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ABSTRACT

A sinusoidal wave train travelling on the surface of an ocean of great
depth is considered to be incident on a class of partly submerged circular
cylinders whose generators are parallel to the wave crests and whose cross-
sections pass through two fixed points on the mean surface at angles O
(measured through the fluid) which may be acute, right or obtuse. The
ocean is assumed incompressible and of constant density and, in addition,
viscous effeéts, surface tension and variations of atmospheric pressure are
neglected. The linear theory of water waves is then employed to carry out
a comparative study of three different methods of determining the- transmissic
coefficient (T) for the class of obstacles mentioned, namely,

(a) the method of multipole expansions (Ursell (1949))

(b) the method of matched asymptotic expansions (Leppington (1973))

(¢) the null field method for water waves (Martin (1981)).

In the case a = 9d’, (a) is used to obtain numerical values of T for
0.01 € N < 20 (where N = ka, %§-= wavelength, a = cylindrical semi-beam)

and, by means of (b), three terms are added to Leppington's (1973a) asymptotic

1 (log N)? log N

formula for T, these terms being of orders N

Comparison of the values of T obtained using (a) for 8 < N < 20 and the
complete fifth order asymptotics establishes the existence of a region of
overlap. In the case where o is obtuse, similar comparison, using (c)

and the first two terms of Alker's (1977) asymptotic result, produces
positive evidence of the existence of a similar region (N i; taken up to

10 in these cases). Numerical values of T (and R, the refléction
coefficient) are found for 45 < o < 165 and 0.0l < N < 1l0. The extension
of the asymptotics in the case o = 90" reveals striking examples of the

cohesion of the method of matched asymptotic expansions as propounded by

Leppington for water wave scattering and radiation problems.
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CHAPTER 1

§1.1. Introduction

The main part of this thesis is devoted to the problem of the
scattering of sea-waves in two dimensions. It is postulated
that a long-crested sinusoidal wave train is incident upon a
fixed partly immersed cylinder of general cross-section (the
generators of the cylinder being parallel to the wave crests) and
it is required to find the ratios of the (complex) amplitudes of
the transmitted and reflected waves to that of the incident wave.
These ratios (called the transmission and reflection coefficients
respectively) will be seen, in the case of steady state oscillations,
to be functions of the cylindrical geometry under consideration and
alsc of the wave number of the incident wave. The reason for
their importance lies in the fact that the squares of their moduli
are measures of the proportions of energy transmitted through and
reflected from the cylindrical obstacle in the form of wave trains,
and the investigation of the nature of their dependence on obstacle
and incident wave has been the subject of a considerable number of
papers in recent years. Pérticular attention will be given in
this work to the delicate problem of calculating the small proportion
of energy which is transmitted in the case when the wavelengths are
small ccmpared to a typical dimension of the obstacle.

In sections §1.3-§1.5 the three main methods for tackling such
problems are discussed and reference is made tao some advances achieved
later in the thesis by the use of twc of these in particular (the
multipcie expansion method and the method:of matched asymptotic
expansions). Surveys of the literature are given in these sections

and the mathematical notation to be employed later is also



introduced with reference to Figs. 1 and 2. In section §1.6 the
layout of the thesis is summarised. Before these matters are
examined in detail, a summary is given of the assumptions underlying
the mathematical model of the situation and the boundary value

problem to be discussed hereafter is set out.

§1.2. The Mathematical Model

The usual assumptions.of linearised water wave theory are
empioyed and viscous effects,-surface tension and variations of
atmospheric pressure are neglected. In addition, the ocean is
taken to be of infinite depth, incompressible and of constant
density. If, therefore, the motion is assumed to have started from
rest, then the previous assumptions imply that, throughout the
. subsequent motion, its original irrotational nature will be preserved.
There will exist, in consequence, a scalar velocity potential
w(£,t),where t is the time measured from any suitable instant and
r is the position vector of a point in the flow field relative to
an origin fixed in space.

Attention will be confined to periodic states for which
w(r,t) = Re[W(x) e-iOt], (where g-g-is the period of the wave motion
and W is, in general, a complex function of position). To describe
the problem in mathematical terms axes are set up as shown in Fig. 1
with Ox on the undisturbed water surface pointing towards the
incoming wave, Oy vertically downwards and Oz chosen so that the
system of axes is right handed. By appropriate choice of time
origin and of scales of length and time, the potential of the
incoming wave can then be taken as exp[ -ky - i(kx + 0 t)] (where

2

k = % is the wave number and g is the acceleration due to gravity).

Thus the mathematical formulation of the problem is to find a
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function W(r) = W(x,y) continuous and twice differentiable in the
fluid domain satisfying the following spatial boundary value

problem (see Fig. 1 for the notation):

2 2
é—? + é—g =0 in D,
x oy
R LL R on S,
oy
oW
5’5—-0 onI“,

|Vw1 + 0 as y ¥ +9,

As x > +© , W(x,y) ~ exp(-ikx - ky) + R exp(ikx - ky),
As x > ~® , W(x,y) ~ T exp(-ikx - ky)
(where R and T are the (complex) reflection and transmission
coefficients respectively).
It is usual,at this point,to introduce the scattered potential
¢o(x,y) = W(x,yf - exp(-ikx - ky) so that the associated boundarty

value problem for ¢ is:

2 2
%;% + %§$ =0 in D, (1.1)
kd + %% =0 on S, (1.2)
%% - S'?I[exp(—ikx - ky)l onT, (1.3)
Vo] ~ 0 as y > +°, (1.4)
As x > +© , ¢(x,y) ~ R exp(ikx - ky), (1.5)
As x > -© , d(x,y) ~ (T - l)exp(-ikx - ky). (1.6)

It is conveﬁiént also to express equation (1.3) in terms of the
conjugate stream function Y (x,y) for then the equation can be
integrated along I' to give the value of Y at any point of [ in
terms of its value, e.g. at E+. Specifically, if arc length is .

00 _ Y

measured positively from E+ (as origin) towards E_, then 3n - 3s



and the integrated form of (1.3) is

P
) .
P(P) - W(E+) = - f 5;—[exp(-1kx - ky)] ds (1.7)

E,

(where P is any point on I' and the line integral is taken along T
between E+ and P).
John (1950) has proved that such problems have unique solutions
provided two other conditions are satisfied. These are
(a) the profile C should be completely contained within
the two verticals at E+ and E_ (it is probable that
this condition can be relaxed but this will not be of
concern here);
(b) certain edge conditions are satisfied at E+ and E_.

These conditions are usually stated in the form

3¢
6+ 36+ -+ 0 as 6+ -+ 0 (1.8)
6_—3% +0as§_ +0 (1.9

(Stoker (1957), Chapter 5, interprets these conditions as stating,
in mathematical terms, that waves do not break at the edges;
certainly, if these conditions were not satisfied, there would be
a net flux of liquid through arbitrarily small circular arcs

centred at the edges indicating the existence of a source or

sink there). _
Equations (1.1)-(1.9) are of the same form as those associated with

the forced harmonic motion of a cylinder of general cross-section
(although, in this case, ¢ would represent the radiation potential and

the coefficients of the wave terms in (1.5), (1.6) would be the complex

amplitudes of the waves generated at ). Indeed, for heaving,
swaying and rolling modes the right hand side of (1.3) would be

simply replaced by vj.n, vi.n and w(kxr).n respectively (where i,



J, k are unit vectors along Ox, Oy, Oz respectivély and
Re(vie-iOt), Re(vig-ict) ié the velocity in the heaving, swaying
mode while Re(wgg—ict) is the angular velocity in the rolling mode.
Newman (1975) has, in fact, derived equations relating the reflection
and transmission coefficients of the scattering problem to the
phases of the symmetric and anti-symmetric radiated waves and has
shown that, in the cases of bodies symmetric about x = O, R and‘T
can be determined precisely from the radiation phase angles in
heave and sway. This has similarities to the situation in the general
two dimensional periodic problem of a freely floating body in the
presence of an incident wave (which in linear theory can be treated as
a superposition of a radiation and a scattering problem), where the
Haskind relations (see e.g. Newman (1977)) enable the exciting forces
in heave and sway and the roll exciting moment to be calculated provided
the forced wave potential in the corresponding mode can be found for
given forcing. Thus, in the general case, the so;ution of the
diffraction problem can be avoided in the calculation of exciting forces
and moments. In tﬁis work, however, the transmission problem will be
tackled directly.

It will be convenient here to give also the complex form of the
boundary value problem under consideration.
Let a complex variable

z =x + Jjy
and a complex potential
f(z) = ¢(x,y) + jU(x,y) be introduced

(where j is a complex unit treated independently from i).
The problem then becomes that of finding a function £(z) analytic
in D and such that

Imj(f'(z) - jk£(z)) = 0O on Imj(z) =0 (lz]| = a),



P
Imj(f(z) - f(a)) = - J 52—[exp(—ikx - ky)] ds on T,

E
+

(where P is the point of affix z)
|f(z)| is bounded for all z in D,
As x + +%, Rej [ £(z)] ~ R exp(ikx - ky),
As x + -, Rej [ £(2)] ~ (T - l)exp(-ikx - ky).

In subsequent chapters there will be occasion to refer to the
problem in both forms, bﬁt for the present the form (1.1)-(1.9)
will be used in discussing the application of the methods of

(a) multipole expansions

(b) integral equations

(c) matched asymptotic expansions (for short waves)

to the solution of the problem.

gl.3. The method of multipole expansions

The method was originated by Ursell (1949) in solving the problem
of the heaving motion of ; semi-submerged circular cylinder and
similar methods may be used for the transmission problem (see
Chapter 2).

In the (more complicated) transmission problem the potential is
represented as a superéosition of

(a) a term representing a line source along the z-axis;

(b) a term representing a line dipole along the z-axis;

(c) an infinite series of terms representing wave-free line

multipoie potentials.
The individual terms of the solution are chosen specially to satisfy
(L.1), (1.2) and (1.4) and the wave-free multipoles are, in
addition, chosen so that they die off to zero at infinity, leaving

the wave terms in (1.5) and (1.6) to be provided by the source and

dipole terms. The ccefficients in the infinite series i.e.



the strengths of the source, the dipole and the various multipoles
are determined by satisfying (1.3). Once this is achieved it must
be verified that the resulting infinite series is uniformly convergent
and twice differentiable term by term in D. 'If this is so, then the
unique solution of the problem has been establishéd.

It should be noted that the infinite set of wave-free multipoles
consists of two distinct subsets, one containing multipole
potentials which are symmetric with respect to the plane x = O and
the other containing anti-symmetric terms. In the heaving case,
the radiation potential is represented by the superposition of a
suitable source term together with the symmetric multipoles, while,
in the swaying case, it consists of a dipole term plus a linear
combination of anti-symmetric multipoles.

Martin (1971) has discussed the cases of the swaying circular
cylinder and the rolling elliptic eylinder, pointing out that, in
the latter case, a different combination of multipoles from that
used in the circular case is required and that, in general,
different combinations will be required for different cylindrical
geometries. With regard to the convergence properties, Ursell
(1949) has proved inverse cube convergence of the multipole
expansion for the case of a heaving circular cylinder and Martin

(using similar methods to Ursell) has shown that, in each of the

three basic modes he considers,the rth term in the multipole expansion
is smaller than %3 where A is a function of k x a typical length in

the profile and other non dimensional geometrical parameters, thus
ensuring uniform convergence of the expansion in these cases. (A
similar property is derived for the multipole expansions in the
transmission problem in Appendix A). However, a proof that the series
converges for all three modes of motion and an arbitrary shaped
cylinder has not been given, though Vugts (1970) states that it is

acceptable that this will be the case.



In conclusion, it should be stressed that, while convergence
of the multipole series occurring in the transmission problem has
been proved, considerable numerical difficulties are experienced in
the calculation of the transmission coefficient as N increases.
Nevertheless, it is seen in Chapter 2 that use of multipole
expansions of up to 80 terms, coupled wigh numerical routines which
maximise computer accuracy, produces three reliable significant
figures in T for values of N well beyond the range of those
previously examined. Meanwhile, consideration is now given to the

second method of tackling the basic problem.

§1.4. The integral equation (I.E.) method

The numerical difficulties inherent in satisfying equation (1.3)
for large N using multipole expansions and a desire to elucidate the
physical processes involved in the scattering of short surface waves
led to the development of the I.E. method by Ursell (196l1). The
ground work had been laid down by John (1950) and Ursell himself
(1953). A brief description of the method is now given and the
notation for Chapter 6 (on the null field .equations) is introduced.

Suppose a Green's function G(x,y; &,n) (also denoted by G(P,Q))
can be found for the domain D such that <

G(PrQ) = G(QIP) »

2 2
%;g + %;CZ; =0 in D (XIY) # (glﬂ) 3
kG + %g =0 on S ,
%—ikc >0 asr=/x2+y2 > o,
G(x,y; E,n) =% log [ (x -E)2 + (y - M?] + Gy (x,y; &M,

where G, (x,y; &,n) is regular throughout D (see e.g. John (1950) p.100).



By applying Green's theorem to the functions ¢ and G in the region
bounded by S,T, the.semi—circle at infinity and a small circle
centred on the point P(x,y) (assumed to lie in D but not on I'), it

can be proved that

f
2m ¢ (P) = JI‘ [Gg(P,q) % dlq) - ¢(q) —3% G (P,q)] dsq
g q

where q is a general point of T, 5%- denotes differentiation along

the normal to ' from g into D and dsq is the length of a line
element at q.

By use of equation (1.3) the above equation can be rearranged as

, 9 L 3 .
¢ (q) ~ [G(P,q),]dsq = JFG(P,q) §;é[exp(-1kxq - yq)]dsq, (1.1

2w (P) + f
r q

where (xq,yq) are the coordinates of qg. It follows that the value
of the potential at any point in the fluid domain which is not on
F, will be known if the value of the potential on ' can be found,
oF if a Green's function can be constructed satisfying also
%§i= Oon . The latter approach leads to a problem which, in
practice, is as difficult as the original one posed so it is
necessary to examine the possiblity of determining the value of
the potential on T. B

In theory this can be aghieved by applying Green's theorem as
before with the field . point P now occupying a position p on the
curve I', the point p this time being surrounded by a small semi-
circular arc centred on it. The result is a Fredholm integral
equation of the second kind for the values of ¢ on [ viz.

3 : .
mo(p) + J ¢ (a) -a';'[G(P,q)]dsq = -f G(p,qyég [ekp(rlkxq - kyq)]dsq ,
' r .

T q
and an attempt may be made to solve this by one of the standard

methods for such equations (e.g. iteration) or by a numerical



approach. However, although this is feasible for long wavelengths,
problems again arise when N is large because the kernel of the I.E.
{gg] contains the rapidly oscillatory term exp(-ikx - ky) when
John's fundamental G.F.. is employed. As a consequence iteration
proves impractical while attempts at a numerical solution run into
the same kind of difficulties as are experienced using multipole
expansions. In addition, it is known that the above integral
equation of the second kind is singular at a certain infinite
discrete set of frequencies corresponding to the eigenvalues of a
related interior problem (John 1950). This is purely.a consequence
of the method of solugion since it is also known that the original
boundary value problem has a unique solution for all frequencies
provided the union of [ and its image in the free surface is a
convex, twice differentiable curve.

Use of the null field eéuations (to be discussed in Chapter 6)
helps to remove the difficulties but these equations have.only
recently been developed for water wave problems (Martin, 198l1) and,
in any case, are not amenable to analytic solution.

Ursell's resolgtion of the dilemma lay in modifying John's
Green's Function by subtracting from it a linear combination of
source and dipole terms specially constructed to achieve cancellation
of the rapidly oscillatory term. The resulting kernel is then
small when N is large and iterative methods can be applied to give
an asymptotic férm for ¢ on the cylinder when N is large.
Substitution of this form in equation (1.10) then enables the
development of ¢ in the fluid.domain to -be found for large N and, in
particular, by letting x = - the leading term of the asymptotic
form of the transmitted wave can be derived.

By this means, Ursell proves rigorously the result

- 10 -



T ~ %ﬁm exp (~2iN) as N » @
for a semi-submerged circular cylinder.
(N.B. Ursell (196l1), p.655, suggests the result
T ~ - %%u exp (-2iN)
but Leppington (i973a), p.l41, points out that a sign error exists
in formula (6.1), p.650, of Ursell's work).

Ursell also predicted that for any shape r intersecting the free
water surface at right angles the value of T will be of the order of
'%u as k * © and this is borne out by Leppington (1973a), p.140,
using the formal method of matched asymptotic expansions (see §1.5).

Holford (1964a, b) applies the I.E. method to the finite dock
problem (on an infinite ocean) and derives rigorously a sequence of
results giving the leading asymptotic forms of the virtual mass -
and damping coefficient for this geometry in heave and roll when
N > o,

Holford also mentions that the finite dock probklém can Eé:
tackled by formulating the problem in terms of a new potential

function © where

30 _ 3
3y = k¢ + 3y

This method reduces the problem to solving an I.E. with a
particularly simple kernel (see Holford, 1964a, pp.963-965, for a
description) and has been employed by Sparenberg (1957) and MacCamy
(1961) following Rubin (1954) who was its originator. However,
Holford points out that the same problems arise for short wavelengths
using this method as existed in the case of Ursell's original I.E.
description.

Finally, in this section it may be remarked that an I.E. method

was used by Ursell (1947) to solve the scattering problem for a

- 11 -



fixed vertical barrier extending from a point above the mean free
surface to a distance 4 below it and that John (1948) (using
complex variables and a differential equation approach) has solved
the equivalent problem for a barrier inclined at an angle Eg-to
the mean free surface when n is an integer. In the same work he

also considers the case of a submerged infinite vertical barrier,

a problem first discussed by Dean (1945).

§1.5. The Method of Matched Asymptotic Expansions

(a) The integral equation method described in the previous section
has the advantage of providing a rigorous derivation of the leading
term in the asymptotics of the amplitude of the radiated and
scattered waves but is not by its nature suited to the derivation

of higher order terms. The reason is that the "wave-makers" in

the I.E. method are curved surfaces i.e. the wave coefficients are
integrals along arcs of I" (in Ursell's case the arc for the
transmitted wave was r = a, %-S B <m. Indeed, higher order terms
involve (at least) double integrals along these arcs whose asymptotic
evaluation for large N proves intractable. The advantage of the
method of matched asymptotic expansions lies in a simplification of
the geometry of the "wave makers" whereby they become of the
"classical" type i.e. the integral coefficients of the wave terms are
along a straight line from O to <. Higher order terms can now be
dealt with since the asymptotics of the double integrals involved

in the higher order wave terms can be found using the thorem in
Appendix B. The other main advantage of the method of matched
asymptotic expansions is that its general underlying philosophy is
capable of application to a wide variety of different forms of r

(including cases where T+ and T are not normal to the free water

- 12 -



surface) . Before a general description of the method is given,
a summary of results obtained By its use in problems involving the
radiation and scattering of water waves is presented.

The main contribution has come from Leppington in a series of
three papers (1972) and (1973a, b). In (1972) he tackles the finite
dock problem for infinite and finite depth, extending, in the former
case, the results derived rigorously by Holford (1964) for the
amplitude of a radiated wave and verifying the efficiency of the
method in deriving the first order reflection and transmission
coefficient for the scattering problem; in addition, first order
estimates of R and T are obtained in the case of scattering by a
T-shaped dock. For finite depth, explicit results are also given
for radiation and scattering by a finite dock.

(1973b) concerns itself with curved geometries where [ is
locally smooth and convex at the two intersection points with the
fluid and the intersection is normal; again infinite and finite
depth are considered. For infinite depth a first order form for
T is obtained in the general case, and this is checked against
Ursell's (1961) result for the semi-submerged circular cylinder.
Other special cases considered are the semi-ellipse and circle with
vertical keel. An extension of Ursell's result for the semi-
circle is also suggested, viz.

T = exp(-éia/e) (2i/m{ (e/a)®* - 4/m(e/a)® iOg(E/a) + 0(e/a)?] (e = 1/k)

(one of the main results of the thesis (in Chap. 5) is the
derivation of the next term in the expansion for the purposes of
comparing the asymptotic form of T with the values obtained using
multipole expansions in Chap. 2).

Again, for finite and infinite depth (but for the radiation

- 13 -



problem this time) a general first order result is obtained for the
amplitudes of the waves radiated to #» for the heaving case.
Comparison is made with the results derived rigorously by Ursell
(1953) (for infinite depth) and Rhodes-Robinson (1970a, b), (1972)
(for finite depth). Agreement is obtained in each case.

In (1973b) attention is turned to three dimensional problems
and explicit first order asymptotics worked out for the amplitudes
of radiated waves in the cases of a heaving and rolling circular
dock and a heaving hemisphere. In addition some conjectures are
made concerning the relation of the reflection and transmission
coefficients in three dimensional problems to the corresponding
values in the case of two dimensional acoustic scattering by a
cylinder with the same cross-section as is formed by the
intersection of the three dimensional obstacle with the free surface.

Following Leppington, Alker (1975) has extended Ursell's
rigorous result for the amplitude of the wave radiated to infinity
by a heaving semi-circular cylindbr to terms of order el log € and
€3 and Ayad and Leppington (1977) have discussed the case of plane
vertical barriers (of finite depth And width) . In addition,
Alker (1977) has derived estimates for R and T in the case’of‘scattering
by a circular c¢ylinder whose centre is not on the mean water surface.

(b) Description of the method of matched asymptotic expansions

as applied to scattering problems in two dimensions

(It is assumed in this section for exactness that T+ and T_ are
normal to the undisturbed water surface.)

In the short wave limit consideration is given to the
asymptotic form of the solution of the bcundary value problem when
E(= %) > 0. The problem may be kept within the bounds of linear

theory by ensuring that the waves under consideration are always



such that the ratios of their heights to their lengths are
vanishingly small as the wavelength approaches zero, i.e. the wave
slopes are adjusted appropriately as the wavelength 'is shortened.

The results obtained show that the transmission coefficient is
a function of Eq where a is the semi-width of the scatterer so that
their validity may be implied in the case of waves whose lengths
are small in comparison with the dimensions of the scatterer in
the direction of the wave motion. This physical interpretation
of the mathematical lihiting process € > O is adopted by Holford
(1964) .

It can be seen from (1.2) that if € is set formally equal to
zero, then the highest derivative term is lost, and the free surface
condition becomes simply ¢ = O so that the far field form of the
potential cannot be achieved since such a problem does not permit
the existence of surface waves. It is clear, therefore, that our
problem in the szprt.wave limit is of the singular perturbation
type and that the asymptotic form of the solution as € - O cannot
be represented uniformly throughout the whole fluid domain by a
siﬁgle asymptotic series of Poincaré form. In other words, it is
not possible to find functions ar(s), ¢r(x,y) and numbers A (M)
independent of x, y and € such that

(1) ar+l(€) = O(ar(e)) as € + O

(ii) for each integer M 2= O

M

| d,yie) - Zoa (@6 (x,y)]| <am|a

o (e) ]

M+1
for all (x,y) in the fluid domain under consideration.

In such cases the method is to find two (or more) asymptotic
series which approximate to ¢(x,y;€) in different parts of D but

complement each other in a sense which is contained within a
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Fig. 2

Sub-Division of the Fluid Domain for Application of the Method

of Matched Asynptotic Expansions

BL = boundary layer (width of order €)
A+ = right inner region (5+ < a)
A = left inner region (§_ < a)
O = outer region (S, > €)
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mafching principle to be described later.
Intuitively, two regions can immediately be identified in
which different forms of solution may be expected:
(i) a boundary layer with thickness of order € in which
wave effects are detectable,; and
(ii) an outer region, many wavelengths from the free surface
in which wave effects will be negligikle.
Within these two main divisions, further subdivisions are

necessary as shown in Fig. 2. These additional domains, A+,

the right and left inner regions, consist of points which are very
near Ei on the a-scale, i.e. 6t < a. Hence, as measured on a
length scale in these regions, the curvature of the cylinder (i&
will be negligible and the effect of the cylinder will be
indistinguishable from that of a vertical barrier along Ti'

This simplification in the geometry of the problem enables the
boundary condition on the curved surface in At to be replaced by
an equivalent condition stated on Tt' Indeed, the potentials,

in the perturbation series for the potential in At’ turn out tq

be solutions of the classical wave maker problem, each potential

in the series being determined by the velocity distribution induced
on Tt by a potential appearing earlier in the series (or by the
incoming wave in>the case of the leading term of the scattered
potential in A+). This result has the important consequence

that the reflection and transmission coefficients can be determined
to a given order in € from perturbation expansions in Ai which are
of lower order in € and is another of the factors enabling progress
to be made beyond the limits of the integral equation method.

—
In the outer region which consists of points many wavelengths
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from the free surface (y ® g) the perturbation series for the
potential is developed by first formally putting € = O in the
boundary wvalue problem. This leads to a condition ¢ = O at the
surface so that the problem is a homogeneous one and it is necessary
for uniqueness of solution to apply the matching principle (see §3.5)
between O and A+ (this turns out to be equivalent physically to
specifying that the outer potential has a mqltipole singularity at
E+). Subsequent-development of the outer perturbation series is
thained by matching with the solutioen in A+ and substituting the
series formally in the surface condition ¢ + € ¢y = O on y = O and
equating terms of various orders in € to zero. This leads to
classical boundary value problems for the potential coefficients

in the outer series. Once these have been solved, the development
of the perturbation series on A_ can be determined leading to the
far field wave form at - and hence to the asymptotic form of the
transmission coefficient.

These general remarks will be expanded in Chapter 3 when the
qualitative ideas given here will be expressed in more quantitative
mathematical terms.

Finally, it must be emphasised that, although a wide variety of
water wave problems have proved susceptible to successful solution
using matched asymptotic expansions, the method is, nevertheless,

a formal one. However, in many cases the formal expansions derived
do turn out to be actual approximations in certain regions of the

fluid domain.

§1.6. Layout of the thesis

Chapter 2 describes the calculation of numerical values’

of T for a semi-submerged circular cylinder (using multipole

- 17 -



expansions) for value; of N well beyond the range previously
considered. Comparison with Ursell's and Leppington's asymptotic
forms are inconclusive. Large relative differences can occur even
when the absolute difference is within the order of the error term
(see Tables 7, 8 and graphs 7, 8). This leads to use of the
method of matched asymptotic expansions to derive the next term

in the asymptotic expansion of T and Chapters 3 and 4 lay the
groundwork for the achievement of this in Chaptef 5. Chapter 3
contains a general mathematical description of the method as applied
to scatterers which are perpendicular to the free surface and the
necessity for a detailed examination of "classical wave maker" type
problems is explained. This forms the subject matter of Chapter 4.
In Chapter 6 the null field equations are used to provide numerical
values of the transmission coefficient for a class of obstacles
which intersect the free surface at an angle to the vertical.
Comparison is made with Alker's (1977) asymptotic result for short
waves. Chapter 7 contains the derivation of the first two sixth
order terms in the asymptotics of the transmission coefficient for

a semi-submerged circular cylinder while Chapter 8, finally, contains

a summary of the work and conclusions of the thesis.
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CHAPTER 2

§2.1. Introduction

The problem of determining the transmission coefficient T for a
half-immersed circular cylinder in regular beam seas can be solved
using the multipole expansion method of Ursell (described in §1.3).

In outline the method adopted is to separate symmetric and anti-
symmetric problems and solve each by expressing the stream function
as a series containing a source/dipole term together with wave-free
combinations of multipoles having appropriate symmetry. The
resulting series is truncated and the boundary condition (1.7) on the
cylinder is imposed at a finite number of appropriately chosen points.

By systematically increasing the number of points, a sequence of
apprcximations to the complex transmission coefficient {TM;ka) } is
obtained (where M is the number of points used). For each‘ka, the
sequence is extended till the pattern of variations between successive
terms is such as to allow the inference of the value of the limit of
the sequence to a useful number of significant figures. Thereafter,
comparison of this value with any value T(M;ka) obtained at an
earlier point in the sequence enables an indication of the accuracy
at this point to be given (see §2.6).

It is found that multipole expansions of less than 10 terms give
good accuracy for values of ka up to order unity but that, thereafter,
-such abbreviated series often fail to produce even one correct
significant figure. Indeed, for values of ka in the range 6 to 20,
it was found necessary (in general) to use multipole expansions of
up to 80 terms (coupled with extreme computer accuracy) to be sure of
just 3 significant figures for the limit. Comparison.of the values
obtained in this range with the asymptotic formulae of Ursell and
Leppington indicates the need for completion of the fifth-order

asymptotics.



§2.2. The multipole form of the solution to the transmission

problem for a semi-submerged circular cylinder

The problem is considered in the form (1.1)-(1.9).
The coordinates are first re-scaled by setting
X = kx and ¥ = ky
so that also R = kr (where R and r are the radial distances from O
in scaled and unscaled form). Similarly R _ = k6+ and R_ = k§_ (in

an obvious notation (see Fig. 1), while a new potential function

¢S(X,Y) may be defined by
X Y
Y = - r 3 .
¢S(X ) ¢[k k]

In terms of ¢S, the problem now takes the form

(82 82 } = =
Lg-}gz + a_YZJq’s(X’Y) =0 (R > ka, Y = 0) (2.1)
2 - >
v ¢$_(X,0 + ¢_(X,0) =0 (|x| = ka) (2.2)
s _ ' 3 _ix - -
R R [exp(-iX - ¥Y)] on R = ka (2.3)
|Veg| >0 as ¥ > + ~ (for all X) (2.4)
As X > 4™, ¢S(X,Y) ~ R exp(iX - Y) (2.5)
As X > -, ¢_(X,¥) ~ (T - l)exp(-iX - Y) (2.6)
¢ ..
XS ~
N BR+"'OaS R, > O (2.7)
R 295 > 0asR_>0, | (2.8)

It can be seen, therefore, that the problem is equivalent to
determining the transmission coefficient for a wave of fixed length
incident upon a semi-submerged circular cylinder of radius ka.
The value of T will, therefore, depend only on the value of the non-
dimensional parameter N = ka.

If a complex variable z = X + jY is introduced, it can be easily

verified (if z # O) that in the first quadrant X 2 O, Y # O the real
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parts of the complex-valued functions

Jj 1 +
(a) e (2) = — - (me zZ)
m (2m—l)z2m L z2m
jz ® e—]t . Jz
(b) s(z) = e dt + jme
! z .
(c) w(z) = e?

are harmonic, bounded at infinity and satisfy the free surface
condition (which in complex form is Imj(D - j)f(z) = O if Imj(z) = 0).
In addition they have the property that

Rej [£'(=z)] =0 if Rej(z) =0 .
They are indeed the fundamental solutions of the vertical barrier
problem which are bounded at infinity (see §4.5). It follows that
they can be extended into the second quadrant as functions whose real

parts are even in X by means of the equation

£ = f(-z) .

ext(z) f(-2)

This leads to a set of functions which in the whole half plane Y 2 O
(except at z = O) are harmonic, bounded at infinity and satisfy the

free surface condition, viz.

Jj 1 +
e (z) = - (m € 2 ) (2.9)
2_
m (m-1)2z°™ L oW
. [ e—jt :
s(z) = | &7 J — at + jme’ Re(z) > O
Z
e gt 5 (2.10)
el f = at - jTe? Re(z) < O
-z
wiz) = e32% ., (2.11)

Similarly the real parts of the derivatives of these functions are odd
in X and otherwise satisfy the same conditions as the functions
themselves. Thus it is postulated that the solution of the problem

can be expressed as the real part of a complex potential F(z) where
(o] (o]

F(z) =0s(z) + Aw(z) + .o e (2) + Bs'(z) + Bw'(z) + L b e '(z) (2.12
m=l""m m m=1"m m

and the coefficients in the above expansion are independent of j
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(though they may depend on 1i). Clearly this form of solution
exhibits the potential as the sum of two parts, one even in X which
will be denoted by Rej(FE(z)) and the other odd in X denoted by

Rej(Fo(z)). Thus

FE(z) = os(2) + Aw(z) + mé cHhem(Z) (2.13)
and Fg(z) = Bs'(z) + Bw'(2) + Z.be '(z) (2.14)
m=l m m

(The form (2.12) may be derived rigorously by setting £ = £'(2) - jf(z)

and using Laurent's theorem after suitable continuations to derive the

form of solution for T in compiex form then integrating to find the

form of f£. The methods are similar to those used in Ursell (1950)

for the case of a submerged circular cylinder, see also 86.4 after (6.11)..
With reference now to (2.12) and (2.9)-(2.11l), it is easily seen

that as z > +° in X > O

F(z) -~ ajﬂejz + Aejz + 8(—ﬂejz) + B(jejz)
so that

Rej [F(z)] ~ -ame Ysin X + Ae ‘cos X - Bﬂe_Ycos X - Be ‘sin X
ie Rej [F(z)] ~ e Y [ (A - BW)cos X - (B + Q)sin X ] , (2.15)
The condition (2.5) requires that this must be of the form
(constant) .exp (iX - Y) so it is necessary that

B + o = --i(A - BW)

or B + iA = -T(a - iB)
Similarly it can be shown that as z > ®© in X < O

Re, (F(2)) - e Y[ (a+ BMcos X + (AT - B)sin X ] (2.16)
whence application of condition (2.6) requires that

o - B -i(a + Bm)

T(o + iB) .

or B - iA

These two conditions give B = iTB and A = iTa, and substitution in

(2.12) leads to a modified form of the complex potential satisfying
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the appropriate wave conditions at % e,

F(z) = o] s(2) + imw(2)] + mél(lmem(z) + B[s'(z) + inw'(z)]'
+ L. be '(z) . (2.17)
m=l m m

In addition, reference to (2.15) and (2.16) shows that (in terms of O
and B) the wave forms at *» are respectively T(ia - B)exp(iX - Y)

and m(ia + B)exp(iX - Y) whence the reflection and transmission
coefficients are

R

m(ic - B) (2.18)

and T 1 + w(ia + B) . (2.19)

The numerical calculation of a and B depends .on satisfying the boundary
condition on the submerged half of the cylindrical surface and this

is detailed in the next section.

§2.3. The formulae for R and T

The condition (2.3) is first expressed in terms of polar coordinates
R and O where the polar angle is measured from the Y-axis so that
X =R sin 6, Y = R cos 6. This condition then takes the form

) .. =38 9 i6
R [Rej(F(jRe Wy = - §§>[exp(-Rel )] on R =N

T m
- =< < — .
for > 6 >

Use of the Cauchy-Riemann equations in polar form (with © replaced by

i

5~ B) gives the alternative form

52 [Imj(F(jNe_je))] = eie exp(—Neie)

2

AR

and integration with respect to 6 leads to the form of the stream
function on the cylinder, viz.
Imj [F(jNe—je)] = -exp(-N cos 0)sin(N sin 6) - i exp(-N cos 8)cos (N si.
+ c (2.20)

T m
where c is constant on R = N and - 3 < 0 < 5
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The right-hand side of this equation is clearly exhibited as the
sum of two parts, one even and the other odd in 8. These symmetric
and anti-symmetric parts are therefore equated with the corresponding

T
parts on the left-hand side for 0 < 6 < 7 -

Since FE(Z) and Fy(z) have real parts which are even and odd in
X respectively (see (2.13), (2.14)), it follows (by use of the Cauchy-
Riemann equations) that their imaginary parts will be odd and even in

X. Hence, equating of the odd parts in (2.20) requires that

Imj [FE(jNe-je)] = —exp(-N cos 0)sin(N sin 6) (0 6 < g&,

Reference to (2.17) and (2.9)-(2.11) together with the fact that o
and theCL]n are independent of Jj shows that

Imj [FE(jNe_je)] = a[Imj(s(jNe-je))+ iT exp(-N cos 0)sin(N sin 6)]

co
. N sin(2m-1)0
+ mél- oi,m(sul 2mb + o )

m+1
= (- 2
where am (-1) “m/N m

Thus equating odd parts gives finally the condition
(o]

exp(-N cos 0)sin(N sin 6) = afo(N;0) - Z_ o £ (N;0) (2.21)
m=l mm

™
for 0 < 6 < 5 where

£q(N;8) —Imj [s(jNe—je)] - im exp(-N cos 0)sin(N sin 6)

N sin(2m-1)6
2m-1

and fm(N;G) sin 2m6 +

The equation (2.21) may be simplified somewhat using a uniqueness
theorem concerning the fi(e) (i 2 0) which is implied by Ursell
(1949) . The theorem is used in the form

o

iEOAifi(N;e) =0 (0< 06 < g) =>Ai =0.
This result is applied now as follows.
First (2.21) is divided by 0 (assumed non-zero) to obtain

o
1

. . _ . _ am .
a-exp(-N cos 0)sin(N sin 0) = £4(N;0) m§1 S fm(N,e) . (2.22)
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Equating imaginary parts with respect to i gives the result
{
ImiL§J exp(-N cos 0)sin(N sin 6) = -T exp(-N cos 8)sin(N sin 0)

[oe]

rO(,m
- m§1 Imil—aﬂ.fm(N;e)

(see definition of £f((N;6) below (2.21))
or

oo}

1 . . _ om .
[Imi[a} + 7] exp(-N cos 8)sin(N sin 0) = mElImi[ Ome(N,e), (2.23)

The terms on the left-hand sides of (2.22) and (2.23) are now eliminated
by multiplying (2.22) by Imi[éJ + T, (2.23) by é—land subtracting.

