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Abstract

An improved understanding of the molecular pathogenesis of melanoma is required
in order to develop more effective prevention strategies, define new prognostic
markers and to identify new molecular targets for therapy.

The melanocortin-1 receptor (MC1R) plays a key role in pigment production and is a

major determinant of skin phototype and sensitivity to UY irradiation. The postulated
role of MC1R in protecting melanocytes from apoptosis in response to UV
irradiation led to our hypothesis that manipulation of the MC1R may affect growth of
melanoma cell lines and sensitivity to DNA damage. A panel ofmelanoma cell lines
were characterised with respect to MC1R sequence, MC1R mRNA expression,

presence of BRAF mutations and sensitivity of cell lines to DNA damage-induced

apoptosis. Manipulation of MC1R using MC1R ligand, MC1R antibody or MC1R
siRNA had no major effect on proliferation or DNA damage-induced apoptosis.

In order to compare the characteristics of melanoma cells in culture with the
melanomas from which they were derived, a novel melanoma cell line was

established from fresh human metastatic melanoma tissue fragments removed during

surgery. The cell line (Edmel 3) was found to retain the morphological characteristics
of the tumour from which it was derived (i.e. mixed spindle/epithelioid cells).

Subpopulations of cells of different morphology could not be subcloned from the

parent cell line. Compared to established cell lines response to DNA damage was

delayed and growth as xenografts was considerably slower.

A series of tissue microarrays which included 51 benign naevi, 27 dysplastic naevi,
54 in-situ melanomas, 312 primary melanomas and 64 metastatic melanomas were

constructed in order to provide an efficient method of evaluating the expression of

proteins at various stages of melanoma progression. A significant fall in B-catenin,
bcl-2 and galectin-3 expression between primary and metastatic melanomas and a

rise in B-catenin and galectin-3 expression between naevi and dysplastic naevi were
found. Correlation of protein expression with clinicopathologic data confirmed that
low nuclear galectin-3 expression was associated with poor survival. These findings

suggest that nuclear galectin-3 is a novel prognostic marker in primary melanoma.
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1.1 General introduction

Melanoma is the most lethal form of skin cancer and an increasingly common

disease worldwide (Tsao et al, 2004). It is a tumour of melanocytes which are cells of
neural-crest lineage that are located and evenly distributed in the basal epidermal

layer of human skin. Owing to its propensity for vertical growth with deep invasion,

many melanomas metastasize. Although the majority of patients with early-stage
melanoma enjoy long-term survival following simple surgical excision, patients with
metastatic disease have a dismal prognosis. Melanoma is characterised by high
resistance to chemotherapy and to date no therapeutic regime has been shown to

improve the survival of patients with advanced melanoma in randomized trials

(Eggermont and Kirkwood 2004).

Genetic, epidemiological and genomic investigations have uncovered a spectrum of
mutations that are associated with melanoma and have identified how some

mutations are related to melanoma susceptibility and progression (Rodolfo et al,

2004). There is optimisim that the increased understanding of the genetic changes

underlying rhelanoma development may lead to the development of more effective

prevention strategies, the establishment of new classification systems, the
identification of new prognostic markers and the establishment of new molecular

targets for therapy.

The work presented in this thesis aims to investigate a number of key pathways in the
molecular pathogenesis of melanoma. Chapter 3 investigates a key melanoma

susceptibility gene, the melanocortin-1 receptor in melanoma, chapter 4 describes the
establishment and charcterisation of a novel melanoma cell line and chapter 5

describes the investigation of melanoma progression and prognosis using tissue

microarrays.
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1.2 Melanocyte function

Melanocytes are specialist pigment cells that are found predominantly in the skin and

eyes where they produce melanins, the pigments responsible for skin and hair colour.
Cutaneous melanocytes originate from highly motile neural-crest progenitors that

migrate to the skin during embryonic development. In the skin, melanocytes reside in
the basal layer of the epidermis and in the hair follicles (Figure 1.1).

Melanin production occurs predominantly in a lysosome-like structure known as the
melanosome. The two main types of melanin are brown black eumelanin (main type

in dark skin and hair) and the red-yellow pheomelanin (main type in red hair and
freckled individuals). Both types of melanin derive from a common tyrosinase-

dependant pathway with the same precursor, tyrosine. The absence or severe

dysfunction of tyrosinase and other key pigment enzymes results in oculocutaneous
albinism which presents with intact melanocytes but inability to make pigment

(Oetting et al, 2003). Pheomelanin is more photolabile than eumelanin and can

produce amongst its by-products, hydrogen peroxide, superoxide and hydroxyl
radicals, all known as triggers of oxidative stress (Hill et al, 2000). Individual

melanocytes can produce both types of melanin with the ratio dependant on the

expression of pigment enzymes and the availability of tyrosine and sulphydral-

containing reducing agents in the cell (Land et al, 2000).

Melanin is distributed to surrounding keratinocytes through melanocytic dendritic

processes. The formation, maturation and trafficking of melanosomes is crucial to

pigmentation and defects in this process can lead to depigmented disorders such as

Hermansky-Pudlak Syndrome (Wei 2006). It is commonly believed that melanin is
crucial for absorption of free radicals that have been generated within the cytoplasm

by UV, and it acts as a direct shield from UV and visible light radiation (Lin and

Fisher, 2007).
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Figure 1.1. Schematic diagram showing the cellular architecture of the epidermis and the relationship
between melanocytes and keratinocytes. From Rees 2004.

Ultraviolet radiation causes genetic changes in the skin, impairs cutaneous immune
function, increases the local production of growth factors, and induces the formation
ofDNA-damaging reactive oxygen species that affect keratinocytes and melanocytes

(Meyskens et al, 2004). The tanning response is a defensive measure in which

melanocytes synthesize melanin and transfer it to keratinocytes where it absorbs and

dissipates ultraviolet energy. It is one of the most striking examples of enviormental

adaptation in humans and involves a complex interaction between melanocytes and

keratinocytes.

Pigmentary response of the skin to UV is determined to a large extent by the amount,

type, and arrangement of melanin (Prota 2000). It is now known that keratinocytes
secrete various factors in response to UV irradiation that regulate melanocyte

survival, differentiation, proliferation and motility, stimulating melanocytes to

produce melanin (Eves et al, 2005). The precise underlying mechanism of UV-
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induced pigmentation (suntanning) is only now beginning to be established with a

recent study suggesting that p53 may play a central role (Cui et al, 2007).

1.3 Melanoma epidemiology, aetiology and prevention

Cutaneous melanoma is the eighth most common cancer in the UK (Cancer Research
UK 2006) and is the second commonest in young people (aged 20-39). Scotland has
the highest rate ofmelanoma of any country in the UK and the last 20 years has seen

a doubling of melanoma cases (Figure 1.2 A). The commonest site of melanoma is
on the legs in females and on the trunk in males (Figure 1.2 B,C). A further 73% rise
in Scottish melanoma cases is predicted over the next 10-15 years, the largest
increase for any solid tumour (Doherty 2006)).

The highest incidence of melanoma is in parts of the world where fair skinned
individuals have high UV exposure such as Queensland, Australia (AIHW 2003).

Age-standardised incidence (per 100,000 population) is 41 and 31 for males and
females respectively compared to 21.4 and 13.8 in the US and 9.7 and 11.2 in the
UK. The basis for the dramatic rise in incidence of melanoma is incompletely
understood although the localized degradation of the ozone layer, the increase in
solar exposure as a recreational activity, and the immigration of fair-skinned

populations into equatorial latitudes each appear to play some causative role

(Berwick and Halpern 1997).

The mean age of presentation with melanoma is approximately 55 years (NCI 2008).
The principal risk factors for cutaneous melanoma are thought to represent the

interplay between genetic factors and exposure to sunlight (Jhappan et al, 2003) and
include family history, presence of multiple naevi, geographical location, hair and
skin colour and history and pattern of sun exposure.
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Figure 1.2. Incidence of cutaneous melanoma in South-East Scotland. Incidence rates are shown
for 5 year cohorts from 1979-2002. Total population is 1.2 million. (A) Overall incidence in Females
versus Males. (B) Incidence by body site in Males. (C) Incidence by body site in Females. Adapted
from Doherty 2006. Unk = unknown.
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The risk of an individual developing a melanoma is greatly increased if there is a

family history of the disease. Only very occasionally, however, is melanoma due to

the presence of identifiable heritable mutations in highly penetrant genes (see section
on genetic susceptibility to melanoma for further discussion). Melanoma risk is

highest in those with fair skin and inability to tan, particularly in those with red hair

(Marrett et al, 1992). Freckling and blue eyes also confer a modest increase in risk
for melanoma development (Bliss et al, 1995). Some inherited variants of the
melanocortin-1 receptor confer increased UV sensitivity and a twofold to fourfold
elevation in melanoma risk (Hayward 2003).

The presence of multiple naevi in an individual, whether atypical or not, is a strong

marker for melanoma risk irrespective of family history (Berwick and Halpern

1997). A meta-analysis of observational studies found that an individual who has
more than 100 common naevi or more than two atypical naevi has a fivefold to 20-
fold increased risk ofmelanoma (Gandini et al, 2005).

Whereas squamous and basal carcinomas appear to be linked to total lifetime sun

exposure, melanoma development is most closely associated with intense,
intermittent exposure (Armstrong and Kricker, 2001). UV causes many types of

mutation, but cytosine-thymine (C-T) and CC-TT are regarded as UV signature
mutations. These mutations will however only be seen in melanoma if C residues
occur in functionally critical areas of the genome (Povey et al, 2007). The nucleotide
excision repair (NER) pathway deals with the main types of UV-induced DNA

damage (cyclobutane pyrimidine dimmers and 6-4 photoproducts) and inefficient

repair ofDNA photoproducts is associated with melanoma risk (Mitchell 1991). This
is exemplified by the disease xeroderma pigmentosum (XP), which is characterised

by mutations in specific genes involved in the nucleotide excision repair (NER)

pathway and is associated with an elevated risk of both melanoma and non-

melanoma skin cancer (Kraemer et al, 1994).
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Additional evidence for a role of UV induced DNA damage in development of
melanoma comes from a number of epidemiological studies; high levels of sunlight
in childhood are a strong determinant of melanoma risk (Whiteman et al, 2001);
melanoma patients are inefficient in repairing UV induced DNA damage (Wei et al,

2003); and mutations in the melanoma susceptibility gene CDKN2A (which encodes

pi6 and ARF proteins) reduce the ability of cells to process UV-induced DNA

damage, independent of cell cycle effects (Sarkar-Agrawal et al, 2004).

Epidemiologic observations suggest that chronic or low-grade exposures to UV
induce protection against DNA damage whereas intense, intermittent exposures

cause genetic damage (Gilchrest et al, 1999). Although UV irradiation is the key
environmental risk factor for melanoma not all melanomas arise on sun-exposed sites
and not all mutations identified in melanoma have a UV signature (Thomas et al,

2006). This raises the issue of the importance of other forms of DNA damage and

repair pathways in melanoma.

The association of melanoma with use of sun beds is controversial. Some studies

have not found sunbed use to be a significant risk whereas others have found small
increases in risk (Holly et al, 1995; Westerdahl et al, 1994; Autier 2005).

Primary prevention campaigns aimed at reducing people's exposure to sun were

introduced in Australia in the 1980s and adopted elsewhere. There is however no
direct evidence that reducing sun exposure has had an effect on melanoma incidence
and there has been some recent concern that drastic reduction in sun exposure in

temperate climates may have a negative impact on health because of low Vitamin D
levels (Bataille et al, 2008). Secondary prevention and screening strategies have not

yet been formally assessed although some centres suggest that patients at increased
risk of melanoma should be offered screeing by a dermatologist (Newton Bishop et

al, 2007).
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1.4 Melanoma diagnosis and staging

UK guidance suggests that lesions suspected to be melanoma should be excised

completely with a clinical margin of 2mm of normal skin and a cuff of fat (Roberts et

al, 2002)). This allows confirmation of the diagnosis by examination of the whole
lesion. The Royal College of Pathologists has produced a minimum dataset which
defines the histological features of a melanoma that should be included in the

histopathology report (Royal College of Pathologists, 2002).

Cutaneous melanomas are usually divided into four clinico-pathologic subtypes

(Fecher et al, 2007). Acral melanoma tends to be found on the palms of the hands,
the soles of the feet and in the nail bed and is not associated with UV exposure. Acral
accounts for about 50% ofmelanoma in non-Caucasian populations. Lentigo maligna
is generally flat in appearance and occurs on sun-exposed regions in the elderly. It is
therefore associated with lifetime chronic sun exposure. Nodular melanoma typically
consists of raised nodules without a significant flat portion. Superficial spreading
melanoma (SSM) is by far the most common form of melanoma. It is usually flat
with an intra-epithelial component, particularly at the edges, and is linked to episodes
of severe sunburn, especially at an early age. Although this classification is

commonly used it has little prognostic or therapeutic significance (Balch et al, 1992).

Several clinical and histological parameters that have been shown to influence the

prognosis of cutaneous melanoma have been identified (Balch 2000). The clinical

parameters include anatomical site, gender and age. Tumours located on the trunk,
head or neck tend to be thicker and carry poorer prognoses than those on the
extremeties. Survival rates are generally higher for Females than Males and higher in
the young than in the elderly. The histological parameters that influence prognosis
include depth of invasion, and ulceration. Depth of invasion (Clark level) and tumour
thickness (Breslow) are the most important variables in melanoma prognosis.

Applied mathematical models have revealed a linear correlation between patient
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survival and tumour thickness. Ulceration is found in 20-25% of all melanomas and

is especially common in Male patients. Data on several of these clinical and

histological parameters have been used to classify patients into groups of similar

prognosis, a process known as staging (Table 1.1).

Stages I and II are melanomas that are localized to the skin at varying depths of
invasion; stage III includes patients with regional recurrence and nodal spread of

disease, and stage IV patients have distant metastatic spread of melanoma. Although

staging patients is helpful for clinical purposes the parameters are frequently

unreliable; some deep melanomas lack metastatic potential, whereas some thin
melanomas have an aggressive course and are able to disseminate. Additional

prognostic factors are therefore required.

1.5 Melanoma therapy

The most important determinant of melanoma outcome is early diagnosis which
allows treatment to be undertaken at a stage when cure is readily achievable. Most
melanomas can be identified by clinical examination with several features being

suggestive of a diagnosis of melanoma. These include asymmetry of a lesion, border

irregularity, colour change and diameter greater than 6mm i.e. the so-called ABCD

system of diagnosis (Friedman et al, 1985). In addition, clinical suspicion should be
aroused by any significant change in an existing naevus or skin lesion. It should be
noted that approximately 1.6-10% (Thompson et al, 2005) of all melanomas are non-

pigmented and as a result amelanotic melanomas are often mistaken for basal cell
and squamous cell carcinomas or even benign inflammatory lesions. Nodular
melanomas are more likely than other types of melanoma to be amelanotic
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Stage TNM Classification Histoloqical/Clinical Features 5 Year Survival

0 TisO NO MO Intraepithelial/in-situ melanoma 100%

IA T1a NO MO <1mm without ulceration and level ll/lll >95%

IB T1b NO MO <1mm with ulceration and level lll/IV

T2a NO MO 1.01-2cm without ulceration 89-91%

11A T2b NO MO 1.01-2cm with ulceration and level

T3a NO MO 2.01 -4cm without ulceration 77-79%

MB T3b NO MO 2.01 -4cm with ulceration

T4a NO MO >4mm without ulceration 63-67%

IIC T4b NO MO >4mm with ulceration 45%

IIIA T1-4a N1a MO 1 nodal micrometastases, nonulcerated 1°
T1-4a N2a MO 2-3 microscopic nodes, nonulcerated 1° 63-69%

1MB T1-4b N1a MO 1 nodal micrometastases, ulcerated 1° 46-53%

T1-4b N2a MO 2-3 microscopic nodes, ulcerated 1°
T1-4a N1b MO 1 nodal macrometastases, nonulcerated 1°
T1-4a N2b MO 2-3 macroscopic nodes, ulcerated 1°
T1 -4a/b N2c MO In-transit mets and/or satellite lesions 30-50%

MIC T1-4b N2a MO 1 macroscopic regional node, ulcerated 1°
T1 -4a/b N2a MO 2-3 metastatic nodes, ulcerated 1°
Anv T N3 MO 4 or more metastatic nodes 24-29%

IV Any T any N M1a Skin, or nodal mets with normal LDH

Any T any N M1b Lung mets with normal LDH
Anv T anv N M1c Mets with elevated LDH or visceral mets 7-19%

Table 1.1. AJCC 2002 Revised Melanoma Staging. The table shows the 5 year survival for patients
with different stages of melanoma determined by Breslow thickness, presence of ulceration, nodal
involvement or presence of metastatic disease. TNM stands for tumour, nodes, metastases. LDH =

lactate dehydrogenase. Other prognostic factors that are not included in the AJCC staging system

include sex, site and presence of mitoses.
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(Chamberlain et al, 2003).

The standard approach to management of primary melanoma is excisional biopsy of
the lesion followed by detailed pathology review. On the basis of the pathology

report a planned re-excision is normally undertaken with a wide margin of between 1
and 3cm depending on the Breslow thickness of the primary lesion. Sentinel node

biopsy, a minimally invasive procedure that provides accurate assessment of regional
node status (Morton et al, 1992), is often offered for patients with melanomas of

greater than 1mm Breslow. Although this procedure provides prognostic information
it is still unclear whether completion nodal dissection in patients with a positive
sentinel node provides a significant survival advantage.

More than 80% of patients with melanoma will die from other causes (Beddingfield

2003). However those patients at intermediate or high risk of recurrence would

potentially benefit from eradication of micrometastatic disease through the use of
effective systemic adjuvant therapy. Although numerous trials of adjuvant therapies
have been carried out in melanoma patients using chemotherapy, vaccines, biological

agents and combinations of these, the only drug that has been shown reproducibly to

have some impact on patient outcome in large randomised trials is high dose
intravenous interferon-alpha (Hersey et al, 2003). A pooled analysis of trials at

median follow-up times of 2.1-12.6 years showed significant improvement in

relapse-free survival for patients treated with high-dose interferon-alpha of about
10% at 5 years but no clear benefit in terms of overall survival, compared with

patients randomly allocated to observation or vaccine therapy (Kirkwood et al,

2004). The most recent analysis of the interferon-alpha data however has suggested a

proportional benefit in overall survival of 3% at five years (Wheatley K, 2007). At

present high dose interferon is not regarded as standard adjuvant therapy in the UK

although it is widely used in parts ofNorth America.
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For patients with metastatic melanoma, no randomised controlled trials have shown a

significant survival advantage with the use of any specific drug or combination of

drugs (Brown and Kirkwood, 2003). Among cytotoxic agents dacarbazine is widely

regarded as the benchmark and although it has been said to produce a response rate

in 15-20% with a median duration of response of 4 months (Eggermont and

Kirkwood, 2004) the most recent data from a study of 771 patients showed a

response rate in the dacarbazine arm of only 7.5% (Bedikian et al, 2006). A variety
of regimens combining dacarbazine with other cytotoxic agents, tamoxifen, or

interferon-alfa have shown promising response rates in single-institution phase 2
trials but no survival advantage has been shown in randomised phase 3 studies (Tsao
et al, 2004). The cytokine interleukin 2 has approval for use in the US for treating
metastatic melanoma on the basis of durable responses in some patients. The overall

response rate however is low (16%) and as systemic toxicity is high its use is
restricted to selected patients in specialist centres. Surgery is used for treatment of
local recurrences and for metastatic disease in regional lymph nodes and can also be
valuable for patients with surgically resectable disease in up to 3 visceral sites.
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1.6.1 Genetic susceptibility to melanoma

Linkage-analysis studies of families with a high incidence of melanoma culminated
in the identification of two susceptibility genes - CDKN2A and CDK4. About 10%
of all melanoma cases are familial and between 25-40% of inherited cases of

melanoma carry mutations in the CDKN2A locus (Kamb et al, 1994) (which encodes

pl6INK4A and pl4ARF) and CDK4 (Zuo et al, 1996). INK4 is a CDK inhibitor that
binds to and inhibits CDK4 (and CDK6), which otherwise phosphorylates pRb and
induces Gl-S phase progression. ARF acts through a distinct pathway involving
stabilisation of p53 through abrogation of murine double minute-2-induced p53

degradation. More recently a pigmentation-associated predisposition to melanoma
has been identified with the discovery of polymorphisms of the melanocortin-1

receptor (MC1R) which are associated with red hair, fair skin, sun sensitivity and

freckling phenotype.

1.6.2 The melanocortin-1 receptor

The melanocortin-1 receptor (MC1R) is a member of the G-protein coupled receptor

(GPCR) superfamily which is formed by over 1000 members and accounts for more
than 1% of the mammalian genome. GPCRs play a central role in allowing cells to

communicate with their environment and mediate the responses to a wide variety of
stimuli including light, taste molecules, neurotransmitters and hormones (Fredholm
et al, 2007). GPCRs regulate the activity of metabolic enzymes and pathways, ion
channels, membrane transporters and the function of the transcriptional, motility and

secretory machineries. Recent evidence has suggested a role for MC1R in response

to pain (Mogil et al, 2005) but it is best known for its central position in melanocyte
cell biology (Cone et al, 1996, Sturm 2002). It plays a key role in pigment production
and is a major determinant of skin phototype and sensitivity to UV light induced

damage.
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MC1R belongs to a five member sub-family of GPCRs termed MC1R to MC5R

(Reviewed in Getting 2006): MC2R is expressed in the adrenal cortex and has a role
in steroidogenesis; MC3R is expressed in brain and heart tissue and is involved in

energy metabolism and in control of inflammation; MC4R is expressed in the brain
and has a role in energy homeostasis and pain; and MC5R is expressed in

lymphocytes and exocrine glands and has immunoregulatroy functions. MC1R is

expressed predominantly on melanocytes and melanoma cells but is also found in a

variety of other cell types found in skin including keratinocytes, fibroblasts and T

lymphocytes as well as in other organs including the testis and the brain (Adachi et
al, 1999, Bhardwaj et al, 1997, Bohm et al, 1999, Salzar-Onfray et al, 2002, Stander

etal, 2002, Xiaetal, 1995).

The MC1R physiologic agonists belong to a group of small peptide hormones

(melanocortins) which are derived from the precursor proopiomelanocortin (POMC)
and expressed in the pituitary and peripheral locations including the skin (Eves et al,

2005). POMC protein contains 3 main domains: the central highly conserved

ACTH1.39 sequence, with a-MSH at its N-terminus; the C-terminal B-lipotropin,

which can be cleaved to generate [3-endorphin; and the N-terminus region which
contains y-MSH (Castro and Morrison, 1997). Preferential natural agonists ofMCI R
are a-melanocyte stimulating hormone (a-MSH) and adrenocorticotropic hormone

(ACTH). tx-MSH, a tridecapeptide (Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-

Lys-Pro-Val-NH2), was discovered primarily for its function in pigmentation

although recent research has suggested a role in other biological activities including

learning and memory, cardiovascular function, reproduction, and feeding behaviour

(Bertolinin and Gessa, 1981, Eves et al, 2005, Getting, 2006, Voisey et al, 2003,

Wikberg et al, 2000).

a-MSH is produced primarily by keratinocytes in response to UV. Binding of a-
MSH to a site on the extracellular domain ofMCIR on melanocytes is transduced by
the receptor into an increase in intracellular cAMP levels (Barsh et al, 2000,
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D'Orazio et al, 2006). a-MSH signalling is involved in the developmental migration
of melanocyte precursors (melanoblasts) from the neural crest to the skin and in

melanocyte motility (Mayer, 1973, Hirobe, 1992). It also provides a potent signal for

melanocyte proliferation and stimulates melanin synthesis (Lin and Fisher, 2007).
Activation of MC1R by a-MSH results in increased activity of tyrosinase, a key

enzyme catalysing the rate limiting step in melanin synthesis. This signal leads to not

only an increase in the amount of pigment produced but also an increase in the ratio
of black and strongly protective eumelanins to yellowish and poorly protective

pheomelanins (Lin and Fisher, 2007). In vitro, the effects of a-MSH can be
mimicked by a number of drugs including forskolin, IBMX and cholera toxin,

indicating that a-MSH functions mainly through elevating cAMP levels in the cell

(Eves et al, 2005). Although cAMP triggers numerous downstream effects, one

important target is the MITF gene, which is transcriptionally upregulated by cAMP

signalling in a melanocyte-restricted fashion (Garraway et al, 2005). It is now

recognised that MITF is a regulator of pigmentation as well as a key transcription
factor involved in survival pathways both during development and during neoplastic

growth of melanoma (Levy et al, 2006). cAMP has also been shown to inhibit the

phosphatidylinositol 3-kinase/AKT pathway and to stimulate the MAPK pathway

through B-Raf activation and may therefore influence both differentiation and
survival of melanocytes (Dumaz et al, 2006). Although it appears that the principal
role ofMCIR is in mediating the response of the melanocytes to UY radiation it may
also play a central role in other aspects of skin biology including the acute

inflammatory response (Eves et al, 2005).

1.6.3 MC1R in melanoma susceptibility

MC1R is an integral membrane protein of 317 amino acids and contains an extra¬

cellular N-terminus, seven transmembrane fragments and an intracellular C-terminal
extension. It is encoded for within a single exon of the MC1R gene on chromosome

16q24.3 (Mountjoy et al, 1992). The elucidation of the role of human MC1R in

pigmentation followed the identification of the MC1R locus underpinning a series of
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mutations in mice at the classical coat-colour locus extension (Robbins et al, 1993).
Point mutations within MC1R that confer constitutive activity result in a dominant
black phenotype in mice whereas loss-of-function alleles result in a yellow coat

(Cone et al, 1996). In the MC1R loss-of-function mouse, expression of the wild-type
MC1R allele results in over-rescue (yellow to black) (Healy et al, 2006). These
observations led to the hypothesis that part of the variation of normal human

pigmentation within and between populations may arise from polymorphisms in the
human MC1R gene.

The human MC1R gene is highly polymorphic and many of the natural variants are

functionally relevant (Wong and Rees 2005). In man, more than 60 natural variants
ofMC1R have been reported. Several variants are associated with fair skin, red hair

colour, freckles and increased skin cancer risk. The best characterised variants are

the red hair colour (RHC) alleles Argl51Cys, Argl60Trp and Asp294His. Analysis
of functional effects of cloned RHC variants in heterologous cell lines suggested they
were loss of function since the receptors were severely compromised in their ability
to stimulate cAMP production (not due to altered affinity of agonist). However the 3
common RHC alleles could rescue to varying degrees eumelanin production in
MC1R deficient transgenic mice suggesting that they were not complete loss of
function and that they may possess different levels of activity (Reviewed in Healy

2004).

Within human melanocytes the MC1R genotype provides the first level of regulation
of MCIR signalling. MC1R activity can also be modulated by several mechanisms

including changes in gene expression, mRNA stability and/or translation efficiency
or the rate of post-translational processing of the receptor protein and its traffic

through the secretory pathway (Rouzaud et al, 2003). Once in the plasma membrane,
MC1R activity is primarily controlled by the interaction of the receptor with the

activatory melanocortins.
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In view of the known higher risk of melanoma development in individuals with
certain pigmentary characteristics including fair skin type, red hair, inability to tan

and freckling it is perhaps not surprising that a number of case-controlled studies
have shown an association between MC1R variants and melanoma (Sturm 2002).
These alleles are in fact associated with increased risk of melanoma and

nonmelanoma skin cancer (Box et al, 2001) as well as with increased penetrance and
reduced age of onset in familial melanoma in CDKN2A mutation carriers (Goldstein
et al, 2005). It is widely thought that the lack of photoprotective eumelanin in the
skin of people with MC1R variants explains the reason for the elevated melanoma
risk. It is also possible that the relatively higher levels of phaeomelanin may

contribute to the increased risk of melanoma due to the association of phaeomelanin
with the generation of increased free radicals following exposure to UV (Menon et

al, 1983).

1.6.4 MC1R and non-pigmentary pathways

Studies on sporadic melanoma have suggested that the elevated risk of developing
melanoma remains raised even after controlling for skin type and hair colour in the

analysis (Box et al, 2001). Although this may be partly due to the difficulty in

accurately defining pigmentation phenotype it has been interpreted by some authors
as indicating that the risk of development of melanoma as a result of MCIR variants
arises secondary to the effects of variants on non-pigmentary pathways. Two recent

studies have provided evidence that signalling through the MC1R receptor may

influence risk of melanoma development through an effect on DNA repair. This
effect appears to be independent of pigmentary response.

The first study investigated the effects of a-MSH and endothelin-1 on DNA repair

following UV radiation in cultured human melanocytes (Kadekaro et al, 2005). It
was found that a-MSH rescued human melanocytes from UV radiation induced

apoptosis and reduced DNA photoproducts and oxidative stress. Notably, loss-of-
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function mutations in the MC1R abolished the anti-apoptotic effect of a-MSH. This

study suggested that the survival effects of a-MSH were mediated independent of

regulation ofmelanocyte proliferation and melanogenesis.

A second study investigated the effects of a-MSH on apoptosis and DNA repair

following UV radiation in normal human melanocytes (Bohm et al, 2005). It was
found that a-MSH markedly reduced the formation of UVB radiation-induced DNA

damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers,

ultimately leading to reduced apoptosis. The effect was not related to alterations in
cell cycle distribution nor via changing the expression of apoptosis-related proteins.

Although this study suggested that a-MSH causes a reduction in UVB radiation-
mediated DNA damage via activation of the nucleotide excision repair pathway it is
also possible that the effect of a-MSH is due to reduced formation of reactive

oxygen species. This requires further investigation.

It has therefore been proposed that loss-of-function mutations in the MC1R gene

may not only affect constitutive pigmentation but they may also predispose human

melanocytes to the DNA damaging effects of UV radiation which may increase
melanoma risk (Figure 1.3). The proposed role of the a-MSH/MClR pathway in

protecting melanocytes from apoptosis may be of importance in the understanding of
melanoma pathogenesis and for the development of preventative and therapeutic
measures.

1.6.5 MC1R as a therapeutic target in melanoma

Although the a-MSH/MClR/cAMP signalling pathway has an undisputed role in

promoting pigmentation, data relating cAMP to melanoma progression appear

contradictory. A limited number of in vitro studies have investigated the influence of
MC1R genotype on melanoma cell behaviour. When the wild-type MC1R is
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Figure 1.3. Schematic diagram displaying the relationship of UV exposure to signalling through
MC1R. Possible downstream effects of stimulation of the MC1R by a-MSH via elevated intracellular
cAMP are shown.

transfected into the amelanotic murine melanoma cell line B16G4F they remain
amelanotic which allows a unique opportunity to investigate the non-pigmentary

consequences of MC1R variants in the absence of confounding by effects of these
variants on pigmentation. In cell growth assays, a-MSH suppressed proliferation of

wild-type MC1R transfectants, but no suppression of growth was observed following
addition of ligand to cells with variant MC1R (Argl51Cys, Argl60Trp and

Asp294His) (Robinson et al, 2002). In addition, binding of the melanoma cells to

fibronectin was inhibited by a-MSH in the wild-type transfected cells but this effect
was not seen in the variant MC1R lines. Taken together these data suggest that

compromised cAMP signalling could favour melanoma progression and that a-MSH

may have an inhibitory effect in early melanoma development. The lack of these
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inhibitory effects in individuals with variant MC1R may permit melanomas to arise
more readily.

In contrast, a-MSH and cAMP have been found to increase c-met expression in
melanoma cells which increases melanoma metastatic potential (Beuret et al, 2007).

Also, the CREB/ATF family of transcription factors that function downstream of the
cAMP pathway have been reported to act as survival factors and contribute to the

malignant phenotype (Eves et al, 2002). Whether the a-MSH/MClR/cAMP signal is

pro-survival or growth inhibitory may be dictated by the cellular context, the
extracellular signals, the microenvironment or the mutational status of the melanoma.

The possibility of using MC1R as a target for antibody or T cell based

immunotherapy is dependant on how selectively this receptor is expressed in
melanoma versus normal tissues. Analysis of MC1R expression by Western blot,

immunohistochemistry and flow cytometry confirmed that MC1R is expressed at

high levels in the majority ofmelanoma cell lines and in fresh primary and metastatic
melanomas and at low levels in certain normal tissues (Salazar-Onfray et al, 2002). A
number of studies have now been carried out to explore the use of MSH conjugated
to radioisotope to target the MC1R (Raposinho et al, 2008).

MC1R is involved in many of the processes that distinguish melanoma from other
tumour types; extreme migratory ability of normal precursors, pigment production
and resistance to apoptosis. The MC1R pathway therefore represents a suitable
candidate for further evaluation in the search for improved understanding of
melanoma tumourigenesis and the development of novel therapeutics and is the

subject of the first part of this thesis.
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1.7.1 Genetics changes in melanoma progression

The Clark model of the progression of melanoma emphasizes the stepwise
transformation of melanocytes to melanoma (Clark and Elder, 1984). This model
describes histopathological changes that occur along 5 steps in melanomagenesis;

benign naevus, dysplastic naevus, radial-growth phase (RGP) melanoma, vertical-

growth phase (VGP) melanoma and metastatic melanoma (Figure 1.4). Naevi are

benign, senescent neoplasias that consist of aberrant proliferation of melanocytes in
the basal epidermis. Although naevi show varying degrees of dysplasia they only

rarely transform to invasive melanomas (Lin and Fisher 2007). RGP melanoma is an

intra-epidermal lesion that can involve some local microinvasion of the dermis. The

change from RGP to VGP melanoma is a key switch as cells acquire metastatic

potential and can spread either through lymphatics or directly by the bloodstream to

distant sites giving rise to life-threatening disease. The proportion of melanomas that
arise from naevi as opposed to those that arise de novo without any obvious

precursor lesion remains controversial (Ackermann, 2000).

The biological changes occurring in melanoma progression are likely to arise from a

complex interaction between malignant cells and host factors. Key changes that are

acquired in metastatic progression consist of uncontrolled autocrine growth,
resistance to apoptosis and the achievement of invasive properties including

adhesive, motility, proteolytic and angiogenic capacities (Hsu et al, 2002). It is hoped
that an increased understanding of the key steps involved in melanoma progression
will lead to the identification of new therapeutic targets.

