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ABSTRACT 

This investigation of mainly Scottish rainfall is in two parts.: 

studies of space variations (first part) and of time variations 

(second part),. Matrices of mean monthly rainfall for networks of 

stations in Central Scotland are deconposed using T-mode eigenvectox' 

analysis to identify common spatial variations; and daily rainfall 

values for selected "pure"  synoptic situations, and also annual 

values over a gauge network in the Solway region, are regressed with 

physical parameters. The most important set of eigenvector spatial 

multipliers, describing over 95 per cent of the variance of the 

matrix, is used to interpolate between stations and !predict!'  mean 

monthly rainfall for new sites. Multiple linear regression relation-

ships between rainfall on the one hand and altitude and distance 

from South and West coasts on the other, are compared for different 

cases. The validity of a linear approximation to rainfall variations 

in relation to physical parameters is discussed, using values of 

regression and correlation parameters and station regression 

residuals. 	 - 

In the second part of the thesis, aspects of rainfall time-

series, in particular the persistence of spells of wet and dry days 

and periodicities in annual and monthly series, are investigated. 

The simple Markov model and various modifications to it are used 

to describe both the distribution of spells of all lengths, and also 

of those greater than a specified length. Two further models, relat-

ing respectively to persistence patterns and to the occurrence of 

rare events, are also discussed. 

The methods of filtering, and power spectrum, of time-series 
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are employed to identify periodicities; the results for different 

stations are compared to help assess the significance of individual 

results and also to distinguish variations common to "West "  and 

"East" stations respectively. S-node eigenvector analysis is also 

used to derive. common time variations in different rainfall records. 

The results of filtering and power spectrum analysis of individual 

rainfall records and of eigenvector multiplier time series are 

compared with those of similar analyses of P and C atmospheric cir-' 

culation indices (which describe the frequency of weather types 

effecting most rainfall); relationships between oscillations and 

the above indices are also investigated using cross spectrum 

analysis. The most important results of these time series analyses 

are the confirmation of the presence of an oscillation of period 

close to 2.0 years which occurs in series of P and C indices and 

rainfall; also, the revelation of a significant 3.1 year period-

icity in C index and "East" station rainfall. 
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CHAPTER 1 

1 . INTRODUCTION TO THE STATISTICAL ANALYSIS OF RAINFALL 

VARIATIONS 

1.1 Purpose 

This thesis which investigates in a statistical manner, basic 

variations of mainly Scottish rainfall in time and space, falls 

into two parts. The first part investigates rainfall space vari-

ations using eigenvector analysis of mean monthly rainfall data 

and regression analysis between daily rainfall and physical para-

meters. Inherent patterns in rainfall distribution are distin', 

guished which may be used to answer some of the problems caused 

by the inadequacy of distribution of rainfall measuring stations, 

perhaps also to facilitate the interpolation between rainfall 

gauges in other situations. 

The second part of the thesis investigates the non-randomness 

of rainfall time series, in particular the persistence of spells 

of wet and dry days, and the periodicities in annual and monthly 

rainfall time series. The underlying aim is to find, if possible, 

statistical properties which are of predictive value. 

Rainfall is notoriously the most difficult meteorological 

element to measure and to predict. The attempt is here made to 

apply statistical techniques to extract the maximum amount of 

information in relation to its space and time variations. The 

process of analysis of rainfall data may be seen as an iterative 

one, derived spatial and temporal patterns being used to analyse 

new data. 
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1.2 Data 

Availability of data has played a part in the selection of. 

data for study. Spatial variations are examined for two areas in 

Scotland whose rainfall has not previously been extensively 

studied. These two area .-  a belt across Central Scotland from the 

Clyde to the Forth, and the area surrounding the Solway Firth - 

have relatively dense gauge networks: the latter region experi-

ences rainfall from approaching systems which are almost unmodified 

by their path over land. 

The data used to study the persistence of dry spells relate 

to various parts of the British Isles. Days are described as 

either "wet" or "dry" and a spell of dry (or wet) days of length 

r is defined as  spell of  such days. The analysis attempts to 

model the frequency of the occurrence of such spells by Markov 

persistence and modifications to it. Regional variations in spell 

distribution and model parameters are investigated, using ho years 

of data from each station. 

Monthly and annual time series for 11 stations, distributed 

over the whole of Scotland, which have available data for at least 

80 years and which do not suffer from severe inhomogeneities, or 

gaps in records, are investigated for non-randomness., Stations 

are classed as "West" or "East" and results are compared within 

each group, between groups, and also with the results of applying 

similar analysis to circulation indices. These indices were first 

derived by Murray and Lewis (1966) from Lamb's (1950) daily class-

ification and synoptic types for the period 1661 to 1971, and were 

subsequently revised by Murray and Benwell (1970)  in the light of 

Lamb's (1972a) reclassification. 
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The P (progressive) index is a measure of the difference in 

frequency between days of progressive and blocked synoptic types, 

positive values indicating a predominance of the former type. 

Similarly, the S (Southerly) index measures the difference in 	I 

frequency between days with Southerly and Northerly circulation. 

The C (cyclonic) index is positive when cyclonic days predominate 

over anticyclonic days. The N (meridional) index measures the 

frequency of meridional types. The P and C indices describe the 

frequencies of weather types particularly associated with rainfall. 

Murray and Benwell (1970), in their regression analysis bet-

ween rainfall and circulation indices showed that rainfall over 

England and Wales was very significantly correlated with C, while 

over Scotland the correlations between P and rainfall were the more 

marked. The Scottish rainfall data seems therefore to be related 

to the progression of rain-bearing synoptic systems to a greater 

extent than that of England and Wales. Within Scotland itself 

regional variations are perhaps to be expected with"West" station 

rainfall showing the closer relationship with P, and EastTT station 

rainfall with C. The extent to which this is true is investigated 

in Chapter 5. 

1 .3 Problems in the statistical analysis of rainfall 

variations 

1.3.1 Lack of data in space and the assessment of 

gauge representativeness 

The chief problem which hinders the successful statist-

ical analysis of rainfall variations is, as already mentioned, 

the lack of adequate data in time and space. In the first half 

-3- 



of the thesis, gauge networks are required of sufficient density 

to permit the derivation of spatial variations in mean monthly 

rainfall using eigenvector analysis, and to assess the regression 

relationship between sets of daily rainfall values and physical 

parameters. On a larger scale, analysis of non-random variations 

in rainfall requires rainfall stations with such separation that 

similar temporal variations are found in several records. As 

common variations found in several gauge records over periods of 

years are more significant than those found in a single gauge 

record, it is desirable to have gauges sufficiently close together 

that they may be expected to show similar variations. Also gaps 

in individual records may then be filled by using readings from 

comparable neighbouring gauges. 

Even when data are available with the required separation, 

it is desirable to ascertain the representativeness of a given 

gauge to the rainfall falling over the surrounding area. The 

difficulty of precise rainfall measurement and the differences 

that may arise between gauges separated by very small distances 

mean that representativeness is difficult to assess. 

The geographical position of a gauge, its exposure, the 

height and aspect of the particular land on which it is sited, 

affects its instantaneous reading, and to a lesser extent, its 

monthly or annual reading. Over a period of a month or a year 

random variations are averaged out and the gauge reading is deter-

mined by systematic effects, and in particular by the position 

of the gauge relative to topography and to the prevailing wind. 

Various methods have been employed in an attempt to assess 

the representativeness of a gauge to a given area. Rhodda (1967, 
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1970) calculated correlation coefficients between a series of 

station gauge values. These coefficients in general decreased 

as station separation increased but the decrease was not uniform 

as other factors such as topography, gauge exposure, and prevail-

ing wind direction must be considered. It was possible to perform 

further correlation analysis between gauge correlation coefficients 

(derived from a series of measurements at each gauge) and the 

separation between gauges. Attempts to correlate the gauge correl-

ation coefficients with other physical parameters describing the 

relative positions of the gauges, e.g. the difference in height 

between the gauges did not produce significant results. 

While the assessment of gauge representativeness is not con-

sidered further below, it should be remembered when studying the 

results of analyses in this thesis that a given gauge network may 

not necessarily be representative of possible rainfall spatial 

variations. 

1.3.2 Lack of data in time 

In the regression analyses between physical parameters 

and rainfall of a "pure" type, continuous or hourly gauges are, 

ideally, required to isolate the rainfall of a particular sub-

system from that of other sub-systems. The distribution of such 

gauges is very sparse in most regions. Usually there are only two 

or three autographic gauges within an area of 1000 km 2. Recently, 

magnetic tape recorders (MTER) have been introduced to measure 

rainfall continuously as a supplement to the traditional Dynes 

recorders. However, it is only in the area of the Dee Weather 

Radar Project that a comprehensive network of MTER recorders has 
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been installed. Daily rainfall gauge records can be used to 

describe rainfall of a pure type if most of the rainfall occu.ring 

on that day results from the passage of a well-defined subsysterri. 

Most daily rainfall figures reflect several different synoptic 

influences, and even in cases where days may appear to be of a 

pure type it cannot be certain that all the rainfall over the area 

under study on that day results from a partidular subsystem. A 

similar doubt relates to the regression equations which define the 

rainfall variations. Thus the lack of data over very short 

periods tends to hinder the isolation of rainfall distributions 

resulting from a particular subsystem. 

When analysing spells of dry days, sufficient data are 

required to measure the frequencies of rarer long spells and to 

"predict" their future occurrence. The task of predicting rare 

long spells is facilitated by long continuous records from a given 

station as does the existence of gauges with similar spell-

frequency distributions. Records of sufficient length (at least 

30 years) are often not readily available from several sites in a 

given area. 

In the case of studies of rainfall time variations, continuous 

homogeneous records of sufficient length to assess the significance 

of a given rainfall variation are required. In order to study low 

frequency oscillations of period, say, 20 year at least 80 years 

of data are required. It is important to know if such periodicities, 

or any apparent trends, occur continuously throughout a given 

record, and whether the phase of the periodicities is constant 

throughout the record. 

In the case of short time series an apparent trend (trend being 
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defined as the monotonic increase or decrease of members of a 

series) may reflect a long-term periodicity. While a parameter 

may increase in an almost linear fashion over the period of 

observation, it may subsequently decrease in value. Apparent 

trends in meteorological records over a few decades may reflect 

oscillations of period of the order of a century. 

1.3.3 Discontinuities and inhomogeneities 

The ideal of having continuous homogeneous rainfall 

records available to study variations in time series, and the 

possibility of filling some gaps in records by the use of neigh-

bouring gauges with similar records, have already been mentioned. 

The problems raised by the gauge inhomogeneit, namely the assess-, 

ment of where the inhomogeneities in the gauge record occurred, 

and of how these inliomogeneities may be allowed for, are not easy 

to solve. Any change in the .site, height, or local exposure of 

the gauge will mean that values from the two sites are not strictly 

comparable. In order to make the values comparable an overlap of 

several years will be necessary. It may however be permissible, 

where no overlap of data exists, to ignore site changes if the 

apparent change in mean gauge value is less than five percent, 

the likely systematic error of the gauge. 

Changes of observer may lead to erroneous variations in gauge 

records. If each observer systematically over- or underestimates 

readings then true variations remain intact but if the observer 

subsequently changes the systematic errors may show as a slippage 

in the mean value of the record, or in the case of smoothed or 

filtered data, as an apparent trend. 
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To reveal inhonogeneities in series, subsections of a record 

may be compared with its long-tern mean using Cramer's test and 

anamalous values for a section of a given record may be compared 

with c'responding values of other records; or Kohler's (1949) 

test may be used to cc-..pare directly records from different gauges. 

The former method is used in the analysis in Chapter 5. 

1 .3.4 The statistical significance of results 

of time series 

While the statistical significance of the results of 

eigenvector analysis and of regression analysis can be gauged from 

relative values of eigenvalues and values of correlation 

coefficients, the significance' of non-random variations in time 

series is less easy to assess. This further problem needs to be 

borne in mind, throughout the analysis of time-series. 

In the analysis of the persistence of spells of wet and dry 

days, model parameters for five of the seven models used are 

adjusted to give the best fit to the data under consideration. The 

"predicted" distributions of spell frequencies according to a given 

model is then compared with the observed distribution using the. 

test, frequencies of long spells being 'pooled. The efficiency of 

test in assessing the goodness of fit is less with (infrequent) 

longer spells than with (frequent) shorter spells, while model 

parameters are themselves much influenced by shorter spellS. 

Thus "predictions" of the occurrence of long spells and the 

precise assessment of probabilities of a given day continuing for 

a further day are subject to uncertainty. 

In the analysis of monthly and annual time series, the effects 



of a given non-random variation, whether a periodicity, trend, 

or form of persistence, must be isolated from those of all other 

variations before its significance can be tested. 

Analysis of raw data by power spectrum analysis will reveal 

effects of periofticiti;s, trend, and persistence. In order to 

investigate a particular periodicity, its effect on spectral 

estimates must be isolated from those of other non-random vari-

ations. Raw data may be 	 and effects of persistence 

may be accounted for by plotting a "persistence only" spectrum 

for comparison with the actual spectrum, if the form of persist-

ence can be determined. Persistence is defined as the ability of 

successive members of a series to remember their antecedent value 

or values. With the simplest form of persistence - Markov per-

sistence of first order - the value of each member of the series 

is determined linearly from the previous member only and serial 

correlation coefficients at lag r are given by the r th power of 

that at lag one. The spectrum of Markov persistence, known as 

the "red noise" spectrum, has a decay of power from high to low 

frequencies, similar to the exponential decay of serial correl-

ation coefficients in the correlograrn, the exact shape of the 

spectrum being easily determined from the spectral window and the 

"lag one" correlation: coefficient. Other forms of persistence 

and their effects are less easy to determine and model. 

Leakage of power from spectral peaks, interference effects 

between peaks, and harmonics of other peaks are effects which all 

hinder the isolation of a given periodicity and the assessment of 

its significance, 
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1.4 Methods 

1.4.1 T-mode eigenvector analysis 

In Chapter 2 T-mode eigenvector analysis is used to 

derive inherent patters of mean monthly rainfall data of Central 

Scotland and of the Solway region. The analysis proceeds on 

similar lines to Stidd's analysis of Nevada mean monthly rainfall. 

Independent temporal eigenvectors with associated independent 

spatial eigenvector multipliers are constructed. The most signif-

icant eigenvector and its set of multipliers are used to "predict" 

mean monthly rainfall at new sites, spatial components which are 

" smoothed" for topography by linear regression being interpolated 

to new sites. 

Predictions made for a series of stations with short-period 

data are compared with estimates of long-term means made from their 

short-period records using the method described by Bleasdale ( 1 963). 

In this latter method ratios of short-period to standard period 

means are determined for long-term gauges surrounding a short-

period gauge. These ratios are interpolated to shoi't-period sites 

and are used to adjust the short-period means to standard periods. 

1 .4.2 Regression between daily rainfall and physical 

parameters 

In Chapter 3 regression relationships are derived between - 

the physical parameters of altitude, distance from the South coast, 

distance from the West coast, and daily rainfall values or mean 

annual rainfall. The days are chosen such that rainfall from one 

particular system, e.g. a front or warm sector could be described 
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as being of a "pure" type. While numerous attempts have been made 

to correlate mean monthly and annual rainfall with altitude, none 

has been made, to the author's knowledge, for daily rainfall. 

Bleasdale and Chan (1 972) correlated mean annual rainfall 

at various sites over .,he British Isles with station altitude and 

in their discussion of observed relationships suggested that an 

attempt should be made in future work to perform regression 

analyses for weather types of a pure form which would be likely 

to produce heavy orographic rainfall. These analyses were to be 

compared with those in which the rainfall v. altitude regression 

relationships was expected to be absent or reversed, e.g. 

thunderstorms. It is in answer to these suggestions that regression 

analyses of daily rainfall values with physical parameters for 

various pure synoptic types is performed below. 

It should be noted that the relationship between rainfall and 

topography is already used to interpolate between rainfall gaugs 

indirectly. Mean annual rainfall isohyets are drawn using topo-

graphical maps as an overlay to determine the shape of the isohyets 

where no gauge data are available. In the assessment of areal 

rainfall for specific days, daily rainfall values are expressed as 

a percentage of mean annual rainfall and are objectively inter-

polated to grid points (Salter 1972, English 1973), the mean annual 

rainfall field effectively expressing the variation of rainfall 

with topography. 

1 -4.3 Models of persistence for wet and dry days 

The Narkov model, in which serial correlation coefficients 

at lag r are given by those at lag one say, raised to the r th 
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r 
power 	, was the first model used to describe the per- 

sistence of wet and dry spells (Gabriel and Reumann 1 949). Two 

other models were suggested which modified the exponential decay 

of serial correlation coefficients by a factor dependent on the 

lag: William's (1952) log model and Green's (1970) modified log 

model in which serial correlation coefficients became' 
o 
1r and 
r 

Fir_ respectively. Another modification to the Markov model 
r + a 

proposed by Yap (1973) incorporated Markov persistence but the 

actual value of P 1  was determined by the spell length, being 
constant within a given spell. 

Besides these four models, two other models proposed by 

Lawrence (1957) to describe the distribution of dry spells are 

used in Chapter 1.. These models do not incorporate persistence 

of a predetermined form as do those above by their model para- 

meters. The "natural persistence" model compares the probabilities 

of a spell of a given length continuing another day at different 

stations and expresses these probabilities as the sum of an area 

and a station-dependent term. The "Jenkinson probability" model 

attempts to predict the frequency of long spells using return 

period probability curves determined by the mean annual spell 

length, its standard deviation, and its two-year standard deviation. 

These seven models are used in Appendix 1 and in Chapter b, 

to describe frequencies of spells of any length and also those 

greater than a given length. 

1 .4.4 Methods applied in time series analysis 

General medium-term variations are investigated using 

decadal means and low-pass filtering of data. Specific period, 
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icities in monthly and annual rainfall are sought using power 

spectrum analysis. Methods of spectral analysis which give stable 

results and which have been .applied extensively to geophysical 

data are used. These are the Blackman-Tukey autocovariance method 

and the fast Fourier transform (FFT) method applied in the manner 

suggested by Rayner (1 971 ) namely with filtering of data prior to 

analysis and summation of estimates into bands. Other methods 

of spectral analysis, such as the maximum entropy method (Ross 

1975), and their application in locating low frequency period-

icities are discussed. - 	 - 

Results of these analyses are compared among themselves in 

an attempt to distinguish common variations in "East" and "west" 

stations and in circulation indices similarly analysed. The 

relationship between oscillations in rainfall and P and C indices 

is further investigated using cross spectrum analysis. The 

Blacknan-Tukey cross covariance approach and the FFT method, 

similar to the au.tocovariance and FFT methods of power spectrum 

analysis, are used to compute cospectra and quadrature spectra 

from which coherence and phase estimates between rainfall and 

circulation indices are produced. 

3-mode eigenvector analysis is used to construct independent 

rainfall time-series which are sets of eigenvector multipliers. 

These series describe common time variations present in each 

individual series to an extent determined by the value of the 

eigenvector space element. An attempt is made to correlate eigen-

vector space patterns with station position and station mean 

annual rainfall in order to see which influences on climate are 

described by a given eigenvector. The eigenvector multiplier time 
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are also analysed in a similar way to those of individual rain-

fall series using low-pass filtering, power spectrum analysis, 

and cross spectrum analysis with P and .0 indices. Results are 

compared with those of individual series in an attempt to label 

time series as describLng. variations of "West", "East", or all 

stations. The presence of a variation in an elgenvector time 

series as well as an individual series increases its apparent 

significance. 
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CHAPTER 2 

2. THE ANALYSTS OF MEAN MONTHLY RAINFALL USING EIGENVECTORS 

2.1 Introduction 

The purpose of this bhapter is to explain how eigenvector 

analysis is performed on a time by space matrix to distinguish 

independent patterns with temporal and spatial components, and 

to show the chief uses and advantages of eigenvector analysis. 

The technique is illustrated by the decomposition of matrices 

of mean monthly rainfall for several stations in Scotland, in a 

similar manner to Stidd's analysis of Nevada rainfall (1967). 

In the analysis of several rainfall patterns or mean rainfall 

patterns occuring over a period of 'time, it is desirable to isolate 

independent spatial patterns which are present to a greater or 

lesser extent in each of the original spatial distributions. It 

is useful to derive further coefficients explaining to what extent 

each derived spatial pattern is prevalent in each of the original 

spatial distributions. Eigenvector analysis constructs a series 

of individual spatial patterns each with an associated time series. 

These time series are also independent of one another. 

In the case of mean monthly rainfall for twelve months over 

a given network of ST stations, the analysis expresses each 

station's rainfall for a given month as the sum of twelve terms. 

Each ten consists of a value for that month common to each station 

multiplied by a spatial coefficient dependent on that station. 

Each pattern, consisting of twelve one-month time elements and ST 

space elements, accounts for a certain proportion of the variance 
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in the original matrix and some of the patterns will be more 

important than others. The advantages of eigenvectors to de-

compose time by space. matrices over other methods are: 

Each eigenvector pattern's temporal and spatial 

components are independent. This is demonstrated by 

orthogonalitf. 

Eigenvectors do not assume a particular functional 

relationship between values of data and are derived 

irrespective of the spacing of data points. The accuracy 

and usefulness of spatial patterns determined by other 

mathematical functions is dependent on the spacing of 

data points and the form of the functions. 

Usually only a few such patterns are needed to 

describe most of the variance in the original time by 

space matrix. In cases considered only one of a possible 

twelve eigenvectors is needed to describe 99 per cent of 

the variance in the original matrix. 

The uses of eigenvector analysis illustrated below are: 

1 	A small amount of data may express the total variance 

present in a time by space matrix. 

The eigenvector patterns may bring into focus inherent 

patterns in the original matrix, and describe the effects 

of known influences on climate, 

Eigenvector patterns may be used to interpolate bet-. 

ween data points and "predict" mean monthly rainfall. This 

exercise is facilitated by the reduction in the redundancy 

in data and hence in the amount of data needed for 
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interpolation. 

L. 	These spatial patterns describing types of rainfall 

distribution may be of some use as an interpolation aid 

when analysing daily rainfall patterns. 

5. 	When axialysLg time series of length about a century 

for a few stations, basic time series may be constructed 

using eigenvector analysis which describe simply the 

climate fluctuations in these series. Extrapolation of 

these series may be of predictive value. 

The method of eigenvector analysis and uses 1 to 3 are 

demonstrated in this Chapter. 

Some other uses of eigenvectors in meteorology are 

I given by Craddock and Flood (1970) and Craddock and 
Colgate (1974). 	Eigenvector analyses of mean sea 
level pressure over the Northern Hemisphere may be 
used to identify and correct errors in data; to predict 
monthly pressure fields using, as predictors, eigen- 

• vector coefficients derived from daily values of pre-
ceding months; and to select situations whose sequels 
can be used for prediction by matching daily eigen-
vector coefficients. 	States of upper airflow of 
predictive value are. also classified from eigenvector 
coefficients of daily values of 500 mb thickness. 

Craddock, J.M., and Flood, C.R. (1970): "Eigenvectors 
for representing the 500 mb geopotential 
surface over the Northern Hemisphere". 
Q.J.R. Met. S., Vol. 95, pp. 576-593. 

Craddock, J.M., and Colgate, M.G.C. (1974): 	"The use 
of eigenvectors for smoothing and 
prediction". 	Journal Inst. Maths. and 

	

its applications, 12, pp. 152-160. 	 - 
—most-  sig—nif le 

- - - 	 -- 	
- 	 - 

columns of E. 

A 	= 	EM 	 (2.1 a) 

A 	= 	E1  M 	 (2.1b) 
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To perform the analysis A is multiplied by its transpose 

A1  to form a 12 by 12 square symmetric matrix which describes 

the relationship between rainfall in different months (equation 

2.2) and eigenvectors X. of B with eigenvalues. are then found 

(equation 2.3). 

B 	= 	AA1 
	

(2.2) 

B 	= ). X 	j = 1,2,., 12 
	

(2.3) 

There are twelve eigenvectors each with twelve elements. Each 

eigenvector describes .a temporal variation in rainfall, each element 

in the eigenvector representing a single month. The X eigen-

vectors are orthogonal and they can be arranged to be normalised 

to 1 (equation 2.4) 

X . 	= ç. 	 (2.4) 
3 	3 

where S 	is the Kronecker delta function. 

The proportion of the variance in the original matrix which 

is explained by a given eigenvector X. is determined by the 

ratio of the associated eigenvalue 	to the sum of all the eigen- 

values in equation 2.. 

Cr 2(x.)) 	= 	 (2.5) 3 

The variance described by the first n1  eigenvectors is the 

ratio of the sum of the first n 1  eigenvalues, arranged in decreas-
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ing order of significance, to the sum of all then eigenvalues 

as in equation 2.6. The larger the eigenvalue, the greater the 

proportion of variance described by the eigenvector. 

( 	 x.) 	= 	 (2.6) 

As the first n 1  eigenvectors which describe at least 95 per cent 

of the variance are of interest, n1  is chosen so that the ratio 

in equation 2.6 is 0.95 or greater. 

From the twelve X. eigenvectors and the first n 1  eigenvectors, 

matrices E and E 1  are formed as in equation 2.7a and 2.7b. 

- 

	

E = Lx 	çxy .. 	 (2.7a) 

r 	 fl 

	

E = LXlt,2,. 	•.. 	 where n1 < 12 	(2.7b) 

N and N1  in equations 201 may then be found by multiplying 

the transposes of E and E1 , E1  and E1 1 , by A as in equations 28. 

E E = I as the eigenvectors are orthonormal. 

	

E1 A 	= E 
1 
 E M = M 	 (2.8a) 

	

A 	= 	N1 	 (208b) 

Since E is a 12 by 12 matrix and A a 12 by ST matrix, N will be a 

12 by ST matrix and similarly N1  will be anThi  by ST matrix. Thus 

N and N1  consist of 12 and n1  spatial patterns with one element 

per station. Each eigenvector X, representing a temporal van- 
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ation, will have an associated spatial variation with ST elements. 

To describe the variance of A fully, 12 patterns are required but 

n1  patterns may be sufficient to explain all the variance of 

significance. 

Sets of elgenvector multipliers, MR. and MR k'

which are rows of M and are derived from eigenvectors 

X. and X as in equation 2.9a, are also orthogonal to 

one another as in equation 2.9h. 

MR. = XA 
J 	J 

MR. MR ) = 
: 	k 

C = 

x!A(xA) I  

X ! AA ' x 
j 	k 

0 if j 	k 

if j = k / 

(2.9a) 

(2.9b) 

from equations 

2.2 and 2.3 

2.3 The advantages of elgenvector analysis over other 

methods 

The original matrix decomposition into space and time com-

ponents can alternatively be performed using spherical harmonics 

or Tschebychev polynomials to describe the spatial variations. 

With such methods the number of patterns needed to describe a 

given proportion of the variance in the original matrix is usually 

larger than the number of required eigenvectors. While no com- 

parison is made below between eigenvector analysis and decomposition 

using other methods such as spherical harmonics, the fact that one 

or two eigenvebtors out of twelve can describe 99.9 per cent of 

the variance in the original matrix suffices to illustrate this 

point. 
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When methods other than eigenvector analysis are used to 

decompose a time by space matrix, the spatial patterns are depend-

ent on the properties of the mathematical function used. The 

form of the pattern is predetermined by the function and is 

dependent on the spacug of the data points For eigenvector 

analysis the relative positions of the data points have no effect 

in the determination of the eigenvectors. This is a definite 

advantage, especially in the analysis of rainfall distributions 

where the network of stations is irregular. 

Spherical harmonics or Tschebychev polynomials may be used 
N 

to construct orthogonal patterns which describe the series of 

mean monthly rainfall distributions, However, the associated 

temporal patterns will not necessarily be independent or orthog-

onal, unlike the eigenvector patterns. 	 - 

Because eigenvectors are orthogonal in both temporal and 

spatial components, eigenvector analysis may proceed either using 

a time by time symmetric matrix (T-mode) or a space by space 

symmetric matrix (S-node). For S-mode the symmetric matrix B is 

1 constructed as A 1  instead nstead of AA for T-mode. Results of comput-

ation of eigenvectors by the two different methods have been 

shown by Hirose and Kutzbach (1969) to be mathematically identical 

apart from different normalisation. The choice of T or S mode 

depends on the dimension of the original matrix. As. it is 

computationally faster to derive eigenvectors from small matrices, 

S-mode is used where the space dimension is smaller than the time 

dimension and vice versa. 	 - 

S-mode is used later to analyse eleven annual rainfall series 

of length eighty-four years. Eleven eigenvectors with eleven 
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space components are derived, from which eleven sets of eighty-. 

four multipliers are further produced. It is these sets of multi-

pliers with one element of each year, which form basic • rainfall 

time series describing common temporal variations. The eleven 

eigenvector elements dnscribe to what extent each of the derived 

series determine the station's rainfall. 

Thus eigenvector analysis has the advantage that as each set 

of eigenvector multipliers as well as each eigenvector is inde-

pendent, there is no distinction in the way spatial and temporal 

components are treated and analysis may proceed by S or T-mode 

according to the dimensions of the matrix. 

2.4 The choibe of the type of data, real or anomaly 

Eigenvector analysis may be performed on real data, anomaly 

data, or anomaly data normalised such that the total variance of 

each column is unity. In the case of mean monthly rainfall data, 

the mean of each month may be subtracted from each station to 

construct anomal data, the departures of each station from the 

all-station mean monthly value. Such values for each station for 

a given month may further be squared and summed, . and each monthly 

value divided by this value. This will produce normalised anom-

alies and ensure the all-station monthly variance is unity, as 

well as the all-station mean being zero as in the case of anomaly 

data. The diagonal elements of the symmetric matrix will then be 

unity, and the off diagonal elements will have values in the range 

o to 1. 

Kutzbach (1967) in his discussion of eigenvector analysis of 

a combined matrix of the three climatic variables of rainfall, 
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temperature, and pressure for eighty stations describes the 

differences between using real data, anomaly data, or normalised 

anomaly data. The symmetric matrix A above will be a cross-

product matrix, a covariance matrix, or a correlation matrix and 

the first eigenvector 'ultipliers will have the closest resemblance 

to observed fields, anomaly fields, or normalised anomaly fields 

according to the three types of data used. In Kutzbachts  analysis 

normalised variations were required as the three climatic para-

meters had different means and variances. When variables are 

normalised, each variable at each point in the data field is of 

equal importance in determining the eigenvector patterns. 

