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Abstract

The age of writing single-threaded applications is over. To develop scalable applications, devel-

opers must make use of concurrency and parallelism. Nonetheless, introducing concurrency

and parallelism is di�cult: naïvely implemented, concurrent code is prone to issues such as

race conditions and deadlocks. Moving to the distributed setting introduces yet more issues,

in particular the possibility of failure.

To cope with many of the problems of concurrent programming, language designers have

proposed a class of programming languages known as communication-centric programming

languages, which provide lightweight processes which do not share memory, but instead com-

municate using explicit message passing. The focus of this thesis is on typed communication-

centric functional programming languages, using type systems to provide static guarantees

about the runtime behaviour of concurrent programs. We investigate two strands of work:

the relationship between typed channel- and actor-based languages, and the integration of

asynchrony, exception handling, and session types in a functional programming language.

In the �rst strand, we investigate two particular subclasses of communication-centric

languages: channel-based languages such as Go, and languages based on the actor model, such

as Erlang. We distil the essence of the languages into two concurrent λ-calculi: λch for simply-

typed channels, and λact for simply-typed actors, and provide type- and semantics-preserving

translations between them. In doing so, we clear up confusion between the two models,

give theoretical foundations for recent implementations of type-parameterised actors, and

also provide a theoretical grounding for frameworks which emulate actors in channel-based

languages. Furthermore, by extending the core calculi, we note that actor synchronisation

drastically simpli�es the translation from channels into actors, and show that Erlang’s selective

receive mechanism can be implemented without specialised constructs.

In the second strand, we integrate session types, asynchrony, and exception handling

in a functional programming language. Session types are a behavioural type system for

communication channel endpoints, allowing conformance to protocols to be checked statically.

We provide the �rst integration of exception handling and asynchronous session types in a core

functional language, Exceptional GV, and prove that it satis�es preservation, global progress,

and that it is con�uent and terminating. We demonstrate the practical applicability of the

approach by extending the Links tierless web programming language with exception handling,

in turn providing the �rst implementation of exception handling in the presence of session

types in a functional language. As a result, we show the �rst application of session types to

web programming, providing examples including a two-factor authentication work�ow and a

chat application.
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Lay Summary

Current mainstream programming languages are ill-suited to writing concurrent applications,

as they require developers to reason about how multiple threads (concurrent executions of

a piece of code) interact when using shared resources. A canonical example of an error in

concurrent code is when considering a bank account. Say the bank account initially stands at

£100, and thread 1 tries to deposit £60 and thread 2 tries to withdraw £50. We would expect

the �nal result to be £110. However, if both threads read £100 at the same time, and then

perform the operation, then the result could be either £160 (if the owner of the account is

lucky and thread 1 writes last, overwriting the withdrawal), or £50 (if the owner of the account

is unlucky and thread 2 writes last, overwriting the deposit).

The above example details a race condition. Race conditions can be �xed by allowing only

one thread to access a shared resource at a time when the resource is being updated, which

is accomplished through a mechanism called locks. However, locks have been shown to be

di�cult to compose and reason about. In turn, this can lead to deadlocks, where a process

waits on a lock which will never be released.

We instead consider message passing concurrency, where lightweight processes do not

share resources with each other directly, but instead communicate explicitly using message

passing. Moving to the message passing paradigm is not a silver bullet, however: developers

must take care not to send messages which cannot be handled by a remote process, and to

not wait for a message which will never arrive. In short, for message passing applications to

function as intended, developers must respect informally-speci�ed protocols.

In this thesis, we apply the notion of a data type to concurrent, message-passing, functional

programming languages. The use of data types in programming languages gives lightweight

guarantees about program correctness before a program is run: as an example, trying to

multiply 5 (of type Int) by true (of type Bool) will result in a compile-time error.

In the �rst part of the thesis, we investigate two classes of typed concurrent program-

ming languages: channel-based languages and actor-based languages, and distil them to core

mathematical models. We show that the channel-based language can emulate the actor-based

language, and vice-versa. In doing so, we clear up confusion between the two models, and

explicitly detail the di�culties with adding types to actors.

In the second part of the thesis, we investigate the integration of session types and exception

handling. Session types are a more powerful type system and allow protocols to be encoded in

types. However, most current designs and implementations of languages with session types do

not take into account failure or exception handling, which limits their practical applicability.

We design a core language which smoothly integrates session types and exceptions, and show

the practical applicability of this approach by implementing it in the Links web programming

language.
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Chapter 1

Introduction

Although the age of single-threaded applications is long over, writing concurrent code remains

a challenge. Writers of sequential code have it comparatively easily: while they must concern

themselves with the correctness and e�ciency of algorithms, and the memory-safety of

applications, developers need not consider how di�erent threads of programs interact, or the

manner in which threads communicate.

One way of writing concurrent code involves shared memory, where di�erent threads

have access to shared state. Safe access to shared memory requires synchronisation, nor-

mally in the form of locks which ensure the memory is only written to when a thread has

exclusive access. Shared memory approaches are common in practice, being the preferred

method of co-ordination in languages such as Java, C++, and C. Unfortunately, lock-based

approaches are di�cult to debug and reason about, in particular because locks are inherently

non-compositional [115]. While much research concentrates on the safety of shared memory

concurrency, we take a di�erent approach.

Communication-centric programming languages. In this thesis, we instead turn our

attention to a second approach, where threads have share-nothing semantics, but instead

communicate explicitly via message passing. To this end, languages such as Go [61], Concurrent

ML [186], and Erlang [11] form a class of languages which are communication-centric, providing

language support for lightweight threads and message passing between them.

Nonetheless, communication-centric programming languages are not a silver bullet. Mov-

ing to communication-centric setting still requires reasoning about whether a particular

process is able to handle a given message; whether a message will ever receive a response;

whether cycles in a communication topology will give rise to deadlocks at runtime; and

whether programs conform to communication protocols.

1
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Type systems for communication. The notion of a data type in static type systems pro-

vides lightweight static guarantees that a program is well-behaved: as Milner’s slogan goes,

“well-typed programs don’t go wrong”. Indeed, static type systems provide early feedback on

application errors, instead of allowing errors to manifest themselves at runtime, and also help

developers better structure their code.

It is natural to consider whether the notion of a data type can be used to help reason about

concurrent code. Indeed, channels in Go are parameterised by types: for example, a channel

which can send and receive integers can be given the type:

Chan(Int)

On the other hand, the notion of a mailbox (incoming message queue) in actor-based languages

such as Erlang remains stubbornly untyped, allowing any type of message to be sent and

received. In turn, messages may never be handled, and thus introduce memory leaks.

Taking the idea of types for channels further, session types, as introduced by Honda [94]

and later expanded upon by Honda et al. [97], allow channel endpoints to be given more

expressive types which capture the sequencing and direction of messages. As an example,

consider extending our channel of integers to an endpoint which sends two integers and

receives a boolean:

Chan(!Int.!Int.?Bool.End)

Such a type conveys more information than a simply-typed channel, allowing protocols to be

encoded within a type. The other participant in the session would have a channel endpoint

with the dual session type:

Chan(?Int.?Int.!Bool.End)

Where the one participant sends, the other receives, and vice-versa. Duality ensures the

compatibility of two endpoints. In turn, this more precise type provides the additional static

guarantee that an implementation correctly implements the protocol.

Concurrent λ-calculi. In this thesis, we restrict our attention to functional programming

languages: programming languages where functions are �rst-class, and which prefer immutable

variable bindings to mutable state. Functional programming languages have seen increasing

popularity in industry: languages such as Scala [159] have widespread adoption; Haskell [172]

has been used to excellent e�ect in industry [74]; and functional features such as anonymous-

and higher-order functions have even made their way to “mainstream” languages such as

Java [148] and C++ [199].

Functional programming languages are an ideal candidate for study as they can be reasoned

about in the context of the λ-calculus: a core calculus based around function abstraction and
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application. Simply-typed λ-calculi have a well-behaved core, providing not only preservation

(well-typed terms reduce to well-typed terms) and progress (all well-typed programs are either

a value or can reduce further) guarantees, but also strong properties such as determinism and

termination.

Concurrent λ-calculi, in the style of Niehren et al. [156], describe the concurrent behaviour

of functional programs by adding terms for communication and concurrency to the language,

and adding a language of con�gurations to describe the concurrent behaviour. We make

the (admittedly opinionated) decision to use concurrent λ-calculi throughout this thesis, as

opposed to process calculi such as the π-calculus or CCS. The reasons for this are twofold.

First, we are interested in the design of programming languages, and there is often not a

direct connection between a feature in a process calculus and a corresponding feature in a

programming language: what may be speci�ed in a model of the state of a system may not

necessarily re�ect the static term evaluated to arrive at such a state. Second, the simply-typed

λ-calculus has strong correctness properties, whereas typed process calculi do not have such a

well-behaved core. For example, the π-calculus with a simple type system guarantees type

preservation, but more sophisticated type systems are required in order to guarantee progress

or termination [118]. We can therefore extend the λ-calculus modularly, knowing which

properties remain with each extension.

1.1 Research Challenges

We investigate two research questions:

What is the relationship between typed channel- and actor-based program-

ming, and why have typed actor mailboxes seen limited uptake?

Languages such as Go allow processes to communicate over typed channels,

whereas actor-based languages associate a mailbox with each process, encouraging

asynchronous, point-to-point messaging. Whereas typed channels are widespread,

typed mailboxes have received more limited attention. The two models are closely

related, but there remains confusion between the two. What is the precise relation

between the two models in the typed setting, and can this help explain why typed

actor mailboxes have seen less adoption?

How can session types be adapted to support exceptions in a functional lan-

guage where communication is asynchronous?

Session types allow conformance to a protocol to be checked at compile time. To

safely integrate session types and programming languages, one needs to ensure

that session endpoints are used exactly once, which is typically ensured through
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the use of a linear type system. However, linearity is too strong an assumption for

realistic programs, which may involve exceptions or disconnection. What are the

language constructs required to neatly integrate session types, asynchrony, and

exceptions in a functional language?

1.2 Contributions

This thesis makes contributions in two strands of work: type-parameterised channels and

actors, and session-typed functional programming languages with exceptions.

Type-parameterised Actors and Channels Part II investigates the relation between type-

parameterised channels and actors, by de�ning two calculi and showing type- and semantics-

preserving translations between them. Additionally, we show that the calculi may be modularly

extended.

The contributions of Part II are as follows:

1. A calculus λch with typed asynchronous channels, and a calculus λact with type-

parameterised actors, based on the λ-calculus extended with communication primitives

specialised to each model. We give a type system and operational semantics for each

calculus, and precisely characterise the notion of progress that each calculus enjoys

(Chapter 4).

2. A simple translation from λact into λch, and a more involved translation from λch into λact

with proofs that both translations are type- and semantics-preserving. While the former

translation is straightforward, it is global, in the sense of Felleisen [66]. While the latter

is more involved, it is in fact local. Our initial translation from λch to λact requires each

channel in the system to have the same type, exemplifying the type pollution problem

identi�ed by He et al. [86] (Chapter 5).

3. An extension of λact to support synchronous calls, showing how this can alleviate type

pollution and simplify the translation from λch into λact (Chapter 6, §6.2).

4. An extension of λact to support Erlang-style selective receive, a translation from λact with

selective receive into plain λact, and correctness proofs for the translations (Chapter 6,

§6.3).

Session-Typed Functional Programming Languages with Exceptions In Part III, we

provide the �rst formal integration of asynchronous session types with exceptions in a lin-

ear functional language, and show the �rst implementation integrating session types and
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exceptions in a functional programming language by extending the Links functional web

programming language. The contributions of Part III are as follows:

1. Exceptional GV (Chapter 9), a linear λ calculus extended with asynchronous session-

typed channels and exception handling. We prove that the core calculus enjoys preserva-

tion, progress, a strong form of con�uence called the diamond property, and termination.

2. Extensions to EGV supporting exception payloads, unrestricted types, and a more �exible

mechanism of session initiation known as access points (Chapter 9, §9.4).

3. The design and implementation of an extension of the Links web programming lan-

guage to support tierless web applications which can communicate using session-typed

channels (Chapter 10, §10.5).

4. Client and server backends for Links implementing session typing with exception

handling, drawing on connections with e�ect handlers [178] (Chapter 10, §10.5.2).

5. Example applications using the infrastructure. In particular, we show a two-factor

authentication work�ow and outline the implementation of a chat server (Chapter 10,

§10.4).

1.3 Thesis Structure

The remainder of the thesis proceeds as follows.

Part I introduces the relevant background material. Chapter 2 introduces formal models of

concurrency and session types, and surveys the literature. Chapter 3 introduces a core session-

typed linear λ-calculus, Synchronous GV (SGV), which is adapted from the GV session-typed

functional language originally described by Wadler [213], and originally inspired by the work

of Gay and Vasconcelos [77]. Our presentation is inspired directly by the incarnation of GV

described by Lindley and Morris [132].

Part II investigates the relationship between typed channels and actors. Chapter 4 infor-

mally introduces the two models, distils them down to core calculi, and proves preservation

and progress properties. Chapter 5 makes the connection between the two models more

explicit by translating λact into λch, and λch into λact. Chapter 6 describes extensions to the

core calculi. Chapter 7 concludes and describes related work.

Part III describes the integration of session types, exceptions, and tierless web programming.

Chapter 8 introduces Asynchronous GV (AGV), an extension of SGV with asynchronous

communication primitives without violating any of SGV’s strong metatheory. Chapter 9

introduces Exceptional GV (EGV), an extension of AGV to integrate asynchronous session
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types and exception handling, which proves crucial to handling disconnection in the distributed

setting. Chapter 10 describes the implementation of distributed session types in Links, in

particular describing the implementation of EGV’s exception handling construct using a

minimal translation to e�ect handlers [176].

Part IV concludes. Chapter 11 reprises the contributions, and describes directions for

future work.
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Background

7



Chapter 2

Background

In this chapter, we examine the background material required for the remainder of the thesis,

and survey the literature on concurrent programming and session types. We begin by introduc-

ing formal models of concurrency. We then focus our attention on programming languages, in

particular discussing languages integrating communication channels, and languages based

on the actor model [87]. Next, we focus further on session types, a behavioural type system

for communication channel endpoints allowing protocols to be encoded as types for channel

endpoints, and enabling conformance to protocols to be checked statically by type checking.

We concentrate in particular on the integration of session types and functional program-

ming languages. Finally, we describe multiparty session types, which describe a top-down

characterisation of protocols allowing more than two participants.

2.1 Process Calculi

Modelling concurrency formally has a host of advantages. Formal modelling allows us to be

precise about the concurrent behaviour of a system, and better understand issues such as races

and deadlocks which may arise.

Process calculi capture the interplay between communication and concurrency. In particu-

lar, processes evaluate in parallel, and reduction rules describe how communication a�ects the

evolution of parallel processes.

Hoare [92] was amongst the �rst to describe concurrency formally, introducing communi-

cating sequential processes or CSP. Processes in CSP communicate by synchronous rendezvous

over shared names called channels. Milner [142] describes CCS, another algebraic approach to

synchronous channel-based communication, and describes its behavioural theory.

A large portion of the literature on session types, and indeed the concurrent portion of

the λ-calculi described in the remainder of this thesis, is based on calculi inspired by Milner’s

π-calculus [144]. The π-calculus makes a major twist to calculi such as CSP and CCS in that it

8
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permits mobility—that is, the communication of channel names themselves. The π-calculus is

Turing-complete, and can simulate the λ-calculus [143].

2.1.1 Model Checking

Process calculi provide a useful abstraction for model checking. Model checkers such as

SPIN [93] exhaustively model the state space of a concurrent program, allowing a developer to

describe properties written in a speci�cation logic such as linear temporal logic (LTL) and check

the properties via a translation [207] to Büchi automata—a generalisation of nondeterministic

�nite state automata to accept in�nite words.

Model checking is a powerful technique, allowing the veri�cation of detailed temporal

properties, and has seen widespread use in industry (see, e.g., [41, 80, 194]). Indeed, model

checking is a fascinating area of study in its own right. Model checking is however subject

to tradeo�s: model checking can only verify properties of a model of a system, as opposed

to a system’s actual implementation. Additionally, model checking is subject to the potential

pitfall of state explosion: the unfortunate property that the state space of an application grows

exponentially with the number of parallel processes, although much progress has been made

in ameliorating this problem [42].

In this thesis we choose to focus on more lightweight, type-based veri�cation approaches

which provide direct feedback on the implementation of an application. Of course, there is

nothing stopping both approaches being used together.

2.2 Communication-centric Programming Languages

Instead of adding concurrency as an afterthought, communication-centric programming lan-

guages put communication and concurrency at the heart of their design. Communication-

centric programming languages such as Erlang [11] and Go [61] provide lightweight threads

which are scheduled by a runtime system, and which communicate through the use of message

passing.

In this section we discuss two particular types of communication-centric programming

languages: languages which communicate over channels, and actor-based languages.

2.2.1 Communication Channels

Process calculi are based around the notion of a channel. A channel is a name shared between

two processes, allowing them to communicate. Communication may be either synchronous,

requiring both communicating parties to rendezvous, or asynchronous, allowing non-blocking

sends.
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Several programming languages and libraries have embraced the idea of communication

channels. Concurrent ML (CML) [186] is an extension of the ML programming language [145]

with �rst class synchronous channels. CML introduces the notion of a �rst-class event which

allows synchronisation on a channel to be treated as a �rst-class concept. A key concept in

CML is the idea of choice, where a process can choose to nondeterministically synchronise on

one of many channels.

The Go programming language [61] is a programming language with lightweight threads

(known as “goroutines”) and simply-typed channels. Go has found much use in backend

systems, for example the Kubernetes container management system [185].

Channels need not be added as �rst-class entities to languages themselves; as an example,

the core.async [88] provides a library implementation of asynchronous channels for the

Clojure programming language.

2.2.2 The Actor Model

Actor-based languages such as Erlang and Elixir have seen widespread adoption in industry,

since asynchronous communication and non-mobile mailboxes are particularly suited to

distribution.

Actor-based languages have a formal grounding in the actor model of concurrency. The

actor model was originally developed as a formalism for arti�cial intelligence by Hewitt et al.

[87]. In this setting, an actor is an entity which, upon receiving a message, can perform three

operations:

1. Spawn a �nite set of new actors

2. Send a �nite set of messages to other actors

3. Change its behaviour the next time a message is received

Clinger [44] provides a power domain semantics for actor languages. Agha [5] �rst

demonstrates the use of the actor model as a formalism for concurrency and distribution, in

particular describing two actor languages, SAL and Act. Agha et al. [6] develop the theory of

actors in the functional setting by extending the λ-calculus with three constructs: letactor,

which creates a new actor; send, which sends a message; and become, which changes the

actor’s behaviour. The authors provide an operational semantics, prove safety properties, and

develop a behavioural theory.

Actors and Reliability. Erlang [11] was originally developed as a real-time programming

language for designing scalable and reliable distributed telecoms applications. Erlang provides

lightweight, addressable processes with an incoming message queue. A particular strength of
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Figure 2.1: Supervision Hierarchy

Erlang is its ‘let it crash’ ideology [10, 33]: processes are arranged in supervision hierarchies,

where supervisor processes are noti�ed when a worker process crashes, allowing the crashed

process to be restarted.

Instead of trying to handle exceptions, processes adopt a ‘fail-fast’ methodology, where

they crash upon encountering unrecoverable errors. Figure 2.1 shows an example supervision

hierarchy. Consider the case where process D encounters an unhandled error. In this case, the

process will crash, and a noti�cation will be sent to supervisor process B. Process B may then

choose to restart D, and also may restart E if the two processes are tightly coupled.

The notion of a supervision hierarchy has also been adopted in other frameworks, such as

the Akka [217] framework for Scala.

Variations on a Theme. Many languages refer to themselves as being based on the actor

model, but all interpret the term ‘actor’ in slightly di�erent ways. De Koster et al. [56] describe

a taxonomy of actor systems.

Classic Actor Model

The ‘classic’ actor model is based on the original work of Hewitt et al. [87] and Agha [5],

incorporating behaviours which govern how an actor responds to an incoming message.

The classic actor model uses the spawn, send, and become primitives. Perhaps the most

popular implementation is Scala’s Akka framework.

Process-based Actors

A process-based actor runs a piece of code from beginning to end, and instead of a become

primitive, incorporates a receive construct to retrieve a message from its mailbox. Imple-

mentations are typically functional, and examples include Erlang [11] and Elixir [203].

Process-based actors have also been investigated in Scala, without the need for explicit

runtime support [84].
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Active Objects

Active Objects [128] combine object-oriented programming with the actor model. An

active object has an interface, and calling a method on an active object results in a request

message being sent to the object. Requests are processed sequentially in the active object’s

event loop, and results of methods are returned using futures [55]. Examples include

Pony [43], ABS [114], and JCoBox [193].

Communicating Event Loops

Communicating Event Loops, as pioneered by the E language [141] have similarities with

active objects, but group multiple objects together in vats consisting of an object heap, a

stack, and an incoming message queue.

Due to their close association with functional programming, we focus primarily on process-

based actors.

2.3 Session Types

So far, we have considered only simple type systems for channels, where a channel has a single

type which does not change throughout its evaluation. For example, a channel in Go might

have the type

Chan(Int)

meaning that the channel may be used to send and receive integers.

Session types [94, 97] are types for protocols, and describe both the shape and order of

messages.

2.3.1 Session Types by Example

We illustrate session types with a basic example of two-factor authentication, as often used

for logging on to banking applications. A user inputs their credentials. If the login attempt is

from a known device, then the user is authenticated and may proceed to perform privileged

actions. If the login attempt is from an unrecognised device, then the user is sent a challenge

code. They enter the challenge code into a hardware key which yields a response code. If the

user responds with the correct response code, then they are authenticated.

A session type speci�es the communication behaviour of one endpoint of a communication

channel participating in a dialogue (or session) with the other endpoint of the channel. Fig. 2.2

shows the session types of two channel endpoints connecting a client and a server. Fig. 2.2a

shows the session type for the server which �rst receives (?) a pair of a username and password

from the client. Next, the server selects (⊕) whether to authenticate the client, issue a challenge,

or reject the credentials. If the server decides to issue a challenge, then it sends (!) the challenge
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TwoFactorServer ,

?(Username,Password).⊕{
Authenticated : ServerBody,

Challenge : !ChallengeKey.?Response.

⊕{Authenticated : ServerBody,

AccessDenied : End},
AccessDenied : End}

(a) Server Session Type

TwoFactorClient ,

!(Username,Password).&{
Authenticated : ClientBody,

Challenge : ?ChallengeKey.!Response.

&{Authenticated : ClientBody,

AccessDenied : End},
AccessDenied : End}

(b) Client Session Type

Figure 2.2: Two-factor Authentication Session Types

string, awaits the response, and either authenticates or rejects the client. The ServerBody type

abstracts over the remainder of the interactions, for example making a deposit or withdrawal.

The client implements the dual session type, shown in Fig. 2.2b. Whenever the server

receives a value, the client sends a value, and vice versa. Whenever the server makes a selection,

the client o�ers a choice (&), and vice versa. This duality between client and server ensures that

each communication is matched by the other party. We denote duality with an overbar; thus

we could de�ne TwoFactorClient = TwoFactorServer or TwoFactorServer = TwoFactorClient.

Implementing Two-factor Authentication. Let us suppose we have constructs for send-

ing and receiving along, and for closing, an endpoint.

send M N :S where M has type A, and N is an endpoint with session type !A.S

receive M :(A×S) where M is an endpoint with session type ?A.S

close M :1 where M is an endpoint with session type End

Let us also suppose we have constructs for selecting and o�ering a choice:

select ` j M : S j where M is an endpoint with session type ⊕{`i : Si}i∈I, and j ∈ I

o�er M {`i(xi) 7→ Ni}i∈I : A where M is an endpoint with session type &{`i 7→ Si}i∈I, each xi

binds an endpoint with session type Si, and each Ni has type A
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Let us write 1 for the unit type. We can now write a client implementation:

twoFactorClient : (Username×Password×TwoFactorClient)( 1

twoFactorClient(username,password,s),

let s = send (username,password) s in

o�er s{
Authenticated(s) 7→ clientBody(s)

Challenge(s) 7→
let (key,s) = receive s in

let s = send generateResponse(key) s in

o�er s{
Authenticated(s) 7→ clientBody(s)

AccessDenied(s) 7→ loginFailed(s)

}
AccessDenied(s) 7→ loginFailed(s)

}

The twoFactorClient function takes a username, password, and an endpoint s of type

TwoFactorClient as its arguments. It sends the username and password along the endpoint,

before o�ering three branches depending on whether the server authenticates the user, sends

a two-factor challenge, or rejects the authentication attempt.

In the case that the server authenticates the user, then the program progresses to the main

application (denoted here by clientBody(s)). If the server sends a challenge, the client receives

the challenge key, and sends the response, calculated by generateResponse. It then o�ers

two branches based on whether the challenge response was successful. If the login attempt

fails, then the client evaluates loginFailed, which abstracts over notifying the user of the login

failure, and closing the channel.

We can implement a simple server as follows:

twoFactorServer : TwoFactorServer ( 1

twoFactorServer(s),

let ((username,password),s) = receive s in

if checkDetails(username,password) then

let s = select Authenticated s in serverBody(s)

else

let s = select AccessDenied s in close s

The twoFactorServer function takes an endpoint of type TwoFactorServer and receives a

username and password, which are checked using the checkDetails function. If the check

passes, then the server authenticates the client and proceeds to the application body (denoted
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here by serverBody(s)); if not, then the server noti�es the client by selecting the AccessDenied

branch. Note that this particular server implementation opts never to send a challenge request:

whereas the client must implement code for all possible branches, the session type does not

oblige the server to select a particular branch.

2.3.2 Linear Type Systems

Simply providing constructs for sending and receiving values, and for selecting and o�ering

choices, is not quite enough to safely implement session types. Consider the following client:

wrongClient : TwoFactorClient ( 1

wrongClient(s),

let t = send ("Alice","hunter2") s in

let t = send ("Bob","letmein") s in . . .

Reuse of s allows a (username, password) pair to be sent along the same endpoint twice,

violating the fundamental property of session �delity, which states that in a well-typed program

the communication taking place over an endpoint matches its session type.

Linear logic [79] is a logic particularly suited for reasoning about resources which may

neither be duplicated nor discarded. A line of work started by Lafont [127] applies the ideas

from linear logic to programming languages, allowing in particular �ner-grained control over

resource management. Lafont [127] describes an abstract machine based on linear logic, along

with the syntax and typing rules for a linear λ-calculus. The work of Wadler [212] takes the

idea of a linear λ calculus further, motivating linear types to allow non-destructive updates of

arrays in purely-functional languages, and also showcasing how an unrestricted ‘of-course!’

modality can enable practical programming.

In order to maintain session �delity and ensure that all communication actions in a session

type occur, session type systems require a similar approach: each endpoint must be used

exactly once.

2.3.3 Session Types and Process Calculi

Session types were originally introduced in terms of session calculi: typed process calculi

loosely based on the π-calculus, but including specialised language constructs and typing

rules. Such calculi include the original incarnations by Honda [94] and Honda et al. [97],

and the revisited calculus by Yoshida and Vasconcelos [218], which �xes problems caused by

delegation (sending endpoints in session messages) in the original work. Vasconcelos [209]

provides a tutorial introduction to session calculi, providing a core calculus incorporating both

linear and unrestricted names.
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Session calculi may in fact be expressed in terms of a more canonical base calculus: the

linear π-calculus [120]. Kobayashi [118] was �rst to present a translation from a session

calculus into the linear π-calculus; Kobayashi’s translation received renewed attention due to

the work of Dardha et al. [54], who reformulated the translation in terms of the base calculus

of Vasconcelos [209], and proved that the translation was type- and semantics-preserving. They

additionally argued for the robustness of the encoding, showing that it accounts for subtyping,

recursion, and polymorphism. Key to the translation is the use of continuation-passing style.

2.3.4 Correspondence with Linear Logic

Propositions as types. The Curry-Howard correspondence [103] describes a close corre-

spondence between propositional logic and the simply-typed λ-calculus: propositions cor-

respond to types; proofs correspond to programs; and proof simpli�cation corresponds to

evaluation of programs. The relation with logic ensures that the simply-typed λ-calculus enjoys

a strong metatheory: in particular, preservation, progress, con�uence, and termination. Wadler

[214] provides an accessible and comprehensive introduction.

Proofs as processes. A natural question to ask is whether a similar logical correspondence

exists for concurrent programming. Girard [79] introduces linear logic, a substructural logic

without the structural logical rules of contraction and weakening. Consequently, propositions

may be used exactly once, making linear logic useful for reasoning about systems with resources,

for example �le handles.

Much as the Curry-Howard correspondence provides a solid logical basis for functional

programming languages, Abramsky [1] and Bellin and Scott [16] seek to establish linear logic

as a basis for concurrent programming languages, by presenting translations from linear

logic into the π-calculus. One of the key insights of both works is the interpretation of the

logical ‘cut’ rule as a combination of a name restriction and parallel composition, ensuring a

tree-structured and hence acyclic communication topology.

Propositions as sessions. The question of a logical basis for concurrent programming

received renewed attention with the landmark paper by Caires and Pfenning [27], providing a

logical basis for session-typed programming in the setting of intuitionistic linear logic; Caires

and Pfenning introduce πDILL, a typed process calculus whose types are precisely the propo-

sitions of dual intuitionistic linear logic [14], interpreting propositions as session types; proofs

as processes; and cut elimination as communication.

Wadler [213] connects the lines of work on session-typed functional programming lan-

guages and logically-based process calculi by introducing CP, a process calculus based on

classical linear logic; and GV, a session-typed linear λ-calculus. We describe this work further
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in §2.3.5.

Pérez et al. [170] describe a theory of linear logical relations for session types. Whereas

the primary properties of session-typed process calculi are type preservation and (in some

cases) progress and can be proven syntactically in the style of Wright and Felleisen [216],

linear logical relations can be used to reason about semantic properties including termination,

even in the presence of unrestricted types or shared channels.

Caires and Pérez [26] describe a logically-grounded calculus incorporating session-typed

concurrency, nondeterminism, and control operators such as exceptions. Their work is related

to the work in Chapter 9, and we discuss it in more detail there.

Deadlock-free cyclic processes. Kobayashi [116, 117, 119] and Kobayashi et al. [121] de-

scribe type-based approaches to ensuring lock- and deadlock-freedom in process calculi. These

approaches are based on a type system including priorities which rule out deadlocking inter-

actions. Padovani [162] integrates priority-based type systems with session type systems;

duality (hence compatibility of communication actions) in session types allows a stronger

progress property than deadlock-freedom to be proven for typeable session-typed processes.

Padovani [163] later investigates priorities in the setting of the linear π-calculus.

Dardha and Gay [53] provide a logical basis for priority-based type systems with session

types, who extend CP by replacing the cut rule with two rules, cycle and mix. Without the use

of priorities, the cycle and mix rules immediately introduce the possibility of deadlock. With

priorities, however, it becomes possible to eliminate the cycle rule (which is analogous to cut

elimination), and thus the work expands the type system of CP to support deadlock-free cyclic

processes.

2.3.5 Session Types and Functional Programming Languages

Core functional languages. Session types have traditionally been studied in the setting of

typed process calculi. Vasconcelos et al. [208, 210] examine session types in the context of a

functional programming language, using a separate channel environment to keep track of the

state of each session endpoint.

By moving to the setting of a linear functional language, Gay and Vasconcelos [77] provide

substantial simpli�cations, in particular not requiring a separate channel environment or

reasoning about channel aliasing. In particular, they provide the �rst characterisation of

asynchronous communication and subtyping in the functional setting, and prove that the size

of a bu�er is bounded by the session type of its associated endpoint.

Wadler [213] introduces CP, a session-typed process calculus based on Classical Linear

Logic. Wadler also introduces GV, a minimal session-typed linear functional language based

on the ideas of Gay and Vasconcelos [77], and presents a type-preserving translation from GV
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into CP. Wadler’s GV presents the �rst deadlock-free session-typed linear functional language,

in particular inherited from CP due to its logical correspondence. More speci�cally, deadlock-

freedom arises due to the interpretation of the logical cut rule in CP as a combination of

name restriction and parallel composition, which ensures by construction the acyclicity of

con�gurations.

Wadler does not present a semantics for GV, instead relying on the translation to CP and

the subsequent use of CP’s cut reduction semantics. Lindley and Morris [132] describe another

variation of GV, and provide it with a small-step operational semantics. This language, also

known as GV, forms the basis of the languages we extend throughout this thesis; we provide

a detailed introduction in Chapter 3. Lindley and Morris provide a semantics-preserving

translation from GV into CP as well as being the �rst to show a semantics-preserving translation

from CP to GV, and show extensions including channel replication and unrestricted types.

Lindley and Morris [133] introduce µCP and µGV, extending CP and GV with structural

recursion based on catamorphisms, translating between them, and thus provide a logical basis

for recursive session types. A key outcome is a solid semantic grounding for the de�nition

of duality in the presence of delegation and recursion, which had proven to be problematic

previously [19, 52]. Additionally, they introduce a core version of GV without concurrency,

showing that concurrency may be simulated through the use of a CPS translation, thereby

providing a new proof technique for showing strong normalisation in session-typed functional

languages which include unrestricted types.

Lindley and Morris [135] investigate the problem of practical programming languages

based on GV, introducing FST (System F with Session Types), which extends GV with row

typing and polymorphism, and an integration of linear and unrestricted types using subkinding

(as pioneered by Mazurak et al. [137]). FST forms the basis of session typing in the Links [46]

programming language, the �rst fully-�edged implementation of session typing in a general-

purpose functional programming language. We extend Links’ concurrent implementation of

session-typed concurrency to a distributed, web-based implementation in Chapter 10.

Lindley and Morris [136] discuss an asynchronous semantics for FST and prove its correct-

ness properties. We distil the semantics into an extension of GV in Chapter 8.

Extending πDILL, Toninho et al. [205] describe a language integrating (unrestricted) func-

tional variables and (necessarily linear) session channels, through the use of a linear contextual

monad. The monadic approach strati�es the language into linear and intuitionistic fragments;

in this thesis we tend to work with purely linear calculi for simplicity.

The session typing systems we have described up until now can be described by a regular

language. However, such formulations of session types are not su�cient to describe protocols

which involve the serialisation of recursive data types, for example, which require session

types to be context-free. Thiemann and Vasconcelos [202] introduce an account of context-free
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session types for an extension of a GV-like core functional language. Key to the formulation

is the introduction of a monoidal sequencing operator instead of pre�xed send- and receive

session types, and the use of polymorphic recursion. A technical challenge is showing that type

equivalence is decidable, which the authors prove by developing an LTS semantics for their

type system and encoding the system in the context-free BPA [18] calculus, where process

equivalence is known to be decidable [40].

Padovani [165] builds upon the work of Thiemann and Vasconcelos [202] by being the �rst

to implement context-free session types, in the setting of the FuSe [164] OCaml implementation

of binary sessions. Padovani reformulates context-free sessions to make use of resumptions

to implement the sequencing required by context-free session types. To safely implement

resumptions, session types are ascribed with identities. An advantage of Padovani’s approach

is that type equivalence is no longer needed in the type system of terms, but only to reason

about the metatheory, at the cost of additional syntactic markers.

Gradual typing [197] allows the coexistence of statically- and dynamically-typed code,

with the goal of gradually adding static typing to the dynamically-typed fragment. A key

development of gradual typing is the notion of blame, which indicates the part of the program

at fault when a runtime type error is found. Wadler and Findler [215] introduce the blame

calculus, which allows the authors to prove that if a type error arises, then it is due to a failure

in the less-typed part of the program. Much like it is desirable to gradually migrate from

dynamically-typed to statically-typed code, it is desirable to gradually migrate from code

without session types, to code which uses session types. A particular challenge is the gradual

handling of linearity. Igarashi et al. [109] propose an extension of GV which supports gradual

session types, and prove a blame theorem.

Functional Embeddings. Functional programming languages are useful host languages

for embedding session types, allowing the bene�ts of session types to be enjoyed in more

mainstream languages. The core challenge in implementing session types is enforcing linear

(or even a�ne) endpoint usage.

Perhaps the most popular language used for embedding session types is Haskell [172],

primarily on account of its many type system extensions allowing linearity to be emulated.

Neubauer and Thiemann [149] provide the �rst such embedding of a session-typed core

calculus into Haskell. Pucella and Tov [182] provide an alternative approach, encoding duality

using typeclasses with functional dependencies; allowing communication along multiple chan-

nels through an explicitly-managed stack; and are the �rst to use a parameterised monad [12]

(a monad with pre- and post-conditions) to enforce linearity. By reasoning about their core

calculus, the authors prove that even though their implementation makes use of unsafe opera-

tions in Haskell, the embedding remains safe. Independently, Sackman and Eisenbach [188]
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also implement session types in Haskell using a parameterised monad to allow management

of multiple channels.

Lindley and Morris [134] break from the tradition of encoding session types using a param-

eterised monad, making use of Polakow’s embedding of a linear λ-calculus in Haskell [179].

Their approach embeds GV in Haskell, allowing �rst-class channel endpoints as opposed to

needing to explicitly manipulate a stack in a parameterised monad, and allow interpretation

in multiple underlying monads, including IO and the continuation monad.

Orchard and Yoshida [160] describe type and semantics-preserving translations between a

session process calculus FPCF: a variant of Plotkin’s PCF [177] extended with a type-and-e�ect

system, and a session calculus. As a consequence, the authors show that it is possible to embed

session types through the use of a graded monad.

Orchard and Yoshida [161] provide a comprehensive survey of implementations of session

types in Haskell between 2004 and 2017, as well as a comparison of the features supported by

each.

Recent work [20] adds �rst-class linear types to Haskell. Given �rst-class linearity, it

would be interesting to see a more �rst-class session typing library with �rst-class channel

endpoints, without the additional artefacts of embedding linearity.

Session types have also been implemented in the OCaml programming language [129].

Imai et al. [110] implement session types in OCaml, again using a parameterised monad,

and polarities, which view a session type from the point of the view of a client or a server.

The authors additionally make use of lenses to more cleanly manipulate the stack of session

channels. Padovani [164] describes FuSe, a tiny library implementation of session types in

OCaml. A key design decision is to enforce linearity at run-time: although runtime checking

of linearity results in fewer static guarantees, it results in a particularly clean library design

and implementation, in particular allowing �rst-class manipulation of channel endpoints.

Scalas and Yoshida [190] also make use of dynamically-checked linearity, as well as the

CPS transformation from session-typed process calculi into the linear π-calculus advocated

by Dardha et al. [54], to provide a library implementation of session types in Scala. They

demonstrate that the CPS translation allows delegation—the ability to send channel endpoints

as part of a session—in the distributed setting without the need for distributed algorithms [106].

Why a �rst-class implementation? There are many embeddings of session types in main-

stream functional languages. In this thesis, we later consider an extension of the Links

programming language with session types and distribution.

A natural question to ask, therefore, is: “why go to the e�ort of modifying a language to

incorporate session types as �rst-class entities, when you can embed them in a mainstream

language?”
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The biggest advantage is that we have the power of a native linear type system, and

thus do not have to worry about the artefacts arising from encoding linearity, or sacri�ce

guarantees by checking linearity at runtime. The language is also closer to the core calculi we

describe, allowing us to draw side-by-side comparisons between theory and practice. We may

additionally add other �rst-class constructs to the language which require runtime support

(for example, exceptions, as we discuss in Chapter 9), which could cause di�culty using an

embedding. Finally, we have more control over the error messages that are displayed in the

case of an incorrect program, whereas errors in an EDSL may leak details of the embedding.

2.4 Multiparty Session Types

Up until now, we have concentrated on binary session types, where a session involves precisely

two participants. Multiparty session types were introduced by Honda et al. [98, 100] and

generalise binary session types by allowing a top-down description of the interactions between

multiple participants in a protocol.

The canonical example of a multiparty session type is that of the two-buyer protocol, which

is intended to be representative of �nancial protocols. The two-buyer protocol describes the

scenario in Figure 2.3:

1. Buyer 1 requests the price of an item from the seller

2. The seller sends the price of the item to Buyer 1 and Buyer 2

3. Buyer 1 sends Buyer 2 the amount that Buyer 2 should pay

4. Buyer 2 can choose to:

• Accept the o�er, at which point it sends a delivery address to the seller and receives

a delivery date

• Reject the o�er, and await another o�er from Buyer 1

• End the protocol

The formal presentation of multiparty session types was later substantially simpli�ed

by Bettini et al. [22] and Coppo et al. [49]. They consider ‘role-indexed channels’, which

eliminate the need for causality analysis on channels partaking in a multiparty session, and

introduce a communication construct which uni�es sending a value and making a choice.

Additionally, the authors provide the �rst notion of global progress for multiparty sessions,

allowing deadlock-freedom and progress in the presence of multiple multiparty sessions;

the original work only guaranteed deadlock-freedom for a single multiparty session. Global

progress is ensured through the use of an additional interaction typing system.

Yoshida et al. [219] describe a theory of parameterised multiparty session types, which

extend global types to parameterise participants by indices. This extension of global types

makes it possible to describe protocols from the domain of high-performance computing, such



Chapter 2. Background 22

Figure 2.3: Two-buyer protocol

as mesh topologies.

More recent work by Scalas and Yoshida [191] identi�es the severe limitations on the

expressiveness of previous multiparty session typing systems, in particular due to the con-

servative requirement of consistency. Scalas and Yoshida propose a more general, expressive,

and yet simpler system based on generic type systems for the π-calculus [108]. The authors

de�ne safety protocols such as liveness, and show how protocol conformance can be checked

via a translation into formulae which can be checked by the mCRL2 [82] model checker.

The system therefore allows more expressive protocols to be described and checked against

implementations, which is a signi�cant avantage over model checking on its own.

2.4.1 Implementations of Multiparty Session Types

2.4.1.1 The Scribble Protocol Description Language

Scribble [99, 220] is a language-independent protocol description language, based on the theory

of multiparty session types. Developers write a global protocol, specifying the interactions

between each participant in the system in a top-down manner.

The Scribble tool �rstly veri�es that the global protocol is well-formed and thus describes

a safe protocol; originally veri�cation was achieved using fairly conservative syntactic checks,

however recent work [105] takes a more semantic approach through the use of 1-bounded

model checking, and is thus less restrictive.

The two-buyer protocol can be described in Scribble as follows:
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global protocol TwoBuyer(role Buyer1, role Buyer2, role Seller) {
title(String) from Buyer1 to Seller;
price(Currency) from Seller to Buyer1, Buyer2;
rec loop {

share(Currency) from Buyer1 to Buyer2;
choice at Buyer2 {

accept() from Buyer2 to Buyer1;
deliveryAddress(String) from Buyer2 to Seller;
deliveryDate(Date) from Seller to Buyer2;

} or {
reject() from Buyer2 to Buyer1;
continue loop;

} or {
quit() from Buyer2 to Buyer1, Seller;

}
}

}

Next, the Scribble tool projects the global protocol into local types, describing the protocol

from the viewpoint of each participant. As an example, the two-buyer protocol projected at

Buyer 1 is as follows:

local protocol TwoBuyer at Buyer1(role Buyer1, role Buyer2, role Seller)
{
title(String) to Seller;
price(Currency) from Seller;
rec loop {

share(Currency) to Buyer2;
choice at Buyer2 {

accept(String) from Buyer2;
} or {

reject() from Buyer2;
continue loop;

} or {
quit() from Buyer2;

}
}

}

After local projections have been generated, they may be used to verify conformance to a

protocol either statically, or via runtime veri�cation techniques.

2.4.1.2 Static Checking

One of the earliest implementations of statically-checked multiparty session types is Multiparty

Session C [154], which implements multiparty session types in C via a lightweight runtime

system and a compiler plugin. Multiparty Session C concentrates on bringing the bene�ts of

multiparty session types to the domain of high-performance computing. Later work by Ng

et al. [155] uses Scribble to generate MPI backbone code, reducing the amount of boilerplate a



Chapter 2. Background 24

developer of HPC applications must write, and guaranteeing deadlock-freedom.

Typestate [198] is a behavioural typing discipline from the �eld of object-oriented program-

ming. Typestate governs which methods are available on an object, and may change as the

object evaluates. Kouzapas et al. [125] describe the design and implementation of two tools,

Mungo and StMungo, which leverage typestate to support static checking of conformance to

multiparty session types in the Java programming language. StMungo (or “Scribble-to-Mungo”)

translates from Scribble local protocols into typestate speci�cations, and Mungo checks to see

whether Java objects correctly follow their typestate.

Hu and Yoshida [104] describe an approach called endpoint API generation, where local

types guide the generation of state channel objects for each role. State channels guide a

developer in following the protocol through the use of an object-oriented call-chaining API.

Linearity is enforced dynamically through a simple run-time check, ensuring that each state

channel object is used only once.

Type providers [171] allow statically-typed access to unstructured and untyped external

data sources such as CSV �les and SQL schemas via compile-time metaprogramming. Neykova

et al. [153] leverage the work on endpoint API generation to de�ne a session type provider,

extending type providers to the domain of communication-centric software and introducing

interaction re�nements: predicates on message payloads which are enforced by use of an SMT

solver.

Scalas et al. [192] extend the continuation-passing translation from binary session types

into the linear π-calculus introduced by Kobayashi [118] and later extended by Dardha et al.

[54] to the multiparty setting. Their approach lends itself to an implementation of multiparty

session types in Scala following previous work on lchannels [190], in particular being the

�rst work to support distributed delegation in the multiparty setting.

2.4.1.3 Runtime Monitoring

An alternative approach to checking conformance to protocols statically is to verify confor-

mance at run-time. Deniélou and Yoshida [60] describe deep connections between multiparty

session types and communicating �nite-state automata [25], identifying a class of communi-

cating �nite-state automata called multiparty session automata, which enjoy safety properties

such as deadlock-freedom.

Multiparty session automata can be used as monitors to dynamically enforce compliance

with a session at run-time. Chen et al. [35] and Bocchi et al. [23] describe the theory of run-time

monitoring of communication against session types. The formalism consists of an unmonitored

semantics; a labelled transition system semantics of monitors; and a monitored semantics

where actions are predicated on labels emitted by monitor reduction. The key results are of

safety and transparency: safety means that the processes behave in accordance with the global
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speci�cation, and transparency means that a monitored network behaves exactly the same as

an equivalent unmonitored network conforming to the speci�cation.

SPY [152] is the �rst implementation of multiparty session types in a dynamically-checked

programming language, implementing a Python API for session programming where com-

munication safety is guaranteed through runtime monitors generated from Scribble speci�ca-

tions. Demangeon et al. [59] extend this work with an interruptible construct, allowing blocks

to be interrupted by incoming messages.

Neykova and Yoshida [150] are �rst to integrate multiparty session types and the actor

model via dynamic monitoring. In the conceptual framework proposed by the authors, each

actor is an entity which may take part in multiple sessions, and where a message received in

one session may trigger a message to be sent in another session. The conceptual framework

is implemented in Python, and communication between actors is mediated via monitors

derived from Scribble speci�cations. Subsequent work [71] implements an extended version of

Neykova & Yoshida’s conceptual framework in Erlang, motivating the use of subsessions [58]

to allow parts of a protocol to be repeated with new participants. Neykova and Yoshida [151]

investigate failure recovery strategies in Erlang, using information gained from protocols to

compute and revert to safe states when a failure occurs.

2.4.2 Correspondence with Linear Logic

Carbone et al. [31] provide the �rst logical basis for multiparty session types, introducing

a process calculus MCP with a strong correspondence to linear logic. The key insight is to

generalise the binary cut rule with a ‘coherence cut’ rule allowing composition of multiple

processes taking part in a session, so long as all local types are coherent. Coherence takes

a bottom-up approach to ensuring that local types are compatible, as opposed to the more

common top-down notion of projection.

Carbone et al. [30] build on this work and strengthen its connection to linear logic. In

particular, the authors introduce a calculus of governed classical processes (GCP) and a refor-

mulation of MCP; dispense with the notion of roles in favour of variables; and show that via

the use of an arbiter process, it is possible to translate MCP and GCP into binary CP.

Toninho and Yoshida [204] provide another perspective on the connection between multi-

party session types and classical linear logic from the perspective of interconnection networks [2],

which describe the connections between participants in a multiparty session. The authors show

that the interconnection networks allowed by multiparty sessions are strictly more expressive

than the interconnection networks in classical linear logic, but show that this expressive power

can be regained through the use of a controlled multicut rule.
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Synchronous GV

3.1 Introduction

In this chapter we describe Synchronous GV (SGV), a linear λ-calculus with session types and

synchronous communication. Synchronous GV is a minimal core language which we extend

modularly throughout the thesis.

As we discussed in Chapter 2, Wadler [213] introduces a process calculus CP with a strong

correspondence with linear logic, and a core functional language GV, and shows a translation

from GV into CP. GV is inspired by the linear functional language described by Gay and

Vasconcelos [77], which has obtained the name LAST (for Linear Asynchronous Session Types)

in the literature [135]. LAST is a fairly fully-�edged language which includes asynchrony,

subtyping, machinery for proving the boundedness of bu�ers, recursion, a mix of linear and

unrestricted types, and a �exible mechanism for initiating sessions known as access points.

The �exibility of LAST comes at a cost. LAST programs preserve typing under reduction,

but the notion of progress enjoyed by LAST does not preclude deadlock. Additionally, access

points admit nondeterminism, and the use of a �xpoint combinator admits non-terminating

programs. In contrast, the logical grounding of GV endows it with a strong metatheory,

encompassing preservation, deadlock-freedom, global progress, determinism, and termination.

Naturally, this makes GV programs less expressive, but it is possible to modularly extend GV

with various features, knowing which properties remain.

SGV is a variant of GV based primarily on the incarnation of GV described by Lindley and

Morris [132]; we can reuse most of the de�nitions and proof techniques directly. We make

several modi�cations, in particular omitting features required only to aid the translations to-

and from CP such as the link construct, which is required in order to simulate the axiom rule,

and the weak explicit substitutions [130] required for CP to simulate β-reduction in GV.

Of course, making the above changes is a tradeo� between simplicity of the language and

the correspondence with logic. By making these modi�cations, we lose the ability to translate

26



Chapter 3. Synchronous GV 27

SGV into CP and vice-versa. On the other hand, we obtain an easily-extensible core language

which retains the strong metatheory stemming from GV’s logical foundations.

Furthermore, we make several stylistic changes: we separate syntactic classes for runtime

names and variables as they are fundamentally di�erent entities—an observation which will

become crucial in Chapter 9—and describe communication and concurrency constructs as

language primitives instead of constants.

3.2 Synchronous GV

In this section, we describe the syntax and typing rules for SGV terms.

3.2.1 Syntax and Typing Rules for Terms

Synchronous GV extends a linear λ-calculus with linear tensor products and linear sums, with

session types and constructs for communication and concurrency. Figure 3.1 describes the

syntax of SGV types and terms.

Types and Session Types. Types are ranged over by A,B and include the unit type 1, the

linear function type A ( B, the linear sum type A+B, the linear product type A×B, and

session types S. Note that for simplicity, we do not consider intuitionistic terms here; the

calculus could well be extended with an unrestricted exponential modality following Wadler

[212]; we show a concrete extension of GV with unrestricted types in Chapter 9, 9.4.

Session types are types for channel endpoints. Type !A.S can be read ‘send a value of type

A and continue as S’, and dually type ?A.S can be read ‘receive a value of type A and continue

as S’. As opposed to the single End type discussed in Chapter 2, we have two types signifying

the end of a session. Type End! is the unit of sending, interpreted as the type of an endpoint

of a child process where no more messages are to be sent or received; and End? is the unit of

receiving, interpreted as the type of endpoint held by a parent process where the session is

�nished and the endpoint may be closed. We revisit the variation with a single self-dual End

type in §3.4.1.

Terms. Terms include variables, and the standard introduction and elimination forms for

the unit value, products, and sums.

SGV includes four additional primitives for communication and concurrency. The forkM

construct spawns term M as a new thread, and creates a session channel with which to

communicate with the spawned process. The send M N construct sends term M along session

endpoint N. The receive M construct receives a value and updated channel endpoint from

endpoint M. Finally, wait M synchronises with the channel endpoint M connected to a

fully-evaluated child process, which terminates the child process and discards the channel.
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Types A,B,C ::= 1 | A ( B | A+B | A×B | S

Session Types S ::= !A.S | ?A.S | End! | End?

Variables x,y,z

Terms L,M,N ::= x | λx.M | M N

| () | let () = M in N

| (M,N) | let (x,y) = M in N

| inl M | inr M | case L of {inl x 7→M; inr y 7→ N}
| forkM | send M N | receive M | wait M

Type Environments Γ ::= · | Γ,x : A

Figure 3.1: Syntax of Synchronous GV Types and Terms

Variables and Typing Environments. We follow Barendregt’s variable convention [15]

(working up to renaming of bound variables and channel names), and we treat typing envi-

ronments as unordered. We write Γ1,Γ2 to mean the disjoint union of environments Γ1 and

Γ2.

Typing Rules for Terms Figure 3.2 describes the typing rules for terms. The typing judge-

ment Γ `M : A can be read as “under typing context Γ, term M has type A”.

Duality on session types ensures compatibility of communication actions within a session:

where one participant in a session sends a value of some type A, then the other participant in

the session will receive a value of type A, and vice versa.

The type system is linear, requiring that each variable is used exactly once. Session type

systems are necessarily linear, so as to avoid using an endpoint twice and violating session

�delity, as described in Chapter 2, and to avoid an endpoint being discarded and thus allowing

incomplete implementations of protocols.

Linearity is enforced by the combination of two techniques. Firstly, rule T-Var requires the

typing context to be empty apart from the variable being typed, and rule T-Unit requires an

empty typing context; these restrictions ensure that each variable must be used at least once.

Secondly, in rules containing multiple subterms (for example, T-Pair), the typing context is

split into two disjoint contexts, meaning that each variable may be used at most once. Together,

these techniques mean that variables must be used precisely once.

Apart from the modi�cations to ensure linearity, typing rules for variables, abstraction and

application, unit and unit elimination, pair construction and elimination, and sum injections

and elimination are all standard from the simply-typed λ-calculus.
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Typing Rules for Terms Γ `M : A

T-Var

x :A ` x :A

T-Abs

Γ,x :A `M :B

Γ ` λx.M :A ( B

T-App

Γ1 `M :A ( B Γ2 ` N :A

Γ1,Γ2 `M N :B

T-Unit

· ` () :1

T-LetUnit

Γ1 `M :1 Γ2 ` N :A

Γ1,Γ2 ` let () = M in N :A

T-Pair

Γ1 `M :A Γ2 ` N :B

Γ1,Γ2 ` (M,N) :A×B

T-LetPair

Γ1 `M :A×B Γ2,x :A,y :B ` N :C

Γ1,Γ2 ` let (x,y) = M in N :C

T-Inl

Γ `M :A

Γ ` inl M :A+B

T-Inr

Γ `M :B

Γ ` inr M :A+B

T-Case

Γ1 ` L :A+B Γ2,x :A `M :C Γ2,y :B ` N :C

Γ1,Γ2 ` case L of {inl x 7→M; inr y 7→ N} :C

T-Fork

Γ `M :S ( End!

Γ ` forkM :S

T-Send

Γ1 `M :A Γ2 ` N : !A.S

Γ1,Γ2 ` send M N :S

T-Recv

Γ `M : ?A.S

Γ ` receive M :(A×S)

T-Wait

Γ `M :End?

Γ `wait M :1

Duality S

!A.S = ?A.S ?A.S = !A.S End! = End? End? = End!

Figure 3.2: Typing Rules for Synchronous GV Types and Terms
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Given a function M with type S ( End!, rule T-Fork types term forkM as having type

S; note that the endpoints have dual session types and thus communication with the forked

process is compatible.

Term send M N has type S, given that M has type A, and N has type !A.S, ensuring that

the session endpoint supports sending a value, and the type of value sent along the channel

matches that speci�ed by the session type. The return type is the continuation of the session.

Similarly, receiveM has type (A×S) if M has type ?A.S, ensuring that the session endpoint M

supports receiving a value of type A, and returns a pair of the received value and the updated

endpoint. Finally, wait M is the elimination form for session endpoints of type End?.

Encoding Branching and Selection. Readers well-versed in the literature of session types

might be surprised that Synchronous GV does not build in branching and selection, as in

the two-factor authentication example, where the server chooses whether to authenticate,

challenge, or deny access to a client. An important insight of the work of Dardha et al. [54]

is that such constructs are redundant and can be implemented using sum types and session

delegation. The intuition is as follows: to implement branching, one receives a label tagging the

continuation of the session; to implement selection, one sends a label tagging the continuation

of the session. The “tagging” functionality can be achieved by injections into a sum type, but

what remains is the ability to use the tag to describe the continuation of the session. In fact,

this functionality need not be encoded in the session type itself, since endpoints can be sent as

part of a session. Therefore, the key insight is to end the current session, start a new session

with the desired continuation, and send the tagged endpoint.

Formally, we may encode the types as follows:

S1⊕S2 , !(S1 +S2).End? S1 & S2 , ?(S1 +S2).End!

Let ` range over {inl, inr}. We may encode the terms as follows:

select `M , fork(λx.send (` x)M)

o�er L{inl x 7→M; inr y 7→ N}, let (x,s) = receive L in

wait s;

case x of {inl x 7→M; inr y 7→ N}

Furthermore, as binary sums generalise to (monomorphic) variant types, this technique can be

used to encode an arbitrary number of choices.

3.2.2 Runtime Syntax

So far, we have seen the static syntax and typing rules for Synchronous GV. To reason about

the semantics of Synchronous GV, as well as its metatheory, we must extend the calculus with

a language of con�gurations describing the state of the program.
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Runtime Types R ::= S | S]

Names a,b,c

Terms M ::= · · · | a

Values U,V,W ::= x | a | λx.M | () | (V,W ) | inlV | inrV

Con�gurations C ,D,E ::= (νa)C | C ‖D | φM

Thread Flags φ ::= • | ◦
Type Environments Γ ::= · · · | Γ,a : R

Evaluation Contexts E ::= [ ] | E M | V E

| let () = E in M | let (x,y) = E in M | (E,V ) | (V,E)
| inl E | inr E | case E of {inl x 7→M; inr y 7→ N}
| forkE | send E M | sendV E | receive E | wait E

Thread Contexts F ::= φE

Con�guration Contexts G ::= [ ] | (νa)G | G ‖ C

Figure 3.3: Synchronous GV Runtime Syntax

Figure 3.3 shows the runtime syntax of SGV. We introduce the runtime type of channels

S], which is the type of a channel and ascribed to a name a before it is split into two endpoints

of type S and S over a parallel composition. Values of type S] do not appear in terms. We

also introduce a class of runtime names a which do not appear in closed source programs;

instead, they are introduced by E-Fork and are bound by name restrictions. Previous work on

GV [132, 133, 136] has a simpler syntax by ‘punning’ variables and runtime names, however

we elect not to here as to do so poses problems when considering exceptions, where the

distinction between static and dynamic names becomes more important.

Con�gurations, ranged over by C ,D,E , describe the runtime state of a program. Name

restrictions (νa)C bind a runtime name a in con�guration C . Parallel composition C ‖ D
denotes two con�gurations C and D evaluating in parallel. Finally, φM describes a term M

running as a thread; thread �ags φ can either be •, denoting that the thread is a main thread

and may return a value, or ◦, denoting that the thread is a child thread and must return a

�nished endpoint of type End!.

Evaluation contexts E describe a deterministic, call-by-value evaluation strategy with

left-to-right evaluation of arguments.

3.2.3 Operational Semantics

Free names. We write fn(C ) and fn(M) for the set of free runtime names (i.e., runtime names

a not occurring under a ν-binder (νa)C ) contained in con�gurations and terms respectively.
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Term Reduction M −→M N

E-Lam (λx.M)V −→M M{V/x}
E-Unit let () = () in M −→M M

E-Pair let (x,y) = (V,W ) in M −→M M{V/x,W/y}
E-Inl case inlV of {inl x 7→M; inr y 7→ N} −→M M{V/x}
E-Inr case inrV of {inl x 7→M; inr y 7→ N} −→M N{V/y}
E-Lift E[M] −→M E[N], if M −→M N

Con�guration Equivalence C ≡D

C ‖ (D ‖ E)≡ (C ‖D) ‖ E C ‖D ≡D ‖ C (νa)(νb)C ≡ (νb)(νa)C

C ‖ (νa)D ≡ (νa)(C ‖D), if a 6∈ fn(C )

Con�guration Reduction C −→D

E-Fork F [forkV ]−→ (νa)(F [a] ‖ ◦V a) (a is fresh)

E-Comm F [sendV a] ‖ F ′[receive a]−→F [a] ‖ F ′[(V,a)]
E-Wait (νa)(F [wait a] ‖ ◦a)−→F [()]

E-LiftM φM−→ φN (if M −→M N)

E-Lift G [C ]−→G [D] (if C −→D)

Figure 3.4: Reduction of Synchronous GV Terms and Con�gurations

Reduction on Terms. The relation M −→M N describes the standard β-reduction rules for

the functional constructs. All are standard.

