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Abstract 

A general abstract theory for computation involving shared resources is presented. 

We develop the models of sharing graphs, also known as term graphs, in terms of 

both syntax and semantics. 

According to the complexity of the permitted form of sharing, we consider four 

situations of sharing graphs. The simplest is first-order acyclic sharing graphs 

represented by let-syntax, and others are extensions with higher-order constructs 

(lambda calculi) and/or cyclic sharing (recursive letrec binding). For each of four 

settings, we provide the equational theory for representing the sharing graphs, 

and identify the class of categorical models which are shown to be sound and 

complete for the theory. The emphasis is put on the algebraic nature of sharing 

graphs, which leads us to the semantic account of them. 

We describe the models in terms of the notions of symmetric monoidal categor-

ies and functors, additionally with symmetric monoidal adjunctions and traced 

monoidal categories for interpreting higher-order and cyclic features. The models 

studied here are closely related to structures known as notions of computation, 

as well as models for intuitionistic linear type theory. As an interesting implic-

ation of the latter observation, for the acyclic settings, we show that our calculi 

conservatively embed into linear type theory. The models for higher-order cyclic 

sharing are of particular interest as they support a generalized form of recursive 

computation, and we look at this case in detail, together with the connection 

with cyclic lambda calculi. 

We demonstrate that our framework can accommodate Milner's action calculi, 

a proposed framework for general interactive computation, by showing that our 

calculi, enriched with suitable constructs for interpreting parameterized constants 

called controls, are equivalent to the closed fragments of action calculi and their 

higher-order/reflexive extensions. The dynamics, the computational counterpart 

of action calculi, is then understood as rewriting systems on our calculi, and 

interpreted as local preorders on our models. 
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Chapter 1 

Introduction 

1.1 Computation Involving Shared Resources 

The notion of sharing has appeared on various occasions in computer science, 

either explicitly or implicitly. The idea is simple: instead of giving computational 

resources (processes, memories etc) to each client, a single resource can be shared 

by multiple clients. 

In general, this kind of replacement may change the nature of the involved 

computation significantly. For instance, if the resource we are concerned with 

requires heavy computation or a large memory, sharing becomes an essential 

technique for saving both time and space needed for the computation. Many 

implementations of pure functional programming languages are based on this 

observation - avoiding unnecessary duplication of subcomputation is crucial for 

achieving efficient functional computation. 

However, sharing is not just about the efficiency. If the resource involves 

some computation with side effects, say non-determinism or imperative states, 

the sharing of such a resource may change not just the amount of computation 

but also the result of computation. In such impure cases, the distinction between 

duplicated resources and shared resources must be made more carefully, and this 

makes it difficult, or at least non-trivial, to reason about general computation 

involving shared resources. 

Furthermore, sharing can naturally be used for implementing cyclic (self-

referential) data structures, which have been used for implementing recursive 

computation efficiently. The expressive power obtained by cyclic sharing is enorm-

ous, but dealing with cyclic structures is far more difficult than dealing with just 

acyclic ones. For instance, there are various practical ways of encoding recursive 

computation using cyclic sharing, but, to the best of our knowledge, there has 

been no formal comparison between them. 
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This thesis is devoted to giving a theory for describing and reasoning about 

such computation with sharing. The weight is put on the study of the classes of 

models of sharing, rather than individual specific models, in a desire to extract a 

generic account for sharing. 

1.2 Sharing Graphs as Models of Sharing 

Sharing for Efficiency 

No programmer would be happy to write an expression like 

(factorial(100) + 123) * factorial(100) 

containing two identical subexpressions factorial(100), not just because it 

makes the program messy but because it does suggest a duplication of very heavy 

computation (here we suppose that the program factorial (100) calculates the 

factorial of 100, which in many cases results in an overflow). The former reason 

may be very important from the view of software engineering where readability 

and reusability of programs are essential, but it is not a matter to be discussed 

now. Here we shall stick to the second point - efficiency. Many programmers 

should agree to rewrite the expression above as 

let x = factorial(100) in . . . (x + 123) * x 

The intention is that, we avoid calculating factorial(100) twice by sharing the 

result of this computation, without changing the result of computation. The let 

syntax indicates that factorial (100) is a shared resource with a name x which 

are later referred (used) at two places in the program. 

But actually this is not just a matter for programmers, but more essentially 

the problem of the implementor of the programming language. Though the two 

examples above are supposed to return the same result, hence are extensionally 

equivalent, they are "intensionally" different because the amount of the involved 

computation is different; implementors must realize some semantic models in 

which such these two have distinct denotations - they may not be models for 

programmers (who just care about the results) but are models for implementors 

(who care about the actual computational steps behind the results). 

Graph rewriting theory - the theory of sharing graphs (term graphs) and re-

writing systems on them - has been recognized as a canonical and practically 

useful instance of such models for implementors [BvEG+87, SPvE93]. The idea 

is to use graphs for representing the sharing relations of resources and realize 



computation on them as rewriting systems. For instance, the first example can 

be explained simply by the graphical representation of the expressions, as 

Th\ 	 123\ 

123 

I j  
The left tree corresponds to the original unshared version, whereas the right graph 

is for the "refined" version with sharing of a resource. The actual computation is 

modeled by rewriting, i.e. local replacement of subgraphs. Obviously the left one 

requires more computation (rewriting steps) because of the duplicated resource 

(subgraph). 

Impure Cases: Sharing as a Programming Technique 

Consider a language with a non-deterministic construct zeroORone which returns 

o or 1 at random. As before, we shall use the let-syntax for representing sharing. 

Then the following two programs obviously have the different meanings. 

zerooflone + zeroORone 

let x = zeroORone in x + x 

The former returns 0, 1 or 2, whereas the latter 0 or 2 (see the picture below). 

In this case the shared resource is not pure; it contains a side-effect, thus should 

be better understood as a process in a concurrent language or an object in an 

object-oriented language. Similar things happen if we consider imperative lan-

guages with states. In such "impure" settings, introducing sharing may change 

the result of computation, hence changing the extensional (programmers') se-

mantics of the language. Therefore sharing becomes an important feature of the 

programming language which programmers have to recognize as a programming 

technique; and actually most programmers of impure languages do, often expli-

citly when manipulating states, objects and memories. 
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Cyclic Sharing and Recursion 

Circular phenomena have been a rich source of a wide range of intellectual invest-

igations for long time - in science, technology, and even philosophy; see [BM96] 

for a survey and lots of examples. Computer science is not an exception. Sharing 

graph-based models have a natural advantage in representing cyclic data struc-

tures, and the most interesting and practical usage of such cyclic sharing is, of 

course, as the means of realizing recursive computation, which is one of the most 

important subjects in computer science. As already shown by Turner [Tur79] in 

70s, recursive computation can be efficiently implemented using self-referential 

(i.e. cyclic) terms. We come back this point later and explain in some detail - 

the analysis of recursive computation created from cyclic sharing is one of the 

central implications of this thesis. 



1.3 Sharing Graphs and Their Presentation 

As motivated above, we regard sharing graphs, or term graphs, as abstract repres-

entations of the sharing relation of resources. They can be seen as a special sort 

of directed graphs in which nodes represent resources and links show the sharing, 

but perhaps better understood as a generalization of the tree notations for terms 

- the name "term graphs" means the direct generalization of "term trees". 

If there is no notion of sharing, it suffices to talk about just trees (terms) where 

subtrees (subterms) correspond to subcomputations. However, if we want to talk 

about sharing, trees are not sufficient, and we are naturally lead to replace trees 

by a class of directed graphs. Now a subgraph may be referred from various places 

in the graph, thus representing a shared resource. The pictures below show that 

there are various sharing graphs corresponding to a term G(F(A, A), F(A, A)). 

 

 

(3 

 

 

As mentioned earlier, the meaning of sharing changes depending on the com-

putation concerned. If each node represents purely functional computation, the 

difference between these sharing graphs is just about the amount of computation. 

The final answer will be the same, but the sharing graph (2) presents the optimal 

7 



way to get the answer. On the other hand, if A is a process which returns 0 or 

1 non-deterministically and F and C calculate the sum of arguments, then the 

original term presents a computation which returns 0, 1, 2, 3 or 4, while (1) and 

(4) return 0, 2 or 4, whereas (2) and (5) returns just 0 or 2. (3) returns 0, 1, 2, 3 

or 4 as the original term, but the probability would be changed. 

Allowing cyclic bindings, sharing graphs get further flexibility. Let us look at 

some instances of cyclic sharing graphs. 

(1) 
	

(2) 
	

(3) 

C:~P__ 
(4) 

(5) 
(6) 

(1) and (2) present the simplest situations of cyclic sharing. In (1), the resource 

I refers to itself; (2) may seem odd as it does not involve any resource, but such a 

"self-referential pointer" or "trivial cycle" can occur even in a realistic situation. 

(3) is similar to (1), except that it has one additional input. A more sophisticated 

example is (4) where F and C mutually refer each other. (1) and (5) have the 

same tree-unwinding I(I(I(I( ..
. )))) 

as (6), but again it depends on the situation 

whether we should identify the meaning of (1) and (5) with (6). 

Now we turn our attention to how to present term graphs concisely. Defining 

them as directed graphs, as we will do later, is not very informative; sharing 

graphs have more structural and algebraic properties than general directed graphs 

do, and we wish to capture this nature. A first hint comes from the observation 

above that sharing graphs can be obtained by enriching traditional terms (trees) 

with constructs for acyclic or cyclic sharing. Our programming example already 

suggests a convenient syntax for them - the let (letrec) blocks. 

Actually similar notions have appeared in many places for presenting similar 

kind of (possibly circular) dependency relations. There are various versions of 
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systems of equations for describing "non-well-founded sets" [Acz88, BM96] like 

x={y} 

y = {x,z} 
z={x} 

(The anti-foundation axiom states that this kind of system has a unique solu-

tion.) Similarly it is common to present a state transition system like finite state 

automata, and also concurrent processes, e.g. [Mi189], by a system of equation 

Clock = tick. Clock + break. Stu ckclock 

Yet another popular instance is the description of inductive (or recursive) types: 

for instance the type T of finite branching finite trees can be represented as a 

solution of a system of equations 

T  
F = l+TxF 

(The terms can be generated by BNF 

span(f) 
f ::= nil I cons(t, f) .) 

These systems of equations have natural graph presentations, though it is possible 

that two different systems may describe the identical graph'. So there should be 

an equational theory on these systems which is sound and complete with respect 

to the graph interpretation. 

We give such an axiomatization on our terms with the let/letrec blocks (which 

are of course an instance of systems of equations). Such notation has an advantage 

in allowing us equational and inductive structural reasoning about sharing graphs. 

We inductively construct (the presentations of) sharing graphs from variables 

(pointer names), function symbols (resources) and systems of equations. Thus, 

as the traditional algebraic theories for terms, we give equational theories for 

sharing graphs in terms of systems of equations for which we use the let/letrec-

binding syntax. For instance, the acyclic sharing graphs in the first example can 

be presented as 

let x = F(A, A) in G(x, x) 
let y = A in let x = F(y,y) in G(x,x) 
let y = A in G(F(A, y), F(y, A)) 
let y = A in let y' = A in in C(F(y, y), F(y', y')) 
let y = A in C(F(y, y), F(y, y)) 

'Actually, for these examples, we usually work up to some stronger equivalences than that 
of graphs; for instance two systems are often equated if they correspond to the same infinite 
unwinding, equivalently if they are "bisimular". But here we do not presuppose such specific 
semantic interpretations, and just compare the graphs concerned themselves. 
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As noted above, two different terms can represent the same graph; for instance, 

(3) can be presented as let y = A in let x = F(A, y) in G(x, F(y, A)), and our 

equational theory guarantees that this is equal to let y = A in G(F(A, y), F(y, A)). 
Similarly, the (finite) cyclic sharing graphs in the second picture correspond to 

letrec x = 1(x) in 
letrec x = x in x 
letrec x = F(y, x) in x 
(the free variable y represents the unspecified input node) 
letrec x = A, y = F(x,z), z = C(x,y) in z 
letrec x = 1(1(x)) in 

A simple discipline of typing is naturally given, as for traditional algebraic theor-

ies, in which any sharing graph is equipped with its input and output types (sorts). 

This allows us to construct graphs by well-typed composition inductively. 

Moreover, the rewriting rules on sharing graphs are easily presented on such 

an equational formulation, in similar manner to the usual term rewriting rules on 

algebraic theories. The only difference is that in each rewriting step we replace a 

subgraph by another (with the same typing), instead of replacing a subterm by 

another. 

Such advantages of this style of presentation have already been emphasized 

and studied by Klop, Ariola and others in the context of graph rewriting theory 

[AA95, AK961. In this thesis we basically follow their ideas, but use them freely 

in a more general and semantic (algebraic) context. The merit of the equational 

presentation becomes clearer in developing the semantic counterpart of sharing 

graphs, as explained below. 

1.4 Categorical Models for Sharing Graphs 

Traditionally, the semantic account of sharing graphs has been given in specific 

models, most importantly as tree unwindings where two sharing graphs are identi-

fied if they represent the same (possibly infinite) tree. Such a semantics stands out 

if we use sharing graphs for representing efficient implementations of pure func-

tional computation. In this thesis, however, we take a different starting point, for 

the following reasons. 

1. We wish to keep as many choices of semantic models as possible, so that we 

can interpret various (impure) forms of computation flexibly. For instance, if 

we want to take non-determinism into account, the infinite tree unwinding 

semantics is inconsistent. Rather than starting from specific models and 
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trying to interpret actual computation in them, we axiomatize the properties 

needed by the models of sharing, and then find intended models. 

2. We wish to talk about the class of models. This enables us to prove general 

results on all models at once, and also to classify models in a natural man-

ner. For instance, we will give relations between our sharing graphs and 

intuitionistic linear logic by comparing the classes of models. 

For describing the classes of models of sharing graphs, we find category-theoretical 

languages useful. The canonical examples of the use of category theory in this dir-

ection are the correspondence between algebraic theories and cartesian categories 

(categories with finite products), as well as that between the simply typed lambda 

calculus and cartesian closed categories. Let us summarize these "standard" cat-

egorical type theory correspondence as below; to make the connection with cyclic 

sharing, we include the treatment of recursion in our picture. 

Theories 

algebraic 
theory 

/\ 
/ 	simply typed 

A-calculus 

algebraic 
theory + / recursion 

simply typed 
A-calculus 
+ recursion  

Models 

cartesian 
categories 

/\ 
/ 	cartesian 

/ 	closed 
/ 	 categories 

cartesian 
categories 
+ fixpoint 

cartesian 
closed 
categories 
+ fixpoint 

Following Lawvre [Law63], we give models of an algebraic theory by a finite 

product preserving functor from the classifying category (term model) of the al- 

gebraic theory into a cartesian category. Each function symbol F with arity 

is interpreted as an morphism F]j fri  x . . .x [a,,]J -+ fr]] in the 

target cartesian category, where f[cJ, fr1 present the objects associated with each 

sort a, T in the algebraic theory, and x is the (chosen) cartesian product. The 
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interpretation is then inductively extended to all expressions (terms) in the algeb-

raic theory - it determines a finite product preserving functor from the classifying 

category into the model category if and only if it satisfies the soundness property: 

if two expressions are provably equal in the theory, then their interpretation in 

the model is the same morphism. This is the basic picture of the theory-model 

correspondence in categorical type theory. A detailed account can be found, for 

instance, in {Cro93}. 

This basic setting can be enriched with higher-order features, as well as re-

cursive computation. For shifting to the higher-order extension, we require the 

existence of exponents, thus assume that the functor (-) x X has a right ad-

joint for each object X in the model category. Therefore we are led to the 

notion of cartesian closed categories, and again we get the theory-model corres-

pondence between simply typed lambda theories and cartesian closed categories 

[Cro93, LS86] (this time the semantic interpretations are given as cartesian closed 

functors). 

For recursion, the standard way is to assume a construction on the model 

cartesian (closed) category, called a (parameterized) fixed point operator 

f:AxX —+X 
ft:A_ * X 

which is subject to the condition that (idA, ft); f = fi ( to be more precise, we 

assume that this construction is natural in A, so that the model is sound for the 

interpretation of substitutions). In the standard notation for a recursion operator 

on algebraic theories, this corresponds to 

F,x : a H M: a 
F H ix.M : a 

with the fix point equation px.M = M[jtx.M/x]. Many concrete examples of such 

categories are found in domain theory, where cartesian closedness and existence 

of fixed point operators are fundamental requirements for giving the denotational 

semantics of programming languages. 

The main technical development in this thesis is to give, for sharing graphs, 

a precise analog of this standard categorical type theory. The equational theory 

presentation of sharing graphs via the let (letrec)-syntax is already very close to 

the standard algebraic theories, and it is natural to expect that there is a similar 

theory-model correspondence for sharing graphs. 

The essential change is that, instead of cartesian categories, we take identity-

on-objects, strict symmetric monoidal functors from cartesian categories to sym-

metric monoidal categories as the basic setting for interpreting the sharing graphs. 
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Intuitively, the domain cartesian category is used for modeling the non-linear 

nature of sharing graphs - pointer names, or links, and also copyable-values (if 

they exist), are duplicated or discarded freely, hence will be interpreted in the 

cartesian category as we do for algebraic theories. On the other hand, the codo-

main symmetric monoidal category is for interpreting linear entities in sharing 

graphs; since we do not duplicate or discard the shared resources which are ex-

pensive or contain some side effect, they must be treated linearly. (The reader 

familiar with linear logic [0ir87] may informally understand this by the analogy 

with the logical connectives & and 0 of linear logic; later we will give the precise 

connection between our models of sharing and those of propositional intnitionistic 

linear logic.) The strict functor between them is to relate these non-linear and 

linear natures. In short, the essence of models of sharing lies in the separation 

of non-linear and linear features which live at the same time in the notion of 

sharing. Now we shall give our picture of the theory-model correspondence for 

sharing graphs. 

Theories 
	 Models 

acyclic
F:C —+S 

sharing 

/\ 	/\ 
F:CS 
F(—) 0 X has / 	higher-order

/...... 
/ 	acyclic sharing 	 / 	a right adioint 

cyclic 
sharing 

N 
higher-order 
cyclic sharing 

S traced 

N 
F:C —*S 

F( — )OXhas 
a right adjoint, 
S traced 

By F C -+ 5, we mean an identity-on-objects strict symmetric monoidal functor 

F from a cartesian category C to a symmetric monoidal category S. 

For interpreting higher-order features, we additionally require that F(—) OX 

has a right adjoint for each object X; this is the precise analog of cartesian closed 

categories for our setting. For interpreting cyclic sharing, we need a relatively new 
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concept from category theory - traced monoidal categories [JSV96]. Intuitively, a 

traced symmetric monoidal category is a symmetric monoidal category equipped 

with a construct for "feedback", called a trace: 

:A®X—*BOX 

Tr 2 (j): A -* B 

It would be helpful to understand that, in TrX(f),  f's output X is feedbacked, 

or linked, to f's input X. The formal axiomatization for a trace will be recalled 

later; we will see that it precisely corresponds to the equivalence on cyclic graphs, 

and the theory-model correspondence will be extended to the cyclic settings com-

fortably by assuming that the symmetric monoidal category S is traced. 

The rewriting theories on sharing graphs are then simply modeled by local-

preorders on the symmetric monoidal category S of our models. Some graph 

rewriting systems, especially the equational term graph rewriting by Klop and 

Ariola, are close to our theories and their semantic models. 

Note that if we restrict our attention to the case that C and S are the same 

cartesian category and F is the identity functor, then we recover the standard 

categorical type theory as sketched before (a connection between traces and fixed 

point operators will be established later). 

1.5 Relating Models 

To demonstrate the advantage of our generic approach, we shall relate some 

known systems and ours by comparing their classes of models. Many people 

have pointed out that term graphs have some similarity with Girard's linear logic 

[Gir87], in their resource-sensitive natures. Also it has been pointed that Moggi's 

computational lambda calculus [Mog88] looks like higher-order graph rewriting 

systems. We give some formal accounts to these intuitive understandings, by first 

relating the classes of models, and then relating the theories as a corollary. 

A model of propositional intuitionistic linear logic may be described as a sym-

metric monoidal adjunction between a cartesian closed category and a symmetric 

monoidal closed category [Bar96, Ben95, Bie95]. It is easily seen that such a struc-

ture is essentially a special case of the structures we have for interpreting acyclic 

sharing graphs, as sketched above. Thus there is a sound translation from the 

equational theory of sharing graphs into that of intuitionistic linear type theory. 

But we can say more: this translation is conservative, thus a linear type theory 

is seen as a conservative extension of the theory of sharing graphs. To prove this, 
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we use the standard model construction technique from category theory (Yoneda 

construction as the free symmetric monoidal cocompletion [11(86]). 

The connection with Moggi's work [Mog88, Mog9l] is much more straightfor-

ward. The models for acyclic higher-order sharing will be shown to be essentially 

the same as his models for computational lambda calculus, with an assumption 

that the associated monad has a commutative strength. As a special instance of 

the theory developed by Power and Robinson [PR96, Pow96b], we describe this 

comparison. 

1.6 Recursion from Cyclic Sharing 

One of the traditional methods of interpreting a recursive program in a semantic 

domain is to use the least fixed-point of continuous functions. However, as already 

mentioned, in the real implementations of programming languages, we often use 

some kind of shared cyclic structure for expressing recursive environments effi-

ciently. For instance, the following is a call-by-name operational semantics of the 

recursive call, in which free z may appear in M and N. We write E F- M .iJ. V for 

saying that evaluating a program M under an environment E results a value V; in 

call-by-name strategy an environment assigns a free variable to a pair consisting 

of an environment and a program. 

E'HN 4 V where E'=EU{xF-*(E',M)} 

E F- letrec x = M in N 4 V 

That is, evaluating a recursive program letrec x = M in N under an environment 

E amounts to evaluating the subprogram N under a cyclic environment E' which 

references itself. One may see that it is reasonable and efficient to implement the 

recursive (self-referential) environment E' as a cyclic data structure as below. 

or equivalently 

Also it is known that if we implement a programming language using the tech-

nique of sharing, the use of the fixed point combinator causes some unexpected 

duplication of resources [AF96, Lau93]; it is more efficient to get recursion by 

cycles than by the fixed point combinator in such a setting. This fact suggests 

that there is a gap between the traditional approach based on fixed points and 

cyclically created recursion. 
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Our semantic models for higher-order cyclic sharing turn out to be the set-

ting for studying recursive computation created by such a cyclic data structure, 

more specifically cyclic lambda graphs [AK94, AB97]. We claim that our new 

models are natural objects for the study of recursive computation because they 

unify several aspects on recursion in just one semantic framework. The leading 

examples are 

• the graphical (syntactical) interpretation of recursive programs by cyclic 

data structures motivated as above, 

• the domain-theoretic interpretation in which the meaning of a recursive 

program letrec x = F(x) in x is given by the least fixed point U. FTh(±), 

and 

• the non-deterministic interpretation where the program letrec x = F(x) in x 

is interpreted by {x I x = F(x)}, the set of all possible solutions of the 

equation x = F(x). 

Each of them has its own strong tradition in computer science. However, to 

our knowledge, this is the first attempt to give a uniform account on these well-

known, but less-related, interpretations. Moreover, our higher-order cyclic sharing 

theories and cyclic lambda calculi serve as a uniform language for them. 

1.7 Action Calculi as Graph Rewriting 

Finally we show that our framework can accommodate Milner's action calculi 

[Mil96], a proposed framework for general interactive computation, by show-

ing that our sharing theories, enriched with suitable constructs for interpret-

ing parameterized constants called controls, are equivalent to the closed frag-

ments of action calculi [0ar95, Pow96a] and their higher-order/reflexive exten-

sions [Mil94a, Mi194b, Mif96]. 

The dynamics, the computational counterpart of action calculi, is then under-

stood as rewriting systems on sharing theories, and interpreted as local preorders 

on our models. In this sense, we understand action calculi as generalized graph 

rewriting systems - and regard the notion of sharing as one of the fundamental 

concepts of action calculi. 

To demonstrate how sharing is used in action calculi, we shall consider two 

situations representable in the action calculus-version of the 7r-calculus [MPW92, 

Mi192a] as presented in [Mil96} (see Chapter 8, Example 8.1.6). 
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(let w = x(y).y in to I to) I ( z ) 	• 	zlz 
out 

OZ 

xq!!!yw~ W N 	
OZ 

We may regard this situation (not representable in the original ir-caclulus!) as a 

broadcasting; there is an announcer x(y).y who gets a message via a telephone 

number x and then broadcasts it; her/his program is monitored by two listeners 

ww. Therefore the received message z is broadcast (duplicated) to the listeners. 

Compare this and the unshared version x(y).y I x(y).y I (z), where we have two 

persons who share the same telephone number x. So we don't know which person 

will receive the message z, and there are two possible reactions (in both cases the 

result is x(y).y I z, thus one person remains unchanged: 

x(y)y I  x(y).y  I 
X  out 

box  

box 

Further sophisticated and complicated examples will be available by allowing 

cyclic sharing (reflexion) and higher-order constructions. 

All of our semantic results on sharing graphs equally apply to action calculi 

(with some care on the treatment of controls). The conservativity of intuition-

istic linear type theory over action calculi (as reported in [BGHP96, BGHP97]), 

the correspondence between higher-order action calculi and Moggi's work (as de-

scribed in [0H971), and the analysis of recursive computation in reflexive action 

calculi (c.f. [Mif96]) are obtained as corollaries of results on sharing graphs. 

Here is a summary of the correspondence between our theory of sharing graphs 

and action calculi: 

z 

N 
	III 

Ix.); 
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Sharing Graphs 	 Action Calculi 

acyclic 
sharing 	

Action Calculi 
 

/\ 	 /\ 

/ 	higher-order /.....Higher-Order 

/ 	acyclic sharing 	 / 	Action Calculi 

cyclic 	 Reflexive 
Action Calculi sharing 

Higher-Order 
higher-order 	

Reflexive 
cyclic sharing 	

Action Calculi 

We hope that our work provide a bridge between graph rewriting theory and 

concurrency theory. 

1.8 Overview 

Chapter 2 introduces the notion of sharing graphs and the corresponding simply 

typed equational theories, called sharing theories. We emphasize the algebraic, 

structural nature of sharing graphs via the equational presentations, which leads 

us to the semantic development in the following chapters. 

In Chapter 3 we study the category-theoretic models of acyclic sharing the-

ones. In terms of symmetric monoidal categories and functors, we describe the 

class of models, and establish the soundness and completeness, in a similar way 

to the standard categorical type theory. 

In Chapter 4 we give a higher-order extension of acyclic sharing. The mod-

els of this setting are obtained by assuming additional conditions formulated as 

adjunctions, and we repeat the same pattern as in Chapter 3. 

As an application of our approach, in Chapter 5 we relate our acyclic sharing 

theories with notions of computation and intuitionistic linear type theory by 

comparing their classes of models. 

In Chapter 6 we give the models of cyclic sharing, by additionally using the 
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notion of traced monoidal categories. After reviewing trace monoidal categories, 

we establish the expected properties of our models, again in the same way as 

Chapter 3. 

Chapter 7 describes higher-order cyclic sharing. The models of this setting, 

obtained by combining those in Chapter 4 and Chapter 6, are of particular interest 

as they support a generalized form of recursive computation. We look at this in 

some detail, together with the connection with cyclic lambda calculi. 

Chapter 8 is devoted to show that Miler's action calculi can be accommod-

ated in our framework. 

Finally, in Chapter 9, we conclude this thesis with some discussions towards 

further research. 

1. Introduction 

Sharing Graphs 

Main Developmerfth 
Acyclic Models 

Higher-Order 	 6. Cyclic Models 

- 	7. Recursion from Cyclic Sharing 

Applications 

Relating Models 	 8. Action Calculi 

9. Conclusion 
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Chapter 2 

Sharing Graphs and Equational 
Presentation 

Following the standard way of describing graphical structures, we first formulate 

sharing graphs as directed graphs with extra information and conditions, as found 

in the literature (though we give a mildly generalized version in which multiple 

roots, or conclusions, are permitted). 

However, such a description is always lengthy, and technically not easy to 

manipulate. Also the algebraic, structural nature of sharing graphs is not clear in 

such formulations. Following an old idea of representing sharing graphs as systems 

of equations, we give an equational, in other words algebraic, presentation of finite 

sharing graphs. 

Just in the same way that trees are represented as term expressions in algebraic 

theories, our sharing graphs are represented as term expressions of mildly relaxed 

algebraic theories enriched with constructs for sharing (let/letrec bindings). We 

establish the desired equivalence between the graph-theoretical description and 

the equational presentation of finite sharing graphs, for both acyclic and cyclic 

cases. 

The results in this chapter are conceptually and technically not new at all - 

similar ideas have been around for long time. However, our intention here is to 

use the equational presentation of sharing graphs for emphasizing the algebraic 

aspects of them, which later naturally lead us to the formulation of the semantic 

models of sharing graphs. Therefore this chapter should be read as a preparation 

for our main technical developments. 

2.1 Sharing Graphs 

We first fix a signature on which our sharing graphs are constructed: 
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Definition 2.1.1 (signature) 

Let S be a set of sorts. An (finitary) S-sorted signature is a set E of operation 

symbols together with an arity function assigning to each operation symbol F a 

pair of finite lists ((aj ,. . . ,a,,), (7-1 , . , r,)) of S's elements. Notation: 

F: (ai ,... , 	 , rm ). 

U 

Remark 2.1.2 The main difference between our definition of signatures and 

more traditional one is that we allow multiple conclusions of an operator symbol. 

Intuitively, we allow operators which return tuples of results; or even operators 

which do not return anything (which, however, does not mean that such operators 

do not have computational significance - in some impure settings, they may have 

some side effects!). If the reader is familiar with algebraic theories with cartesian 

product types, this formulation could be considered as a mild variant, though our 

multiple conclusions will not form cartesian products, but symmetric monoidal 

products. So, while in the standard algebraic theories a term of product types 

can be regarded as a tuple of terms, this is not the case for our sharing graphs, 

where an "indecomposable" resource can have multiple outputs. 0 

For F : (ai ,... ,am ) —*(ri, . . . , rn ), we may write dom(F) = (a1 ,... ,am), 

cod(F) = (r1 ,. . . , r,), dom(F) 1  for aj  (ith input sort) and cod(F) j  for 'rj  (jth 

output sort). 

In formulating (cyclic) sharing graphs, we need care about trivial cycles (also 

known as "blackholes") as repeatedly pointed in the literature of graph rewriting 

theory (in connection with the "cyclic-I problem", which will be discussed in 

Example 2.4.3), see e.g. [AK96]. A trivial cycle is a pointer which does not refer 

any resource but itself— just like a program "letrec x be x in 1' which does not 

involve any computational resource but represents a circularly bound pointer. 