In the present analysis real data are used to analyse mean 

monthly rainfall for two areas of Scotland. The first eigenvector 

from the 12 by 12 symmetric cross product matrix shows the annual 

cycle of rainfall variation while the isopleths of the first 

eigenvector multipliers reflect mean annual rainfall variations. 

For the region. of ,- Central Scotland, anainaly data are also analysed. 

In this case, the first eigenvector and its multipliers describe 

the annual cycle of rainfall variability between stations and the 

mean annual rainfall anomaly for each station respectively. Normal-

ised anomaly data produce similar patterns to anomaly data and are 

not discussed further. 

It is the eigenvector multipliers of anomaly data which are 

used to interpolate between rainfall station values. Mean monthly 

anomaly rainfall values are estimated for new sites by multiplying 

the first eigenvector by the interpolated eigenvector multiplier. 

Hence, monthly rainfall may be "predicted" from this result and the 

all-station mean monthly rainfall value. The anomaly eigenvectors 
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Table 2.1 	Data used in eigenvector analysis 

Area Period No. of 
Stations 

Type of 
Station 

Station 
Network 

Source 
Data used 
in the 

Results 

analysis Eigenvectors Multiplier Discussion 

Solway (i) 1916-50 69 long-term Hydrological Real Table 2.2 	 Section 2.6 
Men. No. 26 Fig. 2.3 

(ii) 1941-70 207 short and IT 	x " Met. Office Real Table 2.2 	Fig. 2.10 	Section 2.6 
long-term Fig. 	2.1 Archive tapes Fig. 2.3 

Central 
Scotland (i) 1916-50 C 209 short-tent " Hydrological Real Table 2.2 	Fig. 2.6 	Section 2.6 

Fig. 2.2 Men. No; 	26 Fig. 2.3 	and 
smoothed 

82 long-term IT 	x and No. 32 Fig. 2.7 
C .  Fig. 22 - 

 1916-50 82 long-term IT 	• 	TI Hydrological Real -- 	Similar to (i) 
Fig. 2.2 2.2 Men. Nos. 26 

and 32 

 1916-50 82 long-term IT 	• 	IT Hydrological Anomaly Fig. 211 	Fig. 2.12 	Section 27 
Fig. 2.2 Men. Nos. 26 and 

and 32 smoothed 
Fig. 2.13 

 1916-50 82 long-term • 	TI Hydrological Normalised -- 	Similar to (iii) -- 
Fig. 2,2 Men. Nos. 26 Anomaly I 

and 32 

 



and their multipliers will explain more of the space variations 

than real eigenvector multipliers as their determination will be 

more sensitive to small variations. 

2.5 The analysis of "real" mean monthly rainfall 

2.5.1 Data and the use of short-period gauges 

A summary of the data used for the eigenvector analysis 

appeqrs in Table 2.1. Short-tern data stations were previously 

extended to standard periods using the procedure involving the 

interpolation of ratios between short-period and standard period 

records to short-period gauges described by Bleasdale (Hydro-

logical Memorandum No. 5) and mentioned in section 1 .3. For 

Central Scotland the first eigenvector derived from 82 long-term 

stations and their multipliers were compared with those derived 

from the complete network of 82 long-term stations and 209 short-

tern stations. The first eigenvectors describing 99 per cent of 

the variance in each data set are very similar (Table 2.2) and the 

multipliers for the 82 long-term stations have similar values in 

both analyses. Thus the use of short-term records extended to 

standard periods by the procedure described by Bleasdale was just-

ified as it did not affect inherent patterns already revealed to 

be present by eigenvector analysis. The interpolation and extra- 

polation processes involved in this latter procedure are essentially 

linear so that the 209 values have some linear dependence on the 

82 long-term stations. The eigenvector analysis, on the other hand, 

does not necessarily involve any linear dependence between station 

values. 
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Figure 2 . 	Solway 1941-70 mean monthly rainfall station 

network 	 - 
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Table 2.2 Mean Monthly Rainfall Eigenvectors - Scotland 

Central Scotland 1916-50 Solway 1916-50 Solway 19141-70 
1st Eigenvector 2nd Eigenvector 

- 1st 2nd 1st 2nd 292 81 292 81 
stations stations stations stations Eigenvector Eigenvector Eigenvector Eigenvector 

January 0.389 0.391 0.351 0.331 0.399 0.229 0.337 0.220 

February 0.258 0.260 0.193 0.2141 0.2146 0.179 0:233 6.210 

March 0.213 0.215 0.302 -0.0014 0.213 0.018 0.218 0.052 

April 0.200 0.199 -0.389 -0.031 0.195 -0.037 0.2114 -0.015 

May 0.211 0.206 -0.311 -0.305 0.203 -0.1141 0.216 -0.213 

June 01199 0.193 -0.225 -0.21414 0.198 -0.2149 0.205 -0.376 

July 0.259 0.2149 -0.1489 -0.501 0.255 -0.538 0.2147 -0.1434 

August 0.289 0.284 -0.1470 -0.1465 0.280 -0.576 0.296 -0.1465 

September 0.295 0.291 -0.11414 -0.1514 0.296 -0.086 0.352 -0.143 

October 0.375 0.382 0.140 -0.141 0.370 0.163 0.345 0.149 

November 0.337 0.336 0.113 0.692 0.343 0.232 0.350 0.147 

December 0.348 0.353 0.1421 0.1416 0.361 0.357 0.370 0.1499 

%variance 
explained 99.6 99.3 0.14 0.6 99.14 0.1 99.9 0.1 



)nth 

Figure 2.3 	First eigenvectors, mean monthly rainfall Scotland 

• 	(- 1914-70 Solway; 	1 916-50 Solway; 
1916-50 Central Scotland) 
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2.5.2 Results 

In Table 2.2 the amount of variance explained by each 

eigenvector is determined by the ratio of the first eigenvector 

to the sum of the twelve eigenvalues. The first eigenvector 

explains most of the variance and clearly reflects the annual 

cycle in rainfall values (see also Fig. 2.3). The 1916-50 first 

eigenvectors for the different areas are almost identical, which 

reflects overlap of data between areas and the similarity between 

their climates. 

The elgenvectors have maxima in January and October, and a 

minimum value over the months April, May and June. The 1941-70 

first eigenvector for Solway varies more uniformly being derived 

from a denser network of stations, and has a large value from 

September to January, and a small value from February to June. 

The multipliers of the first eigenvectot illustrated in 

Figs. 2.6 and 2.10 should be compared with the annual rainfall 

maps Figs. 2.5 and 2.9,  and the topographic maps Figs. 2.4 and 

2.8. The resemblance between mean annual rainfall isohyets and 

first eigenvector multiplier isopleths is strong. Both are closely 

related to topography. The variation of rainfall with distance 

from the West coast for Central Scotland and from the South and 

West coasts for the Solway region can also be seen. 

It should be remarked at this point that while mean annual 

rainfall and first eigenvector multipliers, and all-station mean 

monthly rainfall and first eigenvectors, are very similar, the two 

first eigenvector patterns filter noise out of the data in a differ-

ent way to simple averaging. Also, while in the case considered, 

eleven out of twelve eigenvectors were insignificant and could be 
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Figure 2.14 	Topography Central Scotland 

(Land over 800 feet hatched) 
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Figure 2.5 	Mean annual 1916-50 rainfall Central Scotland 

- 	
(information from Hydr. Men. Nos. 26 and 32) 

- 	 -32-. 
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Figure 2.6 	First eigenvector nulitplier, mean monthly rainfall 

Central Scotland 
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Figure 2.7 	First eigenvector multipliers, mean monthly rainfall 

Central Scotland smoothed for topography 
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Figure 2.8 	Topography Solway Region 

(Land over 800 foot hatched; land over 1400 
foot double-hatched) 
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Figure 2.9 	Mean'annual 1916-50 rainfall Solway region 

(infonnation from Rydr. Mern. No. 26) 
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Figure 2.10 	First eigenvec -tor multiplier, mean monthly 

rainfall 1 94 1 -70 Solway region 
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considered as noise, in some other cases the second eigenvector 

(and perhaps others) might be significant. In these cases, 

eigenvector analysis would have isolated more information con-

tained in the tine-space matrix than simple averaging. 

2.5.3 Regression analysis of first eigenvector 

multipliers with altitude 

In order to further investigate the rainfall variations 

described by the eigenvector multipliers, regression analysis 

between first eigenvector multipliers and altitude were carried 

out. Table 2.3 contains a summary of the regression analyses, 

with correlation coefficients r, and regression parameters a and b 

in the regression equation 2.10 where y is eigenvector multiplier 

and x station height. 

7 = ax + b 
	

(2.10) 

Table 2.3 Summary of regression analyses 

between first eigenvector multiplier and altitude 

Area No. of 
stations Type r a b 

Solway 1916-50 69 long-term 0.519 11:76 0.07 

Solway 1931-70 207 long- and no direct information 
short-term on station altitude 

Central Scotland 291 long- and 0.576 10.50  0.0071 
short-term 

82 long-term 0.374 11.28 0.0077 

The three correlations are significant at the one per cent level 

using values tabulated by Fisher and Yates (1963). 
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The Central Scotland multiplier residuals, the differences 

between actual eigenvector multipliers and multipliers predict- 	 -' 

edby equation 2.10 are shown in Figure 2.7 These show that most 

of the rainfall variations apart from the effects of topography -

can be explained by th direction of the prevailing wind. The 

non-linearity of rainfall variation with altitude is shown by 

extra rainfall and positive residuals for stations exposed to the 

prevailing wind, and negative residuals for sheltered stations or 

stations in the lee of hills. The hills in the North West of the 

region lying in the prevailing wind have positive anomalies. The 

area in the centre of the figure at the crossing of the grid lines 

and enclosed by the 0 contour arises from the Ochil Bills releas-

ing more rainfall than that expected by the regression relation-

ship. 

In sheltered areas the linear smoothing of multipliers for 

topography overcompensates for the increase in rainfall and 

hence multiplier value with altitude (in the exposed areas con-

sidered above it underconpensates). The Moorfoot Hills and the 

Pentlands lie within the area enclosed by the -6 contour in 

Figure 2.7. These hills are surrounded to the South and West by 

other ranges of hills, and are thus sheltered from the prevail-

ing wind. Thus the increase in rainfall with altitude for these 

hills is much smaller than that in the North West of the region 

and rather smaller than that in the South of the region. The 

ranges of hills in the South are in their turn less exposed than 

those in the North-West as they are sheltered by further ranges 

of hills to the South and West. 

In both Figures 2.6 and 2.7 the values of the multipliers 
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decrease round the Forth Estuary, the contours tending to follow 

the outline of the estuary instead of lying nearly North-South 

at right angles to the prevailing wind direction. The areas around 

the estuary experience a sheltering effect on all sides except 

from the Easterly quarter; it is from this direction that about 

half of all the heavy falls of rain occur (Mossman 1896). Falls 

from this Easterly direction make an important contribution to 

rainfall, despite the relative infrequency of winds from this 

quarter. 

2.6 Analysis of annual mean monthly rainfall and its use 

in interpolation 

Analysis of the anomaly data for the 82 Central Scotland long-

term stations produce a first eigenvector describing temporal 

variation in their deviation about the 82 station monthly mean 

(Fig. 2.11). The values decrease from a large value in winter 

(October to January) to a small value in summer (April to Sept-

ember) with a slight drop in November compared to the other winter 

months. This shows that rainfall has a higher variability between 

stations in winter than in summer. The first eigenvector accounts 

for 99.2 per cent of the variance in anomaly. data. 

The derived first eigenvector multipliers (Fig. 2.12) and the 

residuals from their regression with altitude (Fig. 2.13) produce 

patterns similar to those for real data (Fig. 2.6 and 2.7). 

However, as the isopleths now describe deviation of station rain-

fall rather than mean station rainfall, the positive anomalies in 

the North-West and South of the region and the negative anomalies 

around the Forth Estuary appear more pronounced. The regression 
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Figure 2.12 First eigenvector multipliers, anomaly monthly 

rainfall Central Scotland 
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Figure 2.13 First eigenvector multipliers, anomaly monthly 	 - 

rainfall Central Scotland smoothed for topography 
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parameters in equation 2.10 are a = 3.87, b = 0.0088 with a 

correlation coefficient of 0.141, which is significant at the one 

per cent level. 

The smoothed anomaly multipliers when used with the all-

station mean monthly rainfall and the regression relationship 

between multipliers and altitude, provide the maximum amount of 

information concerning mean monthly rainfall. Five sets of inform-

ation, all-station mean monthly rainfall, monthly eigenvector, 

eigenvector multiplier-altitude regression relationship, station 

altitude, and eigenvector multiplier residuals are used to des-

cribe the mean monthly rainfall of a station. To "predict" mean 

monthly rainfall at a new site two values are required- the 

height of the site and the interpolated smoothed multiplier value. 

As the anomaly smoothed multipliers have less overall vari-

ability between stations than the unsmoothed multipliers, or 

those of real data,-it is easier to interpolate multipliei' values 

to a new site. As many as possible of the smoothed isopleths 

were drawn in Figure 2.13, and values were interpolated at the 

sites of 209 short-term stations not used in this analysis. From 

these values, and using the other four sets of information listed 

above, twelve mean monthly rainfall values were predictedfor 

each of these 209 stations. 

These -values were compared with those given in the Hydrological 

MemorandiuW, produced as described above by the interpolation extra-

polation procedure from short-term records using surrounding long-

term stations. The largest differences between the two sets of 

values occurred in areas where the smoothed multipliers were drawn 

close together (hence increasing the subjectivity involved in the 
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interpolation) and in areas with a sparse distribution of readings. 

In mountainous areas, rainfall can vary considerably over 

small distances between successive hills. Even when some of these 

variations have been removed by the regression analysis with 

altitude, the interpolation remains subjective. The variations 

over short distances which cannot be accounted for by a few gauges 

are further discussed in Chapter Three where daily rainfall values 

are regressed with altitude. 

The standard deviations of the 202 short-tern stations about 

their means for each month, produced by this method, were compared 

with the standard deviations of the original 202 values about 

their means. This choice of method takes account of the fact that 

monthly rainfall anomalies were used in the eigenvector inter-

polation procedure. The sets of mean monthly 202 station means do 

not differ significantly (Table 2.3)  though those interpolated from 

the eigenvector method tend to be larger, perhaps as a result of 

the large number of gauges lying in the positive residual area in 

Figure 2.11. The total variance between rainfall stations explained 

using the eigenvector interpolation procedure is about 70 per cent 

of that in the extrapolation-interpolation procedure. It may be 

assumed that the latter values are accurate to five per cent and 

represent the best estimate of mean monthly rainfall for these 

stations. Considering the sparcity of the gauge network, the 

accuracy of the predictions using the eigenvector technique demon-

strates that this method of extending a network of a series of mean 

data values is viable. 

N 
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Table 2.3 Long-tern means and standard deviations of 209 

short-tern stations (i) extrapolated by the standard procedure, 

(ii) interpolated from eigenvector analysis 

Jan. Feb. Mar. 'Apr. May June July Aug. Sept Oct. Nov. Dec. 

mean 5.60 3.81 316 2.94 3.18 2.96 3.89 4.39 14.35 5.56 491 5 9 00 
standard 
deviation 7.82 362 181 1.149 0.92 089 1.09 1.70 2.77 643 14.80 7.05 

mean 587 14.00 3.29 3.06 3.27 3.05 399 14.51 14.51 5.80 5.12 526 
standard 
deviation 6.89 3.09 1.56 1.27 0.78 0.74 0.88 1.140 2.34 5.50 14.09 6.01 

standard deviation (id) 
0.726 

standard deviation (ii) 



2.7 Summary and other possible uses of eigenvectors 

In this Chapter the technique of eigenvector analysis has 

been explained. Its advantages over other types of analysis have 

been outlined. These arise from the orthogonality of each set 

of time and space components and from the fact that no assump-

tions are made about the underlying distribution represented by 

the original time-space matrix. 

The way in which eigenvector analysis may "highlight" under-

lying distributions in the original matrix has been demonstrated. 

Mean and anomaly patterns of rainfall have been constructed with 

time and space components which filter out noise in data in a 

different manner to simple averaging. The manner in which eigen-

vector multiplier fields reflect rainfall variations associated 

with topography and the direction of the prevailing wind has been 

demonstrated. 

Eigenvector analysis gives a clear reduction in the amount of 

data needed to represent the variations described by a space-tine 

matrix. As only one eigenvector  appears to be significant above, 

two column matrices with 12 and ST elements, where ST is the 

number of stations used, represent most of the information about 

rainfall variability described in the original 12 by ST matrix. 

The use of eigenvector analysis to "predict" mean monthly 

rainfall at a new site has also been shown to given reasonable 

results. The sparseness of the original 82 gauge network con-

sidered above is overcome by removing noise present in the data 

by means of elgenvector analysis. Variations between gauges are 

further reduced by smoothing some of the variations in eigen-

vector multipliers due to topography using a linear regression 
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relationship between multipliers and station altitude. 

These uses of eigenvectors have previously been demonstrated 

by Stidd on Nevada mean monthly'rainf all (1967). The further 

consideration of the derived space pattern as a "background" 

field for interpolation between readings in a specific situation 

has not been previously considered and is discussed in Chap. - 

ter 3. 

The use of eigenvectors to analyse time-series from several 

stations for common variations is considered in Chapter 5. 

Time series derived from eigenvector analysis of meteorological 

parameters such as pressure anomalies (Fritts 1971) or precipit-

ation values (Le Marche and Fritts 1971) observed over periods of 

decades at several stations have also been compared with those 

derived from the analysis of comparable tree-ring data. By 

correlating the sets of eigenvectors derived respectively from 

climatic data, and from tree-rings over a common period of time, 

it has been possible to extend climatic recoxds retrospectively 

into periods for which only tree-ring data are available. While 

this particular technique is not discussed further in this thesis, 

it does demonstrate that eigenvector analyses of time-series from 

several sites do describe real variations present in the data which 

may be-of predictive value. 

It has been pointed out that the analysis on mean 

monthly data could be extended to monthly data of individ-

ual years. 	Eigen-vectors and their multipliers derived 

from month-by-station matrices could then be compared. 

Each analysis might be expected to reveal more than the 

single significant eigenvector found in the case of mean 

values, and common types- of variation might be revealed 

in eigenvectors of a given number for different years. 

OEM 

S. 
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CHAPTER 3 

3. REGRESSION STUDIES BETWEEN RAINFALL AND PHYSICAL 

3.1 Introduction 

In this chapter multiple regression analyses between the 

physical parameters altitude or effective altitude, distance to 

West coast, distance to South coast, and daily rainfall, are 

used to isolate the influences on the rainfall of a network of 

stations for particular days of "pure" synoptic type. The 

effects of topography and distance from the sea on individual 

station rainfall are expressed by a linear regression relation-

ship. The validity of the approximatiOn of a linear increase of 

rainfall with altitude is discussed using the results of these 

analyses. 

32 General points on the choice of rainfall regression 

parameters 

The following points should be considered when performing 

regression analyses between rainfall and physical parameters 

1. 	Any physical parameter in a regression equation may 

describe more than one effect of a station's position on 

rainfall. The task of isolating different influences on 

rainfall is not straight forward. In the regression anal- 

yses below, altitude varies with distance of a station 

from both coasts as hills rise away from the sea. Thus it 
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is not possible to distinguish effects of topography from 

those of distance from the sea in this case. 

While it is possible to represent the position of a 

station by several different sets of parameters, the set 

which is most suitable in a given case will depend on the 

area studied. Regression parameters obtained for particular 

areas (arid synoptic situations) must be viewed with caution 

if used to "predict", rainfall in neighbouring areas. 

The actual station height is not always the best para-

meter to describe the height of the gauge. A parameter 

describing the height of the land surrounding the gauge 

whose rainfall the gauge represents, often gives best results 

in regression analyses. The manner of computing effective 

height, and the area whose height should be assessed, depend 

on the physical shape and relative height of the hills 

surrounding the station. Storr and Ferguson, in their 

analysis of monthly rainfall, used effective height assessed 

over nine 5-km grid points. Chuan and Lockwood (1974) in 

their analysis of mean annual and seasonal rainfall of the 

Western Pennines used mean height assessed over circles, 

drain at intervals of 1-km from the station, with four points 

at each interval together with the station height. They 

found that mean altitude over an 8-Ion radius gave the best 

correlations. It is demonstrated below that this parameter 

is not suited to describe the effective haUght of Scottish 

stations. 
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Ii.. 	A regression relationship between rainfall and altitude 

assumes that rainfall increases, with height in a particular 

way, usually linearly. Rain shadow effects are not accounted 

for. It is found in some cases (using other methods) that 

rainfall ceases to increase with height on the windward side 

of a mountain above a certain height (Lefreve, 1972; Alan, 

1972) and in others that rainfall increases beyond the 

physical peak on the lee-side, (Storr and Ferguson, 1972). 

Results of linear regression analyses should be investigated 

to see if they reveal such effects. 	 - 

The amount of rainfall falling in an area is generally 

affected by the topography of neighbouring hills. Besides 

the effect of moisture being precipitated on neighbouring 

hills, the system may be itself dynamically modified. Storr 

and Ferguson (1 972) used the parameters, of distance to 

barrier, barrier-height, and shield effect to describe the 

influences of neighbouring hills in the regression analysis 

of monthly rainfall. The "barrier" was the highest elevation 

upwind of the station along the direction of the prevailing 

wind. The shield effect described the total effect of all 

the neighbouring hills by summation of the barrier height 

and the other local barriers along the prevailing wind direc-

tion. Alan (1972) used a parameter of barrier height to 

label members of a series of rainfall v0 elevation curves. 

Parameters such as gauge exposure (the angle in radians 

in which there is no topographic feature higher than the 

gauge), maximum rise (the range of height between the highest 
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and lowest points within a given radius) used by Chp.an and 

Lockwood, or aspect (the direction of the mountain slope 

on which the gauge lies relative to the axis of the moun-

tain), used by Alan, may be used as secondary regression 

parameters. While they take account of the detailed posi- 

tion of the gauge, they are difficult to assess and usually 

only take account of a small proportion of the total vari-

ation between gauges. 

3.3 The selection of data for regression of daily 

rainfall 

3.3.1 The area 

The points mentioned above were borne in mind in the 

selection of the area and of the physical parameters to study the 

use of regression analyses to describe daily rainfall variations. 

The problems of lack of data mentioned in Chapter 1, the inade-

quate network of daily gauge records in remoter parts of the 

British Isles and the necessity to have data of "pure synoptic 

type, were also considered in the choice. The area around the 

Solway Firth was chosen as systems approaching this area are little 

affected by the topography of neighbouring regions; the only 

sheltering effects occur to the North and East, from which direc-

tions few systems bring intense rainfall. Thus the problems of 

modification of a pure system by topography and of the para-

meterisation of the effects of airflow over neighbouring hills 

were not present in this region. The rainfall gauge network for 

this region (Figure 3.1) was also denser than that for similar 

areas in the Western Highlands exposed to approaching systems. 



Figure 3.1 	Sol-way daily station network 



Of the 110 gauges about 80 had records available for any parti-

cular day. 

The topography of the area is illustrated in Figure 28. 

The Southern Uplands rise to the North and East from the Solway 

Firth. The hills are more rounded than the Pennines, considered 

in Chuan and Lockwood's analysis, but less rounded than those of 

the Scottish Highlands. 

3.3.2 Physical parameters 

Distance from the South and West coasts, d 
5 	w 
and d , 

-  

gauge height h or effective height,h 	were considered to be the 

most important parameters relating to rainfall variations. 

Secondary parameters, such as gauge exposure and aspect, were pot 

considered, being difficult to assess from the study of a detailed 

topographical map, and having been found in other analyses often. 

to be of little significance. The effective gauge height para-

meter was expected to describe some of the variations which would 

be described by secondary parameters. 

The effective height parameter was found by averaging the 

height of the station and those of the four surrounding 34 km. 

grid points. This method of assessment was chosen because the 

34 len. grid of topography was readily available, and it was an 

easier method of assessment than Chuan and Lockwood's method of 

assessment of mean altitude over 3km. using 13 spot heights. The 

difference between the 34 lan0 grid height and height over 3 len. 

radius was not expected to be significant for the area studied. 

The fact that height of land over the 3 kin, surrounding the 

gauge was more appropriate to this case than height over 8 km0 was 
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suggested by the results in Table 3.1, where heights over 8 km. 

for Central Scotland and for the Pennines are given. For Talla 

Lins Foot, Victoria Lodge, and Stobbo Castle, the mean height is 

larger than spot height but there is no corresponding increase 

in mean annual rainfall, showing that the hills near the distance - 

of 8 km. from the gauge do not increase its mean annual rainfall, 

The Edinburgh gauges, those at Blackford Hill and Astley Ainslie 

Hospital, are situated 600 metres apart, and are located in an 

area with topography broadly similar to that of the Solway region. 

The two gauges 1ave a 3.6 per cent difference in mean annual 

rainfall while the difference in their 8 km. mean height is ii per 

cent and that in spot height is -60 per cent. These variations 

show that an 8 km0 mean height is not an appropriate parameter to 

describe the effective height of gauges in Central Scotland with 

respect to rainfall. Land lying within a smaller distance of a 

gauge than this determines the effective gauge height. The 8 km0 

radius mean height is more app'opriate to the Pennines, which are 

less rounded and slightly lower than the hills of Southern and 

Central Scotland. 

While secondary parameters such as gauge exposure and aspect 

were not considered in the regression analyses, and while it was 

hoped that effective height would describe gauge position better 

than would spot height, the height parameters, h or E, were them-

selves correlated with d 
w 	5 
and d (Table 3-4).  The method of 

stepwise regression ensured that as each variable was added the 

effects it described were not already explicitly represented in 

the regression relationship. However, because of the inter-

relationship between parameters, the increase in .the square of the 

1- 



Table 31 	8 km radius mean height, spot height and mean 

annual rainfall - 1. Edinburgh Area 

2 West Pennines 

Station 
C 
Grid 

Reference 

spot 
height 
ft. 

mean 
height 
ft. 

mean 
annual 

rainfall 
ins. 

1916-50 

1. 

Ochil Hills 
Hospital 30977076 800 748 47049 

Uphall No. 8 30246708 577 1460 34.75 

Middleton Hall 30616716 350 392 33.84 

Harperig 31026613 900 962 40.63 

Edinburgh 
Blackford Hills 32596706 14141 269 27.53 

Astley Ainslie 
Hospital 32516713 270 304 28.53 

Fairnülehead 
Waterworks 32496683 590 405 31,18 

Liberton 32736690 hO? aSh 28.75 

Glen Cottage 32236635 739 908 38.12 

Glencorse 
Filters 32256631 638 815 36.04 

Martyr's Cross 32296623 750 882 37.24 

Gladhouse Res. 32996514 915 1016 37.67 

Roseberry 33086570 750 786 33.67 

North Berwick 35556853 51 62 25.69 

West Calder 
Addiewell 30016626 620 704 37.69 

Talla Lins 
Foot 31336203 966 1602 61.O4 

Victoria Lodge 31066231 900 11421 50.14 

/ 0 . 
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Table 3.1 continued 

Station Grid 
Reference 

spot 
height 
ft. 

mean 
height 
ft. 

mean 
annual 

rainfall 
ins. 

1916-50 

Carden Knowes 35776372 300 558 29.58 

Stobo Castle 31796368 594 1100 38.50 

Floors Castle 370763145 195 316 25.95 

Spittal Tower 35876182 1425 516 3112 

2. 

Swineshaw Moor 1401014008 13140 890 148.57 

Black Clough 1412739814 16143 11430 59.16 

Pikenage 1409814001 926 1375 50.85 

Upper Headon 1409814035 1717 1369 69.83 
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Table 3.2 Description of Case Studies 

Case Date Weather Type Wind Remarks 

A 05.08.71 Thundery low 

B 29.11-72 Cold front W Cold front from NW. Some waving occurred. 

C 12.02.73 Showery low NW Low remained to the East and gave heavy 
snow showers. 

SW 
D 10.12.73 Cold front veering Front arrived from NW 

NW 

E 10.01.74 Occlusion SW Occlusion moved NE 

F 17.01.74 Warm sector W 

G 0)4.09.7)4 Occlusion W Occlusion moved NE 

H 12.09.74 Cold front S Cold front moved NE. 	Some development. 

I 20.12.74 Warm sector W 

J 21.12.74 Warm front SW Warm front moved up from South and then 
retreated. 

K 16.02.75 Occlusion W Occlusion moved B, and developed a wave. 
The warm sector on wave moved N. 



multiple correlation coefficient, and thus in the amount of vari-

ance described, at steps 2 and 3 was small (Table 3.3). 

3.3.3 The "pure type" days 

The cases used for the multiple regression studies were 

chosen such that each distribution was of one particular type and 

that half of the gauges had a reading of over 10 mm, and some 

(about 10) had readings over 20 inn, These days (Table 3.2) in-

cluded winter-time cold fronts (cases B and D) and winter-tine 

warm sectors (cases F and I), the types of system Browning, Hill, 

and Pardoe (1974, 1975) studied for the effects of topography on 

rainfall. A summer-time cold front (case H) was included for 

comparison with eases B and D. The showery low with its associ-

ated North Westerly airstream was notable for the heavy orographic 

rainfall it produced to the North of the area. 

Occluded fronts (cases B, & and K) of varying complexity 

were also investigated to see to what extent rainfall from more 

complicated systems may be related to physical parameters, the 

case K being particularly complex due to the development of a 

wave. The thundery low (case A) is included as a case where 

rainfall, though heavy, was definitely not of an essentially 

orographic nature. 

