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ABSTRACT 

The aim of walkaway VSP experiment is to image the region beneath the receiver. The in-

formation in the data is obscured by propagation effects in the region above the receiver such 

as free surface multiples, internal reflections and mode conversions. This thesis presents a 

method of extracting the reflectivity response of the region beneath the receiver from walka-

way VSP data , assuming the earth to be horizontally stratified. 

For marine experiments the source is an acoustic source in the water. Measurements of source 

signatures clearly show shot—to—shot variations. VSP processing, such as the separation of 

upgoing and downgoing waves, is based on the assumption of shot—to—shot repeatability. 

However, shot—to-shot variations are usually ignored during processing. I present a straight-

forward method for correcting for these variations. The source signature must be measured 

and the geometry of the measurement must be known. The recorded source wavelets are all 

shaped to a standard wavelet using filters in the frequency domain. The same filters are ap-

plied to the geophone data, thus removing the effect of the source variations. The method is 

demonstrated on real data. 

As a plane horizontally—layered earth is laterally invariant, a walkaway VSP can be viewed 

as an experiment with a single source and a horizontal array of geophones at depth. The 

data are processed in the horizontal wavenumber—frequency domain, in which plane wave 

components are separated. I present a method for recovering the reflectivity of the region 

beneath the receiver in this domain. The full wavefield at the receiver level can be computed 

for a plane—horizontally layered earth as a superposition of plane wave responses. Given the 

compressional and shear velocities at the receivers, compressional and shear components are 

computed from the separated upgoing and downgoing wavefields. This yields four wave-

fields: upgoing and downgoing S-wavefields and upgoing and downgoing P-wavefields. The 

upgoing P—wavefield is related to the downgoing P- and S—wavefields by two reflectivities, 

Rpp and Rp5, respectively, and the upgoing S—wavefield is related to the downgoing P-

and S—wavefields by Rp and Rs, respectively. Thus there are two equations relating four 

unknowns. Using a second source, which must change the partition of energy between the 

P— and S—waveflelds, yields a second set of equations containing different wavefields but the 

same four reflectivities. These four equations are then combined to solve for the four reflec-

tivities and image the region beneath the receiver. The method is demonstrated on synthetic 

data. The best results are obtained using a vertical—force/horizontal—force sea—bed source 

combination. Reasonable results can be obtained using an acoustic—source/horizontal—force 

combination. Such sea—bed sources are currently being tested for commercial use. No dual—

source real data are yet available. 



This thesis has been composed by myself and is original work unless explicitly 
stated in the text. This work has not been submitted for any other degree. 
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NOTATIONS, DEFINITIONS AND 

CONVENTIONS 

All the terms used in this thesis are given here. For complete definitions one should refer to 

the main text. SI units are used throughout. Commonly used abbreviations are also given 

here. 

Scalar and vector quantities 

Vector quantities are written in bold type face, F, and scalar quantities in normal type, F. All 

vectors are three-vectors, unless otherwise stated in the text. 

Space and Time 

A right—handed Cartesian reference frame with z increasing with depth is the main frame of 

reference in this work. For diagrams the x axis is in the plane of the paper and the y axis is 

perpendicular to the page. If y increases out of the page then x increases to the right and if y 

increases into the page x increases to the left. Let 

X = (x, y, z) 

in the Cartesian frame. In general let x = (x1, x2,  x3) represent the position three-vector in 

W and n2  the ith orthonormal basis vector such that 

X 

= 



x 	 Notations, definitions and conventions 

Let t denote time. Frames which are a pure rotation from the Cartesian frame are commonly 

used. The cylindrical system (r, 0, z) is defined by 

(x2  + y2 ) 2  = r tan— i = 0 and z -+ z. 

The summation convention is used for repeated subscripts, e.g. 

a2b2  = a1b1 + a2b2 + a3b3. 

Spatial differentiation with respect to x 2  is represented by 

axi  

Temporal differentiation is represented by at  or an overdot it2  All tensors are Cartesian, co-
variant a 2  and contravariant a2  forms are identical. 

Special functions 

ö(x) 	f°° 6(x - i)f(x) dx = f(ri) the Dirac delta function 

OX) 	6(x1)6(x2)6(x3) 	 the three dimensional delta function 

6ijaj = a 2 	 the Kronecker delta function 

Jb(x) >IO 	(x)2S 	 the zeroth order Bessel function 

Integral transforms 

It is assumed that all integral transforms used converge for the all cases presented in this 

thesis. There are known cases when they do not converge, but none of these cases apply here. 

A complete discussion of these transforms is found in Bracewell (1986). 

The Fourier transform with respect to t and transform parameter w is 

F(x,w) = 
FOO 

f(x,t)exp{iwt} dt. 

The inverse transform is 

1 f f(x,t) 	F(x 7 w)exP{_iwt} dt. 
27r 	00 

The change from small to capital letter denotes the change of domain. 



Notations, definitions and conventions 

The Fourier transform with respect to space x and its transform parameter k is 

F(k,w) = f 	dx 

and its inverse 

F(x,w) = 1 f oo 
fr(k,w)exp{ikx} dk. 

2ir  

The - denotes the change of domain. 

The three dimensional space-time to horizontal—wavenumber-angular frequency transform is 

00 

= N f(x,y,t)expi(wt - kx - ky) dx dy dt 

00 

and has inverse: 

00 

f(x,y,t) = 	N P (kx , ky  7 w) exp i (k x  x + k y  y — wt) dk dk d. 

00 

The Fourier transform of the nth derivative of a function, F (u) is related to the transform of 

the function F(c) by: 

F(w) = (—iw)'F(w). 

A function in time f(t) can be retarded f(t) —+ f(t — ,r) using the convolutional relationship: 

f(t — r) =f(t)*ö(t—r), 

where * represents convolution. 

The zeroth Hankel transform is defined in terms of the two dimensional Fourier transform by 

ff f(x, y) exp{—i2ir(kx + ky)} dx dy = 2ir f f'(r)Jo(2irkrr)r 

where f'(r) f ((x2 + y2)) and kr  is the radial wavenumber. 



xn 	 Notations, definitions and conventions 

SI base units 

Quantity Unit 

Name Symbol 

length metre m 

mass kilogramme 	kg 

time second s 

thermodynamic temperature Kelvin K 

SI derived units 

Quantity Unit 

Name Symbol Equivalent 

frequency Hertz Hz s 1  

force Newton N kg ms-2  

pressure Pascal Pa Nm 2  

energy Joule J kg m 2_2 

power Watt W Js' 

electric potential volt V W A- ' 

Symbols 

Symbol Description Units 
A* complex conjugate of A same as A 

bij initial stress tensor Pa 

Cijkl stiffness tensor Pa 

C acoustic velocity of water m 

C Hydrophone calibration constant V Pa-1  

D Matrix of downgoing wavefields m 

e23  strain tensor % 

/ source force Nm 3  

GXIYIZ 
geophone gains for x, y, z component 

hij volume source density of strain rate tensor %/s 

h enthalpy J kg' 

I 30 identity matrix 

the imaginary axis - 

k wavenumber magnitude m 1  

k wavenumber vector 



Notations, definitions and conventions 

Symbol Description Units 

k radial wavenumber m 1  

horizontal wavenumber in the x, y or z directions m 1  

M mass kg 

mur) transfer matrix 

MW source measurement Pa 

mreal (t) recorded source measurement V 

Cartesian frame basis vectors 

R,T,v dynamic frame basis vectors 

s1,s2,p eigenvector frame basis vectors 

P horizontal slowness s m 1  

P pressure Pa 

PH instantaneous seismic power in the horizontal plane W 

uID complex amplitude of upgoing or downgoing P—wave mis 

qc. isotropic P-wave vertical slowness s m 1  

qO isotropic S-wave vertical slowness s m 1  

r distance from the hydrophone to the source m 

r distance from origin in R2  m 

free—surface reflection coefficient 

R distance from the hydrophone to the virtual image of a source m 

R distance from origin in R3  m 

R 3x3 reflection matrix 

Rpp P to P reflectivity 

Rps S to P reflectivity 

Rp P to S reflectivity 

RSS S to S reflectivity 

R bubble wall displacement m 

A bubble wall velocity m s 

the real axis - 

S(t) source time function Pa m 

SuID complex amplitude of upgoing or downgoing S—wave 

S(w) Transformeds(t) Pa 

T 3x3 transmission matrix 

T s(t) to m(t) transfer function in frequency domain 

U Matrix of upgoing wavefields m s 

U(X) a particle displacement field m 

XI" 



xiv 	 Notations, definitions and conventions 

Symbol Description Units 
v(x) a particle velocity field m s 1  
V volume m3  

VB bubble volume m3  

VP isotropic P-wave velocity m s 
V isotropic S-wave velocity m s 

Zr receiver position m 

source position m 
a complex frequency shift s 1  
a isotropic P-wave velocity m s 

isotropic S-wave velocity m s 

small constant for deconvolution stabilisation varies 
9 horizontal angle of wave—normal to the x axis radians 

measured angle of P—wave to the horizontal radians 

predicted angle of P—wave to the horizontal radians 
A wavelength m 
A Lamé parameter Pa 
p Lamé parameter Pa 
A rotation matrix, x, y, z -* R, T, V 

P density kg m-3  
E source vector m s 1  

Tii stress tensor Pa 

vertical angle of a wave normal to the x axis radians 
4(x, t) particle velocity potential m2/s 
O(x) acoustic potential m2  s 
W angular frequency s' 
NO a contour of integration in the complex plane 

source and near surface wavefield m s 
A blank in the units column denote the quantity is dimensionless, a dash that the object has 
no units. Any conflicts are made clear in the text. The full wavefield notation is detailed in 

Chapter 6 



Notations, definitions and conventions 	 xv 

Notations and abbreviations 

V 	the vertical component of a three—component geophone 

Hi 	horizontal geophone component orthogonal to H2 

H2 	horizontal geophone component orthogonal to Hi 

R 	horizontal geophone aligned in the radial direction 

T 	horizontal geophone aligned in the transverse direction 

P 	a compressional wave 

SV 	a vertically—polarised shear wave 

SH a horizontally—polarised shear wave 

qP 	a quasi—compressional wave 

qSl the fast quasi—shear wave 

qS2 the slow quasi—shear wave 

TIV transverse isotropy with a vertical axis of symmetry 

TIH transverse isotropy with a horizontal axis of symmetry 

DFT the discrete Fourier transform 

FFT the fast Fourier transform 



xvi 
	

Notations, definitions and conventions 

Cartesian 
frame 

yf~l 
	

Spherical wave front 

Normal to wave front 

"Dynamic"  

frame T 
 

H2 
V 

HI "Eigen vector" 
frame 

SV 

Borehole 

Definition of axes and reference frames 

The figure shows the definition of the Cartesian axis. The directions H1,H2 and V for a geo-

phone and R,T and P,SV and SH for a down going wave are also shown. The radial direc-

tion is defined as the direction perpendicular to the z-axis in the vertical source receiver plane. 

The transverse direction is orthogonal to the radial direction. These directions define the dy -
namic frame. The eigenvector frame the frame in which the basis vectors are aligned with the 

eigenvectors of the solution to the elastic wave equation. The eigenvectors are wavenumber 

dependent. The definition of the eigenvector frame is different for waves in non-azimuthally 

isotropic material where the phase and group velocities of a wave are not parallel. 



INTRODUCTION 

Chapter 1 

1.1 Motivation for research 

Borehole seismology has come a long way from check shot surveying (Dix, 1936), where 

the main aim of the experiment was to provide calibrated time—to--depth curves for surface 

seismic data or to calibrate sonic logs. This ignores all the data but first break times. Today 

the compressional wavefield is recorded almost in full and it is becoming common to record 

more of the shear wavefield. With this increase in the quantity and quality of borehole data 

there has come a demand for new processing techniques to obtain more from the data. 

Multiples are often the most serious problems in seismic reflection surveying (Wiggins, 1988). 

As with marine surface seismic data, free—surface multiples are a problem for marine walk-

away vertical seismic profiles (VSPs) (MacBeth and Liu, 1994b). This project began as an 

attempt to develop a wave—equation based free—surface multiple suppression scheme for ma-

rine walkaway VSP. The aim of suppressing the multiples is to allow better imaging of the 

experiment target. 

MacBeth and Liu (1994b) consider the problem of free—surface multiples when looking at 

the direct (non—reflected) wavefield in VSPs, particularly when considering the converted 

wavefield or the relative amplitude of the P— and S— arrivals. The reflected part of the VSP 

wavefield has similar problems, the multiples make computation of relative amplitude of the 

P— and S— arrivals difficult. Amplitude versus offset methods have become popular recently, 

and ideally should be applied to multiple—free data. For the VSP case there is also the problem 

of effects due to the region above the receiver, called the near—surface. For a walkaway VSP 

with the receiver at 3km depth there is much scope for near—surface effects to cause severe 

problems when trying to image the target. 

Some authors refer to the multiples associated with the water column as free—surface mul-

tiples, highlighting the fact that without the free—surface these multiples could not exist and 

that it is the magnitude of the free—surface reflection coefficient that causes the problem to be 

so serious. Other authors refer to them as water bottom multiples as the sea—bed is the first 

reflection in the multiple. 



2 	 Chapter 1. Introduction 

There are many surface—seismic multiple—suppression schemes in the literature. Wiggins 

(1988) presents a wave—equation—based prediction and subtraction scheme which requires a 

model of the sea—bed reflectivity to begin with. Vershuur et al. (1992) present an adaptive 

wave—equation based scheme in which the wavefield is extrapolated one round—trip through 

the water, each event then becomes a multiple of one higher order. The predicted multiples are 

then subtracted from the original data. Kennett (1979) presents a method of approximately 
inverting for the P—P reflectivity of the earth beneath the water layer. It is this scheme to 

which the work here is most closely related. 

1.2 Philosophy - multiple suppression or recovering reflectivity? 

This thesis does not solve a multiple attenuation or suppression problem. Rather the aim 

becomes to recover information about a specific region of the earth, where that information is 

not contaminated by information about any other region in the earth. In this case the region of 

interest is the region beneath the receiver. The effects of the near—surface and the free—surface 

are eliminated from the data by recovering the reflectivity of the earth for the region beneath 
the receiver. 

1.3 Summary of the problem and solution 

The equations for seismic wave propagation in stratified media are well know both for the 

isotropic (Kennett, 1981, 1983) and the anisotropic (Fryer and Frazer, 1984) case. These 

equations are used to compute the full wavefield at the receiver level. I then manipulate this 

wavefield so that the reflectivity of the region beneath the receiver can be computed as a 

combination of upgoing and downgoing wavefields for two different sources. 

The scheme presented is dependent on the separation of upgoing and downgoing wavefields 

as well as transforming the data to the frequency—(horizontal)-wavenumber domain. Both of 

these processing steps require that the source does not vary shot—to—shot. The marine seismic 

source does vary shot—to—shot so I present a method of processing the data to remove the 

effect of such source variations. VSP wavefield separation schemes are discussed in Chapter 

3. 

1.4 Thesis organisation 

. 1 Introduction. This chapter. All the terms used in this thesis as well as definitions of 

some of the important expressions are given before this chapter. 



Chapter 1. Introduction 	 3 

• 2 Elastic wave theory. The basic elements of wave propagation are revised and two 

key results are highlighted: the solutions of the wave equation using potentials and the 

decomposition of spherical waves into plane wave components. 

• 3 Multicomponent seismology. Here the data are introduced and the basic initial pro-

cessing is discussed. The initial rotation of the multicomponent data and separation of 

upgoing and downgoing waveflelds is given particular attention. 

• 4 Acoustic source measurement: theory. Shot-to-shot variations must be removed 

from the data to prevent the introduction of errors into the data. This chapter deals with 

source signal deghosting, deconvolution and wavelet shaping. 

• S Acoustic source measurement: application. Here the problem of shot-to-shot 

variations for a 'marine VSP is discussed and the techniques presented in chapter 4 are 

applied to a real data set. 

• 6 Reflectivity recovery: theory. From the equation that describes the full wavefield 

at the receiver for a plane-layered earth the equations of reflectivity recovery are de-

veloped, which includes P-S separation. These equations show that a wave-equation 

based walkaway VSP demultiple scheme requires the full reflection response of the 

earth and that two sources are required to recover the reflectivity of the region beneath 

the receiver. 

• 7 Wavenumber-frequency transform. The separation equations are formulated and 

the data are processed in the wavenumber-frequency domain. This chapter deals with 

the transform including preconditioning of the data and symmetries that are observed 

in the transform domain. 

• 8 Reflectivity recovery: application. Using the transform developed in chapter 7 the 

scheme of chapter 6 is applied to simple and more complex synthetic data examples. 

• 9 Discussions and conclusions. The synthetic examples show that the reflectivity of 

the region beneath the receiver is best recovered using horizontal-force/vertical-force 

dual-source data. Discussion on using this scheme on data from a three-dimensional 

earth and including anisotropy is presented. 



THEORY OF WAVE PROPAGATION 

Chapter 2 

2.1 Introduction 

This chapter reviews the basic elements of the theory of wave propagation and wavefield rep-

resentation that are required in this thesis. The fundamental results required are the spherical 

wave solutions to the wave equation and the representation of a spherical wave by a set of 

plane waves. The physics of the source are dealt with in the following chapter. 