The specific molecular changes and the mechanisms underlying melanoma

progression are now beginning to be unravelled by genomic and proteomic

approaches (Reviewed in Miller 2006). Mutations in critical growth regulatory

genes, the production of autocrine growth factors and loss of adhesion receptors all
contribute to disrupted intracellular signalling in melanocytes allowing them to

escape their tight regulation by keratinocytes. Consequently melanocytes can
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Figure 1.4. Schematic diagram displaying the spatial relationship of melanocytes to the rest
of the cells in the skin during the various proposed steps of melanoma progression. Adapted
from Gaggioli and Sahai 2002.

proliferate and spread, leading to formation of a naevus. The acquisition of invasive
behaviour is the key transition in the progression of benign melanocytes to life

threatening melanoma. Underlying the invasive behaviour is increased motility
caused by changes in cytoskeletel organisation and altered contacts with the
extracellular matrix (Rodolfo et al, 2004). Changes in the interactions of melanoma
cells with keratinocytes and fibroblasts enable them to survive and proliferate outside
their normal epidermal location. Although the pattern of genetic change in
melanoma is diverse they have convergent effects on key biochemical pathways

(Hayward 2003) including the Raf/MAPK, PI3K/AKT/PTEN, Rb and WNT

pathways and the pathways of apoptosis. Proteins involved in tumour/stroma
interaction also have a key role in melanoma progression.
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1.7.2 The MAP kinase pathway in melanoma progression

The multikinase MAP kinase cascade is a critical growth signalling pathway that is

among the most common sites of mutation in human cancers. The initiator protein in
the pathway, RAS, can be activated by growth factors and can signal through many

downstream proteins, including the RAF family of proteins. Mutations in RAS are

frequent in human cancers, including approximately 15% of melanomas and they are

almost always reciprocal to mutations in BRAF (Davies et al, 2002, Akslen et al,

2005). BRAF mutations play an important role in the initiation and /or progression of
melanoma via sustained BRAF-mitogen-activated protein kinase kinase-extracellular

signal regulated kinase (BRAF-MEK-ERK) activation. The BRAF gene is mutated in

approximately 70% of primary melanomas (Rodolfo et al, 2004). 80-90% of these
mutations involve a T1799A transversion in exon 15 that results in the substitution of

a glutamate for a valine at position V600E (Panka et al, 2006). The V600E mutant B-
Raf possesses the hallmarks of an oncogene: (1) the kinase activity of B-Raf V600E
is 10 times greater than wild-type B-Raf, (2) it constitutively stimulates ERK activity
in vivo independent of RAS, and (3) it potently transforms NIH3T3 cells

(Karasasides et al, 2004).

Although UV irradiation appears to induce BRAF mutations, V600E requires a GTG
to GAG change, a mutation that does not conform to a typical UVB-damaged DNA

signature (Thomas et al, 2006). The mechanism by which UV induces BRAF
mutations in melanoma is uncertain. One possibility is that the mutations are not

induced directly by UV irradiation but are a secondary consequence of exposure.
Melanin production results in the accumulation of highly toxic oxidising agents and
so its increased synthesis following UV exposure could cause further DNA damage
in the melanocytes. It is also possible that the inflammatory response that

accompanies sunburn could contribute.
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Recent studies have shown that the presence of a mutation in BRAF does not

correlate with activation of ERK in melanocytic naevi (Uribe et al, 2006). Thus,
BRAF mutations do not seem to be sufficient to produce MAPK activation in

melanocytic naevi. This suggests that other events are needed to induce MAPK
activation such as BRAF overexpression, inhibition of MAPK phosphatases or

suppression ofRAF kinase inhibitors.

1.7.3 The importance of apoptosis in melanoma progression

Melanocytes have an important role as the photoprotectors of the skin and have a

high inherent resistance to apoptosis (Soengas and Lowe 2003). They can survive
considerable genotoxic stress in order to secrete melanin that protects neighbouring
cells from further damage. The extreme resistance of melanoma to chemotherapeutic

drugs and the generally low apoptotic indices in melanoma has prompted an

extensive search for cell death factors altered during melanoma progression.

The dependence of melanocytes on Bcl-2 for survival is illustrated by the

depigmentation and loss of melanocytes of mice deficient for Bcl-2 (Hodgkinson et

al, 1993). The importance of Bcl-2 on melanoma however is less clear. Some reports

suggest that high Bcl-2 is associated with poor survival of metastatic melanoma

patients whereas others suggest a downregulation of Bcl-2 during melanoma

progression and argue against the use of Bcl-2 as a prognostic factor (Reviewed in
Serrone and Hersey 1999). Suppression of Bcl-2 using antisense technologies
induces death of melanoma cells and potentiates the effects of chemotherapy (Jansen
et al, 1998).

Other proteins involved in apoptosis have also been implicated in melanoma

pathogenesis. PUMA belongs to the Bcl-2 family of apoptotic regulators and

overexpression is an independent predictor of survival (Karst et al, 2005).

Conversely, loss of expression of Bcl-2 proteins, Bax and Bak are associated with

25



worse long-term prognosis in primary melanoma (Fecker et al, 2006). The X-linked
inhibitor of apoptosis (XIAP) is associated with chemoresistance in many cancers

and expression is higher in melanomas (particularly in early stage disease) than naevi

(Kluger et al, 2006). Survivin is a member of the inhibitors of apoptosis family (IAP)
that is overexpressed in invasive and metastatic melanomas (Soengas et al, 2003).

Although inactivating mutations of the tumour suppressor p53 are uncommon the

p53 pathway is frequently downregulated in melanoma. Mechanisms include ARF
deletion or overexpression of MDM2 which occurs in approximately 50% of
melanomas (Polska et al, 2001). Finally, Apaf-1, an effector of apoptosis, is
inactivated in approximately 40% ofmelanomas (Soengas et al, 2001).

1.7.4 Other important pathways in melanoma progression

A number of other proteins have been implicated in melanoma pathogenesis. E-

Cadherin, N-Cadherin and P-Cadherin are adhesion molecules that all have key roles
in the development and progression of melanocytic tumours (Bachmann et al, 2005).
The cytoplasmic domain of E-cadherin links to the cytoskeleton through interactions
with B-Catenin. Lack of B-Catenin nuclear staining is related to tumour thickness
and associated with poor prognosis (Bachmann et al, 2005).

Galectin-3 is a member of the B-galactoside-binding gene family that has been

implicated in a variety of biological functions including tumour cell adhesion,

proliferation, differentiation, angiogenesis, cancer progression and metastasis

(Nakahara et al, 2005). It is expressed broadly in normal and tumour cells and

although predominantly localized in the cytoplasm may translocate to the nucleus.

Although it has been reported for some time as having an important role in cancer

progression a recent study has suggested an important role for galectin-3 in
melanoma progression; primary and metastatic melanomas expressed galectin-3 at a

significantly higher level than naevi in both cytoplasm and nuclei and there was a
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trend towards worse survival for those patients showing higher levels of cytoplasmic
than nuclear galectin-3 expression. (Prieto et al, 2006).

1.8 Molecular classification of melanoma

Epidemiologic and molecular studies suggest that different types ofmelanoma can be

distinguished on sun-exposed skin versus non-sun-exposed skin. Array-base

comparative genomic hybridisation, DNA sequencing and immunohistochemistry
was used to determine genome-wide changes in DNA copy number and BRAF/N-
RAS mutational status in 126 primary melanomas (Curtin et al, 2005). Tumours were
classified into 4 types on the basis of location and history ofUV exposure defined by

presence or absence of solar elastosis: acral, mucosal, and cutaneous melanomas with
chronic sun-damage (CSD) or without chronic sun-damaged skin. Most non-CSD
melanomas had BRAF or NRAS mutations. Those without mutations had increased

copies of CDK4 or CCND1. The incidence of BRAF and N-RAS mutations in CSD
melanomas was much lower. Deletion of CDNK2A was common in mucosal and

acral melanomas. Of all histopathologic subtypes acral and mucosal melanomas had
the greatest number of genomic events. These findings provide genetic support for
the existence of distinct molecular pathways to melanoma, also known as the

'divergent pathway hypothesis'.

A recent study identified an important link between germline mutations in MC1R
and BRAF mutations (Landi et al, 2006). In a study of 200 cases of primary
melanoma MC1R variant alleles were found to be associated with melanoma risk

specifically in patients with melanomas in non-CSD skin. This risk appeared to be
associated with tumours harbouring BRAF mutations suggesting that germline events

may influence genetic events leading to tumourigenesis in response to environmental

exposure. Whether the MC1R-BRAF link is a consequence of a direct effect of

impaired MC1R on BRAF or is due to alterations in other pathways is unclear. The

proposed link between these distinct molecular pathways has previously been

suggested by studies in melanocytes where crosstalk between cAMP and
BRAF/CRAF signalling was investigated (Dumaz 2006). Further investigation into
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whether different UV exposures lead to biologically distinct melanomas is not only
critical to understanding the role of UV in melanomagenesis it may ultimately allow
the development of separate targeted therapeutic strategies for patients with all types
of melanoma.

1.9 Prognostic markers in melanoma

A number of approaches to investigate novel prognostic markers in melanoma have
been used. One method used to identify novel candidate proteins involved in
melanoma prognosis is gene expression profiling. Gene expression microarray on

frozen samples of melanoma has identified characteristic gene expression differences

distinguishing different classes of metastatic melanoma from one another and from

primary and premalignant lesions. These studies have been limited by unavailability
of fresh primary material which is usually fixed in its entirety for diagnostic

purposes. One recent study analysed gene expression in 83 frozen primary melanoma

samples collected over a 20 year period (Winnepenninckx et al, 2006). 254 genes

were identified that were associated with a good prognosis. However, when this set

of genes were used to classify a validation set, only 11 out of 17 patients had clinical
outcome predicted correctly. Indeed, mathematical modelling predicts that gene

expression profiles of several thousand patients are needed to generate a robust gene
set for predicting cancer outcome (Dai et al, 2005). Obtaining such large numbers of
frozen primary melanomas is impossible, making it necessary to explore other ways
to investigate gene expression changes in melanoma.

A number of studies have used immunohistochemistry to investigate the prognostic
role of key proteins in melanoma pathogenesis. The advantage of this approach is
that fixed samples can be used and therefore many more samples are accessible.

Immunohistochemistry studies that have used tissue microarrays to identify novel

prognostic markers in melanoma are discussed in more detail in Chapter 5.
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1.10 The future

Given the poor response that is seen to chemotherapy in melanoma there is a great

deal of interest in the development of new agents. In particular the key pathways that
are central to melanoma pathogenesis and responsible for the resistance to existing

chemotherapy drugs are the subjects of intense investigation to assess their potential
as therapeutic targets (Thompson et al, 2005). A number of exciting drugs that target

key proteins involved in growth signalling, apoptosis and angiogenesis are currently
under clinical development.

The MAPK pathway is an attractive target for therapeutic intervention in melanoma
due to its central role in the regulation of proliferation, invasion, and survival and the
recent development of drugs that inhibit the various kinases and GTPases that

comprise the pathway (Panka et al, 2006). Sorafenib, a multitargeted oral kinase
inhibitor, is currently approved for use in the US for patients with renal cell and

hepatocellular carcinomas (Eisen et al, 2006). It is a moderately potent inhibitor of
B-Raf but it also inhibits several other receptor tyrosine kinases involved in tumour

progression including vascular endothelial growth factor receptor (VEGF) -2 and -3
and platelet derived growth factor receptor (PDGF). As a single agent Sorafenib has
shown very modest activity with patients with melanoma and although early studies

looking at combinations with chemotherapy looked promising, randomised studies
have been negative (Bayer et al, 2006). Newer more selective B-Raf inhibitors are

currently undergoing preclinical testing whilst drugs that inhibit other targets in the
MAPK pathway such as MEK are undergoing assessment in clinical trials.

Oblimersen is an anti-sense oligonucleotide to the anti-apoptotic molecule Bcl-2
which is over expressed in many melanomas. This drug has been shown to sensitise
melanoma cells to chemotherapy in preclinical studies (Jansen et al, 2004) and in
Phase III testing of oblimersen plus dacarbazine versus dacarbazine alone has shown
a positive impact on progression free survival (Bedikian et al, 2006).
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One of the most intriguing areas of development has seen a therapy that is
established in other cancer types emerge as a potentially useful treatment for patients
with melanoma. Aberrations in KIT are found at relatively high frequency in
melanomas arising on sun-damaged skin or in acral or mucosal areas (Curtin et al,

2006). Clinical trials are underway to establish whether patients with melanomas
who have a c-kit mutation gain any benefit from imatinib, the tyrosine kinase
inhibitor targeting ABL, PDGF-R and KIT that is already proven to be highly
effective in patients with chronic myeloid leukaemia (CML) or gastrointestinal
stromal tumour (GIST) (de Kogel and Schellens, 2007).

Other molecular targeted therapies undergoing clinical investigation in melanoma are

shown in Table 1.2. One of the attractions of these new therapies is that the

understanding of the pathways that the agents target may allow the use of molecular
markers to predict response. Such a strategy is already in use in the selection of

patient groups with higher chances or response to therapies that target Her-2, or
EGFR in patients with breast or lung cancer respectively. It remains to be seen

whether any of these therapies emerge as effective treatments for melanoma as single

agents or whether strategies such as combining targeted therapy to more than one

signalling pathway or tailoring treatment to the particular genetic subtype of
melanoma prove to be more effective.
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Molecular Target Mechanism ofAction Agent Clinical Trial in Melanoma

Bcl-2 Antisense Oblimersen Phase III

RAS Farnesyltransferase inhibitor Tipifarnib Phase I/II - combination with sorafenib

BRAF Tyrosine kinase inhibitor Sorafenib Phase III - combination with chemo

MEK Tyrosine kinase inhibitor PD0325901 Phase I/II - single agent

HSP90 Disrupts HSP90 complexes 17-AAG Phase II - single agent

VEGF VEGF inhibitor Bevacizumab Phase II - combination with chemo

Multi-kinase Tyrosine kinase inhibitor Sunitinib Phase II - combination with chemo

Integrins avp3 integrin inhibitor MEDI-522 Phase I/II - single agent

Cell cycle CDK. inhibitor Flavopiridol Phase 1

P13K/AKT ART inhibitor Perifosine Phase II - single agent

Proteasome Proteasome inhibitor Bortezomib Phase I - combination with chemo

c-kit Tyrosine kinase inhibitor Imatinib Phase II - single agent

mTOR mTOR inhibitor Temsirolimus Phase II - single agent

Table 1.2. Table of selected molecular targets with examples of agents in clinical development for
treatment of patients with melanoma (taken from www.clinicaltrials.gov,www.cancer.gov and

www.asco.org).
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1.11 Summary and Aims

Given the rising incidence of melanoma and the poor outcome for patients with
metastatic disease there is a great need to improve our understanding of the
molecular basis of melanoma pathogenesis in order to develop more effective

prevention strategies, refine classification systems, define new prognostic markers
and to identify new molecular targets for therapy. The aim of the work presented in
this thesis was to conduct a number of studies that would add to our understanding of
several aspects ofmelanoma biology.

The postulated role of MC1R in protecting melanocytes from apoptosis in response

to UV irradiation led to our hypothesis that manipulation of the MC1R may affect

growth of melanoma cell lines and sensitivity to DNA damage. The aims of the work
in chapter 3 were: firstly, to establish whether melanoma cell growth can be

adversely affected by manipulation of the melanocortin receptor (MC1R); secondly,
whether manipulation of MC1R results in increased sensitivity to DNA damage
induced apoptosis; and thirdly, whether RHC (red hair colour) MC1R alleles result in
diminished DNA repair capacity and increased sensitivity to DNA damage.

Given the limitations of long established cell lines it was thought that it may be
beneficial to establish novel melanoma cell lines. The aim of the work in chapter 4
was to establish and characterise novel melanoma cell lines from fresh human

melanoma tissue fragments removed during surgery. The characterisation included
basic morphology and growth characteristics, immunohistochemistry, response to

DNA damage, ability to form xenografts in SCID mice and correlation of the

findings with the clinical samples from which the cells were derived.

The investigation of melanoma progression and prognosis at the mRNA level has
been limited by the unavailability of fresh melanoma tissue. Studies using
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immunohistochemistry on fixed tissue has the advantage of opening up access to

large numbers of samples, often with correlative clinical data. The aims of the work
in chapter 5 were to firstly, develop a tissue microarray that includes all stages of
melanoma development, secondly, investigate changes in the expression of key

proteins during melanoma progression and thirdly, identify novel prognostic markers
in primary melanomas. The 3 proteins chosen for assessment were B-catenin, bcl-2
and galectin-3.

33



Chapter 2 Materials ahd Methods



2.1 Materials

General laboratory chemicals were purchased from Sigma, unless otherwise
indicated. All PCR primers were purchased from Sigma and cell culture medium was

obtained from Gibco. All materials were stored at room temperature (r/t) unless
stated otherwise.

2.1.1 DNA manipulation reagents

Church buffer: 0.251VI sodium phosphate, ImM EDTA, 7% (w/v) SDS.

DNA isolation buffer: lOmM Tris HC1 pH8.0, 400mM NaCl, 3mM EDTA, 1% (w/v)
SDS. Stored at 4°C.

Lysis buffer: lOmM Tris HC1 pH8.3, 140mM NaCl, 3mM KC1, 12% (w/v) sucrose,
ImM EDTA, 1% (v/v) Triton X-100.

Proteinase K stock solution: 2mg/ml proteinase K, lOOmM EDTA pH7.5, 2% (w/v)
SDS. Stored at -20°C.

SSC (x20): 3M NaCl, 300mM tri-sodium citrate dihydrate pH7.0

TAE electrophoresis buffer: 40mM Tris-acetate, ImM EDTA.

TBE electrophoresis buffer: 90mM Tris-HCl, 90mM boric acid, 2mM EDTA, pH8.3.

TE pH7.4 or 7.5: lOmM Tris HC1 pH7.4 or 7.5, ImM EDTA.

2.1.2 RNA manipulation reagents

Denaturation buffer: 0.5M NaOH, 1.5M NaCl.

5x MOPS buffer: 200mM MOPS, 50mM NaOAc, 5mM EDTA. pH adjusted to 7.0

with NaOH.
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RNA loading buffer: 50% (v/v) glycerol, ImM EDTA pH8.0, 0.4% (w/v)

bromophenol blue, lmg/ml ethidium bromide. Stored at -20°C.

RNA sample buffer: 10ml deionised formamide, 3.5ml 37% formaldehyde, 2ml 5x

MOPS buffer. Stored at -20°C.

2.1.3 Protein manipulation reagents

Bacterial lysis buffer: 50mM sodium phosphate buffer pH8.0, 300mM NaCl, 10%

(v/v) glycerol, 15mM P-mercaptoethanol, 0.5mM PMSF, complete protease

inhibitors. P-mercaptoethanol, PMSF and complete protease inhibitors were added

immediately prior to use. Stored at 4°C.

Complete protease inhibitors: A cocktail of several serine and cysteine protease

inhibitors in tablet form (does not contain metalloproteases; Roche). Stored at -20°C.

ECL solution 1: lOOmM Tris HC1 pH8.5, 0.396mM p-coumaric acid, 2.5mM
luminol. Stored at 4°C protected from light.

ECL solution 2: lOOmM Tris HC1 pH8.5, 5.632mM H202. Stored at 4°C.

PBS: l40mM NaCl, 3mM KC1, 2mM KH2P04, lOmM Na2HP04.

Protein loading buffer (2X): 1.5M Tris (pH 6.8), 30% glycerol, 20 % SDS, 2M p-

mercaptoethanol, 0.0018% bromophenol blue.

RIPA buffer: 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS,
50mM Tris HC1 pH8.0.

SDS PAGE loading buffer (2x): lOOmM Tris HC1 pH6.8, 4% (w/v) SDS, 20% (v/v)

glycerol, 200mM DTT, 0.2% (w/v) bromophenol blue. Stored at -20°C.

SDS PAGE separating gel: 8-15% (w/v) 29:1 acrylamide:bis-acrylamide, 0.1% (w/v)

SDS, 390mM Tris HC1 pH8.8, 0.08% (v/v) TEMED, 0.1% (w/v) APS. Prepared

immediately prior to use.
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SDS PAGE stacking gel: 5% (w/v) 29:1 acrylamide:bis-acrylamide, 0.1% (w/v)

SDS, 129mM Tris HC1 pH6.8, 0.1% (v/v) TEMED, 0.1% (w/v) APS. Prepared

immediately prior to use.

Semi-dry transfer buffer: 48mM Tris, 39mM glycine, 0.037% (w/v) SDS, 20% (v/v)
methanol. The final pH should be 9.0-9.4.

TBST: 20mM Tris pH8.0, lOOmM NaCl, 0.05% (v/v) Tween 20.

Tris-glycine electrophoresis buffer: 25mM Tris, 250mM glycine, 0.1% (w/v) SDS.

2.1.4 Other reagents

Citric acid solution (antigen retrieval): 0.1M Citric acid, pH 6.0.

Stock Solution (FACS): 2000mg trisodium citrate, 121mg Tris, 1044mg spermine

tetrahydrochloride, 2ml Nonidet P40 made up to 2000ml with distilled water, pH 7.6.

Solution A (FACS): 15mg trypsin dissolved in 500ml Stock Solution, pH 7.6.

Solution B (FACS): 250mg trypsin inhibitor, 50mg ribonuclease A made up to

500ml with Stock Solution, pH 7.6.

Solution C (FACS): 208mg propidium iodide, 500mg spermine

tetrahydrochloridemade made up to 500ml with Stock Solution, pH 7.6.

Solution PI: 25mM Tris-HCl pH8, lOmM EDTA, 50mM glucose.

Solution P2: 200mM NaOH, 1% (w/v) SDS.

2.1.5 Mammalian cells

A375, C32, G361 and WM115 human melanoma cell lines were obtained from the

European Collection of Cell Cultures (ECACC). HBL was obtained from Gentaur

(Brussels, Belgium). PEA1, PEOl and PE014 ovarian cancer cell lines were donated
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by Grant Sellar, Cancer Research Centre, The University of Edinburgh. All cell lines
were free from mycoplasma and were maintained in DMEM (Gibco, Paisley, UK)

supplemented with 10% fetal calf serum, ImM sodium pyruvate and lx non-essential
amino acids at 37°C in 5% CO2 unless stated otherwise.

2.1.6 Mammalian cell culture media and related reagents

DMEM: 500ml DMEM (Cambrex), 10 or 15% (v/v) FBS, 50U/ml penicillin,

50pg/ml streptomycin, 4mM L-glutamine, 1 x NEAA. Stored at 4°C.

PBS: 140mM NaCl, 3mM KC1, 2mM KH2P04, 10mM Na2HP04.

RPMI: 500ml RPMI, 10% FBS, 50U/ml penicillin, 50pg/ml streptomycin, 4mM L-

glutamine, 1 x NEAA. Stored at 4°C.

Trypsin-EDTA: lOx trypsin-EDTA (Cambrex) diluted in PBS to 0.25% (w/v)

trypsin, ImM EDTA. Stored at -20°C.

2.1.7 Bacterial strains

DH5a: grown on/in LB medium at 37°C.

2.1.8 Bacterial cell culture media and related reagents

Ampicillin stock solution: 50mg/ml ampicillin in dH20. 0.2pm filter sterilised and

stored at -20°C. Added to LB medium to lOOpg/ml.

Blue/white selection LB agar plates: 40pl lOOmM IPTG, and 40pl 40mg/ml X-gal,
was spread over LB agar plates containing the appropriate antibiotic(s). The plates
were dried at r/t before being used the same day.
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Choramphenicol stock solution: 34mg/ml chloramphenicol in 96% (v/v) ethanol.
Stored at -20°C protected from light. Added to LB medium to 34pg/ml.

Competent cell buffer A: lOOmM RbCl, 50mM MnCl2, 30mM KOAc, lOmM CaCl2,
15% (v/v) glycerol. The pH was adjusted to 5.8. 0.2pm filter sterilised and stored at

4°C.

Competent cell buffer B: lOmM MOPS, lOmM RbCl, 75mM CaCl2, 15% (v/v)

glycerol. The pH was adjusted to 6.8. 0.2pm filter sterilised and stored at 4°C.

IPTG stock solution: 1M IPTG in dH20. 0.2pm filter sterilised and stored at -20°C.

Kanamycin stock solution: lOmg/ml kanamycin in dH20. 0.2pm filter sterilised and
stored at -20°C. Added to LB medium to 40pg/ml.

Miniprep solution 1: 25mM Tris HC1 pH8.0, lOmM EDTA, 50mM glucose. Stored
at 4°C.

Miniprep solution 2: 200mM NaOH, 1% (w/v) SDS. Prepared immediately prior to
use.

X-gal stock solution: 40mg/ml X-gal in dimethylformamide (DMF). Stored at -20°C

protected from light.

2.1.9 Oligonucleotides

Custom oligonucleotides were purchased from Sigma-Genosys. Lyophilised

oligonucleotides were resuspended in dH20 to lOOpmol/pl. PCR stocks were diluted
in dH20 to 25pmol/pl, and DNA sequencing stocks were diluted in dH20 to

lpmol/pl. Resuspended oligonucleotides were stored at -20°C.
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PCR primers

Name Sequence (5'-3') Description

MC1R(F) ATGAACTAAGCAGGACACC

TGGAG

MC 1R forward primer

MC1R(R) GGGACCAGGGAGGTAAGGA

ACTGC

MC 1R reverse primer

BRAF Btsl (F) GGTGATTTTGGTCTAGCTGC

A

BRAF forward primer 1 (Btsl

assay)

BRAF (F) TCATAATGCTTGCTCTGATA

GG

BRAF forward primer 2 (Btsl

assay)

BRAF (R) GGCCAAAAATTTAATCAGTG

GA

BRAF reverse primer 1 (Btsl

assay)

BRAFXbal (F) TAAAAATAGGTGATTTTGGT

CTAGCTCTAG

BRAF forward primer 1 (Xbal

assay)

BRAF Xbal (R) ACTATGAAAATACTATAGTT

GAGA

BRAF reverse primer 1 (Xbal

assay)

BRAF (R2) TGGATCCAGACAACTGTTCA

AA

BRAF reverse primer 2 (Xbal

assay)

BRAF (R3) CCTCAATTCTTACCATCCAC

A

BRAF reverse primer 3 (Xbal

assay)

BRAF (R4) GGCCCAAAAATTTAATCAGT

GGGAAAAATAG

BRAF forward primer 4 (Xbal

assay)

Real-time PCR primers

Name Sequence (5'-3') Description

MC1R (RT) F TGTCGTCTTCAGCACGCTCTT MC 1R forward primer

MC1R (RT) R ACGTACAGCACGGCCATGA MC 1R reverse primer

B-actin F ATCCCCCAAAGTTCACAATG B-actin forward primer

B-actin R GTGGCTTTTAGGATGGCAAG B-actin reverse primer



2.1.10 Plasmids

Name Source

pGEM®-T Easy Promega

2.1.11 Antibodies

Antibody Antigen retrieval Dilution System

B-catenin (Dako M3539) Pressure cooker EDTA 1:80 Envision

Bcl-2 (Dako M0887) Pressure cooker EDTA 1:50 Envision

E-cadherin (Dako M3612) Pressure cooker EDTA 1:25 Envision

Galectin-3 (Cedarlane 8942F) Pressure cooker EDTA 1:150 Biosystems

Ki67 (Dako M7240) Pressure cooker citrate 1:200 Envision

SI00 (Dako Z0311) Pressure cooker citrate 1:1000 Envision
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2.2 Methods

2.2.1 Preparation of genomic DNA from cell lines

Genomic DNA was extracted from melanoma and ovarian cancer cells using the
same method. Cells were harvested by trypsinisation and pelleted by centrifugation
at 1,300 rpm for 5 minutes. The pellet was resuspended in PBS and digested

overnight at 37°C in 750pl DNA isolation buffer supplemented with proteinase K to

a final concentration of 280pg/ml. The supernatant was extracted twice with 750pl
PCA (25 parts redistilled phenol, 24 parts chloroform, 1 part isoamyl alcohol) and

vigorous shaking and subsequently with 750pl CA (24 parts chloroform, 1 part

isoamyl alcohol) to remove traces of phenol. The DNA was precipitated for 10

minutes at room temperature by addition of 750pl of isopropanol. Following 10
minutes centrifugation, the nucleic acid pellet was washed twice with 70% ethanol,

dried, resuspended in 200pl sterile distilled water and stored either at 4°C in the short
term or -20°C for longer periods.

2.2.2 Preparation of genomic DNA from melanoma tissue samples

Melanoma tissue cores were de-paraffinised with xylene (1ml). Following

centrifugation, the supernatant was discarded and the samples were then washed with
100% ethanol and allowed to dry. DNA was isolated from the deparaffinised tissue

using the QIAquick DNA isolation kit (QIAGEN). In brief, samples were

resuspended in buffer ATL (15pl) and proteinase K (lOpl), mixed thouroughly and
incubated at 56°C overnight. 25pi of buffer ATL and 50 pi of buffer AL followed by

50pl of ethanol were added and after incubation at room temperature for 5 minutes
the samples were added to QIAamp MiniElute columns and centrifuged at 6000g for
60 seconds. 500pl of buffer AW1 was added to the columns and they were

centrifuged again at 6000g for 60 seconds. This process was repeated with buffer
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AW2. 25p.l ofwater was added to the column and DNA was eluted by centrifugation
at 20000g for 60 seconds.

2.2.3 Measurement of DNA concentration

RNAse treated DNA samples were diluted in 1ml of distilled water and the

absorbency at 260 and 280nm measured in a spectrophotometer. Double stranded
DNA of concentration 50pg/ml has an OD260nm = 1 -0.

2.2.4 Electrophoresis of DNA in agarose gels

DNA fragments were separated on 0.8-3% (w/v) agarose gels containing 0.5pg/ml
ethidium bromide and IX TBE. DNA samples were mixed with 1/5 volume of 5X

sample buffer prior to loading. Electrophoresis was carried out at 30-100V in IX
TBE buffer. DNA was visualised by UV illumination and Hyperladder IIM was used
as a size marker.

2.2.5 Purification of DNA from agarose gels

DNA fragments required for cloning were resolved by agarose gel electrophoresis
and were purified using the QIAquick gel extraction kit (QIAGEN) according to the
manufacturer's instructions.

2.2.6 Transfer of DNA from agarose gels to membranes (Southern Blotting)

An appropriate restriction enzyme (Pstl) was used to cut 10 pg ofDNA and the

resulting fragments were separated by agarose gel electrophoresis. The gel was then
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soaked in denaturation buffer for 30 minutes and the DNA was transferred onto a

Genescreen Plus nylon membrane (New England Nuclear) by capillary action.
Denaturation buffer was employed as the transfer medium. A wick was made from
wet blotting paper, placed on a platform with both ends submerged in a denaturation
buffer reservoir. The gel was laid on top of the wick and a sheet ofnylon membrane
was placed on top and overlaid by three sheets ofmoistened blotting paper and a

stack of dry paper towels. Transfer was allowed to proceed for 12-24 hours after
which time the membrane was neutralised in neutralising buffer for 30 minutes and
air-dried.

2.2.7 Labelling DNA by random priming with nonamer primers (Megaprime™
DNA labelling system)

Radioactively labelled DNA was obtained using a randomly primed DNA labelling
method. The Megaprime method (Amersham) is based on the hybridisation of a
mixture ofmany different nonamer nucleotides to the DNA which allows small
amounts ofDNA to be labelled to high specific activities. The complementary strand
is synthesised from the 3'OH termini of the primer using Klenow polymerase,

simultaneously incorporating radiolabeled dCTP into the newly synthesised DNA
strand. Approximately lOng ofDNA was dissolved in 28pi of sterile distilled water

and denatured by boiling for 5 minutes. lOpl of labelling buffer, 50pCi of a-
32PdCTP and 2 units of Klenow polymerase were added, and the mixture was

incubated at 37°C for 15 minutes.

2.2.8 Separation of unincorporated radionucleotides

Unincorporated nucleotides were separated from the labelled DNA by

chromatography on a NICK R Column (Pharmacia). The column was first
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equilibrated with TE and the labelling reaction was then added. 400pl of TE was

added and the labelled DNA was eluted by the addition of a further 400jnl TE.

2.2.9 Hybridisation

Membranes onto which DNA or RNA had been transferred were first blocked by

prehybridising in 30ml ofmodified Church buffer for 2 hours at 65°C. Hybridisation
was performed by addition of denatured radiolabelled probe to the prehybridisatioon
mixture and incubation for a further 12-24 hours at 65°C (or 60°C for RNA).

Following hybridisation, non-specifically bound DNA molecules were removed by

washing with 2X SSC at room temperature. The membrane was then immersed in 2X
SSC, 1% (w/v) SDS for 30 minutes at 65°C. The membrane was then sealed in a

plastic bag to prevent drying out and radioactive DNA molecules bound to the
membrane were then visualised by autoradiography or phosphorimagery.

2.2.10 Removal of probes

Southern filters were boiled three times for 10 minutes with gentle shaking in 0.1 X

SSC, 1% (w/v) SDS. Northern filters were washed five times for 3 minutes in hot
0.1X SSC, 0.01% (w/v) SDS. The blots were then autoradiographed to confirm that

dehybridisation was complete. Filters were then dried and the hybridisation could be

repeated as above.

2.2.11 Autoradiography

In order to visualise radioactive molecules hybridised to membranes autoradiography
was performed using Hyperfilm™ MP autoradiography film in a cassette conataining

intensifying screens (Cronex Lightning Plus, Du Pont). Cassettes were stored at -
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70°C during exposure to slow the reversal of activated bromide crystals to their
stable form and give an enhanced signal.

2.2.12 DNA ligation

DNA ligation reactions were performed in a 20pl volume, and contained 5 Weiss
units T4 DNA ligase, Rapid ligation buffer (both Fermentas Life Science) and 50ng
vector DNA. A 3:1 molar ratio of insert DNA to vector DNA was present in each

reaction. DNA ligation reactions were incubated for lh at r/t, then 5pi was
transformed into a 200pl aliquot of competent bacterial cells.

2.2.13 Restriction digestion

Restriction digests contained 4U restriction enzyme (New England BioLabs)/pg
DNA and the appropriate reaction buffer, and were supplemented with lOOpg/ml
BSA if required. Restriction digests were incubated at the appropriate temperature
for the restriction enzyme (usually 37°C) for a minimum of 2h.

2.2.14 Polymerase chain reaction

The polymerase chain reaction (PCR) was used to amplify specific DNA molecules
from a DNA template. Routine PCRs were prepared in a 50pl volume containing Taq
PCR buffer (Promega), 2.5mM MgCfr, 1U Taq DNA polymerase (Promega),

0.5pmol/pl forward and reverse primers, 0.25mM dNTPs and lpl genomic DNA

template. A negative control that contained no template DNA was also prepared.

The PCR cycling conditions were as follows: initial DNA denaturation at 94°C for 3

min, then 30-38 cycles ofDNA denaturation at 95°C for 60s, primer annealing at 50-

65°C for 60s, and DNA polymerase extension at 72°C for lmin/kb PCR product. The
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primer annealing temperature was based on primer-specific recommendations from
the oligonucleotide supplier and empirical observations. After PCR cycling, the
PCRs were incubated at 72°C for 1 Omin in order to extend any remaining incomplete

PCR products. 5pi of each PCR was analysed by agarose gel electrophoresis.