- All these systems could be classed as producing intense rain-

fall due to a front, a non-frontal depression, a warm sector, or 

an individual convective storm. The mean annual rainfall distrib-

ution was similarly analysed from comparison. 
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3.4 The method of multiple regression analysis 

analysts 
A stepwise multiple regression was carried out using the 

Biomedial Computer Program supplied by the University of 

California. At each step in the analysis, the variable which 

gives the greatest reduction in the variance of the dependent 

variable is added. This variable may also be described as the 

one with the highest partial correlation coefficient with the 

dependent variable which has been partialed on the variables 

already added. The flPvaluetT of a dependent variable, which is 

defined as the square of the ratio of the regression coefficient 

to its standard deviation, measures the relative importance of a 

regression parameter in describing the variance of the dependent 

variable. The variables added may be restricted to those of 

given significance by specifying a controlling P value for vari-

ables not to be entered into the regression equation. At each 

step the variable with highest P value will be added provided 

this value is larger than the control value. A detailed dis-

cussion of the method is given in the BM manual (Dixon 1968) 

and in Effroymseri (1960). 

In the regression equation: 

y = a + bx1  + cx2  + dx3 	(3.1) 

y is used to h*predicttf rainfall in mm, from x1 , altitude or mean 

altitude in metres, x2  distance to the South coast in 1cm, and 

distance to the West coast in km. x1 , x2  and x3  will be 

referred to as h or E, d and d respectively in the analysis 

below,, 

'I 



Analysis of "transformed" rainfall, daily rainfall expressed 

as a percentage of mean annual rainfall and first eigenvector 

multiplier, were also carried out to determine the extent to which 

rainfall distributions of specific cases might be described in 

terms of these mean distributions. The mean annual rainfall 

and first eigenvector multiplier had to be interpolated from 

Figures 2.9 and 2.10 for daily stations with no long-term means. 

In order to examine the validity of the linear assumptions 

in the analyses, regression residuals, i.e. differences between 

actual rainfall values and those predicted by equation 3.1, were 

plotted and isopleths drawn. The particular effects of increased 

rainfall on exposed slopes and of rain shadows were looked for 

in the patterns of the isopleths. These derived regression para-

meters and residuals were expected to provide answers as to the 

validity of the linear assumption mentioned in Point 3. above. 

3.5 Discussion of results 

3.5.1 Real rainfall data regression analyses 

- 	A summary of the steps in the regression analysis of 

real rainfall data appears in Table 3.3. The addition of extra 

variables beyond the first step did not increase the amount of 

variance in rainfall explained, the increase in R 2  being small. 

The correlation matrix between mean annual rainfall and physical 

parameters appears in Table 	t us illustrates that 

"independent" variables are in fact interrelated and implies 

limited usefulness of more than one such variable. 

prim 
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Table 3.3 Summary of steps in multiple regression 

analysis using (i) mean altitude, (ii) spot altitude. 

R - multinle correlation coefficient. R 2 . increase in 

P value to enter variable. 

C) 
03 
03 
U 

0) 
-P 
03 

Q 
• 

4'O 
CJ)Z 

O 

-o 

r10) 
p rd 
alt 
>-03 R 2 R 

0) 

ci3C'J 
o 

1-4 	r4 
p 

0) 

4.40 
oait 

.rlO) 

Oolt 

(i) annual 1 H 0.763 0.531 0.581 150.1 1 
• 	mean 

2 d 0.768 0.590  0.009 2.3 2 
w 

3 d 0.777 0.604 0.013 3.6 3 

(ii) annual 1 h 0.776 0.603 0.603 163.8 1 
mean 

• 2 d 0.784 0.615 0.013 3.5 2 w 

3 d 0.738 0.621 0.005. 1.5 3 

A(i) 05.08.71 1 d 0 .433 0.188 0.188 22.7 1 

2 5 0.521 0.272 0.081 11.1 2 

3 d 0.533 0.285 0.013 1.8 3 

(ii) . 05.08.71 1 d 0.433 0.188 0.138 22.7 1 

2 d 0.507 0.257  0.069 9.0 2 

3 h 0.512 	. 0.262 0.006 0.7 3 

B(i) 29.11.72 1 d 0 .466 0.217 0.217 25.0 1 

2 5 0.481 0.231 0.014 1.6 2 

3 d 0.520 0.270 0.039 4.8 3 

1 d 0.466 0.217 0.217 25.0 1 

2 d 0.484 0.234 0.017 1.9 2 

3 h 0.525 0.276 0.042 5.1 3 

0(i) 12.02.73 1 d 0.520 0.271 0.271 33.4  1 

2 H 0.556 0.309 0.039 . 	5.0 2 

I... 
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Table 3.3 continued 

0) 
0) 
Cd 

CD 

0) 

cd 

Qi 
U) 	• 
-P0 
CO 

H 
,a 
cdt 
•rlO) 
Pt 
Cdt 

w R 
C: R 

U) 
cijc'j 
U) 
P 

F-I 	•H 

n 

P 

- CU- 

H 
ri_I_a 
Ocdt 

oct'C 
Z>Cd 

0(1) 12.02.73 3 d 0.575 0.330 0.021 2.8 3 

1 d 0.520 0.271 0.271 33.14 1 

2 d 0.537 0.287 0.018 22.3 2 

3 h 0.550 0.303 0.0114 18.2 3 

D(i) 10.12.73 1 H 0.576 0.332 0.332 145.2 1 

2 d 0.603 0.3614 0.032 14.5 2 

3 d 0.639 0.1409 0.0145 6.8 3 

(u) i h 0.517 0.267 0.267 33.1 1 

2 d 0.558 0.311 0.0144 5.8 2 

3 d 0.609 0.371 0.062 8.5 3 

E(i) 10-01 -74 1 h 0.719 0.518 0.518 99.8 1 

2 d 0.7142 0.551 0.033 5.8 2 

3 d 0.7414 0.553 0.027 0.5 3 

(u) 1 h 0.626 0.391 0.391 57.8 1 

2 d 0.668 Q.1446  0.055 9.2 2 

3 d 0.682 0.1465 0.018 3.1 3 

F(i). 17.01.714 1 d 0.660 0.1435 0 .135 72.14 1 

2 d 0.718 0.516 0.080 15.14 2 

3 Ii 0.720 0.518  0.002 0.14 3 

1 d 0.660 0.1435 0.1435 72.14 1 

2 d 0.718 0.516 0.080 15.8 2 

3 h 0.727 0.528 0.012 2.14 3 

o4. 09-74 1 H G(i) 

 

0.306 0.093 0.093 9.0 1 

I... 
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Table 3.3 continued 

() 
0) 
CO 
U 

C) 
4-' 
CO 

Pi 
(D 
+'O 

H 
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2 H 

(ID 
01 0.1 
() 	cr 
C) 

I-I 	•H P 

H 
4.4,0 octd 

.rICl) 

ocdt 
ZcU 

G(i) 04.09.74 2 d 0.377 0.142 0.049 4.9 2 

3 d 0.399 0.159 0,017 1.7 3 

1 d 0.321 0.103 0.103 10.0 1 

2 h 0.405 0.164 0.061 6.3 2 

3 d 0.428 0.183 0.019 2.0 3 

1-1(i) 12.09.74 1 d 0.186 0.035 0.035 3.2 1 

2 h 0.323 0.104 0.070 6.9 2 

3 d 0.324 0.105 0.001 0.1 3 

(ii) 1 d 0.186 0.035 0.035 3.2 1 

2 h 0.224 0.050 0.016 1.5 2 

3 d 0.241 0.058  0.008 0.7 3 

I(i) 20.12.74 1 H 0.578 0.335 0.335 41.2 1 

2 d 0.665 0.442 0.108 16.8 2 

3 d 0.710 0.505  0.062 10.8 3 

1 h 0.593 0.352 0.352 47.8 1 

2 d 0.693 0.480 0.127 21.3 2 

3 d 0.727 .0.528 0.048 8.8 3 

J(i) 21.12.74 1 d 0.612 0.374 0.374 52.6 1 

2 d 0.805 o.618 0.273 6.7 2 

3 H 0.825 0.681 0.033 8.9 3 

1 d 0.612 0.374  0,374 52.6 1 

2 d 0.805 o.648 0.273 6.7 2 

3 h 0.826 0.682 0.035 9.4 3 

I.... 



Table 3.3 continued 
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C 	0 
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p UJ) CU R R Hi 	rA 
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K(i) 16.02.75 1 H 0.295 0.087 0.087 8.0 1 

2 d 0.337 0.114 	. 0.026 2.5 2 
If 

3 d 0.340 0.114 0.035 9.4 3 
S 

1 h 0.231 0.053 0.053 4.8 1 

2 d 0.272 0.074 0.020 1.8 2 
If 
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Table 3.4 Correlation matrix between mean 

annual rainfall and physical parameters 

- 

h d 
S 

d 
w 

mean 
annual 

rainfall 

1.000 0.540 0.092 0.763 

d 1 - 000  -0.335 0.333 

d 1.000 0.011 w 

mean 
annual 1.000 

rainfall 

In Table 3.5, it is shown that mean: annual rainfall has 

higher correlation coefficients with physical parameters than 

rainfall on individual days. This in turn shows that mean 

annual rainfall is more clearly related to topography that is 

that of individual days; and may imply that the daily rain-

fall data do not reflect entirely "pure type" rainfall. 

The parameter effective altitude did not produce signifi-

cantly better correlations with rainfall than spot altitude, and 

in the case of mean annual rainfall and cases C, I), E and K, the 

use of spot altitude, produced higher correlation coefficients. 

Altitude was the most significant regression parameter for 

six cases. 'Multiple correlation coefficients were higher for 

all winter-time cases (except the developing occlusion, case K) 

than for summer-tine systems. As case K developed a wave, it was 

not in some senses a pure type. Cases K and H, both of which 

were developing systems, produced the lowest multiple correlation 

IM 
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Table 3.5 Summary of regression analyses of daily rainfall using (i) mean altitude 

(ii) spot altitude. R - multiple correlation coefficient, a - regression constant, 

regression coefficients between rainfall and, b - altitude ii or R. c - distance to 
West coast d ,d - distance to South coast d ,and F - ratio of variance. * and *-)E- 

S 
denote significance at five per cent and one per cent levels respectively. 

Case Date R a b C d F 
order 

variables 
entered 

 mean 0.777 11559 2.1543 -25900 -.1.1057 539** H,d ,d 
W 	5 annual 

 rainfall 0.788 	, 11623 2.3956 -2.41 -0.0689 57.8*3(- h,d,d 

A(i) 05.08.71 0.5344E* 8.60 0.0127 0.05814 -0.0782 12.7* 

(ii) 0.512- 8.70 0.00614 00862 -00720 11.14* d,d,h 

B(i) 29.11.72 0520** 15.97 0.0166 -01002 0.0780 10.9* d,h,d 

(ii) 0.525** 15.98 0.0198 -0.1027 0.0799 11.2* d5 ,h,d 

0(i) 12.02.73 O.575** 8.85 0.0127 0.08148 -0.02148 114.5* h,d,d 

(ii) 0.550** 8.91 0.103 0.0983 -0.0203 12.7* h,d,d 

D(i) 10.12.73 0.639 4F 14.82 0.02214 0.11146, 0.01461 20.5* h,d,d5  

(ii) 0.609 14.90 0.0201 0.1321 0.0526 17.5* h,d,d 

I... 
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Table 3.5 continued 

Case Date R a b c d F 
order 

variables 
 entered - 

E(i) 10-01-74 Oolljlt** 6.94 0.0569 00360 0.0620 37.63* 

(ii) 0.682** 6.59 0.0516 0.0915 0.0883 26.3** i,d,d 

F(i) 17-01-74 0.720** 12.09 0.9083 0.4348 -0.1501 33.039k 

(ii) 0.727* 12.22 0.0223 03923 -0.1597 31.33e* d,d,h 

G(i) 04009.74 0.39949k 1319 0.0204 -0.0551 0.0261 5.4 

(ii) 0.428- 13.33 0.0257 -0.0659 0.0272 63 h,d,d5  

1-1(i) 12009.74 0.321* 22.91 0.0359 -0.23141 0.0159 3.4 d,h,d 

(ii) 0.2141 23.09 0.0162 -0.1573 0.01415 108 d,h4 

1(i) 20.12.74 0.71039k -120 0.0130 0.0655 0.0530 29.249k E,d,d 

(ii) 0.72639k -1.09 0.0163 0.0582 0.0537 32.1 is h,d,d 

J(i) 21.12.74 082549k -6.98 0.0129 001574 o1600 611** d,d,h 

(ii) 0.826* -6.83 000151 0.1536 0.1611 61.6 d8 ,d,h 

K(i) 1602.75 0.338* 15.15 00300 -0.0963 -0.0065 3.53 

(ii) 0.272 15.47 0.0283 -0.826 h4 



coefficients. 

Of the two cases, H and F, where d was the most important 

regression parameter, the rapid decrease of rainfall in case H 

with increasing distance from the South coast could be explained 

by strong Southerly winds. In case F, on the other hand, the 

increase in rainfall away from the South coast probably reflected 

a variation of rainfall and topography; d 5  and H are significantly 

interrelated (Table 3.4). Some rainfall for case F, a winter-time 

warm sector, was expected to be of an intense orographic nature. 

The two systems, B and J, for which d was the most signifi-

cant regression parameter, were accompanied by strong West winds. 

/ In case B rainfall increased from the West, and to a lesser extent 

from the North, as the front developed in its notion eastwards. 

System A, the thundery low, originated in the West and became less 

active as it moved eastwards. 

The highest of the regression coefficients b, describing the 

rate of increase of rainfall with altitude, occurred for the winter-

time occlusion case E. with a value twice as large as any other 

values of b. If the cases studied are representative of intense 

systems crossing the area, this result would imply that the 

heaviest rainfall of an orographic nature occurs for winter-time 

occlusions. The highest values of c and d occurred in case J 

where the regression constant a is negative. 

There would seem to be few generalisations to make concern-

ing regression coefficients from Table 3.5. Cases a and D, were 

similar in synoptic type with fronts following similar paths across 

the area from the North West, but the subsequent development in 

case B meant that the regression parameters were different. 
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Table 3.6 Summary of regression analyses of daily rainfall expressed as (1) a per-

centage of mean annual rainfall, (2) a percentage of eigenvector field. 

Multiple correlation coefficient R, regression constant a, regression coefficient 

between rainfall and: b - mean altitude 11, c - distance to West coast d ,d - dist-

ance to South coast dsz 	F ratio of variance. * and ** denotes significance at 

five per cent and one per cent levels respectively. 	- 

Case Bate It a b c d F 
order 

variables 
entered 

A(i) 05.08.71 0.5044e-K- 0.75 0.006 -0.006 16.3* d  

(ii) 0.507E* 26.4 -0.0081 0.232 -0.203 11.0* 

B(i) 29.11.72 0.647** 1J14 -0.0008 -0.007 0.007 211* - 	d,d,E 

0.677* 50.4 -0.0402 -0.228 0.262 24.8* d5 ,h,d 

C(i) 12.02.72 0.522** 0.72 -0.0001 0.009 -0.001 1100* d,d,h 

0.55I** 25.0 0.0132 0.331 -0.004 13.0* 

D(i) 10.12.73 0.577$* 0.04 0.0003 0.001 0.000 15.0* dwdsE 

(ii) 0.609** 14.9 0.0079 0.381 0.152 17.7* d,d,fi 

E(i) 10-01-74 0560* 0.66 0.0022 0.006 0.006 13.8* E,d,d 

(ii) 0.556** 23.8 0.0059 0.218 0.217 13.6* TI, d,d 

/00 
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Table 3.6 continued 

Case 
- 

Date H a b c d F 
order 

variables 
 entered 

F(i) 17.01.74 0.809** 0.92 -  -00016 0.041 -0.010 530** d,d,E 

(ii) 0.805** - 32.1 -0.0050 1.1444 -0352 56040E-w d,d,1 

G(i) 04.09.74 0.319* 115 -0.0003 0.003 409 

(ii) 0.324* 40.1 -0.0055 -0.0967 0.101 3.3 d  

H(i) 12.09.74 0329* 1.89 0.0009 -0.0171 0.003 3.5 

0.346* 662 0.0159 -0.0580 0.117 400 

1(i) 20009.74 0.691** -0.03 0.0055 0.0055 0.005 263** d,d,H 

0.697** -1.4 0.0071 0.1949 0.163 27.0** d,d,& 

J(i) 21.09.71 0.828** -0.04 0.0001 0.0125 0.012 62.4*-* d,d,E 

0.84o** 1b02 -0.0033 0.0133 0.426 68074eE d,d,E 

K(i) 16.02.75 0.194 1.23 0.0009 -0.0061 0.000 1 .1 

(ii) 0.195 1413 0.0222 -0.1798 0.013 1.1 d,d,E 



3..2 Transformed rainfall data regression 

relationships 

In order to investigate to what extent variations in 

daily rainfall can be represented by those of mean annual rain-

fall or the first eigenvector multipliers of Chapter 2, regression 

analyses of transformed data were performed as discussed above 

and the results given in Table 36 were compared with those of the 

real data given in Table 3.4. Reductions in values of multiple 

correlation coefficients are small, showing that the background 

fields do not account for much of the variance in daily gauge 

values. For cases B and F multiple correlation coefficients are 

larger for transformed data, thus showing that in some respects 

rainfall may be classed as abnormal for these cases. Case B, 

being a developing cold front, might be expected to show abnormal 

variations on other grounds. 

The biggest reductions in correlation coefficients using 

transformed data occur for the cases B and K, and are of order 

0.1. The reductions in size of correlation coefficients are nearly 

the same in both cases, showing that the first eigenvector multi-

pliers of real mean monthly rainfall data describe the same vari-

ations as those in.mean annual rainfall data. 

Though the reductions in correlation coefficients are not 

large, altitude is a considerably less important parameter when 

transformed data are used. This shows that the principal vari-

ations in daily rainfall values which can be described by mean 

annual rainfall are those due to topography. 
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3.5.3 Rainfall regression residuals 

In order to observe which variations in rainfall due 

to topography can be accounted for by linear regression analyses, 

charts of rainfall regression residual isopleths, Figures 3.2 to 

3.9 were studied with reference to the topogiaphical map, Figure 

2.8, and to the synoptic conditions of each case, Table 32. In 

Figure 3.2 isopleths of mean annual rainfall residuals are plotted 

at intervals of 10 mm, while in Figures 3.2 to 3.9 residuals for 

cases A, B, C, F, G and H are plotted at intervals of S nun. Areas 

of positive anomaly (observed rainfall larger than regression 

prediction) are hatched. The placing of the isopleths was some-

what subjective in regions where the gauge distribution was sparse. 

Figure 3.2 provides the. most information as to the validity 

of the assumption of a linear relationship between rainfall and 

topography. It is mean annual rainfall which has the highest 

correlation coefficient with altitude and thus best describes rain-

fall variations with topography. In Figure 3.2, positive anom-

alies occur on the sides of hills exposed to the prevailing wind. 

This is particularly noticeable for the ranges of hills in the  

area riirked X, and to a lesser extent for that marked I. Rain-

shadows and negative anomalies are seen to the lee of these hills, 

though not necessarily immediately in their lee. 

The existence of large positive and negative anomalies, 

especially those lying near the coast lines, implies that the 

additional information explained by the parameters d w and d 5  com-

pared to H alone, in the mean annual rainfall analysis, is small. 

The size of these anomalies, together with the small increases in 

R2  in Table 3.3 for steps 2 and 3, show that the use of d  and 
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Figure 3.2 	Mean annual rainfall correlation residuals 
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Figure 3.3 	Correlation residuals , case A. 5th August 1971 

(Thundery Low) 
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Figure 3.4 	Correlation residuals, case B, 29th November 1972 

(Cold Front) 
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Figure 3.5 	Correlation residuals, case C, 12th February, 1973 
(Showery Low) 
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Figure 3.6. 	Correlation residuals, case F, 17th January 1 974 

(Warm Sector) 
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Figure 3.7 	Correlation residuals, case G, 4th September 1974 

(Occlusion) 
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Figure 3.8 	Correlation residuals, case H, 12th September 1974 

(Cold Front) 
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Figure 3.9 	Correlation residuals, case K, 16th February 1975 
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did not significantly increase the variance described by the 

regression relationship. 

An area of positive anomaly near area X also occurs in 

Figure 3.14 (case B), Figure 3.5 (case C), Figure 36 (case F), 

and Figure 3.9 (case K). The position of this anomaly and the 

shape of the isopleths is dependent on wind direction. There are 

also anomalies near area Y of Figure 3.2 in Figure 3.14 (case B), 

Figure 3.6 (case F), and Figure 3.9 (case K). Positive and nega-

tive anomalies occur close together as air flows over a small 

but exposed range of hills in the area Y. The shape of these 

isopleths is. again determined by the direction and strength of 

the wind. 

In case H, d, the most important physical' parameter, measured 

the decrease of rainfall, predicted by the regression equation, 

from the effect of southerly winds. The regression residuals 

showed that most of the variations between gauges occurred along 

a central North-South band through the area I of Figure 3.2 

Positive anomalies of varying size along this band showed that rain-

fall was under-predicted, apart from the negative anomalies in the 

North due to the rain-shadow effect of the area I hills in the 

path of the southerly winds. Over the rest of the region, there 

were negative anomalies with small variations between gauges in 

residuals, showing that rainfall was over-predicted. 

Residuals from case A (Figure 32), C (Figure 3.14), and 

G(Figure 3.7)  bear the least resemblance to those of mean annual 

rainfall. These cases were rare types of intense rainfall distrib-

ution - case A a thunderstorm, case C a showery low with an assoc-

iated North-westerly airstream, and case G a cold front with a 
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southerly wind. However, residuals of case F. which appeared by 

comparison of correlation coefficients of transformed and un-

transformed data to have an abnormal rainfall distribution, have 

similarities to those of mean annual rainfall • Common configur-

ations of isopleths can be recognised in both diagrams with 

their positions shifted between diagrams. 

While regression coefficients for individual cases are diff-

erent, there are common residual isopleth patterns in mean annual 

rainfall and the daily cases, whose detailed shape and position 

for a particular case are dependent on wind velocity. The under-

lying topography producing the rainfall is of course the same in 

each case, and an approximate description of this is provided by 

the station heights. Some other features of topography which 

affect rainfall distribution may be seen by a comparison of 

regression residuals and the topographical nap. 

The residuals in themselves do not express much about the 

dynamics of the system producing the rainfall apart from the wind 

velocity. Residual patterns, Figures 3.3  to 3.9 camot be recognised 

as describing rainfall of a particular type, The dynamical devel-

opment of the systems under study, in cases B and K, as they 

crossed the region, cannot be gauged from the residual patterns. 

36 Conclusions on regression studies 

Daily rainfall values for systems of a "pure" type can thus 

be regressed with physical parameters, altitude usually being the 

most significant parameter in such analyses. Correlation coeffici-

ents are usually lower than those for regression of mean annual 

rainfall, which describes the most common variation between rain-, 
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fall and topography which is present to a greater or lesser extent 

in most of the individual cases. 

Only one physical parameter,'usually altitude, seems to be 

of significance in multiple regression analysis. The distance of 

each station from the coast line where the "system originated", 

described above by d   or d, is the alternative primary regression 

parameter. The use of an effective station height, assessed over 

a 3* Ian. grid, instead of station height does not in general 

significantly increase the values of the correlation coefficients. 

The rates of increase of rainfall with altitude as revealed 

by regression coefficients varied between systems but the rate 

appeared to be highest for a :winter-time occlusion, Winter-time 

systems, which are in general more intense than those of summer, 

had the higher correlation coefficients; developing systems had 

poomrcorrelations than well-defined systems. 

The question raised above in point 3 as to the validity of 
an assumption of a linear variation between rainfall and altitude 

was answered by values of the correlation coefficients and the 

regression residual patterns. The exposure of mountain slopes 

to the flow of moist air would seem to explain the pattern of 

regression residuals when they are studied with reference to the 

topographical map and synoptic conditions. However, the regression 

analyses or residual patterns did not directly reveal the different 

effects of the various synoptic conditions apart from those due to 

wind velocity. 

It is not entirely certain from the results of the analyses 

that daily rainfall values themselves describe rainfall of a pure 

type as correlation coefficients are smaller than for the cases 

N 



of mean annual rainfall. Studies of rainfall records over short 

periods from a network of autographic gauges would enable the 

isolation of effects of a particular system and perhaps the 

decomposition of rainfall from different sections of the system. 

Different stages of development of the system as it effects 

rainfall could perhaps be distinguished.  

It may however be concluded that regression methods 

are unsuited.to  analysis of rainfall variations in-

herent in daily values owing to the very small frequency 

of sufficiently pure types. 

No 



CHAPTER h 

40 MODELS OF THE DISTRIBUTION OF SPELLS OF WET AND DRY DAYS 

4.1 Introduction 

When time series are analysed in meteorology they are often 

tested to determine the extent to which their persistence may be 

described as Markov persistence, and how accurately members of 

the series can be determined from the Markov process. This pro-

cess assumes that the probability of the occurrence of an event 

in a given time interval depends only on its occurrence in a 

previous equal time interval. In particular this model has been 

used extensively to describe the distribution of spells of wet 

and dry days (e.g. Chatfield 1966, Gabriel and Neumann 1962). 

In this context the model implies that the probability of any 

particular day being wet or dry depends only on the character of 

the previous day. A full discussion of the application of this 

model and three other models - William's (1952)  log model, 

Green's (1970) modified log model, and Yap's (1973) modified 

geometric model - is given in a previous paper (Blair-Fish, 

1975 - see Appendix 1). 

The advantage of the Markov model over other models is that 

only one parameter - the probability of a dry day following a 

dry day (and that of a wet day following a wet day) - is needed 

to predict the nature of a given day from that of the previous 

day. The simple log model also uses only one basic parameter, 

but, in this case, the probability is weighted by a factor deter-

mined by the number of previous days of a given type. 
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Long wet and dry spells are usually the least well predicted 

by the models. Such spells occur infrequently and are given 

little weight when model parameters are calculated. For most 

practical purposes it is long dry spells (and sometimes wet spells) 

which are 'of most interest. In order to emphasise the importance 

of long spells further investigations have been carried out using 

the same data as in the previous paper, There (as in m t work on 

the subject) models were used primarily to describe spells of 

specific length (i.e. the probability of a spell lasting an exact 

number of days) rather than 'cumulative spells' (the probability 

of spells of at least a given length). When spells of a given 

length and greater are summed to give cumulative spells, some 

smoothing of data occurs and it is usually easier to fit models 

to this type of spell; cumulative spells are probably also the 

more useful for planning purposes. For the Markov model it will 

be shown that the change in spell description affects only the 

normalisation of parameters. 

In the further investigations of spells below, the Markov, 

log, and modified geometric models are fitted to spells of length 

greater than five days. The "Jenkinson probability" and "natural 

persistence" models used by Lawrence (1957) are also discussed and 

some of their uses and limitations are demonstrated. 

4.2 Discussion of the models 

2.1 The Markov model 

The probabilities of spells of length 1, 2, 3 ...0 r 

days form a geometric series q, q 2 3 	r 
, q , .... q and these prob- 

abilities are normalised so that the total probability of a spell 

N. 



of any length is unity. The normalisation constant is then 

1-cl and the number of spells of length r is N q' ( i-q) where 
q 	 q 

N is the total number of spells. The number of spells of 

length r or greater (cumulative spells) is 	N 	i.e. Nqro 
q 	r 

This model may also be applied only to spells greater than 

a minimum length in order to emphasise longer, less frequent 

spells and because Markov persistence may not be applicable to 

shorter spells. If only spells greater than x days are consid-

ered, and N is the number of spells of length at least x days, 

the number of spells of length r and at least length r will be 

r-x-1 	r-x-1 N(1-q)q 	and Ncl 	respectively. 

To fit the model the mean spell length (or the mean contin-

uation of a spell beyond a minimum number of days) is calculated 

i.e. the ratio of the total number of days of given type T iD to the 

total number of spells N0 In terms of model parameters: 

N 
TB 	N ( lcic r 	= 	 (4I) 

x q 	T
x 
-q 

The mean spell length is thus 

If any spell data can be described by the Markov model, a 

plot of the number of spells of given length r, n  (or spells of 

length at least r, N) against r will produce a straight line on 

semi-log paper as can be seen in equation 402. 

log ii r 	
r-1 	

q = log q 	(l-q)N 	(r-1 )109 	+ log N + 109(1-q) 

(1.2a) 
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log Nr 	
log q  N  =(r-1) log q + log N 	(402b) 

The intercept ofonthe line the x-axis will be greater in the case 

of 4.2b, there being more spells of at least a given length than 

of an exact length. If a Markov model is constructed for spells 

greater than x days, where x = 3 in Lawrence's work and x = S in 

the work below, then the straight line will be drawn for r = x 

onwards. 

4.2.2 The log model 

In this model the probabilities of spells lasting 

23r exactly 1,2,3 .... r days are proportional to q, 	, 	• o q 
2 3 	r 

1  said the number. of spells of length r is N ( 	) 
qr

where 
log (1-q) r 

N is again the total number of spells. The number of spells 

lasting at least r days is given by: 

r-1 

-N N 
Tog' og(1) - 	r - log-q) 	r

-  1 ) 	(3) 

r 1 

The total number of days of a given type is given by: 

00 

log(1) 2 c x r = log7 	 (b0) 

The mean spell length (as defined above) is again used to fit the 

model to spell data0 q is found from this mean length, 

log (1-q) 	1 	by a recursive process or by a graphical 

'I 
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• 	method. Results are published in tables prepared by Williamson 

and Bretherton ( 1 964). 

The ratio of the number of spells lasting r + 1 to r days, 

F, is given by 	q. This ratio increases as r increases; for 

the Markov model it has the constant value q. Thus the persist-

ence of a spell increases with spell length if the distribution 

is described by the log model, while it is constant for the Markov 

model. The log model cannot be simply applied to data which does 

not include the more frequent short spells, as the probability of 

any spell of length r is defined for all values of r according 

to a predetermined pattern. Also as the persistence factor F(r) 

depends strongly on r, the model is only applicable to data for 

• 

	

	spells of specific length and not to those of cumulative spell 

data. 

Green proposed a modification to the log model such that 

the probabilities of spells of length 1,2,3 ... r days were pro- 

portional to q , 2 , q3  .. ci" 	where a is a modifying 
li-a 	2+a 	3+a 	r+a 

parameter (0< a co). For the simple log model a = 0 and for 

the Markov model a ='° 	This model attempts to explain more 

fully the variation in persistence in spells of different length. 

Fr  increases with spell length more slowly than for the log model 

and equals r±a . While Green successfully fitted this model to 
r+a+l 

most spell data, the model was found in the previous work (Blair-

Fish 1975)  to be more relevant to wet spells than to dry spells 

which are well described by the simple log model. 

