, power spectrum analysis,

and cross spectrum analysis with P and C indices. Results are

compared with thoée of individual series in an attempt to label
time series as describlng variations of "West", "East", or all

stations. The presence of a variation in an eigenvector timer

series as well as an individual series increases its apparent

significance.
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CHAPTER 2

2. THE ANALYSTS OF MEAN MONTHLY RAINFALL USING EIGENVECTORS

2.1 Introduction

The purpose of this Chapter is to explain how eigenvector
analysis.ié performéd orn a time by space matrix to distinguish
independent pattefns with temporal ;nd spatial components, and
to show the chief uses and advaﬁtéges of eigenvector analysis.

The technique is illustrated‘by the decompesition of matrices‘
of meéﬁ monthly rainfall for several stations in Scotland, in a
similar manner to Stidd's analysis of Nevada rainfall (1967).

In the analysis of several rainfall patterns or mean rainfall
patterns occuring over a pericd of ‘time, it is desirable to isolate
independent spatial patterns which are present to a greater or
lesser extent in each of the original spatial distributions. It
is useful to derive further coefficients explaining to what extent
each derived spatial pattern is prevalent in each Qf the original
spatial distributions. Eigenvector analysis constructs a series
of individual spatial patterns each with an associated time series.
These time series are also independent of one another.

In the case of mean monthly rainfall for twei;e months over
a given network of ST stations, the analysis expresses each
station's rainfall for a given month as the sum of twelve terms.
Each £erm consists of a value for that month common to each station
multiplied by a spatial coefficient dependent on that station.
Each pattern, consisting of twelve one-month time elements and ST

space elements, accounis for a certain proportion of the variance
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in the original matrix and some of the patterns will be more
important than others. The advantages of eigenvectors to de-

compose time by space matrices over other methods are:

1. - Each eigenvector patterﬁ's temporal and spatial
‘components are iﬁdependent. 'This is demonstrated by
orthogonality.

2. Eigenvectors do not assume a particular functional

rélationship betﬁeen values of data and are derived
irrespective of the spacing of data points. The accuracy
and usefulness of spatial patierns determined by other
mathematical functions is dependent on the spacing of
data points and the form of the functions.

3. Usually only a few such patterns are neédgd to
describe most of the variance in the original time by
space matrix. In cases considered only one of a possible

twelve eigenvectors is needed to describe 99 per cent of

the variance in the original matrix.
The uses of eigenvector analysis illustrated below are:

1. A small amount of data may express the total variance
present in a time by space matrix.

2. The eigenvector patierns may bring into focus inherent
patterns in the original matrix, and describe the effects
of known inflﬁences on climate.

3. ﬁigenvector patterns may be uéed to interpolate bet-
ween data points and "prediet" mean monthly rainfall. This
exercise is facilitated Ey the reduction in the redundancy

in data and hence in the amount of data needed for
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interpolation.

L. These spatial pétterqs describing types of rainfall
distribution may be of some use as an interpclation aid
when analysing daily rainfall patterns.

5. When analysi.:g time series of length about a century
for a few stations, basic time series may be constructed
using eigenvector analysis which describe simply the
climate fluctuatiogs in these series. Extrapolation of

these series may be of predictive value.

The method of eigenvector analysis and uses 1 to 3 are

demonstrated in this Chapter.

'I

Some other uses of eigenvectors in meteorology are
given by Craddock and Flood (1970) and Craddock and
Colgate {1974). Eigenvector analyses of mean sea
level pressure over the Northern Hemisphexe may be
used to identify and correct errors in data; to predict
monthly pressure fields using, as predictors, eigen-
vector coefficients derived from daily values of pre-
ceding months; and to select situations whose sequels
can be used for prediction by matching daily eigen-
vector coefficients. States of upper airflow of
predictive value are.also classified from eigenvector
coefficients of daily values of 500 mb thickness.

Craddock, J.M., and Flood, C.R. (1970): "Eigenvectors
for representing the 500 mb geopotential
surface over the Northern Hemisphere",
0.J.R, Met. S., Vol. 95, pp. 576-593.

Craddock, J.M., and Colgate, M.G.C. (1974): "The use
of eigenvectors for smoothing and
prediction”. Journal Inst. Maths. and
its applications, 12, pp. 152-160.
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columns of E.

A = EM (2.1a)

A = E1 NH ) (2.1b)
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To perform‘the analysis A is multiplied by its transpose
A1 to forma 12 by 12 squaré symmetric matrix which describes
the relationship between rainfall in_different months (equation
2.2) and eigenvectors Xj of B with eigenvalﬁesjkj are then found

e

(equation 2.3). &

B = A& o ' (2{2)

J = 1,2500, 12 . (2-3)

Tﬂere are twelve elgenvectors each with twelve elements. BEach
elgenvector describes .a temporal variation in rainfall, each element
in the eigenvector-representing a single month. The Xj eigen-
vectors are orthogonal and they can be arranged to be normalised-

to 1 (equation 2.l)
x.' x. = §. . (2.4)

where S 5 j 1o the Kronecker delta function.

The proportion of the variance in the original matrix which
is explained by a given eigenvector Xj 1s determined by the
ratio of the associated eigenvalue )Xj to the sum of all the eigen-

values in eguation 2.5.

L)y = - (2.5)

The variance described by the first n, eigenvectors is the

ratio of the sum of the first n, eigenvalues, arranged in decreas-
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~ ing order of significance, to the sum of all the n eigenvalues
as in equation 2.6. The larger the eigenvalue, the greater the

proporticn of variance described by the eigenvector.

M E_A~
n L .
| 2 ?1 i A
; ) m——— 2.6
| E U'(T}“‘XJ) e _ (2.6)
i

| As the fir‘s’c,.n,I eigenvectors which describe at least 95 per cent
of the variance are of interest, n, is chosen 59 that the ratio
in equation 2.6 is 0.95 or greater.

F?om the twelve Xj elgenvectors and the first n, elgenvectors,

matrices ¥ and E, are formed as in equation 2.7a and 2.7b.

1

e A

T i _J |
E = LXﬁ N2 TIR S (2.7a)
TN -~
E = [X v j‘-x_l where n,< 12  (2.7b)
1 2 e BRI ot 1 b

M and I\’.[,i in equations 2.1 may then be found by multiplying

the transposes Qf,E and E, , E' and E11, by A as in equations 2.8.

E E1 ='r‘as the eigenvectors are orthonormal.y
1 1 ‘
EA = E EM = M. (2.8a)
E ! A = | | (2.8b)
1 M, -0b)

Since E is a2 12 by 12 matrix and A a 12 by ST matrix, M will be a

1 I

M and FH consist of 12 and n, spatial patterns with one element

12 by ST matrix and similarly M, will be an'n’ by ST matrix. Thus

‘per station. Each eigenvector Xj’ representing a temporal vari-

1

19—



ation, will have an associated spatial variation with ST elements.
To describe the variance of A fully, 12 patierns are required but
n, patterns may be sufficient to explain all the variance of

significance. -

Sets of eigenvector multipliers, MR, and MR
] ‘

k ’

which are rows of M and are derived from eigenvectors
Xj and xk as in equation 2.9a, are also orthogonal to

one another as in egquation 2,9bL.

MR, = XA : (2.9q)
MR, MR ) = I.X:}A(X]'{A)' (2.9b)
C = XEAA‘xk
= 0 if 3k ; from equations
= -lj if § = k 2.2 and 2.3

2.3 The advantages of eigenvector analysis over other

methods

The original matrix decomposition into space and time com-
ponents can alternatively be performed using spherical harmonics
or Tschebychev polynomials tc describe the spatial variatibns,
With such methods the number of patterns needed to describe a
given proportion of the variance in the o:iginal matrix is usually
larger than the number of required eigenvectors. While no com-
parison is made below between eigenvector analysis and decomposition
using other methods such as spherical harmonics, the fact tﬁat one
or two eigenvectors out of twelve can describe 99.9 per cent of
the variance in the original matrix suffices to illustrate this
point,
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When methods other than eigenvector analysis are used to
decompose a time by space matrix, the spatial patterns are depend-
ent on the properties of the matpematical function used. The
form of the pattern is predetermined by the function and is
dependent on the spacling of the data points. For eigenvector
analysis the relative positions of the data points have no effect
in the determination of the eigenvectors. This is a definite
advantage, especially in the analysis of rainfall distributions
where the network of stations is irregular.

Spherical harmonics or Tschebychev polynomials may befused
to con;truct orthogonal patterns which describe the series of
mean monthly rainfall distributions. However, the associated
temporal patterns will not necessarily be independent or orthog-
onal, unlike the eigenvector pa&terns.

Because eigenvectors‘ére oerthogenal in both temporal and
spatial components, eigenvector analysis may proceed either using
a time by time syﬁmetric matrix (T-modé) or a space by space
symmetric matrix (S-mode). For S-mode the symnetric matrix B is
constructed as A1A instead of AA1 for T-mode. Results of comput-
ation of eigenvectors by the two different methods have been
shown by Hirose and Kutzbach (1969) to be mathematically identical
apart from different normalisation. The choice of T or S mode
depends on the dimension of the original matrix. As it is
computationélly'faster to derive eigenvectors from small matrices,
S-mode is used where the space dimension is smaller than the time
dimension and vice versa.

S-mode 1s used iater to analyse eleven annual rainfall series

of length eighty-four years. Eleven eigenvectors with eleven
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space gomponents are derived, from which eleven sets‘of eighty-~.
four multipliers are further produced. It ié these sets of multi-
pliers with one element of eacﬁ year, which form baéiC'rainfall
time series describing common temporal variations. The eleven
eigenvector elements cdascribe to what extent each of the derived
series determine the station's rainfall.

Thus eigenvector analysis has the adﬁantage that as each set
of eigenvector multipliers as well as each eigenvector is inde-
pendent, there is no distinction in the way spatial and temporal
components are treated and analysis may proceed by S or T-mode

according to the dimensions of the matrix.

2.1y The choice of the type of data, real or anomaly

Eigenvector analysis may be performed on rezl data, anomaly
data, or anomaly data normalised such that the total variance of
each column is unity. In the case of mean monthly rainfall data,
the mean of each month may be subtracted from each station to
construct anomaly data, the departures of each station from the
all-station mean monthly value. Such values for each station for
a given month may further be squared and summed,.and each monthly
value divided by this value. - This will produce normalised anom-
alies and ensure the all-station monthly variance is unity, as
well as the all-station mean being zero as in the case of anomaly
data. The diagonal elements of the symmetric matrix will then be
unity, and the off diagonal elements will have values in the range
0 %o 1.

Kutzbach (1967) in his discussion of eigenvector analysis of

& combined matrix of the three climatic variables of rainfall,
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-temperature, and pressure for eighty stations describes the

- differences between using real data, anomaly data, or normalised
anomaly data. The symmetric matrix A above will be a cross-
Aproduct matrix, a cdvariance matrix, or a correlation matrix and
the first eigenvector -wltipliers will have the closest resemblance
to observed fields, anomaly fields, or normalised anomaly fields |
according to the three types of data used; In Kutzbach's analysis
normalised variations were required as the three climatic para-
meters had different means and variances. When variables are
normalised, each variable at each point in the data field is of
eQual importance in determining the eigenvector patterns.

In the present analysis real data are ﬁsed to analyse mean
monthly rainfall for two areas of Scotland. The first elgenvector
‘from the 12 by 12 symmetric cross product matrix shows the anmual
eycle of raiﬁall variation while the isopleths of the first
eigenvectof multibliers reflect mean anmual rainfall varir;ﬁ;ionslD
For the region oflCentral Scotland, anémgly data are also analysed.
In this case, the first eigenvector and its mﬁltipliers desecribe
the annual cycle of rainfall variabilitﬁ between stations and the
mean annual rainfall anomaly for each station respeétively. Normal-
ised anomaly data produce similar patterns to anomaly data and are
not discussed further. |
, It 1s the eigenvector multipliers of anomaly data which are
used to interpolate between rainfall station values. Mean monthly
apomaly'fainfall vaiues are estimated for new sites by rultiplying
the first eigenvector by the interpolated eigenvector multiplier.
Hence, monthly rainfall may be "predicted" from this result and the
all-station mean monthly rainfsll value. The anomély eigenvectors
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Table 2.

1 Data used in eigenvector analysis

. Data used Results
brea | Period |t 00 | sluvion |Nemork | SoWee | ®ahe -
analysis Eigenvectors | Multiplier | Discussion
Solway (i) 1916-50 69 leng-term Hydrological Real Table 2.2 Section 2.6
. Melnc NOo 26 Figo 203
(ii) 1941-70 207 short and | " x " Met. Office Real Table 2.2 Fig. 2.10 | Section 2.6
' long-term | Fig. 2.1| Archive tezpes Fig. 2.3
Central ,
Scotiand (i)} 1916-501 ( 209 short-term| " . " Hydrological Real Table 2.2 Fig. 2.6 Section 2.6
( Fig. 2.2} Mem. No. 26 Fig. 2.3 and
( _ smoothed
( 82 long-term | " x " and No. 32 Fig. 2.7
( Fig. 2.2
(i) | 1916-50 82 iong-term "o, v | Hydrological Real " -~ Similar to (i) --
Fig. 2.2| Mem. Nos. 26
and 32
(1ii) { 1916-50 82 long~term | " , " Hydrological | Anomaly Fig. 2.11 Fig. 2.12 | Section 2.7
Fig. 2.2 | Mem, Nos. 26 ' and :
and 32 smoothed
Fig. 2.13
(iv) { 1916-50 | 82 long-term | " . " Hydrological | Normalised -- Similar to (iii)} --
Fig. 2,2{ Mem. Nos. 26 | Anomaly

and 32




and their multipliers will explain_mdre of the space variations .
than real eigenvector multipliers as their determination will be

more sensitive to small variations.

2.5 The analysis of "real! mean monthly rainfall

2.5.1 Data and the use of short-period gauges

A summary of the dafa used for the‘eigenvector analysis
appearslin Table 2;1. Short-term data stations were previously
extended to standard periods using the procedure involving the
interpolation of-ratios between short-period and standard period
records to short-period gauges described.by Bleasdale (Hydro-
logical Memorandum No. 5) and mentioned in section 1.3. For
Central Scotland the first éigenvector derived from 82 long-term
stations and their multipliers were compared with those derived
from the complete network of 82 long-term stations and 209 short-
term stations. The first eigenvectors describing 99 per cent of
the variance in each data set are very similar (Table 2.2) and the
multipliers'for the B2 loﬁg—term stations have similar values in
both analyses. Thus the use of short-term records extended to
standar& pefiods by the proceaure described by‘Bleasdale was jJust-
ified as it did not affect inherent patterns already revealed to
be preseni by eigenvector analysis. The inferpolation and extra-
polation processes involved in this latter procedure are essentially
linear so that the 209 values have some linear dependence on the
82 long-term stations. The eigenvector anélysis, on the éthér hand,
does not necessarily involve any linear dependence between station

values.
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Figure 2.2 Central Setotland 1916-50 mean monthly rainfall station network

(X - long-term stations; =+ - short-term stations)
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Table 2.2

Mean Menthly Rainfall Eigen#ectors - Scotland

Central Scotland 1916-50

Solway 1916-50

Solway 194170

1st Eigenvector 2nd Elgenvector
292 81 292 81 st 2nd st 2nd
stations | stations | stations stations Eigenvector | Eigenvector | Eigenvector | Figenvector

January 0.389 0.391 0.351 0.331 0.399 0.229 0.337 0,220
February 0.258 0.260 0.193 0.241 0.216 0.179 0.233 0.210
March 0.213 0.215 0.302 ~0.004 0.213 0.018 0.218 0.052
April 0.200 0.199 ~0.389 ~0.031 0.195 -0.037 0.21L ~0.015
May 0.211 0.206 -0,311 -0.305 0.203 =041 -0:216 -0.213
June . 01199 0.193 -0.225 ~0.2h, 0.198 -0.249 0.208 -0.376
July 0.25% 0.249 -0.489% -0.501 0.255 -0.538 0.247 -0.43l
August 0.289 0.28) -0.1470 -0.465 0.280 -0.576 1 0.29 " -0.165
September 0.295 0.291 ~0.1h) -0.15L 0.296 ~0.086 0.352 -0.143
October 0.375 . 0.382 0.140 -0.141 0}3?0‘" 0.163 0,315 0.149
November 0.337 0.336 0.113 0.092 0.343 0.232 0.350 0.147
December 0.348 40.353 0.421 0.1416 ‘ 0.361 0.357 0.370 0.499
7 rartance 99.6 99.3 0.k 0.6 9.1 0.1 9.9 0.1
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2.5.2 Results

In Tsable 2.2_the amcunt of variance explained by each
eigenvector is determined by the ratio of the first elgenvector
to the sum of the twelve elgenvalues. The first eigenvector
explains mosﬁ of the variance and clearly reflects the annual
cycle in rainfall values (see also Fié. 2.3). ‘The 1916-50 first
eigenvectors for the different areas are almost identical, which
reflects overliap of data between areas and the similarity between
their climates.,

The eigenvectors have maxima in January and October, and a
minimum value over the months April, May and June. The 1941-70
first eigenvector for Solway vafies mofe uniformly being derived
from a densef network of stations, and has a large value from
September to Januvary, and a small value from February to June.

The multipliers of the firét eigenvector illustrated in
Figs. 2.6 and 2.10 should be compared with the annual rainfall
maps Figs. 2.5 and 2.9, and the topographic maps Figs. 2.l and
2.8. The resemblance between mean annual rainfall ischyets and
first eigenvector multiplier iscpleths is strong. Both are closely
related to topography. 'The variation of rainfall with distance
from the West coast for Central Scotland and from the South and
West coasts for the Solway region can also be seen.

It should be remarked at this point that while mean annumal
rainfall and first eigenvector multipliers, and all-station mean
monthly rainfall and first eigenvectors, aQe very similar, the two
first eigenvector patterns filter noise out of the date in g differ-
ent-way to simple averaging. Also, while in the case considered,
eleven out of twelve eigenvectors were insignificant and could be
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Topography Central Scotland

© Figure 2.}

(Land over 800 feet hatched)
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Figure 2.9 Mean "annual 1916-50 rainfall Solway region

(information from Hydr. Mem. No. 26) e e
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Figure 2.10 First eigenvéctor multiplier, mean monthly

rainfall 1941-70 Solway region
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considered as noise, in some other cases the second eigenvector

(and perhaps others) might be significant,

In these cases,

eigenvector analysis would have isolated more information con-

tained in the time-space matrix than simple averaging.

2.5.3 Regression analysis of first eigenvector

multipliers with altitude

In order to further investigate the rainfall variations

described by the eigenvector multipliers, regression analysis

between first eigenvector multipliers and altitude were carried

out. Table 2.3 contains a summary of the regression analyses,

with correlation coefficients r, and regression parameters a and b

in the regression equation 2.10 where y is eigenvector multiplier

and x station height.

= ax + b (2.10)
Table 2.3 summary of regression analyses
between first eigenvector multiplier and altitide
No. of

Area . stations type T & b
Solway 1916~50 69 long-term { 0.819 | 11.76 | 0.0067
Solway 1931-70 207 long- and no direct information

short-term | on station altitude
Central Scotland 2N long- and 0.576 | 10.50 | 0.0071

' short-term

g2 long-term | 0.374 | 11.28 [ 0.0077

The three correlations are significant at the one per cent level

'using values tabulated by Fisher and Yates (1953).

L.
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The Central Scotland multiplier residuals, the diffefenéés
between actual eigenvector multipliers and multipliers predict-
ed by equation 2.10 are shown ianigure 2.7. These show that most
of the rainfall variations apart from the effects of topography
can be explained by th: direction of the prevailing wind. The
non-linearity of rainfall variation with altitude is shown by
extra rainfall and positive residuals for stations exposed to the
prevailing wind, and negative residuals for sheltered staﬁions ocr
stations in the lee of hills. The hills in the North West of the
region lying in the prevailing wind have positive anomalies. The
area in the centre of the figure at the crossing of the grid lines
and enclosed by the 0 contour arises from the Ochil Bills releas-
iné more rainfall than that expected by the regression relation-
ship.

In sheltered areas the linear smoothing of multipliers for
topography overcompensates for the increase in rainfall and
hence multiplier ialue with altitude (in the exposed areas con-
sidered above it undercompensates). The Moorfoot Hills and the
Pentlands lie within the area enclosed by the -6 contour in
Figure 2.7. These hills are surrounded to the South and wést by
other ranges of hills, and are thus sheltered from the prevail-
ing wind. Thus the increase in rainfall with altitude for these .
hills is much smaller than that in the North West of the region
and rather smaller than that in the Scuth of ﬁhe reglon. The
ranges of hills in the South are in their turn less exposed than
lthose in the North-West as they are sheltered by further raﬁges
of hills to the South and West.

In both Figures 2.6 and 2.7 the values of the multipliers
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decrease round the Forth Estuary, the contours tending to follow
the outline of the estuary instead of lying nearly North-South

at right angles to the prevailing wind direction. The areas around
the estuary experienée a sheltering effect on all sides except
from the Fasterly quarier; it is from this direction that about
half of all the heavy falls of rain occur (Mossman 1896). Falls
from this Easterlyldirection make an important contribution to
rainfall, despite the relative infrequency of winds from this

quarter.

2.6 Analysis of annual mean monthly rainfall and its use

in interpolation

Analysis of the anomaly data for the 82 Central Scotland iong-l
term stations produce a first eigenvector describing temporal
variation in their deviation about the 82 station monthly mean
(Fig. 2.11). The values decrease from a large value in winter
{October to January) to a small value in summer (April to Sept-
ember) with a slight drop in November compared to the other winter
months. This shows that rainfall has a higher variability between
stations in winter than in summer. The first eigenvector accounts
for 99.2‘per cent of the variance in anocmaly-data.

The derived first eigenvector multipliers (Fig. 2.12) and the
residuals from fheir regression with altitude (Fig. 2.13) produce
patterns similar to those for resl data (Fig. 2.6 and 2.7).
-Howéver, as‘the isopleths now describe deviation of station rain-
fall rather than mean station rainfall, the positive anomalies in
the North-West and South of the region and the negative anomalies

around the Forth Estuary appear more pronounced. The regression
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parameters in equation 2.10 are. a = 3,87, b = 0,0088 with a
correlation coefficient of O.h1, which is -significant at the one
per cent level. |

The . smoothed anomaly multipliers when used with the all-
stetion mean monthly rainfall and the regression relationship
between multipliers and aliitude, provide the ﬁaximum amount of
information concerning mean monthly rainfall. Five sets of inform-
ation, all-station ﬁean monthly rainfall, monthly eigenvector,
eigenvector multiplier-altitude regression relaticnship, statlon
altitude, and eigenvector multiplier reéiduals are used to des-
cribe the mean monthly rainfall of & station. To "predict" mean
monthly rainfall at a new site two values are required - the
height of the site and the interpolated smoothed mu1tiplier value.

As the anomaly smoothed multipliers have less overall vari-
ability between stations than the unsmoothed miltipliers, or
those of real data, it is easier to-interpolate mulfiplief values
‘to a new site. As many as possible of thg smoothed-isopleths
were drawn in Figure 2.13, and values were interpolated at the
sites of 209 shért-term stations not used in this analysis. From
these values, and using the other four sets of information listed
above, tﬁelve mean monthly rainfall values were predicted for
each of these 209 stations. ) '

These values were compared with those given in tﬁe Hydrological
Memorandum, produced as described above by the interpolation extra-
polation procedure from short-term records using surrounding long-
term stations. The largest differences between the two sets of
values occurred in areas where the smoothed multipliers were drawn

close together (hence increasing the subjectivity involved in the
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interpolation) and in areas with a sparse distribution of readings.

In mountainous afeas, rainfall can vary considerably over
small distances between successive hills. Even when some of these
vériatibns have been removed Ey the regression analysis with
altitude, the interpolation remains subjective. . The fariations
over short distances which cannot be accounted for by a few gauges
are further discusséd in Chapter Three where daily rainfall values
are regréssed with altitude.

The standard deviations.of the 202 short-term stations about
their means for each month, produced by this method, were cdmpared .
with the standard deviations of the original 202 values about
their means. This choice of method takes account of the fact that
monthly‘rainfall anomalies were used in the eigenvector‘intefw
‘polation procedure. The sets of mean monthly 202 station means do
not differrsignificantly (Table 2.3) though those interpolated from
the eigenvector method tend to be larger, perhaps as a result of
the large number of gauées lying in the positivé residual area in
Figure72.11. The total variance between rainfall stations explained
using the eigenvector interpolation procedure is about 70 per cent
of that in the extrapolation-interpolation proéedure. It.may be
assﬁmed that the latter values are accurate to five per cent and
represent the best estimate of mean monthly rainfall for these
sta@ions. Considering the sparcity of the gauge network, the
accuracy of the predictions using the eigenvector technigue demon-
strates that this method of extending a network of a series of mean

data values is viable.
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Table 2.3

Long-term means and standard deviations of 209

short-term statlions

(1) extrapolated by the standard precedure,

(ii) interpolated from eigenvector analysis

Jan, Feb. Mar., { - Apr. May June July Aug. Sept. Oct. | Nov. Dec.
(1) mean 5.60 3,81 3,16 2.94 3.18 2.96 3.89 L.39 L.35 5.56 11,91 5,00
standard
deviation 7.82 3,62 1.81 1.49 0.92 0.89 1.09 1.70 2.77 6.43 .80 7.05
(ii) mean | 5.87 | L4.00 | 3.29 | 3.06 | 3.27| 3.05| 3.99 | L.51 | L.51 | 5.80 | 5.2 | 5.26
standard '
deviation 6.89 3.09 1.56 1.27 0.78 0.7h 0.88 130 2.34 E.50 L.09 6.01

EE standard deviation (i)
0.726

:istandard deviation (14)
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2.7 Summary and other possible uses of eigenvectors

In this Chapter the technique of eigenvector analysiq has
been explained. TIts édvantages over otﬁer types of analysis have
been outlined. These arise from the orthogonality of each set
of time and space compOnenté and from the fact that no assump-
tions are made about the underlying distribution representedlby
the original time-space matrix.

The way in which eigenvector anaiysis may "highlight" under-
lying distributions in the original matrix has been demonstrated.
Mean and ancmaly patterns of rainfallihave been constructed with
time and space components which filter cut noise in data in a
different manner to simple averaging., The manner in which eigen-
vector multiplier fields reflect rainfall variations associated
with topography and the direction of the prevailing wind has been
demonstrated.

Eigenvector analysis gives a clear reduction in the amount of
data needed to represent the variations described by a space-time
_matrix. As oﬁly one eigenvector appears to be signifiﬁant above,
two column matrices with 12 and ST elements, where 3T is the
number of stations used, represent most of the information about
rainfall variability described in the original 12 by ST matrix.