2.2.15 DNA sequencing

Prior to sequencing, plasmid DNA was purified using a QIAGEN plasmid

preparation kit and PCR products were purified using a QIAquick PCR purification
kit (Qiagen) according to the manufacturer's instructions. DNA sequencing was

performed using the BigDye Terminator v3.1 Cycle Sequencing kit (ABI). DNA

sequencing reactions contained 2pi BigDye Terminator v3.1, 3.2pmol primer and 50-

300ng DNA template in a lOpl volume, and were incubated under the following
conditions: initial DNA denaturation at 96°C for lmin, then 25 cycles ofDNA

denaturation at 96°C for 10s, primer annealing at 50°C for 5s, and extension at 60°C
for 4min. Sequencing reactions were cleaned up and were run on an ABI 3730

capillary sequencer by the School of Biological Sciences Sequencing Service. DNA

sequence data was analysed using Lasergene software (DNA Star).

2.2.16 Preparation of RNA (RNA-Bee method)

Total RNA was extracted from cultured mammalian cells using the commercially
available reagent RNAzolIMB. Cultured cells were lysed directly in the culture dish

by the addition ofRNAzol™B (0.2ml per 106 cells) and the RNA was solubilised by

pipetting the lysate several times. The RNA was extracted by the addition of 0.2 ml
chloroform per 1ml RNAzol™B followed by vigorous shaking of the mixture for 30
seconds. The suspension was then centrifuged at 12000g for 15 minutes at 4°C. The
aqueous phase was transferred to a fresh tube and an equal volume of isopropanol
was added. RNA was allowed to precipitate at room temperature for 10 minutes and
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then pelleted by centrifugation at 12000g for 5 minutes. The RNA pellet was then
washed in 70% ethanol and centrifuged at 7500g for 5 minutes. The pellet was
allowed to air dry before being resuspended in 50pl of sterile distilled water for

storage at -70°C.

2.2.17 Measurement of RNA concentration

The OD260nm and OD280nm ofRNA samples were measured in a spectrophotometer.
An OD260nm of 1 = 40pg/ml ssRNA, and an OD260nm:OD280nm ratio of 1.8-2.0
indicates the absence of residual protein or phenol from the RNA sample. An

OD260nm'OD280nm ratio of <1.8 suggests the presence of contaminants in the RNA

sample.

2.2.18 Electrophoresis of RNA in agarose gels

The separation ofRNA on the basis ofmolecular weight was achieved by the

electrophoresis ofRNA denatured in a formaldehyde-formamide sample buffer in

non-denaturing TAE agarose gels. RNA samples were electrophoresed on denaturing
1.4% (w/v) agarose gels containing 0.5pg/ml ethidium bromide, IX MOPS and
0.66M formaldehyde. 20pg of total RNA in 20pl of sterile distilled water was added
to an equal volume of formamide sample buffer and % volume of 5X sample buffer.

Samples were heated for 5 minutes at 65°C and snap chilled on ice immediately prior
to loading. Electrophoresis was carried out in a IX MOPS buffer system at 100V for
3-4 hours.
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2.19 Transfer of RNA from agarose gels to membranes (Northern Blotting)

Following electrophoresis the gel was soaked in 10X SSC with gentle agitation for
20 minutes. This procedure was repeated once prior to transfer. The method used for
transfer was as described for DNA except that 10X SSC was used as the transfer
medium. On completion of transfer the membrane was rinsed in 2X SSC and baked
for 2 hours at 80°C.

2.2.20 Reverse transcription of RNA

Total RNA samples were treated with DNase 1 to ensure removal of contaminating
DNA prior to reverse transcription using a DNA-free Kit (Ambion) according to

manufacturer's instructions. cDNA was prepared from RNA using the Retroscript
Kit (Ambion) following manufacturer's instructions. In brief, 2pg of total RNA was

mixed with 2pl of random decamers, mixed and then denatured at 70°C for 3
minutes. 2pl 10 x RT buffer, 4pl dNTPs, 1 pi RNase inhibitor, and lpl reverse

transcriptase enzyme were then added, incubated at 42°C for 1 hour and then heated
to 92°C for 10 minutes to inactivate the RT.

2.2.21 Real-time PCR

Real-time PCR was used to quantify the abundance of various cDNAs of interest

using SYBR Green I detection chemistry and a MyCyclerTM Real-Time PCR
detection system (Bio-Rad). SYBR Green I is a fluorescent molecule that can bind to

dsDNA and then absorb light with a wavelength of 498nm and emit light with a

wavelength of 522nm. This enables the amplification of a PCR product to be
measured continuously over time. Real-time PCR reactions were prepared in a 20pl
volume using iQ SYBR Green I Supermix (BioRad). This supermix contains PCR

buffer, hot-start iTaq DNA polymerase, dNTPs and SYBR Green I dye. Prior to PCR
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cycling, a cDNA template and forward and reverse primers specific to a particular

gene were added (2.5pl cDNA and a final primer concentration of 0.5pmol/pl). Each
cDNA sample was assayed in triplicate with two primer pairs; one pair was specific
to the gene of interest (MC1R), and the other pair was specific to the reference gene

(B-actin). To evaluate the primers used and the efficiency of the real-time PCR, a
dilution series of a cDNA sample was also analysed in duplicate with each primer

pair (the magnitude of the dilution used depended on the expected differences in the
abundance of the amplified cDNA). Finally, a duplicated negative control that
contained no template cDNA was included.

The PCR cycling conditions were as follows: 95°C for 3min (initial DNA
denaturation and iTaq DNA polymerase activation), then 40 cycles ofDNA
denaturation at 95°C for 45s and primer annealing at 55-60°C for 45s. The primer

annealing temperature was based on primer-specific recommendations from the

oligonucleotide supplier and empirical observations. A DNA polymerase extension

step at 72°C was not required as the amplicons are short enough to be copied as the
thermal cycler increases in temperature from the primer annealing temperature to the

DNA denaturation temperature (95°C). When PCR cycling was complete, melt curve

analysis was performed. DNA was denatured at 95°C for lmin and annealed at 35°C

for 10s. The temperature was then increased to 95°C in 120 steps, each consisting of
a 10s incubation at a temperature 0.5°C higher than the preceding step. The
continuous measurement of fluorescence throughout the melt curve cycle allows the
determination of the Tm of the ds DNA molecule(s) present.

The dilution series of a cDNA sample with a specific primer pair allows the
calculation of two values: the correlation coefficient and the PCR efficiency, which
in turn allow the evaluation of the primer pair and the efficiency of the real-time
PCR. The correlation coefficient is a measure of the correlation between the amount

of cDNA template present and the amplification of the cDNA dilution series. The
PCR efficiency is a measure of the amount ofDNA that is copied per cycle. The melt
curve is used to verify that the PCR amplifies a single dsDNA product. Different

amplicons have different melt curves because of different lengths and different base

compositions. The melt curve can be used to determine whether primer dimers are
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present because primer dimers are usually shorter than the PCR product and

subsequently have a lower Tm.

The relative abundance ofMCIR cDNA and B-actin cDNA was calculated using the

standard curve method. A standard curve was constructed from mRNA of known

concentration and then used as a reference standard for extrapolating quantitative
information for the mRNA targets of unknown concentration.

2.2.22 siRNA nucleofection

SMARTpool siRNA oligos contain four highly functional duplexes that target
different regions of the target gene. They were resuspended in IX siRNA Buffer

(Dharmacon, Inc.) to 20pM (stock). The stock solutions were stored in small

aliquots at -20°C. A nucleofector (Amaxa Biosystems) was used for transfections
into G361 cells. Cells were plated into 6-well plates 3 days prior to transfection.
When they reached 70-80% confluency the cells were trypsinised and counted using
a Coulter counter (Beckman Coulter). lxlO6 cells were then centrifuged at lOOOxg

for 5 minutes and the pellet resuspended in 100pi of the appropriate nucleofector

solution (Amaxa Biosystems). pmaxGFP Vector (2pg) or lOOnM siRNA solution

(0.25ml of siRNA stock solution) was added to each and the solution was transferred
to a cuvette. Cells were then electroporated in the nucleofector. A number of
different nucleofector solutions and nucleofection programmes were tested in order
to establish optimum nucleofection conditions (see Chapter 4). The cuvette was

removed from the machine immediately following electroporation and 500pl of
warmed medium was added to the cell. The cells were then transferred into a six well

plate containing 1 ml ofmedium using the pipettes provided. Controls included cells
with no siRNA/vector or cells with siRNA/vector but no electroporation.
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2.2.23 Assessment of transfection efficiency

Twenty-four hours after nucleofection with pmaxGFP vectorm, media from the G361
cultures was collected. Cells were then trypsinised and resuspended in PBS. The

trypsinised cells and the media taken off before trypsinisation were combined,

pelleted by centrifugation and then resuspended in 190pl binding buffer and 10pi

propidium iodide solution. Transfection efficiency was assessed using flow

cytometry which detected cells that contained GFP (transfected cells) as well as cells
which took up propidium iodide (non-viable cells).

2.2.24 Isolation of protein lysates from mammalian cells

Cells were trypsinised, washed with PBS and then pelleted by centrifugation. Cell

pellets were resuspended in 50-1 OOprl RIPA lysis buffer and maintained on ice for 15
minutes. Complete Protease Inhibitor Cocktail (Roche) was added to protect protein

against protein degradation. Cell lysates were passed up and down a small bore

syringe needle repeatedly to break up DNA. Samples were centrifuged x 15 minutes
at 13,200 rpm at 4°C and the supernatant was collected.

2.2.25 Measurement of protein concentration

Protein concentrations were measured using the Bio-Rad Protein assay. This assay is
based on protein binding by Coomassie Brilliant Blue G-250 in an acidic solution,
and the associated change in the absorbance maximum from 465nm to 595nm.
Protein samples were incubated with a 1:5 dilution of the dye reagent for 1 Omin, then
the OD595 was measured in a spectrophotometer. 0.5, 1, 2, 5, 10 and 20pg bovine
serum albumin (BSA) were used to prepare a standard curve each time the assay was

performed. The concentrations of the protein samples of interest were determined by
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substitution of the measured OD595 values into the equation that describes the BSA
standard curve.

2.2.26 SDS polyacrylamide gel electrophoresis

The separation ofproteins on the basis ofmolecular weight was achieved by

denaturing SDS polyacrylamide gel electrophoresis (SDS PAGE), using the vertical

electrophoresis Mini-PROTEAN 3 and PROTEAN II systems (both Bio-Rad). The

polyacrylamide separating gels were between 8% and 15% (w/v) depending on the
molecular weight of the protein(s) of interest. 5% (w/v) polyacrylamide stacking gels
were used. Protein samples (in SDS PAGE loading buffer) and pre-stained protein

marker, broad range (6-175kD; New England BioLabs) were incubated at 100°C for

5min, before being loaded into the wells of the stacking gel. 30 micrograms of total

protein was loaded per gel track. SDS PAGE gels were run at constant current (mini-
PROTEAN 3 gels were run at 17.5mA, and PROTEAN II gels were run at 25mA) in

Tris-glycine electrophoresis buffer.

2.2.27 Western Immunoblotting

Proteins were transferred onto an Immobilon-P PVDF transfer membrane (Millipore,

Billerica, Massachusetts) according to the method of Towbin 1979, using a Mini
Trans-Blot system (Biorad) at 100V, constant voltage at 4°C. Non-specific binding
sites on the western blot were blocked by incubation in 5% (w/v) commercial dried
milk powder in TBST (lOmM Tris-HCl, 0.15M NaCl, 0.05% (wt/vol) Tween 20,

pH8.0) for 1 hour at room temperature followed by incubation with primary antibody
TBST. Blots were then incubated with horseradish-peroxidase-conjugated secondary

antibody diluted in TBST for 1 h at room temperature. Immunoreactive bands were
visualized using chemiluminescence (ECL plus, Amersham Biosciences,

Buckinghamshire, UK).
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2.2.28 Production ofMC1R probe

The pGEM®-T Easy vector System was used to clone the MC1R PCR product. 2pl

ofMCIR PCR product was incubated with 5pi 2x rapid ligation buffer, lpl

pGEM®-T Easy vector and lpl ofT4DNA ligase in lOpl of dLLO at room

temperature for 1 hour. 2pl of the ligation reaction was then added to 50pl ofDH5a
cells. This was incubated on ice for 30 minutes and then placed at 37°C for 20
seconds. 400pl of pre-warmed L-broth was then added and cells were incubated at

37°C for 1 hour with vigorous shaking. 20pl of cells were then spread on pre-

warmed agar plates with ampicillin selection and incubated overnight at 37°C. 30pl
ofX-Gal was spread over the surface of the plate to enable blue-white colour
selection of colonies containing recombinant plasmids. White colonies were grown

overnight at 37°C in 5ml L-broth supplemented with ampicillin to a final
concentration of 50pg/l. 1.5ml of the culture was transferred to a microfuge tube and

the cells pelleted by centrifugation for 1 minute. The pellet was resuspended in lOOpl

of solution PI and the cells lysed by addition of 200pl of solution P2. 150pl of 3M
sodium acetate pH5 was then added and the precipitated chromosomal DNA, SDS
and protein was sedimented by centrifugation for 5 minutes. The supernatant was

transferred to a new tube and the plasmid DNA was precipitated by addition of 0.5
ml isopropanol on ice for 10 minutes. Following centrifugation for a further 10
minutes the pellet was washed with 70% ethanol and then dissolved in 50pl of dELO.

Samples that contained vector which had incorporated the MC1R sequence were

recognised by production of a 1.2kb band following restriction digestion with EcoRl.

2.2.29 Bacterial growth conditions

Bacterial cells were recovered from frozen glycerol stocks by scraping the surface of
the frozen stock with a sterile loop, and then streaking the loop across an LB agar

plate containing the appropriate antibiotic(s). Plates were incubated inverted at 37°C
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o/n. Liquid bacterial cultures were grown in LB broth containing the appropriate

antibiotic(s). A single bacterial colony was inoculated into a small volume of LB
broth (usually 5ml) and the culture was incubated at 37°C with shaking at 200rpm
o/n.

2.2.30 Preparation of competent bacteria

A 5ml o/n bacterial culture in LB broth was prepared, and was diluted into 500ml LB
broth the following morning (a culture flask with a volume of at least 4x the volume

of the culture was used). The culture was then incubated at 37°C with shaking until
an OD650nm of 0.5 was reached. The bacterial cells were incubated on ice for lOmin,

then pelleted by centrifugation at 2,400rpm for 15min at 4°C. The cell pellet was

resuspended in 165ml ice cold Competent cell buffer A, and the resuspended cells
were incubated on ice for 45min before being pelleted again. The cell pellet was

resuspended in 40ml ice cold Competent cell buffer B, and the resuspended cells
were incubated on ice for 15min. 200pl aliquots of the competent cells were flash

frozen in liquid N2 and were stored at -70°C. The transformation efficiency of the

competent bacterial cells was tested by the transformation of defined amounts of

plasmid DNA (transformation efficiencies of >106 colonies/pg DNA were

considered to be successful).

2.2.31 Transformation of bacteria by heat shock

Aliquots of competent bacterial cells were thawed on ice. 10-lOOng of plasmid DNA,

or 5pl of a ligation reaction, was added to a tube of competent bacterial cells, and the
tube was mixed gently. A positive control consisting of plasmid DNA of known

quality, and a negative control consisting of dH20 alone, was also included in each

group of bacterial transformations. The mixture of cells and DNA was incubated on

ice for 30min, before being heat shocked in a 42°C water bath for lmin30s and
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incubated on ice for 2min. 1ml LB broth was added and the transformations were

incubated at 37°C for lh with shaking. This incubation allows plasmid-encoded

genes that confer antibiotic resistance to be expressed. Aliquots of the
transformations were then plated out onto LB agar plates containing the appropriate

antibiotic(s). When a high transformation efficiency was expected, e.g. when

miniprepped plasmid DNA was transformed, 25pi of the transformation was plated
out. However, when a low transformation efficiency was expected, e.g. when a DNA

ligation reaction was transformed, the whole transformation was plated out. The

plates were inverted and incubated at 37°C o/n.

2.2.32 Isolation of plasmid DNA from bacteria

E. coli strain DH5a was routinely used for cloning and plasmid isolation. This strain
has a mutation in the recA gene, which encodes a protein involved in DNA
recombination. The absence of the recA protein therefore increases the stability of

plasmid inserts within the host cells. DH5a also has a mutation in the endA
endonuclease gene, allowing the isolation of high quality plasmid DNA. Finally,
DH5a also has a mutation in hsdR; this inactivates the EcoK I endonuclease and

thereby prevents the cleavage of plasmid DNA by the EcoK I restriction and
modification system.

The following protocol describes a cost-effective method to isolate crude plasmid
DNA that is suitable for use in restriction digest-based screening ofDNA constructs.

2ml o/n bacterial culture in LB broth was centrifuged at 6,000rpm for lmin, and the
cell pellet was resuspended in lOOpl Miniprep solution 1 with lOOpg/ml RNase A.
The cells were then lysed under alkaline conditions by the addition of 200pl

Miniprep solution 2, and the mixture was neutralised with 150pl 5M KOAc pH4.8.
The cellular debris, cell wall-bound chromosomal DNA and the denatured proteins
were pelleted by centrifugation at 14,000rpm for 5min. The plasmid DNA was

recovered from the supernatant by ethanol precipitation, and was resuspended in
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50pl TE pH7.4. 3pi plasmid DNA prepared according to this protocol was used in

analytical restriction digests. Plasmid DNA was stored at -20°C.

When plasmids were required for DNA sequencing, or when larger quantities of

plasmid were needed, plasmid DNA was isolated using QIAGEN Mini, Midi and
Maxi prep kits according to the manufacturer's instructions.

2.2.33 Mammalian cell growth conditions

Prior to defrosting mammalian cells, the appropriate cell culture medium was pre-

warmed to 37°C. The stock of frozen cells was quickly thawed in a 37°C water bath.
5ml medium was added drop-wise to the cells, and the cell suspension was incubated
at r/t for 2min. A further 10ml medium was added drop-wise, then the cells were

pelleted by centrifugation at l,300rpm for 3min. A single cell suspension was

prepared in fresh medium and transferred to a cell culture plate (10ml medium/lOcm
diameter plate). The volume ofmedium and the diameter of the plate used were
determined by the amount of cells in the stock. Plates were incubated at 37°C in 5%

co2.

When the cells were confluent, the plate was washed with PBS before being
incubated with trypsin-EDTA (lml/lOcm diameter plate) for 3-5min. Trypsin is a

serine protease that can mediate the detachment of cells from the cell culture plate
surface. After cell dissociation from the surface, fresh medium (lOml/lOcm diameter

plate) was added, and a single cell suspension was prepared. The cells were pelleted

by centrifugation at l,300rpm for 3min and were resuspended in fresh medium. The

required volume of the cell suspension was transferred into a new cell culture plate
with an appropriate volume of additional medium. As commonly used mammalian
adherent cell lines divide approximately once every 24h, and cells were routinely

passaged to 12.5-25% confluency, passaging was carried out once every 2-4d.
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2.2.34 Cryopreservation of cell lines

When preparing a stock of frozen cells, cells were trypsinised and spun down as

described above. The cell pellet was then resuspended in cell culture medium

containing 10% (v/v) DMSO (cells from a 10cm diameter plate were resuspended in
lml total volume). The presence ofDMSO increases the survival of cells during

freezing and thawing by minimising the formation of ice crystals within the cells.
The cell stocks were stored at -20°C for lh, then at -70°C o/n, before being

transferred to a liquid N2 cryostore for indefinite storage.

2.2.35 Primary Culture

Following surgery, a small portion of tissue that was macroscopically consistent with
melanoma was cut from the main surgical specimen and placed in a sterile container
on wet ice for immediate transfer to the laboratory. The size of the tissue was

typically around 5mm3. Following mincing and trypsinisation the tissue was plated in
t25 culture flasks and then observed over a period of several weeks. Variations from
standard culture conditions are described in Chapter 4.

2.2.36 Counting of cells

Cells were diluted 1:100 in isotone and counted using the Coulter Counter Z series

(Beckman Coulter).

2.2.37 Cell survival assays

Cells were plated onto 30mm dishes in duplicate at a density of 2.5x10s cells per dish
(or 7.5x104 cells per dish for ovarian cell lines) and after 24 hours the medium was
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aspirated. For UV survival assays 0.2ml of PBS was added and the dishes were UV
irradiated at the doses described using a UV lamp (254nm). Immediately after UV
irradiation normal medium was replaced. For cisplatin survival assays medium was

aspirated after 24 hours and replaced with medium containing cisplatin at the doses
described. After 24 hours the cisplatin-containing medium was removed and replaced
with normal medium. For a-MSH survival assays medium was aspirated after 24

hours and replaced with medium containing a-MSH at doses of lpM to 1 pM. This
medium was replenished every 48-72 hours. All dishes were incubated for a further
five days or until the control dishes were confluent. For MC1R antibody assays

media was aspirated after 24 hours and replaced with medium containing MC1R

antibody at doses of lOng/ml to 10pg/ml. This medium was replenished every 48
hours. All dishes were incubated for a further five days or until the control dishes
were confluent. The cells were fixed with Carnoy fixative (3:1 methanol: glacial
acetic acid) and stained with Crystal Violet. Cell survival was then determined by

extracting the dye from the stained cells using 70% ethanol and measuring optical

density at 575nm. Each UV, cisplatin, a-MSH or MC1R antibody dosage was

performed in duplicate and survival determined relative to untreated control dishes.

2.2.38 Proliferation assdy

Cells were plated at a density of 2 x 103 cells per well in a 12 well dish in
DMEM supplemented with antibiotics, NEAA, glutamate and FCS. Every 48
hours duplicate dishes were trypsinised and counted using a Coulter counter.

2.2.39 Microscopy

Cultured cells were viewed using a Leitz Labovert FS phase contrast microscope.
Cells or tissue sections stained by immunohistochemistry were viewed by light

microscopy on an Olympus BX51 using DP software (Olympus).
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2.2.40 Generation of xenografts

# n

Cells were grown in standard culture dishes and then trypsinised and counted. 10
cells were resuspended in 0.1ml DMEM media with or without matrigel and injected

subcutaneously into the flanks of SCID mice. 5 mice were used for each cell line and
each mouse had an injection on either flank (one with and one without matrigel).
Growth was monitored over a 16 week period.

2.2.41 Determination of apoptosis by Annexin V staining

In early stages of apoptosis, phosphatidylserine (PS) is translocated from the inner

part of the membrane to the outer layer and thus becomes exposed at the external
surface of the cell. Annexin Y is a phospholipid-binding protein with high affinity
for PS and is therefore suitable for detecting apoptotic cells.

Cells were plated onto 60mm dishes at a density of 3x105 cells (melanoma) or
2.5x105 cells (ovarian cell lines) per dish. After twenty-four hours cells were treated
with UV (0, 10 or 30 J/m2) or cisplatin (5 or 20pM). For assays involving the use of
a-MSH cells were pre-incubated with a-MSFI for 24 hours prior to UV or cisplatin

exposure. Twenty-four hours after treatment medium from each dish was collected
and cells were trypsinised. Cells were then pelleted and resuspended in 0.5ml PBS.

Following further centrifugation cells were resuspended in 195pl binding buffer

(lOmM Hepes/NaOH, pH7.4, 140mM NaCl, 2.5mM CaCE) and stained with
AnnexinV-FITC (5pi). After sitting at room temperature for 10 minutes cells were

pelleted and resuspended in 190pl binding buffer and lOpl propidium iodide (20pg/l

stock). Immediately after staining, samples were analysed by flow cytometry

(Beckman Coulter Inc, Miami, Florida) using Expo™32 ADC software.
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2.2.42 DNA content assay

Cells were plated and treated as per the method above. Twenty-four hours after UV
irradiation (or cisplatin treatment) medium and cells were harvested as above and
then resuspended in lOOpl citrate buffer. Cells were treated with 425pi trypsin

(30pg/l) and 325pl trypsin inhibitor (0.5mg/ml) was then added after ten minutes.
After a further 10 minutes 250pl propidium iodide (0.42mg/ml) was added and

samples were analysed by flow cytometry (Beckman Coulter Inc, Miami, Florida)

using Expo™32 ADC software.

2.2.43 Immunocytochemistry ofmammalian cells

For immunocytochemistry studies cells were grown on cover slips in 12 well plates.
Media was aspirated from cells and they were then washed with PBS prior to being
fixed in 4% formaldehyde for 5 minutes. They were then rinsed with PBS then
incubated with 0.1% Triton in order to permeabilise the cells. Hydrogen peroxidase

activity was blocked by incubation in 5% hydrogen peroxide for 5 minutes. Cells
were incubated in blocking serum for 10 minutes prior to incubation with primary

antibody. Cells were then incubated in secondary antibody followed by Strep ABC

using the Vectastain kit (Vector Labs.). This procedure employs biotinylated

antibody and a preformed Avidin: Biotinylated enzyme complex. Detection was by
means of DAB staining for 2 minutes. Between each step cells were rinsed with PBS.
Cells were dehydrated in graduated ethanol and then xylene and mounting onto glass
slides using Pertex mounting medium. Controls without primary antibody and
without secondary were used for each experiment.

61



2.2.44 Patient Samples

Formalin-fixed, paraffin-embedded melanoma and naevi specimens were
obtained with local ethics committee approval from the pathology department,

Royal Infirmary, Edinburgh. A full description of the patients and samples used
is given in chapter 5.

2.2.45 Construction of TMAs

A full description of construction of the tissue microarrays is given in chapter 5.

2.2.46 Immunohistochemistry

Formalin-fixed, paraffin embedded sections ofmelanoma, naevi or tissue microarray
sections were deparaffinised in xylene, and rehydrated in graduated alcohol, to water.

Antigen retrieval was by microwave pressure cooking in Tris/EDTA buffer (pH8.0)
or citric acid (pH6.0) for 20 mins. Slides were incubated in hydrogen peroxide for
five minutes in order to block endogenous peroxidase activity. Sections were
incubated with primary antibody in dilution buffer (DAKO ChemMate Ab diluent).
Slides were then rinsed in TBS and incubated for 30 mins in secondary antibody

(DAKO REAL Envision Horseradish peroxidase Rabbit/Mouse). After rinsing in

TBS, sections were incubated in DAB for 10 minutes, counterstained, dehydrated
and mounted. For automated staining the Bond™ automated immunohistochemistry

system was used as per the manufacturer's instructions. For each staining run a

negative, no-antibody control was included. Stained sections were examined without

knowledge of the outcome of individual cases.
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2.2.47 Immunohistochemistry scoring system

Protein expression was assessed by staining intensity, frequency and location. The

intensity of the staining was scored according to a 4 point scale: 0 = no staining, 1 =

weak, 2 = moderate, 3 = strong. The frequency of cells staining at each of the 4
intensities was then multiplied by the intensity score to give an overall staining
'histoscore' up to 300. Slides were examined by 2 independent observers, including a

histopathologist, without knowledge of the outcome of individual cases. Where
examination of the staining pattern indicates localisation to different cellular

compartments, samples were scored separately for nuclear, cytoplasmic or
membranous staining.

2.2.48 Statistics

Power calculations were performed in order to ensure sufficient numbers of

patients were included in the study to detect differences in protein expression
between groups. Each calculation estimated the minimum effect size required to

achieve an 80% power with a significance level of 0.005 (to allow for the
number of simultaneously-tested proteins in each analysis, but slightly less

conservatively than with a Bonferroni correction). The numbers of samples to be
included on the TMAs were assumed to be 400 primary melanomas and 50 of
each other category (naevi, dysplastic naevi, in-situ melanomas and metastatic

melanomas). The following conclusions were made:

1 It would be possible to detect a reduction in strong expression prevalence
of 28% or more in primary melanoma patients or 38% or more in any of
the other groups (assuming strong expression is found in 60-75% of
metastatic melanoma patients).

2 It would be possible to detect a difference of 20% or more between those
individuals with thin (frequency 0.6) or thick (frequency 0.4) primary
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tumours (assuming the thick tumour group has a strong expression

prevalence of 50-60%).

If differences in overall survival for the 400 primary melanoma patients are

examined by log-rank test, a decrease of 11% in 5 year survival in the strong

expression group would be detectable (assuming that roughly equivalent
numbers of patients have low or strong expression, that the low group have 5

year survival of around 85% and that at least 78 mortality events occur in both

groups). Similarly, a reduction from 95% to 78% in 5 year survival would be
detectable for the strong expression group (assuming at least 21 mortality events

occur). Melanoma mortality figures in Scotland meet these requirements.

The Kaplan-Meier method and the log-rank test were used to evaluate
correlations between protein staining and patient survival. Cox proportional
hazards models were used to develop a multifactorial survival model for primary
melanoma in terms of both conventional risk factors and protein expression.

2.2.49 Solar elastosis scoring

Solar elastosis scoring was adapted from a previously described method (Landi

2006). The breakdown of the scores are as follows:

1: no elastotic fibres, 2: rare elastotic fibres, 3: scarcely scattered elastotic fibres
between collagen bundles, 4: scattered elastotic fibres between collagen bundles,
5: densely scattered elastotic fibres between collagen bundles, 6: densely
scattered elastotic fibres between collagen bundles with occasional bushels, 7:

densely scattered elastotic fibres between collagen bundles with some bushels,
8: densely scattered elastotic fibres between collagen bundles mostly as bushels,
9: focal formation of amorphous deposits of blue-gray material with lost fibre
architecture 10: moderate formation amorphous deposits of blue-gray material
with lost fibre architecture 11: large formation of amorphous deposits of blue-

gray material with lost fibre architecture.
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Chapter 3

Investigation of the role of the melanocortin-1 receptor in cutaneous melanoma
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3.1 Introduction

The melanocortin-1 receptor (MC1R) plays a key role in pigment production and is a

major determinant of skin phototype and sensitivity to UV light (Cone et al, 1996).
a-MSH is the principal ligand of the MC1R and is produced in the skin in response

to UV (Schauer 1994). Binding of a-MSH to MC1R activates the pigmentary

machinery which results in pigment-containing melanosomes being passed onto

neighbouring keratinocytes where it can protect them from UV-induced damage (Lin
and Fisher, 2007). Recent studies have shown that manipulation of the MC1R

pathway can result in artificial tanning and protection from DNA damage in mice

(D'Orazio et al, 2006)).

The discovery of polymorphisms ofMC1R established a genetic basis for differences
in skin (and hair) colour and melanoma susceptibility and helped open up the

understanding of the interaction between genes and the environment (Rana 1999).
MC1R polymorphisms are particularly prevalent in Caucasian populations of
Northern Europe and several studies have shown a clear link between red hair colour

(RHC) alleles and the development of melanoma (Sturm 2002). The presence of
RHC MC1R polymorphisms give an estimated relative risk of 2 for development of
melanoma (Palmer et al, 2000). Functional studies have suggested that the increased
risk may not only be attributed to impaired pigmentary response (due to impaired
cAMP signalling in response to a-MSH) but may also be due in part to the effect of
MC 1R polymorphisms on non-pigmentary pathways.

A proposed non-pigmentary mechanism for increased melanoma risk is a reduction
in repair capacity in melanocytes that have polymorphisms in MC1R (Bohm et al,

2005, Kadekaro et al, 2005). A high repair capacity and resistance to apoptosis are

characteristics ofmelanocytes that allows them to survive the DNA-damaging effects
ofUV radiation (Jhappan et al, 2003). This resistance to apoptosis is also apparent in
melanomas which are largely insensitive to the effects of DNA damaging
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chemotherapy agents (Eggermont and Kirkwood 2004). An increased understanding
of the pathways that influence apoptosis in melanocytic lesions will be important in

trying to find more suitable therapies for this disease. The postulated role ofMCIR
in protecting melanocytes from apoptosis in response to UV irradiation has led to our

hypothesis that manipulation of the MC1R may affect growth of melanoma cell lines
and sensitivity to DNA damage. If it was confirmed that reduced MC1R expression
resulted in increased sensitivity to DNA damage this would represent a novel

therapeutic approach for augmenting the effects of standard chemotherapeutic agents

in the treatment of cutaneous melanoma. This would be of relevance to patients with
normal MC1R as well as those with RHC alleles in which residual function of the

MC1R pathway may be retained despite impaired signalling (Sanchez Mas et al,

2002, Schioth et al, 1999, Scott et al, 2002).

The methods chosen in this chapter for measurement of apoptosis in melanoma cell
lines in response to DNA damage were the annexin V/propidium iodide assay and
the DNA content assay. In early stages of apoptosis there is translocation of

phosphatidylserine (PS) from the inner part of the plasma membrane to the outer

layer so that PS becomes exposed at the external surface of the cell. Annexin V is a

phospholipid-binding protein with high affinity for PS and is used as a sensitive

probe for PS exposure and hence detection of cells in early apoptosis. In late

apoptosis the cell membrane becomes permeable and as a result propidium iodide
can enter the cells and bind to DNA where it can be detected by fluorescence. The
DNA content assay relies on the amount ofDNA per cell varying according to stage

of the cell cycle. In normal profiles of diploid cells most cells are in G1 or G2/M.

Any cells detected in the sub-Gl area of a DNA content profile are usually apoptotic
or necrotic. Both methods ofmeasuring apoptosis use a flow cytometer.

The aims of the work in this chapter were: firstly, to establish whether melanoma cell

growth can be adversely affected by manipulation of the melanocortin receptor

(MC1R); secondly, whether manipulation of MCI R results in increased sensitivity
to DNA damage induced apoptosis; and thirdly, whether RHC (red hair colour)
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MC1R alleles result in diminished DNA repair capacity and increased sensitivity to

DNA damage. In the first part of the chapter a panel of melanoma cell lines were

characterised with respect to MC1R sequence, MC1R mRNA expression, presence
of BRAF mutations and sensitivity of cell lines to DNA damage-induced apoptosis.
In the latter part of the chapter the role of the MC1R was investigated by adding a-
MSH or MC1R antibody to the culture medium or by reducing MC1R expression by

using siRNA.

68



3.2 Results

3.2.1 Detection of MC1R polymorphisms in melanoma cell lines

The melanoma cell lines chosen for these studies (A375, C32, G361, HBL, Wml 15)

were established lines that were obtained from cell line banks. All cell lines were

originally isolated from metastases from cutaneous melanomas. They were largely

non-pigmented although G361 retained its ability to produce pigment for several

passages in culture and HBL was heavily pigmented and retained its ability to make

pigment even following repeated passaging over several months. The 3 ovarian
cancer cell lines (PEA1, PEOl, PE014) were obtained locally.

