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Abstract

The thesis presents a way to apply process algebra to computational linguistics.! We are
interested in how contexts can affect or contribute to language understanding and model the
phenomena as a system of communicating processes to study the interaction between them in
detail. For this purpose, we turn to the m-calculus and investigate how communicating pro-
cesses may be defined. While investigating the computational ground of communication and
concurrency, we devise a graphical representation for processes to capture the structure of in-
teraction between them. Then, we develop a logic, combinatory intuitionistic linear logic with
equality relation, to specify communicating processes logically. The development enables us
to study Situation Semantics with process algebra. We construct semantic objects employed
in Situation Semantics in the m-calculus and then represent them in the logic. Through the
construction, we also relate Situation Semantics with the research on the information flow,
Channel Theory, by conceiving of linear logic as a theory of the information flow. To show
how sentences can be parsed as the result of interactions between processes, we present a
concurrent chart parser encoded in the w-calculus. We also explain how a semantic represen-
tation can be generated as a process by the parser. We conclude the thesis by comparing the

framework with other approaches.

""The ideas presented in the dissertation have been presented at three occasions. The idea to apply process
algebra to studying Situation Theory was first presented at the first International Workshop on Computational
Semantics held at the Institute for Language Technology and Artificial Intelligence, Tilburg University, The
Netherlands in December 1994 [Fuj94]. The idea was refined and presented also at the 10th Amsterdam
Collogquium held at TL.I.C /Department of Philosophy, University of Amsterdam, The Netherlands in December
1995 [Fuj96b]. Another idea to apply process algebra to studying feature structures and parsing was presented
at the second Conference on Information-Theoretic Approaches to Togic, T.anguage, and Computation held at
London Guildhall University in July 1996 [Fuj96a].
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Chapter 1

Introduction

This thesis presents a formal theory of language use as actions with the emphasis on the
notions of communication and concurrency. Our theory is based on process algebra, namely
the m-calculus [Mil93b, MPW92], with which we model the process of language understanding,
i.e., parsing, interpreting, and evaluating utterances. We start this introduction by clarifying

our approach, then discuss how our theory may contribute to understanding language use.

1.1 Language use as actions

We investigate actual utterances rather than our capability of understanding sentences. The
approach is called performance theory and is contrasted with competence theory advocated
by Noam Chomsky [Cho65], where our capability of understanding sentences is the target
of study, not actual utterances. Although the latter approach has been dominant in the
development of linguistic theories, some people, especially people working on dialogue [Cla92],
are turning to the former approach, looking into actual utterances to study language use. We

follow this move and propose a way to study linguistic performance, not of competence.

To investigate actual utterances will raise interesting issues to our study, which was not
paid much attention in competence theory. When we look into a corpus recording actual
conversations, for example, we can soon recognise that people do not always utter complete
sentences. They often pose their utterance, waiting for a response from the other, or even
they may be interrupted by the other before completing a sentence. They may stop uttering
a sentence in the middle and restart uttering a different sentence. Sentences are often not
well-formed and may not even be a sentence, yet people can proceed with their conversation
to understand each other. This sort of phenomena go beyond the scope of competence theory,

but how can we study them, then?
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Our strategy is to view language use as a class of human actions to communicate with each
other as proposed by speech acts theorists such as John Austin [Aus62] and to study it
from broader perspectives, where utterances are considered as just one way of conveying
information from one to another. The key is that people can get themselves understood with
various means, not limited to language, e.g., pointing an object. The strategy forces us, on
one hand, to set up a general theory of information flow and requires us, on the other hand,
to test the theory against real data. In this thesis, we confine ourselves to building the theory
and will not test it against data. We explain, however, our motivation of the project through

the examination of linguistic data, which we believe can be modelled with our approach.

1.2 Contexts: Linguistic data

The factors involved in actual utterances but not in sentences in themselves are often termed
as ‘contexts’. Contexts are thought to determine or at least influence the meaning and content,
of sentences uttered in a particular occasion. As the term is used in so many different ways,
we specify it into just three factors: circumstances, plans and goals, and discourse. These are
explained in the following through the examination of excerpts from the HCRC (the Human
Communication Research Centre) Map Task Corpus [ABB*91] and the Japanese Map Task
Corpus [ATK*94]. We point out for each factor that communication and concurrency play a

central role.

The Map Task is designed at HCRC, University of Edinburgh, to record spontaneous dialogue
between English native speakers. In the task, the route giver () and the route follower (F)
are given slightly different maps. For example, an item may be missing in one’s map. The
same item may be labelled with different names. They are then required to draw the correct
route on the follower’s map only through conversation and eye contact.! The giver knows
their starting point, goal, and the route, while the follower knows only the starting point.
The differences between their maps may make the task difficult. Some items are missing on
the other’s map, and other items may be labelled differently. The Japanese Map Task Corpus
is designed and recorded at Chiba University, Japan, following the HCRC project in principle

but for a different target language, Japanese.

1.2.1 Circumstances

One difference between utterances and mere sentences is that uttering a sentence involves the

circumstance that the sentence concerns, which may influence the meaning and content. The

'They may not be allowed for eye contact in a different setting.
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same sentence and word may mean different things under different circumstances. Without

identifying the circumstance, we cannot understand what a sentence means in reality, its
H . ’77. 1 (' 0 Py .0 ] "LV‘( Ves aK
content. In the Map Task, the circumstances are fixed by isolating dialogue participants Gi: Okay. We're going straight due north. At the top there there’s a west lake
into a room, and their maps comprise most of their circumstances. Given maps as their Fq: Okay.
circumstances for dialogue, one has to relate labels uttered by another with actual items in . s .
e 7 Gj: which we’re going to pass on the south erm southeast
his map. Thus, maps form part of contexts for their conversation.
Fy: Mmhmm.
As for circumstances, we are interested in the way they are utilised by participants during
conversations.> An observation reveals that participants can extract information in parallel Gyt side. And we're gonna do that in a curve, almost a half shape.
from circumstances while they are listening or talking to others. In the excerpt shown in the F5: A half shape
figure 1.1, the giver is conducting the follower to take the correct route along the west lake, Gu: Yeah
i ) oo 4t Yeah.
which both can see on their maps. It seems that the follower, hearing the giver’s utterance,
“a half shape” (Gg3), is trying to pencil in the route on his map while he is uttering F5 and Fy: to the southeast?
F4. Replying to the follower, the giver must be paying his attention to the route on his map Gs: Yeah

while he is listening to the follower’s utterances and replying to him (G4 and Gs). .

F5: Right, okay.
The same thing can happen regardless of the language they use. Figure 1.2 is an excerpt from
& PP & . e g - & . . P Gg: the southeast. And continue up north slightly.
the Japanese Map Task Corpus in the same situation. While they are discussing the shape }

of the lake (from Ggs to Fy), they are clearly paying their attention to the lake on their maps. Figure 1.1. An excerpt from the HCRC Map Task Corpus (1)

These evidences should be enough to understand that circumstances serve as contexts while

participants are engaged in a conversation and that they can extract information from their

circumstances in parallel to their talking or listening to others.

Gy: toriaezu migi-hashi-no

1.2.2 Plans and goals try vighthand side
Fi: migi-hasi
Plans and goals that participants have in their mind can influence their utterances and un- righthand side
derstandings. Observe another excerpt from the HCRC Map Task Corpus (Figure 1.3) with G3: hai, mitizoi-ni zutto itte-eh

yes, along the route we are going straight for a while
Fy: itte-eh

We are going straight

different maps from the above, where the giver is trying to conduct the follower to come to
the level of a lake. In Gg, the giver first tries to conduct the follower directly to come to the

level, but realizes that he may not recognise the lake and interrupts his utterance ( “walk right . . .
; > g Gs: de, minami-no-numa-no-katati-ga nan-ka

up by ...”). He changes now his plan® in G4 and asks if the follower has the lake in his map then, the form of the west lake looks... as if
by saying “do you have a lake?” After confirming that the follower has it, the giver resumes F;: nan-darou nan-ka kou ue-no hou-de 2-tu-no kou
his plan in Gg. This is an example where plans can influence utterances. well as if two things upwards are...
G,: wakarete-masu-yo-ne-eh
Plans and goals can also influence their understandings. In another excerpt from the Japanese branching, isn't it?
Map Task Corpus (Figure 1.4), which is another part of the session shown in Figure 1.2, the F;: eh eh eh

yeah, yeah

2 Another important issue is how an utterance is systematically evaluated under different circumstances,
but it is not the aim of this thesis.

Figure 1.2. An excerpt from the Japanese Map Task Corpus (1)

More accurately, this is a plan for discourse, which should be distinguished from that for tasks. T owe to
Syun Tutiya in noticing the distinction.
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Gy: Have you got a white mountain?

Fi: Yes, I have a white

Gj: Right. Up

F;: mountain to my north.

Ggj: past ... Up on the left of the white mountain, walk right up by ...

Fs: Uh-huh

Gy4: FErm, do you have a lake? Right up at the top?

F4: Yes, uh-huh.

Gs: Right. Walk ... Keep walking north until you get to the level of the lake.

Fs: Uh-huh.

Figure 1.3. An excerpt from the HCRC Map Task Corpus (2)

giver tries to take the follower to near a lake. The giver at Gg uses the word mann-naka
(centre?) to express the point to which the follower should come to, the point that is shown
as A in Figure 1.5. The point is in centre or middle relative to the side it faces. The meaning
of the word is however ambiguous as it can mean another point B, too, in Japanese, the
centre inside the lake. Realising the possibility of misunderstanding, the giver is looking for
another appropriate word. The follower however can disambiguate the meaning in Fs. The
disambiguation is easy as the route cannot go into the lake in the task. The giver’s joke and
the follower’s reaction in Gy and T4, respectively, indicate that they are certainly aware of
the ambiguity and that they could disambiguate it. We see in the example that the plan® for

tasks may contribute to disambiguating expressions.

1.2.3 Discourse

For the moment, we use the term, discourse, in a very narrow sense, to mean all sentences ut-
tered up to an utterance. Discourse provides for references to succeeding utterances. Observe
the other excerpt from the HCRC Map Task Corpus (Figure 1.6). The demonstrative, “that”,

does not make sense without its preceding sentence, which refers to the “abandoned cottage”.

*Tn Fnglish, it could be better translated to middle, so that the two points can be distinguished lexically.
But the word can mean both points in Japanese.

*This sort of plan should be distinguished from discourse plan, whose example we have seen in Fnglish in
this subsection.
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Fll

GQ:

FQZ

Gs:

Fg:

G4:

Fyu:

jaa, golf-jo-no migigawa-wo toht-te
then, righthand side of the golf course we are going
migigawa-wo toht-te-tte kita-no numa-no
we are going righthand side, and  as for the east lake
kita-no numa-no

as for the east lake

nan-ka, mann-naka nan-tuun-desu-ka kita-no numa-made tuitara

well, centre how can 1 say, when you come to the east lake

un, mann-naka kita-no numa-no mann-naka-ni toriaezu ike-ba iin-desu-ne
yeah, centre to the centre of the east lake I should go, shouldn’t I?
numa-ni okkoccha dame-desu-yo (laugh)

into the lake  you shouldn’t go (laugh)
(laugh) az, hai, ikimashi-ta.
(laugh) yes, I've come to.

Figure 1.4. An excerpt from the Japanese Map Task Corpus (2)

kita-no-numa
(east lake)

centre B
[ ]

centre A

route

Figure 1.5. kita-no—numa(east lake) in the map
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Another interesting case can be found in Figure 1.7. This time, the follower’s utterance, Fy,
“Over the top of the?”, does not make sense in itself. Unless the discourse is given, it cannot
be understood as referring to part of the preceding sentence. The next utterance of the giver,

“slate mountain?” (Gg), too, needs the discourse to make sense.

Gy: And immediately below that bend there is an abandoned cottage.
Fi: Okay

Gy: And we're passing above the top of that. We're going to continue in that sort of shape,
a big wide.

Fo: Mmhmm

Figure 1.6. An excerpt from the HCRC Map Task Corpus (3)

G1: When you get to the savannah, before you turn to your left, so you’re heading north
again.

F: Okay.

Gy: Until you get over the top of the slate mountain.
F;: Over the top of the?

Gj: slate mountain?

Fs: Don’t have a slate mountain.

Gy: Mmhmm

Figure 1.7. An excerpt from the HCRC Map Task Corpus (4)

Discourse plays an important role in Japanese, too. In the other excerpt from the Japanese
Map Task Corpus (Figure 1.8), one can observe that at Iy the follower repeats part of the

sentence prior to it, hidari-naname-mae, as is observed in English.

1.3 The information flow by utterances

In the above, we have seen that contexts, i.e., circumstances, plans and goals, and discourse,
can influence the way that the meaning and content of utterances are understood. In this

section, we fit them into a general picture of information flow by utterances.
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Gy: ee-to, 90-do-made ika-nai-n-desu-kedo chotto hidari-yori-ni
ch, not as wide as right angle, but a little lefthand side
hidari-naname-mae-gurai-ni magaru-n-desu-ne
we are going to turn forward lefthand side.

F;: hidari-naname-mae?

Sorward lefthand side?

Gj: ee, sinkou-houkou

yes, in forward direction

Figure 1.8. An excerpt from the Japanese Map Task Corpus (3)

1.3.1 Linguistic channels

The figure 1.9 depicts our view on the information flow by utterances, i.e., how information
can be conveyed from one to another by utterances. In our view, a particular utterance
denotes or signals a particular situation, the situation that the utterance intends to convey
to another. We call the relation between an utterance and a situation signalling relation. To
recognise the signalling relation, participants must classify it as a particular belonging to a

certain type.

To classify a particular signalling relation between a particular utterance and a situation, one
has first to categorise the utterance into a sentence type. We call the phase as parsing. Sen-
tence types can be expressed, for example, with syntactic structures and lexical information of
each word. Syntactic theories are concerned with the sentence type and parsing phase. Given
a sentence type, one can relate it with a situation type, whose phase we call interpretation.

We also call the phase of relating a situation type with a particular situation as evaluation.

We owe Situation Theory [BP83] and Channel Theory [Bar93, BS92, SB93] for depicting the
above picture. The emphasis on the distinction between particulars and types are central
to Situation Theory. We inherit the idea in distinguishing utterances from sentence types
and situations from situation types. The relation between sentence types and situation types
are often termed as constraints in the theory, whose concept is further developed in Channel
Theory. Constraints can also be called indicating relation. The distinction between signalling
and indicating relation is central to Channel Theory. They form jointly channels. Respecting

the terminology of the theory, we will call the steps depicted in the figure linguistic channels.

1.3.2 Contexts in linguistic channels

Into the linguistic channels, the three factors that we have listed as comprising contexts can

be fitted as shown in Figure 1.10. Discourse serves as a context to parsing phase, plans and
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sentence type

situation type

@

interpretation

evaluation

signals ¥

[ ] - O
utterance gSituation

Figure 1.9. The information flow by utterances

goals to interpretation phase, and circumstances to evaluation phase. In the previous section,

we have observed that circumstances can determine the content of utterances, that plans and

goals can influence the meaning, i.e., situation type, and that discourse can play a role in

identifying sentence types of utterances. There could also be interactions between these three

factors of

discourse, plan-goals, and circumstances, through which more complex forms of

interactions between the channel and circumstances may occur. We will however simplify our

conceptualisation in the thesis.

plans
& goals

sentence type

situation type
O

interpretation

discourse parsing evaluation Circumstances

t signals ¥

utter.ance situation

Figure 1.10. Contexts in the information flow

Given the

1. how

2. how

3. how

above picture, we can ask three important questions:

can discourse interact with the parsing phase?
can plans and goals interact with the interpretation phase?, and

can circumstances interact with the evaluation phase? enumerate To answer to
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these questions, however, we have to investigate how the following items of information

are organised and represented within an agent:

e sentence types, situation types, and

e discourse, plans and goals, and circumstances.

These issues should be studied with consideration to the above three questions. That

is,

(a) Sentence and situation types must be organised and represented in the way that
they can interact with discourse, plans and goals, and circumstances at any point,

and

(b) Discourse, plans and goals, and circumstances, must be represented in the way
that the phases of parsing, interpreting, and evaluating utterances can interact

with them at any point.

1.3.3 Communication and Concurrency

The three questions and the two desiderata above lead us to the notions central to our
theory, communication and concurrency. In our approach, we will conceive of linguistic
channels as a system of communicating processes, where various objects such as sentence
types, situation types, circumstances, and situations are modelled as processes, too.
The systems can be conventionally regarded as consisting of three subsystems to parse,

interpret, and evaluate utterances, respectively:

e The first subsystem parses utterances and is composed of four sort of processes: the
first one for representing utterances, the second one for parsing utterances, third

one for representing discourse, and the fourth for representing sentence types.

The second subsystem interprets sentence types and is composed of four sort of
processes. They represent sentence types, plans and goals, and situation types,
and organise processes representing situation types. The processes representing

sentence types are shared with the first subsystem.

The third subsystem evaluates situation types and is composed of four sort of
processes: the first one for representing situation types, the second for representing
circumstances, the third for organising processes representing situation types, and
the fourth for representing situations. The first sort of processes representing

situation types are shared with the second subsystem.
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1.4 Repair and operational semantics of natural language

While our modelling of language use enables us to study the spontaneous information
flow brought about by utterances and the influence of contexts on it in detail, a ques-
tion remains to be asked: How can the modelling contribute to the study of natural
language semantics? Put the question differently, what aspects of language use can be
captured better in the long run with our approach? Tn the thesis, we confine ourselves
to studying how information can be conveyed from one to another by utterances rather
than investigating what the meaning of a particular class of sentences is. The latter sort
of study consists of the mainstream of research in natural language semantics. Given
the tendency, one may ask why we have to study the information flow by utterances,
wondering whether such an enterprise is necessary for our understanding of language

use.

It may not be problematic how information can be conveyed as long as we are only
concerned with language use in ideal environments. Every utterance can convey to
another what it is intended to mean without failure. This is however not always the case
in our real life; One may not hear the other properly, may not understand what he means,
or may not relate the meaning to particular situations. We think our approach makes

it, possible to study the meaning of sentences when there is a failure in communication.

We are particularly interested in repair of common ground in dialogue in this respect.

The notion of repair can be for example explained by Schegloff as

Past work has given strong indications of a fundamental form of organi-
zation in talk-in-interaction that provides mechanisms for the participants to
deal with an immense variety of troubles in speaking, hearing, or understand-
ing the talk. These range from inability to access a word when needed or
to articulate it property, to transient problems in hearing (e.g., due to am-
bient noise), to variously based problems of understanding; the “variety of
troubles” thus includes various classes of problems and a virtually unlimited
This “self-righting mechanism” that allows
talk-in-interaction to keep itself going in the face of such “problems” we have

array of “sources” or “causes.”

termed the organization of repair. A brief resumé of some main features of
the organisation of repair will provide the context for the specific concerns of
this article.( [Sch92]: Appendix A)

The challenging question in terms of semantics is what the meaning of sentences is
when they are uttered for repairing their common ground. They cannot denote any
extensional entities as participants may be discussing what they are. They cannot be
intensional as participants may negotiate what they mean. Extensions and intensions
must be somehow fixed so that they could be used as reference points, but they are

in flux while participants are repairing common ground. The term, floating arena,
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named by Schegloff [Sch92], expresses the nuance of the problem well. The notion
of awareness/vividness studied by Carletta [Car92], too, addresses the issue from a
different perspective. We expect we can approach the problem from operational point

of view. Before proceeding to discussion, we examine examples to clarify the issue.

1.4.1 A Japanese phrase-final particle, “tte”

We examine the use of a Japanese phrase-final particle, “tte”, because it is an example
where repair is evident in linguistic expression. In the excerpt from the Japanese Map
Task Corpus shown in Figure 1.11, the participants have the same item but named
differently: rotenburo (hot wells) in the giver’s map and iwaburo (hot springs) in the
follower’s. Just before the conversation starts, they have found that the follower has not
a mountain in his map, while the giver has it in his map, and are consequently alerted.
To proceed with their conversation, the giver asks G if the follower has rotenburo (hot
wells) in his map, marking the noun phrase with the particle, “tte”. His expectation is
confirmed by his response, Iy, and the fact becomes commonly known that the giver
has rotenburo (hot wells) while the follower does not. Looking at his map, the follower
informs him that he has instead iwaburo (hot springs), marking the phrase with the

particle.

G1:

Fli

jaa, rotenburo-tte arimasu?

then, do you have hot wells? (meta)
rotenburo-mo nai-mitai

It seems that I don’t have hot wells either.
naiz,

eh, you don’t have it.

demo, iwaburo-tte-iu ofuro-wa aru
but I have wells called hot springs.(meta)
iwaburo, ettoh, sorekanah

hot spring! ah, that may be it.

Figure 1.11. An example of the use of “tte” (1)

One explanation has been proposed by Takubo [Tak89, Tak90, TK92] on the meaning
of the particle, who observed it can mark noun phrases whose referent or meaning is not
known to a participant engaged in the dialogue whoever he is, the speaker or the hearer.
As the meaning concerns in a sense the mode of meaning, shared or unshared, he called
noun phrases marked with the particle meta-linguistic expression, whose terminology
we follow here. What makes it difficult to understand the meaning of the particle is

that the speaker can mark a noun phrase with it even when he knows its meaning and
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referent if he thinks the hearer does not, as is observed in the above excerpt (Figure
1.11). The factor can be explained as an example of collaboration between participants

or emphaty to the hearer [Kun87].

1.4.2 Imperfect information flow

The participants in the above excerpt seem to be communicating with each other in
floating arena. The question to be asked now is what these two sentences, G; and Fy,

mean, where the meta-linguistic expression is used. The meaning of Gy,
rotenburo-tte arimasu? (do you have hot wells? meta ),
cannot be equivalent with that of another sentence,
rotenburo-wa arimasu? (do you have hot wells? topic ).
Similarly, the meaning of Fy,

demo iwaburo-tte-iu ofuro-wa aru

(But I have wells called hot springs. meta),
is different from that of another sentence,

demo iwaburo-wa aru (But [ have hot springs. topic ).
What makes these differences?

The difference must be in the speaker’s uncertainty to the given items in the hearer’s
map. But how can we capture the meaning of sentences uttered in the floating arena?
To this question, our answer is given from an operational point of view: The information
flow by the utterance is imperfect. The notion has been proposed in Channel Theory
and has been studied in detail. When their common ground is firmly fixed, linguistic
channels work perfect; There is no fear of misunderstanding. One can listen to the
other properly, can understand the meaning of sentences, and can figure out what they
denote. Channels may be imperfect, however; One may not hear the other properly,
may not know the meaning, or may not figure out what they denote. In the above
excerpt, the channel works imperfect because it is unsure if they can jointly identify the

items uttered by them.

The advantage of adopting the notion, imperfect information flow, is that we do not need
to throw out all the information we have obtained from utterances when communication
partly fails. Utterances can still contribute to classifying and updating their common
ground even the information flow involved is imperfect. Such a view fits our intuition

as to how natural language works in communication.

Another good point of operational account is that it is harmonious with model-theoretic

semantics. What has been investigated in semantics of natural language is all perfect
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cases, where we do not have to care about the imperfectness. Considering imperfect
cases can extend the field of study, and we we may study operational aspect of language.
The move however does not conflict with model-theoretic approach. We will show
through the study of Situation Semantics that formal semantic theories could be built
up on our operational semantics by regarding semantic objects as specifying properties
of processes. Our work therefore should be regarded as an extension of formal semantics

rather than as a completely new approach.

1.4.3 Imperfect information flow in English

We can apply the idea of perfect/imperfect information flow to English as well. Figure
1.12 shows an excerpt from the HCRC Map Task Corpus. Here the giver has “irig
point” in his map, while the follower does not. At Gy, the giver introduces the item,
“trig point”, asking the follower if he has it in his map. After realizing he has not it,
through F4 to Fs, the giver tries to persuade the follower to assume there is a trig point
in his map at Gg. Interestingly, he first refers to the item as a definite description, “the
tri(g point)”, then repairs his utterance, changing it to an indefinite description, “a trig
point”. We can observe in this repair that the imperfectness of their communication

can certainly affect one’s utterance.

The meaning of indefinite descriptions are accounted for as introducing a new discourse
marker according to dynamic semantics [GS91b]. Given the claim is true, what im-
plication can be induced when a speaker utters an indefinite description repeatedly as
is observed in the excerpt? The claim faces a difficulty; the speaker is regarded to be
introducing a new discourse marker each time he utters “a {rig point”. Our answer
is that the claim is true under the condition that the information flow is perfect, but
it does not hold when the information flow is imperfect. By distinguishing these two
modes, we can retain the meaning of indefinites as introducing a discourse marker and

can explain why he repeats the noun phrase many times.

The approach of introducing the perfect/imperfect flow to semantics enables us to define
a meaning for incomplete utterances such as the one observed in Gg. The giver is
trying to grade-up the status of “trig point” from indefinite to definite description,
but he is hesitating to do so, recognizing the follower’s difficulty to accept the item
as an established one between them. Such an expression as “the ... ” has not been
considered as target of study in semantics, but we can capture the meaning in terms of

the information flow.
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Gy: Right, so you're gonna almost follow the course of that right ... that west lake to the
east, the east side of it ... you're gonna follow the ¢ the course of it.
Fy: Just ... just coming in at the base of it, then?
Gg: Yeah, just at the base, and then follow the course of it round sort of a u, an s shape.
Fy: Sois it a very very big wide u so
Gj: Yeah.
F5: I'm gonna avoid som ... so that ... I'm avoiding something at the
Gy: Well you've got a trig point, do you have a trig point?
F4: No.
Gr: No.
Fs5: Nope.
Gg: Right, so in between your west lake and the {ri There’s a trig point, right?
Fg: Right.
(after 17 utterances)
Gr: So in between it would be ... It would be in between the farmed land and | have

F7:
Gg:

Fg:

a trig point.
Okay fine, right.

Right, okay. So it’s just above the ... just at the ... just before the tip of that west lake,
but just at the east co ... just at that east coast, right?

Okay, fine right, yeah. Uh-huh.

Figure 1.12. An excerpt from the HCRC Map Task Corpus
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1.5 Related work

1.5.1 Situation Theory and Channel Theory

Situation Theory and Channel Theory are our starting point and form a basis of our
theory. The project can be regarded as an enterprise to base those theories on a compu-
tational ground with an application in mind, natural language processing. The project
is motivated by the result of another project to analyze the meaning of the Japanese
particle in dialogue with Situation Theory and Channel Theory. The idea of linguistic
channels came out through the investigation of the particle, but machinery provided by
those theories was not enough to implement a natural language processing system to

test the idea against real data, which have led the author to process calculi.

The project is by no means the first attempt to base Situation Theory on a compu-
tational ground. There exist two other projects: AsTL [Bla92] and ProsiT [NPS91].
ASTL is a computer language whose basis is in Situation Theory. The language imple-
ments most important features of Situation Theory: individuals, relations, parameters,
situations, situation types, propositions, and constraints. It also offers a set of inference
rules to prove propositions about a system of propositions and constraints. PROSIT is
a knowledge representation language based on Situation Theory and offers a represen-
tation of individuals, relations, parameters, situations and constraints. The language
however provides for more powerful facilities such as forward and backward search by
rules, which is not part of Situation Theory. It is fair to say the language is partly based
on Situation Theory but is equipped with other facilities useful as a knowledge represen-
tation language. Compared with PROSIT, ASTL is a more conservative implementation
of Situation Theory, and its intended application is natural language processing rather

than knowledge representation.®

Our project is benefited from the results of these projects in considering computa-
tional issues related to Situation Theory. An important element of the recent version
of Situation Theory which is missing in those languages, however, is abstraction and
anchoring. The introduction of the apparatus is motivated to model Discourse Rep-
resentation Structures (DRSs). In the research on the semantics of natural language,
Discourse Representation Theory (DRT) [Kam84, KRY3] has been playing an impor-
tant role, and a number of researchers are trying to base the theory to a computational
ground. Situation Theoretic DRT [Coo93a, Co093b] is one of such attempts, where
DRSs are regarded as an abstraction of situations. Computationally, the operation can

be studied in relation with the A abstraction. The problem is that parameters in DRSs

SThere is also a work by Glasbey [G1a90], who extended Robin Cooper’s Situation Theory based processing
environment in Prolog to implement her theory of tense and aspect.
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must be abstracted over and anchored to simultaneously, which goes beyond the fa-
cility of the A-calculus. Confronted with the problem, most researchers are trying to
enrich the A-calculus. The solution proposed in EKN is, for example, to index parame-
ters so that they can be anchored to regardless of the order of substitution operations
(§4.2.5 and §4.2.6). Pinkal’s compositional DRT [BMM™*94] preserves the A-calculus,
but devises a compose function that will do the same job, i.e., managing the anchoring

operation so that parameters can be substituted by proper values.

Given our motivation to study linguistic acts, the issue of abstraction and anchoring
must be investigated as the most important problem in our project. To base simultane-
ous abstraction on a computational ground, however, we do not extend the A-calculus,

but choose a process calculus.

1.5.2 Process calculi

Going back to the intuition to regard DRSs as an abstract object, one can argue that
DRSs are meant to model a frame of mind, whose slots will be filled with concrete val-
ues when embedded into an environment. In this conceptualisation, anchoring can be
regarded as a process of filling those slots. Such a process can be captured with the idea
of simultaneous abstractions, but it can be modelled more directly as concurrent inter-
actions of an agent with environments [Fuj94]. This conceptualisation fits with a recent
development of Situation Theory, too, where indices are not merely natural numbers or

utterances, but a more complex object that involves a referring action [Coo93a].

To implement the idea of concurrent interactions, we turn to a process calculus, namely
the m-calculus [Mil93b, MPW92]. The calculus is proposed as a model for concurrent
processes and can be used to model linguistic acts mentioned above as well, which is the
main argument of this thesis. The striking point of the calculus is that it can model the
indexed abstractions naturally. The following is, for instance, an explanation on terms

of the calculus:

The first class of terms consists of guarded terms g.P, where P is a term
and ¢ is a guard; guards g have the form
g :=T(y) | z(y)
Informally, T(y).P means ‘send the name y along the link named «, and then
enact P’y on the other hand, 2(y). P means ‘receive any name z along the link
named a, and then enact P{?/,}’. Thus the guard =(y) is like the A-prefix Ay
in that it binds y. ((Mil92¢]: p.121)

Thus, we can see a w-calculus term, z(y), as an indexed abstraction over y with 2. This

correspondence motivates us to look into the calculus in depth for linguistic applications.
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It may appear to be odd to model situation theoretic objects based on process calculi,
but Situation Theory has been historically benefited from work on process calculi. For
instance, one of the motivations of Non-Well-Founded Set Theory [Acz88], which lays a
foundation for Situation Theory [AL91], is to define a semantics for Synchronous Cal-
culus of Communicating Systems (SCCS) [Mil83, Mil89], a precursor to the m-calculus.
Therefore, it should not be so difficult to model an earlier version of Situation The-
ory [BES7] with SCCS. But we are here interested in exploring the m-calculus to model

more recent versions of Situation Theory.

It has been shown that with the m-calculus we can encode various data structures
such as list [Mil93b, MPW92], the A-calculus [Mil92¢], and a concurrent object-oriented
language [Wal95]. Our project is benefited from these encodings and aims to apply the

technique to computational linguistics.

1.5.83 Dynamic semantics

In connection with DRT, there are several projects for reworking the theory in logical
setting, which are often termed as dynamic semantics (e.g., [GS9Ta, GS91h, Mus92,
Mus93]). The diversity of those projects makes it difficult to compare our work with
them in detail, but we take the same approach in formalising ideas, program logic. The

difference is in the selection of models.

To clarify our relationship with those projects, we examine the relation between program
and logic. The aim of dynamic logic [Pra81], a source of insight for dynamic semantics,
is to characterise programs and infer its properties logically, e.g., what value will be
assigned to a variable when an instruction is executed. Let P be a program denoting a

function or relation, and ¢ a formula. A dynamic logic formula is expressed as:

[Py

where the program is embedded in the formula as modal operators. The meaning of
the expression is that the state of machine after executing P is characterised as ¢. A
Hoare-style formula too can be categorised into this formalism since {¢} P{1}, the state

changes from ¢ to ¥ when P is executed, can be translated to ¢ = [ PJe.

In dynamic semantics, roughly speaking, the programs are conceived of as an instruction
that can change the state of memory of computer by assigning a value to a variable.
The meaning of the program is then captured as the change of memory states upon the
execution of interactions, say ¢ — . Additional conditions specifying relations hetween
values or their properties make it possible to express complex structures, e.g., DRSs.
Comparing such a conceptualization with ours, our notion of program is different. In

our study, programs are several processes that run concurrently and can interact with
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each other to exchange data. The different programs mean that our model is different

from those for dynamic semantics.

A strategic difference lies in the way to characterise programs logically. Following
Hennessy-Milner logic [HMS&5], we will characterise programs by describing the proper-

ties pertaining to them:
Pl
where P is a program and ¢ is a formula. These two characterisations are, however, not

so different from each other as their appearances suggest. It has been known that the

former is an alternative formulation of a meta-language to specify programs [Abr91].

In dynamic semantics, the idea of concurrency is recently considered to temper the
problem of nondeterministic computation [Fer93]. The solution is to preserve all alter-
natives with disjoint union when a source of nondeterminism is encountered. Tn this
model, however, the idea of communication is still missing. Therefore, the work is not

particularly related with ours.

1.5.4 Concurrent natural language processing

Here is a note on the difference between parallel and concurrent. While parallel ar-
chitectures for computation are studied in computer science, the notion of concurrency
is an independent concept of parallel processing. Parallelism is to do with execution
on hardware or very low level software architectures, whilst concurrency concerns with

design of systems or programs.’

As for concurrent natural language processing, the most relevant model in spirit with
ours is proposed by Broker, Hahn, and Schacht [SHB94, BHS94, BSSH94]. In their
ParseTalk model, parsing is modelled as message passing based on Hewitt’s actor model
[Agh86]. Grammar rules are not separated from lexicon, but encoded into each lexical
item. Such a lexical item is encoded as an actor, and actors can communicate with
each other to parse sentences. Our project share the intuition to model lexical items
as autonomous agents, but the level of modelling is different. While their model is
defined at a higher level, say actor model, ours is defined at more primitive level, say
process algebra. Our advantage is that we can model feature structures and other data
structures in the same framework as the model is so fine grained, while their model
forces to combine different frameworks, e.g., introducing feature structures in separate
form. But the point should not be exaggerated; the aim of the project is to build

a practical system while ours to investigate a concurrent theory for NLP. Our model

‘T owe to Gert Smolka in realising this.
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should serve as a basis to analyse and compare various concurrent NLP models such as
ParseTalk model in broader contexts. Another difference is their emphasis on general
knowledge and ambiguity. Class hierarchy is, for instance, employed to disambiguate

syntax. That sort of issue is not considered in this thesis.

