
On Inexact Newton Directions in
Interior Point Methods for Linear

Optimization

Ghussoun Al-Jeiroudi

Doctor of Philosophy
University of Edinburgh

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429734927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

(Ghussoun Al-Jeiroudi)

Abstract

In each iteration of the interior point method (IPM) at least one linear system

has to be solved. The main computational effort of IPMs consists in the com-

putation of these linear systems. Solving the corresponding linear systems

with a direct method becomes very expensive for large scale problems.

In this thesis, we have been concerned with using an iterative method for

solving the reduced KKT systems arising in IPMs for linear programming.

The augmented system form of this linear system has a number of advan-

tages, notably a higher degree of sparsity than the normal equations form.

We design a block triangular preconditioner for this system which is con-

structed by using a nonsingular basis matrix identified from an estimate of

the optimal partition in the linear program. We use the preconditioned con-

jugate gradients (PCG) method to solve the augmented system. Although

the augmented system is indefinite, short recurrence iterative methods such

as PCG can be applied to indefinite system in certain situations. This ap-

proach has been implemented within the HOPDM interior point solver.

The KKT system is solved approximately. Therefore, it becomes neces-

sary to study the convergence of IPM for this inexact case. We present the

convergence analysis of the inexact infeasible path-following algorithm, prove

the global convergence of this method and provide complexity analysis.

Acknowledgements

I would like to express my sincere thanks to Professor Jacek Gondzio. I can

honestly say I have been extremely fortunate to have him as my supervisor.

He has been my encyclopaedia of research knowledge. I would like to thank

him for giving me this opportunity and having belief in me.

I would like to thank Dr. Julian Hall for giving me the opportunity to

work in programming with him. I have learnt a lot from him. I have been

honoured to work with such an enlightened individual.

I would also like to thank all who have given me motivation and helped me

through out my Ph.D. Thanks to my friends who have shared with me hard

moments as well as beautiful moments. I would like to thank all my friends

who have introduced me to many different cultures and have contributed to

an experience that I will never forget.

The study could not have taken place without a sponsor. I would like to

acknowledge the University of Damascus for sponsoring me throughout my

Ph.D.

I would also like to take this opportunity and thank my family, for their

love and support in all my pursuits in life.

Contents

1 Introduction 7

1.1 Motivation . 11

1.2 Contributions . 14

1.3 The structure of the thesis . 17

1.4 Notations . 18

2 Fundamentals 20

2.1 The Interior Point Method . 20

2.1.1 The IPM for linear programming 20

2.1.2 The Primal-Dual Interior Point Algorithms 22

2.2 Newton method . 28

2.2.1 The convergence of Newton method 29

2.2.2 Termination of the iteration 30

2.2.3 Error in the function and derivative 30

2.3 Inexact Newton method . 31

2.3.1 The convergence of Inexact Newton Method 31

2.4 Methods for solving a linear system 33

2.4.1 Sparse Matrices . 33

2.4.2 Direct Methods . 35

2.4.2.1 Gaussian elimination 35

4

5

2.4.2.2 Cholesky factorisation 36

2.4.3 Iterative Methods . 36

2.4.3.1 Stationary Iterative Methods 37

a. Jacobi Method 37

b. Gauss-Seidel Method 37

c. Arrow-Hurwicz and Uzawa Methods . . . 38

2.4.3.2 Krylov Subspace Methods 39

a. Conjugate Gradient Method 40

b. GMRES Method 45

c. BiConjugate Gradient Method 47

e. MINRES and SYMMLQ Method 48

2.4.4 Null Space Methods 48

3 The PCG Method for the Augmented System 52

3.1 Preconditioner . 53

3.1.1 Solving equations with P 65

3.2 Spectral analysis . 66

3.3 The PCG method for nonsymmetric indefinite system 71

3.3.1 The convergence of the PCG method 75

3.4 Identifying and factorising the matrix B 83

3.4.1 Identifying the columns of B via Gaussian elimination 83

4 Inexact Interior Point Method 87

4.1 The residual of inexact Newton method 91

4.2 Convergence of the IIPF Algorithm 94

4.2.1 Inexact Infeasible Path-Following Algorithm 95

5 Numerical Results 109

6

6 Conclusions 120

7 Bibliography 123

Chapter 1

Introduction

Interior point methods constitute the core of many popular solvers for linear

and nonlinear optimization. In linear programming however, that was not

always the case due to the total dominance of the simplex method. The

simplex method was invented by Dantzig in 1947. It is an iterative technique,

where the iterates move from vertex to vertex until an optimal vertex is found.

The simplex method may visit every vertex of the feasible polyhedron. That

makes the complexity result of this method poor: the worst-case complexity

of the simplex method is exponential in the problem dimension. Accordingly,

there was great interest in finding a method with polynomial complexity.

In 1984 Karmarkar presented a new polynomial-time algorithm for linear

programming. He claimed to be able to solve linear programs up to 50 times

faster than the simplex method. That was the start of the “interior point

revolution” [48], which like many other revolutions, includes old ideas that

are rediscovered or seen in a different light, along with genuinely new ones.

See [3, 27, 76].

An interior point method (IPM for short) is a powerful tool to solve

linear, quadratic and nonlinear programming problems. In this thesis we are

7

Chapter 1. Introduction 8

concerned with the use of primal-dual interior point methods to solve large-

scale linear programming problems. A primal-dual method is applied to the

primal-dual formulation of linear program

Primal Dual

(P) min cTx (D) max bTy

s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; y free, s ≥ 0,

where A ∈ Rm×n, x, s, c ∈ Rn and y, b ∈ Rm. x, y and s are primal, dual

and slack variables respectively. We assume that m ≤ n and the matrix

A has full row rank. Primal-dual techniques are usually faster and more

reliable than pure primal or pure dual approaches [3, 38, 77]. In order to

solve problem (P), we need to find the solution of the Karush-Kuhn-Tucker

(KKT) optimality conditions:

Ax− b = 0

ATy + s− c = 0

XSe = 0

(x, s) ≥ 0.

(1.1)

where X = diag(x), S = diag(s) and e ∈ Rn is the vector of all ones. Interior

point methods approach the optimal solution by moving through the interior

of the feasible region. This is done by introducing a central path C joined

with a parameter τ > 0. The central path C is an arc of strictly feasible

points, which is defined as

C = {(x, y, s) ∈ F0 : xisi = τ for all i = 1, ..., n},

Chapter 1. Introduction 9

where F0 is the primal-dual strictly feasible set defined by

F0 = {(x, y, s) : Ax = b, ATy + s = c, (x, s) > 0}.

The KKT conditions are replaced by the following conditions:

Ax− b = 0

ATy + s− c = 0

XSe = τe

(x, s) > 0.

(1.2)

These conditions differ from the KKT conditions only in the term µ and

in the requirement for (x, s) to be strictly positive. The central path C is

well defined because the system (1.2) has unique solution for each τ > 0.

Furthermore, the points on the central path C converges to a primal-dual

solution of the linear program (P) when τ converges to zero if F0 is nonempty.

τ is equal to or smaller than the current barrier parameter µ = xT s/n. The

target value τ = σµ is used, where σ ∈ [0, 1] is the centering parameter. See

[77].

The previous system (1.2) can be rewritten as the following

F (t) =

Ax− b

ATy + s− c

XSe− σµe

 = 0,

x > 0, s > 0,

(1.3)

where t = (x, y, s).

Most primal-dual algorithms take Newton steps toward points on central

Chapter 1. Introduction 10

path C for which µ > 0, where the direction at each iteration is computed

according to

F
′
(t)∆t = −F (t), (1.4)

where F
′
(t) is the derivative of F (t). That yields

A 0 0

0 AT I

S 0 X

∆x

∆y

∆s

 = −

Ax− b

ATy + s− c

XSe− σµe

 . (1.5)

In computational practice, (1.5) is reduced: after substituting

∆s = −X−1S∆x− s+ σµX−1e, (1.6)

in the second row we get the following symmetric indefinite system of linear

equations, usually called the augmented system

 −Θ−1 AT

A 0

 ∆x

∆y

 =

 f

g

 , (1.7)

where Θ = XS−1, f = ATy − c + σµX−1e and g = Ax − b. In many

implementations, (1.7) is further reduced to the normal equations form

AΘAT∆y = AΘf + g. (1.8)

Chapter 1. Introduction 11

1.1 Motivation

The goal of this thesis is to explore how existing techniques in the areas of

numerical analysis and linear algebra can be refined and combined into a

new approach of a new inexact Newton method iteration to be employed

in interior point methods. We are interested in using the preconditioned

conjugate gradient method to solve the augmented system (1.7) and studying

the convergence behaviour of the resulting interior point algorithm.

In each iteration of interior point methods, one of the linear systems (1.7)

or (1.8) has to be solved. The main computational effort of an interior point

iteration is the solution of these linear systems. Accordingly, in recent years

extensive research has been devoted to developing techniques for solving these

systems. In chapter 2 we survey some of the popular solution methods for

these linear systems.

Historically, the normal equations system (1.8) was solved directly, be-

cause this system is symmetric and positive definite and its dimension is

smaller compared to the augmented system [52, 73]. In [24, 31, 32, 35],

Cholesky factorisation is used to factorise the normal equations matrix into

a lower triangular matrix multiplied with its transpose, then forward and

backward substitutions are used to solve the normal equations. In order to

speed up solving a linear system by Cholesky factorisation, a reordering for

sparsity is required. There are two famous heuristic orderings, the minimum

degree and the minimum local fill-in orderings, see [24, 31, 32, 35].

The size of optimization problems has been increasing dramatically. Solv-

ing the linear systems (1.7) and (1.8) with a direct method is often very dif-

ficult for large problems, even when ordering to exploit the sparsity is taken

into consideration. This is due to three main reasons. Firstly, the normal

equations (1.8) may easily get dense even though the constraint matrix A is

Chapter 1. Introduction 12

not. Secondly, although the augmented system is usually sparse for a sparse

constraint matrix, it is nevertheless, indefinite. Finally, the linear systems

(1.7) and (1.8) become extremely ill-conditioned as the IPM approaches the

solution, which leads to numerical instability. These difficulties make many

researchers interested in finding alternative techniques for solving the linear

systems (1.7) and (1.8). The idea was to use an iterative method to solve

these linear systems. Iterative methods however, usually fail to solve these

systems without preconditioning. The term preconditioning refers to trans-

forming a linear system into another system with more favorable properties

for iterative solution [75]. Therefore, there is an urgent need for designing

good preconditioners, as a good preconditioner is the key ingredient for solv-

ing a linear system iteratively. That makes a significant number of researchers

tackle this issue [10, 28, 44, 45].

For the same reasons as above the normal equations system is nominated

again to be solved by using an iterative method. As the system is sym-

metric and positive definite, the preconditioned conjugate gradient (PCG)

method [42] is an appropriate iterative method to solve this system. The

PCG method is one of the most popular iterative methods, because it is a

short recurrence method and it has strong convergence properties, see sec-

tion 2.4. In [15, 42, 45, 54, 55], the PCG method is used to solve the normal

equations. The preconditioners in [45, 54, 55] are the incomplete Cholesky

factorisation of the normal equations matrix. The incomplete Cholesky fac-

torisation was proposed by Meijerink and Van Der Vorst (1977) [56] to be

used with symmetric Hermitian matrices. There are two strategies of identi-

fying the position of the nonzero elements in this factorisation: the fixed fill-in

strategy and the drop-tolerance strategy, see [12]. These types of precondi-

tioner do not always work as well as expected. However, they are constructed

Chapter 1. Introduction 13

by using fascinating techniques of linear algebra. These preconditioners are

effective in the early stage of IPM, but they start to struggle in the final

iterations. This is due to the extreme ill-conditioned nature of this system

in the final iterations of IPM. Therefore, it is necessary to design a precon-

ditioner after understanding the nature of the problem, in particular at the

final iterations of IPM.

We notice that iterative methods struggle to solve the linear systems in

the final iterations of an IPM, due to the extreme ill-conditioning of these

systems. Therefore we are concerned with finding an iterative approach to

solve these linear systems efficiently in the final iterations of an IPM. In this

thesis we will convert the disadvantages of the final iterations of IPM into

an advantage, and we will construct our preconditioner for the augmented

system (1.7) by exploiting the issues that leads to the ill-conditioning of this

system.

There are many important reasons why we choose to work with the aug-

mented system. The first reason is that the augmented system is sparser

compared with the normal equations. Factoring the augmented system (1.7)

often produces significant savings in the number of nonzero entries over fac-

toring the normal equations. The existence of a dense column in the con-

straint matrix A results in a straightforward dense normal equations matrix.

For an example of such a situation, see [3, 24] and the references therein.

Compared with Cholesky factorisation for the normal equations, the aug-

mented system factorisation enjoys an additional degree of freedom resulting

from the ability to interchange pivots between diagonal elements of Θ and

diagonal elements of the already filled (2, 2) block in (1.7). We aim to exploit

these advantages when we construct our preconditioner for the augmented

system.

Chapter 1. Introduction 14

The second reason is that the augmented system may have a better con-

dition number compared to the normal equations, after suitable scaling as

suggested in [4]. The ill-conditioning in these systems is due to the matrix

Θ, since some of its elements move toward zero and the others move to-

ward infinity. The position of Θ in the augmented system makes it easier

to control the ill-conditioning of the augmented system when designing a

preconditioner.

The final reason comes from the analysis by Oliveira and Sorensen [60]

who propose a preconditioner for the augmented system (1.7), and then re-

duce the preconditioned system to positive definite normal equations, al-

lowing them to use the conjugate gradients method to solve (1.8). They

show in [60] that all preconditioners for the normal equations system have

an equivalent for the augmented system, while the converse is not true. More

precisely, they show that the whole classes of (different) preconditioners for

the augmented system can result in the same preconditioner for the nor-

mal equations. We consider this to be a strong argument for constructing a

preconditioner for the augmented system.

1.2 Contributions

The contributions of this research are as follows.

First, we design a block triangular preconditioner for the augmented sys-

tem (1.7). To construct this preconditioner, we partition the constraint ma-

trix A into two matrices. The first one is nonsingular matrix with size m,

while the other one is the remaining matrix. The idea is to use the basic

and nonbasic partition which is used in the simplex method, with one mean

different; in the simplex method one has exactly m basic and n−m nonbasic

Chapter 1. Introduction 15

variables at each iteration, while in interior point method this is true in the

optimal solution. So, such partition becomes clearer at final iterations of

interior point method, where we suggest using our preconditioner. The non-

singular matrix in our partition represents an approximation of the basic part

of the variables. After designing this preconditioner, we perform a spectral

analysis of the preconditioned matrix. We also show that the preconditioned

matrix has n+ p unit eigenvalues and the remaining eigenvalues are positive

and greater or equal one, where p is the rank of the second matrix of the

partition of A.

We propose preconditioner for the augmented system and go a step fur-

ther than in [60]. Instead of reducing the augmented system to normal equa-

tions and then applying an iterative method, we use the preconditioned con-

jugate gradients method to solve the indefinite system (1.7). We are aware

of the disadvantages associated with applying the PCG method to indef-

inite systems [26]. However, we are motivated by the recent analyses of

Lukšan and Vlček [51] and Rozlozńık and Simoncini [65] showing that short

recurrence iterative methods such as conjugate gradients can be applied to

indefinite systems in certain situations. We show in particular that the anal-

ysis of [65] may be applied to the preconditioner proposed in this thesis. We

prove that the PCG method, when applied to the indefinite system (1.7)

preconditioned with our proposed preconditioner, converges as in the case of

a symmetric positive definite system. The convergence of the PCG method

is proved by showing that the error term and the residual converge to zero.

The error and the residual bounds are given by Theorem 3.3.4 and Theorem

3.3.5 respectively, which is related to symmetric positive definite matrices.

We have implemented this iterative approach in the final iterations of the

interior point solver HOPDM when the normal equations system becomes

Chapter 1. Introduction 16

ill conditioned. The implementation within HOPDM shows remarkable im-

provement on a series of problems, see the numerical results in Chapter 5.

A consequence of using an iterative method to solve the linear systems

which arise in interior point methods is that the search direction is computed

approximately. Hence, instead of the pure Newton iteration (1.4), we now

have the following

F
′
(tk)∆tk = −F (tk) + rk,

which is an inexact Newton iteration. This causes a major difference in an

interior point algorithm, whose convergence is proved under the assumption

that the search directions are calculated exactly. Our final contribution is the

convergence analysis of an interior point algorithm with our specific inexact

Newton direction.

We use the PCG method to solve the augmented system preconditioned

with a block triangular matrix P . This yields a specific inexact interior point

method. In this thesis we focus on the convergence analysis of one interior

point algorithm for this inexact case. This algorithm is the infeasible path-

following (IPF) algorithm. For the inexact case, we refer to this algorithm

as the inexact infeasible path-following (IIPF) algorithm.

We prove global convergence and provide a complexity result for the IIPF

algorithm. We design a suitable stopping criteria for the PCG method. This

plays an important role in the convergence of the IIPF algorithm. This stop-

ping criterion allows a low accuracy when the current iterate is far from the

solution. We impose some conditions on the forcing term of the inexact New-

ton method in order to prove the convergence of the IIPF algorithm. Note

that the same analysis can be used in the cases where the augmented system

is solved iteratively, providing that the residual of this iterative method has

Chapter 1. Introduction 17

a zero block in its second component corresponding to (2, 2) block in (1.7)

such that r = [r1, 0]. Thus we can carry out this approach to cases like [65],

for example.

The original results presented in this thesis have been the basis for two

papers that have been accepted for publication, jointly with Jacek Gondzio

and Julian Hall [2], and with Jacek Gondzio [1].

1.3 The structure of the thesis

This thesis is structured as follows. In Chapter 2, we introduce and formalise

the primal-dual interior point method for linear programming. Also in this

chapter we present some of the well known feasible and infeasible interior

point algorithms. Moreover, Chapter 2 review the convergence behaviour

of Newton and inexact Newton methods. Furthermore, in this chapter we

discuss several well known methods to solve a linear system. We introduce

briefly a few direct methods and discuss extensively several iterative methods.

As in this thesis we are concerned with the use of an iterative method to solve

the linear systems which arise from IPMs, we mainly focus on the Krylov

subspace methods in this chapter.

In Chapter 3 firstly, we present preconditioners for the augmented sys-

tem which have been constructed in the last few years. Secondly, we propose

our new block triangular preconditioner and we perform a spectral analysis of

this preconditioner. Moreover, in this chapter we take a closer look at the be-

haviour of conjugate gradients for the indefinite system: we follow [65] in the

analysis of our preconditioner. Furthermore, we prove that the convergence

of the PCG method applied to the indefinite system (1.7) preconditioned

with the proposed preconditioner, is similar to the convergence of the PCG

Chapter 1. Introduction 18

method applied to a positive definite system. Finally, we discuss the issues

involved in the identification of a suitable subset of columns to produce a

well-conditioned matrix.

In Chapter 4 we compute the residual of the inexact Newton method and

choose suitable stopping criteria to the PCG method which makes sense for

the convergence of the inexact Newton method. In addition in this chapter

we perform the convergence analysis and provide the complexity result for

the IIPF Algorithm.

We have implemented the conjugate gradients method with the indefi-

nite preconditioner in the context of the HOPDM interior point solver and

we have applied it to solve a number of medium and large-scale linear pro-

gramming problems. In Chapter 5, we discuss our computational experience.

In Chapter 6 we draw our conclusions and discuss possible future develop-

ments.

1.4 Notations

Throughout the thesis, we use the following notation. By R we denote the

set of real number. For a natural number n, the symbol Rn denotes the set

of vectors with n components in R. Greek letters denote scalars, lower-case

letters denote vectors and upper-case letters denote matrices. The ith row

and jth column component of the matrix A is denoted by aij. The iden-

tity matrix will be denoted by I, a subscript will determine its dimension

when it is not clear from context. The symbol ‖.‖ represents the Euclidean

norm (‖x‖ =
√
xTx). The symbol ‖.‖G represents the G-norm for a symmet-

ric positive definite matrix G (‖x‖G =
√
xTGx). The F and F0 denote the

primal-dual feasible and strictly feasible sets respectively. The N2() or N−∞()

Chapter 1. Introduction 19

denote the interior point method neighbourhood, since most primal-dual al-

gorithms take Newton step toward points in specific neighbourhood. The

point t∗ = (x∗, y∗, s∗) denotes the optimal solution of interior point method.

The sequence {tk} = {(xk, yk, sk)} denotes the interior point iterations. The

ξk = (ξkp , ξ
k
d , ξ

k
µ) denotes the right hand side of the Newton method system

(1.5) at iterate k. The rk = (rkp , r
k
d , r

k
µ) denotes the inexact Newton method

residual at iterate k. The rkPCG denotes the residual on the kth PCG itera-

tion. The ek denotes the error on the kth PCG iteration, unless otherwise

stated. For any vector v is in (1.7), v = [v1, v2] and v1 = [vB, vN], where

vB ∈ Rm. The PCG method residual rkPCG = [rk1 , r
k
2] and rk1 = [rkB, r

k
N].

Chapter 2

Fundamentals

2.1 The Interior Point Method

2.1.1 The IPM for linear programming

It is widely accepted that the primal-dual interior point method is the most

efficient variant of interior point algorithms for linear programming [3, 77].