Sequencing of the complete coding region of MC1R was performed using an

automated sequencing kit following amplification of genomic DNA with primers that
were located at either end of the single coding exon. Although PCR was effective for
most cell lines, PCR persistently failed for DNA isolated from pigmented melanoma
cell line HBL. It was found that repeated phenol/chloroform extraction was required
in a larger volume in order to completely remove the pigment and obtain satisfactory

amplification. MC1R polymorphisms were found in 3 out of 5 melanoma cell lines;

Argl51Cys was found in A375, Val60Leu was found in C32 and Argl60Trp was

found in WM115 (Figure 3.1 A-B and Table 3.1). In each case the cell line was

heterozygous for the change with the exception of A375 where the Argl51Cys

polymorphism was homozygous. No MC1R polymorphisms were present in G361 or

HBL and no MC1R polymorphisms were found in any of the ovarian cancer cell line
controls.

69



B

A375 G361
u c II c

Cell line MC1R status BRAF V600E
A375 Argl51Cys Homozygous mutant
C32 Val60Leu Heterozygous mutant
G361 Wild type Heterozygous mutant
HBL Wild type Wild type
WM115 Argl60Trp Heterozygous mutant
PEA 1 Wild type Wild type
PEO 1 Wild type Wild type

PEO 14 Wild type Wild type

Figure 3.1 Presence of MC1R polymorphisms and V600E BRAF mutations in melanoma cell
lines. (A)-(D). Electropherograms showing sequencing results for selected melanoma cell lines. The
arrows indicates the site of heterozygous missense mutations where 2 peaks are found rather than 1.

(A) C32 : VaI60Leu, (B) WM115: Argl60Trp, (C) and (D): G361: normal sequence. (E) BRAF
RFLP result using Btsl confirming A375 has a homozygous V600E mutation, G361 has a

heterozygous mutation and PEOl has no mutation. Absence of the lower band is consistent with

presence of the mutation. U = uncut, C= cut.

Table 3.1 Summary of the MC1R sequencing results and the BRAF mutation analysis results for 5
melanoma cell lines (A375, C32, G361, HBL, WM115) and 3 ovarian cancer cell lines (PEA1, PEOl,
PEOl 4).
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3.2.2 Detection of BRAF mutations in melanoma cell lines

BRAF mutations have a central role in melanoma pathogenesis and recent evidence
has suggested that activation of MC1R may have direct signalling effects on the
BRAF/MAPK pathway (Dumaz et al, 2006). It was therefore felt to be important to
determine whether any of the melanoma cell lines had activating mutations in the
BRAF gene. Although several methods are available for determining the BRAF
mutation status it was decided to use a PCR RFLP method to detect the most

common activating BRAF mutation found in melanoma, V600E (Figure 3.1 E). The
full description and application of this assay is discussed in Chapter 5. V600E BRAF
mutations were found in 4 of the 5 melanoma cell lines (Table 3.1). Both mutant and
normal DNA could be detected in C32, G361 and Wml 15 suggesting that these cell
lines were heterozygous for the activating mutation. No polymorphisms were found
in HBL whereas in A375 only mutant DNA was detected suggesting that there had
been loss of the normal allele. Once again HBL proved to be most difficult to obtain
a PCR product from and required repeated phenol/chloroform extraction in order to

produce a sample of DNA that was of suitable quality. No BRAF mutations were

found in the ovarian cancer cell lines.

3.2.3 Expression ofMC1R mRNA in melanoma cell lines

In order to characterise MC1R mRNA expression in the melanoma cell lines a

northern blot was performed. Total RNA was extracted from pre-confluent cells,

separated by electrophoresis, transferred onto a nylon membrane and the MC1R

transcript was recognised by hybridisation to a MC1R cDNA probe which included
the entire coding sequence of MC1R. In order to make the MC1R probe 20ng of
MC1R PCR product, amplified from melanoma cell line DNA was cloned into a

pGEMTeasy vector. DH5a cells were then transformed and colonies that

incorporated the MC1R sequence were recognised by liberation of a 1.2kbp band

following restriction digestion with EcoRl. Results were confirmed by sequencing.

71



MC1R mRNA was detected in all 5 melanoma cell lines whereas it was absent in the

ovarian cancer cell line control (Figure 3.2A). The filter was stripped and re-probed
with GAPDH to ensure that the amount of RNA loaded into the tracks was

equivalent. The level of the 1.2kb MC1R transcript was highest in HBL where the

signal was clearly seen and although not formally quantified, appeared considerably

higher than in the other melanoma cell lines.

In an effort to obtain a more quantitative measure of MC1R mRNA expression,

quantitative real-time RT-PCR was performed. B-actin was used as a housekeeping

gene to normalise values and relative expression of MC1R mRNA was determined

by the standard curve method. It was found that HBL had the highest expression of
MC1R mRNA and this was approximately 100 times the expression seen in A375

(Figure 3.2B). MC1R transcript was also detectable in PEA1 although this was at a

level that was lower than in any of the melanoma cell lines.

In order to investigate whether there was any evidence ofMCI R gene amplification
which would explain the higher MC1R mRNA levels seen in HBL compared with
the other melanoma cell lines, a Southern blot was performed. DNA extracted from

pre-confluent cells was subjected to overnight restriction digestion with Pstl and
then run out on a denaturing gel (Figure 3.2 C). DNA was transferred onto a filter
and then hybridised with the MC1R probe described above. A signal was detected in
all 7 cell lines that represented 2 bands of the predicted sizes of 1.1 and 1.2kbp

respectively. The ethidium staining of the gel presented in figure 3.2 D suggested
that the amount of DNA loaded in each track was equivalent. Results confirmed that
differences in the DNA signal between melanoma cell lines were not as great as seen

at RNA level. This made it unlikely that gene amplification was the explanation for
the increased level of MC1R transcript seen in HBL. GAPDH reprobe would be

required in order to distinguish any subtle differences in MC1R gene copy number
between cell lines.
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Figure 3.2 MC1R RNA expression in melanoma cell lines. (A) Northern Blot analysis using a

MC1R probe incorporating the entire coding sequence. The filter was stripped and re-probed with
GAPDH to check for equal loading. Results confirm the presence of the MC1R transcript in all
melanoma cell lines (C32, G361, WM115, A375 and HBL) and the absence of the transcript in
ovarian cancer cell line (PEA1). (B) Graph showing relative levels of MC1R mRNA in cell lines
assessed by quantitative real-time RT-PCR using the standard curve method. (C) Southern blot

analysis on genomic DNA following digestion with Pstl using a MCI R probe incorporating the entire

coding sequence. Bands of the predicted sizes of 1.1 kbp and 1.2kbp were seen. (D) Agarose gel
stained with ethidium bromide. Results confirm that differences in the signal between melanoma cell
lines are not as great as seen at RNA level making gene amplification an unlikely explanation for the

higher level ofMCI R transcript seen in HBL.
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3.2.4 Effect of DNA damage on cell survival in melanoma and ovarian cancer

cell lines

In order to study the effect of DNA damage on cell survival, melanoma cell lines
were treated with UVC or cisplatin. UVC is known to be a potent DNA damaging

agent whereas cisplatin is a chemotherapeutic agent that causes DNA damage

through various forms of crosslinking. Although UVB is a more relevant
environmental source of radiation UVC was selected as it can be delivered in a more

convenient manner (from a single lamp) and lower energies are required compared to

UVB for similar types of DNA damage (Kowalczuk et al, 2006). Cells were plated
out at a density that would allow exponential growth for 7 days and they were then
treated with either UVC or cisplatin. When control dishes became confluent all cells
were fixed in methanol, stained with crystal violet and the amount of stain taken up

by the cells was quantified by spectrophotometry. Conventional colony forming

assyas were not used due to the low plating efficiency of some of the melanoma cell
lines.

UV impaired survival of all cell lines tested (Figure 3.3). There was a dose response

effect up to the maximum dose delivered which was 100J/m2. Even at this dose there
was some residual crystal violet staining of the dishes. Microscopy of the dishes
revealed that this was partly due to non-specific staining of the plastic and partly due
to surviving cells that were either shielded by the edge of the culture dish or resistant
to the treatment. WM115 appeared to be the most resistant melanoma cell line. All 3
ovarian cancer cell lines had similar sensitivity to UV. Overall, there were no marked
differences found in UV sensitivity between melanoma cell lines and ovarian cancer

cell lines. The D50 values, which is the dose that caused a 50% reduction in cell

survival, were 10 J/m2 (A375), 14 J/m2 (C32), 12 J/m2 (G361), 14 J/m2 (HBL) and
19J/m2 (WM115) for the melanoma cell lines and 19 J/m2 (PEA1), 18 J/m2 (PEOl)
and 15 J/m2 (PEOl4) for the ovarian cancer cell lines.
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Figure 3.3. Survival of melanoma and ovarian cancer cell lines following UV irradiation.
Survival of cells following UV irradiation was assessed when untreated control dishes reached
confluency. The number of cells was measured by quantification of crystal violet staining. Each point
represents the average of 2 dishes from one experiment. (A) Survival of melanoma cell lines A375,
C32, G361, HBL and WM115, (B) survival of ovarian cancer cell lines PEA1, PEOl, PE014.
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Figure 3.4. Survival of melanoma and ovarian cancer cell lines following treatment with
cisplatin. Survival of cells following treatment with cisplatin was assessed when untreated control
dishes reached confluency. The number of cells was measured by quantification of crystal violet
staining. Each point represents the average of 2 dishes from one experiment. (A) Survival of
melanoma cell lines A375, C32, G361, HBL and WM115, (B) survival of ovarian cancer cell lines
PEA1, PEOl, PE014.
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Cisplatin impaired survival of all cell lines tested (Figure 3.4). The effect of cisplatin
on survival of melanoma cells was similar in all 5 cell lines. All 3 ovarian cancer cell

lines had a similar response to cisplatin at doses of 2 mM or greater but at a dose of
0.4mM there was no impairment in survival of PEA1 whereas there was a marked

impairment in survival in both PEOl and PE014. This is reflected in the slightly

higher D50 value for PEA1 as compared to the other 2 cell lines. This study would
have to be repeated with more doses in the 0-2juM range to confirm whether this was

a real difference. Overall, ovarian cancer cell lines were found to be more sensitive

to cisplatin than melanoma cell lines. D50 values for the melanoma cell lines were

approx 4, 2, 3, 3 and 2pM for A375, C32, G361, HBL and WM115 and 0.5, 0.5 and

lpM for PEOl, PEOl4 and PEA1, respectively.

3.2.5 DNA damage-induced apoptosis in melanoma and ovarian cancer

cell lines

Three melanoma cell lines C32, G361 and Wmll5 and 3 ovarian cancer cell lines

PEA1, PEOl and PEOl 4 were used to study the effect ofDNA damage on apoptosis.
Levels of apoptosis were assessed using the annexin V assay and the DNA content

assay. The DNA damage-inducing agents were UVC and cisplatin.

An increase in the frequency of early apoptotic, late apoptotic and dead cells were

seen in response to increasing doses ofUV in all cell lines using the annexin V assay
• • • 2

(Figure 3.5 C-D). Although some apoptosis was evident 24 hours after lOJ/m of

UV, the level of apoptosis was much higher following 30J/m2. WM115 was most

resistant to the effects of UV. Although a range of sensitivity was seen for both the
melanoma and the ovarian cancer cell lines it was found that overall the ovarian

cancer cell lines were more sensitive to DNA damage-induced apoptosis than
melanoma cell lines. There was a lower level of early and late apoptotic cells seen in
melanoma cell lines in response to UV (10 J/m and 30 J/m ) although little
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difference was seen between the frequency of dead cells. No relationship was found
between MC1R genotype and sensitivity to DNA damage-induced apoptosis.

The other DNA damaging agent that was used in these studies was cisplatin.

Although apoptosis was seen in both melanoma and ovarian cancer cell lines, levels
of apoptosis were higher in the ovarian cancer cell lines (Figure 3.5 E-F).

Additionally, it appeared that when melanoma cell lines were treated with higher
doses of cisplatin (20pM) a considerable number of 'dead' cells resulted with only
small numbers of apoptotic cells seen. This is in contrast to the profiles obtained

following UV irradiation where very few 'dead' cells were seen.
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Figure 3.5. DNA damage-induced apoptosis in melanoma and ovarian cancer cell lines - the
annexin V assay. (A) and (B) are examples of annexin V/propidium iodide assay results for G361 24
hours after 0 or 30J/m2 UVC irradiation. The four quadrants A1-A4 represent dead cells, late

apoptotic cells, normal cells and early apoptotic cells respectively. The increased number of cells in

quadrant A2 of figure (B) indicates apoptosis in response to UV compared to untreated control cells

(A). (C)-(D) Average levels of apoptosis 24 hours after UV as measured by the annexin V/propidium
iodide assay. (C) Melanoma cell lines (C32, G361, Wml 15) following 0 (blue), 10 (red) and 30 J/m2
(yellow) UVC respectively. (D) Ovarian cancer cell lines (PEA1, PEOl, PE014). (E)-(F) Average
levels of apoptosis 24 hours after cisplatin as measured by the annexin V/propidium iodide assay. (E)
Melanoma cell lines (C32, G361, Wml 15) following 0 (blue), 5 (red) and 20uM (yellow) cisplatin

respectively. (F) Ovarian cancer cell lines (PEA1, PEOl, PE014). Each bar represents the mean

percentage of cells +/- standard error of the means.
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3.2.6 Effect of a-MSH, NDP-a-MSH or MC1R antibody on proliferation and

DNA damage-induced apoptosis in melanoma cell lines

The effect of the presence of ligand or antibody against the extracellular domain of
MC1R on proliferation or response to DNA damage-induced apoptosis was

investigated. G361 was selected for these studies because firstly, it did not contain

any MC1R polymorphisms, secondly, it was isolated from a pigmented melanoma
that was likely to have a functional MC1R pathway and thirdly, it had moderate

sensitivity to DNA damage-induced apoptosis that would allow alterations in the
threshold for apoptosis to be assessed in the apoptosis assay.

Melanoma cell line G361 was cultured in the absence or presence of a-MSH or

NDP-a-MSH, a super-potent a-MSH analogue, in order to assess the effect on

proliferation. The doses of a-MSH (lpM - lpM) were comparable with doses that
have been shown to have an effect on the MC1R pathway in previous studies in

melanocytes (Kadekaro et al, 2005). a-MSH or NDP-a-MSH was replenished every

48 hours. Cells were fixed and stained when control dishes were confluent and cell

number was quantified by measurement of crystal violet staining by

spectrophotometry. Addition of a-MSH (Figure 3.6 A) or NDP-a-MSH (data not

shown) to culture medium had no effect on cell proliferation compared to controls at

the doses tested.

Given that there was likely to be a-MSH in the serum used to supplement the culture
medium it was speculated that the MC1R may have already been saturated by ligand
and no additional effect of exogenous ligand could therefore be seen. Unfortunately

attempts to grow G361 cells in serum-free media by gradually titrating in increasing
amounts of serum-free media versus normal media were unsuccessful.
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Figure 3.6. Effect of a-MSH or MC1R antibody on proliferation. (A) shows survival of G361
melanoma cells following treatment with a-MSH or NDP a-MSH relative to untreated controls. (B)
shows survival of G361, A375 and HBL melanoma cells and PE014 ovarian cancer cells following
treatment with MC1R antibody relative to untreated controls. Each point represents the mean of two
dishes from one experiment.
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A

|a-MSH|
Dose of
UVC (J/m2)

Normal
cells (%)

Apoptotic/Dead
cells

0 0 87 13
0 30 71 29

0 50 58 43
InM 0 87 13
InM 30 80 20

InM 50 55 45

luM 0 87 13

lpM 30 82 18

lpM 50 60 40

|MClRab|
Dose of
UVC (J/m2)

Normal
cells (%)

Apoptotic/Dead
cells

0 0 89 11
0 20 54 46

lOng/ml 0 91 9
1Ong/ml 20 53 47

lOOng/ml 0 91 9

1 OOng/ml 20 49 51

C

Agent Proliferation Apoptosis
a-MSH No effect No effect

NDP a-MSH No effect No effect

MC1R antibody Inhibitory at high dose No effect

Table 3.2. Effect of a-MSH and MC1R antibody on DNA damage-induced apoptosis in

melanoma cell line G361. (A) The effect of a-MSH on apoptosis following treatment with 0, 30 or

50 J/m2 UVC. (B) The effect of MC1R antibody on apoptosis following treatment with 0 or 20 J/m2
UVC. (C) Summary of results.
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Sensitivity to UV mediated apoptosis in melanoma cell lines was assessed using the
annexin V assay following irradiation with UVC. G361 cells were cultured in the

presence of a-MSH for 48 hours prior to UV irradiation at the same doses as used in
the proliferation assay. The degree of DNA damage-induced apoptosis was

unaffected by the presence of a-MSH (Table 3.2A).

The next strategy that was investigated was to assess the potential impact of blocking

binding of ligand to MC1R on DNA damage-induced apoptosis. Melanoma cell line
G361 was cultured in the presence or absence ofMCIR antibody at concentrations of

lOng/ml-lOpg/ml. The antibody recognised the N-terminal extracellular domain and

although it was anticipated that it may block binding of ligand to the receptor there
was no data available on whether the antibody was inhibitory or activating. At high

doses, inhibition of proliferation ofmelanoma cell line G361 was seen (Figure 3.6B).
This effect was also seen however in the ovarian cancer cell line PE014 which does

not express MC1R which suggested that it was a non-specific effect of the antibody
rather than an effect that was due to binding to the receptor. When melanoma cells
were cultured in the presence of the antibody prior to and after UVC irradiation,
there was no difference in UVC mediated apoptosis in melanoma cell lines compared
to controls grown in the absence of the antibody (Table 3.2B).

3.2.7 Optimisation of siRNA in melanoma cell line G361

As there was no proof that MC1R was blocked by the antibody in the above

experiment siRNA was used to knock-down expression ofMCI R and investigate the
effect on sensitivity to apoptosis. Small interfering RNA (siRNA), sometimes known
as short interfering RNA or silencing RNA, is a class of 20-25 nucleotide-long
double-stranded RNA molecules that play a variety of roles in biology. Most notably,
siRNA is involved in the RNA interference (RNAi) pathway where the siRNA
interferes with the expression of a specific gene (Hamilton et al, 1999). siRNAs can
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be exogenously introduced into cells by various transfection methods to bring about
the specific knockdown of a gene of interest. Essentially any gene of which the

sequence is known can thus be targeted based on sequence complementarity with an

appropriately tailored siRNA. This has made siRNAs an important tool for

investigating gene function.

The Nucleofector technology is a novel transfection method that offers advantages
over other established methods of transfection, particularly in difficult-to-transfect
cell lines. It is a non-viral method based on a unique combination of electrical

parameters and cell-type specific solutions. Nucleofector technology offers highly
efficient and robust transfection ofDNA, siRNA or mRNA with high cell viability.

Melanoma cell line G361 was selected for these studies as firstly, it had no MC1R

polymorphisms, secondly, it grew well in culture and thirdly, it showed some

sensitivity to DNA damage-induced apoptosis which would be further investigated in
these studies. Optimal conditions for nucleofection of G361 were established with a

pmaxGFP vector. A number of different nucleofector solutions and nucleofection

programmes were investigated in order to find the conditions that gave highest

viability and transfection. Cell viability and transfection efficiency were assessed
after 24 hours by FACS analysis following labelling with propidium iodide. The

highest transfection efficiency achieved was 66% with a viability of 83% when
solution L was used in conjunction with nucleofector programme X005 (Table 3.3).

High levels of transfection and good cell viability were then confirmed at both 24
and 48 hour time points (Figure 3.7 A).

The nucleofection conditions that were established using pmaxGFP were then

adopted for studies to assess knockdown of cyclophilin B using siRNA

(SMARTpool, Dharmacon). Cyclophilin B knockdown was assessed at the protein
level by Western blot. G361 cells were nucleofected with lOOnM cyclophilin B
siRNA and protein was extracted at 24, 48 and 72 hours. Knockdown of cyclophilin
B compared to mock nucleofected cells of approximately 80% was confirmed at 48
hours and 72 hours by Western Blot (Figure 3.7 B).
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Solution L Solution V

Proaramme TE V TE V .

A020 48 86 41 87
T020 56 67 62 75
T030 28 30 33 46
X001 49 90 47 88
X005 66 83 55 87
L029 57 66 65 87
D023 49 69 62 84
No Prog 0 88 0 83
No GFP 0 78 0 71

Table 3.3. Nucleofection optimisation using pmaxGFP. Transfection efficiency (TE) and viability

(V) are shown for melanoma cell line G361 24 hours after transfection of pmaxGFP using different
nucleofection solutions (L and V) and programmes.
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Figure 3.7. Optimisation of siRNA conditions. (A) Nucleofection transfection efficiency in

melanoma cell line G361 using GFP vector and nucleofection programme X-005 and solution L

analysed by FACS with propidium iodide staining. Transfection efficiency = A4/A11 = 76% at 24
hours and 85% at 48 hours. Viability = (A3 + A4)/A11 = 80% at 24 hours and 85% at 48 hours. (B)

Cyclophilin B siRNA mediated knockdown. Knockdown of cyclophilin B at 48 and 72 hours
confirmed by Western Blot 48 and 72 hours after nucleofection with cyclophilin B siRNA (lOOnM).
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The effect of MC1R siRNA (ON TARGET plus SMARTpool, Dharmacon) on

MC1R expression was then investigated. SMARTpool is a mixture of 4 siRNAs that

target the same gene. Two MCI R antibodies were tested but despite several attempts
it was evident that no clear band of the appropriate size could be visualised in
Western blots of melanoma cells. It was therefore decided to assess MC1R

knockdown at the mRNA level by performing real time RT-PCR (Figure 3.8).
Relative concentrations of MC1R mRNA were measured using the standard curve

method. B-actin was used as the housekeeping gene in order to normalise the

expression level of MC1R. A standard curve was run for each pair of gene-specific

primers on cDNA extracted from G361 melanoma cells in order to determine PCR

efficiency (Figure 3.8C). Melt curves were used to confirm specificity of the PCR

products. A no reverse transcriptase control was included on each run in order to rule
out the possibility of contamination.

Total RNA was extracted from G361 melanoma cells either 24 hours or 48 hours

after nucleofection with lOOnM MC1R siRNA. RNA was also extracted from no

nucleofection and mock nucleofection controls. For each experiment DNA was

removed from the RNA preps prior to reverse transcription using a DNA-free kit to
avoid obtaining a signal generated from contaminating DNA. Reverse transcription
was performed using random primers. Quantitative RT-PCR results revealed that
knockdown ofMCIR mRNA was variable. The maximum knockdown achieved was

70% (Figure 3.8D) although in some experiments knock-down was as low as 35%. A
dual nucleofection approach in which cells were nucleofected 24 hours apart

generally gave higher levels of knockdown than single nucleofection. Maximal
knockdown was evident 48hours after nucleofection irrespective of whether the
nucleofection was single or dual. The dual nucleofection approach was selected for
further studies of the effect ofMCI R siRNA on sensitivity to DNA damage-induced

apoptosis.
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Figure 3.8. MC1R Real time RT PCR optimisation. (A) Amplification curve for MC1R. Each
curve represents an individual sample. (B) Melt curve showing strong specific peaks for each PCR

product suggesting that primers anneal specifically, (C) Example of standard curve used for

measuring relative expression of MC1R transcript showing a good correlation between the standards

(correlation coefficient >0.99, PCR efficiency 95%). (D) Levels of knockdown of MC1R transcript
24, 48 or 72 hours after either single or dual nucleofection with MC1R siRNA. Dual (48h) indicates
siRNA nucleofection 48 hours apart whereas Dual (24h) indicates siRNA nucleofection 24 hours

apart. Maximal knockdown was evident 48hours after nucleofection irrespective of whether it was

single or dual.
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3.2.8 Effect of MC1R siRNA treatment on UV-induced apoptosis in melanoma

cell line G361

In order to investigate the effect of reduced expression of MC1R on UV-induced

apoptosis in melanoma cell line G361, the annexin V apoptosis assay was performed

following UVC irradiation of siRNA treated cells.

G361 cells were nucleofected with MC1R siRNA on 2 separate occasions 24 hours

apart. 18 hours after the second nucleofection, cells were treated with UVC and

following a further 24 hours cells were harvested and assessed for levels of

apoptosis. This time point was chosen for UV irradiation as it was thought that it
would give sufficient time for levels of protein to fall following an earlier reduction
in MC1R mRNA levels. Levels of MC1R mRNA knockdown were assessed using

quantitative real-time RT-PCR using the standard curve method as described

previously. Levels ofMCI R transcript were found to be 62% lower in siRNA treated
cells versus controls at the time of UV irradiation. These studies were performed in

duplicate.

Following treatment with siRNA (lOOnM) there were no obvious changes in the

appearance of the cells or in gross rate of proliferation relative to cells that were put

through the nucleofection procedure without any siRNA. The annexin V assay

confirmed that there was no difference in levels of apoptosis between siRNA treated
cells and controls (Figure 3.9). The levels of UV-induced apoptosis found using the
annexin V assay were found to be generally higher during these experiments than
had been found on studies earlier in the chapter. It is not clear whether this is because
the nuclefection procedure made cells more sensitive to the subsequent effects ofUV
or somehow the cells had become more sensitive to DNA damage as a result of an
unidentified change in these cultures or culture conditions.
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Figure 3.9. Effect of MC1R siRNA treatment on UVC-induced apoptosis. Level of apoptosis in
G361 melanoma cells was assessed by the annexin V/propidium iodide assay 24 hours after UV
irradiation. Dual MC1R siRNA (lOOnM) nucleofection (24 hours apart) was performed and cells were

then irradiated with UVC 18 hours after the 2nd nucleofection. MC1R knock-down at RNA level of

62% relative to controls was confirmed at the time of UV irradiation by quantitative RT-PCR.
Controls were cells that had been treated in the same way as siRNA nuclefected cells with the

exception that normal buffer was used rather than buffer containing siRNA. (A) Annexin V/

propidium iodide apoptosis profiles in full (in duplicate) for G361 cells 24 hours after UVC irradiaton.

(B) Graphical illustration of results according to frequency of cells in each quadrant of the annexin V

assay. Each bar represents the average of 2 dishes +/- standard deviation. siRNA had no effect on the
levels of apoptosis following UV treatment.
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3.3 Discussion

In contrast to keratinocytes which are quite prone to apoptosis melanocytes have
been widely reported to be resistant to UV radiation-induced apoptosis (Jhappan et

al, 2003). The mechanism for resistance to apoptosis is not fully understood although

may include elevated expression of anti-apoptotic proteins such as Bcl-2 (Plattenberg

1995). Recent studies have suggested that a-MSH can reduce UV radiation-induced

apoptosis in human melanocytes (Bohm et al, 2004, Kadekaro et al, 2005) and
MC1R therefore appears to not only be a central mediator in the pigmentation

pathway but may also be important in the control of growth of melanocytes and the

response to UV radiation-induced DNA damage. The studies presented in this

chapter set out to further investigate the MC1R pathway in cutaneous melanoma cell
lines.

Sequencing of the complete coding region of MC1R after PCR amplification of

genomic DNA with suitable primers showed that 3 of the 5 melanoma cell lines
harboured MC1R variants. The variants found were Val60Leu in melanoma cell line

C32, Argl60Trp in WM115 and Argl51Cys in A375. Red hair colour (RHC)
variants have been classified by strength of association with red hair into strong and
weak RHC alleles. Argl51Cys and Argl60Trp variants are known as strong RHC
alleles whereas Val60Leu is considered as a partial RHC causing allele. Functional
studies of the Val60Leu, Argl51Cys and Argl60Trp variants have demonstrated a

decreased ability to stimulate cAMP compared to wild-type (Reviewed in Healy
2004 and Sturm 2002). Both C32 and WM115 cell lines were heterozygous for the

respective MC1R variants and one can therefore postulate that although response to

a-MSH may be impaired these cell lines will retain some MC1R function. A375 was

homozygous for the Argl51Cys variant and was likely to have the most significant

impairment of signalling through the MC 1R pathway.

BRAF mutations were found in 4 out of 5 cell lines. No details were available from

the melanoma cell line with normal BRAF, HBL, as to whether this originated from
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a primary site with a lower rate ofmutation such as acral sites or sites of chronic sun

exposure (see Chapter 4 for further discussion).

MC1R expression at the RNA level was confirmed in all melanoma cell lines tested.
The highest expression was found in HBL which is the cell line which has the

highest level of pigmentation. It is recognised that melanoma cell lines tend to lose
their ability to produce melanin pigment following several passages in culture and it
is possible that a general downregulation of the pigmentation pathway in cell culture
could involve loss of MC1R expression. A relationship between MC1R expression
and presence of pigment would require further investigation. The finding of high
MC1R expression in HBL compared to other melanoma cell lines is consistent with a

previous study which showed that HBL was the cell line with the highest number of
MCI R binding sites per cell (Eves et al, 2003).

In order to investigate the importance ofMCIR in the response ofmelanoma cells to
DNA damage-induced apoptosis, conditions were established for delivering DNA

damaging agents at a dose that led to some degree of apoptosis. The DNA damaging

agents chosen were UVC and cisplatin. UVC is a potent DNA damaging agent that
causes cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4 PP)
whereas cisplatin is a chemotherapeutic agent that causes different types of DNA

damage by various forms of cross-linking.

Broadly speaking only small differences in sensitivity to UV between melanoma
lines and ovarian cancer lines across a wide range of doses of UV were seen. In
contrast to the response ofmelanoma and ovarian cancer cell lines to UV irradiation,
ovarian cancer cell lines were more sensitive to treatment with cisplatin than
melanoma. This result is consistent with the presence of different mechanisms being
used by the cell to respond to UVC mediated DNA damage versus cisplatin mediated
DNA damage (Damsma et al, 2007). Alternative approaches to assess sensitivity to

DNA damage such as colony forming assays would perhaps offer a more sensitive

approach to revealing differences between cell lines.
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Higher levels of apoptosis in response to cisplatin were also seen in ovarian cancer

cell lines compared to melanoma cell lines. This is consistent with the clinical
observation that melanoma is relatively resistant to cisplatin whereas ovarian cancer

tends to have a good response to cisplatin based chemotherapy. It was interesting that

high doses of cisplatin caused a marked increase in apoptosis in ovarian cancer cell
lines but in contrast appeared to cause an increase in the number of dead cells with
little evidence of apoptosis in melanoma lines. This suggests that the resistance of
melanoma cells to apoptosis may not be simply overcome by increasing doses of
DNA damaging agents as this appears to cause cell death by an alternative
mechanism (i.e. necrosis). This result implies that although in the treatment of

patients with metastatic melanoma with chemotherapy it may be important to

overcome blocks to apoptosis, cell death and tumour responses may be achieved

through non-apoptotic mechanisms.

The precise role that a-MSH plays in the development and progression of melanoma

is unclear. A number of in vitro studies have investigated the influence of a-MSH on

melanoma cell behaviour including proliferation, migration and invasion (Robinson
et al, 2002, Eves et al, 2002). Whereas the effect of a-MSH on melanocytes is

predominantly growth-promoting one recent study revealed that stimulation of
melanoma cell lines with a-MSH resulted in reduced proliferation of melanoma cells

(Robinson and Healy 2002). Activation of the MAPK pathway may be important in

mediating the anti-proliferative affect (Smalley and Eisen 2000). A further study
revealed that a-MSH had an inhibitory effect on cell migration although this effect
was not seen in C8161 melanoma cells that lack a functional MC1R receptor (Zhu et

al, 2004). The results in this chapter showed that a-MSH or NDP-a-MSH had no

effect on proliferation of melanoma cell lines or of sensitivity to UV mediated

apoptosis at the doses tested. It wasn't possible to conclude whether signalling

through the MC1R pathway has no role in the control of proliferation or DNA

damage-induced apoptosis in melanoma cell lines or whether alternatively the MC1R

signalling pathway was already saturated by a-MSH in the culture medium (as a

constituent of fetal calf serum). Attempts to culture melanoma cells in serum-free
media were unfortunately unsuccessful. The reason for the inconsistency between the
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results discussed above and previous studies which showed an effect of a-MSH on

proliferation of melanoma cells is not clear although it should be noted that previous
studies were performed predominantly on murine melanoma cells and some studies
used a-MSH from different suppliers. The role of a-MSH in human melanoma cell
behaviour therefore remains unclear.

Investigation of the use of an antibody to the N-terminal extracellular domain of
MC1R revealed an inhibitory effect on proliferation at high doses. In the

interpretation of these studies it was not possible to conclude whether the antibody
bound to the MC1R in culture and if so, whether this binding was specific or had any

effect on downstream signalling. There was no previous data available on whether
the antibody used was inhibitory or activating. As inhibition of proliferation of
ovarian cancer cell line controls was also seen it was likely that the inhibition of

growth at high doses was a non-specific toxic effect of the antibody in culture rather
than a result of binding to MC1R. A systematic attempt to reduce expression of
MC 1R was therefore made using siRNA.

The siRNA studies showed that it was possible to achieve approximately 70%
knockdown of MCIR mRNA in melanoma cell line G361 following nucleofection
with pooled siRNA oligonucleotides. Optimal conditions for knockdown were found
to be dual nucleofection, 24 hours apart. Although no formal assessment of

proliferation was made it was evident that treatment with MC1R siRNA had no gross

effect on proliferation of G361 cells. The principal phenotype that was investigated
was the response of siRNA treated cells to UVC mediated DNA damage. It was
found that there was no difference in levels of apoptosis between cells that had been
treated with MC1R siRNA and untreated cells. The principal weaknesses of this

study were firstly, the degree of knockdown achieved and secondly, the absence of
confirmation of an effect of MC1R siRNA on expression of MC1R protein.
Knockdown of MC1R was found to be 62% in siRNA treated cells in the apoptosis

experiment but due to the absence of a reliable MC1R antibody it was not clear
whether any knockdown of MC1R protein was achieved at the timepoint that UV
irradiation was delivered. It was felt that delivering UY at 42 hours after the first
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nucleofection would provide a reasonable time period for MC1R protein levels to be
reduced given that RNA levels had fallen by 24 hours. Clearly these studies would
have been improved by either developing a MC1R antibody that could reliably

quantify levels of MC1R protein or using an antibody to a tagged version of the

protein.

Although the pilot experiments presented above do not give a definitive answer as to

the importance that MC1R has in cutaneous melanoma a number of conclusions can

be made. Firstly, MC1R polymorphisms are found commonly in melanoma cell
lines. Secondly, there is no clear relationship between presence of a polymorphism
and sensitivity to DNA damage induced apoptosis in a limited panel of melanoma
cell lines. Thirdly, MC1R transcript is expressed in all melanoma cell lines tested.