0z is a concurrent constraint programming language developed by Gert Smolka and
his group at DFKI (German Research Center for Artificial Intelligence) [Smo94b]. The
language combines ideas from the m-calculus with constraint programming and can find
a solution satisfying constraints effectively owing to concurrency. The emphasis is on the
design of concurrent constraint language, but application to NLP is planned. One way to
encode feature structures as concurrent objects has been proposed by Smolka [Smo94a]
and a bottom-up parser is implemented as a demo program. The facilities provided
by the language is so rich that it seems that anything can be encoded with it. The
difference in strategy and objectives, however, should be pointed out with our project.
While the language is rich in facilities, we start with primitive elements of computation.
The complex behaviour of systems will be modelled through combining small building
blocks. This is because we use the w-calculus as a model to study the meaning of
concurrent objects. The simpler the model is, the easier to study its properties. We
are interested in identifying the least set of operations and how complex objects can
be built up using them. The Oz language is on the other hand designed as a practical
programming language to build systems. Therefore, they cannot be compared with
each other. Our results should, however, contribute to building NLP systems using Oz

language.

1.6 The aim of the thesis and overview

1.6.1 The aim of thesis

The aim of the thesis is to construct linguistic channels as a system of communicating
processes. The ultimate goal is to answer the three questions: (1) how discourse can
interact with the parsing phase, (2) how plans and goals can interact with the interpre-
tation phase, and (3) how circumstances can interact with the evaluation phase. But
there are many things to be done towards the goal. The first step is to show how we
can model linguistic channels as a system of communicating processes, while respecting
the two desiderata: (a) sentence and situation types must be organised and represented
in the way that they can interact with discourse, plans and goals, and circumstances at
any point, and (b) discourse, plans and goals, and circumstances, must be represented
in the way that the phases of parsing, interpreting, and evaluating utterances can in-

teract with them at any point. Once we succeed in the project, we can go forward to
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empirical studies on how contexts can influence the phases of language understanding

in detail through simulation.

In the thesis, we will turn to the w-calculus to describe systems of communicating pro-
cesses. The project may sound unusual, but we do not intend to invent a completely new
linguistic theory. We will rather reinterpret conventional theories in the light of con-
currency and communication. We will introduce, for example, feature structures [PS94]
to express syntactic types and Extended Kamp Notation (EKN) [BC91, BC93] to ex-
press situation types. These notations will serve as constraints to specify possible class
of computations. In this respect, the project can be seen as defining an operational
semantics to those remodelled theories, but one should not be misguided by the side
effects. We are interested in modelling the information flow by utterances as a system
of communicating processes in order to study roles that contexts can play in language

use.

1.6.2 Overview

The thesis is organised as follows:

Chapter 2 We first explain the m-calculus. Since the calculus, and probably the idea
of communication and concurrency, too, can be unfamiliar to the reader, the ex-
planation is given in detail and self-contained so that the succeeding chapters can

be understood without any prior knowledge of process calculi.

Chapter 3 We investigate how logic can be used to specify mobile processes. We turn
to Combinatorial Intuitionistic Linear Logic and show how processes defined in the

w-calculus and a molecular language can be specified in the logic.

Chapter 4 We construct semantic objects employed in Situation Semantics in the 7-
calculus. The result obtained in the previous chapter is used to relate our study

on Situation Semantics with Channel Theory.

Chapter 5 We encode a concurrent chart parser in the calculus. We start by encoding
feature structures and then encode a parser that analyses sentences as a result
of interactions between agents. We show how a semantic representation can be

constructed by the parser.

Chapter 6 We conclude the thesis by comparing our framework with other approaches.

Chapter 2

A Calculus of Interaction

The aim of this chapter is to give the reader an insight into concurrent computation
and communication. We start by explaining the w-calculus because our modelling is
based on it. Through examination of its underlying computation, we investigate what
concurrent computation and communication are and how they can be controlled. The
investigation enables us to identify the minimum set of elements we need to define

systems of communicating processes.

2.1 The w-calculus

2.1.1 From simple automata to systems of communicating processes

The section introduces the reader to the m—calculus [MPW92, Mil93b]. We start by pre-

senting simple automata, then will enrich them till we obtain the polyadic m—calculus [Mil93b].

The section firstly aims to give the reader basic ideas on the calculus, then we define
its syntax and semantics formally in §2.1.4. In what follows, capital letters, A, B, and
C range over automata or agents, P, (), and R over processes, and italics @, b, -, over
actions. The terminology of automata or agent is used to indicate entities modelled as

proces Processes are defined with respect to actions.

Simple automata

Let A be an automaton that accepts a sequence of symbols, {a,b), and terminates
(Figure 2.1). We define the initial state of A, ., by its possible courses of actions, e.g.

accepting a and b, then terminating. We express such a state as

Py =gef a.b.0

22
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where 0 means termination!. After accepting the symbol a, the state of A turns into

another state, P, such as accepting b and terminating, written as
P =qer 6.0
To express the change of the state caused in A by accepting a, we write

Po-5 P

Figure 2.1. A simple automaton

Simple communicating systems

Simple automata can only accept symbols, but we can think of another sort of action,
emitting symbols. A system of automata which can interact with each other by emitting
and accepting symbols forms a communicating system. Let the initial state of A be Py as
before and the initial state of another automaton B, Qg, such as emitting the sequence
of symbols, (a,b) (Figure 2.2). We distinguish such an output action with overline and

write the definition as

Qo =der @.0.0

Suppose a communicating system is composed of A and B, whose initial state is defined
as Py | Qo, meaning that Py and Qg are concurrently active. Because they are active,
they can communicate, e.g., by B’s emitting a symbol and A’s accepting it. Suppose
now B emits ¢ and A picks it up. Upon this interaction, the state of the system turns

into another state, which is expressed as

Py|Qo—= PilQy

where P; is as before and Q1 =ger 5.0. The symbol, ‘77, read as silent action, means
the interaction between A and B is invisible from outside. Hereinafter, we may write

— for a finite sequences of — for readability.

!Hereinafter, 0 may be omitted for readability.
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Figure 2.2. A simple communicating system

Data communicating systems

The interaction between A and B can be regarded as establishing a communication
channel or port through which data can be exchanged. In the figure 2.3, we depict the
agents, A and B, as circles with bold line and channels between them. a and b, as lines

whose ends are emphasised with squares.?

Figure 2.3. A channel

Now suppose A4 is willing to receive a number from B through a port ¢ and B wants to

emit ‘57 through it (Kigure 2.4). Let P be A’s initial state, defined as
Pio =der ¢(2). Py

where @ is a parameter to be substituted for upon the interaction, whereas B’s initial

state, Q1g, is defined as
Q10 =def T(3).Qn1

where ‘5" is the number to be emitted.? Upon the interaction, the number ‘5’ is emitted

2Tt may be confusing that we use the same alphabets, a and b, to indicate both the actions establishing
channels and channels established by them. We may adopt a different font for channels, e.g., a and b, to avoid
the confusion, but we follow in the thesis the convention adopted in the literature [Mil89].

?One may wonder why @(5) is not expressed simply as @(5). There is a historical reason for this. Tn some
versions of the calculus, () is used to indicate the name is free, while () to indicate it is bound. In fact, there
were the notions of free input, e.g.. ¢{x), and bound output, e.g., 7(5), as well as bound input and free output
explained here. See §2.1.2 to know about the notions of free and bound names.
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to A, and z is substituted by it, which we write as

Pio | Qio—Pui{?} | Quu

The expression, P11{5/T}, means any @ appeared in Pyy to be substituted by ‘5.

Figure 2.4. A data communicating system

The monadic 7-calculus

We have so far distinguished ports from data, but we can treat them uniformly as

names, which enables us to model mobility: an access to a port can be exchanged, too.

Suppose B needs to emit ‘5" to ' and wants A to take over the job. Suppose also C'is
accessible only through a port a, and A and B communicates with only through another
port b. Assume first A would have an access to a (Figure 2.5). Then, what 3 needs to
do is to send A ‘B’ so that it can emit the number to C. A's state Py may be defined
as b(z).a(x).Pn, B’s state Qu as b(5).Qu1, and C’s state Ry as a(y).Rer. Upon B’s

emitting ‘5" to A and its emitting it to C, the state of the system would change as

follows:
A B C
b(z).a({x). Py | B(5).Qa | a(y).Ray
(B emits 5 to A via b.)
= @) Pl } | @x | aly).fiz
(Receiving it, A substitutes it for 2, and emits it to C' via a.)
= Pt} | Q@ | Ba1i%y}

(C receives 5 and substitutes it for y.)

Now, suppose that A does not have the access to (', the port @ (Figure 2.6). How can

B pass the job to A7 Since A does not have the access, B has to first emit it to A,
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Figure 2.5. Monadic w-calculus: motivation

which is made possible in the m-calculus. B first sends A the port name a via b, then the
number. Let A’s initial state Psg be b(2).b(2).7(2). P31, B’s state Q30 =det 0{a).b(5).Qaz1,

and (s state Rzg =der a(y)-Rar. The state of the system will change upon interactions

as follows:
A B C

b(x).b(2).T(z). P | b(a).b(5).Qa | a(y).Ra
(B emits @ to A via b.)

— b(2)alz) Pul%k) | b(5).Qm | a(y).Ra
(A substitutes it for z. B emits 5 to A via b.)

— a(5).Psi{"," ).} | Qa1 | a(y).Ray
(A substitutes it for z and emits it to C' via a.)

= Pa{"%)} | Qan | Bar{®}

(C substitutes 5 for y.)

The polyadic w-calculus

In the polyadic version, agents can exchange sequences of data, not only a single item,
upon a single interaction. Suppose, for instance, A wants to receive a sequence of three
items, while B wants to emit a sequence, (4,5, 6), where they are linked through a port
d. Let the A’s state Py be d(x,y, z). Py and the B’s state Qqo =der E<47 5,6).0Q41. The

state of the system would change upon a single interaction as follows:

A B
d(z,y.2).Pn | d(4,5,6).Qu

4In the transition, the name x standing for a port name in b(z).7(z).Ps; is substituted by a after the first
interaction between A and B.
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O OBNCam0
a | )  a

Figure 2.6. Monadic w-calculus: mobility

— P41{4/'n-,5/y76/2} ‘ Q’”

2.1.2 Free and bound names

In the above examples, we assumed that all names are free, that is, accessible from
any processes. However, as is the case in logic, introducing the distinction between
free and bound names is useful to describe communication between processes. In the
w-calculus when a name is bound, only the processes within its scope can get access to
it. This enables one to define local names analogous to the local variables in procedural
computer languages or provides one with a similar function to data-hiding in object
oriented languages. The name-passing ability of the calculus brings about interesting

phenomena, scope intrusion and scope extrusion, which is explained in this section.

Definition

The free and bound names are defined as is shown in table 2.1. The names that will be
substituted by another names, e.g., y in z(y), are bound while the names emitted are
not. The names used for communication, e.g., 2 in a(y) or T(y), are free unless they
are bound explicitly. The restriction operator, v, read “new”, can bind any name in
its scope. The name y in (v y)(F(y)) is, therefore, bound. We will utilise bound names
in chapter 5 to encode a concurrent chart parser, where we model channels between
adjacent agents as bound ones, the agents that are assigned to words or phrases of

sentences.

Passing channels through private channels

When a name is bound, it is accessible only among the processes within the scope. In

the example below, b is private between A and B, not accessible from C.
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expressions ‘ bound  free

wy) | {y} {2}
wy) | 0 A=yl
(r@EwW) | {1y} A=}
wa)@y) | {3 Ay
wa,y)@y) | {z.y} 0
wa) () | {z.yy 0

Table 2.1. Free and bound names

A B C
(v b)(b(x).b(2).2(z).P | 5(a).B(5).Q) | aly).R
— (vb)(b(2).a(z).P{"/} | 6(5).Q) | a(y).R

Graphically, private channels are depicted as a link whose label is put on at its both

ends within the process, not in the middle (Figure 2.7).

c @m D
© ke

Figure 2.7. Passing channels through private channels

Scope intrusion

When a process receives a channel whose name conflicts with its private channel, the
private one will be renamed to avoid confusion. In the following example, the private
channel, a, between A and D will be renamed to a’ when A receives another channel

from B, the channel which happens to bear the same name a (Figure 2.8).

D A B C
(va)(a(v) @FDaNP) | W)IEQ | aly) R
S wa) (@@L | bEEDTE)PELEL) | BEQ | a)R

2

=
-
\
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scopeof a scopeof &

Figure 2.8. Scope intrusion

Scope extrusion

When a process emits a private channel, its scope is extruded to the receiving process.
In the example (Figure 2.9), the scope of a private between B and C'is extruded to A
when it is passed to A through b. (There is a familiar example in the C programming
language, where a module passes another an address of or pointer to its local variable

so that it can read or write the value of the variable.)

A B ¢
b(z)b(z)3(2).P | (va)(ba)b(5)Q | a(y)-R)
— (va)(b(z).a(z).P{*} | b(5).Q | aly).R)

2.1.3 Other operators

In the calculus, there are another three operators, replication, match, and choice.

Replication

The replication operator, !, replicates the process finitely many times. For example, a

process definition, !7(5), means finitely many copies of @(5):
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scopeof a

Figure 2.9. Scope extrusion

o5y | ©(5) | E5) | - | E(5)

Typically, the replication operator is used to allow a single process to provide data to

all processes that request it. Observe, for example, the following case:

2(5) | c@).P | e(y)-Q

This system may change into two different states. If the second process, ¢(z).P. interacts

with the first, (5), the transition is shown as:
e5) | e@).P | e()Q = PELY | ely)Q

while it changes into different state if the third, ¢(y).Q, interacts with it:
e(5) | e(@).P | e().Q —c(@).P | Q%)

If the first process, @(5), is replicated twice, both processes can get the number. That

is, if we define the first process as:
1E5) | e(x).P | e(y).Q
then it can provide for the number twice:

17(5) | 7(5) | 75) | e(@).P | e(y)Q

therefore, both processes can get 5 as is expected:

te(s) | 2(3) | 2(5) | e(2).P | e(y).Q —=12(5) | P{%} | Q{%)
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Replication and bound names

The combination of the scope of bound names and replication may complicate the

calculus slightly. Imagine what effects the following system brings about:
12(5) | le(x).0

The effect is not just a finite number of substitutions of a single name 2 by 5, but the
number will substitute finitely many distinct z; because the system can be presented

as:
1e(5) | e(@):0 | e(@).0 | c(@)0 | ¢(@).0 | -+ | c(x).0
which is alphabetically equivalent to:
12(5) | e(21).0 | e(22).0 | e(23).0 | e(24).0 | - | ¢(2,).0

where each x; is a distinct name as they are bound by different binding occurences. On
the other hand, in the following system the number will substitute a single name, x,

finitely many times as each 2 is within the scope of the preceeding as:

12(5) | e(z).c(z).c(z).clz) - - c(z).0

The same is true for output actions. While each x receives the same number, 5, in the

above example, they will receive different names if the emitted datum is a bound name:

Yva)ela) | elx).c(z).c(x).c(x)--- c(x).0

Since the name a is bound, the action €(a) emits a distinct name, a;, each time it emits
a datum. Therefore, 2 will be substituted by different names each time the input action,

e(x), is performed.

This will change however if the scope of restriction, (v a), is outside that of replication,
OF

as follows:

(va)('ela) ) | c(z).c(z).clz).clz)--- c(z).0

Since a created by ©(a) is the same each time, the input actions, c(z) will replace the

identical a for z each time it receives it.
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Match

The match operator restricts the performance of actions by referring to substitution
environments. In the following system, for example, the formulas, [# = 5] and [z = 3],
allow their operant actions to be active only when they are satisfied. Therefore, while
both actions can be performed if they were not restricted with, only the action, @(d), is

possible when the name z is substituted by 5 through c:

€300 | ele) (=3lado | =350
=0 \ e = 5] a@d).00%) | o= 3] Be).0{%)
VR \ 0 | [ = 3] B(e).0{%,}

Choice

The choice operator, 4, ensures only one action among more than one candidates is
performed and eliminates others. Tt is used typically combined with the match operator.
In the following example, the action E(e) will be eliminated when the other action, @(d),

is chosen to perform.

5.0 | e(z). ([e=5]a(d).0 + [z = 3] b{e).0)
— 0 \ [# = 5] @(d).0{°%.} + [+=13] E<(i>.0{5/”}
\

a(d)
— 0 0

Note the operator may make transitions nondeterministic although it is useful to exclude

unneeded actions. See, for example, a system such as
2(5).0| c(z).( @(d).04 b(e).0)
is nondeterministic as it is unpredictable which action, either @(d) or b(e), will be
performed after the name z is substituted by 5.
2.1.4 Formal definition

Now that we have shown how the w-calculus models processes, we define the full calculus

formally.

Syntax

The syntax is defined as follows, where P and () range over processes, and « a particle.

Also x and y are names, and & and ¥ vectors of names.
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P— 0 (termination)

| (particle)

[ Q (prefix)
[(va)P (restriction)
[[x =y]P (match)

[tp (replication)
[P | Q (parallel)
[P+Q (choice)

a—  T(Y) (exporting)
|2(§) (importing)
| T (silent action)

Semantics

The semantics is defined with the set of reduction rules over processes and the structural
congruence relation between them. The reduction relation is the smallest relation sat-
isfying the rules shown in the figure 2.10.% The structural congruence relation, which is
referred in sSTRUCT, is defined as is shown in the figure 2.11. The structural congruence
relation is useful to avoid tedious definition of reduction relation. The combination of
STRUCT and the structural congruence relation, for example, can deduce many other
reduction rules. In the definition RES, n(a) means all names comprising a. In the defi-
nition of PAR, bn(a) means the bound names in «a, while fn(Q)) means the free names
in Q.

To illustrate how the semantics works®, observe the following example of a vending
machine”. Suppose there is a vending machine that sells a big chocolate bar for a 2p
coin and a little one for a 1p coin when pressed a button, big or little. Such a machine,

depicted in the figure 2.12) can be defined as:

Ven =qer  2p.Ven, + 1p.Veny
Veny, =qef big.collect,.Ven
Ven; =qet little.collect;.Ven

where each importing action such as 2p receives no name upon interactions, but is just
performed. Note also we do not care about who performs which action, but its behaviour

as a system composed of the vendor machine and buyers. Getting a coin, 2p or 1p, and

"PRE stands for “prefin”, com for “communication”, RRS for “restriction”, REP for “replication”, PAR for
“parallel”, sum for “summation”, and STRUCT for “structural congruence”.

9This approach, advocated by Plotkin [Plo81], is called Structural Operational Semantics. The approach
is syntactic, not model-theoretic.

"The example is taken from [Mil89]

PRE: . P -5 P com: P aly) P oQ a(x) o'
Pl Q=PI Qek)
RES: PP MATCH: PP
T Yy ¢ n(a) s
(vy)P— (vy) P [a=alP — P!

P tp = P : PP \
piip P e PE P 0
gty Pl Q-5P|Q
SUM: PSP srrucr: Q=P PP P =Q

P+Q P Q=Q

Figure 2.10. Reduction relation for the w-calculus

alpha-convertible:
synmetric monoid laws for |:

synmetric monoid laws for +:

replication:
restriction:

P = @ whenever P is alpha-convertible to Q
Plo=P

ple=Qlr
PIQIR)=(P|Q)|R
P+0=P

P+Q=0Q+P
PHQ+R)=(P+Q)+R
'P=P|!P

(r2z)0=0

(va)vy)P = (vy)(va)P
va)(P|Q)= P|(va)Q if x is not free in P

Figure 2.11. Structural congruence relation for the m-calculus
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pushed a button, big or little, should be performed by the vending machine, while
getting a big or little chocolate bar, collect, or collect;, should be performed by a

person, but it is not explicitly mentioned in this example.

llect Jen
col b 2 1p collect |
Ven \ Ven
. o 1
big \\httle
o
collect p- Ven collect | - Ven

Figure 2.12. The description of a vending machine

Now given the semantics, we can prove that the state of the machine would change from

Ven to Veny when it gets 2p as follows (the goal comes at bottom):

, 2p PRE
2p.Veny, — Veny

™ by sum
2p.Veny, + 1p.Ven, — Veny

by definition
e 2P oy
Ven — Veny,

The first formula is the axiom, PRE. The step from the first to the second is carried out
by applying the sum rule. The final step is just to rewrite the antecedent to Ven based

on the first definition of the vending machine.

2.2 Graphic presentations of processes

We look into the underlying computational mechanism of the w-calculus in depth in
order to make it easy to define a language (§3.3).% As we believe it helps to grasp the
essence of computation intuitively, we devise a graphic notation to discuss computational

issues.

#lt will turn out that the m-calculus is too restrictive in terms of prefixing to model situation-theoretic
objects (Chapter 4). We will therefore propose a language Lo in the next chapter, which is more relaxed in
that respect. We can however disregard the intention here.
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2.2.1 State transition graphs

An example of graphical presentation is State Transition Graphs (STGs) such as shown
in the figure 2.12. The diagram is useful to depict the behaviour of a single process, but
not so much when applied to systems of communicating processes because every edge is
labelled simply as 7 when there are interactions. Suppose there is a system composed

of two processes such as:
7().2(d) | a(z).e(y)

These two processes can communicate with each other by the first process consecu-
tively emitting b and d through a and ¢, respectively, while the second receiving and

substituting them for « and y. Their interactions are, however, invisible from outside:
a(b).2(d).0] a(z).c(y).0" ©(d).0 | e(y).0{%:} = 0[0{%."/,}

As we cannot distinguish these two transitions, STGs are not of much use to investigate

interactions between processes.

2.2.2 Dataflow graphs

Confining ourselves to the transaction of names at the moment, we will depict the
dependency between names respecting to name-passing as a graph whose nodes are

names and edges actions operating on them, exporting or importing.

Buffer and channels

To introduce our own graphical representation, we see first what characteristics of the
r-calculus should be depicted graphically. An observation reveals that a name may play

two roles in interactions as buffer and channel:

Buffer A name may work as a buffer in the sense that it can be read out, e.g., b in

a(b), or another name can overwrite it, e.g., @ in a(z).

Channel A name can work as a channel through which names can be exported, e.g.,

a in @by, or imported, e.g., a in a(x).

The operations on them are accordingly categorised into two sorts, source and target

arcs:

Source arc Source arcs represent the flow from buffer to channel. They are expressed
as exporting action such as @(b) in the m-calculus, where the name b is exported

to the channel a.
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Target arc Target arcs represent the flow from channel to buffer. They are expressed
as importing action such as a(z), where the name z will be replaced by another

name imported through a.

Here is a clarification of the terminology of channel, port, and other notions related
to them. As is shown in the figure 2.13, two buffers are connected via a channel. We
call, thus, a in (@b |a(x)) channel as it connects b to 2. Changing our perspective,
when we observe the picture with our point of view in buffer, the left end of the channel
can be seen as output port because a name can be exported there from the buffer to
the channel. Similarly, the right end can be seen as input port because a name can be
imported there from the channel to the buffer. Therefore, we may sometimes call a in

@(b) output port and input port if it is in a(b).®

output port input port
buffer —-9-» channel 49_9 buffer
exporting importing

Figure 2.13. The relation between channel, port, and buffer

The above observation leads to a graph whose nodes are either buffer or channel and
edges either source or target arcs. We should, however, pay attention to the ambiguity
found in the graphic representation due to the two roles that can be played by a name at
the same time if we depict the graph straightforwardly. If we depict relations between
names simply as the graph shown in the figure 2.14, its meaning is ambiguous because

it means either

(a) ‘a’is a channel, exporting ‘b’ and importing it to ‘c’, or

(b) ‘a’ is a buffer, importing a name through ‘b’ and exporting it through ‘c’.

As the example shows, we have to distinguish graphically these two aspects of names,
which could be done in many ways. One way is to change its shape so that it consists
of two different parts. A rectangle, for example, can be used for the purpose because it
consists of pairs of long and short sides. When we depict names as rectangles, we can

distinguish the two different roles, buffer and channel, by mapping them to different

? Alternatively, we can exchange “output port” and “input port” by taking channel as central. We are
however not much concerned about the terminology since they will be rarely used in the following.
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b m c
/

Figure 2.14. An ambiguous graph

length of sides (Figure 2.15). The presentation is, however, redundant because a role

can be mapped to two different sides, e.g., buffer mapped to either top or bottom side.

Export

Buffer

Export Import

[ 7

]auueyd
Channel

Buffer

Import

Figure 2.15. Name depicted as rectangle

Another way is to divide the node into two parts and paint them in different colours as
is shown in the figure 2.16. In the figure, the buffer part of the node is painted white
while the channel part gray. Arcs are also distinguished by different colours of heads.
The heads of target arcs are painted black while source arcs white. The advantage of
our colouring to shaping is that we can make it clear that the properties of being buffer
or channel are attributed to ‘nodes’ while the properties of being source or target to
‘arcs’. Choosing this way, we can present a system, (@(b) |a(2)), as is shown in the
fignre 2.17.

The representation could be improved if we leave nodes unshaded when they do not

]_10

work as a channe If we adopt the convention, then the figure may be drawn as

is shown in the figure 2.18, which clearly shows the names b and z are used only as

19The suggestion is due to Robin Cooper.
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Import Export

Buffer

Channel

Export Import

———= Source Arc

— Target Arc

Figure 2.16. Name in two colours

buffer. We can further extend the discipline by painting different types of names with
different colours or patterns."’ We will however refrain from adopting the discipline here
although we admit there is certainly a number of advantages with it. The discipline

should be investigated more fully in another place.
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2.2.3 m-nets

Before examining the underlying computation of the m-calculus in detail using the
graphic notation, we look into our source of insights, m-net, proposed by Milner [Mil93a,
Mil94] to present computation of the 7-calculus graphically. The 7-nets are basically a
variation of rectangles presented above (Figure 2.15). We get a m-net node by allowing
both sides of channel to import and export names and by allowing the buffer part to
import only one name. For an aesthetic reason, it is depicted as a drop shown in Figure
2.19.

‘

Figure 2.17. A representation of (a(b) |a(z))

Export

Buffer

Import Export
Export Import
Buffer

Import

Figure 2.19. A 7-net node

‘

Figure 2.18. A modified version with unshaded nodes

' We will look into channel types in chapter 5.

We have already discussed a disadvantage of shaping, which applies to the m-nets, too.
Another point to be mentioned here is the restriction on importing to buffer that only
one name can be imported. The intention of this restriction is to prohibits a name from
being substituted by more than one names. In fact, such a case never occurs for the

processes defined in the m-calculus. Observe, for example, the following case:

a(x).Plb(x).Q

Although the two occurrences of 2 seem to be identical and to be replaced by a name
imported through either @ or b non-deterministically, they are not and can be rewritten

to the following:

a(z).P|b(y).Q
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We do therefore not need to worry about the possibility of multiple-substitutions as
long as we work with the w-calculus. We can however think of other languages that
allow for such a case.'> Due to the restriction, m-nets falls short of representing the
case. Given our motivation to study varieties of communication, we prefer not impose
the same restriction on our representation as the nets do. Our representation can be

used to depict systems to which multiple-substitutions may occur.

2.3 Representing computation with dataflow graphs

Now that we have proposed our graphical representation, we elaborate it to depict the

computation more fully.

2.3.1 Effects

Using the dataflow graphs we have presented above, a computation carried out by a
system of processes, ( @(b) |a(z) ), can be depicted as is shown in the figure 2.20. We
remove arcs after they are activated in order to show the computation denoted by them

has been done. In the m-calculus notation, it can be expressed as: @(b).0]|a(z).0-">

0]0{%,}.
2 ., ©
S ® e ©

Figure 2.20. A presentation of @(6).0 | a(z).0= 0]0{%,}

In the figure, the effect of the computation can be observed from the fact that two arcs
have gone and the node named 2 is renamed to b. What is missing in the figure, however,
is the substitution environment, {h/,,,}. As substitutions are the effects obtained as the
result of computations, we should keep a record of them. To record such a substitution
environment, we introduce a board. With the board, the computation can be depicted

as is shown in the figure 2.21.

2The language Lo proposed in next chapter is one of the examples.
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S [, @ [
¢ volle o

Figure 2.21. A representation with the board to record effects

2.3.2 Merging nodes

We will identify a node by its name stored in the buffer. Given this, when a name
is substituted by some another name, it is always the case that two different nodes
bear the same name as is observed from the above example (Figure 2.20). Once this
happens, we will merge them into a single node. When nodes are merged, arcs pointed
to or strung from them are merged, too. Figure 2.22 shows an example of merge. The
figure depicts a computation carried out by the system, (vb, ¢)(@®d) |a(c) |ble) |e(d)),

whose transitions can be expressed as:
(vbye) (@0 |a(c).0 |0(e).0 |e(d).0)
L (vb) (o |0 | B{e).0 | b(d).0)
In this system, the node ¢ will be substituted by b after the interaction between a(b)

and a(c), and the system will end up with two nodes named b. Then, they are going to

be merged into the single b node, where their arcs are also merged.

) & O

‘ ‘ ° ‘ - o
5

© © @V @ @

Figure 2.22. Merging nodes




CHAPTER 2. A CALCULUS OF INTERACTION 43

2.3.3 Match

The match operator is used to control computation by suppressing the activation of
particles. Recall in the system below, the particle b(e) will never be performed because

its match formula, [z = 3], is not satisfied by its substitution environment, {?/,}.

5.0 | e(z). ([z=05]a(d).0 | [#=13] j(e).ﬂ)
S0 | =m0 | =3 He.00%)
I | I = 3] B(e).0(%)

We put the match formulas just beside of arcs to show they control the execution of
the particle (Figure 2.23). After the interaction between ¢(5) and ¢(z), the substitution
{%/.} will be recorded to the board. Each arc with a match formula, e.g., [z = 5]a{d),
must inspect the board to check if its formula is satisfied with respect to the substitution
environment. Since the formula [¢ = 5] is satisfied by the environment, the particle @(d)
can then be performed, but not the other particle b(e) because its formula, [z = 3], is

not satisfied by the substitution environment.

e ‘ ° ‘ e

Figure 2.23. Representation of match with the effect board

2.3.4 Garbage collections

To base our presentation to a real machine as much as possible, we explicitly introduce
garbage collection mechanism into our representation. The garbage that would soon

be noticed is the nodes that are not connected by any arcs. In Figure 2.23, the nodes
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named ¢ and 5 are not connected by any arcs, therefore, can be eliminated (Figure 2.24

left).

Another possible garbage is the arcs with a match formula that will never be satisfied.
Again in the same figure, the particle b(¢) will never be performed, therefore, can be
eliminated (Figure 2.24 right). When the arc is eliminated, the two nodes linked by the

arc, too, can be eliminated for the reason just mentioned.

a ‘ > ‘ @ X

[x=5] [x=3] [> [x=5]

© © © @

Figure 2.24. Garbage collection

2.3.5 Replication

While the meaning of replication is finitely many copies of processes, they are in practice
not generated at once, but will be generated each time it is requested. That is, the

transitions of a system of 'a@(b) |a(z) |a(y) would be in practice as follows:

2

(b) [a(z).0  |a(y)
by [@b).0  Ja(z).0 |a(y)
(b) [0{’%4} la(y)
(
(

o>

2

.0
.0
.0

o~

) la)o Jo{%}  la(y).0
b) o{%} 1o{}

l* M1 lq It

E\_

where 1@(b) replicates the particle @(b) if there is a particle that can interact with it. In
this sense, the particle with the replication operator is not in the working memory, but

stored in a heap area from which a number of copies can be made upon request.

To visualise the separated area, we introduce a box to keep replicable particles. Given
the machinery, the part of the above transitions can be depicted as is shown in Figure
2.25. In the figure, the gray arrows indicate that the particle @(b) is spawned at the

step from the box.
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Figure 2.25. Replication with box

box
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2.3.6 Free and bound names

The distinction between free and bound names may lead to wrong graphs without an

additional step. Suppose there is a system composed of
a(z) |a(z) |@(b)

As the target of importing particles are bound, the two occurrences of z in the first
and the second particle are not identical. Recall that the system is a-equivalent to the

following one:
a(y) ae(z) |ab)

If we do not care about this subtlety, the system may be depicted wrongly as is shown

in the figure 2.26.

Figure 2.26. A wrong graph of (a(z) |a(z) |a(b))

To avoid this kind of confusion, we number names with different natural numbers incre-
mentally each time a binding occurs so that we can distinguish it from others bearing

the same name. Thus, the above system is rewritten to:
a(zy) |a(zs) |a(b)

before being depicted graphically. With this step, the above figure can be drawn cor-
rectly as is shown in the figure 2.27. In the thesis, we may however suppress the

subscripts where no confusion arises for readability.

2.3.7 Choice

The operator affects computation by allowing only one particle among candidates to be
performed. For example, either @(x).P or b(z).Q, but not both, can be performed after

the process receives 5 through ¢, replacing it for z, by executing ¢(z).
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@ DS

Figure 2.27. The correct graph of (a(z) |a(z) |a(b))

#(5).0] e(a).(@(x).P 4+ b(z).Q)

To indicates the choice between @(z).P and b(z).Q, we may link those links with a
particular arc (Figure 2.28). (The figure does not depict particles consisting of P and
@.) We ensure the other arc should be eliminated when either arc is activated by

referring to choice arc.

Figure 2.28. A choice arc between @(z).P and b(z).Q

The elimination operation can be slightly complicated to eliminate the succeeding par-
ticles in P and Q) as well, but it can be done just by introducing another board to record

sets of particles to be eliminated altogether.

2.4 Constraints on computation

We have so far confined ourselves to the description of the domain where computa-
tion occurs, but have not paid much attention to how it can be controlled except of
match and choice. We now look into the control of computation in depth. When we

discuss about “control”, we are concerned with how particles are executed, sequentially
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or concurrently, and which particles can be executed under what condition. To con-
trol computation, the 7-calculus, for example, provides us with three operators: prefiz,
match, and choice. After considering on the nature of control, we discuss what opera-

tions are appropriate to control computation.