2.2 Elements of continuum mechanics and elasticity 

Starting from the definition of stress, Newton's second law of motion, and Hooke's law, the 

linear elastic wave equation is derived. This wave equation is solved with suitable boundary 

conditions for the problems met in this thesis. 

The description of an elastic solid is best described using Cartesian tensors. This means that 

the equations developed are invariant under frame rotation. The wave equation is the same 

in the dynamic frame and the eigenvector frame for example (These frames are defined in 

notations section of Chapter 1). The different solutions to the wave equation are more easily 

expressed in some frames than in others. 

2.2.1 The stress tensor 

Consider a homogeneous perfectly elastic body. Figure (2.1) shows such a body undergoing 

deformation, with surface E and its normal vector n. The traction at a point fully describes 

the net force acting on that point. The body is deformed by applying external forces but is in 

dynamic equilibrium. The internal forces in the body act to resist deformation. The internal 

forces in the body are analysed by looking at a surface E, which is a cross section though the 

body and contains the point 0. The surface is described by a unit vector n, which is normal to 

the surface and originates at 0. The traction t is the force per unit area across E. Physically, 

the traction is the contact force, between particles on either side of the surface, per unit area. 

There is an infinite number of planes and thus an infinite number of tractions containing 0 
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Figure 2.1: Surface E though a body in equilibrium 

all defined by different unit normal vectors. The stress at 0 is the sum of all the possible 

tractions acting though 0. 

A normal vector decomposed into orthonormal components is 

n=(ni,n2,n3). 	 (2.1) 

The component of the traction vector in the 1—direction is 

ti = 7- fl1 + T12fl2 + T13T13, 	 (2.2) 

run1 is the component of t1 acting in the same direction as n1. The units of r11n1 are force 

per unit area. Generalising to the three orthogonal tractions yields 

tj = Tjfl3 . 	 (2.3) 

This is Cauchy's stress formula. Physically -rij is the i—th component of traction acting across 

a plane normal to the j—axis. The 30 stress—tensor r23  is required to define the tractions, its 

familiar form is 

T11 T12 T13 

ru = 7-21 T22 T23 
	

(2.4) 

731 T32 7733 
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The diagonal terms are the normal components of stress and the off-diagonal terms are the 

shearing components of stress. 

2.2.2 The strain tensor 

The infinitesimal strain tensor e is defined as (Aki and Richards, 1980, page 13) 

1 	
+ a 3 ) = e 3 . 
	 (2.5) 

This definition is valid for small (normally less than one percent) strains. The strains associ-

ated with seismic body wave propagation are smaller than this. Assuming properties of the 

stiffness tensor such that 9u 2  = 9u3 , the strain tensor can be defined as 

e 3  = 19juj. 	 (2.6) 

2.2.3 Hooke's law 

The generalised form of Hooke's Law is 

Tij = Cijkleki + bij, 	 (2.7) 

where Cjjkl is the stiffness tensor. The quantity b 3  is the initial stress tensor. Under consider-

ation here are elastodynamic problems where the initial strain rate corresponds to an initially 

stress-free state. Thus body forces such as gravity or tectonic stresses can be neglected for 

these problems. This is a linear elastic relationship. Time dependent and nonlinear regimes 

are not considered here. 

2.2.4 Newton's second law 

Newton's second law can be stated thus 

- d(mv) 
fN 	dt 

(2.8) 

where /N  is the force, m the (constant) mass and v the particle velocity. That is, the force 

acting on a particle is equal to the change in the linear momentum of that particle. For a 

continuum of particles the total force acting on a material volume is equal to rate of change 

of the total linear momentum of the material within the volume. For a volume V bounded by 



8 
	

Chapter 2. Theory of wave propagation 

a closed surface E this is 

fv pvdV=ftdE+ffdV. 
dt  

(2.9) 

The second term on the right—hand side is the total (body) force exerted on the volume. Here 

the elastodynamic wavefield is being calculated, and volume sources such as gravitational and 

magnetic forces are negligible, f is volume source density of force. 

2.2.5 The elastodynamic system of differential equations 

Expressing the first term on the right hand side in indicial notation and applying the Cauchy 

stress relation, (2.9) is written 

fVpvdv=fEmmTmkdE+Lf 	
(2.10) 

Assuming conservation of mass and therefore total particle number, the left hand side can be 

expressed as 

f dv 	fr, flm TmkdE+ If dv. 	 (2.11) 

	

vPdtdV 	 iv 

Consider an infinitesimal change in velocity v, thus: 

Ov 9v 	49V 	 9v 
Lv = - x + - y + 	Lz + - 	 (2.12) 

ax 	ay 	az 	at 

where u is the particle displacement. 

The total derivative of this is 

Dv ôi, 

	

u .
rn 	 (2.13)

at  Dt at-+o 	 At 

where it = % The second term is called the convective derivative. This term, Vv ü, is 

zero if the motion is considered in the frame of a particular particle. This is known as the 

Lagrangian frame, the Eulerian frame is the frame fixed in space. This distinction is used 

later in this thesis. 

The familiar form of Gauss's theorem is 

IV. ds=fV.VdV. 	 (2.14) 

That is, the surface integral of a vector over a closed surface equals the volume integral of 
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the divergence of that vector over the volume enclosed by the surface, assuming the vector 

is continuously differentiable within the volume. Therefore the surface integral in (2.11) is 

written 

f p dV 
= fV V m Tmk dV + 

fVi 
dV, 	 (2.15) 

or 

f p dV 
= fV amTmk dV + fV 

dV. 	 (2.16) 

by equation (2.14)' this can be expressed as 

f

/ dv 
(a - l9mTmk 

- i) dV =0. 	 (2.18) 

If the entire integrand is zero this is 

dv 
- amTmk 

- / =0, 	 (2.19) 
dt 

which is known as the local form of the stress equation of motion. 

Stress and displacement are related by 

Tij = Ck,a1Uk + qij, 	 (2.20) 

where qij is the volume source density of strain. Taking the time derivative the uniform strain 

rate is, 

aTij = Cijkj [ôl vk - 	 (2.21) 

The volume source density of strain rate is denoted h23 , which is the time derivative of qjj. 

This equation is the linearised equation of deformation rate. 

the general tensor rather than vector field version (equation 2.14) of Gauss's theorem is used. Schutz 
(1980) shows that 

f. ~ini ds 
= 	

O,, dV 	 (2.17) 

for an i-dimensional tensor field , in a Cartesian space and the surface s and volume V have dimensionajities 
related to C . 
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2.2.6 The wave equation 

Spatial differentiation of the deformation rate equation (2.21) yields 

= Ci3klöi [ôlVk - 	 (2.22) 

Temporal differentiation of the stress equation of motion 2.19 yields 

/ dv\ at 	
- ôtômTmk - ' 9tf =0. 	 (2.23) 

dt 

Combining these two equations (2.22,2.23) and eliminating stress yields 

/ dv" ,9t 

 (a ) + Cijklôi [ôjvk - hi,] - Otf = 0, 	 (2.24) 

which is the elastic wave equation. For marine acoustic sources / is zero (no shear force), 

thus 

/ 
a 

 (

dv 
-) + Ci,klOi [öivk - h,] = 0. 
dt 

(2.25) 

The acoustic source is h23 . The physics of sea-bed sources is not discussed in this thesis. 

For isotropic material the elastic constants tensor can be represented in terms of the Lamé 

parameters A and p by (Menke and Abbott, 1990, p248) 

Cjjkl = Aökj + i(8i0j1  + 6il 6jk). 
	 (2.26) 

Helmholtz's theorem states that a vector field which vanishes at infinity can be represented by 

a rotational field and a solenoidal field. Thus the particle velocity can be represented by (Aki 

and Richards, 1980, p69) 

	

= VV) +v x 	 (2.27) 

where 0 and ç1 are vector and scalar particle displacement potentials, respectively. In this 

case the (source free) wave equation can be separated into two parts 

	

- 2  at2' 	
(2.28a) 

a2 &2 

and 

v2  = 	 (2.28b) 
132 &2 
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where 

FL
+

(2.29a) 
P

2p 

and 

/3 = s/i. 	 (2.29b) 

2.2.7 Wave equation - conclusion 

The full wave equation has been derived and solved in terms of Helmholtz potentials for 

isotropic media. The wave equation can be solved for arbitrary anisotropic media, in which 

case the Helmholtz potentials cannot be constructed. The solution has eigenmodes corre-

sponding to the P—like and two S—like modes for both upgoing and downgoing waves. The 

compressional and shear wave fields are not decoupled for many anisotropic media, however 

the eigenmodes are orthogonal. As each mode in the upgoing or downgoing wavefleld is or-

thogonal to all other modes it is possible to separate wave types based on particle motion. For 

the isotropic case the scalar wave (the P wave) propagates in the source—receiver direction, 

the waves corresponding to the vector potential propagate orthogonal to this and correspond 

to SV and SH modes. 

2.3 Decomposition of spherical waves to plane waves 

The physics of plane wave propagation is well understood and relatively simple. A full under-

standing of the propagation of spherical waves has only been possible since the early twentieth 

century. Spherical waves can be decomposed into cylindrical waves, via the Sommerfeld in-

tegral (Sommerfeld, 1909), and into plane waves via the Weyl integral (Weyl, 1919). This 

derivation follows Brekhovskikh (1960), chapter 4. The derivation of Bath (1968), chapter 7, 

is similar but he uses the opposite sign convention for propagating waves; he also calls the 

Weyl integral the Sommerfeld integral. 2 

Consider a sinusoidal source of spherical waves represented by the scalar potential '/(R) 
The acoustic potential at some far-field distance R = (x2  + y2  + z 2 ) 2 from the source is 

2 Derivations are also given in: Aki and Richards (1980), chapter 6, Ewing et al. (1957), chapter 1 and Menke 
and Abbott (1990), chapter 8. 
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Snherical Wave Front 

Z 

Figure 2.2: Spherical wave from a source at the origin 

(Brekhovskikh, 1960, p237) 

Vo ei(_wt) 

	

R 	
' 	 (2.30) 

where Vo/47r  is a measure of the source strength and k is a spatial analogue to w. Such a 

source could be a bubble oscillating sinusoidally where the bubble radius is small compared 

to the wavelength of the emitted acoustic waves. Figure 2.2 shows a spherical wave front 

from such a source positioned at the origin. Ignoring any terms in time t, which are constant 

under spatial integration, the source is represented by: 

eikR 
(2.31) 

In the plane z = 0 the horizontal distance is r = (x 2  + y2 ) . The acoustic potential is now, 

e ikr 

r 
	 (2.32) 

Expressing this wavefield in terms of the inverse two dimensional Fourier transform in space 

yields 

eikr 

ff 
0

=A(k,k)exp[i(kx+ ky)]dk dk. 	 (2.33) 
r 	_00 

in which A(k, k) is given by 

ff 
	eicT

(4ir2)A(k, k) =- exp[—i(kx + ky)] dx dy. 	 (2.34) 
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Which is the forward two-dimensional transform. 

Transforming from Cartesian to polar coordinates by 

k =kr  cos lb, 	k =kr  sin 1b, 	kr  =(k+ky ) 1 "2 , 

x =r Cos 9, 	y =r sin O, 	dxdy =rdrd8, 	 (2.35) 

yields 

2ir 

	f00 (4 1r)2 A(k, k) = I 	dOexp{ir[k - cos() k r  cos(8) - sin() k- sin(9)]} dr, 
Jo 

(2.36) 

which is 

2ir 	p00 

(4 7r)2A(k, k) = 	dO I exp{ir[k - k r  cos( - 8)]} dr. 	 (2.37) 
foJo 

If the medium of propagation is attenuating (even if only very slightly) k has a positive imag-

inary component and the integral over r then is elementary. The upper limit in the evaluation 

of the integration then vanishes 3 . That is: 

f oO 	 exp{irB} 00 

 

exp{irB} dr = 	. 	= 0 -= -, 	 (2.38) 
 r=0 

where B = [k - kr  cos( - 8)]. Thus (2.37) is 

 
fo

2ir 	dO 
(47r)2A(k,k) = i  

k - krcos(b - O) 	
(2.39) 

Making the substitution 8 = 0 - so d8 = dO, recognising the 27r periodicity of the kernal, 

yields 

27r 	d8 	i

fo

2 	d6 	
(2.40) (4) 2A(k, k) = i 	

k - k r  cos(ö) = k 	1 - (k r /k) cos(6) 

The integral identity for integrals of this form is (Bath, 1968, p189) 

fo 

27r 	dx 	2r 
= _____ 	 (2.41) 

1+a cos (x) V1—a2  

3The upper limit vanishes as e2(200) = e 	= 0. 
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for a 2  < 1. Applying (2.41) to (2.40) yields 

(47r2)A(k,k)= i 
	27r 

(2.42) 
k - 

	

' 	k) 

Which, when simplified, is, 

2 	 2 
A(k,k) = 	______ = 	 . 	 (2.43) 

2ir,/k2 - k 	2irk2 - k 2  - k 2  X 	y 

Substituting (2.43) into (2.33) yields 

eikr  - i ff- 00
°°exp[i(kx ± ky)] dk dk 	

(2.44) 
r 	2-7r 	/k2_k2_k2 

2; 	y 

This is the decomposition into plane waves in the horizontal plane. The vertical wavenumber 

k 2;  is defined as 

k2; - V/k2 - k 2  - k 2  - 	2; 	 (2.45) 

Adding the term ±ik2; z to the exponent in the integral extends equation (2.44) to waves prop-

agating down from and up out of the (x, y)—plane respectively. Thus the full spherical wave 

to plane wave decomposition is 

eikR - 	ff 	 dk2; dk 
exp[i(k 2;x + ky + k2; z)] 

R 	27r 
 Z 	0, 	(2.46a) 

-00 	 k 

and 

eikR - 	
exp[i(k 2;x + ky - kz)] dk

2;  dk 	
z 0. 	 (2.46b) 

R2rrJJ 	 k 2  

The right—hand sides of these expressions, (2.46), satisfy the wave equation and give the 

correct result at the origin so the extension out of the (x, y)—plane is valid. Equations (2.46) 

are the Weyl integral. 

These expressions represent the decomposition of spherical waves into plane waves in terms 

of the orthogonal wavenumbers k2; , k and k 2;  in the Cartesian frame. They can be re-expressed 

in spherical coordinates, looking at the direction of propagation of the plane wave component 

in terms of the angles 0 and 0. 
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The transform from Cartesian to spherical coordinates is 

k = k sin çb cos 0, 	k = k sin 0 sin q5, 	k = k cos . 	 (2.47) 

The definitions of these angles is shown in figure 2.3. The third of these transforms has 

consequences on the limits of integration in 0 . If the horizontal wavenumbers are zero then k 

is equal k and the 0 will be zero, that is, the wave is propagating vertically. As the magnitude 

of the horizontal wavenumbers becomes large the vertical wavenumber becomes imaginary, a 

consequence of (2.45). If k is complex then 0 must also become complex. Therefore, limits 

of integration are 0 = 0. . . 7r/2 - ioo in the vertical plane and 9 = 0. . . 27r in the horizontal 

plane. Figure 2.3 shows the path of integration Ro about 0 in the complex plane. 

- 	 -.-- Wave front 
X'4 

~Z 	
7 

Z 	k 
(normal to wave front) 

Angle definitions for a single plane wave 
component 

Contour of integration in the complex plane 

Figure 2.3: Definitions for spherical wave decomposition in angular coordinates 

From (2.47) it can be shown that (Bath, 1968, p190),(Brekhovskikh, 1960, p190). 

dkdk - 

ksin 	dqd9, 
k - 

Thus the decomposition equation (2.46) is now written as: 

(2.48) 

	

ei 
- ik f

fo

2

R 	27r  

eikR 
- ik [°°f

o2ir 

	

R 	2irJo  

exp[i(kx + ky - kz)] sin th• d9dq5, 

exp[i(kx + ky + kz)] sin q5• d0dq5, 

z > 0, (2.49a) 

z < 0, (2.49b) 

noting that k, k and kz  are functions of 0 and 0 . Transforming the Weyl integral to polar co-

ordinates yields the Sommerfeld integral for decomposition of spherical waves to cylindrical 

waves. 

2.4 Conclusions 
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In this chapter the basic theory that is needed in the rest of this thesis has been presented. The 

key results are the decomposition of a spherical wave into plane wave components and the 

solution of the wave equation using such spherical waves. The wavefields presented in this 

thesis are processed in the horizontal-wavenumber—frequency domain, in which plane wave 

are separated. In this domain it is possible to separate compressional and shear modes if the 

local compressional and shear velocities are known. 



MULTICOMPONENT MARINE BOREHOLE 

SEISMOLOGY 

Chapter 3 

3.1 Introduction 

The aim of this chapter is to introduce the type of data considered in the thesis and the standard 

processing techniques usually applied. A short history of VSP experiment and processing is 

presented to provide a context for current developments in the field. A review of the relevant 

standard processing techniques and some examples of multicomponent VSP experiments fol-

low. The chapter finishes with a description of walkaway VSP geometry and initial processing 

and a data example of the initial processing is presented. 