Fourthly, the presence of a-MSH, NDP-a-MSH or MC1R antibody has no effect on

sensitivity to DNA damage-induced apoptosis in melanoma cells. Finally,
knockdown of MC1R mRNA by 62% has no effect on DNA damage-induced

apoptosis in melanoma cell line G361. Further studies would be required to confirm
the results of these pilot experiments and to investigate whether these results are

repeated in other melanoma cell lines and using other agents that interrupt MC1R

signalling. Whether MC1R has a key role in the control of proliferation and

apoptosis in response to a-MSH in melanoma cells as it does in melanocytes, or
whether other key signalling pathways such as the MAPK and PI3K pathways which
are often constitutively activated have a more dominant influence on these key

aspects ofmelanoma behaviour remains unclear.
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Chapter 4

Establishment and characterisation of Edmel 3 - a new melanoma cell line
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4.1 Introduction

Primary cell culture is the process by which cells are liberated from fresh tissue and

plated in a suitable environment where they can attach, divide and grow. Cells are

usually dissociated from a tissue fragment using proteolytic enzymes and

subsequently grown in medium supplemented with serum and antibiotics in a plastic
culture dish. Some cell lines will stop dividing in culture after several passages
whereas others will continue to divide indefinitely. Single cells can be isolated from
established cultures in order to grow large numbers of genetically identical daughter
cells (a clone). Although not all tumours will give rise to cell lines that can be
maintained indefinitely, many melanoma cell lines have been successfully
established and stored (Murata et al, 2007).

Studies on cultured melanoma cells have made important contributions to melanoma
research over many years. They have allowed detailed investigation into the genetic

changes underlying melanoma and have provided the means of testing novel anti¬
cancer compounds both in vitro and when cell lines are implanted as xenografts in
SCID mice. Amongst the most widely studied melanoma cell lines are those included
in the NCI-60 panel which have been extensively genotyped and used for testing
thousands of compounds that may have potential as anti-cancer agents (Covell et al,

2007). Established melanoma cell lines continue to be widely used in research into
melanoma pathogenesis and in the development of new therapies.

Following surgery for primary melanoma, tumours are usually fixed in their entirety
for diagnosis and as a result no surplus fresh material is available for research

purposes. An alternative source of fresh tissue that can be used for isolating
melanoma cells is from patients undergoing surgical resection of metastatic disease.

Surgery is carried out for patients with metastatic melanoma either as a staging

procedure, to improve survival, or to provide symptomatic benefit. In this setting,
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tumour volume tends to be larger than that seen in primary melanoma and the whole

specimen is often not required for histological assessment.

Although many melanoma cell lines are widely available through cell and tissue
banks such as the American Type Culture Collection (ATCC), the isolation of novel
human melanoma cell lines for use in cell culture studies would offer significant

advantages over established cell lines such as those used in Chapter 3. Firstly, the
cells would be free from genetic changes that tend to accumulate in cell lines

following long term culture. Secondly, a full clinical history for the patients from
whom they were isolated would be available allowing correlation of in vitro findings
with the clinical picture. Thirdly, corresponding clinical samples would be available
from the pathology archive for comparative studies.

The aim of the work in this chapter was to establish and characterise novel
melanoma cell lines from fresh human melanoma tissue fragments removed during

surgery. The characterisation included basic morphology and growth characteristics,

immunohistochemistry, response to DNA damage and ability to form xenografts in
SCID mice. An attempt was also made to correlate the findings with the clinical

samples from which the cells were derived.
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4.2 Results

4.2.1 Establishment of a melanoma cell line

The surgical specimens used to isolate melanoma cells were from 6 patients

undergoing surgery for resection of symptomatic subcutaneous or lymph node
metastases. The tissue fragments were selected by the surgeon in theatre as being

macroscopically consistent with melanoma. In all cases tissue was received within an

hour of the procedure. All tissue taken was surplus to clinical requirements and was

taken in compliance with approved ethical procedures. The source and history of the
melanoma samples which were used in this chapter are summarized in table 4.1.

On receipt of the tissue specimens in the lab, it was evident that the identification of
melanoma tissue as opposed to normal tissue in the tissue fragments was

problematic. This was particularly true in the cases in which no or very little pigment
was present. For those fragments in which the division between melanoma and non-

melanoma tissue was unclear the whole sample was used for culture whereas in those
where the melanoma tissue was more obvious an attempt was made to dissect out
this tissue alone.

Following dissection, chopping up and trypsinisation of the tissue fragments, cells
from 5 out of the 6 melanoma samples became established. No cells became
established from sample Edmel 4 but in all other cases it was evident that cells had
attached onto the surface of the culture dish within 24 hours of processing. It was
clear that some of the cultures consisted ofmixed populations of cells with the most

prominent cell type having a morphological appearance consistent with fibroblasts.
These were elongated cells that were dendritic in nature and tended to form swirls in
denser cultures. Although it was anticipated that the melanoma cells would outgrow
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the fibroblasts it was found that even after several passages fibroblasts often
remained the dominant cell type.

Sample Patient Type of lesion Outcome

Edmel 1 66 year old Male Lymph node metastasis Fibroblasts only

Edmel 2 25 year old Female Lymph node metastasis Fibroblasts only

Edmel 3 44 year old Male Lymph node metastasis Melanoma cell line established

Edmel 4 61 year old Female Subcutaneous metastasis No growth

Edmel 5 57 year old Female Lymph node metastasis Fibroblasts only

Edmel 6 44 year old Female Lymph node metastasis Fibroblasts only

Table 4.1. Origin of melanoma samples and outcome of primary culture.

4.2.2 Overcoming the presence of fibroblasts

A number of methods were employed to try and promote growth of melanoma cells
over fibroblasts. Partial trypsinisation took advantage of a possible difference in how

tightly cells adhered to the plastic culture dish - melanoma cells were likely to

adhere less tightly than fibroblasts and therefore it was thought that they may detach
from the dish more readily during trypsinisation. In practice, it was found that when
the cells that became detached early during trypsinisation were grown in subsequent

cultures, fibroblasts once again predominated. No advantage of partial trypsinisation
was therefore found.

Another method that was employed to try and eliminate fibroblasts from culture was

the use of UV irradiation. Melanoma cells are characterised by resistance to DNA

damage-induced apoptosis and it was anticipated that a dose of UV could be
established that would effectively kill off fibroblasts but to which melanoma cells
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would survive. In practice, no differential effect was found and no dose could be
established that only effected the fibroblast population.

It is recognised that primary melanocytes do not survive in culture without certain

growth factors and supplements. These are most commonly provided by using media
that has been used for growing keratinocytes - so called 'conditioned media'. The
other factor that is often added to melanocyte culture to stimulate growth is the

phorbol ester 12-O-tetradecanoylphorbol acetate (TPA). The addition of either
conditioned media or TPA to culture media did not increase the yield of melanoma
cells compared with fibroblasts.

Although the methods employed to try and preferentially select for growth of
melanoma cells were largely unsuccessful, in the majority of cases cells continued to

grow and divide for several weeks. In all but one case however (Edmel 3) the growth
slowed and eventually the cells stopped growing around passage 3-5. It was felt

likely that the majority of these cultures were fibroblasts.

4.2.3 Morphological characteristics of Edmel 3

Edmel 3 consisted of a mixed population of epithelioid and spindle-shaped cells

(Figure 4.1). This is in contrast to other established melanoma cell lines
described in Chapter 3 such as G361, and WM115 where cells had a much more

uniform morphology. The epithelioid cells varied in shape from triangular to
cuboid and spherical. The spindle cells were much more elongated and dendritic
in nature. No melanin pigments were evident in either of the cell types.

Edmel 3 was derived from a fragment of tissue that was dissected from a

subcutaneous lymph node that had been replaced by metastatic melanoma. The

diagnosis of primary melanoma had been made in 1997 following surgical
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removal of a nodule from the back. The primary melanoma from which the
metastasis developed was a pleomorphic, mixed population of spindle and

epithelioid cell with a mild inflammatory infiltrate (Figure 4.1). It was of
nodular type and had a mitotic rate of 6 per 10 high-powered fields (x250). The
Breslow thickness was 5.5mm with a Clark level of IV. The lymph node
metastases had appeared in 2007, after a disease-free interval of 10 years. At the
time of surgery the lymph node had been reported to be slow-growing and

staging investigations confirmed that no other metastatic disease was apparent.

Histological examination revealed that there were a number of lymph nodes in
the subcutaneous fat which were involved by melanoma. One lymph node was

almost entirely replaced by melanoma whereas the others showed melanoma

predominantly in the subcapsular sinus. The morphology of the metastases was

similar to that of the primary lesion in that both spindle cell and epithelioid cells
were present.

The morphological characteristics of Edmel 3 were consistent with the
melanoma tissue from which it was derived. The appearance in culture remained

relatively unchanged over several months of passaging although in addition to

epithelioid and spindle cells large round cells became more obvious.

4.2.4 Edmel 3 immunohistochemistry

Immunohistochemistry (IHC) is performed on clinical melanoma specimens if
there is any doubt over the diagnosis, particularly in patients presenting with
metastatic disease. Although IHC was not necessary during the routine clinical

management of this case, SI00 and melan-A immunohistochemistry were

performed on Edmel 3 in order to firstly, provide further evidence that this was

indeed a melanoma cell line and secondly, to allow a comparison with the
immunohistochemical profile of the clinical samples from which Edmel 3 was

derived. The principal antibodies that are used for confirming a diagnosis of
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melanoma include SI00 and melan-A. SI00 is a multigene family of low
94-

molecular weight Ca binding proteins. S100B is most abundant in glial cells
and melanocytes and is expressed in the majority of melanomas (Orchard 2000).
Melan-A was isolated as a melanoma-specific antigen and is a transmembrane

protein of unknown function. It is expressed in approximately 76% of
melanomas (Chen et al, 1996).

Edmel 3 cells were plated out on cover slips and then stained with SI00 or

melan-A using standard DAB immunochemistry. SI00 gave strong cytoplasmic

staining in all cells (Figure 4.2). In contrast, Edmel 3 cells were negative for
melan-A (Figure 4.3). Melanoma cell line G361 which was used as a positive
control had strong staining with both antibodies. In all immunochemistry

experiments no staining was seen in the negative (no primary antibody) controls
nor in non-melanoma cell lines.

Immunohistochemistry was also perfomed on formalin fixed, paraffin
emebedded clinical samples from which Edmel 3 was derived. Fresh sections
were cut from both the primary and metastatic melanoma samples and stained
with SI00 and melan-A using standard DAB immunohistochemistry. The

primary lesion was strongly positive for both SI00 and melan-A whereas the
metastatic deposit stained strongly for SI00 but weakly for melan-A (Figures 4.2
and 4.3). It therefore appeared that the expression of melan-A was reduced

during the transition from primary to metastatic melanoma and lost during the
transition from metastatic melanoma to primary culture.
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Figure 4.1. Morphological appearance of Edmel 3. (A) Primary melanoma x200. e indicates
the epidermis and m is melanoma. (B) Primary melanoma x400. s indicates area with spindle
cell morphology, ep indicates epithelioid morphology. (C) Metastatic deposit in lymph node
x200. (D) Metastatic deposit in lymph node x400. (E) Edmel 3 x200. (F) Edmel 3 x320. (A)-(D)
are tissue sections stained with H and E; (E)-(F) are phase contrast digital photomicrographs.
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Figure 4.2. SI00 immunohistochemistry. (A) Primary melanoma x200, (B) Primary
melanoma x400, (C) Metastatic deposit in sub-capsular region of lymph node x200, (D)
Metastatic deposit in lymph node x400, (E) Edmel 3 x200, (F) Edmel 3 x320.
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Figure 4.3. Melan A immunohistochemistry. (A) Primary melanoma x200, (B) Primary
melanoma x400, (C) Metastatic deposit in lymph node x200, (D) Metastatic deposit in lymph
node x400, (E) Edmel 3 x200, (F) Edmel 3 x320.
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4.2.5 Subcloning of Edmel 3

Although melanomas consisting of both epithelioid and spindle cell types have

previously been described the clinical significance of each of the cell types is
unclear. Furthermore, it is uncertain whether each of the cell types could arise from
the same cell or whether they represent two separate populations of different origin,

perhaps with different metastatic potential. An attempt was therefore made to clone
each of the cell populations.

Edmel 3 was plated at low density in order to allow clones to develop from single
cells. When clones of approximately one thousand cells in size were established they
were isolated using a cloning ring, trypsinised and then plated in separate culture
dishes. From 8 clones that were picked 4 clones successfully became established

(Figure 4.4).

The newly isolated clones (clones 1, 2, 4 and 5) varied in appearance with some

growing in dense circular aggregates and others growing in a much more spread-out
manner. It was evident that the morphology of these clones differed from one

another; clone 1 consisted of a mixture of epithelioid and spindle shaped cells
whereas clone 4 grew in a much more uniform manner with most of the cells being

epithelioid (Figure 4.4). In clone 5 it was apparent that although both spindle cells
and epithelioid cells grew within the same culture, some areas seemed to favour one
cell type more than the other. Given that both epithelioid and spindle cell cells grew

from the same clone it appeared that these cell types could develop from the same

progenitor cell and it did not therefore seem possible to sub-clone each of these

histological variants.
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Figure 4.4. Phase contrast photomicrographs of Edmel 3 subclones. (A) Edmel 3 subclone 1 x200,

(B) subclone I x320, (C) subclone 2 x200, (D) subclone 2 x320, (E) subclone 4 x200, (F) subclone 4

x320, (G) subclone 5 x200, (H) subclone 5 x320, (I) subclone 5 x200, (J) subclone 5 x320. (G) and

(H) represent an area of the subclone 5 culture where both epithelioid and spindle cells can be seen

whereas (I) and (J) represent an area of culture where spindle cells predominate.

107



4.2.6 Growth characteristics of Edmel 3

Edmel 3 was the only cell culture in which it was clear that melanoma cells outgrew

any competing cells in culture. The growth of Edmel 3 was slower than most of the
established melanoma cell lines that we had experience of in the lab and the use of
alternative growth media such as RPMI rather than DMEM and the use of extra

supplements such as 20% FCS rather than 10% made little or no difference. The

growth rate was constant for the first few passages but interestingly, after 4 passages,

the growth of Edmel 3 slowed up markedly. Morphologically, the cells remained

healthy during this time although there was little evidence of growth for

approximately 8 weeks. Subsequently cells began to grow spontaneously at a rate

that was similar to earlier passages. The cause of the rate slowing was not clear.

A formal assessment of proliferation of Edmel 3 was made in comparison to

melanoma cell lines G361 and ovarian cancer cell line PEOl. The proliferation assay

was performed in Edmel 3 cells that had been passaged 12 times. Cells were plated at

a density that allowed growth for an 8 day period without cells reaching confluency.
Cells were trypsinised and counted at 48 hour intervals in duplicate (Figure 4.5). An
estimate of the doubling time according to the following formula was used: Td=(t2-

ti)*log(2)/log(q2/qi) where fi and t2 are 2 time points and qi and q2 are the cell
numbers at time points ft and t2. Doubling times were as follows: G361; 37 hours,

PEOl; 64 hours, Edmel 3; 104 hours. These results confirmed that Edmel 3 grew

considerably slower than G361, the cell line that was used for most of the studies in

Chapter 3.
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Figure 4.5. Growth of Edmel 3 in vitro compared to controls. Edmel 3 (pi2), G361 and PEOl
were plated at low density and cell counts were performed every 2 days. Results represent the average

of cell counts on 2 dishes +/- standard deviation.
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4.2.7 BRAF mutation assessment

BRAF mutations have a central role in melanoma pathogenesis and are frequently
found in both primary and metastatic melanomas as well as in melanoma cell lines.
BRAF PCR-RFLP was performed in order to determine whether Edmel 3 had an

activating mutation in BRAF. A full description of the method is given in Chapter 5.
The assay revealed that the BRAF PCR product liberated a 105 kb fragment

following digestion with Xba 1 which suggested that Edmel 3 was heterozygous for
the activating V600E BRAF mutation.

4.2.8 MC1R Sequencing

Sequencing of the complete coding region of MC1R was performed using an

automated sequencing kit following amplification of genomic DNA with suitable

primers (as described in Chapter 3). No MC1R polymorphisms were found.

4.2.9 In vivo tumourigenicity

In order to assess tumourigenicity, Edmel 3 cells were injected subcutaneously into
SCID mice. A375 was used as a control as it is known to readily form xenografts in
mice. In brief, cells were grown in standard culture dishes and then trypsinised and
counted. Cells were resuspended in either standard DMEM media or in matrigel and
then were injected subcutaneously into the flanks of SCID mice. Growth was

monitored over a 16 week period (Figure 4.6).

A375 cells quickly became established as xenografts and grew rapidly over the first 3
weeks prior to animals being sacrificed when tumours reached the pre-determined
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size. Growth was enhanced by the presence of matrigel. Although small lumps
became established using Edmel 3, the rate of growth was initially very slow. After

approximately 10 weeks of a low rate of growth there was a marked increase in

growth although even at this time the rate of growth was slower than for A375.
Growth was slightly more rapid in the presence of matrigel.

Pathological examination of H&E stained sections of several xenografts (Figure 4.7)
revealed that A375 tumours were amelanotic melanomas with a mixed

morphological pattern. Apoptotic cells were numerous throughout as were large
areas of necrosis. Edmel 3 was predominantly a spindle cell melanoma although
areas of epithelioid morphology were also seen. The morphology was therefore
similar to that seen in the original clinical tissue samples. The mitotic rate was higher
in Edmel 3 compared with A375 although this probably reflected a higher cell

density in Edmel 3 compared with A375. The pathology was reported by Dr David
Brownstein.
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Figure 4.6. Growth of Edmel 3 in vivo. Growth of Edmel 3 following subcutaneous implantation in
SC1D mice was measured in comparison with melanoma cell line A375. Each line represents the

average of 5 mice with 2 xenografts per mouse. Results are shown for growth in the absence or

presence of matrigel +/- standard deviation. The reason for the apparent drop off in growth in A375
was that 4 mice were culled after tumours reached pre-determined size limits and the remaining
mouse had no growth of tumour.
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Figure 4.7. Pathology of Edmel 3 and A375 xenografts. (A) and (B) Edmel 3 xenograft, showing

predominantly spindle cell morphology, (C) and (D) A375 xenografts showing mixed anaplastic

pattern, (E) Edmel 3 xenograft with spindle cell pattern with focal area of epithelioid morphology (F).

Magnification is x200 for (A), (C) and (F), x400 for (B) and (D) and xlOO for (E).
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4.2.10 Sensitivity to DNA damage

A DNA content assay was performed in order to assess the sensitivity of Edmel 3 to

DNA damage-induced apoptosis following irradiation with UVC in comparison with
G361 (Figure 4.8 and Table 4.2). In untreated controls the number of cells in the 'S-

phase' area of the DNA content profile was much less in Edmel 3 compared with
G361 control cells. This suggested that fewer replicating cells were present which is
consistent with the growth experiments. Twenty-four hours after UVC irradiation
there were very few cells in the sub-Gl area of the DNA content profile with Edmel
3 which suggested that very little apoptosis had occurred. This was in contrast to

G361 cells where a large number of cells in the sub-Gl area were seen. Even at a

dose of 50 J/m2 only 17% of cells were in the sub-Gl area compared to 47% ofG361
cells. In contrast, there was an increase in the number of cells in the 'S-phase' area in
Edmel 3 cells following UV suggesting that cells were arrested in S-phase due to

non-repaired DNA damage and weren't proceeding to mitosis or engaging apoptosis
at this time-point.

In order to further assess the response to DNA damage an annexin V assay was

performed including time points at both 24 and 48 hours (Figure 4.9). This assay

confirmed that the levels of apoptosis in Edmel 3 were much less than G361 at the 24
hour point which is consistent with the DNA content assay. 15% of Edmel 3 cells
were apoptotic at this time point which is similar to the 13% of cells seen in the DNA
content assay. At 48 hours however, levels of apoptosis in Edmel 3 had increased.
The percentage of cells in apoptosis after 48 hours was 53% for Edmel 3 versus 68%
for G361. These results suggested that the apparent resistance of Edmel 3 to DNA

damage-induced apoptosis in the DNA content assay was due to a difference in the

timing rather than the absolute level of the apoptotic response. The delay in apoptosis
in Edmel 3 is likely to in part be due to a slower growth rate compared to G361

(confirmed in Figure 4.5). The results also suggested that a different mechanism for
DNA damage-induced apoptosis may exist in these different cell lines: Prior to
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Figure 4.8 and Table 4.2. DNA damage-induced apoptosis in Edmel 3. (a) to (h) represent DNA
content assay profiles 24 hours after UVC irradiation. The table shows the results of a cell cycle

analysis programme that quantifies the frequency of cells at each of the 4 regions of the graph: Region
E = apoptotic cells, B = cells in Gl, C = cells in S-phase, D = cells in G2. The increased number of

apoptotic cells in G361 compared to Edmel 3 following UV is clearly seen.
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Figure 4.9. DNA damage-induced apoptosis in Edmel 3. (A) to (H) represent profiles from the
annexin V apoptosis assay 24 or 48 hours after UVC irradiation. Percentages of cells in each quadrant
are marked. Apoptosis was evident in G361 cells 24 and 48 hours after irradiation whereas it was only
evident in Edmel 3 cells after 48 hours. Y-axis represents propidium iodide (P1FL3) and x-axis

represents annexin V (F1TCFL1).
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apoptosis there was a build up in cells in S phase in Edmel 3 cells whereas in G361
there appeared to be an increase in cells in G2 rather than S-phase.

4.3 Discussion

A number of problems had to be overcome in order to successfully establish a novel
melanoma cell line. Firstly, it was not always possible to be able to recognise

macroscopically which part of the surgical specimen contained the melanoma tissue.
This was often made more challenging by the absence of significant pigment in some

of our samples. As a consequence of this it was likely that a significant proportion of
the tissue that was being broken up for culture was normal tissue which would lead
to a higher chance of non-tumour cells surviving in culture. Secondly, it became
clear that fibroblasts were growing quite readily from some of the isolates in

competition with melanoma cells. Despite use of various stategies to overcome the

problem of fibroblasts in the culture (including selective trypsinisation, use of UV
and alterations of culture conditions), it proved quite difficult to culture a pure

population of melanoma cells. In most instances cells that were morphologically
consistent with fibroblasts predominated and few cells that were morphologically
consistent with melanoma cells became established. The fibroblasts tended to survive

in culture for approximately 5 passages which is consistent with previous findings

(Ben-Porath and Weinberg 2004). At this stage they stopped growing and although

they did not die straight away none of the cells started to grow again and it was likely
that they had entered a senescent state. It was apparent that the success of

establishing Edmel 3 was largely due to the nature of the tumour from which it was
derived rather than the particular strategy used. This was a tumour that appeared to

break up quite easily and had a high proportion of tumour to non-tumour cells

present.

A number of improvements to the procedure for isolating melanoma cells could be
considered. Firstly, the involvement of a pathologist would be of great benefit. The

117



availability of a pathologist to review the histology of the surgical specimen

immediately following surgery would help ensure that it was only melanoma-rich
tissue that was being supplied for attempts at culture. The disadvantage of this may

be that it would slow down the transport of tissue from theatre to the lab which may

compromise the ability of the cells to survive. Secondly, a protocol whereby cells
from primary melanomas could be received without compromising their clinical

management would be of great benefit. This would arguably be a more valuable
resource given the wide availability of cell lines from metastatic melanoma samples.

Finally, for future attempts at isolation of melanoma cells it may be advantageous to

try other strategies during the processing of tissue such as use of enzymes to digest
extra-cellular matrix prior to plating and use of FACS to sort melanoma cells from

competing cells in culture.

It can often be difficult to distinguish tumour cells from other cell types that may

successfully grow in culture. This may be particularly true in the case of melanoma
which in tissue sections can be histologically very similar to other cell types

(Banerjee and Flarris 2000), particularly when amelanotic. In clinical specimens a

panel of antibodies is often required to confirm a diagnosis of melanoma. SI00 is

positive in the majority of melanomas whereas melan A is positive in a lower

proportion of metastatic melanomas and is often negative in spindle type melanomas

(Banerjee and Harris 2000). Although in clinical practice if there is still doubt about
the diagnosis further immunohistochemistry is often used, this was not performed for
Edmel 3. It was felt that as the mixed morphology in culture was consistent with the

original tumour there was little doubt that Edmel 3 was a pure melanoma culture.

Spindling of cells in melanoma is a common and well known occurrence which

clinically may lead to the misdiagnosis of a melanoma as a sarcoma or sarcomatoid
carcinoma (Levene 1980). In order to further investigate the significance of having a

mixed population of epithelioid and spindle-shaped cells in the same tumour an

attempt was made to isolate the 2 individual cell populations. Although sub-

populations of Edmel 3 cells were successfully cloned it was not possible to isolate
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clones containing only one cell type. It was therefore likely that both spindle and

epithelioid cell types could be derived from the same progenitor cell. Interestingly,
each of the clones had a slightly different appearance in culture, some growing in

tight colonies, others growing in a more diffuse manner. The significance of these
differences is uncertain and it may be that in subsequent passages the differences
become less obvious.

The growth of Edmel 3 was generally slower than most of the other cell lines studied
in the lab. The cause of the dramatic slowing of growth around passage 4 however
was unclear. Cells that are grown in culture can respond to stress either by entry to

senescence, by undergoing apoptosis or by undergoing a transient growth arrest

(Ben-Porath and Weinberg 2004). As senescence is an irreversible process it is likely
that Edmel 3 cells underwent a process of growth arrest precipitated by stress

associated with the change in environment during the transition from in vivo to in

vitro. During this process it is thought that cells need to learn to respond to different
cues although the underlying mechanism is poorly understood (Ben-Porath and

Weinberg 2004). When Edmel 3 culture started to grow once again, all areas of the
culture dish appeared to increase their growth rate around the same time. This makes
it unlikely that it was due to overgrowth of a variant subpopulation.

Tumourigenicity studies confirmed that although Edmel 3 appeared to establish itself
as xenografts in SCID mice their growth was very slow. Whilst A375 xenografts
became established very quickly and grew exponentially for 3 weeks there was little

growth of Edmel 3 xenografts for the first 10 weeks. Pathology studies confirmed
that A375 xenografts were more anaplastic than Edmel 3 and there was more

apoptosis and necrosis evident which probably reflected the increased growth rate of
these tumours in comparison to Edmel 3. It was interesting that the increased growth
rate of A3 75 was not supported by a higher number of mitoses present per high-

powered field but this was largely thought to reflect a much lower cell density in
A375 in comparison to Edmel 3. The morphology of Edmel 3 xenografts was a
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mixture of spindle cells and epithelioid cells and therefore it retained the appearance

of the melanoma tissue from which the cell line was derived.

Unlike some of the cell lines that were characterised in chapter 4 no MC1R

polymorphisms were found in Edmel 3. This is unsurprising given that these cells
were isolated from a male with dark hair. MC1R polymorphisms would be more

expected in individuals with fair skin, red hair, freckling or blue eyes. Edmel 3 was

found to be heterozygous for the V600E BRAF mutation. In clinical samples, the
rates of BRAF mutation are highest in those primary tumours from a site of
intermittent sun exposure; 78% of melanomas from intermittent sun-exposed sites
have BRAF mutations compared with 10% in sites of chronic sun exposure (Curtin et

al, 2005). Characterisation of a large panel of melanoma cell lines has suggested a

BRAF mutation rate of approximately 75% (Haluska et al, 2006). It is not clear
whether this high rate reflects the fact that more melanomas from intermittent sites of
sun exposure are nodular and more likely to metastasise (the source for most

melanoma cell lines) or alternatively, that those melanoma cells that have a BRAF
mutation have some sort of growth advantage and are therefore more likely to grow

in culture. The primary lesion from which the mestastasis developed from which
Edmel 3 was subsequently derived was on the back, a site of intermittent sun

exposure.

Edmel 3, in common with other melanoma cell lines tested, was found to be resistant

to DNA damage-induced apoptosis. The delayed response to DNA damage in Edmel
3 compared to other melanoma cell lines was probably in part due to the slower

growth rate of this cell line. This is consistent with the clinical history which reports

that firstly, the interval between diagnosis of the primary lesion and development of
the metastasis was approximately 10 years and secondly, the growth of the
metastases was slow. Although this was a particularly long disease free interval it is
not uncommon for melanoma to metastasise at 10 years and beyond. Whilst the

patient from which Edmel 3 was derived did not receive chemotherapy it could be

postulated that the clinical response to standard DNA damaging agents such as
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dacarbazine would be low, given the low percentage of cycling cells seen in the
DNA content profiles and the relative resistance to DNA damage-induced apoptosis
of Edmel 3.

In conclusion I have successfully established and characterised a new melanoma cell

line, Edmel 3. This cell line maintains the morphological features of both the
metastatic melanoma from which it was derived and the original primary melanoma
from 10 years ago. The melanoma cell line is from a site of intermittent sun

exposure, carries an activating BRAF mutation, is characterised by relatively slow

growth in culture and resistance to DNA damage-induced apoptosis and forms

xenografts when injected subcutaneously into SCID mice. This cell line will be a

valuable tool for further in vitro melanoma studies as well as allowing a 'pure'
melanoma sample to act as a control for ongoing gene expression studies.
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Chapter 5 Development of a tissue microarray for investigation of melanoma

progression and prognosis
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5.1 Introduction

Tissue microarrays (TMAs) consist of paraffin blocks in which up to 1000 separate

tissue cores are assembled in array fashion to allow simultaneous histological

analysis (Kononen et al, 1998). The current technique, developed in the late 1990s,
uses a hollow needle to remove tissue cores as small as 0.6mm in diameter from

regions of interest in paraffin embedded tissues such as clinical biopsies or tumour

samples. These tissue cores are then inserted into a recipient paraffin block in a

precisely spaced array pattern. Sections from this block can be cut with a microtome,
mounted on a microscope slide and then analysed by various standard histological
methods. Each microarray block can be cut into 100-500 sections which can be

subjected to independent tests. Tests commonly employed in tissue microarray
include immunohistochemistry (IHC) and fluorescent in situ hybridisation. Tissue

microarrays provide a highly efficient method of evaluating the expression and

activity status of relevant molecules in a large number of tissue samples and are

particularly useful in analysis of cancer samples. In this chapter TMAs are used to

study both the changes in protein expression at different stages of melanoma

progression and to investigate potential prognostic markers.

The pathogenesis of melanoma is widely accepted as being a multistep process that

may include the phases benign naevi, dysplastic naevi, in-situ melanoma, radial and
vertical growth phase melanoma and metastatic melanoma (Clark et al, 1984). The
mechanisms that mediate the transition between each step of the pathway remain

largely unknown although a number of key proteins involved in proliferation, control
of apoptosis and invasion have been implicated (Hsu et al, 2002). It is hoped that
further investigation into changes in protein expression during melanoma progression

(assessed by immunohistochemistry) will provide an insight into the molecular
mechanisms underlying progression of melanocytes into melanoma.
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Prognostic markers are markers that have a recognised association with clinical
outcome such as survival (McShane et al, 2005). The best current prognostic marker
in melanoma, lesion thickness, is unreliable and in some cases is not an accurate

indicator of biological behaviour; a significant minority of patients with very thin

(<lmm) melanomas go on to develop metastatic disease (Balch et al, 2000). The
identification of new molecular prognostic markers in primary melanoma would be
an important advance as not only may they help in deciding which patients require
more aggressive treatment they may also offer further clues into melanoma

pathogenesis and the identification of novel therapeutic targets.

The most comprehensive TMA study published to date included 220 primary and
metastatic melanomas from patients in Vancouver, Canada (Dai et al, 2005). It also
contained 16 benign naevi and 66 dysplastic naevi. Correlation of protein expression

by immunohistochemistry with clinical outcome revealed that p-Akt (Dai et al, 2005)
and PUMA (Karst et al, 2005) had prognostic value in this group of patients.
Furthermore p-Akt was found to be an independent prognostic factor in patients with
thin melanomas. Another large TMA has been built from primary melanomas from
343 patients in San Francisco, US. Osteopontin (Rangel et al, 2008) and nuclear

receptor coactivator-3 (Rangel et al, 2006) were found to be independent prognostic
markers in this group of patients. Two smaller TMAs have been constructed at the
MD Anderson Cancer Centre, US and Yale University, US. They contain 22 and 214

primary melanomas respectively as well as a small number of other melanocytic
lesions. These TMAs have confirmed that altered expression of activator protein 2-

alpha is associated with melanoma progression and prognosis (Berger 2005). The

largest published melanoma TMA in the UK consisted of 120 patients with
melanoma from Middlesex. CD44v3 (Pacifico et al, 2006) and nm23 (Pacifico et al,

2005) were found to be novel prognostic markers in primary melanoma.

The proteins that have been chosen for investigation in this chapter are B-catenin,
bcl-2 and galectin-3. B-catenin is a multi-functional protein that controls a number of
cell activities in both the membrane and the nucleus (Peifer and Polakis, 2000). It
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binds to the cytoplasmic tail of E-cadherin and therefore has an important role in cell
adhesion. The Wnt/B-catenin signalling pathway affects a number of cellular
activities including proliferation, migration and differentiation (Peifer and Polakis,

2000). Loss of B-catenin membrane expression has been associated with increased
cell invasiveness although the differential expression of B-catenin during melanoma

progression is controversial. Some studies report that B-catenin expression is not

significantly changed whereas others reveal down-regulation of membranous

expression during melanocytic progression (Reviewed in Bachman et al, 2005). The

prognostic role of B-catenin in melanoma is unclear.

Bcl-2 oncoprotein is an inhibitor of apoptotic death that is involved in the control of
the intrinsic apoptotic pathway. It is thought to function principally by binding and

sequestering activators of apoptosis (Letai 2007). Experimental transfection of cells
with bcl-2 confers a multidrug resistant phenotype in both haematologic and solid
tumour cells (Schmitt et al, 2000). Conversely, pharmacologic reduction or targeted
inactivation of bcl-2 amplifies apoptotic responses to chemotherapy in multiple in

vivo models (Jansen et al, 1998). Oblimersen, an anti-sense oligonucleotide has been
shown to sensitise melanoma cells to chemotherapy in preclinical studies (Jansen et

al, 2004) and in Phase III testing of oblimersen plus dacarbazine versus dacarbazine
alone has shown a positive impact on progression free survival (Millward et al,

2004). Bcl-2 is highly expressed in melanocytes and melanomas although its
contribution to chemoresistance and prognosis is controversial (Lomuto et al, 2004).