The modified log model is difficult to fit to data, requiring 

successive adjustments to values of q and a after an initial guess 



has been made to their values from the shape of the distribution 

(which may be initially plotted on semi-log paper). If the number 

of steps required for the computation is large, a correspondingly 

large amount of computer processing time is required. The 

physical significance of the parameter a is not obvious, also, 

differences in a between stations found in cases where the model 

has been applied do not follow a clear pattern. For these reasons, 

and in particular because of the success of simpler models, the 

modified log model has not been used in this further work. 

4.2.3 Yap's modified geometric model 

Here the probability, p, of a spell lasting a further 

day is assumed constant within a spell of given length but to vary 

with spell length. Two parameters, a and b, are used to determine 

these probabilities such that p is assumed to be a beta variate. 

In Yap's paper and in Appendix 1, it is shown that the probability 

of a spell lasting another day is b and F(r), the ratio of the 

probability of spell length r+1 to that of spell length i', is 

a+r-3 	F(r), the measure of persistence, increases with r and 
a+b +r-1 

tends to 1 

The model is fitted, using the mean spell length (as defined 

above) and the mean square spell length. The latter parameter is 

the sun of the number of days of length r times r 2  divided by the total 

number of spells. The factorial moments for the distribution, u 1 1 , 

the mean spell length, and u21 , the difference between mean sQaare 

length and mean spell length, are related to a and b as in equations 

4.5 and 4.6. 
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2u1 1  (u11 - 1) - 2u21  

2u1 	(u1 1 -1) u2  

a = (u1 1  -1) (t - 1) 
	

(U.6) 

The modified geometric model may be applied to data in which 

shorter spells are omitted. In this case the first few days, 

(the first four in cases below), of each spell are ignored and the 

probability of a spell continuing is assumed constant from the 

next (fifth) day onwards. 

42.)4 Lawrence's "natural persistence" model 

In this model, the actual probabilities of spells contin•-

uing at least another day are considered. The ratio of the prob-

ability of a spell lasting at least r days to one lasting at least 

r+1 days is 6alculatedfor r> 3,  say, for each station. Then if 

15 is the total number of spells lasting at least 3 days, the 

number of spells lasting at least 3, li, 5, 6 .. days can be 6x-

pressed as the series: N3 , N3 0b' N3  C )4  C5, 15 C C 06 000 

Lawrence found that when C 4
3C  5 s

C6, . were plotted for each 

station, the variations of C 
r 
 with r were similar for different 

stations;. he was thus able to generalise variations in persist-

ence as measured by C. 

For a dense network of stations, a series of charts of 

N
33 
 C

4 
 C5 06 000 may be plotted and these parameters may be 

interpolated to new stations. If the variations of C   with r are 

similar at all stations in an area, values of C)4 . C. 06 0•• may 
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be averaged and the number of spells lasting at least 3, b, 5, 

6, .. days may be expressed as: N3, N3(C4 + x), l5( 	+ x)W + 

N3( 	+ x)(*j + x)(ç + x) ... where Cj,  C , and C are the mean 

areal values of C 
43 
 C and C6 0 It may also be possible to replace 

N3  by 15, the mean areal value of N3  and hence express the series 

of probabilities as: 15, 	+ x), 	+ xXç t 

T3 (C4 + x ) (C5 +  x)  (76 + x). x, the parameter modifying the mean 

value of C   to that of a particular station,. is determined by the 

relative number of days occurring at each station of the type 

considered. If C 1  is the ratio of the number of dry days to the 

total number of days considered for a station, and C 1  is the mean 

value of this ratio, x is the difference between C. and C 1 . 

402. The "Jenkinson probability" model 

In this model the maximum spell length occurring in each 

year is extracted from thedata. The mean 	the standard 

deviation 0r 1 , and the two-year standard deviation O_2  of the 

naxflriun annual spell length are calculated. To find the latter 

parameter, the maximum run lengths are ranked in order from 

smallest to largest. The m th member of the series is given the 

weight 2m + 1 and the standard deviation is then found, with the 

in th member assigned the frequency 2m + 1. 

The parameter <jzL is then calculated and a parameter 
2 

C-  
R( 5=- 1 y) is used to determine  the return period of a spell last- 

2 	
1 ing at least B days. y is the probability function - log log e  

where p is the probability. The return period, t, for annual maxi-

mum spell length increases with y, the relationship being 
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= 1 - exp (- y) 	
¼ 

	 (4-7) 

The curve of y against D is given by 

D=f.L + 	

0 2 

Tables of R are given in Jenkinson (1955) and Lawrence (1957), 

the latter of whom applied the method to describe spells for 

individual months of the year. The curve is approximately a 
C— 

straight line: for 	= 1 it is an exact straight line, while 

C- 
fdr- 'C(>) 1 the curve is concave downwards (upwards) and B has 

2 

a lower (upper) bound. In principle,D has no upper limit (but 

has a lower limit as a spell must last at least one day). It is 

thus expected that 	. < 1, as is usually the case. 
2 

The mean annual frequency of runs of length D or more, GD, 

can be determined from the fact that GD¼  exp (- y). From the y 

against B curves, ammual frequencies may be obtained; frequencies 

for periods of 1 years are obtained by multiplying G   by 1. 

The Jenkinson probability model is most suited to calculating 

the frequency of spells of length around the mean annual spell 

length as it is this length which is used to determine the dis-

tribution. 

14.3 Application of the models to eight stations 

For many practical purposes, e.g. farming and water resource 

management, the incidence of long dry spells is of special interest. 
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In the previous work (Blair-Fish, 1975) both dry and wet spells 

were considered. The Markov and modified geometric models are 

considered below for spells of length give days and greater for 

the original, eight stations of Edinburgh, York, Whitby, Cum Dyli, 

Oxford, Falmouth, March and Edgbaston. The use of the Jenkinson 

probability model in relation to long dry spells is also con-

sidered. 

In order to provide more reliable estimates of long (infre-

quent) spells the data for each of these stations were not sub-

divided into months. In comparison, Lawrence (1957) 0  considered 

spell frequencies for individual months; while his method 

provided little information on long dry spells for individual 

months and stations, the dense network of stations with similar 

climates yielded several estimates (not however, strictly independ-

ent) of the monthly disti'ibution of spells. 

4.4 The use of the "natural persistence" model and of 

persistence patterns 

The relatively sparse network of stations used in this study 

does not permit extensive interpolation of parameters between the 

eight stations. No clear variations in model parameters emerge 

in the various analyses. Lawrence was able to chart the model 

parameters and interpolate between stations in a dense network of 

stations in Southern and Eastern England. These interpolations 

included values of C   in the "natural persistence" model. 

The values of C calculated for each of the eight stations 

are displayed in Figure 4.1  for r 6 together with the values of 

N5 , the number of spells lasting at least five days. The grouping 
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into four sets of two stations in the figure is made from the 

similarities in climate of, and the geographical positions of, 

the stations. The two "wet" stations in the West of the country, 

Gum Dyli and Falmouth, show the greatest similarities. 

Lawrence summarised the variations of C with r for his net- 
r 

work of stations. Persistence was defined as an increase of Cr 

with r0 A more obvious definition would be to define an increase 

in C   with r as an increase in persistence, i.e. the "cumulative" 

persistence factor for r days is defined as the probability of a 

spell lasting at least another day beyond r days. (This is the 

definition used herein). C   is approximately constant for eight 

stations from 6 to 16 days. For spells of length greater than 

16 days oscillations of C   about its mean value increase in ampli-

tude, partly as a result of the paiCcity of such spells. This is 

especially noticeable in the case of Whitby where only 22 years 

of continuous data were available. 

4.5 Results - the Markov model and modified geometric 

models 

The persistence factor, C   is constant for the Markov model. 

The Markov model when applied to dry spells of length five days 

or greater, was found to produce a significant fit to seven out 

of the eight sets of data (see Table 401). The modified geometric 

model also fitted these data, with a significantly better fit than 

the Markov model in most cases. Results for the lag model applied 

to the complete distribution of spell, lengths also appear in 

Table 4.1. These latter fits are in general less good than those 

for either of the former models. 
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Table 4.1 Summary of model parameters (dry spell data) 

SPELLS AT LEAST 5 DAYS LENGTH 
STATION ALL DATA LOG MODEL JENKINSON PROBABILITY MODEL MODIFIED GEOMETRIC MARKOV MODEL 

MODEL  

q PZ2 ) PQC2 ) a b P() 1Q 1 PC2c) - 
spell 1 

length 

EDINBURGH 0.82 0.40 0.73 0.40 22.9 903 OJjO 13.12 4.26 0.96 0.001 

YORK 0.86 030 0.78 0.10 3703 11.5 0.60 17.85 7.01 0084 0.001 

WHITBY 0.80 030 0.68 060 59.7 28.4 o.10 11.86 40145 0.96 0.50 

CWM DYLI 083 0.20 0.73 0.80 271.9 100.5 0.70 13.72 4.62 094 0.20 

OXFORD 086 0.05 0.77 0.04 19.4 67 0.20 1895 7.40 0.96 o6o 

FALMOUTH 0.87 030 0.80 0.99 lll.L. 372 0.95 17.80 627 1.03 0010 

MARCH 
( 	 087 	) OdtO 079 0.50 89.5 ':23.3 0.95 20.75 7.09 0.90 00001 
(modified) 
(a=0.337 ) 

EDOBASTON 0.85 0.02 'b.75 0.50 44.4 15.6 0.20 15.83 623 097 0.50 



For none of the above models were the fits to the tail-end 

of the distribution tested in detail. In applying the W2  test 

spells whose expected frequency were less than five, were pooled 

into categories before the test was applied. The expected fre- 

quency of long spells of a given range of length were then compared 

with observed values, while for shorter spells frequencies of 

spells of given length were tested. 

In applying the )C2 
 test, the modified geometric model had one 

fewer degrees of freedom than the Markov or log model as the mean 

square spell length was used as an additional variable to define 

the model parameters a and b of the former distribution. 

4.6 Results - an alternative application of the Markov 

and modified geometric models 	 . 

An alternative approach to applying the Markov and modified 

geometric models is to sum the number of spells lasting at least 

5, 6 or 7  days and to use these values as direct input data to 

determine model parameters (i.e0 to consider spells of cumulative 

length in place of spells of exact length). The frequency of long 

spells obviously falls off less rapidly for this distribution than 

for that of spells of specific length, though some grouping of 

spells of different lengths is still needed in order to apply the 

Y2 	 . 
n test to the tail-end of the distribution. Such grouping amounts 

to double integration of spell frequency against spell length and 

is physically not very meaningful. Also it is difficult, in the 

case of the modified geometric model, to sum the number of spells 

at the tail-end of the distribution when this number decreases 

slowly with spell length and testing of the fit at this end of the 
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NARKOV MODIFIED GEOMETRIC 

• q, P( 2 ) a1  b 1  

EDINBURGH 0.73 0.110 201.2 73.11 0.99 

YORK 08O 0.001 16.9 12.1 0.90 

WHITBY 0.69 0.70 35.2 16.6 0.90 

CWM DXLI 0.74 0.110 36.6 13.6 0.99 

OXFORD 0.81 0.001 13.9 11.5 0.70 

FAflIOUTH 0.80 0.99 1115.2 37.1 0.99 

MARCH 0.81 0080 106.7 26.11 0.99 

EDGBASTON 0.76 0.05 27.9 909 0.80. 

Table 11.2 Model parameters using the 

alternative approach (cumulative spells) 

I. 

It has been pointed out that application of the 

2 
X text in this instance is invalid owing to the lack 

of independence implicit in cumulative data. 
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distribution is therefore difficult. (For the Markov Model the 

tail-end summation amounts to slimming a geometric series.) 

In processing the new form of input data, running the same 

programs to fit the models as previously, mean cumulative spell 

length beyond five days, and mean square cumulative spell length 

beyond five days are implied variables which determine model 

parameters. The first (second) parameter is the ratio of the sum 

of the number of dry days occurring beyond a wet days times r(r 2 ) 

divided by the total number of dry days. 

In terms of the new Marlcov probability, q 1 , and N5 , the 

number of spells lasting at least five days, the number of spells 

lasting at least r days is N;(1-q1)q1 r-1 	Using the original 

approach this number was N q" 1  Thus values of q 1  will be larger 

than values of q (compare Tables 4.1 and 4.2). 

The fits of the Marlcov model for this approach are as good as 

for the original approach, as might be expected since the new 

approach only amounts to a different normalisation. The fits 

using the modified geometric model to the cumulative data are 

very good. Indeed, the values of X2 are such as to give rise to 

doubt as to the validity of the approach. At any rate, the 

original model was formulated for a random variate p with constant 

value within a given spell determined by the spell length. The 

distinction between different runs (sells) and the meaning of p 

becomes confused in this approach. 	 - 

It.? Results - the "Jenkinson probability?! model 

C 
Values of FL ,  OT,and 
	

are , given in Table )4.i. The ratio 
2 
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Figure )[.2 	Jetikinson Probability Curves (y v D)  for 

Oxford, and FaLrnouth dry spells 
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6 
is seen to be <1 in seven out of eight cases; this implies 

that of a plot of y against U is concave downwards (gradient 

positive) with a lower bound to B. This in turn means that the 

persistence of a spell increases in length over the range of B 

considered (spells greater in length than the mean annual length0 

In the Lawrence terminology -  persistence is positive.) Curves of 

y against B for York, Oxford and Falmouth are given in Figure 4.2; 

these are based on values of ju- ,°, and 	- in Table 4.2 and 
2 

01 
y) in Lawrence. 

2 

The values of the expected frequencies of spells of length B 

or greater, % x 1, where 1 = LO for forty years of data, were 

computed and compared with the observed frequencies using a1 '2  

test. Some pooling of data was necessary for long spells (though 

cumulative frequencies are greater than those of spells of specific 

lengths). Results of the X2 test appear in Table 4010 From 

estimates of frequencies made from the models, and with the number 

of rarer spells pooled into categories, the number of spells 

estimated or observed in each category was of the same order of 

magnitude and hencd was given the same weight in the test. In the 

light of these considerations, thiS model was considered to produce 

good estimates of frequencies of long spells for five out Of eight 

cases considered. 

4.8 Tests of the models on new data 

1975 was notable for its exceptionally dry summer in various 

areas of the British Isles. Rainfall spell data, extracted from 

records of the University of Edinburgh, Meteorology Department's 
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Table 14.3 Tests of model parameters on new data 

EDINBURGH 1 974- 1 975 	I  GREENWICH 1921-22 

k o k 'do 
O 

r1C) + rlO 
-P r. "d 	Q) 

O 
0 	 u 
O1-H 

'do 
OC 

r10 
+' 

.rlO 
-P 

41 

HO 

W 
F-id 
C)O 

co 	a) 
H 

cW 
Or-1 

•H-pq-1 
41O 

,Oo 
rlC 

o cdu) 
H 

cto 
OH0 

•d 4,Oo1 
oØ 

oo 
CCC) Cl) 0)11 

Q1 C) 
<O F1 

,O 
0C.-i 0tH 

c 
0 C 

ow 
tLo C) 

opp 
P1 CH 

,o 
04-i 

k 
04-I 

cii 	c 
04-lO 

1 20 55 148 112 

2 13 35 17 614 

3 6 22 13 147 

14 6 16 8 314 

5 4 10 10.1 98 8 26 26.0 

6 2 6 7.1 7.2 1 18 20.8 

7 0 6 5.3 5.2 1 17 16.6 

8 0 6 3.9 3.8 3 16 13.3 

9 •i} 14 2.8 2.8 2 13 10.6 

10 1 3 2.1 2.1 1.14 5 11 8.5 

11 0 2 1.5 1.5 1.0 0 6 6.8 

12 0 2 1.1 1.1 .0.7 0 6 5.14 

13 0 2 0.8 0.8 0.5 0 6 14.14 

114 0 2 0.6 0.6 0.14 0 6 3.5 

15 0 2 0.14 0.14 0.2 1 6 2.8 

16 0 , 	2 0.3 0.3 0.2 2 5 2.2 

17 0 2 0.2 0.2 0.1 1 3 1.7 

18 1 2 0.2 0.2 0.1 1 2 1.14 

19 1 1 0.1 0.1 0.1 0 1 1.1 

20 0 0 0.1 0.1 0.1 0 1 0.9 
p 	2) 
=0.30 
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gauge for the period 20th September 1974 to 19th September 1975, 

were compared with "predictions" of dry spell frequencies made 

from the 1931-70 Blackford Hill Observatory gauge, using the 

Markov and Jenkinson models, as shown in Table 4.3 Results 

obtained for cumulative data from the Markov model are seen to 

provide acceptable predictions of spells of length 5 to 11 days. 

The spell of length 19 days is only predicted to occur once in 

7.7 years using the Markov model and once in 10.4 years using the 

Jenkinson model. The latter does not appear to give better 

estimates of longer spells than the former in this case. 	- 

Two successive years of data, 1921,22,  for Greenwich were 

also analysed and the actual and cumulative distributions of 

observed dry spells there are also given in Table 4.3. The cumul-

ative spell frequencies for length 5, 6, 7 	days were compared 

with those based on the Markov parameter, q 1 , interpolated from 

values at neighbouring stations. A value of q 1  =0.8f inter-

polated from Edgbaston, March and Oxford, and the observed value 

of 26 occurrences of spell length five days or greater were used 

to "predict'.' the occurrence of spells of length at least 6, 7 . 

days. A value of p) of 0.30  was obtained when predictions were 

compared with the observed distribution. This showed that the 

probability of a spell lasting a further day can be predicted from 

a Markov parameter interpolated from surrounding stations. 

9 Conclusions 

The Markov model has been shown to be of considerable value 

in predicting- frequencies of dry spells of length five days or 

greater. Successful application of the model to subsections of a 
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distribution have been shown to emphasise its value. Its sim-

plicity and ease of application, using basically one parameter, 

ensure that it will continue to be used in the analysis of spell 

data and in many other analyses of time series. 

The Jenkinson model has been shown to be of some value in 

relation to rare long spells though its complexities may dis-

courage its application. The modified geometric model, log model, 

and modified log model can also be reasonably fitted to spell 

data but are more difficult to apply than the Markov model - the 

modified log model particularly so. The physical significance of 

the latter model is also not clear. 

Considerable similarities were observed in the statistics of 

the two wet stations - Cwm Dyli and Falmouth; to a lesser extent 

also between those of Edinburgh and York, of Whitby and March, and 

of Edgbdston and Oxford. The recognition of similar spell dis-

tribution patterns at different stations, whatever their separation, 

may be of use in types of climatic analysis other than that of 

spells. 

However, it should he pointed out ti tiiône of 

the models, of whtever complexity, adequately describes 

the incidence of very long spells, though the Markov 

and Jenkinson models may provide some guidelines 

concerning their o'ccurrence. 

ME 



CHAPTER 5 

5. TIME SERIES OF SCOTTISH RAINFALL AND BRITISH ISLES 

CIRCULATION INDICES 

5.1 Introduction 

In the previous chapter it was shown that a Markov process 

describes well the distribution of spells of length five days or 

greater. Persistence, the simplest form of which is Markov per-

sistence, is one form of non-randomness prepent in time series, 

others being trend and periodicities. In this chapter rainfall 

records from twelve stations are tested for homogeneity and their 

non-random elements are investigated using decadal means, filter-

ing techniques, power spectrum analysis, and eigenvector analysis 

Results from different stations are compared and stations are 

classed "West" or "East" As mentioned in Chapter 1, the pres-

nce of any trend or periodicity in several records considerably 

increases its significance. 

Common variations in "West" and "East" stations are compared 

with those of circulation indices revealed in the results of sim-

ilar analyses. Cross spectra between rainfall and circulation 

indices are also computed to investigate the relationship between 

oscillations in rainfall and indices. The P and C indices measure 

the frequencies of progressive and cyclonic types of circulation 

which produce most rainfall • The extent, to which P variations 

relate more closely to the rainfall of "West" stations and C vari-

ations to that of "East" stations, as might be expected from 

synoptic experience and from Murray and Benwell's (1970) correl- 
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ation analyses between monthly rainfall and indices is invest-

igated. 

Periodicities which are apparent in Scottish data are com-

pared with those of Brunt's (1925) analysis of European weather, 

with Gray's (1975) analysis of S.E. England rainfall and temper-

ature, and with results catalogued by Lamb (1972b). Periods of 

generally low or high rainfall values covering several decades 

are also compared with periods with a predominance of a given 

circulation type, as given by Lamb's (1972a) classification accord-

ing to the frequency of Westerly type over several decades and by 

Schove's ( 1 950 ) classification of circulation types over Europe 

and the North Atlantic. 

52 The data and its apparent inhomogeneities 

onth1y and annual values of circulation indices and of 

rainfall are analysed using the techniques described in detail in 

Section 5.3. The station positions are shown in Figure 51 and 

the periods of data used are given in Table 5.1 

In Table 5.1 there is overlap for the Edinburgh records from 

different sites only in 18960 Headings at Blackford Hill and at 

other sites to the south of Edinburgh towards the Pentlands 

receive more rainfall than Charlotte Square and other sites in the 

town. Most of the pre-1896 records are in the town. Comparison 

of long-ten means for the periods 1 785 to 1896 and I89Etb 1973 show the 

higher yield of the latter record at the more exposed Blackford Hill 

site. In 1896 itself the town gauge of Charlotte Square gave 

599.1 mm while the Blackford Hill gauge gave 616.5 mm. 

At Loch Leven Sluices for the overlap period of 1933 to 1 944, 
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Figure 5. 1 	Station network for studies of secular changes 
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the .1877 to 1944 gauge had a mean value of872.ljmm (standard 

deviation 26.1 mm) and the .1931 to 1971 gauge 92 1 .3 mm (standard 

deviation 27.8 nm). As the readings from the original gauge were 

not homogeneous in themselves, it proved difficult to construct 

one continuous homogeneous record from readings at the two sites. 

In fact, records from the first site to 1933 and the second site 

from 1933 were considered as one record. 

For none of the stations was it considered possible to homo-

genise the rainfall records prior to further analysis, so as to 

allow for changes of gauge site or exposure since sufficient over-

lap was not available to compare records from different sites. 

An attempt was made to identify inhonogeneities.within a record, 

using Cramer's test (see 5.3.1), and any apparently anomalous 

decadal mean value for a given station was then compared with 

corresponding decadal means for other stations. The locations of 

the gauges (Figure 51) did not allow direct comparison of gauge 

records for relative inhomogeneities using one of Kohler's' 

(1949) test. Neither was any gauge-record considered to be of 

.such homogeneity that it could be used as a basic comparison 

gauge. (Kohler's test takes one of two forms: (i) sets of annual 

values are plotted on semi-log paper and the natural tendency for 

precipitation amounts to bear a constant ratio between locations 

then appears as a constant difference; (ii) series of annual 

totals are plotted against each other in the form of cumulative 

sums, plotted points tending to fall on straight lines for records 

of relative homogeneity.) 

The stations in Table 5<,1 were subsequently divided into 

"East" and "West" stations with the first seven classed as "East" 
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Record Period Sub- 
Period Site Comments 

Marchmont 
House 1867-1973 Minor changes of exposure. 

Edinburgh 1785-1973 1770-1805 Unknown Observer, Mr. Adie 
) 

1805-1821 Various C.F. Mossnari 

1822-1855 Unknown Observer, Mr. Adis 
) 	

(1896) 

1856-1896 Charlotte 
Square 

1896-1973 Blackford 
Hill 

Loch Leven 
Sluices 1842-1971 1842-1871 Slight changes of site in 1871 

1871-19144 with 1 per cent change in mean 

• 1933-1971 value. 

Crombie Res. 1 975-1 973 

Balmoral 1882-1 973 Minor site changes in May 1955, 
June 1967. 

-3 
-S 
-a 

7 
' 4 

Table 5.1 Summary of Scottish rainfall 

.data for studies of secular changes 
	 .6 

7... 



4 . . 

-s 
-S 

7 

Table 5.1 continued 

Record Period Sub- 
Period Site Comments 

Gordon Castle 1 865-1 973 

Wick 1877-1 973 1877-1941 Coastguard 
Station 

1941-1945 Airfield 

1945-1973 Airfield Improved site. 

Stornaway 1877-1973 1876-1930 Town 

1931 Coast More exposed than town. 

1932-1936 Town 

1937-1973 Coast 

Arisaig 
House 1890-1 973 Minor site changes in May 1955. 

Portree 1900-1905 

1910-1973 Minor site changes in 1 936, 

Greenock 1878-1 973 

North Craig 
Res. 1880-1973 

S 



stations. The assignment. of Wick to..  the .East categb;y•was some-

what arbitrary, a fact which emerges in the comparison of the 

results of the analyses of the records of different stations made 

in sections 5.3 and 5.4. 

5.3 Methods of analysis 

5.3.1 Decadal means of annual rainfall 

Decadal means were first calculated for each station 

and compared with its overall mean using Cramer's test. The 

latter compares the mean value of a subrecord of n values, x., 

with its overall, mean, i, using its overall standard deviation S. 

The test defines 'a statistical t as in equation 5.1 which is 

distributed as Student's t with N-2 degrees of freedom (Mitchell 

et al, 1966). 

1 

t. 	
n(N-2) 	2 

p 	N-k(1 +t) 
) t 	 (5.1) 

where 	
tk = xk -x 

Decadal means were tested against long-term means for each 

station. Those decades which had a mean value significantly 

different from the long-tern mean, as determined by the 95 per 

cent of the two-tailed t-test, were compared with decadal means. 

of other stations in order to isolate anomalously wet or dry 

decades which might suggest inhornogeneities in individual records. 
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5.3.2 "Low-pass" filtering 

Decadal means only give a rough guide to the overall 

variations in rainfall0 Ten year running means, for example, 

provide a continuous estimate Of mean values. However, running 

means suffer from various pit-falls; in particular, some long-

period oscillations may be exaggerated and shifted in phase. If 

the values which are neaned are weighted, spurious periodicities 

may be partially eliminated and peaks and troughs in a record may 

be located more accurately. 

Weighted nine-year running means were applied to the annual 

rainfall records, in an attempt to filter out high-frequency 

variations. The filter weights were determined using binomial 

coefficients, as suggested by Mitchell et a]I (1966). Ordinates of the 

Gaussian probability curve are represented by the binomial co-

efficients C in equation 5.3 and are used to determine the filter 

weights, si., which are normalised as in equation 504 

ml 
- k (m-k) 	 (5o3) 

= 1 	 (Sdt) 

A filtered time series is thus produced with each member 	being 

produced from the 2n + 1 values of the original series Xt 

Yt = 	 + 	
(505) 

R  = cos m 
	 (5.6) 

N 



The frequency response of the binomial filter R f  is express-

ed by equation 5.6. m in equation 56 is determined so that R  

falls to 0.5 for oscillations of period equivalent to six times 

the standard deviation, 	, of the binomial distribution. For 

the records analysed, he desired condition was to suppress effects 

of oscillations of period less than ten years so that the filter 

response to such oscillations was less than 0.5 i.e. 6 	was 

to be about 10 and n = 12 to the nearest integer. The weights 

Fj  normalised to 1 were hence determined as: 

-N 

= 0.22, W 1  = 020, W+2 = 012 3  

w 3 = 0.05, Wh_  0.02 
	

(5.7) 

Low-pass filtered time series should reveal the presence of 

any low frequency oscillation in the data and it should be poss-

ible to obtain an indication of the phase of such an oscillation 

from peaks and troughs in the filtered record. The filtered 

record will also reveal those variations which are present only 

in sections of a record, a property which will not be revealed 

by spectral analysis. 

5.3.3 Power spectrum analysis 

In order to. investigate periodicities present in the 

rainfall series, power spectra were computed using (i) the 

Blaclunan-Thkey autocovariance approach, (ii) the Fast Fourier 

transform. As remarked in Chapter 1, the power spectrum has the 

property of revealing trend, persistence, and periodicities. The 
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effects of trend may be removed (see below) but the effect of 

persistence in determining the underlying shape and form of-the 

power spectrum, against which the significance of the periofticit-

ies must be tested, may be difficult to determine. Simple "red 

noise" spectra may be plotted and used to test for the presence 

of periodicities if persistence is of a simple Markokr type. Other 

forms of persistence are more difficult to model and their spectra 

are not easily computed. The spectra below, where persistence 

did not seem to be very prevalent, were treated as white noise 

spectra with possible periodicities, the significance of which 

was investigated. 	- 

5.3-3-1. 	The Blackman- Tulcey autocovariance 

approach (ACV) 

The Biomedical Computing Porgram (BF) written by 

W. J. Dixon et al (1968) at the University of California was 

used. Autocovariances R(ptt) at lag jJ; where flt is the time 

interval between observations, were calculated (equation 5.8) and 

detrended (equation 5.9) by a least squares method. 

R(ptt) = 	x  Xq+p 	p0,1 ,2..m 	(5.8) 

A(pAt) = R(pAt) - S -Ai i=0,1,..n-1 	(5.9) 

n 	(2i-n+1) where 	r = 	1 
n (n+1) 

o 	6 

= i-(n-1) 
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and x is the mean of  xi - 

Raw spectral estimates P(u) are obtained at frequencies 	t 

in equation 5.10 and are then smoothed by "hanning" as in 
7 

equations 5.11. 

2á 	m 	 UP TTP(u)- 	>IEp A (P'S t) cos ±j 	pO,l,..m 	(5.10) Tr 	0 

where 	E p  = 1 	ocp-c m 

= 	p=0,m 

SPX  ( 0 ) 	= 0.5j Px  (0) + 0.116 Px  (1) 	 (5-11  1a) 

SP x (u) 	0.23 Px  (u-1 )+0.511 Px 
 (u)+0.23P

x 
 (u+1) (5-1 1b) 

SPX  (m) = 0.511 P X(m) + 0.116 P (m-i) 	(5. 11 c) 

5.3.3.2 The Fast Fourier transform method (FFT) 

The analysis proceeds in the mariner suggested by Rayner 

(1972). In this method series of observations are increased to 

length n from B observations so that n has a value 21  where 1 is 

an integer. Series are first neaned, and detrended using a least 

squares method, i.e. linear regression is performed between mem-

bers of the series and time and members are then adjusted so that 

their mean value is zero and they have no linear trend. A cosine 

bell filter function h(j) in equation 5.12 is applied to the time 

series and this is equivalent to applying the "harming function" 

H(f ) to spectral estimates as in equations 5011 above. 
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h(j) = *(i - cos()) 	0 j 	& 

= 1 	 &jD-G 

= *(1 - cos ) 	DGjD 	(5.12) 

114, 

where & " 	and j, the interval between observations, is equiv- 

alent to pAt above. 