3.2 A brief history of vertical seismic proffling 

The first documented application of borehole seismology appears in a 1917 patent application 

(Fessenden, 1917). Figure 3.1 is diagram 2 from the patent application. Item 49 is the acoustic 

source and items 18 (left borehole) and 15 (right borehole) are acoustic receivers. Fessenden 1  

states, "The vertical angle of reflection may be determined by hauling the transmitter or re-

ceivers up or down the drill holes.". These source and receiver geometries are similar to the 

crosshole and uniwell type experiments being developed today. 

The development of borehole seismic technology outside the USSR was almost non-existent 

until the mid-1970s. Inside the Soviet Union, however, VSP research was significant from 

the early 1960's. The standard Russian text on VSP (Gal'perin, 1974) cites the start of serious 

interest at 1959; the original Russian book is FaJIBnepHn (1971). In 1980 there were about 

twenty times as many Soviet publications as Western VSP publications (Hardage, 1983). 

The growth in VSP interest in the west turned in the 1980's with the beginning of academic 

'Canadian Reginald A. Fessenden (1838-1932) was the first person to show that radio could be used to transmit 
anything other than Morse code signals. In 1901 he took part in the first transatlantic broadcast when he and 
Marconi, in Newfoundland, received the Morse letter S ( ... ) from Fleming in Cornwall. On Christmas Eve 1906 
he successfully broadcast his voice and music and in November 1907 he achieved the first transatlantic voice 
communication between Brant Rock, Massachusetts, and Machrahanish, Scotland. 
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Figure 3.1: Reginald Fessenden's 1917 patent application, from Hardage (1983) 

ties between the West and the USSR. In 1980 the (American) Southeastern Geophysical 

Society held a one—day workshop to increase awareness of this 'new technology' at which 

Gal'perin was a keynote speaker. In 1981 a workshop was held at the Massachusetts Insti-

tute of Technology which focused mainly on three-component technology, looking at seismic 

attenuation, the shear wave trains and fracture detection using seismic waves, subjects very 

much still current today. Since then VSP experiment design and processing has had a signifi-

cant amount of attention. There has always been a close link between the anisotropy and VSP 

research communities. Three—component data have been routinely recorded for some time 

and three—component sources have sometimes been used allowing nine—component datasets 

to be collected. Such multicomponent datasets appeal to the anisotropy community as they 

better reflect the tensor nature of the seismic response of the earth. 

3.3 Standard VSP processing techniques: a short review 

In the mid 1980's VSP processing was based on modified surface seismic techniques. Lee 

(1984) describes a standard VSP processing flow, which is for a set of vertical measurements 

and a single source point. The development to a walkaway will come later. This VSP pro-

cessing flow has the form: 

wavelet shaping, 

velocity filtering or wavefield separation, 

downgoing wave deconvolution. 
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These are each considered briefly here. 

3.3.1 Wavelet shaping 

There are no papers available specifically on source signature—based initial VSP data process-

ing. Many of the original VSP case studies mention some source monitor measurement—based 

processing but do not go into detail or discussions about the limitations of using such mea-

surements. Kennet etal. (1980), of the Seismograph Services Limited (SSL) VSP group, use 

only vertical sensor data and assume only P-wave propagation. They present a VSP process-

ing scheme with data examples. In these examples the first motions appear non-continuous 

suggesting that source variation problems exist but have not been addressed. This paper has 

no references to other work. A few years later Lee (1984) states in a VSP processing review 

paper that: 

[VSPJ processing and interpretation is based on the assumption that the source 

wavelet is identical for all recordings at all depth levels. This is rarely the case. In 

fact, the source waveform is almost always different for every recording episode. 

The problem of shot—to—shot repeatability and the problems shot variation introduces into 

VSP data were known in 1984 (Lee, 1984). In this paper the use of a source monitor is sug-

gested and one of the waveforms recorded at this sensor is picked as the 'standard' waveform. 

Time domain filters are constructed to shape all other recorded source waveforms to this stan-

dard waveform and these same filters are then applied to the data traces. The paper presents 

a land VSP data example which has been wavelet—shaped to remove source variability. Such 

a scheme leaves the true source waveforms unknown. There is no discussion on how effec-

tive such a scheme is and the effect the source ghost has on the information recorded at the 

monitor. This ghost may mask some of the shot variation as recorded at the sensor. The mon-

itor must also be a suitable distance from the source, outside any non-linear zone and free of 

ground roll (in the land case), of which no mention is made in the paper. Hardage (1983) p 149  
comments on stacking the data for Gaussian (v'7)  noise reduction with variable sources. This 

may be reasonable for marine sources as they are reasonably stable and so variations may be 

random, but for land sources this stability assumption is not good. 

Tariel and Michon (1984), of the Compangnie Général de Geophysique (CGG) VSP group, 

also present a VSP processing paper in which they present the idea of deconvolving the up-

going wavefield using the downgoing wavefield. In this paper the source monitor data is used 

only to correct the first break times; no wavelet shaping is performed. The book by Hardage 

(1983) describes two approaches to source signature variation elimination. Wave shaping to a 

standard wavelet (Hardage, 1983, p202) of the measured signatures is qualitatively described 
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but no examples are shown and no references are made to published work on wavelet shaping. 

A wavelet shaping scheme that does not rely on a measured source signature is also described 

in the book (Hardage, 1983, p32). The first breaks in the geophone data are aligned and an 

average wavelet computed by stacking all the recorded wavelets. A convolutional filter is 

constructed to make this average wavelet compact. This filter is then applied to the whole 

dataset. Dillon and Collyer (1985) consider first break picking in VSP data and mention a 

shaping scheme very similar to Higgins et al. (1997) but do not discuss its validity or make 

reference to other papers.. 

In the data presented in this thesis there is a source variation problem. This problem was 

not dealt with by the contractors. I cannot find any decisive work in the literature which 

discuses this problem in VSP processing. Higgins et al. (1997) presents a scheme for wavelet 

shaping using the source monitor data. This scheme is fully detailed in chapter 5 of this 
thesis. This may be a reinvention of a much earlier work by Zeitvogel 2  in which the problem 

of source variations causing apparent discontinuities in the measured wavefield is address by 

using measured source signature data. 

3.3.2 VSP wavefield separation and deconvolution 

In the borehole both upgoing and downgoing waves are recorded. Processing using a veloc-

ity filter scheme to separate these different wavefields then allows specific reflectors to be 

identified more clearly. Wavefield separation and filtering has formed a major part of VSP 

processing research because of its fundamental role in using VSP data to image the sub-

surface. Kommedal and Tjøstheim (1989) present a tutorial on different methods of VSP 

wavefield separation. They compare delay and sum methods with Fourier based frequency-

wavenumber schemes and nonlinear median filtering. Some of the more common schemes 

are outlined briefly here. 

An estimate of the downgoing wavefield d(t) by delay and sum, given the ith trace v 2  (t) and 
the ith trace initial wave onset time t2  is 

d(t) = 	 (t + ti )vi 	 (3.1) 

for N traces. Subtracting this estimate from the recorded wavefield yields an estimate of the 

upgoing wavefield u(t). Effectively the first breaks are aligned in time and all traces then 

2There are references to a Zeitvogel (1982) in ToksOz and Stewart (1984) but the full citation is missing 
from the book. The article is not in the journals Geophysics, Geophysical Prospecting or Geophysical Journal 
of the Royal Astronomical Society and a search for Zeitvogel on the SEG, Geobase, or GeoRef databases yields 
no articles other than Spencer et al. (1984), which is an abstract from the 1983 SEG conference. Seismology 
Abstracts for 1982 also has nothing for Zeitvogel. 
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summed to yield the downgoing wavefield estimate. Seeman and Horowicz (1983) pose this 

problem as a least—squares optimisation in the frequency domain, minimising the quantity 

J(w) 

N 

J(w) = > 	- ei(itiU(w) - e_tWtiD(w)1 2 , 	 (3.2) 
i= 1 

where U(w) and D(w) are estimates of the upgoing and downgoing wavefields and V(w) is 

the ith data trace. This scheme assumes a single downgoing and a single upgoing wave. The 

chief advantage of these type of schemes is that they do not require regular spatial sampling 

and the upgoing and downgoing waves do not have opposite moveout. Equation (3.2) show 

the downgoing and upgoing waves as having opposite moveout, as in the original paper. This 

is not a necessary condition; the filter can be parameterised for two wavefields with arbi-

trary moveouts. Moreover, the parameterisation can be expanded to deal with any number of 

'iavefields. 

For median filters instead of averaging, as in the delay and sum techniques, the statistical me-

dian of a number of traces in depth is computed after aligning traces by their first breaks. The 

median filter must have an odd number of points otherwise discontinuities are not preserved. 

The action of the filter severely attenuates upgoing waves and amplifies and smoothes the 

aligned downgoing waves. The number of points in the filter is dependent on how continuous 

the downgomg wavefield is. A detailed description with data examples is shown in Hardage 

(1983) pages 182-194. Median filters are nonlinear. 

If the upgoing and downgoing waves have different moveout then they will be distinct in the 

(,k) domain. If the moveouts are opposite, applying a Gaussian pass filter in the frequency-

wavenumber domain for either the positive or negative wavenumbers yields either the upgoing 

or downgoing waves. If the moveouts are not opposite it is still possible to filter VSP data in 

this domain to attenuate specific modes or velocity (or slowness) ranges using Gaussian fan 

filters (Hardage, 1983, pp  174-179). Filter design in this domain is dependent on the velocity 

of the desired wavefield. 

The VSP convolution assumption is that, for zero offset convolution of the downgoing wave-

field at a specific level with the reflectivity series below yields the upgoing wavefield at that 

level. If this is true then a deconvolution operator can be constructed from the downgoing 

wavefield to recover the reflectivity series from the upgoing wavefield on a trace—by—trace 

basis (Smidt, 1989; Kennet et al., 1980). Such a scheme assumes single mode propagation, 

with no conversions and a one dimensional earth, thus only vertical component data is usually 

used. For zero—offset experiments it is reasonable to assume that there is no mode conver-

sions, but this breaks down rapidly in the presence of steep cross—dip or in the presence of 

non azimuthally—symmetric anisotropy (Higgins and MacBeth, 1995). The work presented in 
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this thesis is an extension of this idea to walkaway geometries allowing for mode conversions 

and using multicomponent data. 

The processing scheme for offset VSP, where the source is at a fixed shot point some lateral 

distance from the receiver, is only slightly different. Converted waves are recorded on the 

horizontal and vertical components of the geophones. To utilise these data properly, correction 

must be made for tool rotation between deployment positions. One must now also correct for 

the source offset to get an equivalent zero-offset section; this is very similar to normal move-

out correction in surface seismic data. The data can now be transformed to the common 

reflection point domain to image features away from the well. These processing steps require 

a velocity model of the earth and accurately-picked first-break times. Such experiments are 

discussed in Lee (1984). Lee (1984) suppresses the converted (S-)modes as an initial step. 

A comprehensive discussion of VSP processing is in the book Hardage (1983) and multi-

component advances of that time are discussed in the companion volume Toksoz and Stewart 

(1984), both part of the "Handbook of Geophysical Exploration" series. 

3.3.3 Other considerations in VSP processing 

Tube waves (DiSiena et al., 1984a; Cheng and Toksöz, 1984) ,often dominated by high fre-

quencies, are a common feature in borehole data sections. They are identified by their distinc-

tive moveout (apparent velocities in the range 1500mIs to 1600m/s). These waves correspond 

to (pseudo-Stoneley) interface-waves set up at the borehole-fluid-rock interface and are af -

fected by changes in the borehole casing and surrounding rock structure. The suppression of 

these modes is often difficult. Geophone noise (Beydoun, 1984), clamping and cable noise 

have in the past been significant noise sources in VSP data (Hardage, 1983, p62). Today a full 

range of tests is carried out to make sure that the tools are well clamped and there is miiiimal 

cable and geophone noise. Sneddon (1998) has recently developed a velocity filtering tech-

nique for the suppression of tube-waves in uniwell data. The wave mode separation scheme 

presented in Chapter 6 is based on a velocity filtering approach to wavefield separation. 

3.4 Examples of multicomponent experiments 

Many examples of processing multicomponent VSP have been documented, most looking at 

the converted waves. Converted wave processing is considered in MacBeth et al. (1998) and 

the case of converted waves at near normal-incidence in MacBeth and Liu (1994a). Exam-

ples of the use of converted wave data are: rock property estimation, considered in Ahmed 

(1989), reservoir characterisation in MacBeth (1995) and shear wave splitting in the North 
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Sea, (Schi-uth et al., 1992). The processing of vector wavefield data is reviewed in Wild etal. 

(1993). In 1989 the Society of Exploration Geophysicists (SEG, 1989) devoted an entire 

workshop to vector wavefield data, in which most of the case studies were VSP data exam-

ples. 

The comparatively small scale but high cost of VSP experiments means they are designed 

with specific objectives in mind. The experiment geometry is dependent on the borehole for 

the positions of the sensors. This leads to many interestingly—designed experiments. A non-

standard geometry is detailed in Dougherty etal. (1995) where they describe what they call an 

"Oblique seismic experiment". Unfortunately most of the useful data is in the direct P-wave 

coda. This experiment was one of the first 3D VSPs with the source boat moving in concentric 

circles. One of the first walkaway experiments is described in Ahmed et al. (1986). 

3.5 Walkaway VSP geometry and data 

Figure 3.2 shows a diagram of a single line walk away VSP experiment. The source and 

hydrophone are towed behind the boat. The ship track passes a safe distance from the rig, 

thus there is only a zero—offset shot point if the well is deviated. For a single line experiment 

the track is chosen to be perpendicular to the strike of the subsurface features, i.e cross-dip. A 

zero offset shot is desirable as the reflection sequence at vertical incidence is the most simple. 

The geophones are in an equi-spaced array, commonly five or twelve receivers spaced at 15m 

intervals. The array may be pulled up the well and the line re-shot with the receivers in this 

new position; thus a larger array can be simulated. For a fixed (single) shot point VSP there 

is usually just a single geophone, pulled up the hole between shots. The receivers are free to 

rotate in the horizontal plane as they are pulled up—hole. They are gimbled so the vertical 

component remains vertical. The geophone packages are clamped to the borehole lining 

during shooting and it is assumed that the coupling is constant for all geophone positions. 

There are two sets of data recorded: the receiver geophone and source measurements are 

recorded using different sensors and electronic filters. An outline of the recording scheme is 

shown in figure 3.3. In the diagram a triangle represents a filter (with an associated gain), 

while ADC represents analogue to digital conversion. TX and RX represent the radio trans-

mitter and radio receiver for the source data. The source data are transmitted by radio from 

the boat to the rig where they are then recorded onto the same tape as the geophone data. The 

two sets of data are multiplexed. 

The exact positions of the source and hydrophone are not recorded. A source position is stated 

in the data headers but this is a source suspension point relative to the mast of the source boat. 

The mast position is known using GPS. The direction the boat is travelling in and the distance 
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Figure 3.2: Single line walk—away VSP geometry 

from the mast to the source suspension point (assumed to be constant) are used to calculate 

the recorded source position. The boat is steaming continuously during the experiment. The 

recorded source depth is normally the length of chain from the suspension buoys to the source 

rig, in this case 4m. 

The geophone positions are given as depths in the well below the kelly bushing on the rig. 

These are converted to true depths using well deviation measurements. Measurement of the 

rotation of the horizontal sensors is possible using a gyroscope but such measurements are 

currently rare. 
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Figure 3.3: Outline of data recording scheme 

3.6 The Elf dataset 

The data presented in this thesis are from an experiment in the Norwegian sector of the North 

Sea. At the time this was part of one of the largest borehole seismic experiments undertaken. 

The geophone tool has five levels, shot in two positions. Only the upper position data are 

presented. 

Table 3.1 and Figure 3.4 show the geometry from the data examples shown in this thesis. The 

geophones were deployed in a string of five three-component geophones. This string was 

deployed in two different positions (A and B in table 3.1) during the experiment. The source 

depth was measured relative to the sea surface and the geophone depths relative to the kelly 

bushing on the rig, which was 26m above the sea surface. Figure 3.5 shows common receiver 

gathers for the radial and vertical geophones. All traces are plotted at the same scale. The 

first arrival on the radial section is the projection of the P-wave. The initial processing that 

has been applied to these data is detailed in the following sections of this chapter. 
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Source depth (msl) 4m 
Water depth 90m 
Geophone depths (kb) A 3045 - 3105m 
Geophone depths (kb) B 3120 - 3180m 
Geophone interval 15m 
Source offsets -1680m - 3240m 
Shot point interval 30m 

Table 3.1: Walkaway VSP experimental parameters. 

Shot 165 
3240m 

Deviated well 

Shot 1 
	

" Ship track 

Origin is at the well 
-1680m 	 Distances are along the ship track 

Figure 3.4: Schematic diagram of walkaway VSP geometry 
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Figure 3.5: Radial and Vertical common receiver gathers, respectively 
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3.7 Initial processing of the data 

There was some initial data manipulation processing carried out by the contractors. Precise 

details are not available, but they have demultiplexed the data, and applied a static correc-

tion to make sure all geophone traces have the same zero time relative to the first break on 

the source measurement. The down—hole recording devices are accelerometers. These data 

have been converted to particle velocity with the application of a phase shift of 7r/2, but no 

amplitude correction has been applied 3 . 