Galectin-3 is a member of the family of lectins which selectively binds b-

galactosidase residues (Krzeslak and Lipinska, 2004). It is a chimeric molecule

consisting of both carbohydrate recognition and collagen-like domains. It is

predominantly localised in the cytoplasm although may translocate to the nucleus or

be secreted from the cell by ectocytosis. Galectin-3 plays an important role in

adhesion, proliferation, differentiation and angiogenesis and metastasis in multiple
tumours (Nakahar et al, 2005). Both pro- and anti- apoptotic activity of galectin-3
have been found depending on the type of tumour studied. A recent study has
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suggested that galectin-3 expression may be associated with melanoma progression
and may have some potential as a prognostic marker (Prieto et al, 2006).

The aims of the work in this chapter were to firstly, develop a tissue microarray that
includes all stages of melanoma development, secondly, investigate changes in the

expression of key proteins during melanoma progression and thirdly, identify novel

prognostic markers in primary melanomas. A schema detailing the various stages in
this study is shown in Figure 5.1. The design and construction of the TMAs is
discussed in the first part of the chapter whilst the rest of the chapter contains the
results including some ongoing work on assessment of BRAF mutations in
melanoma samples.
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Database review

1
Review of pathology

i
Production of TMAs

I
Pilot immunohistochemistry study

i
Optimisation of IHC

i
Assessment of BRAF mutations

i
Scoring and collection of IHC data

I
Data Analysis

Figure 5.1. Schema of steps in the design, construction and analysis of the tissue microarrays.
The parts of the diagram in blue represent the design and construction of the TMAs and the parts of
the diagram highlighted in red represent the results.
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5.2 TMA design and construction

The TMAs were designed to include all stages of melanoma progression including

benign naevi, dysplastic naevi, in-situ melanoma, radial and vertical growth phase
melanoma and metastatic melanoma. Collection of detailed clinicopathologic data
was however restricted to primary melanomas. The local ethics committee granted
ethical approval for this study (REC reference number: 06/S1103/9).

5.2.1 Database review

The numbers of samples to be included on the TMAs were 400 primary melanomas
and 50 of each other category (naevi, dysplastic naevi, in-situ melanomas and
metastatic melanomas). In order to ensure adequate follow up for calculation of

survival, patients diagnosed with cutaneous melanoma from 1993-1997 were

selected. Power calculations were performed in order to ensure sufficient numbers of

patients were included in the study to detect differences in protein expression
between groups. Patients with non-cutaneous sites of primary (inc genital, mucosal,

uveal) and those patients who had their surgical specimens stored at other centres
were excluded.

Clinicopathologic data were collected on all patients with primary cutaneous

melanoma diagnosed in Edinburgh from 1993-1997 using the Scottish Melanoma

Group (SMG) database. The SMG was set up in 1979 with the aim of gathering
detailed clinico-pathological, treatment and follow up details for all patients with
invasive primary melanoma of the skin diagnosed in Scotland. The SMG covers a

relatively stable population of approximately 5 million and is one of very few

population-based registries in the world. All pathologists complete a detailed form at

diagnosis and this information is entered in to the SMG database. Detailed follow-up
is gathered at 2, 5, 10 and 20 years after the diagnosis. The data collected in this
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study included patient age and sex, tumour thickness, type, site, stage, and presence

of ulceration, date and site of recurrence and disease-specific and overall survival.
Basic data were also collected on all patients with metastatic melanoma diagnosed

during 1993-1997 as well as approximately 50 patients with naevi, dysplastic naevi
and in-situ melanoma respectively.

5.2.2 Review of pathology

Formalin-fixed paraffin-embedded tissue samples were retrieved from the pathology

department. Corresponding haematoxylin and eosin (H&E) slides were reviewed by
a pathologist (Dr Tamasin Doig) in order to firstly, confirm the diagnosis and

secondly, to mark off the areas in the sample that were most representative of the
lesion as a whole for subsequent coring. Areas of melanomas that had a marked
stromal component were avoided where possible. Those samples in which there was

insufficient material for coring or where the initial diagnosis had not been confirmed
were excluded from the study. Conventional H&E stained melanoma sections were

also assessed from each primary melanoma sample for the degree of solar elastosis.

5.2.3 Construction of TMAs

The TMAs were constructed according to standard procedures. In brief, from each
'donor' block, 0.6mm tissue cores were sampled using a Beecher Instruments manual

arrayer and mounted into 'recipient' paraffin blocks. The construction was performed

by Dr Tamasin Doig and myself. In samples where sufficient material was present

duplicate cores were taken. Where possible, cores were taken from both the invasive
and non-invasive components of the tumour. In total, 20 separate TMAs were

constructed. This was in order to make it possible to perform IHC on specific types

of lesion (e.g. in-situ melanoma) and also to make the scoring as manageable as

possible by avoiding very large numbers of cores on a single array.
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5.3 Results

5.3.1 Pilot immunohistochemistry study

A pilot study of B-catenin and bcl-2 immunohistochemistry (IHC) was performed on

whole melanoma sections in order to confirm that differences in staining could be
detected for these antibodies in melanoma specimens of suitable age. E-cadherin IHC
was also performed although galectin-3 was used for the main TMA study in

preference to E-cadherin due to the emergence of data that suggested that galectin-3

may have a role in melanoma progression and prognosis. There were well
characterised antibodies available for all three proteins that were expected to provide
a good range of types and intensities of staining. Twelve formalin fixed paraffin-
embedded melanoma specimens were selected from the tumour archive at the Royal

Infirmary of Edinburgh Department of Pathology. They were 6 melanomas from

patients who developed recurrence within 5 years and 6 from those that did not. The
2 groups were matched for melanoma thickness. Sections of each melanoma were

stained for B-catenin, bcl-2 and E-cadherin by standard peroxidase/diaminobenzidine

(DAB) immunohistochemistry.

A number of systems are in use for scoring IHC TMA studies. One widely used
method assigns a score for staining intensity and frequency each according to a 4

point scale (0-3) with a total score representing the sum of these two values (0-6). An
alternative method which was adopted for these studies is the histoscore which
assesses the percentage of cells at each of 4 intensity levels (0-3), multiplied by the

intensity, giving a total score up to 300. Where more than one part of the cell is
stained (e.g. nucleus and cytoplasm) each cellular compartment is scored separately.
A range of scores were found for each of the antibodies (Figure 5.2). All cases

showed membranous expression of B-catenin with 9 of the 12 showing high intensity

staining in all cells. 3 cases showed nuclear staining. Eleven of twelve cases showed
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Figure 5.2. B-catenin, Bcl-2 and E-cadherin immunohistochemistry in primary melanomas. B-
catenin: (A) Case 1, x400. Nuclear and membranous staining. (B) Case 4, x400. Membranous

staining with occasional nuclear positivity. (C) Case 8, x400. Strong membranous staining. No
nuclear staining. (D) Case 12, x200. Membranous staining. Bcl-2: (E) Case 1, x400. Negative

staining. (F) Case 2, x200. Variation in staining intensity between dermal nests. (G) Case 6, xlOO.
Uniform strong positive staining. Note lymphoid cells at deep aspect acting as internal control. (H)
Case 8, x200. Positive staining in dermal nests, but note difference in staining intensity compared to

lymphocytes. E-cadherin: (j) Case |, x4QQ. Strong membranous staining. (J) Case 2, x400.

Membranous staining of variable intensity. (K) Case 6, x2Q0 Variable Staining pattern with positive
and negative nests. (L) Case 7, x200. Strong membranous staining. Scores represent the product of
frequency (0-100%) and intensity of staining (0-3) which give a total UP to 300 (e.g. score for (L) =
(80 x 3) + (20 x 2) - 280).
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cytoplasmic expression of bcl-2. The staining pattern and intensity were variable. All
twelve tumours showed membranous E-cadherin expression, with some variation of

staining intensity within individual tumours. There were no notable differences in

staining between the 6 cases which developed recurrence versus those that did not.

The scores assigned to selected cases are shown in Figure 5.2.

From the 3 antibodies tested B-catenin and bcl-2 were selected for investigation in
the main TMA study. E-cadherin was not selected due to the lack of differences in

expression seen between melanoma samples. It was felt that the uniformity of

expression seen in this pilot study would make it less likely that the comparison of E-
cadherin expression with clinicpathologic variables in the main TMA study would

provide any meaningful data. Galectin-3 was selected as the third protein to study
due to emergence of promising data which suggested its potential as a marker of

progression and prognosis in cutaneous melanoma (Prieto et al, 2006).

5.3.2 Optimisation of immunohistochemistry conditions using a practice TMA

Although melanomas arise from the main pigment producing cells of the body it is
not uncommon for them to be amelanotic (Thompson et al, 2005). Conversely,

however, some melanomas have such large amounts of pigment in their cytoplasm
that it can present problems for interpretation of standard DAB-based

immunohistochemistry. In order to investigate optimum staining and to assess the

impact of the presence of pigment on interpretation of scoring a small 'practice'
TMA was constructed containing a total of 20 cores from thick primary and
metastatic melanomas. These were samples from 1993-1997 for which there was

surplus tissue available. A number of cores were selected from heavily pigmented
areas of tumour. The practice TMA was used to investigate optimum conditions for
IHC including use of alternative counterstains, alternative detection systems and
different thickness of section.
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5.3.2.1 Investigation of azure blue as an alternative counterstain

Azure blue has the effect of turning melanin pigments blue/green and can therefore
be helpful in the interpretation of DAB immunohistochemistry in heavily pigmented
lesions (Kligora et al, 1999). It was compared to haematoxylin as a counterstain

using sections cut from the practice TMA. SI00 was selected as the antibody as it is
known to be positive in the majority of melanomas (Sundram et al, 2003).

SI 00 gave strong cytoplasmic staining in all melanoma cells in the majority of cores
on the 'practice' TMA. It was found that when haematoxylin was used as a

counterstain it was difficult to accurately assign the contribution of pigment versus
DAB to the overall appearance (Figure 5.3 A and B). With the use of azure blue all
melanin pigment turned blue/green (Figure 5.3 E-H). This enabled more accurate

determination of the contribution of DAB to overall staining in heavily pigmented
cores. It was found however that azure blue had some disadvantages in comparison
to haematoxylin. Firsly, it was inferior to haematoxylin for detailed assessment of
tissue as the cellular architecture was not as well defined (see Figure 5.3 E to H).
This may be a particular problem when trying to determine which parts of a tumour
core are melanoma cells and which are non-tumour/stroma. Secondly, the blue/green
colour that resulted from the uses of azure blue faded quite quickly with time. This
would make it necessary to score the IHC results rapidly which in practice could be

problematic. It was therefore concluded that although azure blue may have a useful
role in routine pathology of pigmented lesions it would not be taken forward as a

standard counterstain for the main TMA study.

133



Figure 5.3. Comparison of S100 immunohistochemistry using azure blue versus

haematoxylin counterstaining. (A) and (B) SI00 IHC with haematoxylin counterstaining. (C)
and (D) Negative (no primary antibody) control with haematoxylin counterstaining, (E) and (F)
SI00 IHC with azure blue counterstaining, (G) and (H) Negative (no primary antibody control)
with azure blue counterstaining. (A), (C), (E) and (G) are x200 and (B), (D), (F) and (H) are

x400. Note the difficulty in estimating the contribution of DAB or pigment to the staining pattern

in (A) and (B).
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5.3.2.2 Investigation of Permanent red as an alternative detection system

An alternative strategy that was employed to overcome the problem that pigment can

pose in the interpretation of DAB immunohistochemistry was the use of an

alternative detection system. Permanent Red (DAKOIM) is based on alkaline

phosphatase chemistry rather than HRP and its final product is red rather than brown.
It was investigated as an alternative to DAB in the practice TMA.

The Permanent Red detection system was compared to DAB using the SI00

antibody. With the use of Permanent Red it was possible to distinguish the presence

ofmelanin pigment from the red colour produced by the detection system (Figure 5.4

A). It was apparent however that there was a lower quality of staining with
Permanent Red which included some background staining being seen even on the

glass slide in between cores. Permanent Red was also assessed using a Ki67 antibody
which was expected to give staining that was positive in a lower percentage of cells

compared with SI00. In tonsil tissue which was used as a control it gave clear red
nuclear staining which was of similar intensity to DAB (not shown). There was a

tendency once again however for there to be some background staining on the slide
in between the cores. In melanoma cores where Ki67 expression was low it was
found that DAB gave a clearer signal than Permanent Red suggesting that firstly, the
red staining was more difficult to distinguish from the haematoxylin counterstain and

perhaps secondly, the Permanent red system was not as sensitive as DAB (Figure 5.4

G-J).

On the basis of the above results it was decided to employ DAB/haematoxylin

immunohistochemistry as the standard approach for the main TMA study. It was

accepted that there would be a small number of cores that contained large amounts of

pigment for which interpretation of results may be more difficult. It was anticipated
that this problem could be minimised by having an H&E slide available for

comparison during the scoring of the TMAs.

135



v, kill

J

Figure 5.4. Comparison of S100 immunohistochemistry using Permanent red versus DAB. (A)
and (B) S100 IHC with Permanent Red detection system, (C) and (D) Negative (no primary antibody)

control, (E) and (F) SI00 IHC with DAB detection system, (G) and (H) Ki67 IHC with Permanent
Red detection system, (I) and (J) Ki67 IHC with DAB detection system. (A), (C), (E), (G) and (I) are
x200 and (B), (D), (F), (H) and (J) are x400.
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5.3.2.3 Investigation of the use of 'thin' TMA sections

The majority of TMA studies use 3-4pm sections for IHC staining (Dai et al, 2005).
Given that the tumours we are working with are generally smaller than those used in
other TMA studies (e.g. breast cancer TMAs) and the amount of tumour available in
thin melanomas may be quite small, it was decided to investigate whether thinner
sections could be used for immunohistochemistry in order to have more TMA
sections available to work with. SI00 was used as the antibody as it was expected to

yield positive results in the majority of cores. A comparison was made between 1pm,

2pm and 3pm sections.

It was found that the intensity and quality of staining was very similar in all sections

(Figure 5.5 and Table 5.1). It was also confirmed that there appeared to be no

increase in lost or inadequate cores with the use of thinner sections. There were

concerns however that cutting 1 pm sections could technically be more challenging
and may lead to a greater number of lost cores and it was therefore decided to use

2pm sections rather than the standard 3pm for further antibody optimisation and for
the main TMA study.
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Figure 5.5. Comparison of S100 immunohistochemistry in sections of 1pm, 2pm and 3pm

thickness. (A) and (B) SI00 IHC using 1pm section, (C) and (D) SI00 IHC using 2pm section, (E)
and (F) S100 IHC using 3pm section, (G) and (H) Negative (no primary antibody) control x400. (A),

(C), (E), and (G) are x200 and (B), (D), (F), and (H) are x400.
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Sample 1 pm 2 pm 3 pm

section section section

1 280 280 270

2 280 280 250

3 110 110 50

4 200 200 200

5 80 70 Lost core

6 230 180 250

7 130 100 130

8 180 200 200

9 290 220 230

10 170 140 110

II 230 230 200

12 210 200 210

13 210 230 200

14 210 200 200

15 220 250 Lost core

16 200 200 215

17 200 200 200

18 200 200 200

Table 5.1

Samples

represent

to 300.

. Comparison of S100 Histoscores for sections of 1pm, 2pm and 3pm thickness.

1-18 represent the cores on the practice TMA that had staining with SI00. Scores
the product of frequency (0-100%) and intensity of staining (0-3) which give a total up



5.3.3 Assessment of BRAF mutations

Activating mutations in the BRAF oncogene are common in both naevi and
melanomas and play a crucial role in melanomagenesis (Rodolfo et al, 2004). 80% of
these mutations correspond to the hotspot transversion mutation T1799A that causes
the amino acid substitution V600E (Panker et al, 2006). The rate of BRAF mutation

varies according to the site of the melanoma and is highest on sites of intermittent
sun exposure (Curtin et al, 2005). In order to further investigate the relationship
between presence of BRAF mutation, history of UV exposure and the expression of
various signalling proteins, an assay was developed for detection of V600E BRAF
mutations in melanoma samples. The assay was adapted from a method previously
used for the determination of BRAF mutations in thyroid cytology specimens (Chung
et al, 2006).

Genetic analysis by restriction fragment length polymorphism (RFLP) allows the
examination of nucleic acids for the presence of known sequence variants. A

segment that is to be searched for a mutation is amplified from genomic DNA,

digested by the appropriate restriction enzyme, and then separated by agarose gel

electrophoroesis. Although RFLP analysis is highly sensitive and relatively easy to

apply, many polymorphisms are the result of single-base substitutions that fail to
create or remove a restriction site and therefore cannot be readily typed by simple
PCR and RFLP analysis. To overcome this, a mismatch PCR primer can be used to

artificially create a restriction site in the amplified product and allow the detection of
the presence of a base substitution by RFLP.
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5.3.3.1 Method 1: Btsl RFLP

a) Melanoma cell lines

Genomic DNA isolated from 5 melanoma and 3 ovarian cancer cell lines was

amplified using primers that yielded a 126bp PCR product incorporating the V600E

hotspot. Several primer combinations were tested and PCR conditions were

optimised in order to obtain a consistent result. Figure 5.6 is a schematic

representation of the relevant part of the BRAF gene including the position of these
and other primers. Results for the melanoma cell lines and ovarian cancer cell lines
tested are shown in Figure 5.7. Overnight digestion of the PCR product with Btsl
resulted in a product of 105bp when wild-type BRAF was present. The absence of

digestion was therefore suggestive of the presence of a V600E mutation. No PCR

product was seen in the negative (no DNA) controls. The presence of a V600E
BRAF mutation in the melanoma cell lines and the absence of mutation in ovarian

cancer cell lines was consistent with published results (see Chapter 3).

b) Melanoma tissue samples

DNA was isolated from 0.6mm cores of formalin-fixed paraffin embedded
melanoma tissue. Although the cores were taken from areas that were rich in tumour

cells it was likely that the cores also contained variable amounts of non-tumour
material. Several methods were used to isolate DNA from the melanoma tissue cores.

Firstly, digestion in tail buffer and proteinase K with PCR direct from the lysate.

Secondly, digestion in tail buffer and proteinase K with subsequent

phenol/chloroform extraction and precipitation in isopropanol. Thirdly, digestion and
extraction in sodium hydroxide followed by TrisHCl buffer. Fourthly, a column
based method using a QIA quick micro column kit. It was found that the method that

gave the most consistent results and the strongest PCR products was the QIA quick
micro column method. This method was therefore used to isolate DNA from further

cores taken from metastatic or primary melanoma specimens.
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1 attgactcta agaggaaaga tgaagtacta tgttttaaag aatattatat tacagaatta tagaaattag atctcttacc taaactcttc ataatgcttg
taactgagat tctcctttct acttcatgat acaaaatttc ttataatata atgtcttaat atctttaatc tagagaatgg atttgagaag tattacgaac

101 ctctgatagg aaaatgagat ctactgtttt cctttactta ctacacctca gatatatttc ttcatgaaga cctcacagta aaaataggtg attttggtct

gagactatcc ttttactcta qatgacaaaa ggaaatgaat gatgtggagt ctatataaag aagtacttct ggagtgtcat ttttatccac taaaaccaga

, ,,

201 agct&qagtg aaatctcgat ggagtgggtc ccatcagttt gaacagttgt ctggatccat tttgtggatg gtaagaattg aggctatttt tccactgatt
tcgatgtcac tttagagcta cctcacccag ggtagtcaaa cttgtcaaca gacctaggta aaacacctac cattcttaac tccgataaaa aggtgactaa

fibwfrwj
301 aaatttttgg ccctgagatg ctgctgagtt actagaaagt cattgaaggt ctcaactata gtattttcat agttcccagt attcacaaaa atcagtgttc

tttaaaaacc gggactctac gacgactcaa tgatctttca gtaacttcca gagttgatat cataaaagta tcaagggtca taagtgtttt tagtcacaag
KW'W 1 " ***

401 ttatttttta tgtaaataga ttttttaact tttttcttta cccttaaaac gaatattttg aaaccagttt cagtgtattt caaacaaaaa tatatgtctt
aataaaaaat acatttatct aaaaaattga aaaaagaaat gggaattttg cttataaaac tttggtcaaa gtcacataaa gtttgttttt atatacagaa

Btsl (forward) GGTGATTTTGGTCTAGCTGCA Xbal (forward): TAAAAATAGGTGATTTTGGTCTAGCTCTAG

i
Btsl recognition site 5'.. .GCAGTGNN...3' Xbal recognition site 5' TCTAGA 3'

3'... .CGTCACNN... 5' 3' AGATCT 5'

Figure 5.6. BRAF PCR RFLP analysis. (A) Schematic diagram showing position of primers used
for BRAF PCR. The site of the transversion mutation T1799A is marked with a black bar.

(B) Sequence of genomic DNA (exon 15) containing coding sequence in blue and primers in red.
Mismatched primer nucleotides are in bold for Btsl and underlined for Xba 1. The primer sequences
and recognition sites for Btsl (forward) and Xbal (forward) are shown at the bottom of the diagram
with the mismatched nucleotides underlined (1 mismatch for Btsl and 2 mismatches for Xbal). The
site of the T1799A mutation is in red. Primers used for BRAF method 1 were Btsl (F) and BRAF (R),
for method 2 were Xbal (F) and BRAF (R) and for the nested approach were Nested # 1 (F) and
Nested #1 (R).
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A A375 C32 G361 Wm115 PEA1 PE01 PE014
UCUCUC UCUCUCUC

125 bp
100 bp

B
M1 M2 M3 M4 A375 G361 PE01
UCU CUC UCUC UCUC

125 bp
100 bp

Figure 5.7. BRAF PCR RFLP (Btsl) mutation analysis. (A) Results of Btsl digestion of PCR

products amplified from DNA from cell lines A375, C32, G361 and Wml 15 (melanoma) and PEA1,
PEOI and PEO14 (ovarian cancer cell lines). (B) Results of Bts 1 digestion of PCR products amplified
from DNA from melanoma samples (Ml to 4) and control cell lines (A375, G361 and PEOI). The
Btsl restriction enzyme cuts in the presence of the wild-type BRAF sequence. The presence of two
bands of similar intensity (I26bp and 105bp) is suggestive of 1 mutant BRAF and 1 normal BRAF (as
in G361, Ml, M3, and M4). The absence of a 105bp band (as in A375) suggests either a homozygous
BRAF mutation or a single BRAF mutation with loss of the normal copy. The absence of a 126bp
band is suggestive of normal BRAF (as in M2 and PEOI). U = uncut, C= cut.
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A number of issues arose during PCR and RFLP analysis on DNA isolated from
melanoma samples. Firstly, the PCR products were often low in abundance which
made interpretation of the results of RFLP difficult due to the faintness of the lower
band. Secondly, the interpretation of the results of those samples in which two bands
were seen was problematic. An example of this is sample M2 in Figure 5.7. The faint

upper band in M2 could either be due to the presence of a mutation in a core from
mixed tumour (with BRAF mutation) and normal tissue or due to incomplete

digestion of entirely wild-type BRAF DNA by the enzyme. It was felt therefore that
it would be necessary to improve the assay in order to make results more readily

interpretable.

5.3.3.2 Method 2: Xbal RFLP

a) Melanoma cell lines

The Xbal assay had a similar design to the Btsl assay in that a restriction site was

created during amplification of the BRAF sequence. The most notable differences in
the design of this assay were that firstly, the primer contained 2 mis-matched
nucleotides and secondly, the Xbal restriction site was only created by the presence

of a BRAF V600E mutation. The advantage of this assay was that the presence of a
mutation led to digestion and therefore failure to cut couldn't lead to false positive
results.

Genomic DNA isolated from several melanoma and ovarian cancer cell lines was

amplified using primers that yielded a 134bp PCR product incorporating the V600E

hotspot. Several primer pairs were compared and PCR conditions were optimised in
order to give the most consistent PCR product. Following overnight digestion of the
PCR product with Xbal a product of 105bp was produced when the mutant BRAF

sequence was present. Results for the melanoma cell lines and ovarian cancer cell
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lines tested were consistent with findings from the Btsl assay (2 cell lines are shown
in Figure 5.8 B).

In order to establish the sensitivity of the RFLP (Xbal) assay serial dilutions of

mutant and non-mutant DNA were made up and subjected to PCR and digestion as

described above. Accurate concentrations of DNA were quantified by

spectrophotometry following RNAse treatment. The abundance of the PCR products
was similar for each PCR reaction and no PCR product was seen in the negative (no

DNA) control. Following Xbal digestion a 105bp band was seen in samples

containing 25% or more mutant DNA (Figure 5.8A). This result suggested that this

assay could only detect mutant BRAF if it was present in at least 25% of cells
isolated.

b) Melanoma tissue samples

Although the use ofXbal led to clear results when applied to melanoma cell lines the
abundance of the PCR product from DNA isolated from melanoma samples
remained relatively low making the RFLP results difficult to interpret. Increasing the
PCR reaction to 40 cycles resulted in a more abundant PCR product but this was at

the expense of an increased frequency of false positive results i.e. either PCR

products appearing in the no-DNA controls or BRAF mutations being detected in
non tumour DNA controls. Although both these problems could be minimised by
more stringent PCR technique it was felt that given the relatively small amounts of
DNA available from the melanoma samples it would be advantageous to investigate
further improvements in the assay in order to ensure consistent results.

It is recognised that DNA extracted from formalin-fixed paraffin-embedded

specimens is often fragmented and PCR can be difficult when amplifying products

greater than 1 OObp in length. In order to try and increase the efficiency of the PCR on

DNA isolated from fixed melanoma tissues a number of different primer
combinations were tested. These included a primer combination that gave a smaller
PCR product, a longer reverse primer to try to increase binding and nested primers.
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The use of nested primers (see Figure 5.6) gave the most abundant PCR products. A

panel of 10 melanoma samples were therefore tested using the nested primer

approach (Figure 5.8 B). Mutant BRAF was detected in all 4 metastatic melanomas

samples but in none of the primaries. PCR was unsuccessful in one of the primaries

(P4). Six of the PCR products were selected in order to confirm results using direct

sequencing. The sequencing results in all cases agreed with the results seen with
RFLP. It was interesting to note that in sample M6 no normal allele was detected by

sequencing. This implies that all tumour DNA was mutant and there was very little
non-tumour DNA in the sample and therefore the undigested PCR product seen in

Figure 5.8 B was due to incomplete digestion by the enzyme rather than the presence

of non-mutant DNA. The nested primer PCR (Figure 5.8 B) was carried out by Dr
Jim Selfridge.
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A

Mutant DNA (%): 0 2.5 5 10 25 50 75 100 G36I
Non-mutant (%): 100 97.5 95 90 75 50 25 0

150bp

lOObp

B M5 M6 M7 M8 M9 PI P2 P3 P4 P5 G361 PEOl

Figure 5.8. BRAF PCR RFLP (Xbal) mutation analysis. (A) Results of Xbal digestion of PCR

products amplified from mutant (from A375 cells) and non-mutant (from PEOl cells) DNA. Ratios of
mutant to non-mutant DNA are shown. The upper gel shows relatively equal abundance of PCR

products and the lower gel shows results of Xbal digestion. The lowest concentration ofmutant DNA
where a band was observed was in lane 5 where 25% of the DNA was mutant. (B) Results of Xbal

digestion of PCR products amplified from DNA isolated from metastatic melanoma samples (M5-

M9), primary melanomas (P1-P5) and control cell lines (G36I and PEOl). For each sample the 2
lanes represent the PCR product without or with Xbal digestion. The presence of a band of 105bp is

suggestive of the presence ofmutant DNA as in samples M5-M9. (C)-(F) DNA sequencing results for

samples G361, M7, M6 and PI respectively. Two peaks in the region marked indicates heterozygosity
for the transversion mutation T1799A. A single green peak indicates only the wild-type allele is
detected (TTTCACTTAG). A single red peak indicates only the mutant allele is detected

(TTTCTCTTAG).
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5.3.4 TMA data analysis

5.3.4.1 Clinicopathologic features of TMAs

Clinicopathologic data on 474 patients with cutaneous melanoma diagnosed between
1993 and 1997 were retrieved from the SMG database. 53 cases of normal naevi, 31

cases of dysplastic naevi, 59 in-situ melanomas, 312 cases of primary melanoma and

69 metastatic melanomas were represented on the TMAs and were evaluable for
immunohistochemical staining. The TMA blocks are shown in Figure 5.9 along with

representative cores from each type of lesion.

Characteristics for all patients with primary melanoma that were included in the final

analysis were compared to those excluded from the final analysis (Table 5.2). The
reasons for exclusion included lack of availability of tissue (either missing tumour

blocks or insufficient material present), loss of cores during the construction process,

insufficient amount of tumour being present on the final TMA slides or the presence

of abundant pigment that made results uninterpretable.

The mean age of the cases included in the final analysis ('included') was 53.3 and
was 54.4 for those 'excluded' from the final analysis (Welch two sample t-test, t=-

0.59, df=319, p=0.5552). The median duration of follow up was 5.4 years for
'included' cases versus 5.8 years for 'excluded' cases (Welch two sample t-test, t=-

1.5, df=276, p=0.13). Generally the 'included' and 'excluded' groups were very

similar although there were significant differences for Breslow thickness and

histological type. For Breslow thickness there were a higher number of very thin

(<lmm) and thick (>4mm) melanomas in the excluded group. For thin lesions it was

likely that the difference could be explained by there being some lesions that were
too small to core and still have sufficient tissue for clinical purposes. For thick
lesions some samples were unavailable for inclusion due to a previous study that
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A B C

Figure 5.9. TMA blocks and representative H&E cores. Upper panel is a photograph of the 20
TMA blocks. Lower panels are representative H&E sections of cores from several TMAs (x200). (A)
Naevus, (B) Dysplastic naevus, (C) In-situ melanoma. (D) Thin (radial growth phase) melanoma, (E)
Thick (vertical growth phase) melanoma. (F) Metastasis.
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Included Excluded Pearson's
Variable patients patients Chi-squared

No./(%) No./(%) Test

Sex
M 118 (38) 60 (37)
F 194 (62) 101(63) p=0.91
Breslow
<1.0mm 178 (57) 102 (63)
1.01-2.0mm 66 (21) 17(11)
2.01-4.0mm 40(13) 15(9)
>4.0mm 28(9) 27(17) p=0.003
Site
Sun exposed 45(15) 35 (22)
Sun protected 258 (83) 123 (76)
Acral 8(3) 3(2) p=0.13
Ulceration
Present 63 (20) 31 (19)
Absent 197 (63) 114(71)
Incipient 41(13) 14(9)
Unknown 12(4) 2(1) p=0.15
Type
SSM 240 (77) 100 (62)
Nodular 36(12) 19(15)
LMM 26 (8) 25 (12)
Acral 8(3) 12(8)
Other 2(1) 5(3) p=0.002
Status
Alive 244 121
Dead (melanoma) 44 22
Dead (other) 24 18 p=0.45

Table 5.2. Clinicopathologic characteristics of primary melanoma cases. Included patients

(n=312) are those with immunohistochemistry scores that were included in the final analysis.
Excluded (n=162) are cases that were excluded from the final analysis due to lack of or unsuitable
tissue for scoring. The final column shows the p-value for a statistical comparison of 'included' and
'excluded' cases for each variable using Pearson's chi-squared test. SSM=superficial spreading

melanoma, LMM= lentigo-maligna melanoma.
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used up most of the available tissue. The very small p-value attached to the

comparison of the 'included' and 'excluded' groups for histological type was likely
to largely reflect the differences seen in the groups with small sample numbers such
as 'acraT and 'unknown'.

5.3.4.2 Solar elastosis

Solar elastosis is a histologic indicator of chronic sun damage. The degree of solar
elastosis in the dermis of each primary melanoma sample was scored according to a

recently described method (Landi et al, 2006). The aim was to provide a quantitative
assessment of sun damage in the skin in which the melanomas arose. The scores (0-

11) took account of both the amount and distribution of the elastosis seen (see

Methods).

A range of solar elastosis scores was seen (n = 284, mean = 4.5). Representative
slides are shown in Figure 5.10. Solar elastosis scores were higher in samples arising
from sun-exposed sites (mean = 8, n = 47) and were low in sun-protected sites (mean
= 4, n = 251). Table 5.3 shows a comparison of solar elastosis score and site of
melanoma. As expected high solar elastosis scores were associated with history of

sun-exposure. Acral melanomas (pathological diagnosis) were associated with an

average solar elastosis score of 1.8 (n = 6). The Solar Elastosis scoring was

performed on H&E stained sections by Dr Tamasin Doig.

5.3.4.3 Immunohistochemistry scoring

2pm slides were cut from each of the TMA blocks and stained with B-catenin, bcl-2

or galectin-3 antibodies using standard DAB immunohistochemistry. Monoclonal
antibodies were used for all 3 proteins that had been shown in previous studies to be

specific and had been validated for clinical use. For each staining run a no primary
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A x200

Score = 3

B x400

C x200

>'• W-'

J "

Score = 6

D x400

Figure 5.10. Solar elastosis scoring. Solar elastosis was assessed in the normal skin surrounding the
melanomas on H&E stained sections. (A) and (B) show scattered elastotic fibres between collagen
bundles. (C) and (D) show densely scattered elastotic fibres distributed predominantly as bushels.

Although it is difficult to pick out the basophilic elastotic fibres in these slides the resultant disruption
of the architecture of the collagen bundles in (C) and (D) can clearly be seen. (A) and (C) are x200
and (B) and (D) are x400.

Sun-exposed site Sun-protected site

Solar elastosis >6 21 10

Solar elastosis <6 15 247

Table 5.3. Comparison of solar elastosis scores and location of melanoma. Solar elastosis scores

were divided into low (0-6) or high (7-11). Fisher's exact test p=2 xlO"16. Sun-exposed sites represent

those on the head and neck whereas sun-protected are all other sites.
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antibody control was included. Staining was assessed by 2 observers independently

(Dr Tamasin Doig and myself). An H&E slide from each TMA block was available

during scoring to help interpretation of staining in the presence of pigment. The
histoscore method of scoring was used which takes into account location, intensity
and frequency of staining as described earlier in this chapter.

B-catenin staining was predominantly membranous although some metastatic
melanoma samples showed nuclear staining. Moderate staining was also seen in

keratinocytes. The pattern of expression of bcl-2 staining was cytoplasmic.

Lymphocytes which were present in some melanoma samples stained strongly for
bcl-2 and therefore acted as an internal control. Galectin-3 staining was both

cytoplasmic and nuclear. Galectin-3 also gave some positive staining in keratinocytes
and macrophages. For B-catenin and galectin-3, each cellular compartment was

scored separately. Representative images are shown in Figures 5.11-5.13.