For both practical and technical reasons, we do not want to exclude such trivial 

cycles from our sharing graphs. To accommodate them, we need an additional 

constant for each sort: 

Definition 2.1.3 (signature with .) 
Given an S-sorted signature E, we define an S-sorted signature E. by additionally 

assuming an operation symbol . : () —* (a) for each sort a. 0 

A rooted directed graph (with a label on each node) is specified by a set of 

nodes V, a labeling function L from V to the set of labels and a set of edges 
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E c V x V together with a specified root node c E V. For describing our sharing 

graphs, we need more information as follows. First, an operation symbol may 

have multiple inputs and outputs, so we need to specify which input is linked 

to which output, in terms of an "argument function" A. Second, since we allow 

multiple outputs of the graph, we have to specify a list of outputs (c 1 , ... I  C0 1  

rather than a single root node c. Thus we have a tuple (V, L, A, (c1) ... .  

Moreover, we want to make the graph well-typed, that is, an input and an output 

can be linked only when they have the same sort. So we assume a constraint for 

ensuring the well-typedness. Formally: 

Definition 2.1.4 (sharing graph) 

We fix a countable set {d 1 , d 2  .... }. A (finitary) sharing graph over an S-sorted 

signature E of type (ai,... ,am) —* (r1 , . . . , r,) is a tuple (V, L, A, (ci,..., c4) 
such that 

. V is a set. 

. L is a function from V to E.. 

• A is a function from V to C*,  such that I A(v)l = Idom(L(v))L where C = 

{(v,j) I v E V, 1 <j < Icod(v)I} 6 {d,. . . ,dr,}. Write A(v) i  for the ith 

component of A(v). 1  C serves as the set of all outputs (codomains), while 

di is just a name for the i-th input (domain) . 2  

S ci E C for 1 < i < n. 

. Condition on types: 

— For 1 < i < A(v), dom(L(v)) 
= { 

cod(L(w)) if A(v) = (w,j) 

011 	 if A(v) = dj  

— If c1  = ( v,j), cod(L(v)) = Ti. If ci 	d, orj = 7-i - 

Full 

Example 2.1.5 Consider a sort S = {nat} and a signature E = {zero : 0 -+ 

(nat), plus : (nat, nat) -4 (nat)}. Let us construct sharing graphs of type 

0 — (nat) as drawn in the pictures below. 

sets S and 5', we write 8*  for the set of finite lists of elements of S and S S 8' for the 
disjoint union of S and 5'. 

2 1nstead of {d i ,. . ., d}, we can simply use natural numbers {1 .....m} — we did not do so 
just for the readability. 

22 



z[e: aro 	 lus ~l  ~Usl F-1  

A sharing graph (V, L, A, (c)) 
() 

—* (nat) for the left picture may be specified by 

V = {v, w}, L(v) = zero, L(w) = plus, A(w) i  = A(w) 2  = (v, 1), and c = (w, 1). 

For the right one, V, L and c are unchanged but we modify A as A(w) i  = (v, 1) 

and A(w) 2 =w,l). 0 

Example 2.1.6 If V is empty, A and L are the unique functions from the empty 

set, while C = {d 1 , . . . , cL}. Thus such a sharing graph is determined by a 

function from 11,. . . n} to {1,... , in} subject to the type constraint. Below are 

two examples of such sharing graphs of type (r, a, r) —+ (a, 7, ,r). 

Cs I 

I 
d i 	 C1 	

I 	

C1 

The left graph is specified by output nodes c 1  = d2 , c2  = d1  and c3  = d1 . Similarly, 

the right one is specified as c1  = d2 , c2  = d1  and c3  = d1 . 0 

Example 2.1.7 A more tangled example. Let S = {bool,nat} and >9 = 
{F (bool, nat) —* (nat, bool)}. A sharing graph (V, L, A, (c i , c2 , c3 )) of type 

(bool, nat) —* (nat, nat, bool) may be given as below. 

V = {v1 ,v2 ,v3 ,v4 }. 

L(v i ) = L(v 2 ) = L(v 3 ) = F, L(v 4 ) =.. 
A(vj ) i  = (v i , 2), A(vi ) 2  = d2 , A(v2 ) 1  = d1 , A(v2 ) 2  = (V.3, 1), A(v3 ) 1  = (v2 ,2) and 

= (v4 ,l). 

= (v 2 , 1), c2  = (vs , 1) and c3  = (v3 , 2). 

V4 
flaL 

V1 	(Vi, 2) 	
V3 	I 
	 I boo]. 

F 	(va,1) 
nat 

nat 
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Note that v4 (.nat)  is drawn as a trivial cycle. 0 

Remark 2.1.8 The direction of the links drawn in the pictures is opposite to 

that of most of the pictorial presentations of sharing graphs in the literature. The 

reason we invert the direction will become clear when we introduce the categorical 

semantics of sharing graphs: our direction is that of morphisms in our semantic 

categories. 0 

Remark 2.1.9 

• If we just consider operator symbols with just one output sort, then in the 

definition above C becomes V U {d 1 ,. . . , d} and we recover a standard 

definition like in [AK96] (c.f. [AB971). 

. In a standard terminology, assuming in inputs amounts to assuming in free 

variables {d1 ,.. . , d,,}. 

• There is no technical difficulty to formulate the infinitary version of shar-

ing graphs, by allowing infinitely many inputs and outputs (and allowing 

operators with infinitely many inputs and outputs too). However we do 

not see any practical benefit of such extra generality for our study (though 

infinitary operators must be included in some related settings, e.g. systems 

of equations for non-well-founded set theory [Acz88, BM96] which is out of 

the scope of this thesis); and giving the semantic models of the infinitary 

setting is far more complicated than the case for the finitary one, so we do 

not consider such a version. Also in this thesis we are mainly interested 

in the finite sharing graphs (see below), where the infinitary version seems 

meaningless. 0 

Definition 2.1.10 (finite sharing graph) 

A sharing graph (V, L, A, (c 1 ,..., ca)) is finite if VI < oc. 0 

Definition 2.1.11 (equivalence of sharing graphs) 

Two sharing graphs G = ( 1/, L, A, (c i ,. . . , c4), G' = ( V', L', A', (ci,...,  cj) of 

the same type are said to be equivalent if there is a bijection on sets f : V 4 V' 

such that L' of = L, A' of = ( f x id)*  o A and (f x id)(c1) = c. Obviously this 

determines an equivalence relation on sharing graphs of the same type, and we 

write C G' if G and C' are equivalent. 0 

For instance, it is easily seen that two sharing graphs in Example 2.1.5 are not 

equivalent. 
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Definition 2.1.12 (dependency relation) 

Let (V, L, A, (c 1 ,. . . , c,)) be a sharing graph. We define a binary relation < on V 

by v < w if A(w) = (v,j) for some i, j, and also v < v if L(v) = •. Then the 

dependency relation <* is the transitive closure of <. 0 

For instance, in Example 2.1.7 the dependency relation consists of v1 <* vj, 

V2 < v2, V2 < V3, V3 <* v2, V3 < V3, V4 < v3 and v4 	v4 . 

Definition 2.1.13 (acyclic sharing graph) 

A sharing graph (V, L, A, (c 1 ,..., ca )) is acyclic if there is no v E V such that 

V < V. El 

For example, one may see that the left graph in Example 2.1.5 is acyclic while 

the right is not (i.e. truly cyclic). 

In the sequel, by a sharing graph, we may mean the equivalence class of the 

sharing graph (if there is no confusion). And we work just on finite sharing graphs 

unless explicitly mentioned. 

2.2 Acyclic Sharing Theory 

In this section we give the equational presentation of acyclic sharing graphs (cyclic 

graphs are dealt with in the following section). As discussed informally in the 

introduction, our presentation is based on "systems of equations", represented by 

the let-bindings in the acyclic case. So the expressions are terms of traditional 

algebraic theories plus let-blocks, and we assume a set of axioms which ensures 

that two expressions correspond to the same sharing graph if and only if they are 

provably equal in the theory. Though we need some care for dealing with multiple 

outputs (represented by tensor products), our development is fairly close to the 

standard stories for (many sorted) algebraic type theories as found in [Cro93] and 

we hope that our syntax is not very far from such traditional treatments. The 

comparison between sharing graphs and the equivalence classes of the terms of 

sharing theories is done by giving the translation between them, using a normal 

form property of the theories. 

In the rest of this chapter, we fix a set of sorts S and a signature E, as 

introduced in the last section, unless otherwise stated. 
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Definition 2.2.1 (raw expressions) 

M ::= x I F(M) 1 01 M, 0 M 2  I let (xi,...,x m ) be M1  in M2  

We assume that 0 and 0 satisfy strict associativity: we identify 0 0 M, M 0 0 

with M, and (M1  ® 1k!2 ) 0 M3  with M1  0  (M2  0 M3 ) ( and write M1  0 M2  0 M3  

for it). 0 

The notion of free and bound variables is defined as usual, and we write FV(M) 

and BV(M) for the sets of free and bound variables of the expression M respect-

ively. We write M{N/x} for a capture-free substitution of N into free x's in M. 

Similarly we use M{N i /x i , N2 /x 2 }, MIN/} etc for simultaneous substitutions. 

In the sequel, let (x i ,... ,xm ) be M1  in M2  maybe written as let (1) be M1  in M2  

for short. Also we may write £ instead of x 1  0 ... 0 x, which includes 0 as the 

case of in = 0. 

Definition 2.2.2 (typing) 

In the following, by a context we mean a finite list of pairs of variables and sorts 

like x 1  : a 1 , . . . , x : am where x 1  are different to each other. We say a term M 

has a type (a r ,..., a) under a context F if F H M : (ai ,. . . , a,) is derivable from 

the following typing rules. Such a term is called a well-typed term. 

F, x : a H x : (a) 
variable 

I TO operator 
FHF(M):(ri ,...,r) 

F H 0: o unit 

FHM:(ai,...,am) FHN: ( TI  ,...,r) 
tensor 

FHM:(ai ,...,am ) F,x i :ai ,...,x m :am HN:(ri ,...,rn ) 

let 
F H let (x i ,...xm ) be 1W in N: (ri ,...,'r) 

F) x : a,x' : a', F' H M : (r1 ,. . 
exchange r" X ,  : a',x : a, F' H M : (r1 ,. . 

I. 

On notation: a list of sorts (ai,... ,am ) may be abbreviated to (a). 
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Definition 2.2.3 (axioms) 

(avar) let (x) be y in M = M{y/x} 
(Id) let (9) beMinS = M 
(ass i ) let (ar)be (let ()beLinM)inN = let (QbeLin let (S)beMinN 
(ass2

) 
let (S)beLin let (QbeMinN = let (&,ü)beLOMinN 

((&1) LO (let (5)beMinN) = let (cE)beMinLON 

(02) (let (5beLinM)ON = let (S)beLinM®N 
(subst) let (5) be M in F(N) = F(let (5) be M in N) 

They are "equations in contexts"; For each axiom, under the same context, the 

left hand side must have the same type with the right hand side. 0 

For instance, in (ass 2 ), x's cannot be free in M. 

Definition 2.2.4 (acyclic sharing theory) 

An acyclic sharing theory over E is an equational theory on the well-typed terms 

closed under the term construction described above, where the equality on terms 

is a congruence relation containing the axioms above, i.e. equations derivable 

from the following inference rules, possibly with additional axioms. 

FFM:(ff) FF-N:(Y) M = N is included in the axioms 

r1-M=N:(fl 

FF-M:(f) 	FFM=N:(ff) FFL=M:() FF-M=N:(Y) 
FFM=M:() FF-N=M:(f') 	FFL=N:(f) 

FF-M=N:(ê) F:()-+(ff) FFM=M':() FF-N=N':(Y) 
FE F(M) = F(N): () 	F F MQN = M'& N' :(ê,1 

FF-M_—M':(ê) F,5:F-N=N':(r) 
F F let (5) be M in N = let (5) be M' in N' : (if) 

F, x : a, x': a', F' F- M = N : (Y) 
F, x' : a', x : a, F' F M = N: () 

By the pure acyclic sharing theory, we mean the acyclic sharing theory with no 

additional axioms. 0 

In the sequel, the word "acyclic" may be dropped, unless there can be a confusion 

with the cyclic sharing theories which will be introduced later. 

To help with the intuition, we give a pictorial account for our term construc-

tions: 
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F,x:ax:() 
FFM: () FE- N: (f) 

F 	a  t F F M ® N: (ê, 

H FE-M:(ê) 

	

	 FFM:(ê) 

FFF(M) : (1 	 F E-  let (1) be M in N: (1 

I', x : a, x' : 0" ' I" ,  FM : (f) 
FFO:() 	

F,x':a',x:a,F'FM:ft) 

Each term construction (type derivation) amounts to constructing a new graph 

from existing ones. 

Remark 2.2.5 It might be helpful to understand the let-bindings as "suspended 

(or delayed) substitutions"; they perform the real substitution only for the case 

of variables (crvar). If we write N[M/iJ for let (g) be M in N, the axioms can be 

rewritten as 

(avar) M[y/x] = M{y/x} 
(id) F[M/f] = M 
(assi) N[(M[L/)/5'j = 	(N[M15'])[L1y 
(ass2) (N[M/a'])[L/ = 
(®i) L®(N[M/ij) = 	(L®N)[M/E] 

(02) (M[L/x']) 0 N = 	(M 0 N)[L/x 
(subst) (F(N))[M/&] = 	F(N[M/±]) 

For instance, (ass i ) represents the associativity of substitutions. Other axioms are 

read similarly as specifying the expected properties of (suspended) substitutions. 

0 

Interestingly, a-conversion of the let-binding is derivable from our axioms. 

Lemma 2.2.6 (substitution of multiple variables and a-conversion) 

1. if r, :5 FM :(F)and Y-  do not occur in F, 

F,ff: am F let (&) be ff in M = M{/} : (i). 
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2. If  H M : ( 5), F,2: S F- N: (5) and  if do not occur in F nor in 2, 

(a) FF- let (5)beMinN = let ()beMinN{/2}:(5). 

Proof: 

The case of the number of variables in is 0: 

let (3 be 0 in M 
= let() beoin let (5)beMin2 (id) 
= let (2) be M in 2 	 (ass 2 ) 

= M 	 (id) 

For in > 1, by induction on the number of variables: 

let (x i ,.. . ,xm +i) be Yi  0 ... 
Ym+1 

 in M 
= let (x i ) be Yl  in let (x 2 ,. . . ,xm+i) be Y2 0 . . Yrn+1 in M (ass 2 ) 

= let (x i ) be Yi  in M{y 2 1x 2 ,. . .,y,n+l/X m +l} 	 (hyp.) 
= M{y i /x i ,. . . , ym+i/Xm+1} 	 (crvar). 

 
let (2) be M in N 

= let (2) be (let (9) be M in 9) in N (id) 
= let (9') be M in let (2) begin N 	(ass i ) 
= let (9') be M in N{9'/2} 	(1.). 0 

Permutations of "independent" let-bindings are also justified: 

Lemma 2.2.7 (permutation of let-bindings) 

For F H L : (5 1 ), F H M : ( 52) and F, 2: Si,  9': 62 H N : ( 5), 

F H let (2) be L in let (9') be M in N = let (9') be M in let (2) be L in N: (f) 

is derivable; we shall call this equation (perm). 

Proof: 

let (5') be L in let (9) be M in N 
= 	let (2) be L in let (9)  be M in let (if, vJ be 5'O 9' in N{if/2,if/9' (avar) 

= 	let (2) be L in let (if, if) be (let (9) be M in 209)  in N{9/&, if/if]- (ass,) 
= 	let (if, if) be (let (2) be L in let (9) be M in 2® 9) in N{if/&, 5/wl (ass,) 
= 	let (ü, if) be (let (2) be L in 20 (let (9) be M in 9)) in N1912, if/if) (02) 
= 	let (if, 6) be ((let (2) be L in 2') ® (let (9) be M in 9)) in N{if/2, if/if)  
= 	let (if, if) be (let (9) be M in (let (2) be L in 2) ® 9) in N{if/&, 619'}  
= 	let (if, if) be (let (9) be M in let (2) be L in 209)  in N{if/2, if/if]- (01) 
= 	let (9) be M in let (it, V1 be (let (2) be L in 209)  in N{if/&,if/9'} (ass,) 
= 	let (9) be M in let (2) be L in let (if, 6) be 5ØWin N{if/&,if/9'} (ass 1 ) 

= 	let (9) be M in let (2) be L in N (avar) 

0 

To help with the intuition, we shall look at a few examples. 
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Example 2.2.8 As Example 2.1.5, we consider a sort S = {nat} and a signature 

= {zero : () -* (nat), plus : (nat, flat) -+ (nat)}. In an acyclic sharing theory 

over >, we can present the first sharing graph in Example 2.1.5 as 

F- let (x) be zero in plus(x 0 x) : (nat). 

It is easy to see that, in the pure acyclic sharing theory, this term is not equivalent 

to the "unshared" version 

F- plus(zero 0  zero) : (nat) 

because each axiom preserves the number of occurrences of operator symbols. 

However, as acyclic sharing theories lack the ability of representing cyclic bind-

ings, we cannot present the second cyclic graph. 0 

Example 2.2.9 In the example above, the terms can be expressed in many dif-

ferent ways. For instance, 

plus(zero (D zero) 
= let (x, y) be zero  zero in plus(x 0 y) 	 (subst) 
= let (x) be zero in let (y) be zero in plus(x 0 g) 	(ass 2 ) 

= let (x) be zero in plus(let (y) be zero in x 0 y) 	(subst) 
= let (x) be zero in plus(x 0  (let (y) be zero in x 0 y)) (®) 

= let (x) be zero in plus(x 0 zero) 	 (id) 

and so on; we note that the third line is a normal form of this term (see below). 

0 

Example 2.2. 10 One may wish to ignore isolated resources, for instance wanting 

to equate let (x) be zero in M with M if x is not free in M (thus the resource 

zero is not referred from anywhere). This is not derivable in the pure acyclic 

sharing theory, and we need to assume an additional axiom (garbage collection): 

M=O for any fHM:() 

Then, for instance, one can derive 

let (x) be zero in M 
= let () be (let (x) be zero in 0) in M ass 1  
= let () be 0 in M 	 garbage collection 
=M. 

(Semantically, this condition amounts to assuming that () is a terminal object. 

It is also called the affineness condition in the literature, c.f. [Jac94, MOTW95].) 

0 
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Remark 2.2.11 Note that we have "empty bindings" for terms of type (, like 

let () be M in N where s is of type (), as the case of the list of binding variables 

is empty. Actually there is no real binding of the subterm M in this expression; 

M can move around everywhere in the whole term. 

let ObeMinN = let ObeMin let (i)beNin 	(id) 
= let (&)beMøNin Y 	(ass 2 ) 

= M®N 	 (id) 

Using (perm), one can prove that let () be M in N = M 0 N = N 0 M for 

any M : (). In particular, (the equivalence classes of) terms of type () form a 

commutative monoid. 0 

Definition 2.2.12 (normal forms) 

Normal forms are the well-typed terms generated from the following grammar. 

vi ::= 	let (i)beF(il)inn 

Theorem 2.2.13 (normal form theorem) 

In the pure sharing theory, for any term F F- M (Y), there is a normal form 

F F- vi (fl such that M = vi. Such a normal form is unique up to the congruence 

generated by (a) and (perm). 

Proof: For existence, one may start from proving that if vi, vi '  are normal forms 

let (ff) be vi in vi '  is equal to a normal form by the induction on the construction of 

vi, taking care that substitution of variables preserves normal forms. Uniqueness 

follows from the fact that any axiom preserves operator symbols. 0 

Remark 2.2.14 Our non-standard syntax arises from the existence of multiple 

conclusions (outputs). If we are interested just in single conclusions, then the 

following more standard syntax suffices. 

M ::= xF(Mi ,...,M) let xbeMinN 

F, 
variable x : a F x : a 

FF- M:a (1im) F:(ai . ... am)_+roperator 
FFF(Mi ,...,Mm ):r 

F FM: a F,x : a F N: 
let F F let x be M in N : 
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let x be y in M 
let x be M in x 
let x be (let y be L in M) in N 
let x 1  be M1  in let x2 be M2  in N 
let xbeMinF(...,N .... ) 

= M{y/x} 
=M 
= let y be L in let x be M in N 
= let z 2  be M2 in let a 1  be M1  in N 
= F(..., let xbeMinN .... ) 

It is routine to check that all axioms above are derivable from those of the pure 

acyclic sharing theory, thus there is a sound interpretation of this restricted ver-

sion into the bigger theory. Moreover it is also easy to define the normal forms 

for this version, which are properly included in those for the pure acyclic sharing 

theory. So we conclude that the pure acyclic sharing theory is conservative over 

this restricted theory. 0 

Relating Normal Forms and Sharing Graphs 

We relate the pure acyclic sharing theory with finite acyclic sharing graphs as 

follows. 

First, we show that acyclic graphs and normal forms are in bijective corres-

pondence, up to renaming of bound variables (a-conversion) and permuta-

tions of operators which do not interfere with the dependency relation. 

Since any term has a unique normal form up to CE-conversion and (perm), we 

conclude that the acyclic sharing theory precisely axiomatizes finite acyclic 

sharing graphs. 

Let G = (V,L,A,(c i ,. .., c)) : (aj ,. . . ,o) —* (r1) ... ,r) be an acyclic 

sharing graph. Then it is possible to sort V's elements as v 1 ,. . . ,vk so that i < j 

implies vj v. Of course this choice may not be unique, but we shall choose 

one of them, and build an expression of the pure acyclic sharing theory as 

MG 	let (x( 1  1),. . , X( v1  ,Jcod(L(v i  )) D) be L(vi ) (xA( 1 ) 1 ,. . . , XA(V1 ) dom(L(vi)) ) in 

let (x(vk,1)1. . 	X(v k ,Icod(L(v k ))I)) be L(vk)(xAv kl ,. . . , XA(Vk)Idorn(L(vk)I) in 

x ci  0 ... 0 

where we introduce a variable xc for each c E C (recall the definition). We claim 

that MG is a well-typed expression (hence a normal form): 

Lemma 2.2.15 xd 1  : 91,... 	: Cm F-  MG : (Ti .. ....  
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Proof: Induction on the size of V. If V is empty, MG is simply x 1  (D... Ox, and 

since each ci  is contained in {d 1 ,. . . , d} MG'S typing is derivable from the rules 

(variable) and (tensor) (if ii > 0) or (unit) (if ii = 0). If V is not empty, one may 

consider a sharing graph G' = (V', A', L', (c 1 ,. - . , c,)) (ai, . , Um+Jdom(L(vd)I .4 

(r1 ,... ,r) where V' = V - {v i }, L' = Lv', A'(v)1 = dm+j if A'(v) = (v i ,j) 

and A'(v) = A(v)i otherwise. is dom(L(v i )). Then (by the same linear-

ordering) 
MG 	let (x( 1 ,l),. . . , X(v i ,Icoa(L(v,))I)) 

be L(vl)(XA( Vl ) l ,. . . , 

in MGI{X( VI ,j)/Xd mj } 

On the other hand, by the induction hypothesis, 

Xd, C1, . . . , Zdm+!dom(L(vd) : m+dom(L(v i )) I H M : (rj , . . . , r) 

By the rule (operator), (let) and renaming of variables by Xdm+j  F# X(v i ,j) we 

obtain the typing of MG. 0 

By assuming another linear ordering of V's elements, we get another well-

typed expression M,. However, the difference between MG and M,, lies only in 

the permutation of the let-bindings, which is guaranteed by (perm) (routinely 

shown by induction on the number of nodes). Thus MG = is provable in 

the sharing calculus. Also it is routine to check that equivalent sharing graphs 

give equivalent normal forms. Conversely, a normal form ii gives rise to a sharing 

graph O, by reversing the construction above, such that GM  C and MG = ii. 

Together with the proposition of normal forms, we have 

Theorem 2.2.16 There is a bijective correspondence between the finite acyclic 

sharing graphs and the equivalence classes of terms of the pure acyclic sharing 

theory. 0 

Actually this should be more than a bijective correspondence; this must preserve 

the algebraic nature behind sharing graphs, though at this moment it is not very 

clear. The leading paradigm in this thesis is that "sharing graphs (and their 

models) form a nice categorical structure" - this bijection turns out to respect 

such semantic structure behind sharing graphs (see Remark 3.3.8). While not 

many work in the literature spot on the structural nature of sharing graphs, we 

shall point out that Milner's treatment of his "molecular forms" as an action 

structure (symmetric monoidal category with structure) [Mi196] certainly lies in 

this direction, and we acknowledge the influence of his work on ours. 
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2.3 Cyclic Sharing Theory 

In a parallel manner to the acyclic sharing graphs and acyclic sharing theory, we 

give the equational theory for cyclic sharing graphs, called cyclic sharing theory. 

Ignoring small technical points, all we need is to replace the let-bindings (acyclic 

bindings) by the letrec-bindings (cyclic bindings). The syntax is close to that 

of many applicative programming languages with recursive bindings, although at 

this moment our theory corresponds to the cyclic sharing graphs and says nothing 

about (lazy) recursive computation as often represented by the letrec-syntax in 

lazy functional languages. 

Definition 2.3.1 (raw expressions) 

M ::= x I F(M) 10 1 M, (3 Al2  I letrec (xi,...,x m ) be M1  in M2  

We identify M®0 and 0®M with M, and (M1®M2)®M3 with M1®(M2®M3). 

Definition 2.3.2 (typing) 

F, x : a F x: (a) 
variable 

F F Al: (ai ,...,am) F: 	 —4-  
	operator 

F F 0 : 0 unit 

FFM:(ai,...,am ) FFN:( Tj 	
TO tensor 

I F-  IVI Q9JV : 

r, x, : Ci,..,Xm : a F Al: (ai ,. ..,am ) 
F, x 1 : a 1 ,... ,X, : am FN: (r1 ,. .. r) 

letrec 
FFletrec(xi .... ,x m )beMin N: (TI  ...... ) 

F,x : o" X ,  : a', F' I- Al: (i-1,. ..,r) 
exchange 

F,x' : a',x : a, F' FM: (ri ,...,r) 

RE 

Definition 2.3.3 (axioms) 

(avar) letrec (x, 9) be z (D Al in N = letrec (9) be M{z/x} in N{z/x} 

(x*z) 
(id) Ietrec(i)beMin± =M 
(assi ) letrec (5) be (letrec (9) be L in Al) in N = letrec (&, 9) be Al® L in N 
(ass2 ) letrec (1) be L in letrec (9) be AlinN=Ietrec (g,9) be L®M in N 

(®) L ® (letrec (2) be M in N) = letrec (2) be M in L ® N 

(02) (letrec (5) be L in M) ® N = letrec (5) be L in M 	N 
(perm) letrec (ar, 9,2) beMi®Al20M3 in N = letrec (9,2, 2) be Al2 0M1 ®M3  in N 
(subst) letrec (5) be Al in F(N) = F(Ietrec (5) be Al in N) 
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As the acyclic case, both sides of axioms must have the same type under the same 

context. For instance, in (Id), XF cannot be free in M. 0 

Definition 2.3.4 (cyclic sharing theory) 

A cyclic sharing theory over E is an equational theory on the well-typed terms 

closed under the term construction described above, where the equality on terms 

is a congruence relation containing the axioms above; the only difference from 

that of an acyclic sharing theory is the following inference rule for letrec is used 

instead of that for let. 

F,±:bF-M=M':(a) F,5:5HN=N':(7-) 

F F- letrec () be M in N = letrec () be M' in N' : () 

By the pure cyclic sharing theory, we mean the cyclic sharing theory with no 

additional axioms. 0 

Again we give a pictorial account for the letrec-construction: 

F,±H5HM:(ê) F,i:êHN:(ff) 
F F- letrec () be M in N : () 

For readability, we introduce the following syntax for the multiple letrec-binding: 

F,&l:dl,...,k:5kHM1:(&j) (l<i<k) 

F F- letrec (21 ) be M1 ,... (xk) be Mk in N: () 

for let rec 	. . . , 5,) be M1  0. ..Ø Mk in N. For instance, the axiom (perm) is 

equivalent to 

Ietrec ... (fff)beM, (U)beM'  ... inN = Ietrec . . . (ybeM',(5)beM ... inN. 

which will be referred as (perm'). Also, the axiom (cvar) is the same as 

letrec (x) be z, () be M in N = tetrec () be M-[z/x} in N{z/x} 

where x 0 z. It is easy but helpful to see that this can be replaced by a pair of 

axioms representing "dereference" and "garbage collection" (restricted on vari-

ables): 
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(deref) letrec (x) be z, () be M in N = letrec (x) be z, () be M{z/x} in N{z/x} 
(g.c.) 	Ietrec(x)bezinN 	 = N (xØFV(N)&xz) 

Note that the garbage collection of trivial cycles is not allowed (in the pure cyclic 

sharing theory), e.g. letrec (x) be x in M = M is not derivable even when x is 

not free in M. This alternative axiomatization will be used when we consider the 

extension with higher-order constructs where substitutions of values are allowed. 

As in the acyclic theory, a-conversion of letrec-bound variables is derivable. 

Lemma 2.3.5 (a-conversion) 

If F F M: (5), I',.ff: SF N: (1 and  il do not occur in F nor in XF, 

(a) F F letrec (ff) be M in N = letrec () be M{y7M} in N{il/} : ( 1 

Proof: 
letrec (&) be M in N 

= letrec (i) be (letrec (il) be M in 7) in N (id) 
= letrec (,U) be go  in N 	 (ass i ) 
= letrec (ff) be M{#/x} in N{i/x5} 	(cvar). 

0 

The difference between the axiomatizations of acyclic sharing theory and the 

cyclic one is summarized as follows. 

• The axiom (crvar ) is changed to so that a substitution is effective throughout 

under the scope of the letrec-binding. The acyclic version is too weak, for 

instance for deriving letrec (x,y) be y 0 x in y = letrec (y) be y in y. 

However, there is no other difference; z must be different from x, so we 

cannot use this axiom for deleting a trivial cycle as mentioned above. 

• The axiom (perm) is derivable in the acyclic theory, but it is not the case 

for the cyclic theory, because of the cyclic bindings. In (perm), Mi's can 

depend on each other, i.e. can contain any free x, y and z's, so the proof of 

(perm) for the acyclic theory using (ass i ) and (®) cannot be applied. 

• The axiom (ass i ) is slightly more general than that for the acyclic theory 

for free xs can occur in L and M. 

However, the other axioms (id), (ass 2 ), (®) and (subst) are unchanged. 
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Example 2.3.6 The second graph of Example 2.1.5 can be presented as 

F- letrec (x) be plus(zero, x) in x : (nat). 

FE 

Example 2.3.7 The tangled graph of Example 2.1.7 can be presented as 

x bool, y : nat F- letrec (z, z ') be F(z', y), 
U') be F(x,v), 
v ') be F(u', to), 

(w) be to 

in uøv®v' 	 : natØnatØbool. 

For defining the notion of normal forms, we need a care about trivial cycles 

again. 

Definition 2.3.8 For each sort a, define i : (a) by • 	letrec (x) be x in x. 

U 

Definition 2.3.9 (normal forms) 
Normal forms are the well-typed terms of the following form 

letrec (ii) be F1 ( 1 ) in ... (xm) be Fm(qm) in i 

where F is either an operator symbol or .. 0 

Theorem 2.3.10 (normal form theorem) 

In the pure cyclic sharing theory, for any term F F- M : (4 there is a normal 

form F H n : () such that M = ii. Such a normal form is unique up to the 

congruence generated by () and (perm'). 

Proof: Similar to the case of the pure acyclic sharing theory. (N.B. [Mi194b] con- 

tains the essentially same result on reflexive action calculi and molecular forms.) 