The data were recorded using three orthogonal sensors. The orientation of the sensors was 

fixed at each tool level. The particle velocity field at a (perfectly coupled) receiver is 

v(t) = v(t)n . G + v(t)n . G + v(t)n . Gz, 	 (3.3) 

where 	are the Cartesian basis vectors 	are orthogonal particle velocities and 

and G are geophone gains. Ideally the gains are identical. For the data shown in 

this thesis it is assumed that this is the case as none of the geophone test data have been pro-

vided. This assumption is likely to be valid for the horizontal components G and G, as the 

same vertical force due to gravity acts on both of them. The vertical component is a different 

instrument as it is designed to detect motion in the same direction in which the gravitational 

force is acting. The result, is that the apparent horizontal or vertical velocities may be exag-

gerated in the receiver medium, thus affecting any velocity model. No problems of this kind 

are reported in the contractor's report so it is assumed either this has not been a problem or 

has been corrected in some (unknown) way 4 . This error is constant shot-to-shot. 

The geophones may be oriented in any direction in the horizontal plane. This orientation is 

constant shot—to—shot as the geophones do not move. The orientation varies along the geo-

phone string as the cable between tool housings twists during tool deployment. The vertical 

component is always vertical. The horizontal components are denoted Hi and H2, and there 

is a fixed angle which rotates Hi and H2 to be inline with the survey axes x and y. 

The geophone data are rotated shot—by—shot to the dynamic coordinate system (Esmersoy, 

1984, 1990). The radial direction is the direction that is horizontal and lies within the vertical 

source—receiver plane. The receiver is a positive distance from the source along the radial 

axis. The vertical direction is unchanged and the transverse direction is orthogonal to both 

the radial and vertical. These three directions form a right—handed coordinate system which 

is a pure rotation from the Cartesian system. The axes are denoted R, T, and V. Figure 3.6 

shows the definition of this coordinate system. Note that the eigenvector axes point towards 
the source, which is at the origin of the wave—normal. The equation of rotation is (DiSiena 

3 This correction was applied by the contractors. 
4 correction for misalignment of the vertical geophone is difficult there is no linear rotation to correct the data. 
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et al., 1984b) 

UR 	COS9 sin  0 u 

UT = - sin  cos 9 0 u, , 	 (3.4) 

uv 	0 	0 1 u 

where 9 is the angle of rotation for a shot position. Figure 3.7 shows the horizontal rota- 

tion angles, in degrees, to rotate the geophone data from Hi and H2 to R and T for each 

shot point in the single line walkaway VSP. This definition of the radial direction assumes no 
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Figure 3.7: Horizontal plane rotation angles 

cross-dip. The radial direction is the projected direction of the first P—wave motion in the hor- 
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izontal plane. A time window about the P—wave first arrival is picked and the instantaneous 

component of the seismic power PH in the horizontal plane is calculated thus: 

	

Pjj,j (0) cx (H1 + H2), 	 (3.5) 

where i is the sample number in the time window. The instantaneous angle 79 is 

= tan -1 	 (3.6) 
Hii 

The instantaneous power has a maximum PH,max  at some angle l9max  and this angle is the 

angle of Hi from R (Ahmed et al., 1986). This assumes that the P—wave motion is linear. 

Figure 3.7 shows the rotation angles computed in this manner for the Elf dataset. For the 

near offset data there is little energy on the horizontal components, thus the peak power angle 

is less easy to pick. If there is cross—dip or non azimuthally symmetric—anisotropy then the 

radial direction computed from the initial P—wave motion is not contained within the source 

receiver plane. 

The horizontal rotation angles can be predicted from the experimental geometry given the 

assumption of a plane—layered, azimuthally—isotropic earth (figure 3.8). The predicated angle 
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Figure 3.8: Predicted horizontal plane rotation angles 

79 is given by 

= tan— I 	- Vi- ,  
XS - Xr 

(3.7) 
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Figure 3.9: Difference in horizontal plane rotation angles 

where the horizontal receiver position is (Xr , Yr). The average difference in the angle between 

the computed and measured rotation angles is 65'(±2.2'). This average angle is computed 

using the offset shot—points, where the rotation angles are linear, Figure 3.7. This average 

angle is the angle of the receiver coordinates (Hi, H2) from the geometry coordinate system 

(x, y), a constant for each receiver throughout the experiment. Figure 3.9 shows the difference 

between theoretical and computed rotation angles for the Elf data with this constant removed. 

The peak in the plot occurs at near—offset; that is where there is very little energy on the hor-

izontal components and so the signal—to—noise ratio is much higher than for far offsets. This 

makes the computation of angle unstable. One would expect the near—offset to be incoherent. 

The peak is due to a small error in the position of the receiver relative to the ship track. This 

error is constant shot—to—shot. If there is no error in the receiver position then there will be 

no coherent peak in the difference plot. 

There is one other reference frame used in this thesis, the eigenvector frame. There are nor -

mally six solutions to the wave equation for a single wavenumber, corresponding to three 

up—going and three downgoing waves. For isotropy this is one compressional and two shear 

waves for each direction, where the compressional wave is coupled to a shear wave and the 

other shear wave is fully decoupled. It is possible to rotate the data to this eigenvector frame 
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from the dynamic frame for a single plane wave thus: 

Usv 	cos' o -sino U  

USH = 	0 
	

1 	0 	UT, 
	 (3.8) 

Up 	Sifl 
	o cos 	UV 

where 0 is the angle of the wave from the vertical. The rotation in the horizontal plane 

is accounted for during the rotation to the dynamic frame. Rotation to and from this frame 

forms the basis for P-wave and S-wave separation in the w-k,. domain. Such a rotation cannot 

be carried out in the t-x domain as the rotation angle 0 is slowness-dependent. 

3.8 Real data section 

Figure 3.10 shows the radial component for a walkaway VSP in the common-receiver domain. 

The data have been rotated to the dynamic frame but no other processing has been applied. 

The multiples can be clearly identified: the two-way time for vertically travelling waves in 

the water, depth 90m, is 1 2Oms. 
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Figure 3.10: Annotated walkaway VSP section (radial component) 

3.9 Conclusions 
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In this chapter a brief discussion of the most commonly used VSP processing techniques 

has been presented. Using the standard technique of rotation in the horizontal plane, using 

computed rotation angles, the data are rotated from the geophone coordinate system (Hi, H2, 

V) to the dynamic coordinate system (R, T, V). The multiples can be clearly identified in the 

rotated data. 



THE MARINE SEISMIC SOURCE: THEORY 

Chapter 4 

4.1 Introduction 

For marine walkaway VSP seismic experiments the source is commonly a cluster of three 145 

cubic inch airguns, fired at approximately 2000psi ( I 35atm). A measurement of this source 

is made using a single hydrophone usually between one and twenty metres from the source. 

The aim of this chapter is to relate the marine source, its near field (pressure) measurement 

and the far field (particle velocity) wavefield recorded at the geophone. Source signature 

deconvolution is based on a convolutional model of wave propagation. Wave propagation 

near the source does not obey a linear wave equation. Parkes and Hatton (1986) develop 

the linear wave equation as an approximation to the full wave equation, but do not fully 

consider the effect of the approximations. Here the full non-linear acoustic wave equation is 

stated. The linearisation of this wave equation is discussed. Relationships between pressure 

measurements and the bubble radius and volume are also derived and discussed. 

The physics of airgun bubble oscillation is not fully known; problems with simple models and 

solutions are qualitatively discussed. These problems do not affect the derivation of the wave 

equation or its solution for the case presented here of wave propagation at seismic frequencies. 

The work in this chapter draws on Ziolkowski (1982) for the bubble physics, on Ziolkowski 

et al. (1982) for deconvolution relationships, on Lamb (1923) for the derivation of the full 

non—linear wave equation and the non-linear analysis and on Ziolkowski (1998) and Lamb 

(1923) for the linear and non-linear approximations to Lamb's wave equation. 

4.1.1 The physics of an expanding and contracting bubble 

Here the physics of an oscillating bubble is described and discussed. Knowledge of this 

physics allows better design and use of marine seismic sources. 

The airgun acts as a source of gas. A spherical bubble of gas can be thought of as being an in- 

stantaneous initial volume V at initial pressure p2  and initial temperature Ti. The initial values 

for pressure and temperature are typically 1 35atm and 280K respectively. This pressure is far 
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greater than hydrostatic pressure in the water, of order I .5atm, and so there is a net outward 

force on the bubble wall causing it to expand. This expansion continues until the pressure 

inside the bubble is the same as the pressure outside the bubble, when there is no net force 

acting on the bubble wall. For shallow sources the hydrostatic pressure p is typically 1 .5atm. 

As the bubble wall has momentum the bubble overshoots the equilibrium pressure radius, the 

pressure difference exerting a force radially inwards, thus slowing the bubble expansion and 

leading to compression. This oscillation continues until the bubble reaches thermodynamic 

equilibrium with the water. This model assumes a net stationary bubble. In reality the airgun 

has a horizontal velocity relative to the water and the bubble rises during oscillation due to 

the buoyancy of the bubble. Radiation from the bubble is Doppler—shifted in the frame of the 

water due to the horizontal motion. 

Assuming that the gas in the bubble acts as an ideal gas of constant mass, the equation of state 

for adiabatic changes is of the form 

pV = constant, 	 (4.1) 

where is the ratio of isobaric to isochoric 1  specific heat capacities. For a fixed mass of ideal 

gas the equation of state is 

PV 
= constant, 	 (4.2) 

where the constant in this relation and in (4.1) are not the same. Thus, using the subscript i to 

denote initial values, 

Pi Vi  = 	and 	pVi 1  = PV'". 	 (4.3) 
 
PV  

Eliminating ' from these expressions yields: 

1-1.4 

T 	T, 	which is 	T 
= 150atm 1T 

P ) 	 (... 1.5atm) 	
288K 80K 	(4.4) 

for this example, assuming 'y = 1.4 for adiabatic expansion of a diatomic gas. This final 

temperature of the bubble is extremely low, colder than the liquification temperature at this 

pressure of both molecular oxygen and molecular nitrogen. This is clearly not what happens 

inside real bubbles from airgun sources. Measurement (Ziolkow ski, 1970) of airgun bubble 

oscillation periods suggests an empirical value of 'y  of 1.13, which gives T 170K. Zi-

olkowski (1982) suggests a heat transfer mechanism that allows the mass of gas to change. 

In this paper it is also noted that modelled bubble oscillations tend to decay far more slowly 

than the acoustic radiation of measured bubbles. There is a damping mechanism which is 

'constant volume 
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Figure 4.1: Comparison of adiabatic and more realistic bubble expansion models 

not accounted for by such simple oscillating bubble models, suggesting there must be signifi-

cant heat transfer across the bubble wall, in accordance with the first law of thermodynamics. 

Additional work must be done by the bubble wall to dampen the oscillation. 

Figure 4.1 shows the mechanism proposed by Ziolkowski (1982). The bubble is not a vol-

ume of gas bounded by a smooth surface but made up of many small bubbles, dramatically 

increasing the surface area of the bubble, and thus the area available for heat transfer. In fact 

the bubble may not even be spherical (figure 4.2). The bubble expands, cooling the gas inside. 

Water vapour in the gas condenses, heating the gas as the latent heat of condensation is given 

up. The vapour pressure is very low so water vapour evaporates from the internal surfaces of 

the bubble wall, this vapour also condenses, heating the gas in the bubble. This damps the 

heating of the bubble. On compression, the gas temperature increases, water droplets evap-

orate, thus cooling the gas as they take up their latent heat. When the bubble temperature 

exceeds the surrounding water temperature the vapour inside the bubble condenses onto the 

bubble wall, thus heating the bubble wall and the surrounding water. This process damps the 

bubble oscillation, increasing the bubble period as is observed in real bubble oscillations. The 

net result is heat and mass transfer to the bubble from the surrounding water. This heat trans-

fer and the emission of acoustic radiation is paid for by the initial potential energy imparted 

by the gun. 
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Figure 4.2: Definition of the equivalent bubble and external region. 

This leads to the concept of an equivalent bubble. The equivalent bubble is the bubble which 

has exactly the same acoustic properties as the real bubble except that it is perfectly spherical. 

It is this equivalent bubble that we compute the seismic wavefield for. Figure 4.2 shows 

this concept. R is the radius of the equivalent bubble and Rmax  the maximum radius of the 

equivalent bubble. R,,,a., may be of order 0.8m for a typical airgun 2 . The region outside 

the moving boundary R is where the following derivation of the wave equation is valid. This 

region is called the external region. There is heat transfer across the boundary of the equivalent 

bubble, but if the equivalent bubble boundary is increased by a small (few molecules) amount 

so that there is now a very thin layer of water inside the bubble then there is no longer be 

heat transfer across the new equivalent—bubble boundary. R now includes this thin layer. 

As the wavelength of the emitted acoustic radiation is much larger than the bubble size, this 

representation is valid. 

4.2 The wavefield of a single bubble: Lamb's wave equation 

Lamb's equation (Lamb, 1923) is the wave equation for a single oscillating bubble. It is not 

dependent on the internal physics of the bubble. 

Consider an (equivalent) oscillating bubble. At the origin of the bubble the particle displace- 

ment is a meaningless quantity for a spherically symmetric bubble. The equivalent bubble 

is bounded by the bubble—wall which separates the gas from the surrounding liquid. The 

2 Say a 145 cubic inch airgun fired at 2000 psi, typical for marine VSP work. The bubble radius goes as the 
cube root of the gun volume and so is not too sensitive to changes in gun size. 
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displacement of the bubble wall is meaningful and it is this quantity that is calculated. The 

pressure inside the bubble P(t) is assumed to be uniform. Pressure is continuous over the 

bubble wall; its (spatial) derivative, however, is not. The bubble radius is R(t). The pressure 

is non—uniform outside the bubble wall. The bubble is assumed to be spherical and not inter-

acting with the free—surface, that is, it is assumed that the bubble is in an infinite liquid and 

there is no gravitational field acting on the system. Figure 4.3 shows a diagram of the pressure 

Radius 

Figure 4.3: Sketch of bubble at some instantaneous time, t. After Ziolkowski (1998). 

profile inside the bubble and the water. 

The flow in the water is irrotational so the particle velocity v is just the gradient of the particle 

velocity potential 0, and the sign denotes positive work done to increase the particle velocity. 

That is: 

v=—V4. 	 (4.5) 

Lamb's equation is, (Lamb, 1923): 

' 1 V 2 \ 	2 2 f 	r 82q 	1 a2 
c2 ) + 	+ 	- 	

0, 	 (4.6) 
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assuming spherical symmetry. This equation has no (known) analytical solution and so if 

this equation cannot be linearised then it cannot be solved without recourse to numerical 

techniques. 

4.3 Linearisation and approximate solution of Lamb's equation 

For all the experiments carried out in reflection and down—hole marine seismic experiments 

the fluid is water and the source of the pressure field is an air—gun. The approximations 

presented in Ziolkowski (1998) are designed for this case. 

The linear acoustic approximation 

At sufficiently large distance from the source one may assume that there is no difference in 

material and spatial description of the motion of the fluid; that is, the flow is the same in both 

the Lagrangian and Eulerian frames. This is the linear acoustic approximation. The linear 

wave equation is: 

a2 (r, t) 	2 &,b(r, t) 	1 32q5(r, t) 	
(4.7) 

9r2 	9r - 	ôt2  

The wave equation has the well—known solution 

1' D 
q(r,t) = - 

1' 
 f (t—, 	 (4.8) 

\  

where 1(t) is the wavefunction. The wavefunction is related to the bubble volume VB by 

(Ziolkowski, 1998): 

f (t) 
= 1 dVB(t) 	

(4.9) 
47r 	dt 

The incompressible flow approximation 

The particle velocity is highest close to the bubble wall, therefore this is where the non-linear 

terms are most important. Assuming the the fluid is incompressible and the density is constant 

throughout the liquid, Bernoulli's equation for incompressible flow is (Lamb, 1923, equation 

27): 

ôç5 V 2  
(4.10) 
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where h is the enthalpy 3. The particle velocity potential and its derivative must be zero at 

infinite distance from the bubble wall and v is the magnitude of v. Rayleigh (1917) deals with 

the collapse of a spherical bubble under the assumption of incompressible flow. Lamb (1923) 

showed that the nonlinear terms are negligible outside of the bubble for small underwater 

explosions. 