The usual transformation in interior point methods consists of replacing in-

equality constraints by the logarithmic barrier. The primal barrier problem

becomes:

min cTx− µ
n∑
j=1

lnxj

s.t. Ax = b,

where µ > 0 is a barrier parameter. The Lagrangian associated with this

problem has the form:

L(x, y, µ) = cTx− yT (Ax− b)− µ
n∑
j=1

lnxj

20

Chapter 2. Fundamentals 21

and the conditions for a stationary point are

∇xL(x, y, µ) = c− ATy − µX−1e = 0

∇yL(x, y, µ) = Ax− b = 0,

whereX−1 = diag{x−1
1 , x−1

2 , . . . , x−1
n }.Denoting s = µX−1e, i.e. XSe =

µe, where S = diag{s1, s2, . . . , sn} and e = (1, 1, . . . , 1)T , the first order op-

timality conditions (for the barrier problem) are:

Ax = b,

ATy + s = c,

XSe = µe

(x, s) > 0.

(2.1)

The interior point algorithm for linear programming applies Newton method

to solve this system of nonlinear equations and gradually reduces the barrier

parameter µ to guarantee convergence to the optimal solution of the original

problem. The Newton direction is obtained by solving the system of linear

equations:
A 0 0

0 AT I

S 0 X

∆x

∆y

∆s

 =

b− Ax

c− ATy − s

−XSe+ µe

 , (2.2)

By eliminating

∆s = −X−1S∆x+ µX−1e,

Chapter 2. Fundamentals 22

from the second equation we get the symmetric indefinite augmented system

of linear equations −Θ−1 AT

A 0

 ∆x

∆y

 =

 f

g

 .
where Θ = XS−1 ∈ Rn×n is a diagonal scaling matrix and the right-hand-side

vectors satisfy f = ATy + s− c−X−1(XSe− µe) and g = Ax− b.

2.1.2 The Primal-Dual Interior Point Algorithms

Primal-dual interior point algorithms are the most important, efficient and

useful interior point algorithms for linear programming. That is because

of the strong theoretical properties and the practical performance of these

algorithms. Since 1994 researchers have understood well the properties and

theoretical background of primal-dual interior point algorithms [3, 37, 53,

77, 79] and the references therein. In this section we briefly review several

feasible primal-dual interior point algorithms and an infeasible primal-dual

interior point algorithm.

Primal-dual interior point methods find primal-dual solutions (x∗, y∗, s∗)

by applying Newton method to the optimality conditions in (2.1) and by mod-

ifying the search directions and step lengths so that the inequality (x, s) > 0

is satisfied strictly at every iteration [77]. Most primal-dual algorithms take

Newton steps toward points in a specific neighbourhood. This neighbourhood

guarantees to keep (x, s) strictly positive and to prevent xisi from becoming

too small relatively for all i = 1, ..., n. In this section we introduce a few

feasible primal-dual interior point algorithms and an infeasible primal-dual

interior point algorithm. For a feasible algorithm the two most interesting

Chapter 2. Fundamentals 23

neighbourhoods are N2 and N−∞. The N2 neighbourhood is defined by

N2(θ) = {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}

for some θ ∈ (0, 1). The N−∞ neighbourhood is defined by

N−∞(γ) = {(x, y, s) ∈ F0 : xisi ≥ γµ, ∀i = 1, 2, ..., n}

for some γ ∈ (0, 1). By choosing γ close to zero, N−∞(γ) encompass most of

the feasible region. However, N2(θ) is more restrictive, since certain points

in F0 do not belong to N2(θ) no matter how close θ is chosen to its upper

bound [77]. In other words, N2(θ) contains only a small fraction of the points

in F0, while N−∞(γ) takes up almost all the entire of F0 for small γ, which

makes N−∞(γ) much more expansive when γ is small. See [77].

For infeasible algorithms neighbourhoods should guarantee an extra con-

dition; namely the residuals should decrease at each iteration. The extension

of N−∞(γ) for infeasible algorithms is N−∞(γ, β), which is defined by

N−∞(γ, β) = {(x, y, s) : ‖(ξp, ξd)‖/µ ≤ β‖(ξ0
p , ξ

0
d)‖/µ0, (x, s) > 0,

xisi ≥ γµ, i = 1, 2, ..., n},

where the residuals ξp = Ax− b and ξd = ATy + s− c. See [77].

In primal-dual interior point methods, the initial solution (x0, y0, s0) should

belong to the neighbourhood. At each iteration, solution should also belong

to this neighbourhood. The solution at iteration k is given by (xk, yk, sk) =

(xk−1, yk−1, sk−1)+αk(∆x
k,∆yk,∆sk), where αk is the step length and (∆xk,∆yk,∆sk)

Chapter 2. Fundamentals 24

is the direction, which is given by:
A 0 0

0 AT I

Sk 0 Xk

∆xk

∆yk

∆sk

 =

Axk − b

ATyk + sk − c

−XkSke+ σkµke

 , (2.3)

where σk ∈ [0, 1] is centering parameter. Choosing σk plays a crucial role

in primal-dual interior point algorithms. If σk = 1, the equation (2.3) gives

a centering direction, which improves centrality (all xisi are close to µ) and

makes little progress in reducing µ. If σk = 0 that gives the standard Newton

step, which reduces µ. One can choose the centering parameter σk and the

step length αk to ensure that an iterate stays within the chosen neighbour-

hood. See [77].

For feasible algorithms, the iterations belong to F0, so for any iteration

k we have Axk = b and ATyk + sk = c. That makes the first and the second

rows of the right hand side of (2.3) equal to zero. So for feasible algorithms

(2.3) replaced by:

A 0 0

0 AT I

Sk 0 Xk

∆xk

∆yk

∆sk

 =

0

0

−XkSke+ σkµke

 . (2.4)

The interior point algorithms which we mention in this section have a

global linear convergence. An algorithm has a global convergence if the algo-

rithm guarantees to converge to the solution from any approximation. The

sequences {µk} converges linearly to zero if µk+1 ≤ δµk, where δ ∈ (0, 1).

Knowing that an algorithm has global convergence and the rate of this conver-

gence alone will not give the whole picture. It is necessary, to know the time

requires an algorithm to solve a given instance of linear programming prob-

Chapter 2. Fundamentals 25

lem. Complexity theory has been concerned with the worst case behaviour

of algorithms. Complexity result is an upper bound on the time required

algorithm to solve a problem. For example, the short-step path-following

algorithm has a polynomial complexity result in the order of O(
√
n log 1/ε),

where ε > 0. This gives that there is an index K with K = O(
√
n log 1/ε)

such that µk ≤ ε for all k ≥ K. See [77].

The Short-Step Path-Following Algorithm (SPF Algorithm):

• Given θ = 0.4, σ = 1− 0.4/
√
n, and (x0, y0, s0) ∈ N2(θ).

• For k = 0, 1, ...

set σk = σ and solve (2.4) to obtain (∆xk,∆yk,∆sk);

set (xk+1, yk+1, sk+1) = (xk, yk, sk) + (∆xk,∆yk,∆sk).

This algorithm has a global linear convergence and a polynomial complexity

result in the order of O(
√
n log 1/ε) [77].

The Predictor-Corrector Algorithm (PC Algorithm):

• Given (x0, y0, s0) ∈ N2(0.25).

• For k = 0, 1, ...

if k is even (predictor step)

solve (2.4) with σk = 0 to obtain (∆xk,∆yk,∆sk); choose αk as

the largest value of α ∈ [0, 1] such that (xk(α), yk(α), sk(α)) ∈

N2(0.5), where

(xk(α), yk(α), sk(α)) = (xk, yk, sk) + α(∆xk,∆yk,∆sk);

set (xk+1, yk+1, sk+1) = (xk(α), yk(α), sk(α));

Chapter 2. Fundamentals 26

else (corrector step)

solve (2.4) with σk = 1 to obtain (∆xk,∆yk,∆sk);

set (xk+1, yk+1, sk+1) = (xk, yk, sk) + (∆xk,∆yk,∆sk)

The parameter σk is chosen to be either 0 or 1. This choice has the following

meaning: improving centrality (corrector step) and reducing the duality mea-

sure µ (predictor step). Also this algorithm has a global linear convergence

and a polynomial complexity result in the order of O(
√
n log 1/ε). However,

this algorithm is a definite improvement over the short-step algorithm be-

cause of the adaptivity that is built into the choice of predictor step length.

See [77].

The Long-Step Path-Following Algorithm (LPF Algorithm):

• Given γ, σmin, σmax with γ ∈ (0, 1), 0 < σmin < σmax < 1, and

(x0, y0, s0) ∈ N−∞(γ).

• For k = 0, 1, ...

set σk ∈ [σmin, σmax];

solve (2.4) to obtain (∆xk,∆yk,∆sk);

choose αk as the largest value of α ∈ [0, 1] such that (xk(α), yk(α), sk(α)) ∈

N−∞(γ);

set (xk+1, yk+1, sk+1) = (xk(α), yk(α), sk(α)).

This algorithm has a global linear convergence and a polynomial complexity

result in the order of O(n log 1/ε) [77]. In [39] the authors show that the

complexity result for long-step primal-dual algorithm is O(
√
nL) iterations

where L is the size of the input.

In most cases it is quite difficult to find a strictly feasible starting point

(a point which belongs to F0). In this case one can use an infeasible interior

Chapter 2. Fundamentals 27

point algorithm.

The Infeasible Path-Following Algorithm (IPF Algorithm):

1. Given γ, β, σmin, σmax with γ ∈ (0, 1), β ≥ 1, and 0 < σmin < σmax <

0.5; choose (x0, y0, s0) with (x0, s0) > 0;

2. For k = 0, 1, 2, ...

• choose σk ∈ [σmin, σmax]; and solve

A 0 0

0 AT I

Sk 0 Xk

∆xk

∆yk

∆sk

 =

ξkp

ξkd

−XkSke+ σkµke

 ,

where ξkp = Axk − b and ξkd = ATyk + sk − c

• choose αk as the largest value of α in [0, 1] such that

(xk(α), yk(α), sk(α)) ∈ N−∞(γ, β)

and the following Armijo condition holds:

µk(α) ≤ (1− .01α)µk;

• set (xk+1, yk+1, sk+1) = (xk(αk), y
k(αk), s

k(αk));

• stop when µk < ε, for a small positive constant ε.

β is chosen such that β ≥ 1 to ensure that the initial point belongs to the

neighbourhood N−∞(γ, β). This algorithm has a global linear convergence

and a polynomial complexity result in the order of O(n2| log ε|) [77]. In [78]

Chapter 2. Fundamentals 28

the author shows that the complexity result for the infeasible path-following

algorithm is O(
√
nL) iterations where L is the size of the input.

2.2 Newton method

In this section we give a closer look at Newton method, inexact Newton

method and their convergence analysis. However, the convergence analysis

of interior point methods follow a different path from the convergence analysis

of Newton method, even though, interior point method takes Newton steps

toward points on certain neighbourhood. Newton method is an iterative

method which is used to solve a system of nonlinear equations. See [47, 61].

F (t) = 0. (2.5)

Newton iterations are given by

tk+1 = tk − F ′(tk)−1F (tk), (2.6)

where tk+1 is the new iterate and tk is the current iterate.

Assume the problem (2.5) has the solution t∗. We can approximate the

function with a polynomial by using Taylor expansion about tk.

F (t) = F (tk) + F
′
(tk)(t− tk) +

F
′′
(tk)

2
(t− tk)2 +

F (t) ≈Mk(t) = F (tk) + F
′
(tk)(t− tk)

Chapter 2. Fundamentals 29

Let tk+1 be the root of the Mk(t) then

0 = Mk(t
k+1) = F (tk) + F

′
(tk)(tk+1 − tk)

which implies (2.6).

Let ∆tk = tk+1 − tk then (2.6) becomes

F
′
(tk)∆tk = −F (tk). (2.7)

See [47] for more details.

2.2.1 The convergence of Newton method

The Newton method is attractive because it converges quadratically starting

from any sufficiently good initial guess t0. See [47].

Definition: β(δ) denote the ball of radius δ about the solution t∗

β(δ) = {t : ‖e‖ < δ},

where e is the error of the current iterate, e = t− t∗.

The standard assumptions:

1. Equation (2.5) has a solution t∗.

2. F
′

is Lipschitz continuous with Lipschitz constant γ.

3. F
′
(t∗) is nonsingular.

The following theorem shows that if the standard assumptions hold the func-

tion F (t) satisfies the following properties, Kelley [47, Theorem 5.1.1].

Chapter 2. Fundamentals 30

Theorem 2.2.1. Let the standard assumptions hold. If there are K > 0 and

δ > 0 such that Kδ < 1 and tk ∈ β(δ), where the Newton iterate tk given by

(2.6), then

‖ek+1‖ ≤ K‖ek‖2. (2.8)

This theorem shows that Newton method has a local convergence, since

the initial solution t0 is chosen to be near the solution t∗. Furthermore,

Newton method converges quadratically, see (2.8).

2.2.2 Termination of the iteration

The iteration is terminated when the ratio ‖F (t)‖/‖F (t0)‖ is small [47]. More

generally the termination conditioned can be written as

‖F (t)‖ ≤ τr‖F (t0)‖+ τa, (2.9)

where τr is the relative error tolerance and τa is the absolute error tolerance

[47].

2.2.3 Error in the function and derivative

Suppose that F and F
′

are computed inaccurately so that F + ε and F
′
+ ζ

are used instead of F and F
′
in iterations. Under this case Newton iterations

should be

tk+1 = tk − (F
′
(tk) + ζ(tk))−1(F (tk) + ε(tk)). (2.10)

Theorem 2.2.2. Let the standard assumptions hold. Assume F
′
(tk) + ζ(tk)

is nonsingular. If there are K̄ > 0, δ > 0, and δ1 > 0 such that ‖ζ(tk)‖ < δ1

Chapter 2. Fundamentals 31

and tk ∈ β(δ), where tk is given by (2.10), then

‖ek+1‖ ≤ K̄(‖ek‖2 + ‖ζ(tk)‖‖ek‖+ ‖ε(tk)‖). (2.11)

Proof: Kelly [47, Theorem 5.4.1].

2.3 Inexact Newton method

Solving the linear equation (2.7) exactly can be very expensive. There-

fore, this linear equation can be solved approximately by using an iterative

method. So instead of (2.7) we get

F
′
(tk)∆tk = −F (tk) + rk. (2.12)

The process is stopped when the residual rk satisfies

‖rk‖ ≤ ηk‖F (tk)‖. (2.13)

We refer to the term ηk as the forcing term. See [20, 47].

2.3.1 The convergence of Inexact Newton Method

The following theorems illustrate the convergence of inexact Newton method.

By comparing the error of Newton method (2.8) with the error of inexact

Newton method (2.14), we note that the forcing term in the condition (2.13)

plays an important role in the convergence of inexact Newton method. There-

fore, choosing a stopping criterion for the residual of inexact Newton method

affects directly on its convergence.

Chapter 2. Fundamentals 32

Theorem 2.3.1. Let the standard assumptions hold. If there are δ and KI

such that tk ∈ β(δ) and (2.13), where ∆tk satisfies (2.12), then

‖ek+1‖ ≤ KI(‖ek‖+ ηk)‖ek‖. (2.14)

Proof: Kelly [47, Theorem 6.1.1].

However, in the Newton method the error term satisfies

‖ek+1‖ ≤ K‖ek‖2.

Theorem 2.3.2. Let the standard assumptions hold. If there are δ and η

such that t0 ∈ β(δ) and {ηk} ⊂ [0, η], then the inexact Newton iteration tk+1,

which satisfies (2.13), converges linearly to t∗. Moreover,

• if ηk → 0 the convergence is superlinear.

• if ηk ≤ Kη‖F (tk)‖p for some Kη > 0 the convergence is superlinear

with order 1 + p.

Proof: Kelly [47, Theorem 6.1.4].

The superliner convergence is defined as the following

‖ek+1‖ ≤ ε‖ek‖, where ε→ 0.

The superliner convergence with order 1 + p is defined as the following

‖ek+1‖ ≤ ε‖ek‖p, where ε ∈ (0, 1).

Chapter 2. Fundamentals 33

2.4 Methods for solving a linear system

In this section, we discuss several methods to solve the following linear system

Hu = q. This system represents either the augmented system (1.7) or the

normal equations (1.8). H ∈ R`×`, where ` = n + m for the augmented

system and ` = m for the normal equations, respectively.

For most problems, the linear system Hu = q is sparse. Before introduc-

ing methods for solving this system, we first focus on the sparsity of linear

system.

2.4.1 Sparse Matrices

A matrix is sparse if many of its coefficients are zero. It is very important to

highlight sparsity for two main reasons. Firstly, many large scale problems,

which occur in practice, have sparse matrices. Secondly, exploiting sparsity

can lead to enormous computational saving. See [24]. To illustrate the po-

tential saving from exploiting sparsity, we consider a small example. Suppose

we want to solve a system with the following matrix

H =

� � � �

� �

� �

�

 ,

The term � represents a nonzero coefficient, while the coefficients are zero

elsewhere.

Gaussian elimination can be used, for instance, to solve this system. It

is used to reduce the matrix H to an equivalent upper triangular matrix U

by applying rows operations. The first step of Gaussian elimination leads to

Chapter 2. Fundamentals 34

the following matrix
�

� � f f

� f � f

� f f f

 ,

where f represents a fill-in. The elimination operations change a zero coeffi-

cient into a nonzero one, (we refer to this by the term fill-in). A fill-in requires

additional storage and operations. This elimination leads to full active sub-

matrix (3× 3 matrix; its columns: 2,3,4 and its rows: 2,3,4). Consequently,

all Gaussian elimination steps from no one will be dense.

However, if we do rows/columns ordering to H we can control the amount

of fill-in. For our example, swapping between row 1 and row 4 leads to the

equivalent matrix
�

� �

� �

� � � �

 .

That leads to an upper triangular matrix without requiring any eliminations.

This saves us extra storages and extra operations.

The problem of finding the ordering which minimizes fill-in is NP-complete

[77]. However, there are good ordering heuristics which preform quite well

in practices. There are two famous heuristic orderings, the minimum degree

and the minimum local fill-in orderings, see [24, 31, 32, 35].

Chapter 2. Fundamentals 35

2.4.2 Direct Methods

The main focus of this thesis is the use of an iterative method to solve the

linear system which arises from the IPMs. However, we will highlight briefly

some direct methods.

2.4.2.1 Gaussian elimination

Gaussian elimination is one of the most well known direct methods. It is

used to reduce the matrix H to an upper triangular matrix U by applying

row operations. Diagonal elements are chosen to be the pivots. If a diagonal

element is zero, a row interchange has to be carried out. The reduction for

H is performed by using elementary row operations which can be written as

L`−1...L2L1H = U.

That can be written as

H = LU,

where L is a unit lower triangular matrix, and its elements lij are precisely the

multipliers which are used in the elimination to vanish the element at the (i, j)

position in U . This decomposition of H is called LU factorisation of H. See

[57] for more details. The computation cost of this method can be expressed

as 2
3
`+O(`2) flops, where each addition, subtraction, multiplication, division

or square root counts as a flops [71].

Chapter 2. Fundamentals 36

2.4.2.2 Cholesky factorisation

Cholesky factorisation method is used to decompose symmetric positive def-

inite matrices. This factorisation produces a lower triangular matrix L with

positive diagonal elements such that

H = LLT .

Solving Hu = q is equivalent to solving two systems one with a forward

substitution and the other with a backward substitution,

Lv = r, LTu = v.

We assume the constraint matrix A has a full row rank, so the matrix of

the normal equations system (1.8) will be symmetric and positive definite.

The use of Cholesky factorization to solve the normal equations is a common

choice, see for example [35].

2.4.3 Iterative Methods

The standard approach uses the direct method to solve the normal equa-

tions (symmetric positive definite system) by sparse Cholesky factorisation.

However, for large-scale problems, the computational effort of direct meth-

ods can become sometimes very expensive. Therefore, an iterative method

is employed to solve the linear system which arises from IPMs.

Iterative method solves the problem approximately. It generates a se-

quence of iterations starting from an initial guess and terminates when the

found solution is close enough to the exact solution or when the residual gets

sufficiently small.

Chapter 2. Fundamentals 37

2.4.3.1 Stationary Iterative Methods

The first iterative methods which were used to solve large linear systems were

based on relaxation of the coordinates. Starting from initial approximation

solution, these methods modify the approximation solution until convergence

is reach. Each of these modifications, called relaxation steps [66]. The iter-

ations of these methods are based on splitting the matrix H into the form

H = H1 + H2, where H1 is a non-singular matrix. Then the system Hu = q

is converted to the fixed point problem u = H−1
1 (q − H2u). By beginning

with an initial solution u0 the iterations of these methods is generated by

uj+1 = H−1
1 q −H−1

1 H2u
j.

See [66, 74, 80]. Among different stationary methods we mention: Jacobi,

Gauss-Seidel, sucessive overrelaxation (SOR), Arrow-Hurwicz and Uzawa

methods. The stationary methods are now more commonly used as pre-

conditioners for the Krylov subspace methods.

Jacobi Method

Jacobi method uses the splitting H1 = D and H2 = L+U , as the matrix H

is written as the following H = D+L+U , where D is diagonal matrix , L is a

nondiagonal lower triangular matrix and U is a nondiagonal upper triangular

matrix, [47]. Jacobi method converges to solution for all right hand side q,

if 0 <
∑

j 6=i |hij| < |hii| for all 1 ≤ i ≤ `, see [47, Theorem 1.4.1].

