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ABSTRACT 

A sinusoidal wave train travelling on the surface of an ocean of great 

depth is considered to be incident on a class of partly submerged circular 

cylinders whose generators are parallel to the wave crests and whose cross-

sections pass through two fixed points on the mean surface at angles a 

(measured through the fluid) which may be acute, right or obtuse. The 

ocean is assumed incompressible and of constant density and, in addition, 

viscous effects, surface tension and variations of atmospheric pressure are 

neglected. The linear theory of water waves is then employed to carry out 

a comparative study of three different methods of determining the transmissic 

coefficient (T) for the class of obstacles mentioned, namely, 

the method of multipole expansions (Ursell (1949)) 

the method of matched asymptotic expansions (Leppington (1973)) 

the null field method for water waves (Martin (1981)). 

In the case a = gO , (a) is used to obtain numerical values of T for 

271 
0.01 < N < 20 (where N = ka, 	= wavelength, a = cylindrical semi-beam) 

and, by means of (b), three terms are added to Leppington's (1973a) asymptotic 

formula for T, these terms being of orders 
1 
 5, 

(log N)2 and 

Comparison of the values of T obtained using (a) for 8 < N < 20 and the 

complete fifth order asymptotics establishes the existence of a region of 

overlap. 	In the case where a is obtuse, similar comparison, using (c) 

and the first two terms of Alker's (1977) asymptotic result, produces 

positive evidence of the existence of a similar region (N is taken up to 

10 in these cases). 	Numerical values of T (and R, the reflection 

coefficient) are found for 45 0  <a < 1650  and 0.01 < N < 10. 	The extension 

of the asymptotics in the case a = 90°  reveals striking examples of the 

cohesion of the method of matched asymptotic expansions as propounded by 

Leppington for water wave scattering and radiation problems. 



This thesis has been composed by myself and it has not been 

submitted in any previous application for a degree. The work 

reported here was executed by myself, unless otherwise stated. 
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CHAPTER 1 

1.1. 	Introduction 

The main part of this thesis is devoted to the problem of the 

scattering of sea-waves in two dimensions. 	It is postulated 

that a long-crested sinusoidal wave train is Incident upon a 

fixed partly immersed cylinder of general cross-section (the 

generators of the cylinder being parallel to the wave crests) and 

it is required to find the ratios of the (complex) amplitudes of 

the transmitted and reflected waves to that of the incident wave. 

These ratios (called the transmission and reflection coefficients 

respectively) will be seen, in the case of steady state oscillations, 

to be functions of the cylindrical geometry under consideration and 

also of the wave number of the incident wave. The reason for 

their importance lies in the fact that the squares of their moduli 

are measures of the proportions of energy transmitted through and 

reflected from the cylindrical obstacle in the form of wave trains, 

and the investigation of the nature of their dependence on obstacle 

and incident wave has been the subject of a considerable number of 

papers in recent years. 	Particular attention will be given in 

this work to the delicate problem of calculating the small proportion 

of energy which is transmitted in the case when the wavelengths are 

small compared to a typical dimension of the obstacle. 

In sections §1.3-1.5 the three main methods for tackling such 

problems are discussed and reference is made to some advances achieved 

later in the thesis by the use of two of these in particular (the 

multipcie expansion method and the method.of matched asymptotic 

expansions). 	Surveys of the literature are given in these sections 

and the mathematical notation to be employed later is also 
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introduced with reference to Figs. 1 and 2. 	In section §1.6 the 

layout of the thesis is summarised. 	Before these matters are 

examined in detail, a summary is given of the assumptions underlying 

the mathematical model of the situation and the boundary value 

problem to be discussed hereafter is set out. 

§1.2. The Mathematical Model 

The usual assumptions of linearised water wave theory are 

employed and viscous effects, surface tension and variations of 

atmospheric pressure are neglected. 	In addition, the ocean is 

taken to be of infinite depth, incompressible and of constant 

density. 	If, therefore, the motion is assumed to have started from 

rest, then the previous assumptions imply that, throughout the 

subsequent motion, its original .irrotationaI nature will be preserved. 

There will exist, in consequence, a scalar velocity potential 

w(r,t),where t is the time measured from any suitable instant and 

r is the position vector of a point in the flow field relative to 

an origin fixed in space. 

Attention will be confined to periodic states for which 

w(r,t) = Re[W(r) e1] , (where 	is the period of the wave motion 

and W is, in general, a complex function of position). 	To describe 

the problem in mathematical terms axes are set up as shown in Fig. 1 

with Ox On the undisturbed water surface pointing towards the 

incoming wave, Oy vertically downwards and Oz chosen so that the 

system of axes is right handed. 	By appropriate choice of time 

origin and of scales of length and time, the potential of the 

incoming wave can then be taken as exp[-ky - i(kx + a t)] (where 

k = 22 is the wave number and g is the acceleration due to gravity). 

Thus the mathematical formulation of the problem is to find a 
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Fig. 1 

Diagram and Axes for General Transmission Problem 
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C = profile of submerged part of cylinder 

= points of intersection of cylinder cross-section with undisturbed 
- water surface 

T± = tangents at E± 

D = fluid domain 

S = undisturbed, water surface 

r = boundary curve for C 
a = cylindrical semi-beam 

= distance of a general point in the fluid domain from E +  

n = unit vector in direction of outward normal at a general point of r 
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function W(r) = W(x,y) continuous and twice differentiable in the 

fluid domain satisfying the following spatial boundary value 

problem (see Fig. 1 for the notation): 

D 2 w 
2 + 3y

2 =0 
ox 

in D, 

=0 on S, 

aw =0 on F, 

VwI --0 asy++°, 

As x - 	, W(x,y) 	exp(- ikx - ky) + R exp(ikx - ky), 

As x - - , W(x,y) - T exp(-ikx - ky) 

(where R and T are the (complex) reflection and transmission 

coefficients respectively). 

It is usual,at this point,to introduce the scattered potential 

4(x,y) = W(x,y) - exp(-ikx - ky) so that the associated boundary 

value problem for is: 

2q  

2

-  

+ --- = 0 	in D,  
X 	oy 

k4± 	=0 	on S, 	 (1.2) 

- 
- - —  - [exp( -  ikx - ky)] oft F, 	(1.3)

Dn 

I7H-0 asy - +°° a 	 (1.4) 

As x - -4- , 	( x, y) 	R exp(ikx - ky), 	 (1.5) 

As x - - , 	(x, y) 	(T - l)exp(-  ikx - ky). 	 (1.6) 

It is convenient also to express equation (1.3) in terms of the 

conjugate stream function iJ.(x,y) for then the equation can be 

integrated along F to give the value of iJ' at any point of F in 

terms of its value, e.g. at E+. 	Specifically, if arc length is 

measured positively from E+  (as origin) towards E, then 	= 
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and the integrated form of (1.3) is 

ip (P) - 	(E) = - f 	[exp(- ikx - ky)] ds 	(1.7) 

(where P is any point on F and the line integral is taken along 1' 

between E and P). + 

John (1950) has proved that such problems have unique solutions 

provided two other conditions are satisfied. These are 

the profile C should be completely contained within 

the two verticals at E+  and E_ (it is probable that 

this condition can be relaxed but this will not be of 

concern here); 

certain edge conditions are satisfied at E+ and E_. 

These conditions are usually stated in the form 

(1.8) 

+ 0 as ;5 - 0 	 (1.9) 

(Stoker (1957), Chapter 5, interprets these conditions as stating, 

in mathematical terms, that waves do not break at the edges; 

certainly, if these conditions were not satisfied, there would be 

a net flux of liquid through arbitrarily small circular arcs 

centred at the edges indicating the existence of a source or 

sink there). 

Equations (1.1)-(1.9) are of the same form as those associated with 

the forced harmonic motion of a cylinder of general cross-section 

(although, in this case, t would represent the radiation potential and 

the coefficients of the wave terms in (1.5), (1.6) would be the complex 

amplitudes of the waves generated at ±co). 	Indeed, for heaving, 

swaying and rolling modes the right hand side of (1.3) would be 

simply replaced by vj.n, vi.n and w(kxr) .n respectively (where i, 
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j, k are unit vectors along Ox, Oy, Oz respectively and 

Re(vje lOt), Re(vie 1Gt) is the velocity in the heaving, swaying 

mode while Re(wke 10t) is the angular velocity in the rolling mode. 

Newman (1975) has, in fact, derived equations relating the reflection 

and transmission coefficients of the scattering problem to the 

phases of the symmetric and anti-symmetric radiated waves and has 

shown that, in the cases of bodies symmetric about x = 0, R and T 

can be determined precisely from the radiation phase angles in 

heave and sway. This has similarities to the situation in the general 

two dimensional periodic problem of a freely floating body in the 

presence of an incident wave (which in linear theory can be treated as 

a superposition of a radiation and a scattering problem), where the 

Haskind relations (see e.g. Newman (1977)) enable the exciting forces 

in heave and sway and the roll exciting moment to be calculated provided 

the forced wave potential in the corresponding mode can be found for 

given forcing. Thus, in the general case, the solution of the 

diffraction problem can be avoided in the calculation of exciting forces 

and moments. 	In this work, however, the transmission problem will be 

tackled directly. 

It will be convenient here to give also the complex form of the 

boundary value problem under consideration. 

Let a complex variable 

z = x + jy 

and a complex potential 

f(z) = 4(x,y) + jlJ.i(x,y) 	be introduced 

(where j is a complex unit treated independently from i). 

The problem then becomes that of finding a function f(z) analytic 

in D and such that 

Im.(f' (z) - jkf(z)) = Con Im.(z) = 0 	(IzI > a), 
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p 

Im.(f(z) - f(a)) = - - ky)] ds on 
J 	 fE 

~n 
+ 

(where P is the point of affix z) 

j f(z)j is bounded for all z in D , 

As x 4 +co, Re. [f(z)] 	R exp(ikx - ky), 

As x -' -, Re. [f(z)] - (T - l)exp(-  ikx - ky). 

In subsequent chapters there will be occasion to refer to the 

problem in both forms, but for the present the form (1.1)-(1.9) 

will be used in discussing the application of the methods of 

multipole expansions 

integral equations 

matched asymptotic expansions (for short waves) 

to the solution of the problem. 

§1.3. 	The method of multipole expansions 

The method was originated byursell (1949) in solving the problem 

of the heaving motion of a semi-submerged circular cylinder and 

similar methods may be used for the transmission problem (see 

Chapter 2). 

In the (more complicated) transmission problem the potential is 

represented as a superposition of 

a term representing a line source along the z-axis; 

a term representing a line dipole along the z-axis; 

an infinite series of terms representing wave-free line 

multipole potentials. 

The individual terms of the solution are chosen specially to satisfy 

(1.1), (1.2) and (1.4) and the wave-free multipoles are, in 

addition, chosen so that they die off to zero at infinity, leaving 

the wave terms in (1.5) and (1.6) to be provided by the source and 

dipole terms. 	The coefficients in the infinite series i.e. 



the strengths of the source, the dipole and the various multipoles 

are determined by satisfying (.1.3). 	Once this is achieved it must 

be verified that the resulting infinite series is uniformly convergent 

and twice differentiable term by term in D. : If this is so, then the 

unique solution of the problem has been established. 

It should be noted that the infinite set of wave-free multipoles 

consists of two distinct subsets, one containing multipole 

potentials which are symmetric with respect to the plane x = 0 and 

the other containing anti-symmetric terms. 	In the heaving case, 

the radiation potential is represented by the superposition of a 

suitable source term together with the symmetric multipoles, while, 

in the swaying case, it consists of a dipole term plus a linear 

combination of anti-symmetric multipoles. 

Martin (1971) has discussed the cases of the swaying circular 

cylinder and the rolling elliptic cylinder, pointing out that, in 

the latter case, a different combination of multipoles from that 

used in the circular case is required and that, in general, 

different combinations will be required for different cylindrical 

geometries. 	With regard to the convergence properties, Ursell 

(1949) has proved inverse cube convergence of the multipole 

expansion for the case of a heaving circular cylinder and Martin 

(using similar methods to Ursell) has shown that, in each of the 

three basic modes he considers ,the rth term in the multipole expansion 

is smaller than 
X 

 3 where X is a function of k x a typical length in 

the profile and other non dimensional geometrical parameters, thus 

ensuring uniform convergence of the expansion in these cases. 	(A 

similar property is derived for the multipole expansions in the 

transmission problem in Appendix A). 	However, a proof that the series 

converges for all three modes of motion and an arbitrary shaped 

cylinder has not been given, though Vugts (1970) states that it is 

acceptable that this will be the case. 
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In conclusion, it should be stressed that, while convergence 

of the multipole series occurring in the transmission problem has 

been proved, considerable numerical difficulties are experienced in 

the calculation of the transmission coefficient as N increases. 

Nevertheless, it is seen in Chapter 2 that use of multipole 

expansions of up to 80 terms, coupled with numerical routines which 

maximise computer accuracy, produces three reliable significant 

figures in T for values of N well beyond the range of those 

previously examined. Meanwhile, consideration is now given to the 

second method of tackling the basic problem. 

§1.4. 	The integral equation (I.E.) method 

The numerical difficulties inherent in satisfying equation (1.3) 

for large N using multipole expansions and a desire to elucidate the 

physical processes involved in the scattering of short surface waves 

led to the development of the I.E. method by Ursell (1961). 	The 

ground work had been laid down by John (1950) and Ursell himself 

(1953). A brief description of the method is now given and the 

notation for Chapter 6 (on the null field equations) is introduced. 

Suppose a Green's function G(x,y; ,n) (also denoted by G(P,Q)) 

can be found for the domain D such that 

G(P,Q) = G(Q,P) 

2G 	32 G 

	

+ 	= 0 

	

kG+ - 	.0 

ikG -'P0 
Dr 

in D 	(x, Y) 	(,fl) 

on S 

asr /x 2 + y 2  ±, 

G(x,y; 	,n) = ½ logE (x _)2 + (y - r) 2] + G1(x,y; E, 1-l), 

where G1(x,y; ,fl) is regular throughout D (see e.g. John (1950) p.100). 
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By applying Green's theorem to the functions and G in the region 

bounded by s,F, the semi-circle at infinity and a small circle 

centred on the point P(x,y) (assumed to lie in  D but not on F-), it 

can be proved that 

	

2 T 4(P) = j 
	

[G(P,q) 	(q) - 	(q) 	G (P,q)] ds 
3n 	 3n q' 

where q is a general point of F, 	denotes differentiation along 

the normal to F from q into D and ds 
q 
 is the length of a line 

element at q. 

By use of equation (1.3) the above equation can be rearranged as 

2(P)+ 	•(q) 	[G(P,q)]ds 	-1 G(P,q) 	[exo(-ikx - y )Ids 	(l.l flq 	 q 	q 	q 	q 

where (Xqi Yq ) are the coordinates of q. 	It follows that the value 

of the potential at any point in the fluid domain which is not on 

r, will be known if the value of the potential on r can be found, 

of if a Green's function can be constructed satisfying also 

DG 
- = 0 on r. 	The latter approach leads to a problem which, in 

practice, is as difficult as the original one posed so it is 

necessary to examine the possiblity of determining the value of 

the potential on F. 

In theory this can be achieved by applying Green's theorem as 

before with the field point P now occupying a position p on the 

curve F, the point p this time being surrounded by a small semi-

circular arc centred on it. The result is a Fredholm integral 

equation of the second kind for the values of on F  viz. 

(p) 
+ 

	

fr. (q) 	[G(P,q)]ds = 	G(,q)-. [e(ikX -  ky)]ds 

 q 	 F. 	
q 	q 	q' 

and an attempt may be made to solve this by one of the standard 

methods for such equations (e.g. iteration) or by a numerical 



approach. 	However, although this is feasible for long wavelengths, 

problems again arise when N is large because the kernel of the I.E. 

[-p] contains the rapidly oscillatory term exp(-ikx - ky) when 

John's fundamental G.F. is employed. 	As a consequence iteration 

proves impractical while attempts at a numerical solution run into 

the same kind of difficulties as are experienced using multipole 

expansions. 	In addition, it is known that the above integral 

equation of the second kind is singular at a certain infinite 

discrete set of frequencies corresponding to the eigenvalues of a 

related interior problem (John 1950). 	This is purely a consequence 

of the method of solution since it is also known that the original 

boundary value problem has a unique solution for all frequencies 

provided the union of F and its image in the free surface is a 

convex, twice differentiable curve. 

Use of the null field equations (to be discussed in Chapter 6) 

helps to remove the difficulties but these equations have only 

recently been developed for water wave problems (Martin, 1981) and, 

in any case, are not amenable to analytic solution. 

Ursell's resolution of the dilemma lay in modifying John's 

Green's Function by subtracting from it a linear combination of 

source and dipole terms specially constructed to achieve cancellation 

of the rapidly oscillatory term. 	The resulting kernel is then 

small when N is large and iterative methods can be applied to give 

an asymptotic form for on the cylinder when N is large. 

Substitution of this form in equation (1.10) then enables the 

development of 	in -the fluid domain to -be 4ound for large N and, in 

particular, by letting x - - the leading term of the asymptotic 

form of the transmitted wave can be derived. 

By this means, Ursell proves rigorously the result 
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2i T - exp(-2iN) as N 
TrN 

for a semi-submerged circular cylinder. 

(N.B. Ursell (1961), p.655, suggests the result 

T .. - 	exp(-2iN) 
TrN 

but Leppington (1973a), p.141, points out that a sign error exists 

in formula (6.1), p.650, of Ursell's work). 

Ursell also predicted that for any shape r intersecting the free 

water surface at right angles the value of T will be of the order of 

as k -+ and this is borne out by Leppington (1973a), p.140, 

using the formal method of matched asymptotic expansions (see §1.5). 

Holford (1964a, b) applies the I.E. method to the finite dock 

problem (on an infinite ocean) and derives rigorously a sequence of 

results giving the leading asymptotic forms of the virtual mass 

and damping coefficient for this geometry in heave and roll when 

N - 	. 

Holford also mentions that the finite dock problem-can be 

tackled by formulating the problem in terms of a new potential 

function 6 where 

= k4 + 
9Y 	DY 

This method reduces the problem to solving an I.E. with a 

particularly simple kernel (see Holford, 1964a, pp.963-965, for a 

description) and has been employed by Sparenberg (1957) and MacCamy 

(1961) following Rubin (1954) who was its originator. 	However, 

Holford points out that the same problems arise for short wavelengths 

using this method as existed in the case of Ursell's original I.E. 

description. 

Finally, in this section it may be remarked that an I.E. method 

was used by Ursell (1947) to solve the scattering problem for a 



fixed vertical barrier extending from a point above the mean free 

surface to a distance d below it and that John (1948) (using 

complex variables and a differential equation approach) has solved 

the equivalent problem for a barrier inclined at an angle 	to 

the mean free surface when n is an integer. In the same work he 

also considers the case of a submerged infinite vertical barrier, 

a problem first discussed by Dean (1945). 

§1.5. The Method of Matched Asymptotic Expansions 

(a) The integral equation method described in the previous section 

has the advantage of providing a rigorous derivation of the leading 

term in the asymptotics of the amplitude of the radiated and 

scattered waves but is not by its nature suited to the derivation 

of higher order terms. 	The reason is that the "wave-makers" in 

the I.E. method are curved surfaces i.e. the wave coefficients are 

integrals along arcs of F (in Ursell's case the arc for the 

transmitted wave was r = a, . e <n). 	Indeed, higher order terms 

involve (at least) double integrals along these arcs whose asymptotic 

evaluation for large N proves intractable. The advantage of the 

method of matched asymptotic expansions lies in a simplification of 

the geometry of the "wave makers" whereby they become of the 

"classical" type i.e. the integral coefficients of the wave terms are 

along a straight line from 0 to co . 	Higher order terms can now be 

dealt with since the asymptotics of the double integrals involved 

in the higher order wave terms can be found using the thorem in 

Appendix B. The other main advantage of the method of matched 

asymptotic expansions is that its general underlying philosophy is 

capable of application to a wide variety of different forms of 1' 

(including cases where T+  and T_ are not normal to the free water 
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surface). 	Before a general description of the method is given, 

a summary of results obtained by its use in problems involving the 

radiation and scattering of water waves is presented. 

The main contribution has come from Leppington in a series of 

three papers (1972) and (1973a, b). 	In (1972) he tackles the finite 

dock problem for infinite and finite depth, extending, in the former 

case, the results derived rigorously by Holford (1964) for the 

amplitude of a radiated wave and verifying the efficiency of the 

method in deriving the first order reflection and transmission 

coefficient for the scattering problem; in addition, first order 

estimates of R and T are obtained in the case of scattering by a 

T-shaped dock. 	For finite depth, explicit results are also given 

for radiation and scattering by a finite dock. 

(1973b) concerns itself with curved geometries where r is 

locally smooth and convex at the two intersection points with the 

fluid and the intersection is normal; again infinite and finite 

depth are considered. 	For infinite depth a first order form for 

T is obtained in the general case, and this, is checked against 

Ursell's (1961) result for the semi-submerged circular cylinder. 

Other special cases considered are the semi-ellipse and circle with 

vertical keel. 	An extension of Ursell's result for the semi- 

circle is also suggested, viz. 

T = e(-2ia/) (2i/7i)[ (E/a) - 4/(/a) 5  log (c/a) + 0(E'/a) 5] ( = 1/k) 

(one of the main results of the thesis (in Chap. 5) is the 

derivation of the next term in the expansion for the purposes of 

comparing the asymptotic form of T with the values obtained using 

multipole expansions in Chap. 2). 

Again, for finite and infinite depth (but for the radiation 
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problem this time) a general first order, result is obtained for the 

amplitudes of the waves radiated to ± for the heaving case. 

Comparison is made with the results derived rigorously by tjrsell 

(1953) (for infinite depth) and Rhodes-Robinson (1970a, b), (1972) 

(for finite depth). 	Agreement is obtained in each case. 

In (1973b) attention is turned to three dimensional problems 

and explicit first order asyniptotics worked out for the amplitudes 

of radiated waves in the cases of a heaving and rolling circular 

dock and a heaving hemisphere. 	In addition some conjectures are 

made concerning the relation of the reflection and transmission 

coefficients in three dimensional problems to the corresponding 

values in the case of two dimensional acoustic scattering by a 

cylinder with the same cross-section as is formed by the 

intersection of the three dimensional obstacle with the free surface. 

Following Leppington, Alker (1975) has extended Ursell's 

rigorous result for the amplitude of the wave radiated to infinity 

by a heaving semi-circular cy1indr to terms of order E log E and 

and Ayad and Leppington (1977) have discussed the case of plane 

vertical barriers (of finite depth and width). 	In addition, 

Alker (1977) has derived estimates for Rand T in the case of scattering 

by a circular cvlinde2z whose centre is not on the mean water surface. 

(b) Description of the method of matched asymptotic expansions 

as applied to scattering problems in two dimensions 

(It is assumed in this section for exactness that T+ and T are 

normal to the undisturbed water surface.) 

In the short wave limit consideration is given to the 

asymptotic form of the solution of the boundary value problem when 

F(= ) - 0. 	The problem may be kept within the bounds of linear 

theory by ensuring that the waves under consideration are always 
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such that the ratios of their heights to their lengths are 

vanishingly small as the wavelength approaches zero, i.e. the wave 

slopes are adjusted appropriately as the wavelength is shortened. 

The results obtained show that the transmission coefficient is 

a function of -, where a is the semi-width of the scatterer so that 

their validity may be implied in the case of waves whose lengths 

are small in comparison with the dimensions of the scatterer in 

the direction of the wave motion. 	This physical interpretation 

of the mathematical limiting process -- 0 is adopted by Holford 

(1964). 

It can be seen from (1.2) that if C is set formally equal to 

zero, then the highest derivative term is lost, and the free surface 

condition becomes simply 4 = 0 so that the far field form of the 

potential cannot be achieved since such a problem does not permit 

the existence of surface waves. 	It is clear, therefore, that our 

problem in the short wave limit is of the singular perturbation 

type and that the asymptotic form of the solution as C - 0 cannot 

be represented uniformly throughout the whole fluid domain by a 

single asymptotic series of Poincar form. 	In other words, it is 

not possible to find functions a(E), 'r'' 
and numbers ACM) 

independent of x, y and C such that 

Ci) a r+l (C) = o r (a (C)) 	as c - 0 

(ii) for each integer M > 0 

(x,y;E) - rO a(C)(x,y) I 	A(M) 1a 1 C) (  

for all (x,y) in the fluid domain under consideration. 

In such cases the method is to find two (or more) asymptotic 

series which approximate to 4(x,y;E) in different parts of D but 

complement each other in a sense which is contained within a 
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Fig. 2 

Sub-Division of the Fluid Domain for Application of the Method 

of Matched Asynptotic Expansions 

r 
11 

WE 

1 
	

Tt 

BL = boundary layer (width of order C) 

= right inner region 	( 	a) 

= left inner region 	(S< a) 

0 = outer region 	 C) 
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matching principle to be described later. 

Intuitively, two regions can immediately be identified in 

Which different forms of solution may be expected: 

Ci) a boundary layer with thickness of order E in which 

wave effects are detectable, and 

(ii) an outer region, many wavelengths from the free surface 

in which wave effects will be negligible. 

Within these two main divisions, further subdivisions are 

necessary as shown in Fig. 2. 	These additional domains, A+ , 

the right and left inner regions, consist of points which are very 

near E±  on the a-scale, i.e. cS +  << a. 	Hence, as measured on a 

length scale in these regions, the curvature of the cylinder (!) 

will be negligible and the effect of the cylinder will be 

indistinguishable from that of a vertical barrier along T±. 

This simplification in the geometry of the problem enables the 

boundary condition on the curved surface in 	to be replaced by 

an equivalent condition stated on T+ . 	Indeed, the potentials, 

in the perturbation series for the potential in A + , turn out to 

be solutions of the classical wave maker problem, each potential 

in the series being determined by the velocity distribution induced 

on T±  by a potential appearing earlier in the series (or by the 

incoming wave in the case of the leading term of the scattered 

potential in h f ). 	This result has the important consequence 

that the reflection and transmission coefficients can be determined 

to a given order in 6 from perturbation expansions in 	which are 

of lower order in c and is another of the factors enabling progress 

to be made beyond the limits of the integral equation method. 

In the outer region which consists of points many wavelengths 
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from the free surface (y > c) the perturbation series for the 

potential is developed by first formally putting E = 0 in the 

boundary value problem. This leads to a condition ' = 0 at the 

surface so that the problem is a homogeneous one and it is necessary 

for uniqueness of solution to apply the matching principle (see §3.5) 

between 0 and 	(this turns out to be equivalent physically to 

specifying that the outer potential has a multipole singularity at 

E+). 	Subsequent development of the outer perturbationseries is 

obtained by matching with the solution in A and substituting the 

series formally in the surface condition $ + 6 oy = 0 on y = 0 and 

equating terms of various orders in E to zero. This leads to 

classical boundary value problems for the potential coefficients 

in the outer series. 	Once these have been solved, the development 

of the perturbation series on can be determined leading to the 

far field wave form at - and hence to the asymptotic form of the 

transmission coefficient. 

These general remarks will be expanded in Chapter 3 when the 

qualitative ideas given here will be expressed in more quantjaje 

mathematical terms. 

Finally, it must be emphasised that, although a wide variety of 

water wave problems have proved susceptible to successful solution 

using matched asymptotic expansions, the method is, nevertheless, 

a formal one. 	However, in many cases the formal expansions derived 

do turn out to be actual approximations in certain regions of the 

fluid domain. 

§1.6. 	Layout of the thesis 

Chapter 2 describes the calculation of numerical values 

of T for a semi-submerged circular cylinder (using multipole 
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expansions) for values of N well beyond the range previously 

considered. 	Comparison with tirsell's and Leppington's asymptotic 

forms are inconclusive. 	Large relative differences can occur even 

when the absolute difference is within the order of the error term 

(see Tables 7, 8 and graphs 7, 8). 	This leads to use of the 

method of matched asymptotic expansions to derive the next term 

in the asymptotic expansion of T and Chapters 3 and 4 lay the 

groundwork for the achievement of this in Chapter 5. Chapter 3 

contains a general mathematical description of the method as applied 

to scatterers which are perpendicular to the free surface and the 

necessity for a detailed examination of "classical wave maker" type 

problems is explained. This forms the subject matter of Chapter 4. 

In Chapter 6 the null field equations are used to provide numerical 

values of the transmission coefficient for a class of obstacles 

which intersect the free surface at an angle to the vertical. 

Comparison is made with Alker's (1977) asymptotic result for short 

waves. Chapter 7 contains the derivation of the first two sixth 

order terms in the asymptotics of the transmission coefficient for 

a semi-submerged circular cylinder while Chapter 8, finally, contains 

a summary of the work and conclusions of the thesis. 
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CHAPTER 2 

§2.1. 	Introduction 

The problem of determining the transmission coefficient T for a 

half-immersed circular cylinder in regular beam seas can be solved 

using the multipole expansion method of Ursell (described in §1.3). 

In outline the method adopted is to separate symmetric and anti-

symmetric problems and solve each by expressing the stream function 

as a series containing a source/dipole term together with wave-free 

combinations of multipoles having appropriate symmetry. 	The 

resulting series is truncated and the boundary condition (1.7) on the 

cylinder is imposed at a finite number of appropriately chosen points. 

By systematically increasing the number of points, a sequence of 

approximations to the complex transmission coefficient {T(M;ka)} is 

obtained (where M is the number of points used). 	For each ka, the 

sequence is extended till the pattern of variations between successive 

terms is such as to allow the inference of the value of the limit of 

the sequence to a useful number of significant figures. 	Thereafter, 

comparison of this value with any value T(M;ka) obtained at an 

earlier point in the sequence enables an indication of the accuracy 

at this point to be given (see §2.6). 

It is found that multipole expansions of less than 10 terms give 

good accuracy for values of ka up to order unity but that, thereafter, 

such abbreviated series often fail to produce even one correct 

significant figure. 	Indeed, for values of ka in the range 6 to 20, 

it was found necessary (in general) to use multipole expansions of 

up to 80 terms (coupled with extreme computer accuracy) to be sure of 

just 3 significant figures for the limit. 	Comparison of the values 

obtained in this range with the asymptotic formulae of Ursell and 

Leppington indicates the need for completion of the fifth-order 

asymptotics. 
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2.2. 	The multipole form of the solution to the transmission 

problem for a semi-submerged circular cylinder 

The problem is considered in the form (1.1)-(1.9). 

The coordinates are first re-scaled by setting 

X = kx and Y = ky 

so that also R = kr (where R and r are the radial distances from 0 

in scaled and unscaled form). 	Similarly R+ 	+ 
= kS and R = kc5 (in 

an obvious notation (see Fig. 1), while a new potential function 

(X,Y) may be defined by 

	
k) = 	, 

In terms of Os t 
the problem now takes the form 

+2js(X,h1) 	= 0 	(R > ka, 	Y > 0) 	(2.1) 

(X,0) 	
+

= 0 	(lxi 	> ka) 	(2.2) 

= - [exp( -iX - Y)1 	onR=ka 	 (2.3) 

1Vi - 	0 as Y 	 (for all x) 	 (2.4) 

As X 	+00, 	 (X, Y) 	R exp(iX - Y) 	 (2.5) 

As X - 	
00

, 	q)(X,Y) 	(T - 	l)exp(-iX - Y) 	 (2.6) 

R 	- 0 as R 	0 
+aR 	 + 

(2.7)' 

R9*OasR+0. 	 (2.8) 

It can be seen, therefore, that the problem is equivalent to 

determining the transmission coefficient for a wave of fixed length 

incident upon a semi-submerged circular cylinder of radius ka. 

The value of T will, therefore, depend only on the value of the non-

dimensional parameter N = ka. 

If a complex variable z = X + jY is introduced, it can be easily 

verified (if z 0) that in the first quadrant X > 0, Y 0 the real 
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parts of the complex-valued functions 

e (z) = 	 _ J.._ +  (m 6 Z 
m 	 2m-1 	2m 

(2m-l)z 	z 

jz 

100 

e jt 
s(z) = e 
	

dt + jrre iz 
- 	 z 

w(z) = e iz  

are harmonic, bounded at infinity and satisfy the free surface 

condition (which in complex form is Im.(D - j)f(z) = 0 if Im.(z) = 0). 

In addition they have the property that 

Re. [f'(z)] = 0 if Re. (z) = 0 

They are indeed the fundamental solutions of the vertical barrier 

problem which are bounded at infinity (see §4.5). 	It follows that 

they can be extended into the second quadrant as functions whose real 

parts are even in X by means of the equation 

f 
ext 

 (z) = f(-z) 

This leads to a set of functions which in the whole half plane Y>1  0 

(except at z = 0) are harmonic, bounded at infinity and satisfy the 

free surface condition, viz. 

e(z)= 	 - --f -- 	 + 

	

(m 6 Z ) 	 (2.9) 

	

z 	z m 	
(2m-l) 2m-1 
	2m 

•CO -it 
I 

s(z) = 	
e jz 

2. e t I 	dt + jTre 	Re(z) > 0 
J 

I 	

Jz 	

(2.10) 

e Liz 	
e 	 iz 

dt - jrre 	Re(z) < 0 

iz 
w(z) = e 	 (2.11) 

Similarly the real parts of the derivatives of these functions are odd 

in x and otherwise satisfy the same conditions as the functions 

themselves. 	Thus it is postulated that the solution of the problem 

can be expressed as the real part of a complex potential F(z) where 
Co 	 CO 

F(z) = as (z) + Aw(z) + E a e (z) + s' (z) + Bw'(z) + E b e '(z) 	(2.12 
ml mm 	 m=l mm 

and the coefficients in the above expansion are independent of j 
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(though they may depend on i). 	Clearly this form of solution 

exhibits the potential as the sum of two parts, one even in X which 

will be denoted by Re.(FE(z)) and the other odd in X denoted by 

Re. 3 (FO (z) 	Thus 	
00

F (z) = as() + Aw(Z) + E 	e (z) 	 (2.13) 
E 	 m=l mm 

Co 

and F0 () = s' () + Bw' () + Z b e 	(z) 	 (2.14) 
m1 m m 

(The form (2.12) may be derived rigorously by setting 	= f' (z) - jf(z) 

and using Laurent's theorem after suitable continuations to derive the 

form of solution for T in complex form then integrating to find the 

form of f. 	The methods are similar to those used in Ursell (1950) 

for the case of a submerged circular cylinder, see also §6.4 after (6.11). 

With reference now to (2.12) and (2.9)-(2.11), it is easily seen 

that as z - +cO in X > 0 

F(z) - ajlre 
jz 

 + Ae jz + 	
j  

(-1re ) + 3(je jz 

so that 

Re. [F (z)] 	-a1resin X + Ae cos X — Trecos X — Besin X 

ie Re. [F (z)] 	e 	[ (A - 	)cos X - (B + a) sin x ] 	• 	( 2.15) 

The condition (2.5) requires that this must be of the form 

(constant) .exp(iX - Y) so it is necessary that 

B + c'rr = - •i(A — 	T) 

or 	B+iA=-Tr(a-i) 

Similarly it can be shown that as z 	in X < 0 

ReJF(z)) 	e 	[(A + Tr)cos X + (cTr - B)sin xl 	 (2.16) 
J 

whence application of condition (2.6) requires that 

air - B = - i(A + Tr) 

or 	B-iA=ir(a+i) 

These two conditions give B = iir and A = iJT, and substitution in 

(2.12) leads to a modified form of the complex potential satisfying 
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the appropriate wave conditions at ± ., 
CO 

F(z) = CL[ s(z) + jlTw(Z)] + E 6Le (z) + [s'(z) + iTrw'(z)] 
m1 mm 

CO 

	

+ Z b e '(z) . 	 (2.17) 
m=1 mm 

In addition, reference to (2.15) and (2.16) shows that (in terms of a 

and ) the wave forms at ±0°  are respectively Tr(ia - ) exp(iX - Y) 

and Tr(ja + ) exp(iX - Y) whence the reflection and transmission 

coefficients are 

	

R = rr(ict - 	 (2.18) 

and 	T=l+TT(ia+) 
	

(2.19) 

The numerical calculation of a and depends .on satisfying the boundary 

condition on the submerged half of the cylindrical surface and this 

is detailed in the next section. 

§2.3. 	The formulae for R and T 

The condition (2.3) is first expressed in terms of polar coordinates 

R and 8 where the polar angle is measured from the Y-axis so that 

X = R sin 8, Y = R cos 8. 	This condition then takes the form 

[Re (F(jRe 8 ))] = 	
iG 

R 	
- --[exp(-Re )} on R = N

DR 

Tr 	iT 
for - - 0 <- 

Use of the Cauchy-Riemann equations in polar form (with 0 replaced by 

Tr 
- 0) gives the alternative form 

l 
Eim (F(jNe0))] = elO exp (_Ne16 ) ,  

and integration with respect to 0 leads to the form of the stream 

function on the cylinder, viz. 

Im. [F(jNe 0 )] = -exp(-N cos 0)sin(N sin 0) - i exp(-N cos O)cos(N si 

+ c 	 (2.20) 

Tr 	 TT 
where c is constant on R = N and - 	0 
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The right-hand side of this equation is clearly exhibited as the 

sum of two parts, one even and the other odd in 0. These symmetric 

and anti-symmetric parts are therefore equated with the corresponding 

parts on the left-hand side for 0 < 0 

Since FE(z) and F0(z) have real parts which are even and odd in 

X respectively (see (2.13), (2.14)), it follows (by use of the Cauchy -

Riemann equations) that their imaginary parts will be odd and even in 

X. 	Hence, equating of the odd parts in (2.20) requires that 

Im. [FE(jNe°)] = -exp(-N cos 0) sin (N sin 0) 	(0 	0 

Reference to (2.17) and (2.9)-(2.11) together with the fact that a 

and the CL are independent of j shows that 
M 

IM  [F(jNeJO)] = a[ 
IM  

(s(jNe J®))+ iir exp(-N cos 0)sin(N sin 0)] 

CO 

+ E 1 	
2m0 + N sin(2m-l)O 

2m-1 M=1  

m+l 
where 	a 	2m 

M 	 rn/N
CL  

Thus equating odd parts gives finally the condition 
00 

exp(-N cos 0)sin(N sine) = af 0 (N;0) - 	a f (N;0) 	 (2.21) 
M=l mm 

for 00 < Tr- where 

f 0 (N;0) = - IM. J [s(jNe 0 )] - ut exp(-N cos 0) sin (N sin 0) 

and f (N;0) = sin 2m0 + N sin(2m-1)8  
M 	 2m-1 

The equation (2.21) may be simplified somewhat using a uniqueness 

theorem concerning the f.(0) (i > 0) which is implied by Ursll 

(1949. 	The theorem is used in the form 
00 

Af. (N;0) = 0 	(0 	0 	) 	= 0 
i=O i i 	 2 	1 

This result is applied now as follows. 

First (2.21) is divided by a (assumed non-zero) to obtain 
CO 

exp(-N cos 0) sin (N sin 0) = fo(N;O) - ml 	m0 	
(2.22) 
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Equating imaginary parts with respect to i gives the result 

Im] exp(-N cos O) sin (N sin 0) = -TT exp(-N cos 0) sin (N sin 0) 

CO 

- 

ml Im.[1].f(N;0) 

(see definition of fo(N;O) below (2.21)) 

or 
00 

[Im. 1 	+ ] exp(-N cos 0 	
am  

)sin(N sin 0) = - E Im 	f (N;0) . (2.23) 
llcLJ 	 m1 i 	m 

The terms on the left-hand sides of (2.22) and (2.23) are now eliminated 

by multiplying (2.22) by Im.[] + , (2.23) by 	and subtracting. 

This leads to the equation 
CO 

Elm [11 + Tr ]f0 (N;O 	
Iam - am 	

m I-I + iT] }f (N;0) = 0 

	

+ E —Im i—I 	[Iia 	 m=1 a iI a) 	a 	ia) 	m 

whence by the uniqueness theorem 

1{am] 	am 
Im. 1~iLdj + iT = 0 and 	 [Im I—I + 'rr] = 0 
ia 	i a 	a 	iIaJ 

i.e. Im 	= -iT 	and 	
1ctm 	 1 

	

Im I—i = 0 	(since - 0) 	(2.24) ictJ 	 iaJ 	 a 

It now only remains to deal with the real part (with respect to i) of 

(2.22), i.e. the equation 

co  Re{jexP(_N cos 0)sin(N sin 0) = Re [fo(N;0)] 
- M_l 	

f(N;0) 

(where the fact that Im 
i a 

= 0 has been used). 

This can be rearranged in the form 
00 

A 1  exp( -N cos O)sin(N sin 0) + 	t f (N;O) = -Im. [s(jNe 0 )} 	(2.25) 
- 	 m=l mm 	 j  

where A 1  = Re
ia i-I, t = 	and reference is again made to the 

J 	m 	a 

definition of f 0 (N;0). 