4.4 Solving for pressure and particle velocity in the water 

From the linear wave equation solution (4.8) and the velocity potential definition (4.5) the 

particle velocity in the water is (Lamb, 1923, equation 33): 

0q5 	
1 (t— 

\ 	1 
—l+f

= Or r21  	cJ re \ ci 
(4.11) 

where f' is the spatial derivative of f. Following the appendix of Ziolkowski et al. (1982), 

consider the Fourier transform of f (t): 

F(w) = f 00 

f ( t) exp liw t } dt 	 (4.12) 

Adding a retarding phase factor' exp{iwr/c} yields: 

f
00 

F(w)exp{iw}i (t - ) exp{iu.'t}dt. 	 (4.13) 

Noting that in the Fourier domain —+ —iw the transformed velocity V(w) is, from equation at 
(4.11): 

F 	r 	iw 	r 
- 

r2 exp{iw—} - —Fexp{iw—} V(W) 	 (4.14) 

	

rc 	c 

This can be written: 

F(w) 	r 	1 	2(j) 

r 	c Ir 	c] 
V(w) = 	exp{iw—} — — — 	 (4 15) 

Now w = 27rf and c = )f so the above expression is 

F(w) 	. r [1 	i2ir] 
. V(w) 

= 	
z exp{w—} 	

- -,--] 	
(4.16) 

The two terms in the square brackets are 900  out of phase. Only the first term is distance 

	

dependent. In the near field r << 	, thus the second term is negligible. So the particle 

3 energy per unit mass 
4that is 1(t) —* f(t - r/c). 
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velocity in the near field is 

if 	7 
V -f It - - 

r2  \ 	C 

By contrast in the far field r>> A so the second term in (4.16) dominates, thus: 

(4.17) 

-_i' (t_ ). 
	

(4.18) 

These are the expressions which relate the solution to the wave equation and the particle 

velocity in the near and far fields. 

Considering the enthalpy the expression for the pressure in the near field is derived. From 

(4.8) and Bernoulli's equation (4.10) the enthalpy is: 

h 1 1 ,  1 	
7.\ 	V 2  

=- (t--l--  
7. 	" 	ci 	2 

The enthalpy can be expressed as (Ziotkowski, 1998, section 11): 

h=P — Poo . 	 (4.20) 
Pcx, 

Thus (4.19) is 

p—pi 1 , 	r 	v2  

	

. 
(t_)_--. 	 (4.21) 

Poo 

By (4.17), the near field velocity approximation, the v 2  term in (4.20) is 

V2 
	 r =(t - ). 	 (4.22) 

Ziolkowski and Johnston (1997) shows that, for distances greater than im the v 2 /2 is negli-

gible, and so the v 2  term can be then ignored. Thus, (4.19) is, 

p_poe = l f f / 	7.' 

r Poe 	
It--). '. 	ci (4.23) 

This expression relates the pressure in the near—field (but further than I m from the source) 

to the derivative of the wavefunction. It has the same shape as the particle velocity in the far 

field (equation (4.18)). 

The hydrophone actually measures p - p which is 

PPoo = Poe -f
, 
 (t— 

7. 	 C 
(4.24) 

So the particle velocity observed in the far field has the same shape wavelet as the pressure in 
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the water measured at im. Source signature deconvolution of far field particle velocity data 

using a near field pressure measurement is valid. If the hydrophone is calibrated then f can 

be completely recovered. Ziolkowski (1998) presents a scheme to determine the pressure and 

volume of the equivalent bubble from a pressure measurement made in the water. 

4.5 Conclusions 

The full non-linear acoustic wave equation can be solved using approximations. These ap-

proximations are valid for the seismic case, as shown in Ziolkowski (1998). The linear near 

field pressure measurement has the same wavelet as the far field particle velocity, thus source 

signature deconvolution of down hole particle velocity data using such a measurement is a 

valid procedure. 



SOURCE SIGNAL MEASUREMENT AND 

DECONVOLUTION 

Chapter 5 

5.1 Introduction 

This chapter presents data which clearly show source signature variations. A method of 

deghosting these data is shown and the sensitivity of the deghosting scheme to variations 

in source depth is calculated. A method to remove the effect of the variations is presented and 

demonstrated on real data. 

There is no work in the standard literature devoted to source signature deconvolution using 

measured source signatures for VSP data. The literature acknowledges that source variations 

do affect data processing and interpretation as discussed in Chapter 2. Specifically, for the 

work presented in this thesis, variations in source amplitude as a function of time introduce 

errors in the complex amplitudes in the wavenumber—frequency domain, thus introducing 

errors in the final result. Here a method of removing such variation using a deconvolution 

procedure is developed and discussed. The validity of the convolutional model has been 

established in the previous chapter. 

T1 	T2
Source Ghost 

	

j4 at Hydrophone 	 T Ghost Arrival 

6  
at Geophonc 

Time 
Filing Ports 	 cc Signal Open 

First Arrival 
T5 at Geophone 

Source Detected 
T3 at Hydrophonc 

Figure 5.1: Timing Line; after Dillon and Collyer (1985) 

5.2 Source Measurements 

Figure 5.1 shows the relative timing for a VSP experiment. Interval arrival time estimation, 

from the geophone data, depends on the relative gun firing time being identical for each shot. 
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The gun firing time is the time at which the gun ports open T2. The data are timed so that the 

gun electronic firing signal T1  is the origin of the trace for each shot. The firing time is also 

known as the time break. The timing dependancies are shown in Figure 5.1. 

TI T2 T3 T4 T5 T6 
offset 	X X X X 	V 
source depth 	X X V V V V 
geophone depth X X X X V V 

Table 5.1: Timing dependencies 

Virtual source 
a) 	 b) 

IR 

Sensor 

Source 

/ - 	Virtual source 

 

Sensor 

Figure 5.2: Geometry of source measurement. 

Almost all VSP processing is based on the assumption of perfect shot—to-shot repeatability. 

Dillon and Collyer (1985) present a scheme for improving first break picking by wavelet 

shaping for such experiments. However they do not discuss the problem of source signature 

variation. Source estimation from geophone data is discussed in Hokstad et al. (1996) to get 

an effective source for reverse time migration; however, no mention is made of source signa-

ture variation and its effect on VSP migration. For processing in the wavenumber—frequency 

domain the problem is not one of relative timing but of how much a shot contributes to each 

plane wave component in this domain. For a monopole source in an infinite medium each 

frequency of the source contributes to all wave numbers with the same amplitude. The plane 

wave decomposition of the monopole source wavefield for each frequency (Bath, 1968) can 

be made. The decomposition is calculated using the horizontal array of sources. Each source 

must contribute equally to any wavenumber. If the source amplitude, for a fixed wavenumber, 

varies with each shot then the decomposition is erroneous. Figure 5.2 shows the common 

geometries for source signature measurement. The source—hydrophone distance is r and the 

ghost—hydrophone distance is R. Figure 5.3 shows measurements m(t, x) of the source sig- 
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Io 

Figure 5.3: Measured Source Signatures 

nature for twenty—five successive shots from a walkaway VSP experiment. The shot—to—shot 

source signature variation is obvious. Not only is there variation in the initial pulse but also 

in the bubble oscillation period, of the order of 20%. (Such a variation would be intolerable 

in seismic reflection data.) Figure 5.4 shows the same twenty—five traces as figure 5.3 but the 

lo 

------ -------" 

14 

- I, 

	

'— 	 —- 	 — 17 

1. 

30 

25 

100 	 200 	 000 	 400 	 500 

Figure 5.4: Measured source signatures with trace average subtracted 

global trace average has been subtracted from each trace. Figures 5.3 and 5.4 are plotted on 

the same scale. 
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The assumption of perfect shot—to—shot repeatability is always invalid. In land VSP experi-

ments the source signature changes shot—by—shot as the source interacts with its environment. 

In marine VSP the source is never in a fixed position relative to the sea—surface; any change 

in depth changes the bubble oscillation period (Parkes and Hatton, 1986). These changes in 

the source environment will always occur even if the mechanics of the source, on land or at 

sea, are identical shot—to—shot. 

Using the scheme shown in this chapter this source of error can easily be removed from marine 

VSP data by wavelet shaping, provided the signature is properly measured. The quantity 

m(t) is called the source signature measurement. The real source measurement is mreal (t) = 

m(t) . C where C is some calibration constant to convert from pressure to recorded voltage. 

For VSP this constant is commonly not known. 

5.3 Source measurement deghosting 

The ghost is the virtual image of the source in the sea surface. The ghost and source do not 

make up a dipole source, as the distance between the two poles (the source and its ghost) is 

not always small compared with the wavelength of the emitted radiation. The relative phase 

of the source and ghost are dependent on measurement position. Here it is assumed that 

the reflection from the sea bed is negligible in the source monitor data. For a 75m deep water 

column the sea bed is lOOms two—way time from the free surface. This is within the recording 

time of the source signature, typically 500ms. The amplitude of these arrivals is far below the 

noise in the recording as spherical divergence reduces these signals. This analysis assumes 

that the bubble is not moving relative to the hydrophone. 

The (pressure) reflection coefficient of the sea surface is 

R _PaCPIJ wc 
C 
 PaCa+PwCw 

(5.1) 

where Pa  and  Pw  are the densities of air and water respectively and Ca and c., the acoustic 

velocities of air and water. At standard temperature and pressure this is 

R = 
1.2 . 330 - 1000. 1500 
1.2 . 330 + 1000 . 1500 

= —0.9995, (5.2) 

Thus the reflection coefficient of the sea surface is -1 to within I part in one thousand. The 

sea surface therefore acts as a pressure—free surface, hence the description free surface. 

The measurement m(t) consists of arrivals direct from the source s(t) and from the delayed 
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reflection of the source —s(t + öt). That is (Ziolkowski, 1991), 

M (t) = s t - 
r)  _  

s 
(t - ). 	

(5.3) 

This can be represented by a convolution in the time domain thus: 

M(t) =s(t)* -6(t- 
r 	1 	- R) 

Ir 	
1

. (54) 
 c j 

The function s(t) is the unretarded source time function. Transforming to the frequency 

domain and solving for the source function S(w) yields 

= 	exp[zw] - exp[zw]] 
S(w) 

[ 	

M(w) 

It is possible to construct a deghosting scheme in the time domain. This may be done as 

bubble rise time can be easily built into the method by allowing r and R to be a function of 

time. 

Before the ghost arrives the measurement consists only of direct arrivals. 

M(t) = s (t 
- 	

t < öt, 
r 	c 

where öt is the difference in direct and ghost arrival times. After the initial ghost arrival both 

direct and ghost arrivals are recorded at the sensor: 

	

m(t)= 
1
—s(t---— 

1  
—s 

(
t— R) — 	töt. 

r' 
r 	ci R 	C 

(5.7) 

From this the source time function can be recovered. Before the ghost arrival s(t) is simply 

s(t)=m(t+) 	t<öt, 	 (5.8) 

after the ghost arrival s(t) is 

S(t)=M t+ 
r
) .r—m(t+ _st) -R 	t < öt, 	 (5.9) 

where 

R—r 
(5.10) 

C 

(5.5) 

(5.6) 

The data need to be resampled in order to make sure öt is, or is close to, being an integer mul- 

tiple of the sample interval. This can be done by adding a zero pad at the Nyquist frequency 



50 	 Chapter 5. Source signal measurement and deconvolution 

in the frequency domain. The time domain data will be unaffected by this, apart from the 

increase in sampling frequency. (This assumes the data are not aliased) 

Deghosting in the frequency domain is preferred to the time domain method as it is exact and 

the accuracy does not depend on the sample rate of the data, unlike the time domain method. 

5.4 Sensitivity analysis 

The deghosting is dependent on knowing c, r and R. The acoustic velocity is assumed to be 

1500m/s. The acoustic velocity varies as a function of salinity and temperature. For shallow 

sea water the expected range is about 1460-1500m/s (Parkes and Hatton, 1986, p7). Over a 

distance of lOm this range causes a range of arrival times spread over 0.1 8ms, over 20m an 

arrival time range of 0.37ms. So, for source recording geometries that have a shallow source 

and hydrophone close to the source this is a negligible source of error. 

The appendix shows the effect of considering first order variations in r and R. The error 

in r is zero as the hydrophone is fixed relative to the source. R will varies as a function of 

wave—height. Equation (5.5) is written: 

M(w) - exp{iwr/c} - exp{iwR/c} 
S(w) 	r 	 R 	

T. 	 (5.11) 

The appendix shows that, for this case, the first order error in T, computed by allowing R to 

vary by I m, is less that 1% at 100Hz. The error decreases with decreasing frequency. Thus 

the error in R is negligible, so a constant value of R can be used for the deghosting. 

The deghosting operator is a convolutional phase factor, which does not affect the wavelet 

shaping scheme described in the rest of this chapter. The measured particle velocity v (t) is 

v(t) = g(t) * s(t) = g(t) * m(t) * 1(t), 	 (5.12) 

where g(t) is the impulse response of the earth and 1(t) is the deghosting filter. The source 

measurement deghosting must be performed before trace mixing or stacking. 

5.5 Theory and application of measured wavelet shaping 

Here the theory for the design and application of a filter to suppress the shot—to—shot varia-

tion is developed and applied. This follows Ziolkowski (1991) which uses measured source 

signatures for deconvolution of surface seismic data. 
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The generalised measurement geometry is shown in Figure 5.2. For a single receiver walka-

way VSP the geophone data are particle velocities v(t, Xr) recorded as a function of time t 

and receiver position Xr. The source signature is a function of time and shot position, s (t, x 8 ). 

The impulse response of the earth is a function of time as well as geometry: g(t, x, x r ). In 

the frequency domain the particle velocity measurement, source function and impulse re-

sponse are related as: 

V(, x) = G(w,X s ,X r) X S(w,x8 ) +N(W,X r ), 	 (5.13) 

where the capitals denote the change of domain and N(w, x) is the noise recorded at the 

geophone. 

There is a single source pressure measurement m(t) for a single shot made at a hydrophone 

a distance r from the source and R from its virtual image. A filter F(w, x 3 ) is required such 

that S(w, x8 ) is 9haped to a desired function D(w), which is not shot—dependent. D(w) is 

the Fourier transform of the desired wavelet d(t). After filtering, all the shots have the same 

source signature d(t). The filter is defined as 

D(u )S*( w , xs ) 

- IS(w, XS)  1 2 +f 
(5.14) 

where D(w) is chosen such that the desired source wavelet d(t) is shorter than s(t). The de-

sired wavelet has approximately the same bandwidth as the original source wavelet so that the 

modulus of F(, z) is approximately one. The quantity e is a small constant for stabilisation 

of the operator in the presence of noise. Finally the impulse response of the earth is: 

G(w,x 3 ,x) .D(w) = V(, Sr) . F(w,z 3 ) — F(w,z 3 ) . N(w,x 3 ). 	(5.15) 

As the filter magnitude is approximately unity the signal—to—noise is almost unchanged. This 

filter is applied to the geophone data. The shot—to—shot variability is removed from the VSP 

data. 

For this application example the source depth is 4m and the hydrophone is fixed I m above 

the source, as shown in Figure 5.2. The hydrophone is so close to the source that the recorded 

source signature is dominated by the direct arrival and the sea bottom reflections can be ig-

nored. Figure 5.5 shows a typical source wavelet before and after wavelet shaping has been 

carried out. All the sources are shaped to this final wavelet. 

The calculated filter F(w, x 8 ) is transformed to the time domain, F(w, x 8 ) i-+ f(t, x e ). To 

ensure that f(t, x) is causal the desired wavelet d(t) is delayed in time. In this case the delay 

is 128ms. This lagged filter is shown is Figure 5.6. All the filters are lagged by the same 

amount. The filters are applied to the source and geophone data as convolutions in time, so 

_ IJIV/j\ 

z 
C)' 
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Figure 5.5: Source signatures A) before and B) after wavelet shaping 
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Figure 5.6: A) Time domain wavelet shaping filter and B) desired wavelet 

the final data are also delayed by 128ms. The desired wavelet is shown in Figure 5.6. The 

actual output wavelet is slightly different from the desired output wavelet. In practice the 

filter is designed so that it is relatively smooth and so does not perfectly reproduce the desired 

wavelet. The difference can mainly been seen in the later portion of the wavelet and is small. 

The polarity of the desired wavelet is reversed compared to the input wavelet. 

Figures 5.7 and 5.8 show the vertical component of the geophone data before and after pro-

cessing. The shots are 30m apart and the geophone is at a depth of 3km. (Shot 77 was a 

mis—fire) 

The same filters are applied to the radial and transverse components of the geophone data. 

The continuity of events is clearly improved by this process. This scheme can be applied to 

other VSP geometries with no modification. 
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Figure 5.7: Vertical geophone data before wavelet shaping 
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Figure 5.8: Vertical geophone data after wavelet shaping 
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Discussion and conclusions 

If such a scheme is added to the VSP processing sequence there are practical issues to be 

considered. The geophone and hydrophone data should ideally be recorded through the same 

electronic filters. If this is not possible, the responses of the two sets of filters must be known. 

The two quantities R and r must also be known. That is, the position of the hydrophone 

relative to the source and the source depth must be known. Estimation of these quantities 

introduces errors. 

It is well known from measurements that there is significant shot—to—shot variation in the 

source signature. Current VSP processing schemes usually ignore this, thus introducing er -

rors. I propose that the source signature should be measured properly such that the shot—to-

shot variations are eliminated using this scheme. Then conventional VSP processing can be 

applied without these sources of error. 



RECOVERING THE REFLECTIVITY: THEORY 

Chapter 6 

6.1 Introduction 

In this chapter the equations for recovering the reflectivity beneath the receiver in the (w, k, k) 

domain are derived. The derivation relies on the expression of the entire wavefield at the re-

ceiver for a single plane wave component. The reflectivities are recovered by division and 

the practicalities of carrying out the division are discussed. The recovered reflectivities are 

converted into wavefields for transformation back to the time—space domain. 