Gauss-Seidel Method

The coefficient matrix for this method is also written as the following H =

D + L + U . The Gauss-Seidel method uses the splitting H1 = D + U and

Chapter 2. Fundamentals 38

H2 = L, [47]. This method converges for the same conditions of convergence

of the Jacobi method, [43].

Arrow-Hurwicz and Uzawa Methods

These iterative methods are used to solve saddle point problems, such as the

augmented system (1.7). The idea of these stationary methods is to split the

matrix H so that these methods become simultaneous iterations for both ∆x

and ∆y [8].

The iterations of Uzawa’s method is given as follow:

∆xj+1 = Θ(AT∆yj − f),

∆yj+1 = ∆yj + ω(A∆xj+1 − g),

where ω > 0 is relaxation parameter. Accordingly, the splitting matrices are

given by

H1 =

 −Θ−1 0

A − 1
ω
I

 , H2 =

 0 AT

0 1
ω
I

 .
The iterations of Arrow-Hurwicz method is given as follow:

∆xj+1 = ∆xj + α(f + Θ−1∆xj − AT∆yj),

∆yj+1 = ∆yj + ω(A∆xj+1 − g),

where α and ω are relaxation parameters. The splitting matrices are given

by

H1 =

 1
α
I 0

A − 1
ω
I

 , H2 =

 − 1
α
I −Θ−1 AT

0 1
ω
I

 .

Chapter 2. Fundamentals 39

For more detail on Arrow-Hurwicz and Uzawa methods see [8] and the ref-

erences therein.

2.4.3.2 Krylov Subspace Methods

Krylov subspace methods are a family of iterative methods to solve a linear

system of the form

Hu = q. (2.15)

Krylov subspace methods extract an approximate solution uj from an affine

subspace u0 +Kj of dimension j, where u0 is an arbitrary initial guess to the

solution of (2.15). The Krylov subspace is defined by

Kj(H, r0) = span{r0,Hr0,H2r0, ...,Hj−1r0}, (2.16)

for j ≥ 1. The residual r0 is given by r0 = q −Hu0. See [47, 66].

The dimension of the subspace increases by one at each step of the ap-

proximation process. The Krylov subspace has the following properties. The

first property is that Kj is the space of all vectors in the space which can be

written as u = pj−1(H)r0, where pj−1 is a polynomial of degree not exceeding

j − 1. The other property is that the degree of the minimal polynomial of

r0 with respect to H (it is a polynomial such that pj−1(H)r0 = 0) does not

exceed the size of the space dimension ` [66].

There exist many Krylov subspace methods, a few of the most important

ones will be highlighted in the following discussion.

Chapter 2. Fundamentals 40

Conjugate Gradient Method (CG)

Conjugate gradient (CG) method is one of the most popular iterative meth-

ods. This method is used to solve symmetric and positive definite linear

systems. Many studies analyse the CG method [33, 42, 47, 66, 68, 72], and

many papers use it to solve the linear systems which arise from interior point

methods [13, 15, 40, 45, 54, 55].

In [42, 68] the authors explain the idea of conjugacy. The idea is to pick

up a set of H-orthogonal search directions and to take exactly one step with

the right length, in each one of them. Then the solution will be found after

` steps. Two vectors v and w are H-orthogonal if vTHw = 0.

At each step the iterate will be

uj+1 = uj + αjd
j,

where αj is the step length and dj is the direction. Let the error term be

defined by ej = uj − u∗. The step length αj is chosen such that the search

direction is H-orthogonal to the error ej+1. Consequently, αj is chosen as

follows:

(dj)THej+1 = 0,

which implies

(dj)TH(ej + αjd
j) = 0.

That leads to

αj = − (dj)THej

(dj)THdj
.

Chapter 2. Fundamentals 41

Unfortunately, we do not know the ej. If we know ej the problem would be

solved. On the other hand, the residual is given as rj = q −Huj, which can

be written Huj = q − rj which is equivalent to Huj −Hu∗ = q − rj −Hu∗

that leads to Hej = −rj. So the step length can be written as

αj =
(dj)T rj

(dj)THdj
.

All we need now is to find the set of H-orthogonal search direction {dj}.

In order to find this set, we assume we have ` linearly independent columns

z0, ..., z`−1. We choose d0 = z0 and for j > 0, set

dj = zj +

j−1∑
k=0

βk,jd
k.

The βj,i is chosen such that (dj)THdi = 0 for j > i. So for j > i

βj,i = −(zj)THdi

(di)THdi
.

In the CG method the search directions are constructed by the conjuga-

tion of the residuals. So zj = rj. This choice makes sense because the residual

is orthogonal to the previous search directions which guarantees producing a

new linearly independent search direction unless the residual is zero. When

the residual is zero, the solution is found. These properties guarantee that

the CG method is a short recurrence (CG method does not require to save

all previous search directions) Krylov subspace method.

In the CG method αj and βj,i can be expressed as

αj =
(rj)T rj

(dj)THdj
, βj,i = −(rj)THdi

(di)THdi
for j > i.

Chapter 2. Fundamentals 42

where the search direction is written as

dj = rj +

j−1∑
k=0

βj,kd
k.

The residual can be rewritten as

ri+1 = ri − αiHdi.

That because ri+1 = q −Hui+1 = q −H(ui + αid
i) = ri − αiHdi.

So we have

(rj)T ri+1 = (rj)T ri − αi(rj)THdi ⇒ αi(r
j)THdi = (rj)T ri − (rj)T ri+1.

Since the residual is orthogonal to the previous residuals [68]. This leads to

(rj)THdi =

 − 1
αj−1

(rj)T rj j = i+ 1,

0 j > i+ 1.

That gives

βj,i =

(rj)T rj

(dj−1)T rj−1 j = i+ 1,

0 j > i+ 1.

Let βj = βj,j−1. So the search direction can be expressed as

dj = rj + βjd
j−1.

Consequently, CG method is a short recurrence method, because it is re-

quired to save the immediate previous direction only.

Chapter 2. Fundamentals 43

The CG Algorithm:

• Given an initial solution u0, r0 = q −Hu0 and d0 = r0.

• For j = 0, 1, ...

while ‖rj‖ > ε do

αj = (rj)T rj/(dj)THdj,

uj+1 = uj + αjd
j,

rj+1 = rj − αjHdj,

βj+1 = (rj+1)T rj+1/(rj)T rj,

dj+1 = rj+1 + βj+1d
j.

Theorem 2.4.1. Let H be symmetric positive definite. Then the CG algo-

rithm will find the solution within ` iterations. [47, Theorem 2.2.1].

This theorem shows that the CG method finds the solution after a maxi-

mum of ` iterations. In practice however, accumulated floating point roundoff

error causes the residual to lose accuracy gradually. This causes search di-

rections to lose H-orthogonality [68]. So providing the convergence analysis

of CG method is essential.

Theorem 2.4.2. Let e0 be the initial error of the CG. Then

‖ej‖2
H ≤ min

Pi,Pi(0)=1
max
λ∈Λ(H)

[Pi(λ)]2‖e0‖2
H,

where Pi is a polynomials of degree i and Λ(H) is the set of eigenvalues of

H. See [68].

Theorem 2.4.3. Let e0 be the initial error of the CG. Then

‖ej‖H ≤ 2

(√
κ− 1√
κ+ 1

)j
‖e0‖H,

Chapter 2. Fundamentals 44

where κ is the condition number of the matrix H and ‖.‖H is the H-norm

for the symmetric positive definite matrix H. See [68].

The condition number of a matrix defines as κ = λmin

λmax
, where λmin and

λmax are the minimum and maximum eigenvalues of the matrix H respec-

tively. The previous theorem is not precise. Since, the CG method converges

in a few iterations for a matrix which has a few distinct eigenvalues, even if

it has large condition number.

Theorem 2.4.4. Let H be symmetric positive definite. Assume that there

are exactly k ≤ ` distinct eigenvalues of H. Then the CG iteration terminates

in at most k iterations. [47, Theorem 2.2.3].

The previous theorems show that the convergence of the CG method de-

pends on the eigenvalues of the matrix of the linear system. The idea of

preconditioning appears to improve the characteristic of the original matrix.

Let P be a preconditioner. P is an approximation to H but is easier to invert

and it is a symmetric positive definite matrix. Instead of solving (2.15), the

system P−1Hu = P−1q is solved. The CG method is applied for a sym-

metric positive definite system. P is symmetric positive definite matrix, so

it can be written as P = LLT . Accordingly, we solve the following system

L−1HL−T û = L−1q, where û = LTu. Applying the CG method to solve the

preconditioned system L−1HL−T û = L−1q leads to preconditioned conjugate

gradient (PCG) method [47, 66, 68].

The PCG Algorithm:

• Given an initial solution u0, r0 = q −Hu0 and d0 = P−1r0.

• For j = 0, 1, ...

Chapter 2. Fundamentals 45

while ‖rj‖ > ε do

αj = (rj)TP−1rj/(dj)THdj,

uj+1 = uj + αjd
j,

rj+1 = rj − αjHdj,

βj+1 = (rj+1)TP−1rj+1/(rj)TP−1rj,

dj+1 = P−1rj+1 + βj+1d
j.

Generalized Minimal Residual Method (GMRES)

CG method is used to solve a symmetric positive definite system. In 1986

the GMRES was proposed as a Krylov subspace method for solving a non-

symmetric system [67]. GMRES method minimizes the residuals norm over

all vectors in u0 + Kk. Suppose there is an orthogonal projector Vk onto Kk,

then any vector uk ∈ u0 + Kk can be written as

uk = u0 + Vky,

where y ∈ Rk. The GMRES generates iterations such that the residual rk is

minimized, which can be written as

Minuk∈u0+Kk
‖rk‖.

On the other hand

‖rk‖ = ‖q −Huk‖ = ‖q −H(u0 + Vky)‖ = ‖r0 −HVky‖.

The columns of Vk are generated by using Arnoldi algorithm [47, Algorithm

3.4.1]. The starting vector is given as v1 = r0/‖r0‖ and the following vectors

Chapter 2. Fundamentals 46

are generated by

vj+1 =
Hvj −

∑j
i=1((Hvj)Tvi)vi

‖Hvj −
∑j

i=1((Hvj)Tvi)vi‖
,

for j ≥ 0.

Let Hk be constructed such that hji = (Hvj)Tvi and hij = 0 for i > j+1.

Then Arnoldi algorithm produces matrices Vk such that

HVk = Vk+1Hk.

Consequently, the residual norm becomes

‖rk‖ = ‖r0 −HVky‖ = ‖r0 − Vk+1Hky‖ = ‖Vk+1(βe1 −Hky)‖.

That is because v1 = r0/‖r0‖ and β = ‖r0‖, where e1 = [1, 0, ..., 0] and

e1 ∈ Rk+1. See [47, 66].

The GMRES Algorithm:

• Given an initial solution u0, r0 = q −Hu0, v1 = r0/‖r0‖, ρ0 = ‖r0‖,

β0 = ρ0 and j=0.

• While ρj > ε‖q‖ and j < jmax do

(a) j = j + 1.

(b) For i = 1, ..., j

Chapter 2. Fundamentals 47

hij = (Hvj)Tvi

vj+1 = Hvj −
∑j

i=0 hijv
i,

hj+1,j = ‖vj+1‖,

vj+1 = vj+1/‖vj+1‖,

e1 = (1, 0, ..., 0)T ∈ Rj+1,

Minimize ‖βje1 −Hjd
j‖ over Rj to obtain dj,

ρj+1 = ‖βje1 −Hjd
j‖,

uj+1 = uj + Vjd
j.

The GMRES method breaks down when ‖Hvj −
∑j

i=1((Hvj)Tvi)vi‖ is

zero. This quantity is zero when the residual is zero. This is not a problem,

since if the residual is zero the solution will be found. See [47, 66].

BiConjugate Gradient Method (BiCG)

Among all methods which do not require the matrix to be symmetric the

GMRES method is the most successful Krylov subspace method in terms

of minimization property. However, the operations and the storage require-

ment for this method increase linearly with the iteration number (GMRES

is long recurrence method). The BiConjugate Gradient method is a short

recurrence method and is used to solve nonsymmetric problem. It takes an-

other approach: instead of minimizing the residual, the residual is required

to satisfy the bi-orthogonality condition

(rj)Tw = 0, ∀w ∈ K̄j; K̄j = span{r̂0,HT r̂0,, (HT)j−1r̂0},

where K̄j is Krylov subspace for HT and usually r̂0 is chosen such that r̂0 = r0

[47].

Chapter 2. Fundamentals 48

The BiCG Algorithm:

• Given an initial solution u0, r0 = q−Hu0, Choose r̂0 such that r̂0 6= 0,

d0 = r0 and d̂0 = r̂0.

• For j = 0, 1, ...

while ‖rj‖ > ε do

αj = (rj)T r̂j/(dj)THT d̂j,

uj+1 = uj + αjd
j,

rj+1 = rj − αjHdj, r̂j+1 = r̂j − αjHT d̂j,

βj = (rj+1)T r̂j+1/(rj)T r̂j,

dj+1 = rj+1 + βjd
j, d̂j+1 = r̂j+1 + βj d̂

j.

The BiCG method breaks down when either (r̂j)T rj = 0 or (dj)THT d̂j = 0.

If these quantities are very small this method becomes unstable [47, 70].

MINRES and SYMMLQ Methods

MINRES and SYMMLQ methods are used to solve symmetric indefinite

equation systems. The MINRES method minimizes the 2-norm of the resid-

ual, while the SYMMLQ method solves the projected system, but it does

not minimize anything. It maintains the residual orthogonal to the previous

residuals. See [62] for more detail. As the MINRES and the SYMMLQ meth-

ods are used to solve symmetric indefinite system, these methods should be

preconditioned by a symmetric preconditioner, see [25, 62].

2.4.4 Null Space Methods

Null space methods can be used for solving saddle point problems like the

augmented system (1.7).

Chapter 2. Fundamentals 49

Solving (1.7) is equivalent to solving the following two equations:

−Θ−1∆x+ AT∆y = f,

A∆x = g.
(2.17)

Let us introduce Z the null space matrix. Z is a matrix belong to

Rn×(n−m) and satisfies AZ = 0.

Null space method is described as follows

1. Find ∆x̃ such that

A∆x̃ = g.

2. Solve the system

ZTΘ−1Zp = −ZT (Θ−1∆x̃+ f), (2.18)

where Z is the null space matrix of the constraint matrix A.

3. Set the solution (∆x∗,∆y∗) as the following:

∆x∗ = ∆x̃+ Zp.

∆y∗ is the solution of the system

AAT∆y = A(f + Θ−1∆x∗).

See [8].

Let us explain this method. First, we multiply the first equation of (2.17)

with ZT , which gives

−ZTΘ−1∆x+ ZTAT∆y = ZTf.

Chapter 2. Fundamentals 50

This is equivalent to

−ZTΘ−1∆x = ZTf

because of ZTAT = 0.

Let us denote ∆x = ∆x̃ + Zp, where ∆x̃ is chosen such that A∆x̃ = g,

then the previous equation becomes

ZTΘ−1Zp = −ZT (Θ−1∆x̃+ f),

which is equivalent to (2.18).

In order to find ∆y∗, we substitute ∆x∗ is the first equation of (2.17) and

then multiply it with A which gives AAT∆y = A(f + Θ−1∆x∗).

The null space method is an attractive approach when n−m is small. The

null space system (2.18) can be solved either directly or iteratively (see Sub-

section 1.2.1 and 1.2.2 above). In [19] the PCG method is used to solve the

null space system (which is similar to (2.18) but for quadratic minimization

problem).

In order to use the null space method we first have to compute the null

space matrix Z. Let us assume A has full row rank. The matrix Z is given

by

Z =

 −A−1
1 A2

In−m

 ,
where the constraint matrix A is partitioned as A = [A1, A2], where A1 is

a m × m nonsingular matrix. There are plenty of choices to construct the

m × m nonsingular matrix A1 see [8]. In order to save on computation

time and storage, one should choose the sparsest null basis matrix A1. The

Chapter 2. Fundamentals 51

problem of finding the sparsest null basis is called the null space problem.

This problem is NP hard [17], and there are many papers which propose

(heuristic) approaches to solve it [8, 11, 17, 18, 63].

Chapter 3

The PCG Method for the

Augmented System

We are dealing with large and sparse problems and we are looking for an

iterative method from the Krylov-subspace family which can solve the aug-

mented system (1.7) efficiently. As we have discussed in the previous chap-

ter, there exists a wide range of iterative methods which can be used in this

context The family of Krylov-subspace methods [47, 66, 72] enjoys a partic-

ularly good reputation among different iterative methods. Since we plan to

solve large systems of equations, we prefer to use a short recurrence method

rather than a long recurrence one. The full recurrence methods such as GM-

RES [67] occasionally do not manage to converge fast enough and become

unacceptably expensive. Among the short recurrence methods we consid-

ered MINRES [62] and PCG [42, 66, 72]. Bearing in mind that, whichever

method is used, preconditioning is necessary, we decided not to use MINRES

because this method requires a symmetric positive definite preconditioner, a

restriction we would like to avoid. Summing up, encouraged by recent anal-

yses [51, 65] we will apply the preconditioned conjugate gradients (PCG)

52

Chapter 3. The PCG Method for the Augmented System 53

method directly to the indefinite system (1.7).

In the introduction section we explained fully why we chose to work with

the augmented system (1.7). To summarise, the augmented system has better

conditioning and has additional flexibility in exploiting sparsity compared

to the normal equations. In addition, all preconditioners for the normal

equations system have an equivalent for the augmented system, while the

opposite is not true.

The results presented in this chapter have been the subject of joint work

with Jacek Gondzio and Julian Hall [2].

3.1 Preconditioner

Choosing the preconditioner for a linear system plays a critical role in the

convergence of the iterative solver. The issue of finding a preconditioner for

the augmented system was investigated in many papers [9, 10, 16, 21, 22, 23,

34, 46, 60] to mention a few. Let H be the matrix of the augmented system

which arises from IPMs for the linear, quadratic or nonlinear programming

problems.

H =

 H AT

A 0

 , (3.1)

where H is a n× n matrix.

Before presenting a list of preconditioners for augmented systems, we

should mention first the characteristics of good preconditioner. The precon-

ditioner is considered to be good if it satisfies the following features. The

first one is that the preconditioner should be a good approximation to the

original matrix H. If preconditioner is approximately equal to the original

Chapter 3. The PCG Method for the Augmented System 54

matrix, then the preconditioned matrix P−1H will be approximately equal

to identity matrix. That makes it easy to solve the preconditioned system.

The second feature is that the preconditioner should be relatively easy to

compute. Since for most iterative methods, the preconditioner is computed

at each iteration of interior point method. The third feature is that it should

be relatively easy to solve an equation with preconditioner, namely it should

be easy to solve Pd = r. Since, this system is required to be solved at each

iterations of the iterative solver. The final feature is that the eigenvalues of

the preconditioned matrix should be clustered (and the distinct eigenvalues

of the preconditioned matrix should be as less as possible) and bounded away

from zero. Because, the convergence of iterative solvers usually relates to the

eigenvalues of the preconditioned system. For the PCG method, for instance,

see Theorem 2.4.4.

It is very difficult to design a preconditioner satisfies the previous four

features in the same time. Consequently one needs to make a balance among

these features to design a high-quality preconditioner. That why there are

huge number of studies tackle this issue. Below we discuss a few of recently

developed preconditioners for (3.1). We also report theorems which show the

behaviours of the eigenvalues of preconditioned matrices for some of these

preconditioners, see Theorems 3.1.1, 3.1.2, 3.1.3 and 3.1.4. This information

is important because it give an idea about the convergence of the precondi-

tioned system.

In [9] Bergamaschi, Gondzio, Venturin and Zilli propose a preconditioner

for the augmented system for the linear, quadratic or nonlinear programming

Chapter 3. The PCG Method for the Augmented System 55

problems. This preconditioner is defined as follow:

P =

 G ÃT

Ã 0

 ,
where G is an invertible approximation of H, and Ã is a sparse approximation

of the Jacobian of constraints that is of matrix A. Let the error matrix

E = A − Ã have rank p, where 0 ≤ p ≤ m. Let σ̃ be the smallest singular

value of ÃD−1/2 and eQ and eA be errors terms given as

eQ = ‖D−1/2QD−1/2 − I‖, eA =
‖ED−1/2‖

σ̃
.

The eigenvalues of the preconditioned matrix P−1H are characterized by the

following theorem [9, Theorem 2.1].

Theorem 3.1.1. Assume A and Ã have maximum rank. If the eigenvector

is of the form (0, y)T then the eigenvalues of P−1H are either one (with

multiplicity at least m − p) or possibly complex and bounded by |ε| ≤ eA.

Corresponding to eigenvectors of the form (x, y)T with x 6= 0 the eigenvalues

are

1. equal to one (with multiplicity at least m− p), or

2. real positive and bounded by

λmin(D−1/2QD−1/2) ≤ λ ≤ λmax(D−1/2QD−1/2), or

3. complex, satisfying

|εR| ≤ eQ + eA,

|εI | ≤ eQ + eA,

Chapter 3. The PCG Method for the Augmented System 56

where ε = εR + iεI .