This leads to the equation

(o)
1 1 om)  Gm 1
— T ; = — - — = m :9) =
[Imi[a] + T ]1£,(N;0) + mgl{a Imi[ aJ 3 [Imi[aJ + ]}fm(N, ) =0
whence by the uniqueness theorem
3 (
Im,fLJ + T =0 and i-Im‘[gﬂ] - g9—[Im,[l-] +T =0
ilo o if o a ila]
i.e. Im,[lJ = -7 and Im.[gg} =0 (since E—# o) . (2.24)
ila il o a

It now only remains to deal with the real part (with respect to i) of

(2.22), i.e. the equation

oo

1 . . _ . _ am _
Rei[aJexp(—N cos 6)sin(N sin 6) = Rei [ £0(N;0)] mél S fm(N,e)
am
(where the fact that Imi[—&} = O has been used).
This can be rearranged in the form
(o]
A; exp(-N cos B)sin(N sin 6) + ZI_  t £ (N;6) = -Im, [s(jNe—Je)] (2.25)
m=l mm j
where A; = Rei{é}, tm = gg, and reference is again made to the

definition of £4(N;0).
A, is found from this equation by numerical methods to be detailed in
the following section and, for the moment, attention is turned to the
even parts in (2.20) whose correspondence requires that

%y -

Imj [Fo (jNe -i exp(-N cos 8)cos(N sin 6) + c . (2.26)

From (2.14) (and the fact that B = iTR proved before)

Ty |3, 2m
l‘bm[ 2m + z2m+l]

1 8

Fo(z) = R[s'(z) + ijﬁejzl + o

(where (2.9) and (2.11) have also been used).
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Hence the value of F, on the cylinder is

e Y ~56.. .
Fo(jNe 7)) = Bls' (INe ) + 137 exp(-Ne I)]+ T B ile

+1
1"

b, ( 2m

where Bm - N2m+l

©

(2m+1)38 N _2m36
2m

Imaginary parts (with respect to j) are now equated giving (after use

of (2.26) and the fact that B and the bm are independent of 3j)

(o]

i exp(-N cos 6)cos(N sin 0) = ¢ + B[ go(N;6)] - mgl Bm gm(N;e) (2.27)

where

gp (N;0) = —Imj[s'(jNe_je)] im exp(-N cos

and gm(N;G) = cos(2m + 1)6 + 5% cos 2mb

Equation (2.27) is treated in the same manner

is divided by £, imaginary and real parts are

and an appropriate uniqueness theorem is used.

follows that

1 (c Bm| _
Re, EJ = -T , ImiléJ =0 and Imi{éml =0

while Im,[iq is given by
ilB o

B1 exp(-N cos 0)cos(N sin 6) + mél u gm(N;e)
1

where By = -Im_ |5| , u = Em (which is real
iR m B

(which is also real).

C
=g

§)cos (N sin )
as was (2.21) i.e. it
taken with respect to i

From this process it

(2.28)

=T - Imj[s' (jNe—je)] (2.29

by (2.28)) and

Again B; is determined from here numerically as detailed in the

following section. Meanwhile the forms cof R

and B;) are now derived.

and T (in terms of A;

From (2.24) and the definition of A; it is easily seen that

Ay + 4iT
a4 = —

A12 + TTZ

while, similarly, from (2.28) and the definition of B;

-T + iB;

m2 4+ B;?

B:
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Hence (by use of (2.18) and (2.19) it follows that

A _ B;
A2 + w2 B i w2

TTZ 7T2 ] R A, B,
1 - + + im +
TTZ + AIZ 1T2 + B12 A12 + TTZ B12 + 2

Finally, in terms of scaled parameters,

5
Q,
H

A B)
A, = — nd B, = —
2 T a 2 T
the results are
A; - B .
R = 2 2 [ (AZ + Bz) + l(l - Asz)]

2 2
(1 + A2°) (1 + Bo) . (2.30)

‘_\,‘\v

(1 + AzB3)

and T [ (Az2B2 - 1) + i(Az + B2)] J

(L + B3,2) (1 + Bp?)
Clearly i(l + A3B2)R = (A - B3)T so that the phase of T differs
from that of R by ig-(in agreement with Newman (1975), p.279) while
the relationship |R|2 + !T|2 = 1 is also easily proved. Hence, if,
at a given instant, a trough or crest occurs at a certain distance
from the plané of symmetry for the transmitted wave, then at'the
same distance on the opposite side of this plane there will occur a
point of zero displacement for the reflected wave; additionally the
total energy in the transmitted and reflected wave trains is equal

to the energy in the incident train as should be the case for non-

viscous flows.

§2.4. Description of the numerical calculation of T and R

The notation
=36
ws(N;G) = -Imj [ s(jNe )] and
Y_(N;0) =-Im [s'(jNe_je)]
D’ 3
m
is first introduced. 6 is put equal to E'in equations (2.25) and

(2.29) and the resulting equations are subtracted from the originals

to give two modified equations:
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[oe]

’ w
- i oy i - i .0) - .—
A,[ exp(-N cos 0)sin(N sin 0) sin N] + mgltm[fm(N, ) fm(N,zﬂ
Y 8 - U (N5 (2.31)
s s 2
and
- 9 in 6) - .9) - UK
Bi[ exp(-N cos 9)cos(N sin 0U) cos N] + mél um[gm(N,e) gm(N,ZH
T
= .8y - Y —
me, ) wD(N,2) ) (2.32)

The procedure now is to truncate each of the infinite series after
(M - 1) terms, then substitute M different values of 6 between O and
% in each equation. The values chosen were

8 =(I - WM T with1<1I<m.

2
The resulting two sets of M simultaneous equations in M unknowns are
solved for given N and various values of M to obtain the two basic
sequences required consisting of values of A1 and Bi1 , {A; (M;N)}
and {B;(M;N)} . From these, use of the formula (2.30) enables two
further sequences S; (M;N) = Re(T(M;N)) and Sz (M;N) = Im(T(M;N) to be
generated. Sequences for | T(M;N)] and arg[ T(M;N)] were also formed.
The computer programme which performed the calculations gave print-

outs of the terms of these 6 sequences to 10 decimal places for the

following ranges of values of N and M:

N = 0.01, (0.01) 0.09 5<M< 30
N = 0.1 (0.1) 0.9 5<MS< 30
N =1 (0.5) 5 5<MS 50
N =6 (1) 20 5 <M< 80

The sequences obtained were observed to be monotonic (ultimately) and
bounded and hence convergent. Indeed, provided a sufficient number of
terms were taken, the differences between successive terms in the
sequences were found ultimately to be monotonic and decreasing in magnitude
as M increased. Ccareful observation of the magnitude and direction of
these variations towards the latter part of the sequences enables

values of the limits to be predicted to a meaningful number of
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significant figures and the results for the transmission coefficient
are given in Tables 1-4 at the end of this Chapter (see also 82.6 for
a fuller discussion).

The small values of T which occur as N increases necessitate keeping
accuracy in intermediate calculations at a maximum. In this context,
it should be noted that the equations (2.31) and (2.32) (which had
to be solved numerically) contain terms which are readily evaluated
to machine accuracy with the exception of ws and wD which involve
quadratures. A discussion of how similar accufacy was achieved in
the calculation of these functions appears in the next section. Once
this had been attained, the linear equations were solved using the NAG
routine FO4ATF which produces a solution vector with a residual which
is zero to machine accuracy. The foutine contains 2 error messages,
the first indicating that the matrix of coefficients is singular
(possibly due tc rounding errors) and the other that the matrix is
too ill-conditioned to produce a correctly rounded solution. With
double precision arithmetic¢ no error messages were obtained in any

of the cases considered.

§2.5. The forms of ws and wD used in the numerics

By definition

wS(N;e) —Imj [s(jNe_Je)] (2.33)

and wD(N;G)

-Imj [s'(jNe_je)] (2.34)

where for Re(z) > O
(® -jt .

sz) = &2 J e at + jme’? . (2.35)
. :

Hence

-Imj[S(z)] = J1(z) - ﬂe_Y cos X (2.36)
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where the notation
o s
e it
t

Ji(z) = —Imj [er f dat] is used.

Z

By rotation of the contour of integration through the fourth quadrant
(so that the upper limit becomes -j®) and the substitution u = jt, it
follows that

J3 (2)

-In, [ B, (52)] . (2.37)
J - du) .

u
w

J-

(E 1 (w)

z
In order to separate e E; (j2) into real and imaginary parts,

it is necessary to replace z by X + jY so that
eIZ E G2y = e ¥ ¥ r E—_u- du
-Y+3X
whence, by rotation of the contour of integraticn so that the upper
limit becomes ® + jX and the substitution v = u + jX, the form
jz

Y
e"” E;(j2) = e J_Y T3% du

is obtained. By splitting the range of integration into [-Y,0] and
[0,] and using (2.37), it can be seen that J;(2) may be expressed

in the form

J1(2) = J11.2) + J12(2) (2.38)
where
o -u
Ji11(2) = Xe-Y f - du
0u2+X2
0 -u
and Ji12(z) = Xe ¥ f - du
-y u? + x?

Tables of Laplace transforms (e.g. Bateman Manuscript Project

(1954)) give immediately

J11(2) = e L [Ci(X)sin X - (Si(X) - %) cos x] (2.39)
where
(X cos u - 1
c1(x)=y+2nx+J — Q@ (for X > 0)
, X _. 0
and Si(X) = [ Ei%_ﬂ du

0
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The NAG routines S13ADF and S13ACF (whose accuracy is only limited
by machine precision in the argument X) were used to evaluate Si (X)
and Ci(X) respectively and hence to obtain J;;(2) for'any X > 0.

In J;2(2), X and Y are replaced by N sin 8, N cos O respectively
and the variable rescaled by substituting u = -v N cos 0. This

yields the form

exp[N cos B(u - l)]du

. 1
312Gne %) = sin 6 cos 6 I ) (2.40)

o cos26 u?

+ sin?8
Thig form was presented to the NAG routine DOlAJF for numerical
integration, this being the recommended routine when considerations
of time are not of over-riding importance. The important aspects
of the routine are that
(a) it can deal with algebraic singularities in the integrand;
(b) it provides estimates of the accuracy actually achieved;
(c) it detects six different types of errors.

5

With the absolute error set at 107! and the relative error at

-10 .
10 , NO error messages were received. The results were checked

by passing the same routine the alternative but equivalent form

N cos ©
.. =36 . e u - N cos 6
J12(3Ne ?7) = N sin 6 J x?[( )] du
0 u? + N2sin?6
under the same conditions as above. Again, no errors were indicated

and print-outs of the values showed that the integrals agreed to
about 15 decimal places, this being near the limit of machine accuracy
for double precision arithmetic.

Combination of equations (2.33), (2.36) and (2.38)-(2.40) gives
the form of ¢S<N;e) used in the computations, namely

ws(N;S) = exp(-N cos 9)[Ci(N sin 8)sin(N sin 0) - (Si(N sin 6) - g)cos(N s

1
+ sin 6 cos 6 J expl N cos 6 (u - l)]du - T exp(-N cos B)cos(N si
o cos?6u’® + sin?6



By use of the result

jz e_jt 1 z
s' (z) = je r at - = - mel (2.41)
z t A

and an exactly similar development, it can be shown that

wD(N;G) = - EE%_Q + exp(-N cos 6)[ Ci(N sin 0)cos(N sin B8)

1
+ (Si(N sin 6) - gﬁsin(N sin 0)] + cos?6 J u expl N cos e(u-l)]d1

o cos?6u? + sin?6

+ Texp(-N cos 0)sin(N sin 6) ., (2.42)

Note: The above expressions are valid for 6 > O. For 6 = O, ws =0

(being an odd function) while wD is found as follows, .
By using the definitions of Ci and Si and integrating by parts it is
seen from (2.42) that as 0 - O+,

wD(N;G) = - % + exp(-N) (y + log N + log sin 6 + o(1))

1
'+ {[% log(cos?6u? + sin?0)exp(N cos 8(u-1))] -
- 0

1
- N cos GJ L log(cos?6u? + sin?B)exp[N cos 6(u-1)] du}

0
i.e. wD(N;e) = - % + exp(-N) (Y + log N + o(1)) .

o cos 6 (u-1)
e

1
- N cos GJ % log(cos?6u? + sin?@) du

0 1
> - $-+ exp (-N) (y + log N) - NJ log u e

0

N(u-l)du as 6 > o+ .

N(u—l)du

1
Hence wD(N;O) = - % + exp(-N) (y + log N) - NJ log u e
' 0

This expression is readily evaluated using again the NAG routine DO1AJF.
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§2.6. Discussion of the data obtained

(a) The sequences A; (M;N) and B; (M;N)

Up to about N = 7, the sequences are strictly monotonic de-
creasing as M increases for fixed N, the magnitudes of the differences
between successive terms being themselves monotonic decreasing.
For larger values of N, the sequences initially increase up to a
certain value_of M (increasing with N) and, thereafter, the
decelerating monotonic decrease characteristic of the earlier
cases sets in. (See Graphs 1-4 in §2.9).

At the long-wave end of £he spectrum the values of A, and B
are both large in magnitude with A; < O, By > O and |B:| > |a1].

At the short-wave end no particular pattern of this kind is
observed but it may be noted that the product A,.B; (for a wide
range of values of M) is near to the value -72 (table 5 indicates
the trend for M = 80). When it is recalled that a; = Al/ﬂ and
Bz = Bl/ﬂ it follows that A;.Bz will be near -1 and reference to
(2.30) shows that subtractive cancellation of significant figures
will occur due to the presence of the factor 1 + A; Bé in the
formula for T. It is this which necessitates the use of as great

an accuracy as possible for large values of N.

(b) The sequences Re (T(M,N)) and Im (T(M,N)) (M= 5)

Up to about N = 3 these sequences are monotonic (sometimes.
increasing and sometimes decreasing) as M increases for fixed N.
Again the magnitudes of the changes between successive terms
decreases for fixed N as M increases and convergence is fairly
rapid. The behaviour for larger values of N is similar to that

of the sequences A; (M;N) and B; (M;N).
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Thus (as typical)

Re (T(5;0.5)) = 0.52023 Im (T(10;2)) = -0.012519
Re (T(l10;0.5)) = 0.52030 Im (T(15;2)) = -0.012527
Re (T(15;0.5)) = 0.52031 Im (T(20;2)) = -0.012529 .

Tables 1-4 give the values of the limits of the sequences as
predicted from the multipole expansions for values of N up to 20
{(together with the values of the modulus and principal values of
the argument of the predicted values of T} The maximum number of
terms used in the multipole expansions is also indicated.

The significant figures gquoted were those obtained by
examining the last two terms in the sequences and truncating
their values 3 decimal places before the figure in which varia-
tions were still occurring. Thus,if the sequence Re (T(M;3))
is examined (where M was taken up to 50), it is found that

-0.0009353058 and

1

Re (T(49;3))

‘Re (T(50;3)) -0.0009353129

so that variations are still occurring in the eighth decimal place.
The values were accordingly truncated at the fifth decimal place

giving the prediction -0.00094 for Re (T(3)) quoted in Table 3.

The values of |T(N)| and arg (T(N)) are in agreement with those
given by Martin and Dixon (1983) who consider values of N up to
10 and use a different numerical scheme for their computations.

Two graphs of ]T(N)I against N are given in §2.9
(for N = 0.1 (0.1) 0.9 and N = 1(0.5) 5) to indicate the general
behaviour. Examination of the values of arg (T(N) shows that
the point representing T(N) in an Argand diagram spirals in
towards the origin in a clockwise direction as N increases. A
comparison of the results with Ursell's and Leppington's asymptotic

forms for T(N) is given in 82.6 (d) below.
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(c) Discussion of the accuracy of multipole expansions of less
than ten terms

M = 6 is taken as typical andthe values of T(6;N) are compared
with the limiting values of the seguences as given in tables 1-4
for various values of N. The approximate absolute and relative
errors are displayed in tabular form in Table 6.

It is seen that at the long-wave end of the spectrum these
abbreviated multipole series work well and three significant figures
of accuracy are maintained up to values of N of about 1. Thereafter,
however, the loss of significant figures is rapid until when N is
about 10 the order of magnitude of T(6;N) is in error. It may be
noted that a 20 term multipoleexpansion maintains about 2 sig-
nificant figures of accuracy up to N = 10 but subsequently an
increasing number of terms must be employed to maintain accuracy

in the short-wave range.

(d) Comparison of the data with the asymptotic formulae of
Ursell and Leppington

Tables 7 and 8 compare the values of the real and imaginary
parts of T as obtained from multipole expansions with the values

given by Ursell's and Leppingteon's asymptotic formulae viz

T = —2—3—'4 exp(-2iN) + O (_]_._c%;y_\) (Ursell)
TN N
i 4 !l\
and T = el exp (-2iN) (1 + ;ﬁ~logN) + O(ﬁg/ (Leppington)

for N = 8(1)15. The values of the error estimates are also given.
As can be seen, the differences between the computed and the-
asymptotic values are within the order of the error term in each
case but this is far from conclusive evidence for a region of
overlap since such an occurrence can take place when the computed
and asymptotic values are of different orders of magnitude (see

the case N = 11). Indeed in most cases there is no agreement of
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significant figures at all. (See also Graphs 7 and 8).

Clearly, to proceed it will be necessary to improve the
asymptotic formula for T by completing the fifth order asymptotics.
The next two chapters are concerned with laying the groundwork for

the achievement of this in Chapter 5.

§2.7. The Convergence of the multipole form of the solution

. . "‘ _ __]___r o 1
When it is recalled that e,l-n(z) = (Gm-L)g2E-l T ZZm ¢ the real

parts (with respect to j) of the infinite series in (2.17) are seen

to take the forms

1
© (™ R ]
Lap —Rzm cos2mb + 5T cos (2m-1)6
- m=1
3 °£ Lym _2m in(2mil) 6 + Rsin2mf
an m—lim (- W sin m —_211’1

(since z = jRe~Je) .

Additionally the definition of o (above 2.21)) and of 8y

(above (2.27)) show that ap = (-1)0*! N?m gt (since tm=o&ﬂ)
b = (-1t nawl g (-1l N+l gy (since uy = —BBE ) .
m 2m 2m

Hence the series may be written in the forms

o o (N)2m _R_ i

arﬁ%ltm (R) [cos2m9 + 50T cos (2m l)e] and
ot N 2m+l . R . ]

—Bmgl u_ (R) [sm(2m+l)e + om Sin 2mb

where the ty and uy, (m=1,2,--) are to be found from (2.31) and
(2.32).

In appendix 1 it is shown that tp and 4, are O(n'll—:,) as m > ©
so that the two infinite series are uniformly convergent in
N<R< o for - %< 8 <% and certainly twice differentiable
term by term there. Hence, since the real parts of the individual

termsof themultipole form (2.17) satisfy (2.1),.(2.2), (2.4),
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(2.7) and (2.8) it follows also that these equations are satisfied
by Rej(F(z)). The conditions (2.5) and (2.6) are certainly true,
so the real part of (2.17) does provide the unique solution to the
problem.

It remains to show that the sequences of approximations
to the coefficients Aj, Bi, tp, up, provided by the numerical scheme
detailed in (2.4) do indeed converge (asM =+ ®©) to the exact values
This has not been attempted in detail here, but Martin (1971) has proved
the analé@gous results for the multipole expansions in the heaving and
swaying problems for a semi-circular cylinder. The two equations in

these cases are similar to (2.31) and (2.32) being of the forms

[s¢]

F(6) = I p £ (8),0<8<

(MY

where F, £ are even or odd according to
m

which mode is being considered. By the same procedure as described

in §2.4, a comparison problem is set up in the form

M M
F) = T p £ (6) (k=1,2, ..., ™

C . . M .
and it is shown that the approximations pm converge to the coefficients

p_in a strong metric.
m [oe]

M ;
Specifically rgl Iur pz - rzpr 2 > 0 as M > © where urM is a function

2

which tends to r® as M = o, Similar methods should be applicable to

the transmission problem also.
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§2.8.

Values of Re (T(N)), Im (T(N)), |T(N)|, ARG (T(N)) for N = 0.01(0.01)0.09

TABLES

TABLE 1

from Multipole expansions of up to 30 terms

N
0.0l
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Vales of Re (T(N)), Im (T(N)), |T(N)|, ARG (T(N)) for

Re (T(N))
0.99962604
0.99857499

0.9969227
0.994723
0.9920162
0.9888334
0.985198
0.981127
0.976635

Im(T(N))
-0.0190202
-0.0364655
~-0.052558
-0.06742
-0.081122
-0.093738
-0.105318
-0.115907
-0.125547

TABLE 2

|7 |
0.99980698
0.9992406
0.9983072
0.9970049
0.9953276
0.9932665
0.9908111
0.987950
0.984672

ARG(T(N))
-0.0190251
-0.0365014
-0.0526719
-0.067671
-0.081594
-0.094515
-0.10649%96
-0.11759
-0.12785

N = 0.1(0.1)0.9

from multiple expansions of up to 30 terms

Re (T (N))

0.971730
0.90057
0.79102
0.65648
0.5203
0.3995
0.2995
0.219
0.156

Im(T(N))
-0.13428
-0.1798
-0.1767
~-0.1614
-0.1520
-0.1489
-0.1472
-0.1433
-0.1363

TABLE 3

[T(Nv) |

0.980964
0.91834
0.81051
0.67602
0.54206
0.42631
0.33369
0.2621
0.2073

ARG (T(N))

-0.13731
-0.19701
-0.21977
-0.2410
-0.2842
-0.3569
-0.4568
-0.579
-0.717

Values of Re (T(N)), Im (T(N)), |T(N)|, ARG (T(N)) for N = 1(0.5)5

from multiple expansions of up to 50 terms

N
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Re (T (N))

0.10700
-0.00920
-0.0235
-0.01175
-0.00094

0.00312

0.00248
0.000524

-0.00069

Im(T(N))
-0.12624
-0.06023
-0.01253

0.00593

0.00707

0.00275
-0.00066
-0.00158

-0.00088
- 38 -

|z |
0.16548
0.06093
0.02663
0.0132
0.00713
0.00416
0.00257
0.00166

0.00112

ARG(T(N))
-0.8677
-1.7224
-2.6516
2.6739
1.7023
0.7228
-0.2617
-1.250

-2.240



TABLE 4

values of Re(T(N)), Im(T(N)), |T(N)|, ARG(T(N)) for N = 6(1) 20
from multipole expansions of up to 80 terms
N Re (T (N)) Im (T (N)) lTav) | ARG (T(N))
6 -0.000261 0.000492 0.000556 2.059
7 0.000305 0.0000211 0.000305 0.069
8 -0.0000622 -0.000170 0.000181 -1.923
9 -0.0000809 0.0000792 0.000113 2.367
10 0.0000693 0.0000270 0.0000743 0.372
11 -0.0000027 -0.0000507 0.0000508  -1.62
12 -0.0000318 0.0000165 0.0000358 2.66
13 0.0000204 0.0000160 0.0000259 0.666
14 0.00000456 -0.0000187 0.0000192  -1.331
15 ~-0.0000143 0.00000271 0.0000145 2.954
16 0.00000646 0.00000915 0.0000112 0.957
17 0.00000442 -0.00000757 0.00000876 -1.042
18 -0.00000692 -0.00000070 0.00000695 -3.041
19 0.00000179 0.00000529 0.00000558  1.244
20 0.00000330 -0.00000310 0.00000453 -0.755
TABLE 5

Values of A; (80;N) .B) (80;N)

(to 4D) for N :

6(1) 20, showing the

trend towards the value -T2

(= - 9.8696)

O O N o=

10
11
12
13
14
15
16
17
18
19
20

A; (80;N) .B1 (80;N)

-9.8462
-9.8756
-9.8593
-9.8665
-9.8711
-9.8506
-9.8688
-9.8703
-9.8712
-9.8693
-9.8700
-9.8699
-9.8694
~9.8699
-9.8697
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TABLE 6

Approximate absolute and relative errors in the values of
T(6;N) for various values of N

Re (T (6;N)) Im(T(6;N))
N |Absolute error[ |Relative errorl |Absolute error| IRelative error

0.05 3 x 1077 3 x 1077 2 x 10°° 2 x 10°°
0.09 1 x 1078 1 x 1075 5 x 10~° 4 x 1073
0.60 5 x 10-% 1 x 1l0™* 2 x 107" 1 x 1073
1.0 1 x 107" 1 x 1073 2 x 107" 1.6 x 10°°
3.0 7 x 1073 7 x 10™2 5 x 10™° 7 x 1073
4.5 3 x 1073 6 x 1072 2 x 107° 1 x 10-2
7.0 5 x 10™° 2 x 10°! 4 x 10-° 2 x 10°!
10.0 2 x 10-" 3 1 x 107" 4

TABLES 7 and 8

Comparison of values of the real and imaginary parts of T(N)

as obtained from multiple expansions (A), Ursell's asymptotics (B),

Leppington's- asymptotics (C), with error estimates l;gN (D) and
ﬁg (E) and scale factor 10°.
RE (T (N))
N A B C D E
8 ~62.2 -44.7 -59.6 63.5 30.5
9 -80.9 -72.9 -95.5 37.2 16.9
ie} 69.3 58.1 75.1 23.0 10.0
11 - 2.7 - 0.4 - 0.5 14.9 6.2
12 -31.8 -27.8 -35.1 10.0 4.0
13 20.4 17.0 21.3 6.9 2.7
14 4.56 4.49 5.57 4.9 1.9
15 -14.3 -12.4 -15.3 3.6 1.3
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IM(T(N))

N A B C

8 -170 -149 -198

9 79.2 64.1 84.0
10 27.0 26.0 33.6
11 - 50.7 - 43.4 - 55.5
12 16.5 13.0 16.5
13 16.0 14.4 18.0
14 - 18.7 - 16.0 - 19.8
15 2.7 1.9 2.4

§2.9. Graphs (overleaf)

(a) Graphs 1-4 illustrate typical behaviour of the sequences
{a,(M;N); M =1, 2, ...} for various values of N, showing their
ultimate monotonic nature. This is typical also of the other
sequences computed viz. {B; (1;M}, {Re(T(M;N)}, {Im(T(M:N))},
{|T@e;N) |} ana {arg§T(M;N)}.

{b) Graphs 5, 6 illustrate the behaviour of |T(N)] for N = 0.1 (0.1) 0.9
and i(O.S)S respectively.

(c) Graphs 7,8 compare the multipole values of the real and imaginary
parts of T(N)'with those obtained using Ursell's and Leppington's
asymptotic forms. The values are norﬁélised by Ursell's real and
imaginary parts (denoted by Re(U(N)) and Im(U(N))). Hence Ursell's
values are represented by the horizontal line through 1 on the

vertical axis.
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that his results are

The wvalues are normalised by Ursell's values so
represented by the horizontal line through 1 on
the multipole value is about seven times bigger

Table 7 in §2.8) and cannot be shown (in scaled
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the multipole value is approximately 0.9 times Ursell's value, so the

scaled form of the multipole value (¥0.9) cannot be shown on the graph.
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CHAPTER 3

§3.1. Introduction

In this Chapter a more detailed description is given of the
method of matched asymptotic expansions as applied to bodies whose
tangents at E+ and E_ (see Fig. 2) are vertical. It will be seen
that the perturbation expansions in the right and left inner regions
haQe potential coefficients which are solutions of wave maker type
problems, while the coefficients in the outer expansion are solutions
of boundary value problems of known types involving use of complex

variable methods..

§3.2. The right inner expansion

In the right inner region A+, new coordinates (X,Y) are
"introduced (relative to axes EX and E+Y as shown in Fig. 2) and are
scaled so that Laplace's equation and the free surface condition do
not contain € explicitly. Reference to equation (1.2) indicates
that the appropriate scale factor for the ordinates is € so that
Yy = €Y while the harmonic nature of the potential subsequently
dictates that the abscissae be scaled in the same way by setting
X = a + €X. It f&llows that

§ =€¢R where R = /&2 + v

+

and that in A+

T(X,¥,e) (the dependence on a
will not be stated

d(x,y) = dla + €X,€Y)

explicitly).
Equations (l1.1) and (1.2) now become
§kx + E&Y =0 in A+ (3.1)
2+3,=0 onl _ns, (3.2)
while (1.3) is recast in the form
dx I dx I
oy - &y =W - W) onTal (3.3)
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where WI is the potential of the incoming wave
i.e. WI = e_ix_Y .
The equation of [ near E+ is now written in the form
x - a = fly)

where it is assumed that the function f can be expanded in the form

£y) = I, a v - (3.4)

In terms of scaled coordinates this becomes

[o0]
f(eY) k-1 k
X—_—-—:Z -
= Kio 3 € Y (3.5)
ax e k-1 k-1
e _ - -
so-that av £' (eY) k§2 kake Y . (3.6)

Next 6&; §Y are expanded in Taylor series about X = O and these
series are substituted in (3.3) using the equation (3.5) to express
powers of X in terms of Y. The same process is applied to the

right-hand side of (3.3) whence this equation takes the form

© r+l r+l1l
réo gr(g,Y)[: §(O,Y;€) - £'(eY) E(O,Y;E)

+
ax" "t 59X’ dY |
s Y
r—
= -1 i - £
réo gr(e,Y)( iYe T [i- £'(eW)] (3.7)
1r
1
where gr(e,Y) = ;T{%iEX)J and it should be noted from (3.5) and
(3.6) that
r
gr(e,Y) = 0(e") and
£'(eY) = 0(g) under the inner limiting process € > O with

(XIY) fixed.
On the assumption that § and its derivatives are bounded on X = O
as € > 0, the equation (3.7) can be written in the form
-Y
§X(0,Y;s),+ Oo(e) =1 e + O(e) so that as € = O
P 4
§X(O,Y;€) tends to the limit i e

Hence (X,Y;€) tends to a limit Jo(X,Y) where Jo is harmonic, satisfies
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the free surface condition on an arbitrarily large (but bounded)
portion of the positive X axis and has é normal velocity i e—Y on
an arbiterily large (but again bounded) portion of the positive Y
axis, i.e. §0 is harmonic in A+

3o + §°Y =0onY =0 for O < X< Xg <@

ie for O < Y < Yy < >,

§0X(O,Y)

and, in addition, Q,should satisfy the edge condition. At this
'point it may be remarked that the region in which the solution do
is of interest may be considered small compared to the region of
validity of the above equations (the outer solution can take over
once the region of overlap of inner and outer solutions is reached;
see §3.5o0n the matching principle). Hence, in practice, the
conditions on X = O and Y = O are extended to infinity so that
Havelock's wave maker solution can be applied to find §0 (this
will apply also to later terms in the inner perturbation series).
Clearly to obtain meaningful results it is necessary for the
velocity distribution on the wave maker to decay sufficiently
rapidly as Y = +© and this will be discussed more fully in Chap. 4
where the behaviour of Havelock's solution for various forms of the
prescribed normal velocity on the wave maker will be investigated.

Certainly when the decay is of negative exponential type no
problems arise and the solution for §0 is given by

T (X,Y) = Po(X,¥Y) + Eg(X,¥Y) where

Py (X,Y) is Havelock's particular solution and E((X,Y) is a function
satisfying the hcomogeneous problem i.e. Eg (X,Y) is harmonic,
satisfies the surface condition and has zero normal velocity on the
wave maker as well as satisfying the edge condition. Such
functions will be termed eigensolutions and they form a subset of

solutions of the vertical barrier problem (all possible solutions
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are obtained explicitly in Chap. 4). For the moment it is sufficient
tb remark that the eigensolutions are wave-free, a result of
fundamental importance in extending the asymptotic form of the
transmission coefficient. R

If the results contained in Chap. 4 are anticipated, then

Po (X,Y) is given by Havelock (1929) in the form

o0
Py (X,Y) = J H(X,Y;s) i e—s ds where
0
H(X,Y;s) = -2i exp[iX - (Y + s)]
00
_ g_f (u cos uy - sin uY) (u cos us - sin us) -uX du
T R
0 u(u?® + 1)

Py (X,Y) falls naturally into two parts, a wave part which will be
denoted by Wy (X,¥) and a wave-free part which will be denoted by
Fo (X,Y). Thus

Wy (X,Y)

il

{o o]
~2i exp(iX - Y¥) [ i e %S as
+ 0

= exp(iX - Y)

and Fy(X,Y) u

o0 {o o]
_2i J e-s f (u cos u¥ - sin uY¥) (u cos us - sin us)e-uXd
T

0 0 u(u? + 1)

Reversal of the order of integration above gives
00

Fo(X,Y) = - 3

(o]
2i u cos u¥ - sin u¥ -s .
J e (u cos us - sin us)ds du

0 u(u? + 1) 0
and an integration by parts shows the inner integral to be zero.

Hence

N

Fo (X,Y) O and v

Py (X,Y) exp(iX - Y) .

The eigensolution Eq (X,Y) must be a certain linear combination
of the functions

R2m+l

sin(2m + 1)6 2m where X = R cos 6, Y = R sin 0,
- R cos 2m 6

2m + 1 m = 0. (see §4.5),

. 2m+l
Such functions are O(R ™ ) as R > =« for some integer m so that

the matching principle (which does not involve wave terms) would

- 50 -



require that the leading term in the perturbation series for the

Do
2m+1
€

2m+
outer potential should be of the form where ¢y ~ Ay 6+m lsin(2m + 1)

(A9 being a constant) as 6+ <+ 0. In addition ¢y would be harmonic

and would satisfy ¢o = O on y = 0 (|x]| > a), %%0 =Oonr = a and

$p O as r > @ (r = /x% F yz).

Near E ,¢o would have one of the properties

¢o = O[Gf(zk—l)J (k a positive integer)

fl

as § =»+0 (&_ V(x + a)® + y°) since, near this point, ¢g will

behave like a solution of the problem

$ =0 ony=20 (x < -a)
%%-= Oon x = -a (y > 0)
and such solutions are linear combinations of functions of the form
2k-
ﬁe,{l{A(z + a) k=l . B 1) wherez =x+ jy, k is a positive
i3 (z + a)2kt

integer and A, B are independent of j.
If the positive sign is taken in the order relation for ¢, then
¢o is non-singular at E and, since it has also been shown to be

non-singular at E+, it follows by using the result

I (V$)? aa = J ¢ %%-ds and the boundary conditions,
fluid domain boundary

(n being a unit vector normal to the boundary curves) that

J (V$)? dA = O provided that the integral of ¢ %% along
fluid domain
a semi-circle at infinity is zero i.e. provided ¢ %%-decays more

rapidly than %-. Wwith this stipulation it follows that V¢ = O

whence ¢ = a constant and this constant can only be zero because of

k-
the condition on y = O. Hence, in the case where ¢, = 0(6_k l),

the only solution is ¢y = O. If, on the other hand, ¢g = O(G:(Zk_l))

as 8§ - O, then the leading term in the perturbation series for




the potential in the left inner region would be of the form —EEEEE
: m+
€

- (2k-1
where (g = O(Rl( )) as R} =+ ® (where 6_ = €R,;). The only non-trivial

vertical barrier solutions which have this property are of the form (see §

sin(2k-1)6 cos 2k6 . . , .
c -1 7k plus linear combinations of similar terms

(2k-1)R; Ry
. . . 1
involving higher powers of E-(c # 0) and Yy would not then satisfy

Yo

the edge condition Yy "R
1

-+ O as R} - O. It must be concluded,
therefore, that ¢, is non-singular at E whence it follows as above

that ¢, and Ey are identically zero.

Hence (X,Y;€) = do(X,Y) + o(l) as € *> O where
o (X,Y) = exp(iX - ¥)
Let it now be assumed that, under the inner limiting process € > O
with (X,Y) fixed, it is possible for some integer m to write

m
d(x,v;e) = L e® §S(X,Y) + o(e™) where for 0 < s < m

s=0

the §s are harmonic, satisfy the surface condition §s + QSY = O for
X > O, have ndrmal derivatives on X = O which are expressed in terms
of earlier occurring potentials in the expansion and/or the incoming
wave, and do not contain eigensolutions. Suppose also that substitution
of the above expansion in- (3.7) causes cancellation of all terms up
to oraer sm. (This result is true for m = O).

Postulate then that

m+1 +1
(]

m
3(x,y:e) = L€ g (x,¥) + L(e)F) (X,¥) + € 4 (XY) +o(en )

+ .
as € > O where €n1<<2&€) <<€m 1 as € -~ O. Substitution of this
expansion in Laplace's equation and the free surface condition
reveals that EQ' §m+l must be harmonic and satisfy the free surface
condition while substitution in (3.7) and neglect of all terms of

. m+1 .

orders higher than € reveals that §iX(O’Y) = O while §(m+l)x (0,Y)
is a function of the §s for 0 € s < m and the incoming wave. It
follows, therefore, that all the potential coefficients in the right

inner perturbation series are either eigensolutions of the vertical
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barrier problem or solutions of the wave—maﬁer type of problem.
Considerations of whether or not §2 is zero and whether eigensolutions
should be added to §m+l depend on a careful step by step development
of the outer and left inner expansions. The arguments used will be
similar to those employed in proving Eg(X,Y) = O earlier in this
section but further details will be left to Chgp. S5 when the special
case of the sgmi-circular geometry is considered.

Note on notation

As in the case of J,(X,Y) each §k(X,Y) will be written as the
sum of two parts, viz.
3, (X, V) =P _(X,¥) + E _(X,Y) where P, (X,¥) is Havelock's
particular solution,

i.e. Pk(x’Y) = Im H(X,Y;s)§ks(0,s) ds and Ek(x,Y) is an eigensolution.
0

In addition, Wk(x,Y) will Be used to denote the wave part of Pk(X,Y)

and Fk(X,Y) to denote the wave-free part.