Filtered series are then extended to length 21  by the add-

ition of zeros and Fast Fourier sine and cosine coefficients are 

- - calculated at frequencies 2u k  At apart where 0< kC " in 

equation 5.13 

=h. x. cos 2fljk 	 (5.13a) 

b 	= 	
11 h . x 	n sin 2j k 	 (5.13b) k  

The power spectrum, the spectrum of variance, is then cal-

culated by squaring these estimates and dividing their sum by two, 

except in the case of k = 0 and 11  where bk  is zero. The spectra 

are further smoothed to increase the stability of the estimates 

by summing estimates into non-overlapping bands of width five as 

in equation 5.14,  at frequencies! 2mAt 

2 
SP x 

 (0) = a2(0) + 
	

(k) + b2 (k) 

	

2 	 (5.lba) 

SP (u) = 	2(k) + b2 (k) 
x 	 2 	 (5.14b) 

5u-2 
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SP (M) 

= 

	a' (ic) + b2(k) + a2() 	(5014c) 

Alternative band width. of summation to that of five may be used. 

Averaging over wider bands produces more stable estimates but 

with smaller resolution. 

An alternative method of increasing the stability of the 

spectral estimates is to average estimates at a given frequency 

obtained from different samples of a given record. 

5.3.3.3 Confidence limits of spectral estimates 

In order to increase the number of estimates at low 
. 	 I 

frequencies, the lags used in the ACV approach may be increased; 

alternatively, in the case of the FET method the bandwidth of 

summation may be reduced. The confidence limits of each spectral 

estimate will thereby be reduced at the expense of higher 

resolution. 

If several samples of a given spectrum are considered each 

sample spectrum can be assumed to be distributed, above the value 

of the population estimate 	where\' is the number of degrees 

of freedom of each sample estimate. If the sample variance,r 2 ; 
A2 

is an unbiased estimate of the population spectrum,C , then for 

. 

90 per cent of the time o— 
2 
 wall be defined by the limits in 

equation 5.15 (Rayner 1971) 

<cr-2 < 	(5.15) 
X2 t 	 0.95) 
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In order to estimate the' significance of a particular peak 

in a single sample spectrum, its spectral value must be tested 

against that of the local continuum. The assessment of the 

appropriate value of the latter is somewhat subjective and is 

dependent on the other forms of non-randomness present. If the 

series has been detrended, only effects of persistence, which 

are assumed to be insignificant in the spebtra below, and those 

of other periodicities need be considered in determining the 

shape of the continuum. Leakage of power from spectral peaks to 

neighbouring estimates may occur (see Hinich and Clay 1968) and 

can complicate the assessment of the value of the local continuum. 

Interference between peaks in the spectra may also affect certain 

estimates. 

Sample spectral peaks may be tested against the value of 

X 2(V,o.o5) 
times the value of the determined local continuum 

if the oscillation corresponding to the peaks can be expected on 

a priori grounds and the sample spectrum can be assumed to belong 

to a population of spectra with a similar peak. If the peak does 

not correspond to a wavelength which is noteworthy in previous 

studies, more stringent tests need to be applied. The probability 

of a peak occurring in one spectrum must be related to the joint 

probability of its occurrence in in spectra as in equation 5.16. 

= 	1 - (1 _q)fl 

qt 	
(5.16) 
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• 	 (5.17) q 	 0.65)
m 

The inequalities in equation 5.15 are thus altered by the factor 

in and can thus be used to assess the significance of peaks in 

individual spectra. For theBlaclauann-Tukey autocovariance app-

roach,V is given by equation 5.18, and for the ACV method (with 

non-overlapping bands) by equation 5.19 

- 	(=5.Sifml) 	 (5.18) 

N 

= w(D-G). ,.lo(D.-o) 
n 	 n 	

for  = 5) 	 (5.19) 

5.3.3.4 The choice of method FTP v ACV 

The FTP method is computationally faster than the ACV 

method and the amount of leakage of power from peaks in the 

spectra to neighbouring peaks has been shown to be less for the 

EFT method (Hinich and Clay, 1968). However, the overall stabil-

ity of a given number of estimates, as defined by confidence limits 

in equation 5.15, is usually greater with the ACV method. The 

confidence limits of ACV estimates widen further compared to ACV 

estimates with the number of data points available falling below 

a value of 21  as can be seen in equation 5,18. 

Using the ACV method, the maximum lag that can be used to 

compute power spectra is considered to be equal to one third of 

the number of data points, and for such cases the number of degrees 

of freedom of each estimate is 5.5> In the case of annual power 
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• spectra of indices, 11.1 years of data were. used with the maximum 

permissible lag of 37 to produce 37 estimates. To produce 

approximately the same number of estimates using the FFT method, 

summation of raw estimates over bands of width two would produce 

32 estimates with 3.4 degrees of freedom. The variance of such 

estimates would be unacceptably high, and in the case of series 

of length 80 or 90 years it would be even higher. 

For monthly data of length 85 years, B = 1020 and FFT est-

imates can be summed over bands of width five to produce 102 

estimates with 8.9 degrees of freedom. With the ACV method the 

maximum number of points which can be analysed, and the maximum 

lag are 1000 and 199 respectively, these limits being set by the 

program used. Fo' the monthlyidata, 984 data points were anal- 

yed using the ACV method with a lag of 199 to produce 199 estimates 

with 9.8 degrees of freedom. The over-all confidence limits of 

each set of estimates will be approximately the same but individual 

EFT estimates, being fewer in number, will have greater stability. 

The resolution of ACV estimates will be greater due to the larger 

number of estimates. 

53.3.5 Difficulties in the application of power 

spectrum analysis 

The chief difficulties in the use of power spectra to 

find periodicities may be summarised as: 

(1 
) 	 The modelling of the effects of persistence which cannot 

be approximately described as Markov persistence. 

(2) 	The assessment of the amount of leakage of power from 

spectral peaks to neighbouring estimates. 
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(3) 	The recognition of peaks in the power:  spectrum which 

arise from interference between other periodicities revealed 

in the spectrum. 

(It) 	The recognition of peaks which represent harmonics of 

other periodicitles. 

For high frequency peaks a decision as to how much 

power has been aliased from frequencies not resolved by 

the analysis. 

The assessment of the exact frequency of a periodicity 

(since spectral estimates are made for frequency bands). 

The assessment of the statistical significance of 

periodicities revealed by the spectral peaks. 

The first three and the last of these difficulties have al-

ready been mentioned. The fifth becomes important when effects 

of the quasi-biennial oscillation are investigated below in annual 

spectra where the Nyquist period is two years. 

.3.4 Cross spectrum analysis 

5.3.4.1 	Cross covariance approach 

Cross spectra were calculated in order to investigate 

the relationship between periodicities which were apparent in rain-

fall and circulation index time series. Cross spectrum analysis 

proceeded in a similar fashion using the BM program and cross-

covariance approach as in power spectrum analysis. Cross-

covariances are computed between series x and y (equation 5.19) 

and detrended (equation 5.20) in a similar way to autocovariances: 
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(pAt) 	4 2 x  Yq+p 	p=0,1,2..m (5019a) 

(_pat). 4 	2 Xq+p  Yq 	p=O,1,20.m (5.19b) 

1 

A (pAt) = R xy  (pat) - $
1 -OC 

where i = 0,1,..n-1 
	

(5.20) 

/31 andoC1  are defined for xy in a similar way to jR to/R andbL for x 

in equation 5.7 The cospectrmn 0(u) and the quadrature spec- 

trum Q(u), are given in equations 521 and 5.22 in a similar way 

to the power spectrum. 

(u) 

In 

C (A (pAt) + A (-p-"It)) cos 
fl 

(5.21) 

Q (u) = 	> E p (A (p4 t) - A (-p& t)) sin xy 	xy 	 m 

where 	ii. = 0,1,2...n and£ 	p=O,n 

- 	E  
p =1 
	O'Cp<m. 

Unlike autocovariances, cross-covariances are not symmetrical 

about lag 0, and are therefore calculated for both positive and 



negative lags. The sine transform of their difference (the quad-

rature spectrum) in addition to the cosine transform of their sun 

(the cospectrum) are then computed. The cospectrum describes the 

relationship between the two series considered exactly in or out 

of phase, while the quadrature spectrum considers the relationship 

at lag one quarter of a cycle. The cospectrum and quadrature 

spectrum are subsequently smoothed by "haiming", as in equation 

5.11, to produce smoothed estimates SC (u), SQ(u).
XY  

The complete relationship between the two series at a given 

frequency u 	is measured by the coherence square COHSQ(u), 
2mat 

which is analogous to the correlation coefficient, r, and by 
XY 

the phase of the cross spectrum l xy(u). 

COHSQ(u) 	
j 

(scxy (u) ) + (SQxy (u) )' 

=  
SP. (U) (u) SF (u) (5.23) 

(u) 	= 	
ta1 SQ(u) 

)ç3r 	 SC (u)
Yy 

(5.24) 

Estimates of coherence and phase are inversely related but the 

actual values of the coherence square is dependent on the power 

spectrum estimates SP(u),  SP (u). 

5.3.4.2 The FFT method 

With this method analysis proceeds on similar lines to 

the computation of the FYT power spectra. Series are detrended, 

filtered using the Tukey cosine bell of equation 5.12, and zeros 
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added to produce a series of length n which equals a value of 21. 

Fourier cosine a(k), a(k) and sine b(k), b(k) transforms 

are then calculated using the FFTO From these coefficients the 

raw cospectrum and quadrature spectrum are calculated as in 

equations 5.25 and 5.26 and are then summed into bands of width 

five as in equations 5.27 and 5.28. Fourier sine coefficients 

for harmonics 0 and E are zero and this is taken account of in 

equations 5.27 and 5.28, 

C (k) = a (k)a (k) +b b(k) 	(k)
xy 	x 	 x 	 (525) 

2 

Q(k) = a(k) b(k) - a(k) b(k) 

	

2 	 (5.26) 

2 
Sc xy 	 1 	cy 

(0) = 20 (0) + 	C (k) 	 (5.27a) 

Su+2 
SC (u) = 	 (Ic) 	 (5027b)XY 	 5u-2 

n 

SC (m) = 2 c (&) + 20 () 	 (5.27c) 

	

xy 	 xy 	xy 2 
n 2 

SQ (0)Q (Ic) 	 (5.28a) 

	

xy 	V 

Su -'- 2 
SQ (u) = 	I 	(k) 	 (5028b) 

	

X3' 	
5u-2 xy 

I]. 	- 

SQ(m) = n 
	

Q(k) 	 (5.28c) 
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Confidence limits of coherence square 

and phase 

Jenkins and Watts (1968) show that ACT(u) defined by 

equation 5.29 is distributed normally with variancQ4 where u is 

the number of degrees of freedom of each estimate. 

ACT(u) = arc tanh I COHSQ(u)I 

- 	(1+1J (u) ui 	 ) 	 (529) - 2 	1 -lJtDBsQ(u)I 

- 1 
var ACT (u) 	 (5.30)  

The modulus sign arises since the actual sign ofJCOHSQ(u) is 

determined by the values of the cospectrum and quadrature spectrum. 

For a given probability level, confidence limits gUO may be 

placed on ACT(u) as in equation 5.31 and extreme values of ACT(u) 

at these limits may be transformed to values of coherence square. 

For a completely incoherent pair of series the average coherence. 

square determined from the variance of ACT(u) would be 4- 
ACT(u) :t g[%] ( J  ) 2 	 (5.31) 

Tani xy(u)  is also distributed normally with variance given 

by equation 5.32 and the confidence limits of tani are defined
XY  

by equation 5.33. 

var tad (u) 	sec 	(u) ! 	
1

XY 	 V C0HSQ(u) - 1) 
	(5.32) 
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tan 	(u) + g%Jsecq 	
1 	1 

xy 	 (u)ç C0HSQ 	 (5.33) - 1) ) 
XY 

In equation 532 it can be seen that the variance of the 

phase angle is dependent on the value of the coherence square, 

and is very dependent on the value of the phase angle on account 

of the sec4j factor. Confidence limits on phase angles are a
XY 

minimum forl equal to 0 onT, and a maximum, encompassing the
XY 

complete range of phase angles forl 	equal to 1  or 

As the expression in equation 5.30 is complicated, 90 per 

cent confidence limits onj 	for certain high values of coherence 
XY 

square were tabulated in Table 5.2 for-/ = 5.5 as in annual cross 

spectra and in Table 5.3 for- y' = 9 as in monthly cross spectra. 

g[90%] in equations above will have the usual value of 1 .645  as 

determined by the tables of the normal distribution. 

In Tables 5.2 and 5.3 only values of I in the range 0 to
XY 

IT 
have been considered due to the symnetry properties of the 

expression 532. Values of phase angles between 1l and 	,1T and 

217 	and 	have similar confidence limits to angles in the 

range 0 to . Angles in the table are expressed in radians and 

in fractions of a circle. 

Table 5.4 gives 90 per cent confidence limits on coherence 

square for annual and monthly cross spectra, together with ranges 

of phase angles of interest when considering in-phase and anti-

phase relationships between oscillations confidence limits of a 

coherence estimate rise as values of coherence fall. When invest-

igating cross spectra between series, the primary use of coherence 

is to know the probability that oscillations of given frequency 

Ewell 



in two series are completely cohereht (COHSQ = 1) or incoherent. 

This probability depends both on the actual values of coherence 

and their confidence limits. Average values of coherence square 

for completely incoherent series, are also given and it is useful 

to compare the lower confidence limits of a coherence estimate 

with such a value when assessing the relative significance of a 

given coherence estimate. 

From coherence values given in Table 5.4 it was decided that 

a value of 0.85 or greater in the case of annual series, and 0080 

or greater in the case of monthly series, could be considered 

as significant coherent estimates, i.e. that oscillations of 'a 

given frequency in two series would be related for such estimates. 

Smaller values of coherence, 0.75 in the case of annual series 

and 0.70 in the case of monthly series, could also be regarded as 

significant if they occurred in several cross spectra. 

The phase relationship between significantly coherent 

oscillations and the confidence limits of the phase angle were 

then investigated. The ranges of phase angle which could describe 

an in-phase or anti-phase relationship, between significantly 

coherent oscillations were determined from the confidence limits 

of phase angles given in Tables 5.2 and 5.3. These ranges are 

given in Table 5.4 for various values of coherence. 

When coherence values increase, confidence limits on phase 

angles decrease. The ranges of values of 	representative of
XY 

a possible exactly in-phase relationship become smaller as coher-

ence values increase, while the ranges ofl 	 representative of a
XY 

probable nearly in-phase relationship become Jarger. 

In Table 5i4 the choice of values of significant coherence 
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Table 5.2 90 per cent confidence limits on phase angle 

0 - for annual rainfall and indices cross spectra 

in radians, 	(u) in fractions of a circle. 	LL, UL upper and lower limits of phase 

• 	 angle for given coherence values 

OOHSQ = 0.85 COHSQ = 0.90 COHSQ = 0.95 

x3r LL? 
xy UL' 

xy xy UL 
ry LLI' 

xy ULT 
xy 

0.000 0.000 -0.046 0.046 -0.037 0.037 -0.025 0.025 

0.063 0.010 -0.036 0.055 -0.027 0.046 -0,016 0.035 

0.126 0.020 -0.027 0.064 -0.018 0.056 -0.006 0.045 

0.188 0.030 -0.018 0.073 -0.008 0.065 ••0.001 0.055 

0.31 -0.000 0.092 0.011 0 .084 0.023 0.074 

0.628 0.100 0.013 0.138 0.056 0.131 0.071 0.123 

0.942 0.150 • 	 0.077 0.183 0.097 0.178 0.118 0.171 

1.257 0.200 -0.008 	
• 

0.224 0 . 08 9 0.222 0.151 	• 0.217 

1.571 0.250 0.250 0.250 -0.250 0.250 -0.250 0.250 
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Table 5.3 90 per cent confidence limits on phase angles
iT  0 - - for monthly rainfall and index cross spectra 

in radians, 	'(u) in fractions of a circle. 	fl, DL upper and lower Units of phase 
XY  

angle for given coherence values 	 - 

COHSQ = 0.70 C0HSQ = 0.60 COHSQ = 0.90 

•XY IXY LIä' UL' LL' UL' LL!' Ut' 

0.000 0.000 -0.055 0.055 -0.013 0.013 -0.029 0.029 

• 	0.063 0.010 -0.0146 0.0614 -0.0314 0.052 -0.019 0.039 

• 	0.126 0.020 -0.038 0.073 -0.0214 0.061 -0.010 0 .0148 

0.188 0.030 -0.029 0:082 -0.015 0.071 0.010 0.058 

0.3114 0.050 -0.012 0.100 0.003 0.089 0.019' 0.077 

0.628 0.100 0.027 0.11414 0.0147 	• 0.136 0.067 0.126 

• 	0.9142 0.150 0.051 0.188 0.083 0.181 0.112 0.173 

1.257 0.200! -0.098 0.227 0.029 0.2214 0.136 0.219 

1.571 0 .250  -0.250 0.250 -0.250 0.250 -0.250 0:250 
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Table 5.4 Confidence limits on coherence square and important 

ranges of phase angles for annual and monthly cross spectra 

ANNUAL 	RAINFALL MONTHLY 	RAINFALL 

actual lower upper .T 	 ranges of interest lower upper ranges of interest
XY  value limit limit limit limit 

COHSQ COHSQ COHSQ 1. 	 2. COHSQ COHSQ 1. 	 2. 

0.90 	0.65 0.97 0.97 0.03 0.93 0.07 0.70 0.96 0.98 0.02 0.90 0.10 

0.47 0.53 0.)43 0.57 0.48 0.52 0.)40 0.60 

0.85 	0.51 0.96 0.96 0.04 0.94 0.06 0.59 0.92 

0.46 0.56 0.244 0.56 

0.80 	0.37 0.95 0.249 0.92 0.96 0.04 0.92 0.08 

0.46 0.54 0.42 0.58 

0.75 	0.30 0.94 0.40 0.90 

0.70 0.32 0.89 0.94 0.06 0.93 0.07 

0.)4)4 0.56 0.43 0.57 

completely in- 
coherent series 0.36 0.22 



estimates and of phase estimates which may be considered to 

represent in-phase or nearly in-phase relationships is subject-

ive. While the variance of coherence and phase estimates 

may be expressed by equations 5.30 and 5.32, the physical signi- 

ficance of the estimates and their variance can only be determined 

by the investigator. 

5.3.5 Eigenvector analysis 

Eigenvector analysis was carried out as described in 

Chapter 2 on an 11 station by 84 year matrix using S-mode anal-

yses. Real data and normalised deviation data matrices were 

multiplied by their transposes to produce 11 by 11 symmetric 

cross product and correlation matrices respectively. In the 

latter case the 84 year station means were subtracted from each 

station values and the 84 values were then normalised so that 

the sum of squares of the 814 values was unity. 

11 eigenvectors with 11 space elements, one per station, were 

computed and sets of eigenvector multipliers were produced by the 

matrix multiplication of each eigenvector by the original matrix. 

Each set of eigenvector multipliers was considered as a basic time 

series and the relative extent to which each series described 

time variations at a given station was determined by the eigen-

vector space element. The overall significance of a given eigen-

vector and its set of multipliers in describing rainfall variations 

expressed in the original matrix was determined by the eigenvalue0 

The sets of significant :eigenvector multipliers were also 

considered as time series and the results of analysis of multiplier 

series and of individual series were compared. The 11 eigenvector 
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space elements were first compared with station mean annual rain-

fall and its standard deviation, and with station position, in 

order to see if a particular set of eigenvector multipliers was 

of more relevance to particulat stations. The analysis of the 

sets of eigenvector multipliers proceeded in the same way as for 

individual rainfall series using the "low-pass" filter, the power 

spectrum, and the cross spectra between the series and those of 

circulation indices. The comparison of the results of analysis 

of individual ,ind eigenvector multiplier series attempted to ident-

ify multiplier serie as describing variations of "East" or "West" 

stations. 

Each eigenvector and its set of multipliers is independent 

of other eigenvectors and their sets of multipliers as demon-

strated in Chapter 2. Eigenvector multiplier time series may 

therefore be expected to show particular time variations, period-

icities of definable frequency or definite trends, rather than 

the sum of several variations. 

5.4 Results of analysis of annual series 

5.4.1 Decadal means 

The values of decadal means of "East" Scottish rainfall 

stations appear in Table 5.5 and of "West" stations in Table 5.6, 

those values which are significantly above or below long-term 

means (according to Cramer's test) being underlined. Decadal means 

expressed as percentages of long-term means and averaged over "East" 

and "West" stations are plotted in Figure 5.2. General variations 

in the tables and figure can be compared with those of circulation 

indices (Table 5.7), and anomalously large or small values may be 
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Table 5.5 Decadal means "East" rainfall stations 

EDINBURGH LOCH LEVEN MARCHMONT CROIE 
BAIJ}CRAL GORDON 

WICK SLUICES HOUSE RES.  CASTLE 

mean 
stand 
d ev. mean stand 

dev. mean I stand 1 aev0 mean stand. 
Idev. mean I stand 

J mean i stand 
I meant I stand I day0 

Thriod 175I 	- 1896 18242 	- 1973 1565 - 1973 1575 - 1973 1882 - 

1dev0 

1973 1866 - 

1dev0 

1973 1877 - 1973 

Overall 651.9 12024  9080 1 4403 816.24 1241.5 89243  155.24  8435 122.3 751.8 103.1 763.8 919 

1896 - 1973 

66924 120.6 

1791-00 6665 16240 

1801.,10 580.1 123.0 

1811-20 635.1 102.0 

1821-30 669.9 138.9 

183140 62469  100.24 

18241-50 6124.7 116.5 9182 1422 

1851-60 656.1 105.5 888.5 162.1 

1961-70 6586 96.6 585g4 126Q0 

11871-80 7624.24 136.24 978.2 39.1 1011.24 186.2 8331 117.9 

1881-90 616.7 97.8 9024.2 129.5 857.5 102.6 929.6 1552 866.6 1628 6896 72.2 726.0 788 

I. 
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Table 5.5 continued 

EDINBURGH LOCH LEITEN MARC}40NT CRONBI'E 
BALMORAL GORDON 

WICK SLUICES HOUSE RES. CASTLE 
stand stand  stand stand stand stand  stand 
dev. mean  

 dev. mean 
dev. mean  dev. me mean n dev. mean  day, mean day. 

1691-00 629.9 81.3 927.9 127.3 834.6 120.1 916.7 127.8 828.5 100.6 829.8 63.1 784.5 96.6 

1901-10 646.)4 130.8 908.6 173.7 788.2 126.2 886.5 107.9 829.1 133.6 760.8 914.7 794 , 7 78,7 

1911-20 649.0 130.2 873.0 146,8 823.5 122.14 843.0  158.0 886.5 107.2 752.6 113.3 736.6 71.0 

1921,30 723.3 110.2 931.9 127,8 876.6 99.8 95li.0 136.14 865,9 148.1 745,1 106.0 774.8 94.1 

1931-)40 685.1 74.14 874.8 99.8 778.8 81.8 897.1 78.2 862.6 87.14 719.7 72.7 751.1 76.6 

1941-.50 690.3  98.1  952.8 112.0 764.5 85.6 885.2 106.2 792.5 83.1 77900 71k7 757.0 79.0 

1951-60 654.3 130.2 935.5 153.7 726.2 125.2 846.3 176.8 848.1 127,0 759.3 84.8 806.6 65.5 

1961-70 673.1  102.1 915.14 95.0 782.1 106.7 551.14  122,9 .860.6 74.2 727.2 76.5, 803.3 94.2 

Underlined values differ significantly from long-term means as determined by Cramer's test, 
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Table 5.6 "West" Coast stations decadal means 

Records are given in 1a.m. 

NORTH CRAIG 
RESEVOIR GREENOCK ARISAIG 

HOUSE PORTBEE STORNOWAY 

mean stand 
dev. mean stand 

dev. mean stand 
dev. mean stand 

dev. mean stand 
I 	dev0 

Period 1881 	-1973 1878 -1973 1890-1973 1876 -1970 
1910 1973 

Overall 1125.7 173.2 1533.2 229.1 16035 211.1 1708.9 273.6 1189.4 178.3 

1881-90 924.3 77.0 1518.5 210.4 12173 105.9 

1891-00 1099.8 11.9 1557.6 156.3 1625.6 164.8 1331.9 254.9 

1901-10 1134.6 153.9 1591.6 240.0 1577.3 142.0 1258.2 155.2 

1911-20 1061.2 109.2 1626.1 211.2 1620.5 1160 1515.9 177.5 1296.2 89.3 

1921-30 1217.4 148.8 1700.1 212.9 1684.6 165.6 1832.4 156.7 1279.6 81.1 

1931-40 1171.4 155.7 1445.8 225.9 1568.4 269.0 1713.2 340.4 1155.5 155.6 

1941-50 1240.5 177.8 155.1 2L.9.3 1554.2 266.7 1884.9 314.5 1116.4 127.6 

1951-60 1127.0 166.1 1434.2 183.2 1628.9 222.2 1709.9  188.0 1076.3 113.1 

1961-70 1193.8 130.6 1505.5 173,2 1579.4 225.0 1736.9 248.2 1088.3 112.1 

Underlined values differ significantly from long-tern means, by Cramer's test. 



A) 

Table 5.7 Decadal means - circulation indices 

mean 	s.d. mean 	s.d mean 	C 	s.d mean 	N 	s.d 

1861-70 6.62 818 -296 2.23 -6.11 4.03 13.36 1.75 

1871-80 2.914 6.73 -1.32 2.61 -2.13 611 114.00 276 

1881-90 3.08 6.514 -0.33 3.22 -140814 392 114.66 1.4i 

1891-00 2.36 512 -1.62 2.25 -6.89 3.38 13.97 225 

1901-10 14.77 6.147 -1.18 2.86 -513 3.71 114.114 2.27 

1911-20 657 7.71 -0.91 14.19 -373 14.76 11.72 8:62 

1921-30 970 5.32 -0.65 3.00 -2.140 14.814 15140 8.142 

1931-140 3014 5055 -1.65 1.80 -14.61 275 114.140 5.1414 

19141-50 588 702 -0.67 280 -652 3.90 114.13 14.79 

1951-60 209 7.03 -2.61 2.91 -A4.90 5.93 114.22 1.79 

- 1961-70 0.75 7.148 -2.58 2.23 -3.00 30314 15.143 9.07 

Overall 1436 7.18 -1.50 293 -14.57 146o .114.13 5.314 
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Figure 5.2 	Decadal means averaged for (a) "West" sta tion  

- 	 (h) 'East" stations. 
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further considered in the light of these latter variations. 

A notable feature of the Stornoway record (absent elsewhere) 

is the low values from the 1 930 1 s onwards. This is attributed 

to the discontinuity introduced by a change of site made in 1937. 

At all stations the decade 1921 to 1 930 is one of high rain-

fall and is also one of high P and C index. Heavier rainfall may 

be affected by a greater frequency of progressive and cyclonic 

weather types as measured by the F and C indices. The 1871 to 

1880 decade is also particularly wet for "East" stations and is 

one of high C index. Only these two decades can be distinguished 

as wet for sets of stations whose high rainfall can be linked to 

high index values. General variations in "East" and "west" stat-

ions as expressed by decadal means do not correspond closely to 

those of C and P, though such relationships emerge for higher 

frequency variations in the analyses below. 

The remaining anomalous values of the wet 1890's for Gordon 

Castle, and wet 1940's  for North Craig Reservoir and Portree, 

and the dry 1910's for Portree remain unrelated to general vari-

ations in rainfall, and could, as in the case of Stornoway,  

reflect inhomogéneities in the gauge record. Portree, with two 

anomalous values, is particularly suspect. 

5.4.2.1 	"Low-pass" filtered rainfall and 

circulation indices 

The results of applying the binomial filter in section 

.3(b) to circulation indices and rainfall appear in Figures 5.3 

to 5.6. The filter failed to remove all the high frequency vari-

ations in rainfall as there were large differences between individ- 
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Fipure 	"Low ass" filtered animal. P and C indices 
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Figure 5.b 	"Low-pass" filtered annual S and M indices 
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Figure 5.5 	uLow_passT! filtered annual rainfall - 

Edinburgh and Loch Leven Sluices 

- 1 13- 

C 



a 

a 

a 

'4 

3 

3 

3 4 

32 

34 

32 

mit 

80( 

- lot 

SQO 

ins 
40 

38- 

-: 	 - - 	- 	
Morchmont House 

	

I 	
R 

- 	
\ 	 Crombie 

- 	 rç 	 Reservoir 

- 

Balmoral 

11 	 Gordon 

—Castle 

/\ :1 \ 
II 	

• 	
2t( 

Wick 

4 	 U 	 ki 
700 

	

I 	 I 	 I 	I 

	

1860 70 	80 	90 	1900 	10 	20 	30 	40 	50 	60 	70 
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ual years. Four years of data were lost at each end of the record 

as nine terms were required to compute each filtered value. It 

is of some interest to note that changes of site in the Edinburgh 

gauge in 1822, 1851,  and 1899 can be recognised from a distinguish-

a b le secondary maximum value in the filtered data in Figure 

5.5. The effect of the site change in Stornoway's record in 1937 

is also apparent as in the decadal mean values. 

Since nine years of data contibute to each member of the 

filtered series and since correlations between members of each 

series are larger than for unfiltered series, it is sufficient 

to compare rough positions of peaks and troughs in different series 

to identify wet and dry periods and possible common variations. 

For "East" stations maxima occur around the late 1870s, the late 

1920s, and the late 1940s (apart from Gordon Castle in the 1940s) 

and minor peaks occur in 1917 and 1967.  There are corresponding 

peaks in C index in 1876, 1925,  and  1967. 