In [21] the constraint matrix is partitioned into two matrices, such that

A = [A1, A2], where A1 is nonsingular. Accordingly, the matrix H is parti-

tioned as follows

H =

 H11 H12

H21 H22

 .
The preconditioner P is constructed by replacing H by G. Similarly G is

partitioned into

G =

 G11 G12

G21 G22

 .
The following theorem describes the eigenvalues of the preconditioned

matrix P−1H [21, Theorem 2.1].

Theorem 3.1.2. Suppose that Z is the null space matrix of A. Then P−1H

has 2m unit eigenvalues, and the remaining n −m eigenvalues are those of

the generalized eigenproblem

ZTHZv = λZTGZv.

Different choices of the matrices G11, G12, G21 and G22 give different pre-

conditioners. For the symmetric case H21 = HT
12, the authors proposed dif-

ferent choices of the matrix G, which improve the eigenvalues of the precon-

ditioned matrix P−1H. Here we will mention a few of these preconditioners.

By choosing

G22 = H22, G11 = 0 and G21 = 0.

Chapter 3. The PCG Method for the Augmented System 57

The eigenvalues of the preconditioned matrix are given in the following the-

orem [21, Theorem 2.3].

Theorem 3.1.3. Suppose that the matrix G is chosen as mentioned before.

Suppose that H22 is positive definite, and let

ρ = min{rank(A2), rank(H21)}+ min{rank(A2), rank(H21)

+ min[rank(A2), rank(H11)]}.

Then P−1H has at most

rank(RTHT
21 +H21R +RTH11R) + 1 ≤ min(ρ, n−m) + 1

≤ min(2m,n−m) + 1,

distinct eigenvalues, where R = −A−1
1 A2.

For G22 = H22, G11 = H11 and G21 = 0. The eigenvalues of the precon-

ditioned matrix satisfy the following theorem [21, Theorem 2.4].

Theorem 3.1.4. Suppose that the matrix G is chosen as mentioned before.

Suppose that H22 +RTHT
11R is positive definite, and that

ν = 2 min{rank(A2), rank(H21)}.

Then P−1H has at most ν + 1 distinct eigenvalues, where

rank(RTH11R) + 1 ≤ ν + 1 ≤ min(2m,n−m) + 1.

In [34] the authors propose four different symmetric positive definite pre-

conditioners for the augmented system for the linear programs. In order to

construct these preconditioners the matrices H and A are partitioned as has

Chapter 3. The PCG Method for the Augmented System 58

been mentioned earlier. However, A2 is chosen to be the nonsingular matrix

instead of A1.

The first preconditioner is a diagonal matrix. This preconditioner is given

by

P = C1C
T
1 =

H11 0 0

0 I 0

0 0 I

 .

The preconditioned matrix is given by

C−1
1 HC−T1 =

I 0 H

−1/2
11 AT1

0 H22 AT2

A1H
−1/2
11 A2 0

 .

The second preconditioner is a block diagonal matrix. It is presented as

follows

P = C2C
T
2 =

H11 0 0

0 AT2A2 0

0 0 I

 .

The preconditioned matrix is given by

C−1
2 HC−T2 =

I 0 H

−1/2
11 AT1

0 A−T2 H22A
−1
2 I

A1H
−1/2
11 I 0

 .

The third preconditioner is designed to eliminate the submatrix A−T2 H22A
−1
2

Chapter 3. The PCG Method for the Augmented System 59

in the previous preconditioned matrix. This preconditioner is given by

P = C3C
T
3 , C3 =

H

1/2
11 0 0

0 AT2
1
2
H22A

−1
2

0 0 I

 .

The preconditioned matrix is given by

C−1
3 HC−T3 =

I −1

2
H
−1/2
11 AT1A

−T
2 H22A

−1
2 H

−1/2
11 AT1

−1
2
A−T2 H22A

−1
2 A1H

−1/2
11 0 I

A1H
−1/2
11 I 0

 .

The fourth preconditioner also eliminates the submatrix A−T2 H22A
−1
2 , using

the factorization AT2 = LU . This preconditioner is given by

P = C4C
T
4 , C4 =

H

1/2
11 0 0

0 L 1
2
H22L

−T

0 0 UT

 .

The preconditioned matrix is given by

C−1
4 HC−T4 =

I −1

2
H
−1/2
11 AT1U

−1L−1H22L
−T H

−1/2
11 AT1U

−1

−1
2
L−1H22L

−TU−TA1H
−1/2
11 0 I

U−TA1H
−1/2
11 I 0

 .

The preconditioner in [60] is given in the form P = CCT and is applied

from the left and from the right to the augmented system, which arises from

the IPMs for LP. To construct this preconditioner the matrices A and H are

partitioned as mentioned before, where A1 is nonsingular. The inverse of C

is given by

Chapter 3. The PCG Method for the Augmented System 60

C−1 =

 −H−1/2 M

T 0

 ,
T = [I 0]Q, where Q is a permutation matrix, and M = T TH

1/2
11 A

−1
1 .

The preconditioned matrix is given by:

C−1HC−T = Q

−I −W 0

−W T I 0

0 0 H11

QT ,

where W = H
1/2
11 A

−1
1 A2H

−1/2
22 .

Assume ∆x = [∆x1,∆x2] is partitioned accordingly to the partition of A.

Eventually in the approach of [60] the preconditioned system is reduced

to the following normal equations

(I +WW T)∆x1 = g̃.

In this section we construct a new preconditioner for the augmented sys-

tem (1.7). And before we do so we will rearrange the augmented system such

that Θ−1 AT

A 0

 −∆x

∆y

 =

 f

g

 , (3.2)

where in this chapter we redefine g as follows g = Ax− b.

To design the preconditioner for the augmented system, we first ob-

serve that the ill-conditioning in linear systems (1.7) and (1.8) is a conse-

Chapter 3. The PCG Method for the Augmented System 61

quence of the properties of the diagonal scaling matrix Θ. From the com-

plementarity condition for linear programs we know that, at the optimum,

x̂j ŝj = 0,∀j ∈ {1, 2, . . . , n}. The condition x̂j ŝj = 0 is satisfied if at least

one of the variables x̂j and ŝj is zero. Primal-dual interior point methods

identify a strong optimal partition [77], that is, they produce an optimal so-

lution with the property x̂j + ŝj > 0, ∀j. In other words, only one of x̂j and

ŝj is zero. The set of indices {1, 2, . . . , n} can therefore be partitioned into

two disjoint subsets:

B = {j ∈ {1, 2, ..., n} : x̂j > 0} and N = {j ∈ {1, 2, ..., n} : ŝj > 0}.

In fact, the optimal partition is closely related (but not equivalent to) the

basic-nonbasic partition in the simplex method. That is due to that simplex

method iterations move from vertex to vertex until the optimal solution is

found. So the simplex method has exactly m basic variables (variables belong

to B) and n−m nonbasic variables (variables belong to N). However, interior

point methods approach the optimal solution by moving through the interior

of the feasible region. Consequently, interior point methods have m basic

variable and n−m nonbasic variables in the limit only. That is why we refer

to this partition in interior point methods by optimal partition.

Unlike the simplex method which satisfies the complementarity condition

at each iteration, the interior point method satisfies this condition only in

the limit. The primal-dual interior point method identifies a strong optimal

partition near the optimal solution. Below we will summarise its asymptotic

behaviour and use the arrow to denote “converges to”. If at the optimal

solution j ∈ B, then xj → x̂j > 0 and sj → 0, hence the corresponding

element θj → ∞. If at the optimal solution j ∈ N, then xj → 0 and

Chapter 3. The PCG Method for the Augmented System 62

sj → ŝj > 0 and θj → 0. Summing up,

θj →

 ∞, if j ∈ B

0, if j ∈ N,
and θ−1

j →

 0, if j ∈ B

∞, if j ∈ N.
(3.3)

This property of interior point methods is responsible for a number of numer-

ical difficulties. In particular, it causes both linear systems (1.7) and (1.8) to

become very ill-conditioned when an interior point method approaches the

optimal solution [3]. However, it may be used to advantage when construct-

ing a preconditioner for the iterative method.

We partition the matrices and vectors:

A = [AB, AN], Θ =

 ΘB 0

0 ΘN

 , x = [xB, xN], and s = [sB, sN]

according to the partition of {1, 2, . . . , n} into sets B and N. With this

notation, from (3.3) we conclude that ΘN ≈ 0 and Θ−1
B ≈ 0. Consequently,

the matrix in the augmented system (3.2) can be approximated as follows:

Θ−1

B ATB

Θ−1
N ATN

AB AN

 ≈

ATB

Θ−1
N ATN

AB AN

 , (3.4)

and the matrix in the normal equations system (1.8) can be approximated

as follows:

AΘAT = ABΘBA
T
B + ANΘNA

T
N ≈ ABΘBA

T
B. (3.5)

If the matrix AB was square and nonsingular then equations (3.4) and (3.5)

would suggest obvious preconditioners for the augmented system and nor-

Chapter 3. The PCG Method for the Augmented System 63

mal equations, respectively. However, there is no guarantee that this is the

case. On the contrary, in practical applications it is very unlikely that the

matrix AB corresponding to the optimal partition is square and nonsingular.

Moreover, the optimal partition is known only when an IPM approaches the

optimal solution of the linear program.

To construct a preconditioner to (3.2) with a structure similar to the ap-

proximation (3.4) we need to guess an optimal partition and, additionally,

guarantee that the matrix B which approximates AB is nonsingular. We ex-

ploit the difference in magnitude of elements in Θ to design a preconditioner.

We sort the elements of Θ in non-increasing order: θ1 ≥ θ2 ≥ θ3 ≥ · · · ≥ θn.

Hence the elements of Θ−1 satisfy θ−1
1 ≤ θ−1

2 ≤ θ−1
3 ≤ · · · ≤ θ−1

n . If the

primal-dual iterate is sufficiently close to an optimal solution, then the first

elements θ−1
j in this list correspond to variables xj which are most likely to

be nonzero at the optimum, and the last elements in the list correspond to

variables which are likely to be zero at the optimum. We select the first

m linearly independent columns of the matrix A, when permuted according

to the order of θ−1
j , and we construct a nonsingular matrix B from these

columns. The submatrix of A corresponding to all the remaining columns is

denoted by N . Therefore we assume that a partition A = [B,N] is known

such that B is nonsingular and the entries θ−1
j corresponding to columns of

B are chosen from the smallest elements of Θ−1. According to this partition-

ing of A and Θ (and after a symmetric row and column permutation) the

indefinite matrix in (3.2) can be rewritten in the following form

K =

Θ−1
B BT

Θ−1
N NT

B N

 . (3.6)

Chapter 3. The PCG Method for the Augmented System 64

By construction, the elements of Θ−1
B are supposed to be among the smallest

elements of Θ−1, hence we may assume that Θ−1
B ≈ 0. The following easily

invertible block-triangular matrix

P =

BT

Θ−1
N NT

B N

 (3.7)

is a good approximation to K. Hence P is an attractive preconditioner for K.

We should mention that Oliveira and Sorensen [60] use a similar partitioning

process to derive their preconditioner for the normal equations. They order

the columns of the matrix AΘ−1 from the smallest to the largest with respect

to the 1-norm and then scan the columns of A in this order to select the first

m that are linearly independent.

Since the matrix B was constructed from columns corresponding to the

smallest possible elements of Θ−1 we may expect that ‖Θ−1
B ‖F � ‖Θ

−1
N ‖F ,

where ‖.‖F denotes the Frobenius norm of the matrix. Using (3.6) and (3.7)

we derive the following bound on the square of the Frobenius norm of the

difference of matrices K and P :

‖K − P‖2
F = ‖Θ−1

B ‖
2
F � ‖P‖2

F < ‖K‖2
F . (3.8)

Summing up, P is a good approximation to K (since the approximation

error is small in relation to ‖P‖2
F and ‖K‖2

F) and we may consider it as a

possible preconditioner of K. Secondly, it is easy to compute P , we order

the elements of Θ in non-increase order then we pick the first m linearly

independent columns of A in this order to construct the nonsingular matrix

B, see Subsection 3.4. In addition, it is easy to solve an equation with P

Chapter 3. The PCG Method for the Augmented System 65

because it is block-triangular with nonsingular diagonal blocks B, Θ−1
N and

BT . We conclude this section by giving explicit formulae for the solution

of equations with the preconditioner (3.7) and leave the analysis of spectral

properties of the preconditioned matrix P−1K to Subsection 3.2.

3.1.1 Solving equations with P

The matrix (3.7) is block triangular and its diagonal blocks B,Θ−1
N and BT

are invertible. Let d = [dB, dN , dy] and r = [rB, rN , ry] and consider the

system of equations
BT

Θ−1
N NT

B N

dB

dN

dy

 =

rB

rN

ry

 . (3.9)

The solution of (3.9) can easily be computed by exploiting the block-triangular

structure of the matrix:

BTdy = rB ⇒ dy = B−T rB

Θ−1
N dN +NTdy = rN ⇒ dN = ΘNrN −ΘNN

Tdy

BdB +NdN = ry ⇒ dB = B−1(ry −NdN).

(3.10)

The operation d = P−1r involves solving two equations (one with B and one

with BT) and a couple of matrix-vector multiplications. These operations

will be performed at every iteration of the conjugate gradients procedure

hence they should be implemented in the most efficient way. The issues of

choosing a well-conditioned basis matrix B with sparse factored inverse are

addressed in Subsection 3.4.

Chapter 3. The PCG Method for the Augmented System 66

3.2 Spectral analysis

We have observed earlier that if ΘB is chosen carefully and ‖Θ−1
B ‖F �

‖Θ−1
N ‖F then the preconditioner (3.7) is a good approximation to K in (3.6).

To assess the quality of the preconditioner we need a better understanding

of the relation between P and K.

We will therefore analyse the spectral properties of the preconditioned

matrix P−1K. Let us use the notation Kt = q to denote the system (3.2),

where t = [−∆x,∆y] and q = [f, g]. Given a starting approximation t(0) and

the associated residual r(0) = q −Kt(0) the indefinite preconditioner may be

applied either from the right, yielding the system

KP−1t̂ = q, t = P−1t̂, (3.11)

or from the left, so that the system to be solved becomes

P−1Kt = P−1q. (3.12)

The right and the left preconditioned matrices KP−1 and P−1K have the

same eigenvalues so general spectral results can be given in terms of either

of the two formulations. The following theorem shows that the eigenvalues

of the P−1K matrix are real and positive. Moreover they are bounded away

from zero.

Theorem 3.2.1. Let λ be an eigenvalue of P−1K. Then λ is real and λ ≥ 1.

Proof. Let v be an eigenvector of P−1K corresponding to the eigenvalue λ,

that is, P−1Kv = λv. Let λ = 1 + τ and, applying the usual partitioning

Chapter 3. The PCG Method for the Augmented System 67

v = [vB, vN , vy], the eigensystem can be written as Kv = (1 + τ)Pv:

Θ−1
B BT

Θ−1
N NT

B N

vB

vN

vy

 = (1 + τ)

BT

Θ−1
N NT

B N

vB

vN

vy

which yields

Θ−1
B vB = τBTvy

τ(Θ−1
N vN +NTvy) = 0

τ(BvB +NvN) = 0.

We consider two cases. When τ = 0 clearly λ = 1 so the claim is true.

Otherwise, when τ 6= 0, the equation system can be simplified:

Θ−1
B vB = τBTvy

Θ−1
N vN +NTvy = 0

BvB +NvN = 0,

and solved for τ . From the third equation we get vB = −B−1NvN and,

substituting this in the first equation, yields NvN = −τBΘBB
Tvy. Next, we

use the second equation to substitute for vN = −ΘNN
Tvy giving

(NΘNN
T)vy = τ(BΘBB

T)vy.

If vy = 0 then (using τ 6= 0) we deduce that vB = 0 and vN = 0, that is

the eigenvector is zero. We can exclude such a situation and safely assume

Chapter 3. The PCG Method for the Augmented System 68

that vy 6= 0. In this case, we multiply both sides of the equation by vTy to get

vTy (NΘNN
T)vy = τvTy (BΘBB

T)vy.

Since all the elements of Θ are positive and B is nonsingular, the matrix

BΘBB
T is symmetric positive definite and the matrix NΘNN

T is symmetric

positive semidefinite. Hence we conclude that

τ =
vTy (NΘNN

T)vy

vTy (BΘBBT)vy
≥ 0, (3.13)

which is real and positive number, which completes the proof.

The proof reveals the importance of the correct partitioning of A =

[B,N]. Indeed, this partition should have a number of desirable features:

• B should be nonsingular and well-conditioned since we should operate

accurately with the preconditioner;

• All elements in Θ−1
B should be small in comparison with those in Θ−1

N .

The condition ‖Θ−1
B ‖F � ‖Θ−1

N ‖F is relatively easy to satisfy. How-

ever, (3.13) indicates that we need a stronger property: we would like to

bound τ from above and, in that way, cluster all eigenvalues of P−1K in an

interval [1, λmax], with λmax kept as small as possible. This opens questions

regarding the necessary concessions to be made when the matrix B and the

corresponding ΘB are chosen. The ability to identify a well-conditioned ma-

trix B consisting of columns for which the θj are “large” is crucial for the

good/efficient behaviour of our approach. We discuss these issues in detail

in Section 3.4.

In the previous theorem we show that the eigenvalues of the precondi-

tioned matrix KP−1 are real and greater than one. In the following theorem

Chapter 3. The PCG Method for the Augmented System 69

we show that the preconditioned matrix KP−1 has at least n+ p unit eigen-

values, where p is the rank of the matrix N .

Theorem 3.2.2. The preconditioned matrix KP−1 has at least n + p unit

eigenvalues.

Proof. The inverse of the preconditioner P is given by

P−1 =

B−1NΘNN

TB−T −B−1NΘN B−1

−ΘNN
TB−T ΘN 0

B−T 0 0

 .

Therefore, the preconditioned matrix KP−1 is given by

KP−1 =

I + Θ−1

B B−1NΘNN
TB−T −Θ−1

B B−1NΘN Θ−1
B B−1

0 I 0

0 0 I

 .

Let v be an eigenvector of KP−1 corresponding to the eigenvalue λ, that is,

KP−1v = λv, which can be rewritten as
I + Θ−1

B B−1NΘNN
TB−T −Θ−1

B B−1NΘN Θ−1
B B−1

0 I 0

0 0 I

vB

vN

vy

 = λ

vB

vN

vy

which yields

(I+Θ−1
B B−1NΘNN

TB−T)vB−Θ−1
B B−1NΘNvN +Θ−1

B B−1vy = λvB, (3.14)

vN = λvN , (3.15)

vy = λvy. (3.16)

Chapter 3. The PCG Method for the Augmented System 70

We now analyse a number of cases depending on vB, vN and vy.

1. vB = 0. Substituting this in (3.14) gives vy = NΘNvN . That gives the

eigenvector [0, vN , NΘNvN] which is associated with the unit eigenvalue

with multiplicity n−m, because we can find n−m linearly independent

vectors vN .

2. vB 6= 0. Then there is a nonzero vector z such that vB = BT z. z 6= 0

because vB 6= 0 and B is nonsingular. By substituting this in (3.14) we

get the following equality

BΘBB
T z +NΘNN

T z −NΘNvN + vy = λBΘBB
T z. (3.17)

We have the following cases:

(a) vy = 0 and vN 6= 0. If we choose vN such that vN = NT z, we

will get the eigenvector [BT z, NT z, 0] which is associated with

the unit eigenvalue with multiplicity m, because we can find m

linearly independent vector vB.

(b) vN = 0 and vy 6= 0. We can choose vy = −NΘNN
T z. That gives

the eigenvector [BT z, 0, −NΘNN
T z] which is associated with the

unit eigenvalue with multiplicity p, where N has rank p. For the

reason that we can find p linearly independent vector −NΘNN
T z,

because the vector z is nonzero and N has rank p.

(c) vN 6= 0 and vy 6= 0. Let us choose vN such that

vN = (εI +NΘN)−1vy, (3.18)

where ε > 0 and it is chosen such that the matrix (εI + NΘN) is

Chapter 3. The PCG Method for the Augmented System 71

nonsingular. (εI +NΘN) is nonsingular for any ε ∈ (0, δ), where

δ = min
i
{|λi| : λi 6= 0}, where λi is all eigenvalues of NΘN .

By substituting (3.18) in (3.17), we get

BΘBB
T z +NΘNN

T z + εvN = λBΘBB
T z.

We can choose z any nonzero vector such that zTvN ≥ 0. Since

z 6= 0, BΘBB
T is symmetric positive definite and NΘNN

T is

symmetric positive semidefinite, we can write

λ = 1 +
zTNΘNN

T z + εzTvN
zTBΘBBT z

. (3.19)

The remaining m − p eigenvectors are [vB, vN , vy] which is as-

sociated with the eigenvalues (3.19), because we can find m − p

linearly independent vectors vy, which are linearly independent

from vy in case (b).

We conclude from the previous cases that the preconditioned matrix KP−1

has at least n+ p unit eigenvalues.