2.4.1 Constraints

We start by observing what those dataflow graphs presented above denote. The graph
shown in the figure 2.29, for example, can denote a number of processes defined in the

w-calculus, among them are:
a(b) la(c).d(c) |d(e)
aby |a(c).d(c).d(e)
a(by.a(c).d(c) |d(e)
a(b).a(c).d(c).d(e)
afh). ”(P la(e).d(c)

The reason why so many processes can be denoted is that the graph does not specify the
order by which these particles are executed. Note that this is the necessary consequence
of concurrency. Concurrent computation generalises sequential computation by not
specifying the order of execution. An observation may reveal that the fifth process

shown in the above is a specialisation of the first in that it ensures that @(b) is executed

hefore d(e), while there is no mention to such an order in the first process.

i H

Figure 2.29. A dataflow graph

Given the observation, we take the denotation of graphs as the set of computation
specified by them. We will, then, characterise the computation from two aspects. One
is, as we observed just now, the order by which particles are executed, and the other is
the effects that the interactions between particles bring about. The denotation of graphs

are, therefore, the set of all possible execution orders of particles with their effects. It
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should be now clear how we can control computation. One way is, as provided in the
w-calculus by the prefix operator, ‘", to restrict the order of execution. By imposing
conditions on execution by this way, we can slim down the set of possible computations
by the graph. The other way is to restrict the effects to be brought about by the graph.
The latter is not exploited in the m-calculus although it is the central idea in constraint

logic programming and has been exploited in the modal mu-calculus [Sti92], too.

To sum up, processes can be defined with the set of particles and constraints on them:
Processes = Particles + Constraints

The particles form a dataflow graph as is shown above. In this section, we introduce
two ways to define constraints corresponding to the two aspects of computation, order

and effects.

2.4.2 Guarding

Our guarding operator generalises the prefix operator in the 7-calculus. Our strategy
to represent information on the order of execution is to separate it from the declaration

of particles. Observe the following system of processes defined in the 7-calculus:

aby.d(e) |a(c).d(c)

can be decomposed to a set of particles and constraints on them. As for particles, they
consist of four particles, @(h), d(e), a(c), and d{c). As for constraints, two constraints
are imposed, one of which is to execute @(b) before d(e) and the other is to execute a(c)
before d{c), which we will express as @(h) < d(e) and a(c) < d{c), respectively. Given

this notation, the above program may be rewritten as:'>

[0y, de). ale), dlc) | a(H) < d(e), a(e) < d(c)]

where [ separates the set of particles from constraints. The formulas to express the
information on guarding can be elaborated by introducing boolean operators, but we

discuss general principles for guarding before enriching the formulas.

The reason why we should discuss general principles is that we are concerned with
Church-Rosser property of the calculus, which we obviously want to obtain. To un-
derstand hazardous points, observe first an ideal case, the graph shown in the figure
2.29. For the graph, we have two possible interactions, one of which is between @(h) and
a(c), the other is between d(c) and d(e), where a and d work as channels. Of these two

possible interactions, it does not matter which interaction occurs first because the result

¥ Processes are defined in this manner in the language Lo presented in next chapter.
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is always the same as long as we are concerned with only substitution environments.
For example, if the interaction between d(c) and d(e) occurs first (Figure 2.30), the

resulting effects are the substitutions, {."/.}.

i

7

° ene

c->e

b-> ¢

Figure 2.30. The case where the interaction between d(c) and d(e) occurs first

Meanwhile, if the interaction between @by and a(c) occurs first (Figure 2.31), the ve-

sulting effects are the substitutions, {%.,"/.}.

Although these two sets of effects seem to be different at a glance, they are actually the

same because both results support exactly the same constraints on substitutions, say b
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b->c
b->e

Figure 2.31. The case where the interaction between @(b) and a(c) occurs first

CHAPTER 2. A CALCULUS OF INTERACTION 52

=c=ce.
There is however a case where the order does matter. Suppose we add to the previous
graph (Figure 2.30 or 2.31) the two arcs, f(a) and f(d). If we start the computation
from bottom, we are simply getting another new effect, {%/;}, in addition to {®/..°/.},

no matter how those bottom interactions are executed (Figure 2.32).

On the other hand, if we execute the interaction between f(a) and f(d) first, then
another effect may be brought about, which was unavailable in the above case (Figure
2.33). By the first interaction, the node a substitutes d and the structure of the graph
changes as is shown in the figure. Now there is a new possibility that ¢ interacts with
itself in addition to the previous cases. If ¢ substitutes itself, then another possible

effect is only {¥.}, and other effects {¥..°/.} will be lost.

The cause of this cumbersome situation is in the mobility enabled by the calculus. In
the graph, the interaction between @(b) and a(c) occurs at a, and another between d(c)
and d(e) occurs at d. We call these a and d the location of communication. What
makes things complicated is these locations are mobile because they can communicate
through f. As long as a node is mobile, allowing interactions at the location may
eliminate some possible computations. The useful strategy to avoid such a situation
is to allow communication to occur only at immobile locations. Such locations can be
casily discovered in graphs. A node is immobile if there is no arrow pointed to or from
in the buffer part. We will employ this principle when we define our language in next
chapter. Our graphical representation is useful to detect immobile nodes because they

always come up to top. In the figure, for example, only f node is immobile.

2.4.3 Temporal properties

Another way to restrict computation is to require it to satisfy particular formulas even-
tually with respect to substitution environments.'* Observe an example, (@(b) |a(c)
la(z) |a(y)), which may end up with two cases of substitution environments (Figure
2.34). If the particle a(b) interacts with a(z), then the final substitution environment is
{*:°/,}. On the other hand, if the particle interacts with a(y), the environment results
into {h/y.”/T}.

Assume we want only the first substitution environment to realise. If we resort to

guarding, we may define the computation as:

[a(b), a(c), a(x), a(y) [alb) < alc), a(z) < a(y)]

"“This sort of control is not included in the m-calculus. The original intention of looking into the sort of
control was to build a basis rich enough to study concurrent constraint programming [Smo94a], but | found
the subject going beyond the scope of the thesis. We will however in next chapter investigate to what, extent
the sort of control is computationally expensive.
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° a->d
b-> ¢C
c->¢€ /

a->d
Cc->c
b-> ¢
c>e
a->d

I

Figure 2.32. A mobile process interacting with from bottom Figure 2.33. A mobile process interacting with from top
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b->y
c->Xx

Figure 2.34. A dataflow graph with two possible substitution environments
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or

[ab),ale), a(x), aly) [ a{c) < alb), a(y) < a(z)]
which leads to {h/,v,“/y}.

Although the encoding works, it is not neat to restrict execution order when what we
really want is to get a particular substitution environment eventually. Also, while the
encoding leads to the substitution environment, we may only want to ensure at least
the first substitution, {¥/,,}, should be obtained. Tn that case, it does not make sense to

restrict the execution order that way.

Our solution is to require the system to satisfy particular formulas eventually as the
result of computation. If we want the system to satisfy at least a formula, b = z, we

should add it to the system as a constraint as follows:

[ab), a(c), a(x), aly) [ b=2a]

Once this restriction is imposed on, only the first reduction is possible, but not the
second is prohibited, as we want. We call the temporal property that “something
good does eventually happen” liveness. The dual notion is safety, “nothing bad ever

happens”, which can be defined using negation, e.g., b # y.

Finally, we see how these operators, guarding (<) and temporal properties are related
with match, e.g., [# = y]a. Guarding and match share the same objective to restrict
the execution of particles. The difference is that guarding suppresses an execution until
another particle is executed, while match does the same job by inspecting substitu-
tion environments. The common property between match and temporal properties is
that both inspect substitution environments, but they are different in that temporal
properties restrict possible interactions while match restricts the execution of a single

particle.

2.5 The reflexive m-calculus

Finally, we mention the reflexive w-calculus[Mil93a]. In the normal m-calculus, graph-
ically speaking, it is not allowed to include target-arc cycles in graphs, while we allow
them for our language. Target-arc cycles can be formed in two ways:

(a) A name exports its name to a node and imports it to itself (Figure 2.35), or

(b) A name imports a name from its own channel (Figure 2.36).

In the first figure (Figure 2.35), which can be expressed as (b(z) |b(z)), the name = is

substituted by itself, keeping other names from substituting it. If we impose a restriction



CHAPTER 2. A CALCULUS OF INTERACTION 57

on processes such that a name can be substituted only by one name, this cycle effectively
closes off itself from others. On the other hand, the second figure (Figure 2.36), which
can be expressed as T(z), shows a case where a buffer will be substituted by the name
it is conveying.

One reason why these cycles are prohibited may be in its self-referential nature. But
the reflexivity may be of some use and is admitted in the reflexive w-calculus. In the
reflexive version, it is argued that the first sort of cycles may model the effect of the

restriction operator, v. However, the use of target-arc cycles is yet to be investigated.

Figure 2.35. A target-arc cycle (1)

©

Figure 2.36. A target-arc cycle (2)

2.6 Summary

In this chapter, we looked into a model for concurrency through examination of the
w-calculus. To make it easy to understand the computation, we have proposed a graph-
ical representation based on 7-nets. We have also seen that the computation can be
controlled by guarding particles and requiring systems to satisfy temporal properties as

the result of interactions.

Chapter 3

A logical specification of mobile

processes

3.1 Imntroduction

The chapter presents a linear logical specification of mobile processes. The logic, on
one hand, enables us to study communicating and mobile processes at certain abstract
level and makes it possible, on the other hand, to relate the calculus of interaction with

our interest, Situation Theory and Channel Theory, in logical and categorical setting.

We start this chapter by explaining the background of the project and general ideas. We
then present a version of linear logic, combinatorial intuitionistic linear logic (§3.2), and
a language L serving as a bridge between the 7w-calculus and the logic (§3.3). After
explaining how dataflow graphs presented in the previous chapter can be utilised to
predict possible interactions between processes (§3.4). we investigate the issue of non-
determinism(§3.5). Finally, we discuss limitations of the logic and how the work can be

related with other works (§3.6).

3.1.1 Background: Program Logic

One of the motivations to use logic to study processes is that it enables one to specify
processes compositionally.! In such a logic, which is sometimes called Program Logic,
programs or processes are taken to be models while formulas are regarded to express
properties of processes. A theory is, therefore, often described in the form of P = ¢,
where P is a program and 4 a formula. With the logic, one should be able to identify

a class of processes satisfying the same properties. It is one of the central problems in

!See, for example, Larsen [Lar90] for the discussion on specification formalisms.
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computer science how to capture the sameness, which is termed bisimulation relation.

B
The notion is important because it defines a model on which a program logic may be a a
built. Different definitions lead to different program logics.
Hennessy-Milner logic (HML) [HMS85] is a classical example of program logic, whose b c

model is labelled transition systems (I.T'Ss) [Mil89]. A LTS can be defined as triplet of
processes, actions, and transition relations of processes upon actions, i.e., (P, Act, 4,
where & € Act. They can be depicted as a tree whose nodes correspond to states of

Figure 3.2. The tree representation of a.b.0 4+ a.c.0
process and edges to actions. Suppose, for example, there is an agent A defined as

A =ger a.(b.0 + c.(]).2 It may be depicted as is shown in the figure 3.1.

tree representation is the capability after accepting @; A can accept b or € then, while B
A can only accept either one depending on the transition upon the interaction. In other
words, the decision whether it will receive b or @ is made when it receives @, while such

a decision is not made in A.

b c It is known that HML can characterise the bisimular relation sketched above [HMS85].

It should be mentioned that a number of definitions have been proposed as for the

equality between processes other than the one characterised by HML. For instance, one
Figure 8.1. The tree representation of a.(5.0 4- ¢.0) can define the relation based on traces, i.e., the set of sequences of possible actions. The

processes, A and B, are then regarded to be equivalent if we are only concerned with

. . . . traces. Comparing the bisimulation relation defined by HMI, with trace equivalence,
A simple logic, PL, over such trees may be defined as follows: p s Y . q )

one can say the former is more refined than the latter since the processes equivalent in

e Pl={(a)F if, for some P', P % P/ and P' E I° HMI. are always so in terms of traces but its converse does not always hold. In this
e P = —Fifit is not the case that P = F chapter, we will not go into the taxonomy of equivalence relations on processes since it

is out of our scope.® Tt is enough for us to memorise the following three points:

o PN il foralli€ I, P = F;

(a) Processes may be depicted graphically.

We also define true as the empty conjunction A, F; and false as —~true. With these

€0 . . o . .
definitions, the agent satisfies the following formula: (b) Logical formulas can specify the graphical representation.

(c) The graphic representation represents a model for the logic.
A |= (a)({b)true A (c)true)
Assume agents whose tree representations are identical are bisimular to each other, not 3.1.2 Linear Logic
bisimular otherwise. Let B be another agent defined as B =g¢ a.b.0 4+ a.c.0. The agent
may be depicted as is shown in the fignre 3.2 and expressed in PL as: Linear Logic is claimed to be able to specify concurrent computation at logical level
[Gir87, Gir95]. The logic is said to be resource-bound as the rules for weakening and
B = {a){(b)true A {a)(c)true contraction, shown below in the form of classical logic, are dropped from structural

. . . rules, which allows a theorem prover to use a formula only once.
Notice A and B are not bisimular although they can accept the same sequence of actions,

@.b or @.e. They can be distinguished by different tree representations or by different AAB=A weakening

formulas specifying them. The difference between A and B characterised by HML or A= ANA contraction

2The example is taken from [Mil89] 3See Abramsky and Vickers [AV93] for a proposal, for example.
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The restriction will in turn benefit us with the ability of expressing current state, which
means that the implication relation can be regarded to model state changes such as

chemical reaction. Metaphorically, we can express a chemical equation, 2Hy; 4+ O,

—2H,0, as a logical formula such as 4

Hy ® Hy & Oy — Hy0 @ HoO

where —o ig the linear implication. The connective, ®, which is sometimes called tensor,

means intuitively that the composites are concurrently active.

We turn to linear logic to specify concurrent computation, which makes a shift from
model-theoretic characterisation of processes, P = ¢, to proof-theoretic specification,
¥ b ¢. The shift should be regarded as a refinement to program logic. As a stepping

stone, we look into how petri nets, as an example of concurrent computation, may be

specified using linear logic.

3.1.3 Linear logical specification of petri nets Figure 3.3. An initial state of a petri net

Petri nets consists of places and transitions. The figure 3.3 shows the initial state of a
petri net, whose places, depicted as circles, are a,b,¢,d, e and f, and transitions are ¢
and ' depicted as rectangles.” The dots in places indicate tokens for computation. The
digit numbers on arrows from places to transitions indicate how many tokens may be
consumed when the transition occurs. For example, the digit number 1 on the arrow

from the place, a, to the transition, ¢, means one token stored in a will be taken away

when ¢ occurs. On the other hand, the digit numbers on arrows from transitions to
places indicate how many tokens may be put in when the transition occurs. The digit
number 3 between £ and d, for example, means that three tokens will be put into d when

i occurs.

The figure 3.4 shows the state of the petri net after the transitions, ¢ and #, occured.
Consumed tokens by these transitions are one token stored in a, three tokens in b, of
which two are taken by ¢ and one by ', and three tokens in c¢. The tokens put in are
three tokens in d, three tokens in ¢, of which two are put by ¢ and one by ¢, and four

tokens in f.

To specify the transitions, # and ', in linear logic, we represent them as two special

axioms such as:

Lia@b@bFdRdd®e®e, and Figure 3.4. The state of the net after firing ¢ and ¢’

:b@cepekedfafafef

*The example is taken from [Gir95].
*The example is taken from [MOM91].
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where the number of alphabets, e.g., b @ b, corresponds to the number of tokens to C =qer @.0|T.0

be taken from or put into the place when the transition occurs. Suppose we adopt

, . . Lo . . The process can be translated to a petri net shown in the figure 3.5, where ¢ means a
@(tensor)-theory, a fragment of linear logic, which is defined with the axiom scheme P P g '

. w16 silent action. In the net, a transition may occur either by firing @ and @ independently or
and rules shown in the table 3.1. Y ) )

by firing ¢, but not by firing both, because the tokens in p and ¢ will be consumed when

t is fired, which prohibits ¢ and @ from firing and vice versa. In either case, however,
(id) idg:AFA

the final state is the same (Figure 3.6).

o:AFB ¢:BERC Lo AEB ¢:CHD
(cut) — = ® p—— = P 9
pop: AEC PR AQCEB®D
L ]
i \¢ y l 1
Table 3.1. The axiom scheme and rules for tensor theory ‘ ‘ ‘ L ‘ ‘ — ‘
a a

1 1 1 |1
With the axiom scheme and rules, the state change can be derived as below, where the
repetition of alphabets is indicated with superscript, e.g., b & b = b?:
r s

Lia@b?Fd*®e?r Vbl keq 4 (@)

LRt a@ bl Fdg e @ f* . id:a@bFa®b
(tet)@id: el ragbgd® gt e 4

(@)

Given this example, we may expect there would be some correspondence between linear

logic and petri nets. The relationship between them has been studied on the basis of a
category [MOM91] and an algebra [KW90, KW93]. Engberg and Winskel have shown

that in fact a version of linear logic can be interpreted using petri nets and is complete

P q
on them [EW93]. The question we want to ask is whether we can do a similar thing to
the w-calculus, that is, to capture the calculus in linear logic. 1 1
1 1

3.1.4 A petri net interpretation of CCS ‘ A ‘ ‘ 1 ‘ ‘ - ‘
a

To investigate the relationship between linear logic and the w-calculus, we first consider 1 1 1 1

the relation between petri nets and CCS (Calculus of Communicating Systems) [Mil89],

which can be thought of roughly as the 7-calculus minus mobility [MPW91]. By relating o

CCS with petri nets, which can be a model for a version of linear logic, we can estimate r s

what needs to be considered in specifying the m-calculus within linear logic.

1 H 1 7
Suppose there is a process, C'; defined as Figure 3.6. The final state of the petri net

Strictly speaking, - should be written as Fg, but we write - for simplicity. Tn the following sections, we
will actually adopt a combinatorial linear logic, not @-theory, but it is enough at the moment to sketch basic
ideas. Note also we write ¢ o ¢ in defining cut rather than ¢ o ¢ for convenience.

"The example is taken from [GM84] with a slight modification based on the material found in [BC94]. the CCS programs by adding the following axioms to @-theory. The state change can be

Analogous to the linear logical specification of petri nets, one may think of specifying
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inferred either by ¢ alone or by applying the @-rule to @ and @, i.e., a@T:pR gtk r®s.

(a) a:pkr
(b)@a:qgkFs

() t:p&gkras

We can now ask how the states, p, ¢, r, and s, can be characterised. Recall that the
precondition and postcondition are defined in terms of tokens consumed or produced
upon transitions for the case of petri-nets. By applying the idea to CCS, we can see the
state, p, can for example be characterised with the resource to perform the action, a.
The state, ¢, then can analogously be characterised as @. We replace v and v for @ and
@ as term and characterise the states, r, s, and r ® s as 0, 2 the state where no resource
is available. After the modification, the figure 3.5 and 3.6 are redrawn to 3.7 and 3.8,

respectively.?

Figure 3.7. A modified petri net of ¢.0|@.0

The axioms too are redefined as bhelow. One may notice the first two of the axioms
correspond to the process definition in the w-calculus that «.0 and @.0, respectively. We
conceive of the m-calculus definition of processes as stating state changes.

(a) w:akoO

(b) v:ako

(c)t:a@ato0

8We will later replace 1 for 0.
Strictly speaking, it is odd to depict 0 as if it were a place, but it is convenient to indicate the transition.
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a a
RN 1l1
Lo ][] ]
0

Figure 3.8. The final state of the petri net

We have seen it is possible to translate CCS processes to petri nets as long as they do
not exchange messages. But how can we translate them if they exchange messages?
Consider for example the following program C’, where x will substitute y upon the

interaction through a:

C" =gt a(y).0]a(z).0

How can the effect that y is substituted by x be expressed? Petri nets cannot express
the extra information on substitutions, but its linear logical specification can, by adding

an extra formula to the third axiom to define the effect:

(a) w:a(y) -0

(b) v:a(z)F O

(¢) tra(y)@a(z) F O 2z =y)

Here, the formula, !(z = y), added to t expresses the effect upon the interaction between
a(y) and @{z). The of-course operator, !, ensures the information can be provided for as
many times as it is requested. This is because the information on substitution should bhe
available forever. Another point is that we express substitutions as the equality between
names, e.g.. & = y.

The encoding of substitutions as equations makes it possible to define MATCH. Suppose

in the program (' the execution of @(z) was restricted by a match formula, b = ¢:
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C" =4er a(y).0][b = cla(z).0
The restriction can be expressed by adding the extra condition to v and #:

(a) w:a(y)-0
(b) v:ia(z)z (b=c)F O

(¢) tray) @)@ (b=c)FO0R (2 =y)

By adding to them the formula, !(b = ¢), we can ensure that the axioms v and ¢ are
applied to only when the condition is satisfied, which may be thought of as simulating

the effect by MATCH.

Now that it becomes clear that the petri net translation falls short of expressing the
cases where messages are exchanged, we turn back to our graphical representation,
dataflow graphs, and consider how it can be related to linear logic. Let us see first how

the program ' may be depicted in the graph (Figure 3.9).

Figure 3.9. A dataflow graph translation of a(y).0|a(z).0

In the figure, v and u on the arrows indicate their corresponding actions. ¢ on the line
connecting v and u indicates the interaction between them. As depicted in the figure,
we put the states before action in upper and those after action in lower part of arrows.
This is because we execute computation from upper parts depicted in the figure to
lower parts. We will fill in the lower part of arrows with resources made available by
executing the action, which are typically resources for actions immediately guarded by
it.'"® The translation from dataflow graphs to linear logic is straightforward. We start
by observing each arrow, u and v, and translate them into u : a(y) F 0 and v : @(2) - 0,
respectively. ¢ is first translated to ¢ : a(y) @ @(x) - 0, and then !(z = y) is added to its

consequence by inspecting the nodes connected by t.

1"More detailed explanation can be found in §3.6.4.
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t

)
ca(y) @ab) Fy(z) @ E(J:)fﬁ t(b=y) ta@hd : y(z) @z(.ﬂ@ b=y)F 1@ (z=2)2!(b=y)

3.1.5 A linear logical specification of the n-calculus

The final step is to express mobility in linear logic. How can for example the following

program be specified, where the channel b is passed to the first process from the second?
D =ger aly).y(z).0]a(b).b(z).0

In our graphical representation, the program may be depicted and be decorated as is
shown in the figure 3.10. The arrow vy is decorated with 5(z) and 0, and another arrow
uy with y(2) and 0. b(z) and y(z) appear in the lower part of the arrows above them,
too, which means the resources to execute uy and vy are provided for by executing wuy
and vy, respectively. #; is same as ¢ presented previously. We have to be cautious in
specifying mobility, however. If we specify f2. the possible interaction between vy and

4, in the same way as ¢, it might be expressed as:

tyy(2) @ b{z) F 0@ o = 2)

But the specification is incomplete as it allows the interaction to occur even when there
is no interaction between vy and wuy. Since the interaction between vy and uy becomes
possible only when b substitutes y, we should express it by adding to the antecedent

the extra condition (b= y):

)@ (b=y) F 0@ Yz = z)

The processes are therefore specified as follows:

(a) w1 :aly) Fy(z)
(b) uz:y(2) -0
(¢) vr @by - blz)
(d) vy :b{a)y -0

)

)

toty(z) @

Finally, we replace 1 for 0 and assume an axiom 1 1 F 1, which holds in the logic.
With these axioms, we can infer the transition from the initial state, where the actions,
a(y) and @(b), are possible, to the final state, where no action is possible with the

substitution environment, z = z and b = y as follows:
wd:(b=y)F(b=1y) ,
try(z)ebn)g b=y F 1 (z=2) Hd:Nb=y)FH(b=y) -“3‘
LRNd  y(2) @B b= @ b=y F 1az=2a b=y

con

cut

tro(@d):aly)@alb)F 1@ (z=2)0 (b=y)
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Figure 3.10. A dataflow graph translation of a(y).y(z).0 | a(b).b(x).0

In this derivation, we assume a contraction rule shown below, which will be proved valid
in our logic shortly (§3.2.2). The term can also be reduced to ¢y oty using the equations
given in the table 3.7.
A® ('\B&'B)FC
AR 'BFC

con

3.1.6 The strategy

In this chapter, we show how mobile processes can be specified using linear logic. To

explain the translation, we go through the following steps:

processes defined in the w-calculus

expressions in Lo

decorated dataflow graphs

4

linear logic formulas

The language Ly serves as an intermediate language between the m-calculus and deco-
rated dataflow graphs, and can simulate a fragment of the 7-calculus without replication,
I, and choice, +. The reason why we employ the language is that the 7-calculus is too
restrictive in terms of prefixing to encode some of the situation-theoretic objects in
next chapter. Since the restriction is not essential, the language can be seen as a gen-

eralisation of the calculus.'! We could therefore have started the previous chapter by

' The improvement has been proposed by Milner [Mil92b].
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presenting the language, skipping the explanation about the m-calculus. But we opted
for starting by examining the calculus because it makes it easier to understand the ideas
of communication and concurrency. One should however not be misguided to believe
that our aim in this chapter is limited to define processes in the m-calculus with linear

logic.

3.2 A Combinatorial Linear Logic

We turn to a combinatorial intuitionistic linear logic (C-ILL), which may be regarded
as a system for deriving sequent of the form A = B. A rule for sequential composition
is defined for example as follows:

a:A=B b:B=C
aob: A= C

The choice of combinatorial linear logic rather than usual intuitionistic linear logic de-
fined as natural deduction systems (N-ILL) is motivated by our interest; Its connection
with category theory help us to relate our system with Situation and Channel theories.
Note that we loose nothing by turning to combinatorial linear logic. Tt is known that
N-ILL and C-ILL are equivalent in the sense that if ¢ : A = B is derivable in C-ILL,
there is a deduction of A + B in N-ILL, and if Ay,... .. A, B B in N-ILL, there is a

term ¢ such that ¢ : A; @ ---@ A,, = B is derivable in C-ILL ([Laf88, 1T092]).

3.2.1 Definition of Combinatorial Intuitionistic Linear Logic

The Table 3.2 lists the axioms and rules for Combinatorial Intuitionistic Linear Logic
without exponentials, C-ILLg."? As is mentioned above, we write ¢o1), not 1o ¢, when
two sequences ¢ and 1 are sequentially composed. 1 means a unit, and T and 0 flop
and bottom, respectively.'® Tn the following, we may drop for simplicity the subscripts,

eg. A, B,and Cin idy and cury g c.

The intuitive meaning of connectives can be explained as follows:

- tensor (®): A @ B means both A and B are available or concurrently active.

- with (&) : A& B means only one of them is available, but the choice is up to the

theorem prover.

- plus (£) : A& B means either one can be chosen, but the theorem prover has no

right in the decision.

"2The source of the section on combinatorial linear logic is [1ro92], Chapter 9.
"*The relation between 1, T, and 0 is confusing because not (1, 0) but (T, 0) are dual. The symbol, L, is
reserved for multiplicative disjunction, which is excluded from combinatorial intuitionistic linear logic.
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Sequential composition:
¢o:A=B ¢Y:B=C

- idy A= A
potp: A= C tea =
Parallel composition:
¢p:A=B y:C=D 111

oRYp:AgC=B®D
Adjointness of — and @:
¢0:ARB=C
CUT' A B,C(4) * A= B —-(C

evgp:(A—-B)@ A= B

Symmetry, associativity, and unit:
vap:AGB=B®A
aspe:AQB2C)= (A2 B)aC ”’ZB,C (AR B)RC=Ag(BeO)
MileAd=A4 X :iA=10A4

Products:
¢:A=B Vv:A=C

(¢, ) : A= B&C

Ta:tA=T

TAB: ,4(]&,41 = /4/,‘ (7 € {0, 1})

Coproducts:
¢:B=A ¢p:C=A
[,]:BpC= A
04:0= A

kAt A= Ao @ Ay (i € {0,1})

Table 3.2. Axioms and rules for Combinatorial Intuitionistic Linear Logic, C-ILLg
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The difference between & and @ lies in the different sources of non-determinism: outer
and inner non-determinisms, a notion investigated in computer science. Note the ‘with’
operator, &, should not be regarded as disjunction although the operator certainly
exhibits the feature. Observe the following example to understand its intuitive meaning,

where you can only buy one bottle of red or white wine for £2.99:

Wine of the month
Red
& Only for £2.99!
White

3.2.2 Axioms and rules for the exponential

The combinatory intuitionistic linear logic with the exponential, ! (of-course), abbrevi-
ated as C-ILL,, is defined by adding to C-ILLg (Table 3.2) the axioms and rules shown
in the table 3.3.

Exponential:

¢:A= B

TASTH spilAsSIA A A I T =1
¢! !

pas: N(AXB) =A@ !B p,'g:!4® B = (A%B)

Table 3.3. Axioms and rules for the exponential

Once these axioms and rules are added to C-ILLg, thinning and contraction are recov-

ered as is shown in the table 3.4 and 3.5, respectively.

Thinning:

Derivation:

B=C

A@ B=C

A=T, T=1 B:\/Rp 10 B=> B IJ:>CO
1A=1T B:>B(Sa "ToB=18B lf/';:Bﬁ(fo
AeB=TeB !TzXHi(;’O

IAg B=C

Table 3.4. The rule for thinning and its derivation

"In the original, & was +, which T found at a shop, Margiotta in Marchmont, Edinburgh.
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o

Contraction:

A® (09 1C)= D
AR IC = D

Derivation:

A=A IC=10!C
AplC=Ae (021C) Y Ag(Ce1C)= D

A2 C =D °
The derivation of IC' =!1C® IC:

C=C C=C &

C=C C=Cc&C ™
IC=C&C ‘
10 =10 NC =1 C&C) -

IC =1C&C) ° HO& C) =106 10
o

1C =0 IO

Table 3.5. The rule for contraction and its derivation

3.2.3 The axioms for substitutions

‘We need special axioms to incorporate substitutions into the logic. They should, for ex-
ample, allow for the following inference, where every occurrence of d in the consequence

is replaced by ¢ when the information contained in !(¢ = d) is consumed.

A=Y e=d)@ (d=¢)
A= le=¢)

For this purpose, we extend the logic by introducing a predicate expressing equality
or identity between names. Let the symbol ‘=" be the predicate, which takes two

arguments. We write ‘c=e’ for ‘=(c,e)’ as usual and call the extended logic C-ILLZ

because it is C-ILL, plus the equality predicate.

The axioms for ‘=" are defined as is shown in the table 3.6."" The first rule eq; defines
the relation as reflexive and states the formula, !(¢ = t), holds without any assumptions.
The second rule defines the relation as symmetric. The third one defines the rule for
substitutions. [£/z] in P[t/x] means the occurrence of ¢ standing for o in P, and P[s/x]

means to replace s for every z. In the table, the alphabets s or #, connected with ‘=",

must be a name, not a proposition.
Given the set of rules, we can check that ‘="is transitive, i.e., l(s= )@ (t = u) = (s =
u), directly from eqs because eqs :!(s = )& (t = w)[t/z] = !(s = u)[s/z]. Note we

could obtain the same result even if the two formulas in the antecedent were swapped,

More succinctly, one can define the axioms without ! with an additional axiom, eqy : (t =%) = 1.
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Fquality:

eqi:1=(t=1t)
eqy:l(s=1t)=(t=1s)
eqs:l(s=1)& Plt/a] = Pls/a],

Table 3.6. The axioms for equality

fe, (t =uw)® (s =) = !(s = u), because the antecedent can be transformed by eqs
to N(u = )@ (s = t), and then eqs can be applied to, i.e., (u =)@ (s = t)[t/2] =

s = u)[u/x].

3.3 A molecular language £

The language L is a syntactic variant of the 7-calculus without choice, +, and replica-
tion, !, but less restrictive in the use of prefixing. It is equipped with the restriction, v,
but the effects are treated differently. Translating processes in the w-calculus into the

language does not alter the semantics within the limitation.

3.3.1 Parallel composition

We assume by default particles are concurrently active and do not introduce a particular
symbol to the language for parallel composition. For instance, a definition of process in

the m-calculus:
a(b) |as)

can be expressed as:
[a(b), a(b)]

In the following, we call the unit indicated by [ and | molecule in that it is distinguished
by the boundary.'® We allow molecules to be nested in other molecules. For instance,

the following expression is legitimate in our language.

[[a(b), a(b)],[eld), c(e) ], g(h) ]

"®The metaphor of maolecules is proposed by Berry and Bondol [BB92]. The notation is adopted from
[Mil93a].
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3.3.2 Guarding

The specification of the guarding is separated from the declaration of particles, e.g., a

process, @

a(b).e(d).0
is translated to:
[a(b), e(d) [ a(b) < e(d)]

where “@(b), ¢(d)” preceding | declares particles comprising the program, and “a(b) <

¢(d)” following it expresses how these particles are guarded, i.e., a(b) guards ¢{d).

The tree structure of guarding relations

We impose a restriction in constraining the execution of particles with guarding. We Figure 3.11. The guarding relation of a(z) < b(y) and a(z) < c(z)

ensure that a particle should be guarded by at most one particle. That is,

[a(a). b(y).c(=) [ a(z) < b{y). alz) < o(2)]

is admissible!™ since both particles, b(y) and ¢(z), ave gnarded by only one particle,

a(z), but the following expression:

[a(2).b(y),c(z) | a(z) < b(y). c(z) < b(y)] @

is not since b(y) is guarded by two particles, a(z) and ¢(z). More graphically, the
guarding relations should form a tree as is shown in the figure 3.11, not a graph (Figure
3.12). 18

In the w-calculus, the syntax is defined so that it does not allow for the construction ax)

forming a graph. Recall that a program such as:
a(z).(b(y).0 | ¢(2).0)
b(y)

is legitimate, but the below is not.

(a(2).0 |¢(2).0).b(y).0 Figure 3.12. The guarding relation of a(2) < b(y) and ¢(z) < b(y)

""Hereinafter, we may omit 1 and its relating guarding information for simplicity. The expression should
have been [a(x).b(y), c(z) | a(z) < b(y), by) < 1, a(z) < c(2), ¢(z) < 1], more precisely.
18 The restriction can be lifted with a trick. See §3.6.4.
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The obligatory guarding of mobile particles

In addition to the constraint, another constraint should be imposed on guarding in
connection with mobility . As is observed in §2.4.2, the execution of mobile particles
must be postponed until they are immobilised. Therefore, the particle mobilising a

particle must guard it. When we declare the following molecules, for instance:
- [a(b). %) ]
- [a@), a(y)]
we have to add to them the guarding such as:
- [@(), be) [ @) < bie)]
La@),2(y) | alx) < 2(3)]

As we have seen in the previous chapter, the mobilising relations can be checked by
depicting dataflow graphs. As is presented in the figure 3.13, the mobile particles are

placed in lower levels than the particles mobilising them.

