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Abstract 

The purpose of this thesis is to implement Bayesian methods to solve theoretical and 

practical statistical problems inthe selection of animals for breeding. The thesis is there-

fore focused mainly on the calculation of posterior distributions of variance components 

and functions of them, and the construction of optimum Bayesian selection methods for 

a single quantitative trait and multiple traits. Half-sib family structures are considered 

throughout, although the theory considered is more general in its application. 

Conventional and Bayesian methods for variance components estimation are re-

viewed from an animal breeding point of view, with emphasis on balanced data, but 

unbalanced data are also discussed. 

In Bayesian statistics the necessary integrations in several dimensions are usually 

difficult to perform by analytical means. A Gibbs sampling approach, which yields 

output readily translated into required inference summaries, is applied to integrations 

using suitable families of prior distributions. Gibbs sampling output is then used to 

develop appropriate graphical methods for summarizing posterior distributions of genetic 

and phenotypic parameters, and to calculate the posterior expectations of breeding 

values and the expected progress using different selection procedures. 

The selection of farm animals for breeding is treated as a decision problem in which 

the utility of choosing a given number of individuals is assumed to be proportional to 

the sum of the corresponding breeding values. The Bayesian selection procedure in this 

case is contrasted with conventional procedures based on point estimates of parameters, 

including a method based on modified parameter estimates known as bonding. Point 

estimates can be poor and frequently nonsensical even when breeding data on hundreds 

of animals are used. It is shown that Bayesian procedures give improved selection deci-

sions as they make use of all the information on parameters rather than just providing 

point estimates. 

Finally, the restricted maximum likelihood method (REML) and the Gibbs sampling 

procedure are appliedto single trait and multiple-trait sire models for test day milkyields 

obtained on 23,873 British Holstein-Friesian heifers in 7,973 herds, these being progeny 

of 40 proven and 649 young sires. Inferences and selection procedures based on REML 

estimates and posterior expectations are compared. 
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Chapter 1 

Introduction 

1.1 General Introduction 

The objective of an animal breeding programme is to achieve genetic improvement 

of herds and flocks for productive performance by selecting, as parents for a future 

generation, animals with the greatest genetic merit. Therefore prediction of the 

genetic merit of individuals from observations on relatives is of basic importance 

in animal breeding. The selection objective, which is sometimes referred to as 

genetic merit, is defined by a function that expresses the relative economic im-

portance of the traits to be improved. There are several factors affecting the rate 

of genetic improvement per unit of time one of which is the method of predicting 

genetic merit in the candidates for selection. Since the cost of data processing is 

usually small relative to a large scale breeding program, e.g., field personnel, test-

ing facilities and overhead costs (Meijering and Gianola, 1985), the improvement 

of prediction of genetic merit in order to increase the accuracy of selection appears 

to be efficient. 

Traits which might be included in a genetic merit function include the total 

amount of milk, milk fat and milk protein produced by cows, the liveweight gain 

of meat animals, the total weight of wool produced by sheep and numbers of 

progeny. Procedures for the prediction of breeding values with these traits and 

the determination of a merit function including such characters are required. The 

1 
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breeding value of an animal may be defined as a function of the genetic components 

of the measurements. Many of the traits listed above, usually productive ones, 

present a continuous distribution of phenotypes. In this study only continuous 

ones are considered. 

Ideally, we would like to perform the selection on the basis of the breeding 

values of the animals so that the maximum genetic gain or improvement is ob-

tained. However, since breeding value cannot be measured directly, the selection 

must be made indirectly on the basis of observed values. When selection is applied 

to the improvement of the economic value of animals, it is generally applied to 

several traits simultaneously and not just to one, because economic merit of an 

animal often depends on a number of different traits. The question then arises of 

how one should take them all into account in assessing candidates to achieve the 

maximum improvement of economic value. The method that is expected to give 

the most rapid improvement of economic value is to apply the selection simultane-

ously to all the component characters together, appropriate weight being given to 

each character according to its relative economic importance, its heritability, and 

genetic and phenotypic correlations between the different characters (Falconer, 

1989). This could be carried out by constructing a selection index, which is a lin-

ear combination of the observed measurements (or characters), with coefficients 

chosen to maximize the response in economic merit. 

Information on the performance of relatives can also be incorporated into a 

selection index with the individual's own performance and used to increase genetic 

improvement. This information may be on one or more traits. Constructing 

a selection index allows information on correlated traits and information from 

relatives to be combined in the assessment of a candidate for selection. 

Efficient selection based on one or more traits and information on relatives 

requires knowledge of genetic and phenotypic parameters. Information on these 

parameters comes from observed values on individuals of the same breed. It is 
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a common approach to obtain estimates of the parameters and substitute these 

estimates into the index but point estimates can be poor even when data on 

hundreds of animals are used. In particular, it is possible to obtain estimates 

of genetic variances which are not positive or of variance matrices which are not 

positive definite (Hill and Thompson, 1978). The use of selection indices based 

on parameter estimates is not best in any sense. Indeed, estimation of these 

parameters can lead to very inefficient selection decisions and to over-optimistic 

predictions of the progress to be expected from selection where the estimates fall 

outside the allowed range of the parameters (Sales and Hill, 1976). 

Methods have been suggested for modifying parameter estimates to improve 

selection rules using ad hoc methods, such as the bending method of Hayes and 

Hill (1981) for two or more traits. However, this is not altogether well defined as it 

is difficult to choose the appropriate value for the bending factor in the absence of 

prior information. Consistent gains in the efficiency of selection can be expected if 

estimative methods are replaced by predictive methods and if the animal breeder's 

prior knowledge of parameter values is incorporated into the selection procedure 

in a systematic way. 

Bayesian methods have been suggested for the point estimates of the genetic 

and phenotypic parameters. However, they are limited to improving parameter 

estimation. There is clearly scope for the use of Bayesian methods in animal se-

lection: the process of selecting from a set of candidate animals for breeding needs 

to be treated in terms of a decision theory approach. This approach incorporates 

prior information on the parameters into the selection by constructing an index 

using posterior expectations of breeding values rather than parameter estimates. 

The utility of selecting a group of animals is chosen to be an increasing linear 

function of the sum of breeding values, corresponding to the selected individuals, 

measured as deviations from their expected values before selection. The Bayesian 

procedure would then be such as to maximize the posterior expected utility of the 

selection. Prior information on the parameters would be included in the form of a 
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prior probability distribution. This approach takes advantage of the fact that the 

problem of selecting animals for breeding is essentially one of making a decision, 

and indicates the best decision to be made. Use of the decision theory approach 

does not involve estimation of parameters and so the problem of nonsensical esti-

mates does not arise. 

The elements of a Bayesian analysis are beguilingly simple. Choose a paramet-

ric model for the data, assign a prior distribution to the unknown parameters and 

then investigate the resulting joint posterior distribution. The prior distribution 

should accurately reflect the prior opinions of the animal breeders and the analy-

sis of the posterior distribution should include sufficient marginal and conditional 

distributions to adequately describe the entire function. it is well known that such 

analyses can rarely be completed satisfactorily using analytical calculus alone. Yet 

Bayesian research continues to present the data analyst with methods of inference 

based on mathematical tractability, at the expense of generality of application and 

Bayesian credibility. 

The conventional approach to the problem of predicting genetic and phenotypic 

parameters when the values of the variance components are not known has been to 

replace the true values of variance components with the estimates. In addition to 

obtaining negative estimates of genetic variances or non-positive definite genetic 

matrices, there are several other problems with the conventional approach 

The properties of the predictors are hard to assess, when estimates of the 

variances are substituted for their true values. 

When the values of the variance components are estimated from the data 

their sampling errors are generally not taken into account in the subsequent 

analysis. Therefore, the variance of the prediction error will generally be 

underestimated. 
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iii) Depending on the size and characteristics of the data, point estimators of 

variance components can be highly variable. 

An alternative Bayesian approach to the problem of predicting the value of 

a variable from the value of a data vector when the variance components are 

unknown has several advantages. These are 

The Bayesian practitioner does not need to commit himself to a point esti-

mate of the variance components in order to obtain a point predictor for the 

random variables of interest. 

Uncertainty about the true values of the variance components is formally 

incorporated into the analysis through the choice of the appropriate prior 

distribution. 

Given the data, prior information and a suitable utility function about the 

unknown parameters, there exists an optimal Bayes predictor. 

All the available information about the random variable to be predicted is 

contained in the posterior distribution of the random variable. The practi-

tioner can, therefore, base all of his inferences on this distribution. 

The Bayesian approach is conceptually more appealing than the conventional 

approach. 

Critics of the Bayesian approach have most often cited the following points: 

i) The Bayesian practitioner must formally express his prior beliefs about the 

unknown parameters in the form of a probability distribution possibly in 

many dimensions. The choice of a prior probability density function is a 

very difficult step in Bayesian analysis. This nature of Bayesian method is 

discussed in Chapter 3. 
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ii) Bayesian methodology is computer intensive. In many situations, integra-

tions in several dimensions are required to obtain the desired posteriordis-

tributions. While this may have been a valid criticism in the past, it is 

becoming increasingly feasible to perform numerical integrations in several 

dimensions. Further, it is possible, in many situations, to circumvent or 

reduce in dimension the numerical integration. 

For example, the probability theory associated with the use of Bayesian meth-

ods in animal breeding dictates that inferences should he based on marginal pos-

terior distributions of parameters of interest, so that uncertainty about the re-

maining parameters is fully taken into account. The starting point is the joint 

posterior density of all unknowns. From the joint distribution, the marginal pos-

teribr distribution of a parameter, say the breeding value of an animal, is obtained 

by integrating out all nuisance parameters other than the one of interest, and the 

variance components. This integration is usually difficult by analytical means, 

so attention has concentrated on numerical procedures. Recent breakthroughs in 

Markov Chain Monte Carlo procedures such as Gibbs sampling have made feasible 

multidimensional integrations and sampling from joint distributions. Throughout 

this thesis the Gibbs sampling approach will be used to make inferences about 

unknown parameters and to obtain posterior expectations. 

1.2 Quantitative Genetic Models 

The phenotypic value of a trait P, which is the observed measure of a given 

characteristic of an individual apart from any measurement error, is assumed to 

be the sum of a genetic component C, which isjAheritable, and an environmental 

component E, which is not iAheritable.  These two components combine additively 

in the following way 

P=G+E. 	 (1.1) 
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The genotype is the combination of genes which an individual possesses. An envi-

ronmental component includes all non-genetic factors which effect the phenotypic 

value and result in a deviation from the genotypic value. If an environmental 

component could be kept constant for a group of individuals, then variations in 

their phenotypic values would be due to differences in the genotypic values. The 

actual genotypic value cannot be determined from the phenotypic value directly 

since environmental effects mask those contributions which are purely due to the 

genotype. 

The genetic component itself is sometimes expressed as the sum of an additive 

genetic component A, and a dominant genetic component D to give 

G=A+D. 	 (1.2) 

The symbols A and D represent respectively, the additive and dominant com-

ponent of gene actions summed over the loci involved in the expression of the 

character. In a random mating population, A and I) can he shown to be un-

correlated and the correlation between C and E is generally assumed to be zero 

although this is not always easy to justify. For a single locus with two alleles, the 

average gene effect is the mean deviation from the population mean of individuals 

which received that gene from one parent, the gene received from the other par-

ent having come at random from the population (Falconer, 1989). Summation of 

the average gene effects over both alleles at each locus and for all the loci which 

determine the character is referred to as the breeding value of an individual. This 

breeding value is the component of the genotypic value due to the purely additive 

effect of the genes influencing the trait of interest. It is the additive effect which 

contributes towards permanent genetic gain from selection. Hence, it is primarily 

the breeding value which an animal breeder wishes to use for selecting the best 

animals for breeding to produce a genetic gain. 

The components of the genotypic value other than breeding value are the 

results of interactions between loci and between alleles. These effects mask the 
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genetic potential of an individual as represented by its breeding value. Therefore, 

these components of G can be grouped together with environmental effects. The 

phenotypic value can then be represented by 

PA+Rm 
	 (1.3) 

where R. is the remainder term which includes all strictly non-genetic or non- 

additive factors. The breeding value A referred to as the additive genotype has 

. Improvement in some classes of livestock has the variance which is denoted by a  

dependent almost entirely on the additive part of the genetic variation. This is 

essentially true for dairy cattle. In other species, heterosis has been demontrated 

for several individual traits, and its effects are cumulative across traits. For these 

species, non-additive genetic variation is important in addition to the additive 

part. 

Let a, o, o and a respectively be the phenotypic variance, additive genetic 

variance,  dominant genetic variance and the environmental variance in a random 

mating population. If, further, it is assumed that there are no environmental 

correlations between relatives one can show that the covariance of an individual 

and its first-degree relatives are linear functions of a 2  and or 2 

Consider a sires chosen at random from a population of sires with each sire 

being mated to a number of dams chosen at random from a population of dams 

unrelated to each other. Thus offspring (progeny) from sire dam matings with a 

different sire are genetically unrelated. This kind of family structure used in this 

thesis is called half-sib family structure and the covariance between half-sibs is 

S_i. (or a, the sire variance component). So data from such a structure provide 

information oncr. 
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1.3 Objectives and Outline of the Thesis 

1.3.1 Objectives 

There has been increasing awareness that the Bayesian approach provides a suit-

able framework for statistical inference from animal breeding data. Recent de-

velopments in numerical procedures for implementing Bayesian methods, such as 

Markov Chain Monte Carlo and specifically Gibbs sampling, need to be applied to 

solve practical statistical problems in animal selection for breeding, in particular 

those involving multiple traits. The thesis is therefore focused mainly on posterior 

distributions of variance components and functions of them, and the construction 

of optimum Bayesian selection methods. Some of the objectives involve: 

Developing suitable families of prior distributions, particularly for multivari-

ate variance-component and repeated measures models. 

Eliciting the prior opinions of animal breeders on parameter values; most 

of the published work on eliciting prior distributions concerns nnivariate 

models. 

Developing appropriate numerical and graphical methods for summarising 

posterior distributions of genetic and phenotypic parameters, and for cal-

culating the posterior expectations of breeding values and the expected 

progress from selection. 

Examining other utility functions for selection than the sum of the breeding 

values, and contrasting the Bayesian selection procedure with conventional 

estimative methods. 

Most of these objectives of the thesis are illustrated first with simulated data 

sets and then with a real data set, provided by the Milk Marketing Board (MMB) 
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of England and Wales, involving repeated measures relating to successive test day 

milk records. 

1.3.2 Outline 

Methods of estimating variance components, namely Analysis of Variance (ANOVA) 

and Restricted Maximum Likelihood (REML) are reviewed in Chapter 2. Bal-

anced one-way univariate and multivariate models with paternal half-sib groups 

employed throughout this thesis are also given together with relevant analysis of 

variance tables. Chapter 2 discusses some restrictions due to using these models 

and gives formulae for variance components and their functions from an animal 

breeding point of view. 

An alternative Bayesian method to ANOVA and REML for estimation of vari-

ance components is reviewed in Chapter 3. Some aspects of this method in sta-

tistical modelling are given. Prior probability density functions and the choice of 

prior distributions for the variance components are discussed. Numerical examples 

with four simulated data sets illustrating the difficulties of employing analytical 

approach are also discussed. 

• 	Instead of using analytical methods to obtain the posterior expectations of the 

unknown parameters the use of a numerical integration scheme, namely Gibbs 

sampling, as a method for calculating Bayesian marginal posterior and predictive 

densities circumvents the analytical problems discussed in Chapter 3. Chapter 4 

reviews Gibbs sampling algorithms and gives a Bayesian formulation for a balanced 

one-way paternal half-sib model. General implementation issues and convergence 

assessment of Gibbs sampling are also discussed using simulated data sets and 

results are illustrated graphically and in tabular form. 

Chapter 5 investigates the problem of local maxima over the permissible pa-

rameter space of variance components encountered by likelihood and Bayesian 

methods. It discusses consequences of the bimodality when an improper prior 
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density function is used. Chapter 6 introduces a new prior parameterization. It 

gives a detailed information on adaptive rejection sampling which deals with non-

conjugacy due to the new parameterization and compares the results of this with 

those of Chapter 4. Chapter 7 concentrates on the use of decision theory for a 

single trait using data on candidates themselves and their relatives. It outlines the 

conventional theory of selection index and compares Bayesian decision procedures 

with conventional ones. 

Chapter 8 sets out to extend the general principle of the Bayesian procedure for 

a univariate one-way classification described in Chapter 4 to a balanced multiple-

trait one-way sire model assuming a half-sib family structure. It also compares 

the results of Gibbs sampling with estimates of the parameters obtained from the 

analysis of variance method. Chapter 9 considers the same model used in Chapter 

8 for selection of a fixed proportion from an infinite population. It reviews the 

conventional method of constructing genetic selection indices for multiple traits 

and gives the use of the bending method for improving selection responses. It 

then compares Bayesian decision procedures with the conventional and modified 

estimates. 

The implementation of the Gibbs Sampler with a considerably large data set 

on test day milk yields of British Holstein-Friesian heifers is carried out for the first 

time in unbalanced univariate and multivariate half-sib sire models in Chapter 10. 

Estimates and posterior expectations of genetic and phenotypic parameters and 

breeding values are obtained from test day milk yields using REML and Gibbs 

sampling methods. Finally, conclusions from this study and future work are dealt 

with in Chapter 11. 



Chapter 2 

Conventional Methods For Variance 

Components Estimation 

2.1 Introduction 

Use of variance and covariance components is an integral aspect of animal breed-

ing theory and practice for at least two reasons: in identifying sources of varia-

tion, principally genetic variation and as an adjunct to the prediction of breeding 

values of candidates for selection. Variance components are used extensively in 

developing many of the basic concepts of animal breeding. Sources of variation 

in the analysis of variance context were partitioned into their expected compo-

nents, which were particularly useful to the animal breeder. Henderson's (1953) 

paper laid the foundation for estimation of components of variance and covariance 

with nonorthogonal data. Animal breeders used his Methods I, II and III to esti-

mate variance components. These estimates of genetic and environmental effects 

enabled formulation of breeding plans and enabled development of sire and cow 

evaluation procedures. 

The purpose of this chapter is to provide insight into, in general context, 

some history, use and evaluation of variance component estimation methodology 

and to consider problems relating to the components of variance and in an animal 

breeding context, rather than from an estimation point of view. Emphasis is given 

to estimating variance components from balanced data using analysis of variance 

12 
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method. However, restricted maximum likelihood method and estimation from 

unbalanced data using analysis of variance methods are also considered. 

2.2 Estimation and Use of Variance Components 

in Animal Breeding 

An understanding of variability and the nature and extent of measurement error 

is of fundamental importance to the animal breeders. Applications range from 

answering questions about experimental design, such as how many animals are 

needed to achieve a certain precision, to the estimation of standard errors in the 

design of multi-stage selection or breeding programmes, particularly to estimate 

genetic gain. Measures of variability have important uses: 

in providing information about the experimental material such as heritabil-

ity, predicted gain from a breeding or selection programme, or information 

on variances that will help optimize breeding or selection programmes; 

in the analysis of individual experiments; and 

in combining information from several different trials or experiments. 

The idea that experimental error can arise from several different sources, and 

the importance of identifying these sources has been known for a long time. The 

origin of this idea lie in astronomical problems. Uses in the biological science were 

developed by statisticians for the theory of quantitative genetics to describe the 

inheritance of continuous traits. Later the term component of variance was coined 

by Fisher (1935), to identify the error variation from a single source or cause, 

which contributes the total error variation. 

Early applications of variance components models, which are also known as 

the random effects models, were mainly in genetics and sampling design; methods 
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were limited to balanced data, or unbalanced data classified by one factor. The 

variance components models will be discussed in more detail later in this chapter. 

Estimates of variance components have been extensively used in animal breed-

ing. Some of these uses are as follows: 

Construction of selection indices. 

Mixed model BLUP (best linear unbiased prediction). 

Estimation of genetic parameters such as heritability, genetic, environmental 

and phenotypic correlations. 

Planning breeding programmes. 

Interpretation of the genetic mechanism of quantitative traits. 

For example, the animal breeder may be interested in estimating these variance 

components so that he can estimate the heritability, a ratio which is important 

in bringing about increased milk through selective breeding. As such, it depends 

on the magnitude of all the genetic variation relative to the total genetic and 

environmental variation. Since heritability is the ratio of additive genetic variance 

to the total phenotypic variance, the total variation must be partitioned into its 

components before heritability, and other genetic parameters, can be estimated. 

The methods of statistical analysis of genetical and environmental models of 

variation have evolved through the century, in tandem with theoretical and, more 

so, computational advances, initially, it was a matter of comparing observed corre-

lations with those expected under simple models, and provided a unique solution 

existed, solving linear equations. A wide array of methods has been developed 

for estimating variance components in the last 30 years, for example, Analysis 

of Variance (ANOVA), likelihood based methods, in particular, Restricted Max-

imum Likelihood (R.EML), and Bayesian methods. In this section, ANOVA and 
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likelihood based approaches to estimation of genetic parameters, with emphasis 

on components of variance, will be reviewed as they play a central role in animal 

breeding theory. Bayesian methods are considered in Chapter 3. 

2.2.1 Analysis of variance methods 

Analysis of variance relies on data being classified by different factors. Data 

are described as being balanced when there are the same number of observa-

tions (progeny) in each of the subclasses (sire families): balanced data are equal-

subclass-number data. 

The basic principle for estimating variance components from balanced data is 

that of equating the analysis of variance mean squares to their expectations and 

solving the resulting system of linear equations for estimates of the variance com-

ponents. For example, in the one-way variance components model (2.2), the mean 

squares M6  and .M between and within families are equated to their expectations, 

giving analysis of variance estimates of the between and within components. It is 

customary to summarize the results in an Analysis of Variance (ANOVA) table. 

The form for the one-way classification is given in Section 2.3. From this table 

ANOVA estimators are = ( M6 - M)/n and â = 

Use of variance components in animal breeding started with simple between 

and within one-way analysis of variance to get estimates of between-group varia-

tion and as a way to compute correlations and regressions when the same attributes 

were not measured on each individual. An example of the latter is when an esti-

mate of repeatability of milk production was wanted, and all cows did not have 

the same number of lactations. Intraclass correlations were much more convenient 

to compute than to compute all possible simple correlations and then weight them 

by the number of records in each to get a single value. 

The problem of estimating variance components using ANOVA methods has 

attracted the attention of many authors. Henderson (1953) extended the knowl- 
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edge of estimation of variance components to unbalanced data where there can 

he cross-classification and described three alternative methods of variance compo-

nent estimation which have since been used in animal breeding to give unbiased 

estimates of variance components. The methods are all based on equating sums 

of squares to their expectations. Each of the methods is an application of the 

ANOVA methodology. Method I uses sums of squares that are unbalanced-data 

analogues of those used with balanced data; Method TI adjust the data for what-

ever fixed effects are in the model, and then uses Method I. on those adjusted data; 

and Method III is based on sums of squares that result from fitting a linear model 

and its submodels. In unbalanced data, sums of squares relating to interactions 

derived when using Methods I and II are not necessarily positive and the resulting 

variance component estimates may be negative. Although Method Ill overcomes 

the problem of negative sums of squares while allowing for a mixed model having 

both fixed and random effects, negative estimates of variance components may 

still arise. Use of an inappropriate model is often blamed for producing negative 

estimates (Smith and Murray, 1984), but this is not convincing because negative 

values do occur even when the model is correct. Searle (1971) reviewed methods 

of variance component estimation for balanced and unbalanced data available at 

that time. 

Another problem with Henderson's methods for estimating variance and co-

variance components is that the methods are not necessarily well defined. That 

is, it is not always clear which mean squares from what ANOVA tables should he 

used (Searle, 1971). How these methods should be extended to the general prob-

lem of estimating variance components is even less clear. Despite the problems 

with Henderson's methods , where only unbiasedness can he claimed, parameter 

estimates from these methods have enabled substantial progress to be made in the 

genetic improvement of dairy cattle in the U.S.A. as well as other animal breeding 

programmes. 

In most ANOVA-based methods, the problem of estimating variance compo- 
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tents has been analyzed from the repeated-sampling point of view. A main dif-

ficulty which has concerned many of the authors is negative estimated variance. 

Confidence intervals for variance components can include negative values even if 

point estimates are positive. This problem of negative estimates of variance (or 

non-positive definite covariance matrices in the multivariate case) is particularly 

pervasive and there is nothing inherent in the estimation method that necessarily 

prevent estimators (other than &) from being negative. In other words, although 

&2 is always positive, other estimators can (and sometimes do) yield negative es-

timates. For example, tinder the one-way variance component model (2.2), with 

the assumption that the random-effects, s, and e, are independent among them-

selves, the following unbiased estimator for the sire component of variance, &, for 

c, the between group variance 

= (M,, - 
	 (2.1) 

may, with positive probability take a negative value. Thus any data for one-way 

variance components model that are such that M5 < M will yield a negative 

estimate of &2  in (2.1). Clearly, this is an embarrassment since c is positive by 

definition. Nevertheless it can happen and, indeed, the probability of its happening 

can, under certain circumstances be large. 

According to Thompson (1962) and Thompson and Moore (1963) two possible 

explanations of a negative estimate are: (i) the assumed model may be incorrect 

and (ii) statistical noise may have obscured the underlying physical situation. This 

feature is particularly disconcerting if one further assumes that the sire effects, s, 

and the residual effects, ej, are normally distributed. If, on the other hand, 

one attempts to restrict the value of &2  to be non-negative, as Scheffe ( 1961) 

has suggested setting the variance equal to zero whenever a negative estimate is 

obtained in a random-effect model, this will destroy its unbiasedness property and, 

more importantly, further complicate the already much complicated distribution 

theory of &2 in (2.1). Smith and Murray (1984) give an example of a negative 
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estimate of the variance component in which s i  refers to random cow effect and 

Yij is the weaning weights of twin calves for Hereford cows. The cows are considered 

to be a random sample from a large population of animals. If there is competition 

between members of a pair, this could cause P to be negative. If ANOVA is used, 

negative &2  could be due either to sampling, to competition, or both. 

The situation becomes further complicated in the multivariate case where, as 

shown by Hill and Thompson (1978), estimates of genetic parameters derived 

from the analysis of variance can lead to sizeable probabilities of non-positive 

definiteness of estimated genetic variance matrices; if these matrices are then used 

in the construction of selection indexes, absurd results may be obtained. 

A second difficulty within the traditional framework is the sensitivity of in-

ferences to departures from underlying assumptions. For example, Scheffe (1961) 

showed that non-normality in the sire effect, s, and lack of independence in the 

residuals, 6ij will have serious effects on the distributions of the criteria which one 

uses to make inferences about the parameters in the one-way model. Tiao and 

Au (1971) investigated the effect of non-normality on inference about the vari-

ance components by assuming the distribution of s i  is in a form of a mixture of 

two normals. Their investigation concluded that inferences regarding the between 

group variance, o - , are very sensitive to failure of the distributional assumptions. 

2.2.2 Likelihood based methods 

More recently, emphasis has been on maximum likelihood (ML) and on restricted 

maximum likelihood (REML) to estimate variance components. Maximum likeli-

hood methods were first suggested by Crump (1951) and set out in a general form 

by Hartley and Rao (1967). Given the model of analysis, assumptions and data, 

the likelihood for the parameters, i.e. variance components, can then be calcu-

lated. Advantages of the maximum likelihood approach include the fact that it is 

conceptually simple, always well defined and requires no assumptions concerning 
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the structure or balance of the data. Their estimators are functions of every suf-

ficient statistic and are consistent, asymptotically normal and efficient (H.arville, 

1977). Furthermore, estimates of functions of the variance components (such as 

heritability) are easily obtained, along with approximate standard errors. More 

importantly, for at least some unbalanced designs, there exist variance compo-

nent estimators, closely related to the maximum likelihood estimators, that have 

uniformly smaller variance than the Henderson estimators. 

A possible disadvantage is the fact that ML estimators differ from the analysis 

of variance estimators in the case of balanced data, though the latter have been 

shown (Craybill and Hultquist, 1961) to be the best quadratic unbiased estimators 

in balanced data and the best unbiased estimators if the data are balanced and 

normally distributed, indeed the ML estimators are generally biased downwards, 

sometimes dramatically so, since this procedure does not account for the loss in 

degrees of freedom due to any fixed effects fitted (Patterson and Thompson, 1971; 

Harville, 1977). 

The problem of bias can be overcome by the use of restricted (or residual) 

maximum likelihood (REM.L), so called because residuals are used in the estima-

tion procedure, though the technique has also been called restricted maximum 

likelihood. Since contrasts between unknown fixed or treatment effects cannot 

provide any information on the error structure, the REM], technique sets out to 

maximize the joint likelihood of all error contrasts which have zero expectation. 

REML method was first proposed by Thompson (1962) and its use advocated 

by Patterson and Thompson (1971) for incomplete block designs with possibly 

unequal block sizes. 

There are broad analogies with analysis of variance techniques where both 

treatment sums of squares and degrees of freedom are subtracted in order to es-

timate the error distributions. Henderson's methods yield translation invariant 

quadratic unbiased estimators (Harville, 1977). in balanced-data cases, these 
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estimators coincide with the normality-derived REML estimators, provided the 

non-negativity constraints on the variance components do not come into play 

(Patterson and Thompson, 1971). In other words, with balanced data, the REML 

estimating equations reduce to those used in estimation by analysis of variance 

(ANOVA) so that if the ANOVA estimates are within the parameter space, these 

are REML as well (Gianola and Foulley, 1990). In general, however, the only par-

allel between Henderson's methods and REML is that both are based on equat-

ing translation-invariant quadratic forms to their expectations (Harville, 1977). 

While in REML, the quadratic forms are functions of the variance components, 

the expectations are nonlinear, and modifications are incorporated to account for 

the negativity constraints, in Henderson's methods, the quadratic forms are in-

dependent of the variance components, the expectations are linear, and negative 

estimates of variance components can be' obtained. 

In unbalanced-data cases, for example, when a data set from half-sib fami-

lies with unequal numbers of progeny is used maximum likelihood function can 

have multiple maxima within the permissible parameter range. This problem can 

be avoided by using REML in place of ML for variance component estimation 

(Hoeschele, 1989). 

In contrast to ANOVA estimation, both ML and REML are methods of es-

timating variance components from unbalanced data that can be used with any 

mixed or random model. They accommodate crossed and/or nested classifications 

with or without covariables. ANOVA estimation has already been discussed at 

some length. Its lack of optimality criteria on which to pass judgement on the 

various forms of ANOVA is a serious deficiency. ML and REML are both to be 

preferred over ANOVA since they have built-in optimality properties. 

The basic idea underlying REML is obtaining a likelihood based estimator 

(thus retaining the usual asymptotic properties) while reducing the bias of ML. 

However REML estimators are biased as well and because these are constructed 
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from a partial likelihood, one should expect larger variance of estimates than with 

ML (Gianola and Foulley, 1990). For example, with balanced data from a one-way 

variance components model, the solutions of the REML equations are unbiased, 

but the procedure for adopting these solutions so as to get REML estimators gives 

an estimator of c that is clearly upwardly biased (Searle, 1989). 

Harville and Callanan (1990) noted that likelihood-based methods, in partic-

ular REML, for estimating variance components of Gaussian linear mixed mod-

els have rapidly gained favour among animal breeders and other practitioners 

(Thompson, 1962; Patterson and Thompson, 1971; Harville, 1977; Meyer, 1983; 

Henderson, 1984; Meyer and Thompson, 1984) because of the development of 

computer technology and the availability of simple and efficient algorithms based 

on Henderson's (1984) mixed model equations. REML estimation is now widely 

regarded in animal breeding as the method of choice and progressively replacing 

ANOVA using one of Henderson's (1953) methods as this method has consider-

able power to control bias due to selection (FIarville, 1977). Moreover, the highly 

desirable properties of REML have made it the best available method of vari-

ance component estimation for animal breeding work (Mäntysaari and Van Vleck, 

1989). 

Ilarville (1977) presented a thorough review of the maximum likelihood ap-

proaches to variance component estimation. These approaches allows for several 

random factors in the model and is based on maximizing with respect to the vari-

ances only the part of the likelihood function that does not depend on fixed effects. 

In so doing, Patterson and Thompson (1971) obtained an estimator that "accounts 

for the degrees of freedom lost in the estimation of fixed effects" which, according 

to their reasoning, is not accomplished by full maximum likelihood. REML esti-

mates by definition are always in statistical parameter space, and are consistent, 

asymptotically normal and efficient (Harville, 1977). 

The two procedures have the same asymptotic properties (although their asymp- 
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totic variance is different) and unknown small sample distributions, a feature 

shared by all sampling theory estimators of variance components. Although ML 

and REML estimates are defined inside the appropriate parameter space, inter-

val estimates based on their asymptotic normal distributions can include negative 

values (Gianola and Foulley, 1990). This potentially embarrassing phenomenon is 

often overlooked in discussions of likelihood based methods. 

(Gianola and Foulley, 1990) noted two potential shortcomings of REML that 

have not received sufficient discussion. First, the method produces joint modes 

of the variance components rather than marginal modes. If the loss function 

is quadratic, the optimum Bayes estimator is the posterior mean, and marginal 

modes provide better approximations to this than joint modes (O'Hagan, 1976). 

Second, in some problems not all variance parameters have equal importance. For 

example, suppose that there is interest in making inferences about the amount of 

additive genetic variance in a population and that the statistical description of 

the problem requires a model that, in addition to fixed effects, includes random 

herd, additive, dominance, permanent environmental and temporary effects. in 

this situation, the restricted likelihood of the variance components involves 5 di-

mensions, 1 for each of the variances, yet all components other than the additive 

one should be regarded as nuisance parameters (Gianola and Foulley, 1990). Car-

rying the logic of Patterson and Thompson (1971) one step further, REML would 

not take into account the error incurred in estimating the nuisance variances and, 

therefore, only the part of the likelihood that is a function of the additive genetic 

variance should he maximized. Construction of this likelihood employing classi-

cal statistical arguments seems impossible. These considerations can be satisfied 

using Bayesian methods. 
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2.3 Variance Components Estimation in A Uni-

variate One-way Classification 

Suppose that a group of sires is chosen at random from a population of sires, that 

each sire is mated to several dams, and that each dam produces one offspring. 

The phenotypic values of the offspring but not of the parents are measured. Thus 

offsprings of the same sire are half-sibs, while offsprings of different sires are un-

related. Heritability is estimated from the correlation between half-sibs. This 

experimental design is useful for uniparous animals such as cattle. It is often 

easier to obtain comparable measurements on groups of half-sibs belonging to the 

same generation than on parent and offspring belonging to different generations. 

Let us assume that there are s sires, and that each of them has ii offspring 

by different dams. Among the offspring there are .s families, each consisting of ii 

half-sibs. Let Vii  denote the phenotypic value of the jth offspring of the ith family 

(sire) of size ii (i =•1,...,s; j = i,...,n). The data can be analysed by a one 

way analysis of variance shown in table below. 

Source 	d.f. 	55 MS E(MS) 

Between-sires (s - 1) Sb Mb a + nc 

Within-sires .s(n - 1) S,,. Mw 

Here M5  = S/(s —1) and Mw  = Sw1{3(12 - 1)} are the mean squares between and 

within families and 5b  and S. are the sum of squares between and within families 

given by 

Sb = 

S 	It 

SW = ET (ii - 
i=1 j=1 
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where 

Yi. 	
U23 

For i = 1,... ,s and j = 1,... ,n. The linear model underlying this analysis that 

will be used is 

Yij=p+Si+eij (i=l,...,s; j=l,...,n; N=ns) 	(2.2) 

Where p represents a general mean, si is the random effect associated with the ith 

sire group and eij is a residual error term representing variability within half-sib 

families. In model (2.2), all effects except p are considered random: the sires used 

are assumed to be a random sample from a population of sires. Therefore, the sis 

are random variables and the model associated with this type of data is called a 

random-effects model or, sometimes, the random model. The random effects, s 

and e ij , are considered to be mutually independent and the following assumptions 

are made 

E(s) = 0, 	Var(s) = cT 
2  V j, 	

(2.3) 
E(e) = 0 and Var(e) = a V i and j. 

These variances, or 
2  and o- , are called variance components because each is a 

component of the variance of an observation: 

Var(y) = E(y - p) 2  = + c. 

It is usual in random models to define all covariances between residuals as zero: 

Cov(e, eii) = 0 except for i' = i and j = j'. 	 (2.4) 

Similarly, for the s i  terms, 

Cov(s,s') = 0 V i $ i; 	 (2.5) 

and likewise for the covariance of each s i  with every e 3 : 

Cov(s,e'') = 0 V i, i and j '. 	 (2.6) 
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Whenever stochastic independence of the e j 's, of the s i 's, and of the s i 's and e's 

is assumed, these covariances are, of course, a direct consequence of these assump-

tions. Conversely, on assuming normality of the s i 's and the e's (usually just 

called the "normality assumption"), these zero covariances imply independence. 

It is easily verified that y ..  is normally distributed about p with variance (a+ 

na)/(ns), and that S and S b  are distributed as multiples of chi-square random 

variables, ox2s(n - 1) and (a + no)x2(s - 1), respectively, the three being 

mutually independent given i, c 2  and o. 

The customary approach to estimation is to view fr  as an estimate of IL, M W  

as an estimate of o, Mb as an estimate of a + no, and (M5 - MW )/n as an 

estimate of o -, all being unbiased. However, the possibility of negative estimates 

of o (which occur with substantial probability when a 2  is small) and and the 

confusion about proposed approximate confidence intervals for o-, (even in the 

balanced case) raise serious questions. For example, using the model in (2.2) with 

the added assumption that the s's and e d 's are independent among themselves, 

the following unbiased estimator for a, 

2 Mb—MW 
a3  = 

71 

(2.7) 

may, with appreciable probability, take negative values. This feature is particularly 

disconcerting if one further assumes that the effects, s, and the errors, cj, are 

normally distributed. For, in this case the set of statistics (j., M, Mb) are jointly 

sufficient for (p,o- ,o) so that & seems to be the 'natural' estimator to use. If, 

on the other hand, one attempts to restrict the value of &2  to be non-negative 

(Thompson, 1962; Thompson and Moore, 1963) this will destroy its unbiasedness 

property and, more importantly, further complicate the already much complicated 

distribution theory of &. 

In Chapters 3 and 4, a Bayesian approach will be adopted to analyse the model 

(2.2) in animal breeding situations. One advantage of such an approach is that 

we are able to give satisfactory answers to both of the problems, the negative 
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estimated variance problem and the sensitivity of inferences to departures from 

underlying assumptions. 

2.4 Some Restrictions and Animal Breeding Con-

siderations 

2.4.1 Sire model and restrictions 

The traditional method of identifying cows and sires of high genetic merit is to 

model the biology underlying the expression of production traits and to make 

predictions about future performances of animals and their progeny using the 

model (2.2). This model is usually referred to as paternal half-sib model or sire 

model in animal breeding applications as it uses information from the breeding 

experiments with half-sib family structure. Use of sire models became the norm 

for dairy cows, in that they are computationally feasible since the number of 

equations to be solved is equal to the number of sires and they answered the 

primary need for sire evaluation. Although developments of methods of variance 

components estimation were based initially on such sire models, more recently 

emphasis has shifted to the animal model. Throughout this thesis sire models are 

used. 

Some caution is needed in defining the parameter space for variance component 

problems in animal breeding. For example, employing a sire model imposes the 

natural restrictions for a particular variable. Intraclass correlation (p) must lie 

inside the [0, 1/41 interval, because heritability (h 2 ) is between 0 and 1. This 

implies that in estimation of variance components from a paternal half-sib family 

structure given in Section 2.3, the variance ratio c/c is between 0 and 1/3, so 

that the parameter space is 

2 _ 00 
	a3 -0; c>0; 0,

2 /o, 2
~ 3, 
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where c 2  and o are the sire and residual components of variance, respectively. 

A method of estimation which ignores these restrictions may lead to ridiculous 

estimates of heritability. As discussed in Section 2.2.1, estimates of genetic pa-

rameters in the multivariate case can have sizeable probabilities of non-positive 

definiteness (Hill and Thompson, 1978); if these matrices are then used in the 

construction of selection indexes, absurd results may be obtained. 

If one considers an animal model, the bounds for p and a,2 /a.2  are from 0 to 1, 

and 0 to oo respectively, and the variance components are unbounded. Since any 

sire model can he expressed as an animal model, the use of such model prevent 

imposing the restriction mentioned above, though at some computational expense 

(Wang et al., 1993). 

Another way of eliminating these restrictions is to introduce a transformation 

using genetic (additive), 01, 
, and non-genetic variance, c, components. Consider 

a large animal population in which mating is at random. Then the phenotypic 

value of an offspring consists of the population mean, the genetic contribution 

which the sire passes on to his offspring and random errors. it is well known 

from a paternal half-sib family structure that the sire hands one quarter of the 

genetic information by Mendelian inheritance to his offspring. The remaining of 

the genetic information (accounting for three quarters of the genetic variance) and 

all non-genetic information are included in random errors. Therefore 

2 	12 	2 
0.  = —Cs , orc  = U 

3 	4 	49 

and 

n-f-32 	2 4 C+an. 

This transformation from sire and environmental variance components to new 

components does not require the natural restriction. 
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2.4.2 Fixed and random contemporary groups in genetic 

evaluations 

The model (2.2) considered in this chapter is a one-way random effects or more 

specifically random sire model which has 1L as a fixed effect, and si  and ej as 
tZ 

random. The distinction between fixed and random effects cents on whether 

one is willing to assume that the levels of a factor are sampled randomly from a 

distribution (Searle et al., 1992). In Chapter 10, a mixed sire model containing 

fixed effects (i.e., herd-year-month and proven sires), random effects (i.e., unproven 

sires and residuals) and covariates (i.e., pedigree status, age at calving, days in 

milk and Holstein proportion) is considered. Every model that contains a t is a 

mixed model, because it also contains a residual error term, and so automatically 

has a mixture of fixed and random elements. In practice, however, the name 

mixed model is usually reserved for any model having both fixed effects (other 

than i) and random effects, as well as the customary random residuals (Searle et 

al., 1992). 

In animal breeding applications, mixed models have broader use than random 

models, as they allow inclusion of more of the biology and management influences 

known about the traits. Therefore mixed models have been recognized as prefer-

able to other traditional models for estimating genetic and phenotypic parameters 

and for predicting the breeding value of sires based on progeny records. Henderson 

(1953, 1963, 1973) has played a major role in developing procedures for estimating 

or predicting linear combinations of the fixed and random effects of mixed linear 

models and proved that these procedures are optimal in a best linear unbiased 

sense. He showed how the ANOVA method for estimating variance components 

from balanced data could be extended to unbalanced data using mixed models. 

The main environmental or nongenetic effects in a mixed model are compari-

son or contemporary group effects (defined e.g. as cows in the same herd calving 

in the same year and season), such as the herd effects or more precisely herd-year- 
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season of calving subclass effects. Although the controversial subject of much 

discussion about the choice between treating contemporary group effects as fixed 

or as random has not still been settled in dairy cow evaluation, these effects are 

usually treated as fixed since Henderson (1973) argued that nonrandom associa-

tions between sires and herds may lead to biased predictions if herd-year-season 

effects are accounted for as random. This argument has been considered recently 

(Ugarte et al., 1992; Visscher and Goddard, 1993) and was found to depend very 

much on the circumstances. Treating herd-year-season effects as random would 

increase the effective number of daughters or the information with which an ani-

mal is being evaluated and as a result of this prediction error variance decreases. 

However bias in predicted breeding values would be expected if sires were not ran-

domly distributed over herd-year-season effects, i.e., if association between sires 

and herd-year-season exists (Visscher and Goddard, 1993). To overcome this po-

tential problem it is sufficient to treat herd-year-season effects as fixed. Treatment 

of contemporary group effects as fixed would avoid the bias of nonrandom use of 

sires across herds and help in removing the same bias from estimates of components 

of variance (Schaeffer and Burnside, 1974). However this has a major disadvan-

tage in the form of loss of information, in particular when herds are small. Small 

herds or herd-year-season with mainly from one bull would hardly contribute to 

progeny group comparison in a sire model. With small herd sizes the prediction 

error variance of sires can be reduced substantially by fitting herds as random 

(Visscher and Goddard, 1993). 

2.4.3 Variance components and their functions 

To the animal breeder and farmer, who are both interested in using breeding to 

help increase the production of economically important traits from farm animals 

(e.g., eggs, milk, butter, wool), the variance components o 2  and a and their 
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functions are of much interest. For example, they are needed in the calculation of 

heritability and ratio of variances. 

In some animal breeding applications, interest may be in making inferences on 

the variance ratio or functions thereof, rather than on the variance components 

themselves. Let 'y = a/a represent the ratio of sire and residual variance com-

ponents. Since c 2  is a variance, there is an implicit assumption that o 2  and 'y 

are non-negative. Moreover, in some applications (including many animal breed-

ing applications), there is a known upper bound, say u, on 'y. Assume then that 

o < u, where either u = :: or u is a known, finite constant, or equivalently 

that 0 < cr < uo- . The following parameter space can then be used 

= {a,'7 :0 <a <uc;0 ~ 7 

For a paternal half-sib family structure u is 1/3. 

It should be noted that the measurements of a trait may include some mea-

surement error and so the value observed is actually the phenotypic value plus a 

random error. We will, however, first assume that the observations we are working 

with can be considered to be measured without error. The observations Yji are 

assumed to jointly have a normal distribution with common mean, p and variance 

u
p 
, a, > 0. Then, the total variance, or , 

, will be assumed to be the same as the 

phenotypic variance. Therefore, the phenotypic variance is given by 

Var(y€ ) = 
0, 2 = Var(s) + Var(eij) 

= a32  +a, V i,j. 	 (2.8) 

These components may be related to the model P = C ± B in Section 1.2 by 

considering the breeding value of a sire. The variance of the breeding value over 

an idealised population of sires is 4o (= a) which is four times the covariance 

between half-sibs. 
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It is also assumed that there are no genotype-environment correlations so that 

the covariance between the genotypic value and environmental value need not be 

included in o,, 2.  When there is no correlation between members from different 

families, i.e., sires are unrelated then we have 

Cov(yjj, y'') = Cov(p + s + eij, p + s' + e'') = 0 for i 	i'. 	(2.9) 

Heritability is probably the most widely used genetic parameter, and obtaining 

heritability is sufficient for many purposes. Sire and cow evaluation procedures 

require knowing variances or ratios of variances. Heritability is defined as the 

ratio of additive genetic varianceto phenotypic variance o, since it expresses 

the proportion of the superiority observed in the parents that is transmittable 

to the offspring (Falconer, 1989). Thus, this parameter not only determines the 

degree of resemblance between relatives, but it also has an important predictive 

value because it expresses the reliability of the phenotypic value as a guide to 

breeding value. Heritability is estimated either from the regression of offspring 

on parents or from the intra-class correlation of half-sib families. When the si ' s 

represent transmitting abilities (of sires or of female parents), heritability equals 

(under certain simplifying assumptions) the parametric function. 

h2— 
4a _g_ 	2' 

a 	1+-y 

Clearly, h2  is a strictly increasing function of -y over the domain 0 < 'y < 1/3 

which corresponds to 0 < h 2 <  1. 

2.4.4 Negative estimate of variance components and other 

problems 

It is known that it is possible to obtain genetic variance components, and so the 

heritabilities, outside the permissible parameter range with a considerable high 

probabilities. It is therefore crucial to know the probability of negative estimates 
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of these parameters. The probability of the estimate of sire variance, &, being 

negative for the hall-sib design is 

us  Pr a2  <o} = Pr{F(s_ 1, s(n— 1)) < 	2} ?W2  + C 

= Pr{F(s — 1, s(n— 1)) <(1+n7)_'} 

= Pr {F(s(rt - 1), s - 1) > 1 + n7} 	(2.10) 

where F(s - 1, s(n - 1)) is a random variable having an F-distribution with 

degrees of freedom (s - 1) and s(n - 1). 

This problem still exists in spite of the gains made in recent years in method-

ology applied to animal breeding applications. Negative estimates can result from 

both the method of estimation and the data. How to interpret or use negative 

estimates is yet a separate problem. There is a considerable literature relating 

to estimating non-negative components, including the work of Hartley and Rao 

(1967) and others using Bayesian approaches. Data may be such that partial or 

complete confounding exists between effects or levels of effects in the model, which 

is particularly in unbalanced data. In this case, little can be done without discard-

ing part of the data or changing the model. In practice making these adjustments 

may not be easy because it frequently is difficult to determine the confounded 

elements, particularly in field data. The model could fit the data and the true 

value of the component could be zero or slightly positive, and the estimate of 

the component be negative. Such a situation suggests obtaining more data, but 

knowing when this situation really exists is difficult. 

Other situations likely to exist in animal breeding data are (1) the variance 

within the smallest subclass is not homogeneous and (2) elements of the model 

are correlated. For example, in dairy cattle, when genetic groups are fed very 

differently the within group variances may differ by feeding regimes. Elements 

of the model may be correlated where the best genotypes get the best care or 
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daughters of the best sires get the best care. At least some of these problems 

can be handled statistically, if they are recognized, but they seldom seem to be 

considered. 

Interpreting, using, or not using negative estimates of variance components 

has no satisfactory answer because the true situation generally is unknown. Such 

dilemmas do arise, which just emphasizes the need for better methodology for 

inference and stresses the need to write models that more appropriately describe 

the data. 

2.4.5 Prediction of breeding values 

In many animal breeding applications, the elements of Yij represent the production 

records of animals. The elements of s i  represent the average deviation of the 

sire's progeny from the mean and are thus one-half of the breeding values (or 

transmitting abilities) of the sires (male parents) of the animals. A breeding value 

which is referred to as the additive genetic value can be assigned to an individual 

for any trait and indicates the relative genetic merit of that individual. Therefore 

its variance is= 4o which is the variance due to the additive effects. Predicting 

breeding values is a primary concern of animal breeders. That is to predict the 

genetic merit of an individual with information from performance tests, progeny 

tests, sib tests etc. 

Let gi  be the additive genetic effect or breeding value (the effect on the record 

of the animal's genotype) with Var(g) = 9 = h 2 o. Then s = gJ2 is the
1p 

transmitting ability of sire i, i.e. the mean genotypic value for offspring is one half 

of the additive genetic value of one parent (all values being expressed as deviations 

from their population mean values). The predicted values of the breeding values of 

the sires can be obtained by regressing the least squares estimates of the progeny 
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means on the breeding values of the sires using a coefficient 

	

b = 
	2nh 2  

4 + ( it - 1)h 2  

2n 

	

- 	 (2.11) 
- fl+71 

In general the regression coefficient, Li for prediction is the same as the weighting 

factor in selection index calculations. The last form of the weight is often conve-

nient to use because the ratio 'y = h 2 /(4 - h2 ) is a constant for a particular trait. 

The weighting factor depends on heritability and the number of progeny. The 

predicted breeding value of the ith sire from it of his paternal half-sib progeny is 

then given by 

= 

	

= 	2n 
-1 	 (2.12) 

n+ - y 

which is the best linear unbiased predictor or BLUP of s. The variance of pre-

dicted breeding value, , when the fixed effects are known exactly, is given by 

- Var(g) = Li 2  Var(y.) 

where 

4+(n-1)h2 	2 
Var(y1.) = ( 
	4n 	) 

2 

2 °  
Li 

Then 

	

/ 	4it 	'\ 2 
Var( j ) = 

2bcr = ( + 

with the accuracy 

2 	b 	it 

- 2 - it + 71 
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Which becomes nearly unity as the number of progeny becomes large. Variance of 

prediction error of genetic value or prediction error variance (PEV) is calculated 

as variance of the differences between estimated and true breeding values 

PEV = Var( - .$) = (1 - r)Var(.$) 

2 	2 

Note that under the normality assumption, the predictor given in (2.12) is also 

• Bayesian solution with proper priors, since = E(si I {yj}). In other words, 

• Bayesian solution is equivalent to choosing the predictor to be the mean of 

the posterior distribution of s, which in this present context is the conditional 

distribution given Yij•  A Bayesian solution to the prediction of s i  using Gibbs 

sampling will be given later. 

Henderson (1973) called E(s1 I {yj}) the best predictor. If the conditional 

distribution of s i  given YiJ  is linear and when candidates have the same amount of 

information, ranking with E(s i  I yjj  maximizes expected response to truncation 

selection via maximization of correlation between predictor and predictand (Gi-

anola and Fernando, 1986). With unequal information, ranking individuals with 

E(si I {y})  and retaining those with the largest values maximizes the mean of q 

selected individuals irrespective of the distribution. The Bayesian solution yields 

the same answer on condition that inferences are made from the data at hand 

without reference to imaginary or hypothetical data. 



Chapter 3 

Bayesian Methods and Bayesian Theory 

3.1 Bayesian methods 

An alternative to the methods mentioned in Section 2.2 are Bayesian methods 

for estimation of variance components in the context of a parametric model. In 

the l3ayesian framework, prior knowledge about the unknown parameters is for-

mally incorporated into the process of inference by assigning a prior distribution 

to the parameters (Box and Tiao, 1973; Berger, 1985). The information contained 

in the prior distribution is combined with the information provided by the data, 

through the likelihood function, into the conditional distribution of the parame-

ters given the data, which is known as the posterior distribution, inferences about 

parameters and functions of them are based on the corresponding marginal distri-

butions (Berger, 1985). Marriott (1990) gives a definition of Bayesian estimation 

as: "The estimation of population parameters by the use of inverse probability 

and in particular of Bayes' theorem." 

In all but very stylized problems, the integrals required for l3ayesian compu-

tation require analytic or numerical approximation. in many Bayesian situations, 

integrations in several dimensions and further attempt to marginalize with re-

spect to dispersion parameters seem difficult or impossible to perform by ana-

lytical means. Over the past decade, progress has been made towards developing 

suitable approximation techniques. The Bayesian practitioner can therefore resort 

36 
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to at least three options for the study of marginal posterior distributions (Cantet 

et al., 1992): 1) approximations; 2) integration by numerical means; and 3) nu-

merical integration for computing moments followed by a fit of the density using 

these numerically obtained expectations. Some of these strategies include Laplace 

approximation, iterative quadrature, Gauss-Hermite quadrature, importance sam-

pling, sampling importance-resampling, Monte Carlo integration, approximations 

using third derivatives and Lindley-Smith iteration (Bernardo and Smith, 1994; 

O'Hagan, 1994). All have contributed to extending the Bayesian computational 

tool-kit, but all suffer from limitations on their scope and implementation of them 

typically requires sophisticated numerical and analytic approximation expertise 

and possibly specialist software. 

Recently Gelfand and Smith (1990) and Gelfand et al. (1990) described the 

Gibbs Sampler which is a potential. competitor of the above options. The Gibbs 

Sampler approach is straightforward o specify distributionally, is easy to imple-

ment computationally, and yields output readily translated into required inference 

summaries (Gelfand et aL, 1990). Unlike other approaches marginal posterior den-

sities for variance components are readily obtained through the Gibbs sampling. 

An algorithm for extracting marginal distributions from the full conditional dis-

tribution was formally introduced as the Gibbs sampler in Geman and Geman 

(1984). This algorithm requires all the full conditional distributions to he avail-

able for sampling, where available is taken to mean that, for example, samples of 

the marginal distributions can be generated straightforwardly and efficiently given 

specific values of the conditioning variables (Gelfand et al, 1990). All distributions 

are viewed as conditional on the observed data, whence marginal distributions be-

come the marginal posteriors needed for Bayesian inference or prediction (Gelfand 

et al., 1990). 

Difficulties of integrations in several dimensions have prevented the widespread 

use of Bayesian ideas, including areas of application such as animal breeding. 

However, the advent of powerful computers in the past few years encouraged 
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the use of numerical methods in Bayesian inference. After ideas being set forth 

by, for example, Lindley and Smith (1972), Naylor and Smith (1982), Harville 

(1974, 1990), Harville and Callanan (1990), and Gianolaet al. (1990a,b), Bayesian 

methods have begun to be used in many areas of application, including animal 

breeding (Foulley et al., 1987; Hoschele et al., 1987; Gianola et al., 1990a,b; Cantet 

et al., 1992). 

Estimation of variance components using Bayesian methods has been dealt 

with by Tiao and Tan (1965, 1966), Hill (1965, 1967), Klotz et al. (1969), Lindley 

and Smith (1972), Box and Tiao (1973), and comprehensively reviewed by Harville 

(1977). Tiao and Tan (1965), for example, have utilized a Bayesian approach to 

analyse a balanced one-way random effects model with two variance components, 

o- 2  and c. They concluded that both problems described in Section 2.2.1, negative 

estimated variances and the sensitivity of inferences to departures from underly-

ing assumptions, do not exist when one analyses a random-effect model from a 

Bayesian point of view. These results are the consequence of including the prior 

information that variances cannot be negative. Tiao and Tan (1965) have shown 

that the situations in which the traditional unbiased estimator of or 
2 assumes a 

negative value will correspond in a Bayesian argument to a posterior distribution 

of a having its mode at the origin when employing improper priors determined 

by Jeffrey's invariance criterion. In this case, the posterior distribution of or 
2 is 

J-shaped, rapidly decreasing towards the right. This implies that a relatively more 

weight is given to small values of the variance in the posterior than in the prior 

and this is presumably in accordance with the practice of some frequentists who 

set the variance equal to zero whenever its estimate is negative. 

Hill (1965) also considered the estimation of variance components (a 
2  and a) 

in the one-way random-effect model from a Bayesian point of view. He has ar-

gued that a large unbiased estimate for c 2  indicates an uninformative experiment 

in which the effective likelihood for that variance component is extremely flat 

instead of strong evidence that the variance component is nearly zero. In such 
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circumstances, the posterior distribution depends critically upon the prior, and 

any conventional improper prior introduces arbitrariness in posterior inferences. 

According to Hill (1965), the posterior distributions derived by Tiao and Tan 

(1965) taking the invariance diffuse priors are inappropriate as measures of pos-

terior opinion when the traditional unbiased estimator of the variance component 

assumes a large negative value. He argues that proper prior distributions should 

be introduced whenever the effective likelihood for a variance component is flat. 

When an informative experiment is performed in the sense that the likelihood 

function is quite sharp, it makes little difference what the exact shape of prior is 

because within a narrow range where the likelihood takes substantial values any 

prior can well be approximated by a rectangular distribution. in such cases certain 

conventional diffuse priors are convenient although largely arbitrary (Hill, 1965). 

In recent years, Bayesian methods have been developed for variance compo-

nent estimation in animal breeding (Harville, 1977; Cianola and Fernando, 1986; 

Gianola et al., 1986; Foulley et al., 1987; Gianola et al., 1990a,h; Cantet et al., 

1992). All these studies found analytically intractable joint posterior distributions 

of variance components, as Broemeling (1985) has also observed. In general, the 

methods differ either in the point estimator (e.g., mean, mode) employed or in 

the posterior distribution from which inferences are made. In principle, one can 

use either the marginal posterior distribution of the variances or the joint poste-

rior distribution of the variances and other parameters. It would seem preferable 

to use the posterior density that has the maximum possible number of nuisance 

parameters integrated out (at least among those that have proper priors). Klotz 

et al. (1969) found that posterior means may yield inefficient ( in a mean squared 

error sense) estimators of variance components in a balanced one-way random ef-

fects models and suggested that the mode or the median may give better estimates 

using improper prior distributions. Harville (1977) reported that computation of 

the posterior mean of a variance component is infeasible even if numerical integra-

tion techniques are used. Moreover, if an improper prior is employed in place of 
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the true prior, the posterior mean represents a rather unsatisfactory condensation 

of the data because of its sensitivity to the tails of the posterior density. Due 

to these difficulties with the posterior mean, posterior modes are often taken as 

point estimators. Zeliner (1971) and Box and Tiao (1973) give a comprehensive 

discussion on the rationale underlying choices of point estimators. 

As discussed in Section 2.4.2, many programs of genetic improvement of farm 

animals rely on mixed-effects linear model techniques (Henderson, 1973, 1984) for 

assessing merit of candidates for selection. Mixed model methods can provide 

simultaneously estimates of fixed effects and prediction of random variables with 

defined statistical properties, given the assumption of the model. These methods 

of estimation of variance components have a Bayesian interpretation. Suppose that 

a vector of normally distributed data, y, follows the mixed-effects linear model 

y=X/3+Zu+e 

where 3 is a vector of fixed effects, u is a vector of random effects and e an 

independent residual vector. It is assumed that E(y) = X/3, E(u) = 0, E(e) = 0 

and Cov(u, e) = 0. Let a be a vector of variance components. The vector 3 

can include elements such as age of dam or herd-year effects which are regarded 

as nuisance parameters when the main objective is to predict breeding values. 

The vector u may consist of producing abilities or breeding values. Although, the 

distinction between fixed and random effects is usually required in animal breeding 

(Henderson, 1953, 1973), this distinction is not made in the Bayesian analysis. A 

fixed effect, in a Bayesian sense, can be viewed as a random variable and prior 

knowledge about this effect is diffuse or vague. Bayesian justification for treating 

fixed affects as random is given by Gianola and Fernando (1986). While the items 

in question may not necessarily represent a random sample from a distribution, 

the prior density reflects randomness stemming from relative uncertainty about 

the values of the parameters before the data are collected (Gianola and Fernando, 

1986). 
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Merit of animals can be defined as a linear function of u. Lindley and Smith 

(1972) suggested estimating variance components using the a-component of the 

mode of the joint posterior density of 0, u and a. They employed an informative 

prior distribution for the variance of u, a. 2 ,  as opposed to the flat priors used by 

Gianola et al. (1986), and pointed out that taking a flat prior distribution for c 

may lead to zero estimates of u and au 2  This can happen in sire evaluation models 

when progeny group sizes are small (Gianola et al, 1986). The problem seems to be 

related to the fact that many parameters are estimated simultaneously so there is 

little information in the data about each of them. Harville (1977) conjectured that 

this may be due to severe dependencies between u and a 2  in the joint posterior 

density of /3, u and a which may lead to the a component of the mode of the joint 

posterior density being far removed from, say E(a I y). Harville (1974) showed 

that if a flat prior is taken for 13 and a, the mode of the joint posterior density 

of 0 and a, gives the maximum likelihood estimates of these parameters. On 

the other hand, he stated that the mode of the marginal density of the variance 

components gives the restricted maximum likelihood estimator of a. 

Gianola et al. (1986) described another procedure in which the variance com-

ponents are estimated via the a-component of the mode of the joint posterior 

density of u and a. This method has the same limitations of that of Lindley and 

Smith (1972). Both methods are remarkably easy to compute as the expressions 

do not depend on elements of the inverse of the coefficient matrix of the mixed 

model equations (Gianola and Fernando, 1986; Gianola et al., 1986). In general, 

one would prefer to work with the marginal posterior density of a because the 

nuisance parameters 3 and a have been integrated out (Harville, 1977; Gianola 

and Fernando, 1986; Gianola et al., 1986). 

In most of the studies, prior knowledge of j3, the fixed effect, is assumed to be 

completely diffuse or vague so, a priori, the investigator is indifferent with respect 

to the values it takes. On the other hand, it is possible to make prior probability 

statements on u with some degree of sharpness. These two parameters therefore 
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differ in the specification of their prior distributions. Gianola et al. (1990b) and 

Cantet et al. (1992) assumed a priori that /3 follows a uniform distribution, so 

as to reflect vague prior knowledge on this vector. Since the main focus of this 

project is on variance and covariance components and ultimately on improving 

selection the distributions of u and e are of more importance than that of 0. 

As mention earlier, flat prior distributions for variance parameters, although 

leading to estimates that are equivalent to those obtained from likelihood in cer-

tain settings (Harville, 1974, 1977), can cause technical difficulties in Bayesian 

analysis (Lindley and Smith, 1972; Gianola et al. 1990b). Cantet et al. (1992) 

used informative priors from a proper family of conjugate distributions. A family 

of prior distributions is said to be conjugate to the likelihood if the posterior dis-

tribution is also in the same family. For example, a normal prior combined with 

a normal likelihood produces a normal posterior (Zellner, 1971; Box and Tiao, 

1973). 

An inverse Wishart distribution is used for covariance matrices by Zellnei 

(1971), Foulley et al. (1987) and Cantet et al. (1992). Similarly, as in Hoeschele 

et al. (1987) and Cantet et al. (1992) the inverse x2 distribution (a particu-

lar case of the inverse Wishart distribution) is suggested for the environmental 

variance component, o- . A priori both variance components, c 2  and c, are as-

sumed to follow the independent inverse x2  distributions (Lindley and Smith, 

1972; Broemeling, 1985; Cianola et al., 1990b). The choice of an inverse x2 distri-

bution for a variance stems from its conjugate nature and because it appears as 

a posterior distribution of the appropriate parameter in certain settings (Zellner, 

1971; Box and Tiao, 1973; Bromeling, 1985). Their conjugate property simplifies 

considerably subsequent mathematical analysis. 

The Gibbs sampler algorithm is a Markov Chain Monte Carlo method for gen- 

erating marginal distributions from conditional distributions. During the course 

of this thesis, Wang et al. (1993) described the Gibbs sampler for a univariate 
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mixed linear model with two variance components in an animal breeding context. 

They employed a sire model to construct marginal densities of variance compo-

nents, variance ratios and intraclass correlations from simulated data sets, and 

noted that the marginal distributions of fixed and random effects could also be 

obtained. They used improper priors for the variance components c 2  and a and 

reported that difficulties with the posterior distribution having appreciable density 

near 0 were not encountered. However, their implementation was in matrix form 

which makes computations expensive because of inversion of large matrices needed 

repeatedly in many animal breeding data sets. Wang et al. (1994) extended their 

work using the same model to obtain marginal inferences about fixed and random 

effects, variance components and their functions through a scalar version of the 

Gibbs sampler in contrast to Wang et al. (1993), so that inversion of matrices was 

not needed. They used a data set to illustrate their results in which two separate 

Gibbs samplers are run, one with known variance components with REML esti-

mates and one in which the variance components are not known and flat priors 

are assigned to them. 

In summary, various studies have estimated variance components using Bayesian 

methods. However it is difficult to compare these methods in different studies 

because of lack of standardization in the data type, treatment structure, prior dis-

tribution, statistical model etc.. To see this more clearly, Table 3-1 summarises 

the selected papers that consider Bayesian estimates of variance components. 

3.2 Some Aspects of the Bayesian Approach to 

Statistical Modelling 

In this section, some basic principles and concepts of Bayesian analysis are sum- 

marised. 
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Table 3-1: Summary of papers on the estimation of variance components using 

Bavesia.n methods 
No. of traits Type of prior Treatment 

Author(s) Model Estimation method & dist. used distribution structure 

Hill (1965)2 Random Numerical integ. Univariate Inverse 	2  for One-way 

effect model for marginal posterior normal variance cornps- balanced and 

expectations unbalanced 

Tian Sc Tan 2  Random Numerical integ. Univariate Uniform One-way 

(1965) effect model for marginal posterior normal for mean and balanced and 

expectations var. comps. unbalanced 

Klotx at a1. 2  Random Numerical integ- Univariate Uniform One-way 

(1969) effect model for marginal posterior normal for mean and balanced 

expectations var. comps. 

Lindley & Smith' General linear Mode of marginal Univariate Inverse x2 One-way and 

(1972) model posterior normal for var. comps- two-way 

density balanced 

Be. & Tiao' Random Numerical integ- Univariate Uniform One-way 

(1973) effect model for marginal posterior normal for mean and balanced and 

expectations var. comps. unbalanced 

Harville' Mixed linear Mode of marginal Univariate Flat for fixed General 

(1974) model posterior density normal and var- comps- 

Gianola es al.' Mixed linear Mode of marginal Univariate Flat for fixed General 

(1986) model posterior density normal and var. comps. 