3.3 The PCG method for nonsymmetric in-

definite system

Rozlozńık and Simoncini [65] used the BiCG method to solve an indefinite

system such as (3.2) preconditioned from the right. They show that the

right preconditioned BiCG method reduces to the standard preconditioned

Chapter 3. The PCG Method for the Augmented System 72

CG method if the following two properties hold. The first property is that the

preconditioned matrix H = KP−1 is J-symmetric, where J = P−1, and the

second is that g = 0. The reason behind this is that when g = 0 the residual

of PCG has a zero block and can be expressed as rj = [rj1, 0]. Although in

our case g 6= 0, the initial iterate t0 can be chosen so that the corresponding

residual has the form r0 = [r0
1, 0]. Furthermore, the preconditioned matrix

H = KP−1 is J-symmetric, since HTJ = JH. See [65].

Let us consider the following starting point for CG:

t0 =

−∆x0

B

−∆x0
N

∆y0

 =

B−1g

0

0

 , (3.20)

where ∆x =

 ∆xB

∆xN

. The initial residual r0 = q−Kt0 may then be written

as

r0 =

fB

fN

g

−

Θ−1
B BT

Θ−1
N NT

B N

B−1g

0

0

 =

fB −Θ−1

B B−1g

fN

0

 .

Note two interesting properties of the preconditioned matrix KP−1 stated

as two Lemmas below. Multiplying by the preconditioned matrix KP−1

preserves a zero block in the third component of the vector.

Lemma 3.3.1. Let t =

vB

vN

0

. Then KP−1t =

zB

zN

0

.

Chapter 3. The PCG Method for the Augmented System 73

Proof. We note first that, by using (3.9)-(3.10), we may write u = P−1t as

u =

B−1NΘNN

TB−TvB −B−1NΘNvN

−ΘNN
TB−TvB + ΘNvN

B−TvB

 .

Hence

KP−1t = Ku =

Θ−1
B BT

Θ−1
N NT

B N

B−1NΘNN

TB−TvB −B−1NΘNvN

−ΘNN
TB−TvB + ΘNvN

B−TvB

=

(I + Θ−1

B B−1NΘNN
TB−T)vB −Θ−1

B B−1NΘNvN

vN

0

 ,

which completes the proof.

Furthermore, using the initial approximate solution

t0 =

−∆x0

B

−∆x0
N

∆y0

 =

B−1(g −NΘNfN)

ΘNfN

0

 , (3.21)

the residuals will have two zero blocks, r =

rB

0

0

.

Chapter 3. The PCG Method for the Augmented System 74

The initial residual r0 = q −Kt0 may be written:

r0 =

fB

fN

g

−

Θ−1
B BT

Θ−1
N NT

B N

B−1(g−NΘNfN)

ΘNfN

0

 ,

which gives

r0 =

fB−Θ−1

B B−1g+Θ−1
B B−1NΘNfN

0

0

 .

We observe an important property of the preconditioned matrix: multi-

plying with the matrix KP−1 preserves the zero blocks in the second and

third components of the vector.

Lemma 3.3.2. Let t =

vB

0

0

. Then KP−1t =

zB

0

0

.

Proof. We note first that, by using (3.9)-(3.10), we may write u = P−1t as

u =

B−1NΘNN

TB−TvB

−ΘNN
TB−TvB

B−TvB

hence

KP−1t = Ku =

Θ−1
B BT

Θ−1
N NT

B N

B−1NΘNN

TB−TvB

−ΘNN
TB−TvB

B−TvB

 ,

Chapter 3. The PCG Method for the Augmented System 75

we obtain

KP−1t=

(I + Θ−1

B B−1NΘNN
TB−T)vB

0

0

 ,

which completes the proof.

From the PCG algorithm, we have d0 = P−1r0, dj = P−1rj + βjd
j−1 and

rj+1 = rj − αjKd
j. So the residual r1 is computed as linear combination

of r0 and KP−1r0. For j > 1, the residual rj+1 is computed as a linear

combination of rj−1, rj and KP−1rj (That is because rj+1 = αjβj/αj−1r
j−1+

(1−αjβj/αj−1)rj−αjKP−1rj). This implies that rj = [rj1, 0] for j = 0,1, . . .

Consequently, we can use the standard PCG method along with (3.7) to

solve (3.2).

3.3.1 The convergence of the PCG method

In this section, we analyse the behaviour of the PCG method for the indefinite

system (3.2) and give explicit formulae describing the convergence of the

method. The convergence analysis of the PCG method is important because

both K and P are indefinite matrices. In [65] the authors prove that both

the error and the residual of PCG method converge to zero. In here we

prove that too. We analyse the method working in our specific setup with a

particular starting point guaranteeing that the initial residual has the form

r0 = [r0
B, 0, 0].

The PCG algorithm (see Chapter 2) generates iterates tj, j = 0, 1, . . .

with residuals rj = q −Ktj. The error corresponding to each PCG iteration

has the form ej = tj − t∗, where t∗ is the solution of (3.2), and the residual

Chapter 3. The PCG Method for the Augmented System 76

can be written as rj = −Kej since Kej = Ktj−Kt∗ = −rj. In Lemma 3.3.3

we prove that the indefinite K-inner product of the error ej in the PCG

algorithm is always non-negative so we can write ‖ej‖K =
√
< ej, Kej >,

even though K is not positive definite. In Theorem 3.3.4 we show that the

K-norm of the error ej is minimized over the eigenvalues of the symmetric

positive definite matrices. Similarly, in Theorem 3.3.5 we show that the

Euclidean norm of the residual rj is also minimized over the eigenvalues

of the symmetric positive definite matrices. In other words, the error and

residual terms display asymptotic convergence similar to that observed when

PCG is applied to symmetric positive definite systems.

Lemma 3.3.3. Assume we use (3.20) or (3.21) as initial solution of PCG

method. Then the indefinite K-inner product < ej, Kej > is non-negative for

the error ej hence it defines a seminorm

‖ej‖K =
√
< ej, Kej > = ‖ej1‖Θ−1 . (3.22)

Proof. We have shown in Lemmas 3.3.1 and 3.3.2 that, for a suitable initial

solution, the residual has the form rj = [rj1, 0]. Hence

rj = −Kej = −

 Θ−1 AT

A 0

 ej1

ej2

 =

 −Θ−1ej1 − AT e
j
2

−Aej1

 ,

Chapter 3. The PCG Method for the Augmented System 77

implies Aej1 = 0. Simple calculations give the following result

< ej, Kej > = (ej)TKej =
[

(ej1)T (ej2)T
] Θ−1 AT

A 0

 ej1

ej2

= (ej1)TΘ−1ej1 + (ej1)TAT ej2 + (ej2)TAej1

= (ej1)TΘ−1ej1

= (ejB)TΘ−1
B ejB + (ejN)TΘ−1

N ejN ≥ 0 (3.23)

because Θ−1 is positive definite. This gives ‖ej‖K = ‖ej1‖Θ−1 , which com-

pletes the proof.

Let Dj be the Krylov subspace Dj = span{d0, d1, ..., dj−1}. Then D1 =

span{d0} = span{P−1r0}. D2 = span{d0, d1}, where the direction d1 is a

linear combination of the previous direction and P−1r1, while r1 is a linear

combination of the previous residual and Kd0. This implies that d1 is a linear

combination of d0 and P−1KP−1r0, which givesD2 = span{P−1r0, P−1KP−1r0}.

By the same argument dj−1 is a linear combination of dj−2 and (P−1K)j−1P−1r0,

givingDj = span{P−1r0, P−1KP−1r0, ..., (P−1K)j−1P−1r0}. Moreover, r0 =

−Ke0, so Dj = span{P−1Ke0, (P−1K)2e0, . . . , (P−1K)je0}.

The error can be written as ej = ej−1 + αj−1d
j−1, hence ej = e0 +∑j−1

k=0 αkd
k. Since dj ∈ Dj+1 the error can be written as ej = (I+

∑j
k=1 ψk(P

−1K)k)e0,

where the coefficient ψk is related to αk and βk. Hence the error term can

be expressed as

ej = φj(P
−1K)e0, (3.24)

where φj is a polynomial of degree j and we require that φj(0) = 1.

Chapter 3. The PCG Method for the Augmented System 78

Theorem 3.3.4. Let e(0) be the initial error of PCG. Then

‖ej‖2
K ≤ min

φ∈Pj ,φ(0)=1
max

λ∈Λ(Im+WWT)
[φ(λ)]2‖e0

B‖2
Θ−1

B
+ min
φ∈Pj ,φ(0)=1

max
λ∈Λ(In−m+WTW)

[φ(λ)]2‖e0
N‖2

Θ−1
N
,

(3.25)

where Pj is the set of polynomials of degree j, Λ(G) is the set of eigenvalues

of the matrix G and W = Θ
−1/2
B B−1NΘ

1/2
N . Im + WW T and In−m + W TW

are symmetric positive definite matrices.

Proof. First, we observe that Ae0
1 = 0, that is Be0

B + Ne0
N = 0, and hence

we write

Ke0 =

Θ−1
B e0

B +BT e0
2

Θ−1
N e0

N +NT e0
2

0

and, using (3.10), we get

P−1Ke0 =

B−1NΘNN

TB−TΘ−1
B e0

B −B−1Ne0
N

−ΘNN
TB−TΘ−1

B e0
B + e0

N

B−TΘ−1
B e0

B + e0
2

 .

Since Be0
B +Ne0

N = 0, that is e0
B = −B−1Ne0

N and Ne0
N = −Be0

B, we obtain

P−1Ke0 =

B−1NΘNN

TB−TΘ−1
B e0

B −B−1(−Be0
B)

−ΘNN
TB−TΘ−1

B (−B−1Ne0
N) + e0

N

B−TΘ−1
B e0

B + e0
2

=

ΘB(Θ−1

B + Θ−1
B B−1NΘNN

TB−TΘ−1
B)e0

B

ΘN(Θ−1
N +NTB−TΘ−1

B B−1N)e0
N

B−TΘ−1
B e0

B + e0
2

 . (3.26)

Chapter 3. The PCG Method for the Augmented System 79

Let us define

C1 = Θ−1
B + Θ−1

B B−1NΘNN
TB−TΘ−1

B and C2 = Θ−1
N +NTB−TΘ−1

B B−1N.

It is easy to prove that C1 and C2 are symmetric and positive definite ma-

trices. By repeating a similar argument to the one used to derive (3.26) we

obtain

φ(P−1K)e0 =

φ(ΘBC1)e0

B

φ(ΘNC2)e0
N

∗

 . (3.27)

We observe that it is not necessary to compute the last component of the

vector P−1Ke0 because Lemma 3.3.3 guarantees that this component does

not contribute to ‖ej‖2
K .

Using (3.27) to compute the K-norm of the error (3.23) we obtain

‖φj(P−1K)e0‖2
K = ‖φj(ΘBC1)e0

B‖2
Θ−1

B

+ ‖φj(ΘNC2)e0
N‖2

Θ−1
N

. (3.28)

Let us observe that

(ΘBC1)k=Θ
1/2
B (Θ

1/2
B C1Θ

1/2
B)kΘ

−1/2
B =Θ

1/2
B (Im +WW T)kΘ

−1/2
B ,

where (Im +WW T) is a symmetric and positive definite matrix.

Analogously, we observe that (ΘNC2)k=Θ
1/2
N (In−m +W TW)kΘ

−1/2
N , also

(In−m + W TW) is a symmetric and positive definite matrix. Using these

facts, the two terms on the right-hand-side of (3.28) can be simplified as

Chapter 3. The PCG Method for the Augmented System 80

follows

‖φj(ΘBC1)e0
B‖2

Θ−1
B

= ‖Θ1/2
B φj(Im +WW T)Θ

−1/2
B e0

B‖2
Θ−1

B

= ‖φj(Im +WW T)Θ
−1/2
B e0

B‖2,

‖φj(ΘNC2)e0
N‖2

Θ−1
N

= ‖Θ1/2
N φj(In−m +W TW)Θ

−1/2
N e0

N‖2
Θ−1

N

= ‖φj(In−m +W TW)Θ
−1/2
N e0

N‖2,

From (3.24) we have ‖ej‖2
K = ‖φj(P−1K)e0‖2

K , where φj is a polynomial of

degree j and φj(0) = 1. So the K-norm error in (3.28) becomes

‖ej‖2
K = ‖φj(Im +WW T)Θ

−1/2
B e0

B‖2 + ‖φj(In−m +W TW)Θ
−1/2
N e0

N‖2.(3.29)

That is for every polynomial φj over the set of eigenvalues of Im+WW T and

In−m +W TW . Consequently, we can write

‖ej‖2
K ≤ min

φ∈Pj ,φ(0)=1
max

λ∈Λ(Im+WWT)
[φ(λ)]2‖Θ−1/2

B e0
B‖2

+ min
φ∈Pj ,φ(0)=1

max
λ∈Λ(In−m+WTW)

[φ(λ)]2‖Θ−1/2
N e0

N‖2,

and the claim is proved after substituting ‖Θ−1/2
B e0

B‖2 =‖e0
B‖2

Θ−1
B

and

‖Θ−1/2
N e0

N‖2 =‖e0
N‖2

Θ−1
N

.

The K-norm of the error ej = φj(P
−1K)e0 is minimized over the eigen-

values of the symmetric positive definite matrices (Im +WW T) and (In−m +

W TW) so the error term behaves similar to the symmetric positive definite

case.

The Euclidean norm of the residual is minimized over the eigenvalues of

the symmetric positive definite matrix Im + WW T . The following Theorem

shows that the residual term displays asymptotic convergence similar to that

Chapter 3. The PCG Method for the Augmented System 81

observed when PCG is applied to positive definite system.

Theorem 3.3.5. The residual of the PCG method which is used to solve the

augmented system (1.7) preconditioned by P satisfies

‖rj‖ ≤ min
φ∈Pj ,φ(0)=1

max
λ∈Λ(Im+WWT)

|φ(λ)|‖r0
B‖. (3.30)

Proof. The residual satisfies

rj = −Kej,

and the error can be written as

ej = φj(P
−1K)e0.

So we can write the residual as

rj = −Kφj(P−1K)e0 = −φj(KP−1)Ke0 = φj(KP
−1)r0.

Furthermore,

KP−1r0 =

(I + Θ−1

B B−1NΘNN
TB−T)r0

B −Θ−1
B B−1NΘNr

0
N + Θ−1

B B−1r0
2

r0
N

r0
2

 ,

where rj = [rjB, r
j
N , r

j
2]. The initial residual has the form r0 = [r0

B, 0, 0]

Chapter 3. The PCG Method for the Augmented System 82

because of using the starting point (3.21), so the previous equation becomes

KP−1r0 =

Θ−1
B (ΘB +B−1NΘNN

TB−T)r0
B

0

0

 . (3.31)

Let us define C = ΘB + B−1NΘNN
TB−T . It is easy to prove that C is a

symmetric positive definite matrix. By repeating a similar argument to one

used to derive (3.31) we obtain

rj = φj(KP
−1)r0 =

φj(Θ

−1
B C)r0

B

0

0

 , (3.32)

and so

‖rj‖ = ‖φj(Θ−1
B C)r0

B‖. (3.33)

Let us observe that (Θ−1
B C)k = Θ

−1/2
B (Θ

−1/2
B CΘ

−1/2
B)kΘ

1/2
B = Θ

−1/2
B (Im +

WW T)kΘ
1/2
B , where

Im +WW T is a symmetric positive definite matrix.

Using these definitions, (3.33) can be written as

‖rj‖ = ‖Θ−1/2
B φj(Im +WW T)Θ

1/2
B r0

B‖ = ‖φj(Im +WW T)Θ
1/2
B r0

B‖Θ−1
B
.

Therefore,

‖rj‖ ≤ min
φ∈Pj ,φ(0)=1

max
λ∈Λ(Im+WWT)

|φ(λ)|‖Θ1/2
B r0

B‖Θ−1
B
,

Chapter 3. The PCG Method for the Augmented System 83

and the claim is proved after substituting ‖Θ1/2
B r0

B‖Θ−1
B

= ‖r0
B‖.

3.4 Identifying and factorising the matrix B

The preconditioner P was derived on the assumption that it should be signifi-

cantly cheaper to compute sparse factors of just the matrix B than computing

a Cholesky factorisation of the coefficient matrix of the normal equations.

Assuming that A has full row rank, we can find an m by m non-singular

sub-matrix B.

The matrix B is given by the first m linearly independent columns of the

matrix Ã, where the columns of Ã are those of the constraint matrix A, or-

dered by increasing value of θ−1
j . The set of columns forming B is identified

by applying Gaussian elimination to the matrix Ã, as described below. Al-

though this yields an LU factorisation of B, the factorisation is not efficient

with respect to sparsity and its use in subsequent PCG iterations would be

costly. This potential cost is reduced significantly by using the Tomlin matrix

inversion procedure [69] to determine the factorisation of B for use in PCG

iterations. The Tomlin procedure is a relatively simple method of triangular-

isation and factorisation that underpins the highly efficient implementation

of the revised simplex method described by Hall and McKinnon [41]. Since

the matrix B is analogous to a simplex basis matrix, the use of the Tomlin

procedure in this thesis is expected to be similarly advantageous.

3.4.1 Identifying the columns of B via Gaussian elim-

ination

When applying Gaussian elimination to the matrix Ã in order to identify

the set of columns forming B, it is important to stress that the matrix Ã is

Chapter 3. The PCG Method for the Augmented System 84

not updated when elimination operations are identified. The linear indepen-

dence of a particular column of Ã, with respect to columns already in B, is

determined as follows.

Suppose that k columns of B have been determined and let Lk be the

current lower triangular matrix of elimination multipliers. Let aq be the first

column of Ã that has not yet been considered for inclusion in B. The system

Lkâq = aq is solved and the entries of the pivotal column âq are scanned for

a good pivotal value. At each step of Gaussian elimination, one requires to

divide the indices of the pivotal column by the pivot. So it is necessary to

choose the pivot with large magnitude. Usually the pivot is chosen to be

the coefficient which has the maximum magnitude among the coefficients of

the pivotal column. On the other hand, chosen the pivot plays an important

role in term of sparsity. So, we consider the pivot to be good if it has an

acceptable large magnitude and has relatively small row count.

If there are no acceptable pivots, indicating that aq is linearly dependent

on the columns already in B, then aq is discarded. Otherwise, a pivot is

chosen and aq is added to the set of columns forming B.

At least m systems of the form Lkâq = aq must be solved in order to

identify all the columns of B. For some problems, a comparable number

of linearly dependent columns of Ã are encountered before a complete basis

is formed. Thus the efficiency with which Lkâq = aq is solved is crucial.

Additionally, the ill-conditioning of B may lead to PCG being prohibitively

expensive. This issue of efficiency is addressed in the following two ways.

Firstly, in order to reduce the number of nonzeros in the matrices Lk, the

pivotal entry in âq is selected from the set of acceptable pivots on grounds of

sparsity. If the matrix Ã were updated with respect to elimination operations,

then the acceptable pivot of minimum row count could be chosen. Since this

Chapter 3. The PCG Method for the Augmented System 85

is not known, a set of approximate row counts is maintained and used to

discriminate between acceptable pivots. This set of approximate row counts

is initialised to be correct and then, as elimination operations are identified,

updated according to the maximum fill-in that could occur were Ã to be

updated. (The row counts are initially the number of nonzero indices in

each row of Ã. Then at each step of Gaussian elimination the row counts

are approximately updated. Row counts are updated if fill-in occurs, while

they are not updated if cancellations occur. Consequently, the same indices

may include more than once if it is removed and then it is created again. In

practice however, there is no much advantage of checking for cancellations

and keeping the list of cancel indices.)

Secondly, since aq is sparse, consideration is given to the likelihood that

âq is also sparse. This is trivially the case when k = 0 since âq = aq. Since

the columns of Lk are subsets of the entries in pivotal columns, it follows that

for small values of k, âq will remain sparse. For some important classes of

LP problems, this property holds for all k and is analogous to what Hall and

McKinnon term hyper-sparsity [41]. Techniques for exploiting hyper-sparsity

when forming âq analogous to those described in [41] have been used when

computing the preconditioner and have led to significant improvements in

computational performance.

Tomlin invert

We apply the Tomlin matrix inversion procedure to the matrix B to de-

termine a sparser LU factorisation for B.

The active sub-matrix at any time in the Tomlin procedure consists of

those rows and columns in which a pivot has not been found. Initially it is

Chapter 3. The PCG Method for the Augmented System 86

the whole matrix B. The Tomlin procedure has the following steps:

1. Find any identity columns of the matrix B and then eliminate these

columns and their corresponding rows from the active sub-matrix.

2. Find any singleton row in the active sub-matrix and eliminate it to-

gether with the corresponding column. Store the column of singleton

row in the matrix L. Repeat this step to find all singleton rows in the

active sub-matrix.

3. Find any singleton column in the active sub-matrix and eliminate it

together with the corresponding row from the active sub-matrix. Store

the singleton column in the matrix U . Repeat this to find all singleton

columns in the active sub-matrix.

4. Repeat 2 and 3 until there are no more singleton rows or columns.

5. If the active sub-matrix is empty then stop. Otherwise, move to next

step.

6. Apply Gaussian elimination to the remaining active sub-matrix.

Chapter 4

Inexact Interior Point Method

The consequence of using an iterative method to solve the linear system

which arises from IPMs, is solving the KKT system approximately. In this

case, the Newton method (1.4) is solved approximately. So instead of (1.4)

we have the following system.

F
′
(tk)∆tk = −F (tk) + rk, (4.1)

where rk is the residual of the inexact Newton method. Any approximate

step is accepted provided that the residual rk is small such as

‖rk‖ ≤ ηk‖F (tk)‖, (4.2)

as required by the theory [20, 47]. We refer to the term ηk as the forcing

term.