6.2 The wavefield at the receiver 

Consider a three—component walkaway VSP experiment over a horizontally plane—layered 

earth isotropic. The receiver is at (0, 0, Zr) and the ith source is at (xi, y2 , z), where Z is 

fixed. The source is isotropic, and only SV-P waves are propagating. The upper boundary 

condition is a (vertical) stress—free surface and the lower boundary condition is the radiation 

condition. The measured particle velocity data—volume as a function of time is v3  (x, y,  z, t) = 

v, where j = 1, 2 corresponding to the two orthogonal receivers in the 1 (radial) and 2 (verti-

cal) directions (the dynamic frame). The transverse direction is not considered as there is no 

SH propagation or out—of—plane propagation. For a laterally—invariant earth this is equivalent 

to a single source at (0, 0, Z8 ) and a horizontal plane of receivers at (x i , y2 , Zr). 

Transforming v to the (w, k, k) domain yields 

00 

(kx ,k y , zr ,)) = f 	dy. 	(6.1) 

00 

In this domain plane wave components are separated, as shown in Chapter 2. 

The full wavefield, for a single plane wave component, at z = Zr, where Zr > z3  and z and 
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V(ZR) Particle velocity two—vector 

M R D 2x2 matrix to convert down going P and S amplitudes to displacements 

M R 2x2 matrix to convert up going P and S amplitudes to displacements 

RL 2x2 reflectivity matrix of whole region beneath the receiver 

[I - R 1'RW} —  Reverberations across the receiver level 

I The 2x2 identity matrix 

RF Reflectivity of the region between z = r and the z = 0 for upgoing waves 

TDS  Transmission matrix for down going waves between the source and receiver 

[I - R5 9R "] — ' 'The multiples' 

RUS  Reflectivity of the whole region above the source 

RDL  Reflectivity of the whole region below the source 

ES Down going source amplitude [4'D,  cbD} T q5 is P radiation and ,L' is S 

ES Up going source amplitude [u 	u]T 

Table 6.1: Terms in equation (6.2) 

Zr are in different layers, is (Kennett, 1983, equation 7.38);(Kennett, 1981, equation 4.36) 

/(zr) =(m+ m UR RRDL ) 

	

• [I - RFRL]_lTS 	 (6.2) 

r 	FS SLi—li S 	F'S S 

	

• - U DJ k D 	U U 

This equation describes the entire particle velocity wavefield V at the receiver for a single 

plane wave component. The terms are described in table (6.1). This description of the wave-

field is well known. 

Figure 6.1 shows which regions of the elastic layer space each term in the wavefield equation 

represents. The source vectors are not shown in this diagram. 

The reflectivity matrices R contain all intrabed multiples that are possible for the regions 
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Free surface z=F 

Source level Z=S 

Receiver level z=R 

Last interface z=L 

Radiation Condition 

Figure 6.1: Terms in equation (6.2) 

which they describe. These expressions are valid for single points in the frequency, horizontal—

slowness domain for an azimuthally—isotropic earth. 

Let D be defined as: 

	

- 11 RRF RLi-1 RS r 	FS SLi-1, S 	FS S 
1 	U DJ 	DX 	U DJ 	D 	U U 

This quantity M (Hebrew letter Beth) is a two-vector of the form [5 , 	]T; it contains all 

parts of the wavefield that contain any information about the region above the receiver. Thus, 

(6.2) may be written: 

V(zr) = (m RR RL 
 + mR) 	. 	 (6.4) 

Writing the upgoing and downgoing wavefields in (6.2) separately yields, 

VD(Zr ) = Rn 
 MD 	 (6.5a) 
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and 

	

V(z r) = MURD 	 (6.5b) 

Multiplying the left—hand side of each of these equations by the inverse of the respective 

transfer matrix yields: 

[ma] '  

	

VD (Z,) = 	 (6.6a) 

and 

[ma ] '  VU (Zr) = RRL 	 (6.6b) 

For brevity R RDL  is now denoted simply H, MR  is denoted mu and MR  is denoted mD. It 

should be noted that these three quantities are dependent on the receiver depth. 

6.3 The transfer matrices, mujD 

The muID  terms are the rotations from the eigenvector frame to the dynamic frame, which 

are radial and vertical slowness dependent. The inverses of the transfer matrices, denoted 

rotate the particle motion from the dynamic frame to the eigenvector frame. That is the 

inverse matrices decompose radial and vertical particle motions into compressional and shear 

particle motions. Here angles are measured relative to the horizontal. A wave travelling along 

the source array has an angle of propagation of 00,  and a wave travelling perpendicular to the 

source array an angle of propagation of 900. 

The radial slowness is related to the radial wavenumber by 

Pr = k
r 	

(6.7) 

which is denoted p, kr  is real for all data points and here p is always positive. The P-wave 

and S-wave vertical slownesses are 

= (a2 - p2 ) l/2 , 	 (6.8) 

and 

= (32 _ PI) 
I/2 , 	 (6.9) 



Chapter 6. Recovering the reflectivity: theory 	 61 

Is 

Figure 6.2: P-wave decomposition to dynamic frame 

respectively. The radial slowness is real if both w and kr  are real for all data points. The 

vertical slownesses are complex when p exceeds 1/a. 

Figure 6.2 shows a downgoing P-wave and the sine and cosine of the propagation angle as 

, a function of horizontal or vertical slowness; the source is at the origin. The vertical and 

horizontal particle velocities in the dynamic frame are: 

VD,pv = —PD sin Op , 	 (6.lOa) 

VD,pr 	PD COS Op, 	 (6.1Ob) 

where PD is the complex amplitude of the downgoing compressional wave in the eigenvector 

frame and O is the angle to the horizontal. Positive P—wave motion is defined as being in the 

source direction, hence the quantities in equations (6.10) are negative. Substituting in the sine 

and cosine definitions yields 

VD,pv = —PD . q a, 	 (6.1 la) 

VD,pr = PD Pr 	. 	 (6.11 b) 

For upgoing waves the sign of the vertical particle motion only is reversed, 

vu,p, = P . q . a, 	 (6.12a) 

VLJ,pr = 	PrX a. 	 (6.12b) 

and the horizontal particle motion is unchanged; PU is the complex amplitude of the upgoing 
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Figure 6.3: SV-wave decomposition to dynamic frame 

wave. The sign change occurs as the vertical slowness are of equal magnitude but opposite 

sign for the material symmetry considered here. 

Figure 6.3 shows the corresponding definitions for SV-wave propagation; note the definition 

of positive SV particle motion the vertical and radial components now have different sign. 

Now the vertical and horizontal motions in the dynamic frame are 

VD,sv = SD . COS 0,, 	 (6.13a) 

VD,,, = SD . sin 0,, 	 (6.13b) 

where SD and Su  are the complex amplitudes of downgoing and upgoing shear waves in the 

eigenvector frame respectively and 03  is the angle to the horizontal. The particle motion is 

now orthogonal to the direction of propagation Substituting in the sine and cosine definitions 

yields 

VD,sv = SD Pr /3, 	 (6.14a) 

VD,sr = SD . q 3. 	 (6.14b) 

Again for upgoing waves the sign of the vertical slowness only is reversed, 

VU,3v = SU Pr /3, 	 (6.15a) 

vu,3,. = Su . q(3 /3. 	 (6.15b) 
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The transfer matrices are made up of the rotations from the eigenvector to dynamic frame 

for each possible wave type. The structure of the downgoing transfer matrix, in terms of 

converting wave type to component, is: 

MD = I 1S—R P—R\ 	
(6.16) 

that is, element (1,1) rotates from S to R and so on. Substituting in the decomposition ex-

pressions presented above yields: 

(
—q13/3  Prcl)

mD= 
PO —qoc 
	 (6.17) 

for downgoing waves and 

=

(

MU 

	11130 _Pra) 
, 	 (6.18) 

Pr 13 qa o 

for upgoing waves. 

The data are rotated to the dynamic frame as an initial processing step. They must be rotated 

to the eigenvector frame. This is done by application of the inverse transfer matrices. The 

inverses of the transfer matrices are: 

nD 
= (

IB ') = [ma] ', 	 (6.19) 

and 

nu 
( q

= 	
/B p/B\ 	R 1 

 —p/A q/A) = [ mu] . 	 (6.20) 

Where 

A =f3 (p2 +qq), 	 (6.21) 

and 

B = c (p2  + q0q13). 	 (6.22) 
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Applying these inverse transfer matrices to equation (6.6) yields: 

Up = (P ttU,r  + q/3 	uu,)/B, (6.23a) 

Dp = (—p UD,r - (6.23b) 

Us = (+qc 	UU,r +p uu,v)/A, (6.23c) 

Ds = (—q 	t1D,r  +P UD,v)/A. (6.23d) 

That is, the upgoing and downgoing vertical and radial wavefields have been split into com- 

pressional and shear wavefields by rotation from the dynamic frame to the eigenvector frame. 

6.4 Recovery of the reflectivity 

The ultimate aim of this thesis is to recover the reflectivity of the region beneath the receiver. 

The upgoing and downgoing wavefields are related to the reflectivity thus: 

[Us] - [Rss Rsp [Ds]  

Up - Rps Rpp Dp 
(6.24) 

for a single point in (w, k, k u ). This system is under—determined, with two equations and 

four unknowns. The equations are written explicitly as: 

Us = R5sDs + RspDp, 	 (6.25a) 

Up = Rp5D5 + RppDp. 	 (6.25b) 

Using a different source that changes the partition between P— and S— energy in the upgoing 

and downgoing wavefields yields another set of equations. 

U = RssD+ RspD, 	 (6.26a) 

U, = RpsD + 	 (6.26b) 

Combining (6.25) and (6.26) and solving for each of the reflectivities yields: 

UpD— UP' D5 
Rpp = 

DpD— DDs' 	 (6.27a) 



 2 

flC J[ 
H[j;R]H 	H 

I  

P-S Separation 

- -- - 
.1 

FS]  [Dp  H 
L 	U 

II 
II 
I, 

I 

[WslpI
I  

Rl
I  

I  -- - - - - - - - 

Source 1 
ii 	I

[D~Vj R  l' 
II 	I 
II 	I  

11Yv  'U RI
I 	I 

[ 

P-S Separation 

FS] i 	I 
II 	I 

'
III

u
_ 

 s 
  

: 

I 	

Source 

--------- 

Chapter 6. Recovering the reflectivity: theory 	 65 

Figure 6.4: Flowchart for the P-S separation and division 

UpDp— UDp 
Rps= Dp.DsDp.D 	

(6.27b) 

R5p = 
UsD 's —UDs 

(6.27c) 
Dp . D's - D'p  D5' 

Rss 
U5.D— U 's  Dp 

(6.27d) = 
 Li
i-"

p D -  DP  . D's ' 

for each point in (w, k, k u ). Figure 6.4 is a flow diagram of how the reflectivities are re-

covered. These reflectivities are broad—band responses. The signal—to—noise ratio varies with 

frequency. The reflectivities must be filtered in frequency such that they have a bandwidth 

similar to the original data. How the division is carried out is discussed in the following 

section. 

In the Rpp and Rss terms of (6.27) the A and B terms from the inverse transfer matrices 

cancel completely. In the Rps and Rp terms there are factors of 11  and A that do not cancel 

during the division. Noting 

- 3 (p2  + q0q) - 
B - a(p2+qq) - a' 

(6.28) 

which is constant for all wavenumbers and frequencies, it is never necessary to compute the 

A or B terms. 
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6.5 Wavefield division 

To solve the recovery equations (6.27) requires division of complex numbers. The denomina-

tor is zero at some points in (w, k, k u ). This section discusses how the division is carried out 

in practice. 

Consider two complex numbers P and Q which may take any values. Let 

R=. 	 (6.29) 

Multiplying top and bottom by Q*, the complex conjugate of Q yields: 

(6.30) 

where the denominator is now always real. The denominator (QQ*) can still be zero. Adding 

a small constant c to the denominator thus, 

R= QQ*+f' 
	 (6.31) 

prevents this occurring. This small constant is chosen such that is is some small percentage 

of the maximum value of QQ*, typically of the order of 1%. In practice e must be computed 

before the wavefields are divided. The frequency containing the most energy is the first fre-

quency transformed to the w, k, k domain. The quantity QQ* is computed for each k, k 

point in this domain and c is 0.1% of the maximum QQ* This value of e is then used for all 

data. Incorrect computation leads to errors. If e is too small the result can be dominated by 

noise, if c is too large then the division can be dominated by E and this yields only a scaled 

version of the numerator. 

Figures 6.5 and 6.6 show the magnitude of two functions P(x) and Q(x) respectively. These 

functions have similar properties to the functions being divided in the synthetic example of 

Chapter 8. The value of the stabilisation constant c is 1% of the maximum value of QQ* 

The result from the division R(x) is shown in figure 6.7 The error in the division E(x) can 

be computed by computing P(x) from the recovered R(x) thus: 

Q(x)R(x) = P(x), 	 (6.32) 

and subtracting the computed P(x) from the original: 

E(x) = Q(x)R(x) - P(x). 	 (6.33) 

This error is shown in figure 6.8. Figures 6.5, 6.6 and 6.8 are plotted on the same scale, The 

error is approximately two orders of magnitude less than the numerator or denominator. 
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Figure 6.5: Absolute magnitude of P(x) 
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Figure 6.6: Absolute magnitude of Q(x) 
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Figure 6.7: Absolute magnitude of R(x), as computed by division 
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Figure 6.8: Absolute magnitude of Q(x)R(x) - P(x) 
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6.6 The second source 

Here the properties that the second source must have are discussed. 

Looking again at the term M, which is: 

= [I - 	 x [I - 	 - RFE). 	(6.34) 

The second set of equations must have a different partition of energy between shear and 

compressional modes. Just changing the source level and not changing the source vector does 

not achieve this. The term 

rI 0RF RL1-lry,RS F 	SF SL]-1 
I 	'tU 	DJ 	D X1 - U DJ (6.35) 

does change by changing the source level but does not change the partition of energy between 

compressional and shear modes. The seismograms with the source at a different level may 

look radically different but in the (w, k, k) domain the second set of equations is just a linear 

combination of the first. Changing the partition of energy in the source vector, 

(E -  RUFEU ), 	 (6.36) 

is the only way of obtaining a second set of equations which is not a linear combination of 

the first. For marine VSP the source is an acoustic source in the water. Any other source in 

the water does not have a different partition of energy so the second source must be a sea bed 

source. For the synthetic data presented here a sea bed source is modelled using a vertical 

force just beneath the sea bed. The sea bed source can be of any type as long as it is in contact 

with the solid. 

6.7 Reflectivity display 

The four recovered reflectivities describe the reflective properties for the region beneath the 

receiver for each of the possible combinations of wave—mode; Rps describes the P—wave 

response of the earth to a downgoing S—wave. These reflectivities are not themselves wave-

fields. This section describes how the reflectivities are converted into wavefields. 

The reflectivity response is expressed in a meaningful manner in the time—space domain by (1) 

recovering the reflectivity response, (2) generating wavefields in the frequency—wavenumber 

domain from this response and (3) transforming the wavefields to the time—space domain. 

Given Vp and V5 the compressional wave and shear wave vertical wavenumbers, k ,p and 
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Figure 6.9: Geometry for computing wavefields from the recovered reflectivities 

k,s respectively, can be computed. Four wavefields are calculated. These are: Wpp, Wp, 

Wsp and W5s, corresponding to their respective reflectivities. They are: 

downgoing P, upgoing P 

Wpp = exp{ik,pLR} . Rpp. i 
2k,

exp{ik,pLS} . S(w), 	 (6.37a) 

downgoing S. upgoing P 

WpS = exp{ik,pLR} . Rp. 2k:, S exp{ik,/S} S(w), 

downgoing F, upgoing S 

2 
Wsp = exp{ik,sLR} Rp 

2kZ,P 
 exp{ik,pAS} . S(w), 	 (6.37c) 

downgoing S, upgoing S 

Wss = exp{ik,sLiR} Rss 2kZ,S exp{ik s LS} 5(w). 	 (6.37d) 

Figure 6.9 shows the geometry. Each reflectivity is multiplied by an incident field. The 

incident field for a shear—wave is: 

2k, 
5 exp{ik,sS} . S(w) 	 (6.38) 
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The source term S(w) has the same bandwidth as the original source. The vertical distance 

from the source to the reflecting zone is AS. The wavefield is a response to a spherically 

symmetric source decomposed into plane waves, thus the reflectivity is multiplied by a factor 

of - (equation (2.46)). The plane wave components are then propagated to the receiver 

level by exp{ikp1 s R}, where 1R is the vertical distance from the reflecting region to 

the receiver level. The vertical wavenumbers k,p and k,s can be zero, thus the spherical 

wavefield correction terms have a pole at k = 0. To prevent division by zero, complex 

frequency is used; this concept is detailed in the following chapter. These wavefields have the 

same bandwidth as the original wavefields. 