Figure 3.13. The dataflow graph composed of particles, @(b), b{c), a(z), and z(y)

Notice, however, that the mobile particles need not be guarded directly by its mobilising
particle, but other intermediate particles can be inserted in the guarding tree between

them as long as it is reachable in the structure. For example, the expression:

[@(b). d{e), b{c) | @(b) < d{e), d{e) < b{c)]

respects the constraint as the relation, @(b) < b(c), can be deduced owing to the tran-

sitive nature of guarding.
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3.3.3 Restriction and the scope of bound names

To restrict access to names, we may declare the restriction in front of its molecule. That

is, a process
(v b) (@(by.e(d).0)
is translated to a molecule
(v ) [(b), ) | (b) < 7(d) ]

The declaration also binds the name and determines its scope within the molecule.
Analogously, the scope of bound names by input action is within the molecule, too. For

example, when we translate a process such as:

[a(e), c(y) | afz) < c(y)]

the scopes of 2 and y, which are bound by input actions at a and ¢, respectively, are

within the molecule.

Since we allow for nested molecules, the restriction does not need to be declared as to

individual particles. For example, a process such as:
(v b)(@(b)) |a(w)

can be translated to:
[wo)[acb) ], a(z)]

by turning @(b) into a molecule.

3.3.4 Match

The match operator is treated in a similar way to guarding as its purpose is to guard
particles. Observe in the following process that the match formula, [z = b], can be
regarded as guarding the particle, ¢(y), by not allowing it to be executed until the

condition is satisfied by substitution environments:
afa).[z = Ble(y).0
We will, therefore, add to the above expression the extra condition, (z = b) < ¢(y):

[a(@),c(y) | (2 =10) < c(y). a(z) < c(y)]
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The guarding by the match formula is not counted as the guarding by particles, thus any
number of match formulas can guard a particle without modifying the tree structure of

guarding relations.

3.3.5 The rule for actions

The dynamic semantics for L is defined with the rules specifying actions and inter-
actions within and between molecules. The transition rule for actions specifies the
conditions under which a particle can be executed. In short, a particle can be executed
if it is not guarded by any particle or match formula. For example, a molecule such as
[a(b),e(d),e(f)] can degenerate to [(d), (f)] after executing @(b), which is expressed

as:

[ﬁ<b> E<d>= ;<f> } W(b)\i [F<d>v?<f> }

Then, the molecule can degenerate further either to [¢(d)] or [€(f)]. Assume we would
like to ensure @(d) should be executed prior to €(f). The execution can be controlled

by adding to the molecule a constraint such that &(d)y < €(f):

) & () 1ed)y <2 ] s [B(N) ]

The constraint, €(d) < &(f) , is eliminated once &(d) is consumed because it is now void.

Then, the remaining particle, €(f}), can be executed:

YT

To guard a particle with a match formula, we have to keep a record of substitutions as

substitution environments, /2. We may, for example, express a substitution environment,

{7} as:
[a(y)]*{:}

where the expression, %{*/.}, following the molecule records the substitution, a = =.
Given the record, we can control the execution with match by referring to the envi-
ronment. For example, in a molecule with an environment below, the particle, a(y), is

executable:

[a(y) [ (a=2) < a(y)] = {}a@) 0

while it is not in a different environment below because the formula, (b = z), is not

satisfied by the environment, {%/}.

La(y) [ (b=2) < aly) ]« {7}
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3.3.6 The rule for interactions

The interaction between an input and output particles may occur when both of them are
executed at the same time, provided that they are connected with each other through
a channel. Upon the interaction, the substitution environment is updated with the new
substitution. For example, in the molecule below, @(h) and a(z) can interact with each

other, updating the substitution environment E by {%,}

[a(b), aax), ®dy ]« I
N lEd) 1+ Eu{':)
The substitution can apply to the molecule if the substituted name appears there. If

e(x) was in the molecule, it would have been rewritten to (b) as the result of the

interaction as follows:

[a@(b),a(z). &d),e(z) |+ F
N Le(d), @by ]« EU{Ys}
The substitution should apply to constraints, too. Suppose we impose a constraint,

a(z) < €(x), on particles in the molecule. Then, the constraint is rewritten as well: '

[a@(by, a(x), ®(d),e(x) | a(x) < elz)]* K
[2(d),b) | a(b) < (8]« EU {4}
The same does not apply to match formulas, however. Suppose the output action, @(a),

is guarded by a match formula, (b = 2). Despite the fact that the name 2 is substituted

by b, the formula remains to be the same as follows:
[@(b),a(a). «d),€(z) | (b=a) <€) ]x E
N[ EA), BB T (b=2) <&b) ]+ FU{%}

Scope intrusion and extrusion

As we have seen in the previous chapter, the interaction between particles and the effect
of the restriction operator, v, bring about scope intrusion and extrusion. Observe, for
example, that the scope intrusion requires us to rename « in the first molecule below to

@' to avoid that it crushes with « in the second molecule.
[ (va)[b(=), 7(z) ], [b<ﬂ> ac)]]+ K

[(va)[b(z),d(2)], [ bla),a{c)] ] ¥ E

N (ra)[d{z)], [W")H* Eu{:}

9Strictly speaking, the constraint would not appear as it is void.
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As for scope extrusion, observe the next example, where the scope of a is extruded from

the second molecule to the first upon the interaction:

[[b(2),2(2)], (v @)[ bla), aly) ] ]+ B
N wala(z). 7)1« BU{%)
To define particular rules for scope intrusion and extrusion may complicate the seman-

tics. Suppose we keep records on substitution environments as to each molecule in order

to define a rule for scope intrusion, for example. The transition may occur as follows:
[(va) [ b(a).a(2) ] By, [Bla), @e) ]« |
= [wa)[b(e), @() ]+ By U{ ). [B(a), @(e) ] Fa ]
NI @)« By ULt 170 ]+ B

This way of defining transitions is not particularly appealing. The rules may be com-
plicated because the decision on which pair of particles will interact has to be made
each time in advance to renaming particles. Nested molecules may make things more

complicated, which are allowed for in our language.

An early renaming strategy

We treat the matter of bound names and their scopes based on a different strategy
from that adopted in the 7-calculus. We consider bound names as a convenient way
to make them unique in their scopes. The scope extrusion is thought of as a way to
preserve uniqueness of bound names, which will disappear once our strategy is adopted.
Reconsider the timing when bound names are renamed in the 7-calculus. Since they
are not renamed until there is a crush, we call it late renaming strategy. Contrary to
it, our strategy may be called early renaming strategy as we rename any bound names

to unique ones m Ihe begmnmg.

Suppose we would like to define a molecule such that two distinctive names are emitted

from a channel, a. One way to do this is to use two distinctive names, i.e.,

[a(b). @c) ]

But with binding force, we are released of the labour to assign two distinctive names to
them. The following molecule does the same job as two occurences of b in the first and

second molecules are distinctive owing to the effect of the restriction, v.
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Similarly, a molecule such that it inputs two names and substitutes two distinctive

names with them can be expressed as [[a(z) ],[a(z)]], not as [a(z),a(y)].

By regarding binding names as a convenient way to introduce distinctive names, we
compile the expressions containing bound names to those assigned unique names. Since
we do not need to worry about the scope, we can dissolve all molecules into a single one.
The easiest way to make a name unique is to mark it with consecutive natural numbers
as subscripts. We may, therefore, compile the above program, [ (v b)[@(b) ], (vb)[@(b)]],
to [@(b1),@(bs) ].2° Given the compilation step, we do not need any rules for scope
intrusion and extrusion. The step is also necessary to translate processes defined in
the m-calculus to logical formulas because the logic cannot deal with the phenomena of

scope extrusion and intrusion.

The syntax and semantics of Ly are summarised in Appendix A, where extended lan-

guages with the replication and choice operators are also defined.

3.4 The translation from £y to C-ILL>

3.4.1 The translation via dataflow graphs

The translation from £y to C-ILLZ is straightforward. Guardings are translated to the
axioms of combinatorial linear logic just by replacing = for < and adding to it a term.
For example, €(d) < €(f) is translated to ¢ : ©(d) = &(f). The match formulas are
translated to formulas with ‘=", e.g., (b = ) < €(f) is translated to ¥ : ! (b = 2) =
€(f). By combining these translations, we can translate a process, ¢(d).[b = z]e(f), to
ey (b= ) = e[).

The simple translation can, however, only capture actions, not interactions. To express
possible interactions between processes in our logic, we have to represent particles in
Ly as dataflow graph so that we can predict all possible interactions. We have already
seen how a process in the m-calculus can be depicted as a dataflow graph (§3.1.5). Once
a process is depicted as a dataflow graph, pairs of actions that can interact with each
other can be easily predicted. By taking the top node as root in the figure, they are
in the same depth or distance from the root. Observe, for example, how the depth is

counted in the figure 3.14, which was shown originally as Figure 3.10 in the section.?!

As we have seen in the section, the interactions, {7 and t, are translated to the following:

(a) t1:a(y) @ab) = y(2) @ blz)@ (b=y)

2Recall we needed to rename them to depict dataflow graphs correctly (§2.1.2).
[ (V b)[ﬁ<b> L (V b)[ﬁ<b> } } 2! We suppress subscripts where no confusion arises.
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depth 0

b<x>

Figure 3.14. The dataflow graph decorated with actions

(b) ta:y(z)@ba)2 (b=y)= 1@ !(v=2)

The general principle is that a pair of exporting and importing particles may interact

with each other if

e they are in the same distance from a common node through which they are reach-

able, and

e they are located at the same place, i.e., they are connected through a channel.

The second condition is irrelevant when they are in the distance of 0, but it must
be stated explicitly otherwise. Thus, we have to add the formula, !(b = y), to the
antecedent of t5 to ensure that the pair of E(a?) and y(z) should be connected through

a channel, b.

One of our major inventions is certainly the graphical representation of particles. While
it may be trivial to translate guardings into axioms of combinatory linear logic, it

requires another step, dataflow graph representation, to detect possible interactions.

3.4.2 Extension from C-ILL, to C-ILLZ

Our logic, C-ILLZ, is an extension of C-ILL.. As for axioms, we have added three
axioms for substitutions. As for expressions, one can think that we have introduced to

the logic three special predicates: equal, export, and import.

(a) The equal predicate, =, has two arguments a and b, where both must be a name.

An expression such as a = b is the abbreviation of a formula, equal(a,b).
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(b) The export predicate, @(b), has two arguments, where both ¢ and b must be a
name. The first argument is a channel through which the second argument is
exported. The expression, @(b), is the abbreviation of a formula, export(a,b).

(c) The import predicate, a(b), has two arguments, where both a and b must be a
name. The first argument is a channel through which a name is received to replace
for the second argument. The expression, a(b), is the abbreviation of a formula,

import(a,b).

One may recognise the logic is neither propositional nor first order. The additional

predicates are, however, restricted to just these three.

3.4.3 Extension to the polyadic w-calculus

There is no problem in extending the language to treat the polyadic version of the 7-
calculus though we confined ourselves to the monadic version for simplicity. To express
polyadic input or output particles in Ly, we use the same notation as the polyadic
n-calculus, e.g., @(b, c. d), when we abbreviate it. To translate it fully into the logic,
we simply increase the number of arguments. That is, @(b, ¢, d) is to be translated to
export(a, b, c,d).

Accordingly, it will increase the number of formulas stating the effect on substitution
environments upon interactions between polyadic particles. For example, if @(b, ¢, d) and
a(z,y, z) interact with each other, then three formulas are needed to express the effect,
eg., '(b==z),(c=1y), and !(d = z). There is no difficulties in adding the formulas to

axioms.

3.5 Non-determinism

We encounter two sort of non-determinism in the w-calculus, one of which is caused by
the use of the choice operator, 4+, and the other of which occurs when there are more
than one possible interactions, e.g., when more than one importing particle compete
to get access to an exporting particle or when more than one exporting particles are
available for an importing particle. We discuss the first case of non-determinism, then

the second.

3.5.1 The choice operator as external non-determinism

The non-determinism by choice operator occurs for example when a process below
defined in the 7w-calculus tries to output a name, b or ¢ from channels y or z, respectively,

after emitting 2 from a channel a.
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@(x).(7(b) + 7(c))

One way to express the non-determinism of the process is to translate the choice operator
to additive conjunction, & (with). In that case, the above program may be translated

into the below, where the non-deterministic choice is regarded as external one.

a(z)y = g(h)&z(c)

The translation is reasonable if we can understand the program as stating two possible
transitions, one of which is to execute @(a) then 7(b), and the other of which is to execute
@(x) then Z(b), where the decision is up to the process. The two possible transitions are
expressed as axioms such as @(z) =7(b), and @(z) =Z(c), respectively. By the inference
rule of & (with), we can infer the above axiom as follows:
sa(zy=gb) t:a(x) = Z(c)
(s,0) 1 a(x) = G(b)&z(c)

(&’,)

Then the decision to choose either one is derived with the projection, 7, as follows:?2

s:alz) = gy t:alz)=z(c) (&)
(s, 1) ra(x) = g(b)&z(c) 7owe s ghY&E(e) = T(b)
(s, t) omg : a(z) = H(b)

()

Note that the expression, @(2) = 7(b)&Z(c) should not be confused with an expression
with &, @(z) = H(b) ® Z(c). While the former means the choice between the two
particles, the latter means both can be executed. The latter, therefore, corresponds to

a process such as:

@()-(y(b) | =(c))

One may wonder how a case where a process starts by choosing one among others can

be expressed. For example, the following process must start by choosing either one:
y(h).0 + Z(c).0

As we cannot find out any antecedent for them, the translation seems to fail. Recall,

however, 1(unit) can appear anywhere. The process can therefore be rewritten to
L.(F0) + ()

which enables us to translate it to the following formula using &:
1 = 5(b)&z(c)

Although such translation might appear to be cumbersome, there is no problem theo-

retically in the translation.

22The term, (s,t) 0 mo, is written as mo o (s.t) in standard notation, and reducible to s.
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3.5.2 The choice operator as internal non-determinism

Another way to deal with choice is to regard it as expressing internal non-determinism,
P (plus). If we adopt this approach, we have to modify the syntax of the m-calculus
rather drastically so that the above program can be written as

(T(b) + 2(c)).0
Then, the program is translated to 7(b) @ Z(c) = 0, which is derived as follows:

w:gh)= 0 v:z(c)= 0
[u,v] :gb)y & Z(c) = O

In this case, it is appropriate to interpret the null process, 0, as 0 in linear logic, not
as 1(unit) because we are supposed to interpret the meaning of choice as internal non-
determinism, whose neutral element is 0. The trouble of this interpretation is that not
all processes terminate; Some processes never terminate. Observe, for example, the
behaviour of a process, P+ @, where P =g !7(b) and @ =qer !Z(c). As they repeat
forever the actions, 7(b) and z({c), respectively, they will never turn into the identical

state, 0. Thus, we cannot express choice as internal non-determinism.

To sum up, it is impossible to interpret choice as internal non-determinism without
altering the m-calculus. We have to ensure both options should be finite, which seems
to be too restrictive as a translation of the m-calculus. We prefer, therefore, interpreting

choice as external non-determinism.

3.5.3 Non-deterministic interaction

Another sort of non-determinism can occur in evolution, for example, when two im-
porting particles compete to get access to an exporting particle. Observe the following
system where the name b may substitute either 2 in the second process or y in the third

process non-deterministically:
ab).P| a(2).Q| aly).Rt

If the second process gets access to the first process, then the system turns into the

following state:

Pl Q{%:}| aly).R

While the system turns into another one shown below if the third one gets access:

Pl a(2).Q] R{’}
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This kind of non-deterministic interaction can be captured as follows: We first turn the n-calculus, !@(b), may be expressed in our logic. If the action is performed only once,
process into a graph shown in the figure 3.15, then translate it into the following linear it would be expressed as:
logical formulas:

) trad)y =1

(a) p:a(by= P ) o ) ) )

(b) q:a()= Q If the action is performed twice, then it should be expressed as:

(¢) realy)= R forad) =1

(d) s:alb)y e a(z)=b=2)0 P& Q tyra(d) =1

(e) t:ah)® aly) = Wb=y)@ P2 R

This suggest we have to consider how many copies are needed when we compile processes

to logical formulas. The solution works as long as the number of interactions is bound
to be finite. For example, in the case below we know the particle, @(b), should be copied

twice so that both importing particles, a(z) and a(y), can receive the name, b.

a(b) | afz) | a(y)

But the solution cannot be applied to the case where both exporting and importing

particles are replicable. There is no way to count how many copies are required in the

following case:

a(b) | V(e |taly)

Figure 3.15. A non-deterministic interaction

A better solution is therefore to provide for an extra-logical mechanism generating a
Then, the non-deterministic interaction can be derived as below:?? new axiom when it is needed. Recall that neither Hennessy-Milner logic [HM85] nor its

extention to mobile processes [MPW91] does not deal with the issue and that fixed-point
scab)y® a(x) =2 b=r)0 Pe Q id:a(y)= aly) t:ab)® aly)='(b=y)@ P R id:a(z)= a(z) operators had to be introduced to express properties such as “performing some actions

5@ id:ah) @ a(x)® aly) > b=2)¢ P& Q3 a(y) t€ d:alh)® a(x)@ aly) =>!b=y)®@ P& R a(x) forever” [Sti92]. The fact suggests that we have to extend the logic rather drastically
(3@ id,t® id):ab) ® a(z)@ aly) = ((b=2)8 P2 Q® a(y) &((b=y)@ P® R® a(z))

to incorporate replication into it.
The decision to choose either one is derived with the projection, 7, as is explained in . . . . .
- n Another approach is to admit axioms to be used as many times as needed. In this case

13.5. 1 i i E ini y i E . . . . .
§3.5.1. It is pleasant to see that both kind of non-determinism, one by choice operator we have to give up with the view that terms correspond to a particular action, but to a

and the other by non-deterministic interaction, can fall into the same sort of non- . | . ..
- ’ more abstract computation. Even the approach still can see a trouble when replication

determinism, external non-determinism. is combined with restriction. To specify a process such as !(vb)(@(b)), finitely many b;

are needed as b must be a fresh name each time it is created, which cannot be coped

3.6 Discussion with by the approach either. Only finite cases can be dealt with. This is also the case
for petri nets; Only finite petri nets could be investigated by linear logic [MOM91].

3.6.1 Replication

‘ Lo - . 3.6.2 Bound and free names
There are of course limitations to our specification. First of all, we cannot capture

the behaviour of processes with replication, 1. Consider how a process defined in the We have not investigated the issue of bound /free names. In our treatment, bound names

2 - - . N . . are assigned unique names when processes are translated into logical formulas so that
2%Tn the right part of the proof, we skip for simplicity the step to swap a(y) and a(z), i.e., turning a(y)@a(r) g a p ¢ ¢ gIce

into a(r)@al(y). they will never crash with each other. This might expose another limitation when the
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restriction operator, v, is combined with the replication, !, as we have seen in the above. 3.6.3 Temporal properties

To solve the problem, one may think of introducing to the logic existential quantifier,

3. For example, one may try to express a process (v b)(@(b)) We have seen that interactions can be controlled by imposing a constraint on substitu

tion environments (§2.4.3). For example, there are six possible cases of interactions in

:3b.a(hy =1 the following system:

ab) |ale) |a(z) |aly)

The solution will however not work because the scope of the quantifier is limited to

within the formula. Observe for example how the following process can be translated
(a) between @(b) and a(z

to a set of formulas:
(b) between @(b) and a(y

) ) (
) ) (
! (l/ b)5<b>E<L>E<d>U (C) > (
(d) between @(c) and a(y
) ) (
) ) (

between @(c) and a(x

which can be translated into the following set of formulas, where the name, b, is bound:

e) between @(b) and a(x), and between @(c) and a(y), o

(
1 3ba(by = b(c) (
v 2 36.5(c) = b{d)

f) between @(b) and a(y), and between @(c) and a(x)

_ If we impose a constraint such that b should substitute 2 eventually, only the first and

wy 2 3b.b{d) = 1 . . , . .
! () fifth interactions are allowed to occur. That sort of control goes beyond the ability of
the logic and may be considered as a meta-level inference in the sense that proofs are

The problem is that the scope of the existential quantifier does not expand beyond an . . . .
regarded as objects. Let us see how the example can be treated in our logic. The actions

axiom, and therefore the names, b, are not identical between these axioms. Thus, the . . . . . . .
. . and interactions observable in the system are specified with the following set of axioms:
approach falls short of capturing the meaning of bound names. In fact, we need to

introduce more powerful operators to deal with the problem than those provided for (a) t:a(d) =1

in standard logics. Dam for example adopt the A-abstraction and application [Dam93].

(b) w:alc)=1

With more powerful operations, abstraction and coneretion, discussed in [Mil93b], we
may express those axioms as:

_ (d

1: () (@(b) = b{c))[b] (

1+ () (be) = b(d))[b] (0

wy 1 (BY(b(d) = 1)[]

w /,(y) =1

)
)
(¢) via(z) =1
)
e)
f

(g
(h

v
<

2
=

ol
=

@

2
=
=

== = =
<
Il
=

[y

-

)
AN Ve — >
where (b) preceeding to the formula abstracts it over b, and [b] following to the axiom ) @)@ aly) = Ne=y) @ 1

. P " .
S 2 0 sl e CO. D). / . Vi se oms, we C F— . . . . .
exports the name to another formula combined with it. Given these axioms, we can Then, the admissible derivations are the axiom p itself and the following one composed
success v i 3 * (2 as /S: - P . o g .
successfully fmport b from u; to vy as follows of p and 5.22 Other axioms, ¢, r, and s, and the theorem inferred from ¢ and r, are not
admissible.

wi (@) = b(e))[b] w1 : (b)(5(e) = b(d))[8]
upowvy : ()@ <>:>b dy)[b] pia

)@ 1 s:a{e)y® aly
(z) @ alc) @ aly) = '(b=12)a

Pursuing the idea further leads to an algebraic theory, action structures [Mil92b, Mil93a,

]\11]95} Such an investigation goes beyond the scope of the thesis, however. 2"We skip the step to turn 1 ® 1 into 1 and another one to swap 1 and !(c = y), for simplicity.
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The observation suggests that temporal properties are computationally expensive. In
fact, liveness and safety are expressed by introducing a fixed-point operator in the
modal mu-calculus [Sti92]. It is not certain whether or not introducing fixed-points is
the only solution, but the issue should certainly be investigated in a higher order level

than first order.

3.6.4 The restriction on guarding relations
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3.6.5 Comparison with Hennessey-Milner Logic

An improvement of the logic to Hennessey-Milner logic (HMI.) [HM85] is that we can

express internal structures of interaction. Observe how transitions occuring between the

processes shown below may be expressed in HML, which was presented in the figures of

3.10 and 3.14,

a(b).b(z).0| a(y).y(z).0

T T . b
We have seen that guarding relations must form a tree to be faithful to the m-calculus(§3.3.2). 7 b{z).0 b(z)h.(]{ T}
The first molecule of the followings for example is admissible, while the second is not - 0 ‘ 0"/}

since b(y) is guarded by two particles, a(x) and ¢(z):

(a) [a(x),bly),c(z) [ a(z) < bly). a(z) < ¢(2)]
(b) [a(z),b(y),c(2) | alx) < b(y), c(2) < b(y)]

The restriction can, however, be lifted. Let us first examine where the problem is.

What we would like to mean by the constraints, “| a(z) < b(y), ¢(z) < b(y)”, is that
the particle bh(y) should be ready only when both a(2) and ¢(z) have been executed. If
we translate these guarding formulas straightforwardly into linear logic formulas, they

would be translated to the followings, respectively, where we express the third one

explicitly. id: (b=y)=(b=y)
) ) t:y(z) @ b(z)® (b y)=> 1@ e=2) ld:lb=y) =>!b=y)

- ¢:(1(.)?):>b(y) Qlid:y(z)0b{@)g b=y)2 lb=y)= 1@ (z=2)2 (b=y)

ERVE (;(3) = b(y) tora(y) @al) = y(z) @ F(’r)@ I(h=1y) to@lid - y(7) nelb=y)=>10l(z=2)g!(h=y) ot

Seibly)= 1

The problem of this translation is that it alters the process: it means that b(y) can be
executed either when a(z) or ¢(z) has been executed.?® To avoid the problem, we can

modify the antecedent of the third formula by duplicating the particle as follows:

-6 ale) = bly)

- ie(z) = bly)

-piby)@bly)= 1
Since the axiom, ¢, requires two occurences of b(y), it can only be applied to when ¢
and 1 are combined by parallel composition to compose a formula.

Similar asymmetry can also be found in translating the constraint, | a(z) < b(y), a(z) <
c(z), to logical formulas. To mean that both b(y) and ¢(z) are executable after a(z) is

executed, one has to express it as a(2) = b(y) € ¢(z). We have solved the problem by

As the transitions are invisible from outside, it is specified by the below formula, which
means the process may end up with true after performing the two consecutive silent

actions, 7. The substitution environment is expressed as an extra condition:

P |= (r)(r)true, where {¥/, 7/}

On the other hand, the logic can trace the steps by which processes turn into a particular
state. T'he same transitions can be described in the logic as follows, which has been
shown in §3.1.5:

t1 0 (@Nd) ra(y) @ab) = 1! b=y

In the derivation, the information about how interactions occured is stored in the term,
1y o (ta@lid)
that the sy

which means there was first an interaction, ¢;, then ¢5.26 We can also see

ben was initially in the state such that it is ready to perform two particles,
a(y) and @(h), concurrently, and that it ended up with the state such that there is no
more possible actions with a substitution environment, */, and I//L,. The silent action, T,
may be captured by defining term reduction as if it were 1.

What we cannot express in the logic is however negative information. HML can for

example specify a process such that @(b) is never followed by a silent action as 27

P |= [a(b)][r)false, where {%,,"/.}

decorating dataflow graphs using the multiplicative connective, @, not the additive, &. 26 This is bacanse the term can be reduced to £ o £

2"This is becanse a(y) must be performed hefore the interaction bhetween E(r) and y(z) occurs. Another

25

This is because [¢, %] : a(z) & c(z) = b(y) is constructed out of ¢ and ¥ as coproduct in the logic. formula is however legitimate, the formula that P |= (@(b)){a(y)){r)true.
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The false in HML is classical in the sense it is defined as unprovability of true. As
our logic is an intuitionistic and constructive, we cannot deal with HML’s false without
modification to the logic. If we choose to adopt the classical negation, we have to extend
the logic to classical one by introducing multiplicative disjunction, %, the dual of &,
with its neutral element; —. Then, =P is defined as P — —. On the other hand, if we
remain within intuitionistic logic, we define it as P — 0, which is adopted in Girard’s
translation of intuitionistic logic to linear logic [Girg7]. 28 We would like to adopt the
latter approach and to remain within intuitionistic logic because Situation Theory has

to do with intuitionistic logic as is observed in [BE90].

The other problem is that the logic is so powerful that it can derive unwanted deriva-
tions, too, when used to specify processes. See for example with the following set of
axioms, we can infer not only hoi:a(t)= 1 butalso h@i:a(y)@y(z) = y(z)@ 1

by parallel composition, which obviously we would like to avoid deriving.

(a) h:aly) = y(z)
(b) iry(x)=> 1

This is because the motivation to apply linear logic to concurrency, i.e., originally to
petri nets, was to investigate reachability problem, e.g., whether a state change is pos-
sible for a net. The solution taken by HMI. to constrain inference, if we try to find
any, is to introduce modality to the logic. In HML, we can ensure the particle a(y)
should be executed before y(z) by imposing an order on execution as a modality such as
(a(y)){y(z))true. If we persue that direction, we may end up with something similar to
the work by Dam [Dam94], a modal linear logic. We try to introduce a form of modality
into our logic, which will be explained in §4.5.2. But there might be another way to
construct formulas under control. Recall the formulas in HMI. specify labelled transi-
tion systems (L'T'S). Since L'I'Ss can be thought to correspond to proof trees in the logic,
we can regard the modal information encoded in HMI. to operate on proofs. Given this
view, we could apply meta-programming technique to control theorem provers. But

such investigation goes beyond the scope of the thesis.

3.6.6 The 7-calculus specified in linear logic

1t is not the first attempt to capture the computation by w-calculus using linear logic.
There are at least two works by Miller [Mil92a] and Okada [Oka93], but their aims and
approaches are different from ours. Miller starts by examining classical linear logic and

maps each rule to that of the m-calculus. After these mappings have been done, he

28There is also another proposal to simulate classical negation within intuitionistic linear logic [FW93], where
they define =P as P&1 — 0 with other additional axioms.
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adds to the logic particular rules to capture the effects brought about in the m-calculus
because the only rules mapped from the calculus fall short of capturing them fully.
Additional rules are introduced to encode guarding, choice, replication, and match,
which go beyond linear logic. Okada pursuits that approach further and devises a
number of axioms and rules so that asynchronous and synchronous communication can
be captured as well as mobility. Higher order process calculi, where even processes can

be exchanged, are also studied in the framework.

While they are interested in enriching linear logic by adding to it a number of axioms
and rules so that the full-version of the m-calculus can be expressed within it, we are
interested in finding out an appropriate computational ground for communication and
concurrency for our purpose rather than simulating a particular language. That is why
we have chosen combinatory intuitionistic linear logic because it can be related with a
basic category, i.e., symmetric monoidal category with product. Through translation of
processes in the w-calculus to formulas in the logic, we could understand the nature of

non-determinism in the calculus.

The table 3.7 shows equations for the categories, which is called intuitionistic linear
category by Troelstra [Tro92]. The category axioms and functional character of @
with natural isomorphisms for v, «, and A define a symmetric monoidal category. The
equations for + — — make the category closed. The last two columns shows equations
for products and coproducts. We do not include equations for the exponentials and
coherence conditions into the table for simplicity as we do not go into the discussion on
categories.?? We also adopt standard notation as for ‘o’, i.e., ¢ ot reads in standard

manner.

3.7 Conclusion

In this chapter, we have proposed a way to specify mobile processes using a combinatory
intuitionistic linear logic with additional axioms for substitutions and three special
predicates. We have shown how the processes defined in the m-calculus can be specified
in the logic; they are first translated into a language Ly, a syntactic variant of the
calculus, then depicted as a dataflow graph to predict possible interactions, and finally
expressed as formulas of the logic. While we could not specify the programs with
replication, !, and restriction, v, in the logic, its computational model is kept simple:
a symmetric monoidal category (SMC) with product. Through discussion, we have

clarified the limitation of the logic and what to be done towards specifying the full

2Troelstra’s text or Bierman’s paper [Bie95] is helpful to know the issue in more detail.
0+ means interchange of factors in a product. It is, therefore, self-inverse, i.e., v7' = 4.
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arrows

Y X

identity

I(l4 A — A

natural transformations

vap:AQ@B—B®A

aspc i A®(BoC)— (A@B)gC

AA 1@ A— A

ifp: A B — C then cury g o)A — (B—oC)

category axioms

(dov)ox=0do(Pox)
idop=¢
poid=¢

functional character
of @

(pod) @ (o)) =(d@¥)o (¢ @9
id & id = id
1 = idy

natural isomorphisms

for ~,
«,
and A

volp@y) = (v®d)oy

Yoy =id®
((p2Y)@x)oca=aoc(p@ (P& X))
ool =id
aloa=1id
Ao(1@¢)=¢oA
XoA™l =id
Alod=id

FEquations for 2 — —

cur(¢) o = cur(do (¢ @ id))
evo (cur(¢d) & ¢) = ¢ o (id & Y)
cur(ev) =id: (A — B) — (A — B)

Equations for products

T o{p. V) =¢

w0 {p, )y =1

(o, )ox = (pox,¥ox)
(m1,me) = idagB
Tao¢p=Tg:B—Tif¢p:B— A
Tt =1idt

Equations for coproducts:

[p,¥]oky = ¢

[, ) ory =1

xo[6 9] = [x 0 6, x 0 ¥]

[K1, ko] = idasR

po—s=—-p:— —Bif¢:A— B
- =d_

Table 3.7. Equations for intuitionistic linear categories
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version of the 7-calculus.
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e How can semantic objects and models be represented to investigate these issues?

To answer to the first and second questions, we have to answer to the third question. Our

approach is to represent semantic objects employed in Situation Semantics as a theory

of the logic presented in the previous chapter. Once we succeed in establishing the

connection between Situation Semantics and the logic, the questions can be answered
Chapter 4 ’

thanks to the result obtained through the investigation into linear logic.

Representations as processes 4.1.2 Channel Theory and Situation Semantics

Another aim of the investigation is to relate Channel Theory [Bar92, Bar93, BS92, SB93]
to Situation Semantics. The theory studies how information can be conveyed from one
to another and refines the notion of constraint in Situation Theory. A number of
4.1 Introduction notions have been invented and studied, but it is yet to be clarified how the result can
be imported to and utilised in Situation Semantics.
In this chapter, we base Situation Semantics on a computational ground of commu-

The work relating Situation Semantics with Linear Logic through the 7-calculus suggests

nication and concurrency. One of the core ideas of Situation Semantics is ecological . “ . . . | . .
Y g one way to fill the gap between Channel Theory and Situation Semantics, especially

realism, the idea that meaning arises from the interaction betw itive agent . . C e . | | .
reatism, the 1dea that meaning arises from the interaction between a coghitive agen Situation Theoretic Discourse Representation Theory [Coo93a, Co093b], which have

and his or her environment. We model both the agent and environment as a process . . . e
8 P been hitherto studied rather independently. Intuitionistic linear category [Tro92] can

and study the interaction as a system of communicating processes. To elaborate the ., - . . . S
K i &P actually cover Barwise’s postulates on the principle of information flow [Bar93]. We will

idea, we turn to the m-calculus [MPW92] and construct semantic objects employed in . . .
' ) ! conclude the chapter by discussing the issue.