The original content of this chapter has already appeared in [1], co-

authored with Jacek Gondzio.

The idea behind inexact interior point algorithms is to derive a stopping

87

Chapter 4. Inexact Interior Point Method 88

criterion of the iterative linear system solvers that minimizes the computa-

tional effort involved in computing the search directions and guarantee global

convergence [5].

We use the PCG method to solve the augmented system (1.7) precondi-

tioned by a block triangular matrix P (3.7). As a result of this the search di-

rections are computed approximately. That makes it necessary to rethink the

convergence of the interior point algorithms, whose convergence are proved

under the assumption that the search directions are calculated exactly. In

this chapter we focus on one interior point algorithm which is the infeasible

path-following algorithm. In order to prove the convergence of the inexact

infeasible path-following algorithm (IIPF algorithm) we should prove first

the convergence of the PCG method applied to the indefinite system (1.7)

then we prove the convergence of the IIPF algorithm.

In the previous chapter we proved that the PCG method applied to the

indefinite system (1.7) preconditioned with (3.7) and initialized with an ap-

propriate starting point (3.21), converges in a similar way to the case of

applying PCG to a positive definite system. In this chapter we show that

applying PCG to solve (1.7) with the preconditioner (3.7) can be analysed

using the classical framework of the inexact Newton method (4.1).

The use of inexact Newton methods in interior point methods for LP was

investigated in [5, 6, 16, 29, 58, 59]. In [5] the convergence of the infeasible

interior point algorithm of Kojima, Megiddo, and Mizuno is proved under the

assumption that the iterates are bounded. Monteiro and O’Neal [59] propose

the convergence analysis of inexact infeasible long-step primal-dual algorithm

and give complexity results for this method. In [59] the PCG method is used

to solve the normal equations preconditioned with a sparse preconditioner.

The proposed preconditioner was inspired by the Maximum Weight Basis

Chapter 4. Inexact Interior Point Method 89

Algorithm developed in [64]. In [7] an inexact interior point method for

semidefinite programming is presented. It allows the linear system to be

solved to a low accuracy when the current iterate is far from the solution. In

[50] the convergence analysis of inexact infeasible primal-dual path-following

algorithm for convex quadratic programming is presented. In these papers

the search directions are inexact as the PCG method is used to solve the

normal equations. Korzak [49] proves the convergence of the inexact infea-

sible interior point algorithm of Kojima, Megiddo and Mizuno for LP. This

is for search directions which are computed approximately for any iterative

solver. This convergence is proven under the assumption that the iterates are

bounded. Furthermore, in [82] Zhou and Toh show that the primal-dual inex-

act infeasible interior point algorithm can find the ε-approximate solution of

a semidefinite programm in O(n2 ln(1/ε)) iterations. That is also for search

directions which are computed approximately for any iterative solver with-

out the need of assuming the boundedness of the iterations. That is because

residuals satisfy specific conditions. One of these conditions is dependent on

the smallest singular value of the constraint matrix.

In order to provide the complexity result for the inexact infeasible interior

point methods, one should find an upper bound on |∆xT∆s| at each iteration

of IPM. In [50] the authors change the neighbourhood of the interior point

algorithm for QP. The same approach is used to find a bound on |∆xT∆s|

in [59]. However, that does not work for LP case. The authors assume

that there is a point (x̄, ȳ, s̄) such that the residual of the infeasible primal-

dual algorithm is zero (the point (x̄, ȳ, s̄) is primal-dual feasible) and there

is a strictly positive point (x0, y0, s0) such that (xk, yk, sk) = ρ(x0, y0, s0),

where ρ ∈ [0, 1] and also (x0, s0) ≥ (x̄, s̄). These conditions are restrictive

and do not always hold. In [6, 7] the inexactness comes from solving the

Chapter 4. Inexact Interior Point Method 90

normal equation system iteratively. In order to find a bound on |∆xT∆s|,

the authors find a bound on the normal equations matrix. However, in [82]

the authors force residual to satisfy specific conditions, one of which depends

on the singular value on the constraint matrix.

In our case we do not require the residual of the inexact Newton method

to satisfy a sophisticated condition. The condition on the residual is defined

by ‖rk‖ ≤ ηkµk. This condition allows a low accuracy when the current

iterate is far from the solution and high accuracy as the interior point method

approaches optimality, because the term µk decreases as the iterations move

toward the solution. Furthermore, we use shifting residual strategy, which

makes the proof of the convergence and the complexity result of the inexact

infeasible path-following algorithm follow the exact case.

In this chapter we study the convergence analysis of inexact infeasible

path following algorithm for linear programming as the PCG method is used

to solve the augmented system preconditioned with block triangular sparse

preconditioner. We prove the global convergence and the complexity result

for this method without having to assume the boundedness of the iterates.

We design a suitable stopping criteria for the PCG method. This plays an

important role in the whole convergence of IIPF algorithm. This stopping

criteria allows a low accuracy when the current iterate is far from the solution.

We state conditions on the forcing term of inexact Newton method in order

to prove the convergence of IIPF algorithm.

The inexact approach in this thesis can be used in the cases where the

augmented system is solved iteratively, provided that the residual of this

iterative method has a zero block r = [r1, 0]. So we can carry out this

approach to cases like [65] for example.

Chapter 4. Inexact Interior Point Method 91

4.1 The residual of inexact Newton method

Using the PCG method to solve the augmented system (1.7) produces a

specific value of the residual of the inexact Newton method (4.1). So we shall

find the value of the residual r in (4.1) in order to prove the convergence of

inexact infeasible path following algorithm and provide a complexity result.

Solving (1.7) approximately gives

 −Θ−1 AT

A 0

 ∆x

∆y

 =

 f

g

+

 r1

r2

 , (4.3)

where r1 = [rB, rN].

That gives the following equations:

−X−1S∆x+ AT∆y = f + r1 = c− ATy − σµX−1e+ r1, (4.4)

A∆x = g + r2 = b− Ax+ r2. (4.5)

Then we find ∆s by substituting ∆x in (1.6). However, we can shift the

residual from (4.4) to (1.6) by assuming there is a residual h while computing

∆s. Then (1.6) is replaced by

∆s = −X−1S∆x− s+ σµX−1e+ h,

which we can rewrite as

−X−1S∆x = ∆s+ s− σµX−1e− h.

Chapter 4. Inexact Interior Point Method 92

Substituting it in (4.4) gives

AT∆y + ∆s = c− ATy − s+ h+ r1.

To satisfy the second equation of (1.5) we choose h = −r1. This gives

AT∆y + ∆s = c− ATy − s, (4.6)

and

∆s = −X−1S∆x− s+ σµX−1e− r1,

which implies

S∆x+X∆s = −XSe+ σµe−Xr1. (4.7)

Equations (4.5), (4.6) and (4.7) give

A 0 0

0 AT I

S 0 X

∆x

∆y

∆s

 =

ξp

ξd

ξµ

+

r2

0

−Xr1

 ,

where ξp = b− Ax, ξd = c− ATy − s, ξµ = −XSe+ σµe and σ ∈ [0, 1].

In the setting in which we apply the PCG method to solve (1.7) precon-

ditioned with (3.7) we have r2 = 0 and r1 = [rB, 0], see equation (3.32) in

the proof of Theorem 3.3.5. Therefore, the inexact Newton method residual

Chapter 4. Inexact Interior Point Method 93

r is

r =

0

0

−Xr1

with Xr1 =

 XBrB

XNrN

 =

 XBrB

0

 .
Shifting the residual from (4.4) to (1.6) is an essential step to prove the

convergence of the IIPF algorithm. It results in moving the residual from

the second row to the last row of the inexact Newton system, which makes

the proof of the convergence of the IIPF Algorithm much easier, as we will

see in Section 4.2.

The issue of choosing the stopping criteria of inexact Newton method

to satisfy the condition (4.2) has been discussed in many papers. See for

example [5, 6, 7, 49, 82]. In [5, 6] the residual of inexact Newton method is

chosen such that

‖rk‖ ≤ ηkµk,

while in [7] the choice satisfies

‖rk‖ ≤ ηk(nµk).

Let the residual be r = [rp, rd, rµ]. According to Korzak [49], the residual

Chapter 4. Inexact Interior Point Method 94

is chosen such that

‖rkp‖2 ≤ (1− τ1)‖Axk − b‖2,

‖rkd‖2 ≤ (1− τ2)‖ATyk + sk − c‖2,

‖rkµ‖∞ ≤ τ3µk.

where τ1, τ2 ∈ (0, 1] and τ3 ∈ [0, 1) are some appropriately chosen constants.

In our case rp = rd = 0, we will stop the PCG algorithm when

‖rkµ‖∞ ≤ ηkµk.

As rkµ = −Xkrk1 and r1 = [rB, 0], the stopping criteria becomes

‖Xk
Br

k
B‖∞ ≤ ηkµk. (4.8)

We terminate the PCG algorithm when the stopping criteria (4.8) is sat-

isfied. This stopping criteria allows a low accuracy when the current iterate

is far from the solution. In the later iterations the accuracy increases because

the average complementarity gap µ reduces from one iteration to another.

4.2 Convergence of the IIPF Algorithm

In this section we carry out the proof of the convergence of the IIPF algorithm

and derive a complexity result. In the previous section we used the shifting

residual strategy, which makes the proof of the convergence of this inexact

algorithm similar to that of the exact case.

This section is organised as follows. First we describe the IIPF algorithm.

Then in Lemmas 4.2.1, 4.2.2 and 4.2.3 we derive useful bounds on the iterates.

In Theorems 4.2.4 and 4.2.5 we prove that there is a step length α such that

Chapter 4. Inexact Interior Point Method 95

the new iteration generated by IIPF algorithm belongs to the neighbourhood

N−∞(γ, β) and the average complementarily gap decreases. In order to prove

that we supply conditions on the forcing term ηk. In Theorem 4.2.6 we show

that the sequence {µk} converges Q-linearly to zero and the normal residual

sequence {‖(ξkp , ξkd)‖} converges R-linearly to zero. Finally in Theorem 4.2.7,

we provide the complexity result for this algorithm.

Definition: The central path neighbourhood N−∞(γ, β) is defined by

N−∞(γ, β) = {(x, y, s) : ‖(ξp, ξd)‖/µ ≤ β‖(ξ0
p , ξ

0
d)‖/µ0, (x, s) > 0,

xisi ≥ γµ, i = 1, 2, ..., n},
(4.9)

where γ ∈ (0, 1) and β ≥ 1 [77].

4.2.1 Inexact Infeasible Path-Following Algorithm

1. Given γ, β, σmin, σmax with γ ∈ (0, 1), β ≥ 1, 0 < σmin < σmax < 0.5,

and

0 < ηmin < ηmax < 1; choose (x0, y0, s0) with (x0, s0) > 0;

2. For k = 0, 1, 2, ...

• choose σk ∈ [σmin, σmax] and ηk ∈ [ηmin, ηmax] such that

ηk <
σk(1−γ)

(1+γ)
and ηk + σk < 0.99; and solve

A 0 0

0 AT I

Sk 0 Xk

∆xk

∆yk

∆sk

 =

ξkp

ξkd

σkµke−XkSke

−

0

0

Xkrk1

 .(4.10)

Chapter 4. Inexact Interior Point Method 96

Such that rkN = 0 and

‖Xk
Br

k
B‖∞ ≤ ηkµk, (4.11)

• choose αk as the largest value of α in [0, 1] such that

(xk(α), yk(α), sk(α)) ∈ N−∞(γ, β) (4.12)

and the following Armijo condition holds:

µk(α) ≤ (1− .01α)µk; (4.13)

• set (xk+1, yk+1, sk+1) = (xk(αk), y
k(αk), s

k(αk));

• stop when µk < ε, for a small positive constant ε.

In this section we will follow the convergence analysis of the infeasible

path-following algorithm proposed originally by Zhang [81]. However, we

will follow the proof techniques proposed in Wright’s book [77].

Firstly, let us introduce the quantity

νk =
k−1∏
j=0

(1− αj), ν0 = 1

Note that ξk+1
p = b−Axk+1 = b−A(xk +αk∆x

k) = b−Axk−αkA∆xk =

ξkp − αkA∆xk, from the first row of (4.10) we get

ξk+1
p = (1− αk)ξkp , (4.14)

Chapter 4. Inexact Interior Point Method 97

which implies

ξkp = νkξ
0
p .

Note also ξk+1
d = c−ATyk+1− sk+1 = c−AT (yk +αk∆y

k)− (sk +αk∆s
k) =

(c − ATyk − sk) − αk(AT∆yk + ∆sk) = ξkd − αk(AT∆yk + ∆sk). From the

second row of (4.10) we get

ξk+1
d = (1− αk)ξkd , (4.15)

which implies

ξkd = νkξ
0
d,

Consequently, the quantity νk satisfies

νk ≤ β
µk
µ0

.

More details can be found in [77].

Let (x∗, y∗, s∗) be any primal-dual solution.

Lemma 4.2.1. Assume that (xk, yk, sk) ∈ N−∞(γ, β), (∆xk,∆yk,∆sk) sat-

isfies (4.10) and (4.11) for all k ≥ 0, and µk ≤ (1 − .01αk−1)µk−1 for all

k ≥ 1. Then there is a positive constant C1 such that for all k ≥ 0

νk‖(xk, sk)‖ ≤ C1µk, (4.16)

where C1 is given as

C1 = ζ−1(nβ + n+ β‖(x0, s0)‖∞‖(x∗, s∗)‖1/µ0),

Chapter 4. Inexact Interior Point Method 98

where

ζ = min
i=1,...,n

min(x0
i , s

0
i).

The proof of this Lemma is similar to the proof of Lemma 6.3 in [77].

Moreover, we follow the same logic as in [77] to prove the following lemma.

Lemma 4.2.2. Assume that (xk, yk, sk) ∈ N−∞(γ, β), (∆xk,∆yk,∆sk) sat-

isfies (4.10) and (4.11) for all k ≥ 0, and µk ≤ (1 − .01αk−1)µk−1 for all

k ≥ 1. Then there is a positive constant C2 such that

‖D−1∆xk‖ ≤ C2µ
1/2
k , (4.17)

‖D∆sk‖ ≤ C2µ
1/2
k , (4.18)

where D = X1/2S−1/2. For all k ≥ 0.

Proof. For simplicity we omit the iteration index k in the proof.

Let

(x̄, ȳ, s̄) = (∆x,∆y,∆s) + νk(x
0, y0, s0)− νk(x∗, y∗, s∗).

Then Ax̄ = 0 and AT ȳ + s̄ = 0, which implies x̄T s̄ = 0.

Ax̄ = 0 because

Ax̄ = A∆x+ νkAx
0 − νkAx∗ = ξp + νkAx

0 − νkb = ξp − νkξ0 = 0.

Similarly one can show that AT ȳ + s̄ = 0. Hence

0 = x̄T s̄ = (∆x+ νkx
0 − νkx∗)T (∆s+ νks

0 − νks∗). (4.19)

Chapter 4. Inexact Interior Point Method 99

Using the last row of (4.10) implies

S(∆x+ νkx
0 − νkx∗) +X(∆s+ νks

0 − νks∗)

= S∆x+X∆s+ νkS(x0 − x∗) + νkX(s0 − s∗)

= −XSe+ σµe−Xr1 + νkS(x0 − x∗) + νkX(s0 − s∗).

By multiplying this system by (XS)−1/2, we get

D−1(∆x+ νkx
0 − νkx∗) +D(∆s+ νks

0 − νks∗)

= (XS)−1/2(−XSe+ σµe−Xr1) + νkD
−1(x0 − x∗) + νkD(s0 − s∗).

The equality (4.19) gives

‖D−1(∆x+ νkx
0 − νkx∗) +D(∆s+ νks

0 − νks∗)‖2 =

‖D−1(∆x+ νkx
0 − νkx∗)‖2 + ‖D(∆s+ νks

0 − νks∗)‖2.

Consequently,

‖D−1(∆x+ νkx
0 − νkx∗)‖2 + ‖D(∆s+ νks

0 − νks∗)‖2

= ‖(XS)−1/2(−XSe+ σµe−Xr1) + νkD
−1(x0 − x∗) + νkD(s0 − s∗)‖2,

(4.20)

which leads to

‖D−1(∆x+ νkx
0 − νkx∗)‖ ≤ ‖(XS)−1/2(−XSe+ σµe−Xr1)

+νkD
−1(x0 − x∗) + νkD(s0 − s∗)‖ ≤ ‖(XS)−1/2(−XSe+ σµe−Xr1)‖

+νk‖D−1(x0 − x∗)‖+ νk‖D(s0 − s∗)‖.

The triangle inequality and addition of an extra term νk‖D(s0 − s∗)‖ to the

Chapter 4. Inexact Interior Point Method 100

right hand side give

‖D−1∆x‖ ≤ ‖(XS)−1/2[−XSe+ σµe−Xr1]‖+ 2νk‖D−1(x0 − x∗)‖

+2νk‖D(s0 − s∗)‖.
(4.21)

(4.20) leads to

‖D(∆s+ νks
0 − νks∗)‖ ≤ ‖(XS)−1/2(−XSe+ σµe−Xr1) + νkD

−1(x0 − x∗)

+νkD(s0 − s∗)‖ ≤ ‖(XS)−1/2(−XSe+ σµe−Xr1)‖+ νk‖D−1(x0 − x∗)‖

+νk‖D(s0 − s∗)‖.

The triangle inequality and addition of an extra term νk‖D−1(x0 − x∗)‖ to

the right hand side give

‖D∆s‖ ≤ ‖(XS)−1/2[−XSe+ σµe−Xr1]‖+ 2νk‖D−1(x0 − x∗)‖

+2νk‖D(s0 − s∗)‖.
(4.22)

We can write

‖(XS)−1/2(−XSe+ σµe−Xr1)‖2 =
n∑
i=1

(−xisi + σµ− xir1,i)
2

xisi

≤ ‖ −XSe+ σµe−Xr1‖2

mini xisi
≤ 1

γµ
‖ −XSe+ σµe−Xr1‖2.

because (x, y, s) ∈ N−∞(γ, β) which implies xisi ≥ γµ for i = 1, ..., n.

On the other hand,

‖ −XSe+ σµe‖2 = ‖XSe‖2 + ‖σµe‖2 − 2σµeTXSe = ‖XSe‖2 + nσ2µ2 − 2nσµ2

≤ ‖XSe‖2
1 + nσ2µ2 − 2nσµ2 = (xT s)2 + nσ2µ2 − 2nσµ2

≤ n2µ2 + nσ2µ2 − 2nσµ2 ≤ n2µ2,

Chapter 4. Inexact Interior Point Method 101

as σ ∈ (0, 1). This leads to

‖ −XSe+ σµe−Xr1‖ ≤ ‖ −XSe+ σµe‖+ ‖Xr1‖

≤ nµ+
√
n‖XBrB‖∞ ≤ nµ+

√
nηµ

≤ nµ+
√
nηmaxµ,

which implies the following

‖(XS)−1/2(−XSe+ σµe−Xr1)‖ ≤ γ−1/2(n+
√
nηmax)µ

1/2. (4.23)

On the other hand

νk‖D−1(x0 − x∗)‖+ νk‖D(s0 − s∗)‖

≤ νk(‖D−1‖+ ‖D‖) max(‖x0 − x∗‖, ‖s0 − s∗‖).
(4.24)

For the matrix norm ‖D−1‖, we have

‖D−1‖ ≤ max
i
‖D−1

ii ‖ = ‖D−1e‖∞ = ‖(XS)−1/2Se‖∞ ≤ ‖(XS)−1/2‖‖s‖1,

and similarly

‖D‖ ≤ ‖(XS)−1/2‖‖x‖1.

Using Lemma 4.2.1 and (4.24) we get

νk‖D−1(x0 − x∗)‖+ νk‖D(s0 − s∗)‖ ≤ νk‖(x, s)‖1‖(XS)−1/2‖max(‖x0 − x∗‖,

‖s0 − s∗‖) ≤ C1γ
−1/2µ1/2 max(‖x0 − x∗‖, ‖s0 − s∗‖).

By substituting the previous inequality and (4.23) in (4.21) and (4.22)

Chapter 4. Inexact Interior Point Method 102

we get

‖D−1∆x‖ ≤ (γ−1/2(n+
√
nηmax) + 2C1γ

−1/2 max(‖x0 − x∗‖, ‖s0 − s∗‖))µ1/2

and

‖D∆s‖ ≤ (γ−1/2(n+
√
nηmax) + 2C1γ

−1/2 max(‖x0 − x∗‖, ‖s0 − s∗‖))µ1/2.

Let us define C2 as

C2 = γ−1/2(n+
√
nηmax) + 2C1γ

−1/2 max(‖x0 − x∗‖, ‖s0 − s∗‖).

which completes the proof.

Lemma 4.2.3. Assume that (xk, yk, sk) ∈ N−∞(γ, β), (∆xk,∆yk,∆sk) sat-

isfies (4.10) and (4.11) for all k ≥ 0, and µk ≤ (1 − .01αk−1)µk−1 for all

k ≥ 1. Then there is a positive constant C3 such that

|(∆xk)T∆sk| ≤ C3µk, (4.25)

|∆xki ∆ski | ≤ C3µk (4.26)

for all k ≥ 0.