A 1  is found from this equation by numerical methods to be detailed in 

the following section and, for the moment, attention is turned to the 

even parts in (2.20) whose correspondence requires that 

Im. [F0(jNe 0 )] = -i exp(-N cos 0)cos(N sin 0) + c . 	 (2.26) 

From (2.14) (and the fact that B = iTr proved before) 

CO  
2m 

F0 (z) = [ s'(z) + ijTre 
jz 

] + m1 bm  - 
j 
 + 2m+1 

(where (2.9) and (2.11) have also been used). 
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Hence the value of F. on the cylinder is 

-jG 
Fo(jNe 	) = 0[s' (jNe 0 ) + ijir exp(-Ne0)]+ 	

(2m)jO 	N 	2mjO 
e 	+—e 

m=lrn 	 2m 

where 0 
= bm (_l) m+l  2m 

m 	2m+l 
N 

Imaginary parts (with respect to j) are now equated giving (after use 

of (2.26) and the fact that 0 and the brn are independent of j) 
00 

i exp(-N cos 0) Cos (N sin 0) = c + 13[g0(N;0)J - 	iB g (N;0) 	(2.27) 
m=l rn rn 

where 

g0 (N;0)= -Irn.[ s' (jNe ® )} - iTt exp(-N cos O) Cos (N sin 0) 

and g(N;O) = cos(2m + 1)0 + 	cos 2m0 

	

M 	 2m 

Equation (2.27) is treated in the same manner as was (2.21) i.e. it 

is divided by , imaginary and real parts are taken with respect to i 

and an appropriate uniqueness theorem is used. 	From this process it 

follows that 

	

Re. 	= - iT , Im 	= 0 and Im. 1J = o 	 (2.28) 
1 13j 	

. 	
iLl3 

while imi[-] is given by 	
CO 

B1 exp(-N cos O)cos(N sin 0) + ml Urn g(N;0) = r - Irn.[ s' (jNe 0 )] 	(2.29 

where B1 = -Im. 	, u = 	(which is real by (2.28)) and 
m 	3 

F = 	(which is also real) 

Again B1 is determined from here numerically as detailed in the 

following section. 	Meanwhile the forms of R and T (in terms of Al 

and i)  are now derived. 

From (2.24) and the definition of A1 it is easily seen that 

A1 + iTt 

A l 2  + Tr 2 

while, similarly, from (2.28) and the definition of B1 

= -iT + iB1 

It 2  + B1 2  
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Hence (by use of (2.18) and (2.19) it follows that 

IT 2 	 U2 	 A1 	 B1 
R= 	 - 	 +iTr  

Tr 2  + Bi 2 	22 ~Aj  2  + It 2 	B1 2 + •Tr 2  

It2 'r2 A1 	 ) 
and T=1- I 	+ 	

B1 

	

+ 	 I 
Tr 2 + A 

 1 
	It 2  + B 1 2 j 	[Al2 + U 2 	B 2  + U2J 

Finally, in terms of scaled parameters, 

A2 = 	and B2 
= Bi 

If 	 It 

the results are 

A2 - B2 R = 	 [(A2 + B2) + i(1 - A2B2)1 
(1 + A2 2 ) (1 + B2 2 ) 

( 	(2.30) 

and T = 
(1 + A2B2) 	

[ (A2B2 - 1) + i(A2 + B2)] 	J (1 + A2 2 ) (1 + B2 2 ) 

Clearly i(1 + A2B2)R = (A2 - B2)T so that the phase of T differs 

from that of R by ±-  (in agreement with Newman (1975), p.279) while 

the relationship IR2 + T2 = 1 is also easily proved. 	Hence, if, 

at a given instant, a trough or crest occurs at a certain distance 

from the plane of symmetry for the transmitted wave, then at the 

same distance on the opposite side of this plane there will occur a 

point of zero displacement for the reflected wave; additionally the 

total energy in the transmitted and reflected wave trains is equal 

to the energy in the incident train as should be the case for non-

viscous flows. 

§2.4. 	Description of the numerical calculation of T and R 

The notation 

= -Im. [s(jNe JO)] 	and 

=-Im. [s' (jNe 0 )] 

IT 
is first introduced. 	0 is put equal to 	in equations (2.25) and 

(2.29) and the resulting equations are subtracted from the originals 

to give two modified equations: 
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00 

IT) A 1 [exp(-N cos O) sin (N sin 0) - sin N] + E t [f (N; 0 ) - f (N;—)] 
mlm m 	m 2 

= I) (N;O) - 1J) (N;) 	 (2.31) 
S 	 s 	2 

and 
00 

Tr 
Bi[exp( -N cos O)cos(N sin 0) - cos N] + m1 u[g(N;O) - g(N;)] 

= W 
Tr  

- 	D;2) . 	 (2.32) 

The procedure now is to truncate each of the infinite series after 

(M - 1) terms, then substitute M different values of 0 between 0 and 

- in each equation. 	The values chosen were 

0 = C(I - ])/M) j- with 1 < I < M. 

The resulting two sets of M simultaneous equations in M unknowns are 

solved for given N and various values of M to obtain the two basic 

sequences required consisting of values of Al and Bi , f A 1  (M;N) } 

and (Bi(M;N)} • From these, use of the formula (2.30) enables two 

further sequences S1(M;N) = Re(T(M;N)) and S2(M;N) = Im(T(M;N) to be 

generated. 	Sequences for IT(M;N)t and arg[T(M;N)]  were also formed. 

The computer programme which performed the calculations gave print-

outs of the terms of these 6 sequences to 10 decimal places for the 

following ranges of values of N and M: 

N = 0.01, (0.01) 0.09 	5 < M < 30 

N = 0.1 (0.1) 0.9 	 5 < M < 30 

N=l (0.5) 5 	 5M50 

N=6 (1)20 	 5M80 

The sequences obtained were observed to be monotonic (ultimately) and 

bounded and hence convergent. 	Indeed, provided a sufficient number of 

terms were taken, the differences between successive terms in the 

sequences were found ultimately to be monotonic and decreasing in magnitud 

as M increased. Careful observation of the magnitude and direction of 

these variations towards the latter part of the sequences enables 

values of the limits to be predicted to a meaningful number of 
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significant figures and the results for the transmission coefficient 

are given in Tables 1-4 at the end of this Chapter (see also §2.6 for 

a fuller discussion). 

The small values of T which occur as N increases necessitate keeping 

accuracy in intermediate calculations at a maximum. 	In this context, 

it should be noted that the equations (2.31) and (2.32) (which had 

to be solved numerically) contain terms which are readily evaluated 

to machine accuracy with the exception of 	and 	which involve 

quadratüres. 	A discussion of how similar accuracy was achieved in 

the calculation of these functions appears in the next section. Once 

this had been attained, the linear equations were solved using the NAG 

routine F04ATF which produces a solution vector with a residual which 

is zero to machine accuracy. 	The routine contains 2 error messages, 

the first indicating that the matrix of coefficients is singular 

(possibly due to rounding errors) and the other that the matrix is 

too ill-conditioned to produce a correctly rounded solution. With 

double precision arithmetic no error messages were obtained in any 

of the cases considered. 

§2.5. 	The forms of iJ and 4 used in the numerics 

By definition 

= -Im. [s(jNe 0 )] 	 (2.33) 

and 	 = -Im. [s' (jNe)] 	 (2.34) 

where for Re(z) > 0 

r 	-jt 
s() = ejZ 	e 	dt + jTre 	 (2.35) 

Hence 

-Im[s(z)] = J1(z) - Tre 	cos x 	 (2.36) 
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where the notation 
-jt 

	

J1 (Z) = - Im. [eJZ 
foo 

e 	
dt] 	is used. 

By rotation of the contour of integration through the fourth quadrant 

(so that the upper limit becomes _joo)  and the substitution u = it, it 

follows that 

J, (z) = _ Im.  [eJZ E1(jZ)] . 	 (2.37) 

(E1(w) =Jdu) 

In order to separate ejZ  E1 (jz) into real and imaginary parts, 

it is necessary to replace z by X + jY so that 

E1(jz) = e 
FY+jX 

whence, by rotation of the contour of integration so that the upper 

limit becomes 00 + jX and the substitution v = u + jX, the form 

-u 
eZ E1 (iZ) = e 	

J 	
du 

is obtained. 	By splitting the range of integration into [-,o] and 

[0,00] and using (2.37), it can be seen that J1(Z)  may be expressed 

in the form 

J1 (Z) = J11) + J12 ( 2) 

where 
° 	—u 

J 11 (z) = Xe 	
e 	

du 
o u + 

and 	 J12(z) = Xe 	
e 	

du 
-Y u 2  + x 2  

(2.38) 

Tables of Laplace transforms (e.g. Bateman Manuscript Project 

(1954)) give immediately 

-Y 
J11 (z) = e 	[Ci (X) sin X - (Si (X) - -) cos x] 	(2.39) 

where 
rx 

Ci(X) =y+nx+ 	
cosu-1 du 
	(for X> 0 ) u 

Jand 	Si(X) = 	
sin 	

du 
0 

 U 
0 
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The NAG routines S13ADF and S13ACF (whose accuracy is only limited 

by machine precision in the argument X) were used to evaluate Si(X) 

and Ci(X) respectively and hence to obtain J11(7-) for any X > 0. 

In J12(Z),X and Y are replaced by N sin 0, N cos 0 respectively 

and the variable rescaled by substituting u = -v N cos 0. This 

yields the form 

J12(JNe) = sin 0 cos 0 fl exp[N cos 0(u - 1)] 
du . 	(2.40) fo cos0 2 + sin 2 8 

This form was presented to the NAG routine D01AJF for numerical 

integration, this being the recommended routine when considerations 

of time are not of over-riding importance. The important aspects 

of the routine are that 

it can deal with algebraic singularities in the integrand; 

it provides estimates of the accuracy actually achieved; 

it detects six different types of errors. 

With the absolute error set at 10_ is and the relative error at 

10 	, no error messages were received. 	The results were checked 

by passing the same routine the alternative but equivalent form 

—jo 	 e 
J12(jNe 	) = N 	

N cos 0 xp[ (u - N cos B)] du 

f 
0 	 0 + N 2  sin 2e 

under the same conditions as above. 	Again, no errors were indicated 

and print-outs of the values showed that the integrals agreed to 

about 15 decimal places, this being near the limit of machine accuracy 

for double preôision arithmetic. 

Combination of equations (2.33) , (2.36) and (2.38)-(2.40) gives 

the form of ij(N;0) used in the computations, namely 

= exp(-N cos 0)[Ci(N  sin 0)sin(N sin 0) - (Si(N sin 0) - -)cos(N s 

+ sin e Cos 8 	exp[N cos 0(u - 1) ]d - rr exp(-N cos 0) cos (N si fo cos 2 0u 2  + sin 2 ® 
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By use of the result 

S' (z) = je 	
e-jt dt 
	

1 
— 	

jz 
lie 	 (2.41) 

and an exactly similar development, it can be shown that 

cos 0 = - 
	N 	

+ exp(-N cos 0)[Ci(N sin 0)cos(N sin 0) 

+ (Si (N sin 0) - ) sin(N sin 0)] + cos20 f o u exp[N cos  cos 2 0u 2  + sin 2 0 

+ Trexp(-N cos 0)sin(N sin 0) 
	

(2.42) 

Note: The above expressions are valid for 0 > 0. 	For 0 = 0, i = 0 

(being an odd function) while i is found as follows 

By using the definitions of Ci and Si and integrating by parts it is 

seen from (2.42) that as 0 - 0+, 

= - 	+ exp(-N) (r + log N + log sine + 0(1)) 

+ [½ log(cos 2 0u 2  + sin 2 0)exp(N cos O(u-l))} 
l 

0 
'• 

- N cos 01 L. log(cos 2 8u 2  + sin 2 0)exp[N cos 0(u-1)] du} 

1 0 
i.e. 	 = - 	+ exp(-N) ('y' + log N + o(l)) 

' 
- N cos 01 1 ½ log(cos 2 0u 2  + sin20) $cos O(u-l) 

	

e 	 du 

° 	Ii N(u-l) 
-4--+exp(-N)(y+ log N)-N 	log ue 	du 	as00+. J o  

(1 

Hence 	= - 	+ exp(-N) ('' + log N) - NJ 1 	
N(u-1) 

log 	du. 
J o  

This expression is readily evaluated using again the NAG routine DO1AJF. 
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§2.6. 	Discussion of the data obtained 

The sequences Aj (M;N) and B1 (M;N) 

Up to about N = 7, the sequences are strictly monotonic de-

creasing as M increases for fixed N, the magnitudes of the differences 

between successive terms being themselves monotonic decreasing. 

For larger values of N, the sequences initially increase up to a 

certain value of M (increasing with N) and, thereafter, the 

decelerating monotonic decrease characteristic of the earlier 

cases sets in. (See Graphs 1-4 in §2.9). 

At the long-wave end of the spectrum the values of A 1  and R. 

are both large in magnitude with A1 < 0, B1 > 0 and IBIJ > IA1. 

At the short-wave end no particular pattern of this kind is 

observed but it may be noted that the product Aj.Bi (for a wide 

range of values of M) is near to the value 1T2  (table 5 indicates 

the trend for M = 80). When it is recalled that A2 = Al /1T and 

B2 = B1/ it follows that A2.B2 will be near -1 and reference to 

(2.30) shows that subtractive cancellation of significant figures 

will occur due to the presence of the factor 1 + A2 B2 in the 

formula for T. It is this which necessitates the use of as great 

an accuracy as possible for large values of N. 

The sequences Re (T(M,N)) and Im (T(M,N)) 	(M > 5) 

Up to about N = 3 these sequences are monotonic (sometimes, 

increasing and sometimes decreasing) as M increases for fixed N. 

Again the magnitudes of the changes between successive terms 

decreases for fixed N as M increases and convergence is fairly 

rapid. The behaviour for larger values of N is similar to that 

of the sequences Al (M;N) and Bj (M;N). 
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Thus (as typical) 

Re (T(5;0.5)) 	0.52023 
	

Im (T(10;2)) 	-0.012519 

Re (T(10;0.5)) 	0.52030 
	

IM (T(15;2)) 	-0.012527 

Re (T(15;0.5)) 	0.52031 	 Im (T(20;2)) 	-0.012529 

Tables 1-4 give the values of the limits of the sequences as 

predicted from the multipole expansions for values of N up to 20 

(together with the values of the modulus and principal values of 

the argument of the predicted values of TL The maximum number of 

terms used in the multipole expansions is also indicated. 

The significant figures quoted were those obtained by 

examining the last two terms in the sequences and truncating 

their values 3 decimal places before the figure in which varia-

tions were still occurring. Thus,if the sequence Re (T(M;3)) 

is examined (where M was taken up to 50),it is found that 

Re (T(49;3)) = -0.0009353058 and 

Re (T(50;3)) = -0.0009353129 

so that variations are still occurring in the eighth decimal place. 

The values were accordingly truncated at the fifth decimal place 

giving the prediction -0.00094 for Re (T(3)) quoted in Table 3. 

The values of IT(N)l and arg (T(N)) are in agreement with those 

given by Martin and Dixon (1983) who consider values of N up to 

10 and use a different numerical scheme for their computations. 

Two graphs of T(N) I against N are given in §2.9 

(for N = 0.1 (0.1) 0.9 and N = 1(0.5) 5) to indicate the general 

behaviour. Examination of the values of arg (T(N) shows that 

the point representing T(N) in an Argand diagram spirals in 

towards the origin in a clockwise direction as N increases. A 

comparison of the results with Ursell's and Leppington's asymptotic 

forms for T(N) is given in §2.6 (d) below. 
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Discussion of the accuracy of multipole expansions of less 
than ten terms 

M = 6 is taken as typical and the values of T(6;N) are compared 

with the limiting values of the sequences as given in tables 1-4 

for various values of N. The approximate absolute and relative 

errors are displayed in tabular form in Table 6. 

It is seen that at the long-wave end of the spectrum these 

abbreviated nniltipole series work well and three significant figures 

of accuracy are maintained up to values of N of about 1. Thereafter, 

however, the loss of significant figures is rapid until when N is 

about 10 the order of magnitude of T(6;N) is in error. It may be 

noted that a 20 term multipole expansion maintains about 2 sig-

nificant figures of accuracy up to N = 10 but subsequently an 

increasing nuniberof terms must be employed to maintain accuracy 

in the short-wave range. 

Comparison of the data with the asymptotic formulae of 
Ursell and Leppington 

Tables 7 and 8 compare the values of the real and imaginary 

parts of T as obtained from multipole expansions with the values 

given by Ursell's and Leppington's asymptotic formulae viz 

T = 	exp(-2iN) + o(r) (Ursell) 

and 	T = 
	

exp (-2iN) (1 + 	logN) + 	(Leppington) 

for N = 8(1)15. The values of the error estimates are also given. 

As can be seen, the differences between the computed and the 

asymptotic values are within the order of the error term in each 

case but this is far from conclusive evidence for a region of 

overlap since such an occurrence can take place when the computed 

and asymptotic values are of different orders of magnitude (see 

the case N = 11) . Indeed in most cases there is no agreement of 
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significant figures at all. (See also Graphs 7 and 8). 

Clearly, to proceed it will be necessary to improve the 

asymptotic formula for T by completing the fifth order asymptotics. 

The next two chapters are concerned with laying the groundwork for 

the achievement of this in Chapter 5. 

§2.7. The Convergence of the multipole form of the solution 

When it is recalled that e.-(z) - 	 __ 	 I 
- (2m-1)  z2rfl-1 - 	 the real 

parts (with respect to j) of the infinite series in (2.17) are seen 

to take the forms 

00 	 ( _1) m  

- Earn 	R2rn 	Ecos2me + 
2m-1 cos(2m-l) 

m=1 

00 	

m 2m 	 _________ 
and 	Ebm (-1) R21 E sin(2m+1)O 

+ Rsin2mOJ 

M=1 

(since z = jReie) 

Additionally the definition of a (above 2.21)) and of rn 

(above (2.27)) show that am = (_1)m+' N 2 atm  (since tm am) Ot 

b = (l)' 	N 1  m = (_l)11 N 1  Urn 	(since urn 
2m 	 2m 

Hence the series may be written in the forms 

(2m-1) 	and  and 
(R)
N2m cos2me 	

R 
Et — 	 + 	cos

m=1 2m-1 

00 

(a)2rn+1 	

R 
-i E u 	 sin(2rn+1)O ~ - sin 2m 

rn1 rn 	 2m 	el 

where the tm and Urn  (m=1,2,--) are to be found from (2.31) and 

(2.32). 

In appendix 1 it is shown that trn  and Urn are 	as m 

so that the two infinite series are uniformly convergent in 

	

7T 	 ir 
N< R < for - 	 0 < 	and certainly twice differentiable 

term by term there. Hence, since the real parts of the individual 

termsof the multipole form (2.17) satisfy (2.1),.(2.2), (2.4), 
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(2.7) and (2.8) it follows also that these equations are satisfied 

by Rej(F(z)). The conditions (2.5) and (2.6) are certainly true, 

so the real part of (2.17) does provide the unique solution to the 

problem. 

It remains to show that the sequences of approximations 

to the coefficients Al, Bi, tm , Urn provided by the numerical scheme 

detailed in (2.4) do indeed converge (asM - co) to the exact values 

This has not been attempted in detail here, but Martin (1971) has proved 

the analc.gous results for the multipole expansions in the heaving and 

swaying problems for a semi-circular cylinder. 	The two equations in 

these cases are similar to (2.31) and (2.32) being of the forms 

CO 

F(0) 
= m1 m m0' 

o 0 	where F, f are even or odd according to 

which mode is being considered. 	By the same procedure as described 

in §2.4, a comparison problem is set up in the form 

M M 

	

F(0 ) = E p f (0 ) 	(k = 1, 2, ..., M) 
k 	m=1 m m k 

and it is shown that the approximations p M converge to the coefficienl!s 

p in a strong metric.
CO  

Specifically rl IM p - 
 r 2 p V - 0 as M ~ where M  is a function 

which tends to r 2  as M -- 
co. Similar methods should be applicable to 

the transmission problem also. 
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§2.8. 	TABLES 	
TABLE 1 

Values of Re (T(N)), Im (T(N)), IT(N)I, ARG (T(N)) for N = 0.01(0.01)0.09 

from Multipole expansions of up to 30 terms 

N Re(T(N)) Im(T(N)) T(N)I ARG(T(N)) 

0.01 0.99962604 -0.0190202 0.99980698 -0.0190251 

0.02 0.99857499 -0.0364655 0.9992406 -0.0365014 

0.03 0.9969227 -0.052558 0.9983072 -0.0526719 

0.04 0.994723 -0.06742 0.9970049 -0.067671 

0.05 0.9920162 -0.081122 0.9953276 -0.081594 

0.06 0.9888334 -0.093738 0.9932665 -0.094515 

0.07 0.985198 -0.105318 0.9908111 -0.106496 

0.08 0.981127 -0.115907 0.987950 -0.11759 

0.09 0.976635 -0.125547 0.984672 -0.12785 

TABLE 2 

Vales of Re (T(N)), Im (T(N)), IT(N)I, ARG (T(N)) for N = 0.1(0.1)0.9 
from multiple expansions of up to 30 terms 

N Re(T(N)) Im(T(N)) IT(N)I ARG(T(N)) 

0.1 0.971730 -0.13428 0.980964 -0.13731 

0.2 0.90057 -0.1798 0.91834 -0.19701 

0.3 0.79102 -0.1767 0.81051 -0.21977 

0.4 0.65648 -0.1614 0.67602 -0.2410 

0.5 0.5203 -0.1520 0.54206 -0.2842 

0.6 0.3995 -0.1489 0.42631 -0.3569 

0.7 0.2995 -0.1472 0.33369 -0.4568 

0.8 0.219 -0.1433 0.2621 -0.579 

0.9 0.156 -0.1363 0.2073 -0.717 

TABLE 3 

Values of Re (T(N)), IM (T(N)), T(N)l, ARG (T(N)) for N = 1(0.5)5 

from multiple expansions of up to 50 terms 

N Re(T(N)) Im(T(N)) IT(N)I ARG(T(N)) 

1.0 0.10700 -0.12624 0.16548 -0.8677 

1.5 -0.00920 -0.06023 0.06093 -1.7224 

2.0 -0.0235 -0.01253 0.02663 -2.6516 

2.5 -0.01175 0.00593 0.0132 2.6739 

3.0 -0.00094 0.00707 0.00713 1.7023 

3.5 0.00312 0.00275 0.00416 0.7228 

4.0 0.00248 -0.00066 0.00257 -0.2617 

4.5 0.000524 -0.00158 0.00166 -1.250 

5.0 -0.00069 -0.00088 0.00112 -2.240 
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TABLE 4 

Values of Re(T(N)), Im(T(N)), IT(N)I, ARG(T(N)) for N = 6(1) 20 

from multipole expansions of up to 80 terms 

N Re(T(N)) Im(T(N)) JT(N)I ARG(T(N)) 

6 -0.000261 0.000492 0.000556 2.059 

7 0.000305 0.0000211 0.000305 0.069 

8 -0.0000622 -0.000170 0.000181 -1.923 

9 -0.0000809 0.0000792 0.000113 2.367 

10 0.0000693 0.0000270 0.0000743 0.372 

11 -0.0000027 -0.0000507 0.0000508 -1.62 

12 -0.0000318 0.0000165 0.0000358 2.66 

13 0.0000204 0.0000160 0.0000259 0.666 

14 0.00000456 -0.0000187 0.0000192 -1.331 

15 -0.0000143 0.00000271 0.0000145 2.954 

16 0.00000646 0.00000915 0.0000112 0.957 

17 0.00000442 -0.00000757 0.00000876 -1.042 

18 -0.00000692 -0.00000070 0.00000695 -3.041 

19 0.00000179 0.00000529 0.00000558 1.244 

20 0.00000330 -0.00000310 0.00000453 -0.755 

TABLE 5 

Values of Ai (80;N) .Bi (80;N) (to 4D) 	for N 6(1) 	20, showing the 

trend towards the value -ir 2 	 ( 	 - 9.8696) 

N A1 (80;N) .B1 (80;N) 

6 -9.8462 

7 -9.8756 

8 -9.8593 

9 -9.8665 

10 -9.8711 

11 -9.8506 

12 -9.8688 

13 -9.8703 

14 -9.8712 

15 . 	 -9.8693 

16 -9.8700 

17 -9.8699 

18 -9.8694 

19 -9.8699 

20 -9.8697 
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TABLE 6 

Approximate absolute and relative errors in the values of 
T(6;N) for various values of N 

N 

0.05 

0.09 

0.60 

1.0 

3.0 

4.5 

7.0 

10.0 

Re(T(6;N)) 

Absolute errorj IRelative error 

3 x io 3 x lo 

1x10 6  1 x10 6  

5x10 5  1xlo-  

1 x 10 1 x l0 

7 x 10 7 x i0 

3 x l0 6 x 10_ 2  

5 x l0 2 x 10_i 

2xl0 3 

Im(T(6;N)) 

Absolute errorl  IRelative error 

2 x 10_ 6  2 x lo 

5 x 10 4 x i0 

2x lo-  lx lo- 3  

2 x l0 1.6 x lo- 3 

5x10 5  7x10 3  

2 x 10 1 x lO_2 

4x10 6  2x10 1  

lxl0' 4 

TABLES 7 and 8 

Comparison of values of the real and imaginary parts of T(N) 

as obtained from multiple expansions (A), Ursell's asymptotics (B), 

Leppington's- asymptotics (C) with error estimates logN (D) and 

(E) and scale factor lo s . 

RE(T(N)) 

A B C D E 

-62.2 -44.7 -59.6 63.5 30.5 

-80.9 -72.9 -95.5 37.2 16.9 

69.3 58.1 75.1 23.0 10.0 

2.7 - 0.4 - 0.5 14.9 6.2 

-31.8 -27.8 -35.1 10.0 4.0 

20.4 17.0 21.3 6.9 2.7 

4.56 4.49 5.57 4.9 1.9 

-14.3 -12.4 -15.3 3.6 1.3 

N 

8 

9 

10 

11 

12 

13 

14 

15 
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IM(T(N)) 

N A B C 

8 -170 -149 -198 

9 79.2 64.1 84.0 

10 27.0 26.0 33.6 

11 - 50.7 - 43.4 - 55.5 

12 16.5 13.0 16.5 

13 16.0 14.4 18.0 

14 - 18.7 - 16.0 - 19.8 

15 2.7 1.9 2.4 

§2.9. 	Graphs (overleaf) 

Graphs 1-4 illustrate typical behaviour of the sequences 

{A 1  (M;N); M = 1, 2, . . .} for various values of N, showing their 

ultimate monotonic nature. This is typical also of the other 

sequences computed viz. {31(n;N)}, (Re(T(M;N)}, {Im(T(M:N))}, 

{iT(M;N)I} and {arg(r(N;N)}. 

Graphs 5, 6 illustrate the behaviour of IT(N)l for N = 0.1 (0.1) 0.9 

and 1(0.5)5 respectively. 

Graphs 7,8 compare the multipole values of the real and imaginary 

parts of T(N) with those obtained using Ursell's and Leppington's 

asymptotic forms. 	The values are normalised by Ursell's real and 

imaginary parts (denoted by Re(U(N)) and Im(U(N))). Hence Ursell's 

values are represented by the horizontal line through 1 on the 

vertical axis. 
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Comparison of the real parts of the transmission coefficient as given by 
multipole expansions and Ursell's and Leppington's asymptotic formulae. 
The values are normalised by Ursell's values so that his results are 
represented by the horizontal line through 1 on the vertical axis. At N = 11 
the multipole value is about seven times bigger than Ursell's value (see 
Table 7 in §2.8) and cannot be shown (in scaled form) on the graph. 
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§3.1. 	Introduction 

In this Chapter a more detailed description is given of the 

method of matched asymptotic expansions as applied to bodies whose 

tangents at E+ 
 and E_ (see Fig. 2) are vertical. 	It will be seen 

that the perturbation expansions in the right and left inner regions 

have potential coefficients which are solutions of wave maker type 

problems, while the coefficients in the outer expansion are solutions 

of boundary value problems of known types involving use of complex 

variable methods.. 

§3.2. 	The right inner expansion 

In the right inner region A+,  new coordinates (X,Y) are 

introduced (relative to axes E + X and E + Y as shown in Fig. 2) and are 

scaled so that Laplace's equation and the free surface condition do 

not contain c explicitly. 	Reference to equation (1.2) indicates 

that the appropriate scale factor for the ordinates is e so that 

y = cY while the harmonic nature of the potential subsequently 

dictates that the abscissae be scaled in the same way by setting 

x = a + EX. 	It follows that 

= ER where R = /x2 + y2  

and that in 

	

(x,y) = fla + EX,EY) 	(X,Y,E) (the dependence on a 
will not be stated 
explicitly). 

Equations (1.1) and (1.2) now become 

in A 	 (3.1) 

+ 	
= 0 on A n S , 	 (3.2) 

while (1.3) is recast in the form 

dx 	=- 	I_ 	I 	
onrnA 	(3.3) (W 	dYWY) 
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where WI  is the potential of the incoming wave 

I 	-iX-Y 

The equation of I' near 	is now written in the form 

x - a = f(y) 

where it is assumed that the function f can be expanded in the form 

Co 

= k2 a  y k 
	 (3.4) 

In terms of scaled coordinates this becomes 

00 

f(EY) 	 k-i k 
x= 	= 2 k 

00  

aE 	y 	 (3.5) 
E 	k 

dx 	 k-i k-i 
so that 	- = 

dY 	
f' (BY) 

= k2 kakE 	
Y 	 (3.6) 

Next 	
, 

are expanded in Taylor series about X = 0 and these 

series are substituted in (3.3) using the equation (3.5) to express 

powers of x in terms of Y. 	The same process is applied to the 

right-hand side of (3.3) whence this equation takes the form 

00 	 r+l 	 r+l 

JO g(c,Y) [r+l DO '  Y;E) - V (C Y) 	(0,Y;E) 

Co 

= 

	

 E0  g r 
(6,  Y)  (_i)reY [i 

- V (EY)] 	 (3.7) 
JO 

f(EY) I 
where g (E 1 	= rL - 	 I 	and it should be noted from (3.5) and 

r 	 . 	 C] 

(3.6) that 

= O (Fr  ) and 

V (CY) = 0(C) under the inner limiting process C - 0 with 

(X,Y) fixed. 

On the assumption that T  and its derivatives are bounded on X = 0 

as C -~  0, the equation (3.7) can be written in the form 

.+ 0(c) = i e 	+ 0(C) so that as C - 0 

tends to the limit i 

Hence (X,Y;C) tends to a limit o(X,Y) where 10 is harmonic, satisfies 
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the free surface condition on an arbitrarily large (but bounded) 

portion of the positive X axis and has a normal velocity i e on 

an arbitarily large (but again bounded) portion of the positive Y 

axis, i.e. To is harmonic in A 

o + loy = 0 on Y = 0 for 0 < X < X0 < 

= i e 	for 0 < Y < 

and, in addition, 	should satisfy the edge condition. 	At this 

point it may be remarked that the region in which the solution 10 

is of interest may be considered small compared to the region of 

validity of the above equations (the outer solution can take over 

once the region of overlap of inner and outer solutions is reached; 

see §35on the matching principle). 	Hence, in practice, the 

conditions on x = 0 and Y = 0 are extended to infinity so that 

Havelock's wave maker solution can be applied to find 10 (this 

will apply also to later terms in the inner perturbation series). 

Clearly to obtain meaningful results it is necessary for the 

velocity distribution on the wave maker to decay sufficiently 

rapidly as y - +- and this will be discussed more fully in Chap. 4 

where the behaviour of Havelock's solution for various forms of the 

prescribed normal velocity on the wave maker will be investigated. 

Certainly when the decay is of negative exponential type no 

problems arise and the solution for j o  is given by 

0(X,Y) = P0(X,Y) + Eo(X,Y) where 

Po(X,Y) is Havelock's particular solution and Eo(X,Y) is a function 

satisfying the homogeneous problem i.e. Eo(X,Y) is harmonic, 

satisfies the surface condition and has zero normal velocity on the 

wave maker as well as satisfying the edge condition. 	Such 

functions will be termed eigensolutions and they form a subset of 

solutions of the vertical barrier problem (all possible solutions 
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are obtained explicitly in Chap. 4). 	For the moment it is sufficient 

to remark that the eigensolutions are wave-free, a result of 

fundamental importance in extending the asymptotic form of the 

transmission coefficient. 	- 

If the results contained in Chap. 4 are anticipated, then 

Po (X,Y) is given by Havelock (1929) in the form 
CO 

Po(x,Y) =fo 
H(X,Y;S) i e_S ds 	where 

H(X,Y;s) = -21 exp[ix - (Y + s)] 

2 foo (u  cos uY - sin uY)(u cos us - sin us)-uX
- 	 e 	du

lr 	 2 u(u +1) 

P 0  (X,Y) falls naturally into two parts, a wave part which will be 

denoted by W0 (x,Y) and a wave-free part which will be denoted by 

F0(X,Y). Thus 

-2s 
w0(x,y) = -2i exp(iX - Y) 	i e 	ds 

0 

=exp(iX-Y) 

and 	F0(X,Y) = 	
e 

21 f -spu cos uY - sin uY) Cu cos us - sin us) -uX 

0 	0 	 u(u2±l) 	

e 	du 
-  

Reversal of the order of integration above gives 

21 f'u  cos uY - sin uY 	-s 
F0 (X,Y) = - -- 
	

J e (u cos us - sin us)ds du 
Tr 	

o 	u(u 2 +l) 	0 

and an integration by parts shows the inner integral to be zero. 

Hence 

F0 (X,Y) = 0 and 

P 0 (X,y) = exp(iX - Y) 

The eigensolutlon E0 (X,Y) must be a certain linear combination 

of the functions 

2m+l 
R 	sin (2m+l)O _R2m cos 2m0 where XR cos O, Y=R sin O, 

	

2m + 1 	 m > 0. 	(see §4.5). 

Such functions are 0 (R2m)  as R - co for some integer m so that 

the matching principle (which does not involve wave terms) would 
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require that the leading term in the perturbation serieS for the 

outer potential should be of the form 	where 4 - A0 (52m+lsin(2m + 1) 

(AO being a constant) as 6 -'- 0. 	In addition o  would be harmonic 

and would satisfy 4 O  = Don y = 0 (xJ > a), 	Don r = a and 

	

- 0 as r -* ' (r = 	-+ y 2  ) . 

Near E,0 would have one of the properties 

	

(±(2k-l1]   = 0 (5 
	

(k a positive integer) 

as 6 +0 (5 = 	+ a) 2  + y2 ) since, near this point, 	will 

behave like a solution of the problem 

=0 ony=0 	(x<-a) 

=0onx=-a 	(y >0) 

and such solutions are linear combinations of functions of the form 

2kl 	B + a) 	+ 	2k-l1 where z = x + jy, k is a positive 
(z + a) 

integer and A, B are independent of j. 

If the positive sign is taken in the order relation for cf O  then 

is non-singular at E and, since it has also been shown to be 

non-singular at E+,  it follows by using the result 

	

J (V) dA = 	I 	ds and the boundary conditions, 

fluid domain 	 boundary 

(n being a unit vector normal to the boundary curves) that 

J (V) 2 	 21= 0 provided that the integral of 4 - 	along 

fluid domain 

a semi-circle at infinity is zero i.e. provided at  decays more 
Dr 

rapidly than I . With this stipulation it follows that V = 0 

whence = a constant and this constant can only be zero because of 

the condition on y = 0. 	Hence, in the case where Oo = 
0((5 2k1 )  

the only solution is 00 = 0. 	If, on the other hand, 00 
= 00(2k1)) 

as 6 -+ 0, then the leading term in the perturbation series for 



the potential in the left inner region would be of the form 
2m+2k 

E 

where IPo = o(R2k1)) as R1 -'- co (where cS = ER 1 ). 	The only non-trivial 

vertical barrier solutions which have this property are of the form (see 

ci 
 Isin ( 2k-1 ) 	2k01 

2k-1 	2k 	
plus linear combinations of similar terms 

L_(2k-l)R1 	R1 	'J 
involving higher powers of 	(c 34 0) and iO would not then satisfy 

the edge condition lPo -° -3- 0 as R1 -3- 0. 	It must be concluded, 
aRl 

therefore, that fo is non-singular at E_ whence it follows as above 

that 	and E 0  are identically zero. 

	

Hence (X,Y;E) = o(x,Y) + 0(1) as E 	0 where 

o(X,Y) = exp(iX - Y) 

Let it now be assumed that, under the inner limiting process C - 0 

with (x,Y) fixed, it is possible for some integer m to write 

(X,Y;C) 
= s 0 C 

I  (X,Y) + O(Cm) where for 0 < s < m 

the 	are harmonic, satisfy the surface condition 	+ 	= 0 for 

X > 0, have normal derivatives on X = 0 which are expressed in terms 

of earlier occurring potentials in the expansion and/or the incoming 

wave, and do not contain eigensolutions. Suppose also that substitution 

of the above expansion in (3.7) causes cancellation of all terms up 

to order C. 	(This result is true for m = 0). 

Postulate then that 
m 

(x,y;E) = E C5 	(x,Y) + ,(cY(X,Y) .+ 	 (x,Y) + o(E m+l 
S=O 	s 	 m+l 

as c -*0 where Cm < 	
m+l(C) <C 	as C -3-Q 	Substitution of this 

expansion in Laplace's equation and the free surface condition 

reveals that JZ, 
m1 

 must be harmonic and satisfy the free surface 

condition while substitution in (3.7) and neglect of all terms of 

orders higher than E 	 reveals that X(0lY) = 0 while Lm+l)x 
 (01Y) 

is a function of the I for 0 < s < m and the incoming wave. It 

follows, therefore, that all the potential coefficients in the right 

inner perturbation series are either eigensolutions of the vertical 
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barrier problem or solutions of the wave-maker type of problem. 

Considerations of whether or not 1. is zero and whether eigensolutions 

should be added to m+l depend on a careful step by step development 

of the outer and left inner expansions. The arguments used will be 

similar to those employed in proving E 0 (X,Y) = 0 earlier in this 

section but further details will be left to Chap. 5 when the special 

case of the semi-circular geometry is considered. 

Note on notation 

As in the case of 0(X,Y) each I k(XlY)  will be written as the 

sum of two parts, viz. 

= Pk(XIY) + Ek(X,Y)  where Pk(XIY)  is Havelock's 

particular solution, 

i.e. Pk(XFY) = J H(X,Y;s)k(O,$) ds and Ek(xIY)  is an eigensolution. 

In addition, wk(xIY) will be used to denote the wave part of Pk(X,Y) 

and Fk(X1Y) to denote the wave-free part. 

§3.3. 	The outer expansion 

The development of the perturbation series for the potential 

(x,y;e) in the outer region is begun by formally putting 6 = 0 in 

the original boundary value problem and neglecting any wave terms 

appearing ih. the equations (the outer potential does not recognise 

waves). Hence, to begin the expansion, it is postulated that 

= c 0 (c)0(x,y) +o(c.o(E)) 

under the outer limiting process 6 - 0 with (x,y) fixed, where 

(x,y) is harmonic and satisfies 

	

= 0 on y = 0 	(lxi > a) 

40 = o on r 

o + 0 as r -- 
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The solution to this problem is made unique by matching the outer 

solution to the right inner solution using the principle to be 

described in §3.5. 	If it is assumed that a perturbation series of 

the form 
p 

(x,y;E) = 
k=O c k 

 (E 
k

) 	(x,y) + o(c 
p
(6)) 	as 6 -4-  0 

has been formed, then substitution of this form in the governing 

equations for j(x,y;E) reveals that each 	must be harmonic and 

satisfy --P3c = 0 on F. 	Formal substitution of the asymptotic series 

in the surface condition f + E = 0 reveals further that either 	= 0 or 

c kb0)  = — my (x,0) (jxj > a) where 0 	m < k. 	(The latter case will 

occur when there is a term with a certain scaling ck(E)  and an earlier 

occurring term with scaling ck(E) . 	The scale factors which occur 

will depend on the matching which takes place with the right inner 

expansion.) 	Finally, each k is made to satisfy k -* 0 as 

r = 	+ y 2  -* . 	The problems for the 	are therefore classical 

type boundary value problems soluble either by complex variable 

methods or by use of an appropriate Green's function. 