Situation Semantic [BC93] as processes. The construction helps us relate Situation

Semantics with Linear Logic, through our translation of the calculus to Combinatory

Intuitionistic Linear Logic. 4.1.3 Representing situation-theoretic objects in linear logic

We sketch here our strategy to represent situation-theoretic objects in linear logic. We
4.1.1  Computational aspects of Situation Semantics translate the connectives employed in Situation Semantics, conjunction, A, disjunction,

. . . . - . . V, to &, and @ in the logic, respectively, hinted by Girard’s translation of intuitionistic
A lot of work has already been carried out on the foundation of Situation Semantics. ’ @ © p v i

Tor instance, Non-Well-Founded Set Theory [Acz88] and Aczel-Lunnon universe [AL91]

provide for a basis to study semantic objects employed in Situation Semantics. While

logic into linear logic (Table 4.1) [Gir87]. Constraints are in the beginning translated to

=, but later to — to deal with concepts belonging to higher order such as quantification.

the aim of the investigation is to define a mathematical universe in which semantic

. ) . Intuitionistic Logic Linear Logic
objects can be properly constructed, we start by assuming the existence of a proper P = p (p atomic)
universe and study computational aspects of Situation Semantics. By “computational (A= B)* = 14* — B*
aspects”, we mean the following issues: (AN B)* = A&B*

(AvV B)~ = 1A*q IB*
e Given the expression of a semantic object and a model, how can one prove that it (—A)* = 14" —0
is the model for the expression? * is translation function
e Given the expression of a semantic object, how can one prove that there exists a Table 4.1. Girard’s translation of intuitionistic logic to linear logic

model for it?
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We adopt the translation of negation as well to make our logic intuitionistic. We can
alternatively use —, the neutral element of multiplicative disjunction, %, for 0 to make
the logic classical, but we prefer intuitionistic negation to classical one because we
think it is more appropriate to model the theory of infons. After these mappings, we
are still left, with multiplicative conjunction, . We exploit the freedom to build various

situation-theoretic objects such as infons and types.

4.1.4 Constructing situation-theoretic objects in the w-calculus

To understand underlying ideas in representing situation-theoretic objects in linear logic,
it is helpful to encode them into the m-calculus although it lacks the ability to express
disjunctive information, say @. We therefore encode them into the w-calculus where
applicable. We may even skip the translation to linear logic for simplicity because the
correspondence has already been explained in the previous chapter. Not only the 7-
calculus, but also molecular language may we sometimes employ, e.g., when encoding
simultaneous abstraction, because the use of guarding in the calculus is too restrictive

to encode some objects.

In the chapter, we consider two versions of Situation Theory, primitive and naive.
The first version is a simplified Situation Theory to explain our ideas in construct-
ing situation-theoretic objects as processes. Some part of the construction of primitive

situation-theoretic objects has been presented by the author in [Fujo4].

4.1.5 Related work

The project is by no means the first attempt to construct semantic objects in a type-
theoretic framework. Some type theories have already been used to represent semantic
objects employed in semantics for natural language. Ranta for example adopted Martin-
1.6f’s T'ype Theory and analysed ‘donkey’ anaphora using dependent types [Ran91].
René Ahn [Ahn94] proposed to use Pure Type Systems as a “Language of Thought”
to model dynamic knowledge states and argued that the system could be seen as a
generalisation of Discourse Representation Structures (DRSs). Muskens has employed

the first order part of ordinary type logic to express DRSs [Mus93, Mus94].

Their approaches and systems employed are fairly different, but they share the view that
type theory may provide for fine-grained tools to study the semantics of natural language
than the first order logic does. It is also expected that type theoretical foundation might
enable us to study computational issues in more detail owing to the connection with
computer science. There must be a number of ways in exploiting the possibility. Our

project is another attempt in the area.
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4.2 Primitive Situation Theory

We review semantic objects employed in primitive Situation Semantics. Tt is primitive
in that we do not include relations and situation-theoretic types. We include them in
naive Situation Semantics and postpone discussion related to those complex objects
until the section §4.4. The reason why we do not include relations and types in the
primitive situation semantics is that we would like to start with as simple theory as
possible to make it easier to understand our ideas. Quantification is also discussed later
in §4.6.

We start by explaining about infon, situation, and proposition. These notions form the
core of Situation Semantics. To explain them informally, infons are items of information,
and situations are objects that may or may not support them. Infons and situations
consist of propositions such that a situation supports an infon. We then review the
objects obtained through absiractions. By incorporating parameters into objects and
abstracting them over parameters, we obtain infon abstracts and proposition abstracts.
The operation to assign concrete objects to parameters is called anchoring. These

abstract objects are turned into concrete objects through the operation.

4.2.1 Basic infons

We adopt mainly the Extended Kamp Notation (EKN) [BC91, BC93] to explain about
semantic objects employed in Situation Semantics, along with linear notation. In EKN,
the information such as “John smiles” is expressed as is shown in (4.1), where J’ of
smile(j) denotes the person who is called “John” and smiles. The predicate, ‘smile’,

is called a relation and ‘j° an argument. The relation whose number of argument is
o

just one may sometimes be called property. It may also be expressed as (4.2) in linear

notation previously used in the literature. The number ‘1’ appearing in the expression

indicates that the information is positive.

smile(j)

(4.1)

{ smile, J; 1) (4.2)

Similarly, the negative information such as “John does not smile” is expressed as is
shown in (4.3) or (4.4). The symbol, ‘=", in (4.3) and the digit number, 0, in (4.4)

indicate the information is negative. The indication of positive or negative is called
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polarity. The reason for explicitly referring to the polarity comes from our motivation
to capture the meaning of natural language sentences. If one knows that John does not
smile, he knows the fact. Such an item of knowledge should be distinguished from his
Tack of knowledge about John’s physical movement. If we regarded negative information
simply as lack of knowledge, then we would fail to capture the intuitive meaning of the

sentence.

—smile(j)

{ smile, j; 0) (4.4)

4.2.2 Conjunctive and disjunctive infons

The basic infons can be combined with connectives, A and V, to represent more complex
items of information. Suppose we would like to express an item of information such as
“John smiles and Mary sings.” Then, it may be expressed either as (4.5) in EKN

notation or as (4.6) in linear notation.

smile(j)
sing(m) (4.5)
{( smile, j: 1) A ( sing, m; 1)) (4.6)

Basic infons may also be combined disjunctively. We may express an item of information

such as “John smiles or Mary sings.” either as (4.7) or (4.8).

smile(j) V sing(m) (4.7)

{( smile, j: 1)V { sing, m; 1)) (4.8)
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4.2.3 Propositions

Infons are just items of information and can neither be true or false in and by themselves.
For an infon to be true or false, it must be an item of information about some situation.
The observation is central to Situation Semantics, and it is important to distinguish
infons related to situations and those unrelated. We call the infon related to situations
propositions. Suppose from a situation s one extracts an item of information such as
“John smiles”, { smile, j; 1)), possibly by seeing the situation. The proposition that
John smiles at the situation s is expressed as either (4.9) or (4.10). The proposition is

true if he certainly smiles at the situation, false otherwise.

ﬂ

smile(j) (4.9)

(s = { smile, j; 1)) (4.10)

We say that a situation s supports an infon o, or that a situation s is of fype ¢ when
the proposition is true. We can combine propositions with the connectives, A and V, to

construct more complex propositions as is the case with infons.

4.2.4 Parametric objects

In the above, we only consider infons whose arguments are some concrete objects, e.g.,
John. There can however be infons some of whose arguments are to be filled with some
objects. Suppose we think of an abstract idea of “smile”, and it does not matter whoever
smiles actually. Then, it is appropriate to use a parameter, &, to fill the argument to
express it can be anyone. We call such infons including parameters parametric infons.

The abstract idea of “smile” may be expressed as below (4.11) or (4.12).

(4.11)

{ smile, a; 1) (4.12)

However it does not make the theory complete just introducing a parameter to the

object. We have to incorporate parameters in a theoretically sound manner. Traditional
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approach to parameters is to regard them as variables and express abstract ideas using
the A-abstraction. For example, the concept of “smile” may be expressed as Az.smile(z).
Such an idea is exploited by the A-DRT [BMM794], and the example might be expressed

in the theory as

Aa | smile(x) (4.13)

The approach taken by Situation Theory is, on the other hand, more radical than the
A-calculus. While in the calculus the order of abstractions does matter, it does not for
the abstraction adopted in Situation Semantics, thus called simultaneous abstraction.
For example, in the A-calculus, the meanings of two expressions, Azy.[eat(x,y)] and
Ayz.leat(x, y)], are different because the former is an abbreviation of AzAy.[eat(z,y)],

while the latter is that of AyAz.[eat(x, y)], which are different functions in the A-calculus.

4.2.5 Abstraction

To abstract semantic objects simultaneously over several parameters, we introduce to
the theory a notion of role, which indicates which abstraction is to be applied to which
assignment function. With these roles, we obtain more flexibility in abstracting se-
mantic objects over parameters because we do not need to specify in what order these
parameters should be substituted. Let us see some examples. When we abstract the

object above with a role r, it is expressed as follows:

smile(z) (4.14)

Alr = 2] smile, z; 1)) (4.15)

With this notation, we express the abstract idea on eating relation as (4.16) or (4.17):
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eat(z, y)

Alre = 2,19 — Y] eat, 2, y; 1) (4.17)

Since the roles serve as a key to get access to a particular parameter, the order of
abstractions over 2 and y does not matter. We can swap 2 and y as follows without

changing the meaning:

rg Y, T X
eat(z, y) (4.18)
Alrg =y, r1 = 2] eat, x, y; 1) (4.19)

In addition, we assume a-equivalence hetween abstract objects, i.e., alphabetical vari-
ances for parameters do not matter. Also, not only basic infons but also propositions
can be abstracted in the same way. If we abstract the proposition (4.9) or (4.10) over

the parameter 2, which replaced j°, we get the proposition abstracts, (4.20) or (4.21).

rT— T
Il /
(4.20)
smile(z)
Alr = 2](s = { smile, z; 1)) (4.21)

4.2.6 Anchoring

Abstract objects are turned into concrete objects, i.e., basic infons or propositions,
when assigned objects to parameters. Suppose we assign ‘j’, the person John, to 2 in
the infon abstracts shown as (4.14) or (4.15). Such operation is expressed either as
(4.22) or (4.23):
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The encoding may appear to be strange, but remember how actions are usually coded

in prolog. Propositions such as “Mary sings” or “John eats an apple” are for example

— ) often coded as sing(mary) or eat(john, apple), respectively, where one translates
smile(z) [ =1 (4.22) actions to relations. Comparing with the practice in prolog programming, representing
actions as channels is rather natural. One may even admit to translate relations or

Alr = 2]{( smile, z; 1)[r — j] (4.23) properties to channels, then.

When we encode infons into the m-calculus, we do not express the polarity, 1, because

) L . o . we relate capability of performing actions to ‘1’ and incapability to ‘0’. The point is that
As the result of the application, we obtain the basic infon (4.1) or (4.2), which means . . . L. . X
one does not define incapable actions in the m-calculus because it is designed to define

that “John smiles.”:
capable actions only. That is why we can only express positive infons in the w-calculus.
But it can be expressed in the logic. We translate it to the formula (4.25) ' and the

negative infon {( smile, j: 0)), shown in (4.4), to the formula (4.26).
(11)

{ smile, j; 1) (4.2) smile(j) (4.25)
smile(j) — 0 (4.26)

The same goes for proposition abstracts and propositions. In Situation Semantics, the
abstract object provided with assignments and its result of application are thought to The representation however contradicts our intuition that the infon such as “John
be identical, i.e.; S-conversion. smiles”™ is available for the time being. At least, it should not disappear just after
providing for the information once. Given the observation, the infon had better be en-
4.3 A study of pI‘iIIlitiVG Situation Semantics coded in the 7-calculus as a replicable process, e.g., | smile(j). But we cannot translate
replicable processes to formulas in the logic. We therefore give up with the intuition

We represent semantics objects employed in primitive Situation Semantics in C-ILLZ, and regard the investigation to be done at more abstract level.

the intuitionistic combinatorial linear logic with equality. We encode them first into the

m-calculus or Ly if necessary, then translate them to the formulas in the logic. . . .. . .
0 ¥ 8 4.3.2 Conjunctive and disjunctive infons

4.3.1 Basic infons To encode conjunctive infons into the w-calculus, we use the choice operator, +. For
example, the conjunctive infon, {( smile, j; 1) A { sing, m; 1)), shown as (4.5) or (4.6),

We regard infons as processes providing for items of information and conceive of them .
is encoded as

as corresponding to output processes. In encoding them into the m-calculus we take

relations as channels and arguments as data emitted through them. This is the approach

taken by Fujinami [Fuj94] and Okada [Oka93]. For example, the infon, { smile, j; 1)), smile(j) + sing(m) (4.27)

shown as (4.1) or (4.2), is encoded as

—_—. ; We relate the choice operator to additive conjunction, &. and represent it as
smile(j) (4.24)

!The expression is an abbreviation for export(smile.j) = 1.
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smile(j) & sing(m) (4.28)

The formula may be constructed as product of two formulas below, (4.29) and (4.30).

The formula (4.31) states that smile(j) and sing(m) can be executed under any condi-

tion. Remember smile(j) + sing(m) can be regarded as 1.(smile(j) + sing(m)).

1 = smale(j) (4.29)
1 = sing(m) (4.30)
1 = smile(j) & sing(m) (4.31)

Disjunctive infons cannot be encoded into the w-calculus since it is not equipped with an
operator corresponding to disjunction. We can however express them in the logic with

additive disjunction, 4. For example, a digjunctive infon, { smile, j; 1)) V {( sing, m; 1),

shown as (4.7) or (4.8), can be defined as smile(j) & sing(m), constructed as coproducts
of the formulas below, (4.32) and (4.33).

smile(j) = 1 (4.32)
stng(m) = 1 (4.33)
smile(j) ¢ sing{m) = 1 (4.34)

4.3.3 Links
Situations and propositions

For convenience, we first regard the notion of situations in Situation Semantics to
correspond to processes. The relation between situations and infons such as (s = o), a
situation s supports an infon o, can be regarded to correspond to the relation between
terms and formulas, by relating terms to situations and formulas to infons. Then the
proposition, (s = {( smile, j; 1))), shown as (4.9) or (4.10), is thought to represent the

following expression in the logic:

st 1= smile(j) (4.35)

If we define it as an axiom, then it is true. An expression can also be true if it is

constructed of the set of given axioms. For example, the expression (4.38) is true when
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the axioms, (4.36) and (4.37), are given because it can be constructed as product of

them.

s: 1= smile(j) (4.36)
L: 1= sing(m) (4.37)
(s, t) : 1= smile(j) & sing(m) (4.38)

The logic can thus determine whether an expression is true relative to given axioms
if it is the case. If it can be constructed with given axioms, then it is true. Given
the correspondence between terms and situations, the logic can be said to construct
situations supporting infons. Unfortunately, the logic cannot determine whether or not

a given expression is false because the logic is undecidable [Tro92].

Connections and links

To elaborate the above notion of situations, we turn to another notion of connections
developed in Channel Theory. Observe that what we represent with = corresponds to
constraints between infons. For example, the following formula (4.39) states a constraint
such that “If .John smiles and Mary sings, then .John smiles” rather than an infon

supported by a particular situation.
smile(j) & sing(m) = smile(j) (4.39)

Connections are the counterpart of situations and can be thought to support constraints
in the same sense that situations support infons. The relation between these two sets

of notions can be depicted as is shown in the figure 4.1 and explained as follows:

e A particular situation s supports an infon o, “John smiles and Mary sings”, which

we express as a proposition, (s = o).

Another particular situation ¢ supports an infon ¢, “John smiles”, which we express
as a proposition, (# E ).

. . . . . . ¢,
There is a connection, ¢, between the situations s and ¢, which we express as s +— .

e There is a constraint, v, between the infons ¢ and ¢, which we express as ¢ = «.

The particular connection ¢ supports the constraint ¥, which we express as a link,

(¢ E 7). The term, link, is introduced as a counterpart of proposition.

With this conceptualization, the following expression (4.40) whose term is u can be

thought to represent a link, where u is regarded as a connection.

u: smile(j) & sing(m) = smile(]) (4.40)
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infon

John smiles
and Mary sings

congtraint
John smiles

link

. 3 situation
connection

proposition

Figure 4.1. Constraints, connections, and links

The situation supporting the antecedent, “John smiles and Mary sings”, is the precon-
dition of u, and another situation supporting the consequence, “John smiles”, is the
postcondition of w. Tet *u and u® be the precondition and postcondition of u, respec-

tively. Then, the above expression (4.40) can be transformed into a link as below:?

smile(j) & sing(m) == smile(j)
A A A

2

*u — [

Therefore, what the logic actually constructs through derivation are connections sup-

porting constraints, not situations supporting infons.

4.3.4 Parametric infons

We have to recover the distinction between constants and variables to encode parametric
infons in the m-calculus. Such modification is not problematic at all because the notion of
names was originally introduced to simplify the calculus by discarding the distinction
[MPW92].2 Variables are special channels through which no names are exchanged.
Constants are names such that no other names can substitute them. They can also not

be used as channels. Hereinafter, we let a,b,..., range over constants, and z,y,...,

2The pre and post conditions are identical in logically valid inference, but they may be different for con-
straints in general.

IThe Pict language for example distinguishes variables and constants, a language whose design is based on
the m-calculus[Pie94].
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variables. With this modification, the parametric infon, {( smile, 2; 1)), shown as (4.11)

or (4.12), can be encoded as

smile(x) (4.41)

It is trivial to translate the process into the logic since it distinguishes constants and

variables. The above © would be treated as a free variable.

4.3.5 Abstracts
Infon abstracts

The attempt to encode situation-theoretic objects into the m-calculus turns out to be
most beneficial when we encode abstract objects. As we have seen in the first chapter
(§1.5.2), the calculus enables us to encode simultaneous abstractions naturally. In the
following process, P, for example, the guard r(z) behaves like the A-prefix, Az, in that

it binds @ in smile(x).
P =ger r(ax).smile(x)

In this guise, the process certainly encodes the infon abstract, A[r — 2]{( smile, x; 1)),
shown as (4.14) or (4.15), where the channel » corresponds to the role indexing the

parameter 2.

The encoding of abstracts as input actions seems to work fine, but there is a problem,
for which we employ molecular language. Consider how the infon abstract, Alr; —
x, 1y — y]{ eat, x, y; 1)), shown as(4.16) or (4.17), can be encoded in the w-calculus.

We may want to encode it as either

(ri(x) |raly) ). eal{x,y), or

(r2ly) () ). alle,y)
The encoding expresses our intuition on simultaneous abstractions; the process imports
two constants through r; and ry simultaneously and substitutes them for 2 and y,

respectively. But the problem is that the syntax of the calculus does not allow parallel

processes to guard an action. We can only encode it either as

ri(2).ra(y) Zal(z, y), or

ro(y).r1(x).eat(z, y)
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and as the result the abstraction looks more like the A-abstraction. Making them
independent processes as below does not work because z and y in the first two processes

are not the same as those appearing in eat(z, y).

ri(z) [ray) |eat(z, y)

This is because the scope of names bound by these input actions are limited within
the guarded actions by them, which does not apply to the case. Another way to use
the restriction operator, too, cannot extend the scope of 2 and y across | because the
binding forces by the input actions are stronger than that of the restriction operator.

The following two definitions are therefore equivalent.

(v, y)(re) |ra(y) leal{z,y))

(@) [raly) [(ve,y)(eak(z, y))

The molecular language Ly, on the other hand, is less restrictive with respect to the
scope of binding. Since the scope of bound names is defined to be within the molecule

in which they appear, we can encode it as below.

[r1(2), ra(y), ai(a, y) (4.42)

Now consider how the above program can be translated into the logic. Unfortunately,
it is not straightforward because we have to compile bound names to unique constants.
If we translated it without compiling them, we would end up with the following set of
axioms, (4.43) to (4.45). The problem is that the scope of variables cannot go across

between axioms.

sir(a) =1 (4.43)
t:rg(y) =1 (4.44)
u:eat(z,y) =1 (4.45)

Let x and y be unique constants assigned to z and y in (4.42), respectively, and rewrite
the above axioms to those below. Since they are constants, they can now denote the

same object among different axioms.

s:ri(x) =1 (4.46)
tira(y) =1 (4.47)
w:eat(x,y) =1 (4.48)
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Proposition abstracts

The above translation works for infon abstracts but not for proposition abstracts, the ab-
stract objects obtained by abstracting propositions over parameters. Recall the abstract
object obtained of the parametric proposition, (s = ( smile, 2; 1)), by abstracting it

over & was the one such as (4.20) or (4.21), not (4.49).

r—a
L5 ]
(4.20)
smile()
Alr = 2](s = ( smile, ; 1)) (4.21)
(s E A[r — 2] smile, z; 1)) (1.49)

The definition (4.21) means that the abstraction can operate on the situation s, too.
In fact, Situation Semantics allows to parameterise the situation s and abstract the

proposition over it as follows:

T %S, Ty —+ X

smile(z)

Alre = S, ra = 2](S = ( smile, 2; 1) (4.51)

Since terms and formulas are not interchangeable, we can neither encode such abstract
objects into the m-calculus nor translate it to the logic. This might appear to be prob-
lematic, but we will approach the problem from a different direction in §4.7.3, where we

regard situations as channels to infons.

4.3.6 Assignments and transitions

Assignments are encoded as output actions connected through channels to input ac-
tions abstracting objects. Suppose we encode in the molecular language, Lg, the infon
abstract, Alr — 2]{( smile, 2; 1)), shown as (4.14) or (4.15), as follows (4.52), where the

channel r corresponds to the role indexing the parameter 2.
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[r(z), smile(z) ] (4.52)

Then, an assignment anchoring 2 to ‘i’ can be encoded as an output action, 7(j). The
abstract object with the assignment, Alr — 2]{ smile, 2; 1))[r — j] can, therefore, be

encoded as the following molecule:

[ (o). smile(a) (4.53)

The molecule will evolve into [smile(j)] upon the interaction via the channel r as below.

The end result corresponds to the infon, {smile, j; 1)).

(76, (o). 5mTTe(e) |
N [smile(z)] +{i,)
= [smile(j)]

When translated to the logic, the molecule is expressed as the set of the following
axioms:

str(x) =1

t:r() =1

w: smile(x) = 1

v (xR gr(g) = x=1)

id: smile(x) = smile(x)

and the transition is derived as below:"

ver(x)@T(G) = (x=13) id: smile(x) = smile(x)

v @ id:r(x) @ () @ smile(x) = (x = ) @ smile(x)  eqs: N (x=]3)® smile(x) = smile(j)

(v&id)oeqs: ri(x) @T1(j) @ smile(x) = smile(j)
The above example shows that G-conversion is realized as transition in our formulation.
One may however wonder how the equivalence between the following two objects can
be captured as argued in Situation Semantics.
- A[r = z]{( smile, z; 1))[r — j]. and

- {( smile, j; 1)

4We skip the steps to swap (x=j) to (j=x).
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To capture the equivalence, we turn to the notion of bisimular relation, ~. Intuitively,
the relation A ~ B means that a process A can simulate the behaviour of another
process B and vice versa. Observe how the two processes, P and @, encoding the above
two objects may behave. Tn the table below, the lefthand side shows the behaviour of
the process, P, encoding Alr — 2]{( smile, z; 1)[r — j], and the righthand side that of

the process, ), encoding { smile, j; 1)), as a molecule.

P Q@

[7G). (o). Saile(e) |
N [smile{z) ] *{/s} L
= [smile(j) ] [smale(j) ]
FrTEEN 0 RN 0

The left process, P, performs the sequence of actions, ( 7, smile(j) ), while the right
one, Q, the single action, { smile(j) ). These two sequences may appear to be different,
but recall that the silent action, 7, is invisible from outside. We can neglect 7 and can
regard these two as equivalent. We define weak bisimular relation, ~,,, as the process
equivalence neglecting the silent action, 7. Obviously, it holds that P ~,, Q. When we
conceive of transitions as LTS, the issue of bisimulation is reduced to mapping between
directed acyclic graphs. An interesting question for us is how dataflow graphs devised
in the thesis may contribute to defining a bisimulation relation, but it is outside the

scope of the thesis.

4.4 Naive Situation Theory

The version of situation theory presented so far has been slightly simplified in order
to explain our ideas to investigating Situation Semantics. Some objects employed in
Situation Semantics are in fact more complex. In this section, we look into infons with
appropriate conditions, relations, and types. We call the theory naive because we still

postpone the study constraints and quantifications.

4.4.1 Infons

As we have seen, an infon consists of three elements: relation, argument, and polarity.
Of which, we elaborate the notion of relation now. Relations are objects in Situation
Semantics and have a type of assignments associated with their appropriateness condi-

tions. Relations are a particular kind of abstract and thus they have indexed roles and

?Strong bisimular relation, ~., may be defined as the equivalence where the silent action, 7, counts. See
Milner’s text [Mil89] for more detailed explanation and definitions.
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restrictions on their assignments. The type of assignments associated with a relation
characterises what assignments are appropriate to it. This means that a more explicit
and correct notation for infons should mention the assignments and indices explicitly
[Co092]. The basic infon, shown as (4.1) or (4.2), should for example be expressed more

precisely as (4.54) or (4.55) with a role r:

(4.1)

smile(j)

{ smile, j; 1) (4.2)
(4.54)
{( smile, r — j; 1)) (4.55)

To encode the infon into the w-calculus, we have to change our encoding since the
straightforward translation (4.56) is not possible. This is because the calculus does not
allow for processes to be exchanged through channels. Although such a restriction will
be lifted in the higher-order w-calculus, we opt for the first order version to keep our

theory as simple as we can.

smile(T(j)) (4.56)

Our solution is to encode it as a system composed of two processes, (4.57).

(vr)(smaule{r) | 7(j)) (4.57)

The system will emit the role r from the channel smile. Since the emitted role r, too,
serves as a channel through which the object, j°, can be emitted, some other process
having access to the process, smile(r), can successfully get access to the object. Tn this
encoding, the assignment, r — j, to the relation, smile, is encoded in the same way as
that of abstract objects such as infon abstracts or proposition abstracts. The encoding
into Lg and translation into the logic can thus be done in the same manner. The system

(4.57) can be expressed in Lo as (4.58).
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(vr)[ smile(r). 7(j) ] (4.58)

4.4.2 Abstract objects and assignments

As we have changed our encoding of infons, we have to modify our encoding of abstract

objects. For example, how can the following infon abstract, (4.14) or (4.15), be encoded?

r— o
smile(z) (4.14)
Alr = 2] smile, z; 1)) (4.15)

Our solution is not so different from the original encoding. We replace r for 2 in smale(z)
as (4.59).

(vr)[ smile(ry, r(z)] (4.59)

The encoding of assignments is however different from the previous. To understand
the motivation, we look into the problem which we encounter if we would stick to the
previous encoding. Assume we add a particle encoding an assignment, e.g., 7(j), to the

molecule (4.59). Then, it would evolve as follows:

(vr)[ smale(r), r(x),7() ]
N () [smile(r) 1x{i/,.)

Although the variable 2 has certainly been substituted by ‘j°, not only the input process,
r(z), but also the output process, 7(j), encoding the assignment, have disappeared. To
avoid the trouble, we encode the assignment as a replicable process, i.e., !7(j). The
encoding fits with our intuition that sources of information which we plug in through a
channel may provide us with items of information as many times as we request for. To

implement the idea, we equip the language with replication, 1. Given the modification,

6See Appendix A for definition.
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the encoding and transition becomes as follows:”

B

Observing the encoding and transition, one may wonder what use of the input process,
r(2), actually is. It is in fact possible to exclude it and take simply smile({r) as an infon
abstract. That is, the infon abstract shown as (4.14) or (4.15) can be encoded as (4.60).

To discuss the issue, we have to investigate another sort of complex object, relation.

(vr)| smile(r)] (4.60)

4.4.3 Relations

In Situation Semantics, there is an idea called predication. To understand the idea,
observe that the infon abstracts shown as (4.14) and (4.15) can be regarded as a relation,
whose argument must be filled in with an assignment. To distinguish infon abstracts
serving as relations from those mere abstract objects, we express infon abstracts as

relations as (4.61).

smile(z) (4.61)

Since it is a relation, it can constitute an infon given an assignment such as (4.62).

When we compare it with the basic infon (4.54), the difference is subtle.

Tt is not desirable to introduce replication because replicable processes cannot. be dealt within the logic.
The problem will partly be tempered in next subsection.
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r—x

(r—1) (4.62)

smile()

smile( 7 — J)

It is argued that they are equivalent in the sense that a situation supports (4.62) if and
only if it supports (4.54). They are however different in structure. Such a difference
is utilised in Situation Theoretic Grammar, which is one of the reasons to maintain
the difference [Co092]. For example, utterances of words and phrases are used as role
indices on the relation. We will however take a different approach to grammar and
therefore do not see particular reasons to maintain the difference. We rather regard
them as identical objects so that we can assign to them the same term. We express thus
both of them as is shown in (4.63). In the molecule, the assignment, 7(j), need not be

replicable because it will not be consumed by an input particle.

(v r)[ smile(r), 7(j) ] (4.63)

The decision that we regard both objects as identical further motivates us to regard
both relations in (4.62) and (4.54) as identical object. We will hence regard the object
(4.61) to be encoded as (4.60), where the variable z is excluded. Tt might make our
intention clear to depict (4.63) in dataflow graph. Figure 4.2 shows the graph depicting

the structure of the infon.

When we parameterise the object with respect to the first argument and abstract it over
the parameter, the figure changes to that shown in the figure 4.3. From the difference,
one can see that we represent infon abstracts as structured objects whose parts are

missing, the parts that provide for items of information on the filler of argument.

4.4.4 Types

In the way that infon abstracts are turned into relations, proposition abstracts are
turned into types. The proposition abstracts shown as (4.20) can for example be turned

into a type such as shown in (4.64).
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Figure 4.2. The structure of the infon, {{ smile, r — j; 1))

Figure 4.3. The structure of the infon abstract, A[r — a] { smile, r — z; 1))
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r—

]

smile(x)

(4.64)

Then, what is typed by the type is its assignments. If we have an assignment such
as [ r — j], they would comprise a proposition such as (4.65), which is claimed to be

equivalent, but not identical, to the object (4.66):

i (4.65)

(4.66)

smile(j)

Tt takes us into a trouble to admit assignments to be typed in this way. Since our system

admits only proofs as typeable, it conflicts with our principle to regard formulas speci-

fying assignments as terms. We could for example define two axioms, t : smile(r) = 1
and u : 7(j) = 1, and construct the situation supporting the infon as below, which by
no means corresponds to (4.65).
trsmile(ry =1 uw:7()=1
1@ u:smile(ry@T() =1

The use of types was partly motivated to analyse propositional attitudes such as beliefs
[Co092]. Although we cannot define situation-theoretic types in the logic, we approach

the problem from a different perspective in §4.7.3.

4.5 Constraints

The issue of constraints is still open to debate in Situation Semantics. We exploit

therefore our own ideas to investigate it. To express constraints which always hold, we



CHAPTER 4. REPRESENTATIONS AS PROCESSES 121

introduce to our logic a ‘necessary’ operator, 0. We also introduce a ‘possible’ operator,
@, to express constraints which sometimes hold. These operators will be elaborated in
the next section (§4.6) to deal with quantification, where O is related to V, and ¢ to
3. For simplicity, we are back in this section to the primitive Situation Theory (§4.2)

when encoding basic infons.

4.5.1 Constraints as transitions

As explained in §4.3.3, a constraint, ¢ == 1, is captured in terms of state change in
our approach. We apply the idea of constraint to studying the meaning of conditional
sentences such as (4.67) and represent it as a process such that an event where “Mary

sings” is followed by another where “John smiles.”

(4.67)  If Mary sings, then John smiles.

If we encode such a process into the w-calculus, it may be encoded as
Sing (m) Amile(§).0

which may be specified in our logic by the following expression:

st sing(m) = smile(j)

4.5.2 Necessity

The approach can represent the meaning of a particular constraint, but how can we

extend it to studying the meaning of more general constraint such as (4.68)7

(4.68)  Whenever Mary sings, John smiles.

When encoded as a process, it may be expressed as (4.69), which behave as sing(m).smile(j).0

no matter which one is chosen. The way to represent the meaning of universally quan-
tified sentences by means of non-deterministic choice is reminiscent to the approach to
‘donkey’ anaphora in original DRT [Kam84]. The other process (4.70) does on the other
hand not represent the meaning because the third case corresponds to an event where

an event of Mary’s singing is followed by John’s laugh.

stng(m).smile(j).0 + sing(m).smile(j).0 + sing{m).smile(j).0

sing(m)y.smile(j).0 + sing(m).smile(j).0 + sing{(m).laugh(j).0
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To represent the necessary constraint, we introduce to the logic an operator, &(big
sum), a generalised operator of additive conjunction, &. Suppose the cases in (4.69) are
translated to the following set of axioms:

st sing(m) = smile(])

t: sing(m) = smile(j)

u : sing{m) = smile(j)
Then, by conjoining them together, we get a formula, sing(m) = &smile(j):®

s sing(m) = smile(i) ¢ :sing(m) = smile(i) u:sing(m) = smile(j)
(s, t,u) : sing(m) = &smile(j)

(&)

The meaning of & in &smi[e(j) is reminiscent to the modal operator, O, in that sing(m)
always leads to smile(j). We may therefore replace O for &
st sing(m) = smile(j) t:sing{m) = smile(j) u:sing{m) = smile(j) O
(s,t,u) : sing(m) = O smile(j)

Since terms can be regarded as comprising a Kripke model, the following derivation
should also be admissible:

sing(m) = laugh(j)
(v) = sing(m) = O laugh(j)

v

=

Given this observation, the above process (4.70) corresponds to the formula, sing(m) =

O smile(j) & O laugh(j), which is derived as below.

st sing(m)y = smile(j) 1 :sing(m) = smile(j) v @ sing(m) = laugh(j)

(s,t) : sing{m) = O smile(j) (v} : sing{m) = O laugh{j)

(8,1, (v))  sing(m) = O smile(j) & O laughd{j)

4.5.3 Necessity in Hennessy-Milner Logic

It may clarify our approach to modality to compare our treatment with HML. We depict
the processes, (4.69) and (4.70), as labelled transition systems to make the meaning
explicit. The first process can be depicted as is shown in the figure 4.4, while the

second one as is shown in the figure 4.5.

In Hennessy-Milner Logic, the first process (Figure 4.4) satisfies the formula (4.71) below
but not (4.72). On the other hand, the second process (Figure 4.5) can satisfy both of

them because HML formulas specify processes partially.