Equivalence. Con�guration equivalence C ≡D is de�ned as the smallest congruence re-

lation satisfying the equivalence axioms in Figure 3.4. The equivalence axioms describe the

associativity and commutativity of parallel composition, the reordering of name restrictions,

and the standard π-calculus scope extrusion rule [144, 189]. The de�nition of con�guration

equivalence as a congruence relation concretely corresponds to the addition of the following

rules:

C ≡ C

D ≡ C

C ≡D

C ≡D D ≡ E

C ≡ E

C ≡D

(νa)C ≡ (νa)D

C ≡D

C ‖ E ≡D ‖ E

Equivalence shows that while the syntax imposes a tree structure on con�gurations, they may

be treated more like multisets.
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Con�guration Contexts. Con�guration contexts G [−] allow reduction under name re-

strictions and parallel compositions.

Reduction on Con�gurations. Whereas the −→M relation gives a semantics to the func-

tional fragment of the language, communication and concurrency constructs cannot reduce

on their own. To give a semantics to such constructs, we introduce an evaluation relation −→
on con�gurations.

Rule E-Fork describes the semantics of evaluating fork(λx.M) in an evaluation context:

evaluating the operation creates a fresh channel name a, returns a to the calling thread, and

spawns M{a/x} as a child thread. In essence, fork performs two operations: spawning a

new thread, and creating a fresh name to be used to communicate with the thread. Coupling

these two operations ensures a tree-like topology on con�gurations and is key to ensuring

deadlock-freedom in the core calculus.

Rule E-Comm describes synchronous communication between two threads over name a.

Term sendV a reduces to a, returning the updated channel endpoint, and receive a reduces

to a pair of the transmitted value V and the updated endpoint a.

Rule E-Wait eliminates name a when the session has completed, returning the unit value

to the calling thread, and garbage-collecting the child thread.

We write =⇒ to mean the relation ≡−→≡—that is, reduction modulo equivalence.

3.3 Metatheory

Typing of Con�gurations. To reason about the metatheory of SGV, we require typing

rules for con�gurations, shown in Figure 3.5. Note that con�guration typing rules need not be

used as part of a typechecker: con�guration typing rules encode well-formedness conditions

about the program state at runtime, and are needed only to reason about SGV’s metatheory.

We add rule T-Name to type runtime names occurring in terms as a result of reduction.

Rule T-Nu types a name restricton (νa)C which binds name a in con�guration C ; name

a is ascribed type S] which must be split over a parallel composition using either rule T-

Connect1 or T-Connect2. We require both rules for parallel composition in order to preserve

con�guration typing under commutativity of parallel composition. To see why, consider the

following derivation:

Γ1,a : S ` C Γ2,a : S `D

Γ1,Γ2,a : S] `φ C ‖D

Supposing that we only had rule T-Connect1 available, we would not be able to commute the
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Updated Term Typing Rule Γ `M : A

T-Name

a : S ` a : S

Typing of Con�gurations Γ `φ C

T-Nu

Γ,a : S] `φ C

Γ `φ (νa)C

T-Connect1

Γ1,a : S `φ1 C Γ2,a : S `φ2 D

Γ1,Γ2,a : S] `φ1+φ2 C ‖D

T-Connect2

Γ1,a : S `φ1 C Γ2,a : S `φ2 D

Γ1,Γ2,a : S] `φ1+φ2 C ‖D

T-Thread

Γ `M : End!

Γ `◦ ◦M

T-Main

Γ `M : A

Γ `• •M

Combination of Flags φ1 +φ2

•+◦= • ◦+•= • ◦+◦= ◦ •+• unde�ned

Reduction on Session Types and Typing Environments S−→ S′ Γ−→ Γ′

!A.S−→ S ?A.S−→ S

S−→ S′

Γ,a : S] −→ Γ,a : S′]

Figure 3.5: Runtime Typing for Synchronous GV
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two subcon�gurations while retaining typeability:

Γ1,a : S 6`D Γ2,a : S 6` C

Γ1,Γ2,a : S] 6`D ‖ C

Rule T-Thread encodes the invariant that each child thread must return a fully-used session

endpoint of type End!, and rule T-Main states that the main thread of the con�guration may

return a value of any type.

It is convenient to de�ne the notion of a ground con�guration. We write Γ `• C : A if the

derivation of Γ `• C has a subderivation of the form:

Γ
′ `M : A

Γ
′ `• •M

De�nition 1 (Ground Con�guration). We say that C is a ground con�guration if there exists

A such that · `• C : A and A contains no session types or function types.

The judgement for con�gurations, written Γ `φ C , can be read as, “under typing environ-

ment Γ and �ag φ, con�guration C is well-typed”.

The con�guration typing rules are su�cient to rule out ill-formed and deadlocking pro-

cesses. We show three examples: unmatched communication; communication mismatch; and

deadlock.

Unmatched communication.

(νa)(•send 5 a)

This con�guration cannot reduce since name a is not split over two threads, and thus the

communication action will never occur.

· ` 5 : Int a : (!Int.End)] 6` a :?

a : (!Int.End)] 6` send 5 a :?

a : (!Int.End)] 6`• •(send 5 a)

· 6`• (νa)(•send 5 a)

It is not possible to construct a typing derivation, since values of type S] may not occur in

terms.

Communication mismatch.

(νa)(•send 5 a ‖ ◦send 10 a)
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This con�guration cannot reduce since uses of name a are not dual, resulting in a communica-

tion mismatch.

· ` 5 : Int a : !Int.End? ` a : !Int.End?

a : !Int.End? ` send 5 a : End?

a : !Int.End? `• •send 5 a

a : ?Int.End! 6` send 10 a

a : ?Int.End! 6`◦ ◦send 10 a

a : (!Int.End?)
] `• •send 5 a ‖ ◦send 10 a

· 6`• (νa)(•send 5 a ‖ ◦send 10 a)

The type system rules out the example since (by T-Connect1 and T-Connect2), channel type

(!Int.End?)
]

must be split into two endpoints of dual types !Int.End? and ?Int.End!.

Deadlock. let (res,x) = receive a in

let y = send resb in M

 ‖ ◦
let (res,y) = receive b in

let x = send res x in N


This con�guration cannot reduce since the communication is deadlocking: the �rst process

attempts to receive along name a and then send along name b, whereas the second process

attempts to receive along b and then send along name a. The type system rules out the example

as there is no way to share both a and b along the single parallel composition:

Γ1,a : ?A.S 6`• •

let (res,x) = receive a in

let y = send resb in M

 Γ2,a : !A.S,b : (!A.T )] 6`◦ ◦

let (res,y) = receive b in

let x = send res x in N


Γ1,Γ2,a : (?A.S)],b : (!A.T )] `• •

let (res,x) = receive a in

let y = send resb in M

 ‖ ◦
let (res,y) = receive b in

let x = send res x in N



Safe but untypeable con�gurations. The type system is conservative in that it disallows

some cyclic, yet non-deadlocking terms. Consider the con�guration:

(νa)(νb)(•

let (res,x) = receive a in

let y = send resb in M

 ‖ ◦
let x = send 5 a in

let (res,x) = receive b in N

)

The �rst process receives along name a before sending on name b, and the second process

sends along name a before receiving on name b. While the con�guration is cyclic since two

channels connect the two processes, it does not deadlock (assuming the interactions in M and

N are also non-deadlocking). Nevertheless, the con�guration is untypeable in SGV since there

is no way to share both a and b over the single parallel composition. Safe cyclic processes may

be typed using techniques such as channel priorities [119], and indeed Dardha and Gay [53]

extend CP using channel priorities to allow safe cyclic processes. These techniques may be

used in tandem with the techniques described in the remainder of this thesis, but are otherwise

orthogonal.
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When implementing practical languages, expressiveness may be regained through exten-

sions such as access points (discussed further in Chapter 9) at the cost of weaker metatheoretic

guarantees. In this thesis however, we concentrate on well-behaved calculi, and show that

extensions such as asynchrony and exception handling do not compromise the core guarantees.

3.3.1 Overview of Metatheory

Due to its roots in linear logic, SGV enjoys a strong metatheory, providing preservation, global

progress, con�uence, and termination.

Preservation

Typeability of con�gurations is preserved by reduction. As is common in session-typed

functional languages based on linear logic, typeability is not preserved by equivalence,

but reduction never relies on the ill-typed use of an equivalence.

Global Progress

Due to the acyclicity of con�gurations, SGV is deadlock-free and does not ‘get stuck’.

In the case of closed con�gurations where the main thread contains no free names, a

non-reducing con�guration is equal to a value.

Determinism

Term reduction is entirely deterministic. Although the reduction relation on con�gura-

tions is nondeterministic, communication actions are independent due to linearity and

can therefore be performed in either order.

Termination

There are no in�nite reduction sequences from a well-typed con�guration. As SGV is a

purely-linear calculus, this follows via an elementary argument due to linearity, since the

size of a term strictly decreases under reduction.

3.3.2 Preservation and Session Fidelity

Before showing that typing is preserved under reduction, we must �rst state some auxiliary

results.

We begin with a substitution lemma that holds for linear λ-calculi. Note that due to

linearity, we must explicitly state that Γ1,Γ2 is de�ned.

Lemma 1 (Substitution). Suppose Γ1,x : B `M : A and Γ2 `N : B, where Γ1,Γ2 is de�ned. Then

Γ1,Γ2 `M{N/x} : A.

Proof. By induction on the derivation of Γ1,x : B `M : A.
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Next, we require some lemmas which allow us to manipulate evaluation contexts, which are

adapted for linear λ-calculi and follow a similar form to those of Wright and Felleisen [216].

The �rst, subterm typeability, states that if a term E[M] is well-typed, then there exists some

subderivation showing that M is well-typed. This lemma allows us to decompose evaluation

contexts.

Lemma 2 (Subterm typeability). If D is a derivation of Γ1,Γ2 ` E[M] : A, then there exists some

subderivation D′ of D concluding Γ2 `M : B, where the position of D′ in D corresponds to that of

the hole in E .

Proof. By induction on the structure of E .

The next lemma, subterm replacement, allows us to replace the term in the hole of an evaluation

context.

Lemma 3 (Subterm replacement). If:

• D is a derivation of Γ1,Γ2 ` E[M] : A

• D′ is a subderivation of D concluding Γ2 `M : B

• The position of D′ in D corresponds to that of the hole in E

• Γ3 ` N : B

• Γ1,Γ3 is well-de�ned

then Γ1,Γ3 ` E[N] : A.

Proof. By induction on the structure of E .

So far, we have shown results for manipulating term contexts. Con�guration contexts allow

us to reason about reduction under name restrictions and for processes that are part of a

parallel composition. The lemmas follow the same structure as the analogous lemmas for

term contexts, but are complicated slightly by the fact that (νa)G binds a in G . Nonetheless,

replacement is safe when using environments related by the reduction relation. Again, both

proofs follow by induction on the structure of the con�guration context G .

Lemma 4 (Subcon�guration typeability). If D is a derivation of Γ `φ G [C ], then there exist

Γ′,φ′ such that D has a subderivation D′ that concludes Γ′ `φ′ C and the position of D′ in D

corresponds to the position of the hole in G .

Lemma 5 (Subcon�guration replacement). If:

• D is a derivation of Γ `φ G [C ]
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• D′ is a subderivation of D concluding that Γ′ `φ′ C for some Γ′,φ′

• The position of D′ in D corresponds to that of the hole in G

• Γ′′ `φ′ D for some Γ′′ such that Γ′ −→? Γ′′

then there exist some Γ′′′ such that Γ−→? Γ′′′ and Γ′′′ `φ G [D].

Unsurprisingly, functional reduction preserves typing.

Lemma 6 (Preservation (SGV Terms)). If Γ `M : A and M −→M N, then Γ ` N : A.

Proof. Standard; by induction on the derivation of M −→M N.

We may extend this result to show reduction on con�gurations preserves typing.

Theorem 1 (Preservation (SGV Con�gurations)). If Γ `φ C and C −→ D , then there exists

some Γ−→? Γ′ such that Γ′ `φ D .

Proof. By induction on the derivation of C −→D , making use of Lemmas 1–5. The full proof

can be found in Appendix A, but we show the case for E-Comm here. As there is a choice of

�ags, we make the decision to prove the case where the �rst �ag is • and the second is ◦; the

proofs for other cases are similar.

Case E-Comm

•E[sendV a] ‖ ◦E ′[receive a] −→ •E[a] ‖ ◦E ′[(V,a)]

Assumption:

Γ1,Γ2,a : S ` E[sendV a] : C

Γ1,Γ2,a : S `• •E[sendV a]

Γ3,a : S ` E ′[receive a] : End!

Γ3,a : S `◦ ◦E ′[receive a]

Γ1,Γ2,Γ3,a : S] `• •E[sendV a] ‖ ◦E ′[receive a]

By Lemma 2 and inversion on the typing relation:

Γ2 `V : A a : !A.S′ ` a : !A.S′

Γ2,a : !A.S′ ` sendV a : S′

Also by Lemma 2 and inversion on the typing relation:

a : ?A.S′ ` a : ?A.S′

a : ?A.S′ ` receive a : (A×S′)



Chapter 3. Synchronous GV 40

This reasoning allows us to re�ne our original derivation:

Γ1,Γ2,a : !A.S′ ` E[sendV a] : C

Γ1,Γ2,a : !A.S′ `• •E[sendV a]

Γ3,a : ?A.S′ ` E ′[receive a] : End!

Γ3,a : ?A.S′ `◦ ◦E ′[receive a]

Γ1,Γ2,Γ3,a : (!A.S′)] `• •E[sendV a] ‖ ◦E ′[receive a]

By Lemma 3, Γ1,a : S′ `E[a] :C, and Γ2,Γ3,a : S′ `E ′[(V,a)] : End! (that Γ2,Γ3 is well-de�ned

follows from the fact that the two environments are disjoint).

Recomposing:

Γ1,a : S′ ` E[a] : C

Γ1,a : S′ `• •E[a]

Γ2,Γ3,a : S′ ` E ′[(V,a)] : End!

Γ2,Γ3,a : S′ `◦ ◦E ′[(V,a)]

Γ1,Γ2,Γ3,a : S′] `• •E[a] ‖ ◦E ′[(V,a)]

Finally, we can show that the environment in the �rst derivation reduces to the environment

in the �nal derivation:

!A.S′ −→ S′

Γ1,Γ2,Γ3,a : (!A.S′)] −→ Γ1,Γ2,Γ3 : a : S′]

as required.

Typing and Con�guration Equivalence. Preservation of con�guration reduction does

not quite get us the whole way, however. Note that the relation −→ is not de�ned mod-

ulo equivalence. In fact, unfortunately, typeability of con�gurations is not preserved by

equivalence. Consider the well-typed con�guration Γ `φ (νa)(νb)(C ‖ (D ‖ E)), where

a ∈ fn(C ), b ∈ fn(D), and a,b ∈ fn(E). While C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E , we have that

Γ 6`φ (νa)(νb)((C ‖D) ‖ E ), since only a or b would be present when typing E . It helps to

consider a typing derivation:

Γ1,a : S `φ1 C

Γ2,b : T `φ2 D Γ3,a : S,b : T `φ3 E

Γ2,Γ3,a : S,b : T ] `φ2+φ3 D ‖ E

Γ1,Γ2,Γ3,a : S],b : T ] `φ1+φ2+φ3 C ‖ (D ‖ E)

Γ1,Γ2,Γ3,a : S] `φ1+φ2+φ3 (νb)(C ‖ (D ‖ E))

Γ1,Γ2,Γ3 `φ1+φ2+φ3 (νa)(νb)(C ‖ (D ‖ E))

where Γ = Γ1,Γ2,Γ3 and φ = φ1 +φ2 +φ3.

However, while C ‖ (D ‖ E)≡ (C ‖D) ‖ E , it is not the case that Γ `φ (C ‖D) ‖ E , since

there is no way of splitting a : S] and b : T ]
over both parallel compositions. For example:
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Γ1,Γ2,a : S,b : T ] 6`φ1+φ2 C ‖D Γ3,a : S 6`φ3 E

Γ1,Γ2,Γ3,a : S],b : T ] `φ1+φ2+φ3 (C ‖D) ‖ E

Γ1,Γ2,Γ3,a : S] `φ1+φ2+φ3 (νb)((C ‖D) ‖ E)

Γ1,Γ2,Γ3 `φ1+φ2+φ3 (νa)(νb)((C ‖D) ‖ E)

While this is inconvenient, it poses no problems for reduction. First, note that only associativity

of parallel composition breaks typeability under equivalence.

Lemma 7. If Γ `φ C and C ≡D , where the derivation of C ≡D does not contain a use of the

axiom for associativity of parallel composition, then Γ `φ D .

Proof. By induction on the derivation of C ≡D ; see Appendix A.

Second, note that we may always safely re-associate parallel composition either directly, or by

�rstly commuting a con�guration. Returning to our example, we have that C ‖ (D ‖ E) ≡
C ‖ (E ‖D), and that Γ `φ (νa)(νb)((C ‖ E) ‖D):

Γ1,a : S `φ1 C Γ3,a : S,b : T `φ3 E

Γ1;Γ3,a : S],b : T `φ1+φ3 C ‖ E Γ2,b : T `φ2 D

Γ1,Γ2,Γ3,a : S],b : T ] `φ1+φ2+φ3 (C ‖ E) ‖D

Γ1,Γ2,Γ3,a : S] `φ1+φ2+φ3 (νb)((C ‖ E) ‖D)

Γ1,Γ2,Γ3 `φ1+φ2+φ3 (νa)(νb)((C ‖ E) ‖D)

We can state this result more generally:

Lemma 8.

1. If Γ `φ C ‖ (D ‖ E), then either Γ `φ (C ‖D) ‖ E or Γ `φ (C ‖ E) ‖D .

2. If Γ `φ (C ‖D) ‖ E , then either Γ `φ C ‖ (D ‖ E) or Γ `φ D ‖ (C ‖ E).

Proof. Direct. We show the proof of property (1); the proof of property (2) is symmetric.

By the assumption that Γ `φ C ‖ (D ‖ E) we have that Γ = Γ1,Γ2,Γ3,a : S],b : T ]
and

φ = φ1 +φ2 +φ3. There are 4 cases, based on whether a,b ∈ fn(D) or a,b ∈ fn(E) (it cannot

be the case that a,b ∈ fn(C ), as C only occurs under a single parallel composition), and the

exact dualisation (i.e., whether composition happens via T-Connect1 or T-Connect2).

Of these, we are only interested in the cases where the sharing of the names di�ers, as op-

posed to the dualisation. Thus, we consider the following two cases, where both compositions

occur using T-Connect1:
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1. Γ1,a : S `φ1 C , and Γ2,a : S,b : T `φ2 D , and Γ3,b : T `φ3 E

2. Γ1,a : S `φ1 C , and Γ2,b : T `φ2 D , and Γ3,a : S,b : T `φ3 E

Case a ∈ fn(C ),a,b ∈ fn(D),b ∈ fn(E)

Γ1,a : S `φ1 C

Γ2,a : S,b : T `φ2 D Γ3,b : T `φ3 E

Γ2,Γ3,a : S,b : T ] `φ2+φ3 D ‖ E

Γ1,Γ2,Γ3,a : S],b : T ] `φ1+φ2+φ3 C ‖ (D ‖ E)

As D contains both a and b, associativity does not alter the sharing of names and may be

applied safely.

Γ1,a : S `φ1 C Γ2,a : S,b : T `φ2 D

Γ1,Γ2,a : S],b : T `φ1+φ2 C ‖D Γ3,b : T `φ3 E

Γ1,Γ2,Γ3,a : S],b : T ] `φ1+φ2+φ3 (C ‖D) ‖ E

Case a ∈ fn(C );b ∈ fn(D);a,b ∈ fn(E)

Γ1,a : S `φ1 C

Γ2,b : T `φ2 D Γ3,a : S,b : T `φ3 E

Γ2,Γ3,a : S,b : T ] `φ2+φ3 D ‖ E

Γ1,Γ2,Γ3,a : S],b : T ] `φ1+φ2+φ3 C ‖ (D ‖ E)

We may not apply associativity directly, but we may �rst commute D and E :

Γ1,a : S `φ1 C

Γ3,a : S,b : T `φ3 E Γ2,b : T `φ2 D

Γ2,Γ3,a : S,b : T ] `φ2+φ3 E ‖D

Γ1,Γ2,Γ3,a : S],b : T ] `φ1+φ2+φ3 C ‖ (E ‖D)

and from here we may safely re-associate to the left:

Γ2,a : S `φ1 C Γ3,a : S,b : T `φ3 E

Γ2,Γ3,a : S],b : T `φ1+φ2 D ‖ E Γ3,b : T `φ3 D

Γ1,Γ2,Γ3,a : S],b : T ] `φ1+φ2+φ3 (C ‖ E) ‖D

While ill-typed con�gurations may arise as a result of the equivalence relation, this has

bearing on reduction: for every reduction relying on an ill-typed use of equivalence, there is

an equivalent reduction relying only on well-typed uses of equivalence.
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We �rst formally establish the acyclicity of con�gurations. The con�guration typing rules

T-Connect1 and T-Connect2 require that two processes must share a single channel name

in order to be composed in parallel. We de�ne fn(C ) as the set of free names contained in a

con�guration; for example, a name a not occurring in the scope of a name restriction (νa)C .

With this, we may formalise the observation that two parallel con�gurations have precisely

one name in common.

Lemma 9. If Γ `φ C and C can be written C = G [D ‖ E ], then fn(D)∩ fn(E) = {a} for some

name a.

Proof. By induction on the derivation of Γ `φ C . The only interesting cases are T-Connect1

and T-Connect2, which partition the environment apart from a single shared name.

We can now formally state that the existence of ill-typed equivalence has no bearing on

reduction.

Theorem 2 (Preservation modulo equivalence (SGV)).

If Γ `φ C , C ≡D , and D −→D ′, then:

1. There exists some E such that D ≡ E , and Γ `φ E , and E −→ E ′

2. There exists some Γ′ such that Γ−→ Γ′ and Γ′ `φ E ′

3. D ′ ≡ E ′

Proof. By Lemma 7, we have that all equivalence axioms except the associativity of parallel

composition preserve typing. Thus, we need only consider ill-typed uses of the associativity

axiom:

C ‖ (D ‖ E)≡ (C ‖D) ‖ E

The only non-trivial reduction cases are E-Send, E-Receive, and E-Wait. The only reason

for us to apply the associativity of parallel composition rule from right-to-left is to enable

con�gurations C and D to communicate.

For any new reduction to be possible, it must be the case therefore that there exists some

a ∈ fn(C ) and a ∈ fn(D).

As the left-hand-side of the equivalence is well-typed, by Lemma 9, we have that C and E
have no names in common, that D and E share a name, and that the right-hand-side of the

equivalence must be well-typed as there is still exactly one channel connecting each of the

parallel compositions.

The argument for the case of applying the rule from right-to-left is symmetric. In summary,

any ill-typed use of equivalence rules is useless, as it does not enable any more reductions.

It follows that when we write C =⇒D , we can assume that we only consider the reductions

using well-typed applications of equivalence rules.
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3.3.3 Global Progress

The con�guration typing rules for SGV ensure an acyclic, tree-structured communication

topology, and thus rule out deadlocked con�gurations by construction. We proceed �rstly by

formalising this graph-theoretic notion of deadlock-freedom, and showing that well-typed

terms are deadlock free. Next, we prove progress directly.

We begin by classifying the notion of a process being blocked on a particular channel name.

We say that a term φM is blocked on a name a if it is waiting to send on, receive from, or wait

on a. Formally:

blocked(M,a), ∃E.(M = E[sendV a])∨ (M = E[receive a])∨ (M = E[wait a])

If a thread M is blocked on a name a, then we know that it may only reduce when another

process N is blocked on a, performing the dual communication action. Any communications on

some name b in fn(E) require the communication on a to occur prior to the communication on

b. We can formalise this notion of dependency, and also lift the result to arbitrary con�gurations

of threads; note that the dependency may pass through an arbitrary third thread.

depends(a,b,M), blocked(a,M)∧b ∈ fn(M)

depends(a,b,C ) = (∃G ,M.C ≡ G [M]∧depends(a,b,M))∨
(∃G ,c.C ≡ G [D ‖ E ]

∧depends(a,c,D)∧depends(c,b,E))

Deadlocked con�gurations are those which contain cyclic dependencies. As our notion of de-

pendency encompasses transitive dependencies, it su�ces to de�ne a deadlocked con�guration

as the existence of a single cyclic dependency. Formally:

deadlocked(C ), ∃D,E ,a,b.C ≡ G [D ‖ E ]∧depends(a,b,D)∧depends(b,a,E)

We can now state that well-typed SGV programs are not deadlocked.

Theorem 3 (Deadlock Freedom (SGV)). If Γ `φ C , then ¬deadlocked(C ).

Proof. By contradiction. Suppose that deadlocked(C ). By the de�nition of deadlocked(C),

there would have to exist some con�gurations D,E , con�guration context G , and names a

and b such that C ≡ G [D ‖ E ] such that depends(a,b,D) and depends(b,a,E). However,

this would require either b = a, violating linearity, or would require both a and b to be shared

between D and E , which is ill-typed by Lemma 9.

Deadlock-freedom does not necessarily imply progress: just because we know that there are

no cyclic dependencies does not necessarily mean that the system can always make a reduction

step.
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Our functional core satis�es a form of progress, under an environment containing only

runtime names. In particular a term is either a value, an evaluation context focused on

a concurrency construct, or can β-reduce. For convenience, let us de�ne Ψ as a typing

environment containing only runtime names:

Ψ ::= · |Ψ,a : S

Lemma 10 (Progress (SGV terms)). If Ψ `M : A, then either:

1. M is a value

2. There exists some N such that M −→M N

3. There exist some E and N such that M may be written E[N], where N is a communication

and concurrency construct, i.e., forkV , sendV W , receiveV , or waitV .

Proof. Standard: by induction on the derivation of Ψ `M : A.

We cannot reason inductively in a similar way about the progress of con�gurations. Instead,

we de�ne a canonical form which allows us to reason about the con�guration as a whole. Let

M denote con�gurations of the following form:

M ::= ◦M′1 ‖ · · · ‖ ◦M′n ‖ φN

De�nition 2 (Canonical Form). A con�guration C is in canonical form if it has names a1, . . .an

and threads L1, . . .Ln and N such that C can be written:

C = (νa1)(◦L1 ‖ · · · ‖ (νan)(◦Ln ‖M ) · · ·)

where for each Mi, we have that ai ∈ fn(Mi).

A canonical form makes the sharing of names in a con�guration explicit. Note that canonical

forms do not necessarily have to be unique: to take a simple example, suppose that we

have a con�guration C = (νa1)(νa2)(◦M1 ‖ ◦M2 ‖ •N), with a1 ∈ fn(M1), a2 ∈ fn(M2), and

a1,a2 ∈ fn(N). Both:

1. (νa1)(◦M1 ‖ (νa2)(◦M2 ‖ •N))

2. (νa2)(◦M2 ‖ (νa1)(◦M1 ‖ •N))

are valid canonical forms of C . Now, we can show that every well-typed con�guration may be

written in canonical form.

Theorem 4. Suppose Γ `φ C . Then there exists some C ′ such that Γ `φ C ′ and C ′ is in canonical

form.
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Proof. By induction on the count of ν-bound names. Without loss of generality, assume that

the ν-bound names of C are distinct. Let {ai | 1 ≤ i ≤ n} be the set of ν-bound names in C
and let {D j | 1≤ j ≤ m} be the set of threads in C .

In the case that n = 0, by Lemma 7 we can safely commute the thread determining the

thread �ag such that it is the rightmost con�guration, and associate parallel composition to

the right using Lemma 8 to derive a well-typed canonical form.

In the case that n≥ 1, pick some ai and D j such that ai is the only ν-bound name in fn(D j);

Lemma 9 and a standard counting argument ensure that such a name and con�guration exist.

By the equivalence rules, there exists E such that C ≡ (νai)(D j ‖ E) and Γ `φ (νai)(D j ‖ E)

(that ai is the only ν-bound name in fn(D j) ensures well-typing). Moreover, we have that

there exist Γ′ ⊆ Γ and S, such that Γ′,ai : S `φ E . By the induction hypothesis, there exists E ′

in canonical form such that Γ′,ai : S `φ E ≡ E ′. Let C ′ = (νai)(D j ‖ E ′). By construction it

holds that C ≡ C ′, that Γ `φ C ′, and that C ′ is in canonical form.

A canonical form gives us a global view of the con�guration, and we can use a canonical form

to state a precise progress result. In particular, for open con�gurations, each thread must be

blocked on either a variable in the typing environment, or a ν-bound name.

We show this result by de�ning the notion of open progress, allowing us to deconstruct

canonical forms step-by-step, and to reason about the form of each subcon�guration.

De�nition 3 (Open Progress). Suppose Ψ `φ C , where C is in canonical form and C 6=⇒.

We say that C satis�es open progress if:

1. C = (νa)(◦M ‖D), where:

• There exists a session type S and a session type T ∈ {S,S}

• Ψ = Ψ1,Ψ2

• Ψ1,a : T `◦ ◦M where either M = a, or there exists some b ∈ fn(Ψ1,a : T ) such that

blocked(b,M); and

• Ψ2,a : T `φ D and D satis�es open progress

2. C = ◦M′ ‖M , where:

• There exists a session type S and a session type T ∈ {S,S}

• Ψ = Ψ1,Ψ2,a : S]

• Ψ1,a : T `◦ ◦M′ where either M′ = a, or there exists some b ∈ fn(Ψ1,a : T ) and

blocked(b,M′); and

• Ψ2,a : T `φ M and M satis�es open progress

3. C = φM where either M is a value, or blocked(M,a) for some a ∈ fn(Ψ).
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Our de�nition of open progress exploits the observation that canonical forms can be de�ned

inductively. A canonical form is either a name restriction and child thread in parallel with

a con�guration in canonical form; a child thread without a name restriction in parallel with

a con�guration in canonical form but not including any name restrictions; or the thread

determining the thread �ag of the whole con�guration.

Open progress details the conditions under which a well-typed con�guration in canonical

form cannot reduce. Moreover, the property states that each child thread is either blocked on the

ν-bound name that immediately precedes the thread, or a name in the typing environment, and

that the main thread must either be a value or blocked on a variable in the typing environment.

Every well-typed con�guration satis�es open progress.

Lemma 11. If Ψ `φ C and C 6=⇒, then C satis�es open progress.

Proof. By induction on the derivation of Ψ `φ C . By the de�nition of canonical forms, C must

either be of the form (νa)(◦M ‖D), where D is in canonical form; ◦M ‖M ; or φM.

Case C = (νa)(◦M ‖D), where D is in canonical form

Assumption:

Ψ1,a : T `◦ ◦M Ψ2,a : T `φ D

Ψ1,Ψ2,a : S] `φ ◦M ‖D

Ψ1,Ψ2 `φ (νa)(◦M ‖D)

where T ∈ {S,S}, depending on whether T-Connect1 or T-Connect2 is used for parallel

composition. Note that it must be the case that name a is split over the parallel composition,

due to the requirement that ai ∈ fn(Mi) for each ai,Mi in a canonical form.

By T-Thread, we have that Ψ1,a : T `M : End!.

By Lemma 10, we have that either M is a value, or M can be written E[N] where N is

a communication or concurrency construct. If M is a value, then it must be the case that

M = a and T = End!, satisfying the de�nition of open pogress. If M is of the form E[N],

then N cannot be of the form forkM as fork can always reduce, so it must be the case that

blocked(M,b) for some name b ∈ fn(Ψ1,a : T ). By the induction hypothesis, Ψ2,a : T `φ D
satis�es open progress, so Ψ `φ (νa)(◦M ‖D) satis�es open progress.

Case C = ◦M ‖M

Similar to the previous case, however the name split by the parallel composition is not

introduced by a name restriction and hence must be in fn(Ψ).

Case C = φM



Chapter 3. Synchronous GV 48

By similar reasoning to the �rst case, either M is a value, or M can be written E[N] where N

is a communication or concurrency construct that is not fork. Hence, there must exist some

a ∈ fn(Ψ) such that blocked(M,a).

As an immediate corollary, we obtain a more global view of the structure of non-reducing,

well-typed con�gurations.

Corollary 1 (Open Progress (SGV Con�gurations)). Suppose Ψ `φ C , where C is in canonical

form, and 6=⇒.

Let C = (νa1)(◦M1 ‖ · · · ‖ (νan)(◦Mm ‖ φM ) · · ·), with M = Mm+1 ‖ (Mm+2 ‖ · · · ‖ (Mn ‖
φN) · · ·).

Then:

1. For each Mi ∈ M1, . . . ,Mn, either Mi = ai, or blocked(b,Mi) for some b ∈ {a j | 1 ≤ j ≤
i}∪ fn(Ψ)

2. N is either a value, or blocked(b,N) for some b ∈ {a j | 1≤ j ≤ n}∪ fn(Ψ)

We can substantially tighten this result when we consider only closed con�gurations with a

main thread.

Corollary 2 (Closed Progress (Synchronous GV Con�gurations)). Suppose · `• C , where C is

in canonical form, and 6=⇒.

Let C = (νa1)(◦M1 ‖ · · · ‖ (νan)(◦Mn ‖ •N) · · ·). Then:

1. For each Mi, either Mi = ai, or blocked(ai,Mi)

2. N =V for some value V .

The closed progress result is substantially stronger than the open progress result. The reason

for this is that each Mi must be blocked on the corresponding ai: for example, M1 must be

either a value or blocked on a1; M2 cannot be blocked on a1 since it could then reduce (by

the typing of con�gurations, duality ensures that M1 would be blocked on a send, and M2

would be blocked on a receive, and thus the con�guration could reduce by E-Comm), so must

be blocked on a2, and so on.

Our progress result for closed canonical forms can be strengthened even further should

the main thread not contain any free names (recall that by T-Main, the main thread can have

any type, including session types). A conservative way of ensuring that the main thread

contains no free names is to require that the con�guration is a ground con�guration—a closed

con�guration where the type of the main thread does not contain any session types or function

types. Any non-reducing ground con�guration must be a value.
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Theorem 5 (Global Progress (SGV)). Suppose · `• C , where C is a ground con�guration in

canonical form, and 6=⇒. Then C = •V .

Proof. By Corollary 2, we have that C may be written C = (νa1)(◦M1 ‖ · · · ‖ (νan)(◦Mn ‖ •V ))

where each Mi either equal to or blocked on ai. Since C is a ground con�guration, fn(V ) = /0

and so no child thread may be blocked or awaiting collection by wait.

3.3.4 Con�uence

We described the design of the operational semantics for Synchronous GV as a deterministic

reduction relation on terms, and a nondeterministic reduction relation on con�gurations.

While it is true that reduction on con�gurations is nondeterministic, it does in fact satisfy a

strong notion of con�uence, known as the diamond property [15]: if a term can reduce to two

separate con�gurations, then the con�gurations are either equivalent, or the con�gurations

will converge in a single step.

Theorem 6 (Diamond Property). If Γ `φ C , and C =⇒D1, and C =⇒D2, then either D1 ≡D2,

or there exists some D3 such that D1 =⇒D3 and D2 =⇒D3.

Proof. Firstly, observe that −→M is deterministic due to the call-by-value, left-to-right evalua-

tion strategy imposed by evaluation contexts.

Thus, critical pairs only arise as a result of term reductions in di�erent threads, or when

performing communication actions on two separate channels. By linearity, these must occur

independently and therefore may occur in any order.

3.3.5 Termination

The linearity of GV leads to an elementary termination proof.

Theorem 7 (Termination). If Γ `φ C , then there are no in�nite =⇒ reductions from C .

Proof. We have an elementary proof due to linearity. De�ne the measure of a con�guration to

be the size of the sums of the ASTs of all threads. The measure of an AST strictly decreases

by −→M, since due to linearity, substitution may not duplicate a variable. The measure of a

con�guration strictly decreases under −→, and remains invariant under ≡, thus no in�nite

reduction sequences exist.

Of course, this is unsurprising given that GV does not include unrestricted types or shared

channels. If we were to introduce unrestricted types, a CPS translation along the lines of Lindley

and Morris [133] would su�ce; in the presence of shared channels, we would require a logical

relations argument along the lines of Pérez et al. [170].
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Modi�ed Syntax

Session Types S ::= !A.S | ?A.S | End
Terms L,M,N ::= · · · | close M

Modi�ed typing rules for terms Γ `M : A

T-Fork

Γ `M : (S ( 1)

Γ ` forkM : S

T-Close

Γ `M : End

Γ ` close M : 1

Duality

!A.S = ?A.S ?A.S = !A.S End= End

Additional Equivalence C ≡D

◦() ‖ C ≡ C

Additional reduction rule for con�gurations C −→D

E-Close (νa)(F [close a] ‖ F ′[close a]) −→ F [()] ‖ F ′[()]

Modi�ed typing rules for con�gurations Γ `φ C

T-Thread

Γ `M : 1

Γ `◦ ◦M

T-Mix

Γ1 `φ1 C Γ2 `φ2 D

Γ1,Γ2 `φ1+φ2 C ‖D

Figure 3.6: Modi�cations to GV to include a self-dual End type

3.4 Design Decisions

We have presented a particular base design for SGV, but have taken several technical design

decisions. In this section, we discuss alternative designs, the consequences of the designs, and

our reasoning for making the decisions we have.

3.4.1 Split Ends vs. Conditioned Ends

Previous work on session calculi, and implementations of languages with session types, often

provide a single, self-dual End type to signify that a session has no more communication

actions. In contrast, SGV provides two such types: End! and End?, which are dual.

Interestingly, the choice of having separate End! and End? types (‘split ends’) or a single,

self-dual End type (‘conditioned ends’) is a fundamental decision regarding the logical corre-
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spondence. In fact Atkey et al. [13] show that having a single, self-dual End type corresponds

to con�ating the 1 and ⊥ types in CP, which is equivalent to the addition of the logical Mix

and Mix0 rules [79]:

Mix0

` ·

Mix

` Γ ` ∆

` Γ,∆

Interpreted computationally, the addition of the Mix rule allows two independent processes to

be composed in parallel, without being linked by a channel.

We will now investigate this logical observation from a language design perspective.

Figure 3.6 shows the modi�cations to SGV in order to allow conditioned ends. In addition to

replacing End! and End? with a single, self-dual End type, we replace the wait M construct

with closeM, which takes a channel of type End and produces the unit value. Additionally, we

modify the typing rule for forkM such that the function M takes a session of type S as before,

but produces the unit value instead of a value of type End!. We also introduce a ‘garbage

collection’ equivalence axiom which allows completed threads to be discarded.

The reduction rule E-Close provides perhaps the most stark justi�cation as to why the

Mix rule becomes necessary. Recall the reduction rule E-Wait:

(νa)(F [wait a] ‖ ◦a) −→ F [()]

Here, we have that the wait construct synchronises with the �nished thread, eliminating both

the child thread and the name.

With E-Close, however, while the name restriction is eliminated, the child thread is not—

and indeed, it is not safe to do so as the evaluation context F ′ may contain linear variables.

The communication link is severed between the threads, but the threads should be able to

evaluate regardless. As a result, we require the rule T-Mix, which allows processes to be

composed in parallel even though they are not linked by a channel.

Justi�cation. A self-dual End type is arguably easier to conceptualise as a developer.

Nonetheless, for SGV (and indeed AGV which is described in Chapter 8), we choose to retain

split ends. From a more theoretical perspective, we retain tighter logical connections. But

from a more pragmatic point of view, the language with split ends has fewer reduction rules;

the communication topology always remains a tree instead of a forest; and reasoning about

the metatheory (in particular canonical forms) is more uniform.

That said, in Chapter 9, we discuss Exceptional GV which does have a self-dual End type.

The justi�cation for this is that in EGV, we will see that exceptions indeed necessarily partition

the communication topology, thus requiring Mix; as conditioned ends and the Mix and Mix0

rules are logically equivalent, it makes little sense to have one without the other.
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Unrestricted Types un(A) un(Γ)

un(End)

un(A) un(B)

un(A×B)

un(A) un(B)

un(A+B)

∀x : A ∈ Γ.un(A)

un(Γ)

Modi�ed Typing Rules for Terms Γ `M : A

T-Var

un(Γ)

Γ,x : A ` x : A

T-Name

un(Γ)

Γ,a : S ` a : S

Figure 3.7: Modi�ed term typing rules for a�ne End types

3.4.2 Linear Ends vs. A�ne Ends

If we were to adopt conditioned ends, we could actually go a step further and eliminate close

from the language altogether. Figure 3.7 shows modi�ed typing rules which allow channels of

type End to be discarded implicitly. The key idea is that we mark type End (as well as sums

and products which only contain values of type End) as unrestricted, written un(A). We say

that a typing environment is unrestricted, written un(Γ), if it only contains unrestricted types.

As a result, it is possible to type the following program:

let s = fork (λt.let t = send 5 t in ()) in

let (x,s) = receive s in

x

We fork o� a thread which sends 5 along channel t , which has type !Int.End. As End is

unrestricted, it is not necessary to close t and as such it can be discarded implicitly. Similarly,

after receiving along s, the variable has type End and thus may be discarded implicitly.

Treating End as a�ne increases the amount of concurrency, since threads need not syn-

chronise when closing a channel.

Justi�cation. Having a�neEnd types only makes sense with conditioned ends, so we inherit

the advantages and disadvantages of conditioned ends. These notwithstanding, implicitly

discarding End can be convenient for a programmer, and indeed the Links implementation of

session types has a�ne End types. That said, a purely linear calculus is closer to linear logic,

and is more convenient theoretically as the typing rules are simpler, and reasoning about the

metatheory is cleaner.
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3.4.3 Reduction under Name Restrictions

In SGV, we elect to allow reduction on open con�gurations. To demonstrate, consider the rule

E-Comm:

E-Comm F [sendV a] ‖ F ′[receive a] −→ F [a] ‖ F ′[(V,a)]

Note that the reduction rule does not include any name restrictions. An alternative formulation

would be to include name restrictions in the reduction rule:

E-CommNu (νa)(F [sendV a] ‖ F ′[receive a]) −→ (νa)(F [a] ‖ F ′[(V,a)])

Formulating reduction in this way means that we need not have a reduction relation on session

types or typing environments, and we therefore have a simpler preservation theorem. We

can be sure that name a does not appear elsewhere in the con�guration, and thus that the

reduction rule does not require another process C to be present, as a consequence of linearity.

Consider again the statement of Theorem 1:

Theorem 1 If Γ `φ C and C −→D , then there exists some Γ−→? Γ′ such that Γ′ `φ D .

The clause stating that the environment must reduce is shaded.

It is worth investigating the revised theorem and proof case to understand in more detail

why the theorem is simpler.

Theorem 8 (Preservation (SGV with E-CommNu)). If Γ `φ C and C −→D , then Γ `φ D .

Proof. The only di�erence in the preservation proof is the case for E-Comm. Again, we

consider the case where the �rst thread �ag is • and the second thread �ag is ◦, but the other

combinations are similar.

Case E-CommNu

(νa)(•E[sendV a] ‖ ◦E ′[receive a]) −→ (νa)(•E[a] ‖ ◦E ′[(V,a)])

Assumption:

Γ1,Γ2,a : S ` E[sendV a] : C

Γ1,Γ2,a : S `• •E[sendV a]

Γ3,a : S ` E ′[receive a] : End!

Γ3,a : S `◦ ◦E ′[receive a]

Γ1,Γ2,Γ3,a : S] `• •E[sendV a] ‖ ◦E ′[receive a]

Γ1,Γ2,Γ3 `• (νa)(•E[sendV a] ‖ ◦E ′[receive a])

By Lemma 2:

Γ2 `V : A a : !A.S′ ` a : !A.S′

Γ2,a : !A.S′ ` sendV a : S′
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Also by Lemma 2:

a : ?A.S′ ` a : ?A.S′

a : ?A.S′ ` receive a : (A×S′)

This reasoning allows us to re�ne our original derivation:

Γ1,Γ2,a : !A.S′ ` E[sendV a] : C

Γ1,Γ2,a : !A.S′ `• •E[sendV a]

Γ3,a : ?A.S′ ` E ′[receive a] : End!

Γ3,a : ?A.S′ `◦ ◦E ′[receive a]

Γ1,Γ2,Γ3,a : (!A.S′)] `• •E[sendV a] ‖ ◦E ′[receive a]

Γ1,Γ2,Γ3 `• (νa)(•E[sendV a] ‖ ◦E ′[receive a])

By Lemma 3, Γ1,a : S′ ` E[a] : C, and Γ2,Γ3 ` E ′[(V,a)] : End! (that Γ2,Γ3 is well-de�ned

follows from the fact that the two environments are disjoint).

Recomposing:

Γ1,a : S′ ` E[a] : C

Γ1,a : S′ `• •E[a]

Γ2,Γ3,a : S′ ` E ′[(V,a)] : End!

Γ2,Γ3,a : S′ `◦ ◦E ′[(V,a)]

Γ1,Γ2,Γ3,a : S′] `• •E[a] ‖ ◦E ′[(V,a)]

Γ1,Γ2,Γ3 `• (νa)(•E[a] ‖ ◦E ′[(V,a)])

as required.

In short, the type of the name a changes as a result of reduction. In open terms, this must be

re�ected in the theorem statement, which requires reduction relations on session types and

typing environments. When communication occurs under name restrictions however, name

a is not present in the typing environment to start, and thus we do not need to consider a

reduction relation on types.

Justi�cation. It is a matter of taste as to which formulation is “better”. On the one hand, it

is worthwhile to strive for fewer judgements and simpler theorem statements. Additionally,

the principal cut reductions of CP all take place under name restrictions, and thus having GV

reductions also take place under name restrictions is more in line with the language’s logical

foundations.

On the other hand, omitting name restrictions simpli�es the reduction rules and is closer

to the π-calculus; indeed, without this fairly technical justi�cation for the inclusion of name

restrictions, readers familiar with the π-calculus may �nd the formulation confusing. Addition-

ally, the reduction on typing environments makes the notion of session �delity—the property
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that programs exhibit the communication behaviour prescribed by their session type—more

explicit.

We opt not to require communication reduction to happen under a name restriction,

primarily to avoid surprise from readers more familiar with the π-calculus, and to reduce

syntactic noise in extensions where there are more reduction rules. The alternative formulation

would be a perfectly valid choice, however.

3.5 Conclusion

In this chapter, we have described SGV, a well-behaved core functional language based on the

GV calculus as originally proposed by Wadler [213] and expanded upon by Lindley and Morris

[132]. Our formulation is similar to that of Lindley and Morris [132], but removes features

such as weak explicit substitutions that are only used to prove a logical correspondence with

CP. We have also seen the strong metatheory enjoyed by SGV, and proofs of its correctness.

We build upon SGV later in the thesis as a basis for asynchrony and exception handling.



Part II

Mixing Metaphors: Actors as

Channels and Channels as Actors
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Chapter 4

Type-parameterised Channels and

Actors

4.1 Introduction

When comparing channels (as used by Go) and actors (as implemented in Erlang), one runs

into an immediate mixing of metaphors. The words themselves do not refer to comparable

entities!

In languages such as Go, anonymous processes pass messages via named channels, whereas

in languages such as Erlang, named processes accept messages from an associated mailbox.

A channel is either a named rendezvous point or bu�er, whereas an actor is a process. We

should really be comparing named processes (actors) with anonymous processes, and bu�ers

tied to a particular process (mailboxes) with bu�ers that can link any process to any process

(channels). Nonetheless, we will stick with the popular names, even if it is as inapposite as

comparing TV channels with TV actors.

Figure 4.1 compares asynchronous channels with actors. On the left, three anonymous pro-

cesses communicate via channels named a,b,c. On the right, three processes named A,B,C

a

b

c

(a) Asynchronous Channels

A B

C

(b) Actors

Figure 4.1: Channels and Actors
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send messages to each others’ associated mailboxes. Actors are necessarily asynchronous,

allowing non-blocking sends and bu�ering of received values, whereas channels can either

be asynchronous or synchronous (rendezvous-based). Indeed, Go provides both synchronous

and asynchronous channels, and libraries such as core.async [88] provide library support

for asynchronous channels. However, this is not the only di�erence: each actor has a single

bu�er which only it can read—its mailbox—whereas asynchronous channels are free-�oating

bu�ers that can be read by any process with a reference to the channel.

Channel-based languages such as Go enjoy a �rm basis in process calculi such as CSP [92]

and the π-calculus [144]. It is easy to type channels, either with simple types (see [189], p. 231)

or more complex systems such as session types [77, 94, 97]. Actor-based languages such as

Erlang are seen by many as the "gold standard" for distributed computing due to their support

for fault tolerance through supervision hierarchies [10, 33].

Both models are popular with developers, with channel-based languages and frameworks

such as Go, core.async, and Hopac [101]; and actor-based languages and frameworks such

as Erlang, Elixir, and Akka.

4.2 Motivation

This chapter provides a formal account of actors and channels as implemented in programming

languages. Our motivation for a formal account is threefold: it helps clear up confusion; it

clari�es results that have been described informally by putting practice into theory; and it

provides a foundation for future research.

Confusion. There is often confusion over the di�erences between channels and actors. For

example, the following questions appear on StackOver�ow and Quora respectively:

If I wanted to port a Go library that uses Goroutines, would Scala be a good choice

because its inbox/[A]kka framework is similar in nature to coroutines?” [112], and

“I don’t know anything about [the] actor pattern however I do know goroutines

and channels in Go. How are [the] two related to each other?” [102]

In academic circles, the term actor is often used imprecisely. For instance, Albert et al. [8]

refer to Go as an actor language. Similarly, Harvey [85] refers to his language Ensemble as

actor-based. Ensemble is a language specialised for writing distributed applications running

on heterogeneous platforms. It is actor-based to the extent that it has lightweight, addressable,

single-threaded processes, and forbids co-ordination via shared memory. However, Ensemble

communicates using channels as opposed to mailboxes so we would argue that it is channel-

based (with actor-like features) rather than actor-based.
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Putting practice into theory. The success of actor-based languages is largely due to their

support for supervision. A popular pattern for writing actor-based applications is to arrange

processes in supervision hierarchies [10], where supervisor processes restart child processes

should they fail. Projects such as Proto.Actor [181] emulate actor-style programming in a

channel-based language in an attempt to gain some of the bene�ts, by associating queues with

processes. Hopac [101] is a channel-based library for F#, inspired by Concurrent ML [186]. The

documentation [3] contains a comparison with actors, including an implementation of a simple

actor-based communication model using Hopac-style channels, as well as an implementation

of Hopac-style channels using an actor-based communication model. By comparing the two,

we provide a formal model for the underlying techniques, and study properties arising from

the translations.

A foundation for future research. Traditionally, actor-based languages have had untyped

mailboxes. More recent advancements such as TAkka [86], Akka Typed [7], and Typed

Actors [206] have added types to mailboxes in order to gain additional safety guarantees. Our

formal model provides a foundation for these innovations, characterises why naïvely adding

types to mailboxes is problematic, and provides a core language for future experimentation.

4.3 Our approach

We de�ne two concurrent λ-calculi, describing asynchronous channels and type-parameterised

actors, de�ne translations between them, and then discuss various extensions.

Why the λ calculus? Our common framework is that of a simply-typed concurrent λ-

calculus: that is, a λ-calculus equipping a term language with primitives for communication

and concurrency, as well as a language of con�gurations to model concurrent behaviour. We

work with the λ-calculus rather than a process calculus for two reasons: �rst, the simply-typed

λ-calculus has a well-behaved core with a strong metatheory (for example, con�uent reduction

and strong normalisation), as well as a direct propositions-as-types correspondence with logic.

We can therefore modularly extend the language, knowing which properties remain; typed

process calculi typically do not have such a well-behaved core.

Second, we are ultimately interested in functional programming languages; the λ calculus

is the canonical choice for studying such extensions.

Why asynchronous channels? While actor-based languages must be asynchronous by

design, channels may be either synchronous (requiring a rendezvous between sender and

receiver) or asynchronous (where sending happens immediately). In this part of the thesis,

we consider asynchronous channels since actor communication must be asynchronous, and
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P1 P1

P2 P2

P3 P3

sender receiver

(a) Channel

P1 P1

P2 P2

P3 P3

sender receiver

(b) Mailbox

Figure 4.2: Mailboxes as pinned channels

it is possible to emulate asynchronous channels using synchronous channels [186]. We

could adopt synchronous channels, use these to encode asynchronous channels, and then

do the translations. We elect not to since it complicates the translations, and we argue that

the distinction between synchronous and asynchronous communication is not the de�ning

di�erence between the two models.

4.4 Summary of results

We identify four key di�erences between the models, which are exempli�ed by the formalisms

and the translations: process addressability, the restrictiveness of communication patterns, the

granularity of typing, and the ability to control the order in which messages are processed.

Process addressability. In channel-based systems, processes are anonymous, whereas chan-

nels are named. In contrast, in actor-based systems, processes are named.

Restrictiveness of communication patterns. Communication over full-duplex channels

is more liberal than communication via mailboxes, as shown in Figure 4.2. Figure 4.2a shows

the communication patterns allowed by a single channel: each process Pi can use the channel

to communicate with every other process. Conversely, Figure 4.2b shows the communication

patterns allowed by a mailbox associated with process P2: while any process can send to the

mailbox, only P2 can read from it. Viewed this way, it is apparent that the restrictions imposed

on the communication behaviour of actors are exactly those captured by Merro and Sangiorgi’s

localised π-calculus [140].

Readers familiar with actor-based programming may be wondering whether such a char-

acterisation is too crude, as it does not account for processing messages out-of-order. Fear

not—we show in Chapter 6 that our actor calculus can simulate this functionality.

Restrictiveness of communication patterns is not necessarily a bad thing: while it is easy to
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distribute actors, delegation of asynchronous channels is more involved, requiring a distributed

algorithm [106]. Associating mailboxes with addressable processes also helps with structuring

applications for reliability [33].

Granularity of typing. As a result of the fact that each process has a single incoming

message queue, mailbox types tend to be less precise; in particular, they are most commonly

variant types detailing all of the messages that can be received. Naïvely implemented, this

gives rise to the type pollution problem, which we describe further in §4.5.

Message ordering. Channels and mailboxes are ordered message queues, but there is no

inherent ordering between messages on two di�erent channels. Channel-based languages

allow a user to specify from which channel a message should be received, whereas processing

messages out-of-order can be achieved in actor languages using a selective receive construct.

The remainder of this part of the thesis captures these di�erences both in the design of the

formalisms, and the techniques used in the encodings and extensions.

4.5 Channels and actors side-by-side

Let us consider the example of a concurrent stack. A concurrent stack carrying values of type

A can receive a command to push a value onto the top of the stack, or to pop a value and return

it to the process making the request. Assuming a standard encoding of algebraic datatypes, we

de�ne a type Operation(A) = Push(A) | Pop(B) (where B = ChanRef(A) for channels, and

ActorRef(A) for actors) to describe operations on the stack, and Option(A) = Some(A) | None

to handle the possibility of popping from an empty stack.

Figure 4.3 shows the stack implemented using channels (Figure 4.3a) and using actors

(Figure 4.3b). Each implementation uses a common core language based on the simply-typed

λ-calculus extended with recursion, lists, and sums.

At �rst glance, the two stack implementations seem remarkably similar. Each:

1. Waits for a command

2. Case splits on the command, and either:

• Pushes a value onto the top of the stack, or;

• Takes the value from the head of the stack and returns it in a response message

3. Loops with an updated state.

The main di�erence is that chanStack is parameterised over a channel ch, and retrieves a value

from the channel using take ch. Conversely, actorStack retrieves a value from its mailbox

using the nullary primitive receive.
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chanStack(ch), rec loop(st).

let cmd⇐ take ch in

case cmd{
Push(v) 7→ loop(v :: st)

Pop(resCh) 7→
case st{
[ ] 7→ give (None) resCh;

loop [ ]

x :: xs 7→ give (Some(x)) resCh;

loop xs }
}

chanClient(stackCh),

give (Push(5)) stackCh;

let resCh⇐ newCh in

give (Pop(resCh)) stackCh;

take resCh

chanMain ,

let stackCh⇐ newCh in

fork (chanStack(stackCh) [ ]);

chanClient(stackCh)

(a) Channel-based stack

actorStack , rec loop(st).

let cmd⇐ receive in

case cmd{
Push(v) 7→ loop(v :: st)

Pop(resPid) 7→
case st{
[ ] 7→ send (None) resPid;

loop [ ]

x :: xs 7→ send (Some(x)) resPid;

loop xs }
}

actorClient(stackPid),

send (Push(5)) stackPid;

let selfPid⇐ self in

send (Pop(selfPid)) stackPid;

receive

actorMain ,

let stackPid⇐ spawn (actorStack [ ]) in

actorClient(stackPid)

(b) Actor-based stack

Figure 4.3: Concurrent stacks using channels and actors
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chanClient2(intStackCh, stringStackCh),

let intResCh⇐ newCh in

let strResCh⇐ newCh in

give (Pop(intResCh)) intStackCh;

let res1⇐ take intResCh in

give (Pop(strResCh)) stringStackCh;

let res2⇐ take strResCh in

return (res1, res2)

actorClient2(intStackPid, stringStackPid),

let selfPid⇐ self in

send (Pop(selfPid)) intStackPid;

let res1⇐ receive in

send (Pop(selfPid)) stringStackPid;

let res2⇐ receive in

return (res1, res2)

Figure 4.4: Clients interacting with multiple stacks

Let us now consider functions which interact with the stacks. The chanClient function

sends commands over the stackCh channel, and begins by pushing 5 onto the stack. Next,

it creates a channel resCh to be used to receive the result and sends this in a request, before

retrieving the result from the result channel using take. In contrast, actorClient performs a

similar set of steps, but sends its process ID (retrieved using self) in the request instead of

creating a new channel; the result is then retrieved from the mailbox using receive.

Type pollution. The di�erences become more prominent when considering clients which

interact with multiple stacks of di�erent types, as shown in Figure 4.4. Here, chanClient2

creates new result channels for integers and strings, sends requests for the results, and creates

a pair of type (Option(Int)×Option(String)). The actorClient2 function attempts to do

something similar, but cannot create separate result channels. Consequently, the actor must

be able to handle messages either of type Option(Int) or type Option(String), meaning that

the �nal pair has type (Option(Int)+Option(String))× (Option(Int)+Option(String)).

Additionally, it is necessary to modify actorStack to use the correct injection into the

actor type when sending the result; for example an integer stack would have to send a value

inl(Some(5)) instead of simply Some(5). This type pollution problem can be addressed through

the use of subtyping [86], or synchronisation abstractions such as futures [55].

In the remainder of this chapter, we will precisely characterise typed channels and actors

by introducing two small concurrent λ-calculi: λch and λact.

4.6 λ
ch
: A concurrent λ-calculus for channels

We begin by introducing λch, a concurrent λ-calculus extended with asynchronous channels.

To concentrate on the core di�erences between channel- and actor-style communication, we

begin with small calculi; note that these do not contain all features (such as lists, sums, and

recursion) needed to express the examples in §4.5.
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Syntax

Types A,B ::= 1 | A→ B | ChanRef(A)

Values U,V,W ::= x | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV

| fork M | giveV W | takeV | newCh

Value typing rules Γ `V : A

T-Var

x : A ∈ Γ

Γ ` x : A

T-Abs

Γ,x : A `M : B

Γ ` λx.M : A→ B

T-Unit

Γ ` () : 1

Computation typing rules Γ `M : A

T-App

Γ `V : A→ B Γ `W : A

Γ `V W : B

T-EffLet

Γ `M : A Γ,x : A ` N : B

Γ ` let x⇐M in N : B

T-Return

Γ `V : A

Γ ` returnV : A

T-Give

Γ `V : A

Γ `W : ChanRef(A)

Γ ` giveV W : 1

T-Take

Γ `V : ChanRef(A)

Γ ` takeV : A

T-Fork

Γ `M : A

Γ ` fork M : 1

T-NewCh

Γ ` newCh : ChanRef(A)

Figure 4.5: Syntax and typing rules for λch terms and values

4.6.1 Syntax and typing of terms

Figure 4.5 gives the syntax and typing rules of λch, a λ-calculus based on �ne-grain call-by-

value [131]: terms are partitioned into values and computations. Key to this formulation are two

constructs: returnV represents a computation that has completed, whereas let x⇐M in N

evaluates M to returnV , substituting V for x in M. Fine-grain call-by-value is convenient since

it makes evaluation order explicit and, unlike A-normal form [68], is closed under reduction.

Types consist of the unit type 1, function types A→ B, and channel reference types

ChanRef(A) which can be used to communicate along a channel of type A. We write let x =

V in M for (λx.M)V and M;N for let x⇐M in N, where x is fresh.