§3.4. 	The left inner expansion 

The procedure here is almost identical with that for the right 

inner expansion. 	A new system of coordinates is introduced relative 

to axes EX1 and EY1 through E_ as shown in Fig. 2 scaled so that 

x = -a — EX1, 	y = 6Y1. Thus S 	= ER 1  where S = V'(x+a) 2 	+ 

R1 = + Y1 2 . The polar angle is denoted by 0 1  and the equation 

of the curve near E is written in the form x + a = -f1 (y) where it 

is assumed that f1 can be expanded in the form 
00 

k 
f (y) = k2 b  y 

CO 

Hence X1 
fi(EY1) = 
	

k-i 	k 
= 

	

6 	k=2bkE 	Y1 

CO 

dX1 	I 	
=2 	

k k_l k-i 
dY 1 	 k 

	

and - = fr (6 	
= 

Y1) 	E k b s 

- 54 - 



The form of ct in 	is denoted by i(X 11 Y 1 ;C) so that by analogy with 

(3.7) the boundary condition on r is written in the form 

00 	 3 r+l 	 r+l 

rO hr(EIY1)[ 	r+i 	
(O,Y1;E) 	f1 1 (EY1) 	 (O,Yi;E)1 = 0 

x 1 	 x1
r 
 yi 

(the incoming wave is not subtracted in the left inner region) 

where 

h(E,Yi) = ;;+ El(EY1)ir 

The scale factors for the perturbation series in the left inner 

region will be determined by matching with the outer expansion and 

it will be found that (as in the case of the right inner expansion) 

the potential coefficients in the series will be either eigensolutions 

of the vertical barrier problem or solutions of the wave-maker problem 

in which the prescribedvelocity on the wave-maker is determined by 

potentials appearing earlier in the series. 

Notation 

By analogy with the note on notation at the end of §3.2 the 

various parts of the potential coefficients 1(X 1 ,Y 1 ) in the left 

inner expansion will be denoted by Pk (X11Y1)  Ek (X1 I Y1) I wk (X1 I Y1)  

and Fk(X1IY1). 	The notation will be local to the left inner region 

so no confusion will arise with the right inner region. 

Note 

Once the wave parts of (X,Y;E) and 1(X1 1 Y1;E) have been found 

to a certain order in E the outer solution (which as described in 

§3.3 has no wave terms) is modified (in order to satisfy the outgoing 

wave requirements at infinity) by adding the waves from the right 

inner region (expressed in outer coordinates) to the solution for c 

in x > 0 and the waves from the left inner region (again expressed 

in outer coordinates) to the solution for in x < 0. 	This modified 

solution will then be assumed to extend up through the boundary layer 
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to the free surface. 	Since the 	in the outer expansion will be 

made to die off to zero at infinity, this device will enable the 

outgoing wave conditions to be satisfied and hence provide asymptotic 

forms for the reflection and transmission coefficients. The fact 

that the potential coefficients in the inner expansions depend only 

on potentials appearing earlier in the series and that eigensolutions 

are wave-free enables the asymptotic form of the transmission 

coefficient to be obtained to an order higher than that for which 

detailed matching has taken place in the left inner expansion. 

§3.5. 	The matching principle 

It will be seen that, in the case which will be considered in 

detail in Chapter 5, the scale factors in the perturbation series 

will all be of the form E5(log E)t  where s, t are integers 0. 

Hence to respect condition (iii) of theorem I in Fraenkel(1969) p.223, 

it will be necessary to adopt the matching principle proposed by 

Crighton and Leppington (1973) in which, for-gin s, all terms with 

scalings of this form must be determined and grouped together before 

detailed matching takes place. Assuming that this has been done, 

the right inner expansion of (X,Y;E) up to terms of order E will 

be denoted by 	If the outer limiting process (E - 0 with 

(x,y) fixed) is applied to this inner expansion, the result will be 

equivalent to that obtained by letting R -- °° in the potential 

coefficients (since R =*) 	Assuming that the asymptotics of 

these potentials have been obtained to a certain order, then the 

result of replacing R by *and truncating the resulting series 

after terms of order Er  will be donoted by (s,r) 
	

Similarly, 	let 

(r) denote the outer expansion up to terms of order Er. Application 

of the inner limiting process (c -- 0 with (X,Y) fixed) is equivalent 
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to letting S --  0 in the potential coefficients. 	If the asymptotics 

of these potentials as 	0 are obtained up to a certain order and 

replaced by ER and the resulting series truncated after terms 

of order E, then the series obtained is denoted by (r,$) The 

matching principle is that 

(s,r) = 	(r,$) 

A similar principle will be applied in matching the left inner region 

with the outer potential. 

Crucial to the success of the matching process is the existence of an 

"overlap" region where both inner and outer approximations apply. 

In this case the right inner approximation is assumed valid at points 

close to E+ on the a-scale (6+ 
<< a) while the outer approximation is 

assumed valid for 6+ > E. 	If 6 << 6+
< a there is evidently a common 

region of validity in which both approximations are equivalent in the 

sense of the matching principle. .Similar considerations establish 

the existence of an overlap region for the left inner and outer 

approximations. 

- 57 - 



CHAPTER 4 

§4.1. 	Introduction 

In §3.2 and §3.4 it was seen that the right and left inner expansions 

lead to a sequence of problems consisting of Laplace's equation in the 

quadrant x > 0, y > 0, the free surface condition on y = 0 and a prescribed 

normal velocity condition on x = 0. Such problems make up what will be 

called the Classical Wave-Maker family. 	The physically inspired classical 

wave-maker problem is to represent the two dimensional wave motion generated 

by a vertical wave-maker, idealised to be of infinite depth, having a 

prescribed velocity profile depending on depth. 	In particular the waves 

far down the channel are to be found, assuming there is no agency to 

generate or reflect waves back towards the wave-maker. For a bounded 

solution to exist, it is necessary that the prescribed velocity on the wave- 

maker decays sufficiently rapidly with depth. 	This is a mathematical 

difficulty consequent on the infinite depth idealisation and has no direct 

experimental relevance at finite depth. 	In the context of matched 

expansions the outgoing wave condition is replaced by a matching condition 

on the wave-free part of the potential (which may not even entail boundedness) 

and the prescribed velocity distribution (arising from previous potentials 

in the left and right inner perturbation series) may not have decay 

properties permitting of the direct application of Havelock's (1929) 

solution to them. 	This cc5nsideration calls for a more general study of the 

classical wave-maker family of problems and this is the subject of the 

present chapter. 

No uniqueness theorem exists without the outgoing waveconditiOn and 

attention is first devoted to finding particular solutions. The methods, 

which are well established in the outgoing wave case, are reviewed and 
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order of magnitude properties of the wave-free part of HavelOck's solution 

in the far field are derived. 	As would be expected, velocity profiles 

which produce only outgoing waves as x 	coincide with those requiring 

finite energy input. Other solutions whose wave-free parts are unbounded 

in the far field have no physical relevance but may be acceptable in the 

general setting of matched expansions. 

Next, particular solutions are derived (by means of Lewy's (1946) 

reduction method) 	for two special cases of unbounded velocity profiles 

arising in Chapter 5 to which HavelOck's solution cannot be applied 

directly and, finally, the general solutions are investigated by studying 

the homogeneous problem in which the wave-maker is at rest (referred to as 

the vertical barrier problem). 	The nature of solutions of the vertical 

barrier problem is controlled by the behaviour at infinity and by the 

singularity, if any, permitted at the surface point. Various possibilities 

are catalogued and it is proved explicitly that solutions containing 

outgoing waves can exist if and only if a logarithmic singularity is allowed 

at the surface point. 	This result provides a criterion for selecting the 

terms from the inner expansion which are associated with outgoing waves. 

§4.2. 	Mathematical statement of the problem and Havelock's solution 

Axes are taken with Ox in the undisturbed water surface and Oy along 

the rest position of the oscillating barrier downwards into the fluid 

which is assumed to occupy the first quadrant x > 0, y > 0. The velocity 

potential is assumed to have the form Re [(x,y) e_lat] and the prescribed 

velocity on the barrier at a distance y below the surface is taken to be 

Re[ f (y) e- 
icF 

 t] (f being a continuous function on [O,cx] ). 	The problem is 

to find a function 	(continuous and twice differentiable in the fluid 

domain x > 0, y > 0) such that 
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(4.1) c$ 	+ 	=0 
xx 	yy 

kth+y 	=0 

(x > 0, y > 0) 

(y = 0, x > 0) 	(k = 	 (4.2) 

= f 
	

(x = 0, y 	0) 
	

(4.3) 

(The final condition here is stated on x = 0 because of linearisation; 

Wehausen and Laitone (1960), p.553-555, gives a general discussion of 

forced harmonic oscillations). 

If account is taken of minor differences in notation, Havelock (1929) 

provides a particular solution to the problem (4.1)-(4.3) in the form 

P(x,y;k) = f"O 

	

 f(s)H(x,y;k;s) ds 	where 	 (4.4) 

0 

H(x,y;k;S) = -2i exp[ikx - k(y+s)] 

2 rco (u cos uy - k sin uy) (u cos us - k sin us) -ux e 	du. (4.5) 
Tr j 	 u(u 2  + k 2 ) 

This form for H is used once in this thesis in Chapter 3, 3.1, but 

elsewhere an equivalent form 

H(x,y;k;s) = -2j exp[ikx - k(y+s)] 

i 	[2 
+ (y-s)2l 	

2  

2 	u cos u(y+s) - k sin u(y+s) -ux 
+ 	log 	

+ (y+s) 2j - 	j 	
e 	du 

0 	 u + k 2  

is employed. 

It is convenient also to introduce here some notation which will be 

used subsequently throughout Chapter 5 in discussing the left and right 

inner expansions where the form (4.6) of H will be used. 	First, the 

three terms in H will be denoted by 
H 

HL and H 1  respectively while the 

corresponding parts of P will be denoted by W, L and I and the wave-free 

part of P (i.e. L+I) by F. 

Thus H(x,y;k;s) 2— - 2i expEikx - k(y+s)] , 

D 1 	ix + (Y-s) 2  
HL (x ly; s)  = - log 2 	12 + (y+s) 2  

H1(x,y;k;s) D 
	2 	u cos u(y+s) - k sin u(y+s) e_UX du 

TT 
 = - 

2 	2 
0 	 u +k 

(4.7) 



while 

D 	 -s 
W(x,y;k) = -2i exp(ikx - ky) 	f(s)e 	ds , 

00 	

fCO o  

1 f f(s) iogrx2 + (y_s)21 d L(x, y ) 	= 	
J 	 I 2 	

(v+s)21 o 	 Lx+ D 	2 
 F

u cos u(y+s) - ksin u(y+s) -ux
I(x,y;k) = - 	 e 	f(s)du ds) 

0o 	 u 2  + Ic 2  

D 
F(x,y;k) = L(x,y) + I(x,y;k) 

In addition the values H, P, W, I, F for k=l will be abbreviated to 

H(x,y;s), P(x,y), W(x,y), I(x,y), F(x,y) respectively. 

Hence H(x,y;s) = H(x,y;l;s),) 

D 
4(x,y) 	= 	(x,y;l) 

W(x,y) 

I(x,y) 	- I(x,y;l), 

D 
F(x,y) 	= F(x,y;l) 

Finally, with a view to discussing the behaviour of the integrals appearing 

in the wave-free part of Havelock's solution, it is remarked that (for 

fixed (x,y)) 

HL ( x , y;s )  = - 	+ 
	

(4.10) 

	

and 	H1(x,y;k;s) = -- 2 -- + 
	

(4.11) 

as S 4- 00, the first result being proved using logarithmic expansions and 

the second by writing 

H (x,y;k;s) = - 	Re 
 100 exp 	

du 
I 	 j It 	J 	u - jk 0 

(1 = x - j (y+s)) and using Watson's Lemma or simple integration by parts 

	

§4.3. 	The convergence of Havelock's solution and the behaviour in the 

far field of the wave-free part 

The wave-free part of (x,y;k) is given by 

F(x,y;k) 
= 	

f(s)[HL(x,y;s) + H1 (x,y;k;s)] ds 

(4.8) 

(4.9) 
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Hence, by (4.10) and (4.11) it is clear that (for fixed (x,y)) the integral 

is convergent if 

(a) f 	ds exists 	(b > 0) 
Jb S 

and (b) f 	is bounded as t - 

For the discussion of the behaviour of the wave-free part as 

r = + y 2  -~ which follows the stricter condition that f(s) = 0(-a) 

(a > 0) as s - 	 will be assumed. 	It will be seen that, to obtain a 

solution with only outgoing waves at infinity, it is sufficient to take 

a > 1 and that in cases of this type finite input of energy is required 

to maintain the velocity profile. 	The two components of F(x,y;k) i.e. 

L(x,y ) and I(x,y;k) are examined sep.rately, but, first, it is noted 

by analogy with (4.10), (4.11) that as r - 	 with s bounded 

H(r cos O,r sin @;s) 
= -2s_sine 

+ 
Q(l) 	

(4.12) L   

	

Ttr 	 r 

and H 1 (r cos O,r sin 6;k;s) 
= 2 sin 0 	

O(-2) • 	 (4.13) 

	

Trkr 	r 

Since the asymptotic result (4.12) above for HL(r  cos 0,r sin O;s) applies 

only in the case when s is bounded, the range of integration must be split 

into two parts, in one of which HL  is small for large r and in the other 

of which f(s) is small for large s. 	This is achieved using the fact that 

f(s) = O(-a) as s - , whence there exist s 0  and A (both constants 

independent of s) such that f(s) I o'. for s 	so. 	s0 is fixed and 

the equation for L is written 

f o

SO   L(r cos 0,r sin 0) = ( 
+  foo

)H L (r cos0,r sin 0;s) ds 	 (4.14) 
S O  

By a mean vaTue theorem of the integral calculus, the first integral 

is equal to 

S0 HL(r cos 0,r sin 0;)f(), where 0 < fl < S0 

whence (using (4.12) and the boundedness of f) it can be deduced that this 
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1 
part is O() as r -. 

By use of the substitution s = ru, the second integral takes the form 

roo 

r j 	 H 
L 
 (r cos O,r sin O;ru) f(ru) du 

= r 	H (cos O,sin O;u) f(ru) du 
L 

By use of the order property of f, the modulus of this integral is less 

than or equal to 

1 
r 	 u +2u sin O±lI 1 

log 	 1. —ct du 	. 	 (4.15) 

's0/r 	u - 2u sin 0 + iJ U  

If it is assumed now that 	(see note (1) after equation (4.16) for 

the case 0 = ), then for a > 0 and ct non-intecral, the integral here can 

be integrated by parts till arrival at the first integer k such that 

k-ct > 0 i.e. k integrations by parts are performed.' After this point, 

the final integral remaining will be of the form 
00 	 k 

(constant) 	 ak-a —k H (cos 0,sin 0;u)du. 	This remainder is 

fso/r 	
du L 

0(1) as i - 	as is seen by writing C-0/r 
	Jo 	o 

The integrated cäntributions to these integrations by parts will be of the 

form 	 m-1 
m-ad 	H. 

(constant). u 	 L 	 (1 	m 	k) 
du rn-i 

.mlH1 	 _ 
These vanish at since 	= O(—m) as u - ' so the only contributions 

du 

will come from the lower limit s 0 /r. 	Since HL is an odd function of u, 

it follows that dmlH L = (0(u) if rn s odd 
rn-i 	 as u - 0 

du 	(0(1) if rn is even 

whence the contributions from the lower limits will be 

1 	ifmisodd 
rnl-ct 

r asr+ 00. 

1  
0( 	

i 
rm_ct ) 	

f rn is even 
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It is recalled that there was a factor rla outside the original 

integral (see (4.15)) so that (when multiplied by r1-a )  the integrated 

contributions will be O(l/rm) 	m odd 	while the remainder will 
m-1 O(l/r 	) m even 

be O(rla) 

Hence, for a non-integral, a > 0 

1-a 

fco 	

- 
r 	

l u 
log 1u2 + 2u sin 	

1-a 
+ 11 1 	C 0(r 	) 	0 < a < 2 

= 
o 	 2_2usin6+ljua du  ( 0(1/r) 	a>2 

From (4.14) and the comment below there, it follows that as r - °° 

	

0(r 1-a) 	0<a<2 
L(r cos 0, r sin 0) = 

	

0(l/r) 	a>2 

when a is non-integral. 

When a is an integer, Lemma 1 (see Appendix B,8.2) gives the corresponding 

results. 

With f(0,t) = log rt2 + 2t sin 
O + 	, x = s0/r, Lemma 1 gives, as r 

J t2 - 2t sin 0 + lJ 
(with f(o) = 0) 

rco 	f(0(t)) 	( 0(1) 	 a = 1 
dt= 

JsO/r 	ta 	 ( 0(log r) 	a = 2 

a-2 
(0(r 	) 	a=3,4,5,... 

Hence 

na 	 f(O,t) 	
( 0(1) 	a = 1 

2Tr
dt=  

	

 a 	
( J(ogr 

	

fso/r
) 	

a=2 
r 

0(1/r) 	a = 3, 4, 5 

Combining the results for L non-integral and a integral together gives 

r a 
	

f(O,t) 	
1-a 1- 	 C 0(r 	) 	0<a<2 

TTT
f 	dt = 
is 0 /r 	ta 	 ( 0(log r/r) 	a = 2 

0(1/n) 	a>2 
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Hence from (4.14), as r - ° 

O(r1 ) 	O<a< 2 
L(r cos O,r sin 0) = 

O(log r/r) 	a = 2 	 (4.16) 

( O(i/r) 	 a>2 

C NOTE (1): In the proof which follows (4.15) it has been assumed that 

o Tr 
. 	If, however, 0 = , the integral in (4.15) takes the form 

u+l 	1 
2 	log 1 

	
a du lu -i 	U 

so/r 

in which the log function has a singularity at u = 1 which becomes 

non-integrably singular (when r is large) after two differentiations 

of the log function. 	However, this difficulty can be overcome as 

follows. 	By integration by parts (a 3A 1) 

log U+1I =[ - U 

1-a 	
u+lll 

fco () /r 	lu 

 

- ii u 	11 - a 
log 	

- lii -- s 0 /r 

f
co

1-a

lu
1 	1 1 (a Cauchy P.V. inte 

s o /r 
- 	 U 	

+ lu-lJ. 
- 

The second integral may be expressed as 

rco 1-a r 1 	1 
iii + 4' 	u 	 - l du 
	 where the contour 

- 

is the real axis indented by a small semi--circular arc (centred onu=1 

and ]yin. in. the fourtP q 	art) and the previous arguments can now be 

applied to the indented integral. Since the integral under consideration 

is the real part of the indented integral, plus the integrated contributioi 

to the first integration by parts above, its order properties will be the 

same as before. 

Naxt 
I( cose,r sin9;k) 

= foo 

H(r cos O,r sin 0;k;s)f(s)ds 

where 

H1 (r cos 0,r sin 0;k;s) 

- 	2 	u cos[u(r  sin 6 + s)] - k sin[u(r sin 0 +s)] -u R cos 6 e 	 du 
7T F 	U 2 + Ic 2  
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2 	f

o

e 
 -u

ie H1 (r co 	 iT 	 u-jk6,r sin 8;k;S) = - 	 Re 	 du with 	 - js 

0 
2 	ii 

For large r, the dominant term in H 1  is - Re. 	(by Watson' s Lemma 

or straightforward integration by parts). 

But 1 
	r cos 6 + j Cr sin 8 + 	

so that ' 	2  + 2sr sin 0 + S 2  r  

2 Ijl_2 	r  sin  B+s 
TT 

- 	 Re1-1 - 	
r + 2sr sine + 

The leading asymptotics of I(r cos 6,r sin 8;k) will, therefore, arise from

00 

2t 	rsin0+s 
I (x cos 0,r sin E3;k) 

= -j 	
f(s) ds, or 

A 	 IT 
r 2  +;-sr sin 0 + s 2  

fSIA(r cos 0,r sin 0;k) = -j 	
+ fso I r Sfl 8 + 	

f(s) ds • (4.17 
 + 2 sr sin 8 + s 2 J 

The first integral is o(-) as r -- and the substitution s = ru in the 
r 

second gives 

sin 8 + u 

Fs O/r 
 

1 + 
2u sin 0 7f(ru) du which, in modulus, is less or 

equal to 

A rco 	sin O+u 
To. J 1 + 2u sin 8 + 2 

-a du (using the order property of f). 

s 0 /r 

sin 8 + u 
Let g(O,u) 

= 1 + 2u sin 8 + u 2  

Clearly 

m_l 

1 	
1 

g(.,u) = o ~ Uml-  
du 
	as u -* w 2 while g and its 

derivatives are all 0(1) as u '- 0. 	(g has no special odd or even 

properties). 

Hence it can be proved, as before, by successive integrations by 

parts, that for a non-integral 

1 	g(0,u) 	
( O(ct) 	0 < a < 1 

du 
rFs 	

a 
0/r 	u 	 ( O( -) 	 ct>1 

r 

For integral values of a, lemma i again gives the results: 

1 	g(3,u) 	
C O(log nra) 	a = 1 

ra F 	du= a 
s0/r 	u 	 ( O(l/r) 	a = 2, 3, 4, 
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Combining the above gives 

0 < a < 1 
1 	1 	g(O,u) 

mj a 
du= ( O (log r/r) a=1 

s0/r u C O(l/r) a > 1 

Use of the above results and (4.17) implies that 

O(l/ra) 	0 <a<1 
cos O,r sin O;k) = C O(log r/r) 	a = 1 

0(1/r) 	ct>l 

Since 'A contains the leading asymptotic terms of I it is deduced 

that I has the same properties. 

O(l/ra) 	0<a<1 
1(r cos O,r sin (3;k) = ( O(log r/r) 	a = 1 

	
(4.18) 

0(1/r) 	a>1 	). 

Addition of (4.16) and (4.18) leads to the result that the wave-free 

part of Havelock's solution has the properties 

O(r 1-a) 	O<a<2 
F(r cos O,r sin O;k) = ( O(log r/r) 	a = 2 	) 	 (4.19) 

0(1/r) 	a > 2 

as r - 

Hence, in general, up to a = 2 (inverse square decay of the 

prescribed velocity) the wave-free behaviour in the far field is 

determined crucially by the motion of the vibrating wave maker deep 

down in the fluid, while for a > 2, the disturbances are like those 

due to a dipole at the top of the wavemaker. 	It may be seen also 

1 

from (4.19) that the condition f(s) = 0
5 ) I (a > 1) is sufficient to 

ensure that a solution is obtained with only outgoing waves at 

infinity. 	For a < 1 the wave-free part will not, in general, tend 

to zero. 

NOTE (2): On the energy input required to maintain the motion of 

the vertical wave-maker 

The horizontal force per unit of surface area at depth y necessary 

to maintain the prescribed motion of the barrier is equal to p,  where 
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p = pressure in the liquid at depth y on x = 0. 	Hence the rate of 

energy input per unit of surface area at depth y is 

pF (o,y) 	where F(x,y;t) is the total potential 
x 

i.e. F(x,y;t) = Re [4(x,y)e -iot 

Hence it follows that the energy input per unit of surface area at 

depth y over one cycle will be 

21110 
E(y) = fo 	

•pF(O,y) cit 

The linearised Bernouilli equation gives 

P = Po + pgy - PFt (OIY )  

where P0 = atmospheric pressure 

and 	p = density of liquid 

so that use of the periodic property of F(O,y) gives 

211/0 
E(y) = -p 	Ft(0y)F(Ofy) cit 

-lot 
Since F (0,y) = Re [-iO (0,y)e 	I and 

t 

F 
x 
 (0,y) = Re [ x 
	

-jOt 
(0,y)e 	I it can be seen that 

E(y) 	2rrp 9(0,y) 	If(y) 	 = f(y)) 

so that, by the results of the previous section 

1- 2a 

	

O(y 	) 	0 <a<2 
E(y) = 

	

0ilogY" 	 a=2 Ii+aj 

	

01 	 a > 2 	 as y 

	

1y 	j 

Thus the total energy input in one cycle (which is equal to 	E(y)dy) TO  
will be finite provided a > 1 since the integral is convergent only 

for this range of values. 
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NOTE (3): Havelock's particular solution is continuous at the origin 

and satisfies the edge condition r -  o as r - 0.3 

§44 • 	particular solutions of the wave-maker problem in cases of 

unbounded velocity profiles 

Consideration is now given to two cases of the above type which 

occur in Chapter 5. 	For easier comparison later, the problem is 

stated in terms of scaled coordinates X = kx and Y = ky as 

(x>O,Y>O) 

	

U+UO 	 CY=O) 

	

U =V 	 (X 	0) 
X 

together with the edge condition (required by the inner expansions) 

U RO asR=v2+YLO 

The two cases considered here are 

V 	= Y 

\7(Y) = Y log Y 

the method employed being essentially the reduction method due to 

Lewy (1946). The problem is first restated in terms of a new 

harmonic function N(X,Y) defined by 

N(x,Y) =  -- (- 	+ l)U(X,Y) so that on the free surface N = 0Dy 

and on the wave-maker N(O,Y) = .V(Y) + V' (Y). 	This is a simpler 

problem which in the cases considered here yielded a particular 

solution for N without difficulty, say N(X,Y). 	Once this has been 

extracted, it is convenient to consider U(x,Y) as the real part of a 

complex potential w(z) (z = X + jY) so that 

-j- ( 	+ 1)U(X,Y) = I . [-w"(z) + jw'(z)] • 

If also N(X,Y) is written as Im.[g(z)]  then a particular solution for 



w can be found by solving the ordinary differential equation 

w" (z) - jw' (z) = -g(z) 

This general method will now be applied to the two particular cases 

(a) and (b) mentioned above. 

(a) In this case the value of N on the wave-maker is 1 + Y so it is 

easily seen by inspection (or separation of variables) that, with 

X = R cos 0, Y = B. sin 0, a particular solution N(X,Y) is given by 

• (X,Y) = -:_0 + R sin 0 i.e. 
p 	'rr 

• (X,Y) = Im 	log z + z] 
P 	 J IT 

Hence, in this case, it is necessary to solve the differential equation 

2 
w 	- jw'(z) = - (

Tr  
- log z + z) 

One integration gives immediately 

2 	 z 2  
w ,  (z) - jw(z) = -[—(z log z - z) + 	+ A 	(A = constant) 

TT 	 2 

where it is noted that A must be real with respect to j, in order that 

the free surface condition (which in complex form is 

Im.[w' (z) - jw(z)] = 0 on Y = 0) be satisfied. 

It follows by use of the integrating factor e- 
jz 
 that 

_jco 
j  

Jz 	- j s [ — 
2(s log 

S - 5) + -2  w(z) = e 	e ds + jA+ Be jz 

where B is a constant. 

Two integrations by parts give the more manageable form 

W(Z) = - j[.-(z log z - z)+ 	(z 
Z 	 + 	log z) + j(A + 1) 

'IT 	
2-]- 
	 TT 

2 jz 	 jz 
E(jz) +Be 

TF 
(4.20) 

W 	
jz 

	

2 	 2 - 	_feZ E1(jz)] + jBe 

	

z + z) 	(1 ± —) whence 	(z) = - j ( log 	- Trz 	Tr dz 

It is proved in the following section §4.5 (equation (4.36)) that on 

1  d 	jz 	 -Y 
X = 0, Re. i  — [e 	E 1 (jz)]} = ire 	so that ,again on X = O P  j dz 

	

Re. 
J 
 [w' (z)] = y - 2e-Y 
	-Y 
+ e 	Re. (j B) 

J 

Thus, to satisfy UX = Y on X = 0, B may be taken to be -2j. 
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It follows then from (4.20) (if A is taken to be -1) that a particular 

solution for rJ(X,Y) in this case will be the real part of the function 

2 	 z2 	2 	 2 jz 	 jz 
W (z) = -j[—(z log z - z) + -] - (z ± 	log z) - —e 	E1(jz) - 2je 

ii 	 2 	 Tr 	 Tr 

i.e. 

tJ(x,Y) = ( R2sin20 - R cos 0) + 2-  [R(sin 6 log R + 0 cos 0) - R sin 0 - log 
2 	 ii 

2 	jz 	 -Y 
- - {Re.[ e 	E1 (j z) - Ire 	sin x} 

To this particular solution may be added solutions of the vertical 

barrier problem as required. Thus, in the case which occurs in Chapter 

5, §5.7, it is convenient for matching purposes to add the eigensolution 

sin 6 - 1) while to obtain a progressive wave at infinity the 

standing wave solution -2i e cos x is also added. This gives a 

modified solution: 

rJ(X,Y) = 
(
RSifl 20 - R cos 0) + {R(sin 6 log R + 0 cos 0) - 1 - log R] 

2 	 Tr 

- 	 i e {Re.[eJZ E1(jz)] } - 2 	
ix-Y 

ir 	j 

This also satisfies the edge condition, since 

Re.[e 	E1(jz)] -. - log R as R - 0, as may be seen from the result 

00
n  

E1 (jz) = -y - log jz - 	 n given in Abramowitz & stegun 

(1965). 	Thus the log terms cancel and U(X,Y) is bounded as R - 0. 

In conclusion it is remarked that the function 
2 
 required in §5.7 

has the property 

2x = - 	
Y on the barrier 

and that its wave-free part Fz(X,Y) satisfies 

1 R2 s1n20 	 2R 
F2(x,Y) 	- 	2 	

- R cos 0) - - (sin 0 log R + 0 cos 6) 
'rr 2 a 4  

2R sin 0 (2 log 2a+y-2-i) asR - 
 

. 
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Hence the solution satisfying the edge condition will be 

1 
u(x,Y) + 	( 2 log 2a + y - 2 - i -) (R sin  

Tra 	 rr2a 

i.e. l2(X,Y) = - 1 
	

2 
R 2 
 sin 20 - R cos 0) - 

2 	
[R (sin 0 log R + 0 cos 9) 

ff 2 a 

- 1 - log RI + 	(2 log 2a + y - 2 - i 	(R sin 0 - 1) 

7r 2 a' 
+ 2 	]z 	 2i 	ix-Y 

- Re [ e E1 (jz)} } + 	e 
Tr2a' 	i 	 ira 

(b) With V (Y) = Y log Y the value of N on the wave-maker is Y log y+l+log ' 

and, as before, a particular solution for N is 

N(X,Y) = R(sin 0 log R + 0 cos 0) + -(B + 0 log R) or 
p 	 Tr 

N(X,Y).= Im.{z log z + tiog z + 4(l og z) 2 ] } 

Hence, it is required to solve the differential equation 

1 
W I'  (z) - 1w' (z) = -{z log z ± 	og z + (log z) 2 1 } 

or 

The solution (obtained as in (a)) is 

W(Z) =e 	I jz 1 
	

2 

_jcx 

e 	log S - 
	

+ 2 	
s(log s)Jds+ jA + Be jz 

where A, B are constants and A is real with respect to j. 

An integration by parts now gives 

z 2  
W(Z) = - j[-- log z - 

	+ i 
	 2 z(log z) 	+ el J 	-je 5 (s log s + 2 — log s)

7T 	
z 	

Tr  
2 	 4 

f
zjoo

e2e5(log )2 ds + jA + Be
Jz

Tr 
  

This first integral occurring here is integrated by parts again but 

the latter integral is left as it is to avoid introduction of an 

awkward singularity at the origin. This leads to the result 

W(Z) = - j[- log z - 
	+ 

! z(log z) 2] - (z log z + 	log z)
4 	

i 

Tr  
2 jz I 	-Js 	

Tr 

Tr 
- 	e 	Ej (jz) - e 	e 	log s ds 

- 	e 
	

f300 
 e- j s (log s) 2  ds + j(A + 1) + BeJZ 	 (4.21) 

Tr 	
z 
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Clearly w is non-singular at the origin (the integrands above can be 

integrated through 0) and the edge condition is therefore satisfied. 

It remains to choose B so that 

Re. [ w' (z)] = Y log Y on x = 0. 
J 

It can be shown without difficulty that 

Y 	-Y 
Re. [ ' (jY)} = Y log Y - 2e 	+ e 	Im. [J 	e_JS log s ds} 

3 	 jY 
jOD 

1 -Y 	f 	_S(10g s) 2  ds] 	
-Y 

+—e 	Re 	
jy 	

+ e 	Re.(jB) 
TF 	j 

whence the substitution u = is in the integrals gives 

Re. [w'(jy)] = Y log? - 2e 1  + e 	Im. [ie_u  log(-uj) 

1-Y -u 	 12du 	Y 
+ 	e 	Re 	e [ log (-uj), -} + e 	Re. (jB) (4.22) 

I 

The contours in the above integrals are taken to be along the real 

axis (strictly speaking, along the real axis indented by a small 

semi-circle centred at the origin but the contribution from there will 

F
(00 

	f
Q_

tend to zero with the radius) and 	is written as 
	

+ 
J_Y 	 -Y 	0+ 

In C—Y.0) log (-uj) = log(-u) + I 	while 

IT 
in (0,00) log ( -Ui) = log u - j 

Hence the-imaginary part on the right-hand side of (4.22) is equal to 

	

-J eu log(-u)du - 
	
e- U log u du 

and the real part is 71 J 0 

e- 
u 
 log(-u)du -eU log u dul 

Substitution of these values in (4.22) now gives 

Re. [w'(jY)] 	Y log 	± 2('( - l)eY + e 	Re.(jB) where y is Euler's 

constant (since [CO
e U  log u du -) and if B is chosen to have the 

j o  
value 2j(Y - 1) then the real part of (4.21) will be a particular 

solution of the problem. 	To this may be added solutions of the 

vertical barrier problem as required. 
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In particular, as it stands, the real part of (4.21) contains the 

standing wave term 

-2(y - l)e 	sin X 

Thus, if a progressing wave were required, it would be necessary to 

add the term 2i(y - l)e cos X whence it is seen that the velocity 

ix-Y profile Y log Y produces a progressing wave 21(1 - )e 	. 	It 

follows that the term -
2 

 Y log Y which appears in the velocity 
Tr 2 a 5  

profile for )t (see equation (5.64)) will produce the progressing 

wave 	 4i(y - l)eiX_Y 	as stated there. 
7T  a s 

NO: The terms Tk(z) = eJZ 
J 	

e- 
j 
s (log 5)k  ds (k = 1,2) in (4.21) 

do not contain standing waves as may be seen by considering their 

behaviour on Y = 0 as X - 
-00 

Indeed Tk(X) = e 
x fx 	

k 
(log s) e 	ds whence rotation of the 

contour of integration so that the upper limit becomes X joo Followed 

by the substitution w = 	- X) gives the form x 

k '-Xw 
Tk(X) -jx 	[log x + 	 jw)) e 	dw 

Jo 	
log(l - 

 

The constituent parts of the Tk(X)  are either unbounded or tend to zero 

as X so clearly they cannot represent standing waves (which are 0(1) 

as X -"- 

§4.5. 	The vertical barrier problem 

With reference to §4.4 this is simply the case V(Y) = 0. 	It 

will be shown that the general solution is precisely the family of 

linear combinations of the following: 

a standing wave solution, non-singular at 0 

-Y e cosX 

a set of solutions unbounded at and non-singular at 0 of the 

form 	R2m+l sini(2m + 1)0 	R 2 cos 2m0 	(m=0,1,2,...) 
(2m+l) 	- 

Mb M 



a solution representing a standing wave at and having a 

logarithmic singularity at 0 

Re. [ejZ E1(jz)] - 1Te 	sin X 

(where Ej (z) is the exponential integral 

Ei(Z) = 1-__du ) 

a set of solutions tending to zero at and having algebraic 

singularities at 0 of the form 

sin(2m-1)6 - cos 2m0 

(2m_l) R2m 1 	R 2 

These functions are the real parts (with respect to j) of the complex 

valued functions 

e jz 
  

 
2m+l 

z 	2m 
-z 

j (2m+1) 

e jz El (jz) + jire jz  

--f 
- z 	

z -- 
(2m 1) 2m-1 
	2m 

where z = X + jY = Re 0  

The solution will be obtained explicitly using the reduction method of 

94.5 (and the same notation). In this case N(X,Y) vanishes on B = 0 

and B = so that 
00 	

2' N(X,Y) = n l 2n 	+ 	
) sin 2n0 	 (4.23) 

00 	

2 or 	N(X,Y) = Im. 	1(A2Zr1 	
2n -  

Thus it is necessary to solve the differential equation 

Im.Iw"(  W) - W ,  ( z) = -Im.[E 1  (A2 Z 2  - -p- 	(4.24) 

The equation g "(z) - jg 2 ' (z) = z 2n 
	

(n 	1) 	 (4.25) 
2n 

is considered first. 	It is not difficult to show that the function 

2n 	
jz 2n+l 

g 	 z 	+ (z) -[ 
2n 	 2n T-1 

h(z) =
-2n(2n - 1) 	

satisfies the equation 
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h"(z) - jh'(z) = Z2n2 whence h(z) = g 	(z) 2n-2 	7 

.2n 	
jz 2n+l 

and g 2 (z) = z 	i-   
2n+1 	 2n-2 

- 2n(2n - l)g 	(z) 	(n 	1) . 	(4.26) 

In addition a particular solution of the equation 

go" (z) - igo'(z) = 1 is 

g0(z) = jz + 1 

Hence,by induction ,a particular solution of (4.25) can be obtained as 

a linear combination of the functions 

2m+l 
2m 	jz  

E 
m 	 2m+l 
(z) = z 	+ 	 (0 	m 	n) 

the coefficients of the E(z) being well-defined non-zero integers 

i.e. there exists a solution 

n 
g (z) = E & (n)E (z) 	 (4.27) 
2n 	m=0 m 	rn 

where CL (n) = 1 and no & (n) is zero. 
M 

Next the equation 

	

h2 1 '(z) - ih2 ' (z) = 2n 	(n1) 	
(4.28) 

is considered. 

Again it is easily proved that for n 2, the function 

1 	 J F(z) 	-(2n - 2) (2n - 1)h 2 (Z) +I 2n-2 - 	 2n-3 
z 	(2n-3)z 

satisfies the equation F"(z) - jF' (z) = z2fl2 so that,for n2, 

1 	 1 _____ 
h (z)= 
2n 	(211-2)(2n-1) 	2n-2 - 
	

-- 	
] - h 	(z)} . 	(4.29) 

2n-3 	2n-;-2 
z 	(2n3)z 

Also h2(z) satisfies the equation 

h2 " ( z) - jh2' (z) = 

so that a particular splution is therefore 

jco -jt 
h2(z) = ejZ 

fZ 	
e 	dt 	. 	 (4.30) 
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It follows as previously that a particular solution of (4.28) can 

be obtained in the form 

n- 1 
h 	(z) = E b (n)G (z) 	 (4.31) 
2n 	M=O m 	m 

where the b (n) are real non-zero integers and 
m 

f Go (z) = eZEl(jz)
(4.32) 

G(Z) (ml) 
M 	 2m-1- m-l2m 

(2m-l)z 	z 

After the derivation of these particular solutions attention is 

returned to (4.24). 	In practice the sum on the right is not infinite 

(the number of terms is limited by order properties of at infinity 

and prescribed behaviour at the origin) so that 

CO 	

2n nl2nz 	- 	) is an analytic function of z ( z 36  0). 	The Cauchy- 

Riemann equations imply, therefore, that w must be analytic (z 34  0) 

and w  must satisfy the linear differential equation 

00 	 B 
jw' (z) = = (-A z 2  + 	) + C (where C is a constant 

n1 	n 	2ri 
z 

real with respect to j). 

If the operator 	
1 	

(D = -) is applied to both sides of the 
- jD 	

dz 

above equation a particular solution may be obtained in the form 

CO 	 n 	 n-i 
[- A 	( 	C (n)E (z)) + B 	( 	b (n)G (z))1+ C(jz + 1) 

n=1 	2n m=0 m 	m 	2n m=0 m 	m 

(where use has been made of (4.27) and (4.31)) so that the general 

solution will be 
co 	 n 	 n-1 

W(Z) = E[ -A (E CL (n)E (z)) + B ( E b (n)G (z))] + C (j z+1) +E+FeJ Z  
n=l 2n m0 m 	m 	2n m0 m 	m 

(4.33) 
where E, F are constants. 

The boundary conditions at the free surface and on the barrier are 

now checked in their complex forms: 

Im. [f' (z) - jf(z)] = 0 on Y = 0 

and Re. [f'(z)] = 0 on X = 0 
J 
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It is easy to prove that the E(z) and the G(Z) satisfy the free 

surface condition separately so that, when it is recalled that A 2 , 

B, Q...  (n) , b (n), C are real with respect to j, it can be seen from 2n m 	m 

(4.33) that 

tm. [w'(z) - jw(z)] = -Im.(jE) whence 
J 	 J 

Re. (E) =0 
J 

(4.34) 

From (4.33) again 
Co 	 n 	 n-1 	 jz 

WI (z) = 	[-A ( E Cu (n)E '(z)) + B 	( E b (n)G 1(z))] + jC + jFe 
n=l 	2n M=O m 	m 	2n M=O m 	m 	- 

(4.35) 

On X = 0 the Em'  (z) are purely imaginary as are the G' (z) for m 

However, G0' (z) must be more carefully considered. 