Tﬁe use of eigenvector ahalysis to "predict" mean monthly
rainfall at a new site has also bgen shown te given reascnable
results. The sparseness of the original 82 gauge nétwork con-
sidered above is overcome by removing noise present in the data
by means of eigenvector analysis. Variations bhetween gauges.are
further reduced by smoothing somé of the variations in eigen-

vector multipliers due to topography using & linear regressioﬁ
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relationship between multipliers and station altitude.

These uses of eigenvectors have previously been demonstrated
by Stidd on Nevada mean monthly rainfall (1967). The further
consideration of the derived space pattern as.a "backgroung"
field for interpolation between readings in a specific situation
has not been preﬁiouély considered and is discussed in Chap-
ter 3.

The use of eigenvectors to analyse time-series from several
stations for cémmon variations is considered in Chapter 5. .
Time series derived from eigenvector analysis of meteorological
parameters such as pressure anomalies (Fritts 1971) or precipit-
ation values (Le Marche and Fritts 1971) observed over periodg of
decades at several stations have alsq been compared with those
derived from the analysis of-comparable tree-ring data. By '
correlating the sets of eigenvectors derived respectively from
climatic datd and from tree-rings over a common period of time,
it has been possible to extend climatic records retrospectively
into periods for which only tree-ring data are available. While
this particular technique is not discussed further in this thesis,
it does-demonstrate that eigenvector analyses of time-series from
several sites do describe real variations present in the data which

may be.of predictive value.

LT A T TE I L R T S T T A T T

It has been pointed out that thé_analysis on mean
monthly data could be extenéed‘to monthly data of individ-
ual vyears. 'Eigenvectors and their nmultipliers derived
from month-by-station matrices could then be compared. -~

FEach analysis might be expected to reveal more than the

single significant eigenvector found in the case of mean

values, and common types of variation might be revealed

in eigenvectors of a given number for different years.
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. CHAPTER 3

3. REGRESSION STUDIES BETWEEN RATNFALL AND PHYSICAL

PARAMETERS

31,1 Introduction

In this chapter multiple regression analyses between the
physiéél parameters altitude or effective altitude, distance to
West coast, distance to South coast, and daily rainfall, are
used to isolate the iﬁfluences on the rainfall of a network of
stations for particular days of "pure" synoptic type. The
effects of topography and distance from the sea on individual
station rainfall are expressed by a linear regression relation-
ship. The validity of the approximation of a linear increase of
rainfall with altitude is discussed using the results of tﬁese

analyses.

3.2 General points on the choice of rainfall regression

Earameters

The following points should be considered when performing

regression analyses between rainfall and physical parameters:

t.e Any physical parameter‘in a regression equation may
deseribe more than one effect éf a stati?n's position on
rainfall. The task of isolating different influences on
rainfall is not straight forward. In the regression anal-

" yses below, altitude varies with distance of a station

from both coasts as hills rise away from the sea. Thus it
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is not possible to distinguish effects of topography from
those of distance from the sea in this case.
While it is possible to represent the positicn of a
. ' , t
station by several different sets of parameters, the set
which is mest suitable in a given case will depend on the

area studied. Regression parameters obtained for particular

areas (and synoptic situations) must be viewed with caution

" if used to "predict" rainfall in neighbouring areas.

The actual station height is not aiways the best péra-
me£er to describe the height of the gauge. A parameter
describing the height of the land surrcunding the'gauge
whose rainfall the gauge represents; often gives best results
in regression analyses. The manner of computing effective
height, and the area whose height should be assesséd, depend
on the physical shape and relative height of the hills
surfgunding the statien. Storr and Fefguson, in.their
analysis of monthly rainfall, used effective height assessed
over nine 5-km grid points. Chuan and Lockwood (197L) in
their analysis of mean annual and seasonal rainfall of the
Western Pennines used mean height assessed over circles,
drawn at intervals of 1-km from the station, with four points
at each interval together wi£h the station height. They
found that mean altitude over an 8-km radius gave the best
correlatioﬁs. It is demonstrated below that this parameter

is not suited tc describe the effective height of Scottish

stations.
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A regression relationship between rainfall and altitude
aésumes.that rainfall increases. with height in a particular
way, usually linearly. Rain shadow effects are not accounted
for. It is found in some cases (using othe? methods) that
rainfall ceases to increase with height on the windward side
df a mountainbaﬁove a certain height (Lefreve, 1972; Alam,.
1972) and in others that rainfall increases beyond the
physical peak on the lee-side, (Storr and Ferguson; 1972).
Results of linear regression analyses should be investigated

to see if they reveal such effects.

The amouﬁt of rainfall falling in an area is generally
arffected by the topography:of neighbouring hills, Besides
the effect of moisture being precipiteted on neighbouring
hills, the system may be itself dynamically modified. Storr
and Ferguson (1972) used {he parameters, of distance to
barrier, barrier-height, and shield effect to'describe the
influences of neighbouring hilis in the regression analysis
of monthly rainfall. The-"barrier" was the highest elevation
upwind of the station along the direqtion of the prevailing
wind. The shield effect described the total effect of all

the neighbouring hills by summation of the barrier height

.ﬁpd the other local barriers along the prevailing wind direc-

tion. Alam (1972) used a parameter of barrier height to

label members of a series of rainfall v. elevation curves.

Parameters such as gauge exposure (the angle in radians
in which there is no topographic feature higher than the

gauge), maximum rise (the range of height between the highest
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and lowest points within a giﬁen radius) used by Chuan and
Lockwood, or aspect (the direction of the mountain slope

on which the gauge lies relative to the axis of the moun-
tain), used by Alam, may be used as secondary regression
parameters. While they take account of the detailéd posi-
tion of the gauée, they are difficult to assess and usually
only take account of a small proportion of the total vari-

ation between gauges.

3.3 The selection of data for regression of daily

rainfall

3.3.1 The area

The points mentioned above were borne in mind in the
selection of the area and of the physical parameters to study the
use of regression analyses to describe daily rainfall varistions.
.The problems of lack of data mentioned in Chapter 1, the inade-
quate networkrof daily gauge records in remoter parts of the
British Isles ana the necessity to have data of "pure" synoptic
type, were also considered in the choice. The area around the
Solway Firth was chosen as systems approaching this area are little
affected by the topography of neighbouring regions; the only
sheltering effects occur to the North and East, from which direc-
tions few systems bring intense rainfall. Thus the problems of
medification of a pure s&stem By topography and of the para-
meterisation of the effects of airflow over neighbouring hills
were not present in this region. The rainfall gauge network for
this region (Figure 3.71) was also denser than that for similar

areas in the Western Highlands exposed to approaching systems.
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Figure 3.1

Solway daily station network




Of the 110 gauges about BQ had records available for any pafti—-
cular day- | |
The topogréphy of the area is illustratéd in Figure 2.8.
The Southern Uplands rise to the North and East from the Solway
Firth. . The hills are more rounded than the Pennines, cdnsidered
in Chuan and Lockwood's analysis, but less rounded than those of

the Scottish Highlands.

.3.3.2 Physical parameters

Distance from the South and West coasts, ds and dw’
gauge height h 6r efféctive height,ﬂ 3 Were considered to be the
most important parameters relating to rainfall variations.
Secondary parameters, such as gaﬁge exposure and aspect, were not
considered, being difficult to assess from the stﬁdy of a deteiled
topogréphical mep, and haﬁing been found in other analyses ofien .
to be of little significance. The effective gauge height para-
meter was expected to describe some of the variations which would
be described by secondary parameters.

The effective height paramete; was found by averaging the
height of the station and those of the four surrounding\}% km.
grid poipts. This method of assessment was chosen because the
3% km. grid of topography was readily available, and it was an
“easier method of assessment than Chuan and Lockwood's method of
assessment of mean altitude over 3 lm. using 13 spot heights. The
difference between the 3% km. grid height and height over 3 km,
radius was not expected to be significant for the area studied.

The fact that héight of land over the 3 km. surrounding the

gauge was more appropriate to this case than height over 8 km. was
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suggested by the results in Table 3.1, where heights over 8 km.

for Central Scotland and for the Pennines are given. For Talla
Lins Foot, Victoria lodge, and Stobbo Castle, the mean height is

" larger than spot height but there is no corresponding increase

in mean annual rainfal’, showing that the hills near the—distance
of 8 km. from the gauge do not increase its mean annual rainfall,
The Edinburgh gauges, those at Blackford Hill and Astley Ainslie
Hospital, are situated 600 metres apart, and are located in an
area with topography broadly similar to that of the Solway regione‘
The two gauges have-a 3.6 per cent difference in mean annual
fainfail while the difference in their 8 km. mean height is 1£7per
cent and that in spot height is -60 per cent., These variatioﬁs
éhow that an 8 km. mean height is not an appropriate parameter to
describe the effective height'of gauges in Central Scotland with‘
respect to rainfall, Land lying within a smaller distance of a
gauge than this determines the effective gauge height. The 8 kn.
radius ﬁean height is more appropriate to the Pennines, which are
less rounded and slightly lower than the hills of Southern and
Central Scotland.

While secondary parameters such as gauge exposure and aspect
wére not considered in the regression analyses, and whiie it was
hoped that effective height would describe gauge position better
than would spot height, the height parameters, h or h, were them-
selves correlated with d_ and d_ (Table 3.;). The method of
stepwise regression ensured that as each variaﬂle was added the
effects 11 described were not already explicitly represented in
the regression relationship. However, because of the infer—

relationship between parameters, the increase in the square of the
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Table 3.1

8 km radius mean height, spot height and mean

annual rainfall -

1.

Edinburgh Area

20

West Pennines

g6

. mean
4 Grid spot mean annual
Station R height height rainfall
eference .
ft. ft. ins.
1916 - 50
1.
Ochil Hills
Hospital 30977076 800 748 h7-L9
Uphall No. 8 30246708 577 1,60 34.75
Middleton Hall 30616716 350 392 33.84
Harperig 31026613 900 962 L0.63
Edinburgh
Blackford Hills 32596706 L 269 27.53
Astley Ainslie .
Hospital 32516713 270 304 28.53
Fairmilehead
Waterworks 32196683 590 1,05 31.18
Liberton 32736690 LOv 38l 28.75
Glen Cottage 32236635 739 908 38.12
Glencorse
Filters 32256631 638 815 36.0L
Martyr's Cross 32296623 . 750 882 37.24L
Gladhouse Res. 3299651, N5 1016 37.67
Roseberry 33086570 750 786 33.67
North Berwick 35556853 51 62 25.69
West Calder
Addiewell 30016626 620 70L 37.69
Talla Lins ' '
Foot 31336203 966 1602 61.04
1 Victoria Lodge 31066231 900 1421 50.14
/D. -



Table 3.1 continued

mesan
Grid spot mean annual
Station . height height rainfall
Reference .
, £t. ft. ins.
1916 - 50
Carden Knowes 35776372 300 558 29.58
Stobo Castle 31796368 594 1100 38.50
Floors Castle 370763L5 195 316 25.95
Spittal Tower 35876182 Li25 516 31.12
2.
Swineshaw Moor 1,010L008 1340 890 7h8.5?
Black Clough 15127398k, 16143 1430 59.16
Pikenage 110981,001 926 1375 50.85
Upper Headon L, 0984035 1717 1369 69.83
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Descriptibn of Case Studies

Table 3.2
Case Date Weather Type Wind Remarks
A 05.08.71 Thundery low
B 29.11.72 Cold front W Cold front from NW. Some waving occurred.
C i2.02.73 Showery low W Low remained to the East and gave heavy
snow showers.
. ’ SW
D 10.12.73 Cold front veering Front arrived from NW
W
E 10.01.74 Occlusion Sw Occlusion moved NE -
F 17.01.74 Warm sector W
G 0L.09.7h Ocelusion W Ocelusion moved NE
H 12.09.74 Cold front S Cold front moved NE. Some development.
I 20.12.74 Warm sector W
J 21.12.74 Warm front SW Warm front moved up from Scuth and then
retreated.
K 16.02.75 Ocelusion W Occlusion moved E, and developed a wave.
The warm sector on wave moved N. -




| multiple correlation coefficient, and thus in the amount of vari-

ance described, at steps 2 and 3 was small (Table 3.3). 3

3.3.3 The "pure type" days

The cases used for the multiple regression studies were
chosen such that each distribution was of one particular type and
that half of the gauges had a reading of over 10 mm, and some
{about 10) had feadings over 20 mm. These days (Table 3.2) in-
‘cluded winter-time cold fronts {cases B and D) and winter-time
Warm sgctors (cases F and I}, the types of system Browning, Hill,
and Pardoe (1974, 1975) studied for the effects of topography on
rainfall. A summer-time cold front (case H) was included for
comparison with cases B and D. The showery low with its associ-
ated North Westerly airstream was notable for the-heavy ofographic
rainfall it produced to the North of the area.

Oceluded fronts (case§ E, G and X) Ef varying complexity
were also investigated to see to what extent rainfall from more
complicated systems may be related to physical parameters, the
case K being particularly complex due tolthe development of a
wave. The thundery low (case A) is included as a case where
rainfall, though heavy, was definitely not of an essentially
orographic nature. |

j All these systems could be classed as producing iﬁtense rain-
- fall due to a front, a non-frontal depression, a warm sector, or
an individual convective storm. The ﬁean annual rainfall distrib-

ution was similarly analysed from comparison.
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3.4 The method of multiple regression analysis

analyst
A stepwise multipleA?égression was carried out using the

Biomedial Computer Prﬁgram supplied by the University of
California. A% each step in the analysis, the variable which
gives the greatest reduction in the variance of the dependént
variable is added. This variable may alsc be described as the
one with the highest partial correlation coefficient with the
dependent variable which has been partialed on the variables
already added. The "P'value" of a dependent variable, which is
defined as the square of the ratio of the reéression coefficient
to its standard deviation, measures the relative importance of a
regression paréméter in deseribing the varianpe of the dependent
variable. The variables added may be restricted to those of
givenxsignificance by specifying a controlling P value for vari-
ables not to be entered into the fegression equatlion. At each
step the variable with highest P value will be édded provided
this value is larger than the control value. A detailed dis-
cugsion of the method is given in the BMD manual (Dixon 1958)
and in Effroymsen (1960).

In the regressionaequaﬁion:
¥ = a + bx + eox + dx (3-1)

¥ is used to "predict" rainfall in mm. from_x1, gltitude or mean
altitude in metres, k, distance to the South coast in km, and

x3 distance to the West coast in knm. X1s X, and x3 will be
referred to as hor h, dS and dw respectively in the analysis

below. .
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Analysis of "transformed" rainfall, daily rainfall expressed
as a percentage of mean anmual rainfall and first eiéenvector
multiplier, were also-carried out to determine the extent to which
rainfall distributions of specific cases might be describgd in
terms of these mean distributions. The mean annual rainfall
andlfirst eigenvector multiplier had to be interpolated from
Figures 2.9 and 2.10 for daily stations with no long-term means.

In order to examine the validity of the linear assumptiohs
in the analyses, regression residuals, i.e. differences between
éqtual rainfall values aﬁd those predicted by equation 3.1, were
plptte& and isopleths draﬁg. The particulaf‘effects of increased
rainfall on exposed slopes and of rain shadows were 1ookedrfor
in the patterﬁs of the isopleths. These derived regression para;
meters and residuals were expecied to provide answers as to the

validity of the linear assumption mentioned in Point 3. above.

3.5 Discussion of results

3.5.1 Real rainfall data regression analyses

A summary of the steps in the regression analysis of
real rainfall data appears in Table 3.3. The addition of extra
variables beyond the first step did not increase the amount of
variance in rainfall explained, the increase in R2 being small.
The correlation matrix bétween mean annual rainfall and physicai
parameters appears in Table 3.l; this illustrates that
"independeﬁt" variables aré in fact interrelated and implies

limited usefulness of more than one such variable.
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Table 3.3  Summary of steps in multiple regression

analysis using (i) mean altitude, (ii) spot altitude.

R - multiple correlation coefficient, Rz, increase in

R2 at each stéep, P value to enter variable.

il

o o 2
o w —
@ o ® el
o 9 2, o~ @ & - D
5 P 2ol RE 2 2 S g
S A h=l e R R 5. P = B
(i) annual 1 h 0.763 | 0.581 0.581 | 150.1 1
Tomean
2 d 0.768 | 0.590 | 0.009 2.3. 1 2
3 ds' 0.777 | 0.60L | 0.013 3.6 3
(1i) | annual 1 h | 0.776 | 0.603 | 0.603 | 163.8 | 1
mean ‘
' 2 d 0.784 | 0.615 | 0.013 3.5 2
, 3 dg 0.788 | 0.621 | 0.005. 1.5 3
A1) 05.08.71 1 d, | 0.433 | 0.188 | 0.188 22.7 1
> V5 |ow2r |owere {owsy | 111 ] 2
3 dw 0.533 | 0.285 | 0.013 1.8 3
(ii) | 05.08.71 1 ds 0133 | 0.188 | 0.188 22.7 1
2 d. 0.507 | 0.257 | 0,069 9.0 2
3 h 0.512 | 0.262 | 0.0056 0.7 3
B(i) 29,11.,72 1 dS O.L66 0.217 | 0.217 25.0 1
2 h 0.481 | 0.231 | 0.01L 1.6 2
3 d 0.520 [70.270 | 0.039 4.8 3
(i1) i d_ | 0.b66 | 0.217 | 0.217 | 25.0 | 1
5 d_ | 0.8l | 0.23h | 0.017 1.9 | 2
3 h 0.525 | 0.276 | 0.042 5.1 3
c(i) 12.02.73 1 dw 0.520 { 0.271 0.271 33.u_ 1
2 h 0.556 | 0.309 | 0,039 | 5.0 2
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Table 3.3 continued

o o b
a 2 o 4o
ot o S a8
B 3 S 5 5 VY
8 3 he |28 R R 5 s P SE
c(i) 12.02.73 3 d . {0.575 | 0.330 { 0.021 2.8
(ii) ' 1 [ d {0520 | 0.271 | 0.271 33.)

2 d 0.537 | 0.287 | 0.018 22.3

3 h 0.550 | 0.303 | 0.014 18.2

D(1) | 10.12.73 {1 | "8 o0.576 | 0.332 |0.332 | L5.2
2 d_ 0.603 | 0.36L | 0.032 L.5
3 | a, |0.639 | 0.409 | 0.0L5 6.8
.(ii) 1 h 0.517 | 0.267 | 0.267 '} 33.1

2 | d_ [0.558 | 0.311 | 0.0l 5.8
3 d 0.609 { 0.371° | 0.062 8.5 -
E(i) 10.01.74L i h 0.719 | 0.518 | 0.518 99.8
‘ 2 | a |o.me o1 o.033 | 5.8
3 d 0.74) | 0.553 [ 0.027 0.5
(ii) 1 h  |0.626 | 0.391 | 0.39 57.8
2 | d_ 10.668 | 0.LL6 | 0.055 9.2
3 { d |0.682 | 0.465 | 0.018 3.1

F(L). | 17.01.74 1 d 0.660 | 0.435 O.L35 720 |
2 | 4 |o.718 | 0.516 [0.080 | 15.L
3 | A [0.720 | 0.518 | 0.002 0.4
(11) . 1 | & lo.660 {0435 {0.435 | 72.h
2 | a_ |o.718 | 0.516 [0.080 | 15.8
3 h 0.727 | 0.528 | 0.012 2.4

G(i) | oy.09.7, | 1 i lo.306 |0.093 | 0.093 9.0
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Table 3.3 continued

o o O < T3
5 &g B2 | o > | 8 & ¢ 5%
O A nE = d R R i P R
G(i) 0L.09.7h | 2 d_ |0.377 |0.1k2 | 0.0L9 4.9 2
3 |4, |0.399 | 0.159 {0.017 1.7 | 3
(ii) 1 d_ |0.321 |0.103 | 0.103 [ 10.0 | 1
2 | n [0.405 | 0.16} | 0.061 6.3 | 2
3 | d, {0.428 |0.183 | 0.019 2.0 | 3
H(i) 12.09.70 | 1 a  |0.186 [0.035 |0.035 3.2 1
2 h 0.323 | 0.10L | 0.070C 6.9 2
3 |4, [0.324.]0.105 | 0.001 0.1 3
(ii) 1 d_ |0.18 | 0.035 |0.035 3.2 1
2 | n |o0.224 |0.050 |0.016 1.5 | 2
3 d 0.241 | 0.058 | 0.008 0.7 3
T(i) 20.12.7h | 1 h {0.578 ]0.335 [0.335 | Lh.2 1
2 | a, |0.665 | 0.l |0.108 | 16.8 | 2
3 |4 ]o.7m0 [o.505 |0.062 | 10.8 | 3
(ii) 1 h 0.593 | 0.352 | 0.352 47.8 1
| 2 | a, {0.693 [0.80 |0.127 | 21.3 | 2
3 | d |0.727 |0.528 | 0.048 8.8 | 3
J(i) | 21.12.74 1 d_ |0.612 [ 0.37h | 0.37L 52.6 1
o 2 | a |o0.805 |0.6u8 |0.273 | 6.7 | 2
3 h 0.825 | 0.681 ] 0.033 ‘8.9 3
(i1) 1 dg 0.612 | 0.37Lh | 0.37h 52.6 1
2 {a lo.8os |o0.6L8 |0.273 6.7 | 2
3 h 0.826 | 0.682 | 0.035 9.l 3
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Table 3.3 continued

[¢b] Qe 8
51 gm ﬁ-lfa
o T [+ IS = [eln L ®]
a )] £ o~ O & ]
2 I L O - s Hg
O A ne=E (= od R R H A P = b ©
K(1i) 16.02.75 | 1 - {0.295 | 0.087 | 0.087 8.0 | 1
2 4. |0.337 0.11h | 0.026 2.5 2
3 d_ 0.340 | 0.114 | 0.035 9.4 3
(ii) 1 h 0.231 | 0.053 | 0.053 h.8 1
2 d_ 0.272 | 0.074 | 0.020 1.8 2
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Teble 3.} Correlation matrix between mean

annual rainfall and physical parameters

_ : mean
h d d annual
5 W rainfall
h- 1.000 | 0.5L0| 0.092 0.763 e
d | 1.000] -0.335 0.333:
a : , 1.000. 0.011
W : .
mean
annual ’ _ - 1.000 .
rainfall -

In Table 3.5, it is shown that mean: annual rainfall has
higher correlation coefficients with physical-parameters than
rainfall on individual days. This in burn shows thab mesn
annuel rainfall is more cleérly’reléted fo topography that is
that of individual days; and may imply that the daily rain-
fali data do not reflect entirely "pure type" rainfall,

The parameter effective altitude did not produce siggifi—
cantly better correlations with rainfall thén spot aititﬁde, and
in the case of mean annuallrainfall and cases‘C, D, E and K, the
use of spot altitude. produced higher correlation coefficients.

Altitude was the most significant fegreséioh pérameter for
‘six cases. "Multiple correlation coefficients were higher for
all Winter;time cases (except the developing occlusion, case K)
than £or summgr—time systems. As case K developed a wave, it was
not in some senses a pure type. Cases K and H, both of which

were developing systems, produced the lowest multiple correlation
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Table 3.5 Summary of regression anaiyses of daily rainfall using (i) mean altitude,

(ii) spot altitude. R - multiplecorrelation coefficient, a - regression constant,

regression coefficients between rainfall and, b - altitude h or h, ¢ - distance to

West coast dW, d - distance to Scuth coast ds, and F - ratio of varianceuk ¥ and 34

denote significance at five per cent and one per cent levels respectively.

(i1)

order
Case Date - R a b e ad i3 variables
. ' : entered
(1) mean 0.777 1155.9 | 2.18L49 | ~2.5900 -1.1057 53, 93¢ E,dw,ds
' annual .
(i1} | rainfall 0.788 | 1162.3 2.3956 =241 -0.0689 57 Bt h,dw,ds
A1) 05.08.71 0,53l 8.60 0.0127 0.058L -0.0782 12.7% ds,ﬁ,dw
(i1) 0.51 2% 8.70 0.008) 0.0862 -0.0720 11 .0 d ,d _,h
B{(i) 29.11.72 0.520% 15.97 0.0166 -0.1002 0.0780 10.9% dé,ﬁ,dw
(41) | 0.525%¢ | 15.98 | 0.0198 | -0.1027 | 0.0799 | 11.2% d_sh,d_
c(i) 12.02.73 0.57530% 8.85 0.0127 0.08L8 -0.0218 1L .5% E,dw,ds
(1i) 0.550% 8.91 0.103 0.0983 -0.0203 12.7% h,d_,d
- D(L) 10.12.73 0.639%¢ 4.82 0.022, 0.1146. 0.0L61 20:5% E,dW,dS
0.609:¢% ua9o 0.0201 0.1321 0.0526 | 17 5% h,d_,d




-

—89-

Table 3.5 continued

A order
Case Date R a b c d F variables
entered
E(1) | 10.01.7h | O.7hhses 6.94 0.0569 0,0360 0.0620 | 37.6%¢ | h,d_,d_
(ii) 0.6823x 6.59 0.0516 0.0915 0.0883 | 26.3%¢ | h,d_,d_
F(i) | 17.01.7h | 0.720%¢ | 12.09 0.0083 0.4348 | -0.150L | 33.0%x d_,d_,h
(ii) 0,727 12.22 0.0223 0.3923 -0.1597 | 3L.3% d_»d_,h
G(z) | OLh.09.7h | 0.39%9%¢ | 13.19 0.0204 | -0.0551 0.0261 5ol E,dw,ds
(ii) 0.1,28#x 13.33 0.0257 ~0.0659 10,0272 6.3 h,d »d
H(i) 12.09.74 | 0.32) 22,91 0.0359 | -0.2341 0.0159 3. dw,ﬁ,ds
(i) 0.241 23.09 0.0162 -0.1573 0.0415 1.8 d_»h,d_
I(i) 20.12.74 0.710%%¢ -1.20 0.0130 0.0655 0.0530 | 29.2%% | h,d_,d_
(i) 0.726%¢ | -1.09 0.0163 0.0582 0.0537 | 32,13 | h,d_,d_
J(i) 21.1é.7h 0.8253% -5.98 | 0.0129 0.157L 0,1600 | 61,1 ds,dw,ﬁ
(ii) 0.8263%x¢ -6.83 0.0151 0.1536 0.1611 61.6 ds,dw,ﬁ
k(1) | 16.02.75 | 0.338% | 15.15 0.0300 | -0.0963 | -0.0065 | 3.53 | B, ,d_
(i1) 0.272 15,7 | 0.0283 | -0.826 | h,d




coefficients.

Of the two cases, H and F, where dS was the most important
regression pérametér,-the rapid decrease of rainfall in case H
with increasing distance from the South coast could be explained
by strong Southerly winds. In case F, on the otﬁer hand, the -
‘increase in rainfall away from the South coast probably reflected
a variation of rainfall and topography; ds and h are significantly
interrelated (Table 3.4). Some'rainfall_for case F, a winter-time
warm sector, was expected to be of an intense orographic nature.