The late 1920s: and 1940s peaks are also present in "West" 

stations. There is also a peak in 1883 for Greenock and 1885 for 

Stornoway. The late 1940s  peak and the 1880s peak correspond to 

a 1950Ppeak and a minor 19500 peak, and an 1883 P peak respect-

ively. Both the early 1920s peaks in P and the late 1920s peak 

in C describe the general increase in circulation strength in the 

1920s which affected heavy rainfall. P and C can be seen in 

Figure 5.3 to have some other similar variations with P leading C 

Minima in rainfall data occur in the late 1880s, early 1910s )  

and the early 192405 at all stations, and in the early 1920s and 

the early 1960s at "East" stations. Corresponding minima occur 

in C around 1886 and 1943,  and in P around 1887 and 19240. There 
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Figure 5.8 	"Low-pass" filtered rainfall series of calendar 

months (different years)- Edinburgh Blackford Hills 
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are also 1869 minima in C index and Loch Leven rainfall, and an 

1869 subsidiary minimum at Edinburgh. (Only the latter two stations 

have records for this early period.) 

There are no peaks or troughs in S and M indices which can 

be related to those of rainfall, C index tends to give a better 

indication of rainfall variations than P especially for "East" 

stations though the two indices are themselves related. In some 

cases P variations are similar to those of "West" stations, when 

the same is not true to C variations. 

No recurring oscillation of definite period stands out for 

a given record or for common subsections of several different 

records. The power spectrum analyses below investigate the pres-

ence of oscillations both of periods greater than ten years, 

which are not apparent in these filtered data, and of periods less 

than ten years whose effect has been removed by the filtering of 

data in this section. 

5.4.2.2. 	Some results of "low-pass" filtering of 

rainfall series of calendar months (different years) 

In Figure 5.8 graphs of filtered values of rainfall for 

each calendar month from 1 896 onwards are shown for the Blackford 

Hill-Edinburgh gauge. Rainfall values are largest in July and 

August and show greater variability in August, September and 

October. As a result, the filtered rainfall curves for August and 

September show the closest resemblance to the annual rainfall 

curve in Figure 5.4. This perhaps trivial but not obvious point 

can be seen in the analyses ofmonthly records of other stations - 

the variations in rainfall for the months of August and September 

N 



bear the closest resemblance to those of annual rainfall. 

5.4.3 Power spectra. 

A list of the length of data, n years, and maximum lag, 

in years used for the computation of power spectra by the Blackman-

Tukey autocovariance method is given in Table 5.8 for rainfall 

stations and circulation indices. The longest rainfall records 

were of the same length as the 1861 to 1971 records of circulation 

indices. Series of index spectra were calculated for each of the 

different lengths of rainfall station records but as these spectra 

were similar, only those for length 111years are shown here. 

Records of index of the same length as those of rainfall records 

and their derived power spectra were used in 5.3.4. to calculate 

cross spectra and coherence estimates. 

Three of the peaks listed in Table 5.8 are significant at 

the five per cent level for a "population spectrum';  these peaks 

would be significant if expected on a priori grounds. The Cronbie 

Reservoir peak which is underlined, is significant at the five 

per cent level for a "sample spectrum". As the former three peaks 

were not 'predicted' and are present in only one spectrum, they 

cannot be considered to be of importance. The 3.1 year period peak 

appears in other spectra at similar periods and is especially 

noticeable in C index and in the rainfall of Edinburgh, Loch Leven 

Sluices, and Marchmont House. As the number of lags and length 

of record used were different in each case, and as spectral esti-

mates are for frequency bands, the presence of peaks such as those 

at neighbouring frequencies in different series is sufficient to 

signify the presence of a particular oscillation in several series. 
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Table 5.8 Data used in the computation 

of annual rainfall and circulation index 

power spectra 

Station Period 
No. of 
years 

n 

Max- 
mum 
lag 

in 

Results 
Period of 
significant 
peaks &ears) 

P index 1861-1971 111 37 Fig. 509 704 

C index 1861-1971 111 37 Fig. 5.9 

S index 1861-1971 111 .37 Fig. 5.10 

M index 1861-1971. 111 37 Fig. 5.10 

Edinburgh 1861-1971 111 37 Fig. 5.9 123 

Loch Leven 1861-1971 111 37 Fig. 5.9 Sluices 

Marchinont 
1867-1971 105 35 Fig. 5.9 House 

Crombie 
1875-1971 97 32 Fig0 5°9 31 Reservoir - 

Gordon 
Castle 1866-1971 

- 

106 35 Fig. 5.9 

Balmoral 1882-1971 90 30 Fig. 5.9 15.0 

Wick 1877-1971 95 32 Fig. 5.10 

Ansaig 
House 1890-1971 82 

- 

27 Pig. 5.10 

Portree 1910-1971 62 21 Fig. 5.10 

Greenock 1878-1971 94 31 Fig, 5.10 

North Craig 
1880-1971 92 30 Fig. 5.10 Reservoir 
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There is considerable evidence of the presence of a quasi-

biennial oscillation in the data though aliasing of power from 

non resolvable high frequencies mentioned above in point 5, 

complicates the assessnEnt of the significance and precise frequency 

of peaks at and near the Nyquist frequency. All the spectra show 

rising power towards two years, and in the case of P index, C index, 

and Crombie Reservoir this feature is prominent. The effects of 

aliasing in increasing the power at the two year period cannot be 

easily assessed. High frequency oscillations are studied in more 

detail below using monthly data since the significance and precise 

frequency of the quasi-biennial oscillation can be more easily 

assessed in monthly data. 

Low frequency peaks are not easily interpreted due to the 

difficulty of locating the exact frequency of the peaks (point 6 

above) and to possible effects of persistence (point 1). Uncer-

tainties in locations of low frequency peaks imply large 

uncertainties in wavelength, the reciprocal of frequency. Persist-

ence which may be present in the P index makes the distinction of 

the effects of a possible 714 year periodicity from those of per-

sistence subjective. The persistence does not appear from the 

shape of the spectra to be of a simple Markov type. 

In these spectra peaks can be seen which may be lower 

harmonics of high frequency peaks (as mentioned in point l-i)  or may 

be the result of interference between peaks (point S) If a 20 

year periodicity is present in C and Balmoral, the four year peak 

in these spectra probably represent Lower harmonics of it. The 

2.0 year P peak (frequency 0.5 cycles per year) could interfere 

with the 2.6 - 2.7 year peak to produce the observed 71 - 7.5 
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year peak (0.14 - 0.13), and the 2.0 year peak in C with the 3.1 

year peak (0.32) to produce the observed 5.7 year peak (0.18) 

The 12.3 year peak (0.08) in Edinburgh could be a beat between 

the 3.1 years (0.32) and 4.1 year (0.24)•periodicities0 Part of 

the broad peak in S from 6 to 10 years (0014 - 0.10) may result 

from interference between peaks at 2.03 years (0.49) and 4.1  years 

The most importance results in this section are the detection 

of a significant oscillation of period around three years, and of 

the well-known quasi-biennial oscillation. There are no definite 

low frequency peaks revealed by this analysis such as an 11 or 22 

year sunspot cycle. The high frequency oscillations are studied 

in section 5.5 in greater detail using monthly data. 

Cross spectra annual rainfall and 

circulation indices 

In order to correlate the oscillations in circulation 

indices and rainfall, cross spectra between rainfall records and 

indices were calculated in section 5.3.4 above. High coherence 

values together with the phase angle between cross spectral esti-

mates at given periods appear in Tables 5.9, 5.10 and 511; 

examples of coherence and phase spectra are given in Figure 5.12. 

Cross spectra between P and C indices were also calculated 

but are not shown. The only significant relationship to emerge 

was for a period of 2.0 years, where the coherence square was 0.98, 

and the phase angle 0.99 of a circle. Sharply rising power towards 

two years exists in the power spectra of both C and P, and it seems 

probable that a quasi-biennial oscillation is present in both P and 

15k.. 
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Table 5.9 Coherence values> 0.70 between C and "East" annual rainfall 

Period T (years), coherence square COHSQ, phase of C relative to rainfall in fractions of a circlj V_______  

EDINBURGH LOCH LEVEN 
SLUICES 

NARCH~'IONT 
ROUSE 

CR0IE 
RESERVOIR  

BALMORAL GORDON CASTLE GREENOCK 

T C0HSQ ' T COHSQ 
V 

T C0HSQ ' xy T C0HSQ ' T COHSQE T C0HSQ ' T COHSQ 
XY  V 

1.00 0.82 0°  1.00 0.97 0 1.00 0.38 

23.3 0.83 0.02 60.0 0.82 0.98 

17.5 0.88 0.03 

• 14.0 0.89 0.95 

6.41 0.79 0.18 

163 0.72 0.18 4.56 0.77 0.03 

4.35 0.82 0.98 4.37 0.82 0.00 4.25 0.73 0.97 

3.91 0.73 0.09 3.88 0.82 0.05 

3.50 0.96 0.88 3.53 0.70 0.90 

3.37 0.79 0.81 3.36 0.83 0.92 3.1114 0.71 0.70 

3.19 0.76 0.06 3.20 0.92 0.01 3.15 0.91 0.05 

3.09 0.81 0.08 3.09 0.86 0.07 3.04 0.90 0.05 3.05 0.96 O.04 3.00 0.86 0.05 3.05 0.88 0.09 



Table 5.9 continued 

EDINBURGH LOCH IEVEN 
SLUICES 

MPLRC}ThIONT 
 HOUSE 

CROIE 
 RESERVOIR  EkLMORAL GORDON CASTLE GREENOCK 

T COHSQt T COEQ± T P COHSQJ T 1COEQ4 P COHSQ P COHSQ P COHSQ xy Jcy xy xy xy x3r xy 

2.96 0.79 0.07 2.91 0.78 OOO8 2.91 O.84 0.06 2.91 0.95 0.04 

2.85 0.74 0.13 2.78 0.75 0.08 

2.46 0.71 0.95 

2.37 0.79 0.95 2.141 0.72 0.914 

2.31 0.73 0.97 2.33 0.82 0.00 2.25 0.79 0.96 2.33 0.71 0.93 

2.214.0.86 0.95 2.26 0.83 0.03 2.20 0.71 0.04 

2.12 0.82 0.93 2.114 0.77 0.08 2.114 0.75 0.03 

2.05 0.73 0.01 2.06 0.81 0.00 2.07 0.87 0.03 

2.00 0.71 0.99 2.00 0.98 0.00 2.00 0.87 0.99 2.00 0.85 0.01 2.00 0.93 0.01 2.00 0.91 0.99 



C with the same phase. KLiasing of power in the cross spectra, 

as well as in the power spectra, may enhance these estimates to 

some extent. 

The results of cross spectrum analysis below between P or C 

and rainfall show that in general there is no relationship between 

low frequency oscillations as might be expected from results of 

low-pass filtering and power spectrum analysis of individual 

series. Oscillations in C or P around two or three years may 

however be related to those of "East" and ITWest?T stations 

respectively. 

High coherence values between C and rainfall records occur 

around two and three years.. The coherence and phase estimates 

between C and Lock Leven Sluices, Marchinont House, Cronbie Reser-

voir, Balmoral, and Greenock definitely suggest that the two year 

periodicities in C and these rainfall records are related and are 

in phase. Aliasing of power may again increase cross spectrum 

estimates as well as power spectrum estimates at and near the 

two year period. 

Coherence peaks between C and rainfall occur at similar 

frequencies to power spectrum peaks near a period of three years 

suggesting that the three year periodicities in C and rainfall 

are related. Significant coherence peaks occur near three years 

between C and Marchmont House, Crombie Reservoir, Balmoral, and 

Gordon Castle and almost significant peaks between C and Loch 

Leven Sluices. The C index periodicity has an average phase lead. 

of 0.05 of a circle which amounts to 0.1 years or two months. 

There are other coherence peaks between C and rainfall records 

but they do not occur near enough to peaks in individual power 
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Table 5.10 Coherence values > 0.70 between P and "West" annual rainfall 

Period T. (years), coherence square, COHSQ, phase of P relative to rainfall in fractions of a circle,' 
XY 

NORTH CRAIG 
RESERVOIR GREENOCK ARISAIG HOUSE FORTREE WICK 

T COHSQ T 	I T COHSQ ' T COHSQ ' T COHSQ T COHSQ 

0.96 0.03 c0 0.91 0.01 00  1 . 00  0.79 

62.1 0.88 0.07 

6.90 0.83 0.02 

6.21 0.79 0.11 

6.00 0.77 0.06 

5.46 0.74 0011 5.65 0.79 0 .14  5.40 0.74 0.07 

5.00 0.84 0.10 5.18 0.76 0.11 5.00 0.76 o.o4 

14.60 0.72 0.03 14.76 0.80 0.07 

14.27 0.87 0.19 

14.00 0.82 0.15 

3.53 0.77 0.00 

3.00 0.82 0.72 3.00 0.75 098 

2.814 0.86 0.95 2.81 0.92 0.96 

7. . 



-S 

0" 
0 

/ 

Table 5.10 continued 

NORTH CRAIG 	- 
RESERVOIR GREENOCK ARISAIG HOUSE PORTREE WICK 

T COHSQ ' P I COHSQ 1,1  P COHSQ T T COHSQ I T COHSQ ' 

yy 

2.72 0.57 0.96 2.69 0.87 0.94 2.70 0.90 0.98 2.62 0.92 0.98 

2.61 0.85 O96 2.57 0.58 0.01 

2.50 0.83 0.96 2.46 0.83 0.03 2.47 0.76 0.00 

2.10 0.80 0.99 2.39 0.79 0.06 

2.31 0.76 0.97 2.30 0.72 0.01 2.28 076 0.33 

2.22 0.70 0.96 2.21. 0.70 0.31 

2.16 0.77 0.94 

2.07 0.78 0.97 

2.00 0.83 0.98 2.00 0.71 0.97 



spectra for then to describe a relationship between periodicities 

which are apparent in individual series. For example,' the 

coherence peaks at 4.3 years between C and Loch Leven Sluices, and 

C and Marchmont House occur near minor power spectrum peaks in 

Loch Leven Sluices and Marchmont 'House but the C spectrum has a 

trough at this period. 

High coherence estimates occur between P and "West" rainfall 

stations at 2.7 years. Of the records with such coherence with F, 

those of Arisaig House and Portree have power spectrum peaks at 

this period while Greenock and North Craig Reservoir have flat 

spectra around this period. As the P spectrum itself has a peak 

at this period it may be considered that there may be a 27 year 

periodicity .present in P and "West" rainfall records. The oscill-

ation in P index lags behind that in the rainfall series by one to 

two months in the case of North Craig Reservoir and Greenock, and 

by an insignificant amount compared to the confidence limits of 

the phase angle in the case of Arisaig House and Portree. 

Coherence values were investigated for possible relationships 

between oscillations in P and "West" rainfall of period between 

five and ten years, near the 7.4 year P power spectrum peak. It 

was not certain whether this latter peak was produced by the sane 

effects as produced the 8.9 year Greenock peak as coherence esti-

mates were not significant. The coherence square of 0.83 and phase 

angle of 0.02 of a circle at 6.9 years may express effects of some 

common minor disturbance in these series. 	- 

While "East" stations tend to have variations consistent with 

those of C. and "West" stations with those of P. Wick does not fall 

into either category. Neither, as in the case of the other stations, 
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Table 5.11 Coherence peaks between S or N and annual rainfall 

Period in years (coherence square, phase in fractions of a circle of index relative to rainfall) 

EDINBURGH S (1 .00,0.98) 
74.1 (0.93,0.97 

N 3.09(0.78,0.04) 

LOCH LEVEN S 
( 11 .00,0.57) 	214o7(0.85,0.06) 12.3(0.73,0.82) 	7.41(O.86,0.84) 4.63(073,0.95) 

SLUICES 
 (1 .00,0.75 

741(0.75,0.28) 8.19(081,0.31) 3. 09(0.75,0.07) 

MARCHMONT S 7.00(0.76,0.00) 3.89(0.78,O.94) 
HOUSE N 3.89(0.89,0.74) 

' 	CROIE S 
RESERVOIR N 800071,0.17) 2.146(0o85,0.69) 

- 2.13(0.72,0.35) 
/ 

BALMORAL S 6.00(0.70,0.24) 
M 2.22(0.72,0.28) 

2.14(0.80,0.27) 

GORDON S 23J(0.82,0.27) 
CASTLE N 

NICK S 4.93(0.80 2 0.00) 
N 3.56(0074,0.11) 

PORTREE S 41.8(096,O.O8) 
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Table 5.11 continued 

ARISAIG 	S 	 / 	 277(077,0.81) HOUSE 	 2.57(0.72,0.78) 
M 	 18.0(0.70,0.35) 

GREENOCK 	S 	(0.96,0.04) 
62.1 (0.90,0.00) 

M 	(0.93,0.53) 	 14d43(0.75,0.60) 

NORTH 	S 	59.9(0.73,0.16) 	 242(0.75,0.76) CRAIG 	 3.33(0.76,0.14) 
RESERVOIR 	2.00(0.72,0.07) 

N 

/ 



are there any significant coherence estimates between Wick and S 

or M which clearly correspond to power spectra peaks. There is 

a coherence peak at 4.9 years between S and Wick, but neighbouring 

power spectrum peaks occur at ljJt years in Wick and 4.0  years in S. 

5.4.5 Eigenvector analysis 

5jk5. 1 	The analyses 

In order to try further to correlate variations in differ-

ent time series and to isolate common periodicities and trends, 

eigenvector analysis was performed to derive time series describing 

common variations in individual records; these derived series were 

subsequently analysed in a similar way to the original. 

The first two eigenvectors of real data and the first three 

eigenvectors of normalised deflation data, using S-mode analysis 

as described in section 5.3.4 appear in Table 5.12. The first 

three normalised deviations were considered to be of importance 

from the relative values of the eigenvalues. Together they explain 

67 per cent of the variance in the anomaly data. 

The first real eigenvector accounts for most of the variance 

in the real data, and its elements have a 0.99 correlation with 

station mean annual rainfall. Thus it does not increase knowledge 

about rainfall spatial variations. The derived time series of 

eigenvector multipliers represent mean annual rainfall variations 

over the eleven stations. These results are similar to those of 

Chapter 2 where the analysis of a real mean monthly rainfall matrix 

produced a first eigenvector describing the annual cycle in mean 

monthly rainfall and an associated set of multipliers describing 

the spatial variations in mean annual rainfall. 

N 
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Table 5.12 Eigenvectors (S-mode)of Scottish rainfall 1890-1973 

Real data Normalised deviation data ___ Mean 
annual 

rainfall 

Annual 
rainfall 
standard - 

first second first second third 
deviation 

North Craig Res. 0.328 0.135 0.356 0.291 -0.010 1 125.7 173.1 

Greenock 0.413 0.258 0;373 0.307 -0.163 1153.3 229.1 

Arisaig House 0.458 0.418 0.277 0.143 -0.097 1603.5 2110 

Stornoway 0.341 0.298 0.249 0.381 0.178 1189.1 178.3 

Wick 0.220 -0.071 0.300 0.076 -0.547 763.8 91.9 

Gordon Castle 0.212 -0.325 -0.210 -0.295 -0.561 751.7 103.1 

Balmoral 0.210 -0.249 0.336 -0.195 0.031 813.5 122.1 

Crombie Res. 0.253 -0.481 0.302 -0.410 0207 894.3 155.5 

Loch 
Sluices 1 0.261 -0.326 0.387 -0.235 0.218 908.0 114.3 

Marchmont House 0.188 -0.091 0.013 0.015 -0.1448 669.4 120.5 

0.228 -0.365 0.329 -0.355 0.083 816.6 141.5 

Percentage 
98.7 0.5 33.7 23.8 9.5 variance 

Cumulative per- 98.7 99.2 33.7 57.5 67.0 



The normalised deviation eigenvectors, on the other hand, do 

not appear to be correlated to station mean annual rainfall or its 

standard deviation. The second eigenvector does seen to show some 

effect of station position, having positive elements for "West" 

stations and negative elements for "East" stations (apart from Wick 

and Edinburgh which have small positive and very small positive 

values respectively). Arisaig House, the station which might be 

expected to show the greatest effect of a West coast position, has 

the largest positive element, while Cronbie Reservoir, whose pos-

ition is farthest East, has the largest negative element. Crombie 

Reservoir also appears in the analyses above to have rainfall time 

variations which are least similar to those of "West" stations and 

most similar to those of C index: Using similar criteria, 

Stornoway and Marchmont House might be judged to be the second 

most Westerly and Easterly stations respectively, (a fact which 

seems to be reflected in their second eigenvector elements). Thus 

the second eigenvector seems at first sight to show an inherent 

property in the normalised deviation matrix which can be related 

to station position in relation to prevailing wind, while other 

eigenvectors do not appear immediately to reflect known effects on 

rainfall. 

5.4.5.2 "Low-pass" filtered eigenvector multipliers 

The first set of real eigeñvector multipliers (1E) and 

the first three sets of normalized deviation eigeñvector multi-

pliers (iON, 20N, 30N), considered as time series of length BLj 

years, were filtered using the filter of 5.3.2. The filtered data 

appear in Figure 5.12. 1E shows the mean annual rainfall variations 
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with peaks in 1907,  1916,  1925,  1949 and 1966, and troughs in 1912, 

1921, 1942 and 1960. These features, apart from the 1907 peak 

occur to a greater orlesser extent in all stations above in 

Figures 5.5, 5.6 and 5.7 especially the "East" stations. ION re-

sembles 1E apart from over the first 20 years where its major 

peak occurs in 19100 Both 1E and ION curves have similarities to 

that of C (Figure 5.3) with C leading each series in the early part 

of the record and lagging in the latter part. While the peak in 

C in 1913 appears to correspond to peaks in ION and 1E in 1917, 

and the peak in C in 1925 to those in ION and 1E in 1927, the 1952 

C peak occurs after the 1949  ION and 1E peaks. 

The filtered 20N series resembles the filtered P.series 

(Figure 5.3) with common peaks in 1897, 1905,  1912, 1922 and 1950, 

and common troughs in 1 893, 1909, 1917 )  1940, 1947 and 1959. 3011 

shows trend and its rather flat peaks and troughs do not appear 

to represent those of individual rainfall records. 

Thus time series of eigenvector multipliers show some common 

variations in individual rainfall series which are also present in 

circulation indices. As there are more "East" than "West" stations 

used in the eigenvector analyses the most significant variations 

revealed by ION and 1E correspond most closely to those of "East" 

stations. 20N shows some of the common variations found in "West" 

stations and P. 

• 5.4.5.3 Power spectxa of eigenvector multipliers 

Figure 5.13 shows eigenvector multiplier power spectra 

together with those of P and C, each calculated from 84 years of 

data to a maximum lag of 28 using the ACV method. Peaks signifi- 

... 
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cant at the five per cent level for a population of similar spectra 

occur near three yeai's: at 3.1 years in 1E, iON, 30N which corre-

ponds to the period of the oscillation in C, most "East" stations 

and Wick and Greenock; and at 2.9 years in 20N with a subsidiary 

peak at 2.7 years which corresponds to a 2.7 year peak in P, 

Arisaig House, and Portree. 

The presence of the quasi-biennial oscillation in the rainfall 

data is confirmed in the spectra of 1 ON though some of the rising 

power may again be a result of aliasing of power from non-resolvable 

high frequencies. This oscillation is also present in P and C. 

The peak at four years in iON is probably a harmonic of this two 

year cycle. 

The broad 5 to 6 year peak in 20N is not close enough in 

period of the 7.9 year P peak to describe the effect of a common 

variation. The broad peak however does describe some features of 

station power spectra and hence some of "West" rainfall 

variations. There is a similar broad peak in Greenock, Portree 

and Arinaig House, and a sharp peak at 5.8 years in North Craig 

Reservoir. 

Thus the suggestions that iON and 1E describe common rainfall 

variations especially those of "East" station rainfall, and that 

20N describes "West" station rainfall is confirmed. Further invest-

igation of the relationship between these series and P and C index 

series is made using cross spectrum analyses. 

5J4.5.4 Cross spectra - P and C, and eigenvector 

multipliers 

Coherence and phase spectra between C and WE, iON, 20N, 

-1 70- 	 n 
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and 30N appear in Figure 5. 1 4. Confidence limits on coherence 

and phase are as given £ or annual spectra in 	and these 

limits are used to assess the significance of these estimates. 

The quasi-biennial oscillation which is present in 1 O and 

is possibly present in IE (Figure .13) has a very high coherence 

value with that of C. The phase angle and its confidence limits 

suggest that 1E and C are exactly in phase while iON and C are 

in anti-phase. Since aliasing of power may again affect cross 

spectrum estimates in addition to power spectrum estimates near 

the Nyquist frequency, the exact significance of these coherence 

estimates and the precise frequency of the quasi-biennial 

oscillation cannot be determined. 

The oscillations found at 3.1 years in C and iON have signifi-

cant coherence with one another though the phase relationship 

between the two oscillations which is one of quadrature, has large 

uncertainties. The phase lead of iO months in the C oscillation 

lies between 0 and 18 months at .90 per cent confidence limits. 

Neighbouring coherence peaks between Q and iON at 2.9 and 2.5 years 

also have associated large uncertainties in the phase angle of 

cross spectrum estimates. The other coherence peaks between C and 

iON, which occur at four years, with an uncertain phase relationship 

between the oscillations, and at zero frequencies, appear to be of 

little importance. 

The 201N and C coherence spectrum shows no common variations 

in 20N and C while that of 30W and C has high values at and near 

the three-year peak in their power spectra, near the troughs in - 

power spectra at 2.2 years, and at 2.0 years. The phase lead of 

C over 30W for the three-year period, which is one of primary inter- 
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/ 
est, is about one year but could lie between 11 and 17 months at 

90 per cent confidence limits. 

There are few significant values in the coherence spectra 

between P index and eigenvector multipliers, these estimates not 

being shown here. The quasi-biennial oscillation, present in F, 

produces significant coherence with ION (COHSQ = 0.90,' = 0.49). 

with an anti-phase relationship and almost significant coherence 

with 1E (COHSQ = 0.83,' = 0.98) with an almost in-phase relation-

ship. These phase 2relationships are the same as those between C 

and ION, and C and 1E. 

30N and P have high coherence only at zero frequency (COHSQ = 

0.99,1 XY I = 0.97). The only relationship between P and 20N which 

is apparent in coherence estimates occurs at 5.1 years (COHSQ = 

o.863 	t = 0.15).. There are no coherence peaks at 2.9 or 2.7 

years where spectral peaks occurred in 20N and P. There is a 

broad peak in 20N over the range of periods five to six years 

which describes some features in individual power spectra of 

"West"-  stations as mentioned above. However, as the coherence 

estimates for the range of periods five to six years are only just  

significant, and as the phgse angle at 5.1 years has large uncer-

tainties (0.08< 12 
XY 

I C 0.18 at 90 percent confidence limits), the 

use of these coherence estimates to describe the relationship 

between P and flwest?T rainfall variations will be limited. 

Thus cross spectrum analyses between eigenvector multipliers. 

and circulation indices provide further means of identifying the 

two sets of first eigenvector multipliers as describing common 

time variations in all rainfall series, especially those in "East" 

stations and those present in C. However, these analyses provide 
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little further information about the second and third sets of 

eigenvector multipliers and their relationships to P and C. 

5.5 Analysis of monthly rainfall time series 

5.5.1 Power spectrum analysis 

In order to investigate further high frequency oscill-

ations in rainfall and circulation indices, power spectra of 

monthly rainfall and indices were calculated using the Blaclanan-

Thkey autocovariance approach and the fast Fourier transform 

method; Data'series of 984 values for 1890-1971 with a lag of 

values being determined by the limits of the BND program of a 

maximum of 1000 data points and a maximum lag of 199. Series of 

1020 data points for 1886-1971 were extended to 1024 by addition 

of zeros and their fast Fourier transforms calculated, in the case 

of Arisaig House where data were not available prior to 1890, 984 

points were used. 	 - 

The 199 spectral estimates produced by the ACV method and the 

102 EFT estimates produced by the summation over elementary bands 

of width five are plotted in Figure 5.15 for P and C indices, 

and in Figure 5.16 for typical "East" and "West" stations, Crombie 

Reservoir and North Craig Reservoir. 

As discussed in section 5.3.3 the number of degrees of freedom 

of each set of estimates is approximately the same though a given 

EFT estimate will have smaller confidence limits than a given ACV 

estimate as there are fewer FFT estimates. - The FFT spectra being 

plotted from fewer estimates appear to be smoother than ACV spectra, 

but sets of spectra are very similar. Minor peaks in.FFT spectra 

are in most cases less pronounced than those in ACV spectra, and 

N' 
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some minor peaks are more clearly identifiable as side bands of 

major peaks. However, the extent to which real effects as well 

as noise are smoothed out in the EFT spectra compared to the ACV 

spectra is not immediately obvious. Most of the peaks in either 

spectra are in any case of little significance when tested using 

the distribution as in section 5.3. 
-v 

The principal peaks of period greater than 11 months are 

listed in Table 5.13. All the rainfall spectra and the P.index 

spectra have peaks which are significant for individual spectra 

at 12 months. In the case of F, and of some rainfall stations, 

the asymmetry of the annual rainfall cycle effects a peak at six 

months. The C index does not have a 12 month peak but an 11 month 

peak which may describe the effect of an annual cycle. 

The lb.7  and  14.4 month peaks, some of which are significant 

at the five per cent level for a population spectrum, could be 

side-bands of the major 12 month peaks. A 11t4 month teak was 

however found in Brunt's (1925) analysis of Edinburgh rainfall and 

was the most significant periodicity in 10 out of the 12 European 

rainfall records, for the period 1760 to 1925,  which he examined. 

Brunt also found oscillations of period 18 months in London and 

Edinburgh rainfall which is also observed in Edinburgh and three 

other records listed in Table 5.12. Brunt's Edinburgh data could 

be considered to belong to the same population of data as that 

studied here. His results are therefore mentioned at this point 

as they increase the significance of the results listed in Table 

5.12. Other periodicities in this frequency range found in other 

meteorological records are discussed in Section 5.5. 

In Table 5.13 the quasi-biennial oscillation and the three 
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Table 5.13 Major peaks in power spectra of monthly rainfall and circulation indices 

Periods are given in months - 1. using the autocovariance method, 2. using fast Fourier transform method. 
Significant values at five per cent level of a population spectrum are underlined, and those at five per 
cent level of a sample spectrum are doubly underlined. 