(4.32) shows that 

Go' (z) = 
	

fe

- 3t  dt - 

G0'(jY) = je 	
jr 	e 	

dt - 

so that 

(where the contour must avoid 

the origin and does not cross 
the negative real axis). 

The substitution u = it gives further 

e 

	

p 	-u 

	

-Y 
aD  

1 	 1 
G 0  (jY) = je 	---- du - where the contour here is chosen to 

be the real axis from -Y to +oD.indented by a small semi-circular arc 

round the origin in the half-plane Im(u) > 0. 	Hence 

-uCo 
e 

o'(jY) = jef 	—du - jil) - -i- 	whence 
Y u 	 jy 

-Y 
Re [Go' (j Y) = ire 	i.e. from (4.32) Rej d 

	jz 
— [e Ei(jz)} } = 71'e- 

e -Y 

J 	 j dz 

onX=O. 	(4.36) 

may be noted that the above can also be pr5Ved by writing 

G01(jY) = je_Y [-ci(jY) + j si(jY)] - - 
jy 

and using the results 5.2.5, 5.2.22 and 5.2.24 in Abramowitz and 

Stegun (1965, p.232)3 

(4.35) now gives the result 
00 

Re.[w.'(jY)] = E 1  B2  b 0  (n) TTe 	- Im(F)e 
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so that 
CO 

mi. (F) = irE B 	b0 (n) 
j 	n=1 2n 

This relation together with (4.34) and the definitions of E 
in 
 (z), G (z) 

m 

imply from (4.33) that 
CO 	 nm+l 

.[w(z)] = nl A [ 	() 
( R 	sin(2m + 1)0 	2m 

Re 2nm=Om 	 2rn+i 	
-R cos 2m0)] 

CO 	 n-i 
siri(2m-l)0 	cos 2m0 

• E B [b 0 (n)Re. (G 0 (  W)) + E b 	 2m-1 - n=i 2n J 	mim 
(2m-1)R 	R 2m  

00 

• C(1 - R sin 0) + e iRe.(F)cOS X -if E B 	b0(n)sin x] 
I 	 n=1 2n 

If A 0  is defined to be equal to -c and the last term above is drawn 

under the second summation sign, the solution for U is seen to be 

00 	 n 	
2m+1 sin(2m+l)O 	2in U(X,Y) = 	A [ 	() (R 
	 - R 	cos m0)] 

n=O 2nm=O in 	 2m±1 

n-i 
+ E B2 [b 0 (n) (Re. (Go (z))-iresin x) + E b (n) sin(2m_1)B 

	cos 2mG 
M-1 m 	(2m_l) R2in 1 	R 2 

+De cosX 

where D is an arbitrary constant (independent of j but possibly 
0 

depending on i) and 
ml 

 is defined to be 0. 

Clearly this expression can be rearranged as a linear combination of 

the functions mentioned at the beginning of this section and conversely, 

since the coefficients a (n) , b (n) are non-zero, any finite linear 

	

m 	in 

combination of these functions can be rearranged in the above form. 

Thus the complete solution of the vertical barrier problem may be 

taken as 	

R2in+lsin(2m+l 	
- R2in cos 2mG) U(x,Y) = m0 
	2m + 1 

CO 

sin(2m-1)0 - cos 2mG 
+ E d( 	

- 	2m-1 	2m m=1 in 

	

(2m i)R 	R 

+ c[Re.  (e 
3z 
 E 1  (jz) - Ire sin X)] + De 	cos X 	 (4.37) 
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(-l)'(iz ' 
Since E (jz) = -y - log jz - 	 (see Abramowitz and Stegun 

1 	 n=l 
n.n! 

(19651), it is clear that 

Re. (Go (z)) -log R as R 	0 

and since the term e sin X in the above expression for U occurs if 

and only if the term Re. (Go (z)) is present, it follows that a solution 

with a progressive wave (which could only be formed by combining the 

two standing waves e sin X and e cos X) can exist if and only if 

the potential has a logarithmic singularity at the origin (cf. Al1er 

(1975) p.203). 

Some other types of solution are now considered. 

U(X,Y) bounded at infinity 

(4.37) shows that c = 0 Cm > 0) while if, in addition, there are to 
M 

be no singularities at the origin d = 0, C = 0. 	Hence the solution 

which is bounded at infinity and has no singularities at the origin 

is a multiple of the standing wave e cos X. 

If, on the other hand, a logarithmic (but no higher) singularity 

is allowed at the oricin, then d = 0 Cm 1) and the solution 
m 

j 	 -Y 	 -Y 
[Re.(e 	Ei(

. 
 z) - Ire 	sin X)] + De 	cos X 

is obtained. c would be fixed by specifying the strength of the 

source at the origin. 	D is still arbitrary and could be chosen to 

furnish a progressive wave (incoming or outgoing) if required. 

If U is unbounded at infinity, then some information would be 

necessary about its more precise behaviour there. Thus if 

U(X,Y) = 
Q(a) 

where a > 0, the following cases arise: 

(i)0a<1 c- =0 	(m0) 
- 	m 

1 	a < 3 
	

> c = 0 
	

Cm > 1) 

3 	a< 5 
	

(m > 2) 	and so on. 
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From these remarks it is certainly clear that a unique solution can 

be obtained for the fixed vertical barrier problem (and hence also 

for the classical wave-maker problem) only by giving a very clear 

specification of the behaviour required at the origin and in the 

far field. 
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CHAPTER 5 

§5.1 Introduction 

As mentioned in chapter 1, Leppington (1973a) has derived the 

formula (for a semi-submerged circular cylinder): 

T = exp(-2ia/c) [(c/a) 1' - 	 ( c/a) 5 log (c/a) + 0( c/a)' 
Tr 

as c -* 0, using the formal method of matched asymptotic expansions. 

However, in chapter 2, it was pointed out that this result is still 

not accurate enough to provide a suitable comparison with the values 

of T obtained by the multipole expansion method for intermediate values 

of N = a/c. The purpose of this chapter is to derive the next term 

in the asymptotic development of T together with an estimate of the 

error term so that a better comparison can be made. It is found that 

incorporation of the extra term enables a significant region of 

overlap to be observed. 

§5.2 The right inner expansion to order c 

(see §3.2 for the notation) 

It has already been shown in §3.2 that in all cases where the 

tangents at E+  and E are vertical, 

(X,Y;c) = co(X,Y) + o(1.) as c - 0 where 

'I'o(X,Y) = exp (ix - Y). 	 (5.1) 

Let it now be postulated that 

(X,Y;c) = o(X,Y) + 2.,(c)4 1 (X,Y) + c 1 (X,Y) + 0(c) 	 (5.2) 

where 	1 	< 2(c) 	( c 	as c - 0 

The equation of the semi-circle for x > 0 is 
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x = /a2  - y2 	so that (in the notation of 53.2) 

	

f(y) 	= /a2 -y2 	-a 

= f(CY) 	= - 1 Fy2 
+ 0(c 3 ) 	 ) 

	

C 	 2a 
) 

9 0  (c,Y) = 1 	 ) 

) 	(E) 

	

g 1  (c 	1 CY2
,Y) = 	 + 0(c 3 ) 	 ) 

) 

and 	f' (cY) = - LI. + 0(c 3 ) 	 ) a 

as c+0. 

If the above equations together with (5.1) are substituted in 

(3.7) (which it is recalled was 

co

a 
r+1 	 r+l 

ro 	
(c,Y) 	 (0,Y;c) - f'(cY) XtY  (0,Y; c)] 

f1  (cY)] e' ro (-i) r g (c,Y)) 

and terms of orders higher than c are neglected, the result is 

	

+ (C) O,Y) + C [(O,Y) + 	(0,Y) 
a oY 	

---(O,Y)J 

-Y

2a OXX 

= i e '1  + C £__ (Y - Y 2 ). 
a 

Equating terms of corresponding orders inc and using (5.1) gives 

(O,Y) = 0 	 and 

(0,Y) = 1 - e-Y (2Y - Y 2 ) a 

The eigensolutions I (X,Y) will be of the form 

M 	
R 

B 	
R 

	

2K+li(2K1)0 - 	2 <cos2KO) 
= K0 K( 	2K+1 
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(where the B  are constants and X = RcosO, Y = RsinO) while, in 

the notation mentioned at the end of §3.2 and in §4.2, equations 

(4.8), (4.9), 

1 (X,Y) = w 1 (x,Y) + F 1 (X,Y) + E1(X,Y) , 	 (5.3) 

W 1  (the wave part of Havelock's particular solution) is given by 

2i 	 f°' -2s W 1 (X,Y) = - -- exp(i X - Y) 	e 	(2s - s2 )ds 
Jo 

whence 

W1 (X,Y) = - i exp(i X - Y). 	 (5.4) 

F 1 (X,Y) (the wave free part of Havelock's particular solution) 

consists of the two terms L 1 (X,Y) and 1 1 (X,Y) where 

log [ X 2  + (Y - s) 2  __ 	 -s L1(X,Y) 	
x + y +) I (2s - s2 ) e 	ds 	(5.5) 

and 

= 	2 	
(3 

 Fo ucos(Y + s)u - sin(Y +s)u e7 	(2s 11(X,Y) 	ira Jo 	 + 1 	
e 	(2s - s2 ) e S d uci s 5. 

Finally the eigensolution E 1  (X,Y) is given by 

n 	
2K+l.(2K+l)o - R2Kc0S2KO] . 	(5.7) E1  (X,Y) = KO CKE R 
	

2K+1 

Fran (5.2), therefore, (together with (5.1), (5.4)) it follows 

that W'(X,Y;e) (the wave part of 	(X,Y;E) to order c) is 

given by 

= (1 -- 	) exp (ix - Y). 	 (5.8) 2a 
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Expressed in outer coordinates (x,y) this takes the form 

	

Ic 	(x 	a)
-  :Fa(1- -)exp[ 	C 	 C 

so,since the incaning wave has the form 

expE 
-i(x-a) - Yi 

it follows that 	(the reflection coefficient to order C) is 

given by 

(1) 	 IC 	 21a 
R 	 (1 = 	--s ) exp (----) 

(in agreement with Leppington (1973(a) p.136, eqn.(3.10) with 

N = 2, dN = a 

Next, 	'(X,Y;E) (the wave free part of (X,Y;C) to 

order C) is given by 

m 	2K+1 

	

= £(C) KE0 B 
[ R 	s in(2K+1)O _R2KCOs2KO] 

K 	2K+1 

n 	2K+1 

	

+C[L 1 (X,y) + 11(x,Y) + KO CK R 
	sin(2K+1)e -R21 cos2KQJ 	(5.9) 

2K+ 1 

In order to apply the matching principle (see §3.5) it is 

now necessary to obtain the leading terms in the asymptotics of 

L 1 (X,Y) and 1 1 (X,Y) as R -- 

By integration by parts, it can be shown that 

1 	2[ 	Y+s 	 Y-s 	-s 

	

L 1 (X,Y) = 	FO S 	V+ (Y + s)2 + XL + (Y - S)2] e 	ds.
Tra 

If X,Y are replaced by RcosO, Rsine respectively and the 

substitution s = Ru is employed then, further, 

sinO + u 	 sinO - u 	-Ru 

	

L 1 (X,Y) = 	 U  ( + 2usi nO + u 2  + I - 2usinO + 2) e 	du 
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As u -11- 0, the non-exponential part of the integrand has the 

form 

- 	 2u2  sin0 + O(u) 

so, by Watson's Lemma 

L1(X,Y) = iraR 4s mO + O(1/R 3 ) as R + 	 (5.10) 

Next, 

ucos(Y + s)u - sin(Y + s)u 	Re.' exp[Y + s)iul} 

	

U4 	 - -  3 	u - i 

so that (5.6) can be written in the form 

	

- na 	
Re 	XpEU 	- 	

(2s- s 2 )exp[ - s(1-ju)]ds du -. 

	

- 	11(X,Y) = 
	Jo 	u - j 	Jo 

The inner integral is easily shown to have the value 

-2ju 
(1-ju) 

whence 

Ira 
- T 	1 1 (x,Y) = Re. 	(1 + ju)(1 - ju)3 

e 	du 
3 

where 

= X - j Y = R 

	

Since 	
U 

(1 + ju) (1 - ju)3 	u + 0(u 2 ) 	as u -- 0, 

Watson's Lemma again gives 

- 
La  
 I(X,Y) = Re. 

3 
(2+O(3)) as  

(and hence ) + I. 



	

Thus I MY) = - 4cos220 + 	( 	as R 	 (5.11)
TraR 

If (5.10), (5.11) are now substituted in (5.9) (with R replaced by 

6/6, where  6= 	in this case) and the resulting series is 

truncated after terms of order 6 2, then it is found that 

M 	

K 	

1 	6 
2K+1 

 sin(2K+1)O 	- 1 
(1,2) = 	

KO B 
• C 
	 c 2K+1 	2K+1 	 2K 

n 	1 	6 
2K+1

sin(2K+1)6 	1 	62Kcos2KO] 
+c KEO  C K  C  c  2K+1 	2K+l 	- 

= 	 C 

+ 2 
4sinO 	 (5.12) 
ira6 

(It is noted here that, in the next section, the coefficients BK, 

C  are shown to be zero so that the expansion of to order cis 

(X,Y;c) = o(X,Y) +c'1 1 (X,Y) where 	) 

(5.13) 

(X, Y) 	= w1  (X, Y) + L 1  (X,Y) + I (X,Y) 	) 

5.3 The outer expansion to order C 2  

Without any assumption concerning the form of the asymptotic develop-

ment of the outer expansion,(5.12) and the matching principle 

(1,2) 	= 	(2,1) 

indicate that the form of the outer expansion of (x,y;C) up to 

terms of order C2  will be 

2 	
m 	

2K--1 
(X 	 92K - 	(x,y) 

	

(x,y;C) = ( c) E 	
2K+1 	 2K 

	

K=O 	C 	 C 

n 
I. 
P2K+l (x,y) 

+ 	
KO 	2K+1 

C 

- 	(x, Y) 

2K 
C 

 

+ 	c2 	(X,  Y)  
) 

 

(5.14) 
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where, 	as 6 - 0, 

2K+1 

F2K+l(x,Y) 	
B  6 	sin(2K+1)O 

2K+1 

92(x,Y) 	" BK .6 2Kcos2KO 

2K+ 1 
t 	 CK 6 	sin(2K+1)0 

2K+ 1 

C  62Kcos2KO 

4o (x,y) 	
4sinO 
71a6 

If now (5.14) is substituted in the equation 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

O < K < in 

0 < K < n 

+ C 4y=0 	(y=o, jxj>a) 

and the coefficients of the various gauge factors (up to order 

C2 ) are equated to zero, the following sequence of equations for 

the functions f and g is obtained: 

= 0 	 (5.15a) 

= 	-[f2K+l(x,O)] 	in 	K 	0 

= 	 (x,0)] 	in 	K 	1 
2K— 1 	 DY [92K

[g 0 (x,O)] = 	0 

These are followed by a similar sequence for the functions p 

and q (f 	p, g + q, m - n) though the last equation in this 

case Is 

o (x,0) = 	ay q(x,O)} 
	

(5.15b) 

In addition, all the potential coefficients must be harmonic, have 

zero normal derivative on r and die off to zero at infinity. Those 
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functions which, in addition, vanish on y = 0 for lxI>a are of the 

form 

2r-i-1 	 2r+1 

	

e (z) = Re.[ 1  [A( z-a 
	 = ,,..., —) 	+ B(—) 

z+a 	
}} (r 	012 	) 	(5.16) 

r 	j 	+a 

or linear combinations thereof, where A, B are real with respect 

to j (this can be seen by means of the transformation 

z + a z-a ' z=x+jy). 

(It is noted here that,in the next paragraph,q 0  is proved to be 

identically zero so that from (5.15b) o will vanish on y = 0, 

lxi >  a. Since also o(x,y) 	
4sinO as 6 	o, it follows that Ta  

r j(z+a) 
o(x,y) = tzr Re 	1 (za)') 

(5.17) 

It is now shown that all the coefficients BK, C  in (5.9) must 

be zero and attention is confined initially to the BK. It is 

assumed that the set of integers K >0 for which B 	0 is 

non-empty and that M is the largest member of the set. It 

follows that 	(x,y;E) contains a term of the form 

(x,y)/C 2M-i-1 wrere 

= 0 (by (5.15a)) 

Hence f2M+1(x,y) must be of the form (5.16) and, in addition, 

f2M+l(x,y) 	
2M+ 1 

B 	6 	sin(2M+l)O/(2M+1) as 6 + 0. 

BM(2a)2M 	 2M+l z-a 
Thus 2M+ i 	y) = Re. 	(2M-i-l) 	

(-i;;) 

If z is now set equal to -a6 1  ei01  (where 6 =6-and el = ff-arg (Z+a)), 

it is seen that 

	

M(2a) 	sin(2M+1)O, 
f2M+l(x,y) 	

4N+2 

(2M+1)612M+l 	
as 61 + 0. 

When 6 1  is replaced by ER 1  and the matching principle applied, the 

left inner expansion of 1P(X 1 ,Y 1 ;C) will be seen to contain a term 



of the form 

4M+2 where 

B 	4M+2 
,, 	 M(2a) 	sin(2M+1)0 1  

2M~ 1 	 as R ~ 	 (5.18) 
(2M+1) R 1  

since no other terms with the same scaling could appear (see (5.14)). 

In addition (as shown in §3.4),lPh  would be harmonic, satisfy 

+ 	= 0 on Y, = 0 and also have the property P 1  = 0 on X ,  = 0 

(since (E)  IP h /E 4M+2  will be the leading term with a scaling of 

this form). 

Thus V is a solution of the vertical barrier problem and,frcin 

§4.5 ) the solution satisfying (5.18) is 

B 	4M+2 
[ sin(2M+1)0 l 	cos(2M-i-2)0 1  

(2M+I)R 1 2ITT 1 	R 2M+2 

It follows (since M 	0) that 	would not satisfy the edge condition 

since, by hypothesis, BM 	0. The only conclusion is that the 

original hypothesis is untenable implying that B  = 0 for all K 	0. 

By similar reasoning it can also be proved that C  = 0 (K 	01 whence 

q0 = 0. 

The statement (5.13) is thus verified while (5.14) implies that 

(2) (xy•c) = 
	

(5.19) 

with 0  given by (5.17). 

(Note: The addition of functions e(z) with r > 0 and B = 0 to 

the solution (5.17) for 	and of similar functions with r > M 

to the solution given for f 2M+l  can be discounted by reasoning as 

above. Such functions would again lead to violation of the edge 

condition in corresponding terms of the left-inner expansion). 



Finally,in this section, the substitution z = - a - 1 e 0  

in (5.17) shows that, as 6 1  + 03 

 isin01 	
62S in26 

(X,Y) 	 1 	1 
 

lTa 	2ira 	
+ o(S) 	 (5.20) 

and the replacement of 6 by ER, followed by expansion of (5.19) up 

to terms of order C gives (near E_) 

(2,3) (x,y;C) = C3  R 1  sin0 1  /7ta3  . 	 (5.21) 

95,4 The left inner expansion to orderc 3  

The matching principle 

(3,2) = 	(2,3) 

and (5.21) indicate that 

	

(X 1 ,Y 1 ;C) = E3 0  (X 19 Y 1 ) 	 (5.22) 

where 

P0 (X 1 ,Y 1 ) 	R 1 sinO 1 /lTa3 	as R 1  - 	 (5.23) 

Near E., the equation of r in this case is 

x = - a - f(y) 

where (as for the right inner region) 

f(y) = V1  a2 - y2 - a. 

or, in terms of left inner coordinates (see §3.4), 

x l = 	 • 



The boundary condition 0 r is now replaced by 

00 	 a
r+1 	 r+1 

Eg(c,Y1 )E 	iJ (0,Y ;E:) - f' (cY1)ry1p(o,Y1;E)] = 0 , 	(5.24) 

where it is recalled that 

	

1 r.f(Cy)1r 0  ( r) 	
as € ± 0 g(E ,Y1) 	T L 	j 

If (5.22) is substituted in (5.24) and terms of order higher than 

are neglected, the result is 

E 1p(0,Y1) '= 0 , 	whence 

= 0 . 

Thus ip is an eigensolution of the vertical, barrier problem 

- 	satisfying (5.23) whence 

(X ,Y1) = (R1  sine, - 1)/7ra3 	 (5.25) 

§ 5.5 The right inner expansion and reflection coefficient to order E 2 

Reference to §3.2 and equation (5.13) leads us to pose the development: 

(X, Y; 	= 0 (X,Y) +c 	(X, Y) + 	(X ,  y) + c 2 2 (X,Y) + 0(E 2 ) 	( 5.26) 

for the right inner expansion as E "0, 2.(c) being a gauge factor 

such that C <S(E)<C 2  as C - 0 and £(C) (X,Y) standing for a
91 

typical tern with a scaling of this type. 

By substituting (5.26) into (3.7) and retaining terms of orders 

up toE 2 , it can be shown that 

(c) 	 +c 2 [ x (O,Y) + 	1 (O,Y) -i-- 	(0,Y) 2a 'lxx 

	

' 	 2 - 	 Y) + 	 , Y) J = i e 	(--- - T-7 )6 

($ince the 0(1) and 0(c) terms' cancel, as. arranged before). 
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Equating coefficients of the two gauge factors above gives 

= 0 

and 

-•1 
	d 

= -;:- -;i•v• 
[Y21(O,Y)], 

where (5.1) and the relationship cIlXX(0Y) = - 1 (O,Y) have been 

used. 

It can now be shown, by using arguments similar to those employed 

in §5.2, that the eigensolution I(X,Y) is identically zero and 

that 2 (X,Y) will not contain eigensolut ions. Hence, provided 

2X0' 	decays sufficiently rapidly as Y - , 2 (X,Y) will be 

given by Havelock's particular solution 

	

1 	(X,Y; 	d 	2 
ds 2 

(X,Y) = -- 
	

H 	s) - [s 	15 (0,$)] ds • 	 (5.27) 

To examine the decay properties of 	 it is first noted 

that (apart from a term of negative exponential order) 

1 (0,Y) = L 1 (O,Y) + 1 1 (0,Y) 

4 	4 

	

TraY 
= 	+ 	+ 0 () as Y 

(fran (5.10) and (5.11)). Certainly the derivatives of L, (0,Y) and 

11(0,Y) will have asymptotic expansions in powers of -,given by 

differentiation under the integral sign and application of Watson's 

lemma to the result,-so that the asymptotic properites of 

can be found by differentiation of the above equation for 

From this it follows that 

---. 2  

dY 	
[Y 	(0,Y)] = 0 	 as Y -'-  cO 
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whence the discussion in §4.3 shows that the integral in (5.27) 

is convergent and that the leading term in the far-field form of 

2 (X,Y) will be 0(  "ER  ) (see (4.19)). 

From (5.13) it is seen that the full expression for 1 (O,$) is 

1 (O,$) = W1 (O,$) + L 1 (O,$) + I(O,$) 

with W1 , L and I given by (5.4) - (5.6). 

Hence 

(O's) 
= 	 e 	+ —!.-- 

Fa 
log 	(2ut.?)e'du 

	

2a 	 rra 	Is+uI 

- 
 2 FO

vcos(s+u)v -  sln(s+u)v (2u-u2 )e-U  dv du 
Jo. 	 v2  + 1 

In appendix D (D.1) the integrals occurring here are recast in forms 

which can be differentiated twice under the integral sign without 

difficulty viz. 

(0, s) - 	 e- S   + ---Im. [ 	h(i)e
-jsu 

 duj --- 2a 	 ira 	j 	Fos - 

+ --- Re [ 	F(u)eJSU du] , 	 (5.28) rra 	j 	j 

where 

	

- 	 1 

	

h(u) 
- 	 + 1 ' 

and 

U 
F(u) = (U — j) (u + j) 3  ' 

and it is also shown that 

'1 	 SU 
= 	(2 s_ s2 ) e 	+ —I—. Irn.[ F(I 

d U2 h' 3 ' 
Ira 	

• 	

u,je 	du] ds 

+ --  Re. [ (u2  F'(u))ej su  duj • 	 (5.29) 7ra F _~L  
 du 
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Attention is first directed to the wave part of 2 (X,Y) (denoted 

by W 2 (X,Y)) which is given by 

1 	 d W 2 (X,y) = 
---.-

H (X,Y;s) -a-- Es2 	15 (O, s)] ds, 
FO W 

or 

W2 (X,Y) = .1 exp(i X-Y) 	
- s d 
e - [s2 	(O,$)] ds 	(5.30) 

	

FO 	ds 	is 

(see 4.7) and 4.9) 

The integral, here is evaluated in appendix D (D.2) where it is 

shown to have the value - 1  
---(

21  
— - 

1 
 — ) 

	

a 3ir 	8 

Thus 

W(X,Y) = - 2  (- 	- --) exp (ix-fl, 

and WX,Y)  (the wave part of 	(X,Y;c) up to terms of order c 2 ) 

is given by 

= w'(X,Y) + 62W2(X1Y) 
31 

i.e. 
Ic 	21 	1 	c W 2 (X,Y) = [1 - 	 + 	- - ) 4] exp(x-y) 

(using 5.8)). 

It follows that R 2  (the reflection coefficient to order 62) 

is given by 

2 	
Ic 	2i R 	 1 	£2 	21a /F 
 +(---)--]exp(- 	Ic) 

This  result extends the asymptotics of the reflection coefficient 

to second order for the cylindrical geanetry. 
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As in the case of 1 (X,Y), the wave free part of 2(X,Y) is 

written as the sum of two terms, L 2(X,Y) and 1 2(X,Y) where 

1 	

Flog[+(Y-s) 	

d 
L 2 (X,Y) = - 	 + (y - S)2] 	[!

2 	(O,$)]ds 	(5.31) 
5 	is 

and 

1 	

I°  f° 
ucos(Y+s)u - sin(Y+s)u e' 	_[s2 	(0, $) ]duds 12(X,Y) 	Tra 	 u + 1 	 ds 	

(5.32) 

	

Examination of the form of 	- [s2 	(O,$) 1, given in (5.29), shows 

	

ds 	is 

that L 2 (X,Y) and 1 2 (X,Y) will consist of three distinct terms which 

will be denoted by L 2 (X,Y) and I 21(X,Y) (1 <i 3) respectively, 

where 

L21 (X,Y) = 

X 2 +(Y -s) 2 	(2s-s 2  )e 5ds , 	 (5 .33) 
- 87Ta2 	log 	X2.p(Y + )2 J 

L 22 (X,Y) = 

1 	Im. 

	

- 22a2 

	F 

	
X2+(Y-s)2 	 (3) [u2h(u)]e_J5Ududs}, (5.34) 

	

og 	X+(Y+s)z du 

L23(X,Y) = 

	

______ 	 X2+(Y-s) 2 

	

_____ 	 __________ 	 j su 1 	

FO  clog 	Xz+(Y+ s ) ] 	[u2 F / (u)]e 	duds} 	(5.35) 
- rr2a2 Re. 

, 

I (X, Y) = 
21 

-i- I 
 r2 	 e— 

— uX e 	(2s_s2)eSduds , 	 (5.36) 2ffa2 	o Jo 	u 2 + 1 

1 22 (X,Y) = 

2 __ 	 -isu 
2 2 iai.{ 

J0 

FO 	
vcos(Y+s)v-sin(Y+s)v -vx d [ u2 h (3) (u)] e 	dvducis.j 

Tra 	J FO 	v2  + 1 	 e 	

(5.37 

1 23 (X,Y) = 

	

_______ 	 j su FO  FO  Fcos(Y+5)v ~s)v [u2 F/  (u)] e2 Re. {j 	0 	v2+1 	 du 



The leading terms in the asymptotics of these six expressions as 

R 	are now required. 

Comparison of (5.33) and (5.5) shows that 

L 21 (X,Y) = - I L(X,Y), 

whence use of (5.10) gives 

is in0 
L(X,Y) =lra2R 

	
+ 0 () 	as R -' 

In (5.34) and (5.35),X and Y are now replaced by RcosO and RsinO 

respectively and the substitution s = Rt is made. This gives 

(5.39) 

L 22 (X,Y) = 	Im.{ 	
1-2tsinO+t2 	d (U2h(3)(U)1 -jRtu 

	

2'ir2a2 J 	0 

Fl.g( 
 1+2tsin0+t 2  a 	

e 	dudt 

and 

L(X,Y) = - 22 Re.{ 
	

Fiog( 1-2tsin0+t 2 	d 
1+2tsinO+tZ ) -

a-- [ u2F/( u)} e JRtIldudt}, 

whence the results from (C.3)and (C.9)in appendix C indicate that, 

as  

L 2 (X,Y) =0 (. ) 	 (5.40) 

and 

L23(X,Y) 	
8 

= - ir2a2R (OcosO-sinOlogR) - 7raz 
4sin0  R (5-2y) +0 ( 	). (5.41) 

Addition of (5.39), (5.40) and (5.41) gives 

sine 	 8 
L (X,Y) = Tr2a2R (81-20_In) - in2  a2R (OcosO-sinOlogR) + 0 ( - ) 	(5.42) 

2 

( I = Euler's constant) 

Comparison now of (5.36) and (5.6) showsthat 

- i 

	

I MY)= 	- I (x,Y) 
21 	 4a 
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whence use of (5. 11) gives 

I (X,Y) 	= 	) 	as R -'-  cO. 	 (5.43)
21 	 R 

Finally the results from §d.lOand §C.11 in appendix C  show that, as 

R -3-  00, 

I(x,Y) 	
+ 

4sin0 	
) 	 (5.44) 

	

= Tr2 a 2R 	R 

and 

I 23(X,Y) 	= 	0 ( I  ) • 	 (5.45) 

Addition now of equations (5.42) - (5.45) gives the leading 

asymptotics of the wave-free part of 2(X,Y) viz, as R 3- , 

8sinO 	 _____ F(X,Y) = 22R(Y 2-i- 	 (Ocose-sinologR) + o ( 	) . (5.46) 

	

Fran (5.26) and the fact that(D MY) 	0 it can be seen that 

(X,Y;c) (the wave free part of(X,Y;c) up to order £2)  is 

given by 

2 (X,Y;c) = £F(X,Y) + £ 2F 2 (X,Y) 

while substitution here of (5.10), (5.11), (5.46) (with R replaced 

by 'E) and truncation of the resulting series after terms of order 

E 3  gives 

(2,3) = £2 ( 4sinO 	+ 6 3 log6( 	 + 8sinO 
lTaó  

____ 	 ir sinO 	8 	( Ocos9-s1nUlog 	4cos28 + 	 (1 - 2- 	
- 	a2 	 - rra6Z 

This result is required for the further development of the outer 

expansion in the next section. 
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§5.6 The outer expansion to order E 

The matching principle 

(3,2) = 

shows that the outer expansion of (x,y;E) up to order c will be 

given by 

0 3 (x,y;c) = E 2 0 (x,y) + elogs4 1 (x,y) + 00 2 (x,y), 	 (5.47) 

where, as(= 	' 

0(x,y) 	
4sinO 	

) rra 
) 	 (5.48) 

8sinO 	 ) 1(x,y) 	
- T 2 a 2 6 	 ) 

and 

) + 	
ii ____ 

2(x,y) 	- 4cos28 	8 	OcosO-sin8logc5 	____  
( 	 (y-2- --

r  ) sinG 
 

(5.49) 

The potentials must also be harmonic, satisfy 	= 0 on r = a, and 

die off to zero at infinity,while formal substitution of = 	in 

the equation 	+ E4'y = 0 (neglecting terms of order higher than c) 

gives the additional conditions (on y = 0, xI>a) 

= 0, 

= 0, 

= _oy 
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It has already been shown that 

2 Re 	
j(z+a) 	(z = x +jy) = 	2 	 (z-a) 

so that canparison of the asymptotics in (5.48) leads to the 

conclusion that 

4 	 j(z+a) 
1(x,y) 

=• ir2a3 Re j 	(z-a) 

the addition of eigensolutions non-singular at E being excluded 

as in §5.2. Hence, use of (5.20) gives 

= - 261sin01 c(x,y) 	 + o(), 	as 0. 
7r2a 	

c5 
U 

(5.50) 

To begin the solution for c 2 it is first noted that 

4 	______ 
0 = 	Re. 

3Y 	
Tra 3 1 (z_a) 

and also that, in terms of 5 and 0 

Re 	
1 	le_ 4 	cos26 

Tra 	j 	(z-a) 2  ' -Tra 	62 

In addition 

	

Ocos0-sirOlog5 = - Re 	jlog(z-a) 
[ 

z-a 

the log being made single valued by a cut along the real axis 

from a to -. Hence the function 

Re 	
-4 	4j 	z+a 	z+a 

(-) I = 	. I lra(z-a) 2  - 	 ) log ira 	 z-a 

— will certainly satisfy = 	on y = o, fxf>asince 
z+a 

 and 
z-a 

, z+a 
log( 	- ) are then real). 	

OY 
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If the asymptotics of 	as 6+0 are now examined, it is found that 

4cos28 	8 	Ucos0-sin6log6 + sin0 log2a + _- ) + OM '
rra6 2 	ir'a 	 2a 

40 	 - 
the 0(1) term - 	3 being exhibited explicitly since it will be  7T2  a 
referred to later from chapter 7, §7.1.Hence the function 

4 	4j 	z+a 	z+a 	2 
4(x,y) = Re 	- lta(z-a)2 - 	- ) log(—)] + z-a 	- a +log2a-2--)0 z a 	 ff 

will have the value 4 on y = 0 and also satisfy the asymptotic
oy  

condition (5.49). Indeed the Imaginary part of the complex potential 

above is seen to be zero when z = a e 	 (0 < u < 71) (implying that 

= o on r = a) so that the solution for 2  is now complete. (If 

- 	had assumed a non-zero value on r = a then, by reflection, the 

problem would have been reduced at this stage to one of exterior 

Neumann type), 

By putting z = _a_6 1 e 01  in the solution for 02 and  using elementary 

expansions it may be proved that, as 	0 

02(x,y) 	+ cS 1cosO 1  + 	
[- 51(sinO1logS1-*-01cosO1) 

+ 6 1sin8 1 (2log2a+Y-2-)] + o(6 1 ). 

When this result and those in (5.50) and (5.20) are substituted in 

(5.47) (with 6 replaced by CR 1) and the resulting series is truncated 

after terms of order c i' , it is seen that, (near E_) 

= e3('1011 + E log  C( 4R1 51O1) 

+ek{(2R1c05O1 	sifl2Ol) 
2ira 

+ .ff22 I+tR1(sin0 :L logR 1  +01 cos0 1 )+R1 sin0 1 (2log2a+y_2_t.)]}. 
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§5.7 The left inner expansion to order C 

The matching principle 

jp(43) = 	(3,4) 

indicates that the left inner potential (X1,Y1 ;c) has an expansion 

to order C given by 

(X Y ) + 	1ogE1P 
o 	1' 1 	 1  (X I  ,Y 1 ) + 6 j 2 (X 1 ,Y1) , 	(5.51) 

where ) as R1 (=/X + y 2 ) + 

IP(X I  ,Y1) ('J (RsinOl_1)/a3 , 	 (5.52) 

ip 1 (X11 Y 1 ) 
4R sinO1 	 (553) ' 

'rr 2 a 

-R2 	 _____ ij (X y ) 	
1s1n201+2R1cosO1 -2R, Tra' (sinO1logR1+O1cosO1) 

2 	j 	 2rra 

2R sine 	 iTt 
+ 	1 	1 (2log2a+Y--2--). 	 (5.54) 

Tr 2 a 

(It is worth noting here that the extension of the perturbation 

series for the outer potential has resulted in the complete eigen-

solution Rsin0 1-1 appearing as the asymptotic form for 	as 

+00 , instead of only R1  sine 1  as was the ca-se previously (see 5.23)). 

If (5.51) is substituted in (5.24) and terms of order higher than 

E neglected then use of the equations (E) in §5.2 gives 

C1ogE11(o,y) + 
F 4 [1p2XJ (0,Y1) + 	P0Y1 (O,Y1 ) + 1-p(O,Y1 )] = 0 

(since it has already been arranged that lower order terms vanish). 

Equating coefficients of the gauge factors here to zero gives 

iXi (0,Y 1 )= 0 
	

(5.55) 
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and (when 5.25) is used) 

2X1(0,'1) = - Y 1 /ira .. 	- 	 (5.56) 

In addition i , 4' must be harmonic and satisfy both the free 
1 	2 

surface condition and the edge condition R "'1 - 0 as R 	0. 
1 

It follows Immediately from (5.53) that 	I 

4 
1P1(X1,Y1) = - ira" (Yi  (5.57) 

while a problem similar to that for 4'2 
 is considered in chapter 4 

(see §4.4(a)). Fran the equation at the end of §14.4(a),  it is 

seen that the solution satisfying (5.54) and (5.56) is 

(with z 1  X 1  + jY 1 ) 

1•R1 	 1)_ 2 s 

	

1P2(X1,Y 	
in2e 1 -2R 1 cosO 	2 

) = - 	________________ 

	

1 	Tra 	 2 	
?•LP 

(R 1  sine 1 +R 1 0 1 cos0 1 -l-logR, 

+(2log2a+y-2-3 (Y1-1) + 	Re. [e32'E 1 (jz 1 )J 

21 
+  Ira T exp(i X1  - Y1 ) (5.58) 

(since terms of lower orders (as R 1 	) than those required in the 

matching (5.54) can be added if required). 

It follows now that the wave part of 4'(X,Y;c) to order c is given by 

	

) = - 	)exp(i X1  - Y) 	 (5.59) 

Expressed in outer coordinates this takes the form 

W 4 (X1 ,Y) =.-(-)'exp [.2t2._Z 

	

7T 	
a] 

C 

so,since the incoming wave has the potential 

I - 1 	_ (x-a) 
4' 	=exp 	

C 
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the transmission coefficient to order E is given by 

T4 	
21 C 	 21a 

exp (- ----  ) 

(in agreement with Leppington (1973a) p.141  (4.5)). 

It is now possible to proceed to the fifth order estimate for T 

without further matching as detailed in the next section. 

5.8 The transmission coefficient to order C 5  

Examination of the higher asymptotic forms of 0 0(x,y), 1 (x,y) and 

2(x,y) when z is replaced by -a-6 1e 0 ' and 6 1 -0 indicate that 

(which would be obtained fran the matching principle 
= 	will certainly contain terms with scalings C 5logC 

and e. However, the presence of terms with other scalings lying 

between C and C 5  as C - 0 can not be rejected so it is postulated 

that 

;C) = C3 (X,Y) + clogcP(X 
1 
,Y 1 ) + CP 

2 
(X ,Y ) 

0 

+ s(C)t) (X1,Yi) + c 5logC 3  (X 11 Y 1) + c 5i(X 1,Y) , 	 (5.60) 

where c '< s(C) <C 	as C -'- 0 and the term s(C) iP 5 (X 1 ,Y 1 ) is 

to be considered as a typical term of this type which may be present. 

(5.60) is now substituted into (5.24) and the series truncated after 

terms of order C. The result (using again the equations (E) and the 

fact that the coefficients of scale factors up to order E have been 

chosen to vanish previously) is 

V 2. 
s(c) 	 + C5logC[1P1(0,Y1) + L(P 11 (0,Y ) + Ya-. p(0,Y)] 

+ C
5 [ 	(0,Y) + !+Xl 	 l j) (0,Y) + 	 (0,Y) _0x1y1(0,Y1) ä 	 2a 2Y1Y1  

y t  

- 	2oX1y1y1 (0,Y 1 )J = 0 . 
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Equating coefficients of the various gauge factors to zero and using 

(5.25), (5.57) gives 

and 

= 0 

4 14) (O,Y ) = ____ Y 
3Xl 	1 	7r'a 	1 

(5.61) 

(o,Y ) = 	
1 	y 2 i4j 	(O,Y )] . 	 (5.62) ip  

4X1 	1 	 2adY1 	1 	2Yl 

In addition, as usual, 14,  14i
9 
 ip.,  are harmonic and satisfy the 

free surface and edge conditions. 