Gianola & Mixed linear Mode of marginal Univariaxe Flat for fixed, General 

Fernan10 2  model posterior density normal inverse x' for 

(1056) for var- comps- random 

Foulley at a1. 2  Threshold Mode of marginal Multivariate Flat for fixed General 

(1087) model posterior density binary and random 

Hoschele ci al. 2  Threshold Modal values of Univariate Flat for threshold General 

(1087) model posterior density quasi-cont- and fixed, Be, or 

of all params. inverse x' for 

random 

Gianola at al.' Mixed linear Mode of marginal Univariate Flat for fixed One-way 

(1990a) model posterior density normal and var. comps- balanced 

Gianola at a1. 2  Mixed linear Numerical integ- Univariate Flat for fixed, General 

(1990b) model for posterior normal inverse y'  for 

expectations var. coinps- 

Cantet at al. 4  Mixed linear Monte Carlo integ., Univariate Flat for fixed General 

(1992) model for maximum entropy fit, normal inverse y'  or 

maternal asymptotic approxs, Wishart for 

effects Tierney- Kadane approxs. var. comps. 

Wang at al- 2  Mixed linear Gibbs sampling Univariate Flat for fixed One-way 

(1993) model (matrix version) normal and var. comps. balanced 

Wang at .i. Mixed linear Gibbs sampling Univariate Flat for fixed One-way 

(1994) model (scalar version) normal inverse x' for balanced 

var. comps.  

2  Authors who used two variance components 

Authors who used three variance components 

Authors who used four variance components 
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3.2.1 Bayes' theorem 

In the frequentist or sampling theory approach to statistical analysis, inferences 

about parameters are made by reference to hypothetical data sets which could be 

generated by the conditional distribution of the data given the true values of the 

parameters. Functions of the data are chosen as estimators so that their sampling 

distribution is close to the true values. 

In the Bayesian approach, a quite different line is taken. An essential ele-

ment of this approach is Bayes's theorem. The fundamental distinction between 

frequentist and Bayesian inference is that in Bayesian inference the parameters 

are random variables , and therefore have both prior and posterior distributions. 

In frequentist inference the parameters take unique values, although these values 

are unknown, and it is not permitted to treat them as random or to give them 

probabilities (O'Hagan, 1994). Here we state the theorem for continuous random 

variables. It is assumed that the vector of observations, y, and the vector of un-

known parameters, 9, have a joint probability density function (p.d.f) f(y, 9). 

The unknown parameter vector 8 may have as its elements coefficients of a model, 

variances and covariances, and so on. Then from standard probability theory we 

have 

f(y,9) = f(y9)f(9) 

= f(9  lyffly) 	 (3.1) 

where f(9) and f(y) are the marginal densities of 9 and y, respectively. Hence 

the conditional distribution of 9 given the data y is, for f(y) i4 0, 

f(y 9)f(9) 
= 	 (3.2) 1(9  y)  

which is a version of Bayes's theorem. It is supposed that the parameters have an 

unconditional probability distribution, the so-called prior distribution with density 

function f(9), that expresses the state of knowledge about the parameters before 
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the actual data set y is realized. The likelihood function f(y 8) is regarded as the 

density function of the conditional distribution of the data given the parameters, 

and contains information about 9 coming from the actual data. Further, f(9 I 
is the density function of the conditional distribution of the parameters given 

the data, or posterior distribution of the parameters. It subsumes the state of 

uncertainty about the parameter vector 9, given the previous knowledge and the 

sample information y. Since f(y), the density function of the marginal distribution 

of the data, is obtained from 

f(y) = L f(y, 9)dO = h f(y I 9)f(9)dO = E8[f(y I 8)], 

where 12 is a region of the space of 8 and Eg indicates averaging with respect to 

the distribution of 8 (Box and Tiao, 1973), therefore it is clear that f(y) is not a 

function of 8. Hence (3.2) can be written as follows: 

f(8 I 	= f(y I 9)f(8)constant 	 (3.3) 

or 

f(9y) cx  f(ylO)f(8) 	 (3.4) 

where a denotes proportionality. Together both the likelihood and prior functions 

must adequately model the physical process under analysis. 

Posterior density for particular values of 8 will be low if they have low prior 

density or low likelihood, so that they are essentially discounted by one or other 

source of information. Appreciable posterior density will exist at values of 9 for 

which neither prior density nor likelihood is very low. If there are values that are 

well supported by both information sources, i.e. having high prior density and 

high likelihood, then these values will also have high posterior density (O'Hagan, 

1994). 

If summary inferences in the form of posterior expectations are required, e.g., 

posterior mean and variances, these are based on 

E[m() I A = Jrn(9)f(8 1 y)d8, 	 (3.5) 
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for suitable choices of rn(.). 

Thus in the continuous case, the integration operation plays a fundamental 

role in Bayesian statistics, whether it is for calculating the normalising constant 

in (3.2), or the expectation in (3.5). However, except in simple cases, the Bayes' 

theorem may present at least two technical difficulties. Firstly, explicit analytical 

evaluation of integrals will rarely be possible to obtain the marginal from the joint 

posterior; secondly, even if the former is available, the final integration, for example 

to find the mean in (3.5) may be difficult. As a results of these difficulties, realistic 

choices of likelihood and prior will necessitate the use of sophisticated numerical 

integration or analytical approximation techniques given in Section 3.1. This can 

pose problems for the applied practitioner seeking routine, easily implemented 

procedures. Fortunately, Markov Chain Monte Carlo methods, particularly the 

Gibbs sampling approach can be applied to this problem which enables us to draw 

samples from the joint distribution based on all marginal conditional distributions. 

3.2.2 Prior probability density function 

The specification of a prior p.d.f., reflecting the state of knowledge about the pa-

rameters of interest before the actual data are analysed, plays an important role 

in the Bayesian analysis. The p.d.f., denoted by f(0) in (3.4), represents our prior 

information about the parameters of a model. The choice of a prior probability 

density function is a very difficult step in the Bayesian analysis, and cr.44Itmost 

controversial. With regard to the nature of prior information, Zellner (1971) di 

tinguished between two types of prior information: data-based and nondata-based 

priors. it is to be recognized that the nature of prior information may include in-

formation contained in samples of past data or samples randomly gathered in a 

scientific manner to represent the distribution of the parameter. When a prior 

p.d.f. represents information of this kind, the prior p.d.f. is called a 'data-based' 

prior. For example, heritability estimates from previous data sets are used to cal- 
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culate genetic evaluations using linear (Henderson, 1973) or nonlinear methods. 

In other cases prior information may arise from casual observation, subjective per-

sonal opinions or beliefs and theoretical considerations; that is from sources other 

than currently available samples of past data. A prior p.d.f. representing infor-

mation of this kind is referred to as 'nandatci-based' or 'reference' prior. In the 

latter case, the posterior inferences made by person A may differ from those made 

by B unless the information in the likelihood function overwhelms the prior (Box 

and Tiao, 1973) because of its subjective nature. It seems to be the use of this 

type of prior information to which orthodox frequentists object, sometimes rather 

forcefully. The use of priors based on data or theoretical grounds, as opposed to 

personal priors, is generally accepted statistical practice. 

The distinction between these two kinds of information, which is made by 

Zellner (1971), will not be given here. However, it is conceivable that whether prior 

information is data-based or nondata-based there may be little prior information; 

for example, there may be no past sample data information available. A situation 

involving nondata-based prior information may be one in which an investigator 

has little ideas about the parameter under study and in which case this prior 

information reflecting ignorance rather than knowledge is referred to as 'diffuse' 

or 'vague In animal breeding there are situations in which knowledge about 

a parameter is either vague or nonexistent. For example, investigators may feel 

uncertain about likely values of population mean before data are collected. In this 

case, Bayesian inference resorts to vague priors. If p is the population mean, a 

vague prior could be represented as 

f(p) oc constant, —oo .c p .c 00. 	 (3.6) 

This prior density is not proper because its integral over all possible values of p 

does not converge. Improper priors are controversial. However, most results ob-

tained using classical arguments can be derived via Bayes theorem using improper 

priors (Zeilner, 1971; Box and Tiao, 1973). The posterior density will sometimes 
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be proper since (3.6) gets absorbed in the constant of integration associated with 

the posterior. 

3.2.3 Prior distributions for the variance components 

It may be possible to choose prior distributions for the parameters so that the 

calculations are convenient. Statistical models that incorporate available prior in-

formation will typically yield inferences about quantities of interest that are more 

accurate than those contained from models that ignore relevant information. Ci-

anola and Fernando (1986) discuss Bayesian methods for estimating breeding value 

and genetic parameters. They note that the prior information is often available 

and should be used to preclude anomalies such as non-positive definite estimated 

covariance matrices and ridiculous estimates of heritability. 

In the selection of farm animals for breeding, it is necessary to use prior dis-

tributions for at least two reasons. Firstly, this is essential for coherent decision-

making. Secondly, animal breeders have prior knowledge of parameter values from 

data on the same breed and others breeds. This prior information should be incor-

porated into the selection procedure in a systematic way. It is common practice 

to assume uniform priors for fixed effects in animal breeding. Because priors for 

fixed effects are less influential than those for variance components (unless the 

former are very precise) and some similarity might be expected in heritability be-

tween breeds and different experiments on the same breed, but fixed effects such 

as herd-year-season are specific to each study. 

In this thesis, attention is mainly confined to data-based prior p.d.f.s for the 

variance components o,2 2 . and o. Various attempts have been made to formalize 

prior distribution to represent 'knowing little' or ignorance about the parameter 

values. Thus the need for this kind of prior exists. A Bayesian practitioner must 

be allowed to answer the question 'What does the data tell us?'. More important, 

one still has very little experience in expressing his subjective beliefs in terms of 
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mathematical function. In order to learn more fully whether a particular member 

of a family of mathematical functions really does summarize our prior knowledge 

we must be able to experiment with many different choices of function, observing 

the relative contribution of the data and prior. Such experimentation requires a 

reference or nondata-based prior distribution so that the actual information in a 

function can be ascertained. 

The main purpose of this section is to make an attempt to ascertain what 

effect, if any, choice of a particular prior distribution has on the marginal and 

joint posterior distributions of the variance components, or 
2  and o. 

Uniform priors 

Let a be the between groups variance and a the within groups variance 

of the one-way half-sib model. Assume that our prior information regarding 

the value of these parameters is vague or diffuse. To present knowing little 

about the value of cr 2  and a a uniform prior 

	

f (or ,a) 	constant 	 (3.7) 

is used as the prior p.d.f.. When defined on a finite subset of (R' 
)2 this 

function unlike the function in (3.6) is a proper density function and one 

knows little about a and a. However, it is subject to criticism as it depends 

directly on the parameterisation adopted. 

Independent improper priors 

If our prior information about values of the variance components c 
2  and a 

is vague or diffuse, we can also represent this state of our initial information 

by taking our prior p.d.f. as the improper p.d.f. 

	

22 	11 
DC --. 	 (3.8) 

CT C 

This prior density is a more reasonable prior than (i).. Here, it is assumed 

that o and 0,2  afe independently distributed. Equation (3.8) can be consid- 

ered as a naive attempt to generalize an accepted nondata-based prior for 
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a single variance to two dimensions. A posteriori, the joint posterior dis- 

tribution of the variance components will never converge in the region near 

= 0. When the improper prior p.d.f. in (3.8) combines with a likelihood 

function this yields a proper posterior p.d.f. for the variance components. 

Inverse x 2  priors 

The inverse x2  density for 0,2  may be given by 

f(c I i',$) 	
2)t+2) 	(-n) as 	a. 	(3.9)exp 

This prior p.d.f. for or will be proper for v. > 0 and s > 0 (see Appendix 

A.2). A product of the proper independent inverse x2 distributions of the 

form (3.9) for c 2  and c.2  might be used as a joint prior p.d.f. for these 

parameters. 11 small values, which imply weak inverse x2  priors, are chosen 

for the degrees of freedom hyperparameters u 5  and v then the posterior 

distribution of the variance components will be relatively unaffected. The 

improper prior for c 2 in (3.8), f(o- ) 1/c, is in fact a particular case of 

the priors of the form a 	s/x 2 (v3) in (3.9), in which the prior ignorance 

about this variance is represented by setting v8  = 0. 

Box and Tiao priors 

Box and Tiao (1973) suggest that for a balanced one-way classification a ref-

erence prior distribution can be obtained by defining independent translation 

invariant prior distributions on the quantities u.2  and o/n + c, i.e. 

2 	— 	2 	2-1 f(c5  2 ,cjocc6 2 
 (Ue+72Js) 	 (3.10) 

where n is the number of observation per group. This choice of the prior dis-

tribution has been criticized by Stone and Springer (1965) and it is difficult 

to see how such a function could be generalized to the unbalanced one-way 

model. 



Chapter 4 

Gibbs Sampling Approach to Animal 

Breeding Applications 

4.1 Introduction 

Statistical analysis of animal breeding data from designed selection experiments, 

or field records, is important in animal breeding and genetic research. Progress 

has recently been made in statistical and computing technology to fit more com-

plicated and realistic models and to solve inferential problems without resorting to 

analytic approximations. Such important progress is Markov chain Monte Carlo 

(MCMC) which is a family of iterative methods based on stochastic simulation, 

that yield a Markov chain having the distribution of interest as its unique sta-

tionary distribution. This iterative method generates a sample from a posterior 

density known only up to proportionality. MCMC methods for multidimensional 

integrals are particularly useful, in situations where computations on posterior 

distributions are difficult or impossible by analytic means. 

The Gibbs sampler algorithm, having its roots from Markov chain Monte Carlo 

methods, was first implemented by Geman and Geman (1984). Tanner and Wong 

(1987), who developed a data-augmentation algorithm, and Gelfand and Smith 

(1990) played an important role in introducing MCMC methods in statistics using 

a range of data models. In animal breeding applications, the Gibbs sampler was 

used by Wang et al. (1993, 1994) to make inferences about genetic and phenotypic 

52 
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parameters in sire and animal models. Wang et al. (1993) described the Gibbs 

sampler for a univariate sire model and used simulated data to construct marginal 

densities of variance components and functions of them. In contrast to Wang et 

al. (1993) who implemented a Gibbs sampling algorithm in matrix form, Wang et 

al. (1994) obtained marginal inferences about fixed and random effects, variance 

components and their functions through a scalar version in a univariate mixed 

linear model using a data set on litter size of Iberian pigs. 

This chapter discusses an implementation of Gibbs sampling, in an animal 

breeding context using a univariate sire model. The graphical representation of 

the model is given using graph theory and the Gibbs sampler is specified in this 

setting. Implementation issues, which are discussed in details, include convergence 

assessment and related topics, for example, how long to run the sampler before 

it may be assumed to have converged (the how many samples to take for the 

summary statistics, what values to use in order to avoid the absorbing state of 

sampling, and so on). Finally the Gibbs sampling method is compared with the 

analysis of variance method employing several simulated data sets assuming a 

half-sib family structure, and a range of parameter values. 

4.2 Model Formulation 

The balanced one-way sire model is given by 

Yj=1L+Si+eij (i=1, ... ,s; j=1,...,m) 	 (4.1) 

where ?Jij  denote the phenotypic value of the jilt offspring of the jilt paternal 

half-sib family, t represents the mean, s i  is the it/i random sire effect and ejj  is a 

residual error term. Assumptions about the model (4.1) are given in Section 2.3. 

The vector of unknown parameters is 

0 = 
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where {s} is s 1 ,. . . , s. It is assumed that the parameter space, Q, for 9 is 

= {p, {s}, a, a : - 00  <p <, - 00  < si <, 0 < a <a/3, 0 <c < oo 

The restriction on a, 0 	a < o/3 is discussed in Section 2.4.1. 

Using the argument suggested in section 2.4.3, it will be assumed that, given 

N(0, 
2 
	

(4.2) 

here s i 's are independently distributed. In (4.2) a 2  is the variance of the sire effects 

or of transmitting abilities, depending on the context. In general, o 2  is unknown 

so (4.2) states the form of the distribution but the values of all parameters are not 

necessarily specified. 

The conditional distribution which generates the data is 

2 
Yij 	 N(p+s1, ce)' 

where 0-g  is the residual variance. 

4.2.1 Prior distributions 

The step in the Bayesian analysis of a statistical model for a set of data is to 

determine the form of the prior distribution of the parameters. In the present 

context, a prior distribution should be assigned to the parameters (it, {s}, o, o). 

One might attempt to choose prior distributions by assuming that a priori the 

parameters (p, {s}, o - , o- ) are mutually independent. The following assumptions 

about the prior distributions of the parameters are made: 

(i) For prior distribution of p, we assume that the experimental situation is 

such that 'little' is known about this parameter initially. A theoretically sensible 

approach would be, as a first step, to use improper prior for this parameter. 
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Therefore given or 
2  and o, the prior distribution of it is 

cc constant. 	 (4:3) 

Expression ( 4.3) can be viewed as a statement of the assertion that all p's are 

equally likely, a priori. 

The normal distributions assigned to the .s's in (4.2) are viewed as prior 

probability distributions as well 

2 	 5 	
( 	

1\Th2'\ 
f({s} a) cc ( 2) 	exp ---s). 	 (4.4) 

To complete the model, assignment of prior probability distributions to 

the variance components is necessary. On the contrary to i, o is a parameter 

on which it is possible to make prior probability statements with some degree 

of sharpness. It will be assumed that a priori the genetic variance component 

follows the inverse x2 distribution. The prior distribution of a for given v3  and 

s 2  is therefore 
's5s 	

x 
2 (V .)  (v 

as  

distribution with density given by 

f(
2 	2 	(o)_2) 	( v 8s2  

a3 I V"  S 2
) cc 	 exp 	s)  o > 0. 	(4.5) 

Similarly the prior distribution of o is the inverse x2 distribution with density 

given by 

22 	2 _4(ve+2)exp ( vs)  
v,$) cc (as ) 	 > 0. 	(4.6) 

In (4.5) and (4.6) 32  and s 2 can be interpreted as prior expectations of a 2  and 

o-, respectively, and v and v are precision parameters analogous to degrees of 

freedom reflecting the degree of belief on the prior values of variance components. 

These four parameters are referred to as hyperparameters of the prior distribu-

tion of the variances. Specifying the value of hype rparamcters of informative prior 
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distributions such as (4.5) and (4.6) should not be difficult in practice. The justi-

fication of expressions (4.5) and (4.6) is that the inverse x2 distribution arises in 

the posterior analysis and it is sensible to use an informative prior that is in the 

same family as the corresponding posterior distribution 

Setting v3  and v. to zero makes the prior distributions for the variance com-

ponents improper: 

2 	2 --11 	2 	2 -1 
f(a)oc(a) ; f(a e )oc(a e ) (4.7) 

The joint posterior distribution resulting from (4.7) is improper mathematically, 

in the sense that it does not integrate to 1. The impropriety is due to (4.5), 

and it occurs at the tails (Wang et al., 1993). Numerical difficulties, such as 

computational black holes which will be discussed later in this chapter, can arise 

when a variance component has a posterior distribution with appreciable density 

near 0. 

With the above assumptions, the marginal prior distribution of each .s/s is 

t(v 3 ), and if 'y = a/a and r = s/4  then 7/v has a prior distribution F(v, v 8 ), 

so that prior probability density functions of s i  and -y are proportional to 

	

f(3) 	[i + (
21 -(u+1) 	

—00  < Si < 	 (4.8) 
k33j j 

(u 2) 

f(-y)oc 	 O<czoo. 	 (4.9) 

+  
TV, I 

This ignores the constraint < 1/3. If h 2  = 
1 
41   then h 2  has prior probability 

density function proportional to 

" h2 4(vc2) 

	

f(h 2 ) 	 (4— h 2 ) 2  

[1 I 
	(4-h2)] 

h2 	 + 

TV, 

(h 2 )(Ic 2)(4 - h 2)( 2 ) 

DC 	 , 0<h 2 <1, 	(4.10) 
( h2  

L + TV 
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which includes constraint. 

The joint prior probability density function of -y and o 2  is proportional to 

vs31} 2 (c)_u2)(7c)_u2+2) exp { 
	1 	

+ 	a6  
- 

20r2 	e 
 7] 

1 	vs 2 1' 	a> O, y>O. 2\ - 
= (Ce) 

2 (ve+vs+ 2)(7 ) 2(v3+2) exp 	 + 

An alternative prior specification might have a 2 inverse-x 2  as above, but indepen-

dent of 'y, which might have a Beta distribution on [0, 1/3]. Appendix A gives 

various distributions used in the present and other chapters. 

4.2.2 Likelihood function 

The second ingredient of the Bayesian formulation is of course the likelihood func-

tion of the unknown parameters for observed records yjj.  This is usually deter-

mined by conventional statistical modelling. The likelihood function formalizes the 

contribution of data to knowledge about the unknown parameters. Observations 

Yij (i = 1,2,... ,s;j = 1,2,... ,n) on the members of sire families of equal sizes n 

are obtained from the simulation program. We shall make the assumption that the 

effects .s, and the errors, ejj, are normally and independently distributed. Yij'5 

can be assumed to be conditionally independent given the unknown parameters. 

The likelihood function is then 

I 	{s}, a, a) 	 exp {_i [Ell 	 (!'u 	- ) 2

2 	 U2 fl 

4.2.3 Joint posterior distribution 

Inferences about 0 are based on the posterior distribution of 0 given y, f(0 I y). 

By Bayes' theorem, the joint posterior density of (p, {s}, a, a) is proportional 

to the product of the likelihood function in (4.11) and the joint prior distribution. 
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With the assumptions made in Section 4.2.1, the prior may be factorized as 

f(0) = f(p)f({s} a)f(c v, 	v, 4). 	(4.12) 

The joint posterior density may be seen to be proportional to 

Th —4sn 	
{i [LY 2 f(O {y}) 	(a) 	exp20-2 e i=lj=1 

S 

	 J ) 

< (C exp 

(2)_Oc+ 2 ) 	( 	1 	2" 	2 —(v+2) 	/ .1 	" 
X 	01 	 exp 	 (o) 	

2 
exp 

2a 	j 

2)(5Th++2) 	
1 	1 	 1 1  

= 	 expj—  --  -- 
Lj p3

2  +'2i 
2a i=1 j=1 	 U 

s 

X 
(a) 	

[
1— 1 "s 

4 + v35 )] exP- 
2c 

= 	ex --[Sm  +n(Y. _
P _ )2 

+ Ve4ll (y 	{ 1 2c [ 	i=1 	 iJ 
s 

< (2)_S++2) 	
2 	V.5 2)] 

 

	

[ 	

1 (tTh 

exp — 	 + 
2o 	i=1 

where S. is the sum of squares within sire families given in Section 2.3. 

From the viewpoint of genetic evaluation of animals, the parameters of interest 

are the .9 i  representing breeding values, producing abilities or, typically, transmit-

ting abilities of sires. For example, sires are usually evaluated from estimated 

linear combinations of p and s (Henderson, 1973); if a quadratic loss function 

is employed, the corresponding Bayesian estimator is the posterior expectation of 

the appropriate linear combination. Further, if q candidates are to be selected, 

ranking individuals using the posterior expectations maximizes expected genetic 

progress (Gianola and Fernando, 1986). 
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4.2.4 Analytical method 

Inferences about functions of the unknown parameters (ii, {s}, as 
, O

l
e 
 ) are based 

on their marginal densities. Conceptually, each of the marginal densities is ob-

tained by successive integration of the joint posterior density (4.13) with respect 

to parameters other than the one of interest. For example, the marginal density 

of the ratio of the two variances can be obtained in the following way. 

We integrate (4.13) over the si to get the posterior distribution of (ii, c, o), 

22 I {y4) 

CC J.. .J E E(Yij  fl' 	exp -- L 2 	
- - 
	+ ves1 1 ( 3Th+hbc+ 2 ) 	{ 	I 

2o 	1=1 j=1 	 j J 
X (2)_4 	 1 (3+v3+2) 	1 	/ 

exp h 	+ vss)] ds . . . ds5  

( 2) —(s(n—i)+w e +2) 	1 	1 
= 	 exp 

[— 	
(s + us)} 

• (o)_MJ+2)exp (_vss) 

I' 1 IE7-1(v. — /4 2 1) 
• (cr+nc) exPt_L 	 H 

or 

2 2 
f(, a8 )  a 	Y ij 	() 	

2) 
 exp 

[- 	
(s + 

(U2)-21(v,+2)  	

( 	

1  
)< exp —-P 8 S 

LC 

2'y 	I' 1 1 S6 + nsQ7.. — 
11

) 2 l ) 
x (a+na31  exPt_L a+na 

where Sb  denotes the sum of squares between sire families. As our interest in 

this type of problem often centres on the variance components, c and o, we 

integrate j.t out of (4.14) over (—oo, oo) to obtain a joint posterior probability 

density function of (C 
2,  proportional to 

2 	2 	 / 2\ I {y}) 	 exp 
[- 	

(s + 



Chapter 4. Gibbs Sampling Approach to Animal Breeding Applications 	60 

1 	2'\ X (a)_ 4(V2) exp(_v8 3 51  

X 	or + nor 2) 	
00 	f 1 mj__1(yL - ) 2 1 

= (2)_4(s(Th_1)++2) 
exp [- 
	

(s + ves)] 

X 
1 	2 

a

'\ (C )_ 	2) exp 
(2 	/ 

Vs S 5  

2( 1 ) 	[ 

1  ( 	

8b 	 (4.15) 
( 	a + nor 	

- 	+ na82)j 

It is to be noted that equation (4.15) corresponds to independent measurements 

being made of o-2 and c + no, . The structure of (4.15) makes it difficult or impos-

sible to obtain by analytical means the marginal posterior distribution function of 

cr or c. In order to make marginal posterior inferences about a or a, we make 

the following transformation from the joint posterior distribution in (4.15): 

2 	2 	2 	2 
7 = C8 1C8 , Ce  = a, . 

Therefore 

C=7a and a+na=a(1 +n7) 

The determinant of the Jacobian of this transformation is a. The transformed 

joint posterior probability density function can then be given as follows 

2 
f(, C 	{y}) 	(as) 	

(7)(V s+1) (
ye' 1 

+ fl7) 2(8  1) 

I — 

1 1 S 	 "1 

	

X exp
+ 
 + —i  + S + ve4)j 	(4.16) 

20r2 I 	 717 	7 

Box and Tiao (1973) present the following integral formula, which is useful in 

integrating expression of the form (4.16) with respect to a. 

exp {—ax'}dx = aF(p), a,p > 0. 	(4.17) 

Putting x = 0', 2, p = (sn + v,  + v, - 1)72, and 

______ 	
\ 1 1 Sb 	vS3 

a = 	
1 + + 
	+ S + ves t

2  
) 
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allows us to integrate (4.16) with respect to o-  over (0, oo) to give the marginal 

posterior probability density function of 'y 

fl(lJs+2) (1 + 717)81) 

1  	vs)
+ 

(4.18)
4 	s 

Sb   + + S.  + +iv 

 

Alternatively, if p were assumed a priori to have a uniform prior, vs /c 

were X 2 (V,) independently of It, and y had prior probability density function p() 

independently of p and a, then the posterior probability density function of 

(p, y, o- ) would be proportional to 

I' 2 
f (PI 7,o  

>< 	(1-i 

(2 
= 

(ve+2) 	

(— 1 

	2 
exp p() 

2  (as) 

\ _i s 	f 	i [ Sb +fl3(Y—P)+sW 
717) 2 	p1--

1+717 

- - (ns+v+2) 
p(7) (1 + fl7)2 

X exp 	
1 + 717 	

+ SW + ves 	(4.19) ]} 
1 	1 [Sb+ns(y.. 

	

)2 

Integrating p out of (4.19). gives the following posterior probability density function 

of ('y, a) proportional to 

f(7, a 	{y})  cc 
(2) —(an+u+') 

p() (1 + 717)2(81) 

L— 
	

(Sb 2a 1 + 
' 

X exp— + 	+ 	 (4.20) 

and further integration with respect to a 2 would give the marginal probability 

density function of 7  proportional to 

(1 + 717)2 	
p 

cc 	
(7) 	

> 0. 	(4.21) 
Sb  

f(7 {y})  

(_+Sw+ve8
2 
 ) \1+n-y 	 e 

As can be noted ( 4.18) and (4.21) are essentially different: their ratio depends 

on the data (except in the improper case t'3  = 0). If the marginal density of a 

or o is required it is difficult to carry out the needed integration analytically. 

However, the use of Gibbs sampling approach overcomes such difficulties. 
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4.2.5 Full conditional distributions of p, {sg}, u and a 

The full conditional posterior densities of the parameters of interest are required 

to implement the Gibbs sampling approach. The full conditional density of each of 

the unknowns is the conditional posterior density regarding all other parameters 

in (4.13) as known. 

Conditional posterior distribution of gi. The posterior probability density func-

tion (4.13) is proportional in p to 

2 ex] {_ 	[SP - 2pE(Q - sj) 
2c 	 i•= 1 	 Ii 

or 
1 

exp 	 sn [2 - 2p( - )] I -2 U 2  
}. 

Hence manipulating this leads to the conditional posterior distribution of p given 

a and o, which is given by 

[p {s}, c, t7,  N 	
- s) 

Zn 	 ,.1S) 

	

N & , 	). 
0, 

	

(4.22) 

Conditional posterior distribution of s. The posterior probability density func-

tion (4.13) is proportional in the s, to 

H[ 	
8exp 	 [(flu 2 + 2) 	2 2n E 	- )] 

I  - 

i=1 

or 

11 (n+\ r3  
exp 	

) 	

- 2na 	s 	- P)] 

} 2 	U.292 	
L=i 	 flL7 	 + C 

so the s, are conditionally independent given p, u and o with distributions 

[s It, a, o, {y}] = N 
(nc(9. - it) 	oa 

(4.23) 
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Note that 

2 	2 E(s fyij)l –  

= 	
-1 	(4.24) 

Th+ -y 

Clearly, this posterior expectation is a multiple of (j. — p) and the coefficient 

depending on the ratio of the variances. This is half the best linear unbiased pre-

dictor (BLUP), j, given in (2.12). Equivalently, (4.24), the posterior expectation 

of the transmitting abilities, is the classical selection index evaluation of transmit-

ting ability of a sire via progeny testing (Van Vleck, 1979). An example of the 

use of this result is the evaluation of all animals in a herd by using all available 

records. Then jj represents ith sire family mean, E(s 1  p, a, o, {yj}) represents 

the genetic merit of ith sire to be evaluated. 

It is of interest to examine the behaviour of the posterior distribution as n 

increases. It is clear that the posterior probability density function of s i  would 

tend towards the likelihood function in (4.11). This illustrates that the prior 

tends to be overwhelmed or dominated by the likelihood as the amount of data, 

e.g., the number of progeny per sire, increases (Box and rriao  1973). In other 

words, the contribution from prior knowledge is relatively more important when 

the information is scant than it is plentiful. In the limit, when n -i00 )  

, a, a, {y}) —# (. — E(s  

and 

Var(s I L,c,c,{yjj}) —*0. 

In the Bayesian framework, the inferences are made directly from the posterior 

distribution in (3.4), i.e., only reference to the data at hand and to the prior density 

is needed. A number of point estimates can be derived to summarise features of 

the posterior distribution, particularly when the latter is analytically intractable, 



Chapter 4. Gibbs Sampling Approach to Animal Breeding Applications 	64 

and probability statements about 9 can be made via without recourse to imaginary 

data. 

Conditional posterior distribution of a 2  and a. The posterior probability 

density function (4.13) is proportional in o to 

/ s 

(

2 —(s+vs+2) 	1 	1 	('cc-' 2 	2I 
3 ) 	exp 	(s ± vs. ) I, 

\i=1 	 I] 

thus the full conditional posterior distribution of a 2  given i, {s} and c is 

S 

p,{s},c,{y}J =x2 	
2 

(+8 	 +u'3s
2  
8  

1=1 	 1 

Similarly the posterior density function (4.13) is proportional in a 
2  to 

(sm+vc+2) 2 	 f 	1 
(Ce) 

—5 	
exp 	i 

 1 
E(yu - - )

2 
+ vsl 1, 

[i=1 j=1 	 j J 

thus the full conditional distribution of a 2  given p, {s} and c is 

(4.25) 

5  

[Ce  I , {s}, 2
{yij}] = x2 sn + 'v, , 	

E(Yij- s) 2  + e6 I 	(4.26) 
i=1 j=i 	 / 

It is interesting to observe that the (approximate) marginal posterior densities of 

the variance components appear in the inverse x2  form. This conjugate property 

of the inverse x2  density can be used to advantage when computing the marginal 

density of a variance component from a large data set. The full conditional pos-

terior densities of all unknown parameters (4.22, 4.23, 4.25, 4.26) are essential for 

implementing the Gibbs sampling scheme. 
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4.3 Profile Likelihood 

Inference in the presence of nuisance parameters is a widely encountered and 

difficult problem, particularly for a frequency-based theory of inference. One of 

the simplest approaches is to replace the nuisance parameters in the likelihood 

function by their maximum likelihood estimates and examine the resulting profile 

likelihood as a function of the parameter of interest. The profile likelihood is then 

treated as an ordinary likelihood function for estimation and inference about the 

parameter of interest. The procedure is known to give inconsistent or inefficient 

estimates for problems with large numbers of nuisance parameters, which suggests 

that it may not be close to optimal for a small number of nuisance parameters, 

even though the likelihood ratio statistic with no nuisance parameters is in some 

sense optimal (Cox and Reid, 1987). Since we want to compare posterior densities 

with prior densities and likelihoods, looking at one parameter at a time, we need 

a likelihood for each parameter. 

Suppose now that we could get a likelihood that does not involve c and 'y. It 

is then sensible to look at the likelihood function for 

= l(; 
&2 (p), 

(p); {yij}) 

where &(M) and '5j2) are the maximum likelihood estimates of a and 'y,  re-

spectively, for the given value of jt. This is known as the concentrated or profile 

likelihood of ji and is equivalent to a sideways view (profile) of the likelihood sur-

face. The profile likelihood may be used to illuminate various aspects of a full 

likelihood surface l(p,o,7 I {yj}), for instance by plotting 1 0 (p) against ri. More 

importantly, l(ii) can to a considerable extent be thought of and used as if it was 

a genuine likelihood. In particular the maximum profile likelihood estimate of it 

equals the overall maximum likelihood estimate A. 
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Suppose after integrating f({yij}  I i, {sJ, o, a)f({s} a) over the si ' s 

and transforming a to y, the vector of unknown parameters is 01 which can be 

partitioned as (i, c, 7) where ji is the parameter of interest and o and 'y are the 

nuisance parameters (see Appendix B.1 for the likelihood function of (ii,  o, 7)). 

Let b i  denote (j2,&,j'), the overall maximum likelihood estimate. The likelihood 

function for 01 (aside from a multiplicative constant) can be given by 

1 3fl 	 r 	1 ( 	B \1 

	

1(01 {y}) 	() 
_ 2 (1 + m7) 	exp 	

1 + n7)j 

	

+ 	(4.27) 

where 

S 

B = 

= Sb + (v - 

5b and S are the sum of squares between and within families, respectively and 

are defined in Section 2.3. Hence the log-likelihood is 

= --snln(a) - sln(l + n7) - 	(s + 

	

2 	 1 +727) 	
(4.28) 

and the maximum likelihood estimate of it (for any a and 7)  is... Also the 

first-order partial derivatives of'o and are 

1 2 1 	_____ 
= 	+ 	

( 
+ 

1+727)' 

so that 

l+fl 	 (4.29) = 
.572 

and 

91 li 	nB ____  
2(l_±n7)+2a (l+ n7 )2 

so that 

B - 	 (4.30) 
sue  

1+n7(0) - 
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(4.29) and (4.30) give the following 

SW 

= s(n - 1)' 

so that the profile likelihood of i is 

lc(P) = 	

[ 

Sw i 	< 	. 	 (4.31) 
s(n —flj 

The profile likelihoods of a 2 and 'y can be obtained in the same way. With 

= 9,  (4.30) gives 

	

, 2 	Sb 
1 + 7e) = 21 

so that the profile likelihood  of 0,2  is 

2 	 , 2 — 1 a(n-1) 2 	 exp (-s) Ct 	 (4.32) 

	

)23 	<a <.  

With /2 = y.., (4.29) gives 

= 	+ S,(1 + 727) ' ] /(sn), 	 (4.33) 

so that the profile likelihood for 'y  is 

(1 + 	
)_43 [s + Sb(1 + 727) - '] 

	

V-0 cc 0 	<1/3. 	(4.34) 

Finally the profile likelihood of h 2  can be derived by substituting h 2 /(4 - h 2 ) for 

in the log-likelihood function. (4.33) becomes 

Sb 1 '2 	2 
a(h 

) = 	+ 
1 + (2) i 

1(sn) , 	 (4.35) 
 

h2 

 

and the profile likelihood of h 2  can be given by 

/ h2 )

I — s[
S~

Sb 	
fsn 

 
lc(h 2)[1+n 4h2 	+ 

 l+n(-2)j 	
0h2 l. (4.36) 
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4.4 Graphical Representation and Gibbs Distri-

bution 

Interpreting fitted models with many parameteEs can be difficult. Interpretation 

is simplified if we concentrate on the conditional independence structure of the 

model. This aspect of the model is most easily presented in the form of a directed 

acyclic graph and a conditional independence graph. The purpose of this section 

is to demonstrate the use of graphical models as a precise mathematical tool to 

represent conditional independence assumptions, especially as a formal language 

for communicating causal information in statistical analysis. 

Bayesian graphical models provide a link between many different areas of cur-

rent interest. First, computational advances using Markov chain Monte Carlo 

methods are becoming more and more popular. Second, complex random effects 

models are being increasingly used in a wide variety of applications. Third, graph-

ical representation of conditional independence assumptions is gaining ground in 

multivariate analysis (Whittaker, 1990). The graphical representation of multi-

variate distributions is well known in connection with models for high-dimensional 

contingency tables (Wermuth and Lauritzen, 1983), for Bayesian inference in ex-

pert systems (Lauritzen and Spiegelhalter, 1988) and for Bayesian frailty models 

(Clayton, 1991). Graph theory is also important in the theory of Markov random 

fields, which are of considerable importance in statistical mechanics and, more 

recently in spatial statistics and image analysis. This theory, reviewed by Geman 

and Geman (1984), shows that the algebraic representation of the multivariate 

distribution represented by a graph follows from the graph structure; more specif-

ically, it consists of two sets of components, a set of nodes or vertices representing 

variables and a set of edges connecting variables and representing association. The 

graph structure depends on the set of cliques that makes up the graph, a clique 

being a set of nodes in which all pairs are connected. The lack of an edge between 
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two variables means that the two variables are conditionally independent given the 

remaining variables. The joint distribution corresponding to a given conditional 

independence graph is proportional to an exponential function of a sum, over all 

cliques of potentials where each potential is a function depending on the variables 

contained in the corresponding clique (Clayton, 1991). Such a distribution is a 

Gibbs distribution. 

4.4.1 A graphical representation of the random sire model 

The majority of the discussion of graphical models has concerned joint distribution 

of observables conditional on a set of unknown parameters, in which the param-

eters and the structure of the independence graph are estimated from data sets 

using maximum likelihood. In contrast, since Bayesian inference requires a full 

joint distribution for both data and parameters, Bayesian graphical models include 

both observed and unobserved quantities within a single graphical structure. 

The Bayesian model set out in submodels ((4.2) - (4.6)) incompletely specifies 

the joint distribution of the model parameters p,  {sJ, a. , a and data. These 

submodels merely tie down, a few conditional distributions. To complete the joint 

distribution (4.13) of the parameters and data, one seeks some kind of assumption 

of independence between the submodels. This is provided by the directed Mar/wv 

assumption which simply states that the joint distribution of all the model param-

eters and data is given by the product of all the submodels. 

That the directed Markov assumption is natural for model ((4.2) - (4.6)) is 

most easily seen from a graph of the model (Figure 4-1), in which round nodes 

denote parameters, a rounded rectangle denotes observed data and edges (arrows) 

denote dependences specified in the submodels. Figure 4-1 is a directed acyclic 

graph for three families si, s  and 33  giving data D1 , D2  and D3  since all the 

edges are directed and it is not possible, just by following the directions of the 

edge, to return to a node after leaving it. In the Bayesian formulation all the 
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model parameters ft, {s}, c, and c are random variables and the directed graph 

represents a conditional argument for parameters conditional on data. if two 

parameters are not joined by an edge they are conditionally independent given 

the remaining parameters. For example if two variables, U and V, are connected 

via a third variable W, then U and V are conditionally independent given W. 

Such a set of relationships may also be represented by a conditional indepen-

dence graph, which is an undirected graph. This graph can be constructed from 

selected independencies between pairs of variables conditioned on all the remain-

ing variables in a vector of random variables (in some literature the vector of the 

remaining variables are referred to as the rest). In such a graph there is no edge 

between two vertices whenever the pair of •variables is independent given all the 

remaining variables. The conditional independence graph is sometimes called the 

moral graph since its structure may be deduced from the directed graph by a 

process of marrying the parents (Lauritzen and Spiegelhalter, 1988): if U and V 

both have directed links to W in the directed graph, then U and V must be joined 

in the (undirected) conditional independence graph. Applying this process to the 

directed graph for the random-effect model, Figure 4-1, yields the conditional in-

dependence graph shown in Figure 4-2. This shows, for example, that, conditional 

upon the observed data D1 , D2  and D3 , the parameter ji is independent of sj, 32, 

33 , c and o. 

The Bayesian model described above and illustrated in Figures 4-1 and 4-2 

defines a Gibbs distribution with cliques p, s, 82, 33, a, d, D1 , D2, D3 . The 

joint probability distribution of the system is proportional to the product of the 

priors for jt, {s}, o, and c, and the likelihood function. Bayesian statistical 

inference requires computation of joint and marginal posterior distributions of the 

parameters given the data. Unfortunately these are intractable, but the condi-

tional distributions are relatively simple. In the next section it will be shown 

how this may be exploited in a Monte Carlo method for sampling the posterior 

distribution of the parameters. 
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Figure 4-1: Directed acyclic graph of the Bayesian random effects model for 

three families s 1 , S2  and 53 giving the observed data D1 , D2  and D3 . 

Figure 4-2: Conditional independence (undirected) graph for the Bayesian ran-

dom effects model for three families 5 1, 2 and .53 giving the observed data D1 , 

and D3. 
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Denoting conditional probability density distributions by the standard notation 

[... I 
 . . .], 

the full conditional distributions corresponding to the graph of Figure 

4-2 using the joint posterior density function in (4.13) are already given in (4.22), 

(4.23), (4.25), and (4.26) for p, {s}, c, and o, respectively. 

4.5 Gibbs Sampling 

In many Bayesian problems, marginal distributions are needed to make appropri-

ate inferences. However, due to the complexity of joint posterior distributions, 

obtaining a high degree of marginalization of the joint posterior density is difficult 

or impossible by analytical means. This is so for many practical problems, in- 

cluding inferences about variance components. Numerical integation techniques 
Ae 

must be used to obtain the exact marginal distributions, from which function of 

interest can be computed and inferences made. 

This section describes a numerical integration scheme known as a Monte Carlo 

method for generating samples from the joint posterior distribution of the parame-

ters of the model. Use of this method circumvents the analytical problem. At first 

sight the method seems to be closely related to bootstrap methods for interval esti-

mation, but there are important differences (Clayton, 1991). Whereas in a frequen-

tist representation of inference problems the unknown parameters are regarded as 

fixed constants and the data values are random variables, the Bayesian analysis 

reverses the status of the data and parameters: the data are fixed constants and 

the parameters are random variables. The frequentist bootstrap regenerates mul-

tiple sets of the data and reanalyses each bootstrapped data set in an attempt to 

explore estimation errors. In contrast, a Monte Carlo Bayesian approach holds the 

observed data constant, and samples repeatedly from the posterior distribution of 

parameters given data. 
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Recently a number of authors have drawn attention to methods for sampling 

multivariate joint and marginal posterior distributions when only conditional dis-

tributions are available. The common feature of these methods is that the sam-

pling is carried out by a stochastic process whose equilibrium distribution is that 

required. The idea has its roots in the modification of the Metropolis algorithm 

of statistical mechanics. The Metropolis algorithm was developed to investigate 

the equilibrium properties of large systems of particles such as molecules in a gas. 

However the Gibbs Sampler's wider relevance seems first to have been pointed out 

by Hastings (1970) who suggests Markov Chain methods of sampling that gener-

alise the Metropolis algorithm. He illustrates how to use the approach to simulate 

Poisson and Normal deviates, as well as random orthogonal matrices. The recent 

recognition of its widespread applicability for Bayesian statistical inference follows 

the imaginative work of Geman and Geman (1984) in Bayesian image analysis. 

They discuss the Gibbs sampler algorithm in the context of spatial procesçin-

volving a way of simulating from high-dimensional complex distributions arising 

in image analysis, e.g., image reconstruction. The method consists of iteratively 

simulating from the conditional distribution of one variable of the random vector 

to he simulated given the current values of the neighbourhood subset of the other 

variables. Each complete cycle through the component variables of the vector con-

stitutes one step in a Markov chain whose stationary distribution is, under suitable 

conditions, the distribution to he simulated. l3esag (1974) has shown that if the 

joint density function is strictly positive over its entire sample space, then the full 

joint density is uniquely determined by all full conditional distributions. One of 

the basic contributions of Tanner and Wong (1987) was to develop the framework 

by which Bayesian computations can he performed in the context of Metropolis 

type algorithms. 

More recently, Gelfand and Smith (1990) present a comprehensive review of the 

Gibbs Sampler and other Monte Carlo methods, such as data augmentation and 

the sampling-importance-resampling algorithm. They point out that the Gibbs 
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Sampler algorithm may be used to simulate from posterior distributions, and hence 

may be used to solve standard statistical problems. The use of Gibbs Sampler as 

a method for calculating Bayesian marginal posterior and predictive densities is 

reviewed and illustrated by Gelfand et al. (1990) with a range of normal data 

models, including variance components, unordered and ordered means, hierarchi-

cal growth curves, and missing data in a crossover trial. 

The Gibbs Sampler algorithm generates random samples from the Gibbs dis-

tributions which were defined in the previous section. The algorithm visits each 

node of a conditional independence graph and generates a value from the full 

conditional distribution of the corresponding random variable given the current 

values of all its neighbours. Geman and Geman (1984) showed under rather weak 

conditions that the resulting sequence of vectors defined on the graph, which is 

Markovian, converges to an equilibrium distribution which is the required joint 

distribution. This follows regardless of the order in which nodes are visited, pro-

vided each node is visited sufficiently frequently; indeed the algorithm may be 

implemented by parallel processing. More usually it is implemented sequentially 

by visiting the nodes in a repeated predetermined sequence. 

The full conditional distributions presented in Section 4.2.5 are summarised 

below: 

{Si) ,o,o,{yjj}], normal, 

Is i I It, ,c,{yij}], 	normal and 	independent, 

[o 	,{s j },o,{yjj}], inverse x2 , 

[o 	p, [s}, o, {yj}], inverse x2 • 

The ordering placed above is completely arbitrary. The efficient application of 

Gibbs sampling depends on two important aspects. Firstly, there must be an 

efficient method for generating random samples from univariate or multivariate 

conditional posterior distributions. Secondly, as posterior dependence between 

parameters can seriously impair the convergence of the procedure to the required 
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equilibrium distribution, it is helpful if the parameters are approximately indepen-

dent. These two properties ensure that Gibbs sampling is an extremely efficient 

method for generating a sample from the posterior distribution of interest. A 

further compelling reason for the use of Gibbs sampling, rather than alternative 

Markov chain Monte Carlo methods, in the context of animal breeding experi-

ments, is the facility to cope easily with examples in which the data are unbal-

anced. Most commonly, this arises when there are unequal numbers of daughters 

per sire. This can easily be dealt with within a Gibbs sampling scheme. 

4.5.1 Implementation issues 

In this section, the model (4.1) and priors (4.3), (4.4), (4.5) and (4.6) for /2, {s}, 

c 2  and o, respectively are used to illustrate some implementation issues. Use of 

the Gibbs Sampler that ignores the restriction c/c ~ 3  explained in Section 2.4.1 

is not sensible at all in animal breeding applications. A solution to this problem 

is to adopt a routine that discards values outside certain limits within the Gibbs 

sampler process. The sampling algorithm then uses a mixture of Gibbs sampling 

algorithm and a routine to discard variances outside the parameter space. 

The complete algorithm is as follows. 

Given an arbitrary set of starting values, /4(0), cr and 	for /4, c and 

Ole , respectively; 

Generate {y} corresponding to half-sib families using model (4.1); 

Draw a value 1P from [t I {s} (0) 
, o 2°  o 2 ° 

, {yjj}] and update z; 

(I) 	2 ° 	2 °  Draw 41) from [s I p ,c3  o , {yjj)} independently and update s (i = 

i, ... ,$); 

2') Draw o 	from [o I I(') {}(1). 2 ° 
, {y j )J and update o; 
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' 	 () 	(1) 

	

vi) Draw Ce 
2 from [e 

2 p 1 
, {s} , 	

, {y}] and update 0,2;2
e; 

vii) If 3a 2 ~ cr then repeat v) and vi) until 3c <a; 

Thus each variable is visited in the arbitrary order and this cycle completes one 

iteration of the sampling scheme. In another words, the first iteration completes a 

(0) 	(0) 	 2 ° 	(1) 	2@) 	2' 
transition from (p ,s ,c32° 

 ,Ce ) to (p ,s (1)  ,o 	Ce  ). The validity of the 

Gibbs Sampler stems from the fact that each cycle of the algorithm corresponds 

to one step of a Markov chain with stationary transition probabilities and that an 

ergodic theorem applies for function under certain regularity conditions (Geman 

and Geman, 1984). The values simulated from the posterior distribution can be 

obtained in the following three different ways of implementation: 

a) A singk long chain : One generates a single run of the Markov chain as 

practiced by Geman and Geman (1984) and Besag et al. (1991), i.e., 

viii) Repeat iii)-vii) m times using updated values and store all the values. 

If we let the sequence of values for p be p;i, #2, ..., Pin, for example, then 

these constitute the simulated values from the marginal posterior distribu-

tionof p. This implementation produces m Gibbs samples (p 1 ,{s 1 },c,c),el  

I = l, ... ,m. 

b) Equally spaced samples : The second way consists of choosing suitable inte-

gers k and m, performing one long run of a single chainof length km, and 

then forming a sample by collecting every kth value, the value of k being 

chosen with a view to render serial correlations negligible, i.e., 

viii) Run iii)-vii) km times and store every kth value. 

The sample values from the marginal posterior distribution would be P ik, 

- ,S), Ck, Ck, I = 1, . . . m where subscript k indicates the kth 
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iteration or the length of the Gibbs sequence and in is the Gibbs sample 

size. 

c) Multiple short chains By contrast, Gelfand and Smith (1990) and Gelfand 

et al. (1990) have instead performed several runs of each of a number of 

independent chains in, forming a sample by collecting the last iterates from 

each i.e., 

Run the Gibbs sampler steps iii)-vii) for k iterations and store only the 

final state from each. 

. 

If we let the sample points be p , {s (k) } ( i=1, . . . , s), 
2  

o 
(k) 

 , 	
2  (k) 

% o 	respectively, 

then we would arrive at a joint sample (p (k), {s (Ic) }, 0.2 (k) 2  (k)

) which is a 

realization of a Markov chain. Geman and Geman (1984) showed under 

suitable regularity conditions that as k -* cc, the points from the kth 

iteration are sample points from the appropriate marginal distributions, for 

example, p -* p I  [p]. Thus for Ic large enough we can regard p as a 

simulated observation from [p].  If we independently 

Replicate the Ic iterations of i)-viii) in times with different starting 

values (using a different random number generator seed each time) 

(Ic) 	(Ic) 	2(k) 	2(k) 

this process would produce miid (s + 3)-tuples A = (pj , {s },c 81  , Oj 

1 = 1, . . . ,in. 

Let 7r(9) be the equilibrium distribution of the constructed chain. For con-

creteness, suppose that the equilibrium distribution corresponds to a posterior 

density 

7r(6) = f(A 1 y) ccg(y A)f(A) 

which means that the knowledge of the distribution up to proportionality (given 

by the likelihood multiplied by the prior) is sufficient for implementation. For 
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any parameter, the collection of m iid (s + 3)-tuples can be viewed as a simulated 

sample from the equilibrium or marginal posterior density given below. 

(k) 	(k) 	(k) 

	

12 1 ,P2 I 	 f(/1 {yij}) 	 (4.37) 

(k) 	(k) 	(k) 

	

5 i1 3 i2 ,••'8im 	f(s 	{yj}), i = 1,...,s 	(4.38) 

2(k) 	2(k) 	2(k) 	 2 
a51  'a82 	Sm 	f(a3  {y}) 	 (4.39) 

2(k) 	2(k) 2(k) 	 2 

	

Orel  'Ce2 ,, em 	 I {yjj}) 	 (4.40) 

The common feature of these implementation methods is that the total number 

of samples saved is m. , being the sample size in all. The only difference between 

the implementation b) and c) is that in b) there is only one starting value as in 

a) whereas in c) there are m different starting values one for each replication. Al-

though the implementation b) lessens the dependence on initial values a potential 

disadvantage of it is that the Gibbs sequence may stay in a small subset of the 

sample space for a long time. The choice between different ways of implementing 

the Gibbs sampler algorithm has not been settled. In the first two ways a) and 

b), the starting point for every subsequence of length Ic is closer to a draw from 

the stationary distribution than the corresponding starting point in the third way, 

which is chosen by the user (Raftery and Lewis, 1992). 

Gelman and Rubin (1992a), on the other hand, have argued that one single 

long run approach may appear to be more efficient in that only one transient 

phase is involved. However, it can be disputed that monitoring the evolutionary 

behaviour of several runs of the chain starting from a wide range of initial values 

is necessary. The essence of their argument is that it is not possible to know, in 

the case of any individual problem, whether a single run has converged, and that 

combining the results of runs from several starting points gives an honest, if not 

conservative, assessment of the underlying uncertainty. 

In either case, a key problem is to decide how long the chain should be run for, 

and whether this can be done in advance or needs to be determined by some kind 
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of sequential stopping rule. Examining several successive batches within a single 

run can certainly provide (negative) evidence that a run is not sufficiently long 

(Smith and Roberts, 1993). However, there can never be any (positive) empirical 

guarantee that a sufficiently long run has been taken. 

It has been common practice when running the Gibbs sampler to throw away 

a substantial number of initial iterations, often on the order of 1,000. Raftery and 

Lewis (1992) suggested that this might not usually be necessary, and indeed, could 

often be quite wasteful. It has also been common practice to use implementations 

b) and c) (especially b) storing only every kth, usually 10th or 20th, iterate and 

discarding the rest. The results of Raftery and Lewis (1992) showed that in many 

cases this is rather profligate. Indeed, in some cases, the dependency between suc-

cessive iterates is weak and it makes sense to use them all, even when storage is an 

issue. By contrast to Gelman and Rubin (1992a), they recommended that Markov 

chain Monte Carlo inference ultimately be based on a single long run, but that 

this be monitored using carefully chosen diagnostics, and that the starting values 

and the exact form of the algorithm be chosen on the basis of experimentation. 

Based on theoretical arguments by Gelman and Rubin (1992a) and on our 

experience, the single long-chain method of implementing Gibbs sampler is a pre- 
2 

ferred method in this thesis. Since interest centres on making inferences about a, 

cr and their functions, less attention will be paid hereafter to It and .s. However, 

it is clear that the marginal distributions of M  and si are also obtained as a byprod-

uct of Gibbs sampling. Later in this chapter, all three implementation methods 

will be compared since the best method presumably depends on the particular 

problem. 

4.5.2 Assessing convergence 

The Gibbs sampling method is not complete without a determination of the length 

of Gibbs sequence, k, and across iterations, a specification of the Gibbs sample 
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size, in. It is indeed fact that the Gibbs sampler can be extremely computationally 

demanding, even for relatively small-scale statistical applications, and hence it 

is important to know how many iterations are required for any individual data 

application or any individual parameter to achieve the desired level of accuracy. 

Appropriate values required for k and in vary considerably depending upon the 

particular application and what is being approximated, and cannot be specified 

a priori. A general strategy for choosing such k is to monitor the convergence of 

some aspect of the Gibbs sampling. 

From a practical viewpoint, one requires a rule telling where to stop the algo-

rithm, hopefully at a time when equilibrium has been reached, or 'convergence' 

achieved. Convergence expresses the idea that the current iteration has been 

drawn from a distribution, 'close' in some sense to the stationary distribution. 

Although several methods have been proposed for assessing convergence of the 

Gibbs sampler, results of some theoretical literature do not easily translate into 

clear guidelines for the Bayesian practitioner. It is beyond the scope of this thesis 

to discuss the mathematical details of these methods. The following gives a sum-

mary discussion of various methods of output analysis (convergence diagnostics). 

Gelfand and Smith (1990) and Gelfand et al. (1990) perform multiple parallel 

runs (implementation c) of Section 4.5.1 and graphically compare resulting cross-

run posterior densities at each of several iterations. They monitor the generated 

data in a univariate fashion, allowing the sampler to run until the marginal pos-

terior distributions for each parameter of interest appear to have converged. For 

a fixed in they increase It, overlay plots of the resulting estimated densities (4.41), 

see if the estimates are visually indistinguishable. Similarly, they also increase in 

to assess stability of the density estimate. They hold in somewhat small (often as 

small as 25 and at most 200) until convergence is indicated, at which point, for a 

final iteration, they typically increase in by an order of magnitude to obtain the 

density estimate (4.41). 
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Raftery and Lewis (1992) describe an easily-implemented method for deter-

mining the total number of iterations required, and also the number of initial 

iterations that should be discarded to allow for burn-in. The burn-in or warm-up 

problem is the question of how much of a run should be thrown away on grounds 

that the chain may not yet have reached equilibrium. They argue that as a prac-

tical matter, it is desirable to run the Gibbs sampler for the smallest number 

of iterations necessary to attain a required level of accuracy. The method uses 

only the Gibbs iterates themselves, and does not, for example, require external 

specification of characteristics of the posterior density. They consider the specific 

problem of calculating particular quantiles of the posterior distribution of a func-

tion U of the parameter 0. Suppose that F[U < u I y] is to be approximated to 

within +r with probability .s. The approximate number of iterations required is 

found to do this when the correct answer is q. For example, if q = .025, r = . 005 

and .s = .95, this corresponds to requiring that the cumulative distribution func-

tion of the .025 quantile to be estimated to within +.005 with probability .95. 

This method returns the number, M, of initial iterations to be discarded (burn-in 

iterations), the number, N = km, of additional iterations required, and Ic, where 

every Icth iterate is used. The problem with this method is that the result is by 

far the most sensitive to the value of r, since N = r 2 . It is also difficult to specify 

the value of r as this depends on the type of distribution and it is not known 

in advance how heavy the posterior tail is. As r increases the total number of 

iterations N decreases dramatically, but M and Ic remain unchanged. Hence the 

method can be effectively used to determine only M and Ic. 

Roberts (1992) develops an integral norm for assessing convergence of multiple 

runs of a symmetrised Gibbs sampler. Geweke (1992) calculates an arbitrary 

function of the parameters at each iteration of a single run of the Gibbs sampler. 

This arbitrary function could for example be a single model parameter. Two 

moving windows are defined, the first towards the start of the series and the 
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second including the most recent iteration. Nonconvergence is indicated if the 

function departs significantly from a standard normal deviate. 

Gelman and Rubin (1992a) argued that convergence cannot reliably be as-

sessed on the basis of one run of the Gibbs sampler. They advocate using several 

parallel runs with widely dispersed starting values, calculating an arbitrary uni-

variate function of the parameters at each iteration in each run. By comparing 

between- and within-run sums of squares for the function, they estimate a scale 

reduction factor and a conservative estimate of its 97.5% ceultile (Gelman and Ru-

bin, 1992b). The scale reduction factor estimates 110w much the observed variance 

in the function might be reduced if Gibbs sampling was continued indefinitely; a 

scale reduction factor of 1.0 indicates no reduction, and hence convergence. How-

ever, this method necessarily suffers from the deficiency of possibly overlooking 

lack of convergence of some aspect of the distribution. 

4.5.3 Absorbing state 

Sampling the joint posterior distribution of parameters by stochastic substitution 

such as Gibbs sampling can be relatively easy to implement. However, it is some-

times possible to encounter a serious difficulty with the Gibbs sampling scheme in 

that there is an absorbing state when the prior information is sufficiently diffuse 

(e.g. v3  = 0 defines an absorbing state in model (4.1)). If the prior degrees of 

freedom, v3 , for the sire variance component, or, 2 ,  is close to zero, then the algo-

rithm gets stuck periodically in a vicious circle for several hundred iterations at a 

time creating computational black holes from which no single-component updating 

scheme can escape; see for example, the spatial epidemiology application in Be-

sag et ad. (1991) or random effects proportional hazards model of Clayton (1991). 

Single-run diagnostics for the random effects variance will reveal this immediately, 

but the series for other quantities such as the random effects themselves, s, can be 

almost unrelated and give no hint of trouble. In practice, therefore, the absorbing 
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range of values for the variance hyperparameter, u 8 , is rather larger than the single 

value zero, and there is a sizeable probability of reaching this region. Indeed, the 

process reaches this state quite quickly unless steps are taken to prevent it from 

doing so. One possible solution to this problem is to choose a prior parameter 

v3  big enough, e.g. v3  > 0 or bigger. Examples of absorbing states are given in 

Section 4.7. 

4.6 Bayesian Sample-Based Inference Methods 

After samples from the marginal distribution are generated, there are various ways 

in which the final output from an Monte Carlo Markov chain (MCMC) simulation 

might be used as the basis for inference reporting and diagnostics in Bayesian 

statistics. 

4.6.1 Graphics and exploratory data analysis 

Suppose that simulated samples corresponding to the parameters p,  {sJ, a and 

a in (4.37) - (4.40) are random samples from the equilibrium distribution The 

agenda for exploring and summarizing features of this equilibrium distribution 

might include: 

producing summary statistics, marginal posterior mean, standard deviation 

or quantile summaries, 

examining the shapes of univariate marginal distributions for each individual 

parameter or individual functions of them, 

examining hivariate marginal distributions for pairs of parameters or pairs 

of functions of the parameters, 
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examining trivariate distributions, 

uses of the output for specific decision problems or predictive analysis. 

The posterior mean and standard deviation are often used to provide a summary of 

the posterior distribution. From a decision theoretical point of view, the optimum 

Bayes estimator under quadratic loss is the posterior mean; the posterior median 

is optimal if the loss function is proportional to the absolute value of the error of 

estimation and the posterior mode is optimal if a step loss function is adopted. A 

robust measure of location, such as the median, may be preferable to the posterior 

mean as a descriptive measure, and the median is a quantile. Also, the posterior 

standard deviation is often used as a way of obtaining an approximate confidence 

interval if the posterior distribution is roughly Normal. 

Point estimates of variance components, e.g., mean, mode and median will 

always be within the parameter space. Likewise, interval estimates are also within 

the parameter space, in contrast to the asymptotic confidence intervals obtained 

from full or restricted maximum likelihood, which may include negative values. 

It is interesting to notice that much of this agenda of exploration and sum-

marization is very much the same as presents itself when one is interested in ex-

ploratory data analysis (EDA) of a point cloud of multivariate observations (Smith 

and Roberts, 1993). The individual observation vectors are here replaced by the 

individual parameter vectors drawn from the posterior; the number of observa-

tions corresponds to the size of the sample drawn from the posterior. It follows 

that the exploratory, particularly graphical, toolkit developed by the multivariate 

EDA and visual EDA communities now finds an additional role as an essential 

part of the Bayesian computational toolkit (Smith and Roberts, 1993). 
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4.6.2 Inference 

As far as specific EDA and graphics-related tools are concerned, an ordinary kernel 

density estimation with normal kernels and window width suggested by Silverman 

(1986) finds a role in converting Gibbs samples into posterior density curves. As 

an example, suppose interest centres on producing the marginal density curve for 

a component parameter IL. This could be produced directly from the simulated 

values of ) f4, (k) 	, 

However, if the form of the conditional density ir(p I {s 1 ),a 7 c, {y}) is 

known, the marginal density for z could also he calculated pointwise by averaging 

the conditional density over the sample values of [p I {s {y}] (1 = 

I.... ,rn) using the following density estimate of the form 

1 
(k) 	 2(k) 

I y) = L >[ I {s,  }, &8 1 ,o 1  , {yjj}]. 	 (4.41) 

The estimated values of the marginal density of t  are thus obtained by fixing p at a 

number of equally spaced pointá in the effective domain of it, and then evaluating 

(4.41) at each point. Finally, a spline-smoothed curve is drawn through these 

values to obtain univariate plot of marginal density curve for p. Similarly, the 

estimators of the marginal densities of the s, a, and a could be obtained. 

The expression (4.4.1) can be viewed as Rao - Blackwellized density estima-

tor. Therefore relative to the usual kernel density estimators based on p (1 = 

1,... On), the conditional procedure might well be more efficient (Gelfand and 

Smith, 1990). 
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4.7 A Simulation Study of a Balanced Sire Model 

4.7.1 Preliminary results 

Four sets of data were generated for a single trait from random normal deviates 

based on a one-way sire model in (4.1) with equal numbers, it of offspring per sire. 

In all simulations, parameter values used were ji = o, a 2 = 0.025, or2 = 0.975 and 

hence h 2  = 0.1. The number of sire families, s, is 25 while number of progeny per 

sire, it, is 20. We feel that these four data sets with 200 observations available 

cover the majority of situations where the one-way half-sib model is appropriate. 

For, example, there is a fairly wide range of heritability estimates, including a 

negative one. 

Analysis of variance (ANOVA) is carried out for each data set. The resultant 

sum of squares and mean squares are summarised in Table 4-1 and the ANOVA 

estimates are given in Table 4-2. As can be seen from this table data sets yield 

ANOVA estimates of heritability ranging from -0.0732 to 0.3058. The second and 

most difficult data set is badly behaved, in that the standard estimate of a is 

negative, rendering inference about o difficult. 

For illustrative purposes, Bayesian analyses based on the prior specification 

= 0.025 and 82 = 0.975 with varying values of v3  and e,  a) v3  = = 0, 

b) v3  = ii, = 0.5 and c) v3  =v,= 1 are provided for all data sets. Under this 

specification, we have weak independent inverse x2  priors for o 2  and o. The 

sample data provide very little information about a as there are only 25 sires. 

The implementation of the Gibbs Sampler algorithm is carried out for the four 

sets of data in the following ways: 

a) A single run of 1,000 Gibbs Sampler iterations. 
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Table 4-1: ANOVA tables of four data sets generated using s = 25, n = 20, 

= 0, T = 0.025 and a = 0.975 

Source df 55 	MS 

Data Set 1 

Between sires 24 67.2697 	2.8029 

Within sires 475 501.3577 	1.0555 

Total 499 568.6274 

Data Set 2 

Between sires 	24 	15.4126 0.6422 

Within sires 	475 476.0895 1.0023 

Total 	499 491.5021 

Data Set 3 

Between sires 	24 	38.0346 1.5848 

Within sires 	475 481.2948 1.0133 

Total 	499 529.3294 

Data Set 4 

Between sires 	24 	29.2666 1.2194 

Within sires 	475 458.7445 0.9658 

Total 	499 488.0111 
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Table 4-2: ANOVA estimates for the four data sets. 

Data sets Y 9 2 or -y h 2  

1 -0.0248 0.0874 1.0555 0.0828 0.3058 

2 0.0721 -0.0180 1.0023 -0.0180 -0.0732 

3 0.0400 0.0286 1.0133 0.0282 0.1097 

4 -0.0318 0.0127 0.9658 0.0131 0.0518 

Picking off every i) 10th, ii) 20th and iii) 30th value in a single long run of 

length 10,000, 20,000 and 30,000, respectively, using only one starting value 

for each parameter. 