Comparison of scoring between 2 observers was possible for membranous B-catenin,

cytoplasmic bcl-2, and cytoplasmic galectin-3. In addition to a cytoplasmic score

being given for galectin-3, observer 2 (pathologist) gave a separate score for nuclear

galectin-3 scoring. Figure 5.14 shows the comparison of IFIC histoscores between
observer 1 and observer 2 for each of the 3 antibodies. Although there was generally

good correlation between observers it was evident that at higher histoscores there
was a tendency for observer 2 to score higher than observer 1 for both bcl-2 and b-
catenin. Interclass correlation co-efficients were calculated to be 0.56, 0.49 and 0.67

for bcl-2, b-catenin and galectin-3 (cytoplasmic) respectively. For cores where there
was a discrepancy between observer histoscores of 100 or more, these cores were

reviewed and a consensus score was reached.
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Figure 5.11. B-catenin immunohistochemistry. Representative images of B-catenin
immnunohistochemical staining in human melanocytic lesions. (A) and (B) Dysplastic naevus

showing moderate membranous staining, (C) and (D) In-situ melanoma showing moderate
membranous staining, (E) and (F) Primary melanoma showing weak to moderate membranous

staining, (G) and (H) Metastatic melanoma showing strong nuclear staining and moderate cytoplasmic

staining. Magnification is x200 for (A), (C), (E) and (G) and x400 for (B), (D), (F) and (H).
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Figure 5.12. BcI-2 immunohistochemistry. Representative images of bcl-2 immnunohistochemical
staining in human melanocytic lesions. (A) and (B) Naevus showing strong cytoplasmic staining, (C)
and (D) Dysplastic naevus showing moderate cytoplasmic staining, (E) and (F) Primary melanoma

showing moderate cytoplasmic staining, (G) and (H) Metastatic melanoma showing negative staining.

Magnification is x200 for (A), (C), (E) and (G) and x400 for (B), (D), (F) and (H).
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Figure 5.13 Galectin-3 immunohistochemistry. Representative images of galectin-3
immnunohistochemical staining in human melanocytic lesions. (A) and (B) Naevus showing strong

nuclear and moderate cytoplasmic staining, (C) and (D) Dysplastic naevus showing strong

cytoplasmic and nuclear staining, (E) and (F) Primary melanoma showing strong nuclear and

cytoplasmic staining, (G) and (H) Metastatic melanoma showing weak nuclear staining.

Magnification is x200 for (A), (C), (E) and (G) and x400 for (B), (D), (F) and (H).
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Figure 5.14. Correlation of immunohistochemistry scoring between observer 1 and observer 2.

(A), (C) and (E) Scatter plots showing scores given by observer 1 versus observer 2 for each primary
melanoma case for each of the 3 antibodies. (B), (D) and (F) Bland-Altman plots showing differences
in scores between observers plotted against histoscore for each of the 3 antibodies. The dotted lines

represent +2 and -2 standard deviation of the difference between observer 1 and observer 2.
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5.3.4.4. Expression of B-catenin, Bcl-2 and galectin-3 during melanoma

progression

Levels of B-catenin, bcl-2 and galectin-3 immunostaining were assessed in normal

naevi, dysplastic naevi, in-situ melanomas, primary melanomas and metastatic
melanomas (Figure 5.15).

The expression of B-catenin was low in normal naevi, higher in dysplastic naevi, in-
situ melanomas and primary melanomas and then lower again in metastatic
melanomas. There were significant differences in histoscore between normal naevi
and dysplastic naevi (p<0.0005) and between primary and metastatic melanomas

(p<0.0005) respectively.

The expression of bcl-2 was similar in normal naevi and dysplastic naevi, lower in
in-situ melanomas and primary melanomas and lower again in metastatic melanomas
There were significant differences in histoscore between dysplastic naevi and in-situ
melanomas (p=0.009) and primary and metastatic melanomas (p<0.0005)

respectively.

The expression of galectin-3 (cytoplasmic) was low in normal naevi, higher in

dysplastic naevi, in-situ melanomas and primary melanomas lower again in
metastatic melanomas. There were significant differences in histoscore between
normal naevi and dysplastic naevi (p<0.0005) and between primary and metastatic
melanomas (p<0.0005) respectively. Expression of galectin-3 (nuclear) showed a

similar pattern although there were no statistically significant differences between

adjacent groups on the progression pathway.
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B-catenin

BenNaevi DysNaevi InSitu Pnmary

Galectin-3 (cytoplasmic)

BenNaevi DysNaevi InSitu Primary

Bcl-2

BenNaevi DysNaevi InSitu Primary MR

D Galectin-3 (nuclear)

BenNaevi DysNaevi InSitu Primary

Figure 5.15. Expression of B-catenin, bcl-2 or galectin-3 during melanoma progression. (A) B-

catenin, (B) bcl-2, (C) cytoplasmic galectin-3, (D) nuclear galectin-3. For each antibody the 5 groups

along the x-axis are benign naevi, dysplastic naevi, in-situ melanomas, primary melanomas and
mets/recurrences. Each box represents the interquartile range (1st quartile to 3rd quartile), the median
value is marked with a bold line, the dotted lines represent the extent of 1.5 x the interquartile range

and other points are marked as outliers. * indicates a significant change is seen between adjacent steps
on the progression pathway.
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5.3.4.6 Survival Analysis

To evaluate whether staining of B-catenin, bcl-2 or galectin-3 correlated with

prognosis in patients with primary melanoma, Kaplan-Meier survival curves were

constructed using overall and melanoma-specific survival. Histoscores were divided
into quartiles for each antibody (Figures 5.16 and 5.17).

Patients with low expression of B-catenin had a significantly worse overall survival
than other patients (log-rank test p=0.01). This result did not reach statistical

significance for melanoma-specific survival (log-rank p=0.07). Bcl-2 expression was

found to have no correlation with overall or melanoma-specific survival. Although

cytoplasmic galectin-3 expression had no association with survival (log-rank test

p=0.4 for both overall and melanoma-specific survival), low expression of nuclear

galectin-3 correlated with worse overall survival (log-rank test p=0.0004) and

melanoma-specific survival (log-rank p=0.0007).

A multifactorial Cox regression analysis was performed in order to assess whether B-
catenin or nuclear galectin-3 expression were independent prognostic markers for
melanoma (Table 5.4). The multifactorial analysis included age, sex, Breslow,
ulceration and presence of elastosis. The results indicated that nuclear galectin-3
reached borderline significance for predicting overall survival independently of other

clinicopathologic parameters (p=0.05). The risk ratio for death for patients with low

(bottom quartile) compared to high (top quartile) nuclear galectin-3 was 8.00. This
was considerably higher than risk ratios for established prognostic factors such as

Breslow or presence of ulceration (see Table 5.4) although it should be noted that
confidence intervals for nuclear galectin-3 were wide (1.02-62.89). Significance for

melanoma-specific survival was not reached (p=0.12). In contrast, B-catenin was

found to be an independent prognostic marker for melanoma specific survival (risk
ratio 7.02, p=0.04) but not for overall survival (p=0.47). Other independent

prognostic markers for worse overall survival were increasing age (p=0.02) and

presence of ulceration (p=0.02). Independent prognostic markers for worse
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Figure 5.16. Kaplan-Meier analysis of overall survival according to expression of B-catenin, bcl-
2 or galectin-3. (A) B-catenin, (B) bcl-2, (C) cytoplasmic galectin-3, (D) nuclear galectin-3. The
histoscores for each antibody are divided into quartiles. The range for each quartile is indicated in the
bottom left hand corner of each graph.
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Figure 5.17. Kaplan-Meier analysis of melanoma-specific survival according to expression of B-

catenin, bcl-2 or galectin-3. (A) B-catenin, (B) bcl-2, (C) cytoplasmic galectin-3, (D) nuclear

galectin-3. The histoscores for each antibody are divided into quartiles. The range for each quartile is
indicated in the bottom left hand corner of each graph.
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A

Overall survival Melanoma-specific survival

Variable Risk ratio 95% CI P Risk ratio 95% CI P

Galectin-3 8.00 1.02-62.89 0.05 5.49 0.66-46.0 0.12

Age 1.03 1.00-1.05 0.02 1.02 0.99-1.04 0.19

Sex 1.46 0.77-2.78 0.25 2.94 1.28-6.75 0.01

Ulceration 3.49 1.26-9.65 0.02 4.03 1.19-13.6 0.03

Breslow 2.46 0.61-9.81 0.20 5.24 0.80-34.4 0.09

Elastosis 1.14 0.98-1.32 0.09 1.32 1.06-1.65 0.02

B

Overall survival Melanoma-specific survival

Variable Risk ratio 95% CI P Risk ratio 95% CI P

B-catenin 1.37 0.58-3.28 0.47 3.05 1.07-8.70 0.04

Age 1.03 1.01-1.06 0.01 1.02 0.99-1.05 0.14

Sex 1.37 0.70-2.66 0.36 2.79 1.19-6.55 0.02

Ulceration 3.35 1.23-9.12 0.02 3.45 1.02-11.61 0.05

Breslow 2.16 0.57-8.21 0.26 7.02 1.21-40.80 0.03

Elastosis 1.17 1.00-1.36 0.06 1.33 1.05-1.69 0.02

Table 5.4. Cox regression analysis of the impact of various factors on overall and melanoma-

specific survival. A, Nuclear galectin-3. B, B-catenin. Coding of variable; nuclear galectin-3 was

coded as 1, histoscore in top quartile, 2 histoscore in bottom quartile. Sex was coded as 1, female and

2, male. Ulceration was coded as 1, absent and 2 present. Breslow was coded as 1, <4mm versus 2,
>4mm. Age and elastosis were included as continuous variables; risk ratio is per 1 unit decrease in
elastosis score or 1 year increase in age, B-catenin was scored as 1, histoscore in top quartile, 2
histoscore in bottom quartile. Risk ratios represent the comparison of variable 2 versus 1.
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melanoma-specific survival were Male sex (p=0.01), ulceration (p=0.03), Breslow
>4mm (p=0.03) and absence of marked elastosis (p=0.02).

5.4 Discussion

A number of approaches to investigate novel prognostic markers in melanoma have
been used. Gene expression microarray on frozen samples of melanoma has
identified characteristic gene expression differences distinguishing different classes
of metastatic melanoma from one another and from primary and premalignant
lesions. These studies have been limited by unavailability of fresh primary material
which is usually fixed in its entirety for diagnostic purposes. One recent study

analysed gene expression in 83 frozen primary melanoma samples collected over a

20 year period (Winnepenninckx et al, 2006). 254 genes were identified that were
associated with a good prognosis. However, when this set of genes were used to

classify a validation set, only 11 out of 17 patients had clinical outcome predicted

correctly. Indeed, mathematical modelling predicts that gene expression profiles of
several thousand patients are needed to generate a robust gene set for predicting
cancer outcome (Dai et al, 2005). Obtaining such large numbers of frozen primary
melanomas is impossible, making it necessary to explore other ways to investigate

gene expression changes in melanoma.

An alternative is protein expression profiling on tissue microarray (TMA), which
allows investigation of a number of proteins in up to 1000 specimens on the same

array. The advantages of this method include firstly, it uses fixed material and so

opens the melanoma archive for study. Secondly, it employs immunohistochemistry
which allows investigation of protein expression rather than expression of mRNA

transcripts. Thirdly, it allows simultaneously assessment of protein expression from a

number of different types of lesion including primaries and metastases. This may

give an insight into key changes that occur during cancer development.

Disadvantages of the TMA method include firstly, the limited number of biomarkers
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that can be investigated due to the requirement for separate antibodies for each

protein and secondly, the potential for tissue heterogeneity to result in

unrepresentative cores of tumour being analysed.

The pilot immunohistochemistry study confirmed that differences in expression of 3

proteins could be found in melanoma specimens of a suitable age and confirmed the

utility of the 'histoscore' as a method of quantifying staining. Construction of the

'practice TMA' allowed the assessment of various IHC conditions to try and improve
the quality and interpretation of staining. Azure blue was found to stain melanin

granules green-blue and allowed easier contrast with DAB but its inferiority as a

counterstain and the instability of colour over time meant it was not used in the main
TMA study. Alternative methods of aiding detection such as bleaching with

potassium permanganate were not considered as there is evidence that tissue damage
and loss of cytological detail may occur during the bleaching process (Kligora et al,

1999). Use of an alternative detection system such as 'permanent red' showed more

potential but would require further assessment before being taken taken forward in
future studies. From the limited assessment of alternative thickness of sections that

was made on the practice TMAs it appeared that using sections that were thinner

than 3 pm had no deleterious effect on overall staining. In order to distinguish
between pigment and IHC staining in heavily pigmented cores it was necessary to

have an H&E slide of the corresponding TMA section available for comparison.

A method was developed to detect V600E BRAF mutations in cores of melanoma
tissue in order to relate results of protein expression by IHC with presence of BRAF
mutations. This was thought to be of value in order to allow classification of
melanomas both according to history of sun exposure and presence of BRAF
mutations and was of particular relevance to ongoing studies which aim to

investigate expression of several proteins on the BRAF/MEK/ERK pathway. The
first method that was used to detect V600E BRAF mutations (Btsl) gave clear-cut
results using DNA isolated from cell lines but was more problematic when used with
DNA isolated from melanoma tissue cores. The main problem was that it was
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difficult to determine whether uncut DNA was due to the presence of a mutation or

was due to incomplete digestion of wild-type DNA. The second method (Xbal)
offered an improvement to the assay in that it only digested the PCR product in the

presence of the mutation. The sensitivity of the assay was found however, to be

approx 25% which suggested that false negative results may occur when a large

proportion of DNA isolated from the tissue cores was from normal tissue or from
stroma. Although the Xbal method was effective in determining the presence of
V600E BRAF mutations in cell lines it was evident that results from melanoma

tissue DNA were more difficult to interpret due to the low abundance of the PCR

products. This was improved by the use of nested primers. A further improvement to
the method described above for determining V600E BRAF mutation status may have
been possible if larger quantities of melanoma tissue that had a low risk of
contamination by non-tumour DNA had been obtained using laser-capture
microdissection from whole melanoma sections. Unfortunately this was not possible
due to insufficient amounts of tissue being available.

Both the practice TMA and the melanoma TMAs were constructed using 0.6mm
tissue cores. Although other studies have used larger cores it was felt that for thinner
melanomas the use of the smaller core size would allow duplicate cores to be taken
from a greater number of cases whilst ensuring that there was sufficient residual
material for clinical purposes. For TMA studies in other cancer types one to four
0.6mm cores have been shown to yield as much information as standard tissue
sections (Torhost et al, 2001). The optimum size and number of cores for melanoma
TMAs has not been established (Becker et al, 2006). As this was a retrospective

study on routinely collected pathology specimens there was no opportunity to ensure

consistent fixation methods were used for all specimens. All specimens however
underwent similar fixation protocols according to the standard of the time.

Although a number of melanoma TMA studies have been published some have been
limited by inadequate archival tissue collections and unavailability of prospectively
recorded clinical information. In particular there have been no large studies
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published to date that included collections of dysplastic naevi and in-situ melanomas,

important steps in the melanoma progression model. This study offers significant

advantages compared to previous studies in that it combines a large collection of

melanocytic lesions, it has a high percentage of thin melanomas and has high quality

prospectively collected clinical data.

In the design of this TMA study it was felt important to follow the recommendations
for tumour marker prognostic studies (REMARK) published by a working group set

up by the National Cancer Institute-European Organisation for Research and
Treatment of Cancer (NCI-EORTC). The guidelines include detailed
recommendations on study design, statistical analysis, interpretation of data and

presentation and aim to encourage transparent and complete reporting so that others
will be able to judge the usefulness of the data and understand the context in which
the conclusions apply (McShane et al, 2005).

One of the aims of the design of this study was to try and ensure that the samples
included in the TMAs were representative of the melanoma population as a whole for
the region. Previous melanoma TMAs (Pacifico et al, 2005, Prieto et al, 2006, Dai et

al, 2005, Rangel et al, 2006) generally included a much higher proportion of thick

melanomas, presumably due to availability of tissue rather than for scientific reasons.

The comparison of the primary melanoma cases in this study that were included in
the final analysis with those excluded confirmed there was little systematic bias in
the set-up of the melanoma TMAs. This makes it more likely that any results
obtained could be extrapolated to the wider population. Although it was hoped that
there would be few cases that would be excluded from the TMAs due to

uninsuitability the 66% inclusion rate (Table 5.2) compares favourably with the 55%
that was seen in the only other study for which this information was provided

(Pacifico et al, 2005).
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Given the histological complexity of the lesions that were being scored (including
the small number of melanocytes or melanoma cells and the presence of pigment in
some cores) it is perhaps unsurprising that the comparison of IHC scoring between
observer 1 and observer 2 revealed a correlation that was inferior to that shown in

studies of breast cancer (Tovey et al, 2005). There were however no melanoma
studies with which these results could be compared as previous studies that used 2
observers scored the slides simultaneously and came to a 'consensus' score whereas
other studies simply used a single observer. For future scoring of the TMA an

improved inter-observer correlation may be achieved if the observers undergo a more

extensive period of training. Alternative scoring systems such as the use of
automated systems could also be considered (Camp et al, 2002). Another criticism of
the scoring is the 'granular' nature of the scoring which is best illustrated in Figure
5.14. It is clearly seen that there is a tendency for observers to score a large number
of cores as either 200 or 100 rather than values in between.

The main aims of this study were to investigate changes in expression of B-catenin,
bcl-2 and galectin-3 during melanoma progression and to identify whether any of
these proteins have prognostic value in primary melanoma. B-catenin is a multi¬
functional protein that controls a number of cell activities in both the membrane and
the nucleus (Peifer et al, 2000). It binds to the cytoplasmic tail of E-cadherin and
therefore has an important role in cell adhesion. The Wnt/B-catenin signalling

pathway affects a number of cellular activities including proliferation, migration and
differentiation (Peifer and Polakis, 2000). Activation of the pathway triggers a

cascade of events within the cell resulting in stabilization of the free cytoplasmic

pool of B-catenin and the translocation of this protein to the nucleus where it

regulates gene transcription (Larue and Delmas 2006). Loss of B-catenin membrane

expression has been associated with increased cell invasiveness although the
differential expression of B-catenin during melanoma progression is controversial

(Bachman et al, 2005). In this study a significant increase in membranous B-catenin

expression was seen between benign naevi compared to dysplastic naevi, in-situ
melanomas and primary melanomas. This is consistent with a previous study that
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suggested an increase in expression between naevi and primary melanoma

(Bachmann et al, 2005). The fall in expression of membranous B-catenin between

primary melanomas and metastatic melanomas has not previously been described.
Low membranous B-catenin expression appeared to be associated with worse

outcome in this study and was an independent prognostic marker for melanoma-

specific survival. These results suggest that reduced membranous expression of B-
catenin may be associated with more invasive behaviour perhaps through loss of cell
adhesion. It should be noted however that unlike a previous study where nuclear B-
catenin was found to be prognostic (Bachmann et al, 2005) nuclear expression of B-
catenin was only seen in a small number of metastatic melanomas and was absent in
all other lesions. The difference in findings between these studies may in part be

explained by the use of a different antibody.

Bcl-2 oncoprotein is an inhibitor of apoptotic death that is involved in the control of
the intrinsic apoptotic pathway. It is thought to function principally by binding and

sequestering activators of apoptosis (Letai et al, 2007). It is highly expressed in

melanocytes and melanomas although its contribution to chemoresistance and

prognosis is controversial (Lomuto et al, 2004). Pharmacologic reduction or targeted
inactivation of bcl-2 amplifies apoptotic responses to chemotherapy in multiple in

vivo models (Jansen et al, 1998). The fall in bcl-2 expression between primary
melanomas and metastatic melanomas supports findings from previous studies

(Alonso et al, 2004, Fecker et al, 2006). As a number of drugs that target bcl-2 are in
advanced stages of clinical development (Letai et al, 2007) it could be argued that
these therapies may be ineffective if their target is not expressed at sufficiently high
levels. Interestingly, no assessment of bcl-2 expression was made prior to treatment

of metastatic melanoma patients with bcl-2 antisense therapy (Bedikian et al, 2006).
Our results also confirmed previous work which showed that bcl-2 has no prognostic
value in patients with primary melanoma (Mikhail et al, 2005, Fecker et al, 2006).

Galectins constitute a family of widely distributed carbohydrate-binding proteins
characterised by their high affinity for P-galactoside sugars and share certain
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conserved elements (Vereecken et al, 2005). Galectin-3 is a chimeric molecule

consisting of both carbohydrate recognition and collagen-like domains (Krzeslak et

al, 2004). It is predominantly localised in the cytoplasm although may translocate to

the nucleus or be secreted from the cell by ectocytosis. It has been reported to be

expressed by monocytes, macrophages, and several epithelial tissues including

mammary, colonic and kidney tissue and has been found to be overexpressed in
several pathological conditions including human athereosclerosis and cancer (Liu
and Rabinovich, 2005). Galectin-3 plays an important role in several key aspects of
cancer biology including adhesion, proliferation, differentiation, angiogenesis and
metastasis. (Nakahar et al, 2005). Increased expression of galectin-3 has been
correlated in some studies with tumour stage and both pro- and anti- apoptotic
activities of galectin-3 have been found depending on the type of tumour studied

(van den Brule et al, 2004). The anti-apoptotic activity of galectin-3 is not

completely understood but it is thought that it may block changes in mitochondrial

potential through an effect on other apoptosis regulators including bcl-2 (Liu and
Rabinovich 2005).

In this chapter, the finding of lower expression of galectin-3 in naevi compared to

dysplastic naevi, in-situ melanoma and primary melanomas is consistent with a

previous TMA study which suggested that galectin-3 expression may be associated
with tumour progression (Prieto et al, 2006). The reduced expression of galectin-3 in
metastatic melanomas also confirmed results of a previous immunohistochemistry

study (Vereecken et al, 2005). The survival analysis which revealed that high nuclear

galectin-3 expression is associated with an improved overall survival suggests that

sequestering of galectin-3 in the nucleus may be associated with a less malignant

phenotype. This finding is consistent with the requirement of export of galectin-3
from the nucleus into the cytoplasm being required for anti-apoptotic activity (Yu et

al, 2002). In summary, these results suggest that galectin-3 may have an important
role in melanoma pathogenesis, is an independent marker of progression and

prognosis in primary melanoma and is worthy of further investigation as a potential

therapeutic target.
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Chapter 6 Summary
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The aim of the work presented in this thesis was to conduct a number of studies that
would add to our understanding of melanoma biology. An improved understanding
of the molecular pathogenesis of melanoma is required in order to develop more

effective prevention strategies, define new prognostic markers and to identify new

molecular targets for therapy. The work in chapter 3 explored the role of MC1R in
cutaneous melanoma, chapter 4 established and characterised a novel melanoma cell
line and chapter 5 studied markers of melanoma progression and prognosis with

newly designed melanoma TMAs.

MC1R is established as a therapeutic target in melanoma prevention (D'Orazio et al,

2006) and has been used for delivery of radiolabeled isotopes for imaging and

therapy in melanoma (Raposinho et al, 2008). Recent studies have also suggested a

potential role of MC1R in the response to DNA damage-induced apoptosis in

melanocytes (Bohm et al, 2005, Kadekaro et al, 2005). If an 'anti-apoptotic' role of
MC1R is retained by melanoma cells it could be of great relevance to cancer

therapeutics as alterations to components of the apoptotic pathways are amongst the
most widely recognised drug resistance mechanisms described in melanoma cells. I

investigated the MC1R pathway in melanoma cell lines and explored whether

manipulation of MC1R could alter the susceptibility of melanoma cells to DNA

damage-induced apoptosis. Results confirmed that MC1R mRNA was expressed by
all melanoma cell lines and was low or absent in non-melanoma cancer cell lines.

Manipulation ofMCIR with antibody, a-MSH or siRNA had no effect on melanoma

proliferation or of susceptibility to DNA damage-induced apoptosis. However, the
information obtained from this work did have limitations including the modest
knockdown of MC1R mRNA that was seen in the siRNA studies and the lack of

confirmation of knock-down at the protein level. Although MC1R has a key role in
melanoma susceptibility the evidence for an important role in the control of

proliferation and apoptosis in melanoma remains less convincing.
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Melanoma cell lines are widely used in melanoma research although the clinical
relevance of any findings can be limited by the accumulation of multiple genetic

changes during growth in culture and the lack of clinical information with which to

correlate findings. In this study a novel melanoma cell line was isolated and
characterised. It was found that Edmel 3 displayed several properties in culture that
were similar to the parent tissue from which it was derived. The relatively slow

growth, the lack of pigment and the presence of two morphologically distinct

populations of cells were retained by Edmel 3 both in culture and following growth
as xenografts in SCID mice. It is hoped that the knowledge gained from the isolation
of melanoma cells from metastatic samples will be of value if future attempts to

obtain fresh primary melanoma samples can be made.

A series of tissue microarrays were designed, constructed and optimised and

subsequently used for investigation of melanoma progression and prognosis. To my

knowledge this is the most comprehensive melanoma TMA project undertaken to

date and the first to attempt to include a cohort of primary melanoma samples that
are representative of the population as a whole. The main aspects of melanoma

biology that the TMA project aims to address include changes in expression of key

proteins during melanoma progression and identification of novel prognostic
markers. Clearly, there are a number of approaches that could be taken in deciding
which proteins to investigate on the TMAs. These include focusing on key pathways,

validating results on established markers and investigating novel proteins that have
been implicated in other studies such as gene expression microarray. The approach
that was chosen was to further investigate an established therapeutic target (bcl-2)
and a marker of progression (B-catenin) and to investigate a more novel protein that
has recently been implicated in melanoma pathogenesis and prognosis (galectin-3).

A number of goals have been achieved in the TMA study. Firstly, a series of TMAs
have been designed and constructed that include all stages of melanoma progression.

Secondly, a large number of primary melanoma samples have been included that are

representative of the melanoma population as a whole. Thirdly, changes in the
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expression of several key proteins (bcl-2, B-catenin and galectin-3) have been found

during melanoma progression. Fourthly, a novel prognostic marker (nuclear galectin-

3) has been identified in primary cutaneous melanoma.

An improvement in our ability to predict outcome from primary melanoma would be
beneficial in terms of improved patient counselling, therapeutic decision-making and
the design and interpretation of clinical trials. It should be recognised however that in
order to be of clinical use the findings from this study would have to be validated in a

separate study, a feat that it is seldom achieved in research into novel molecular
markers (Becker et al, 2006). Furthermore, a number of statistical concerns have to

be considered (Reviewed in McShane et al, 2005) including the use of a more

stringent cut-off for level of significance given that multiple proteins are being
tested. Although the association of nuclear galectin-3 expression and clinical
outcome is of interest greater benefit may be derived from novel hypotheses that are

generated from this study such as the investigation of nuclear galectin-3 as a

potential therapeutic target.

The comprehensive nature of the design of the TMAs in this study is ideally suited to
set up collaborative projects with other melanoma investigators such as the

investigation of the importance of BRAF mutations in melanoma pathogenesis and
the identification of biomarkers of response to MEK inhibitors in cutaneous

melanoma. The characterisation of BRAF mutations in cores of melanoma tissue has

not proven to be straightforward but it is hoped that ongoing improvements in the

assay may lead to the successful characterisation ofV600E mutations in the majority
of melanoma samples. This could provide the foundation to explore in detail the

relationship between the presence of BRAF mutations and activation of downstream
members of the pathway including ERK and MEK with a view to identifying the best
marker of pathway activation and/or response to MEK inhibition.
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In conclusion, it is hoped that the work presented in this thesis combined with the
results of ongoing studies may lead to an improved understanding of key molecular

pathways in melanoma pathogenesis. There is great hope that an increased

understanding of melanoma progression and prognosis will ultimately lead to the

timely development of novel therapeutics that are desperately required for this
disease.

175



References

176



Ackerman AB. Mythology and numerology in the sphere of melanoma. Cancer

2000; 88 (3): 491-6.

Adachi S, Nakano T, Vliagoftis H, Metcalfe DD. Receptor-mediated modulation of
murine mast cell function by alpha-melanocyte stimulating hormone. Journal of

Immunology 1999; 163 (6): 3363-3368.

AIHW (Australian Institute of Health and Welfare, Australian Association of Cancer

Registries (AACR) 2003. Cancer in Australia 2000. Canberra: AIHW (Cancer Series
no. 23).

Aitken J, Welch J, Duffy D, Milligan A, Green A, Martin N, Hayward N. CDKN2A
variants in a population-based sample of Queensland families with melanoma.
Journal ofthe National Cancer Institute 1999; 91 (5): 446-452.

Akslen LA, Angelini S, Straume O, Bachmann IM, Molven A, Hemminki A, Kumar
R. BRAF and NRAS mutations are frequent in nodular melanoma but are not

associated with tumor cell proliferation or patient survival. The Journal of

Investigative Dermatology 2005; 125: 312-317.

Albino AP, Vidal MJ, McNutt NS, Shea CR, Prieto VG, Nanus DM, Palmer JM,

Hayward NK. Mutation and expression of the p53 gene in human malignant
melanoma. Melanoma Research 1994; 4: 35-45.

Alonso SR, Ortiz P, Pollan M, Rodriguez-Peralto JL. Progression in cutaneous

malignant melanoma is associated with distinct expression profiles. American
Journal ofPathology 2004; 165: 193-203.

Amiri KI, Richmond A. Role of nuclear factor kB in melanoma. Cancer and

Metastasis Review 2005; 24: 301-303.

Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. Journal of

Photochemistry Photobiology B 2001; 63: 8-18.

Autier P. Cutaneous malignant melanoma. Facts about sunbeds and sunscreens.

Expert Review ofAnticancer Therapy 2005; 5: 881-83.

Bachmann IM, Straume O, Puntervoll HE, Kalvenes MB, Akslen LA. Importance of

P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors

177



and prognosis in cutaneous melanoma. Clinical Cancer Research 2005; 11 (24):

8606-8614.

Balch CM. Cutaneous melanoma: prognosis and treatment results worldwide.
Seminars in Surgical Oncology 1992; 8: 400-414.

Balch CM, Buzaid AC, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Houghton A

Jr, Kirkwood JM, Mihm MF, Morton DL, Reintgen D, Ross MI, Sober A, Soong SJ,

Thompson JA, Thompson JF, Gershenwald JE, McMasters KM. A new American
Joint Committee on cancer staging system for cutaneous melanoma. Cancer 2000;
88: 1484-1491.

Banerjee SS, Harris M. Morphological and immunophenotypic variations in

malignant melanoma. Histopathology 2000; 36: 387-402.

Barsh G, Gunn T, He L, Schlossman S, Duke-Cohan J. Biochemical and genetic
studies of pigment-type switching. Pigment Cell Research 2000; 13 (Supp. 8): 48-53.

Becker D, Mihm M, Hewitt S, Sondak VK, Fountain JW, Thurin M. Markers and

tissue resources for melanoma: meeting report. CancerResearch 2006; 66 (22):
10652-10657.

Beddingfield FC 3rd. The melanoma epidemic: res ipsa loquitur. Oncologist 2003; 8:
459-465.

Bedikian AY, Millward M, Pehamberger H, Conry R, Gore M, Trefzer U, Pavlick

AC, DeConti R, Hersh EM, Hersey P, Kirkwood JM, Haluska FG. Bcl-2 antisense

(oblimersen sodium) plus dacarbazine in patients with advanced melanoma: The
Oblimersen Melanoma Study Group. Journal of Clinical Oncology 2006; 24: 4738-
4745.

Ben-Porath I and Weinberg RA. When cells get stressed: an integrative view of
cellular senescence. Cell 2004; 113: 8-13.

Berger AJ, Davis DW, Tellez C, Prieto VG, Gershenwald JE, Johnson MM, Rimm

DL, Bar-Eli M. Automated quantitative analysis of activator protein-2a sub cellular

expression in melanoma tissue micro arrays correlates with survival prediction.
Cancer Research 2005: 65 (23): 11185-11192.

178



Bertolinin A and Gessa GL. Behavioural effects of ACTH and MSH peptides.
Journal ofEndocrinological Investigation 1981; 4: 241-251.

Berwick M, Halpern A. Melanoma epidemiology. Current Opinion in Oncology

1997; 9: 178-182.

Beuret 1, Flori E, Denoyelle C, Bille K, Busca R, Picardo M, Bertolotto C, Ballotti R.

Upregulation of MET expression by alpha-melanocyte-stimulating hormone and
MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells
from apoptosis. Journal ofBiological Chemistry 2007; 282 (19): 14140-7.

Bhardwaj R, Becher E, Mahnke K, Hartmeyer M, Schwarz T, Scholzen T, Luger TA.
Evidence for the differential expression of the functional alpha-melanocyte-

stimulating hormone receptor MC-1 on human monocytes. Journal of Immunology

1997; 158 (7): 3378-3384.

Bliss JM, Ford D, Swerdlow AJ, Armstrong BK, Cristofolini M, Elmwood JM,
Green A, Hollyu EA, Mack T, MacKie RM. Risk of cutaneous melanoma associated
with pigmentation characteristics and freckling: systematic overview of 10 case-

controlled studies. The International Melanoma Analysis Group (IMAGE).
International Journal ofCancer 1995; 62: 367-76.

Bohm M, Metze D, Schulte U, Becher E, Luger TA, Brzoska T. Detection of
melanocortin-1 receptor antigenicity on human skin cells in culture and in situ.

Experimental Dermatology 1999; 8 (6): 453-461.

Bohm M, Schiller M, Stander S, Seltmann H, Li Z, Brzoska T, Metze D, Schioth HB,

Skottner A, Seiffert K, Zouboulis CC, Luger TA. Evidence for expression of
melanocortin-1 receptor in human sebocytes in vitro and in situ. Journal of

Investigational Dermatology 2002; 118 (3): 533-539.

Bohm M, Wolff I, Scholzen TE, Robinson SJ, Flealy E, Luger TA, Schwarz T,
Schwarz A. Alpha-melanocyte-stimulating hormone protects from ultraviolet
radiation-induced apoptosis and DNA damage. Journal of Biological Chemistry

2005; 280 (7): 5795-5802.

179



Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA. MC1R genotype

modifies risk of melanoma in families segregating CDKN2A mutations. American
Journal ofHuman Genetics 2001; 69 (4): 765-773.

Breslow A. Thickness, cross-sectional areas, and depth of invasion in the prognosis
of cutaneous melanoma. Annals of Surgery 1970; 172: 902.8.

Brown CK, Kirkwood JM. Medical management of melanoma. Surgical Clinics of
North America 2003; 83 (2):283-322, viii.

Busca R, Berra E, Gaggioli C, Khaled M, Bille K, Marchetti B, Thyss R, Fitsialos G,
Larribere L, Bertolotto C, Virolle T, Barbry P, Pouyssegur J, Ponzio G, Ballotti R.

Hypoxia-inducible factor la is a new target of micropthalmia-associated

transcription factor (MITF) in melanoma cells. Journal of Cell Biology 2005; 170;
49-59.

Camp RL, Chung GG, Rimm DL. Automated subcellular localization and

quantification of protein expression in tissue microarrays. Nature Medicine 2002; 8:
1323-7.