Communication and concurrency for channels. The giveV W operation sends value

V along channel W , while takeV retrieves a value from a channel V . Assuming an extension
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Runtime Syntax

Names a,b,c

Variables and names α ::= x | a

Values U,V,W ::= · · · | a

Term typing environments Γ ::= · · · | Γ,a : ChanRef(A)

Runtime typing environments ∆ ::= · | ∆,a : A

Evaluation contexts E ::= [ ] | let x⇐ E in M

Con�gurations C ,D,E ::= C ‖D | (νa)C | a(
−→
V ) | M

Con�guration contexts G ::= [ ] | G ‖ C | (νa)G

Additional value typing rule Γ `V : A

T-Name

a : ChanRef(A) ∈ Γ

Γ ` a : ChanRef(A)

Typing rules for con�gurations Γ;∆ ` C

T-Par

Γ;∆1 ` C Γ;∆2 `D

Γ;∆1,∆2 ` C ‖D

T-Chan

Γ,a : ChanRef(A);∆,a:A ` C

Γ;∆ ` (νa)C

T-Buf

(Γ,a : ChanRef(A) `Vi : A)i

Γ,a : ChanRef(A);a : A ` a(
−→
V )

T-Thread

Γ `M : A

Γ; · `M

Figure 4.6: λch runtime typing

of the language with integers and arithmetic operators, we can de�ne a function neg(c) which

receives a number n along channel c and replies with the negation of n as follows:

neg(c), let n⇐ take c in let negN⇐ (−n) in givenegN c

The fork M operation spawns a new process to evaluate term M. The operation returns the

unit value, and therefore it is not possible to interact with the process directly. The newCh

operation creates a new channel. Note that channel creation is decoupled from process creation,

meaning that a process can have access to multiple channels.

4.6.2 Operational semantics

Runtime names. We let a,b,c range over runtime names, which do not occur in closed

programs and are only introduced as a result of evaluation. We let α range over variables and

runtime names, which is useful when de�ning progress results and translations.



Chapter 4. Type-parameterised Channels and Actors 66

Reduction on terms M −→M N

(λx.M)V −→M M{V/x}
let x⇐ returnV in M−→M M{V/x}

E[M1]−→M E[M2] (if M1 −→M M2)

Structural congruence C ≡D

C ‖D ≡D ‖C C ‖ (D ‖ E)≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖D) if a 6∈ fv(C )

(νa)(νb)C ≡ (νb)(νa)C

Reduction on con�gurations C −→D

E-Give E[giveW a] ‖ a(
−→
V ) −→ E[return ()] ‖ a(

−→
V ·W )

E-Take E[take a] ‖ a(W ·−→V ) −→ E[returnW ] ‖ a(
−→
V )

E-Fork E[fork M] −→ E[return ()] ‖M

E-NewCh E[newCh] −→ (νa)(E[return a] ‖ a(ε)) (a is fresh)

E-LiftM M1 −→ M2 (if M1 −→M M2)

E-Lift G [C1] −→ G [C2] (if C1 −→ C2)

Figure 4.7: Reduction on λch terms and con�gurations

Con�gurations. The concurrent behaviour of λch is given by a nondeterministic reduction

relation on con�gurations (Figure 4.6). Con�gurations consist of parallel composition (C ‖D),

restrictions ((νa)C ), computations (M), and bu�ers (a(
−→
V ), where

−→
V =V1 · . . . ·Vn).

Evaluation contexts. Evaluation contexts E are simpli�ed due to �ne-grain call-by-value.

We also de�ne con�guration contexts G , allowing reduction under parallel compositions and

name restrictions.

Reduction. Figure 4.7 shows the reduction rules for λch. Reduction is de�ned as a determin-

istic reduction on terms (−→M) and a nondeterministic reduction relation on con�gurations

(−→).

We de�ne ≡ as the smallest congruence relation satisfying the equivalence axioms in

Figure 4.7. These axioms capture scope extrusion, reordering of name restrictions, and the

commutativity and associativity of parallel composition.

Relation notation. Given a relation R, we write R+
for its transitive closure, and R∗ for its

re�exive, transitive closure. We use juxtaposition for the combination of relations.

We write =⇒ for the relation ≡−→≡ (that is, reduction modulo equivalence).
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Runtime typing. We extend the value typing rules with rule T-Name, which types runtime

names.

To ensure that bu�ers are well-scoped and contain values of the correct type, we de�ne

typing rules on con�gurations (Figure 4.6). The judgement Γ;∆ ` C states that under environ-

ments Γ and ∆, C is well-typed. Γ is a typing environment for terms, whereas ∆ is a linear

typing environment for con�gurations, mapping names a to channel types A. Linearity in ∆ is

a technical device to ensure that a con�guration C under a name restriction (νa)C contains

exactly one bu�er with name a.

Note that T-Chan extends both Γ and ∆, adding an (unrestricted) reference into Γ and the

capability to type a bu�er into ∆. T-Par states that C ‖D is typeable if C and D are typeable

under disjoint linear environments, and T-Buf states that under a term environment Γ and a

singleton linear environment a:A, it is possible to type a bu�er a(
−→
V ) if Γ `Vi:A for all Vi ∈

−→
V .

For example, (νa)(a(
−→
V )) is well-typed, but (νa)(a(

−→
V ) ‖ a(

−→
W )) and (νa)(return ()) are not:

(Γ,a : ChanRef(A) `Vi :A)i

Γ,a : ChanRef(A);a : A ` a(
−→
V )

Γ; · ` (νa)(a(
−→
V ))

(Γ,a : ChanRef(A) `Vi : A)i

Γ,a : ChanRef(A);a : A ` a(
−→
V ) Γ,a : ChanRef(A); · 6` a(

−→
W )

Γ; · 6` (νa)(a(
−→
V ) ‖ a(

−→
W ))

Γ,a : ChanRef(A);a : A 6` return ()

Γ; · 6` (νa)(return ())

Properties of the term language. We begin by de�ning lemmas to allow us to manipu-

late evaluation contexts, which prove useful when proving preservation for both term and

con�guration reduction.

Lemma 12 allows us to type the subterm of an evaluation context.

Lemma 12 (Subterm typeability (λch terms)). If D is a derivation of Γ ` E[M] : A, then there

exists some type B and a subderivation D′ of D such that D′ concludes Γ `M : B, and the position

of D′ in D corresponds to the position of the hole in D.

Proof. By induction on the structure of E , noting that evaluation contexts are not de�ned

under λ abstractions.

Next, Lemma 13 shows how we may replace the subterm of an evaluation context.
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Lemma 13 (Subterm replacement (λch terms)). If:

1. D is a derivation of Γ ` E[M] : A

2. D′ is a subderivation of D concluding Γ `M : B

3. Γ ` N : B for some N

4. The position of D′ corresponds to that of the hole in E

then Γ ` E[N] : A.

With these, we can prove that reduction on terms preserves typing.

Lemma 14 (Preservation (λch terms)). If Γ `M : A and M −→M N, then Γ ` N : A.

Proof. Standard; by induction on the derivation of M −→M N, using Lemma 12, Lemma 13,

and a substitution lemma.

Pure terms enjoy progress under the term reduction relation (−→M). We let Ψ range over

typing environments which contain only channel references:

Ψ ::= · | Ψ,a : ChanRef(A)

Lemma 15 (Progress (λch terms)). If Ψ `M :A, then either:

1. M = returnV for some value V ; or

2. there exists some N such that M −→M N; or

3. there exist unique E,N such that M can be written E[N], where N is a communication or

concurrency primitive (i.e., giveV W, takeV, forkM, or newCh)

Proof. Standard: by induction on the derivation of Ψ `M :A.

Reduction on con�gurations. Communication and concurrency is captured by reduction

on con�gurations. The E-Give rule reduces giveW a in parallel with a bu�er a(
−→
V ) by adding

the value W onto the end of the bu�er. The E-Take rule reduces take a in parallel with a

non-empty bu�er by returning the �rst value in the bu�er. The E-Fork rule reduces fork M

by spawning a new thread M in parallel with the parent process. The E-NewCh rule reduces

newCh by creating an empty bu�er and returning a fresh name for that bu�er.

We now need to de�ne lemmas to allow us to work with con�guration contexts G . These

are slightly di�erent to term contexts in that the con�guration context (νa)G binds a name a,

and the con�guration context G ‖ C splits the runtime typing context.

Lemma 16 (Subterm Typeability (λch con�gurations)). If D is a derivation of Γ;∆ `G [C ], then

there exist some Γ′ and ∆′ such that D′ is a subderivation of D concluding Γ′;∆′ ` C , and the

position D in D′ corresponds to the position of the hole in G .
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Proof. By induction on the structure of G .

Lemma 17 (Subterm Replacement (λch con�gurations)). If:

1. D is a derivation of Γ;∆ ` G [C ]

2. D′ is a subderivation of D concluding Γ′;∆′ ` C
3. The position of D′ in D corresponds to that of the hole in G
4. Γ′;∆′ `D

then Γ;∆ ` G [D].

Proof. By induction on the structure of G .

Equivalence and reduction preserve the typeability of con�gurations.

Lemma 18. If Γ;∆ ` C and C ≡D for some con�guration D , then Γ;∆ `D .

Proof. By induction on the derivation of C ≡D .

Theorem 9 (Preservation (λch con�gurations)). If Γ;∆ ` C1 and C1 −→ C2 then Γ;∆ ` C2.

Proof. By induction on the derivation of C1 −→ C2. We prove case E-Give here; full details

can be found in Appendix B.

Case E-Give

E[giveW a] ‖ a(
−→
V ) −→ E[return ()] ‖ a(

−→
V ·W )

Assumption:

Γ ` E[giveW a] : B

Γ; · ` E[giveW a]

(Γ `Vi : A)i

Γ;a : A ` a(
−→
V )

Γ;a : A ` E[giveW a] ‖ a(
−→
V )

Note that by T-Chan, Γ must contain a : ChanRef(A).

By Lemma 12, we have:

Γ `W : A Γ ` a : ChanRef(A)

Γ ` giveW a : 1

By Lemma 13, we have that Γ ` E[return ()] : B.

By T-Buf:

(Γ `Vi : A)i Γ `W : A

Γ;a : A ` a(
−→
V ·W )
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Recomposing, we have:

Γ ` E[return ()] : B

Γ; · ` E[return ()]

(Γ `Vi : A)i Γ,a : ChanRef(A) `W : A

Γ;a : A ` a(
−→
V ·W )

Γ;a : A ` E[return ()] ‖ a(
−→
V ·W )

As a corollary of Lemma 18 and Theorem 9, we have that reduction modulo equivalence

preserves typeability of con�gurations.

Corollary 3 (Preservation: Reduction modulo equivalence (λch)). If Γ;∆ ` C1 and C1 =⇒ C2

then Γ;∆ ` C2.

4.6.3 Progress and canonical forms

While it is possible to prove deadlock-freedom in systems with more discerning type systems

based on linear logic [132, 213] or those using channel priorities [167], more liberal calculi

such as λch and λact allow deadlocked con�gurations. We thus de�ne a form of progress which

does not preclude deadlock; to help with proving a progress result, it is useful to consider the

notion of a canonical form in order to allow us to reason about the con�guration as a whole.

De�nition 4 (Canonical form (λch)). A con�guration C is in canonical form if it can be written

(νa1) . . .(νan)(M1 ‖ . . . ‖Mm ‖ a1(
−→
V1) ‖ . . . ‖ an(

−→
Vn)).

Well-typed open con�gurations can be written in a form similar to canonical form, but without

bindings for names already in the environment. An immediate corollary is that well-typed

closed con�gurations can always be written in a canonical form.

Lemma 19. If Γ;∆ ` C with ∆ = a1 : A1, . . . ,ak : Ak, then there exists a C ′ ≡ C such that

C ′ = (νak+1) . . .(νan)(M1 ‖ . . . ‖Mm ‖ a1(
−→
V1) ‖ . . . ‖ an(

−→
Vn)).

Proof. By induction on the derivation of Γ;∆ ` C . T-Buf and T-Thread follow immediately.

T-Chan follows by the induction hypothesis. For T-Par, by the induction hypothesis we have

that each subcon�guration can be written in canonical form; the composition of the two can

be written in canonical form by using scope extrusion to move all name restrictions to the

front of the con�guration, and the commutativity and associativity of parallel composition to

move terms and bu�ers to the required positions.

Corollary 4 (Preservation modulo equivalence (λch con�gurations)). If ·; · ` C , then there

exists some C ′ ≡ C such that C ′ is in canonical form.
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Armed with the notion of a canonical form, we can now state that the only situation in which

a well-typed closed con�guration cannot reduce further is if all threads are either blocked or

fully evaluated. Let a leaf con�guration be a con�guration without subcon�gurations, i.e., a

term or a bu�er.

Theorem 10 (Weak progress (λch con�gurations)).

Let ·; · ` C , C 6=⇒, and let C ′ = (νa1) . . .(νan)(M1 ‖ . . . ‖ Mm ‖ a1(
−→
V1) ‖ . . . ‖ an(

−→
Vn)) be a

canonical form of C . Then every leaf of C is either:

1. A bu�er ai(
−→
Vi );

2. A fully-reduced term of the form returnV , or;

3. A term of the form E[takeai], where
−→
Vi = ε.

Proof. By Lemma 15, we know that each Mi is either of the form returnV , or that there exist

some E,N such that Mi can be written E[N] where N is a communication or concurrency

primitive. It cannot be the case that N = fork N′ or N = newCh, since both can reduce.

Let us now consider give and take, blocked on a variable α. As we are considering closed

con�gurations, a blocked term must be blocked on a ν-bound name ai, and as per the canonical

form, we have that there exists some bu�er ai(
−→
Vi ). Consequently, giveV ai can always reduce

via E-Give. A term take ai can reduce by E-Take if

−→
Vi =W ·

−→
V ′i ; the only remaining case is

where

−→
Vi = ε, satisfying (3).
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Syntax

Types A,B,C ::= 1 | A→C B | ActorRef(A)

Values U,V,W ::= x | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV

| spawn M | sendV W | receive | self

Value typing rules Γ `V : A
T-Var

x : A ∈ Γ

Γ ` x : A

T-Abs

Γ,x : A | C `M : B

Γ ` λx.M : A→C B

T-Unit

Γ ` () : 1

Computation typing rules Γ | B `M : A

T-App

Γ `V : A→C B

Γ `W : A

Γ | C `V W : B

T-EffLet

Γ | C `M : A

Γ,x : A | C ` N : B

Γ | C ` let x⇐M in N : B

T-EffReturn

Γ `V : A

Γ | B ` returnV : A

T-Send

Γ `V : A

Γ `W : ActorRef(A)

Γ | B ` sendV W : 1

T-Recv

Γ | A ` receive : A

T-Spawn

Γ | A `M : B

Γ | C ` spawn M : ActorRef(A)

T-Self

Γ | A ` self : ActorRef(A)

Figure 4.8: Syntax and typing rules for λact
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4.7 λact: A concurrent λ-calculus for actors

In this section, we introduce λact, a core language describing actor-based concurrency. There

are many variations of actor-based languages (by the taxonomy of De Koster et al
˙
, [56], λact is

process-based), but each have named processes associated with a mailbox.

Typed channels are well-established, whereas typed actors are less so, partly due to the

type pollution problem. Nonetheless, Akka Typed [7] aims to replace untyped Akka actors, so

studying a typed actor calculus is of practical relevance.

Following Erlang, we provide an explicit receive operation to allow an actor to retrieve a

message from its mailbox: unlike take in λch, receive takes no arguments, so it is necessary

to use a simple type-and-e�ect system [78] to track the mailbox type. We treat mailboxes as a

FIFO queues to keep λact as small as possible, as opposed to considering behaviours or selective

receive. This is orthogonal to the core model of communication, as we show in Chapter 6.

4.7.1 Syntax and typing of terms

Figure 4.8 shows the syntax and typing rules for λact. Type ActorRef(A) is an actor reference or

process ID, and allows messages to be sent to an actor. As for communication and concurrency

primitives, spawn M spawns a new actor to evaluate a computation M; sendV W sends a

value V to an actor referred to by reference W ; receive receives a value from the actor’s

mailbox; and self returns an actor’s own process ID.

Function arrows A→C B are annotated with a type C which denotes the type of the mailbox

of the actor evaluating the term. As an example, consider a function which receives an integer

and converts it to a string (assuming a function intToString):

recvAndShow , λ().let x⇐ receive in intToString(x)

Such a function would have type 1→Int String, and as an example could not be applied in

an actor with a mailbox typethat could only receive booleans. Nevertheless, it is perfectly

possible to send such function to another actor, even if it cannot be used.

Again, we work in the setting of �ne-grain call-by-value; the distinction between values

and computations is helpful when reasoning about the metatheory. We have two typing

judgements: the standard judgement on values Γ `V : A, and a judgement Γ | B `M : A which

states that a term M has type A under typing context Γ, and can receive values of type B. The

typing of receive and self depends on the type of the actor’s mailbox.

4.7.2 Operational semantics

Figure 4.9 shows the syntax of λact evaluation contexts, as well as the syntax and typing rules

of λact con�gurations. Evaluation contexts for terms and con�gurations are similar to λch. The
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Runtime syntax

Names a,b

Variables and names α ::= x | a
Values U,V,W ::= · · · | a

Term typing environments Γ ::= · · · | Γ,a : ActorRef(A)

Runtime typing environments ∆ ::= · | ∆,a : A

Evaluation contexts E ::= [ ] | let x⇐ E in M

Con�gurations C ,D,E ::= C ‖D | (νa)C | 〈a,M,
−→
V 〉

Con�guration contexts G ::= [ ] | G ‖ C | (νa)G

Additional value typing rule Γ `V : A

T-Name

a : ActorRef(A) ∈ Γ

Γ ` a : ActorRef(A)

Typing rules for con�gurations Γ;∆ ` C

T-Par

Γ;∆1 ` C Γ;∆2 `D

Γ;∆1,∆2 ` C ‖D

T-Pid

Γ,a : ActorRef(A);∆,a : A ` C

Γ;∆ ` (νa)C

T-Actor

Γ,a : ActorRef(A) | A `M : B (Γ,a : ActorRef(A) `Vi : A)i

Γ,a : ActorRef(A);a : A ` 〈a,M,
−→
V 〉

Figure 4.9: λact evaluation contexts and con�gurations
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primary di�erence from λch is the actor con�guration 〈a,M,
−→
V 〉, which can be read as “an actor

with name a evaluating term M, with a mailbox consisting of values

−→
V ”. Whereas a term M is

itself a con�guration in λch, a term in λact must be evaluated as part of an actor con�guration

in order to support context-sensitive operations such as receiving from the mailbox. We again

stratify the reduction rules into functional reduction on terms, and reduction on con�gurations.

The typing rules for λact con�gurations ensure that all values contained in an actor mailbox

are well-typed with respect to the mailbox type, and that a con�guration C under a name

restriction (νa)C contains an actor with name a. Figure 4.10 shows the reduction rules for

λact.

Again, reduction on terms preserves typing, and the functional fragment of λact enjoys

progress. We start once more by de�ning lemmas which allow us to manipulate evaluation

contexts.

Lemma 20 (Subterm typeability (λact terms)). If D is a derivation of Γ | B ` E[M] : A, then

there exists some type C and a subderivation D′ of D such that D′ concludes Γ | B′ `M : C, and

the position of D′ in D corresponds to the position of the hole in D.

Proof. By induction on the structure of E .

Lemma 21 (Subterm replacement (λact terms)). If:

1. D is a derivation of Γ | B ` E[M] : A

2. D′ is a subderivation of D concluding Γ | B′ `M : C

3. Γ | B′ ` N : C for some N

4. The position of D′ corresponds to that of the hole in E

then Γ | B ` E[N] : A.

Proof. By induction on the structure of E .

Lemma 22 (Preservation (λact terms)). If Γ `M : A and M −→M N, then Γ ` N : A.

Proof. By induction on the derivation of M −→M N

Again, we let Ψ denote typing environments containing only actor references.

Ψ = · | Ψ,a : ActorRef(A)

Lemma 23 (Progress (λact terms)). If Ψ | B `M : A, then either:

1. M = returnV for some value V ; or

2. there exists some N such that M −→M N; or
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Reduction on terms M −→M N

(λx.M)V −→M M{V/x}
let x⇐ returnV in M −→M M{V/x}

E[M] −→M E[M′] (if M −→M M′)

Con�guration equivalence C ≡D

C ‖D ≡D ‖ C C ‖ (D ‖ E)≡ (C ‖D) ‖ E (νa)(νb)C ≡ (νb)(νa)C

C ‖ (νa)D ≡ (νa)(C ‖D) if a 6∈ fv(C )

Reduction on con�gurations C −→D

E-Spawn 〈a,E[spawn M],
−→
V 〉 −→ (νb)(〈a,E[return b],

−→
V 〉 ‖ 〈b,M,ε〉)

(b is fresh)

E-Send 〈a,E[sendU b],
−→
V 〉 ‖ 〈b,M,

−→
W 〉 −→ 〈a,E[return ()],

−→
V 〉 ‖ 〈b,M,

−→
W ·U〉

E-SendSelf 〈a,E[sendW a],
−→
V 〉 −→ 〈a,E[return ()],

−→
V ·W 〉

E-Self 〈a,E[self],
−→
V 〉 −→ 〈a,E[return a],

−→
V 〉

E-Receive 〈a,E[receive],W ·−→V 〉 −→ 〈a,E[returnW ],
−→
V 〉

E-Lift G [C1] −→ G [C2] (if C1 −→ C2)

E-LiftM 〈a,M1,
−→
V 〉 −→ 〈a,M2,

−→
V 〉 (if M1 −→M M2)

Figure 4.10: Reduction on λact terms and con�gurations

3. there exist E,N such that M can be written as E[N], where N is a communication or

concurrency primitive (i.e. spawnN, sendV W , receive, or self).

Proof. Standard: by induction on the derivation of Ψ | B `M : A.

Reduction on con�gurations. While λch makes use of separate constructs to create new

processes and channels, λact uses a single construct spawn M to spawn a new actor with an

empty mailbox to evaluate term M. Communication happens directly between actors instead of

through an intermediate entity: as a result of evaluating sendV a, the value V will be appended

directly to the end of the mailbox of actor a. E-SendSelf allows an actor to send a message to

itself; an alternative would be to decouple mailboxes from the de�nition of actors, but this

complicates both the con�guration typing rules and belies the intuition. E-Self returns the

name of the current process, and E-Receive retrieves the head value of a non-empty mailbox.

The lemmas for subcon�guration typeability and replacement are identical to those in λch.
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Lemma 24 (Subterm Typeability (λact con�gurations)). If D is a derivation of Γ;∆ ` G [C ],

then there exist some Γ′ and ∆′ such that D′ is a subderivation of D concluding Γ′;∆′ ` C , and

the position D in D′ corresponds to the position of the hole in G .

Proof. By induction on the structure of G .

Lemma 25 (Subterm Replacement (λact con�gurations)). If:

1. D is a derivation of Γ;∆ ` G [C ]

2. D′ is a subderivation of D concluding Γ′;∆′ ` C
3. Γ′;∆′ `D
4. The position of D′ in D corresponds to that of the hole in G

then Γ;∆ ` G [D].

Proof. By induction on the structure of G .

As before, typing is preserved modulo structural congruence and under reduction.

Lemma 26. If Γ;∆ ` C and C ≡D for some D , then Γ;∆ `D .

Proof. By induction on the derivation of C ≡D .

Theorem 11 (Preservation (λact con�gurations)). If Γ;∆ ` C1 and C1 −→ C2, then Γ;∆ ` C2.

Proof. By induction on the derivation of C1 −→ C2. We show the case for E-Send here; the

remaining cases can be found in Appendix B.

Case E-Send

E-Send 〈a,E[sendU b],
−→
V 〉 ‖ 〈b,M,

−→
W 〉 −→ 〈a,E[return ()],

−→
V 〉 ‖ 〈b,M,

−→
W ·U〉

Let Γ = Γ′,a : ActorRef(A),b : ActorRef(B) for some Γ′.

Assumption:

Γ | A ` E[sendU b] : C (Γ `Vi : A)i

Γ;a : A ` 〈a,E[sendU b],
−→
V 〉

Γ | B `M : C′ (Γ `Wi : B)i

Γ;b : B ` 〈b,M,
−→
W 〉

Γ;a : A,b : B ` 〈a,E[sendU b],
−→
V 〉 ‖ 〈b,M,

−→
W 〉

Note that a : ActorRef(A) and b : ActorRef(B) must be in Γ due to rule T-Actor.

By Lemma 20:

Γ `U : B Γ ` b : ActorRef(B)

Γ | A ` sendU b : 1
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By Lemma 21, we have that Γ | A ` E[return ()] : C.

By T-Actor:

Γ | B `M : C′

(Γ `Wi : B)i Γ `U : B

Γ;b : B ` 〈b,M,
−→
W ·U〉

Recomposing:

Γ | A ` E[return ()] : C (Γ `Vi : A)i

Γ;a : A ` 〈a,E[return ()],
−→
V 〉

Γ | B `M : C′

(Γ `Wi : B)i Γ `U : B

Γ;b : B ` 〈b,M,
−→
W ·U〉

Γ;a : A,b : B ` 〈a,E[return ()],
−→
V 〉 ‖ 〈b,M,

−→
W ·U〉

as required.

As a corollary of Lemma 26 and Theorem 11, we have that reduction modulo equivalence

preserves typeability of con�gurations.

Corollary 5 (Preservation modulo equivalence (λact con�gurations)). If Γ;∆ ` C and C =⇒D ,

then Γ;∆ `D .

4.7.3 Progress and canonical forms

Again, we cannot guarantee deadlock-freedom for λact. Instead, we proceed by de�ning

a canonical form, and characterising the form of progress that λact enjoys. The technical

development follows that of λch.

De�nition 5 (Canonical form (λact)). A λact con�guration C is in canonical form if C can be

written (νa1) . . .(νan)(〈a1,M1,
−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

Lemma 27. If Γ;∆ ` C and ∆ = a1 : A1, . . .ak : Ak, then there exists C ′ ≡ C such that C ′ =
(νak+1) . . .(νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

Proof. Similar to the proof of Lemma 19.

As in λch, it follows as a corollary of Lemma 27 that closed con�gurations can be written in

canonical form. We can therefore classify the notion of progress enjoyed by λact.

Corollary 6. If ·; · ` C , then there exists some C ′ ≡ C such that C ′ is in canonical form.
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Theorem 12 (Weak progress (λact con�gurations)).

Let ·; · ` C , C 6=⇒, and let C ′ = (νa1) . . .(νan)(〈a1,M1,
−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉) be a canonical

form of C . Each actor with name ai is either of the form 〈ai,returnW,
−→
Vi 〉 for some value W , or

〈ai,E[receive],ε〉.

Proof. Similar to the proof of Theorem 10. Lemma 23 shows that the term language enjoys

progress. Only communication and concurrency actions cannot reduce using a term reduction;

spawn M can always reduce, and the canonical form ensures that sendV b can always reduce

as b must be in scope. The term receive will only fail to reduce if the mailbox is empty,

satisfying the �nal condition of the theorem.

4.8 Summary

In this chapter, we have informally introduced programming with languages using type-

parameterised channels and type-parameterised actors, and have formally characterised the

two paradigms by distilling them into two concurrent λ-calculi: λch and λact respectively. We

have proven that both languages satisfy preservation, and characterised the notion of progress

that each language enjoys. We have also begun to informally compare and contrast the two

models.

In Chapter 5, we investigate the relationship between the two models more formally by

encoding actors using channels, and channels using actors.



Chapter 5

Actors as Channels and Channels as

Actors

In Chapter 4, we introduced two paradigms of typed communication-centric programming

languages: channel-based languages, where anonymous processes communicate over named

channels, and languages inspired by the actor model of computation, where named processes

communicate directly by sending messages to message queues. We distilled these paradigms

down to two minimal concurrent λ-calculi: λch, a concurrent λ-calculus with typed asyn-

chronous channels, and λact, a concurrent λ-calculus with type-parameterised actors.

In this chapter, we provide formal comparisons of the two models by showing type- and

semantics-preserving translations between λch and λact in both directions.

5.1 From λact to λ
ch

The key idea in translating λact into λch is to emulate a mailbox using a channel, and to pass

the channel as an argument to each function. The translation on terms is parameterised over

the channel name, which is used to implement context-dependent operations (i.e., receive

and self). Consider again recvAndShow.

recvAndShow , λ().let x⇐ receive in intToString(x)

A possible con�guration would be an actor evaluating recvAndShow (), with some name a

and mailbox with values

−→
V , under a name restriction for a.

(νa)(〈a, recvAndShow (),
−→
V 〉)

The translation on terms takes a channel name ch as a parameter. As a result of the translation

(assuming that J intToString Kch = intToString in λact), we have that:

J recvAndShow () Kch = let x⇐ take ch in intToString(x)

80
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Translation on types

JActorRef(A)K= ChanRef(JAK) JA→C BK= JAK→ ChanRef(JC K)→ JBK J1K= 1

Translation on values

J x K= x Ja K= a Jλx.M K= λx.λch.(JM Kch) J () K= ()

Translation on computation terms

J let x⇐M in N Kch = let x⇐ (JM Kch) in JN Kch

JV W Kch = let f ⇐ (JV K JW K) in f ch

J returnV Kch = return JV K

J self Kch = return ch

J receive Kch = take ch

J spawn M Kch = let chMb⇐ newCh in

fork (JM KchMb);

return chMb

J sendV W Kch = give (JV K) (JW K)

Translation on con�gurations

JC ‖D K= JC K ‖ JD K J (νa)C K= (νa) JC K J 〈a,M,
−→
V 〉 K= a(J

−→
V K) ‖ (JM Ka)

Figure 5.1: Translation from λact into λch

with the corresponding con�guration (νa)(a(J
−→
V K) ‖ J recvAndShow () Ka). The values from

the mailbox are translated pointwise and form the contents of a bu�er with name a. The

translation of recvAndShow is provided with the name a which is used to emulate receive.

5.1.1 Translation (λact to λ
ch
)

Figure 5.1 shows the formal translation from λact into λch. Of particular note is the translation

on terms: J−Kch translates a λact term into a λch term using a channel with name ch to emulate

a mailbox. An actor reference is represented as a channel reference in λch; we emulate sending

a message to another actor by writing to the channel emulating the recipient’s mailbox. Key

to translating λact into λch is the translation of function arrows A→C B; the e�ect annotation

C is replaced by a second parameter ChanRef(C), which is used to emulate the local mailbox.

Names, variables, and the unit value translate to themselves. The translation of λ abstractions

takes an additional parameter denoting the channel used to emulate operations on a mailbox.

Given parameter ch, the translation function for terms emulates receive by taking a value

from ch, and emulates self by returning ch.
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Though the translation is straightforward, it is a global translation [66], as all functions

must be modi�ed in order to take the mailbox channel as an additional parameter.

5.1.2 Properties of the translation

The translation on terms and values preserves typing. We extend the translation function

pointwise to typing environments: Jα1 : A1, . . . ,αn : An K= α1 : JA1 K, . . . ,αn : JAn K.

Lemma 28 (J− K preserves typing (terms and values)).

1. If Γ `V : A in λact, then JΓ K ` JV K : JA K in λch.

2. If Γ | B `M : A in λact, then JΓ K,α : ChanRef(JB K) ` JM Kα : JA K in λch.

Proof. By simultaneous induction on the derivations of Γ `V :A and Γ | B `M:A.

We show the cases for T-Abs and T-Receive. The remaining cases are similar.

Case T-Abs

Assumption:

Γ,x : A |C `M : B

Γ ` λx.M : A→C B

By the IH (Premise 2), JΓ K,x : JA K,ch : ChanRef(JC K) ` JM Kch : JB K. Thus by T-Abs in λch,

we have

JΓ K,x : JA K,ch : ChanRef(JC K) ` JM Kch : JB K

JΓ K,x : JA K ` λch.JM Kch : ChanRef(JC K)→ JB K

JΓ K ` λx.λch.JM Kch : JA K→ ChanRef(JC K)→ JB K

as required.

Case T-Receive

Assumption:

Γ | A ` receive

By the de�nition of the translation on receive, we can show

JΓ K,ch : JA K ` ch : JA K

JΓ K,ch : JA K ` take ch : JA K

as required.
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To state an operational correspondence result, we also de�ne a translation on con�gurations

(Figure 5.1). The translations on parallel composition and name restrictions are homomorphic.

An actor con�guration 〈a,M,
−→
V 〉 is translated as a bu�er a(J

−→
V K), (writing J

−→
V K= JV0 K · . . . ·

JVn K for each Vi ∈
−→
V ), composed in parallel with the translation of M, using a as the mailbox

channel. We can now see that the translation preserves typeability of con�gurations.

Theorem 13 (J− K preserves typeability (con�gurations)).

If Γ;∆ ` C in λact, then JΓ K;J∆ K ` JC K in λch.

Proof. By induction on the derivation of Γ;∆ ` C . Cases T-Par and T-Pid are immediate by

the induction hypothesis, so we need only consider T-Actor.

Case T-Actor

Assumption:

Γ,a : ActorRef(A) | A `M : B (Γ,a : ActorRef(A) `Vi : A)i

Γ,a : ActorRef(A);a : A ` 〈a,M,
−→
V 〉

By repeated applications of Lemma 28, we have that (JΓ K,a : ChanRef(JA K) ` JV Ki : JA K)i

for each Vi.

By Lemma 28, we have that JΓ K,a : ChanRef(JA K) ` JM Ka : JB K.

Thus we can show:

(JΓ K,a : ChanRef(JA K) ` JVi K : JA K)i

JΓ K,a : ChanRef(JA K);a : JA K ` a(J
−→
V K)

JΓ K,a : ChanRef(JA K) ` JM Ka : JB K

JΓ K,a : ChanRef(JA K); · ` JM Ka

JΓ K,a : ChanRef(JA K);a : JA K ` a(J
−→
V K) ‖ JM Ka

as required.

We may now show that the translation is semantics-preserving, which we achieve by showing

an operational correspondence. An operational correspondence states that reduction in the

source language is simulated by the translation, and that the translation does not introduce

any behaviour that does not correspond to reduction in the source language.

To establish the result, we begin by showing that λact term reduction can be simulated in

λch.

Lemma 29 (Simulation (λact term reduction in λch)).

If Γ `M1 : A and M1 −→M M2 in λact, then given some α, JM1 Kα −→∗M JM2 Kα in λch.

Proof. By induction on the derivation of M1 −→M M2.
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As term reduction is entirely deterministic, it follows that reduction in the images of the

translation on terms is re�ected in the source language.

Lemma 30 (Re�ection (λact term reduction in λch)). If Γ `M1 : A and JM1 Kα −→M N, then

there exists some M2 such that M1 −→M M2 and N −→∗M JM2 Kα.

Proof. A direct consequence of Lemma 29 and the determinism of term reduction.

The translations on terms and con�gurations are compositional, and the structure of both eval-

uation contexts and con�guration contexts is identical in both λch and λact. Correspondingly,

it immediately follows that we can lift the translation on terms to evaluation and con�guration

contexts.

Lemma 31.

1. Given an evaluation context E , a term M, and a name α, we have that J E[M] Kα =

JEK[JM K]α.

2. Given a con�guration context G and a subcon�guration C , we have that JG [C ] K =

JG K[JC K].

As the equivalence axioms are identical in λch and λact, it follows immediately that if two

con�gurations are equivalent in λact, then their translations are equivalent in λch.

Lemma 32. If Γ;∆ ` C and C ≡D , then JC K≡ JD K.

With these auxiliary lemmas de�ned, we may show a sound and complete operational corre-

spondence for the translation from λact into λch.

Theorem 14 (Operational Correspondence (J− K)).

Simulation If Γ;∆ ` C1 and C1 −→ C2, then JC1 K=⇒∗ JC2 K

Re�ection If Γ;∆ ` C1 and JC1 K=⇒D , then there exists some C2 such that C1 =⇒ C2 and

D =⇒∗ JC2 K

Proof. Simulation: By induction on the derivation of C1 −→ C2. We show the case for E-Send

here; full details can be found in Appendix B.

Case E-Send
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J 〈a,E[sendV ′ b],
−→
V 〉 ‖ 〈b,M,

−→
W 〉 K

Def. J− K
a(J
−→
V K) ‖ (JE K[give JV ′ Kb]a) ‖ b(J

−→
W K) ‖ (JM Kb)

=⇒ (E-Give)

a(J
−→
V K) ‖ (JE K[return ()]a) ‖ b(J

−→
W K · JV ′ K) ‖ (JM Kb)

=

J 〈a,E[return ()],
−→
V 〉 ‖ 〈b,M,

−→
W ·V ′〉 K

Re�ection:

Assume ∆ contains entries a1 : A1, . . . ,ak : Ak.

By Lemma 27:

C1 ≡ (νak+1) · · ·(νan)(〈a1,M1,
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉) = Ccanon

By the de�nition of J− K:

JCcanon K= (νak+1) · · ·(νan)(a1(
−→
V1) ‖ JM1 Ka1 ‖ · · · ‖ an(

−→
Vn) ‖ JMn Kan)

We proceed by case analysis on the structure of translated terms, inspecting the reduction rules

for λch. Without loss of generality, we assume that reduction occurs in the thread translated

with respect to name a1. We show the case for J sendV W Ka1 here; the remaining cases can

be found in Appendix B.

Case J sendV W Ka1

JE[sendV W ] Ka1 = JEK[give JV KJW K ]a1

The applicable reduction rule is E-Give. Thus, there exists some G such that:

Ccanon ≡ G [JEK[give JW Kb]a1 ‖ b(J
−→
V K)]

We have two subcases, based on the value of b. We need not consider free names or variables

without an associated bu�er, as these would not reduce.

Subcase b = a1

JEK[give JW Ka1]a1 ‖ a1(J
−→
V1 K)

−→ (E-Give)

JEK[return ()]a1 ‖ a1(J
−→
V1 K · JW K)

=

J 〈a1,E[return ()],
−→
V1 ·W 〉 K
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By the de�nition of J− K:

JEK[giveW b]a1 ‖ a1(J
−→
V1 K) = J 〈a1,E[sendW a1],

−→
V1〉 K

In λact, we can show:

〈a1,E[sendW a1],
−→
V1〉

−→ (E-SendSelf)

〈a1,E[return ()],
−→
V1 ·W 〉

Thus, we can see that:

JCcanon K=⇒ (νak+1) · · ·(νan)(JEK[return ()]a1 ‖ a1(J
−→
V1 K · JW K) ‖ · · · ‖ JMn Kan ‖ an(J

−→
Vn K))

=

J (νak+1) · · ·(νan)(〈a1,E[return ()],
−→
V1 ·W 〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉) K

and

Ccanon =⇒ (νak+1) · · ·(νan)(〈a1,E[return ()],
−→
V1 ·W 〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉)

as required.

Subcase b = a j for some j 6= 1

Without loss of generality, consider the case where j = n. By the de�nition of JCcanon K, we

have that there must exist some G ′ such that

G [JEK[give JW Kan]a1 ‖ an(J
−→
Vn K)]

≡
G ′[JEK[give JW Kan]a1 ‖ an(J

−→
Vn K) ‖ JM Kan ‖ a1(J

−→
V1 K)]

≡
G ′[JEK[give JW Kan]a1 ‖ a1(J

−→
V1 K)] ‖ JM Kan ‖ an(J

−→
Vn K)

By E-Give:

JEK[give JW Kan]a1 ‖ a1(J
−→
V1 K) ‖ JM Kan ‖ an(J

−→
Vn K)

=⇒ (E-Give)

JEK[return ()]a1 ‖ a1(J
−→
V1 K) ‖ JM Kan ‖ an(J

−→
Vn K · JW K)

=

J 〈a1,E[return ()],
−→
V1〉 ‖ 〈an,Mn,Vn ·W 〉 K

By the de�nition of J− K:

JEK[giveJW Kan]a1 ‖ a1(
−→
V1) ‖ JM Kan ‖ an(J

−→
Vn K) = J〈a1,E[sendW an],

−→
V1〉 ‖ 〈an,Mn,

−→
Vn〉K

In λact, we can show:

〈a1,E[sendW an],
−→
V1〉 ‖ 〈an,Mn,

−→
Vn〉

−→ (E-Send)

〈a1,E[return ()],
−→
V1〉 ‖ 〈an,Mn,

−→
Vn ·W 〉
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Thus, we can see that:

JCcanon K=⇒ (νak+1) · · ·(νan)(JEK[return ()]a1 ‖ a1(J
−→
V1 K) ‖ · · · ‖ JM Kan ‖ an(J

−→
Vn K · JW K))

=

J (νak+1) · · ·(νan)(〈a1,E[return ()],
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn ·W 〉) K

and

Ccanon =⇒ (νak+1) · · ·(νan)(〈a1,E[return ()],
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn ·W 〉)

as required.

Remark. The work of Gorla [81] on encodability criteria for process calculi refers to simulation as

completeness, and re�ection as soundness. We elect instead to adopt the terminology of Carbone

et al. [30] so as to avoid confusion with soundness and completeness with respect to a denotational

semantics, where the property names are seemingly �ipped.

5.2 From λ
ch

to λact

The translation from λact into λch emulates an actor mailbox using a channel to implement

operations which normally rely on the context of the actor. Though global, the translation is

straightforward due to the limited form of communication supported by mailboxes. Translating

from λch into λact is more challenging, as would be expected from Figure 4.2. Each channel in

a system may have a di�erent type; each process may have access to multiple channels; and

(crucially) channels may be freely passed between processes.

5.2.1 Extensions to the core language

We require several more language constructs: sums, products, recursive functions, and iso-

recursive types. Recursive functions are used to implement an event loop, and recursive types

are used to maintain a term-level bu�er. Products are used to record both a list of values in

the bu�er and a list of pending requests. Sum types allow the disambiguation of the two types

of messages sent to an actor: one to queue a value (emulating give) and one to dequeue a

value (emulating take). Sums are also used to encode monomorphic variant types; we write

〈`1 : A1, . . . , `n : An〉 for variant types and 〈`i =V 〉 for variant values.

Figure 5.2 shows the extensions to the core term language and their reduction rules. With

products, sums, and recursive types, we can encode lists. The typing rules are shown for

λch but can be easily adapted for λact, and it is straightforward to verify that the extended

languages still enjoy progress and preservation.
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Additional syntax

Types A,B,C ::= . . . | A×B | A+B | List(A) | µt.A | t

Values V,W ::= . . . | rec f (x) .M | (V,W ) | inlV | inrW | rollV

Terms L,M,N ::= . . . | let (x,y) =V in M | caseV {inl x 7→M; inr y 7→ N} | unrollV

Additional value typing rules Γ `V : A

T-Rec

Γ,x : A, f : A→ B `M : B

Γ ` rec f (x) .M : A→ B

T-Pair

Γ `V : A Γ `W : B

Γ ` (V,W ) : A×B

T-Inl

Γ `V : A

Γ ` inlV : A+B

T-Inr

Γ `V : B

Γ ` inrV : A+B

T-Roll

Γ `V : A{µt.A/t}

Γ ` rollV : µt.A

Additional term typing rules Γ `M : A

T-Let

Γ `V : A×B

Γ,x : A,y : B `M : C

Γ ` let (x,y) =V in M : C

T-Case

Γ `V : A+B

Γ,x : A `M : C Γ,y : B ` N : C

Γ ` caseV {inl x 7→M; inr y 7→ N} : C

T-Unroll

Γ `V : µt.A

Γ ` unrollV : A{µt.A/t}

Additional term reduction rules M −→M M′

(rec f (x) .M)V −→M M{(rec f (x) .M)/ f ,V/x}

let (x,y) = (V,W ) in M −→M M{V/x,W/y}

case (inlV ){inl x 7→M; inr y 7→ N} −→M M{V/x}

case (inrV ){inl x 7→M; inr y 7→ N} −→M N{V/y}

unroll (rollV )−→M returnV

Encoding of lists

List(A), µt.1+(A× t) [ ], roll (inl ()) V :: W , roll (inr (V,W ))

caseV {[ ] 7→M;x :: y 7→ N}, let z⇐ unrollV in case z{inl () 7→M; inr (x,y) 7→ N}

Figure 5.2: Extensions to core languages to allow translation from λch into λact
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Figure 5.3: Translation strategy: λch into λact

5.2.2 Translation strategy (λ
ch

into λact)

To translate typed channels into typed actors (shown in Figure 5.3), we emulate each channel

using an actor process, which is crucial in retaining the mobility of channel endpoints. Channel

types describe the typing of a communication medium between communicating processes,

where processes are unaware of the identity of other communicating parties, and the types of

messages that another party may receive. Unfortunately, the same does not hold for mailboxes.

Consequently, we require that before translating into actors, every channel has the same type.

Although this may seem restrictive, it is both possible and safe to transform a λch program

with multiple channel types into a λch program with a single channel type.

As an example, suppose we have a program which contains channels carrying values

of types Int, String, and ChanRef(String). It is possible to construct a recursive variant

type µt.〈`1 : Int, `2 : String, `3 : ChanRef(t)〉 which can be assigned to all channels in the

system. Then, supposing we wanted to send a 5 along a channel which previously had type

ChanRef(Int), we would instead send a value roll 〈`1 = 5〉 (where rollV is the introduction

rule for an iso-recursive type). We call this transformation coalescing.

Remark. Note that applying the translation from λch to λact on a con�guration C , followed by the

translation from λact to λch, will not result in the original program: the round-trip translation will

introduce additional processes which emulate bu�ers. Nevertheless, by virtue of the operational

correspondence results, the behaviour of J LC M K simulates and re�ects the behaviour of C , albeit

with many administrative reductions.

5.2.3 Translation

We write λch judgements of the form {B} Γ `M : A for a term where all channels have type

B, and similarly for value and con�guration typing judgements. Under such a judgement, we

can write Chan instead of ChanRef(B).
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Meta level de�nitions. The majority of the translation lies within the translation of newCh,

which makes use of the meta-level de�nitions body and drain. The body function emulates a

channel. Firstly, the actor receives a message recvVal, which is either of the form inlV to store

a message V , or inrW to request that a value is dequeued and sent to the actor with ID W . We

assume a standard implementation of list concatenation (++ ). If the message is inlV , then V

is appended to the tail of the list of values stored in the channel, and the new state is passed as

an argument to drain. If the message is inrW , then the process ID W is appended to the end

of the list of processes waiting for a value. The drain function satis�es all requests that can be

satis�ed, returning an updated channel state. Note that drain does not need to be recursive,

since one of the lists will either be empty or a singleton.

Translation on types. Figure 5.4 shows the translation from λch into λact. The transla-

tion function on types L− M is de�ned with respect to the type of all channels C and is

used to annotate function arrows and to assign a parameter to ActorRef types. The (omit-

ted) translations on sums, products, and lists are homomorphic. The translation of Chan is

ActorRef(LC M+ActorRef(LC M)), meaning an actor which can receive a request to either store

a value of type LC M, or to dequeue a value and send it to a process ID of type ActorRef(LC M).

Translation on communication and concurrency primitives. We omit the translation

on values and functional terms, which are homomorphisms. Processes in λch are anonymous,

whereas all actors in λact are addressable; to emulate fork, we therefore discard the reference

returned by spawn. The translation of give wraps the translated value to be sent in the left

injection of a sum type, and sends to the translated channel name LW M. To emulate take,

the process ID (retrieved using self) is wrapped in the right injection and sent to the actor

emulating the channel, and the actor waits for the response message. Finally, the translation

of newCh spawns a new actor to execute body.

Translation on con�gurations. The translation function L− M is homomorphic on parallel

composition and name restriction. Unlike λch, a term cannot exist outside of an enclosing actor

context in λact. Hence, the translation of a process evaluating term M is an actor evaluating

LM M with some fresh name a and an empty mailbox, enclosed in a name restriction. A bu�er

is translated to an actor with an empty mailbox, evaluating body with a state containing the

(term-level) list of values previously stored in the bu�er.

Although the translation from λch into λact, is much more verbose than the translation

from λact to λch, it is (once all channels have the same type) a local transformation [66].
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Translation on types (wrt. a channel type C)

LChan M= ActorRef(LC M+ActorRef(LC M)) LA→ B M= LA M→LC M LB M

Translation on communication and concurrency primitives

L fork M M= let x⇐ spawn LM M in return ()

LgiveV W M= send (inl LV M) LW M

LnewCh M= spawn (body([ ], [ ]))

L takeV M= let selfPid⇐ self in

send (inr selfPid) LV M;

receive

Translation on con�gurations

LC ‖D M= LC M ‖ LD M L (νa)C M= (νa)LC M LM M= (νa)(〈a,LM M,ε〉)
a is a fresh name

La(
−→
V ) M= 〈a,body(L

−→
V M, [ ]),ε〉 where L

−→
V M= LV0 M :: · · · :: LVn M :: [ ]

Meta level de�nitions

body , rec g(state) .

let recvVal⇐ receive in

let (vals,pids) = state in

case recvVal{
inl v 7→

let vals′⇐ vals++ [v] in

let state′⇐ drain (vals′,pids) in

g (state′)

inrpid 7→
let pids′⇐ pids++ [pid] in

let state′⇐ drain (vals,pids′) in

g (state′)

}

drain , λx.

let (vals,pids) = x in

casevals{
[ ] 7→ return (vals,pids)

v :: vs 7→
casepids{
[ ] 7→ return (vals,pids)

pid :: pids 7→
send vpid;

return (vs,pids)

}
}

Figure 5.4: Translation from λch into λact
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5.2.4 Properties of the translation

Since all channels in the source language of the translation have the same type, we can assume

that each entry in the codomain of ∆ is the same type B.

De�nition 6 (Translation of typing environments wrt. a channel type B).

1. Given Γ = α1:A1, . . . ,αn : An, de�ne LΓ M= α1 : LA1 M, . . . ,αn : LAn M.

2. Given ∆ = a1 : B, . . . ,an : B, de�ne L∆ M=

a1 : (LB M+ActorRef(LB M)), . . . ,an : (LB M+ActorRef(LB M)).

The translation on terms preserves typing.

Lemma 33 (L− M preserves typing (terms and values)).

1. If {B} Γ `V :A, then LΓ M ` LV M:LA M.

2. If {B} Γ `M:A, then LΓ M | LB M ` LM M:LA M.

Proof. By simultaneous induction on the derivations of {B} Γ `V :A and {B} Γ `M:A. We

show the cases for T-Give and T-New here; the remaining cases are similar.

Case T-Give

Assumption:

{A} Γ `V : A {A} Γ `W : Chan

{A} Γ ` giveV W : 1

By Lemma 33, we have that LΓM` LV M : LAM and LΓM` LW M : ActorRef(LAM+ActorRef(LAM)).

Thus we can show

LΓ M ` LV M : LA M

LΓ M ` inl LV M : LA M+ActorRef(LA M) LΓ M ` LW M : ActorRef(LA M+ActorRef(LA M))

LΓ M ` send (inl LV M) LW M : 1

as required.

Case T-NewCh

Assumption:

{A} Γ ` newCh : Chan
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The case amounts to typechecking body (L
−→
V M, [ ]). The majority of the details are routine,

but it is useful to show the types of the state and the communication and concurrency

constructs.

The state has type List(L A M) × List(ActorRef(L A M)). Since L Chan M = L A M +

ActorRef(LA M), the mailbox type for an actor emulating a channel is LA M+ActorRef(LA M),

and received values of this type are correctly deconstructed by the case construct.

Given that LΓ M | LA M+ActorRef(LA M) ` body ([ ], [ ]) : B (as there is no base case to the

recursive function, the term may be assigned any type), we can show that

LΓ M | LA M+ActorRef(LA M) ` body ([ ], [ ]) : B

LΓ M | LA M ` spawn body ([ ], [ ]) : ActorRef(LA M+ActorRef(LA M))

as required.

The translation on con�gurations also preserves typeability.

Theorem 15 (L− M preserves typeability (con�gurations)).

If {A} Γ;∆ ` C , then LΓ M;L∆ M ` LC M.

Proof. By induction on the derivation of {A} Γ;∆ ` C . Cases T-Par and T-Chan follow

immediately by the induction hypothesis; we consider T-Buf and T-Term.

Case T-Buf

Assumption:

(Γ,a : Chan `Vi : A)i

Γ,a : Chan;a : A ` a(
−→
V )

Let B = LA M+ActorRef(LA M).

By repeated applications of Lemma 33, we have that (LΓ M,a : ActorRef(B) ` LVi M : LA M)i.

By similar reasoning to the translation of newCh, we can show that

LΓ M,a : ActorRef(B) | B ` body (L
−→
V M, [ ]) : C

Thus by T-Actor, we have that

LΓ M,a : ActorRef(B) | B ` body (L
−→
V M, [ ]) : C

LΓ M,a : ActorRef(B);B | B ` 〈a,body (L
−→
V M, [ ]),ε〉

Case T-Term
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Assumption:

Γ `M : B

Γ; · `M

By Lemma 33, we have that LΓ M ` LM M : LB M. By weakening and by picking a fresh

name b, we also have that LΓ M,b : ActorRef(LA M) ` LM M : LA M.

Thus we can show

LΓ M,b : LA M | LA M ` LM M : LB M

LΓ M,b : LA M;b : LA M ` 〈b,LM M,ε〉

LΓ M; · ` (νb)(〈b,LM M,ε〉)

as required.

As before, we can lift the translations on evaluation and con�guration contexts since they are

identical in both languages.

Lemma 34. 1. Given an evaluation context E and term M, it is the case that LE[M] M =

LE M[LM M].

2. Given a con�guration context G and subcon�guration C , it is the case that LG [C ] M =

LG M[LC M].

It is clear that reduction on translated λch terms can simulate reduction in λact. In fact, we

obtain a tighter result than the translation from λch into λact as the simulation of β-reduction

for function application only takes a single step.

Lemma 35 (Simulation (L− M, terms)). If {B} Γ `M : A and M −→M N, then LM M−→M LN M.

Again, as term reduction is deterministic, reduction in the image of the translation is re�ected

in the source language.

Lemma 36 (Re�ection (L− M, terms)). If {B} Γ `M1 : A and LM1 M−→M N, then there exists

some M2 such that M1 −→M M2 and N −→M LM2 M.

Since the equivalence axioms in λch and λact are identical, equivalence is preserved by the

translation.

Lemma 37. If Γ;∆ ` C and C ≡D , then LC M≡ LD M.

Finally, we show a sound and complete operational correspondence for the translation from

λch into λact. We must reason up to β-equality when considering re�ection since the actor

generated by the translation of bu�ers performs a β-reduction whether or not there is a value

contained in its con�guration-level mailbox.

We write =β for β-equality.
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De�nition 7 (β-equality). The relation =β is de�ned as an equivalence relation on terms satis-

fying the following axioms:

(λx.M)V =β M{V/x} (rec f (x) .M)V =β M{rec f (x) .M/ f ,V/x}

We extend =β to λact con�gurations:

C1 =β D1 C2 =β D2

C1 ‖ C2 =β D1 ‖D2

C =β D

(νa)C =β (νa)D

M =β N

〈a,M,
−→
V 〉=β 〈a,N,

−→
W 〉

Recall that R ?
refers to the re�exive closure of a relation R . We can now state an operational

correspondence result:

Theorem 16 (Operational Correspondence (L− M)).

Simulation If {A} Γ;∆ ` C1, and C1 −→ C2, then LC1 M=⇒∗ LC2 M.

Re�ection If {A} Γ;∆ ` C1, and LC1 M=⇒D , then there exist con�gurations C2 and E such

that C1 =⇒? C2 and D =⇒∗ E , where E =β LC2 M.

Proof. Simulation: By induction on the derivation of C1 −→ C2. We show the case for E-Give

here; the remaining cases can be found in Appendix B.

Case E-Give

E[giveW a] ‖ a(
−→
V )

De�nition of L− M
(νb)(〈b,LE M[send (inl LW M)a],ε〉) ‖ 〈a,body ([L

−→
V M], [ ]),ε〉

≡
(νb)(〈b,LE M[send (inl LW M)a],ε〉 ‖ 〈a,body ([L

−→
V M], [ ]),ε〉)

−→ (E-Send)

(νb)(〈b,LE M[return ()],ε〉 ‖ 〈a,body ([L
−→
V M], [ ]), inl LW M〉)

≡
(νb)(〈a,body ([L

−→
V M], [ ]), inl LW M〉 ‖ 〈b,LE M[return ()],ε〉)

Now, let G [−] = (νb)[−] ‖ 〈b,LE M[return ()],ε〉).
We now have

G [〈a,body ([L
−→
V M], [ ]),(inl LW M)〉]
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which we can expand to

G [〈a, (rec g(state) .

let recvVal⇐ receive in

let (vals,readers) = state in

case recvVal{
inl v 7→ let newVals⇐ vals++ [v] in

let state′⇐ drain (newVals, readers) in

g (state′)

inrpid 7→ let newReaders⇐ readers++ [pid] in

let state′⇐ drain (vals,newReaders) in

g (state’)}) (L−→V M, [ ])

, inl LW M〉]

Applying the arguments to the recursive function g; performing the receive, and the let and

case reductions, we have:

G [〈a, let newVals⇐ L
−→
V M++ [LW M] in

let state′⇐ drain (newVals, [ ]) in

body (state′)

,ε〉]

Next, we reduce the append operation, and note that since we pass a state without pending

readers into drain, that the argument is returned unchanged:

G [〈a, let state′⇐ return (L
−→
V M :: LW M :: [ ]) in body state′,ε〉]

Next, we apply the let-reduction and expand the evaluation context:

(νb)(〈a,body (L
−→
V M :: LW M :: [ ]),ε〉 ‖ 〈b,LE M[return ()],ε〉)

which is equivalent to

(νb)(〈b,LE M[return ()],ε〉) ‖ 〈a,body (L
−→
V M :: LW M :: [ ]),ε〉

which is equal to

LE[return ()] ‖ a(L
−→
V ·W M) M

as required.

Re�ection:

By Lemma 19 and assuming that ∆ = a1 : A, . . . ,ak : A, we have that C may be written as

(νak+1) · · ·(νan)(M1 ‖ · · · ‖Mn ‖ a1(
−→
V1) ‖ · · · ‖ an(

−→
Vn)).
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By the de�nition of the translation, we have that LC M may be written

LC M= (νak+1) · · ·(νan)((νb1)(〈b1,LM1 M,ε〉) ‖ · · · ‖ (νbn)(〈bn,LMn M,ε〉) ‖
〈a1,body (L

−→
V1 M, [ ]),ε〉 ‖ · · · ‖ 〈an,body (L

−→
Vn M, [ ]),ε〉)

Suppose reduction happens in an actor ai emulating a bu�er ai(
−→
Vi ). Here, we have that a

β-reduction takes place, and reduction becomes blocked on receive. This is β-equivalent to

the original translation, as required.

Thus, we need only consider the case where reduction occurs in an actor emulating a

thread. Without loss of generality, assume reduction occurs in actor b1. We may then proceed

by case analysis on the structure of LM1 M. We show the case for L give V W M here. The

remaining cases follow the same pattern.

Case LgiveV W M

For reduction to occur, we have that W must be some ν-bound name ai. Let us assume that

this is a1. Thus, we have that there exists some D such that Ccanon ≡D , where

D = G [〈b1,LE M[send LV Ma1],ε〉 ‖ 〈a1,body (L
−→
V1 M, [ ]),ε〉]

By constructing the same derivation as for the simulation case, we have that D =⇒+ D ′,
where

D ′ = G [〈b1,LE M[return ()],ε〉 ‖ 〈a1,body (L
−→
V1 ·V M, [ ]),ε〉]

In λch, we can show

E[giveV a1] ‖ a1(
−→
V1)

−→ (E-Give)

E[return ()] ‖ a1(
−→
V1 ·V )

Thus, we have that

LCcanon M=⇒+ (νak+1) · · ·(νan)((νb1)(〈b1,LE M[return ()],ε〉) ‖ · · · ‖ (νbn)(〈bn,LMn M,ε〉) ‖
〈a1,body (L

−→
V1 ·V M, [ ]),ε〉 ‖ · · · ‖ 〈an,body (L

−→
Vn M, [ ]),ε〉)

= L (νak+1) · · ·(νan)(E[return ()] ‖ · · · ‖Mm ‖ a1(
−→
V1 ·V ) ‖ · · · ‖ an(

−→
Vn)) M

and

Ccanon =⇒ (νak+1) · · ·(νan)(E[return ()] ‖ · · · ‖Mm ‖ a1(
−→
V1 ·V ) ‖ · · · ‖ an(

−→
Vn))

as required.
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Remark. The translation from λch into λact is more involved than the translation from λact

into λch due to the asymmetry shown in Figure 4.2. Mailbox types are less precise, generally

taking the form of a large variant type.

Typical implementations of this translation use synchronisation mechanisms such as

futures or shared memory (see Chapter 6); the implementation shown in the Hopac documen-

tation uses ML references [3]. Given the ubiquity of these abstractions, we were surprised

to discover that the additional expressive power of synchronisation is not necessary. Our

original attempt at a synchronisation-free translation was type-directed. We were surprised to

discover that the translation can be described so succinctly after factoring out the coalescing

step, which precisely captures the type pollution problem.



Chapter 6

Extending λch and λact

6.1 Introduction

In Chapter 4, we introduced λch and λact, small calculi describing channel- and actor-based

communication respectively. In this chapter, we discuss common extensions to channel-

and actor-based languages, and discuss how they interact with the translations described in

Chapter 5. In particular, we describe synchronisation, selective receive, and input-guarded choice.

Synchronisation Mixing the actor model with some form of synchronisation is a common

pattern in real-world applications, and is ubiquitous in practical implementations of

actor-inspired languages and frameworks [200]. Adding synchronisation simpli�es the

translation from channels to actors by relaxing the restriction that all channels must have

the same type.

Selective Receive Erlang includes a mechanism for selectively receiving from a mailbox,

allowing messages to be processed out-of-order. We formalise this construct, and show

that it may be encoded in plain λact.

Input-guarded Choice Many channel-based languages allow messages to be received

from a collection of channels. We show how such a construct may be added to λch, and

discuss why it is di�cult to emulate using λact.