Short runs of Gibbs Sampler steps of length i) 10, ii) 20 and Hi) 30, storing 

the last iterate and replicating this process 1,000, 2,000 and 3,000 times, 

respectively, using different starting values each time 

Summaries of the resulting marginal posterior densities for p, o, o, 'y and h 2  are 

shown in Table 4-3. Marginal posterior means and standard deviations calculated 

from the four data sets in this table are based on 1,000 Gibbs samples using the 

three different ways in which the algorithm is implemented. This table reveals 

that there is little difference between the ways of implementation since marginal 

posterior means and standard deviations for the three implementation seem to 

be very close for each data set. Therefore, one does not get an appreciably bet-

ter answer by throwing away some of the iterations and for further analysis and 

investigations the implementation a) will be used to make inferences about the 

parameters of interest. The results of Raftery and Lewis (1992) agree with the 

conclusion drawn here. 

Using a density estimator with normal kernels and window width suggested by 

Silverman (1986) based on subsequent samples of 1,000, Figures 4-3-4-8 represent 

the curves corresponding to the marginal posterior densities for jt, {s}, a, c, 7 
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Table 4-3: Marginal posterior mean and standard deviation (SD) of parameters 

for four data sets based on 1,000 Gibbs samples for different prior degrees of 

freedom v 8  and v5  and three ways of implementing the Gibbs Sampler. 

Implementation a) 

0.0 -00313 0.0801 0.0898 0,0428 1.0622 	0,0706 0.0852 0.0415 0.3089 0.1364 

0.5 -0.0314 0.0805 0.0917 0.0429 1.0628 	0.0705 0.0869 0.0416 0.3147 0.1362 

1.0 -0,0272 0.0715 0.0861 0.0407 1.0625 	0.0704 0.0815 0.0389 0.2969 0.1268 

Implementation b(i) 

0.0 -0.0261 0.0731 0.0877 0,0425 1.0635 	0.0680 0.0832 0,0416 0.3019 0.1369 

0.5 0.0262 0.0736 0.0897 0.0427 1.0639 	0.0679 0.0850 0.0418 0.3081 0.1367 

1.0 -0.0217 0.0777 0.0843 0.0426 1,0608 	0.0694 0.0799 0.0406 0.2908 0.1349 

Implementation C (i) 

0.0 -0,0251 0,0745 010905 0,0453 1,0616 	0.0717 0.0860 0,0442 0,3110 0.1446 

0,5 -0,0244 0,0804 0,0916 0,0453 1.0647 	0,0660 0.0867 0,0436 0.3133 0.1428 

1.0 -0,0217 0.0713 010826 0,0413 1.0661 	0,0725 0,0782 0,0404 0,2851 0.1335 

Implementation b(ii) 

0,0 -0,0251 0.0728 0,0903 0,0444 1.0636 	0,0704 0.0857 0,0435 0,3100 0.1420 

0,5 -0,0252 0.0733 0,0923 0,0444 1.0641 	0,0704 0,0875 0,0435 0,3162 011404 

1.0 -0,0257 0,0768 0,0847 0,0430 1,0603 	0,0666 0.0803 0.0411 0,2921 0.1357 

Implementation c(ii) 

0,0 -0.0240 0,0764 0,0917 0,0473 1,0637 	0,0689 0,0869 0,0454 0,3135 0,1473 

0,5 -0.0241 0.0793 0,0950 0,0481 1,0631 	0,0704 0,0899 0,0460 0,3238 0,1482 

1,0 -0.0223 0,0734 0,0822 0,0410 1,0650 	0,0706 0,0778 0,0397 0,2839 0,1321 

Implementation b(iii) 

0.0 -0.0247 0,0749 0.0877 0,0451 1,0637 	0,0696 0.0831 0,0439 0.3011 0.1430 

0.5 -0,0247 0,0754 0,0897 0,0451 1,0641 	0,0696 0.0850 0,0439 0.3076 0.2423 

1.0 -0,0237 0,0781 0,0828 0.0406 1,0651 	0,0692 0.0783 0,0390 0.2857 0,1208 

Implementation c(iii) 

0.0 -0.0257 0,0739 0.0919 0,0466 1,0618 	0,0678 0.0871 0,0445 0,3147 0,1447 

0.5 -0.0248 0,0755 0,0932 0.0457 1,0659 	0.0704 0.0880 0,0443 0,3178 0,1430 

1.0 -0.0257 0,0763 0,0850 0.0431 1,0634 	0,0689 0.0806 0.0417 0,2929 0,1383 

DATA SET 2 

Implementation a) 

0,0 0,0706 0.0478 0,0012 0,0038 0,9881 	0.0641 0,0012 0.0039 0.0047 0,0152 

0.5 0,0701 0,0517 0.0104 0,0080 019878 	0,0642 0.0106 0.0082 0,0415 0,0316 

1,0 0,0712 0.0489 0.0119 0,0079 0,9868 	0,0636 0,0121 0.0079 0,0477 0.0306 

Implementation b(i) 

0,0 0,0734 0.0454 0.0009 0,0030 0.9896 	0.9632 0.0009 0,0032 0,0035 0.0124 

0.5 0,0739 0.0498 0.0108 0,0078 0.9895 	0,0631 0.0110 0,0080 0,0433 0,0309 

1.0 0,0724 0.0494 0.0117 0.0077 0.9879 	0,0629 0.0119 0.0080 0.0467 0,0306 

Implementation c(i) 

0.0 0.0731 0.0434 0,0004 0,0019 0.9889 	0,0621 0,0004 0.0019 0.0014 0,0076 

0,5 0,0706 0,0501 0,0106 0,0086 0,9898 	0.0616 0-0108 0,0087 0,0424 0.0335 

2,0 0,0708 0,0501 0,0115 0.0079 0,9861 	0,0631 0,0117 0,0081 0,0461 0.0311 

Implementation b(ii) 

0,0 0.0734 0,0451 0,0005 0.0022 0.9898 	0.0641 0.0005 0,0023 0,0019 0,0091 

0.5 0,0731 0,0493 0,0108 0.0083 019899 	0,0642 0.0110 0,0085 0.0432 0,0325 

1,0 0,0722 0.0494 0,0117 0.0078 0,9869 	0,0614 0.0119 0.0079 0,0467 0,0306 

Implementation c(ii) 

0,0 0,0739 0,0467 0,0002 0,0014 0,9878 	0.0612 0.0002 0,0015 0,0006 0,0059 

0.5 0,0716 0.0489 0.0113 0,0088 0,9889 	0.0630 010115 0,0090 0,0450 0,0347 

1.0 0.0702 0.0501 0,0118 0,0082 0,9855 	0,0621 0,0120 0,0083 0,0471 0,0318 

Implementation b(iii) 

0.0 0,0733 0,0452 0.0004 0,0018 0,9888 	0,0672 0,0004 0.0018 0.0016 0.0071 

0,5 0.0745 0,0507 0,0108 0,0078 0,9886 	0,0673 0,0110 0,0080 0,0432 0.0307 

1,0 0,0719 0.0502 0,0117 0,0079 0,9837 	0,0628 0,0120 0,0083 0,0472 0,0317 

Implementation c(iii) 

0,0 0,0735 0.0435 0.0001 0.0007 0.9931 	0,0634 0,0001 0,0007 0,0004 0,0026 

0.5 0.0714 0.0496 0,0206 0,0080 0.9890 	0,0658 0,0108 0,0082 0,0423 0,0317 

3.0 0,0694 0.0482 0,0117 0,0079 0,9880 	0,0651 0,0119 0,0082 0.0468 0.0316 
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Marginal posterior mean and standard deviation (SD) of parameters for four data 

sets based on 1,000 Gibbs samples for different prior degrees of freedom v 3  and v6  

and three ways of implementing the Gibbs Sampler, continued from Table 4-3... 

Implementation a) 

0,0 0,0377 0.0544 0.0130 0.0198 1.0330 	0.0685 0.0128 0,0198 0.0493 0.0738 

0.5 0.0369 0.0610 0.0332 0.0227 1.0187 	0.0673 0.0329 0,0227 0.1256 0.0825 

1,0 0.0390 0.0553 0,0288 0.0191 1.0200 	0.0670 0.0284 0,0188 0.1093 0.0695 

Implementation b(i) 

0,0 00410 0.0505 0.0093 0.0182 1,0381 	0.0670 0.0091 0.0181 0.0349 0.0677 

0,5 0.0421 0.0588 - 0.0325 0.0227 1.0217 	0.0665 010321 0.0227 0.1226 0.0820 

1,0 0.0406 0.0589 0.0296 0.0208 1.0205 	0.0664 010293 0.0209 0.1121 0.0763 

Implementation c(i) 

0.0 0,0408 0.0507 0,0099 0,0175 1.0374 	0.0657 0,0097 0,0172 0.0375 0.0650 

0.5 0.0376 0,0577 0.0350 0,0244 1.0226 	010669 0.0345 0.0244 0,1313 0.0884 

1.0 0,0399 0,0573 0,0303 0,0215 1.0209 	0,0640 0.0300 0.0217 0.1148 0,0792 

Implementation b(ii) 

0.0 0.0402 0.0494 0.0071 0.0152 1.0397 	0,0686 0.0070 0.0152 0.0268 0,0575 

0.5 0.0411 0.0583 0.0328 0.0243 1.0219 	0,0682 0.0324 0.0244 0.1235 0,0882 

1.0 0.0398 0.0569 0.0294 0.0199 3,0195 	0,0647 0,0290 0.0198 0.1115 0.0729 

Implementation c(H) 

0.0 0.0390 0.0476 0.0040 0,0122 1.0409 	0.0635 0,0039 0.0123 0.0150 0.0463 

0.5 0,0368 0.0599 0,0335 0,0249 1,0189 	0.0678 0.0333 0.0253 0.1266 0,0911 

1.0 0,0381 0.0565 0,0281 0.0194 1,0219 	0,0684 0.0277 0,0193 0,1065 0,0708 

Implementation b(iii) 

0.0 0,0417 0.0494 0,0068 0.0156 1.0389 	0,0710 0.0067 0.0155 ' 0.0257 0.0584 

0.5 0,0430 0.0597 0,0327 0.0230 1,0205 	0.0706 0.0323 0.0231 0,1234 0,0840 

1.0 0,0390 0.0576 0,0295 0.0198 1.0156 	0.0661 0,0294 0,0202 0,1127 0.0742 

Implementation c(iii) 

0,0 0.0420 0.0468 0.0049 0.0143 1,0370 	0.0692 0,0048 0,0142 0.0184 0.0534 

015 0.0414 0,0578 0.0318 0,0230 1.0242 	0,0671 0.0314 0.0230 0.1197 0.0835 

110 0.0420 0,0576 0.0289 - 	 0,0202 1.0214 	0,0669 0.0286 0.0204 0.1097 0.0744 

DATA SET  

Implementation a) 

0.0 -0.0336 0,0499 0,0051 0,0097 0.9773 	0.0638 0,0053 0,0100 0,0207 0.0387 

0.5 -0.0340 0.0549 0,0196 0,0153 0.9688 	0.0632 0,0204 0,0160 0,0789 0,0601 

1.0 -0.0324 0.0508 0.0182 0,0127 0.9690 	0.0626 0.0189 0.0132 0.0736 0.0498 

Implementation b(i) 

0.0 .0 0307 0.0465 0.0034 0.0094 0.9804 	0.0629 0.0035 0.0098 0.0136 0.0374 

0.5 '0.0299 010536 0.0207 0,0360 0.9702 	0.0626 0.0216 0.0169 0.0834 0.0630 

1.0 '0.0313 0.0540 0.0198 0.0148 0.9686 	0.0620 0.0206 0.0154 0.0798 0.0575 

Implementation c(i) 

010 .0.0299 0.0424 0.0022 0.0076 0.9756 	0,0624 0.0023 0.0080 0.0088 0.0304 

0.5 -0.0316 0.0531 0.0215 0.0167 0.9669 	0.0599 0.0224 0.0175 0.0865 0.0652 

1.0 -0.0344 0.0522 0.0207 0.0144 0.9664 	0,0627 0.0216 0.0153 0,0838 0.0572 

Implementation b(ii) 

0.0 -0.0309 0.0459 0.0019 0.0066 0.9814 	0.0639 0.0020 0.0070 0,0076 0,0267 

0.5 -0.0312 0.0530 0.0211 0.0164 0.9701 	0.0642 0.0220 0.0172 0.0849 0.0640 

110 '0.0318 0,0525 0,0201 0.0145 0,9678 	0,0606 0.0209 0.0152 0,0809 0,0571 

Implementation c(ii) 

0,0 -0.0320 0,0456 0.0029 0,0094 0,9796 	0.0614 0,0031 0,0099 0.0119 0.0370 

0.5 '0,0356 0,0522 0.0206 0.0172 0.9698 	0,0612 0.0214 0,0183 0.0828 0.0676 

1.0 -0,0323 0.0516 0.0203 0.0150 0.9674 	0,0630 0.0210 0.0156 0.0815 0.0582 

Implementation b(iii) 

0.0 '0.0307 0,0461 0.0021 0.0074 0.9803 	0.0667 0,0022 0.0077 0.0086 0.0296 

015 -0.0288 - 0.0547 0-0212 0,0160 0.9688 	0.0665 0.0221 0.0167 0.0853 0.0625 

1,0 -0.0325 0.0538 0.0202 0.0145 0.9640 	0.0617 0.0212 0,0155 0,0820 0.0578 

Implementation c(iii) 

0.0 .0,0326 0,0450 0,0012 0.0059 0.9783 	0,0610 0.0013 0,0062 0,0051 0.0238 

0.5 '0.0331 0.0526 0.0211 0.0171 0,9696 	0.0626 0.0219 0.0179 0.0844 0.0666 

1.0 '0.0346 0.0515 0.0205 0.0146 0,9661 	0.0626 0.0214 0.0156 0.0830 0.0583 
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Figure 4-3: Marginal posterior density based on 1,000 Gibbs samples ( 	) and 

profile likelihood (- - - - -) of ti for data sets 1, 2, 3 and 4. 

4- 

2 

3- 

0 
C 
a, 
C 

Breeding values 

Figure 4-4: Prior (.....)- and marginal posterior densities based on 1,000 

iterations of the Gibbs sampler ( ) of sire effects, {s} for data sets 1, and 2 

using only first four sires for each data set. 
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Figure 4-5: Prior (.....) and marginal posterior densities based on 1,000 

Gibbs samples ( 	) of C2  for four sets of data. 
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Figure 4-6: Prior (.....) and marginal posterior densities based on 1,000 

iterations of the Gibbs sampler ( ) and profile likelihood (-----) of c for 

data sets 1, 2, 3 and 4. 



Chapter 4. Gibbs Sampling Approach to Animal Breeding Applications 	93 

0 
C 
0 
0 

	

0.0 	 0.05 	 0.1 	 0.15 	 0.2 

Gamma 

Figure 4-7: Prior (.....) and marginal posterior densities based on 1,000 
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and h2 , respectively. Profile likelihoods for i, a, 'y and h 2  and prior densities for 

22 a, o- , 'y and h 2  are also illustrated in these figures. The marginal posterior 

densities seem to tell us more than the profile likelihoods, especially for 'y  and h 2  in 

Figures 4-7 and 4-8. Moreover there is a noticeable difference between the curves 

of the marginal posterior densities and of the profile likelihoods in Figures 4-7 and 

4-8. In general the profile likelihood of each parameter appears more concentrated 

than the posterior density; the latter reflects the uncertainty in other parameters. 

To summarise our conclusion so far, point estimates of variance components 

from Bayesian analysis are within the permissible parameter space in contrast 

to the estimates obtained from ANOVA. The Bayesian method is feasible com-

putationally and appears to give much more sensible answers to the inferential 

problems than maximum likelihood estimation. Our task now is to explain this 

discrepancy, and to investigate the reason behind it. 

Convergence assessment 

The Gibbs sampler is run using the three implementation methods described in 

4.7.1, each giving an ultimate Gibbs sample size of 1,000. However the implemen-

tation a) is chosen for further analysis and, investigations. Figure 4-9 illustrates 

the values for each of the model parameters, 1L, o, o, 'y  and h 2  for the first 300 

iterations from the implementations a) and c) of the Gibbs sampler for data set 1 

when 1/3  = ii = 1. 

Applying Gelfand et al. (1990) and Raftery and Lewis's (1992) convergence 

criterion separately to each of the model parameters showed that convergence in 

distribution had been achieved by iteration 1,000 (Figure 4-9). The marginal 

posteriors from the implementation b) (not shown in Figure 4-9 were virtually 

identical to those from the implementations a) and c). For all parameters, t, 

'y and I2  the convergence appears to have been achieved within 100 iterations. 

In fact, Gelfand et al. (1990) described a method under different values of k and m, 
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and suggested using k = 10-20 and rn = 100 (for implementation c)) for a variance 

component problem in a balanced one-way model. This means that their final 

Gibbs sample size was 100 which was enough for a good convergence. However, 

they increased in to 1,000 when the variance ratio was under consideration. The 

numerical results of this work for the same model support their suggestion. Wang 

et al. (1993) using the same model also agreed with the results of Gelfand et al. 

(1990) for the value of k, but indicated that Gibbs sample sizes of 2,000 to 3,000 

may be needed for badly behaved marginal distributions in that 'y = 0.01. Wang 

et al. (1993) reported that in general the appropriate values of k and in depend on 

the number of parameters in the model, the shapes of the marginal distributions 

and the accuracy required to estimate densities. 

Raftery and Lewis's (1992) convergence criterion was applied to determine the 

number of burn-in iterations (transition phase), M, and the length of the Gibbs 

Sampler sequence, k or the kth iteration. To implement their method only the 

required precision, as specified by the four quantities q, r, s and c is needed, where 

c is the error in the cumulative distribution function at the quantile. The typical 

values of q = . 025, r = . 005, .s = .95 and e = .001 were chosen for each parameter. 

In our simulated four examples the method gave k = 1 and M = 2 - 3 which is a 

very small number of burn-in iterations for all parameters when v was 0.5 and 1. 

This amount of burn-in is negligible. Ic = 1 suggests that the level of dependence 

between the Gibbs sampling iterates is not very high (Figure 4-9), and thus that 

the sampler is rather fast to convergence to the desired distribution. 

The data set 2 which experiences computational black holes when v3  = 0 

is chosen for detailed investigation of convergence assessment using Raftery and 

Lewis's (1992). method. The parameters i and or gave the same results for k 

and M as above, regardless of the value of v 8 . However different values of Ic 

and M are obtained for the parameter a using different implementations of the 

Gibbs sampler with v3  = 0; for implementation a) Ic = 5 and M = 1070, for 

implementation b) Ic = 2 and M = 132 and for implementation c) Ic = 1 and M = 
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Figure 4-9: Values for the parameters p, a, a, 'y and h 2  for the first 300 

iterations from the three implementations a) ( ) and c) (.....) of the Gibbs 

sampler for data set 1 when v = 1. 
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85 (Figure 4-11). There appears to be a decrease in k and M from implementation 

a) to c), which is due to the fact that the gap between the iterates reduces the 

serial correlations dramatically in implementations b) and c). The number of 

burn-in iterations is not negligible and the higher values of k indicate the high 

level of dependency in the sequence and thus slow convergence to the desired 

distribution. The values of k and M were 1 and 2, respectively when v 3  = 1 

for all three implementations. These results suggest that when a particular data 

set experiences computational black holes it is not sensible to use v 3  < 1 at 

all. Overall conclusion from applying this method is that it is not necessary to 

throw away a substantial number of initial iterations (burn-in iterations) as M is 

negligible. It is also not essential to discard every /cth iterate since the dependence 

between successive iterates is not high which gives fast convergence. The low 

dependence indicates that the convergence is achieved within first few hundred 

iterations. Therefore the implementation a) seems to be the best choice compared 

with others. 

Absorbing state 

Table 4-3 gives the marginal posterior summaries of the parameters for four data 

sets when V. = e are assumed equal and taken to be 0, 0.5 and 1. As can be seen 

from this table, the marginal posterior means of t and a are not affected by the 

values of the prior parameters v 3  and v. However, the sire variance component, 

c, and the parameters that are functions of o, 'y  and h2 , appear to reach an 

absorbing state depending on how low the estimate of heritability h 2  is, when 

718  < 1. Consequently the marginal means get closer to zero as v 3  approaches 

to zero. The examination of Table 4-3 shows that the marginal posterior means 

of c, -y and h 2  are not affected by different values of v in data set 1 since the 

estimate of the heritability for this particular data set is big enough, being about 

0.3, to avoid the computational black hole. This is so regardless of the values of 

v. However, from the marginal posterior means of these parameters in data sets 
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Figure 4-10: Marginal posterior densities based on 1,000 Gibbs samples of sire 

variance component, a, for data set 2 when V. = 0, ii. = 0.5 and v3  = 1. 

2, 3 and 4, it is evident that the Gibbs sampling algorithm gets into the region 

of an absorbing state when v3  < 1. As a result, a typical problem is that the 

data sets 2,  3 and 4 give rather small marginal posterior means for heritability, 

being about 0.05, 0.11 and 0.07, respectively, when especially P. = 0. Figure 4-10 

illustrates marginal posterior densities of the sire variance component, a, for data 

set 2 when v takes 0, 0.5 and 1. 

Figure 4-11 shows the values for the sire variance component, 0', 
2 ,  for 1,000 

iterations from each of the three implementations of the Gibbs sampler for data 

set 2 when v3  = 0 and ii. = 1, and Figure 4-12 zooms in on the first 300 iterations 

of the series for the same data set combining the three implementations. From 

Figure 4-11 it can be seen that the implementation c) is the quickest one to reach 

the region of absorbing state when v3  = 0. It is also the one which gives the least 

dependence between the iterations when v 5  = 1. This implementation falls into 

the black hole at about the 300th iteration and never manages to get away from 
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Figure 4-12: Values for sire variance component, a. 2 ,  for the first 300 iterations 

from each of the three implementations of the Gibbs sampler a) ( ) b)  (- - - - 

-) and c) (.....) for data set 2 when v 3  = 0. 

this region. Implementation a) reaches the absorbing state at about the 600th 

iteration and gives the highest dependence between the iterations. Thereafter 

they both cannot recover from this state of sampling until the end of series. The 

implementation b) however appears to get into the absorbing region and manages 

to recover occasionally. When P. increases to 1 the values of a from all three 

implementations keep well away from the region of the absorbing state. 

In animal breeding applications, the problem of an absorbing state is directly 

related to the value of the prior degrees of freedom v 3  and can be corrected by 

not using values of v 3  less than 1. Values of v 3  > 1 appear to give satisfactory 

results. It can therefore be concluded that in the case of badly behaved marginal 

distributions, which are associated with low heritability, it is possible to reach 

an absorbing state for the values of Y. smaller than 1. This state of sampling 

is influential and distorts the values of the estimated density unless ii, is large 

enough. 



Chapter 4. Gibbs Sampling Approach to Animal Breeding Applications 	102 

Table 4-4: Design of experiments simulated using different values of heritability, 

h 2 , number of sires, s, and number of progeny per sire, n. 

s 

h2 =0.1 

n S 

h2 =0.3 

n S 

h2 =0.6 

n 

10 8 10 8 10 8 

16 16 16 

20 20 20 

25 8 25 8 25 8 

16 16 16 

20 20 20 

80 8 80 8 80 8 

16 16 16 

20 20 20 

4.7.2 Results with 500 replicate samples 

Data Sets and Designs 

For this part of the analysis, 27 designs are generated with different sizes of fam-

ilies to represent situations that differ in the amount of statistical information. 

Essentials of the experimental designs are given in Table 4-4. As can be seen from 

this table, number of sires, .s, varies from 10 to 80, while number of progeny per 

sire, i-i, ranges from 8 to 20. The smallest experimental design is the one with 10 

sires and 8 progeny per sire; the largest has 80 sires and 20 progeny per sire, giv-

ing a total of 1,600 records. Data are randomly generated using parameter values 

of 0.0 and 1.0 respectively for ji and a, the phenotypic variance, but different 

values of heritability, h 2 . Table 4-5 shows the corresponding values for U. , c and 

'y when the heritabilities range from 0.1 to 0.6. For this part of the analysis, 

500 replicates are used in all simulations. In other words, for each experimental 
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Table 4-5: Variance components and their functions using different starting 

points 

Set of starting values 

Parameters 	1 	2 	3 

0.0250 0.0750 0.1500 

0.9750 0.9250 0.8500 

0.0256 0.0811 0.1765 

0.1000 0.3000 0.6000 

design 500 data sets are generated and the results of further analyses are based 

on averages over these 500 replicates. 

Results 

The means and standard deviations of ANOVA estimates of the parameters, t, or 2 

'y and h 2 , over 500 replicate samples are given in Table 4-7. Values outside the 

parameter space are treated as they are. It can be seen from this table that as the 

sample size and the true heritability increase, the parameter estimates, especially 

o and its functions and h 2 , get closer to the true parameter values given in 

Table 4-5. This can be attributed to the fact that there is a high probability of 

obtaining negative estimates of or 2 when the sample size is relatively small. Table 

4-6 shows the empirical and theoretical probabilities of the AN OVA estimator of 

o being negative for different family sizes and heritabilities. It is also evident 

from Table 4-7 that depending on the increase in the family size the standard 

deviations get smaller when the heritability is kept constant. 

The Gibbs Sampler is used with 1,000 iterations of 500 replicate samples, and 

inferences about the parameters are based on all the values. The properties of 

the posterior means of the parameters are illustrated in Table 4-8. It can be 

noted that the Bayesian method overestimates the variance components and their 
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Table 4-6: Empirical and theoretical (given in parentheses) probabilities of the 

I 	 ANOVA estimator of a 2  being negative when obtained from balanced one-way 

model of s sires with ii progenies, under normality assumptions. 

n=8 

h2 =0.1 

n16 n=20 n8 

h2 =0.3 

n16 n=20 n=5 

h2 =0.6 

n=16 n=20 

10 	0.430 0.304 0.262 0.222 0.078 0.042 0.076 0.032 0.008 

(0.409) (0.305) (0.257) (0.213) (0.086) (0.057) (0.087) (0.016) (0.009) 

25 	0.348 0.142 0.106 0.068 0.008 0.000 0.004 0.000 0.000 

(0.305) (0.162) (0.111) (0.075) (0.008) (0.003) (0.007) (0.000) (0.000) 

80 	0.142 0.022 0.006 0.004 0.000 0.000 0.000 0.000 0.000 

(0.152) (0.029) (0.009) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) 

functions 0- , 01 , -y and h2 , for designs with small family size and low heritability. 

When the heritability increases for such designs the method tends to underestimate 

these parameters. Thus this results in a discrepancy between marginal posterior 

expectations and ANOVA estimates, the former being biased upwards and latter 

being biased downward. However with an increase in the family size the estimates 

appear to converge to their true parameter values and the discrepancy between 

marginal posterior expectations and ANOVA estimates disappears. When the 

standard deviations from both methods, ANOVA and Bayesian, are compared, 

Bayesian procedure seems to give more accurate results than those of the ANOVA. 

4.8 Discussion 

One of the main differences between the Bayesian and maximum likelihood ap-

proaches to inference is the way in which they deal with nuisance parameters. This 

is apparent from our results about, for example, 'y, thinking of p, o, a and s 

as nuisance parameters. The profile likelihood function is obtained by maximising 

with respect to the nuisance parameters, whereas the marginal posterior density 

is obtained by a Monte Carlo numerical integration method, which is known as 
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Table 4-7: Means and standard deviations (SD) of ANOVA estimates over 500 

replicates for different heritabilities and family sizes. 

/2 	 /t2  

- /t2 	Mean 	SD 	Mean 	SD 	Meab 	SD 	Mean 	SD 	Mean 	SD 

s=10 11=8 

0.1 	-0.0019 0.1185 0.0251 	0.0741 	0.9763 0.1543 0.0290 0.0791 	0.0914 0.2811 

0.3 -0.0062 0.1394 0.0724 0.0890 0.9235 0.1449 0.0838 0.1043 0.2780 0.3311 

0.6 	-0.0018 	0.1559 0.1528 	0.1274 	0.8477 0.1435 	0.1908 	0.1672 	0.5811 	0.4350 

s=10 n=16 

0.1 	0.0066 	0.0960 0.0238 0.0403 0.9675 0.1078 0.0257 0.0428 0.0938 0.1582 

0.3 	0.0068 	0.1192 0.0726 0.0612 0.9208 0.1017 0.0803 0.0684 0.2833 0.2235 

0.6 	0.0034 	0.1512 0.1433 00972 0.8614 0.1002 0.1691 0.1168 0.5460 0.3286 

s10 n20 

0.1 	-0.0123 0.0832 0.0286 0.0384 0.9775 0.1040 0.0300 0.0400 0.1108 0.1458 

0.3 -0.0103 0.1084 0.0754 0.0579 0.9260 0.0896 0.0824 0.0641 	0.2923 0.2064 

0.6 	0.0080 	0.1399 0.1549 0.0944 0.8566 0.0857 0.1840 0.1174 0.5909 0.3143 

s25 n8 

0.1 	-0.0034 0.0786 	0.0214 	0.0448 0.9731 	0.1078 0.0239 0.0475 	0.0851 	0.1778 

0.3 -0.0026 0.0901 	0.0754 0.0547 0.9220 0.1044 0.0839 0.0620 0.2978 0.2086 

0.6 -0.0069 0.1071 	0.1526 0.0781 	0.8474 0.0849 0.1827 0.0966 0.5966 0.2644 

s=25 n=16 

0.1 -0.0046 0.0601 0.0242 0.0238 0.9705 0.0698 0.0254 0.0248 0.0969 0.0937 

0.3 	0.0005 	0.0731 0.0731 0.0380 0.9272 0.0698 0.0795 0.0420 0.2889 0.1413 

0.6 -0.0019 0.0889 0.1536 0.0596 0.8530 0.0596 0.1815 0.0725 0.6021 0.2031 

s25 n=20 

0_1 	0.0001 	0.0574 0.0243 0.0220 0.9759 0.0618 0.0252 0.0230 0.0965 0.0861 

0.3 	0.0004 	0.0737 0.0768 0.0362 0.9245 0.0599 0.0836 0.0402 0.3038 0.1340 

0.6 -0.0012 0.0858 0.1493 0.0542 0.8523 0.0545 0.1760 0.0647 0.5884 0.1840 

S=80 n=8 

0.1 	0.0000 	0.0439 0.0259 0.0241 0.9769 0.0566 0.0271 	0.0256 0.1030 0.0960 

0.3 -0.0035 0.0510 0.0754 0.0309 0.9264 0.0553 0.0822 0.0352 0.3001 0.1196 

0.6 -0.0042 	0.0551 	0.1472 0.0426 0.8484 0.0485 0.1745 	0.0525 0.5876 0.1519 

s=80 n16 

0.1 -0.0005 0.0317 0.0244 0.0134 0.9751 0.0399 0.0252 0.0138 0.0974 0.0525 

0.3 -0.0003 0.0403 0.0744 0.0204 0.9251 0.0379 0.0806 0.0223 0.2966 0.0761 

0.6 	0.0006 	0.0499 0.1515 0.0325 0.8511 0.0348 0.1784 0.0394 0.6018 0.1126 

s=80 n2O 

0.1 -0.0010 0.0312 0.0247 0.0113 0.9753 0.0381 0.0254 0.0117 0.0985 0.0444 

0.3 -0.0025 0.0397 0.0748 0.0181 0.9253 0.0361 	0.0809 0.0199 0.2983 0.0677 

0.6 -0.0029 0.0480 0.1503 0.0322 0.8491 0.0329 0.1774 0.0397 0.5989 0.1132 
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Table 4-8: Means and standard deviations (SD) of posterior means from 500 

replicate samples based on 1,000 iterations of the Gibbs sampler for different 

heritabilities and family sizes. 

IL 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

s=10 ri=8 

0.1 	-0.0014 0.1192 	0.0487 0.0237 0.9943 0.1512 	0.0515 	0.0258 0.1850 0.0846 

0.3 -0.0063 0.1397 0.0886 0.0320 0.9505 0.1408 0.0974 0.0359 0.3383 0.1129 

0.6 -0.0018 0.1558 0.1306 0.0387 0.8915 0.1405 0.1517 0.0441 0.5081 	0.1317 

s=10 n16 

0.1 	0.0070 	0.0967 0.0401 0.0208 0.9767 0.1061 0.0424 0.0228 0.1554 0.0772 

0.3 	0.0077 	0.1195 0.0857 0.0358 0.9350 0.1020 0.0937 0.0392 0.3283 0.1246 

0.6 	0.0036 	0.1513 0.1343 0.0439 0.8809 0.1003 0.1548 0.0492 0.5187 0.1477 

s=10 n=20 

0.3 -0.0126 0.0838 0.0415 0.0241 	0.9863 0.1035 0.0430 0.0251 0.1578 0.0852 

0.3 -0.0103 0.1079 0.0871 0.0362 0.9378 0.0904 0.0944 0.0393 0.3311 	0.1247 

0.6 	0.0088 	0.1391 0.1405 0.0430 0.8731 0.0856 0.1632 0.0498 0.5441 	0.1484 

s25 n8 

0.1 	-0.0032 0.0788 0.0376 0.0201 	0.9758 0.1028 0.0400 0.0229 0.1476 0.0782 

0.3 -0.0027 0.0906 0.0822 0.0343 0.9343 0.1031 0.0907 0.0390 0.3195 0.1250 

0.6 -0.0071 	0.1070 0.1398 0.0424 0.8676 0.0845 0.1640 0.0490 0.5473 0.1451 

s=25 n=16 

0.1 -0.0045 0.0600 0.0307 0.0149 0.9744 0.0687 0.0320 0.0158 0.1211 0.0566 

0.3 	0.0005 	0.0735 0.0794 0.0328 0.9338 0.0701 0.0863 0.0363 0.3082 0.1179 

0.6 -0.0022 0.0890 0.1485 0.0405 0.8618 0.0593 0.1740 0.0481 	0.5794 0.1412 

s=25 n20 

0.1 	0.0000 	0.0575 0.0297 0.0158 0.9795 0.0612 0.0308 0.0166 0.1168 0.0597 

0.3 	0.0001 	0.0740 0.0824 0.0331 0.9299 0.0599 0.0897 0.0368 0.3203 0.1193 

0.6 -0.0012 0.0848 0.1479 0.0392 0.8587 0.0547 0.1734 0.0459 0.5787 0.1344 

s=80 11=8 

0.1 	0.0001 	0.0439 0.0296 0.0146 0.9789 0.0543 0.0308 0.0158 0.1170 0.0573 

0.3 -0.0034 0.0509 0.0760 0.0273 0.9320 0.0550 0.0828 0.0314 0.2995 0.1042 

0.6 -0.0040 0.0552. 0.1460 0.0372 	0.8543 0.0487 0.1727 0.0455 	0.5787 0.1328 

s=80 n16 

0.1 -0.0006 0.0318 0.0252 0.0104 0.9775 0.0399 0.0260 0.0107 0.1002 0.0400 

0.3 -0.0004 0.0404 0.0753 0.0200 0.9278 0.0381 0.0816 0.0219 0.2985 0.0740 

0.6 	0.0006 	0.0504 0.1535 0.0304 0.8532 0.0349 0.1806 0.0367 0.6052 0.1049 

s8O n=20 

0.1 -0.0009 0.0314 0.0249 0.0095 0.9775 0.0381 	0.0256 0.0100 0.0991 	0.0374 

0.3 -0.0024 0.0400 0.0760 0.0180 0.9272 0.0362 0.0823 0.0198 0.3014 0.0670 

0.6 -0.0026 0.0480 0.1527 0.0304 0.8507 0.0328 0.1801 	0.0373 0.6040 0.1063 
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a Gibbs Sampler. In certain cases the two operations may produce sharply con-

trasting results. The theme is illustratedin Figures 4-7 and 4-8 for 'y and 
j2,  

respectively. Particularly for data set 2 the marginal posterior density and profile 

likelihood are quite different in shape. While the curves for the profile likelihood of 

and h 2  are decreasing, this is not so for the curve of the marginal posterior den-

sity. The fact that the profile likelihood does not maximise at 0 is not in any way a 

consequence of the prior distribution. However any prior which is reasonably fiat 

or weak over the region of interest will result in a marginal posterior density close 

to our curves skewed to the left in Figure 4-7 and 4-8. in contrast, the maximum 

likelihood estimator does not correspond to any coherent set of prior beliefs, and 

this must cast into serious question the use of the maximum likelihood estimator 

when the log likelihood function is fax from its asymptotically quadratic shape. 

4.9 Conclusion 

Both the maximum likelihood and Bayesian approaches are computationally fea-

sible but there are difficulties of interpretation. The asymptotic moments of max-

imum likelihood estimates depend on the asymptotically quadratic shape of the 

log likelihood function. In contrast, Bayesian methods do not rely on asymptotics 

and appear to be better practical choice for handling unusually shaped likelihoods. 

The difficulty of specifying a suitable prior distribution is real, but much can be 

learned about the sensitivity of the analysis to the choice of prior by simply trying 

out different priors. One advantage of a numerical implementation is the freedom 

to do so. 



Chapter 5 

Investigation of Bimodality in Likelihoods 

and Posterior Densities 

5.1 Introduction 

In animal breeding, estimates of variance components have been of great impor-

tance in the prediction of breeding values of animals and in the construction of 

selection indexes. In recent years, likelihood based methods, particularly restricted 

maximum likelihood (REML), has gained wide acceptance among animal breed-

ers for estimating variance components (Patterson and Thompson, 1971; Harville, 

1977; Gianola and Foulley, 1990; Harville and Callanan 1990). Computational al-

gorithms like expectation-maximization (EM), Newton-Raphson, and Fisher scor-

ing, which are based on derivatives, are being used to identify the maxima of 

log-likelihood functions (Groeneveld and Kovac, 1990). More recently, these nu-

merical maximization algorithms have been introduced into variance component 

estimation in animal breeding (i.e. Graser et al., 1987). However, none of these 

algorithms guarantees convergence to the global maximum in the presence of lo-

cal maxima. In this case, the use of likelihood-based procedures would be very 

questionable, because their well-known good properties hold only if the global 

maximum can be identified. 

Hoeschele (1989) investigated the problem of local maxima of likelihoods and 

Bayesian posterior densities when mixed linear models with two variance compo- 
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nents are used with unbalanced data. She concluded that the likelihood or pos-

terior density functions are always unimodal for REML and a Bayesian method 

incorporating a proper inverse x2  prior but sometimes bimodal over the permis-

sible parameter space for maximum likelihood and a Bayesian method with the 

improper prior density functions suggested by Gianola et al. (1990b). Groeneveld 

and Kovac (1990) explored the possibilities of multiple solutions for a multivari-

ate mixed model including six covariance components by an EM and a downhill 

simplex (DS) algorithm. Multiple solutions from both methods suggested the ex-

istence of local maxima, casting doubt on the merit of algorithms that do not 

guarantee global maximization. 

With unbalanced data and mixed linear models with two or more variance 

components, iterative computing strategies are required for obtaining estimates 

which maximize the likelihood function in ML and REML, or the posterior density 

in Bayesian methods. If iteration converges and the converged value is within the 

parameter space it is commonly assumed that at convergence the global maximum 

of the likelihood or posterior density function is found. However, if the likelihood 

or posterior density function has multiple maxima, convergence to a local but 

not global maximum can occur, and the converged values may not be the desired 

variance component estimates. This may be more likely to occur when the data 

sample is small, e.g. in multiple trait estimation when the number of levels of 

a random factor in the model is small relative to the number of components to 

be estimated, or when variances have to be estimated within fixed classifications 

because of heterogeneity of variances (Hoeschele, 1989). 

In Bayesian applications with balanced data, a local maximum at zero may 

occur in a one-way sire model when an improper prior density function is used 

for the sire variance component, o. As a result of this, it is possible that the 

marginal posterior densities of cr will be maximized at zero or near zero, creating 

a bimodal posterior density function for this parameter within the permissible 

parameter space. 
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The purpose of this chapter is to investigate for a univariate balanced one-way 

sire model with two variance components whether likelihood and Bayesian meth-

ods can encounter the problem of local maxima within the permissible parameter 

space, and the consequences for variance component estimation when an improper 

prior density function is used. 

5.2 Analytical Results 

5.2.1 The model 

The balanced one-way sire model used in this study is 

Yij = P + 3i + e 	(i = 1,...,s; j = 1,...,n), 	 (5.1) 

where yjj  denote the phenotypic value of the jth offspring of the ith paternal 

half-sib family, t represents the mean, s i  is the ith random sire effect and eij 

is a residual error term. The s's are distributed independently of the ejj's and 

iidN(0, ), e 	iidN(0, (7) with Cov(s, c') = 0 for all i, i' and j, so that 

E(y) = /1, 

Var(y) = Ce 2 + 0 2 
S 

and 
/ Cov(y,y') = c

2 	. 	
j) 

5.2.2 Maximum likelihood method 

If the interest is in estimating the variance components c and cr and functions of 

them such as the variance ratio y = a 2 /0- 2 and the heritability h2  = 4c/(a +a) 

(assuming observations are on half-sibs) rather than the si effects (sire effects or 

breeding values in animal breeding), the vector of unknown parameters for model 
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(5.1) is 01 
 0,2, -y). The likelihood function for 0 1  apart from a multiplicative 

constant can be given by 

l(p, 	

S + Th3( - p12 	
(5.2) 

1 
(2)± +n±exp{_ [Sw  + 	

1 + i  

where 5b  and S. are the sum of squares between and within families, respectively 

and are given in Section 2.3. Let (-y) and & 2 ('y) be values of JL and a that 

maximize the likelihood for given y. The profile likelihood function of 'y is then 

= g({yjj} 

OC (1 + ) S (S- + So 

) 

	

(0 	<1/3). 	(5.3) 
1 + 717 

The profile likelihood function of 'y in (5.3) can conveniently be reparameterized 

with 6 = 1 + wy and P2 = St/SW to give the following 

-- 	P2 
1(6) =g({yjj} 8;(8 	6 	(1 + 

	
(1< 8 < 1 + n/3). (5.4) 

The log-profile likelihood of 6 apart from additive constant is 

1 	 /\1 
ln(1(6)) = — 

1 
s Lin(s) + nln 	

+ 

E 

 )j, 	
(5.5) 

and its first derivative with respect to 6 is 

31n(l(S)) 	I  / 	mE\ 

36 	 F 	(5.6) 
28 	8+E  

Setting (5.6) equal to zero yields S = E(m - 1) or = 	 if j is in the 

parameter space. Examination of the second derivative shows that this gives a 

maximum. If E(n - 1) < 1 (i.e. (m - 1)56 < S) then there is a maximum at 

6 = 1 (or7 = 0); ifE(n—l)> 1+n/3 themaxirnumis at S = l+n/3 (or = 1/3). 

Therefore the likelihood function of S in (5.4) can have only one maximum which 

would be anywhere between the parameter space, S E [1, 1 + n/3]. 
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5.2.3 Bayesian method 

Setting the prior degrees of freedom, v, and v, to zero in (4.5) and (4.6) respec-

tively, reduces prior inverse x 2  density functions for c and 0.2  to the improper 

densities 

2 	1 
(as cc - (a > 0), 	 (5.7) 

as  

and 

f(c) cc - 	(a > 0). 	 (5.8) 

The use of improper priors, especially for o, could result in marginal posterior 

densities having local maxima at zero. Bimodality is therefore inevitable. 

To investigate bimodality in Bayesian methods, the marginal posterior density 

function of -y,  we integrate out all the other parameters, t, {sJ and c from the 

joint posterior density function to give 

(7)—(Us+2) (1 + fl7)_4(S_1) 
(5.9) 

	

A -Y I {j}) cc 	
Sb  + 	+ Sw + vs) 

2
(sn+ue+vs1) 

The log of the marginal posterior density function of is given (apart from an 

additive constant) by 

1 	 1 

	

ln(f(7 1 {yjj})) = —( v + 2) In 	- (s —1) ln(l + n7) 

1 	 G i
86 ++sw+ves)- —(sn+v+v—l)ln+n 

The first derivative of expression (5.10) is given as follows 

Oln(f(7 I yij 	1(v, + 2) - ln(s —1) 	1 	(sn + ve v 3 -1) 

87 	- 2 
1-1-m'y 	ly 

nSb 	vS sl 
x 

[(1 +fl7)2 + 
 

7 r 
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Setting (5.11) to zero and multiplying by 

72(1+727)2 	Sb ++sw+vese) 
l+n 	7  

yields 

- [S7(1 +n7)+Vss(l+fl7)+Sb7+h/e 3 67( 1 + 727)] 

x 	- 1)7 + (v3  + 2)(1 + n7)] 

+ (sn + V 6  + v3  - 1) [vs s(1 + 777)2 
 + 72Sb72] = 0.  

After some arrangement of (5.12) a cubic equation of the following form is obtained 

a373  + a2 72  + a1 7 + ao  = 0, 	 (5.13) 

where a 3 , a 2 , a 1  and a0  are given by 

a3 = 	+ V3  + 1)(S + 

a2 = —n 	+ 2v3  + 3)(S + v6s) - (s(n - 1) + V6 - 2)(Sb + nv3s)j, 

a 1  = - [(V3  + 2)(S + S& + v65) - n(s(2n 1) + 2u6 - 5)v3 s 3
21 
 , 

2 
a0 = (su + v6  - 3)v 3 s3 . 

The cubic equation in (5.13) suggest that there may be three stationary points 

but appears not to lead to any useful general result about when there is more then 

one maximum. Putting v 3  = 0 makes a0  zero and gives a solution = 0 of (5.12), 

so it seems more useful to look at the behaviour of the posterior density of 7 near 

zero. From (5.9), it behaves like 75(8'3) (which is increasing) for v 3  > 0, but 

like [1  for v3  = 0. So putting v3  = 0 produces a maximum at 7 = 0 (along with 

at most one other maximum). 



Chapter 5. Investigation of Bimodalityin Likelihoods and Posterior Densities 114 

5.3 Numerical Results 

The original four data sets generated using the model (5.1) with s i  representing 

sire effects (i = 1,..., 25), heritability h2  = 0.1, and progeny group size ii = 20 are 

employed to investigate the possibility that the likelihood and marginal posterior 

density of -Y  may give multiple maxima in the parameter space. In Figure 5-1 the 

profile log-likelihood functions of 'y for data sets 1, 2, 3 and 4 are plotted against 

y. As can be seen from this figure the profile likelihood functions for all data 

sets have a unique maximum in the permissible parameter space, [0,1/3]. The 

maximum for data set 2 occurs at 0. 

Figures 5-2 and 5-3 shows the log marginal posterior density functions of 

for four data sets when v 5  equals 1 and 0, respectively. Figure 5-3 reveals that 

when u3  = 0 only data set 1 has a Maximum with positive in addition to the 

maximum at zero. However, when v = 1 it is obvious from Figure 5-2 that all 

the data sets have a single maximum away from zero. 

5.4 Conclusion 

When using methods such as maximum likelihood or maximum posterior density 

to estimate variance components, it is commonly assumed that at convergence 

the likelihood or posterior density function has a single maximum in the permis-

sible parameter space. In this chapter an attempt has been made to investigate 

this assumption for a balanced one-way univariate sire model with two variance 

components. 

Analytical results suggest that the log profile likelihood of 'y can have only one 

maximum which would be anywhere in the permissible parameter space, {0, 1/31. 

The log marginal posterior density function of y also has a single maximum when 
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Figure 5-1: Plot of profile log-likelihood of 'y versus for four sets of data. 
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Figure 5-2: Plot of log marginal posterior density of 'y  versus for four sets of 

data when u = 1. 
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Figure 5-3: Plot of log marginal posterior density of -y  versus  y  for four sets of 

data when v3  = 0. 

1/3  is positive. However, an improper prior density function, in which v3  is zero, 

sometimes can give two maxima one of which is at zero. 

It can be concluded that a real problem of multiple maxima does exist if modal 

estimates are used with improper prior density functions. The results from this 

investigation show that the cause for the multimodality depends entirely on the 

value of the prior degree of freedom v 3 . The problem of obtaining a local maximum 

in addition to global one can be avoided in Bayesian methods by simply choosing 

i.'5  high enough, i.e., v3  = 1.0. 



Chapter 6 

An Alternative Prior Specification 

6.1 Introduction 

A one-way sire model with equal numbers of offspring per sire is considered in 

this chapter as in Chapter 4, but the purpose is to look at whether using different 

prior distributions makes an important difference to posterior inferences. 

A method for rejection sampling from any univariate log-concave probability 

density function is proposed by Gilks and Wild (1992). Their method is adaptive 

in the sense that the rejection envelope function and the squeezing function, which 

form upper and lower bounds to the log-concave p;obability density function, con-

verge towards the density function as sampling proceeds. The rejection envelope 

and squeezing function are piecewise exponential functions, the rejection envelope 

touching the density at previously sampled points, and squeezing function forming 

arcs between those points of contact (Gilks and Wild, 1992). The adaptive nature 

of their technique enables samples to be drawn with few evaluations of the density 

function and it is therefore intended for situations where evaluation of the density 

is computationally expensive, in particular for applications of Gibbs sampling to 

Bayesian models with non-conjugacy. Applications of adaptive rejection sampling 

currently include generalized linear and proportional hazards models (Dellaportas 

and Smith, 1993). 

Basic to the implementation of the Gibbs sampler is the ability to sample 

from the full conditional distribution of each parameter conditioning on all the 

117 
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remaining parameters and the data. Gibbs sampling has been applied in many 

areas including variance components, errors-in-variables, missing data and growth 

curve problems. In essence these applications have focused on situations in which 

there is conjugacy between likelihoods and priors, for which the sampling involved 

in Gibbs sampling is straightforward. 

Without conjugacy sampling could be difficult and very expensive computa-

tionally, particularly when there are many observations {yj}. Moreover, for each 

parameter, Gibbs sampling requires only one point to be sampled from the cor-

responding full conditional distribution: at the next iteration the full conditional 

will be different (through conditioning on different. values of the remaining param-

eters). One should therefore seek a sampling method which minimizes the number 

of evaluations. 

However, other classes of problems exist (e.g., non-linear regression) where the 

posterior distribution is lacking conjugacy in at least one of the full conditionals. 

Recently, several methods have been proposed for dealing with non-conjugate 

conditionals via importance sampling or acceptance/rejection approaches. Zeger 

and Karim (1991) present rejection sampling from a normal envelope centred at the 

mode of the sampling density in an application of the Gibbs sampling procedure to 

the posterior expectation of generalised linear models with random effects. Gilks 

and Wild (1992) show that adaptive rejection sampling is well suited to handling 

non-conjugacy in applications of Gibbs sampling. 

The application of Gibbs sampling using a balanced one-way univariate sire 

model in animal breeding is carried out for fully conditionally conjugate Bayesian 

models with parameters i, {.s}, o 2  and o-  in Chapter 4. Prior specification 

employed in that chapter will be referred to from now on as prior specification 

I. Reparameterization from (o,  o) to (-y, c) with 'y equal to o/c can cause 

non-conjugacy and consequently computational difficulties. This reparameterized 

prior specification will be called prior specification II throughout this thesis. The 
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objective of this chapter is to demonstrate how the Gibbs sampling procedure, 

making use of an adaptive rejection sampling algorithm, deals with non-conjugacy 

due to reparameterization for a balanced one-way univariate classification with 

random sire effects and to compare the results from using the reparameterized 

prior specification with those for the prior specification of Chapter 4 obtained 

from fully conjugate conditional posterior density functions. 

6.2 An Alternative Bayesian Model 

6.2.1 Prior distributions 

Prior distributions of IL and u, 2 
 . An alternative prior specification might have 1L 

uniform and o- 2 
inverse-x 2  as in prior specification I, but with a independent of 

7 

Prior distributions of the s. The normal distributions assigned to the s i 's as 

prior probability distributions can be given by 

S 

(2) - 9 5 	( 	1 	sfl. 	(6.1) f({s} y,a) 	 exp 
27a i=1 I 

Prior distribution of 7.  Prior information about the ratio of two variances a 

and o, , of a certain trait in a certain livestock is required. Then, in some cases, 

it may be natural that a prior distribution of 7  is considered as some unimodal or 

uniform distribution within a certain range. Consequently the prior distribution 

of 7 might be considered as beta distribution with a range [a, b] (in this case the 

range must be within [0, 1/3] interval because of the natural restriction imposed 

on 7  (see Section 2.4.1), but generally it may be only finite), and this distribution 

is called a generalized beta distribution. In the conventional consideration, the 

generalized beta distribution can be used as a prior distribution of any other 

genetic parameter defined in a finite range, say genetic correlation coefficient and 
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heritability as well as the ratio of variances. The generalized beta density (see 

Appendix A for detailed description of this distribution) for the prior distribution 

of 'y can be written as follows 

a—i 	 /3—i f(7a,/3)(7—a) 	(b-7) 	, a7<b, 

where the interval [a, b] corresponds to the proper range of 'y,  [0, 1/3], then 

i 	 i 
f( 	a) 	a— (1-37) /3- 0<7<1/3. 	 (6.2) 

The truncated F distribution is also another possibility for the prior distribution 

of . 

Determination of the prior parameters, a and /3 

After specifying a Beta form for the prior distribution of , it is useful for compar-

ison to determine values of the parameters a and 0 of this distribution for which 

the two prior specifications match in some sense. Recall that in prior specification 

I 
2 

Wa  = 	x (v 3 ) 

as  

and 
2 

We = 	x (v4 ;  
cr 

then joint density is taken to be the product of the corresponding densities if 

30.2 cc o 2  and zero otherwise. Hence 

2 	2 2/ 	\ 	2/ 
7 = °s/°e = (vss s /Ws)/(ves e /We) 

- s (we\ / (W 

- s \VeP v 3  

= o<J<(3) i 	
se 
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To find the quartiles of ,y  for prior specification I and hence a matching Beta dis-

tribution, consider the distribution of J, which is F(ue , u3 ) truncated at.s/(3s). 

If G(f; lie, u3 ) denotes the distribution function of F(ue , v5 ) then f has lower and 

upper quartiles fL, fu which are solutions of 

2 
I 

G(fL; lie, u5 ) = 0.25 c
'9 2 

ye , us) 
US  

G(fu; lie, u8 ) = 0.75 C 	V, VS) 

and 'y has quartiles s/sfL, s!/sfu. The corresponding quartiles of 37 are then 

equated to those of a B(a, 0) distribution. 

Thus if XL and zu denote the lower and upper quartiles of the distribution 

B(a, 0), we equate XL and xu to (38 2 /8 2 )fi. and ( 3S 2 /S 2 )fu respectively, and 

solve the following equations for a and .# in prior specification II 

1 	(XL  
	0.25 = 0 	 (6.3) 

B(a,/3 ) Jo 

and 

1 	fXU 

	

J 	—0.75 = 0. 	 (6.4) 

	

B(a, 0) 0 	 - -- 

Example: Let s = 0.025 and s = 0.975 then the distribution of 7, F(ue, u5 ), 

is truncated at .s/(3s) = 13 when u5  = v. = 1.0 in prior specification I. This 
61 	 11 

gives G(13; 1, 1) = 0.8278. Lower and upper quartiles fL, fu of the distribution 

of 7 are solutions of 

G(fL; v,, u 5 ) = 0.25 G(13; 1,1) = 0.25 x 0.8278 = 0.2065 

G(fu; v, u 5 ) = 0.75 G(13; 1,1) = 0.75 >< 0.8278 = 0.6209 1  

respectively. Solutions to these equations are found as fL = 0.1136 and fu = 

2.1777. The corresponding quartiles of 37 in prior specification II are equated to 

those of a Beta distribution giving the following quartiles 

XL = ( 3s/s)fL = 0.0731 x 0.1136 = 0.0087 
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, xu = (3s 2
, S2e)fU = 0.0731 x 0.2.1777 = 0.1675 

Finally, the quartiles XL, xu are substituted in equations (6.3) and (6.4) 

and 

1 	0.0087 

B(a,(3) Jo 

1 	0.1675 

B(a,fl) Jo 

- 	—0.25 = 0 

1(1 - 7)1 —0.75 = 0. 

and these equations are solved for a and 0 to obtain 0.4038 and 3.0678, respec-

tively, for this particular example. 

Prior distribution of o. The prior distribution of c can be obtained from 

the prior distributions of a 2 and 'y given in (4.5) and (6.2), respectively, since 

o- is given by -ya. The determinant of the Jacobian of the transformation from 

( _Y,  a2) to (o,a) is f'. The joint probability density function of or and 2' is 

then proportional to 

a, (3, Ve, s) 	( a 2 )_ 	2)72+va_2)(1 - 37)' exp ( 1 
7Ve3 '2  

The prior probability density function of or can then be given by 

I1/3 

1  
f(a a, 0, Ve, s) 	c3 )_ v2 ) 	75(2a+ve_2)(1 - 37)1 (2 

0 

H ves) (6.5) >< exp 

Evaluation of expression (6.5) requires numerical methods. 

Prior distribution of h 2 . Since h2  = 41
7

, the prior probability density function 

of it 2  is proportional to 

f(h2 I a,(3) 	(_h 	
\al 

- h2) 	
[i - (_it2 

	

(4— h22  

oc (h 2 ) 1 (4 - h2)(1 - h 2)', 0 < h2 	1. 	(6.6) 
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6.2.2 Likelihood function 

The likelihood function for it {s}, 	C is given by 

2 	2 	 1 	1 
f({yij} 	 7,Ce) 	(c e ) 	expj — -- —p - si)] }. (6.7) 

i=1 j=1 

6.2.3 Joint posterior distribution 

Using the likelihood in expression (6.7) in conjunction with the prior distributions 

for the prior specification II, for p, {s}, a and 7 given in (4.3), (6.1), (4.6) and 

(6.2), respectively, the joint posterior distribution is proportional to the product 

of the densities corresponding to these distributions 

f(p,j
8 i 1,

7, C
2 1 

yjj) 	exp 	
i 	

(yjj - p - s) 2  + 
r 

2a I 	Li=1 j=1 	 7 	11 

( 2 ) (8(Th+1)++2) 	
(-2o,2 	

2"
exp 	 ves e ) 

	

X 72(32a+2)(1 - 37 1) 0  . 	 ( 6.8) 

6.2.4 Full conditional distributions of i, Si, U and -y 

Conditional posterior distribution of p. The full conditional posterior distribution 

of p given {s}, and a 2  is not affected by the prior specification II. It is therefore 

the same as (4.22), 

	

= N 
( - , 
	j. 	 (6.9) 

ns) 

Conditional posterior distribution of the s. The posterior probability density 

function (6.8) is proportional in the si to 

1 [ 	s(i + n) - 2nE1 	p) = 	 l  
-Yore 	 C 	j 



Chapter 6. An Alternative Prior Specification 	 124 

or 
( i (1+n\ r3 

exp 	
7C ) L4 2n  

	

- 77_ 	- it)l 

L=i 	1+n7 

thus the full conditional distribution of si given p 'y and c 2 is 

	

[s p,7,a,{yij}] = 
N (n7(i - ) 	\ 

(6.10) 
\ l+n ' l+n7) 

independently of s. (Ii 	i). This is also not affected by the prior specification II 

and therefore the same as (4.23). 

Conditional posterior distribution of 01, 
2  . The posterior probability density 

function (6.8) is proportional in a to 

()8(Th+i)6+2) exp {_L [tt 	- p - ) 2 
+ 	+ ves] }, Ore

thus the full conditional distribution of or given p, s i  and -y  is 

[c 
S 	72 	 2 

= x2 (s(n + 1) + v, 	(yjj - p - s) 2  + 	
' 

5 +e) i=1 j=1 	 7 

Conditional posterior distribution of . The full conditional distribution of 7 

given p,  {s} and o 2 is 

15i},  0,2 , yijl 	72(S2+2)(1 - 3t1 exp 
{ 

_ E s/a 
Y, {s 	 (6.12) 

2 	j 

The full conditional distributions of p, the s i  and 0,2 given respectively in 

(6.9), (6.10) and (6.11) are conditionally conjugate. However the full conditional 

distribution of 'y in (6.12) is frôma 3-parameter family with probability density 

function proportional to 

(- 2 ,y) 
7"(1 - 37) b exp

lc  

and does not simplify. This is not a well-known family, therefore it is not im- 

mediately clear how to sample from it and sampling 7 could be time consuming. 
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Whereas the application of Gibbs sampling is straightforward for fully conjugate 

Bayesian models, non-conjugacy in 'y can cause computational difficulties. Adap-

tive rejection sampling is well suited to handling non-conjugacy in application of 

Gibbs sampling, as it requires neither the mode of the sampling density nor a 

rejection envelope that corresponds to a standard density (Gilks and Wild, 1992). 

The graphical representation of the Bayesian random effect model for prior 

specification I with three sire families is discussed in Section 4.4. The directed 

acyclic and conditional independence graphs for prior specification II with three 

families giving the observed data D1 , D2  and D3  are shown in Figures 6-1 and 

6-2, respectively. The full conditional distributions corresponding to the graph of 

Figure 6-2 are already given in this section. 

6.3 Adaptive Rejection Sampling From Log - con-

cave Density Functions 

An important family of univariate density functions is the family of log-concave 

density functions. This family includes many common probability density func-

tions see, for example, Gilks and Wild (1992). Firstly a formal definition of what 

is meant by log-concavity will be given. This is then followed by a description of a 

specific rejection sampling method for dealing with log-concave density functions. 

Log-concavity. Assume that the density function f(x) is continuous and differ-

entiable on an open convex set D in R (where D denotes the domain of f(x)). 

Then f(x) is called log-concave with respect to x if h(x)_-=.lnf(x) is. concave. 

everywhere in D, i.e., h'(x) = dh(x)/dx decreases monotonically with increasing 

x in D. This definition of log-concavity admits both straight line segments on the 

log density h(x) and discontinuities in h'(x). 

Non-adaptive rejection sampling (Rejection ampling). The log-concavity of a 

density function enables one to use specifically designed algorithms for the genera- 
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Figure 6-1: Directed acyclic graph of the Bayesian random effects model for 

prior specification II with three families s 1 , 3 2 and 53 giving the observed data D 1 , 

D2  and JJ. 

Figure 6-2: Conditional independence (undirected) graph for the Bayesian ran-

dom effects model for prior specification II. 
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tion of random variates. Rejection sampling is a method for drawing independent 

samples from a distribution (proportional to) f(x) and does not involve evalua-

tion of the integration constant ID  f(x)dx. This is very convenient for sampling 

from full conditional distributions, which are typically known up to a constant of 

proportionality. However, rejection sampling is only useful if it is more efficient 

or convenient to sample from the envelope function of f(x) than from the density 

f(x) itself. In practice, finding a suitable envelope function can be difficult and 

often involves locating the supremum of f(x) in D by using a standard optimiza-

tion technique (Gilks and Wild, 1992), which is a time-consuming maximization 

step. 

Adaptive rejection sampling. For Gibbs sampling, usually only one sample is 

required from each density, although sampling from many thousands of different 

densities may be required. Moreover, when estimating a model involving non-

conjugacy, evaluations of f(x) may be computationally expensive. In these cir-

cumstances rejection sampling may be very inefficient, since it may involve many 

thousands of optimizations, each involving several evaluations of f(x). Recently, 

Gilks and Wild (1992) have proposed an adaptive rejection sampling method of 

sampling from any log-concave univariate probability density function, which has 

the important advantage of avoiding such optimization. Their suggested algorithm 

is based on the fact that any concave function can be bounded by piecewise linear 

upper (rejection envelope) and lower bounds (squeezing function), constructed by 

using tangents at, and chords between, evaluated points on the function over its 

domain. Dellaportas and Smith (1993) applied this result to generalized linear 

and proportional hazards models with-canonical links. The detailed-procedure is__. 

as follows. 

Assume that we need to generate random variates from the univariate prob- 

ability density function f(x) 	exp h(x), say. Suppose h(x) and h'(x) have been 

evaluated at k ordered points in D: x1 	 ... < xk. Assume also that the 

mode of h(x) is between x 1  and xk, and that h(x) is continuous and differentiable 
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X 	 - x 2 	 x3 

Figure 6-3: A concave log-density h(x) for adaptive rejection sampling showing 

upper and lower hulls based on three starting values (x 1 ,x 2 ,x3) : ( ), h(x);  (-

- - - )' u 3(x); (.......), l(x). 

on a real interval (a, b), where a and b can be —oo or oo , and that the second 

derivative is non-positive throughout (a, b). Let 7), = {x : i = 1,. . . , k} and 

define the rejection envelope and the squeezing function on T,,, as expuk(x) and 

exp lk(x), respectively, where uk(x) is a piecewise linear upper hull formed from 

the tangents to h(x) at the abscissae in Tk 

uk(x) = h(x) +(x — x)h'(x) 	(j = 1,.. .,k) 

and lk(x) is a piecewise linear lower hull formed from the chords between adjacent 

abscissae in 7), 

L(x) = ( x +i  - x)h(x) + (x — xa)h(xj+i) 
	k - 1) 

xj+1 — Xi 

Finally, we define 

exp uk(x) 
Sk(X) =  ID exp uk(x

F
)dx 

Figure 6-3 illustrates a log-concave density showing upper and lower hulls based 

on three starting points. In this figure the continuous curve exemplifies a concave 

h(x) in a domain D, the upper broken curve is uk(x) and the lower broken curve 

is lk(x). 
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Thus the rejection envelope and the squeezing function are pairwise exponential 

functions. The concavity of h(x) ensures that lk(X) < h(x) < Uk(X) for all x in D. 

To sample n points independently from f(x) by adaptive rejection sampling, 

proceed the following algorithm. 

Initialization step 

Initialise the abscissae in Tk. If D is unbounded on the left then choose x 1  

such that h'(x i ) > 0. If D is unbounded on the right then choose xk such that 

ri h (Xk) < 0. Then calculate the functions uk(x), 5k(X) and lk(X). 

Sampling step 

Repeat until desired number of points have been sampled. 

Sample a value x from 3k(x)  and a value u independently from the uniform 

(0,1) distribution. Perform the following squeezing test: 

If u <— eXPIlk(X*) - Uk(X)} then 

Accept x 

Else evaluate h(x*)  and  h'(x*)  and perform the following rejection test: 

If u < exp{h(x*) - flk(X)} then 

Accept x 

Else 

Reject x" 

End if 

Updating step 

Include x' in Tk to form Tk+1, increment Iv, relabel the members of Tk in 

ascending order, construct the functions nk+1(x), sk+1(x) and 1k+1 (X) on the basis 

Of Tk+l. 
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End if 

End Repeat if n points have not yet accepted. 

The adaptive rejection sampling algorithm has two important advantages com-

pared with other existing general purpose methods for generating independent 

observations from a probability density function. 

Firstly, unlike the other existing methods for generating random variates from 

log-concave density functions, such as the rejection sampling or the ratio of uni-

forms methodrmoves the need to locate the supremum of f(x) in D. Except for 

some well-known densities, locating the mode necessitates the use of numerical op-

timization routines, which require an average of seven or eight function evaluations 

for the kinds of density arising from generalized linear models and proportional 

hazards models (Dellaportas and Smith, 1993). Gilks and Wild (1992) reported 

an average of three function evaluations per iteration to obtain one sample of size 

1 using the adaptive rejection sampling algorithm. 

Secondly, it is adaptive in the sense that after each rejection, the probability of 

needing to evaluate f(x) further is reduced by updating the envelope and squeezing 

functions to incorporate the most recently acquired information about f(x) (Gilks 

and Wild, 1992), because, with the addition of more points, the density function 

is closer to the upper and lower functions used to squeeze it. 