BWe write (s, t,v) for ({s,t),v).
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Figure 4.4. The case where John must smile when Mary sings

Figure 4.5. The case where John may laugh when Mary sings
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[sing(m)][smile(j)]true (4.71)

[FTng(m)][smile(i)]true A [sfng(m)]Taugh(i)true (4.72)

The formula (4.71) cannot therefore specify the set of processes representing the mean-
ing of “Whenever Mary sings, John smiles.” To express such a property, one has to
explicitly state that “unacceptable, otherwise.” An extension of HML in that direction
has been done by Stirling [Sti92] by introducing fixed-point operators. We do not, on
the other hand, need to be bothered with the problem because we explicitly record
terms satisfying the properties. That is, the formula, (s,t,v) : sing(m) = O smile(j),

simply cannot be constructed from the following set of axioms:

s sing{m) = smile(j)
t: sing(m) = smile(j)

v sing(m) = laugh(j)

4.5.4 The axioms and rules for necessity and possibility

The axioms and rules for necessity, O, and possibility, ¢, are given in the table 4.2.
These are analogous to those for products and coproducts (Table 4.3). We regard the
big plus, €P, as O as we regard the big sum, &, as O. We therefore make terms
reminiscent to those of products and coproducts. The term, {¢1. ¢2,- -+, ¢y), gathers
all the cases where A is always followed by B. The term 7; picks up a particular case
from the cases satisfying A. The term, [¢1, ¢2,- -, &,]. gathers all the cases leading to

A. The term, k;, turns a particular case satisfying A into a general statement of A.

Necessity:

Possibility:

$p1:A=>B ¢3:A=>B .o A= B 04 = A
(61,62, 0y : A= OB ©) m A= A
P B=>A ¢s:B=>A - ¢, B= A

Kyt Ai = 0A

[¢1, 09, ] : OB = A

Table 4.2. Axioms and rules for necessity and possibility
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Products:
A= B Yp:A=C
(¢, ) : A= B&(
Coproducts:
¢:B=>A ¢v:C=A

TAB,* Aok Ay = A; (Z < {0, l})

126

Universal quantifier:

[6.0]:BoC = A Kamit A= Ag@ A (1 €40,1})

Table 4.3. Axioms and rules for products and coproducts in C-ILLg

4.6 Quantification

4.6.1 The axioms and rules for quantifiers

Universal and existential quantifiers are introduced to the logic in analogous manner
to modal operators; We replace V and 3 for O and Q, respectively. The difference is
that formulas can be parameterised and that we record the mappings from constants to
variables, and vice versa. Figure 4.4 shows the axioms and rules for quantifiers. They

are explained as follows:

e The first rule for universal quantifier serves as introduction rule and allows one to
generalise particular formulas to a universally quantified formula by parameterising
constants to the same variable. These expressions B must be identical when they
are parameterised. The proof of the quantified formula is the product of all proofs,
where the mapping from the constant to the variable is recorded for each formula.
For example, ¢2' means that the constant, ay is replaced by z.

e The second rule for universal quantifier serves as elimination rule and allows to
instantiate a universally quantified formula to a particular formula by substituting
a constant, a, for a variable, 2. The proof of the quantified formula is a projection

such that it chooses a particular substitution environment.

The first rule for existential quantifier introduces the quantifier in lefthand side and
serves as elimination rule. The antecedent of each formula must be identical when
its constant is parameterised with a variable. The proof of the obtained formula
is the coproduct of proofs, where the mapping from the constant to the variable is

recorded for each formula.

The second rule for existential quantifier serves as introduction rule and allows to

replace a variable for a particular constant. The proof is a function recording the

mapping.

The variable, z, must be eigenvariable as usual for the first rules of universal and

existential quantifiers. The equations are defined analogously with those for & and 4,

¢1: A= Blayjfa] - ¢n t A= Blay/z] .
(601, -, ¢on) : 4/ ~ Vil z ¢ fu(A) 7l Ve A = Ala/z]
Existential quantifier:
& Blafa] = A - ¢n 2 Blan /2] = A . i )
G o] 3B = A e fo(4)  HpiAle/e]= 304

Table 4.4. Axioms and rules for quantifiers

respectively, as is shown in the table 4.5.

(@ yomi=¢ spol- gl ]=0¢

Py

Table 4.5. Equations for quantifiers

The rules for quantifiers are the same as those proposed by Engberg and Winskel for lin-
ear intuitionistic logic [KW93]. As is the case for their system, V and 3-adjunction hold
as well. V-adjunction means ¢ : A = B and (¢,) : A = Ya. B can be bi-directionally
constructed. If the latter is assumed, then the former can be derived as is shown in the
left of the table 4.6 by using 7. By the equation, the term, (¢,) o 7, is equivalent to
¢. The opposite direction is just a special case of the first rule as is shown in the right
of the table.

(¢s) :A=>Ve.B 7, :Ye.B=B ¢: A= B
(¢pe)orm,: A= B (¢s): A= Vaz.B

Table 4.6. V-adjunction

J-adjunction means ¥ : B = A and [¢;] : Jz. B = A can be bi-directionally con-
structed. If the latter is assumed, then the former can be derived as is shown in the left
of the table 4.7. By the equation, the term, &, o [¢,], is equivalent to ¢». The opposite

direction is just a special case of the first rule as is shown in the right of the table.

4.6.2 Internalising transitions to linear implication

As a step to encoding quantified objects, we alter our encoding of situation theoretic
objects by internalising transitions from = to linear implication, —o. That is, objects

encoded in the form of A = B are now encoded as 1 = A — B or = A — B by
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K,:B=32.B [¢,]:Tx.B= A Pv:B=A
Kpots]: B= A [y]: 3. B= A

Table 4.7. F-adjunction

suppressing 1. Such a change does not affect on the use of other connectives although

underlying computation becomes complicated by making it closed category.

We can prove the following relation holds: A = B iff 1 = A — B. Remember the
axiom and rule for linear implication (Figure 4.8). The = direction holds by taking A
in the left rule of the table as 1, B and (" as A and B, respectively. The <= direction
holds by the following derivation
1=>A—-oB A= A
A=18A 1A= (A—-B)®A
A= (A—-B)®A (A—<B)®A=B
A= B

Adjointness of — and ®:

¢:A2B=C
CUT A B,C(¢) * A= B —oC

evgp:(A—B)8A=B

Table 4.8. The axiom and rule for linear implication, —o.

As a result of the modification, derivations becomes long. For example, emulating cut
takes longer steps as demonstrated below, but possible. Hereinafter, we may suppress
1 in the antecedent for simplicity.

1=A—-B 1=8B —-C

= B as above T RBoo @ above

A=C
140

4.6.3 The construction of quantified formulas

The advantage of the quantification presented is that it makes it possible to quantify
semantic objects over assignments because propositions representing assignments can
be parameterised. If we regard formulas encoding assignments as witnesses, we can
regard the construction of universally quantified formulas as the procedure to gather

witnesses supporting the formula.

In this section, we employ the encoding we have proposed for naive situation theory.

An infon such as ((woman, a; 1)) is then encoded into the w-calculus as processes P =gef
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woman(r) | T(wy). To express the meaning of a sentence, “4 woman sings a song”, we
need to discuss how it should be encoded, however. Traditionally, the sentence has been
translated in classical logic to (4.73) whilst the sentence, “Fvery woman sings a song”,

is translated to either (4.74) or (4.75), depending on interpretation.

F23y. [woman(y) A song(a) A sing(y, )] (4.73)
Vy. [woman(y) — Ja. [song(z) A sing(y, 2)]] (4.74)
Fz. [song(x) AVy. [woman(y) — sing(y, )]] (4.75)

The difference between (4.73) and (4.74) has often been criticised as artificial because
one cannot recognise such a syntactic difference in original sentences. The reason why
one has to use implication, —, comes from the semantics of classic logic. The formula,
P — @, is equivalent to =P V @ thus to =(P A =Q). One may say that what the
formula does is after all to check that no cases satisfy P A =) and that it does not care
about at all if any women certainly exist. On the other hand, the linear implication,
—o, is stronger than the classical implication in that it demands there is a term or proof
supporting the formula, P —o . The characteristic point of linear implication leads to

a different interpretation of sentences including “Every” and “4”.

Imagine how the case where a woman, wy, sings a song, s, can be represented as a
process. We can without doubt encode the assignments to wy and sy as a process such as
7(wy) and w(s1), respectively. But there are two ways to encode the information about
woman, sing, and song. One way is to encode it as (4.76), analogous to (4.73). The
process may randomly either emit r, the reference to the woman wy, through woman
channel, emit r and u, the reference to sy, through sing channel, or emit u through
song channel. The other way (4.77) is, focussing on woman, to emit r through woman

channel, then emit other references, randomly.

(woman(r) + sing(r. u) + song(u)) | 7(w:) | ws1) (1.76)

woman(ry.(sing(r, u) + song{u)) | 7(w) | u(s1) (4.77)

When translated into the logic, they may be represented as (4.78) and (4.79), respec-

tively. In the translation, we omit processes encoding assignments for simplicity.
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¢ 1 = woman(r)&sing(r, u)&song(u) (4.

PN
=1 =1
© 0
= =z

W woman(r) = sing(r, u)&song(u)

Of these interpretations, we prefer (4.79) to (4.78) because we would like to regard the
meaning of quantified sentences as constraint. A sentence such as “A woman sings a
song” is for example understood as stating a constraint between a situation where a
woman exists and another where she sings a song. Such a constraint is true if there is
at least one connection, 1, supporting the constraint, but not all connections need to
support it. Universally quantified sentences such as “Fvery woman sings a song” can,
on the other hand, be regarded as stating stronger constraints, that is, any situation

where a woman exists leads necessarily to another situation where she sings a song.

To see quantifier relation as constraints seems to be natural, but we need to elaborate it
further to express the difference between the meanings (4.74) and (4.75). We start with
the explanation about what object can be quantified over. The above expression, (4.79),
is expressed as (4.80), when internalised to —. We add to it the formulas representing

assignments.

P = (Woman(ry — (sing{r, u)&song(u))) & 7{w) @ u(s1) (4.80)

To construct the existentially quantified expression, we parameterise the formulas en-
coding assignments, T(w1) and @(s1), to y and z, respectively, and quantify it over them.
Since we apply the J-introduction rule twice to it, we obtain the term shown in (4.81).
which may be thought of as a witness supporting the claim that there is a woman who

sings a song by recording the replacement of y and z.

(o Hz(wﬁ) o kZN ¢ = 3a3y. [(Woman(r) — (sing(r, u)&Fomg(u))) ® y @ 2]
(4.81)

From traditional model-theoretic point of view, the truth condition of the sentence is
captured in terms assignments, that is, whether there is an assignment to the woman

and song satisfying the constraint that the woman sings the song.

In the example, the order of replacement of y and x does not matter, but it matters

when we construct universally quantified expressions. As we have seen at the beginning
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of this subsection, two interpretations are possible for the sentence, “Fvery woman sings
a song”. One case is such that some women sing different songs, and another is such
that they sing the same song. We start with the first case. To encode the case as
processes, we express them as follows, where each woman, w;, sings a particular song,

S;.

(woman(ry.(sing(r, u) + song{u)) | T(wr) | w(s1))

+
(woman(r).(sing(r, u) + song(u)) | T(wa) |U(s2)) +

(woman(r).(sing(r. u) + 507G (0)) | 7(w,) | W(5,))

We can construct the formula, Yy 3. (woman(r) —o sing{r, u)&song{u)) @ y & x, cor-
responding to Yy 3a. woman(y) — sing(y, ) A song(2), as is shown in the upper part
of the table 4.9. To transform the formulas corresponding to each case in the same
shape except to the assignment of woman, T(w;), we transform them into an existen-
tially quantified formula. Then, we construct the universally quantified formula by

conjoining them with respect to the assignment to woman.

The other case where every woman sings the same song can be expressed as processes

such as

(woman (). (sing(r, u) + 5owg(u)) | Fwn) | (s)) +
(woman(r). (sing(r, u) + 5owg(u)) | Fwa) | As)) +

(woman(r).(sing(r, u) + Fong(u)) | Flw,) | T(s))

To construct the formula, = 3z Vy. (Woman(r) — sing(r, u)&songl{u)) L y & x, cor-
responding to the other interpretation, JaYy. woman(y) — sing(y, ) A song(x), we
first quantify all formulas universally over the assignment to woman, then quantify it
existentially over the assignment to song, 7(s). Note such an operation is impossible
in the first case because the formulas encoding assignments to song, u(s;), are different

from each other.

4.7 Discussion

4.7.1 Reference as first-class object

When we apply the ideas from the m-calculus to natural language semantics, one of the
most beneficial point is in mobility because it enables one to treat roles as first-class
object. The approach can for example simplify Cooper’s analysis of Frege’s Hesperus &

Phosphorus puzzle using EKN [Coo093a]. We briefly review how the puzzle was analysed:
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) A song():

ding of Yy 3z. woman(y) — sing(y,

£ £ =
Table 4.9.

Frege [Fre93] pointed out that the ancients did not realize that Hesperus
(the evening star) was the same heavenly body as Phosphorus (the morning
star) and that this created a problem for semantics. The ancients presumably
did realize that Hesperus was identical with itself. But if Phosphorus is the
same thing as Hesperus, how come they did not realize that too? The answer
given here is a rather obvious and simple one. What the ancients did not know
had to do with the relationship between linguistic labels and objects in the
world. They did not know that they were linking the two words ‘Hesperus’
and ‘Phosphorus’ to the same object, thought in fact that is what they were
doing.[Coo93a]

3 The meaning of the sentence, “Hesperus is not Phosphorus”, uttered by the ancients
~ then can be expressed in EKN as a relation such as?
= = Hesperus — X,
< = Phosphorus —'Y
HE = (1.82)
I % % = is-not(X, V)
ﬁ ‘? ? which means that Hesperus is not identical with Phosphorus. The representation should
< i E _ be contrasted with other meanings such as
5|k Pl
%k = = s (4.83)  a. Hesperus is not identical with Hesperus
<| g & = —
; § é = b. Hesperus is not identical with itself
- £ :
2|~ z = =3 which may be expressed in EKN, respectively, as
B m :
B t E
1 =
S| < = = i Hesperus; — X,
=S g = = Hesperusy — Y
L. s f (4.849)
= s = z :
: > g : is-not(X,Y)
: £
© = i
£ : < T Hesperus — X
: H ;o . (4.85
= = % i o is-not (X, X) (4-85)
g : 2 f R ‘
S By 3 3 > £ When we encode these three objects into the w-calculus, the first one (4.82) may be
g ° ¢ 2 E 3 1
£ & £ - = ; s encoded as (4.86), the second one (4.84) as (4.87), and third one (4.85) as (4.88), by

Tt should be expressed more precisely as a sitnation-theoretic type, but we treat it for simplicity as if it

The construction of quantified formulas were a relation.
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directly encoding linguistic labels, ‘Hesperus’™ and ‘Phosphorus’ as channels, h and p,

respectively:

is-not{h, p) (4.86)
is-not{hy, ha) (4.87)
is-not(h, h) (4.88)

We have to be cautious in distinguishing (4.84) from (4.85). which leads to distinguishing
the two propositions, (4.83a) and (4.83h), because (4.84) assumes that the same proper
name, Hesperus, can be used as different linguistic labels, Hesperus, and Hesperus,. If
we did not admit that the same proper name to be used as different roles, the object
(4.84) would have been written as (4.89). Then, there is no ground to distinguish (4.84)
and (4.85), and both could be encoded as (4.88).

Hesperus — X,
Hesperus — Y

(4.89)
is-not(X, V)

The representation (4.84) may be acceptable if we extend the idea that “linguistic
expressions as labels” to linguistic actions as labels. One can think of the case where
the two expressions of ‘Hesperus’ can be uttered with different meanings. Suppose a
person who is ignorant of astronomy mistakenly believed a wrong star was Hesperus
for a long time, say from his childhood. One day, he may suddenly notice that he
was wrong when one of his friends happens to point out the star, saying “The star is
Hesperus.” Then, the person might say, “Ah, Hesperus is not Hesperus!”. The meanings
of the first and second occurences of ‘Hesperus’ in this case are different. If we pursue
the idea further, roles can be more complex objects. The move has been initiated by
Cooper [Coo093a]. In such an approach, the example can be analysed as (4.90), where
X corresponds to the referent of the first utterance of ‘Hesperus’ and Y corresponds to

that of the second utterance.
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(ref, Hesperus; ) — X,
(ref. Hesperusy ) =Y

(4.90)
isnot(X,Y)

How such an extention can be dealt with in our approach? Mobility can play an im-
portant role then. To implement and refine the idea that linguistic actions as labels, we
regard such actions as a sort of process. We express the referring processes of the first
and second utterances as independent input processes, refy(h1) and re fo(hy), expressing

them in molecule form as (4.91).

[refi(hy), refa(ha), is-not(hy, ha) ] (4.91)

These two input processes will import some indices through ref; and ref; and replace
them for hy and hg, respectively. Such input processes can be more complex. The
channel, refy, itself might be imported through another channel. But our approach
basically provides for the necessary machinery to implement more complex referring
processes. Notice it is mobility that makes it possible to abstract objects over roles and
import them. Since roles or channels are treated as first-class object, we can import
and export them freely from or to other objects. Our approach can therefore give a

clear insight on what is going on when we introduce these complex indices into EKN.

4.7.2 Mental states as processes

Our encoding of situation-theoretic objects into the w-calculus as processes may shed
a new light on situation-theoretic analysis of mental states. Mental states are thought
of as a sort of situation which can support infons. The person’s mental state, who
realised he was wrong in identifying Hesperus, can for example be expressed as (4.92).
The first argument of the relation believe, a, is the agent who is in the mental state, the
second is the internal state of a, the third is his connections to the world, and the fourth
indicates time. ms, is his mental state conceived of as a situation. If we understand
his utterance, “Ah, Hesperus is not Hesperus!”, as “(‘"The star he has been regarding as)
Hesperus is not (actually) Hesperus”, the first occurrence of ‘Hesperus’ denotes a wrong

heavenly body, m, while the second the correct one, v (Venus).
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ms,

(ref. Hesperusy )y — X,
(ref, Hesperusy ) —Y
believe(a, )
is-not(X,Y)

(ref, Hesperus, ) — m )
(ref, Hesperusy ) — v |'° 7 (4.92)

To encode such a mental state as processes, we assume the heavenly bodies, m and v, are
accessible through channels ry and ry. They are thus encoded as output processes such
as 7r(m) and 75(v), respectively. We disregard the relation, believe, and the agent a for
the moment. His connections to these heavenly bodies are established first by emitting
these channels through re fi and ref,, then by replacing them for by and hy. After then,
the agent can get access to m and v through received channels. The following shows
the transition. The first molecule encodes his initial internal state, and the second his

connections.

[[refi(ha),refo(ha), is-not{hy, }]'ZMV r.ra)| re fi{r), mO'z),ﬁ(m}, 72(v) ]
N (vriro)[refa(ha), ts-nol{ry, ha), re falra), Tr{m), 72(v) [«{" /s, }
N () Fnor(re, ra), F(m), 7300 e

The actual referring and anchoring processes must be more complex than just demon-
strated above, but it suffices to show that the idea to regard mental states as processes
fits very well with our intuition about mental states. They can be better captured
as processes rather than situations. Our approach can refine the situation theoretic

analysis of mental states in natural way.

The remaining question at hand is how to encode the infon including another complex
object as its argument. To start with the investigation, we argue that relations, too,
can be indexed as object. Observe we often need to specify the meaning of relations
or properties in conversation. For example, in the excerpt shown in the figure 4.6, the
route follower asks the giver to clarify the meaning of chotto (a little bit). Based on

the observation, we think relations can be parameterised with roles.

1f we allow to abstract semantic objects over parameters replacing relations, the encod-
ing of infon, {smile, j; 1)), is modified from (4.93) to (4.94), where r¢ is the channel to
the relation, smile. There appears to be a new channel, i, however, for which we need
some explanation. We would like to regard it as a channel to get access to the infon.

Once we admit such channels, we are ready to encode complex objects.
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G,: de-e, hanshu-kurai sita-ra chotto hidari-ni iku-n-desu-yo
and, after you go around aboul half  you go leftward a little bil
F,: chotto-tte dono-kurai?
What do you mean by “a little bit”?

Figure 4.6. An excerpt from the Japanese Map Task Corpus (4)

(v rq)[ smile(ry), 7)) ] (4.93)
(vi,ro, r1)[ U{ro, 1), Fo(smile), 71(j) ] (4.94)

We encode as an example the following infon (4.95) as processes, the infon that Mary

believes John smiles.

MSMary

‘T‘OHR, ‘T‘l%X

) : 1 ax
believe(m, [ro - sn11]o] ) (4.95)

R(X) =]

Assuming the information about John’s smiling is available through a channel, 4, the

infon can be encoded as

(Vi j,ra, r3)[ J{ra, ra, i), To(belicve), T5(m) | (4.96)

where j is the channel to get access to the infon, ro is the index to the relation, believe,
and rs the index to Mary, m. Since the information about John’s smiling can be encoded
as (4.94), the molecule we obtain as the result is the merged one of them (4.97), which

can be depicted in datagraph as is shown in the figure 4.7.

(vi,g.ro,m1y o, m) [ T(re, va, 1), Ko, 1), Fa(believe), Fa(m), Folsmile), 71(j) ]
(4.97)
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Figure 4.7. The dataflow graph of “Mary believes that John smiles”

CHAPTER 4. REPRESENTATIONS AS PROCESSES 138

4.7.3 Shared-situations as processes

The channels introduced to index infons in the above enables one to encode a particular
use of situations to describe common knowledge. In [Bar&9], Barwise proposed a shared-
situation approach to study common knowledge, which developed the idea proposed by
Clark and Marshall in [CM92]. In maptask, such knowledge is central because the goal

of the task is to establish common knowledge such that

- the giver knows the follower reaches the goal,

- the follower knows the giver knows he(f.) reaches the goal,

- the giver knows the follower knows he(g.) knows he(f.) reaches the goal,

- the follower knows the giver knows he(f.) knows he(g.) knows he(f.) reaches the

goal, and so on.

In fact, the participants have to establish their common knowledge as to every item in
the map having to do with the route.

The shared-situation approach can be summarised as follows:

e skEo
e s |= g knows s
e s |= f knows s

In the definition, ¢ means the fact established as common knowledge, s is the shared
situation, ¢ and f are the giver and follower, respectively. The point of the definition is
that both of them have the access to the situation s such that it supports the fact and

their states of communication, where s itself is involved in the infon.

In that approach, one can see the situation s plays two roles, one of which is to support
infons, the other of which is to provide for access to itself in order to extract infor-
mation.!? Of these, the latter role can be implemented in our approach by regarding
the channels to infons as the access to situations. Suppose the infon, o, is accessible

through a channel, s. Then, the definition can be encoded as processes such as
(v 5)(s(a) +

S(ry.re,r3) |Ti{knows) |72(g) |T3(s)) +

S, s, | Talbnows) 750 |75(5))

(vry,ra,rs)(
(v 14,75, 76) (
where o is a sequence of channels to a relation and arguments. The encoding may not

gi h insi . y can see the structure of the common knowledge when it

1°Such a view on situations is adopted in designing ProsiT [NPS91].
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is depicted in dataflow graph as is shown in the figure 4.8. In the figure, the arcs r;
connected to the boxes mean they are sorted out in that order. Now, one can observe
two cyclic paths in the graph. One is the path, r3 « s < r3 « ---, and the other is
the path, 14 < $ & rg < - --. Such cyclic paths enable other processes to extract those
items of information as if they arve infinitely nested when they are replicable. That is,
one can follow a path such as rs < s ¢ r5 < 5 < - - -, which can be thought to represent,

common knowledge between the giver and follower.

Figure 4.8. The dataflow graph of a shared situation

The process-algebraic view can also shed a new light on the relation between different
structures of common knowledge. Let us see another example of common knowledge,
which is more complex than the previous one.

e s a0

e 51 = g knows s;

e 51 = f knows sg

e ssEa
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e 59 = ¢ knows sy

e 59 = f knows s9
There should be models satisfying this definition, but the previous one. How can such
a difference be captured? We first depict the definition in dataflow graph (Figure 4.9).
One can see the structure of the common knowledge is fairly enriched. The cyclic paths
are now extended to the following three, where the third path did not exist in the
previous definition, the cycle emphasised with bold line in the figure. Tt is the path that
establishes common knowledge.

S T34 S & T34 81— 0y

- Tg § Sg &~ Tg & Sg &— -

- TE S - T3 4= 81 & Tg e S —

Figure 4.9. The dataflow graph of a more complex shared situation
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The structures are different, but what relation would hold between them? They are e ‘Addition of Information’ corresponds to parallel composition, @ (multiplicative
different, but still have much in common. To capture the relation, we employ the notion conjunction).
of simulation. Observe the structure (Iigure 4.9) becomes equivalent to that shown in o ‘Exhaustive Cases’ can be derived using the rules for coproducts and cut.
Figure 4.8 when the two nodes, s7 and s3, are merged and renamed to s. Given this I P R
observation, we say the system, P (Figure 4.9), simulates another, Q (Figure 4.8), under Gty =ty Bt [1, 0] t 1o Bty =ty
the operation and express the relation as Q@ < P." dolvr, o] 1t =13
e ‘Contraposition’ does not hold in our system because the logic is intuitionistic. It
will, however, hold if we make the logic classical by introducing %, the dual of @
4.8 Conclusion with its neutral element, —.
In the chapter, we have applied the ideas from the m-calculus to studying Situation 1. Xerox Principle:
Semantics. OQur aim was to base Situation Semantics to a computational ground of s1 il sy ily syilyg —>s3ily

Sy 1t —> 83 ii3

communication and concurrency and to linear logic. Tn constructing semantic objects
2. Logic as Information Flow:

for primitive Situation Semantics, communication and concurrency play an important

role to implement simultaneous abstractions and applications. The m-calculus further %

enables us to encode situation-theoretic objects more effectively thanks to mobility. As 3. Addition of Information:

references are treated as first-class object, we can encode abstract objects as objects Syt —> Syt s it) — sgith
without assignments. Mobility also enables us to encode more complex abstractions sy ity Aty — sy tta AL

and applications involving referring actions as processes. Quantification relation has 4. Exhaustive Cases:

S1 1l — s tlg VI, sgily —rs3ily syl — s3ils
Sy 1t —> 83t 13

been defined constructively, where terms serve as witnesses. We finally discussed the

issues of mental states and common knowledge. o
5. Contraposition:

Through the chapter, we have also presented a way to bridge the gap between the Sp it — Sy to
research on information flow, i.e., Channel Theory, and the project to build a well- S9 1 mly — sy 1 Ty
formed semantic universe for linguistic applications, i.e., Situation Theoretic Discourse

) Table 4.10. The principle of information flow: Barwise’s postulates
Representation Theory [Co093a, Coo93b], which have been so far studied rather inde-

pendently. We have encoded various situation-theoretic objects into the 7-calculus and

have shown in the previous chapter how the calculus can be related with a combinatorial Closer look will, however, reveal subtle differences. Table 4.11 shows the axioms for

intuitionistic linear logic, which can be regarded as stating the principle of information Channel Algebra [MS94] except those for the invertible. In the table, ¢; o c; means

flow sequential composition, ¢4 A ¢ parallel composition, and 1 identity. The axioms, (i)
. L i . . . and (ii), hold in our system, too, but not (iii) because the logic is linear. The axioms,
let us review the principle of information flow proposed by Barwise [Bar93] shown in i K . .
; . i i (iv) and (v), hold in our system, too, by category axioms though we use id rather
the table 4.10. We can relate these postulates with the axioms and rules of the logic as K X .
than 1. The axioms, (vi) and (vii), do not hold, however. Instead, we have a natural

follows: ) ’
isomorphism, yo (¢ @ 1) = (¥ @ ¢) o y. The difference comes from the lack of (iii).
e ‘Xerox Principle’ corresponds to sequential composition, o (cut). To sum up, comparing our foundation with Channel Theory, ours is slightly different in
e ‘Logic as Information Flow’ states our view itself. The slight difference is that we that it is intuitionistic and linear, but otherwise they share much in common. In fact,
write s 1ty = 19 for sty — s : 1. Barwise proposed a way to view linear logic as a theory of information flow [Bar92].

We think therefore our approach is still in track of Channel Theory. Although there are

Bls][[ll}lfitlull relation A ‘B can be defined as the relation sucf} as % < Band A > B. {he relation is still many rooms for further development, we believe our approach is a promising way
strongly bisimular when we strictly map a graph to anather. If we disconsider parts corresponding to 7, then -

the relation is weekly bisimular. We do not go into detail of these notions as it is outside our scope.

to construct semantic objects on a rigorous foundation for Situation Semantics.
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QAN =cy Ay A is commutative
1 A(eaAes) = (e1 Acg) Aey A is associative
che=c¢ A is idempotent
c1o(cgoes) = (croe9)ocy o is associative
loc=col =c¢ 1 is the unit of o

c10(eaAeg) < (er0e9) Afegoes) left semi-distribution of o over A
(ecaANes)oer < (ecgoer) A(egoer) right semi-distribution of o over A

Table 4.11. The axioms for Channel Algebra

Chapter 5

Parsing as reaction

5.1 Introduction

In this chapter, we present a parser that can utilise different sources of information while
analysing syntactic information of sentences. By “different sources”, we mean contexts,
which we have elaborated in the first chapter to discourse, plan-goal, and circumstances.
We have claimed then based on our observation that a parser must be designed so that it
can extract freely items of information from different sources in parallel. To implement
the idea in a parser, we propose a parser that analyses syntactic information as the result
of a course of reactions. Designed as a reactive system, the parser can spontaneously
extract information from environments, not only from sentences uttered, and evolves

into another state.

While the reactive parser meets our requirement, it will call in a new problem, too, the
problem that we cannot design a particular algorithm to control the global behaviour
of the system of interacting processes. Since sentences are parsed as the result of a
number of interactions between processes comprising the system, all we can directly
program is the behaviour of each process upon interactions. It is therefore desirable
that we can ensure that a system as a whole should turn into a particular state in a
particular context. We would like for example to know if the state turns into s (sentence)
after receiving a sequence of words, e.g., “a man walks.” The problem is the same as
the reachability problem for petri-nets, and our approach is effective in studying the

problem, too.

The idea of parsing as reactions can be sketched as follows:

e Each word uttered evokes a process, and an utterance of a sentence evokes a set

of processes.

144
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e Each process is connected with its neighbours through channels and may exchange
feature information with them.

e The communication may leads to creating a new process depending on the infor-
mation available. The created process is connected with its neighbours through its

own channels, too.

The figure 5.1 shows an example of parsing the sentence, “a man walks.” Tn the figure,

each process encoding a lexical item is depicted as a circle, connected through channels

to its right and left neighbours. Each process encodes feature information and may

create new processes upon interaction. For example, if the process, @, encoding MAN,

extracts feature information of another process, P, encoding the determiner, A, and
the information meets a condition, then ) generates a new process, ', encoding a e ° ° e ° m """"

noun phrase. The connections between processes are reconfigured upon the evolution.

In this case, the process @)’ created is connected to V' at the left, the process encoding

the end of the previous sentence, and R at the right, the process encoding the lexical

information of WALKS. The process R creates another process R’ corresponding to

sentence upon the interaction with @', which is connected with W, at its right position, e 0 ° e a 0 .

which is the process encoding the first item of the next sentence.

The idea to parse sentences as the result of message passing is not novel. The Parse Talk e
model proposed by Broker, Hahn, and Schacht [SHB94, BHS94, BSSH94] has already NP

investigated how sentences can be parsed through communication between agents, based

on Hewitt’s actor model [Agh86]. There is also a concurrent constraint programming
language, Oz, developed by Gert Smolka and his group at DFKI (German Research

Center for Artificial Intelligence) [Smo94b], who have proposed a way to encode fea- [ 777 c ° e ° 0 """"
ture structures as concurrent processes. Yet many things remain to be investigated.

Although the ParseTalk model has proposed an interesting approach to parsing, the e

level of modelling is still informal as they define grammatical information at a level of

programming language, whose semantics must be formalised further so that we can infer

the behaviour of the parser. The possibility of Oz language is also yet to be exploited to
parsing sentences.! Our model should serve as a basis to analyse and compare various Figure 5.1. Parsing as interactions

proposals to concurrent natural language processing.

As our aim is to investigate a general framework to modelling concurrent natural lan-
guage processing, the parser presented here does not commit to any particular grammar
theory. The reason why we employ feature structures to represent lexical information is
merely because it is most widely adopted by linguists. The chapter is organised as fol-
lows: We present how lexical information can be encoded as a process (§5.2), then go on

to presenting how sentences may be parsed as a result of interactions (§5.3), which will

' A parser is encoded in Oz, which is found as one of demo programs in the package [Smo94b].
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be further elaborated in the following section (§5.4). We discuss then logical checking the process returns verb directly, rather than ry. That is, why do we not encode it as
of concurrent parsers, syntax-semantics interface, and structure of feature descriptions the following?

based on channel types.

(vro)(te(d).d(ro).ro(z).[x = cat]d(verb))

5.9 TFeat ¢ ¢ The reason is rather subtle and has to do with typing of channels. We would like to use
. eature structures as processes . . .
p the received channel d only to send channels, rg and r;. The above encoding violates

the principle as d is used to emit as value, verb. We would also like to use channels,

5.2.1 The basic idea . . .
ro and rq, only for exchanging feature names or values, which we treat as string, not as

We start by looking info the simplest form of feature structures. We conceive of a channels.? The type of these channels then can be said to be of exchanging strings. Such

simple feature description (5.1) as (5.2). The additional information, ro and r1. indicate a convention contributes to simplifying the type of d, that is, a channel for exchanging

channels through which items of information are available. That is, the whole item channels to exchange strings. We do not go into the discussion on typing of channels

3 ! P o e W :
of information is accessible through rq, and verb, the value of feature cat (category), » but we care about it in our encoding because such a practice will become important

through ry. when designing models for NLP systems.

5.2.2 Flat structures
[C(tt: l!f?’b} (5.1)

We go on to encoding slightly complex feature descriptions. Suppose we represent
[cat: verb} (5.2) lexical entry for ‘walk’ as (5.3). The entry offers at ro a new item of information that

its phonetic form is “walk”.