The two systems, B and J, for which ds was the most sighifi-
cant regression parameter, were acéompanied by strong West winds.
In case B rainfall increased from the West, and to a lesser extent
from the North, as the front developed in its moticn eastwards.
System A, the thundery low, originated in the West and became less
actlve as it moved eastwarés. |

The.highest of the regression coefficients b, describing the
rate of increase of rainfall with altitude, occurred for the winter-
time occlusion case E, with & value twice as large as any other
values of b, If the cases studied are representative of intense
systems croséing the area, this result would imply that the
heaviest rainfall of an orographic nature occurs for winter-time
. occlusions. The highest values of ¢ and d occurred in case J
where the regression constant a is negative.

There would seem to be few generallsatlons toc make conﬁern—
ing regression coefficients from Table 3.5. Cases B and D, were
similar in synoptic type with fronts following similar paths across
the area from the North West, but the subsequent development in

case B meant that the regression parameterswere different.
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Table 3.6  Summary of regression analyses of daily rainfall expressed as (1) a per-

centagé of mean annual rainfall, (2) a percentage of eigenvector field.,

Multiple correlation coefficient R, regression constant

a, regression ccefficient .

between rainfall and: b - mean altitude i, ¢ - distance

to West ceast dw, d - dist-

ance to Scuth coast ds, and F ratio of variance. + and

#t denotes significance at

five per cent and one per cent levels respectively.

order
Case Date R a b c da F variables
' entered
A1) 05.08.71 0.500pes 0.75 ' 0.005 -0.006 16, 3% d_,d_
(13.) 0.5073% 26.1 -0.0081 0.232 -0.203 11.0% ds,dw,ﬁ
.B(i) 29.11.72 | 0.6473¢ 144 ~0,0008 | -0.007 0.007 21 .1 ds,dw,ﬁ
(i1) 0.67 7% 50.4 -0.0,02 | -0.228 0.262 2L .8+ dS,E,d
C(i) | 12.02.72 | 0.522sx 0.72 | -0.000t | 0.009 -0.001. 11 .0 ﬁw,ds,ﬁ
(ii) " 055l 25.0 0.0132 | 0.331 ~0.004 13.0% d_,h,d
D(i) | 10.12.73 | 0.577 0.0k 0.0003 | 0.001 0.000 15,08 d _sd B
(ii) 0.60%30¢ 1.9 0.0079 0.381 0.152 17.7% dw’ds’E
B(1) | 10.01.74 0.560%¢ 0.66 onobzz 0.006 0.006 13.8% E,ds,dw
(11) | 0.556%% | 23.8 0.0059 | 0.218 0.217 13.6% | Byd_,d_
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Table 3.6 continued

‘ order
Case Date R a b c d F varizbles
entered
F(1) | 17.01.70 | 0.809%x 0.92° | -0.0016 | 0.0L1 ~0.010 58.0w¢ | d_,d_,h
(i1) 0.805%¢ | 32.1 -0.0050 | 1.h4) -0.352 56 L3 dw,ds,ﬁ
G(@H) OL.09.7h | 0.319s% 1.15 ~-0.0003 0,003 L.9 d_,d_,h
(ii) 0,321p¢ LO.1 -oQooss -0.0967 0.101 3.3 dg,d,
H(i) | 12.09.74 | 0.329% 1,89 0.0009 | -0.017) 0.003 3.5 d_,d R
(ii) 0.346% | 66.2 0.0159 | -0.0580 | 0.117 | k.0 -dw,ds,ﬁ
T(i) | 20.09.7h | 0.691%¢ | -0.03 0.0055 | 0.0055 0.005 26,30 | d_,d ,i
(ii) 0.697% | -1.1 0.0071 | 0.1945 | 0.163 | 27.0%x a_,d 5
J(i) 21.09.74 0.828%x -0.04 0.0001 | 0.0125 0.012 62 Ly ds,dw,ﬁ
(11) 0.8L0wx | 1.2 -0.0033 | 0.0L33 0.1426 68.7%¢ | d_,d B
K() | 16.02.75 | 0.19L 1.23 0.0009 | -0.0061 | 0.000 1.1 d ,h,d
(i) 0.195 L1.3 0.0222 | -0.1798 0.043 1.1 d ,d ,h




3.5.2 Transformed rainfall data regression

relationships ) . -

In order to investigate to what extent variations in
daily rainfall can be vepresented by those of mean annual rain-
fall or the first eigenvector multipliers of Chapter 2, regression
analyses of transformed dafa were performed as discussed above
and the results given in Table 3.6 were compared with those of the
real data given in Table 3.4. Reductions in values of miltiple
correlation coefficients are small, showing that the baékground
fields do not account for much of the variance in daily gauge
values. For cases B and F multiple correlation coefficients are
1érger for transformed data, thus showing that in some reSpecfs
rainfall may be classed as abnormal for these cases. Case B,
being a developing cold front, might be expected to show abnormal
variations on other grounds.

The biggest reductions in correlation coefficients using
transformed data occur for the cases E and K, and are of order
0.1. The reductions in size of correlation coefficienfs are nearly
the same in both caseé, showing that the first eigenvector multi-
pliers of real mean monthly rainfall data describe the same vari-
ations as those in_mgan anmual rainfall data.

Though the reductions in correlation coefficients are not
large, sltitude is a considerably less important parameter when
transformed data are used. This shows that the princiﬁal vari-
ations in daily rainfall values which can be described by mean

annual rainfall are those due to topography.
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3.5.3 Rainfall regression residuals

In order to observe which variations in rainfall due
to topography can be accounfed fof by linear regression analyses,
charts of rainfall regression residual isopleths, Figures 3.2 to
3.9 were studied with reference to the topographical map, Figure
2.8, énd to the synoptic conditions of each case, Table 3.2. In
Figure 3.2 isopleths of mean annual rainfall residuals are plotted
at intervals of 10 mm, while in Figures 3.2 to 3.9 residuals for
cases A, B, C, F, G and H are plotted at intervals of 5 mm. Areas
of positive anomaly (observed rainfall larger than regression
prediction) are hatched. The placing of the isoplethS'ﬁas-somew
ﬁhat subjective in regions where the gauge distribution was sparse.

Figure 3.2 provides the most information as to the validity
-of the assumption of a linear relationship between rainfall and
topography. It is mean annual rainfall which has the highest

'
correlation coefficient with altitude and thus best describes raiﬁ—
fall variations with topography. In Figure 3.2, positivé anom-
alies occur on the sides of hilis expoged to the prevailing wind.
This is particularly noticezble for the ranges of hills in the
area marked X, and to a lesser extent for that marked Y. Rain-
shadows and negative anomalies are seen to the lee of these hills,
though nét necessarily immediately in their lee.

The existence of large positive and negative anomalies,
especially those lying near the coast 1ines, implies fhat the
additionai information explained b& the parameters dw.and ds conm-
pared to h alone, in the mean annual rainfall analysis, is small.
The size of these anomalies,ltogether with the small increases in

R2 in Table 3.3 for steps 2 and 3, show that the use of dW and ds
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Figure 3.2

Mean annual rainfall correlation residuals
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“Figure 3.3

Correlation residuals, case A, 5th August 1971

(Thundery Low)
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29th November 1972

2

Correlation residuals, case B

{(Cold Front)
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Correlation residuals, case G, 12th February, 1973

(Showery Low)
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Correlation residuals, case F, 17th January 1974

(Warm Sector)

-78-




R Mﬁ%

:

L%
£
o i ]

il
\x\\\

A,

7

f

P oo

/

Pk
r

/

Wos oe g

ST s B A 1y

AR

Ty Lt

F i P W R T

oS T

I D s s o AT it i)

a

Correlation residualsg, case G,

Lith September 197l

Figure 3.7

(Ceclusion)

-79-



i

-
T R o AR A e 5 ok L] A?Jﬁf%fiﬁn.%‘ﬂﬁuvﬁﬂ.{ 5 .
o A
-
14

e,

i
e

3 TSR A e R B B

R s i s BT LI

i
OB« GRS R @xi‘.aw‘ﬁ R S R R A TN USSR LA W o i T 20 31 T T T SR SR RN RN e Pl weig

TR Y B

¥ YERT SR BT T I T dm iy W SRR ) PO E i e s

12th September 1974

Correlation residuals, case H,

(Cold Front)

Figure 3.8

—80-



PR ARG Y s s S

ﬁy}«'—‘ii‘aﬂ?ﬁr’»’r-f-"” : a.; G 9T A TR ANy

-.l.\-.l

L)

-

P

B T By TR

huy\

S g
i .w.. T
Lot ‘.V
et
m -

Ratr a3 CO e g
Mt

PR ¥ L Tt .t»ﬁugg:i.:mﬁ.%

....w

ev]

4
w

RSO N AR s - G E B N R G T et St P o

S e e NN R A e A A e A A Fud

2

R ORI RIDS T A AR RS

P R RN SO O W A e

TS S Nl

3 5"
i et a2 B

Figure 3.9

Correlation residuals, case K, 16th February 1975

(Occlusion)
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_ did not significantly increase the variance described by the
regression relationship. |

An area of positive anomaly near area X also occurs in
Figure 3.4 (case B), Figure 3.5 (case C), Figure 3.6 (case F),
and Figure 3.9 (case K). The position of this anomaly and the
shape of the isopleths is dependent on wind direction. There are
also anomalies near area Y of Figure 3.2 in‘Figure 3.4 (case B),
Figure 3.6 (case F), and Figure 3.9 (case K). Positive and nega-
tive anomalies occur close together as air flows over a small \
but exposed range of hills in the area Y. The shape of these
isopleths is again determined by the direction and strength of_
the wind.

In case H, ds, the moét important physical- parameter, measured
the decrease of rainfall, predicted by the regression equation,
from the effect of southeriy winds. The regressibn residuals
showed that most of the variations between gauges occurred along
a central North-South band through the area X of Figure 3.2.
Positive ancmalies of varying size along this band showed that rain-
fall was under-predicled, apart from the negative anomalieé in thé
North due to the rain-shadow effect of the area X hills in the
path of the southerly winds. Over the rest of the region, there
were negative anomalies with small wvariations between gauges in
residﬁals, showing that rainfall was over-predicted.

Residuals from case A (Figufe 3.2), C (Figure 3.hL), and
G (Figure 3.?) bear the least resemblance to those of mean anmial
raiﬁfall. These cases Weré rare types of'intense rainfall distrib-
ution - case A a thunderstorm, case C a showery low with an assoc-

iated North~westerly airstream, and case G a cold front with a-
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éoutherly wind. However, residuals of case F, which appeared by
comparison of correlation coefficients of transformed and un-
transformed data to have an abnormal rainfall distribution, have
similarities to those of mean annual rainfall. Common configur-
ations of isopleths can be recognised in both diagrams with
their positions shifted between diagrams.

While regression c?efficients for individusl cases ére diff-
ereﬁt, there are common residual isopleth patterns in mean annual
rainfall and the daily cases, whose detailed shape and position
for a particular case are dependent on wind velocity. The under-
lying topography producing the rainfall is of course the same in
each case, and an approxinate description of this is provided by
the station heights. Scme other featureé of topograﬁhy ﬁhich
affect rainfall distribution may be seen by a comparison of
regression residuals and £he topographical map.

The residuals in themselves do not express much about the
dynamics of the system producing the rainfall apart from the wind
velocity. Residual patterns, Figures 3.3 to 3.9 camot be recognised
as describing rainfall of a particular type. The dynamical devel-
opment of the systems under study, in cases B and K, as they

crossed the region, cannot be gauged from the residual patterns.

3.6 Conclusions on regression studies

Daily rainfall values for systems ofla "pure" type can thus
bé regreésed with physical parameters, altitude usually being the
most significant parameter in such analyses. Correlation coeffici-
ents are usually lowér than those for regression-of mean annual

rainfall, which describes the most common variation between rain-
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fall and topography which is present to a greater or lesser extent
in most of the individual cases. |

Only one physical parameter, usually altitude, seems to be
of significance in multiple regreséion analysis. The distance of
each station from the coast line where the "system originated",
described above by dw or ds, is the altermative primary regression
parameter. The use of an effective station height, assessed over
a 33 km. grid, instead of station height does not in general
significantly increase the values of the correlation coefficiénts.

The rates of increase of rainfall wifh altitudé as revealed
‘by'regression coefficients varied between systems but the rate
appeared to be highest for a winter-time occlusion. Winter-time
systems, which are in general more intense than those of summer,
had the higher correlation coefficients; developing systems had
poorercorrelations than weli—defined systems.,

The question raised above in point 3 as to the validity‘of
an assumption of a linear variation between rainfall and altitude
was answered by values of the correlation coefficients and the
regression residual patterns. The exposure of mountain slopes
to the flow of moist air would seem to explain the pattern of
regression residuals when they are studied with reference to the
topographical map and synéptic conditions. However, the regression
analyses or residual patterns did not directly reveal the different
effects of the various synoptic conditions apar£ from those due to
wind velocity.

It is not entifely certain from the results of the anzlyses
that daily rainfall values themselves describe rainfall of a pure

type as correlation coefficients are smaller than for the cases
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N
of mean annual rainfall. Studies of rainfall records éver short
periods from a network of autographic gauges would enable the.A
isolation of effects of a_particular system and perhaps the
decomposition of rainfall from different sections of the sysiem.
Different stages of development of the system as it effects

rainfall could perhaps be distinguished.

It may howevei‘be concluded that regression metﬁods

are unsuited to analysis of rainfall variations in-

herent in daily values owing_ﬁo the very small frequency

of sufficiently pure types.
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CHAPTER L

L. MODELS OF THE DISTRIBUTION OF SPELLS OF WET AND DRY DAYS

1.1 Introduction

When time series are analysed in meteordlogy they are often
tested to determine the'extent to which their persistence may be
aescribed as Markov persisfence, and how accurately members of
the series can be determined from the Markov précesso ThisApro—
cess assumes that the probability of the occurrence of én event
in a given time intervalAdepends only on its occurrence in a
previous equal time interval. In particular this model %as been
used extensively to describe the distribution of spells of wet
and dry deys (e.g. Chatfield 1966, Gabriel and Neuﬁann 1962).

In this cdntext the model implies that the probability of any ..
particular day being wet or dry depends only on the character of
‘the previocus day. A full discussion of the application of this
model and three other models - William's (1952) log model,
Green's (1970) modified log model, anci Yap's (1973) modified
geonetric model - 1s given in a preﬁious paper (Blair-Fish,
'1975 - see Appendix 1).

The advantage of tﬁe Markov model over other models is that
ocnly one parameter - fhe probability of a dry day following é
dry day (and that of a web day following a wet day) - is needed
to predict‘the nature of a given day from that of the previous
day. The simple'log model also uses only one basic parameter,
but, in this case, the probability is weighted by a fadﬁor deter-

mined by the number of previous days of a given type.:
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Long wet and'dry spells are usually the‘least well predicted
‘by'the models. Such spells occur infrequently and are given
-1it£le weighf.when“model parameters -are calculated. Forimost
practical éurposes it is long dfy spells (and sometimes wet spells)
which are 'of most interest. In order to emphasise the importance
of long spells further investigations have been carried out ueing
the same data as in the previous paper. There (as in mcst work on
the subject) models were used primarily to describe spells of
specific length (i.e. the probability of a spell lasting an exact
number of days) rather than 'cumulative spells' (the probability
of speils of at least a given length). When spells of a given
length and greater are summed to give cumulative spells, some
smoothing of data occurs and it is usually easier to fit modeis
to this type of spell; cumulative spells are probably also the
mere useful for planning pﬁrposes. For‘the Markov moedel it will
be shown that the change in spell description affects only the
normalisation of parameters.

In-the'further investigations of spells below, the Markov,
log, and modified geometric models are fitted to spells of length
greater than five days. The "Jenkinson probability" and "natural
persistence" models used by Lawfence (1957) are also discussed and

| some of their uses and limitations are demonstrated.

}y.2 Discussion of the models

,.2.1 The Markov model

The probabilities of spells of length 1, 2, 3 .cose T
days form a geometric series q,_q2, q3, secs qr and these prob-
abilities are normalised so that the total probabiliiy of a spell
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of any length is unity. The normalisation constant is then

1-4 and the number of spells of length r is N qF ( 1-q) where

—— ——————

q q
N is the total number of spells. The number of spells of

length r or greater (cumulative spells) is 1-a N }° qt i.e. N5,

q r d

This model may also be applied only to spells.greater than
a minimum length in order to emphasigse longer, less frequent
spells and because Markov persistence may not be applicable to
shorter spells. If only spells greater than x days are consid-
ered, gnd Nx is the number of spells of length at least x déys,
the number of spells of length r and at least length r will be
Nx(15q)qr_x—1 and qur—X~1 respectively.

To fit the model the mean spell length (or the mean contin-
uvation of a spell beyond a minimum number of days) is calculated
i.e. the ratio of the totai number of days of given typé T.D to the
total number of spells NXo In terms of model parameters:

m - xS - X (4+1)
X ' q . 1-q

.

The mean spell length is thus Tla:°

If any spell data can be described by the Markov model, a
‘plot of the number of spells of given length r, n, {or spells of
length at least r, Nr) against r will produce a straight line on

semi-log paper as can be seen in equation }.2.

_ r-1 -
log n, = log q (‘l—q)Nx = (r-1)log q + ;og Nx + Log(1-g)}
(L.2a)
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‘ . ) ' |
log N, = log 9" N_ (r-1) log q + log Nx (h.2b)

The intercept ofonthe line the x-axis will be greater in the case
of L.2b, there being more spells of at least a given length than
of an exact length. If a Markov medel is constructed for spells
greater than x days, where x = 3 in Lawrence's work and x = 5 in
the work below, then the straight line will be drawn for r = x

onwards.

L.2.2 The log model

In this model the probabilities of spells lasting

exactly 1,2,3 .... r days are proportional to q, gE, gi |
! I

and the number. of spells of length r is N (—EETT——j) <— Where

N is again the total number of spells. The number of spells

lasting at least r days is given by:

>0 r-1 .
=N I _ N Tr .
log (1—<1) Z gr'_ " Tog(i—q (Z 91'.‘ -1) (L.3)
r .
.

The total number of days of a given type is given by:

aF - -N q o "
0g1 2 T - Tog(iq) T-q (hoh)
1

The mean spell length (as defined above) is again used to fit the
model to spell data. g is found from this mean length,

-1

Tog (1-q) 1%q s by a recursive process or by a graphical
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" method. Results are published in tables prepared by Williamson
and Bretherton (196l).

The ratio 0of the number of spells lasting r + 1 to r diys,

Fr’ is given by‘;%T q. This ratio increases as r increases; for
the Markov model it has the constant value q. Thus the persist-
ence of a spell increases with spell length if the distribution |
is described by the log model, while it is cwmstant for the Markov
model. The log model cannot be simply applied to data which does
not include the more frequent short spells, as the probability of
any spell of length r is defined for all values of r according
to a pfedetermined pattern. Also as the persistence factor F(r)
depends strongly on r, the model is only applicable to data for
spells of specific length and not to those of cumulative spell
data.-

Green proposed a modificatioﬁ to the log modél such that
the probabilities of spells of length 1,2,3 ... r days were pro-

portional to a_, - , @ ... & where a is a modifying

1+a 2+a 3+5 r+a

parémeter {0< a<==), For the simple log model a = 0 and for
the Markov-model a =, This model attempts to explain more
fully the variation in persistence in spells of different length.
Fr inereases with spell length more slowly than for the log model

and equals r+a . While Green successfuliy fitted this model to
r+a+]

mosf spell data, the model was found in the previous work (Biair—
Fish 1975) to be more relevant to wet spells than to dry spells
which are well described by the simple log model,

| The modified log model is difficult to fit to data, réquiring

successive adjustments to values of q and a after an initial guess
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has been:made to their values from the shape of the distribution
(which may be initially plotted on semi-log paper). If the nnmber
of steps reguired for the comﬁutation is large, a correspondingly
large amount of computer processiﬁg time is required. The
physical significance of the parameter a is not obvious,‘a%so,
differences in a between étations found in cases where £ﬁe.model
has been applied do not follow a clear pattern. For‘these,reasons,
and in particular because of the success of simpler models, the

modified log model has not been used in this further work.

h.2.3 Yap's modified geometric model

Here the probability, p, of a spell lasting a further
daﬁ is asgumed constant within a spell of given iength but to vary
“with spell length. Two parameters, a and b, are used to determine
fhese prpbabilities such that p is assumed to_be a bate variate.
In Yap's paper and in Appendiﬁ 1, it is shown that the probability

of a spell lasting another day is b  and F(r), the ratio of the
a+b

probability of spell iength r+1  to that of spell length t, is

a+r-3 . . F(r), the measure of persistence, increases with r and
a+b+r-1

tends to 1.

The model is fitted, using the mean spell length (as defined
gbove) and the mean square spell length. The latter parameter is
the sum of the number of days of length r times r2 divided by the total
number of spells. The factorial moments for the distribution, u11,
the mean spell length, and u21,
length and mean spell length, are related to a and b as in equations

L.5 and L.6.

the difference between mean square
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) 2u, (u1 -1) - 2&2 ' |
° s o, (u T 1) u ! (h-5)
1 1 2
&= @' -1 -1 (1-6)

The modified geometric'model may be‘applied to data in which
shorter spelis are omitted. In this case the first few dayé,
(the first four in cases below), of each-spell are ignored and the
probability of a spell continﬁing is assumed constant from the

next (fifth) day onwards.

h.2.) ZIawrence's "natural persistence! model

In this model, the actual probabilities of spells contin;
‘uing at least another day are considered. The ratio of the prob-
ability of a spell lasting ét least r days td one lasting at least
r+1 days is calculated for r> 3, say, for each station. Then if
N3 is the ﬁotal number of spellsrlasting at ieast 3 days, the

number of spells lasting a% least 3, L, 5, 6 «.. days can be ex—

pressed as the series: N3, I\T3 Ch’ N3 Ch 05, N3 GLL CS 06 coo

Lawrence found that when Ch’ CS’ 06, .o wWere plotted for each
station, the.variations of Cr with r were similar for different
stations; he was thus able to generalise variations in persist-
ence as measured by Cf.

For‘a dense network of stations, a series of charts of:
N3, Qh, 05’ 06 aoe Inay be plottgd and these paramelers may be
interpolated to new stations. Tf the variations of Cr with r are

similar at all stations in an area, values of Ch’ CS’ 06 ces mAY
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be averaged and the number of spells lasting at least 3, L, 5,
NB’ N (@— +x), W€+ x)(Cg + x),

NB(Ch + x)(C + x)(06 + X) wee where C 5, and C are the mean

6, ... days may be expressed as:

areal values of Ch’ C5 and 06° It may also be pessible to replace

‘N, by ﬁ;, the mean areal value of N, and hence express the series

3 3
of probabilities as: 3, N (Ch + x), N.(C, + x)(_ + x),
ﬁg(ﬁi + x)(ag + x)(06 + %) X, the parameter modifying the mean
value of Cr to that of a particular station, is determined by the
relative number of days occurring at each station of the type
considered. If C, is the ratic of the number of dry days to the

total ﬁumber of days considered for a station, and ET is the mean

value of this ratio, x is the difference between C1 and E;.

l1.2.5 The "Jenkinson probability" model

Tn this model the maximum spell length occurring in each
year 1s extracted from the'data. The mean pti) the standard
deviation.0‘1, and the two—yeér standard deviation.c“2 of the
maximum anrmaal spell iength are calculated. To find the latter
ﬁarametef, the maximum run lengths are ranked in order from
smallest to 1afgest. The m th member of the series is given the
weight 2m + 1 and the standard deviation is then found, with the
m th member assigned the frequency 2m + 1.

The parameter éFl is then calculated and a parameter
-2

o=
R(5J-)y)_is uged %o determine the return period of a spell last-
ing at least D days. ¥y is the probability function - loge loge 5

where p 1s the probability. The return period, t3, for annual maxi-

mun spell length increases with y, the relatiocnship being
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= 7 - exp (... y) . A (h-?)

etl=

‘The curve of y against D is given by

o7
D=fM + R(éF; P Y)CrT

Tebles of R are given in Jenkinson (1955) and Lawrence (1957),

. the latter of whom applied the method to describe spells for

individual months of the year. The curve is approximately a

o .
straight line: foréFL = 1 it is an exact straight line, while
2 .
97
for(;: <;(>) 1 the curve is -concave downwards {upwards) and D has
2

a lower (upper) bound. In principle, D has no upper limit (but
has a lower 1imi£ as a spell must last at least one day). It is
- thus expected that ;%g-( 1, as is usuzlly the case.

The mean annual frequency'of runs of length P or more, GD,
can be determined from the fact that Gy~ exp (- y). From the y ‘
against D curves, annnual frequencies may be obtained; .frequencies
for periods of 1 years are obtained by multiplying GD by 1.

The Jenkinson probability model is most suited to calculating
the-frequency of spells of length around theimean annual spell

length as it is this length which is used to determine the dis-

tribution.,

;.3 Application of the models to eight stations

For many practical purposes, e.g. farming and water resource

management, the incidence of long dry spells is of special interest.
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In the previous work (Blair-Fish, 1975) both dry and wet spells
Were-consideredJ The ﬁarkov and modified geometric models are
considered below for spells of length give days and greater for
the originsl eight staticns of Edinburgh, York, Whitby, Cum Dyli,
,dxford, Falmoﬁth, March and Edgbaston. The use of the Jenkinson
probability model in relation torlong dry spells is also con-
sidered.

In order to provide more reliable estimates of long (infre—
quent) spells the data for each of these stations were not sub-
divided into months. In comparison, Lawrence (1957) considered
spell frequencies for individual months; while his method
pfovided little information on long dry spells for iﬁdividual
months and stations, the dense network of stations with similar
climates yielded several estimates (not however, strictly independ-

ent) of the monthly distribution of spells.

h.li The use of the "natural pérsistence" model and of

persistence patterns

The relatively sparse network of stations uéed in this study
does not permit extensive interpolation of parameters between the
eight stations. No clear variations in model ﬁarameters emerge
in the various analyses. Lawrence was able to chart the model
pargmeters and interpolate between stations in a_dense network of
stations in Southern and Eastern England. These interpolations
included ﬁalues of Cr in the "natural persistence™ model.

The values of Cr calculated for each of the eight stations
are displayed in Figure L.1 for :r':2 6 together with the values of
NS’ the number of spells lasting at least fiVe.days. The groupiﬁg
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into four sets of two stations in the figure is made from the
similarities in climéte of , and the geogrephical positions of,
the stations.. The two "wet" stations in the West of the éountry,
Cum Dyli and Falmouth, show the greatest similarities.

Lawrence summarised the variations of'Cr with r for his net-
work pf stations. Persistence was defined as an increase of Cr
with r. A more obvious definition would be to define an increase
in Cr with r as an increase in persistence, l.e. the "cumulative
rersistence factor for r days is defined as the probability of 2
spell lasting at least another day beyond r days. (This ié the
defin i tion used herein). Gr is approximately constant for eight
stations from 6 to 16 days. For spells of length grsater than
16 days oscillations of C.. about its mean value increase in ampli-~
tude, partly as a result of the pad;pity of such spells, This is
especially noticeable in the case of Whitby where only 22lyaars

of continuous data were available.