It follows immediately that 14i 5 (X1 ,Y) is wave free,so that the 

transmission coefficient will be determined to order c once the 

wave parts of ip 3  and 14 have been obtained. In the case of 14 

this presents no difficulties since ccmparison of (5.61) and (5.56) 

indicates that 

4 = -- ip 2(X1 ,Y1) + (e igensolut ions) 
Tra 

whence, by use of (5.58), W3 (XI  ,Y 1 ) (the wave part of i(X 1 ,Y)) is 

given by 

81 
W3 (x1  1Y1 ) = - 74a exp (i X1  - Yi 

It remains to derive the wave part of 14(X11Y). 	 - 

Reference to (5.58) shows that 

i2(oY1 ) = - ( Y1 logY1 -1-logY 1 ) + ( 2log2a+Y-2- 	)(1-1) 

+ Re. [e-Y,r e31 dv] + irie, 
J 	 v 

I 

(where the exponential integral 

e -ju 

J. Jz 

(5.63) 
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has been recast first in the form 

f_jCO 

I 	 •dv 
V 

Z 

by means of the transformation u = j v,then in the form 

f 	 -iv 

J 	V 
z 

by rotation of the contour of integration through the fourth quadrant 

so that the upper limit becomes +oo).  It then follows (after two 

differentiations and use of (5.62) that 

4'4 xl(1) 	 [Y1  logY1  + (3 - y - 2log2a + .1 L )Y11 

1 	foo  
+ rr2a[Re. ( 
	

- dv) + Tn] _d_(y2 	) 
jY1 vdY 	1 

1 

(5.64) 

The progressive wave generated by the unbounded term Y 1  log Y1  is 
41 

proved in §4.4(b) to be25 (Y-1)exp(i X 1-Y 1 ) while that produced 

by the second unbounded term can be shown (in the same way as for 

W 3  above) to be T2  above)  (3-Y-2log2a + xp(i X1-Y 1 ). The complete 

Havelock wavemaker solution can be applied to the term 

± 	
---. (Y 2  e Tr a  dY1 	I) 

giving a wave part 

2 
exp(i X1-Y1) 	fl e -s d (s2  e 5) ds 

Tra -  ds 

and evaluation of the integral shows this contribution to W to be 

exp(i X1 1 )-Y. It remains to find the progressive wave produced 
1 d-Y e by the term ---. 	- (Y2  e 1)  Re 4  ( 	 dv) and this is achieved T a UL1 	

f"O' 
jY v 

in Appendix D (5D.3) where it is shown in fact to give zero wave 

contribution. Hence,by combining the three non-zero wave contributions 

mentioned above 1 the wave part ofpLI (XI  Y l ) is seen to be given by 

8± W(X19Y1) = 7a5 (yog2a-2-) exp(i X 1 -Y 1 ). (5.65) 

Reference to (5.60) show shows that W 5  (X I  ,Y 1 ;E) (the wave part of 

11J 5 (X 1 ,Y 1 ;c) to order c 5 ) is given by 

w 5 (x1  ,Y1  ;c) = W 4  (X i  ,Y 1 ;c) + c5logcW3 (Xi  ,Y 1 ) + 5W(X 1 ,Y 1 ) 31  
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whence use of (5.59), (5.63) and (5.65) gives 

21 E: 4 81 c 81 c'5 W 5 (X 1 ,Y 1 ;c) =[- -) -- fiogc + V (_-j (y+log2a-2- 1-)]exp(i X -Y ) 
Tr 	 1 	1 

or 

(X ,Y 1  ; C ) = 	 ii-. 	
C 	

(2-y-log2+L) ]exp(i X 1 -Y 

	

Tr 	 8 	 1) log (-) - - lT 	a 	Tr a 	a 

When this is expressed in outer coordinates and compared with the 

incczning wave it is seen that the transmission coefficient to 

order C 5  is given by 

	

T5 = .! C ) exp( 
C 	

_2ia,C) [l-(-) log () - 	() (2-y-iog2+-) ITr aTr ; 

The second term in T 5  agrees with Leppington (1973a, p.142) 

while the third term is the one which completes the fifth order 

asymptotics. 

§5 • 9 Estimate of the error term for T 5  

The order of the error term in the formula 

T " 4- () 
depends on the form of the sixth order terms in the perturbation 

series for the potential in the left inner region and this, in turn, 

is determined by the higher forms of the asymptotic developments 

of the potential in the outer and right inner regions. A full 

discussion of these higher forms is given in chapter 7, §7.3 and, 

in this section, some of the results appearing there are anticipated. 

The next approximation for the right inner potential is 

3) = 	+ C ' + C ' + C 
0 	 1 	 2 
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Examination of the higher asymptotic forms of F 1  and F2(the wave 

free parts of 	and ''2 respectively) shows that Fi contains 

higher terms of orders R  y and 
iiT while F.L  contains higher terms 

with ordersand R  . In addition the velocity distribution 

3X (0,Y) is of order 	as Y -* 00  so that, from the discussion 
in chapter 4, §4.3, the wave free part of 0  in the far field will 

contain terms which, as R + °° , are 0(1), 0 (loR) and O( - ). 

(The 0(1) term matches with the term 	which has already 

been noted in the expansion of ID 2  near  E+  in §5.6). Moreover, it 

also contains a term which is 0 

It follows then from the matching principle 	
3,4) = 	

that 

will be of the form 

E 2 4 0  + 	log E41+ E
3 ~ 

2 +Ck (logE) 2 43 +C 
 log 4 4  4 14+  Ect) 5 . 

The potentials (t) 39  ct),,  and Ct)5  will be harmonic, satisfy -ii  = o 	o n r = a 

and also tend to zero as r I I . Formal substitution of ct) = 

in the surface condition (neglecting terms of order higher thanC ) 

gives the further conditions ct)3 = 01 	41' ct)5 =t) 	on y = 0, lx!>a. 
ct) 3  can be found explicitly. It is equal to 

? 	

Hence the 

matching principle indicates that 	will contain a term C  (logC)21P E 

(where V E 
 is a multiple of the eigensolution (Y1 -l)) and that 

will contain a term E (logE) 21P6  where 6  does have a wave term 

arising from 11) E . Hence the next te rm  in the development of the  trans-

mission 
	N 

mission coefficient will be of order 	
) 2 6 IN . (The exact value 

of this term is derived in chapter 7). 

§5.10 Comparison of asymptotic values of T with those obtained 

using multiple expansions for N = 8(1)20 

It has been proved that the fifth order asymptotic formula for 

the transmission coefficient is 

(5) 	21 T 	=Am exp(-21N) [1+ A  log N -  . (2-Y - log2+)] 
7rN 

where N = ai 
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The real and imaginary parts are given by 

Re(T5)=-:&ii; {[i+ ±. (iog2N-i-y-2)]sin2N + cos2N} 
	 (5.66) 

irN 	 2N 

Im(T 5 )= .. 	{[1+ 	(log2N+Y-2)]cos2N - sin2N} 	 (5.67) 
2N 

These formulae enable a comparison to be made beten the values of 

T obtained numerically and the asymptotic values for an intermediate 

range of values of N (the range chosen ues N = 8(1)20). The 

comparison is presented in tabular form and graphical form at the 

end of this section. 

In every case the magnitude of the difference between the computed 

and fifth order asymptotic values is less than (logN)2/N6 (the 

order of the error term). The occurrence of very small relative 

differences of less than 1% for the larger values of N provides 

strong evidence of a region of overlap. 

TABLES 9 and 10 (Overleaf) 

Comparison of the values of the real and imaginary parts of T(N) as 

obtained from (A) multipole expansions, (B) Leppington's asymptotics, 

and (C) the asymptotic formulae (5.66), (5.67). Column (D) contains 

the value of (logN)2/6 The values have been scaled by multiplying 

then by 106 for N = 8(1)15 and by 10 for N = 16M20. 
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TABLE 9 (Re(T(N)) 

8 -62.2 -59.6 -63.7 16.5 

9 -80.9 -95.5 -84.4 9.08 

10 69.3 75.1 71.1 5.30 

11 -2.68 -0.5 -2.44 3.25 	x 10_ 6  

12 -31.8 -35.1 -32.4 2.07 

13 20.4 21.3 20.6 1.36 

14 4.56 5.57 4.70 0.925 

15 -14.3 -15.3 -14.4 0.644 

16 64.6 65.3 64.8 4.58 

17 44.2 48.9 44.8 3.33 	x 10 

18 -69.2 -72.4 -69.6 2.46 

19 17.9 17.3 17.9 1.71 

20 33.0 35.3 33.3 1.40 

TABLE 10 (Im(T(N)) 

2 
8 -170 -198 -178 16.5 

9 79.2 84.0 81.4 9.08 

10 27.0 33.6 28.3 5.30 

11 -50.7 -55.5 -51.9 3.25 	x 10 6  

12 16.5 16. 	5 16. 	6 2.07 

13 16.0 18.0 16.4 1.36 

14 -18.7 -19.8 -18.9 0.925 

15 2.71 2.4 2.68 0.644  

16 91.5 98.9 92.5 4.58 

17 -75.7 -78.4 -76.1 3.33 	x 10 

18 -7.0 -9.35 -7.28 2.46 

19 52.9 55.9 53.2 1.71 

20 -31.0 -31.6 -31.1 1.40 
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RE(T(N))/RE(U(N)) 

• 	 • 	 • 	 • 	 • 
0 	 Ui 	 0 	 Ui 	 Un 

1 	 r—t-- ----------i- 	I 	 F 	 t  

CO 0 

0 

0 

0 
C) 

- 

0 

ra  

'1 

I 
p., 

Comparison of the values of the real pat of the transmission coefficient 
as given by multipole expansions, Urseli's asymptotic formula, Leppington's 
asymptotic formula and the new asymptotic formula (5.66). The values are 
normalised by Ursell's real part so that his results are illustrated by the 
horizontal line through 1 on the vertical axis. At N = 11 the multipole 
alue is about seven times bigger than Ursell's value (see Table 7 in §2.8) 

and cannot be shown (in scaled form) on the graph. 
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IM(T(N))/IM(IJ(N)) 

S 	 - 	 - 	 - 	 - 

CO Ui 	 a 	ui 	a 

(0 
0 

0 

-. 0 

0 

ii 
Comparison of the values of the imaginary part of the transmission 
coefficient as given by multipole expansions, Ursell's asymptotic formula, 
Leppington's asymptotic formula and the new asymptotic formula (5.67). 
The values are normalised by Ursell's imaginary part so that his results 
are illustrated by the horizontal line through 1 on the vertical axis. 
At-  N = 18, the multipole value is approximately 0.9 times Ursell's 
value, so the scaled form of the multipole value (0.9) cannot be shown on 
the graph. 
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Chapter 6 

§6.1 	Introduction 

The published work on the 2D radiation and scattering problems 

for bodies whose surface piercing tangents are non-vertical is-much 

scarcer then in the vertical tangent case although the associated 

"sloping beach" problem (the generalisation of the vertical barrier 

problem discussed in detail in Chap.4) has received considerable 

attention (this will be considered in more detail in §6.2). 

With regard to the radiation problem, Holford (1965) has presented 

a heuristic method for the determination of the leading term in the 

asymptotic form of the radiated wave amplitude in high frequency 

heaving of a cylinder of arbitrary cross-section although he considers 

only cases for which a , the angle at the intersection between the 

cross section and the free surface, measured in the fluid is not 

acute. His result agrees with those derived rigorously by Ursell(1953) 

(for a semi-circular cylinder) and Holford (1964) for a dock. Szu-Hsiung 

(1984) has extended Holford's work to the case of arbitrary high-

frequency oscillatory motions giving the first two terms in the wave-

amplitude asymptotics. The first of these agrees with Holford's term 

in the case of vertical oscillations and vanishes when the tangent at 

the waterline is vertical. This explains the step from O[) to 

in the order of the amplitude of the radiated wave as N ± . No 

discontinuity is involved. The first term simply contains a factor 

sin '1 t1r(jJ 	ir/2a), which tends continuously to zero as  

a 
(Recall that N = 	, where a = semi-beam, 2irE = wavelength). 

Alker (1977) notes a similar " jump "  from 	to 	in 

the order of magnitude of the transmission coefficient in the scattering 

problem for a partly submerged circular cylinder (for the same reason) 
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although in this case the three leading terms in the general result 

tend continuously to zero as p 4- 1 . Alker's results apply 

formally to all surface angles of intersection so a drop in the order 

of magnitude in the transmission coefficient may be expected to occur 

at all angles of the form /2n , where n is an integer, although 

clearly this will be difficult to observe numerically for acute angles 

since a then can never be more than 224° different from an angle 

of this form. 

The most important development from a numerical point of view has 

been the application of the method of null field equations to water 

wave problems by Martin.P.A. (1981),(1984). The method is applicable 

to general cross sections although, in his numerical work, Martin 

considers only normal intersection at the water surface (heaving and 

scattering in the case of a semi-submerged elliptic cylinder). His 

results agree well, (in the special case of a circular. cylinder) with 

those obtained using Ursell's multipole method. 

The purpose of this chapter is to apply the null field equations 

to the scattering problem for circular cylinders passing through two 

fixed points in the water surface at various angles, a . The range 

of values discussed is 45° < a < 165° so that a regime not covered 

by John's (1950) uniqueness theorem is also considered . Results 

conforming to the traditional numerical tests, IR 1 2  + 1T1 2  = 1 and 
arg R - arg TI = 7T12 are obtained in this case also. In addition, 

in cases where a is acute, "interference" effects seem to occur at 

d certain diameter/wavelength ratios in the sense that as - 

(d = diameter, 271c = wavelength) is increased with a fixed values 

occur (depending on a) at which the magnitude of the transmission 

coefficient suddenly drops by an above average amount. As 	is 
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increased beyond this value the magnitude of T gradually increases 

back to the previous orders of magnitude before the expected decrease 

sets in again. (This is illustrated in Graphs 11, 12). The values 

of i  at which this effect was observed initially were seen to increase 

with a . For a = 45 0 ,60 0 ,75 0  the values of 1  at which T 

starts to increase are approximately 0.3, 0.6, 1.2 respectively or, 

with ref. to table 11g., at values of N between 0.7 and 0.8, 1.5 and 

2.0, 3.5 and 4.0 respectively . There is however, no sign of the 

phenomenon in the case of the semi-submerged circular cylinder, 

a = 90 0  (up to N = 20) nor in the obtuse angle cases (up to N = 10) 

For a in the range 135 0  - 160° the values of the real and 

imaginary parts of T are relatively large and accurate for 7 < N < 10 

so that comparison with the values obtained from the first two terms 

of Alker's asymptotic result become feasible. However, the magnitude 

of the error term (which is 	
211+1 	increases with a and, in 

general, only one significant figure of agreement was obtainable,the 

relative differences being mainly of between 10% and 20% (see table 

12). To produce stronger evidence of an overlap region will require 

numerical values of the third term and it is anticipated that such 

values could be obtained, without great difficulty, for a special 

angle of the form pir/2n (p odd, n an integer). The simplest case 

for which suitably accurate values are given by the null field method 

for 7 < N < 10 is 37r /4 for then the functions appearing in the 

third term have special forms which are more easily progrnimhle than 

in the general case. This has not, however, been attempted here. 

Finally, in this section, it may be remarked that since the 

sloping beach problem plays a crucial role in the application of the 

method of matched asymptotic expansions to the general radiation and 
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transmission problem it seems worthwhile to give a brief outline of 

the developments leading to the solution for a general angle and then 

a short discussion of the behaviour of those particular solutions 

which satisfy the edge condition. This is the purpose of the next 

section. 

§6,2 The sloping beach problem 

The pioneering work of Hanson (1926) who considered angles of the 

form 	(n an integer) and derived a standing wave solution bounded 

at the shore line does not seem to have been added to till Bondi (1943) 

derived a solution (for the same form of angle) with source like 

behaviour on the shore. Lewy (1946) then extended this work to 

obtain two analogous standing wave solutions for angles of the form 

pff  (p and n integers such that p is odd and 2n > p) and was thus 

able to derive progressive wave solutions for such angles by suitable 

combination of the standing waves. Stoker (1947) returned to angles 

of the form -ff 
  

but, unlike Lewy, did not assume from the outset that 

the solutions behave at 	like those on an ocean of infinite depth. 

Both writers use Lewy's method of reducing the problem to that of 

solving an ordinary non-homogeneous differential equation with constant 

coefficients for the complex. potential (the method used in Chap.4 is 

a special case of this where no assumptions have been made 

about the behaviour at the shore line and at infinity). Lewy' s 

solutions do not include the dock problem (p = 2, n = 1) but this 

was solved by him in conjunction with Friedrics (1948) by assuming 

a solution for the complex potential in the form of a Laplace type 

integral !- f ef(c)dc and showing that f must satisfy a 

certain difference equation. By choosing the path P suitably they 

again constructed two standing-wave type solutions. In essence this 
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was the method used by Peters (1950) (working on a more general 

problem) to derive the two different standing wave type solutions 

for any angle including ni (in the general case the function f is 

the solution of a differential difference equation). He had, 

however, been preceded by Isaacson (1950) who adapted Lewy's idea 

of continuous dependence of the solution on the angle of slope to 

deduce a form of solution which would be applicable for any angle 

and included Lewy's solutions as special cases. He then checks that 

the solution so derived does solve the problem in the general case. 

More recently, Morris (1974) has derived a solution having source like 

behaviour at a general point of the sector formed by the beach and the 

water surface. This solution is bounded at the shore line and gives 

an outgoing wave train at infinity. 

A fundamental difference between solutions of the general sloping 

beach problem and the vertical barrier case is that solutions satisfying 

the edge condition 5 	-- 0 as 5 ~ 0 and having progressive 

waves at 	do exist. Indeed the only cases in which such solutions 

do not exist (unless there is an incoming wave) are when the angle of 

slope is of the form ff 	A short discussion is-now given of the 

precise behaviour at the shore-line of the solutions which satisfy the 

edge condition (termed eigensolutions by analogy with the vertical 

barrier case) and have progressive waves at infinity. 

§6.3 Behaviour of eigensolutions at the shore line. 

(Note that. scaled coordinates X = Kx, Y. = ky are used and. that Peters' 

y-axis. is upwards whereas throughout this work, the y-axis is taken 

downwards. In addition, the letter p in Peters' work is used to 

denote /c where a is the angle of slope. Here it denotes 

Reference, then, to Peters', p.333 and p.336, shoisthat the solutions 

satisfying an edge condition are the real parts of the complex functions 
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W (z) =  xf 
eg(C)dC 	

(Z = X + iY, q = 0,1,2,...) 
q 	p 

where A is an arbitrary real constant and 

	

 (i_t_2h1) 	C 
g(C) 	exp[- -1 f log 

1-t -211 

	

 J 	dt] 

The path P is defined as follows. If 	has no branch points 

at the origin, then P is described in the positive direction on a 

circle of radius > 1 centre the origin. Otherwise a cut along 

arg C = ± u - a (to ensure convergence of the integral when 0 < arg z < cz) 

and linear paths extending to infinity on each side of the cut are 

added to the circle. 

Peters proves (p.335) that as Z 

Wq (Z) "- 27r  exp(-i7rqi1)g (e12)e1Z 	and 

it can be shown that g( e12) = 	 /1-1  

where x = -(1-) 

Thus, if E(X,Y) denotes the real part of W q (Z) 

Eq (X i Y) 't - 	 Cos (X  - x 
- 

irq1.i)e 	as x ~ 

U 

and, if A is chosen to be - -a--- , 	 then 
It 

Eq (X•Y) 	2 cos (X 
- x 

- 	

as x - 

When the incoming waves are eliminated from two such solutions 

E (X, Y)  and E  (X, Y)  (m n) it is seen that the solutions 
m 	 n 

e 	(X,Y) ID = exp(iirnp)E (X,Y) - exp(i 7rm1)E (X,Y) 
m,n 	 m 	 n 

(m 	n, m,n = 0,1,2,...) 

have the property 

- 2i sin[(m-n)rrij]exp[i(X-X)-Y] as X ~ 

and (from Peters p.336 again) 

e 	(x,Y)  

m,n 

2exp(iItnhi)pR2m1 cos(2mi.iO)/r(1+2mii) 	if m = min(rn,n) • 	
42np 	- 

-2exp(rrrnii)j.i R 	cos(2np6)/r(1+2n1) 	if n = min(m,n) 
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Fig. 3 

Notation used in Application of Null Field Equations 
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as (X,Y) + (0,0) , where X = R cos 0, Y = R sin 0 

Clearly if u is an integer i.e0 if the angle of slope is of the 

form i!_ (r an integer) then these solutions are wave-free. 

§6.4 Application of the Null Field Equations to the scattering problem 

for a partly immersed circular cylinder. 

Martin (1981) has described the application in detail for the radiation 

problem so only a brief summary will be given of the main results needed 

for the scattering problem. Reference should also be made to the 

discussion and notation mentioned in §1.4 in connection with the 

integral equation method. and to the statement of the general problem for 

the diffraction potential in §1.2 eq. (1.1)-(1,6). 

As in the case of the semi-circular cylinder, new coordinates 

X,Y will be introduced such that X = Kx, Y = Ky . The equations 

(1.6) then become 

32  
+ 	- 0 in D DX2 	ay -  

+ - 	= 0 on S ay 

= - -- [exp(-iX--Y)1 on F  

1V41-0 	as 	Y+ 

X,Y) " R exp(i X-Y) 	as 	X - +CO  

c(X,Y) " (T-1) exp(-i X-Y) as X -- - 

Thus (with reference to fig.3) a wave of fixed length 27 is considered 

to be incident on a circular cylinder passing through the points (±N,0) 

and making an angle d. (measured through the fluid) with the water 

surface at E± . S is Y = 0, lxi > N and r is parameterised by the 

angle, 4 , between the downward vertical through the centre of the 

cylinder and the radius to a general point q of I' (-(ir-)<<ir-c) 
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(iP seems to be the most convenient parameter having a natural 

transition from the cases when a is obtuse to those when a is acute) 

It follows that the radius of the cylinder is and that 
sinct 

the arc length s  measured from the lowest point of r to a general 

point q of r 
is sin  

Thus on r 

S = 

	

q 	sina 

= NsiniJ 

	

q 	sin  

= N (cos ll)+cosct) 

	

q 	sina 	 (6.2) 

D i N 

	

R = VX2  ~ Y2  = 
q 	q 	q 	

sina I1+cos2a+2cosacos 

sin 
sine 	= / 	 2 q 	'1+cos +2cosacosi, 

where y is the angle which the normal at q into the fluid makes with 

the positive direction of the x-axis. 

In the case K=1 , the Green's function due to John (1950) has 

the form 

co  

	

G(P,Q). = 4 log 	 - 2 	eos(X-) 	1. 

where the path of integration passes below the pole of the integrand 

at A = 1 and it is noted that G is harmonic in the whole half-plane 

Y > 0 and satisfies the condition G + Gy = 0 on the whole of Y = 0. 

In addition to the equations 

20(P) 	 _ f[G(Pq) - 	4(q) - 4(q) 	- G(P,q)]ds 	 (6.3) 
r 	an

and 	rr4(p) = f[Gp,q 	_ <c- (q) 	- G(p,q)]dsan 
q 

(mentioned in 91.4) for the values of the potential in D and on r 
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Martin (1981) uses a third integral relation 

' 	- 4(q) - 4(q) - -- G(P,q)]ds 	. 	 (6.4) 0 ='1r  

Here P is a point between the segment E_E+  and r (the interior 

region) and this last equation asserts that the potential generated 

by the source and dipole distributions over r , which are used to 

represent the actual potential in D , vanishes in this interior 

region. (This is not to say that the continuation of the actual 

exterior field vanishes there). This last equation leads to what 

Martin calls 'the null field equations for water-waves' as follows. 

Firstly, Ursell (1981) has ded the bilinear expansion of the Green's 

function 
Go 	2 

G(P,Q) = 	 (Q) 	 (6.5) 
mo a1 

when rQ  > r , where (for K = 1) 

c 1(P) = - 2ecos X
, 	 c 	(P) = 2e 	sin X 	 (6.6)

dX  
= f° 	cosAX 	, 	 'J o2(P) 	P) 	 (6.7) 

0 	 X-1

1(r) = cos2m + 	1 	cos(2m-i) 	2(n) - sin(2m-i-1)Q 	1 sin2mG 
m 	R2m 	2m-1 	R2m1 	' 	 - R2m+ 	~ 	

(6.8) 

for m> 1 

(The other c ° (P) (m>1) are given in Martin (1981) p.328 but will 

not be needed explicitly here. It is sufficient to note that they are 

regular and satisfy the free surface condition.) 

Clearly the 1 are even in X and the c 2 odd. 	 (6.9) 
rn 	 m 

Suppose now that a semi-circle, centre 0 , is drawn in the interior 

region. with diameter lying on the free surface. If P is any point 

within the circle then certainly r < rq  so that (6.5) can be 

substituted into (6.4) giving 
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00 	2 

	

)f 	 a 
[4'(q) - 	(q) - - (q) 	(q)]ds 

	

0 = 	a(P. r 	n 	In 	 n 	m 	q 
m=Oa=1 	 q 	 q 

whence 

fr) = - 	 [exp(-iX -Y )Ids 	(6.10) n 	 q 	q 
q 	 q 

(using (6.1)) where a = 1,2: In = 0,1,2,... ). (6.10) are the null 

field equations for water waves and their numerical solution will be the 

subject of the next section. 

Before proceeding to this, however, the expression for 	(P) in 

terms of 0 
a(p) 

 is derived. This is possible when P lies outside a 

semi-circle, with centre 0 and diameter along the free surface, and 

containing r . Then r > r  so that from (6.5) and the symmetry of 

G, 
CO 	2 

	

G(P,q) = 	) a a m (q) (D m a() 
M=O al 

Substitution of this in (6.3) gives 
CO 	2 

	

OP) = 	' 	c 
In 

a 
In 
 a (P) 	 (6.11) 

'.  
M=O a1 

a 

	

 
where 	c 	

1' 	[a = 	1r 	
a(q) 	(q) - (q) 	a - 

Dn 	
m a (q)Ids 

q In 
q 	 q 

or when (6.1) is used again 

a- - i... f {a a(q) 
c 	- 
m 	2i 	I' 	In 	fl 

q 
[exp(-iX -Y )]+(q) --L a 

a 
(q)}ds 	(6.1 

q 	3n 	tn 
q 

(a = 1,2; 	In = 0,1,2,...) 

(6.11) is exactly the form used for the potential in the case of the 

semi-submerged circular cylinder in çhap.2, (2.17). Indeed reference to 

(2.9) - (2.11) (with Z = R sin e+ iRcos O= jRe 0 ) shows that, for 

1, 

Re. (e (Z) 	
= 	(1)m+1 	

'(P) , Re (e '(Z)) = (l)2m 2 (P) 
j m 	 m 	 J m 	 m 

In addition 	(P) (for X > 0) can be written in the alternative 

r U cos uY-sin uY 	-uX 
form j 	 2+1 	 e 	du + iii exp(iX-Y) 

0 
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(by writing cos Xx = (eX + e) expressing the integral as 

the xnf two integrals and closing in the third or fourth quadrants 

as appropriate). Alternatively 

= Re. ( e: E 1 (jZ)) + iii exp(iX-y) and 

when the definitions of s(Z) and w(Z) in (2.17) are recalled from 

(2.10) and (2.11) it is clear that for X > 0 

Re(s(Z) + iirw(Z)) = 
3 	 0 

and hence also for all X since both functions are even in X 

Finally 

Re.(s'(z)+i7rw'(z))= -a-- Re.(s(z)+iiw(z))-=-_. 	1(P)= - 3 	 3x 	j 	 axo 	0 

Thus the form (2.17) for the complex potential for the semi-cylindrical 

scatterer is just a special case of (6.11) and therefore fully 

justified. Comparison also with (2.18) and (2.19) shows that, in 

terms of the c a 
m 

R = rr(ic 1 + c 2 
0 	0 

	

T = 1 + Tr(ic 1 - C 2 	 (6.13) 0 	0 

96.5. The Numerical Solution of the Null Field Ectuations 

The potential 	(q) on the cylinder is first written in the form
CO 2 

	

= 	d$ (q) 	where the 01 ' are even in X 
n=o £=1 

and the on
2  are odd and both are bases on the part of r for which 

X > 0 (which will be denoted by r +). 

This form is substituted in (6.10) to give 

	

CO 	2 

	

Jo 	

di  5 	(q) 	C(q)ds 	f 	V(q) 	C(q)ds 	(6.14) 

where V(q)
an
-- [exp(-i Xq  - Yq)] 	(a = 1,2; m = 0,1,2,...). 

It is now noted that 
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° (q) = (cosy - 	+ siny - ) 	
CF 
 (q) and that 

an 	M 	 ax 	ay M 

cos y is odd in X while sin y is even (X 	X 	y -- it - y) 

It follows that 	(q) has the same parity as q (q) and that 

the integral on the left in (6.14) will vanish if 2.. a since the 

iritegrand in this case will be an odd function (this will be true in 

general for bodies symmetric about Y = 0). Hence the equations (6.14) 

will decouple into two systems 
Go 

	

Id' f' (q) --n  	' (q) cis 	= 5 V(q) 	(q) cis 	 (6.15) 

Go 

and no 
	

fV (q) 	(q)ds 	= 5 V(c) 	(q)ds 	. 	(6.16).
an 	M 

Since V(q) = 	[exp(-i Xq  - Yq)] it is easily shown that 

V(q). = exp(- Y 
q 
 ) [5in(Xq+ ')+ i cos(X + 'v)] in which the real part is 

even and the imaginary part odd or, since y  

V(q) = exP(Yq) [cos(Xq_ P) - i sin(Xq  

When it is recalled that S 
= N 	

and that the 0 	are even while 
q sinc 	 m 

the 	2 are odd, the equations (6.15), (6.16) can be further 

simplified to the forms 

00 

I A 	d 1 	= a 	 (m = 0,1,2,...) 

	

mn n 	m 
n=o 

00 	 2 

and 	 mn n 	m 
d 	= b 	 where 

n=o 

A 	= 5 	4' (q) 
Mn 

B 	= 	çb (q) 
ma 

The procedure now i 

(q)d, am = feXP(Yq)cos(Xq iP) 	(q)d 

(q)d, b (q)d 

ncate each set of equations at n = 

a 
an 
q 

a 
an 
q 

s to 

M 

M 

tr 

substitute m = 0,1,2,.., M and then solve the resulting set of 

(M+1) by (M+1) equations to obtain numerical approximations for the 

expansion. coefficients. d  
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The following forms gave accurate values for the values of the 	(p) 

and their derivatives. 

It is recalled that 

= Re.[eE 1(jZ)]+ in exp(iX-Y) 	(Z = X + jY) 
0 	 J 

By the methods used in §2.5 this can be written in the form 

= - 	

u exp[Y(u-1)] du 
- e[Ci(X)cos X + (Si (X)-Th/2)sin X] o 	 o Y2 u2+X2 

+ in. eX_'' . 	 for X > 0 

For X = 0 i.e. at the lowest point of the cylinder the value of 

is obtained by letting X+o+ above. 

The value is found to be 

h f'- log u exp[h(u-1) ]du - exp(-h) (y + log h - iii) 

	

where h = N cot 	(The proof is similar to that at the end of 52.5). 

= Re -- [eJZ E1 (jZ)] - Wexp(i X-Y) 
j dZ 

x 
Im. [eJZ  E1 (jZ)] - lrexp(i X-Y) 

	

—  x2 +Y2 	j 

fi 

	

X 
+ 	 u e exp[Y(u-1)] d 

+ 	[Ci(X)sin X -(Si(X)-j)cos  Xl 

	

= 
—  X2 +Y2 	 Y2 u2  + X2  

-ii exp(iX-Y) . 	 (from §2.5) 

In a similar way 
1 

o 	- 	
'(X,Y) 

y 	 x+Y 
1 

2 (X,Y) 

	

= 
- 	 (by definition) 

	

3 2 0 1 	 21 

( 	
0 	 0 

5) 	
- 	 _ 

ax  - - 	(X, Y) 	from (3) 

	

- 	 = 	
[ 	

-  

34) 2 

	

0 	 Y2 -X2 	y 
or 	 = 

	

ax 	(X2 ~Y2 ) 2  + x2+ 	
~ 	 (x,y) 

0 

__ 	 a 1 o 	a 
(6) 	

y 
= - — 	

] = 	[ 	
+ DY 	ax 

ao 2 
2XY 

	

0 	
— 	 2 (x,Y) or 	 = —  

	

ay 	(X2 ~Y2 ) 2 	0 
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For m > 1, (D l = COS 4m 	+ 	1 	cos(2m—l) tj  

m 	2m 
R 	2m-1 	R2m1 

It can be proved without difficulty that 

1 

m 
-+ 2m I sin(2m+1)6 	1 sin2m6 ax - 	 R2m+l 	2m R 2 ] 

1 

2m   

In - 	 cos(2m+1) 0  + ..L cos2mO 

] 

	

ay 
- - 	

I- R2 ' 	2m 	R 2 

For m > 	 = sin(2m+1)0 + 1 sin2mO 
so that 

2m 	R 2 

2 

	

- (2m-i-1) I
cos(2m~2)O + 	1 	cos(2m+1) 0  

- 	 R2m+2 	2m+1 	R2In+1 

2 

	

in 
= -(2 +1) E sin (2m+2)O + 	1 	sin (2m+1)O In 	

L R2m+2 	2m+1 	R2In+l 

By use of the results (1) - (8) (together with = sin 	+ cosi-) 

the values of the integrands in the null-field equations can be 

evaluated very accurately for any value of jJ when (6.2) is referred 

to also. The integrations can then be carried out using Simps on t s  rule. 

§6:6 The formula for the transmission coefficient 

From (6.13), 

T = 1 + ir (ic 1 - c 2 
0 	0 

where 	a 	1  f 	a 	 ) 	c 	(q) I ds 	(a=1,2,c(q) 
0 

rrc 	- 	r 	(q)V(q) - 4(q an 	0 	 q 

given by (6.5)). 

Since 	ic - c 
 2 = -2i exp(iX-Y) 

0 	0 

1r(ic-c 2 )= -i,{-exp (ix  -Y )----[exp(-iX -Y )]-4(q)--[exp(ix -Y  )]Ids  o 0 	 q qn 	q q 	an 	 q 	q q 	 q 

It is easily shown that 

	

[exp(-i Xq_Yq)l = - exp(-i Xq Yq+*) 	and 

• exp(I XY -i) fl 	q q 	 q q q   
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Hence 

T = 1i Sr{exP(_2Yq+iP) + •()exP(_Y q) (cos (Xq_P)+ i sin (Xq lP)]}dSq  

or (when the expansion of 	(q) is used) 

2iN' rrrct 	 2iN 
T = 1 - 	j 	exp(-2Y )cosi - 	

d1fa(q)exp(_Yq)cos(Xj1p)d1P 
sinao 	 q 	sincz 	no 

n=o 
CO 

+ 2N 	
d2 

f1t 	2 
sinc 	n o 	

n ()exP(_Yq)sin(Xq_P)d* 	 (6.16) 
n0 

It can be shown similarly that 

CO 

	

R = - 2iN faexp(2Y )CO5(2Xq9)dl' 2iN 	d'((q)exp(_Yq)cos(Xq_)dP 
s.na 0 	 q 	 sinct 	n'o 

n=o 
00 

- 2N n=o d 	2  (q)exp(-Y ) sin (X -t4)d'4. 
sinct 	no 	fl 	 q 	q 

§6.7 Discussion of the numerical data 

Three different pairs of bases were used for the potential 
4q 

 on 

Fourier bases: 	= cos 2n0 , cp 2  = sin(2n+1)e 	(n=0,1,2,...) 

Chelyshev bases: 	cos[2n arc cos 	 };2 = Cos( (2n+1) arc cos{' 
n 	 S1fl) 	fl 	 51fl) 

(n=0,1,2,.,.) 

Multipole bases: 	1=  f(N; 0); 42 = 1 

	

=9 	(N;0)  

(see §2.3 for the definitions; after (2.21) for the f(N;0) 

and after (2.27) for the g(N;0)) 

Use of M+1 terms of these bases in the representation for 
q 
 leads 

to a sequence of values TM  of the transmission coefficient 

(expansions of up to 30 terms were considered and a sequence for the 

reflection coefficient was also obtained). The "best estimate" of T 

from the set {TM : M=1,. ..30} will mean in this context the value of 

TM such that 1T1 2 +1R1 2 	is nearest to 1 and larg T-arg RI  is 

nearest to /2 . With few exceptions this occurred for the same value 

of M . In any case the values of. M. .at..which this occurred .never 

differed by more than 1 
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For a non-acute all the bases worked well,except near 1800, 

and gave best estimates of T which were in agreement with each other and, 

in the case of a = 900, with those obtained by using multipole 

expansions. However, the Chebyshev bases gave sequences which converged 

more rapidly to the best estimate of T than the other two. For all a 

non-acute and values of N up to about 2.5 the best estimate occurred 

in the range M < 15 (very quickly for the smaller values). As N 

increased beyond this value the value of M giving the best estimate 

increased also (for a up to about 150 ° ) and for values of N bigger 

than 5 expansions of more than 30 terms would be required to increase 

the accuracy of the estimates in Table 1. This did not apply to the 

cases when a was near 180°. The best estimate occurred early on in 

the sequence (round about M=5) but the accuracy was poor except for the 

lowest values of N 

Interestingly the Chebyshev bases were not so appropriate, for the 

acute angled case, except for small N , and gave unstable sequences of 

values for 1R1 2  + IT1 2  . The best base for these cases was found to be 
the multipole base which worked well down to a 45°. Thereafter the 

numerical stability of the whole system degenerated rapidly for all three 

bases. 

Hence, to summarise,for 90° < a < 150 1  and 0 <N < 2.5 the 

Chebyshev base gives good estimates of T (to 4 significant figures 

generally) with series of less than 15 terms (only five or six terms are 

needed until N approachesi) but for N > 2.5, in general, series of 

more than 30 terms would be needed to maintain this kind of accuracy. 

For a > 165 0  the best estimate occurs for M = 6 but the accuracy is 

poor for the larger values of N and for 45° < a < 90°, the multipole 

base gives good estimates up to .N3. (usually 4 sig.figs.). 
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Examination of the sequences of real and imaginary parts of T shows 

that for 1350 < a < 1600 , two significant figures of accuracy can 

be maintained up to about N = 10 so that a comparison with Alker's 

(1977) asymptotic formula is possible. Table 12 contains the two sets 

of values together with the estimate of the error term obtained by taking 

the first two terms of Alker's result. Clearly there are positive signs 

of an overlap region but to obtain evidence of the same potency as in 

the semi-submerged case the third term of Alker's formula would have to 

be included in the comparison. 

It may be noted also that the drop of two orders of magnitude in 

the value of ITI for angles of the form 	(predicted by theory), 

can be observed by comparing the values for c'. = 900, 120° at N = 6,7. 