Cancer Research UK cancer stats 2006. info.cancerresearchuk.org/cancerstats.

Castro MG, Morrison E. Post-translational processing of proopiomelanocortin in the

pituitary and in the brain. Critical Reviews in Neurobiology 1997; 11 (1): 35-57.

Chamberlain AJ, Fritshci L, Kelly JW. Nodular melanoma: patients' perceptions of

presenting features and implications for earlier detection. Journal of the American

Academy of Dermatology 2003; 48: 694-701.

Chen YT, Stockert E, Jungbluth A, Tsang S, Coplan KA, Scanlan MJ, Old LJ.

Serological analysis of Melan-A (MART-1), a melanocyte-specific protein

homogeneously expressed in human melanomas. Proceedings of the National

Academy of Science 1996; 93: 5915-9.

Chung KW, Yang SK, Lee GK, Kim EY, Kwon S, Lee SH, Park do J, Lee HS, Cho

BY, Lee HS, Kim SW. Detection of BRAF V600E mutations in FNA specimens of

thyroid nodule refines cyto-pathology diagnosis, especially in BRAF V600E

mutation-prevalent area. Clinical Endocrinology 2006; 65 (5): 660-6.

180



Clark WH Jnr, Elder DE. A study of tumour progression: the precursor lesions of

superficial spreading and nodular melanoma. Human Pathology 1984; 15; 1147-
1165.

Cone RD, Lu D, Koppula S, Vage DI, Klungland H, Boston B, Chen W, Orth DN,

Pouton C, Kesterson RA. The melanocortin receptors: agonists, antagonists, and the
hormonal control of pigmentation. Recent Progress in Hormone Research 1996; 51:
287-317.

Covell DG, Huang R, Wallqvist A. Anticancer medicines in development:
assessment of bioactivity profiles within the National Cancer Institute anticancer

screening data. Molecular Cancer Therapy 2007; 6 (8): 2261-70.

Cui R, Widland H, Feige E, Lin JY, Wilensky DL, Igras VE, D'Orazio J, Fung CY,
Schanbacher CF, Granter SR, Fisher DE. Central role for p53 in the suntan response

and pathologic hyperpigmentation. Cell 2007; 128 (5): 853-864.

Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct

subtypes of melanoma. Journal ofClinical Oncology 2006; 24 (26): 4340-4346.

Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba

S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations
in melanoma. New England Journal of Medicine 2005; 353 (20): 2135-2147.

Dai DL, Martinka M, Li G. Prognostic significance of activated Akt expression in
melanoma: A clinicopathologic study of 292 cases. Journal of Clinical Oncology

2005; 23 (7): 1473-1482.

Damsma GE, Alt A, Brueckner F, Carell T, Cramer P. Mechanism of transcriptional

stalling at cisplatin-damaged DNA. Nature Structural and molecular biology 2007;
1127-1133.

Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin
H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S,
Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt

S, Hooper S, Wilson R„ Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave

D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD,
Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber

181



BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton

MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002; 27

(41): 949-54.

de Kogel CE, Schellens JH. Imatinib. Oncologist 2007; 12 (12): 1390-4.

D'Orazio JA, Nobuhisa T, Cui R, Ayra M, Spry M, Wakamatsu K, Igras V, Kunisada

T, Granter SR, Nishimura EK, Ito S, Fisher DE. Topical drug rescue strategy and
skin protection based on the role ofMclr in UV-induced tanning. Nature 2006; 443

(21): 340-344.

Doherty V. Melanoma in Scotland. Abstracts from Sun, sex and skin cancer

symposium. Royal College ofPhysicians ofEdinburgh 7th April 2006.

Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA, Bastian BC,

Springer C, Marais R. In melanoma, RAS mutations are accompanied by switching

signaling from CRAF to BRAF and altered cAMP signaling. Cancer Research 2006;

1; 66 (19): 9483-91.

Duval C, Regnier M, Schmidt R. Distinct melanogenic response of human

melanocytes in mono-culture, in co-culture with keratinocytes and in reconstructed

epidermis, to UV exposure. Pigment Cell Research 2001; 14 (5): 348-355.

Eggermont AM, Kirkwood JM. Re-evaluating the role of dacarbazine in metastatic
melanoma: what have we learned in 30 years? European Journal ofCancer 2004; 40

(12): 1825-1836

Eisen T, Ahmad T, Flaherty K, Gore M, Kaye S, Marais S, Gibbens I, Hackett S,
James M, Schuchter LM, Nathanson KL, Xia C, Simantov R, Schwartz B, Poulin-

Costello M, O'Dwyer PJ, Ratain MJ. Sorafenib in advanced melanoma. British
Journal ofCancer 2006; 95: 581-586.

Elliott RJ, Szabo M, Wagner MJ, Kemp EH, MacNeil S, Haycock JW. alpha-

Melanocyte-stimulating hormone, MSH 11-13 KPV and adrenocorticotropic
hormone signalling in human keratinocyte cells. Journal of Investigative

Dermatology 2004; 122 (4): 1010-1019.

182



Eves P, Haycock J, Layton C, Wagner M, Kemp H, Szabo, Morandini R, Ghanem G,

Garcia-Borron JC, Jiminez-Cervantes C, MacNeil S. Anti-inflammatory and anti-
invasive effects of alpha-melanocyte-stimulating hormone in human melanoma cells.
British Journal ofCancer 2003; 89 (10): 2004-2015.

Eves P, MacNeil S, Haycock J. Alpha-melanocyte stimulating hormone,
inflammation and human melanoma. Peptides 2005; 27 (2): 444-52.

Fecher LA, Cummings SD, Keefe MJ, Alani RM. Toward a molecular classification
ofmelanoma. Journal ofClinical Oncology 2007; 25 (12): 1606-1620.

Fecker LF, Geilen CC, Tchernev G, Trefzer U, Assaf C, Kurbanov BM, Schwarz C,

Daniel PT, Eberle J. Loss of proapoptotic Bcl-2-related multidomain proteins in

primary melanomas is associated with poor prognosis. Journal of Investigational

Dermatology 2006; 126: 1366-1371.

Flanagan N, Healy E, Ray A, Philips S, Todd C, Jackson IJ, Birch-Machin MA, Rees
JL. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human

pigmentation. Human Molecular Genetics 2000; 9 (17): 2531-2537.

Frandberg PA, Doufexis M, Kapas S, Chhajlani V. Human pigmentation phenotype:
a point mutation generates nonfunctional MSH receptor. Biochemical and

Biophysical Research Communications 1998; 245 (2): 490-492.

Fredholm BB, Hokfelt T, Milligan G. G-protein coupled receptors: an update. Acta

Physiology 2007; 190 (1): 3-7.

Friedman RJ, Rigel DS, Kopf AW. Early detection of malignant melanoma: the role
of physician examination and self-examination of the skin. CA: A Cancer Journalfor
Clinicians 1985; 35: 130-151.

Gandini S, Sera F, Cattaruzza MS, Pasquini P, Albeni D, Boyle P. Meta-analysis of
risk factors for cutaneous melanoma. 1. Common and atypical naevi. European
Journal ofCancer 2005b; 41: 28-34.

Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S,
Beroukhim R, Milner DA, Granter SA, Du J, Lee C, Wagner SN, Li C, Golub TR,
Rimm DL, Meyerson ML, Fisher DE, Sellers WR. Integrative genomic analysis

183



identify MITF as a lineage survival oncogene amplified in malignant melanoma.
Nature 2005; 436: 117-122.

Getting SJ. Targeting melanocortin receptors as potential novel therapeutics.

Pharmacology and Therapeutics 2006; 111 (1): 1-15.

Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced

by ultraviolet radiation. New England Journal ofMedicine 1999; 340: 1341-8.

Giltnane JM, Molinaro A, Cheng H, Robinson A, Turbin D, Gelmon K, Huntsman

D, Rimm DL. Comparison of quantitative immunofluorescence with conventional
methods for HER2/neu testing with respect to trastuzumab therapy in metastatic
breast cancer. Archives ofPathological Laboratory Methods 2008; 132 (10): 135-47.

Goldstein AM, Landi MT, Tsang S, Fraser MC, Munroe DJ, Tucker MA.
Association of MC1R variants and risk of melanoma in melanoma prone families
with CDKN2A mutations. Cancer Epidemiology Biomarkers and Prevention 2005;
14 (9): 2208-12.

Gordon PR, Mansur CP, Gilchrest BA. Regulation of human melanocyte growth,

dendricity, and melanization by keratinocyte derived factors. Journal of

Investigational Dermatology 1989; 92 (4): 565-572.

Hamilton A, Baulcombe D. A species of small antisense RNA in posttranscriptional

gene silencing in plants. Science 1999; 286 (5441): 950-2.

Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL,
Federman SW, Miller JR 3rd, Allen RE, Singer MI, Leong SP, Ljung BM, Sagebiel

RW, Kashani-Sabet M. The gene expression signatures of melanoma progression.

Proceeding ofthe National Academy ofSciences USA 2005; 102: 6092-6097.

Hayward NK. Genetics ofmelanoma predisposition. Oncogene 2003; 22: 3053-3062.

Healy E. Melanocortin 1 receptor variants, pigmentation, and skin cancer

susceptibility. Photodermatology Photoimmunology and Photomedicine 2004; 20:
283-288.

184



Healy E, Jordan SA, Budd PS, Suffolk R, Rees JL, Jackson IJ. Functional variation
of MC1R alleles from red-haired individuals. Human Molecular Genetics 2001; 10

(21): 2397-402.

Hersey P. Adjuvant therapy for high risk primary and resected metastatic melanoma.
International Medical Journal 2003; 33: 33-43.

Hirobe T. Control of melanocyte proliferation and differentiation in the mouse

epidermis. Pigment Cell Research 1992; 5: 1-11.

Hill HZ, Hill GJ. UVA, pheomelanin and th carcinogenesis of melanoma. Pigment
Cell Research 2000; 13 (Supplement 8): 140-144.

Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins

NA, Arnheiter H. Mutations at the mouse microphthalmia locus are associated with
defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993;
74: 395-404.

Holly EA, Aston DA, Cress RD, Ahn DK, Kristiansen JJ. Cutaneous melanoma in
women. 1. Exposure to sunlight, ability to tan, and other risk factors related to

ultraviolet light. American Journal ofEpidemiology 1995; 141: 923-33.

Hsu MY, Meier M, Herlyn M. Melanoma development and progression: a

conspiracy between tumor and host. Differentiation 2002; 70: 522-536.

Jansen B, Schlagbauer-Wadl H, Brown BD, Bryan RN, van Elsas A, Muller M,
Wolff K, Eichler HG, Pehamberger H. bcl-2 antisense therapy chemosensitizes
human melanoma in SCID mice. Nature Medicine 1998; 4: 232-234.

Jhappan C, Noonan FP, Merlino G. Ultraviolet radiation and cutaneous malignant
melanoma. Oncogene 2003; 22 (20): 3099-3112.

Kadekaro AL, Kavanagh RJ, Kanto H, Terzieva S, Hauser J, Kobayashi N,

Schwemberger S, Cornelius J, Babcock G, Shertzer HG, Scott G, Abdel-Malek ZA.

anti-Melanocortin and endothelin-1 activate antiapoptotic pathway and reduce DNA

damage in human melanocytes. Cancer Research 2005; 15: 65 (10): 4292-9.

185



Kadekaro AL, Kavanagh RJ, Wakamatsu K, Ito S, Pipitone MA, Abdel-Malek ZA.

Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round?

Pigment Cell Research 2003; 16 (5): 434-447.

Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and

prevelance across five continents: defining priorities to reduce cancer disparities in
different geographic regions of the world. Journal of Clinical Oncology 2006; 10;

24(14): 2137-2150.

Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T,
Miki Y, Weaver-Feldhaus J. Analysis of the pi 6 gene (CDKN2A) as a candidate for
the chromosome 9p melanoma susceptibility locus. Nature Genetics 1994: 8 (1): 23-
36.

Karasarides M, Chiloeches A, Hayward R, Niculescu-Duvaz D, Scanlon I, Friedlos

F, Ogilvie L, Hedley D, Martin J, Marshall CJ, Springer CJ, Marais R. B-RAF is a

therapeutic target in melanoma. Oncogene 2004; 23 (37); 6292-6298.

Karst AM, Dai DL, Martinka M, Li G. PUMA expression is significantly reduced in
human cutaneous melanomas. Oncogene 2005; 24: 1111-1116.

Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC,
Cordon-Cardo C, Wagner SN, Flotte TJ, Duncan LM, Granter SC, Chin L.

Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell

2006; 125 (7): 1269-1281.

Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U. A pooled

analysis of Eastern cooperative oncology group and intergroup trials of high-dose
inteferon for melanoma. Clinical Cancer Research 2004; 10: 1670-77.

Kligora CJ, Fair KP, Clem MS, Patterson JW. A comparison of melanin bleaching
and azure blue counterstaining in the immunohistochemical diagnosis of malignant
melanoma. Modern Pathology 1999; 12 (12): 1143-7.

Kluger HM, McCarthy M. XIAP is highly expressed in melanoma and is associated
with chemotherapy resistance. Journal of Clinical Oncology 2006 ASCO Annual

Meeting Proc. 24; 18S: 8008.

186



Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S,
Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP: Tissue microarrays for high-

throughput molecular profiling of tumor specimens. Nature Medicine 1998; 4: 844-
847.

Kowalczuk CI, Priestner MC, Pearson AJ, Saunders RD, Bouffler SD. Wavelength

dependence of cellular responses in human melanocytes and melanoma cells

following exposure to ultraviolet radiation. International Journal of Radiation

Biology 2006; 82 (11): 781-92.

Kraemer KH, Lee MK, Andrews AD, Lambert WC. The role of sunlight and DNA

repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum

paradox. Archives of Dermatology 1994; 130: 1018-21.

Krzeslak A, Lipinska A. Galectin-3 as a multifunctional protein (Review). Cellular
andMolecular Biology Letters 2004; 9: 305-28.

Land EJ and Reiley PA. Spontaneous redox reactions of dopaquinone and the
balance between the eumelanic and phaeomelanic pathways. Pigment Cell Research

2000; 13:273-77.

Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, Calista D,

Kanetsky PA, Pinkel D, Bastian BC. MC1R germline variants confer risk for BRAF-
mutant melanoma. Science 2006; 313: 521-522.

Larue L and Delmas V. The WNT/Beta-catenin pathway in melanoma. Frontiers of
Bioscience 2006; 11: 733-742.

Levene A. On the histological diagnosis and prognosis of malignant melanoma.
Journal ofClinical Pathology 1980; 22: 101-124.

Letai AG. Diagnosing and exploiting cancer's addiction to blocks in apoptosis.
Nature reviews cancer 2008; 8: 121-132.

Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development
and melanoma oncogene. Trends in Molecular Medicine 2006; 12 (9): 406-414.

Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature 2007; 445

(22): 843-850.

187



Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nature
reviews cancer 2005; 5: 29-41.

Lomuto M, Calabrese P, Giuliani A. Prognostic signs in melanoma: state of the art.

Journal of the European Academy ofDermatology and Venereology 2004; 18: 291 -
300.

MacKie RM, Bray CA, Hole DJ, Morris A, Nicolson M, Evans A, Doherty V,

Vestey J. Incidence of and survival from malignant melanoma in Scotland: an

epidemiological study. Lancet 2002; 360 (9333): 587-591.

Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T, Ono T,
Albertson DG, Pinkel D, Bastian BC. Determinants of BRAF mutations in primary
melanomas. Journal ofthe National Cancer Institute 2003; 95; 1878-1890.

Marrett LD, King WD, Walter SD, From L. Use of host factors to identify people at

high risk for cutaneous melanoma. Canadian Medical Association Journal 1992;

147: 445-53.

Mayer TC. The migratory pathway of neural crest cells into the skin of mouse

embryos. Developmental Biology 1973; 34: 39-46.

McHugh B, Krause SA, Yu B, Deans AM, Heasman S, McLaughlin P, Heck MM.

Invadolysin: a novel, conserved metalloprotease links mitotic structural

rearrangements with cell migration. Journal ofCell Biology 2004; 167 (4): 673-686.

McShane LM, Altman D, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting
recommendations for tumour marker prognostic studies. Journal of the National
Cancer Institute 2005; 97 (16): 1180-1184.

Menon IA, Persad S, Ranadive NS, Haberman HF. Effects of ultraviolet-visible

irradiation in the presence of melanin isolated from human black or red hair upon
Ehrlich ascites carcinoma cells. Cancer Research 1983; 43 (7): 3165-3169.

Meyskens FL, Farmer PJ, Anton-Culver H. Etiologic pathogenesis of melanoma: a

unifying hypothesis for the missing attributable risk. Clinical Cancer Research 2004;
10: 2581-83.

188



Michell DL, Jen J, Cleaver JE. Relative induction of cyclobutane dimers and

cytosine photohydrates in DNA irradiated in vitro and in vivo with ultraviolet-C and
ultraviolet-B light. Journal ofPhotochemistry and Photobiology 1991; 54; 741-746.

Mikhail M, Velaquez E, Shapiro R, Berman R, Pavlick A, Sorhaindo L, Spira J, Mir

C, Panageas KS, Polsky D, Osman I. PTEN expression in melanoma: Relationship
with patient survival, bcl-2 expression and proliferation. Clinical Cancer Research

2005; 11 (14): 5153-5157.

Miller AJ, Mihm MC. Melanoma. New England Journal ofMedicine 2006; 355: 51-
65.

Millward MJ, Bedikian AY, Coury RM. Randomized multinational phase 3 trial of
dacarbazine (DTIC) with or without Bcl-2 antisense (oblimersen sodium) in patients
with advanced malignant melanoma: Analysis of long-term survival. New Orleans:

ASCO, 2004: 708 (abstr 7505).

Mogil JS, Ritchie J, Smith SB, Strasburg K, Kaplan L, Wallace MR, Romberg RR,

Bijl H, Sarton EY, Fillingim RB, Dahan A. Melanocortin-1 receptor gene variants
affect pain and mu-opioid analgesia in mice and humans. Journal of Medical
Genetics 2005; 42 (7): 583-587.

Morton DL, Wen DR, Wong JH, Economou JS, Cagle LA, Storm FK, Foshag LJ,
Cochran AJ. Technical details of intraoperative lymphatic mapping for early stage

melanoma. Archives ofSurgery 1992; 127 (4): 392-9.

Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family of

genes that encode the melanocortin receptors. Science 1992; 257: 1248-1251.

Murata H, Ashida A, Takata M, Yamaura M, Bastian BC, Saida T. Establishment of

a novel melanoma cell line SMYM-PRGP showing cytogenetic and biological
charcteristics of the radial growth phase of acral melanomas. Cancer Science 2007;

98; 7: 958-963.

Nakahara S, Oka N, Raz A. On the role of galectin-3 in cancer apoptosis. Apoptosis

2005; 10: 267-75.

189



NCI (National Cancer Institute). Surveillance epidemiology and end results,

http ://seer.cancer,gov/faststats/selections.php.2008.

Nelson MA, Reynolds SH, Rao UN, Goulet AC, Feng Y, Beas A, Honchak B,
Averill J, Lowry DT, Senft JR, Jefferson AM, Jophnson RC, Sargent LM. Increased

copy number of the transcription factor E2F1 in malignant melanoma. Cancer

Biology and Therapy 2006; 5; 407-412.

Newton Bishop JA, Gruis NA. Genetics: what advice for patients who present with a

family history ofmelanoma? Seminars in Oncology 2007; 34: 452-9.

Oetting WS, Fryer JP, Shriram S, King RA. Occulocutaneous albinism type 1; the
last 100 years. Pigment Cell Research. 16; 307-311.

Orchard GE. Comparison of immunohistochemical labelling of melanocyte
differentiation antibodies melan-A, tyrosinase and HMB 45 with NKIC3 and SI00

protein in the evaluation of benign naevi and malignant melanoma. Histochemistry
Journal 2000; 32: 475-81.

Pacifico MD, Grover R, Richman PI, Daley FM, Buffa F, Wilson GD. CD44v3
levels in primary cutaneous melanoma are predictive of prognosis: assessment by the
use of tissue microarray. International Journal ofCancer 2006; 118 (6): 1460-4.

Pacifico MD, Grover R, Richman PI, Buffa F, Daley FM, Wilson GD. nm23 as a

prognostic marker in primary cutaneous melanoma: evaluation using tissue

microarray in a patient group with long-term follow-up. Melanoma Research 2005;
15 (5): 435-40.

Pacifico MD, Grover R, Richman PI, Daley FM, Buffa F, Wilson GD. Development
of a tissue array for primary melanoma with long-term follow-up: discovering
melanoma cell adhesion molecule as an important prognostic marker. Plastic and
Reconstructive Surgery 2005; 115 (2): 367-375.

Packer L, Pavey S, Parker A, Stark M. Johansson P, Clarke B, Pollock P, Ringner M,

Hayward N. Osteopontin is a downstream effector of the PI3-kinase pathway in
melanomas that is inversely correlated with functional PTEN. Carcinogenesis 2006;
209: 1-36.

190



Palmer JS, Duffy DL, Box NF, Aitken JF, O'Gorman LE, Green AC, Hayward NK,
Martin NG, Sturm RA. Melanocortin-1 receptor polymorphisms and risk of

melanoma: is the association explained solely by pigmentation phenotype? American
Journal ofHuman Genetics 2000; 66(1): 176-186.

Panka DJ, Atkins MB, Mier JW. Targeting the mitogen-activated protein kinase

pathway in the treatment of malignant melanoma. Clinical Cancer Research 2006;
12:2371-2375.

Pelfer M and Polakis P. Wnt signalling in oncogenesis and embryogenesis - a look
outside the nucleus. Science 2000; 287: 1606-1609.

Plattenberg A, Ballaun C, Pammer J, Mildner M, Strunk D, Weininger W,
Tschachier E. Human melanocytes and melanoma cells constitutively express the
Bcl-2 proto-oncogene in situ and in cell culture. American Journal of Pathology

1995; 146 (3): 51-9.

Polska D, Bastian BC, Hazan C, Meizer K, Pack J, Houghton A, Busam K, Cordon-
Cardo C, Osman I. HDM2 protein overexpression, but not gene amplification, is
related to tumorigenesis of cutaneous melanoma. Cancer Research 2001; 61: 7642-
7646.

Povey JE, Darakhshan F, Robertson K, Bisset Y, Mekky M, Rees J, Doherty V,

Kavanagh G, Anderson N, Campbell H, MacKie RM, Melton DW. DNA repair gene

polymorphisms and genetic predisposition to cutaneous melanoma. Carcinogenesis

2007; 28 (5): 1087-93.

Prieto VG, Mourad-Zeidan AA, Melinikova V, Johnson MM, Lopez A, Diwan AH,
Lazar AJ, Shen SS, Zhang PS, Reed JA, Gershenwald JE, Raz A, Bar-Eli M.
Galectin-3 expression is associated wuth tumor progression and pattern of sun

exposure in melanoma. Clinical Cancer Research. 2006; 15; 12 (22): 6709-15.

Prota G. Melanins, melanogenesis and melanocytes: looking at their functional

significance from the chemist's viewpoint. Pigment Cell Research 2000; 13: 283-
293.

191



Raposinho PD, Correia JD, Alves S, Botelho MF, Santos AC, Santos I. A

(99m)Tc(CO)(3)-labeled pyrazoyl-alpha-MSH analog conjugate for melanoma

targeting. Nuclear Medicine and Biology 2008; 35 (1): 91-9.

Rana BK. High polymorphism at the human melanocortin-1 receptor locus. Genetics

1999; 151: 1547-1557.

Rangel J, Nosrati M, Shaikh L, Leong SP, Haqq C, Miller JR 3rd, Sagebiel RW,
Kashani-Sabet M. Osteopontin as a molecular prognostic marker for melanoma.
Cancer 2008; 112: 144-150.

Rangel J, Torabian S, Shaikh L, Leong SP, Haqq C, Miller JR 3rd, Sagebiel RW,
Kashani-Sabet M. Prognostic significance of nuclear receptor over expression in

primary cutaneous melanoma. Journal ofClinical Oncology 2006; 2 (28): 4565-569.

Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E,

Mountjoy KG, Cone RD. Pigmentation phenotypes of variant extension locus alleles
result from point mutations that alter MSH receptor function. Cell 1993; 72 (6): 827-
834.

Roberts DL, Anstey AV, Barlow RJ, Cox NH, Newton Bishop JA, Corrie PG. UK

guidelines for the management of cutaneous melanoma. British Journal of

Dermatology 2002; 146: 7-17.

Robinson SJ, Healy E. Human melanocortin 1 receptor (MC1R) gene variants alter
melanoma cell growth and adhesion to extracellular matrix. Oncogene 2002; 21 (52):
8037-8046.

Rodolfo M, Daniotti M, Vallacchi V. Genetic progression of metastatic melanoma.
Cancer letters 2004; 214: 133-147.

Rouzaud F, Annereau JP, Valencia JC, Costin GE, Hearing VJ. Regulation of
melanocortin 1 receptor expression at the mRNA and protein levels by its natural

agonist and antagonist. FASEB Journal 2003; 17 (14): 2154-6.

Royal College of Pathologists. Standards and minimum datasets for reporting skin
cancers. 2002. www.rcpath.org/resources/pdf/skincancers2802.pdf

192



Runger TM, Vergilis I, Sarkar P, DePinho RA, Sharpless NE. How disruption of cell

cycle regulating genes might predispose to sun-induced skin cancer. Cell Cycle 2005;

4; 5: 643-645.

Salazar-Onfray F, Lopez M, Lundqvist A, Aguirre A, Escobar A, Serrano A,
Korenblit C, Petersson M, Chhajiani V, Larsson O, Kiessling R. Tissue distribution
and differential expression of melanocortin 1 receptor, a malignant melanoma
marker. British Journal ofCancer 2002; 87 (4): 414-422.

Sanchez Mas J, Olivares Sanchez C, Ghanem G, Haycock J, Teruel JA, Garcia-
Borron JC, Jiminez-Cervantes C. Loss-of-function variants of the human

melanocortin-1 receptor gene in melanoma cells define structural determinants of

receptor function. European Journal ofBiochemistry 2002; 269: 6133-6141.

Sarkar-Agrawal P, Vergilis I, Sharpless NE, DePinho RA, Runger TM. Impaired

processing of DNA photoproducts and ultraviolet hypermutability with loss of

pl6INK4a or pl9ARF. Journal of the National Cancer Institute 2004; 96: 1790-
1793.

Sauter ER, Yeo UC, von Stemm A, Zhu W, Litwin S, Tichansky DS, Pistritto G,
Nesbit M, Pinkel D, Herlyn M, Bastian BC. Cyclin D1 is a candidate ongogene in
cutnaeous melanoma. Cancer Research 2002; 62: 3200-3206.

Schauer E. Proopiomelanocortin-derived peptides are synthesized and released by
human keratinocytes. Journal ofClinical Investigation 1994; 93: 2258-2262.

Schioth HB, Phillips S, Rudzish R, Birch-Machin M, Wikberg J, Rees JL. Loss of
function mutations of the human melanocortin-1 receptor are common and associated
with red hair. Biochemical and Biophysical research Communications 1999; 260:
488-491.

Scott MC, Wakamatsu K, Ito S, Kadekaro AL, Kobayashi N, Groden J, Kavanagh R,
Takakuwa T, Virador V, Hearing VJ, Abdel-Malek ZA. Human melanocortin 1

receptor variants, receptor function and melanocyte response to ultraviolet radiation.
Journal ofCell Science 2002; 115: 2349-2355.

Schmitt CA, Rosenthal CT, Lowe SW. Genetic analysis of chemoresistance in

primary murine melanomas. Nature Medicine 2000; 6: 1029-35.

193



Scott MC, Suzuki I, Abdel-Malek ZA. Regulation of the human melanocortin-1

receptor expression in epidermal melanocytes by paracrine and endocrine factors and

by ultraviolet raqdiation. Pigment Cell Research 2002; 15: 433-439.

Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to

epidermal growth factor receptor antagonists in non-small-cell lung cancer. Journal

ofClinical Oncology 2007; 25 (5): 587-95.

Serrone L, Hersey P. The chemoresistance of human malignant melanoma: an

update. Melanoma Research. 1999; 9: 51-58.

Singluff CL, Seigler HF. 'Thin' malignant melanoma: risk factors and clinical

management. Annals ofPlastic Surgery 1992; 28: 89-94.

Smalley K, Eisen T. The involvement of p38 mitogen-activated protein kinase in the

alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenic and anti¬

proliferative effects in B16 murine melanoma cells. FEBS Letters 2000; 476 (3):
198-202.

Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie

R, Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW. Inactivation

of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409: 207-11.

Soengas MS, Lowe S. Apoptosis and melanoma chemoresistance. Oncogene 2003;
22: 3138-3151.

Stander S, Bohm M, Brzoska T, Zimmer KP, Luger T, Metze D. Expression of
melanocortin-1 receptor in normal, malformed and neoplastic skin glands and hair
follicles. Experimental Dermatology 2002; 11 (1): 42-51.

Sturm RA. Skin colour and skin cancer - MC1R, the genetic link. Melanoma
Research 2002; 12 (5): 405-416.

Sundram U, Harvell JD, Rouse RV. Expresion of the B-cell proliferation marker
MUM1 by melanocytic lesions and comparison with SI00, gplOO (HMB45), and
Melan A. Modern Pathology 2003; 16: 802-810.

Takeuchi S, Zhang W, Wakamatsu K, Ito S, Hearing VJ, Kraemer KH, Brash DE.
Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death

194



in murine skin. Proceedings of the National Academy of Sciences 2004; 101 (42):
15076-81.

Thomas NE, Berwick M, Cordeiro-Stone M. Could BRAF mutations in melanocytic
lesions arise from DNA damage induced by ultraviolet radiation? Journal of

Investgative Dermatology 2006; 126: 1693-1696.

Thompson JF, Scolyer RA, Kefford RF. Cutaneous Melanoma. The Lancet 2005;
365: 687-700.

Torhost J, Bucher C, Kononen J, Flaas P, Zuber M, Kochli ORE, Mross F, Dieterich

H, Moch H, Mihatsch M, Kallioniemi OP, Sauter G. Tissue microarrays for rapid

linking of molecular changes to clinical endpoints. American Journal of Pathology

2001; 159: 2249-2256.

Tovey S, Dunne B, Witton CJ, Forsyth A, Cooke TG, Bartlett JM. Can molecular
markers predict when to implement treatment with aromatase inhibitors in invasive
breast cancer. Clinical Cancer Research 2005; 11 (13): 4835-4841.

Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma. New England
Journal ofMedicine 2004; 351 (10): 998-1012.

Tsavachidou D, Coleman ML, Athanasiadis G, Li S, Licht JD, Olson MF, Weber

BL. SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in

melanocytes and melanoma cells with wild-type BRAF but not with the V599E
mutant. Cancer Research 2004; 64: 5556-5559.

Uribe P, Andrade L, Gonzalez S. Lack of association between BRAF mutation and

MAPK ERK activation in melanocytic naevi. Journal of Investigative Dermatology

2006; 126:1561-166.

Van den Brule F, Califice SW, Castronovo V. Expression of galectins in cancer: a

critical review. Glycoconjugatejournal 2004; 19: 537-542.

Vereecken P, Debray C, Petein M, Awada A, Lalmand MC, Laporte M, Van Den
Heule B, Verhest A, Pochet R, Heenen M. Expression of galectin-3 in primary and
metastatic melanoma: immunohistochemical studies on human lesions and nude mice

xenograft tumours. Archives of Dermatological Research 2005; 296: 353-358.

195



Voisey J, Carrol L, van Daal A. Melanocortins and their receptors and antagonists.
Current Drug Targets 2003; 4: 586-597.

Wei ML. Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle
function. Pigment Cell Research. 2006; 16: 19-42.

Wei Q, Lee JE, Gershenwald JE, Ross MI, Mansfield PF, Strom SS, Wang LE, Guo

Z, Qiao Y, Amos CI, Spitz MR, Duvic M. Repair ofUV light-induced DNA damage
and risk of cutaneous malignant melanoma. Journal of the National Cancer Institute.

2003; 95: 308-315.

Westerdahl J, Olsson H, Masback A, Ingvar C, Jonsson N, Brandt L. Use of sunbeds
or sunlamps and malignant melanoma in southern Sweden. American Journal of

Epidemiology 1994; 140: 691-9.

Wheatley K. Interferon-alpha as adjuvant therapy for melanoma: an individual

patient meta-analysis of randomised trials [abstract ]. Journal of Clinical Oncology

2007; 25: (18S): 8526.

Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor
for melanoma: a systematic review of epidemiological studies. Cancer Causes
Control 2001; 12: 69-82.

Wilberg JE, Muceniece R, Mandika I, Prusis P, Lindblom J, Post C, Skottner A. New

aspects of the melanocortins and their receptors. Pharmacology Research 2000; 42:
393-420.

Winnepenninckx V, Lazar V, Michiels S, Dessen P, Stas M, Alonso SR, Avril MF,
Ortiz Romero PL, Robert T, Balacescu O, Eggermont AM, Lenoir G, Sarasin A,
Tursz T, van den Oord JJ, Spatz A. Gene expression profiling of primary cutaneous

melanoma and clinical outcome. Journal of the National Cancer Institute 2006; 98

(7): 472-482.

Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Kiehmann-Hieb E, De Plaen

E, Hankeln T, Meyer zum Buschenfelde KH, Beach D. A pl6INK4a-insensitive
CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science

1995; 269: 1281-1284.

196



Wu H, Goel V, Haluska FG. PTEN signalling pathways in melanoma. Oncogene

2003;22:3113-3122.

Xia Y, Wikberg JE, Chhajlani V. Expression of melanocortin 1 receptor in

periaqueductal gray matter. Neuroreport 1995; 6 (16): 2193-2196.

Xu L, Begum S, Hearn JD, Hynes RO. GPR56, an atypical G protein-coupled

receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumour growth
and metastasis. Proceedings of the National Academy of Sciences USA 2006; 103

(24): 9023-9028.

Yu F, Finley RL, Razz A, Kim HR. Galectin-3 translocates to the perinuclear
membrane and inhibits cytochrome c release from the mitochondria. A role for

synexin in galectin-3 translocation. Journal of Biological Chemistry 2002; 277:
15819-15827.

Zhu N, Lalla R, Eves P, Brown TL, King A, Kemp EH, Haycock JW, MacNeil S.
Melanoma cell migration is upregulated by tumour necrosis factor-alpha and

suppressed by alpha-melanocyte-stimulating hormone. British Journal of Cancer

2004; 90 (7): 1457-63.

Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N,

Dracopoli NC. Germline mutations in the pl6INK4a binding domain of CDK4 in
familial melanoma. Nature Genetics 1996; 12 (1): 97-99.

197