4.5 Results - the Merkov model and modified geometric

models

The persistence factor, Cr’ is constant for the Markov model.
.The Markov model when applied to dry spells of length five days
or greater, was found to produce a significant fit to seven out
.of the eight sets of data {(see Table l.1). The modified geometric
model also fitted these data, with a significantly better fit than
the Markov model in-most cases. Results for the lég modei applied
to the complete distribution of spell lengths also appear in
Table h.1. These latter fits are in general less good than those

for either of the former models.
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Table L.1

Surmary of model parameters (dry spell data)

SPELLS AT LEAST 5 DAYS LENGTH

JENKINSCN PROBABILITY MODEL

STATION ALL DATA IOG MODEL :
. MODIFIED GREOMETRIC
MARKCY MODEL VODEL
> 87 P(X<)
q PXS) a POCZ) a b P(xg) [ d_jl 071 (spell
' . 2 length
>p )
EDINBURGH 0.82 0.io | 0.73| 0.0 | 22.9 | 9.3] oo | 13.12| y.26| 0.96| o.00
YORK 0.86 0.30 | 0.78] 0.10 37.3 '11.5 0.60 | 17.85} 7.01| 0.8, 0.00i
WHITBY 0.80 0.30 0.68 | 0.60 59,7 28,41 0.40 11.861 L.h5| 0.96 0.50
CWM DYLI 0.83 0.20 0.73] 0.80 271.9 | 100.5] 0.70 13.72 1 L.62 Oo9u 0.20
OXFORD 0,86 0.05 0.771 0.04 19.L 6.7 0.20 18.95 7.L0} 0.96 0.60
FATMOUTH 0.87 0,30 0.80{ 0.95 1010 37.2| 0.95 17.801 6,271 1.03 0.10
MARCH ( 0.87 )| 0.40 0.79 1 0.50 89.5 | "23.31 0.95 20.75 1 7.09 | 0.90 0.001
(modified) ‘
(a=0.337 )
EDGBASTON 0.85 0,02 ‘0.75 | 0.50 L 5.6 0.20 | 15.83| 6.23| 0.97 ] -0.50




For none of the above models were the fits to the taill-end
of the distribution-testéd in detail. In applying the?fz test
spells wﬂose expected-frequency'were_lesslthan five, were pooled
into categories before the test was applied. The expected fre-

. quency of long spells of a given range of length were then compared
- with observed values, while for shorter spells ffequéncies of
spells of given length were tested.

In applying the?c2 test, the modified geometric model had one
fewer degrees of freedom than the Markov or log model as the mean
square spell length was used as an additional variable.to define

the model parameters a and b of the former distribution. -

4.6 Results - an alternative application of the Markov

and modified geometric models N

An alternative approach to applying the Markov and modified
geometric models is to sum the numbér of spells lasting at least
5, 6 or 7 days and to use these values as direct input data to
determine model parameters (i.e. to‘consider spellsrof cumulative
length in place of spells of exact length). The frequency of long
spells obviously falls off less rapidly for this distribution thén
for that of gpells of Specific'length, though some grouping of
. spells of different lengths is still needed in order to apply the
7(2 test to the tail-end of the distribution. Such grouping amounts )
to double integrétion of spell frequency against spell length and
is physically not very meéningful. Also it is difficult, in the
case of the modified geometric model, to sum the number of spelis

at the tail-end of the distribution when this number decreases

- slowly with spell length and testing of the fit at this end of the

~9%.



Table L.2 Model_parémeters using the

alternative approach {cumulative spells)

MARKOV MODIFIED GEOMETRIC
1, %) | a | b POF)
EDINBURGH 0.73 0.40 201.2 |~ 73.L 0.99
YORK 0.80 0.001 L6.9 | 2.1 0,90
WHITBY 0.69 0.70 35,2 16.6 | 0,90
CWM DYLI 0.74 0,10 36.6 13.6 6.99 ]
OXFORD 0.81 o.oo{ | 3.9 11.5 .0.70
FATMOUTH _0.80' 0.99 145.2 37.1 0.99
MARCH 0.81 0.80 106.7 2é°u 0.99
EDGBASTON 0.76 0.05 27.9 9.9 | 0.80.
o1 B i B o =

It has been pointed out that application of the
X text in this instance is invalid owing to the lack

of independence implicit in cumulative data.




j distribution is therefore difficult. (For the Markov Model the
tail-end summatioﬁ amounts to sﬁmming a geométric series.)

In processing the new form of input data, running the same
programs to fit the models as previously, mean cumulative spell
length beyond five days, and mean square cumulative spell length
beyonﬁ five days are implied variables which determine model
parameters. The first (second) parameter is the ratio of the sum
~of the number of dry days cccurring beyond & wetb days times r(rz)
_divided‘by the total number of dry days.

| In térms_of the new Markov probability3 Qs gnd NS’ the
number bf spells lasting at léast five days, the number of spells
lasting at least r days is N5(1—q1)q1 r-1. Using the original
approach this number was qur-To Thus values ofq1 will be larger

than values of q (compare Tables l.1 and L.2).

The fits of the Markov model for this approach are as good as
for the original approach, as might be expected since the new
apprqach only amounts to a different normalisation. The fits
using the modified geometric model to thé cumulative data are
very good. Indeed, the values of?{2 are such as to give rise to
doubt as to the validity of the approach.. At any rate, the
original model was formulated for a random variate p with constant
value within a given spell determined by the spell length. The
- distinction between different runs (spells) and the meaning of p

becomes confused in this approach.

4.7 Results - the "Jenkinson probability" model

Values of L, O, and L are given in Table L.1. The ratio
1 : Cré
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is seen to be €1 in seven out of eight cases; this implies

o9

that of a plot of vy against D is concave downwards (gradient
positive) with a lower bound to D. This in turn means that the
persistence of a spell'incréases in length over the range of D
considered (spells greater in length than the mean annual 1engtho-
In the Lawrence terminelogy persistence is positive.) Curves of
v against D for York, Oxford and Falmouth are given in Figure 4.2;
these are based on values of ju ,G—;, and :_—iz in Table h.? and

67 ‘
R(éF; , ¥) in Lawrence.

The values of the expected frequencies of spells of length D
orrgreater, GD x 1, where 1 = 40 for forty years of data, were
computed and compared with the observed freguencies using a){a
test. Some pooling of data was necessary for longlspells (though
cumilative frequencies are greater than those‘of spells of specific
lengths). Results of the X° test appear in Table ho1o- From
estimates of frequencies made from the models, and with the murber
of rarer spells pooled into categories, the number of spells
estimated or observed in each category was of the sameé 6rder of

rmagnitude and hence was given the same weight in the test. In the
light of these considerations, this modellwas considered to produce

good estimates of frequencies of long spells for five out of eight .

. cases considered.

" 1.8 Tests of the models on new data

1975 was notable for its exceptionally dry summer in various
areas of the British Isles. Rainfall spell data, extracted from

records of the University ofﬁEdinburgh, Meteorology Department's
_1b3_



Tests of model parameters on new data

Table ).3

GREENWICH 1921-22

g0 =D
Lousnbaag
SATRTIUMD
| AO3IBY

26.0

20.8

16.6

13.3

10.6

8.5
6.8
5.4
Lo
3.5
2.8

2.2

1.7
1.4

1.1

009
P(R2)
=0, 30

Lousnbaazy
SATFETNUWN

112

6l
L7

3k
26

18

17
16

13

Rouanbaayz
DPoAIISUN

L8

17

13

EDINBURGH 1974-1975

t

Lousnbaay
fyTrT98q0ad
UOSUTHUS P

1.0
1.0

0.7

0.5
0.4

0.2

0.2

0.1

0.1

0.1

mehw ‘Umo
OTI}oU0e3

POTITPOK

9.8

?'2

5.2

3.8

2.8

2.1

1.5

1.1

0.8

0.6
0.4
0.3
0.2

0.2

0.1
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1
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gauge for the period 20th September 1974 to 19th September 1975,
were dompared with "predictioﬁs“ of dry spell frequencies made
from the 1931-70 Blackford HEill Observatory‘gauge, using the
Markov and Jenkinson models, as shown in Table L.3. Results
. obtained for cumulative data from the Markov model are seen to
provide acceptable predictions of spells of length 5 to 11 days.
The spell of length 19 da&s is only predicted to occur once in
7.7 years using the Markov model and once in 10.l, years using the
Jenkinson model. The latter does not appear to give better |
estimates of longer spells than the former in this case.

| Tw§ successive years of data, 1921-22, for Greenwich were
also analysed and the actual end cumulative distributions of
observed dry spells there are also given in Table L.3. The cumul-
ative spell freguencies for length 5, 6, 7 ... days weve compared
with those based on the Mafkov parameter, q1,.interpolated from
values at neighbouring stations. A value of a, = 0.8;* inter-
polated from Edgﬁéston, March and Oxford, and the observed value
of 26 occurrences of spell length five days or greateé were used
to "predict!" the occurrence of spells of iength af least 6, 7 wes
days. A value of PG‘E) of 0.30 was cbtained when predicﬁiogs were
compared with the obserﬁed distribution. This showed that the
probability of a spell 1a§ting a further day caﬁ be prédicted from

a Markov parameter interpclated from surrounding stations.

h.9 Conclusions

The Markov model has been‘shown to be of considerable value
in predicting frequencies of dry spells of length five days or

greater., Successful application of the model to subsecticns of a
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distribution have been shown to emphasise its value. Its sim-
plicity and ease of application, using basically one parameter,
ensure that it will continue to be used in the analysis of spell
data and in many other analyseq of time series.

The Jenkinson model has been shown to be of some value in
relation to rare long spells though its complexities may dis-
courage its application. The modified geomeﬁric model, log modei,
and modified log model can also be reasonably fitted to spell
data but are more difficult to apply than the Markov model - the
modified log model particularly so. The phﬁsical significaﬁce of
the laéter model is also not clear. |

Considerable similarities were observéd in the statistics of
the two wet stations - Cwm Dyli and Falmouth; to a lesser extent
also between those of Edinburgh and York, of Whitby and March, and
of Edgbaston and Oxford. The recognition of ;imilar spell dis-
tribution patterns at different stations, whatever their separation,
may be of use in fypes of climatic anelysis other than that of

spells.

- -

However, it should be pointed out that none of
the models, of whatever complexity, adequately describes
the incidence of very long spells, though the Markov
. and Jenkinsén mode}s may provide some guidelines

concerning their occurrence.

——

~106-



CHAPTER 5

5. TIME SERiES OF SCOTTTSH RAINFALL AND BRITTISH ISIES

CIRCULATION INDICES

5.1 Introduction

In the previous‘chapter it was shown that a Markoﬁ érocess
describes well the distribution of spells of length five days or
greater. Persistence, the simplest form of which is Markov-ber—
sistence, is one form of non-randormess present in time serieé,
others being_trend and periodicities. In this chapter rainfall
records from twelve stations are tested for hoﬁogeneity and their
non-random elements are investigated using decadal means, filter-
ing techniques, power spectrum analysis, and eigenvector analysis.

Results from different stations are compared and stations are

‘classed "West" or "East". As mentioned in Chapter 1, the pres-

énce of any trend or periodicity in several records considerably
inereases its signifiéance. |

Common variations in "West" and "East" stations are compared
with those of circulation indices revealed in the results of sim-
ilar anglyses; Cross spectra between rainfall and circulation
indices are also computed to investigate the relationship between
oscillations in rainfall and indices. The P and C indices measure’
the frequencies of progressive and cyclonic types of circulstion

which produce most rainfall., The extent. to which P variations

‘relate more closely to the rainfall of "West" stations and € wvari-

ations to that of "East" stations, as might be expected from
synoptic experience and from Murray and Benwell's (1970) correl-

q1of;



ation analyses between monthly rainfall and indices is invest-
igated.

Periodicities which are apparent in Scottish data are com-
pared with those of Brunt's (1925) analysis of European weathér,
with Gray's (1975) analysis of S.E. England rainfall and temper-
ature, and with results catalogued by Lamb (1972b). Periods of
generally low or high rainfall values covering several decades
are also compared with periods with a predominance of a given
circulation type, as given by Lamb's (1972a) classification accord-
ing to the frequency of Westerly type over several decades énd by
Schove's (1950) classification of circulation types over Europe

and the North Atlantic.

5.2 The data and its apparent inhomogeneities

Monthly and annual values of circulation indices and of
rainfall are analysed using the techniques described in detail in
Section 5.3. The station positions are‘shown_in Figure 5.1 and
the periods of data used are given in Table 5.1

In Table 5.1 there is overlap for the Edinburgh records from
different sites only in 1896, Readings at Blackford Hill and at
other sites to the south of Ediﬁburgh towards the Pentlands
réceive more rainfall than Charloite Square and other sites in the
town. Most of the pre;1896 records are in the town. Comparison
of long-term means for the periods 1785 to 1896 a"nd‘11896'ktiq f9]3 show the
h@her yield of the latter record at the more exposed Blackford Hill
site. In 1896 itself the town gauge of Charloite Square gave
599;1 mm while the Blackfora Hill gauge gave 616.5 mm.

At Loch Leven Sluices for the overlap period of 1933 to 19y,
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Figure 5.1 Station network for studies of secular changes
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the 1877 to 194k gauge had a mean value of-872.4 mm (standard
deviation 26.1 mm) and the 1931 to 1971 gauge 921.3 mm (standafd
deviation 27.8 mm). As the readings from the original gauge were
not homogeneous in themselves, it proved difficult to construct
one continuous homogeﬁeous record from readings at the two sites.
In fact, records from the first siée to 1933 and the second site
from 1933 were conéidered'as one record.

For none of the stations was it considered bossible to homoe-
genise the raiﬁfall records pricr to further analysis, so as to
allow fdr changes of gauge site or exposure since sufficient over-
lap was ﬁot available to compare récords from different sites.

An attempt was made to identify inhomogeneities.within a record,
using Cramer's test (see 5.3.1), and any appafently'anomalous
decadal mean value for a given station was then compared with
correspondihg decadal means for other stations. The locations of
the gauges (Figure 5.1) did not allow direct comparison of gauge
records for relative inhomogeneities wusing one of Kohler's
(1959) test. Neither was any gauge-record considered to be of
-such homogeneity that it could be used as a basic compafison
gauge. (Kohler's test takes one of two forms : (i) sets of annual
values are plotted on semi-log paper and the natural tendency for
preciﬁitation amounts to bear a constant ratio between locations
then aﬁpears as a constant difference; (ii) series of annual
totals are plotted against each other in the form of cumulative
.sums, plottea points tending to fall on straight lines for recordsl
of relative homogeneity.)
" The stations in Table 5.1 were subsequently divided into

"East" and "West" stations with the first seven classed as "East!
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Table 5.1

Sumnary of Scottish rainfall

‘data for studies of secular changes

Record Period Psu?' Site Comments
eriod
Marchmont
House 1867-1973 Minor changes of exposure.
Edinburgh 1785-1973 | 1770-1805 | Unknown Observer, Mr. Adie ) A
1805-1821 Various g C.F. Mossman
1822-1855 Unknovm Observer, Mr. Adie ) (1396)’
1856-189% | Charlotte )
Square
" 1896-1973 Blackford
Hill
Loch Leven
Sluices 18L12-1971 181:2-1871 Slight changes of site in 1871
1871-194) with 1 per cént change in mean
1933-1971 value. ‘
Crombie Res. 1975-1973
Balmoral 1882-1973

Minor site changes in May 1955,

June 1967.
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Table 5.1 continued

North Craig
Res.

1880-1973

Record Period Sub- Site . Comments
Period
Gordon Castle 1865-1973
Wick 18771973 | 1877-1941 | Coastguard
. ' Station

1941-1945 | Airfield -

1945-1973 Airfield Improved site. '
Stornaway 1877-1973 1876-1930 Town

1931 Coast More exposed than town.

1932-1936 Towm

1937-1973 Coast
Arisaig
House 1890-1973 Minor site changes in May 1955.
_Portree 1900-1505

1910-1973 Minor site changes in 1936,

Greenock 1878-1973




stations. The assignment.of.Wiek to-the East category was eomef
what arbitrary, a fact which emerges in the comparison of the
results of the analyses of the records of different stations made

in sections 5.3 and S.l.

‘5.3 Methods of analysis

5.3.1 Decadal means of anmal rainfall -

Decadal means were first calcuiated for each station
and compared with its overall mean using Cramer's test.- The
latter compares the mean value of a subrecord of n values; X
with its overall mean, X, using its overall standard deviation S.
" The test defines-a statistical tp as in equation 5.1 which is
distributed &s Student's + with N-2 degrees of freedom (Mitchell

et al, 1966).

: 1
n(N-2) °? '
6 = =) (5.1)
N-x(1 +t°)
k .
_Xk-x
where b = —g

Decadal means were tested against long-term means for each
station. Those decedes which had a mean valiue significaﬁtiy
different from the long-term mean, as determined by the 95 per
cent of the two-tailed t-test, ‘were compared with decadal means .
of other stations.in order to isclate anomalously wet or dry

decades which might suggest inhomogeneities in individual records.
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5.3.2 "Low-pass" filtering

Decadal means only give a rough guide to the overall
variations in rainfalic Ten year running means, for example,
provide & continuous estimate of mean values. However, running
means sufferlfrom variocus pit—félls; in particular, some loné-
period osecillations may be exaggerated and shifted in phases 1If
the values which are meaned are weighted, spurious periodicities
may be paftially eliminated and peaks and troughs in a feéord nay
be located more accurately.

Weighted nine-year running means were applied to the annual
rainfall records, in an attempt to filter out high-freQuency
variationé. The filter weights were determined usinglbinomial
coefficients, as suggested by Mitchell et al (1966). Ordinates of the’
Gaussian probability curve are fepresented‘by the binomial co-
efficients Ck in equation 5.3 and are used to determine the filter

weights, LY which are normalised as in eguation S.}

C = m mr;l-kl (5.3)
+11
L2 T (5.1)

A filtered time series is thus produced with each member it being

produced from the 2n + 1 values of .the original series Xy .

+n

')_Ct = —'nZWi Xt +I~\? (5.5)
R, = cos mTTi; | ) (5.6)
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The frequency response of the binpmial filter Rf, is express-

édrby equation 5.6. m in equation 5.6 is determined so tﬁat Re
falls to 0.5 for oscillations of period eguivalent to six times
the standgrd deviation, léi » of the binomial distribution. For
the records analysed, :he desire@ condition was to suppress effects
of oscillations of period less than ten years so that the filter
response to such oscillations was less than 0.5 i.e. 6 iéz- was

t6 be about 10 and m = 12 to the nearest integer. The Weights}

W; normalised to 1 were hence détermined as:

~ ~

Wb = 0.22, 'W;1 = 0,20, 'W+2 = 0.12,

w+3 = 0.05, w:h = 0,02 (5.7}

- Low-pass filtered tiﬁé éeries should reveal the presence'df
any low frequency oscillation in the data and it should be poss-
ible to obtain‘an indication of the phaée of such an oscillation
from peaks and troughs in the filtered record. The filtered
record will alsoc reveal those variations which are present only
in sections of a régord, a property which will.not be revealed

by spectral analysis.

5.3.3 Power spectrum analysis

In order to. investigate periodicities present in the
rainfall series, power spectra were computed using (i) the
Blackman - Tukey autocovariance approach, (ii) the Fast Fourier
transform. As remarked in Chapter 1, the power spectrum has the

Property of revealing trend, persistence, and periodicities. The
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effectg of trend may'be removed (seg_bglow)_but the effept of
persistence in detefmining the underlying shape and form of .the

. power spéctrum, againsé.which thé significance of the periodicit-
ieg must be tested, may be difficult to determine. Simple "red
noise" spectra may be plotted and used to test for the preséncé
of periodicities if ‘persistence is of a simple Markov type. Other
forms of persistence are more difficult tg model and thelr spectra
are not easily computed. The spectra beléw, where persistence ..
did_not seem to be verylprevalent, were treated as white noise’
spectra with- possible periodicities, the significance of which

was investigated.

5.3.3.1. The Blackman - Tukey autocovariance

approach (ACV)

The Biomedicai C;mputing Porgram (BMD) written by
W. J. Dixon et al (1968) at the University of California was
used. - Autocovariances Rx(pZSt) a£ lag p;‘ ﬁhere £t is the time
interval between observations, were calculated (equation 5.8) and

detrended (equation 5.9) by a least squares method.

.
R (pat) = = 5

np 2 Xy Xqep p=0,1,2..m (5.8)
q .
A (pAt) = R'X(pAt) - B -di. 1=0,1,..n-1 (5.9)

n

where fg = ;éxi (24 - n +1)

{n-1) n (n+1)
6
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and X is the mean of X3t L . .

u
At

Raw spectral estimates Px(u) are cbtained at frequencies 3

in equdtion 5.10 and are then smoothed by "hanning" as in
P .
equations 5.11.

P

m. uP T
P_(u) - %‘iTE D&, b (PAL) cos T prO,l,.m  (5.10)
. . 0 : .

where Ep = 1 O<p<m
J\
= 73_5 p=0,m
S (0) = 0.84 B_(0) + 0.L6 P (1) (5.112)
SRx(u) = 0.23 Rx(u-1)+o.5u Ex(u)+0.23fk(u+1)(5.11b)
SP(m) = 0.5 P _(m) + O.46 P (n-1) (5.11¢)

' 5.3.3.2 The Fast Fourier transform method (FFT)

The analysis ﬁroceeds in the manner suggested by Hayner
(1972). In this method series of observations are increaséd to
length n from D observations so that n has a value 21 where 1 is
an integer. Series are firs@ meaned, and detrended using a least
squares method, i.e. linear regression is performed between mem-
bers of the series and time and members are then adjusted so that
their mean value is zero and they have no linear trend. A cosine
bell filter function h(j) in equation 5.12 is applieﬁ to the time
geries and this 1s equivalent tolapplying the "hanning function'

H{f ) to spectral estimates as in equations 5.11 above.
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n(3) = 31 -cos@))  0€;<0

-1 ' ¢ $ji%pa

1/
[
IN

= +(1 - cos Tr__l_(g-)) D =

i¥D  (5.12)

»

Ca
e

10
alent to p&t above.

where G ™ D and j, the interval between observations, is equiv-

Filtered series are then extended to length 21 by the add-
ition of zercs and Fast Fourier sine and cosine coefficients are
. k n .
calculated at frequencies (-2—&-2;—-{) apart where 0< k< 3 in

equation 5.13

L . n-1

- 2 3 2njk .
ay = 20 hj xj cos = (5.13a)
n-1 .
_2% . 2mjk
bk 3 oz .hj xj sin = (5.13b)

The power spectrum, the speétrum of variance, is then cal-
culated by squaring these estimates and dividing their sum by two,
except in the case of k = 0 and g where bk is zero. The spectra
~are further smoothed to increase the stability of the estimates

by summing estimates into non-overlapping bands of width five as

. L. . . u
in equation 5.1l, at frequencies AT

p) ) 2,
(5R(0) = Qo) ) el o) (5.1ka)
Sut2e - - -
SP_(u) = z ) + b (k) (5.14b)
Su-2 .
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R 2 1< 52(14:'.) . b2.(.k.')- 2 nﬁ | G ”‘- )
SPx(m) ) L 5 + a (E o 1 1C
2

rol

Alternative band width.: of summaﬁion to that of_five may be used.
Averaging over wider bands préduces‘more stéble estimates but
with smaller resolution.

An alternative method of increasing the stability of the
spectral estimates 1s to average estimates at a given freguency

obtained from different samples of a given record.

5.3.3.3 Confidence limits of spectral estimates

In order to increase the number of estimates at low
fregquencies, the lags used in the ACV approagh may be increased;
alternatively, in the case—of the FFT method the bandwidth of
" summation may be reduced. The confidence limits of each spectral
estimate will thefeby be reduced at the expense of higher -
resolution.

If several samples of a given spectrum are considered each
sample spectrum can be assumed to be distributed above the value

. : 2
of the population estimate asqg— where ¥ is the number of degrees

'
of freedom of each sample estimate. If the sample variance,c'z;
Fal
is an unbiased estimate of the population spectrum,cr‘z, then for

90 per cent of the tﬂnécr-2 will be defined by the limits in

equation 5.15 (Rayner 1971).

V) . ~ ~ U (5.15)
K¢y, 0.05) X2 tv, 0.95)
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" . In order to‘estimate-£he‘significance of a-pa;ticular éeak
in a single sample spéctrum, its spectral value must be tested
against that of the local continuum. The assessment of the
appropriate value of the latter is somewhat subjective and is
dependent on the other forms of non-randomness present. If fhe
series Has been detrended, only éffects of persistence, which
are assumed to be.insignifi;ént in the spectra below, and those
of other periodicities need be considered in deﬁermining the
shape of the continuum. ILeakage of power from spectral peaks to
neighbouring estimates may occur (see Hinich and Clay 1968) and

: can complicate the assessment éf the velue of the local continuum.r
Interference between peaks in the spectra may also affect certain
estimates.

Sample spectral peaks may be tested against the value of
X 2¢y ]

————Jifhgiz times the value. of the determined local continuum

if the oscillation corresponding to the peaks can be expected on

a priori grounds and the sample spectrum can be assumed to belong
to a population of spectra with a similar peak. If the peaﬁ does
no£ correspond to a wavelength whiéh is noteworthy inrprevious '
studies, more stringent tests need £o be applied. The probebllity
of a peak oécurring in one spectrum must be related to the joint
.probability of its occurrence in m spectra as in equation 5.16.

_ V m
' _qt - 1 = (1 - qd)

= = (5.16)
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e Y24, o S . . - S .
" ' 0.0 v . . L .
q; = K__@_%..___ﬁ ‘ ‘ (5.17)
The inequalities in equation 5.15 are thus altered by the factor
m and can thus be used to assess the significance of pesks in

individual spectra. For the Blackmann-Tukey autocovariance app-
roach,”V is given by equation 5.18, and for the ACV method (with

non-overlapping bands) by equation 5.19

Vo= 2.S (=55itn=5) - (5.18)
Voo T8 (o 1000) popy - g (5.19)
?

5.3.3.; The choice of method FFT v ACV

The FFT method is computationally faster than the ACV
method and the amount of leakage of power from peaks in the
spectra to neighbouring peaks has been shown to be less for the
FFT method . (Hinich and Clay, 1968). However, ﬁhe overall stabil-
ity of a given number of estimates, as defined by confidence limits
in equation 5.15, is usually gfeater with theAACV method. The
confidence limits of ACV estimates widen further compared to ACV
estimates with'the number of data points available falling below
a8 value of 2]' as can be seen in equation 5.18.