Proof. For simplicity we omit the iteration index k in the proof. From Lemma

4.2.2 we have

|∆xT∆s| = |(D−1∆x)T (D∆s)| ≤ ‖D−1∆x‖‖D∆s‖ ≤ C2
2µ.

Chapter 4. Inexact Interior Point Method 103

Moreover, using Lemma 4.2.2 again we obtain

|∆xi∆si| = |D−1
ii ∆xiDii∆si| = |D−1

ii ∆xi||Dii∆si| ≤ ‖D−1∆x‖‖D∆s‖ ≤ C2
2µ.

Let us denote C3 = C2
2 , and the proof is complete.

Theorem 4.2.4. Assume that (xk, yk, sk) ∈ N−∞(γ, β), (∆xk,∆yk,∆sk)

satisfies (4.10) and (4.11) for all k ≥ 0, and µk ≤ (1 − .01αk−1)µk−1 for

all k ≥ 1. Then there is a value ᾱ ∈ (0, 1) such that the following three

conditions are satisfied for all α ∈ [0, ᾱ] for all k ≥ 0

(xk + α∆xk)T (sk + α∆sk) ≥ (1− α)(xk)T sk (4.27)

(xki + α∆xki)(s
k
i + α∆ski) ≥

γ

n
(xk + α∆xk)T (sk + α∆sk) (4.28)

(xk + α∆xk)T (sk + α∆sk) ≤ (1− .01α)(xk)T sk. (4.29)

Proof. For simplicity we omit the iteration index k in the proof.

The last row of the system (4.10) implies

sT∆x+ xT∆s = −xT s+ nσµ− xTBrB,

and

si∆xi + xi∆si = −xisi + σµ− xir1,i

Chapter 4. Inexact Interior Point Method 104

which leads to

(x+ α∆x)T (s+ α∆s) = xT s+ α(xT∆s+ sT∆x) + α2(∆x)T∆s

= xT s+ α(−xT s+ nσµ− xTBrB) + α2(∆x)T∆s

= (1− α)xT s+ nασµ− αxTBrB + α2(∆x)T∆s.

Similarly

(xi + α∆xi)(si + α∆si) = xisi + α(si∆xi + xi∆si) + α2∆xi∆si

= xisi + α(−xisi + σµ− xir1,i) + α2∆xi∆si

= (1− α)xisi + ασµ− αxir1,i + α2∆xi∆si.

For (4.27) we have

(x+ α∆x)T (s+ α∆s)− (1− α)xT s = (1− α)xT s+ nασµ− αxTBrB
+α2(∆x)T∆s− (1− α)xT s

= nασµ− αxTBrB + α2(∆x)T∆s

≥ nασµ− α|xTBrB| − α2|(∆x)T∆s|

≥ nασµ− nαηµ− α2C3µ

where we used the fact that from (4.11) we have

|xTBrB| ≤ n‖XBrB‖∞ ≤ nηµ.

Therefore, the condition (4.27) holds for all α ∈ [0, α1], where α1 is given

by

α1 =
n(σ − η)

C3

, (4.30)

and we choose η < σ− ε1 to guarantee α1 to be strictly positive, where ε1 is

Chapter 4. Inexact Interior Point Method 105

a constant strictly greater than zero.

Let us consider (4.28)

(xi + α∆xi)(si + α∆si)− γ
n
(x+ α∆x)T (s+ α∆s) = (1− α)xisi + ασµ

−αxir1,i + α2∆xi∆si − γ
n
((1− α)xT s+ nασµ− αxTBrB + α2(∆x)T∆s)

because (x, y, s) ∈ N−∞(γ, β), so xisi ≥ γµ, ∀i = 1, ..., n, that gives

(xi + α∆xi)(si + α∆si)− γ
n
(x+ α∆x)T (s+ α∆s) ≥ (1− α)γµ+ ασµ

−αmaxi xir1,i − α2|∆xi∆si| − γ(1− α)µ− γασµ+ γ
n
αxTBrB −

γ
n
α2(∆x)T∆s

≥ ασµ− α‖XBrB‖∞ − α2C3µ− ασγµ− γ
n
α|xTBrB| −

γ
n
α2C3µ ≥ ασµ− αηµ

−α2C3µ− ασγµ− γαηµ− γ
n
α2C3µ ≥ α((1− γ)σ − η(1 + γ))µ− 2α2C3µ

Condition (4.28) holds for all α ∈ [0, α2], where α2 is given by:

α2 =
σ(1− γ)− (1 + γ)η

2C3

. (4.31)

We choose η < σ(1−γ)
(1+γ)

− ε2 to guarantee α2 to be strictly positive, where ε2

is a constant strictly greater than zero.

Finally, let us consider condition (4.29)

1
n
[(x+ α∆x)T (s+ α∆s)− (1− .01α)xT s] =

= 1
n
[(1− α)xT s+ nασµ− αxTBrB + α2(∆x)T∆s− (1− .01α)xT s]

= 1
n
[−.99αxT s+ nασµ− αxTBrB + α2(∆x)T∆s]

≤ −.99αµ+ ασµ+ α
n
|xTBrB|+ α2

n
C3µ ≤ −.99αµ+ ασµ+ αηµ+ α2

n
C3µ.

We can conclude that condition (4.29) holds for all α ∈ [0, α3], where α3 is

given by:

α3 =
n(0.99− σ − η)

C3

. (4.32)

Chapter 4. Inexact Interior Point Method 106

We choose η and σ such that η+σ < 0.99− ε3 to guarantee α3 to be strictly

positive, where ε3 is a constant strictly greater than zero.

Combining the bounds (4.30), (4.31) and (4.32), we conclude that condi-

tions (4.27), (4.28) and (4.29) hold for α ∈ [0, ᾱ], where

ᾱ = min

{
1,
n(σ − η)

C3

,
σ(1− γ)− (1 + γ)η

2C3

,
n(0.99− σ − η)

C3

}
. (4.33)

We introduce the constants ε1, ε2 and ε3 to guarantee that the limit of the

step length ᾱ is strictly greater than zero and to make it flexible to choose

the parameters ηk and σk.

Note that if η < σ(1−γ)
(1+γ)

then η < σ because (1−γ)
(1+γ)

< 1 for any γ ∈ (0, 1).

From this theorem we observe that the forcing term ηk should be chosen

such that the following two conditions ηk <
σk(1−γ)

(1+γ)
−ε2 and ηk+σk < 0.99−ε3

are satisfied. Under these assumption the following theorem guarantees that

there is a step length α such that the new point belongs to the neighbour-

hood N−∞(γ, β) and its average complementarity gap decreases according to

condition (4.13).

Below we prove two theorems using standard techniques which follow

from Wright [77].

Theorem 4.2.5. Assume that ηk <
σk(1−γ)

(1+γ)
− ε2, ηk + σk < 0.99 − ε3 for

ε2, ε3 > 0, (xk, yk, sk) ∈ N−∞(γ, β) and (∆xk,∆yk,∆sk) satisfies (4.10)

and (4.11) for all k ≥ 0, µk ≤ (1 − .01αk−1)µk−1 for all k ≥ 1. Then

(xk(α), yk(α), sk(α)) ∈ N−∞(γ, β) and µk(α) ≤ (1−.01α)µk for all α ∈ [0, ᾱ],

where ᾱ is given by (4.33).

Proof. Theorem 4.2.4 ensures that the conditions (4.27), (4.28) and (4.29)

are satisfied. Note that (4.29) implies that the condition µk(α) ≤ (1−.01α)µk

Chapter 4. Inexact Interior Point Method 107

is satisfied, while (4.28) guarantees that xki (α)ski (α) ≥ γµk(α).

To prove that (xk(α), yk(α), sk(α)) ∈ N−∞(γ, β), we have to prove that

‖(ξkp (α), ξkd(α))‖/µk(α) ≤ β‖(ξ0
p , ξ

0
d)‖/µ0. From (4.14), (4.15) and (4.27) we

have

‖(ξk
p (α),ξk

d (α))‖
µk(α)

=
(1−α)‖(ξk

p ,ξ
k
d)‖

µk(α)
≤ (1−α)‖(ξk

p ,ξ
k
d)‖

(1−α)µk
≤ ‖(ξk

p ,ξ
k
d)‖

µk

≤ β
‖(ξ0p,ξ0d)‖

µ0
,

since (xk, yk, sk) ∈ N−∞(γ, β).

Theorem 4.2.6. The sequence {µk} generated by the IIPF Algorithm con-

verges Q-linearly to zero, and the sequence of residual norms {‖(ξkp , ξkd)‖}

converges R-linearly to zero.

Proof. Q-linear convergence of {µk} follows directly from condition (4.13)

and Theorem 4.2.4. There exists a constant ᾱ > 0 such that αk ≥ ᾱ for

every k such that

µk+1 ≤ (1− .01αk)µk ≤ (1− .01ᾱ)µk, for all k ≥ 0.

From (4.14) and (4.15) we also have

‖(ξk+1
p , ξk+1

d)‖ ≤ (1− αk)‖(ξkp , ξkd)‖.

Therefore,

‖(ξk+1
p , ξk+1

d)‖ ≤ (1− ᾱ)‖(ξkp , ξkd)‖.

Also from Theorem 4.2.5 we know that

‖(ξk+1
p , ξk+1

d)‖ ≤ µkβ
‖(ξ0

p , ξ
0
d)‖

µ0

.

Chapter 4. Inexact Interior Point Method 108

Therefore, the sequence of residual norms is bounded above by another se-

quence that converges Q-linearly, so {‖(ξkp , ξkd)‖} converges R-linearly.

Theorem 4.2.7. Let ε > 0 and the starting point (x0, y0, s0) ∈ N−∞(γ, β)

in the Algorithm IIPF be given. Then there is an index K with

K = O(n2|logε|)

such that the iterates {(xk, yk, sk)} generated by IIPF Algorithm satisfy

µk ≤ ε, for all k ≥ K.

Proof. If the conditions of Theorem 4.2.5 are satisfied, then the conditions

(4.12) and (4.13) are satisfied for all α ∈ [0, ᾱ] for all k ≥ 0. By Theorem

4.2.4, the quantity ᾱ satisfies

ᾱ ≥ min

{
1,
n(σ − η)

C3

,
σ(1− γ)− (1 + γ)η

2C3

,
n(0.99− σ − η)

C3

}
.

Furthermore, from Lemmas 4.2.1, 4.2.2 and 4.2.3 we have C3 = O(n2), there-

fore

ᾱ ≥ δ

n2

for some positive scalar δ independent of n. That implies

µk+1 ≤ (1− .01ᾱ)µk ≤ (1− .01δ

n2
)µk, for k ≥ 0.

The complexity result is an immediate consequence of Theorem 3.2 of [77].

Chapter 5

Numerical Results

The numerical results, which are demonstrated in this chapter, have been

presented in the paper [2]. The method discussed in this thesis has been

implemented in the context of HOPDM [36]. We have implemented the

preconditioned conjugate gradients method for the augmented system given

a specific starting point. In the implementation, the starting point (3.21)

with two zero blocks in its residual is used. We consider a subset of the

linear programming problems from the Netlib [30], Kennington [14] and other

public test sets used in [60]. In this chapter we indicate that the new approach

can be very effective in some cases, and that the new approach is an important

option for some classes of problems.

In the initial iterations of the interior point method the normal equa-

tions are solved using the direct approach by forming the Cholesky factori-

sation LDLT for the normal equations matrix. As the interior point method

approaches optimality, the normal equation matrix becomes extremely ill-

conditioned due to a very different magnitude of the entries in Θ. At this

point, we switch to the iterative solver. In practice, we switch to PCG when

two conditions are satisfied: firstly, there are enough small elements in Θ−1

109

Chapter 5. Numerical Results 110

(we have at least 3m/4 small entries θ−1
j , where θ−1

j ≤ 10−2) . Secondly, the

relative duality gap is less than or equal to 10−2.

In our implementation, the termination criterion for the PCG method

is set as ‖rk‖/‖r(0)‖ < ε. Initially, we chose ε = 10−2. When the relative

duality gap becomes less than or equal to 10−3 the value of ε is changed to

10−3 and, finally, when the relative duality gap falls below 10−4 the value of

ε becomes 10−4.

Through out our study, we assume A has full row rank. This assumption

does not effect on the robustness of this approach. Since, if A does not have

full rank, we add artificial variables to the constraints to construct full rank

constraints matrix A. We also add these variables to the objective function

after multiply them with big constant M .

The numerical results, which are shown in this chapter, are calculated

for the following case. The matrix B is rebuilt at each iteration of interior

point method, where the iterative solver is used. On the other hand, we can

used the old information to update B for the next iteration. This will save

a lot of factorisation time. However, in this case we will have larger θj, and

consequently the number of the PCG iterations will increase. The idea of

updating B is very interesting, but it requires a lot of work to grab hold of

the best total running time (especially, to make a balance between the time

of the PCG solver and the LU factorisation) for most of problems. This will

be one of our future works.

In Table 5.1, we report the problem sizes: m, n and nz(A) denote the

number of rows, columns and nonzeros in the constraint matrix A. In the

next two columns, nz(B) denotes the number of nonzeros in the LU fac-

torisation of the basis matrix B and nz(L) denotes the number of nonzero

elements in the Cholesky factor of the normal equations matrix. In this chap-

Chapter 5. Numerical Results 111

ter, we report results for problems which benefit from the use of the iterative

approach presented. As shown in the last column of Table 5.1, the iterative

method is storage-efficient, requiring one or two orders of magnitude less

memory than the Cholesky factorisation. These results show that in most

cases we save more than 90% of the memory by using the LU factorisation

compared with Cholesky factorisation. In pds20 problem for instance, the

Cholesky factorisation has 1626987 nonzeros, while LU factorisation only has

37123, which makes the memory saving reach 97.7%. If the PCG approach

were used for all IPM iterations, this memory advantage would allow certain

problems to be solved for which the memory requirement of Cholesky would

be prohibitive. In addition, it is essential that the LU factors are smaller

by a significant factor since they will have to be applied twice for each PCG

iteration when solving for the Newton direction, whereas the direct method

using Cholesky factors requires the L factor to be used just twice to compute

the Newton direction. The relative memory requirement can also be viewed

as a measure of the maximum number of PCG iterations that can be per-

formed while remaining competitive with the direct method using Cholesky

factors.

The results of comparing our mixed approach against the pure direct

approach are given in Table 5.2. In all reported runs we have asked for

eight digits of accuracy in the solution. For each test problem we report the

number of interior point iterations and the total CPU time in seconds needed

to solve the problem. Additionally, for the mixed approach we also report

the number of interior point iterations in which preconditioned conjugate

gradients method was used (IPM-pcg). For the problem fit2p, for example,

12 of the 25 interior point iterations used the iterative solution method:

the remaining 13 iterations used the direct method. In the last column

Chapter 5. Numerical Results 112

of Table 5.2 we report the saving in the total CPU time, when the mixed

approach is used instead of the pure direct approach. For the problem fit2p,

for example, the mixed approach is 64% faster than the pure direct approach.

As we report in the column headed “Mixed approach” of Table 5.2,

we use the PCG method only in the final iterations of the interior point

method, while the rest of the interior point iterations are made using the

direct method. For most problems, the numbers of IPM iterations required

when using the pure direct and mixed approaches to solve a given problem

are the same or differ only slightly. However, for chr15a, pds-10 and pds-20,

the mixed approach requires more iterations, significantly so in the case of

the latter two problems. In the case of chr15a this accounts for the only

negative time saving in Table 5.2. For one problem, chr22b, using the mixed

approach leads to significantly fewer IPM iterations being required.

In order to give an insight into the behaviour of the preconditioned conju-

gate gradients, in Table 5.3 we report the number of PCG iterations needed

to solve a particular linear system. First, we report separately this number

for the last interior point iteration when our preconditioner is supposed to

behave best. The following three columns correspond to the minimum, the

average, and the maximum number of PCG iterations encountered through-

out all iterative solves.

Finally, in Table 5.4 we report results for the problems solved with the

pure iterative method. In these runs we have ignored the spread of elements

in the diagonal matrix Θ and the distance to optimality, and we have forced

the use of the PCG method in all interior point iterations. Such an approach

comes with a risk of failure of the PCG method because the preconditioner

does not have all its attractive properties in the earlier IPM iterations. In-

deed, we would not advise its use in the general context. However, for several

Chapter 5. Numerical Results 113

problems in our collection such an approach has been very successful. In this

table the term unsolved denotes to that the solver is excess iteration limit.

So far, we have reported some problems, which are benefit of our ap-

proach. In Table 5.5 and Table 5.6 we show problems, which do not benefit

of our approach. The consequences of using an iterative solver to solve the

linear systems which arise from IPM, may lead to increase the number of

IPM iterations. The total running time does not improve in the following

problems because of this reason: shell, nw14, pds-02 and storm8. In the

most of the problems in tables 5.5 and 5.6, the iterative approach works fine.

Since, the PCG method converges to the solution in reasonable number of

iterations. The slowness of the running time is due to that the solving time

of iterative approach increases comparing with the direct approach. In agg

and gfrd-pnc for instance there is no much saving in term of nonzero in the

factorization, which causes increasing of the solving time.

Chapter 5. Numerical Results 114

Problem Dimensions Nonzeros in Factors Memory
m n nz(A) nz(B) nz(L) saving

aircraft 3754 7517 24034 9754 1417131 99.3 %
chr12a 947 1662 5820 5801 78822 92.6 %
chr12b 947 1662 5820 4311 85155 94.9 %
chr12c 947 1662 5820 6187 80318 92.3 %
chr15b 1814 3270 11460 9574 218023 95.6 %
chr15c 1814 3270 11460 9979 219901 95.5 %
chr18a 3095 5679 19908 19559 531166 95.5 %
chr18b 3095 5679 19908 9139 527294 96.3 %
chr20a 4219 7810 27380 38477 885955 95.7 %
chr20b 4219 7810 27380 63243 893674 92.9 %
chr20c 4219 7810 27380 23802 926034 94.7 %
chr22a 5587 10417 36520 33685 1392239 97.5 %
chr22b 5587 10417 36520 38489 1382161 97.2 %
chr25a 8148 15325 53725 49605 2555662 98.1 %
fit1p 628 1677 10894 5002 196251 97.5 %
fit2p 3001 13525 60784 34303 4498500 99.2 %
fome10 6071 12230 35632 114338 1610864 92.2 %
fome11 14695 24460 71264 237844 3221728 92.6 %
fome12 24285 48920 167492 445156 6443456 93.1 %
pds-06 9882 28655 82269 22020 580116 96.2 %
pds-10 16559 48763 140063 37123 1626987 97.7 %
pds-20 33875 105728 304153 77352 6960089 97.7 %
route 20894 23923 187686 14876 3078015 99.5 %
scr10 689 1540 5940 13653 124559 89.0 %
scr12 1151 2784 10716 20437 330483 93.8 %
scr15 2234 6210 24060 77680 125514 38.1 %
scr20 5079 15980 61780 446686 6561431 93.2 %

Table 5.1: Comparing the number of nonzero elements in the LU factorisation
of the basis B and in the Cholesky factorisation of the normal equations
matrix AΘAT .

Chapter 5. Numerical Results 115

Problem Direct approach Mixed approach Time
Time IPM-iters Time IPM-iters IPM-pcg saving

aircraft 33.15 17 24.94 17 5 24.8 %
chr12a 0.304 14 0.290 14 2 4.61 %
chr12b 0.402 16 0.354 16 3 11.9 %
chr12c 0.256 11 0.254 11 1 0.78 %
chr15b 1.263 17 1.196 17 2 5.80 %
chr15c 1.231 17 1.194 17 2 3.03 %
chr18a 6.480 29 5.747 30 5 11.3 %
chr18b 3.520 16 3.213 16 3 8.72 %
chr20a 13.69 28 9.292 28 14 23.1 %
chr20b 11.31 27 9.895 27 8 12.5 %
chr20c 11.91 23 11.76 23 4 1.26 %
chr22a 25.59 28 24.73 28 2 3.36 %
chr22b 48.78 52 27.09 33 2 44.5 %
chr25a 81.04 39 71.92 39 5 11.3 %
fit1p 3.49 20 2.01 20 9 42.2 %
fit2p 583.33 25 211.93 25 12 63.7 %
fome10 281.96 45 124.01 43 17 56.0 %
fome11 827.85 48 288.44 44 17 65.2 %
fome12 1646.29 48 604.98 44 17 63.3 %
pds-06 60.81 44 28.12 43 21 57.8 %
pds-10 198.08 38 103.34 53 29 47.8 %
pds-20 2004.87 47 770.83 66 38 61.6 %
route 53.98 25 48.99 24 4 9.20 %
scr10 0.839 19 0.685 19 8 18.4 %
scr12 3.092 14 2.951 14 2 18.8 %
scr15 50.79 26 41.22 26 7 18.8 %
scr20 614.56 25 517.62 26 4 15.8 %

Table 5.2: Solution statistics.