6.3.1 Adaptive rejection sampling and Gibbs sampling 

Gibbs sampling 

As was stated in Chapter 4, Gibbs sampling requires specification of the full 

conditional distribution for each parameter. The full conditional distributions 

of It, the s, or and are given in (6.9), (6.10), (6.11) and (6.12), respectively. 

Often the likelihood and prior forms specified in Bayesian analysis lead to the 
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distributions which are of a familiar form, such as the normals for IL and {s} given 

in expressions (6.9) and (6.10), respectively, or the inverse x2  for U2  in (6.11). In 

these cases, standard algorithms are available to generate random variates. 

Proportionality in (6.12) implies that the full conditional density for 'y differs 

from the right-hand side of expression only by a multiplicative term which does 

not depend on 'y. Unless there is conjugacy, the full conditional will not corre-

spond to a common distribution and it may not be possible to derive a closed 

form for the proportionality constant in expression (6.12). Moreover, since it is 

the product of several terms, expression (6.12) will be computationally expensive 

to evaluate repeatedly using standard algorithms. In this case, random variate 

generating methods such as the 'inversion method', the 'rejection 'method', the 

'ratio of uniforms method', the 'adaptive rejection method' or the 'adaptive rejec-

tion metropolis method' applicable to wide ranges of distributions, can be used. 

However, depending on the nature of the distribution family, an efficient choice of 

a method generally requires mathematical insight on the part of the designer of 

the sampling scheme, e.g. exploiting a property of log-concavity, or knowledge of 

certain density characteristics such as the supremum of the density or the explicit 

form of the inverse of the cumulative density function. In addition, owing to their 

'universality', these methods do not compete in efficiency with special purpose 

algorithms designed for the generation of random variates from popular densities. 

It is therefore evident that special care must be taken in both the choice and the 

design of such methods in the application of Gibbs sampling. 

Log-concavity 

The application of the adaptive rejection sampling method described earlier re-

quires the log-concavity of the full conditional distributions with respect to pa-

rameter of interest. When this is not so, the log-density may be concave with 

respect to a suitably transformed parameter (taking account of the Jacobian). 
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Therefore each of the terms in expression (6.12) should be checked whether they 

are concave on the logarithfnic scale with respect to 'y  so that adaptive rejection 

sampling can be used. The log density can be given as follows 

h(1) = ln{7 P,i,,YijI 

= —(s-2a+2)in7+(fl—l)ln(l-37 	 (6.13)
) 2 

For adaptive rejection sampling of y it is required that equation (6.13) is contin-

uous, differentiable and log-concave with respect to y. The terms in this expression 

are not concave with respect to when (s - 2a + 2) > 0 and 0 < 3 < 1, and 

consequently h(7) is not concave. 

The log transformation of 'y, 5 = in , can be used to obtain log-concavity for 

this density. The Jacobian of this transformation is e 6 . The transformed log 

density is given except for an additive constant by 

h(S) = ln[S 1L4, Si,  0,  yij] 

1 	 1 >T7....1 .s 

	

= —(s-2a)S+(/3—l)ln(l-3e5)— 	2  e , —cc<S<ln(1/3). 

(6.14) 

The second derivative of expression (6.14) with respect to S is 

82 h(S) - 13(/3 - 1)e 8  - 1 	Si2 e 	< 0. 	 (6.15) 
852 - 2(1-3e 8 ) 2 	2 a 

Thus condition (6.15) guarantees log-concavity when 0 > 1. A caution must 

therefore be taken when using h(S) in (6.14) since it is sensitive to the values of 

0. Especially, when 0 < 1 a prior probability density function tends to cc as 

tends to 1/3, which is not sensible. In this chapter, numerical examples will ke 

given for the cases where the value of /3 is greater than unity. 
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In cases where the full posterior conditional density is not log-concave, Gilks 

et al. (1993) generalised adaptive rejection sampling to include a Metropolis al-

gorithm step. This case will not be considered further in this thesis. 

6.4 Illustrative Examples and Results 

Adaptive rejection sampling has been applied to a Gibbs sampling analysis, of four 

data sets generated using one-way sire model when V. = 	= 1, s 2 = 0.025 and 

= 0.975 giving a = 0.4038 and 0 = 3.0678. Recall from section 6.2.1 that 

the values of a and 0 are determined by the values of v 3 , lie, 
 s and .s. Table 

6-1 illustrates the values of a and /3 for changing values of heritability, h 2  when 

V 8  =V, = 1 and s 2 + 82 = 1. It can be seen from this table that as h 2  increases /3 

decreases, and when h 2  is more than about 0.3, 0 becomes smaller than one. In 

this section examples will be illustrated for the case in which h 2  = 0.1, 82 
S 

= 0.025 

and s 2 
e = 0.975. The output from the Gibbs sampling procedure is used to present 

inference summaries for the parameters of the sire model. Moreover the results 

of this section using the prior specification II will be compared with those of the 

prior specification I. 

Table 6-1: Values of a and 0 corresponding to different values of h 2  for 

V 8  _V '  = 1. 

h 2 	s 2 	
8 2 
	a 	/3 

0.1 0.025 0.975 0.4038 3.0678 

0.3 0.075 0.925 0.3630 0.8400 

0.5 0.125 0.875 0.2700 0.2841 

Recall the form of the joint posterior density for the model parameters ji, 

and cr, given by the density function (6.8). By virtue of the earlier discussion, 



Chapter 6. An Alternative Prior Specification 	 134 

Gibbs sampling is carried out using the log transformation of 'y, S = In-Y; the 

exponential of expression (6.14) gives the full conditional posterior density function 

of 8 up to proportionality. At each iteration of Gibbs sampling algorithm, adaptive 

rejection sampling from this full conditional posterior density requires at least two 

points which can be used as initial points for the construction of upper and lower 

bounds. Since the parameter space for 8 is unbounded on the left, one of the 

initial points, 61  is chosen to satisfy the condition h'(8 1 ) > 0. After initializing the 

Gibbs sampling procedure with two points, replications of the iterative algorithm 

proceed independently and the 15th and 85th centiles of the sampling density 

sk(x) from the previous iteration of Gibbs sampling were used as starting values 

for adaptive rejection sampling. In cases where the two initial points did not lie 

on either side of the mode of the conditional posterior density, additional points 

were supplied. 

An assessment of convergence of the process was made by monitoring a number 

of summary statistics based on every 10 iterations for each parameter. In this 

section, 1,000 iterations of the Gibbs sampling procedure were performed, by 

which time convergence had clearly occured and direct numerical and graphical 

comparisons of marginal posterior densities with those from the prior specification 

I were made. Therefore the resulting marginal posterior summaries in Table 6-2 

were based on 1,000 iterations. 

The results in Table 6-2 seem to agree with those in Table 4-3 when v8  = v, =  

1.0 for 1,000 iterations. Marginal posterior densities for the model parameters 

01 
2 ,  o, 'y  and h 2  constructed from 1,000 samples for both prior specifications are 

shown in Figures 6-4 to 6-8, respectively. A visual inspection of the marginal 

posterior densities in these figures provides more insight into the comparison of 

the two prior specifications. The posterior distributions look very similar when t 

and o 2 are considered, but slightly less so when o, -y or 	are examined. 

As the basis for constructing hulls to deliver a variate value from the full 
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Table 6-2: Marginal posterior means and standard deviations of parameters for 

four data sets using prior specification II based on 1,000 iterations of the Gibbs 

sampler for a sire model with 25 families of size 20. 

92 
	 2

-y 

Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

DATA SET 1 

-0.0261 0.0731 0.0887 0.0388 1.0632 	0.0686 0.0837 0.0362 0.3047 0.1209 

DATA SET 2 

0.0716 0.0489 0.0119 0.0099 0.9836 	0.0625 0.0121 0.0100 0.0472 0.0383 

- DATA SET 3 

0.0407 0.0558 0.0288 0.0219 1.0200 	0.0660 0.0284 0.0217 0.1087 0.0797 

DATA SET 4 

-0.0311 0.0500 0.0182 0.0146 0.9677 	0.0620 0.0188 0.0151 0.0730 0.0568 

conditional density function of 5, an average of three evaluations of h(S) were 

required at each iteration by the adaptive rejection sampling. 

6.5 Conclusion 

The adaptive rejection sampling algorithm of Gilks and Wild (1992) can be used 	- 

for efficiently sampling from complex univariate densities. In particular, it is useful 

for applications of Gibbs sampling to the analysis of Bayesian models which involve 

non-conjugacy. 

The results of this chapter have clearly demonstrat(4that in animal breeding 

applications the use of different prior distributions leads to the same marginal pos-

terior inferences on each parameter when a balanced univariate one-way sire model 

with equal number of offspring per sire is considered for both prior specifications. 

This shows that the marginal posterior density is robust to changes in the prior 

specifications. In particular, no appreciable changes in the marginal posterior dis-

tribution are observed if the parameters of prior specification I is reparameterized 

from (o, o- ) to (-y,  c). The posterior expectations are very similar for different 

prior 'specification. 
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Figure 6-4: Marginal posterior density of IL from both prior specification for 

four sets of data, ( 	), prior specification I; (-----), prior specification II. 
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Figure 6-5: Prior (.....) and marginal posterior densities of c 2  from both 

prior specification for four sets of data, ( ), prior specification I; (-----), prior 

specification II. 
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Residual variance component 

Figure 6-6: Prior (.....) and marginal posterior densities of o from both 

prior specification for four sets of data, ( ), prior specification I; (-----), prior 

specification II. 

0, 
C 
0 
0 

0.0 	 0.05 	 0.1 	 0.15 	 0.2 

Gamma 

Figure 6-7: Prior (.....) and marginal posterior densities of ' from both 

prior specification for four sets of data, ( ), prior specification I; (-----), prior 

specification II. 
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Figure 6-8: Prior (.....) and marginal posterior densities of h 2  from both 

prior specification for four sets of data, 

specification II. 

), prior specification I (-----), prior 

Although conceptually straightforward, care must be taken in the implementa-

tion of adaptive rejection sampling when the log density is sensitive to the values 

of parameter (e.g. values of 0 less than 1 are not sensible). 



Chapter 7 

Theory of Selection Indices For a Single 

Trait 

7.1 Introduction 

The selection index employed in animal breeding refers usually to a linear com-

bination of observations that is used to compute, for each individual available for 

choice, a criterion (index value) for selection. The mathematical description of 

this linear function is called the selection index, I, and a numerical value actually 

computed by an index from the observations on a particular individual, the selec-

tion criterion. The selection of animals for breeding involves the choice of a subset 

of the individuals available on the basis of a number of measurements on each of 

them. These measurements may be made on the candidates themselves and their 

relatives or, as in the case of the selection of bulls in order to improve the yield or 

quality of milk, on their offspring or other relatives. 

The variation between individuals in the traits measured is partly the result 

of differences in genotype as well as the environment, and it is the genotype of 

an individual which determines its value for breeding. The breeding value of 

an animal is defined by a function - usually taken to be linear - of the genetic 

characteristics corresponding to the traits measured, this function being intended 

to reflect their economic value. 

Selection indices can be used for several purposes, e.g., 

[gI] 
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Selection on a single trait using information on an individual and its collat-

eral relatives. 

Selection on two or more traits using records on the individual alone. 

Selection on two or more traits using records on the individual and its rela-

tives. 

Selection of line-crosses using data in addition to that on the specific cross. 

The selection index procedure is strictly justified only for the case in which the 

information available on each candidate for selection is the same. More precisely, 

the records and underlying genetic value available on each individual are a random 

sample from some known population. In animal breeding this is seldom true 

Essentially the selection index developed and elaborated by the above men-

tioned authors is a linearly-weighted function of observations on an individual 

and/or its relatives for one or more traits, in order to select those individuals 

expected to have the highest breeding value and thus, the best progeny. Their 

theory is based on the assumption that the form of the distribution and the pop-

ulation parameters such as heritabilities and genetic and phenotypic correlations 

are known exactly. In practice, however, only finite samples from distributions 

indexed by those parameters are available in order to construct an index, and 

use of estimates based on the sample data rather than the true parameters will 

therefore lead to t less efficient index than one computed from the parameters 

themselves. Several studies have been undertaken of the effects of sampling vari-

ation in the parameter estimates and the loss in efficiency in terms of the size of 

the sample used for estimation by Williams (1962a, b), Harris (1964), and Sales 

and Hill (1976, 1977). 

Sales and Hill (1976) considered the effects of errors in estimates of parameters 

on the response from selection for one trait using an index combining individual 
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and full- and/or half-sib family records. They made some comparisons between 

the theoretically optimum progress, the predicted progress and the actual progress 

when the index computed from parameter estimates was used in the population. In 

a model where only one of two traits was assumed to be of economic importance, 

but the second trait might he correlated with it, Sales and Hill (1977) showed 

that inclusion of the second trait (i.e. use of the estimated rather than the base 

index) was likely to be worthwhile only when reliable estimates of parameters are 

available. Further, they showed that, if the second trait really contributed nothing 

useful, the greater the benefit predicted from its inclusion, the greater the real loss 

in efficiency if it were included. 

In a simply designed experiment with non-overlapping generations, response to 

selection may be estimated using least-squares procedures as the phenotypic mean 

of the offspring of selected parents. Sorensen and Kennedy (1984) discussed and 

compared properties of the least-squares estimators of selection response and an 

alternative estimator based on mixed model procedures. Sorensen and Kennedy 

(1986) extended their earlier results through computer simulation. Both stud-

ies concluded that mixed model methods can offer advantages over least-squares 

techniques. 

An alternative way of estimating response to selection is to use a mixed model 

approach. Henderson (1975) has shown that when selection involves culling on 

the basis of past performance then under certain conditions, the mixed model 

equations without selection lead to best linear unbiased estimators (BLUE) of 

estimable functions of fixed effects and best linear unbiased predictors (BLUP) of 

the random effects of the model. In fact, these estimators and predictors are the 

same ones that would be obtained if it is assumed that selection has not occured. 

These conditions are: 

i) the model is correct one; 

ii) selection is on a linear function of the records, 
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the ratios of the variances of the random effects prior to selection are known 

(e.g. heritability), 

the random effects before selection are multivariate normally distributed, 

and 

selection is invariant to the fixed effects in the model. 

Many selection programmes in farm animals are based on BLUP using mixed 

model equations in order to predict breeding values and rank animals for selec-

tion. Section 2.4.5 describes the prediction of breeding values for a single trait 

sire model. The condition Hi) of the BLUP is in common with selection index. 

Therefore, the predictions of the breeding values and genetic means, which are 

computed as the average of the BLUP of the genetic values of the appropriate 

individuals, depend on the variance ratios such as heritability. In turn, the esti-

mates of genetic change which is expressed as the regression of the mean predicted 

additive genetic value on time or on appropriate cumulative selection differential 

(Blair and Pollak, 1984), depends on the ratios of the variances of the random 

effects used as prior values for solving mixed model equations. 

So far it has been assumed that the heritability or the ratios of the variances of 

the random effects in the base population is known and used in the mixed model 

equations to compute response to selection. What can be done if the initial heri-

tability is not known? There are at least two approaches to follow. One is to use 

a prior value based on information from the literature. Sorensen and Kennedy 

(1984) tested the use of a wrong prior value in their simulation to compute re-

sponse using mixed model equations. Henderson (1975) showed that predicted 

breeding values are biased when the prior value is regarded as constant. The 

other approach is to obtain an estimate from the data. One can obtain an esti-

mate of the base population heritability using the REML estimate or some other 

estimate. The estimate can then be used in the mixed model equations to compute 



Chapter]. Theory of Selection Indices For a Single Trait 	 143 

the response. Some properties of the BLTJP estimator of response computed by 

replacing unknown variances by likelihood estimates were examined by Sorensen 
to 

and Kennedy (1986). In view of these approaches, it is reasonableexpect that 

the statistical properties of the BLUP estimator of response will depend on the 

method with which the prior heritability is estimated. 

One should notice that in the second approach taken above, the prior value 

is not a constant but a random variable. If the estimator is unbiased, the ex-

pected estimate of response should equal the true response, assuming the model 

is correct (condition i) of BLUP). No other properties of BLUP are known and 

these would be difficult to derive because of the nonlinearity of the predictor. In 

selected populations, frequentist properties of predictors of breeding value based 

on estimated variances have not been derived analytically using conventional sta-

tistical theory. Moreover, there are no results from conventional theory indicating 

which estimator of heritability should be used. Although the REML estimator 

is an appealing candidate there has been some ambiguity about frequentist prop-

erties of likelihood-based methods. For example, it is not known whether the 

maximum likelihood estimator is always consistent under selection. In conclusion, 

the problem with conventional statistical methods is that sampling distributions 

of estimators of response are difficult to derive analytically when variances are 

unknown and one must resort to approximate results. 

However, Sorensen and Johansson (1992) suggested that this problem has a 

rather simple solution within a framework of Bayesian method. The posterior dis-

tribution of breeding values and parameters is the same with or without selection 

or assortative mating (Gianola and Fernando, 1986). Therefore, given data and 

prior knowledge, any decision rule based on a posterior distribution will be un-

affected by non-random mating of individuals. Inferences about breeding values 

or selection response are made using the marginal posterior distribution of the 

vector of breeding values or from the marginal posterior distribution of selection 

response. The mean of the posterior distribution of random sire effects given the 
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data can be viewed as a weighted average of BLUP predictions and the weighting 

function is the marginal posterior density of the variance components (Gianola et 

al., 1986). When the information on heritability in an experiment is large enough, 

the marginal posterior distribution of this parameter should be nearly symmetric 

(Wang et al., 1993). This implies that the modal value of the marginal posterior 

distribution of heritability is good approximation to its posterior expectation. in 

this case, Gianola et al., (1986) approximated the posterior distribution of selec-

tion response by replacing the unknown heritability by the mode of its marginal 

posterior expectation. However, this approximation maybe poor if the experiment 

has very little information on heritability. 

The purpose of a selection procedure may be regarded as the choice of individ-

uals whose breeding values are high relative to their expectations if no selection 

were carried out. Since the breeding values cannot he measured directly, any se-

lection procedure has to be based on information in the various measurements 

using a selection index. Information on the performance of a candidate's relatives 

can usually be combined with the individual's own performance because of the 

correlations between measurements on relatives which arise from their common 

inheritance. The precise form of the joint distribution of the breeding values and 

the traits measured is generally unknown, but some knowledge of this distribu-

tion may be provided by genetic theory, by experience of similar populations and 

by data on animals from the same population. The coefficients in the index are 

usually replaced by point estimates of genetic and phenotypic parameters, but 

these estimates may be poor even when data on hundreds of animals are used. 

Therefore, the use of point estimates can lead to very inefficient selection decisions. 

Theobald (1994) argues that the process of selecting from a set of candidate 

animals for breeding needs to be treated in terms of decision theory; this argument 

is outlined in Section 7.3. Rao (1975) gave a detailed study of decision theory in 

the construction of a selection index. He used the genetic characteristics measured 

on the individuals. However his method gives the simultaneous estimation of 
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breeding values rather than the selection of individuals. More recently, Gianola 

et al., (1990b) defined a loss (or utility or merit) function within a Bayesian 

framework to choose a predictor of an unobservable vector, such as a vector of 

breeding values, but their concern was not directly with selecting animals with 

high genetic value for breeding. 

This chapter focuses on the use of decision theory for a single trait using data 

on candidates themselves and their relatives. The utility of selecting a given num-

ber of candidates is taken to be proportional to the sum of their breeding values 

measured as deviations from their expected values without selection. The conven-

tional theory of selection index is outlined and Bayesian decision procedures are 

contrasted with conventional procedures. A full implementation of the Bayesian 

approach to inferences about variance components and their functions using a sire 

model and simulated data is given in Chapter 4. Application of the Bayesian 

approach to the analysis of selection experiments yields the marginal posterior 

distribution of response to selection, from which inferences about it can be made. 

In this chapter marginal posterior distributions are obtained by means of Gibbs 

sampling. 

7.2 Conventional Theory of Index Selection 

The selection of individuals for a single trait will be considered here. For single 

traits the general theory for selection indices (Sales and Hill, 1976) is the fol-

lowing. Suppose that information is available from t sources on each candidate 

for selection and perhaps certain of its relatives. For example t = 2 for indi-

vidual performance and its half-sib family mean performance.. Let x 1 , x 2 ,. . . , Xt 

denote the variables corresponding to these t sources and x the t-vector containing 

these variables (for example phenotypic observations, daughter averages, predicted 

breeding values). It is assumed that selection is to be carried out from among a set 



Chapter 7. Theory of Selection Indices For a Single Trait 	 146 

of possibly-related candidates on the basis of x. In the context of animal breeding, 

the observed measurements are phenotypic values and the objective is to use the 

observed phenotypic values to choose candidates of high genetic worth as parents 

of the next generation. An index with a vector of t index weights b 

I = 1: bkXk 

= b'x 
	

(7.1) 

is then required which is best in some sense for indicating the genetic merit of 

the individual. The q individuals selected will be those whose value of I is the 

greatest. 

Assume that the breeding value, A, and the selection index value, I, have a 

joint bivariate normal distribution with mean vector it = (PA,pI) and variance 

matrix 

UA Q4 

CAl 91 

where CAl is the covariance between the breeding value of the trait in the individual 

and the index, 0,2  is the additive genetic variance and a is the variance of selection 

index. For any particular group of animals selected on the basis of the index, it 

will have a mean index value I, and mean breeding value A. The expected value 

of the mean breeding value is then 

CAl - 
E(AI) = pA + Tq a1  

The expected genetic progress (response), R, can be considered to be the difference 

between the mean breeding value of the selected group and that of the parent 

generation. Hence, the expected genetic progress would be 

Al - 
R= ff_(i 
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Rewriting this, R can be expressed in terms of the correlation between the breeding 

value of the trait in the individual and the index, PAL 

R = 
O-j 

where (I - 1u')1a'  is the selection differential or selection intensity denoted by i 

and taken as unity throughout this thesis. For any given population and constant 

value of (I - M')/°1, the response in the breeding value (A) of the trait is max-

imised when the correlation between breeding values and the index is a maximum. 

This correlation is maximized by taking the regression of breeding value on the 

observations of those individuals who are candidates for selection. The response, 

expressed as a ratio of the selection differential in standard deviations, is then 

R = PAI 5A 

= b'ag (b'Ep b)4 , 	 ( 7.2) 

where E is the t >< t variance matrix of the observations x, and cr is the vector 

of t covariances of observations with breeding value of the individual (or in the 

multiple-trait case E g  which represents the genetic variance matrix). Maximiz-

ing the correlation, PAl,  in (7.2) is equivalent to minimizing the sum of squared 

deviations of index values from the linear regression of I on A, i.e., E(i - A) 2 
 

The resulting values of the b are then the partial regression coefficients of the 

individual's breeding value on each measurement. This is possible when the index 

weights are given by 

 EP 1 = 	 (7.3) 

giving the theoretical maximum response 

= (alE_lag)4 	 (7.4) 

In practical situations, there will be estimates E, and ô of the population 

parameters E and a 9 . The weights of the estimated index, I, are usually given 
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by substitution in (7.3) as 

01 

	 (7.5) 

The estimate of progress, which will be denoted by h, is obtained by substituting 

the estimates for the parameters in (7.4) 

= (&;E;1 a9 ) . 	 (7.6) 

The achieved progress obtained using an estimated index, I = b'x, for selection 

in the population is given by 

= Cov(A,I)[Var(I)] -4  

= Cov(A,I) 

0•1 

= 

= 	
/ 	

. 	 (7.7) 

	

(&9E'EE'fr9 )4 	- 

In this expression the variance and covariance are conditional on b. The achieved 

progress in (7.7) is the progress which would result if selection were carried out in 

an infinite population and ignores sampling error of selection due to finiteness of 

the selected population. It also ignores any relationship between the candidates 

and the animals on whom the estimates are based. The actual progress, 

will always be less than or equal to the response R obtained using the optimum 

weights. This follows from the fact that the correlation between values for the 

optimum index, I, and the values for the estimated index, I, is equal to R'/R. 

Since correlation coefficients are bounded by +1 and —1, it follows that R" varies 

between +R and —R. With more accurate estimation, the value of W will be 

closer to the R value. 
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Formulae (7.6) and (7.7) enable estimated and achieved progress to be com-

pared with optimum progress for any specified set of parameter estimates (Sales 

and Hill, 1976). When the estimates are obtained from a sample of data on in-

dividuals from the same population, it is useful then to consider the expected 

values of B and W, and their deviation from B over conceptual replicate samples 

of data. Since larger samples of data would give, on average, better estimates 

of parameters, the problem becomes one of specifying adequate sample sizes to 

obtain a reliable index. 

7.2.1 Assessment of progress from individual and family 

mean performance 

The parameters E and c, may be estimated from analyses of sib or offspring-

parent data. In this section, estimates of E and o, are obtained from analyses 

of paternal half-sib data. Precise values for expectations of response have been 

obtained for data from a balanced one-way classification of paternal half-sib fam-

ily. For an index of individual and family mean performance, the index weights, 

estimated and achieved responses are expressed in terms of the heritability, f2  and 

phenotypic variance o,. 

Individual and half-sib family mean performance 

Consider a situation where a trait is measured on members of paternal half-sib 

families. By symmetry, a linear index for selecting individuals from such families 

depends only on the individual's value for the trait and the average value for its 

half-sibs, or equivalently, on the individua?s performance and the family mean. 
41 

Slightly more conveniently, the index may be based on, say, x 1 , the individual's 

performance measured as a deviation from the family mean and x 2 , the family 

mean. An index can then be constructed as follows 

I = b1 x 1  + b2x2. 
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Following Sales and Hill (1976), the variance matrix of the vector x of these 

variables, EP,  and the vector of their covariances with the breeding value of the 

individual, o, are given as 

C2  [(fl_1)(4_h2) 
P 	

_.L 0 	1 
(7.8) - 4 	

[ 	0 	
4+(n _1)h2 j 

h2  P2 [3(m—l) 1 
Cg 	

[ n+3 j 	

(7.9) 

where o is the phenotypic variance, h2  is the heritability, and ii is the family 

size (including the individual), assumed to be the same for all families. If the 

parameters a and h2  were known without error, the vector of index weights from 

(7.3) would be 

3/? 
4—h 2  

= 	 . 	 (7.10) 

(n+3)h2  
4+(n-1)h2  

It should be noted that the weights in (7.10) depend only on h2 . 

From (7.4) R 0  can be obtained as follows 

	

= 	 +4 +(n  l)h2} 
h2  cp{9(n_l) 	

(n+3)2 
2 	4—h2   

2  = ha {i + 	
(n - 1)(1 - h 2 ) 2 
  

(4—h2)[4+(n— i)h2} }  

The estimated progress R for an index based on estimates h2  and 0,2  is found 

by replacing the corresponding parameters in (7.8)-(7.11). - The achieved progress 

from an index based on can be obtained using (7.7) as 

- h2cpJ9(n_l)+ 	(n+3)2 
- 2 (4_h2 ) 	[4+(n-1) 

X  t 9(  - 1)(4 - h2) + (n + 3)2 [4 + (n - 1)h 2 ] 
 . 	(7.12) 

(4 - h 2 ) 2 	[4 + (m - 
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Since the phenotypically iu,erior animals are selected for breeding and if is neg-

ative when using a negative estimate of h 2  to compute the index, it is necessary 

to decide what to do about unreasonable estimates of h2 , which are values out-

side the range 0 to 1 for half-sib families assuming no environmental correlation 

between sibs. The probability that the estimate of heritability, h2  will fall outside 

this range decreases as the total sample size increases, but is still appreciable even 

with fairly large samples if h2  is small. For example, if h2  is estimated from 25 

sire families each of size 20 offspring the probability of a negative estimate is 0.11 

when the true value of h2  is 0.1 (see Table 4-6). The modification used by Sales 

and Hill (1976) was that the estimate of h2  was set to the appropriate limiting 

value if it fell outside the range 0 to 1. However, this causes a discontinuity in 

R'. Instead, we observe that the coefficients b1  and b2  in (7.10) are positive for 

positive /t 2  and that selection decisions depend only on their ratio b2 /b1  given by 

- (n + 3)(4 - h2) (7.13) 
- 3[4+(n _1)h 2 ] 

As h 2  tends to zero, (7.13) tends to a finite limit of 1 + n/3. Since the index 

remains well-defined in the limit, we use the corresponding limit of if given by 

R = 

_1  
x { 	

( bl) 
(n - 1)(4 - /t2) +b22 [4+ (n - l)h2] 	

2 	
(7.14) 

R' in (7.14) defined in terms of the coefficients of a general index with coefficients 

b 1  and b2  is simpler and more general than (7.12). Then the same formula applies 

to the Bayesian index which will be given in the next section. 

The expected loss in response obtained using estimates of parameter values 

relative to that from the optimal index is expressed as a proportion of the optimum 

response by the proportional loss in response, 

L— E(R")—R 
R 
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Assuming s is sufficiently large that terms in s - 1 are well approximated by s, 

the loss in efficiency (Sales and Hill, 1976) is given approximately by 

L- - 
	9(n + 3)2  (4  - h2 )[4 + (n - 1)h  2] 	

(7 15 
- 16sn {(4 - h 2 )[4+ (ii - 1)h2 1 + (n - 1)(1 - h 2 ) 2 } 2  

7.3 Bayes Theory of Selection 

Theobald (1994) argues that the selection of farm animals for breeding on the 

basis of their quantitative characteristics can be treated as a decision problem in 

which the utility of choosing a given number of individuals in a single stage of 

selection is taken to be proportional to the sum of the corresponding breeding 

values measured relative to their expectations without selection. An outline of the 

theory is given in this section. 

This section is concerned with the use of decision theory in determining selec-

tion procedures for a single stage of selection, using data from individual's perfor-

mance and related candidates. The assumption is made that the joint distribution 

of the breeding values and the measurements on the candidates is specified apart 

from the values of a finite number of parameters, for example 9 = ( pt, {s}, o, or 2 ) 

in the model of Section 4.2, and that a joint prior distribution for these parame-

ters is available. It is also assumed that a utility function expressing the economic 

value of selecting a particular set of candidates for breeding is specified. 

It is assumed that there is information available on a vector of unknown pa-

rameters, 9, from two sources; firstly from a prior probability distribution P with 

density f(9) defined over the parameter space ft and secondly, from data Y taken 

on a set of individuals which are independent of the group from which the selection 

is to be made. We also have a collection of observations on the candidates denoted 

by x. 

Suppose that the random variable denoted by A i  is the breeding value associ- 

ated with each animal as measured as a deviation from its expectation and that 
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the selection of one or more individuals is intended to maximize, as far as possible, 

the breeding values of the chosen individuals relative to their expectations with-

out selection. In what follows, some consequences will be examined of taking the 

utility of selecting a set of given size of the individuals to be, apart from the cost 

of the programme, proportional to the sum of the corresponding breeding values 

measured relative to their expectations (E(A j  1 0, x)) without selection; the cost 

of the programme will be assumed not to depend on 9. Let C denote the index 

set of a given size q corresponding to the individuals chosen for breeding. Then 

the utility of selecting q individuals for breeding is assumed to be proportional to 

L A, 	 (7.16) 
iEc 

where subscript i corresponds to the q candidates chosen. The utility expression 

in (7.16) might be regarded as defining the genetic progress resulting from the 

selection. It is, however, different from the progress R defined previously in Section 

7.2 since the progress in (7.16) refers to selection from a finite population while 

that in Section 7.2 refers to selection from an infinite population. 

The posterior expectation E[E(A 6,x) I P, Y] of A i  is 

E [E(A i  10, x) I F, Y] = j E(A j  10, x)f(9 1 F, Y)d9 	(7.17) 

where the posterior density of 9, f(9 1 F, Y), is proportional to the product of the 

prior density of 9, f(9), and the density of Y given 9, f(Y 9). The calculation 

of (7.17) will in general require numerical evaluation of multiple integrals. In some 

cases the choice of a prior distribution from a suitable family of distributions may 

make it possible for some stages in the integration to be performed analytically. 

However it can be obtained using Gibbs sampler algorithm which is a Monte Carlo 

numerical integration method discussed in Chapter 4. 

The Bayes selection procedure is that selection of q animals which maximizes 

the posterior expected utility; it is determined in this case by the index set maxi-

mizing the expectation of the utility function in (7.16) with respect to the random 

variables A1 and 0 given the prior distribution and the observations. 
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If the regression of breeding value on the vector of phenotypic variables is linear 

then the index weights b in (7.1) are replaced by the posterior expectations of the 

regression coefficients, giving 

13  = E[E(A j O,x)P,Y] 

= E(b1  I P,Y)x i  + ... +E(b P,Y)x 

= b31x1 + . . . + bBX 

	

= bx, 	 (7.18) 

where 13  represents the Bayesian index, and E(b1  I P,Y), ... ,E(b P,Y) are 

the marginal posterior expectations of the coefficients which are given for a single 

trait by 

3h 2 	 (it + 3)'i2  

	

bB 1= 4h2 	b32= 4(1)h2 

Thus the Bayesian procedure for selecting q animals will be to select the q animals 

for which the associated 13 is highest. If one wants to compare the performance 

of different selection indices based on the same experimental data, Y, x has to be 

treated as random, and in the linear case the distribution of b'x and bx should 

be considered. In the Normal case at least, it is more convenient to treat mass 

selection, as in Section 7.2. For selecting q candidates, we need to consider W and 

its posterior expectation. To compare selection methods we also need to treat Y 

as random, so that b and b 3  are also random. 

From (7.7), the achieved progress using the Bayesian index 13 is given by 

RB = Cov(A,13)[Var(13)] 2 

1 
= b3oj,(b3Eb3)2 
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or 

= h2a 
2v{3bBl(n - 1) + bB2(n + 3)} 

1 

x {b i (n - 1)(4 - h 2 ) + 	+ (n - 1)h 2] 	 (7.19) 

Several other types of indices might be considered. For example, other alterna-

tives would be to replace b2  with one obtained from using the marginal posterior 

expectations and ANOVA estimates. Then these expressions for the selection 

progress could each be used for theoretical comparisons of selection procedures 

given the number and relationship of the animals in the set of candidates. If 

R(O, b) denotes the response from using an index with weight vector b when true 

parameter value is 0, then the following types of selection responses together with 

their notations can be defined: 

Optimum selection response for 9 is R0 , or J?(9,) = R(6 0 , b 0 ), where b 0  

is the optimum vector of index weights for 9. 

E(BA, bA) is the estimated selection response at the ANOVA estimate of 6 

on which the index based. 

W(0 0 , bA) is the achieved response using index weight vector bA given the 

true parameter value 9,. 

The posterior expected response using an!j  vector of coefficients b, 14(b) can be 

given by 

R2(b) = JR"(6 b)f(O I P,Y)dO 

for data Y and prior information P. The following two responses are obtained in 

this way. 

4. Posterior expected response as a function of bA is RP(bA). 
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Posterior expected response as a function of Bayesian index weights bB is 

R(bB). 

The estimated selection response as a function of posterior expectations of 

9 and b from Gibbs sampling is given by P(ÔPE, bpE). 

The achieved response as a function of the true parameter values and pos-

terior expectations from Gibbs sampling algorithm is W(9 0 , bpE). 

The achieved selection response as a function of the true parameter values 

and Bayesian index weights b B  is W(9 0 , bB). 

7.4 Results From Individual and Half-sib Family 

Mean Performance 

Values of the response achieved, W, are plotted for two family sizes, n = 20 and 

ii = 5, and several different values of h2  against estimates h 2  and estimates (b2 /b1 ) 

of the ratio of index weights in Figures 7-1 and 7-2, respectively, in a half-sib 

family structure where the phenotypic standard deviation is assumed to be equal 

to 1. It is seen that R  is rather insensitive to the estimate of heritability, h 2 , 

a range of 0.4 or more in h2  about the correct value h2  having little effect on 

response. The predicted response, 1?, is also illustrated for three possible values 

of the phenotypic standard deviation, &,, 0.8, 1.0 and 1.2. It can be seen that R 

is very sensitive to the value of h2 , as would be the case with individual selection, 

since R is roughly proportional to h 2  and also to the estimate, 6, of the phenotypic 

standard deviation. If h 2  were estimated outside the range 0 to 1, R would be 

much less sensitive to /2  and although not shown in Figures 7-1 and 7-2, would 

not lead to negative values of B" when h2  was negative. 
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Figure 7-1: Achieved response (if) plotted against the estimate (h 2 ) of the 

heritability for half-sib families of sizes ii = 5 ( - - - - - ), n=20 (-),and  

several values of h 2  (0.1, 0.2, 0.4, 0.6 and 0.8). The predicted response (R) is 

shown for n = 20 and three values of the estimate ((5r,,) of the phenotypic standard 

deviation, o,, (1 = 1.2, 2 = 1.0 and 3 = 0;8). For illustration u = 1 and the 

horizontal lines show the achieved response from individual selection. 

When obtaining numerical results it is necessary to decide what to do about 

unreasonable values of ANOVA estimates h 2  of heritability, which are values out-

side the range 0 to 1 for half-sib families assuming no environmental correlation 

between sibs. The probability that h 2  will fall outside this range decreases as the 

total number sample size increases, but is still appreciable even with fairly large 

samples if h2  is small. For example, as can be seen from Table 4-6, h 2  is estimated 

from 80 sire families of size 8 there is a 14.2% chance that h 2  will be negative when 

the true value of h2  is 0.1. With the half-sib structure employed in this study, 
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Figure 7-2: Achieved response (R 0 ) plotted against the estimate (h 2 ) of the 

heritability for half-sib families of sizes n = 5 (-----), n = 20 ( ), and several 

values of h 2  (0.1, 0.2, 0.4, 0.6 and 0.8). The predicted response (R) is shown for 

n = 20 and three values of the estimate (ô) of the phenotypic standard deviation, 

a,,, (1 = 1.2, 2 = 1.0 and 3 = 0.8). For illustration a,, = 1 and the horizontal lines 

show the achieved response from individual selection. 

using estimates of parameter values, E, if it fell outside the range 0 to 1 by setting 

j2  to the appropriate limiting value. 

When calculating the achieved response a slightly different approach is taken. 

In order to prevent a discontinuity in if due to setting the estimates of h 2  to the 

appropriate limiting values if they fell outside their permissible range, the limiting 

values are replaced with the corresponding I2  in the ratio of index weights b2 /b1 . 

The achieved response if is then calculated as a function of this ratio. 

It should be noted that when Gibbs sampling method instead of ANOVA is 
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Figure 7-3: Values of L, the expected proportional loss in response, for several 

values of the heritability (h 2 ) and half-sib family sizes (n). 

used there would be no problem of obtaining unreasonable values of estimates of 

h 2 . There will therefore be no need to employ such modifications discussed above. 

Values of the proportional loss in efficiency, L, when the same design is adopted 

for estimation and use of h 2  are illustrated in Figure 7-3. The proportional loss 

in this figure is expressed when there is one family. Therefore the actual loss is 

that shown in the graph, divided by the number of families. For example, with 

half-sib families of size 8 and h 2  = 0.2, the graph gives L = — 0.2822, equivalent 

to a proportional loss of —0.0028 or —0.28% from an analysis on 100 sire families. 

As can be seen from Figures 7-1 and 7-2, the index contributes more to progress 

with larger families and the curves of achieved response, W, against h 2  or 

show a more pronounced maximum (Sales and Hill, 1976). The proportional loss 

is not very sensitive to change in family size. 



Chapter 7. Theory of Selection Indices For a Single Trait 	 160 

7.4.1 Results From a Simulation Study of a Balanced. Sire 

Model 

Preliminary results 

A preliminary analysis of selection responses is carried out using the four original 

data sets generated employing a nnivariate one-way sire model (4.1) in Chapter 

4. Examples are illustrated for the case in which h 2  = 0.1 and C2 = 1, so that the 

optimum selection response in equation (7.4) is R.pt  = 0.1292. The estimated and 

achieved selection responses, R(OA, bA), W(0 0 , bA) resulting from using ANOVA 

estimates together with the estimates of heritability and phenotypic variance are 

given in Table 7-1 for the four sets. Data set 2, giving a negative ANOVA estimate 

of h 2 , produces E = 0.0 because of the modification on A 2 . However R" for the 

same data set is greater than zero since it is a function of both the true parameter 

values and the modified ratio of index weights b2 /b1 . 

Table 7-1: ANOVA estimates of It 2  and 0.2  and estimated and achieved selection 

responses, R(OA, bA), R'(90, bA) using ANOVA estimates for four data sets. 

Data Set 	j2 	ar 2 E(AA, bA) f(0 0 , b) 

1 0.3058 1.1439 0.3659 0.1243 

2 -0.0732 0.9843 0.0000 0.1279 

3 0.1097 1.0429 0.1433 0.1292 

4 0.0518 0.9785 0.0701 0.1288 

Gibbs sampling with 1,000 iterations was carried out for these four data sets 

to obtain selection responses for indices based on the Bayesian index and posterior 

expectations of parameters as well as ANOVA estimates. Summaries of resulting 

selection responses, R(bA), R(b2), E(ÔPE, bpE), R"(6 0 , bJE) and R'(90, bB) 

for different prior degrees of freedom v 5  = lie (0.0, 0.5 and 1.0) and four ways of 
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implementing Gibbs sampling (see Section 4.7.1 for the implementation of Gibbs 

sampling) are given in Table 7-2. As can be seen from this table the estimated and 

posterior expected responses are very low when the prior degrees of freedom are 

zero suggesting the Gibbs samples entered a black hole explained in Section 4.5.3. 

Overall there does not seem to be any difference between the way in which the 

Gibbs sampler is implemented. Hence the simplest, implementation 1, is chosen 

for further analysis and making inferences about selection responses. Selection 

progress, namely R(bA) is chosen for illustrative purposes. Marginal posterior 

densities corresponding to this selection response for four data sets are shown in 

Figure 7-4. As can be noted from Figure 7-4, marginal posterior densities look 

almost like the densities of h 2  in Figure 4-8. 

In Tables 7-1, and 7-2, selection responses shown with a hat, P, are obtained 

from estimative procedures, either using ANOVA or Bayesian estimates. They 

indicate how well an animal breeding practitioner thinks he will do. Therefore the 

results from these responses overestimate the optimum selection response, 11opt• 

On the other hand, selection responses denoted by H' are more realistic than 

R since they give implication of how much one has achieved from the selection. 

Consequently, the results of the achieved responses, H', are less than or close to 

the optimum response. The responses with a subscript p, R, are more realistic 

compared with the estimated responses, R. One can be expected to obtain the 

most realistic selection response from using Bayesian point prediction procedure, 

R"(9 0 , bpE). The responses obtained from estimates of the parameters such as 

P(bA, bA) and E(b 2 , bpE) and also W(9 0 , bB) in Table 7-2 do not give 

\realistic results and can therefore be excluded from any comparison. When 

making comparisons between different alternatives of selection responses, it is 

sensible to use the achieved responses from ANOVA estimates and Bayesian 

point estimates when v3  = il, = 1, R(9 0 , bA) and H'(9 0 , bpE), respectively. It 

can be clearly seen from Tables 7-1 and 7-2 that achieved responses from Bayesian 

point estimates, H'(9 0 , bpE) give much superior results over the corresponding 
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Table 7-2: Selection responses, R2 (bA), R(bB), .ñ(ÔPE, bp-,), R 0 (00 , bpE) 

and R0 (0 0 , b2), using Gibbs sampler and ANOVA from preliminary analysis of 

four data sets for different prior degrees of freedom v 3  and V 6 . 

= y e  R,(b) Rp(bB) A(9p 5 , bp5) R(O 0 , bpp) Ra(8, b5) 

DATA SET 1 

Implementation a) 

010 0.3641 0.3644 0.3706 0.1243 0.1229 

0.1 0.3706 0.3710 0.3769 0.1239 0.1227 

1,0 0.3518 0.3520 0.3576 0,1246 0.1235 

Implementation b(i) 

0.0 0.3566 0.3568 0.3632 0.1244 0.1232 

0.5 0.3635 0.3638 0.3700 0,2242 0.1230 

1,0 0.3445 0.3446 0.3507 0,1248 0.1236 

Implementation c(i) 

0.0 0.3654 0,3658 0.3727 0,1241 0.1230 

0,5 0.3688 0.3693 0,3758 0,1240 0.1227 

1,0 0,3387 0,3388 0,3454 0.1250 0,1238 

Implementation b(ii) 

0,0 0,3650 0,3654 0,3720 0.1241 0,1228 

0.5 0,3720 0,3724 0,3788 0,1239 0.1226 

1,0 0.3459 0,3461 0.3521 0,1248 0,1235 

Implementation c(ii) 

0,0 0,3688 0,3693 0,3759 0,1240 0,1226 

0.5 0,3798 0.3805 0,3869 0.1236 0.1222 

1,0 0,3374 0.3375 0,3439 0,1251 0,1239 

Implementation b(iii) 

0,0 0,3555 0,3557 0,3624 0,1244 0,1231 

0.5 0,3628 0,3631 0.3695 0,1242 0,1229 

1,0 0,3398 0,3398 0,3459 0,1250 0,1239 

Implementation c(iii) 

0,0 0,3700 0.3705 0,3768 0,1239 0,1226 

0.5 0.3742 0,3748 0,3808 0.1238 0,1226 

110 0.3466 0,3468 0,3535 0.1248 0.1235 

DATA SET 2 

Implementation a) 

0.0 0,0064 0.0065 0,0069 0,1274 0,1287 

0.5 0.0558 0,0559 0.0575 0,1285 0.1289 

1,0 0,0640 0.0642 0,0656 0,1287 0,1289 

Implementation b(i) 

0,0 0,0048 0,0048 0,0051 0,1273 0,1286 

0.5 0,0582 0,0584 0,0599 0,1286 0.1289 

1,0 0.0626 0,0628 0.0642 0,1287 0,1289 

Implementation c(t) 

010 0.0020 0.0020 0.0021 0,1272 0,1285 

015 0,0568 0,0569 0.0586 0,1286 0,1289 

1.0 0,0618 0,0620 0.0635 0.1286 0,1289 

Implementation b(ii) 

0.0 0.0027 .0.0027 0.0028 0,1272 0,1285 

0.5 0,0580 0,0582 0,0598 0,1286 0,1289 

1.0 0.0626 0,0628 0,0643 0,1287 0,1289 

Implementation c(ii) 

0,0 0,0008 0,0008 0,0009 0,1272 0,1287 

0,5 0,0600 0,0602 0,0620 0,1286 0.1290 

1,0 0,0630 0.0632 0,0647 0.1287 01289 

Implementation b(iii) 

0,0 0,0022 0,0022 0,0023 0,1272 0,1283 

0,5 0,0580 0,0582 0,0596 0.1286 0,1289 

1.0 0,0630 0,0632 0,0648 0.1287 0.1289 

Implementation c(iii) 

0.0 0,0005 0.0005 0,0005 0,1272 01279 

0.5 0,0569 0.0570 0,0586 0,1286 0,1289 

2.0 0,0626 0,0628 0,0643 0,1287 0,1289 
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Selection responses, R(bA), R(b), E(PE, bpE), 	(8 0 , bps) and R'°(6 0 , bB), 

using Gibbs sampler and ANOVA from preliminary analysis of four data sets for 

different prior degrees of freedom v 3  and v6 . 

continued from Table 7-2.... 

U, = v, R,(b) R,(bB) i1<PE, bpE) R'(O, 	bps) fla(90, b0) 

DATA SET 3 

Implementation a) 

0.0 0.0623 0.0624 0.0691 0.3287 0.1290 

0.5 0.1562 0.1567 0.1623 012291 0.1286 

1.0 0.1387 0.1388 0.1433 012292 0.1289 

Implementation b(i) 

0,0 0,0441 0,0441 0.0500 0.1284 0,1289 

0,5 0,1528 0,1532 0.1590 0,1291 0,1287 

1.0 0,1412 0.2434 0.1466 0.1292 0.1289 

Implementation c(i) 

0.0 0,0478 0.0479 0.0535 0,1284 0.1210 

0.5 0.1625 0.1632 0.1693 0,1290 0.1285 

1,0 0.1440 0,1442 0,1497 - 	0,1292 0.1288 

Implementation b(ii) 

0,0 0,0342 0.0342 0,0389 0,1281 0,1290 

0.5 0,1534 0,3538 0,1601 0.1291 0,1286 

1,0 0,1407 0,3409 0.1458 0.1292 0,1289 

Implementation c(ii) 

0.0 0.0190 0,0190 0.0221 0.1278 0.1290 

0.5 0,1563 0,1569 0.1635 0.1291 0.12 

1.0 0.1353 0.1354 0.1401 01292 0.1290 

Implementation b(iii) 

0,0 0.0327 0.0327 0.0373 0,1281 0.1290 

015 0.1536 0.1540 0.1599 0,1291 0.1286 

1,0 0,1416 0.1418 0.1469 0,1292 0.1289 

Implementation c(iii) 

010 0,0231 0.0231 0.0270 0,1279 0.1288 

0,5 0.1497 0.1500 0,1559 0.1291 0.1287 

1,0 0.1386 0.1388 0.1438 0,1292 0,1289 

DATA SET 4 

Implementation a) 

0,0 0,0269 0,0269 0,0293 0.1280 0,1291 

0,5 0,0993 0.0998 0,1037 0,1211 0,1292 

1,0 0,0942 0,0144 0.0973 0,1211 0.1292 

Implementation b(i) 

0,0 0,0173 0.0173 0,0195 0,1277 0.1292 

0.5 0,1043 0.1049 0,1091 0,1291 0.1291 

1,0 - 0,1007 0.1012 0,1048 0,1291 0,1292 

Implementation 0(i) 

0,0 0.0112 0.0112 0,0127 0,1275 0,1292 

0.5 0,1079 0.1085 0,1127 0,1292 0.1291 

1,0 0,1054 0.1059 0,1095 011291 0.1292 

Implementation b(ii) 

0.0 0.0098 0.0099 0.0111 0.1275 0.1292 

0,5 0,1061 0.1067 0.1110 0.1291 0.1291 

1.0 011021 0.1025 0,1061 0.1291 0,1292 

Implementation c(ii) 

0,0 0.0150 0.0150 010171 0,1276 0,1292 

0.5 0,1032 0,1038 0.1084 0,1291 0,1291 

1,0 0,1028 0,1032 0.1068 0,1291 0,1292 

Implementation b(iii) 

0,0 0,0109 0,0110 0,0124 0,1275 0.1292 

0.5 0.1067 0,1073 0,1114 0,1292 0,1291 

1,0 0.1030 0,1035 0,1072 0.1291 0.1292 

Implementation c(iii) 

0,0 0,0064 0,0064 0,0073 0,1274 0.1292 

0.5 0,1053 0.1059 0,1104 0,1291 0,1291 

1,0 0,1043 0.1048 0,1085 0.1291 0,1292 
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Figure 7-4: Posterior density of selection response, R(bA), from Gibbs sampling 

based on 1,000 iterations, and the estimates of index weights from ANOVA for 

data sets 1, 2, 3 and 4. 

achieved responses from ANOVA estimates, Ra(00, bA) for all four data sets when 

=V, = 1. 

Results with 500 replicate samples 

In the main part of the analysis, 500 data sets were generated using different 

numbers and sizes of families (s = 10, 25, 80, n = 8, 16, 20) and heritabilities 

(h 2  = 0.1, 0.3, 0.6) (see Section 4.7.2 for detailed information on data sets and 

designs). For each set, ANOVA results were obtained and Gibbs sampling cycles 

were carried out with 1,000 iterations. Table 7-3 gives the optimum selection 

responses, R opt , for these family sizes and heritabilities. As both h2  and n increase 

the optimum response also increases. 

2 

4 
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Table 7-3: Optimum selection responses, 	for ii = 8, 16, 20 and h 2  = 0.1, 

0.3, 0.6. 

It 2  n=8 n=16 n=20 

0.1 0.1144 0.1252 0.1292 

0.3 0.3219 0.3332 0.3367 

0.6 0.6119 0.6161 0.6172 

Means and standard deviations of the estimated and achieved responses, 

bA) and w(0 0 , hA), using ANOVA estimates over 500 replicates for different 

heritabilities and family sizes are shown in Table 7-4. Comparison with Table 

7-3 indicates that there is a tendency to overestimate the optimum progress, 

R02 , by using the estimated response obtained from using ANOVA estimates, 

R(OA, bA). This bias is considerable when there are few families but becomes 

fairly small with amounts of data sufficient to give reasonably good calculated 

indexes. R is very sensitive to the value of h 2  since E is roughly proportional 

to h 2  and also the estimate, â,, of the phenotypic standard deviation. As h  

and n increase it seems that the discrepancy between R and R,pt  gets smaller 

and for larger families there seem to be some underestimates. Conversely, the 

achieved response R"(0 0 , hA) using ANOVA estimates appears to underestimate 

the optimum progress indicating a downward bias. This response converges to the 

optimum response R.pt  as the family size increases. Also the difference between 

11 and R  gets smaller. 

Mean selection responses for RP(bA), R(bB), h(è 2 , bpE), R"(9 0 , bp—P) and 

W(9 0 , b2) over 1,000 iterations of 500 replications for different values of her-

itability and family sizes are shown in Table 7_5  The same conclusion made 

for R(OA, hA) and W(9 0 , b 4 ) obtained using only ANOVA estimates can also 

be drawn here. The results of these tables indicate that R(bA), R(bB) and 
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Table 7-4: Means and standard deviations (SD) of predicted and achieved selec-

tion responses, R(OA, IDA), R'(00, bA) using ANOVA estimates over 500 replicates 

for different heritabilities and family sizes. 

E(è4 , bA) R"(80 , bA) 
h 2  Mean SD Mean SD 

S=10 n=8 
0.1 0.1704 0.2276 0.1133 0.0025 
0.3 0.3237 0.3061 0.3176 0.0058 
0.6 0.6165 0.4546 0.5975 0.0146 

s=10 n=16 
0.1 0.1350 0.1443 0.1236 0.0022 

0.3 0.3135 0.2273 0.3260 0.0074 
0.6 0.5772 0.3453 0.5966 0.0248 

s=10 11=20 
0.1 0.1476 0.1449 0.1273 0.0028 
0.3 0.3212 0.2117 0.3295 0.0082 
0.6 0.6230 0.3355 0.5997 0.0232 

s=25 n=8 
0.1 0.1302 0.1461 0.1139 0.0011 
0.3 0.3202 0.2049 0.3193 0.0028 

0.6 0.6145 0.2808 0.6053 0.0087 
s=25 n=16 

0.1 0.1233 0.0957 0.1244 0.0009 
0.3 0.3197 0.1445 0.3299 0.0040 
0.6 0.6243 0.2098 0.6097 0.0088 

s=25 n=20 
0.1 0.1233 0.0933 0.1283 0.0012 
0.3 0.3380 0.1360 0.3332 0.0045 

0.6 0.6108 0.1889 0.6110 0.0092 
s=80 n=8 

0.1 0.1211 0.0952 0.1142 0.0004 
0.3 0.3205 0.1216 0.3209 0.0015 
0.6 0.6002 0.1547 0.6096 0.0033 

s=80 n=16 
0.1 0.1205 0.0604 0.1248 0.0004 

0.3 0.3291 0.0772 0.3322 0.0014 
0.6 0.6199 0.1141 0.6141 0.0029 

s=80 n=20 
0.1 0.1257 0.0519 0.1289 0.0004 

0.3 0.3343 0.0680 0.3357 0.0013 
0.6 0.6174 0.1133 0.6150 0.0028 
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Table 7-5: Summary of selection responses using Gibbs sampler and ANOVA 

methods, R(bA), R 2 (bB), E(APE, bpE), W(6 0 , bp-r) and R"(0 0 , bB), with 

k = 1,000 and rn = 500 for different heritabilities and family sizes. 

Rp(bA) 	R(b5) 	E(bpE, bpE) 	R"(00 , bpE) 	R"(0 0 , b) 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

slO n=8 

0.1 	0.1988 0.0865 0.1999 0.0868 0.2070 0.0884 0.1140 0.0009 0.1128 0.0014 

0.3 0.3537 0.1145 0.3566 0.1148 0.3639 0.1147 0.3210 0.0016 0.3200 0.0023 

0.6 0.5152 0.1306 0.5216 0.1338 0.5272 0.1329 0.6090 0.0033 0.6105 0.0017 

s10 n=16 

0.1 	0.1750 0.0800 0.1766 0.0795 0.1849 0.0814 0.1243 0.0016 0.1231 0.0023 

0.3 	0.3512 0.1299 0.3545 0.1280 0.3624 0.1267 03310 0.0030 0.3304 0.0037 

0.6 	05350 0.1540 0.5400 0.1524 0.5446 0.1502 0.6105 0.0075 0.6124 0.0051 

slO n=20 

0.1 	0.1822 0.0905 0.1837 0.0900 0.1926 0.0916 0.1280 0.0023 0.1268 0.0030 

0.3 0.3584 0.1301 	0.3613 0.1285 0.3696 0.1270 0.3340 0.0036 0.3336 0.0042 

0.6 0.5614 0.1513 0.5659 0.1509 0.5699 0.1483 0.6117 0.0077 0.6133 0.0054 

s=25 11=8 

0.1 	0.1605 0.0794 0.1608 0.0794 0.1648 0.0808 0.1141 0.0007 0.1137 0.0011 

0.3 0.3366 0.1278 0.3374 0.1274 0.3420 0.1273 0.3208 0.0015 0.3204 0.0020 

0.6 0.5601 	0.1501 0.5616 0.1508 0.5643 0.1496 0.6093 0.0034 0.6101 	0.0023 

s25 n=16 

0.1 	0.1425 0.0608 0.1429 0.0607 0.1474 0.0621 0.1248 0.0008 0.1244 0.0011 

0.3 0.3363 0.1206 0.3370 0.1203 0.3418 0.1197 0.3311 0.0025 0.3311 0.0028 	- 

0.6 	0.5985 	0.1433 0.5992 0.1435 0.6011 	0.1419 0.6125 0.0054 0.6131 	0.0043 

s=25 n20 

0.1 	0.1419 	0.0648 0.1422 0.0647 0.1466 0.0658 0.1287 0.0011 	0.1284 0.0014 

0.3 	0.3516 	0.1210 0.3521 0.1208 0.3568 0.1200 0.3341 	0.0032 	0.3341 	0.0034 

0.6 	0.5985 	0.1371 	0.5992 	0.1370 0.6010 0.1355 0.6135 0.0058 0.6140 0.0047 

s=80 n=8 

0.1 	0.1305 0.0606 0.1306 0.0605 0.1324 0.0612 0.1143 0.0003 0.1142 0.0004 

0.3 	0.3190 	0.1056 0.3191 	0.1056 0.3214 	0.1054 0.3212 0.0011 	0.3212 	0.0012 

0.6 	0.5915 0.1353 0.5916 0.1353 0.5925 0.1346 0.6100 0.0025 0.6103 0.0021 

s=80 n=16 

0.1 	0.1225 	0.0454 0.1226 0.0454 0.1244 0.0458 0.1250 0.0003 0.1249 0.0004 

0.3 0.3296 0.0752 0.3296 0.0752 0.3315 0.0750 0.3323 0.0012 0.3323 0.0012 

0.6 0.6235 	0.1066 0.6236 0.1066 0.6241 	0.1061 0.6144 0.0024 0.6144 0.0023 

srz8O n20 

0.1 	0.1252 	0.0428 0.1253 0.0428 0.1271 	0.0431 	0.1290 0.0003 0.1289 0.0004 

0.3 0.3362 0.0674 0.3362 0.0674 0.3380 0.0672 0.3358 0.0013 0.3358 0.0012 

0.6 0.6226 0.1069 0.6227 0.1068 0.6232 0.1063 0.6152 0.0024 0.6153 0.0023 
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P(ÔPE, bpE) are inseparable giving similar results. The index based on the pos-

terior expectation of h2 , R"(6 0 , bpE), gives higher achieved responses than that 

based on the ANOVA estimates for all designs. The Bayesian index W(0 0 , bn) 

appears superior to the AN OVA index except for the cases with small family sizes 

and h2  = 0.1, and superior to that based on the posterior expectation of h 2  when 

It 2  is 0.6. This can be shown more clearly by constructing a table of proportional 

loss in efficiency. 

The values of expected (i.e. mean) losses in response achieved using estimates 

of parameter values relative to that from the optimum index are given for responses 

W(0 0 , bA), R"(6 0 , bpE) and R  (6, bB) in Table 7-6. In this table smaller values 

of [E(W)—R0]/R0% indicate less efficient situations for index construction. The 

trends associated with increases in .s and n indicate that, with more data, more 

reliable selection indexes may be constructed. For the parameter set chosen the 

loss in efficiency is rather small: a 0.1 - 3 % reduction in genetic gain for a range 

of heritabilities. 

Comparisons may be made in Table 7-6 between the various combinations of 

family number and size involving the same total number of observations. For ex-

ample, the two combinations, 10 sires with 20 offspring and 25 sires with 8 offspring 

involve a total of 200 offspring. These results indicate that, for the combination 

of parameters considered here and for a fixed total number of observations, 8 off-

spring per sire group leads to more efficient selection. It is possible to see this 

more clearly for fixed heritability and number of families, s, with varying number 

of offspring per sire (Ii = 8, 16 20). The trends associated with this situation 

suggest that the most effective selection can be obtained using 8 offspring per sire 

group. For a fixed number of offspring (ii) and of heritability, the proportional 

loss in efficiency tends to increase swiftly with an increase in the mberfmily / 

(s). 

As can be seen from Table 7-6, the achieved response using ANOVA esti- 
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mates R'(90, bA) gives the highest expected loss. The lowest proportional loss in 

efficiency is observed in W(9 0 , byE). For designs with small family size, the dis-

crepancy between the values of proportional losses obtained from using ANOVA 

estimates and posterior expectations in Table 7-6 appears to be rather large. How-

ever, with an increase in the family size these values for responses R'(60, IDA) and 

W(0 0 , bB) give similar results. 

The estimate of progress, I?, depends critically on what value of the estimate h 2  

of heritability is used and Sales and Hill (1976) showed that the standard error of I? 

is similar in magnitude to the standard error of h 2 . This can be easily seen when 

compared the standard deviation of ANOVA estimates of h 2  in Table 4-7 with 

that of E(OA, bA) in Table 7-4 and the standard deviation of marginal posterior 

expectations for h 2  in Table 4-8 with those of R(bA), R(bB), 9 PE, byE) and 

R(OpE, bE) in Table 7-5. For example, with 20 half-sib families of size 16 and 

the true heritability 0.3 the standard deviation of E obtained from simulation and 

Gibbs sampling was found to be between 0.12 and 0.14 in Tables 7-4, 7-5; the 

optimum response for this particular experiment is 0.3332 (see Table 7-3). For 

the same experiment the standard deviation of estimates of h 2  was shown to be 

exactly the same as that of E (see Tables 4-7 and 4-8). 

7.5 Discussion 

Two major points are illustrated in this chapter. Firstly, it is possible to use a 

decision theory approach to obtain an assessment of the genetic merit of half-

sib families for a single trait. Secondly, the assessment from this approach is 

contrasted with conventional procedures. 

It has been assumed that prior information is available on the population 

from which the candidates are drawn and such information is incorporated in the 

analysis using Bayesian decision procedures. The method of estimation based 
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Table 7-6: Proportional loss in efficiency, L = [E(W) - R0]/R0%, in an index 

of individual and family mean performance when the heritability ( h 2 ) is estimated 

from s families of the same size it. Values were computed for three different 

achieved responses, L'(90, bA), L"(9 0 , bpE) and L"(9 0 , bB). 

Proportional Loss (7o) 
h2  L°(9 0 , bA) I/'(O, bpE) L"(0 0 , bB) 

s=10 n=8 
0.1 -1.0312 -0.3758 -1.4245 
0.3 -1.3540 -0.3075 -0.6180 
0.6 -2.3580 -0.4788 -0.2337 

s=10 n=16 
0.1 -1.2460 -0.6871 -1.6459 
0.3 -2.1667 -0.6662 -0.8463 
0.6 -3.1600 -0.9041 -0.5957 

s=10 n=20 
0.1 -1.4550 -0.9135 -1.8424 
0.3 -1.2297 -0.7931 -0.9119 
0.6 - 	 -2.8307 -0.8863 -0.6271 

s=25 n=8 
0.1 -0.4632 -0.2884 -0.6379 
0.3 -0.8354 -0.3696 -0.4938 
0.6 -1.0830 -0.4298 -0.2991 

s=25 n=16 
0.1 -0.6310 -0.2876 -0.6070 
0.3 -0.9963 -0.6303 -0.6273 
0.6 -1.0340 -0.5795 -0.4821 

s=25 n=20 
0.1 -0.6812 -0.3716 -0.6038 
0.3 -1.0310 -0.7692 -0.7900 
0.6 -0.9997 -0.5946 -0.5136 

s=80 n=8 
0.1 -0.1836 -0.1136 -0.1836 
0.3 -0.3385 -0.2330 -0.2299 
0.6 -0.3808 -0.3154 -0.2664 

s=80 n=16 
0.1 -0.2876 -0.1278 -0.2077 
0.3 -0.3061 -0.2731 -0.2611 

0.6 -0.3198 -0.2711 -0.2711 
s=80 n=20 

0.1 -0.2709 -0.1393 -0.2012 

0.3 -0.2881 -0.2792 -0.2703 
0.6 -0.3516 -0.3192 -0.3030 
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on ANOVA do not lead to a selection procedure which is in any sense the best. 

Therefore estimative methods can differ substantially from those based on prior 

distributions and the former can be seriously misleading for designs with small 

family size. 

However, with an increase in the family size, both conventional and Bayesian 

methods give similar results of selection responses. This similarity of the assess-

ment of the genetic merits by the conventional method and by the decision theory 

method is not unexpected for the large sample sizes. When a single trait is being 

selected for, there is little scope for genetic improvement over individual selection 

by using selection index. As a result, we would not expect to find a great deal 

of difference in the group of animals selected using different methods or individ-

ual performances of the animals. Further, for designs with large sample size, the 

asymptotic equivalence of the Bayes solution and the decision which maximizes 

the expected posterior utility at the value of maximum likelihood estimate of 9 

becomes evident. Hence, the conventional method and the decision theory would 

give very similar results. When the selection is for more than one trait, the de-

cision theory method is expected to give results which differ from the selection 

using a conventional multi trait index. This case is considered in Chapter 9. 



Chapter 8 

Multiple-Trait Analysis in Animal 

Breeding 

8.1 Introduction 

Multivariate analysis is the branch of statistics dealing with the summarization, 

representation, and interpretation of data sampled from populations in which 

each experimental unit is. measured for more than one characteristic. The ex-

perimenter's justification for measuring several responses on each unit is that no 

single response adequately characterizes the individual, or discriminates among 

individuals, with respect to whatever criterion is employed. The engineer may 

measure weight, length, tensile strength, and hardness on each of several items 

manufactured by a given process. The agronomist might be concerned with yield, 

stand, strength, and disease resistance when testing new plant varieties. The 

dairy scientist may measure milk yield, fat percentage, feed intake, and weight 

change on each cow in evaluating a feeding program. In short, most processes 

of experimentation are multivariate. Further, since the several measurements on 

each experimental unit are often correlated, it is inappropriate to apply univariate 

analysis separately to each of the response variables. Univariate analysis is rather 

a simplification open to the experimenter who happens to be measuring only one 

characteristic as his experimental material. 

In general, the practical objective of animal breeding is to achieve genetic 

improvement of livestock by selection of breeding animals. The selection is almost 
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invariably based on more than one economically important trait measured on each 

individual. For example, selection for milk production traits is usually on some 

combination of breeding values for milk, fat and protein. Therefore multiple trait 

model is a natural choice for analysis of those observations. 