99
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Modi�ed types and terms

Types ::= · · · | ActorRef(A,B)

Terms ::= · · · | waitV

Additional reduction rule C −→D

〈a,E[wait b],
−→
V 〉 ‖ 〈b,returnV ′,

−→
W 〉 −→ 〈a,E[returnV ′],

−→
V 〉 ‖ 〈b,returnV ′,

−→
W 〉

Additional equivalence axiom C ≡D

(νa)(〈a,returnV,
−→
V 〉) ‖ C ≡ C

Modi�ed typing rules for terms Γ | A,B `M : A

T-SyncSpawn

Γ | A,B `M : B

Γ | C,C′ ` spawn M : ActorRef(A,B)

T-SyncSend

Γ `V : A′ Γ `W : ActorRef(A′,B′)

Γ | A,B ` sendV W : 1

T-SyncRecv

Γ | A,B ` receive : A

T-SyncWait

Γ `V : ActorRef(A,B)

Γ | C,C′ `waitV : B

T-SyncSelf

Γ | A,B ` self : ActorRef(A,B)

Modi�ed typing rules for con�gurations Γ;∆ ` C

T-SyncActor

Γ,a:ActorRef(A,B) | A,B `M:B

(Γ,a:ActorRef(A,B) `Vi:A)i

Γ,a : ActorRef(A,B);a:(A,B) ` 〈a,M,
−→
V 〉

T-SyncNu

Γ,a : ActorRef(A,B);∆,a : (A,B) ` C

Γ;∆ ` (νa)C

Figure 6.1: λact with synchronisation
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6.2 Synchronisation

Although communicating with an actor via asynchronous message passing su�ces for many

purposes, implementing “call-response” style interactions can become cumbersome. Practical

implementations such as Erlang and Akka implement some way of synchronising on a result:

Erlang achieves this by generating a unique reference to send along with a request, selectively

receiving from the mailbox to await a response tagged with the same unique reference. Another

method of synchronisation embraced by the Active Object community [55, 114, 128] and Akka

is to generate a future variable which is populated with the result of the call.

Figure 6.1 details an extension of λact with a synchronisation primitive, wait, which

encodes a deliberately restrictive form of synchronisation capable of emulating futures. The

key idea behind wait is it allows some actor a to block until an actor b evaluates to a value; this

value is then returned directly to a, bypassing the mailbox. A variation of the wait primitive

is implemented as part of the Links [46] concurrency model. This is but one of multiple ways

of allowing synchronisation: �rst-class futures, shared reference cells, or selective receive can

achieve a similar result. We discuss wait as it avoids the need for new con�gurations.

We replace the unary type constructor for process IDs with a binary type constructor

ActorRef(A,B), where A is the type of messages that the process can receive from its mail-

box, and B is the type of value to which the process will eventually evaluate. We omit the

modi�cations to the remainder of the primitives to take the additional e�ect type into account.

6.2.1 Correctness

The addition of synchronisation retains type preservation.

Theorem 17 (Preservation (λact with synchronisation)).

If Γ;∆ ` C and C −→D , then Γ;∆ `D .

Proof. By induction on the derivation of C −→ D . We consider the case for E-Wait; the

remaining cases adapt straightforwardly.

Case E-Wait

〈a,E[wait b],
−→
V 〉 ‖ 〈b,returnV ′,

−→
W 〉 −→ 〈a,E[returnV ′],

−→
V 〉 ‖ 〈b,returnV ′,

−→
W 〉

Assumption:

Γ | A,B ` E[wait b] : B (Γ `Vi : A)i

Γ;a : (A,B) ` 〈a,E[wait b],
−→
V 〉

Γ `V ′ : B′

Γ | A′,B′ ` returnV ′ : B′ (Γ `Wi : A′)i

Γ;b : (A′,B′) ` 〈b,returnV ′,
−→
W 〉

Γ;a : (A,B),b : (A′,B′) ` 〈a,E[wait b],
−→
V 〉 ‖ 〈a,returnV ′,

−→
W 〉
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where Γ = Γ′,a : ActorRef(A,B),b : ActorRef(A′,B′) for some Γ′.

By the suitable adaptation of Lemma 20 (subterm typeability):

Γ ` b : ActorRef(A′,B′)

Γ | A,B `wait b : B′

By the suitable adaptation of Lemma 21 (subterm replacement), Γ | (A,B) ` E[returnV ′] : B.

Thus, recomposing:

Γ | A,B ` E[returnV ′] : B (Γ `Vi : A)i

Γ;a : (A,B) ` 〈a,E[returnV ′],
−→
V 〉

Γ `V ′ : B′

Γ | A′,B′ ` returnV ′ : B′ (Γ `Wi : A′)i

Γ;b : (A′,B′) ` 〈b,returnV ′,
−→
W 〉

Γ;a : (A,B),b : (A′,B′) ` 〈a,E[returnV ′],
−→
V 〉 ‖ 〈a,returnV ′,

−→
W 〉

as required.

Our characterisation of progress must now take into account actors which are waiting on

another process. Note that λact with synchronisation has a strictly weaker progress property

than plain λact, since an actor waiting on a blocked actor, or itself, cannot reduce.

Theorem 18 (Weak Progress (λact with synchronisation)). Suppose ·; · ` C , where C is in

canonical form, and C 6=⇒. Let C = (νa1) · · ·(νan)(〈a1,M1,
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉). Then, for

each name ai, either:

1. The actor with name ai is of the form 〈ai,returnW,
−→
Vi 〉; or

2. The actor with name ai is of the form 〈ai,E[receive],ε〉; or

3. The actor with name ai is of the form 〈ai,E[waita j],
−→
Vi 〉, where either j = i, or j 6= i and

the actor with name a j is of the form 〈a j,M,
−→
Vj 〉, where M 6= returnW for some W .

Proof. Similar to the proof of Theorem 12, inspecting the reduction rule for wait .

6.2.2 Simplifying the translation from λ
ch

to λact

Figure 6.2 shows how to adapt the previous translation from λch to λact, making use of wait

to avoid the need for the coalescing transformation. Channel references are translated into

actor references which can either receive a value of type A, or the PID of a process which

can receive a value of type A and will eventually evaluate to a value of type A. Note that the

unbound annotation C,C′ on function arrows re�ects that the mailboxes can be of any type,

since the mailboxes are unused in the actors emulating threads.
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Modi�ed translation on types

LChanRef(A) M =ActorRef(LA M+ActorRef(LA M,LA M),B)

LA→ B M = LA M→C,C′ LB M

Modi�ed translation on terms

L takeV M= let requestorPid⇐ spawn (

let selfPid⇐ self in

send (inr selfPid) LV M;

receive) in

wait requestorPid

Figure 6.2: Modi�ed translation from λch into λact using synchronisation

The key idea behind the modi�ed translation is to spawn a fresh actor which makes the

request to the channel and blocks waiting for the response. Once the spawned actor has

received the result, the result can be retrieved synchronously using wait without reading from

the mailbox. The previous soundness theorems adapt to the new setting.

Lemma 38 (L− M preserves typing (with synchronisation, terms)).

1. If Γ `V :A, then LΓ M ` LV M:LA M.

2. If Γ `M:A, then LΓ M | LB M,LC M ` LM M:LA M, for any B,C.

Proof. By simultaneous induction on the derivations of Γ `V : A and Γ `M : A. We prove the

case for T-Take. The remaining cases adapt straightforwardly.

Case T-Take

Assumption:

Γ `V : ChanRef(A)

Γ ` takeV : A

By the IH (premise 1), we have that LΓ M ` LV M : ActorRef(LA M+ActorRef(LA M,LA M),B′).

Let N be the term:

let selfPid⇐ self in

send (inr selfPid) LV M;

receive
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Let Γ′ = LΓ M, selfPid : ActorRef(LA M,LA M). Let D′ be the typing derivation:

LΓ M | LA M,LA M ` self : ActorRef(LA M,LA M)

We can construct a typing derivation D for N as follows:

D′

Γ
′ ` inr selfPid : LA M+ActorRef(LA M,LA M)

Γ
′ ` LV M : ActorRef(LA M+ActorRef(LA M,LA M),B′)

Γ
′ | LA M,LA M ` send (inr selfPid) LV M : 1 Γ

′ | LA M,LA M ` receive : LA M

Γ
′ ` send (inr selfPid) LV M;receive : LA M

LΓ M | LA M,LA M ` let selfPid⇐ self in

send (inr selfPid) LV M;

receive

: LA M

Let Γ′′ = LΓ M, requestorPid : ActorRef(LA M,LA M). Finally, we can show:

D

LΓ M | B,C ` spawn N : ActorRef(LA M,LA M)

Γ
′′ ` requestorPid : ActorRef(LA M,LA M)

Γ
′′ | B,C `wait requestorPid : LA M

LΓ M | B,C ` let requestorPid⇐ spawn N in wait requestorPid : LA M

for any arbitrary B and C as required.

Theorem 19 (L− M preserves typing (λact with synchronisation, con�gurations)). If Γ;∆ ` C ,

then LΓ M;L∆ M ` LC M.

Proof. By induction on the derivation of Γ;∆ ` C , using Lemma 38. The cases adapt straight-

forwardly.

Theorem 20 (Operational Correspondence (L− M with synchronisation)).

Simulation If Γ;∆ ` C1 and C1 −→ C2, then LC1 M=⇒∗ LC2 M.

Re�ection If Γ;∆ ` C1 and LC1 M =⇒ D , then there exists some C2 such that C1 =⇒∗ C2

and D =⇒∗ E , where E =β LC2 M.

Proof. Similar to the proof of Theorem 16; the main di�erence is the derivation for case E-Wait.

We show this case in Appendix B.

Preliminary work has shown that the translation from λact with wait into λch requires named

threads and a join construct in λch. We leave the details to future work.
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Additional syntax

Receive Patterns c ::= (〈`= x〉when M) 7→ N

Computations M ::= · · · | receive {−→c }

Additional term typing rule Γ | 〈`i : Ai〉i `M : A

T-SelRecv

−→c = {〈`i = xi〉when Mi 7→ Ni}i i ∈ J

Γ,xi : Ai `P Mi : Bool Γ,xi : Ai | 〈` j : A j〉 j∈J ` Ni : C

Γ | 〈` j : A j〉 j∈J ` receive {−→c } : C

Typing rules for purely-functional values Γ `P V : A

TP-Var

α : A ∈ Γ

Γ `P α : A

TP-Abs

Γ,x : A `P M : B

Γ `P λx.M : A→ B

TP-Unit

Γ `P () : 1

TP-Rec

Γ, f : A→ B,x : A `P M : B

Γ `P rec f (x) .M : A→ B

TP-Pair

Γ `P V : A Γ `P W : B

Γ `P (V,W ) : (A×B)

TP-Inl

Γ `P V : A

Γ `P inlV : A+B

TP-Inr

Γ `P inrV : B

Γ `P inrV : A+B

TP-Roll

Γ `P V : A{µt.A/t}

Γ `P rollV : µt.A

Typing rules for purely-functional computations Γ `P M : A

TP-App

Γ `P V : A→ B

Γ `P W : A

Γ `P V W : B

TP-EffLet

Γ `P M : A

Γ,x : A `P N : B

Γ `P let x⇐M in N : B

TP-EffReturn

Γ `P V : A

Γ `P returnV : A

TP-Let

Γ `P V : A×B

Γ,x : A,y : B `P M : C

Γ `P let (x,y) =V in M : C

TP-Case

Γ `P V : A+B

Γ,x : A `P M : C Γ,y : B `P N : C

Γ `P caseV {inl x 7→M; inr y 7→ N} : C

TP-Unroll

Γ `P V : µt.A

Γ `P unrollV : A{µt.A/t}

Additional con�guration reduction rule C −→D

E-SelRecv

∃k, l.∀i.i < k⇒¬matchesAny(−→c ,Vi)∧matches(cl,Vk)∧∀ j. j < l⇒¬matches(c j,Vk)

〈a,E[receive {−→c }],−→W ·Vk ·
−→
W ′〉 −→ 〈a,E[Nl{V ′k/xl}],

−→
W ·
−→
W ′〉

where

−→c = {〈`i = xi〉when Mi 7→Ni}i
−→
W =V1 · . . . ·Vk−1

−→
W ′=Vk+1 · . . . ·Vn Vk = 〈`k =V ′k〉

matches((〈`= x〉when M) 7→ N,〈`′ =V 〉), (`= `′)∧ (M{V/x} −→∗M return true)

matchesAny(−→c ,V ), ∃c ∈ −→c .matches(c,V )

Figure 6.3: Additional syntax, typing rules, and reduction rules for λact with selective receive
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6.3 Selective receive

The receive construct in λact can only read the �rst message in the queue, which is cumbersome

as it often only makes sense for an actor to handle a subset of messages at a given time.

In practice, Erlang provides a selective receive construct, matching messages in the mailbox

against multiple pattern clauses. Assume we have a mailbox containing values V1, . . .Vn and

evaluate receive {c1, . . . ,cm}. The construct �rst tries to match value V1 against clause c1—if

it matches, then the body of c1 is evaluated, whereas if it fails, V1 is tested against c2 and so on.

Should V1 not match any pattern, then the process is repeated until Vn has been tested against

cm. At this point, the process blocks until a matching message arrives.

More concretely, consider an actor with mailbox type C = 〈PriorityMessage :Message,

StandardMessage :Message,Timeout :1〉 which can receive both high- and low-priority mes-

sages. Let getPriority be a function which extracts a priority from a message.

Now consider the following de�nitions:

handlePriority ,

receive{
〈PriorityMessage =msg〉when (getPrioritymsg)> 5 7→ handleMessagemsg

〈Timeout =msg〉 when true 7→ handleAll

}
handleAll ,

receive{
〈PriorityMessage =msg〉 when true 7→ handleMessagemsg

〈StandardMessage =msg〉when true 7→ handleMessagemsg

〈Timeout =msg〉 when true 7→ ()

}

An actor evaluating handlePriority begins by handling a message only if it has a priority

greater than 5. We leave the handleMessage function abstract, but it could, for example, log that

the message has been received. After the timeout message is received, however, the actor will

evaluate handleAll, which allows it to handle any message—including lower-priority messages

that were received beforehand.

Figure 6.3 shows the additional syntax, typing rule, and con�guration reduction rule

required to encode selective receive; the type Bool and logical operators are encoded using

sums in the standard way. We write Γ `P M : A to mean that under context Γ, a term M which

does not perform any communication or concurrency actions has type A. Intuitively, this

means that no subterm of M is a communication or concurrency construct.

The receive {−→c } construct models an ordered sequence of receive pattern clauses c of

the form (〈`= x〉when M) 7→ N, which can be read as “If a message with body x has label `
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Translation on types

bActorRef(〈`i : Ai〉i)c= ActorRef(〈`i : bAic〉i) bA×Bc= bAc×bBc

bA+Bc= bAc+ bBc bµt.Ac= µt.bAc btc= t

bA→C Bc= bAc →bCc List(bCc)→bCc (bBc×List(bCc))

where C = 〈`i : A′i〉i, and bCc= 〈`i : bA′ic〉i
Translation on values

bλx.Mc= λx.λmb.(bMcmb) brec f (x) .Mc= rec f (x) .λmb.(bMcmb)

Translation on computation terms (wrt. a mailbox type 〈`i : Ai〉i)
bV Wcmb= let f⇐ (bVc bWc) in f mb

breturnVcmb= return (bVc,mb)

blet x⇐M in Ncmb= let resPair⇐ bMcmb in let (x,mb
′) = resPair in bNcmb

′

bselfcmb= let selfPid⇐ self in return (selfPid,mb)

bsendV Wcmb= let x⇐ send (bVc) (bWc) in return (x,mb)

bspawn Mcmb= let spawnRes⇐ spawn(bMc[ ]) in return (spawnRes,mb)

breceive {−→c }cmb= find(−→c ) ([ ],mb)

Translation on con�gurations

b(νa)Cc= {(νa)D |D ∈ bCc}
bC1 ‖ C2c= {D1 ‖D2 |D1 ∈ bC1c∧D2 ∈ bC2c}

b〈a,M,
−→
V 〉c= {〈a,(bMc

−→
W 1

i ),
−→
W 2

i 〉 | i ∈ 0..n}

where

−→
W 1

i = bV1c :: · · · :: bVic :: [ ]
−→
W 2

i = bVi+1c · · · · · bVnc

Figure 6.4: Translation from λact with selective receive into λact

and satis�es predicate M, then evaluate N”. The typing rule for receive {−→c } ensures that for

each pattern 〈`i = xi〉when Mi 7→ Ni in
−→c , we have that there exists some `i : Ai contained in

the mailbox variant type; and when Γ is extended with xi : Ai, that the guard Mi has type Bool

and the body Ni has the same type C for each branch. Note that pattern matching need not be

exhaustive, and that the construct supports multiple patterns for each variant label.

The reduction rule for selective receive is inspired by that of Fredlund [75]. Assume that

the mailbox is of the form V1 · · · · ·Vk · . . .Vn, with

−→
W =V1 · · · · ·Vk−1 and

−→
W ′ =Vk+1 · · · · ·Vn.

The matches(c,V ) predicate holds if the label matches, and the branch guard evaluates to true.

The matchesAny(−→c ,V ) predicate holds if V matches any pattern in
−→c . The key idea is that

Vk is the �rst value to satisfy a pattern. The construct evaluates to the body of the matched

pattern, with the message payload V ′k substituted for the pattern variable xk; the �nal mailbox

is

−→
W ·
−→
W ′ (that is, the original mailbox without Vk).

Reduction in the presence of selective receive preserves typing.
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Theorem 21 (Preservation (λact con�gurations with selective receive)). If Γ;∆ | 〈`i : Ai〉i ` C1

and C1 −→ C2, then Γ;∆ | 〈`i : Ai〉i ` C2.

Proof. By induction on the derivation of C1 −→ C2.

Translation to λact. Given the additional constructs (i.e, sums, products, and recursive

types) used to translate λch into λact, it is possible to translate λact with selective receive into

plain λact. Key to the translation is reasoning about values in the mailbox at the term level; we

maintain a term-level ‘save queue’ of values that have been received but not yet matched, and

can loop through the list to �nd the �rst matching value. Our translation is similar in spirit

to the “stashing” mechanism described by Haller [83] to emulate selective receive in Akka,

where messages can be moved to an auxiliary queue for processing at a later time.

Figure 6.4 shows the translation formally. Except for function types, the translation on

types is homomorphic. Similar to the translation from λact into λch, we add an additional

parameter for the save queue.

The translation on terms bMcmb takes a variable mb representing the save queue as its

parameter, returning a pair of the resulting term and the updated save queue. The majority of

cases follow a standard state-passing transformation; we omit the translations of constructs

of the extended term language. Most important is the translation of receive {−→c }, which

relies on the meta-level de�nition find−→c (Figure 6.5), where
−→c is a sequence of clauses. The

constituent �ndLoop function takes a pair of lists (mb1,mb2), where mb1 is the list of processed

values found not to match, and mb2 is the list of values still to be processed. The loop inspects

the list until one either matches, or the end of the list is reached. Should no values in the

term-level representation of the mailbox match, then the loop function repeatedly receives

from the mailbox, testing each new message against the patterns.

Note that the case construct in the core λact calculus is more restrictive than selective

receive: given a variant 〈`i : Ai〉i, case requires a single branch for each label. Selective receive

allows multiple branches for each label, each containing a possibly-di�erent predicate, and

does not require pattern matching to be exhaustive.

We therefore need to perform pattern matching elaboration; this is achieved by the

branches meta level de�nition. We make use of list comprehension notation: for example,

[c | (c←−→c )∧ label(c) = `] returns the (ordered) list of clauses in a sequence
−→c such that

the label of the receive clause matches a label `. We assume a meta level function noDups

which removes duplicates from a list. Case branches are computed using the branches meta

level de�nition: patBranches creates a branch for each label present in the selective receive,

creating (via ifPats) a sequence of if-then-else statements to check each predicate in turn;

defaultBranches creates a branch for each label that is present in the mailbox type but not in

any selective receive clauses.
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find(−→c ),

(rec�ndLoop(ms) .

let (mb1,mb2) = ms in

case mb2 {

[ ] 7→ loop(−→c )mb1

x :: mb′2 7→

let mb′⇐ mb1 ++ mb′2 in

case x{branches(−→c ,mb
′,

λy.let mb
′
1⇐mb1 ++ [y] in

�ndLoop (mb
′
1,mb

′
2)))}

label(〈`= x〉when M 7→ N) = `

labels(−→c ) = noDups([label(c) | c←−→c ])

matching(`,−→c ) = [c | (c←−→c )∧ label(c) = `]

unhandled(−→c ) = [` | (〈` : A〉 ← 〈`i : Ai〉i)∧ ` 6∈ labels(−→c )]

ifPats(mb, `,y,ε,default) = default 〈`= y〉

ifPats(mb, `,y,

(〈`= x〉when M 7→ N) · pats,default) =

let resPair⇐ (bMcmb){y/x} in

let (res,mb
′) = resPair in

if res then (bNcmb){y/x}

else ifPats(mb, `,y,pats,default)

loop(−→c ),

(rec recvLoop(mb) .

let x⇐ receive in

case x{branches(−→c ,mb,

λy.let mb
′⇐mb++ [y] in

recvLoopmb
′})

branches(−→c ,mb,default) = patBranches(−→c ,mb,default) ·defaultBranches(−→c ,mb,default)

patBranches(−→c ,mb,default) =

[〈`= x〉 7→ ifPats(mb, `,x,−→c` ,default) | (`← labels(−→c )) ∧−→c` = matching(`,−→c )∧ x fresh]

defaultBranches(−→c ,mb,default) = [〈`= x〉 7→ default 〈`= x〉 | (`← unhandled(−→c ))∧ x fresh]

Figure 6.5: Meta level de�nitions for translation from λact with selective receive to λact (wrt. a

mailbox type 〈`i : Ai〉i)
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Properties of the translation. The translation preserves typing of terms and values.

Lemma 39 (Translation preserves typing (λact with selective receive into λact, values and

terms)).

1. If Γ `V :A, then bΓc ` bVc :bAc.

2. If Γ | 〈`i :Ai〉i `M :B, then

bΓc,mb :List(〈`i :bAic〉i) | 〈`i :bAic〉i ` bMcmb :(bBc×List(〈`i :bAic〉i)).

Proof. By simultaneous induction on the derivations of Γ `V :A and Γ | 〈`i :Ai〉i `M :B.

Alas, a direct one-to-one translation on con�gurations is not possible, since a message in a

mailbox in the source language could be either in the mailbox or the save queue in the target

language. Consequently, we translate a con�guration into a set of possible con�gurations,

depending on how many messages have been processed. We can show that all con�gurations

in the resulting set are type-correct, and can simulate the original reduction. A full formal

treatment of re�ection is left as future work.

Theorem 22 (Translation preserves typing (λact with selective receive into λact, con�gura-

tions)). If Γ;∆ ` C , then ∀D ∈ bCc, it is the case that bΓc;b∆c `D .

Proof. By induction on the derivation of Γ;∆ ` C . The proof primarily relies on Lemma 39,

and an induction on the length of the save queue.

To show a simulation result, it is helpful to de�ne some auxiliary lemmas. The �rst states

that λact simulates term reduction in λact with selective receive, and does not modify the save

queue.

Lemma40 (Simulation (λact with selective receive in λact—terms)). IfΓ`M : A andM−→M M′,

then given some mb, it is the case that bMcmb−→+
M bM′cmb.

Proof. By induction on the derivation of M −→M M′.

Next, we show that given a well-typed term that reduces to a value using only term reductions,

its translation will reduce to a value without modifying the save queue. This lemma is useful

when reasoning about the matches predicate in the translation of selective receive.

Lemma 41. If Γ `M : A and M −→∗M returnV , then bMcmb−→∗M return (bVc,mb) for any

mb.

Proof. By induction on the length of the reduction sequence, with appeal to Lemma 40.

The next lemma states that a value which does not match any patterns in λact with selective

receive will mean that the default branch is evaluated in the translation.
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Lemma 42. Suppose Γ | 〈`i : Ai〉i ` receive {−→c } and Γ `V : 〈`i : Ai〉i, where V = 〈`=V ′〉.
If ¬(matchesAny(−→c ,V )), then

case bVc{branches(−→c ,mb,default)} −→+
M default bVc

Proof. See Appendix B.

Using Lemma 42, we can show that if a value does not match, then when evaluating

find(−→c ) (mb1,bVc :: mb2), we have that bVc is dequeued from mb2 and appended to the

end of mb1.

Lemma 43. Suppose Γ | 〈`i : Ai〉i ` receive {−→c } and Γ `V : 〈`i : Ai〉i, where V = 〈`=V ′〉.
If ¬(matchesAny(−→c ,V )), then

find(−→c ) (mb1,bVc :: b−→W c)−→+
M find(−→c ) (mb1 ++ [bVc],b−→W c)

Proof. See Appendix B.

The next lemma states that if a value matches a clause in λact with selective receive, then the

body of the clause will be evaluated in the translation.

Lemma 44. Suppose Γ | 〈`i : Ai〉i ` receive {−→c }.
Suppose:

• ∃k, l.∀i.i < k.¬(matchesAny(−→c ,Vi))∧matches(cl,Vk)∧∀ j. j < l⇒¬(matches(c j,Vk)).

• Γ `Vk : 〈`i : Ai〉i.
• Vk = 〈`k =V ′k〉
Then:

case bVkc{branches(−→c ,mb,default})−→+
M (bNlcmb){bV ′kc/xl}

Proof. See Appendix B.

Our �nal auxiliary lemma considers the case of evaluating loop(−→c )mb, where the head of the

actor mailbox is some value U such that ¬matchesAny(−→c ,U). In this case, the value will be

retrieved from the mailbox and added to the save queue.

Lemma 45. Suppose Γ;∆ ` 〈a,receive {−→c },−→W ·U ·
−→
W ′〉 and ¬matchesAny(−→c ,U). Then:

〈a,E[loop(−→c ) b−→W c],bUc · b
−→
W ′c〉 −→+ 〈a,E[loop(−→c ) (b−→W c++ [bUc]]),b

−→
W ′c〉

Proof. See Appendix B.

With all of these lemmas in place, we can state a simulation result.

Theorem 23 (Simulation (λact with selective receive in λact)). If Γ;∆ ` C and C −→ C ′, then
∀D ∈ bCc, there exists a D ′ such that D =⇒+ D ′ and D ′ ∈ bC ′c.
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Proof. By induction on the derivation of C −→ C ′. The only interesting case is E-SelRecv.

Case E-SelRecv

E-SelRecv

∃k, l.∀i.i < k⇒¬matchesAny(−→c ,Vi)∧matches(cl,Vk)∧∀ j. j < l⇒¬matches(c j,Vk)

〈a,E[receive {−→c }],−→W ·Vk ·
−→
W ′〉 −→ 〈a,E[Nl{V ′k/xl}],

−→
W ·
−→
W ′〉

Assumption: Γ;∆ ` 〈a,E[receive {−→c }],−→W ·Vk ·
−→
W ′〉. Let

−→
W = bV1c · . . . · bVk−1c and let

−→
W ′ = bVk+1c · . . . · bVnc.

By the de�nition of b−c:

b〈a,E[receive {−→c }],−→V 〉c

{〈a, find(−→c ) ([ ], [ ]),b−→W c · bVkc · b
−→
W ′c〉} ∪{〈a, find(−→c ) ([ ],

−→
W 1

i ),
−→
W 2

i 〉 | i ∈ 1..n}

where

−→
W 1

i = bV1c :: . . . :: bVic :: [ ]
−→
W 2

i = bVi+1c · . . . · bVnc

Without loss of generality, it su�ces to consider only the cases where either the save queue

or mailbox are empty, namely:

1. 〈a,bEc[find(−→c ) ([ ],b−→W c++ [Vk] :: b
−→
W ′c)],ε〉

2. 〈a,bEc[find(−→c ) ([ ], [ ])],b−→W c · bVkc · b
−→
W ′c〉

Subcase 〈a,bEc[find(−→c ) ([ ],b−→W c++ [Vk] :: b
−→
W ′c)],ε〉

By repeated application of Lemma 43, we have that

〈a,bEc[find(−→c )(b−→W c++ bVkc :: b
−→
W ′c, [ ])],ε〉−→∗M 〈a,bEc[find(−→c )(b−→W c,bVkc :: b

−→
W ′c)],ε〉

By β-reducing the pair destructor, case split, and append operations, we have:

〈a,bEc[find(−→c ) (b−→W c,bVkc :: b
−→
W ′c)],ε〉 −→+

M

〈a,bEc[case bVkcof {branches(−→c ,b−→W c++ b
−→
W ′c,default)}],ε〉

where

default= λy.let mb
′
1⇐ b

−→
W c++ [y] in

find(−→c ) (mb
′
1,b
−→
W ′c))})

By Lemma 44, we have that

〈a,bEc[case bVkcof {branches(−→c ,b−→W c++ b
−→
W ′c,default)}],ε〉 −→+

M

〈a,bEc[(bNlc (b
−→
W c++ b

−→
W ′c)){bV ′kc/xl}],ε〉
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which is contained in the set

b〈a,E[Nl{V ′k/xl}],
−→
W ·
−→
W ′〉c

as required.

Subcase 〈a,bEc[find(−→c ) ([ ], [ ])],b−→W c · bVkc · b
−→
W ′c〉

By β-reducing the recursive function application, pair deconstruction, and case expression,

we have

〈a,bEc[find(−→c )([ ], [ ])],b−→W c·bVkc·b
−→
W ′c〉−→−→−→〈a,bEc[loop(−→c )[ ]],b−→W c·bVkc·b

−→
W ′c〉

By repeated applications of Lemma 45:

〈a,bEc[loop(−→c ) [ ]],b−→W c · bVkc · b
−→
W ′c〉 −→+ 〈a,bEc[loop(−→c ) b−→W c],bVkc · b

−→
W ′c〉

By β-reducing the function application and E-Recv:

〈a,bEc[loop(−→c ) b−→W c],bVkc · b
−→
W ′c〉 −→−→

〈a,bEc[case bVkcof {branches(−→c ,mb,default)}],b
−→
W ′c〉

where

default= λy.let mb
′⇐mb++ [y] in

recvLoopmb
′

By Lemma 44:

〈a,bEc[case bVkcof {branches(−→c ,b−→W c,default)}],bVkc · b
−→
W ′c〉 −→+

〈a,bEc[(bNlc b
−→
W c){bV ′kc/xl}],b

−→
W ′c〉

which is contained in the set

b〈a,Nl{V ′k/xl},
−→
W ·
−→
W ′〉c

as required.

Remark. Originally we expected to need to add an analogous selective receive construct to

λch in order to be able to translate λact with selective receive into λch. We were surprised (in

part due to the complex reduction rule and the native runtime support in Erlang) when we

discovered that selective receive can be emulated in plain λact. Moreover, we were pleasantly

surprised that types pose no di�culties in the translation. This translation gives a formal basis

to the stashing translation introduced by Haller [83]; our formal presentation is novel.

It is worth emphasising, however, that the translation is global since each function must

be modi�ed to take the save queue as a parameter.
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Γ `V : ChanRef(A) Γ `W : ChanRef(B)

Γ ` chooseV W : A+B

E-Choose1 E[choose a b] ‖ a(U ·−→V ) ‖ b(
−→
W )−→E[return (inlU)] ‖ a(

−→
V ) ‖ b(

−→
W )

E-Choose2 E[choose a b] ‖ a(
−→
V ) ‖ b(U ·−→W )−→E[return (inrU)] ‖ a(

−→
V ) ‖ b(

−→
W )

Figure 6.6: Additional typing and evaluation rules for λch with choice

6.4 Choice

In λch, processes can only block receiving on a single channel. A more powerful mechanism is

selective communication, where a value is taken nondeterministically from two channels. An

important use case is receiving a value when either channel could be empty.

We consider only the most basic form of selective choice over two channels of di�erent

types. More generally, it may be extended to arbitrary regular data types [169]; an alternative

design choice (as taken by Concurrent ML) is to perform choice over homogeneously-typed

lists. As Concurrent ML [186] embraces rendezvous-based synchronous communication, it

provides generalised selective communication where a process can synchronise on a mixture of

input or output communication events. Similarly, the join patterns of the join calculus [69]

provide a general abstraction for selective communication over multiple channels.

As we are working in the asynchronous setting where a give operation can reduce imme-

diately, we consider only input-guarded choice. Input-guarded choice can be added straight-

forwardly to λch, as shown in Figure 6.6.

The extension of λch with input-guarded choice retains preservation.

Theorem 24 (Preservation (λch with choice)). If Γ;∆ ` C and C −→ C ′, then Γ;∆ ` C ′.

Proof. By induction on the derivation of C −→ C ′. We show the case for E-Choose1; the case

for E-Choose2 is similar.

Case E-Choose1

E[choose a b] ‖ a(U ·−→V ) ‖ b(
−→
W )−→ E[return (inlU)] ‖ a(

−→
V ) ‖ b(

−→
W )

Assumption:

Γ ` E[choose a b] : C

Γ; · ` E[choose a b]

Γ `U : A (Γ `Vi : A)i

Γ;a : A ` a(U ·−→V )

(Γ `Wi : B)i

Γ;b : B ` b(
−→
W )

Γ;a : A,b : B ` a(U ·−→V ) ‖ b(
−→
W )

Γ;a : A,b : B ` E[choose a b] ‖ a(U ·−→V ) ‖ b(
−→
W )
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where Γ = Γ′,a : ChanRef(A),b : ChanRef(B) for some Γ′.

By (the suitable adaptation of) Lemma 12 (subterm typeability), we have:

Γ ` a : ChanRef(A) Γ ` b : ChanRef(B)

Γ ` choose a b : A+B

We can show that Γ ` return (inlU) : A+B. Thus by (the suitable adaptation of) Lemma 13

(subterm replacement), we have that Γ ` E[return (inlU)] : C.

Recomposing:

Γ ` E[return (inlU)] : C

Γ; · ` E[return (inlU)]

(Γ `Vi : A)i

Γ;a : A ` a(
−→
V )

(Γ `Wi : B)i

Γ;b : B ` b(
−→
W )

Γ;a : A,b : B ` a(
−→
V ) ‖ b(

−→
W )

Γ;a : A,b : B ` E[return (inlU)] ‖ a(
−→
V ) ‖ b(

−→
W )

as required.

Progress is similar to plain λch; the only way choose a b cannot reduce is if queues a and b

are both empty.

Relation to λact. Emulating such a construct satisfactorily in λact is nontrivial, because

messages must be multiplexed through a local queue. One approach could be to use the work

of Chaudhuri [34] which shows how to implement generalised choice using synchronous

message passing, but implementing this in λch may be di�cult due to the asynchrony of give.

We leave a more thorough investigation to future work.

6.5 Summary

In this chapter, we have investigated three extensions to λch and λact: actor synchronisation,

selective receive, and choice. The extensions are interesting to investigate in the context of

translations between the two calculi. Synchronisation simpli�es the translation from λch:

synchronisation, and therefore bypassing mailboxes, alleviates the type pollution problem and

thus removes the restriction that all channels in a system must have the same type prior to

translation. Emulating selective receive in λch does not require any additional communication

or concurrency primitives in λch, since it can be emulated directly in λact (albeit with a global

transformation). Finally, it is di�cult to see how input-guarded choice in λch could be emulated

using λact, due to the requirement of locality in actor systems.
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Discussion

We conclude Part II by summarising the results of Chapters 4–6, and discussing related and

future work.

In Chapter 4, we introduced two concurrent λ-calculi, λch and λact, describing languages

which include typed channels and type-parameterised actors, respectively. We showed that

they satis�ed preservation, and classi�ed the notion of progress that both enjoy.

In Chapter 5, we showed a simple (yet global) translation from λact into λch, and a more

complex (yet local) translation from λch into λact. Notably, it is only possible to translate

from λch into λact when all channels have the same type, which can be done by coalescing the

channel types into a single recursive variant type. Additionally, the translation requires sums,

products, recursive functions, and recursive types.

In Chapter 6, we discussed three extensions to λch and λact. Adding synchronisation sim-

pli�es the translation from λch into λact, in particular by removing the coalescing requirement.

Erlang-style selective receive can in fact be simulated by λact, given a global translation and

the extended term language. Input-guarded choice can be straightforwardly added to λch, but

emulating it satisfactorily in λact appears challenging.

Table 7.1 gives an overview of the translations.

Translation Global / Local Coalescing? Extended Language?

λact to λch Global No No

λch to λact Local Yes Yes

λch to λact + wait Local No Yes

λact + selective receive to λact Global No Yes

Table 7.1: Overview of translations
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7.1 Related work

Our formulation of concurrent λ-calculi is inspired by λ(fut) [156], a concurrent λ-calculus

with threads, futures, reference cells, and an atomic exchange construct. In the presence

of lists, futures are su�cient to encode asynchronous channels. In λch, we concentrate on

asynchronous channels to better understand the correspondence with actors. Channel-based

concurrent λ-calculi form the basis of functional languages with session types [77, 132].

Concurrent ML [186] extends Standard ML with a rich set of combinators for synchronous

channels, which again can emulate asynchronous channels. A core notion in Concurrent ML

is nondeterministically synchronising on multiple synchronous events, such as sending or

receiving messages; relating such a construct to an actor calculus is nontrivial, and remains

an open problem. Hopac [101] is a channel-based concurrency library for F#, based on

Concurrent ML. The Hopac documentation relates synchronous channels and actors [3],

implementing actor-style primitives using channels, and channel-style primitives using actors.

The implementation of channels using actors uses mutable references to emulate the take

function, whereas our translation achieves this using message passing (however, our translation

using wait is more closely related to the Hopac translation). Additionally, our translation is

formalised and we prove that the translations are type- and semantics-preserving.

Links [46] provides actor-style concurrency, and the paper describes a translation into

λ(fut). Our translation is semantics-preserving and can be done without synchronisation.

The actor model was designed by Hewitt et al. [87] and examined in the context of

distributed systems by Agha [5]. Agha et al. [6] describe a functional actor calculus based on

the λ-calculus augmented by three core constructs: send sends a message; letactor creates a

new actor; and become changes an actor’s behaviour. The operational semantics is de�ned in

terms of a global actor mapping, a global multiset of messages, a set of receptionists (actors

which are externally visible to other con�gurations), and a set of external actor names. Instead

of become, we use an explicit receive construct, which more closely resembles Erlang (referred

to by the authors as “essentially an actor language”). Our concurrent semantics, more in the

spirit of process calculi, encodes visibility via name restrictions and structural congruences.

The authors consider a behavioural theory in terms of operational and testing equivalences—

something we have not investigated. A starting point would be adapting the labelled-transition

system semantics for the π-calculus [189] to λch and λact con�gurations; we could then de�ne

bisimulation relations in the standard way.

Scala has native support for actor-style concurrency, implemented e�ciently without

explicit virtual machine support [84]. The actor model inspires active objects [128]: objects

supporting asynchronous method calls which return responses using futures. De Boer et

al. [55] describe a language for active objects with cooperatively scheduled threads within

each object. Core ABS [114] is a speci�cation language based on active objects. Using futures
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for synchronisation sidesteps the type pollution problem inherent in call-response patterns

with actors, although our translations work in the absence of synchronisation. By working in

the functional setting, we obtain more compact calculi.

SinceMixingMetaphors: Actors as Channels and Channels as Actors was published at ECOOP

2017, several projects have expanded upon the core calculi and ideas. Priya [180] introduces λir,

a concurrent λ-calculus inspired by λact; a key innovation is to expand the receive construct

with support for intensional, or dynamic type checking. The author additionally introduces a

�ner-grained type discipline inspired by process types as introduced by Igarashi and Kobayashi

[108].

Kra�t [126] encodes λact as a shallowly-embedded domain-speci�c language in the

Agda [157] programming language, using a monadic encoding. Kra�t formally proves prop-

erties such as weak progress, and additionally encodes selective receive as both a language

primitive and as a library routine, as well as encoding simply-typed channels and active objects.

In the original ECOOP paper, we speculated on a design for behaviourally-typed actors

based on a parameterised monad, however this proved too restrictive. We were missing a key

insight; the unidirectional nature of actor mailboxes makes behavioural types better suited to

unordered interactions. de’Liguoro and Padovani [57] introduce the Mailbox Calculus, a small

process calculus with �rst-class mailboxes, selective receive, and nondeterministic choice. The

type system guarantees that a process will never receive a message that it cannot receive,

and via a dependency graph, outlaws deadlocking con�gurations. The authors demonstrate

the expressiveness of the calculus by encoding several benchmarks from the Savina actor

benchmark suite [111]. Additionally, the authors show an example of encoding binary sessions

through the use of an arbiter process.

7.2 Conclusion

Inspired by languages such as Go which take channels as core constructs for communication,

and languages such as Erlang which are based on the actor model of concurrency, we have

presented translations back and forth between a concurrent λ-calculus λch with channel-based

communication constructs and a concurrent λ-calculus λact with actor-based communication

constructs. We have proved that λact can simulate λch and vice-versa.

The translation from λact to λch is straightforward, whereas the translation from λch to

λact requires considerably more e�ort. The relative di�culty of the encodings re�ects the

asymmetry of Figure 4.2 in Chapter 4.

We have also shown how to extend λact with synchronisation, greatly simplifying the

translation from λch into λact, and have shown how Erlang-style selective receive can be

emulated in λact. Finally, we have discussed input-guarded choice in λch.
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An interesting further line of study would be to relate di�erent incarnations of the actor

model as de�ned by De Koster et al. [56]. Following on from the work of de’Liguoro and

Padovani [57], it would be interesting to more formally specify the relation between the

Mailbox Calculus and session-typed channels, and investigate how the ideas from the Mailbox

Calculus could be integrated with a functional programming language.
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Session Types without Tiers
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Chapter 8

Asynchronous GV

8.1 Introduction

Synchronous GV (Chapter 3) is a core session-typed functional language with a strong cor-

respondence to classical linear logic, and correspondingly a host of strong metatheoretic

properties. However, SGV has a synchronous communication semantics, where communica-

tion requires a synchronous rendezvous between two processes over a channel. In contrast,

programming languages such as Erlang provide asynchronous communication, where sending

does not block. Indeed, asynchronous communication is more amenable to implementation in

the distributed setting, and synchronous communication can be described in terms of asyn-

chronous communication through the use of acknowledgements (see Sangiorgi and Walker

[189], p. 204).

In this section, we describe Asynchronous GV (AGV), an extension of SGV with an asyn-

chronous communication semantics, while retaining SGV’s strong metatheory. This gets us a

step closer to our goal of a core calculus for a distributed extension of Links with session-typed

communication.

Example. Consider the case where a thread exchanges a single value with a second thread.

Writing =⇒ to mean reduction modulo equivalence, in SGV, a reduction would take place as

follows:

•E[send 5 a] ‖ ◦E ′[receive a] =⇒•E[a] ‖ ◦E ′[(5,a)]

Here, we have that there is a rendezvous between sender and receiver; communication is

synchronous as the sender may not proceed until the communication action has taken place

successfully.
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In Asynchronous GV, the interaction would take place as follows:

•E[send 5 a] ‖ a(ε)!b(ε) ‖ ◦E[receive b]

=⇒
•E[a] ‖ a(ε)!b(5) ‖ ◦E[receive b]

=⇒
•E[a] ‖ a(ε)!b(ε) ‖ ◦E[(5,b)]

Instead of the processes communicating directly, we have a bu�er process a(ε)!b(ε) which

contains queues for endpoints a and b. Sending a value V along endpoint a results in V being

appended to the queue for endpoint b, and vice-versa; receiving from endpoint b results in

a value being retrieved from the head of the queue for endpoint b. As communication is

bu�ered, evaluation of the sender thread need not block until the peer is ready to receive the

communicated value.

8.2 Asynchronous GV

In this section, we de�ne the syntax and semantics of Asynchronous GV.

8.2.1 Syntax and Typing of Terms

Figure 8.1 shows the syntax of Asynchronous GV. It may seem familiar to that of SGV! In fact,

the static syntax of AGV is exactly the same; the di�erences are only in the runtime syntax,

reduction rules, and runtime typing.

Let us brie�y reprise the syntax of terms and types. Asynchronous GV is based on a linear

λ calculus. Its syntax consists of types, ranged over by A,B,C, which consist of the unit type

1; linear functions A ( B; linear sums A+B; linear tensor products A×B; and session types

S. Session types S type channel endpoints, and consist of output types !A.S (read “output a

value of type A and continue as type S”); input types ?A.S (read “input a value of type A and

continue as type S”); and End! and End? which denote that a session has ended. Again, as

in Chapter 3, we do not include branching and selection in the core calculus as they can be

encoded using sum types and delegation, following Dardha et al. [54].

Terms, ranged over by L,M,N include variables x, and the introduction and elimination

forms for the unit value, products, and sum types. Primitives in red are the communication

and concurrency constructs for the language: forkM creates a name a and spawns M a as a

new thread; send M N sends M along endpoint N and returns the updated channel endpoint;

receive M receives from endpoint M and returns a pair of the received value and the updated

endpoint; and wait M synchronises with a child thread when the session has �nished, in turn

providing an elimination form for values of type End?.
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Types A,B,C ::= 1 | A ( B | A+B | A×B | S

Session Types S ::= !A.S | ?A.S | End! | End?

Variables x,y,z

Terms L,M,N ::= x | λx.M | M N

| () | let () = M in N

| (M,N) | let (x,y) = M in N

| inl M | inr M | case L of {inl x 7→M; inr y 7→ N}
| forkM | send M N | receive M | wait M

Type Environments Γ ::= · | Γ,x : A

Figure 8.1: Syntax of Asynchronous GV Types and Terms

Typing Rules for Terms Typing rules for AGV terms (Figure 8.2) are the standard rules

for a linear λ-calculus with sums and products, extended with primitives for session typing.

8.2.2 Operational Semantics

Runtime Syntax Figure 8.3 shows the runtime syntax of AGV, and is the �rst substantial

departure from SGV. Runtime syntax which is new in AGV is shaded.

Names and Environments. Like SGV, we extend the static syntax of AGV with runtime

names, ranged over by a,b.

We extend type environments Γ to include runtime names which have session types, and

introduce runtime type environments ∆, which type both bu�er endpoints of session type S

and channels of type S] for some S. Note that we do not use ∆ to type variables; indeed ∆ is

only used for typing con�gurations and not terms.

Con�gurations. The concurrent behaviour of AGV is described using a language of con�g-

urations: (νa)C binds name a in C ; C ‖D describes C as running in parallel with D ; and φM

describes a term M running as either a child thread ◦M or a main thread •M.

To support asynchrony, AGV includes bu�er processes a(
−→
V )!b(

−→
W ). A bu�er process

consists of two queues: a queue for endpoint a containing a sequence of values

−→
V , and a queue

for endpoint b containing a sequence of values

−→
W . Receiving along an endpoint V will retrieve

the head value of

−→
V , whereas sending along endpoint a will append a value to

−→
W . As we will

see in §8.3.1, the typing rules ensure that at least one of

−→
V or

−→
W is empty.

We let A range over auxiliary threads, including child threads and bu�ers.
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Term Typing Γ `M :A

T-Var

x :A ` x :A

T-Abs

Γ,x :A `M :B

Γ ` λx.M :A ( B

T-App

Γ1 `M :A ( B Γ2 ` N :A

Γ1,Γ2 `M N :B

T-Unit

· ` () :1

T-LetUnit

Γ1 `M :1 Γ2 ` N :A

Γ1,Γ2 ` let () = M in N :A

T-Pair

Γ1 `M :A Γ2 ` N :B

Γ1,Γ2 ` (M,N) :A×B

T-LetPair

Γ1 `M :A×B Γ2,x :A,y :B ` N :C

Γ1,Γ2 ` let (x,y) = M in N :C

T-Inl

Γ `M :A

Γ ` inl M :A+B

T-Inr

Γ `M :B

Γ ` inr M :A+B

T-Case

Γ1 ` L :A+B Γ2,x :A `M :C Γ2,y :B ` N :C

Γ1,Γ2 ` case L of {inl x 7→M; inr y 7→ N} :C

T-Fork

Γ `M :S ( End!

Γ ` forkM :S

T-Send

Γ1 `M :A Γ2 ` N : !A.S

Γ1,Γ2 ` send M N :S

T-Recv

Γ `M : ?A.S

Γ ` receive M :(A×S)

T-Wait

Γ `M :End?

Γ `wait M :1

Duality S

!A.S = ?A.S ?A.S = !A.S End! = End? End? = End!

Figure 8.2: Term Typing and Duality
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Runtime Types R ::= S | S]

Names a,b,c

Terms M ::= · · · | a

Values U,V,W ::= a | λx.M | () | (V,W ) | inlV | inrV

Con�gurations C ,D,E ::= (νa)C | C ‖D | φM | a(
−→
V )!b(

−→
W )

Thread Flags φ ::= • | ◦
Auxiliary threads A ::= ◦M | a(

−→
V )!b(

−→
W )

Type Environments Γ ::= · · · | Γ,a : S

Runtime Type Environments ∆ ::= · | ∆,a : R

Evaluation Contexts E ::= [ ] | E M | V E

| let () = E in M | let (x,y) = E in M | (E,V ) | (V,E)
| inl E | inr E | case E of {inl x 7→M; inr y 7→ N}
| forkE | send E M | sendV E | receive E | wait E

Thread Contexts F ::= φE

Con�guration Contexts G ::= [ ] | (νa)G | G ‖ C

Figure 8.3: Runtime Syntax

Term reduction. Figure 8.4 describes the reduction rules for AGV terms, reduction rules, and

equivalence axioms for AGV con�gurations. Reduction on terms is again standard β-reduction,

with evaluation contexts set up for call-by-value, left-to-right evaluation.

Equivalence. Equivalence axioms are standard except for one additional rule, which allows

us to treat bu�ers symmetrically.

Reduction on Con�gurations. The reduction relation on con�gurations is substantially

di�erent to Synchronous GV in order to account for asynchronous communication. Thread

contexts F abstract over thread �ags. E-Fork evaluates F [forkλx.M] by creating two fresh

names, a and b, for each queue in the bu�er. It returns a in the calling context, and spawns

M{b/x} as a child thread, and an empty bu�er a(ε)!b(ε). The communication topology

remains acyclic.

Due to asynchrony, we replace the rule E-Comm with rules E-Send and E-Receive, as

sending and receiving no longer have to occur at the same time. Rule E-Send describes sending

a message: a thread F [sendU a] sending value U along endpoint a in parallel with a bu�er

a(
−→
V )!b(

−→
W ) returns the updated endpoint a in the calling context, and appends U to the end

of b’s queue in the bu�er. Conversely, E-Receive details dequeueing a value from the head of a
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Term Reduction M −→M N

E-Lam (λx.M)V −→M M{V/x}
E-Unit let () = () in M −→M M

E-Pair let (x,y) = (V,W ) in M −→M M{V/x,W/y}
E-Inl case inlV of {inl x 7→M; inr y 7→ N} −→M M{V/x}
E-Inr case inrV of {inl x 7→M; inr y 7→ N} −→M N{V/y}
E-Lift E[M] −→M E[M′], if M −→M M′

Con�guration Equivalence C ≡D

C ‖ (D ‖ E)≡ (C ‖D) ‖ E C ‖D ≡D ‖ C (νa)(νb)C ≡ (νb)(νa)C

C ‖ (νa)D ≡ (νa)(C ‖D), if a 6∈ fn(C ) a(
−→
V )!b(

−→
W )≡ b(

−→
W )!a(

−→
V )

Con�guration Reduction C −→D

E-ForkF [fork(λx.M)] −→ (νa)(νb)(F [a] ‖ ◦M{b/x} ‖ a(ε)!b(ε)), where a,b are fresh

E-Send F [sendU a] ‖ a(
−→
V )!b(

−→
W ) −→ F [a] ‖ a(

−→
V )!b(

−→
W ·U)

E-Receive F [receive a] ‖ a(U ·−→V )!b(
−→
W ) −→ F [(U,a)] ‖ a(

−→
V )!b(

−→
W )

E-Wait (νa)(νb)(F [wait a] ‖ ◦b ‖ a(ε)!b(ε)) −→ F [()]

E-LiftC G [C ] −→ G [D], if C −→D
E-LiftM φM −→ φN, if M −→M N

Figure 8.4: Reduction and Equivalence for Terms and Con�gurations
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Term Typing Γ `M : A

T-Name

a :S ` a :S

Session Slicing S/
−→
A

S/ε = S

!A.S/A ·−→A = S/
−→
A

Queue Typing Γ ` −→V :
−→
A

· ` ε : ε

Γ1 `V : A Γ2 `
−→
V :
−→
A

Γ1,Γ2 `V ·−→V : A ·−→A

Con�guration Typing Γ;∆ `φ C

T-Nu

Γ;∆,a : S] `φ C

Γ;∆ `φ (νa)C

T-Connect1

Γ1,a : S;∆1 `φ1 C
Γ2;∆2,a : S `φ2 D

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖D

T-Connect2

Γ1;∆1,a : S `φ1 C
Γ2,a : S;∆2 `φ2 D

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖D

T-Main

Γ `M : A

Γ; · `• •M

T-Thread

Γ `M : End!

Γ; · `◦ ◦M

T-Buffer

S/
−→
A = S′/

−→
B

Γ1 `
−→
V :
−→
A Γ2 `

−→
W :
−→
B

Γ1,Γ2;a : S,b : S′ `◦ a(
−→
V )!b(

−→
W )

Flag Combination φ1 +φ2 = φ3

•+◦= • ◦+◦= ◦
◦+•= • •+• unde�ned

Session Type Reduction S−→ S′

?A.S−→ S !A.S−→ S

Environment Reduction Γ;∆−→ Γ′;∆′

S−→ S′

Γ,a : S;∆−→ Γ,a : S′;∆

S−→ S′

Γ;∆,a : S−→ Γ;∆,a : S′
S−→ S′

Γ;∆,a : S] −→ Γ;∆,a : S′]

Figure 8.5: Runtime Typing

bu�er, returning a pair of the received value and the updated endpoint. Rule E-Wait eliminates

the names, the child thread, and the empty bu�er of a �nished session. Rules E-LiftC and

E-LiftM are as before.

8.3 Metatheory

In this section, we describe the metatheory of AGV. We begin by de�ning a runtime type

system, which encodes the invariants satis�ed by well-typed AGV con�gurations and thus

allows us to prove dynamic properties about the system.

In Chapter 3, we saw that SGV had a strong metatheory, enjoying preservation, deadlock-

freedom, global progress, con�uence, and termination. AGV retains all of these core properties,

but the runtime type system becomes more involved to account for bu�ered communication.
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8.3.1 Runtime Typing

Figure 8.5 shows the runtime typing rules for AGV. The typing judgement Γ;∆ `φ C can be

read, “under term environment Γ, runtime type environment ∆, and �ag φ, con�guration C is

well-typed”. As in Synchronous GV, a �ag φ details whether a con�guration contains a main

thread, and the con�guration typing rules require that each con�guration has at most one main

thread. We additionally require that in any derivation of Γ;∆ `φ C , that fn(Γ)∩ fn(∆) = /0.

We write Γ;∆ `• C : A if the derivation of Γ;∆ `• C contains a subderivation of the form

Γ
′; · `• •M : A

It is again helpful to de�ne the notion of a ground con�guration.

De�nition 8 (Ground Con�guration). A con�guration C is a ground con�guration if Γ;∆ `•

C : A for some Γ,∆,A, where A contains no function types or session types.

Runtime Typing Rules Rule T-Nu introduces a runtime name a with type S] into runtime

type environment ∆. Each runtime name can be split with rules T-Connect1 or T-Connect2,

allowing each name to be used once as an endpoint (in Γ) and once as part of a bu�er (in ∆).

Rule T-Main describes a main thread, which may return a value, and rule T-Child describes

a child thread, which must return a channel of type End!.

Finally, T-Buffer types a bu�er between two processes. For a bu�er a(
−→
V )!b(

−→
W ) to be

well-typed, the runtime type environment must contain entries a : S and b : T , where S and T

are related by the equation S/
−→
A = T/

−→
B , where S/

−→
A is the session slicing operator, allowing

us to consider duality of session types up to values contained in the bu�er. The partiality of

the session slicing operator coupled with the duality constraint ensures that at least

−→
V or

−→
W

is empty.

Reduction on Session Types. The relation S −→ S′ describes the evolution of session

types: more speci�cally, ?A.S−→ S when a receive action is performed, and !A.S−→ S when

a send action is performed. We extend reduction on session types to reduction on typing

environments Γ;∆−→ Γ′;∆′.

Example. It is helpful to consider a concrete example. Figure 8.6 shows an example typing

derivation for the con�guration (νa)(νb)(◦E[send 5 a] ‖ (a(ε)!b(true) ‖ •E ′[receive b])),

which is similar to the con�guration discussed in §8.1, but with true already contained in the

queue for endpoint b.

Of particular interest is the subderivation for typing a bu�er. We abuse notation slightly,

writing · ` true : Bool to mean · ` true · ε : Bool · ε.
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?Int.End?/ε = !Bool.!Int.End!/Bool · ` ε : ε · ` true : Bool

·;a : ?Int.End?,b : !Bool.!Int.End! `◦ a(ε)!b(true)

Here, we have that the queue for endpoint b already contains a value true of type Bool, and

we have that the bu�er endpoint a is ready to receive a value of type Int to store in the

queue for endpoint b. The bu�er endpoint b is ready to transmit a value of type Bool to the

thread holding endpoint b. Thus, the types for endpoints a and b are related by the equation

?Int.End?/ε = !Bool.!Int.End!/Bool.

We can show that this equation holds as follows:

?Int.End?/ε = !Bool.!Int.End!/Bool

⇐⇒ (as !Bool.!Int.End!/Bool = !Int.End!)

?Int.End?/ε = !Int.End!

⇐⇒ (as ?Int.End?/ε = ?Int.End?)

?Int.End? = !Int.End!

⇐⇒ (by de�nition of duality)

?Int.End? = ?Int.End?
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T-Thread

Γ1,a : !Int.End! `◦ E[send 5 a] : End!

Γ1,a : !Int.End!; · `◦ E[send 5 a]

T-Buffer

?Int.End?/ε = !Bool.!Int.End!/Bool · ` ε : ε · ` true : Bool

·;a : ?Int.End?,b : !Bool.!Int.End! `◦ a(ε)!b(true)

Γ2,b : ?Bool.?Int.End? ` E ′[receive b] : A

Γ2,b : ?Bool.?Int.End? `• •E ′[receive b]
T-Main

Γ2;a : ?Int.End?,b : (?Bool.?Int.End?)
] `• a(ε)!b(true) ‖ •E ′[receive b]

T-Compose2

Γ1,Γ2;a : (!Int.End!)
],b : (?Bool.?Int.End?)

] `◦ ◦E[send 5 a] ‖ (a(ε)!b(true) ‖ •E ′[receive b])
T-Compose1

Γ1,Γ2;a : (!Int.End!)
] `• (νb)(◦E[send 5 a] ‖ (a(ε)!b(true) ‖ •E ′[receive b]))

T-Nu

Γ1,Γ2; · `• •(νa)(νb)(◦E[send 5 a] ‖ (a(ε)!b(true) ‖ •E ′[receive b]))
T-Nu

Figure 8.6: Typing a bu�er in AGV
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We may now show that the addition of asynchrony does not violate any of the properties

enjoyed by SGV.

8.3.2 Preservation

To prove preservation, we begin by adapting the auxiliary lemmas from SGV required to

reason about the manipulation of evaluation and con�guration contexts in the preservation

proof. All are standard, but modi�ed to take the runtime typing environment ∆ into account.

Lemma 46 (Substitution). Suppose Γ1,x : B `M : A and Γ2 ` N : B, where Γ1,Γ2 is de�ned.

Then Γ1,Γ2 `M{N/x} : A.

Proof. By induction on the derivation of Γ1,x : B `M : A.

Next, we show subterm typeability and replacement. The proofs both follow by induction on

the structure of E .

Lemma 47 (Subterm typeability). If D is a derivation of Γ1,Γ2 ` E[M] : A, then there exists

some subderivation D′ of D concluding Γ2 `M : B, where the position of D′ in D corresponds to

that of the hole in E .

Lemma 48 (Subterm replacement). If:

• D is a derivation of Γ1,Γ2 ` E[M] : A

• D′ is a subderivation of D concluding Γ2 `M : B

• The position of D′ in D corresponds to that of the hole in E

• Γ3 ` N : B

• Γ1,Γ3 is de�ned

then Γ1,Γ3 ` E[N] : A.

Finally, we can show subcon�guration typeability and replacement.

Lemma 49 (Subcon�guration typeability). If D is a derivation of Γ;∆ `φ G [C ], then there exist

Γ′,∆′,φ′ such that D has a subderivation D′ that concludes Γ′;∆′ `φ′ C and the position of D′ in

D corresponds to the position of the hole in G .

Lemma 50 (Subcon�guration replacement). If:

• D is a derivation of Γ;∆ `φ G [C ]

• D′ is a subderivation of D concluding that Γ′;∆′ `φ′ C for some Γ′,∆′,φ′
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• The position of D′ in D corresponds to that of the hole in G

• Γ′′;∆′′ `φ′ D for some Γ′′,∆′′ such that Γ′;∆′ −→? Γ′′;∆′′

then there exist some Γ′′′;∆′′′ such that Γ;∆−→? Γ′′′;∆′′′ and Γ′′′;∆′′′ `φ G [D].