Using the ACV method, the maximum lag that can be used to
compute power spectra is considered to be equal to one third of
.the number of data poiﬁts, and for such cases the number of degrees
of freedom of each estimate is 5.5. In the case of annual power
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‘_spectra of 1ndlces, 11 years of déta were used with the max1mum
perm1551ble lag of 37 to produce 3? estimates. To produce
approximately the same number of estimates using the FFT method,
suﬁmation of raw estimates over bands of width two would produce
32 estimates with 3.£gdegrees of freedom. The variance of such
estimates would be unacceptably high, and in the case of series
of length 80 or 90 years it would be even higher.

For monthly data of lemgth 85 years, D = 1020 and FFT est-
imates can Be summed over bands of width five to produce 102
estimatés with 8.9 degrees of freedom. With the ACV method the
maximum number of points which can be analysed, and the maximum
lag are 1000 and 199 respectively, these limits being set by the
program used. For the monthly data, 98l data points were anal-
ysed using the ACV method with allag of 199 to produce j99vestimates
with 9.8 degrees of freedom. The over-all confidence limits of
each set of estimates will be approximately the same but individual
FFT estimétes, being fewer in number, will héve greater stability.
The resolution of ACV estimates will be greéter due to the larger

number of estimates.

5.3.3.5  Difficulties in the application of power

spectrum analysis

The chief difficulties in the use of power specira to

find periodicities may be summarised as:

1) * The modelling of the effects of persistence which cannot -
be approximately described as Markov persistence.
(2) The assessment of the amount of leakasge of power from

- spectral peaks to neighbouring estimates.
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©)

(L)

(5)

(6)

(7)

The repoggipién of peaks in the powef spectrpm which
arise from interference between other periodicities revealed
in the spectrum.‘

The recognition of peaks which represent harmonics of
othef periodicities. |

For high_frequenéy peaks & decisioﬁ as ﬁo’how much
power has beén aliased from frequencies ﬁot resclved by
the analysis. |

The assessment of the exact frequency of a perio&icify
(gince spectral estimates are made for frequency bands).

The assessment of the statistical significance of

periodicities revealed by the spectral peaks.

The first three and the last of these difficulties have al-~

feady’been mentioned. The fifith becomes important when effects

of the quasi-biennial oscillation are investigated below in annual

spectra where the Nyquist period is two years.

5.3., Cross spectrum analysis

5.3.4.1 Cross covariance approach

Cross spectra were calculated in order to investigate

" the relationship between periodicities which were apparent in rain-

fall and circulation index time series. Cross spectrum analysis

Proceeded in a similar fashion using the BMD program and cross-

covariance approach as in power spectrum analysis.  Cross-

covariances are computed between series x and y (equation 5.19)

and detrended (equation 5.20) in a2 similar way to autocovariances:

- —1 23_
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n-p

1 ,
R At) = — =0,1,2..m .19a
g (PAT) s > X Yqup PO (5.192)

: _ n-p
R (pAt)s— S x y  p=0,1,2..n (5.1%)
Xy n-p 1 g+p “q ,

A (pot) = R_ (pAt) - /31 -0L1t
xy Xy

where i = 0,1,..n-1 . (5.20)
ﬁﬂ.andfij are defined for xy in a similar way to /3 andel for x

in equation 5.7. The cospectrum ny(u) and the quadrature spec-
trum Qxy(u)’ are given in equations 5.21 and 5.22 in a similar way

%o the power spectrum.

m
CY R ?Ti OEEP (8, (POY) + Axy(-pét)) cos BT
(5.21)
A m_ : -

_ Ag . pum

0 ) = T 2E, A - b (pa1) stn B
' (5.22),

where u = 0,1,2...m and € = 3 -p = O,m

€ =1 0<p< m

Unlike autocovariances, cross-covariances are not symmetrical

about lag O, and are therefore calculated for both positive and
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negative lags. The sine transform of their difference (the'quad—
rature spectrum) in.addition to £he coéine trﬁnsfofﬁ of their sﬁm
(the cospectrum) are then computed. The cospectrum describes the
relationship between the two series considered exactly in or out
of phase, while the quadrature spectrum considers the relationship
at lag one qua;ter of a cycle. -The cospectrum and quadrature
spectrum are subseguently smoothed by "hanning", as in equation
SQxy(u)'

The complete rélationship between the two series at a given

5.11, to produce smoothed estimates Sny(u),

frequency u is measured by the coherence square COHSQ(u),

N 2mA L -
which is analogous to the correlation coefficient, rxy’ and by

the phase of the cross spectrum§ JW(u).

(56, (@) + (5, ()"

~ COHSQ (u) pr(u) Sayﬁl) ' (5.23)
i o 5, (w)
¢ = tan e (5.20)

Estimates of coherence and phase are inversely related but the

actual values of the coherence square is dependent on the power

spectrum estimates Sfx(u), SPy(u).

5.3.4.2 The FFT method

With this method analysis proceeds on similar lines to
the computation of the FFT power spectra. Series afe detrended,

filtered using the Tukey cosine bell of equation 5.12, and zeros
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added £o produce a series of iength n which equals a value of 21.
Fourier-cosine'ax(k), ay(k), and sine Bx(k), by(k) transfor@s
are then calculated uéing the FFT. From these coefficients the

_ réw-cospectrum and quadratufe spectrum are calculatedras in
equations 5.25 and 5.26 and are then summed into bands of width
five as in equations 5.27 and 5.28. Fourier sine coefficients
for harmonics O and % are zero and this is taken'aécount of in

equations 5.27 and 5.28.

LG ) = e () s () ;bx(m o (k) (5.25)
Ay (®) = & (0) b () - & (k) b () |
2 (5.26)
N 2 -
86,,(0) = 26, (0) 12 ORI (5.27a)
R IS (5.275)
SC u) = C k : «2Th
=4 Su-2 XY
- I
se, m) = % de (k) +2c (3) (5.27c)
-‘%-2
SQW(O) = Qw(k) (5.28a)
Gu+2
squ(@ = Su_zi Qg (1) (5.28b)
Sy m = 2 0 (k) (5.28¢:)
52
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5.3.01.3. Confidence limits of coherence square

and Ehase

Jenkins and Watts (1968) show that ACT(u) defined by
equation 5.29 is distributed normally with variance_;l? where v 1is

the number of degrees of freedom of each estimate.

ACT(u) = arc tanh | comsg(u)!
o 1 + 1 Joonsow))
\ 5 In ( P— msw') (5.29)
var ACT(u) =- _\J;, (5?30)

The modulﬁs sign afises since the actual sign of /{THS_Q_(E)- is
determined by the values of the cospectrum and quadrature spectrum.
For a given probabiliiy level, confidence limits g‘\:%] may be
placed on ACT(u) as in equation 5.31 and extreme values of ACT(u)
at 't,helse limits may be transformed to values of coherence square.
For a completely incoherent pair of series the average coherence.

square determined from the variance of ACT(u) would be 2

~

aor(w) + eld] (L)% | (5.31)

Tan§ X:Y(u) is also distributed normally with variance given
by equation 5.32 and the confidence limits of taniw are defined

"by equation 5.33.

var tanq.iw(u)':"\— sechﬁxy(u);}; (W- 1) (5.32)
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. ( |
'tan§xy(u) X g[%] Esech}xy(u)_\-}' (%ﬁm - 1) ; (5.33)

In equation 5.32 it can be seen that the variance of the
phase angle is dependent on the value of the coheren;::e square,
and is very dependent on the wvalue of the phase angle on account
of the-secb@mr factor. Confidence limits on phase angles sre a
minimum fof§w equal to O orT, and a maximum, encompassing the
complete range of phase angles for%xy equal tog: or %E o

As the expression in equation 5.30 is complicated, 90 per
cent c;\onfidfence limits On%xy for certain high values lof éoherenée
square were tabulated in Table 5.2 for~ = 5.5 as in annual cross
spectra and in Table 5.3 for< = 9 as in monthly cross spectra.
g[90?g ‘in equations above will héve the usual value of 1.6L5 as
determined by the {ables .Of the normal distribution.

In Tables 5.2 and 5.3 only values Ofixy in the range O to
% have been considered due to the symmetry properties of the
expression 5.32. Values of phase angles.betweeﬁn ;and g, T and
%ﬂ s 20 and 3'-21 have similar confidence 11m:Lts to angies in the
range O to 3. Angles in the table are expressed in radians and
in fractions of a circle.

Table 5.l gives 90 per cent confidence limits on coherence
square for annual and monthly cross spectra, together with ranges
of phase angles of interest when considering in-phase and anti-
phase relationships between oscillations confidence limits of a
coherence estimate rise as values of coherence fall. When invest-

igating cross spectra between series, the primary use of coherence

is to know the probability that oscillations of given frequency
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in two series are completely coherent (COHSQ = 1)‘or incoherent.
This proﬁability‘depends both on the actual values of coherence
and tﬁeir confidence limits. Average values of cohereﬁce square
for completely‘incoherent series. are also given and it is useful
to compare the lower confidence limits of a coherence estimate
with such é value when assessing the relative significance of a
given cocherence estimate.

From coherence values given in Table 5.l it was decided that
a value of 0.85 or greater in the case bf annual series, and 0.80
" or greater in the case of monthly series, could be consideréd
as sipnificant coherent estimates, i.e. that oscillations of a
given frequency in two series would be related for such estimates.
-Smaller values of coherence, 0.75 in the case of annual series
and 0.70 in the case of monthly series, could alsoc be regarded as
significant if they occurred in several cross spectra.

The phase rélationship between significantly coherent
oscillations and the confidence limits of the phase angle were
then investigated. The ranges of phase angle which -could describe
an in;phase or anti-phase relationship, between significantly
coherent oscillations were determined from the confidence iimits
of phase angles given in Tables 5.2 and 5.3. These ranges are
given in Table 5.l for various values of coherence.

When coherence values increase, confidence limits on phase
' ;ngles decrease. Thelranges of values ofzsxy_representative of
a possible exactly in—ﬁhase relationship become smaller as coher-
ence values increase, while the ranges ofEExy_representative of a
probable nearly in—pﬂase relationship become f]éﬁéer.

In Table 5.4 the choice of values of significant coherence
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Table 5.2

90 per cent confidence limits on phase angle

o - g for annual rainfell and indices cross spectra

angle for given coherence values

'.?gxw(u) in radians,'E;y'(u) in fractions of a circle. 1L, UL upper and lower limits of phase

| COHSQ = 0.85 COHSQ = 0.50 COHSQ = 0.95
3 - 3. LL-;'gcy' | ULE, ! LL‘:feXy" UIE ! Lig Uig !
0.000 0.000 -0.046 0.046 ~0.037 0.037 -0.025 0.025
0.063 0.010 ~0.036 0.055 -0.027 0.0L6 -0,016 0.033
0.126 0.020 -0.027 0.06} -0.018 0.056 -0.006 0.045
0.188 0.030 -0.018 0.073 -0.008 0.065 -0.004 0.055
0.3 0.050 ~0.000 0.092 0.011 0.08 0.023 0.074
0.628 0.100 0.043 1 0.138 10.056 0.131 0.071 0.123
0.92 0.150 0.077 0.183 0.097 0.178 0.118 0.171
1.257 0.200 -0.008 0.22l 0.089 0.222 0.151 0.217
1.571 0.250 ~0.250 0.250 -0.250 0.250 ~0.250 0.250
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Table 5.3 90 per cent confidence limits on phase angles

0 '-—TZI for monthly rainfall and index cross spectra

S‘;}@_(u) in radians,

_aéxy'(u) in fractions of a circle. 1L, UL upper and lower limits of phase

angle for given coherence values

COHSQ = 0.70 COHSQ = 0.80 COHSQ = 0.50
}ZW. ¢ 5 Lig, ' .ULixy' ‘ LLE ! i}L‘gqr ' EE UL§W'
0.0C0 0.000 -0.055 0.055 - -0.0L43 0.043 -0.029 0.029
0.063 0.010 -0.0L6 0.064 ~-0.034 0.052 -0.019 0.039
©.126 0.020 - -0.038 0.073 -0.02Y 0.061 ~0.010 0.048
0.188 0.030 - -0.029 0.082 -0.015 0.071 10.010 0.058
0.314 0.050 -0.012 0.100 10.003 0.089 ' 01.019- 0.077
0.628 0.1C0 0.027 0.1LL 0.047 0.136 0.067 0.126
0.942- 0.150 0.051 10.188 0.083 0.181 0.112 0.173
1.257 0.200 '-0.098 0.227 0.029 .22 0.136 0.219
1.571 0.250 -0.250 0.250 -0.250 0.250 -0.250 0.250
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Table 5. Confidence limits on coherence square and important

ranges of phase angles for annual and monthly cross spectra

ANNUAL RAINFALL

MONTHLY RAINFALL

actual | lower | upper ?§ ' ranges of interest lower | upper 55 ' ranges of interest
valve | limit | limit X limit | limit X
COHSQ | COHSQ | COHSQ | 1. 2, cousq | comsq | 1. 2.
c.90 | 0.65 }0.97 | 0.97 |0.03 |0.93 | 0.07 ] 0.70 | 0.96 | 0.98 | 0.02 {0.90 { 0.10
0.47 | 0.53 | 0.43 | 0.57 0.48 { 0.52 | 0.h0 | 0.60
0.85 | 0.1 0.96 | 0.96 {0.0L |0.94 | 0.06 | 0.59 | 0.92
0.46 1 0.56 | 0.4l | 0.56
0.80 | 0.37 | 0.9% 0.9 | 0.92 | o0.96 | 0.04 | 0.92 | 0.08
0.6 | 0.5 | 0.42 | 0.58
0.75 ] 0.30 1} 0.9} 0.0 | 0.90
0.70 0.32 | 0.89 | o.9: | 0.06 {0.93 | 0.07-
0.4 | 0.56 1 0.43 | 0.57

completely in-
‘coharent series

0.36

0.22




estimates and Bf‘pha;e estimates which may be considered to
represent in-phase or neérly in-phase relationéhips is subject-
‘ive. While the variance of coherence and phase estimates

- may be expressed by equations 5.30 and 5.32, the physicél signi-
ficance of the estimates and their variance can only be determined

by the investigator.

5.3.5 Eigenvector analysis

Figenvector analysis was carried out as described‘in
Chapter 2 on an 11 station by 8l year matrix using S-mode anal-
¥ses. Real data and normalised deviation data matrices were
multiplied by their tQansposes to produce 11 by 11 symmetric
cross product and correlatiqn'matrices respectively. In the
latter case the 8h.year station meanslwere subtracted from each
station values and the 8l values were then normalised so that
the'sum'of squares of the 8l, values was unity. '

11 eigenvectors with 11 space elements, one per station, were
computed and sets of eigenvector multipliers were produced by the
matrix multiplication of each eigenvector by the original matrix.
Each set of eigenvector multipliers was considered as a basic time
series and the relative extent t6 which each series described
time variations at a given station was detefmined by the eigen-
vector space element. The overall significaﬁéé of a given eigen-
vector and its set of multipliers in describing rainfall variations
expressed in the originsal matrix was determined by the eigenvaiuec

The sets of significant:eigenvector multipliers were also

considered as time series and the results of analysis of multiplier

series and of individual series were compared. The 11 eigenvector
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space elements were first compared Wiﬁh station mean annual rain-
fall and its standard deviation, and with station position, in
order to see if a particular set of eigenvector multipliers was
of more relevance to particular stations. The analysis of the
sets of eigenvector multipliers proceeded in the same way as for
individual rainfall series using the "low-pass" filter, the power
spectrum, and the cross speptpa between the series and thosé of
circulation indices. The comparison of the results of analysis
of individual &nd eigenvector multiplier series éttempted to ident-
ify'mu}tiplier series as describing vériations of "East" or-"Wést”
stations. |

Bach eigenvector end its set of multipliers is independent
of other eigenvectors and their sets of multipliers as demon-
' strated in Chapter 2. Eigenvector multiplier time series may
therefore be expected to show particular time variations, period-
icities of definable frequency or definite trends, rather than

the sum of several variations.

5.l Results of analysis of annual series

5.1.17 Decadal means

The values of decadal means of "East" Scottish rainfall
stations appear in Table 5.5 and bf "West" stations in Table 5.6,
those values which are significantly above or below long-term
means (according to Cramer's test) being underlined. Decadal means
expressed’as percentages of long-term méans and averaged over "East!
and "West" stations afe plotted in Figure 5.2. General variations
in the tabies and figure can be compared with thcse of circulation

indices (Table 5.7), and anomzlously large or small values may be
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| Table 5.5 Decadél means "East" rainfall stations
WRH | “rvess | wouss | mes | moomr | GV ]
mean |3 |mean |50 mean |30 Imoan | SPEY fncan [ SFY fncan | ST Jpean | SRS
Period 1784 - 1896 (182 - 1973 .1868 - 1973 1875 - 1973 1882 - 1973 11866 - 1973 1877 - 1973
Overall | 651.9 {12C.L |908.0 [1Lk.3 {816.L [141.5 [894.3 {155.L [8L43.5 [122.3 [751.8 [103.1 | 763.81 91.9
1896 - 1973
669.l {120.6
& 1791-00 | 666.5 164.0
T 180110 | 580.1 ]123.0
1811-20 | 635.1 [102.0
1821-3C | 669.9 {138.9
183140 | 6L6.9 |100.Y
1841-50 | 614.7 |116.5 { 918.2 1h2;2
1851-60 | 656,17 [108.5 | 888.5 |162.1
196170 | 6886 | 96.6 | 885k |126.0 |
1871-80 | 76h.L {136.L 1978.2 | 39.1 |1011.L {186.2 , 833.1 | 117.9
1881-90 | 616.7 | 97.8 | 90L.2 |129.5 | 857.5 {102.6{ 929.6 | 155.2 | 866.6 | 162.8 | 689.6 | 72.2| 726.0| 78.8
Seve
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Table 5,5 continued

EOVSURGH | “iyrons | momss | omes. | Bwomr | @R LK

mesn |3 [memn |3 fmean [ Gavn [noan [Sen |mean |3V fmean |52 frean | SEe00
1891-00 | 629.9 | 81.3 |927.9 [127.3 | 83L.6 | 120.1 |916.7 [127.8 [828.5 | 100.6 |829.8 | 63.1 [784.5 | 95.6
1901-10 | 646.L 1130.8 |908.6 .1?3.7 788;2 126.2 [886,5 |107.9 |829.1 ‘133.6 760.8 | 9.7 1 79L.7 | 78.7
1911-20 | 6L9.0 }130.2 [873.0'{146.8 | 823.5 izz.u 8L,3.0 {158.0 [886.5 | 107.2 [752.6 {113.3 | 736.6 |.71.0
1921=30 | 723.3 [110.2 [931.9 [127.8 | 876.6 ] 99.8 |95L.0 [136.) |865.9{ 1h8.1 {7h5.1 |106.0 | 77L.8 Iy
1931-40 | 685.1 | 7L.1 |87L.8 99;8‘ 778,81 81.8 [897.1 | 78.2 |862.6 | 87.L 719.7 | 72.7{751.1 | 76.6
1911-50 | 690.3 1 98.1 1952.8 [112.0 | 76L.5| 85.6 |885.2 [106.2 | 792.5 | 83.1 {779.0 | 747 | 757.0| 79.0
1951-60 | 65L.3 [130.2 |935.5 [153.7 | 726.2 | 125.2 |8L6.3 |176.8 |818.11127.0 |759.3 | 8L.8 | 806.6 | 65.5
1961-70 | 673.1 [102.1 955.& 95.0 | 782.1 1106.7 [851.L [122.9 |860.6| 7h.2 {727.2 | 76.51803.3 9L.2

| Underlined values differ significantly from long-term means

as determined by Cramer's test.
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Table 5.6

"West" Coast stations decadal means

Records are given in m.m.

N e GREENOCK gty PORTREE STORNOWAY
nesn | Gogu | memn | 5o | mean | SERY | mean | SR [peen [ STE

Period | 1881 - 1573 | 1878 - 1973 | 1890 - 1973 | 1990 =190 [ 1g76 yg70
Overall | 1125.7 | 173.2 | 1533.2 | 229.1 | 1603.5 | 211.1 [ 1708.9( 273.6 | 1189., | 178.3
1881-90 92L.3 77.0 { 1518.5 | 210.4 1217.3 | 105.9
1891-00 | 1099.8 | 11.9 | 1557.6 | 156.3 | 1625.6 | 16L.8 1331.9 | 25L.9
1901-10 { 1134.6 {53.9 1591.6 | 2L0.0 | 1577.3| 142.0 1258.2 | 155.2
191120 | 1061.2 | 109.2 | 1626.1 | 211.2 1620.5 | 116.1 | 1515.9| 177.5 | 1296.2 | - 89.3
1921-30 | 1217.4 | 148.8 | 1700.1 | 212.9 | 1684.6 | 165.6 | 1832.L | 156.7 | 1279.6 | 81.1
1931-L0 | 1171 | 155.7 | 1LL5.8 | 225.9 { 1568.L | 269.0 | 1743.2| 3L40.L | 1155.5 | 155.6
1941-50 | 1240.5 | 177.8 | 1885.7 | 249.3 | 1554.2 | 266.7 | 1884.9] 314.5 | 1116.L | 127.6
1951-60 | 1127.0 | 166.1 | 1h3kh.2 | 183.2 | 1628.9| 222.2 | 1709.9| 188.0 | 1076.3 | 113.1
1961-70 | 1193.8 | 130.6 1505.5 | 173.2 | 1579.h | 225.0 | 1736.9| 248.2 | 1088.3 1 1h2.1

Underlined values differ significantly from long-term means, by Cramer's test.




-QE L-

Table 5.7

Decadal means - circulation indices

mean F Sed. mean s.d mean s.d mean 5.d
1861-70 | 6.62 | 8.18 | -2.9 2,23 -6.11 L.03 13.36 1.75
1871-80 2.9 6.73 -1.32 2.61 -2.13 | 6.1 114.00 2,76
- 1881-90 3.08 6.54 ~-0.33 3.22 -1.8 3.92 14.66 1.1
189100 | 2.36 | su12 | -1.62 | 2.25 | -6.89 | 3.38 | 13.97 | 2.29
1901410 | 177 | 647 | -1.18 | 2.86 | 5.3 | 3.71 ol | 2.27
1911-20 | 6.57 7.71 ~0.91 L9 | -3.73 .76 11.72 8.62
1921-30 9.70 5.3é -0.65 3.00 -2.10 b8l 15,40 8.2
1931-L0 3.04 5.55 -1.65 1.80 i1 .61 ‘ 2,75 | 1Lh.40 S.ul
191150 5.88 | 7.02 | -0.67 2,80 -6 .52 3.90 a3 | h.79
195160 | 219 | 7.03 | -2.61 2.9 | -L4.90 | 5.93 | .22 | 1.79
1961-70 .75 7.48 -2.58 2.23 -3.00 3.34 15.43 9.07
Overall L1.36 7.18 -1.50 2.93 ~l1e57 L .60 a3 5.3L
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further considéred in the 1ight of these latter variaticns.

A notable feature of the Stofnoway record (absent elsewhere)
is the low values from the 1930's onwards. This is attributed
to the discontinuity introduced by a changelof site made in,1937.

At all stations l:ue decade 1921 to 1930 is one of high rain-
fali and is also one of high P and C index. Heavier rainfall may
“be affected by a gfeater frequency of progressive and cyclonic
weather types as measured by the P and C indices. The 1871 to
1880 decade is also particularly wet for "East!" st;tions and is
one of high C index. Only these two decades can be distinguished
as wetlfor sets of sﬁations whose high rainfall can be linked to
high index values. General variations in "East" and "West! stat;
ions as expressed by decadal means do not correspond closely to
those of € and P, though such relationships emerge for higher
frequency variations in tﬁé analyses below.

The remaining anomalous values of the wet 1890's for Gordon
Castle, and wet 19&0'5 for North Craig Reservoir and Portree,'
and the dry 1910's for Portree remain unrelated to general vari-
ations in rainfall, and could, as in the case of Stornoway;
reflect inhomogeneities in the gauge record. Portree, with two

anomalous values, is particularly suspect.

5.4.2.1  "low-pass" filtered rainfall and

circulation indices

The results of applying the binomial filter in section
5.3(b) to circulation indices and rainfall appear in Figures 5.3
to 5.6. .The filter failed to remove all the high frequency vari-

ations in rainfall as there were large differences between individ-
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ual years. Four years of data were lost at each end of the record
as nine terms wére required to compute each filtered value. It
'is of some interest to note that changes of site in the Edinburgh
gauge in 1822, 1851, and 1899 can be recognised from a distinguish-
able . secondary maximum value in the filtered data in Figure
5.5. The effect of the site change in Stornoway's record in 1937
is also apparent as in the decadal mean values.

Since nine yeafs of" data contibute to each member of the
filtered éeries and since correlations between members of each
series are iarger then for unfiltered series, it is suffiéiént
to compare rough ﬁositions of peaks -and troughs_in different series
to identify wet and dry periods and possible common variations.
For "East" stations maxima occur around thé late 1870s, the late
1%%,&ﬁtm1mm1%%(qmﬁfmmewmmc%ﬂeinum1%%)
end minor peaks occur in f91? and 1967. There are corresponding
peaks in C index in 1876, 1925, and 1967.

The late 1920s and 1940s peaks are also present in "West™
stations. There is also a peak in 1883 for Greenock and 1885 for
Stornoway. The late 1940s peak and the 1880s peak correspond to
a 1?50Ppeak and a minor 1950 C peak, and an 1883 P peak respect-
ively. Both the early 1920s peaks in P and the late 19205 reak
in C describe the general increase in circulation strength in the
1920s which affected heavy rainfall. P and C can be seen in
Figure 5.3 to have some other similar variations with P leading C.

Minima in rainfall data occur in the late 1880s, early 1910s,
and the early 1940s at all stations, and in the early 1920s and
the early 1960s at "East" stations. Corresponding minima occur

in C around 1886 and 1943, and in P around 1887 and 1940. There
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are also 1869 minima in C index and Loch Leven rainfall, and an
1869 subsidiary‘minimum.af Edinburgh. (Only the lattér two stations
have records for this early period.)

There are no peaks or troughs in S and M indices wh;ch can’
be related to those of rainfsll. 'C index tends to give a better
indication of rainfall variations-than P eapecialliy for "East"
stations though the two indices are themselves related. In some
cases P variations are similar to those of "West" stations, when
the same is not true to C variations.

No recurring oscillatién of defiﬁite period stands out for

a give; reéord‘ox~for‘common subsections of several different
records. The power spectrum analyses below investigate the pres-
ence of oscillations both of periods greater than ten years,
which are not apparent in these filtered data, and of periods less

than ten years whose effeét has been removed by the filtering of

data in this section.

S5.4.2.2. Some results of "low-pass" filtering of

rainfall series of calendar months (different years)

In Figure 5.8 graphs of filtered values of rainfali for
each calgndar month from 1896 onwards are shown for the Blackford‘
Hill-Edinburgh gauge. Rainfall values are lafgest.in July and
August and show greater variability in August, Séptember and
October. As a result, the filtered rainfall curves for August and
September show the closest resemblance to the annual rainfall
curve in Figure 5.4. This perhaps trivial but not obvious point

can be seen in the analyses of.monthly records of other stations -~

the variations in rainfall for the months of August and September
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bear the closest resemblance tc those of annual rainfall.