Marchmont 	1 36.2 14.7 12.1 
House. 	

2 39.4 1)4.)4 11.2 

Edinburgh 	1 36.2 18.9 14.7 12.1 

2 39.4 18.3 1)4.)4 11.9 

Loch Leven 	1 49.7 36.2 18.9 igd 
Sluices 	2 64.0 11-2 

Crombie 	1 36.2 23.4 18.9 14.7 12.1 
Reservoir 	2 39,4 ll 
Balmoral 	1 36.2 23.4 14.7 12.1 

2 39.4 14.7 112 
Gordon 	1 36.2 23.4 18.9 14.7 12.1 
Castle 	2 39.4 22.2 134 = 1= & 2 

Wick 	1 79.6 28.4 22.1 18.9 14.7 12.1 

2 1)4.)4 11.9 

Stornoway 	1 56.8 28.4 14.7 12.1 

28.4 14.4 2 11.9 
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Table 5.13 continued 

Arisaig 	1 66.4 30.6 23.1 14.2 12.1 
House 	2 20.1 / 11±2 14.4 

Greenock 	1 66.1 36.2 19.9 114.2 12.1 

614.0 114.14 2 20.1 112 - 

North Craig 1 663 36.2 23.14 114.7 i?±i 
Reservoir 	2 22.2 11 ±2 11414 

• 	P 	1 
, 

12.1 

2 - 14.14 1.2 

C 	1 36.2 23.14 11.1 

2 39.14 22.2 114.14 11.2 



year oscillation observed in annual power spectra produce the most 

significant peaks other than that of 12 months.. 	Both these 

eriodicities have significant values at the five per cent level 

for a population spectrum in the case of the C spectrum. In other 

spectra the oscillation of period around three years appears to be 

more common than the one of period around two years. The fact that 

the quasi-biennial oscillation is less apparent in monthly spectra 

than annual spectra and that the peaks occur at 22 to 23 months in 

monthly skectra,  shows that some aliasing of power occurred near 

two years in the annual spectra. 

Of the lower frequency peaks in the monthly spectra, those of 

Arisaig House and Greenock at 64 to 66 months correspond to their 

broad annual spectrum peak at 5.0 to 5°5 yars, while that of 

Stornoway at 56 months represents a harmonic of its 28 month oscill-

ation. Stornoway's spectra is not in itself similar to those of. 

other series, partly on account of its inhomogeneities. 

5.5.2 Cross spectrum analysis 

Coherence peaks and phase angles of cross spectrum estimates 

calculated using the CCV and FFT methods are given in Table 5.14  for 

cross spectra between C and monthly rainfall and in Table 5.15 for 

those between P and monthly rainfall. Confidence limits of coherence 

and phase estimates are given in Tables 5.3 and  5.4 respectively. 

The quasi-biennial oscillation in C produces significant coher-

ence values with "East" rainfall series even in cases where the 

oscillation is not apparent in individual power spectra. The phase 

angles of the cross spectrum estimates suggest that the oscillations 

in C and rainfall could be in phase, except in the case of Wick and 

SM 



Table 5.14 Cross spectra coherence peaks between C and monthly rainfall 

Period (coherence, phase of rainfall oscillation relative to C index in fractions of a circle) - 

Marc}nont 	1 	 26.6(0.71,0.97) 	 11.1(0.70,0.98) 
House 	 2)4.8(0.87,0.01 

23.ti(0.94,0.03) 

2(25.0(0.90,0.99) 
(22.3(0.92.0.03) 

Edinburgh 	1 	 26.6(0.72,b.96) 
24.8 (0 . 88 ,0. 97 
23 .h( 0. 76 .0. 98 ) 

2 	 25.0(0.85,0.96) 

Loch Leven 1 
Sluices 

2 	 25.0(0.85,0.97) 	 - 	 10.1 (0.86,0.89) 

Crombie 	1 	361 (0.81 ,0.98)(23.)4(0.72,0.00) 18.9(0.70,0.99) 12.8(0.78,0.03) 11.1(0.74,0.95) 
Reservoir 	 (22.1(0.73,0.99) 18.1(0.73,0.00) 	 10.2(0.80,0.90). 

9.5(0.74,0.89) 

- 	 2 	 .. . 	- 	10.1 (0.89,0.91 ) 

BalmoraJ. 	1 	 24.8(0.73,0.01) 18.9(0.74,0.95) 
23.Lt(0.76.0.02) 18.1 (0.80.0.93) 

2 	 25.0(0.78,0.02) 	16.8(0.86,0.04) 

Gordon 	1 	 23.4(0.71j0.95) 
Castle 	 . 

2 	 25.0(0.7 1 ,0.9 1 ) 
Wick 	1 	 . 	 12.8(0.73,0.01) 

2 	 25.0(0.7)4,0.87) 
Stornoway 	1 	 12.8(0.70,0.03) 

11.9(0.88,0.08) 
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Table 5. 1 5 Cross spectra coherence peaks between P and monthly rainfall 

Period (coherence, phase of rainfall oscillation relative to C index in fractions of a circle) 
1. CCV, 2. FFT methods 

	

Marchmont 1 	 12.1(M7,0-93) 

	

2 	 11.9(0.87,0.94) 
Edinburgh 	1 	 12.1(0.9010.88) 

	

2 	 11.9(0.57,0.89) 

	

Loch Leven 1 	 (12.1(0 
 

.93,0.99) 
Sluices 	 (11 .7(0.82.0.00) 

	

2 	 11  .9(0-95,0-99) 

	

Crombie Res.1 	 12.1(0.83,0.97) 

	

2 	 11.9(0.82,0.97) 
Balmoral 	1 	 12.1(0.92,0.03) 

/ 	 2 	 -- 	 11.9(0.90.0.03) 
Gordon 	1 	 12.1(0.87,0.90) 
Castle - 

- 	2 	 11.9(0.82,0.90) 
Wick 	i 	 12.1(0.8h,0.07) 

	

2 	 11.9(0.84,0.02) 
Stornoway 	1(36.2(0.75,0.08) 26.6(0.72,0.01) 	 (1L.7(o.87,o.00) (12.1 (0.92,0.08) (11.1(0.82,0.03) 

(33.3(o.76,o.o) 	 (1.2(0.81 ,o.00) (11.7(0.82.0.08) (i 0.7(0.80.0.) 

	

2 	 28.4(0.88,0.05) 22.2(0.82,0.96) 	 11.9(o.88,0.08) 

/... 
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Table 5.15 continued 

Arisaig 	1(36.2(0.86,0.03) (2)4.9(0.86,0.96) 18.9(0.84,0.00) 1 )4.7(0.8)4,0.00) 12.4(O.83,0.06) 
Rouse 	 (33.3(0.89,0.03) (23.b(0.81,0.97). 18.1(0.88,0.98) 1)4.2(0.9)4,0.00)  12.1(0.93,0.01) 

11.7(0.86,0.01) 

2 	 11.9(0.93,0.03) 

Greenock 	1 	 26.6(0.7)4,0.0)4) 	 12.1(0.91,0.09) 11.1(0.77,0.01) 

	

24.9(0.83,0.99) 	- 	 11.7(0.83,0.09) 

2 	 11.9(0.90,0.08) 

North Craig 1 	33.3(0.75,0.05) 22. 1 (0.74,0.03) 18.1(0.84,0.88) 	 1 2.4(0.83,0.99) 
Reservoir 	 12.1 (0.92,0.00) 

11.7(0.83.0.02) 

2 	 1 8.3(0.84,0.89) 	 11.9(0.92,0.02) 

/ 



Gordon Castle whose coherence values with C are also the least 

significant of the "East" stations. 

Oscillations of period, around three years which are of sig-

nificance in the monthly power spectra of C and Loch Leven Sluices, 

only produce significant coherence estimates between C and Cronbie 

- 	Reservoir, There is also high coherence between C and Crombie 

Reservoir for periods around 11 months, and Crombie Reservoir seems 

to have the highest overall coherence with C. This was also the 

case in the analysis of annual time series. 

In the case of F, there are significant coherence values 

between the annual oscillations in P and in every rainfall station 

series. The phase lags between P and rainfall vary with station, 

but have small confidence limits, of less than one month in most 

cases. "East" stations tend to lag behind P, and "West" stations 

to lead P. Edinburgh has the longest lag behind P. while Balmoral 

has an abnormal phase lead for an "East" station. Of the West 

stations, Stornoway has the longest phase lead over P. The variation 

in phase relationship between the annual cycle in P and that in rain-

fall series reflects synoptic experience with progressive systems 

travelling from West to East. 

The lower frequency coherence peaks between P and "West" stat-

ions do not in general correspond to peaks in individual power 

spectra and probably reflect the overall close relationship between 

variations in P and "West" rainfall. 
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.6 The relation of these results to other 

5.6.1 High frequency oscillations - the two and 

three year periodicities 

Comparison has already been made between the results of 

Brunt's analysis of European weather elements and those of 

Scottish rainfall. Brunt's significant 114- month periodicity and 

his 18 month periodicity were also found in the data analysed 

above. Gray (1975) lists coincident peaks in the EFT power spectra 

of Kew pressure, South East England rainfall, Central England 

temperature, and C index using monthly data, and these peaks may 

be compared with those of the Scottish rainfall data. All four of. 

Gray's spectra have peaks at 3.36, 3.13 and 1.89 years, i.e. 40.3, 

36.6, and 22.2 months. The latter peak corresponds to that in 

Scottish monthly rainfall data. There is also some evidence in 

monthly spectra above of two peaks near three years but in the 

annual spectra only the peak at 3.1 years occurs. It would seen 

doubtful that in Gray's analysis there are two independent peaks 

near three years, and probable that one of the 3.36 and 3.13 year 

peaks is a side-band of the other peak. 

Gray also found peaks at 2.96, 2.76, and 2.20 years in all the 

spectra except that of Central England temperature, and at 1.23 years 

in all the spectra except that of Kew pressure. The 14  to 15 month 

Scottish rainfall peaks seen to correspond to those at 1.23 years. 

There is also evidence in annual spectra of peaks in P and West 

stations at 2.7 years, and at 2.7 and 2.9 years in the second eigen-

vector multiplier time series which seems to describe "West" rain-

fall variations. These peaks may be related to Gray's 2.76 and 2.96 
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year peaks. 

Of the high frequency periodicities found in meteorological 

parameters, the quasi-biennial oscillations is in a large number 

of cases the most significant. Shapiro (1975)  gives an analysis 

of Manley's (1975) Central England temperature series which was 

used by Gray in the above analysis and has been analysed by other 

workers. Shapiro detected a small but significant peak at 25.5 

months in the power spectra of Manleys  raw data as well as a very 

significant annual peak and a six month peak. Data filtered by 

the use of a 12 month running mean again revealed a 25.5 month peak 

when the spectrum was compared with a red noise background spectrum. 

The frequency of the peak in Gray's analysis of the same data was 

at 22.7 months, showing that different methods of analysis produce 

slightly different results and the exact frequency of a significant 

oscillation can be difficult to determine. 

Lamb (1972b) gives a survey of .periodicities revealed in the 

analysis of meteorological elements and related data. Of the high 

frequency oscillations that with period around two years, the 

quasi-biennial oscillation, occurs most often and is of most signi-

ficance, though it is less significant than very low frequency 

oscillations of period 100 years or more. Lamb also discusses the 

presence of the quasi-biennial oscillation in the winds of the lower 

stratosphere which reverse direction from West to East. Wind cir-

culation derived from pressure anomalies and the frequency of 

blocking types also show this oscillation. Oscillations occurring 

in the Northern and Southern Hemisphere have been shown to be linked 

by the successful correlation of pressure anomalies in the two 

Hemispheres. 
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The quasi-biennial oscillation in circulation indices referred 

to above may be linked to those of pressure anomalies describing 

the circulation over the Northern Hemisphere, and indirectly linked 

to the winds in the equitorial stratosphere. The P and C indices 

in their turn describe the frequency of weather types affecting 

rainfall. The C index describes the frequency of cyclonic circul-

ation which produces a large proportion of rainfall at Scottish 

stations, especially "East" stations. Thus the quasi-biennial 

oscillation present in rainfall over the British Isles, circulation 

over the British Isles, circulation over the Northern Hemisphere, 

and winds in the stratosphere may be linked and correlated. On the 

other hand, the' three-year rainfall oscillation can only be related 

to that of C and is not found extensively in other meteorological 

time series. 

5.6.2 General variations in circulation and 

rainfall over 100 years 

No medium or low frequency oscillations which were of 

definite significance were found in the rainfall or circulation 

indices series above, though similar variations were found in 

filtered records. Rainfall records can also be divided into epochs 

which correspond to those in which a certain type of circulation 

predominates. Lamb (1972a) summarises the over-all variation in 

the frequency of Westerly and blocking types over the period 1861 

to 1971 into the periods 1861 to 1874  and 1900 to 1954 with a 

marked prevalence of Westerly types, and 1875 to 1899 and 1955 to 

1971 with a marked prevalence of blocking types. Lamb's frequency 

of Westerly types corresponds to the P index, and his epochs can be 
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seen in the decadal means of P index in Table 5.7 and filtered P 

index in Figure 5.3. These epochs can also be identified in C 

index which shows similar variations to the P index with a lag of 

about five years; 	 - 

Individual Scottish rainfall records exist only prior to 

1880 for "East" stations, and the period between 1871 to 1880 can 

be identified as one of high "East" rainfall and C index. The 

first half of the 20th century can be recognised as being rela-

tively-wet in most filtered records in Figures 5.5 to 5.7 and in 

the decadal means of "West" stations. This period is one of high 

P and C indices associated with the prevalence of Westerly types. 

The exact period of the wet epoch varies between stations. Thus 

Lamb's classification of periods of years according to the pre-

dominance of a circulation type can be recognised in rainfall 

records. 

Schove (1950) studied variations in temperature, rainfall, 

and wind for the period 1875 to 1925 using  overlapping 30-year 

periods; variations in mean values for these sub-periods may be 

compared to those of Scottish rainfall and circulation indices. 

Schove suggested that rainfall and temperature anomalies should be 

discussed in terms of an "area" term depending on the pressure 

anomaly and a "local" tern depending on the wind anomaly. These 

anomaly trms have similarities to the C and P indices, and would 

be of particular importance in the determination of rainfall of 

sheltered stations and of stations exposed to the prevailing wind, 

respectively. 

Schove's description of different climatic phases in terms of 

wind and pressure anomalies expresses rainfall for overlapping 30- 
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year periods as a percentage of the 1901 to 1930 mean for the 

"East" sites of York and Edinburgh, the "area" sites of Greenwich 

and Oxford, and for all available "England" sites. The "East" 

sites have similar variations to those of "East" Scottish rainfall 

as described by groups of decadal means in Figure5.2 or in sections 

of filtered data records in Figures 5.5 and 5.6. Available "West" 

Scottish rainfall for the period 1880 to 1 930,   shows similar vari-

ations to those of "England" data. Individual decadal means for 

different sets of data as against 30-year means do not however show 

similar variations. The only similarities between Schove"England" 

decadal means for periods between 1850 and 1940 and those of 

Scottish data are the very wet decades 1871 to 1880 and 1921 to 

1930. 

5.6.3 Other methods of spectral analysis to 

resolve low frequencies 

While common variations were found in the filtered records, 

and to a lesser extent in decadal means, no common low frequency 

oscillations were identified in the power spectrum analyses using 

the above methods. Neither were individual lower frequency peaks 

of significance in themselves. An increase in spectral resolution 

might provide further information about low frequency oscillations. 

Using the spectral methods of the Blackman-Tukey autocbvariance 

method and of summation of FFT estimates of filtered data above, 

the number of final estimates could be increased to produce high 

resolution by increasing the maximum lag, or decreasing the hand-

width of summation respectively. However, the variance of such 

estimates would be unacceptably high. 
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Recently new methods have been suggested which produce a 

greater 'number of low frequency estimates, and some of these 

methods have been shown to give stable results. Gray (1975) suggest-

ed a perturbation technique to increase the stability of raw Fourier 

transform estimates providing additional information at low fre-

quencies. 'Ordinary' Fourier transforms are calculated for a given 

harmonics at slightly different frequencies by changing the length 

of data used and estimates for a given harmonic are averaged over 

a series of perturbation. As frequency shifts for each perturbation 

are dependent on the harmonic number, being smallest for the lower 

harmonics, the number of perturbation estimates which may be aver-

aged is largest for low harmonics and low frequencies. This method 

is thus suited to low frequencies and has been shown to give stable 

results. 

However, this approach cannot be used in cross spectrum anal-

ysis and is also unsuited to short series, such as those of annual 

rainfall data above. In the case of monthly rainfall series it 

did not seem likely that further information could be obtained at 

low frequencies; raw fast Fourier components did not suggest the 

presence of low frequency peaks which could be investigated further 

by use of 'ordinary' Fourier transforms and the perturbation 

technique. 

In the last few years the maximum entropy method (M) which 

has high resolution at low frequencies, has been applied to short 

time series of physical data. MELM is "data adaptive" in that the 

method of filtering and smoothing of the estimates is determined 

by the noise characteritics of the series under study, and is not 

of predetermined form as in other methods discussed above. Spectral 
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estimates produced by NEM have a! higher variance than those of 

other methods but their significantly higher resolution is capable 

of providing information on periodicities of wavelength equal to 

the length of the data. A full discussion of the method and 

results of numerical experiments on synthetic time series using 

a maximum entropy routine is given in Ross (1975). 

The statistical significance of MEM estimates has not been 

extensively considered, and the high variance of such estimates 

suggested that MM spectral peaks should be related to the results 

of other analyses before being accepted as revealing oscillations 
• 

an the data. 1  

5.7 Summary 

In this chapter general variations in rainfall and circulation 

indices have been investigated using decadal means and "low-pass" 

filtering of the data, and the presence of periodicities has also 

been investigated using power spectrum analysis. The relationship 

between oscillations in circulation indices and rainfall has also 

been investigated using cross spectrum analysis. An attempt has 

been made with some success, using eigenvector analysis, to des-

cribe common temporal variations by a series of independent time 

series whose relative presence in a given rainfall record can be 

defined. 

Most of the rainfall records appear to be homogeneous when 

their decadal means are compared with their long-term means, and 

Note 1: A subsequent analysis of the Scottish annual rainfall 
series using NEM, produced similar results to those 
using the Blackman-Thkey autocovariance approach in 
section 5.4.3 (see Appendix 2) 
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with those of other stations. They do not show trend to any great 

degree, though the third eigenvector time series, which describes 

some nine percent of the variance in the annual data does show 

trend. Persistence in the time series as revealed in the power 

spectra is neither extensive nor of a simple Markov type. In most 

cases the power spectrum may be described as being that of white 

noise with some disturbances. 

Of these disturbances it is only those which appear in the 

power spectra of annual data at high frequencies which are of sig-

nificance, i.e. high frequency periodicities are the only non-

random element in rainfall time series. 

While common variations exist in low-pass filtered records, 

decadal means, and longer sub-periods of the records, there are no 

common definable medium or low frequency oscillations revealed in 

the power spectra. The extent to which high frequency period-

icities present in the power spectra represent real processes is 

not easy to determine. The annual cycle and the quasi-biennial 

oscillation could be expected on a priori grounds. The significance 

of the 3.1 year periodicity in C and rainfall, expecially in "East" 

Scottish rainfall and the first eigenvector time series, and the 

significance of the coherence estimates and in-phase relationship 

between the 3.1 year periodicity in C and the rainfall series, is 

sufficient to suggest that a 3.1 year periodicity represents a. real 

process affecting  index and rainfall. 

The overall relationship between indices and rainfall has been 

demonstrated in cross spectrum analysis. "West" stations tend to 

have high coherence with P, and "East" stations with C, though 

variations in P and C are to some extent related. The annual cycle 
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• in P is also closely related to those of all rainfall records, 

leading those of "East" stations and lagging those of "West" 

stations by less than one month in either case. 

In future work, further investigations of low frequency vari-

ations could be made using other methodsof spectral analysis 

though in the absence of fresh data it does not seen likely that 

further inherent 'patterns of rainfall series can be revealed. It 

would seem 'from this analysis that the two- and three-year period-

icities are the most important non-random elements present in 

Scottish rainfall time series and in circulation indices. In order 

to investigate their use in "prediction" of future rainfall, 

"band-pass" filters would have to be applied to monthly rainfall 

records to eliminate effects of all oscillatibris other than the 

two- or three-year periodicity. The phase of each periodicity 

in each record could then be determined. 

I 
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AN INVESTIGATION INTO SPELLS OF WET AND DRY DAYS BY 
REGION AND SEASON FOR GREAT BRITAIN 

By J. A. BLAIR-FISH 
(Meteorology Department, University of Edinburgh) 

Summary. Distribution of wet and dry spells are considered in relation to Markov, simple 
logarithmic, modified logarithmic, and modified geometric models explained in this paper. 
Data from eight stations distributed over the British Isles show that a simple logarithmic 
model can usually describe dry-spell data while the modified logarithmic and geometric 
models describe wet-spell data. The variations in model parameters do not correlate well 
with region. Data considered by season for Oxford show that, on average, autumn and 
winter dry spells there are shorter than dry spells in spring and summer, while winter wet 
spells are slightly longer than those in the other seasons; these variations determine the model 
parameters. 
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Introduction. Many investigations have been conducted into the distri-
butions of sequences of wet and dry days. The most popular model used to fit 
the distributions of spell lengths has been the simple Markov model which 
assumes that the probability of any particular day being wet or dry depends 
only on the character of the previous day (for instance Chatfield,' Gabriel and 
Neumann 2). Williams' first suggested a logarithmic series as a fit to sequences 
of wet and dry days and this model has since been applied to other data 
(Cooke, 4  Chatfield'). Greens proposed a modified logarithmic modelof which 
the simple logarithmic and Markov models are special cases. This model, 
which used two parameters, satisfactorily fitted 33  out of 36 cases collected by 
Green and others; these included observations of duration of rainstorms, and 
of intervals between them, collected by Weiss. 6  Yap7  proposed a modification 
to the simple Markov model in which the probability parameter (of a wet or 
dry day being followed by a similar day) was a variable, though a constant 
within any given spell length. 

New data are here investigated in relation to seasonal and regional variations. 
Distributions from eight stations are compared. Those for Oxford are further 
divided into four seasons and examined in more detail. 

The models. The probabilities of spells of length i, 2, 3 . . . r wet or dry 
days are defined by the various models as follows: 

Model i: Markov Chain Model 

q, q', . . . (, with normalizing constant ' 
q 

Model : Williams's logarithmic model 

q, q212, q'/3, . . . (/r, with normalizing constant log (i 
—q) 

Model 3.• Green's modified logarithmic model 

a, 	a, 	 with o <a C 	and the normalizing constant 

determined by the requirement 	 = I. In each case the 

normalizing constant ensures that the total probability is unity. In order to 
fit models i and 2 from data the mean spell length is used (i.e. the total number 
of wet (or dry) days divided by the total number of wet (or dry) spells) to 
find q. 

For model i, mean spell length 	 q qrr= 

_ 
For model 2, mean spell length = 	

, 	7 qrr 	-
= 

	

log (i -q) r 	log (i - q) ( - q) 
r 

For model i, q can be found directly from the mean spell length; for model 2 
it is found by a recursive process or from tables published by Williamson and 
Bretherton.8 
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It may be noticed that models i and 2 are special cases of model 3  for 

a = cc and o respectively. 
To fit model .3  the method of minimum chi-square is used. We let q approach 

o from i and let a approach o from some value greater than, say, 6 in successive 
steps; the distribution for given a, q  is tested for fit at each step by the chi-

square test. The parameters a and q are altered each time the chi-square value 
falls as compared with the values of a, q for previous smallest values of chi-
square. In applying the chi-square tests, spells of length greater than a certain 
value (about 15) are grouped together into one category. The program stops 
when chi-square falls below a certain value determined by the number of 
categories; the a and q values for the minimum chi-square value are taken as 

best fit values. 
For model 4  we assume that the probability of a dry or wet spell is P, where 

p is a random variable having a constant value within any one run, but different 
values in different runs (as Yap 7); p is assumed to be a random variate 

- Pa-1 	— b-i 

p 	B(a,b) 

where a, b are constants of the distribution and B(a,b) is the Beta function. 

The probability of a run of days is given by 

P(r) = B(a,b) / (
i p) P" (I 

_p) b-i P" dp, 

where (i —p) is a normalizing factor and pr-i arises from r — x days following 

the first wet (or dry) day. Then 

B (a + r —1 b + '), 
P(r) = 	B (a, b) 

b 
P(i) = 

a + b
and r > 2, 

a + r — 2 

P(r) = a+b+r —i P (r —  

where we have used the definitions 
(x—i)! (y—r). 	Jpx_1( j  p)Y-idp. 

To fit the model we take factorial moments about the origin U'1, U'2  for the 

first two moments, i.e. 

tr'1=/f(p)(' _p)p?_Irdp 

1 

= B (a, b)/ ( I 
 —p)2 ' _p) pa-1_p) b-1 dp 

B (a, 1' + 1) — a + b —' 
= B(a,b) — 	b—i 
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U'2 = f f(p) (1 —p)  pr-1  r(r —i) dp 

1 	
2p 

= B (a, b) I pa-1 
(i 

 _p)b-i 	 dp, 

2 

= B (a, b) 
B(a + i, b — 2), 

- a (a + b—i) 
- (b — i) (b —2) 

Then 6 
= 2W 1  (U'1  —') —2W2  

2W 1  (U'1 
 -,) 

U'2 

a = ( U, 	(b—i). 

U'1  is equated to mean spell length and U', to the difference between mean-
square spell length and mean spell length. 

Persistence. As a measure of persistence we may use the ratio of the 
probability of spell length (r + i) to spell length, r, F(r) say. For models i, 2 
and 3,  F(r) = P(r + i)/P(r) = q ((r + a)f(r  + a  + i)). For the general 
case of model 3,0 < a C ; models i and 2 are special cases of model 3 for 
a = oo and o respectively. F(r) is constant for modeli for all r and equals q.  In 
general, F(r) increases with spell length rand with model parameter a; its rate 
of increase decreases as r increases and F(r) tends to q in the limit. 

For model 4,  F(r) = P(r + i)JP(r) = (a + r —3)/(a + b + r —i)  and the 
measure of persistence increases with spell length, tending to i for large r. 

Model fitting for eight stations. The data used were for 40-year periods: 
i92i-6o for York, Cwm Dyli (North Wales), Oxford, Falmouth, March and 
Edgbaston, 1931-70 for Edinburgh; for Whitby, the shorter period 1921-42 
was used. Difficulty was experienced in finding stations with long-term 
continuous rainfall records with a constant threshold for recording rainfall; 
threshold values were oo, in for all stations apart from Edinburgh and 
Edgbaston with o2 mm. These data are given in Appendix i (dry spells), 
Appendix II (wet spells); graphs of spell length distribution for Edinburgh, 
Falmouth, Cwm Dyli and March are illustrated as representative examples in 
Figures i to 6. 

The chi-square test was used to test the fit of models i to 4  to the observed 
distribution with an acceptance level of (x') >005. For dry spells the 
logarithmic model fitted the data for all stations except March and Edgbaston. 
For March the modified logarithmic model fitted the data for small a (a = o 
for the simple logarithmic model); for Edgbaston no model fitted the dry-spell 
data. Neither the Markov nor the modified geometric models produced 
distributions to fit any of the dry-spell data. The parameter q did not show 
any systematic variation among the stations. 

For wet spells the modified geometric and modified logarithmic models 
fitted most data. The exceptions were Cwm Dyli for the geometric model, 
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FIGURE 5—WET SPELLS AT CWM DYLI 
modified logarithmic model, q = o-go, a = 1-18. 

- - - - modified geometric model. 
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FIGURE 6—WET SPELLS AT FALMOUTH 
modified logarithmic thodel, q = o-88, a = 092. 

- - - - modified geometric model. 
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Falmouth for the modified logarithmic model and Edinburgh fitted by neither 
modified model. However, a simple Markov model, which is a special case of 
both modified models, fitted the Edinburgh data. The modified logarithmic 
model usually produced a slightly better fit than the modified geometric 
model, though differences were only apparent for longer, less-frequent spells. 

Variations of the parameters a and q for wet spells did not correlate well 
with region or with mean annual rainfall. Cwm Dyli (mean annual rainfall 
14046 in (356768 mm) for the period 1916-5o) and Falmouth (43 00  in, 
1o922o mm), the two wettest stations, had slightly higher values of q  than the 
other stations and showed slightly greater persistence of wet spells. The other 
stations had mean annual rainfall in decreasing order as follows: Edgbaston 
30.70 in (77978 mm), Edinburgh 2753 in (699'26 mm), Whitby 2566 in 
( 65 1  '76  mm), York 24-70  in  (627-38  mm), and March 2307 in (58598 mm)  . 

An examination was made of the effect of a change of threshold for the two 
stations which recorded in millimetres. It was found that with a threshold 
value of o' x mm the Edgbaston dry-spell data fitted a logarithmic model (no 
fit found for 02 mm), and that Edinburgh wet-spell data fitted both modified 
models (a Markov fit found for o2 mm). For Edgbaston wet-spell data and 
for Edinburgh dry-spell data the change of threshold was found to cause only 
a slight change in the model parameters. 

Comparative persistence of wet and dry spells. Using models r to 3  the 
values of the measure of persistence F(r) were compared for wet and dry spells 
for each station. For March, F(r) was larger for all dry spells than for wet 
spells. For Edinburgh, York, Edgbaston and Oxford, F(r) was larger for dry 
spells of length greater than two days; for Whitby, F(r) was larger for dry 
spells longer than five days. For Edinburgh, where a Markov model produced 
a best fit to wet-spell data, F(r) was of course constant. For the wetter stations, 
Cwm Dyli and Falmouth, F(r) was larger for wet spells for all r. Thus we 
infer that dry spells are more persistent at 'dry' stations and wet spells are 
more persistent at 'wet' stations. For intermediate stations wet spells are more 
persistent for short spells only. The variations probably reflect the passage of 
synoptic features. Anticyclones tend to build up slowly over two or three days 
and last for longer periods than do individual depressions. For 'wet' stations 
effects of minor disturbances are greater than at other stations and wet spells 
tend to be more persistent than dry spells. However, analysis of spell data 
does not distinguish the effect of individual disturbances; a long wet spell may 
result from several successive depressions. 