As before, term reduction preserves typing.

Lemma 51 (Preservation (AGV Terms)). If Γ `M : A and M −→M N, then Γ ` N : A.

Proof. By induction on the derivation of M −→M N.

With the auxiliary results de�ned, we can see that reduction on con�gurations preserves

con�guration typeability.

Theorem 25 (Preservation (AGV Con�gurations)). If Γ;∆ `φ C and C −→D , then there exist

some Γ′,∆′ such that Γ;∆−→? Γ′;∆′ and Γ′;∆′ `φ D .

Proof. By induction on the derivation of C −→D . The full proof can be found in Appendix C.

We show the case for E-Send here, making the choice to prove the case where φ = •. The case

where φ = ◦ is similar.

Case E-Send

Assumption:

Γ1,Γ2,a : S ` E[sendU a] : C

Γ1,Γ2,a : S; · `• •E[sendU a]

S/
−→
A = T/

−→
B Γ3 `

−→
V :
−→
A Γ4 `

−→
W :
−→
B

Γ3,Γ4;a : S,b : T `◦ a(
−→
V )!b(

−→
W )

Γ1,Γ2,Γ3,Γ4;a : S],b : T `• •E[sendU a] ‖ a(
−→
V )!b(

−→
W )

By Lemma 47:

Γ2 `U : A a : !A.S′ ` a : !A.S′

Γ2,a : !A.S′ ` sendU a : S′

Thus, S = !A.S′, and S = ?A.S′ for some S′. We may therefore re�ne our original derivation:

Γ1,Γ2,a : !A.S′ ` E[sendU a] : C

Γ1,Γ2,a : !A.S′; · `• •E[sendU a]

?A.S′/
−→
A = T/

−→
B Γ3 `

−→
V :
−→
A Γ4 `

−→
W :
−→
B

Γ3,Γ4;a : ?A.S′,b : T `◦ a(
−→
V )!b(

−→
W )

Γ1,Γ2,Γ3,Γ4;a : !A.S′],b : T `• •E[sendU a] ‖ a(
−→
V )!b(

−→
W )

Since ?A.S′/
−→
A = T/

−→
B is de�ned, we have that

−→
A = ε. By the de�nition of slicing, we have

that T = !B1. · · · .!Bn.!A.S′ for each Bi. It follows that S′/
−→
A = T/

−→
B ·A.

By Lemma 48, we have Γ1,Γ2,a : S′ ` E[a] : C.
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Reconstructing:

Γ1,a : S′ ` E[a] : C

Γ1,a : S′; · `• •E[a]

S′/
−→
A = T/

−→
B ·A Γ3 `

−→
V :
−→
A Γ2,Γ4 `

−→
W ·U :

−→
B ·A

Γ2,Γ3,Γ4;a : S′,b : T `◦ a(
−→
V )!b(

−→
W ·U)

Γ1,Γ2,Γ3,Γ4;a : S′],b : T `• •E[a] ‖ a(
−→
V )!b(

−→
W ·U)

Finally, we must show environment reduction:

!A.S′ −→ S′

Γ1,Γ2,Γ3,Γ4;a : !A.S′],b : T −→ Γ1,Γ2,Γ3,Γ4;a : S′],b : T

as required.

Con�guration Typing and Equivalence. Similar to SGV, the −→ relation is not de�ned

modulo equivalence, and typeability is not preserved by equivalence. The canonical example is

of a con�guration Γ;∆`φ (νa)(νb)(C ‖ (D ‖E)), where a∈ fn(C ), b∈ fn(D), and a,b∈ fn(E).

As before, only associativity of parallel composition is problematic for typeability, and

it is always possible to reassociate parallel composition without breaking typeability either

directly, or by �rstly commuting a subcon�guration.

Lemma 52. If Γ;∆ `φ C and C ≡D , where the derivation of C ≡D does not contain a use of

the axiom for associativity, then Γ;∆ `φ D .

Proof. By induction on the derivation of C ≡D . The proof is mostly identical to the analogous

proof in SGV, but we must consider the additional equivalence axiom which allows us to treat

bu�ers symmetrically.

Case a(
−→
V )!b(

−→
W )≡ b(

−→
W )!a(

−→
V )

S/
−→
A = T/

−→
B Γ1 `

−→
V :
−→
A Γ2 `

−→
W :
−→
B

Γ1,Γ2;a : S,b : T `◦ a(
−→
V )!b(

−→
W ) ⇐⇒

T/
−→
B = S/

−→
A Γ2 `

−→
W :
−→
B Γ1 `

−→
V :
−→
A

Γ1,Γ2;a : S,b : T `◦ b(
−→
W )!a(

−→
V )

The above holds because S/
−→
A = T/

−→
B ⇐⇒ T/

−→
B = S/

−→
A :

S/
−→
A = T/

−→
B

⇐⇒ (duality)

S/
−→
A = T/

−→
B

⇐⇒ (duality is involutive)

S/
−→
A = T/

−→
B

⇐⇒ (equality is symmetric)

T/
−→
B = S/

−→
A
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Lemma 53 (Associativity).

• If Γ;∆ `φ C ‖ (D ‖ E), then either Γ;∆ `φ (C ‖D) ‖ E or Γ;∆ `φ (C ‖ E) ‖D .

• If Γ;∆ `φ (C ‖D) ‖ E , then either Γ;∆ `φ C ‖ (D ‖ E) or Γ;∆ `φ D ‖ (C ‖ E).

Proof. Similar to the proof of the analogous property in SGV.

Finally, we may see that any reduction sequence which uses an ill-typed equivalence may be

replaced with one which does not.

Theorem 26 (Reduction Modulo Equivalence). If Γ;∆ `φ C , C ≡D , and D −→D ′, then:

1. There exists some E such that D ≡ E , and Γ;∆ `φ E , and E −→ E ′

2. There exist some Γ′,∆′ such that Γ;∆−→ Γ′;∆′ and Γ′;∆′ `φ E

3. D ′ ≡ E ′

Proof. Similar to the proof of the analogous property in SGV.

8.3.3 Deadlock-freedom

Communication takes place through a bu�er rather than directly between processes, but AGV

still retains an acyclic topology and is therefore deadlock-free. We can therefore construct a

similar graph-theoretic proof for deadlock-freedom in AGV as we did for SGV.

Before we begin formalising deadlock-freedom, it is worth emphasising that our notion of

deadlock-freedom only classi�es con�gurations which cannot reduce as a result of a cyclic

dependency as deadlocked, rather than, for example, trying to send to an external or nonexistent

bu�er. Such a con�guration does not reduce, but not as a result of deadlock. We will examine

such cases in more detail in §8.3.4.

We begin by de�ning the notion of a blocked process; in AGV, sending a value is a non-

blocking operation, so the only possibly-blocking communication operations are receiving a

value, or synchronising on a channel where all communication has completed.

De�nition 9. We say that a term M is blocked on an endpoint a, written blocked(M,a), if M

is attempting to read from, or wait on endpoint a. Formally:

blocked(a,M), ∃E.(M = E[receivea])∨ (M = E[waita])

If a thread φM is blocked on some variable a, then all other free names in M depend on

the communication over a taking place. We can also extend the notion of dependency to
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con�gurations, taking into account transitive dependencies. For AGV, we also say that each

endpoint in a bu�er depends on the other endpoint; this is an overapproximation since

dependencies need not (indeed, cannot!) exist in both directions, but for our purposes this

does not matter.

Note that it is impossible to perform an action on any value contained within a bu�er or

the payload of a send operation, so we need not characterise them as a part of the dependency

predicate. Formally, we may de�ne dependency as follows:

De�nition 10. We say that a depends on b in a con�guration C , written depends(a,b,C ), in

the following cases:

• depends(a,b,a(
−→
V )!b(

−→
W ))

• depends(a,b,b(
−→
W )!a(

−→
V ))

• depends(a,b,φM), blocked(b,M)∧a ∈ fn(M)

• depends(a,b,C ), ∃G ,D,E ,c.C ≡ G [D ‖ E ]∧depends(a,c,D)∧depends(c,b,E)

As before, deadlocked con�gurations are con�gurations with cyclic dependencies.

De�nition 11.

deadlocked(C ), ∃G ,D,E ,a,b.C ≡ G [D ‖ E ]∧depends(a,b,D)∧depends(b,a,E)

Although we have added asynchrony, no additional constructs in AGV introduce cycles, and

the runtime typing rules still enforce the invariant that exactly one name is shared between

two con�gurations.

Lemma 54. If Γ;∆ `φ C and ∃D,E .C = G [D ‖ E ], then fn(D)∩ fn(E) = {a} for some name

a.

Proof. By induction on the derivation of Γ;∆ `φ C , due to the partitioning of the type environ-

ment and bu�er environment in the typing rules for parallel composition. The T-Connect1

and T-Connect2 rules allow exactly one name to be shared.

It follows that since the con�guration typing rules forbid more than one name from being

shared between con�gurations, that well-typed con�gurations cannot be deadlocked.

Theorem 27. If Γ;∆ ` C , then ¬deadlocked(C ).

Proof. By contradiction. By the de�nition of deadlocked, we know that there must be some

cyclic dependency, which would be ill-typed due to Lemma 54.
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8.3.4 Global Progress

Deadlock-freedom is fairly close to the notion of deadlock-freedom for SGV. We now turn our

attention to global progress. Recall that A ranges over auxiliary threads; that is, threads which

are either a child thread or a bu�er. Let M denote con�gurations of the following form:

M ::= A1 ‖ · · · ‖ An ‖ •N

We may now de�ne the notion of a canonical form for AGV.

De�nition 12 (Canonical Form). A con�guration C is in canonical form if there is a sequence

of names a1, . . . ,an, a sequence of con�gurations A1, . . . ,An, and a con�guration M , such that:

C = (νa1)(A1 ‖ (νa2)(A2 ‖ · · · ‖ (νan)(An ‖M ) . . .))

where ai ∈ fn(Ai) for each ai and Ai.

All AGV programs with a main thread may be written in canonical form.

Theorem 28 (Canonical Forms (AGV)). If Γ;∆ `• C , then there exists some C ′ ≡ C such that

Γ;∆ `• C ′ and C ′ is in canonical form.

Proof. Similar to the analogous proof for SGV.

With the notion of a canonical form de�ned, and knowing that we may write AGV con�g-

urations with a main thread in canonical form, we are well-placed to state some progress

results.

Again, let us adopt the convention that Ψ ranges over term typing environments only

containing runtime names. Unsurprisingly, the functional fragment of AGV enjoys progress.

Lemma 55. If Ψ `M : A, then either:

1. M is a value

2. there exists some N such that M −→M N

3. there exist E,N such that M can be written E[N], where N is a session typing primitive of

the form forkV , sendV W , receiveV , or waitV .

Proof. A standard induction on the derivation of Ψ `M : A.

To reason about progress of con�gurations, we de�ne the notion of a ready thread: that is,

a thread which is ready to perform an action on a given channel. We refer to ready threads

as opposed to blocked threads since communication is asynchronous and thus sends are

non-blocking.



Chapter 8. Asynchronous GV 137

De�nition 13 (Ready thread). We say that a thread M is ready to perform an action on

endpoint a, written ready(M,a), if M is about to send on, receive on, or wait on a. Formally:

ready(a,M), ∃E.(M = E[sendV a])∨ (M = E[receivea])∨ (M = E[waita])

Each auxiliary thread of an open, non-reducing AGV con�guration is either a bu�er, or a

thread ready to perform an action on either a variable in the typing environment or a preceding

ν-bound variable. We �rstly describe the notion of open progress. Intuitively, if a con�guration

satis�es open progress, it does not “go wrong”, but may be ready to perform an action on an

external name. We de�ne open progress inductively on canonical forms.

De�nition 14 (Open Progress). Suppose Ψ;∆ `• C , where C is in canonical form and C 6=⇒.

We say that C satis�es open progress if:

1. C = (νa)(A ‖D), where Ψ = Ψ1,Ψ2 and ∆ = ∆1,∆2 such that either:

(a) Ψ1,a : S;∆1 `◦ A and Ψ2;∆2,a : S `• D where D satis�es open progress, and A is

either:

i. A thread ◦M where there exists some b ∈ fn(Ψ1,a : S) such that either M = b or

ready(b,M); or

ii. A bu�er b(
−→
V )!c(

−→
W ) where b,c 6= a and either a ∈ −→V or a ∈ −→W

(b) Ψ1;∆1,a : S `◦ A and Ψ2,a : S;∆2 `• D , where D satis�es open progress, and A is

either a(
−→
V )!b(

−→
W ) or b(

−→
V )!a(

−→
W ) for some b ∈ fn(∆1)

2. C = A ‖M , where Ψ = Ψ1,Ψ2 and either:

(a) ∆ = ∆1,∆2,a : S], where Ψ1,a : S;∆1 `◦ A and Ψ2;∆2,a : S `• M , where M satis�es

open progress, and A is either:

i. A thread ◦M where there exists some b ∈ fn(Ψ1,a : S) such that ether M = b or

ready(b,M); or

ii. A bu�er b(
−→
V )!c(

−→
W ) where b,c 6= a and either a ∈ fn(

−→
V ) or a ∈ fn(

−→
W )

(b) ∆ = ∆1,∆2,a : S], where Ψ1;∆1,a : S `◦ A and Ψ2,a : S;∆2 `• M , where M satis�es

open progress, and A is either a(
−→
V )!b(

−→
W ) or b(

−→
V )!a(

−→
W ) for some b ∈ fn(∆1)

3. C = •M, where either M =V for some value V , or ready(M,a) for some a ∈ fn(Ψ).

Every well-typed non-reducing con�guration that is in canonical form satis�es open progress;

thanks to the compositional de�nition, the proof is a routine induction on typing derivations.

Lemma 56. Suppose Ψ;∆ `• C , where C is in canonical form and C 6=⇒. Then C satis�es open

progress.
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Proof. By induction on the derivation of Ψ;∆ `• C ; see Appendix C for details.

As an immediate corollary, we can show a more global and concise property.

Corollary 7 (Open Progress (AGV)). Suppose Ψ;∆ `• C where C is in canonical form, and

C 6=⇒.

Let C = (νa1)(A1 ‖ · · · ‖ (νan)(An ‖M ) · · ·). Then:

1. For 1≤ i≤ n, each Ai is either:

(a) a child thread ◦M such that either M = ai, or that there exists b ∈ {a j | 1 ≤ j ≤
i}∪ fn(Ψ) such that ready(b,M)

(b) a bu�er

2. M = A ′1 ‖ · · · ‖ A ′m ‖ •N such that

(a) Each A ′i is either:

i. a child thread ◦M for which there exists some b∈ {ai | 1≤ i≤ n}∪ fn(Ψ)∪ fn(∆)
such that either M = b or ready(b,M); or

ii. a bu�er

(b) N is either a value, or ready(b,N) for some b ∈ {ai | 1≤ i≤ n}∪ fn(Ψ)∪ fn(∆)

We can substantially tighten the result if we only consider closed con�gurations.

Corollary 8 (Closed Progress (AGV)). Suppose ·; · `• C where C is in canonical form, and

C 6=⇒.

Let C = (νa1)(A1 ‖ · · · ‖ (νan)(An ‖M ) · · ·). Then:

1. For 1≤ i≤ n, each Ai is either:

(a) A child thread ◦M such that either M = ai, or ready(ai,M)

(b) A bu�er

2. M = •V for some V

The result follows since each child thread ◦Mi may no longer be ready to perform a communi-

cation action on an external endpoint, thus each child thread must be a value (more speci�cally,

a name ai of type End!), or ready to perform an action on ai. Due to the emptiness of typing

environments, it cannot be the case that a parallel composition arises in M , since the initial

runtime typing environment does not contain any entries of the form a : S].

Even when considering closed con�gurations, communication may be blocked if the main

thread contains an endpoint name. A conservative way to ensure that communication in a
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con�guration cannot be blocked is to mandate that the type of its main thread contains no

session endpoints nor function types (as functions may capture session endpoints). Thus, we

arrive at a yet stronger result for ground con�gurations: if a con�guration is a non-reducing

ground con�guration, then it must be a main thread fully reduced to a value.

Corollary 9 (Global Progress (AGV)). If C is a ground con�guration such that C 6=⇒, then

C = •V for some V .

8.3.5 Con�uence

Like SGV, AGV satis�es the diamond property. Asynchrony requires us to take slightly more

care, as it introduces a critical pair when reducing a concurrent read and write on a channel.

Theorem 29 (Diamond Property). If Γ;∆ `φ C , and C =⇒D1, and C =⇒D2, then either

D1 ≡D2, or there exists some D3 such that D2 =⇒D3 and D2 =⇒D3.

Proof. As in SGV, −→M is deterministic and hence con�uent due to the call-by-value, left-to-

right ordering imposed by evaluation contexts, and due to linearity, communication actions

on di�erent channels may be performed in any order.

Unlike SGV, due to asynchrony, we have a single critical pair when considering concurrent

reads and writes to a bu�er. Nevertheless, a read and a write may happen in any order, and

the pair converges in a single step.

F [sendU a] ‖ a(
−→
V )!b(V ·−→W ) ‖ F ′[receive b]

F [a] ‖ a(
−→
V )!b(V ·−→W ·U) ‖ F ′[receive b] F [sendU a] ‖ a(

−→
V )!b(

−→
W ) ‖ F ′[(V,b)]

F [a] ‖ a(
−→
V )!b(

−→
W ·U) ‖ F ′[(V,b)]

8.3.6 Termination

Again, similarly to SGV, AGV is terminating due by an elementary argument based on linearity.

Our asynchronous semantics does not give rise to nontermination.

Theorem 30. If Γ `φ C , then there are no in�nite =⇒ reductions from C .

Proof. Similar to the proof of termination for SGV. De�ne the measure of a con�guration to

be the size of the sums of the ASTs of all threads and values contained in bu�ers. The measure

strictly reduces under reduction and remains invariant under ≡, so no in�nite reduction

sequences may exist.
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8.4 Related Work

Untyped Asynchronous Process Calculi. Boudol [24] describes the Asynchronous π-

calculus, a variation of the π-calculus based on the chemical metaphor introduced by the

Chemical Abstract Machine [21]. In contrast to AGV, the Asynchronous π-calculus does not

include any primitive notion of a queue. Instead, the key twist is to modify the output process

xy.P (read as “send name y over name x and continue as P”) to xy, eliminating output as a

synchronous pre�xing operation. Asynchrony is implemented by creating a message process

in parallel, instead of communicating via synchronous rendezvous; the message may then be

retrieved from the ‘chemical solution’ by an input-pre�xed process x(y).P. The core idea of

introducing asynchrony by eliminating output pre�xing is introduced independently by Honda

and Tokoro [95]. Boudol shows that it is possible to encode synchronous output pre�xing

using the asynchronous π-calculus using an acknowledgement channel. The asynchronous

π-calculus is, however, not powerful enough to encode the full synchronous π-calculus, as it

cannot satisfactorily encode mixed choice [168].

Session-TypedAsynchronous Process Calculi. Coppo et al. [48] describe a session-typed

object-oriented language AMoose with asynchronous communication. The asynchronous

communication semantics is achieved by queues stored in a global heap. The authors also

prove a progress property: their approach to proving progress involves introducing an e�ect

system which annotates expressions with channels which may produce deadlock. AGV di�ers

in that it is a functional calculus, queues are �rst-class processes, and progress is guaranteed

by the acyclicity of con�gurations.

Kouzapas et al. [124] describe a session-typed process calculus with asynchronous commu-

nication semantics, and describe its behavioural theory by introducing an asynchronous session

bisimulation relation and showing that it coincides with reduction-closed congruence [96].

To aid the study of the behavioural theory, asynchrony is formalised by each endpoint being

associated with both an input and an output queue; communication happens directly between

queues as a separate reduction step. Only input queues are present in AGV, and there is a

single bu�er process per pair of endpoints as opposed to a bu�er process for each endpoint.

We also consider progress, which is largely inherited from the logical correspondence between

GV and CP, whereas Kouzapas et al. do not.

Concurrent Typestate-oriented Programming As discussed in Chapter 2, typestate gov-

erns which methods are available on an object, and may change as an object evaluates. Aldrich

et al. [9] introduce the paradigm of typestate-oriented programming (TSOP), implemented in the

Plaid programming language. In TSOP, stateful object �elds have a state which governs which

methods may be called. As an example, it is only possible to read from an open �le. Methods
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on the object may change the state as a result. Stateful objects must be treated linearly, which

is handled by Plaid’s permissions system.

Crafa and Padovani [50] investigate TSOP in the concurrent setting, by considering a

behavioural typing discipline for the Objective Join Calculus [70] based on the chemical

metaphor introduced by Berry and Boudol [21]. Object types describe messages that an object

must handle and eventually send: an example is an object which must eventually release a lock

after it has been acquired. As the Objective Join Calculus is based on the chemical metaphor,

communication is asynchronous without the use of explicit bu�er processes. Padovani [166]

re�nes this system to ensure deadlock-freedom, which is achieved using an e�ect typing

system which constructs a dependency graph forbidding cyclic dependencies.

Session-Typed Asynchronous Functional Languages. Gay and Vasconcelos [77] were

�rst to describe the integration of session types and functional programming through the

use of a linear type system. Their calculus, which has obtained the name LAST [135], is a

linear λ-calculus which, like SGV and AGV, is de�ned in terms of a deterministic reduction

relation on terms and a nondeterministic reduction relation on con�gurations. LAST has many

additional features including subtyping, access points for more �exible session initiation, a

�xpoint combinator for recursion, and additional information for proving that the maximum

size of a bu�er is bounded by its session type.

LAST satis�es preservation and a weak form of progress, but its access points admit

nontermination and nondeterminism. The calculus does not preclude deadlock. In contrast,

AGV builds upon SGV to investigate asynchrony while retaining SGV’s strong metatheory.

More speci�cally, we retain deadlock-freedom since the fork construct coupled with the

con�guration typing system ensure that con�gurations are acyclic. In the more modular

approach taken by GV, we begin with a well-behaved calculus and can re-add features such as

access points and �xpoint combinators, and know which properties remain. In particular, and

as we will discuss further in Chapter 9, §9.4, adding a �xpoint combinator retains all properties

except termination, whereas adding access points loses all guarantees except preservation and

a weak form of progress.

Lindley and Morris [136] consider asynchronous communication semantics for an exten-

sion of GV, FST. In particular, we take inspiration from their formulation of bu�er processes

and bu�er typing. Nevertheless, our approach has several fundamental di�erences: most im-

portantly, our calculus is fully linear and separates End! and End?, whereas Lindley and Morris

[136] provide a single, self-dual End type, inhabitants of which may be discarded implicitly.

Although treating channels of type End as a�ne increases the amount of concurrency (as

synchronisation is not required to close a channel), it complicates the typing rules. Since the

purpose of AGV is to provide a small, well-behaved core language, we also omit the more
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advanced features of FST such as subkinding and row typing.

As a result, AGV makes simpli�cations to the metatheory, and we provide the �rst full

proofs of correctness. As we saw for Synchronous GV, a useful technique to reason about the

progress of a con�guration is to de�ne a canonical form. Lindley and Morris [136] describe a

canonical form which relies on the a�ne nature of names, where bu�ers may be introduced

through the reverse application of a garbage collection equivalence. In contrast, we have an

explicitly linear calculus with a more conventional way of constructing canonical forms.

8.5 Conclusion

Asynchrony is vital when considering distributed applications. In this chapter, we have

introduced Asynchronous GV, an extension of Synchronous GV to incorporate asynchronous,

bu�ered communication.

We have discussed the metatheory of Asynchronous GV, arguing that it satis�es preserva-

tion, progress, con�uence, and termination, and we have provided the �rst full proofs that the

metatheory holds.

With an asynchronous semantics in hand, we may proceed to describing how to safely

integrate session types and exceptions, getting us closer to our goal of extending the Links

web programming language with distributed session-typed channels.
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Exceptional GV

9.1 Introduction

So far, we have seen two core functional languages: Synchronous GV and Asynchronous GV,

which are logically-grounded and have strong correctness guarantees. Our goal is to bring

session types to the domain of tierless web programming, which by nature is distributed, and

asynchrony is more suited to implementation in the distributed setting.

In the case of concurrent, multi-threaded applications, it may be reasonable to assume

that all interactions succeed. However, this is certainly not the case in the distributed setting

where a participant in a session may go o�ine or crash, and the problem of disconnection is

particularly pertinent in web applications where a client may simply close its browser window

at any time. Alas, most accounts of session types do not handle failure, which means they are

of limited use in distributed applications, where failure is pervasive. Inspired by the work of

Mostrous and Vasconcelos [147], in this chapter we present the �rst account of asynchronous

session types with failure handling in a functional programming language. Key to the calculus

is the ability to safely discard a session, and its safe integration with exception handling.

9.1.1 Session Types

Recall the earlier example of two-factor authentication described in Chapter 2. A user inputs

their credentials. If the login attempt is from a known device, then they are authenticated

and may proceed to perform privileged actions. If the login attempt is from an unrecognised

device, then the user is sent a challenge code. They enter the challenge code into a hardware

key which yields a response code. If the user responds with the correct response code, then

they are authenticated.

Figure 9.1 shows the session type for the server which receives a pair of a username and

password from the client, then selects whether to authenticate the client, issue a challenge, or

reject the credentials. If the server decides to issue a challenge, then it sends the challenge

143
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TwoFactorServer ,

?(Username,Password).⊕{
Authenticated : ServerBody,

Challenge : !ChallengeKey.?Response.

⊕{Authenticated : ServerBody,

AccessDenied : End},
AccessDenied : End}

Figure 9.1: Server Session Type

string, awaits the response, and either authenticates or rejects the client. The ServerBody type

abstracts over the remainder of the interactions, for example making a deposit or withdrawal.

Recall the implementation of the server, which takes an endpoint of type TwoFactorServer

along which it receives the credentials, which are checked using checkDetails. If the check

passes, then the server proceeds to the application body (serverBody(s)); if not, then the server

noti�es the client by selecting the AccessDenied branch.

twoFactorServer : TwoFactorServer ( 1

twoFactorServer(s), let ((username,password),s) = receive s in

if checkDetails(username,password) then

let s = select Authenticated s in serverBody(s)

else

let s = select AccessDenied s in close s

9.1.2 Substructural Types

In Chapter 2 we asserted that in order to safely implement session-typed communication, we

require a linear type system, meaning that each variable is used precisely once. Linearity

ensures both that session endpoints are used at most once, preventing duplicate messages from

being sent and thus violating the protocol, and also at least once, ensuring that a developer

does not accidentally forget to �nish the implementation of a protocol.

However, linearity can sometimes be too strong. Certainly, statically checking session

types demands some form of substructural type system. In this section, we discuss three

options: linear types, a�ne types, and linear types with explicit cancellation.
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9.1.2.1 Linear Types.

Simply providing constructs for sending and receiving values, and for selecting and o�ering

choices, is insu�cient for safely implementing session types. Consider the following client:

wrongClient : TwoFactorClient ( 1

wrongClient(s), let t = send ("Alice","hunter2") s in

let t = send ("Bob","letmein") s in . . .

Reuse of s allows a (username, password) pair to be sent along the same endpoint twice,

violating session �delity.

Exceptions. In practice, linear session types are unrealistic. Thus far, we have assumed

checkDetails always succeeds, which may be plausible if checking against an in-memory

store, but not if connecting to a remote database. One option would be for checkDetails to

return false on failure, but that would lose information. Instead, suppose we have an exception

handling construct. As a �rst attempt, we might try to write:

exnServer1 : TwoFactorClient ( 1

exnServer1(s), let ((username,password),s) = receive s in

try if checkDetails(username,password) then

let s = select Authenticated s in serverBody(s)

else

let s = select AccessDenied s in close s

catch log("Database Error")

However, the above code does not type-check and is unsafe. Linear endpoint s is not used in

the catch block and yet is still open if an exception is raised by checkDetails.

As a second attempt, we may decide to localise exception handling to the call to

checkDetails. We introduce checkDetailsOpt, which returns Some(result) if the call is suc-

cessful and None if not.

checkDetailsOpt : (Username×Password)( Option(Bool)

checkDetailsOpt(username,password), try Some(checkDetails(username,password))

catch None

exnServer2 : TwoFactorServer ( 1

exnServer2(s), let ((username,password),s) = receive s in

case checkDetailsOpt(username,password)of

Some(res) 7→ if res then let s = select Authenticated s in serverBody(s)

else let s = select AccessDenied s in close s

None 7→ log("Database Error")
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Still the code is unsafe as it does not use s in the None branch of the case-split. However, we

do now have more precise information about the type of s, since it is unused in the try block

in checkDetailsOpt. One solution could be to adapt the protocol by adding an InternalError

branch:

TwoFactorServerExn , ?(Username,Password).⊕{
Authenticated : ServerBody,

Challenge : !ChallengeKey.Response.⊕{Authenticated : ServerBody,AccessDenied : End},
AccessDenied : End,

InternalError : End}

We could use select InternalError s in the None branch to yield a type-correct program, but

doing so would be unsatisfactory as it clutters the protocol and the implementation with

failure points.

Disconnection. The problem of failure is compounded by the possibility of disconnection.

On a single machine it may be plausible to assume that communication always succeeds. In a

distributed setting this assumption is unrealistic as parties may disconnect without warning.

The problem is particularly acute in web applications as a client may close the browser at

any point. In order to adequately handle failure we must incorporate some mechanism for

detecting disconnection.

9.1.2.2 A�ne Types

We began by assuming linear types—each endpoint must be used exactly once. One might

consider relaxing linear types to a�ne types—meaning that each endpoint must be used at most

once. Statically checked a�ne types form the basis of the existing Rust implementation of ses-

sion types [113] and dynamically checked a�ne types form the basis of the OCaml FuSe [164]

and Scala lchannels [190] session type libraries. A�ne types present two quandaries, both

arising from endpoints being silently discarded. First, a developer receives no feedback if they

accidentally forget to �nish a protocol implementation. Second, if an exception is raised in an

evaluation context that captures an open endpoint then the peer may be left waiting forever.

9.1.2.3 Linear Types with Explicit Cancellation

Mostrous and Vasconcelos [147] address the di�culties outlined above through an explicit

discard (or cancellation) operator. (They characterise their sessions as a�ne, but it is important

not to confuse their system with a�ne type systems, as in §9.1.2.2, which allow variables to

be discarded implicitly.) Their approach boils down to three key principles: endpoints can

be explicitly discarded; an exception is thrown if a communication cannot succeed because a
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peer endpoint has been cancelled; and endpoint cancellations are propagated when endpoints

become inaccessible due to an exception being thrown. They introduce a process calculus

including the term a (“cancel a”), which indicates that endpoint a may no longer be used to

perform communications. They provide an exception handling construct which attempts a

communication action, running an exception handler if the communication action fails, and

show that explicit cancellation is well-behaved: their calculus satis�es preservation and global

progress (well-typed processes never get stuck), and is con�uent.

Explicit cancellation neatly handles failure while ruling out accidentally incomplete imple-

mentations and providing a mechanism for notifying peers when an exception is raised. In this

chapter we take advantage of explicit cancellation to formalise and implement asynchronous

session types with failure handling in a distributed functional programming language; this is

not merely a routine adaptation of the ideas of Mostrous and Vasconcelos for the following

reasons:

• They present a process calculus, but we work in a functional programming language.

• Communication in their system is synchronous, depending on a rendezvous between

sender and receiver. We require asynchronous communication, which is more amenable

to implementation in a distributed setting.

• Their exception handling construct is over a single communication action and does not

allow nested exception handling. This design is di�cult to reconcile with a functional

language, as it is inherently non-compositional. Our exception handling construct is

compositional.

In this chapter, we de�ne a core concurrent λ-calculus, Exceptional GV (EGV), with asyn-

chronous session-typed communication and exception handling. As with the calculus of

Mostrous and Vasconcelos, an exception is raised when a communication action fails. But our

compositional exception handling construct can be arbitrarily nested, and allows exception

handling over multiple communication actions.

Using EGV, we may implement the two factor authentication server as follows:

exnServer3 : TwoFactorServer ( 1

exnServer3(s), let ((username,password),s) = receive s in

try checkDetails(username,password)as res in

if res then let s = select Authenticated s in serverBody(s)

else let s = select AccessDenied s in close s

otherwise

cancel (s); log("Database Error")

Following Benton and Kennedy [17], an exception handler tryLasx inM otherwiseN takes

an explicit success continuation M as well as the usual failure continuation N. If checkDetails

fails with an exception, then s is safely discarded using cancel, which takes an endpoint and
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returns the unit value. Disconnection is handled by cancelling all endpoints associated with a

client. If a peer tries to read along a cancelled endpoint then an exception is thrown.

This chapter concentrates on EGV and its metatheory. It also serves as the basis for our

implementation of distributed sessions for web applications, which we describe in more detail

in Chapter 10. The remainder of this chapter is structured as follows. §9.2 presents EGV and

discusses how it builds on AGV, and §9.3 discusses its metatheory. Finally, §9.4 discusses

extensions to Exceptional GV, including exception payloads, unrestricted types, access points,

and recursive sessions.

9.2 Exceptional GV

In this section, we introduce Exceptional GV (henceforth EGV). EGV extends AGV with support

for failure handling.

Due to GV’s close correspondence with classical linear logic, EGV has a strong metatheory,

enjoying preservation, global progress, the diamond property, and termination. Much like the

simply-typed λ-calculus, this well-behaved core must be extended to be expressive enough to

write larger applications. Nonetheless, the core calculus alone is expressive enough to support

our two-factor authentication example, and to support server applications which gracefully

handle disconnection. In §9.3, we show that cancellation is well-behaved, and does not violate

any of the core properties of GV. In §9.4, following Lindley and Morris [132, 135], we extend

EGV modularly with standard features of our implementation, some of which provide weaker

guarantees. Channel cancellation and exceptions are orthogonal to these features.

9.2.1 Integrating Sessions with Exceptions, by Example

Integrating session types with failure handling into a higher-order functional language requires

care. We illustrate three important cases: cancellation and exceptions, delegation, and closures.

Cancellation and Exceptions. Consider the cancelExn function, which forks a thread

which immediately cancels its endpoint.

cancelExn ,

try

let s = fork(λt.cancel t) in

let (res,s) = receive s in

close s; res

as res in

print ("Result: "+ res)

otherwise print"Error!"
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The parent attempts to receive, but the message can never arrive so an exception is raised and

the otherwise clause is invoked.

Note that we could equally move the fork out of the try block with no di�erence to the

possible reductions, since fork can never raise an exception.

Delegation. A central feature of π-calculus is mobility of names. In session calculi, sending

an endpoint is known as session delegation.

delegation ,

let s =

fork(λt.

let (res, t) = receive t in

close t; res) in

let u = fork(λv.cancel v) in

let u = send s u in

close u

The delegation function begins by forking a thread and returning endpoint s. The child is

passed endpoint t on which it blocks receiving. Next, the parent forks a second child, yielding

endpoint u. The second child is passed endpoint v, which is immediately discarded using

cancel. Now the parent thread sends endpoint s along u. Endpoint s will never be received

as the peer endpoint v of u has been cancelled. In turn, this renders s irretrievable and an

exception is thrown in the �rst child thread, as it can never receive a value.

Closures. It is crucial that cancellation plays nicely with closures.

closure(s),

let f = (λx.send x s) in

raise;

f (5)

The closure function de�nes a function f which sends its argument x along s. The parent

thread then raises an exception. As s appears in the closure bound to f , which appears in the

continuation and is thus discarded, s must be cancelled.

9.2.2 Syntax and Typing Rules for Terms

Fig. 9.2 gives the syntax of EGV. Again, constructs which di�er to those in AGV are shaded. In

contrast to SGV and AGV, we dispense with End! and End? and instead introduce a self-dual

End type; we discuss the reasoning for this in §9.3.1.



Chapter 9. Exceptional GV 150

Types A,B,C ::= 1 | A ( B | A+B | A×B | S

Session Types S,T ::= !A.S | ?A.S | End

Variables x,y

Terms L,M,N ::= x | λx.M | M N

| () | let () = M in N

| (M,N) | let (x,y) = M in N

| inl M | inr M | case L of {inl x 7→M; inr y 7→ N}
| forkM | send M N | receive M | close M

| cancel M | raise | try L as x in M otherwise N

Type Environments Γ ::= · | Γ,x : A

Figure 9.2: Syntax

We introduce three new term constructs to support session typing with failure han-

dling: cancel M explicitly discards session endpoint M; raise raises an exception; and

try L as x in M otherwise N evaluates L, on success binding the result to x in M and on

failure evaluating N.

As in SGV and AGV, we omit select and o�er from the core calculus (following Lindley

and Morris [132, 135]) as they can be encoded using sums and delegation [54, 118].

Typing. Fig. 9.3 gives the typing rules for EGV. As usual, linearity is enforced by splitting

environments when typing subterms, ensuring T-Var takes a singleton environment, and leaf

rules T-Unit and T-Raise take an empty environment.

As exceptions do not return values, the rule T-Raise allows an exception to be given

any type A. Rule T-Try embraces explicit success continuations as advocated by Benton and

Kennedy [17], binding a result in M if L evaluates successfully. The T-Cancel rule explicitly

discards an endpoint. Naïvely implemented, cancellation violates progress: a thread could

discard an endpoint, and if its peer is blocked receiving, the peer will be left waiting forever.

We avoid this pitfall by taking care to cancel discarded endpoints.

9.2.3 Operational Semantics

We now give a small-step operational semantics for EGV.

Runtime Syntax. Fig. 9.4 shows the runtime syntax of EGV, which builds upon that of AGV.

As well as program threads (i.e., ◦M and •M), con�gurations include three special forms of

thread. A bu�er thread (a(
−→
V )!b(

−→
W )), as in AGV models asynchrony. A zapper thread ( a)
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Term Typing Γ `M :A

T-Var

x :A ` x :A

T-Abs

Γ,x :A `M :B

Γ ` λx.M :A ( B

T-App

Γ1 `M :A ( B Γ2 ` N :A

Γ1,Γ2 `M N :B

T-Unit

· ` () :1

T-LetUnit

Γ1 `M :1
Γ2 ` N :A

Γ1,Γ2 ` let () = M in N :A

T-Pair

Γ1 `M :A

Γ2 ` N :B

Γ1,Γ2 ` (M,N) :A×B

T-LetPair

Γ1 `M :A×B

Γ2,x :A,y :B ` N :C

Γ1,Γ2 ` let (x,y) = M in N :C

T-Inl

Γ `M :A

Γ ` inl M :A+B

T-Inr

Γ `M :B

Γ ` inr M :A+B

T-Case

Γ1 ` L :A+B Γ2,x :A `M :C Γ2,y :B ` N :C

Γ1,Γ2 ` case L of {inl x 7→M; inr y 7→ N} :C

T-Fork

Γ `M :S ( 1

Γ ` forkM :S

T-Send

Γ1 `M :A Γ2 ` N : !A.S

Γ1,Γ2 ` send M N :S

T-Recv

Γ `M : ?A.S

Γ ` receive M :(A×S)

T-Close

Γ `M :End

Γ ` close M :1

T-Cancel

Γ `M :S

Γ ` cancel M :1

T-Try

Γ1 ` L :A Γ2,x :A `M :B Γ2 ` N :B

Γ1,Γ2 ` try L as x in M otherwise N :B

T-Raise

· ` raise :A

Duality S

!A.S = ?A.S ?A.S = !A.S End= End

Figure 9.3: Term Typing and Duality

represents an endpoint a that has been cancelled, and is used to propagate failure. A halted

thread (halt) arises when the main thread has crashed due to an uncaught exception.

We sometimes �nd it useful to distinguish top-level threads T (main threads and halted

threads) from auxiliary threads A (child threads, zapper threads, and bu�er threads).

Environments. We extend type environments Γ to include runtime names of session type

S and introduce runtime type environments ∆, which type both bu�er endpoints of session

type S and channels of type S] for some S, but not object variables.

Contexts. The de�nition of evaluation contexts is another departure from AGV. In particular,

we have two types of evaluation contexts: standard evaluation contexts E , and pure contexts

P. Pure contexts P are those evaluation contexts that include no exception handling frames.

Thread contexts F support reduction in program threads. Con�guration contexts G support

reduction under ν-binders and parallel composition.
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Runtime Types R ::= S | S]

Names a,b,c

Terms M ::= · · · | a

Values U,V,W ::= a | λx.M | () | (V,W ) | inlV | inrV
Con�gurations C ,D,E ::= (νa)C | C ‖D | φM | halt |  a | a(

−→
V )!b(

−→
W )

Thread Flags φ ::= • | ◦
Top-level threads T ::= •M | halt
Auxiliary threads A ::= ◦M |  a | a(

−→
V )!b(

−→
W )

Type Environments Γ ::= · · · | Γ,a : S

Runtime Type Environments ∆ ::= · | ∆,a : R

Evaluation Contexts E ::= [ ] | E M | V E

| let () = E in M | (E,M) | (V,E) | let (x,y) = E in M

| inl E | inr E | case E of {inl x 7→M; inr y 7→ N}
| forkE | send E M | sendV E | receive E | close E

| cancel E | try E as x in M otherwise N

Pure Contexts P ::= [ ] | P M | V P

| let () = P in M | let (x,y) = P in M | (P,M) | (V,P)
| inl P | inr P | case P of {inl x 7→M; inr y 7→ N}
| forkP | send P M | sendV P | receive P | close P

| cancel P

Thread Contexts F ::= φE

Con�guration Contexts G ::= [ ] | (νa)G | G ‖ C

Syntactic Sugar

C ‖  V , C ‖  a1 ‖ · · · ‖  an where fn(V ) = {ai}i

C ‖  P , C ‖  a1 ‖ · · · ‖  an where fn(P) = {ai}i

C ‖  E , C ‖  a1 ‖ · · · ‖  an where fn(E) = {ai}i

Figure 9.4: Runtime Syntax
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Syntactic Sugar. We write  V ,  P, and  E , as shorthand for the parallel composition of

zapper threads for each free name in values V , pure contexts P, and evaluation contexts E ,

respectively. Given C ‖  V (and  P, E respectively), if fn(V ) = /0, then C ‖  V = C .

Fig. 9.5 presents reduction and equivalence rules for terms and con�gurations.

Term Reduction. Reduction on terms is standard call-by-value β-reduction.

Con�guration Equivalence. Like AGV, we have the standard π-calculus equivalence rules

and an additional axiom to allow bu�ers to be treated symmetrically. EGV adds a further

two axioms which function as garbage collection rules, allowing completed child threads and

cancelled empty bu�ers to be discarded.

Communication andConcurrency. The basic communication and concurrency behaviour

is identical to that of AGV: the E-Fork rule creates two fresh names for each endpoint of a

channel, returning one name and substituting the other in the body of the spawned thread, as

well as creating a channel with two empty bu�ers. The E-Send and E-Receive rules send to

and receive from a bu�er.

The E-Close rule discards an empty bu�er once a session is complete. It di�ers from

E-Wait in SGV and AGV since two threads synchronise and then proceed independently,

whereas E-Wait can only synchronise with a process which has �nished evaluating, and

garbage collects the process as a result.

Cancellation. The E-Cancel rule cancels an endpoint by creating a zapper thread. The

E-Zap rule ensures that when an endpoint is cancelled, all other endpoints in the bu�er of

the cancelled endpoint are also cancelled: it dequeues a value from the head of the bu�er and

cancels any endpoints contained within the dequeued value. It is applied repeatedly until the

bu�er is empty.

Raising Exceptions. Following Mostrous and Vasconcelos [147], an exception is raised

when it would be otherwise impossible for a communication action to succeed. The E-

ReceiveZap rule raises an exception if an attempt is made to receive along an endpoint

whose bu�er is empty and whose peer endpoint has been cancelled. Similarly, E-CloseZap

raises an exception if an attempt is made to close a channel where the peer endpoint has been

cancelled. There is no rule for the case where a thread tries to send a value along a cancelled

endpoint; the free names in the communicated value must eventually be cancelled, but this

is achieved through E-Zap. We choose not to raise an exception in this case since to do so

would violate con�uence, which we discuss in more detail in §9.3.4. Not raising exceptions on

message sends to dead peers is standard behaviour for languages such as Erlang.
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Term Reduction M −→M N

E-Lam (λx.M)V −→M M{V/x}
E-Unit let () = () in M −→M M

E-Pair let (x,y) = (V,W ) in M −→M M{V/x,W/y}
E-Inl case inlV of {inl x 7→M; inr y 7→ N} −→M M{V/x}
E-Inr case inrV of {inl x 7→M; inr y 7→ N} −→M N{V/x}
E-Val tryV as x in M otherwise N −→M M{V/x}
E-Lift E[M] −→M E[M′], if M −→M M′

Con�guration Equivalence C ≡D

C ‖ (D ‖ E)≡ (C ‖D) ‖ E C ‖D ≡D ‖ C (νa)(νb)C ≡ (νb)(νa)C

C ‖ (νa)D ≡ (νa)(C ‖D), if a 6∈ fn(C )

a(
−→
V )!b(

−→
W )≡ b(

−→
W )!a(

−→
V ) ◦() ‖ C ≡ C (νa)(νb)( a ‖  b ‖ a(ε)!b(ε)) ‖ C ≡ C

Con�guration Reduction C −→D

E-Fork F [fork(λx.M)] −→ (νa)(νb)(F [a] ‖ ◦M{b/x} ‖ a(ε)!b(ε)), where a,b are fresh

E-Send F [sendU a] ‖ a(
−→
V )!b(

−→
W ) −→ F [a] ‖ a(

−→
V )!b(

−→
W ·U)

E-Receive F [receive a] ‖ a(U ·−→V )!b(
−→
W ) −→ F [(U,a)] ‖ a(

−→
V )!b(

−→
W )

E-Close (νa)(νb)(F [close a] ‖ F ′[close b] ‖ a(ε)!b(ε)) −→ F [()] ‖ F ′[()]
E-Cancel F [cancel a] −→ F [()] ‖  a

E-Zap  a ‖ a(U ·−→V )!b(
−→
W ) −→  a ‖  U ‖ a(

−→
V )!b(

−→
W )

E-CloseZap F [close a] ‖  b ‖ a(ε)!b(ε) −→ F [raise] ‖  a ‖  b ‖ a(ε)!b(ε)

E-ReceiveZap F [receive a] ‖  b ‖ a(ε)!b(
−→
W ) −→ F [raise] ‖  a ‖  b ‖ a(ε)!b(

−→
W )

E-Raise F [try P[raise]as x in M otherwise N] −→ F [N] ‖  P

E-RaiseChild ◦P[raise] −→  P

E-RaiseMain •P[raise] −→ halt ‖  P

E-LiftC G [C ] −→ G [D], if C −→D
E-LiftM φM −→ φN, if M −→M N

Figure 9.5: Reduction and Equivalence for Terms and Con�gurations



Chapter 9. Exceptional GV 155

Remark. We could implement an alternative reduction rule for E-CloseZap:

F [closea] ‖  b ‖ a(ε)!b(ε)−→ F [()]

where closing a cancelled channel does not raise an exception. We elected to raise an exception on

closing an endpoint where the peer endpoint is cancelled for symmetry with E-ReceiveZap, and

also since the above behaviour can already be achieved by cancelling the endpoint:

F [cancela] ‖  b ‖ a(ε)!b(ε)

−→
F [()] ‖  a ‖  b ‖ a(ε)!b(ε)

≡
F [()]

Handling Exceptions. The E-Raise rule invokes the otherwise clause if an exception is

raised, while also cancelling all endpoints in the enclosing pure context. The structure of

handling contexts ensures that exceptions are handled by the innermost handler.

If an unhandled exception occurs in a child thread, then all free endpoints in the evaluation

context are cancelled and the thread is terminated (E-RaiseChild). If the exception is in

the main thread then all free endpoints are cancelled and the main thread reduces to halt

(E-RaiseMain).

9.3 Metatheory

Even in the presence of channel cancellation and exceptions, EGV retains all of the properties

enjoyed by SGV and AGV. As before, we begin by describing a runtime type system for EGV,

which di�ers slightly to that of AGV in order to account for the self-dual End type, as well

as halted threads and zapper threads. Next, we show preservation, deadlock-freedom, global

progress, con�uence, and termination.

9.3.1 Runtime Typing

To state our main results we require typing rules for names and con�gurations. These are

given in Fig. 9.6.

The con�guration typing judgement has the shape Γ;∆ `φ C , which states that under type

environment Γ, runtime environment ∆, and thread �ag φ, con�guration C is well-typed. We

additionally require that fn(Γ)∩ fn(∆) = /0. Thread �ags ensure that there can be at most

one top-level thread which can return a value: • denotes a con�guration with a top-level

thread and ◦ denotes a con�guration without. The main thread returns the result of running

a program. Any con�guration C such that Γ;∆ `• C has exactly one main thread or halted
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Term Typing Γ `M : A

T-Name

a :S ` a :S

Session Slicing S/
−→
A

S/ε = S !A.S/A ·−→A = S/
−→
A

Queue Typing Γ ` −→V :
−→
A

· ` ε : ε

Γ1 `V : A Γ2 `
−→
V :
−→
A

Γ1,Γ2 `V ·−→V : A ·−→A

Con�guration Typing Γ;∆ `φ C

T-Nu

Γ;∆,a : S] `φ C

Γ;∆ `φ (νa)C

T-Mix

Γ1;∆1 `φ1 C Γ2;∆2 `φ2 D

Γ1,Γ2;∆1,∆2 `φ1+φ2 C ‖D

T-Connect1

Γ1,a : S;∆1 `φ1 C Γ2;∆2,a : S `φ2 D

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖D

T-Connect2

Γ1;∆1,a : S `φ1 C Γ2,a : S;∆2 `φ2 D

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖D

T-Main

Γ `M : A

Γ; · `• •M

T-Child

Γ `M : 1

Γ; · `◦ ◦M

T-Halt

·; · `• halt

T-Zap

a : S; · `◦  a

T-Buffer

S/
−→
A = S′/

−→
B

Γ1 `
−→
V :
−→
A Γ2 `

−→
W :
−→
B

Γ1,Γ2;a : S,b : S′ `◦ a(
−→
V )!b(

−→
W )

Flag Combination φ1 +φ2 = φ3

•+◦= • ◦+•= • ◦+◦= ◦ •+• unde�ned

Session Type Reduction S−→ S′

?A.S−→ S !A.S−→ S

Environment Reduction Γ;∆−→ Γ′;∆′

S−→ S′

Γ,a : S;∆−→ Γ,a : S′;∆

S−→ S′

Γ;∆,a : S−→ Γ;∆,a : S′
S−→ S′

Γ;∆,a : S] −→ Γ;∆,a : S′]

Figure 9.6: Runtime Typing
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thread as a subcon�guration. We write Γ;∆ `• C : A whenever the derivation of Γ;∆ `• C
contains a subderivation of the form

Γ
′ `M : A

Γ
′; . `• •M

or

·; · `• halt

As before, it is helpful to de�ne a ground con�guration for EGV.

De�nition 15 (Ground Con�guration). We say that a con�guration C is a ground con�guration

if there exists A such that ·; · `• C : A and A contains no session types or function types.

The T-Nu rule introduces a channel name; T-Connect1 and T-Connect2 connect two con�gu-

rations over a channel; T-Mix composes two con�gurations that share no channels. The latter

three rules use the + operator to combine the �ags from subcon�gurations. The T-Main and

T-Child rules introduce main and child threads. Child threads always return the unit value.

The T-Halt rule types the halt con�guration, which signi�es that an unhandled exception

has occurred in the main thread. The T-Zap rule types a zapper thread, given a single name in

the type environment. The T-Buffer rule ensures that bu�ers contain values corresponding

to the session types of their endpoints. This is the only rule that consumes names from the

runtime environment.

Bu�ers rely on two auxiliary judgements. The queue typing judgement Γ ` −→V :
−→
A states

that under type environment Γ, the sequence of values

−→
V have types

−→
A . The session slicing

operator S/
−→
A captures reasoning about session types discounting values contained in the

bu�er. The session types of two bu�er endpoints are compatible if they are dual up to values

contained in the bu�er. The partiality of the slicing operator ensures that at least one queue in

a bu�er is always empty.

Why T-Mix? A key concept in EGV is that cancel severs a communication topology. For

the sake of argument, consider SGV (with split ends) extended with cancel and zapper threads.

Next, consider the following con�guration where the main thread cancels name a.

(νa)(νb)(◦a ‖ ◦b ‖ •(cancel a;wait b))

We can visualise this (simple) communication topology as a tree:

•cancel a;wait b

◦a ◦b
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We can also show a typing derivation without the use of T-Mix. Let D be the following

derivation:

T-Cancel

T-Name

a : End? ` a : End?

a : End? ` cancel a : 1

b : End? ` b : End?

T-Name

b : End? `wait b : 1
T-Wait

a : End?,b : End? ` cancel a;wait b : 1
T-LetUnit

a : End?,b : End? `• •(cancel a;wait b)
T-Main

Composing, we can show the typing derivation for the entire con�guration:

T-Thread

T-Name

a : End! ` a : End!

a : End! `◦ ◦a

T-Thread

T-Name

b : End! ` b : End!

b : End! `◦ ◦b D

a : End?,b : End]
! `
• ◦b ‖ •(cancel a;wait b)

T-Connect1

a : End]
! ,b : End]

! `
• ◦a ‖ ◦b ‖ •(cancel a;wait b)

T-Connect1

a : End]
! `
• (νb)(◦a ‖ ◦b ‖ •(cancel a;wait b))

T-Nu

· `• (νa)(νb)(◦a ‖ ◦b ‖ •(cancel a;wait b))
T-Nu

Now, consider the con�guration after a single reduction step (modulo equivalence):

(νa)(νb)(◦a ‖ ◦b ‖ •(cancel a;wait b))

=⇒
(νa)(νb)(◦a ‖ ◦b ‖  a ‖ •(();wait b))

Notice now that the communication topology has been severed: we have two con�gurations

which are connected without a channel between them.

 a

◦a

•();wait b

◦b

We require T-Mix to type this con�guration, since the threads  a and •(();wait b) are inde-

pendent. Let us consider the subderivation proving a : End?,b : End?; · `•  a ‖ •(();wait b).

T-Zap

a : End? `◦  a

T-Unit

· ` () : 1

b : End? ` b : End?

T-Name

b : End? `wait b : 1
T-Wait

b : End? ` (();wait b) : 1
T-LetUnit

b : End? `• •(();wait b)
T-Main

a : End?,b : End? `•  a ‖ •(();wait b)
T-Mix
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Furthermore, we might envisage a construct which spawns a process without creating a

channel:

T-Spawn

Γ `M : 1

Γ ` spawn M : 1

with the associated reduction rule

E-Spawn F [spawn M]−→F [()] ‖ ◦M

Since cancel allows a channel to be discarded, it is possible to encode spawn in EGV:

spawn M , let s = fork(λx.cancel x;M) in

cancel s

Since cancel is asynchronous, both threads may evaluate in parallel.

Our decision to include Mix and a self-dual End type is not without precedent: both Caires

and Pérez [26] and Mostrous and Vasconcelos [147] consider exceptional behaviour, and in

spite of being logically-inspired, deadlock-free calculi, both choose to have a self-dual End.

Furthermore, Caires and Pérez [26] have an explicit Mix rule, and Mostrous and Vasconcelos

[147] show that the Mix rule may be derived as they treat endpoints of type End as a�ne.

We may now explore the properties that EGV enjoys.

9.3.2 Preservation

The lemmas for manipulating term and con�guration contexts are identical to those for AGV,

and as before, are all established by induction on the structure of the evaluation contexts.

Lemma 57 (Typeability of subterms). If D is a derivation of Γ1,Γ2 ` E[M] : A, then there exists

some B such that D has a subderivation D′ that concludes Γ2 `M : B, and the position of D′ in D

corresponds to the position of the hole in E .

Lemma 58 (Replacement (evaluation contexts)). If:

• D is a derivation of Γ1,Γ2 ` E[M] : A

• D′ is a subderivation of D concluding Γ2 `M : B

• The position of D′ in D corresponds to that of the hole in E

• Γ3 ` N : B

• Γ1,Γ3 is de�ned

then Γ1,Γ3 ` E[N] : A.
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Lemma 59 (Typeability of subcon�gurations). If D is a derivation of Γ;∆ `φ G [C ], then there

exist Γ′,∆′,φ′ such that D has a subderivation D′ that concludes Γ′;∆′ `φ′ C , and the position of

D′ in D corresponds to the position of the hole in G .

Lemma 60 (Replacement (con�gurations)). If:

• D is a derivation of Γ;∆ `φ G [C ]

• D′ is a subderivation of D concluding that Γ′;∆′ `φ′ C for some Γ′,∆′,φ′

• Γ′′;∆′′ `φ′ C ′ for some Γ′′,∆′′ such that Γ′;∆′ −→? Γ′′;∆′′

• The position of D in D′ corresponds to that of the hole in G

then there exist some Γ′′′,∆′′′ such that Γ′′′;∆′′′ `φ G [C ′] and Γ;∆−→? Γ′′′;∆′′′.

Preservation for the functional fragment of EGV is standard.

Lemma 61 (Preservation (Terms)). If Γ `M : A and M −→M M′, then Γ `M′ : A.

Again, we write Ψ for the restriction of type environments Γ to contain runtime names but no

variables:

Ψ ::= · |Ψ,a : S

Unlike in SGV and AGV, preservation of typing by con�guration reduction holds only for

closed con�gurations. This is because our semantics safely discards names, but does not

account for discarding arbitrary linear variables. One could imagine generalising the theorem

by introducing a mechanism for discarding arbitrary linear variables using destructors such as

in C++ or Rust, but this is out of scope for EGV.

Theorem 31 (Preservation). If Ψ;∆ `φ C and C −→ C ′, then there exist Ψ′,∆′ such that

Ψ;∆−→? Ψ′;∆′ and Ψ′;∆′ `φ C ′.

Proof. By induction on the derivation of C −→ C ′, making use of Lemmas 57–60, and lemmas

for subcon�guration typeability and replacement. Most interesting are T-Zap and T-Raise,

which we prove here. The full proof can be found in Appendix D.

Case E-Zap

 a ‖ a(U ·−→V )!b(
−→
W )−→  a ‖  c1 ‖ · · · ‖  cn ‖ a(

−→
V )!b(

−→
W )

where fn(U) = {ci}i.
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Assumption:

a : S; · `◦  a

S/
−→
A = T/

−→
B Γ1,Γ2 `U ·−→V :

−→
A Γ3 `

−→
W :
−→
B

Γ1,Γ2,Γ3;a : S,b : T `◦ a(U ·−→V )!b(
−→
W )

Γ1,Γ2,Γ3;a : S],b : T `◦  a ‖ a(U ·−→V )!b(
−→
W )

By the de�nition of slicing, we have that there exist some A and S′ such that S = !A.S′. Thus,

we may re�ne our judgement:

a : ?A.S′; · `◦  a

!A.S′/A ·
−→
A′ = T/

−→
B Γ1,Γ2 `U ·−→V : A ·

−→
A′ Γ3 `

−→
W :
−→
B

Γ1,Γ2,Γ3;a : !A.S′,b : T `◦ a(U ·−→V )!b(
−→
W )

Γ1,Γ2,Γ3;a : S],b : T `◦  a ‖ a(U ·−→V )!b(
−→
W )

By the de�nition of bu�er typing, we have that Γ1 `U : A. By the de�nition of the reduction

rule, fn(U) = {ci}i, and by assumption, Γ1 contains only runtime names. Thus, we may

conclude that U is closed and therefore that Γ1 = c1 : S1, . . .cn : Sn for some session types

S1, . . .Sn.

By the de�nition of slicing, we have that !A.S′/A ·
−→
A′ ⇐⇒ S′/

−→
A′ . Correspondingly, by

T-Buffer, we may show

S′/
−→
A′ = T/

−→
B Γ2 `

−→
V :
−→
A′ Γ3 `

−→
W :
−→
B

Γ2,Γ3;a : S′,b : T `◦ a(
−→
V )!b(

−→
W )

By repeated applications of T-Zap and T-Mix, we have that

Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : S′,b : T `◦  c1 ‖ · · · ‖  cn ‖ a(
−→
V )!b(

−→
W )

Recomposing:

a : S′; · `◦  a

c1 : S1; · `◦  c1

cn : Sn; · `◦  cn

S′/
−→
A′ = T/

−→
B Γ2 `

−→
V :
−→
A′ Γ3 `

−→
W :
−→
B

Γ2,Γ3;a : S′,b : T `◦ a(
−→
V )!b(

−→
W )

.

.

.

Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : S′,b : T `◦  c1 ‖ . . . ‖  cn ‖ a(
−→
V )!b(

−→
W )

Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : S′],b : T `◦  a ‖  c1 ‖ . . . ‖  cn ‖ a(
−→
V )!b(

−→
W )

Finally, we must show environment reduction:

?A.S′ −→ S′

Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : (?A.S′)],b : T −→ Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : S′],b : T

as required.

Case E-Raise
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•E[try P[raise]as x in M otherwise N]−→ E[N] ‖  c1 ‖ · · · ‖  cn

where fn(P) = {ci}i.