The feature description (5.2) is encoded into the 7-calculus as a process such as

cat:  [ry|verb
(5.3)

phon: valks

(vro,r1)(Te(d).d(ro).ro(z).[x = cat]d(r).FT(verb))

The behaviour of the process can be explained as follows:

The description can be encoded as below. The first part of receiving a channel to replace

By c(rl).ﬁ@n)), it receives from another process through ¢ a channel replacing d. rg

. . . . ; d is the same as before, but the process has two choices in evolving into another state,
is emitted through the channel to provide the process with the access. We assume ! I & '

. . . dependi th e replaci . e of which is the s s before, and the other
the channel replacing d is bound name, which ensures that other processes should depending on the name replacing . One of which is the same as before, an € other

. is to evolve into a process such that it returns ry if the received name matches to phon
not receive rg through the channel.

and emits walks through rs.
e Then, the process receives through rq a feature name 2 to return ry through the

received channel, if the feature name matches to cat. (vro,r1,ma)( !(:[(1).3(7'[]).7‘(,(117).( [.’r::catﬁ( ). {verb)

1
e Through ry, it emits verb. + [v=phon]d{rs).Tz(walks) ))

e The channels, rq and rq, are private to the process.

. . . . 5.2.3 Nested structures
e The system will be recreated as many times as requested with the same channels, rq

and ry, each time. In practice, this allows several processes to extract information The encoding can be extended to encode nested feature structures. Let us see how the

of the process at the same time. structure (5.4) can be encoded, which represents the agreement information (agr) that

The above encoding shows our basic idea in encoding feature descriptions as processes. : :
g g P asp 2That is the reason why we use the different font for them.

One may wonder, as for the way the value is accessed from other processes, why not ?See for example [Pie94] to know the type system adopted in PICT.
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person (per) is third (3rd).

o || agr: [7)61’: fird] (5.4)

The description can be encoded as below. The first part is the same as before, but the
channel, r3, which the process returns through d, does not offer a value but the access
to the process for further inquiry. Tt receives another feature name to replace y at ra

and returns ry if it matches to per. The value 3rd is now offered through r4.

(vro,ra, ra) ( Ve(d).d(ro). ro(z).Jx=agr]d(rs). ra(y).[y=per]d(rs). T2(3rd))

By combining these techniques, one can encode a feature description for “walk” (5.5)

as the process shown below.

cal: uerb

phon: walks
per: (5.5)
| per 31 d
agr: num: sin,

(vro, 71,79, 73,74, 75) (N e(d).d{ro).ro(x).([x=cat]d(rs).FT{verb)
+ [#=phon]d{rs).F3(walks)
+ [z=agr]d(rs).ra(y).([y=per]d(ry).F1(3rd)

+ [y=num]d(rs) 75(sing))))

5.2.4 Shared structures

When describing features, a structure can be shared. Abstractly, one may represent a

feature such as (5.6), where the structure [k : a] is shared between f and g.
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As to such a shared structure, a straightforward encoding encounters a problem. If we
encode it as below, some other process cannot extract the information [A : a] when it
tries to get access to it through g because the information is lost when [z=g]d(r) is

chosen to perform.

(vro,m1,72) (Le(d).d{ro).ro(z) . ([x=£]d(r() .71 (y).[y=h]d(rs) T3(a)
+ [v=g]d(r1))

One solution is to regard the above structure (5.6) as an abbreviation of (5.7). Then,

one can encode it as below, avoiding the problem.

(vro,ri,ra) (Ve( )ﬁ<10> ro(x).([x=F r/<l1>r] Jy= hr]</2>/2<a>
+ [z=gld(r1).r (? ).ly=hld(r2).75(a))

The solution does however not capture the meaning of “shared” because the latter item
of the information is a copy. To represent the fact that the same structure is shared,
we have to refine our encoding by letting the processes offering the information be
independent. When we treat each action as processes independent of others, the feature
description is encoded as below. The first part of getting the channel to replace d is the
same as before, but then the process evolves into three processes. One of which is to
receive a name at ro and emits rq if the name matches to £ or g. The second process
receives a name at ry and emits 7o if it matches to h. The third emits a through ro.
Since the actions for emitting the channel r9 and for emitting the value a are performed
by independent processes, they do not disappear no matter which name is received

through rg.

Pursuing the approach further, one may think of separating the process, ¢(d).d(rg), too,
as below. But this encoding does not work because d in ¢(d).d(ro) and those appearing
in other actions are not identical. Remember the scope of d in ¢(d) is limited to only

actions guarded by it.
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(vro,r1,72) (! (e(d).d(ro) B
| ro(@).([p=£]d(r1) + [v=gld(r1))
| 71(y).[y=nld{rs)
| 72(a)))

To make each processes completely independent, we have to ensure that each process

should receive a channel, f, to return the access.

v, [)- ([ =f 7<'1> + [z=g] /(1))
J{r2)

The encoding however violates the typing principle as ry returns only a value, a, while
other channels, rg and rq, receive a name and a channel. To preserve the typing scheme,
we ensure the value should be returned through a different sort of channel, s. Given
the change, the system should return the channel, s, through a different channel other
than f. Let v be such a channel to return s, the access to the value. We modify then

our encoding to the following.

(vro,r1, 8) (! (e(d).dlrq)

roz, f,v).([e=£]f(r1) + [e=g]f(r1))
riy, f,v).[y=hJv(s)

5(a)))

The system first returns rq when it receives a request for access to its feature informa-
tion. Through the channel, other processes can interrogate it by emitting a particular
feature name and two channels, f and v, which are used to receive another interrogable
channel or a channel to extract a value, respectively. ‘The system returns s through »
when it is interrogated through ry given a feature name, h. When the system returns
a channel through v, not f, it means that now it is ready to offer a value rather than
returning another interrogative channel. Once the channel, s, is received, the interro-

gating processes can extract the value, a, through it.

5.2.5 Feature structures as a set of processes

In what follows, we opt for encoding feature descriptions as is sketched in the above
(§5.2.4). To refine it further, we make each process replicable as the replication operator,
!, distributes over the parallel composition operator, |, i.e., 1 (P|Q) =!P|!Q. The

above encoding is therefore equivalent to the below.
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(vro,r1,8)( Le(d).d{ro)

Since we have introduced a different type of channel, s, to return the value, the feature

description (5.6) should also be modified to (5.8).

g el (53)

To sum up, if we encode the description (5.5), whose channels, rq, ra, rq and rg, are
replaced by s1, s2, s4, and s5, respectively, it may be encoded as is shown in the table
5.1. 1t will be explained in §5.3.4 how items of information can be retrieved from other
processes. In the following, we often suppress the processes encoding feature structures,

1S (c) for the feature description, where ¢ indicates the channel through which the

information is accessible.

(vro, T3, s1, 59,54, 85)( e )r]<70>
\ !10. D). ([r=cat|t{s)
+ [#=phon](sy)
+ [z _agr} Firs))
tra(y. J. v)-([y=per]n{sq)
+ [y=num|t(ss5))
!57(verb)
!57(walks)
(3r
(

!57(3rd)
!55(sing) )

Table 5.1. Encoding the lexicon for “walk” (5.5) as a set of processes

5.3 Parsing as evolution of systems

5.3.1 Agents

We explain how a sentence can be parsed as the result of interactions between pro-

cesses. Suppose P, @@, and R are subsystems encoding features of ‘a’, ‘man’, and ‘walk’,



CHAPTER 5. PARSING AS REACTION 153

respectively. Although we have previously depicted the whole system for the sentence
as if each subsystems were connected directly with each other (Figure 5.1), they are
not connected in that way, but through independent processes accompanying to each
subsystem. Let C; be such an accompanying process. The relation between them and

with subsystems encoding features can be depicted as is shown in the figure 5.2.

Figure 5.2. The subsystems connected via accompanying processes

In the figure, for example, C'3 acts as an agent for @) encoding the lexical entry, ‘man’,
and is connected to it through a private channel, ¢. With other agents C2 and C4
acting for P and R, respectively, it is connected at left and righthand side. C'3 offers
the access to itself at es, which is open only to C'2 and C'4. This is done by informing

only C2 and C'4 of the access channel, es.

5.3.2 Agents to trigger actions of other agents

To start the computation, each agent will trigger actions of its neighbours by emitting
to them its channel; ¢;, through which the neighbour may communicate with it. Sup-
pose the feature descriptions of ‘a’” and ‘man’ are abbreviated to F.52(c) and FS3(c),
respectively. The agents C'2 and C'3 with P and ) encoding these feature descriptions,
are encoded as subsystems as is shown in the table 5.2. The e9 and e3 appearing in the
definitions of C2 and C3 are the same although the definition does not mean it.* The
definitions for C2i(y). C2,(z), C3;(y), and C3,(z) will be given later.

An agent may communicate with another agent when it receives the access, e.g., €5 or €3,
through a particular channel, [ (left) or » (right). Let us see how the system of (C'2]|C'3)

would evolve into another state. The table 5.3 shows the steps until C'3;(y) is triggered

4This is because for simplicity we omit, the process by which (/2 and (3 are generated given the same bound
names, e2 and ez. (2 is actually parameterised over €1, ea2, and €3, and (3 over ez, e3, and e4. They should
look like C2(x2,y2,22) and C3(ws, ys, 23), respectively, and the parameters 2,12, and z» will be substituted
by €1, €2, and es, and 73, ys, and z3 by e2, €3, and e4. The names from e; to e4 are all bound names to be
created by the process initialising ¢'2 and 3.
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C2 =ger (Vey, €, €3)(
(ve l,r)(Vede,l,r)
| FS2(c)
| H(y)-Culy)
| 1r(2).C2.(2))
| er(er, by, re).T1(ez)
\ 63(@,/3-, 7’3)-’3(@) )

C3 =ger (Veg, €3, €4)(
(veL,r)( 1es(e, L v)
| FS3(c)
| 11(y).-Cly)
| 1r(2).C3,(2))
| ea(ca, Iz, r2).To(es)
| ealca,lasra)dafes) )

Table 5.2. The definition of C'2 and '3

with the access to 5. We suppress in the table ey (c1, 11, r1).7(e2) and eq(cy, Ly, 74) 1{e3)
for simplicity. At the second step, '3 creates a copy of €(c,l,r). Then, it offers
the process ez(cs, I, 7‘3).E<62> items of information through es. At the third step, the
channel [ of C'3 is emitted, and in turn through which es, the access to 2, is returned
by executing the copy, I(y).C'3;(y). Through similar steps, C'2,(z) will be trigerred with

the access to es.

5.3.3 Recording and retrieving access to neighbours

5. We record the

The process, C3;(y), first records the access to its left neighbour,
information on left and right neighbours at particular locations, plns and prng, abbre-
viation for Private record of Left Neighbour and Private record of Right Neighbour,
respectively. The output action, €5(c, 1, r), is modified to &5(c,l, r.Ins, rns) by adding
to it Ing and rng, both of which are private to C'3. Other processes can get access to
the locations, Ing and rns, to retrieve the access to C'3’s left and right neighbours. Let
(3" be the modified version of (3. The channels, In3 and rns, are private to C'3'. After
C'3;(y) and '3,(z) record their neighbours, the whole system should turn into the one
shown in the table 5.4.

The last two processes, ! plns(eq) and ! priz(es), are created by C'3;(y) and C3,(z), re-

spectively. With these replicable processes, the other two processes, Ing(2).plns(y). Z(y)
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1. The initial state of (v e, e3)(C2|C3)

(e es)((we lr)(Vegle,d.ry | FSQ(P)
| H(y)-Culy) | 1r(2).C2:(2))
| (ve,lor)(Yes(e. L, 1) \ fS’i(()
| H(y).C3ly) | 1r(2)-C3,(2)

‘ 63(03‘ I3, T:a) K(Q)

| e2(ea, b2, 1) T2(es))

2. ('3 creates a copy of &5(e, [, 1)

(veg,es)((we l,r)(Tegle,l,ry | FS2(c) _
| H(y).C2ly) | 'r(2).C2 (’)) | e3(es, la,r3).I5{e2)
| (ve,lr)(@s(e l,r)y | 'e5(e, 1) | FS3(c)
| Hy)-Culy) | 'r(2)-C3:()) | ‘«z(f«zs’.n'Z)E(”B))

3. The process e3(es, I3, r;;).E(eﬁ interacts with the created process. The scope of [ of C'3
extrudes to C'2.

(vea, es)((ve lr)(1eg(c,l, r) \ FS2(c)
| H(y).C2ay) | 'r(2).C2 (7) )l ( z// e
| (ve,r)(Es{ed,r) : ¢
| H(y).C3u(y) | !r

4. C3 creates a copy of I(y).C3(y)

(veg,es)((we d,r)(Vegle d,ry | FS2(c) B
| H(y).C2ly) | 17(2).C2:(2)) | (w1)( Kea)
| (ve,r)(es(c,l,ry | lesle,l,r) | FS3(c)
[ H(y).C3i(y) | (y).C3ily) | 'r(z )C%( 1)) | oealeg, g, ra) T5(es))

5. Through [, the created process receives ey, and the process C'3;(y) becomes active. The
scope of [ of C'3 migrates to itself.

(vey. es)((ve l,r)(Vede, / ry | F 2(r
| M(y). ('27( ) in(2).C )
\(ur/i)eg<(ll>\ < >\F‘S c)
| C3ilea){™/ } | H(y) . Cily) -C3( N1 ealea, [z, r2) To{es))

Table 5.3. The steps until C'3;(y) is triggered
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3 =def (V€2 €3,€4)(
(ve. L, rylng, rug, plns, prog)(
Ve5(c, 1. r,Ins, rng)
‘ F’S:ﬂ({:)
| H(y). (’?z(ul
| 1r(2).C3.(2)
| Hng(z )Pl713 y)-Z(y)
| Yrng(a).pros(y). 2 (y)
| Vplnsles)
| 1pr7s(es) )

Table 5.4. The state of ('3’ after recording neighbours

and rng(z).pros(y).Z(y), can return the access to C'2 and C4, e; and ey, through the

received channel 2 when they receive it through Ins and rns, respectively.

The two processes, C'3;(y) and C3,(z), are defined as below. The names, y and z,
are received through /(y) and r(z), respectively. Thus C'3;(y) can create the process,

! plng{es), because y is substituted by es.

C31(y) =det ! plns(y)
C3,.(2) =der ' Dr73(2)

Although we assume here that there exists only one neighbour for each position, at
left and right, which means that '3;(y) and ('3, (z) are assumed to be executed only
once, the assumption will be relaxed and the interaction for recording and retrieving the
information on neighbours becomes more complex by employing list data structure. The
development is necessary to parse every possible syntactic structures. We will present

our solution in §5.4.

5.3.4 Retrieving feature information

When trigerred, the process will look into the feature information through the given
channel and may generate a new agent depending on the items of information it extracts
of. Suppose that the process, C3;(e2){®/,}. interacts with C'2 through ¢, and generates
a new agent corresponding to noun phrase if it can extract items of information that
indicates the category of its left neighbour is determiner. Let (3;(y)" be a process
performing the series of actions. The definition of (/3;(y) is modified, added the process

as follows:

C31(y) =det ! plns(y)

C3iy)’
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where C'3;(y)’ is defined as
C31(y) =aer (vd, f,0)(y(e,l,r,In, rn) &d).d(ro).To{cat, f,v).0(s1).51 (2).[x = det]C3y,)

The table 5.5 shows how it retrieves the information on category of ¢'2. The process

performs the following series of actions:

The step 1
(a) eax(e,l,r,In,rn): The process receives ¢, [, r, In, and rn through ey, which substi- (ve,lr Ing, rng) (B2, 1, r,Ing, rng)
tuted y. | (vro.s1)( (:(r]).ﬁ(r(ﬁ | ro(x, fyv).[x=cat]i(s) | S1(det)))

(b) @(d): Tt emits its private channel d through ¢ | (vd. fo)(eales i im, ). Ed).d(ro). To(cat, f,v).v(s1).51(). [z = det]C3yy)

(c) d(rg): Then it waits for the reply at the channel, which will replace the channel to The step 2
the top level of the feature structure for rq. (ve)((vro,s1)( (',((]).ﬁ<7‘0> | ro(x, fiv).Ja=cat]i{s;) | s7(det))
(d) To(cat, f,v): Once it gets the channel, it emits a request, cat, along with two | (vd, f,v)(€d).d(ro). To(cat, f,v).v(s1).51(x). [v = det]C3y,))
channels, f and v. The second channel, v, is used to get access to the information
on category. The step 3
(e) v(s1): The reply is received through v to substitute s;. (wd)((vro. s1)( rﬁ(]} | rolz, fv) Je=cat]u(s)) | 'q_tgfiet»
| (v f,v)(d(ro). Tolcat, f,v).v(s1).51(x). [z = det]C3y,))

(f) s1(z): Then it can retrieve the information on category through sq.
(g) €314 Tt will proceed to next actions of generating a subsystem corresponding to The step 4
noun phrase if the category matches to det. Tt terminates otherwise. (vro)((vs1)( ro(w, f,v).Ja=cat]v(s1) | s1{det))

| (v f,v)(To(cat, f,v).0(s1).51(2). [z = det]C'3y,))

5.3.5 Generating new agents The step 5

(o) (v s1)(B(sa) | 5T(det))

We look into how a new agent can be generated by considering as an example what y
| v(s1).s1(2). [z = det]C3y,)

processes (C3;, above may generate. Let C'6 be the subsystem to be generated and

I'S6(c) the set of processes encoding its feature information. The figure 5.3 shows its
) i ) The step 6

(vs1)( Fi(det)
| s1(2). [z = det]C3y, )

relation with other agents. Tts left neighbour is C'1 and right one is C'4. Analogous to

C2 and O3, the subsystem could be defined as is shown in the table 5.6.

To generate such a subsystem, C'3;, will evolve into C'6(le ft, sel f, right), where the pa-

rameters, le ft, sel f, and right, must be instantiated with channels to its left neighbour, The step 7
itself, and its right neighbour, respectively. The channel, sel f, can be instantiated with 31,
an arbitrary channel created freshly, say eg, but lefi and right have to be instantiated

with eq and e4. Let (]'3;]1 be the process retrieving these channels, defined at the moment

as Table 5.5. Retrieving the information on category of C'2

C31y =det (v e(;)(Ciifg.Cﬁ(left, g, right))

It is not hard for C'3 to retrieve €4 as it is its right neighbour. It needs only to perform
once the input action, pras(right). Let CS;q be the process to retrieve the access to the

right neighbour, which is defined as
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C6(left,sel f,right) =qer (v, 1, v, Ing, rng, plng, prog)(
Vself(c,1, 7, Ing, rng)
| FS6(c)
| M(y).C6,
| 'r(2).C6,
| Ving(x).plne(y). 7 (y)
| trog(2).pras(y). T(y)
| left(e, 1, r in,rn).F{sel f)

| right(c,lr In, rn){self))

Table 5.6. The definition of C'6

Figure 5.3. The agent C6 and its relation with others
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O3], =det prna(right)

It is however more difficult to retrieve ey, the access to C'1, as C'3 does not have direct
access to it. To retrieve it, it has to consult C2. Let (,'3§q be the process to retrieve ey,

which is defined as follows:
CS%g =det (v w)(plna(v).v(e, 1, n, rn).In{w).w(le ft))

The first action, plng(v), substitutes ey for v, as there is a replicable process, !'plng(es),
recording the access to the left neighbour of C'3. Then, by executing ey(e, 1, In,rn), it
can retrieve [In, the access to C'2, to retrieve the access to its left neighbour. T"hrough

the channel, it emits a private channel, w, to get the access to C2’s left neighbour, €.

The table (5.7) shows how left and right in C6(left, sel f,right) will be substituted by

e1 and ey, respectively. The first line shows the relevant definition of C2 to return the

access to its left neighbour. The process, plna{eq), offers the access through plng. The
second line shows processes offering the access to left and right neighbours of C'3. The
third line shows the sequentially combined process of C’BL and (73;9. The table can be

explained as follows:
(a) The channel, right, in C6(left, eq, right) is substituted by ey when pras(right)
interacts with prag(es).

(b) vin v(e,l, In,rn) is substituted by ey when plns(v) interacts with plng(ez), which
makes it possible to retrieve information from eg.
After retrieving information from ey, the channel Iny replaces In in In{w).

(¢
(d

=

Through the channel, the private channel w is emitted to replace z in Ing(2). The

scope of w extrudes to (U2,
y is replaced by €7 upon the interaction between plny(y) and plng(er).

(e
(f

Finally, it gets ¢; through w to replace it for le ft.

Now we have almost done with the generation procedure. At last, C'3 needs to in-

form C'6 that C'l and C4 are its neighbours because the actions, e1(e, [, r). " eg) and

eq(c,l,7).I{eg), the instantiated actions of le ft(e, [, v, In, rn).®(sel f) and right(c, I, v, In,rn) I{sel f),

only inform C'1 and C4 that C'6 is newly created and positioned at right to C'1 and at

left to C4, respectively. The notification can be done by the following two processes:

es(e, L, ryIn, rn).F(es)

ee(c,l,r ln, rn).le;)

which leads to creating !prog(es) and !plng{eq), respectively, and possibly to another

generation process. Now that we have already got the access, e; and ¢4, these processes
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The initial state

(ve b r lng, rng, plng) (€2(c. 1, ryIng, rug) Ino (@) .plna(y) T{y) | plnaler))
| (v plng, prag)(plng(es) | Prasies) o
| prog(right).(vw)(plng(v).v(c, I, In, ro).In{w) w(le ft).C6(le ft, e, right)))

The step 1

(ve,1,r, Iy, rng, plng) (@7(c, 1, vy Ing, rro).dng(2).plna(y) Fly) | plngler))
‘ (v Pln;s)(p/ﬁ3<€2> -
| (vw)(plns(v).o(e,, Inyrn)dn{w).w(le ft).C6(left, e, €q)))

The step 2

(ve L r lng, rng, plng) (€3(c. 1, ryIng, rug) Ino (@) .plna(y) T{y) | plnaler))
| (vw)(ea(e, 1, In, rn). In{w).w(left).C6(left, eq, €4))

The step 3

(vIng)((v plng) (Ing(2)-plna(y) T (y) | plug(er))
| (v w)(Ing{w).w(left).C6(left, eq, €4)))

The step 4
(vw)((v plna) (plna(y) W(y) | plnaler))
| w(left).C6(left, cq, €q))

The step 5

(v ) (wier)
| w(left).C6(left, eq, €4))

The step 6
C6(eq, es, e4)

Table 5.7. Retrieving the access to C'1 and C4
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can be initialised at the same time as C6 when 2 and y are replaced by them. The

whole process of generation can be summarised as

C31y =aer (ves) (C3},-C3), (C6(left, e, right)
| es(e,d,r,In,rn) . Fright) | es(e,l, r,In,rn).0(left)))

Through similar steps, the sentence “a man walks” can be analysed to be a sentence.
When C6(left, self, right) is instantiated with ey, e¢g, and ¢4, it is accompanied by
eq(c, 1,y In,rn).J(eg), which informs C4 that a new left neighbour is created at left with
the access, eg. (4 will then check through the channel if the category of C'6 matches
to np to generate another new agent C'7 corresponding to sentence category if it is the
case.

Note also the information on features can be retrieved from agents in long distance, not
limited to just neighbours. Asis shown in the above, the agent C3 could retrieve ey, the
access to C'1, with which it could extract information of C'1 crossing over C'2. Nothing
prohibits an agent from searching items of information in long distance no matter how
far the source is away as long as it is reachable through channels. The number of sources
is also unlimited. Although in the above example ('3 looks into only €2, it could look
into other agents as well. Qur parser can therefore analyze tree structures, not limited

to binary branching.

5.4 A concurrent chart parser

5.4.1 Multiple neighbours

In the above example of “a man walks”, we did not worry about how many neighbours
might exist for an agent. We assumed that an agent need to communicate with at
most one neighbour at either side. The assumption causes no problem as long as we
parse a simple sentence such as “a man walks”. Let us see the situation by using more
conventional diagram. The figure 5.4 shows a chart for the sentence. In this guise, one
can conceive of each agent, C'2,C3,C4,C6, and C7 as edges. As we have seen, C'3 needs
only to communicate with C'2 to create C'6. C'4 also needs only to communicate with
C6 to create C'7. Although C'4 might have communicated with C'3 in vain, it causes no

problem as it is notified of C'6 when it is created so that it can look into it.

The situation may be different when we come to parsing sentences of more complex
syntax. Let us examine a sentence, “he sees desks in the room.”, which is conventionally
assigned two syntactic trees. One structure can be represented as [sees [desks [in the

room]]], where PP ‘in the room’is related with NP ‘desks’. The other can be represented
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Figure 5.4. A chart of “a man walks”

as [[sees desks] [in the room]], where PP is related with VP, ‘sees desks’. The figure 5.5
shows its chart. One can see the agent for ‘in’ has two left neighbours, one for ‘desk’

and the other for ‘sees desks’.

Figure 5.5. A chart of “he sees desks in the room”

It is important for the agent D4 acting for ‘in’ to record the access to both agents D3
and D11, acting for ‘desks’ and ‘sees desks’, respectively. Observe what the state the
parser in when D11 is created before D7, the agent for ‘in the room’ (Figure 5.6). When
it is created, D11 knows only D4 as its right neighbour and have access to it, f4. D4 is
notified of the existence of D11 when it is created and knows it has two left neighbours,
D3 and D11, with the access to them, f3 and f11. These agents, D3 and D11, wait
for DT to be created. When it is created, D7 inherits D4’s access to left neighbours, f3
and f11 (Figure5.7). It can therefore notify 3 and D11, through f3 and f11, of its
creation and the access to itself, f7 (Figure 5.8). Given the access, /3 can creates D8,
the agent for NP ‘desks in the room’, and D11 can create D12, the agent for VP ‘sees

desks in the room’.
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D4
(f311)

D11(f4)

Figure 5.6. The state when D11 is created

X Sees |I desks QO

D11 (f4) D7
(f3,f12)

Figure 5.7. The state when D7 is created

sees O

Jdesks [

D11 (f47)

D9,D12

Figure 5.8. The access to C7 passed to 3 and D11




CHAPTER 5. PARSING AS REACTION 165

We have to modify our encoding to allow agents to record more than one neighbours.
Before proceeding to modification, we look into what problem might happen if we apply
the previously presented encoding to the sentence. Assume D4 is encoded as is shown
in the table 5.8, where D4;(y) =qer ‘p/T4<y> When it receives the access to D3 and
D11, ie., f3 and f11, the process is evoked to create two processes, !plng(fs) and
'ping(fir). When D7 is created, these channels must be retrieved of D4, which is done
by interacting with the process, Ing(z).pln4(y).%(y). Now the problem comes here.
Since there are two sorts of processes providing it with the access to left neighbour, the
retrieving process receives either f4 or f11 randomly. The process may try to retrieve
these channels by repeating the action several times. But there is no guarantee that it

succeeds in retrieving both as the chance is completely random.

D4 =get (v fa, fas f'v)(
(ve,l v dng, rng, plng, prog)(
Viale, vy ing, rng)
| FSd4(c)
| H(y).DAy(y)
[ 1r(2).D4,(2)
| Vna(2).pina(y) 7 (y)
| triae) prma(y) o))
| fale, o dn, rn). T f4)
| fs(e,lr dn,rn) J(f) )

Table 5.8. The definition of D4

5.4.2 Encoding list as a set of processes

To solve the problem, we introduce list data structure to our encoding. If we can record
the left neighbours of D4 as a list of (f3, f11), other processes can retrieve both without
relying on luck. Since it has already been investigated in the literature how list structure
can be encoded using the w-calculus [Mil93b], we only go though it briefly. The sections
from §5.4.2 to §5.4.4 are due to Milner [Mil93b].

The figure 5.9 depicts a single list-cell located at [, storing a pointer to its value » and

another to its successor cell located at [. It may be encoded as

lo(e,n).e(v, )

which receives two names in sequence at [y to substitute the first one for ¢, and emit
through it the sequence of v and ;. By parameterising it over Iy, v and [y, a parametric

process, Cell, can be defined as
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Cell(lg,v,11) =det lo(e, n).T(v, 1ly)

Similarly, the empty list-cell, nil (Figure 5.10), is defined and parameterised over [ to

define a parametric process, Nil, which returns just @ without any arguments.

Nil(l) =qet I(c,n)7

el 7 =

Figure 5.9. A single list-cell

=1 Nil

Figure 5.10. An empty list-cell

We consider now how a list, (a.,b), may be encoded (Figure 5.11). The element a is
encoded as a process such that it receives a channel as a request through a particular
channel v to return a through it. To encode a and b shown in the figure, one may encode

them as follows:
A() =qer v(2).T{a)
B(v) =der v(x).7(b)
As a whole, the list is encoded as a system of processes such as

(vor, 1) (Cell(lo,v1, 1) | Alvy) |
(vva.lo) (Cell(ly,va,12) | Blva2) | Nil(la)))

5.4.3 Retrieving values

Now let us see how these values can be retrieved from other processes. We first define
Head and Tail as below, which get hold of the first element and the remainder of an

arbitrary list value.
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a b
V:l V2
lg I1 [P
=1 Cell Cell Nil

Figure 5.11. A list of @ and b

Head(ly,d) =aer (v e,n)(lo(e, ny.c(v,ly).7(v))
Tail(lo, €) =gt (ve,n)(lo{e, n).c(v, 1) .7{))

Head, parameterised over [, emits private names, ¢ and n, through /; and waits for
a sequence of names to be returned through ¢ to substitute v and ;. The name, v, is
the channel to the process storing the first element, and [y is another channel to the
process encoding the remainder. Tail is almost identical with Head, but it returns ;.

To return these channels, both get particular channels, d and e.

The table 5.9 shows the steps for P to retrieve a. The first line of the initial state
encodes the list of {a,b), and the first process in the second line encodes Head located

at Iy, and the second the process P. The steps can be explained as follows:

(a) Head emits ¢ and n through ly. The scope of these names extrudes to the process

encoding the list.

b

Head receives vy and [y through ¢ to replace v for ;.

d

(b)

(¢c) Through d, P receives vy to replace .

(d) Through vy, the list process receives w to replace its z.
)

(e

To retrieve the second element, the retrieving process first receives Iy, then follows the

P receives a through w to replace y.

same steps as [y is utilised to retrieve a. By repeating the procedure, any elements can
be retrieved of list. Finally, to provide for data as many times as required, the process
encoding the list must be replicable. That is, the above definition of list should be

defined as follows:

(vor,lh) (CCell(lo,m,1h) | PA(mn) |
(vwg,ly) (! (,6//(/1 g, lz | VB(vg) | T Nil(l3)))
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The initial state

(o, h)(lo(e,n) (v lh) |vi(2).T(a) | (vva,la)(hi(e, n).%
| (ve,n,d)(lo{e,n).clv, ) .d(v) | (vw)(d(z).T(w).wy).P))

Step 1

(yvl,ll,c,n)(fﬁvl. )
[ (v d)(e(v, l)-d{v) | (v w)(d(z).Z(w).w(y)). P))

Step 2
(vl eon)(vi(2).Z(a) | (vvz,l2)(li(e, n).E(va, o) |v2(2).T(D) )
[ (vd)(d{v) | (v w)(d(z).T(w).w(y).P)))

Step 3
(o, Liye,n) (v (2).T(a) | (vog, ) (Li(e,n).E(va, l2) |va(a).T(b) )
| (v w) (T {w).w(y).P))

Step 4
(vor, ey w) (Way | (vog, ) (h(e,n).@og, la) [va(2).7(b) )
lw(y).P)

Step 5
(vor, by, eynyw)( (v o, la)(l(en).&va, lg) | ve(a).T(b) )
[ P{% D)

Table 5.9. Retrieving values of list

vi(z).Ta) | (vve,la)(ly(e,n).E(vy, la) |2

va, 1z} [va(@).7(b) )

o) 7 (b))
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5.4.4 Adding values

We also need to add a value to list. To add a value, we place it at the first place. The
figure 5.12 depicts how a cell can be concatenated. To connect the process encoding
the cell pointing to the new element ¢ and the old one, one can only need to add the

following process, defined as Add:
Add(ly, vs, 13) =aer I3(c, n).e(vs, lo)

By adding it to the system of processes, it will become to return vs and Iy when inter-

rogated at [s.

c a b
V3 V1 Yo
I3 lo I I
> Cell Cell Cell Nil
c a b
V3 Y1 Vs
I3 lo I I2
[ Cell Cell Cell Nil

Figure 5.12. Adding ¢ to the list of @ and b
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is applied to. The channels, plns and prns, are now used to store the channel, leg (left
cell) or reg (right cell), to the first element of the list, not the access to its neighbour.
These data is however not replicable. This is because the channel to the first element

changes when a new item is added. Tn the initial state, the list contains only nil item.

The behaviour of C'3;(y) is defined as below. When retrieving the access to its neigh-
bours, it will receive the current channel to the first element of the list through plns to
update it to a new channel [ that becomes the channel to the new first element. Add
creates a new cell and links to it the former first element. The access to its neighbour
is stored as value and available upon the interaction with v(z).z(y). The channels, v

and [, are fresh names and private to (3.
C31(y) =aet (v v, ) (plng(le).plng{l) | 1 Add(lc,v,1) | 'v(z).T(y))

Retrieving the access to neighbours too is modified when we adopt list data structures.
('3 will now return the channel to the first element, not the access itself. For example,
the process Inaz(x).plna(y).plna(y).T(y) receives a channel through Ins, retrieves the
channel to the first element, and returns it through the received channel. The channel

to the first element is restored so that it is not lost by the reading action.

It is also possible to add the element at last place, i.e., (a, b, ¢), but it is not worth doing
because the order of elements does not matter for us. In fact, a number of operations
can be encoded in the m-calculus, let alone retrieving and adding elements. Deleting
and inserting an element at a particular location is also possible, but the above encoding

is enough for us to record neighbours.

5.4.5 Recording and retrieving neighbours using list

The way to record neighbours is modified by adopting list data structure. The table

5.10 shows the initial state of ('3, the agent acting for ‘man’, when list data structure

C3 =ger (I/ €9, €3, 6/1)(
(ve.l,rylng, rng, les, reg, plng, prog)(

| H{y).C31(n)
[ 1r(2).C3,.(2)

| ealea,lo, rg, Ing, rng).73(e3)
| es(ca,la, ra, Ing, rng).ls(es) )

Table 5.10. The initial state of ("3 before recording neighbours

5.4.6 Generating new agents using list

The way that new agents are generated is made complicated by adopting list structure
to record neighbours. Formerly, the procedure for C'3 to generate C'6 was to read its

access to the right neighbour and the left neighbour’s access to its left neighbour in
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order to instantiate le ft and right with ey and ey4, respectively. It also needed to inform
itself of its left and right neighbour. The retrieving of access is not much different
when we use list data structure. '3}, below shows the previous encoding to retrieve its
access to the right neighbour, and (,731’; the modified version. We use 2 and y to avoid
confusion. C'ng shows the previous encoding to retrieve the left neighbour’s access to

its left neighbour, and (735; is its modified version.
(73};] =det prug(right)

C37) =aer proa(y)-rms(y)

(,73?@ =gt (v w0)(plna(v).v(e,l, In,rn).In{w).w(left))

(
(73;; =det (v w)(plnz(v).praz(v).o(e, 1, In, ro) In(w).w(z))

The major difference is that the names replacing 2 and y are not the access to neigh-
bours, but channels to the first element of the list. These channels will be used to
initialise C'6 which is now parameterised over the channels to the first element of the
list. Tts definition is given in the table 5.11. Note in this encoding, C'6’ shares the
elements of the list locating after leg and reg with C'3. It does therefore not hold of
any processes returning the values by itself in the initial state. One may also notice the
processes to inform its left and right neighbours of its creation have disappeared, which

should have been such as

e1(c1, Iy, 71, Iny, rny) Fi{eg), and

ea(caylayra, lng, rng) .E(e@;)
The job is taken up by C'3, the agent creating C6, as it is rather complicated job. What
else we have to encode are the processes to inform C6 of its left and right neighbour.