0 

It is easy to give a cyclic sharing graph from a normal form and vise versa 

- unlike the acyclic case, we do not have to care about the dependency between 

nodes, and it is routine to show 

Theorem 2.3.11 There is a bijective correspondence between the finite cyclic 

sharing graphs and the equivalence classes of terms of the pure cyclic sharing 

theory. 0 
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Again this should be more than a bijective correspondence; this must preserve 

the algebraic nature implicit in cyclic sharing graphs. This becomes the central 

issue in the later development of the semantic counterpart. 

Remark 2.3.12 The same remark applies as in the acyclic case: if we are in-

terested just in the single conclusion, then the following more standard syntax 

suffices. 

Raw Terms M ::= x IF(Mi ,..., M)Iletrecxi be Mi,...,xm be M. in  
Declarations D ::= x be M I x be M, D 

In a declaration, binding variables are assumed to be disjoint. 

F, x : a F- x : a variable 

FHMi:a1 (1<i<m) F:(ai...am)_+roperator 
['HF(Mi)  ... , Mm ):r 

(1<i<m) 
F, x 1  : 	 . . . , X : 9, H N : 
F H letrec x 1  be M1 , . . . , X,, be Mm in N : letrec 

letrec x be z, D in M 

letrec x be M in x 
letrec y be (letrec D 1  in M), D 2  in N 
letrec D 1  in letrec D2  in M 
letrec D 1 , D2, D3  in N 
tetrec x be M in F(.... N,. 

..) 

= letrec D{z/x} in M{z/x} 
(xz) 

=M 
= letrec Di , y be M, D 2  in N 
= letrec D1 , D 2  in M 
= letrec D 2 ,D 1 ,D3  in N 
= F(...,IetrecxbeMinN,...) 

El 

2.4 Rewriting on Sharing Graphs 

Rewriting is the computational counterpart of sharing graphs. There is a wide 

variety of formulations of rewriting on sharing graphs from abstract ones to con-

crete implementation oriented ones [SPvE93], but here we choose an intermediate 

approach, which is close to Ariola and Klop's equational term graph rewriting. 

Definition 2.4.1 (rewriting system) 

Let T be a (acyclic or cyclic) sharing theory. A rewriting system on '117 is a preorder 

on the equivalence classes of well-typed terms with the same contexts and same 

types, closed under all term constructions. 0 
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Spelling this out, a rewriting system can be described as a family of relations 

for each context F and type (5) satisfying the following conditions. 

• 	is a binary relation on well-typed terms with context F and type (5) 

(subscripts may be omitted). We write F V M >- N: (5) for M >r,(9)  N. 

• >-r,(a) respects equality: 	
F H M = N: (5) 
F H M >- N : (5) 

I >F,(ff) is a preorder: 

F H M : (5) 
	

FF-L>-M:(5) FHM>.-N:(5) 
F I- M >- M : (5) 
	

F H L >- N: (5) 

• Closure under term constructions: 

FHM>.-N:(5) F:(5)—*(Y) FHM>-M':(S) FHN-N':(fl 
F H F(M) >- F(N) : (1 	F H M 0 N >- M' 0 N' : (5, Y) 

F,x : o,, x' : a', F' H M >- N : () 
F, x': a', x : a, F' H M >- N : () 

For acyclic theory 

FHM>-M':(S) F,±HSHN>.-N':(fl 
FT let (±) be M in N >- let (i) be M' in N': (Y) 

For cyclic theory 

F,:5HM>.-M':(5) F,&:SHN>.-N':(f) 

F H letrec () be M in N >- letrec () be M' in N' : (Y) 

This notion of rewriting is too rough. In most practical settings, it is unlikely 

that some resource is created from nothing, but our definition allows such a 

stupid rewriting system! Thus we are lead to restrict the notion of rewriting in 

an adequate way: 

Definition 2.4.2 (minimality condition) 

A rewriting system satisfies the mirzimality condition if F H >- M : ((7- ) implies 

F H M = £: (5). 0 

Example 2.4.3 The famous cyclic I problem can be a good test case for a formal- 

ization of graph rewriting systems. Let us consider the pure cyclic sharing theory 

with an operator symbol I: (a) -+ (a) and a rewriting system generated by a rule 
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I(x) >- x, which satisfies the minimality condition. Now we shall look at a cyclic 

term C letrec (x) be 1(x) in x. How can we rewrite this C? This is not a trivial 

question as it first looks like. An early attempt (Barendregt et al. [BvEG+87]) 

was close to the traditional term rewriting. Following the infinite unwinding se-

mantics, one may regard this as a representation of the infinite application of I, 

i.e. C = 1(C) = 1(1(C)) = ... = 1(1(1.. 
.)). 

Having this "unwinding" C = 1(C) 

in mind, 

C=I(C)>-C 

therefore rewrite C to itself. However it was pointed out that this solution causes 

non-confluency (consider letrec (x) be F(C(x)) in x with rules F(x) >- x and 

G(x) >- x), see e.g. [AK96}. To get rid of this problem, a new solution was 

proposed in [AK96], respecting the circularly shared structure of C: 

C 	letrec (x) be 1(x) in x >- letrec (x) be x in x 

Thus we rewrite C to the blackhole constant .. Our rewriting system is this new 

version. Indeed our equational theory does not equate C to 1(C). 

rec (x) be 1(x) in 
	

trec (x) be x in 

Cr >.- 
 

0' 

C 

2.5 Equational Term Graph Rewriting 

We conclude this chapter by indicating the connection between the equational 

term graph rewriting of Ariola and Klop [AK96] (see also Ariola and Arvind 

[AA951) and our equational treatment of sharing graphs which was largely inspired 

by their work. 

The equational theory underlying Ariola and IClop's work is, in spirit, essen-

tially identical to that of ours - but not quite the same; see the discussion below. 

Our equational theory allows nestings of systems of equations (let/letrec-blocks) 

whereas theirs does not, but this is a matter of presentation. We have chosen our 

richer version to make the structural (algebraic) nature of sharing graphs clear, 

and this choice can be justified by the semantic considerations throughout the 

rest of this thesis. 
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The significance of the Ariola-Kiop approach lies on the clear treatment of the 

bisimilarity between systems of equations and some basic operations on them, in-

cluding copying, substitution and flattening. However, while they treat these 

operations as rewriting steps on systems of equations and have shown the conflu-

ence results, the connection with real rewriting on sharing graphs is not always 

simple, as some of these operations do not change the corresponding sharing 

graphs (and some do). 

Our rewriting systems are designed not on systems of equations but on equi-

valence classes of them, so specify rewriting on sharing graphs themselves. In 

this sense our choice is more abstract; the copying and substitution operations 

are part of our equational theory as long as they do not change the corresponding 

graph; and the flattening is contained in our equational theory. 

We believe that, while Ariola-Klop's results are elegant, proper computation 

on sharing graphs must be represented by the rewriting systems on them, and our 

"up to equvalence classes" (which does mean "up to sharing graphs") approach is 

suitable for this purpose. Also, for discussing the semantic contents of rewriting 

systems, it is important to separate the rewriting on representations (systems of 

equations) from that on the real semantic objects (sharing graphs) strictly. We 

hope that our direction will be more justified by further research. 
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Chapter 3 

Models of Acyclic Sharing 
Theory 

This chapter presents the most basic part of our development of the semantic 

models of sharing graphs. 

Here we deal with just the acyclic case. The reader may be disappointed, 

as technically and practically (and conceptually!) cyclic sharing graphs are far 

more interesting, and also the difference between acyclic and cyclic settings are 

relatively small if we just look at the definition of sharing graphs - in fact we 

define acyclic graphs as special instances of cyclic ones, so one may wonder why 

we do not start our semantic story from the models of cyclic sharing. 

However, it turns out that the models of acyclic cases admit a fairly simple 

category-theoretic formulation, which can be regarded as a generalization of the 

traditional treatment of algebraic theories in categorical type theory. And, as any 

other correspondence between syntactic theories and semantic models in math-

ematics and computer science, allowing stronger constructions (iii this case cyclic 

sharing) amounts to restricting the class of models by assuming additional con-

ditions. Starting from the models of acyclic sharing, which are fairly flexible 

and general, in later chapters we add new conditions to make them models of 

higher-order sharing graphs (the condition will be a form of adjunction), as well 

as models of cyclic sharing (the condition is a new notion called trace). 

We believe that this systematic development is useful to identify what is 

needed for modeling (i.e. implementing!) sharing graphs, in a step-by-step man-

ner. Also we think it useful to make the comparison with the traditional approach 

to algebraic theories as clear as we can. So, though computationally not very 

compelling, we describe our theory-model correspondence in the standard style 

of categorical type theory as found in [Cro93]. 

The category theory needed in this thesis is not heavy at all, but we have 
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to use the language for monoidal categories very frequently. So we shall first 

summarize the material which will be used throughout the rest of this thesis. After 

that, we introduce our class of models, and show the expected properties such as 

soundness, completeness and the theory-model correspondence. Also we observe 

that rewriting systems on sharing theories have the semantic interpretation in our 

models as local preorders. 

3.1 Preliminaries from Category Theory 

We shall briefly recall basic definitions of monoidal categories [ML71, J5931 which 

will be the main technical language in the rest of this thesis. 

Definition 3.1.1 (monoidal categories) 

A monoidal category (or tensor category) M = (M, ®, I, a, 1, r) consists of a 

category M, a functor ® M x M —+ M (called the monoidal or tensor product), 

an object I E M (the unit object) and natural isomorphisms 

aA,n,c : (A®B)®C4A®(B®C) 
I®A4A 

rA 	: A®13A 

such that, for objects A, B, C, D E M, the following two diagrams (called the 

associativity pentagon and the triangle for unit respectively) commute: 

((A®B)®C)®D 	
a 	

(A®B)®(C®D) 

aØD 

(A®(B®C))®D a A®((B®C)®D) AØa  A®(B®(C(DD)) 

(A®I)®B 	
a 	

A®(IØB) 

A strict monoidal category is a monoidal category in which all of aA,B,C, 1A and 

rA are identity arrows (hence A® (B® C) and (A® B) ® C are the same object, 

and so are A®I, 10  and A). 0 

Definition 3.1.2 (symmetric monoidal categories) 

A symmetry for a monoidal category is a natural transformation 

CA,B:A®B—B®A 
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subject to the following two commutative diagrams (the bilincarity and sym-

metry): 

(AøB)®C 
a 
 A®(B®C) 

C 
 (BØC)®A 

c®cI 	 a ! 

(B(DA)ØC a  • B®(AØC) B®c  BO(CA) 

AØB 

BØA 	rAØB 

Note that the symmetry condition implies that c is a natural isomorphism. A 

monoidal category equipped with a symmetry is called a symmetric morioidal 

category (SMC). A strict symmetric monoidal category is then a strict monoidal 

category with symmetry - note that the symmetry need not be "strict", as we do 

not assume that A 0 B = B 0 A. 0 

Example 3.1.3 Here are some examples of monoidal categories: 

• The category of sets and partial functions is symmetric monoidal, where 

the monoidal product is given by the direct product. 

• Similarly, the category of sets and binary relations is symmetric monoidal 

with the direct product as the monoidal product. 

• Abelian groups and homomorphisms form a symmetric monoidal category, 

where the unit object is Z and the monoidal product is the tensor product 

of abelian groups. 

• Let C be a category. The category [C,C] has endofunctors on C as objects 

and natural transformations between them as arrows. The composition of 

functors gives a strict monoidal product on [C, C], where the identity functor 

serves as the unit object. This monoidal category may not have a symmetry. 

0 

In this thesis, we frequently use strict symmetric monoidal categories naturally 

arising from syntactic constructions. For ease of later developments, we shall give 

an axiomatization of strict symmetric monoidal categories below (the labels of 

axioms are purely conventional). 
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[axioms for strict monoidal category] 

MI 	f;id= 1= id;f M4 f;(g;h) =(f;g);h 
M2 	fOidj=f= id, ®f M5 fO(gOh)=(j®g)®h 
M3 	idØid= id M6 (f ; g) 0 (f '; g') = (f®f ');(g®g') 

[axioms for symmetry] 

Si c;(f(Dg)=(g®f);c 	 S3 cA,a;cn,A=zdA®n 
S2 (cA,B (3 idc); (id2 0 CA,C) = CA,S®C 

Example 3,1.4 (cartesian categories) 

In this thesis, by a cartesian category we mean a category with chosen binary 

products (binary product cones) and a chosen terminal object. We write AxE for 

the chosen binary product of objects A and B, and also write A 
r 
 A x B B 

for the chosen product cone. Given a cone A 4 C 24 B, (f,g) : C -+ A x B is 

then the uniquely determined arrow such that (f, 9); rAE = f and (f, g); ir = 

g. The chosen terminal object will be denoted by i, and the terminal map is 

A 	1. 

From this information, a cartesian category is regarded as a symmetric mon-

oidai category whose monoidal products are binary products and unit object is 

the terminal object: 

fxg = (7rA,s;f,A,E;g) for f:A—*A' and g:B—*B' 

aA,s,c = (7rA x ac; IrAn, (irAxn,c; rA 	A ,B r X B,c)) 

= 	i,A 
rA =  7TA,1 
CAB 	= (7r 42 ,7rA,B) 

A strict cartesian category is a cartesian category in which all components of a, 

1 and r are identity arrows. 0 

Definition 3.1.5 (monoidal functors [EK66]) 

For monoidal categories M = (M, 0, 1, a, 1, r) and M' = (M', 0', I', a', 1', r'), a 

rnorioidalfunctor from M to M' is a tuple (F, m, nt1) where F is a functor from 

M to M', m is a natural transformation from F(—) 0'  F(=) to F(-0 =) and 

mj : I' —* Fl in 1W' which satisfy the coherence conditions below. 

(FA (D'FB)O'FC 
mØFC 

 F(AoB)o'FC 
m 

• F((AoB)oC) 

a'j 	 - 

FA o' (FE 0' 
FC) 

 FAG/rn FA0'F(B®C) in  F(A®(B®C)) 
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I'Ø'FA 	- FA 

mi®FA 	 Ft 

FI®'FA m  F(I®A) 

FA it 
	 - FA 

FAØrnj 	 Fr 

FA®'FJ m  F(A®I) 

Definition 3.1.6 (symmetric monoidal functor [EF(66]) 

Let M = (M, ®, I, a, 1, r, c) and .44' = ( M', Ø',I', a', 1', r', c') be symmetric mon-

oidal categories. A symmetric monoidal functor from M to M' is a monoidal 

functor (F, m, m,) which additionally satisfies the following condition: 

FAØ'FB 
C, 
 FB®'FA 

7Thj 	____ 

	 i - 
F(AØB) Fc  F(BØA) 

Lemma 3.1.7 (composition of monoidal functors [EK66]) 

For (symmetric) monoidal functors (F, in, mi) : .44 -* M' and (C,n,np) : M' -* 
M", (C, n, np)o(F, n-i, ml) (GoF, G(m)onF,F, G(m j)onp) is also a (symmetric) 

monoidal functor from M to M'. This composition is associative, and satisfies 

the identity law for the identity (symmetric) monoidal functor. 0 

Definition 3.1.8 (strong/strict monoidal functors) 

. A monoidal functor (F, m, mi) is called strong if in is a natural isomorphism 

and in1 is an isomorphism. 

• A monoidal functor (F, m, mi) is called strict if all components of in and 

inj are identity arrows. 0 

Example 3.1.9 (finite product preserving functors) 

Let C be a cartesian category and V a category. We say that a functor F : C -+ V 

preserves finite products if F sends the chosen (hence every) product cone for A 

and B in C to a product cone for FA and FB in V, and also maps the terminal 

object of C to a terminal object in V. It is then routine to see that, for cartesian 

categories C and V, a functor F : C -* V preserves finite products if and only if it 

is a strong symmetric monoidal functor (with respect to the symmetric monoidal 



structure described in the last example). Similarly, we say that a functor between 

cartesian categories strictly preserves finite products if it sends the chosen product 

cones to the chosen product cones and the chosen terminal object to the chosen 

terminal object. Then a functor strictly preserves finite products if and only if it 

is a strict symmetric monoidal functor. Note that there are symmetric monoidal 

functors between cartesian categories which do not preserve finite products (e.g. 

the covariant powerset functor on the category of sets). 0 

Definition 3.1.10 (monoidal natural transformations [EK66]) 

Given monoidal functors (F, in, ini), (C, n, ni) with the same source and tar- 

get monoidal categories, a monoidal natural transformation from (F, in, in1) to 

(C, ii, iii) is a natural transformation 0 : F -* C such that the following dia- 

grams commute: 

FAØ'FB 
m  F(AøB) 

IkAVOB i 	I c/'Aea 

GA®'GB 	. G(A®B) 

II 

I,  

Fl 	'CI 
01 

In the case of strict functors, a monoidal natural transformation 0 between them 

is a natural transformation satisfying 4A®B = OA 0 c&a and 01  = id1 . 

3.2 Acyclic Sharing Models 

The correspondence between algebraic theories and finite product preserving func-

tors, originated by Lawvere [Law63}, is now standard - see [Cro93] for a detailed 

account. We shall briefly recall this story, to help with our descriptions of our 

story for sharing theories. 

Given an algebraic theory T, one can give a model M of the theory as a 

sound interpretation in a cartesian category C. It is also possible to consider 

the category of models in C and homomorphisms between them, for which we 

shall write Mod(T,C). By the way, we can construct a cartesian category from 

'11' in syntactic way, which, denoted by CT and called the classifying category or 

the term model, gives an obvious complete model in it. And it gives a pleasant 

natural equivalence 

FP(C,C) Mod(T,C) 
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where FP is the category of small cartesian categories and finite product pre-

serving functors. On the other hand, with any cartesian category C, we can 

associate an algebraic theory and these correspondences give an equivalence of 

categories of theories and models. 

The departure from this standard story is a simple observation that cartesian 

categories are not sufficient, or too strong, for interpreting the notion of sharing. 

We wish to separate the meaning of let (x) be M in N from that of N{M/x} if 

M contains some uncopiable resource (operator symbol), because in N{M/x}, 

M can be duplicated or discarded according to the number of x's occurring in N. 

But this distinction is not possible in the conventional interpretation of algebraic 

theories in cartesian categories, as both of them are simply interpreted as a com-

position of arrows corresponding to M and N. Then the natural idea is to replace 

cartesian categories by symmetric monoidal categories whose axiomatization al-

lows just the linear treatment of resources. However, for modeling sharing graph, 

we also need to treat variables (pointer-names) in a non-linear way, so we want 

to keep the benefit of cartesian categories. Therefore we are led to use, instead 

of cartesian categories, identity-on-objects, strict symmetric monoidal functors 

from cartesian categories to symmetric monoidal categories. Though not neces-

sarily true, we may intuitively consider this as a symmetric monoidal category 

with a sub-cartesian category which is full on objects. This amalgam of linear 

and non-linear settings, which we will call a cart esian-center symmetric monoidal 

category, works well as models of sharing graphs. We interpret linear resources 

(operator symbols) directly in the symmetric monoidal category, while non-linear 

variables are first interpreted in the cartesian category part and then imported 

into the symmetric monoidal category via the strict functor. 

Definition 3.2.1 (cartesian-center symmetric monoidal categories) 

A cartesian- center symmetric monoidal category (cartesian-center 8MG) is a strict 

symmetric monoidal functor F from a cartesian category C to a symmetric mon-

oidal category S which is identity on objects. It is strict if both C and S are 

strict, and faithful if F is faithful (i.e. C is a subcategory of 5). 0 

Remark 3.2.2 The word "center" is taken from work by Power and Robinson 

[PR96, Pow96b] on premonoidal categories. Informally, a premonoidal category is 

a monoidal category without bifunctoriality - so, for f A -* B and g A' -* B', 

(f ® A'); (B® g) and (A® g); (f ® B') may not agree in a premonoidal category. 

An arrow f is called central if the equation above holds for any g. Generalizing 

the classical notion of the center of groups and monoids, Power and Robinson 
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define the subcategory of central maps which is necessarily a monoidal category, 

and this is the original definition of the center of a premonoidal category. In some 

interesting applications, a center contains a cartesian subcategory, the inclusion 

being identity on objects and strict premonoidal, for instance see Thielecke's 

work on models of continuations [Thi97]. In this thesis we do not need the full 

generality of Power and Robinson's work, but we prefer to keep this connection, 

as there seems some natural extension of our work to premonoidal structures with 

important applications; see the conclusion chapter for further discussion. 0 

Example 3.2.3 Any cartesian category C is, of course, a cartesian-center sym-

metric monoidal category, where the symmetric monoidal category S is identical 

to the cartesian category C, and the functor F is just the identity on C. 0 

Example 3.2.4 Typically, one may take C as the category of sets and functions. 

To model partial computation, S can be the category of sets and partial functions, 

whose monoidal structure is inherited from the cartesian products of C (which 

are no longer cartesian in 5). To model non-determinism, S can be the category 

of sets and binary relations, again whose monoidal structure is inherited from 

the cartesian products of C. Similar examples are available by replacing C by 

a category of predomains (e.g. w-cpo's) and S by a suitable category of partial 

maps etc. Actually many such S arise as the Kleisli categories of commutative 

monads on C; such cases will play the central role as the semantic models of the 

higher-order extensions in the next chapter. 0 

Definition 3.2.5 (cartesian-center functors) 

A cartesian-center symmetric monoidal functor (shortly cartesian-center functor) 

between cartesian-center SMC's F C -+ S and F' : C' -+ 5' consists of a pair of 

functors (, '11) where 1) : C -+ C' is a strict finite product preserving functor and 

S -* 5' is a strict symmetric monoidal functor, satisfying F o1 = xP 0 .77. 0 

Definition 3.2.6 (cartesian-center natural transformations) 

Let (, 1P) and (2,  W 2 ) be cartesian-center functors from F C -* S to F' 

C' -* 5'. A cart esian-center monoidal natural transformations (cartesian-center 

natural transformation for short) from (41,  111 1 ) to (2,  '11 2) consists of a pair of 

monoidal natural transformations a : 01 4 and 3 45 1 4 IP 2 such that 

.Fa = 13F. (Since ) 7  is identity on objects, components of 0 are determined by 

a, but we require the naturality in 5'). 0 

We write CeSMC for the 2-category of small cartesian-center symmetric mon-

oidal categories, cartesian-center functors and cartesian-center natural transform-

ations. 
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It is well known that cartesian categories satisfy a functional completeness 

property [LS86, HJ95]. We have a parallel result for cartesian-center SMC's 

as a straightforward generalization (and as a special case of the 2-categorical 

formulation in [HJ95]): 

Lemma 3.2.7 Let F C -+ S be a cartesian-center SMC and A be an object 

of C (hence 5). Then the F(leisli category C//A of a comonad A x (-) on C 
is a cartesian category; the F(leisli category S//A of a comonad A 0 (-) on S 

is a symmetric monoidal category; and F induces an identity-on-objects strict 

symmetric monoidal functor from C//A to S//A (for which we write F//A). 

Therefore F//A : C//A -+ S//A is a cartesian- center SMC. 0 

The notation C//A is taken from [HJ95] where it is called "the simple slice cat-

egory over A". F//A serves as a "polynomial category" [LS86} in the following 

sense. 

Proposition 3.2.8 (functional completeness) 

The obvious identity-on-objects cartesian-center functor (I, J)  from F: C -* S 

to F//A : C//A -* S//A satisfies the following universal property. For any 

identity-on-objects cartesian- center functor (, lIt) from F C -* S to F' : C' 
5' with an arrow a : 1 -+ A in C', there is a unique cartesian-center functor 

'I'a) from .77//A : C//A -* S//A to F' : C' -+ 5' such that (a, lI'a) o(I, J) = 

(, W) and L(ITA.l) = a. 0 

(In general the universality should be stated up to isomorphism, as done in [HJ95], 

but here we deal with functors which preserve structure on the nose.) 

Though these observations are obvious in this baic setting, they will remain 

true after introducing additional requirements for interpreting higher-order and 

cyclic sharing, and turn out to be useful for simplifying our calculation (espe-

cially in the cyclic setting, see Lemma 6.2.3 and the proofs of Theorem 7.1.1 and 

Theorem 7.2.1). 

Now let us consider how to interpret sharing theories in our categorical struc-

ture. We proceed as follows: define the notion of structure for a signature; give the 

notion of models; and then show a soundness theorem. A completeness theorem 

follows after constructing the classifying category in the next section. 

Definition 3.2.9 (sharing structures) 

A sharing structure over an S-sorted signature E in a strict cartesian-center SMC 
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C -+ S is a pair of functions [—Is : S —* Obj(S) and [-]] : E —+ Arr(S) 

(subscripts may be omitted, and we just overload [-] for both of them) such that 

[F]] : [(ai ,..., am)] —+ [(r1 ,. . . , rn )]] for each operator symbol F : (a1 ,..., am ) > 

,r,) of E, where [(ai ,... ,am )]] = [ai]] 0... 0 [art 0 

Given a sharing structure [—]j in a strict cartesian-center SMC F : C —+ 8, we 

define [x 1  : a1,... ,Zm : a,, F- M : (ri ,. .. , -r,)]] : [( ai,... ,am )]] —* [(71,. .. ,r,)]] in 

S for each well-typed term x 1  : a 1 ,... ,Xm : am F M : ( Ti, ... ,r) as follows, by 

induction on the typing rules. 

[F, x : a F- x : (a)]] 
IF F- F(M) : (1] 
IF F- 0 : 

[F F- M 0 N : (5, 	fl 
IF F- let (5) be M in N : (1] 
[F, X ,  : a', x : a, IT' F- M : (f)]] 

= [FFM:(S)]];IF] 

= Fe) 
= 
= F(ts); (id ®[F FM: (S)fl; IF, 5: SF N: (1]] 
= (id ®F(c)Oid); IF, x:a,x':a',F'FM: (f)] 

where Ax  = (id, id) : X —* A' x X in C. Intuitively, this definition corresponds 

to the inductive constructions of graphs, as shown by pictures below (reproduced 

from Chapter 2). 

r();([FFM:(e)]e[FFN:(i]) 

[F FM: (if)]; [Fl 	 F(A);(id® [FF M: (d)fl;[F, 	if F N: (11 

(id®F(c)®id);[F,r:c,x' :c',r'FM (f)] 

Note that the derivations of variables and let-bindings amount to identity arrows 

and composition in the simple slice category S//[Fl]],  where ri is defined by 

a1, . .. ,x : at = (ai, . . . , an ). 

Remark 3.2.10 Though a term may have many derivations, it is straightforward 

to show that they all give equal interpretations, and therefore the slightly loose 

definition above does not cause problems. 0 

Lemma 3.2.11 Let [-]] be a sharing structure. Then [ff: 5 F M : ()] = 

S F M{ç/} : ( 1]] where the is and y's are disjoint. 

51 



Proof: Induction along the construction of M. 0 

Definition 3.2.12 (sharing models) 

A sharing model of an acyclic sharing theory is a sharing structure -] in a 

cartesian-center SMC I : C -4 S such that F F M : ( 5)]] = F F N : ( 5)] for 

each additional axiom F F M = N : (5) of the theory. 0 

Therefore a structure is automatically a model of the pure sharing theory (which 

does not have any additional axiom). 

Theorem 3.2.13 (soundness) 

Let ft-Ifl be a sharing model of a sharing theory. If F F M = N : ( 5) is derivable 

in the theory, then ftF F M: (5)] = ftP F N : (5)]]. 

Proof: We check the axioms in Definition 2.2.3 (page 27). 

• (avar) is proved by induction on the construction of M. If M is x, this is an 

instance of (id). If M is either another variable or 0, it is easy to see that 

ftF F let (x) be y in M : (5)]] = ftP F M : (5)]]. For other cases, operators: 

ftP F let (x) be y in F(M) : (Y)]] 

= FA;(idø ftP F y: (a)]ftftF,x : a F M]];ftF]] 
= ftFF let (x) beyin M:(?)]];ftF] 
= ftP F M{y/x} : (5)]]; ftF]] 	 ind.hyp. 
= [P F F(M){y/x} : VA 

tensor products: 

ftF F let (x) be y in M (D N : () f')]] 
= FA; (id OftFFy:(a)]ftTA; 

(ftF,x: a H M : (fl]] 0 ftF,x : or F N: 
= FA; (TA; (id OftF F y : (a)]]);ftF,x: or FM: ()]]o 

TA; (id 0  ftP F y: (a)]]); ftF, x: a F N: (f')]]) 
= TA; (][FFlet(x)beyinMJ)]]®ftFFlet(x)beyinN:(ff')]]) 
= TA; (ftP F M{y/x} : ( 1]] 0 ftP F N{y/x} : (f')]]) ind.hyp. 
= ftP F (MO N){y/x} : ( T-, Y')]] 

let-bindings: 

jr F let (x) be y in let (F) be M in N : (i)]] 
= TA; (id O ftP F y: 

(id 0 ftP, x : a F M : (5')]]); ftP, x: a, F: 5' F N: (1]] 
= TA; (id OFA; (id o ftP F y: (a)]]);ftP,z : a FM: (5')]]); 

TA; (id ® ftF,F: 5' F y: (a)]]); ftF,F: 5',x : a F N : 
= TA; (id® ftF F let (x) be y in M : ( 5')]]); 

ftF,i: 5' F let (z) beyin N: 
= TA; (id O ftP F M{y/x} : ((V)]);ftF,!: 5' F N{y/x} : ( 1]] ind.hyp. 
= ftF F let (F) be M{y/x} in N{y/x} : (if)]] 
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• (id): 
IF F let E be M in i: ()I 

= TA; (id ø[FF  M :()fl;ftF,!: F- i: (ff) 
= 

• (ass j ): 

IF F let () be (let (ff) be L in M) in N : () 1 
= FA; (id ø [['F let () be L in M : 	IF, X-: d F- N: (ff)]] 
= .FA;(idø .F;(id® [['FL: (ê2 )I;[[F,: a2 F M: ()fl); 

5 F N: (fl 
= F;(id® IFFL: (52)JftFA;(id®[F,U: ?2 F M : (di flI); 

a2 ,x: C-71  F N: ( 
= TA; (id ® IF FL: ( 2 )JI) ;  IF, Y- : 62  F let (i) be M in N: ()I 
= [FF let (il)beLin let ()beMinN:(i] 

(This amounts to the associativity of compositions in S//[lFJ.) 