The acute angles 60° and 750 are themselves too near an angle of the 

form -- for such a drop to be observed. 2n 

(Tables and graphs follow) 
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96.8 TABLES AND GRAPHS 

TABLE 11(a) 

Values of IT(N) I for a = 450 (15 0 ) 90 0  

450 	 -- 600 	 75°  

0.01 9.998(-1) 9.998(-1) 9.998(-1) 
0.02 9.991(-1) 9.992(-1) 9.992(-1) 
0.03 9.978(-1) 9.981(-1) 9.982(-1) 
0.04 9.958(-1) 9.965(-1) 9.968(-1) 
0.05 9.928(-1) 9.943(-1) 9.950(-1) 
0.06 9.886(-1) 9.915(-1) 9.927(-1) 
0.07 9.830(-1) 9.879(-1) 9.898(-1) 
0.08 9.755(-1) 9.835(-1) 9.865(-1) 
0.09 9.659(-1) 9.781(-1) 9.825(-1) 
0.1 9.538(-1) 9.717(-1) 9.780(-1) 
0.2 6..453(-1) 8.327(-1) 8.929(-1) 
0.3 2.611(-1) 5.754(-1) 7.359(-1) 
0.4 8.625(-2) 3.397(-1) 5.513(-1) 
0.5 2.488(-2) 1.902(-1) 3.915(-1) 
0.6 5.943(-3) 1.054(-1) 2.735(-1) 
0.7 2.079(-3) 5.824(-2) 1.914(-1) 
0.8 3.044(-3) 3.183(-2) 1.351(-1) 
0.9 5.047(-3) 1.703(-2) 9.637(-2) 
1.0 6.792(-3) 8.797(-3) 6.943(-2) 
1.5 8.038(-3) 3,313(-4) 1.499(-2) 
2.0 5.16 	(-3) 1.27 	(-3) 3.48 	(-3) .  
2.5 2.96 	(-3) 1.73 	(-3) 7.5 	(-4) 
3.0 1.67 	(-3) 1.69 	(-3) 1,2 	(-4) 
3.5 9.6 	(-4) 1.46 	(-3) 1 	(-5) 
4 7 0 5.7 	(-4) 1.21 	(-3) 3 	(-5) 
4.5 3.5 	(-4) 9.8 	(-4) 6 	(-5) 
5.0 2.1 	(-4) 7.9 	(-4) 1 	(-4) 
6.0 9 	(-5) 5.2 	(-4) 1 	(-4) 
7.0 7 	.(-5) 3.6 	(-4) 1 	(-4) 
8.0 4 	(-5) 2.5 	(-4) - 

9.0 
- 1 	(-4) - 

10.0 - - - 

and 

9.998(-1) 

9.992(-1) 

9.983(-1) 

9.970(-1) 

9.953(-1) 

9.933(-1) 

9.908(-1) 

9.880(-1) 

9.847(-1) 

9.810(-1) 

94183(-l) 

8.105(-1) 

6.760(-1) 

5.421(-1) 

4.263(-1) 

3.337(-1) 

2.621(-1) 

2.073(-1) 

1.655(-1) 

6.093(-2) 

2.66 (-2) 

1.32 (-2) 

7.13 (-3) 

4.2 	(-3) 

2.6 	(-3) 

1.6 	(-3) 

1.1 	(-3) 

6 	(-4) 

3 	(-4) 
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TABLE 11(b) 

Values of IT(N) I for 	= 105° (15°) 165° 

105 0 	 0 
	

135 0 	 50 0  

0.01 9.998(-1) 9.998(-1) 9.998(-1) 9.998(-1) 

0.02 9.993(-1) 9.993(-1) 9.993(-1) 9.993(-1) 

0.03 9.984(-1) 9.984(-1) 9.984(-1) 9.984(-1) 

0.04 9.971(-1) 9.972(-1): 9.972(-1) 9.973(-1) 

0.05 9.955(-1) 9.957(-1) 9,958(-1) 9.958(-1) 

0.06 9.936(-1) 9.939(-1) 9.940(-1) 9.941(-1) 

0.07 9.914(-1) 9.917(-1) 9.920(-1) 9..922(-1) 

0.08 9.888(-1) 9.893(-1) 9.897(-1) 9.900(-1) 

0.09 9.859(-1) 9.867(-1) 9.872(-1) 9.875(-1) 

0.1 9.826(-1) 9.837(-1) 9.844(-1) 9.849(-1) 

0.2 9.314(-1) 9.3911-1) 9.441(-l)-  9.474(-1) 

0.3 8.491(-1) 8.714(-1) 8.854(-1) 8,949(-1) 

0.4 7.466(-1) 7.886(-1) 8.153(-1) 8.332(-1) 

0.5 6.389(-1) 7.003(-1) 7.405(-1) 7.679(-1) 

0.6 5.380(-1) 6.144(-1) 6.666(-1) 7.031(-1) 

0.7 4.501(-1) 5.359(-1) 5.973(-1) 6.415(-1) 

0.8 3.764(-1) 4.666(-1) 5.343(-1) 5.845(-1) 

0.9 3.159(-1) 4.070(-1) 4.782(-1) 5.328(-1) 

1.0 2.666(-1) 3.561(-1) 4.290(-1) 4.864(-1) 

1.5 1.257(-1) 1.957(-1) 2.621(-1) 3.209(-1) 

2.0 6.833(-2) 1.202(-1) 1.748(-1) 2.27 	(-1) 

2.5 4.124(-2) 8.042(-2) 1.250(-1) 1.705(-1) 

3.0 2.690(-2) 5.731(-2) 9.417(-2) 1.34 	(-1) 

3.5 1.862(-2) 4.285(-2) 7.386(-2) 1.09 	(-1) 

4.0 1.350(-2) 3.325(-2) 5.974(-2) 9.05 	(-2) 

4.5 1.016(-2) 2.658(-2) 4.95 	(-2) 7.7 	(-2) 

5.0 7.88 	(-3) 2.177(-2) 4,19 	(-2) 6.7 	(-2) 

6.0 5.10 	(-3) 1.543(-2) 3.14 	(-2) 5.2 	(-2) 

7.0 3.54 	(-3) 1.16 	(-2) 2.5 	(-2) 4.3 	(-2) 

8.0 2.59 	(-3) 9.04 	(-3) 2.0 	(-2) 3,6 	(-2) 

9.0 1.97 	(-3) 7.30 	(-3) 1.7 	(-2) 3.1 	(-2) 

10.0 1.56 	(-3) 6.1 	(-3) 1.4 	(-2) 2.7 	(-2) 
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TABLE 12 

Comparison of values of RLT(N)) and Im(T(N)) as obtained (a) by use of th 

Null Field equations (b) by use of the first two terms of Alker's asymptoti 

formula. *  
(ER = order of magnitude of asymptotic error term) 

135° 	ER 	1400 	ER 	145 0  ER 	150 0  ER 	155 0  ER 	160 0  

	

0.0224 	0.0269 	0.032 	0.037 	0.042 	0.048 
7 	 0.011 	0.012 	0.013 	0.014 	0.015 	0. 

	

0.0185 	0.0228 	0.027 	0.032 	0,037 	0.042 

	

-0.015 	-0.0192 	-0.024 	-0.029 	-0.035 	-0.041 
8 	 0.008 	0.009 	0.009 	0.010 	0.011 	0. 

	

-0.0121 	-0,0157 	-0.020 	-0,024 	-0.030 	 -0,035 L-00 

	

.0048 	-0.0053 	-0.0057 	-0.0062 	-0.0066 	-0.007 

	

9 0.006 	0.007 	0.007 	0.008 	0.009 	0. 
.oO45 	-0.0051 	-0.0055 	-0.0058 	-0.0060 	-000 

	

0.0142 	0.0176 	0.022 	0.027 	0.032 	0.037 
10 	0.005 	0.005 	0.006 	0.006 	0.007 	0. 

	

0.0121 	0.0153 	0.019 	0.023 	0,027 	0.031 

Im(T(N)) 

° 	ER 	140 0 	ER 	145 0  ER 	150° ER 	155° 	ER 	10° 

	

-0.0103 	-0.0136 	-0,017 	-0.021 	-0.026 	-0.031 
7 	 0.011 	0.012 	0.013 	0.014 	0.015 	0.0 

	

-0.0075 	-0.0103 	-0.014 	-0.017 	-0.021 	-0.026 

	

-0.0132 	-0.0156 	-0.018 	-0.021 	-0.024 	-0.027 
8 	 0.008 	0.009 	0.009 	0.010 	0.011 	0.( 

	

-0.0114 	-0.0138 	-0.016 	-0.019 	-0.021 	-0.023 

	

0.0160 	0.020 	0.025 	0.030 	0.036 	0.043 
9 	 0.006 	0.007 	0.007 	0.008 	0.009 	0.( 

	

0.0133 	0.017 	0.021 	0.026 	0.031 	0.036 

	

-0.0019 	-0.0030 	-0.0044 	-0.0060 	-0.008 	-0.010 
10 	0.005 	0.005 	0.006 	0.006 	0.007 	0.( 

	

-0.0013 	-0.0022 	-0.0033 	-0.0048 	-0.007 	-0.009 

1 

	

* Re(T(N)) = F(N) sin (2X  + 2N) 
+ 	23J-,-1I 

2 ij 
l

+lI 
. Im(T(N)) = F(N) cos(2X + 2N) + 

(N 	j 
where 

F(N) = (F(i) sin . ir2 r_. + 4 ii 2 log  Ni and  
21.1 ~11 

7r.2 2 	LN2 	 N 
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CHAPTER 7 

§7.1. 	Introduction 

The asymptotic expansions of Chapter 5 are extended and further 

light is thereby thrown on the matching process as it is revealed that 

the asymptotics of the higher order terms in the outer potential near 

the left edge of the cylinder "fill in" the parts of solutions for terms 

in the left inner expansion whose appearance was previously justified by 

appeal to their being of lower order in the far field than demanded by 

the matching process at that stage. 	One simple case of this has already 

been noted in Chapter 5 (after eq. (5.54)) and a more striking example 

occurs in the case of 1P2  (see §7.2 below). 

The first two sixth order terms in the transmission coefficient are 

also found leading to the result 

T = 
2i 

 4 exp(-2iN)[l + 	log N - 	(2 -- log 2 + 	
) + 8(logN) 2  

8 log N iTr rl  
+ 	 (2y + log 4 - 5 - -)] + 0j- 

11 2N2  

as N -- = where N = 
C 

	

7.2. 	Summary of the calculations 

The asymptotic series of Chapter 5 can be extended as follows: 

RIGHT INNER REGION 

= 	+ 60 1  + C 202+ 

OUTER REGION 

(4) 	 3 	 3 	'4 	 2 	'4 	 '4 

	

(1) 	= 
2 	+ C log C4) 1  + C 	+ C (log C) 4)3 + C log C 4) + C 4) 

LEFT INNER REGION 

4)(6) = C4)0 + 6 '4  log C4)1 + E4 1P 2 + 5 log c 2 s + C ba 03 +E:5 4) 

+ s(C)4) + Cb(lOg C)24) + C 6  log C 4) 7 + C 6 I8 
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where E5.., 	as C -- 0 and s(C) is not of the same form as any 

of the other sixth order gauge factors which appear. 

The full expansions of the wave-free parts of 	and 02  to orders 

1 	1 
and 	respectively are detailed in Appendix C while the leading far 

field terms in the wave-free part of 	which are 0(1), 0[ _R) 

and 
0 [log R) can be found explicitly. Part of the 0(e) term is a 

multiple of Sin 
8  which is diffic.ilt to find and its extraction has not 

been attempted here. 

The 0(1) term (which is just a multiple of 0) matches with the 

vortex singularity which has already been noted as occurring in 42, 

(see §5.6), while the forms of the O[ (log R)21 and 
 4lo R1 terms enable 

and 4 4 to be found explicitly (03 is a multiple of 0 1  while qi+ is a 

linear combination of 42  and 41). 	has been found to within an 

outer eigensolution (a multiple of o)  whose coefficient depends on the 

coefficient of the sin 0 term in 	Hence, when the matching principle 

(5,4) = 

is applied, 	and TP3  can be found explicitly. 	(ij) 5 
= 8 	

while 
iT 2  a 2  

4 2 = - —11)2 - - 

In addition a term 2 log R 1  (arising from a term 2 log 61 

	

Tr 2a4 	 Tt2a 

in the left edge asymptotics of ) and a term 

2 	- y - 2 log 2a + i ) (arising from a constant term in these 
8 2L+ ira 

asymptotics) are added to the asymptotic form of i2 in the far field. 

Thus, the addition of these terms, which were not explicit at the previous 

matching stage i4.l ' 	= 	' 	( see §5.7, eq. (5.54)), in the solution for 

given in eq. (5.58) is fully justified. 	(It may be noted also that 

a term 	is added to the asymptotic form of l thus "filling in" 
Tr 2a 
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the part of its solution which was missing at the previous matching 

stage, see (5.53)). 

Finally, since O b  and 13 are known explicitly, the waves generated 

by them in IP6 and i7 respectively can be calculated as detailed in the 

next section. 

Before proceeding to this, however, it will be convenient to make 

a slight change in the formulation of the problem for the right-inner 

region and introduce some convenient new notation. 	In the first instance, 

the problem is restated in terms of the total potential 	i.e. the 

incoming wave e 	 is added on to the of Chapters 3 and 5. This 

means that (to order 62): 

= T + 
	+ E 2 2 	where T = 2e cos X and 	, c 

are as before. 	The condition for 
T  on X = 0 now becomes (cf. eq. (3.7)): 

r+l 	 r+l 
ro g (c,Y)[ 	r+l 

T(0y;6) 
- f 1  (cY) 	r 	

T(0y;6)] = 0 
	 (7.1) 

r 

with 	f(y) = /a2 - y2 - a 	and g(E,Y) 	 as before. 

The distinguishing letter T will be dropped from now on in this discussion 

since no confusion will arise with the previous development. 

	

Secondly the operator 	 will be denoted by MK  and the
Y) 

Havelock integral Jo H(X,Y;s) f(s) ds (see §4.2) will be abbreviated to 

If f is obtained from a function F(X,Y) of two variables by 

putting X = 0, this will be denoted by F 0 . 

§7.3. 	It can first be shown (by the same methods as for 	in 

Chapter 5) that 

= O 
+ E01+ 6 2 2  + 63 03 	 (7.2) 

where 03  does not contain eigensolutions, since their presence would 

lead to violation of the edge condition by terms in the left-inner 
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expansion and, possibly, to changes in terms which have already been 

determined in the outer expansion. 

When (7.2) is substituted in (7.1) and terms of orders higher than 

are neglected, the following equations are obtair.ed(after noting that 

f(cY) - 	C3Y + 0(c 5 ) 
- 2a 	8 a 

(cY) 	
cY 	1 c3Y3 + 0(c 5 ) f t 	= -  
a 	

2 a3 

g 0 (cY) = 1 

1E 2 	1 c3YL + 0(c 5 ) g1 (cY) = - - - -  

- 1 62YL + 0(c) 
g2(cY) - -- 	

a2 

1 c 3Y 6  
g3(cY) 	

48 
= - 	 + 0(c 5 ) ) 3 . 

a 

.0 = - 	M2(00) 
1X 	2a 

0 = - 	M2(10) 
2X 	2a 

where 	0 = 2e- Y  (7.3) 

(7-4) 

(these are just repetitions of previous equations in the new notation) and 

0 = _ 
3X 	T;i!:;  M2(q2 o ) + 	M+( 	

0) - 
	M1+ (' 0 0 ) + 	M6( 0 ). 

	

lx 	8a 	 48a  

When (7.3) and (7.4) are used and it is recalled that the wave part of 

1 2i 	1 	. 
2. is 2(j - -)exp(iX - Y) this becomes 

1 2i 	1 

	

-Y 	1 	-Y 
2 

0 = - L M2(F2 0 ) - —3( ---  - g)M2(e ) - 	-3N L+M2(e
2a 37T 3X  

1 	-Y 	1 	-Y 
- 	3M& (e ) + ---3M6 (e 

where F2 is the wave-free part of 2 

It is easily shown that M4M2(e) = (2M - 4M !, + M6) (e q ) so that, 

consequently, 

1 2i 	1 	
(er) 	

2a 	
_Y) 
	-Y) 	1 0 = - j M2(F20) - 	3( 	- -)M2 	- —3M(e ) + —3M5(e 	- 3X 	2a 2a 	 12a 

and F3 (the wave-free part of (3)  is given by F3 = <HF ,  3x> where H  
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is the wave-free part of H. 

The asymptotics of expressions of the form <HF,  M(e)> 

(n = 1, 2, ...) present no difficulties and can be found by the same 

methods as were employed in the case of <H F1 M 2 (e)> (for F 1 , see §5.2). 

They will involve inverse powers of R only, the first term being a 

sine 
multiple of R 
	

Any higher order terms will, therefore, arise from 

the expression 

E 2 - . -L  <H r,, M 2 (F 2 0 )> 
2a 

(7.5) 

This is difficult to tackle directly as the explicit expression for E 

involves three and four dimensional integrals. Progress can be made, 

however, by using the known asymptotic form of F2(0,Y) as Y -- 00 and 

the fact (proved in Appendix C, §c.3) that this can be differentiated 

twice to give the asymptotic form of M2(F2 0 ). 

From (C.12) in §c.2 of Appendix C it is seen that 

8  	 ___ 
F2(0,Y) = 

8 log Y 	
(y - 2 + j—) 

ii + 8 log Y - 	8 	
- 	

• T1 )  + 0( log •i 

Tr 2 a 2Y 	1T 2 a 2 Y 	 1T 2 a 2Y 2 	1r 2 a 2 Y 2 	 Y 3  

as Y -,.the order term being deduced from theorem A in Appendix B 

which was used in finding the asymptotics .of F2. 	Hence, by differentiation, 

14 1 - 2 log Y + 
	- 	+ 	

+ 	log Y)] as Y - 
- - M2(F20) = 

2 	 2 2a 
ira 

It follows that there exists a number y0 (>1)  such that, for Y > Yo 

14 1 	
2 log ' + 2(9 - 2y + i) + R(Y)} where - i- M(F2 ) = 	[ 23 	- 

ira 

R(Y) 	
A log x' 

(A being a constant). 
Y 3  

The expression E in (7.5) is now written as the sum of two integrals 

	

lrYo 

FY O 

	
1 

viz. - --_(J 	+ 	 ) HF.M2(F2°) 	The first integral is of order 
0 

as R - 00 (because HF'is of this order in a bounded interval of integration) 

and its leading term will be a multiple of 
Sin 

e (see §4.2, eqs. (4.12), 
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(4.13)) while the leading terms in the asymptotics of the second 

integral are found in Appendix C 9c.4 (10)). 	Use of this result gives 

	

 F3(R cos 8, R sin 0) = - 	 ~ 

40 	8 sin 0 
[ 
(log R ) 2 - 2 log R(3 - y - 

jir 

Tr  2 a 3 Tr 3 a 3 R 

- 16 log R 0 cos 0 
+ 

33 	 R 
liaR 

(the parts of the 0 ( 1
R 

 )  term which combine with the logs to produce 

harmonic functions have not been written out explicitly). 

It is recalled also that 

	

F2 (R cos 0, R sin e)  = 
- 	 8 (0 cos 0 - sin 0 log R) - 

 8 sin O 
(2 - y + -  

iii 
--) 

Tr 2 a 2 R 	 rr 2a 2R 

- 	 8 8 cos 20 Tr 	44 sin 20 

	

(log R. cos 20 + 0 sin 20) + 	
(3 

- y + i i-)- 	 + o( 

rr 2 a 2R2 	 7T2a 2R 2 	 1Ta 2R2  

(from(C.12)) and 

4 sin 0 	cos 20 	8 sin 30 

	

Fi(R cos 0, R sin 0) = 	R 	- 	

- 	 ) + o() 	(from (C.l)) 

	

R2 	R3  

The matching principle 

	

= 	(43) 

indicates, therefore, that 	will be of the form 

(4)2 	3 	 3 	 2 = 	+ c log E41 + E 	+ E (log E) 3 + E log E4 + C 

where, as 6 -*- 0 (recall that S = Iz - al = ER with z = x + jy) 

8 sin 0 

- Tr 3 a 3  

8 cos 20 	16 0 cos 0 - sin 0 log _ 6 -  16 	 Tl sin 0 
(y-2- i -) 

	

+ 	( 
rr 2 a 2 3 2 	u1 3 a 3 	 11 3 a 3  

16 sin 0 
+ 

1r 3 a 3  

and 

32 sin 30 - 	 8 	 8 cos 20 
(log 	cos 20 +0 sin 20) + 	 (3 - 	 + 

Ira 	6 3 	ir2a 2 S 2 	 rr 2a 2 6 2  

44  sin 20 	8  sin  O 	 IT 	16 log 6.6 cos 0 

Tra 262 	
_ + [(1og 2 _2log 6(3_yii) - 

	

ir3a3ó 	 ir3a35 
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The potentials must also be harmonic, satisfy - = 0 on r = a, and die 
Dr 

off to zero at infinityr While formal substitution of 4> = 	
in the 

equation 4> + E4) = 0 (neglecting terms of order higher than c) gives 

the additional equations, on y = 0, IxI > a, 03 = O 04 = 4>1Y:' 4>5 	4>2y 

Comparison of the problem for 03 with that for 4> 1  (see §5-6) shows 

that 03 '=  - 	4>,. 	In addition, when it is recalled that 4 = - Tra

the problem for 4> 4 is seen to resemble closely that for 4>2  in §5.6 again. 

Indeed, examination of the asymptotic conditions and the condition on 

y = 0 shows that 4> 4 	- 	( 4> + Tra 

It is now verified that the real part u(x,y) (with respect to j) of 

the complex potential 

w(z) = - ••_1L+(•__••_ 	
+ 	8 	

—i— 2 log  

	

[zz+a + 	4j 

	

ira z-a 	2 2 (z-a) 	-a 	2 	2 
It a 	 ira (z-a) 

+ 	
8 (3-'y'--log 2a + i Tr)  /( z_a ) 2  + 	(3-y-- log 2a + i)1!-t! loa1-t 

rr2a2 	
8 	

ir3a 	
8 z-a 	z-a 

4j fz+a 	fz+a + 	i — (logI ---- 11 2  
3 Ltz-a 	. Iz-aJ 

ira 

(the logs being made single valued by a cut from a to oo)  satisfies the 

boundary conditions required of 0 5  and also the asymptotic condition as 

stated. 	The six terms occurring in w(z) will be called T1, ..., T 6  

consecutively and the conditions are verified in turn. 

(a) The condition on y = 0 

Recall that 4>2  is the real part of the complex potential 

4 	4j z+a) 	z+a 	4j 	 i'rr fz+a1 
W(Z) = - 	 2 - 	—hog — + 	(y + log 2a - 2 - —) I- 

	

Tra(z-a) 	723 z-aJ 	z-a 	
ir2a3 	

8 z-a 

Then--4>2 = Im.(w'(z)) and on y = 0, jxj > a 

8 	 1x+a' 	8 	 7T 	2 

	

4>2y = 
2 2 	2 log x-a) + 	- 	- log 2a + i)/(x-a) 

it a (x-a) 	 It a 

U is seen to have this value on y = 0 from the terms T2 and T4; the 

other terms give zero contribution being imaginary on y = 0. 
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(b) The condition on r = a 

z is put equal to aeJU (0 < u < ir) and it is noted that 

= -j cot - and (z-a) 2 	-4a 2 sin 2 	e 	. 	When the terms of w(z) 
z-a

are grouped as Ti + (Tz + T3 + T6) + (T +  + T5) it can be seen that the 

imaginary part of each group, of terms is zero. Hence the imaginary 

part of w(z) vanishes on r = a whence 	= 0 on r = a 
Dr 

The condition at 

As z 4-  , the first term tends to an imaginary number and all the 

other terms tend to zero. 	Hence, U -3-  0 as r -3- 

The asymptotic condition 

z is put equal to a + 6e 0  and 6 - 0. 	It is seen that 

Re. (Ti + T3) 	= - 32 sin 30. - 44 sin 20 + 
O(-) 

Tra 2 &L 

Re. (T2 + Ti) 	= 
- 

(log (5 cos 20 + 0 -(log sin 20)+ (3 	- 
ill 

y + -b-) + 0(*) 
1T2 a 2 (5 2  Tr 2 a 2 (5 2  

Re.(T5) = 
- 	16 

- y - log 2a+ - 
i1T-) sin 0 log 6 + 

O(-) 
ir 3a 3  

Re.(T6) = 	
8 	

[sin O(log (5) 2 	
- 2 sin 0 log 2a log 6 - 20 cos 0 	log (5] + 	0(- 1-) 

rr 3 a 3 (5 

(it may be noted that this last term also contains expressions of order 

(log 6)2,  log 6 which are of lower orders than is required by the matching. 

These terms would be "filled in" by terms of order (log R)L  and log R 

in the far field of 	, the coefficient of the subsequent term 6 4 
04 of 

the right inner expansion; see note at end of Chapter). 

By adding the above equations it is now seen that Re.(w(z)) 

satisfies the asymptotic condition on 	It follows that 	= U + W 

where U' vanishes on y = 0, has zero normal derivative on r = a, tends 

to zero at infinity and is of order - as 6 -3-  0 i.e. U' is an 

eigensolution of the outer problem with a dipole singularity at the 

right-hand edge and can, therefore, only be a multiple of 	This 
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multiple can only be determined by finding the 
sin 0

term in the far 
R 

field asymptotics of F3. 

Next z is set equal to -a - 
 6 1  eu®' and 6 - 0. 	The asymptotics 

of 4, 	, 
43 proceed in powers of 6 1  while those of 2' 44 contain 

also terms 61 '1  log 
 61 

 (n > 1). 	5E contains, in addition to such 

terms, a term in 6 1  (log 6 1 ) 2 . 	Hence, when the matching principle 

4,5) 	
ij' 4  is applied, it is seen that 	will be of the 

form 

= 	+ c log S i ~ 512 + F. (log 5) s + c log S3 + E 51 4  

and that the asymptotics of 1P5  as R1 -1, 00  will be affected only by the 

potentials 3, 	, 45. 	Attention is now turned to determining 14)5. 

It was found previously that 

03 = - 	
2 	

sin 01 + o(61) as cS j  -  0 (from (5.50)) and that  6 1  
Ira 	

i13a5 

2 	 2 	4 
c5  - -(4 2 + 	= 	+ -- 6 1  sin 01  log 	+ 0(6 1 )) 

Ira 	
Ir 2 a 	if 

(from the asymptotics of 2  near the end of §5.6). 

If the terms of Re. (w(z)) are examined in turn, it is seen that 
J 

Re(T 1 ) = 001 3 ) 

Re (T2) 
= 2 	

(log 6 1  - log 2a) + 001 log 6 1 ) 
if 2 a 

Re(T3) = 0(61) 
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Re (TO = 2 
	-y - log 2a + 	+ 0(5) 
a

4 	 8 
 

Re(T5) = 0(6 log S) 

Re(T - 
- 

	

5) 	
2 sin E)i 	1(log 	)2 + 0(61 log 	) 

it 

	

(S 	 - 	 ( 4,5) 
When 01 is replaced by ERi and the matching principle 4 	= ( 5,4)  is 

applied it is seen, therefore, that 

a term 
TT 2 

4  (from 04 and Re(T2)) will be added to the asymptotics of 

as R1 - 	so that, from (5.53), the asymptotic form becomes 

- 2 	
(R1 sin 01 - l) thus verifying th solution (5.57) for 

it a  

the terms 2 (log R1 - log 2a) (from Re(T2)) and 
Tr 2 a 

2 	
- - log 2a + ifl-) (from Re(TO) will be added to the asymptotics 

8 

Of 1j.2 which now become (see (5.54)) 

-R 1 2  sin 20 i  + R1 cos 0_ 2 [R 1  (sin 0 I log R1 + 01 cos U) - log R1 - 
2Tra 4 	 ir 2 a 

____ 

	

+ 	
2 (2 log 2a+y- 2 - 

iTt
--)(R1 sin 0 1  -l) 

thus justifying' ustifyin the- addition of- these Lower order erm not_e1iciL31-n 

the previous matching condition) in 	solution (5.58) for 2; 

the asymptotic relation for i5 is 

8 R 1  sin 0 
rr 3 a 5  

In addition, substitution of 	in (7.1) (which has the same form for 

the left inner region, see (5.24)) shows that 

5X1 = 0 

Hence 1P5  must be the eigensolution 8 (Yi - 1). 
it 3a 

The wave term generated by 	can now be found without further detailed 

matching by noting that ,(6) 
 will certainly contain terms with scaling 
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C 6  (log 6) 2 , C log Land 0 (because of the extended asymptotic forms of 

the potentials in the outer region) and that a term with a sixth order 

scaling other than these must be an eigensolution which is wave-free. 

Substitution, now, of the form (c) in the summary in §6.2 into (7.1) 

shows that 

lP6X' 	.!_M 2 () 5 0 ) = - 	8 

i 	2a 	
ir3a6 

Comparison of this equation with the corresponding one for 1P2X (see 

(5.56)) shows that W6(X1 1 Y1) (the wave part of &) will be 

8 	
(wave part of 2)  i.e. 

11 2 a 2  

w6(x11Y1) 	16i exp (iXi - Yj) 
n- 3  a  6 

Hence the first sixth order wave term will be 

16i 	6  

a 	
exp (- - C 
	C 

Tr 3 

[Note: The occurrence of the factor - in the (log N)2 term of the 7T 	N6 

transmission coefficient means that the error bounds given in Tables 

9 and 10 in Chapter 5 should be roughly halved. 	It is seen that the 

differences between the multipole and asymptotic values are still 

within this tighter bound.] 

It was also found possible to find i3 explicitly and hence to determine 

the term in the transmission coefficient of order log N/N 6  as follows. 

The contributions to the asymptotics of iU 3  through the matching 

(4,5) 	(5,4) principle 	=IP 	will arise as follows: 

from C 2 0 - no contribution since the asymptoticsof 0 0  for S -'- 0 

involve only powers of 

from 6 3  loge':q - the term in 01 of order 5 2. 

2 	26 1  sin el _   + 	sin 281 + o(52) 	(from (5.20)); = - 	= __ 
Tra 	

Tt 2 a 	 7t 2 a 5 	 - 
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contribution to 4) 3  is R
1 2  sin 20 

Tr 2 a 5  

from 	- the term in 2  of order 61 2  log 61 ; 

4 	4j 1!] 	1 za' 	2 	
- 2 =Re.[- loj___J+ —(v + lo 2a - 2 

j 	ira(z-a) - 2 3uz-aJ 	z a 	Tra 	g 	
8 Ira 

the term in 512  log Si must come from the second term here and 

is seen to be 	
sin 20i log 61/Ir25 

; 

contribution to )3 is R1
2  sin 201/,T2 as 

E (log c) 2 3 - no contribution since 03  is a multiple of 01 

E log E 	- the terms in 04  of orders S, 6 1  log 

P 	- ( 2 + 	) (the asymptotic form of 02  is in §5.6); 
Tra 

it is seen that the required terms are 

- 26 cos 	
' -51 (sin 01 log 6 1  + 01 cos 0) 

ir 2 a 5 	ir 3 a 5  

	

____61  
sin O(2 log 2a + 	

ill. 
- 3 - ---) 

; 

ir 3 a 5  

contribution to J) 3  is 

2R1 cos 01 + 
4  (R1 sin 01 log R1 + R 1  e l  cos e l ) 

7r 2 a 5 	7r 3 a 5  

4 
- 	R1 sin 01(2 log 2a + y - 3 - i) 

Tr 3 a 5  

from 64 
	- terms of order 6 1  log 6 1  and 6(1og 61) 2; 

these arise as follows: 

from Re(T1): zero contribution , 

2 61  
from Re(T2) : - 	 cos 01 log 5  ; 

1r 2 a 5  

from e(T3):  zero contribution ; 

from Re(T) : zero contribution ; 

from Re(T5): - 	(log 2a + y - 3 - i) 61 sin 0 1  log 61 
1T3a5 	 8 
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from Re(T5): 	
sin 01 (log 6)2 + 40 cos 06 log 6 

1r 3 a 5 	 1r 3 a 5  

- 4 sin 01 6 1  log 6 1  log 2a 
'rr 3 a 5  

contribution to 11)3 is: 

- 2R 1  cos 01 + 	(R1 sin 01 log R 1  + 01 cos el) 
jT 2 a 5 	Tr 3 a 5  

 
- 	

(2 log 2a + -y - 3 - 
iTt 
--)R 1  sin 01 

Ir 3 a 5  

When the'ábovea -e..coibined it is seen that, as R1 

cosO1 	8 
ijj 	

2R 1 2  sin 20 - 4R1 	
+ 	(R1 sin 01 log R 1  + R1 01 cos O) 

1r 2 a 5 	 7r 3 a 5  

- 8 (2 log 2a+y-2-i)+ 8 Ri sin 6 1  

'1r 3 a 5 	 'rr 3 a 5  

Comparison with (5.53), (5.54) shows that 

-. - --(asymptotic form of 11'2) - -(asymptotic form of lI,S i) 

Also (in the usual way) 

1 
- - M2 p° = - 	p 0 	 0 	4 O 

'3X1 	2a 	 Ira 2x1 	 = - Ira ° '• 

Hence i1)3 = - - i1) 2 	.11)i 	(The second term fills in the missing 

eigensolution mentioned in §58). 

Substitution of the form (c) in the boundary condition on X = 0 gives 

1 	'.0 

11)2°) 	
Tr2a2 	

M 2  11J o 0 ) 
7Ta 	2a 

- 	Ira 4XI ir2a2 2x
1 	O1)o generates waves in 11)2). 

4 	8 
Thus W7 = - -W4+ 	W2 

Ira 	
Ir2a2 

32i 	 'if 
(y + log 2a - 2 - i-) 

+ l6i 
____ exp(ixi - Yi) 

7T 3 a 6 	 'if 3 a 6  

(from (5.65) and (5.58)). 
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Hence W6 + W7 

= 161(E)[ 
((log E)2 - 2 log a log 	

ilr 
) + log E(5 - 2y - log 4 + ---)]expjX1 - Yj 

Tr 3 a 

and hence 

T = T5 + 16i 
log 

N[ (log N + 2y + log 4 - 5) - 	exp(-2iN) + 0(6) 

Tr 3N 6  

as N 	(on appeal to the dependence of T on only), 
a 

i.e. T = T (5) 
	2i 	 8 
+ - exp(-2iN)[ 

(log N) 2  + 8 log N(21 + 
log 4 - 5 - v-)] + 

	

lrN 4 	 7r 2N 2 	 7r 2N 2  

as N 4- . 

[Note: 0 0  contains the term - - M2(F3 ° ) so that if this is the 
4x 	 2a 

dominant term again as Y 4- °° and, if differentiation of the asymptotics 

Of F3 is allowed, then the dominant term in 
4x 

will be of order 
log  

at infinity (since that in F3 0  is of order 
(log Y)2) 	

Such a term 

would produce O(log R) 2  and O(log R) terms in the far field form of F 

as was suggested by the lower asymptotic form of Re(T 6 ) in c$ 5  as - 0.1 
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Summary and Conclusions 

A comparative study has been carried out of three different methods 

for determining the transmission coefficient (T) for bodies partly 

submerged in deep water and lying in the path of a sinusoidal wave train. 

The available methods divide into two groups: direct computational 

methods for moderate values of the ratio beam/wavelength and asymptotic 

methods for large values of this ratio. 	In the latter case, T is known 

to be very small and the computational methods have been unable to produce 

these small values with adequate accuracy. 	An outstanding problem, 

therefore, was suitably to refine the methods so that significant agreement 

between them would be obtained over some range of values of the ratio beam/ 

wavelength. 	This has been achieved in the present work. 

The three methods employed in this thesis have been 

the method of multipole expansions (Ursell (1949)) 

the method of matched asymptotic expansions (Leppington (1973)) 

the method of null field equations (Martin (1981)). 

(The rigorous integral equation method due to Ursell (1953, 1964) does not 

lend itself to obtaining more than the leading term in the asymptotics of 

the transmission coefficient and has not been used here.) 

All these use as a model the linear theory of water waves on an irrotational 

ocean and surface tension is neglected. 	In this work the bodies 

considered have been circular cylinders with axes parallel to the wave 

crests and lengths which are long enough in comparison to their diameters 

for end effects to be neglected at all beam/wavelength ratios. 

Attention, therefore, has been confined to the two dimensional scattering 

problem with particular regard to the case when the incident waves are 

short compared to the cylinder beam. 
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Acute, normal and obtuse values of the angle of intersection (ct) of 

the cylindrical cross-section with the mean water surface have been 

considered for beam/wavelength ratios ranging from about 	to 7 in the 300 

case of normal intersection (using multipole expansions) and from about 

to 3.5 in the other cases (using the null field equations), 
300 

i.e. 0.01 < N 20 for normal intersection 

0.01 < N < 10 for acute or obtuse intersection 

(where 	= wavelength, a = semi-beam, N = Ka). 

At the short wave end this has extended the data available well beyond 

the range of previously published results for the semi-circular cylinder 

(Martin and Dixon (1983) compute values of T up to Ka = 10) while, - in the 

case of non-vertical intersection, no published results appear to have 

previously existed. 

The main purpose of these extended calculations is to supply data 

for comparison with that provided by asymptotic formulae for T derived by 

Ursell (1964) and Leppinton (1973(a)) for the semi-circular geometry, 

and by Alker (1977) for the obtuse angle case, with a view to establishing 

the existence of a region of overlap. 	The comparison with Ursell's and 

Leppington's values is inconclusive (see Tables 7, 8, and graphs 7, 8, at 

the end of Chapter 2): The differences between the values are within 

the order of the asymptotic error term but the magnitude of this error 

is such that this can occur even when there are no significant figures 

of agreement between the values (e.g. Table 7, page 40, for N = 14). 

It thus becomes necessary to reduce the size of the error term by 

completing the fifth order asymptotics and this has been achieved in 

Chapter 5 (via Chapters 3, 4). 	Subsequent comparison indicates excellent 

agreement between the two sets of values (see Tables 9, 10, and graphs 9, 

10, at the end of Chapter 5). 	The first two sixth order terms have also 

been derived (Chapter 7) with the aim, first, of providing an exact error 
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term for the fifth order asymptotics and, secondly, of attempting to 

improve the comparison even further. This leads to the improved formula 

2i 	 4 	 4 	 uT 	8(log N) 2  
T = 	exp(-2iN)[ 1 + -r log N - -(2 - y - log 2 + 	

+ 

+ 8 log N(21 + log 4 - 5 -. 	+ O( -6) as N -*co (y = Euler's constant) 
if 2 

N  2 	
N 

in which the first term agrees with Ursell's result, the first two terms 

with Leppington's result, and the remaining three terms are the additional 

ones derived in this work. 	However, the additional sixth order terms 

(when combined) contain a factor (log 4N + 2y -  5 - -), the real part of 

which is negative until N 	12. 	Indeed, at N = 20, log 4N 	4.4, while 

5 - 	3.8 so that the log term is not yet big enough (in comparison 

with 5 - 2y) to give the sin 2N and cos 2N terms which it multiplies in 

the real and imaginary parts of T their due "asymptotic weight". 	In fact, 

to obtain a value of log 4N more than twice that of 5 - 2y would require 

taking N 550. 	It would seem, therefore, that for comparison with 

computations the fifth order asymptotics meet precisely the limits of 

numerical practicality at the moment. 

The calculation of the two sixth order terms involves extending the 

asymptotic approximations to the potential in the various fluid regions 

(see Fig. 2, p. 15a) . 	This depends crucially on theorem A in Appendix 3, 

§3.3, and the results in the first part of Chapter 4, §4.3. 

During the course of the calculations, interesting evidence of the 

cohesion of the matching principle is observed. 	It is recalled first 

that the potentials in the right inner expansion are solutions of 

classical wave-maker type problems and the leading terms in the far field 

asymptotics of their wave-free parts depend on the decay properties of the 

velocity profile on the wave-maker (this is discussed in the first part 
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of Chapter 4). 	As the expansion is extended, the decay properties of 

the velocity profiles generating the potentials in the lower order terms 

weaken till a point is reached where the potentials have non-vanishing 

far field terms. 	Initially this seems disturbing since an application 

of the matching principle which includes such potentials appears to 

indicate that these high order terms occurring in later terms of the 

right inner expansion will affect the near field forms (near E+i that is) 

of potentials in the outer expansion which have already been determined 

at an earlier matching stage. 	However, closer investigation reveals, 

in contrast, that these high order terms in the far field of later 

occurring potentials in the right inner expansion "fill in" lower order 

near field terms in earlier occurring potentials in the outer expansion, 

it being noted that these lower order terms had not been demanded at the 

earlier matching stage but had appeared because of the nature of the 

solution demanded by other conditions imposed on the potentials in question. 

Similarly high order near field terms (near E_ this time) from later 

occurring potentials in the outer* expansion are observed to "fill in" 

lower order far field terms (not demanded by earlier matching) appearing 

in earlier occurring potentials in the left inner expansion. 	Specific 

instances of this "filling in" process are mentioned in Chapter 7, p.  135, 

and Chapter 5, p. 102, and it may be anticipated that this is a 

characteristic process generally when the method of matching asymptotic 

expansions is used, although its occurrence may not be noticeable till 

fairly advanced matching stages are reached. 

In the cases where a is acute or obtuse, comparison is made in 

Chapter 6 of the values of T as obtained using the null field equations 

and those obtained using the first two terms of Alker's (1977) result, viz. 
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T = p(F(p) sin p70 2 
exp(-2iX - 2iN).(- 	

+ 4ji log N + 
	

_1 

as N - 	, where X = -(1 - ]J)'TF and ]J = Tr 

(Note that some small mistakes in Alker's paper have been taken account of). 

The comparison is by no means as clear-cut as in the case a = 900 and the 

need for numerical calculation of the third term in Alker's asymptotics 

is indicated. 	Use of the first two terms only leads to a situation 

similar to that in relation to Leppington's formula in the semi-submerged 

circular cylinder case. 	The differences between the null field values 

and the asymptotic values are within the order of the asymptotic error 

term even although the relative differences may be as high as 35%-40% 

(for the smaller values). 	In most cases, one significant figure of 

agreement is observed and the relative differences are between 10% and 

20% (see Table 12 at the end of Chapter 6, p.  132). 

Three different bases have been used in the null field calculations 

(see Chapter 6, §6.7, p.  127) and it is found that the Chebyshev bases 
9 

are most efficient for values of a > 900 while the multipole type bases 

are best for acute values of a. 	In the latter case (not covered by 

John's uniqueness theorem) values of T (and R, the reflection coefficient) 

are obtained, satisfying the usual numerical tests IR I2 + IT 12 = 1, 

arg T - arg RI = Tr 

In performing the calculations for T using multipole expansions and 

the collocation method of Chapter 2 for the calculation of the coefficients 

in the multipole expansions, it is observed that the nature of the 

collocation points is of critical importance (especially for the larger 

values of N) in determining whether the sequence of values obtained for 

T is monotonic or oscillatory. 	The dissection DM (used in Chapter 2) by 

means of M equally spaced points (including the lowest point) produces sequen 

of approximations to the real and imaginary parts of the transmission co-

efficient (denoted by Re(T(M;N)) and Im(T(M;N)) respectively which are monoto 

for the lower values of N and ultimately monotonic for the larger values (the 

behaviour is similar to the illustrations in Graphs 1-4 at the end of Chapter 



However, slight variations in the collocation can lead to oscillatory sequenc 

which are very slowly convergent and two specific cases are now discussed. 