In the statistical analyses of animal breeding data, traits on the same individu-

als are often considered one at a time. Milk production traits, which are known to 

be strongly correlated, are evaluated separately in most countries for the sire eval-

uation. Usually we are interested, however, not only in the mode of inheritance 

of a particular trait but also in its relationships with other traits and correlated 

responses when selecting on the trait analysed. Multivariate analyses are required 

to obtain estimates of genetic and phenotypic correlations between traits. More-

over, while univariate analyses ignore correlations between traits, joint analyses of 

correlated traits utilize information from all traits to obtain estimates for a spe-

cific trait and should therefore yield more accurate results. This is of particular 

relevance when data are not a random sample, i.e., if records for some traits are 

missing as a result of selection. For animal breeding data, this is often the case 

since, typically, data originate from selection experiments or are field records from 

livestock improvement schemes which select animals on the basis of performance. 

In that situation, univariate analyses are expected to be biased while multivariate 

analyses may account for selection (Meyer, 1991). The obvious disadvantage of 

multiple-trait analyses is generally the additional computational requirements due 

to the increased number of equations to be solved. To reduce computational and 

storage requirements canonical transformations can be employed. The less obvious 

disadvantage (for the conventional theory) is that the more traits are analysed the 

greater the probability of estimates outside (or on the boundary of) the parameter 

space. 

Benefit from multiple-trait analysis Advantages in the joint consideration of 

several traits in genetic evaluations essentially come from the following points. 
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Multiple-trait procedures use more information to evaluate individuals com-

pared with univariate methods. The absolute values of genetic and envi-

ronmental correlations may be high. Therefore by considering all traits 

simultaneously the accuracy of estimation and prediction, and consequently 

response to selection are increased. The gain in accuracy of selection due 

to multiple-trait evaluations depends on the absolute values of genetic and 

residual correlations, on the difference between genetic and residual correla-

tions and on progeny group size. 

Some traits are measured on a limited number of individuals, and estimation 

accuracy may be gained by analysing these traits jointly with other traits 

which are measured on more individuals in the population. Some individuals 

may lack records on some traits as a result of selection on one or more 

other traits. For example, in beef cattle, calves are selected at weaning for 

their weaning weights prior to further testing, and at yearling age they are 

measured for yearling weights and/or gains on test. Suggestions have been 

made that the use of multiple trait analysis for a simultaneous analysis of 

selected and unselected data would reduce the selection bias due to selection 

on a correlated trait. 

Variance and covariance components are used by quantitative geneticists as 

measures of genetic and environmental relationships between two or more charac-

ters. Estimation of the components is also required to formulate animal breeding 

schemes. In the corresponding univariate case, variance components are estimated 

by equating various sums of squares to their expectation. Obviously this process is 

extended to the multivariate case to estimate covariance components by equating 

the sums of cross-products to their expectations. Methods of estimation based 

on differences between mean squares or between matrices of mean squares and 

products can lead to unreasonable estimates, such as estimated genetic variance 

matrices which are not positive definite (Hill and Thompson, 1978). Some ad hoc 
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modification is needed to such estimates before they can be used to construct a 

selection procedure. A method termed bending was described and evaluated in 

animal breeding situations by Hayes and Hill (1981). Details of their approach 

will be given later in this chapter. 

Analysis of variance (ANOVA) type methods have been widely used to estimate 

genetic and phenotypic parameters and to formulate animal breeding schemes. 

ANOVA methods require records for all traits for all individuals. If animals with 

missing records are omitted from the analysis, then part of the information avail-

able is ignored. More importantly, if lack of records is the outcome of selection 

based on some criterion correlated with traits under analysis, estimates are likely 

to be biased by selection. In contrast, procedures based on maximum likelihood 

(ML) utilize all records available and, under certain conditions, account for selec-

tion. Even if these conditions are only partially fulfilled, ML estimates are often 

considerably less biased by selection than their ANOVA counterparts (Meyer and 

Thompson, 1984). 

A modified ML procedure, so-called restricted (or residual) maximum likeli-

hood (REML) was described for a univariate analysis by Patterson and Thompson 

(1971). It accounts for the loss in degrees of freedom due to fixed effects in the 

model of analysis, and has become the preferred method of analysis for animal 

breeding data, not least for its property of reducing selection bias. Thompson 

(1973) extended this procedure to the case of multivariate two-way classification 

with treatments as fixed effects and blocks as random effects where the design 

and block structure were the same for all variates. His multiple-trait 'REML es-

timator requires all traits to be measured on all animals. A multivariate REML 

algorithm suggested by Meyer (1985) describes a procedure for a mixed two-way 

classification with the same design matrix for all traits, using a transformation of 

the variates to a canonical scale. Meyer (1991) then describes the extension of 

univariate REML estimates of variance and covariance components to multivari-

ate analyses, allowing for missing records. These multivariate REML algorithms, 
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however, in general require the direct inverse of a matrix of size equal to the total 

number of levels of random effects multiplied by the number of traits considered 

simultaneously (Meyer, 1991). This represents not only a substantial computa-

tional requirement but imposes several limitations on the model and dimension of 

analysis. Also practical applications are feasible only if a special data structure 

can be exploited. Even then the analysis is usually limited by the size of the matrix 

to be inverted, which is proportional to the number of traits (Meyer, 1985). 

So far, we have demonstrated that the Gibbs sampling procedure can be used 

successfully to carry out Bayesian analysis of all parameters in a balanced univari-

ate one-way sire model assuming a half-sib family structure in several chapters. 

A multivariate empirical Bayes approach for I polygenic binary traits is consid-

ered assuming improper priors for fixed and random parameters by Foulley et al. 

(1987) (see Table 3-1). They considered a situation where the values of the dis-

persion parameters are not known and are replaced by point estimates obtained 

from their marginal posterior distribution. However, many of the traits in animal 

breeding applications present continuous distribution of phenotypes and multi-

variate analyses of such traits have not been carried out within the framework 

of Bayesian procedures. The objective of this chapter is to extend the general 

principle of the Bayesian scheme for a univariate one-way classification in Chap-

ter 4 to a balanced multiple-trait one-way sire model assuming a half-sib family 

structure. Unlike Foulley et al. (1987), informative priors are used for random 

parameters to make Bayesian marginal inferences about variance components and 

functions of them. The results of Gibbs sampling are compared with estimates of 

the parameters obtained from the analysis of variance method with and without 

modification using the bending technique of Hayes and Hill (1981). 
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8.2 Variance Components Estimation in a Bal-
anced Multivariate One-way Classification 

In a one-way multivariate analysis of variance with random sire effects, the between-

groups (between-sires) variance-component matrix is estimated from the difference 

between the between-groups and within-groups mean square and product matri-

ces. This variance matrix is used to estimate heritabilities, genetic variances, 

covariances and correlations and in the construction of selection indices. 

8.2.1 The model and assumptions 

Consider a balanced one-way classification with .s half-sib groups of equal size 

n, and t traits recorded on each individual. Observations are here assumed to 

be multivariate normally distributed with the between- and within-group effects 

independent of each other. Let y ij  denote the vector of values of the t traits 

observed on the jth animal in the ith sire group (i = 1,.. . , 8; j = 1,.. . ,ri). Then 

the multivariate linear random effects model can be given by 

y ij 	i=l .... ,s; j=1,...,n. 	 (8.1) 

where p is a t-vector of expectations, Si is a t-vector of sire effects and e ij  is 

a vector of t departures (residual error terms) representing the variation within 

half-sib families. 

The vectors of random sire effects, s, and residuals e ii  are assumed to be 

independently and normally distributed. The s i  are taken to be N(O, E 3 ) and 

the.e ij  to be N(O, with E e  positive definite. The vectors Yij  are thus jointly 

multivariate normal with expectation vector p and second moments given by 

	

Var(y) = 	= E. + E, 

Cov(yjj, 	= 	= 	(i 54  a'), 
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Cov(y, y'') = 0 (i $ 

where E represents the phenotypic variance matrix and E 9  the genetic variance 

matrix. 

With these assumptions the following balanced one-way multivariate anal-

ysis of variance table with paternal half-sib groups with Var(y) = E and 

Cov(y1 , y') = E9  can then be obtained 

Source 	d.f. 	SSP MSP 	 E(MSP) 

Between-sires s - 1 Sb Mb - 1 E + 4 
nE9  EP 	4 	9 = Ee + nE3  

Within-sires .s(n - 1) S M — — 1 E E 	9 - E  

Here SSP denotes the sums of squares and products and MSP the mean squares 

and products. Sb and S. represent the matrices of sums of squares and products 

between and within groups and are given by the following formulae 

Sb =  

and 

Sw 

= E 	- 	- 
1=1 j=1 

where yi. is the mean vector for group i, and y.. is the overall mean vector. 

Mb = Sb/(s - 1) and M = S/{s(ri - l)} are the matrices of mean squares 

and products between and within groups corresponding to 5b  and S,. The ma-

trices of sums of squares and products, 5b  and S, are independent with central 

Wishart distributions given respectively by 

W[(s - 1), F m ] 

and 

r- Wj [s(n - 1), Eel 
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where r = E + nE 5 . Hence one can write the densities of Sb and S i,, as 

( 	

1-2 
1 

f(Sb) H F 	s—i) exp 	 tr (S br l )] ,  

and 

f(s) H e pIs(1) exp 
1-2 

 tr (SE; 1 )] .  

8.2.2 Estimated variance components and some restric-
tions 

From one-way multivariate analysis of variance, the estimated phenotypic, genetic, 

sire and residual covariance matrices are respectively 

= [Mb + (n - 1)M]/n, 	 (8.2) 

Eg = 4(Mb - M)/n, 	 (8.3) 

= (Mb - M)/n, 	 (8.4) 

and 

= M. 	 (8.5) 

The multiple-trait half-sib sire model in (8.1) imposes some restrictions on 

the variance matrices E 5  and E. In animal breeding applications, any linear 

combination of traits c'y, say, has heritability 4c' 5 c/c'(J 5  + E)c, which is the 

proportion of the variance observed in the parents that is transmittable to the 

offspring. The constraint that heritability is no more than 1 for all such combi-

nations implies that E - 3E 5  is non-negative definite. A method of estimation 

which ignores this restriction may lead to ridiculous estimates of heritability for 

some traits or linear combinations of them. 
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8.2.3 Bending Theory 

Hayes and Hill (1981) introduced a method, termed bending, to modify the esti-

mates of genetic and phenotypic variance matrices in animal breeding situations. 

The method consists of adjusting the characteristic roots or eigenvalues of M'Mb 

towards their mean. The bending of the estimates of genetic and phenotypic vari-

ance matrices shows some obvious analogies with the technique of ridge regression 

suggested by Hoerl and Kennard (1970). The ridge regression estimation proce-

dure of Hoerl and Kennard (1970) used in multiple regression analysis is based on 

adding a small quantity to each diagonal element of X'X to improve the estimates 

of regression coefficients, where X is the design matrix. Campbell (1980) has also 

suggested shrinkage of estimates in discriminant and canonical variate analysis 

to improve markedly stability of the resulting coefficients (especially in canonical 

variate analysis) when the between-groups sum of squares for a particular prin-

cipal component defined by the within-groups covariance or correlation matrix is 

small and the corresponding eigenvalue is also small. Bending can be seen as an 

example of a regularization method. Regularization reduces the variance associ-

ated with the sample-based estimate at the expense of potentially increased bias 

(Friedman, 1989). In all of these cases the attempt is made to increase the relia-

bility of sample estimates through some suitable adjustment accepting the loss of 

unbiasedness thereby caused. 

Some modification of parameter estimates has always been practiced, at least 

in Monte Carlo simulation studies, when it was obvious that the .estimates were 

outside possible limits of the true values. Three examples are: negative estimates 

of additive genetic variance, estimates of the additive genetic variance which are 

greater than the estimates of phenotypic variance (heritability estimates greater 

than one), and estimates of additive genetic correlations which are greater than 

one in absolute magnitude. In such cases, it has been the usual practice to set the 

estimates to the corresponding bound (Harris, 1964; Sales and Hill, 1976, 1977). 
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However it is definitely not proposed that this is the optimum modification pro-

cedure. For two or more variates, if the estimated between-group variance matrix 

has positive diagonal elements, a matrix with one or more negative characteristic 

roots implies ordinary or partial between-group, or genetic, correlations outside 

the range -1 to +1 (Hill and Thompson, 1978). Although ordinary correlations 

outside this range are displayed by a correlation matrix, impossible partial cor-

relations are more easily missed and procedures for putting several estimates to 

their bounds simultaneously are less obvious and not necessarily satisfactory. 

The approach of Hayes and Hill (1981) for modifying the parameter estimates 

for several traits is based on the phenomenon that the roots of the between-group 

MSP matrix Mb relative to the within-group MSP matrix M are biased away 

from their expectations (Hill and Thompson, 1978) and is given as follows. 

The roots, vk, of the the determinantal equation I Mb - VJCMW I= 0 or, equiv-

alently I M 1 M - vkI 1= 0 (Anderson, 1984) can be modified using the bending 

approach. If it is assumed that there are many more degrees of freedom within 

groups than between groups, the mean of the roots, of M 1 Mb is biased com-

pared with its expectation. In particular, the larger roots are biased upwards, the 

smaller roots downwards, and pairs of equal roots with the same expectation are 

spread excessively about their mean. This suggests that the roots of M 1 Mb from 

the balanced one-way multivariate analysis of variance might usefully be regressed 

towards their mean without altering the corresponding eigenvectors or the average 

root (Hayes and Hill, 1981). The between-sire MSP matrix, M&, estimated with 

relatively few degrees of freedom, is bent towards the within-sire mean product 

matrix to obtain the modified between-group MSP matrix, M: 

M = (1 - w)M,, + wUM, 	 (8.6) 

is an arbitrarily chosen bending factor in the range [0, 1] and ü denotes the mean 

of the roots of M'Mb, with vk defined as above. M'M has characteristic roots 

(1 - w)vk + WV. 
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The estimate of the residual variance matrix, t, is unchanged and the sire 

variance matrix is modified as follows 

= (M - M)/n. 

The modified estimates of the phenotypic, genetic and variance matrices, E and 

are obtained by replacing Mb  in E and EL,  with M&*  to give 

= {M+(n-1)M)}/n 

= {(l—w)M5+(n-- 1+w)M}/n 

tg  = 4(M - M)/n 

= 4{(1 - w)M 5  —(1— wU)M}/n. 

E and E are non-negative definite only if (1 - w)vk + wD - 1 is >_ 0, i.e. only 

if w > (1 - - 1)14. When w = 0, the t, and are the usual estimates; 

when w = 1, 

Mb = 

= 4(t) - 1)M/n, 

tP = (ü + Ti - l)M/n, 

E. and E,, are proportional, i.e. E;E 	= ci, with c = 4(13 - 1)/(13 + ii - 1), and 

M 1 M = 13(MM) = til. 
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8.3 Canonical transformations 

The idea of linear transformation of correlated traits such that they become uncor-

related is not at all new. This idea is used in principal component and canonical 

correlation analyses. A number of authors have considered the use of a canonical 

transformation of the data to estimate variance components by REML for mul-

tivariate linear models with one random factor and equal design matrices for all 

traits. This transformation was first suggested for animal breeding applications by 

Thompson (1976, cited by Jansen and Mao, 1988). Hayes and Hill (1980) showed 

how a canonical transformation of phenotypic and genetic variance matrices could 

be useful for locating sampling properties of selection indices. 

Now consider a transformation of the genetic and phenotypic variance matrices, 

E9  and E,,, respectively. Since YL is a symmetric non-negative definite matrix 

and EP  is a symmetric positive definite matrix of the same order. By standard 

multivariate theory (Anderson, 1984), there exists a nonsingular matrix E which 

satisfies 

= AandSE2E =1 

where A denotes diag(Ak) (Ic = 1,... ,t). The roots 	... > A, of the determi- 

nantal equation 

I 	- 	1= 0 

(or, equivalently, the characteristics roots of E 1  E) are all non-negative. Hayes 

and Hill (1980) give a rationalisation and a numerical example for such a trans-

formation. Some general library program packages, e.g. Fortran NAG library, 

provide routines for obtaining matrix S and Ak'5 by solving the determinental 

equation. 

For the multiple-trait sire model used in this study, records are assumed to 

be available on all traits for the random effects. The canonical transformation 
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can then be applied to yield 	- -i a set of uncorrelated t new traits some- 

times called canonical variables. The new phenotypic variables are uncorrelated 

and each has unit variance. The new genotypic variables are also uncorrelated 

and have variances, Ak. Because the phenotypic variances are all unity, the corre-

sponding heritabilities (called canonical heritabilities) are also equal to Ak. Hence 

a multivariate analysis can be carried out as a series of t corresponding univariate 

analyses which result in a substantial reduction of computational requirement. 

Le+us for example, consider bivariate genetic and phenotypic variance matrices. 

There are two random effects associated with each trait giving rise to four vari-

ance and two covariance parameters, a total of six parameters. In the analogous 

univariate case the optimization of two parameters, e.g. genetic and residual vari-

ance, can be reduced to a one-dimensional search because the residual variance 

can be easily found for a given value of heritability. A similar decomposition of 

the six parameters into a 2 x 2 diagonal matrix, A can be performed here to make 

the traits independent, both genetically and phenotypically, and two canonical 

heritabilities of the independent traits. 

8.4 The Gibbs Sampler For The Multiple-Trait 
Sire Model 

In this section, the prior and posterior distributions considered for the single-trait 

model in Section 4.2 are generalized for the multiple-trait sire model in (8.1). 

8.4.1 Prior distributions 

An integral part of Bayesian analysis is the assignment of prior distributions to all 

unknown parameters (p, {s}, , 	in the modeljfjrior knowledge is available 

fke an informative prior should he used. Within this category, conjugate priors are 

regarded highly because of their mathematical convenience. 
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As regards z it may be assumed a priori that it is uniformly distributed 

throughout its domain of definition, itt,  so as to represent lack of prior knowl-

edge about this parameter and is given by 

	

cx constant. 	 (8.7) 

It is assumed a priori that, given E,, the {s} follow the multivariate normal 

distribution N(O, 	) so that 

	

(_ 2  
f({s} I E) cx 	E 3  p 4  exp 	l 	s 1 si 

 i=1 

1 	/3 

	

= exp 1-2tr (Ess:E;1 )j 
	

(8.8) 
I 

where I E, I represents the determinant of E 3 . 

In contrast to IL, it may be useful to incorporate prior information about 

E 3  in the Bayesian procedure since precise expectation of genetic variances and 

covariances requires an extensive amount of data, in instances in which little data 

is available. For example, this prior information could stem from previous data 

sets on animals of the same species. The conjugate prior distribution for the 

variance covariance matrix for a random sample of observations on a multivariate 

normal distribution is inverse Wishart. Therefore it might be convenient to assume 

that the prior distribution of E 3  is an inverse Wishart distribution (Zellner, 1971; 

Anderson, 1984; Foulley et al., 1987) given by 

r 1 
V., S 3 ) cxl 	 L 

pus+t+1) exp I--
2 
 tr (v3E;1s3)]. 	 (8.9) 

Similarly, the prior distribution of E e  might be assumed inverse Wishart with 

density given by 

r 1 
f(e Ve, S e ) cxl E e 	exp [—tr ( ve E 1 S e )]. 	 (8.10) 

In (8.9) and (8.10), 
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• S and Se are the i x t known matrices of hyperparameters interpretable as 

prior values of the dispersion parameters of the prior distributions such that 

v3 , S,) = S S  1 , and E(E 1  v,, S,) = S e  ', and 

. v8  and v are the integers interpreted as degrees of freedom or as a measure 

of degree of belief on S. and S, respectively, and v 3 , v, > t . 

Note that a more usual parameterisation of the Wishart distribution is in terms 

of its degrees of freedom and its variance matrix (see Appendix A.6.1). In the 

absence of prior knowledge when v = 0 and V = 0, the prior distributions for E 

and E e  in (8.9) and (8.10) become improper: 

f(E 3 ) H Es  I i—(t+1) 
f(Ee) H E 	 (8.11) 

8.4.2 Likelihood function 

The underlying model (8.1) given in Section 8.2 implies that the t variate vector 

observations {yij}  have the following likelihood function given p, {s}, E. and Ee 

f({yij} I ft, {sJ, E 3 , 

2 exp - - >(yij -  p — 

 I 	 s i ) ' E 1 (yij  - - s) _1 	 1 

2 =1 j=i 	 J 

= I eexp 
{- 

~tr(S.: 1 ) + E(Y. - p - 
)'1(g1  - p - s ) l 1 

(8.12) 

where S is within-families SSP matrix. 

8.4.3 Joint posterior density 

Utilizing the prior distributions in (8.7), (8.8) (8.9) and (8.10) for ii, {s}, E 

and E , , respectively, in conjunction with the likelihood function in (8.12) for the 
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model in (8.1), the following joint posterior density function of the parameters 

given {yj} based on Bayes' rule can be obtained 

fU, {s}, E 5 , E e  I {yij}) 

= f(jz)f({s} I  E 5 )f(E 5  I  us,  Ss)f(Ee I u, S)f({y} I p, {sJ, E 5 , E e ) 

= 	E. —4(s+v 5 +t+1) I E —(sn+ve+t+1) 

( 1 [tr (V, E
fs

x exp j- 
	

;1s5) + tr ( 	ssE;'M\i=1  

X exp {_ [tr (vs) + (EE
=l (yj

j - p - s)E'(y - p -s)'l
j=1 	 )I 

= •E 5  L4(5+ t+1)  E exp {_tr [E; (V 5 S 5  + tJJ1 
t=1 	J 

X exp 	 tr [E; (s + VeSe + m(gj. 	p
1-2 	

- si )') 1Y(8.13) 

Denote all the parameters, p, { s } , E 5 , E e  by 9 and let 7(9) be a function of 

interest. The purpose of Bayesian inference is to obtain the expected mean under 

the posterior density, 

E [7r(9)] = f f({y} I 9)f(9)dO, 	 (8.14) 

where 

f(9) = f(p)f({ s1 }  I E 5 )f(E 5  I us,  S4f(E ii, S e ), 

I 9) is the density of the data conditional on the parameters or the like-

lihood function given in (8.12) and 0 is the domain of 9. There are at least 

two difficulties to this problem. First, an analytical evaluation of (8.14) may bei 

at*nbI& Second, although the standard Monte Carlo approach can be a solution to such 
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a high dimensional integration problem, it is not an easy matter to implement 

it because the marginal posterior density function may be of unknown form and 

hence it is difficult to draw samples from this density. Fortunately, the Gibbs 

sampling approach can be applied to overcome this problem which enables one to 

draw samples from the joint distribution using conditional posterior distributions 

of some parameters given the remainder. 

8.4.4 Full conditional posterior densities 

To perform Gibbs sampling for the Bayesian one-way multivariate sire model in 

(8.1), the full conditional posterior distributions of ,i, the s, E 5  and Ee given 

the remaining parameters are required. Consideration of conditional posterior 

distributions provides both insight into the structure of the posterior distribution, 

and a basis for efficient computation. 

Conditional posterior distribution of ji. The posterior probability density func-

tion in (8.13) is proportional in p to 

( 	1 
expt_ sn  [ E 6-1  p - 2p'E'(. - 

Thus the full conditional posterior distribution of p given {s},  E and E is 

multivariate normal 

- 

[p I {s}, E 8 , E€,Yj] = N (Y 	S.) - L sn 	
(8.15) 

j 

Conditional posterior distribution of s.  The posterior probability density func-

tion in (8.13) is proportional in any si to 

	

1 —_I  [Si 
' 	-1 

E exp 	(nE e  + 	')s - 2nsE1(. - it)] } 

or to 

exp {_[(si - T( j  - it)) (nEz'  + I s  1 ) (s - T(y. - it))] }, 
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where 'I' denotes n(n; 1  + E
S 1)-11 = n s (Ee  + n 5 ) 1 . Hence the s i  are 

conditionally independent given ji, E 3  and E, with multivariate normal distribu-

tions 

Isi I it )  E 3 , E, {yjj}] 

= N (nE(nE3  + eY 1 (i. - j), E 8 (n 3  + EeY ' e). 	(8.16) 

It should be noted from (8.16) that the s i  are multivariate normally distributed 

with mean vector 

E(si I p, 	{Yij}) = nEs ( e  + nE41(. - p) 	(8.17) 

and variance matrix 

Var (si I ji, s, E,  yij 	= 	s(e + nsY1Ee. 	(8.18) 

As in the univariate case the expression in (8.17) gives the multivariate best linear 

unbiased predictor (BLUP) of si given IL, E 3  and YJe. E(si I ii, E., E, {yjj}) 

represents the genetic merit of the ith sire to be evaluated on the t traits. 

Conditional posterior distributions of E3  and E. The posterior probability 

density function of E, is proportional in E 3  to 

exp 
2

_tr Rvs ss  + 	E;hl L 
i=1 	/ 

Thus the full conditional posterior distribution of E, given p, {s} and E is 

S 

 

, {sJ, Ee, fyij = w;1  s + v8 , 	 sis , + vs ss). 	 (8.19) 

Similarly the posterior probability density function in (8.13) is proportional in Ee 

to 

4( 8Th+ t+1) exp --tr 	VeSe + 	(yj - p - sj)(yjj - p - s)' Eil E6  L 	 { 1 [7 
2 i=1 j=1 
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Hence the full conditional posterior distribution of E, given p, {s} and E. is as 

follows 

j.t, {s 1 }, E 5 , {y}] 

S  

= J47[1 (sn + v,E  (yij - p - Sj)(yjj - p - s i )' + ve S e ) . (8.20) 
i=1 j=1 

In (8.19) and (8.20) W[' denotes the t variate inverse Wishart distribution. Recall 

that throughout this chapter the Wishart distribution is parameterised in terms 

of its degrees of freedom and its precision matrix. 

Thus for Gibbs sampling for the Bayesian one-way multivariate sire model in 

(8.1) we need to sample from multivariate normal distributions (8.15) and (8.16) 

for p and Si, and from inverse Wishart distributions (8.19) and (8.20) for E, and 

E (see Appendix A for the Wishart and multivariate distributions). 

8.4.5 Computation of posterior densities 

The Gibbs sampler is used to produce a sequence of drawings from the marginal 

posterior distributions. Gelfand et al. (1990) and Gelfand and Smith (1990) in-

vestigated the Gibbs sampler algorithm for estimating joint and marginal density 

functions. On the basis of Monte Carlo simulation and using conditional distri-

butions to update estimates of unknown parameters iteratively, an approximate 

equation is obtained for the estimated density. The method is of great appeal on 

account of its simple logical foundation and reasonable ease of implementation. 

Consider first the idea of the Gibbs sampling approach. The algorithm is given 

for a univariate case in Chapter 4 and can be easily extended to a multivariate 

case as follows: 

i) The Gibbs sampling approach is to start from an arbitrary initial value 

= ( p(0){sco)}E(0)(0)); 
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Draw anew value 	from [z I -i 
i)i §°) 	fyii j' 

Draw a new value Si
(1)  from [Si (1) , E (0) E °  C 	{yj}]; S  

Draw a new value 	from [E 5  pP, {$')}, 	
{yj}]; 

Draw a new value Ej from [E 1(1)  {s
(1) 

 j, 	f 

Check if E. - 3E is non-negative definite; if not repeat iv) and v) until it 

Is. 

These six steps constitute a single pass of the Gibbs sampler. 

Iterate H) - vi) rn times using updated values to obtain a sequence of values 

(ii) 	(1)-i 	(1) 	(1)\ 7_i 

	

I2 i ''L 5 l S' 	$i ' 	el ), 	- i,...,7fl. 

As rn goes large, {6} = ( jz, {s}, E 51 , E1) approximates a random sample from 

the joint density f(1z, {s},  E, Es). Based on the Gibbs sampling theory, a se-

quence of random samples, {9},  (1 = 1,. . , in), may be drawn and the numerical 

approximation of the posterior mean (8.14) is then given by: 

E[r(9 )I = 	 ( 8.21) 

8.5 Simulation Study of a Balanced Multiple Trait 
Sire Model With 500 Replicate Samples 

8.5.1 Simulation of 500 replicate samples 

Monte Carlo simulation based on the balanced multiple trait one-way sire model 

in (8.1) was carried out to generate observations, Yij,  with equal numbers of half-

sib progeny per sire for two or more traits. Values Yij  for half-sib groups were 

generated for various numbers of sires, family sizes, heritabilities and numbers of 
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traits to represent situations that differ in the amount of statistical information. 

The number of sires, s, varies from 25 to 80 (s = 25, 50 and 80), while the number 

of progeny per sire, ii, is either 8 or 20. The smallest experimental design is the 

one with 25 sires and 8 progeny per sire; the largest has 80 sires and 20 progeny 

per sire, giving a total of 1,600 records. The true heritabilities used in simulations 

and corresponding parameters, a, or and -y  are given in Table 8-1. Here a and 

a correspond to the diagonal elements of the sire and error variance matrices X 

and E e  and -y is the ratio of (72  to a. 

Table 8-1: Values of variance components and their ratio corresponding to dif-

ferent heritabilities, h 2 . 

Set of starting heritabilities 

Parameters 0.05 0.1 0.2 0.3 0.4 0.5 0.6 

01 2 0.0125 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 

or 2 0.9875 0.9750 0.9500 0.9250 0.9000 0.8750 0.8500 

It 0.0127 0.0256 0.0526 0.0811 0.1111 0.1429 0.1765 

In all simulations, 500 replicate data sets were used and results for the ANOVA 

estimates and posterior expectations of the parameters were computed as averages 

over these replicates for each experimental design. Also E. + E, was taken to be 

the identity ma+rix and E 8  to be diagonal, since a canonical linear transformation 

of the traits can always be found with variance matrices of this form if E 6  is 

positive definite and E 3  non-negative definite. The diagonal elements of E 5  are 

then one quarter of the heritabilities. Data sets generated in this chapter are also 

used in Chapter 9 for comparing the selection procedures. 

8.5.2 Results 

The results are obtained for t = 2, 4 and 6 traits, but only the tables for t = 4 are 

illustrated in this section, as those for t = 2 and 6 give similar results. 
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Results from the J4NOVA method: The means and standard deviations of 

ANOVA estimates of the parameters .t, diag(E 3 ), diag(E), 'y and h 2  over 500 

replicate samples are given for different true values of heritability and numbers of 

sires family sizes Table 8-2. It can be seen from this table that as the family size 

increases the parameter estimates get closer to the true parameter values given in 

Table 8—i. 

Estimation of the heritabilities, h2 , for four traits (t = 4) and different bending 

factors (w = 0.0, 0.2, 0.4, 0.8) is treated in Table 8-3. It can be noted from this 

table that the standard deviation of the estimate of h 2  decreases as the bending 

factor increases. It is also evident as expected that the mean value of the her-

itability for each trait gets closer to the average value of the true heritabilities 

with increasing w and size of experiment. In other words, the estimates of heri-

tability are compressed together with an increase in w and family size. The same 

tendencies are observed for the sire variances but are not given here. 

In these tables (Tables 8-2 and 8-3) the results include replicates where the 

sample estimates represented impossible parameter values, i.e. roots of 

could be outside the range 0 to 1, including cases of negative heritability estimates. 

Table 8-4 shows how often non-positive definite estimated sire variance matrices 

may occur for a range of unequal heritabilities, number of families and family 

sizes in model (8.1). The probabilities in this table are based on 500 replicate 

samples. It follows from Table 8-4 that the probabilities increase monotonically 

with reduction in heritability. For example, with s = 50, a = 8, t = 4 and h2  = 

0.1, 0.3, 0.4, 0.6, the probability of a obtaining non-positive definite sire variance 

matrix is 24.4 %, whereas with h2  = 0.1, 0.1, 0.2, 0.2, it is 45.8 %. There is also 

a decrease in the probability with an increase in the number of families, s, for a 

fixed family size. 

Results of the Gibbs Sampler: The Gibbs Sampler is used with 1,000 itera- 

tions of 500 replicate samples, and inferences about the parameters of interest 
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Table 8-2: Means and standard deviations (SD) of ANOVA estimates from 500 

replicate samples for four traits (t = 4) with different heritabilities and family 

sizes. 

	

IL 	 -y 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

= 25 n = 8 

.1 	-0.0004 	0.0782 	0.0261 	0.0466 	0.9752 	0.1056 0.0283 0.0496 	0.1015 	0.1820 

.1 	0.0006 	0.0751 	0.0273 	0.0451 	0.9762 	0.1074 0.0297 0.0481 	0.1072 	0.1776 

.2 	-0.0022 0.0813 0.0510 0.0516 0.9443 0.1020 0.0558 0.0573 0.2007 0.1995 

.2 	0.0025 	0.0865 0.0493 0.0486 0.9459 0.1068 0.0548 0.0558 0.1974 0.1950 

1 	-0.0024 0.0778 

3 	-0.0012 0.0894 

4 	0.0001 	0.0948 

6 	-0.0017 0.1001 

1 	0.0001 	0.0500 

1 	-0.0027 0.0532 

2 	-0.0010 0.0656 

2 	0.0008 	0.0633 

1 	0.0035 	0.0574 

3 	0.0015 	0.0655 

4 	0.0034 	0.0770 

6 	-0.0038 0.0924 

1 	0.0054 	0.0551 

1 	0.0071 	0.0552 

2 	0.0024 	0.0580 

2 	0.0002 	0.0578 

1 	0.0016 	0.0554 

3 	0.0014 	0.0619 

4 	0.0027 	0.0648 

6 	0.0014 	0.0746 

0.0266 

0.0722 

0.1026 

0.1526 

0.0234 

0.0261 

0.0497 

0.0500 

0.0252 

0.0742 

0.0995 

0.1530 

0.0234 

0.0241 

0.0479 

0.0514 

0.0259 

0 .0 711 

0.0988 

0.1501 

0.0427 

0.0585  

0.0655 

0.0752 

0.0210 

0.0221 

0.0285 

0.0276 

0.0206 

0.0357 

0 .04 18 

0.0575  

0.0304 

0.0310 

0.0349 

0.0352 

0.0321 

0.0390 

0.0436 

0.0535 

0.9718 0.1108 

0.9275 0.0958 

0.9120 0.0960 

0.8509 0.0889 

= 25 II = 20 

0.9768 0.0633 

0.9763 0.0604 

0.9497 0.0623 

0.9540 0.0591 

0.9819 0.0595 

0.9268 0.0604 

0.8988 0.0591 

0.8498 0.0528 

s = 50  = 8 

0.9721 0.0723 

0.9756 0.0742 

0.9519 0.0711 

0.9520 0.0753 

0.9704 0.0745 

0.9282 0.0754 

0.8990 0.0702 

0.8516 0.0634 

0. 02 93 

0.0796 

0.1159 

0.1832 

0. 02 43 

0.0270  

0.0529  

0.0527 

0.0260 

0.0807 

0.1114 

0.1809 

0.0249 

0.0255  

0.0513 

0. 05 49 

0.0275 

0.0779 

0.1116 

0.1782 

0.0460 

0.0654 

0.0779 

0.0955 

0.0218 

0.0230 

0.0312 

0.0293 

0.0214  

0.0396 

0.0482 

0.0695 

0.0319 

0.0326 

0.0382 

0.0385 

0.0336 

0.0445 

0.0520 

0.0675 

0.1064 0.1708 

0.2817 0.2194 

0.3983 0.2445 

0.5979 0.2669 

0.0933 0.0823 

0.1033 0.0861 

0.1978 0.1109 

0.1973 0.1047 

0.0996 0.0805 

0.2938 0.1330 

0.3942 0.1522 

0.6013 0.1960 

0.0935 0.1206 

0.0955 0.1230 

0.1904 0.1369 

0.2032 0.1367 

	

0.1028 	0.1261 

	

0.2829 	0.1512 

0.3938 0.1651 

	

0.5941 	0.1921 
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Means and standard deviations (SD) of ANOVA estimates from 500 replicate 

samples for four traits (t = 4) with different heritabilities and family sizes, 

continued from Table 8-2.... 

ii 	 -y 
h2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

s=50n20 

.1 	-0.0006 0.0371 	0.0261 	0.0154 0.9737 0.0462 0.0270 0.0163 0.1041 	0.0615 

.1 	0.0004 	0.0385 0.0248 0.0143 0.9746 0.0461 0.0256 0.0150 0.0990 0.0565 

.2 	0.0023 	0.0453 0.0502 0.0198 0.9521 	0.0432 0.0529 0.0213 0.1993 0.0764 

.2 	0.0011 	0.0442 0.0492 0.0190 0.9532 0.0408 0.0518 0.0204 0.1956 0.0733 

.1 	-0.0006 0.0371 0.0261 0.0154 0.9737 0.0462 0.0270 0.0163 0.1041 0.0615 

.3 	0.0020 0.0504 0.0751 0.0246 0.9270 0.0421 0.0812 0.0271 0.2981 0.0923 

.4 	0.0019 0.0542 0.0986 0.0281 0.9030 0.0386 0.1096 0.0321 0.3920 0.1032 

.6 	0.0020 0.0606 0.1485 0.0375 0.8497 0.0402 0.1752 0.0457 0.5914 0.1307 

s = 80 a = 8 

.1 	0.0016 0.0420 0.0256 0.0243 0.9721 0.0570 0.0269 0.0255 0.1023 0.0959 

.1 	-0.0003 0.0420 0.0260 0.0240 0.9702 0.0580 0.0272 0.0252 0.1037 0.0952 

.2 	-0.0056 0.0459 0.0505 0.0279 0.9463 0.0536 0.0543 0.0305 0.2028 0.1091 

.2 	-0.0005 0.0451 0.0487 0.0283 0.9496 0.0534 0.0517 0.0306 0.1935 0.1097 

.1 	0.0020 0.0443 0.0256 0.0242 0.9738 0.0597 0.0268 0.0256 0.1021 0.0965 

.3 	-0.0008 0.0477 0.0754 0.0308 0.9242 0.0555 0.0823 0.0347 0.3004 0.1168 

.4 	-0.0009 0.0521 0.1007 0.0357 0.9015 0.0513 0.1123 0.0414 0.3991 0.1316 

.6 	0.0013 0.0564 0.1481 0.0416 0.8478 0.0513 0.1760 0.0527 0.5918 0.1527 

s = 80 a = 20 

.1 	0.0005 0.0314 0.0248 0.0123 0.9727 0.0365 0.0256 0.0129 0.0993 0.0487 

.1 	0.0011 0.0303 0.0248 0.0120 0.9742 0.0335 0.0255 0.0125 0.0989 0.0473 

.2 	-0.0005 0.0364 0.0498 0.0159 0.9518 0.0344 0.0525 0.0174 0.1986 0.0625 

.2 	0.0005 0.0348 0.0508 0.0164 0.9485 0.0333 0.0537 0.0178 0.2028 0.0635 

.1 	0.0002 0.0291 0.0255 0.0117 0.9713 0.0378 0.0263 0.0123 0.1021 0.0466 

.3 	0.0021 0.0391 0.0744 0.0196 0.9249 0.0327 0.0806 0.0216 0.2969 0.0736 

.4 	0.0016 0.0436 0.0990 0.0232 0.8991 0.0328 0.1102 0.0261 0.3951 0.0845 

.6 	0.0019 0.0488 0.1505 0.0293 0.8496 0.0313 0.1773 0.0346 0.5994 0.0997 
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Table 8-3: Means and standard deviations (SD) of ANOVA estimates of her-

itabilities (h2 ) from 500 replicate samples for four traits (t = 4) with different 

heritabilities, family sizes and bending factor, w. 

0.0 	 0.2 	 0.4 	 0.6 	 0.8 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

25, = 8 

.1 	0.1015 0.1820 0.1344 0.1338 0.1401 0.1215 0.1486 0.1099 0.1597 	0.1008 

.1 	0.1072 0.1776 0.1369 0.1314 0.1425 0.1172 0.1510 0.1048 0.1612 	0.0973 

.2 	0.2007 0.1995 0.2028 0.1608 0.1941 0.1392 0.1864 0.1191. 0.1791 	0.1039 

.2 	0.1974 0.1950 0.2002 0.1583 0.1923 0.1381 0.1854 0.1191 0.1787 	0.1044 

.1 	0.1064 0.1708 0.1728 0.1334 0.2235 0.1240 0.2765 0.1171 0.3286 0.1173 

.3 	0.2817 0.2194 0.3052 0.1837 0.3241 0.1591 0.3431 0.1390 0.3614 0.1267 

.4 	0.3983 0.2445 0.3972 0.2084 0.3936 0.1784 0.3896 0.1517 0.3847 0.1327 

.6 	0.5979 0.2669 0.5583 0.2343 0.5167 0.2021 0.4730 0.1711 0.4271 0.1438 

s= 25 II = 20 

.1 	0.0933 0.0823 0.1063 0.0685 0.1175 0.0595 0.1292 0.0522 0.1408 0.0487 

.1 	0.1033 0.0861 0.1143 0.0725 0.1237 0.0630 0.1332 0.0554 0.1427 0.0507 

.2 	0.1978 0.1109 0.1893 0.0946 0.1802 0.0799 0.1711 0.0664 0.1617 0.0557 

.2 	0.1973 0.1047 0.1887 0.0901 0.1798 0.0766 0.1708 0.0644 0.1616 0.0550 

.1 	0.0996 0.0805 0.1559 0.0686 0.2104 0.0629 0.2632 0.0640 0.3143 0.0704 

.3 	0.2938 0.1330 0.3087 0.1143 0.3231 0.0983 0.3371 0.0864 0.3507 0.0801 

.4 	0.3942 0.1522 0.3889 0.1314 0.3833 0.1122 0.3772 0.0959 0.3708 0.0845 

.6 	0.6013 0.1960 0.5574 0.1717 0.5118 0.1468 0.4644 0.1221 0.4152 0.0988 

5= 50   = 8 

.1 	0.0935 0.1206 0.1134 0.0920 0.1217 0.0823 0.1320 0.0732 0.1434 0.0670 

.1 	0.0955 0.1230 0.1152 0.0937 0.1227 0.0836 0.1330 0.0731 0.1440 0.0665 

.2 	0.1904 0.1369 0.1857 0.1144 0.1776 0.0987 0.1701 0.0836 0.1626 0.0718 

.2 	0.2032 0.1367 0.1961 0.1140 0.1859 0.0980 0.1757 0.0835 0.1653 0.0722 

.1 	0.1028 0.1261 0.1611 0.1010 0.2131 0.0892 0.2653 0.0799 0.3158 0.0778 

.3 	0.2829 0.1512 0.3004 0.1283 0.3173 0.1086 0.3336 0.0931 0.3494 0.0838 

.4 	0.3938 0.1651 0.3889 0.1420 0.3835 0.1205 0.3777 0.1018 0.3714 0.0882 

.6 	0.5941 0.1921 0.5517 0.1672 0.5077 0.1422 0.4619 0.1180 0.4143 0.0967 
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Means and standard deviations (SD) of ANOVA estimates of heritabilities (h 2 ) 

from 500 replicate samples for four traits (t = 4) with different heritabilities, 

family sizes and bending factor, w, 

continued from Table 8-3.... 

0.0 	 0.2 	 0.4 	 0.6 	 0.8 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

s= 5011 = 20 

.1 	0.1041 0.0615 0.1140 0.0524 0.1236 0.0450 0.1331 0.0390 0.1426 0.0355 

.1 	0.0990 0.0565 0.1098 0.0483 01205 0.0416 0.1311 0.0367 0.1416 0.0344 

.2 	0.1993 0.0764 0.1901 0.0658 0.1807 0.0556 0.1713 0.0465 0.1617 0.0393 

.2 	0.1956 0.0733 0.1871 0.0630 0.1785 0.0534 0.1698 0.0449 0.1609 0.0384 

.1 	0.1041 0.0615 0.1580 0.0525 0.2103 0.0471 0.2611 0.0460 0.3104 0.0487 

.3 	0.2981 0.0923 0.3106 0.0788 0.3229 0.0673 0.3350 0.0586 0.3468 0.0540 

.4 	0.3920 0.1032 0.3857 0.0889 0.3792 0.0758 0.3725 0.0646 0.3655 0.0569 

.5 	0.5914 0.1307 0.5477 0.1145 0.5026 0.0980 0.4561 0.0816 0.4080 0.0662 

S= 8011 = 8 

.1 	0.1023 0.0959 0.1160 0.0772 0.1253 0.0676 0.1356 0.0586 0.1462 0.0525 

.1 	0.1037 0.0952 0.1175 0.0755 0.1262 0.0663 0.1362 0.0575 0.1465 0.0518 

.2 	0.2028 0.1091 0.1943 0.0929 0.1851 0.0790 0.1758 0.0663 0.1663 0.0564 

.2 	0.1935 0.1097 0.1869 0.0935 0.1795 0.0794 0.1721 0.0665 0.1644 0.0566 

.1 	0.1021 0.0965 0.1584 0.0801 0.2120 0.0697 0.2644 0.0636 0.3151 0.0633 

.3 	0.3004 0.1168 0.3138 0.0998 0.3270 0.0850 0.3397 0.0738 0.3522 0.0677 

.4 	0.3991 0.1316 0.3927 0.1138 0.3861 0.0973 0.3791 0.0830 0.3719 0.0725 

.6 	0.5918 0.1527 0.5493 0.1339 0.5053 0.1149 0.4599 0.0964 0.4129 0.0798 

s= 80 n = 20 

.1 	0.0993 0.0487 0.1100 0.0416 0.1206 0.0354 0.1311 0.0306 0.1415 0.0279 

.1 	0.0989 0.0473 0.1097 0.0401 0.1204 0.0338 0.1310 0.0293 0.1414 0.0271 

.2 	0.1986 0.0625 0.1895 0.0535 0.1802 0.0450 0.1709 0.0373 0.1614 0.0312 

.2 	0.2028 0.0635 0.1928 0.0544 0.1827 0.0458 0.1726 0.0378 0.1622 0.0315 

.1 	0.1021 0.0466 0.1566 0.0399 0.2095 0.0361 0.2609 0.0356 0.3109 0.0379 

.3 	0.2969 0.0736 0.3098 0.0627 0.3225 0.0534 0.3350 0.0463 0.3474 0.0424 

.4 	0.3951 0.0845 0.3883 0.0728 0.3813 0.0619 0.3742 0.0525 0.3669 0.0455 

.6 	0.5994 0.0997 0.5542 0.0874 0.5078 0.0748 0.4599 0.0625 0.4105 0.0510 
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Table 8-4: Empirical probability (%) of obtaining a non-positive definite esti-

mated sire variance matrix (E 3 ) for two family sizes (m = 8, 20), different number 

of traits (t = 2, .4, 6) and heritabilities. 

t=2 t=4 t=6 

h2 =.05,.5 h2 =.1,.2 h2 =.1,.1,.2,.2 h2 =.1,.3,.4,.6 h2 =.1,.2,.2,.3,.4,.5 

S n=8 	n=20 n=8 n20 n=8 n=20 n=8 n20 n8 n20 

25 40.2 	26.8 41.2 10.8 65.4 23.8 40.4 13.0 55.2 15.4 

50 37.0 	16.4 25.4 5.4 45.8 5.4 24.4 3.0 33.8 3.0 

80 32.6 	8.8 17.4 0.2 29.6 1.2 14.8 0.4 17.8 0.8 

are based on all the iterations. Bayesian analyses are carried out using two prior 

specifications. These are given as follows: 

In the first prior specification, which will be denoted by Priori, the prior 

parameters S. and 5, are chosen to be the same as the true parameter 

values, i.e. S. = E 3  and S. = E,. 

The prior parameters are chosen to be proportional to the identity matrix, 

i.e. S. = (1 - a)It and 5, = alt for some a in (0, 1). For example, with 

= diag(0.05 0.15) and E, = diag(0.95 0.85) then S = 0.1012 and 5, 

0.9012. This prior specification will be denoted by Prior2. 

In both prior specifications, degrees of freedom are equated to the number of 

traits, v3  = ii, = t. Under these prior specifications we have a weak independent 

inverse Wishart priors for X and E,. The properties of the posterior means of the 

parameters are illustrated in Table 8-5 for the first prior specification, Priori and 

in Table 8-6 for the second prior specification, Prior2 with a range of heritability 

and different sizes of families. 

As in the univariate case, the results of Table 8-5 indicate that the Bayesian 

method with Priori overestimates the variance components and their functions for 

designs with small family size and low heritability. As the heritability and family 
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size increase, posterior expectations of the parameters seem to match exactly with 

the true parameter values. 

The results of Table 8-6 using Prior2 lead to slightly different conclusion. The 

Bayesian method appears to underestimate the variance components and their 

functions corresponding to high true heritability and overestimate the same pa-

rameters corresponding to low heritability when the family sizes are small. This 

is because marginal posterior expectations show the influence of the prior distri-

butions for small families; the data provides little information on the parameters, 

especially on E. and functions of variances. As a result, the posterior expectations 

became rather sensitive to the prior specifications. However, with an increase in 

the family size, the posterior expectations of the parameters get closer to the true 

parameter values but there still seem to be some overestimates, especially for low 

heritabilities. 

Canonical heritabilities, A: Means and standard deviations of estimates canon-

ical heritabilities ( A) over 500 replicate samples are shown in Table 8-7 for a range 

of heritabilities, family sizes and four traits. The results from ANOVA, Priori and 

Prior2 present some discrepancies for small family sizes, but they seem to come 

closer to each other with an increase in the family size. 

8.6 Discussion 

In this chapter, it has been demonstrated for the first time that a Gibbs Sam-

pler algorithm can be used successfully to carry out a Bayesian analysis of all 

parameters in a balanced multi trait one-way sire model, such as those arising in 

animal breeding applications. With this implementation, a Bayesian analysis of 

the genetic and phenotypic parameters was made possible. As in the single trait 

case, the Gibbs Sampler permitted integration of all the parameters and gave a 
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Monte Carlo estimate of the marginal posterior distribution of the parameters of 

interest. 

Bayesian analysis using Gibbs sampling algorithm provides an estimate of the 

complete marginal posterior distribution of each unknown parameter and also gives 

point estimates which are within the permissible parameter space, in contrast to 

conventional procedures such as ANOVA. We have illustrated how often non-

positive definite sire variances may occur for all the designs used in this chapter. 

Because of this problem there appear to be some discrepancies between the results 

of ANOVA and Bayesian methods for small sample sizes. 

It has also been shown how the marginal posterior expectations are influenced 

by differences in the prior specifications for designs with small sample sizes. With 

the family size sufficiently large, the use of different prior specifications leads to 

essentially the same marginal posterior inferences on each parameter. From this, 

it can be concluded that the marginal posterior density is rather robust to changes 

in the prior specifications. 
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Table 8-5: Means and standard deviations (SD) of posterior means from 500 

replicate samples based on 1,000 iterations of the Gibbs sampler using Priori for 

four traits (t = 4), different heritabilities and family sizes. 

IL 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

s = 25n = 8 

.1 	-0.0005 0.0783 0.0354 0.0135 0.9795 0.1016 0.0370 0.0148 0.1401 0.0518 

.1 	0.0005 	0.0768 0.0362 0.0130 0.9807 0.1029 0.0381 0.0152 0.1440 0.0533 

.2 	-0.0016 0.0814 0.0630 0.0220 0.9500 0.0997 0.0681 	0.0253 0.2492 0.0837 

.2 	0.0030 	0.0864 0.0628 0.0202 0.9507 0.1009 0.0682 0.0249 0.2495 0.0825 

.1 	-0.0024 0.0782 0.0305 0.0094 0.9791 0.1052 0.0320 0.0109 0.1223 0.0395 

.3 	-0.0021 0.0900 0.0797 - 0.0238 0.9367 0.0930 0.0869 0.0269 0.3133 0.0873 

.4 	0.0002 0.0937 0.1062 0.0283 0.9256 0.0918 0.1174 0.0340 0.4114 0.1060 

.6 	-0.0019 0.0988 0.1481 0.0322 0.8726 0.0843 0.1723 0.0374 0.5781 0.1093 

s = 25 ii = 20 

.1 	0.0002 0.0502 0.0294 0.0100 0.9790 0.0626 0.0304 0.0105 0.1165 0.0384 

.1 	-0.0032 0.0539 0.0314 0.0113 0.9784 0.0602 0.0324 0.0119 0.1242 0.0434 

.2 	-0.0011 0.0674 0.0564 0.0180 0.9529 0.0613 0.0599 0.0201 0.2228 0.0689 

.2 	0.0012 0.0642 0.0566 0.0175 0.9574 0.0589 0.0597 0.0187 0.2221 0.0648 

.1 	0.0026 0.0581 0.0294 0.0096 0.9848 0.0585 0.0301 0.0101 0.1157 0.0372 

.3 	0.0025 0.0674 0.0801 0.0237 0.9311 0.0596 0.0869 0.0264 0.3146 0.0865 

.4 	0.0036 0.0780 0.1051 0.0291 0.9035 0.0588 0.1173 0.0335 0.4130 0.1044 

.6 	-0.0013 0.0928 0.1534 0.0346 0.8569 0.0529 0.1801 0.0408 0.6015 0.1178 

s = 50   = 8 

.1 	0.0059 0.0544 0.0310 0.0117 0.9727 0.0690 0.0325 0.0129 0.1240 0.0464 

.1 	0.0073 0.0555 0.0311 0.0108 0.9757 0.0712 0.0324 0.0119 0.1241 0.0430 

.2 	0,0022 0.0584 0.0556 0.0178 0.9539 0.0685 0.0593 0.0201 0.2202 0.0689 

.2 	0.0001 0.0589 0.0580 0.0194 0.9554 0.0732 0.0618 0.0217 0.2288 0.0738 

.1 	0.0019 0.0545 0.0315 0.0116 0.9724 0.0716 0.0329 0.0127 0.1256 0.0456 

.3 	0.0013 0.0627 0.0778 0.0238 0.9322 0.0738 0.0850 0.0280 0.3074 0.0908 

.4 	0.0026 0.0654 0.1054 0.0314 0.9041 0.0686 0.1187 0.0383 0.4155 0.1169 

.6 	0.0008 0.0745 0.1567 0.0429 0.8568 0.0625 0,1859 0.0549 0.6128 0.1502 
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Means and standard deviations (SD) of posterior means from 500 replicate samples 

based on 1,000 iterations of the Gibbs sampler using Priorl for four traits (t = 4), 

different heritabilities and family sizes, 

continued from Table 8-5.... 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

= 5011 = 20 

.1 	-0.0008 0.0376 0.0280 0.0090 0.9755 0.0455 0.0289 0.0096 0.1114 0.0357 

.1 	0.0001 	0.0389 0.0276 0.0086 0.9761 0.0466 0.0284 0.0092 	0.1098 0.0341 

.2 	0.0025 	0.0455 	0.0523 	0.0147 0.9544 	0.0435 0.0552 0.0159 	0.2072 0.0563 

.2 	0.0011 	0.0444 	0.0518 	0.0144 0.9557 0.0411 	0.0545 	0.0157 	0.2050 	0.0552 

.1 	-0.0007 0.0376 0.0277 0.0088 0.9758 0.0455 0.0286 0.0094 0.1102 0.0350 

.3 	0.0023 0.0506 0.0776 0.0203 0.9296 0.0424 0.0839 0.0225 0.3062 0.0751 

.4 	0.0017 0.0545 0.1023 0.0246 0.9057 0.0391 0.1136 0.0282 0.4030 0.0890 

.6 	0.0011 0.0617 0.1542 0.0344 0.8519 0.0406 0.1820 0.0425 0.6073 0.1185 

= 80 n = 8 

.1 	0.0019 0.0424 0.0295 0.0100 0.9738 0.0548 0.0306 0.0108 0.1177 0.0396 

.1 	-0.0009 0.0420 0.0298 0.0098 0.9714 0.0569 0.0310 0.0105 0.1192 0.0385 

.2 	-0.0047 0.0462 0.0546 0.0164 0.9487 0.0525 0.0583 0.0184 0.2175 0.0638 

.2 	0.0002 0.0455 0.0537 0.0170 0.9512 0.0527 0.0570 0.0187 0.2131 0.0650 

.1 	0.0022 0.0443 0.0285 0.0103 0.9758 0.0570 0.0296 0.0110 0.1138 0.0405 

.3 	-0.0008 0.0481 0.0766 0.0220 0.9290 0.0545 0.0834 0.0250 0.3036 0.0825 

.4 	-0.0006 0.0532 0.1017 0.0270 0.9067 0.0512 0.1133 0.0316 0.4013 0.0993 

.6 	0.0010 0.0568 0.1482 0.0319 0.8536 0.0501 0.1753 0.0401 0.5888 0.1164 

s = 80 n = 20 

.1 	0.0005 0.0316 0.0257 0.0079 0.9742 0.0365 0.0265 0.0084 0.1028 0.0314 

.1 	0.0012 0.0308 0.0260 0.0077 0.9756 0.0333 0.0267 0.0081 0.1036 0.0303 

.2 	-0.0009 0.0363 0.0504 0.0132 0.9539 0.0347 0.0532 0.0146 0.2005 0.0518 

.2 	0.0006 0.0353 0.0516 0.0136 0.9502 0.0334 0.0545 0.0147 0.2054 0.0522 

	

.1 	-0.0003 0.0290 0.0259 0.0075 0.9732 0.0379 0.0268 0.0080 0.1038 0.0298 

	

.3 	0.0018 	0.0393 0.0755 0.0172 0.9271 	0.0329 0.0817 0.0190 0.2998 0.0641 

	

.4 	0.0019 	0.0439 0.1006 0.0213 0.9010 0.0328 0.1120 0.0240 0.3995 0.0769 

	

.6 	0.0017 	0.0480 0.1527 0.0262 0.8515 0.0314 0.1798 0.0310 0.6045 0.0888 
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Table 8-6: Means and standard deviations (SD) of posterior means from 500 

replicate samples based on 1,000 iterations of the Gibbs sampler using Prior2 for 

four traits (t = 4), different heritabilities and family sizes. 

/2 	 cr 

it 2  Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

s = 25n = 8 

.1 	-0.0025 0.0788 0.0443 0.0132 0.9817 0.0962 0.0463 0.0153 0.1737 0.0530 

.1 	-0.0031 0.0752 0.0459 0.0155 0.9918 0.1014 0.0475 0.0174 0.1782 0.0598 

.2 	0.0004 0.0830 0.0523 0.0195 0.9630 0.0952 0.0560 0.0230 0.2072 0.0777 

.2 	0.0065 0.0851 0.0544 0.0200 0.9616 0.1004 0.0582 0.0229 0.2151 0.0775 

0.0179 

0.0291 

0.0368 

0.0550 

0.0103 

0.0111 

0.0182 

0.0185  

0.0120  

0.0256 

0.0337 

0.0470 

0.0136 

0.0124 

0.0177 

0.0206 

1 	-0.0001 0.0756 0.0732 

3 	0.0046 	0.0852 0.0959 

4 	-0.0019 0.0926 0.1081 

6 	-0.0093 0.1057 0.1417 

1 	-0.0004 	0.0516 	0.0363 

1 	-0.0043 0.0529 	0.0376 

2 	0.0015 	0.0659 0.0506 

2 	0.0021 	0.0652 0.0512 

1 	-0.0031 0.0568 0.0560 

3 	-0.0031 0.0699 0.0870 

4 	0.0040 	0.0779 0.1068 

6 	0.0034 	0.0863 0.1487 

1 	0.0011 	0.0550 0.0392 

1 	0.0057 	0.0554 0.0388 

2 	0.0033 	0.0592 0.0493 

2 	0.0007 	0.0585 0.0524 

0.9694 0.1005 

0.9190 0.0902 

0.9115 0.0944 

0.8613 0.0918 

s = 25 n = 20 

0.9779 0.0639 

0.9777 0.0582 

0.9541 0.0612 

0.9582 0.0591 

0.9706 0.0648 

0.9271 0.0590 

0.9056 0.0564 

0.8591 0.0538 

a = 50 n = 8 

0.9691 0.0739 

0.9746 0.0704 

0.9531 0.0686 

0.9598 0.0714 

0.0773 0.0208 0.2812 0.0679 

0.1071 0.0353 0.3759 0.1070 

0.1220 0.0447 0.4212 0.1318 

0.1695 0.0700 0.5563 0.1863 

0.0375 0.0108 0.1429 0.0389 

0.0388 0.0118 0.1478 0.0424 

0.0537 0.0204 0.2005 0.0706 

0.0540 0.0201 0.2019 0.0696 

0.0582 0.0129 0.2177 0.0445 

0.0948 0.0290 0.3400 0.0927 

0.1191 0.0389 0.4163 0.1185 

0.1748 0.0567 0.5796 0.1586 

	

0.0411 	0.0149 	0.1557 0.0526 

0.0405 0.0142 0.1539 0.0502 

0.0526 0.0198 0.1966 0.0686 

0.0555 0.0225 0.2064 0.0771 

.1 	0.0019 0.0545 0.0601 0.0140 0.9594 0.0708 0.0635 0.0157 0.2359 0.0535 

.3 	0.0013 0.0628 0.0819 0.0236 0.9307 0.0737 0.0895 0.0278 0.3226 0.0895 

.4 	0.0026 0.0653 0.1008 0.0315 0.9058 0.0688 0.1134 0.0383 0.3986 0.1178 

.5 	0.0009 0.0744 0.1404 0.0446 0.8618 0.0632 0.1660 0.0566 0.5547 0.1599 
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Means and standard deviations (SD) of posterior means from 500 replicate samples 

based on 1,000 iterations of the Gibbs sampler using Prior2 for four traits (t = 4), 

different heritabilities and family sizes, 

continued from Table 8-6.... 

IL -y 
h2  Mean SD Mean SD Mean SD Mean SD Mean 5D 

s = 50 a = 20 

.1 -0.0008 0.0377 0.0327 0.0090 0.9737 0.0454 0.0338 0.0097 0.1297 0.0355 

.1 0.0001 0.0390 0.0322 0.0086 0.9744 0.0464 0.0333 0.0092 0.1279 0.0338 

.2 0.0025 0.0455 0.0486 0.0150 0.9556 0.0436 0.0512 0.0162 0.1929 0.0577 

.2 0.0011 0.0444 0.0481 0.0147 0.9569 0.0412 0.0506 0.0160 0.1906 0.0566 

0.0090 

0.0200 

0.0248 

0.0352 

0 .0 10 5 

0.0102 

0.0165 

0.0170 

1 	-0.0008 0.0380 0.0456 

3 	0.0023 0.0507 0.0798 

4 	0.0017 	0.0544 0.0999 

6 	0.0011 	0.0615 0.1454 

1 	0.0019 	0.0425 0.0357 

1 	-0.0009 0.0420 0.0360 

2 	-0.0047 0.0462 0.0494 

2 	0.0001 	0.0454 0.0485 

0.9704 0.0453 

0.9292 0.0424 

0.9061 0.0391 

0.8529 0.0407 

S = 80 n = 8 

0.9700 0.0546 

0.9677 0.0567 

0.9516 0.0528 

0.9540 0.0530 

0.0473 0.0098 0.1794 0.0351 

0.0864 0.0222 0.3146 0.0740 

0.1109 0.0284 0.3945 0.0901 

0.1715 0.0433 0.5769 0.1229 

0.0372 	0.0113 	0.1422 	0.0410 

0.0376 0.0109 0.1436 0.0398 

0.0526 0.0184 0.1973 0.0645 

0.0515 0.0187 0.1931 0065€ 

.1 0.0020 0.0421 0.0522 0.0110 0.9623 0.0544 0.0547 0.0121 0.2058 0.0425 

.3 -0.0048 0.0492 0.0808 0.0215 0.9248 0.0518 0.0884 0.0249 0.3204 0.0816 

.4 0.0002 0.0515 0.0982 0.0275 0.9046 0.0506 0.1097 0.0320 0.3893 0.1011 

.6 -0.0021 0.0556 0.1436 0.0376 0.8542 0.0513 0.1699 0.0463 0.5708 0.1330 

s = 8011 = 20 

.1 0.0005 0.0316 0.0293 0.0077 0.9727 0.0364 0.0303 0.0083 0.1169 0.0307 

.1 0.0012 0.0308 0.0295 0.0075 0.9741 0.0333 0.0304 0.0079 0.1175 0.0295 

.2 -0.0008 0.0363 0.0478 0.0135 0.9547 0.0348 0.0504 0.0149 0.1904 0.0533 

.2 0.0006 0.0353 0.0490 0.0140 0.9510 0.0335 0.0518 0.0151 0.1956 0.0538 

.1 0.0006 0.0317 0.0392 0.0074 0.9697 0.0362 0.0406 0.0080 0.1552 0.0293 

.3 -0.0009 0.0402 0.0772 0.0173 0.9285 0.0339 0.0835 0.0198 0.3059 0.0666 

.4 0.0009 0.0424 0.1012 0.0228 0.9003 0.0318 0.1129 0.0261 0.4020 0.0829 

.6 0.0016 0.0492 0.1463 0.0296 0.8514 0.0293 0.1724 0.0358 0.5823 01021 

V 



Chapter 8. Multiple-Trait Analysis in Animal Breeding 	 205 

Table 8-7: Means and standard deviations (SD) of ANOVA estimates and poste-

rior expectations, based on 1,000 Gibbs sampling using two different priors (Priori 

and Prior2), of canonical heritabilities (A) from 500 replicate samples for four traits 

(t = 4), different heritabilities and family sizes. 

ANOVA 	 Priori 	 Prior2 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 

s = 25n = 8 

.1 	-0.1931 0.0955 0.0487 0.0075 0.0558 0.0069 

.1 	0.0124 0.1138 0.0985 0.0137 0.1038 0.0137 

.2 	0.2358 0.1282 0.1975 0.0365 0.1955 0.0359 

.2 	0.5389 0.1820 0.4409 0.1093 0.4225 0.1027 

1 	-0.1095 	0.1197 

3 	0.1512 	0.1425 

4 	0.4496 	0.1761 

6 	0.8624 	0.2113 

1 	-0.0335 0.0460 

1 	0.0712 	0.0555 

2 	0.1875 	0.0687 

2 	0.3583 	0.0978 

1 	0.0215 	0.0634 

3 	0.1982 	0.0885 

4 	0.4132 	0.1154 

6 	0.7350 	0.1676 

1 	-0.1011 	0.0780 

1 	0.0544 	0.0803 

2 	0.2109 	0.0902 

2 	0.4126 	0.1143 

0.0708 0.0159 

0.1973 0.0322 

0.3980 0.0686 

0.7574 0.0936 

s = 25 n = 20 

0.0502 0.0071 

0.0953 0.0154 

0.1813 0.0342 

0.3555 0.0762 

0.0726 0.0170 

0.2159 0.0437 

0.4130 0.0735 

0.7298 0.0997 

S = 50 n = 8 

0.0494 0.0070 

0.0945 0.0140 

0.1821 0.0341 

0.3718 0.0829 

0.1298 0.0179 

0.2377 0.0330 

0.4309 0.0790 

0.8250 0.1748 

0.0583 0.0069 

0.1019 0.0152 

0.1799 0.0330 

0.3497 0.0759 

0.1304 0.0173 

0.2379 0.0390 

0.4168 0.0733 

0.7506 0.1370 

	

0.0571 	0.0067 

0.1012 0.0138 

0.1836 0.0337 

	

0.3711 	0.0880 

.1 	-0.0213 0.0972 0.0759 0.0172 0.1278 0.0168 

.3 	0.2056 0.1078 0.2136 0.0424 0.2333 0.0381 

.4 	0.4326 0.1159 0.4129 0.0772 0.4106 0.0739 

.6 	0.7438 0.1553 0.7527 0.1314 0.7321 0.1319 
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Means and standard deviations (SD) of ANOVA estimates and posterior expec-

tations, based on 1,000 Gibbs sampling using two different priors (Priori and 

Prior2), of canonical heritabilities (A) from 500 replicate samples for four traits (t 

= 4), different heritabilities and family sizes, 

continued from Table 8-7.... 