§3.3. The outer expansion

The development of the perturbation series for the potential
¢(x,y;€) in the outer region is begun by formally putting € = o) in
the original boundary value problem and neglecting any wave terms
appearing ih- the equations (the outer potentiél does not recognise
waves) . Hence, to begin the expansion, it is postulated that

¢ (x,v;€) =cy(€)do(x,y) + o (colE))
under the outer limiting process € - O with (x,y) fixed, where

¢o(x,y)'is harmonic and satisfies

¢o =0Oony =0 (x| > a)
390 =0onT
or

¢g 0O as r > .
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The solution to this problem is made unique by matching the outer

solution to the right inner solution using the principle to be

described in §3.5. If it is assumed that a perturbation series of
the form _
p
i = ’ + £ =
d(x,y;:€) kéo ck(€)¢k(x v) °(Cp(€)) as 0

has been formed, then substitution of this form in the governing
equations for ¢(x,y;€) reveals that each ¢k must be harmonic and

. 9k . . . .
satisfy - =0on . Formal substitution of the asymptotic series
in the surface condition ¢ + €¢y = O reveals further that either ¢k = 0 or
¢k(x,0) = - ¢my (x,0) (|x| > a) where 0 < m < k. (The latter case will
occur when there is a term with a certain scaling ck(e) and an earlier

. kL€ .

occurring term with scaling € é ) . The scale factors which occur

will depend on the matching which takes place with the right inner

expansion.) Finally, each ¢k is made to satisfy ¢k *> O as

r = /x* + y2 - o, The problems for the ¢k are therefore classical
typé boundary value problems soluble either by complex variable

methods or by use of an appropriate Green's function.

§3.4. The left inner expansion

The procedure here is almost identical with that for the right
inner expansion. A new system of coordinates is introduced relative

to axes E Xj and E Y¥; through E as shown in Fig. 2 scaled so that

X =-a - €X}, ¥y = €Y;. Thus 8§ = €R; where § = V(x+a72 + yz,

- X7 v 2 . ) .
Ry = VX1 + ¥1°. The polar angle is denoted by 8; and the equation
of the curve near E_ is written in the form x + a = -f; (y) where it

is assumed that f; can be expanded in the form
(o]

Kk
Hence ¥, = LLEYD) _ § o kol ok
1= € T k22 "k !
ax ' = k-1 _k-1
and av, fr (eY,) k§2 k bk € Yy .



The form of ¢ in A is denoted by Y(X,,Y,;€) so that by analogy with
(3.7) the boundary condition on T is written in the form

o r+l r+l

r§0 hr(g,Yl)[Fl Y(o,Y,;e) - £, (s:szl)a—Xl—a;1 Y(o,Y1;€)] =0

(the incoming wave is not subtracted in the left inner region)

where

_ 1 [Eieyn)|”

The scale factors for the perturbation series in the left inner
region will be determined by matching with the outer expansion and
it will be found that (as in the case of the right inner expansion)
the potential coefficients in the series will be either eigensolutions
of the vertical Barrier problem or solutions of the wave-maker problem
in which the preseribedvelocity on the wave-maker is determined by
potentials appearing earlier in the series.
Notation

By analogy with the note on notation at the end of §3.2 the
various parts of the potential coefficients Wk(xl,Yl) in the left
inner expansion will be denoted by Pk(X1,Y1), Ek(xl,Y1), Wk(X;,Y1)
and Fk(X1,Y1). The notation will be local to the left inner region
so no confusion will arise with the right inner region.
Note

Once the wave parts of §(X,Y;€) and Y (X;,Y:1:;€) have been found
to a certain order in £ the outer sqlution (which as described in
§3.3 has no wave terms) is modified (in order to satisfy the outgoing
wave requirements at infinity) by adding the waves from the right
inner region (expressed in outer coordinates) to the solution for ¢
in x > O and the wéQes from the left inner region (again expressed

in outer coordinates) to the solution for ¢ in x < O. This modified

solution will then be assumed to extend up through the boundary layer
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to the free surface. Since the ¢k in the outer expansion will be
made to die off to zero at infinity, this device will enable the
outgoing wave conditions to be satisfied and hence provide asymptotic
forms for the reflection and transmission coefficients. The fact
that the potential coefficients in the inner expansions depend only
on potentials appearing earlier in the series and that eigensolutions
are wave-free enables the asymptotic form of the transmission
coefficient to be obtained to an order higher than that for which

detailed matching has taken place in the left inner expansion.

§3.5. The matching principle

It will be seen that, in the case which will be considered in
detail in Chapter 5, the scale factors in the perturbation series
will all be of the form es(log e)t where s, t are integers = O.
Hence to respect condition (iii) of theorem I in Fraenkel (1969) p.223,
it will be necessary to adopt the matching principle broposed by
Crighton and Leppington (1973) in which, for-given s, all terms with
scalings of this form must be determined and grouped together before
detailéd matching takes place. Assuming that this has been done,
the right inner expansion of §(X,Y;€) up to terms of order €s will
be denoted by Q(s). If the outer limiting process (¢ - O with
(x,y) fixed) is applied to this inner expansion, the result will be
equivalent to that obtained by letting R * ® in the potential
coefficients (since R ='§*). Assuming that the asymptotics of
these potentials have been obtained to a certain orxder, then the
result of replacing R by g*and truncating the resulting series

after terms of order € will be donoted by §(s,r). Similarly, let

(x) denote the outer expansion up to terms of order e, Application

¢

of the inner limiting process (€ + O with (X,Y) fixed) is equivalent
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to letting 6++ O in the potential coefficients. If the asymptotics
of these potentials as 6++ O are obtained up to a certain order and
§+is replaced by €R and the resulting series truncated after terms
S . . . (rls)
of order €, then the series obtained is denoted by ¢ . The
matching principle is that
§(Slr) = (b(rIS)

A similar principle will be applied in matching the left inner region
with the outer potential.

Crucial to the success of the matching process is the existence of an
"overlap" region where both inner and outer approximations apply.

In this case the right inner approximation is assumed valid at points
close to E_ on the a-scale (6+ < a) while the outer approximation is
assumed valid for 6+ > €. If € < 6+ < a there is evidently a common
region of validity in which both approximations are equivalent in the
sense of the matching principle. .Similar considerations establish
the existence of an overlap region for the left inner and outer

approximations.
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CHAPTER 4

§4.1. Introduction

In §3.2 and §83.4 it was seen that the right and left inner expansions
lead to a sequence of problems consisting of Laplace's equation :n the
quadrant x > O, y > O, the free surface condition on y = O and a prescribed
normal velocity condition on x = O. Such problems make up what will be
called the Classical Wave-Maker family. The physically inspired classical
wave-maker problem is to represent the two dimensional wave motion generated
by a vertical wave-maker, idealised to be of infinite depth, having a
prescribed velocity profile depending on depth. In particular the waves
far down the channel are to be found, assuming there is no agency to
generate or reflect waves back towards the wave-maker. For a bounded
solution to exist, it is necessary that the prescribed velocity on the wave-
maker decays sufficiently rapidly with depth. This is a mathematical
difficulty consequent on the infinite depth idealisation and has no direct
experimental relevance at finite depth. In the context of matched
expansions the outgoing wave condition is replaced by a matching condition
on the wave-free part of the potential (which may not even entail boundedness)
and the prescribed velocity distribution (arising from previous potentials
in the left and right inner perturbation series) may not have decay
properties permitting of the direct application of Havelock's (1929)
solution to them. This consideration calls for a more general study of the
classical wave-maker family of problems and this is the subject of the
present chapter.

No uniqueness theorem exists without the outgoing wave condition and
attention is first devoted tc finding particular solutions. The methods,

which are well established in the outgoing wave case, are reviewed and
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order of magnitude properties of the wave-free part of Havelock's solution
in the far field are derived. As Qould be expected, velocity profiles
which produce cnly outgoing waves as X > ® coincide with those requiring
finite energy input. Other solutions whose wave-free parts are unbounded
in the far field have no physical relevance but may be acceptable in the
ggneral setting of matched expansions.

Next, particular solutions are derived (by means of Lewy's (1946)
reduction method) . for twc special cases of unbounded velocity profiles
arising in Chapter 5 to which Havelock's solution cannot be applied
directly and, finally, the general solutions are investigated by studying
the homogeneous problem in which the wave-maker is at rest (referred to as
the vertical barrier problem).. The nature of solutions of the vertical
barrier problem is controlled by the behaviour at infinity and by the
singularity, if any, permitted at the surface point. Various possibilities
are catalogued and it is proved explicitly that solutions containing
outgoing waves can exist if and only if a logarithmic singularity is allowed
at the surface point. This result provides a criterion for selecting the

terms from the inner expansion which are associated with outgoing waves.

§4.2. Mathematical statement of the problem and Havelock's solution

Axes are taken with Ox in the undisturbed water surface and Oy along
the rest position of the oscillating barrier downwards into the fluid
which is assumed to occupy the first gquadrant x > O, y > O. The velocity

_'o'
potential is assumed to have the form Re [d(x,y) e * t] and the prescribed
velocity on the barrier at a distance y below the surface is taken tc be

-ioﬁ , . . .
Re[ £(y)e (f being a continuous function on [0,%]). The problem is

to find a function ¢ (continuous and twice differentiable in the fluid

domain x > O, y > O) such that
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¢ +¢d =0 (x >0, vy >0) (4.1)

XX vy

ko6 + oy =0 (y =0, x>0) (k=3%/qg) (4.2)
¢x = f (x =0, v = 0) (4.3)

(The final condition here is stated on x = O because of linearisation;
Wehausen and Laitone (1960), p.553-555, gives a general discussion of
forced harmonic oscillations).

If account is taken of minor differences in notation, Havelock (1929)

provides a particular solution to the problem (4.1)-(4.3) in the form

(oo
P(leik) = f f(S)H(X,Y:k;S) ds where (4.4)
0
H(X,y;k;s) = -21i exp[ ikx - k(y+S)]
o
_ %_J (u cos uy - k sin uy) {(u cos us - k sin us) e-ux du . (4.5)
0 u(u? + k%)

This form for H is used once in this thesis in Chapter 3, £3.1, but
elsewhere an equivalent form

H(x,v;k;s) = -21i exp{ ikx - k(y+s)]

- N ‘ ) | )

+ %F log X~ + (y-s) _2 [m 1 cos u(y+s) k sin u(y+s)e ux
|2 0 1_12+k2

du (
+ (y+s)?

is employed.

It is convenient also to introduce here some notation which will be
used subsequently throughout Chapter 5 in discussing the left and right
inner expansions where the form (4.6) of H will be used.‘ First, the
three terms in H will be denoted by Hw, HL and HI respectively while the
corresponding parts of P will be denoted by W, L and I and the wave-free
‘part of P (i.e. L+I) by F.

Thus Hw(x,y;k;s) Do expl ikx - k(y+s)],

2

)
)
D 1 + {(y-
i) 2 b dog| DT | 4.7
L¥2 + (y+s)?] ) )
. )
H_(x,yik;s) D_2 f”u cos ulyts) - k sin uly+s) ~Ux g, )
I 1 2 2 -
0 u + k
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while

00
W{x,y:k) = =-2i exp(ikx - Kky) I f(s)e"S ds 4 ;
~ 0
{eo] 2 2 )
+ -
L(x,y) = 5% I £(s) log 5————11—5)_] ds , )
0 1x* + (v+s)?] ) (4.8)
, ) .
os u(y+ - + -

I(x,y:k) 2 - %_ {m u cos u(y+s) k sin u(y+s) o Tux £(s)du ds,)

0° 0 u? + k2 )

)

F(x,y:;k) = Lix,y) + I(x,y:k) . )

In addition the values H, P, W, I, F for k=1 will be abbreviated to
H(x,y;s), P(x,y), W(x,y), I(x,y), F(x,y) respectively.
Hence H(x,y:;s) = H(x,y:;l:;s),)
)
D \
¢(X,Y) = ¢(X,Y;l), )
D )
W(x,y) = W(x,y:1), ) ' (4.9)

D )
I(x,y) = I(x,y:;1), )
D )
F(x,y) = F(x,y;1). )

Finally, with a view to discussing the behaviour of the integrals appearing
in the wave-~free part of Havelock's solution, it is remarked that (for

fixed (X,Y) )

. 2y 1
HL(x,y,s) =-t C(Sz) (4.19)
and H_(x,y:;k;s) = 2 + O(£ ) (4.11)
I er ’ TTkS sz; -

as s > », the first result being-proved using lecgarithmic expansions and

the second by writing

{e o]
exp (-Cu) 3

u - jk v

2
.k = - —
HI(XIYI ;S) T Rej f

(L = x - j(y+s)) and using Watson's Lemma or simple integration by parts .

§4.3. The convergence cf Havelock's solution and the behaviour in the

far field cf the wave-free part

The wave-free part of $(x,y;k) is given by

F(x,y:;k) = f” f(s)[HL(x,y;s) + HI(x,y;k;s)] ds .
0
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Hence, by (4.1C) and (4.11) it is clear that (for fixed (x,y)) the integral

is convergent if

(a) r” iis) ds exists (b > 0)

Jy, 8

and (b) f(t) is bounded as t > .

For the di;cussion of the behaviour of the wave-free part as
r = /;2_:—57 + o which follows the stricter condition that f(s) = O(ia)
(d > 0) as s > ® will be assumed. It will be seen that, to obtain a
"solution with only outgeing waves at infinity, it is sufficient to take
o > i and that in cases of this type finite input of energy is required
to maintain the velocity profile. " The two components of F(x,y;k) i.e.

L(x,y ) and I(x,v:k) are examined separately, but, first, it is noted

by analogy with (4.10), (4.11) that as ¥ - « with s bounded

. _9& N
H (r cos @,r sin 8;s) = :E~§£E—g + O(lz) (4.12)
L mr r
) _ 2 sin 6 1
and HI(r cos B,r sin 6;k;s) = e + O(;?) . (4.13)

Since the asymptotic result (4.12) above for HL(r cos 0,r sin 8;s) applies
only in the case when s is bounced, the range of integration must be split
into two parts, in one of which HL is small for large r and in the other
of which £(s) is small for large s. This is achieved using the fact that
f(s) = O(éa) as s - «, whence there exist sy; and A (both constants
independent of s) such that |f(s)| < Sa for s 2 sg.- sg is fixed and

" the equaticn for L is written

Sq e
L{(r cos 0,r sin 8) = ([ + J )HL(r cosB,r sin 6;s) ds . (4.14)
0 So

By a mean value theorem of the integral calculus, the first integral
is equal to
So HL(r cos B,r sin B;n)£f(n), where 0 < n < s4 ;

whence (using (4.12) and the bkoundedness of f) it can be deduced that this

- 62 -



art - is O(lﬁ as r > o,
P r :

By use of the substitution s = ru, the second integral takes the form

o0
H (r cos H,r sin 6;ru) f(ru) du

i Jso/r

= f H (cos 0,sin 8;u) f(ru) du
So/r

By use of the order property of f, the modulus of this integral is less

than or equal to

1-o

. _ ‘
A--E%’ [w log u® + 2u sin 0 + 1 .%& au . (4.15)
so/T u” - 2u sin o + 1| ¢

[V

L s - T
If it is assumed now that 0 # 5-(see note (1) after equation (4.16) for
™
the case 6§ =-§), phen for & > O and ¢ non-integral, the integral here can
be integrated by parts till arrival at the first integer k such that

k-@ > O i.e. k integrations by parts are performed.- After this point,

the final integral remaining will be of the form
o k

(constant) . J uk—al S u (cos O,sin B;u)du. This remainder is
so/r du L _
loe] foo pso/r
0(l) as &+ ® as is seen by writing } = J - J
so/x 0 0

The integrated coOntributions to these integratioﬁs by parts will be of the

‘form o a1 g ..
(constant) . u" L (L<m<k) ,

dum—l
.mulH
dum_

These vanish at ® since E = O(%m) as u - ®© so the only contributions

will come from the lower limit sg/r. Since HL is an odd function of u,

. m-1
it follows that Q—E:%L = (O ifmisodd ) __ o
du (0(l) if m is even )

whence the contributions from the lower limits will be

( 1 . . )
( ol m+l—u) if m is odd
( i ) as r +® .
( 1 . . )
( O(rm—a ) if m is even



l1-a -
It is recalled that there was a factor r outside the original

1-
integral (see (4.15)) so that (when multiplied by r OL) the integrated

E o(1/r™ m odd

( O(l/rm-l) m even

contributions will be while the remainder will

)
)
)

be O(rl-a)

Hence, for o non-integral, o > O
rl—a 0
— o
2T J log
0

From (4.14) and the comment below there, it follows that as r > «

O(r ) O<ac<?2

- 2 iy (
u® + 2u sin 6 + lJ 1 du = |
(

u

u? - 2u sin 6 + 1 0(1l/r) a > 2

l-o
r

O( ) O<ac<2

(
L(r cos 0, r sin 0) = (
( o(l/r) o > 2

when ¢ is non-integral.
When o is an integer, Lemma 1 (see Appendix B,88.2) gives the corresponding
results.

-y ] - _
te + 2 0 +
With £(6,t) = log {' t sin L ; X = so/r, Lemma 1 gives, as y =+ «
2
t

- 2t sin 6 + 1

(with £ (o) = 0)

Jf°° £608) g - O @ =1
So/r ta ( O(log r) o= 2
( —
(. 0%7? a=3,4,s5, .
Hence
Pl r £0,8) 4 . E o(1) a=1
M gy ( otﬁg——r—) o =2
(
( O0(1l/x) o =3, 4,5, ... .

Combining the results for @ non-integral and O integral together gives

1-0
.r_]:._a r f(elt) dt = E O(r ) ccas 2
2m s/ £ ( O(log r/r) o =2
(
( Oo(l/xr) a > 2 .
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Hence from (4.14), as r > @

( o™ 0<ac<?2
L(r cos 8,r sin 8) = (
(- O(log r/x) a =2 (4.16)
(
i ( 0(1l/x) a > 2

CDKHE (1): In the proof which follows (4.15) it has been assumed that

m
0 # %. If, however, 6 = 5 the integral in (4.15) takes the form
2 fx log |22 l‘. 1y au
u-1 u
so/x

in which the log function has a singularity at u =1 which becomes
non-integrably singular (when r is large) after two differentiations

of the log function. However, this difficulty can be overcome as

follows. By integration by parts (& # 1)
00 - 1-0 o]
log u+ 1 ia du = u log u+ 1
: u-1} u 1 -« u -1
so/¥ g 48/

1 1 W (a Cauchy P.V. inte
1

ua+ 1 u -

00 -
ff 1-a
- u
So/Tr

The second integral may be expressed as

® 1 i

i I -0 1 1

L + ¥ u T+ 1 u- l’ du where the contour
so/T - -

is the real axis indented by a small semi-circular arc (centred on.u=l

and‘lying-in,the-fourth'qﬂadrant)-‘and the previous arguments can now be
applied to the indented integral. Since the integral under consideration
is the real part of the indented integral, plus the integrated contributior
to the first integration by parts above, its order properties will be the

same as before:]

Next o
I{r cos®,r sin® ;k) = [ HI(r cos O,r sin B;k:;s)f(s)ds

0
where

HI(r cos B,r sin 0;k;s)

du

2

2 fw u cos[u(r sin 6 + s)] - k sin[u(r sin B +'s)] Y R cos ©
0 u + kz
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2 ® e—uC -36
] i 2k = - = ——— du with = -3
ie HI(r cos B8,r sin 6;:k;s) - Rej J R C =-re Js
. 0 -
5 .
For large r, the dominant term in HI is - T Rej E%J (by Watson's Lemma

or straightforward integration by parts).

S . +
But 1 _rcos 6 j(r sin © s) so that

© 2 4 2sr sin 6 + s?
2 _j 2 r sin 8 + s
R 3 ’
- r? + 2sr sin 6 + s?

The leading asymptotics of I(r cos €,r sin 6;k) will, therefore, arise from

(ve]
i +
IA(r cos B,r sin 8;k) = 2 J r sin 6 = f(s) ds, or

Tk - .
o r? +dsr sin 6 + s?

: Sy 00 .
1,(r cos 6,r sin 6:k) -2 (J + J )[ rsin® + s £(s) ds . (4.17

Tk .
0 so (r? + 2 sr sin 8 + s?

-

The first integral is O(iﬁ as r >~ ® and the substitution s = ru in the

second gives

in 6 +
f” T+ iinsin 6d+ uzf(ru) du which, in modulus, is less or
So/r
equal to -
a [ in O 1
+ .
;hJ T+ zznsin 6u+ T2- o0 du (using the order property of f),

So/r

sin 6 + u

& = .
Let g(%0) = 7775 5in 6 + o2
Clearly

m-1 1

g(®,u) = O{—-] as u * © while g and its
m-1 m ?
du u

derivatives are all O(l) as u * O. (g has no special odd or even
properties).

Hence it can be proved, as before, by successive integrations by

parts, that for o non-integral

1
( O(=) O<ac<1l
1 fn g(6,u) au = ( r v
So/r

o ( o a>1 .
r

For integral values of @, lemma 1 again gives the results:

( O(logr/r™) a=1
o du (
so/r u ( 0(l/x) a

1 g(d,u)
;U )
2, 3,4, ... .

il
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Combining the above gives

L 6. ) ( o(l/r™h 0<ao <1 )
o J g——ég- du = ( Of(log r/r) a=1 )
so/r u ( 0o(1/x) a>1 )
Use of the above results and (4.17) implies that
( o(L/r™ o<a<1l )
IA(r cos 6,r sin 6;k) = ( O(log r/r) a =1 )
( Oo(l/x) a > 1 ) .

Since IA contains the leading asymptotic terms cf I it is deduced
that I has the same properties.
, O
o(l/x™) o}

: (
1(r cos 6,r sin 8;k) = ( O(log r/r)
( 0(1/x)

Vol R

<
1 ) (4.18)
1

QR A

Addition of (4.16) and (4.18) leads to the result that the wave-free

part of Havelock's solution has the properties

1-a
( Olfr ) c<a <2 )
F(r cos 6,r sin 0;k) = ( O(log r/r) a =2 ) (4.19)
( 0(l/x) a > 2 )

asir > ©

Hence, in general, up to 0 = 2 (inverse square decay of the
prescribed velocity) the wave-free behaviour in the far field is
determined cruciaily by the motion of the vibrating wave maker deep

down in the fluid, while for & > 2, the disturbances are like those

due to a dipole at the top of the wavemaker. It may be seen also
3
from (4.19) that the condition f(s) = O[ﬁaJ (o > 1) is sufficient to

ensure that a solution is obtained with only outgoing waves at
infinity. For oo < 1 the wave-free part will nct, in general, tend

to zero.

c NOTE (2): On the energy input required to maintain the motion of

the vertical wave-maker

The horizontal force per unit of surface area at depth y necessary

to maintain the prescribed motion of the barrier is equal to p, where
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p = pressure in the liquid at depth y on x = O. Hence the rate of
energy input per unit of surface area at depth y is
pr(O,y) where F(x,y;t) is the total potential

. -iot
i.e. F(x,y:t) = Re [¢$(x,y)e *

1. .

Hence it follows that the energy input per unit of surface area at

depth y over one cycle will be

2T/0
E(y) = f 'pFX(O,y) dat
0

The linearised Bernouilli equation gives

P = pgs + Pgy - OFt(o,y)

where po atmospheric pressure

and o] density of liquid

so that use of the periodic property of FX(O,y) gives

4(2‘”/0’

E(y) = -p :t(O,y)Fx(O,y) dt
0
. s
Since Ft(O,y) = Re [ -i0 ¢(0,y)e * t] and
-ict, .
Fx(o,y) = Re [¢X(O,y)e ] it can be seen that

E(y)| < 2m |e0,v)] £ ] (9 (0,y) = £(y))

so that, by the results of the previous section

( oyt 0< a< 2
E(y) = ( 3z
( © }éﬁ;}L o =2
( L0
( 1
( O;—m} a > 2 asy > ®©

Thus the total energy input in one cycle (which is equal to f“ E(y)dy)
0
will be finite provided a > 1 since the integral is convergent only

for this range of values.
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NOTE (3): Havelock's particular solution is continuous at the origin

- L op
and catisfies the edge condition r =— > O as r -~ O.]

or

§4.4. Particular solutions of the wave-maker problem in cases of

unbounded velocity profiles

Consideration is now given to two cases of the above type which
occur in Chapter 5. For easier comparison later, the problem is

stated in terms of scaled coordinates X = kx and Y = ky as

+ = Q0 > Y >
UXX UYY (X 0o, 0)
U + UY =0 {y = 0)
=V X =0
UX ( )

together with the edge condition (required by the inner expansions)

Rez >0 as R = /X% + ¥4 > 0 .

The two cases considered here are

(a) V(y) =Y

(b) V(Y) =Y log Y
the method employed being essentially the reduction method due to
Lewy (1946). The problem is first restated in terms of a new

harmonic function N(X,Y) defined by

N (X,Y) = 5% 5% + 1)U(X,Y) so that on the free surface N = O
and on the wave-maker N(O,Y) = V(Y) + V'(Y). This is a simpler

problem which in the cases considered here yielded a particular
solution for N without difficulty, say Np(x,Y). Once this has been
extracted, it is convenient to consider U(X,Y) as the real part of a

X + jY) so that

complex potential w(z) (z

9 3 \
H (".a—Y— + 1)U(X,Y)

Imj [-w"(z) + jw'(=2)] ,

If also NP(X,Y) is written as Imj[g(z)] then a particular solution for
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w can be found by solving the ordinary differential equation

w"(z) - jw'(z) = ~-g(z) .
This general method will now be applied to the two particular cases
(a) and (b) mentioned above.
(a) In this case the value of N on the wave-maker is 1 + Y so it is
easily seen by inspection (or separation of variables) that, with
X =R cos B, Y = R sin 6, a particular sclution Np(X,Y) is given by

%6 + R sin O i.e.

N _(X,Y)
p

N (X,Y)
=}

Hence, in this case, it is necessary to solve the differential equation

Imj [%—log z + z] .

2
w"(z) - jw'(z) = -(; log z + 2)
One integration gives immediately
. . 2 z? .
w'(z) - jw(z) = -[F(z log z - z) + 5’] + A (A = constant)

where it is noted that A must be real with respect to j, in order that

the free surface condition (which in complex form is

Imj[w"(z) - jw(z)] = O on Y = O) be satisfied.
It follows by use of the integrating factor e 7% that
. ~jeo . 2 .
- 2 )
w(z) = eJz [ e s [E(s log s - s) + g—]ds + jA + Bejz
Z <
where B is a constant.
Two integrations by parts give the more manageable form
r 2 z? 2 .
w(z)=-3[;(z lng-z)+-§-] -(Z+Flogz)+](A+l)
2 jz . jz
- > e Ei1(jz) + Be (4.20)
.2 2 2 jz . .. Jz
! = -j (= - + —) - = +
whence w' (2) j(TT log z + 2) (1 1TZ) e i E; (iz)] jBe” ",

It is proved in the following section 84.5 (equation (4.36)) that on

jZ . 5 -Y N .
E,;(jz)]} = me ~ so that,again on X = O,

d
X = 0, Rej{a; [e
Rej[w' (z)] = Y - 27 4 7Y Rej (5B)

Thus, to satisfy UX =Y on X = O, B may be taken to be -2j.
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It follows then from (4.20) (if A is taken to be -1) that a particular

solution for U(X,Y) in this case will be the real part of the function

w(z) = -j[%%z log z - z) + gfl - (z + %‘log z) - %ejz E; (jz) - 2jejz
i.e.
U(X,Y) = (EEE%EEQ-- R cos 0) + %-[R(sin 8 log R + 6 cos 6) - R sin 8 - log
2 jz . -Y .
- E-{Rej[e Ey(jz)] - Te = sin X} .
To this particular solution may be added solutions of the vertical
barrier problem as required. Thus, in the case which occurs in Chapter

5, 85.7, it is convenient for matching purposes to add the eigensolution
2
;{R sin 6 - 1) while to obtain a progressive wave at infinity the
- . . =Y . . .
standing wave solution -2i e cos X is also added. This gives a

modified solution:
R%sin 26

> - R cos 0) + %{R(sin 8 log R + 8 cos 6) - 1 - log R

UG(X,Y) = (

2 - i X~
- ¥{Rej[ejz E; (32)]} - 2i elX ¥

This also satisfies the edge condition, since
o ‘
Rej[ej E; (jz)] ~ - log R as R > O, as may be seef from the result

-1 (52)"

s given in Abramowitz & Stegun

Ei(jz) = -y - log jz - %,
(1965) . Thus the log terms cancel and U(X,Y) is bcunded as R - O.
In conclusion it is remarked that the function wz required in 35.7

has the property

¥ 1

2% = - %Em Y on the barrier

and that its wave-frse part F, (X,Y) satisfies

2 .
2
Fy (X,Y) ~ - Fﬁg (B—E%EEQ-- R cos 8) - —%—q(sin 8 log k + 8 cos 0)
Tea

+ 2R sin 6

o
(2log2a+y-2-12) asR>® ,
24 8

k1l
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Hence the solution satisfying the edge condition will be

- —ln U(X,Y) + 2 (2 log2a + Yy -2 -1 E-)(R sin § - 1)
Ta 2_4 8
T a
1 R%sin 26 2
ie. Yo (X,¥) = - =, (———— - R cos §) - — [R(sin 6 log R + O cos 9)
Ta 2 2 4 -
Ta
2 , T .
-1-1logR] + — (2 1log 2a+Y-2-1 §)(R sin 6 - 1)
mea®
+ —2-'{Re.[ejz E; (3z)1} + iiu elX—Y .
n2at Ta

(b) With V(Y) = Y leg Y the value of N on the wave-maker is Y log Y+l+log Y

and, as before, a particular solution for N is

NP(X,Y) R(sin 6 log R + 6 cos 6) + %{6 + 9 log R) or

fl

NP(X,Y). Imj{z log z + %{log z + %4109 Z)zl}.

Hence, it is required to solve the differential equation

' 2 .
w"(z) - jw'(z) = -{z log z + % flog z + %(log z)41} .

The solution (obtained as in (a)) is

. =j® . 2 2 .
- 1
w(z) = ?Z f e 7 [% log s - %- + ;-s(log s)jas+ jA + Be? ?
”

where A, B are constants and A is real with respect to j.
An infegration by parts now gives

52 2 . ('—J°° .

z z 1 - 2
w(z) = -jl5 log z - - + — z(log z)? + e’ Z -je Js(s log s + — log s)¢

2 4 T » s

. -jo . .
- %-ejz J e JS(log s)? ds + jA + Bejz,
z

This first integral occurring here is integrated by parts again but
the latter integral is left as it is to avoid introduction of an

awkward singularity at the origin. This leads to the result
2 2

1
w(z) = -jl= log z - % + = z(log z)%] - (z log z + %-log z)

. . e L
z -
eJ? E; (jz) - ej J e s log = ds
z

- —JT; eI? J e 7% (log )2 ds + j(a + 1) + Be’? (4.21)
z

_jm .
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Clearly w is non-singular at the origin (the integrands above can be
integrated through O0) and the edge condition is therefore satisfied.
It remains to choose B so that
Re. [ W' (2)] = Y log Y on X = O.
J
It can be shown without difficulty that
-] .
-y -y PGS
Re, [ ¥ (3¥)] = Y log Y - 2e + e Im, [J e 7% lcg s ds]
3 ] jv
1 R Y
+ = e ¥ Re, [J e JS(log s)2 ds] + e Re. (jB)
m J . J
JjY
whence the substitution u = js in the integrals gives

Rej [w'(3¥)] =Y log Y - 27% 4+ 7Y Imj [fw e % log(-uj) Q% ]
-Y

+

S|+

&Y Re .{r e [ log(-uj)]? 94} + e Re. (3B) . (4.22)
3y 3 ]

The contours in the above integrals are taken to be along the real
axis (strictly speaking, along the real axis indented by a small
semi-circle centred at the origin but the contribution from there will

O_
tend to zero with the radius) and fw is written as ( + f” .
-y -y o+

In BoY.0) log (-uj) log(-u) + while

o3

J
. . .
in (0,%) 1log (-uj) = logu - j 5 -
Hence the -imaginary part on the right-hand side of (4.22) is equal to
JO

e ¥ logi-wdu - Jw e ¥ log u du
Y

0
e ¥ log(-u)du - f” e Y log u au].

and the real part is ﬂ[J
Substitution of these values in (4.23) now gives
- -Y .
Rej [w (3] =Y loeg ¥ + 2(y - De Yy e Rej(jB) where vy is Euler's
o0
constant (since [ e U log u du = -¥) and if B is chosen to have the
T o
value 2j(Y - 1) then the real part of (4.21) will be a particular

solution of the problem. To this may be added solutions of the

vertical barrier prcblem as required.
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In particular, as it stands, the real part of (4.21) contains the
standing wave term
-Y .
=-2(y - e sin X .
Thus, if a progréssing wave were required, it would be necessary to

add the term 2i(y - l)e“Y cos X whence it is seen that the velocity

profile Y log Y produces a progressing wave 2i(y - l)elX—Y, Tt
follows that the term —%— Y log Y which appears in the velocity
T a .

profile for Yy (see equation (5.64)) will produce the progressing

wave 4i(y - 1)eiX-Y as stated there.

m2a’

- 00
NOTE: The terms T, (z) = eI? J e I%(1og )% ds (k = 1,2) in {4.21)
z
do not contain standing waves as may be seen by considering their

behaviour on ¥ = O as X > o,
- 0o
ix () k -is ,
Indeed Tk(x) = e (log s) e ds whence rotation of the
X
contour of integration so that the upper limit beccmes X - j® followed
. . jis - X) .
by the substitution w = 5 9gives the form

o0 -
T, (X) =-3X j [log x + log(l - jwil¥ ™ aw .
0

The constituent parts of the Tk(X) are either unbounded or tend to zero
as X - © go clearly they cannot represent standing waves (which are O(1l)

as X > @),

§4.5. The vertical barrier problem

With reference to §4.4 this is simply the case V(Y) = O, It
will be shown that the general solution is precisély the family of
linear combinations of the following:

(i) a standing wave solution, non-singular at O

e—Y cos X

(ii) a set of solutions unbounded at ® and non-singular at O of the

2m+1
form R sin(2m + 1)0 2m _
Om 7 D) - R cos 2md (m=0,1,2,...)
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(iii) a solution representing a standing wave at ® and having a
logarithmic singularity at O
jz . -Y .
Rej [e’® E1(32)] - me © sin X

(where E); (z) is the exponential integral

o U
Ei(z) = fw o du )
z

(iv) a set of solutions tending to zero at ® and having algebraic
singularities at O of the form

sin(2m-1)6 _ cos 2md

(2m—1)R2m—l R2m

(m=1,2,...)

These functions are the real parts (with respect to j) of the complex

valued functions

(1) eI%
2m+1
(i) —Z—ee = 20
3 (2m+1)
(iii) eI% By (3z) + jmel?
(iv) J - L where z = X 4 jY = ReJe
2m-1 2m
(2m-1) 2z z

The solution will be obtained explicitly using the reduction method of
§4.5 (and the same notation). In this case N(X,Y) vanishes on 6 =0

and 6 = T so that

2
® 2n B?n
N(X,¥) = Z.(A, R + —— ) sin 2nf (4.23)
n=1""2n R2n
o B
~2n 2n
or N(X,Y) = Imj ngl(AZné 22n Y .

Thus it is necessary to solve the differential equation

&< B

. 2n 2n
(1] . | = - - — .24
Imj[w (z) jw' (2)] Imj[ngl (AZnZ Zzn )] . (4 )
The equation g, "(z) - jé '{z) = z2n (n = 1) (4.25)
2n 2n
is considered first. I+ is not difficult to show that the function
on ,z2n+l
an(Z) -2+ gn + l]
h(z) = satisfies the equation

-2n(2n - 1)
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2n-

h"(z) - jh'(2) = 2Z 2 whence h(z) (z) ,

= 9on-2
2n+
on n+l

and gon(z) = 2z +32 - 2n(2n

- > 5
e Doy p@ (> 1) . (4.26)

In addition a particular solution of the equation

1l is

go"(2z) - Jgo'(2)

go(z) jz + 1

Hence,by induction a particular solution cf (4.25) can be obtained as

)
a linear combination of the functions

2m jz2m+l

] = == < <
Em(z) z + 1 (o m n)

the coefficients of the Em(z) being well-defined non-zero integers

i.e. there exists a solution
n
= a. (n)E ( 4.27
g2n(2) méo m(n m(Z) : ( )

where ap(n) = 1 and no O..m(n) is zero.

Next the equation

(L

\

" - 17 =
h2n (z) jh (z)

n=1) (4.28)
2n

2n

N

is considered.

Again it is easily proved that for n = 2, the function

1 J

F(z) = -(2n - 2)(2n - l)th(Z) + [ orv i 2n_3]
z (2n - 3)z
satisfies the equaticn F"(z) - jF'(z) = 2i_2 so that,for n = 2,
z
' _ 1 1 3
hon(® = @z | L s a3 ] T Bppp @)L (4.29)
z (2n-3)z
Also ha(z) satisfies the equation
” 3 ] l
h2"(z) -~ jhz2'(2) =2
so that a particular solution is therefore
. -jo  -jt
ny(z) = e” J S at . (4.30)

z
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It follows as previously that a particular solution of (4.28) can

be obtained in the form
n-1

h2n(Z) = méo bm(n)Gm(Z) (4.31)

where the b (n) are real non-zero integers and
m

( Gg (2) eszl(jz)
) (4.32)

3 1
\. G (z) — - (m = 1)
m (2m—l)z2m 1 z2m

After the derivation of these particular solutions attention is
returned to (4.24). In practice the sum on the right is not infinite
(the number of terms is limited by order properties of_¢ at infinity

and prescribed behaviour at the origin) so that

(-] B

2n 2n . )
A - = ; . -
nél( on? 22n ) is an analytic function of z (z # O) | The Cauchy

Riemann equations imply, therefore, that w must be analytic (z # 0)

and w must satisfy the linear differential equation

© B
. . _ 2n 2n )
w"'(z) - jw'(z) = nél( Anz + ;55 ) + C (where C is a constant
real with respect to j).
If the operatcr S — (D = Eg) is applied to both sides of the
2 . .
D - 3D

above equation a particular solution may be obtained in the form
oo n n-1

nél[_ A, (mgo CLm(n)Em(z)) + B2n(m£O bm(n)Gm(z))]+ C(jz + 1)

(where use has been made of (4.27) and (4.31)) so that the general

solution will be
o n n-1 jz
w(z) = ngi[_AZn(méO(ﬁm(n)Em(z» + B2n(m§O bm(n)Gm(z))] + C(jz+1l)+E+Fe

4.
where E, F are constants. (4.33)

The boundary conditions at the free surface and on the barrier are
now checked in their complex forms:
Imj [£'(z) - jf(z)] =0 on Y =0

and Rej [£'(2)] =0 on X =0 .
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It is easy to prove that the Em(z) and the Gm(z) satisfy the free

surface condition separately so that, when it is recalled that A2n’

an, aaﬁn), bm(n), C are real with respect to j, it can be seen from

(4.33) that

Imj [w'(z) - jwiz) = -Imj(jE) whence
Re (E) =0 . ' (4.34)
From (4.33) again
© n n-1 jz
w'(z) = n£1 ["Azn(méo ClYn(n)Em (z)) + B2n(m£O bm(n)c;In (z))] + 3C + JFe”,

(4.35)
On X = O the Em'(z) are purely imaginary as are the Gm'(z) for m = 1.
However, Gp'(z) must be more carefully considered.