• (ass 2 ): 

IF F let () be L in let () be M in N : () 
= TA; (id ® IF L : (âi)]); If, ±: or, F let (il) be M in N: 

= .FA; (id ø  IF FL: (cfj)JftFA;(id ® IF, i: 	F- M : ( 52)); 
IF, ff: di,q: a2  F N: ( 

= JA; (id ® T A ; (IF FL: (&)JIØIf' FM: (?2 11)); 
[F,: 5i,: 2 F N: (11 

= F& (id ®[FFL®M:(5i,?2)); IF,  .'':i,c:d2F N:(iJ 
= If' F let (,ybeLøMin N:(Y)I 

• 

IF F L 0 (let () be M in N) 

= F;([FFL:(5)JI®[FFlet(i)beMinN:(iI) 
= .FA; (IF FL :(a)Jj®FA;(id0[FF M: 	IF x: 6' F N :(iI) 
= JA; (id 0 [1' F M: (')JJ); .FA; 

([F, x: 5' F L: (5) 0  [F, ê: 5' F N: (fl) 
= F.A(id0[F FM: (59J);[F,ã!: S'F L®N: 
= [FF let (ã) beMin LON:(5,f)]I 

• (subst): 

[ii' F- let (±) be M in F(N) : 
= FA;(idO[F FM: (5'));[F,: 5' F F(N) : 
= TA;(id®[F FM: (5')Jft[F,: 5' F N: (6)1; IF] 
= IF F let (ff) be M in N: 
= [FFF(let(x) beMin N) :()I 

U 
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Definition 3.2.14 (homomorphisms between models) 

Let 	-' be sharing models of a sharing theory in a strict cartesian-center 

SMC F : C -+ S. A homomorphism between -j  and  ft—E' is a family of 

arrows h, : [al —* a]' for each sort a, such that for each operator symbol 

F : (a1,..., am) -+ (Ti ,. . . , i-,) the following diagram commutes. 

frill® 

h a1  ® ... Oham j 	h1 

FA ,  0 . . . ® frm]]'fril]' 0 . . . 0 I[rll' [F] ,  

0 

For a sharing theory T (determined by a set of axioms) over a signature E , we 

write SharingMod(T, (F: C —* 5)) for the category of ¶"s sharing models in a 

strict cartesian-center SMC F : C —* S and the homomorphisms between models. 

After introducing the notion of classifying category (term model) FT : CT -+ 
8T for the theory 'IF, we will show that there is an equivalence of categories 

CcSMC(()7r : CT —* ST), (F: C -~ 5)) SharingMod(T,(F: C -+ 5)). 

3.3 The Classifying Category 

In this section we construct a sharing model from an acyclic sharing theory syn-

tactically. This is done in a similar manner to the standard way to construct a 

term model from an algebraic theory, see for instance [Cr093]. 

Proposition 3.3.1 Given an acyclic sharing theory T over E, the following data 

give rise to a strict cartesian-center symmetric monoidal category FT : CT -+ 5T• 

• Objects are finite lists of sorts. 

• An arrow of the cartesian category CT from (5) to () is a term of the acyclic 

sharing theory of the form 55: 5 H fj: (if). (Note: we work up to renaming 

of free variables, i.e. we identify 2: 5 H M : ('if) with j: 5 H M{'/2} : (1 
for fresh variables p'.) 

am) = x 1  

(FH: (?));(2:5H N:(ff)) = FH N{21ç}: (Y) 
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The terminal object is the empty list (), and the product of (5) and () is 

(5, it). Terminal maps, projections and pairings are given by 

= 

= x: a,y: rF : (5) 

7r I 	=: 5,: F ç: (Y) 

(FFM:(5),FFN:(ff)) = FFM®N:(5,) 

• An arrow of the symmetric monoidal category Sr from (5) to (ff) is an 

equivalence class of terms of the theory S F M : ( f), for which we shall 

write [F : S F- M : (i} Identities and compositions are 

id( c, ... .. um ) = [x 1  :a1,...,xm :amFxiø ... ®xm:(ai,...,om)] 

[FFM:(5)];[x:SFN:(r)] = [FF let ()beMinN:(] 

The unit object is the empty list (), and the tensor product of (5) and (f) 

is (5, Y). Tensor products of arrows are given by 

[FFM:(S)]®[F'FN:()] = [F,F'FM®N:(S,Y)] 

where variables in F and in F' are disjoint. 

• TT  maps CT 's arrow x:CF Y1®  ... ®YTh : () toS'r'sarrow [: SF 

Proof: To check that CT forms a strict cartesian category is routine and easy - 

see also the remark below. We shall see that ST is a strict symmetric monoidal 

category, by checking that the axioms for strict symmetric monoidal categories 

(page 45) are satisfied. 

• Identity laws (Ml'): 

[F F M: (5)]; [: S F &: (5)] 
= [FF let ()beMini':(S)] 
= [17 F- M:(5)] 	 (id) 

:5 F &: (8)]; [ç: SF M: (f)] 
= [:5FIet()beinM:()] 
= [& :5 F M{//}: (f)] 	 (cTvar ) 

= 
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. Unit law of tensor products (M2): 

[F F M:(5)]®[FO :Q] = [FF M®O :(5)] = [FFM: (G-r)] 

The other one is similar. 

. tensor products of identities (M3): 

[:5F:(5)]®[c:F - il:(i] = [: çHFM®q:(5,5)] 

• Associativity of compositions (M4): 

([F F L: (59]; [: SF M: (5')]); [il: 5' F L: (5)] 
= [FF let (5)beLinM:(5')];[:5'FL:V)] 
= [FF let (il)be (let (5)beLinM)inN:(5)] 
= [FF- let (5)beLin let (ç)beMin N:(5)] 	(ass i ) 
= [FFL:(5)];[:dF let (il)beMinN:(5)] 
= [FFL:(5)];([:5F M:(5')];[:5'FL:(f)]) 

• Strict associativity of tensor products (M5): 

[F F L : (5)] ® ([F' F M: (5')] ® [F" F N 
= [FFL:(5)]®[F',F"FM®N:(S',S")] 

= [F,F'FL®M(5,5')]®[F"FN:(5")] 
= ([FFL:(&)]®[F'FM:(S')])Ø[F"FN:(d")] 

• Interchange law (M6): 

([F FM: ()];[&: 6  N: (?)]) ® ([F' FM': (d')]; [V: 6' F N': 
= [F F let (ãf) be M in N : ( 1] ® [F' F let (x ') be M' in N' : 
= [F, F' F (let (5') be M in N) ® (let (5") be M' in N') : 
= [F, F' F let (2) be M in (N® (let (5") be M' in N')) : (f', if)] 	(02) 
= [F, F' F let (2) be M in let (5") be M' in N® N' : (?,if)] 	 (®i) 

= [F, F' F let (2, 2") be M ® M' in N ® N': (f if)] 	 (ass2 ) 
= [F,F'FM®M':(5,5')];[i:S,2':ff'FN®N':(f,if)] 
= ([F FM: (S)]®[F'F M': (5')]);([2: SF N: (f)]®[2" :5' F N': 

• Naturality of symmetry (Si): 

([5': ê FM: (5)]®[g: 6'F N: (if)]);[iZ: F, 9: if F ii® ii: (if,?)] 
=[&:SU:S'FMØN:(fif)];[iZ:?,ff:ifFiiØff:(if,5)] 
=[i: 6, W: 5' Flet (fi,il) be M®N in go fZ: (if,?)] 
= [2': 5, 7: 6" F let (t7) be M in let (s) be N in 60 ff: (if, 5)] (ass2) 

5, : 9'F let (it) be M in ((let (il) be N in ti) ® ii): (if, 5)] (02) 
= [2: 5,: 5'F  let (u) be M in N® iT: (if,?)] (id) 
= [5': 5, : 6'F N® (let (it) be M in it) : (if, 5)] (®i) 
=[5':S,:6"FN®M:(if,f)] (id) 
= [5': 6', 7: 6'F  let (1, iV) be 7® 5' in N{i/q} ® M{7/5'} : (if, 5)] (avar)  

6'F 7® 2': (5', 6)]; [F: S', iii: SF N/ g} ® M{i/th'}: (if,?)] 
5'F 9'® 5': (e',e)];[q: 6',5': SF N® M: (if,?)]  
6'F y'®  2': (5', 5)] ; ([q: 6'F N: (if)]®[i: S FM : (fl]) 
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S2 and S3 follow from the calculation that CT is a cartesian category, and then 

Fir is obviously strict symmetric monoidal. 0 

Remark 3.3.2 Cr  is equivalent to the free strict cartesian category whose objects 

are generated from the set of sorts S. Explicitly, an arrow from (a1 ,.. . , o) to 

(r1 ,. . . , r,,) is determined by a function f from {1,.. . , n} to {1,. . . , m} such that 

Tj = af(o; composition is then determined by that of functions. Thus Cr does not 

depend on the choice of theory T. On the other hand, the symmetric monoidal 

category part ST is determined by the elements of > as well as the axioms of T. 

Note that Fr may not be an inclusion, for instance the axioms of the theory may 

enforce two different variables to be equal. 0 

We say a model is complete if F F M : () Jj = F F- N : ( f)J implies F' F M = 

N: () in the theory. 

Theorem 3.3.3 (completeness) 

Given a theory T, there is a complete model in F : Cr -  Sr , given by a] = a 
and 	= [X-  : S F F() : (1] for F : ( 5) -* (i). 0 

Note that this model is not just complete but also full, in that any arrow is the 

image of a term. 

Remark 3.3.4 The reader who followed the details of the proof may notice 

that the axiom (subst) is not used for showing that the classifying category is 

a cartesian-center SMC. It is not needed even to show completeness - but needed 

for fullness; without (subst) the resulting category contains some "junk" morph-

isms (which can be ignored to show just completeness). 

In Chapter 8 we will extend the definition of operators so that they can have 

parameters for which arbitrary substitution may not be justified, and there these 

junks will get a proper interpretation and explanation. 0 

We call FT : CT -* ST the classifying category of the acyclic sharing theory T, 

and the complete model described above the generic model ft—Ja. The names are 

justified by the following observation. 

Lemma 3.3.5 Let 	be a model of T in a strict cartesian-center SMC F: C -+ 

5, and consider a cartesian-center functor (, ui) : (F : C -+ 5) -+ (F : C' --> 5'). 

We shall define a structure ft—E' in F': C' -* 5' by ftal' = iIJ(fr) for each sort a 
and ftF]I' = iIJ(f[F) for each operator symbol F. Then ft—J' is a model of T. 

Proof: It suffices to show that F F M' = 'I'(I' F M]j) by induction on the 

construction of M. 0 
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Proposition 3.3.6 For any model 1-]] of 'IF in a strict cartesian-center SMC 

F : C —+ 5, there is a unique cartesian-center functor (, 'It) from the classifying 

category to F: C —* S such that ft- = 'P(ft—IG). Pictorially: 

'IF 	•c-4s 

Ha 

C', ST 

Proof: Since CT is the free cartesian category, 0 : CT —+ C is uniquely determined. 

Then IF is required to satisfy 

W([F,x:aFx:(a)]) 	 = 
'I'([I' F .1(M): (1]) 	= 
hI'(FHO:OI) 	 = 
'I'([FF let (&) be M in N: (1]) = 

'PUP, x : a, x' : a', F' FM : ( 1]) 

x : or F x: (a))) 
4J([FFM (5)]);I[F 
F((F HO : 0)) 
T(); (id® T ([F FM: (5)])); 

(1]) 
(id® .1(c) 0 id); 

91 ([T, x' : a', x: a, F' FM 

Such a IF exists as -] is a model, and is uniquely determined by these equations. 

0 

It is easily seen that, in this setting, there is a natural bijection between the 

cartesian-center natural transformations and the homomorphisms, and thus we 

have 

Theorem 3.3.7 

CCSMCCT Sr), (C -4 5)) ± SharingMod(T, (C -4 5)). 

0 

Remark 3.3.8 In the pure case, there is yet another way to construct the classi-

fying category — from sharing graphs. We omit the fairly routine construction; the 

resulting cartesian-center SMC is then isomorphic to the classifying category ob-

tained as above, and the correspondence between sharing graphs and pure acyclic 

sharing theory gives the isomorphism of cartesian-center SMC's. This observa-

tion provides an "algebraic" justification of Theorem 2.2.16 in the last chapter; as 

claimed there, the correspondence is not just a bijection but actually a structure 

preserving isomorphism. 0 
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3.4 Theory-Model Correspondence 

This section is to complete the analogy with the standard categorical type theory. 

There is no technical significance, but may be of some conceptual interest for 

those familiar with the standard theory. A small gap between the traditional 

theory-model correspondence and ours is pointed out. 

Let F C -4 S be a small strict cartesian-center SMC. From this, we construct 

an acyclic sharing theory T 7  as follows. For simplicity, we assume that objects are 

freely generated from a set S. First, sorts are given by the set S. The signature 

of 'IF 7. is then the set of S's arrows, i.e. for each f : a 1 ®.. .®a -* r1 ®.. .Ør, in 

S we associate an operator symbol of type ((a i ,..., am), (r1 , .. . , r,)). Then Tj7 

is an acyclic sharing theory over this signature, with axioms F F- M = N : (Y) for 

all F F- M : ( = ftF F- N : ( in 5, where ft-i is determined by the obvious 

structure in .1 : C -* S. By definition this ft-i is a model of Ti, in F: C -* S. 

In the standard theory, the classifying category of the algebraic theory ob-

tained from a cartesian category C is equivalent to the original C. In the case of 

sharing categories, this is not true, because the cartesian category part of a clas-

sifying category is always a free cartesian category, while not all cartesian-center 

SMC's are in this form. The resulting classifying category from F : C -+ S is 
7.  

not F : C -+ S but the composition Co  -* C -* S where CO  is the free cartesian 

category generated from S. 

If we talk about this restricted class of cartesian-center SMC's, i.e. those whose 

domain cartesian category is free, then we will obtain the standard theory-model 

correspondence. The full subcategory of the restricted models share the same 

initial object (actually the inclusion has a right adjoint which maps a cartesian-

center SMC F : C -4 5 to the composition CO  -+ C 4 5), hence all results 

developed in this chapter apply equally to the restricted version. However we 

have chosen the larger class of models for the following reasons: 

• Most of cartesian categories arising from the natural semantic models of 

computation (or mathematics) are of course not free. Typically we want to 

choose C as the category of sets, as well as category of predomains etc. 

• In later chapters, we assume additional structure on cartesian-center SMC's 

to model higher-order computation. However, none of the restricted version 

of cart esian-center SMC's fits this new requirement. 

In fact, such a restricted class has already been studied by Power, under the 

name of elementary control structures [Pow96a], in the context of the models 
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of action calculi (where Power also considers how to deal with parameterized 

operator symbols in action calculi - we will review this issue in a later chapter 

on action calculi). 

3.5 Modeling Rewriting via Local Preorders 

In Chapter 2 we defined the notion of rewriting systems on sharing theories. 

Following [Pow96a] we give the semantic interpretation of rewriting in sharing 

models. 

Definition 3.5.1 A locally small strict symmetric monoidal category M is loc- 

ally preordered if each homset M(X, Y) is equipped with a preorder '-+x,y  (we 

write f -S-- 
g : X -+ Y for f - *x,y g), and they are preserved by compositions 

and tensor products: 

f~ f':X—*Y g ~ g':Y-+Z 
f;g -'-* 	: X -+ Z 

f-*f':X-+X' g—*g':Y—*Y' 
f®g-+fØg':XØY—X'®Y' 

Lim 

Proposition 3.5.2 There is a bijection between rewriting systems on an acyclic 

sharing theory 'IF and local preorders on ST of the classifying category FT : Cr -+ 

Definition 3.5.3 (minimality condition) 

Let F: C —* S be a small cartesian-center strict SMC. A local-preorder -+ on S 

satisfies the minirnality condition if the images of F are minimal, i.e. F(g) 
~ f 

implies f = F(g). 0 

Proposition 3.5.4 There is a bijection between rewriting systems with the mm-

imality condition on an acyclic sharing theory '11' and local preorders with the 

minimality condition on 5T  of the classifying category Fr : C -+ 5T 0 

Example 3.5.5 Let C be (the strict equivalent of) the category of sets and func-

tions, S be (the strict equivalent of) the category of sets and total relations' and 

F be the obvious identity-on-objects inclusion fuuctor from C to 5, which strictly 

maps the cartesian products of C to the symmetric monoidal products of S (both 

'A relation R c X x Y is called total if for any m E X there is a y E Y such that xRy. 

60 



given by the direct products of sets). We give a local preorder -'-* on S by the 

inclusion of relations, i.e. I? ~ I?' if R D R'. Then ~ satisfies the minimality 

condition - a total relation is minimal w.r.t. ~ if and only if it is a function. 

We may interpret a non-deterministic programming language in this setting. For 

instance, the non-determinisitic primitive zeroORone in Chapter 1 (page 5), to-

gether with rewriting rules zeroURone >- zero and zeroDRone >- one, can be 

interpreted as [zeroORonel = {O, l} ç N, which satisfies {O, 11 -+ {O} = [zerol 

and {O, 11 --* I } = [one]I as we expect. And we have (with an adequate inter-

pretation of +) 

[ 
F- zeroORone + zeroORone : (nat) I 	= {O,1,2} 

[ 
F- let (x) be zeroORone in x + x (nat) 

] 
= 10,21 

as intuitively explained in Chapter 1. 0 
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Chapter 4 

Higher-Order Extension 

In this chapter we develop a higher-order extension of acyclic sharing theories, i.e. 

an extension with lambda abstractions and applications. There have been con-

siderable research on such settings, notably higher-order graph rewriting theory, 

also called lambda graph rewriting systems, which are led by a practical demand 

for efficient implementation techniques for functional programming languages. 

In some sense, it is fairly routine to enrich our theory with lambda terms. 

As in the standard type theory, we just add term construction rules for lambda 

abstractions and applications: 

FHM:(((-7)()) I'F-N:() 
FHMN:() 

The main trouble is to find the right axiomatization for them. It easily turns out 

that assuming either the full j3 axiom or 77 axiom is sufficient for validating any 

substitutions in the theory, thus we lose the notion of sharing. Actually there is no 

practical justification for assuming such strong axioms. In practice, substitutions 

of function closures (lambda abstractions) are acceptable as they can be seen as 

finished computation (at least with no side effects) and copying them is in general 

harmless. 

Fortunately, this restriction on substitutions to values (variables and lambda 

abstractions) matches our theory of sharing very well. In fact, later we will see 

that adding such higher-order constructs is a conservative extension over the 

original first-order sharing theory. 

Remark 4.0.6 There are further possible choices in designing such calculi, which 

however we will not take in this thesis. First, in practical implementations, all we 

need is the notion of weak reduction in which reduction under lambda abstraction 

and substitution into lambda abstraction are not performed. This is what real 

practical interpreters do, but since we are developing the syntax and semantics 
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for (equational) reasoning about such implementation issues, we think it natural 

that our equational theory proves more than the interpreters perform. 

Second, there is an issue of garbage collection (c.f. Example 2.2.10). As 

we have already noticed, in dealing with sharing graphs, there can be isolated 

resources which cannot be accessed from other part of graphs. In many imple-

mentations of functional languages, they can be eliminated safely because such 

junks do not perform any side effects in future (this is not the case for concur-

rent languages which are full of side-effect like interactions between independent 

resources!). So one may wish to add axioms for eliminating isolated resources. 

However, we do not include such axioms a priori - they can be added to strengthen 

the theory and to restrict the class of models for such specific purposes (e.g. the 

study of implementations of functional languages), but we wish to keep our ap-

proach as general as possible. For instance, we will see that our theory perfectly 

covers Milner's treatment of higher-order interactive systems as higher-order ac-

tion calculi (Chapter 8); and our models cover a properly wider range of semantic 

models of computation than those for pure functional computation. We just 

choose the axioms we need, and we believe this results in a better understanding 

of the computation we are talking about. 0 

4.1 Higher-Order Acyclic Sharing Theory 

Definition 4.1.1 (higher-order sorts) 

Given a set of sorts 8, we define the set of higher-order sorts 8" by 

arn=n 

where a ranges over S and in, it over finite lists of elements of 5H  

Definition 4.1.2 (higher-order acyclic sharing theory) 

A higher-order acyclic sharing theory over E is an equational theory on the well-

typed terms with sorts 5" closed under the term construction of acyclic sharing 

theories plus 

F H A(x).M: ((a)(r)) 
abstraction 

FH M :(()(1) F H N :() 

F H MN (f) 
	app ii Lb on 

where the equality on terms is a congruence relation containing the axioms for 

the acyclic sharing theory plus the following additional axioms. 
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(0) (A(4M)N 
(7o) )().y(th) 
(a,,) let (x) be )(U).M  in N 
(app 1 ) (let (th) be L in M)N 
(app 2 ) L(let (iT) be M in N) 

= let (iT) beNinM 

=y 
= N{.x(c).M/x} 
= let (iT) beLin MN 
= let (iT)beMinLN 

Note that the congruence must be closed under the new term constructions 

(lambda abstractions and applications): 

FEM=M':((Y=(i) FF-N=N':() 	FFM=N:(ff) 

F F- MN = M'N': () 	 F H A(iT).M = A(iT).N: (()=>Y)) 

Definition 4.1.3 (values) 

Values are well-typed terms generated by the following grammar. 

V,W ::= 0xA(5T).MVØW 

The "call-by-value" ,thj equations as well as the a-conversion of lambda-bound 

variables follow immediately from our axioms: 

Lemma 4.1.4 The following equations are derivable in higher-order acyclic shar-

ing theories. 

(01) (A(iT).M)V = M{V/&} 

(770(A(X)-VP)) = V 	 (ff 0 FV(V)) 
(a) A(iT).M 	= A(il).M{i/iT} (g are fresh) 

U 

4.2 Higher-Order Acyclic Sharing Models 

Since the higher-order acyclic sharing theories are obtained by adding new terms 

and axioms to the first-order ones, their models should be a subclass of those for 

first-order theories. We add a new requirement to cartesian-center SMC's: 

Definition 4.2.1 (cartesian centrally closed SMC) 

A cartesian centrally closed symmetric morioidal category (cartesian centrally 

closed SMC) is a cartesian-center symmetric monoidal category F : C -* S such 

that, for each object X of 5, the functor F(—) 0 X : C -* S has a right adjoint. 

0 
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We write X = (-) : S -* C for a chosen right adjoint of F(—) ® X, and use 

ap (X = A) ® X -* A in S for the counit of adjunction, as well as A -* 

X ==> B in  for the adjunct off A® X -+ B in S. However, we often omit the 

information of the chosen right adjoints if there is no confusion. We note that F 

itself has a right adjoint I(—). 

Remark 4.2.2 The word "centrally closed" is taken from the work by Power 

[Pow96b]. In his more general framework, we are talking about special instances 

of centrally closed premonoidal —*-categories. 0 

Example 4.2.3 Any cartesian closed category can be seen as a cartesian cent-

rally closed symmetric monoidal category. 0 

Example 4.2.4 Let C be a cartesian closed category and T be a commutative 

monad (see Definition 5.1.3) on C. Putting S = CT (the Kleisli category of T) 

and letting F be the canonical identity-on-object functor from C to 5, we obtain 

a cartesian centrally closed SMC, where the right adjoint X # (-) is given by 

(T—)x. The relation with this monad-based account will be further spelled out 

in the next chapter. 0 

Example 4.2.5 As an instance of the setting described above, we shall consider 

the case where C is the category of sets and functions and T is the covariant 

powerset functor. In this case, S = CT is the category of sets and binary relations 

(i.e. non-deterministic functions), and X =4> Y is simply the set of all relations 

between X and Y. 0 

Definition 4.2.6 (cartesian centrally closed functors) 

A cartesian centrally closed functor between cartesian centrally closed SMC's 

F C -+ S and F' C' -* 5' is a cartesian-center functor (, ill) between them 

such that (,W) is a map of adjoints [ML71] from .9-) 0 X H X = (-) to 

F'(—)®'WX H WX=Y(—) for each object X, i.e. the following diagrams commute 
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(there are many equivalent formulations of this condition - see [ML71]). 

S(F(A)®X,B) 	
H 	C(A,XB) 

W 

S 

S'(W(F(A)øX),WB) 	C'(cPA,(X=B)) 

5' 
II 	 II 

S'(F'(A) ®' WX,c'B) 	C'(4A,WX=YWB) 

0 

We write CccSMC for the 2-category of small cartesian centrally closed 

symmetric monoidal categories, cartesian centrally closed functors and cartesian-

center natural isomorphisms. 1  

As in the last chapter (Lemma 3.2.7 and Proposition 3.2.8) we have a func-

tional completeness result for cartesian centrally closed SMC's: 

Lemma 4.2.7 Let F : C —+ S be a cartesian-center SMC and A be an object of 

C (hence 5). Then F//A : C//A —> S//A is a cartesian centrally-closed SMC. 0 

Proposition 4.2.8 The obvious identity-on-objects cartesian centrally closed 

functor (I, J)  from F : C —+ S to F//A : C//A —+ S//A satisfies the following 

universal property. For any identity-on-objects cartesian centrally closed functor 

(, W) from F: C —* S to F' : C' —+ 5' with an arrow a : 1 —+ A in C', there is a 

unique cartesian centrally closed functor (, 'P4 from F//A : C//A —* S//A to 

F':C' —+ S' such that (0a,Wa)o(I,J)=( 1 ,W) and 4 a (7A.1)=a. 0 

As the first-order case, we introduce the notions of structures and models, and 

show a soundness property. 

Definition 4.2.9 (higher-order sharing structures) 

A higher-order sharing structure over an S-sorted signature E is a sharing struc-

ture (Definition 3.2.9) in a strict cartesian centrally closed SMC. 0 

1 Because of contravariance, for establishing the correspondence with models (Theorem 
4.3.3) we need to restrict our attention to isomorphisms; see Chapter 4 of [Cro93] for a related 
discussion. 
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Given a higher-order sharing structure ft—] in a strict cartesian centrally closed 

SMCF:C-+S,we define ftx i :a i ,...,xm :am FM:(ri,...,rn)fl:ftaifl® ... ® 

I[a,,j -+ frill®... ® fr,j in S for each well-typed term x 1  a1 ,... ,x,, : Jm  F M: 

as follows, by induction on the typing rules. 

[F,x:aFx:(a)] 	 = 
ftITFF(M) :(F)fl 	 = ftFFM: (6)fl; [Ffl 

ftFF-  O:O] 	 = F(!) 
ftFFM®N:(f)] 	= F(t);(ftFFM:(e)]JØ[FFN:(f)fl) 
ft[' F let (a5) be M in N : 	= .F(A); (id® ftc F M : (ê)J); [17, ar: ê F N : (1] 
ft['FA(i).M: (()f))fl 	= F(ftF,& : êFM : (f)fl*) 

ftFFMN:(f)] 	 = 
ftF,x' : a',x : a,F' FM : (1] = ( id ØF(e) ® id); [F,x : a,x' : a',F' FM: (11 

Lemma 4.2.10 Let ft—] be a higher-order sharing structure. Then fr: S F M 

(Ill = b: S F M{g/th} : ( fl] where the x's and y's are disjoint. 

Proof: Induction on the construction of M. 0 

Definition 4.2.11 (higher-order sharing models) 

A higher-order sharing model of a higher-order acyclic sharing theory is a higher-

order sharing structure [—fl in a strict cartesian centrally closed SMC F : C -+ S 

such that [F F M : ( 5)fl = ftP F N : (d)fl for each additional F F M = N : (5) in 

the axioms of the theory. 0 

Thus, again, a higher-order sharing structure automatically induces a model of 

the pure higher-order acyclic sharing theory. 

Theorem 4.2.12 (soundness) 

Let ft—fl be a higher-order sharing model of a higher-order sharing theory. If 

F F M = N : (5) is derivable in the theory, then ftF F M : ( S)fl = ftF F N : 

Proof: We check the additional axioms given in Definition 4.1.2. 

• (/3): 

ftF F (A().M)N: 
= FA; (F(ftF F A(i).M: ((50 (1)fl*) ® ftF F N : ( 5)fl); ap 

S FM: (iI*)®ftF F N: (S)fl);ap 
= FL\; (id ® ftP F N: (S)fl;ftF,&: S FM: ()fl 
= ft['F let (ãl)beNin M:(Y)fl 
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• (ho): 

F F A(i).y:  
= T(F,: 5Fy(*) 
= F((Th;(ftF,: SF y: (()(1) 0 ftF,: SF g: (S));ap)*) 
= F(((ftF F y: ((5) = (Y)) ® ft:5 F i: ((Y)fl; ap )*) 

= FFy: ((5))) ; F(ap*) 

= 1FF y : (()( 1)E 

• (ar): 

F F let (x) be A(y).M in N : ( nfl 
= Fz\; (id 0  ftF F A(il).M:  ((S) 	('))I); F, x: (5) ' (5') F N: ( 
= FA;(idOF(IF,il: SF M :(S')fl);ftF,x :(5)(S')F N: (11 

The rest is similar to the case of (avar), by induction on the construction of 

N. 

• (app 1 ): 

ftlP F (let (g) be L in M)N : 
= TA ; FF- let (rff)beLinM:((5)r4(fl)JI®  If' FN:(S)]1);ap 
= TA; FA; (id ®F FL: (5)) ; ft[: 5' FM: ((S)()) 

0 11' F N: (5)J) ;  ap 

= FA; (id (DFFL:(S'));F; 
(ftF,:5'F M:((S)())OftF,: or'  FN:(5)I);ap 

= 
= IFF let (i)beLinMN:ff)]I 

• (app 2 ) is similar to (app 1 ). 

0 

For a higher-order sharing theory T (determined by a set of axioms) over a 

signature E, we write HSharingMod(T, (F: C -+ 5)) for the category of 'F's 

higher-order sharing models in a strict cartesian centrally closed SMC F: C -+ S 

and the homomorphisms whose components are isomorphisms (see the footnote 

in page 66). 

4.3 The Classifying Category 

As in the first-order case, we construct a term model from a higher-order sharing 

theory. 

Proposition 4.3.1 Given a higher-order acyclic sharing theory 'F, we construct 

a strict cartesian centrally closed SMC FT : Cr -> ST as follows. S' is given 
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in the same way as the first-order case, thus arrows are equivalence classes of 

well-typed terms with contexts. CT is the subcategory of 5T  whose arrows are 

equivalence classes of well-typed values (Definition 4.1.3) with contexts. F r  is 

then the inclusion functor. 0 

Proof: To see that CT is a (strict) cartesian category is straightforward. The 

essential point is the verification of centrally closedness. For each object (5) 

define (S)(—) : ST -# Cr by 

6' F- M : (f)] = [f : (S)=.(ff') F- AQJ).(let (CE) be f() in M) : 

We need to check that (5) = (-) is indeed a functor: 

(5)[E:ifH: (if)] 
= If (5) 	(if) H A().Oet () be  f(ff) in  ) : (( 5) 
= [f: 09 =>  V) H  AW).fW): (()Vfl] 	 (id) 
= [f: (5)(if) Hf: ((5)(if))] 	 (no) 

((5) => [: FF Al : (if1 )]); ((5) 	[: f" H N : (if")]) 

= If : (5) => (if) F A(ifl.Oet () be f(il) in Al) : (( 5) 
[g: (5) => () H A(il).(let () be g(il) in N) : ((5)  

= [f:(5)(if)H 
let g be A(il).(let () be f(Z) in Al) in A(ifl.(Iet (il) be g(') in N) 

((5) 	(if"))] 
= [f:(5)(if)H 

A().(let (p') be (A(ifl.(let (if) be f(it) in M))(il) in N) 
0) = ( if"))] 

= [f:(S)=(if)H 
A(i).(let (il) be (let (ff) be f(il) in lvi) in N) : ((5) => (if"))] 

= [f:(5)(if)H 
.X(il).(let (th') be f(il) in let (7) be Al in N) : ((5)  

= (5)=[if:5Flet (il) be Al in N: (if")] 
= (5)([: ifF Al :(if')];[il: ' H N: (if")]) 

(ar) 

(/3) 

(ass 1 ) 

Now we check that (S) =4> (-) is a right adjoint of F(— ) 0(5). Given f = [F, : 

SF Al : if], define f* = IF F A( -).M : ((S)(if))]. Also define ap = ftf: ((S) 

(if)), £: SF f(s): (if). Then (Fr(f*) 0 id); ap = f as 

LHS 
= [F, /: S F let (f, fl be (A( -).M) 0 7 in f(s) : (if)] 
= [F, 7: S H let (f) be A(iE).M in let () be 7 in f(i) : (if)] 
= [F, U:(7 H ((&).M)(y) : (if)] 	 (avar), (Orr) 

= [F,ff:SFM{y7&}:(if)] 	 (j3) 
=RHS 
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Also, for g = IF H V : ((g) = ('1))] in Cr (thus V is equal to either a variable or 

a lambda abstraction), we show that ((F'r(g) 0 ide); ap)* = g, which completes 

the proof of adjointness. 