ANOVA 	 Priori 	 Prior2 

h2  Mean 	SD 	Mean 	SD 	Mean 	SD 

s = 50n= 20 

.1 	0.0153 0.0375 0.0511 0.0082 0.0591 0.0079 

.1 	0.0947 0.0403 0.0969 0.0173 0.1024 0.0164 

.2 	0.1832 0.0526 0.1755 0.0328 0.1745 0.0320 

.2 	0.3012 0.0665 0.3075 0.0558 0.3027 0.0557 

1 	0.0644 	0.0540 

3 	0.2399 	0.0694 

4 	0.4082 	0.0817 

6 	0.6626 	0.1167 

1 	-0.0467 0.0662 

1 	0.0776 	0.0644 

2 	0.2032 	0.0693 

2 	0.3652 	0.0904 

1 	0.0295 	0.0818 

3 	0.2327 	0.0858 

4 	0.4296 	0.0987 

6 	0.6929 	0.1296 

1 	0.0354 	0.0316 

1 	0.1018 	0.0345 

2 	0.1824 	0.0422 

2 	0.2782 	0.0535 

0.0780 0.0225 

0.2361 0.0464 

0.4113 0.0621 

0.6914 0.1037 

S = 80 n = 8 

0.0506 0.0079 

0.0958 0.0166 

0.1782 0.0337 

0.3423 0.0724 

0.0749 0.0198 

0.2207 0.0434 

0.4085 0.0696 

0.6974 0.0988 

s = 80n = 20 

0.0527 0.0101 

0.0980 0.0178 

0.1742 0.0297 

0.2858 0.0476 

0.1280 0.0207 

0.2449 0.0417 

0.4070 0.0604 

0.6748 0.1038 

	

0.0581 	0.0079 

0.1018 0.0164 

0.1780 0.0324 

0.3377 0.0718 

0.1290 0.0188 

0.2390 0.0414 

0.4089 0.0690 

0.7011 0.1073 

0.0606 0.0095 

0.1036 0.0167 

0.1726 0.0291 

0.2819 0.0474 

	

.1 	0.0777 	0.0431 0.0798 0.0221 0.1234 0.0206 

	

.3 	0.2589 	0.0605 0.2485 0.0455 0.2555 	0.0442 

	

.4 	0.4059 	0.0722 	0.4101 	0.0589 0.4122 	0.0600 

	

.6 	0.6447 	0.0890 0.6622 0.0768 0.6472 0.0884 



Chapter 9 

Multiple-Trait Selection Indices 

9.1 Introduction 

In the development of animal breeding plans it is common practice to consider 

several traits. These traits may differ in heritability, economic importance and 

phenotypic variance. The following question arises in what way shall the breed-

ing animals be selected to improve several traits genetically? The principal of 

constructing and using selection indexes which permit attainment of maximum 

genetic progress for several traits in animal breeding situations was originally pro-

posed by Hazel (1943). The theory was considered in somewhat greater depth 

by Henderson (1963) who combined information from several individuals for one 

or more traits. The paper by Hazel (1943) introduced the formalized theory of 

selection index into animal breeding as Smith (1936) did for plant breeding. The 

primary idea presented by Hazel (1943) was certainly not focused on the use of 

different sources of information for single-trait evaluations; rather it emphasized 

the definition of multiple-trait breeding goals and objective means of assessing 

appropriate weights to the different traits being recorded, considering genetic re-

lationships and variances and covariances among the traits included. 

Williams (1962a) obtained an exact formula for the sampling variance of the 

index weights for two variables in a specific experimental design with selection 

applied to groups rather than individuals. These particular sampling and selec- 

207 
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tion schemes were chosen to reduce the problem to one that was mathematically 

tractable. He suggested the use of a base index, in which the economic weights 

are used directly as the index weights, instead of the index computed from the 

estimated parameters. He showed that progress from using the estimated index 

for two traits could be substantially smaller than that from using the base index. 

Williams (1962b) has suggested that unless a considerable amount of data was 

available for parameter estimation, it would be preferable to select upon the base 

index than upon an estimated index. His conclusion was that if the improvement 

of the optimum over the base index is small, then the chance of achieving an even 

smaller improvement over the base index with the estimated index may not be 

large enough to outweigh the risk that the estimates provide results worse than 

those for the base index. 

Harris (1964) considered the nature of the index selection procedure when 

sample estimates are used in place of true parameter values. He adopted a rather 

different approach, using Taylor series expansions to develop approximate formulae 

for the expected achieved response from paternal half-sib analyses of variance 

and covariance. These formulae were complicated, although only two traits with 

individual selection were considered. The validity of the results was checked by 

Monte Carlo simulation and was supported fairly strongly. 

According to Hazel and Lush (1942) multiple-trait selection can be carried out 

by three main methods. They are as follows 

The tandem method,i.e. select for one trait until that is improved, then for a 

second trait, later for a third, etc., until finally each trait has been improved to 

the desired level. 

The independent culling levels, i.e. a certain level of merit is established for 

each trait, and all individuals below that level are discarded, regardless of the 

superiority or inferiority of their other traits. 

The selection index method, i.e. select for all the traits simultaneously by using 
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some index of net merit constructed by adding into one figure the credits and 

penalties given each animal according to the degree of its superiority or inferiority 

in each trait. 

If the parameters were known or estimates of them exist the selection in-

dex method should be preferred. Since the introduction of the selection index 

method by Hazel (1943), it has been considered the best method, theoretically, 

for multiple-trait improvement. It has several theoretical advantages when the 

joint distribution of breeding values and traits is known; minimizing the predic-

tion error, maximizing the correlation between true breeding value and the pre-

dicted value, maximizing the probability of correct ranking, and maximizing the 

average true breeding value of a selected group of individuals. It has also been 

shown (Hazel and Lush, 1942) that the index method is never less efficient than 

that of independent culling levels, though it might be no more efficient; similarly, 

independent culling is never less efficient than tandem selection. 

However, when selection of individuals for two or more traits must be per-

formed, the mean, variances and covariances are required to be known, and the 

genetic and phenotypic values to be normally distributed. Despite the fact that 

these assumptions are satisfactory for continuous type of traits, e.g. milk yield, 

protein yield, fat yield and growth rate, some selection experiments have failed 

to demonstrate the superiority of index selection over independent culling levels. 

The failure of the index method of selection to achieve expectations may be due 

to invalid assumptions (Xu and Muir, 1990). 

The problems with the selection index approach is that if the variance matrix 

of explanatory variables is ill-conditioned, i.e., the eigenvalues of the matrix are 

spread and some of them are very small (approximately zero), the least square 

estimates of the regression coefficients are much more sensitive to sampling er-

rors. The bending method developed by Hayes and Hill (1981) and outlined in 

Chapter 8 for variance matrices can be used to reduce the problem of sampling 



Chapter 9. Multiple-Trait Selection Indices 	 210 

errors. In order to circumvent the problem of an ill-conditioned covariance matrix 

of explanatory variables in multiple regression analysis, the technique of ridge re-

gression was introduced by Hoerl and Kennard (1970) to obtain a class of biased 

estimators for the parameters in a general linear model. The bending procedure 

has its roots in this technique. 

In recent years, there have been several other studies that have investigated 

a method of modifying (bending) the parameter estimates so as to improve the 

selection responses for several traits. Meyer and Hill (1983) developed a more 

general bending procedure which can be applied to any combination of traits, 

when both individual and sib information are available. Since they found that it 

improved poor indices much more than it worsened good indices, it can be used 

with some safety. The choice of the bending factor was problematical, but Monte 

Carlo simulation suggested that at least some bending could be done to advantage 

in all situations (like Hayes and Hill, 1981). 

In contrast to Hayes and Hill (1981), Hayes and Cue (1985) dealt with estimates 

of variances and covariances for two and three traits from unbalanced data sets. 

They considered two methods of estimation, a) Restricted Maximum Likelihood 

(Thompson, 1973), and b) Henderson's method III (Henderson, 1953). Their 

objective was to see if these estimates can be improved by bending and to what 

extent in the case of each method. In all cases the achieved response was improved 

by bending. The improvement in the achieved response was greater in the case of 

three traits than two traits. 

Meuwissen and Kanis (1988) used a bending procedure in combination with 

the general consistency criterion of Foulley and 011ivier (1986) to modify an in-

consistent set of guessed population parameters in a pig breeding situation where 

many index traits and a few breeding goal traits are involved. 

A new method for the choice of an appropriate bending factor in the con- 

struction of genetic selection indices using some prior knowledge of the population 
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parameters was developed by Essi (1991). The main feature of the method that 

he proposed is to use the bending factor which maximizes the correlation between 

true and estimated aggregate genotype, replacing the (unknown) population pa-

rameters with guessed values in the computation formula. 

The general use of decision theory in determining selection procedures and 

the application of the theory for a single trait using data on candidates and their 

relatives are given in Chapter 7. The extension of the method to multiple trait 

individual selection will be examined with simulated data sets in this chapter. 

Theoretical assessment of selection progress from a Bayesian decision procedure 

point of view is carried out by Theobald (1994) for a single trait and multiple trait 

selections but no numerical results are presented. 

In this chapter, a balanced multiple trait one-way sire model is considered 

for selection of a fixed proportion from an infinite population. The conventional 

method of constructing genetic selection indices for multiple traits is reviewed and 

the use of the bending method for improving selection responses is considered. 

Then Bayesian decision procedures are contrasted with the use of conventional 

and modified estimates. Bayesian inferences about the selection responses are 

made from the marginal posterior distributions which are obtained using the Gibbs 

sampling algorithm described in Chapter 8 for multiple trait analysis. 

9.2 Theory of Multiple Trait Index Selection 

Let us assume that t traits are observed, and let x and g denote the vector of 

observations on an individual and the corresponding vector of additive genetic 

contributions. The aggregate breeding value of the individual, which is determined 

jointly by the breeding values and the economic importance of the component 

traits is given by 

H = ag, 
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where a is a vector of relative economic weights corresponding to g. The economic 

weight for each trait should approximate the partial regression of cost per unit of 

enterprise output value on the corresponding breeding value. These weights can 

vary with the production and marketing system, with performance of traits, and 

with breed role (i.e., paternal, maternal, or general) in crossbreeding systems. 

Since the value of H for a particular individual will not be known, selection 

is carried out on an index, I, thought to be positively correlated with H. An 

index intended to maximize the correlation with aggregate breeding value H is 

then constructed as follows 

I=b'x 
	

(9.1) 

where b is a vector of index weights. Genetic improvement in H is proportional 

to PHI,  the correlation between index values and aggregate breeding value, which 

is given by 
a'E9 b 

PHI = 

where E and E. are the phenotypic and genetic variance matrices between traits. 

It is well-known that PHI  has a maximum when b equals to 

= E; 1 E9 a. 	 (9.2) 

The response, II, to selection is then 

= 1Cov (I , H)[Var(I)]_h/'2  

= 

= (a'E9E1ga)1/2, 	 (9.3) 

where i is the selection intensity or average superiority of the index. The popula- 

tion parameters L and )i g  are assumed to be known without errors in the index 
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weight and response calculations. However, this is not likely to be the case in 

practice. 

If the index is computed from estimates of parameters, more quantities need 

to be defined (Sales and Hill, 1976). Given estimates E,, and )i of E and E., 

the estimated index weights are usually taken from (9.2) as 

	

= EE9 a 
	

(9.4) 

with the economic weights assumed to be known without error. The predicted 

response, R, is calculated by substituting the estimates into (9.3) as follows 

= 

1/2 
= 	 9 a) 	. 	 (9.5) 

The expectation of the response that is actually achieved using estimated weights, 

to make selection decisions in the population is 

= i Cov(I,H)[Var(i)] -'12  

- ibE9 a 
(9.6) 

- (6'E6)1/2 

9.2.1 The Bending method 

Instead of using either the index computed from the parameter estimates directly, 

or simply the base index, it is possible to construct selection indices using modified 

parameter estimates. One method, termed bending, was proposed by Hayes and 

Hill (1981) and is outlined in Section 8.2.3. 

The modified estimated and achieved responses can be obtained as 

ir = 
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fro
= ib Ea 

(6*'EpU) 
£*\1/2 

*-1* where the bent estimate b is obtained as b *  = E 7, E9 a. 

When w = 1, b = E - 'Ea = ca where c = 4( - 1)/(U + n - 1), w is a 

bending factor and v is the mean of the roots of MMb and when w = 0, 

9.3 Negative Roots and Their Modification 

9.3.1 Negative Roots (Heritabilities) 

In the analysis of correlated traits there is a strong chance that because of sampling 

variation, the estimated variance matrix of genetic components, FIg,  is not positive 

definite. The probability that this occurs increases with the number of traits (Hill 

and Thompson, 1978). The use of estimated variance matrices obtained from 

using ANOVA can cause some problems. 

Firstly, if there are many traits, the estimates Ak of roots Ak obtained from 

the determinantal equation I Eg  - XE7, 1= 0 may be seriously biased (Hill and 

Thompson, 1978). This is illustrated using a canonical transformation of ANOVA 

estimates, Eg  and EP,  for four traits in Table 8-7 of Chapter 8. In this table, 

the estimates of high values of Ak are biased upwards and of low values are biased 

downwards as also reported by Hayes and Hill (1980). The biases are greatest 

when the parameter values, Ak, are close together. It appears that the biases 

decrease with an increase in the family size. 

Secondly, one or more roots of E; 1  E9  calculated from the ANOVA method are 

likely to be negative, especially when there are many traits. The negative roots 

mean that there are sets of economic weights for which index selection would 

give negative progress. This can be seen from Table 8-7 in Chapter 8. The 
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negative roots in this table are generally of small magnitude, but problems might 

be expected if these become large relative to the dominating positive roots. The 

use of such estimates in the construction of selection indices may lead to inefficient 

selection decisions even when data on hundreds of animals are used. 

However the use of posterior expectations of genetic and phenotypic variance 

matrices; and E obtained from Gibbs sampling estimates overcomes the prob-

lems mentioned above which are encountered using ANOVA estimates. 

As a first check on whether the estimated parameters are within the permissi-

ble parameter space one might look at the estimated canonical heritabilities, that 

is the estimated heritabilities of the canonical variables, which are the roots 'k,  of 

E 1 E9 , i.e., solutions of J - 0. If any of these are less than zero they 

imply negative genetic variances for the corresponding canonical variables, equiv-

alent to untransformed heritabilities or genetic correlations outside their bounds. 

A solution of Ak of I  E,, - 0 is negative if and only if Y has a negative 

eigenvalue. If any of the A, exceed unity they imply negative environmental cor-

relations exceeding unity in absolute value for the canonical variables (necessary 

and sufficient condition that I E, - 0 has at least one A, > 1 is that 

EP -; = E e  has at least one negative eigenvahie). 

9.3.2 Possible modifications of negative roots 

It is obvious that estimates are faulty if the canonical heritabilities fall outside 

their bounds, but how to deal with the unreasonable estimates remains an open 

question. When estimated correlations and/or heritabihties have been outside 

their bounds, it has been the common practice in simulation studies to set them 

to the nearest valid bound, for example negative heritabilities to zero, correlations 

over unity to one (Harris, 1964; Sales and Hill, 1976, 1977). This is equivalent to 

setting a canonical heritability to its nearest bound, either 0 or 1. 
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There are several procedures to modify negative roots of the estimated genetic 

variance matrix, E 9 , or alternatively those of 1 Jg . Two of these procedures, 

which are suggested by Hayes and Hill (1981) will be examined in this chapter. The 

first obvious method in such a case would be to eliminate the defective canonical 

variable(s) by setting the negative roots of t P  1  t g  to zero. This effectively reduces 

the number of independent variables such as genetic and environmental variables. 

This method will be referred to as modification A. An alternative procedure, 

modification B, would be to choose a bending factor w just large enough that 

the smallest root of E 1  equals zero. By using both methods, the spread of 

the sample roots is reduced and thus the estimates and the index are improved. 

Modification B can be done as follows: 

Suppose that v 1  > ... > Vt are the roots of the determinantal equation 

I M - VM =0. Let z l ,..., zt be the solutions of 

(Mb —VkM)Zk = 0, 	z kMwzk = 1 	(k=  

and let Z = (z i ,. . . , z t ). Suppose now that V is the diagonal matrix with the 

roots as diagonal elements in descending order. From the definition of V and Z 

we have M5Z = MWZV, Z'MW Z = I and IMbZ = V. If we let N denote Z', 

we obtain 

M6 =NVN, M=NN. 

The modified genetic covariance matrix, E, is given by 

= 	{(1—w)Mb—(l—wU)M} 

= {(i - w)N'VN - (1 - wU)N'N} 

= ±N'{(l — w)V — (1 —wU)I}N. 

is then used in place of E9  in (9.4) and (9L5) to compute the revised index 

weights and estimated selection responses. The matrix (1 - w)V - (1 - wU)I has 
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diagonal elements (1, — w)vk - (1 - w13). The smallest of them is 

(1 - W)Vt - ( 1 - wD) = Vt - 1 - W(Vt - ü). 

This is non-negative if Vt - 1 > W(vt - ü), or 

1 - Vt 

V - Vt 

Thus, one should choose a bending factor (1 - V1)/(v - Vt) in order to make 

non-positive definite. 

9.4 A Decision Theory Approach 

A general decision theory approach to selection of candidates for breeding is al-

ready discussed in Chapter 7. In what follows this approach will be extended 

briefly to multiple-trait selection procedures. 

Suppose that the data vector x oft traits is recorded on an individual candidate 

for selection and that Y denotes the experimental observations of the some traits 

on other members of the same population. Genetic theory postulates a vector g of 

genetic values representing the expected values of these traits among progeny from 

mating this individual in a specified population. Suppose, for simplicity, that the 

proportion of candidates to be selected is fixed. We might then take the utility of 

selecting a particular candidate to be its aggregate breeding value a'g. The best 

animals are then those for which the posterior expectation of the breeding value 

is greatest. Hence we require the posterior expectation of a'g, and the preferred 

candidates are those maximizing 

E[a'E g E'x I P,Y] = a'E[B I P,Y]x, 	 (9.7) 

where F denotes the prior distribution on ji, E, , and E and B is the posterior 

expectation of E9 E;'. Expression (9.7) still represents a linear index in x, but 

the coefficients in B are obtained as posterior expectations, not via estimation. 

The Gibbs sampler allows these expectations to be found straightforwardly. 
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9.5 Results From 500 Replicate Samples of Sim-

ulation Study 

9.5.1 Data 

Observations generated using a balanced multiple trait one-way sire model in (8.1) 

of Chapter 8 are also employed here to assess selection progress. Values Yij  for half-

sib groups were generated for various numbers of sires, family sizes, heritabilities 

and numbers of traits In all simulations, 500 replicate data sets were used and 

results for selection responses from ANOVA estimates and posterior expectations 

of the parameters are based on averages over these replicates for each experimental 

design. 

9.5.2 Results 

Results from conventional selection procedures: The optimum selection responses, 

R02 , for given heritabilities, economic weights and number of traits (t = 2, 4 

and 6) are illustrated in Table 9-1. Means and standard deviations of estimated 

response Rand of achieved response if using ANOVA estimates from 500 replicate 

samples for a range of traits, different heritabilities, economic weights, family sizes 

and bending factor, w, are shown in Tables 9-2 and 9-3, respectively. Estimates 

falling outside the parameter space were not excluded from the analysis, i.e., roots 

of E' E9  could be outside the range 0 to 1, including cases of negative heritability 

estimates. As in the case of a single trait selection indices, comparison of the 

values of Table 9-2 with those of Table 9-1 indicates that the estimated responses 

R almost always overestimate the optimum progress R, pt . This upwards bias is 

considerable especially when there are a few families and many traits but becomes 
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Table 9-1: Optimum selection responses, 	for a range of heritahilities, eco- 

nomic weights and number of traits (t = 2, 4 and 6). 

	

2 	U a 	 It 	 Ibopt 	
1. 	

-'1opt 

1 0 	.05 .5 	0.0500 .1 .2 0.1000 

11 	.05 .5 	0.5025 .1 .2 0.2236 

1 3 	.05 .5 	1.5008 .1 .2 0.6083 

1122 .1.1.2.2 0.5831 

4635 .1.1.2.2 1.3711 

11 1 1 .1 .1 .2 .2 0.3161 

1221 .1.3.4.6 1.1705 

4536 .1.3.4.6 4.1000 

1 1 1 1 .1 .3 .4 .6 0.7874 

12 122 1 .1.2.2.3.4.5 1.2083 

431526 .1.2.2.3.4.5 3.5285 

111111 .1.2.2.3.4.5 0.7681 

fairly small with sufficient amount of data. It is also clear that the estimated 

responses are improved by increasing the bending factor, w. 

In contrast to the estimated response Eusing ANOVA estimates, the achieved 

response H" in Table 9-3 appears to underestimate the optimum progress indi-

cating a downward bias. This bias is greater the closer the heritabilities are to 

zero and each other, the greater the number of traits included in the analysis and 

the smaller the family size for estimation. The downward bias is reduced as the 

bending factor in increases. Overall, the bending does not significantly improve 

the achieved response to selection over unmodified responses (when w = 0.0) when 

the sample size used to estimate parameters is large and the number of traits is 

few. 

It can be seen from both Tables 9-2 and 9-3 that the standard deviations of I? 

and H" are reduced with an increase in in. The problem here is that the optimum 

value of the bending factor w cannot be predetermined for any replicate data set. 
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Table 9-2: Means and standard deviations (SD) of estimated response to selec-

tion, .ñ, using ANOVA estimates from 500 replicate samples for a range of traits (t 

= 2, 4 and 6), different heritabilities, economic weights, family sizes and bending 

factor, W. 

0.0 0.2 0.4 0.6 018 

0 Mean SD Mean a 

 

SD Mean SD Mean SD Mean SD 

S = 25. =8 

1 0 .05 .5 0.1972 0.1160 0.1815 0.1152 0,1947 0.1206 0.2248 0,1326 0.2657 0.1509 

1 1 .05 .5 0.5595 0,2937 0.5097 0.2723 0.4700 0.2545 0,4425 0.2410 0,4285 0.2337 

1 3 .05 .5 1.5925 0,7899 1.4464 0.7254 1.3045 0.6629 1,1687 0.6032 1,0418 0.5486 

1 0 .1 	.2 0.2109 0,1261 0,1912 0.1178 0.1763 0.1129 0.1671 0.1117 0,1646 0.1144 

1 3 .3 	.2 0.3416 0,1994 0,3095 0.1851 0.2816 0.1746 0.2592 0.1685 0,2443 0.1666 

1 3 .1 	.2 0,8263 0,4766 0.7469 0.4434 0.6746 0,4157 0,6118 0.3946 0,5619 0,3812 

1 3 2 2 .1 	.1 	.2 	.2 1,0144 0.4723 .0.8772 0,4259 0,7537 0,3838 0,6515 0.3415 0,5795 0.3120 

4 6 5 3 .3 	.1 	.2 	.2 2.8265 3,3281 2.4353 1.1890 2,0952 1,0586 1.8282 0,9514 1,6581 0,8969 

1 1 1 1 .1 	.1 	.2 	.2 0,6182 0,2896 0.5334 0,2603 0,4588 0,2327 0,3991 0.2092 0,3597 0,1953 

1 2 2 1 .1 .3 .4 .6 1.4805 0.6028 1,3664 0,5452 1,2810 0,4865 1,2261 0,4363 1,2020 0,4083 

4 5 3 6 .1 .3 .4 .6 4,8866 2.0113 4,4513 1,7999 4,0855 3.5826 3,8008 1,3807 3,6071 1.2350 

1 1 1 1 .1 .3 .4 .6 0,9725 0.4001 0,8889 	, 0,3611 0,8254 0.3204 0,7830 0,2838 0,7624 0,2607 

1 2 1 2 2 1 .2 	.2 	.2 	.3 	.4 	.5 1,8023 0.6691 1.5948 0.6045 1,4246 0.5303 1,3028 0,4501 1,2346 0.3901 

4 3 1 5 2 6 .2 	.2 	.2 	.3 	.4 	.5 4,8566 3,7277 4,2948 1,5375 3,8025 1,3345 3,4044 3,3318 3,1254 0.9779 

1 1 1 1 3 1 .1 	.2 	.2 	.3 	.4 	.5 1,0435 0,4298 1,0097 0,3877 0,9007 0.3382 0,8225 0.2868 0,1794 0,2492 

a = 25 n = 20 

1 0 .05 .5 0.1001 0,0605 0,1204 0,0629 0.2583 0,0680 0.2023 0,0781 	. 0,2486 0.0920 

1 I .05 .5 0.5007 0,1900 0,4642 	. 0.1149 0,4353 0,1619 0.4253 0,1519 0,4052 0.1464 

1 3 .05 .5 1.4897 0,5265 1,3621 0,4818 2.2365 0,4374 1,1337 0,3943 0.9952 0,3533 

1 0 .2 	.2 0.1299 0,0696 0,1303 0,0654 013345 0,0619 0,1413 0,0610 0.1503 0,0630 

1 2 .1 	.2 0.2507 0,1321 0,2398 0,1209 0.2322 0,1102 0,2274 0,1015 0.2254 0,0962 

1 3 .1 	.2 0,6775 0,3393 0,6356 0,3085 0,5967 0,2790 0,5813 0,2518 015299 0,2263 

1 I 2 2 .1 	.1 	.2 	.2 0.7060 0,3072 0,6427 0,2719 0,5872 0,2354 0,5407 0,2007 0,3046 0,1729 

4 6 3 3 .1 	.1 	.2 	.2 1,7828 0,7780 1,6331 0.6988 1,5180 0,6166 1,4424 0,5390 3,4077 0,4836 

1 3 1 1 .1 	.1 	.2 	.2 0.3998 0,1745 0,3658 0,3558 0,3385 0,1365 0,3189 0,1186 0,3075 0.1054 

1 2 2 1 .1 .3 .4 .6 1.3118 0.4951 1.2530 0.4298 1.2079 0.3660 1,1766 0,3109 1.1593 0,2748 

4 5 3 6 .1 .3 .4 .6 4.4770 1,5187 4,1650 1,3262 3.8911 3,3364 3.6639 0.9645 3,4849 0.8360 

1 2 2 1 .1 .3 .4 .6 0.8744 0,3087 0,8229 0,2694 0.7821 0,2307 0,7528 0.3971 0.7357 0,3748 

1 2 1 2 2 1 .1 .2 .2 .3 .4 	.5 1.4335 0,4950 1,3307 0,4295 112474 0,3608 1,1858 0,2950 1,1477 0,2457 

4 3 3 3 2 6 .1 .2 .2 .3 .4 	.5 4.0367 1,3629 3,6873 1,1775 3.3768 0,9814 3.1349 0,7905 2.9093 0,6371 

1 	2 2 1 1 1 .1 .2 .2 .3 .4 	.5 0.9112 0,3060 0,8438 0,2671 0.7863 0,2257 0.7463 0,3859 0,7234 0,1562 

= 50 n = 8 

1 0 .05 	.5 0,2377 0.0764 0,1436 0,0819 0.1677 0,0893 0.2071 0,0974 0,2519 0.1084 

1 1 .05 .5 0,5202 0.2352 0,4808 0,1973 0.4489 0,1823 0,4260 0,1716 0,4331 0,1664 

1 3 .05 .5 3.5209 0,5730 3,3893 0,5246 1.2597 0,4779 1,2334 0,4338 1.0119 0.3942 

1 0 .1 	.2 0,1353 0.0888 0,1466 0,0863 0,2429 0,0845 0,1448 0,0831 0,1512 0,0836 

1 1 .1 	.2 0,2814 0.1532 0,2620 0,1428 0,2464 0,1335 0,2351 0,1258 0.2282 0.1213 

1 3 .1 	.2 0,7275 0,3657 0,6720 0.3383 0,6206 0.3339 0.5742 0.2939 0,5342 0.2790 

1 1 2 2 .1 	.1 	.2 	.2 0,8065 0,3369 0,7162 0,3002 0,6351 0,2662 0,5671 0,2373 0,5188 0,2175 

4 6 5 3 .1 	.1 	.2 	.2 2,0800 0,9116 1,8463 0,8182 1,6544 0,7303 1,5157 0.6611 1,4432 0,6239 

1 	1 1 2 .1 	.1 	.2 	.2 0.4682 0.2041 0.4355 0.1825 0.3708 0.1626 0.3366 0.1461 0.3160 0.1357 

1 2 2 1 .1 	.3 	.4 	.6 1.3087 0.4759 1.2429 0.4189 1.1948 0.3611 1,1645 0.3097 1.1514 0.2756 

4 5 3 6 .1 	.3 .4 .6 4,4467 1.5424 4.3248 1.3493 3.8501 1.1507 3.6281 0,9667 3.4649 0.8302 

1 1 3 1 .1 	.3 	.4 	.6 0,8741 0,3138 0.8186 0.2759 0.7760 0.2369 0.7469 0,2013 0.7317 0.1764 

1 2 1 2 2 1 .1 	.2 	.2 .3 .4 	.5 1,5683 0,5667 1.4357 0.5019 3.3283 0.4298 1.2303 0.3553 1.2031 0.2931 

4 3 1 5 2 6 .1 	.2 .2 .3 .4 .5 4.2748 1,4727 3.8763 1.2942 3,5276 1.1028 3.2419 0.9077 3.0315 0.7389 

1 1 1 1 1 1 .1 	.2 	.2 	.3 .4 	.5 0,9837 0,3543 0.8980 0.3133 0,8298 0.2680 0.7821 0.2218 0.7562 0,1842 
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Means and standard deviations (SD) of estimated response to selection, .k, using 

ANOVA estimates from 500 replicate samples for a range of traits (t = 2, 4 and 

6), different heritabilities, economic weights, family sizes and bending factor, w, 

continued from Table 9-2.... 

0.0 	 0.2 	 0,4 	 0.6 	 0.8 

ah2 	 Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

= 50 n = 20 

1 0 .05 .5 010615 0.0423 0.1141 0.0449 0.1582 0.0494 0.2054 0.0574 0.2534 0.0680 

1 1 .05 .5 0.5073 0.1382 0.4721 0.1268 0.4440 0.1174 0.4244 0.3108 0.4141 0.1079 

1 3 .05 .5 1,5105 0.3975 1.3836 0.3625 1.2582 0,3281 111351 0.2950 1.0156 0.2639 

1 0 .1 	.2 0.1169 0.0571 0,1205 0.0546 0.1261 0.0524 0.1330 0.0511 0.1409 0.0512 

1 	1 .1 	12 012285 010986 0.2218 0.0910 0.2166 0.0845 0.2129 0.0793 0.2108 0.0760 

1 3 .1 	.2 0.6011 0,2418 0.5730 0,2224 0,5425 0.2043 0.5158 0,1880 0.4909 0.1749 

1 1 2 2 .1 	.1 	.2 	.2 0.6312 0.2158 0,5907 0.1873 0.5547 0.1599 0.5236 0.1360 0.4981 0.1190 

4 6 5 3 .1 	.1 	.2 	.2 1.5414 0.5611 1.4692 0.4925 1.4198 0.4263 1.3940 0,3704 1.3916 0.3359 

1 1 1 1 .1 	.1 	.2 	.2 0.3511 0.1263 0.3327 0.1103 0.3385 0.0948 0.3090 0,0816 . 0.3041 0.0731 

1 2 2 1 .1 	.3 	.4 	.6 1.1939 0.3163 1.1641 0.2725 1.1434 0.2321 1.1319 011998 1.1295 0.1813 

4 5 3 6 .1 	.3 	.4 	.6 4.1247 1.0421 3.8915 0,8984 3.6886 0.7603 3.5204 0.6395 3.3918 0.5543 

1 1 1 1 .1 	.3 	.4 	.6 0.7951 0.2108 0.7624 0.1813 0,7380 0.1534 0.7223 0.1301 0.7157 0.1159 

1 2 1 2 2 1 .1 	.2 	.2 	.3 .4 	.5 1.3141 0,3552 1,2504 0,3022 3,1984 0.2492 1,1587 0.2010 1.1324 0.1663 

4 3 1 5 2 6 .1 	.2 	.2 .3 	.4 	.5 3.7364 0,9381 3.4731 0.7978 3.2364 0.6568 3.0319 0.5253 2.8663 0.4245 

1 1 1 1 1 1 .1 	.2,2,3,4 	.5 0.8311 0.2230 0.7871 0.1898 0.7522 0.1562 0.7272 0.1257 0.7129 0,1044 

S = 80 n = 8 

1 0 .05 .5 0,1147 0,0627 0,1292 0.0675 0.1632 0.0736 0.2070 0.0796 0,2545 0,0873 

1 1 .05 .5 0.5201 0.1713 0.4818 0.1571 0,4509 0.1454 0.4287 0.1369 0.4165 0.1325 

1 3 .05 .5 1,5299 0.4548 1.3989 0.4160 1,2695 0.3786 1.1428 0.3435 1.0201 0.3122 

1 0 .1 	.2 0.1371 0.0770 0.1341 0.0745 0,1352 0.0726 0.1400 0.0717 0.1477 0.0728 

1 	1 .1 .2 0.2618 0.3320 0.2473 0.1232 0.2359 0.1154 0.2277 0.1093 0.2228 0.1060 

1 3 .1 .2 016810 0.3307 0.6360 0.3038 0.5939 0.2796 0.5552 0,2591 0.5207 0.2438 

1 1 2 2 .1 	.1 	.2 .2 0.7341 0.3083 0.6649 0.2742 0.6044 0.2391 0.5546 0,2048 0.5173 0.1767 

4 6 5 3 .1 	.1 	.2 	.2 1,9087 0,7757 1,7348 0.7009 1.5957 0,6273 1.5006 0,5564 1.4539 0,5011 

1 1 1 1 .1 	.1 	.2 .2 0,4254 0.1765 0.3881 0,1586 0.3537 0,1409 0.3302 0.1237 0.3067 0,1095 

1 2 2 1 .1 .3 .4 .6 1,2554 0,4088 1.2114 0.3583 1.1799 0.3079 1.1605 0.2634 1.1529 0.2329 

4 5 3 6 .1 	.3 	.4 	.6 4.2914 1.2026 4.0219 1,0558 3.7892 0.9098 3.5983 0.7775 3.4547 0.6799 

1 1 1 	1 .1,3,4 	.6 0.8352 0.2521 0.7931 012218 0.7613 0.1914 0.7401 0.1645 0.7300 0.1459 

1 2 1 2 2 1 .1 	.2 	.2 	.3 	.4 	.5 1.4263 0.4501 1.3314 0.3870 1.2543 0.3198 1.1967 0.2554 1.1598 0.2064 

4 3 1 5 2 6 .1 	.2 .2 .3 .4 .5 3.9482 1.1568 3.6272 0.9968 3,3441 0.8292 3.1070 0.6644 2.9249 0.5281 

1 1 1 1 1 1 .1 	.2 .2 .3 .4 .5 0.8938 0.2832 0.8312 0.2452 0.7820 0.2040 0.7475 0,1637 0.7285 0.1323 

s = 80 n = 20 

1 0 .05 .5 0.0709 0,0353 0.1082 0.0376 0.1542 0.0409 0.2019 0.0469 0.2499 0.0548 

1 1 .05 .5 0.5019 0,1151 0.4671 011060 0.4393 0,0980 0.4198 0.0918 0.4095 0.0881 

1 3 .05 .5 1.4982 0.3158 1,3721 0,2891 1.2473 0,2626 1.1247 0.2368 1.0056 0.2122 

1 0 .1 	.2 0.3075 0.0444 0.1146 0.0409 0.1226 0.0383 0,1313 0.0371 0.1405 0.0375 

1 1 .1 	.2 0.2307 0.0773 0.2243 0.0706 0.2391 0.0646 0.2152 0.0599 0.2126 0.0567 

1 3 .1 	.2 0.6128 0.1923 0.5822 0,3748 0.5524 0.1584 0.5237 0.1438 0.4962 0.1317 

1 1 2 2 .1 	.1 	.2 	.2 0.6157 0.1911 0.5811 0,1645 0.5497 0.1386 0.5218 0.1152 0.4979 0.0971 

4 6 5 3 .1 	.1 	.2 	.2 1.4881 0.4891 1.4225 0,4225 0.3941 0.3587 1.3828 0.3045 1.3883 0.2694 

1 1 1 	1 .1 	.1 	.2 .2 0.3377 0.1097 0.3243 0,0946 0.3140 0.0801 0.3071 0.0676 0.3036 0.0591 

1 2 2 3 .3 	.3 	.4 	.6 1.2028 0.2794 1.1744 0.2395 1.1536 0.2016 1.1405 0.1691 1.1352 0.1470 

4 5 3 6 .1 	.3 	.4 	.6 4.1848 0.8726 3.9471 0.7514 3.7362 0.6335 3.5567 0.5268 3.4137 0.4453 

1 1 1 1 .3 	.3 	.4 	.6 0.8066 0,1792 0.7733 0.1540 0.7473 0.1296 0.7294 0.1083 0.7199 0.0935 

1 21 221 .1 	.2 	.2.3.4.5 1.2659 0.2800 1.2159 0.2375 1.1758 0.1958 1.1464 0.1585 1.1282 0.1321 

4 3 1 5 2 6 .1 	.2 	.2 	.3 	.4 	.5 3.6461 0.7880 3.4090 0.6664 3.3951 0.5454 3.0093 0.4325 2.8573 0.3430 

1 1 1 1 1 1 .1 	.2 	.2 	.3 	.4 	.5 0.8036 0.1731 0.7676 0.1467 0.7396 0.1208 0.7204 0.0979 0.7105 0.0823 
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Table 9-3: Means and standard deviations (SD) of achieved response to selection, 

K, using ANOVA estimates from 500 replicate samples for a range of traits (t 

= 2, 4 and 6), different heritabilities, economic weights, family sizes and bending 

factor, w. 

0.0 	 0.2 	 0.4 	 0,6 	 0.8 

ah2 	 Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

25 n = 8 

3 0 .05 	.5 0,0061 0.0359 0.0199 0.0324 0.0328 010270 0.0418 0,0206 0.0460 0.0163 

1 1 .05 	.5 0,4349 0,1714 0.4305 0.1522 0.4415 0.1282 0,4398 0.1066 0,4199 0.0954 

3 3 .05 .5 1,3454 0,3838 1,3696 0.3575 1.3968 0.3158 1.4170 0.2998 1,4229 0.2967 

1 0 .1 	.2 0.0347 0,0679 0,0437 0.0656 0.0534 00633 0.0638 0.0613 0,0714 0,0624 

1 1 .1 	.2 0.1183 0,1355 0,1291 0.1335 0.1407 0.1301 0.1553 0.1228 0.1646 0,1217 

1 3 .1 	.2 0,3603 0,1575 0,3888 0.3439 0,4216 0,3293 0,4501 0,3212 0.4767 0.3219 

1 1 2 2 .1 	.3 	.2 	.2 0.2680 0,2816 0,3145 0.2632 0.3718 0.2363 0.4404 0.2022 0.4970 0.1944 

4 6 5 3 .1 	.1 	.2 	.2 0,5519 0,6468 0,6763 0,6037 0,8263 0,5460 0.9889 0,4840 1,1265 0,4572 

1 1 1 1 .1 	.1 	.2 	.2 0.1325 0,1508 0,1599 0,1406 0,1934 0,1261 0,2303 0,1113 0,2614 0,1051 

1 2 2 1 .1 	.3 .4 	.6 0.8283 0,3516 0,9288 0,2667 1,0178 0,1789 1.0809 0,1013 3.1127 0,0420 

4 5 3 6 .1 	.3 	.4 	.6 3.1693 1,0704 3,4295 0,8321 3,6382 0,6038 3,7867 0.2820 3,8105 0,1406 

1 1 1 1 .1 	.3 .4 	.6 0.5773 0.2287 0.6371 0.1727 0.6863 0.1176 0.7167 0.0621 0.7219 0.0292 

1 2 1 2 2 1 .1 	.2 	.2 	.3 .4 .5 	0,6755 0,4012 0,8018 0,3248 0,9373 0,2283 1,0522 0.1363 1,1242 0,0576 

4 3 1 5 2 6 .1 	.2 	.2 	.3 .4 .5 	2,2662 0.9649 2,5446 0.7725 2.8335 0,5472 3,0827 0,3384 3,2356 0,1637 

1 1 1 1 1 3 .1 	.2 	.2 	.3 .4 .5 	0.4367 0.2467 0,5147 0,1949 0,5957 01384 0.6602 0.0864 0,6971 0,0380 

25 n = 20 

1 0 .05 .5 0,0196 0,0295 0.0388 0.0169 00465 0,0075 0,0490 0,0036 00497 0,0026 

1 1 .05 .5 0,4871 0,0370 0,4894 0,0331 0,4825 0,0326 0,4638 0,0310 0,4323 0,0222 

1 3 .05 .5 1,4736 0.0614 1,4794 0,0543 1,4819 0,0487 1,4790 0,0423 1,4669 0,0281 

1 0 .1 	.2 0,0690 0,0451 0.0816 0.0318 0.0816 0,0247 0.0158 0,0129 0,0989 0,0085 

1 1 .1 	.2 0.1879 0.0741 0.2009 0,0535 0.2099 0,0352 0.2150 0,0146 0,2151 0,0076 

1 3 .1 	.2 0,5496 0.1189 0.5669 0,0979 0,5812 0,0806 0.5954 0,0253 0,6014 0,0099 

1 I 2 2 .1 	.1 	.2 	.2 0,4410 0.1542 0,4799 0,1177 0,5165 0,0857 0.5463 0,0555 0,5662 . 00168 

4 6 5 3 .1 	.1 	.2 	.2 0,9307 04565 1,0490 0,3687 1,1663 0,2547 1.2536 0.1531 1,2989 0,0561 

1 3 1 1 .1 	.1 	.2 	.2 0,2230 0.0997 0.2483 0,0775 0,2726 0.0540 0,2912 0,0314 0,3011 0.0120 

1 2 2 1 .1 	.3 	.4 	.6 1,0446 0,1141 1,0880 0,0708 1,1154 0,0458 1,1276 0,0306 1,1250 0,0174 

4 5 3 6 .1 	.3 	.4 	.6 3.7719 0,3243 3,8636 02305 3,9130 0.1720 39106 0,1277 3,8445 0,0781 

1 1 1 1 .1 	.3 	.4 	.6 0,7133 0,0705 0,7355 0,0490 0,7461 0.0360 07442 0.0264 0,7292 0,0159 

1 2 1 2 2 1 .1 	.2 	.2 	.3 	.4 .5 	0.9673 02023 1,0409 0,1423 111001 0,0869 1.1383 0,0478 1,1510 0,0245 

4 3 1 5 2 6 .1 	.2 	.2 	.3 	.4 .5 	2.9823 0,4637 3,1325 0.3175 3,2492 0,2060 3,3153 0,1327 3,3140 0,0752 

1 1 1 1 1 1 .1 	.2 	.2 	.3 	.4 .5 	0.6186 0.1267 0.6627 0,0866 0,6964 0,0545 0,7145 0,0341 0,7144 0.0126 

= 50 n = 8 

1 0 .05 	.5 0,0129 0,0352 0,0285 0.0285 00414 0,0380 0.0472 0.0098 0,0493 0.0052 

1 1 .05 .5 0,4749 0,0582 0,4803 0.0475 04764 0,0434 04613 0,0363 0,4337 0,0198 

1 3 .05 	.5 1,4555 0,1000 1,4653 0,0831 1,4720 0,0656 1.4734 0.0461 1,4655 0,0250 

1 0 .1 	.2 0,0469 0,0644 0.0599 0,0576 0,0739 0,0475 0,0847 0,0399 0,0909 0,0368 

1 1 .1 	.2 0,1606 0,1023 0.1746 0,0917 0,1868 0,0810 0,1979 0,0701 0.2018 0,0679 

1 3 .1 	.2 0.4826 0,2263 0,5054 0,2127 0,5266 0.2016 0,5483 0,1871 0,5651 0,1799 

1 1 2 2 .1 	.1 	.2 	.2 0.3632 0,2180 0,4050 01972 0,4515 0.1700 0,5003 0.1362 0,5442 0.0922 

4 6 5 3 .1 	.1 	.2 	.2 0,7177 0.5862 0,8506 0,5275 0,9935 04561 1,1298 0,3624 12419 0.2517 

1 1 1 1 .1 	.1 	.2 	.2 0.1770 0,1308 0.2040 0.1189 0.2341 0.1024 0.2641 010815 0.2882 0.0577 

1 2 2 1 .1 	.3 	.4 	.6 0.9924 0.1938 1,0534 0.1233 1.0967 0.0669 3,3393 0.0378 1.1226 0.0195 

4 5 3 6 1 	.3 .4 .6 3.6448 0.5364 3.7853 0,3342 3.8722 0,2111 3.8935 0.1431 3,8399 0,0876 

1 1 1 1 .1 	.3 	.4 	.6 0.6821 0,1160 0.7150 0.0775 0.7348 0,0482 0.7393 0.0307 0,7278 0,0182 

1 2 1 2 2 1 .1 	.2 	.2 	.3 	.4 .5 	0,8874 0.2761 0.9799 0.1949 1.0632 0.1099 1.1208 0.0568 1.1460 0,0260 

4 3 1 5 2 6 .1 	.2 	.2 	.3 	.4 .5 	2.7927 0.6588 2.9871 0.4760 3.1569 0,2982 3.2715 0.1652 3.3005 0,0877 

1 1 1 1 1 1 .1 	.2 	.2 	.3 	.4 .5 	0.5663 0.1712 0.6233 0.1210 0.6718 0,0724 0.7026 0.0403 0.7107 0,0204 
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Means and standard deviations (SD) of achieved response to selection, R", using 

ANO'VA estimates from 500 replicate samples for a range of traits (t = 2, 4 and 

6), different heritabilities, economic weights, family sizes and bending factor, w, 

continued from Table 9-3.... 

0.0 0.2 0.4 0.6 0.8 

a Mean SD Mean SD Mean SD Mean SD Mean SD 

a- 
50 n 20 

1 0 .05 .5 0.0285 0.0253 0.0444 0.0108 0,0485 0.0036 0.0496 0.0006 0.0499 0.0008 

I 	1 .05 .5 0.4967 0.0091 0.4952 0.0098 0,4852 0.0124 0.4648 0.0125 0.4326 0.0086 

1 3 .05 .5 1.4908 0.0155 1.4922 0.0133 1,4904 0.0133 1.4835 0.0133 1.4682 0.0102 

1 0 .1 	.2 0.0818 0.0345 0.0901 0.0221 0.0955 0.0125 0.0981 0.0093 0.0997 0.0006 

1 	1 .1 	.2 0.2076 0.0339 0.2118 0.0260 0.2148 0.0179 0.2161 0.0105 0.2152 0.0049 

1 3 .1 	.2 0.5750 0.1018 0.5836 0.0886 0.5943 0.0111 0.6004 0.0821 0.6023 0.0056 

1 1 2 2 .1 	.1 	.2 	.2 0.5162 0.0594 0.5365 0.0415 0.5532 0.0265 0.5652 0.0852 0.5711 0.0071 

4 6 5 3 .1 	.1 	.2 	.2 1.1448 0.2216 1.2214 0.3438 1.2767 0.0837 1.3071 0.0474 1.3123 0.0248 

I 3 1 1 .1 	.1 	.2 	.2 0.2695 0.0430 0.2848 0.0281 0.2961 0.0168 0.3025 0.0099 0.3039 0.0053 

1 2 2 1 .1 	.3 	.4 	.6 1.1020 0.0663 1.1228 0.0467 1.1333 0.0331 1.1341 0.0233 1.1253 0.0132 

4 5 3 6 .1 	.3 	.4 	.6 3.9400 0.1428 3.0772 0.1089 3.9792 0.0935 3.9391 0.0796 3.8489 0.0527 

1 1 1 1 .1 	.3 	.4 	.6 0.7490 0.0350 0.7582 0.0267 0.7582 0.0225 0.7486 0.0182 0.7293 0.0114 

1 2 1 2 2 1 .1 	.2 	.2 .3 .4 .5 1.0973 0.0833 1.1309 0.0553 1,1529 0.0372 1.1620 0.0252 1.1569 0.0146 

4 3 1 5 2 8 .1 	.2 	.2 .3 .4 	.5 3.2776 0.1759 3.3470 0.1272 3.3793 0.0968 3.3799 0.0748 3.3316 0.0480 

1 	1 1 	1 1 	1 .1 	.2 	.2 	.3 	.4 	.5 0.6981 0.0528 0.7182 0.0348 0.7288 0.0252 0.7289 0.0190 0.7176 0.0116 

• = 80 n = 8 

1 0 .05 .5 0.0161 0.0330 0.0348 0.0234 0.0450 0.0120 0.0489 0.0028 0.0409 0.0003 

1 	1 .05 .5 0.4874 0.0283 0.4888 0.0196 0.4821 0.0181 0.4644 0.0190 0.4335 0.0145 

1 3 .05 .5 1.4773 0.0372 1.4819 0.0286 1.4834 0.0228 1.4797 0.0199 1.4672 0.0154 

1 0 .1 .2 0.0605 0.0556 0.0723 0.0471 0.0837 0.0358 0.0913 0.0277 0.0954 0.0238 

1 1 .1 	.2 0.1804 0.0802 0.1910 0.0690 0.2017 0.0545 0.2076 0.0472 0.2097 0.0135 

1 3 .1 .2 0.5292 0.1594 0.5476 0.1400 0.5638 0.1257 0.5783 0.1108 0.5876 0.1067 

1 1 2 2 .1 .1 	.2 .2 0.4212 0.1882 0,4621 0.1488 0.5048 0.1002 0.5417 0.0495 0.5648 0.0177 

4 6 5 3 .1 	.1 	.2 .2 0.9088 0.4696 1.0250 0.3797 1.1427 0.2727 1.2423 0.1490 1.2958 0.0561 

1 1 1 1 .1 	.1 	.2 .2 0.2132 0.1083 0.2387 0.0889 0.2648 0.0641 0.2880 0.0323 0.3001 0.0125 

3 2 2 1 .1 	.3 .4 .6 1.0839 0.1254 1.1012 0.0707 1.1233 0.0383 1.1305 0.0261 1.1249 0.0151 

4 5 3 6 .1 .3 .4 .6 3.8273 0.2668 3.0025 0.1822 3.9363 0.1367 3.9197 0.1073 3.8440 0.0681 

1 1 1 1 .1 .3 .4 .6 0.7238 0.0652 0.7428 0.0121 0.7502 0.0296 0.7456 0.0225 0.7288 0.0139 

1 2 1 2 2 1 .1 	.2 .2 .3 .4 	.5 1.0103 0.1506 1.0730 0.1015 1.1199 0.0622 1.1476 0.0380 1.1538 0.0206 

4 3 1 52 6 .1 	.2.2.3 .4 	.5 3.0693 0.3528 3.1953 0.2451 3.2903 0.1630 3.3377 0.1089 3.3202 0.0659 

1 1 1 	1 1 	1 .1 	.2 	.2 .3 	.4 	.5 0.6407 0.1010 0.6802 0.0652 0.7075 0.0419 0.7198 0.0275 0.7157 0.0859 

• = 80 n = 20 

1 0 .05 .5 0.0321 0.0224 0.0485 0.0049 0.0491 0.0012 0.0498 0.0003 0.0500 0.0001 

1 1 .05 .5 0.4989 0.0052 0.4971 0.0062 0.4868 0.0089 0.4658 0.0092 0.4331 0.0063 

1 3 .05 .5 1.4940 0.0096 1.4948 0.0083 1.4925 0.0094 ' 1.4849 0.0102 1.4690 0.0082 

1 0 .1 	.2 0.0917 0.0133 0.0960 0.0058 0.0981 0.0028 0.0993 0.0011 0.0999 0.0002 

1 1 .1 	.2 0.2160 0.0124 0.2182 0.0084 0.2189 0.0065 0.2182 0.0051 0.2159 0.0031 

I 3 .1 	.2 0.5941 . 	0.0229 0.5982 0.0158 0.6012 0.0107 0.6029 0.0070 0,6029 0.0040 

3 3 2 2 .1 	.1 	.2 .2 0.5414 0.0399 0.5544 0.0268 0.5645 0.0171 0.5709 0.0103 0.5728 0.0053 

4 6 5 3 .1 	.1 	.2 .2 1.2268 0.1321 1.2764 0.0849 1.3073 0.0554 1.3199 0.0364 1.3151 0.0203 

1 	1 	1 	1 .1 	.1 	.2 .2 0.2875 0.0257 0.2969 0.0172 0.3030 0.0115 0.3057 0.0076 0.3047 0.0043 

I 2 2 1 .1 	.3 .4 .6 1.1309 0.0353 1.1424 0.0255 1.1456 0.0203 1.1408 0.0180 1.1270 0.0099 

4 5 3 6 .1 	.3 .4 	.6 4.0047 0.0857 4.0224 0.0690 4.0090 0.0647 3.9567 0.0593 3.8565 0.0410 

1 	1 1 	1 .1 	.3 .1 	.6 0.7647 0.0206 0.7691 0.0183 0.7654 0.0152 0.7529 0.0134 0.7312 0.0088 

1 2 1 2 2 3 .1 	.2 .2 .3 .4 	.5 1.1278 0.0594 1.1519 0.0381 1.1657 0.0258 1.1683 0.0187 1.1587 0.0115 

4 3 1 5 2 6 .1 	.2 .2 .3 .4 	.5 3.3570 0.1186 3.3979 0.0869 3.4140 0.0689 3.3970 0.0574 3.3361 0.0395 

1 	1 1 1 1 1 .1 .2 .2 .3 .4 .5 0.7184 0.0351 0.7317 0.0246 0.7369 0.0187 0.7329 0.0147 0.7187 0.0094 
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A possible solution would be to apply modification B given in Section 9.3.2. What 

follows illustrates the results of such modification and discusses the consequences. 

Figure 9-1 and 9-2 illustrate achieved responses W using two and four traits 

plotted against the number of sires for half-sib families of sizes 8 and 20, different 

choices of heritabilities and economic weights a. The clear superiority of the Bayes 

index over ANOVA is most marked when there are few sires and families are small. 

Both methods perform better when the heritabilities are dissimilar. 

Results from modified roots and Bayesian decision procedure: Two methods 

are considered for eliminating unreasonable estimates: the negative roots are set 

to zero (modification A) and the roots are bent until all roots are zero or positive 

(modification B). Mean values and standard deviations of estimated response R 

and of achieved response if are shown in Tables 9-4 and 9-5, respectively, for 

a range of traits (t = 2, 4 and 6) different heritabilities, economic weights and 

family sizes . The two prior specifications Priori and Prior2 are given in Section 

8.5.2 of Chapter 8 for the following procedures a) unmodified ANOVA estimation, 

b)estimation with modification A and B and c) using posterior expectations with 

prior specifications 1 and 2 defined in Section 8.5.2. As can be seen from Table 9-4, 

modification A does not seem to reduce the bias in R. The procedure of bending 

until the smallest root of is zero (modification B) appears to be doing better 

than just setting the negative roots to zero. Comparisons of modifications A and 

B with the two Bayesian procedures reveal that the decision theory approach gives 

selection responses R with less bias. Prior2 reduces the bias more than Priori for 

small family sizes but the two methods give indistinguishable results when the 

sample size increases. The use of different prior specifications does not influence 

the marginal posterior inferences for large sample sizes. 

When compared with unmodified responses, modification procedures A and 

M and the two Bayesian procedures lead to improved values of achieved response 

R' in Table 9-5, but Bayesian procedures are almost always better. The two 
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Figure 9-1: Achived response (R°) using two traits plotted against the number 

of sires for half-sib families of sizes a) ii = 8, and b) ii = 20, different choices of 

heritabilities and economic weights a using ANOVA (.....) and Gibbs sampling 

) procedures when w = 0.0, ( - - - --) indicates the optimum response, R. 
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Figure 9-2: Achived response (R") using four traits plotted against the number 

of sires for half-sib families of sizes a) n = 8, and b) n = 20, different choices of 

heritabilities and economic weights a using ANOVA (.....) and Gibbs sampling 

procedures when vi = 0.0, (- - - - -) indicates the optimum response, R. 
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Table-
9-4: Means and standard deviations (SD) of estimated response to selec-

tion, .k, using ANOVA estimates (before modification), modifications A, B and 

posterior expectations from 500 replicate samples for a range of traits (i = 2, 4 

and 6), different heritabilities, economic weights and family sizes. 

ANOVA 	 A 	 ii 	 Friorl 	 mon 

a 	 h2 	 Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean - SD 

a = 25 n= 8 

1 0 .05 .5 0.1972 0.1360 0.1787 0.1346 0.1761 0.1248 0.1103 0.0470 0.2286 0.0628 

I 	1 .05 .5 0.5595 0.2937 0.6012 0.3574 0.5520 0.3510 0.5337 0.1663 0.5163 0.1800 

1 3 .05 .5 1.5925 0.7899 3.7530 0.9519 1.5935 0.0477 1.5715 0.4625 1.3939 0.5015 

1 0 . 	.2 0.2109 0.1261 0.1920 0.3416 0.1709 0.1357 0.1623 - 0.0704 0.1938 0.0780 

1 	1 .1 	.2 0.3416 0.1994 0.3291 0.2290 0.2859 0.2211 0.3132 0.1232 0.3115 0.1258 

1 3 .1 	.3 0.8263 0.4768 0.8185 0.5447 0.7040 0.5343 0.8047 0.3043 0.7474 0.3155 

1 1 2 2 .1 	.1 	.2 .2 1.0144 0.4723 1.0780 0.6294 0.7893 0.5363 0.8363 0.2605 0.7499 0.2463 

4 8 5 3 .1 	.1 	.2 .2 2.8265 1.3283 2.9313 1.7261 2.1776 1.4632 2.3030 0.8094 2.0791 0.6612 

1 	1 1 	1 .1 	.1 	.2 .2 0.6182 0.2896 0.6456 0.3790 0.4783 0.3232 0.4747 0.1538 0.4575 0.1463 

1 2 2 1 .1 	.3 .4 	.6 1.4805 0.6028 1.6830 0.7658 1.5354 0.6955 1.3174 0.3194 1.4846 0.4536 

4 5 3 6 .1 	.3 .4 	.8 4,8868 2.0113 5.6660 2.6180 5.0890 2.3840 4.3752 0.9923 4.7289 1.5009 

1 	1 	1 	1 .1 	.3 .4 	.6 0.9715 0.4001 1.1134 0.5176 1.0079 0.4704 0.8606 0.2047 0.9839 0.2985 

1 2 1 2 2 1 .1 	.2 .2 .3 .4 .5 	1.8023 0.6691 2.1432 0.9852 1.7245 0.7752 1.5892 0,4054 1.4532 0.3364 

4 3 1 5 2 6 .1 	.2 .2 .3 .4 .5 	4.8566 1.7277 5.8770 2.4470 4.6103 2.0280 4.4602 1.0836 3.7209 0.9035 

1 	1 	1 	1 1 	1 .1 	.2 .2 .3 .4 .5 	1.1435 0.4298 1.3611 0.6171 1.0927 0.4072 1.0082 0.2550 0.9183 0.2141 

O = 25 n = 20 

1 0 .05 .5 0.1001 0.0605 0.0985 0.0640 0,1001 0.0615 0.0923 0.0368 0.3655 0.0424 

1 	1 .05 .5 0.5007 0.1900 0.5234 0.2025 0,5134 0.2019 0.5214 0.3454 0.5067 0.1631 

1 3 .05 .5 1.4897 0.5265 1.5612 0.5658 1.5296 0.5859 1.5503 0.4147 1.4665 0.4658 

1 0 .1 	.2 0.1299 0.0696 0.1292 0.0713 0.1275 0.0710 0.3332 0.0487 0.1510 0.0487 

1 3 .1 	.2 0.2507 0.1321 0.2527 0.1361 0.2472 0.1346 0.2729 0.1033 0.2708 0.1025 

1 3 .1 	.2 0.6775 0.3393 0.6858 0.3490 0.6698 0.3478 0.7276 0.2741 0.8898 0.2782 

1 1 2 2 .1 	.1 	.2 .2 0.7060 0.3077 0.7370 0.3380 0.6736 0.3189 0.7222 0.2160 0.6791 0.2161 

4 6 5 3 .1 	.1 	.2 .2 1.7828 0.7780 1.8406 0.8582 1.7024 0.8008 1.7641 0.5347 3.7765 0.5177 

1 1 1 	1 .1 	.1 	.2 .2 0.3998 0.1745 0.4140 0.1922 0.3819 0.1802 0.4013 0.1190 0.3963 0.1178 

1 2 2 1 .1 	.3 .4 	.6 3.3118 0.4951 1.3877 0.5466 1.3713 0.5326 1.3306 0.3528 1.3583 0.3777 

4 5 3 6 .1 	.3 .4 	.6 4.4770 1.5167 4.7839 1.6943 4.6862 1.6390 4.4552 0.9936 4.4510 1.2695 

1 1 1 	1 .1 	.3 .4 	.6 0.8744 0.3087 0.9283 0.3441 0.9118 0.3335 0.8749 0.2102 0.8853 0.2486 

1 2 1 2 2 1 .1 	.2 .2 .3 .4 .5 	1.4335 0.4950 1.5995 0.5956 1.5134 0.5473 1.4407 0.3280 1.4074 0.3399 

4 3 1 5 2 6 .1 	.2 .2 .3 .4 .5 	4.0367 1.3629 4.5503 1.6696 4.2508 3.5318 4.0426 0.8787 3.7410 0.9167 

1 1 1 	1 1 	1 .1 	.2 .2 .3 .4 .5 	0.9112 0.3060 1.0199 0.3696 0.9635 0.3406 0.9095 0.2003 0.8898 0.2115 

a = 50 n = 8 

3 0 .05 .5 0.1377 0.0764 0.1255 0.0842 0.3298 0.0789 0.0942 0.0428 0.1815 0.0529 

1 	1 .05 .5 0.5202 0.7152 0.5496 0.2402 0.5205 0.2336 0.5179 0.1621 0.5043 0.1734 

1 3 .05 .5 1.5209 0.5730 1.6171 0.6385 1.5281 0.6268 1.5314 0.4522 1.4261 0.4613 

1 0 .1 .2 0.1553 0.0888 0.1482 0.0973 0.1428 0.0952 0.1381 0.0589 0.1586 0.0589 

3 	1 .1 	.2 0.2814 0.1532 0.2814 0.1666 0.2630 0.1631 0.2759 0.1080 0.2739 0.1085 

1 3 .1 	.2 0.7275 0.3657 0.7398 0.3952 0.6849 0.3909 0.7235 0.7767 0.6792 0.2806 

I 	1 2 2 .1 	.1 	.2 	.2 0.8065 0.3369 0.8489 0.4166 0.6842 0.3614 0.7392 0.2240 0.7011 0.2265 

4 6 5 3 .1 	.1 	.2 .2 2.0800 0.9116 2.1366 1.1300 1.7650 0.9584 1.7990 0.5674 1.8470 0.5701 

I 	I 	I 	I .1 	.1 	.2 .2 0.4682 0.2041 0.4845 0.2535 0.3977 0.2141 0.4129 0.1301 0.4141 0.1308 

1 2 2 1 .1 	.3 .4 .6 1.3087 0.4759 1.4397 0.5704 1.3848 0.5249 1.3291 0.3484 1.3198 0.3537 

4 5 3 6 .1 	.3 .4 	.6 4.4467 1.5424 4.9485 1.9344 4.7070 1.7584 4.5179 1.1854 4.3419 1.2293 

I 	1 	1 	1 .1 	.3 .4 	.6 0.8741 0.3138 0.9673 0.3835 0.9247 0.3531 0.8841 0.2361 0.8714 0.2435 

1 2 1 2 2 1 .1 	.2 .2 .3 .4 .5 	1.5683 0.5667 1.8026 0.7080 1.6120 0.6158 1.4536 0.3586 1.4160 0.3390 

4 3 3 62 6 .1 	.2 .2 .3 .4 .5 	4.2748 1.4727 4.9588 1.8721 4.3619 1.6420 4.0201 0.9193 3.7742 0.9205 

1 	1 	1 	1 	1 	3 .1 	.3 .2 .3 .4 .5 	0.9837 0.3543 1.1290 0.4450 1.0076 0.3864 0.9103 0.2219 0.8997 0.2148 
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Means and standard deviations (SD) of estimated response to selection, R, using 

ANOVA estimates (before modification), modifications A, B and posterior expec-

tations from 500 replicate samples for a range of traits (t = 2, 4 and 6), different 

heritabilities, economic weights and family sizes, continued from Table 9-4.... 

a 	 h2  

• = IU II = LU 

1 0 .05 .5 0.0815 0.0423 0.0806 0,0434 0.0816 0.0423 0.0768 0.0295 0.1285 0.0310 

1 	1 .05 .5 0.5073 0.1382 0.5182 0.1424 0.5143 0.1412 0.5187 0.1246 0.5151 0.1351 

1 3 .05 .5 1.5105 0.3975 1.5438 0.4107 1.5317 0.4071 1.5457 0.3643 1.5002 0.3787 

1 0 .1 	.2 0.1169 0.0571 0.1166 0.0576 0.1164 0.0575 0.1190 0.0437 0.1307 0.0425 

1 	1 .1 	.2 0.2285 0.0986 0.2290 0.0986 0.2277 0.0991 0.2393 0.0834 0.2385 0.0839 

1 3 .1 	.2 0.6011 0.2418 0.6030 0.2426 015991 0.2430 0.6282 0.2094 0.6059 0.2135 

1 2 2 2 .1 	.1 	.2 	.2 0.6312 0.2158 0.6440 0.2233 016302 0.2186 0.6462 0.1611 0.6178 0.1649 

4 6 5 3 .1 	.1 	.2 	.2 1.5414 0.5611 1.5697 0.5803 1.5411 0.5660 1.5699 0.3902 1.5847 0.4023 

1 	1 	1 	1 .1 	.1 	.2 	.2 0.3511 0.1263 0.3577 0.1306 0.3509 0.1278 0.3585 0.0917 0.3557 0.0926 

1 2 2 1 .1 	.3 .4 	.6 1.1939 0.3163 1.2083 0.3243 1.2068 0.3220 1.2406 0.2682 1.2336 0.2697 

4 5 3 6 .1 	.3 .4 	.6 4.1247 1.0421 4.1027 1.1031 4.1832 1.0919 4.2798 0.9068 4.1710 0.9249 

1 	1 	1 	1 .1 	.3 .4 .6 0.7951 0.2108 0.8066 0.2190 0.8051 0.2172 0.8268 0.1799 0.8169 0.1828 

1 2 1 2 2 1 .1 	.2 .2 .3 .4 .5 1.3141 0.3552 1.3706 0.3842 1.3585 0.3752 1.3445 0.2785 1.3344 0.2856 

4 3 1 5 2 6 .1 	.2 .2 .3 .4 .5 3.7364 0.9381 3.9136 1.0377 3.8687 1.0075 3.8251 0.7478 3.6688 0.7983 

I 	I 1 	1 1 	1 .1 	.2 .2 .3 .4 .5 0.8311 0.2230 0.8679 0.2428 0.8598 0.2370 0.8508 0.1726 0.8429 0.1804 

• = 80 ii = 8 

1 0 .05 .5 0.1147 0.0627 0.1085 0.0671 0.1119 0.0629 0.0864 0.0398 0.1541 0.0431 

1 	1 .05 .5 0.5201 0.1713 0.5474 0.1924 0.5303 0.1897 0.5176 0.1449 0.5054 0.1513 

I 3 .05 .5 1.5299 0.4548 1.6160 0.5151 1.5622 0.5096 1.5350 0.3995 1.4532 0.4058 

1 0 .1 	.2 0.1371 0.0770 0.1333 0.0814 0.1311 0.0810 0.1237 0.0524 0.1401 0.0522 

1 	1 .1 	.2 0.2618 0.1320 0.2622 0.1389 0.2527 0.1394 0.2584 0.0947 0.2570 0.0957 

1 3 .1 .2 0.6810 0.3307 0.6888 0.3438 0.6588 0.3477 0.6858 0.2518 0.8535 0.2569 

I I 2 2 .1 .1 	.2 .2 0.7341 0.3083 0.7730 0.3551 0.6846 0.3224 0.7064 0.2249 0.6690 0.2272 

4 6 5 3 .1 .1 	.2 .2 1.9087 0.7757 1.9780 0.8939 1.7741 0.8213 1.7476 0.5511 1.7750 0,5556 

1 	1 1 	1 .1 	.1 	.2 .2 0.4254 0.1765 0.4430 0.2037 013960 0.1861 0.3903 0.1269 0.3940 0.1277 

1 2 2 1 .1 	.3 .4 .6 1.2554 0.4088 1.3207 0.4451 1.3033 0.4305 1.2533 0.3057 1.2781 0.3308 

4 5 3 6 .1 .3 .4 .8 4.2914 1.2026 4.5406 1.3491 4.4594 1.2890 4.2550 0.9335 4.2888 1.0516 

I 	I 	I 	I .1 	.3 .4 .6 0.8352 0.2521 0.8824 0.2781 0.8671 0.2676 0.8287 0.1912 0.8473 0.2125 

1 2 1 2 2 1 .1 	.2 .2 .3 .4 	.5 1.4283 0.4501 1.5884 0.5295 1.4977 0.4806 1.3849 0.3110 1.3781 0.3216 

4 3 1 5 2 6 .1 	.2 .2 .3 .4 	.5 3.9482 1.1568 4.4364 1.3961 4.1378 1.2735 3.8698 0.8391 3.7639 0.8895 

1 	1 	1 	1 1 	1 .1 	.2 .2 .3 .4 	.5 0.8938 0.2832 0.9953 0.3328 0.9374 0.3033 0.8694 0.1976 0.8723 0.2079 

• = 80 n = 20 

1 0 .05 .5 0.0709 0.0353 0.0707 0.0360 0.0712 0.0353 0.0702 0.0255 0.1069 0.0234 

I 	I .05 .5 0.5019 0.1151 0.5093 0.1180 0.5077 0.1179 0.5105 0.1096 0.5130 0.1122 

1 3 .05 .5 1.4982 0.3158 1.5205 0.3248 1.5157 0.3240 1.5228 0.3068 1.5157 0.3130 

1 0 .1 	.2 0.1075 0.0444 0.1075 0.0444 0.1075 0.0444 0.1088 0.0368 0.1175 0.0355 

1 	1 .1 	.2 0.2307 0.0773 0.2307 0.0773 0.2307 0.0773 0.2346 0.0689 0.2342 0.0693 

1 3 .1 	.2 0.6128 0.1923 0.6129 0.1922 0.6128 0.1923 0.6211 0.1779 0.6068 0.1815 

1 1 2 2 .1 	.1 	.2 .2 0.6157 0.1911 0.6204 0.1919 0.6173 0.1912 0.6265 0.1610 0.6067 0.1642 

4 6 5 3 .1 	.1 	.2 .2 1.4681 0.4891 1.4780 0.4903 1.4716 0.4880 1.4904 0.3970 1.5028 0.3980 

I 	1 1 1 .1 	.1 	.2 .2 0.3377 0.1097 0.3401 0.1099 0.3386 0.1095 0.3438 0.0900 0.3420 0.0908 

1 2 2 1 .1 .3 .4 .6 1.2028 0.2794 1.2053 0.2199 1.2051 0.2797 1.2258 0.2517 1.2203 0.2531 

4 5 3 6 .1 .3 .4 .6 4.1848 0.8726 4.1952 0.8722 4.1938 0.8709 4.2524 0.7894 4.1460 0.8014 

I 	I 1 1 .1 .3 .4 .6 0.8066 0.1792 0.8085 0.1790 0.8082 0.1789 0.8208 0.1616 0.8108 0.1609 

1 2 1 22 1 .1 .2 .2 .3 .4 .5 1.2659 0.2800 1.2785 0.2877 1.2768 0.2857 1.2906 0.2355 1.3020 0.2439 

4 3 1 526 .1 	.2 .2.3.4 	.5 3.6481 0.7880 3.6877 0.8167 3.6808 0.8093 3,7129 0.6815 3.6542 0.6678 

1 3 1 1 	1 1 .1 	.2 .2 .3 .4 	.5 0.8036 0.1731 0.8119 0.1780 0.8108 0.1767 0.8185 0.1455 0.8280 0.1523 
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Table 9-5: Means and standard deviations (SD) of achieved response to selec-

tion, R", using ANOVA estimates (before modification), modifications A, B and 

posterior expectations from 500 replicate samples for a range of traits (t = 2, 4 

and 6), different heritabilities, economic weights and family sizes. 