(4.32) shows that

. -j° -jt
Go'(2) = jejz J et dt - é— so that .
z

r—j® e—jt

J = dt - v (where the contour must avoid

jY the origin and does not cross
the negative real axis).

. =Y
Go' (JY) = Je

The substitution u = jt gives further
-u

Go°' (jy) = je-YOj\ e—u— du -~ -J—% where the contour here is chosen to
=Y

be the real axis from -Y to +» indented by a small semi-circular arc

round the origin in the half-plane Im(u) > O. Hence
oo -u
Go' (JY) = je'Y(f' Se——-du - jm) - 7£- whence
-y u JY
-Y d j . -Y
Rej[Go'(jY)] = Te i.e. from (4.32) Rej{az-[eszl(]z)]} = Te
on X =0 ., (4.36)

[Et may be noted that the above can also be proved by writing
. i 4 s s g 1

Go'(jY) = je [-ci(3y) + 3 si(i¥)]) - 5;

and using the results 5.2.5, 5.2.22 and 5.2.24 in Abramowitz and

Stegun (1965, p.232).]

(4.35) now gives the result
’ 0

Vs B -y -v
Rej[w (3y)] = nél B2n by (n) Te Imj(F)e
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so that

e 8

Imj (F) =T B bg (n) |,

n=1l 2n
This relation together with (4.34) and the definitions of Em(z), Gm(z)

imply from (4.33) that
© n Zm+1l

= R sin(2m + 1}0_ 2m
Relw(z)] = I, A, [ Lo (n)( o R“™ cos 2m 9)]
B not sin(2m-1)6 2mb
+ nél an[bo(n)RE.(Go(zn + Elb (n) ( m 20 - c052 mb,
’ " (2m-1)R ) rR°M

s <]

+ C(L - R sin 6) + e-Y[Rej(F)éos X -ﬂnElB bg(n)sin X] .

2n
If Ay is defined to be equal to -C and the last term above is drawn

under the second summation sign, the solution for U is seen to be

oo n 2m+1
_ R sin (2m+1)0 2m "
U(X,Y) = n§0 A2n[ mgo CLm(n)( T R™" cos 2m6)]
) ) n-1
- in(Zm-1)0
+ I.8, [bo(n) (Re, (Go(2))-Te Ysin %) + 2D (n) (Sinlm ;)-1" °°522me)1
J (2m-1)R*" T

Y
+ De cos X

where D is an arbitrary constant (independent of j but possibly
(0]
depending on i) and mgl is defined to be O.

Clearly this expression can be rearranged as a linear combination of
the functions mentioned at the beginning cf this section and conversely,
since the coefficients am(n), bm(n) &re ncn-zero, any finite linear
combination of these functions can be rearranged in the above form.

Thus the complete solution of the vertical barrier problem may be

taken as

co 2m+1

« . R sin (2m+1)6 2m
= .y - )
U(X,Y) o “m( —— R™ cos 2mf)
z in(2m-1)0 2md
+ mél dm(51n( m-2;-1 _ coszmm )
(2m-1)R R
+ c[Rej(eJz E, (jz) - Te Ysin X)] + De ¥ cos X . (4.37)
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-1 G2)"

Since El(jz) = -y - log jz - I (see Abramowitz and Stegun

n=1 v
n.n!

(1965}), it is clear that

Rej(Go(z))~ -log Ras R >0

and since the term e—Y sin X in the above expression for U occurs if
and only if the term Rej(Go(z)) is present, it follows that a solution
with a progressive wave (which could only be formed by combining the
two standing waves e-Y siﬁ X and e—Y cos X) can exist if and only if
the potential has a logarithmic singularity at the origin (cf. AlKer
(1975) p.203).

Some other types of solution are now considered.
(a) U(X,Y) bounded at infinity
(4.37) shows that c = O (m 2 0) while if, in addition, there are to
be no singularities at the origin dm =0, c = 0. Hence the solution
which is bounded at infinity and has no singularities at the origin
is a muitiple of the standing wave e“Y cos X.

If, on the other hand, a logarithmic (but no higher) singularity

is allowed at the origin, then dm =0 (m=2 1) and the solution

c[Rej(ejz E; (jz) - Te " sin X)] + De © cos X
is obtained. ¢ would be fixed by specifying the strengéh of the
source at the origin. D is still arbitrary and could be chosen to
furnish a progressive wave (incoming or outgoing) if required.
(b) If U is unbounded at infinity, then some information would be
necessary about its more precise behaviour there. Thus if

a , .
U(X,Y) = O(R) where 0 > O, the following cases arise:

(iy o<a <1 = ¢ =0 (m = 0)
(1i) 1L <a < 3 = ¢ =0 m@>1
(iii) 3<a < 5 = c, =0 m > 2) and so on.
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From these remarks it is certainly clear that a unique solution can
be obtained for the fixed vertical barrier problem (and hence also
for the classical wave-maker problem) only by giving a very clear
specification of the behaviour required at the origin and in the

far field.
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§5.1

§5.2

CHAPTER 5

Introduction

As mentioned in chapter 1, Leppington (1973a) has derived the

formula (for a semi—submerged‘circular cylinder):
T = exp(-2ia/e) [ (e/a)* --%,(s/a)slog (e/a) + 0(e/a)®]

as € + 0, using the formal method of matched asymptotic expansions.
However, in chapter 2, it was pointed out that this result is still
not accurate enough to provide a suitable comparison with the values

of T obtained by the multipole expansion me thod for intemmediate values
of N = a/e. The purpose of this chapter is to derive the next term

in the asymptotic development of T together with an estimate of the
error term so that a better comparison can be made., It is found that
incorporation of the extra temm enables a significant region of

overlap to be observed.

The right inner expansion to order ¢

(see §3.2 for the notation)

It has already been shown in §3.2 that in all cases where the

tangents at E_ and E_ are vertical,

d(X,Y;e) = ®9(X,Y) + o(1) as € * 0 where

Po(X,Y) = exp (iX - Y), (5.1)
Let it now be postulated that

d(X,Y;e) = Po(X,Y) + 2(e)¢z(X,Y) + e@l(X,Y) + o(g) .2
where 1 << 2(€) << € as >0,

The equation of the semi-circle for x > 0 is
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x = Va? - y*> so that (in the notation of §3.2)
£(y) = /Va*t-y* -a
_fen | _ler®
X = € T T2 7a + 0(e?) )
)
g, (&,¥) =1 )
) ) (E)

g (e1) = -3E= + 06 )
)
and £/ (ey) = -% + 0(ed) )

as €~>0.

If the above equations together with (5.1) are substituted in
(3.7) (which it is recalled was

r+l +1
ar

3 . / .
rko 8 (8.Y) [ggw: 20,¥;8) - £1(EY) Foagy 2(0,¥;0)]

Y

=i-#Enle E DT g (e,1)

and tems of orders higher than € are neglected, the result is

Y2

Y R——
72 JoXX

® x(0,Y) + 2(E) ®p (0,7) +E[®,,(0,Y) + < ¢4 (0,Y) - 0,7]

-Y
_ 2 -Y e _l 2
ie +¢ = X 2Y).

Equating temms of corresponding orders ine and using (5.1) gives

(I)RX (0,Yy) =0 and
1 ~Y
oy (0,Y) = e (2Y - ¥3),

The eigensolutions @Z (X,Y) will be of the form

m R2K+1

( sin(2K+1)8 _ 2
K20 K 2K+1

R Kc 0s2K0)
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(where the BK are constants and X = RcosO, Y = Rsinf) while, in

the notation mentioned at the end of §3.2 and in 84.2, equations
(4.8, (4.9),

9, (X,Y) = W (X,Y) + F,(X,) + E,(X,7) , (5.3)

W, (the wave part of Havelock's particular solution) is given by

W, (X,Y) = - %} exp(i X - Y) [j e—'2$ (2s - s?)ds

whence

W (K,Y) = -5 exp(iX -, (5.4)

F, (X,Y) (the wave free part of Havelock's particular solution)

consists of the two temms L, (X,Y) and II(X,Y) where

2 - 2 -
L, (X,Y) =§% f: log [ § :E§+%z] (2s - 6?) e S ds (5.5

and

- -2 ucos(Y + s)u - sin(Y +s)u -~ - -s |
I, X,Y) = - f: [: mramras) e (2s s?)e “duds(5.

Finally the eigensolution E, (X,Y) is given by

n 2K+1
_ R sin(2K+1)6 _ 2K
E (X,Y) = I, CK[ TS R cos2Kk01] . (5.7)

Fram (5.2), therefore, (together with (5.1), (5.4)) it fol lows
that W(l)(X,Y;E) (the wave part of &(X,Y;e) to order g) is
given by

w(l)(X,Y;E) = --%% ) exp (1 X -Y), (5.8)
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Expressed in outer coordinates (x,y) this takes the fom

ix-a) _ vy ]
€ €

i€
a - 5a ) expl
so,since the incaning wave has the form

-i(x - a)
[ €

m <

1,

exp

it follows that R(l) (the reflection coefficient to order€) is

given by

2ia

ROY = - exp (-2)

(in agreement with Leppington (1973(a) p.136, eqn.(3.10) with
1
N =2, dN =3 ).

Next, @(1)(X,Y;E) (the wave free part of ®(X,Y;€) to
order €) is given by

m 2K+1 .
(1) Cey o R sin(2K+1)6 __2K
P\ (X,Y;€) = 2(8) KEO Bg [ TN R cos2K6]
n 2K+1 .
R sin(2K+1)8 __ 2K
+e[L (X,Y) + I, (X,Y) + I, Co [ TES] R""cos2K6] ,

In order to apply the matching principle (see 8§3.5) it is

now necessary to obtain the leading terms in the asymptotics of

Ll(X,Y) and II(X,Y) as R >« ,

By integration by parts, it can be shown that

LI(X,Y) - 1 fj s2 [ Y+ s + Y- )4] e ° ds.

Ta X2 + (Y + 8)° X+ (Y - s

If X,Y are replaced by Rcosf, Rsinf respectively and the

substitution s = Ru is employed then, further,

2 . : -
Ll(X,Y) _ R? f: u? ¢ sin + u + sinb u ,) e

Ta 1 + 2usinb + u® 1 - 2usinf + u
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As u > 0, the non-exponential part of the integrand has the

form
2u? sin® + O(u™)

so, by Watson's Lemma

4s inf

L&Y =—%¢

+ 0(1/R?) as R + (5.10)

Next,

ucos(Y + s)u - sin(Y + s)u _ - explY + s)iju]
> = Re, { - }
u® + 1 3j u - j ’

so that (5.6) can be written in the form

- %; II(X,Y) = Rej Ij exp[;uEXj— in)] f: (25-52)exp[—s(1—ju)]ds du .

The inner integral is easily shown to have the value

—Zju
(1-ju)?®

whence

Ta _ u =Zu
-3 I, X,Y) = Rej [? EEDIEEDE e du ,

where
_'e
Z=X-jY=Rel .
u 2
Since A +30d-30° - ¢ + 0(u®) as u »> 0,

Watson's Lemma again gives

Ta 1 1
" I,&XY) = Rej (Ez +0 (Es)) as R

(and hence 7) =+ «.
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—%;‘21%2—9 1 as R>> (5.11)

Thus I, (X,Y) = + 0 (?)

If (5.10), (5.11) are now substituted in (5.9) (with R replaced by

§/ €, wvhere § = §_ in this case) and the resulting series is

truncated after terms of order €2 then it is found that

2K+1
m 1 § sin(2K+1)6 1 2K
(1,2) _ [ - §““cos2KO]
e\t = L) KEO By v 2K+l 2K+1 2K
n 1 s sinreye 1 52K 0 s 2x6]

+ € K§0 CK €2K+1 2K+1 €21(

2 4sin® ' '
+ £ —_']Ta6 . (5.12)

(It is noted here that, in the next section, the coefficients BK’

CK are shown to be zero so that the expansion of & to order c€is

o (X,Y) + z-:@l (X,Y) where

d(X,Y;e)
(5.13)

W (X,Y) + L (X,Y) + I, (X,Y)

o, (%,Y)

§5.3 The outer expansion to order €2

Without any assumption concerning the form of the asymptotic develop-

ment of the outer expansion, (5.12) and the matching principle

indicate that the fomm of the outer expansion of ¢(x,y;€) up to

terms of order €2 will be

£ (x,y) g, (x,7)
(2) o ooy o fke1 VO Bk
K=0 € €
+ e ; Pok+1 () _ 92x (x,)
K20 2K+1 2K
€ €
+ €2 by (%)), (5.14)
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where, as & = 0,

2K+1

B, § sin(2K+1)0 )
f2K+1(x,y) . K )
2K+1
. 2 ) 0< K< m
gZK(x,y) Vv BK.G Kcos2K6 ;
2K+1
c, § sin(2K+1)0 )
p (x,y) K
2K+1 RTI )
ox g 0< K< n
QZK(x,y) N CK 8" cos2K0 )
" 4sin®
¢0 (X,y) v 7"36 .

If now (5.14) is substituted in the equation

¢ + € ¢y =0 (y = 0, |x|>a)

and fhe coefficients of the various gauge factors (up to order
€2) are equated to zero, the following sequence of equations for

the functions f and g is obtained:

fome1 (X0 = 0 (5.15a)
p)
£ (x,0) =—3—[ (x,0)] m = K= 1
2Kk-1 %> dy 8k ‘¥
2 0 = 0
5y [8,(x,00] = .

These are followed by a similar sequence for the functions p
and q (f * p, g * q, m > n) though the last equation in this
case 1is

bo (x,0) = a—i,[qo(x,o)] . (5.15b)

In addition, all the potential coefficients must be harmonic, have

zero nomal derivative on I' and die off to zero at infinity. Those
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functions which, in addition, vanish ony = 0 for [x|>a are of the

form

2r+1 + 2r+1
+ B(”‘) 1} (r=0,1,2...), (5.16)

_ 1
er(z) = Rejﬂy 2+a

or linear combinations thereof, where A, B are real with respect

to j (this can be seen by means of the transformation

z + a .
W = —————— z = X +
— in.

(It is noted here that,in the next paragraph,qo is proved to be
identically zero so that from (5.15b) ¢o will vanish on y = 0O,

: 0
|x|> a. since also $o(x,v) m.ﬁ%%%_

bo(x,y) = Tr-a—z Re j_%z_‘:%)_]) (5.17)

It is now shown that all the coefficients BK’ Cg in (5.9) must

as § >~ o, it follows that

be zero and attention is confined initially to the BK’ It is
assumed that the set of integers K =0 for which BK #0 1is
non-empty and that M is the largest member of the set. It

follows that ¢(2) (x,y;€) contains a tem of the fom
2M+1

28 fover (x,y)/¢€ where
2M+l(x 0) =0 (by (5.15a)) ,
Hence f2M+l(x,y) must be of the form (5.16) and, in additionm,
Fpay (Xo9) v By 670 lsin(2Ms1) 8/ (2M+1) as & > O.
Thus f2M+1(x,y) = Rej [B¥§§+i§?+l (;:2)2M+1 l.

-50
If z is now set equal to -a-§;e 3% (uhere §, =G.and 6 = T-arg (z+a)),

it is seen that

Bm(2a) M2 sin(2M+1)0,

Farar (%29 (2M+1) 8, 2M+1 as §, >~ 0.

When 51 is replaced by €R; and the matching principle applied, the

left inner expansion of w(XI,YI;ED will be seen to contain a term
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of the fom

L(e )wh/€4M+2 where -

o~ BuC M sinae)e,

h TS| as R1 > o (5.18)
(2M+1) R1

since no other termms with the same scaling could appear (see (5.14)).
In addition (as shown in §83.4), Ibh would be harmonic, satisfy

1] +'¢Y1 =Oon Y, = 0 and also have the property Yg, = 0 on X, = 0
(since £ (€) wh/E4M+2
this form).

will be the leading term with a scaling of

Thus lPh is a solution of the vertical barrier problem and,fram
84,5,the solution satisfying (5.18) is

4M+2 | sin(2M+1)6, cos(2M+2)6,

B,, (2a)
R Ml T T mmyr e
" (2M+1)R 11 R 2M+2 ]
1

it follows (since M = 0) that ‘Ph would not satisfy the edge condition
since, by hypothesis, BM # 0. The only conclusion is that the

original hypothesis is untenable implying that B, = 0 for ail K = 0,

K
By similar reasoning it can also be proved that CK =0 (K= 03 whence
q, = 0.

The statement (5.13) is thus verified while (5.14) implies that
¢(2) (x,y;€) = equo(x,y), (5.19)
with ¢)o given by (5.17).

(Note: The addition of functions er(z) withr=0 and B=0 to
the solution (5.17) for ¢O and of similar functions with r > M

to the solution given for £ can be discounted by reasoning as

2M+1
above. Such functions would again lead to violation of the edge

condition in corresponding terms of the left-inner expansion).
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§5.4

-36
Finally,in this section, the substitution z = — a - 8;e 3"

in (5.17) shows that, as §; > 0,

8_sind 25in26
b, (x,y) = 1St% §,sin + 0(82) (5.20)
Tas 2ma” 17 ?

and the replacement of 61 by €R, followed by expansion of (5.19) up

to termms of order €3 gives (near E)
¢(2’3) (x,y;€) = €3.R1 sin6, /ma® . (5.21)

The left inner expansion to ordere€3

The matching principle

32 o 523
and (5.21) indicate that

V3 x50 = e, &,,Y) (5.22)
where

¥,(X,,¥;) v R sinb /ma as R >, (5.23)
Near E., the equation of I' in this case is

x==-a - f(y)
where (as for the right inner region)

f(y) = /az_-y2 - a.

or, in tems of left inner coordinates (see §3.4),

HCH PN



The boundary condition onI is now replaced by

r+l 8r~|-1

)

L et G FT B 00 50) < (X b0Y30] =0, (5.20)

where ié is recalled that

“1r
g.(e,Y;) =?1!— [f(eYl)J =0(eh) as £~ 0,

€

If (5.22) is substituted in (5.24) and terms of order higher than

3

€~ are neglected, the result is

]
o

3
€ wo)h (O,Yl) R whence

onl(o'Yl) 0.

Thus wo is an eigensolution of the vertical barrier problem
satisfying (5.23) whence

Y, X ,Y) = ®sing - 1)/ma® . (5.25)

§ 5.5 The right inner expansion and reflection coefficient to order ¢2

Reference to §3.2 and equation (5.13) leadsus to pose the development:
®(x,15€) = ‘I’o(X,Y) +e2, (X,Y) + 2(8)%) (X,Y) + €20,(X,Y) + 0(s?)  (5.26)
for the right inner expansion as € *0, 2(€) being a gauge factor

such that € <2(e)<e? as € > 0 and L (e) ®, (X,Y) standing for a
typical tem with a scaling of this type.

By substituting (5.26) into (3.7) and retaining terms of orders

up to€2, it can be shown that

2 | Y _ 12_
2E€) 00 (0,7) +€2[0,0 (0,) + 2 ¢,,(0,1) =529 . (0,0)
Y3 " oY y3 Y
T 2a‘% (I>0X(0 )+ 8aZ <I)oXXX(O Nl = (Zaz 8aZ e ®

(since the O(1) and 0(g) terms cancel, as. arranged before).
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Equating coefficients of the two gauge factors above gives
QQX(O,Y) =0,

and

o= -l 4 g2
¢2x(09Y) = = Za dY [Y QIY(O,Y)]’
where (5.1) and the relationship ¢1XX(O,Y) = '®1YY(O’Y) have been

used.

It can now be shown, by using arguments similar to those employed
in 85.2, that the eigensolution ¢2(X,Y) is identically zero and
that ,(X,Y) will not contain eigensolutions. Hence, provided
sz(O,Y) decays sufficiently rapidly as Y+ «, ¢,(X,Y) will be
given by Havelock's particular solution

o, X,1) = - & J‘:H(X,Y;s) = [? 9,,(0,9)] ds . (5.27)

To examine the decay properties of QZX(O,Y) it is first noted

that (apart from a term of negative exponential order)

9,(0,Y) =L (0,Y) + I,(0,Y)

4 4 1
“fat * omayz 0 Qo) as¥ e,

(from (5.10) and (5.11)). Certainly the derivatives of L, (0,Y) and
I,(0,Y) will have asymptotic expansions in powers of-%,given by
differentiation under the integral sign and application of Watson's

d o2

55 (¥29,,(0,Y))

dy.
can be found by differentiation of the above equation for ®I(O,Y).

lemma to the result,so that the asymptotic properites of

From this it follows that

1

d
(Y2 2;y(0,1)] =0 () as Y » o,

dy
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whence the discussion in §4.3 shows that the integral in (5.27)

is convergent and that the leading term in the far-field fomm of

®,(X,Y) will be O (1—‘1’{-&“) (see (4.19)).

From (5.13) it is seen that the full expression for 9,(0,s) is
®,(0,s) = w,(0,s) + L,(0,s) + I (0,s)

with W, L_l and I1 given by (5.4) - (5.6).

Hence

i -s
2a © *

@1 (0,s8) = - Qu- )e-u du

1 r s=u
log *——-
ma Q s+u

_ 2 r vcos(s-i-u)vz- sin(s+u)v (Zu-uz)e-u dv du .
Ta 0 (] ve + 1

In appendix D (D.1) the integrals occurring here are recast in fomms
which can be differentiated twice under the integral sign without
difficulty viz.

(Dl (0,s) = - 2:; e S o+ ﬂ_za Imj [ I‘: h(z)(:u)_e-‘]sudu]
4 | jsu
+ = Rej [)r: F(u)e du] , (5.28)
where
1

A S
and

F(u) u

(u - 3@+ H3?
and it is also shown that

d i -s 2
—_—Ta2 = - a2
ds [s 1s(0’s)] 2a (2s-s%)e * Ta

Imj[ J‘:ad—u[uzh(” (u)]e-'j *%du]

4 d j
+ o Rey | ﬁ;; (u? F/(w)e?® du] | (5.29)
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At tention is first directed to the wave part of @2(X,Y) (denoted
by WZ(X,Y)) which is given by

. _ 1 . d 2
WZ(X’Y) = - 3x Iﬂ: HW(X,Y,S) 38 [s @15(0,8)] ds ,
or _
W, (X,Y) =+ exp(i X-Y) e S L [s20 (0,s)] ds (5.30)
2 a 0 ds 187

(see 4.7) and 4.9) .

The integral here is evaluated in appendix D (D.2) where it is

i 21 1
shown to have the value 2(3-TT 3 ).
Thus

-1 2i 1 _
WY = 5 (G- g exp (ix-v),

and wQ‘(X,Y) (the wave part of ® (X,Y;€) wup to tems of order £?)

is given by

w(z)(x,y)- = w(l)(x,Y) + €2W,(X,Y) ,
i.e.
1 2
WAy = - gs ¢ (-3 S ex(ixy

(using 5.8)).

It follows that R(z) (the reflection coefficient to orderec?)
is given by

ie 2

rR(D o [1'--2; + (%-—é) %2’] exp (-Zia/i*i)o

This result extends the asymptotics of the reflection coefficient

to second order for the cylindrical geametry.
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As in the case of 9,(X,Y), the wave free part of <I>2(X,Y) is
written as the sum of two terms, L ,(X,Y) and IZ(X,Y) where

N + (Y - 2
Lz(ny) = = Z;Tl’a rlog [ X‘ + (Y py S)Z] dS [S Cbls(o,s)]ds B (5-31)
and
,(X,Y) —-— r r “°°S(Y+S)“ :”li'n(“s)“ e & d[ 5?6 _(0,s) ]duds .
(5.32)

Examination of the form of ad? [s2d ls(O,s)],given in (5.29), shows
that L,(X,Y) and IZ(X,Y) will consist of three distinct temms which
will be denoted by in(X,Y) and T,;(X,Y) (1 <i <3) respectively,

where
L21 (X,Y) =
! X2+(Y -s)? _ -s
8 Ta? rlog [ XZa (Y +5) ] (2s-s%)e “ds , (5.33)
L,o(X,Y) =

1 s
- gmegz Iy { f: J‘:log [ §1(§+s) 1 35 L w20 ) 1735 uds?, (5.34)

L23(X,Y) =
1 -5
-ﬂz—azRej { Kﬁlog [ };1(%“5) ] du [u?F (u)]eJs duds} (5.35)
121(X’Y) =

. (2s-s2)e ®duds , (5.36)

i J‘!J ucos{Y+s)u-sin{¥+s)u e—uX
0 o u® + 1

,o(X,Y) =

2
< veos(Y+s)v=-sin(Y+s)v —yX d 2, (3) ~-jsu
2a2 Imj{ f: ’0 f: T3 1 e [ h* 77 (u) Je dvduds )
(5.37
I,,(XY) =

‘nz 2 Re r ﬁ 1o COS(Y+82V-Sin(Y+S)V - d [ u?F’ (u)]e dvduds}_(5.38
+ 1
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The leading terms in the asymptotics of these six expressions as

R > ® are now required.
Comparison of (5.33) and (5.5) shows that
X,Y) = L 6.899)
L21( ’ ) = = 1 ’ ]

4a

whence use of (5.10) gives

{nd
L&y = -2 ,o(l) asrew . (5.39)
21 Ta‘R R

In (5.34) and (5.35),X and Y are now replaced by Rcos® and Rsin®

respectively and the substitution s = Rt is made. This gives

1-2tsinB+t% 2tsind +t2 d 2, (3) -jRtu
’ - _ I h dudt
L22(X D= m { r rlo ( T+2tsinb+t? ) [u (w)]e udel,
and
- _ 1- 2t sinb+t? d 2./ R4 g
LZS(X’Y) = ?—z' Re { r rlog( 1+2tsln9+t ) Ia [u*F’ (u) Je dudt},

whence the results from (C.3)and (C.9) in appendix C indicate that,

as R >
L

_ 1
L,&yY) =o (E) (5.40)

and

4s inG

8
Ly X,Y) = - Z3% (Ocosf-sindlogR) - — 2

(5-2y) +o (— ). (5.4

Addition of (5.39), (5.40) and (5.41) gives

sinb
L2 &X,Y) =72 a2R (8Y-20-Ti) -

8 1
T a2R (Bcosf-sinflogR) +0 ( R ) (5.42)
( Y = Euler's constant) .

Comparison now of (5.36) and (5.6) showsthat

.
I XY = -5 1D,
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whence use of (5.11) gives
I 21(X,Y) =0 (=) as R+ o . (5.43)

Finally the resuits from §€.10and §C.l1 in appendix C show that, as

R > o
4sinb 1
= = 44
IZZ(X,Y) m + o ( R ) (5.44)
and
ID = ©°(3), (5.45)

Addition now of equations (5.42) -~ (5.45) gives the leading
asymptotics of the wave-free part of ¢(X,Y) viz, as R+ @,
SSinG( 2_&_)

8 ) 1
T2alr ¥ ) ~T2aZR (Bcosb-sinflogR) *+ o (¢ ). (5.46)

FZ(X,Y) =

From (5.26) and the fact that @ (X Y)= 0 it can be seen that
(2)(X Y;e) (the wave free part of<I> (X,Y;¢€) up to order ¢2) is
given by

<I>(2)(X,Y;e) = sFI(X,Y) + eze(x,Y)

while substitution here of (5.10), (5.11), (5.46) (with R replaced

by 6/6:) and truncation of the resulting series after tems of order
3

€~ gives
@(2,3) = 82 (4sin9 ) + €3logg( g-i_%g)
Taé 2 28-2
8 e 3 8 8 8-s1inb 8
+ € [z (v - 2= 1%) S?e - =z ( 2cos Ssin logd y - 4cosz 5.

This result is required for the further development of the outer

expansion in the next section.
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§5.6 The outer expansion to order €3

The matching principile

¢(3y2) = @(2’3)

shows that the outer expansion of ¢(x,y;€) up to order € will be

given by
63 (x,y5€) = €%_(x,y) + Sloges, (x,y) + 26,(x,9), (5.47)

where, as$(=6.) > 0,

n 4sin®

¢ (x,y) )
O ’
ma ) (5.48)
8sinb )
¢1(X.Y) v 2228 )
and
4co0s20 8 Bc osB~s inBlogd 8 im | sinb
¢2(X,Y) v Tad2 ﬂzaZ'( I3 ) + azzz'fY 2- ) ) 5
L4
(5.49)
The potentials must also be harmonic, satisfy %%» =0onr = a, and
die off to zero at infinity,while formal substitution of ¢ = ¢(3) in

the equation ¢ + €by = 0 (neglecting terms of order higher than £3)
gives the additional conditions (ony = O, |x¢>a)

¢O‘= 0,
¢1 = 0,
6, = =0y .
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It has already been shown that

so that conparison of the asymptotics in (5.48) leads to the

conclusion that

- 4 (z+a)
¢, (x,y) =.- Za3 Rej [ j?;:zy 1 5

the addition of eigensolutions non-singular at E, being excluded
as in §5.2. Hence, use of (5.20) gives

¢ (x,y) = _ 28sinf, o(8,), as 6, >0. (5.50)

m2a*

To begin the solution for ¢,it is first noted that

o 4 1
= a— R . ——
el N CLRE

and also that, in terms of § and 6 ,

In addition

Bcosf-simflogs _ _ Re. [ jlog(z=-a) ]
J z—a ’

the log being made single valued by a cut along the real axs

from a to - . Hence the function

_ -4 4] z+a ‘z+a
¢ = Rej [ ma(z-a)2 ~ Tm2a® ( z-a ) log ( z—a) ]

will certainly satisfy ¢ = ~¢

log( f;g ) are then real).

-+
ony = o, |xpPa (since;z_-_—:- and

oy
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If the asymptotics of ¢ as §>0 are now examined, it is found that

_ 4cos26 8 Bcosf-sinblogd ., sinblog2a 9
¢= - Tas 2 < aZ ( 3 + 3 + 73') + o(D),

40 ’
the 0(1) term -~ a3 being exhibited explicitly since it will be

referred to later from chapter 7, 87.1.Hence the function

4 47 2 .
*(x,y) = Re, [ - a2 - nzjaa (2;2) 108(':_—:)] + o CY+log2a-2--l-g—) 9

a

will have the value -¢oy on y = O and also satisfy the asymptotic
condition (5.49). Indeed the imaginary part of the camplex potential
above is seen to be zero when z = a eju (0 < u< T) (implying that
a—;b, = oonr = a) so that the solution for ¢, is now camplete. (If
-§—‘£— had assumed a non-zero value on r = a then, by reflection, the

problem would have been reduced at this stage to one of exterior
Neumann type) »

By putting z = —a-—-c‘Sle—Jel in the solution for ¢, and using elementary

expansions it may be proved that, as §, - 0,

§,cosb 2
lﬁa“ 1 4 2T [—61(sinellog51+91cosel)

1
P, (x,y) == 75 +
+ 5lsin61(210g2a+Y—i-i81)] + o(8,),

When this result and those in (5.50) and (5.20) are substituted in
(5.47) (with §, replaced by €R,) and the resulting series is truncated

after terms of order €', it is seen that, (near E)

¢(3,4) = €3(R ‘Sinel-l
Ta

+ akloga(-aRI Sinel )

m2a

2
+€§ﬂ?R1¢0861:R1 Sinzel)
2Ta

2 m
+ w[-m (s1in8,1logR, + 6 cosd, )+R sin91(21og2a+Y-2—i§—) 1},
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§5.7 The left inner expansion to order €*

The matching principle

P(4s3) o 43,4

indicates that the left inner potential Y(X;,Y;;€) has an expansion

to order €' given by
w(é") (X Y 'E)— 3 L L .
DY) = €29 (X,,Y)) + €' loged (X, ,Y)) + €', (X1, 1),  (5.5D)

where,as R (=vX} + le) > @,

6 -
bo(Xy,Y) v R si0% D e (5.52)
0, (X,,Y) . =4R 5106, ’ (5.53)
w2at

-Rf sin26,+2Rc 086 2R

11)2(}(1 ,Yl) N -—ﬂ.z';'n (sinellogRl-*Glcosel)

2ma

. 17T
2R, 8119, (210g2a4¥-2- ). (5.54)
mat
(It is worth noting here that the extension of the perturbation
series for the outer potential has resulted in the complete eigen-
solution Rlsinel-l appearing as the asymptotic fom for \po as

R >, instead of only Rlsine1 as was the case previously (see 5.23)).

If (5.51) is substituted in (5.24) and temms of order higher than

e* neglected then use of the equations (E) in §5.2 gives

e'logel, (0,Y.) + €*[Y,x, (0, ) + ‘1 0,1,) + % (0,Y,)] = 0
X1V, 1 2x1 (O 4 + Yoy, (Osh _flgwoyly’ 24 )1 =

(since it has already been arranged that lower order terms vanish).

Equating coefficients of the gauge factors here to zero gives

Vg (0,¥)=0, | (5.55)
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and (when 5.25) is used)
- - 4

In addition wl,dl must be harmonic and satisfy both the.free
2 >
surface condition and the edge condition R1 awl + 0 as Rl > 0.

It follows immediately from (5.53) that BRI

V&Y == e (0 - D), (5.57)

while a problem similar to that for wz is considered in chapter 4
(see 84.4(a)). From the equation at the end of §4.4(a), it is
seen that the solution satisfying (5.54) and (5.56) is

(with z;= X; + jY,)

_ 1 , R25in26. -2R _cosH 2 ‘
WZ(XJ,YI) = = 55 ! ; 1 Ly~ g (Rlsin61+R161cosel—l—logR1,
2 i 2 iz ..
+ ?? (210323+Y‘2-8—) (Yl-l) + T—rz—a-q— Rej [eJZ' LI(JZI)]
21 .
+ 1aF exp(1 X - Y)) (.58

(since terms of lower orders (as R = @ ) than those required in the

matching (5.54) can be added if required).
It follows now that the wave part of w(XI,YI;e) to order ¢"* is given by
Wy = E G et x - 1) (5.59)
Expressed in outer coordinates this takes the form
w4 (x, %) SR (G e R Y

so,since the incoming wave has the potential

-i(x—a) -y ]

I
- =exp [ - = 1s
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the transmission coefficient to order €*1is given by

(4) _2i Ew 2ia
T === G) exp (-=)

(in agreement with Leppington (1973a) p.141 (4.5)).

It is now possible to proceed to the fifth order estimate for T

without further matching as detailed in the next section.

§5.8 The transmission coefficient to order €°

Examination of the higher asymptotic foms of ¢O(x,y), ¢,(x,y) and
¢,(x,y) when z is replaced by —a—61e-j61 and 51 -+ 0 indicate that
w(S) (which would be obtained fram the matching principle

w(5,4) = ¢(4’Sb will certainly contain terms with scalings €’loge
and €°, However, the presence of terms with other scalings lying
between € and €° as € > 0 can not be rejected so it is postulated

that
(5) 3 - 4 4
U] (Xl,Yl ;€)= éwo(xl,yl) + € logewl(XI,Yl) + € wz(xl,YI)

+ s(E)V (X1, Y1) + €’logedy (X,,¥) + €9, (X ,Y) , (5.60)

where €* < s(€) <¢c’ as € * 0 and the temm s(€) ws(Xl,Yl) is

to be considered as a typical term of this type which may be present.

(5.60) is now substituted into (5.24) and the series truncated after
terms of order €°. The result (using again the equations (E) and the
fact that the coefficients of scale factors up to order € have been

chosen to vanish previously) is

] 5 Yl Yi
s(e)lpsxl(O,Yl) * e log€[¢3X1(O,Y1) * —;ﬂGYl(O’YI) * Zi'w1Y1Y1(0’Y1)]

2 3
5 Y Y3 Y]
€ 1 -1 -
* e g, (0Y) ¢ L Yy (0Y) *+ ¥y, 0,Y) z?wolel(o’Yl)

Ylb
-y 0,Y.)] =0
8a2 "oXiY1Y; ‘o', :
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Equating coefficients of the various gauge factors to zero and using

(5.25), (5.57) gives

lpsxl(o'Y1) = 0,
p (0,Y) = _-f—.,- Y (5.61)
3X1 1 T a 1
and
1 d 2
0,Y = o~ [ Y 0,Y . .62
wuxf 1) 2a dY1[ 1 vszJ( 1)] (5.62)

In addition, as usual, ws’ ws’ y, are harmonic and satisfy the

free surface and edge conditions.