LHS 
= [F,i:H let (f, be VØ&Jn f(il) : ( i]* 
= [F, i: CT H V(s) : ()]* 	 (ass 2 ), (o) and (avar) 

= IF H A().V() : 
= RHS 	 (liv) 

0 

Now we have parallel results to the first-order case: 

Theorem 4.3.2 (completeness) 

Given a higher-order acyclic sharing theory T, there is a complete model in TT 

CT —* ST, given by [aI = a-  and 	= [±: or H F(x) : ()} for F: () —* (i). 0 

Theorem 4.3.3 

CCCSMC((CT ST), (C -4 S)) o HsharingMod(T, (C -4 S)). 

0 
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Chapter 5 

Relating Models 

One advantage of our axiomatic approach to the semantic models of sharing 

theories is that it enables us to compare similar systems arising from computer 

science by relating the classes of models. In this chapter we give a few case studies: 

we relate the first-order acyclic sharing theories and the higher-order ones; and our 

sharing theories with those of Moggi's notions of computation [Mog88, Mog9l]; 

and also with intuitionistic linear type theory [Bar96, Ben95, Bie95]. 

All the techniques involved here are fairly standard (though we review all the 

needed notions below), and we believe that our semantic comparisons give a clear 

account of often too complicated syntactic translations and considerations. 

The content of this chapter is relatively independent of the later chapters. 

The semantic proofs of the conservativity results are also reported in the joint 

work with Barber, Gardner and Plotkin [BGHP96, BGHP97, GH97] for the cor-

responding action calculi (see Chapter 8). The detailed descriptions of syntactic 

translations are found in these papers. 

5.1 Preliminaries from Category Theory 

We supply additional material from category theory which is needed in this 

chapter. 

Definition 5.1.1 (monoidal adjunction) 

A (symmetric) rnonoidal adjunction between (symmetric) monoidal categories is 

an adjunction in which both of the functors are (symmetric) monoidal and the 

unit and counit are monoidal natural transformations. 0 

Proposition 5.1.2 (Kelly [Ke1741) 

The left adjoint part of a (symmetric) monoidal adjunction is necessarily strong 
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(symmetric) monoidal. Conversely, if a strong (symmetric) monoidal functor has 

a right adjoint, then the adjunction is (symmetric) monoidal. 0 

Definition 5.1.3 (strong monad [Roc70]) 

A strong monad over a symmetric monoidal category M = (M, 0, 1, a, 1, r, c) is a 

monad (T,ij,p) on M with a natural transformation (called a tensorial strength) 

0A,x :A®TX—*T(A®X) 

subject to the following commutative diagrams. 

I®TX 	T(I(DX) 

TI 

TX 

(A®B)®TX 	
94ØB,X 	

T((A®B)®X) 

_____ 	 I Ta 

A®(B®TX) 	. A® 	

____ 

T(B®X) 	T(A®(B®X)) 
AøOj 

A®X 

AOX 

A®TX 	. T(A®X) 
°A,X 

94TX 	 TO, 

 'x  A®T2X 	. T(A®TX) 	• T 2 (A®X) 

A®ux 	 UAØX 

A®TX
9A,X 	

T(A®X) 

If the following diagram commutes, T is said to be commutative (and 0 is a 

commutative strength): 

TA (2) TB 
TA,H 

TB  TA 

0TB,A 

T(TB®A) 
Tc 

T 	 TUBA 

T(TA®B) 	T(B®TA) 	T 2 (B®A) 

T 2 

T 2 (A ® B) 

______ 	 ______ 	IM 

T(A®TB) TOA;  T 2 (A®B) 	T(A®B) 

. 
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5.2 Higher-Order Extension 

Since the pure higher-order sharing theory is obtained from the first-order one by 

adding additional term constructs and axioms, there is an obvious sound trans-

lation from the first-order theory to the higher-order theory. We show that this 

translation is not only sound but also conservative (faithful) and full. It is pos-

sible to prove this by a purely syntactic way (by comparing the normal forms), 

but here we give a simple semantic proof using a model embedding technique. 

We start with a general fact on the Yoneda construction (free cocompletion) 

on symmetric monoidal categories [Day70]. A systematic account can be found 

in [PR96]. 

Lemma 5.2.1 Let C, V be small symmetric monoidal categories, with a strict 

symmetric monoidal functor F : C -4 V which is identity on objects. Then 

there exist small symmetric monoidal categories C and t, an identity-on-objects 

strict symmetric monoidal functor P C -~ V, together with fully faithful strict 

symmetric monoidal functors i c : C and iv  : V -* V such that the induced 

square commutes and P has a right adjoint; moreover C is symmetric monoidal 

closed, and ic  is dense. 

Proof: Let C be the presheaf category [C°, Sets] and inc  be the Yoneda embed-

ding. As well-known, C is the free symmetric monoidal cocompletion of C and  inc  

is strict symmetric monoidal [Day70, 11<86]. Then F extends to a strict symmet-

ric monoidal functor F : C__*[V0P, Sets] with a right adjoint U = [F°", Sets], so 

that F strictly commutes with F. Although F may not be identity-on-objects, 

we can factorize it as P = J o F so that F : C—*V is identity-on-objects 

and J : V--4[V° , Sets] is fully faithful. A right adjoint of F is then given 

by U o J : V-4C. (C and i7 obtained are not small, but we can cut down them 

to be closed and small.) 0 

Corollary 5.2.2 Let F : C -+ S be a cartesian-center SMC. Then there is a 

cartesian centrally closed SMC P : C S with a fully faithful cartesian-center 

functor (ic, i3 ) from F: C -+ S to F : C - S. Moreover ic is dense. 0 

Theorem 5.2.3 (conservativity) 

If F I- M = N : (5) is derivable in the pure higher-order acyclic sharing theory, 

then it is also derivable in the pure acyclic sharing theory. 

Proof: Let F : CT -4 5T  be the classifying category of the pure acyclic sharing 

theory. From this, we get a cartesian centrally closed SMC FT : CT -4 5T  to which 
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the classifying category fully and faithfully embeds. (This is not strict, so we need 

to take its strict equivalent to be more precise.) The sharing structure in FT 

CT -+ ST canonically extends to a higher-order sharing structure in Pr : CT 

and it is routine to see that it induces a higher-order sharing model. Then the 

fully faithful embedding from FT : CT -+ 5T  to .F : Or -* ST factors through 

the classifying category of the pure higher-order acyclic sharing theory, and this 

implies that the canonical translation from FT : CT -* Sr  to the classifying 

category of the higher-order theory is faithful. 0 

5.3 Notions of Computation 

It has been pointed that Moggi's computational lambda calculus [Mog88] looks 

like higher-order graph rewriting systems. And we notice that our higher-order 

acyclic sharing theory is fairly similar to Moggi's calculus. We make this intuition 

precise by observing that Moggi's models and ours are essentially the same. This 

comparison can be understood as an instance of the work by Power and Robinson 

[PR96], where they give a reformulation of Moggi's notions of computation in 

terms of premonoidal categories. In this thesis we use just symmetric monoidal 

categories, but the story presented here is inspired from their general framework. 

Definition 5.3.1 (A 0-models [Mog88]) 

Let C be a cartesian category. A A , -model over C is a strong monad (T, q, p, 0) 

which satisfies the mono-requirement (each component of ?I is mono) and has 

Kleisli exponents, i.e. there is a chosen object A =* B for each object A and B 

and a natural isomorphism 

CT(J( -  x A),—) C(—,A—) 

where CT is the Kleisli category of T and J : C—*CT is given by J(f) = f; t. ° 

Definition 5.3.2 A )-model is said to be commutative if the tensorial strength 

is commutative. 0 

Theorem 5.3.3 There is a bijective correspondence between commutative A,- 

models and faithful cartesian centrally closed SMC's. 

Proof: Routine; see for instance [PR96]. 0 

We reproduce Moggi's computational lambda calculus (A s-calculus) [Mog88] 

(the simply typed version in [MOTW95]) as below. 
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Definition 5.3.4 (computational lambda calculus) 

The computational lambda calculus (A s -calculus) [Mog88, MOTW95] is determ-

ined by the following data. 

[Types] 

oyr... ::= b I a=- r (where b is a base type) 

[Syntactic domains] 

Variables 	x,y,z... 
Raw Terms M,N... ::= xIAx.MMNIetx=MinN 
Values 	V,W... ::= xIAx.M 

[Typing] 	
F I X :01H M:7 

F,x : a H x : a F H Ax.M: ar 

FHM:ar FHN:a FHM:a F,x:aHN:r 
FH MN: i- 	I'F- let x=MInN:y 

[Axioms] 

() 	(tx.M)V 
(77j) 	Ax.(Vx) 

(let s ) 	let x = V in M 
(id) 	let x=Minx 
(comp) let y= (let x=LInM)inN 
(let. 1) EM 
(let.2) VE 

= M{V/x} 
=V 

(x 0 FV(V)) 
= M{V/x} 
=M 
= let x = L in let y = M in N 
= let z=EinzM 
= let x=EinVx 

where E ranges over non-values, i.e. applications and let-blocks. 0 

Definition 5.3.5 The commutative A,-calculus is obtained by assuming the fol-

lowing additional axiom. 

(comm) let x=Lin let y=MInN = let y = M in let x = L in N 

0 

Since Moggi's (commutative) calculus is sound and complete for (commutat-

ive) .A 0-models, we have 

Theorem 5.3.6 The pure higher-order acyclic sharing theory is a conservative 

extension of the commutative computational lambda calculus. 0 
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5.4 Models of Intuitionistic Linear Logic 

A model of propositional intuitionistic linear logic may be described as a sym-

metric monoidal adjunction between a cartesian closed category and a symmetric 

monoidal closed category [Bar96, BW96, Ben95, Bie95]. Such a structure induces 

a cartesian-center SMC, i.e. a model of the acyclic sharing theory, which implies 

that there is a sound interpretation from the sharing theory into the term cal-

culus of intuitionistic type theory. We show that it is conservative, thus a linear 

type theory is seen as a conservative extension of the pure acyclic sharing theory. 

Again we avoid syntactic proof, by relating the classes of models. 

Definition 5.4.1 (LNL models [Ben95]) 

A linear/non-linear model (LNL model) is a symmetric monoidal adjunction 
F 

C 	S where C is a cartesian closed category and S is a symmetric monoidal 

closed category. D 

First, it is fairly easy to see that an LNL model induces a cartesian centrally 

closed SMC (equivalently Moggi's model, as observed in [BW96]). 

F 
Lemma 5.4.2 Let'C 1 S be an LNL model. Consider the monad T = Go F 

and its Kleisli category CT.  Then the canonical functor J : C 	CT is a cartesian 

centrally closed SMC; and CT is a full subcategory of 5; and F factors through 

J. 1-1  

Intuitively, CT corresponds to a fragment of the linear type theory in which types 

are of the form !A. Therefore a (higher-order) sharing theory can be translated 

into this fragment of a linear type theory (equipped with constants corresponding 

to operator symbols). See [Ben95, BW96] for details of the term calculus. 

The conservativity of the translation is a consequence of the following con-

struction. 

Theorem 5.4.3 Given a cartesian-center SMC F : C -* 5, there is an LNL 

model C TJ*  S such that there are fully faithful strict symmetric monoidal func- 

U 
tors j : C -+ C and j' : S -+ S which satisfy j' o  = F o j. 

Proof: Similar to Lemma 5.2.1. 0 

Theorem 5.4.4 The interpretation from the pure acyclic sharing theory into the 

LNL logic (with operator symbols of E) is conservative. 0 
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Chapter 6 

Models of Cyclic Sharing Theory 

We have delayed introducing the models for cyclic sharing graphs until now. 

The main reason is that, while the models of acyclic settings are obtained by 

revising well known concepts from category theory, we need a relatively new 

notion for interpreting cyclic bindings - traced inonoidal categories introduced by 

Joyal, Street and Verity [J5V96]. The notion of trace, while the concept itself 

goes back to the classical traces of linear maps between finite dimensional vector 

spaces, has originally been invented for analyzing cyclic structures arising from 

mathematics and physics, notably the interplay of low-dimensional topology (knot 

theory) and quantum groups (e.g. {RT90, Kas95}); it is then a natural idea to 

use this concept for modeling our cyclic graph structure too, and it does work. 

In this chapter we deal with the models of cyclic sharing theories. The ad-

ditional structure we require for modeling cyclic bindings is trace as mentioned 

above, which we review below. The construction of this chapter is therefore par-

allel to that for models of acyclic sharing theories (Chapter 3), with additional 

considerations on the trace structure induced by cyclic bindings. 

6.1 Traced Monoidal Categories 

The notion of trace we give here for symmetric monoidal categories is adopted 

from the original definition of trace for balanced monoidal categories [J5931 in 

[JSV96]. 

For ease of presentation, in this section we write as if our monoidal categories 

are strict (i.e. monoidal products are strictly associative and coherence isomorph-

isms are identities). 

Definition 6.1.1 (Traced symmetric monoidal categories [JSV96]) 

A symmetric monoidal category (C, 0, I, c) (where c is the symmetry; cx,y 
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X ® Y—*Y (D X) is said to be traced if it is equipped with a natural family of 

functions, called a trace, 

Tr' C(A (D X, B® X)-4C(A, B) 

subject to the following three conditions. 

• Vanishing: 

Tr ,B(f) = f : A -+ B 

where f : A---+B, and 

Tr' (f) = TrfB(TrØx,nCx(f)) : 

where f:A®X®Y—*BOX®Y 

• Superposing: 

TrØA,cOfl(idc Of) = idc 0 Tr, 3 (f) : C® A—*C 0 B 

where f:A®X—BoX 

• Yanking: 

Trx(cx,x) = idx : X---+X 	0 

We may omit the subscripts if there is no confusion. 

We present the graphical version of these axioms to help with the intuition of 

traced categories as categories with cycles (or feedback, reflexion). Such graphical 

languages for various monoidal categories have been developed in [JS91]. 

Vanishing 
Ce Th 

= 

Superposing 

Note that naturality of a trace can be axiomatized as follows. 
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• Naturality in A (Left Tightening) 

A,B ((90'dX); f)f) = g; Tr8(f) A-- 4B 

where f A'®X—+B oX, g A---+A' 

• Naturality in B (Right Tightening) 

Tr;(g®idx)) = Trf ,(f);g A--+B 

where f:A®X—*B'®X,g:B'--*B 

• Naturality in X (Sliding) 

Tr 3 (f; (idB 0 g)) = Trf'((idA 0 g); f) A—+B 

where f:A®X—*B®X',g:X'—+X 

Left Tightening 	 Right Tightening 

= a 
Sliding 

4~7~-~W 

C 
 EM 

Remark 6.1.2 The axiom Superposing is slightly simplified from the original 

version in [JSV96] 

Tr®c,B®D((idA 0 cc,x); (f 0 g); (id2 0 CX,D)) = TX 	0 g 

where f A® X---->B ®X, g : C--4D. Assuming axioms Left & Right Tight-

enings, ours is derivable from this original one, and vice versa. 0 

Example 6.1.3 A compact closed category [Ke172, KL8O] is a symmetric mon-

oidal category with a contravariant endofunctor (_)* and natural transformations 

I —* A ® A* and CA A* ® A —* I such that 

rA 	9IAGA 	 aA,A.,A 	 A06A 	IA 
A —*IØA ---+ (A®A*)®A —Y A®(A*®A) —* A®I —*A 

AØnA CAØA 	 rA. 
A*_ * A*oI —p A*®(AOA*) —> (A*®A)®A* —* I®A*_A* 
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agree with identity arrows. Such a category is closed, with exponents [A, BI given 

by A* 0 B. In [J5V96], it is shown that any compact closed category is traced, 

for instance the category of sets and binary relations, and the category of finite 

dimensional vector spaces (see examples in the next chapter). Moreover, the 

structure theorem (which gives a more general relation between traced balanced 

monoidal categories and tortile monoidal categories [Shu941) in [J5V96] tells us 

that any traced symmetric monoidal category can be fully and faithfully embed-

ded into a compact closed category (which can be obtained by a simple fraction 

construction). This fact, however, does not imply that the usage of traced categor-

ies is the same as that of compact closed categories. For the study of cyclic data 

structures, we find traced categories more useful than compact closed categories, 

as the latter seems to be too strong for our purpose to model cyclic structures 

(rather than dualities which we do not need at least a priori). In particular, while 

we will see that there are many interesting traced cartesian categories, a compact 

closed category whose monoidal product is cartesian is trivial (because, for such 

C, we have C(A, B) C(A 0 B*, 1)). o 

Example 6.1.4 Examples which are not compact closed include the category of 

sets and partial functions with coproduct as monoidal product, and the category 

of sets and binary relations with biproduct as monoidal product (described in 

detail in [JSV96]). More examples will be introduced in this and next chapters. 

0 

We also refer Abramsky's survey [Abr96a] for some computer science oriented 

examples, especially some models related to Girard's Geometry of Interaction 

[Gir89]. 

Let us briefly answer a few frequently-asked-questions on the axiomatization 

of traces, as this might be helpful for avoiding some misunderstanding. 

Fact. Tr"idx = id1 is not always true. 0 

This condition is true for all traced cartesian categories and also for many other 

traced categories, for instance the category of sets and binary relations, but we 

also have lots of counterexamples - a basic one is the category of finite dimensional 

vector spaces and linear maps, which is the prototypical traced monoidal category 

(traced in the very classical sense), where TrXidx  is the function which multiplies 



the dimension of X, and it is therefore not the identity id, unless X's dimension 

is 1. 

A reflexive action calculus (to be introduced in Chapter 8) does not satisfy 

this condition. However, as suggested and discussed in [Mi194b, Mif96], assuming 

this condition may add some desirable strength to the calculus, since an action 

(process) of the form Tr"idx seems to have no computational significance and 

hence can be identified with the "empty action" idj. 

Fact. A trace may not be functorial - that is, Tr" (f; g) = Tr"f; TrXg  does not 

hold in general. 0 

Here is evidence that an interesting trace is unlikely to be functorial: 

Proposition 6.1.5 For any traced symmetric monoidal category, the functori-

ality condition 

Tr'<(f;g) = Tr"f;Tr"g for any X,f,g 

is true if and only if 

cxx = idx®x for any X. 

Proof: See Appendix. 0 

That is, if a symmetric monoidal category has a functorial trace, the symmet-

ries of the form cxx must be the identities - not many nontrivial examples seem 

to satisfy such a condition. 

Finally we shall mention an observation by Plotkin: 

Fact. Traced symmetric monoidal categories are "cancellable", in the sense that 

if f 0 id ® jç = g 0 idy ®x then f 0 idx = g 0 idx. 0 

This immediately follows from f®idx = Tr"((f(Didx®x); (idOcx,x)). As there 

are symmetric monoidal categories which are not cancellable, we have 

Theorem 6.1.6 (Plotkin) 

There are symmetric monoidal categories to which we cannot add traces freely 

without causing a collapse. In other words, there are symmetric monoidal cat-

egories which cannot be faithfully embedded into traced monoidal categories by 

strong symmetric monoidal functors. 0 
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Plotkin conjectures that cancellable symmetric monoidal categories (which 

include all cartesian categories as well as all cartesian-center SMC's) faithfully 

embed into traced categories. 

Definition 6.1.7 (traced functors [JSV96]) 

A strong symmetric monoidal functor (F, m, ml) between traced symmetric mon-

oidal categories is traced if F(Tr ,3 (f)) = TrFFB(m; Ff; m') holds for any 

f:A®X—*BØX. 0 

6.2 Cyclic Sharing Models 

Definition 6.2.1 (cartesian-center traced SMC) 

A cartesian-center traced symmetric monoidal category (cartesian-center traced 

SMC) is a cartesian-center 5MG whose symmetric monoidal category part is 

traced. 0 

Definition 6.2.2 (cartesian-center traced functors) 

A cartesian-center traced functor between cartesian-center traced categories F 

C -* S and F' : C' -+ 5' is a cartesian-center functor (, iT') between them such 

that IF is traced (since tJJ  is strict, we require it to preserve the trace on the nose). 

0 

We write CcTrSMC for the 2-category of small cartesian-center traced sym-

metric monoidal categories, cartesian-center traced functors and cartesian-center 

natural transformations. 

We again state that the simple slice construction (page 50) preserves our 

structure: 

Lemma 6.2.3 Let F C -+ S be a cartesian-center traced SMG and A be an 

object of C (hence 5). Then the Kleisli category C//A of the comonad Ax (-) on 

C is a cartesian category; the Kleisli category S//A of the comonad A ® (-) on 

S is a traced symmetric monoidal category; and F induces an identity-on-objects 

strict symmetric monoidal functor from C//A to S//A (for which we write F//A). 

Therefore F//A : C//A -+ S//A is a cartesian-center traced 5MG. 

Sketch of the proof: The only new point over Lemma 3.2.7 is that S//A is traced. 

Most axioms are verified easily, except Sliding for which we give the calculation 

below. We want to show TrX(f;  (Cog)) = Tr'((BØg); f) for f: B®X -4 COY 
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and g: Y -+ X in 	hence to show that TrX ((FAA®B®X); (A Oft (CA,C® 

Y); (C(D g)) equals to Try (()7AA  (D B® Y); (A® cAB 0 Y); (A® B® g); f) for 

f A® B® X -+ C ® Y and g: A® Y -+ X in S. The following picture may 

help with the intuition: 

I -F 
/ 	V 

/ --- 

TVX((FA A  ® B® X); (A® f); (CA,C ® Y); (C® g)) 
= 	TrN7(FA ® B ® X) ; (A®f) ; (c, ®Y) ; (C® g )) 

= 	TrA®'((FA A  ® B® g); (A® f); (CA,C 0 Y)) Sliding 
= 	TrIt (Try  ((FAA ®B ®g);(A(& f);(cA,c ® Y))) Vanishing 
= 	Tr4 FA®B®A); Try  ((A®A®B(Dg);(A®f));cA,c) L.& R. T. 
= 	Tr'1 ((FA®B®A);(A® Tr y 	 A®B®g);f));cA,c) L.& R. T. 
= 	Tr-4 ((FAA ® B® A); cA,A®n®A; (Tr 1t ((A ® B® g); f)® A)) 
= 	(FAA® B); TVA  (cAAØBQ4; Tr y  ((A ® B® g); f) L.& R. T. 
= 	(FAA® B);TrA((C A,A®B  ® A);(A® B® cA,A)); Tr y 	 A (D B ®g);f) 
= 	(FAA® B);cA,A®B;Tr A (A®B ® cA,A); Tr y  ((A® B®g);f) Left Tight. 
= 	(FAA® B); °A,AØB;  (A® B® Tr(cA,A)); Tr y  ((A (D B ®g); f) Superpose. 
= 	(FAA® B); cA,AeB; Tr y  ((A 0 B® g); f) Yanking 
= 
= 	(FA ® B) ; (A ®c, ) ; TrY((A ® B® g ) ; f) 

= 	Try  ((FAA®B®Y);(A®cA,B ®Y);(A®B(9g);f) Left Tight. 

0 

Corollary 6.2.4 If C is a traced cartesian category and A is an object of C, then 

C//A is also a traced cartesian category. 0 

These results will be used in the proofs of Theorem 7.1.1 and Theorem 7.2.1. 

Now we proceed to give the semantic interpretation of cyclic sharing theories 

in cartesian- center traced SMC's. We repeat the same pattern with Chapter 3, 

except the treatment of the letrec-bindings. 

Definition 6.2.5 (cyclic sharing structures) 

A cyclic sharing structure over an S-sorted signature E is a sharing structure 

(Definition 3.2.9) in a strict cartesian-center traced SMC. 0 
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Given a cyclic sharing structure [— in a cartesian-center traced SMC F: C -> 5, 

we define [x i : a1,.. . , x : Cm F M: (r1 , . . . , r) : [(a 1 ,..., am ) 	ft(ri,. . . , 
in S for each well-typed term x 1  : Cj,.. . , X : Cm F- M : (ri,.. . , r) as follows, 

by induction on the typing rules. 

IF, x:aFx:(a) 	 = 
IF F F(M) : (1 	= 
EFF-  O:OIll 	 = 
[FFM®N:(e,f)] 	= 
[F F- letrec (5) be M in N : (f)]] = 

[F, x' : a', x : a, F' F- M : (f) 

F ( c'r') 
[FE- M : (6)J; IF] 
FQ) 
F(A);([FFM: (ê) ]®[FFN: (fl]) 
F(s); (id® T11frU([F, if: ff F- M : ( fffl; F(4)fl; 

[F, if: 5 F N : (f)] 
(id® .1(c) ® id); [F,x : a,x' : a', r' FM: (f)]] 

Lemma 6.2.6 Let [—]] be a cyclic sharing structure. Then [: or F- M : ( 5)]] = 
[il: 	M-(/2} : (- 7)]] where the x's and y's are disjoint. 

Proof: Induction on the construction of M. 0 

Definition 6.2.7 (cyclic sharing models) 

A cyclic sharing model of a cyclic sharing theory is a cyclic sharing structure f-
in a strict cartesian-center traced SMC F : C -* S such that IF F- M : (5)]] = 

IF F- N : ( a)]] for each axiom F F- M = N : (a) of the theory. 0 

Theorem 6.2.8 (soundness) 

Let [-]] be a sharing model of a sharing theory. If F F- M = N : (a) is derivable 

in the theory, then IF F M : ( a)]] = IF F N : (5)]]. 

Proof: Similar to the case of acyclic theories, but the calculation becomes con-

siderably complicated because of the trace axioms. We shall check the axioms in 

Definition 2.3.3 (page 34). 

• (avar): Put p = IF, il: a' F z : (a)]], f = [F,x : a, y : 0V F M : (ötl)]] and 

g = [F,x : a,: ' F N: (5)]. Also define f = IF, Y- : &'F M{z/x} : (i')]] 

and g' = [F, : a' F N{z/x} : (- 7)]]. By induction on the constructions 

of M and N, we can show that f = (YA 0.7 7A); (id 0 p 0 id); f and 

gl = (.FA 0 FiX); (id 0 p 0 id); g as in the proof of (avar) for the acyclic 

case. Then 

IF F letrec (x, 7) be z 0 M in N : ( 5)]] 
= FiX; (id 0 TrB'YE((FA 0 id 0 TA); (id 0 Fe® id); (p® f); FA)); g 

IF F letrec () be M{z/x} in N{z/x} : ( 5)]] 
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So it suffices to show 

Tr'((TA ® id ® TA); (id ® Tc ® id); (p® f); TA) 

LHS 
= Tr(Tr((TA® id® TA); (id® TcØ id); (p(D 1); TA)) Vanish. 
= Tr(TA;(p;TA(D id); (id(9 (Te® id); f;TA)) 	Sid., R.T,Yank. 
= Tr(TA; (TA(p®p) (Did);  (id® (Fe® id); f; TA)) 
= RHS 	 R.T. 

• (Id) is the same as in the acyclic case. 

• (ass i ): Put f = F,2: ê,ff: g'  FL: (ê'),g = F,2: 	8?F FM: 

and h=F,2:FN:(iJl. Then 

I[ F letrec (2) be (letrec () be L in M) in N: 

= TA; (id ® Tr 0 (TA; (id ® Tr 91 (f; TA)); g; TA)); h 

I' F letrec (2, 	be M ® L in N :: 
= TA; (id ® Tr'()"A (9 ® f); TA)); Tr; h. 

We shall show 

Tr161 (TA; (id® Tr ) (f; TA); g;  TA)) = T r "')] (TA; (go f); TA); Fir. 

RHS 
= Tr(Tr(TA;(g®f);TA;Tir 
= Tr(TA;Tr((id® TA); (id® Fe® it!); (id® f; TA)); 

(g;TA®id));ir 
= Tr(TA; (id® Tr((id® TA); (Fe® id); (id® f; TA))); 

(g;TA®id);ir 
= Tr (TA; (id® Tr((id® TA); (Fe® id); (id® ffl);g;TA) 
= Tr(TA; (id® Tr((Te® id); (id® f); (id® TA))); g; JA) 
=LHS 

• (ass 2 ) is the same as in the acyclic theory. 

. (g i  are the same as in the acyclic theory. 

Vanishing 

L.T.&R.T. 

Superposing 
R.T. 
Sliding 
L.T, &Yank. 

• (perm): Put f = 	: 5,j : d',i : " F M1  ® M2  M 3  : 
and g = [F, : ?',2 : o- , Z- : 5" F fYI2® Mi ® fYI 3  : ( 5',d,S")J]. Then 
f = (id ® Te ® id); g; (.Fe ® id), and by Sliding and Right Tightening 

T r (ff'êuf")( g;  TA); (): 7e ® id). Now (perm) is proved 
by 

DI" H letrec (,q,2) be M1  ® M2  ® M3  in N: (1] 
= TA; (id® Tv 5  ")'(f;TA));D{I', aT: ê, y: ê', 5: " F N : 
= TA; (id® TvI(6'9'"H  (g; TA); (Fe(a id)); jr, aT: 5, g: 	5: 5" F N : 
= TA; (id® T rB0'Uff")( g;  TA)); (F, q: 5', aT: 5,1: 5" F N : ( H 
= [FFletrec (9,aT,i) beM2®Mi®MsinN:(f) 
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• (subst) is the same as in the acyclic case. 

For a cyclic sharing theory T (determined by a set of axioms) over a signature 

we write CsharingMod(T,(F: C —+ 5)) for the category of T's cyclic sharing 

models in a cartesian-center traced 5MG F : C —+ S and the homomorphisms 

between models. 

6.3 The Classifying Category 

Proposition 6.3.1 Given a cyclic sharing theory T over E, there is a strict 

cartesian-center traced 5MG FT : C-jr —* 5T obtained exactly in the same way as 

we did for constructing the classifying category of an acyclic sharing theory. The 

only difference is that let-bindings are replaced by letrec-bindings 

[FFM:(S)];[1:SF-N:(Y)] = [FFletrec(1)beMhiN:(1)] 

which are powerful enough to determine a trace structure on 5r  as 

SF M : (1,5)]) = [F F letrec (U, 1) be M in: V)I. 

Proof: We need to verify the axioms for traces. 