In the first of these the collocation DM  was modified by removing one 

or more of the collocation points nearest to the lowest point (the lowest 

point remaining) and reducing the dissection interval over the remainder of 

the cylindrical surface to maintain an M-point collocation; and, in the 

second case, the lowest point was not used and a collocation by means of 

points with polar coordinates r = a, 0 = (kl,...,M) was employed 

(note that the equations (2.31) and (2.32) in Chapter 2 are automatically 

satisfied when 0 =-). 	In the first case, the removal of two or more 

points produces sequences Re(T(M;N)) and Im(T(M;N)) which are oscillatory 

and which (after a certain value of M) consist of two subsequences which 

are monotonic in opposite senses, the one increasing and the other decreasinc 

Application of the Shanks' (1955) first order accelerated convergence process 

(a special case of Aitken's (1937) 62 process) to the terms of the complete 

sequences and of Richardson extrapolation (Bender and Orszag (1978)) to the 

terms of the monotonic subsequences produces modified sequences whose limits 

agree, in their first two or three significant figures, with those which are 

obtained using the dissection DM. 	The same behaviour is also observed in 

the second case. 	Thus, while the efficacy of such accelerated convergence 

processes is of interest in itself, a more important observation to be made 

from these numerical experiments, in the case of short waves, is that a 

collocation consisting of a dense set of points on the cylinder near the 

water surface (where the wave effects are most apparent) , together with a 

scattering of points over the lower part of the cylinder, does certainly not 

produce accurate sequences of approximations to T. 	In contrast, it seems 

clear that too wide a spacing of points anywhere on the cylinder will result 

in the occurrence of considerable distortion in the sequences. 

Finally, comparison of the multipole and null field calculations in the 

case a = 900 shows that, to obtain a given accuracy, the former are much les 

costly in terms of computer time; in addition, the easy decoupling of the 

multipole equations into real and imaginary parts (see §2.3) results in 

considerable savings in terms of computer space needed. 



It is proved that the coefficients in the multipole series (2,31) 

and (2.32) have the properties It r 
 (N)I< 	and jur  (N) I 

for all r and suitable functions X,p . The method was originated 

by Ursell (1949, 1953) and used also by Martin (1971) 

Note The usual notation V is used to denote the Hubert space 
CO 

{f : f = {x } , 	Ix 12 < co} which is complete and separable while 
1 	n 

V (0,1) denotes the space of functions square integrable on (0 

Proofs: 

(a) In the anti-symmetric part of the problem, it is required to find 

real numbers A 1  (N), t(N) (m = 1,2,..) such that (2,31) holds i.e. 

00 

Ai[exp(_NcosO)sin(NsinO)_sinN]+tm{sin2mO+ 2N1 [sin(2m_1)O+(_1)m]} 

ii 

	

= 5 (N,e) - p(N, -) 	 (0 < 0 < -) 	 (1) 

where 11) 
5 
(N,0) = - Im. (s(jNe 0 )) 

3 

	

f 	-jt jZ 	e 	 jZ and 	s(Z) = e 	dt + jire 	 (Re(Z) > 0). 

First set 0 = 0 in (1) . Then 
00 

- A1  sin N + 	
t(_l)mN 

	

m 2m-1 	
= 	(N, 0) - 

m= 1 

Elimination of A, between this equation and (1) gives 
CO 

	

M-
1 tm e(N,0) = E(N,0) 	 (2) 

where e (N,0) = sin 2m0 + 2 N l[s 	
sin N 

inm_ l)O+ (_1) m  exP(_Ncos0)sin(NsinO)] 
m 

and E(N,O)=i(N,O)-P(N,)+ exP(-Ncos0)sin(NsinO)-sinN[, (NO)...(N*)] 

	

sin 	 s 

In (2), E. is a continuous function of 0 (for each N) for 0 < 0 < 

E(N,O) = 0, E(N, f) = 0 and E(N,0) can be differentiated repeatedly 
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without restriction (since s() is analytic) . It should be noted 

also that, as N + o , the e(N,O) tend to the orthogonal set 

- 	 4 '/2 {sin2mO} . If the operator 	J 	sin2rO dO is applied to (2) this 0 

gives an equation of the form 
CO 

 r 	 rm m 	r (N) 	 (3)  m=1 
where 

E (N) - -- 
4 
<E(N,O), sin2r6> , 	 (4) r 	if 

d 	
4 	1 	(_l) 

 m1 2r 	(1)m 

rm it 2m-1 (2m-1 	 7r) + sin N <exp(-Ncos8)sin(Nsin6),sin2r6>} 

and < , > denotes the usual scalar product for L 2 (O,1t/2) 

The scalar product term in the braces above can be written as 

(_1)m[<sin6,sin2rO> + <h(0), sin2rO>] where 

exp (-NcosO) sin (NsinO) -sinNsinO h(0) = 	 so that sin N 

d 4 	1 	
[4r'-1 

2r 	(l)m+r+l(4m24) + h (N.) 
rm 	it 	(2m-1) 	(2m-1-2r)(2m-1-*-2r) 	r 

where 	hr(N) = (1)m < h(0) , sin 2r 0> 

It is easily seen that h(0) = h() = 0 and that h(0) can be 

repeatedly differentiated (as also noted for E(N,0)above) 	Hence 

3 integrations by parts in each case will give the results 

Er(N) = 0 	as r + 	 (6) 

hr(N) = 0 	-) 	as r + co 	 (7) 

Next the coefficients t  (K=1,2,..) 	are rescaled by writing 

x  = K 2 t K 

(this is crucial at a later stage in the proof) so that (3) now takes 

the form 
CO 

x + N 	a x = c 

	

 r 	 rm m 	r 	 (8)  .m= 1 
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where 	 c = r2 E 
r 	r 

and 	 a 	= 	d 
rm 	m 

4 r2 	1 	r 2r 	
(1m+r+t 

(4m'  -4m ) 
+ h (N)i 

rm i.e. 	a 	= Tr M' 	2m-1 4r2_1 (2m-1-2r)(2m-1+2r) 	r 	J 
CO 

It will now be proved that I  a 
2 	0I-41 as r

rm 
m=1 	

rj 

a 2  can be written as the sum of three terms 
rm 

a 	+ 
rm 	rm 

+
1rm 	

where 

18) 2  ( 4r3 ' 2 	 4m2  - 4m 	 2 
M

1T 	4r  2 _1J L4m2 (2m-1) (2m-1-2r) (2m-1+2r) J a 	
= 

rm 	[)

4  

	

 2 ( 4r5 	
(N) 	

(1)m+r+1(424) 

4r2 -1j r 	m(2m-1) 2 (2m-1-2r)(2m-1+2r) 
2 4 

= 	
r4  [h (N) 	

1 
m(2m-1)2 

{] 
 

CD 

Clearly by (7) , 	

1rm 
= 0 [4] 

	

m 1 
 00 	

(74) 2  ( 4r 

] 

h (N) INext consider 	 I 
	14r-. 	 m=1 

1 	r 	 mI2m-1-2rI (2m-1+2r) m  1 

CO 	

I 	[41 ' 4r 	Ih (N) 
Hence 	 I < 	4rz_1J (2r-1) 	mj2m-1-2rJ 	

(10) rm1 - 

m=1 	 m=1 
r 

The sum here can be written as I E + 	 1 
M

, 

 r ) m 12m-1-2r1 M=[ 
2 3 + 1 

In the first sum 12m-1-2r1 = 2r+1-2m > 2r+1-r = r+1 so that this 

sum is less or equal to 	 -4 = 0 	as r ~ r+1 m=1 m 	Ir)  
In the second sum 12m-1-2r1 > 1 and m >([4]+1)m3 

2 	1 Hence this sum is less or equal to 2 
	

• +1 	
< 

- m=1r+ 1 	r M=(  

which is also 0I!1 as r + 	. It follows then that rj 

1 	 o I-!-1 as r 	and hence from (10) and (7) that Ji mj-2m-1-2rJ = 	rj 

CO 

Ji rm = o[4.) as r 
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Finally, 

	

00 	 91 2  I 4r3 j2 	00 	 1 a 	< 	kr2 _1J Ji L(2m_1) 	(2m-1-2r) (2m_1+2±)j 
2  

	

in- 	rin i 	- 

< [8)(4r 	2 	1 ]2 	00 	 1 
1t1 	4r2 _1 	2r-1 	m=1 (2m-1) 2  (2rn-1-2r) 2  

Again the sum here is written as 

1[r/2] 	
00 	 1 

rn-i 	
+ m=[r/2]+1) 	(2m-1) 2  (2m-1-2'r) 2  

As before the first sum is easily proved to be 	as r + 00 

while the second sum is less than or equal to 

_! 	CO 

r2  
m=[r/2]+1 (2m-1-2r) 2  

1 	00 

= r - 	
1 

m=l+[r/21-r (2m-1) 2  

2 	00 	 1 	 1 
r2  Ji (2m-1 )2 	

= 	0 --) 	as r -*- 

It follows immediately that 

00 	 00 	 00 	 CO 	 1 a 2_ 	a 	+ 	 + 	 = 
M--  1 rm 	rn= 1 rm 	m= 1 rm 	M7-1   rm 	r 

	

CO 	CO 

as r + 00 and hence that 	 a 2 	
00 

r1 m1 rm 

The equation (8) is now written in the form 

x + Tx = c 	where T is the operator (on 2,2) 

00 00 	 00 

N E a 	, 	x = {x } , 	c = {c } 
M-- 	rm 	 r.i 

By (12) T is bounded and hence completely continuous on 2,2 

(Akhiezer and Glazman p.92,93) so that by Hilbert's generalisation of 

Fredhoim's first theorem (Schnieidler p.53) the equation x + Tx. = c 

has a unique solution x E  2,2 , since c E  2,2 (by (6) and (8)). 

(Note that the existence of linearly independent solutions of the 
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homogeneous equation would imply non-uniqueness of the original 

boundary value problem). It follows then from (8) that 

Ix 
r  - C  2 < N2  Ea 2  X 2  = o (4-) (by (ii) and the 

discussion above) whence 

lu 	ii 
x = C + 01—i = 01— 
r 	r 	rj 

Thus 	
t D 

xr =  
r = 7 	r3 

t(N)I 	
< A) 

(since c = 0-- from (6),(8)) 
r 	rJ 

so that 

for all r and a suitable function A 

(b) In the symmetric problem it is required to find real numbers 

B 1 (N), u(N) (m=1,2,3,..) such that (2.32) holds i.e. 

B1[exp(_Nc0SO)cos(NSiflO)-c0SN] + Ju u{cos(2m+1)O+ -[cos2mO (_1)m+1]}m 	 2m 

=(N,O) - 	
, 	) 	(0 < 0 < ) 	(13) 

where 	(N,0) = - Irn. Es' (jNe 0)] 

- -jt 

and, as before, s(Z) = e 	J e 	dt + j'ire 	(Re(Z)> 0) 

It is noted first that, as N + 0 , the coefficient of B 1  is 

equal to - N cos 0 + 0(N2 ). so that if a new set of coefficients VK 

is defined by 

V 1  = - NB 1  

v 	UK_i 	 (K>2) 

the equation (13) can be written in the form 

co 

	

E v [Cos (2m-1)O + N h (N,0)] = V(N,0) 	 (14) 
m1 m 	 m 

where 

exp(-Ncos0)cos(Nsin6) - cos N + N COS 0 
h1(N,0) = 	 N2 	

(15) 

h (N,0) = 
	1 	

[cos(2m-2)8 + (...1)m] 
	 (m > 2) 

2m-2 

It 

	

v(N,0) 
= D 	 - D' T 
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It should be noted that, as N -3-  0 , the terms multiplying the 

v 	in 	(14) tend to the orthogonal set 	{cos(2m-1)O} . 	 The 

operator < 	, cos(2r-1)O> is now applied to 	(14) 	. This gives 

an equation of the form 

v 	+N co  E 	d 	v 	= v(N)  
r m1 	rm 	rn r 

where Vr (N)  = 	< V(N,O), cos(2r-1)8>  
 IT 

d = 	<h1 (N,O), cos(2r-1)O>  
ri it 

and for 	m>2 

8 	
(1)m+r+1 	

(rn-i) 
d 
rm 	it 	2r-1 	(2m-2) 2 -(2r-1) 2  

It is noted first that the functions V(N,e) and h 1 (N,O) vanish 

at 0 = - , have derivatives which vanish at 0 = 0 and can be 

differentiated repeatedly without restriction. Thus three integrations 

by parts in (17) and (18) show that 

Vr(N) = 0{4) 	 as r -- 	 (20) 

d 	= as r -- 	 . 	 (21) 
ri 	 1-3  Ti ) - 

Next the coefficients v   (K=1,2,...) 	are rescaled by writing 

x  = K2VK so that (16) now takes the form 

00 
x 	+ N E a 	x 	= c 	 (22) 
r 	m=1 rm m 	r 

where 	 c = r2  V 	 (23) 
r 	r 

2 

and 	 a 	-d 	i.e. 
rm m rin 

a 	= r2  d 	 (24) 
ri. 	ri 

8 (-1) m+r+1r 	 rn-i 
and 	 a 	= 

- 	 1. 	2  in 	
for m > 2, (25) 

rm 	it 	2r- 	m (2+2r-3) (2m-2r-1) 	- 

In 
(21) amd (24) show that a = ri 0I and by methods similar to those 

CO 
used in (a) it is not difficult to prove that m 2 rm a 2 = 0 1 

- 

	

= 	 r 

[7~72 )

iwhence 	E a 2 = .

00 

m=1 rm  
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It is then proved as before that X = 	so that v[= 
] 

= 0{4J. 

Thus U 
r 	r+1 

= V 	 is also 0 	as r ~ 
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APPENDIX B ASYMPTOTICS I 

§B.1 In this appendix a theorem on the asytnptotics of a repeated integral 

of the form 

FO FO
f (t) g(u) e-z tu  d udt (Re (z)O) as 

is proved. 

Such repeated integrals occur several times in chapter 5 as 

coefficients of higher order terms in the right inner perturbation 

series. Indeed they arise when Havelock's classical wave maker 

solution is applied to a velocity distribution which itself results 

fran a previous Havelock type solution. 

The cases which appear in chapter 5 all have Re(z) = 0. This 

necessitates the placing of rather more stringent conditons on 

the functions f and g than would be required for the case Re(z)>O. 

Although only one or two terms in the asymptotic expansion are 

required (for the purposes of matching with the outer expansion) a 

full asymptotic expansion is obtained viz 

FO °f(t)g(u)edudt '' 
 Jo 

1 - 	f [log z + Y. + s]fr (o)g r (o)  
r=o 

ri 
 r+1 
z 

- fr(0) F g 
r+1 

 (t)logtdt - gr(0) FO,

fr+l(t)logt dt} 
O 

(_ 0 	ifr=O 
çr 

where 
r 

S 	(E 	if r > 1 	and y is Euler's constant. 

The theorem is preceded by several lemmas of which lemma 1 is of 

fundamental importance and is used in several other parts of the 

text (chapter 4 particularly). 
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§B.2 Lemma 1 

Statement 

Let f be a function(ossibly canpiex valued)defined on [0,-) such 

that 

fEC [0,) (being continuous and differentiable. f.zi the right 

at 0). 

Suppose also f is such that, for some integer r > 0. 

f 'it) dt exists for all x > 0. 

C) 	fr() logt - 0 as t 

d) For r > 1 and 0 < K < r-1 

f!<(t) = (r-k) as t 

Then 

1) 	1(x) 	J° -W1 dt 	exists for x > 0. 

and, as x + 0+ 

C. 	 K-r 
ii) I r  (x) ' Ko al(r(x) x 	where 

	

fK (0) 	 - 
a((x) = 	K! (r-K) 	

(K * r) 

- fr(s) 	
(K = r) 

r r7— logx  

with 

( 	
fr (0)  r 	1 	fr+l(t)logtdt(r>0) 

( 	r! 	ml? Jo 
C = 
r 	

f' (t) logt dt 	(r = 0) 
- Jo C 
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Preliminary Remarks 

The obvious method of integrating Ir(x)  by parts imnEdiately leads 

to cumbersome coefficients in the asymptotic expansion which are 

not obviously slmplifiable. 

The Form obtained in the lemma is essential in deriving a result 

which can be successfully applied later in the proof of the min 

theorem. 

Extensions to the case of x ccinplex and cases where the asymptotic 

series involved are in fact convergent power series are also 

detailed in the notes after the lemma. 

Proof of Lemma 1 

The result 

n+r 	 K-r 	n+1) 
I r (x) = 
	

a.1< r (x) x 	+ 0 x 	as x 
K 	

0 + 
=o   

(for any integer n 	0) 

will be established whence the lemmas as stated before will follow. 

It is first noted that the formal Maclaurin expansion 

	

fK() 	
K 

K=o 	K! 	X 

(even if it has zero radius of convergence) is, under condition (a) 

the asymptotic expansion of f(x) as x -'-  0+. 

Indeed it can be seen by induction that 

fl 	fK() K 
f(x) Ko 	K! x +R (x) n (1) 
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I 
where R(x) 

a 	n! 	Jo. 
(x - t)t1 f 1 (t)dt 	whence 

the substitution t = ux in the integral makes it clear that 

R(x) = 	 This result will be used to establish the lemna 

without any assumptions being made concerning the radius of 

convergence of the Maclaurin series for f. 

Part (i) of the lemma (the existence of Ir(X)) is easily established 

using (b) and (d) and repeated integration by parts. 

If r > 0 it can be shown that 

CO 	r 	 r-1 	r-2( . 	 !° 	f(t) f (t) dt = - f 	Cx) - f 	Xj 
-"-(r-1) "? + r! 

J 	tr+ldt t 	 x x 	 x 

whence the existence of Ir(X)  is Immediately verified while the 

existence for r = 0 follows immediately fran (b). 

ii) 	The integral Ir(x) is first written in the form 

	

r-1 	fK() K. 
	

CO 

	

 f(t) Ko 	Kr 	r-1 fK (o) 	K-r-1 
dt+ 	 t 	dt 

X
r+l K! 	i 

(where a reversal of integration and summation operators has 

taken place in the second term and the sums are defined as 

0 for r = 0). 

The integration is performed and a function F defined by 

r-1 . K.. 
F(t) 	f(t) - E 

	

Ko 	K. 

whence 

I (x) = 	f 	F(t) 	r-1 	fK.()  . it K7-r 
dt+ KZ  r 	J 	tr+l 

The function F (defined on[0,co)) has the properties 

	

FK(0) = 0 	 (0 	Kr-1) 

and FK(t) = fK( t ) 	(K r) 
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(Dl) 

(2) 



whence it follows from (1) that 

F(t) 	
fK() 	

K. 

	

K=r 	
t 	ast+O+. 	 (3) 

It then follows from (3) that the function 

DFIt) 	
1 fr() 

	

= tr+T - T 	 (D2) 

has a removable singularity at the origin, a fact which will be of 

importance later. Meanwhile another function hr(x)  is defined by 

the equation 

hr(x) 	 g(t) dt 	 (D3) 

and the equation (2) for I r 
 (x) is rewritten in the form 

	

1 	
fr() 	r-i f K() 	K-r 

	

___ 	 _____ X 	
(4) dt + I I (x) = h (x) + r 	r 	 t 	K=o 	K! 	r-K F-X  

(4 	fr() 
dt. Attention is first concentrated on J x 

A preliminary integration by parts (using (c)) gives 

	

fr() dt = _fr(X) log x - 
	

f'(t)logtdt + 	fr+l( t )logtdt fo ix t 

whence the substitution t = xu in the second integral above leads to 

the result 

	

:

ft) at = _fr(0) logx 	fr+l(t)logtdt + x 	
: f

1 (ux)logudu. (5 
t: - 	 FO 	 f 

The last term in (5) is now dealt with using (1) again whence for 

any fixed u >0. 

n r+K 
fr+l( ) = I 	(0) K-i K-i + R 	(ux) 

	

K=i (K- 1)! X 	u  n  

The above equation is now multiplied by logu, integrated from 0 to 1 

with respect to u and the result multiplied by x. When the result 
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1 

J K-i logu du = - 	is used this gives l u 
o 

1 

I r+ 	
n 	r+K 

x  Jo 	1 (ux) logu du = K 	
K 
x +p 	(ux) where 1 	K. 	n-i  

n+1 	1 	 1 
'C 	 log u 	n-i fr+n+i(,,)dd P...1(ux) 	
(n-i)! f 0 U 
	 (1-v) 

and is clearly 0(x n+1) as x -* 	
r+n+1 

0+ since (by (a)) f 	(uxv) is 

uniformly bounded as x 	0+ for 0 	u 1, 0 v 1. 

It follows by substitution in (5) that 

f r() 	 _______ 
dt = .fr(0) logx - 
	

fr+i() logt dt 	
fl fr+K (0)  

K1 -K-.-Y7- 	
X 	

n+i) 
t 	

K 
J  

[It should be noted that the result still holds for n = 0 if the sum 

in (6) is defined to be zero in this case. This is obvious fran (5) 

where the last term is 0(x) as x - 0+1 

It remains now to attend to the term h(x) in (4). Fran (D3) it is seen 

that h 1  = -g and since g has a removable singularity at the 

origin this implies that 

x 
h r (x) - h r(0) = - 	g(t)dt 

It is easily shown using the definition of g (D2) and the equations 

(3) and (1) that 

K+r r+ 
= z 	

(0) K-1 	
n f K(°) 	

+ O(t) as t ' 0+ K1 (K+r)! 	 k  

(the sums being defined as 0 if n = 0) 

whence 

K fl fr+K (0)  K _______ 	_______ 	n+ 1 
h (x) - h (0) = 1 	

fr+K(0 x - 
	_____ 

r 	r 	K=1 	K! 	T K=1 (Ki+r 	_ + 0(x ) as x - 0+ 

or 

x 	n+1 
h (x) = h (0) + 	

fl fr+K (0) 	K n+r 	fK(0)  K-r 

	

_____ 
X 	

+0(x ) r 	r 	r! K=1 	K! 	K K=+1 K! 	K-r 

as 	-*0+ 	. 	 (7) 
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Substituting from (6) and (7) into (4) (noting that two summations 

terms cancel) gives the result 

n+r K, 	K-r 

	

Tr (x) = h (0) _! 	
FO

fr+l(t)logt d t 
- fr(0) logx + f °)x

r 	r! 	 r., 	 Ko 	K! 	r-K 
r 

n+1) 	 8) + 0(x 	as x + 0+ 	 ( 

The final step is to find h r (o). This is achieved by returning to 

the definition of h r 
 Cx) whence 

h(x) 
+ 
 ~' F fr() dt 

= 	

F(t) dt 
tr+l 

For r = 0, hr(X) = 0 since the summation part of the definition 

of F(t) does not exist in this case (See (Dl)). Otherwise, for 

r >1  1 repeated integration by parts of the right hand side gives 

1 
rr 

dt 
r 	

= 

1 F(x) 	1 	F' (x) 	1 Fr1(X) + 	
COx Fr() 

+ r(r-1) xri 	r! 	x 	r! 	j 	
dt 

the infinite limit giving zero contribution each time because of 

the definition of F(t) and the property (d) of f(t). 

It follows (since F'(t) = fr( t)) tha t 

h (x) 	! 
F(x) + 	1 	F' (x) + 	+ 1 F r -1 (x) 

r 	r 	r 	r(r-1) xl 	r! 	x 

and since h r 
 (x) is continuous in the right at 0 (being d$fferentiable 

on the right there) h (0) can be evaluated as lim h (x) 
r 	 x-3O+ r 

= ! 
fr(0) 

+ 	1 	
fr(0)  + ____ + 	f r(0)  

r 	r! 	r(r-i) (r-l)! 	r. i! 	
(from (3)) 

f r(s)  

M71--  i m 
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Finally the substitution of hr(0)  into (8) and use of the definitions 

of the aKr(x) give the required result for r > 0 (since h(0) = 0). 

Corollary 

Let f be such that 

fEC' [O,) 

F 
 f(t) dt exists for all x > 0 

f(t) logt + 0 as t + 00  

then 

	

F f / (t)logt dt = - Urn 	f(t) dt + f(0) logx)( F x-*O+ 

Proof 	Let x 0 	in equation (5) with r = 0 

This result will be used several times in Appendix C. 

Note that if the Maclaurin series for f is convergent for IxI<R then 

the asymptotic relations in the proof of lemma 1 become equalities 

so that if x * 0 the result becomes 

CO 	
K- r 

I (x) = E aKr(x) x 	or 

CO 

r 	Ko  

fK(0) 
x 
 K-r 

	

____ 	 fr(0) logx 
	for 0 < x < R - I(x) 	E 

 
r 	 K! 	r-K 	r 	ry 

K=o 

The right hand side is analytic in the complex plane cut from 0 

for IxI<R so that if x is a complex number z the corresponding result 

is 

fCO()

__ 

	

K(0) 	K-r 	 f r(0)  
 Z  

tr+1 	K=o K! 	r-K 	r 	r! logz 

r 

(Iz<R, I arg<1r,z*O) 
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As an example consider the function 

' 	-zt 
E (z) = 	

e 
tr dt 
	(r an integer > 2) 

The integral, converges for Re(z)> 0 but not for Re(z) < 0. 

However, the substitution u = zt gives 

	

E(z) = r-1 .J 	du • 	 - 

All the conditions of the lemma are satisfied by e- u which in addition 

has infinite radius of convergence. The lemma therefore provides 

the analytic continuation of Er(z)  into the cut plane so that for 

z *0 and Iargzir 

r-1 	00 	
(1)K 	'rf'l 	(1)rl r  

	

E
r  (z) = z 	I Ko 	K! 	(r-l-K) + (.r-l)! ml 

K*r-1 

	

1 	F (_,)r -t
(r-1)! 	e logtdt 	(r-1)!  logz] 

 FO 

- t 
r-iJ!  	logz +e 	logtdt) 

K 

	

00 	 (-z) 

	

Ko 	K! (K-r+1) 
K4-r1 

Since 	etlogtdt = -'r (Y = Euler's constant) 	this agrees 

with the result in Abramowitz and Stegun.,k  Similarly results could be 

obtained for 

	

coszt dt 
	and 

	

siriZt 	
dt t r 

by considering the real and Imaginary parts of 

oo -jzt 
e - dt 

j 	tr 

and using the previous result with z replaced by jz. 

* 
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In the lemma s which follow f and g are two (possibly canpiex-valued) 

functions defined on E O,°) with the following properties 

f, g € cco[O,00 ) 

For K = 0, 1, 2, 

f1<(t)logt, gK(t)logt - 0 as t-'- 

	

C) 	f(t) dt exists for all x > o 

	

d) 	gK(t)dt is absolutely convergent 

In addition z is a complex number such that I zJ =R, I argz 
and (X is a real number such that 0 < a < 1 

Lemma 2 

I (z,a) 	rf(t) J° 	
e_ZtUg(u)dudt exists and 

for any integer N > 1 

N-i 	r 	r 
1 1 (z,a) = E 	g (°) 	

E aK(a) Ru(r) Jo r+i Ko 
z 

N-i 	r 

	

- 	

g(o) F(ct)+o( ~ 1) r=o 	Zr+1 	r 

as R + ° where the a Kr  are as defined in lemma 1, 

= 

 

1- CL and the functions F are such that r 

F()  

fK+r (0)  
lia 	 K=i 	(K+r)! K 	as R -'- 

Proof 

	

i) 	Existence of the repeated integral is first proved. 

For I  argzJ 	
, J e-ztu g(u)du 

is absolutely and unifounly convergent (for t > 0) by the 

Weierstrass, test and (d) with K = 0. This integral is 

therefore a continuous function of t for t > 0. 
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Also for any, fixed non-zero z with Iar gzI 

e -ztu g(u)du = g(0) + 0 (1 
	

'- 

__ I 	 p) 	as t - 
Jo 	 zt 

by integration by parts, using (a) and (d) to prove boundedness 

of g at . 

Hence by (a), (c) and (d) 

F5
1

-ztu  

	

f(t) 	e 	g(u)dudt exists. 
Ka 

The inner integral above can be integrated by parts repeatedly 

to give 

N-i 

	

10  g(u)e 	du= -ztu 	E 	
gr(0) 

J 	 r=o zr+it' + RN(zt) o 	
(9) __  

_ 	-ztu N where 	RN(zt) = 	NtN Jo e 
	g (u)du 

(the upper limit gives zero contribution due to the boundedness 

of the functions g   at 	, this leing a consequence of (a) and 

(d)). 

Further 

1 	
ztu N+1 

RN(zt) = N+1tN+i [gN(0) + Jo e 
	g 	(u)dul so that 

IRN(zt) I 	IN+1tN+1 (where K is a constant independent 

of z and t e.g. K = IgN(o) I + 	I gN(u) I  
FO 

It follows(using (9)) that 

N-i 	
dt + 	f(t) r (0) 	f (t) 

	

r=o zr+l Fi tr+i 	IT 

	

1 1 (z,ct) = E 	g 	 RN(zt)dt 	(10) 

RM 	 1P  

Since f is continuous and tends to zero as t 	by (b), 

N = sp f(t) exists and the modulus of the second term is 

less than or equal to 

MK 	 1 

/ z t 1  Fi + •dt 
 I 	 tN1 
RM 
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- MK 	
R 	(sinceN > 1). 

- NRN+l 

Hence 	f(t)R 	
I 

Ntt = 0 (RN+1) 	
as R -  

1 /Ru  

To deal with the first tern in (10), Lemma 1 is invoked; 

Clearly f satisfies all the conditions of Lemma 1, (the 

condition (d) there being a consequence of (c) in Lemma 2 

which is supposed tohold for K = 0, 1, 2, -----). Hence, 

using Lemma 1, 

	

f(t) 	r 	 1 

dt = 	
ICr 	J]+ Gr  (ia) 	where 

	

F, le 
r+i 	K=o 

	

1 	00 	 1 	1 
+00  

	

Cr  () 	E aKr 	R1(K-r) 	
as R 

 K=r+1 

	

1 	00 	 fK(0)  
i.e. Cr 	 K=r+1 K! (r-K) R1L) 

	

00 	
fK+r(0) 	1 

= 

	

Kly 	(K+r)!K 	RaK 

Hence 

	

f(t) 	
r 	 I ______ 

dt = E E 	( 'Ka RtKr) ]  Fr () 

	

1/Ru tr+i 
	K=o aK 

(F as in the statement of Lemma 2). r 

Substitution of the above result in (10) and use of (11) 

gives the result of the lemma in the form stated. 

Lemma 3 

l /Rct 
1 2 (z,ct) = f

o 
f(t) 	e_ztug(u)dudt 	exists and for an)' 

 

integer N > 2 

	

N-i 	 K 	N-2 r 	N-r-1 
f (0) 	g (°) 	

fK+r(0) 1 
I 2 (z$) 	E 	b (z,a) 

K=O K 	K! zK+1 	=rozr+i K=1 (K+r)!K 	1( 

	

+ 0 	) 	as R + , where 

bK( 	
K 

z,a) = (y+1og)g (0) - FO g 	(u)iogudu -
K+i 

g 	(u)E 1 (u)du  K+i 

and C = Z/Ra 
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Proof 

(i) follows from the continuity in t of the inner integral as proved 

in Lemma 2 and the continuity of f. 

ii) Equation (1) in this appendix gives 

= f (t) 	
N-i fK(0) t  + RN(t) 

	ere  RN(t) = O(tN) as t 	0+ 
K=o K! 

It follows that, as R + 

a IR 

fo 	R(t) J°° etUg(u)du 

= 0 ( fo t  dt) 	(using (b) with K = 0) 

= 0 (RaN+a). 

Hence 

	

N-i fK(0) 	iIR  a 
K 

1 	 t F e
-ztu

g C )d d t+0( aN+a ) as R+ . 2 	Ko 	K! 	1  	R  
(12) 

It is first noted that the expression (zt)K FO 

-ztu

K 
	e 	g(u)du 

is of the form s ro e-su g(u)du with s = zt. This latter 
 K 

integral is associated with the Laplace transform of g (u). 

Indeed 

-su 	K 103 gK(u) e 	du = 5 	e 	g(u)du 

K-i 	K-2 / 	 K-i - s 	g(0) - s 	g (0)------g 	(0) 

the result being true even when Re(s) = 0 provided g and 

all its derivatives up to order K-i vanish at (the result 

is also true for s = 0 by (d)). 
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Hence for I argz j< 7T  , t > 0 and K 	0 

F K 
(zt)K 	-ztu 	 K(U) -ztu 	 K-r r-1 

r=1 e 	g(u)du = 	g 	e 	du + E 	(zt) 	g 	(0) 

(the sum being defined as 0 when K = 0). 

Thus 

K Fe-ztug(u)du 
 1f ztuK( 	

K 	
1 K-r

e 	g udu+Et  	= 	 r=l rt 	
gr(0) 

whence 

1/Ru 

	 zK 	
-ztu K 

Fe-ztu g(u)dudt = - J 	F e 	g (u)dudt 10  
K 	r-1 	 RKU 0) g ______ (13) 

r=l 	r 	K-r+1 

-ztu 
Since 	g K (u)e 	du is uniformly convergent in t for 

t 0,reversalof the order of integration is permitted above 

giving 

'IRa 
gK 	

1-e 	 z 
(u) 

-ztu 	1 J 	gK(u)e 	dudt = 	I 	du where -- 
u 	 R 

1 F K 	d 
z 	 du 

= - 	g (u) - [EE 1 (u) + log(Cu) + y]du 

fran Abramowitz and Stegun (p.230). 

Integrating by parts gives an integrated part of zero since, 

	

K 	 K 	 K 
at the upper limit, g (u)E 1 (1u), g (u)1og(u) and 'g (u) 

are separately zero while the whole expression 

Ei(u) + log(u) + y = 0(u) as u - 0+ 

(from Abramowitz and Stegun, p.229). 
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Simple manipulations give subsequently the result:  

ic 

fo I -ztuK =  bK(z,ct) and hence,from (13),  Jo e 	g (u)dudt z 

f  1 /R(x K    bK(z,c) 	
K 	r-i 

	

) R 	r
+l)o

eg(u,dudt= 	r
g 	0 

o 
  

	

 r 	K-r+i 

Substitution of this result in (12) now gives 

N-i 

	

K r-1 	R(Kr) 

	

12(z,a) = Ko b(z,a) 

fK 	Ni (0)  + 	fK(0) 	(0)  
1 K=o K! 	r=i 	zr 	K-r+1 K  

+ 	0 (RuN 	) 	 as R -'- 	 (14) 

The double sum can be written 

N-i fK (0)  K 	9ri(0) 	-a(Kr-i 
Kl K! 	r=i 	zr 	K-r+I 

(since the inner sum is zero for K = 0) 

	

N-i 	fK(0)  K-i gr(0) R(K-r) 

	

= K1 	K! 	r=o zr 	K-r 

Reversing the order of summation gives 

N-2 r 	N-i 

J
g(0) E 

o r+1 K=r+1 

N-2 r 	N-r-1 g(0) E 
r 	r+l K=i 

fK(0) Ra(Kr) 

KI 	K-r 

fK+r(0) 	1 
(K+r)!K 	-3:K 

or 

and substitulon of this expression in (14) gives the result 

required by the lemma. 
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Lemma 4 

i) 	1(z) = F g ( t) E 1 (zt)dt exists and 
 

= 
Iz) 	 as 	1 CO 

r=o r+1 	
as z 

Proof 

i) 	Fran properties of the exponential integral,it is known that 

for any non zero z such that arg(z)lT and for real t, 

-zt 

	

E1(zt) ,,ezt 	as t ' 

Thus 

- zt 
g(t) E1(zt) 	

e 	g(t) as t 	for argz 
z 	t 

But (d) and acomparisontest imply that 

g(t) dt 

is absolutely convergent (a > 0) and clearly 

	

g(t)E 1 (zt) I = 0 ( 	) 	as t + cO 

by above if z 	0 for largz j< 
7I•
- 

2 

Hence the existence of 

Fa g(t)E1(zt)dt 
is ensured if a > 0. 

At the origin, E 1 (zt) "- 2..nt as t -' 0+ for fixed non zero z 

so that g(t)E 1(zt) flu g(0) 2ntas t 4-  0+. Hence g(t)E 1(zt) is 

integrable over any interval [0,a] being continuous (except at 
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0) and having an integrable singularity at 0. It follows that 

1(z) exists under the conditions on g stated at the beginning 

of this section. 

By the definition of E 1  

1(z) = 
	

g(t) 	dudt 

The transformation u = zv in the inner integral and reversal 

of the order of integration gives 

1(z) 
= J00 

e 	
fo g(t)dtdv 

i.e. 1(z) = FO 
h(v) eTdv 	where 

D 	I
(V 

h(v) = 
	
ag(t)dt. 

The function h(v) is continuous for v 0 and has a removable 

singularity at the origin (define h(0) = urn h(v) = g(0)). 
V+o 

Also by repeated differentiation and use of (h), h(v) and all 

its derivatives vanish as v 

Hence, by repeated integration by parts, 

	

-zv 	 h(0) 
1(z) = 
	

h(v) e 	dv 

 

A. 	a z + 	 (15) 

in I  argz 2 

It remains now to express hr(0)  in terms of gr(0) 
	Since 

00 

g(t) 	 (o) tr as t ' 0+, it follows that 
r=o 	r! 

V 	 r 
CO 

as v 	0+ 	g(t)dt 	E 	g (0) 	
r+1 

I fo 	r=o (r+1)! 
V 	 whence 

h(v) 'j E gr(0) 
	

r 
 r=o (r+l)! 

V 
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CO 	hr(0) 	r 
But as v + 0+, h(v) ' E 

r=o 	r! 

so that,by the uniqueness of asymptotic expansions, 

hr(0) = g 	 - 

Substituting this in (15) gives the required result. 

§B.3 (The main theorem) THEOREM A 

Statement 

Under the conditions on f and g stated at the top of page 170. 

i) 	1(z) 	FO FO f(t)g(u)e
-ztu  dudt exists and 

co 
1(z)" 	dr(z) 

r=o r! zr+l 

as z -'- 00  in largz 	1  where 

dr(Z) = [1ogz+Y+S]f'(0)g ' (0) 

	

- fr(0) FO g r+1(t)logtdt_gr(0) 	fr+1(t)logtdt 

0 	ifr=O 

with S= 	 if r1 

( 
m=1 

Proof 

1(z) = 1 1 (z,ct) + I2 (z,c) so the existence of 1(z) is 

ensured by lemmas 2 and 3. 

It will be proved that,for any integer n > l, 

1(z)
, i~j{[1ogz+Y+S]f r (0)gr (0)  - fr(0) 

f° gr+l(t)logtdt 

- 	 gr(0) 
J° fr+l(t)logtdt} + o 	) 

O 

as z + = in largz 	whence the result will follow. 
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Given any integer n > 1 and any a (0 < a < 1) first choose 

N (and keep it fixed) so that cxNn, 	n. Clearly this 

is always possible e.g. N = max{[]+ 1, [ n 
I + i.} and 

certainly N> n so that also N > 2. 

With this value of N the remainder terms in I (z A) and 

1 2(z,a) are clearly o( 1 as R 4- 00. 

The contribution of the second terms in I (zp) and 1 2 (zp) 

to 1(z) are 

N_ 2 r (0) 	 N-r-1 fK+r 	 N-i 
 (0) 1 	- g 	(0) 

	

F ( 	 F 	(ct). r=o r+l 	r 	Ki (K+r)! K RaK 	 NI 

K+r 
1 	

= 	
f 	(°) 1 Since Fr 	 Ki (K+r)!K RMKas R4-  00  

the expression in square brackets above will be 

1 
° 	 ) 
	

as R 4- 00 

whence for r > 0 the general 'term in the sum above will be 

1 
0 

Rr+l - N-ar-a ) 

= 	0 ( 	
1 	

) 

1 
= 	 as R 4- 	since N > n, > 0. 

It follows that the sum itself (being finite) is 0 () Rn 

as clearly also is the other term 

N-1 (0) 

- zN 	FN_l (ia). 