It follows immediately that ws(Xl,Yl) is wave free,so that the
transmission coefficient will be determined to order e> once the
wave parts of wa and wq have been obtained. 1In the case of Uy,
this presents no difficulties since camparison of (5.61) and (5.56)
indicates that

P3(X;1,Yy) = --ﬁ% Po(X1,Yy) + (eigensolutions)

whence, by use of (5.58), W3(X;,Y;) (the wave part of ws(X1’Y1)) is

given by
W3 (X;,Y) = -‘Eégk exp (1 X3 - Y3), (5.63)

It remains to derive the wave part of ¥, (X;,Y;). N

Reference to (5.58) shows that

T2
2 .

1T
2(0,Y;) = - (Y, log¥,-1-log¥,) + (2log2a+Y-2- & ) (¥;-1)

- -jv -
+ Re, [e At f” h dv] + Tie Y,
J . A
3Y

1

(where the exponential integral

. e-.ju de
. u

Jz
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has been recast first in the fomm

~j -iv

J = dv
v

2

by means of the transfomation u = j v,then in the fom

by rctation of the contour of integration through the fourth quadrant
so that the upper limit becomes + <), It then follows (after two
differentiations and use of (5.62) that

2 iT (o
wuxx(o’Yl) ==z [Y, logy, + (3 - y - 21log2a + = )Y, 1

°° v -

* s [re (I S v +mi] Sz Ty (5.64)
J sy v dy 1

J4, . 1

The progressive wave generated by the unbounded term Y, log Y, is
i

proved in 84.4(b) to be 25 (y-1)exp(i X,~Y ) while that produced
by the second unbounded term can be shown (in the same way as for
W, above) to be Tz~ s (3- -Y-2log2a + -—) exp(i X;-Y;). The camplete

Havelock wavemaker solution can be applied to the term

Ta® dy 1 )

giving a wave part
2 . -s d -s
mas exp(i X;-Y;) r: e I (s%e °) ds ,

and evaluation of the integral shows this contribution to W, to be

—2?1-5— exp(i X;~Y,). It remains to fincc’lo_.the.progressive wave produced
by the term T (Y e—Y ) Rej ( e 17
"in Appendix D (§D 3) where it is shown in fact to give zero wave

dv) and this 1is achieved

contribution. Hence,by combining the three non-zero wave contributions

mentioned above,the wave part of Y, (XIYI) is seen to be given by
W.(X _ 8i 2 im
4( 1,Y1) = T—Tz_a?- (y+log2a- -T) exp(i XI-YI) . (5.65)

Reference to (5.60) show shows that w(s)(x, ,Y;3€) (the wave part of
W(S)(Xl,Yl;e) to order €°) is given by

5 4
w( )(Xx Y, 5€) = w( )(Xl,Yl;e) + €slog€w3(X1,Y1) + SSW“(XI,YI),
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whence use of (5.59), (5.63) and (5.65) gives

W 150 =2 EY - & 10pe + B (©5 (vr10g22-2-1D lexp(a x 7Y,
or
W v50) <2 G -1 Q) log © -2 ©) @-v-log2niD) lexp(i XY ).

When this is expressed in outer coordinates and compared with the
incaning wave it is seen that the transmission coefficient to
order €° is given by

-2ia

/)11-2E) 108 & - % &) @-y-log2+iD ],

R

a

The second term in T(S) agrees with Leppington (1973a, p.l42)
while the third term is the one which completes the fifth order
asymptotics.

§5.9 Estimate of the error tem for T(S)

The order of the error term in the formula

T v EE ) exp(-21a/8) [1-2E) Log(D) -4 (D) 2-¥-log2+5) ]

depends on the form of the sixth order terms in the per;urbation
series for the potential in the left inner region and this, in turm,
is determined by the higher forms of the asymptotic developments

of the potential in the outer and right inner regioms. A full
discussion of these higher forms is given in chapter 7, §7.3 and,

in this éection, some of the results appearing there are anticipated.

The next approximation for the right inner potential is

@(3)=(I> +€® + €29 L e3¢ .,
. ) 1 2 3
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Examination of the higher asymptotic fommsof F, and F,(the wave
free parts of &, and %, respectively) shows that F1 contains

higher tems of orders le- and ﬁl?while F3 contains higher terms

with orders ITII andlgzg-R . In addition the velocity distribution
<I>3X(O,Y) is of order ¢ as Y > ® so that, fram the discussion

in chapter 4, 84.3, the wave free part of ‘I)s in the far field will
contain tems which, as R > *® | are 0(1), O (1—0-153) and 0(%).
(The 0(l) term matches with the term -Tr—zli'_e,e which has already
been noted in the expansion of ‘1’2 near E+ in §5.6). Mo reover, it
also contains a term which is O ((1—%55- ;
It follows then from the matching principle o3:4) = ¢(5:3) tpae
o(%) 4111 be of the form

¢(4) = g2 ¢, + €3 log€d,+ €30, +€* (lLog) 20, +€* loge ¢, +€%0,.

The potentials ¢,, ¢, and ¢, will be harmonic, satisfy—g—(i' =0onr-=a
and also tend to zero as r = ® ., Fommal substitution of ¢ = ¢(4)

in the surface condition (neglecting terms of order higher than€u)
gives the further condi tions ¢,=0, ¢, =‘¢1y,1¢5 ==¢,, ony=0, |x|>a.
¢, can be found explicitly. It is equal to ;@2 ¢°. Hence the

(5)

matching principle indicates that V will contain a tem €° (log€) 2V

\p(S) E

(where lPE is a multiple of the eigensolution (Y;~-1)) and that

will contain a temm ES(logE)Z‘PG where V. does have a wave tem

arising from WE. Hence the next term in the development of the trans-
v 2

mission coefficient will be of order (Logh) /N6 . (The exact value

of this term is derived in chapter 7).

85.10 Comparison of asymptotic values of T with those obtained

using multiple expansions for N = 8(1)20

It has been proved that the fifth order asymptotic fomula for

the transmission coefficient is

4

2(5) 4
TN

_ 21 4 im
= T exp(-2iN) [l1+ — log N - ™ (2-'Y-log2+§)]
where N = 2/e.
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The real and imaginary parts are given by

2

Re(T)y = 24 . {[1+- (1og2N+Y-2) 1sin2N + 255391} (5.66)
Im(T(s))— 2 {[1+ 4 (log2N+Y-2)]cosZN - S;;zN} (5.67)

These formulae enable a comparison to be made between the values of
T obtained numerically and the asymptotic values for an intermediate
range of values of N (the range chosen was N = 8(1)20). The
comparison is presented in tabular fom and graphical fom at the

end of this section.

In every case the magnitude of the difference between the camputed
and fifth order asymptotic values is less than (log)® /N® (the

order of the error tem). The occurrence of very small relative
differences of less than 1% for the larger values of N provides

strong evidence of a region of overlap.

TABLES 9 and 10 (Overleaf)

Comparison of the values of the real and imaginary parts of T(N) as
obtained from (A) multipole expansions, (B) Leppington's asymptotics,
and (C) the asymptotic fomulae (5.66), (5.67). Column (D) contains

£ (logN)z/Ns )

the value o The values have been scaled by multiplying

them by 10° for N = 8(1)15 and by 107 for N = 16(1)20.
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o |=

11
12
13
14
15
16
17
18
19
20

o

-62.2
-80.9
69.3
-2.68
-31.8
20.4
4.56
-14.3
64.6
44.2
-69.2
17.9
33.0

>

-170
79.2
27.0

-50.7
16.5
16.0

~-18.7
2.71
91.5

-75.7
-7.0
52.9

=-31.0

TABLE 9 Re(T(N))

B
-59.6
-95.5
75.1
-0.5
-35.1
21.3
5.57
-15.3
65.3
48.9
-72.4
17.3
35.3

(@]

-63.7
-84.4
71.1
-2.44
-32.4
20.6
4.70
“l14.4
64.8
44.8
-69.6
17.9
33.3

TABLE 10 (Im(T(N))

B
-198
84.0
33.6
-55.5
16. 5
18.0
-19.8
2.4
98.9
-78.4
-9.35
55.9
=31.6
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c
-178
8l.4
28.3
-51.9
16. 6
16.4
-18.9
2.68
92.5

~76.1

-7.28
53.2
-31.1

o

16.5
9.08
5.30
3.25
2.07
1.36
0.925
0.644

x 107

4.58
3.33
2.46
1.71
1.40

)

16.5
9.08
5.30
3.25
2.07
1.36
0.925
0.644
4,58
3.33
2.46
.71
1.40

x 10°

x 108

x 1077
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Comparison of the values of the real part of the transmission coefficient
as given by multipole expansions, Ursell's asymptotic formula, Leppington's
asymptotic formula and the new asymptotic formula (5.66). The values are
normalised by Ursell's real part so that his results are illustrated by the
horizontal line through 1 on the vertical axis. At N = 11 the multipole
value is about seven times bigger than Ursell's value (see Table 7 in §2.8)
and cannot be shown (in scaled form) on the graph.
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Comparison of the values of the imaginary part of the transmission
coefficient as given by multipole expansions, Ursell's asymptotic formula,
Leppington's asymptotic formula and the new asymptotic formula (5.67).
The values are normalised by Ursell's imaginary part so that his results
are illustrated by the horizontal line through 1 on the vertical axis.
At'N = 18, the multipole value is approximately 0.9 times Ursell's

value, sO the scaled form of the multipole value (£0.9) cannot be shown on
the graph. '
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Chapter 6

§6.1 Introduction

The published work on the 2D radiation and scattering problems
for bodies whose surface piercing tangents are non-vertical is much
scarcer then in the vertical tangent case although the associated
"sloping beach" problem (the generalisation of the vertical barrier
problem discussed in detail in Chap.4) has received considerable
#ttention (this will be considered in more detail in §6.2).

Wit£ regard to the radiation problem, Holford (1965) has presented
a heuristic method for the determination of the leading term in the
asymptotic form of the radiated wave amplitude in high frequency
heaving of a cylinder of arbitrary cross-section although he considers
only cases for which o , the angle at the intersection between the
cross section and the free surface, measured in the fluid is not
acute. His result agrees with those derived rigorously by Ursell(1953)
(for a semi-circular cylinder) and Holford (1964) for a dock. Szu-Hsiung
(1984) has extended Holford's work to the case of arbitrary high-
frequency oscillatory motions giving the first two terms in the wave-
amplitude asymptotics. The first of these agrees with Holford's term
in the case of vertical oscillations and vanishes when the tangent at_

1

the waterline is vertical. This explains the step from 0[%} to O&FJ

in the order of the amplitude of the radiated wave as N »> . No
discontinuity is involved. The first term simply contains a factor

sin pwn(y = 1/2a), which tends continuously to zero as u - 1.

(Recall that N = % , Where a = semi-beam, 2m€ = wavelength).
Alker (1977) notes a similar "jump" from 0[§;} to 0[§%} in

the order of magnitude of the transmission coefficient in the scattering

problem for a partly submerged circular cylinder (for the same reason)
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although in this case the three leading terms in the general result
tend continuously to zero as M > 1 . Alker's results apply
formally to all surface angles of intersection so a drop in the order
of magnitude in the transmission coefficient may be expected to occur
at all angles of the form 7/2n , where n is an integer, although
clearly this will be difficult to observe numerically for acute angles
Since a then can never be more than 22%° different from an angle
of this form.

The most important development from a numerical point of view has
been the application of the method of null field equations to water
wave problems by Martin.P.A. (1981),(1984). The method is applicable
to general cross sections although, in his numerical work, Martin
considers only normal intersection at the water surface (heaving and
scattering in the case of a semi-submerged elliptic cylinder). His
results agree well, (in the special case of a circular.cylinderj with
those obtained using Ursell's multipole method.

The purpose of this chapter is to apply the null field equations
to the scattering problem for circular cylinders passing through two
fixed points in the water ;urface at various angles, o . The range
of values discussed is 45° < a £ 165° so that a regime not covered
by John's (1950) unigqueness fheorem is also considered . Results
conforming to the traditional numerical tests, |R|? + [T|? =1 and

arg R - arg TI = n/2 are obtained in this case also. 1In addition,
in cases where 0o is acute, "interference" effects seem to occur at
certain diameter/wavelength ratios in the sense that as %

(d = diameter, 2me = wavelength) is increased with o fixed values
occur (depending on @) at which the magnitude of the transmission

coefficient suddenly drops by an above average amount. As'<§ is
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increased beyond this value the magnitude of T gradually increases
back to the previous orders of magnitude before the expected decrease
sets in again. (This is illustrated in Graphs 11, 12). The values

of -% ét which this effect was observed initially were seen to increase

with a . For a = 45°,60°,75° the values of at which T

N ol

starts to increase are approximately 0.3, 0.6, 1. respectively or,
with ref. to tablellgq, at values of N between 0.7 and 0.8, 1.5 and
2.0, 3.5 and 4.0 respectively . There is however, no sign of the
phenomenon in the case of the semi-submerged circular cylinder,
a = 90° (up to N = 20) nor in the obtuse angle cases (up to N = 10).
For o in the range 135° - 160° the values of the real and
imaginary parts of T are relatively large and accurate for 7 < N < 10
so that comparison with the values obtained from the first two terms
of Alker's asymptotic result become feasible. However, the magnitude
of the error term (which is 0(1/N2P+1)) increases with o and, in
general, only one significant figure of agreement was obtainable, the
relative differences being mainly of between 10% and 20% (see table
12). To produce stronger evidence of an overlap region will require
numerical values_of the third term and it is anticipated that such
Qalues could be obtained, without great difficulty, for a special
angle of the form pn/2n (p odd, n an integer). The simplest case
for which suitably accurate values are given by the null field method
for 7 < N 10 is 3Tr/4 for then the functions appearing in the
third term have special forms which are more easily programmable than
in the general case. This has not, however, been attempted here.
Finally, in this section, it may be remarked that since the

sloping beach problem plays a crucial role in the application of the

method of matched asymptotic expansions to the general radiation and
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transmission problem it seems worthwhile to give a brief outline of
the developments leading to the soiution for a general angle and then
a short discussion of the behaviour of those particular solutions
which satisfy the edge condition. This is the purpose of the next
section.

§6.2 The sloping beach problem

The pioneering work of Hanson (1926) who considered angles of the
form %% (n an integer) and derived a standing wave solution bounded
at the shore line does not seem to have been added to till Bondi (1943)
deri&ed a solution (for the same form of angle) with source like

behaviour on the shore. Lewy (1946) then extended this work to

 obtain two analogous standing wave solutions for angles of the form

- Pm

n (p and n integers such that p is odd and 2n > p) and was thus

able to derive progressive wave solutions for such angles by suitable
combination of the standing waves. Stoker (1947) returned to angles
of the form é% but, unlike Lewy, did not assume from the outset that
the solutions behave at ® 1like those on an ocean of infinite depth.
Both writers use Lewy's method of reducing the problem to that of
sol&ing an ordinary non-homogeneous differential equation with constant
coefficients for the complex potential (the method used in Chap.4 is

a special case of this where no assumptions have been made

about the behaviour at the shore line and at infinity). Lewy's
solutions do not include the dock problem (p = 2, n = 1) but this

was solQed by him in conjunction with Friedrichs (1948) by assuming

a solution for the complex potential in the form of a Laplace type
integral %; .IP ech(C)dC and showing that £ must satisfy a

certain difference equation. By choosing the path P suitably they

again constructed two standing-wave type solutions. In essence this
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was the method used by Peters (1950) (working on a more general
problem) to derive the two different standing wave type solutions

for any angle including ©) (in the general case the function f is
the solution of a differential difference equation). He had,

however, been preceded by Isaacson (1950) who adapted Lewy's idea

of continuous dependence of the ‘solution on the angle of slope to
deduce a form of solution which would be applicable for any angle

and included Lewy's solutions as special cases. He then checks that
the solution so derived does solve the problem in the general case.
More recently, Morris (1974) has derived a solution having source like
behaviour at a general point of the sector formed by the beach and the
water surface. This solution is bounded at the shore line and gives
an outgoing wave train at infinity.

A fundamental difference between solutions of the general sloping
beach problem and the vgrtical barrier case is that solutions satisfying
the edge condition 8 %% +~>0 as §-+0 éﬂé having progressive
waQes at « do exist. Indeed the only cases in which such solutions
do not exist (unless there is an incoming wave) are when the angle of
slope is of the form"ﬁk . A short discussion is now given of the
precise behaviour at the shore-line of the solutions which satisfy the
edge condition (termed eigensolutions by analogy with the vertical

barrier case) and have progressive waves at infinity.

§6.3 Behaviour of eigensolutions at the shore line.

(Note that scaled coordinates X = Kx, Y = ky are used and. that Peters'
y-axis. is upwards whereas throughout this work, the y-axis is taken
downwards. In addition, the letter u in Peters' work is used ;o
denote T/o where a is the angle of slope. Here it denotes é% o)

Reference, then, to Peters', p.333 and p.336, showsthat the solutions

satisfying an edge condition are the real parts of the complex functions
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W (@ - ir] eoglear
q

(2 =X+ i¥, g = 0,1,2,...)
P 2 ] L rtrér
"W (g-1) -
where ) 1is an arbitrary real constant and
-2u
_ 1 (e [1-1: . 4
g(g) = expl- — L) logkl_t_2 ] ey at] .
The path P is defined as follows. If géﬁé has no branch points
c

at the origin, then P 1is described in the positive direction on a
circle of radius > 1 centre the origin. Otherwisg a cut along
arg § = 1 - %0 (to ensure convergence of the integral when O < arg z < o)
and linear paths extending to infinity on each side of the cut are
added to the circle.

Peters proves (p.335)-that as Z > @
iﬂ/2)eiz

wq(Z)“'— 21A exp(-imqu)g (e and

.q(ei“/z) = exp(-iX)/Pé

it can be shown that
where x = '%(l—u) T .
Thus, if Eq(X,Y) dencotes the real part of Wq(Z)‘,

2T

Eq(XrY) N~ ST cos(X - y - «n-qu)e_Y as X »
H %
and, if ) is chosen to be --4#— ’ then
-Y
Eq(X,'Y) v 2 cos(X -y - mqule as X > o .,

When the incoming waves are eliminated from two such solutions

Em(X,Y) and En(x,Y) (m # n) it is seen that the solutions

D . .
e, n(X,Y) = exp(lwnp)Em(X,Y) - exp(lﬂmu)En(X,Y)

w,
{m # n, m,n = 0,1,2,...)
have the property
em n(X,Y) v = 2i sin{(m-n)rplexp[i(X-x)=¥] as X + =
M,

and (from Peters p.336 again)

e n(X,.Y) n

m,
. 3 2myp . .
{ 2exp (imnu) u'R cos(2mp9)/F(1+2mp) if m = min(m,n)
-2exp(inmu)uéRznucos(ZnuG)/F(1+2nu) if n = min(m,n)
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Fig. 3

Notation used in Application of Null Field Equations

- 1l18a -



as (X,Y) - (0,0) , where X = R cos 6, Y =R sin 6 .
Clearly if u 1is an integer 1i.e. if the angle of slope is of the

) .
form 5% (r an integer) then these solutions are wave-free.

§6.4 Application of the Null Field Equations to the scattering problem

for a partly immersed circular cylinder.

Martin (1981) has described the application in detail for the radiation
problem so only a brief summary will be given of the main results needed
for the scattering problem. Reference should also be made to the
discussion and notation mentioned in §1.4 in connection with the
integral equation method.and to the statement of the general problem for
the diffraction potential in §1.2 eq.(1.1)-(1.6).

As in the case of the semi-circular cylinder, new coordinates
X,Y will be introduced such that X = Kx, Y = Ky . The equations

(1.1) - (1.6) then become

¢ . %6 _ . .
X2 + Y = 0 in D
3¢ _
¢ + -é'—Y- = 0 on S
%% _ _ 3 iy
3n n [exp(=iX-Y)] on T (6.1)
|V¢|+ 0 as Y + e

$(X,Y) v R exp(i X-Y) as X > 4

$(X,Y) v (T-1) exp(-i X-Y) as X > - o ,
Thus (with reference to fig.3) a wave of fixed length 27 1is considered
to be incident on a circular cylinder passing through the points (#N,0)
and making an angle & (measured through the fluid) with the water
surface at Ex . S is Y =0, |x| >N and T is parameterised by the
angle, ¢ ., between the downward vertical through the centre of the

cylinder and the radius to a general point q of T (-(m-a)<y<m-a) .
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(y seems to be the most convenient parameter having a natural

transition from the cases when a 1is obtuse to those when a is acute).

It follows that the radius of the cylinder is and that

sina

the arc length sq measured from the lowest point of I' to a general

sin

. L E—
51n6q ~  J/1+cos®a+2cosacosy

NY
3 3 I" .
peint g of is sino
Thus on T
s = W )
. a sSing )
)
% _ N §1n P )
q sin @ )
v = N(cos Yy +cos &) )
a sina ) (6.2)
D N )
R = V/X* + ¥ = - V1+cos? a+2cosacosy )
q q q sina |
)
)
)
)
)

y = 3 - ¥
where vy is the angle which the normal at g into the fluid makes with
the positive direction of the x-axis.

In the case K=1 , the Green's function due to John (1950) has

the form

G(P,Q0) = % log §§_§;2::§+2;z - 2 {’ e (Y+n)zoSXX-g) {g%
o

where the path of integration passes below the pole of the integrand
at A = 1 and it is noted that G is harmonic in the whole half-plane

Y > 0 and satisfies the condition G + GY = 0 on the whole of Y = 0.

In addition to the equations

2m¢ (P)

: 3 3
[plee. aTq $(q@) - ¢(q) aTq G(P,q) Jds (6.3)

and  mh(p) = [ [6(p,a) 5= $a- $(@) 3o Glp,1ds_
d qd

(mentioned in §1.4) for the values of the potential in D and on T ,
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Martin (1981) wuses a third integral relation
0= [ 6P, —— ¢(q) - $(q) —— G(P ,q)1ds (6.4)
r - Bnq on -’ q *

Here P_ 1is a point between the segment E_E+ and T (the interior
region) and this last equation asserts that the potential generated
by the source and dipole distributions over T , which are used to
represent the actual potential in D , vanishes in this interior
region. (This is not to say that the continuation of the actual
exterior field vanishes there). This last equation leads to what
Martin calls 'the null field equations for water-waves' as follows.

Firstly, Ursell (1981) has devived the bilinear expansion of the Green's

function
w 2
(o}
e, = § 1 o ’m@e’(Q (6.5)
m=0 =1
when rQ > r, . where (for K = 1)
-Y -
al®) = - 2¢7%cos X , al () = 2¢ 7 sin X (6.6)
1p) = f° o AY A 2 = -2 1
2 (P) {0 e cosAX =5, 0 X(P) % %a(P) , (6.7
Yyp - cos2mg 1 cos(2m-i)f 2 - Sin(Cm+1)8 = 1 sin2md
o (P) 22m -1 _om-l o P 2w 2n _2m (6.8)

for m> 1.

(The other umc(P) (m>1) are given in Martin (1981) p.328 but will
not be needed explicitly here. It is sufficient to note that they are
regular and satisfy the free surface condition.)

C'leafl'y the <I>m1 'a're even in X and the <I>m2 odd. (6.9)
Suppose now that a semi-circle, centre 0 , is drawn in the interior

region with diameter lying on the free surface. If P is any point

within the circle then certainly r, < rq so that (6.5) can be

substituted into (6.4) giving
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oo

2
; \ o 3 o] ) c
0=13 la (P_)fr[¢(q).an Oy (@ - g @ o (@)ds

m=0 o=1 [ q
whence
. 3 o _ : g ) .
6@ E o, (@as_ = [pe,” (@ oy [exp (-iX =¥ )1ds_ (6.10)

(using (6.1)) where o =1,2: m=0,1,2,... ). (6.10) are the null
field equations for water waves and their numerical solution will be the
subject of the next section.

Before proceeding to this, however, the expression for ¢(P) in
terms of @mo(P) is derived. This is possible when P liesoutside a
semi~circle, with centre O and diameter along the free surface, and

containing T . Then r, > rQ so that from (6.5) and the symmetry of

G ,
° 2
e, = § § o (@e @
m=0 ¢g=1
Substitution of this in (6.3) gives
® 2
sy = § 1 c % (@ (6.11)
m=0 o=1
c_ _1- o 9 _ 9 o
where ey = 3o Jp leg (@ 30— ¢l@ - (@ 5o (@)1ds_
q q
or when (6.1) 1is used again .
c_ 1 o d iy ) g
. =" 3n fr{am (q) o [exp( 1Xq Yq)]+¢(q) o %m (q)}dsq (6.1

(0 =1,2; m=20,1,2,...).
(6.11) is exactly the form used for the potential in the case of the
semi-submerged circular cylinder in Chap.2, (2.17). Indeed reference to
(2.9) - (2.11) (with Z = R sin® + jRcos 6 = jRe J°) shows that, for
m> 1,
m+1

Re (e (Z) = (-1) o 1(P) , Re.(e'2)) = (-1)"2mo 2 (P) .
j m m j m m

In addition Q;(P) (for X > 0) can be written in the alternative

u cos u¥-sin uyY -uX
= e
u‘+1

form 'fw du + wi exp(iX-Y) |
)



-1AX -iAXx
(by writing cos AX = é(el + e i ) expressing the integral as

the sumitof two integrals and closing in the third or fourth quadrants
as appropriate). Alternatively

QJ(P) = Rej(ejz El(jZ)) + 7i exp(iX-Y) and ,
when the definitions of s(Z) and w(Z) .in (2.17) are recalled from

(2.10) and (2.11) it is clear that for X > 0O
Re. (s(2) + imw(Z)) = ¢ Yp)
3 o

and hence also for all X since both functions are even in X .

Finally

)
Re.(s'(z)+iww'(Z))=‘iL Re, (s(z)+imw(z))=— & XP)= - & ¥P) .
J 9x Jj X © o

Thus the form (2.17) for the complex potential for the semi-cylindrical
scatterer is just a special case of (6.11) and therefore fully
justified. Comparison also with (2.18) and (2.19) shows that, in

c

terms of the cm

R

T(icl + ¢c2)
o o

T

1 + T(ic! - c?2) (6.13)
(o] (o]

§6.5. The Numerical Solution of the Null Field Equations

The potential é(q) on the cylinder is first written in the form

[+ ]

2
b(q): = 2 : 2 dnldzng' (q) where the ¢).n1 are even in X
n=o 2=1

and the ¢nﬁ are odd and both are bases on the part of I for which
X > 0 (which will be denoted by F+).

This form is substituted in (6.10) to give

© 2

; £ L 3 o ' o
d (@) =— ¢ (@)d = vig) ¢ (g1 d (6.14)
nzo .221 - fr‘ ¢n q o *n Dds, fr D ¢ (@ds,
a i = . -
where V(q) = - e [exp(-i xq Yq)] (6 =1,2; m=0,1,2,...).

It is now noted that
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3 o _ 3 . 3 o}
3;; Qm (q) = (c05'yax + 51n'yay) @m (q) and that

cos Y is odd in X while sin y is even (X > - X & y>r7m-7%) .

It follows that 3%— Qm?(q) has the same parity as ¢n?(q) and that

the integral on theqleft in (6.14) will vanish if 2 # o since the
integrand in this case will be an odd function (this will be true in

general for bodies symmetric about Y = 0). Hence the equations (6.14)

will decouple into two systems

> -]
1 1 3 1 - 1
zdn [¢n (@ 35~ ¢, (@ds, [ ve (@)ds_ (6.15)
=0 T o T
v )
2 (2 2 = 2 .
and }a? [@%(q) 50 (@)ds_ [ vi@e? (@as (6.16) .
n=o r q T
Since V(q) = - sg— [exp(~i Xq - Yq)] it is easily shown that
V(g) = exp(- Yq) [sin(xq+ Y)+ i cos(xq + v)1 in which the real part is
even and the imaginary part odd or, since Yy = %-h ¥,
Vig) = exp(-Y )lcos(X - ¢) - i sin(X_ - y¥)1 .
q pi=Y, q w a v
When it is recalled that s = N;w and that the ®! are even while
q sina m

the inz are odd, the equations (6.15), (6.16) can be further

simplified to the forms

pAa _dl = a (m=0,1,2,...)
n=o
2
and 2 an dn = bm where
n=o
- (TTC 41 9% .1 _ (T - - 1
Amn La ¢k (q) anq o (@)dy, a L) exp ( Yq)cos(xq ¢)¢m (@dy .
_ (e 402 9 .2 - _i (T _ . _ 2
B jo $2 (@) oy o2 (@dy, b = -i jo exp(-Y ) sin(X ~y) 0" (@dy .

The procedure now is to truncate each set of equations at n =M,
substitute m = 0,1,2,.., M and then solve the resulting set of

(M+1) by (M+1) equations to obtain numerical approximations for the

. .expansion .coefficients. dnz . (2= 1,2).
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The following forms gave accurate values for the values of the @;7(P)
and their derivatives.
(1) It is recalled that
1 dz . . . .
QO(P) = Rej[e E,(j2)] + mi exp(iX-Y) (z = X + 3Y) .

By the methods used in §2.5 this can be written in the form

ol (p) = -y [ 2 expl¥(=-DJ 4y - e ¥{ci(X)cos X +(Si(X)-T/2)sin X]

Y2u? o+ X

. iX-y
+ 71i e . for X >0 .

For X 0 i.e. at the lowest point of the cylinder the value of @;
is obtained by letting X»o+ above.
The value is found to be

h' jollog u explh(u-1)]du - exp(-h) (y + log h - i)

where h = N cot £ . (The proof is similar to that at the end of §2.5).

2
36 1 .
o) d jz . .
5% Rej = [e El(jz)] T exp(i X-Y)

- X jz
- X? +Y? Imj [e

(2)

E, (j2)] - 7w exp(i X-Y)
X [t exply(u-1) -y . . . m
= - + XY L) exyfu§u+ x} du + e " [Ci(X)sin X -(Si(X)- Eﬁcos X}

-T exp(iX-Y) . (from §2.5) .

(3) 1In a similar way

acpol v )
TR e N R
50 1
(4) <1>02 (X,¥) = - —= (by definition)
a<1>°2 , 32¢>01 achol 3 v .
G =% "~ T v T ['W""o ) } from (3)
3@02 Y2 - X2 Y 1
ox X - @) Yoy v .
30 > 39 !
o _ 3 [e) _ 9 Y 1
®) =y = 'W[ 3Y ]- ii[—xuw t o, KY) ]
3% ?
o) 2XY
or T T e % %0
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o T = L£OS mY 1 cosl<sm=-1)0 .
(7) For m> 1, o e * 51
R 2m-1 - R

It can be proved without difficulty that

¢ ! . . —
m__ om [ sin(2m+1)6 + 1 sin2mé
X R2m+1 om R2m
3¢ 1! - -
. _ oop L cos(2m+1)90 + 1 cos2mé
)4 R2m+1 om R2m 1 -
(8) For m> 1. d 2 - w + _1_ iﬂg so that
- m 2m+1 2m
: R 2m R
90 3 )
m__ (2m+1) [cos(2m+.2)e + 1 cos(2m+1)61
X R2m+2 om+1 R2m+1
8¢m2 - 2meD) sin(2m+2) 6 . 1 sin(2m+1)6
Y o L2m+2 L2m+l ]

2m+1

. 3 _ . 3 3
By use of the results (1) - (8) (together with Pl 51nqyax + cosq;aY)

the values of the integrands in the null-field equations can be
evaluated very accurately for any value of ¢ when (6.2) is referred

to also. The integrations can then be carried out using Simpson's rule.

§6.6 The formula for the transmission coefficient

From (6.13),

T = 1 +7(ic! -¢c2?)
o (o]
where o _ 1 o - 2,0 = X
mey = 2 fr [a) (@V(Q) = ¢(a) oy oy (@lds_ (0=1,2,0 _'(q)
given by (6.5)).
Since ial - a? = -2i exp(iX-Y)
o o

.1 2 A . ) . 9 .

- - - x -Y r— - X _Y - —— x _Y d .

ﬂ(lco co ) 1&,{ exp(i q q)an [exp(-i q q)] ¢(q)an [exp (i q q)]} sq
q q

It is easily shown that

) .
e {exp(-i Xq—Y

q)] = - exp(~-i Xq-Yq+iw) and
4
e (exp(iX ~¥)] - = = exp(L X_=¥2209) .
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Hence

T = 1_i‘gjéxp(—2¥q+iw) + ¢(q)exp(-Yq)[cos(xq-w)+ i sin(Xq—xp)]}dsq

or (when the expansion of ¢(g) is used)

_ 4 _ 2iN (m=a _ _ 2iN S L 1T=ea 1 ) _
T sinGLa exp( ZYC.I.)COS‘p SinanzodHLJ éh(q)exp( Yq)°05<xqw>dw
2N v 2 (T=C, 2 _ . _
* Sina nZOdn fo ¢n (q)exp( Yq)s:.n(xq P)dy . (6.16)

It can be shown similarly that

o]

_ _ 2iN em-a _ _ _2iN ¥ T4 _ _
R = Sinalo exp ( 2Yq)cos(2xq Y)ay EIEE;ZOdnﬁa én(q)exp( Yq)cos(xq Y)dy
2N ¢

3 (T=Q 4 o _ R _ :
—— nzodn [, (@ expl Y )sin(x -9ay .

"86.7 Discussion of the numerical data

Three different pairs of bases were used for the potential ¢q on F+ .

(a) Fourier bases: ¢;'= cos 2n8 , ¢° = sin(2n+1)6 (n=0,1,2,...)

2
n

sinw]]

(b) Chelyshev bases: ¢;'= cos[2n arc cosFﬂEﬂq1;¢; = cos[(2n+1)an:co4sina

sina

(n=0,1,2,,..)

1
-

(c) Multipole bases: ¢;'= £ (N;@); ¢2

¢z =g _, (N:;@) (n=_1,2,.;;'})

(see §2.3 for the definitions; after (2.21) for the fn(N;e)
and after (2.27) for the gn(N;e)) .
Use of M+1 terms of these bases in the representation for ¢q leads
to a sequence of values TM of the transmission coefficient
(expansions of up to 30 terms were considered and a sequence for the
reflection coefficient was also obtained). The "best estimate" of T
froﬁ the set {TM: M=1,...30} will mean in this context the value of
™ éuch that |T|?+|R|> . is nearest to 1 and |arg T-arg R| is
nearest to 7/2 . With few exceptions this occurred for the same value
of M . .In . any case the values of. M..at.which this occurred never

differed by more than 1 .
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For o non-acute all the bases worked well,except near 180°,
and gave best estimates of T which were in agreement with each other and,
in the case of o = 90°, with those obtained by using multipole
expansions. However, the Chebyshev bases gave sequences which converged
more rapidly to the best estimate of T than the other two. For all o
non-acute and values of N up to about 2.5 the best estimate occurred
in the range M < 15 (very quickly for the smaller values). As N
increased beyond this value the value of M giving the best estimate
increased also (for a up to about 150°) and for values of N bigger
than 5 exéansions of more than 30 terms would be required to increase
the accuracy of the estimates in Table 1. This did not apply to the
cases when o was near 180°. The best estimate occurred early on in
the sequence (round about M=5) but the accuracy was poor except for the
lowest values of N .

Interestingly the Chebyshev bases were not so appropriate, for the
acute angled case, except for small N , and'gave unstable sequences of
values for |R|® + |T|> . The best base for these cases was found to be
the multipoie base which worked well down té o = 45°, Thereafter the
nuﬁerical stability of the whole system degenerated rapidly for all three
bases;

Hence, to summarise, for 90° < o < 150° and O < N < 2.5 the
Chebyshev base gives good estimates of T (to 4 significant figures
éenerally) with series of less than 15 terms (only five or six terms are
needed until N approachesl) but for N > 2.5, in general, series of
more than 30 terms would be needed to maintain this kind of accuracy.
For o > 165° the best estimate occurs for M = 6 but the accuracy is
poor for the larger values of N and for 45° < o < 90°, the multipole

base gives good estimates up to N=3. . (usually 4 sig.figs.).
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Examination of the sequences of real and imaginary parts of T shows
that for 135° < @ < 160° , two significant figures of accuracy can
be maintained up to about N = 10 so that a comparison with Alker's
(1979) asymptotic formula is possible. Table12 contains the two sets
of values together with the estimate of the error term obtained by taking
the first two terms of Alker's result. Clearly there are positive signs
of an overlap region but to obtain evidence of the same potency as in
the semi-submerged case the third term of Alker's formula would have to
be included in the coﬁparison.

It may be noted also that the drop of two orders of magnitude in
the value of |T| for angles of the form g% (predicted by theory),
can be observed by comparing the values for o = 90°, 120° at N = 6,7.

The acute angles 60° and 75° are themselves too near an angle of the

form é% for such a drop to be observed.