= 25 fl = 8 

1 0 .05 .5 0.0061 0.0359 0,0238 00178 0.0363 0,0158 0.0364 0.0059 0.0444 0.0036 

1 1 .05 	.5 0.4149 0,1714 0,4583 0.1009 0.4549 0,1314 0.4885 0.0150 0.4413 0.0444 

1 3 .05 .5 1.3454 0.3838 1,4119 0,2099 1.3993 0,3715 1.4741 0.0215 1.4247 0.0605 

1 0 .1 	.2 0.0347 0.0679 0.0652 3.0355 0.0653 0.0589 0.0891 0.0058 0.0917 0.0052 

1 	1 .1 	.2 0.1183 0.1355 0.1664 0,0787 0.1519 0.1310 012058 0.0110 0.1986 0.0157 

1 3 .1 	.2 0.3603 0.3575 0.4776 0,1929 0.4282 0,3613 0.5733 0,0221 0.5618 0.0291 

1 1 2 2 .1 	.1 	.2 	.2 0,2680 0.2816 0.4083 0.1326 014691 0.2225 0,5124 0.0259 0.4928 0,0311 

4 6 5 3 .1 	.1 	.2 	.2 0,5519 0.6468 0.9127 0.3299 1.0668 0.5201 1.1716 0.0740 1.1269 0.0865 

1 1 1 1 .1 	.1 	.2 	.2 0,1325 0.1508 0.2139 0.0744 0.2480 0.1199 0.2726 0.0156 0.2613 0.0194 

1 2 2 1 .1 	.3 	.4 	.6 0.8281 0.3516 0.9218 0,2091 1.0086 0.1376 1.0538 0,0471 1.0241 0.0615 

4 5 3 8 .1 	.3 	.4 	.6 3.1693 1.0704 3.4179 0,6884 3.6355 0,4250 3.7843 0,1393 3.6002 0.2274 

1 1 1 1 .1 	.3 .4 	.6 0.5773 0.2287 0.6378 0,1396 0.6844 0,0935 0.7178 0,0305 0.6804 0.0478 

1 2 1 2 2 1 .1 .2 .2 .3 .4 .5 0,6755 0.4012 0.8502 0.2181 1.0302 0.1122 1.0487 0.0475 1.0075 0.0622 

4 3 1 5 2 6 .1 .2 .2 .3 .4 .5 2,2662 0.9649 2.6422 0.5704 3,0279 0.3165 3.1382 0.1296 2.9431 0.1872 

1 1 1 1 1 1 .1 .2 	.2 .3 .4 .5 0,4367 0.2467 0.5458 0.1382 0,6496 0.0736 0.6685 0.0309 0.6290 0.0459 

= 25 ii = 20 

1 0 .05 .5 0.0196 0.0295 0.0273 0.0178 0,0339 0.0134 0,0374 0.0052 0.0444 0.0034 

1 1 .05 15 0.4871 0.0370 0,4920 0.0051 0.4934 0.0140 0,4950 0.0078 0,4775 0.0278 

1 3 .05 .5 1.4736 0.0614 1.4781 0.0373 1.4799 0.0352 1.4844 0.0160 1,4716 0,0304 

1 0 .1 .2 010690 0.0451 0.0770 0.0270 0.0830 0,0194 0.0902 0,0060 0,0922 0.0051 

1 	1 .1 .2 0.1879 0.0741 0.1966 0,0476 0.2024 0,0371 0.2101 0.0092 0,2068 0.0124 

1 3 .1 .2 0.5496 0.1189 0.5602 0,0781 0.5654 0,0783 0.5829 0.0169 0.5770 0.0210 

1 1 2 2 .1 	.1 	.2 .2 0.4410 0.1542 0.4768 0,0929 0.5111 0.0631 0.5287 0.0195 0.5157 0,0255 

4 6 5 3 .1 	.1 	.2 .2 0.9307 0.4565 1,0577 0.2625 1.1662 0.1743 1.2123 0.0587 1.1825 0.0749 

1 	1 1 1 .1 	.1 	.2 .2 0.2230 0,0997 0,2491 0.0574 0.2717 0.0389 0.2818 0.0123 0.2743 0.0163 

1 22 1 .1 	.3.4.6 1.0446 0.1141 1,0482 0.1068 1.0565 0.1000 1.0822 0.0371 1,0618 0,0510 

4 5 3 6 .1 	.3 .4 .6 3.7719 0.3243 3.7842 0.3062 3.8026 0.2920 3.8652 0.1216 3.7755 0.1764 

1 1 1 1 .1 .3 .4 .6 0.7133 0.0705 0.7164 0,0662 0.7208 0.0634 0.7350 0.0253 0,7145 0,0364 

1 2 1 2 2 1 .1 	.2 	.2 	.0 	.4 	.5 0.9673 0.2023 0.9923 0.1544 1.0378 0,1207 1.0879 0.0426 1,0557 0.0568 

4 3 1 5 2 6 .1 	.2 	.2 .3 	.4 	.5 2.9823 0.4637 3.0378 0.3584 3.1304 0,2786 3.2496 0.1038 3,1138 0,1780 

1 1 1 1 1 1 .1 	.2 	.2 	.3 	.4 	.5 0.6186 0.3267 0.6365 0.0972 0.6627 0.0785 0.6940 0.0272 0.6663 0,0413 

= 50 n = 8 

1 0 .05 	.5 0.0129 0.0352 0.0264 0.0178 0.0375 0.0111 0.0377 0.0053 0.0446 0.0030 

3 	1 .05 	.5 0.4749 0.0582 0,4863 0.0264 0.4881 0.0238 0,4939 0.0096 0.4701 0.0287 

1 3 .05 	.5 3.4555 0.1000 1,4652 0.0656 1.4689 0.0560 1.4822 0.0187 1.4611 0.0394 

3 0 .3 	.2 0.0469 0.0644 0,0673 0.0347 0,0786 0.0343 0,0905 0.0056 0.0926 0.0047 

3 	3 .1 	.2 0.1606 0.1023 0,1866 0.0577 0,1919 0.0724 0,2092 0.0101 0.2046 0.0136 

3 3 .1 	.2 0.4826 0.2263 0,5248 0.1454 0.5226 0.2025 0,5799 0.0227 0.5716 0.0283 

1 1 2 2 .1 	.3 	.2 .2 0.3632 0.2180 0.4491 0.3031 0.5041 0.1227 0.5218 0.0228 0.5070 0,0293 

4 6 5 3 .1 	.3 	.2 .2 0.7177 0.5862 0.9851 0.2982 1.1549 0.2972 1.1959 0.0661 1.1612 0.0838 

1 1 1 1 .1 	.3 	.2 .2 0.1770 0.1308 0.2333 0.0639 0.2688 0.0671 0,2782 0.0140 0.2695 0.0185 

1 2 2 1 .1 .3 .4 	.6 0.9924 0.1938 1.0155 0,1412 1.0465 0.3065 1,0726 0.0410 3.0519 0.0535 

4 5 3 6 .1 .3 .4 .6 3,6448 0.5364 3.7097 0,3913 3.7806 0.3025 3,8477 0.1241 3.7362 0.1979 

1 	1 1 	1 .1 	.3 	.4 	.6 0,6821 0.1160 0.6983 0,0852 0.7144 010663 0.7305 0.0265 0.7063 0.0416 

1 2 1 2 2 1 .1 	.2 	.2 	.3 	.4 	.5 0.8874 0.2761 0,9581 0.1702 1,0471 0.1114 1.0764 0,0418 1.0475 0.0543 

4 3 1 5 2 6 .1 	.2 	.2 	.3 	.4 	.5 2.7927 0.6588 2.9479 0.4175 3.1316 0.2725 3,2373 0.1116 3.0802 0.1701 

1 1 1 1 1 1 .3 	.2 	.2 	.3 	.4 	.5 0.5863 0.3712 0.6144 0,1082 0.6655 0.0739 0,6864 0.0282 0.6602 0.0390 
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Means and standard deviations (SD) of achieved response to selection, fi0,  using 

ANOVA estimates (before modification), modifications A, B and posterior expec-

tations from 500 replicate samples for a range of traits (t = 2, 4 and 6), different 

heritabilities, economic weights and family sizes, continued from Table 9-5.... 

= 50 fl = 20 

1 0 .05 .5 0.0285 0.0253 0.0324 0.0169 0.0359 0.0135 0.0385 0.0051 0.0448 0.0031 

1 1 .05 .5 0,4967 0.0091 0,4974 0.0078 0.4977 0,0076 0.4981 0,0050 0.4913 0.0107 

1 3 .05 .5 1.4908 0.0155 1.4911 0.0149 1,4913 0.0147 1.4914 0.0089 1.4861 0.0135 

1 0 .1 	.2 0.0838 0.0345 0.0852 0.0226 0,0880 0.0166 0,0926 0.0051 0.0039 0.0043 

1 1 .1 	.2 0.2076 0.0339 0.2097 0.0247 0.2111 0.0207 0.2129 0.0080 0.2107 0.0106 

1 3 .1 	.2 0.5750 0.1018 0.5799 0,0627 0.5835 0.0472 0.5887 0.0166 0.5850 0.0204 

1 1 2 2 .1 	.1 	.2 	.2 0.5162 0.0594 0,5205 0.0514 0.5256 0.0468 0.5380 0.0172 0.5296 0.0219 

4 6 5 3 .1 	.1 	.2 	.2 1.1448 0.2216 1,1689 0.1710 1.1899 0,1488 1.2378 0.0524 1.2217 0.0642 

1 1 1 1 .1 	.1 	.2 	.2 0,2695 0.0430 0,2738 0.0345 0.2778 0,0309 0.2873 0.0107 0.2829 0.0137 

1 2 2 1 .1 	.3 	.4 	.6 1.1020 0.0663 1,1018 0.0863 1.1024 0.0660 1.1015 0,0362 1.0934 0.0442 

4 5 3 6 .1 	.3 	.4 	.6 3.9400 0.3428 3.9406 0.1417 3.9420 0.1406 3,9373 0.0826 3.9000 0.1142 

1 1 1 	1 .1 	.3 	.4 	.6 0.7490 0.0350 0,7491 0.0347 0.7495 0.0344 0.7486 0,0197 0.7398 0.0273 

1 2 1 2 2 1 .1 	.2 	.2 	.3 	.4 .5 	3.0973 0.0833 1.0976 0.0800 1.1022 0.0770 1.1176 0.0339 1.0990 0.0459 

4 3 1 5 2 6 .1 	.2 	.2 	.3 	.4 .5 	3.2776 0.1759 3.2783 0.1732 3.2866 0.1693 3.3232 0.0818 3.2501 0.1333 

1 1 1 1 1 1 .1 	.2 	.2 	.3 	.4 .5 	0,6981 0,0528 0,6990 0,0487 0,7020 0,0464 0.7119 0.0216 0.6975 0,0308 

= 80 ii = 8 

1 0 .05 	.5 0.0161 0,0330 0,0267 0,0179 0,0357 0,0123 0.0375 0,0054 0,0446 0.0031 

1 1 .05 .5 0,4874 0,0283 0,4931 0,0143 0,4944 0,0130 0,4965 0.0063 0,4825 0,0193 

1 3 .05 .5 1,4773 0.0372 1,4810 0.0286 1,4825 0,0263 1,4865 0,0136 1,4754 0.0241 

1 0 .1 	.2 0,0605 0.0556 0,0739 0,0293 0,0818 0,0266 0.0907 0,0057 0.0926 0,0048 

1 1 .1 	.2 0.1804 0.0802 0.1951 0,0432 0,1981 0,0544 0,2112 0,0103 0,2083 0,0130 

1 3 .1 	.2 0,5292 0.1594 0,5509 0,0895 0,5489 0,1425 0.5859 0,0169 0,5802 0,0212 

1 1 2 2 .1 	.1 	.2 	.2 0,4212 0.1882 0.4710 01013 0.5125 00638 0,5303 0,0209 0,5176 0,0268 

4 6 5 3 .1 	.1 	.2 	.2 0,9068 0,4696 1.0578 0.2602 1,1749 01634 1,2172 00628 1,1897 0.0790 

1 1 1 1 .1 	.1 	.2 	.2 0,2132 0,1083 0.2463 0,0587 0,2717 6,0384 0,2825 0.0340 0,2753 0.0181 

1 2 2 1 .1 	.3 .4 	.6 1.0639 0,1254 1,0702 0,1014 1,0798 0.0878 1,0894 0,0383 1,0741 0,0496 

4 5 3 6 	' .1 	.3 	.4 	.6 3.8273 0,2668 3,8452 0,2360 3,8636 0.2183 3,8922 0,1130 3,8248 0,1588 

1 1 1 1 .1 	.3 	.4 	.6 0,7238 0,0652 0,7293 0,0544 0,7342 0.0494 0,7402 0,0249 0,7248 0,0343 

1 2 1 2 2 1 .1 	.2 	.2 	.3 .4 .5 	1.0103 0,1596 1,0308 0,1230 1,0702 0-0959 1.0961 0,0408 1,0680 0,0559 

4 3 1 5 2 6 .1 	.2 	.2 	.3 .4 .5 	3.0683 0,3528 3,1185 0,2844 3,1960 0,2338 3,2678 0.098 3,1655 0,1536 

1 1 1 1 3 1 .1 	.2 .2 .3 .4 .5 	0,6407 0,1010 0,6572 0,0776 0,6810 0,0606 0,6994 0.0252 0,6766 0,0383 

= 80 n = 20 

1 0 .05 .5 0,0321 0,0224 00347 0,0157 0,0371 0,0121 0.0393 0,0052 0,0452 0,0028 

1 	1 .05 .5 0,4989 0.0052 04993 0,0045 0.4995 0,0044 0,4994 0,0030 0.4970 0,0058 

1 3 105 .5 1,4940 0.0096 1.4942 0,0094 1.4943 0,0093 1,4937 0,0066 1.4925 0,0080 

1 0 .1 	.2 0,0917 0,0133 0.0918 0,0128 0,0919 0,0124 00935 0.0049 0,0945 00041 

3 1 .1 	.2 0,2160 0.0124 0,2160 0,0124 0,2160 0,0123 0.2157 0,0065 0,2148 0.0080 

3 3 .1 	.2 0.5941 0,0229 0,5941 0,0228 0,5942 0,0228 0,5937 0.0132 0,5919 0,0156 

1 1 2 2 .1 	.1 	.2 	.2 0,5414 0.0399 0,5418 0.0394 0,5426 0,0384 0,5472 0.0157 0.5423 0,0195 

4 6 5 3 .1 	.1 	.2 	.2 1,2268 0.1321 1.2301 0,1266 1,2339 0,1220 1,2599 0.0471 1,2505 0.0584 

1 1 1 1 .1 	.1 	.2 	.2 0,2875 0.0257 0.2881 0.0249 0,2888 0.0243 0,2927 0,0099 ,  0,2902 0.0124 

1 2 2 1 .3 	.3 	.4 	.6 1,1309 0.0353 1.1309 0,0353 1,1309 0.0353 1,1222 0.0266 1,1188 0,0275 

4 5 3 6 .1 	.3 	.4 	.6 4,0047 0,0857 4.0048 0,0858 4.0048 0,0857 39860 0.0622 3,9657 0,0736 

I 	1 1 1 .1 	.3 	.4 	.6 0,7647 0.0206 0,7647 0,0207 0,7648 0,0206 07602 0.0146 0,7559 0,0164 

1 2 1 2 2 1 .1 	.2 	.2 	.3 	.4 .5 	1.1278 0.0594 1,1277 0,0593 1,1283 0,0590 1,1322 0.0296 3.1260 0,0372 

4 3 1 5 2 6 .1 	.2 	.2 	.3 	.4 .5 	3.3570 0.1186 3.3569 0,1182 3,3580 0.1173 3,3637 0,0669 3,3348 0,0887 

1 1 1 1 1 1 .1 	.2 .2 	.3 .4 .5 	0.7184 0-0351 0.7184 0,0351 0,7188 0,0349 0,7215 0.0189 0,7165 0,0243 
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priors usually give similar results except in cases where there are two traits and 

the second has zero economic weight. In these cases the second prior seems to 

yield better achieved responses than the first. It is clear from Table 9-5 that the 

improvement in W is smaller with more traits, and modification procedures and 

Bayesian decision procedures do not always lead to a higher value of if with large 

sample sizes. All the procedures are effective for the small number of families but 

they give identical results for the larger family sizes. 

9.5.3 A graphical representation of index weights for two 

traits 

The expectation of the response that is actually achieved when an index b'y is 

used is given by 

Jr = ibl Ega(b'Epb)_ 11 2  

Replacing b by cb where c =A 0 gives 

' = cbEga( c2  ' 	1/2 

if = 7b'E9a(b'Epb)h/'2 if c > 0' 

and 

if = _b'Ega(bFEpb)h/'2 if c < 0 

Therefore if is constant on half-lines starting at 0. A contour with if = r 

(r 	R) satisfies the following. 

bga(b'pb)hh/2 = 

or 

(b'd)2 = r 2 (b' p b) , 	 (9.8) 
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where d = iE.a. For two traits the expression (9.8) can be expanded to obtain a 

quadratic equation as follows. 

2' b 2 2  o,22  - d) + 2bi b2 (r 2 a 12  - d1 d2) + b(r 2 o 11  - d) = 0, 	(9.9) 

which corresponds to a pair of lines through the origin. A plot with these contours 

provides a way of examining the joint distribution of the index weights b 1  and b2  

for any procedure in relation to the corresponding expected response. 

Numerical example: The method will be applied to one of the sets of pop-

ulation parameters. The parameters are as follows: 

1.0 0.0 

0.0 1.0 

0.1 0.0 

0.0 0.2 

corresponding to h= 0.1, h = 0.2, r9  = 0 and a = 	= 1.0. If a' = (1 1) 

and i = 1 then 
0.1 

d= 
0.2 

and the index has weight vector given by b = FP  1  Eg a is 

0.1 1 
= E

P
1E9a 

= [ 0.2  j 

Equation 9.9 then becomes 

b(r 2  —0.04) - 0.004b1 b2  + 0.01(r2  —0.01) = 0 	 (9.10) 

The optimum response to selection, W, is 0.2236 and the corresponding half-line 

is given by b2  = 2b 1  (b1  > 0). We can obtain some other lines simply by giving 

different values to b1  and r, i.e. keeping r constant increasing b1  by a constant 

amount and multiplying r by a constant and obtaining b2  for the same b1 . b 1  can 

then be plotted against b2  for different values of r to obtain a contour graph. Such 

a graph is illustrated in Figure 9-3. These figures are rather symmetrical in the 

sense that as we move from the optimum response, R" = 0.2236, both clockwise 
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Figure 9-3: The distribution of selection index weights using bending for two 

traits superimposed on a contour graph of selection response when s = 25, ii = 8, 

= 0.1, h 2 = 0.2, R01  = 0.2236 and the traits are of equal economic importance. 

a) w = 0.0, b) in = 0.2, c) in = 0.4 and d) in = 0.8. 
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bi 

Figure 9-4: The distribution of selection index weights using Gibbs sampling 

method for two traits superimposed on a contour graph of selection response when 

= 25, ii = 8, h 2 = 0.1, h = 0.2, R0 = 0.2236 and the traits are of equal 

economic importance. 

and anti-clockwise, the response values decrease until if is -0.2236 and then from 

this point onwards they start to increase until reaching the optimum response. 

We look first at the effect of different amounts of bending on the distribution of 

the index weights. In order to see the changes in the distribution of the estimated 

index weights, b*,  with the increasing value of the bending factor, w, this contour 

graph could be overlaid on the graph of b against b as in Figure 9-3. The 

estimated index weights are compressed together close to the optimum ratio of 

index weights with increasing level of the bending factor. In Figure 9-3 (a) the 

unmodified index weights are spread apart. As the bending factor increases in 

Figure 9-3 (b), (c), (d) they tend to become closer to each other. However, 

as the sample size is rather small (s = 25, it = 8) there are still some pairs 

of index weights which would give negative progress. Figure 9-4 illustrates the 
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distribution of posterior expectations of index weights using Gibbs sampling (with 

prior specification Priori) for the same design and sample size. In contrast to 

Figure 9-3, posterior expectations of index weights are within the permissible 

range. As a result of this one obtains more efficient selection procedures from 

Bayesian decision approach. 

9.6 Discussion 

In this chapter, an assessment of selection procedures of half-sib families for mul-

tiple traits from estimates of parameters and from a Bayesian decision theory 

approach is given and the two procedures are contrasted. A selection index com-

puted from estimates of parameters based on a finite sample size can have down-

ward bias when compared with an optimum index computed from the parameters 

themselves. This is mainly because of high probability of obtaining non-positive 

definite genetic matrices. If there are more traits departure from the optimum is 

likely to get worse. It has been shown that rather than discarding such an index 

altogether, it can be improved by bending the estimates. The bending procedure 

changes the sample roots of EP 

i
E but the corresponding eigenvectors remain 

unchanged. 

However, bending the roots is not a solution to the problem, since the main 

difficulty with this procedure lies in choosing the appropriate value for the bending 

factor, w. Two modification procedures are used to improve selection indices: 

i) the negative roots of are set to zero, and ii) the negative roots are 

regressed to their mean until the most negative root becomes 0. Improved values 

of selection indices are obtained from both modification methods but the second 

always appears to give better selection responses than the first. 

There is always appreciable prior information about the parameters and this 

information may be incorporated in the construction of selection indices in a sys- 
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tematic way using a Bayesian approach. Two different prior specification Priori 

and Prior2 are adopted (see Section 8.5.2 for these) and the values of selection 

responses from these priors are compared and contrasted with unmodified and 

modified results of conventional method. The use of different prior specifications 

does not make significant changes in marginal posterior inferences about the se-

lection indices, except in cases where there are two traits and one has an economic 

weight 0. In such cases Prior2 seems to yield better achieved responses than 

Priori. It was clear that modification procedures and Bayesian methods with 

different priors are rather effective with small family sizes but all methods give 

similar results for larger numbers of families. 

The Bayesian decision theory approach is, without doubt, preferable to the 

conventional methods of computing selection indices on several grounds. Firstly, 

it incorporates prior information about the population parameters into a Bayesian 

selection procedure. This is impossible with the estimative procedures. The spec-

ifications of the prior information in this study do not change the marginal poste-

rior density appreciably; different prior specifications give almost identical poste-

rior expected progress. Therefore, the Bayes solution to selection appears robust 

to changes in the prior assumptions. Secondly, as the Bayesian procedures give 

marginal posterior expectations which are always within the parameter space one 

does not have to apply some kind of modification procedure to improve the selec-

tion index. 



Chapter 10 

Analysis of Test Day Milk Yields of Dairy 

Cows 

10.1 Introduction 

The genetic evaluation of dairy sires and cows for production traits in the UK 

and many other countries has depended for many years on the analysis of 305-

day lactation milk production; this is commonly standardized to a period of 10 

calendar months. The basis of every 305-day milk yield is a set of individual test 

day yields usually taken approximately once a month over the lactation period of 

305 days. An alternative approach for genetic evaluation is to analyse individual 

test day records. The number of test day records may range from 2 to 12 test day 

measurements. Models which directly consider records of individual test days have 

become of interest and all the models incorporating records from individual test 

days are referred to as test day models. This incorporation may use test day records 

corrected for fixed effects such as age at calving and season of calving. These 

records are then combined for evaluation purposes in a second step. Alternatively, 

test day records may be considered directly in an appropriate one-step evaluation 

model. Traditionally, test day lactation records have been extrapolated to a 305-

day basis following a set of well-defined rules, for example Wilmink (1987), when 

predicting breeding values for sires. The number of test day records that have 

been combined to provide 305-day milk yield and the procedure being employed 

237 
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determine the accuracy of 305-day measures. Danell (1982c) pointed out that a 

disadvantage of extending test day milk yields to a 305-day basis is that the level 

of production may vary over time, resulting in biased predictions of 305-day milk 

yield. 

One way to avoid the problem of extension of test day records into a 305-day 

lactation milk production would be to use individual test day yields for genetic 

evaluation of dairy sires and cows rather than estimated 305-day yields. There are 

many advantages associated with the use of test day milk records of dairy heifers 

in the early part of the lactation. Among these are shortening of the generation 

interval and saving in expenses for housing and recording of test day milk yields 

in the later part of the lactation by an early culling of bulls and cows with low 

breeding values for milk production. In addition to increase in selection intensity, 

the use of test day records rather than 305-day milk yields can reduce the bias due 

to culling of heifers before the completion of 200 days of lactation, the minimum 

length of a lactation to qualify for inclusion in sire and cow evaluation in the UK. 

With regard to bias by selection, the largest potential for non-random influence in 

sire evaluation is related to culling of heifers during their first lactation. Test day 

records may also be used to increase the accuracy of sire selection by including 

part records in addition to complete 305-day lactation records, or sires may be 

selected earlier with the same accuracy. Even for completed lactation, selection 

on a properly weighted index of test day records could be more accurate than 

selection on predicted phenotypic records for 305-day milk yield. 

In addition to the above advantages, the heritabilities of test day records have 

been either the same or slightly lower than those of 305-day milk yields (Keown 

and Van Vleck, 1971; Danell, 1982c; Meyer et al., 1989). Therefore, the accuracy 

of a cow's genetic evaliation may be improved by using several test day yields per 

cow per lactation rather than a 305-day measure. Then methods to combine test 

day milk yields into a 305-day milk yield would not be necessary. 
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However, the drawbacks of using test day milk records would be a large in-

crease in the number of individual test day yields to be stored on every cow (Ptak 

and Schaeffer, 1993). It is also a fact that traditionally there is a strong depen-

dence on 305-day milk yield information. Therefore, this information would still 

need to be provided to dairymen for management purposes. The computation of 

genetic evaluations of dairy sires and cows may take a much longer time due to 

the increased number of record used, and also due to the more complex statistical 

models that might be needed for test day milk yields. Some additional drawbacks 

are that these models contain many more parameters and need to describe the 

lactation shape and include several fixed effects. Another drawback with using 

individual test day records is that the conventional methods give unreasonable 

estimates with increasing probability as the number of traits is increased. Hence 

there is a need for a more coherent method for constructing indices. As argued in 

Chapters 8 and 9, the Bayesian procedure offers such a method. 

10.1.1 Literature Review 

This section reviews a number of studies on the analysis of test day milk yields 

in two parts: sources of variation in test day milk yields and estimates of genetic 

and phenotypic parameters. 

Sources of variation 

Previous studies on the analysis of test day milk yields have used a wide range of 

statistical models, each fitting different environmental factors. Table 10-1 gives a 

summary of statistical models used by various authors. Knowledge of variation in 

test day milk yields due to environmental factors used in these models is essential 

for correct estimation of genetic and phenotypic parameters as well as breeding 

values. As can be seen from Table 10-1, the most common ones are herd, age at 

calving, month of calving, length of first period (interval between calving and first 
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test), days open and calving interval. Some of the environmental factors causing 

variation in test day milk yields are discussed below. 

Herd effect: Auran (1973) fitted herd effects as the regression of test day milk 

yields on herd average and found that herd effects accounted for approximately 

25 to 40% of the total sums of squares in monthly test day yields. He reported 

that the herd effect varied for various test day milk yields. The reduction in sums 

of squares due to herd average was relatively less for the first and the last test 

day yields than for the test day yields in the middle of lactation. He concluded 

that regression on herd level would satisfactorily remove the herd effect from test • 

day milk yields. However the usual way of removing the herd effect is to include 

herd-year-season effects in the model. Recently Meyer et al. (1989) compared two 

models, one with herd-year-season, another with herd-year-month effects. They 

reported that fitting herd-year-month effects reduced residual variances consider-

ably over estimates from a model fitting herd-year-season effects, indicating the 

importance of environmental effects specific to the time of test. 

More recently, following a preliminary analysis to determine proper partition-

ing of the environmental variation, Pander et al. (1992) also adopted a multivariate 

model with herd-year-month effects for genetic analysis. Since a subset of one of 

their data sets is used in this thesis, our model will also include herd-year-month 

effects. 

Age effect: Age at first calving affects first lactation yield significantly (Auran, 

1973; Danell, 1982a). Auran (1973) reported that the effect of age on monthly 

test day milk yields decreases with advancing lactation, accounting for about 41% 

of total variation at first monthly test but only about 2% for the last three test 

days. This indicates that the heifers are gradually maturing towards the end of the 

lactation. The effect of age at calving reported by Auran (1973) was higher than 

that found by Danell (1982a). These higher results might have been caused by 

the different age groupings and model used for the analysis, and the correction of 



Chapter 10. Analysis of Test Day Milk Yields of Dairy Cows 	 241 

Table 10-1: Summary of selected papers on the analysis of test day milk yields. 

Author(s) Trait Fixed Effects Covariables Random Effects 

Van Vieck and TD yield mean herd, sire, 

Henderson corrected for residual 

(1961) age and season 

Keown and TD* milk yield sires, HYS*, 

Van Vieck (sirexHYs), 

(1971) residual 

Auran 2nd, 6th or mean, age of cows, calving interval (quad) * herd, 

(1973) 10th TD yields MC*,(age xMC) residual 

monthly mean, age of cows, calving interval (quad) herd, 

or cumulative MC, length of residual 

monthly TDY*  first period 

Danell TD yields mean, herd, MC, days to first residual 

(1982a) age at calving, test (quad) 

no. of days open 

TD yields mean, MC, age herd average (lin)*, sire, 

at calving, no. of days to first test (quad) residual 

days open 

Meyer et al. TD yields HYS, month of age at test (quad), sire, 

(1989) test days in milk at test residual 

(6th order) 

TD yields herd.-test-day age at test (quad), sire, 

days in milk at test residual 

(6th order) 

TD yields HYS, month of age at calving (quad), sire, 

test days in milk at test residual 

(quad)  

Pander et al. TD yields HYMt, pedigree age at calving (lin), young sires, 

(1992) status of heifer, days to first test (quad), residual 

proven sires proportion of Holstein 

in sire (quad)  

* TD: test day, MC: month of calving ,}4YS: herd-year-season, quad: quadratic, 

un: linear, TDY: test day yield, 1-IYM: herd-year-month 
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data for calving interval before analysis, as calving interval is negatively correlated 

with age at calving. 

Month/season of calving: The relationship between milk yield and season of 

calving is mainly caused by seasonal variations in feeding and care, and climatic 

factors. The quality and quantity of the pasture and of the supplementary feeding 

are of particular importance. Auran (1973) reported that the month of calving did 

not affect monthly test day milk yields appreciably, accounting for about 1.8% of 

the total variation in the first test day and about 7.8% in the seventh and eighth 

test days. Danell (1982a) also found that milk yield for individual test days at 

the close of lactation was affected most by month of calving. He observed an 

interaction between month of calving and stage of lactation. This interaction may 

be viewed as differences in climatic factors and availability of the supplementary 

feeding during different stages of lactation. At the early stage of the lactation, 

body reserves can supply part of the energy needs, hence test day milk yields are 

likely to be less influenced by month of calving. 

There are other factors, such as length of the first test period, days open and 

calving interval, causing variation in test day yields. These are studied by Auran 

(1973) and Danell (1982a). All these studies give a clear indication that the major 

environmental sources of variation in test day yields are herd-year-season and age 

at calving, together accounting for more than two-thirds of the total variation. 

One of the similarities among all these studies was that the effect of some of the 

environmental factors was different for test day milk yields at different stages of 

lactation. Herd-year-month effects explained much more variability than herd- 
øç the 

year-season indicating the importance of timejtest. 

Estimates of genetic and phenotypic parameters 

Heritability: Table 10-2 summarizes the estimates of heritability of test day and 

predicted 305-day milk yields obtained by different authors. The estimates of 
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heritability of test day milk yields were lower than that of 305-day lactation milk 

yield (Van Vleck and Henderson, 1961; Keown and Van Vleck, 1971; Auran, 1976; 

Danell, 1982b; Pander et al., 1992). Estimates for test day milk yields were higher 

in mid lactations. Meyer et al., (1989) also obtained similar results using restricted 

maximum likelihood procedures. 

These results indicate that test day yields in mid lactation have consistently 

higher heritability estimates than those at the start and at the end of lactation. 

Genetic and phenotypic correlations: A comprehensive review of estimates of 

genetic and phenotypic correlations between predicted 305-day lactation yields 

and test day milk yields is given by Pander (1992). He presented a table of pooled 

estimates of genetic and phenotypic correlations from five different studies. The 

general pattern in his table is that genetic and phenotypic correlations between test 

day yields followed the same trend; both correlations were higher during the mid 

lactation than at the beginning and the end of the lactation. However, phenotypic 

correlations between test day milk yields were much lower than the corresponding 

genetic correlations. 

The overall conclusion about heritabilities and genetic and phenotypic correla-

tions from different studies is that test day yields in the middle of lactation have 

the highest heritabilities and correlations. 

10.1.2 Objectives 

In dairy cattle breeding, in order to improve animals for production traits, geneti-

cally superior animals are identified on the basis of their predicted breeding values 

from the phenotypic values for 305-day lactation milk yields. This is a two-step 

procedure; first the phenotypic values used for genetic evaluation are predicted 

from test day milk yields and then prediction of breeding values are obtained from 

these predicted phenotypes. Furthermore, the predicted phenotypes for 305-day 

milk yield may be slightly biased and inaccurate. Therefore there is a need to 
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Table 10-2: Estimates of heritability (%) of test day milk yields and predicted 

305-day lactation milk yield (LMY) 

Test day 

Author(s) 1 2 3 4 5 6 7 8 9 10 LMY** 

Van Vieck and 

Henderson 11 17 22 19 19 15 14 14 12 08 

(1961) 

Keown and 

Van Vieck 17 22 23 23 24 24 24 25 23 20 30 

(1971)* 

Auran TD** 20 18 20 18 22 25 22 20 23 16 

(1976) CTD** 20 21 22 22 22 24 23 23 25 25 

Danell 1 26 24 22 27 23 22 22-- 27 23- 24 --31 

(1982b) 2 16 15 18 22 24 27 27 27 23 20 30 

3 21 20 27 27 31 30 26 19 20 12 33 

pooled 21 20 22 25 26 26 25 24 22 19 31 

Meyer et al. States *** 

(1989) NSW 13 22 26 20 16 20 17 19 17 18 

(Model 1) Vic 26 22 27 35 30 30 29 30 25 17 

Tas 16 22 17 16 24 20 19 15 12 

univariate pooled 20 22 25 27 24 25 24 24 21 17 

multivariate pooled 15 19 20 21 21 25 23 14 22 08 

Pander et al. 

(1992) 27 33 34 36 35 38 39 43 36 33 49 

Pander et al. 

(1993) 19 29 35 39 42 44 45 47 48 49 

* Pooled over lactations 

** CTD: Cumulative test day, TD: test day, LMY: 305-day lactation milk yield 

NSW: New South Wales, Vic: Victoria, Tas: Tasmania 
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find an alternative procedure based on test day milk yields to assess the animals. 

REML analyses of test day milk yields have been carried out by several authors 

(Meyer et al, 1989; Pander et al., 1992) but Bayesian methods have not been 

applied. 

So far in Chapters 4 to 9 the Bayesian analyses have been implemented to make 

inferences about variance components and to evaluate selection responses using 

simulated balanced univariate and multivariate one-way sire models assuming a 

half-sib family structure. The main purpose of this chapter is to demonstrate 

the implementation of the Gibbs Sampler with data on test day milk yields of 

British Holstein-Friesian heifers. An analysis of this kind employing the Gibbs. 

Sampler with a very large data set containing records on 23,873 cows and 689 

sires is carried out for the first time in unbalanced univariate and multivariate half-

sib sire models. Estimates and posterior expectations of genetic and phenotypic 

parameters and functions of themf are obtained from test day milk yields using 

REML and Gibbs sampling methods with two different prior assumptions about 

the variance matrices. REML estimates and marginal posterior expectations of 

breeding values are also provided and results from the two methods are compared. 

10.2 Material and Methods 

10.2.1 Material 

The data set studied in this chapter, which was obtained by National Milk Records 

(NMR) of the Milk Marketing Board (MMB), consisted of 10 test day records 

(denoted by TD1 to TD1O) of British Holstein-Friesian heifers in 7,973 herds, 

which had their first test between November 1988 and October 1989. The test 

day records were taken at approximately monthly intervals. Each test day milk 

yield is the total of all the individual weighings taken during a 24 hour period from 
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noon to noon. Milk samples were also taken for milk composition analysis at the 

same time. The 305-day milk yields were predicted by linear interpolation using 

the MMB's method (British Standards Institution, 1972, method 3). Lactations 

shorter than 200 days were excluded from the prediction of 305-day lactation 

yields. The following conditions (both lower and upper limits inclusive) were set 

for a record to be included in the analysis: 

age at calving was required to be in the range 20 to 40 months; 

the first test had to be between day 4 and 45 of lactation; 

the interval between consecutive tests was between 20 and 50 days. 

Table 10-3 displays the structure of the data set. On average, 29% of herd 

year-month categories had only one record; these were discarded from the full data 

set . The resulting data set is described in column 2 of the table, and henceforth 

referred to as the reduced data set. The reduced data set consisted of records from 

23,873 daughters of 40 proven and 649 unproven sires. The number of daughters 

per proven sire varied between 187 and 1,371 while the corresponding figures for 

unproven sires were between 1 and 31 in the reduced data set. About one-fifth 

of cows in the reduced data set were offspring of the young sires. In the reduced 

data, the average number of records per herd-year-month was 3 with a maximum 

number of records of 25. All of the individual test day milk yields were expressed 

in kg per test day (kg milk day'). 

10.2.2 Statistical Methods 

The following univariate and multivariate analyses were carried out on the reduced 

data set assuming multivariate normality and a half-sib sire model. 

i) Individual test day milk yields analysed assuming fixed herd-year-month 

effects; 
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Table 10-3: Structure of the data set 

Full data set Reduced data set 

No. of test day records 33,696 23,873 

No. of herd-year-month categories 16,886 7,063 

Mean no. of daughters 

per herd-year-month 2 3 

No. of sires 706 689 

Mean no. of daughters 

per sire 48 35 

Pedigree daughters 16,112 11,398 

Non-pedigree daughters 17,584 12,475 

Mean Holstein proportion 0.372 0.367 

Proven sires 

No. of proven sires 	- 	 - 40 40 

Total no. of daughters 

for all proven sires 26,970 18,975 

Mean no. of daughters 

per proven sire 674 474 

Pedigree daughters 11,776 8,192 

Non-pedigree daughters 15,194 10,783 

Mean Holstein proportion 0.357 0.354 

Unproven sires 

No. of unproven sires 666 649 

Total no. of daughters 

for all unproven sires 6,726 4,898 

Mean no. of daughters 

per unproven sire 10 8 

Pedigree daughters 4,336 3,206 

Non-pedigree daughters 2,390 1,692 

Mean Holstein proportion 0.435 - 	 0.417 

247 
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Individual test day milk yields analysed assuming random herd-year-month 

effects; 

All ten test day milk yields analysed simultaneously assuming fixed herd-

year-month effects. 

The second type of analysis is open to the objection that if herd-year-month ef-

fects are treated as random then the model should include a variance component 

for herds. It was not possible to apply such a model because the herds themselves 

are not identifiable in the data. The analysis is included, however, because it 

demonstrates how Gibbs Sampler can be applied to a more complex model than 

the first. For the estimation of genetic and phenotypic parameters, univariate and 

multivariate restricted maximum likelihood (REML) analyses for i) and iii) were 

carried out using REML programs. Then the posterior expectations of parame-

ters of interest were obtained using the Gibbs sampling procedure. Finally, the 

results from REML and Gibbs sampling were compared. Relationship among sires 

through paternal grandsires were not included in the analysis. 

For the analysis of the above models i), H) and Hi), sires were assumed to 

be be unrelated. In order to minimize any bias from selection of sires for dairy 

production, effects for proven sires were considered as fixed so that their daughters' 

records contributed to the estimation of the variance within but not between sires. 

This implied the assumption that residual variances were homogeneous for 

daughters of both types of sires, proven and unproven ones. 
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10.3 Univariate Analyses of Test Day Milk Yields 

10.3.1 Treating herd-year-month effects as fixed 

Model 

Suppose that there are s,, proven sires and S q  unproven sires (new or young sires), 

and that there are observations on N daughters of proven sires and on Nq  daugh-

ters of unproven ones. Let Yji  denote the milk yield for a particular test day 

measured on the jth daughter of sire i and let cj, h(ij) denote the vector of c 

covariates and the herd-year-month group for this daughter. The covariates in-

cluded in the analyses were pedigree status of the heifer (0 = pedigree or grade 

(registered), 1 = non-pedigree (non-registered), age at calving, day of lactation. 

for first test and proportion of Holstein in sire) and the herd-year-month group 

for this daughter. 

If we take sire effects to be fixed for proven sires and random for unproven 

ones then we might assume the following half-sib sire model 

= 1,. . s, 	 proven sires 

Yji = 	h(ij) + 	- e) + s + ejj i = Sp + 1,. . . , Sp + 5q, unproven sires 

j=l,...,n 
(10.1) 

Here the a's represent herd-year-month effects, /3 the vector of regression coeffi-

cients for the covariates and the s i  the sire effects for proven and unproven sires. 

The ej  are assumed to be N(O, or ) and independently distributed given a, /3, s 

and o,, . In matrix terms, this may be written as 

y=Ha+C/3+Ds+e 	 (10.2) 

where H defines the herd/year/month membership of each daughter, C contains 

the centred values of the covariables and D specifies the sire fathering each daugh- 
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ter. Since all test day records are complete, all vectors y and e have length 

N = N + N, the number of records. The vector of fixed effects, a, has length g, 

the number of herd-year-month groups. The vector of regression coefficients, 0, 

has length c, and s has length s = Sp + 5q, the number of proven and unproven 

sires. Correspondingly, the matrices H, C and D have dimensions N x g, N x c 

and N x s, respectively. The design matrix D and sire vector s can be partitioned 

as follows 

ID 	o 1 	1s1 D=  L 0 D 
s=  

q j [sq j 

where s, and S q  are the vectors of effects of proven and unproven sires and D and 

D q  are matrices associating these effects with records. As explained in Section 

10.2.2, the sire effects are taken to be fixed and random for proven and unproven 

sires respectively. - - - - - 

The following assumptions are made 

E(ya, j3,s,o,o)=Ha+C/3+Ds, 	E(s)=O, 	E(e)=O, 

Var(s q ) = 	Var(e) = INC, 	Cov(s q , e) = 0, 

	

2 	2 	2 
Var(y a, $,s,a3 ,c6 ) 

' Ne 

If N denotes the total number of daughters observed then the likelihood func-

tion is, apart from a constant factor 

2 f(y a,t3,s,o) 

oc (aY4Nexp{_ 	{(y— Ha - C - Ds)'(y —Ha - C - Ds)]}. 
2 0,2 

(10.4) 
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Prior distributions 

For the prior distribution, we might take a, 3, s, to be independently uniformly 

distributed, 

	

f(a, 0, si,) cx constant, 	 (10.5) 

the elements of 5q  to be independent, 

	

N sq (O 1sq0), 	 (10.6) 

a to be inverse-x 2  with probability density function given by 

	

2 	2 	/ 2 —4(u+2) exp / 
v5s\ 

f(c3  "s,  s) cx (as) 	
c\20-S-) 

a ? 0, 	 (10.7) 

(denoted by Y 2 (v8, s)) and 0-2  to be inverse-x 2  with parameters 1'e  s and prob-

ability density function independently of c 

Jae  I e , 84 	
()_4(u2) exp / rI 21 	2 

	

>0. 	 (10.8) 
2a2 	6 

Posterior density function 

The posterior probability density function for a, 0, s, a, a is given by 

	

f(a ) /3,s,a,o 	y) 

k2)- 1 l
cx (N+Ve +2)( 2)_4(Sq+L/s+2) exp 	(s q s q  + vs s)]U2   

{ 	1 
x exp _[(y_Ha_c/3_Ds)'(y_Ha_C$_Ds)+ves]}. 

2a 
(10.9) 

Full conditional posterior densities 

The full conditional posterior distributions of a, /3, 5p,  S q , a 2  and a are obtained 

from the joint posterior probability density function in (10.9). 
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To obtain the full conditional distributions of a, 13, s, and 5q,  note that if a 

vector 0 has a probability density function proportional to 

exp [- (O'Ao - 26'a)] 

with A positive definite then its distribution is N(Aa, A -1 ): 

Conditional posterior distribution of a. The posterior probability density func-

tion of a is proportional to 

1  
exP{__[aHHa_2a

/
H(Y

I
_Cs_ Ds) ]} 

so the conditional distribution of a is 

[a 10, s,a,o,y} = N9 (G_1H'(y CO - Ds), cG') , 	(10.10) 

where G denotes H'H, the diagonal matrix giving the frequencies of the g herd 

year month groups. 

Conditional posterior distribution of 0. The posterior probability density func-

tion of 3 is proportional to 

exP 	
1 

{_CCs_2sC(Y_Ha_Ds)]} 

so the conditional distribution of 0 is 

[/3 a, s, c, a, yJ = N, ((C'CYlC'(y - Ha - Ds), c (C'C) 1 ) ,  ( 10.11) 

where (C'C)l  is the matrix of corrected sums of squares and products of the 

covariables. 

Conditional posterior distribution of s. The posterior probability density func-

tion of s, is proportional to 

exp - 
1 

[ 	p  s
F
D

F
Ds - 2s2D(y - Ha - C25)] }, 

{ 

20 .2  

so the conditional distribution of s, is 

2 2 Is a,$,sq ,a3 ,a,y] = 	(ç1 D(y - Ha - C/3), aF), (10.12) 
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where F denotes D,DP,  the diagonal matrix giving the numbers n i  of daughters 

of the proven sires (i = 1,. . . , 

Conditional posterior distribution of S q . The posterior probability density func-

tion of S q  is proportional to 

( 11, ( /i 
exp j- 	

D q Dq  + 	- 2 sD(yq  - Hq a - 

so the conditional distribution of 5q  is 

[sq  I QB,Sp,Us 2,  2Oe,Y] 

2 	-1 	 2-1 

= N sq  ((F + 4I sq ) D(yq  - Hq a - Cq $), a (F + Isq) 

) 
as  

(10.13) 

where F q  denotes DD q , the diagonal matrix giving the numbers of daughters of 

the unproven sires, and y, and Y q  are the vectors of records of daughters of proven 

sires and unproven sires. 

Conditional posterior distributions of c 2  and a. The full conditional distribu-

tions of a and a are respectively 

[a2 /3sa2y] -2 3  a, = x (s q  + 5q5q + ( 10.14) 

and 

[

2 
cre  a,$,s,o,y] 

= X 2 (N+Ve,  (y—Ha—C q $—Ds)'(y—Ha—C)3— Ds) +ves). 

(10.15) 

Expressions (10.14) and (10.15) have the form of scaled inverse-x 2  densities, which 

are easy to sample from. 
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10.3.2 Treating herd-year-month effects as random 

Model 

The model (10.2) is slightly modified to include random herd-year-month effects 

with expectation zero and a mean herd effect p.  The model is then given by 

	

Liii + Ha + C3 + Ds + e 
	

(10.16) 

where a represents a vector of random rather than fixed herd-year-month effects 

in (10.2), 1 is a vector of N l's and H, C, $, s and e are the same as before. The 

following assumptions are made about this model 

E(y I ,Lh, CC, fl,ah ,cS ,CC ) = Phi + CO  + Ds, E(a) = 0, E(s q ) = 0, E(e) = 0, 

Var(a) = I9 cr, 	Var(s q ) = Isq cr, 	Var(e) = 

Cov(s q , e) = 0, 	Cov(a, sq ) = 0, 	Cov(a, e) = 0, 

Var(y rih,a,$,c,c,a) = V = 
IN U2. 

The likelihood function is the same as (10.4). 

Prior distributions 

For the prior distribution, we might take Ph,  3, s, to be independently uniform, 

	

cc constant, 	 (10.17) 

a to satisfy 

	

a I Ch - N9 (ph19 , Isqo) 	 (10.18) 

and the prior distributions of s 9 , a 2  and a are the same as (10.6), (10.7) and 

(10.8), respectively. The prior distribution of a 2  is taken to be inverse-x 2  with 

parameters h,  s and probability density function 

2 	2 	2 -i(uh-j-2) 	( VJ5\ 	2 
Vh,Sh) cx (oh) 	

- 

  
-- 

 

- 

 

-- ) 

Cj ~ 0 . 	(10.19) 
2a 2 
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Posterior density function 

The joint posterior probability density function for p,  a, 0, s, o, o, c is given 

by 

f(ph,a,/3,s,c,c,a y) 

2 )_4(N+Ve+2)(2)_(S+Vs+2)( 52)_(9+Vh+2) cx (0-'  

[1  
[ 	+ v5s)  ] exp I( 
	1 

a 	 ]x exp _(sq s q 
	

[ 	
} 

x exp{_[(Y_Ha_c/3_Ds)'(Y_Ha_cs_Ds)+vs]}. 

(10.20) 

Full conditional posterior densities 

Conditional posterior distribution of ph.  The posterior probability density function 

Of Ph is proportional to 

[

--L exp 	 (pii9 - 2Pha ' la )] 
 2 h 

so the conditional distribution of ph  is 

(E 

	

2 2 2 	 ah 
[ph a,/3,s,a,c 3 ,a,y] = 

N9 I 	- 9/, 	 (10.21) 

Conditional posterior distribution of a. The posterior probability density func-

tion of a is proportional to 

I 	1 2 	2exp -, 	[a'(aI9  + aH'H)a - 2a (cphi g  + aH'(y - 	- Ds))] 
}, 2co 
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so the conditional distribution of a is 

2 	2 	2 
[a I Ph, 13 ,s,ah, Ors) ore, y] 

= N9  ((oI9  + oHH) 1  [4/2h1 9  + cH(y - CO - Ds)] 

C 
2  
hCe  

2
(O e  

2
I9 

+ 0_ 2
H'H)' (10.22) 

Conditional posterior distributions of 0, s, and 5q  The conditional densities of 

13, s, and 5q  are similar to those given in (10.11), (10.12) and (10.13), respectively 

and are as follows 

[13  1 Ph, a, s, a, o, c, = N ((c'cylc'(y - Ha - Ds), a(CCY'), 

(10.23) 

[s Ph,  a, /3, 5q, 	a, a, y] = N3  (F;'D(y - Ha C$), aF'), 

(10.24) 

and 

22 	2 
[Sq  

2-1 

= N sq  ((F + 	D 9 (yq  - H qa - C qØ), Or (Fq + Is 

(10.25) 

Conditional posterior distribution of o- , a and a. The full conditional dis-

tributions of c, a and cr are respectively 

2 2 	-2 

	

[h ph,a,P,s,c3,a,y] = 	(g + vh, (a - phi g ) (a - Ph 	+ vhs2h) 

(10.26) 
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2, [a ,1h,a,13 ,S,ah,a,y] = x2 (s q  + us , S ' q S q  + uss) 	(10.27) 

and 

2 2 
[a 	ith,Q,$,S, 5h,s,YI 

= _2(N+p,(y_ Hoe  _Cq_Ds)'(y_Ha_C$_Ds)+ues). 

(10.28) 

10.4 Multivariate Analysis of Test Day Milk Yields 

10.4.1 Model 

If the design matrices H and D and the matrix for covariables C are the same 

for all test days (or more generally for any t traits), then the multiple-trait model 

can be written as a direct extension of (10.2). Then y, a, $, s and e are replaced 

by matrices Y, A, B, S and E, which are respectively N x t, g x t, c x t, s x I 

and N x I, with each column corresponding to a different trait. The matrix S can 

be partitioned as ['j where S, and 5q  are the matrices of effects of proven and 

unproven sires. The model for the multiple-trait analysis becomes 

Y = HA + GB + DS + E. 

When deriving the likelihood and the posterior density functions if is convenient 

to write Y, A, B, S and E in vector form using the vec operator, for example 

yi  

Y2 
Yv = vecY = 

Yt 
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If also a, /3,  s, and e denote vecA, vecB, vecS and vecE respectively and 0 

denotes the direct or Kronecker product then the model may be expressed as 

Yv = ( It  0 H)a + (It  0 C)/3 + (It  0 D)s + e 0 , 	 ( 10.29) 

where Yv  is constructed to form a single vector by stacking the columns of the 

matrix Y one under another (Henderson and Searle, 1979). The operation has 

been referred to as the column string or stack of Y and the pack of Y, with vecY 

(for "vec of columns of Y") being the notation currently in use. However, for 

the sake of simplicity Yv  will be employed throughout this chapter. The following 

assumptions are made, 

E(s qv) = 0, 	E(e) = 0, 

Var(s qv ) = Es 0 ]Isq 	Var(e) = E e  0 'N, 	Cov(s qv , e) = 0. 

Then, given civ , 13 ,,, s,,, E 5  and E e  

Yv - NNt ((Ii 0 H)a,, + (It  0 c)t3 + (It  0 D)s,,, E e  0 IN). 

The likelihood function is, apart from a constant factor 

f(y ,, 	)3 , s, E) 

cc E,e -4N 
 exp {- [(Yv - (L 0 H)a,, - (I 0  C)13 - (I 0 

X (E e  0 IN) — '  (yv - (L 0 H)a,, - (It  0 C)$,, - (L 0 D)sv)] } 	(10.30) 

10.4.2 Prior distributions 

Prior distributions for the univariate analysis of test day milk yields treating herd-

year-month effects as fixed can conveniently be generalized to multivariate analy-

ses. These distributions for the model parameters are as follows. 

f (a,,, )3, si,,,) cc constant, 	 (10.31) 
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5 qv I E3 r-j  N sqt(O J s  0 Is q ). 	 (10.32) 

The prior distribution of E 3  is taken to be inverse-Wishart with probability 

density given by 

(us+t+1) 
	
1-2 

1 

	

v3 , S 3 ) 	E3 L 	exp 	 tr ( ,/, E, 	)1 	(10.33) 
Similarly, the prior distribution of Ee is assumed inverse-Wishart distribution with 

density given by 

	

f(Ee 'e s 6 ) 	E e 	exp [_tr (ve E 1 S e)], 	(10.34) 

independently of Y2. 

10.4.3 Posterior density function 

The posterior probability density function for a,, 13, s, E 3 , E, is given by 

f(Qv,I3 v ,Sv,Es,e 1 Yv) 

Ee 
4(N+ve +t+1) 	—(5q+vs+t+1) OC 

x exp H I 	0 Isq )'svq  + tr(vJi1Ss)] 
} 

x exp {- [(yv - ( I 0 H)a —('20 C)p - (I 0 D)s) 

x (E0  0 TN) (Yv - ( I 0 H)a - (I 0 C)/3 0  - ( I (D D)s) + tr(veE1Se)] }. 

(10.35) 
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10.4.4 Full conditional posterior densities 

Conditional posterior distribution of ct. The posterior probability density func-

tion of a is proportional to 

exp {- [a(It  ® H) ' (E e  0 IN ) — '(It 0 H)a 

so the conditional distribution of a,, is 

[a 

= N9  ((Ii 0 H'H)_l(It  (3 H)'(y - (I t  0 C)$ - (It  0 D)s), E ® (H'H)'). 

(10.36) 

Conditional posterior distribution of i•  The posterior probability density 

function of 13,,  is proportional to 

exp 	[)3 '  (I 0 C)'(e 0 IN )- '(It0 C)13,, 

- 20(I 0 C)'(Je 0 IN 1 (yn - (I 0 H), - (I ® D)s)] } 

so the conditional distribution of 3, is 

[P 

= N0  ((Ii (D C'C)_l(It 0 C)'(y, - (It  ® H)a,, - (It  0 D)s,,), Z, 0 (c'c) -'). 
(10.37) 

Conditional posterior distribution of sr,. The posterior probability density 

function of s i,,, is proportional to 

h exp 	[s
i

(I 0 D)'( 6  0 IN)- ' (It  0 D)s,, 

- 2sj1j  0 Dp ) ' 	 1  ( 
(Ee  0 'NYS'pv - (I 0 H )a - (I 0 
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so the conditional distribution of sP V  is 

a v ,$,sqv , Is, le, yv] = 

N5 ((Ii 0 DD)-1(I (3 D)'(y - (I t  0 H)a - (It  0 C2)i3 ), 

E 6  ® ( D' D,) 	 (10.38) 

Conditional posterior distribution of Sqv. The posterior probability density 

function of Sqv is proportional to 

1 	1 	' 
exp c— [sqv ((1 

0 Is,) + (1 ® D q Dq )) 5 qv 

- 2s q v(L 0 D,) (M e  o IN) (Yqv - (I t  0 Hq)av - (It 0 Cq)/3v)] } 

so the conditional distribution of 5qv  is 

[sqv  I 0v ,$,S pv , I s , E e ,Y v J 

N8 q t (w -1 (E -1  0 D q ) (yqv - (I t  0 Hq)ctv - (I t  ® Cq)$), t_1)(10.39) 

where IF = ( Is ' 0 Tsq ) + (Ee  0 DDq ). 

Conditional posterior distributions of E 3  and E e . The full conditional distri-

butions of E 5  and E are respectively 

a, Iv'  Sv, Ee, y] = W[1  (sq  + Vs, S q S q  + v8 s 8 ) 	( 10.40) 

and 

a, $,, Sv, E3 , Yv] 

= WI'(N+v, (Y_HA_CB_DS)(YHA_CB_ DS) +VeSe). 

(10.41) 
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10.5 Predicted Breeding Values and Rankings 

10.5.1 Univariate analysis of breeding values 

Calculations of predicted breeding values from the univariate analysis are given 

only for the model (10.2) treating herd-year-month effects as fixed. The results 

can easily be generalized to the model in (10.16) treating herd-year-month effets 

as random. From Chapter 7, A i  denotes the breeding value of sire i measured 

relative to its expectation without selection. For the Bayesian selection procedure 

described in Section 7.3, the sires to be selected are those with the largest values of 

E[E(A 9,X) I P, Y] where 9, F, V and X here represent the parameters in the 

univariate sire model in (10.2), the prior distribution, the data on all the daughters 

and the data on the daughters of unproven sires which are candidates for selection. 

Ignoring any relationship except those between sires and their daughters, the inner 

expectation becomes E(A j  1 0, x1 ) where x1 denotes the vector of records on the 

daughters of sire i. Because of the linearity of the conditional expectation (given 

9) and the symmetry between the daughters in their relationship to the sire, this 

is equivalent to the regression on the mean response xi, which equals 

E (A i  1 0, ±) = Cov(A, xj 10) {Var (xi 9) }1 ( - E( 	9)). 

It should be noted that the expressions for Coy (A i , xi 9) and Var (± 9) are 

conditional on a, $, a 2  and o, not on s. Here 

	

Cov(A,± 	
12 

6) = 	= 2 

Var(± 	) = nT?1.Var(xi I 9)1. 

—2 

	

= n 	 + 

2 	—1 2 = 	°e 
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Hence 

Thi 

2 	2 	2-1 

	

E(A 6,x) = za 8 (na3  + 	E(x - 	- j3 (c - c)) 
j=1 

2h2  

= 4 + (n - 1)h2 	- ah(j) - P (Cij  

(10.42) 

10.5.2 Multivariate analysis of breeding values 

Suppose that the economic value of the animal depends linearly on I traits, so that 

a I-vector a of economic values may be specified. Then the aggregate breeding 

value of candidate i, as given in Chapter 9, is Hi = a'gj  where gi is a vector of 

genetic values corresponding to the observed traits. We seek to select animals for 

which this breeding value is large. Hence we consider its conditional expectation 

given the measurements x i  for each candidate. 

For the multivariate half-sib family structure in model (10.29) the expectation 

becomes E(a'g j  10, x 2 , . . . , x 1 ) = E(a'gi  10, xi) by the same argument as in 

Section 10.5.1. Then 

	

Cov(g, 	9) = 2J 3  

Var(* 	
= 1 

9) 	[n( 5  + E) + n(n - i)E 5 ] 

= 
ni 

= 	s +flj 'E e . 

Hence 

E(a'g j  10, .j) = 2a'E8 n(n 3  + E 6)i(k - E(k 1  9)) 
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Ui 

= 2aE(n€E3  + 	E {xjj - 0h(ij) - B(c1 - 
j=1  

(10.43) 

where a is taken to be 110 for test day milk yields throughout this chapter. The 

vector of index weights is therefore the posterior expectation of 2(n 3  +E e ) 1  5a. 

10.5.3 Comparing rankings of unproven sires 

Given a set of candidates, any selection procedure provides a ranking of the can-

didates which may be based on an assessment of their breeding values, either es-

timates or posterior expectations. We treat the unproven sires as candidates here 

in order to illustrate methods of comparing selection procedures. Comparisons 

of interest then include those between Bayesian and REML procedures, between 

Bayesian procedures based on different prior distributions, and between proce-

dures using all 10 test day records or the first few, or a summary such as 305-day 

lactation milk yield. Possible methods of comparison include plotting the ex-

pected or estimated breeding values against each other, and examination of ranks 

assigned by different methods, especially for the best candidates according to each 

procedure. 

A further method treats one selection procedure as a standard, and attempts 

to measure the potential loss in expected progress from selection if one or more 

other procedures were used instead. When the effect of omitting some traits is 

being considered, the standard procedure would be one based on all the available 

traits. Let e 1 , e 2  and so on denote the posterior expected (or estimated) breeding 

values according to the standard procedure arranged in descending order. If n 

candidates are to be selected, then the average posterior expected breeding value 

of the selected has a maximum of (el + e 2  + . .. + e)/n. A plot of this average 

against n 0  might be useful when deciding how many to select. 
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Given n, any other selection procedure may lead to a different set of n0  can-

didates, and this will give a lower average posterior expected breeding value. A 

plot showing these averages for different selection procedures is necessarily biased 

in favour of the standard procedure, but it gives an indication of whether there 

are substantial differences between them. 

10.6 Gibbs Sampling 

The implementation of the Gibbs Sampler is carried out for univariate and multi-

variate analyses in the way described in Chapters 4 and 8. Random samples are 

generated from the joint posterior distribution through successively drawing sam-

ples from the full conditional posterior densities of appropriate sets of parameters 

and updating the Gibbs Sampler. Based on theoretical arguments (Raftery and 

Lewis, 1992) and on our experience with simulated data, we used the single long 

chain method without discarding the so-called warm-up iterations for the final 

sample. 

Univariate Gibbs sampler procedures for models (10.2) and (10.16) are run 

twice. In the first run, some arbitrary starting values are assigned to the parame-

ters of interest and the results of 1,200 iterations are stored. After examining the 

samples for convergence, the first 200 iterations are discarded and averages based 

on the last 1,000 iterations are obtained. In the second run, these averages are 

used as starting values and 1,000 iterations are stored as samples on grounds that 

the chain may have reached the equilibrium distribution. Therefore the marginal 

posterior inferences about the parameters in models (10.2) and (10.16) are based 

on 1,000 iterations of the Gibbs Sampler. Convergence in the final samples is 

reached within a few iterations. The prior degrees of freedom v 3 , v and Ph are 

chosen to be unity. 
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In the multivariate Gibbs Sampler procedure, two separate sets of iterations 

are run with different values for the matrices S, and S  of hyperparameters with 

degrees of freedom v, = V6  = 10. These are as follows: 

Prior information based on the results of early studies. A common first order 

autoregression structure is assumed for 5, and S  of the form 

1 	5 	. .. 	b9 	 1 	5 	. . .69  

5 	1 	b 	. . . b 	 b 	1 	5 	. . . 58 
S, = a, 	 , 	= 

b9  b8 	7 1 	 69 	8  b7 ... 	1 

where a, and a 6  are the prior hyperparameters for sire and residual vari-

ances and JbI < 1 is the autocorrelation coefficient. All three parameters a,, 

b and a 8  are obtained from Pander's thesis (1992) as 0.734, 0.95 and 7.865, 

respectively. This prior information is referred to as PRIORI. The follow-

ing comments can be made in relation to PRIORI: a) prior variances are 

assumed equal over test days; b) 5, and 5, are proportional, so that a priori 

one would use the base index; c) the correlations between test day records 

which are far apart in time appear too low; d) no structure is assumed for 

1, and E,; e) using an unrealistic form for S. and S, provides an assessment 

of the robustness of the Bayesian procedure. 