Seasonal variations (see Appendices III and IV and Figures 7-9).  The 
Oxford data for 1852-1970 were divided into four seasons—winter (December 
to February), spring (March to May), summer (June to August) and autumn 
(September to November), the divisions between seasons being taken at the 
end of a spell. Each seasonal set of data was tested for the distribution of spells 
according to the above model. Dry spells again fitted the log model and wet 
spells the modified geometric model. For dry spells the mean spell lengths 
were similar for autumn and winter (2875 and 2'92I days) and for spring 
and summer (3498 and ,3344);  the corresponding values of the parameters q 
in the logarithmic model were 084 for autumn and winter, o88 for spring 
and 087 for summer. For wet spells it was found that mean spell lengths 
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FIGURE 8—DRY SPELLS AT OXFORD, LOGARITHMIC MODEL 
Continuous line and dots refer to spring; q = o88. 
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FIGURE 9—WET SPELLS AT OXFORD, MODIFIED LOGARITHMIC MODEL 
Continuous line and dots refer to summer; q = 087, a = 109. 
Pecked line and crosses refer to winter; q = 078, a = 559. 

decreased from Winter (2932) to summer (2621) with spring (2783) and 
autumn (2•75o) having similar lengths. The parameters a and q  which pro-
duced the best fit to spring and autumn wet spells also produced a good (but 
not best) fit to summer wet spells (see table below). 

a 	 q 
Spring 	 2075 	075 	050 

Autumn 	 2075 	075 	005 

Summer 	 2075 	0•75 	0'05 

	

087 	075 	030 

Winter 	 181 	018 	OqO 

Cumulative distributions. As regards extremes, a model which describes 
cumulative spell distributions, i.e. the number of spells of length greater than 
a specified value, may be of more practical value than one describing individual 
spells. For this reason the spell data were also considered cumulatively. For 
dry spells only the modified logarithmic model was found to fit the cumulative 
data and that at only four out of the eight stations; the parameters a and q  of 
the model were 087 and I•09 respectively for York and Oxfqrd, o81 and 207 
for Cwm Dyli, and o-87 and 2•07 for March. On the other hand it was found 
that none of the models fitted cumulative wet-spell data. It was usually the 
rarer long spells which failed to fit the models for cumulative data since after 
the summation of data their relative weight in the fit was decreased. 
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Conclusions. We may agree with Green's conclusion that the modified 
logarithmic model (of which Markov's model and the simple logarithmic 
model are special cases) fits most spell data. As a first approximation, we may 
say that the simple logarithmic model fits dry-spell data with q about o85; 
for wet spells, the modified logarithmic model fits most data, with a about 2 

or 3  and It about 07 or o8 for other stations. The modified geometric model 
also fits most wet-spell data. The models give only a rough guide to the 
occurrence of infrequent long spells. 

Seasonally, dry spells are slightly longer for spring and summer than for 
autumn and winter, one q-value for each half of the year being sufficient to 
describe the data. For wet spells, different values of a and q  are needed for 

longer winter spells than those for other seasons. 
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APPENDIX I—DRY-SPELL FREQUENCIES 

Edinburgh York Whitby Con Dyli Oxford Falmouth March Edgbaston Edgbaston 
Spell Observed Log. Observed Log. Observed Log. Observed Log. Observed Log. 	Observed Log, Observed Log. 	Observed Log. Observed Log. 

length model model model model model model model model model ' 

days 
5 2241 1280' 9 1004 10334 662 6893 686 861-6 1004 2034-8 904 8689 944 9550 1039 ,o68, 1045 10769 
1 524 5247 476 4444 287 276-8 340 3593 476 4445 358 3779 487 4167 460 4569 459 454'0  

gsi 286-6 228 2548 254 '48- 2 170 199-6 26! 2545 226 2192 319 2927 ,6t 2607 269 2552 
4 194 176, 197 2644 92 893 120 1247 541 '640 ts6 1430 179 5964 154 1673 235 1614 
5 120 1254 107 1131 57 574 84 8'1 131 112- 7 92 99'5 ,28 1396 145 1245 142 108 - 
6 

74 
78-B 82 8s-s 51 384 63 577 99 80-7 73 721 164 1029 8, 8,6 St 765 

7 6e 554 - 60 59 . 8 32 264 59 412 46 594 53 538 79 780 73 599 61 553 
8 50 39•7 40 450 so '8-6 36 300 38 446 47 409 6, 599 39 44- 8 36 408 

25 289 43 344 9 133 26 223 39 36 3t   52 468 43 345 37 306 
10 15 253 31 266 23 96 17 167 26 34* 

1  
26-4 29 248 	- 43 370 34 263 28 232 

It 1 7 15-9 24 208 7 70 17 126 22 20 - 6 24 596 36 295 23 264 57 178 H 
52 '4 - 	119 19 16 -4 4 52 It 97 25 162 25 156 30 237 z8 s6o 13 137 0 
13 9 9 -0 25 130 3 38 6 74 9 129 12 225 - 24 192 50 527 9 107 
'4 7 69 50 204 0 28 3 57 55 • 3 9 55 13 156 8 sos 8 - 
15 2 52 5 84 0 21 3 45 7 82 8 82 53 12-8 10 8-0 8 66 cb 
16 4 40 4 67- I i6 s a-s 4 66 6 67 9 105 8 64 7 52 '4 
57 2 3! 5 55 I 12 2 27 3 54 7 55 3 8-7 I 52 3 4_I C,n 
18 3 24 2 44 I 09 1 22 3 43 2 45 8 72 3 42 2 33 
59 2 1•9 4 36 0 07 I 57 4 35 4 37 2 59 2 34 I 26 
20 I 15 4 29 2 05 1 53 2 29 3 35 5 49 2 28 2 21 

25 0 II I 24 0 04 0 15 2 24 2 23 3 4-  t 0 23 0 57 
22 0 09 1 W0 0 03 0 a-B 3 59 2 21 2 34 3 t8 2 24 
23 2 07 1 s-6 I 02 5 07 I s-6 5 t   2 29 0 25 0 1 - 5 
24 0 05 0 13 0 01 I 05 0 13 0 25 3 24 0 I'2 0 09 
25 0 04 2 15 0 05 0 04 1 51 1 12 3 20 0 '0 0 07 
26 5 03 2 09 0 01 0 03 I 09 0 10 2 17 0 oS 0 o-6 
27 0 03 0 oS 0 02 0 03 0 07 0 09 I 14 0 07 0 05 

38 0 02 0 o-6 0 05 0 02 2 o-6 0 07 0 12 0 o-6 0 04 
29 0 02 5 05 0 0 I 02 2 05 0 o-6 1 50 0 05 0 03 
50 0 01 0 04 0 0 0 0I I 04 0 05 I 09 1 04 0 03 

5! 0 01 I 04 0 0 0 02 1 03 2 04 0 07 0 03 0 	- 02 
32 0 0' I 03 0 CI 0 03 0 04 I oG 1 03 2 02 
33 0 05 0 03 0 02 I 03 0 05 0 02 0 01 

34 0 CI 2 02 0 02 2 03 2 04 1 02 I 02 

35 0 02 0 02 0 02 0 04 0 01 0 01 

36 0 05 0 02 I 03 0 05 0 02 

37 I 01 0 05 0 0 - 2 0 05 0 0! 

0 01 0 02 0 02 0 01 0 05 

39 0 05 0 0'1 0 02 0 05 0 01 

40 0 0'! - 	0 05 0 02 0 0I 0 01 

X. 557 200 233 209 299 10' 187 315 279 
040 030 030 020 005 030 040 001 005 
0- 82 o-86 0- 80 0-833 - o-8g 0-870 0-875 0-8 0 -84 

a - 0337 (23 
'-1 

Observed denotes observed frequency; Log, denotes expected frequency 
• When 

(logarithmic model). 
threshold decreased from 02 mm to o  mm, 
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APPENDIX It—WET-SPELL FREQUENCIES 

Edinburgh York Whitby Cwm Dvii 
Observed Expected Observed Modi- Modi. Observed Modi- Modi- Observed Modi- Modi- 

Spell Ire- fled fled fled fled fled fled 

length quency log. geo- - log- 
900- 

log. geo- 

(Markov) metric metric metric 

days 
1 1003 9508 907 8955 882-9 523 4894 4926 477 4956 4t39 

2 570 6127 520 5042 5322 293 oi6 3091 323. o86 5132 

3 336 3949 305 3079 3279 t82 1937 1973 252 3132 2392 

4 25! 254 • 4 204 97'5 2072 I2t 2270 2279 153 1563 184-2 

5 195 1640 t36 1308 l337 74 84 - 6 84-2 127 1190 5430 

6 96 1037 92 887 879 62 574 562 95 930 1119 

7 68 66-' 64 62-2 58-8 40 394 380 68 745 88, 

8 43 439 4! 42-8 400 - 39 272 260 - 63 6o-o flgg 

9 33 283 25 303 27 -6 22 290 16-0 62 491 557 

io 14 iBi 26 is -fl 193 II 133 12-6 51 40-6 447 

It 10 217 II , s-6 137 s 913 8-9 i 33 -9 6-i 

Ii 3 76 9 Ii3 g-8 7 6-6 64 23 28 - 4 293 

53 II 49 2 8-2 75 4 47 4-6 26 240 239 

14 3 31 6 6-n 52 4 34 39 24 204 296 

53 0 20 6 44 39 I 24 24 52 173 16 - i 

rG 4 53 2 32 2:9 3 17 tB 13 14-8 135 

27 1 o-8 2 24 &2 3 53 1.3 24 1271I1 

i8 2 05 4 tB i-fl 1 09 10 5 110 92 

19 1 03 3 23 13 I 07 0 -8 II 95 9' 7 

20 .0 02 a co to os 06 s 8-2 s 

21 0 01 0 07 07 0 03 04 4 . 	7.  
6i 22 

23 
0 

0 

05 
DI 

I 

0 

o-6 
04 

n-fl 
05 

o 02 03 II 

3 54 
4 
39 

24 0 00 0 03 03 7 47 37 
2-8 25 

26 
0 

0 

00 

00 

I 

I 

02 
02 

02 
02 

9 
7 

41 
s-fl 25 

27 
28 

I 00 0 

4 

3! 
PB 

2! 
i-B - 	

I 24 26 

30 3 21 14 

3, 
- 

3 
I 

19 
ifl 

12 
20 

32 
33 

0 24 09 

34 
0 P9 oS 

35 
2 
0 

II 
10 

01 
0-6 

36 
37 
38 
39 
40 

42 
42 
43 
44 

xI 222 104 220 148 t66 247 494 

0 -05 030 020 0 - 1n 030 0001 

0-64 0-78 0-76 090 

a s-sB 343 s-lB 
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APPENDIX II continued 
Oxford Falmouth March Edgbaston 

Observed Moth. Mcdi- Observed Modi- Modi- Observed Much- Mach- Observed 	Modi- Modi- 
fied fled fled fled fled fled fled fled 
log. geo- log. geo- log. geo- log, geo- 

metric metric metric metric 

884 873-1 8650 6a8 66o-8 628-9 1328 12 70 3 12943 884 9020 8712 
532 5252 s286 427 3627 4095 577 5846 625-3 554 5195 5369 

"a 
3288 330! 264 251  2765 283 2954 3046 31! 3214 3982 

- 	197 22 i-6 210•3 164 2762 5924 276 '576 156-3 219 2079 2172 
13! 1390 2385 237 1290 1374 - 	83 871 829 554 1385 3421 
96 927 89-o 98 972 1003 58 494 453 90 944 945 
55 626 60 - 3 68 748 cg 28-5 254 59 65-4 63-8 
50 427 410 43 585 56 - 6 tO 167 14- 6 48 45 - 8 43-8 
39 294 28 - 2 41 469 456 13 99 86 32 325 - 904 
14 203 597 28 37_1 340 6 59 5' 25 232 214 

14 242 339 23 299 270 4 96 3_I 24 167 152 
II 99 99 7 243 215 I 22 20 Ii 121 109 
9 70 71 22 '99 1 7_3 2 19 II 9 88 79 
6 g 52 19 16 - 3 142 0 08 oS 6 6- 1 5 - 8 
2 35 8 '3 235 I i-6 0 0 - 5 05 4 47 4'3 
I 25 28 20 t1-2 96 I 03 03 5 35 32 
I 1-8 2! 2 g-g So 0 02 02 3 2-6 34 
9 13 s6 so 78 6-8 0 01 01 2 P9 i-8 
2 09 52 2 6- 57 0 02 02 3 2'4s'4 
I 07 09 4 54 48 0 II II 

I 05 07 6 46 4_I I 08 n-S 
0 03 05 I 39 35 0 o-6 o6 
I 0'2 04 4 32 90 I 04 0'5 
0 02 09 2 27 26 0 03 0--4 

0 29 25 I 02 03 
2 20 20 0 02 02 
3 37 i'8 2 0I 02 
1 14 c'S 0 0I 02 
I 
2 

PS 
10 

14 
l2 

I 09 I'! 
3 07 P0 
2 o-6 09 
2 05 o-8 

• 1 05 07 
2 04 oS 
2 03 o'G 
2 03 oS 
2 0'9 0-5 
2 02 04 

3 02 04 
2 02 09 
2 02 03 - 
I 0! 03 

112 327 • 50_I 215 14'! PSi 41 s-6 
o - 6o 040 0_01 010 010 005 0-98 0-08 
075 o-88 n-66 0- 78 
3'05 - - 092 1'95 • t-Si 
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APPENDIX Ill—SEASONAL DRY-SPELL FREQUENCIES, OXFORD 

Winter Spring Summer Autumn 

Spell Observed Log. Observed Log. Observed Log. Observed Log. 
length model model model model 

days 
I Bgx 8285 685 713 .5 758 7693 827 869 

2 331 3499 301 3147 327 3361 408 66 

3 205 1971 204 1850 207 1958 191 2050 

4 119 1249 118 1224 130 1283 131 1293 

5 94 8 gB 864 97 897 87 870 

6 70 594 76 635 71 - 	62 610 

7 38 430 54 480 44 489 54 440 
8 33 318 28 370 37 374 32 323 

9 21 239 31 290 29 290 34 242 
10 22 182 26 231 28 228 18 18 

II 14 139 27 185 16 18•1 15 140 
12 10 icS 19 149 12 145 7 108 
13 13 84 TO 122 '0 117 io 84 
14 6 66 3 ,00 16 9.5 10 6 
15 3 52 II 88 9 78 2 51 

16 I 41 3 68 7 63 2 40 

17 2 33 5 56 5 52 1 32 
iS 3 26 3 47 2 43 3 25 
19 2 21 4 ag 6 3 20 

20 I 1-7 1 33 2 3•0 I 16 

21 2 14 3 28 2 25 0 13 

22 1 1-1 3 23 2 21 1 1'0 

23 2 09 2 20 1 17 1 08 

24 I 07 0 1-7 0 1-4 0 01 
25 1 o6 0 1-4 0 1-2 0 05 

26 0 05 0 12 2 1.0 0 04 

27 0 04 0 10 1 09 0 04 
28 0 03 1 09 0 07 1 03 
29 0 02 1 07 1 o6 0 02 
30 0 02 0 o6 2 05 0 02 

31 0 0•1 I 05 1 04 0 02 

32 1 01 0 05 0 04 0 01 

33 0 01 0 04 0 03 0 01 

34 0 01 0 03 0 03 0 01 

35 0 01 0 03 0 02 0 0•1 

2034 234 121 ''.5 

P(x2) 070 015 070 010 

q 084 088 087 084 



APPENDIX IV—SEASONAL WET-SPELL FREQUENCIES, OXFORD 

Winter Spring Summer Autumn 
Spell Observed Modified Modified Observed Modified Modified Observed Modified Modified Observed Modified Modified d 

length log, geometric log, geometric log, geometric log. geometric ' 

days 
I 7i8 697'' 6804 68o 6823 66o'9 757 8167 7343 762 7466 7448 
2 409 3926 4089 393 386'O 392'3 404 4142 424'9 434 4225 4359 
3 212 239'7 252'2 211 2324 2385 245 2346 2519 24' 2545 2620 

4 142 1537 1598 144 1456 1482 150 1414 151'9 174 1594 1614 1. 

5 105 101'9 - 	1033 90 93'8 940 98 886 935 84 1027 1017 
6 69 691 682 6' 61'6 60'7 56 '' 586 68 675 6• 
7 40 47 . 7 45'8 44 41'1 39'8 38 375 37 .3 46 450 428 0 
8 46 334 313 39 278 266 26 250 242 21 304 285 t' 

9 26 236 217 23 19'O 18'0 12 16'9 1'8 28 20'8 19'3 — 

10 13 169 153 13 130 123 12 115 105 II 14'3 132 
C" 

II 19 12'I 109 4 90 86 ii 79 7 -1  1 3 919 9'2 
12 9 88 'g 7 6' 6o 4 . 	55 48 5 69 6-5 
13 3 64 5 . 7 3 4•4 4•3 7 '8 33 10 48 46 
14 7 4'7 42 3 3'1 30 I 27 23 3 3•4 3 .3 
15 I 34 3'1 1 22 22 0 Pg 1'5 1 24 24 
16 2 25 2'4 0 1'6 1'6 2 1'3 l'2 2 17 1.8 
17 2 I'9 1•8 I II 12 2 09 o'8 0 12 13 
18 2 1'4 1-4 2 0'8 09 1 07 o'6 2 09 1'0 

19 1 1 - 0 1 - 0 0 o'6 07 0 05 04 I 06 0'7 
20 2 o8 0'8 0 0'4 05 0 04 03 I 04 o'6 

21 0 o'6 o'G 1 03 04 0 03 02 1 03 0'4 
22 0 0'4 05 0 02 03 0 02 02 0 02 03 
23 0 03 0'4 I 0I 0'2 0 0'2 O'I 0 0'2 03 
24 0 02 0'3 I 0" 02 0 0" 0" 0 0'1 02 
25 0 0'2 0'2 0 0I 01 0 0•I 0I 0 O'I 02 
26 1 oi 02 0 0'I °' 0 0" 01 

19.9 29'4 11'3 152 13 .4 10.7 19'4 21'4 
010 001 050 020 030 0'50 005 005 

q 078 - 075 075 0'75 
a 18 2075 1-08 7 2075 



APPENDIX 2 

MAXIMUM ENTROPY POWER SPECTRA OF P AND C 

CIRCULATION INDICES AND SCOTTISH ANNUAL 

RAINFALL TIME-SERIES 



MAXIMUM ENTROPY POWER SPECTRA OF CIRCULATION 

INDICES AND SCOTTISH ANNUAL RAINFALL 

Introduction 

Investigations further to the work of section 503.3, which 

used the Blackman-Tukey autocovariance method (ACV) of poker spec-

trum analysis of Scottish rainfall and circulation indices, were 

carried out using maximum entropy method (MEN) power spectra to 

locate more accurately the frequency of spectral peaks already 

found and to further look for low frequency peaks. This method was 

brought to the notice of the author after the investigations 

reported in Chapter 5 had been carried out. 

The MEN is described in detail by Ross (1975) who carried out 

numerical experiments on synthetic time series using this method 

and also the fast Fourier transform method (EFT)0 MEN was devel-

oped by Burg (1967) and was also proposed by Parzen (1969) who 

derived it from autoregressive modelling. The MEN is "data adaptive" 

in that the window function is not defined as in the ACV and ETFT 

methods but is implicitly altered by the data being processed to 

suit the noise characteristics of the signal. It is exactly equiv-

alent to modelling by autoregressive decomposition (see IJlrych and 

Bishop 1975)  and presents the same problem of the best choice of 

the AR order. 

The spectral estimate .produced by NEM has a higher variance 

than that of most other methods, but this is more than compensated 

for by its significantly higher resolution and its capacity to 

resolve wavelengths comparable to the length of the data sample 
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(Parzen 1969, Ulrych 1972, Chen and Stegen 1974) 

Method 

The Blackman-Tukey autocovariance method of spectral analysis 

computes the Fourier transform, P(f), of the autocorrelation 

function R(p) for PC ZR where m< n, the number of data points 

(see equation 510). For an infinite series the Fourier transform 

of the autocorrelation function, P5(f), would be an exact estimate 

of the power spectrum as in equation A2.1. 

= ót 	R(p) exp - 217 ip4t 	(A2.1)bo  

In order to allow for the finite length of the series and 

the truncation of the autocorrelation function for p> n, only the 

first m autocorrelations are used and raw spectral estimates are 

smoothed. The number of autocorrelation values, m, and the spectral 

window used are determined by the investigator; in the above anal-

ysis in = 	and "Hamfing" function is applied to the raw data as 

in equation 5.11. The spectral windows tend to place information 

which may not exist into the data and to make assumptions about 

variations in members of the series outside the range of available 

data. Spectral estimates for short-length data will be of limited 

use and will be in error for wavelengths comparable to the length 

of the data. 

A method which recognises the lack of information outside the 

length of the series and makes maximum use of the autocorrelations 

available is desirable. Loss of information is gain of entropy 
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which may be defined as 

1 h=- - 
IN 

lix P3 (I) it' 
Jc 

(A2.2) 

where f is the Nyquist frequency. 

This expression may be naxLnised with respect to unknown auto-

correlations which is equivalent to maximising the lack of inform-

ation about them. Thus for a series of n values 

__ - 0 
èR(p) 	- 

= 	Iexp - flifpat 
PS x

(f) (A203) 

which implies the Fourier series truncates and 

-n-i 
1 	= 	1 

P3(f) 	 1 x 	N -n+i 

C (p) exp(-2n ifp4t) (A2dt) 

with 0(p) = 0(_p to ensure that P3(f) is real. P3(f) can thus 

be expressed by 

 2f  N 

= n1() exp(-2ifpt) 	(A20) 
- 	

-n+1 

0(p) must be chosen so that 	gives the unimoirn autocorrel- 

atior±s 
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'N 
R(p) = 	3 XS (f exp (2 IT if pA t ) d 	(A206) 

since the autocorrelations are the inverse transform of the power 

spectrum. 

These conditions lead to the filtering of the data by means 

of a prediction error filter which whitens the series. If a time-

series x(q) has a Fourier transform X(w) and H(w) is the 

transform of the filter which whitens x(q) then 

N 	 - 

X(w) H(w) = K2  where K is a constant 	(A2.7) 

2 
or 	X(w) = 	K 

H(w) 

which is equivalent to A2.5. 

An estimator of the power spectrum can then be shown to be 

PS (f 	
Pn+1 

	

X 	1 + 	Za(j,m) exp _21rifjat 	(A2.8) 
j=1 

where P 	 is the mean output of the m+1 point prediction error 

filter whose first coefficient is unity (see Ross 1975) The pre-

diction error filter coefficients, a(j,m) where O<jn are 

given by the matrix equation 

11(0) 	R(1) 	... 	11(n) 	 Pm-1-1 

11(1) 	11(0) 	R (n-i) 	a(1 ,n) 	= 	Q 

R(n) 	 - 	a(m,ni) 	0 	(A209) 

N 



In order to calculate autocorrelation coefficients 

R(0)s R(i) •. R(n) without 
making  assumptions about the 

series x(q) outside the  data range, a recursive method of estim-

ating prediction error coefficients is used. For xa = 0, 

R(0) = 	and TP is determined directly from the :  data: 

n 

= 	x(q)2 
	

(A2.i 0) 

The rn+i point prediction error filter is calculated from 

the rn-point prediction filter by A2.9 and by minimising the power 

output from the n±1 point filter with respect to a(mm)0 The 

mean power output is determined by running the filter over the 

data in both forward and backward directions ,thus ensuring that 

a(n,m) does not exceed unity. 

For n2 this minimisation of power implies 

n-i 

Sa(i ,1) 	(x@) + a(1 ,i )x(q-1) )2 + (x(q)+a(i ,l )(q+i) )2 
1 

= 0 	 (A2.11) 

which in turn produces the result 

n-i 
a(1,1) = -2 	

x(q) x(g+i) 

I x(q) + x(q+i)2 	. 	(A2012) 

Equation A209 gives 

R (a) 	R (i 	1 ) 	 ( x 	x 	
) +a(i,i) 	( 	) I= 	I 	I 

) 	[ 	 ) I 	I 
R 
x 
 (i) 	Rx 

 (0). 	( 0  ) 	 (1 ) 	0 	(.a2.13) 
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Thus 

It x (1.) 	= 	- a(i,i) R 
	

(A20th) 

P2 	 i (1 - a(i,l) 2 ) 	 (A2.1) 

In general the minimisation of power output from the m+i 

point filter implies that 

nrn+i 	
E 	 E b 

	

a(m,m) = - 2 	 q+n,rn-'1 	9_2  rn-1 
2 	f 

+ 	
)2 	(A2016) 

) 

	

(Eqm. rn-i 	q, rn-i 

where E 	and E b 
	are forward and backward error series 

q,m 	q,m 

defined by 

E 	= x(q)+a(i,m)x(q-1) + a(2,n)x(q-2)..0+a(n,n)x(q-m) 	(A2-17a) q ,rii 

E b 
	= x(q)+a(1,m)x(q+1) + a(2,n)x(q+2).00+a(n,n)x(q+n) 	(A2.17b) 

q,m 

By definition 

a(O,n) = 
	

(A2018) 

Equation A2.9 enables the calculation of the remaining co-

efficients of the (n+i )th order filter, its mean power output, and 

the estimate of the in th order autocorrelation coefficient as in 

equations A249, A2.20 and A2021. 

S 
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a(j,n) = a(j,m-1 ) + a(m,n) a(n-j, m-1) 
	

(A2019) 

= (1 - a(n,m)) n+1 	 m 

In 
It (in) = - 	a(j,m) It (m-j) 

1 

(A2020) 

(A202i )• 

From the error coefficients and mean power output, spectral St-

mates may be obtained as in equation A2.8. 

Stability of MEN estimates number of filter points 

The HEM spectral estimates are somewhat dependent on the number 

of filter points used for their computation, As the number of 

points is increased, spectral peaks become more pronounced and 

shift in frequency. Side bands of major peaks also develop for a 

large number of filter points. The HEM does not possess a criter-

ion for stability in the choice of. the number of points to compute 

the "best" estimate which will reduce the noise to a minimum. 

Akaike (1969) has introduced a statistic called the Final 

Prediction Error, FEE. FPE is defined as the mean square predic-

tion error: 

n 

Y FPE - 1 L. ( x1  (q) - x2 
 (q) i 	 (A2.22) 

n 
where 	x1 (q) 	= x(q) - 	x(q) 	 (A2023) 

1 

In 
and 	x2 (q) 	= 	a(j,m) x(q-j) 	 (A2024) 

j=1 

-A207- 



The equation A2022, describes the unresolvablestatistical devi-

ation of the series from the true autoregressive components. FPE 

is not constant with order. For a series generated by an auto-

regressive process of order in, spectral estimates of order greater 

than  can be obtained from the equations above by recursion. As 
/ 

the order is increased above in, the statistical deviation of the 

components from the true components become larger. 

Akaike proposed that if an estimate of FPE could be found, the 

order at which it becomes a minimum would be the best estimate of 

the true order. He laid the theoretical basis for taking the 

estimate of FPE for order m as a factor of the error power output, 

as in equation A2.25 if the mean has not been removed from 

the series. 

FPE(m) = EtE 	(n) 	 (A2.25) 

• NEM does not yet have a consistent statistical test for the 

evaluation of significance of spectral estimates. MEM has a high -

resolution but the relative importance and significance of spectral 

peaks cannot readily be deduced from their amplitudes. 

Results 

Results of applying the I1EM nEthod to the annual series of 

circulation indices and Scottish rainfall analysed in Chapter 5 

appear in Table A2.1. The number of filter points for the best 

estimate was chosen using the Final Prediction Error estimate 

from the mean power output as in equation A20250 Spectral peaks 

obtained by the Blabkman-Tukey autocovariance approach are given 
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Table A2.1 Power spectra of circulation indices and Scottish 

rainfall using: 1. NEM 2. Blackman-Thkey ACV 

Station 

No. of 
data 
points 

Log/ 
No. of 
filter 
points  

Period of peaks (years) 

1 Pindex 111 9 7.1 2.7 20 

2 111 37 71 27 2.0 

1 C index 111 7 5.1 31 2.0 

2 111 37 31 20 

1 Edinburgh 78 6 3.4 

2 76 26 1005 3.2 

1 Loch Leven 132 10 4.4 3.0 
Sluices 

- 

2 111 37 4.4 3.1 

1 Marchmont 106 10 4 .4 2.9 
House 

2 105 35 47 3.0 

1 Crombie 99 7 32 2.0 
Reservoir 

2 97 32 32.0 3.1 2.0 

/... 



Table A2.1 continued 

Station 

No. of 
data 
points 

Log/ 
No. of 
filter 
points 

/ Period of peaks (years)  

-__ 

1 Gordon 108 11 96 4.8 32 
Castle 

2 106 35 260 80 

1 BaJinoral 92 10 10.2 4.1 30 

2 90 30 1 5.0 4.0 3.0 

1 Wick 97 8 6.7 3.5 

2 95 32 1008 

lArisaig 84 8 5.2 2.7 
House 

2 82 27 5.1 2.7 2.0 

1 Portree 62 10 4.2 2.6 

2 62 21 5.1 2.6 

1 Greenock 96 5.7 3.1 20 

2 94 31 8.9 4.8 - 2.0 

1 North Craig 93 7 5.6 3.1 2.0 
Reservoir 

2 92 30 30.0 3.1 2.0 

-. 
0 

/ 



for comparison. 	
4 

Results from the two methods tend to agree and there are no 

consistent low frequency peaks in MEM spectra0 The presence of 

the 20 year peak in P. C, and six rainfall stations is confirmed 

by MEN and this peak appears to be the most pronounced in these 

spectra. A peak around 30 years in C, and at all stations except 

Wiók, Arisaig House and Portree, which occurred in ACV spectra, 

is also present in MEM spectra. There is also some suggestion of 

a recurring peak between four and five years in both MEN and ACV 

rainfall spectra though peaks do not occur for the same period in 

different records. 

Thus MEN spectra confirm the results found at high frequencies 

in ACV spectra; they also indicate no significant low frequency 

oscillations in rainfall. 
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