(Tables and graphs follow)
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§6.8 TABLES AND GRAPHS

TABLE 11 (a)

Values of IT(N)I for a = 45° (15°) 90°

™

45° 60° 75° 90°

0.01 9.998(-1) 9.998(-1) 9.998(~1) 9.998(-1)
0.02 9.991(-1) 9.992(~1) 9.992(-1) 9.992(-1)
0.03 9.978(~1) 9.981(-1) 9.982(~-1) 9.983(~1)
0.04 9.958(-1) 9.965(~1) 9.968(-1) 9.970(-1)
0.05 9.928(~1) 9.943(-1) 9.950(~1) 9.953(-1)
0.06 9.886(-1) 9.915(-1) 9.927(-1) 9.933(-1)
0.07 9.830(-1) 9.879(-1) 9.898(-1) 9.908(-1)
0.08 9.755(-1) 9.835(-1) 9.865(-1) 9.880(-1)
0.09 9.659(-1) 9.781(-1) 9.825(-1) 9.847(-1)
0.1 9.538(-1) 9.717(-1) 9.780(-1) 9.810(~1)
0.2 6.453(-1) 8.327(-1) 8.929(-1) 9.183(-1)
0.3 2.611(-1) 5.754(-1) 7.359(-1) 8.105(-1)
0.4 8.625(~2) 3.397(-1) 5.513(-1) 6.760(-1)
0.5 2.488(-2) 1.902(-1) 3.915(-1) 5.421(-1)
0.6 5.943(-3) 1.054(-1) 2.735(-1) 4.263(-1)
0.7 2.079(-3) 5.824(-2) 1.914(-1) 3.337(-1)
0.8 3.044(-3) 3.183(-2) 1.351(-1) 2.621(-1)
0.9 5.047(-3) 1.703(-2) 9.637(~-2) 2.073(-1)
1.0 6.792(=3) 8.797(-3) 6.943(~2) 1.8655(~1)
1.5 8.038(-3) 3.313(-4) 1.499(-2) 6.093(-2)
2.0 5.16 (=3) 1.27 (=3) 3.48 (=3) 2.66 (=2)
2.5 2.96 (=3) 1.73 (=3) 7.5 (~4) 1.32 (-2)
3.0 1.67 (-3) 1.69 (-3) 1.2 (-4) 7.13 (=3)
3.5 9.6 (-4) 1.46 (-3) 1 (=5) 4.2 (-3)
4.0 5.7 (=4) 1.21 (-3) 3 (=5) 2.6 (=3)
4.5 3.5 (=4) 9.8 (-4) 6 (-5) 1.6 (-=3)
5.0 2.1 (-4) 7.9 (-4) 1 (-4) 1.1 (-3)
6.0 9 (-5) 5.2 (-4) 1 (-4) 6 (-4)
7.0 7 .(=5) 3.6 (-4) 1 (-4) 3 (-4)
8.0 4 (-5) 2.5 (-4) - =

9.0 - 1 (-4) - -
10.0 - ' - - -

and
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TABLE 11 (b)

Values of [T(N)| for = 105° (15°) 165°
;\Q 105° 120° 135° 150° 16
0.01 9.998(-1) 9.998(-1) 9.998(-1) 9.998(~1) 9.998(
0.02 9.993(-1) 9.993(-1) 9.993(-1) 9.993(-1) 9.993(
0.03 9.984(-1) 9.984(~1) 9.984(-1) 9.984(-1) 9,984 (
0.04 9.971 (1) 9.972(~1): 9.972(-1) 9.973(-1) 9,973(
0.05 9.955(-1) 9.957(-1) 9,958(~1) 9.958(-1) 9.959(
0.06 9.936(~1) 9.939(-1) 9.940(-1) - 9.941(-1) 19.942¢(
0.07 9.914(-1) 9.917(~-1) 9.920(~1) 9.922(-1) 9.923(
0.08 9.888(-1) 9.893(~1) 9.897(-1) 9.900(~-1) 9.902(
0.09 9.859(-1) 9.867(~1) 9.872(-1) 9.875(-1) 9.878(
0.1 9.826(-1) 9.837(-1) 9.844(-1) 9.849(-1) 9.852(
0.2 9.314(-1) 9.3911-1) 9.441(-1) 9.474(~1) 9.499 (.
0.3 8.491(~1) 8.714(-1) 8.854(~1) 8.949(-1) 9.016(
0.4 7.466(~1) 7.886(-1) 8.153(-1) 8.332(-1) 8.460 (
0.5 6.389(-1) 7.003(-1) 7.405(-1) 7.679(~1) 7.875 (
0.6 5.380(~1) 6.144(-1) 6.666(~1) 7.031(-1) 7.295(.
0.7 4.501(-1) 5.359(-1) 5.973(~1) 6.415(-1) 6.741 (-
0.8 3.764(~1) 4.666(-1) 5.343(~1) 5.845 (~1) 6.223(-
0.9 3.159(~1) 4.070(-1) 4.782(-1) 5.328(-1) 5.748 (-
1.0 2.666(-1) 3.561(-1) 4.290(-1) 4.864(-1) 5.314(-
1.5 1.257(-1) 1.957(~1) 2.621(-1) 3.209(-1) 3.72 (-
2.0 6.833(~2) 1.202(-1) 1.748(-1) 2.27 (-1) 2.76 (-
2.5 4.124(-2) 8.042(-2) 1.250(~1) 1.705(-1) 2.16 (-
3.0 2.690 (-2) 5.731(=2) 9.417(-2) 1.34 (-1) 1.74 (-
3.5 1.862(-2) 4.285(-2) 7.386(-2) 1.09 (-1) 1.5 (-
4.0 1.350(-2) 3.325(-2) 5.974(-2) 9.05 (-2) 1.3 (-
4.5 1.016(~2) 2.658(-2) 4.95 (-2) 7.7 (=2) 1.1 (-
5.0 7.88 (-3) 2.177(~2) 4.19 (-2) 6.7 (-2) 9.7 (-
6.0 5.10 (-3) 1.543(=2) 3.14 (-2) 5.2 (-2) 8 (-
7.0 3.54 (=3) 1.16 (-2) 2.5 (-2) 4.3 (-2) 6 (-
8.0 2.59 (~3) 9.04 (-3) 2.0 (-2) 3.6 (=2) 6 (-
9.0 1.97 (-3) 7.30 (=3) 1.7 (-2) 3.1 (=2) 5 (-
10.0 1.56 (-3) 6.1 (=3) 1.4 (-2) 2.7 (-2) 4 (-
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(a)
(b)
(a)
(b)
(a)
(b)
(a)

(b)

(a)
(b)
(a)
(b)
(a)
(b)
(a)

(b)

TABLE 12

Comparison of values of Re&(T(N)) and Im(T(N)) as obtained (a) by use of th

Null Field equations (b) by use of the first two terms of Alker's asymptoti

formula.*
(ER = order of magnitude of asymptotic error term)
N\ 135°  ER 140° _ ER 145° ER 150° ER 155° ER  160°
0.0224 0.0269 0.032 0.037 0.042 0.048
7 0.011 0.012 0.013 0.014 0.015 0.
00,0185 0.0228 0,027 0.032 0.037 0.042
-C.015 -0.0192 -0.024 -0.029 -0.035 -0.041
8 0.008 10.009 0.009 0.010 0.011 0.
| =C.0121 ~-0,0157 -0.020 -0.024 -0.030 -0,035
-0.0048 -0.0053 -0.0057 . -0.0062 -0.0066 -0.007
9 0.006 0.007 0.007 0.008 0.009 0.
-0,0045 ~-0.0051 -0.0055 ~0.0058 -0.0060 -0.006
0.0142 0.0176 0.022 0.027 0.032 0.037
10 0.005 0.005 0.00e 0.006 0.007 0.
0.0121 0.0153 0.019 0.023 0,027 0.031
Im(T(N))
M\Q 135° __ ER 140°__ ER 145° _ER 150° ER__155° ER__ 160° 1
-0.0103 -0.0136 -0.017 -0.021 -0.026 -0.031
7 0.011 0.012 0.013 0.014 0.015 0.¢
-0.0075 -0.0103 -0.014 -0.017 -0.021 -0,026
-0.0132 -0.0156 -0.018 -0.021 -0.024 -0.027
8 0.008 0.009 0.009 0.010 0.011 0.
-0.0114 -0.0138 -0.016 -0.019 -0.021 -0.023 _
0.0160 0.020 0.025 0.030 0.036 0.043
9 0.006 0.007 0.007 0.008 0.00¢ 0.¢
0.0133 0.017 0.021 0.026 0.031 0.036
-0.0019 -0.0030 -0.0044 -0.0060 -0.008 -0.010
10 0.005 0.005 0.006 0.00% 0.007 0.C(
-0,0013 -0.0022 -0.0033 -0.0048 -0.007 -0.009 _
* Re(T(N)) = F(N) sin(2y + 2N) +(Y——
X N2u+l
1
Im(T(N)) = F(N) cos(2x + 2N) +(:{N2U+l}
where ) )
_ u(T'(y) sin pm) 1 4u° log N _m
F(N) = T 22u-l N2u M N2u+1 and 20
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CHAPTER 7

§7.1. Introduction

The asymptotic expansions of Chapter S are extended and further
light is thereby thrown on the matching process as it is revealed that
the asymptotics of the higher order terms in the outer potential near
the left edge of the cylinder "fill in" the parts of solutions for terms
in the left inner expansion whose appearance was previously justified by
appeal to their being of lower order in the far field than demanded by
the matching process at that stage. One simple case of this has already
been noted in Chapter 5 (after eq. (5.54)) and a more striking example
occurs in the case of Y, (see §7.2 below).

The first two sixth order terms in the transmission coefficient are
also found leading to the result

_2i . 4 4 im. | 8(log N)?
T = s exp(-2iN)[1 + ™ log N . (2 - Y - log 2 + 8) + ——=—

™ T*N2
8 log N im 1)
+ ——=—— (2y + log 4 - 5-—:1—)] +ol§6J
N2
a
as N > © where N = — .
§7.2. Summary of the calculations

The asymptotic series of Chapter 5 can be extended as follows:

(a) RIGHT INNER REGION

(3)

) = 0y + €0, + €20, + €30,

(b) OUTER REGION

4
(4)_ e2h, + €3 log €6; + €3¢, + €*(log €)%0; + € log € ¢y + €'ds

¢

(c) LEFT INNER REGION

6 N . H By
© _ e’y + €% log €Yy + e*Yy + £°(log €)%Ps + €7 log ey +€°YPy

v

+ sy + €% (log €)2Yg + €° log € Y7 + €%ys
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where €5-< s(e)-<€‘5 as € >+ 0 and s(€) is not of the same form as any
of the other sixth order gauge factors which appear.

The full expansions of the wave-free parts of @, and &, to orders

%3 and %2 respectively are detailed in Appendix C while the leading far

. . , (log R)?

field terms in the wave-free part of ®; which are 0(1), O — ]

and O{EQ%l% can be found explicitly. Part of the O(%) term is a
multiple of E-i—-g—g-which is difficult to find and its extraction has not
been attempted here.

The 0(1) term (which is just a multiple of 6) matches with the
vortex singularity which has already been noted as occurring in ¢,

)2

R
(see §5.6), while the forms of the O[(lgg~—

(
] and Oligg—gi terms enable
$3 and ¢, to be found explicitly (¢3 is a multiple of ¢, while ¢y, is a
linear combination of ¢, and ¢,). ¢5 has been found to within an

outer eigensolution (a multiple of ¢,) whose coefficient depends on the

coefficient of the §£§_§ term in 3. Hence, when the matching principle
1\’)(5,4) - ¢(4,5)
is applied, Ys and Y3 can be found explicitly. s = 8 Yy while
_ m2a
4 2
Y3 = - S V2 -~ W)

In addition a term log R, (arising from a term log §,

™ a“ Trzal+

in the left edge asymptotics of ¢s5) and a term

2

m
(3 -Y-21log2a+1i §0 (arising from a constant term in these
2_u4
T a

asymptotics) are added to the asymptotic form of Y, in the far field.

Thus, the addition of these terms, which were not explicit at the previous

(4,3) (3,4)

matching stage ¥ = ¢ (see 85.7, eq. (5.54)), in the solution for

P2 given in eq. (5.58) is fully justified. (It may be noted also that

a term is added to the asymptotic form of ¥, thus "filling in"

m2a*
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the part of its solution which was missing at the previous matching
stage, see (5.53)).

Finally, since ¥, and V3 are known explicitly, the waves generated
by them in g and J; respectively can be calculated as detailed in the
next section.

Before proceeding to this, however, it will be convenient to make
a slight change in the formulation of the problem for the right-inner
region and introduce some convenient new notation. In the first instance,
the problem is restated in terms of the total potential @T i.e. the
incoming wave e-ix—Y is added on to the ¢ of Chapters 3 and 5. This

means that (to order €?):

@T = @uT + E®1 + €2®2 where @oT = 2e-Y cos X and ¢,, &,
are as before. The condition for @T on X = O now becomes (cf. eg. (3.7)):
© , ar+l T r+l T
- . - £ . -
Lo gr(s,Y)[ =7 ? (0,¥;e) - £'(e¥Y) — " (0,Y;e)] =0 (7.1)
90X 39X oY
ey 1. £
with £(y) = Va? - y? - a and gr(e,Y) = 7 _i%!)]r as before.

The distinguishing letter T will be dropped from now on in this discussion
since no confusion will arise with the previous development.

‘ d d , Y
Secondly the operator [E§'YK 5§J will be denoted by MK and the
roo

Havelock integral J H(X,Y;s) f(s) ds (see §4.2) will be abbreviated to

0
<H,f> . If f is obtained from a function F(X,Y) of two variables by

putting X = O, this will be denoted by F°.

§7.3. It can first be shown (by the same methods as for ¢(2) in
Chapter 5) that
(I)(3) = @0 + E:(Dl + EZQZ + €3®3 (7.2)

where ®; does not contain eigensolutions, since their presence would

lead to violation of the edge condition by terms in the left-inner
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expansion and, possibly, to changes in terms which have already been
determined in the outer expansion.
When (7.2) is substituted in (7.1} and terms of orders higher than

e® are neglected, the following equations are obtained(after noting that

2 P
£ (eY) _ __LeY _ %_e Y + 0(e5)
€ 2 a al
3¢ 3
£f'(ey) = - EX - l-g X + 0(85)
a 2 al
goley) =1
2 3k
1€Y 1l 7Y 5
(eY) = - = - = + 0(g”)
g1 > a 8 .3
1 g?y*
g2 (e¥) = 2 £ + o(e")
a
1 g3y$
gz(ey) = - Z—-E + 0(e>) )
8 5.
a
0.0 = - 5%-M2(®0°) where 6,0 = 2e ¥ (7.3)
0.0 = - == M, (8,°) (7.4)
2X 2a %71 :

(these are just repetitions of previous equations in the new notation) and

R 0 1 oy _ L 0 1 0
®3X = >a My, ($,7) + 8a 2 Mu(@lx) 8a2 My (&) + 2832 Mg (94 7).

When (7.3) and (7.4) are used and it is recalled that the wave part of

d, is iq(%% - %)exp(ix - Y) this becomes

o - _ L oy -1 2t _ 1L -y, __L ¥
Osy’ = = 5o M2 (F2') 2a3(3n 8)M2(e ) BaaMuMz(e )
1 -y 1 -y
T gaethle ) dgggate(e )

where F, is the wave-free part of ¢, .

It is easily shown that MMy (e ) = (2My - aM, + Mg) (e”Y) so that,

consequently,
o - _ L oy _ L 2i 1, .Y, _ _1 -Y L -y) 1
®3x 2a M2(F27) = 50550 = gIMale ) - oMy (e 7)) + 503Ms (e 12a3Ms (€

and F3 (the wave-free part of ¢3) is given by F3 = <HF' ) x°> where H
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is the wave-free part of H.
The asymptotics of expressions of the form <HF, Mn(e—Y)>
(n =1, 2, ...) present no difficulties and can be found by the same

. e 4
methods as were employed in the case of <H_, Mp(e )> (for F;, see §5.2).

F
They will involve inverse powers of R only, the first term being a

) sin § ‘ . . ,
multiple of QR Any higher order terms will, therefore, arise from

the expression

D 1 '
E = - 5 <H_, M, (F,9)> (7.5)

This is difficult to tackle directly as the explicit expression for E
involves three and four dimensional integréls. Progress can be made,
however, by using the known asymptotic form of F2(0,Y) as Y > ® and
the fact (proved in Appendix C, §C.3) that this can be differentiated
twice to give-the asymptotic form of Mz(on).

From (C.12) in 8C.2 of Appendix C it is seen that

T 8 1 8 1
F,(0,y) =2 g ¥ __8 (v - 2+ ig) + °g ¥ _ (3-y+1—)+0(°g‘
m2a’y m2a’y m2a%y? m2a%y? v?

as Y - ®, the order term being deduced from theorem A in Appendix B
which was used in finding the asymptotics of F,. Hence, by differentiation,

___l_ 0y _ 4,£_2logY 1 _ m
5a My (Fp ) = 3 13 5 +§2(9 2'Y+l)+0(

mal Y : y?

log ¥, Y

)] as Y » o |,

It follows that there exists a number Y, (>l) such that, for Y > Y,

+ %2(9 - 2y + igo + R(Y)] where

Yo
viz. - ——4[ + [w )HF°M2(F20) . The first integral is of order R
0 Yo
as R »> © (because HF is of this order in a bounded interval of integration)

and its leading term will be a multiple of s—l—;’—e (see §4.2, egs. (4.12),
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(4.13)) while the leading terms in the asymptotics of the second
integral are found in Appendix C §c.4 (10)). Use of this result gives

F3(R cos 6, R sin 8) = ~ 48 + 8 sin 6 [ (Log R)Z2 - 2 log R(3 ~ v - %;H

“2a3 ,n.3a3R

_ 16 log R 8 cos 6

+ O(%)
W3a3R

(the parts of the O(%) term which combine with the logs to produce
harmonic functions have not been written out explicitly).

It is recalled also that

F,(R cos 9, R sin 8) = - (8 cos 6 - sin e.log R) - §—E£E—9%2 -y + %;)
ﬂzazR ﬂzazR
- —2 (log R. cos 26 + B sin 20) + 8 cos 263\, ig)— 44 sin 26 o
TTZaZR2 ﬂzasz ,ﬂasz
(from(C.12)) and
F,(R cos 8, R sin 8) = — (532 6 _cos 20 8sin 30, . L1y (from (c.1))
Ta R 2 3 R
R R
The matching principle
4,
p(3:4) _ 443
indicates, therefore, that ¢(4) will be of the form
¢(4) = e2by + €3 log €6, + €30, + €*(log €) 203 + £ log €y + €'¢5s
where, as § = O (recall that § = Iz - a| = €R with z = x + Jjy)
8 sin ©
b3 ~ Y
ma°§
by ~ 8 cos 20 . 16 (6 cos 0 g sin 0 log 6) __16 y - 2 - igOSLE 9
m2a282 m3a’ m3ad
16 sin ©
AP S
m3a3
and
2 si 2 i
¢s = ~ %— sin 36 _ 8 (log § cos 26 + O sin 28) + §—Egg——-e—(3 -y + %;)
a 53 1726262 TT2a262

44 sin 26 + 8 sin 6

16 log 8.0 cos B +

[ (log 8)2 - 2 log 6(3—y+ig-) -

ma?§2 m3a38 m3a3s

- 139 -



The potentials must also be harmonic, satisfy g%—= Oonr

off to zero at infinity, +while formal substitution of ¢

a, and die

¢(4) in the

equation ¢ + €¢y = O (neglecting terms of order higher than e*) gives
the additional equatfions, on y = O, ]xl >a, o5 =0, ¢y = -b1y, O5 = -P2y -
Comparison of the problem'for ¢3 with that for ¢, (see §5.6) shows |
that ¢3‘= - #% ;. In addition, when it is recalled that ¢, = - #% o,
the problem for ¢, is seen to resemble closely that for ¢, in §5.6 again.
Indeed, examina?ion of the asymptotic conditions and the condition on
y = O shows that ¢, = - #% (¢ + d1).
It is now verified that the real part U(x,y) (with respect to j) of

the complex potential

. 3 ( .
v = - (2 e - 8
m2a2 ma? (z-a)?
8 i1 j ,
+ (3-y ~log 2a + im)/(z-a)? + -3 (3-y-- log 2a + iL) |Z*2|10q|222
m2a? ) 8 R ‘ 8" {z-a z-a

» + 3 "
+ 43[2 a][log{z+aJ]2.
3 ylz-a o z-al
T a

(the logs being made single valued by a cut from a to -°) satisfies the

boundary conditions required of ¢s and also the asymptotic condition as
stated. The six terms occurring in w(z) will be called T;, ..., Ts
consecutively and the conditions are verified in turn.

(a) The condition on y = O

Recall that ¢, is the real part of the complex potential

4 ’ 45 z+a z+a 45 im (z+a\
w(z) = - — 2 - [ - ]log( - ] + (y + log 2a - 2 - ) |-—| -
Ta(z-a) 24312 a z-a ma 8 lz al
Then~—¢2y = Im, (w'(z)) and ony =0, |x| > a
~bay = — 8 1ogl§§§J + r8 (3 -Y - log 2a + ig)/(x-a)zv
m%a? (x-a)? m¢a?

U is seen to have this value on y = O from the terms T, and Tg; the

other terms give zero contribution being imaginary on y = O.
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(b) The condition on r = a

u
z is put equal to ae:l

2+a _ . u N2 a2
z—a j cot > and (z-a) 4a“sin

2 ju

(O < u < 7)) and it is noted that

g-e . When the terms of w(z)

are grouped as T1 + (Tz + T3 + Te¢) + (Ty + Ts) it can be seen that the

imaginary part of each group of terms is zero. Hence

part of w(z) vanishes on r = a whence %§-= Oonr =a .

‘(c) The condition at

the imaginary

As z > ®, the first term tends to an imaginary number and all the

other terms tend to zero. Hence, U >0 as r > «© .,

(d) The asymptotic condition

j0
z is put equal to a + Se?” and § - 0. It is seen that

Re (T, + Ts) = - 32 sin 38 _ 44 sin’26 + O(%)
J 1Ta63 ,n.aZGA
Re (T2 + Ty) = - ———g——%log § cos 206 + 6 sin 20)+ 8 cos 26(3 -y + 1l
3 122282 242682 8
Re (Ts) = - —2 (3 - v - log 2a + imysin 6 log 8 . L,
J 3 - 8 ) 8

mial

It

Re. (Tg)
J 1T3a3(5

-—ji—{ sin 6(log 8)2 - 2 sin 8 log 2a log § - 20 cos 8 log & + Of

(it may be noted that this last term also contains expressions of order

1
g)

(log §)2, log § which are of lower orders than is required by the matching.

These terms would be "filled in" by terms of order (log R)* and log R

in the far field of ¢,, the coefficient of the subsequent term e" ®, of

the right inner expansioni; see note at end of Chapter).
By adding the above equatiéns it is now seen ;hat
_satisfies the asymptotic condition on ¢s. It follows
where U' vanishes on y = O, has zero normal derivative
to zero at infinity and is of order l-as § 0 i.e. U'

J

eigensolution of the outer problem with a dipole singul

Re ., (w(z))

J
that ¢5 = U + U
on r = a, tends
is an

arity at the

right-hand edge and can, therefore, only be a multiple of ¢g. This
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sin 8

multiple can only be determined by finding the term in the far

field asymptotics of Fj;.

j0

Next z is set equal to -a - §; e~ 'and §; * O. The asymptotics

of ¢y, ¢, ¢3 proceed in powers of §, while those of ¢,, ¢, contain
also terms 61n log §; (n=1). ¢s contains, in addition to such
terms, a term in §; (log 61)2. Hence, when the matching principle

(4,5) ._  (5,4) (5)

¢ 1] is applied, it is seen that { will be of the

form

(5) : . :
P77 = g%y + €% log € Y1 + £%Yy + €5 (log £)4YPs + €% log € Us + €Y,

and that the asymptotics of Ys as R} > ® will be affected only by the

potentials ¢3, ¢y, 5. Attention is now turned to determining Vs.

It was found previously that

by = - ﬁ¥'¢1 S 8§, sin 8; + o(8;) as §; = O (from (5.50)) and that
a m%as
2 4 .
du = - (b2 + ¢1) = + —— &) sin 6; log §; + 0(8))
a m2a% w3t

(from the asymptotics of ¢, near the end of §85.6).

If the terms of Rej(w(z)) are examined in turn, it is seen that

Re(T;) = 0(58,°)

Re(T,) = (log §; - log 2a) + 0O(S; log &;)
2_4
m™a

Re(T3) = 0(61)
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2

Re(T,) = (3 - vy - log 2a + 134 + 0(8,;)
2_4 8
mra

Re(Ts) = 0(6, log 61)

Re(Tg) = 2 sin 8 §1(log 6,)% + 0(8; log §;) .,

m3a®

When 61 is replaced by €R1 and the matching principle ¢(4’5) = w(5’4) is

applied it is seen, therefore, that

(a2} a ternm (from ¢y and Re(T2)) will be added to the asymptotics of

2_ 4
T a
Y; as R; > © so that, from (5.53), the asymptotic form becomes

-~ (Ry sin ©; - 1), thus verifying thea ‘solution (5.57) for i,:
T a

(b) the terms (log R} - log 2a) (from Re(T2)) and

m2a"
2

(3 - v - log 2a + igo (from Re(T4)) will be added to the asymptotics
2_4
T a

of Y, which now become (see (5.54))

-R,? sin 20; + R; cos 6, _2

V2 ~

{R, (sin 6] log R; + 8] cos B8)) - log R; -
2ma® m2a®

2 im
+——(2 log 2a +y - 2 - —=)(R; sin 6, - 1),
2_4 8
m"a
thus justifying the-addition of these lower order -terms. (not—exnlicit’'in .-

the previous matching condition) in the solution (5.58) for sy :

(c) the asymptotic relation for Ys is

R; sin 8, .

Ys ~

m3a’
In addition, substitution of w(S) in (7.1) (which has the same form for
the left inner region, see (5.24)) shows that
Psx® =0 .
l .
8

T‘.3a5

Hence Ys must be the eigensolution (y: - 1).

The wave term generated by Ys can now be found without further detailed

matching by noting that w(6) will certainly contain terms with scaling
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e®(log €)%, €® log € and €° (because of the extended asymptotic forms of
the potentials in the outer region) and that a term with a sixth order
scaling other than these must be an eigensolution which is wave-free.
Substitution, now, of the form (c) in the summary in §6.2 into (7.1)
shows that

o oL 0y - _
wsx1 =33 My (Ys)

Y, .
m3a®

Comparison of this equation with the corresponding one for wle (see

(5.56)) shows that Wg(X;,Y;) (the wave part of Yg) will be

(wave part of Y,) i.e.
1222 ST
16i .
We (Xy,¥1) = —— exp (iX; - ¥))

.n.JaG

Hence the first sixth order wave term will be

] 6 . .
16i € 2 _ix _y 1ia
; (a) (log €)“ exp ( = " € 7;& .
T
( 2
[ Note: The occurrence of the factor 16 in the .lggéﬂ) term of the
E—— 3
™ N .

transmission coefficient means that the error bounds given in Tables

9 and 10 in Chapter 5 should be roughly halved. It is seen that the
differences between the multipole and asymptotic values are still
within this tighter bound.]

It was also found possible to find Y3 explicitly and hence to determine
the term in the transmission coefficient of order log N/N® as fcllows.
The contributions to the asymptotics of Y3 through the matching

4,5) 5,4
(4,5 _ (5,4)

principle ¢ will arise as fcllows:

(1) from €2¢o - no contribution since the asymptotics of ¢, for §; - 0

involve only powers of §,,

(2) from €3 log€3‘¢1 - the term in ¢, of order 61%

28, si 8,2 si
6, = - ﬁl 6o = - 1 sin 0, ; S1° sin 20, +0(8,%)
a m2a" m2a’

(from (5.20));
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(3)

(4)

(5)

2 .
. . Ry sin 26
contribution to P; is L—"1

m2a’

from €3 ¢, - the term in ¢, of order 612 log S, ;

4 _ _43 [z+a]log[z+a

2 T .
2 slza z—a]+ 1Ta(y + log 2a - 2 - 18)¢o],

m
the term in 8;° log §; must come from the second term here and

2 .
is seen to be 6,” sin 20, log Gl/ﬁzas 3

contribution to Y3 is Rlz sin 291/’n‘zas )

e“(log €)2¢3 - no contribution since ¢3 is a multiple of ¢; |
e* log € ¢y - the terms in ¢, of orders 8;, 8, log §y

oy =7§%(¢2 + ¢;) (the asymptotic form of ¢, is in §5.6);

it is seen that the required terms are

_ 28 cos 6 _4 §1(sin 6, log 8, + 8; cos 6;)
2.5 S

m2a m3a

§; sin 6,(2 log 2a + Yy - 3 _-il)-
w335 g’ ”

contribution to Y3 is

_ 2R; cos 0, +

4 .
(R; sin O; log R; + R; 8 cos 0,)
m2a’® m3a’

m
R; sin 6;(2 log 2a + y - 3 - ig);
m3as .

(6) from €* ¢5 - terms of order 8, log §; and §, (log 5§12,

these arise as follows:

from Re(T;): zero contribution ;

2
from Re(T2): - 8§, cos 6; log §; ;
2.5 .
T a
from Re(T3): zero contribution j

from Re(Ty): =zero contribution ;

from Re(Tg): - 4 (log 2a + Y - 3 - igo 8§, sin 6; log &§;;
3_s
T a
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261 sin el(log 61)2 + 461 CcOos 6161 lOg 61

from Re (T¢) :

n3a5 ﬂ3a5
m3a®

contribution to Y, is: -

2R; cos 6, +

Tr2a5 Tr3a5

4

(R sin 81 lOg R; + 91 cos 61)

(2 log 2a + vy - 3 =~ iE-)R1 sin 6, .
m3a’ 8

When thefaboye_areUCOmbined it 'is seen that, as R; > o,

2R;? sin 26, - 4R; cos 9, + 8

Vs ~

(R; sin 8, log R, + R} 6, cos 8;)
245 m3a’

(2 log 2a + Yy - 2 - igJ + R, sin 6, .
3_5

m3as mia
Comparison with (5.53), (5.54) shows that

2 .
Yz ~ - #%%asymptotic form of Y,) - Eg4asymptot1c form of Y;) .

Also {in the usual way)

0 1 0 4 0 0 4 0‘
=-5—M (Y) =~-—1{ " = - =—1Yo ),
l1)3)(1' 2a Ta 2X) Ta
Hence {3 = - #% Yo - #%zW1 . (The second term fills in the missing

eigensolution mentioned in §5_g).

Substitution of the form (c¢) in the boundary condition on X = O gives

0 1 ’ 0
= - — M ;
LP?xl 22 M2 Vs
4 1 0 8 1 0,
= - My %) = 5o M o)
Ta 2a 242 2a
=T ;i-w4 Lt : w2£) (o generates waves in ¥P,)
a Xy w2a2 ' 09 27.
4
Thus Wy = - Ta Wy + W2
m2a?
. - 16i .
=[- 321 (y + 1log 2a - 2 - i§0 + —éi—] exp(ixX1 - Y1)
ﬂaas ﬂ3a6

(from (5.65) and (5.58)).
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Hence Wg + W7

16i € ° i
l(;ﬁ [ ((log e)? -2 log a log €) + log €(5 - 2y - log 4 + %ZJ]expﬁxl - Y

."3

and hence

r =705 léi_lgﬂ_g[(log N +2y + log 4 - 5) - %g] exp(-2iN) + O(éB)
3,6
TN

as N - o (on appeal to the dependence of T on g-only),

i.e. T = T(S) + —gi-exp(-2iN)[

TN" m2N2 m2N?

o S .
(log N)° _ 8 log N(2Y +log 4 - 5 - %)] + o(%

as N » o,

1 . .
[ Note: ¢ 0 contains the term - ——-Mz(F3°) so that if this is the
—— 4x 2a N

dominant term again as Y -+ « and, if differentiation of the asymptotics
0 . . 0 '. log Y
of F3  1is allowed, then the dominant term in ¢4X will be of order -~

, 2
at infinity (since that in F3° is of order (lgg—z) ). Such a term
would produce O (log R) % and O(log R) terms in the far field form of F,

as was suggested by the lower asymptotic form of Re(T,) in ¢5 as § ~ 0.]
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CHAPTER 8

Summary and Conclusions

A comparative study has been carried out of three different methods
for determining the transmission coefficient (T) for bodies partly
submerged in deep water and lying in the path of a sinusoidal wave train.

- The available methods divide into two groups: direct computational

methods for mode;ate values of the ratio beam/wavelength and asymptotic
methods for large values of this ratio. In the latter case, T is known

to be very small and the computational methods have been unable to produce
these small values with adequate accuracy. An outstanding problem,
therefore, was suitably to refine the methods so that significant agreement
between them would be obtained over some range of values of the ratio beam/
wavelength. This has been achieved in the present work.

The three methods employed in this thesis have been
(a) the method of multipole expansions (Ursell (1949))

(b) the method of matched asymptotic expansicns (Leppington (1973))

(¢) the method of null field equations (Martin (1981)).

(The rigorous integral equation method due to Ursell (1953, 1964) does not
lend itself to obtaining more than the leading term in the asyﬁptotics of
the transmission coefficient and has not been ﬁ;ed here.)

All these use as a model the linear theory of water waves on an irrotational
ocean and surface tension is neglected. In this work the bodies
considered have been circular cylinders with axes parallel to the wave
crests and_ lengths which are long enough in comparison to their diameters
for end effects fo be neglected at all beam/wavelength ratios. |
Attention, therefore, has been confined to the two dimensional scattering
problem with particular regard to the case when the incident waves are

short compared- to the cylinder beam.
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Acute, normal and obtuse values of the angle of intersection (a) of
the cylindrical cross-section with the mean water surface have been
considered for beam/wavelength ratios ranging from abéut Eéa»to 7 in the
case of normal intersection (using multipole expansions) and from about

Séa-to 3.5 in the other cases (using the null field equations),

i.e. 0.0l SN < 20 for normal intersection

0.01 < N < 10 for acute or obtuse intersection

(where %g-= wavelength,.a = semi-beam, N = Ka).
At the short wave end this has extended the data available well beyond
the ‘range of previously published results for the semi-circular cylinder
(Martin and Dixon (1983) compute values of T up to Ka = 10) while,-in the
case of non-vertical intersection, no published results appear to have
previously existed.

The main purpose of these extended calculations is to supply data
for comparison with that provided by asymptotic formulae for T derived by
Ursell (1964) and Leppington (1973(a)) for the semi-circular geometry,
and by Alker (1977) for the obtuse angle case, with a view to establishing
the existence of a region of overlap. The comparison with Ursgll's and
Leppington's values is inconclusive (see Tables 7, 8, and graphs 7, 8, at
the end of Chapter 2)« The differences between the values are within
the order of the asymptotic error term but the magnitude of this error
is such that this can occur even when there are no significant figures
of agreement between the values (e.g. Table 7, page 40, for N = 14).

It thus becomes necessary to reduce the size of the error term by
completing the fifth order asymptotics and this has been achieved in
Chapter 5 (via Chapters 3, 4). Subsequent comparison indicates excellent
agreement between the two sets of values (see Tables 9, 10, and graphs 9,

10, at the end of Chapter 5). The first two sixth order terms have also

been derived (Chapter 7) with the aim, first, of providing an exact error
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term for the fifth order asymptotics and, secondly, of attempting to
improve the comparison even further. This leads to the improved formula

21 4 4 imw 8 (log N) ?
= 2t _9; = _ 20 - - 2 el giiog N
T po? exp(-2iN)[ 1 + e log N TrN( Y log + 8) + 22

+ §—l9g—§%2y + log 4 - 5 —,%go] + O(%g) as N + © (y = Euler's constant)

w2N2
in which the first term agrees with Ursell's result, the first two terms
with Leppington's result, and the remaining three terms are the additional
ones derived in this work. However, the additional sixth order terms
(when combined) contain a factor (log 4N + 2y - 5 - %g%, the real part of
which is negative until N = 12. Indeed, at N = 20, log 4N = 4.4, while
5 - 2y = 3.8 so that the log term is not yet big enough (in comparison
with 5 - 2y) to give the sin 2N and cos 2N terms which it multiplies in
the real and imaginary parts of T their due "asymptotic weight". In fact,
to obtain a value of log 4N more than twice that of 5 - 2y would require
taking N = 550. It would seem, therefore, that for compariscn with
computations the fifth order asymptotics meet precisely the limits of
numerical practicality at the moment.

The calculation of the two sixth order terms involves extending the
asymptotic approximations to the potential in the various fluid regions
(see Fig. 2, p. 15a). This depends crucially on theorem A in Appendix B,
§B.3, and the results in the first part of Chapter 4, §4.3.

During the course of the calculations, interesting evidence of the
cohesion of the matching principle is observed. It is recalled first
that the potentials in the right inner expansion are solutions of
classical wave-maker type problems and the leading terms in the far field
asymptotics of their wave-free parts depend on the decay properties of the

velocity profile on the wave-maker (this is discussed in the first part
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of Chapter 4). As the expansion is extended, the decay properties of
the velocity profiles generating'the potentials in the lower order terms
weaken till a point is reached where the potentials have non-vanishing
far field terms. Initially this seems disturbing since an application
of the matching principle which includes such potentials appears to
indicate that these high order terms occurring in later terms of the
right inner expansion will affect the near field forms (near E_, that is)
of potentials in the outer expansion which have already been determined
at an earlier matching stage. However, closer investigation reveals,
in contrast, that these high order terms in the far field cf later
occurring potentials in the right inner expansion "fill in" lower order
near field terms in earlier occurring potentials in the outer expansion,
it being noted that these lower order terms had not been demanded at the
earlier matching stage but had appeared because of the nature of the
solution ‘demanded by other conditions imposed on the potentials in question.
Similarly high order near field terms (near E_ this time) from later
occurring potentials in the oute? expansion are observed to "fill in"
lower order far field terms (not demanded by earlier matching) appearing
in earlier occurring potentials in the left inner expansion. Specific
instances of this "filling in" process are mentioned in Chapter 7, p. 135,
and Chapter 5, p. 102, and it may be anticipated that this is a
characteristic process generally when the method of matching asymptotic
expansions is used, although its cccurrence may not be noticeable till
fairly advanced matching stages are reached.

In the cases where 0 is acute or obtuse, comparison is made in
Chapter 6 of the values of T as obtained using the null field eqﬁations

and those obtained using the first two terms of Alker's (1977) result, viz.
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_u(l'(w) sin uﬂ)z iy o4 1 ap? log N 1
= -1 exp (-2iy 2iN) . ( 20 + p N2U+1 + 0 N2U+l

T )

m.2

kil
as N > «, Wherex=%(l-—u)ﬂandu=%.