Chapter 5. Numerical Results 116

Problem PCG Iterations
lastIPM min average max

aircraft 10 8 9 10
chr12a 19 18 20 23
chr12b 29 28 29 29
chr12c 26 26 26 26
chr15b 33 31 38 36
chr15c 32 31 32 32
chr18a 37 35 37 38
chr18b 57 53 56 57
chr20a 39 38 56 82
chr20b 32 32 63 104
chr20c 45 42 44 45
chr22a 48 46 49 53
chr22b 45 39 42 46
chr25a 51 46 50 55
fit1p 2 2 3 6
fit2p 4 3 15 43
fome10 142 129 243 519
fome11 169 123 205 494
fome12 111 111 210 500
pds-06 60 36 53 71
pds-10 66 45 60 86
pds-20 111 44 78 145
route 85 30 60 92
scr10 19 16 19 23
scr12 44 44 45 45
scr15 43 43 61 78
scr20 200 141 181 291

Table 5.3: The number of PCG iterations during the interior point method
iterations.

Chapter 5. Numerical Results 117

Problem Direct approach Iterative approach Time
Time IPM-iters Time IPM-iters saving

aircraft 33.15 17 2.87 15 91.3 %
chr12a 0.304 14 0.449 14 -47.7 %
chr12b 0.402 16 0.306 14 23.9%
chr12c 0.256 11 0.254 11 1.01%
chr15b 1.263 17 0.944 16 25.3 %
chr15c 1.231 17 0.959 18 22.1 %
chr18a 6.480 29 3.119 29 51.9 %
chr18b 3.520 16 2.255 18 35.9 %
chr20a 13.69 28 5.721 34 58.2 %
chr20b 11.31 27 5.721 30 49.4 %
chr20c 11.91 23 4.800 22 59.7 %
chr22a 25.59 28 6.725 31 73.7 %
chr22b 48.78 52 8.232 36 83.1 %
chr25a 81.04 39 17.54 41 78.4 %
fit1p 3.49 20 0.38 19 89.1 %
fit2p 583.33 25 19.09 26 96.7 %
fome10 281.96 45 126.72 47 19.6 %
fome11 827.85 48 437.93 51 74.02 %
fome12 1646.29 48 - - Unsolved
pds-06 60.81 44 98.80 44 -31.23%
pds-10 198.08 38 122.42 46 33.15%
pds-20 2004.87 47 - - Unsolved
scr10 0.839 19 0.633 19 24.6 %
scr12 3.092 14 1.701 15 96.7 %
scr15 50.79 26 16.55 26 67.4 %
scr20 614.56 25 - - Unsolved

Table 5.4: Efficiency of the pure iterative method.

Chapter 5. Numerical Results 118

Problem Dimensions Direct approach Mixed approach
m n nz(A) Time IPM-iters Time IPM-iters IPM-pcg

80bau3b 2235 14269 24883 2.209 50 5.172 50 14
agg 3754 7517 24034 0.179 20 0.277 26 12
bore3d 233 567 1679 0.064 23 0.059 23 2
chr15a 1814 3270 11460 1.274 17 1.316 22 9
dbir2 18879 64729 1177011 310.7 38 225.8 39 11
gfrd-pnc 616 1776 3061 0.100 18 0.123 18 13
pds-02 2953 10488 19424 1.476 31 3.213 34 15
qap8 912 2544 8208 2.183 10 2.380 10 1
nw14 73 123482 904983 24.12 45 46.04 50 27
scorpion 388 854 1922 0.056 16 0.053 16 1
shell 536 2313 3594 0.150 21 0.407 43 21
ship04l 360 2526 6740 0.123 16 0.142 16 3
ship04s 360 1866 4760 0.099 16 0.117 16 5
stocfor1 117 282 618 0.024 20 0.057 20 11
stocfor2 2157 5202 11514 0.582 36 1.829 36 10
storm8 4393 15715 32946 4.541 52 8.691 54 18

Table 5.5: Solution statistics for problems, which do not benefit of iterative
approach.

Chapter 5. Numerical Results 119

Problem Nonzeros in Factors PCG Iterations
nz(B) nz(L) min average max

80bau3b 5800 42709 29 64 226
agg 1589 16629 3 24 45
bore3d 821 2941 17 17 17
chr15a 10533 218060 37 38 41
dbir2 51609 2869915 50 74 93
gfrd-pnc 1240 1798 11 13 15
pds-02 6422 40288 38 48 58
qap8 60553 193032 175 175 175
nw14 443 1968 6 ?? 15
scorpion 1559 2102 38 38 38
shell 1075 4096 3 25 45
ship04l 941 4428 10 12 14
ship04s 938 3252 10 11 13
stocfor1 302 903 8 29 46
stocfor2 6585 33207 32 96 325
storm8 9805 136922 42 64 85

Table 5.6: Comparing the number of nonzero elements in the factorisations
and the number of PCG iterations during IPM.

Chapter 6

Conclusions

In this thesis we have discussed interior point method for linear programming

problems. At each iteration of the IPM at least one linear system has to be

solved. The main computational effort of interior point algorithms consists

in the computation of these linear systems. Every day optimization problems

become larger. Solving the corresponding linear systems with a direct method

becomes sometimes very expensive for large problems. In this thesis, we have

been concerned with using an iterative method to solve these linear systems.

In Chapter 2 we have reviewed some of the popular solution methods of these

linear systems (direct methods and iterative method).

In this thesis we have used the PCG method to solve the (indefinite)

augmented system (1.7), which arises from interior point algorithms for linear

programming. We have proposed in Chapter 3 a new sparse preconditioner

for the augmented system. This preconditioner takes advantage of the fact

that a subset of elements in the matrix Θ−1 converge to zero as the solution of

the linear program is approached. We replace these elements with zeros in the

preconditioner. As a result, we have obtained a sparse and easily invertible

block-triangular matrix. The constraint matrix A has been partitioned into

120

Chapter 6. Conclusions 121

[B, N], where B is an m by m nonsingular matrix. The matrix B is obtained

from m linearly independent columns of A which correspond to small θ−1
j . By

following the analysis of Rozlozńık and Simoncini [65] closely, we have shown

that the PCG method can be applied to a non-symmetric indefinite matrix

for a specific starting point. In addition, we have analysed the behaviour of

the error and residual terms. This analysis reveals that, although we work

with the indefinite system preconditioned with the indefinite matrix, the

error and residual converge to zero and, asymptotically, behave in a similar

way to the classical case when PCG is applied to a positive definite system.

The use of an iterative method in this context makes an essential dif-

ference in the implementation of the interior point algorithm. This requires

a better understanding of IPM convergence properties in a situation when

directions are inexact. In Chapter 4 we have considered the convergence

analysis of the inexact infeasible path-following algorithm, where the aug-

mented system is solved iteratively, according to what have been mentioned

earlier. We have used a trick which consisted in shifting the residual from

the dual constraint to the perturbed complementarity constraint. This has

allowed us to modify the analysis of the (exact) infeasible IPM [77, 81] and

generalize it to the inexact case. We have chosen a suitable stopping criteria

of the PCG method used in this context and have provided a condition on

the forcing term. Furthermore, we have proved the global convergence of the

IIPF algorithm and have provided a complexity result for this method.

Finally, in Chapter 5 we have illustrated the feasibility of our approach

on a set of medium to large-scale linear problems. Based on these results we

conclude that it is advantageous to apply the preconditioned conjugate gra-

dient method to indefinite KKT systems arising in interior point algorithms

for linear programming.

Chapter 6. Conclusions 122

There are many research possibilities of interest still to explore in this

area. The approach proposed in this thesis has proved to work well. However,

in its current form it is limited to the linear programming case. One of

the possible developments is to extend this approach to the quadratic and

nonlinear programming problems.

Bibliography

[1] G. Al-Jeiroudi and J. Gondzio, Convergence analysis of inexact in-

feasible interior point method for linear optimization, (accepted for pub-

lication in Journal on Optimization Theory and Applications), (2007).

[2] G. Al-Jeiroudi, J. Gondzio, and J. Hall, Preconditioning indefi-

nite systems in interior point methods for large scale linear optimization,

Optimization Methods and Software, 23 (2008), pp. 345–363.

[3] E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu, Imple-

mentation of interior point methods for large scale linear programming,

in Interior Point Methods in Mathematical Programming, T. Terlaky,

ed., Kluwer Academic Publishers, 1996, pp. 189–252.

[4] M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented

system approach to sparse least-squares problems, Numerische Mathe-

matik, 55 (1989), pp. 667–684.

[5] V. Baryamureeba and T. Steihaug, On the convergence of an inex-

act primal-dual interior point method for linear programming, in Lecture

Notes in Computer Science, Springer Berlin/Heidelberg, 2006.

[6] S. Bellavia, An inexact interior point method, Journal of Optimization

Theory and Applications, 96 (1998), pp. 109–121.

123

124

[7] S. Bellavia and S. Pieraccini, Convergence analysis of an inexact

infeasible interior point method for semidefinite programming, Compu-

tational Optimization and Applications, 29 (2004), pp. 289–313.

[8] M. Benzi, G. Golub, and J. Liesen, Numerical solution of saddle

point problems, Acta Numerica, 14 (2005), pp. 1–137.

[9] L. Bergamaschi, J. Gondzio, M. Venturin, and G. Zilli, Inex-

act constraint preconditioners for linear systems arising in interior point

methods, Computational Optimization and Applications, 36 (2007),

pp. 137–147.

[10] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indef-

inite systems in interior point methods for optimization, Computational

Optimization and Applications, 28 (2004), pp. 149–171.

[11] M. W. Berry, M. T. Heath, I. Kaneko, M. Lawo, and R. J.

Plemmon, An algorithm to compute a sparse basis of the null space,

Numerische Mathematik, 47 (1985), pp. 483–504.

[12] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM,

Philadelphia, 1996.

[13] S. Bocanegra, F. Campos, and A. Oliveira, Using a hybrid

preconditioner for solving large-scale linear systems arising from inte-

rior point methods, Computational Optimization and Applications, 36

(2007), pp. 149–164.

[14] W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and

S. J. Wichmann, An empirical evaluation of the KORBX algorithms

for military airlift applications, Operations Research, 38 (1990), pp. 240–

248.

125

[15] T. Carpenter and D. Shanno, An interior point method for

quadratic programs based on conjugate projected gradients, Computa-

tional Optimization and Applications, 2 (1993), pp. 5–28.

[16] J. S. Chai and K. C. Toh, Preconditioning and iterative solution of

symmetric indefinite linear systems arising from interior point methods

for linear programming, Computational Optimization and Applications,

36 (2007), pp. 221–247.

[17] T. F. Coleman and A. Pothen, The null space problem I. com-

plexity, SIAM Journal on Algebraic and Discrete Methods, 7 (1986),

pp. 527–537.

[18] , The null space problem II. algorithms, SIAM Journal on Algebraic

and Discrete Methods, 7 (1986), pp. 544–562.

[19] T. F. Coleman and A. Verma, A preconditioned conjugate gradi-

ent approach to linear equality constrained minimization, Computational

Optimization and Applications, 20 (2001), pp. 61–72.

[20] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton

methods, SIAM Journal on Numerical Analysis, 19 (1982), pp. 400–408.

[21] H. Dollar, N. Gould, and A. Wathen, On implicit-factorization

constraint preconditioners, in Large-Scale Nonlinear Optimization, G. D.

Pillo, ed., Springer Netherlands, 2006.

[22] H. Dollar and A. Wathen, Approximate factorization constraint

preconditioners for saddle-point matrices, SIAM Journal on Scientific

Computing, 27 (2005), pp. 1555–1572.

126

[23] H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J.

Wathen, Implicit-factorization preconditioning and iterative solvers for

regularized saddle-point systems, SIAM Journal on Matrix and Applica-

tions, 28 (2006), pp. 170–189.

[24] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for

sparse matrices, Oxford University Press, New York, 1987.

[25] B. Fischer, Polynomial Based Iteration Methods for Symmetric Linear

Systems, Wiley-Teubner, Chichester and Stuttgart, 1996.

[26] R. Fletcher, Conjugate gradient methods for indefinite systems, in

Numerical Analysis Dundee 1975, G. Watson, ed., Springer-Verlag,

Berlin, New York, 1976, pp. 73–89.

[27] A. Forsgren, P. E.Gill, and M. H.Wright, Interior point meth-

ods for nonlinear optimization, SIAM Review, 44 (2002), pp. 525–597.

[28] R. W. Freund and F. Jarre, A QMR-based interior-point algorithm

for solving linear programs, Mathematical Programming, 76 (1997),

pp. 183–210.

[29] R. W. Freund, F. Jarre, and S. Mizuno, Convergence of a class

of inexact interior-point algorithms for linear programs, Mathematics of

Operations Research, 24 (1999), pp. 105–122.

[30] D. M. Gay, Electronic mail distribution of linear programming test

problems, Mathematical Programming Society COAL Newsletter, 13

(1985), pp. 10–12.

[31] A. George and J. W. H. Liu, The evolution of the minimum degree

ordering algorithm, SIAM Review, 31 (1989), pp. 1–19.

127

[32] , Computing solution of large sparse positive definite systems,

Prentice-Hall, Englewood Cliffs, (NJ, 1981).

[33] J. C. Gilbert and J. Nocedal, Global convergence properties of

conjugate gradient methods for optimization, SIAM Journal on Opti-

mization, 2 (1992), pp. 21–42.

[34] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saun-

ders, Preconditioners for indefinite systems arising in optimization,

SIAM Journal on Matrix Analysis and Applications, 13 (1992), pp. 292–

311.

[35] J. Gondzio, Implementing Cholesky factorization for interior point

methods of linear programming, Optimization, 27 (1993), pp. 121–140.

[36] , HOPDM (version 2.12) – a fast LP solver based on a primal-dual

interior point method, European Journal of Operational Research, 85

(1995), pp. 221–225.

[37] J. Gondzio and T. Terlaky, A computational view of interior point

methods for linear programming, In J. E. Beasley, editor, Advances in

Linear and Integer Programming, chapter 3, Oxford University Press,

Oxford, England, (1994), pp. 103–144.

[38] C. Gonzaga, Path-following methods in linear programming, SIAM

Review, 34 (1992), pp. 167–224.

[39] C. Gonzaga and M. J. Todd, An O(
√
nL)-iteration large-step

primal-dual affine algorithm for linear programming, SIAM Journal on

Optimization, 2 (1992), pp. 349–359.

128

[40] N. I. M. Gould, M. E. Hribar, and J. Nocedal, On the solution

of equality constrained quadratic problems arising in optimization, SIAM

Journal on Scientific Computing, 23 (2001), pp. 1375–1394.

[41] J. A. J. Hall and K. I. M. Mckinnon, Hyper-sparsity in the revised

simplex method and how to exploit it, Computational Optimization and

Applications, 32 (2005), pp. 259–283.

[42] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients

for solving linear systems, Journal of Research of Natlional Bureau of

Standards, 49 (1952), pp. 409–436.

[43] K. R. James and W. Riha, Convergence criteria for successive overre-

laxation, SIAM Journal on Numerical Analysis, 12 (1975), pp. 137–143.

[44] J. J. Júdice, J. Patricio, L. F. Portugal, M. G. C. Re-

sende, and G. Veiga, A study of preconditioners for network inte-

rior point methods, Computational Optimization and Applications, 24

(2003), pp. 5–35.

[45] N. Karmarkar and K. Ramakrishnan, Computational results of

an interior point algorithm for large scale linear programming, Mathe-

matical Programming, 52 (1991), pp. 555–586.

[46] C. Keller, N. I. M. Gould, and A. J. Wathen, Constraint precon-

ditioning for indefinite linear systems, SIAM Journal on Matrix Analysis

and Applications, 21 (2000), pp. 1300–1317.

[47] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,

vol. 16 of Frontiers in Applied Mathematics, SIAM, Philadelphia, 1995.

129

[48] V. Klee and G. J. Minty, How good is the simplex algorithm?, in

inequalities iii, O. Shisha, ed., Academic Press, London, New York,

(1972), pp. 159–175.

[49] J. Korzak, Convergence analysis of inexact infeasible-interior-point-

algorithm for solving linear progamming problems, SIAM Journal on

Optimization, 11 (2000), pp. 133–148.

[50] Z. Lu, R. D. S. Monteiro, and J. W. O’Neal, An iterative

solver-based infeasible primal-dual path-following algorithm for convex

QP, SIAM Journal on Optimization, 17 (2006), pp. 287–310.

[51] L. Lukšan and J. Vlček, Indefinitely preconditioned inexact New-

ton method for large sparse equality constrained nonlinear program-

ming problems, Numerical Linear Algebra with Applications, 5 (1998),

pp. 219–247.

[52] I. Lustig, R. Marsten, and D. Shanno, Computational experience

with a primaldual interior point method for linear programming, Linear

Algebra and its Applications, 152 (1991), pp. 191–222.

[53] , Interior point methods for linear programming: computational

state of the art, ORSA Journal on Computing, 6 (1994), pp. 1–14.

[54] S. Mehrotra, Implementation of affine scaling methods: Approximate

solutions of systems of linear equations using preconditioned conjugate

gradient methods, Journal on Computing, 4 (1992), pp. 103–118.

[55] S. Mehrotra and J. S. Wang, Conjugate gradient based implementa-

tion of interior point methods for network flow problems, in Linear and

Nonlinear Conjugate Gradient-Related Methods, L. Adams and J. L.

130

Nazareth, eds., AMS-IMS-SIAM Joint Summer Research Conference,

1995.

[56] J. A. Meijerink and H. A. V. D. Vorst, An iterative solution

method for linear systems of which the coefficient matrix is symmetric

M-matrix, Mathematics of Computation, 31 (1977), pp. 148–162.

[57] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM,

Philadelphia, 2000.

[58] S. Mizuno and F. Jarre, Global and polynomial-time convergence of

an infeasible-interior-point algorithm using inexact computation, Math-

ematical Programming, 84 (1999), pp. 105–122.

[59] R. D. S. Monteiro and J. W. O’Neal, Convergence analysis of

long-step primal-dual infeasible interior point LP algorithm based on

iterative linear solvers, Georgia Institute of Technology, (2003).

[60] A. R. L. Oliveira and D. C. Sorensen, A new class of precon-

ditioners for large-scale linear systems from interior point methods for

linear programming, Linear Algebra and its Applications, 394 (2005),

pp. 1–24.

[61] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Non-

linear Equations in Several Variables, Academic Press, New York, 1970.

[62] C. C. Paige and M. A. Saunders, Solution of sparse indefinite

systems of linear equations, SIAM Journal on Numerical Analysis, 12

(1975), pp. 617–629.

[63] A. Pothen, Sparse null space basis computations in structural opti-

mization, Numerische Mathematik, 55 (1989), pp. 501–519.

131

[64] M. G. C. Resende and G. Veiga, An implementation of the dual

affine scaling algorithm for minimum cost flow on bipartite uncapacitated

networks, SIAM Journal on Optimization, 3 (1993), pp. 516–537.

[65] M. Rozlozńık and V. Simoncini, Krylov subspace methods for saddle

point problems with indefinite preconditioning, SIAM Journal of Matrix

Analysis and Applications, 24 (2002), pp. 368–391.

[66] Y. Saad, Iterative Method for Sparse Linear System, Second Edition,

SIAM, Philadelphia, 1995.

[67] Y. Saad and M. Schultz, GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems, SIAM Journal on

Scientific and Statistical Computing, 7 (1986), pp. 856–869.

[68] J. Shewchuk, An introduction to the conjugate gradient method with-

out the agonizing pain, tech. report, School of Computer Science,

Carnegie Mellon University, USA, 1994.

[69] J. A. Tomlin, Pivoting for size and sparsity in linear programming

inversion routes, Journal of Mathematics and Applications, 10 (1972),

pp. 289–295.

[70] C. H. Tong and Q. Ye, Analysis of the finite precision Bi-conjugate

gradient algorithm for nonsymmetric linear systems, Mathematics of

Computation, 69 (1999), pp. 1559–1575.

[71] L. N. Trefethen and D. Bau, III, Numerical linear algebra, Society

for Industrial and Applied Mathematics, SIAM, Philadelphia, 1997.

[72] H. A. van der Vorst, Iterative Krylov methods for large linear sys-

tems, Cambridge University Press, Cambridge, (2003).

132

[73] R. Vanderbei, LOQO : An interior point code for quadratic program-

ming, program in statistics and operations research, Princeton Univer-

sity, (1995).

[74] R. S. Varga, Matrix Iterative Analysis, Englewood Cliffs, NJ, 1962.

[75] W. Wang and D. P. O’Leary, Adaptive use of iterative methods in

predictor-corrector interior point methods for linear programming, Nu-

merical Algorithms, 25 (2000), pp. 387–406.

[76] M. H. Wright, The interior-point revolution in optimization: history,

recent developments, and lasting consequences, American Mathematical

Society, 42 (2004), pp. 39–65.

[77] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadel-

phia, 1997.

[78] X. Xu, An O(
√
nL)-iteration large-step infeasible path-following algo-

rithm for linear programming, Technical report, University of Lowa,

(1994).

[79] Y. Ye, Interior-point algorithm: theory and analysis, John Wiley and

Sons, New York, 1997.

[80] D. M. Young, Iterative Soluation of Large Linear Systems, Academic

Press, New York, 1971.

[81] Y. Zhang, On the convergence of a class of infeasible interior-point

methods for the horizontal linear complementarity problem, SIAM Jour-

nal on Optimization, 4 (1994), pp. 208–227.

[82] G. Zhou and K. C. Toh, Polynomiality of an inexact infeasible inte-

rior point algorithm for semidefinite programming, Mathematical Pro-

gramming, 99 (2004), pp. 261–282.