5.1.3 Power spectra

A list of the length of data, n years, and maximum lag,
m years used for the gﬁmputation of power spectra by the Blackman-
Tukey autocovariancé method is given in Table 5.8 for rainfall
stations and circulation indices. The longest rainfall records
were.of;fhe same length as the 1861-to 1971 records of ciréulafion
indices. Series of index spectra were calculated for each of the
different lengths of rainfall station records but as these spectra
were similar, only those for length 111 years are shown here.
Records of index of the same length as those of rainfall records
and their derived power spectra were used in 5.3.4. to caleulate
cross spectra and coherencg estimates.

Three of the peaks listed in Table 5.8 are significaent at.
the five pér cent level for a "population spectrum"; these peaks
would be significant if expected on a priori grounds. The Crombie
Reservoir peak which is underlined, is significant at the five
per cent level for a "sample spectrum". As the former three peaké
were not 'predicted' and are present in oniy cne spectrum, they -
"cannot be considered to be of importgnce. The 3.1 year period peak
appears in other spegtra at similar periods and is éspeéia;ly
ndticeable in C index and in the rainfall of Edinburgh, Loch Leven
Sluices, and Marchmont House. As the number of lags and length |
of record used were different in each case, and as spectral esti-
métes are for frequency bands, the presence of peaks such as those
at neighbouring frequencies in different series is sufficient to
signify the presence of a particular Qscillation in several series.
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Table 5.8

Data used in the computation

of anmual rainfall and circulation index

power spectra

No. of | Max- Period of
Station Period | years imum Results significant
{ lag peaks {years)
n m
P index 1861-1971 111 37 Fig. 5.9 Tl
C index 1861-1971 | 111 37 [ Fig. 5.9
S index 1861—1971 1M1 .37 Fig. 5.10
M index 1861-1971. | 111 37 Fig. 5.10
Edinburgh 1861-1971 111 37 Fig. 5.9 12.3
Loch Leven .
Sloices 1861-1971 111 37 Fig. 5.9
Marchmont .
House 1867-1971 105 | 35 Flg.‘5.9
Crombie R
Reservoir 1875-1971 7 32 Fige 5.9 31
Gordon ' .
| castie 1866-1971 106 35 | Fig. 5.9
Balmoral 1882-1971 90 30 Fig. 5.9 15.0
Wick 1877-1971 95 32 Fig. 5.10
| Ansaig 7 .
House 1890-1971 82 27 | Fig. 5.10
Portree 19101971 62 21 Fig. 5.10
Greenock 1878-1971 ol 31 Fig. 5.10
North Craig .
Reservoir 1880-1971 92 30 Fig. 5.10
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There is cénsiderable evidence of the presence of a guasi-
biennial osciliation in the data théugh aliasing of power from
.nhon resolvablelhigh frequencies mentioned above in point 5,
complicates the assessment of the significance and precise frequency
of peaks a£'and near the Nyquist frequency. All the spectra show
rising power towards two years, and in the case of P index, C index,
and Crombie Reservoir this feature is prominent. The effects of
aliasing in increasing the power at the two year period cannot be
easily assessed. High frequency oscillations are studied in more
detail below using monthly data since the significance and precise
frequeﬁcy of the quasi-biennia} oscillation caﬁ be more easily
assessed in monthly data.

Low frequency peaks are not easily interpreted due to the
difficulty of locating the exact frequency of the peaks (poinf 6
above) and to possible effécts df persistence (point 1). Uncer-
tainties in,loéations of low frequency peaks imﬁly large
uncertainties in ﬁavelength, the réciprocal of frequency. Persist-
ence which may be present in the P index makes the distinction of
the effec£s of a possible 7l year periodicity from those of per-
sistence subjective; The persistence doés not appear from the
shape of the spectra to be of a simple Markov type.

In these spectra peaks can be seen which may be lower
harmonics of high frequency peaks (és mentioned in point k) or may
be the result of interference between peaks (point 5), If a 2,0
year periodicity is present in C and\Balmoral, the four year peak
in these spectra probably represent lower harmonics of it. The
2.0 year P ﬁeak (frequency 0.5 cycles per year) could interfere

with the 2.6 -~ 2.7 year peak to produce the observed 7.1 - 7.5
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year peak (0.14 - 0.13), and the 2.0 year peak in C with the 3.1
year peak (0.32) to produce the observed 5.7 year‘peak (0.18).
The 12.3 year peak (0.08) in Edinﬁurgh could be a beat between
the 3.1 years (0.52) and L.1 year (0.2) periodicities. Part of
the broad peak in S from 6 to 10 years (0,14 - 0.10) mey result
from interference between peaks at 2.03 yvears (0.4,9) and L.1 years
(0.2L). |

The most importance resuits in this sec£iop are the detection
ofra significan£ oscillation of period around three years, and of
the well-known quasi-biennial oscillation. There are no definite
low fréqﬁency peaks revealed by this analysis such as an 11 or 22
&ear sunspot cycle. The high frequency oscillations_are studied

- in section 5.5 in greater detail using monthly data.

S.i.L.  Cross spectra annual rainfall and

circulation indices

N

In ordef to corrélate the oécillations in circulafion
indices and réinfall, cross specfra between rainfall records and
indices were calculated in section 5.3.l above. High coherence
vaiues together with the phase angle between cross spectrél esti-
mates at given periods appear in Tables 5.9, 5.10 and 5.11;
examples of cocherence and phase spectra are given in Figﬁre 5.12,

Cross spectra between P and C indices were also calculated
buf are not shown. The oﬁly significant relationship to emerge
was for a period of 2.0 years, where the coherence square was 0.98,
and the phase angle 0.99 of a circle. Sharply rising power towards
two yeafs exists in the power spectra of both C and P, and it seems
probable that é guasi-biemmial oscillation is present in both P and
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Table 5.9

Coherence values> 0.70 between C and "East!" annual rainfall

Period T (years), coherence square COESQ » phase of C relative to rainfall in fractions of a circle® K

LOCH LEVEN

MARCHMCNT

CRCOMBIE

EDINBURGH STUTCES HOUSE RESERVOIR BATMORAL GORDON CASTLE GREENQCK
T |COHSQIE ' | T |COHSQ §¥y' T |COHSQ Eﬁy! T |COHSQ|E ' | T |COHSQ §§yf T |COHSQ E;y! 1 T |COHSQ i;y'
=< 11,00 {0.82 |2 11,00 [0.97 [ [1.00 {0.38
23.310.83 |0.02 60.010.82 [0.98 |
17.5(0.88 {0.03
14.0/0.89 [0.95
6.41(0.79 {0.18
463 [0.72 10.18 L.56{0.77 {0.03
.35 [0.82 ]0.98 |1.37 [0.82 [0.00 |1.28]0.73 0.97
3.91 [0.73 |0.09 3.88 [0.82 |0.08
3.50 10.96 10.88 3.53 [0.70 {0.90
3.37 [0.79 |0.84 3.3610.83 [0.92 3.44{0.71 0;70
: 3.19 0.76 [0.06 |3.20{0.92 |0.01 {3.15 [0.91 [o0.03
3.09 [0.81 [0.08 |3.0910.86 {0.07 {3.04 [0.90 0.05 | 3.03 0.96- 0.0, [3.000.86 {0.05 |{3.03]0.88 |o.09




Table 5.9 continued , o '
EDINBURGH OO TN MA%S%?ENT R§§§§$£§R |  matMoRar GORDON CASTIE GREENOCK
T |6OHSQ ixy' T |COHSQ ixy' T |COHSQ §;Y' T |COHSQ §§y' T |COHSQ §;y' T [CCHSQ §;y' T [COHSQ i§y’
2.9610.79 [0.07 |2.910.78 0.08 |2.91|0.84 {o.06 2.9110.95 0.0k
2.8510.7h [0.13 2.78 O.?S 0.08 |
- 2.46{0.71 |0.95 |
. 2.37]0.79 0.5 2.1 ]0.72 {0.9h
4 2.3110.73 [0.97 |2.33]0.82 [0.00 |2.280.79 0.9 |easfon fouss
2.24,{0.86 [0.95 |2.260.83 |0.03 [2.20{0.71 |o.0L |
2,12 [0.82 [0.93 2.1:]0.77 [0.08 {2.11]0.75 lo.03
2.05(0.73 {0.01 |2.060.81 [0.00 2,07[0.87 0.03
2.00{0.71 10.99 [2.00[0.98 {0.co |2.00[0.87 l0.99 {2.00}0.85 {0.01 |2.00]0.93 |o.01 2.00[0.91 [o.99




C with the_samé phaée. Aliasing of power in the cross spectra,
as well'as in the power speétra, may enhance these estimatés to
some extent.

The results of cross spectrum analysis Below between P or C
and rainfall show thal in general there is no relationship between
low freguency oscillations as might be expected from results of
low-pass filtering‘and poﬁer spectrum analysis of individual
'serieé. Os;illations in C or P around two or three years may
however be related to those of-"East" and YWest" stations
respectively.

High coherence values between C and rainfall records occur
around two and three years.. The coherence and phase estim?tes
between C and Lock Leven Sluices, Marchmont House, Crombie Reser-
volir, Balmoral, and Greenock definitely suggest that the two year
periodicities in C and theée rainfall records are related and are
in phase, Aliaging of power may again increase cross spectrum
~ estimates as well-as power spectrum estimates at and near the
two year period.

Coherence peaks between C and réinfall cccur at similar
frequencies to power spectrum peaks near a period of three years
suggesfing that tﬁe three year periodicities in ¢ and rainfall
are related. Significant coherence peaks occur near three years
between C and Marchmont Housé, Crombie Regerﬁoir, Balmoral, and
Gordon Castle and almost significant peaks between C and Loch
Leven Sluices. The C index periodicity has an average phase lead,
of 0.05 of a circle which amounts to 0.15 years or two months.

There are other coherence peaks between C and rainfall records

but they do not occur near enough to peaks in individual power
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Table 5.10  Coherence values = 0.70 between P and "West" annual rainfall
Period T, (years), coherence squere, COHSQ, phase of P relative to rainfall in fractions of a circle,§ !
N o IC CREENOCK | ARISATG HOUSE PORTREE WICK
T | GOHSQ ‘;i*xy' T | COHSQ §xy'_ T | COHSQ §ny T { COHSQ @xy' "~ T | COHSQ §:ny
= 0.96 |[0.03 1 =2 0.917 |0.01 | =< [1,00 | 0.79 |
62,1 [ 0.88 |0.07
6.90 10.83 ]0.02
$ 6.21 1 0.79 | 0.11 . ;
" | 6.00 t0.77 | 0.06 A
5.6 10.7h | 0.11 | 5.65 | 0.79 | 0.1l | 5.40 [o0.7h | 0.07
5.00{0.8y |0.10 | 5.18 | 0.76 .11 S.OO_ 0.76 0.0
L.60 {0.72 }0.03 { L.76 {0.80 |0.07 :
' L.27 | 0.87 {0.19
L.00 ) 0.82 C.15
3.53]0.77 |0.00 |
- 3.00 [0.82 | 0,72 3.00 0.75 |0.98
2.8 |0.86 | 0.95 | 2.81]0.92 |0.9
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Table S.fIO continued
R " GREENOCK ARTSATG HOUSE " PORTREE WICK
T | COHSQ §Xy'_ T |COHSQ §xy' T | COHSQ 'é'wr T | COHSQ }?Xy' T | COHSQ §xy'
2.72 | 0.87 | 0.96 | 2.69 [0.87 | 0.9k | 2.70|0.90 |0.98 | 2.62 [0.92 |0.98
2.6110.85 [ 0.9 2.57 | 0.88 ‘0.01' 7
2.50]0.83 | 0.9 | 2.h6 {0.83 |0.03 | 2.47]0.76 |0.00
2.40[0.80 }0.99 2.39 10.79 0.06
2.31 | 0.76 | 0.97 | 2.30 |0.72 | 0.01 2.28 | 0.76 |0.33
2.22{0.70 |0.96 | ‘ 2.21 | 0.70 [0.31
2.16 1 0.77 }0.94
2.07 10.78 |0.97
2.00 [0.83 |0.98 | 2.00 | 0.71 0.97




spectra for them to descrinn a relationship between periodicities
which ane apparent in individual series. For example, the
coherence peaks at 4.3 years between C and Loch Leven Sluices, and
C and Nbrchmont‘House occur near minor power spectrum peaks in
Loch Leven Sluices and Marchmont'Honse bun the C spectrum has a
UWghgtﬂﬁspmmﬁ. |

High coherence estimates occur between P and "West! rainfall
stgtions at 2.7 years. Of the records with such coherence with'P,
those of Arisaig House_and Portree have power spectrum peaks at
this peried while Greenock and North Craig Reservoir have flat
spectra around this period. As the P spectrum itself has a peak
at this period it may be consiﬁered that there nay'be a 2.7 year
periodicity present in P and "West" rainfall records. The oscill-~
ation in P index lags behind that in the rainfall series by one to
two months in the case of North Craig Reservoir and Greenock, and
by an insignificant amount compared to the confidence limits of
the phase angle in the case of Arisaig House and Portree. -

Coherence values were investigatéd for possible relationships
between oscillations in P and "West" rainfall of period between
five and ten years, near the 7.4 year P power spectrum peak. It
was not certain whether this latter peak was produced by the same
effects as produced the 8.9 year Greenock peak as ccherence esti-
mates were not significant. The coherence square of 0.83 and phase
angle of 0.02 of a circle at 6.9 years may express effects of some
common minor disturbance in these series.

While "Bast" stations tend to hnve variations consistent with
those of C, and "West" stations with those of P, Wick does not fall
into eithér category. Neither, as in tne case of the other stations,
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Coherence peaks between S or M and annual rainfall

L =291~

Table 5.11
Period in years (coﬁerence square, phase in fractions of a circle of index relative to rainfall)
EDINBURGH S =<° (1.00,0.98)
7h.1(0.93,0.97
M 3.09(0.78,0.,04)
IOCH LEVEN S =2 {1.00,0.57) 24.7(0.85,0.06)" 12.3(0.73,0.82) 7.41(0.86,0.8l:) L.63(0.73,0.95)
SLUICES M ©°(1.00,0.75)
74.1(0.75,0.28) 8.19(0.81,0.31) | 3.09(0.75,0.07)
MARCEMONT - S 7.00(0.76,0.00) 3.89(0.78,0.94)
HOUSE M 3.89(0.89,0.7h)
CROMBIE S
RESERVOIR 8.00(0.71,0.17) 2.16(0.85,0.69)
- 2.13(0.72,0.35)
z/ -
BAIMORAL = 8 6.00(0.70,0.2L)
‘ M 2.22(0.72,0.28)
: 2.14(0.80,0.27) .
GORDON S 23.4(0.82,0.27)
CASTLE '
M
WICK S 4.93(0.80,0.00)
M , | 3.56(0.7L,0.11)
PORTREE S Lk1.8(0.96,0.08)
M
VR
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Table 5.11 continued

ARISAIG S 2.77(0.77,0.81)
. HOUSE 2.57(0.72,0.78)
M 18.0(0.70,0.35)
GREENOCK 5 (0.96,0.0L)
62.1(0.90,0.00)
M (0.93,0.53) 4.43(0,75,0.60) .
NORTH S  59.9(0.73,0.16) 2.62(0.75,0.76) -
CRATIG 3.33(0.76,0.1L4) ,
RESERVOIR 2.00(0.72,0.07)




are tﬁere any significant coherence estimates between Wick and S
or M which clearly correspond to power spectras peaks. There is

a coherence peak at h.9 years between S and Wick, but neighbouriné
power spectrum peaks occur at L. years in Wick and L.0 years in S.

*

5.41.5 Eigeﬁvectbr agnalysis

5.,.5.1 ' The analyses

In order to try further to correlate variations in differ-
ent time series and to isolate common periodicities and trends,
elgenvector analysis was performéd to derive time series describing
common varistions in individual records; these derive& series were
subsequently analysed in a similar way to the original.

The first two eigenvectors of real data and the first three
eigenvectors of‘normalised'deviation data, using S-mode analysis
as described in section 5.3.) appear in Table 5.12, The first
three normalised deviations were congidered to be of importance
from the relative values of the eigenvalues. Together they explsin
67 per cent of the variance in the anomaly data.

The first real eigenvector accounts for most of the variance
in the real data, and its elements have a 0.99 correlation with
station mean annual rainfall. Thus it does not increase knowledge
about rainfall spatial variations. The derived time series of
éigenvector multipliers represent mean annual rainfall variations
over the eleven stations. These reéults are similér tb those of
Chapter 2 where the analysis of a real mean monthly rainfall matrix
produced a first eigenvector describing the annual cycle in mean
nonthly rainfall and an associated set of multipliers describing

the épatial variations in mean annual rainfall.
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Table 5.12 Eigenvectors (S-mode)-of Scottish rainfall 1890-1973

Real data Normalised deviation data . Mean Agnual
rainfall
y : : annual standard
first second first second third rainfall deviation
North Craig Res. 0.328 0.135 0.356 ‘0.291 -0.010 1125.7 173.1
Greenock 0.443 0.258 0:373 0.307 -0.163 1153.3 229.1
Arisaig House 0.L58 - 0.118 0.277 0.h13 -0.097 1603.5 211.0
Stornoway O.BLT 0.298 0.2I:9 0.381 0.178 1189.4 178.3
Wick 0.220 -0.071 0.300 0.076 -0.5h7 763.8 91.9
Gordon Castle 0.212 | -0.325 [ -0.210 | -0.295 | -0.561 751.7 ©103.1
Balmeral 0.2130 -0.249 0.336 -0.195 0.081 8L3.5 122.1
Crombie Res. 0.253 -0.1,81 0.302 ~0.410 0,207 89L.3 155.5
Loch Leven 0.261 -6 326 0.387 ~0.235 0.21i8 908.0 4.3
Sluices * ’ : : '
Marchmont House 0.188 .'0'091 0.013 0.015 -0.l8 669.14 | 120.5
0.228 ~0.365 0.329 -0.355 0.083 816.6 1041.5
Percentage 98.7 0.5 33,7 23‘8 . 9.5
veriance * * * * _ :
Cumulative per-
centage variance 987? 93.2 33.1 57.5 67.0




The normalised deviat%on eigenvectors; on thglother hand,_do
not appear to be correlated to station mean annual rainfall or its
standard deviation. The second eigenvector does seem to show some
effect of station position, having positive elements for "Wesi"
stations and negative elements for "East" stations (apart from Wick .
and Edinbufgh which have small positive and very small positive
values respectively). Arisaig House, the station which might be
expected to show the greatest effect of a West coast posifion, ha;
the iargest positive element, while Crombie Resérvoir, whose pos-
ition ;s farthest Bast, has the largest negative element. Crombie
Reservolr also appears in the analyses above to have réinfall time
variations which are 1éast similar to those of "West" stations and
most similar to those‘of C index. Using similar criteria,
Stornoway and Marchmont House might be judged to be the second
most Westerly and Easterlf—stations respectively; (a fact which
'seeﬁs to be reflected in their second eigenvector elements). Thus
the second eigenvector seems at first sight to show an inherent
property in the normalised deviation matrix which can be related
to station position in relation to prevailing wind, while other
eigenvectors do not appear immediately to reflect known effects on

rainfall.

5..5.2 M"ILow-pass" filtered eigenvector multipliers

The first set of real eigéﬁvéﬁtor multipliers (1E) and
the fir%f three sets of normalised deviation eigenvector multi-
pliers (10N, 20N, 30N), considered as fime series of length 8L
years,.were filtered using the filter of 5.3.2. The filtered data

appear in Figure 5.12. 1E shows the mean annual rainfall variations
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;-with peaké in 1907, 1916, 1925, 1949 and 1966,.and troughs in 1912,
1921, 1942 and 1960. These features, apart from the 1907 peak
occcur to &4 greater or. lesser extent in all stations above in
Figures 5.5, 5.6 and 5.7 especially the "East" stations. 10N re-
sembles 1E apart from over the first 20 years where its major
peak occurs in 1910, Both 1E and 10N curves have similarities to
that of C (Figure 5.3) with C leading each series in the early part
of the record and 1agging‘in the latter part. While the peak in
C in 1913 appears to correspond to peaks in 10N and 1E in 1917,
énd the peak in C in 19é5 to those in 10N and 1E in 1927, the 1952
C peak-occurs after the 1949 10N and 1E peaks.

The filtergd 20N series resembles the filtered P series
(Figure 5.3) with common peaks in 1897, 1905, 1912; 1922 and 1550,
and common %roughs in 1893, 1909, 1917, 1940, 1947 and 1959. 30N
shows trend and its rather flat peaks and troughs do not appear
£o fepresent those of individual rainfall records.

Thus time sefies of‘eigenvector rultipliers show some common
variations in individual rainfall series which are also presgnt in
cifculation indices. As there are more "East" than "West" stations
used in the eigenvector analyses the most significant variationé
revealed by 10N and 1E correspond most closely to those of "East"
stations. 20N shows some of the common variafions found in "West"

stations and P.

- 5.h.5.3 Power spectra of eigenvector multipliers

Figure 5.13 shows eigenvector multiplier power spectra
together with those of P and C, each calculated from 8l years of

data to a maximum lag of 28 using the ACV method. Peaks signifi-
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| cant at the five per cent dlevel for a population of similar spectra
occur near three years: at 3.1 years-in 1E; 10N, 30N which corres-
ponds to the period of the oscillation in C, most "East" stations
and Wick and Greenock; and at 2.9 years in 20N with a. subsidiary
peak éﬁ 2.7 years which correspcends to a 2.7 year peak in P{
Arisaig House, and Portree. |

The presence of the quasi-biennial oscillation in the rainfall
data is confirmed in the spectra of 10N though soﬁe of the rising
power may again be a result of aliasing of power from non-resolvable
high frequencies. This oseillation is also present in P and C.
The peak at fouy years in 10N is probably a harmonic of this two
year cycle. - |

The broad 5 to 6 year peak in 20N is not close enough in
period of the 7.9 year P peak to describe thes effect of a common
variation. The broad peak_however does describe some features of
"Wéét“ station power spectra and hence some of‘"Wést" rainfall
variations. There is a similar broad pesk in Greenock, Poriree
and Arisaig House; and a sharp peak at 5.8 years in North Craig
Reservoir. |

Thus the suggeétions that 10N and 1E describe common rainfall
variations especially those of "East" station rainfall, and that
20N describes "West" station rainfall is confirmed. Further invest-
lgation of the reiationship bétween these series and P and C index

series is made using cross spectrum analyses.

5.h.5.h Cross spectra - P and C, and eigenvector

multigliers

~ Coherence and phase spectra between C and 10E, 10N, 20N,
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and 30N appear in Figﬁre.5.1h. Gonfidence limits on coherence
and phase are as given for annual spectra in 5.3.14.3 and these
limits are used to assess the significance of these estimates.

. The quasi~biennial oscillation which is present in 10N and
is possibly present in IE (Figure 5.13) has 2 very high coherence
value with that of C. The phase angle and its confidence limits
suggest that 1E and C are exactly in phase while 10N and C are
in anti-phase. Since aliasing of power may again affect cross
spectrum estimates in addition to power spectrum estimates near
the Nyquist frequency, the exact'significance of these coherence
estimates and the precise frequency of the quasi-biennial
oscillation cannot be determined.

The oscillations found at 3.1-years in € and 10N have signifi-.
cant coherence with one anothef though the phase relationship
between the two oscillatioﬁs which is one'of quadrature, has large
uncértainties. The phase lead of 10 months in the C oseillation
lies betweén O and 18 moﬁths at 90 per.qent confidence limits.
Neighbouring coherence peaks between C and 10N at 2.9 and 2.5 years
also have associated large uncertainties in the phase angle of
cross spectrum estimates. The other coherence peaks between C and
10N, which occur at four years, with an uncertain phase relationship
between the oscillations, and at zero frequencies,rappear to be of
little importance.

The 20N and C coherence spectrum shows no common variations
in 20N and C while that of 30N and C has high values at and near
the three-year peak in their power spectra, near the troughs in
power’ spectra at 2.2 years, and at 2.0 yezrs. The phase lead of

C over 30N for the three-year period, which is one of primary inter-
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est, 1s about one year but c9u1d.1ie between 11 and 17 months at
96 per cent confidence limits. |

.There are few significant values in the coherence spectra
between P index and eigenvector multipliers, these estimates not
being shown here. The gquasi-biennial oscillaticn, present in P, ‘
produces significant coherence with 10N (COHSQ = 0.90,3Exy' = 0.49)
with an anti-phase relationship and almost significant coherence
with TE (COESQ = O.83,§§xy' = 0,98) with an almost in-phase relation-
shiﬁ. These phase -relationships are the same ag those between C
and 10N, and C and 1E. _

36N and P have high coherence only at zero frequency (COHSQ =
0'99’§Exy' = 0.97). The only relationship between P and 20N which
is apparent in coherence estimates occurs at 5.1 years (COHSQ =
0.86;§ xy' = 0.15).  There are no coherence peaks at 2.9 or 2.7
Years where spectral peaks-occurred in 20N and P. There is a
broad peak in 20N over the rangé of periods five to six years
which describes some features in individual power spectra of |
"West" stations as mentioned above. However, as the coherence
estimates for the range of periods five to six years are only just
significant, and as the phase angle at 5.1 years has large uncer-
tainties (0.08< §W' < 0.18 at 90 percent confidence limits), the
‘use of theée coherence estimates to describe thé relationship
between P and "West" rainfail variatidns will be limited.

Thus cross épectrum analyses between eigenvector multipliers.
and circulation indices provide further means of identifying the
two sets of first eigenvector multipliers as describing common
time variations in all réinfali series, especially those in '""East"

stations and those present in C. However, these analyses provide
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little further information about the second and third sets of

eigenvector multipliers and their relationships to P and C.