(Note that some small mistakes in Alker's paper have been taken account of).
The comparison is by no means as clear-cut as in the case O = 90° and the
need for numerical calculation of the third term in Alker's asymptotics
is indicated. Use of the first two terms only leads to a situation
similar to that in relation to Leppington's formula in the semi-submerged
circular cylinder case. The differences between the null field values
and the asymptotic values are within the order of the asymptotic error
term even although the relative differences may be as high as 35%-40%
(for the smaller values). In most cases, one significant figure of
agreement is observed and the relative differences are between 10% and
20% (see Table 12 at the end of Chapter 6, p. 132).

Three different bases have been used in the null field calculations
(see Chapter 6, 86.7, p. 127) and it is found that the Chebyshev bases

®

are most efficient for values of a > 90’ while the multipole  type bases
are best for acute values of Q. In the latter case (not covered by

John's uniqueness theorem) values of T (and R, the reflection coefficient)

are obtained, satisfying the usual numerical tests'|R|2 + |T[2 =1,
m
arg T - arg RI =5 -

In performing the calculations for T using multipole expansions and
the collocation method of Chapter 2 for the calculation of the coefficients
in the multipole expansions, it is observed that the nature of ‘the
collocation points is of critical importance (especially for the larger
values of N) in determining whether the sequence of values obtained for

T is monotonic or oscillatory. The dissection DM (used in Chapter 2) by

means of M equally spaced points (including the lowest point) produces sequen
of approximations to the real and imaginary parts of the transmission co-

efficient (denoted by Re (T (M;N)) and Im(T(M;N)) respectively which are monoto
for the lowef values of N and ultimately monotonic for the larger values (the

behaviour is similar to the illustrations in Graphs 1-4 at the end of Chapter



However, slight variations in the collocation can lead to oscillatory sequenc
which are very slowly convergent and two specific cases are now discussed.

In the first of these the collocation DM was modified by removing one
or more of the collocation points nearest to the lowest point (the lowest

point remaining) and reducing the dissection interval over the remainder of
the cylindrical surface to maintain an M-point collccation; and, in the
second case, the lowest point was not used and a collocation by means of
points with polar coordinates r = a, ek = E§I-g (k=1,...,M) was employed
{note that the equations (2.31) and (2.32) in Chapter 2 are automatically
satisfied when 8 = gﬁ. In the first case, the removal of two or more
points produces sequences Re(T(M;N)) and Im(T(M;N)) which are oscillatory
and which (after a certain value of M) consist of two subsequences which
are monotonic in opposite senses, the one increasing and the other decreasinc
Application of the Shanks' (1955) first order accelerated convergence process
(a special case of Aitkenfs (1937) &2 process) to the terms of the complete
sequences and of Richardson extrapolation (Bender and Orszag (1978)) to the
terms of the monotonic subsequences produces modified sequences whose limits
agree, in their first two or three signigicant figures, with those which are
obtained using the dissection DM. The same behaviour is also observed in
the second case. Thus, while the efficacy of such accelerated convergence
processes is of interest in itself, a more important observation to be maae
from these numerical experiments, in the case of short waves, is that a
collocation consisting of a dense set of points on the cylinder near the
water surface (where the wave effects are most apparent), together with a
scattering of points over the lower part of the cylinder, does certainly not
produce accurate sequences of approximations to T. In contrast, it seems
clear that too wide a spacing of points anywhere on the cylinder will result
in the occurrence of considerable distortion in the sequences.

Finally, comparison of the multipole and null field calculations in the
case @ = 90° shows that, to obtain a given accuracy, the former are much les:
costly in terms of computer time; in addition, the easy decoupling of the

multipole equations into real and imaginary parts (see §2.3) results in

considerable savings in terms of computer space needed.



APPENDIX A

It is proved that the coefficients in the multipole series (2.31)

and (2.32) have the properties ltr(N)If Aiy) and |ur(N)|5 Eégl

for all r and suitable functions A,y . The method was originated
by Ursell (1949, 1953) and used also by Martin (1971) .
Note The usual notation £? is used to denote the Hilbert space

«©

[+ o]

{€£: £ = {xn}1 ' z Ixnlz < »} which is complete and separable while

g :
Lz(O,g- denotes the space of functions square integrable on (0,% o
Proofs:
(a) 1In the anti-symmetric part of the problem, it is required to find

real numbers Al(N), tm(N) (m=1,2,..) such that (2,.,31) holds 1i.e.

<]

Al[exp(—Ncose)sin(Nsine)-sinN]+ z tm{sin2me4 2;11 [sin(2m—1)e+(-1)m]}
m=1
gl

=y (N,0) -y (N, 3) (0<6 <) (1)

where wS(N,e) = - Imj (s(jNe-je))
o é-jt .
and s(z) = el f ——dt + jmed (Re(2) > 0).
z z
First set 6 = 0 in (1) . Then
T . =1
. - _ T
- A, sin N + tmEEl—-—i_- = IPS(N,O) - LPS(N,?) .

m=1
Elimination of A, between this equation and (1) gives

1 t e(N8) = EN,®0) (2)
m=1

(-1® exp(-NcosB)sin(Nsine)}

[;in(Zm—1)6+ -
. sin N

where e (N,0) = sin 2m6 + N
m 2m-1

exp (-Ncos@) sin (Nsinf) -sinN
sin N

and E(N,8)=y_(N,0)-p_(N,7)+ [, (¥,0)-p_(N, 1.

In (2), E. is a qontinuous function of 6 (for each N) for O < 6 < %-,

T
E(N,0) = 0, E(N, 3) = 0 and E(N,6) can be differentiated repeatedly
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without restriction (since s(Z) is analytic) . It should be noted

also that, as N + o , the em(N,e) tend to the orthogonal set

2 4 (T/2 . . . .

{sin2me} . If the operator —-I . sin2r® d6 1is applied to (2) this
0

™

gives an equation of the form

[~
t,+N ) a_t = E® (3)
§ m=1
where

. 4 )

Er(N) =1;<E(N,6), sin2r6> , (4)

m+r+1 m
_4 1 (-1) 2r (-1) . . .
drm = el (3me1-22) (2m-1332%) + Sin T <exp (=Ncosf)sin(Nsin8) ,sin2r6>}

and < , > denotes the usual scalar product for LZ(O,W/Z) .
The scalar product term in the braces above can be written as
(-l)m[<sin8,sin2r9> + <h(98), sin2r6>] where

exp (-Ncos8) sin(Nsinf) -sinNsin6

h(6) Sin N so that
d = 4 1 2r (_1)m+r+1(4m,_4m) + h (N) ] (5)
rm T ° (2m~1) [4r*-1 (2m~1-2r) (2m-1+2r) r !
where  h_(N) = o-1)™ < h(8) , sin 2r 6> .

It is easily seen that h(0) = hf;; = 0 and that h(0) can be
repeatedly differentiated (as also noted for E(N,0)above) . Hence

3 integrations by parts in each case will give the results

1 .
Er (N) = 0 (}T) as r > ‘ (6)
h (N) = 0 (—1-] as r > o , (7)
r r’ '
Next the coefficients tK (k=1,2,..) are rescaled by writing
= 2
xK K tK

(this is crucial at a later stage in the proof) so that (3) now takes
the form

- -]
X + N 2 a b'q = ¢ (8)
r rm m r
m=1
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—_ 2
where C = r°E

Y r
rz
and arm = = drm
+r+1

. 4 r? 1 [2r (0T Gmoam (N)']
tee- & m - T m " 2m-1 |4r’-1 (2m-1-27) (2m-1+21) r

o N 1 .
It will now be proved that 21 arm2 = 0(}7] as r > .

m:

a ? can be written as the sum of three terms
rm

+ where
@ o + Brm Yym
_ (8)2 4 3 dm* - 4m 2
*m T 7 -1) |40 (2m-1) (2m-1-27) (2m-1+27)
_ (4)? 4 Wl R (-1) ™ 42 _a)
Brm s -1} 'r ° m* (2m~1)* (2m-1~2r) (2m=-1+2r)
- 4 4 2 1,, —
Yem [?] v = s LA
(-]
Clearly by (7) Y - o &
early by ' Yom = -
m=1
- o0
) 41| 4r \ 1
Next consider | 21 Brml < [?] {41. ]|h (N) | mzl o[ 2m-1-21| (2m-1421)
m: =
Hence °z° B8 < ilz 2 Ihr(N)| 2 1 . (10)
rm| - -n} 4r*-1) (2r-1) It m”Zm—l-Zrl
m=1 m= -
(3] o .
The sum here can be written as L, + z
m=1 r m5|2m-1-2r[ .
m=[-2—]+1
In the first sum 2m—1-2r| = 2r+1-2m > 2r+l-r = r+l1 so that this
) 1 @ 1 1 -
sum is less or equal to 1 mgl oF O[r] as r > .
In the second sum 2m-1—2r| > 1 and m"* 2([-]2C-]+1)m3 "
. X ' 2 © 1 2 © 1
Hence this sum is less or equal to —— I 5 < == I =
r+1 r m® - 1 m=1 m
m=[-2-]+1 .
which is also O[%] as r >« | It follows then that
c).'? ! = 0 1l as r > o and hence from (10) and (7) that
m=1 m*{2m-1-2r r
1
L B = O[—-;] as r >
m=1 "rm r
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Finally,

2 . < (87 (a2 ¢ 1 }2
m=1 rm - - 4r2—1J m=1 (2m-1) (2m-1-2r) (2m-1+21)

‘ §_] 2 ar® )2 1 2 °Z° 1
= \m 4r? -1 2r-1 m=1 (2m-1)? (2m-1-2r)? .
Again the sum here is written as

[+

+
\ mgl z

1

[x/2]
( ] (2m-1)? (2m-1-2xr)* .

m=[r/2]+1/
. 1<
As before the first sum is easily proved to be O(-;z—) as r > »

while the second sum is less than or equal to
—r%- b 1
m=[r/2]+1 (2m-1-2r)?

1 o

= = z 1

m=#r/2]-r (2m-1)32

-2 © 1 1
< = mi1 (2m-1)2 . T 0 ;TJ as r > o .

It follows immediately that

% a2 = % + $8_+ % = 0 (%) (11)
m=1 rm m#1 %rm =1 "rm m1 Vrm r?
as r > o and hence that %, %, a ? < w . (12)
r=1l m=1 “rm
The equation (8) is now written in the form
X+ Tx = ¢ where T is the operator (on %)
o0 [+9) oo
N mél a . X = {xr}1>' c = {cr}1 .

By (12) T 1is bounded and hence completely continuous on &2
(Akhiezer and Glazman p.92,93) so that by Hilbert's generalisation of
Fredholm's first theorem (Schmeidler p.53) the equa;}on X+ TX=c¢
has a unique solution x € &*> , since c € 2* (by (6) and (8)).

(Note that the existence of linearly independent solutions of the
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homogeneous equation would imply non-uniqueness of the original

boundary value problem). It follows then from (8) that
x -c|® <N fa_*3Ix® = O (—%} (by (11) and the
r r - rm m r

discussion above) whence

Xx =c_+ O{l] = OlEJ (since c¢_ = O{l] from (6),(8)) .
r r r r r r
X :
Thus t 2 —; = 0(;%} so that
r r r
A (N) : .
Itr(N)I < = for all r and a suitable function A .

(b) In the symmetric problem it is required to find real numbers
Bl(N), um(N) (m=1,2,3,..) such that (2.32) holds i.e.

Bl[exp(-Ncose)cos(Nsine)—cosN] + mzl um{cos(2m+1)e+ %%[cos2me +(—1)m+1]}

= b, W,8) -y, O, ) <o <P (13)
where wD (N,08) = - Imj[s'(jNe—jeﬂ
iZ ® e-jt iZ
and, as before, s(2) = e’ J dat + jvreJ (Re(2)> 0) .
Z

It is noted first that, as N > 0 , the coefficient of B1 is
equal to - N cos 6 + 0(N?*). so that if a new set of coefficients vy

is defined by

the equation (13) can be written in the form

m§1 vm[cos(Zm-I)e + N hm(N,e)] = V(N,8) (14)
where
h, (N,6) = - egp(—Ncose)cos(Ns;?eé - cos N + N cos 6 (15)
hﬁ(N,e) = 5;%:5 [cos (2m-2)0 + (-1)"] (m > 2)
= I
V.(N,0) = wD(N,e) - ¢D(N, ) .
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It should be noted that, as N > 0 , the terms multiplying the
v, in (14) tend to the orthogonal set { cos(2m-1)6} . The

operator % < , cos(2r-1)6> 1is now applied to (14) . This gives

an equation of the form

v_+N T d_v = V(N (16)
r m=1 rm m r
where V;(N) = %- < V(N,0), cos(2r-1)6> (17)
= 2 2r-1
. = 7 <h, (N,8), cos(2x-1)6> (18)

and for m > 2

m+r+1
a - 8 (1) (m-1)

rm m 2r-1 (2m=-2)%-(2r-1)? .

It is noted first that the functions V(N,8) and hl(N,e) vanish
at o6 = %-, have derivatives which vanish at 8 = 0 and can be
differentiated repeatedly without restriction. Thus three integrations

by parts in (17) and (18) show that

VN = 0[;%% as r - (20)
r r?|.
,1, .
a = 0{—;} as r + o . (21)
r1 r’|.
Next the coefficients VK (k=1,2,...) are rescaled by writing
Xy = szK so that (16) now takes the form
X + N T, a X = c (22)
r m=1 rm m r
where c. = r*yv (23)
r r
2
and a = Ey-d i.e.
rm rm
a =r1r4d : (24)
ri ri
i mbREL o e
_ 8 (-1) 2 m-1
and qm T T T 2zl of (Gm+2r-3) (2m-2r-1) or B2 2. (29)

1
(21) amd (24) show that a = O[;} and by methods similar to those

used in (a) it is not difficult to prove that T arm? = Ofi%

m=2 r?

® 1
whence mg a_?® =0|l=| .
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It is then proved as before that X, = 0[%] so that v, [= "

Thus u =v is also O[—l—s] as r > o« .
r r+1 r
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APPENDIX B ASYMPTOTICS I

§B.1 In this appendix a theorem on the asymptotics of a repeated integral
of the fom

J‘: J‘;‘.(t)g(u)e-zu‘dudt (Re(z)>0) as |z|+ =
is proved.

Such repeated integrals occur several times in chapter 5 as
coefficients of higher order terms in the right inner perturbation
series. Indeed they arise when Havelock's classical wave maker
solution is applied to a velocity distribution which itself results

fram a previous Havelock type solution.

The cases which appear in chapter 5 all have Re(z) = 0. This
necessitates the placing of rather more stringent conditons on

the functions f and g than would be required for the case Re(z)>O0.
Although only one or two temms in the asymptotic expansion are
required (for the purposes of matching with the outer expansion) a
full asymptotic expansion is obtained viz |

rr)f(t)g(u)e ZtUgudt ~

: [N
mréo _-— {llog z + Y +S]f Ors (o)
- £%(0) J‘: (jt)_logtdt - g% (o) Kf”l(t)logt dt }
¢ o ifr=0
here' _Ccr 4
where'S .= 1 ifr =1 and Y 1is Euler's constant.
C

The theorem is preceded by several lemmas of which lemma 1 is of
fundamental importance and is used in several other parts of the

text (chapter 4 particularly).
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58.2 Lemma 1
Statement

Let £ be a function(possibly camplex valued)defined on [0 ) such
that

a) f€C *[{0,o) (being continuous and differentiable ¢n the right
at 0).
Suppose also f is such that, for some integer r = O.
I,
b) rf—-t-(-ﬂ dt exists for all x > O.
X

c) fr(t) logt >~ 0 as t > o,

d) Forr=2 1 and 0 K < r-1l

() = o’(tr_k) as t >=%©
Then
i) Ir(x) 2 rﬂ %rtagl dt exists for x > O,
x

and, as x + 0+

ii) Ir(x)’\: of aKr(x) xK—r where

K=o
K .

r
C_ - —r——-f ©) logx (K = 1)
r r!
with

- -]1;, J‘: £7* () 1ogtde (r>0)

-1 =
8l

£7 (0)
| m=1

2]
NN NN A

- f: £/ (t) logt dt (r =0)
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Preliminary Remarks

The obvious me thod of integrating Ir(x) by parts immediately leads
to cumbersome coefficients in the asymptotic expansion which are
not obviously simplifiable.

The form obtained in the lemma is essential in deriving a result
which can be successfully applied later in the proof of the main
theorenm.

Extensions to the case of x camplex and cases where the asymptotic
series involved are in fact convergent power series are also

detailed in the notes after the lemma.

Proof of Lemma 1

The result

' +
I_(x) = ::zr ay (0) =T+ 0

=0

+
x" D as x >0+

(for any integer n = 0)

will be established whence the lemmas as stated before will follow.

It is first noted that the formal Maclaurin expansion

@ (o) K
K=o K

(even if it has zero radius of convergence) is, under condition (a)

the asymptotic expansion of f(x) as x> O+.

Indeed it can be seen by induction that

n K
£) = I, S x" + RGO (1)
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1 X n _n+l
where R (x) == J x-1t f (t)dt whence
n n! 0

the substitution t = ux in the integral makes it clear that
Rn(x) = O(xn+1). This result will be used to establish the lemma
without any assumptions being made concerning the radius of

convergence of the Maclaurin series for f£.

Part (i) of the lemma (the existence of Ir(x)) is easily established
using (b) and (d) and repeated integration by parts.

If r > 0 it can be shown that

o T r—-1 r-2
J’ £ tft) dt = - f — (x) _f£ .XZ(X) e (-1 f(x);) + r; r es) dt
x

whence the existence of Ir(x) is immediately verified while the
existence for r = O follows immediately from (b).

ii) The integral Ir(x) is first written in the form

r-1 K
f
R i 1€ I Ry —r—(‘c.’)‘tK' r-1 (K ®
I_(x)= K20 _K dt +_7¥ ——,——-—f (o) 2Tl g
T tr+1 K20 K!
X X
(where a reversal of integration and summation operators has
taken place in the second term and the sums are defined as
0 for r=0),
The integration is pérformed and a function F defined by
r-1 K.,
D “£7 (o) K
F(t) = f(t) - —=
(t) (t) o @t (d1)
whence
F(t) r~1 fK(O) . ‘XK.-I'
I (x) = —FT dt + s — 2
(0 E tr+ ko K r-K. (2)

The function F (defined on[ 0 ©)) has the properties

Ry =0 ° 0 <K< r-1)

and FN(t)

£2(¢) (K>T)
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whence it follows fram (1) that

K

It then follows from (3) that the function

D
0 2 KR -4 £@ 02)

r.

has a removable singularity at the origin, a fact which will be of
importance later. Meamwhile another function hr(x) is defined by

the equation

h_(x) D r g (t) dt (D3)
X .

and the equation (2) for Ir(x) is rewritten in the form

r r-1 K K-r
_ 1 £ (t) f (o) x
Ir(x) N hr(x) + al [: t de + Kéo K! r-K )
£5(1)
Attention is first concentrated on ——E——-dt.

X

A preliminary integration by parts (using (c)) gives

r ‘ X
r—-—f (8 4t = —£%(x) log x - ﬁ £ (¢) Logtat + IO £ (1) Logtdt
x ¢t

whence the substitution t = xu in the second integral above leads to

the result

o) r 1
J £ 4 - _£5(0) logx _.r: fr+1(t)l°8tdt + X Jo fr+1(ux)logudu
X t

The last term in (5) is now dealt with using (1) again whence for
any fixed u =0

+1 20 kel k-1
r - -
£ (ux) =gy ®nr * v * Ryop(ux)

The above equation is now multiplied by logu, integrated from O to 1
with respect to u and the result multiplied by x. When the result
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1
K-1 _ 1 .
o U logu du = -2 is used this gives

1 r+K

n
r+1 _ f '(0) K
X fo f° "(ux) logu du = —K§1 <X tPh (ux) where

xn+1 1 n [1 n-1 _r+n+l .
P -1 (ux) =(-r-1_—T)! IO u log u |, (1-v) f (uxv)dvdu

r+n+l

and is clearly 0(xn+1) as x > O+ since (by (a)) £ (uxv) 1is

uniformly bounded as x >0+ for 0 < usS 1, 0Sv<1,

It follows by substitution in (5) that

Tr n _r+K
ritLtl dt = -£5(0) logx - J‘: £ (1) logt dt -Kgl-fﬁﬂ L oD
x L]

[It should be noted that the result still holds for n = 0 if the sum
in (6) is defined to be zero in this case. This is obvious fram (5)
where the last term is 0(x) as x » 0+] .

It remains now to attend to the tem hr(x) in (4). Fran (D3) it is seen

that h;_ = -8, and since 8, has a removable singularity at the
origin this implies that

X
hr(x) - hr(O) = - IO gr(t)dt

It is easily shown using the definition of 8, (D2) and the equations
(3) and (1) that

f +r(O) K-1 1 fr+ 0 K-1 n
- n -1 _ n K( - N
gr(t) K§1 NCCHME t a k§1 —,—LK t + 0(t) as t 0+

(the sums being defined as 0 1f n = 0)

whence
n r+K K n r+K K
=1 £f__(O x _ £ () x_ n+l
B0 =0 (O =gk SRR kb @ K T O ) asx o
or
1 n fr+K(o) xK n+r fK(O) XK—r a+l
= 0 — — —
b G =h (O + 5 o F) — K K2+l ® g=r T o)
as x -+ O+ . @)
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Substituting fram (6) and (7) into (4) (noting that two summa tions

terms cancel) gives the result

K-r
_ 1 r+l £(0) mtr £Ko) x
I ® =h(o) -5 f: £ (Vlogt dt o oBx * L, TR TX
KFr
+ 0(xn+1)

as x + 0+ . (8)

The final step is to find hr(o). This is achieved by returning to’
the definition of hr(x) whence

r
1 f F
o o [ L0 - [ K

For r = 0, hr(x) = 0 since the summation part of the definition
of F(t) does not exist in this case (See (D1)). Otherwise, for
r 2 1 repeated integration by parts of the right hand side gives

r
1 [l 4,
hr(x) 7 Jx t dt

‘ -1 ' r
1 F(x) 1 F () 1F ' .1 FI(t)
T x¥ r(r-1) xr-1 +---"-r! X +r! t de

the infinite limit giving zero contribution each time because of
the definition of F(t) and the property (d) of £f(t).

It follows (since FT(t) = £7(t))that

1 F(®) 1 P, .1 il
b (0 = r %t T(r-1) xr-1 e X

i
and since hr(x) is continuous in the right at O (being dé¢fferentiable
on the right there) h_(0) can be evaluated as lim h_(x)
r x>0+ T

1 £5(0 1 £5(0 1 £5(0
T r!( X r(r-1) (r(-l))! * " 'r'?_lg—)- (From (39
@ ;1
r! m=1 m °
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Finally the substitution of hr(O) into (8) and use of the definitions
(since ho(O) = 0).

of the aK

Corollary

Let f be such that

a) fect

o [
X

f(t)
t

[0,2)

dt exists for all x> 0

c) f(t) logt * 0 as t+®

then

f:f’(t) logt dt =

Proof

This result will be used several times in Appendix C.

Note that if the Maclaurin series for f is convergent for |x|<R then

Let x> 0

_ lim
x>0+

|,

£(t)
t

r(x) give the required result for r = 0

in equation (5) with r = 0

dt + £(0) logx)

the asymptotic relations in the proof of lemma 1 became equalities

so that 1f x % 0 the result becomes

Ir(X)

I_(x)

1]

for |x|<R so that 1f x 1s a camplex number z the corresponding result

is
r f(tg
r+1

o]

K-r
Kgo aKr(x) X or
5 50 T, c
K! r-K T
K=0
BEr

(; fK(o) szr . c
K=o K r-K r
K¥r

(| z{<R, |argg|<w,z#0)
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£ (0)
- _r’— logx

T
£ (0)
_.r!— logz

for0 < x< R

)

The right hand side is analytic in the complex plane cut from 0 toj



As an example consider the function

-zt
E (z) = r = dt (r an integer = 2)
T 1 tTr

The integral converges for Re(z)= 0 but not for Re(z) < O.

However, the substitution u = zt gives

r-1 -u
z u

All the conditions of the lemma are satisfied by e Y which in addition
has infinite radius of convergence. The lemma therefore provides
the analytic continuation of E'r(z) into the cut plane so that for
z #0 and |argz"l<'n‘
K K-r+l

_ .r-l1 R (-1) Z (-1)
E‘r (2) = z [Kéo K " (r-1-K) +
K#Fr-1

r-1 r-1
y 1
(r-1)! m=1 m

1 _ -1 r-1
- =T j‘: -1)%e tlogtdt‘- -2_1‘—%57_ logz] ,

{—-——r—(_z)r_l (1;1 1. logz + e-t logtdt)
(r-1)! =1l m g 0 g
) K
-5 (z)
K=o K' (K-r+1)
K#r-1

Since r:e—tlogtdt = =Y (Y = Fuler's constant) this agrees
with the result in Abramowitz and Stegun.* Similarly results could be
obtained for
¢ .
r coslz; dt and r sinzt ..
t t
1 1

by considering the real and imaginary parts of

-jzt

e
r—c? at
1
and using the previous result with z replaced by jz.

* p.229, «q. 5.1.12
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In the lemmas which follow f and g are two (possibly camplex-valued)
functions defined on [ 0,°) with the following properties

a) f,g € co[0o®).
For K =0, 1, 2,

b) fK(t)logt, gK(t)logt > 0 as t> o
K
c) J‘n-f—-é—tl dt exists for all x> 0
X
d) K gK(t)dt is absolutely convergent

m
In addition z is a complex number such that lzl |argzl<-2-

and @ is a real number such that 0 < a <1 ,

Lemma 2

TR

1) L (z,o) D f(t) r e_Ztug(u)dudt exists and
0

¢

ii) for any integer N=> 1

N-l r r

I,(z,0) = r o zr+f K.=o a (RO‘) tztf: T)

N-1
- L ‘gzr—(fl‘F( )+0(—BN'-T-T_)

as R > wywhere the a, . are as defined in lemma 1,

B = 1-a and the functions F_ are such that

K+r
1 =) f (0) 1
Fr (ia) v K§1 (K+r)TK RK 25 R >

Proof

i) Existence of the repeated integral is first proved.

’ r: e-Ztug (u)du

is absolutely and unifomly convergent (for t= 0) by the
Weierstrass. test and (d) with K = 0, This integral is

therefore a continuous function of t for. t = 0.

For |argz|<

N
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11)

m
Also for any, fixed non-zero z with |arng<;

ﬁe-Ztug(U)d“ =20, o (1) astrw

by integration by parts, using (a) and (d) to prove boundedness
of g at o,

Hence by (a), (c) and (d)

JZOL f(t) r: e_Ztug(u)dudt exists.
R

The inner integral above can be integrated by parts repeatedly

to give
. N-1 )
“Zluyy = I g (O
J’:g(u)e du= =2 —TeTLEFT Y Ry (zt) (9)
_ L -ztu N
where RN(zt) = TOW.N J‘: e g .(u)du

(the upper limit gives zero contribution due to the boundedness
of the functions gr at © , this being a consequence of (a) and
(d)).

Further

1
RN(zt) = N+1.N+1 [gN(O) + f: e Ztu gN+1(u)du] so that

K
IRN(zt)l < |z|N+1tN+1 ( where K is a constant independent

of zand t e.g. K = |gN(0)' + f: | gN(u)|dU).

It follows(using (9)) that

P £(t)
I,(z,® = rgo ST r: Fe s dt + ﬁ f(t) RN(zt)dt . (10
RO R™

Since f is continuous and tends to zero as t * *© by (b),

M = syp f(t) exists and the modulus of the second term is
t=0

less than or equal to

|z L el

R%
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MK ON

. | R (since N= 1),
R
1
Hencer f(t)RN(zt)dt =0 (Egm'[) as R > » . (11)
1 /po

To deal with the first tem in (10), Lemma 1 is invoked.
Clearly f satisfies all the conditions of Lemma 1, (the

condition (d) there being a consequence of (c) in Lemma 2
which is supposed to hold for K = 0, 1, 2, ~---=). Hence,

using Lemma 1,

r L. 1
i(r—?i I [a,_ (1% G (ga)  where

e K=o
el (l y v b (—1- ) 1—1 as R*> @
r ‘RO Rer+1 8gr ' RY R (K-1) ’

® £5(0) 1

i.e. Gr (ga) K—'§+1 K (r-K) ROARTE)
K+r(0) 1

T K21 (RK+r)'K ROK °

Hence

_ R 1
Tl Eola, (g g@®D] -r )

1,0

/R

(Fr as in the statement of Lemma 2).

Substitution of the above result in (10) and use of (11)

gives the result of the lemma in the fomm stated.
Lemma 3

i) I2(z ’a) =

I
Hh
~
+
~

r e~ 2t (u)dudt exists and for any
0

integer N =2

N-1 -
I by (2,0 me(o) R O] 17_5“1' ©) 1
K=o K i K zK+ r20 zr+l K=1 (K+r) K gXK

1
+ 0 (Rm ) as R + =, where

i) I,(z Q)

b(2,0) = (y+logl)g (0) - r: g (u) logudu - f: gL WE, (cu)du

and ¢ = Z/Ra .
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Proof

(1)

i1)

follows from the continuity in t of the inner integral as proved
in Lemma 2 and the continuity of f.

Equation (1) in this appendix gives

N-1 fK(O) K

f(t) = Kéo —r—- t o+ RN(t) where RN(t) O(tN) as t > 0+ .

It follows that, as R*> ®

1/Ra o
I RN(t) f: e 2 ug(u)du
I/RaN
= 0 (fo to dt) (using (b) with K = 0)
1
= 0 (zoN%a ).
Her_tce
N-1 (Koo I/R"‘,K Jtu L R
= = (CaN+a as -+ ©,
Iz(z,a) Kéo = IO t [j e g(u)dudt + 0 RON+O

(12)

It is first noted that the expression (zt)¥ r: e 2ts(u)du
is of the fom sK e_sug(u)du with s = zt, This latter

0
integral is associated with the Laplace transform of gK(u) .

Indeed
ﬁgK (u) e SYdu = RS [:e-sug(u)du
- 5 g) - % (O gL (0)
the result being true even when Re(s) = 0 provided g and

all its derivatives up to order K-l vanish at « (the result
is also true for s = 0 by (d).
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i
Hence for |argz ]<; , t=0 andK =0

(zt) K—rgr-l 0)

e~

(zt)K r e-Ztug(u)du = Jm gK(u) e 2ty +
0 0 r=1

(the sum being defined as 0 when K = 0),

Thus
K -ztu 1 -ztu K K 1 K-r r-l
t JTe g(u)du = X E e g (uwdu +r21 -t g )

whence

1/Ra K t 1 1/ROL tu K
-ztu _ -ztu
J' t f:e g(u)dudt = X Jo J‘:e g (u)dudt

0
gr-l 0) R (K-r+l1)

zr K-r+1 -

(13)

K
M rél

Since f: gK(u)e_Ztudu is unifomly convergent in t for
t = 0, reversalof the order of integration is permitted above:
giving

JI/RO‘

. ru
l K -ztu _ 1 , K l-e _z
0 08 (we dudt = > 08 (u) = du where T =

RO
-1 gK(U) 4 [E,(zu) + 1log(zu) + yldu
V4 0 du 1
fran Abramowitz and Stegun (p.230),
Integrating by parts gives an integrated part of zero since,
at the upper limit, gK(u)E 1(Cu), gK(u) log(Zu) and YgK(U)
are separately zero while the whole expression

. E1@Qu) + log(Cu) +Y = 0(u) asu~*> 0+

(from Abramowitz and Stegun, p.229),
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Simple manipulations give subsequently the result:

0 z

r-1

1/Roc
I f‘: e 2K (y)dudt = PR(2:%) 4ng hence, from (13),

-0 (K~-r+l)

—XFT

r.
Z ¥4

0

Substitution of this result in (12) now gives

1, o K
I /R tK fj e-Ztug(u)dudt = bK(z’a) + rél g ©) R

K-r+l1

N-1 K N-1 K K r-1 - -
I,(z,0) = ,Z b, (z,0) —y——f © , 5 £0 7 g © g2 i
23 K=o K*“*7 K ,K+1 K=o K r=1 2T K-r+1
+ 0 (Eaml:cx—) as R > o (14)

The double sum can be written

Vo 5 g7 ra®-r+)
K=1 K r=1 z¥ K-r+1

(since the inner sum is zero for K = 0)

_ Ngl fK(O) K-1 gr(O) r-0(K-r)
K=1 K rso Lr+l K-r

Reversing the order of summa tion gives

N-2 N-1 K - -
() £50) r*KT) or
r3o ,r+l K=r+l K K-r
N-2 gr () N—Zr—l fK+r (0) 1

rgo zr+1 K=1 (K+r)! K R4S

and substituion of this expression in (14) gives the result

required by the lemma.
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i) I(z) D J‘:g(t) E (zt)dt exists and
i1) I(z) ~ ¥ gr(Oi 1 as z T <,
r20 r+1 Zr+l
Proof
i) From propertiés of the exponential integral,it is known that

for any non zero z such that |arg(z)|<TTand for real t,

-zt
E,(zt) ~

> ©
Zt as t .

Thus
-zt
g(t) E (zt) ~ E—z— -@ as t =  for |a1:gz|<-2TI

But (d) and a comparisontest imply that

r £8) g

a
is absolutely convergent (a > 0) and clearly

Ig(t)El(zt) | =0 (Lg(tﬁl) as t + @

by above if z # 0 for |argz |<T .

2

Hence the existence of
E g(t)E,(zt)dt
is ensured- 1f a > 0.
At the origin, El(zt) NV AnTas t + 0+ for fixed non zero z

so that g(t)E,(zt) ~ g(0) ntas t > O+. Hence g(t)E,(zt) is
integrable over any interval [0,a] being continuous (except at
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0) and having an integrable singularity at 0. It follows that
I(z) exists under the conditions on g stated at the beginning
of this section.

ii) By the definition of E1

-u
I(z) = ﬁ g(t) fmt =
. z

The transformation u = zv in the inner integral and reversal

dudt ,

of the order of integration gives

oV (v
I(z) = r: = IO g(t)dtdv
i.e. I(2) = r: h(v) e Ny where
v
h(v) = % Jo g(t)dt.

The function h(v) is continuous for v # 0 and has a removable

singularity at the origin (define h(0) = l_{m h(v) = g(0)).
v>o

Also by repeated differentiation and use of (b), h(v) and all

its derivatives vanish as v > ®.

Hence, by repeated integration by parts,

8

Kt (0
o er_l,,_);w_,,« as z + @ (15)

[ng!

-zv
I(2) = J:J h(v) e dv v .
in | argz | <-g- .
It remains now to express h"(0) in.tems of gr(O). Since

Q)
£y " as t > 0+, it follows that,

]

g(t)

[[{ne!

r=0

v r :
asv > 0+, IO g(t)dt "’rz £ Q) r+l

=0 (r+1)! v whence
r
® (0) r
h(v) réo (r+1)! vo.
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T
® h (0) r
But asv > 0+, h(v) " r§0 — = v

so that,by the uniqueness of asymptotic expansions,

r
nT0) = &9 .

r+l

Substituting this in (15) gives the required result.

§B.3 (The main theorem) THEOREM A

Statement

Under the conditions on f and g stated at the top of page 170.

i) I(2) 2 r: J‘:f(t)g(u)e—zn‘dudt exists and

n of dr(z)
ii) I(2) r20 orel

as z > in |argz |<% ‘where
r r
dr(z) = [logz+Y+Sr]f (0)g™ (0)
- £50) r:grﬂ(t)logtdt-gr(O) J‘:frﬂ(t)logtdt

ifFr=0

o

with Sr= ifr>1

OEs!
Bi=

(
(Z
(
( m=1

Proof

i) I(z) = I, (z,0) + I,(z,a) so the existence of I(z) is

ensured by lemmas 2 and 3.

ii) It will be proved that,for any integer n > 1,

n-1
I(2) =L, ;'!'Elfn{[logzﬁhsr]fr(O)gr(O) - £5(0) r: gr+1(t)logtdt
1
- g J‘: £ () logtdt } + o (TZT-.:)

o
asz *® in |argz |\<~~5 whence the result will follow.
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Given any integer n =1 and any o (0 < o < 1) first choose
N (and keep it fixed) so that aN=>n, BN= n. Clearly this
is always possible e.g. N = max{[%] + 1, [_%] + 1} and
certainly N > n so that also N =2,

With this value of N the remainder tems in I; (z,0) and
1
I,(z,a) are clearly o (R—n) as R =+,

' The contribution of the second terms in I, (zo) and I,(z#) '

to I(z) are

N-2 r N-r-1 f_K+r N-1
£ (0) 1., _ 0 1 _ (0) 1
Lo o+l [FOg2) ~kZ1 DK ROK ] . Py &)
K+r
£ (0 1

1 .
> ©
Since F_ (go) Kzl (Kor) K ROK 28 R
the expression in square bracke ts above will be
- 1
o ( FN=aE=0 ) as R+ @

whence for r 2 0 the general term in the sum above will be

L4

1
°( RE+1+oN-or-o )

1
= o ( zon#BEFR" )

= o(ﬁﬁ) asR>®® gince N >n,B > 0.

It follows that the sum itself (being finite) is o (%n)

as clearly also is the other tem

N-1

0 1
- E—ZN-(—) FN—-I (Eoc) .