• Vanishing: 

T r(ê)(T r(d')([F,i :  5,1':? F M :  
= T r(ê)([F, 1: SF letrec (U,i,1')  be M in 90Y: (1,5)]) 
= [F F letrec (9',X-) be (letrec (U, 1, 1') be M in 0;5) in F : ( 1)] 
= [F F letrec (Q,1,,.i,1') be ®Z® M in V: (1] 	(assi) 
= [F F letrec (1,U,1,1') be i®M in U: (1)] 	 (crvar ) 

= [F F letrec (, £, 1') be M{/1} in : (if)] 	 (avar) 

= [F F letrec (U,1,1')  be M in U: (1] 	 (a) 

= Tr'')([F, 1: 5,1': ? F M: V, 5, 59]) 

The another vanishing axiom is trivial. 

• Superposing: 

Tr(1 (id() 0 [F, X- :  S F M: (5', 5)]) 
= T r(d)([ff :  1,F,1: SF ç®M :(,5',5)]) 
= [il:if,FFletrecW',1',1)beU®Minil'®1':V,59] 
= [U: if, F F letrec (1', 1) be M in U® 1': (1,5')] 	(avar) 

= [U: 1, F F ff0 (letrec (1', 1) be M in 1') : (1,5')] 	(®) 
= id(q) 0 [F F letrec (1', 1) be M in 1' : (5')] 
= id(q) 0 Tr()([F, X- :  S F M : (5', 5)]) 
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• Yanking: 

= Tr(l([ :  S,: SF j®5: (5,5)]) 
= [:SFIetrec(i,ff)beq®ini:(S)] 

= Ix : SF letrec (il) be Fin 	: (5)] 	(avar) 

= [: SF 	: (5)] 	 (id) 

= id(e) 

• Left Tightening: 

Tr()(([F FM: (1] ®id(e); [ç: F,g: SF N: (S',S)]) 
= Tr(?)([F, :  SF M Oz-  : (,5)];[il: 	SF N: ((7- ', S)]) 
= Tr('F)([F, z: S F letrec (, E) be M 0 Y in N : (5', 5)]) 

= [F H Jetrec (i7, ) be (letrec (g, :F) be M 0? in N) in ii : (6')] 

= [F F letrec (il,?,ff,) be N® M ®?in i/: (5')] 
= [FFIetrec(E,il,?,')be?®N®Min:(S')] 

= [F F letrec (il, i, ') be N{i/?} ® M in ii: (59] 
= [F F letrec (p', ti, F) be MØ N{F/} in ii: ((5')] 
= [F F letrec () be M in letrec (?7 1  1) be N{F/?} in U- :  ( 5')] 
= [F F letrec () be M in letrec (9,1 ) be N in il: (5')] 

= [F FM: (f)];[: ffF letrec (U-, X-) be N in ii: (5')] 

= [F FM: (];Tr(9)([: 	SF N: (5',S)]) 

• Right Tightening: 

Tr) ([F, X-  : S F M : ( 6)]; ([ç: f F N : (p9] ® id()) 
= Tr(9)([F,?: SF M : (Y,S)];[il: 	: SF N®?: (',S)]) 
= TrV)([F, : SF letrec (Y-,?) be M in N® F: (',S)]) 
= [F H letrec (U- , :F) be (letrec (Y-, ;F) be M in N® F in it: 
= [F F letrec (it,?,ç,i) be N® ?®M in it: (if')] 

= [F F letrec (?,,?) ü') be Z- 0 MO N in it: (if')] 
= [F F letrec (il, F, it) be MO N{z755} in it : 
= [F F letrec 	be Mo N in ii: (i')] 
= [F F letrec (, ) be M in letrec (it) be N in it: (f')] 
= [F F letrec (Y-, :F) be M in N : (if')] 

= [F F letrec (9,:F) be M in N{it/il} : 

= [FFIetrec(,it,?)beil®MinN:(if')] 

= [F F letrec (ff) be (letrec (V-, X-) be M in it) in N: (f')] 
= [F F letrec (it,if) be M in it: (T-)]; [g: ifF N: (9')] 

= Tr(3)([F,E:5 FM: (9,5)]); [: 9F N: (9')] 

(ass i ) 

(perm) 

(avar) 

(perm) 

(ass 2 ) 

(a) 

(ass : ) 

(perm) 

(avar) 

(a) 
(ass 2 ) 

(id) 

(a) 
(ovar) 

(ass j ) 
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• Sliding: 

= 	Tr()([q:fi:êFM :(f',?)];[:,:e'F®N:(e,5)]) 
= 	Tr(6)([9:f,x:eFletrec(ü,2)beMinff®N:(9,a)]) 
= 	[7: fl- letrec (9,E) be (letrec (, 2) be M in it 	N) in ff: 
= 	[ff: fF letrec (9,:F, iT, 2) be U®N®M in U: (if)] (ass i ) 
= 	[ff: fF letrec (aT, if, 2) be N ®M in U: (if)] (cvar) 

= 	[tV: aTH letrec (aT,2) be N® M{w5/g} in 1: (9)] (cv) 
= 	[if: fl- letrec (g,aT,.2) be if® N® Al in g: (if)] (civar) 

= 	[if: F letrec (a,i,g,aT) be M®ziY® N in i: (if)] (perm) 
= 	[-if: fF letrec (a,2) be (letrec (Y, Z) be tf®N in M) in A: (if)] (ass 1 ) 
= 	Tr() ([uil: F, Y: 5' F- letrec (W, Y) be if® N in Al: (if,?)]) 
= 	TrV 1) GwThfF:e'Hw®N:(ra)];[y:fx:aFM:(if,a')]) 

= 	TPV')((id (1  ® [1: ff'F N: (5)]); [: f, Z: S FM: (if,?)]) 

U 

Theorem 6.3.2 (completeness) 

Given a theory '117, there is a complete model in Fr : CT —* 8-n given by fr] = a 

and ftP] = [aT: H F(aT) : (2)] for F : (5) —* (2). 0 

Theorem 6.3.3 

CcTrSMC((CT 4 9'), (C -4 S)) o± CSharingMod(T, (C -4 8)). 

LEI 
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Chapter 7 

Recursion from Cyclic Sharing 

We have studied models of both higher-order acyclic sharing theories (Chapter 4) 

and (first-order) cyclic sharing theories (Chapter 6), as two orthogonal extensions 

of (first-order) acyclic sharing theories (Chapter 3). Now we are ready to deal 

with the most interesting setting in this thesis: the combination of the higher-

order extension with cyclic sharing. The consequence is more than an ad hoc 

combination of two ideas. First, we get a wider class of models of recursive 

computation, which properly contains the traditional models such as domain 

theoretic examples but also some non-traditional examples, which are suitable 

for explaining recursive computation from resource-sensitive cyclic computation, 

i.e. recursion from cyclic sharing. Second, our theory is closely related to cyclic 

lambda calculi (lambda calculi with cyclic sharing) which have been studied as 

a foundation for practical implementation of functional recursive computation. 

Therefore our result relates a rich class of models and practically interesting 

calculi: cyclic lambda calculi serve as languages for our new class of models of 

recursion, while our models serve as a semantic counterpart of cyclic lambda 

calculi. 

Unlike the previous chapters, we begin with semantic observations, rather 

than starting from the syntax (which is more or less derivable from the previous 

ones anyway). We first show a surprisingly simple connection between fixed point 

operators and traces on cartesian categories. This observation itself stays in the 

traditional contexts without a notion of sharing, but we then extend this result 

to cartesian centrally closed traced SMC's, thus our models of higher-order cyclic 

sharing. After that we introduce higher-order cyclic sharing theories, paying 

some attention to the related systems known as cyclic lambda calculi. As an 

application, we analyze fixed point operators definable in cyclic lambda calculi 

using our semantic models. 

Some results in this chapter are also reported in [Has97}. 
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7.1 Fixed Points in Traced Cartesian Categories 

Compact closed categories whose monoidal product is cartesian are trivial. This 

is not the case for traced categories. In fact, in [JSV96] it is shown that the 

category of sets and binary relations with its biproduct as the monoidal product 

is traced. Actually we find traced cartesian categories interesting in the context 

of semantics for recursive computation. Here is a theorem to relate the traditional 

fixed point operators and traces on cartesian categories, proved by Martin Hyland 

and the author independently: 

Theorem 7.1.1 A cartesian category C is traced if and only if it has a family of 

functions 

(_)tAX : C(A x X,X)—+C(A,X) 

(in below, parameters A, X may be omitted) such that 

(_)t  is a parametrized fixed point operator; for f Ax X--4X, ft : 

satisfies ft = (idA, ft); f. 

(—)t  is natural in A; for f : A x X—+X and g: B—+A, ((g x idx); f)t = 

g; ft : 

(_)t  is natural in X; for f: A x X--4Y and g: Y --- X, (f;g)t = ((idA x 

g); f)t; g: AX. 

(_)t  satisfies Be/viE's lemma; for f : A x X x Y—+X and g: A xxx Y—*Y, 
(f ,g)t = 	 : AX x Y. 

Sketch of the proof: (The full calculation is found in Appendix.) From a trace 

operator Tr, we define a fixed point operator (_)t  by 

ft = TrX(f ; A x ) : 

for f : A x X—+X. Conversely, from a fixed point operator (_)t  we define a 

trace Tr by 
TrX(f) = (id A ,(f;,r x )t);f;,rB ,x  : 

(equivalently ((idA x 7r' 'x); f)t; rEx) for f : A x X—*B x X. We note that 

these constructions are mutually inverse. 0 

There are several equivalent formulations of this result. For instance, in the 

presence of other conditions, we can restrict 3 to the case that g is a symmetry 

(c.f. Lemma 1.1. of [JSV96]). For another - practically useful - example, Ryland 

has shown that axioms 1-'4 are equivalent to 2 and 



• (parametrized) dinaturality: ((rrA,x,f);g)t = (id,((7ry,g);f)t);g : A—+ 

X for f:AxX—*Y and g:AXY--*X 

• diagonal property: (ft)t = ((idA x (idx, idx)); f)t for f : A x X >< X---4X. 

This axiomatization is the same as that of "Conway cartesian categories" in 

[BE96]. Further variations are: 2,4 with dinaturality; and 1,2,4 with the sym-

metric form of 4. 

Perhaps the simplest example is the opposite of the category of sets and partial 

functions with coproduct as the monoidal product; the trace is given by a form of 

feedback which maps a partial function f : X —* A+X to ft : X —* A, determined 

by iterating f until we get an answer in A if it exists. Similar settings are studied 

in detail in [BE93}. 

An immediate consequence of Theorem 7.1.1 is the close relationship between 

traces and the least fixed point operators in traditional domain theory. 

Example 7.1.2 (the least fixed point operator on domains) 

Consider the cartesian closed category Dom of Scott domains and continuous 

functions. The least fixed point operator satisfies conditions 1-'4, thus determines 

a trace operator given by TrX(f) = 

A —* B for f : A x X -+ B x X. Since the least fixed point operator is the 

unique dinatural fixed point operator on Dom, the trace above is the unique one 

on Dom. 0 

The same is true for several cartesian closed categories arising from domain the-

ory. In fact, a systematic account is possible. Simpson [Sim93] has shown that, 

under a mild condition, in cartesian closed full subcategories of the category of 

algebraic cpo's, the least fixed point operator is characterized as the unique dinat-

ural fixed point operator. On the other hand, it is easy to see that the least fixed 

point operators satisfy the conditions of Theorem 7.1.1. Therefore, in many such 

categories, a trace uniquely exists and is determined by the least fixed point op-

erator. However, we note that there are at least two traces in the category of 

continuous lattices, an instance which does not satisfy Simpson's condition; this 

category has two fixed point operators which satisfy our conditions - the least 

one and the greatest continuous one. 

Further justification of our axiomatization of fixed point operators comes from 

recent work on axiomatic domain theory which provides a more abstract and 

systematic treatment of domains and covers a wider range of models of domain 
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theory than the traditional order-theoretic approach. For this, we assume some 

working knowledge of this topic as found in [Sim92]. Readers who are not familiar 

with this topic may skip to next section. 

Example 7.1.3 (axiomatic domain theory) 

Consider a cartesian closed category C (category of "predomains") equipped with 

a commutative monad L (the "lift") such that the Kleisli category CL (category 

of predomains and "partial maps") is algebraically compact [Fre9l]. This setting 

provides a canonical fixed point operator (derived from the Jixpoint object [CP92]) 

on the category of "domains" (obtained as the Kleisli category of the induced 

comonad on the Eilenberg-Moore category CL)  which satisfies our axioms - Beki's 

lemma is proved from the algebraic compactness of CL [Mog97] (this idea is due to 

Plotkin). Thus the requirement for solving recursive domain equations (algebraic 

compactness) implies that the resulting category of domains is traced. 0 

Regarding these facts, we believe that traces provide a good characterization of 

fixed point operators in traditional denotational semantics. 

We conclude this section by observing an attractive fact which suggests how 

natural our trace-fixpoint correspondence is. Our correspondence preserves a 

fundamental concept on fixed point operators called uniformity, also known as 

Plotkin's condition. This is important because fixed point operators are often 

canonically and uniquely characterized by this property. 

Proposition 7.1.4 In a traced cartesian category, the following two conditions 

are equivalent for any h : X--4Y. 

• (Uniformity of the trace operator) For any f and g, 

AxX 1 'BxX 

if AXhJ Bxh commutes then TrX(f) = Tr(g). 

A x Y 9 'BxY 

• (Uniformity of the fixed point operator) For any f and g, 

A x X 

if Axh 	 h commutes then ft;  h = gt .  

A x Y g 'Y 

Proof: See Appendix. 0 

In the case of domain-theoretic categories, the second condition is equivalent 
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to saying that h is a strict map (L-preserving map). This fact suggests the 

possibility of studying the notion of strict maps and uniformity of fixed points in 

more general settings as in the following section. In particular, the first condition 

makes sense in any traced monoidal category. We remark that this notion of strict 

maps seems to be far more flexible (or fragile) than that we have in traditional 

domain theory; in some traced monoidal categories every arrow is strict (e.g. 

category of sets and partial functions), whereas in some cases only isomorphisms 

are strict (e.g. category of sets and relations). 

Remark 7.1.5 Here is an interesting unanswered question: when do strict maps 

(defined with respect to the uniformity condition on fixed point operators or 

traces as above) form a category? Though in many concrete examples (including 

all domain theoretic examples) strict maps do compose, our abstract definition is 

not strong enough to ensure that. 

More generally, it is straightforward to define the notion of "uniform trans-

formations" (with respect to a class of "strict maps") between mixed variant 

functors in a similar manner to dinatural transformations [ML71, SD70]. Unlike 

dinaturals, uniform transformations do compose, but the tradeoff is the failure 

of the compositionality of (abstract) strict maps. We are not keen to go further 

in such a general setting, but this question may be a key to develop a theory 

of recursive computation based on traced categories - we admit that our under-

standing on this topic is still premature. 0 

7.2 Generalized Fixed Points 

Our observation so far says that to have an abstract trace is to have a fixed point 

operator in the traditional sense, provided the monoidal product is cartesian. 

However, regarding our motivation to model cyclic sharing, this setting is some-

what restrictive - in a cartesian category (regarded as an algebraic theory) arbit-

rary substitution is justified, thus there is no non-trivial notion of sharing. 

Our next step is then to extend this result to our models of cyclic sharing 

graphs. It turns out that the combination of the higher-order extension with the 

cyclic sharing theories is sufficient for supporting a generalization of the result 

of the last section. The essential point is the use of an adjunction between a 

cartesian category and a traced monoidal category for creating recursion, which 

is spelled out below. 

Let T : C — ~S be a identity-on-objects strict symmetric monoidal functor 

from a cartesian category C to a traced symmetric monoidal category S, with a 
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right adjoint. That is, F : C--4S is a cartesian-center traced SMC with a right 

adjoint. 

Theorem 7.2.1 Given F : C---+S as above, there is a family of functions 

()t : S(A(9X,X)—*S(A,X) 

such that 

(-)t is a parametrized dinatural fixed point operator: for f: A®X—*Y in 

Sand g : AoY—*X in S, ((F(L14®idx);(idA ® f);g)t = F(AA); (idA® 

((F(/XA) ® id y ); (idA ®g); f)t);g : A—*X. 

(_)t  is natural in A in C; for f : A 0 X--->X in S and g : B--4A in C, 

((F(g) (D idx); f)t = F(g); ft : 

Sketch of the proof: (The full calculation is found in Appendix.) Let us write 

U : S—+C for the right adjoint of F, and ex : UX—*X (in 5) for the counit. By 

definition, we have a natural isomorphism (_)* : S(A, B) —+ C(A, UB). We also 

define 0A,X : A x UX—.U(A oX) in C by 0A,X = ( MA  (D cx )*. Now we define 

(—)tby 
ft = TrX (F(OAX; Uf; ux)); x : A—*X in S 

for f:AOX—*X in S. 0 

The statement above is slightly stronger than Theorem 3.5 in [Has97]. The 

first condition immediately implies that (_)t  is a parametrized fixed point op-

erator, in the sense that, for f : A 0 X--+X in 5, ft : A—+X satisfies ft = 

F(A); (idA ® ft); f. 
We note that the first condition is equivalent to saying that (_)t  satisfies 

(f ;g)t = (g; f)t ;y:  I X for f : X Y and y: Y X in S//A (page 50). 

Since F//A : C//A -+ S//A has the structure in the assumption (by Lemma 

6.2.3, also it is routine to see that F//A has a right adjoint U//A given by 

U//A(f) = 0x; U(f)), we havejust to show this simpler equation in the relativized 

setting, and this helps us to simplify the proof significantly. 

Observe that an easier construction (c.f. Theorem 7.1.1) Tr-"(f;F(z\x)) 

A--4X from f : A 0 X—>X in S does not work as a fixed point operator - the 

construction in Theorem 7.2.1 uses the adjunction in a crucial manner. 

It is in general impossible to recover a trace operator from a fixed point oper-

ator which satisfies the conditions of Theorem 7.2.1; for instance, if S has a zero 
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object 0 such that 0 0 A 0 (e.g. Rel below), the zero map satisfies these con-

ditions. It is an interesting question to ask if we can strengthen the conditions so 

that we can recover a trace operator, though such conditions seem very delicate. 

In particular, in this generalized setting, our fixed point operator may not satisfy 

the Beki? property nor the diagonal property (see Example 7.2.8 below). 

A careful inspection of our construction reveals that we need the trace operator 

just on objects of the form UX (equivalently F(JX) as F is identity-on-objects); 

actually it is sufficient if the full subcategory of S whose objects are of the form 

of UX 1  ® ... 0 UX, is traced. Thus such a fixed point operator exists even 

in a weaker setting. It would be interesting to see if this fixed point operator 

determines this sub-trace structure. It would be more interesting to see if there is 

a good connection between such a fixed point operator and fixed point operators 

in models of intuitionistic linear logic as studied in [Bra95]. 

An observation corresponding to Proposition 7.1.4 is 

Proposition 7.2.2 In the setting as described above, assume that h : X -* Y 

in S satisfies the following condition: for any f and g in 5, if 

A®UX 	- B®UX 

A®F(Uh) 	 B®F(Uh) 

AØUY 	' B®UY 

commutes, then Tr(f) = Tr ' (g). Then, for any f and g, if 

AOX 

A®/I ! 

AØY 9 'Y 

commutes then ft;  h = gt .  

Proof: See Appendix. 0 

Note that our setting is equivalent to saying that we have a cartesian category 

C with a monad T = U o F on it, which has a commutative tensorial strength 0, 

such that the Kleisli category S = CT is traced. So, as we have already noted, 

it is possible to say that we are dealing with some notions of computation in the 

sense of Moggi [Mog88, Mog9l] with extra structure (trace). 
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Recall that higher-order acyclic sharing theories have been modeled in terms 

of cartesian centrally closed SMC's, whereas cyclic sharing theories were modeled 

by cartesian center traced SMC's. To model higher-order cyclic sharing theor-

ies, which will be presented and analyzed in the following sections, we use the 

combination - cartesian centrally closed traced SMC's. That is, 

Definition 7.2.3 (cartesian centrally closed traced SMC) 

A cartesian centrally closed traced symmetric monoidal category (cartesian cent-

rally closed traced SMCs) is an identity-on-objects strict symmetric monoidal 

functor F : C—*S where C is a cartesian category and S a traced symmetric 

monoidal category, such that for every object X the functor F(—) 0 X : 

has a right adjoint X = (-) : S—+C. 0 

Remark 7.2.4 In [Has97] a cartesian centrally closed traced SMC is called a 

traced computational model (following Moggi's "computational models"). 0 

Given a cartesian centrally closed traced SMC F : C -* 5, F itself has a right 

adjoint I=(—). Therefore 

Proposition 7.2.5 In a cartesian centrally closed traced SMC F : C -* 5, there 

is a fixed point operator as described in Theorem 7.2.1. 0 

As in the case of cartesian closed categories, we also have an internalized version 

of the fixed point operator in cartesian centrally closed traced SMC's: 

Corollary 7.2.6 Given a cartesian centrally closed traced SMC F : C -+ 5, there 

is a dinatural transformation fix_ : F((—) = (-))--*(-) whose components lie 

in S and satisfy ±ixX = F(Axx); (idx*x Of lxx); apxx : X=,X -* X. 

Proof: Let f lxx be apx  and observe that F(f*);  f lxx = ft for f: A®X - X 

in S. 0 

To help with the intuition, we shall give a selection of cartesian centrally 

closed traced SMC's below. Most of them have already been mentioned in the 

introduction. 

Example 7.2.7 (traced cartesian closed categories) 

A traced cartesian closed category is a cartesian centrally closed traced SMC 

in which the cartesian category part and the traced category part are identical. 

Examples include many domain-theoretic categories such as Example 7.1.2. 0 
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Example 7.2.8 (non-deterministic model) 

The inclusion from the category Set of sets and functions to the category Rel of 

sets and binary relations (with the direct product of sets as the symmetric mon-

oidal product) forms a cartesian centrally closed traced SMC: Rel(A 0 X, B) 

Set(A, Rel(X, B)). The trace operator on Re!, induced by the compact closed 

structure of Re!, is given as follows: for a relation B : A 0  X--4B 0 X, we 

define a relation Tr"(R) A—*B by (a, b) E T rX(R) if ((a, x), (b, x)) E B for 

an x E X (here a relation from A to B is given as a subobject of A x B). The 

parametrized fixed point operator (_)t  on Rel is given by 

lit = {(a, x) I  IS C  S = {y I Iz ES ((a,z),y) E R} & X  S} 

for R : A®X—>X (and lit  is not the zero map!). Its internal version is given by 

fixx ={(R,x) I ISçX  S;R=S& x  S} : Re!(X,X)—+X. 

This fixed point operator does not satisfy the diagonal property (hence Bekiâ 

property). For instance, consider B : bool 0  bool —* bool (where bool = {t, f}) 

such that (t, f) B  f and  (f, t) B 1. Then lit  bool —~ bool is determined by 

t lit f and  f IV t, therefore Rtt c bool by {t, f}. However (Ab001; R)t = 0. 0 

Note that we can use an elementary topos instead of Set, which may provide a 

computationally more sophisticated model. 

An example with more classical flavour: 

Example 7.2.9 (finite dimensional vector spaces over a finite field) 

Let F2  be the field with just two elements (thus its characteristic is 2), and 

Vect be the category of finite dimensional vector spaces (with chosen bases) 

over F2 . There is an identity-on-objects strict symmetric monoidal functor from 

the category of finite sets to Vect which maps a set S to a vector space with 

the basis 5, and this functor has a right adjoint (the underlying functor). Since 

Vect is traced (in the very classical sense), this is an instance of a cartesian 

centrally closed traced SMC. Note that this example is similar to the previous 

one - compare the matrix representation of binary relations and that of linear 

maps. 0 

Instead of 2 we can take any other prime number p and use the field F of p 

elements. If the base field is not finite, the identity-on-objects strict functor 

cannot have a right adjoint, thus fails to be centrally closed. 
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Example 7.2.10 (higher-order reflexive action calculi) 

In Chapter 8 we observe that the higher-order reflexive extension of an action 

calculus [Mi196, Mi194a, Mi194b] forms a cartesian centrally closed traced SMC. 

In this calculus the fixed point operator (_)t  is given by 

= t= ((x)r(idm 0  (x) ap e .) a' .  copy) ap 	: 

for a : m 0 n--4n. Mifsud gives essentially the same operator ITER(a) in his 

thesis [Mif96]. Using this, we can present recursion operators in various process 

calculi, typically the replication operator. This issue will be further investigated 

in Chapter 8 (Example 8.3.8). D 

7.3 Higher-Order Cyclic Sharing Theory 

Now it is almost routine to introduce higher-order cyclic sharing theories - they 

are obtained by combining cyclic sharing theories and higher-order ones. 

Definition 7.3.1 (raw expressions) 

M ::= x F(M) 01 M1 ØM2  I Ietrec(xi,...,xm) beM1  in M2  I Ax.M I M1M2 

Definition 7.3.2 (values) 

V ::= 0 1 xlA(i!).MIV1QV2 

.J 

Definition 7.3.3 (typing) 

1', x : a F x: (a) variable 

operator 
FFF(M):(ri ,...,) 

F F 0: 	
unit 

am) 	FFN:(ri ,...,) 
tensor 

FF MON : (a i ,... , a, r1 ,. .. , r) 

a 1 ,... : am F M:  
F, x 1 : a 1 ,.. . , x, 	a 	FN: (Ti, ... , 

r,) 
letrec 

F F let rec (x 1 , . . . , x,,) be M in N : (ri ,. . . , r,) 

F,x : a, x' : a', F' FM : (ri ,. . 

exchange 
F, X ,  : a',x : a, F' F M : (r1 ,. . . 

98 



(5) abstraction 
F F A(x).M : ((5)(5)) 

FFM:((5)(fl) FFN:(5) 
application 

F F MN (1) 

0 

Definition 7,3.4 (axioms) 

(id) letrec (&) be M in £ = M 	(ä! 0 FV(M)) 
(assi ) letrec (5') be (letrec () be L in M) in N = letrec (5', 7) be M ® L in N 
(ass2 ) letrec (5') be L in letrec () be M in N = letrec (5', ) be L ® M in N 

(®) L ® (letrec (5') be M in N) = letrec (5') be M in L ®N 

(02) (letrec (9) be L in M) ON = letrec (1) be L in MON 
(perm) letrec (5', U, 2) be M1  ®M20M3 in N = letrec (p', 5', 2) be M2 ®M1 ®M3 in N 
(subst) letrec (5') be M in F(N) = F(Ietrec (5') be M in N) 

(0) (A(5).M)N 

(m) A(5).y(5') 
(app 1 ) (letrec (5) be L in M)N 
(app 2 ) L(Ietrec (5') be M in N) 

(deref) letrec (x,) be V®M in N 
(g.c.) letrec (x) be V in N 

= letrec (5') be N in M 

=y 
= letrec (if) be L in MN 
= letrec (if) be M in LN 

= letrec (x, j)  be V® (M{V/x}) in N{V/x} 
= N (x $ FV(N) U FV(V)) 

Both sides of axioms must have the same type under the same context. 0 

Definition 7.3.5 (higher-order cyclic sharing theory) 

A higher-order cyclic sharing theory over >IJ is an equational theory on the well-

typed terms closed under the term constructions described above, where the 

equality on terms is a congruence relation containing the axioms above. By the 

pure higher-order cyclic sharing theory, we mean the higher-order cyclic sharing 

theory with no additional axioms. 0 

As in the first-order case, for readability, we introduce the following syntax for 

the multiple letrec-binding: 

cl,...,xk:akFM:(oi) (1 ~ ik) 
F, 5' 
	

cl,...,xk:CkFN:(r) 

F F letrec (5'1)  be M1 ,... (4) be Mk in N 

for letrec (5', ... ,4) beMl® ... ®Mk in N. 

Remark 7.3.6 All axioms except those for substitution of values are inherited 

from the axioms of cyclic sharing theories and higher-order acyclic sharing the- 

ories, which form the first two groups respectively. The axioms for substitution 
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of values, which we name (deref) and (g.c.), come from those for cyclic sharing 

theories (page 35), and this time we allow the substitutions of values as the axiom 

(ar) of the higher-order acyclic theory. We note that our axioms for substitutions 

are as strong as "one-step replacement" style substitutions, see below. 0 

Lemma 7.3.7 The below are derivable: 

letrec (x, yfl be V® M[x] in N = letrec (x, j)  be V 0 M[V] in N 
letrec (x, j) be V® M in N[x] = letrec (x, 9)  be V® M in N[V] 

where [x] indicates an occurrence of free x in the expression. 

Proof: We demonstrate the first case. 

letrec (x) be V, (Q) be M[x] in N 
= letrec (x) be (letrec (x') be V in x'), (9) be M[x] in N (id) 

= letrec (x) be x', (x') be V, (il) be M[x'] in N 	(ass j ) 
= letrec (x') be V, (a,) be x', (il) be M[x'] in N 	(perm) 
= letrec (a,')  be V, (a,) be 1/, (9) be M[V] in N 	(deref) 
= letrec (x)  be V, (9) be M[V} in N 	 (g.c.) 

FMI 

By the same proofs as in Chapter 4 and 6, we have 

Lemma 7.3.8 a-conversions of letrec-bindings and lambda-bindings, and 13 and 

i axioms restricted to values are derivable. 0 

The notions of structures and models are defined in the same manner as in 

Chapter 3, 4 and 6. 

Theorem 7.3.9 (soundness) 

Let ft—E be a higher-order cyclic sharing model of a higher-order cyclic sharing 

theory. If F F- M = N : (5) is derivable in the theory, then ft[' I- M : (5)]j = ftP F-

N :(5)J. 0 

Also we have the classifying category Fr : CT -* sr for a higher-order cyclic 

sharing theory T and a complete model (generic model) in it. 

Theorem 7.3.10 (completeness) 

Given a theory 'IF, there is a complete model in FT : C -* S, given by fta = a 

and ftfl = [X-  : SF F() : (f)] for F: (5) -+ (Y). 0 
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Example 7.3.11 The fixed point operator in Theorem 7.2.1 can be represen- 

ted using the higher-order cyclic sharing theory as an internal language of such 

categorical structures, as 

5 FM: (5) 

F F ji(4M 	letrec (f) be )().(Ietrec () be fO in M) in fO : ( 5) 

Let us show dinaturality using the equational theory. Assume that F, ff: 5 F M: 

() and F, /: F F N: (5). Then we have compositions of them MoN and No M 

by 

F,:5FMoN 	Ietrec(il)beMinN:(5) 

and 

r, Y- : F N o M 	letrec (ff) be N in M : ( fl. 
Also we define values VM and Vjv by 

F, f : )=- (5) F I/pg 	Aft(Ietrec (ff) be f0 in M) : ( 0 	(fl) 

and 

F, g: 	=-(fl F 1 N 	A().(letrec () be gO in N) 	=> (S)). 