6.8 Processing summary 

The mechanics of the transform from time—space to frequency—wavenumber domain are de-

tailed in the next chapter. The following pseudo-code shows the processing as it is done in 

the (w, k, k) domain. 

calculate the stabilisation constant for the division. 

foreach frequency 

foreach point in k_x,ky 

compute radial wavenumber and radial slowness 

compute P and S material vertical wavenunthers 

and slownesses 

P - S separation 

compute reflectivities by division 

compute P and S model vertical wavenumbers 

convert reflectivities to wavefields 

done 

done 

6.9 Discussion and conclusions 

The equations for recovering the reflectivity beneath the receiver have been presented. It is 

impossible to recover the reflectivity using data from only a single source. A second source 
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must be used, and that source must change the partition of energy between compressional and 

shear propagating waves for each wavenumber. For marine walkaway VSP if one source is 

an acoustic explosion the other must be a sea-bed source. Such sea—bed sources are currently 

being developed. 

The recovery scheme depends on knowing the compressional and shear velocities of the 

medium local to the receiver. These velocities are measured when the well is logged. The 

wavefields are decomposed into compressional and shear parts. The recovery scheme de-

pends on combining these wavefields and dividing one combination of waveflelds by another. 

A method for making this division stable has been presented. 



THE (x, y, t) TO (k, k, w) TRANSFORM 

Chapter 7 

7.1 Introduction 

The equations for the three—dimensional Fourier transform of the wavefield have been pre-

sented. Here I show how these are implemented in practice and what symmetries should be 

observed at each stage of the transform. These symmetries are shown as they are a useful 

check as to whether the transform and processing schemes are valid. Examples from the 

standard modelled wavefield are shown at each stage. A complete discussion of the Fourier 

transform is found in Chapter 2 of Bracewell (1986). The Hankel transform is not used as 

this involves asymptotic forms of Bessel functions and nonlinear spatial interpolation. Using 

Fourier transforms also allows for easy adaptation of the transform for three—dimensional ge-

ometries. Although this scheme appears computationally expensive, it is highly suitable for 

implementations on parallel computers. The synthetic data examples presented are plotted 

as they are stored to show clearly how the transform is carried out in practice. The earth is 

assumed to be laterally invariant. Thus a horizontal array of sources and a single receiver is 

equivalent to single source and a horizontal array of receivers. 

7.2 Aliasing 

The data are recorded with a finite spatial sampling interval and a finite time sampling interval. 

The number of spatial samples is much less than the number of time samples thus aliasing is 

most likely due to under sampling in space. Consider a shear wave travelling with velocity 

V3  in the receiver layer, the smallest unaliased wavelength AA is twice the spatial sampling 

interval 2x. The wave velocity is related to the wavelength and frequency by: 

Vs  = IA, (7.1) 

where fA is the largest unaliased frequency. Assuming V3  = 1950m/s then IA, for a 25m 

spatial sample rate, is: 

V3 	1950ms 1  
IA = -= 	= 39Hz, 	 (7.2) 

25x 	2•25m 
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an angular frequency w of 245s 1 . To prevent spatial aliasing, a Gaussian filter is convolved 

with the data m time to suppress frequencies above fA This convolution increases the length 

of the data in the time direction. A single trace before and after anti-alias filtering is shown in 

figure 7.1. A 25m spatial sample spacing is realistic for marine walkaway VSP, finer sampling 

> 

E 

Time (x 4ms) Time (x 4ms) 

Figure 7.1: A) Original trace 1 B) Band—pass filtered trace 1 

would allow for higher frequencies to be used. There is a useful amount of information 

propagating above the largest unaliased frequency. Under sampling in space forces useful 

data to be thrown away. 

7.3 Transforming from time-space to frequency—space 

Here the equations of Fourier transform from time to frequency are shown. This involves us-

ing complex values for the frequency. The infinite, continuous time t to frequency w transform 

is 

00  A(x, w) 
= 	00 

a(x, t) exp{it} dt. 	 (7.3) 

The periodic, discrete Fourier transform may be written as: 

N-i 
T 

A(x,) = At 	a(x,jLt)exp{iwjzt}, where, At = 	 (7.4) 
j=o 

where w = N is the number of samples per trace and T is the trace length. This periodic 

form is cyclically symmetric in N. The wavefield is causal in time. Causality is assured by 

padding the data with zeros to twice its original length (after anti—alias filtering) in time. There 

is a DC bias in the data, which must be removed before transformation. The trace average is 

subtracted from each sample in a trace, on a trace—by—trace basis. This DC bias is the zeroth 

frequency in the transform domain, and should be zero as there can be no energy propagating 
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at zero frequency. 

During processing in the (w, k, k) domain it is necessary to divide by quantities which tend 

to zero as w tends to zero. The data are shifted away from the real w axis by a small constant 

a. This then prevents such division by zero. The new frequency w' is complex and is defined: 

= w + ia. 	 (7.5) 

Consider a function 1(t). The Fourier transform from t to w is 

F(W) 
= 11: f(t) exp{iwt} dt, 	 (7.6) 

substituting w' for w yields: 

F(W') 
= FOO 

 f(t) exp{i(w + ia)t} dt, 	 (7.7) 

which is 

00  F(w') 
=00 

 f(t) exp{—at} exp{iwt} dt. 	 (7.8) 

Thus shifting the data along the imaginary axis in the frequency domain by a constant a is 

equivalent to applying an exponentially decaying ramp to the data in the time domain thus: 

f'(t) = f(t) exp{—at}, 	 (7.9) 

where f'(t) is the data after the application of the ramp. The ramp decay parameter a is 

chosen such that exp{—at} is 0.1 halfway through the trace. After the inverse transform the 

data are recovered by: 

f(t) = f'(t) exp{+at}. 	 (7.10) 

The ramp is applied to all traces immediately before time to frequency transform. The discrete 

Fourier transform is computed as normal. Whenever the frequency w is computed it is now 

complex with fixed imaginary part a. 

Figure 7.2 shows a cartoon of the discrete Fourier transform (DFT) of a real causal function, 

such as a time trace. The variable r is discrete time, the original pulse length is t/2 and it 

has been padded with zeros to r = t. As the transform is over a finite interval, the function 

must be periodic in t. After the DFT the real part is symmetric about v = 0 where ii is a 

discrete frequency variable. The frequencies are in the range v = 0 to ii = 2 fN where  IN 
is the Nyquist frequency. Again the transformed data are periodic in 2fN noting that positive 



76 	 Chapter 7. The (x, y, t) to (ks , k, w) transform 

frequencies above the Nyquist are equivalent to negative frequencies. The data must also tend 

V =21 

t=l/2 

=1/4 

V 

- v=1 

-v=U2 

   

Vt 

 

Figure 7.2: Cartoon showing a)A real time trace b)The real part of the DFT of a) after 
(Bracewell, 1986),p363 

to zero as t tends to infinity, otherwise there will be a step containing infinite frequencies at 

the end of the data, introducing edge effects in the transform. The wavefield naturally decays 

with time, as can be seen clearly in figure 7.1. 

l.a 

Cl 

Cl 

Cl 

-I 

Sample number 	 Sample number 

Figure 7.3: A) Amplitude trace 1 B) Phase trace 1 (spectra are wrapped about twice the 
Nyquist frequency) 

Figure 7.3 shows the amplitude and phase spectra of a single transformed trace as it is output 

from the DFT. Note the negative frequencies are in the latter half of the data. The phase 

spectrum is odd, the amplitude spectrum is even. This occurs as the data has the property of 

conjugate symmetry in the (x, y, w) domain. Consider the Fourier transform of A(x, —u): 

00  A(x,—w) = f 00 

a (x , t ) exp iw t I dt 	 (7.11) 
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Taking the complex conjugate of the Fourier transform of A(x, w) is: 

00  A* (x, - = foo 

a*(x,  t) exp{iu.t} dt. 	 (7.12) 

As a(x, t) is purely real a* = a so 

= A(x,w). 	 (7.13) 

That is, in the transform domain the value of the negative frequencies of a function is the 

complex conjugate of the equivalent positive frequency. This property is shown by functions 

which are purely real in the original domain. 

7.4 The space to wavenumber transform 

The data are now processed on a frequency—by--frequency basis. The data—slice in the (x, y)—

plane has the symmetry condition that the data are cylindrically symmetric about the origin 

in the plane, and w is fixed for each slice. 

The distance of each x - y point on a grid from the origin may be calculated and a value for this 

point is interpolated from the y = 0 data using cubic spline interpolation. The interpolated 

-data have the following properties. 

A(—x,—y,w) = A(+x,+y,w), 	 (7.14a) 

A(—x,+y,) = A(+x,+y,w), 	 (7.14b) 

A(+x,—y,) = A(+x,+y,w). 	 (7.14c) 

For fixed frequencies w the wavefield is cylindrically symmetric about the origin for both real 

and imaginary parts. So for a fixed x or y and w A is even for both real and imaginary parts. 

Figure 7.4 shows a data slice for fixed w. The origin in the (x, y)—plane is the lower left corner 

of the data, (1, 1) in the grid coordinates. The data are wrapped about twice the maximum x 

and y. The cylindrical symmetry in amplitude and phase is clearly evident. 

Consider A(x, y, w); two orthogonal transforms are applied in x and y. 

A(k,y,) = f 00 

A (x, y 	—x} dx, 	 (7.15) 

followed by 

A, (k :r , k, 
) =00 

A(k, y, w) exp{—iky} dy. 	 (7.16) 
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Figure 7.4: A) Amplitude spectra in (x, y)-plane B) Phase spectra in (x, y)-plane, for a fixed 
frequency 

The discrete from of the spatial transform is 

= 	 where Ax = 	 (7.17) 

where kx  = 	X is the trace length in space and M is the number of geophones. As 

A(x,y,w) is even for fixed w then A(k,k,w) is also even for fixed w. That is conjugate 

symmetry is not observed in the (x, y) or (kr , k)—planes (at constant w). Figure 7.5 shows 

the two—dimensional transform of the data slice shown in figure 7.4. Again, the transformed 

data are cylindrically symmetric about the origin and the data are wrapped around twice the 

Nyquist wavenumbers. 

The wavefield should also decay to zero as x tends to infinity. If this is not the case then 

edge effects appear in the transformed domain. Applying a filter to taper the data affects the 

amplitude and phase of the wavefield in the wavenumber domain. The wavenumbers must 

be preserved as the true wavenumbers are required for the division in (w, k 1 , ku ). Thus edge 

effects are introduced into the results. 
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Figure 7.5: A) Amplitude spectra in (kr , k)-plane B) Phase spectra in (kr , k)-plane, for a 
fixed frequency 

7.5 The (w,k,k) domain 

Combining the three transforms the three—dimensional transform is: 

A(k,k,w) = ffr- a(x,y,t)exp{i(wt - kx - ky)} dt dx dy. 	(7.18) 
00 

The transformed volume is cylindrically symmetric about w = 0. The radial wavenumber k, 

is the square—rot of the sum of the squares of the orthogonal horizontal wavenumbers. That is 

L. - Ii.2 + 	 (7.19) 'r - V"x 

As the data are symmetric there is no difference between positive and negative frequencies. 

Figure 7.6 shows the amplitude spectra for two wavefields. The vertical axis is angular 

frequency and the horizontal axis radial wavenumber t . The P—wavefield has more energy 

propagating at low horizontal wavenumber than the S—wavefield. That is, the P—waves are 

propagating closer to vertical the the S—waves, as one might expect. During processing the 

amplitudes of all wavefields are set to zero for kr  = 0 and w = 0. They should also be zero 

at the Nyquist frequency. 

These data come from k = 0 thus, k,. = k. 
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Figure 7.6: A) Upgoing P— amplitude spectra in (kr , ky ) plane, B) Upgoing S— amplitude 
spectra in (kr , k)-plane 

7.6 The inverse transform 

The radial-wavenumber—space transform is simply the inverse of the forward transform thus: 

A(x,y,) = 	ff 
- 00

00 

A (k., k,)exp{i(kx + ky)} dk dk. 	(7.20) 

This is carried out using the inverses of the forward transforms. For speed one does not have 

to compute the negative frequency part of the wavefield as this can be constructed from the 

positive parts using complex conjugate symmetry. The frequency to time transform is the 

inverse of the time to frequency transform. 

7.7 Transform summary 

The mechanics of the processing in the frequency—wavenumber domain were dealt with in 
the previous chapter. The following pseudo-code shows the transform as it is carried out in 
practice. 

calculate the alias frequency. 

compute anti-alias filter 

foreach (time) trace 

apply anti alias filter 

remove DC 
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pad to twice original length with zeros 

apply exponentially decaying ramp 

transform from time to frequency 

done 

foreach positive frequency 

pad data to twice original length in x 

interpolate data onto x-y grid 

wrap grid around maximum x and y 

transform from x to k_x 

transform from y to k_y 

......................... 

Data are now in k_x,k_y,w 

......................... 

inverse transform from k_x to x 

inverse transform from k_y to y 

done 

for each (frequency) trace 

compute negative frequencies using complex conjugate symmetry 

inverse transform from frequency to time 

apply exponentially increasing ramp 

done 

7.8 Conclusions 

The transform from the space—time to wavenumber—frequency and its inverse have been pre-

sented. There are three pre—transform processing steps which must be carried out. These 

are: 

. Remove DC bias 

• Anti—alias filtering. (Aliased energy in (w, k, k) will introduce errors in the process-

ing if it is not removed.) 

• Application of exponentially decaying ramp to make the frequency complex. 

Only the positive frequencies are processed. Negative frequencies are computed from the 

positive frequencies using the property of complex conjugate symmetry. 



RECOVERING THE REFLECTIVITY: 

APPLICATION TO SYNTHETICS 

Chapter 8 

On two occasions I have been asked [by members of Parliament], 

'Pray, Mr Babbage, if you put into the machine wrong figures, 

will the right answers come out?' I am not able rightly to ap-

prehend the kind of confusion of ideas that could provoke such a 

question. 
Charles Babbage 

8.1 Introduction 

In this chapter the theory of reflectivity recovery is applied to synthetic data. Two models 

are used, one with a single reflector beneath the receiver level and the second with many 

reflectors beneath the receiver level. Three types of sea—bed source are used, an explosion 

and two tractions. Seismograms are shown at each stage of the process. This work has been 

presented as Higgins et al. (1998). 

8.2 The (synthetic) data 

Table 8.1 shows the earth model used to generate the synthetic data. The shot spacing is 25m 

and there are 60 shots ranging in offset from Om to 1500m. The single receiver is placed 

at 850m depth, just above the first buried interface. This model is shown in Figure 8.1 and 

Table 8.1. The synthetic seismograms are generated using ANISEIS (Taylor, 1992), a full—

waveform reflectivity modelling package. The upgoing and downgoing wavefields are mod-

elled separately for each source, so no upgoing—wavefield downgoing—wavefield separation is 

required. Three sources are used: two orthogonal tractions corresponding to a vertical force 

and a horizontal force parallel to the source (and therefore receiver) array and an acoustic 

explosion. The horizontal force referred to here is one which aligned in the radial direction 

for each shot point. 

Combinations of these sources simulate dual source experiments, with the source at the sea- 
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Layer I  1' (mis) V (m/s) p (gIcm 3 ) Thickness (m) 
1 1500 0 1 100 
2 1900 1300 2.1 500 
3 2300 1600 2.4 500 
4 2800 1900 2.6 00 

Table 8.1: Simple earth model 

Depth 
Om 

lOOm Source level 

600m  

850m Receiver level 

IlOOm 

Vs 	 Vp 	p 

Figure 8.1: Simple earth model 

 

bed. There are three possible dual—source experiments: explosion and vertical-force, explo-

sion and horizontal-force and horizontal-force and vertical-force. The acoustic data are 

shown in figure 8.2, the vertical force data in 8.3, and the horizontal force data in figure 8.4. 

Each set of upgoing or downgoing wavefields is plotted on the same scale. The upgoing 

wavefields are plotted at an order of magnitude greater scale than the corresponding downgo-

ing wavefields. The vertical and radial geophone components are shown. There is no out of 

plane propagation and so no energy in the transverse direction. 

Note that the near—offset traces of the vertical—force and acoustic source are very similar for 

both the upgoing and downgoing wavefields. Note that the P—waves and S—waves overlap in 
time in parts of the upgoing wavefields. 
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Figure 8.2: Acoustic source data, vertical and radial components 
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Figure 8.3: Vertical force source data,vertical and radial components 
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Figure 8.4: Horizontal force source data,vertical and radial components 
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8.3 P and S separation 
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Figure 8.5: Acoustic source data, P— and 5— components 

The post P—S separation wavefields are shown in figures 8.5, 8.6 and 8.7. The upgoing 
wavefield is plotted at an order of magnitude greater scale. 

The P-S separation is dependent on the estimate of the P and S velocities at the receiver. 
Dankbaar (1987) notes that for a standard marine VSP velocity variations along the borehole 
of up to 25% yield acceptable results for his (similar) separation scheme. For this case there 

is no variation of velocity at each receiver position as the earth is assumed to be laterally 

invariant. Accurate velocities are available from the borehole logs and any near—offset or 

zero—offset experiments so velocity estimation should pose little problem. 