Hence addition of I,(z,%) and I(z,n) gives

N-1 r r .
- £ 0  —
I ( Z) r_g.o Zr+1 K§0 a!(r ( 'ﬁa) Ru. z K-r)
Nk £ 50 1 -
+ Kgo bK(Z,a) 0K+ + 0 (En) as R~» o , ‘ (18)
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Using the definitions of the a,_ (see lemma 1) the first sum,

S, (say), can be written

N-1 r(o) r—1 fK(O) 1
S1° 1k L T+L kEo R(r-K) R(K-T)

r
g5 (0) _£(0) 1
M S [C, - == log (R0) ]

The double sum above can be written
N-1 r r-1

K
T @ 5 f (0) 1
r=1 2Lt K=o K (r-K) RO(KTT)

(since the inner sum is zerc
for r = 0)

and by reversing the oder of summation this is equal to

N-2
f (02 g (© _1 1
Kéo r§(+1 T+l T RaiK-r) or
- K -
N-2 ££0) N;( 2 r+K+1(O) ROl.(r+1)
K§o K r=o Lr+K+<Z r+l

Hence S1 can be written in the form

-2 K k=2 Tr+K+1
NE e Mg (0)

517 Kéo KK+l 10  (r41)gr+l *
N-1 T
g _(0) £5(0) 1 .- s, _z (19)
rzo' 2f+1 [CT-' R log (Eu)] 4 (%= Ra) ’

The second sum in (18) (using the definition of the bK(z,PL)), S2

(say), is
N-1
S2= o goEH 1(3’1 [(y+log DX (0) -f: &1 (w) 1ogudyl
N-1
£ (0) K+1
- Kéo K—";-grlﬁ (u) E,(Cu)du , (20)

Combining the first tem in (19) with the second tem in (20)

gives the expression

N-2 K N—K-7- K+l+r

D £ (0) r K+1
D N S -
E K=o g1,K+1 [ (WE, Gudu -k, (r+1)zr+]

N-1

(")) J‘” K+1

t——— E

! ¥ o (uwE, (gu)du ,
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By Lemma 4 (applied to gK+1) the tem in square brackets above is

1
o ( |C‘N—K—1 ) as R =+ o , whence

each termm of the sum is
o 1 1 ) , _ B
ZK+T gBN-BKB (el = »Y)

1

o ( ROK+0:+BN )

as R

i
(o]
~~
’?-J"'
N

Clearly the sum itself (being finite) is also OC%n) as is the
other term in E whence E itself is

1
o (gn) as R 7> -

When it is recalled that

c =£0O y 1_1 £ () 1ogtdt and T = 2,

addition of (19) and (20) gives

Ngl dr(z) 1
= gt > ©
sl * SZ r=0 r! Zr+1 + 0 ( Rn) as R [

The sum in the equation can be written

n-1 dr(z)
Lo plgftl * o (Rn) as R+,

1
since each of the terms between n and N-1 inclusive is o ( §p).
Hence,since S, and S, are the two sums appearing in equation
(18) for I(z)>it follows that

n-1 dr<z) 1
I(2) = I, ors1* o (gn) asR > ®  as required.
- - - Z
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APPENDIX C (ASYMPTOTICS II)

The main part of this appendix (§C.2) employs theorem A in
appendix B (§B.3) to derive the asymptotics of the wave free part
of %,(X,Y) in the right inner expansion up to terms of order RLZ .
§C.1 gives the full asymptotic expansion for the wave-free part of

®,(X,¥Y) and §C.3, §C.4 contain two results required in Chapter 7.

§C.1. Full Asymptotic series for Fl(R cos 6 , R sin 6)

From 85.2, F;(R cos 8,R sin 0) (the wave free part of ¢,) is

given by
F, (R cos 8,R sin 8) = Ll(R cos O,R sin 0) + I,(R cos O,R sin6)
where
- .
. _ R? , d [ 1+2u sin 8 +u? -Ru
L1 (Rcos §,Rsin8) = Ty L u du[log | T-20 sin 6 +a du
and
4 ® z 6
. - _ .4 u ~Zu —ne=]
I, (R cos 6,R sin 6) T Rej J (T+59) (15300 e du (z=Re )

(see section between equations (5.9) and (5.11).) .,

In L, , the log term in the integrand may be written in the form
tog [ (1-iue™®) (1+iue1f)
(1-iue—le) (1+iuele)

J whence, by logarithmic expansion,

4 5 (-1F w2540 (2r+1)6 as u+0+ .

Y [log[ u? +2u sin 6+1 ” .
du | r=o

L u*-2usin6+1

Hence, by Watson's Lemma,

. . 2 v r sin(2r+1)6 -
Li (R cos 8,R sin 8) = 2 (-1)" (2r+2)! R T R > =,
r=o R
Similarly use of the result
u 1 v r 2,.T+¥l r )
T (g™~ 5 L 1 tDT2@ T G s a0

and Watson's Lemma gives
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(1+3ju) (1-ju)°? r+1

J = e au » & ] ir-0T- 20msn2 )Tt E
r=0 C

_ 1 iy Y 2.+l rle
< 3 Y [+(-1)"- 2(x+1)215 e
as R » « , certainly for - g’f 6 < T/2 .
Hence
. poO o a (e)
oou -Cu \ r
Re J - —— e du ~ ’ as R > =
3 (1+3u) (1-ju) r—o Rr+1
(ag, (0) = (-1)% K(X+1) (2K) 1 sin(2K+1)0
where, for K> 0, ( K
= - 2
(a2K+1(9) (-1)" (K+1)? (2K+1)! cos(2K+2)6 .
Thus
) g =2 (8)
I, (R cos 8,R sin 8) ~ - — 2 3 : as R>»
: Ta r+1
r=o0 R
It follows immediately that
4 3 £_(9)
Fl(R cos O,R sin 68) ~ -— 2 23 as R +» o where
: Ta r+1
r=o0 R
(£,.(8) = (-1)F(K+1)? (2K)! sin(2K+1)0
2K
for K> 0, ( K1 »
- = - 2 1
(f2K+1(6) (-1) (K+1)2 (2K+1) ! cos(2K+2)6 .

In particular

. _ 4 (sine cos29 Ssin36] 1
F1(R cos B,R sin 0) = Ta | R =z R + o[Rs} . (c.1)
§C.2. Asymptotic series for F, (R cos 6,R sin 0) to order ﬁ%
From §5.5, equations (5.33) - (5.38) it is seen that
3 3
F, (R cos 8,R sin 8) = ) L,; (R cos 6,R sin 8) + ) I,;(R cos 8,R sin 8).
i=1 i=1

The terms are dealt with in turn .
(a) From comparison of (5.33) with (5.5), and (5.36) with (5.6) it

is seen that

_ i _ i [ sinbé cos26 1.
Loy *loax =@ Fi- = -7 [ R R J te [E?] : (c.2)
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(b) L,,(R cos 6,R sin 0)=

QO - 00 -
R 1-2tsinf+t? | 4 | 24 (3) ] -jRtu
o Imj{L L 1°9[m] qu [FRT(w]e T quac

(see after (5.39)) .

The double integral has the form of theorem A with

f(t)

1-24sinB+t? _dl,. e ] ( _ 1 ]
L g[1+2tsin6+t2 ]’ (u) = du\? h7(u) | where h(u) = o=

and 2= jR .

It is noted first that £(t) = O[-’é] as t > ® and that f£'(t) is a
rational algebraic fraction which is 0&17] as t > .

Hence the orders of all higher derivatives can be obtained by
differentiation of this order term. 1In gddition g(u) itself is a
rational algebraic fraction which is 0[—1:1 as u > o , While
argz = W/Z . Thus the conditions of theutheorem are satisfied and,

aSR+m,

L, R cosg,R sing) =
2
1

R . T r r r o (® r+l
Ty Imj rzo m{[log R+ 3 3 + Y,+ Sr]f (0)g~ (0)-£ (O)IO g (t)log t

- g- (o) f:'fr+1(t) logtdtl+ o [R—lz-] as R> «
But f and g are defined also for negative values of t and u and
are real for such values, f being an odd function and g an even

function (since h is even), so that

Koy =0  ana o Floy =0 > 0) . In addition g(0)=0.

_ R
2r%a

Hence, L,,(R cos §,R sin 9) = Im, {2 = [‘-g(z)(o')f:f(s)(t)log tdt]}

+

R2
(2)

[1
Ol as R > «

(0) f £© (t)logtdt + O[Riz].
Also g(2 ) (0) = 144 and it is proved in the next section (see eq. (C.8))
that 'f“f")(t) log tdt = =27 sin 268 . Thus
(o]
L,, (R cos 6,R sin 8) = - %—f;—l}z—g + 0[%] as R+, (C.3)
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(c) L,,(R cos 6 ,R sin 8) =

R v OO (00 1-2tsin6+t? 4 jRtu
w*a? Rej{Io J‘o 1og(l+2tsine+t2] du [u®F* (u)]e dudt

u

where F(u) = (u——j)-Tu_‘i'—j—).T . _

Comparison with theorem A in this case shows that

1-2t sinf+t? a .
£(e) = 109(14-21: 2;264-1:2) r glu) = E[UZF" (Wl , 2= -3JR .

f satisfies the requirements of the theorem (as before) as does g

since g(&) = O[u%] as u > , while arg z = -12T- . In addition
£(0) = 0,£' (0) = - 4 sin 8,77 (0) = 0, g(0) = 0,g"(0) = -2,9*)(0)=-245.
Thus L,; (R cos 6,R sin 0) =
L 5
R 1 . T r r
mmar Ry L ———qllleg R -5 5+ v + 5,18 (09" (0)
r=o r! (-jR)
- £ ["  (t)10g tat - ¢ t0) [Tt (t)10g € at} + o[Rl,]
= - HR Re, {- —[(log R-j 2+ y + 1) (8 sin 8)+ 4 smej g t)10g t at.

- 2)
+ 2 fo £ 77 (t)log t dt]
== [24j'f:f(’) (t)log t dt] } + O[Elz_)

2)

= ﬁ{R[(log R+ y +1)8 sin 6 +4sm9Re J' g (t)log t dt

+2fof (t)log t dt] -R—-zfof(s (t)log t dt.}+ O[R] (C.4)

The integrals occurring here are now evaluated in turn

, 2
(1) 1,2 Re, N g (&) 109 tat .
By the corollary after lemma 1 in §B.2,
[2g ) = - S_L
[ (0r1og £ at = - 37 [I dt + g'(0) log x} (C.5)

(s) (2)

From the definition of g , g'(t) = t*F (t) + 4tF (t) + 2P'(t)

so that J -""'t(—t) at = J tr pyat + 4r r®) (tat + 2J —F'ét) at .
X X X X

. S (s) e L (2) . ; - .
Since Io tF (t)at and Io F (t)at  exist, this can be written

e gt(t) o e, (3) = o (2) o[ F'(t)
[, = [T e (nat + af P (tar + 2f =R at 4 o(1)

as x > o+ .
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Using F'(0) = -1 and integration by parts leads to the result

(o ‘ ‘. GO
[ iﬂdt=5+2JF(f) + o(1) (since m-*—1asx->o+)
Jx t x t X
. {oo] '( ) . (o] 1
g (t = '
or L{ ™y dt 5 + ZL{ E(E=7) (£+3)° dt + o(1) (when the
definition of F is used).
, pOO . »00
g'(t) _ t2-1
Thus Rejjx — dt =5 + 2Jx TETT dt + o(1)

>t [ 2 lfl“(ll:'t;.c)i}: + o(1) (where u = t2?) .,

The integral here is evaluated by elementary methods giving

1 _x_z_. + —_1_ + _]l___ h
9 T2 1+x2 (1+x%)?2 whence

7 + 2 log x + o(1) asx4o+.

7 g ()
e, [ 242 oo
il ¢

Thus from (C.5) (when it is recalled that g' (o) = -2)
I, = Rre, [“g%) = -7
1 = ej L9 (t) logtdt. = - (C.6)

(1) 1, 2 fo‘”f(’)(t) log t 4t .

Again the result

’, {oo] .
- (2) . J’ £1(t) : ' ]
fo £ (t) log t dt = }]E%_'_[ < t dt + £'(o)log x le used .

It can be shown without difficulty that

(>4

7 E () _ L u-1
Jx s dt = 2 sin @ J'xzu(uz ¥2u cos 26+1) du whence, by

elementary methods of integration,

Bt [ 4 2
J f ét) dt = sin 6 log X + 2cos6 [-’_2’. - arc'tan[-w%:ie-]]
X x*+2x2cos26+1 - sin

orx

AT , _
[ %dt 4 sinf log x + 2 cosel--;— [%-— 26” + o(1) as x > o+
% .

. Ul T i ™
(since -252-29 <3 when 0595-2- ).
e v
Hence [ %dt=4sinelogx + 40 cos 6 + o(1) as x > o+ so
X
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that (with f£' (o) = - 4 sin 8)

(o]

s pOO 2 .

I, = L)f( )(t)log € dt = - 40 cos 6 . (C.7)
, poO 3

(i) 1, 2776 (0) 1og £ at .
2
Since f( ) is an odd function

@ 2 (2) (P52

I, = _J £ t(t) 4t = 8 sin J £1-2t7-1-2c0s20 o |

o (t*+2t%cos20+1)2

I .
also I, is odd in 6 and E} . must satisfy Laplace's equation.

It follows that I, must be a constant multiple of sin 26 ,

whence

- (>
th-2¢2-1-
J 2t7-1-2c0820  _ , o< o (A = constant) .
o

(t*+2t%cos26+1) 2

A may be found by putting 6 = 0 whence

. p0O :
_ 1 4
A = {) [}t’+1)2 Tt ] a
and the substitution t = tan® gives A = - T/2 |
c e (3) .
Thus I, = &f (t) logt dt = - 27 sin 26 . (c.8)

Substitution of (C.6), (C.7) and (C.8) in (C.4) now gives

L,, (R cos 6,R sin 6)

_ . 8 . 4sin@ 24sin26 1
= TR (8cos® =-sin6 logR) n’a?R.(s 2y) + TR O(E;J; (C.9)
(d) From (5.37)
__ 2 (=@ veos(Y+s)v-sin(¥Y+s)v -vX 4 ., (3) -Jjsu ,
I,, (X,Y) = ey ;mj{LJL:fO 1 e du[u h (u) je dvauc

With X =R cos 6, Y = R sin 6, the inner integral

. {oo]
: + -sin(Y+s)v - . .
J L COS(YVfLY sin ) e dev can be written in the form
o

[T eV -i0
Reif - dv  where g =X-1iY-1is = Re -is . By
o}

integration by parts this may be put in the alternative form

i 1 ' 2 °°~e-vC
Rei(z-+ =<l + e(Z)) where e(r) = E;-J -7 dv and is

0(1/5>) as R+ for |o] <T/2 .
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. 2
Hence Iz.2 (Rcosf,Rsinf) = ey Imj Rei[Jl(R,9)+ J.2 (R,0)+ J3(R,6)]

where
© . , poo 3 o
J, (R,0) = ( "'—"1—! i(1121'1( )(u))e Y g4 ds
1 ] -i6 | du
o Re is ‘o
® ’ *® 3 _.‘-
Tp (R,6) = ( —-i'e__f = w@n™ w)e™ % qu as .
o (Re T -is)? % :

and J,(R,8) is of the same order (as R~> ® ) as

, [+ -] . Lo 3 s
J —Tié—— f % (@h ) (w)e ¥ qu as .
(Re *"-is)? :

(o]

(o]

The substitution s = Rt gives forms for the integrals to which

theorem A can be applied viz .

_ [ i ' mi 5. (%) -jRtu
J, (R,0) = f I J m (u*h (u))e dudt
e -it -0
: , 1o ] . 00 3 _a
J, (R,0) = 1 —-—1—— 2 (u’h( )(u))e IREY sy at y
R - =10 . ., du
. o (e -it)? Jo

and J, (R,0) 1is of the same order as

. o o0 3 =
L —_— L - = (u’h( ) (u))e JRtU.l dudt .
-19_lt), du

Theorem A is now applied to the three integrals in turn

(i) In the case of J,; (R,8)

_ i y 4 5. (3) _ 1
f(t) = T ¢ g(u) = Ia (u*h (u)) where h(u) = e
e -it
and Z = jR so that
£0) =ie?, £ =-e, gy =0, g =o0.
Hence by theorem A
Im, Re, [J,(R,8)] =
J 1 .
1. .18 (= | 1 2i9 (oo 1
Imj Rei{jR[ ie fog (t)log t dt] = (e fog (t)logtdtl} + O[R’] .

By integrating by parts (using the definition of g) it is easily

shown that J'o g'(t)logtdt = h )(o) =-2,

-1 . . _ Cos26 (= {(2) 1
Hence Rei [, R,8)] = jR( 2 sin ©6) = og (t)logtdt + O{R,]
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2 sin 6 1 :
and Imj Rei[Jl(R,G)] = —R + o [E;} as R > o

since g 1is real in this case (with respect to j) .

(ii) For J,(R,%) ,

i6
f(t) = —~:z%——-—; whence £f(0) = e21 and g,Z are as before,
(e ~-it)
Hence
1.1 2i6 .. 1
J, (R,8) = R {jR [-e L)g (tYlog t dt]} + 0 [R’]
—23e216 L
S ° =
and

2c0529+o[i] as Ro o |

Imj Rei [J,(R,e)] = - R R
(iii) Clearly J,(R,8) = 0 [19%3] = o [Riz] as R>w .
Adding the results in (i,) (ii) and (iii) here gives
I,, (R cos 8,R sin B8) = :zzfg_e - 4“SZSR36 o[é%) . (c.10)

(e) From (5.38)

wjmjm v cos(Y+s)v-sin(Y+s)v e-ﬁx .

g .
I,,(X,Y) = F‘;—z Re'{f 1 E[u’F'(u)]ejsudvduds}

(o] (0]
u

(u-j) (u+j)3

o]

where F(u)
The treatment here is similar to that in the previous case (4) .
Thus

. : 4
Izs‘RCQSG,RSlne) = T Rej Rei[Kl(R,e) + K, (R,0) + K, (R,8)] where

K. (R,0) =J — J 2 (2F (0) 13 qu at
1 -1 . du
o e -it Jo
K, (R,8) =+ J ———f—L———-J 2 1wt (w1 au gt
: R -i0 ., ., du -~
o (e -it)* ‘o
and K, (R,8) = O[Elz-} as R>w>
(i) Theorem A is applied with £(t) = — , g(u) = [P (u)]
-i8 ,_ - du
-it
and Z = -jR, so that £(0) = 1e'®,£ (o) = -e*®,g(0) = 0, g'(0) = -2 .
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Thus
Re_Re_ [K, (R,0)]
i i

_ {8 |
—RejRei{_jR[ ie fog (t)log t dt]

) (£)10gt dt+'2j:f(2) (t) log t dt1}

h)

(1) By integration by parts (using the definition of g) it is

2i8 i0 o
—-%?[(logR-j£+w+1)2e . +e219f g
R 2 R o]
The three integrals here are dealt with in turn.

seen that
[g'tt)log £ at = F(O) =0 .
. 2
(2) Rej LTg( )(t)log t dt has been evaluated in (c) (i) of this
section. Its value is -~ 7 .
cpe (2) . .
(3) L) £ (t)log t dt is evaluated (using the corollary after

. o0 '
Lemma 1 again) as - lim [[ £

dt + f'(o)log x }.
x>o+ J

Jx

The integral here is easily found by elementary methods giving

[T g i ._ier
j 218 g = &% 109'[ — ]+ e
x t . —ib . —-i8
X + 1ie x+ie
= 9216109 X = iezle [g'- 9] + 9216 + o(1) as x > o+ .
Whence
. o poo . ' ) .
lim [J f—ét) at + £! (O) lOg X] = - lezle[ % _ e]+ e216 .
xro+ \Vx J )
Thus
. 2 . . 2.
f:f( ) (B)log t at = ieZle{% - e]- 10 and
J

e (2)
Re, L)f (t)log t dt

[e - g} sin 20 - cos 20 .

The results (1), (2), (3) now give

- ﬁ;{(logR+y+1)2 cos 20~ 7 cos 20+(26-m)sin26-2cos29]

Réjgei K, (R,0)]

i.e.

_ 2c0s28log R+20sin20 . msin26  (7-2y)cos26 o(i] ’

Re Re; K, (R,0)] R R? | R?
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(ii) In the case of K, (R,6)

£(8) = ——:3]}————— so f(0) e216 and g,Z are as in e(i) .
(e = -it)?

Thus Rej Rei [X, (R,0)]

- 218 (@ 1
= Rej Re, {+ I:L [—e * fog'(t)log t dt”} + o0 [R—z]

since 'ng'(t)log tdt =0 .

i}

o]
B
M

It now follows that

. . 4sin20
I,, (R cos 6,R sin 6) -y (log R.cos26+6sin28) + T AR
4(7-2v)cos28 1
L= + o [—-Rz] . (C.11)

Finally, addition of (C.2), (c.3), (C.9), (C.10) and (C.1l1l) gives

the result

. 8sinb .
F, (Rcosf,Rsing) = - }TETE (8cosB-sinblogR) - ;?;;E-(Z-y+1 3 )
8 . 8cos206 . 44sin20 1
- m(logR.COS?.e'f'eSlnze) + W_Rz— (3=y+i g ) - aiR + 0(—2).(C.12)
§C.3 A result on the differentiation of an asymptotic form

(required in chapter 7, §7}3 ) is now derived. 1In particular it
is required to show that the asymptotics of the expression é%(YzEéY(O,Y))
can be obtained from those of F, (0,Y) by differentiation. The

various parts of F, (0,Y) have asymptotic expansions of the form

§ a % b _+c logVy

r
r=o Yr+1 and rzo r+1

so that the problem basically

'is to show that the differentiated forms of the parts have
asymptotic expansions of the same forms.
It is first recalled that

F, (0,Y) = i (in(Q,Y) + IZi(O,Y)) where
i=1

04’ I2i are given by (5.33)-(5.38).
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As previously mentioned L,, (0,Y) = - i: L, (0,Y) and
i i
1,,(0,v) =~ 72 I,(0,¥Y) so that L, (0,Y) + Izl(Q,Y) = - F,(0,Y).

In §5.5 edq. (5.29) it has been shown that

- d 2

\ _ o d, L. (3) -ivu
3 (PP 09 =S [fo Fo@h? )e au
4 e d o5, iYu
+ p Re [L) Ea(u F'(u))e du
where h(uw = —— and F(u) = ——3—
ere AWl =¥ (u-1) (uti)® .

Clearly these integrals have asymptotic expansions in inverse
powers of Y (by Watson's Lemma)which can be obtained therefore
from those of FI(O,Y) by differentiation.

The asymptotics of the other terms L2i,12i(i = 2,3) all

arise from integrals of the form of Theorem A . Specifically they

are the real or imaginary parts of integrals of the form

. {ee]
dudt where Ja E%?L dt exists (a>0) and

g(u) = OL&?} (at least)as u -+ = (see §C.2).
(Sl l

1= [T g e

Hence the operator bgy (= é% ¥? é% ) can be applied under
the integral sign to give
. . +i
wim =77 s gt (e*YTY) quat
. Q0 - +'
= [ fwen® @ ™Mauae .

Two integrations by parts in the inner integral (using the order
property of g at « ) give

wl@ = [T 7 £ mt g . e Mauat .

M,u(g(u)) will also be of order -&% at infinity (in the cases in
§C.2, g ié a rational algebraic fraction so the order properties of
its derivatives can certainly be found by differentiation) and £(t)

is as before. so that Theorem A can be applied. Hence the asymptotic
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series for MzY (I) will be of the same form as those for I and

hence obtainable by differentiation.

§C.4 The leading asymptotics of the expression

. poo
- 4 1 1 . T, 2logs Alog s
El = o LHF[§+S—2(9—2Y+1z)-———sz— + R(s)lds (IR(S) |S S_? s Yo>1)

o)
are required in chapter 7, §7.3 where HF = HL + HI (see defs. (4.7)

in §4.2). These are now der_ived via a series of lemmas but it is

recalled first from §4.3 (after Note (1)) that (with K = 1)

2 _Rsinf+ s [ 1
m R* +2sRsinf+s?

]asR->°°-

* i s g)=
( ) HI (RCOS O,RSJ.ne H S)_ LRz +25Rsine+52 J

L]
D 1 1 1
1) For o > 1, I(RO) = L z- RZ+2SRsinb+s? ds = o (E) as R > o,

[¢}

Proof Put s = Rt SO

-]
1 1 1
I(R,0) = Tia [ = dt .
R v t 1+2tsimg+t?
e o/R -
For o« > 1, I(R,8) < —11—+&- %
R Yo/p t
Y 1-a .
= 11+a _1__ . [_Rg] e = le) (% as R &> o .
R a-1
_ 1 (°° 1 1 logR . .
For a =1, I(R,8) = r t * T+2tsingrc dt = 0 = (by integration
Yo/ ' by parts)
R
= o (l] as R > =,
' N D [T 1 Rsinf+ 1
D 1 sinf+s - 1
2) For a>1, J(R,0) = Lo (@ ~ R°+2sRsinb+s’ ds O(R) as R >«
Proof Put s = Ru so that
. po0
1 1 sinf® + u
J(R,8) = ——-J —. : ~ du
Ra Yo /g u 142u sinf+u
= —la- [ Q_(Qé_ql du (in the notation of §4.3
R /g u after equation(4.17)).

From the discussion given there the result follows.

Q0

: - 1 . 1
3) Fora>1, JY sy HI(Rcose,Rsuxe;s)ds = O(E) as R > =

o S

Proof This follows immediately by using (*), (1) and (2) .
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- p00
D 1 . 2sinflogR 1
4. K(R,9) = IYO P HI(Rcose,RSLne;s)ds = R + O(E) as R > »
Proof
2 r° 1 Rsin B +s 1
K(R,8)= 7 Jv. S = R*+2sRsinb+s? ds + O(R) by 1).
Yo
2 [ 1 sin® +t
TR J t 1+2t sino+cz OF (s = RE)
Yo/R
2 i Yo .
== [-sin 6 log T * 0(1)] as R » = (by Lemma 1,appendix B
. _ _ _sinf6+ t _ Y
with r =0, £(t) =75 g7 ¢ ¥~ 3 J.
. _ 2 sin6 log R 1
i.e. K(R,8) = _— + 0 &ﬂ as R » o ,

. 1 1 . 2log s _ 2sinflogR 1y
5). fzo HI[; + = {9 2y+i 4] = + R(s{lds = R + O(R) as R>w,

Proof This follows immediately from (4) and (3) and the fact that

]-OLS’S and lo%s: are certainly O[—]-;] for some a > 1 . e.g. a = 3/2 .
s
o~ 1 . 1

6) L(R,8)= — H_ (Rcosf,Rsing;s)ds = - 0 + 0(—) as R > = ,

h s L R

b
. 1 R?-2sRsinf+s?|.

Proof (Recall that HL(Rcose +Rsinf;s) = > log[Rz T2SRSing sl ).

dt .

N 1-2tsing+t? )
L(R,8) = o I e {1+2tsine+tzj
Yo/r

Since the integrand has a removable singularity at the origin,

1 (°° 1 1-2t sinf+t? 15
LR, =5 | ¢ log {_—_—-_1+2tsin6+t2]< at  +o0(3),
0

The integral here vanishes when 6 = o and can be found by
differentiation under the integral sign with respect to 6 .
Its value is - 2m 0.

Thus L(R,8) = -o+0(F) .

7y M(R,e)g J{Q s—lz- HL(Rcos_e,Rsine;s)ds = - -%LR + 0%) as R>o |
o

Proof

Y-}
1 I 1 1-2t sinf+t?
MR O = TR £ 1°9[ 1+2tsine+t=] dt
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= 211rR" [-£* (0»)log[%]+ 0(1)] as R > ® (by lemma 1, appendix B

. 1-2tsinb+t2 Y
with r =1, £(t) = log [ﬂnzi_ﬁe_w'}' x = "&/R) _

Hence M(R,8) = - -ZSJ‘—nTGT;QgE + O(%} as R > .

8) N(R,B)gr l%f‘ H_(Rcos®,Rsind;s)ds
Y
O

_ sinB(logR)? 21logR . 1
= - R + TR (6cosH- - sinf) + O(E) as R+ =»

Proof By putting s = Rt as usual it may be seen that

. poo ) _ 2 . po0 _ ) . )
N(R,98) = 1ogR J‘ L 1 [1 2tsinp+t [ logt - y(l—.ztsz_n6+t ]
Y

1
e o Seiiildiiloniad
2mR eZ2 ~°9 1+2tsine+t2] 2R j, € T+2Fsinb+t2
°/R o/R

The two integrals here will be called N,(R,8) and N,(R,6) .

- 1 2
By lemma 1 (appendix B) with r = 1, f(t) = lo [1 2tsinb+t }, X ¥

9| T+otsino+rts. = O/R,

O

f(2)

N (R [} Yo L I
1 ,0) - £'(o)log = + f£'(0) .-

(t)log tdt + o{%)'
O -

4 sin g log % -~ 4sin g+ 46coso + O(%)(see eq.(C.7)).

i.e. Nl'(R,e)

By integration by parts.

log t ] J
- 299E £y * L
{ t Yo /r Yo p €

Co

N, (R, 8) 1[ £LE)

T +f'(t)logt}:1t
log% . £'(0) + 0(%) - f'(o)log %* 0(1)

+ [$(log t)? f'(t)]f; }(log t)? £2 (t)dt as Row .

o/R- IYO/R

- ¥(log Y, - logR)? £'(0) + 0(1)

2 sinf(logR)® - 4 sinflog YglogR+ 0(1) .
Hence

N(R,G):ﬁ [—4sine(logR)‘+4sinelo§YologR - 4sinflogR + 46cosblogR

+ 2 sin6(logR)?- 4 sinflogY,logR + 0(1)]
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_  sinB(logR)? 21logR e 1y
N(R,9) = - — + = (8cosf-sinB) + O(R) .
9) [, R(S)H_(Rcosf,Rsing;s)ds = 0(1) as R+ = .
% L A 4 ‘I R
Proof Since R(s) = 0[522;21 = 0[—%} for some o > 2 e.g. 5/2
s

the discussion in §4.3 (before (4.16)) gives the result immediately.

40 8sin®

. 1
10) Ey= - 1305 + 137y [(1ogR)?~21ogR(3-y+ig) - %—,‘3%5 8cose+0(2) .

Proof This follows from the definition of E at the beginning of

§C.4 and use of (5) ’ (6) ’ (7) ’ (8) ’ (9) - -
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APPENDIX D
Several results quoted in Chapter 5 are now proved.
Coméarison of equation (5.28) with the equation preceding it shows

that (5.28) is verified if it can be proved that

00 ' ©
s—ul 2, _—u (2) -jsu
D - = h

(a) Kj(s) J log Y (2u ~ u®)e “du 2Imj[I (w)e du]

0 0

where h(u) = —r '

w? +1

and

(b) K, (s) 2

(% . © .
I z cos(s+u): ~ Sln(S+U)V(2u-u2)e Yav dqu = —2Rej[f F(u)e? " a

0’0 ve + 1 0

]
| S

u
F e

where F(u) (G=3) (us3) 3

These results enable ¢;(o,s) to be differentiated twice under the integral

sign without difficulty whence (5.29) is easily proved.

Proof of (a) .

By integraticn by parts it is seen that .

Ky (s) = 2{” = uze—u du (where { denotes a Cauchy principal value

o s?-u? integral)

whence the result will be proved if

J (s) D } = u?e ™ au Imj[f h(z)(u)e_jsu dul] .

0 SZ-U.2 0
00 _ rOO -u
Clearly J;(s) = s J ~e % du + s? T du ] whence
o s s2-u?
® =-su
Ji(s) = -s - s? f < du
0 uz-l
®©  —-su T
The integral here can be written as f " du + 4Tje S where thé contour
o u -1

of integration consists of the positive real axis indented by a small semi-
circular arc in the first quadrant centred on u = 1. The form of the

integrand now allows rotation of the contour of integration through



1 . . . . .
— radians after which the substitution u - ju gives

~-jsu

e . -S

-s + js? fwi—————igg - Lmjs?e or
’ 0 u2+l

J, (s)

J, (s) -s + js? f” h(we 2°% qu - 4mjs2e S .

0
Two integrations by parts now give
roo
J1(s) = -3 J h
0

(2)(u)e—Jsu du - %stze—s .

Hence, since J,; (s) is real,

e 2 =
Ji(s) = Imj[J h( )(u)e Jsu du ] as was required. (D.1)
0
Proof of (b)
Comparison with (5.6) shows that
T .
Ky(s) = - 7; I,(0,s) whence use of the equation for I:(X,Y)
which occurs 8 lines below (5.10) shows that
re u :
jsu
= +2 — .
Ky (s) Rej Jo 150 (150 ° © du
Thus Ky (s) = -2Rej J F(we Y qu .
0
(5.28) can now be written in the form
i _-s 2 4
. %, (0,8) = - 55 © + ?E'JI(S) + EE'JZ(S) where
i .
Jo(s) = Rej [J F(u)eJsu du]. (D.2)
0
Hence
4 rg2 -1 4 2,78y, 2 4 25, 4 4 25,
P [s°®,5(0,8)] = Smds S ) *ioas [sT:' ()] + Ta 33 [s°32' (s)].
(D.3)
From (D.1l)
a * (2) 3 3 -3
= 25 = _° 2. 9, —Jsu
P [s°T1'(s)] Imj Jo h (u) s [s as(e )] du
"4 g2, - (2) 9 . 2 3 , -jsu
whence 3s [s°T:'(s)] = Imj fw h (u) "a [u "a (e )] du .
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Two integrations by parts now lead to the result

e :
d 2 ' d 2. (3) ~Jjsu
—_ = Im, - h d D.4
P [s°T,"' (s)] my Jo ™ [u ()] e u ( )

and by exactly the same method

a 2 ' d 2 4 jsu
—_— . = R - F . D.5
3s [s°T,'(s)] ej l ™ [u (W] e du (D.5)

0
Substitution of (D.4) and (D.5) in (D.3) gives the verification

of (5.29).

§D.2

It is now shown that

e _
IEJ es'i[s2 ®,5(0,8)] ds = -

2i 1)
ds
0

3m 8J

W [

(see (5.30 et seq.).
From (D.2) and the definitions of J; and J, it is clear that ¢, (0,s)
and its derivatives are bounded for all s. Hence two integrations
by parts give

Q0

- _ 4 (.2."S

I = f ®, (0, s) 3s (s“e ) ds ,
0

and (D.2) then implies that

00 {0 o] o0
i -s d 2 -8 2 d 2 —S 4 d 2 -S
I = — —_ - — —_ - — —_—
53 J e ds(s e )ds T J J; (s) ds(s e )ds Ta J Jz(s)ds(s e )ds
0 0 0
(D.6)
Let the three integrals here be called I;, Iz, I3 in turn.. It is
easily proved that I; = % . (D.7)
(@ '
Next I, = Im, J J ' (e % (2s - s2)e ® au as . (from (D.1))

0" 0

Reversal of the order of integration gives

e (2)
I, =Re, | 28B ) 4.
J 0 (l+ju)3
1, 1
1+ju. 1-ju

By writing h(u) = % [ ] it is easily shown that

(2) e re°
rﬂl—h——2=-z[J g du+J —2 qul .

o (1+jw)?d o (1+ju)® o (1+u?)?
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These integrals can be evaluated by elementary methods to give
2

I, =-%< . .
2 5 (D.8)
Finally,
e u 2. —(l-ju)s
I3 = Re, J ———— (2s-s5)e du ds (from (D.2)).
I 0000 (umd) (i) ®
As for I,, it can be shown that
- o0
~2u%; ,
I3 = Re, I uJj du
] (u-3) (u+3) * (1-ju)
. =2u?
i.e. I3 = Re, rw — du or
30y (w-3) (ki) ®
roo 2 ‘ 00 du (%
I; = -2Re, J —2  qu-= -2Re_[f —_— - J S 1.
I 00 (u-g) (usg) © Ty ) S Yy (u-9) (g ©

The first integral here has the value % while the second can be

evaluated by means of the reduction formula

(_1)n+l,n . ' re a
p = (222 J 1 (wheren >1 and T = '————Ji———‘)
n 2(n-1) 2 "n-1 n ; )1
o (u=j) (u+j)
hence Re. (Tg) 2
whence ej 6 i5 -
1
Thus I3 = 30 -

Substitution of (D.7), (D.8) and (D.9) in (D.6) shows that

i 4 2 i 2 i [21 1
I == e = o = —— 4 —— = - = 2= - =

8a " Sma ~ I5Ta  8a ' 3Ma _  a (37 8)

This is the result required after (5.30).

§D.3
In Chapter 5, 85.8, the wave contribution from a velocity
® e—iV d -Y
distribution Re(J — dv) E? (Yze ) on a vertical wavemaker
iy

(X =0, Y> 0O) is required. It is shown that this distribution
produces no progressive waves in the far field.
It is first noted that the real part of the integral occurring here
is equal to the Cauchy principal value integral {” 252 du whence an
-y _

integration by parts gives the equivalent form
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o

-e¥ log Y + J e " log |u]  du or
Y o ¥ u
-e log ¥ - y + I e logu du. (Y = Euler's constant).
0

Hence, the given velocity distribution takes the form

Y
-Y d 2 f u
e ) + Iy (Y¢e ) J e log u du .
0

2 _ _ ., 49 2 -Y
(Y 2Y)log ¥ - Y av (Y

The wave part of Havelock's wavemaker solution shows therefore that the

wave amplitude produced by this distribution will be proportional to

-y “ -y 4 Y ® _va ¥
e (Y2 - 2Y) logYdYy - v | e =(y?e V)ay + | e i (v2e ¥)| e¥log u @
_ ay ay
0 0 0 0
* a Y ® -y a Y ® _y 4 v ¥y
= - —(v2e - T S 2. -¥ a4 .2 = |
J dY(Y e )log Y 4y YJ e dY(Y e )Ady + J e dY(Y e )J e log u du
0 0 0 0 ’

The values of these three integrals can be found by integration by parts

and the sum of the three terms here is seen to be

- X - Yy -
1 4+(1+4) o .

Hence this velocity distribution produces no contribution to the

wave amplitude.
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