Assumption:

Γ ` E[try P[raise]as x in M otherwise N] : A′

Γ; · `• •E[try P[raise]as x in M otherwise N]

By Lemma 57, there exist Γ1,Γ2,A,B,C such that Γ = Γ1,Γ2,Γ3 and

Γ2 ` P[raise] : A Γ3,x : B `M : C Γ3 ` N : C

Γ2,Γ3 ` try P[raise]as x in M otherwise N : C

Since Γ contains only runtime names and fn(P) = {ci}i, we know that Γ2 = c1 : S1, . . . ,cn : Sn

for some {Si}i.

By Lemma 58, we have that:

Γ1,Γ3 ` E[N] : A′

By repeated applications of T-Zap and T-Mix, we have that Γ2 `  c1 ‖ · · · ‖  cn.

Therefore, recomposing:

Γ1,Γ3 ` E[N] : C

Γ1,Γ3; · `• •E[N]

c1 : S1; · `◦  c1

cn−1 : Sn−1; · `◦  cn−1 cn : Sn; · `◦  cn

.

.

.

c1 : S1, . . . ,cn : Sn; · `◦  c1 ‖ · · · ‖  cn

Γ1,Γ3,c1 : S1, . . . ,cn : Sn; · `• •E[N] ‖  c1 ‖ · · · ‖  cn

as required.

Equivalence does not preserve typeability of con�gurations. Nonetheless, no reductions depend

on the ill-typed use of an equivalence. The properties of equivalence (i.e., that equivalence

preserves typing as long as the associativity axiom is not used, and that it is always possible

to safely re-associate con�gurations either directly or by �rst commuting two threads) are

unchanged from SGV and AGV.

Theorem 32 (Preservation Modulo Equivalence). If Ψ;∆ `φ C , C ≡D , and D −→D ′, then:

1. There exists some E ≡D and some E ′ such that Ψ;∆ `φ E and E −→ E ′

2. There exist Ψ′,∆′ such that Ψ;∆−→? Ψ′;∆′ and Ψ′;∆′ `φ E ′

3. D ′ ≡ E ′

The proof of Theorem 32 is identical to that of SGV and AGV.
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9.3.3 Global Progress

To prove that EGV enjoys a strong notion of progress we identify a canonical form for con�gura-

tions. We prove that every well-typed con�guration is equivalent to a well-typed con�guration

in canonical form, and that irreducible ground con�gurations are equivalent to either a value

or halt. Due to the inclusion of zapper threads, halted threads, and T-Mix, the canonical form

and progress proofs require some additional care over the previously-de�ned results for SGV

and AGV.

The functional fragment of EGV enjoys progress.

Lemma 62 (Progress: Open Terms). If Ψ `M : A, then either:

• M is a value;

• there exists some M′ such that M −→M M′; or

• there existE,N such thatM can be writtenE[N], whereN is either raise or a communication

/ concurrency primitive of the form: forkV , sendV W , receiveV , closeV , or cancelV .

Proof. By induction on the derivation of Ψ `M : A.

To reason about progress of con�gurations, we characterise canonical forms, which now

make explicit the property that at most one name is shared between threads. Recall that A
ranges over auxiliary threads (i.e., child threads, bu�er threads, and zapper threads), and T
over top-level threads (Fig. 9.4). Let M range over con�gurations of the form:

A1 ‖ · · · ‖ Am ‖ T

De�nition 16 (Canonical Form). A con�guration C is in canonical form if there is a sequence

of names a1, . . . ,an, a sequence of con�gurations A1, . . . ,An, and a con�guration M , such that:

C = (νa1)(A1 ‖ (νa2)(A2 ‖ · · · ‖ (νan)(An ‖M ) . . .))

where ai ∈ fn(Ai) for each i ∈ 1..n.

The following lemma implies that communication topologies are always acyclic.

Lemma 63. If Γ;∆ `φ C and C = G [D ‖ E ], then fn(D)∩ fn(E) is either /0 or {a} for some a.

Proof. By induction on the derivation of Γ;∆ `φ C ; the only interesting rules are those for

parallel composition. Due to the global condition that fn(Γ)∩ fn(∆) = /0, T-Connect1 and

T-Connect2 allow exactly one name to be shared, whereas T-Mix forbids sharing of names.

All well-typed con�gurations with a main thread can be written in canonical form.
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Theorem 33 (Canonical Forms). Given C such that Γ;∆ `• C , there exists some D ≡ C such

that Γ;∆ `• D and D is in canonical form.

Proof. By induction on the count of ν-bound variables, as with SGV and EGV. The additional

features of EGV do not change the essential argument.

De�nition 17. We say that term M is ready to perform an action on name a if M is about to

send on, receive on, close, or cancel a. Formally:

ready(a,M), ∃E.(M = E[sendV a])∨ (M = E[receivea])∨ (M = E[closea])∨ (M = E[cancela])

Using the notion of a ready thread, we may classify non-reducing open con�gurations. We

de�ne a notion of open progress, this time taking into account zapper threads, halted con�gu-

rations, and the fact that child threads now have type 1.

De�nition 18 (Open Progress). Suppose Ψ;∆ `• C , where C is in canonical form and C 6=⇒.

We say that C satis�es open progress if:

1. C = (νa)(A ‖D), where Ψ = Ψ1,Ψ2 and ∆ = ∆1,∆2 such that either:

(a) Ψ1,a : S;∆1 `◦ A and Ψ2;∆2,a : S `• D where D satis�es open progress, and A is

either:

i. A thread ◦M where ready(b,M) for some b ∈ fn(Ψ1,a : S); or

ii. A zapper thread  a; or

iii. A bu�er b(
−→
V )!c(

−→
W ) where b,c 6= a and either a ∈ −→V or a ∈ −→W

(b) Ψ1;∆1,a : S `◦ A and Ψ2,a : S;∆2 `• D , where D satis�es open progress, and A is

either a(
−→
V )!b(

−→
W ) or b(

−→
V )!a(

−→
W ) for some b ∈ fn(∆1)

2. C = A ‖M , where Ψ = Ψ1,Ψ2 and either:

(a) ∆ = ∆1,∆2,a : S], where Ψ1,a : S;∆1 `◦ A and Ψ2;∆2,a : S `• M , where M satis�es

open progress, and A is either:

i. A thread ◦M where ready(b,M) for some b ∈ fn(Ψ1,a : S); or

ii. A zapper thread  a; or

iii. A bu�er b(
−→
V )!c(

−→
W ) where b,c 6= a and either a ∈ fn(

−→
V ) or a ∈ fn(

−→
W )

(b) ∆ = ∆1,∆2,a : S], where Ψ1;∆1,a : S `◦ A and Ψ2,a : S;∆2 `• M , where M satis�es

open progress, and A is either a(
−→
V )!b(

−→
W ) or b(

−→
V )!a(

−→
W ) for some b ∈ fn(∆1)

(c) ∆ = ∆1,∆2, where Ψ1;∆1 `◦ A and Ψ2;∆2 `• M , where M satis�es open progress,

and A is either:

i. A thread ◦M where either M = (), or ready(a,M) for some a ∈ fn(Ψ1); or
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ii. A zapper thread  a for some a ∈ fn(Ψ1); or

iii. A bu�er a(
−→
V )!b(

−→
W ) for some a,b ∈ fn(∆1)

3. C = T , where either:

(a) T = •N, where N is either a value or ready(b,N) for some b ∈ fn(Ψ)

(b) T = halt

All well-typed, non-reducing threads satisfy open progress.

Lemma 64. Suppose Ψ;∆ `• C , where C is in canonical form and C 6=⇒. Then C satis�es open

progress.

Proof. By induction on the derivation of Ψ;∆ `• C . The full proof can be found in Appendix D.

As an immediate corollary, we obtain a more global view of non-reducing, open con�gurations

in canonical form.

Corollary 10 (Progress: Open). Suppose Ψ;∆ `• C where C is in canonical form and C Y=⇒.

Let C = (νa1)(A1 ‖ (νa2)(A2 ‖ · · · ‖ (νan)(An ‖M )) . . .)).

1. For 1≤ i≤ n, each thread in Ai is either:

(a) a child thread ◦M for which there exists b ∈ {a j | 1 ≤ j ≤ i} ∪ fn(Ψ) such that

ready(b,M);

(b) a zapper thread  ai; or

(c) a bu�er.

2. M = A ′1 ‖ · · · ‖ A ′m ‖ T such that for 1≤ j ≤ m:

(a) A ′j is either:

i. a child thread ◦N such that N = () or ready(b,N) for some b ∈ {ai | 1 ≤ i ≤
n}∪ fn(Ψ)∪ fn(∆);

ii. a zapper thread  b for some b ∈ {ai | 1≤ i≤ n}∪ fn(Ψ)∪ fn(∆); or

iii. a bu�er.

(b) Either T = •N, where N is either a value or ready(b,N) for some b ∈ {ai | 1≤ i≤
n}∪ fn(Ψ)∪ fn(∆); or T = halt.

Corollary 10 tells us that open reduction cannot “go wrong”. By restricting attention to closed

environments, we immediately obtain a tighter progress property.
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Corollary 11 (Progress: Closed). Suppose ·; · `• C where C is in canonical form and C Y=⇒.

Let C = (νa1)(A1 ‖ (νa2)(A2 ‖ · · · ‖ (νan)(An ‖M ) . . .)). Then:

1. For 1≤ i≤ n, every thread in Ai is either:

(a) a child thread ◦M for some M such that ready(ai,M); or

(b) a zapper thread  ai; or

(c) a bu�er.

2. M ≡ T where either T = •W for some value W , or T = halt.

The above progress results do not speci�cally mention deadlock. However, Lemma 63 ensures

deadlock-freedom. Nevertheless, communication can still be blocked if an endpoint appears in

the value returned by the main thread. A conservative way of disallowing endpoints in the

result is to insist that the return type of the program be free of session types and function

types (closures may capture endpoints). All con�gurations of such a program are ground

con�gurations.

Theorem 34 (Global Progress). Let C be a ground con�guration such that C Y=⇒. Then either

C ≡ •V , for some V , or C ≡ halt.

Proof. As C is ground and irreducible, by Lemma 63, we have that no thread can be ready to

perform an action, and thus each Ai in Corollary 11 must be either ◦(), a zapper thread, or an

empty bu�er. The result follows by the garbage collection congruences of Fig. 9.5, which clean

up fully-reduced child threads and cancelled bu�ers and name restrictions.

9.3.4 Con�uence

Like SGV and AGV, EGV enjoys the diamond property.

Theorem 35 (Diamond Property). If Ψ;∆ `φ C , and C =⇒ D1, and C =⇒ D2, then either

D1 ≡D2, or there exists some D3 such that D2 =⇒D3 and D2 =⇒D3.

Proof. Like SGV and AGV, term reduction is deterministic, and reduction on di�erent channels

may be performed in any order.

In addition to the critical pair introduced in AGV, a second critical pair arises when sending

to a bu�er where the peer endpoint has a non-empty bu�er and has been cancelled. There is a

choice as to whether the value at the head of the queue is cancelled before or after the send

takes place. Again, both cases reduce to the same con�guration after a single further step.

F [sendU a] ‖  b ‖ a(
−→
V )!b(V ·−→W )

F [a] ‖  b ‖ a(
−→
V )!b(V ·−→W ·U) F [sendU a] ‖  b ‖  V ‖ a(

−→
V )!b(

−→
W )

F [a] ‖  b ‖  V ‖ a(
−→
V )!b(

−→
W ·U)
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Remark. The system becomes non-con�uent if we choose to raise an exception when sending to a

cancelled bu�er. If instead of the current semantics, we were to replace E-Send with the following

two rules:

(νb)(F [sendU a] ‖ a(
−→
V )!b(

−→
W ) ‖ φM)−→ (νb)(F [a] ‖ a(

−→
V )!b(

−→
W ·U) ‖ φM)

F [sendU a] ‖  b ‖ a(
−→
V )!b(

−→
W )−→ F [raise] ‖  b ‖  U ‖ a(

−→
V )!b(

−→
W )

Then, sending and cancelling peer endpoints of a bu�er results in a non-convergent critical pair:

(νb)(F [sendU a] ‖ F ′[cancelb] ‖ a(
−→
V )!b(

−→
W ))

(νb)(F [a] ‖ F ′[cancelb] ‖ a(
−→
V )!b(

−→
W ·U)) (νb)(F [sendU a] ‖ F ′[()] ‖  b ‖ a(

−→
V )!b(

−→
W ))

(νb)(F [a] ‖ F ′[()] ‖  b ‖ a(
−→
V )!b(

−→
W ·U)) (νb)(F [raise] ‖ F ′[()] ‖  b ‖  U ‖ a(

−→
V )!b(

−→
W ))

In either case, the endpoints contained in U will still eventually be cancelled, thus preservation

and global progress still hold. However, the lack of con�uence a�ects exactly when the exception

is raised in context F . This decision has practical signi�cance, in that it characterises the race

between sending a message and propagating a cancellation noti�cation.

9.3.5 Termination

As EGV is linear, it has an elementary strong normalisation proof.

Theorem 36 (Strong Normalisation). If Ψ;∆ `φ C , then there are no in�nite =⇒ reduction

sequences from C .

Proof. Let the size of a con�guration be the sum of the sizes of the abstract syntax trees of all

of the terms contained in its main threads, child threads, and bu�ers, modulo exhaustively

applying the garbage collection equivalence rules from left-to-right. The size of a con�guration

is invariant under ≡ and strictly decreases under −→, hence =⇒ reduction must always

terminate.

9.4 Extensions

9.4.1 User-de�ned Exceptions with Payloads

In order to focus on the interplay between exceptions and session types we have thus far

considered handling a single kind of exception. In practice it can be useful to distinguish

between multiple kinds of user-de�ned exception, each of which may carry a payload.

Consider again handling the exception in checkDetails. An exception may be raised if the

database is corrupt, or if there are too many connections. We might like to handle each case
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Syntax

Types A,B ::= · · · | Exn

Terms L,M,N ::= · · · | X(M) | raise M | try L as x in M unless H

Exception Handlers H ::= {Xi(xi) 7→ Ni}i

Runtime Syntax

Evaluation Contexts E ::= · · · | raise E | try E as x in M unless H

Term typing Γ `M :A

TP-Exn

Σ(X) = A Γ `M :A

Γ ` X(M) :Exn

TP-Raise

Γ `M :Exn

Γ ` raise M :A

TP-Try

Γ1 ` L :A

Γ2,x :A `M :B (Γ2,yi : Σ(Xi) ` Ni :B)i

Γ1,Γ2 ` try L as x in M unless{Xi(yi) 7→ Ni}i :B

Term and Con�guration Reduction M −→M N C −→D

EP-Val tryV as x in M unless H −→M M{V/x}
EP-Raise F [try E[raise X(V )]as x in M unless H] −→ F [N{V/y}] ‖  E

where X 6∈ handled(E)

(X(y) 7→ N) ∈ H

EP-RaiseChild ◦E[raise X(V )] −→  E ‖  V

where X 6∈ handled(E)

EP-RaiseMain •E[raise X(V )] −→ halt ‖  E ‖  V

where X 6∈ handled(E)

Figure 9.7: User-de�ned Exceptions with Payloads

separately:

exnServer4(s),

let ((username,password),s) = receive s in

try checkDetails(username,password)as res in

if res then let s = select Authenticated s in serverBody(s)

else let s = select AccessDenied s in close s

unless

DBCorrupt(y) 7→ cancel s; log("Database Corrupt: " + y)

TooManyConnections(y) 7→ cancel s; log("Too many connections: " + y)

An exception in checkDetails might be raised by the term raise DatabaseCorrupt(�lename),

for example. Our approach generalises straightforwardly to handle this example.
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Syntax. Figure 9.7 shows extensions to EGV for exceptions with payloads. We introduce

a type of exceptions, Exn. We let X range over a countably in�nite set E of exception

names, and assume a type schema function Σ(X) = A mapping exception names to pay-

load types. We extend raise to take a term of type Exn as its argument. Finally, we generalise

try L as x in M otherwise N to try L as x in M unless H , where H is an exception handler with

clauses {Xi(yi) 7→ Ni}i, such that Xi is an exception name; yi binds the payload; and Ni is the

clause to be evaluated when the exception is raised.

Typing Rules. The TP-Exn rule ensures that an exception’s payload matches its expected

type. The TP-Raise and TP-Try rules are the natural extensions of T-Raise and T-Try.

Semantics. Our presentation is similar to operational accounts of e�ect handlers; the for-

mulation here is inspired by that of Hillerström et al. [91]. To de�ne the semantics of the

generalised exception handling construct, we �rst introduce the auxiliary function handled(E),
which de�nes the exceptions handled in a given evaluation context:

handled(P) = /0 handled(try E as x in M unless H) = handled(E)∪dom(H)

handled(E) = handled(E ′), if E is not a try and E ′ is the immediate subcontext of E

The EP-Raise rule handles an exception. The side conditions ensure that the exception is

caught by the nearest matching handler and is handled by the appropriate clause. As with

plain EGV, all free names are safely discarded. The EP-RaiseChild and EP-RaiseMain rules

cover the cases where an exception is unhandled. Due to the use of the handled function we

no longer require pure contexts. All of EGV’s metatheoretic properties (preservation, global

progress, con�uence, and termination) adapt straightforwardly to this extension.

9.4.2 Unrestricted Types and Access Points

Unrestricted (intuitionistic) types allow some values to be used in a non-linear fashion. Access

points [77] provide a more �exible method of session initiation than fork, allowing two

threads to dynamically establish a session. Both features are useful in practice: unrestricted

types because some data is naturally multi-use, and access points because they admit cyclic

communication topologies supporting racey stateful servers such as chat servers. Access points

decouple spawning a thread from establishing a session. An access point has the unrestricted

type AP(S); we write un(A) to mean that A is unrestricted and un(Γ) if un(Ai) for all xi : Ai ∈ Γ.

Figure 9.8 shows the syntax, typing rules, and reduction rules for EGV extended with access

points.

Unrestricted Types. To support unrestricted types, we use a standard splitting judgement

(Γ=Γ1+Γ2), which allows variables of unrestricted type to be shared across sub-environments,

but requires linear variables to be used only in a single sub-environment. We relax rule T-Var
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Syntax

Types A ::= · · · | AP(S)

Access Point Names z

Terms M ::= · · · | z | spawn M | newS | request M | accept M

Con�gurations C ::= · · · | (νz)C | z(X ,Y )

Runtime typing environments ∆ ::= · · · | ∆,z : S

Evaluation contexts E ::= · · · | request E | accept E

Pure contexts P ::= · · · | request P | accept P

Splitting Γ = Γ1 +Γ2

·= ·+ ·

un(A)

Γ,x : A = (Γ1,x : A)+(Γ2,x : A)

Γ = Γ1 +Γ2

Γ,x : A = (Γ1,x : A)+Γ2

Γ = Γ1 +Γ2

Γ,x : A = Γ1 +(Γ2,x : A)

Typing Γ `M : A

T-Var

x : A ∈ Γ un(Γ)

Γ ` x : A

T-App

Γ = Γ1 +Γ2 Γ1 `M : A ( B Γ2 ` N : A

Γ `M N : B
...

TA-Spawn

Γ `M : 1

Γ ` spawn M : 1

TA-New

Γ ` newS : AP(S)

TA-Reqest

Γ `M : AP(S)

Γ ` request M : S

TA-Accept

Γ `M : AP(S)

Γ ` accept M : S

Reduction C −→D

E-Spawn F [spawn M] −→ F [()] ‖ ◦M
E-New F [newS] −→ (νz)(F [z] ‖ z(ε,ε)) z is fresh

E-Accept F [accept z] ‖ z(X ,Y ) −→ (νa)(F [a] ‖ z({a}∪X ,Y )) a is fresh

E-Reqest F [request z] ‖ z(X ,Y ) −→ (νa)(F [a] ‖ z(X ,{a}∪Y )) a is fresh

E-Match z({a}∪X ,{b}∪Y ) −→ z(X ,Y ) ‖ a(ε)!b(ε)

Con�guration Typing Γ;∆ `φ C

TA-ApName

Γ,z : AP(S);∆,z : S `φ C

Γ;∆ `φ (νz)C

TA-Ap

un(Γ)

Γ,z : AP(S);X : S,Y : S,z : S `◦ z(X ,Y )

TA-ConnectN

Γ = Γ1 +Γ2 Γ1,
−−→
a : S;∆1,

−−→
b : T `φ1 C Γ2,

−−→
b : T ;∆2,

−−→
a : S `φ2 D

Γ;∆1,∆2,
−−→
a : S],

−−−→
b : T ] `φ1+φ2 C ‖D

Figure 9.8: Access Points
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to allow the use of unrestricted environments, and adapt all rules containing multiple subterms

to use the splitting judgement; we detail T-App in the �gure; the adaptations of other rules are

similar. While unrestricted types are useful in general, we show the speci�c case of unrestricted

access points.

Access points. The spawn M construct spawns M as a new thread, newS creates a fresh

access point, and request M and accept M generate fresh endpoints that are matched up

nondeterministically to form channels. With access points we can macro-express fork:

forkM , letap= newS in spawn (M (acceptap)); requestap

Reduction rules. We let z range over access point names. Con�guration (νz)C denotes

binding access point name z in C , and z(X ,Y ) is an access point with name z and two sets X
and Y containing endpoints to be matched.

Rule E-Spawn creates a new child thread but, unlike fork, returns the unit value instead

of creating a channel and returning an endpoint. Rule E-New creates a new access point

with fresh name z. Rules E-Accept and E-Reqest create a fresh name a, returning the

newly-created name to the thread, and adding the name to sets X and Y respectively. Rule

E-Match matches two endpoints a and b contained in X and Y , and creates an empty bu�er

a(ε)!b(ε).

Con�guration typing. Con�guration typing judgements again have the shape Γ;∆ `φ C .

Whereas Γ may contain unrestricted variables, ∆ remains entirely linear.

Read bottom-up, rule TA-ApName adds an unrestricted reference z : AP(S) to Γ, and a

linear entry z : S to ∆. Rule TA-Ap types an access point con�guration. We write X : S for

a1 : S, . . . ,an : S, where X = {a1, . . . ,an}. For an access point z(X ,Y ) to be well-typed, ∆ must

contain z : S, along with the names in X having type S and the names in Y having type S.

Rule T-ConnectN generalises T-Connect1 and T-Connect2 to allow any number of channels

to communicate across a con�guration; this therefore introduces the possibility of deadlock.

Interaction with cancellation. We need no additional reduction rules to account for in-

teraction between access points and channel cancellation. Should an endpoint waiting to be

matched be cancelled, it is paired as usual, and interaction with its associated bu�er raises an

exception:

 a ‖ F [receive b] ‖ z({a},{b}) =⇒  a ‖ F [receive b] ‖ z(ε,ε) ‖ a(ε)!b(ε)

=⇒  a ‖ F [raise] ‖  b ‖ z(ε,ε) ‖ a(ε)!b(ε)
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We might replace E-Match with the following three rules.

(νa)(νb)(φ1M ‖ φ2N ‖ z({a}∪X ,{b}∪Y ))−→ (νa)(νb)(φ1M ‖ φ2N ‖ z(X ,Y ) ‖ a(ε)!b(ε))

(νa)( a ‖ z({a}∪X ,Z)−→ z(X ,Y )

(νa)( a ‖ z(X ,{a}∪Z)−→ z(X ,Y )

The �rst matches only non-cancelled endpoints, whereas the second and third clean up

cancelled endpoints which are present in the access point. These rules are an optimisation and

not required to retain preservation or the weaker notion of progress that holds in the presence

of access points. These rules introduce a further non-convergent critical pair:

(νa)(νb)(F [cancel a] ‖ φM ‖ z({a}∪X ,{b}∪Y ))

(νa)(νb)(F [()] ‖  a ‖ φM ‖ z({a}∪X ,{b}∪Y ) (νa)(νb)(F [cancel a] ‖ φM ‖ a(X ,Y ) ‖ a(ε)!b(ε))

(νb)(F [()] ‖ φM ‖ z(X ,{b}∪Y )) (νa)(νb)(F [()] ‖  a ‖ φM ‖ z(X ,Y ) ‖ a(ε)!b(ε))

Metatheory. By decoupling process and channel creation we lose the guarantee that the

communication topology is acyclic, and therefore introduce the possibility of deadlock. Preser-

vation continues to hold—in fact, we gain a stronger preservation result since the use of

TA-ConnectN allows typeability to be preserved by equivalence.

Theorem 37 (Preservation Modulo Equivalence (EGV with Access Points)).

If Ψ;∆ `φ C and C =⇒D , then there exist Ψ′,∆′ such that Ψ;∆−→Ψ′;∆′ and Ψ′;∆′ `φ D .

Proof. By induction on the derivation of C −→D and preservation by≡; see Appendix D.

Alas, the introduction of cyclic topologies and therefore the loss of deadlock-freedom nec-

essarily violates global progress. Nevertheless, a weaker form of progress still holds: if a

con�guration does not reduce, then it is due to deadlock rather than cancellation.

Let us extend the de�nition of Ψ to take into account references to access points:

Ψ ::= · | Ψ,a : S | Ψ,z : AP(S)

We �rst extend the term progress lemma to take into account the additional communication

and concurrency constructs:

Lemma 65 (Progress: Terms (EGV with Access Points)). If Ψ `M : A, then either:

• M is a value;

• there exists some N such that M −→M N; or

• there exist E,N such that M can be written E[N], where N is either raise or a session

typing primitive of the form: sendV W , receiveV , closeV , cancelV , spawnM, newS,

requestV , or acceptV .
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Next, we must classify terms which are waiting to perform an action on an access point.

De�nition 19. We say that a thread is waiting to perform an action on an access point z if M

is about to request or accept on z. Formally:

waiting(M,z), ∃E.(M = E[request z])∨ (M = E[accept z])

We may now classify the nature of non-reducing con�gurations in the presence of access

points. Due to the possibility of deadlock, the result is necessarily weaker.

Lemma 66 (Open Progress (Access Points)). Suppose Ψ;∆ `φ C and C 6=⇒. Each thread in C
is either:

1. a bu�er

2. a zapper thread

3. an access point

4. a thread φM such that either M is a value V ; ready(M,a) for some channel name a, or

waiting(M,z) for some access point name z

Proof. By induction on the derivation of Ψ;∆ `φ C , Lemma 65, and inspection of the reduction

rules. Note that spawn M and newS, like forkM, may always reduce.

As a corollary, we have that the threads in non-reducing con�gurations are either values,

bu�ers, zapper threads, access points, ready on a name a; or waiting on an access point z.

Additionally, if a thread is ready to perform an action on some name a, then the con�guration

does not contain any zapper thread  a.

Corollary 12 (Closed Progress (Access Points)). Suppose ·; · `φ C and C 6=⇒. Then each thread

in C is either a value; a bu�er; a zapper thread; an access point; ready to perform a communication

action on some name a; or waiting on an access point z.

If C contains a thread φM and ready(a,M) for some name a, then C contains some bu�er

a(ε)!b(
−→
W ), and C does not contain a zapper thread  b.

In the presence of access points con�uence and termination no longer hold: access points

are nondeterministic and can encode higher-order state and hence �xpoints via Landin’s

knot [135].
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Syntax

S ::= · · · | µt.S | t | t
M ::= rec f (x) .M

Equirecursive Session Type Unrolling S = S′

µt.S = S{µt.S/t}

Typing Rules Γ `M : A

T-Rec

Γ, f : A ( B,x : A `M : B

Γ ` rec f (x) .M : A ( B

Duality S

µt.S = µt.S{t/t} t = t

Reduction Rule M −→M N

(rec f (x) .M)V −→ M{rec f (x) .M/ f ,V/x}

Figure 9.9: Recursive Session Types

9.4.3 Recursive Session Types

Thus far, we have only considered �nite, terminating protocols. In this section, we show how

recursive types may be integrated into the system.

We may want, for example, to extend our two-factor authentication session to allow the

user to retry after failing to log in, instead of terminating the session.

We can write the recursive two factor authentication server session type as follows:

RecursiveTwoFactorServer , µt.

?(Username,Password).⊕{
Authenticated : ServerBody,

Challenge : !ChallengeKey.?Response.

⊕{Authenticated : ServerBody,

AccessDenied : t},
AccessDenied : t

�it : End}

Here, µt binds a recursive type variable t such that it can be used in the remainder of the

session type. We replace End with t to allow the protocol to repeat, and add a �it branch to
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allow the server to terminate the session.

Now, let us see the updated server implementation:

recursiveTwoFactorServer : RecursiveTwoFactorServer ( 1

recursiveTwoFactorServer , rec f (s) .

let ((username,password),s) = receive s in

if checkDetails(username,password) then

let s = select Authenticated s in serverBody(s)

else

let s = select AccessDenied s in f s

We choose not to use the �it branch, although one could imagine it being selected after the

number of login attempts exceeds a given number, in the presence of unrestricted integers.

The rec f (x) .M construct, like with the extended versions of λch and λact, introduces an

anonymous recursive function where f may be used in the body of the function. The recursive

function takes the session channel endpoint as its argument.

We introduce three additional session type constructs: recursive type variables t , dual

recursive type variables t , and recursive type binders µt.S which bind a recursive type variable

t in session type S. We take an equi-recursive view of session types, identifying each session

type with its unfolding.

Duality in the presence of recursive types has posed problems in the past [19, 52]. We

choose to use the view of recursive session types advocated by Lindley and Morris [133], which

stems from the initial algebra semantics of recursion, where recursive type variables may be

dualised.

With recursive anonymous functions, it becomes possible to write non-terminating pro-

grams. The remaining properties of EGV continue to hold.

9.5 Related Work

Carbone et al. [29] provide the �rst formal basis for exceptions in a session-typed process

calculus. Our approach provides signi�cant simpli�cations: zapper threads provide a simpler

semantics and remove the need for their queue levels, meta-reduction relation, and liveness

protocol.

Their calculus includes a service, which has two associated processes: a default process,

and an exception handling process, as well as a throw construct. Their calculus, like ours,

allows an arbitrary nesting of exception handlers, and is asynchronous. A di�erence is

that try-catch blocks manifest themselves in the session type, whereas we take the di�erent

view of writing protocols with the assumption that failure is either explicitly encoded in the

session via branching and selection, or implementation-dependent and therefore handled
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using cancellation. Instead, in our setting, the failed session can be cancelled and a session can

be re-established using an access point.

Whereas Carbone et al. use a �rst-order process calculus, EGV is based on a linear λ-

calculus and therefore works in the presence of closures. Additionally, our adoption of channel

cancellation processes simpli�es the semantics, removing the need for queue levels, and an

explicit meta-reduction relation. Due to GV’s roots in linear logic, we have a direct method for

proving progress, therefore eliminating the need for a liveness protocol. Capecchi et al. [28]

extend the work of Carbone et al. [29] to the multiparty setting.

Our work draws on that of Mostrous and Vasconcelos [147], who introduce the idea of

explicit cancellation. Our work di�ers from theirs in several key ways. Their system is a

process calculus; ours is a λ-calculus. Their channels are synchronous; ours are asynchronous.

Their exception handling construct scopes over a single action; ours scopes over an arbitrary

computation.

Caires and Pérez [26] describe a core, logically-inspired process calculus supporting non-

determinism and abortable behaviours encoded via a nondeterminism modality. Processes

may either provide or not provide a prescribed behaviour; if a process attempts to consume a

behaviour that is not provided, then its linear continuation is safely discarded by propagating

the failure of sessions contained within the continuation. Their approach is similar in spirit to

our zapper threads. Additionally, they give a core λ-calculus with abortable behaviours and

exception handling, and de�ne a type-preserving translation into their core process calculus.

Our approach di�ers in several important ways. First, our semantics is asynchronous,

handling the intricacies involved with cancelling values contained in message queues. Second,

we give a direct semantics to EGV, whereas Caires and Pérez rely on a translation into their

underlying process calculus. Third, to handle the possibility of disconnection, our calculus

allows any endpoint to be discarded (including the ability to handle uncaught exceptions),

whereas the authors opt for an approach more closely resembling checked exceptions, aided

by a monadic presentation.

These works are all theoretical; backed by our theoretical development, our implementation

(Chapter 10) integrates session types and exceptions, extending Links.

Multiparty Session Types In previous work, I describe an Erlang implementation [71] of

the Multiparty Session Actor framework proposed by Neykova and Yoshida [150] with a limited

form of failure recovery; Neykova and Yoshida [151] present a more comprehensive approach,

based on re�ning existing Erlang supervision strategies. Chen et al. [36] introduce a formalism

based on multiparty session types [100] that handles partial failures by transforming programs

to detect possible failures at a set of statically determined synchronisation points. These

approaches rely on a �xed communication topology, using mechanisms such as dependency
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graphs or synchronisation points to determine which participants are a�ected when one

participant fails. For binary channels, delegation implies location transparency, thus we must

consider dynamic topologies.

In the setting of binary channels, delegation implies location transparency and thus failure

detection must be at the level of a channel as opposed to a participant. However, our treatment of

exceptions could lend itself very well to incorporating the ‘let it crash’ methodology embraced

by Erlang: an exception raised by attempting to receive on a channel where the partner

endpoint is cancelled, for example, would raise an uncaught exception and cancel all a�ected

channels, allowing the process to be restarted and the exception to propagate.

Adameit et al. [4] describe a synchronous multiparty session calculus to handle link failures

in distributed systems. They introduce optional blocks, inspired by subsessions [58]; progress

is maintained by specifying a set of default values to use should the subsession fail.

9.6 Conclusion

In this chapter, we have introduced Exceptional GV, a core linear functional language which

integrates session types, asynchronous communication, and exception handling, and we have

seen that EGV enjoys all of GV’s metatheory. Additionally, we have shown extensions such as

exception payloads, unrestricted types, access points, and recursive session types, and how

they are all orthogonal to exception handling.

In the next chapter, we describe the implementation of distributed tierless web applications

in the Links programming language, including an implementation of EGV’s exception handling

semantics.
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Implementation

10.1 Introduction

In Chapter 9, we introduced Exceptional GV, which provides the theoretical underpinnings for

a functional programming language which integrates session types and exception handling.

In this chapter, we put this theoretical framework into practice, by describing an extension of

the Links tierless web programming language with distributed session-typed communication.

In doing so, we provide the �rst application of session types to web programming, showing

that EGV may be implemented via a small translation to e�ect handlers. We illustrate the

implementation through the larger case study of a distributed, web-based chat application.

In §10.2, we give an introduction to the tierless web programming paradigm as pioneered

by Links. In §10.2.2, we give an overview of the existing design and implementation of session

types in Links. We illustrate the concrete example of two-factor authentication, and give a

high-level overview of the FST calculus [135] which underlies the integration of session types

and linearity in Links. In §10.4, we showcase the high-level points of our implementation

by describing an extended example of a distributed chat server making use of session types.

In §10.5, we describe our implementation of distributed session types in Links, and in §10.5.2

we describe our implementation strategy for exception handling in the presence of session

types. In §10.6 we discuss related work, and §10.7 concludes.

10.2 Background

10.2.1 Tierless Web Programming

Traditional web programming (as shown in Figure 10.1) involves writing client, server and

database code in di�erent languages, and manually mediating between them. Not only must a

programmer know multiple languages, but they must also be sure that the data transformations

between them are correct.

178



Chapter 10. Implementation 179

Browser
(HTML, CSS,
JavaScript)

Server
(Java, Perl, PHP,

Python Ruby)

Database
(SQL, NoSQL)

request query

response result

Figure 10.1: Tiers of Web Programming

The Links [46] programming language introduces the notion of tierless (also known as

multi-tier or cross-tier) web programming. Links is a statically-typed, ML-inspired, impure

functional language which can compile client code to JavaScript, interpret server code, and

compile database queries to SQL. Consequently, developers may write web applications in a

single, uniform language, without the need to explicitly marshal and unmarshal data. Functions

may be annotated with locations specifying whether they are located on the client or server,

and communication with the server is possible through the use of remote function calls. Links

also implements lightweight statically-typed message-passing concurrency in the style of

actor-based languages such as Erlang.

On top of basic web functionality, Links has remained an active research language, and

now supports a multitude of features such as handlers for algebraic e�ects [90, 91]; provenance

tracking [65]; and query shredding [37].

10.2.2 Session Types in Links

Before proceeding to the distributed extension of Links, we give an overview of the Links

implementation of session types as introduced and implemented by Lindley and Morris [135].

Consider again the example of the two-factor authentication server from Chapter 2.

TwoFactorServer ,

?(Username,Password).⊕{
Authenticated : ServerBody,

Challenge : !ChallengeKey.?Response.

⊕{Authenticated : ServerBody,

AccessDenied : End}
AccessDenied : End}
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twoFactorServer : TwoFactorServer ( 1

twoFactorServer(s), let ((username,password),s) = receive s in

if checkDetails(username,password) then

let s = select Authenticated s in serverBody(s)

else

let s = select AccessDenied s in close s

In Links, this example would be written as follows:

typename TwoFactorServer =

?(Username, Password).[+|

Authenticated: ServerBody,

Challenge: !ChallengeKey.?Response.

[+| Authenticated: ServerBody,

AccessDenied: End |+],

AccessDenied: End |+];

sig twoFactorServer : (TwoFactorServer) ~%~> ()

fun twoFactorServer(s) {

var ((username, password), s) = receive(s);

if (checkDetails(username, password)) {

var s = select Authenticated s;

serverBody(s);

} else {

var s = select AccessDenied s;

close(s)

}

}
Here, sig describes a type signature, in this case denoting a function taking a channel endpoint

of type TwoFactorServer and returning the unit value. The ~%~> arrow is Links syntax for a

function which may perform arbitrary e�ects, including recursion. Type aliases are introduced

by typename, and selection is denoted by [+| ... |+]. Although not appearing in the

example, o�ering a choice is denoted by [&| ... |&]. Duality is denoted by a tilde (~). The

remainder of the syntax is similar to that of EGV. An important di�erence is that channel

endpoints of type End are a�ne, so close is a dummy function de�ned as

fun close(s) {

()

}

Communication mismatch. Links catches session type violations, including linearity

violations, statically. As an example, if we were to try to send prior to receiving along the

channel:
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sig twoFactorServer : (TwoFactorServer) ~%~> ()

fun twoFactorServer(s) {

var s = send("incorrect message", s);

var ((username, password), s) = receive(s);

if (checkDetails(username, password)) {

var s = select Authenticated s;

serverBody(s);

} else {

var s = select AccessDenied s;

close(s)

}

}
we obtain the following type error:

error.links:28: Type error: The function

`send'

has type

`(String, !(String).a::Session) ~b~> a::Session'

while the arguments passed to it have types

`String'

and

`TwoFactorServer'

and the currently allowed effects are

`|wild|c'

In expression: send("incorrect message", s).

From the error, we can infer that that the session type was expected to be of the form !String.S,

whereas it is in fact of type TwoFactorServer.

Erroneously reusing endpoints. Now, let us see how Links can catch linearity violations.

The following erroneous code snippet receives along the channel endpoint s, binding the

continuation to t, which is immediately cancelled. Next, s is used again to receive along the

channel, in contravention of the session type, and the protocol is followed as before.
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sig twoFactorServer : (TwoFactorServer) ~%~> ()

fun twoFactorServer(s) {

var ((username, password), t) = receive(s);

cancel(t);

var ((username, password), s) = receive(s);

if (checkDetails(username, password)) {

var s = select Authenticated s;

serverBody(s);

} else {

var s = select AccessDenied s;

close(s)

}

}
Links statically detects the linearity violation, and reports the following error.

error.links:34: Type error: Variable s has linear type

`TwoFactorServer'

but is used 2 times.

In expression: fun twoFactorServer(s) {

var ((username, password), t) = receive(s);

cancel(t);

var ((username, password), s) = receive(s);

if (checkDetails(username, password)) {

var s = select Authenticated s;

serverBody(s);

} else {

var s = select AccessDenied s;

close(s)

}

}

Erroneously discarding session endpoints. Finally, we can show that Links ensures that

the entire protocol is followed, preventing session endpoints from being dropped prematurely.

The following code takes a session endpoint s of type TwoFactorServer as its parameter, but

ignores it and returns the unit value.

sig twoFactorServer : (TwoFactorServer) ~%~> ()

fun twoFactorServer(s) {

()

}
Links statically catches the linearity violation, reporting the following error:

error.links:34: Type error: Variable s has linear type

`TwoFactorServer'
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but is used 0 times.

In expression: fun twoFactorServer(s) {

()

}.

10.2.3 FST

Integrating session types with a realistic programming language is nontrivial. The Links imple-

mentation of session types is underpinned by a calculus, FST [135], which smoothly integrates

session types, linearity, unrestricted types, polymorphism, and row types. Session subtyping,

as originally described by Gay and Hole [76], is handled through row polymorphism [184]. In

this section, we describe the key features of FST by example. A full technical exposition can

be found in [135].

Types and Kinds. In FST, types have kinds K(Y,Z), such that:

• K is a primary kind: Type, Row, or Presence

• Y describes linearity: either linear (◦) or unrestricted (•)

• Z describes restriction: either session-typed (π) or unconstrained (?)

We will concentrate on types with kind Type, omitting the primary kind annotation.

Subkinding allows an unrestricted type to be used linearly and a session type to be used as

an unconstrained type, but not vice-versa.

Session-typed communication primitives. Let us now look at the types of session-typed

communication primitives in FST.

send : ∀α◦,?.∀β◦,π.(α× !α.β)→• β

We can deconstruct the type piece-by-piece. The send primitive is polymorphic in two type

variables, α and β: here, α is the payload type, and β is the session continuation. The type

variable α is de�ned as linear and unconstrained, but by subkinding may also be treated as

unrestricted or session-typed. In contrast, β may be either linear or unrestricted, but must be a

session type. The send function is unrestricted (→•) as we want to be able to use it more than

once, and takes a pair of a payload α and output session type !α.β, returning an endpoint of

session type β.

The receive construct is similar:

receive : ∀α◦,?.∀β◦,π.?α.β→• (α×β)
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As before, the primitive is polymorphic in α and β, where α is linear and unconstrained, and β

is linear and session-typed. This time, the primitive takes an endpoint of type ?α.β, returning

a pair of the payload of type α and the continuation endpoint of type β.

The fork construct is slightly di�erent:

fork : ∀α◦,π.∀β•,?.(α→◦ β)→• α

The fork construct is again polymorphic in type variables α and β. This time, α is a linear

session type, and β is a unrestricted, unconstrained type; the function passed to fork must be

linear as it contains a linear variable, and β must be unrestricted in order to ensure that the

linear session has been fully used. The function returns the dualised type variable α.

Type and kind system examples. The main typing judgement in FST is ∆;Γ ` M : A,

which can be read as “under kind environment ∆ and type environment Γ, M has type A”.

Let us now see some illustrative examples of the type system.

As we might expect, we can straightforwardly type values of base type.

∆;Γ ` 5 : Int

(where Γ contains no linear variables).

Next, let us see how the kinding environment can be used. Here, we type an unrestricted

const function.

α :: Type(•,?);Γ ` Λβ
•,?.λ•xα.λ•yβ.x : ∀β•,?.α→• β→• α

(again, where Γ contains no linear variables).

The kinding environment initially contains a mapping stating that type variable α has

kind Type(•,?). The term consists of a type variable binder for type variable β, ascribing it

kind Type(•,?), followed by binders for variables x and y of types α and β respectively. Note

that each λ binder is annotated with whether the function is linear or unrestricted. The whole

term thus has type ∀β•,?.α→• β→• α.

Now, let us see a term which fails to type under a given environment.

α :: Type(•,?),β :: Type(◦,?);Γ 6` .λ•xα.λ•yβ.x

Here, we have that α has kind Type(•,?), and β has kind Type(◦,?). The term is not typeable

since y has type β which is linear, but does not appear in the body of the function.

10.3 Cross-tier Communication and Concurrency

To better appreciate the challenges of cross-tier communication and concurrency, it is useful

to investigate how the design of the Links server and concurrency runtimes have evolved.
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Pre-v0.6: CGI and RPC
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The original version of Links allows cross-tier communication through the use of RPC calls.

Functions are annotated with client and server annotations; the client can call the server

by making an AJAX request, and the server can call the client by serialising its continuation

in its response to the client. The RPC mechanism used by Links is formalised by Cooper and

Wadler [47].

The server in the original version of Links is a CGI script that is invoked upon every

request. While this o�ers a degree of scalability, it does not allow persistent server processes

which can communicate with multiple clients.

The original version of Links allows actor-style message passing concurrency on the

client only, which is implemented by translating client code to continuation-passing style and

implementing a scheduler.

v0.6: Persistent Server, Server-side Concurrency, and Session Types
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Version v0.6 of Links was the �rst to include session types, and was �rst to introduce an

application server model where the web server persists as opposed to being invoked upon

every request. Additionally, v0.6 was �rst to support server-side concurrency.

Whereas both clients and the server could spawn processes and use both actor-style

messaging as well as session-typed communication channels, communication was only possible

within a concurrency runtime.
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v0.7: Distributed Communication and Concurrency
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Version v0.7 of Links introduced distributed communication and concurrency, allowing both

actor-style and session-typed communication both between a client and the server, but also

between two clients. We describe the design and implementation of distributed session-typed

concurrency in §10.5.

v0.7.2: Session Types with Exceptions

Version v0.7.2 introduced the exception handling mechanism described in Chapter 9, allowing

applications to handle the case where a user goes o�ine in the middle of a session. We describe

the implementation of the exception mechanism in Links in §10.5.2.

The changes in v0.7 and v0.7.2, namely distribution and session types with exceptions, are

the contributions described in this chapter.

10.4 Example: A Chat Application

In this section we outline the design and implementation of a web-based chat application in

Links making use of distributed session-typed channels. Informally, we write the following

speci�cation:

• To initialise, a client must:

– connect to the chat server; then

– send a nickname; then

– receive the current topic and list of nicknames.

• After initialisation the client is connected and can:

– send a chat message to the room; or

– change the room’s topic; or

– receive messages from other users; or

– receive changes of topic from other users.
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typename ChatClient = !Nickname.

[&| Join: ?(Topic, [Nickname], ClientReceive).ClientSend,

Nope:End |&];

typename ClientReceive =

[&| Join : ?Nickname .ClientReceive,

Chat : ?(Nickname, Message).ClientReceive,

NewTopic : ?Topic .ClientReceive,

Leave : ?Nickname .ClientReceive

|&];

typename ClientSend =

[+| Chat : ?Message.ClientSend,

Topic : ?Topic .ClientSend |+];

typename ChatServer = ~ChatClient;

typename WorkerSend = ~ClientReceive;

typename WorkerReceive = ~ClientSend;

Figure 10.2: Chat Application Session Types

• Clients cannot connect with a nickname that is already in use in the room.

• All participants should be noti�ed whenever a participant joins or leaves the room.

Session Types. We can encode much of the speci�cation more precisely as a session type,

as shown in Figure 10.2. The client begins by sending a nickname, and then o�ers the server

a choice of a Join message or a Nope message. In the former case, the client then receives

a triple containing the current topic, a list of existing nicknames, and an endpoint (of type

ClientReceive) for receiving further updates from the server; and may then continue to

send messages to the server as a connected client endpoint (of type ClientSend). (Observe

the essential use of session delegation.) In the latter case, communication is terminated. The

intention is that the server will respond with Nope if a client with the supplied nickname is

already in the chat room (the details of this check are part of the implementation, not part of

the communication protocol).

The ClientReceive endpoint allows the client to o�er a choice of four di�erent messages:

Join, Chat, NewTopic, or Leave. In each case the client then receives a payload (depending

on the choice, a nickname, pair of nickname and chat message, or topic change) before o�ering

another choice. The ClientSend endpoint allows the client to select between two di�erent

messages: Chat and NewTopic. In each case the client subsequently sends a payload (a chat

message or a new topic) before selecting another choice. The chat server communicates with

the client along endpoints with dual types.
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(a) Architecture

sig worker : (Nickname, WorkerReceive) ~> ()
fun worker(nick, c) {
try {
offer(c) {
case Chat(c) ->
var (msg, c) = receive(c);
chat(nick, msg);
c

case NewTopic(c) ->
var (topic, c) = receive(c);
newTopic(topic);
c

}
} as (c) in {
worker(nick, c)

} otherwise {
leave(nick)

}
}

(b) Worker Implementation

Figure 10.3: Chat Application Architecture and Worker Implementation

Architecture. Figure 10.3a depicts the architecture of the chat server application. Each client

has a process which sends messages over a distributed session channel of type ClientSend to

its own worker process on the server, which in turn sends internal messages to a supervisor

process containing the state of the chat room. In turn, these messages trigger the supervisor

process to broadcast a message to all chat clients over a channel of type ~ClientReceive. As

is evident from the �gure, the communication topology is cyclic; in order to construct this

topology, the code makes essential use of access points.

Disconnection. Figure 10.3b shows the implementation of a worker process which receives

messages from a client. The worker takes the nickname of the client, as well as a channel

endpoint of type WorkerReceive (which is the dual of ClientSend). The server o�ers the

client a choice of sending a message (Chat), or changing topic (NewTopic); in each case, the

associated data is received and an appropriate message dispatched to the supervisor process

by calling chat or newTopic. The client may leave the chat room at any time by closing the

browser window. All other participants are noti�ed when a participant joins or leaves. When a

client closes its connection to the server, all associated endpoints are cancelled. Consequently,

an exception will be raised when evaluating the offer or receive expressions where the

user has closed their browser window. To handle disconnection, we wrap the function in an

exception handler, which recursively calls worker if the interaction is successful, and noti�es

the server that the user has left via a call to leave if an exception is raised.
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Figure 10.4: Chat server application, handling disconnection

Figure 10.4 shows a screenshot of the chat application running, in particular showing a

user leaving the room and the disconnection being handled gracefully.

10.5 Implementation

In this section we describe our extensions to the Links programming language to incorporate

the exception handling functionality of EGV as well as extensions to the Links concurrency

runtimes to support distribution.

10.5.1 Concurrency

Links provides typed, actor-style concurrency, where processes have a single incoming message

queue and can send asynchronous messages. Lindley and Morris [135] extended Links with

session-typed channels, using Links’ process-based model but replacing actor mailboxes with

session-typed channels. We extend their implementation to support distribution and failure

handling.

The client relies on continuation-passing style (CPS), trampolining, and co-operative

threading. Client code is compiled to CPS, and explicit yield instructions are inserted at every

function application. When a process has yielded a given number of times, the continuation

is pushed to the back of a queue, and the next process is pulled from the front of the queue.

While modern browsers are beginning to integrate tail-recursion, and the Links client runtime

has been updated to support it, adoption is not yet widespread. Thus, we periodically discard
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the call stack using a trampoline. Cooper [45] discusses the Links client concurrency model

in depth. The server implements concurrency on top of the OCaml lwt library [211], which

provides lightweight co-operative threading. At runtime, a channel is represented as a pair of

endpoint identi�ers:

(Peer endpoint, Local endpoint)

Endpoint identi�ers are unique. If a channel (a,b) exists at a given location, then that location

should contain a bu�er for b.

10.5.2 Exceptions

E�ect Handlers. Algebraic e�ects [175] and their handlers [178] are a modular abstraction

for programming with user-de�ned e�ects. Exception handlers are in fact a special case of

e�ect handlers. Consequently, we leverage the existing implementation of e�ect handlers in

Links [90, 91]. In Chapter 9 we generalised try−as− in−otherwise to accommodate user

de�ned exceptions. E�ect handlers generalise further to support what amounts to resumable

exceptions in which the handler not only has access to a payload, but also to the delimited

continuation (i.e. evaluation context) from the point at which the exception was raised up to

the handler, allowing e�ect handlers to implement arbitrary side-e�ects; not just exceptions.

Adopting the syntax of Hillerström and Lindley’s λ
ρ

e� calculus [90], we translate exception

handling as follows:

JraiseK= do raise

Jtry L as x in M otherwise NK= handle JLKwith

return x 7→ JMK

raise r 7→ cancel r;JNK

The introduction form do op invokes an operation op (which may represent raising an ex-

ception or some other e�ect). The elimination form handleM withH runs e�ect handler

H on the computation M. In general an e�ect handler H consists of a return clause of the

form return x 7→ N, which behaves just like the success continuation (x in N) of an exception

handler, and a collection of operation clauses, each of the form op~pr 7→N. Each clause speci�es

how to handle each operation analogously to how exception handler clauses specify how to

handle each exception, except that as well as binding payload parameters ~p, each operation

clause also binds a resumption parameter r. The resumption r binds a closure that rei�es the

continuation up to the nearest enclosing e�ect handler, allowing control to pass back to the

program after handling the e�ect.

In the case of our translation, the raise operation has no payload, and rather than invoking

the resumption r we cancel it, assuming the natural extension of cancellation to arbitrary
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linear values, whereby all free names in the value are cancelled (r being bound to the current

evaluation context rei�ed as a value).

As a preprocessing step, before translating to e�ect handlers, we insert a dummy exception

handler around each forked thread

LforkMM? = fork(try LMM? as x in ()otherwise ())

which has the e�ect of simulating the E-RaiseChild rule, ensuring that unhandled exceptions

are trapped and all endpoints in the context are cancelled if an exception is raised.

As we are targeting linear e�ect handlers, the sharing of linear variables between the

success and failure continuations of an exception handler is problematic since there is no

reason, a priori, to assume that operations should not be handled more than once. The issue

can be resolved by restricting the typing rule for try in order to disallow any free variables in

the continuations:

T-TryRestricted

Γ ` L :A x :A `M :B · ` N :B

Γ ` try L as x in M otherwise N :B

This rule may look overly restrictive, but in fact it still allows us to simulate the unrestricted

rule via a simple macro translation using a Option type:

Ltry L as x in M otherwise NM† = case try LLM† as x in Some x otherwise None of

Some x 7→ LMM†

None 7→ LNM†

Links performs this translation as another preprocessing step.

Raising Exceptions. An exception may be raised either explicitly through an invocation of

raise (desugared to do raise), or through a blocked receive call where the partner endpoint

has been cancelled. Thus, we know statically where any exceptions may be raised.

In order to support cancellation of closures on the client, we adorn closures with an

explicit environment �eld that can be directly inspected. Currently, Links does not closure

convert continuations on the client, so we use a workaround in order to simulate cancelling

a resumption (as required by the translation J−K). When compiling client code, for each

occurrence of do raise, we compile a function that inspects all a�ected variables and cancels

any a�ected endpoints in the continuation. For each occurrence of receive, we compile a

continuation to cancel a�ected endpoints to be invoked by the runtime system if the receive

operation fails.
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10.5.3 Distributed Communication

In order to support bidirectional communication between client and server we use WebSock-

ets [67]. A WebSocket connection is established by a client. When a request is made and a

web page is generated, each client is assigned a unique identi�er, which it uses to establish

a WebSocket connection. Any messages the server attempts to send prior to a WebSocket

connection being established are bu�ered and delivered once the connection is established.

Once the WebSocket connection is established, a JSON protocol is used to communicate mes-

sages such as access point operations, remote session messages, and endpoint cancellation

noti�cations.

Client-to-Client Communication. Due to delegation and access points, it is possible that

one client will hold one endpoint of a channel, and another client will hold the other endpoint.

In order to provide the illusion of client-to-client communication, we route the communication

between the two clients via the server. The server maintains a map

Endpoint ID 7→ Location

where Location is either Server or Client(ID), where ID identi�es a particular client. The

map is updated if a connection is established using fork or an access point; an endpoint is

sent as part of a message; or a client disconnects.

Handling Disconnection. The server also maintains a map

Client ID 7→ [Channel]

associating each client with the publicly-facing channels residing on that client, where Channel

is a pair of endpoints (a,b) such that b is the endpoint residing on the client. Much like TCP

connections, WebSocket connections raise an event when a connection is disconnected. Upon

receiving such an event, all channels associated with the client are cancelled, and exceptions are

invoked as per the exception handling mechanism described further in Chapter 9 and §10.5.2.

10.5.4 Distributed Exceptions

Our implementation fully supports the exception handling semantics de�ned by EGV. The

concurrency runtime at each location maintains a set of cancelled endpoints.

Cancellation. Suppose endpoint a is connected to peer endpoint b. If a is cancelled, then

all endpoints in the queue for a are also cancelled according to the E-Zap rule. If a and b are

at the same location, then a is added to the set of cancelled endpoints. If they are at di�erent

locations, then a cancellation noti�cation for a is routed to b’s location. Zapper threads are
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modelled in the implementation by recording sets of cancelled endpoints and propagating

cancellation messages.

Failed communications. Again, suppose endpoint a is connected to peer endpoint b.

Should a process attempt to read from a when the bu�er for a is empty, then the runtime will

check to see whether b is in the set of cancelled endpoints. If so, then a is cancelled and an

exception is raised in the blocked process; if not, the process is suspended until a message

is ready. Should the runtime later add b to the set of cancelled endpoints, then again a is

cancelled and an exception raised. These actions implement the E-ReceiveZap rule.

Disconnection. To handle disconnection, the server maintains a map from client IDs to the

list of endpoints at the associated client. WebSockets—much like TCP sockets—raise a closed

event on disconnection. Consequently, when a connection is closed, the runtime looks up the

endpoints owned by the terminated client and noti�es all other clients containing the peer

endpoints.

10.5.5 Distributed delegation.

It is possible to send endpoints as part of a message. Session delegation in the presence of

distributed communication has intricacies in ensuring that messages are delivered to the

correct participant; our implementation adapts the algorithms described by Hu et al. [106].

More details can be found in Appendix E.

10.6 Related Work

10.6.1 Concurrent Functional Web Programming

Early systems. One of the earliest systems for functional web programming is due to Meijer

[139], who implements a Haskell library for interfacing with the Common Gateway Interface

(CGI) [187]. Meijer’s library handles the intricacies of decoding requests, parsing arguments,

and generating a response to the user. The library also provides combinators for generating

HTML responses.

Thiemann [201] describes a more sophisticated Haskell library for programming with

CGI, called WASH/CGI, which as well as providing the raw CGI functionality of Meijer’s

library, additionally provides a monadic interface for constructing HTML pages and type-safe

web forms. CGI scripts must be re-invoked whenever users submit a web form, however

WASH/CGI allows programs to be written as though interaction with the user happens in

a single persistent application. This is implemented by storing a log of user input, which is
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serialised as a hidden �eld and resubmitted whenever a user submits a form; the key insight is

to only prompt the user for additional input when all data has been consumed from the log.

SMLServer [64] is a webserver written in Standard ML, and designed as a module to be

loaded in production web servers such as Apache (and originally AOLServer). SMLServer

was amongst the �rst functional web frameworks to provide direct integration with relational

databases. Additionally, SMLServer provides an interface for caching, and allows the use of

quotations and antiquotations when generating HTML.

Ur/Web Ur/Web [39] leverages the Ur [38] programming language to provide a tierless model

of programming where client, server, and database code are written in a single, statically-typed

language. Ur/Web provides simply-typed unidirectional channels from the server to the client.

Session typed channels allow more structure to be added to the channel types, specifying a

sequence of actions which may involve exchanging values of di�erent types.

Elm Elm [51] is a language for declaratively designing web interfaces, which has received

much industry adoption. Originally designed as a form of functional reactive programming

forbidding higher-order signals, the Elm Architecture has evolved to become a message-based

incarnation of the model-view-controller pattern. Elm’s focus is on client-side code, as opposed

to tierless programming or distributed, multi-user web applications.

iTasks Plasmeijer et al. [174] introduce task-oriented programming (TOP): a task is a unit

of work with an observable value describing its progress. TOP is implemented in the iTask

system [173], allowing the creation of distributed, multi-user web applications. iTask works

at a higher level of abstraction, whereas we focus on the case where communication along a

channel may follow complex protocols.

Eliom Eliom [183] is an extension of OCaml which allows tierless web programming. A key

feature of Eliom is its ability to explicitly assign locations using section annotations. Annotations

can be added to any expression—for example, a server function with a body annotated as

evaluating on the client will force evaluation of an expression on the client. This powerful

mechanism of distribution is formalised as a core language, along with compilation to core

client and server languages.

Haste.App Haste.App [63] is a Haskell DSL for implementing client-centric web applications.

Like Links, Haste.App allows both client and server code to be written in a single language,

namely Haskell. The primary mechanism of communication between the client and the server

is RPC requests, as opposed to the more liberal session-typed channel model we present in this

work. Ekblad [62] extends Haste.App to communicate with multiple di�erent servers, as well
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as providing an abstraction for sandboxing external code; we leave integration with multiple

servers to future work.

Hop.js Hop.js [195] (a JavaScript version of the Hop tierless web programming lan-

guage [196]) allows web applications to be described in a superset of JavaScript. Hop.js

is compiled to a persistent web server and to client JavaScript code; a useful feature of Hop

is its service mechanism, which allows a server-side computation to seamlessly connect to

remote servers. Communication is via AJAX requests as opposed to bidirectional channels.

Phoenix Phoenix [138] is a web framework designed for the Elixir [203] programming

language. Elixir is an actor-based concurrent functional programming language which uses

the BEAM virtual machine designed for Erlang. A key feature of the Elixir programming

language is its use of publish-subscribe channels which allow messages to be sent to- and from

clients via WebSockets. Unlike our session-typed channels, channels are untyped.

10.6.2 Distributed Session Types

Hu et al. [106] introduce Session Java (SJ), which allows distributed session-based commu-

nication in the Java programming language, making use of the Polyglot framework [158] to

statically check session types. Hu et al. are the �rst to present the challenges of distributed

delegation along with distributed algorithms which address those challenges. We adapt their

algorithms to web applications. SJ restricts communication to a �xed set of simple types;

Links allows arbitrary values to be sent. SJ provides statically scoped exception handling,

propagating exceptions to ensure liveness, but this feature is not formalised.