5.5 Analysis of monthly rainfall time series

5.5.1 Power spectrum analysis

In order to investigate further high frequency oscil;-
ations in rainfall and circulation indices, power spectfa of
monthly rainfall and iﬁdices were calculated using the Blackman-
Tukey autocovariance approach and the fast Fourief transform
method: Data series of 98l values for 1890-1971 with a lag of
values being determined by the limits of the BMD program of a
maximam of 1000 data points and a maximum lag of 199. Series of
1020 data points for 1886-1971 were extended to 102y by addition
of zeros and their fast Fourier transforms calculated, in the case
of Arisaig House where data were not available prior to 1890, 984
points were used. . 7

The 199 spectral estimates produced by the ACV method and thé
102 FFT estimates produced by the summation over elementary bands
of width five are plotted in Figure 5.15 for P and C indices,
and in Figure 5.16 for typical "East" and "West" stations, Crombie
Reservoir and North Craig Reservoir,

As discussed in section 5.3.3 the number of degrees of freedom
of each sebt of estimates is approximately the same though a given
FFT estimafe will have smaller confidence limits than a given ACV
estimate aé there are fewer FFT estimates. - The FFT spectra being
plotted from fewer estimates appear to be smoother than ACV spectra,
but sets of spectra are very similar. Minor peaks in FFT spectra

are in most cases less pronounced than those in ACV spectra, and
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somelminor peaks are more clearly identifiable as side bands of
major peaks. However, the ex%ent to whigh reai effects as well
as noise aré smoothed -out in the FFT spectra compared to the ACV
spectra is not immediately obvious. Most of the peaks in either
sﬁectra are in any case of little signif{icance wheén tested using

the QSE distribution as in section 5.3.
'

The principal peaks of period greater thén 11 mohths are
listed in Table 5.13. All the rainfall spectra and the P .index
spectra have peaks which are significaﬁt for individual spectra
at 12 months. In fhe case of P, and of some rainfall stations,
the asymmetfy‘of the annual fainfall cycle effects a peak at six
months. The C index does not have a 12 month peak but an 11 month
peak which may describe. the effect of an snnual cycle.

The 14.7 and 1hL.L month pesks, some of which are significant
at the five per cent level for a population spectrﬁm, could be
side-bands of the major 12 month peaks. A 14% month peak was
however found in Brunt's (1925) analysis of Edinburgh razinfall-and
was the most significant pericdicity in 10 out of the 12 European

rainfall records, for the period 1760 to 1925, which he examined.
Brunt also found oscillations of period 18 months in London and
- Edinburgh rainfall which is also cbserved in Edinburgh and three
other records 1isted in Table 5.12. Brunt's Edinburgh.data could
“be considered to beiong to the same population of data as that
- studied here., His results are therefore mentioned at this point
as they iﬁérease the significance of the results listed in Table
‘5.12. Other périodicities in this frequency range found in other
meteorologicél records are discussed in Section 5.5.
.In Table 5.13 the quesi-biennial oscillation and the three
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Table 5.13 ' Major peaks in power spectra of monthly rainfall and circulation indices

Periods are given in months - 1. using the autocovariance method, 2. using fast Fourier transform method.
Significant valuves at five per cent level of a population spectrum are underlined, and those at five per
cent ievel of a sample spectrum are deoubly underlined.

Marchmont. 1 36.2 4.7 12.1-

House . o . 39.4 1L.h 11.9

Bdinburgh 1 | 36.2 | 18.9 | 1L.7 11221

2 39.4 18.3 [ 1h.L 11.9

Loch Leven 1 » 1L9.7 | 36.2 - AR S 1241

Sluices > 6.0 : 11,9

Crombie 1 36.2 23.h 18.9 | 1L.7 12.1

Reserveir s | 39.1 11,9

Balmoral 1 : 36.2 23.L B I D o 12.1

2 | 39.L .7 1l.2

Gordon 1 36.2 | | 23.h 18.9 | 11,7 12.1

Castle 2 - -_ 39.0 22,2 13.4 | 11.9

| Wick 1 179.6 28.L | 22.1 18.9 | 11,7 12.1
2 | Tk 11.2

| Stornoway 1 56.8‘ 28.L 1.7 12.1
2 28.k 1.0 11.9
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Table 5.13 continued

Arissig 1 66.4 , | 30.6 23.h 1.2
House 2 1. : 20.1 1.4
Greenock .1 6.0 N 36.2 ©[19.9 15.2
2 6L.0 20.1 L.l
North CFaig 1 66.3 36.2 23.4 1.7
Reserveir 5 ’ 05 .0 1h:h
P 1 ‘ 7
2 i ' L.
C 1 35,2 23.0
2 39.4 22.2 1h.L
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year oscillaticn obserﬁed in annual power spectra produce the most
significant peaks other than that of 12 months.. Both these
periodicities have significant values at fhe five per cent level

. for a population spectrum in the case of the C spectrum. 1In other
spectra the oscillation of perioi around three years appears to be
mbre common than the one of period around two years. The fact that
the quasi-biennial oscillation is less apparent in monthly spectra
than ammual spectra and that the peaks occur ai 22 to 23 months in
monthly spectra, shows that some aliasing of power cccurred near
two years in the annual spectra.

Of\the lower frequency pezks in the monthiy spectra, thosé of
Arisaig House and Greenock at 6l to 66 months correspond to:tﬁeir
broad annual spectrum peak at 5.0 to 5.5 yéars, while that of
Stornoway at 56 months represents a harmonic of its 28 month oscill-

ation. Stornoway's spectra is not in itself similar to those of.

other Series, partly on account of its inhomogeneities.

5.5.2 Cross spectrum analysis

Coherence peaks and phase éngles of cross spectrum estimates
calculated using the CCV and FFT methods are given in Table 5.1L for
cross spectra between C and monthly rainfall and in Table 5.15 for
those between P and monthly rainfall. Confidence limits of ccherence
and phase estimates are given in Tables 5.3 and 5.l respectively.

The quasi-biennial oscillation in C produces significant coher-
ence values with "East" rainfall series even in cases where the
oscillation is not apparent in individual power spectira. The phase
angles of the cross spectrum estimates suggest that the oscillations

in € and rainfall could be in phase, except in the case of Wick and
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Table 5.1t Cross spectra coherence peaks between C and monthly rainfall

Period (coherence, phase of rainfall oscillation relative to C index in fractions of a circle)

Marchmont 1 26.6(0.71,0.97) 11.1(0.70,0.98)
House ' 24.8(0.87,C.01)
- 23.14(0.94,0.03)
2 525.0(0.90,0.99)
22.3{0.92,0.03)
Edinburgh 1 26.,6(0,72,0.96)
' 21,.8(0.88,0.97)
23.1(0.76,0.98)
2 25.0(0.85,0.96)
Toch Leven 1 °
Sluices ,
2 25.0(0.85,0.97) - 10,1(0.86,0.89)
Crombie 1 36,1(0.81,0.98) %23.h(o.?2,0.oo) 18.9(0.70,0.99) 12.8(0.78,0.03) 11.1(0.74,0.95) Y
~Reservoir 22.1(0.73,0.99) 18.1(0.73,0.00) 10.2(0.80,0.90) . :
905(0-?’4,0189)
2 ' " . 10.1(0.89,0.91)
Balmoral 1 2,.8(0.73,0,01) 18.9(0.74,0.95)
23.4(0.76,0.02) 18.1(0.80,0.93)
2 25.0{0.78,0.02) 16.8(C.86,0.0L)
Gordon 1 ' 23.4(0.71,0.95) o
Castle _ '
2 25.0{0.71,0.91) .
Wick 1 12.8(0.73,0.01)
p) 25.0(0.74,0.87)
Stornoway 1 : - 12.8(0.70,0.03)
2 11.9(0.88,0.08)




4t

Teble 5.15 Cross spectra coherence peaks between P and monthly rainfall

Period (coherence, phase of rainfall oscillation relative to C index in fractions of a circle)
1. CCV, 2. FFT methods

Marchmont 1 . _ ; : 12.1(0:87,0.93)
House ' - :
2 _ | 11.9(0.87,0.9h)
Edinburgh 1 - 12.1(0.90,0.88)
2 11.9(0.87,0.89)
Loch Teven 1 : 512.1(0;93,0.99)
Sluices 11,.7(0.82,0.00)
2 ' 11.9(0.95,0.99)
Crombie Res.] 12.1(0.83,0.97)
2 : ' 11.9(0.82,0.97)
Balmoral 1 ' 12.1(0.92,0.03)
v .2 11.9(0.90,0.03)
Gordon 1 ' 12.1(0.87,0.90)
Castle
2 11.9(0.82,0.90)
Wick [ ' 12.1(0.8L,0.07)
2 , 11.9(0.84,0.02)
Stornoway 1 536.2(0.?5,0.08) 26.6(0.72,0.0) E1h.7(0.87,o.oo) 512.1(0.92,0.08) %11.1(0.82,0.03)
33 3(0.76,0.Qu) 14.2(0.81,0.00) (11.7(0.82,0.08) {10.7(0.80,0.06)
2 28.4,(0.88,0.05) 22.2(0.82,0.96) o 11.9(0.88,0.08)
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Table 5.15 continued

Arisaig 1 §36 2(0.86,0.03) Ezh 9(0.86,0.96) (18.9(0.8L4,0.00) 114.7(0.8L,0.00) (12.4(0.83,0.06)
House 33.3(0.89,0.03) (23.4(0.81,0.97) (18.1(0.88,0.98) 14.2(0.94,0.00) (12.1(0.93,0.01)
11.7(0.86,0.01)
2 11.9(0.93,0.03)

" Greenock 1 26.6{0.74,0.0L) 12.1(0.91,0.09) 11.1(0.77,0.01) *
2,.9{0.83,0.99) 11.7(0.83.0.09)
2 - 1.9(0.90,0.08)
North Craig 1 33.3(0.75,0.05) 22.1(0.74,0.03) 18.1(0.8},0.88) 12.1,(0.83,0.99)

Reservoir 12.1(0.92,0.00) -

: . 11.7(0.83,0.02)
2 18.3(0.84,0.89) 11.9(0.92,0.02)




dordon Castle whose coherence values with C are also the least
significant of the "East" stations.

Oscillations'of period arcund three years which are of sig-
nificance in the monthly power spectrg of C .and Lech Léven Sluices;
only produce significant coherence estimates betweenlC and Crombie
Reservoir. There i1s also high coherence between C and Crombie
Reservoir for periods around 11 mbnths, and Crombie Reservoir seems
to héve'the highest overall coherence with C. This was also the
case in the analysis of annual time series.

In the case of P, there are significant coherence values
between the annuql oscillations in P and in every rainfall station
series. The phase lags between P and rainfall vary with stafion,
lbgt have small confidence—limits, of less than one month in most
cases. "East" statlons tend to lag behind P, and "West" stations
to lead P. Edinburgh hés fhe longest lag behind P, while Balmoral
has an abnormzl phase lead for an "Bagt" station. Of the West
.stations, Stornowéy has the 1éngest phase lead over P. The wariation
in phase relationship between the annual cycle in P and that in rain-
fall series reflects synoptic'experience with progressive systems
travelling from West to East.

The lower frequendy coherence peaks betweeq P andﬂ"Wést" stat-
ions do not in general correspond to peaks in individual power
épectra and probably reflect the overall close relationship between

variations in P and "West" rainfall.,
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5.6 The relation of these results to other work

5.6.1 High frequency oscillations - the two and

three year periodicities

Comparison has already been made between the results of
Brunt's analysis of European weather elements and those of
Scottish rainfall. Brunt's significant 145 month periodicity and
his 18 month periodicity were also found in the data analysed
_a@bove., Gray (1975) lists coincident peaks in the FFT power spectra
of Kew pressure, South East England rainfall, Central England |
temperature, and ¢ index using monthly data, and these peaks may
be comparéd with those of the Scottish rainfall data. A1l four of,
Gray's spectra have peaks at 3.36, 3.13 and 1.89 years, i.e. L0.3,
36.6, and 22.2 months. The latter peak corresponds to that in
Scottish monthly rainfallraata. There is also some evidence in
monthly spectra above of two peaks near three years but in‘tﬁé
annual spectra oniy the peak at 3.1 years occurs. It would seem
doubtful that in Gray's analysis there are two independent pezks
near three years, and.probable that one of the 5.36 and 3.13 year
peaks is a gide-band of the other ﬁeak.

Gray also found peaks at 2.96, 2.76, and 2.20 years in all the
speétra except that of Central England temperature, and at 1.23 years
in all the spectré except that of Kew pressure. The 1L to 15 month
Scottish rainfall pesks seem fo correspond to thosé at 1.23 years.
There islalso evidence in annual spectra of peaks in P and West
stations at 2.7 years, and at 2.7 and 2.9 years in the second eigen-
vector multiplier time series which seems to deséribe "West" rain-

fall variations. These peaks may be related to Gray's 2.76 and 2.96
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year peaks.

Of the high frequency periodicities found in neteorological
parameters, thé quasi-blennial oscillations is in a large number
of cases the most significant. Shapiro (1975) giveslan analysis
of Manley's (1975) Central England témperature gseries which was
.used by Gray in the above analysis and has been analysed by other
workers. Shapifo detected a small but significant peak at 25.5
months in the power spectra of Manley's raw data as well as a very
significant annual peak and a. six month peak. Data filtered by
the use of a 12 month running mean again revealed a 25.5 month peak
when the spectrum was compared with a red noise background spectrum.
The freqﬁencj of the peak in Gray's analysis of the same datz was
~at 22.7 months, showing that different methoas of analysis produce
- slightly different results and the exac@ frequency of a significant
oscillation_can be difficult to determine.

Lamb (1972b) gives a survey of periodicities revealed in the
analysis of meteofological elements and related data. Of the high
frequency oscillations that with period around two years, thé
quasi~biennial oscillation, occurs most often and itz of most signi~
fibance, though it is less significant than very‘low frequency
oscillations of period 100 years or more. Lamb also discusses the
presence of the guasi-biennial cscillation in the winds of the lower
stratosphere which reverse direction from West to East.r Wind cir-
culation derived from pressure anomalies and the frequency of
blocking types also shoﬁ this oscillation. Oscillations occurring
in the Northern and Southern Heﬁispheré have been showun to be linked
by the successful correlation of preséure anomalies in the two

Hemispheres.
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The quasi-blennial oscillation in circulation indices referred
to above may be linked to those of pressure anomaiies descfibing
the circulation over the Northern Hemisphere, and indirectly linked
to the winds in the equitorial stratosphere. - The P and C indices
in their turn describe the frequency of weather types affecting
rainfall., The C index describes the frequency of cyclonic circul-
ation which produces a large proﬁortion of rainfall at Scottish
stations, especially "East" stations. Thus the quasi-bieﬁnial
oscillation present in rainfall over the British Isles, circulation
oger the British Isles, circulation over the Northern Hemisphere;
and wiﬁéé in the stratesphere may be 1inked and correlated. On the
other hand, the three-year rainfall oscillation can only be related
to that of C and is not found éxtensively in cther meteorological

time series.

5.6.2 General variations in circulation and

rainfall over 100 years

Nc medium or low frequency oscillations which ﬁere of
definite significance were found in the rainfall or circﬁlation
indiceé series above, though similar variations were found in
filtered records. Rainfall records can alsoc be divided into epochs
which correspond to those in which a certain type of circulation .
predominates. Lamb (1972a) summarises the over-zll variation in
the frequency of Westerly and blocking types over the period 1861
to 1971 into the periods 1861 to 187k and 1900 to 195} with a
marked prevalence of Westerly types, and 1875 to 1699 and 1955 to
1971 with a marked prevalence of blocking types. Lamb's frequency

of Westerly types corresponds to the P index, and his epochs can be
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seen in the deéadal means of P index in Table 5.7 and filtered P
index in Figure 5.3. These epochs can alsoc be identified in C
index which shows similar variations to thg P index with a laé of
about five years.

Individual Scottish rainfall records exist only prior to
1880 for "East" stations, and the period between 1871 to 1880 can
be identified as one of high "East" rainfall and C index. The
first half of the 20th century can be recognised as being rela-
tively wet in most filtered records in Figures 5.5 to 5.7 and in
the decadal means of "West" stations. This period is one of high
P and é indices associated with the prevalence of Westerly types.
The exact period of the wet epoch varies between stations. Thus
Lamb's classification of periods of years according to the pre- .
dominance of a ecirculation type can be recognised 'in rainfall
records.

Schove (1950) studied variations in temperaturé, reinfall,
and wind for the period 5875 to 1925 using overlapping 30-year
pericds; variations in mean values for these éub-periods may be
compared to those of Scottish rainfall and‘circulétion indices.
Schove suggested thét rainfall and temperature anoﬁalies should be
discussed in terms of an "area" term depending on the pressure
anomaly and a "local" term depending on the wind enomaly. These
anomaly terms have similarities to the C and P indices, and would
be of particular importance in the determination of rainfall of
sheltered stations and of stations exposed to the prevailing wind,
respectively.

Schove's description of different climatic phases in terms of
wind and pressure anomalies expresses rainfall for overlapping 30-

-188-



year periods as a perceniage of the 1901 to 1930 mean for the
"East" sites of York and Edinburgh,lthe "area" sites of Greenwichl
and Oxférd, and for all available "England" sites. The "East"
sites have similar variations to those of "East" Scottish rainfall
as described by groups of decadal means in Figure'5.2 or in sections
of filtered data records in Figures 5.5 and 5.6. Available "West!"
Scottish rainfall for the period 1880 to 1930, shows similar vari-
ations to those of "England" data. Individual decadal means for
different sets of data as against 30—year means do not hOWeﬁer show
similar variations. The only similarities between Schove "England"
decadal means for periods betwéen 1850 and 1940 and those of

‘Scottish data are the very wet decades 1871 to 1880 and 1921 to

1930,

5.6.3 Other methods of spectral analysis to

resolve low frequencies

While common variations were found in the filtered records,
and to a lesser extent in decadal means, no common low frequency
oscillationg were ldentified in the power specirum analyses using
the above methods.'.Neitherrwere individual lower frequency peaks
of significance in themselves. An increase in spectral rgsolution
might provide further information about low frequency oscillations.
Using the spectral methods of the Blackman-Tukey autocovariance
method and of summation of FFT estimates of filtered data above,
the number of final estimates could be increased to produce high
resolutioﬁ by increasing the maximum lag, or decreasing the band-
width of sgmmation respectively. However, the variance of such

estimates would be unacceptably high.
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Recently new methods have been suggested which produce a
. greater number of low frequency estimates, and some of these
methods have been‘shown té give stable results. Gray (1975) suggéstu
ed a perturbation technique to increase the stability of raw Fourier
transform estimates providing additional information at low fre-
quencies. 'Ordinary' Fourier transforms are célculated for a given
harmonics at slightly different frequencies by changing the length
of data used and estimates for a given harmonic are averaged over
a sefies of perturbation. As frequency shifts for each perturbation
are dependent on the harmonic number, being smallest for thé lower
harmonics, the number of perturbation estimates which may be aver-
aged is largest for low harmonics and low frequencies. This method
is thus suited to low frequencies and has been shown to give staﬁle
results. |

‘ However; this approac£ caﬁnot be used in cross spectrum anal-
ysis‘and is also unsuited to short series, such as those of annual
rainfall data above. In the case of monthly rainfall series it
did not seem likely that further information could be obtained at
Yow frequencies; raw fast Fourier components did not suggest the
presence'df low frequency peaks which could be investigated further
by use of 'ordinary' Fourier transforms and the perturbation
teéhnique. ‘ ’ .

In the last few years the_maximum,entroﬁy‘method (MEM) which
has high resolution at low frequencies, has been appliéd to short
time series of physical data. MEM is "data adapbtive™ in that the
method of filtering and smoothing of the es£imate§ is determined
by the n&ise characterigtics of the series under study, and is not

of predetermined form as in other methods discussed zbove. Spectral
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estimates produced by MEM have a. higher variance than those of
other methods buf their significantly higher resolution is capable
of prbviding information on pericdicities of wavelength equal 1o
the length of the daté. A full discussion of the method and
results of numerical experiments on s&nthetic time series using

a ﬁaximum entropy routine is given in Ross (1975).

The statistical significance of MEM estimates has not Been
extensively considered, and the high variance of such estimates
suggested thét MEM spectral peaks should be related to the results
‘of othef analyses before being accepted as revealing oscillation;

in the data..’l

5.7 Summary

In this chapter general variations in rainfall and eirculation
indices have been investigéted using decadal means and "low-pass”
filtering of the data; and the presence of periodicities has also
been investigated-using power spectrum analysis. The relationship
between oscillations in circulation indices and rainfall has also
been investigaﬁed using cross-spectrum anélysis. An_attempﬁ has
been made with some success, using eigenvector analysis, to des-
¢ribe common temporal variations by a series of independent time
series whose relative presence in a given rainfall record can be
defined.

Most of the rainfall records appear to be homogeneous when

their decadal means are compared with their long-term means, and

Note 1: A subsequent analysis of the Scottish annual rainfall
B series using MEM, produced similar results to those
using the Blackman-Tukey autocovariance approach in
" section 5.4.3 (see Appendix 2).
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with those of other stations. They do not show trend to any gfeat
degree,lthough the third eigenvector time series, which-describes
some ninepefcent of the variance in the anﬁual data does show
trend. Persistence in the time éeries as revealed in the power
spe?tra is neither extensive ncor of a simple Markov type. In most
cases the power spectrum may be described as being that of white
noise with somg disturbances.

Of .these disturbances it is only those which appear in the'
power spectra of annual data at high frequencies which are of sig-
nificance, i.e. high frequency periodicities are the only non-
_rahdom element in rainfall time series.

While common variations exist in low-pass filtered records,
decadal means, and longer sub-periods of the records, there are no
common definable medium or low frequency oscillations revealed in
the power spectra. The ex£ent to which high frequency period- \
icitlies present in the power spectra fepresent real processes is
no£ easy‘to determine. The annual cycle and the quasi—bienﬁial

oscillation could be expected on a priori grounds. The significance

- of the 3.1 year periodicity in C and rainfall, expecially in "East"

Scottish rainfall and the first eigenvector time series, and the
gignificance of the coherence eétimétes-and in—phase relationship
between the 3.1 year periodicity in C and the rainfall seriles, is
sufficient to suggest that a 3.1 &ear periodicity represents a real
Process affecting € index and réinfall.

The overall relationship between indices and rainfall has been
deﬁonstrated in cross spectrum analysis. "West" stations tend. to
have high coherence with P, and-"East" stations with C, though
variations in P and C are to some extent related. The annual cycle

=1 92..



in P is also closély related to those of all rainfall recofdé,
leading those of "East" stations and iagging those of "West"
stations by less than one month in either case.

In future work, fﬁrther investigations of low frequency‘vari—
ations could be made using other methods of spectral analysis
though'in the absence of fresh data it does not seem likely that
further inherent‘patterns of rainfall series can he revealed. It
would seem from this analysis that the two- and three-year period-
icities are the ﬁost important non-random elements present in
Scottish rainfall time series and in circulation indices. In order
to investigate their use in "prediction" of future rainfall,
"band-pass" filters would have to be applied to monthly rainfall
records to-eliminate effects of all oscillations other than the
two- or three-year periodicity. The phase of each periodicity

in each record could then be determined.

!
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AN INVESTIGATION INTO SPELLS OF WET AND DRY DAYS BY
REGION AND SEASON FOR GREAT BRITAIN

By J. A. BLAIR-FISH
(Meteorology Department, University of Edinburgh)

Summary. Distribution of wet and dry spells are considered in relation to Markov, simple
logarithmic, medified logarithmic, and modified geometric models explained in this paper.
Data from eight stations distributed over the British Isles show that a simple logarithmic
model can usually describe dry-spell data while the modified logarithmic and geometric
maodels describe wet-spell data. The variations in model parameters do not corrclate well
with region, Data considered by season for Oxford show that, on average, autumn and
winter dry spells there are shorter than dry spells in spring and summer, while winter wet
spells are slightly longer than those in the other seasons; these variations determine the model
parameters.
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Introduction. Many investigations have been conducted into the distri-
butions of sequences of wet and dry days. The most popular model used to fit
the distributions of spell lengths has been the simple Markov model which
assumes that the probability of any particular day being wet or dry depends
only on the character of the previous day (for instance Chatfield,! Gabriel and
Neumnann®). Williams® first suggested a logarithmic series as a fit to sequences
of wet and dry days and this model has since been applied to other data
(Cooke,* Chatfield?). Green® proposed a modified logarithmic model of which
the simple logarithmic and Markov models are special cases. This model,
which used two parameters, satisfactorily fitted 33 out of 36 cases collected by
Green and others; these included observations of duration of rainstorms, and
of intervals between them, collected by Weiss.® Yap? proposed a modification
to the simple Markov model in which the probability parameter (of a wet or
dry day being followed by a similar day} was a variable, though a constant
within any given spell length.

New data are here investigated in relation to seasonal and regional variations.
Distributions from eight stations are compared. Those for Oxford are further
divided into four seasons and examined in more detail,

The models. The probabilities of spells of length 1, 2, 3...7 wet or dry
days are defined by the various models as follows:

Model 1: Markov Chain Model -
1—9q

g; 4% - - . ¢7, with normalizing constant

Model 2: Williams’s logarithmic model

2o g8 e wi iz _
g, ¢°/2, ¢*/3, . . . ¢"[r, with normalizing constant g i —q)"
Model 3: Green’s modified logarithmic model

g il i .
T ¥4 2ta 7 T with 0 € ¢ < o0 and the normalizing constant
r
determined by the requirement Zf _i o= b In each case the

r

normalizing constant ensures that the total probability is unity. In order to
fit models 1 and 2 from data the mean spell length is used (i.e. the total number

of wet (or dry) days divided by the total number of wet (or dry) spells) to
find ¢. ~

For model 1, mean spell length = 21; 7 gr =+ _I_ 7
r
—1 r ¢ — ¢
For model 2, mean spell length =z = .
e log(1—g) v ~ lgi—g)(1—9)

r

For model 1, ¢ can be found directly from the mean spell length; for mode! 2

it is found by a recursive process or from tables published by Williamson and
Bretherton.®
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It may be noticed that models 1 and 2 are special cases.of model 3 for
" a = oo and o respéctively. ‘

To fit model 3 the method of minimum chi-square is used. We let g approach
o from 1 and let a approach o from some value greater than, say, 6 in successive
steps; the distribution for given a, ¢ is tested for fit at each step by the chi-
square test. The parameters a and g are altered each time the chi-square value
falls as compared with the values of a, ¢ for previous smallest values of chi-
square. In applying the chi-square tests, spells of length greater than a certain
value (about 15) are grouped together into one category. The program stops
when chi-square falls below a certain value determined by the number of
categories; the @ and ¢ values for the minimum chi-square value are taken as
best fit values. :

For model 4 we assume that the probability of a dry or wet spell is p, where
#is a random variable having a constant value within any one run, but different
values in different runs {(as Yap?); p is assumed to be a random variate

(1 —p)it
o) =—%n @ b)

where a4, b are constants of the distribution and B(a,b) is the Beta function.
The probability of a run of days is given by
S .
_ YT N SEPAL A Y |
PO =g | o (=,

where (1 —p) is a normalizing factor and p—! arises from 7 —1 days following
the first wet {(or dry) day. Then ‘

Blatr—1b+1),

PO = B @)
b

P(1) =m,andr>2,
a+t+r—2

PO) = s e

where we have used the definitions

- x—1)! (p —10)! h
B(x,_y):( (x j—.}’(J—)I):) = J‘P’:_‘l (1 —p)¥1 dﬁ

o

To fit the model we take factorial moments about the origin Uy, U’, for the

first two moments, l.e.
1

Uy =t (1 —p) “gpf—l rdp

0

: 1 ' b-1
B {a, b) al‘ (1 — )2 (1 —p) (1 —p) dg

_B(a,b+t)_a+b—t
~ Bia, by b—1
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U= [10) (t=p) Sprtrir—1) dp

1

! : a—1 b—1 Qﬁ
TEwa] P e
2 .
= Bla B Bla + 1,6 —2),
2a (a + b —1)
=1 (6 —2)

o’y (U'y —1) —2ll’y
2 Uy (U 1) U5

Then b =

a= (Uy—1) (b —1).