Then we can show 

F, f : ( = (ff) F letrec (g) be VM in VN = AO.(Ietrec () be JO in No M) : ( 0 ' ( 5)) 

1',g : ()=>(f)  F letrec (f) be VN  in Vpg = A0.(Ietrec () be gO in Mo N) : (()=>(f)) 

using 3 and axioms for substitutions. Now dinaturality is proved as 

o M) 
= 	letrec (f) be Aft(Ietrec ($) be JO in No M) in fO 
= 	letrec (f) be (letrec (g) be VM in VN) in 10 

= 	letrec (f) be VN, (g) be I/pg in JO (ass j ) 

= 	letrec (f) be VN, (g) be VM in VNO (deref) 

= 	letrec (f) be VN, (g) be VM in letrec ( yj be gO in N (Pu) 
= 	letrec (9 	be (letrec (g) be VM, (f) be VN in go) in N (ass 1 ) 

= 	letrec () be (letrec (g) be (letrec (f) be VN in VM) in gO) in N 
= 	letrec (Q) be (tetrec (g) be AQ.(Ietrec () be gO in M 	N) in gO) in N 
= 	letrec (y) be p().(M oN) in N. 

07  
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7.4 Cyclic Lambda Calculi 

As a fragment and a variant of higher-order cyclic sharing theories, we introduce 

two simply typed lambda calculi enriched with the notion of cyclic sharing, the 

simply typed Ai etrec-calculus and etrec  alculus in which cyclically shared resources 

are represented in terms of the letrec syntax. Traced cartesian closed categories 

and cartesian centrally traced SMCs serve as sound and complete models of these 

calculi respectively. 

Basically we deal with a simplified pure higher-order cyclic sharing theory 

with no multiple conclusion and no operator symbols, thus almost all observa-

tions here can be seen as consequences of the results obtained so far. However, 

since cyclic lambda calculi have their own right to be studied, especially in the 

connection with graph rewriting theory and implementations of functional pro-

gramming languages, we spell out them here. 

The Syntax and Axioms 

We design the simply typed ), c-calculus as a modification of (the commutative le 
version of) Moggi's computational lambda calculus (Definition 5.3.4) [Mog88; we 

replace the let-syntax by the letrec-syntax which allows cyclic bindings. 

In this section, we fix a set of base types. 

Types 
a,r... ::= bIar (where b is a base type) 

Syntactic Domains 

Variables 	x,y,z.. .  
Raw Terms M,N... ::= x .Xx.M I MN  I letrec Din N 

Values 	V,W... 	xIAx.M 
Declarations D... ::= x = M I x = M, D 

In a declaration, binding variables are assumed to be disjoint. 

Typing 

F, x a, y a', F' H M : 7-  
Variable 	 Exchange 

F,x:aHx:a 

F,x :aHM: r 
Abstraction 

PH M :a'r FHN :a Application 
FHAx.M:a=,r 	 FH MN: T 

F, x 1  a1 ,..., 	: 
Un H M a (i = 1,..., n) F, x1  a1 ,..., 	Un H N r 

letrec 
1'H  letrec x 1  = M 1 ,. . . , x, = Mn in N : 
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Axioms 

Identity letrec x = M in x 
Associativity letrec y = (letrec D1  in M), D 2  in N 

letrec D 1  in letrec D2  in M 
Permutation letrec D 1 , D2 , D in N 
Commutativity (letrec D in M)N 

M(Ietrec D in N) 
/3 Ax.M)N 

letrec x = V, D[x] in M 
letrec x = V,D in M[x] 
letrec x = V in M 

770 Ax.yx 

= M (x$FV(M)) 
= Ietrecfli ,y=M,D2 in  
= letrec D1 , D2  in M 
= letrec D2 ,D1 ,D in N 
= letrec D in MN 
= letrec D in MN 
= letrec x = N in M 
= Ietrecx=V,D[V]inM 
= Ietrecz=V,DinM[V] 
= M (x 0 FV(V)UFV(M)) 

=y 

Both sides of equations must have the same type under the same typing context; 

we will work just on well-typed terms. We assume the usual conventions on 

variables. 

We remark that axioms Identity, Associativity, Permutation and Commut-

ativity ensure that two , tre
ct&ms are identified if they correspond to the same 

cyclic directed graph; thus they are a sort of structural congruence, rather than 

representing actual computation. 0 creates a sharing from a function application. 

a,, describes the substitution of values (the first two for the dereference, the last 

one for the garbage collection). In M[x] and D[x], [x] denotes a free occurrence 

of x. From 0, a,, and 17, we have the "call-by-value" 371-equations: 

Lemma 7.4.1 In trec -calculus, the following are derivable. 

31 	(x.M)V = M{V/x} 
(Ax.Vx) = V (x FV(V)) 0 

We think it is misleading to relate this calculus to the call-by-value operational 

semantics; restricting substitutions on values does not mean that this calculus is 

call-by-value. Rather, our equational theory is fairly close to the call-by-need cal-

culus proposed in [AF96], which corresponds to a version of lazy implementations 

of the call-by-name operational semantics. We expect that this connection is the 

right direction to relate our calculus to an operational semantics. 

Also we define a "strengthened" version in which arbitrary substitution and 

ti-reduction are allowed (thus any term is a value): 

or 	Ietrecx=N,D[x] in M = Ietrecx = N,D[N} mM 
letrec x = N, D in M[x] = Ietrecx = N,D inM[N] 
letrec x = N in M 
	= M (x FV(M)) 

77 	Ax.Mx 	 = M (x 0 FV(M)) 

We shall call this version the simply typed Aietrec-calculus - this corresponds to 

the calculus in [A1K94] ignoring the typing and the extensionality (ti-axiom). 
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Interpretation into Models 

We spell out how to interpret our cyclic lambda calculi in traced cartesian closed 

categories as well as cartesian centrally closed traced SMC's. Again it is essentially 

a simplification of the previous interpretations of sharing theories. 

We just present the case of the A t,,-calculus; the case of the Ai e trec-calculus 

is obtained just by replacing a cartesian centrally closed traced SMC by a traced 

cartesian closed category. 

Let us fix a cartesian centrally closed traced SMC F : C—*S, and choose an 

object [bI  for each base type b. The interpretation of arrow types is then defined 

by f[ar = fa=fr. We interpret a )4 trec-term (with its typing environment) 

xi :o.i ,...,x,.:an FM:Tbyan arrow fri :ai,...,xn :an FM:71: 

aj] 0 . . .0 fta,j—*fr]j in S as follows. 

IX, ai,..., x, : u, F x : aJ = T7ri  where 7ri is the i-tb projection 
[FF Ax. M:a='ij 	= .F(([F,x:J FM :r]j)*) 

FFMN°:rfl 	= TA; (IF FM:a-r®FFN:rfl;ap 
EFI-Ietrecxl=Mf',..,xk=M in N7-1 = 
TA; (id® TrI°l®frd (YAk; (ft[" FM1 : ai ] 0... [F' F Mk : aiJ); TA)); [F' F N : 

Recall that aPA,B : (A =' B) 0 A—*B is the counit of the adjoint F(—) 0 A 4 

A =* (-), and (_)* : Y(FA 0 B, C)—*C(A, B = C) is the associated natural 

bijection. In the last case, F' is F, x 1  : ai ,. . . , Xk : ak and AkA is the k-times 

copy from A to A x ...x A. Note that values are first interpreted in C (following 

k times 
Moggi's accoi.int, C is the category of values) and then lifted to S via F. 

Calculations similar to those in previous chapters show that cartesian centrally 

closed traced SMCs are sound for the .A trec-calculus (and the same for traced 

cartesian closed categories and the )tietrec calculus): 

Theorem 7.4.2 (Soundness) 

• For any cartesian centrally closed traced SMC with chosen object [b for 

each base type b, this interpretation is sound; if F F M : a, F F N : a and 

M = N in the A trec-calculus then IF F M :  al = F F N : a.
le 

• For any traced cartesian closed category with chosen object [bE  for each base 

type 5, this interpretation is sound; if F I- M : a, F F N : or and M = N in 

the Aietreccalculus then IF F M : al = IF F N : d• 0 
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Example 7.4.3 (domain-theoretic model) 

As we already noted, Dom is a traced cartesian closed category (hence also 

a cartesian centrally closed traced SMC). The interpretation of a s\ie t recterm 

F- letrec x = M in x : a in Dom is just the least fixed point U. F'(-L) where 

F: ftal—*j{aI is the interpretation of x : a F M : a. 0 

Similarly, the traced cartesian closed category of w-cpo's with bottoms serves as 

a sound model of the Aietrec-calculus. Since there is a faithful interpretation of 

the simply typed lambda calculus (with no constant) in this category (due to 

Plotkin, c.f. Theorem 2 of [5im95]) which factors through the interpretation of 

the Aietrec.calculus, we have 

Corollary 7.4.4 The Ai etreccalculus is a conservative extension of the simply 

typed lambda calculus. 0 

which can be stated more semantically as 

Proposition 7.4.5 The free cartesian closed category generated by a set of ob-

jects faithfully embeds into the free traced cartesian closed category (with the 

same objects). 0 

Remark 7.4.6 For non-free cases, adding a trace while preserving the cartesian 

(closed) structure may cause a collapse. Plotkin has shown that there is no finite 

product preserving embedding from a cartesian category with a Mal'cev operator 

into a traced cartesian category, by appealing to the observation by Plotkin and 

Simpson (Theorem 10 in [5el96]) that algebraic theories with a Mal'cev operator 

and a fixed point operator are inconsistent. 0 

Example 7.4.7 (non-deterministic model) 

In Rel (Example 7.2.8), a A trec-term is interpreted as the set of "all possible 

solutions of the recursive equation". The interpretation of F letrec z = M in x : a 

is just the set {x E ftoj I (x, x) E ftx : or FM: aI)} (asubobject of fta = lx ftal). 

For instance, 

ftFletrecx=xinx:c4 	= fta 	:1—+I[a]J 
ftFletrec x = x' in x : natJ 	= {0,1} :i—*N 
ftl-letrecx=x+1inx:nat = 0 

(for the latter two cases we enrich the calculus with natural numbers). Note that 

this model is sound for the A{' trec-calculus, but not for the Aietrec-calculus - since 

we cannot copy non-deterministic computation, this model is "resource-sensitive". 

0 
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This non-deterministic model is not a complete (faithful) model of the 'trec 

calculus. However, we conjecture that the commutative computational lambda 

calculus faithfully embeds into this model, which implies that the A' etrec-calculus 

is conservative over the commutative computational lambda calculus. 

The classifying category of the pure higher-order sharing theory serves as a 

complete model of the ) t,,,-calculus. Thus we also have completeness: le 

Theorem 7.4.8 (Completeness) 

• If F F- M 	= ftP I- N a  for every cartesian centrally closed traced 

SMC, then M = N in the A trec-calculus. 

• If ftP F- M 	= ftP F- N : aI for every traced cartesian closed category, 

then M = N in the Ajetrec-calculus. 0 

Remark 7.4.9 To represent the parametrized fixed point operator given in The-

orem 7.2.1 we have to extend the )4trec-calculus with a unit type unit which has 

a unique value *: 

Unit F F * : unit 	V = * (V : unit) 

The interpretation of the unit type in a cartesian centrally closed traced SMC 

is just the terminal object (unit object). The type constructor unit = (-) then 

plays the role of the right adjoint of the inclusion from the category of values to 

the category of terms. We define the parametrized fixed point operator by 

F, x : a F M: a 

P F Mx ° . M 	letrec fUflC = Ayunit.((Axc.M)(f*)) in f * : a 

which satisfies px.M = (Ax.M)(px.M), but may not satisfy the standard fixed 

point equation px.M = M{jix.M/x} in the t ,,.-calculus because jix.M may 

not be a value in general. The operator Y3  in the next section is essentially same 

as this fixed point operator, except for avoiding to use unit. 0 

We could give the untyped version and its semantic models - by a reflexive 

object in a cartesian centrally closed traced SMC (or a traced cartesian closed 

category). Regarding the results in previous sections, we can establish the con-

nection between the dinatural diagonal fixed point operator in a model of the 

untyped Aietrec-calculus and the trace operator of the cartesian closed category. It 

would be interesting to compare recursion created by untypedness and recursion 

created by trace (cyclic sharing) in such models. 
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Comparison with Ariola-Blom-Kiop Approach 

A detailed study of the equational and rewriting-theoretic aspects of cyclic lambda 

calculi has been done by Ariola and Blom [AB971, following the previous work 

by Ariola and Klop [AK94}. Our cyclic lambda calculi fit into their account, but 

a few remarks should follow. Our equational theories (for the Aietrec and Av letrec  

calculi) are strictly weaker than the corresponding equational theories in [AB97] 

ignoring the eta axiom z1o . This is because 

• Our equational theories correspond to what Ariola and Blom call "scoped 

lambda graphs" where two lambda graphs are separated if they have differ-

ent scoping of variable bindings even when they have the same underlying 

graph. Ariola and Blom introduce axioms for identifying them. 

• Ariola and Blom introduce more axioms to equate graphs which are bisim-

ular, i.e. have the same (infinite) tree unwinding. 

• For the 	trec-calculus, the notion of values is slightly different, in that le 

Ariola and Blom treat cyclic terms which contain only values in a similar 

manner to values. 

Assuming 770,  their equational theory is a quotient of ours. Ariola and Blom have 

shown that their calculus is sound and complete for their infinite tree unwinding 

semantics (this is a highly non-trivial result as syntactically cyclic lambda calculi 

have no confluent rewriting system [A1K94], therefore no easy term model exists; 

Ariola and Blom overcome this problem by showing a semantic confluence result 

up to the contents of "information" in terms). We conjecture that their semantic 

models give rise to a traced cartesian closed category and a cartesian centrally 

closed traced SMC. 

Therefore, equationally our (pure) theories are essentially proper subsets of the 

"most complete" calculi in [AB97]. However, interestingly, as rewriting systems, 

ours are as strong as theirs; Ariola and Blom have shown in [AB97] that, regarded 

as rewriting systems, our calculi are complete for their infinite semantics. It is 

interesting to see if the infinite semantics, conjectured to form instances of our 

models, stand out as models with some "good" characterization - at least we 

should like to know the theoretical justification of why infinite trees models have 

occupied an important position as the canonical semantic models of rewriting 

systems for long time. 
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7.5 Analyzing Fixed Points 

In the trec calculus, several (weak) fixed point operators are definable - this is 

not surprising, because there are several known encodings of fixed point operators 

in terms of cyclic sharing. However, it is difficult to see that they are not identified 

by our equational theory - syntactic reasoning for cyclic graph structures is not 

an easy task, as the non-confluency result in [AK94] suggests. On the other 

hand, in many traditional models for recursive computation, all of them have the 

same denotational meaning mainly because we cannot distinguish values from 

non-values in such models. 

One purpose in developing the models of higher-order cyclic sharing theories is 

to give a clear semantic account for these several recursive computations created 

from cyclic sharing. Though this topic has not yet been fully developed, we shall 

give some elementary analysis using the A trec-calculus and a model (Re!). 

We define A-m -  Y  	M trec 	 -  

as follows 

= letrec fix( --)-- a = Af".f(fix f) in fix 
= \f°°.Ietrec xc = fx in x 

Y3 (M) = letrec g 	= AY T . M(gy) in gN 

(N is a closed term of type r, e.g. letrec x = x in x r) 

Each of them can be used as a fixed point operator, but their behaviours are not 

the same. For instance, it is known that Y2 is more efficient than others, under 

the call-by-need evaluation strategy [Lau93]. Y1  satisfies the fixed point equation 

YV = V(YV) for any value V c=c. 

Y1 M = letrec fix 
= letrec fix 
= letrec fix 
= letrec f 
= letrec f 
= letrec f 

(= M(Y1M) 

= Af.f(fix f) in flxM 
= Af.f (fix f) in (Af.f(flx f))M 
= Af.f (fix f) in letrec f = M in [(fix f') 
= M in letrec fix = Af.f (fix f) in f'(fix f') 
= M in f'Ietrec fix = Af.f(fix J) in flx)f') 

= M in f(Yif') 
if M is a value) 

Commutativity 
o.v 

'3 
Assoc., Perm. 
Commutativity 

Y2  satisfies Y2 M = M(Y2 M) only when Mx is equal to a value (hence M is 

supposed to be a higher-order value). If M = Ay.V for some value V, 

Y2  	 = 	letrec x = (Ay.V)x in x 

= 	letrec x = V{x/y} in x 01 
= 	letrec x = V{x/y} in V{x/y} a, 

= 	letrec x = (Ay.V)x in (Ay.V)x 0,, 
= 	(Ay.V)(Ietrec x = (Ay.V)x in x) Commutativity 
= M(Y2 M) 
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Y3  satisfies Y3 (M) = M(Y3 (M)) for any term M : a=a (thus is a "true" fixed 

point operator). 

Y3 (M) = letrec g = Ay.M(gy) in 9N 
= letrec g = Ay.M(gy) in (Ay.M(gy))N 
= letrec g = Ay.M(gy) in letrec y' = N in M(gy') 	0 
= letrec g = Ay.M(gy) in M(g(Ietrec y' = N in WI)) Commutativity 
= M(Ietrec g = Ay.M(gy) in g(Ietrec y' = N in ii')) Commutativity 
= M(Ietrec g = Ay.M(gy) in gN) 	 Identity 

= M(Y 3 (M)) 

The interpretation of these operators in a cartesian centrally closed traced 

SMC is as follows. 

[F- Yd 	= Tr(" 	(F (cur ((id 0 A); (ap (Did);  C; ap)); A) 

[H Y21 	= F(cur(Tr'(ap; A))) 
[F F- Y3(M)] = ( Tr(F(cur[I' [-M: u=>a]]® ap); ap)); A)® [F- N : r]); ap 

where A = [a]j and B = [ E• They have the different interpretations in Re!, 

hence are not identified in the trec hh 1 5 Assume that S = [ F- M: a=- aI c 
Rel(A, A). Then 

[F-Y1 (M) :oJJ= U 	U 	A' 	[F-Y2 (M) :cxl= U{x I ("') E f} 
f ES (A';f)A'cA 	 fES 

whereas 

U At 
(A';U S)=A'çA 

(In the definition of 1"3, we take N: -r as letrec x = x in x : 

Remark 7.5.1 If we interpret a Aletrecterm of the form letrec x = M in N by an 

untyped term (Ax.N)(Y(x.M)) where Y = Af.(Ax.f(xx))(Ax.f(xx)) (Curry's 

fixed point combinator), the fixed point operators above are related to more or 

less familiar combinators (cf. [Bar841, Chapter 6.1): 

• Y1  corresponds to (Ax.,\y.y(xxy))(Axiy.y(xxy)) which is Turing's fixed 

point combinator. 

1'2 corresponds to f.(Ax.f(xx))(Ax.f(xx)) which is Curry's fixed point 

combinator. 

• Af.Y 3 (f) corresponds to Af.(Ax.Ay.f(xxy))(Ax.Ay.f(xxy))N. 
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Chapter 8 

Action Calculi 

We show that our framework for sharing graphs can accommodate Miler's ac-

tion calculi [Mi196], a proposed framework for general interactive computation, 

by showing that our sharing theories, enriched with suitable constructs for in-

terpreting parameterized constants called controls, are equivalent to the action 

calculi and their higher-order/reflexive extensions [Mi194a, Mi194b, Mif96]. 

The dynamics, the computational counterpart of action calculi, is then un-

derstood as rewriting systems on our theories, and interpreted as local preorders 

on our models. In this sense, we understand action calculi as generalized graph 

rewriting systems - and regard the notion of sharing as one of the fundamental 

concepts of action calculi. 

We first review the definition of action calculi. We then extend our sharing 

theories to accommodate action calculi. The essential point is to introduce the 

parametrized operator symbols which correspond to controls. The semantic ob-

servations immediately tell us that we are dealing with the equivalent beings and 

there are obvious syntactic translations between sharing theories and action cal-

culi. This observation extends to the higher-order and reflexive (cyclic) extensions 

of action calculi equally well. 

8.1 Action Calculi: Definitions, Basics 

We introduce an action calculus as a quotient of a term algebra. An action 

calculus is defined by a set of typed terms, an equational theory on it (theory 

AC) and a preorder on the equivalence classes of terms, called a reaction relation 

or dynamics. 

We first fix a freely generated monoid M = (M, 0, c); M's elements will be 

called antics and generators will be called prime antics. We also assume a set 

X; its elements are called names, and we assign a prime arity to each name. If an 
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arity p is assigned to a name x, we write x p. Further, we assume that infinitely 

many names are associated with each prime arity. 

An action calculus AC(AC) is then specified by a set AC of controls (control 

operators) each of which is equipped with an arity rule and a reaction relation 

which is usually generated by a few reaction rules. 

Definition 8.1.1 The set of terms over IC is generated by the following rules. 

[Raw terms] 

a,b... 	::= (x) I (x)a I id I a•b I aØb 

[Arity assignment (Typing)] 

x:p 	a:m-4n x:p 	a:k—*1 b:l —*m 

	

(x):c-+p (x)a:p®m-+n idm :m-+m 	ab:k—*m 

	

a:km b:ln a:nzn 	(i=l,...,k) 

aøb:k®l -+m®n 

where each control K € AC is equipped with arity ((in1, n 1 ), . . . , (Mk, 71k), (m, n)) 

which may be subject to some side conditions; there can be some dependency 

between the number of arguments (Ic) and the arities m, n, in and n. 0 

We may omit the arity subscripts of terms if there is no confusion. The notions 

of free and bound name are defined as usual; a name x is bound in (x)a, and 

(x) is considered a free occurrence of x.The set of free names in a term a will he 

denoted by fn(a). 

Definition 8.1.2 We use the following derived notations for multiple names and 

a notation for derived terms (permutation). 

(x i ,..., x4a 4  (xi).. 
4 

Pm,n (il)W,T) in Øn -* nØm 

In (x i ,... , x)a, names xi are assumed to be all different. 0 

Definition 8.1.3 The equational theory AC is the set of equations upon terms 

generated by the following axioms. 
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[The strict monoidal category axioms] 

Al aid=a=ida 	A4 a.(b.c)=(a.b).c 
A2 aid=a=id®a A5 aØ(b®c)=(a(Db)®c 
A3 id (D id = id 	A6 (a. b)® (a'. b') = (aøa') . (b® U) 

[The concrete axioms] 

a ((y) 0 id m ) (x)a = a{y/x} (a : m -* ii) 
S (x)(x)Oid m )a)=a 	(x:p,a:p0m -+n,xfn(a)) 
C P,m .(b®a)=(a®b)p1 	(a: k -*l,b: in 

We call the equivalence classes of terms actions, for which we overload the same 

notations for terms and actions provided there is no ambiguity; a may represent 

a term or the equivalence class of the term depending on the context. 0 

We will write AC(AC)(m, ii) for the set of actions of arity in -* n. 

Definition 8.1.4 The action calculus AC(AC) is the equational theory given as 

above together with a preorder \m,m  (subscripts may be omitted) on AC(K)(m, ii) 

for each in and ii , called reaction relation or dynamics, which is closed under 

tensor, composition and abstraction such that identities are minimal, i.e. id \ a 

implies a = id. 0 

Note that controls may not preserve the reaction relation. The definition 

of theory AC presented here is different from the original version in [Mil96] in 

the choice of primitives and axioms, but it is easy to verify that they give the 

same equational theory. Axioms Al-A6 imply that AC(C) is a strict monoidal 

category whose objects are arities and arrows are actions. The concrete axioms a 

and S determine how names and abstractions work, whereas from ( we can show 

that AC(K) is a symmetric monoidal category with symmetry p. 

The definition of dynamics implies that 

Proposition 8.1.5 If a \ b and a b then a must contain a control. 0 

Therefore any reaction must involve some controls. 

Before proceeding to technical discussion, let us briefly recall how a simple 

polyadic ir-calculus [Mi192a] (originally introduced by Tokoro and Honda as the 

v-calculus [HT91], or the asynchronous ir-calculus) can be represented as an action 

calculus. For details, see [Mi196]. 
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Example 8.1.6 (the action calculus PlC) 

The action calculus AC(box, out), or PlC, is determined by the following data. 

First, we assume that arities are freely generated from just one element - that 

is, we consider the monoid of the additive structure on natural numbers. Thus 

we have just one prime arity 1, and assume e = 0, m 0  n = m + it. Then we 

introduce controls for input and output bindings: 
a : m -* it 

out :1+m-+0 	box(a):l—*n 

with the reaction relation generated by a reaction rule 

((x) box(a)) 0 (((x) (3 id) . out) \ a. 

In [Mi196] Milner has given a translation from a simple K-calculus into PlC which 

preserves the structural congruence and dynamics. 

8.2 Action Calculi as Sharing Theories 

We show that an action calculus is equivalent to a pure acyclic sharing theory 

enriched with parametrized operator symbols which correspond to control oper-

ators in action calculi. This is archived by observing that these two syntactic 

theories share the same semantic models. 

Parametrized Operators 

First we revise our definition of signature (Definition 2.1.1) so that we can accom-

modate parametrized operator symbols which correspond to control operators in 

action calculi. 

Definition 8.2.1 (signature) 

Let S be a set of sorts. An (extended) S-sorted signature is a set E of operation 

symbols together with an arity function assigning to each operation symbol K a 

list 

((ê, f),. . . , (5r, f;), (ff, r)) 

of pairs of finite lists of elements of S. 0 

If r = 0, we recover the original definition of signatures of (non-parametrized) 

operators. Recall that the typing rule for an operator symbol F : () -> ( Y) is 

given as 

F H F(M): () 
operator 
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Together with the parameters we extend this as 

FFM:(d) 

F F K((& 1 )M 1 , . . . , ( x r )Mr M) : () 
operator 

	

where K is an operator with arity 	Y), . . . , (, ), (' i)). The axioms 

(Definition 2.2.3) make sense for parametrized operators (with an obvious modi-

fication on (subst)), but we need an additional axiom (a 0 ) for a-conversions of 

locally bound variables: 

(subst) let () be M in K(. .. I N) = K(. .. I let () be M in N) 

(a) 	K(. . . , 	I N) 	= K(. ... 	 N) 
are fresh variables) 

Both sides of axioms must have the same type under the same context. 

Let us add some comments on parametrized operators. A parametrized oper-

ator K has two different sorts of arguments - one for arguments with some local 

quantification of names ((g 1 )3) and the other for a non-quantified argument M. 
The most popular example of the former is lambda-abstraction: we can write the 

usual abstraction rule as 

F,x : a F- M: 

F F A((x)M 0): 

instead of Ax.M. On the other hand, an application of a function symbol does 

not need any locally quantified arguments, like the following. 

F I- M: nat 
F I-  succ( I ILl) nat 

Another example is the input-binding in the (polyadic) ,r-calculus (recall the 

action calculus AC(box,out) in the last section) 

F,il:mFP:n FFx:p 

FFbox((ff)PIx):m 

which is usually written as x(j).P. The elimination rule for disjunction is also a 

good instance: 

F,x:a1 FL:r F,y:0'2 FM:7-  FFN:a 1 Va2  

F F case((x)L, (y)M I N) :7-  

Therefore parametrized operators can be understood as term constructors which 

may involve the local bindings of variables. Gordon Plotkin points out that such 

operators are analogues of Aczel's general binding operators [Acz90]. 
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As we noted, a-conversion on let-bound variables can be derived from other 

axioms. However, we need an axiom for a-conversion of locally bound names in 

controls ()C a ), which cannot be derived from the other axioms. 

Interpretation into Models 

We give the semantic interpretation of parametrized operators (equivalently con-

trol constants) as natural families of functions (or natural transformations) on a 

cartesian-center SMC, c.f. [Gar95, Pow96a]. We extend the definition of structure 

(Definition 3.2.9) as follows. 

For each operator symbol K with its arity rule ((m 1 , ri1),. . . , ( mp, ilk), (ni, n)), 

we assume a family of functions ftKIx : S(F(X) 0 [m 1 , nj) x ... x S(F(X) (D 

mki, f[nkJj)—+S(F(X) (D ftm, ni)  natural in the parameter X in C. 

Using this extended definition, we can define the semantic interpretation of 

parametrized operators: 

gFHK(( 1 )M1 ,... I N):(fli = FA; (id OFHN:(); 
[[STJJ ijr (ft1', 	: ê1  H .M : VI A. ...  

The following result follows from [Pow96a]: 

Theorem 8.2.2 The sharing models of a pure acyclic sharing theory gives rise 

to models of the action calculus with the same signature. 0 

Corollary 8.2.3 There are sound and complete translations between a pure 

acyclic sharing theory and the corresponding action calculus, which are inverse 

to each other. 0 

The detail of syntactic translations are found in [GH97]. 

Remark 8.2.4 The following examples show the difference between the tradi-

tional function symbols (non-parametrized operator symbols as given in Chapter 

2) and our parametrized operator symbols. A function symbol F with its arity 

rule ((in, ii)) is equipped with a term construction 

FHM:m 
F F-  F( I M) : n 

which is interpreted as an arrow F] : [ml -4 hE in S of a cartesian-center SMC 

C -+ S. On the other hand, a parametrized operator G with its arity rule 

((0, in), (0, ii)) has a corresponding term construction 

FF- M:m 
F H G(()M  0): n 
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which is interpreted as a family of functions 	: S(FX, ftml) -+ S(.FX, ftnJ) 
natural in X in C. If we assume the naturality in S then (by Yoneda) there is a 

bijeption between these two interpretations, thus there is no significance in having 

a parametrized operator C. However, as the naturality is restricted to C, G]'s 

interpretation is not determined by G]km(id),  thus has an extra generality. In 

the equational theory, G]J behaves like a function symbol which does not satisfy 

the axiom (subst). After constructing the classifying category in Chapter 3 we 

observed that the axiom (subst) has nothing to do with the completeness; without 

(subst), we get an interpretation of & rather than F, which possibly contains more 

junk arrows arising from the extra freedom of G over F. 0 

The dynamics of an action calculus has semantic interpretation in a cartesian-

center SMC as a local preorder on it [Pow96a]. 

Theorem 8.2.5 The following are equivalent: 

• dynamics on an action calculus, 

• rewriting systems with the minimality condition on the corresponding shar-

ing theory (Chapter 2) and 

• local preorders with the minimality condition on the classifying category 

(Chapter 3). 

10-1 

8.3 Extensions 

We recall the higher-order and reflexive extensions of the action calculi, and 

extend the correspondence between action calculi and sharing theories to these 

settings. 

Higher-Order Action Calculi 

In [Mi194a] Milner extends action calculi to higher-order action calculi, which 

are intended to be a unified framework for higher-order concurrent computa-

tion. There have been many proposed applications of the calculi to various con-

current/functional models, including higher-order extensions of process calculi, 

petri nets (proposed in [Mi194a]) and call-by-value/call-by-name variants of PCF 

[Jen951. 
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In this section we observe that higher-order action calculi (with a mild re-

finement) correspond precisely to our (pure) higher-order acyclic sharing theory 

because they share the same semantic models. Some of these results are reported 

also in [GH97]. 

Example 8.3.1 More complicated arities are needed for representing a higher- 

order extension of the action calculus, which will be described below. For such a 

purpose, the arities will be generated from a set of base arities (b,...) as follows. 

prime arities p,q... 	b I 
arities 	rn,n... 	c pm®n 

Intuitively, arities correspond to the types of the simply typed lambda calculus 

with (strictly associative) products. The arrow types are included in the prime 

arities because we need names of arrow types for representing higher-order com-

munication. 

Then we introduce two new controls. Given a set of controls K we define 

Ac* 4 .CU{—,ap} where the controls r_  and ap are subject to the arity rules 

below. 	 a: in —* Ti 

c —* in n 	ap: (in => ii) 0 in —4 

Now we can define the dynamics for higher-order computation on this extended 

action calculus AC(K) by the following reaction rules. 