The separation works well, even when the P—waves and S—waves overlap in time. Again the 
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Figure 8.6: Vertical force source data, P- and S- components 

near offset-traces for the acoustic and vertical force source are very similar. All evanescent 

waves are preserved. This is not a true P- S- separation scheme as the (p 2  - q( q) term 

from the denominator in equations (6.23) have not been included as they divide out in the 

computation of the reflectivities. Dankbaar (1987) shows that acceptable results are obtained 

if this factor is ignored and suggests that it should be for the computation of the S-wavefield 

otherwise the separation becomes unstable when q 1, becomes complex, that is, when the P-

waves become evanescent. 
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Figure 8.7: Horizontal force source data, P— and S— components 
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8.4 Recovering the reflectivity 

The reflectivity is converted to a wavefield as described in Chapter 6, this wavefield originates 

from a monopole point source (equations (6.37)). Here the source and receiver level is 500m 

above the reflecting zone. The medium between the source and receiver levels and the reflect-

ing zone has the same velocities as the receiver level in the original experiment. The results 

are shown in Figures 8.8, 8.9 and 8.10. The three experiments show very similar results. 
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Figure 8.8: Reflectivity wavefields, explosion and vertical—force dual source 

At the source a horizontal force and explosion are indistinguishable from one another for hor-

izontally propagating waves. Here the partition of energy between P—waves and S—waves is 

the same for each source type. However, the value at each point in the (computed) (w, k, k) 

domain, is an average energy over an area, the area being dependent on the sample interval. 
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Figure 8.9: Reflectivity wavefields, explosion and horizontal—force dual source 

Thus the partition of energy between P—waves and S—waves is made different for all com-

puted slowness by changing the isotropic source to an horizontal force. The same is also true 

of an explosion and a vertical-force source at zero (horizontal) wavenumber. 

In matrix form equations (6.25,6.26) are: 

TT 	Tn 	 7) 	 r) 	T) 
	

DI 
IfS 	S - 'SS 1 SP L'S '-'s 
Up Up' - Rp5 Rpp Dp D' 

Rss 
--r- 

Denoting the matrix of upgoing wavefields U, the matrix of downgoing wavefields D and the 
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Figure 8.10: Reflectivity wavefields, vertical—force and horizontal—force dual source 

matrix of reflectivities R this above equation is 

U=RD. 	 (8.2) 

Multiplying both sides by the inverse of D yields: 

UD = RDD 1  = RI, 	 (8.3) 

which is the matrix form of the recovery equations (6.27). However the inverse of D cannot 

be constructed when D is singular. That is, when the determinant of D is zero. This occurs 

when the downgoing wavefields of the first source are a linear combination of the downgoing 

wavefields for the second source at a point in (w, k, k r). When the determinant of D is very 
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small then errors in D have a large effect on the computation of R. Essentially the inversion 
is unstable at points in (ce, k, k) where the eigenvalues of D are small. The effect of this is 
clearly seen in Figure 8.8. There is much noise in the zero offset traces, especially in the Rpp 
and Rp sections, which correspond to downgoing P—waves, which dominate the near—offset 
for the acoustic and vertical force source types. 

The noise on the near—offset traces corresponding to downgoing S—waves for the acoustic-

source/horizontal—source (Figure 8.9) is surprising. Here one would expect that this combi-

nation of sources would give optimum results, similar to the vertical—force/horizontal—force 
source results. 

The best results are shown in Figure 8.10, the vertical—force/horizontal—force combination. 

There is little noise at zero offset and the reflection event is clearly resolved. There are no 

multiples of events related to the near—surface in the section. There is a small coherent event 

just after the main arrival in the section corresponding to downgoing P—waves (the Rpp and 
Rsp sections). This is probably related to coherent noise in the synthetic data as a result 

of reflectivity modelling in the (, kr ) domain. This scheme does not address such coherent 
noise. 
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8.5 Upgoing wavefield reconstruction 

The recovered wavefields look correct. Here the recovered reflectivities are used to generate 

upgoing waveflelds using the original downgoing wavefields. If the reflectivities are correct 

there should be no difference between the original upgoing wavefields and the reconstructed 

upgoing wavefields. These reconstructed waveflelds and the difference between the recon-

struction and the original upgoing wavefields are shown in Figures 8.11, 8.12 and 8.13. 
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Figure 8.11: Acoustic source data reconstruction and difference 

Figure 8.11 is reconstructed from the reflectivity computed using the acoustic/vertical—force 

dual source and Figures 8.12 and 8.13 are reconstructed from the vertical—force/horizontal- 

force dual source. The differences are small, less than 1%, for all the reconstructed waveflelds. 
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Figure 8.12: Vertical force source data, reconstruction and difference 

The most difference is seen on the furthest offset traces. This is where there is an edge in the 

data and the error is introduced during the transform stages of processing. 

8.6 Discussion and initial conclusions 

The simple model example works well. The P—waves and S—waves overlap in time but are 

separated well for all three source types. The reflectivities for each of the three experiments 

can be used to reconstruct the upgoing wavefields. The difference between the reconstructed 

wavefields and the original upgoing wavefields is small. The single interface is resolved very 
clearly. 
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Figure 8.13: Horizontal force source data, reconstruction and difference 

The best results are obtained using a vertical—force/horizontal—force dual source. This is the 

only combination for which the partition of energy between P— and S— is different for all 

wavenumbers. The other source combinations work well for non—near offsets. 
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8.7 Complex (synthetic) data example 

Here a more complex earth model is used. The source and receiver geometry is the same as 

for the simple example. Only the vertical—force/horizontal force combination is used. The 

Depth 
Om 

lOOm Source level 

600m 

850m 

1100m  Receiver level 

1400m 

1600m 

2 1 00i 
2200m 

Vs 	 Vp 	 p 

 

Figure 8.14: Complex earth model 

yer I V, (m/s) V3  (m/s) p (g/cm3 ) Thickness 
1 1500 0 1 100 
2 1900 130 2.1 500 
3 2300 1600 2.4 500 
4 2800 1900 2.6 300 
5 2300 1200 2.2 200 
6 2500 1250 2.3 500 
7 2800 1400 2.4 100 
8 3000 2000 2.9 oc 

Table 8.2: Complex earth model 

model is shown in Table 8.2 and Figure 8.14. 

The sources are placed on the sea—bed. The receiver depth is again 850m and the shot spacing 

25m. There are 60 shots ranging in offset from Om to 1500m. 

The synthetic seismograms are shown in Figures 8.15 (vertical force) and 8.16 (horizontal 

force). The seismograms are much more complex than the previous example and again the 
P— and S— wavefields overlap in time. 
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Figure 8.15: Vertical force source data. Complex model 
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Figure 8.16: Horizontal force source data, Complex model 
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The P— S— separation works well. The waveflelds being clearly separated for both sources 

1000 	2000 	3000 	4000 	 1000 	2000 	3000 	4000 

0 

200 

400 

600 

! 800  

1000 

C 
1200 

1400 

1000 	2000 	3000 	4000  

0 	0 
	

0 

	

200 200 
	

200 

	

400 400 
	

400 

	

600600 
	

600 

	

800 800 
	

800 

	

1000 1000 
	

1000 

	

1200 1200 
	

1200 

	

1400 1400 
	

1400 

1000 	2000 	3000 	4000 

1000 	2000 	3000 	4000 

0 

200 

400 

600 

E800 

1000 

C 
1200 

1400 

0 	0 

200 200 

400400 

600600 

800 800 

1000 1000 

1200 1200 

1400 1400 

1000 	2000 	3000 	4000 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1000 	2000 	3000 	4000 	 1000 	2000 	3000 	4000 

Time (ms) 	 Time (ms) 

Figure 8.17: Vertical force source, mode separated data. Complex model 
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Figure 8.18: Horizontal force source, mode separated data, Complex model 
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The final reflectivity is plotted such that each component is plotted in the same scale. Notice 

that the amplitude and arrival times of the Rpg and Rsp sections are very similar, as one 

might expect. 
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Figure 8.19: Recovered reflectivity. Complex model 

8.8 Conclusions 

The scheme works well. The recovered reflectivities can be used to reconstruct the upgoing 

wavefields and the difference between the reconstructed wavefields and the original upgoing 

wavefields is small. The best results are obtained using a vertical—force/horizontal—force 

combination. However reasonable results are obtained using an acoustic source as one of 

the sources. 



CONCLUSIONS 

Chapter 9 

In this chapter the conclusions are discussed and summarised. Suggestions and speculations 

for future work are made. 

9.1 Conclusions 

Two main themes have been explored in this thesis; wavelet shaping to remove the effect 

of shot-to-shot variations in borehole seismic data, and recovering the reflectivity beneath 

the receiver for walkaway VSP by wavefield division in the frequency-wavenumber domain. 

These themes are not separate as the first is a pre-requisite for the second. The transform 

to the frequency-wavenumber domain cannot be computed correctly if there is source signa-

ture variation in the data to be transformed. The wavefield division and therefore reflectivity 

recovery cannot be achieved if the transform cannot be computed. 

In Chapter 4 I showed how the pressure measurement made at a hydrophone near the source 

is related to the particle displacement recorded at a downhole geophone. This is based on 

the analysis of Lamb (1923) and Ziolkowski (1998). The source (pressure) wavelet recorded 

at the hydrophone is the same as the particle velocity measured at the geophone. Thus any 

wavelet processing can be carried out using a linear convolutional model. Chapter 5 demon-

strates how wavelet shaping is carried out in practice. As has been stated, there are references 

to work by Zeitvogel, which I am unable to find. The wavelet shaping scheme is dependent on 

knowing r the source—hydrophone distance and R the virtual-source—hydrophone distance. 

For the examples presented in this thesis r is constant. R however, varies with wave height. 

The appendix to Chapter 5 demonstrates that variations in R of about 1 m have a negligible 

effect on the source wavelet shaping scheme. How sea-bed-source wavelets are recorded, 

related to the downhole particle velocity and shaped to remove the effect of shot-to-shot 

variations has not been discussed. 

Using the formulation of Kennett (1983) in Chapter 6 I show how the reflectivity of the region 

beneath the receiver can be recovered. Two sources must be used which have differing parti-

tions of energy between P-waves and S-waves for all points in (w, k, k u ). This cannot be 

done using only a single source as any upgoing wavefield is a linear combination of two down 
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going wavefields. The recovery scheme relies on dividing two wavefield combinations. The 

stabilisation of this division and an example of the application is also presented. A by—product 

of the recovery scheme is that the wavefield is separated into P— and S— components. 

The data are processed in the (w, k, k) domain. Chapter 7 describes the transformation of 

the data to this domain. The earth is assumed to be laterally invariant. The transform uses 

complex frequencies to prevent poles at zero (vertical) wavenumber in the transform domain 

causing division by zero when the waveflelds are scaled prior to inverse transform to (t, x). 

The data are pre—processed prior to transform to prevent processing artifacts. 

In the previous chapter (Chapter 8) I show application of the recovery scheme to synthetic 

data. The reflectivities are recovered well. As a test, the upgoing wavefields are reconstructed 

using the recovered reflectivities. The difference between the reconstructed and original wave-

fields is small, except at far offset where edge effects in the transform caused errors to be in-

troduced. The best results are obtained using a vertical—force/horizontal—force combination, 
for which the partition between P— and S— energy is different for all points in (w, k, ku ). 
Reasonable results are obtained if an acoustic source is used as one of the sources. Thus exper-

iments that are designed with this technique in mind should use a vertical—force/horizontal-

force combination, however it is possible that acoustic source data may already exist in which 

case a horizontal—force source should be used for the repeat experiment as this will allow the 
near—offset reflectivity to be recovered. 

In conclusion, a dual source VSP in which the source wavelet is constant shot—to--shot, can 

be inverted for the (tensor) reflection response of the region beneath the receiver, for a plane 

horizontally layered earth. The velocities Vp and VS must be known at the receiver. The 
wavelets for the two sources should be shaped so that they have the same bandwidth; this is 
done using the scheme of Chapter 6. 

9.2 Suggestions for further work and speculation 

This work must be tested on real data. As yet no data exist which are suitable. The real earth 

is three—dimensional, testing on real—data will show how well this scheme, developed for a 

one—dimensional earth, will work for a three—dimensional earth. 

A key problem which will require resolution is that of the stability of the sea—bed source. 

No information is available about the sea—bed sources currently being developed other than 

a basic outline of their operation. As with the land vibrator sources, source shot—to—shot 

variability will depend on the near—surface conditions. How this source is measured and how 

the measurement relates to the downhole wavefield needs to be addressed. How the source 

will be measured and how this measurement relates to the downhole wavefield is as yet not 
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known. 

An obvious extension of this work is to nine—component experiments: three—orthogonal 

sources and three orthogonal receivers. This would possibly allow for the recovery of the 

full tensor response of an anisotropic earth. The equations for the full wavefield at the re-

ceiver are presented in Fryer and Frazer (1984). The wavefield separation would require an 

anisotropic velocity model of the receiver medium. The wavefield will no longer be symmet-

rical about the origin for non—azimuthally symmetric earth models so the velocity model must 

be azimuth dependent. Extending the transform to three—dimensional recording geometries is 

simple; the real x, y data are used instead of interpolating the single line data to x and y. 

If the reflectivity of the region beneath the receiver changes with time it may be possible to 

carry out repeat experiments to monitor this change, although, as is the case with all time—

lapse studies, one must be very careful to make sure that the response is of geological origin 

rather than an artifact of the processing. 
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SENSITIVITY OF SOURCE MEASUREMENT 

DEGHOSTING 

Appendix A 

Here an analysis of the sensitivity of the deghosting scheme to variations in R is presented. 

The hydrophone is assumed to be fixed relative to the source, as is the case for the data 

presented. Equation (5.5) is written: 

M(w) -  Iexp{iu.'r/c} exp{iwR/c}1 = T. 	 (A.!) 
S(w) 	r 	 R 	j 

which is written 

1 - 1 [expliwr/cl - exp{iwR/c}I - 1 T 	 (A.2) 
R 	Ai?i 

Consider what happens when the transfer function T is perturbed by Sr and SR. To first order, 

the Taylor expansion of  about (ro , Ro) is 

T(ro  + Sr, Ro + oR) = T(ro , Ro) + 1'fro, 1
Sr + '(ro, R0) SR 

Or 	 OR 	
(A.3) 

The first derivatives of  are: 

OT - e/C fiw i\ 

i 
 

— --), 	
(A.4) 

r \c r 

with respect to r and 

	

- e t/C I j 	1 

- - R 	- 	
(A.5) 

with respect to R. Substituting (A.4) and (A.5) into (A.3) the inverse of the source function 

is: 

- 	 r 	C r Or— R LIdO RI  T 	
+ 

e'/C 	- 1] 	ei/C iw 	1 

- 	 ei/c 	eR/c 	 eiI/c 	
(A.6) 

r - R 	 r - R 
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which is 

' 	 C 	R (SR'. _(A.7) S 	1w 	1 - reiR — r)/c 	piw(r—R)/c 
-ii 

The squared modulus of each of the perturbing terms is: 

12 	 1w2 

	

- I 	 +
rJ 	 (A.8) 

C 	 = _________________________________ 

+ r2 	r [e'w (R—r)/c + e_(R)/cJ' 1— 	R 

=2cos(w(R—r)1c) 

and 

i1 

	

2 	
+ 	

R2 	
(A.9)Rr2  R

r  [[e

cT
w 

 __ (SR 1  = ___________________ p;w(r—R)/c 
- 1 	1 + 	- 	 + e_fr_)/CJ r 

=2cos(i(r—R)/c) 

For the geometry considered here R = 7m and r = im thus R - r = 6m, r - R = —6m, 
R/r = 7 and r/R = 1/7. The maxima and minima of the first term are: 

	

(w 2 /c2 +1)8r2 	(w 2 1c2 +1)6, 2  

	

1 + 1/49 — (1/7) .2. ±1 = (50 14)749 	 (A.10) 

and the second 

	

(c 2 1c2 +1/49)(SR2  = (w21c2+1/49)6R2 	
(A.11) 1+49-7•2.±1 	5014 

The frequency w is in the range 0 to 600s - I  a range for w 2 1c2  of 0 to 2/5m2 . So the first and 
second terms are now 

({0,2/5}+ 1)5r2 - {1, 1.43}Sr 2 

(50 j 14)/49 	- {0.7, 1.3} ' 	 (A.12) 

and 

({0,2/5}+1/49)6R 2  = 10.02,0.42}(SR2 	
(A.13) 5014 	 {36,64} 

The minimum and maximum perturbations are 0.3 x 10 3  (SR and 11.6 x 10 3 6R and 0.86r, 
1.96r. The perturbing term (Sr depends on the movement of the hydrophone relative to the 
source. In this case the airgun and hydrophone are fixed to the source rig; (Sr is then zero. 
The perturbation (SR dependent on the source depth and hydrophone depth. This varies as the 
water surface goes up and down. If the source sinks by 0.5m and r remains constant then 
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R is Im. The perturbation term then has a maximum size of O.01 at 100Hz. The error 

decreases as frequency decreases. 

S = i [1 + {0.7, 216r(= 0) + {0.3 x 10, 11.6 x 103}5R] '. 
	

(A.14) 

This calculation only includes errors due to moving the ghost and the gun relative to the sen-

sor. This error is the maximum possible error. The error increases with frequency. Consider 

the cosine term in the denominator of each expression. The error is maximised when the 

denominator is minimal, which happens when the cosine term equals -1. That occurs at n0 7r 

where n0  is any odd integer. If w(r - R)/c = n0 7r then A(r - R) = n0 /2. Which is when the 

source and ghost constructively interfere with each other. At other times the error is reduced 

due to the destructive interference between the source and ghost arrivals. 