U, is equated to mean spell length and L7, to the difference between mean-
square spell length and mean spell length.

Persistence. As a measure of persistence we may use the ratio of the
probability of spell length (r + 1) to spell length, r, ¥(r) say. For models 1, 2
and 3, F(r) = P(r+ 1)/P(r) =g ((r +a)/{r + a + 1)}. For the general
case of model 3,0 < 2 < o00; models 1 and 2 are special cases of model 3 for
a = oo and o respectively. F(r} is constant for modeli1 for all r and equalsg. In
general, F'(r) increases with spell length r and with model parameter «; its rate
of increase decreases as r increases and F(r) tends to ¢ in the limit.

For model 4, F{(r) = P{r + 1)jP(r} = (@ + r —3)/{a 4+ & + r —1) and the
measure of persistence increases with spell length, tending to 1 for large 7.

Model fitting for eight stations. The data used were for 40-year periods:
1921-60 for York, Cwm Dyli (North Wales), Oxford, Falmouth, March and
Edgbaston, 1931—70 for Edinburgh; for Whitby, the shorter peried 192142
was used. Difficulty was experienced in finding stations with long-term
continuous rainfall records with a constant threshold for recording rainfall;
threshold values were o-01in for all stations apart from Edinburgh and
Edgbaston with 0'2 mm. These data are given in Appendix 1 (dry spells),
Appendix IT (wet spells); graphs of spell length distribution for Edinburgh,
Falmouth, Cwm Dyli and March are illustrated as representative examples in
Figures 1 to 6.

The chi-square test was used to test the fit of models 1 to 4 to the observed
distribution with an acceptance level of P(y%) 0-05. For dry spells the
logarithmic model fitted the data for all stations except March and Edgbaston.
For March the modified logarithmic model fitted the data for small 2 (a = o
for the simple logarithmic model) ; for Edgbaston no model fitted the dry-spell -
data. Neither the Markov nor the modified geometric models producéd
distributions to fit any of the dry-spell data. The parameter ¢ did not show
any systematic variation among the stations.

For wet spells the modified geometric and modified logarithmic models
fitted most data. The exceptions were Cwm Dyli for the geometric model,
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FIGURE 1—DRY SPELLS AT EDINBURGH, LOGARITHMIC MODEL
g = o-8a.
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FIGURE 2—DRY SPELLS AT FALMOUTH, LOGARITHMIC MODEL
g = o'87. '
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FIGURE §—DRY SPELLS AT MARCH, MODIFIED  LOGARITHMIC MODEL
g=o0878— 034
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FIGURE 4—WET SPELLS AT EDINBURGH, MARKOV MODEL
¢ = 064,
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FIGURE 5,—WET SPELLS AT CWM DYLI
modified logarithmic model, ¢ = 0-90, 8 = 1-18.
— — — = modified geometric model,
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Spel! |enéfh (days)

FIGURE O6—WET SPELLS AT FALMOUTH
modified logarithmic model, ¢ = 088, 2 = o0-g2.
— — — — modified geometric model.
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Falmouth for the modified logarithmic model and Edinburgh fitted by neither
modified model. However, a simple Markov model, which is a special case of
both modified models, fitted the Edinburgh data. The modified logarithmic
model usually produced a slightly better fit than the modified geometric
model, though differences were only apparent for longer, less-frequent spells.
Variations of the parameters ¢ and g for wet spells did not correlate well
with region or with mean annual rainfall. Cwm Dyli {mean annual rainfall
"140°46 in (356768 mm) for the period 1916-50) and Falmouth (43-001in,
1092'20 mm), the two wettest stations, had slightly higher values of ¢ than the
other stations and showed slightly greater persistence of wet spells, The other
stations had mean annual rainfall in decreasing order as follows: Edgbaston
go-7oin (779-78 mm), LEdinburgh 27-53in (6gg-26 mm), Whitby 2566 in
(651-76 mm), York 24-70 in (627-38 mm}, and March 23-07 in {585'9g8 mm).
An examination was made of the effect of a change of threshold for the two
stations which recorded in millimetres. It was found that with a threshold
value of o-1 mm the Edgbaston dry-spell data fitted a logarithmic model (no
fit found for o-2 mm), and that Edinburgh wet-spell data fitted both modified
models {a Markov fit found for 0-2 mm). For Edghaston wet-spell data and
for Edinburgh dry-spell data the change of threshold was found to cause only
a slight change in the model parameters.

Comparative persistence of wet and dry spells. Using models 1 to 3 the
values of the measure of persistence F(r) were compared for wet and dry spells
for each station. For March, F(r) was larger for all dry spells than for wet
spells. For Edinburgh, York, Edgbaston and Oxford, F(r) was larger for dry
spells of length greater than two days; for Whitby, F(r) was larger for dry
spells longer than five days. For Edinburgh, where a Markov model produced
a best fit to wet-spell data, F(r) was of course constant. For the wetter stations,
Cwm Dyli and Falmouth, F(r) was larger for wet spells for all ». Thus we
infer that dry spells are more persistent at ‘dry’ stations and wet spells are
more persistent at ‘wet’ stations. For intermediate stations wet spells are more
persistent for short spells only. The variations probably reflect the passage of
synoptic features. Anticyclones tend to build up slowly over two or three days
and last for longer periods than do individual depressions. TFor ‘wet’ stations
effects of minor disturbances are greater than at other stations and wet spells
tend to be more persistent than dry spells. However, analysis of spell data
does not distinguish the effect of individual disturbances; a long wet spell may
result from several successive depressions.

Seasonal variations (see Appendices ITI and IV and Figures 7—9). The
Ouxford data for 1852-1970 were divided into four seasons—winter (December
to February), spring (March to May), summer (June to August) and autumn
(September to November), the divisions between seasons being taken at the
end of a spell. Each seasonal set of data was tested for the distribution of spells
according to the above model. Dry spells again fitted the log model and wet
spells the modified geometric model. For dry spells the mean spell lengths
were similar for autumn and winter (2-875 and 2:g21 days) and for spring
and summer (3'498 and 3:344); the corresponding values of the parameters ¢
in the logarithmic model were 0-84 for autumn and winter, 0-88 for spring
and 0-87 for summer. For wet spells it was found that mean spell lengths
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FIGURE 7—DRY SPELLS AT OXFORD, LOGARITHMIC MODEL
@ Autumn X Winter

Frequency

-1
07550 15 20 25 30 35 40 45
Spell length (days)

FIGURE 8—DRY SPELLS AT OXFORD, LOGARITHMIC MODEL

Continuous line and dots refer to spring; ¢ == 0-88.
Pecked line and crosses refer to summer; ¢ = 0-87.
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FIGURE g—WET SPELLS AT OXFORD, MODIFIED LOGARITHMIC MODEL
Continuous line and dots refer to summer; ¢ = 0-87, 2 = 1-04.
Pecked line and crosses refer to winter; g = 078, 2 = 1-59.

decreased from winter (2-932) to summer (2-621) with spring (2-783) and
autumn (2-750) having similar lengths. The parameters a and ¢ which pro-
duced the best fit to spring and autumn wet spells also produced a good (but
not best) fit to summer wet spells (see table below).

. 8 q P (x
Spring 2-075 075 050
Autumn 2°075 075 005
Summer 2-075 075 005

1-08% 0'75 a'30
Winter 1-581 078 010

Cumulative distributions. As regards extremes, a model which describes
cumulative spell distributions, i.e. the number of spells of length greater than
a specified value, may be of more practical value than one describing individual
spells. For this reason the spell data were also considered cumulatively. For
dry spells only the modified logarithmic model was found to fit the cumulative
data and that at only four out of the eight stations; the parameters & and g of
the model were 0-87 and 1-09 respectively for York and Oxford, 0-81 and 2-07
for Cwm Dyli, and 0-87 and 2-07 for March. On the other hand it was found
that none of the models fitted cumulative wet-spell data. It was usually the
rarer long spells which failed to fit the models for cumulative data since after
the summation of data their relative weight in the fit was decreased.
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Conclusions. We may agree with Green’s conclusion that the modified
logarithmic model (of which Markov’s model and the simple logarithmic
model are special cases) fits most spell data. As a first approximation, we may
say that the simple logarithmic model fits dry-spell data with ¢ about 0-85;
for wet spells, the modified logarithmic model fits most data, with 2 about 2
or § and ¢ about 0-7 or 0-8 for other stations. The modified geometric model
also fits most wet-spell data. The models give only a rough guide to the
occurrence of infrequent long spells.

Seasonally, dry spells are slightly longer for spring and summer than for
autumn and winter, one g-value for each half of the year being sufficient to
describe the data. For wet spells, different values of @ and ¢ are needed for
longer winter spells than those for other seasons.
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Spell Observed Log.
leng model
days
1 1241 280 g
2 524 52477
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APPENDIX I—DRY-SPELL FREQUENCIES

Log. denotcs expected frequency (logarithmic model}.
* When threshold decreased from o2 mm to 0’1 mm.
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Log. Observed Log. Observed Log.
model model model
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APPENDIX II—WET-SPELL FREQUENCIES

Edinburgh York Whitby Cwm Dylt
Ohbserved Expected Observed Modi-  Modi- Observed Modi- Modi- Observed Modi- Modi-
Spell {re- fied fied fied fied fied fied
length quency . log. geo- - log. geo- .o log. gCO-
{Markov) metric metric metric
days
1 1003 9508 007 Bgs's  B8B2g 523 489-4 4928 477 4956 4130
2 570 G127 520 504'2 5312 293 30r-6 309° 1 322 . 308-6 313°2
3 336 394'0 303 3079 3270 182 1937 1978 212 2132 2302
4 251 2544 204 975 2072 121 1270 129°9 153 1563 |, g2
5 195 164-0 136 130'8 1547 74 848 82 127 119°0 143'0
6 96 10577 92 88-7 879 62 574 56-2 95 930 IIIQ
7 o8 681 64 Bz 588 40 39°4 380 68 741 881
8 43 439 4% 42'8 400 - 39 27-2 260 - 63 6oo 6g'9
] 33 283 25 30'3 276 12 19°0 180 G2 49°'1 557
1o 14 18-z 26 216 193 1t 13'3 126 g1 406 447
13 10 11°7 1 156 137 13 45 89 41 389 a1
Iz ) 76 [} g g8 7 66 6q 25 284 299
13 1t 49 2 82 7t 4 47 4'6 26 24'0 230
14 3 3L & 60 52 4 34 33 24 20'4 196
5 o 20 6 44 30 1 24 24 12 173 161
6 4 13 2 32 29 3 7 8 13 148 13'3
17 1 o8 z 2°4 2'2 3 13 '3 14 129 I
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20 .0 oz o o 1°Q 4 a5 o6 5 82 '5
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23 o o1 o o4 ] 3 5'4 39
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26 o oo I o2 o2 (-(; 36 2'5
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28 4 2-8 1-8
29 1 274 16
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33 o 14 o'g
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43
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%‘ 22°2 o4 20 - 148 168 24'7 404
(x" o5 o'go 20 010 0'30 0001
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APPENDIX II continued
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APPENDIX III—SEASONAL DRY-SPELL FREQUENCIES, OXFORD

Winter Spring Summer Autumn
Spell Observed Log. Observed Log. Observed Log. Observed lLog.
length model model model model
days
1 831 828-5 685 71375 758 7693 8a7y 869-3
2 331 | 3499 got 3147 327 3361 408 3656
3 205 1971 204 1850 207 1958 191 2050
4. 11g 124°Q 118 122°4 130 1283 131 1203
5 94 844 98 86-4 97 89-7 87 870
6 70 59°4 76 635 71 653 . 62 61-0
7 38 430 54 480 . 44 48-9 54 440
8 33 318 28 3770 37 374 32 323
9 a1 239 31 290 29 290 34 24-2
10 22 18-2 26 231 28 228 18 18-3
11 14 . 139 27 185 16 181 5 140
I2 o 10-8 .19 14'9 12 14'5 7 - 10
13 13 84 10 12-2 10 I1vg 10 8-4
14 6 66 13 10°0 16 9'5 1o 65
15 3 52 It 8-8 g 78 2 51
16 I 41 3 68 7 63 2 40
1y 2 33 5 56 5 52 1 32
18 3 26 3 47 2 4'3 3 25
19 2 21 4 39 I 36 3 20
20 1 -7 1 33 2 30 1 1-6
21 2 1°4 3 28 2 2°5 [ 13
22 r 11 3 23 2 21 1 1-0
‘23 2 [a] 2 a0 1 17 1 08
24 1 07 o 1-7 ] 1-4 o o7
25 I o6 0 1°4 o 12 o o5
26 o o5 o 12 2 1-0 o 04
27 o 04 o 1.0 1 o0'g o o4
28 o 03 1 09 o a7 I 03
29 o o2 1 07 1 o6 o o2
30 o o2 [¢] o6 2 o5 o 02
31 o o1 1 05 1 o4 o 02
32 1 o'l o L o 04 o oI
33 o o1 o 04 o o3 o oI
54 o or o 03 o '3 o o1
95 [} o'r 0 03 o o2 o o't
x? 2034 234 121 115
Py o070 015 0570 o0-10
q o84 088 o-87 084
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APPENDIX IV—SEASONAL WET-SPELL FREQUENCIES, OXFORD

geometric
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Winter Spring Summer Autumn
Observed Modified Modified Observed Modified Modified Observed Modified Modified Observed Modified Modified
log. geometric log. geometric log. geometric log.
6g7°1 680-4 680 6823 660-9 757 816-7 7343 762 746-6
392'6 408-9 393 3860 392°3 404 4142 424°9 434 4225
2397 252-2 2711 2324 2385 245 2346 2519 241 254°5
1537 159-8 144 1456 148-2 150 14174 1519 174 1594
101-g 1033 g0 93-8 940 98 88-6 935 84 1027
691 68-2 61 61-6 6o 56 571 586 68 675
477 458 44 411 398 38 375 373 46 45'0
334 31°3 39 278 26-6 26 250 242 21 3044
23-6 217 23 190 180 12 16-9 158 28 20-8
16-g 153 13 130 12-3 12 15 1075 i1 1453
121 10 4 g0 8-6 11 79 71 13 g9
3-8 7'9 7 63 60 4 55 48 5 69
6-4 57 3 44 43 7 38 3'3 10 48
47 42 3 3 30 1 27 .23 3 34
34 3°1 1 22 2:2 0 1.9 16 I 24
25 24 o 1-6 16 2 13 1-2 2 1-7
19 18 1 1 12 2 og o8 0 12
14 14 2 o8 og I 07 o-6 2 09
10 10 o o6 07 o 05 o4 I 06
0-8 08 o o4 0’5 o o4 03 I o4
06 o6 1 03 04 0 0'3 o2 1 03
04 o5 o o2 o3 o oz o2 o L
o3 04 1 o1 02 o 02 o1 o o2
o2 03 1 oL o2 o o1 o1 o o1
02 o2 0 o1 o1 o o1 o1 o o1
o1 o2 o ¢ oI o o1 oI
199 29°4 11-3 152 134 107 194
010 001 050 020 030 050 0-05
078 T 075 075 075
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APPENDIX 2

~ MAXTMUM ENTROPY PCWER SPECTRA OF P AND o

CTRCULATION INDICES AND SCOTTISH ANNUAL

RATNFALL TIME-SERIES




MAXTMUM ENTROPY POWER SPECTRA OF CIRCULATION

INDICES AND SCOTTISH ANNUAL RATNFALL

Introduction

Investigations further to the work of section 5.3.3, which
used the Blackmen-Tukey autocovariance method (ACV) of power spec-
trum analysis of Scottish rainfall and circulation indices, were
carried out using maximum entropy method (MEM) power spectra to
locate more accurately the freqﬁency of spectral peaks already

found énd to further look for lOW‘freéuency peaks. This method was;l .
) brought to the notice of the author after the invéstigations /
reported in Chapter 5 had been carried ocut.

The MEM is described iﬁ detail by Ross (197%) who carried out
numerical experiments on synthétic time series using this method
and also the fast Fourier transform method (FFT)° MEM was devel-
oped by Burg (1967) and was also proposed by Parzen (1969} who
derived 1t from autofegressive modelling. The MEM is "data adaptive"
in that the window function is not defined as in the ACV and FFT
methods but is implicitly altered by the data being processed £o
suit the noise éharacteristics of the signal. It is exactly equiv—
-alent to modelling by autoregressive decomposition (seg Ulrych and
Bishop 1975) and presents the same problem of the best choice of
the AR order.

The spectral estimate produced by MEM has a higher variance
than that of most other methods, but this is more than compensated
for by its significantly higher rgsolution and its capacity to
resolve wavelengths comparable to the length of the data sample

-A2.1-



(Parzen 1969, Ulrych 1972, Chen and Stegen T97h)o

Method

The Blackﬁaq-Tukey aﬁtocovariance method of spectral analysis
computes the Fourier transform, Px(f), of the autocorrelation
function ﬁx(p) for p< m where m< n, the number of data points
(see equation 5.10). For an infinite series the Fourier transform
of fhe autocorrelation function, PSX(f), would be an exact estimate
of the power spectrum as in equation A2.1.

’

#mjg' ‘ .
Psx(f) = 4Ot oo Rx(p) exp - 2% ipat (A2.1)

In order to allow for the finite length of the series and
the fruncation of the autocorrelation function for p> n, only the
first m autocorrelations are used and raw spéctral estimates are
smoothed. The number of autocorrelation values, m, and the spectral
window used are determined by the investigator; in the above anai-
¥ysis m = % and "Hanning" function is applied to the raw data as
in equation 5;11. The spectral windows tend to place information
which may not exist‘inﬁo the data and to make assumptions about
variations in members of the series outside the raznge of available
data. Spectral estimates for short-length déta will be of limited
use aﬁd will be in error for wavelengths comparable tq the length
of the data,
| A method which recognises the lack of information outside the
length of the series and makes maximum use of the autocorrelations
available is desirable., Loss of information is gain of entropy

O s



which may be defined as

+fN
1 j
h = = In PS (f) df (82.2)
N ‘-'fN * )

where fN is the Nyquist frequency.
This expression may be maximised with respect to unknown auto~
correlations which is equivalent to maximising the lack of inform-

"ation about them. Thus for a series of n values

.

gLET_T = 0 p}% n
aRX P .
oy .
_ fexp - 2T ifpAt
) PS_(1) (A2.3)
by
_fN

which implies the Fourier series truncates and

-n-1
1 1 . Y
= e C (p) exp(-2W i fpat) (a2.L)
B_(T) 2y _n%

with C(p) = C(-p)> to ensure that PS_(£) is reals PS _(f) can thus

be expressed by
21TN

7 '
-EHX C(p) exp (-2mwifpAt) (A2.5)

/PSX(f) =

C(p) must be chosen so that ng(f) gives the unknown autocorrel-
ations

A2, 3~



“+f .
N .
Rx(p) = ~}rPsx(f) exp (2T ifpA t ) df - (A2.6)

,:N

since the autocorrelations are the inverse transform of the power
spectrum. )

These cenditions lead to the filtering of the data by means
of a prediction error i‘il‘t}ér which whitens the series. If a time-
series x(g) has a Fourier transform ¥(w) and H(w) is the
transform of the filter which whitens ‘x{(q)} then

.

X(w) H(w) = K® where K is a constant (A2.7)

or X(w) =

which is equivalent tc A2.5.

An estimator of the power spectrum can then be shown to be

]

m+1

Ps_(£) = — 7
a1+ Ya(j,m) exp -2wif ja't . (A2.8)
J=1 -
where Fm+‘| is the mean output of the m+1 point prediction error

filter whose first coefficient is unity (see Ross 1575). The pre-
diction error filter coefficients, ‘a(j,m) where O<j{m are

given by the matrix equation

R_(0) B (1) ... R(m) 1 . P
R (1) R(0) Ro(m=1)| a(im) | =" | 0
R | atmm 0 (42.9)

—-AZ c!.l." \



Inlorder to calculate autocorrelation coefficlents
RX(O), Rx(1) vos Rx(n) without making gssuﬁptions about the
series x{q) outside the data range, & recursive method of estim-
-ating predictibn error coefficients is used. For m = 0,
is determined directly from the. data:

Rx(o) = P, an.d P,

n

Z x(q)2 k (A2.1o)
1

ol
—
Il
Sl

The m+1 point prediction error filter is calculated from
the m-point prediction filter by Aé.9 and by minimising thé power
output from the m+! point filter with respect to a{m,m). The
mean power output is determined by running the filter over the
- data in both forward and backward directions.thus ensuring that
a{m,m) does not exceed unity,

For m=2 this minimisation of power implies

é( .n—1 ' | : . |
Sa(i,1) [ 21 (x@) *+ a(1,1)x(a-1) )%+ (x(a)+a(1,1)x(g+1) )2]

=0 (42.11)
which inrturnrproduces the result
a1,1) = -2 If xlg) x(gl)
T x(@)° + x(g+1)? | (42.12)
Fquation A2.9 gives
R(0) R [](1) (o) | |®
* * ) +a(1,1) ( ) |= |°
Rx(1) RX(O)‘ (0) (1) 0 (A2.13)
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Thus

R (1) -a(1,1) B, O (A201)

ol
"

B (- a1y )Y | (42.15)

In general the mihj_misation of power output from the m+l

point filter implies that

n-m+i E i; -y E b 1
a(mm) = -2 Aty Al (42.16)
1 AZ,
‘ (Eq +m, m-1 ) Eq s m=1 )

f b .
where E m and E m are forward and backward error series

) 3 '
defined by

Eqim. = x(g)+a(l,m)x(g-1) + a(2,m)x{(qg-2)...+a(m,m)x(g-m) (A2.17a)
Equ = x(q)+a(1,mx(g+1) + a(2,m)x(q+2)...+a(mm)x(gtm)  (42.17b) -

By definition

a(0,m) = 1 | (42.18)

Equation A2.9 enables the calculation of the remaining co-
efficients of the (m+1)th order filter, its miean power output, and
the estimate of the m th order autocorrelation coefficient as in

equations A2.19, 42.20 and A2.21.

—AQ 16"



a{i,m) = a(j,n-1) + a(m,m) alm-j, m~1) (A2,19)

]

§ﬁ+1 = (1 - a(m,m))ﬁm | _ ‘ : (Azoao)
B (m) =~ a(3m) R (n-j) (A2.21)

From the error coefficients and mean power output, spectral est-

imates may be obtained as in equation A2.8 .

Stability of MEM estimates : number of filter points

The MEM spectral estimates are somewhat dependent on the number
of filfef points used for their computation. As the number of
points is increased, spectral peaks become more pronounced and
shift in frequency. Side bands of major peaks: also develop for a
large number of filter pdints° The MEM does ﬁot possess & criter-
ion for stability in the choice of the number of points to compute
the "best" estimate which will reduce the noise to a minimm.

Lkaike (1969) has introduced a statistic called the Final ’
'Prediction Error, FPE. FPE is defined as thé mean square predic-

tion error:

n .
FEE - + 2: (% (@) - x,@) ) (h2.22)
. 7 n o
where  x(q) = x(q) - E{ x(q) (A2.23)
m .
and %,(a) = Zi a(Jj,m) %, (g-3) - (aze2h)
g

“A2.7-



The equation A2.22, describes the unresolvable statistical devi-
ation of the series from the true autcregressive components. FPE
is not constant with order. For a series generated by an auto-
regressive process of order m, spectral estimates of order greater
than m can be obtained from the equations above by récursion° As
the order is inc;eased above m, the statistical deviation of the -
components from the true components become larger.

Akaike proposed that if an estimate of FPE could be foﬁnd, the
order at which it becomes a minimum would be the best estimate of
the trué order. He laid the theoretical basis for taking the
estimate of FPE for order m as a factor of the error power output,

P(m), as in equation A2.25 if the mean has not been removed from

the series.

n+m 5
. = b P » .2
FPE(m) — (m). . - (A2.25)
MEM does not yet have a consistent statistical test for the
evaluation of significance of spectral estimates. MEM has a high-
resolution but the relative importance and significance of speciral

peaks cannot readily be deduced from their amplitudes.

Eesults

Resﬁlts of appiying the MEM method to the aumal series of
circulation indices and Scottish rainfall analysed in Chapter-s
appear in:Table £2.1. The number of filter points for the best
estimate was chosen using the Final Prediction Error estimate
from thé mean power output as in equation A2.25. Spectral peaks
. obtalined By the Blackman-Tukey autocovariance approach are given

-A2.8-
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Table A2.1

Power spectra of circulation indices and Scottish

rainfall using: 1. MEM 2, Blackman-Tukey ACV
_ | No. of | Log/-
L. data No. of .
Station points | filter Period of peaks (years)
points ‘
P index 111 9 an 2.7 | 2.0
111 37 7o 2.7 2.0 -
¢ index 111 7 i S 3,1 2.0
111 37 3.1 | 2.0
Edinburgh 78 6 3.L
76 26 10.5 3.2
Loch Leven 132 10 L. 3.0
Sluices -
111 37 - Loy 3.1
Marchmont 106 10 Loh 2.9
House
105 35 L7 3.0
Crombie 99 7 3.2 2.0
Reservoir , i ‘
97 32 32.0 3.1 2.0

faoe
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" Table A2.1 continued

No. of | Log/
. data No., of .
Station points | filter Period of peaks (years)
points

1 Gordon 108 11 9.6 h.8 | 3.2

Castle A :
2 106 35 26,0 8.0
1 Balmoral 92 10 10.2 L1 3.0
2 Q0 30 15.0 4.0 3.0
1 Wick 97 8 6.7 3.5
2, 95 32 10,8
1 Arisaig 8l 8 5.2 . 2.7

House N ,
2 82 27 5.1 2.7 2.0
1 Portree 62 10 L2 2.6
2 62 21 5.1 2.6
1 Greenock 96 ";7 5.7 3.1 2,0
2 Sk 31 8.9 .8 2.0
1 North Craig 93 7 5.6 | 3.1 2.0

Reservoir
2 92 30 30.0 3.1 2.0




for comparlson.

Results from the two methoee feed‘to-agreerandAthe;e eée no
consistent low frequency peaks in MEM spectrao The presence of
~the 2.0 year peak in P, C, and six rainfalllstations is confirmed
by MEM and this peak appears to be the most pronounced in these
spectra. A peak around 3.0 years in C, and at all stations except
Wick, Arisaig House and Portree, which occurred in ACV spectra,
is also present in MEM spectra. There is also some suggestion of
a recurring peak between four and five years in both MEM and ACV
rainfal} spectra though peaks do net oceur for the same period in
different records.

Thus MEM spectre.confirm the results found at high frequencies
in ACV sbectra; they also indicate no significant.low frequency

oscillations in rainfall.
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