Prior information based on the results of REML estimates. REML estimates 

of sire and residual variance matrices for the same data are used as starting 

values for the hyperparameters 5, and 5, and the resulting prior informa-

tion is denoted by PRIOR2. This method is open to the objection that it 

uses the same data twice and hence provides an over-optimistic assessment 

of precision about the posterior distribution. On the other hand, only 10 

degrees of freedom are associated with 5, and S, 

Prior information for the remaining parameters, i.e., covariates, and fixed ef 

fects is chosen arbitrarily to be uniform, as none of the published works gave 
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estimates of these parameters. The total number of samples saved for each un-

known parameter in univariate and multivariate analyses are 1,000 and inferences 

about these parameters are made by computing directly summary statistics from 

1,000 samples. Due to computer storage limitation, not all Gibbs samples and 

conditional means and standard deviations could be saved for all parameters. 

10.7 Results 

Raw phenotypic means and standard deviations for individual test days and 305-

day lactation milk yield in the full and reduced data sets are given in Table 10-4. 

Average milk yields per test day exhibit the typical form of a dairy cattle lactation 

curve with a peak around day 40 corresponding to test day 2. Milk yield then 

declines to about 60% of peak yield in month 10. The variation in test day milk 

yield declines gradually from TD1 to TD7. 

10.7.1 Univariate analyses 

Results from the model treating herd-year-month effects as fixed 

Univariate REML estimates of parameters: REML estimates of the variance com-

ponents, a, a and and heritability h2 , together with their standard deviations, 

for individual test days and 305-day lactation milk yield are shown in Table 10-5. 

The estimates of residual variances are most variable early and late in lactation. 

These estimates decrease from TD1 to TD8 and increase toward the end of lacta-

tion. The estimate of sire variance for individual test day milk yields tends to be 

higher later in the lactation. 

The heritability estimate for 305-day lactation milk yield (LMY) is 0.49. The 

estimate is rather lower for the first three test days than others. This finding 
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Table 10-4: Raw phenotypic means and standard deviations (SD) at individual 

test days and 305-day lactation milk yield (LMY) for full and reduced data sets. 

Trait 
Full data 

mean 	SD 

Reduced data 
mean 	SD 

Reduced data set 
Proven sires 	Young sires 
mean 	SD 	mean 	SD 

TD1 19.45 4.05 19.45 4.02 19.43 4.06 19.51 3.88 

TD2 20.63 3.95 20.66 3.90 20.68 3.92 20.58 3.80 

TD3 19.66 3.95 19.70 3.91 19.71 3.94 19.65 3.82 

TD4 18.56 3.87 18.58 3.82 18.61 3.83 18.48 3.78 

TD5 17.57 3.79 17.58 3.75 17.61 3.77 17.48 3.69 

TD6 16.74 3.74 16.75 3.71 16.78 3.72 16.65 3.66 

TD7 16.16 3.76 16.16 3.73 16.19 3.76 16.13 3.63 

TD8 15.51 3.75 15.59 3.74 15.60 3.75 15.52 3.70 

TD9 14.55 3.75 14.69 3.75 14.70 3.76 14.65 3.70 

TD10 12.89 3.86 12.99 3.88 12.94 3.89 13.17 3.85 

LMYt 52.55 9.35 52.66 9.28 52.68 9.31 52.58 9.15 

* Means and standard deviations for LMY are divided by 102 

is not only attributable to high residual components, but also to a rather small 

component of the sire variance and the low estimates indicate that the first part 

of the lactation is least heritable. The general pattern of heritability estimates for 

test day milk yields, as observed by Pander et al. (1993), is an increase from TD1 

to TD8 followed by a decrease. The increase in heritabilities is more a function of 

increasing sire variances than of decreasing residual variance components. Other 

studies with an exception of Pander et al. (1992 and 1993), found heritabilities 

for test day milk yields to be lower than the estimates obtained in this study (see 

Table 10-2). 

Univariate REML estimates of regression coefficients for covariates are pre-

sented in Table 10-6. In general, the coefficients for age at calving and days of 

lactation for first test are highest early in lactation. The effect of age at calving 

is the largest on the first test day milk yield and then reduces gradually with 



Chapter 10. Analysis of Test Day Milk Yields of Dairy Cows 	 269 

advancing lactation. Days of lactation for first test (interval between calving and 

first test) has the highest effect on TD1. The most variable coefficient is that for 

pedigree status. 

Univariate Gibbs sampling results: Posterior expectations and standard devi-

ations of variance components and heritability from univariate Gibbs sampling 

analyses based on 1,000 iterations are presented in Table 10-7. When compared 

with the REML estimates, posterior expectations are slightly higher but the stan-

dard deviations are lower than those of REML results. Similar conclusion can 

therefore be drawn here. Table 10-8 gives posterior expectations of regression 

coefficients for covariates. It is striking to observe that these are almost the same 

as the corresponding REML estimates except for pedigree status. 

Results from the model treating herd-year-month effects as random 

The purpose of treating herd-year-month effects as random was to demonstrate 

how the Gibbs sampling procedure handles a model which includes herd effects 

and more than two variance components. In this section, only the posterior expec-

tations of variance components, heritability and covariates from Gibbs sampling 

analysis will be presented and the results will be compared with those given in Ta-

bles 10-7 and 10-8. Two separate heritabilities are calculated; first one is obtained 

in the usual way, = 4o/(c+o) and the second one is h = 4a/(a+u+c). 

Posterior expectations and standard deviations of variance components, o, a and 

and heritabilities h, h, are given in Table 10-9. As compared with the results 

of Table 10-7, posterior expectations of a 2 
S 

are higher in Table 10-9 and those of 

ae  are similar. The first heritability h is much higher than the second one h. 

Posterior expectations of h 2  under the model (10.16) (see Table 10-9) are substan-

tially higher than those found for the model (10.2) (Table 10-7). This is largely 

due to an increase in the sire variance component. 
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Table 10-10 presents the marginal posterior expectations of regression coeffi-

cients for covariates. The expectations in this table for days of lactations for first 

test (DL) seem to agree with those in Table 10-8. However the values for PS, AC 

and HP are slightly different across test day milk yields. 

10.7.2 Multivariate analysis 

Multivariate REML estimates of parameters: Multivariate REML estimates of 

sire and residual variance matrices for test day milk yields are given in Table 10-

11. Estimates of residual variance are highest for TD1 and decreasing thereafter 

during the first eight months of lactation. As in the univariate analysis, sire 

variance estimates for test day milk yields show an irregular pattern, possibly due 

to monthly effects within herd-year-month. However these estimates seem to vary 

less over test days than those of residual variances. Sire variance component is 

the highest at TD8. The lowest one is observed in the first month of lactation. 

Residual covariances are highest at the beginning of lactation and decrease as 

lactation progress. However sire covariances increase steadily from first to seventh 

lactation, giving the highest in covariances after mid lactation. 

Table 10-12 presents multivariate estimates of heritability and genetic and 

phenotypic correlations for test day milk yields. The estimate of heritability is 

lower (0.28) for TD1 than for the others. Heritability estimates are generally 

higher during the second half of the lactation than the first half. Estimates for 

TD5 - TD7 are similar (0.39). The highest estimate of heritability of all the test 

days is obtained for TD8 (0.42). In general, genetic correlations among test day 

milk yields are high (0.62 to 0.99). The highest genetic correlations are obtained 

between TD4 and TD7, and the correlations decrease as intervals between test 

increase. It can be seen from Table 10-12 that the phenotypic correlations follow 

similar pattern but are lower than the genetic correlations, ranging from 0.30 to 

0.76. 
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Table 10-5: Univariate REML estimates and standard deviations (SD) of vari-

ance components and heritability for individual test day records and 305-day lac-

tation milk yields. 

SD SD a, SD SD 

TD1 0.6852 0.2055 9.4546 0.1045 10.1398 0.2191 0.2703 0.0759 

TD2 0.6646 0.1838 8.6609 0.0957 9.3255 0.1976 0.2851 0.0736 

TD3 0.6175 0.1796 8.5952 0.0949 9.2127 0.1934 0.2681 0.0731 

TD4 0.7000 0.1898 7.9816 0.0883 8.6816 0.1993 0.3225 0.0809 

TD5 0.7448 0.1798 7.4571 0.0825 8.2019 0.1891 0.3632 0.0802 

TD6 0.7229 0.1842 7.1871 0.0796 7.9100 0.1913 0.3656 0.0852 

TD7 0.7001 0.1736 7.0552 0.0781 7.7553 0.1817 0.3611 0.0819 

TD8 0.7798 0.1733 7.0218 0.0776 7.8016 .0.1821 0.3998 0.0805 

TD9 0.7611 0.1792 7.1057 0.0786 7.8668 0.1872 0.3869 0.0828 

TD10 0.6953 0.1840 8.1875 0.0905 8.8828 0.1956 0.3131 0.0768 
LMY* 6.2225 1.2434 44.8195 0.4961 51.0421 1.2879 0.4876 0.0862 

* Estimates of a, a and a and their standard deviations for LMY are divided by 10. 

Table 10-6: Univariate REML estimates of regression coefficients for covariates, 

pedigree status (PS), age at calving (AC), days of lactation for first test (DL) and 

Holstein proportion (HP). 

PS AC DL HP 

TD1 -0.2574 0.1964 0.1201 1.1700 

TD2 -0.0020 0.1899 -0.0249 1.0522 

TD3 -0.0446 0.1776 -0.0376 1.0599 

TD4 -0.0985 0.1510 -0.0379 1.1158 

TD5 0.0269 0.1457 -0.0350 1.1679 

TD6 -0.0959 0.1277 -0.0289 1.1168 

TD7 -0.0963 0.1301 -0.0228 1.0022 

TD8 -0.0105 0.1263 -0.0225 1.2262 

TD9 0.0355 0.1119 -0.0223 1.3722 

TD10 -0.0612 0.1023 -0.0264 1.4845 

LIVIY -17.5621 44.6939 3-7505 372.0150 
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Table 10-7: Posterior expectations and standard deviations (SD) based on 1,000 

Gibbs sampling iterations of variance components and heritability for individual 

test day records and 305-day lactation milk yields using the model that treats 

herd-year-month effects as fixed. 

Mean SD 	Mean 	SD 	Mean 	SD Mean SD 

TD1 	0.7366 0.1806 	9.4746 0.1069 10.2112 0.1994 0.2875 0.0658 

TD2 	0.7163 0.1537 	8.6789 0.0979 	9.3951 0.1762 0.2875 0.0658 

TD3 	0.6558 0.1524 	8.6142 0.0975 	9.2700 0.1741 0.2821 0.0613 

TD4 	0.7425 0.1661 	7.9989 0.0908 	8.7414 0.1814 0.3386 0.0697 

TD5 	0.7946 0.1589 	7.4728 0.0850 	8.2674 0.1736 0.3832 0.0695 

TD6 	0.7676 0.1601 	7.2025 0.0818 	7.9701 0.1729 0.3839 0.0730 

TD7 	0.7513 0.1467 	7.0695 0.0802 	7.8208 0.1611 0.3831 0.0680 

TD8 	0.8196 0.1592 	7.0370 0.0797 	7.8566 0.1719 0.4159 0.0728 

TD9 	0.7931 0.1565 	7.1217 0.0805 	7.9148 0.1709 0.3995 0.0713 

TD10 	0.7405 0.1574 	8.2050 0.0925 	8.9455 0.1764 0.3301 0.0647 

LMY* 6.4730 1.1635 44.9212 0.5112 51.3942 1.2053 0.5021 0.0788 

* Posterior expectations of a, or and UP2  and their standard deviations for LMY are 

divided by 104. 

Table 10-8: Posterior expectations of regression coefficients for covariates, pedi- 

gree status (PS), age at calving (AC), days of lactation for first test (DL) and 

Holstein proportion (HP), based on 1,000 iterations of Gibbs sampler using the 

model that treats herd-year-month effects as fixed. 

PS AC DL HP 

TD1 -0.2277 0.1963 0.1209 1.1885 

TD2 0.0263 0.1898 -0.0242 1.0640 

TD3 -0.0165 0.1775 -0.0368 1.0685 

TD4 -0.0713 0.1509 -0.0372 1.1188 

TD5 0.0535 0.1455 -0.0343 1.1686 

TD6 -0.0699 0.1277 -0.0281 1.1204 

TD7 -0.0705 0.1300 -0.0221 1.0128 

TD8 0.0152 0.1262 -0.0218 1.2358 

TD9 0.0611 0.1119 -0.0216 1.3795 

TD10 -0.0335 0.1022 -0.0257 1.4902 

LMY -11.0327 44.6567 3.9288 367.6384 
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Table 10-9: Posterior expectations and standard deviations (SD) based on 1,000 

Gibbs sampling iterations of herd mean, variance components and heritabilities at 

individual test days and 305-day lactation milk yields using the model that treats 

herd-year-month effects as random. 

Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 	Mean 	SD 

TD1 	1.0684 0.2068 	9.5127 0.1040 	3.8075 0.1220 0.4026 0.0701 0.2964 0.0537 

TD2 	0.9248 0.1829 	8.7394 0.0965 	4.9195 0.1353 0.3815 0.0680 0.2531 0.0471 

TD3 	0.9068 0.1836 	8.6893 0.0970 	5.2508 0.1441 0.3768 0.0687 0.2438 0.0464 

TD4 	0.9960 0.2015 	8.0667 0.0898 	5.2937 0.1442 0.4380 0.0783 0.2769 0.0522 

TD5 	0.9225 0.1860 	7.5563 0.0834 	5.4573 0.1431 0.4336 0.0774 0.2642 0.0498 

TD6 	0.9167 0.1852 	7.2561 0.0811 	5.4652 0.1417 0.4469 00797 0.2683 0.0507 

TD7 	0.7985 0.1630 	7.1176 0.0791 	5.8511 0.1517 0.4020 0.0734 0.2316 0.0447 

TD8 	0.9972 0.1796 	7.0511 0.0790 	5.9221 0.1489 0.4940 0.0778 0.2850 0.0479 

TD9 	0.8622 0.1676 	7.1456 0,0801 	5.8640 0.1451 0.4292 0.0743 0.2482 0.0455 

TD1O 	0.9636 0.1804 	8.2099 0.0904 	5.4398 0.1424 0.4189 0.0703 0.2633 0.0464 

LMY* 8.2110 1.5880 45.2900 0.5049 30.7351 0.8315 0.6112 0.0925 0.3888 0.0643 

= 4o' /(a + a) 
h =4a/(o'+cr+a) 

* Posterior expectations of c, ae and a and their standard deviations for LIVIY are 

divided by 10 and those of Ph  by 10 2 .  

Table 10-10: Posterior expectations of regression coefficients for covariates, pedi-

gree status (PS), age at calving (AC), days of lactation for first test (DL) and 

Holstein proportion (HP), based on 1,000 iterations of Gibbs sampler using the 

model that treats herd-year-month effects as random. 

PS AC DL HP 

TD1 -0.7239 0.1837 0.1159 1.5647 

TD2 -0.7366 0.1455 -0.0287 1.4909 

TD3 -0.7991 0.1159 -0.0426 1.5748 

TD4 -0.7950 0.0843 -0.0415 1.6804 

TD5 -0.7337 0.0779 -0.0364 1.6280 

TD6 -0.7375 0.0673 -0.0295 1.4493 

TD7 -0.6664 0.0745 -0.0231 1.3576 

TD8 -0.5180 0.1028 -0.0226 1.5237 

TD9 -0.4932 0.1289 -0.0221 1.6315 

TD1O -0.5377 0.1400 -0.0297 1.4783 

LMY -206.7035. 34.3326 3.0096 481.2164 
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Multivariate REML estimates of regression coefficients for covariates are given 

in Table 10-13. These estimates seem to be close to the corresponding univariate 

results in Table 10-6. It can be seen that the effect of age at calving decreases 

towards the end of the lactation, and that of the proportion of Holstein gets higher 

in the last four test days. 

Multivariate Gibbs sampling results: Multivariate posterior expectations of sire 

and residual variance matrices from 1,000 iterations of Gibbs sampling are given 

for the first prior specification (PRIORI) in Table 10-14. It can be seen that the 

elements of both the sire and residual variance matrices are slightly bigger than the 

corresponding REML estimates in Table 10-11, but the pattern is similar. Table 

10-15 presents posterior expectations of heritability and genetic and phenotypic 

correlations using the first prior specification for ten test day milk yields. These 

posterior expectations are fairly similar to REML estimates. Average posterior 

expectations of heritabilities for 10 test day milk yields is 0.36, i.e. higher than 

literature results but more in line with the results of the univariate Gibbs sampling 

analysis of individual test day milk yields in Table 10-7: Correlations are slightly 

lower than those of REML estimates given in Table 10-12 but follow the same 

pattern. Posterior expectations of regression coefficients from thultivariate Gibbs 

sampling using the first prior specification, PRIORI, are presented in Table 10-

16. These values are close to the corresponding REML estimates shown in Table 

10-13. 

Tables 10-17, 10-18 and 10-19 show the results of multivariate Gibbs sampling 

analysis using the second prior specification, PRIOR2. In Table 10-17 posterior 

expectations of residual variance appear to be similar to those given in Table 10-

14 presenting results from PRIORI, but posterior expectations of sire variance 

matrix are slightly lower than the results of PRIORI. Heritabilities, genetic and 

phenotypic correlations obtained from using PRIOR2 in Table 10-18 are almost 

the same as those in Table 10-15. Values of genetic and phenotypic correlations 

decrease with increasing time between tests. Multivariate posterior expectations of 
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Table 10-11: Multivariate REML estimates of sire variance (lower triangle) and 

residual variance (upper triangle) matrices for test day milk yields. 

	

9.4520 	5.3789 	4.6262 	4.0896 	3.8070 	3.4909 	3.2892 	3.1327 	2.8466 	2.4042 

8.6551 	5.8686 	5.2192 	4.8010 	4.4214 	4.1752 	3.9388 	3.6382 	3.1518 

	

0.7128 	 8.5856 	5.8179 	5.3212 	4.9278 	4.6394 	4.3285 	4.0288 	3.5337 

	

0.6450 	0.7307 	 7.9765 	5.5744 	5.1018 	4.8218 	4.5595 	4.2275 	3.6992 

	

0.6623 	0.6710 	0.7253 	 7.4511 	5.3519 	5.0308 	4.7052 	4.3406 - 3.8471 

	

0.6177 	0.6576 	0.7037 	0.7503 	 7.1821 	5.2179 	4.8444 	4.4232 	3.9460 

	

0.6042 	0.6423 	0.6415 	0.7215 	0.8117 	 7.0483 	5.1176 	4.7132 	4.1949 

	

0.5602 	0.5643 	0.6617 	0.7200 	0.7350 	0.7678 	 7.0179 	5.0721 	4.5558 

	

0.5584 	0.6095 	0.6592 	0.7323 	0.7661 	0.7582 	0.7722 	 7.1029 	5.2092 

	

0.5523 	0.5845 	0.6291 	0.7434 	0.7889 	0.7562 	0.7753 	0.8309 	 8.1834 

	

0.5234 	0.5741 	0.5762 	0.6748 	0.7750 	0.7072 	0.7375 	0.7699 	0.7895 

	

0.5029 	0.4816 	0.4572 	0.5442 	0.6607 	0.5502 	0.5770 	0.6538 	0.6989 	0.7424 

regression coefficients from PRIOR2 in Table 10-19 are also similar to the results 

of PRIORI Table 10-16. 

10.7.3 Breeding values and ranking of sires 

Ranking abilities of Bayesian and REML methods are compared via the poste-

rior expected and estimated breeding values obtained from Bayesian and REML 

methods, respectively, in two ways described in Section 10.5.3. The true genetic 

values are not known and therefore the comparisons can only demonstrate that 

the methods are different, but do not show which of them is the best. If the rank-

ing appeared to be the same, it may be concluded that the differences between 

methods are small enough to be neglected. 

Bayesian posterior expectations of breeding values for the 649 unproven sires 

from univariate analysis in the model (10.2) are plotted against the REML point 

estimates for 305-day lactation milk yield in Figure 10-1. This figure indicates a 
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Table 10-12: Multivariate REML estimates of heritability (diagonal), genetic 

correlations (lower triangle) and phenotypic correlations (upper triangle) among 

test day milk yields. 

TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD5 TD9 TD1O 

TD1 0.2805 0.6167 0.5436 0.4998 0.4813 0.4506 0.4315 0.4126 0.3763 0.3052 

TD2 0.8937 0.3114 0.6996 0.6494 0.6181 0.5772 0.5585 0.5270 0.4894 0.3970 

TD3 0.9211 0.9218 0.3116 0.7235 0.6798 0.6497 0.6209 0.5799 0.5372 0.4378 

TD4 0.8447 0.8881 0.9540 0.3439 0.7414 0.6990 0.6723 0.6407 0.5907 0.4808 

TOs 0.7943 0.8341 0.8361 0.9246 0.3929 0.7510 0.7211 0.6822 0.6335 0.5249 

TD6 0.7572 0.7534 0.8867 0.9487 0.9310 0.3863 0.7579 0.7090 0.6477 0.5338 

TD7 0.7527 0.8114 0.8808 0.9621 0.9677 0.9847 0.3950 0.7522 0.6938 0.5712 

TD8 0.7177 0.7501 0.8103 0.9415 0.9606 0.9468 0.9679 0.4234 0.7423 0.6224 

TD9 0.6978 0.7559 0.7614 0.8767 0.9681 0.9083 0.9445 0.9506 0.4001 0.7039 

TD10 0.6914 0.6539 0.6231 0.7292 0.8511 0.7288 0.7621 0.8324 0.9130 0.3327 

Table 10-13: Multivariate REML estimates of regression coefficients for covari-

ates pedigree status (PS), age at calving (AC), days of lactation for first test (DL) 

and Holstein proportion (HP) for test day milk yields. 

PS AC DL HP 

TD1 -0.2580 0.1969 0.1200 1.2301 

TD2 -0.0016 0.1903 -0.0250 1.0898 

TD3 -0.0421 0.1777 -0.0376 1.0791 

TD4 -0.0973 0.1519 -0.0381 1.1652 

TD5 0.0255 0.1461 -0.0350 1.2197 

TD6 -0.0970 0.1277 -0.0289 1.1494 

TD7 -0.0977 0.1309 -0.0227 1.0292 

TD8 -0.0093 0.1260 -0.0225 1.2512 

TD9 0.0413 0.1118 -0.0225 1.3574 

TD10 -0.0605 0.1025 -0.0264 1.4978 
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Table 10-14: Multivariate posterior expectations of sire variance (lower triangle) 

and residual variance (upper triangle) matrices from 1,000 iterations of Gibbs 

sampling using PRIORI for test day milk.yields. 

	

10.0200 	5.4864 	4.7206 	4.1856 	3.9353 	3.6448 	3.4194 	3.2347 	2.9738 	2.5970. 

9.3029 	5.9908 	5.3911 	4.8930 	4.5768 	4.2690 	4.0833 	3.8427 	3.3623 

	

0.7639 	 9.1588 	5.9543 	5.4826 	5.1602 	4.8415 	4.5318 	4.1961 	3.7608 

	

0.6598 	0.7878 	 8.5521 	5.6936 	5.2795 	4.9541 	4.6922 	4.3755 	3.8425 

	

0.6296 	0.6439 	0.7909 	 8.0881 	5.5261 	5.2223 	4.8622 	4.5283 	4.0106 

	

0.6199 	0.6415 	0.6643 	0.8171 	 7.8806 	5.4418 	5.0183 	4.6471 	4.0887 

	

0.6011 	0.6307 	0.6419 	0.6956 	0.8807 	 7.7327 	5.2890 	4.8874 	4.3111 

	

0.5850 	0.5719 	0.6587 	0.6902 	0.7185 	0.8387 	 7.7119 	5.2928 	4.7629 

	

0.5603 	0.6255 	0.6445 	0.7021 	0.7303 	0.7282 	0.8397 	 7.2230 	5.2854 

	

0.5514 	0.5972 	0.6319 	0.7199 	0.7421 	0.7201 	0.7437 	0.8976 	 8.7522 

	

0.5321 	0.5738 	0.5829 	0.6667 	0.7564 	0.6869 	0.7107 	0.7422 	0.8295 

	

0.5130 	0.4952 	0.4670 	0.5598 	0.6877 	0.6103 	0.6253 	0.6776 	0.7127 	0.7826 

Table 10-15: Multivariate posterior expectations of heritability (diagonal), ge- 

netic correlations (lower triangle) and phenotypic correlations (upper triangle) 

from 1,000 iterations of Gibbs sampling using PRIORI among test day milk yields. 

TD1 1D2 TD3 TD4 TDS TD6 TD7 TD8 TD9 TD10 

TD1 0.2834 0.5892 0.5165 0.4781 0.4613 0.4362 0.4139 0.3929 0.3762 0.3067 

TD2 0.8505 0.3123 0.6622 0.6204 0.5806 0.5489 0.5263 0.5022 0.4900 0.3933 

TD3 0.8100 0.8158 0.3180 0.6855 0.6483 0.6247 0.5940 0.5579 0.5339 0.4341 

TD4 0.7846 0.7996 0.8263 0.3489 0.6970 0.6605 0.6311 0.6026 0.5805 0.4658 

TD5 0.7328 0.7572 0.7691 0.8200 0.3928 0.7061 0.6789 0.6378 0.6219 0.5081 

TD6 0.7309 0.7036 0.8088 0.8337 0.8360 0.3848 0.7137 0.6623 0.6366 0.5154 

TD7 0.6996 0.7691 0.7909 0.8476 0.8492 0.8677 0.3918 0.7022 0.6738 0.5460 

TD8 0.6659 0.7102 0.7500 0.8406 0.8347 0.8299 0.8566 0.4170 0.7248 0.6005 

TD9 0.6684 0.7098 0.7197 0.8098 0.8850 0.8235 0.8516 0.8601 0.4120 0.6845 

TD10 0.6635 0.6307 0.5936 0.7000 0.8284 0.7533 0.7714 0.8085 0.8846 0.3283 
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Table 10-16: Multivariate posterior expectations of regression coefficients for 

covariates pedigree status (PS), age at calving (AC), days of lactation for first 

test (DL) and Holstein proportion (HP) from 1,000 iterations of Gibbs sampling 

using PRIORI for test day milk yields. 

PS AC DL HP 

TD1 -0.2424 0.1989 0.1213 1.0270 

TD2 -0.0186 0.1931 -0.0274 0.8803 

TD3 -0.0622 0.1794 -0.0376 0.9038 

TD4 -0.0997 0.1534 -0.0383 0.9158 

TD5 0.0079 0.1428 -0.0353 1.0086 

TD6 -0.1052 0.1319 -0.0277 0.8991 

TD7 -0.1084 0.1313 -0.0222 0.8056 

TD8 -0.0229 0.1273 -0.0239 1.0560 

TD9 0.0087 0.1113 -0.0216 1.3677 

TD1O -0.0813 0.1014 -0.0271 1.4427 

Table 10-17: Multivariate posterior expectations of sire variance (lower triangle) 

and residual variance (upper triangle) matrices from 1,000 iterations of Gibbs 

sampling using PRIOR2 for test day milk yields. 

10.0200 5.4840 4.7189 4.1841 3.9342 3.6437 3.4183 3.2338 2.9728 2.5960 

9.3008 5.9883 5.3894 4.8919 4.5762 4.2684 4.0827 3.8421 3.3617 

0.7553 9.1563 5.9514 5.4810 5.1593 4.8409 4.5313 4.1957 3.7606 

0.6460 0.7799 8.5484 5.6901 5.2775 4.9528 4.6915 4.3748 3.8421 

0.6643 0.6750 0.7817 8.0836 5.5224 5.2202 4.8610 4.5274 4.0101 

0.6213 0.6667 0.7045 0.7923 7.8760 5.4380. 5.0163 4.6458 4.0881 

0.6100 0.6475 0.6452 0.7243 0.8716 7.6281 5.2854 4.8854 4.3102 

0.5775 0.5792 0.6713 0,7201 0.7345 0.8465 7.7075 5.2894 4.7615 

0.5682 0.6135 0.6611 0.7368 0.7781 0.7663 0.8442 7.7183 5.2829 

0.5626 0.5925 0.6313 0.7465 0.7930 0.7652 0.7832 0.9097 8.7503 

0.5324 0.5814 0.5841 0.6873 0.7809 0.7113 0.7425 0.7882 0.8635 

0.5069 0.4917 0.4605 0.5534 0.6701 0.5623 0.5815 0.6422 0.7005 0.7914 
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Table 10-18: Multivariate posterior expectations of heritability (diagonal), ge- 

netic correlations (lower triangle) and phenotypic correlations (upper triangle) 

from 1,000 iterations of Gibbs sampling using PRIOR2 among test day milk yields. 

TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 TD9 TDIO 

TM 0.2804 0.5882 0.5202 0.4790 0.4626 0.4354 0.4172 0.3940 0.3645 0.3060 

TD2 0.8417 0.3095 0.6657 0.6241 0.5830 0.5498 0.5283 0.5016 0.4756 0.3929 

TD3 0.8645 0.8645 0.3146 0.6908 0.6494 0.6262 0.5996 0.5579 0.5176 0.4335 

TD4 0.8032 0.8481 0.8952 0.3393 0.7013 0.6645 0.6396 0.6061 0.5654 0.4656 

TD5 0.7518 0.7853 0.7817 0.8716 0.3893 0.7079 0.6886 0.6436 0.6055 0.5063 

TD6 0.7222 0.7128 0.8252 0.8793 0.8551 0.3882 0.7217 0.6669 0.6192 0.5097 

TD7 0.7116 0.7561 0.8138 0.9009 0.9071 0.9065 0.3986 0.7102 0.6600 .0.5441 

TDS 0.6787 0.7034 0.7486 0.8793 0.8906 0.8720 0.8937 0.4223 0.7067 0.5959 

TD9 0.6592 0.7085 0.7109 0.8309 0.9001 0.8320 0.8696 0.8893 0.4025 0.6612 

TD10 0.6556 0.6259 0.5855 0.6989 0.8068 0.6870 0.7114 0.7569 0.8474 0.3318 

Table 10-19: Multivariate posterior expectations of regression coefficients for 

covariates pedigree status (PS), age at calving (AC), days of lactation for first 

test (DL) and Holstein proportion (HP) from 1,000 iterations of Gibbs sampling 

using PRIOR2 for test day milk yields. 

PS 	AC 	DL 	HP 

TD1 -0.2421 0.1989 0.1213 1.0312 

TD2 -0.0182 0.1931 -0.0274 0.8851 

TD3 -0.0618 0.1795 -0.0377 0.9085 

TD4 -0.0996 0.1535 -0.0383 0.9221 

TD5 0.0079 0.1429 -0.0353 1.0139 

TD6 -0.1052 0.1320 -0.0277 0.9038 

TD7 -0.1084 0.1313 -0.0222 0.8081 

TD8 -0.0225 0.1274 -0.0239 1.0596 

TD9 0.0093 0.1113 -0.0216 1.3709 

TD1O -0.0808 0.1015 -0.0271 1.4474 
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high correlation between posterior expectations and REML estimates of breeding 

values. Clearly, the two sets of predictions, and hence the rankings, are very 

similar. Further a plot of average posterior expected breeding value versus the 

number of unproven sires selected on 305-day lactation milk yield is illustrated 

in Figure 10-2. In this figure, the continuous curve is obtained by sorting the 

posterior expectations by themselves (BV1) and the dotted curve by sorting the 

same expectations according to the REML estimates (BV2). Figure 10-2 indicates 

that BV1 and BV2 methods of ordering reveal a slight difference between REML 

and Bayesian ordering of sires. 

Breeding values from multivariate analysis of test day records are obtained 

giving equal economic weights to each trait, a' = [1 ... 1], and the results 

are illustrated in Figures 10-3 to 10-7. Figures 10-3, 10-4 and 10-5 indicate 

a roughly linear relationship between REML estimates and Bayesian posterior ex-

pected breeding values using different prior specifications PRIORI and PRIOR2 

but with a lower correlation than in the univariate analysis. PRIOR2 gives slightly 

higher expected breeding values than PRIORI. Figures 10-6 and 10-7 illustrate 

plots of average posterior expected breeding values using PRIORI and PRIOR2 

versus the number of unproven sires selected on ten test day records. In these 

figures the continuous and dotted curves correspond to BV1 and BV2 as in the 

univariate analysis. The dashed curve is obtained by sorting the posterior expected 

breeding values using ten test day records by the posterior expected breeding val-

ues based on 305-day milk yield (BV3). The curves for BV2 and BV3 show the 

expected reduction in progress from using REML estimates of breeding value and 

from using only 305-day yield. The reductions appear similar for these two pro-

cedures. 

A common feature in the plots of the expected versus estimated breeding values 

resulting from univariate and multivariate analyses is that one of the unproven sires 

gives an exceedingly high breeding value (see Figures 10-1, 10-3, 10-4 and 10-5). 

This is investigated and it is found that the twelve daughters of the unproven 
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sire number 535 consistently have high test day and 305-day lactation milk yield. 

The means of the milk yields of the daughters are obtained for each of 11 traits 

and these are compared with the overall mean of all the daughters of unproven 

sires (Table 10-20). This particular sire has 87% Holstein proportion in his genes 

while the mean Holstein proportion for all the proven sires is 42%. These findings 

partly explain why the high yields for daughters of sire 535 leads to rather high 

predicted breeding values. It would be useful to analyse the data without the 

records of daughters of this sire. 

Index weights: The vector of index weights corresponding to the mean vector 

of family size ii is calculated using the REML estimate or posterior expectation 

of the expression 2(nE 8  + E e ) -1 E3a. The values for some family sizes up to 20 

are given for the REML and Bayesian methods in Table 10-21. In this table 

the values of index weights for different methods are similar. The individual 

weights for the first few test days with small family size are more variable due 

to rapid changes in milk yield in the initial part of the lactation. In general, the 

weights are low early in lactation, increasing gradually to the highest in month 

5, they then decline irregularly. The index weights are mainly influenced by the 

heritability of individual test days and genetic correlation among test day records. 

The variation of index weights becomes less as the number of daughters per sire 

increases, indicating that differences in heritability exert less influence on the 

weights for large family sizes. 

In the calculation of index weights, equal economic weights are given to each 

trait. Economic weights could alternatively be determined according to the value 

of increased milk yield in different phases of the lactation. 

10.7.4 Canonical variables 

As discussed in Chapters 8 and 9, the canonical transformation in a multivariate 

analysis involves finding the eigenvalues and eigenvectors of the genetic variance 
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Figure 10-1; Bayesian posterior expected breeding values versus REML esti-

mates of breeding values for 305-day lactation milk yield. 
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Figure 10-2: Plot of average posterior expected breeding values against the 

number of unproven sires selected using 305-day lactation milk yield. ( ), sires 

ranked by expected breeding values (BV1); (.....), sires ranked by REML 

estimates (BV2). 
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Figure 10-3: Bayesian posterior expected breeding values versus REML esti- 

mates of breeding values for test day records with equal weights using PRIORI. 
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Figure 10-4: Bayesian posterior expected breeding values versus REML esti- 

mates of breeding values for test day records with equal weights using PRIOR2. 
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Figure 10-5: Bayesian posterior expected breeding values for test day records 

using two priors, PRIORI and PRIOR2. 
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Figure 10-6: Plot of average posterior expected breeding values against the 

number of unproven sires selected using ten test day milk yields and PRIORI. 

( ), sires ranked by expected breeding values (BV1); (.....), sires ranked by 

REML estimates (BV2); (-----), sires ranked by the posterior expected breeding 

values using 305-day milk yield (BV3). 
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Figure 10-7: Plot of average posterior expected breeding values against the 

number of unproven sires selected using ten test day milk yields and PRIOR2. 

), sires ranked by expected breeding values (BV1); (.....), sires ranked by 

REML estimates (BV2); (-----), sires ranked by the posterior expected breeding 

values using 305-day milk yield (BV3). 

matrix relative to the phenotypic variance matrix, that is the solutions A 1 , . . . , At  

of I Eg  - 0. Apart from being a powerful statistical tool in reducing the 

computational requirements, it has an interpretation in its own right. It yields 

canonical variables which are both genetically and phenotypically uncorrelated 

and have unit phenotypic variance. Furthermore, the canonical variable with the 

kth largest eigenvalue, or equivalently heritability, explains the maximum amount 

of genetic variation given the k - 1 canonical variables with larger eigenvalues 

(Hayes and Hill, 1980). Meyer (1985) examined the canonical variables resulting 

from a multivariate analysis of first lactation milk, fat and protein yields. 

In this chapter, a different approach is taken to presenting canonical variables 

Gibbs sampling provides 1,000 samples from the joint distribution of E,, and E 9 , 

and hence 1,000 sets of values of the canonical roots A 1 ,..., A10 . The cumulative 
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Table 10-20: Raw means of daughters of all the unproven sires and of sire 

number 535. 

Mean of daughter of Mean of daughters of 
Trait all the unproven sires 	sire 535 

TIll 19.43 20.92 

TD2 20.68 23.37 

T133 19.71 24.95 

TD4 18.61 25.38 

TB5 17.61 24.48 

TD6 16.78 22.87 

TD7 16.19 22.72 

TD8 15.60 21.65 

T]J9 14.70 21.65 

TB10 12.94 18.72 

LMY 5268.80 6936.77 

distribution functions of these roots are then plotted together. If the genetic 

variation in test day yields is the result of only a few underlying factors and these 

act linearly on the genetic components of the records, then we expect to find that 

a few of the roots are large and the rest are relatively small. Figure 10-8 a) and 

b) illustrates these distribution functions for PRIORI and PRIOR2. From this 

diagram it can be seen that there is not a clear grouping of canonical variables, 

except that the largest appears substantially larger than the rest. They all seem 

to contribute to the genetic variation. 

10.8 Discussion 

In this chapter, we have demonstrated the feasibility of the Gibbs sampler to 

handle a relatively large data set in unbalanced univariate and multivariate half-sib 

sire models. We found that for this particular data set, the posterior expectations 

from the Gibbs sampling and the REML estimates are fairly similar. Herd-year- 
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Table 10-21: Index weights corresponding to means of different family sizes for 

REML and Bayesian methods. 

ii b, b2 b3 54  b5  b6  b7  b8  bg  blo 

REML 

1 0.225 0.227 0.233 0.250 0.266 0.247 0.253 0.261 0.256 0.231 

2 0.201 0.203 0.208 0.222 0.236 0.219 0.224 0.231 0.227 0.205 

3 0.182 0.183 0.188 0.200 0.211 0.197 0.201 0.207 0.204 0.184 

4 0.167 0.167 0.171 0.182 0.192 0.178 0.183 0.188 0.185 0.168 

5 0.153 0.153 0.157 0.167 0.176 0.163 0.167 0.172 0.169 0.154 

10 0.110 0.110 0.112 0.118 0.123 0.115 0.117 0.120 0.119 0.109 

15 0.086 0.085 0.088 0.091 0.095 0.088 0.090 0.092 0.091 0.084 

20 0.071 0.070 0.072 0.074 0.077 0.072 0.073 0.075 0.074 0.069 

PRIORI 

1 0.222 0.223 0.222 0.240 0.254 0.243 0.246 0.251 0.248 0.232 

2 0.199 0.200 0.199 0.214 0.226 0.217 0.219 0.224 0.221 0.206 

3 0.181 0.181 0.180 0.193 0.204 0.195 0.198 0.201 0.199 0.186 

4 0.165 0.165 0.165 0.176 0.185 0.178 0.180 0.183 0.181 0.169 

5 0.152 0.152 0.152 0.161 0.170 0.163 0.165 0.168 0.166 0.155 

10 0.110 0.109 0.109 0.115 0.120 0.116 0.117 0.118 0.117 0.110 

15 0.086 0.086 0.085 0.089 0.092 0.090 0.091 0.091 0.091 0.086 

20 0.071 0.070 0.070 0.073 0.075 0.073 0.074 0.074 0.074 0.070 

PRIOR2 

1 0.222 0.223 0.226 0.244 0.259 0.244 0.248 0.255 0.252 0.226 

2 0.199 0.199 0.202 0.217 0.230 0.217 0.221 0.226 0.223 0.202 

3 0.180 0.180 0.183 0.196 0.207 0.195 0.198 0.203 0.201 0.182 

4 0.165 0.165 0.167 0.178 0.188 0.178 0.180 0.185 0.182 0.166 

5 0.152 0.152 0.154 0.164 0.172 0.163 0.165 0.169 0.167 0.152 

10 0.110 0.109 0.110 0.116 0.121 0.115 0.116 0.119 0.118 0.109 

15 0.086 0.085 0.086 0.090 0.093 0.089 0.090 0.091 0.091 0.085 

20 0.071 0.070 0.071 0.074 0.076 0.073 0.073 0.074 0.074 0.070 
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Figure 10-8: Plot of posterior expectations of canonical heritabilities versus cu-

mulative distribution functions for test day milk yields using two different prior 

specifications, a) PRIORI and b) PRIOR2. REML estimates of canonical hen-

tabilities are given between two graphs. 
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month effects should be treated as fixed rather than random (or, from a Bayesian 

perspective, we should put uniform priors on them) because of the potential bias 

in the information contained in between herd-year-month comparisons. The type 

of analysis based on a model that treats herd-year-month effects as random is 

included to demonstrate how the Gibbs sampler can be applied to a more complex 

model. In this section, the results from the univariate analysis of the model (10.2) 

and multivariate analysis of the model (10.29) will be mainly discussed. 

Co variates: The effect of age at calving decreases towards the end of lactation 

which is also found by other studies (Auran, 1973; Danell, 1982a; Pander et al, 

1993). This indicates that the heifers are gradually maturing towards the end of 

the lactation. Days of lactation for first test has the highest effect on the first test 

day. This may be due to rapid changes in milk yield during early lactation. 

Heritabilities: In all cases, the heritabilities for the individual test days are 

lower than for the corresponding 305-day lactation yield. The heritability esti-

mates obtained from using REML and Gibbs sampling procedures in univariate 

and multivariate analyses are higher than those previously reported, but the pat-

tern across test day is similar to published reports (see Table 10-2). Pander et al. 

(1993) have given a set of reasons for high heritabilities. Some of these are: 

the use of different models (models with herd-year-month effects or with 

herd-year-season effects), 

data sets collected in different years and countries and even different regions 

within a country, and 

different types of data (i.e. data on daughters of bulls from a progeny testing 

scheme or from non-progeny testing scheme). 

These reasons are not investigated in the present study. Pander et al. (1993) have 

looked into the reasons behind high heritability estimates. A significant difference 
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between the data set used in this study and previous studies is that the present 

data come from a recent year representing 7,973 herds, whereas in others data span 

many years and represent a various numbers of herds, ranging from 100 to 4,000. 

Estimates or posterior expectations of higher heritability in this study may also 

be due to lower environmental variance owing to fitting herd-year-month rather 

than herd-year-season effects as in other studies. High heritabilities coincide with 

increase in sire variance component. Lower heritability estimates in the early part 

of the lactation are due to both a relatively low sire variance component and a 

high residual variance component. 

Genetic and phenotypic correlations: The estimates of genetic and phenotypic 

correlations between test day milk yields are in good agreement with the literature 

results. In general, the phenotypic correlations are lower than the genetic correla-

tions. Both correlations are higher during the mid lactation than at the beginning 

and at the end of lactation. The highest correlations are obtained for consecutive 

test days, but as the intervals between test days increase the correlations decrease. 

Sire evaluation: Evaluation of sires in the dairy industry is traditionally based 

on 305-day lactations, and changing to a system of genetic evaluations using indi-

vidual test day milk yields may be resisted. However, the lactation milk yield used 

for evaluations is not the actual 305-day lactation milk yield; it is a predicted yield 

which may be biased in contrast to test day milk yields which are actual yields. 

In this time of easy access to computer power and implementation of rather com-

plicated models for genetic evaluations, more accurate selection decisions can be 

made by using breeding values from test day milk yields rather than from the 

predicted phenotypic yields. 

As discussed before, the results of univariate and multivariate analyses show 

that heritability is lowest in early lactation and the genetic correlations are not 

very high. But from test day 3 onwards the genetic correlations and heritabilities 

get higher. Several authors (Danell, 1982a; Wilmink, 1987; Pander et al., 1993) 
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have warned against too much consideration on the first test day for the early 

selection decisions as the unexplained part of the total variance for this test day 

is highest. Indeed the accuracy of indirect selection on a few tests would be less 

than direct selection based on the complete lactation. This loss in accuracy can be 

compensated by increased selection intensity. Therefore selection on early test may 

become more advantageous if one considers the reduction in generation interval. 

The overall conclusion is that with test day models, substantial improvements over 

models based on 305-day lactation milk yield can be made, and test day models 

offer the opportunity of a more flexible system of evaluation. It is also observed 

that when Bayesian methods are used there is a scope for genetic improvement 

over the REML method. 

Computing considerations: The traditional computer requirements of a mul-

tivariate analysis is generally due to increased number of equations to be solved. 

Changing from a univariate 305-day genetic evaluation system to a multivariate 

test day evaluation system will require the storage and processing of individual 

test day milk yields. In such a change over, the number of records to be pro-

cessed per iteration of Gibbs sampling in a multivariate analysis increases by a 

factor of ten due to more factors being included in the models which require more 

memory space and more iteration, and presumably processing cost would also in-

crease ten-fold. For example, a univariate Gibbs sampling analysis of each test 

day or 305-day milk yield takes about 17-18 hours to perform 1,000 iterations 

on a Sun Sparcstation 5 while a multivariate analysis of ten test day milk yields 

takes slightly more than 7 days. Although this seems a huge amount of time, 

it accounts for a small proportion of the total costs when one considers all costs 

of data preparation, updating pedigrees and names, editing, sorting, and so on. 

A ten-fold increase in costs of the genetic evaluation portion may therefore not. 

be  critical. The use of supercomputers employing parallel programming would 

dramatically reduce the time taken for the genetic evaluations. 



Chapter 11 

General Conclusions and Future Work 

11.1 Conclusions 

The Bayesian approach to statistics offers a self-consistent theory for inference, 

prediction and decision making which can incorporate prior information on model 

parameters and on the utilities associated with different decisions. As such, it 

appears applicable to inferences from animal breeding data and to decisions such 

as which animals to select for breeding and that traits to measure in a breeding 

programme. Until recently, the lack of adequate computing power and the absence 

of suitable algorithms have prevented the use of this approach in realistic problems. 

Where it has been used, the emphasis has been on obtaining point estimates rather 

than genuine decision problems. 

The purpose of this thesis is mainly to provide quantitative geneticists and an-

imal breeders with algorithms demonstrating how Gibbs sampling can be applied 

to inferences and decision making in animal breeding in univariate and multivari-

ate sire models assuming a half-sib family structure. Discussions in the literature 

on the use of multivariate procedures for continuous data indicate two reasons for 

the superiority of multivariate over univariate analyses. Multiple-trait procedures 

use more information to evaluate individuals and are able to remove bias due to 

selection on a correlated trait, provided that records on which selection was based 

are included in the analysis. The gain in accuracy of selection due to multivariate 

292 
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evaluations depends on the absolute values of genetic and residual correlations and 

on progeny group size. Further, the superiority of multiple-trait procedure can be 

dissipated if incorrect genetic and residual variance matrices are used. Conven-

tional procedures based on point estimation become less satisfactory as more traits 

are incorporated. Therefore there is an increasing need for a consistent approach 

to inference and decision making in animal breeding. 

The iterative Gibbs sampling procedure provides a means to obtain the marginal 

distributions of model parameters without using complicated numerical integra-

tion procedures. It turns an analytically intractable multidimensional integration 

problem into a feasible numerical one. Application of the Gibbs sampling pro-

cedure to animal breeding data will contribute to a better knowledge of genetic 

properties of the traits. The Bayesian methods using this approach have many 

advantages over the conventional procedures and some of these will be given here. 

Gibbs sampling is relatively straightforward to implement. Given the likeli-

hood function and the prior distribution, one can always obtain the joint posterior 

density of all the unknown parameters of interest. From this density function, at 

least in the normal linear model one can directly get the full conditional distribu-

tion of a particular parameter given the remaining parameters in the joint posterior 

distribution. The set of all full conditional densities gives the expressions needed 

for implementing the Gibbs sampler. The full conditional densities in this case 

are in families of distributions, such as normal and inverse-x 2, where generating 

random variables is not exceedingly complicated. - 

Bayesian prediction procedures provide an appealing alternative to the REML 

and other frequentist procedures. One of the potential advantages of the Bayesian 

procedures is that they provide a formal mechanism for incorporating prior infor-

mation about the variance components in univariate and multivariate analyses. 

This prior information is often available, and can be obtained from the results of 

similar studies, or animal breeders' opinions about the likely values of parameters. 
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Moreover the Bayesian procedures implicitly account for the uncertainty about 

the values of variance components and selection responses; the methods such as 

REML developed within the conventional framework for accounting for this un-

certainty tend to be rather ad hoc and do not always produce sensible answers. 

For example, the results from the simulation study in Chapters 7 and 9 indicate 

the power of Bayesian analysis to reveal uncertainty in response to selection when 

the information contained in the data about the appropriate parameters is small. 

Depending on the choice of prior distribution, the Bayesian procedures may have 

appeal from a frequentist perspective. 

As Bayes theorem operates within the parameter space, all statistics fall within 

permissible ranges. For example, in the univariate analysis of the sire model, 

the posterior expectations of variance components a 
2  and a can be thought of 

as averages of a finite number of Gibbs sampling iterations. This ensures that 

Bayesian point estimates of variance components will always be within the per-

missible parameter space. This is a serious problem of conventional procedures 

such as ANOVA and REML. Although the REML estimates are defined within the 

permissible parameter space, interval estimates based on asymptotic theory can 

include negative values. The use of such estimates in the construction of selection 

indices can lead to very inefficient selection decisions. Therefore, point estimation 

of variance components is not required for selecting animals. Theobald (1994) 

point this out but does not implement a Bayesian procedure. 

It has been illustrated that the Bayesian marginal inferences are robust to 

changes in the prior specifications. When the amount of information contained 

in the data is adequate, inferences are affected little by the choice of priors. It is 

not generally a simple matter to decide when one has adequate information, and 

it may be therefore necessary to carry out analyses with different priors to study 

how inferences are affected. If use of different priors leads to very different results, 

this indicates that the information in the likelihood is weak and more data ought 

to be collected in order to draw firmer conclusions. Theoretical considerations as 
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well as empirical evidence suggest that the Bayesian posterior expectations present 

an advantage over the estimates obtained from an conventional method when the 

data contain little information about the unknown variance components regardless 

of the choice of priors. In this case, point estimates of variance components may 

be highly variable. 

Harville (1990) obtained genetic and phenotypic parameters and functions of 

them from a small data set using the conventional and Bayesian methods. He 

found that the conventional method was highly dependent on the ratio between 

the sire and residual variances. Further he observed that a relatively small change 

in the data produced a large change in the conventional estimates, but not in the 

Bayesian posterior expectations. This indicates that the Bayesian approach may 

produce results which are more robust to changes in the data than the conventional 

methods. This can perhaps be explained by the fact that changes in the data 

may produce a large change in the point estimate of variance parameters, but a 

relatively small change in their posterior distribution. 

The Bayesian approach may produce more reliable predictions than the con-

ventional approach in cases where it is desired to perform a simultaneous analysis 

of more than one trait. For a given amount of data, the larger the number of 

variances and covariances to be estimated, the poorer those estimates are. This 

may be more pronounced in the case where information on traits is missing on 

some individuals. 

Gibbs sampling enables posterior joint and marginal distributions of interest 

to be constructed, in principle to any degree of accuracy. Thus the Gibbs sam-

pling approach to prediction of the random-effects sire model does not suffer from 

approximations or deficiencies inherent in other approaches, notably the ANOVA 

and REML procedures. Moreover, having available full posterior distributions in-

stead of normal approximations to them can be valuable, particularly for highly 

skewed posteriors where maximum a posteriori estimates are misleading (Gilks et 
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al., 1993). The Gibbs sampling approach also allows posterior distributions to 

be easily calculated for arbitrary functions of parameters such as variance ratios, 

heritabilities and selection responses. 

Another major advantage of the Gibbs sampling approach is its flexibility. 

That is, particular features of a given set of data can be accommodated with only 

minor changes to the set of full conditional distributions. This was demonstrated 

in Chapter 10 with the analysis of test day milk yields employing different models, 

one treating herd-year-month effects as fixed and another as random. This feature 

of Gibbs sampling also allows posterior distributions to be easily calculated for 

arbitrary functions of the original parameters such as variance ratios, canonical 

heritabilities and selection responses, using standard theory of random variable 

transformation, with minimal calculations. 

However, a disadvantage of Gibbs sampling is that it is computationally more 

demanding than the conventional methods. The demand is in terms of computer 

time rather than in terms of programming complexity. This certainly limits the 

applicability of the procedure, at least at present. For example, in the multivariate 

analysis of test day milk yields from 23,873 daughters of 689 sires in Chapter 

10, the Gibbs sampler took about 8 days to perform 1,000 iterations on a Sun 

5 Sparcstation, whilst the REML program produced results in only 5 minutes. 

Although relatively this seems a huge disadvantage, in absolute practical terms in 

a multitasking computer environment it makes little impact, and relative to the 

time taken to collect the data (over many years) it is irrelevant. Application of 

the Gibbs sampling procedure may therefore depend on the availability of very 

fast computers (parallel processing) for large data sets and of sufficiently accurate 

routines for random number generations. With current advances in computer 

technology, it is likely that much larger models could be handled efficiently in the 

near future. 
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11.2 Extension of the work 

One possible extension of the Gibbs sampling methodology would be to generalised 

linear random-effects models or threshold models where discrete phenotypes are 

modelled as having an underlying distribution which is continuous. So long as 

conjugate priors can be found for model parameters, application of the Gibbs 

sampling methodology is straightforward, as illustrated in Chapters 4, 7, 8, 9 and 

10. For generalised linear models, conjugate priors will not in general be available, 

and sampling from the complex full conditional distributions that arise might be 

problematical. When a convenient envelope function to the density can be found, 

rejection sampling can be used. Zeger and Karim (1991) have recently proposed a 

method for Gibbs sampling for generalised linear models with random effects by 

rejection sampling from multivariate envelopes. Alternatively, adaptive rejection 

sampling might be used (Gilks and Wild, 1992) for sampling from univariate 

log-concave full conditional distributions. An application of adaptive rejection 

sampling to the analysis of a random sire model in animal breeding is given in 

Chapters 6. Dellaportas and Smith (1993) show that full conditionals are always 

log-concave for generalised linear models with canonical link. 

Gelfand et al. (1990) illustrated how the Gibbs Sampler deals with compli-

cations arising from missing data in a crossover trial. They reported that the 

Gibbs Sampler provides predictive densities for missing responses. The methodol-

ogy developed in this thesis can be extended to the cases in which information on 

some traits is missing on some individuals. The feasibility of the Gibbs sampling 
of 

procedure enables the analysis data sets with missing observations. 

Throughout this thesis a half-sib family structure has been used in making 

inferences about genetic and phenotypic parameters and constructing selection 

indices. It is possible to use different family structures. One could study the 

design of selection experiments. Using the procedures developed here, a variety of 
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designs could be examined and their efficiency compared by means of analyses of 

predictive distributions. 

Further research is required into the repeated-measures aspect of test day 

records (except in PRIORI), i.e. a kind of time-series model relating measure-

ments at successive times. This would involve parametric structure for E, and 

Ee and maybe for the expectations (a model for the lactation curve). An appro-

priate model should lead to more precise inferences about parameters and better 

selection decisions. 

Gibbs sampling has enormous potential for analysing complex data sets. How-

ever, the utility of Gibbs sampling has been hampered by the lack of general 

purpose software for its implementation. A purpose-built program is required for 

Bayesian inference, prediction and decision-making in animal breeding, at least 

for Normal models. The main requirements of such a program should be that it 

accommodates a very large class of models, deals with missing values, provides 

assistance with specifying prior distributions as well as examination of posterior 

distributions and produces summary statistics, marginal posterior expectations 

and standard deviations. 



Appendix A 

Notes on Various Distributions 

The material in this appendix contains distributions which are used throughout 

the thesis. Some of which were used as priors in Chapter 4, 6 and 10, for instance. 

Most of them were used in simulation studies. Each of the distribution is defined 

by a density function, and some of their properties are outlined. 

A.1 The Generalized Beta Distribution 

If a random variable X has a density given by 

(b - a) 
f(x) = Ax I ,/3) 

= B(a) —a) 
	(b—x) 	, a <x <b, (A.1) 

where c > 0 and 0 > 0, then X is defined to have a generalized beta distribution. 

This distribution is denoted as Beia(a,8;a,b), and a mean and a variance are. 

ace  a +bfl 
= 	 and 	Var(X) = 

	(b - 

ao 	
___ __ 
( a +/3+l)(a+fl)2  

Beta(a, 0; 0,1) is a usual beta distribution, and furthermore Beta(1, 1; a, b) is 

a uniform distribution in a range [a, b]. Since the former two parameters a and 0 
are related to a shape of this distribution, they are called shape parameters, and 

the latter two parameters a and b are called range parameters for the same reason. 

The function Beta(a,B) = f' x(1 - x)' 1 dx, is called the beta function. 
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A.2 The Chi-square and Inverse Chi-square Dis-

tributions 

If X is a random variable with probability density function 

(x)_1 exp (-) 
f(x v) = x>O, 	 - 	(A.2) 

then X defined to have a x 2 distribution with v degrees of freedom. It can be shown 

that E(X) = t', and Var(X) = 2v. In the Bayesian analysis, it is the reciprocal 

X 1  which naturally appear. The inverse x2 distribution having v degrees of 

freedom is derived from (A.2) by making the transformation X 1  = 11X, to yield 

(x_1)1 exp (_x1) 
> 0. 	 (A.3) f(x 	v)= 

22 

Now comparing the prior distributions in (4.5) and (4.6) for a 
2  and a, respectively, 

with (A.3), we see that a priori the quantities o,, 21V,3 and a/v6  are distributed 

as X'. In dealing with the prior distributions of such quantities as a/v3 s and 

a/ve s, it must be remembered that a and a are the random variables and s 

and s are fixed quantities. 

A.3 The Univariate Normal Distribution 

A real random variable X is defined to have a normal distribution with mean ji 

and precision a if its density is given by 

exp- _____ 

	

2a2 	
' °°<<°° 	(AA) 

where the parameters i and a satisfy —oo <x <oo and a> 0. This relationship 

is denoted by X N(jt,a2). 
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A.4 The Univariate Student-t Distribution 

If X is a random variable having density given by 

1 	1 
- 	<x < , 	(A.5) 

 
Do f(x v) - 

r() 	(2\4(V+fl' 

then X is defined to have a student-t distribution with v degrees of freedom. It 

can be shown that 

	

E(X)=0, v>1, 	and 	\Tar(X)= 
11 	

v>2. 

A.5 The Multivariate Normal Distribution 

A p-dimensional random variable X follows the multivariate normal distribution 

if its joint probability density function is of the form 

	

f(x ,E)= 2 	exp --(x—p)'E
- 	

- 
1(x 	) 

	

1 	
} 	

(A.6) 
(21r)2(5 	2 

where S is any (p x p) symmetric positive definite matrix. Moreover, if X 1 ,.. . , Xp 

are independent random variables where X N1 (jt, cf), then their joint proba-

bility density function is simply the product of the appropriate (marginal) density 

functions, so that 

1  
f(xi,. 	

exp{_ ]2}. 	
(A.7) . . ,x 	= 

(2 a R-)2 fl1 
'i 

2 i=1 

In this case X = [X 1  . . . Xi,] has mean 	= [ji . . . ps,] and covariance matrix S. 

But of course the components of X do not generally need to be independent and 

so S does not have to be diagonal, provided that it is symmetric and positive 

definite. The requirement that S be positive definite can be thought of as the 

multivariate equivalent of the condition that a 2  > 0 in the univariate case. It is 



Appendix A. Notes on Various Distributions 	 302 

clear that f(x) > 0 for every x and it is also straightforward, though algebraically 

tedious, to check that f, f(x)dx i ... dx i, = 1 for every p and for every E which. 

is symmetric and positive definite. After some algebra, it is also possible to show 

that E(X) = p and that E is the covariance matrix for x. Thus the parameters 

p and E have an immediate interpretation, and we write X N(p, ), where 

p denotes the dimension of X, p denotes the mean vector and E denotes the 

covariance matrix. The definition of the multivariate normal distribution via the 

equation above also requires the covariance matrix to be non-singular so that E' 

exists. 

A.6 The Wishart Distributions 

A.6.1 The Wishart and inverse Wishart distributions 

Let X be a p x p positive definite symmetric random matrix which consists of 

p(p + 1) distinct random variables xjj (i,j = 1,...,p; i > j). Let v > p, and 

be a p x p positive definite symmetric matrix of fixed constants. The distribution 

Of Xij  

f(X v,E) = 	X 	exp (_trE_1x), X > 0 	(A.8) 

is a multivariate generalization of the x2 distribution where 

= 2 	E 	F 	 and 	F () = r+_1) ñ [i(v + 1 - i)]  P(P 
i=1 

(the so-called multivariate gamma function). The distribution (A.8) is denoted by 

W(E, ii) and is said that X is distributed as Wishart with v degrees of freedom 

and parameter matri* E. 

If p = 1 and E = 1, the Wishart density becomes that of the chi-squared 

distribution with '.' degrees of freedom given in (A.2). 
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The inverse Wishart distribution can be obtained by taking the inverse of X 

matrix and using the Jacobian. Let x" denote the (i,j)ih element of the inverse 

of X Then the Jacobian of the transformation of the !p(p + 1) random variables 

(xii ,x12 ,. . , x) to (x 11  ,x 12 ,...  

Is 
3(x11,x12,. .,x)i = 
	p+i 

3(x 11 , x' 2 , . . , x") 

Consequently, the probability density function of the inverse Wishart distribution 

is 

	

v, E) cc X 	+1) exp (_trx_1E), I X I> 0. 	(A.9) 

The distribution of X in (A.9) may thus be called an p—dimensional inverse 

Wishart distribution with v degrees of freedom, and be denoted by WP-1  (E, 

Here E and ii are called hyperparameters. 

Note that when p = 1 the distribution in (A.9) reduces to an inverse x2 

distribution in (A.3). When in (A.9) X is a scalar, say x 11 , the probability density 

function for x 11  is 

	

1v-f-2) 	7 	a11 \ 

	

cc 	exp -) , x 11  > 0. 

By letting, for example, a 2 = x 11  and o- 11  = v 8s, the inverse x2 distribution for 

can be obtained 

(vs+2) 	
( 	

38\ 	2 
f(o 	v, s) cc (a) 	

exp ----) , 
as > 0, 

which is the prior distribution of a given in (4.5). 

A.6.2 The Wishart random variate generation 

The Wishart distribution is one of the few multivariate distributions for which 

computer generation algorithms are not widely available. Outside the normal 
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distribution theory framework, the Wishart distribution has united appeal. Hence, 

in this section attention focuses on the variate generation of this distribution. 

A p x p symmetric matrix X has a Wishart distribution with parameters E, 

ii and p and denoted W(E, ii). The standard procedure for generating random 

variates from the Wishart distribution (Johnson, 1987) is as follows. Let I be a 

lower triangular p x p matrix with entries Tij  satisfying: 

Tjj  is standard normal for i > j 

Ti i 

Tjj 's are independent. 

The matrix X = TI' has a W(I, 'j') distribution. Handling a matrix other than 

the identity matrix is easy. Let the p x p symmetric matrix E have the standard 

Choleski decomposition, E = LL', with L lower triangular matrix, so ljj > 0, 

Iij  = 0 if j > i. Then Y = (LT)(LT)' = LTT'L' = LXL' has a W. (E, ii) 

distribution. The p x p matrix LT and the result can be efficiently computed 

using the triangular properties of L and I. 



Appendix B 

The Likelihood Functions 

B.1 The Likelihood Function of (ii, a, ) for Half-

sib Analysis 

From distributional assumptions of multivariate normality for the Yji,  it is possible 

to find the likelihood function for a families of size it. For jih member of family i 

the model is 

yij = 	+s+ei 	i = 1,...,s; j = l,...,n, 	 (B.1) 

where observations, Vii,  on the members of families of equal sizes of h are obtained 

from the simulation program, s 	N(O, a) and 	N(O, U 2 ). If s i 's and e's 

are all independently distributed then the probability density function of {yj} 

given (p,{sj},o,o) is 

I 	{s},  0'. , c) 	() 	1 1 FE E(y3 - -  S i ) 

} 
 2 	 U2 	

(B.2) 

and the probability density function of {s} given (p,  as )  o) is 

2 58 	1 1 ~""l )
f({s} I t,c,c) 	(cry ) 	exp— 

	
2 il• 	(B.3) 

To obtain f({yj} 	ji, o- , o), we may integrate out the s from the product 

of (11.2) and (11.3), or note that the vector of observations for the ith family, 

Yi = [YiI Yu2 	Yin] ' , has multivariate normal distribution with mean vector [tin 

305 
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and variance-covariance matrix E, Nn (tin, ) that depends on the unknown pa-

rameters, p, cx and cr. The particular form of the variance-covariance matrix Y 

can be written 

= ai fl i fl  + a 21n 

= a(In +71ni) 

21 
1l = Ole  H. + (1 + n7)n 1 n 1, 

where In  denotes an n-vector of l's, In  is the it x it identity matrix, -y = 

and ll = 	- 7-1j' Hence E has eigenvalues a (with multiplicity it - 1) 

and o,, 2(l + n7), determinant 

(a(1 + 

and inverse 

	

= 	(in_ 
aii,\ 

or 2 c + nat) 

- 4 [In 

	

1 
- 

= a 2 11 + (1 + n-y) 1 n'1m 1, 

which can be verified by multiplying E by its inverse to demonstrate that the 

result is the identity matrix. The contribution to the likelihood of (t,cy) of the 

ith family is 

1 1 	 + KYi _ P 1 n )I 2 1l () -4  (1 + 	exp {- 
	

[(Yi - M m) Hn (yi - Mi) 	
it(1 + n7) j 5 

( M ) 2 l 
= ()± (1 + 	exp { 

	It1 - v.)2 + n(l + n)j f 
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Hence the likelihood of (p, o, 'y) for all .s families is 

f({yjj} p,a) OC 

 (

0, 2) -2   
6  

x exp {_J_ 
[sw 

+ nY7=1(7i. - 1t) 2 1) 
2c 	 1+927 

 

nothing that 

	

- 	 = n
S 	

- y.3 2  + sn( - 

= Sb+ns(. p)2  

2 	 2 2  (1 + 

	

f({yj} p, c6,7) 	(0, 2
) 

X  exp 
~ _ I [S.  + Sb +  nS(Y..  — 

 /1)2 

1+927 	j 

where 

Sb 

= 	
- 

S 	IL 

SW = YL( 	
-)2 

1=1 j=1 
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