10.7 Conclusion

In this chapter, we have seen how the theoretical ideas from EGV may be applied in practice,

in particular providing the �rst implementation of session types and tierless web program-

ming. Our implementation allows fully-distributed communication across session channels,

supplementing the existing RPC mechanism in Links.

The exception handling mechanism introduced in EGV is crucial in allowing a program to

handle the case where a user goes o�ine, as we saw in the larger example of a web-based,

session-typed chat server. Additionally, the implementation shows that the ideas from EGV

may be implemented, and in turn shows the �rst development of exception handling and

session types that is both formalised and implemented in practice.
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Conclusion

Communication-centric programming languages use explicit message passing to co-ordinate

between concurrent processes, as opposed to relying on co-ordination through shared memory.

In doing so, communication-centric programming languages avoid many of the pitfalls of

shared-memory approaches by avoiding the non-compositionality of lock mechanisms.

Static type systems provide a lightweight veri�cation mechanism which catches errors,

such as passing an unsupported argument to a function, before a program can compile.

11.1 Research Challenges Revisited

In Chapter 1, we posed two research challenges. We summarise the work in the thesis by

revisiting the questions:

What is the relationship between typed channel- and actor-based programming, and

why have typed actor mailboxes seen limited uptake?

Channel-based languages provide anonymous processes which communicate using shared

names known as channels, whereas actor-based languages are based on the actor model and

provide named processes which communicate point-to-point using local message queues

known as mailboxes.

To better understand the intricacies of typed mailboxes and the relation of typed channels

and actors, we de�ned two minimal concurrent λ-calculi: λch, in which an anonymous process

sends messages along typed channels, and λact, in which an actor sends a message directly to

the mailbox of another actor.

To make the relationship between the two models precise, we showed type- and semantics-

preserving translations between λch and λact, in particular noting that the translation from

λact into λch was simple but global (in the sense of Felleisen [66]), whereas more surprisingly

the translation from λact into λch was more involved but local. The translation from channels
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into actors is complicated by the type pollution problem described by He et al. [86], where the

type of a mailbox must re�ect the types of all messages sent by other actors, in turn requiring

every actor to expose every message it may be sent in order for communication partners to

determine the correct sum or variant injection to use when sending a message. Naïvely, type

pollution leads to a complete loss of modularity. In the setting of the translation between λch

and λact, it may be addressed by either ensuring that each channel in the system has the same

type, or by introducing synchronisation primitives.

Finally, we showed that λact can encode the more involved selective receive construct as

found in Erlang [11], and in doing so, we gave a formal grounding to the ‘stashing’ implemen-

tation strategy proposed by Haller [83].

How can session types be adapted to support exceptions in a functional language

where communication is asynchronous?

To answer this question, we investigated core session-typed functional languages, providing

the basis for tierless web programming with session types. The web-based setting made it

crucial to provide a formal account of failure handling and the integration of session types

and exceptions.

We began by reprising a core, synchronous version of the GV session-typed linear func-

tional language, Synchronous GV (SGV). Next, we introduced Asynchronous GV (AGV),

showing how SGV could be extended to allow bu�ered, asynchronous communication, while

still preserving all of SGV’s strong metatheory. Modelling asynchrony is important when

considering distributed communication.

We then introduced Exceptional GV (EGV), a session-typed linear λ-calculus which extends

AGV with support for the ability to explicitly cancel an endpoint, following previous work

by Mostrous and Vasconcelos [147]. In spite of the ability to discard endpoints, EGV retains

global progress by raising exceptions when a communication cannot succeed, and propagating

cancellation whenever an endpoint becomes unreachable due to evaluation of a continuation

being aborted due to an exception.

Finally, we showed how the ideas from EGV can be implemented in practice, by extending

the Links tierless web programming language. In doing so, we provided the �rst application of

session types to web programming, where disconnection (for example, a client closing their

web browser), can be handled gracefully. Our implementation makes use of e�ect handlers,

and paves the way for future study of linear e�ect handlers.

11.2 Future Work

The �eld of typed, concurrent functional programming is ripe for further study. Here, we

describe some interesting future directions.
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Relating Actor Variations. In Chapter 5, we related channel- and actor-based program-

ming languages by relating concurrent λ-calculi. The actor-based calculus, λact, is process-based

according to the taxonomy de�ned by De Koster et al. [56]. It would be interesting to formally

relate di�erent actor incarnations, for example active objects, by distilling each to a minimal

core calculus and showing translations between them.

Exceptional CP. The cancel construct in EGV explicitly discards an endpoint, and an

exception discards the free names contained in the aborted continuation of a process. It would

be interesting to relate a synchronous version of EGV to an analogous extension of CP.

Hypersequents. Recent work by Kokke et al. [122, 123], building on work by Montesi

and Peressotti [146] and Carbone et al. [32], addresses the syntactic restrictions present in

CP by considering hypersequents to register parallelism in linear logic typing judgements.

Hypersequents generalise from a single typing environment to multiple typing environments.

Consequently, the authors are able to relax the syntactic restrictions required by CP: as an

example, the combined (νx)(P | Q) construct can be expressed as two separate constructs

(νx)P and P | Q, with the resulting system enjoying the same strong metatheory as CP.

GV does not su�er from the same severe syntactic restrictions as CP. Nevertheless, the

mechanism in the con�guration typing system to ensure acyclicity, namely the S] type in

tandem with the T-Connecti rules, violates preservation of typing under con�guration equiv-

alence. While this does not matter for reduction, the issue stems from registering parallelism

syntactically. Early exploratory work has shown that the use of hypersequents solves this issue

and thus simpli�es the metatheory. It would be interesting to fully de�ne GV using hyperse-

quents, and to show type- and semantics-preserving translations to- and from Hypersequent

CP.

Multiparty GV. In this thesis, we have considered binary session types in concurrent linear

λ-calculi. Multiparty session types, as described by Honda et al. [100], generalise binary session

types to encode interactions between multiple participants in a system.

Multiparty session types are typically described in the context of process calculi, and

unlike binary session types, have not been explored in the functional setting. A logically-

grounded linear functional language with multiparty session types would give a clean design

for integrating multiparty session types into a functional languages, and would give a �rm

theoretical grounding to extensions such as multiparty access points. Additionally, a logically-

grounded calculus would provide global progress by design, without requiring a separate

interaction typing system as used in the work of Coppo et al. [49].

A promising initial direction would be to investigate a calculus into which it is possible

to translate the MCP calculus described by Carbone et al. [30]. Early exploratory work has
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shown that again, hypersequents prove useful; in contrast, generalising the S] type to the

multiparty setting proves to be an exercise in masochism.

Linear E�ect Handlers. In Chapter 10, we showed how EGV’s exception handling mech-

anism could be encoded using handlers for algebraic e�ects. Hillerström [89] discusses an

implementation of the Links actor-style message passing concurrency model using only han-

dlers for algebraic e�ects, with communication and concurrency implemented using handlers

without built-in concurrency primitives.

It would be interesting to encode a version of EGV in a language such as λ
ρ

e�
, to formally

show how the integration of session-typed communication and exception handling may be

encoded using linear e�ect handlers.

Choice and Session Types. In GV, and indeed other session calculi, the receive construct

receives a value from a single channel. In languages such as Concurrent ML or Go, for example,

it is possible to wait on multiple channels, and synchronise on the �rst channel which is

ready with a message. This notion of choice stems from work on process calculi, in particular

CSP [92].

Choice has not been well-studied in the static, session-typed setting: the closest proposal

considers event-driven session-types [107] and relies on session set types and a session typecase

primitive. An interesting direction of work would be integrating guarded choice and fully

static session types. This would likely require more expressive type systems such as dependent

types.
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Appendix A

Proofs for Chapter 3 (Synchronous

GV)

A.1 Preservation

A.1.1 Reduction

Theorem 1 If Γ `φ C and C −→D , then there exists some Γ−→? Γ′ such that Γ′ `φ D .

Proof. By induction on the derivation of C −→D , making use of Lemmas 1–5. Where there

is a choice of �ags, we make the decision to prove the case where the �rst �ag is • and the

second is ◦; the proofs for other cases are similar.

Case E-Fork

F [forkλx.M]−→ (νa)(F [a] ‖ ◦M{a/x}) (a is fresh)

We let F [forkλx.M] = •E[forkλx.M]. The case where F [forkλx.M] = ◦E[forkλx.M] is

similar (using T-Main instead of T-Thread).

Assumption:

Γ1,Γ2 ` E[forkλx.M] : A

Γ1,Γ2; · `• •E[forkλx.M]

By Lemma 2:

Γ2,x : S `M : End!

Γ2 ` λx.M : S ( End!

Γ2 ` forkλx.M : S

218
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By Lemma 3, Γ1,a : S ` E[a] : A.

By Lemma 1, Γ2,a : S `M{a/x} : End!.

Recomposing:

Γ1;a : S ` E[a] : A

Γ1;a : S; · `• E[a]

Γ2,a : S `M{a/x} : End!

Γ2,a : S `◦ ◦M{a/x}

Γ1,Γ2,a : S] `• •E[a] ‖M{a/x}

Γ1,Γ2 `• (νa)(•E[a] ‖M{a/x})

(noting that S = S), as required.

Case E-Comm

•E[sendV a] ‖ ◦E ′[receive a] −→ •E[a] ‖ ◦E ′[(V,a)]

Assumption:

Γ1,Γ2,a : S ` E[sendV a] : C

Γ1,Γ2,a : S `• •E[sendV a]

Γ3,a : S ` E ′[receive a] : End!

Γ3,a : S `◦ ◦E ′[receive a]

Γ1,Γ2,Γ3,a : S] `• •E[sendV a] ‖ ◦E ′[receive a]

By Lemma 2, we have that:

Γ2 `V : A a : !A.S′ ` a : !A.S′

Γ2,a : !A.S′ ` sendV a : S′

Also by Lemma 2, we have that:

a : ?A.S′ ` a : ?A.S′

a : ?A.S′ ` receive a : (A×S′)

This reasoning allows us to re�ne our original derivation:

Γ1,Γ2,a : !A.S′ ` E[sendV a] : C

Γ1,Γ2,a : !A.S′ `• •E[sendV a]

Γ3,a : ?A.S′ ` E ′[receive a] : End!

Γ3,a : ?A.S′ `◦ ◦E ′[receive a]

Γ1,Γ2,Γ3,a : !A.S′] `• •E[sendV a] ‖ ◦E ′[receive a]

By Lemma 3, Γ1,a : S′ `E[a] :C, and Γ2,Γ3,a : S′ `E ′[(V,a)] : End! (that Γ2,Γ3 is well-de�ned

follows from the fact that the two environments are disjoint).

Recomposing:

Γ1,a : S′ ` E[a] : C

Γ1,a : S′ `• •E[a]

Γ2,Γ3,a : S′ ` E ′[(V,a)] : End!

Γ2,Γ3,a : S′ `◦ ◦E ′[(V,a)]

Γ1,Γ2,Γ3,a : S′] `• •E[a] ‖ ◦E ′[(V,a)]
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Finally, we can show that the environment in the �rst derivation reduces to the environment

in the �nal derivation:

!A.S′ −→ S′

Γ1,Γ2,Γ3,a : !A.S′] −→ Γ1,Γ2,Γ3 : a : S′]

as required.

Case E-Wait

(νa)(F [wait a] ‖ ◦a)−→ F [()]

We prove the case where F [wait a] = •E[wait a] (for some E); the case where F [wait a] =

◦E[wait a] is similar.

Assumption:

Γ,a : End? ` E[wait a] : A

Γ,a : End? `• •E[wait a]

a : End! ` a : End!

a : End! `◦ ◦a

Γ,a : End]
? `
• •E[wait a] ‖ ◦a

Γ `• (νa)(•E[wait a] ‖ ◦a)

By Lemma 2:

a : End? ` a : End?

a : End? `wait a : 1

By Lemma 3, Γ ` E[()] : B. Recomposing:

Γ ` E[()] : A

Γ `• •E[()]

as required.

Case E-LiftM

Immediate by Lemmas 2, 6, and 3.

Case E-Lift

Immediate by Lemma 4, the induction hypothesis, and Lemma 5.
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A.1.2 Equivalence

Lemma 7 If Γ `φ C and C ≡D , where the derivation of C ≡D does not contain a use of the

axiom for associativity of parallel composition, then Γ `φ D .

Proof. By induction on the derivation of C ≡D , examining the equivalence in both directions to

account for symmetry. We show that a typing derivation of the left-hand side of an equivalence

rule implies the existence of the right-hand side, and vice versa.

That re�exivity, transitivity, and symmetry of the equivalence relation respect typing

follows immediately because equality of typing derivations is an equivalence relation.

We make implicit use of the induction hypothesis.

Congruence rules

Case Name restriction

C ≡D

(νa)C ≡ (νa)D

Γ,a : S] `φ C

Γ `φ (νa)C ⇐⇒

Γ,a : S] `φ D

Γ `φ (νa)D

Case Parallel Composition

C ≡D

C ‖ E ≡D ‖ E

There are two subcases, based on whether the parallel composition arises from T-

Connect1 or T-Connect2.

Subcase T-Connect1

Γ1,a : S `φ1 C Γ2,a : S `φ2 E

Γ1,Γ2,a : S] `φ1+φ2 C ‖ E ⇐⇒

Γ1,a : S `φ1 D Γ2,a : S `φ2 E

Γ1,Γ2,a : S] `φ1+φ2 D ‖ E

Subcase T-Connect2

Γ1,a : S `φ1 C Γ2,a : S `φ2 E

Γ1,Γ2,a : S] `φ1+φ2 C ‖ E ⇐⇒

Γ1,a : S `φ1 D Γ2,a : S `φ2 E

Γ1,Γ2,a : S] `φ1+φ2 D ‖ E
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Equivalence Axioms

Case C ‖D ≡D ‖ C

There are two subcases, based on which rule is used for parallel composition.

Subcase T-Connect1

Γ1,a : S `φ1 C Γ2,a : S `φ2 D

Γ1,Γ2,a : S] `φ1+φ2 C ‖D
⇐⇒

Γ2,a : S `φ2 D Γ1,a : S `φ1 C

Γ1,Γ2,a : S] `φ2+φ1 D ‖ C

Subcase T-Connect2

Γ1,a : S `φ1 C Γ2,a : S `φ2 D

Γ1,Γ2,a : S] `φ1+φ2 C ‖D
⇐⇒

Γ2,a : S `φ2 D Γ1,a : S `φ1 C

Γ1,Γ2,a : S] `φ2+φ1 D ‖ C

Case C ‖ (νa)D ≡ (νa)(C ‖D) if a 6∈ fn(C )

There are again two subcases based on which parallel composition rule is used. The exact

rule does not a�ect the discussion, so we show T-Connect1.

Γ1,b : T `φ1 C

Γ2,a : S],b : T `φ2 D

Γ2,b : T `φ2 (νa)D

Γ1,Γ2,b : T ] `φ1+φ2 C ‖ (νa)D ⇐⇒

Γ1,b : T `φ1 C Γ2,a : S],b : T `φ2 D

Γ1,Γ2,a : S],b : T ] `φ1+φ2 C ‖D

Γ1,Γ2,b : T ] `φ1+φ2 (νa)(C ‖D)

In the left-to-right direction, that Γ1,Γ2,a : S] is well-de�ned follows because a 6∈ fn(C ).

Case (νa)(νb)C ≡ (νb)(νa)C

Γ,a : S],b : T ] `φ C

Γ,a : S] `φ (νb)C

Γ `φ (νa)(νb)C ⇐⇒

Γ,b : T ],a : S] `φ C

Γ,b : T ] `φ (νa)C

Γ `φ (νb)(νa)C
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Proofs for Chapters 4–6 (Mixing

Metaphors)

B.1 Preservation (λ
ch
)

Theorem 9: Preservation (λ
ch

con�gurations) If Γ;∆ ` C1 and C1 −→ C2 then Γ;∆ ` C2.

Proof. By induction on the derivation of C1 −→ C2.

Case E-Give

E[giveW a] ‖ a(
−→
V ) −→ E[return ()] ‖ a(

−→
V ·W )

Assumption:

Γ ` E[giveW a] : B

Γ; · ` E[giveW a]

(Γ `Vi : A)i

Γ;a : A ` a(
−→
V )

Γ;a : A ` E[giveW a] ‖ a(
−→
V )

Note that by T-Chan, Γ must contain a : ChanRef(A).

By Lemma 12, we have:

Γ `W : A Γ ` a : ChanRef(A)

Γ ` giveW a : 1

By Lemma 13, we have that Γ ` E[return ()] : B.

By T-Buf:

(Γ `Vi : A)i Γ `W : A

Γ;a : A ` a(
−→
V ·W )

223
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Recomposing, we have:

Γ ` E[return ()] : B

Γ; · ` E[return ()]

(Γ `Vi : A)i Γ `W : A

Γ;a : A ` a(
−→
V ·W )

Γ;a : A ` E[return ()] ‖ a(
−→
V ·W )

Case E-Take

E[take a] ‖ a(W ·−→V ) −→ E[returnW ] ‖ a(
−→
V )

Assumption:

Γ ` E[take a] : B

Γ; · ` E[take a]

Γ `W : A (Γ `Vi : A)i

Γ,a : A ` a(W ·−→V )

Γ;a : A ` E[take a] ‖ a(W ·−→V )

where Γ = Γ′,a : ChanRef(A), due to rule T-Buf.

By Lemma 12:

Γ ` a : ChanRef(A)

Γ ` take a : A

By Lemma 13, Γ ` E[returnW ] : B.

Recomposing:

Γ ` E[returnW ] : C

Γ; · ` E[returnW ]

(Γ `Vi : A)i

Γ;a : A ` a(
−→
V )

Γ;a : A ` E[returnW ] ‖ a(
−→
V )

as required.

Case E-Fork

E[fork M] −→ E[return ()] ‖M

Assumption:

Γ ` E[fork M] : A

Γ; · ` E[fork M]

By Lemma 12:

Γ `M : B

Γ ` fork M : 1
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By Lemma 13, Γ ` E[return ()] : A.

Recomposing:

Γ ` E[return ()] : A

Γ; · ` E[return ()]

Γ `M : B

Γ; · `M

Γ; · ` E[return ()] ‖M

as required.

Case E-NewCh

E[newCh] −→ (νa)(E[return a] ‖ a(ε)) (a is fresh)

Assumption:

Γ ` E[newCh] : B

Γ; · ` E[newCh]

By Lemma 12:

Γ ` newCh : ChanRef(A)

By T-Name, Γ,a : ChanRef(A) ` a : ChanRef(A). By Lemma 13, Γ,a : ChanRef(A) `
E[return a] : B.

Recomposing:

Γ,a : ChanRef(A) ` E[return a] : B

Γ,a : ChanRef(A); · ` E[return a] Γ,a : ChanRef(A);a : A ` ε()

Γ,a : ChanRef(A);a : A ` E[return a] ‖ a(ε)

Γ; · ` (νa)(E[return a] ‖ a(ε))

as required.

Case E-LiftM

M1 −→ M2 (if M1 −→M M2)

Assumption:

Γ `M1 : A

Γ; · `M1
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and M1 −→M M2.

By Lemma 14, Γ `M2 : A. Thus:

Γ `M2 : A

Γ; · `M2

as required.

Case E-Lift

G [C1]−→ G [C2] and C1 −→ C2

Assumption: Γ;∆ ` G [C1].

By Lemma 16, we have that there exist Γ′,∆′ such that Γ′;∆′ ` C1.

By the induction hypothesis, we have that Γ′;∆′ ` C2.

By Lemma 17, we have that Γ;∆ ` G [C2] as required.

B.2 Preservation (λact)

Theorem 11: Preservation (λact con�gurations) If Γ;∆ ` C1 and C1 −→ C2, then Γ;∆ ` C2.

Proof. By induction on the derivation of C1 −→ C2.

Case E-Spawn

〈a,E[spawn M],
−→
V 〉 −→ (νb)(〈a,E[return b],

−→
V 〉 ‖ 〈b,M,ε〉)

where b is fresh.

Assumption:

Γ | A ` E[spawn M] : A′ (Γ `Vi : A)i

Γ;a : A ` 〈a,E[spawn M],
−→
V 〉

By Lemma 20:

Γ | B `M : B′

Γ | A ` spawn M : ActorRef(B)

By Lemma 21, Γ,b : ActorRef(B) | A ` E[return b] : A′. Let Γ′ = Γ,b : ActorRef(B).
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Recomposing:

Γ
′ | A ` E[return b] : A′ (Γ′ `Vi : A)i

Γ
′;a : A ` 〈a,E[return b],

−→
V 〉

Γ
′ | B `M : B′

Γ
′;b : B ` 〈b,M,ε〉

Γ
′;a : A,b : B ` 〈a,E[return b],

−→
V 〉 ‖ 〈b,M,ε〉

Γ;a : A ` (νb)(〈a,E[return b],
−→
V 〉 ‖ 〈b,M,ε〉)

as required.

Case E-Send

E-Send 〈a,E[sendV ′ b],
−→
V 〉 ‖ 〈b,M,

−→
W 〉 −→ 〈a,E[return ()],

−→
V 〉 ‖ 〈b,M,

−→
W ·V ′〉

Let Γ = Γ′,a : ActorRef(A),b : ActorRef(B) for some Γ′.

Assumption:

Γ | A ` E[sendV ′ b] : C (Γ `Vi : A)i

Γ;a : A ` 〈a,E[sendV ′ b],
−→
V 〉

Γ | B `M : C′ (Γ `Wi : B)i

Γ;b : B ` 〈b,M,
−→
W 〉

Γ;a : A,b : B ` 〈a,E[sendV ′ b],
−→
V 〉 ‖ 〈b,M,

−→
W 〉

Note that a : ActorRef(A) and b : ActorRef(B) must be in Γ due to rule T-Actor.

By Lemma 20:

Γ `V ′ : B Γ ` b : ActorRef(B)

Γ | B ` sendV ′ b : 1

By Lemma 21, we have that Γ | B ` E[return ()] : C.

By T-Actor:

Γ | B `M : C′

(Γ `Wi : B)i Γ `V ′ : B

Γ;b : B ` 〈b,M,
−→
W ·V ′〉

Recomposing:

Γ | A ` E[return ()] : C (Γ `Vi : A)i

Γ;a : A ` 〈a,E[return ()],
−→
V 〉

Γ | B `M : C′

(Γ `Wi : B)i Γ `V ′ : B

Γ;b : B ` 〈b,M,
−→
W ·V ′〉

Γ;a : A,b : B ` 〈a,E[return ()],
−→
V 〉 ‖ 〈b,M,

−→
W ·V ′〉

as required.
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Case E-SendSelf

〈a,E[sendV ′ a],
−→
V 〉 −→ 〈a,E[return ()],

−→
V ·V ′〉

Assumption:

Γ | A ` E[sendV ′ a] : A′ (Γ `Vi : A)i

Γ;a : A ` 〈a,E[sendV ′ ],
−→
V 〉

where (due to T-Process), Γ = Γ′,a : ActorRef(A).

By Lemma 20:

Γ `V ′ : A Γ ` a : ActorRef(A)

Γ | A ` sendV ′ a : 1

By Lemma 21, Γ | A ` E[return ()] : A′.

Recomposing:

Γ | A ` E[return ()] : A′ (Γ `Vi : A)i Γ `V ′ : A

Γ,a : A ` 〈a,E[return ()],
−→
V ·V ′〉

Case E-Self

〈a,E[self],
−→
V 〉 −→ 〈a,E[return a],

−→
V 〉

Assumption:

Γ,a : ActorRef(A) | A ` E[self] : B (Γ `Vi : A)i

Γ,a : ActorRef(A);a : A ` 〈a,E[self],
−→
V 〉

By Lemma 20:

Γ,a : ActorRef(A) | A ` self : ActorRef(A)

By T-Name, Γ,a : ActorRef(A) | A ` return a : ActorRef(A).

By Lemma 21: Γ,a : ActorRef(A) ` E[return a] : B.

Recomposing:

Γ,a : ActorRef(A) | A ` E[return a] : B (Γ `Vi : A)i

Γ,a : ActorRef(A);a : A ` 〈a,E[return a],
−→
V 〉

as required.
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Case E-Receive

〈a,E[receive],V ′ ·−→V 〉 −→ 〈a,E[returnV ′],
−→
V 〉

Assumption:

Γ,a : ActorRef(A) | A ` E[receive] : B Γ `V ′ : A (Γ `Vi : A)i

Γ,a : ActorRef(A);a : A ` 〈a,E[self],V ′ ·−→V 〉

By Lemma 20:

Γ | A ` receive : A

By Lemma 21:

Γ | A ` returnV ′ : A

Recomposing:

Γ,a : ActorRef(A) | A ` E[returnV ′] : B (Γ `Vi : A)i

Γ,a : ActorRef(A);a : A ` 〈a,E[returnV ′],
−→
V 〉

Case E-LiftM

Immediate by Lemmas 20, 22, and 21.

Case E-Lift

Immediate by Lemmas 24, the induction hypothesis, and 25.

B.3 Translation (λact into λ
ch
)

B.3.1 Operational Correspondence

Theorem 14: Operational Correspondence (J− K)

Simulation If Γ;∆ ` C1 and C1 −→ C2, then JC1 K=⇒∗ JC2 K

Re�ection If Γ;∆ ` C1 and JC1 K=⇒D , then there exists some C2 such that C1 =⇒ C2 and

D =⇒∗ JC2 K
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Proof.

Simulation: By induction on the derivation of C1 −→ C2.

Case E-Spawn

J 〈a,E[spawn M],
−→
V 〉 K

Def. J− K
a(J
−→
V K) ‖ (JE K[let c⇐ newCh in fork (JM Kc);return c]a)

−→ (E-NewCh)

a(J
−→
V K) ‖ (νb)((JE K[let c⇐ return b in fork (JM Kc);return c]a) ‖ b(ε))

−→M

a(J
−→
V K) ‖ (νb)((JE K[fork (JM Kb);return b]a) ‖ b(ε))

−→ (E-Fork)

a(J
−→
V K) ‖ (νb)((JE K[return ();return b]a) ‖ (JM Kb) ‖ b(ε))

−→M

a(J
−→
V K) ‖ (νb)((JE K[return b]a) ‖ (JM Kb) ‖ b(ε))

≡
(νb)(a(J

−→
V K) ‖ (JE K[return b]a) ‖ b(ε) ‖ (JM Kb))

=

J (νb)(〈a,E[return b],
−→
V 〉 ‖ 〈b,M,ε〉) K

Case E-Self

J 〈a,E[self],
−→
V 〉 K

Def. J− K
a(J
−→
V K) ‖ (JE K[return a]a)

=

J 〈a,E[return a],
−→
V 〉 K

Case E-Send

J 〈a,E[sendV ′ b],
−→
V 〉 ‖ 〈b,M,

−→
W 〉 K

Def. J− K
a(J
−→
V K) ‖ (JE K[give JV ′ Kb]a) ‖ b(J

−→
W K) ‖ (JM Kb)

−→ (E-Give)

a(J
−→
V K) ‖ (JE K[return ()]a) ‖ b(J

−→
W K · JV ′ K) ‖ (JM Kb)

=

J 〈a,E[return ()],
−→
V 〉 ‖ 〈b,M,

−→
W ·V ′〉 K
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Case E-Receive

J 〈a,E[receive],W ·−→V 〉 K
Def. J− K

a(JW K · J−→V K) ‖ (JE K[take a]a)

−→ (E-Take)

a(J
−→
V K) ‖ (JE K[return JW K]a)

=

J 〈a,E[returnW ],
−→
V 〉 K

Lift is immediate by the induction hypothesis, and LiftV is immediate from Lemma 29.

Re�ection:

Assume ∆ contains entries a1 : A1, . . . ,ak : Ak.

By Lemma 27:

C1 ≡ (νak+1) · · ·(νan)(〈a1,M1,
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉) = Ccanon

By the de�nition of J− K:

JCcanon K= (νak+1) · · ·(νan)(a1(
−→
V1) ‖ JM1 Ka1 ‖ · · · ‖ an(

−→
Vn) ‖ JMn Kan)

We proceed by case analysis on the structure of translated terms, inspecting the reduction

rules for λch. Without loss of generality, we assume that term reduction in λact occurs in the

thread translated with respect to name a1.

Case J sendV W Ka1

JE[sendV W ] Ka1 = JEK[give JV KJW K ]a1

The applicable reduction rule is E-Give. Thus, there exists some G such that:

Ccanon ≡ G [JEK[give JW Kb]a1 ‖ b(J
−→
V K)]

We have two subcases, based on the value of b. We need not consider free names or

variables without an associated bu�er, as these would not reduce.

Subcase b = a1

JEK[give JW Ka1]a1 ‖ a1(J
−→
V1 K)

−→ (E-Give)

JEK[return ()]a1 ‖ b(J
−→
V1 K · JW K)

=

J 〈a1,E[return ()],
−→
V1 ·W 〉 K
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By the de�nition of J− K:

JEK[giveW b]a1 ‖ a1(J
−→
V1 K) = J 〈a1,E[sendW a1],

−→
V1〉 K

In λact, we can show:

〈a1,E[sendW a1],
−→
V1〉

−→ (E-SendSelf)

〈a1,E[return ()],
−→
V1 ·W 〉

Thus, we can see that:

JCcanon K=⇒ (νak+1) · · ·(νan)(JEK[return ()]a1 ‖ a1(J
−→
V1 K · JW K) ‖ · · · ‖ JMn Kan ‖ an(J

−→
Vn K))

=

J (νak+1) · · ·(νan)(〈a1,E[return ()],
−→
V1 ·W 〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉) K

and

Ccanon =⇒ (νak+1) · · ·(νan)(〈a1,E[return ()],
−→
V1 ·W 〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉)

as required.

Subcase b = a j for some j 6= 1

Without loss of generality, consider the case where j = n. By the de�nition of JCcanon K, we

have that there must exist some G ′ such that

G [JEK[give JW Kan]a1 ‖ an(J
−→
Vn K)]

≡
G ′[JEK[give JW Kan]a1 ‖ an(J

−→
Vn K) ‖ JM Kan ‖ a1(J

−→
V1 K)]

≡
G ′[JEK[give JW Kan]a1 ‖ a1(J

−→
V1 K)] ‖ JM Kan ‖ an(J

−→
Vn K)

Next, we observe the E-Give reduction:

JEK[give JW Kan]a1 ‖ a1(J
−→
V1 K) ‖ JM Kan ‖ an(J

−→
Vn K)

=⇒ (E-Give)

JEK[return ()]a1 ‖ a1(J
−→
V1 K) ‖ JM Kan ‖ an(J

−→
Vn K · JW K)

=

J 〈a1,E[return ()],
−→
V1〉 ‖ 〈an,Mn,Vn ·W 〉 K

By the de�nition of J− K:

JEK[giveJW Kan]a1 ‖ a1(
−→
V1) ‖ JM Kan ‖ an(J

−→
Vn K) = J〈a1,E[sendW an],

−→
V1〉 ‖ 〈an,Mn,

−→
Vn〉K

In λact, we can show:

〈a1,E[sendW an],
−→
V1〉 ‖ 〈an,Mn,

−→
Vn〉

−→ (E-Send)

〈a1,E[return ()],
−→
V1〉 ‖ 〈an,Mn,

−→
Vn ·W 〉



Appendix B. Proofs for Chapters 4–6 (Mixing Metaphors) 233

Thus, we can see that:

JCcanon K=⇒ (νak+1) · · ·(νan)(JEK[return ()]a1 ‖ a1(J
−→
V1 K) ‖ · · · ‖ JM Kan ‖ an(J

−→
Vn K · JW K))

=

J (νak+1) · · ·(νan)(〈a1,E[return ()],
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn ·W 〉) K

and

Ccanon =⇒ (νak+1) · · ·(νan)(〈a1,E[return ()],
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn ·W 〉)

as required.

Case J self Ka1

J self Ka1 = return a1

Holds vacuously, as no reduction rule applies.

Case J receive Ka1

J receive Ka1 = take a1

Thus, the applicable reduction rule is E-Take, and we have that there exists some con�g-

uration context G such that:

JCcanon K≡ G [JEK[take a1]a1 ‖ a1(JW K · J−→Vn K)]

−→ (E-Take)

G [JEK[return JW K]a1 ‖ a1(J
−→
Vn K)]

By the de�nition of J− K:

JEK[take a1]a1 ‖ a1(JW K · J−→Vn K) = J 〈a1,E[receive],W ·−→Vn〉 K

In λact, we may write

J 〈a1,E[receive],W ·−→Vn〉 K
=⇒ (E-Recv)

J 〈a1,E[returnW ],
−→
Vn〉 K

Thus, we can see that:

JCcanon K=⇒ (νak+1) · · ·(νan)(JEK[returnW ]a1 ‖ a(J
−→
V1 K) ‖ · · · ‖ JMn Kan ‖ an(J

−→
Vn K))

=

J (νak+1) · · ·(νan)(〈a1,E[returnW ],
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉) K
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and

Ccanon =⇒ (νak+1) · · ·(νan)(〈a1,E[returnW ],
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉)

as required.

Case J spawn M Ka1

J spawn M Ka1 = let chMb⇐ newCh in

fork JM KchMb

return chMb

JCcanon K

≡

G [JEK[

let chMb⇐ newCh in

fork JM KchMb;

return chMb

]a1 ‖ a1(J
−→
V1 K)]

By constructing the same derivation sequence as for E-Spawn in the simulation case :

(νb)(JEK[return b]a1 ‖ a1(J
−→
V1 K) ‖ JM Kb ‖ b(ε))

=

J (νb)(〈a1,E[return b],
−→
V1〉 ‖ 〈b,M,ε〉) K

In λact, we may write

〈a1,E[spawn M],
−→
V 〉

−→ (E-Spawn)

(νb)(〈a1,E[return ()],
−→
V1〉 ‖ 〈b,M,ε〉)

Thus, we can see that:

JCcanon K

=⇒
(νak+1) · · ·(νan)(νb)(JE[return b] Ka1 ‖ a1(J

−→
V1 K) ‖ · · · ‖ JMn Kan ‖ an(J

−→
Vn K) ‖ JM Kb ‖ b(ε))

=

J (νak+1) · · ·(νan)(νb)(〈a1,E[return b],
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉 ‖ 〈b,M,ε〉) K

and

Ccanon =⇒ (νak+1) · · ·(νan)(νb)(〈a1,E[return b],
−→
V1〉 ‖ · · · ‖ 〈an,Mn,

−→
Vn〉 ‖ 〈b,M,ε〉)

as required.
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Case JM Kch, where M is not a communication or concurrency construct

Follows from Lemma 30.

B.4 Translation (λ
ch

into λact)

B.4.1 Operational Correspondence

Theorem 16: Operational Correspondence (L− M)

Simulation If {A} Γ;∆ ` C1, and C1 −→ C2, then LC1 M=⇒∗ LC2 M.

Re�ection If {A} Γ;∆ ` C1, and LC1 M=⇒D , then there exist con�gurations C2 and E such

that C1 =⇒? C2 and D =⇒∗ E , where E =β LC2 M.

Proof. Simulation: By induction on the derivation of C1 −→ C2.

Case E-Give
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E[giveW a] ‖ a(
−→
V )

Def. L− M
(νb)(〈b,LE M[send (inl LW M)a],ε〉) ‖ 〈a,body (L

−→
V M, [ ]),ε〉

≡
(νb)(〈b,LE M[send (inl LW M)a],ε〉 ‖ 〈a,body (L

−→
V M, [ ]),ε〉)

−→ (E-Send)

(νb)(〈b,LE M[return ()],ε〉 ‖ 〈a,body (L
−→
V M, [ ]), inl LW M〉)

Let G [−] = (νb)([−] ‖ 〈b,LE M[return ()],ε〉)
G [〈a,body ([L

−→
V M], [ ]),(inl LW M)〉]

= (expanding body)

G [〈a, (rec g(state) .

let recvVal⇐ receive in

let (vals,readers) = state in

case recvVal{
inl v 7→ let newVals⇐ vals++ [v] in

let state′⇐ drain (newVals,readers) in

g (state′)

inrpid 7→ let newReaders⇐ readers++ [pid] in

let state′⇐ drain (vals,newReaders) in

g (state’)}) (L−→V M, [ ])

, inl LW M〉]

−→M

G [〈a, let recvVal⇐ receive in

let (vals,readers) = (L
−→
V M, [ ]) in

case recvVal{
inl v 7→ let newVals⇐ vals++ [v] in

let state′⇐ drain (newVals,readers) in

body (state′)

inrpid 7→ let newReaders⇐ readers++ [pid] in

let state′⇐ drain (vals,newReaders) in

body (state’)})

, inl LW M〉]
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−→ (E-Receive)

G [〈a, let recvVal⇐ return inl LW M in

let (vals,readers) = (L
−→
V M, [ ]) in

case recvVal{
inl v 7→ let newVals⇐ vals++ [v] in

let state′⇐ drain (newVals,readers) in

body (state′)

inrpid 7→ let newReaders⇐ readers++ [pid] in

let state′⇐ drain (vals,newReaders) in

body (state’)})

,ε〉]

−→M

G [〈a, let (vals,readers) = (L
−→
V M, [ ]) in

case inl LW M{
inl v 7→ let newVals⇐ vals++ [v] in

let state′⇐ drain (newVals,readers) in

body (state′)

inrpid 7→ let newReaders⇐ readers++ [pid] in

let state′⇐ drain (vals,newReaders) in

body (state’)})

,ε〉]

−→M

G [〈a, case inl LW M{
inl v 7→ let newVals⇐ L

−→
V M++ [v] in

let state′⇐ drain (newVals, [ ]) in

body (state′)

inrpid 7→ let newReaders⇐ [ ]++ [pid] in

let state′⇐ drain (L
−→
V M,newReaders) in

body (state’)})

,ε〉]

−→M

G [〈a, let newVals⇐ L
−→
V M++ [LW M] in

let state′⇐ drain (newVals, [ ]) in

body (state′)

,ε〉]
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−→∗M
G [〈a, let newVals⇐ L

−→
V ·W M in

let state′⇐ drain (newVals, [ ]) in

body (state′)

,ε〉]

−→M

G [〈a, let state′⇐ drain (L
−→
V ·W M, [ ]) in

body (state′)

,ε〉]

= (expanding drain)

G [〈a, let state′⇐ λx.

let (vals,pids) = x in

casevals{

[ ] 7→ return (vals,pids)

v :: vs 7→

casepids{

[ ] 7→ return (vals,pids)

pid :: pids 7→ send vpid;

return (vs,pids)

} } (L−→V ·W M, [ ]) in

body (state′)

,ε〉]

−→M

G [〈a, let state′⇐ let (vals,pids) = (L
−→
V ·W M, [ ]) in

casevals{

[ ] 7→ return (vals,pids)

v :: vs 7→

casepids{

[ ] 7→ return (vals,pids)

pid :: pids 7→ send vpid;

return (vs,pids)

} } in

body (state′)

,ε〉]
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−→M

G [〈a, let state′⇐ case L
−→
V ·W M{

[ ] 7→ return (L
−→
V ·W M, [ ])

v :: vs 7→

case [ ]{

[ ] 7→ return (L
−→
V ·W M, [ ])

pid :: pids 7→ send vpid;

return (vs,pids)

} } in

body (state′)

,ε〉]

−→M−→M

G [〈a, let state′⇐ return (L
−→
V ·W M, [ ]) in

body (state′)

,ε〉]

−→M

G [〈a,body (L
−→
V ·W M, [ ]),ε〉]

=

(νb)(〈b,LE M[return ()],ε〉 ‖ 〈a,body (L
−→
V ·W M, [ ]),ε〉)

≡
(νb)(〈b,LE M[return ()],ε〉) ‖ 〈a,body (L

−→
V ·W M, [ ]),ε〉

=

LE[return ()] ‖ a(L
−→
V ·W M) M

as required.

Case E-Take
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Assumption E[take a] ‖ a(W ·−→V )

Def.L− M (νb)(〈b,LE M[let selfPid⇐ self in

send (inr selfPid)a;

receive]

,ε〉) ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉

≡ (νb)(〈b,LE M[let selfPid⇐ self in

send (inr selfPid)a;

receive]

,ε〉 ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉)

−→ (E-Self) (νb)(〈b,LE M[let selfPid⇐ return b in

send (inr selfPid)a;

receive]

,ε〉 ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉)

−→M (Let) (νb)(〈a,LE M[send (inr b)a;

receive]

,ε〉 ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉)

−→ (E-Send) (νb)(〈b,LE M[return ();receive],ε〉 ‖ 〈a,body (LW M :: L
−→
V M, [ ]),(inr b)〉)

−→M (E-Let) (νb)(〈b,LE M[receive],ε〉 ‖ 〈a,body (LW M :: L
−→
V M, [ ]),(inr b)〉)

≡ (νb)(〈a,body (LW M :: L
−→
V M, [ ]),(inr b)〉 ‖ 〈b,LE M[receive],ε〉)

Now, let G [−] = (νb)(〈b,LE M[receive],ε〉 ‖ [−]).
Expanding, we begin with:

G [〈a, (rec g(state) .

let recvVal⇐ receive in

let (vals,readers) = state in

case recvVal{
inl v 7→ let newVals⇐ vals++ [v] in

let state′⇐ drain (newVals,readers) in

g (state′)

inrpid 7→ let newReaders⇐ readers++ [pid] in

let state′⇐ drain (vals,newReaders) in

g (state’)}) (LW M :: L
−→
V M, [ ])

,(inr b)〉]

Reducing the recursive function, receiving from the mailbox, splitting the pair, and then

taking the second branch on the case statement, we have:

G [〈a, let newReaders⇐ [ ]++ [b] in

let state′⇐ drain (vals,newReaders) in

body state′

,ε〉]



Appendix B. Proofs for Chapters 4–6 (Mixing Metaphors) 241

Reducing the list append operation, expanding drain, and re-expanding G , we have:

(νb)(〈b,E[receive],ε〉 ‖ 〈a, let state′⇐ (λx.

let (vals,readers) = x in

case vals {

[ ] 7→ return (vals,readers)

v :: vs 7→

case readers {

[ ] 7→ return (vals,readers)

pid :: pids 7→ send v pid;

return (vs, pids)}}) (LW M :: L
−→
V M, [b]) in

body state′

,ε〉

Next, we reduce the function application, pair split, and the case statements:

(νb)(〈b,E[receive],ε〉 ‖ 〈a, let state′⇐ send LW Mb;

return (L
−→
V M, [ ]))

body state′

,ε〉

We next perform the send operation, and thus we have:

(νb)(〈b,E[receive],LW M〉 ‖ 〈a,body ((L
−→
V M, [ ])),ε〉

Finally, we perform the receive and apply an equivalence to arrive at

(νb)(〈b,E[LW M],ε〉) ‖ 〈a,body ((L
−→
V M, [ ])),ε〉

which is equal to

LE[returnW ] ‖ a(
−→
V ) M

as required.

Case E-NewCh

Assumption E[newCh]

De�nition of L− M (νa)(〈a,LE M[spawn (body ([ ], [ ]))],ε〉)
−→ (E-Spawn) (νa)(νb)(〈a,LE M[return b],ε〉 ‖ 〈b,body ([ ], [ ]),ε〉)

≡ (νb)(νa)(〈a,LE M[return b],ε〉) ‖ 〈b,body ([ ], [ ]),ε〉)
= L (νb)(E[return b] ‖ b(ε)) M
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as required.

Case E-Fork

Assumption E[fork M]

Def. L− M (νa)(〈a,LE M[let x⇐ spawn LM M in return ()],ε〉)
−→ (E-Spawn) (νa)(νb)(〈a,LE M[let x⇐ return b in return ()],ε〉 ‖ 〈a,LM M,ε〉)

−→M (νa)(νb)(〈a,LE M[return ()],ε〉 ‖ 〈b,LM M,ε〉)
≡ (νa)(〈a,LE M[return ()],ε〉) ‖ (νb)(〈b,LM M,ε〉)
= LE[return ()] ‖M M

as required.

Case Lift Immediate by the induction hypothesis.

Case LiftV Immediate by Lemma 35.

Re�ection: Suppose reduction happens in an actor ai emulating a bu�er ai(
−→
Vi ). Here,

we have that a β-reduction takes place, and reduction becomes blocked on receive. This is

β-equivalent to the original translation, as required.

Thus, we need only consider the case where reduction occurs in an actor emulating a

thread. Without loss of generality, assume reduction occurs in actor b1. We may then proceed

by case analysis on the structure of LM1 M. We show the case for L give V W M here. The

remaining cases follow the same pattern.

Case LgiveV W M

For reduction to occur, we have that W must be some ν-bound name ai. Let us assume that

this is a1. Thus, we have that there exists some D such that Ccanon ≡D , where

D = G [〈b1,LE M[send LV Ma1],ε〉 ‖ 〈a1,body (L
−→
V1 M, [ ]),ε〉]

By constructing the same derivation as for the simulation case, we have that D =⇒+ D ′,
where

D ′ = G [〈b1,LE M[return ()],ε〉 ‖ 〈a1,body (L
−→
V1 ·V M, [ ]),ε〉]

In λch, we can show

E[giveV a1] ‖ a1(
−→
V1)

−→ (E-Give)

E[return ()] ‖ a1(
−→
V1 ·V )

Thus, we have that

LCcanon M=⇒+ (νak+1) · · ·(νan)((νb1)(〈b1,LE M[return ()],ε〉) ‖ · · · ‖ (νbn)(〈bn,LMn M,ε〉) ‖
〈a1,body (L

−→
V1 ·V M, [ ]),ε〉 ‖ · · · ‖ 〈an,body (L

−→
Vn M, [ ]),ε〉)

= L (νak+1) · · ·(νan)(E[return ()] ‖ · · · ‖Mm ‖ a1(
−→
V1 ·V ) ‖ · · · ‖ an(

−→
Vn)) M
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and

Ccanon =⇒ (νak+1) · · ·(νan)(E[return ()] ‖ · · · ‖Mm ‖ a1(
−→
V1 ·V ) ‖ · · · ‖ an(

−→
Vn))

as required.

B.5 Extensions

B.5.1 Translation (λ
ch

with synchronisation into λact)

Theorem 20: Operational Correspondence (L− M with synchronisation)

Simulation If Γ;∆ ` C1 and C1 −→ C2, then LC1 M=⇒∗ LC2 M.

Re�ection If Γ;∆ ` C1 and LC1 M =⇒ D , then there exists some C2 such that C1 =⇒∗ C2

and D =⇒∗ E , where E =β LC2 M.

Proof. We show the simulation case for E-Take; the remaining cases are unchanged. The

re�ection argument is identical to that in the proof of Theorem 16, and the re�ection case for

E-Wait follows by constructing the same derivation as for the simulation case.

Case E-Take
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E[take a] ‖ a(W ·−→V )

Def. L− M
(νb)(〈b,LE M[let requestorPid⇐

spawn (

let selfPid⇐ self in

send (inr selfPid)a;

receive) in

wait requestorPid ]

,ε〉) ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉

=⇒ (E-Spawn)

(νb)(νc)(〈b,LE M[let requestorPid

⇐ return c in

wait requestorPid]

,ε〉 ‖ 〈c, let selfPid⇐ self in

send (inr selfPid)a;

receive in

,ε〉) ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉

−→M

(νb)(νc)(〈b,LE M[wait c],ε〉 ‖ 〈c, let selfPid⇐ self in

send (inr selfPid)a;

receive

,ε〉) ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉

=⇒ (E-Self)

(νb)(νc)(〈b,LE M[wait c],ε〉 ‖ 〈c, let selfPid⇐ return c in

send (inr selfPid)a;

receive

,ε〉) ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉

−→M

(νb)(νc)(〈b,LE M[wait c],ε〉 ‖ 〈c,send (inr c)a;

receive

,ε〉 ‖ 〈a,body (LW M :: L
−→
V M, [ ]),ε〉)

=⇒ (E-Send)

(νb)(νc)(〈b,LE M[wait c],ε〉 ‖ 〈c,return ();

receive

,ε〉 ‖ 〈a,body (LW M :: L
−→
V M, [ ]), inr c〉)

−→M

(νb)(νc)(〈b,LE M[wait c],ε〉 ‖ 〈c,receive,ε〉 ‖ 〈a,body (LW M :: L
−→
V M, [ ]), inr c〉)

≡
(νb)(νc)(〈a,body (LW M :: L

−→
V M, [ ]), inr c〉 ‖ 〈b,LE M[wait c],ε〉 ‖ 〈c,receive,ε〉)

Now, let G [−] = (νb)(νc)([−] ‖ 〈b,LE M[wait c],ε〉 ‖ 〈c,receive,ε〉.
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Now, we observe the reduction of actor a.

G [〈a, (rec g(state) .

let recvVal⇐ receive in
let (vals,readers) = state in

case recvVal{
inl v 7→ let newVals⇐ vals++ [v] in

let state′⇐ drain (newVals,readers) in

g (state′)

inrpid 7→ let newReaders⇐ readers++ [pid] in

let state′⇐ drain (vals,newReaders) in

g (state’)})
(LW M :: L

−→
V M, [ ])

,(inr c)〉]

Reducing the recursive function, receiving from the mailbox, splitting the pair, and then

taking the second branch on the case statement, we have:

G [〈a, let newReaders⇐ [ ]++ [c] in
let state′⇐ drain (vals,newReaders) in
body state′

,ε〉]

Reducing the list append operation, expanding drain, and re-expanding G , we have:

(νb)(νc)(〈a, let state′⇐ (λx.

let (vals,readers) = x in

case vals {

[ ] 7→ return (vals,readers)

v :: vs 7→

case readers {

[ ] 7→ return (vals,readers)

pid :: pids 7→ send v pid;

return (vs, pids)}}

) (LW M :: L
−→
V M, [c]) in

body state′

,ε〉 ‖ 〈b,LE M[wait c],ε〉 ‖ 〈c,receive,ε〉
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Finally:

(νb)(νc)(〈a, let state′⇐ send LW M c;

return (L
−→
V M, [ ]))

body state
′

,ε〉 ‖ 〈b,LE M[wait c],ε〉 ‖ 〈c,receive,ε〉

=⇒ (E-Send)

(νb)(νc)(〈a,body ((L
−→
V M, [ ])),ε〉 ‖ 〈b,LE M[wait c],ε〉 ‖ 〈c,receive,LW M〉)

=⇒ (E-Receive)

(νb)(νc)(〈a,body ((L
−→
V M, [ ])),ε〉 ‖ 〈b,LE M[wait c],ε〉 ‖ 〈c,returnW,ε〉)

=⇒ (E-Wait)

(νb)(νc)(〈a,body ((L
−→
V M, [ ])),ε〉 ‖ 〈b,LE M[return LW M],ε〉 ‖ 〈c,return LW M,LW M〉)

≡
(νb)(〈b,LE M[return LW M],ε〉) ‖ 〈a,body ((L

−→
V M, [ ])),ε〉

=

LE[returnW ] ‖ a(
−→
V ) M

as required.

B.5.2 Translation (λact with selective receive into λact)

Lemma 42 Suppose Γ | 〈`i : Ai〉i ` receive {−→c } and Γ `V : 〈`i : Ai〉i, where V = 〈`=V ′〉.
If ¬(matchesAny(−→c ,V )), then

case bVc{branches(−→c ,mb,default)} −→+
M default bVc

Proof. For it to be the case that ¬(matchesAny(−→c ,V )), we must have that for all ci ∈−→c where

ci = 〈`i = xi〉when Mi 7→ Ni, that either `i 6= `, or `i = `, but Mi{V ′/xi} −→∗M false.

Recall that:

branches(−→c ,mb,default), patBranches(−→c ,mb,default) ·defaultBranches(−→c ,mb,default)

If ` 6= `i for all patterns in
−→c , then there will be no corresponding branch in patBranches, but

there will be a branch 〈`= x〉 7→ default 〈`= x〉 in defaultBranches, reducing to the required

result default bVc.
On the other hand, suppose we have a set of clauses

−→
c′ ⊆ −→c such that for each (〈`′ =

x j〉when M j 7→ N j) j ∈
−→
c′ , it is the case that `′ = `. Then, for all M j, M j{V ′/x j} −→∗M false.

By the de�nition of patBranches, the case statement will reduce to ifPats(mb, `,x,
−→
c′ ,default)

for some fresh x.

We must now show:

ifPats(mb, `,x,
−→
c′ ,default)−→∗M default bVc
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This result can now be established by induction on the structure of

−→
c′ , by the de�nition of ifPats.

If

−→
c′ = ε, then by de�nition we have defaultbVc. Now suppose

−→
c′ =(〈`= x〉when M 7→N) ·

−→
c′′ ,

where M{V ′/x} −→∗M false. By Lemma 41, bM{V ′/x}cmb−→∗M return (false,mb), and thus

the else branch will be taken and we can conclude by the induction hypothesis.

Lemma 43 Suppose Γ | 〈`i : Ai〉i ` receive {−→c } and Γ `V : 〈`i : Ai〉i, where V = 〈`=V ′〉.
If ¬(matchesAny(−→c ,V )), then

find(−→c ) (mb1,bVc :: b−→W c)−→+
M find(−→c ) (mb1 ++ [bVc],b−→W c)

Proof. We begin with

find(−→c ) (mb1,bVc :: b−→W c)

By β-reducing the recursive function application, pair deconstruction, and case expression:

let mb′⇐ mb1 ++ b
−→
W c in

case bVc{branches(−→c ,mb
′,

λy.let mb
′
1⇐mb1 ++ [y] in

find(−→c ) (mb
′
1,b
−→
W c))}

By reducing the let binding and applying Lemma 42, we arrive at

(λy.letmb
′
1 =mb1 ++ [y] in find(−→c ) (mb

′
1,b
−→
W c)) bVc

Finally, reducing the function application and let binding, we arrive at

find(−→c ) (mb1 ++ [bVc],b−→W c)

as required.

Lemma 44 Suppose Γ | 〈`i : Ai〉i ` receive {−→c }.
Suppose:

• ∃k, l.∀i.i < k.¬(matchesAny(−→c ,Vi))∧matches(cl,Vk)∧∀ j. j < l⇒¬(matches(c j,Vk)).

• Γ `Vk : 〈`i : Ai〉i.
• Vk = 〈`k =V ′k〉
Then:

case bVkc{branches(−→c ,mb,default)} −→+
M (bNlcmb){bV ′kc/xl}



Appendix B. Proofs for Chapters 4–6 (Mixing Metaphors) 248

Proof. If matches(cl,Vk), then cl must be of the form {〈`k = xl〉 when Ml 7→ Nl}, with

Ml{V ′k/xl} −→∗M true. By the de�nition of patBranches, we know that there exists an or-

dered list
−→c` where

−→c` is a sublist of
−→c , and label(cl) = `k. We must now show

ifPats(mb, `,x,−→c` ,default)−→∗M (bNlcmb){bVkc/xl}

We proceed by induction on the structure of the sublist [ci | ci ∈ −→c` , i≤ l].

The base case is that of a singleton list consisting of cl . For ifPats(mb, `,y,cl,default),

by Lemma 41, bMlcmb −→M return (true,mb). Reducing, we take the true branch of the

if-statement, and arrive at (bNlcmb){bVkc/xl} as required.

The inductive case considers some pattern ci · −→c` ′ where i < l. Since i < l =⇒
¬(matches(ci,Vk)) we have that Mi −→∗M return false and by Lemma 41, we have that

bMcmb{bVkc/xi} −→∗M return (false,mb). We can thus take the false branch and conclude

with the induction hypothesis.

Lemma 45 Suppose Γ;∆ ` 〈a,receive {−→c },−→W ·U ·
−→
W ′〉 and ¬matchesAny(−→c ,U). Then:

〈a,E[loop(−→c ) b−→W c],bUc · b
−→
W ′c〉 −→+ 〈a,E[loop(−→c ) b−→W c++ [bUc]],b

−→
W ′c〉

Proof. We begin with

〈a,E[loop(−→c ) b−→W c],bUc · b
−→
W ′c〉

Expanding loop(−→c ) and reducing the function application:

〈a,E[let x⇐ receive in

case x{branches(−→c ,b−→W c,λy.let mb
′⇐ b−→W c++ [y] in

loop(−→c )mb
′})

],bUc · b
−→
W ′c〉

Applying E-Receive and β-reducing:

〈a,E[case bUc{branches(−→c ,b−→W c,λy.let mb
′⇐ b−→W c++ [y] in

loop(−→c )mb
′})

],b
−→
W ′c〉

By Lemma 42:

〈a,E[(λy.let mb
′⇐ b−→W c++ [y] in

loop(−→c )mb
′) bUc

],b
−→
W ′c〉

β-reducing the function application and let-binding, we arrive at

〈a,E[loop(−→c ) b−→W c++ [bUc]],b
−→
W ′c〉

as required.



Appendix C

Proofs for Chapter 8 (Asynchronous

GV)

C.1 Preservation

Theorem 25: Preservation (Con�guration reduction) If Γ;∆`φ C and C −→D , then there

exist some Γ′,∆′ such that Γ;∆−→? Γ′;∆′ and Γ′;∆′ `φ D .

Proof. By induction on the derivation of C −→D . Where there is a choice of value for φ, we

consider the case where φ = •; the cases where φ = ◦ are similar.

Case E-Fork

Assumption:

Γ1,Γ2 ` E[forkλx.M] : A

Γ1,Γ2; · `• •E[forkλx.M]

By Lemma 47:

Γ2,x : S `M : End!

Γ2 ` λx.M : S ( End!

Γ2 ` forkλx.M : S

By Lemma 46, Γ2,b : S `M{b/x} : End!, and by Lemma 48, Γ1,a : S ` E[a] : A.

249
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Reconstructing:

Γ1,a : S ` E[a] : A

Γ1,a : S; · `• •E[a]

Γ2,b : S `◦ ◦M{b/x}

S/ε = S/ε · ` ε : ε · ` ε : ε

·;a : S,b : S `◦ a(ε)!b(ε)

Γ2;a : S,b : S] `◦ M{b/x} ‖ a(ε)!b(ε)

Γ1,Γ2;a : S],b : S] `• •E[a] ‖ ◦M{b/x} ‖ a(ε)!b(ε)

Γ1,Γ2;a : S] `• (νb)(•E[a] ‖ ◦M{b/x} ‖ a(ε)!b(ε))

Γ1,Γ2; · `• (νa)(νb)(•E[a] ‖ ◦M{b/x} ‖ a(ε)!b(ε))

Case E-Send

Assumption:

Γ1,Γ2 ` E[sendU a] : C

Γ1,Γ2,a : S; · `• •E[sendU a]

S/
−→
A = T/

−→
B Γ3 `

−→
V :
−→
A Γ4 `

−→
W :
−→
B

Γ3,Γ4;a : S,b : T `◦ a(
−→
V )!b(

−→
W )

Γ1,Γ2,Γ3,Γ4;a : S],b : T `• •E[sendU a] ‖ a(
−→
V )!b(

−→
W )

By Lemma 47:

Γ2 `U : A a : !A.S′ ` a : !A.S′

Γ2,a : !A.S′ ` sendU a : S′

Thus, S = !A.S′, and S = ?A.S′. We may therefore re�ne our original derivation:

Γ1,Γ2,a : !A.S′ ` E[sendU a] : C

Γ1,Γ2,a : !A.S′; · `• •E[sendU a]

?A.S′/
−→
A = T/

−→
B Γ3 `

−→
V :
−→
A Γ4 `

−→
W :
−→
B

Γ3,Γ4;a : ?A.S′,b : T `◦ a(
−→
V )!b(

−→
W )

Γ1,Γ2,Γ3,Γ4;a : !A.S′],b : T `• •E[sendU a] ‖ a(
−→
V )!b(

−→
W )

Since ?A.S′/
−→
A = T/

−→
B is de�ned, we have that

−→
A = ε. By the de�nition of slicing, we have

that T = !B1. · · · .!Bn.!A.S′ for each Bi. It follows that S′/
−→
A = T/

−→
B ·A.

By Lemma 48, we have Γ1,Γ2,a : S′ ` E[a] : C.

Reconstructing:

Γ1,a : S′ ` E[a] : C

Γ1,a : S′; · `• •E[a]

S′/
−→
A = T/

−→
B ·A Γ3 `

−→
V :
−→
A Γ2,Γ4 `

−→
W ·U :

−→
B ·A

Γ2,Γ3,Γ4;a : S′,b : T `◦ a(
−→
V )!b(

−→
W ·U)

Γ1,Γ2,Γ3,Γ4;a : S′],b : T `• •E[a] ‖ a(
−→
V )!b(

−→
W )

Finally, we must show environment reduction:

!A.S′ −→ S′

Γ1,Γ2,Γ3,Γ4;a : !A.S′],b : T −→ Γ1,Γ2,Γ3,Γ4;a : S′],b : T

as required.
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Case E-Receive

Assumption:

Γ1,a : S ` E[receive a] : C

Γ1,a : S; · `• •E[receive a]

S/A ·−→A = T/
−→
B Γ2,Γ3 `U ·−→V : A ·−→A Γ4 `

−→
W :
−→
B

Γ2,Γ3,Γ4;a : S,b : T `◦ a(U ·−→V )!b(
−→
W )

Γ1,Γ2,Γ3,Γ4;a : S],b : T `• •E[receive a] ‖ a(U ·−→V )!b(
−→
W )

By Lemma 47:

a : ?A.S′ ` a : ?A.S′

a : ?A.S′ ` receive a : (A×S′)

Thus, we have that S = ?A.S′ and S = !A.S′, and we may therefore re�ne the original typing

derivation:

Γ1,a : ?A.S′ ` E[receive a] : C

Γ1,a : ?A.S′; · `• •E[receive a]

!A.S′/A ·−→A = T/
−→
B

Γ1 `U : A Γ3 `
−→
V :
−→
A

Γ2,Γ3 `U ·−→V : A ·−→A Γ4 `
−→
W :
−→
B

Γ2,Γ3,Γ4;a : !A.S′,b : T `◦ a(U ·−→V )!b(
−→
W )

Γ1,Γ2,Γ3,Γ4;a : (?A.S′)],b : T `• •E[receive a] ‖ a(U ·−→V )!b(
−→
W )

By Lemma 48, we have Γ1,Γ2,a : S′ ` E[(U,a)] : C (that Γ1,Γ2 is de�ned follows from

the fact that Γ1 and Γ2 are sub-environments of the original typing environment and are

therefore necessarily disjoint).