13 	( TaOid).ap \ a 

Ucode (a (D id) . (x)b \ b{'a/x} 

Controls are assumed to preserve 3 and Ccode reactions. In this calculus, we can 

pass not only a name but also a code a' of an action a as a higher-order datum 

(acode reaction). The code can be applied or decoded with help of ap (0 reaction). 

0 

Following [Mi194a], we proceed to define the higher-order action calculus. 

Since our concern is on the equational characterization of such a general frame-

work of higher-order communication, we naturally regard the reaction rules 0 
and a as axioms rather than abstract rewriting rules — we refer [Mil94a] for some 

rewriting theoretical aspects of these reaction rules. 

Definition 8.3.2 (higher-order action calculus) 

The higher-order action calculus RAC(AC) is obtained as the quotient of the action 

calculus AC(K) (see the last example) by axioms 13, 	and qname  below 
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(r an® id) .ap 	= a 
Cco de 

 
('- a -' & id) (x)b = b{7 a7x } 

77name 	((x)® id) .ap 	= (x) 

which is equipped with (the flcr cod-quotient of) the dynamics of AC(KTr) .  0 

There is an axiom which is not included in the original version [Mi194a]: the 

axiom qname•  At first sight, the reader may think this is rather an artificial change. 

However, for codes we can derive the 77-equation 

('a 0 id) . ap' = ral 

from the fl-axiom. Since codes and names are treated in the same way (as "val-

ues") in the higher-order action calculi, and since this rather weak 77-axiom does 

not change the syntactic nature of the calculi (the conservativity from the first-

order calculi still holds; see below), we decide to include it in our version. Actually 

this is a needed change to get clearer semantic models - with this axiom higher-

order action calculi allow a good category-theoretical characterization. Note that 

a stronger 71-axiom 

1)too—strong 	(a 0 	id) . ap = a 

makes the calculus cartesian closed [Mi194a], thus changes the equational theory 

significantly. This is because 71too—strong equates a value (the code of the left 

hand side) to a (possibly) non-value (right hand side). Since the models we are 

interested in may not be cartesian closed, we do not accept this axiom in general. 

For further discussion, see [Mi194a]. Anyway we have a better observation: 

Theorem 8.3.3 The semantic models of a higher-order action calculus are given 

by those of the pure higher-order sharing theory with the same signature in 

cartesian centrally closed SMC's. 0 

Detail is found in [GH97]. This implies the syntactic equivalence (translations) 

between pure higher-order sharing theories and higher-order action calculi. 

We already know that the action calculus embeds into the higher-order cal-

culus by comparing molecular forms [Mil94a]. The semantic proof of this result 

is available, as we have for the pure acyclic sharing theory and pure higher-

order acyclic sharing theory, by constructing a model of the higher-order theory 

from that of the first-order one (Chapter 5). We need a little care with para-

metrized operators (controls): for simplicity, we just consider the one-parameter 
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case. Assume that F : C -* S is a cartesian- center SMC, and ft- is a model 

in it, and we have an operator K of arity rule ((m i ,n i ), (m, n)). Then there 

is a family of functions ftKljx : S(F(X) 0 m i]j, ftnj)—*S(F(X) 0 n) 

natural in X in C. Following Corollary 5.2.2, we have a cartesian centrally 

closed SMC P : C -* S with a fully faithful cartesian-center functor (ic,i.) 

from F : C -> S to F : C -+ S, where ic is dense. Since i5 is fully faithful 

strict symmetric monoidal and t o ic = is  a F, this induces a family of func-

tions IKK S(ic(X)) 0 i s (mj), is(niIfl—ã(P(ic(X))  0 is (mfl, is(N)) 

natural in X in C. Since ic is dense, we can extend ftK' to a family of func-

tions [KJI'X : S(P(X) 0 is(ftmil), i s (ftn 1 jj))—*S(P(X) 0 is (jm), is(ftn])) natural 

in X in C. Following the same discussion in Chapter 5, we obtain the proof of 

conservativity. 

Reflexive Action Calculi 

In [Mi194b]  Milner extends action calculi to allow cyclic bindings of names by 

introducing an operator called reflexion. It may be of some surprise that his notion 

of reflexion turns out to be equivalent to traces of symmetric monoidal categories. 

This observation, by Alex Mifsud and myself, first reported in Mifsud's thesis 

[Mif96], enables us to see that (cartesian center) traced monoidal categories serve 

as models of reflexive action calculi, and also to accommodate reflexive action 

calculi as cyclic sharing theories. 

Definition 8.3.4 (reflexive action calculus) 

The reflexive action calculus AC(AC) [Mi194b] is obtained as the quotient of the 

action calculus AC(t, )C) by axioms P1 '-' P6 as below. 

The control t is given by 

a: p0777 —*pOn 

t 1 'm (a) : nt -* n 

(in the sequel, subscripts may be omitted). Unlike the usual controls, T is 

assumed to preserve the reaction relation. 

The reflexion axioms: 

P1 id 	= t (p) 
P2 t2 (a)Oid = t(a®ic1) 

Pa t2 (a) -b 	= t(a(id0b)) 
P4 a.t,(b) 	= t((id0a) - b) 
P6 tq (t (a)) = tp (tq ((pq,p old) . a (pp,

, 
old))) 
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Note that we do not include the axiom p5  in the original definition here, because 

P5 was proved to be redundant by me - the proof is found in [Mif96]. 

In the definition above, the reflexion operator is defined only on prime arities. 

We extend it to general arities by 

TM 
n (a) 	a 

t tm'n (a) - if'tm 
(+I®m,lø (a)). 

P01 -  

For ease of explanation, we extend the definition of reflexion to a general strict 

symmetric monoidal category. 

Definition 8.3.5 Let C be a strict symmetric monoidal category and assume 

that Obj(C) is freely generated from a set of objects P. A reflection on C is a 

family of functions 

t: C(P 0 A, P® B)-4C(A, B) 

where A, B are objects of C and P varies in 1', subject to the axioms p1 ' p. 0 

A simple and pleasant fact is that traces and reflexions are precisely the same: 

Proposition 8.3.6 Let C be a strict symmetric monoidal category whose objects 

are freely generated from a set of objects P. Then C is traced if and only if it has 

a reflexion. 0 

The proof is elementary but lengthy - see [Mif96] for the full calculation. 

Corollary 8.3.7 A reflexive action calculus is traced. 0 

This, together with the observations on action calculi and acyclic sharing 

theories, immediately implies that the models of a reflexive action calculus are 

given by models of the corresponding pure cyclic sharing theory in cartesian-

center traced SMC's. Therefore we have the correspondence between reflexive 

action calculi and pure cyclic sharing theories. 

Combining the results above, we also have the correspondence between a 

higher-order reflexive action calculus and the pure higher-order cyclic sharing 

theory with the same signature, which share the same models in cartesian cent-

rally closed traced SMC's. 
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The combination of higher-order and reflexive features enables us to encode 

recursive programs - this is essentially a consequence of results in Chapter 7. We 

give an example to motivate some intuition, as well as to make a connection with 

previous work by Mifsud [Mif96]. 

Example 8.3.8 In functional languages with a fixed-point operator Y, we can 

define the infinite application (loop) of a function M as Y(Ax.Ay.IV[(xy)) or 

Y(Ax.Ay.x(My)). If the language allows us to use letrec-bindings (as in cyc-

lic sharing theories), they can be written as letrec x = Ay.M(xy) in x and 

letrec x = Ay.x(My) in x respectively. We shall demonstrate these simple forms 

of iteration exist in the higher-order reflexive action calculus; this is a variation 

of the observations in the last chapter. 

Let a rn-3m be an action in the higher-order reflexive action calculus. In 

[Mif96] Mifsud defines actions ITER(a) and BACKITER(a) by 

a : m--4m x 11 ==> In x fna) 

ITER(a) (rec((x)((x) ® id) ap - aj (D id) . ap n--4m 

a m--4m x m n x 0 fn(a) 

BACI<ITER(a) (rec((x)((x) 0 a) . ap) (D id) . ap rn—ni 

where rec2 (a) is given by 

a p® rn—*p 0 

rec2 (a) --tp (a. (copy 2  0 id,)) m—*p 0 

They satisfy the equations below. 

ITER(a) = ITER(a) a 

BACKITER(a) = a - BACKITER(a) 

These equations are easily and intuitively verified in the higher-order cyclic shar-

ing theories. Assume that we have a closed term M In =- rn of the higher-order 

cyclic sharing theory which satisfies j F M] = where {- indicates the trans-

lation from the higher-order cyclic sharing theory to the higher-order reflexive 

action calculus. Then we have 

ITER(a) = 	ii F- letrec (x) be A(ç).M(xç) in xi: m] 

BACF(ITER(a) = i: m F letrec (x) be A(ç).x(Mç) in xi: mE 
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For instance, one can prove ITER(a) = ITER(a) a as follows. In the sharing 

theory, we have 

letrec (x) be (W).M(xil) in xi 
= letrec (x) be A(ff).M(xil)  in (A(ç).M(xç))i (deref) 

= letrec (x) be A(ff).M(xg) in M(xi) 	IL 
= M(Ietrec (x) be A(c).M(xil) in xi) 	(app 2 ) 

Hence 

ITER(a) 
= ft(i) : n F letrec (x) be A(U).M(xc) in xi: ml 
= (i) : n F M(Ietrec (x) be A(ç).M(xy) in xi) : ml 
= (ft M:  mrnl®  (i) : n F letrec (x) be A(il).M(xy)  in xi: ml).  ap 

= j{(i) : n F letrec (x) be A(j).M(xg) in xi: 	a 
= ITER(a) a. 

U 

ITER and BACKITER are not new in the context of functional programming 

languages; in [Fi194],  Filinski shows how to get recursion from BACKITER (the 

loop combinator) and first-class continuations in the call-by-value setting. 

Remark 8.3.9 In his thesis [Mif96], Mifsud asks whether ITER and BACKITER 

satisfy some universal property. We have a partial and positive answer for his 

question in some specific models. First, in many domain theoretic models, in 

which traces are given by least fixed point operators, ITER and BACKITER 

are the least ones satisfying the recursive equations. On the other hand, in our 

Re]-semantics, they are represented as 

l[ITER(a)J = 	U 	f and [BACKITER(a)J = 	U 	f 
f;la1=f 

Thus, for any g : [nl—*I[n4 (resp. ml 4i4) such that g; al = g (resp. al ;  g = 
we have g c ITER(a)I  (resp. g c BACKITER(a)J), hence they are the 

universal (greatest) invariants of the relation aI : m—*m (w.r.t. the inclusion 

of relations). 0 
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Chapter 9 

Conclusion 

In this thesis, we have developed a theory of models of sharing graphs arising 

from graph rewriting theory. Generalizing the traditional theory-model corres-

pondence between algebraic theories and finite product preserving functors, we 

have established the connection between theories for sharing graphs and their 

models described in terms of symmetric monoidal categories, strict symmetric 

monoidal functors and additional requirements (adjunctions, and traces). As an 

important case study, we have looked at recursive computation modeled in our 

higher-order cyclic sharing theories and their models. Also we have shown that 

Milner's action calculi can be understood in terms of our sharing theories en-

riched with parametrized operators. As an interesting implication, our axiomatic 

treatment of the classes of models has enabled us to compare them with those for 

related theories, including Moggi's notions of computation as well as intuitionistic 

linear type theory. 

One important piece of work yet to be done is to strengthen the connec-

tion with rewriting theory. While our work establishes the equational foundation 

of sharing graphs, the analysis of rewriting on our theories is still to be done. 

However, as the interplay between the study of cartesian closed categories and 

the study of rewriting systems on lambda terms turned out to be fruitful, we 

hope that future work will show that our theories and models provide some use-

ful insights into the rewriting theories. A recent work by Benaissa, Lascanne 

and Rose [BLR97] on sharing graphs is based on the idea of explicit substitu-

tions [ACCL91]. Since the origin of explicit substitutions is closely related with 

categorical combinators on cartesian closed categories [Cur93], we expect that a 

similar story can be derived from our categorical models. 

Yet another important direction to be examined is the extension to the pre- 
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monoidal setting [PR96]. While symmetric monoidal structure serves well as the 

models of sharing graphs for which we do not assume any specific ordering of 

computation on resources, that seems to be too loose for modeling more soph-

isticated models of computation in which some ordering of computation should 

be specified. The most interesting situation seems to be the traced (symmetric) 

premonoidal categories. We have a preliminary definition of this notion and have 

shown the results corresponding to the structural theorem in [JSV96] and the 

fixed point theorem in this thesis (Theorem 7.2.1) and [Has97]. We expect that 

this generalized setting will be useful for analyzing recursive computation created 

from imperative features (like Landin's applicative order imperative fixed point 

operator, c.f. [FF96]), as well as the interplay between recursion and continuations 

[Fi194, Thi97]. We have a few preliminary observations on modeling a language 

with ML-like states in cartesian centrally closed traced symmetric premonoidal 

categories, where the imperative encoding of recursion can be analyzed. 

Apart from these investigations into models of computation, the structures 

dealt with in this thesis provide us with several mathematically interesting ques-

tions, especially in connection with traced monoidal categories. For example, 

while the conservativity results on acyclic theories are relatively easily established 

(Chapter 5), we know very few result for the cyclic cases. As stated in Theorem 

6.1.6, Plotkin has shown that there is a symmetric monoidal category to which we 

cannot add a trace without causing a collapse. He also has given counterexamples 

for cartesian categories (Remark 7.4.6). Yet we do not have answers to lots of 

similar questions, some have already been mentioned in Chapter 6 and 7. The 

difficulty of these problems seems to be deeply related to the difficulty of dealing 

with recursion semantically. We do not even know any generic way to construct 

traced categories (or categories with fixed point operators). 

The role of action calculi in this thesis is somewhat, at least for the author, 

delicate. Since one may regard our sharing theories as a simplified action calculi 

(without parametrized controls), it is possible to view this thesis as devoted to 

the models of action calculi. We did not take that direction because we wanted 

to develop a self-contained coherent theory which is relatively independent of any 

specific computational interpretation. Action calculi are "calculi for interaction", 

but our results seem to have no direct connection with the notion of "interaction". 

However, we acknowledge that we got many fundamental ideas from the work on 

action calculi by many people [Mil96, Mif96, Gar95, HP95, Pow96a], and also 
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hope that our results provide useful feedback to the study of action calculi. 
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Appendix A 

Proofs 

A.1 Proof of Proposition 6.1.5 

(IF part) Assume f:AØU—*BøU and g:B®U—*C®U. 

T rU(f) ; TrU(g ) 
= TrU(f (TrU(g) ® ida)) 	 RightTightening 
= Trt(f ;  TrU((idB  (D cu,u); (go idu); (idc (D cU,u))) Superposing 
= TrU(f ; TrhJ((idp (Dcu,u);(g®idu ))) 	 cu,u=idu 
= Trt'(f; Tr"(ida 0 cu,u); g) 	 RightTightening 
= Trt'(f; (ida 0 TrU(c,));g) 	 Superposing 
= Trt'(f;g) 	 Yanking 

(ONLY IF part) First, functoriality of TrU  implies that 

f=idu oTrU(f) for any f:UU(*) 

TM 
F 	 f 

= f; TrU(cu,u ) 	 Yanking 
= Tr'((f 0 idu); CU,U) 	 RightTightening 
= T T U(cu,u ; (idu ®fl) 
= TTU(c u,u ); TrU(cu,u ; (idu 0 f)) Yanking 

= Tr"(cu,u; cu,u; (idu 0 f)) 	by the functoriality 
= TrU(idu ®f)) 
= idu 0 T rU(f) 	 Superposing. 

Let us consider the case of U = V 0 V and f = CV,V. Then 

CV,V = idvev 0 Tr"(cv,v) by(*) 
= idvv 0 Tr"(idv) 	Vanishing, Yanking 

= idv® 	 by (*). 

'I 
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A.2 Proof of Theorem 7.1.1 

From Trace to Fixed Point 

Assume that C is a traced cartesian category. From the trace operator Ti', we 

define an operator (_)t  by 

ft = Tr" ( f;Ax) : A-- 4X 

for f : A x X--+X. We show that (_)t  satisfies conditions 1r..i4. For ease of 

calculation, strict associativity is assumed. 

Lemma 4.2.1 For f: A x X--4B x X, 

T X (f) = (idA, TrX (f; 'a,x Ax)); f; IrB,X : 

Proof of Lemma: 

LHS 
= 	Trx(A AXX ;(f;lrn,x  x f;7r,x)) 
= 	TTA(A AXx ;(idAxx  x f;7rx));f;7rB,x R.T. 
= 	Tr 4 "((idA x f;7rf,x);AAxx);f;irsx Sliding 
= 	TrAXX RAA x f;7r,x;Ax);(idA )< CA,X >< idx;f;rax 
= 	AA; TTAXX(icI A  x ((idA x f;7r,x;Ax);(cA,x  x idx);f;7rB,x L.T. 

= 	AA;(idA x Tr °'((idA x  f;'a,x;Ax);(cA,x  x idx)));f;irn,x S.P. 
= 	(idA ,TrX((id A  x f;7rx;Ax);(cA,x  x idx)));f;lrB,x 
= 	(idA,Tr' 4'(Tr''((idA x  f;'.s,x;Ax);(cA,x  x idx)fl);f;7r8,x Vanish. 
= 	(idA ,TrA(TTX(id A  x f;'n,x;Ax);cA,x));f;B,x R.T. 
= 

	
(
MA, TrA((id A  x TrV(f; '4x; Ax)); CA,x)); f; 7rB,x S.P. 

= 
	

( MA, TrA(C A,A ; (Trx(f; 7rx; Ax) x id4)); f irB,X 
= 

	
(MA, Tr'(cA,A); Trx(f;  7rx; Ax)); f; ira,x R.T. 

= 
	

(MA, Tr"(f; 7Txi Ax)); f; irs,x Yanking 
=RHS 

Condition 1: 

ft = Tr'(f;Ax) 
= (idA, TrX(f;  Ax; v,x; A4);(f,f); x,x  A.2.1 
= (idA ,T rx(f ; A x )) ; f 
= (idA ,ft);f. 

Condition 2: 

((g x idx );f)t = Trx(( g  x idx);f;A) 
= g; T rA'(f ; A) 	L. Sliding 
= g; ft .  
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Condition 3: 

(f ;g)t = TrX(f;g;/X) 
= TrX(f ;  A; (g x y)) 
= Tr' (f;LX;(idv x g));g R. Tightening 
= Tr'((idA x y); f; A); g Sliding 
= ((idA x g);f)t;g. 

Condition 4 (Bekié's lemma): 

In the simple slice C//A (page 50), the condition is stated as 

((id ,g ) ; f)t ; (id ,g) 

for f : X x Y —* X and  X x Y -+ Y. By Corollary 6.2.4, C//A is also a traced 

cartesian category, so it suffices to show this simpler equation from the axioms of 

traces. 

We first calculate 

LHS 
= 
= 	Tr"(Tr'((f,g);Ax x y)) Vanish. 
= 	TrC((id,Tr}'((f,g); Ay; 'xxYxxy Ay)); (f g); Ay; 	XxYxX,Y)  A.2.1 
= 	Trx ((idx, Tr 1'(g; Ay)); (f,g); Ay; lrxxy x xy) 
= 	Tr((id,gt); (f; Ax,g); (idx x cx,x)) 
= 	Tr'(((idx, yt); 1; Ax, (idx, yt);  y); (idx x cx,y)) 
= 	Trxi((idx, yt); f; Ax, yt);  (idx x exy)) Cond.1 
= 	Trx(((idx, yt); f; Ax, idx); (idx x cxx); (idx x gt  x idx)) 
= 	Tr'(((idx, yt); f; Ax, idx); (idx x cxx)); (idx x yt) R.T. 

RHS 
= 	T rX ((idx,yt); f; Ax); (idx, yt) 
= 	TrJ'((idx,yt);f; Ax; (Ax x idx));(idx x y t) R.T. 
= 	TVX((idx,yt); f; Ax; (idx x Ax)); (idx x yt) 

Therefore we have only to show 

Trx(( (p,idx );(idx  x cxx)) = Trx(o; (idx X  Ax)) 
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where y = (id,gt);f;A 	X----->X x X. This is verified by 

T rX(( (p,idx );(idx  x cxx)) 
X idx);(idx X cxx)) 

= 	Tr"((y x idx); (idx x cx,x); (idx x x >< z4) Sliding 
= 	T r '(TrX(( çc  x idx); (idx x cxx); (idx x x xAx))) Vanish. 
= 	T rX( ss;Tr<((idx  xcx,x);(zdx x x xAx))) L.T. 
= 	Tr"(y; (idx x Tr (cxx; (idx x Ax)))) S.P. 

= 	Tr'(ss;(idx x TrX((Ax  x idx);(idx x cx,x);(cx,x x idx)))) 
= 	Tr"(cc;(idx x Ax; Tr(idx x cx,x);cx,x)) L.&R.T. 
= 	Trp;(idx x Ax;(idx x Tr"cx,x);cx,x)) S.P. 

= 	Tr'(ço;dx x Ax; cx,x) Yanking 
= 	T rX( y; (idx xA x ). 

From Fixed Point to Trace 

Let C be a cartesian category with an operator (_)t  which satisfies 1r4. We 

define 

TP'(f) = (idA,(f;7r x ));f;7ra,x 	A---+B 

for f A x X--4B x X, and show that Tr is a trace operator. Again strict 

associativity is assumed. 

Lemma A.2.2 Tr'(f) = ((idA x 

Proof of Lemma: 

TrX(f) = (id A ,(f;1r x )t);f;7rB,x 
= (idA,((idA x 7r x );f) t );f;rB ,x (3) 
= ((idA x 7r x );f) t ;7rn,x 	(1) 

. 

Vanishing: 
Tr 1 (j) = ( idA, (f; 7r 1 )); f;ira, i  

= (idA,!4;f;idfi 
= idA;f 
=f. 

For f : Ax X x Y---->B x X x Y, we define 

F = f;irsxxy;ir x  :AxXxY—*X 

G = f;7r'sx xy 	:AxXxY—*Y. 

Then 

(*) Try (f) = (idA X x,(f; y) t ); f; 7TBxxY 
= (idA X x,G);f;rn X x,y 	: AxX—+BxY. 
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We also note that f; 7rBX X Y = (F, C) : A x X x Y--+X >< Y. Then 

TrX'(f) = (MA, (f; ,xv)); f; 7rpy 
= (idA,(F,G));f;irn,xXy 
= (idA, (icIA,((idA X X, Ct) ;  F)t); (ir'x  Ct)); f; 7Vfl,XxY (4) 
= (idA, ((idA X x, Ct) ;  F)t) ; (idAXx,  Ct); f; ITB,XXY 
= (idA, (Try  (f); i a,x )t); Tr'  (f); lrB,X 	 (*) 

= T rX(Tr }'(f)) .  

Superposing: 

Tr'((idA x ccx); (f x g); (ida x cx,jj)) 
= (idAxc, ((idA x  ccx); (f x g); (ide X cx,D); nxD,x )t); 

(idA x ccx); (J' x g); (ide >< cx,D); 7FBID,X 
= (idAc,((7rA,c x idx);f;7r x )t);(idA x ccx);(f;irn,x  xg) 
= (idA x c,7rA,c;(f;7r x )t);(idA x cc,x);(f;irn,x x  g) 	(2) 
= ((idA,(f;7r x )t);f;7ra,x) X  
= TrX(f) x g. 

Yanking: 

TrX(cx,x) = (idx, (cxx; x ) t ); cxx; lrx,x 
1 . _I 	t 	\. - \zax,IrXX/,7rx/ X 

- - lrxt x 

= (idx,4x);x,x 	 (1) 
= idx. 

Left Tightening: 

T rX(( gx id) ; f) ((idA; >< 4x); (g >< idx); f)t; lrB,x 

((9 >< idBXX)i (id A  >< 7r x );f)t;7rB,x 

g; ((idA >< irE ); f)t; ir 

A.2.2 

(2). 

Right Tightening: 

Tr'ftf; (g x id4) 
= ((idA x 7r,x); f; (g x id x ))t; mx 	 A.2.2 
= ((idA x g x ic/ic); (idA x 7r,x); f)t; (g x idx); ira,x (3) 
= ((idA xir,);f)t;irp,;g 

= Tric(f) ;g. 

Sliding: 

T rc(f ;  (ida x g)) = ((idA x 7r,x); f; (ida x g))t; m,x 
= ((idA x id x g); (idA x a,x); f)t; (ida x g); max (3) 
= ((idA >< 7r;); (idA x 9); f)t; 3 

= TrX'((id A  x g); f). 
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A.3 Proof of Theorem 7.2.1 

Let us write U S--+C for the right adjoint of .F, and cx UX—+X (in 5) for the 

counit. By definition, we have a natural bijection (_)* : S(A, B)—*C(A, UB). 

We also define 9A,X : A x UX-- ~ U(A (D X) in  by 0A,X = (idA 0 Cx). Now we 

define (_)t  by 

ft = Tr " (F(9A,x;Uf;Aux));Cx : A—*X inS 

for f : A® 	in S. 

Condition 1: Following the remark after Theorem 7.2.1, we have only to show 

the simpler equation (f ;g)t = (g;f)t;g for f : X —* Y and 9: Y —+ X. 

(f;g)t = TrUx(T(Uf;Ug;ux));cx 
= Tr"(T(LTf; Auy ; (Ug x Ug))); cx 
= Tr"(F(Uf; Zuv);  (lUg(D TUg))); cx 
= TrUX(l(Uf ;  Auy); (iduy 0 TUg)); lUg; CX R. Tightening 
= TrTJX(T(Uf; Luy); (id uy (@ TUg)); Cy; g 
= Tr'(TUg; l(Uf; Auy)); Cy; g 	 Sliding 
= Trfl'(Tg; Uf; L\uy)); Cy;g 
= (g; f)t ;g.  

Condition 2: 

((Ig (D icl,ç ); f)t = Tr'(T(OB,x; U(g 0 id); Uf; Lux)); Ex 
= TrL(l(( g  x id); O,x;  Uf; Aux)); CX 

= TrU((Tg 0 id); T(OA,x; Uf; Aux)); 6x 
= Tg;Tr(T(OA,x;Uf;Au4);cx 	L. Tightening 
= Tg; ft. 

In the proof, we used the naturality of 0: 

OA,X; U(T(g) of) = (g x Uf) : OB ,
Y : A x UX—*U(B (D Y) 

where f : X—+Y in S and g: A —*B in C. This is routinely shown as 

OA,x; U(Tg Of) = (idA 0 EX) . ; (CAx; (Tg 0 f))* 

= ((idA 0 EX) * ; CAx; (Yg ® f))* 

= ((idA 0 EX); (Pg® f))* 
= 
= 

= ()7(g x (cx; f)); (MB 0 CX))* 

= (g x (cx; f)*);(id2 )< ex) 
= (gxU(f));OB,x. 

Remark A.3.1 Alternatively, after establishing the relation with higher-order 

cyclic sharing theories (or their fragments), we can use the equational theory 

as an internal language of our structure, and this theorem can be proved by 

equational reasoning in this language. See Example 7.3.11. 0 
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A.4 Proof of Proposition 7.1.4 

From the First Condition to the Second 

Assume that the diagram 
AxX 

Axh 	 h 

A x Y 

commutes. Then the following diagram 
J;zX;(hxX) 

AxX 	'YxX 

Axh 	 Yxh 

A x Y 	'YxY 
g;A 

also commutes. From the uniformity of the trace operator, we have 

T rX(f ;  A; (h x X)) = Tr y  (g; A). 

By Right Tightening, the left hand side is equal to Tr" (f; A); h. Since ft = 

T rX(f ;  A) and gt = Try  (g; A), we get ft;  h = gt .  

From the Second to the First 

Assume that the diagram 

AxX 	'BxX 

Axh 	 Bxh 

A x Y 9 'BxY 

commutes. Then the following diagram 
(Ax,r');f 

AxBxX 	'BxX 

AxBxh 	 Bxh 

AxBxY 	BxY 
(Axir');g 

also commutes. Since h satisfies the uniformity condition of the fixed point oper-

ator, so does B x h (by the lemma below). Thus we have 

((Ax F);f)t;(B x h) = ((Ax ');g)t. 

Since TrX(f) = ((A x '); f)t; 7r and Try  (g) = ((A x r'); g)t; , we get Tr' (f) = 

Tr'(g). 
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Lemma A.4.1 If h : X—*Y and Ii' : X'—*Y' satisfy the uniformity condition 

on the fixed point operator, so does h x h' : X x X'— ~Y x Y'. 

Proof: Assume that the diagram 

AxXxX' 

Axhxh' 	 hxh' 	 (A.1) 

AxYxY' 	YxY' 

commutes. Our purpose is to show ft;  (h x h') = gt. By Bekiê's lemma, this is 

equivalent to equations 

	

((Ax X, f t ); 	= ((A x 	 (A.2) 

	

((Ax XF,f ft ) ; 	= ((Ax Y',  g,t 
);92 

 

) 	 (A.3)  

where Ii = f;7r : A > X  K'—>X, 12 = f;ir' : Ax X  X'—+X', fil =  

(A x cx',x); f, and so on. We shall show A.2. A.3 is proved in the same way. 

By A.l, the diagrams 

AxXxX' h  

Axhxh' 	 h 

AxYxY' 91 

AxXxX' 
f2 

AxXxh' 

AxXxY' , '  Y' 
(AxhxY );92 

commute. From A.5 and the uniformity condition on 

= ((Ax h x Y');g)t 

By naturality, the right hand side is equal to (A x 

mutative diagram 	 ft 

AxX 2 'X' 

Axh 

A x Y 
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Thus we have a corn- 

 



From A.4 and A.6, 

(AXX,ffl 	 _______ 
AxX 	' AxXxX' 	X 

Axhj 

A x Y 	'AxYxY' 
(AxY,g) 	 91 

commutes. Applying the uniformity condition on h, we obtain A.2. 0 

Remark A.4.2 The corresponding result for the uniformity condition on the 

trace operator follows trivially from Vanishing. 0 

A.5 Proof of Proposition 7.2.2 

Assume that the diagram 

A®hj 

AØY 9 'Y 

commutes. Then the following diagram 

AxUX 
OA,X 

U(A®X) 
Uf 	 Aux. 

UX xUX 

AxUh 	 U(A®h) 	 Uh 	 UhxUh 

AxUY 	.U(A®Y) 	'UY 	rUYxUY 
°A,Y 	 U9 	 Suy 

commutes (in C), which implies that 

0A x;Uf;u4 	F(Uh)ØUX 
AØU 	uX®UX 	UY®UX 

AOF(Uh)! 	
UY®F(Uh) 

A®UY 	 • UYØUY 
F(GA,y;U93uy) 

also commutes. Then, by assumption, we have 

Tr'(F(OA,x; Uf; Aux); (F(Uh) 0 UX)) = Tr ' (F(OA,y; Ug; zuy)). 

The left hand side is equal to TrW (F(OA,x; Uf; L\ux)); F(Uh) (by Right Tight- 

ening). Composing with cy from right to the both sides, we obtain ft;  h = gt .  

0 
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