Hence addition of 1 1 (z,a) and 12(z,a) gives 

N-i r 	 r ___ I(z)= E 	
g(0) E a 
	( r=o r+l K=O Kr ja  

N-i 	 K 
+E b(z,a) °  K=o K 	K!z1- o (in) 

	asR+00 (18) 
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Using the definitions of the aKr  (see lemma 1) the first sum, 

S 1  (say), can be written 

N-i r 	r-1 K 
S= 	E g(0)  E 	f(O> 	1 

1 	r=o 	r+l  K=o Y' (r- 	(K-r) 

N-i r 	 r 
+ 	

g(0) 	
[C 	

f(0) 
log 

r=o r+l 	r 	r! 	( 

The double sum above can be written 

N-i 	r 	r-1 	K 
z 	g(0) 	E 	f(0) 	1 

r=i 	r+i K=o K! (r-K) R(T) 
(since the inner sum is zero 

f or r = 0) 

and by reversing the oder of summation this is equal to 

N- 2 K 
f(0) 

N-i r 
 1 i 

z Ko yj r r+i 	r-K R(K-r) 	or 

N-2 f K(0)  N-K-2 r+K+i 
g 	(0) Ra(L) 

Ko K! 
E 

Jo 

	

 r+K-iZ 	r+i 

Hence Si can be written in the form 

	

N-2 	K 	N-K-2 r+K+1 
f(0) 	E 	

g 	(0) + 
S1 = Ko IC!zK+l r=o 	(r+1)?- 

	

N-1 	gr(Q) 	fr(0) _____ 	_____ 	 z 	 (19) 

	

r=o 	r+1 [Cr - r! 	
log 101 i' ( = 

The second sum in (18) (using the definition of the bK(zcL)),  S2 

(say), is 

N-i 	K 
S2 = Ko K!zK+] [(y+)og)gK(0) - Jo gK+1 (u) log udu] 

N-i 	K 
E 	f(0) 	K+1 

- K=o K!ZK+i 	
g 	(u) E 1 (u)du . 	 (20) 

Combining the first term in (19) with the second term in (20) 

gives the expression 

N-2 K 	

f° gK+l 	
N-K- 2  K+i+r 

E 	'K 	
(0) 	 (u)E (u)du - 	g 	(0) 

° K!zKi 	 1 	 r=o (r+l)?- 

N-1 (0) 

	

- 	(N_i)!zN F gK+l(u)E(u)du 
O 
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By Lemma 4 (applied to gl)  the term in square brackets above is 

1 
0 

( 	 1N-K-1 ) 	as R -3- - 	 whence 

each term of the sum is 

° R' 	
) 
	(ICI = R) 

1 
= 	° 

= 	0 () 	as R -3-00 

Clearly the sum itself (being finite) is also o()  as is the 

other term in E whence E itself is 

o (in) 	asR3-00 

When it is recalled that 

jC0

= 	

! _! 	fr+i(t)logtdt and 
r 	r! 	mlm r! o 	

Ra 

addition of (19) and (20) gives 

N-i 
S + s = z 	

dr 	
+ o (in) 	as R 00 

1 	2 	 r! r+l 

The sum in the equation can be written 

T'.i 	dr(z) 	 i 
ro r! 	+ o (in) 	as R 

since each of the terms between n and N-i inclusive is 0 ( 

Hence ,since S 1  and S are the two sums appearing in equation 

(18) for 1(z), it follows that 

n-i dr(z) 
1(z) = 	 ( n) as R 00 

- 	r 	r r+1 o  
as required. 
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APPENDIX C (ASYMPTOTICS II) 

The main part of this appendix (C.2) employs theorem A in 

appendix B (B.3) to derive the asymptotics of the wave free part 

Of 2(X,Y) in the right inner expansion up to terms of order 

§C.1 gives the full asymptotic expansion for the wave-free part of 

i (X,Y) and §C.3, §C.4 contain two results required in Chapter 7. 

§C.1. Full Asymptotic series for F 1(R cos 0, R sine) 

From 95.2, F 1  (R cos O,R sin 0) (the wave free part of 	) is 

given by 

F1 (R cos 0,R sin 8) = L(R cos 0,R sin 0) + 1 1 (R cos 0,R sine 

where 

= R2 	2 d [log I 1+2u sin 0 +u2 J -Ru L(Rcos0,Rsin0) 	iJ u  	
1-2u sin o+U2)le 	du  du 

0 
and 

Co 

1 1 (R cos 0,R sin 0) = - -- Re f (1+ju)(1-ju)' 
u 	

e- U 	 JO) du (=Re iia 	j  

(see section between equations (5.9) and (5.11).) 

In L. , the log term in the integrand may be written in the form 

log r (1_iuelO) (1+iueO)J 
.0 	whence, by logarithnic expansion, 

LL..(l-iue 	)(1+iue 

2 d I 	u2 +2u sin 0+1 00  r 2r+2 u -
du  
 log 	22 	4 	(-1) u 	sin(2r+1)O as u-*O+ 

I ro 

Hence, by Watson's Lemma, 
Co 

L1(R cos  O,R sin O) 	
2 	(1)r (2r+2)! sin(2r+1)0 
ira 

r=o 	 R21+1 	
as R + 

Similarly use of the result 

Co 

(1+ji)(1-ju) 3 	- 	U + ( 1)r 2( 1)2] .r+1 r 

	

u 	asu -'-O 
r=o 

and Watson's Lemma gives 

- 182 - 



00 

]oo u 	-Cu 	1 
(1+ju)(1-ju)3 	

e 	du 	
[1()r 2( r+ l)2]jr+l 	r! 

r=o  

* [1+(1)r_ 2(r+1)2]jr 
= 	

j(fl0 

r=o 

	

as R 	certainly for - 	0 < ¶12 

Hence 
00 	a(0) f 	u 	-Cu 	 _e 	du 	 r 

	

Re 
j 	(1+ju) 	

L 	r+1 0 	 u)3 	
r=o R 	

as R 
 

(a(0) = (_1)K K(K+1) (2K)! sin(2K+1)0 
where, for K >  

(a2K+l(0) = (1)K (K+1) 2 (2K+1)! cos(2K+2)0 

Thus 

	

Go 	a(0) 

	

1 1 (R cos 0,R sin 0) - 	- 	r 
as R+ ira 	r+1 

r=o R 

It follows immediately that 

V
Tra 	

f(0) 
r 	 + 

	

F 1 (R cos 0,R sin 0) 	
r+i 	 as R 	where 

r=o R 

	

2K0 	= (_1)K(+1)2 (2K)! sin(2K+1)0 for K > o  
(2K+1) ! cos(2K+2)0 

In particular 

	

F1(R cos 0,R sin 0) = ±. I sine 	cos20 - 8sin3e 1 

	

ira: 	R 	- 	R2 	R3 	j 
+ 0 1 	. 	( C.1) 

	

§C.2. 	Asymptotic series for F 2  (Rcos 0,R sin 0) to .  order 

From §5.5, equations (5.33) - (5.38) it is seen that 

	

3 	 3 

	

F2  (R cos O,R sin 0) = 	L2 . (R cos O,R sin 0) + 	12 .(R cos 0,R sin 0). 
i=1 	 i=1 

The terms are dealt with in turn 

(a) From comparison of (5.33) with. (5.5), and (5.36) with (5.6) it 

is seen that 

	

i 	 i 	sine 	cos20 	1' 
L21 + 1 21 .  = - T F 1  . = - 

ira2 	R 	

) 

J + 	
(c.2) 
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(b) L 2 2 (R cos O,R sin O)= 
00 

- 	R 	
Im.{ 1  r 	I1_2tsjnO+t2 	d I 

2h(3) 	
1 -jRtu logi 

	

- - 2rr2a2 	j J0 Jo 	1+2tsine+t2 j 	LU 	(u)je 	dudt 

(see after (5.39)) 

The double integral has the form of theorem A with 

t[u2 h (3) (U)] (where h(u)  f(t) = lO1+2.0~ 2 11 g(u) =  
u2 +1 J 

and Z=jR. 

It is noted first that f(t) 	0= as -t 	and that f' (t) is a 

rational algebraic fraction which is 0 
W

as t ± 

Hence the orders of all higher derivatives can be obtained by 

differentiation of this order term. In addition g(u) itself is a 

rational algebraic fraction which is o1!1 as u 	, While 

argz= 71/2 . Thus the conditions of the theorem are satisfied and, 

as R -* 

L 22(R cos e R sin 0 

2 
R1 ' 

	

Im. 	' 	 {[log R +  j 	+ y 
+ s]fr (o)gr (o) _ f  r 

(0)J0 
 i*1 
g 	(t)log t 

___ 
- 2T12a2 	J 	L. 	 r+1 

r=o r!(jR) 

- 	

[- l 

 as R 

But f and g are defined also for negative values of t and u and 

are real for such values, f being an odd function and g an even 

function (since h is even), so that 

2K 	 2K~ 1 
f (0) = 0 	and 	g 	(0) = 0 (K > 0) . In addition g(0)=O, 

Hence, L 22(R cos 0  sine) = 
- 2ir2a2 

R 	
Irn. 	(0)f

f(3)(t)logtdt]
23 1-g 

 (2)  

0 
i +o ( -J as R± 

- g(2) (o. 	() 	 I i 
- 47r2a2R2 f 	(t) log tdt 

+ °1:ri. o 

Also g 
(2 ) (0) = 144 and it is proved in the next section (see eq.(C.8)) 

that 	fC0f(3) 
(t) log tdt = -271 sin 20 . Thus 

0 

L22  (R cos 0,R sin 0) = 
- 

72sin20 
 2 2 	+ o[.] as R - 	 • 	 (C.3) ira R 
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(c) L,, (R cos 0 ,R sin 0) = 

RRe  {
f lool foo

log
( 1 +2tsin

E) t2 	
du 

1_2tsin01t2) 
--- [ u2FI( u)] eJRtUdudt J 

	

i12a2 	j o o 

where F(u) 
- 

- (u 
U 

-j)(u+j) 3  

Comparison with theorem A in this case shows that 

f(t) = lo (+ 	
5h13) 

, g(u). = ._(U2F1 (u)] , Z = -jR 

f satisfies the requirements of the theorem (as before) as does g 

since g() = o[-4-] as u + 00 , while arg z = 
- 	

. In addition 

f(0) = O,f' (0) = - 4 sin 6,f(2) (0) = 0, g(0) = 0,g1(0) = _2 ,g ( 2 )(0) =_24j .  

Thus L23  (R cos 0,R sin 0) 

- 2a2 Re. 
	

1 	
~ 1 { [log R - j 	+ y + s]fr (o)gr (o)  

r=o r!(-JR) 

- fr (o) ,  gr+l(t)log 
tdt- 

 gro)ffr+l(t)log 
 t dt} + 

- 	 R 

	

- - 7r2a2 	{- -[(log R-j 	+ y + 1)(8 sin 0)+ 4 sinofg 	(t) log tdt. 

+2 If 
(2)

(t) log tdtl Jo  

- 1j-  [24j' 
ff(3) 

(t)log t dt] } 	+ 1
- L)  

= . 1 { 

 

[
Co
g (2) (log R+ y +1)8 sin +4siORe 	(t)log t dt 22   

+  2f
(2) 	 12 	(3) 	 1 

f 	(t)log t dt] --5f 	(t)log t dt.}+ o-J.(C.4) 

The integrals occurring here are now evaluated in turn 

D(2) 
(j) 	11= Re. f g 	(t) log t dt 

By the corollary after lemma 1 in §B2, 

	

f
(2) 	

dt = 
- lim i r c g ' (t) dt 

+  g'(0)  log x}. 	(C.5) 0 g 	(t)log 	 x+o+ x t 

From the definition of g , 	g' (t) = t2F(3) (t) + 4tF(2) (t) + 2F' (t) 

• 	

f tF 
g ' (t) 	 (3 ) 	 (2) 	 F' (t) so that ' 
	

dt = 	(t)dt + 4J 	F 	(t)dt + 2J 	dt 

) Since f 	( tF 	(t)dt and f
= (2) 

F 	(t)dt exist, this can be written 

	

o 	 o 

rw 

 

F(2) 	 F'(t) 

	

9 1  (t)  dt =f tF " (t)dt + 4f 	(t)dt + 21 	dt + o(1) 
Jx t 	0 	 0 	 'X 

 --
t 
Lt)- 

 x+o+ 
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Using F'(0) = -1 and integration by parts leads to the result 

 f  91(t) dt = 5 + 2jx 	 (i) 
F(t) + o 
	(since F(x)-)--1  as x 4- o+) 

Jx 	t 	 t2 	 x 

or fx
CO 	 CO 

g'(t) dt = 5 +. 2j 
t(t-j)(t+j)3  dt + o(i) 	(when the  t 

definition of F is used). 

g'(t) __ 	 t2  -1 Thus Re 	 dt = 5 + 2 	
t(t2+1)3  dt + o(1) J 

	

J x 	t 	 foo x 
00 

	

- 5 + 	(u-1)du Ix 2 u(u+i)3 	+ o(1) 	(where u = t2 ) 

The integral here is evaluated by elementary methods giving 

(x2 

) 	

+ 
log 1+x2 	1+x2 	+ 	(i+x2)2 	whence 

Re, f X 

g(t) a 	= 	7 + 2 log x + o(1) 	as x -3-o+ 

Thus from (C.5) (when it is recalled that g' (0) = - 2) 

I = Rej f g ( ) (t) log t dt = -7 
	

(C.6) 

(ii) I 	Jf(2)(t) log t dt 

Again the result 

	

ff(2)(t) log tdt = - l 	j 	dt + f l (o)log x 1is used 
0 	 X+O+X t 	 ) 

It can be shown without difficulty that 

00 

f f' (t) dt = 2 sin  J 	
u-i 	

du 	whence, by t u(u2  +2u cos 20+1) 

elementary methods of integration, 

	

J'" f'(t) 	 I___________ _____________ 	 IT dt = sine log ix+2x2:0s20+1] + 2cosO [ - ardtan(x2+cos2o j 
sin20 J 

or 

	

': 

f'(t) dt = 4 sinO log x + 2 cos e 1 - 	
- 2011 + o(1) as x + 0+  [12  

	

(since -<-2e < 	when O<8< 	). 

00 

Hence 	f 	= 4 sin  log x + 40 cos 0 + o(i) as x + o+ so 
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that (with f' (0) = - 4 sin 0) 

00  
12 = jf 	(t)log 4 dt = - 40 cos 0 . 	 (C.7) 

D  
(iii) 	13 = 	

( 3) 

 o 	(t) log t dt 

(2) 
Since f 	is an odd function 

	

f

CO (2) 	 CO  4 I f 	(t) 	

fo 
t-2t2-1-2cos2013 	 dt = 8 sin 0 	 dt 

J 	t 	(t+2t2cos20+1)2 

I 
also 13  is odd in 0 and 	must satisfy Laplace's equation. 

It follows that 1 3  must be a constant multiple of sin 2e 

whence 

f t 4  -2t 2 _ 1-2cos20 	
- A cos 0 	(A = constant) 

o (t4 +2t2 cos20+1) 2  - 

A may be found by putting 0 = 0 whence 

	

A = 	- (t2+1)3 ] dt , 

and the substitution t = tan 0 gives A = - 

(3) 
Thus 	13 = f f 	(t) log t dt = - 27r sin 2 0 . 	 (C.8) 

Substitution of (C.6), (C.7) and (C.8) in (C.4) now gives 

L23  (R cos 0,R sin 0) 

- 	8 	 4sinff 	 24sin26 
7T 2  a2  R. (OcosO -sinO logR) - 22R (5-2y) + 	2R2°(I) 	(C.9) 

 
Tr - -  

(d) From (5.37) 

- 2 vcos(Y+s)v-sin(Y+s)v -vX d 2 () 

	

______________________ 	 J su im.{f j f 122 (x,Y) 
- Tr 2 a2 	 \721 	

e 	—[u h 	(u)]e 	dvduc 

With X = R cos 0, Y = R sin 0, the inner integral 

f v cos(Y+s)v-sin(Y+s)v -vX 
2+1 

	 e dv can be written in the form 
 0 

rm

0 

 -V 	
-0 Re i e 

	
dv where 	=X-iY-is.=Re 1 -is . By ii v-i 

 
integration by parts this may be put in the alternative form 

Re.( + 	+ e(C)) 	where 	e() = - J (.)3 dv and is 

0( 1 /C3 ) 	as R -3- 	for 101 < T1/2 
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Hence 122(Rcos0,Rsin0) = 222 Im Re [3 (R,0) + J(R,0)i- J(R,0)] 

	

ira 	j 	1 

where 
00 	 CO 

J' (R,O) 	I - 	J _(U2h(U))e- jsu duds -10 	du 	 - 

	

Re 	-is 0

00 

J2, 0 ) 	I 	I 	(uzh(3)(u))e -.SU 
duds ___________  j du 

	

JO (Re 	-is) 2  0 

and J3  (R,0) is of the same order (as R + ) as 

1 	I 	d 	(3) 	-jsu J  (Re10_is)3 I - ( u2 h 	(u))e 	du ds I du 
0 

The substitution s = Rt gives forms for the integrals to which 

theorem A can be applied viz 

CO 

	

- 	

j 	
(U2h(3) (u))e -jRtu dudt du iO 

o e -it 0 

	

CO 	 00 

= 1 I 	 1 	
-- (u2h 

(3) 
 (u))e -jRtu dudt 

( e lOjt)2  fo du 
o  

and 33  (R,0) is of the same order as 

CO 

1 

fo -iO 
	

(uh 	-jRtu 

 (e 	-it) 3  o du 
	(u))e 	dudt 

Theorem A is now applied to the three integrals in turn 

Ci) In the case of J 1 (R,0) 

f(t) = 
	

, g(u) 	
d 	2h(3)(U)) 	where h(u) - 	1 = - (u 

	

-iO 	 du 	 - u2 +1 e _ 

and Z = jR so that 

	

iO 	 2i0 f(0) = i e 	, f' () = -e 	, g(0) = 0 , g' (0) = 0 

Hence by theorem A 

	

mi. Re.[3 1 (R,0)] 	= 

	

Im. Re{[_ie1O 	g' (t)log tdt] - 	[e2bo 	g tI (t)log tdt]} + o1 L) 

By integrating by parts (using the definition of g) it is easily 

(2) shown that f g' (t) log t dt = h 	(o) = - 2 

Hence Re. [J 1 (R,0)]. = -(-2 sin 8) - cos2e f00g(2)() log  t 
	

+ 
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2sjnO  

	

and Im. 	
i i 	 R 

Re [J (R,0)] = 	+ 0 -i-I as R + 

	

J 	 Rj 

since g is real in this case (with respect to j) 

(ii) 	For J 2  (R,0) 

f(t) = ____ 1 -jO 	2 
(e 	-it) 

whence f(0) = e210 	and g,Z are as before. 

Hence 

00  1 	1 	2i0 

	

J2  (R,0) = 	[-e 	fo g' (tYlog t dt]} + 0 {-) 
-2je 210 1] -  

	

- 	R2 	
+ 

lxii. 	Re 	[J2  (R,0)] 	= 
2 cos 2O 

- 	R2 	+ 0 IH as 	R 

(iii) Clearly Clearly 	J3  (R,0) = 	0 
flog R 

R3 	J jt. = oFas 
1 

Adding the results in 	(i,) 	(ii) and (iii) here gives 

12 2 (R cos 0 ,R sin 0) 	= 
4 sin 0 4 cos 2O + 	0 11 ' 

- it 2  a2  R 'it 2  a2  R2  p2j 

(e) From (5.38) 

(C.10) 

s)v-sin(y+s)v 
123 (x,Y) = 7T  a2 Re. tj 10 

 CO 

 1 v cos(Y+ 
2 + 	 e'<  4.[U2Ft (u)]edvduds } 

U 
where F(u) = (u-j)(u-i-j) 3  

The treatment here is similar to that in the previous case (d) 

Thus 

.123 (Rcos0,RsinO) 	
= 	

Re. 

	

Re. [K 	(R,0) 

	

1 	+ 1 K2  (R,0) 	+ K 3  (R,0)1 	where 

fo

00 

 . 	J 

00 

-[u2F(u)]eJRtU du dt K1(R,0) 	
= e 	-it o 

CO 

K2  (R,0) 	= JO 

CO 

fo  
[u2F'(u) jRtu 

dudt 
R 2  (e-10 -it)  

du 

and 	;(R,0) 
L  

= 	oJ as R+00 

Ci) 	Theorem A 	is applied with 	f(t) =  . 	, 	g(u) 	= 
e-it 	 du  

and 	Z = -jR, so that 	f(o) = ielO,f(o) = -e 
210  

= 0, 	= -2 ,g(0) 	g'(0) 
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Thus 

Re .Re. [K1  (R,0)] 

=Re Re {-.!_.[_ieiO  jg'(t)logtdt] j i-jR 
- 	

[(logR j 	
2i0 2i05°° (2) 	 (2) -. - 	- -+y+1)2e 	+e 	g 	(t)logtdt-f2f f 	(t)logtdt]} 

0 

+o1]. 

The three integrals here are dealt with in turn. 

By integration by parts (using the definition of g) it is 

seen that 

5 g'(t)log t dt = F(0) = 0 
(2) 

Re. fg 	(t)log t dt has been evaluated in (c)(i) of this 

section. Its value is - 7 

(2) 5 f 	(t)log t dt is evaluated (using the corollary after 

Lemma 1 again) as - urn 	fl(t)  dt + fl(o)log x 1. 
x+o+)x 	 j 

The integral here is easily found by elementary methods giving 

i0 
f' (t) 	2i0 	1 	x 	+ iedt = e 	log j 	

-iO I 	- foox 	t 	
x+ie 	J 	x+ie ie 

2i0 	 210 fr 	2i0 =e 	logx - ie 	 +e 	+o(1) asx -'-o+ 

Whence 

Urn 1f 
CO

f't) dt + f'(o) log x1 	ie 	
[ ir - 

	+ 210 

	

= - 	
) 

Thus 

t 	
2i0ir 	1 	210 dt=ie 	1.- 0 I-e 	 and 

J 

 .21] 
Re  i foCOf(2) (t)log t dt =[0 - 	

sin 20 - cos 20 

The results (1), (2), (3) now give 

Re.Re.[K 1 (R,0)] = - [(logR+y+1)2 cos 20- 7 cos 20+(20-7r)sin20-2cos26] 

i.e. 

Re 

	

.Re 
1  
.[K 1  (R,0)] = - 2cos20logR+2Osin2 6 	7rsin20 	(7-2y)cos20 	11] 

R2 	 + R2 	+ 	 + ° j  
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(ii) In the case of K2  (R,O) 

f(0) = 
	. 	

so f(0) = e218 and g,Z are as in e(i) 

Thus Re. 
J 	1 Re. EK2(R,e)1 

i •  
= Re. Re {J [jR 

i. 	2i8
. R 	

1-e 	f g' (t) log t dt} J} -I-. 	o [T2  

= o 	 since 	f°g'(t)log t dt = 0 
O 

It now follows that 

8 	 4sin2O 
123 (R cos B,R sin 0) = - rr2a2R2 (log R.cos20+8sin2O) + ---- 

7r' a2 

	

4(7-2y)cos20 	 11 1 
+ 	1T2a2R2 	

+ 

	 1Ri 	
(C.11) 

Finally, addition of (C.2) , (C.3) , (C.9), (C.10) and (C.11) gives 

the result 

______ 
F2  (Rcos0,Rsin0) = - 22R (OcosO-sinelogR) - 8sin0 ir2a2R (2-y+i . 

Tr a

8 	 8cos2O 44sin20 

	

- rr2a2R2 (logR.coS26+OSin2O) + Tr2a2R2 	
ir 	

ra2 	
+ o(-).(C.12) 

§C.3 	A result on the differentiation of an asymptotic form 

(required in chapter 7, §7.3 ) is now derived. In particular it 

is required to show that the asymptotics of the expression _(Y 2 F2 (0,Y))
dy  

can be obtained from those of F 2  (0,Y) by differentiation. The 

various parts of F 2  (0,Y) have asymptotic expansions of the form 
CO 	a 	 b +c log  
L 	r 	

and 	 r 	r 	
so that the problem basically r=o ri-i 	 r-o 	r+1 

is to show that the differentiated forms of the parts have 

asymptotic expansions of the same forms. 

It is first recalled that 

F2  (0,Y) = 	(L2.(0,Y) + 1 2 .(0,Y)) where 

L 21' 
I 
 2i 	are given by (5.33)-(5.38). 
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I 
As previously mentioned L 21  (O,Y) = - -j— L1  (O,Y) and 

I21 (0,Y) = - - 1 1 (O,Y) so that L
21 (0 	

+ 1 21 (O,Y) = - -i-- F 1  (0, 

In §5.5 eq. (5.29) it has been shown that 

( y2 	(0,Y) = 	( 3 ) 	-iYu Im if —(u2 h 	(u) )e 	du ira 	o du 

	

+- 'd 	 iYu Re [f —(u2 F' ())e 	du ira 	o du 

where h( 	
- 

.u) 	
•1 	

and F(u) = 	
U 

- u2 +1 	 (u-i)(u+i) 3  

Clearly these integrals have asymptotic expansions in inverse 

powers of Y (by Watson's Lemma)which can be obtained therefore 

from those of F 1 (O,Y) by differentiation. 

The asymptotics of the other terms L2 .,12 .(i = 2,3) all 

arise from integrals of the form of Theorem A . Specifically .they 

are the real or imaginary parts of integrals of the form 

iYtu 	 f(t) I = 5 5 f(t)g(.u)e 	dudt where j dt exists (a>O) and 

g(u) = o14-1 (at least)as u - 	(see §C.2). 
u j, 

d 	d 
Hence the operator M2y 	(= 	Y2 

	
) can be applied under 

the integral sign to give 

2 	
p. ,CO 

M(I) = I 	I 	M2 Y 	±iYtu )dudt Jo o  

. 	. 	
(.t) 	

±if Ytu = 	I fg(u)M (e 	)dudt 
Jo o 

Two integrations by parts in the inner integral (using the order 

property of ej at 	) give 

Y 00 cc 	 ±iYtU 
= 	

(t) 
j0 f f 	M2U (g (u) . e 	dudt 

M2 
U 
 (g(u)) will also be of order 4 at infinity (in the cases in 

§C.2, g is a rational algebraic fraction so the order properties of 

its derivatives can certainly be found by differentiation) and f(t) 

is as before so that Theorem A can be applied. Hence the asymptotic 
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series for M2(I)  will be of the same form as those for I and 

hence obtainable by differentiation. 

§C.4 The leading asymptotics of the expression 

E1 = ¶2a3 j HF[ 	2y+i 4 ) 	+R(s)]ds (IR(s)I< Alogs Yo>1) 

are required in chapter 7, §7.3 where HF  = HL + 	(see defs. (4.7) 

in §4.2). These are now derived via a series of lemmas but it is 

recalled first from §4.3 (after Note (1)) that (with K = 1) 

.2 RsinO+s 	 1 	1 	1 
(*) H1(Rcos O,Rs1nO;s)_R22R.O2 + °R2+2sRsine+s2 j as R + 

I 	1 	1 	 1 
00 

For 	 D 

	

> 1, I(RO) = 
	R2+2sRsinO+s2 ds = 0 	as R + 

Proof Put S = Rt so 

ly

00  
I(R,O) = _____ 	 1 

at. 
 t 	1+2tsire+t2  

CO 	0/R 	- 

For a > 1, I.(R,O) < 	J 
	dt 

a 

	

R 	Yo/Rt 

( 1 	1 	1y
0) 1-a 

 = 	1-I-a 	 = 0 () 	as R 4-  00 

R 	Ct-i 

For a = 1, I(R,O) 

	

(CO 
	1 	1  

(by i
=  0llogRl 	integration 

	

= R2 J 	t 	1+2tsin6+t2 It 
	

R2 J 	by parts) 

= 	 as R+00. 

fy
00  

For 	> 1, J(R,O). 	 RsinO+s 	
ds = o(.) as R  

S 
a R+2sRsinO+s 2  

0 

Proof Put s = Ru so that 

f
co

YO /R

J(R,O) =.. L. 	sine +u du i+2u sinO+u2  

p00  

	

= --- 	
g(O,u) au (in the notation of 94.3 

RCtJyo 	(I 
U 	 after equation(4.17)). 

From the discussion given there the result follows. 

For a> 1, 	--- H1 (Rcose,Rsine;s)ds = o() as R + 00 

fyo,  S 

Proof This follows immediately by using (*), (1) and (2) 
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D f
y 
0 

! H (RcosO,RsjnO;s)ds = 2sin6 logR + o(!) as R - 

00  4. K(R,O) 
= 	 R 

Proof 

2r 1 	RsinO+s K(R,O) 	
- 	 R2+2sRsinO+s2 ds + o() 	by 1). 

1w 

YO/ 

2 	i 	1  sin  O+t 
= ¶R J 	t 1+2t  sin O+t2 dt 	Cs = Rt) 

R 

= -a-- [ -sin 0 lo[) + 0(1)] as R 	(by Lemma 1,appendix 8 
irR

Yo  with r = 0, f(t) = 
sin 0+t 

 1+2t sinO ~.2 	 x = 

i.e. 	K(R,0) 
- 2 sin O log R 

+ o(.) as R--w. 
rrR 

5); 1y0 H1- 
+ ;•i- {9_2Y+i 

..] 

- 	
s 

2logs 
+ R(S)Jds = 2sin0logR 

+ o(-!.) as 
2  irR 

Proof This follows immediately from (4) and (3) and the fact that 

logs 	logs 	 1 

I S(d and 	are certainly 0 —  for some 	> 1 e.g. = 
  

L(R,0)J 	! HL (Rcose , Rsine;s)ds = -  e + o(f) as R + 

ye 
s

IR2  -2sRsinO-fs2  Proof 	(Recall that HL (Rcos0,Rsin0 ;s )  = -  lo{R2 ~2R . 02 J ). 

(1_2tsifl0+t 2 ) i 	1 	_______ 
L(R,0) = i 

- 	 log t1+2tsin0 +t2j dt 
O/R 

Since the integrand has a removable singularity at the origin, 

1 	1 ( 1_2tsin0+t2 1 
L(R,0) = 	 log [ 	. dt 	~ o() 

Jo 	 1+2ts ino~t2J  

The integral here vanishes when 0 = o and can be found by 

differentiation under the integral sign with respect to 0 

Its value is -  2ff 0. 

Thus L(R,0) = -  0 + 

M(R,0) i 4- HL ( Rcoso ,Rsine;s)ds = 
- 2sin0logR 

+ ot3) as R+' irR 
0 

Proof 

M(R,0) = 	fCO 	

1 log[ 1_2tSjnO+t21 
271R O/R 
	

1+2tsin0+t2 dt 
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= 	[_f'(0)log(]+ 0(1)] as R -- 	 (by lemma 1, appendix B 

1 with r = 1, f(t) = 
log 1_2tsjnO+t2 	y 

11+2tsin6+t2J1 x = O/R) 

Hence M(R,O) = - 2sin8lo gR 	
+ oi.) as 	R + 00 rrR 

8) 	N(R,O) 	
f, 

logs 
2 H(RcosO,RsinO;s)ds 

0 

- 

 

sine (logR) 2 	
2logR (OcosO•- sinO) + o() as R ± - - 

	 irR 	
~ 	

rrR 

Proof By putting s = Rt as usual it may be seen that 

N(R,O) logR f 
	J 	(1_2tsino+t2 ) 	1 t 	logt 	fl-2tsine-I-t21 

= 	
-ylog 

Yo/Rt 	
l +2tsine+t2Jdt +2 TrR Jy 	t2 

°/R 

The two integrals here will be called N 1 (R,6) and N 2 (R,6) 

, By lemma 1 (appendix B) with r = 1, f(t) = log
(1_2tsjnO+t2
1+2ti0t2 J l  X = O/R 

	

"0 	 00 

N 1 (R,O) = - f'(o) log  j- + f'(o) •- I f(2)(t)  log  tdt + 
Jo   

i.e. N 1 (R,Q) = 4 sin elog 	- 4sinO+ 4ecose + 0(-)(see eq.(C.7)). 

By integration by parts. 

r 

 

log t
f(t)T 	

+ 1 	i( f(t) N2(R,O) 	L 	t 	.1O/R 	JYO/Rt 	t 
+ f'(t)logt)t 

YO = log . f'(o) + o() - f'(o)log 	,+ 0(1) 

* [(log t) 2  f'(t)1 	
- f 00 YO/R-  Yo/R 

(log t) 2  f2 (t)dt as R-).- 
 

= 
- *(log  Y0  - log R)2 f , (0) + 0(1) 

= 2 sin O(logR) 2  - 4 sin Olog Y0  log R + 0(1) 

Hence 

N(R, O)= 	[-4sinO(logR) 2 +4sinology0logR - 4sin0logR + 46cosOlogR 

+ 2 sinO(logR) 2 - 4 sin6logY0logR + 0(1)1 

i.e. 
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N(R,O 	- 	
irR 

) = ______ + _____ 
rrR 

sinO(logR) 2 	
21ogR (OcosO-sinO) + o(.) 

f CO  R(s)H(RcosO,RsinO;s)ds =0 	as R -* co 
YO 

Proof Since R(s) = O [ log 3s) = 
	for some a > 2 e.g. 5/2 

 Is'a ) 
the discussion in §4.3 (before (4.16)) gives the result immediately. 

E1= - 23 + it3a3R [(logR)2-2logR(3-y+j)]- 3  a3 R 
____ BsinO 	 It 	

16logR OcosO.I-0(!) 

Proof This follows from the definition of E at the beginning of 

§C.4 and use of 	(5) 0,(6),(7),(8),(9).. 
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Several results quoted in Chapter 5 are now proved. 

§D. 1 

Com'ozison of equation (5.28) with the equation preceding it shows 

that (5.28) is verified if it can be proved that 

K1 (s) = J log 	(2u - u2)eudu = 21m.[ foo  h2 (u)e jsu du] 

where h(u) = 	
1 

+ 1 

and 

K2  (S) 
D 	v cos(s+u)v - sin ( s+u ) v(2 	z)Ud du = -2Re [ 	

jsu 
I F(u)e 	di 

oo 	 v2 +l 	 1 ) 0  

where F(u) = 	
u 

(u-i) (u+j) 3  

These results enable i(o,$) to be differentiated twice under the integral 

sign without difficulty whence (5.29) is easily proved. 

Proof of (a) 

By integration by parts it is seen that 

	

Ki (s) = 2 	
S 

u2eU du (where denotes a Cauchy principal value 
s-u 	 integral) 

whence the result will be proved if 

00 	 00 

	

D I 	s 	2 -u 	 1 	(2) 	-jsu 

	

Jr(s) = - 	u e 	du = Im.[ 	h 	(u)e 	du I 
J) 0s-u 	 0 

-uroo 

Clearly J1(s) = s [I -e
- U 
 du + s2 +  

rw 

 
e 	

du I 	whence 
I 

J00  -su 

	

J1 (s) = -s - 2 
	e 	

du 
u-1 

00 -su 
The integral here can be written as+ e 	du + ½TTje 

s 
 where the contour 

o u 2 -1 

of integration consists of the positive real axis indented by a small semi-

circular arc in the first quadrant centred on u = 1. The form of the 

integrand now allows rotation of the contour of integration through 



TT - radians after which the substitution u - ju gives 

, 

	

 
2 	

e-isu du 	-s 

	

J1(s) = - s + is 	 - ½iijs z e 	or 
u 2 +l 

2 -s 

	

J1(s) = - s + is 2 	h(u)e 	du - ½js e J o  
Two integrations by parts now give 

	

= -i J0 h 	(u)e 	du - ½j s 2 e S  

Hence, since J 1 (s) is real, 	 - 

.
roo  

J1(s) = Im.[j h 
(2) 

 (u)e- 
 JSU 

 du ] as was required. 	 (D.1) 

- .c lt_ 

Comparison with (5.6) shows that 

K2(s) = - 	Ii(0,$) whence use of the equation for Ii(X,Y) 

which occurs 8 lines below (5.10) shows that 

____ 	- 
K2(s) = +2Re. 	- 	 e s 

U 
du 

	

j j 	(1+ju) (1-ju) 0 

Thus 1(2(5) = - 2Re. iT F(u)eJSU du 

(5.28) can now be written in the form 

	

i (0,$) = - - e 	+ -- J1 (s) + - J2 (s) 	where7Ta 

J2(s) 	Re. [J F(u)eJsu du ] 	 (D.2) 

Hence 

i d 	2 
e

5 	2 d 
- - (s 	) + - - I s 2 J1 ' ( s)] + - -- [ s 2J2'(s)] 

= 2a ds Ira ds 

(D.3) 

From (D. 1) 

d 	2 (2) 	 2 a 	-isu 

	

— ['(s)] = Im 	h 	(u) 	Es — ( e 	)] du s J1 
ds 	 ii 	 s 	s 

whence Im 	
h (2) 	 2 	 J5U 

(u) -Eu - (e 	)] du ds 	 j1 	3u 	3u 
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Two integrations by parts now lead to the result 

[s 2JiI(s)] = j 0 E u 2h 3) )] eJu du 	 (D.4) 
ds du 

and by exactly the same method 

[sJ' (s)] 	= Re. - [uF' (u)J 	eJsu  du 	. 	 (D.5) 

Substitution of (D.4) and 	(D.5) in (D.3) gives the verification 

of (5.29). 

§D.2 

It is now shown that 
. 

D'
00 
 -sd 	2 	 i(2i 	l 

I = I e 	—[5 	15 	
a 

(0,$)J ds = - - 	
- ds 

J o 

(see (5.30 et seq.). 

From (D.2) and the definitions of J1 and J2 it is clear that 1(0,$) 

and its derivatives are bounded for all s. Hence two integrations 

by parts give 

I = - 

	
(0,$) 	- (25) ds 

ds 

and (D.2) then implies that 

	co  = • 

	: e-

5 __( s 2 e  S)d - -

a- 	
J 1  (s) 	(s2e 5 )ds - ---- fOOJ2 (s)(s2e5)ds 

(D.6) 

Let the three integrals here be called 'i. 12, 13 in turn.. It is 

easily proved that i = ¼ . 	 (D.7) 

Next 12 = Im
u 	i 

fco'w  I h 2  (u)e-j su (2s - s 2  )e 	du ds 	 (from (D.l)) 
00 

Reversal of the order of integration gives 

rw  2u h 2  (u) 

0 
12=Re 	 du. 

(l+ju) 3  
 

By writing h(u) = ½ [T+l—
ju. + l_ 

l
juj it is easily shown that 

F 2u h2u 	rw u 	 U I 	 du ] 
(l+ju)3 	J0 (l+ju) 6 	o (l+u2)3 
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These integrals can be evaluated by elementary methods to give 

12 = - 

Finally, 

1 3  = Re. 
J J 	(2s_s2)e 	JU)S 

du ds 
0J0 (u-j)(u+j)3 

As for 12, it can be shown that 

(from (D.2))., 

1 3  = Re. 

J 	

-2u2j 	
du 

o (u-i) (u+j) 3 (l-ju) 3  

i.e. 13 = Re. 	
-2u2 	

du 	or 
Jo (u-j) (u+j) 6  

du 	
(aD 

du 
1 3  = - 2Re I 	 du = -2Re [ 	- - 

o (u-i) (u+j) 6 	 Jo (u+j) 	o (u-j) (u+j) 6 

The first integral here has the value ¼ while the second can be 

evaluated by means of the reduction formula 

n+ln 
T = (-1) 
n 	2(n-1) 	2 n-i 

--s- whence Re.(T6) - 15 

Thus 13 = 1 

(where n > 1 and T = 	
du 

 
n 	J n 

o (u-j) (u+j) 

Substitution of (D.7), (D.8) and (D.9) in (D.6) shows that 

i 	4 - 2 	i 	2 	i 2i 	1 
- 8a + 571a 	15Tra - Ba + 3Tra - 	a 3T 	8j 

This is the result required after (5.30). 

§D.3 

In Chapter 5, §5.8, the wave contribution from a velocity 
°° 	—iv 

distribution Re(j s- dv) 	(Y2eY) on a vertical wavemaker 
iy v 
	dY 

(X = 0, Y > 0) is required. 	It is shown that this distribution 

produces no progressive waves in the far field. 

It is first noted that the real part of the integral occurring here 

is equal to the Cauchy principal value integral 	i- du whence an 

integration by parts gives the equivalent form 
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CO 

Y 	 I 	-u 
-e log 

Y + j 	
e 	log I ui  du 	or 

-Y .  
I 	U 

-e 
Y 
 logY -y+ 	e logu du. 

J o  
(y = Euler's constant). 

Hence, the given velocity distribution takes the form 

(Y2  - 2Y)log Y - 	d (Y
2  e Y 

) + d 
	2 -Y rY 

(Y e ) J e  log u du 
0 

The wave part of Havelock's wavemaker solution shows therefore that the 

wave amplitude produced by this distribution will be proportional to 

u
CO 

fr 
e(y2 - 2Y) log Y dY - y J ed 2 	)dY+ 	e Yd 

(Y e (Ye )I elogud 
 

ry j 
a 	 o 	dY 

CO 	 .03 

f d 2  -Y 	 I -Y d 2e_Y)dY 	-Y d 

= -J 	(Y e )log Y dY - yj e 	(Y 	
+ 

J e 	(Y2eY)j  
ry 
 eU log u du 

0 	 0 	 0 	 0 

The values of these three integrals can be found by integration by parts 

and the sum of the three terms here is seen to be 

1 -I + (- 1 + .) = a 

Hence this velocity distribution produces no contribution to the 

wave amplitude. 
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