By the de�nition of slicing, !A.S′/A ·−→A = S′/
−→
A .

Thus, recomposing:

Γ1,Γ2,a : S′ ` E[(U,a)] : C

Γ1,Γ2,a : S′; · `• •E[(U,a)]

S′/
−→
A = T/

−→
B Γ3 `

−→
V :
−→
A Γ4 `

−→
W :
−→
B

Γ3,Γ4;a : S′,b : T `◦ a(
−→
V )!b(

−→
W )

Γ1,Γ2,Γ3,Γ4;a : S′],b : T `• •E[(U,a)] ‖ a(
−→
V )!b(

−→
W )

Finally, we must show environment reduction:

?A.S′ −→ S′

Γ1,Γ2,Γ3,Γ4;a : ?A.S′];b : T −→ Γ1,Γ2,Γ3,Γ4;a : S′],b : T

as required.

Case E-Wait
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Assumption:

Γ,a : S ` E[wait a] : C

Γ,a : S; · `• •E[wait a]

b : End! ` b : End!

b : End!; · `◦ ◦b

S/ε = End?/ε · ` ε : ε · ` ε : ε

·;a : S,b : End? `◦ a(ε)!b(ε)

·;a : S,b : End]
! `
◦ ◦b ‖ a(ε)!b(ε)

Γ;a : S],b : End]
! `
• •E[wait a] ‖ ◦b ‖ a(ε)!b(ε)

Γ;a : S] `• (νb)(•E[wait a] ‖ ◦b ‖ a(ε)!b(ε))

Γ; · `• (νa)(νb)(•E[wait a] ‖ ◦b ‖ a(ε)!b(ε))

By Lemma 47:

a : End? ` a : End?

a : End? `wait a : 1

Thus, we can re�ne our original typing derivation:

Γ,a : End? ` E[wait a] : C

Γ,a : End?; · `• •E[wait a]

b : End! ` b : End!

b : End!; · `◦ ◦b

End!/ε = End?/ε · ` ε : ε · ` ε : ε

·;a : End!,b : End? `◦ a(ε)!b(ε)

·;a : End!,b : End]
! `
◦ ◦b ‖ a(ε)!b(ε)

Γ;a : End]
?,b : End]

! `
• •E[wait a] ‖ ◦b ‖ a(ε)!b(ε)

Γ;a : End]
? `
• (νb)(•E[wait a] ‖ ◦b ‖ a(ε)!b(ε))

Γ; · `• (νa)(νb)(•E[wait a] ‖ ◦b ‖ a(ε)!b(ε))

By Lemma 48, we can show that Γ ` E[()] : C, and thus that

Γ ` E[()] : C

Γ; · `• •E[()]

as required.

Case E-LiftC

Assumptions:

• Γ;∆ `φ G [C ]

• C −→D

Let D be a derivation of Γ;∆ `φ G [C ]. By Lemma 49, we have that there exists some D′

such that D′ is a subderivation of D concluding Γ′;∆′ `φ′ C , where the position of D′ in D

corresponds to that of the hole in G .

By the IH, we have that there exists some Γ′′;∆′′ such that Γ;∆−→? Γ′′;∆′′ and Γ′′;∆′′ `φ

D .
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By Lemma 50, we have that there exist some Γ′′′;∆′′′ such that Γ;∆ −→? Γ′′′;∆′′′ and

Γ′′′;∆′′′ `φ G [D], as required.

Case E-LiftM

Assumptions:

Γ `M : A

Γ; · `• •M

and M −→M N. By Lemma 51, we have that Γ ` N : A. Recomposing:

Γ ` N : A

Γ; · `• •N

as required.

C.2 Progress

Lemma 56 Suppose Ψ;∆ `• C , where C is in canonical form and C 6=⇒. Then C satis�es open

progress.

Proof. By induction on the derivation of Ψ;∆ `• C . By the de�nition of canonical forms in

AGV, we have three cases:

Case C = (νa)(A ‖D), with a ∈ fn(A), and where D is in canonical form

By assumption, we know that Ψ;∆ `• (νa)(A ‖D).

This con�guration is typeable by T-Nu, followed by either T-Connect1 or T-Connect2.

Subcase T-Connect1

Ψ1,a : S;∆1 `◦ A Ψ2;∆2,a : S `• D

Ψ1,Ψ2;∆1,∆2,a : S] `• A ‖D

Ψ1,Ψ2;∆1,∆2 `• (νa)(A ‖D)

By the de�nition of auxiliary threads and inversion on the typing relation, we know that A
is of one of the following forms:

1. ◦M, where a ∈ fn(M), and Ψ1,a : S `M : End!

2. b(
−→
V )!c(

−→
W ), where b,c ∈ fn(∆1) and a ∈ fn(

−→
V )
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3. b(
−→
V )!c(

−→
W ), where b,c ∈ fn(∆1) and a ∈ fn(

−→
W )

(since a 6∈ fn(∆1), it cannot be the case that a appears as a bu�er endpoint). Items (2) and

(3) satisfy (1)(a)(ii) in the de�nition of open progress.

Lemma 55 tells us that either there exists some M′ such that M −→M M′; that M is a

value; or that M is a communication and concurrency construct. Since C 6=⇒, we have that

M is unable to reduce (as otherwise C could reduce by E-LiftM).

Since a ∈ fn(M), it could be the case that Ψ1 = · and thus a : End! ` ◦a, satisfying

(1)(a)(i).

Otherwise, we have that M has the form E[N], where N is a communication / con-

currency construct (i.e., forkV , sendV W , receiveV , or waitV ). Of these, forkV can

always reduce. By T-Send, W must have session type !A.S; since Ψ contains only runtime

names, it must therefore be the case that W is a runtime name b ∈ fn(Ψ1,a : S) and thus

ready(b,sendV b), satisfying (1)(a)(i). A similar argument applies for T-Recv and T-Wait.

Subcase T-Connect2

Ψ1;∆1,a : S `◦ A Ψ2,a : S;∆2 `• D

Ψ1,Ψ2;∆1,∆2,a : S] `• A ‖D

Ψ1,Ψ2;∆1,∆2 `• (νa)(A ‖D)

By the de�nition of auxiliary threads and inversion on the typing relation, we know that A
is of the following forms:

• a(
−→
V )!b(

−→
W ), where b ∈ fn(∆1)

• b(
−→
V )!a(

−→
W ), where b ∈ fn(∆1)

(as a ∈ fn(A) and a ∈ fn(∆1), it cannot be the case that A is a child thread, as these require

empty runtime typing environments).

By the induction hypothesis, we know that D satis�es open progress; hence (νa)(A ‖D)

satis�es open progress.

Case C = A ‖M

There are again two subcases, based on whether the parallel composition arises as a result of

T-Connect1 or T-Connect2.

Subcase T-Connect1

Ψ1,a : S;∆1 `◦ A Ψ2;∆2,a : S `• M

Ψ1,Ψ2;∆1,∆2,a : S] `• A ‖M

By inversion on the typing rules, we have that A may be:
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• A child thread ◦M, where a ∈ fn(M)

• A bu�er b(
−→
V )!c(

−→
W ), where b,c 6= a and either a ∈ fn(

−→
V ) or a ∈ fn(

−→
W )

In the case of (1), by Lemma 55, we have that either M is a value; there exists N such

that M −→M N; or M = E[N] for some E,N, where N is a communication / concurrency

construct.

By T-Child, Ψ1,a : S `M : End!. Since a ∈ fn(M) and the only value with type End!

is a variable or runtime name, it could be the case that Ψ1 = · and thus M = a, satisfying

(1)(a)(i).

Otherwise, since C 6=⇒, it cannot be the case that M −→M N, since otherwise C
could reduce. Thus, it must be the case that M = E[N] where N is a communication and

concurrency construct; by similar reasoning as above cases, it therefore must be the case

that ready(b,M) for some b ∈ fn(Ψ1,a : S).

(2) and (3) satisfy the required conditions by de�nition.

Subcase T-Connect2

Ψ1;∆1,a : S `◦ A ;Ψ2,a : S;∆2 `• M

Ψ1,Ψ2;∆1,∆2,a : S] `• A ‖M

Since the runtime typing environment ∆1,a : S is non-empty, it cannot be the case that A
is a child thread. Thus, A must either be of the form:

1. a(
−→
V )!b(

−→
W ), where a,b ∈ fn(∆1); or

2. b(
−→
V )!a(

−→
W ), where a,b ∈ fn(∆1)

which satisfy the required conditions by de�nition.

By the induction hypothesis, we know that M satis�es open progress; hence A ‖M
satis�es open progress.

Case C = •M

By Lemma 55, we have that either M is a value V , which satis�es open progress, or that M

is a concurrency construct (i.e., forkV , sendV W , receiveV , or waitV ). Of these, forkV

can always reduce. By T-Send, W must have session type !A.S; since Ψ contains only

runtime names, it must therefore be the case that W is a runtime name a ∈ fn(Ψ) and thus

ready(a,sendV a). A similar argument applies for T-Recv and T-Wait.



Appendix D

Proofs for Chapter 9 (Exceptional

GV)

D.1 Preservation

In this section, we present proofs that typeability is preserved by con�guration reduction.

D.1.1 Equivalence

We begin by describing the properties of con�guration equivalence. As described in §9.3,

typeability of con�gurations is not preserved by equivalence. Nonetheless, Lemma 67 shows

that only the associativity of parallel composition may cause a con�guration to be ill-typed.

Lemma 67. If Γ;∆ `φ C and C ≡D , where the derivation of C ≡D does not contain a use of

the axiom for associativity, then Γ;∆ `φ D .

Proof. By induction on the derivation of C ≡D , examining the equivalence in both directions to

account for symmetry. We show that a typing derivation of the left-hand side of an equivalence

rule implies the existence of the right-hand side, and vice versa.

That re�exivity, transitivity, and symmetry of the equivalence relation respect typing

follows immediately because equality of typing derivations is an equivalence relation.

We make implicit use of the induction hypothesis.

Congruence rules

Case Name restriction

C ≡D

(νa)C ≡ (νa)D

256
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Γ;∆,a : S] `φ C

Γ;∆ `φ (νa)C ⇐⇒

Γ;∆,a : S] `φ D

Γ;∆ `φ (νa)D

Case Parallel Composition

C ≡D

C ‖ E ≡D ‖ E

There are three subcases, based on whether the parallel composition arises from T-

Connect1, T-Connect2, or T-Mix.

Subcase T-Mix

Γ1;∆1 `φ1 C Γ2;∆2 `φ2 E

Γ1,Γ2;∆1,∆2 `φ1+φ2 C ‖ E ⇐⇒

Γ1;∆1 `φ1 D Γ2;∆2 `φ2 E

Γ1,Γ2;∆1,∆2 `φ1+φ2 D ‖ E

Subcase T-Connect1

Γ1,a : S;∆1 `φ1 C Γ2;∆2,a : S `φ2 E

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖ E ⇐⇒

Γ1,a : S;∆1 `φ1 D Γ2;∆2,a : S `φ2 E

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 D ‖ E

Subcase T-Connect2

Γ1;∆1,a : S `φ1 C Γ2,a : S;∆2 `φ2 E

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖ E ⇐⇒

Γ1;∆1,a : S `φ1 D Γ2,a : S;∆2 `φ2 E

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 D ‖ E

Equivalence Axioms

Case C ‖D ≡D ‖ C

There are three subcases, based on which rule is used for parallel composition.

Subcase T-Mix

Γ1;∆1 `φ1 C Γ2;∆2 `φ2 D

Γ1,Γ2;∆1,∆2 `φ1+φ2 C ‖D
⇐⇒

Γ2;∆2 `φ2 D Γ1;∆1 `φ1 C

Γ1,Γ2;∆1,∆2 `φ2+φ1 D ‖ C

Subcase T-Connect1

Γ1,a : S;∆1 `φ1 C Γ2;∆2,a : S `φ2 D

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖D
⇐⇒

Γ2;∆2,a : S `φ2 D Γ1,a : S;∆1 `φ1 C

Γ1,Γ2;∆1,∆2,a : S] `φ2+φ1 D ‖ C
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Subcase T-Connect2

Γ1;∆1,a : S `φ1 C Γ2,a : S;∆2 `φ2 D

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖D
⇐⇒

Γ2,a : S;∆2 `φ2 D Γ1;∆1,a : S `φ1 C

Γ1,Γ2;∆1,∆2,a : S] `φ2+φ1 D ‖ C

Case C ‖ (νa)D ≡ (νa)(C ‖D) if a 6∈ fn(C )

There are again three subcases based on which parallel composition rule is used. The exact

rule does not a�ect the discussion, so without loss of generality we assume this is T-Mix.

Γ1;∆1 `φ1 C

Γ2;∆2,a : S] `φ2 D

Γ2;∆2 `φ2 (νa)D

Γ1,Γ2;∆1,∆2 `φ1+φ2 C ‖ (νa)D ⇐⇒

Γ1;∆1 `φ1 C Γ2;∆2,a : S] `φ2 D

Γ1,Γ2;∆1,∆2,a : S] `φ1+φ2 C ‖D

Γ1,Γ2;∆1,∆2 `φ1+φ2 (νa)(C ‖D)

In the left-to-right direction, that Γ1,Γ2;∆1,∆2,a : S] is well-de�ned follows because

a 6∈ fn(C ).

Case (νa)(νb)C ≡ (νb)(νa)C

Γ;∆,a : S],b : T ] `φ C

Γ;∆,a : S] `φ (νb)C

Γ;∆ `φ (νa)(νb)C ⇐⇒

Γ;∆,b : T ],a : S] `φ C

Γ;∆,b : T ] `φ (νa)C

Γ;∆ `φ (νb)(νa)C

Case a(
−→
V )!b(

−→
W )≡ b(

−→
W )!a(

−→
V )

S/
−→
A = T/

−→
B Γ1 `

−→
V :
−→
A Γ2 `

−→
W :
−→
B

Γ1,Γ2;a : S,b : T `◦ a(
−→
V )!b(

−→
W ) ⇐⇒

T/
−→
B = S/

−→
A Γ2 `

−→
W :
−→
B Γ1 `

−→
V :
−→
A

Γ1,Γ2;a : S,b : T `◦ b(
−→
W )!a(

−→
V )

The above holds because S/
−→
A = T/

−→
B ⇐⇒ T/

−→
B = S/

−→
A :

S/
−→
A = T/

−→
B

⇐⇒ (duality)

S/
−→
A = T/

−→
B

⇐⇒ (duality is involutive)

S/
−→
A = T/

−→
B

⇐⇒ (equality is symmetric)

T/
−→
B = S/

−→
A

Case ◦() ‖ C ≡ C
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· ` () : 1

·; · `◦ ◦() Γ;∆ `φ C

Γ;∆ `φ ◦() ‖ C ⇐⇒ Γ;∆ `φ C

Case (νa)(νb)( a ‖  b ‖ a(ε)!b(ε)) ‖ C ≡ C

a : S; · `◦  a

b : T ; · `◦  b

S/ε = T/ε · ` ε : ε · ` ε : ε

·;a : S,b : T `◦ a(ε)!b(ε)

·;a : S,b : T ] `◦  b ‖ a(ε)!b(ε)

·;a : S],b : T ] `◦  a ‖  b ‖ a(ε)!b(ε)

·;a : S] `◦ (νb)( a ‖  b ‖ a(ε)!b(ε))

·; · `◦ (νa)(νb)( a ‖  b ‖ a(ε)!b(ε)) Γ;∆ `φ C

Γ;∆ `φ (νa)(νb)( a ‖  b ‖ a(ε)!b(ε)) ‖ C ⇐⇒ Γ;∆ `φ C

While it is true that re-associating parallel composition may cause a con�guration to be

ill-typed, Lemma 68 shows that it is always possible to re-associate parallel composition either

directly, or by �rst commuting two subcon�gurations.

Lemma 68 (Associativity).

• If Γ;∆ `φ C ‖ (D ‖ E), then either Γ;∆ `φ (C ‖D) ‖ E or Γ;∆ `φ (C ‖ E) ‖D .

• If Γ;∆ `φ (C ‖D) ‖ E , then either Γ;∆ `φ C ‖ (D ‖ E) or Γ;∆ `φ D ‖ (C ‖ E).

Proof. The cases where either parallel composition arises by T-Mix are unproblematic and

can be re-associated without jeopardising typeability. Therefore, we concentrate on the cases

where both compositions arise via T-Connecti.

Case C ‖ (D ‖ E)

By the assumption that Γ;∆`φ C ‖ (D ‖E) we have that Γ=Γ1,Γ2,Γ3, and ∆=∆1,∆2,∆3,a :

S],b : T ]
, and φ = φ1 +φ2 +φ3. There are 8 cases, based on whether a,b ∈ fn(D) or a,b ∈

fn(E) (it cannot be the case that a,b ∈ fn(C ), as C only occurs under a single parallel

composition), and the exact dualisation (i.e., whether composition happens via T-Connect1

or T-Connect2).

Of these, we are only interested in the cases where the sharing of the names di�ers,

as opposed to the dualisation. Thus, we consider the following two cases, where both

compositions occur using T-Connect1:
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1. Γ1,a : S;∆1 `φ1 C , and Γ2,b : T ;∆2,a : S `φ2 D , and Γ3;∆3,b : T `φ3 E

2. Γ1,a : S;∆1 `φ1 C , and Γ2,b : T ;∆2 `φ2 D , and Γ3;∆3,a : S,b : T `φ3 E

Subcase a ∈ fn(C ),a,b ∈D,b ∈ E

Γ1,a : S;∆1 `φ1 C

Γ2,b : T ;∆2,a : S `φ2 D Γ3;∆3,b : T `φ3 E

Γ2,Γ3;∆2,∆3,a : S,b : T ] `φ2+φ3 D ‖ E

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 C ‖ (D ‖ E)

As D contains both a and b, associativity does not alter the sharing of names and may be

applied safely.

Γ1,a : S;∆1 `φ1 C Γ2,b : T ;∆2,a : S `φ2 D

Γ1,Γ2,b : T ;∆1,∆2,a : S] `φ1+φ2 C ‖D Γ3;∆3,b : T `φ3 E

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 (C ‖D) ‖ E

Subcase a ∈ fn(C );b ∈D;a,b ∈ E

Γ1,a : S;∆1 `φ1 C

Γ2,b : T ;∆2 `φ2 D Γ3;∆3,a : S,b : T `φ3 E

Γ2,Γ3;∆2,∆3,a : S,b : T ] `φ2+φ3 D ‖ E

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 C ‖ (D ‖ E)

Here, we may not apply associativity directly. But, we may �rst commute D and E :

Γ1,a : S;∆1 `φ1 C

Γ3;∆3,a : S,b : T `φ3 E Γ2,b : T ;∆2 `φ2 D

Γ2,Γ3;∆2,∆3,a : S,b : T ] `φ2+φ3 E ‖D

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 C ‖ (E ‖D)

and from here we may safely re-associate to the left:

Γ2,a : S;∆2 `φ1 C Γ3;∆3,a : S,b : T `φ3 E

Γ2,Γ3;∆2,∆3,a : S],b : T `φ1+φ2 D ‖ E Γ3,b : T ;∆3 `φ3 D

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 (C ‖ E) ‖D

Case (C ‖D) ‖ E

1. Γ1,a : S;∆1 `φ1 C , and Γ2,b : T ;∆2,a : S `φ2 D , and Γ3;∆3,b : T `φ3 E

2. Γ1,a : S,b : T ;∆1 `φ1 C , and Γ2;∆2,b : T `φ2 D , and Γ3;∆3,a : S `φ3 E
Subcase a ∈ C ;a,b ∈D;b ∈ E
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Assumption:

Γ1,a : S;∆1 `φ1 C Γ2,b : T ;∆2,a : S `φ2 D

Γ1,Γ2,b : T ;∆1,∆2,a : S] `φ1+φ2 C ‖D Γ3;∆3,b : T `φ3 E

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 (C ‖D) ‖ E

Applying associativity here does not make the con�guration ill-typed, as D contains both

names:

Γ1,a : S;∆1 `φ1 C

Γ2,b : T ;∆2,a : S `φ2 D Γ3;∆3,b : T `φ3 E

Γ2,Γ3;∆2,∆3,a : S,b : T ] `φ2+φ3 D ‖ E

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 C ‖ (D ‖ E)

Subcase a,b ∈ C ;a ∈D;b ∈ E
Assumption:

Γ1,a : S,b : T ;∆1 `φ1 C Γ2;∆2,a : S `φ2 D

Γ2,Γ3,b : T ;∆2,∆3,a : S] `φ2+φ3 C ‖D Γ3;∆3,b : T `φ3 E

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 (C ‖D) ‖ E

By commutativity:

Γ2;∆2,a : S `φ2 D Γ1,a : S,b : T ;∆1 `φ1 C

Γ2,Γ3,b : T ;∆2,∆3,a : S] `φ2+φ1 D ‖ C Γ3;∆3,b : T `φ3 E

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 (D ‖ C ) ‖ E

By associativity:

Γ2;∆2,a : S `φ2 D

Γ1,a : S,b : T ;∆1 `φ1 C Γ3;∆3,b : T `φ3 E

Γ1,Γ3,a : S;∆1,∆3,b : T ] `φ1+φ3 C ‖ E

Γ1,Γ2,Γ3;∆1,∆2,∆3,a : S],b : T ] `φ1+φ2+φ3 D ‖ (C ‖ E)

as required.

D.1.2 Con�guration Reduction

We may now show that con�guration reduction preserves typeability of con�gurations. We

begin by stating some auxiliary results about substitution and evaluation contexts.

Typing of terms is preserved by substitution.

Lemma 69 (Substitution). If:
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1. Γ1 `M : B

2. Γ2,x : B ` N : A

3. Γ1,Γ2 is well-de�ned

then Γ1,Γ2 ` N{M/x} : A.

Proof. By induction on the derivation of Γ2,x : B ` N : A.

Theorem 31 (Preservation (Con�gurations)

Assume Γ only contains entries of the form ai : Si.

If Γ;∆ `φ C and C −→D , then there exist Γ′,∆′ such that Γ;∆−→? Γ′;∆′ and Γ′;∆′ `φ D .

Proof. By induction on the derivation of C −→D . Where there is a choice of value for φ, we

consider the case where φ = •; the cases where φ = ◦ are similar.

Case E-Fork

Assumption:

Γ1,Γ2 ` •E[forkλx.M] : A

Γ1,Γ2; · `• •E[forkλx.M]

By Lemma 57:

Γ2,x : S `M : 1

Γ2 ` λx.M : S ( 1

Γ2 ` forkλx.M : S

By Lemma 69, Γ2,b : S `M{b/x} : 1, and by Lemma 58, Γ1,a : S ` E[a] : A. As duality is

involutive, S = S.

Reconstructing:

Γ1,a : S ` E[a] : A

Γ1,a : S; · `• •E[a]

Γ2,b : S `◦ ◦M{b/x}

S/ε = S/ε · ` ε : ε · ` ε : ε

·;a : S,b : S `◦ a(ε)!b(ε)

Γ2;a : S,b : S] `◦ M{b/x} ‖ a(ε)!b(ε)

Γ1,Γ2;a : S],b : S] `• •E[a] ‖ ◦M{b/x} ‖ a(ε)!b(ε)

Γ1,Γ2;a : S] `• (νb)(•E[a] ‖ ◦M{b/x} ‖ a(ε)!b(ε))

Γ1,Γ2; · `• (νa)(νb)(•E[a] ‖ ◦M{b/x} ‖ a(ε)!b(ε))

Case E-Send
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Assumption:

Γ1,Γ2 ` E[sendU a] : C

Γ1,Γ2,a : S; · `• •E[sendU a]

S/
−→
A = T/

−→
B Γ3 `

−→
V :
−→
A Γ4 `

−→
W :
−→
B

Γ3,Γ4;a : S,b : T `◦ a(
−→
V )!b(

−→
W )

Γ1,Γ2,Γ3,Γ4;a : S],b : T `• •E[sendU a] ‖ a(
−→
V )!b(

−→
W )

By Lemma 57:

Γ2 `U : A a : !A.S′ ` a : !A.S′

Γ2,a : !A.S′ ` sendU a : S′

Thus, S = !A.S′, and S = ?A.S′. We may therefore re�ne our original derivation:

Γ1,Γ2,a : !A.S′ ` E[sendU a] : C

Γ1,Γ2,a : !A.S′; · `• •E[sendU a]

?A.S′/
−→
A = T/

−→
B Γ3 `

−→
V :
−→
A Γ4 `

−→
W :
−→
B

Γ3,Γ4;a : ?A.S′,b : T `◦ a(
−→
V )!b(

−→
W )

Γ1,Γ2,Γ3,Γ4;a : !A.S′],b : T `• •E[sendU a] ‖ a(
−→
V )!b(

−→
W )

Since ?A.S′/
−→
A = T/

−→
B is well-de�ned, we have that

−→
A = ε. By the de�nition of slicing, we

have that T = !B1. · · · .!Bn.!A.S′, where

−→
B = B1, . . . ,Bn. It follows that S′/

−→
A = T/

−→
B ·A.

By Lemma 58, we have Γ1,Γ2,a : S′ ` E[a] : C.

Reconstructing:

Γ1,a : S′ ` E[a] : C

Γ1,a : S′; · `• •E[a]

S′/
−→
A = T/

−→
B ·A Γ3 `

−→
V :
−→
A Γ2,Γ4 `

−→
W ·U :

−→
B ·A

Γ2,Γ3,Γ4;a : S′,b : T `◦ a(
−→
V )!b(

−→
W ·U)

Γ1,Γ2,Γ3,Γ4;a : S′],b : T `• •E[a] ‖ a(
−→
V )!b(

−→
W ·U)

Finally, we must show environment reduction:

!A.S′ −→ S′

Γ1,Γ2,Γ3,Γ4;a : (!A.S′)],b : T −→ Γ1,Γ2,Γ3,Γ4;a : S′],b : T

as required.

Case E-Receive

Assumption:

Γ1,a : S ` E[receive a] : C

Γ1,a : S; · `• E[receive a]

S/
−→
A = T/

−→
B Γ2,Γ3 `U ·−→V :

−→
A Γ4 `

−→
W :
−→
B

Γ2,Γ3,Γ4;a : S,b : T `◦ a(U ·−→V )!b(
−→
W )

Γ1,Γ2,Γ3,Γ4;a : S],b : T `• •E[receive a] ‖ a(U ·−→V )!b(
−→
W )

By Lemma 57:

a : ?A.S′ ` a : ?A.S′

a : ?A.S′ ` receive a : (A×S′)
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Thus, we have that S = ?A.S′ and S = !A.S′, and we may therefore re�ne the original typing

derivation:

Γ1,a : ?A.S′ ` E[receive a] : C

Γ1,a : ?A.S′; · `• E[receive a]

!A.S′/A ·
−→
A′ = T/

−→
B

Γ1 `U : A Γ3 `
−→
V :
−→
A′

Γ2,Γ3 `U ·−→V : A ·
−→
A′ Γ4 `

−→
W :
−→
B

Γ2,Γ3,Γ4;a : !A.S′,b : T `◦ a(U ·−→V )!b(
−→
W )

Γ1,Γ2,Γ3,Γ4;a : (?A.S′)],b : T `• •E[receive a] ‖ a(U ·−→V )!b(
−→
W )

By Lemma 58, we have Γ1,Γ2,a : S′ ` E[(U,a)] : C (that Γ1,Γ2 is de�ned follows from

the fact that Γ1 and Γ2 are sub-environments of the original typing environment and are

therefore necessarily disjoint).

By the de�nition of slicing, !A.S′/A ·
−→
A′ ⇐⇒ S′/

−→
A′ .

Thus, recomposing:

Γ1,Γ2,a : S′ ` E[(U,a)] : C

Γ1,Γ2,a : S′; · `• E[(U,a)]

S′/
−→
A′ = T/

−→
B Γ3 `

−→
V :
−→
A′ Γ4 `

−→
W :
−→
B

Γ3,Γ4;a : S′,b : T `◦ a(
−→
V )!b(

−→
W )

Γ1,Γ2,Γ3,Γ4;a : S′],b : T `• •E[(U,a)] ‖ a(
−→
V )!b(

−→
W )

Finally, we must show environment reduction:

?A.S′ −→ S′

Γ1,Γ2,Γ3,Γ4;a : (?A.S′]);b : T −→ Γ1,Γ2,Γ3,Γ4;a : S′],b : T

as required.

Case E-Close

Assumption:

Γ1,a : S ` E[close a] : C

Γ1,a : S; · `• •E[close a]

Γ2,b : T ` E ′[close b] : 1

Γ2,b : T ; · `◦ ◦E ′[close b]

S/ε = T/ε · ` ε : ε · ` ε : ε

·;a : S,b : T `◦ a(ε)!b(ε)

Γ2;a : S,b : T ] `◦ E ′[close b] ‖ a(ε)!b(ε)

Γ1,Γ2;a : S],b : T ] `• •E[close a] ‖ ◦E ′[close b] ‖ a(ε)!b(ε)

Γ1,Γ2;a : S] `• (νb)(•E[close a] ‖ ◦E ′[close b] ‖ a(ε)!b(ε))

Γ1,Γ2; · `• (νa)(νb)(•E[close a] ‖ ◦E ′[close b] ‖ a(ε)!b(ε))

By Lemma 57:

a : End ` a : End

a : End ` close a : 1

b : End ` b : End

b : End ` close b : 1



Appendix D. Proofs for Chapter 9 (Exceptional GV) 265

By Lemma 58, we have that Γ1 ` E[()] : C and that Γ2 ` E ′[()] : 1. Thus by T-Mix, we may

show:

Γ1 ` E[()] : C

Γ1; · `• •E[()]

Γ2 ` E[()] : 1

Γ2; · `◦ ◦E[()]

Γ1,Γ2; · `• •E[()] ‖ ◦E[()]

as required.

Case E-Cancel

F [cancel a]−→ F [()] ‖  a

Assumption:

Γ ` E[cancel a] : C

Γ; · `• •E[cancel a]

By Lemma 57, Γ = Γ1,Γ2, where

Γ2 ` a : S

Γ2 ` cancel a : 1

Thus Γ2 = a : S. By Lemma 58, Γ1 ` E[()] : C. By T-Zap, we have that a : S `◦  a. Thus,

recomposing:

Γ ` E[()] : C

Γ1; · `• •E[()] a : S; · `◦  a

Γ1,a : S; · `• •E[()] ‖  a

as required.

Case E-Zap

 a ‖ a(U ·−→V )!b(
−→
W )−→  a ‖  c1 ‖ · · · ‖  cn ‖ a(

−→
V )!b(

−→
W )

where fn(U) = {ci}i.

Assumption:

a : S; · `◦  a

S/
−→
A = T/

−→
B Γ1,Γ2 `U ·−→V :

−→
A Γ3 `

−→
W :
−→
B

Γ1,Γ2,Γ3;a : S,b : T `◦ a(U ·−→V )!b(
−→
W )

Γ1,Γ2,Γ3;a : S],b : T `◦  a ‖ a(U ·−→V )!b(
−→
W )
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By the de�nition of slicing, we have that there exist some A and S′ such that S = !A.S′.

Thus, we may re�ne our judgement:

a : ?A.S′; · `◦  a

!A.S′/A ·
−→
A′ = T/

−→
B Γ1,Γ2 `U ·−→V : A ·

−→
A′ Γ3 `

−→
W :
−→
B

Γ1,Γ2,Γ3;a : !A.S′,b : T `◦ a(U ·−→V )!b(
−→
W )

Γ1,Γ2,Γ3;a : (?A.S′)],b : T `◦  a ‖ a(U ·−→V )!b(
−→
W )

By the de�nition of bu�er typing, we have that Γ1 ` U : A. By the de�nition of the

reduction rule, fn(U) = {ci}i, and by assumption, Γ contains only runtime names. Thus,

we may conclude that U is closed and therefore that Γ1 = c1 : S1, . . .cn : Sn for some session

types S1, . . .Sn.

By the de�nition of slicing, we have that !A.S′/A ·
−→
A′ ⇐⇒ S′/

−→
A′ . Correspondingly, by

T-Buffer, we may show

S′/
−→
A′ = T/

−→
B Γ2 `

−→
V :
−→
A′ Γ3 `

−→
W :
−→
B

Γ2,Γ3;a : S′,b : T `◦ a(
−→
V )!b(

−→
W )

By repeated applications of T-Zap and T-Mix, we have that

Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : S′,b : T `◦  c1 ‖ · · · ‖  cn ‖ a(
−→
V )!b(

−→
W )

Recomposing:

a : S′; · `◦  a

c1 : S1; · `◦  c1

cn : Sn; · `◦  cn

S′/
−→
A′ = T/

−→
B Γ2 `

−→
V :
−→
A′ Γ3 `

−→
W :
−→
B

Γ2,Γ3;a : S′,b : T `◦ a(
−→
V )!b(

−→
W )

.

.

.

Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : S′,b : T `◦  c1 ‖ . . . ‖  cn ‖ a(
−→
V )!b(

−→
W )

Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : S′],b : T `◦  a ‖  c1 ‖ . . . ‖  cn ‖ a(
−→
V )!b(

−→
W )

Finally, we must show environment reduction:

?A.S′ −→ S′

Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : (?A.S′]),b : T −→ Γ2,Γ3,c1 : S1, . . . ,cn : Sn;a : S′],b : T

as required.

Case E-CloseZap

F [close a] ‖  b ‖ a(ε)!b(ε)−→ F [raise] ‖  a ‖  b ‖ a(ε)!b(ε)
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Assumption:

Γ,a : S ` E[close a] : C

Γ,a : S; · `• •E[close a]

b : T ; · `◦  b

S = T · ` ε : ε · ` ε : ε

·;a : S,b : T `◦ a(ε)!b(ε)

·;a : S,b : T ] `◦  b ‖ a(ε)!b(ε)

Γ;a : S],b : T ] `• •E[close a] ‖  b ‖ a(ε)!b(ε)

By Lemma 57:

a : End ` a : End

a : S ` close a : 1

We may therefore re�ne our original derivation:

Γ,a : End ` E[close a] : C

Γ,a : End; · `• •E[close a]

b : End; · `◦  b

End= End · ` ε : ε · ` ε : ε

·;a : End,b : End `◦ a(ε)!b(ε)

·;a : End,b : End] `◦  b ‖ a(ε)!b(ε)

Γ;a : End],b : End] `• •E[close a] ‖  b ‖ a(ε)!b(ε)

By Lemma 58, Γ ` E[raise] : C.

Thus, recomposing:

Γ ` E[raise] : C

Γ `• •E[raise]

a : End; · `◦  a

b : End; · `◦  b

End= End · ` ε : ε · ` ε : ε

·;a : End,b : End `◦ a(ε)!b(ε)

·;a : End,b : End] `◦  b ‖ a(ε)!b(ε)

·;a : End],b : End] `◦  a ‖  b ‖ a(ε)!b(ε)

Γ;a : End],b : End] `• •E[close a] ‖  b ‖ a(ε)!b(ε)

as required.

Case E-ReceiveZap

•E[receive a] ‖  b ‖ a(ε)!b(
−→
W )−→ •E[raise] ‖  a ‖  b ‖ a(ε)!b(

−→
W )

Assumption:

Γ1,a : S ` E[receive a] : C

Γ1,a : S; · `• •E[receive a]

b : T ; · `◦  b

S/ε = T/
−→
B · ` ε : ε Γ2 `

−→
W :
−→
B

Γ2;a : S,b : T `◦ a(ε)!b(
−→
W )

Γ2;a : S,b : T ] `◦  b ‖ a(ε)!b(
−→
W )

Γ1,Γ2;a : S],b : T ] `• •E[receive a] ‖  b ‖ a(ε)!b(
−→
W )
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By Lemma 57:

a : ?A.S′ ` a : ?A.S′

a : ?A.S′ ` receive a : (A×S′)

By Lemma 58, Γ1 ` E[raise] : S′. Thus, recomposing:

Γ1 ` E[raise] : C

Γ1; · `• •E[raise]

a : S; · `  a

b : T ; · `◦  b

S/ε = T/
−→
B · ` ε : ε Γ2 `

−→
W :
−→
B

Γ2;a : S,b : T `◦ a(ε)!b(
−→
W )

Γ2;a : S,b : T ] `◦  b ‖ a(ε)!b(
−→
W )

Γ2;a : S],b : T ] `◦  a ‖  b ‖ a(ε)!b(
−→
W )

Γ1,Γ2;a : S],b : T ] `• •E[raise] ‖  a ‖  b ‖ a(ε)!b(
−→
W )

as required.

Case E-Raise

•E[try P[raise]as x in M otherwise N]−→ E[N] ‖  c1 ‖ · · · ‖  cn

and fn(P) = {ci}i.

Assumption:

Γ ` E[try P[raise]as x in M otherwise N] : A′

Γ; · `• •E[try P[raise]as x in M otherwise N]

By Lemma 57, there exist Γ1,Γ2,A,B,C such that Γ = Γ1,Γ2,Γ3 and

Γ2 ` P[raise] : A Γ3,x : B `M : C Γ3 ` N : C

Γ2,Γ3 ` try P[raise]as x in M otherwise N : C

Since Γ contains only runtime names and fn(P) = {ci}i, we know that Γ2 = c1 : S1, . . . ,cn : Sn

for some Si.

By Lemma 58, we have that:

Γ1,Γ3 ` E[N] : A′

By repeated applications of T-Zap and T-Mix, we have that Γ2 `  c1 ‖ · · · ‖  cn.

Therefore, recomposing:

Γ1,Γ3 ` E[N] : C

Γ1,Γ3; · `• •E[N]

c1 : S1; · `◦  c1

cn−1 : Sn−1; · `◦  cn−1 cn : Sn; · `◦  cn

.

.

.

c1 : S1, . . . ,cn : Sn; · `◦  c1 ‖ · · · ‖  cn

Γ1,Γ3,c1 : S1, . . . ,cn : Sn; · `• •E[N] ‖  c1 ‖ · · · ‖  cn
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as required.

Case E-RaiseChild

◦P[raise]−→  c1 ‖ · · · ‖  cn

Assumption:

Γ ` P[raise] : 1

Γ; · `◦ ◦P[raise]

By Lemma 57, the knowledge that Γ contains only runtime names, the knowledge that

fn(P) = c1, . . . ,cn, and the typing rule T-Raise, we have that Γ = c1 : S1, . . . ,cn : Sn for some

session types {Si}i.

Thus, by repeated applications of T-Zap and T-Mix, we may deduce that

Γ; · `◦  c1 ‖ · · · ‖  cn

as required.

Case E-RaiseMain

•P[raise]−→ halt ‖  c1 ‖ · · · ‖  cn

where fn(P) = {ci}i.

Assumption:

Γ ` P[raise] : C

Γ; · `• •P[raise]

By Lemma 57, the knowledge that Γ contains only runtime names, the knowledge that

fn(P) = c1, . . . ,cn, and the typing rule T-Raise, we have that Γ = c1 : S1, . . . ,cn : Sn for some

session types {Si}i.

By repeated applications of T-Zap and T-Mix, we may deduce that

Γ; · `◦  c1 ‖ · · · ‖  cn

By T-Halt, we have that ·; · `• halt. Thus, recomposing, we arrive at

·; · `• halt

c1 : S1; · `◦  c1

cn−1 : Sn−1; · `◦  cn−1 cn : Sn; · `◦  cn

.

.

.

c1 : S1, . . . ,cn : Sn; · `◦  c1 ‖ · · · ‖  cn

c1 : S1, . . . ,cn : Sn; · `• halt ‖  c1 ‖ · · · ‖  cn
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as required.

Case E-LiftC

Assumptions:

• Γ;∆ `φ G [C ]

• C −→D

Let D be a derivation of Γ;∆ `φ G [C ]. By Lemma 59, we have that there exists some D′

such that D′ is a subderivation of D concluding Γ′;∆′ `φ′ C , where the position of D′ in D

corresponds to that of the hole in G .

By the IH, we have that there exists some Γ′′;∆′′ such that Γ;∆−→? Γ′′;∆′′ and Γ′′;∆′′ `φ

D .

By Lemma 60, we have that there exist some Γ′′′;∆′′′ such that Γ;∆ −→? Γ′′′;∆′′′ and

Γ′′′;∆′′′ `φ G [D], as required.

Case E-LiftM

Assumptions:

Γ `M : A

Γ; · `• •M

and M −→M N. By Lemma 61, we have that Γ ` N : A. Recomposing:

Γ ` N : A

Γ; · `• •N

as required.

D.2 Canonical Forms

Theorem 33: Canonical Forms Given C such that Γ;∆ `• C , there exists some C ′ ≡ C such

that Γ;∆ `• C ′ and C ′ is in canonical form.

Proof. The proof is by induction on the count of ν-bound variables, following Lindley and

Morris [132]. Without loss of generality, assume that the ν-bound variables of C are distinct.

Let {ai | 1≤ i≤ n} be the set of ν-bound variables in C and let {D j | 1≤ j ≤ m} be the set of

threads in C .
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In the case that n = 0, by Lemma 67 we can safely commute the main thread such that it is

the rightmost con�guration, and associate parallel composition to the right using Lemma 68

to derive a well-typed canonical form.

In the case that n ≥ 1, pick some ai and D j such that ai is the only ν-bound variable in

fn(D j); Lemma 63 and a standard counting argument ensure that such a name and con�g-

uration exist. By the equivalence rules, there exists E such that Γ;∆ `φ C ≡ (νai)(D j ‖ E)

(that ai is the only ν-bound variable in fn(D j) ensures well-typing). Moreover, we have that

there exist Γ′ ⊆ Γ, ∆′ ⊆ ∆, and S, such that either Γ′,ai : S;∆′ `φ E or Γ′;∆′,ai : S `φ E . By the

induction hypothesis, there exists E ′ in canonical form such that either Γ′,ai : S;∆′ `φ E ≡ E ′

or Γ′;∆′,ai : S `φ E ≡E ′. Let C ′ = (νai)(D j ‖E ′). By construction it holds that Γ;∆ `φ C ≡ C ′

and that C ′ is in canonical form.

D.3 Progress

To prove Theorem 10, we prove a similar property in which canonical con�gurations are

decomposed step-by-step rather than in one go.

De�nition 20 (Open Progress). Suppose Ψ;∆ `• C , where C is in canonical form and C 6=⇒.

We say that C satis�es open progress if:

1. C = (νa)(A ‖D), where Ψ = Ψ1,Ψ2 and ∆ = ∆1,∆2 such that either:

(a) Ψ1,a : S;∆1 `◦ A and Ψ2;∆2,a : S `• D where D satis�es open progress, and A is

either:

i. A thread ◦M where ready(b,M) for some b ∈ fn(Ψ1,a : S); or

ii. A zapper thread  a; or

iii. A bu�er b(
−→
V )!c(

−→
W ) where b,c 6= a and either a ∈ −→V or a ∈ −→W

(b) Ψ1;∆1,a : S `◦ A and Ψ2,a : S;∆2 `• D , where D satis�es open progress, and A is

either a(
−→
V )!b(

−→
W ) or b(

−→
V )!a(

−→
W ) for some b ∈ fn(∆1)

2. C = A ‖M , where Ψ = Ψ1,Ψ2 and either:

(a) ∆ = ∆1,∆2,a : S], where Ψ1,a : S;∆1 `◦ A and Ψ2;∆2,a : S `• M , where M satis�es

open progress, and A is either:

i. A thread ◦M where ready(b,M) for some b ∈ fn(Ψ1,a : S); or

ii. A zapper thread  a; or

iii. A bu�er b(
−→
V )!c(

−→
W ) where b,c 6= a and either a ∈ fn(

−→
V ) or a ∈ fn(

−→
W )

(b) ∆ = ∆1,∆2,a : S], where Ψ1;∆1,a : S `◦ A and Ψ2,a : S;∆2 `• M , where M satis�es

open progress, and A is either a(
−→
V )!b(

−→
W ) or b(

−→
V )!a(

−→
W ) for some b ∈ fn(∆1)
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(c) ∆ = ∆1,∆2, where Ψ1;∆1 `◦ A and Ψ2;∆2 `• M , where M satis�es open progress,

and A is either:

i. A thread ◦M where either M = (), or ready(a,M) for some a ∈ fn(Ψ1); or

ii. A zapper thread  a for some a ∈ fn(Ψ1); or

iii. A bu�er a(
−→
V )!b(

−→
W ) for some a,b ∈ fn(∆1)

3. C = T , where either:

(a) T = •N, where N is either a value or ready(b,N) for some b ∈ fn(Ψ)

(b) T = halt

Lemma 64 Suppose Ψ;∆ `• C , where C is in canonical form and C 6=⇒. Then C satis�es open

progress.

Proof. By induction on the derivation of Ψ;∆ `• C . We have three cases, based on the structure

of the given canonical form.

Case C = (νa)(A ‖D), with a ∈ fn(A), and where D is in canonical form

By assumption, we know that Ψ;∆ `φ (νa)(A ‖D).

This con�guration is typeable by T-Nu, followed by either T-Connect1 or T-Connect2.

As the de�nition of canonical forms requires that a ∈ fn(A), it cannot be the case that the

parallel composition arises as a result of T-Mix.

We consider these two subcases to show that A satis�es the properties required by open

progress.

Subcase T-Connect1

Ψ1,a : S;∆1 `φ1 A Ψ2;∆2,a : S `φ2 D

Ψ1,Ψ2;∆1,∆2,a : S] `φ1+φ2 A ‖D

Ψ1,Ψ2;∆1,∆2 `φ1+φ2 (νa)(A ‖D)

By the de�nition of auxiliary threads and inversion on the typing relation, we know that A
is of the following forms:

• ◦M, where a ∈ fn(M), and Ψ1,a : S `M : 1

•  a

• b(
−→
V )!c(

−→
W ), where b,c ∈ fn(∆1) and a ∈ fn(V )

• b(
−→
V )!c(

−→
W ), where b,c ∈ fn(∆1) and a ∈ fn(W )
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(since a 6∈ fn(∆1), it cannot be the case that a appears as a bu�er endpoint).

Lemma 62 tells us that either there exists some M′ such that M −→M M′; that M is a

value; or there exist E,N such that M = E[N] where N is either raise or a communication

and concurrency construct. Since C 6=⇒, we have that M is unable to reduce (as otherwise

C could reduce by E-LiftM). Since a ∈ fn(M) and a does not have type 1, it cannot be the

case that M is a value.

Therefore, we have that M has the form E[N], where N is either raise or a communi-

cation / concurrency construct. This cannot be fork, since fork may always reduce by

E-Fork, nor can it be raise, which could reduce by E-Raise, or E-RaiseChild depending

on the enclosing evaluation context. Thus, there must exist some b ∈ fn(Ψ,a : S) such that

ready(b,M).

Subcase T-Connect2

Ψ1;∆1,a : S `◦ A Ψ2,a : S;∆2 `• D

Ψ1,Ψ2;∆1,∆2,a : S] `• A ‖D

Ψ1,Ψ2;∆1,∆2 `• (νa)(A ‖D)

By the de�nition of auxiliary threads and inversion on the typing relation, we know that A
is of the following forms:

• a(
−→
V )!b(

−→
W ), where b ∈ fn(∆1)

• b(
−→
V )!a(

−→
W ), where b ∈ fn(∆1)

(as a ∈ fn(A) and a ∈ fn(∆1), it cannot be the case that A is a child thread or a zapper

thread, as these require empty runtime typing environments).

By the induction hypothesis, we know that D satis�es open progress; hence (νa)(A ‖D)

satis�es open progress.

Case C = A ‖M

There are three subcases, based on whether the parallel composition arises as a result of

T-Connect1, T-Connect2, or T-Mix.

Subcase T-Connect1

Ψ1,a : S;∆1 `◦ A Ψ2;∆2,a : S `• M

Ψ1,Ψ2;∆1,∆2,a : S] `• A ‖M

By inversion on the typing rules, we have that A may be:

• A child thread ◦M, where a ∈ fn(M)

• A zapper thread  a
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• A bu�er b(
−→
V )!c(

−→
W ), where b,c 6= a and either a ∈ fn(

−→
V ) or a ∈ fn(

−→
W )

In the case of (1), by Lemma 62, we have that either M is a value; there exists N such

that M −→M N; or M = E[N] for some E,N, where N is a communication / concurrency

construct.

By T-Child, Ψ1,a : S `M : 1. Since a ∈ fn(M) and the only value with type 1 is the unit

value () it therefore cannot be the case that M is a value. Since C 6=⇒, it cannot be the case

that M −→M N, since otherwise C could reduce. Thus, it must be the case that M = E[N]

where N either raise or a communication and concurrency construct; by similar reasoning

as above cases, it therefore must be the case that ready(b,M) for some b ∈ fn(Ψ1,a : S).

(2) and (3) satisfy the required conditions by de�nition.

Subcase T-Connect2

Ψ1;∆1,a : S `◦ A ;Ψ2,a : S;∆2 `• M

Ψ1,Ψ2;∆1,∆2,a : S] `• A ‖M

Since the runtime typing environment ∆1,a : S is non-empty, it cannot be the case that A
is a child thread or zapper thread. Thus, A must either be of the form:

1. a(
−→
V )!b(

−→
W ), where a,b ∈ fn(∆1); or

2. b(
−→
V )!a(

−→
W ), where a,b ∈ fn(∆1)

which satisfy the required conditions by de�nition.

Subcase T-Mix

Ψ1;∆1 `◦ A Ψ2;∆2 `• M

Ψ1,Ψ2;∆1,∆2 `• A ‖M

By inversion on the typing rules, we have that A may either be:

1. A child thread ◦M

2. A zapper thread  a for some a ∈ fn(Ψ1)

3. A bu�er thread a(
−→
V )!b(

−→
W ) for some a,b ∈ fn(∆1)

By Lemma 62, we have that M is either a value V ; there exists some N such that

M −→M N; or M = E[N] for some E,N such that N is either raise or a communication

and concurrency primitive. It cannot be the case that M −→M N since otherwise the

con�guration could reduce.

By T-Child, it must be the case that Ψ1;∆1 `M : 1; if M is a value then by inversion

on the term typing rules, it must be the case that M = ().

Following the same reasoning as previous cases, if M = E[N] then it must be that

ready(a,M) for some a ∈ fn(Ψ1).



Appendix D. Proofs for Chapter 9 (Exceptional GV) 275

By the induction hypothesis, we know that M satis�es open progress; hence A ‖M satis�es

open progress.

Case C = T

Assumption: Ψ;∆ `• T . By the de�nition of T , we have two subcases:

Subcase T = •M

Ψ `M : A

Ψ; · `• •M

By Lemma 62, we have that either M is a value; that there exists some N such that

M −→M N; or that there exist some E,N such that M = E[N] where N is a communication

/ concurrency primitive.

Again, as C 6=⇒, it cannot be the case that M −→M N, since otherwise C could reduce.

If M is a value, then T satis�es open progress.

Finally, if M =E[N]where N is a either raise or communication / concurrency primitive,

it cannot be the case that N = raise since it could reduce either by E-Raise or E-RaiseMain,

and it cannot be the case that N = forkM′ since it could reduce by T-Fork. Therefore it

must be the case that ready(a,M) for some a ∈ fn(Ψ), satisfying open progress, as required.

Subcase T = halt

Immediate by the de�nition of open progress.

Theorem 10 provides a more global and concise view of the properties exhibited by a

non-reducing process in canonical form, and arises as an immediate corollary.

Theorem 10 Suppose Ψ;∆ `• C where C is in canonical form and C 6=⇒.

Let C = (νa1)(A1 ‖ (νa2)(A2 ‖ · · · ‖ (νan)(An ‖M )) . . .)).

1. For 1≤ i≤ n, each thread in Ai is either:

(a) a child thread ◦M for which there exists a ∈ {a j | 1 ≤ j ≤ i} ∪ fn(Ψ) such that

ready(a,M);

(b) a zapper thread  ai; or

(c) a bu�er.

2. M = A ′1 ‖ · · · ‖ A ′m ‖ T such that for 1≤ j ≤ m:

(a) A ′j is either:



Appendix D. Proofs for Chapter 9 (Exceptional GV) 276

i. a child thread ◦N such that N = () or ready(a,N) for some a ∈ {ai | 1 ≤ i ≤
n}∪ fn(Ψ)∪ fn(∆);

ii. a zapper thread  a for some a ∈ {ai | 1≤ i≤ n}∪ fn(Ψ)∪ fn(∆); or

iii. a bu�er.

(b) Either T = •N, where N is either a value or ready(a,N) for some a ∈ {ai | 1≤ i≤
n}∪ fn(Ψ)∪ fn(∆); or T = halt.

D.4 Con�uence

Theorem 35 (Diamond Property) If Ψ;∆ `φ C , and C =⇒ D1, and C =⇒ D2, then either

D1 ≡D2, or there exists some D3 such that D2 =⇒D3 and D2 =⇒D3.

Proof. As noted in Section 9.3.4, −→M is deterministic and hence con�uent due to the setup of

term evaluation contexts, and linearity ensures that endpoints to a bu�er may not be shared.

Consequently, communication actions on di�erent channels may be performed in any order.

Nevertheless, two critical pairs arise due to asynchrony. The �rst arises when it is possible

to send to or receive from a bu�er; there is a choice of whether the send or the receive happens

�rst. Both cases reduce to the same con�guration after a single further step.

F [sendU a] ‖ a(
−→
V )!b(V ·−→W ) ‖ F ′[receive b]

F [a] ‖ a(
−→
V )!b(V ·−→W ·U) ‖ F ′[receive b] F [sendU a] ‖ a(

−→
V )!b(

−→
W ) ‖ F ′[(V,b)]

F [a] ‖ a(
−→
V )!b(

−→
W ·U) ‖ F ′[(V,b)]

The second critical pair arises when sending to a bu�er where the peer endpoint has a non-

empty bu�er and has been cancelled. There is a choice as to whether the value at the head of

the queue is cancelled before or after the send takes place. Again, both cases reduce to the

same con�guration after a single further step.

F [sendU a] ‖  b ‖ a(
−→
V )!b(V ·−→W )

F [a] ‖  b ‖ a(
−→
V )!b(V ·−→W ·U) F [sendU a] ‖  b ‖  V ‖ a(

−→
V )!b(

−→
W )

F [a] ‖  b ‖  V ‖ a(
−→
V )!b(

−→
W ·U)



Appendix E

Distributed Delegation

We saw an example of session delegation in §10.4, in the ChatClient type:

typename ChatClient =!Nickname.

[&|Join:?(Topic, [Nickname], ClientReceive).ClientSend,

Nope:End|&];

In this example, an endpoint of type ClientReceive is passed as a message.

Challenges of Distributed Delegation. Session delegation is a vital abstraction in session-

based programming. However, its integration with both asynchrony and distribution brings

several challenges. The seminal work on distributed delegation is Session Java [106].

Fig. E.1 shows three scenarios of distributed delegation. We write X x
=⇒
y

Y to indicate that

X wishes to send x to Y over y on the basis that X ’s last known location of the corresponding

endpoint for y is Y .

Consider Figure E.1a, where B b
=⇒
c

C. Following Hu et al. [106], we refer to B as the

session-sender, C as the session-receiver, and A as the passive party.

There is no happens-before relation between A sending a message to B along a, and B

delegating b to C along c. Thus, a message could be sent to A after A has given up control of a.

Following Hu et al. [106], we call such messages lost messages.

Approaches to Distributed Delegation. The simplest safe way to implement distributed

delegation is to store all bu�ers on the server, but this requires a blocking remote call for every

receive operation. A second naïve method is inde�nite redirection, where the session-sender

inde�nitely forwards all messages to the session-receiver. This retains bu�er locality, but

requires the session-sender to remain online for the duration of the delegated session.

Hu et al. [106] describe two more realistic distributed delegation algorithms: a resending

protocol, which re-sends lost messages after a connection for the delegated session is estab-

lished, and a forwarding protocol, which forwards lost messages before the delegated session

is established. The key idea behind both algorithms is to establish a connection between the

277



Appendix E. Distributed Delegation 278

B b
=⇒
c

C

A

B C

A

B C

a

b

c d c d

a

b

A

B C

a

b

c d

D
e f

A

B C

a

b

c d

D
e f

A

B C

a

b

c d

D
e f

A

B C

a

b

c d

D
e f

(a) Simple Delegation

A e
=⇒
a

B B b
=⇒
c

C

A

B C

A

B C

a

b

c d c d

a

b

A

B C

a

b

c d

D
e f

A

B C

a

b

c d

D
e f

A

B C

a

b

c d

D
e f

A

B C

a

b

c d

D
e f

(b) Simultaneous Delegation

A e
=⇒
a

B B b
=⇒
c

C

A

B C

a

b

c d

D
e f

A

B C

a

b

c d

D

e

f

A

B C

a

b

c d

D

e

f

or

(c) Entangled Delegation

Figure E.1: Cases of Distributed Delegation

passive party and the session-receiver, to ensure that the lost messages are received by the

session-receiver, and to continue the session only once lost messages are received.

Alas, we cannot directly re-use the resending and forwarding protocols of Hu et al. [106]

because of two fundamental di�erences in our setting: Links clients do not connect to each

other directly, and in Links multiple sessions may be sent at once. Thus, we describe the

high-level details of a modi�ed algorithm which addresses these two constraints. We utilise

two key ideas:

• Much like the resending protocol, lost messages are retrieved and relayed to the session-

receiver once the new session has been established.

• We ensure the session-receiver endpoint is not delegated until the delegation has com-

pleted, by queueing messages that include the session-receiver endpoint, and sending

them once delegation has completed.

We now consider the case where session-sender and session-receiver are di�erent clients; the

case where session-sender is a client and session-receiver the server is similar.

Let client A be the session-sender and client B be the session-receiver.

Example. Suppose client A sends a value v containing a session endpoint b along channel

(s, t), recalling that s is the peer endpoint and t is the local endpoint. The initial endpoint
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1. A→ S : Send(t,v, [b 7→ −→V ])

2. A : start recording lost messages

−→
W for b

3. S : σ = σ[b 7→ B];δ = δ∪{t}
4. S→ B : Deliver(t,v, [b 7→ −→V ])

5. S→ A : GetLostMessages([b])

6. A : stop recording lost messages for b

7. A→ S : LostMessageResponse([b 7→ −→W ])

8. S→ B : Commit(t, [b 7→ −→W ])

9. S : δ = δ\{t}
10. B : bu�ers[b] =

−→
V ++

−→
W ++

−→
U

where

−→
U =messages received for b between (3) and (8)

Figure E.2: Operation of Distributed Delegation Protocol

location table is:

σ , [s 7→ A, t 7→ B,b 7→ A,c 7→ A]

Fig. E.2 shows the operation of the delegation protocol on this example. In Step 1, A sends

a message to the server S, containing the peer endpoint t , value to send v, and the bu�er

−→
V

for b, before beginning to record lost messages for b. Upon receiving this message, the server

updates its internal mapping for the location of b to be B, adds t to the set of delegation carriers

δ, and sends a Deliver message containing t , v, and

−→
V , before sending a GetLostMessages

request to A. Upon receiving this message, A will stop recording lost messages for b, and relay

the lost messages

−→
W for b to S. The server then sends a Commit message containing t and the

lost messages for all delegated endpoints, and removes t from the set of delegation carriers.

Lost cancellation noti�cations for the peer of b are retrieved and relayed in the same way

as lost messages for b.

The �nal bu�er for b is the concatenation of the initial bu�er

−→
V , the lost messages

−→
W , and

all messages

−→
U received for b before the Commit message.

Correctness. We argue correctness of the algorithm in a similar manner to Hu et al. [106].

Due to co-operative threading, we can treat each sequence of actions happening at a single

participant (for example, steps 3–8) as atomic. Since (as per step 3) the endpoint location table

is updated prior to the lost message request, we can safely split the bu�er of the delegated

session into three parts: the initial bu�er being delegated (

−→
V ); the lost messages (

−→
W ); and

the messages received after the change in the lookup table but before the Commit message is

received (

−→
U ) and reassemble them, retaining ordering.

In our setting, since session channels are not associated with sockets, simultaneous delega-

tion (Fig. E.1b) can be handled in the same way as simple delegation. In the case of entangled
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delegation (Fig. E.1c), since delegation carriers may not be delegated themselves until the lost

messages have been received, we can be sure that the lost message requests are sent to the

correct participant. Hence, the case devolves to simple delegation.
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