Suppose all these jobs would be performed by Link(eg, z,y). The definition of C3;, is
then modified to CBEq.

C31y =def (Veg) (C’H?g.ﬁ?}fg.((jﬁ(m, e6.y)| esle dyr o, rn) 7 (y)| es(e,l,r o, rn)J(x)))

C3), =act (v 06)((73};.(735;.((76/(13, s, y) | Link(es,z.y)))
The definition of Link(es,z,y) is given as follows:

o Link(es,,y) =aet (vt)(#{ax).Link/(es.t)) | (vt)(#{y).Link,(es,t))
The first process does the job concerning left neighbours, and the second concerning
right neighbours. Before evoking Link;(eq,t), it stores the given channel z at ¢,
which is freshly created and private to it.

o Linki(es,t) =aer 1t(2).2(c,n).(c(v,).H1).Link;(es, v) + n)
The process repeats a sequence of actions until n (nil) is returned. Tt retrieves a

channel at £, retrieves the cell through it, and evokes Link;.(eg, v) if ¢ is returned.
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The channel retrievable at ¢ is then updated to I, the channel to the remainder.

The process terminates if n is returned.

Linky(es, 1) =dot (v y) (@w)y(e).(e(e,l,r, In, rn) Feg) | ele, 1, r,n, rn).1{e))
The process retrieves through y the value e, the access to one of its left neighbours.
Then, it informs the neighbour that ¢4 is available at its right position and informs

(6 of its left neighbour.

o Link,(eg,t) =aet t(z).2(c,n).(c(v,).H1).Link,c(es, v) + n)
Link,o(e6,v) =det (v ) (@(@)y(e).(e(c, Ly, In,rn)ee) | es(c,l,r In,rn).7(e))
These do similar jobs as the above ones. Link,.(eg. v) informs the right neighbour

that eg is available at its left position and informs C'6 of its right neighbour.

C6'(leg, €6, 106) =der (v, 1, 1. Ing, 06, plng, prog)
Ves{c. I, 1, Ing, rng)
| FS6(c)
| H{y).C6i(y)
| 1r(2).C6,(2)
| Ming(x).plne(y).plne(y).T(y)
| Vrng(a).proe(y) prae(y) T {y)
| plng{leg)
| prma(res) )

Table 5.11. The initial state of C'6 before recording neighbours

5.4.7 Propagating channels to neighbours upward

The parser presented in the above can parse sentences correctly as long as each subsys-
tem corresponding to a word or phrase evolves at different timing. However, a problem
arises when subsystems evolve concurrently. Let us see, for example, what trouble we
may encounter if D7, the agent acting for PP ‘in the room’; and D11, the agent for VP

‘sees desks’, evolve at the same time.

In the initial state, D3, the agent for ‘desks’ knows its right neighbour is D4, and D4,
the agent for ‘in its left neighbour is D3 (5.13). Suppose then D7 and D11 are created
at the same time. Since at that stage D3 does not know about D7, and also D4 does
not know about /D11, the created agents do not know each other (5.14). Subsequently
D3 and D4 will know that 7 and D11 are created as its neighbours, respectively, but
D11 and D7 will by no means be informed of each other. Therefore, in the next stage

¢

only D8, the agent for ‘desks in the room’, is created, and followed by D9, the agent
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for the structure [sees [desks [in the room]]], but D12, the agent for the structure [[sees
desks] [in the room]] (5.15).

he sees desks in the room

D3 D4
(f4) (f3)

Figure 5.13. The initial state

X Sees |I desks 4

D11 (f4)

(f3)

Figure 5.14. The state when 7 and /D11 are created at the same time

Figure 5.15. 'I'he access to C'7 is lost for D11

One way to solve the problem is for the subagent to record with which created agent it
shares neighbours and to inform it of the newly created neighbours when it is informed
of them. In the example, D3 should inform D11 that D7 is created, and D4 should
inform D7 that D11 is created. What each agent should do can be summarised as

follows:

o If its information on neighbours, left or right, is used to create an agent, it records
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the access to the agent as a list. This is because more than one agent can be

created by inheriting the agent’s information on its neighbours.

If it is notified of some agent that is newly created at its neighbouring position, it
searches its record to check if the agent is registered. If it is already in the record,
the agent does nothing. Otherwise, it informs the agent who shares neighbours of
the news. The agent then proceeds to the usual procedure, i.e., adding the channel

to the neighbour to its list, and so forth.

The procedure can be encoded as processes by applying the techniques that have been

explained in the subsection. We are therefore not bothered to encode it here.

5.5 Discussion

5.5.1 Logical checking of concurrent parsers

The translation from the w-calculus to the combinatorial linear intuitionistic logic en-
ables us to check if the concurrent parser can change its state from a particular one
to another as we expect. The figure 5.16 depicts parts of definition of C'2 and C3 in
dataflow graph, whose definitions are the basic version presented in §5.3.2. We specify

here only the part inside the polygon® as logical formulas (Table 5.12).

a:e3{es, I3, ma) = I3(ys) @ ra(23)
b l3(ys) = plna(ys)
¢ : r3(z3) = prus(zs)
d:eg(ch lh,rh) = 1}
e es(ch, lhrh) = riles)
[ Eg(es, I3, rs) @ es(ch, 15, 1h) = (es = )R (I3 = 1)@ (rs = 15) & I3(y3) © I5(e2)
/
3

g :e3(cs. I3, 13) @ eg(ch, I, rh) =! (es = e5)@ (I3 = 15)@! (r3 = 1}) @ ra(z3) @ riles)
It 13(U3) ® Ilea)®! (I3 = 1) =1 (y3 = e2) & plnz(ys)
i ra(z) @ rile)®! (ry = 15) =1 (25 = €4) @ Prg(2)

Table 5.12. Logical formulas specifying the particles in the box

Given these formulas, one can infer that after the two interactions occur between

e3(cs, I3, r3) and e3(ch, I}, r4), there is a state such that the action plns(es) and prus{es)

Strictly speaking, the node e is outside the polygon, but it is referred to. Also, the node ¢4 is in the
polygon, but it is not referred to.



CHAPTER 5.

PARSING AS REACTION

1

5}

Figure 5.16. The structure of interactions between C'2 and C3
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become ready for execution with the substitution environment, (¢5 = %), (I3 = 1%), and
(rs = r4), by referring to the special axioms, f, g, %, and i, and by applying to them
the rules for parallel and sequential compositions, and substitution. That is, we can

construct the following formula:
[e3(ca, ls, r3) @ E5(cs, I3, 13) © e3(ch, I5, 15) @ es(ch, 15, rh)]

= pina(es) @ prug{es)@! (c3 = 4)@! (Is = 1L)R! (r3 = 13)

5.5.2 Feature description structured based on channel types

In the previous subsection, we have managed to return the discourse marker 2 in the
same way as rq is returned. If we encode C'2 in that way, the full definition may be given
as is shown in the table 5.13. The definition seems to be rather chaotic as the result of
us encoding them bit by bit. We wonder why we can not treat the whole subsystem as

if it were a feature structure.

C2 =qet (v e1,€2,€3)(
(ve,m, L r Ing, rng, Ly, rey, plng, prog)(
Yea{e, my v Ing, rng)
| FS2(c)
| (va)(Lm(y) - 5e))
| H(y). C21(u)
| 1r(2).C2,(2)
| Vina(x).plng(y).pluay) T y)
| Vrog(z).prog(y) prag(y).z{y)
Co

| plng(les) | ' Nil(lcy)
| prag(res) | VNil(reg) )
etfer, i,y dny, rmg ) Ti(er)

| es(ca,ls, ra, Ing, rus).ls cz) )

Table 5.13. The definition of (2 to store a discourse marker z

The feature description (5.9) shows a proposal to represent all items of information in
the form of feature structure. The channel to the top level is ey, the access to C'2. The
feature syn stores lexical information, ida the discourse marker. The feature add:left
stores the channel to inform C2 of its left neighbour and add:right the channel to inform
it of its right neighbour. The feature nbh:left stores the list of left neighbours of C'2 and

nbh:right that of right ones, whose values are nil in the initial state.
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-1

syn: -[Iﬂ 2 ]

ide: [m]x
it I{fi{,‘ht l.} a0

nbh: [11o] lfﬁhr -ﬂfz{/

The principle governing the structure is typing of channels. The channel m must be
independent of others because it is used to receive a channel through which the discourse
marker is emitted. Similarly, ag and ng are of different types. The feature structure
can be encoded as a set of processes as is shown in the figure 5.14. The structure of
feature descriptions can of course be investigated from a number of points of view. Our

approach to the issue is to refer to channel types.

C2 =qe (Veg, ez, €3)(
(vro,m, L, v, Ing, rng. leg, req, ag, ng, plng, prog)(
Leg(k,d, f, go, ho)- ( [k = syn]d( r0>
+ [k = idx|f(m)
+ [k = add]ga(co)
+ [k = nbh]hg(no))
| Yag(k, g1).([k = 1left]gr{l)
+ [k = rignalgi(r))
| Tno(k, h1).([k = Left]hy (Ing)
+ [k = right]h (rny))

| FSZ(I[])

| (va)( tm(y)7(z) )
| Hi(y)-C2(y)

| 1r(2).C2,.(2)

| Ying(

a).-plng(y)-plns(y) -7 (y)
| Yrog(a).proa(y).] 'v<y>..’n<‘/>
| plng(lesy | VNil(ley)
| prag(rea) | ' Nil(re) )
er(er, by, m, Ing, 1/1]]_1<(/2>
e3(cs, 13,13, In3, rn3).I3(€) )

Table 5.14. The definition of 2 with the feature idz
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5.5.3 Integrating multiple information sources

Before concluding the chapter, we show how the proposed formalisation of feature struc-
tures as processes is related to our notion of integrating multiple information sources,
which has been presented in Introduction. To refresh our memory, Figure 5.17 repro-
duces Figure 1.9 shown in Introduction. Our goal is to implement the information flow
as systems of communicating processes. In the previous chapter 4, we were concerned
with semantic part of the construction and have shown how situation types and their
anchoring to situations can be described as processes. In this chapter 5, we have worked
out the syntax part and have shown how feature structures can be constructed as pro-
cesses and sentences can be parsed as a result of reactions. The remaining task is to

establish the syntax-semantics interface also as processes.

situation type
(@)

sentence type

interpretation

evaluation

t signals ¥

utter!nce situation

Figure 5.17. The information flow by utterances

Before presenting how we establish the interface, it is useful to ask here why we would
like to describe everything as processes. To answer the question, we have to trace back
our motivation into Cooper’s work on Situation-Theoretic Grammar (STG) [Coo091].
The characteristic point of STG is that it applies the same framework to studying
syntax, the framework that is primarily applied to studying semantics. The application
becomes possible by regarding utterances as a situation supporting various linguistic
information. For example, let uy be an utterance of ‘man’. The utterance regarded
as a situation can support many items of linguistic information, among them are the
item that its category is ‘noun’ and another item that it is characterised phonetically as

‘man’. The situation can be expresses in Extended Kamp Notation (EKN) as follows:

EN

(5.10) cat(ug, noun)
use-of(uy, ‘man’)
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STG can be studied in itself, but what most interests us is its connection with Situation
Semantics. For the sake of discussion, we consider an example, “A man walks”, whose

meaning can be expressed as follows:

r— X

(5.11) man(X)
walk(X)

The representation (5.11) is an infon abstracted over the parameter X indexed with the
role, r. Presented the representation, one is entitled to ask what the role is. Technically,
we can leave the question out by assuming unlimited supply of roles, e.g., using natural
numbers as role indices. But more philosophically sound answer is desirable, and one
solution proposed by Cooper in [Co093a] is to regard utterances as role indices. In the
above example, we can use the utterance uq as the role to index the parameter X as

below:

ulﬁX

(5.12)  a. man(X)
walk(X)

U4

b. cat(uy, noun)
use-of(uy, ‘man’)

As Cooper claims, the technical advantage of this approach is that it avoids us having
to make some arbitrary decisions about generating enough unique role indices. More
importantly, however, there is also a theoretical advantage obtained by combining the
items of information concerning syntax and semantics. One application among others
presented by Coooper in [Coo093a] is to study how utterances contribute to transferring a
meaning from the speaker to the addressee in dialogue. The point is that the utterance
situation can be shared between dialogue participants, thus, it serves as a common
ground by providing them with common indices to parameters that may be represented

differently among participants.

We do not go into the study of dialogue phenomena in the approach. What is insightful
for us in the use of utterance situation as a role is that the semantic representation
(5.12)a is abstracted over its corresponding syntactic information (5.12)b. We are con-
cerned to know how the relation between syntax and semantics could be formalised.

One possibility is to apply the A-calculus and study the relation in terms of functional
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abstraction and application. The other direction, which we present in the following, is

to regard the relation as a process.

We complete now our construction of linguistic channel (Figure 5.17) as systems of
processes by sketching how the syntax-semantics interface can be described as a process.
Adopting our graphic representation, we represent (5.12)a as a system of processes as
shown in Figure 5.18. For the sake of simplicity, we adopt here a simple encoding and
introduce to our graphic representation some boxes. In the figure, we use r as role and
x as parameter. To indicate r and x are bound within the system, we enclose the whole
system with the dotted box, putting r and z in upper part. The parts enclosed with
the bold box means that these parts are available as many times as requested. As a
whole, the figure depicts a system of processes such that  will be replaced by some
other individual imported through the role r and the role is accessible through both

man’ and walk’ finitely many times.

Figure 5.18. A system encoding (5.12)a

To construct the system as the result of interactions, we add to each lexical item en-
coded as a process a subsystem encoding parts of the meaning. Figure 5.19 depicts the
subsystems connected with each other at a certain location. The leftmost part depicts
the meaning of ‘a’ of the sentence, “A man walks”. The subsystem contains the part
importing some individual through r to replace it for . The subsystem is abstracted
over the role » with an index u, through which it is connected to its right neighbour.
The middle part depicts the subsystem encoding the meaning of ‘man’. The part to be
integrated into the resulting system is abstracted over s with an index v, through which
it is connected to its left neighbour. Since we have already explained in this chapter
how each subsystems can be connected with each other, we leave the location of inter-

action anonymous for simplicity. The rightmost part depicts the subsystem encoding
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the meaning of ‘walks’. The part is also abstracted over ¢ with an index w, which is

connected to its left neighbour at an anonymous location.

rnxus

NEEY N EEE @
>, <

i &

iRy

w, t
w
%

. . . Figure 5.20. The first step of interaction
Figure 5.19. The subsystems encoding parts of meaning

We follow briefly the steps from the initial state towards the end result. Firstly, the
left two subsystems in the figure interact with each other when the two words, ‘a’ and

‘man’, are recognised as forming the noun phrase (Figure 5.20). We assume that the two

subsystems are connected in the same way as the subsystems encoding feature structures
get into touch with each other. The point here is that the connection between the

two subsystems encoding parts of meaning are established as the result of interactions

in syntax part. In other words, the way the parts for semantic representations are rX wt
combined with is determined by the way the parts for syntax is organised. As the result ﬁ_1an<\ W NalR
of interaction between the subsystems encoding syntactic information for ‘a’ and ‘man’, U

the two subsystems encoding the parts of meaning is connected with. Then, u replaces

v and the scope of bound names are extruded accordingly. Upon the interaction via u,

the created subsystem is further evolving into another subsystem encoding the meaning

of ‘a man’ when r replaces s (Figure 5.21).

To continute the interaction, the subsystems encoding the parts of the meaning for ‘a

man’ and ‘walks’ make a copy of their parts that can be provided with as many as

requested (Figure 5.22). The two subsystems interact with each other as the two words

. . . . . . , Figure 5.21. The second step of interaction
are recognised as forming a sentence. Upon the interaction, w is replaced by man’, and

further ¢ is replaced by r (Figure 5.23). The result is the same as the system shown in
Figure 5.18. By removing the man’/w node and conjoining the nodes bearing the same

name, r, we obtain the system encoding the meaning of the sentence, “A man walks”.
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Figure 5.22. The third step of interaction
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Figure 5.23. The fourth step of interaction
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We argue that the above formalisation of the syntax-semantics interface is a refinement
of the approach proposed by Cooper in [Coo93a] and that our approach is also a faithful
implementation of the relational theory of meaning proposed by Barwise and Perry
in [BP83]. Recall that Barwise and Perry argue in the book that the meaning of
sentences must be captured in terms of the relation between utterance situations and
described situations. The relation plays a central role in Situation Semantics. One can
contrast the situation-theory approach with other theories. In Montague-style approach,
for example, it is simply assumed that there is some (metaphysical) correspondence
between syntax and semantics, i.e., between categories and types. In classical Discourse
Representation Theory (DRT) [KR93], the relation is established via a set of rules
rewriting syntax trees into Discourse Representation Structures. We can say that in
DRT the syntactic information is operationally related to the semantic information,
but the ontological status of the rules has never been questioned about. On contrary,
the relation between syntax and semantics is part of the meaning in our approach.
Recent development in Channel Theory [Bar93, SB93] enables us to speak about the
relation in terms of constraints and connections. Qur work presented in the dissertation
can be understood as implementing the situation/channel theory approach to meaning

in process algebra.

We also argue that our approach enables us to describe other factors that may con-
tribute to anchoring semantic representations to described situations. Cooper suggests
in [Coo93a] that not only utterance situations but also described situations and resource
situations can be used to index parameters. It is also argued there that even a body
movement in the utterance situation such as pointing a man could serve as an index.
These topics need further research, but we believe that our approach can be applied to

modelling all these factors as a process.

We should also mentioned here that representing both syntactic and semantic informa-
tion in the same framework enables us to study how the way a sentence is parsed can be
affected by the preceding semantic representations. Let us consider a short discourse,
“A man walks. He coughs.” How the discourse marker introduced in the first sentence
can be exported to the semantic representation for the second sentence? We think that
the discourse marker is passed to through the syntactic structure of “He coughs”. Tn
other words, the syntactic structure is abstracted over the reference that resides in the
preceding semantic representation. We believe that the parser presented in the chapter
is expressive enough to encode such a mechanism. For example, the name r used as a
role in Figure 5.18 can be freely exported to other processes for parsing upon request

provided a suitable port. Detailed study is, however, left for future project.
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5.6 Conclusion

In this chapter, we have developed a parser that analyses the syntactic structure of

sentences as the result of a course of interactions between agents. We have shown a

bottom-up chart parser can be implemented as a system of communicating processes.

We have also shown how state transitions of the parser can be inferred using the com- Cha teI‘ 6
binatory intuitionistic linear logic. We have also discussed how semantic representation p

may be generated and have proposed a way to organise feature structures based on

channel types.

The research on concurrent parsing is still under development, and few works have Conclusion

been reported. To investigate and compare proposals to concurrent parsing, we need a

theoretical basis which is expressible enough to describe various models. While empirical

study is yet to be done, we have shown that the m-calculus can meet the requirement.

Not only its fine-grained algebraic theory, but also its relation with linear logic, which

we have studied in this thesis, should help us investigate the possibility of concurrency 6.1 Summary

applied to parsing.
In this thesis, we have proposed to regard language use as actions and have refined
the information flow by utterances as linguistic channels. The information conveyed
by an utterance is perfect when the flow is recognised by an agent, who classifies a
particular utterance as certain sentence type, maps it to a situation type, then anchors
it to a particular situation that the utterance concerns. We have also observed three
factors are involved in and may influence the information flow; discourse while parsing
sentences, plans and goals while interpreting sentence types, and circumstances while
evaluating situation types. To model the interactions between the information flow by
utterances and these three factors, we have constructed the linguistic channels as a

system of communicating processes.

Our modelling is based on the 7-calculus. To study the calculus in logical setting, we
turned to combinatorial intuitionistic linear logic and showed how processes defined
in the calculus could be specified in the logic. We have constructed semantic objects
employed in Situation Semantics in the calculus and have related Situation Semantics
with Channel Theory by relying on the translation from processes in the calculus to
linear logic. We have then shown how our approach could be applied to a concurrent
parser. In the parser, lexical information expressed in feature structures and grammar
rules are both encapsulated into a small unit of computation called agent, and sentences
are analysed through interactions between them. We have also shown how processes
corresponding to semantic representations could be created as the result of interactions.
Thus, we have seen how the information flow by utterances can be modelled as a system

of communicating processes.

186
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6.2 Comparison with other approaches

In this section, we comment on other approaches sharing the same interest with us. As
for simultaneous abstractions and Situation Semantics, we share the interest with Peter
Ruhrburg, who defines a Simultaneous Abstraction Calculus and formalises it within
an axiomatic framework to describe and compare various semantic theories [Ruh96].
As for feature descriptions, constraint-based approaches have been well-known, with
which we compare our approach to feature structures. Finally, we relate our approach

to Dynamic Semantics.

6.2.1 Simultaneous abstraction calculus

Peter Ruhrburg has recently developed a Simultaneous Abstraction Calculus (SAC) [Ruh96]

to overcome the strict ordering requirements of the standard A-calculus. He has shown
using SAC how various semantic theories such as Discourse Representation Theory [KR93]
and Situation Theory [BC93] can be defined within an axiomatic, property-theoretic

framework [Tur90].

The characteristic point of his approach is that he extends the standard A-calculus
minimally to give a unified picture of various semantic theories where abstractions play
an important role. The result is a version of A-calculus, but objects can be abstracted
over more than one parameter simultaneously. For example, to represent an idea, z
likes y. the relation holding between z and y, like(z, y), can be abstracted over the two
parameters at the same time, Le., Mz, y}.like(x,y), rather than representing it as a

unary function such as Azdy.like(y)(z).

SAC is inspired by the way free variables behave in standard logic and chooses to regard
them as discourse markers. The core system itself is not so powerful as to encode various
semantic theories directly. For example, the alphabetical equivalence does not hold, i.e.,
Maz,y}.like(z,y) # My, 2}.like(y,z), but by adding to the core various axioms, one

can simulate the behaviours needed to implement semantic theories.

Our starting point is different from SAC in the sense that we seek our model in systems
of communicating processes, not in the A-calculus, although the motivation of looking
for more flexible calculi in terms of abstraction and application are shared in common
between both approaches. The reason why we turn to the w-calculus is that we are
concerned with the ontological status of the role indices, e.g., r1 and ry in AMr; —
2,19 — y}dike(z,y). In our model, roles are primitive objects, i.e., port or channel,
while they are defined in SAC as a special free variable whose behaviour is specified

with additional axioms.
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There is a trade-off between these two approaches, and they serve well for different
purposes. Our model is richer than SAC, but one does not need additional axioms. To
use SAC, one has to add to it special axioms, but the core remains to be simple. The
former is more efficient than the latter when implemented because additional axioms
needed are already compiled in the model. The latter gives us a nice tool to compare
different semantic theories. We justify our approach taken here by reminding the reader
of our motivation. We are interested in developing the idea to consider utterances as a
role into a rigid framework and have established a syntax-semantics interface based on

the idea. Comparing various semantic theories is not our intention.

The different choices of formalisms pose another question. We have not enriched the
basic axioms and rules of Linear Logic to keep the system as simple as we can, but have
proposed a systematic method to translate dataflow graphs into the logic. It may be
interesting project to investigate how Ruhrburg’s approach can be applied to formalising
the computation specified using our dataflow graphs. The formalisation must help us

locate our approach among other semantic theories.

6.2.2 Constraint-based approaches to feature descriptions

In constraint-based approaches, linguistic objects are specified with a set of constraints
to be satisfied. The advantage is that one only needs to specify partial information he is
concerned with and thus it becomes easy to combine various linguistic objects without
being bothered with unnecessary details. Here we compare our modelling of feature
structures as processes with other constraint-based approaches. In short, constraint-
based formalisms are concerned with model theoretic aspects of linguistic objects, while

we are interested in proof-theoretic aspects.

As an example of constraint-based approaches, we consider Kasper-Rounds logic (KRI.) [KR86]

for comparison because it is a pioneering and well-known work in the area. In their ap-
proach, feature structures are modelled as directed acyclic graphs (dags), and upon the
model, a logic is defined in the same spirit as Hennessey-Milner logic (HML) [HM85].
There is actually a strong connection between KRI. and HMI. because dags can be re-
garded as a labelled transition system (LTS) and the development of KRI was inspired
by HML.! Tt is, therefore, appropriate to discuss the relationship to constraint-based
approaches through the comparison with HML. By relating KRL to HML, we can also
avoid to going into the detail of KRL, focusing on the essential difference between

constraint-based approaches and ours.

The aim of HMIL/KRL is to specify a semantic object, a 1.TS/dag, logically. The

! Personal communication with Rounds, April 1995.
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satisfaction relation between a LTS/dag and a formula is defined logically, e.g., M [ ¢,
where M is a LTS/dag and ¢ a formula. Besides the advantage of partial specification,
the benefit of this approach is that one can check systematically if a particular model

satisfies a formula.

While constraint-based approaches are concerned with models of linguistic objects, the
issue we would like to investigate by our approach is proof-theoretic, that is, how or
whether such objects can be constructed of given parts defined as special axioms. One
advantage of adopting intuitionistic linear logics is that it is guaranteed that there
exists a model satisfying the formula whenever we can construct it through inference.
The property is useful for synthesising correct feature structures automatically. This
property should be contrasted with the fact that HML can only be applied for model
checking. Our intuitionistic linear logic is, however, not as powerful as HML when it is
seen as a specification formalism as we have seen in Chapter 3 (§3.6.5). The problem is

open to further study.

It should also be noted that the model-theoretic approach and proof-theoretic approach
do not compete with each other, but are complementary. See, for example, that Smolka,
one of the major developers of constraint-based approaches [Smo92], turns to the n-
calculus to study efficient constraint solving [Smo94a]. The two approaches study dif-
ferent aspects of the same phenomena. The model-theoretic approach is concerned with
the specification of problem, while the proof-theoretic approach is concerned with how

to solve it.

6.2.3 Dynamic semantics

The most important point advocated by dynamic semantics, e.g., [KR93, GS91b], is
to capture the meaning of sentences as the state changes caused by the utterance of
sentences. Although approaches to dynamic semantics are divergent, the view to the
meaning is shared among them. The difference will only come up by their different
definitions and formalisations of states and states changes. In this broader perspective,
our approach can be seen as a member of dynamic semantics family. Recall that the

state changes can be depicted schematically as:

wy uy s

Sgp —> 81 —> S9 - Sp_] — Sp
where an utterance, wuy, turns the state, sy, into another, sy, and each succeeding
utterance, u;, turns s; 1 into s; until u, turns s, 1 into s,. Each state, s;, represents

a static meaning such as a discourse representation structure. Notice that the scheme
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can be seen as a simple process or a labelled transition system. One may see that at

the bottom our approach shares the same view as dynamic semantics.

We have, however, enriched the dynamic model further by combining several processes

and allowing them to run in parallel. We have also allowed processes to communicate

with each other. The notions of concurrency and communications are what we have
added to the dynamic view. Introducing parallelism to dynamic semantics {ramework
has been recently considered by Fernando to temper the problem of non-determinism,
where he proposes to preserve all alternatives with disjoint union [Fer93]. The dis-
joint union is rather reminiscent to the additive conjunction in our system, not to the
multiplicative conjunction. As we take the multiplicative conjunction to capture par-
allelism and concurrency, the notion of concurrency is adopted in different senses, and

Fernando’s notion of concurrency has little to do with our notion of concurrency.

The benefit of enriching the underlying model as we do is that we can study how
particular states can be updated by an utterance with the same framework as we apply
to studying semantic representations. To show that such an approach is possible to
syntax, we have modelled the way an utterance is processed as a state change caused
to a system of communicating processes. By formalising the two domains within the
same framework, we can study the dynamics of syntax/semantics interface in great
detail. Although we have not exploited the possibility in the thesis, we believe that our
approach enables one to study the effect of context during semantic construction from

syntactic information. The research will be a future project.

6.3 Future work: plans and goals

We have not investigated the influence of plans and goals on linguistic channels because
the topic forms another area of study and goes beyond the scope of the thesis. We
conclude the thesis by discussing the issue. As we has argued in the first chapter, the
plans and goals that an agent has in his mind can influence his utterance. Coming back
to the use of the Japanese phrase-final particle, “tte”, there is actually a case where the
marking is affected by plans. We keep in mind that the term “repair” is a category of

plan in dialogue.

Figure 6.1 shows an excerpt from the Japanese Map Task Corpus. Here the giver has
mitisirube (trig point) in his map, while the follower does not. At first, he does not
recognize that the follower does not have it in his map and attempts to attract his
attention to it (Gq). As he does not have the item, he tells him so (Fy). The point to be
noted is that the follower marks the item with a topic marker, wa, to contrast his lack

of knowledge although he does not know where it is. He should have marked it with the
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particle, “tte”, if the particle was to mark noun phrases whose referent is not known to
the speaker. The response from the giver respects the rule, however. Knowing him not
having the item in his map, the giver informs him that he has it righthand side of the

west lake (Gg, Gg), marking the noun phrase with the particle.

Gli

Fi:

GQZ

le

Gy

F3:

Gy

F4:

dez, mitisirube-no tokoroko-wo
and al the trig point

ez, mitisirube-wa nai-desu

eh, I don’t have a trig point.(topic)

ez, nai-desu-ka ee, jaa, minami-no

eh, you don’t have it. eh, then, in the west,

hai

yes

numa-no migi-gawa-ni mitisirube-tte aru-n-desu-yo
righthand side of the lake, there is a trig point.(meta)

hai

yes

eh, ue-no, deko-tte-site-iru-tokoro arimasu-yo-ne
eh, in upper part, you can see a round place, can’t you?
ah, hai

ah, yes

Figure 6.1. An example of the use of “tte” (2)

The example suggests we need to consider another sort of information than meaning
and referent to explain the use of the particle since they are not sufficient to explain the
case. The meaning has to do with the schema of shared knowledge updates. That is, we
think that the speaker marks a noun phrase when he initiates a repair as for the item.
At Gg in the excerpt, we think the giver marks the noun, mitisirube (irig point), with
the particle to repair their misunderstanding. His next utterance, G4, indicates that he
is still in repair mode, trying to teach him where it is. (Soon later he will give up it and

will forget about the item.)

The point may become clearer by looking at the other excerpt (Figure 6.2).2 The
giver here conducts the follower to go leftwards chotto (a little). When they first
agree to move left (Gy and F;), they think the expression is specified enough for their
collaboration, thus do not mark it at all. But when they come to move leftwards
actually, the giver cannot tell him the precise length (Gj), and the follower initiates his

repair by asking about it, marking the expression with the particle (F3).

2The example was referred to in §4.7.2, too, as a ground for parameterising relations.
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G1:

Fi:

G2:

Fz!

deh, hanshu-kurai sitara hidari-ni chotto hidari-ni chotte ikun-desu-yo

and after we go round half way « little bit towards left (repeat)
chotto chotto hidari-ni

a little bit towards left

hidari-ni gomennasai-ne, nan-ka-neh

towards left  I'm sorry, how can [ say...

chotto-tte dono-kurai

how a little far is it? (meta)

Figure 6.2. An example of the use of “te” (3)

Clearly, the use of the particle has to do with their plans and goals for their dialogue;
They do not mark the expression until they try to carry out their collaboration to the
next step. Note also the particle marks an adverb, chotto (a little), not a noun phrase.
The particle can actually mark other phrases as well such as verb phrases and post-
positionals. We can also observe that the marker is usually nused only once when the
speaker initiates a repair. Once they agree to enter the repair mode, they will no longer
mark the expression with the particle. These observations suggest that the meaning of
the particle may be better captured in terms of functions in conversation, that is, to

inform the other that they will repair their misunderstanding as to the item.

To investigate the influence of plans and goals on language use, we are interested in
the approach initiated by Pollack, who considered plans and goals as complex mental
attitudes [Pol90]. We may model such complex attitudes as a system of communicating
processes. It should not be difficult to implement a planner although we have not inves-
tigated how it can be constructed. Take a planner, for instance, that infers transitions of
communication states upon utterances. It can be implemented as a production system,

3

which infers state changes by referring to a set of state transition rules.® The feature

structures encoded in Chapter 5 should be used to represent knowledge.

What can such an modelling in turn benefit the research on planners? Different from
logical approach initiated by Cohen and Levesque [CL.90], which formalises speech acts
theory as a modal logic, we model planners as a reactive system, which reflects actual
systems more closely. The difference does not mean that our approach conflicts with
logical approach. As we have seen in the thesis, we can conceive of such a logic as a
specification language of processes. Once we succeed in relating our model with the
logic of actions, we may introduce the notion of imperfect actions to the logic, which

must be useful in studying the meaning of actions.

*David Traum for example suggested his theory [Tra94] may be implemented in the m-calculus.

we are going to
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‘We should however note that the notion of plans and goals is used differently in various
contexts. Some plans are only concerned with the structure of dialogue, while others
with that of tasks. The use of the particle, “ite”, may be studied in terms of its function
in structuring dialogue plans. There are a lot of things to be investigated in the area

of study. We hope we can investigate the issue and can study the interaction between

dialogue plans and task plans with our approach. Appendix A

Mbolecular languages

A.1 The language £;

A.1.1 The syntax of L,

The syntax of Ly is defined as is shown in the table A.1. The last rule ensures that 1
comes only in consequent of guarding formula. We also omit 1 in molecules because it
is always present. This is justified by the rule, 1 : 1 = 1 in the logic. In fact, every
execution of a particle can be followed by 1, which is not explicitly expressed in the
language for simplicity.

Some words follow on binding in nested molecules. We ensure a name should be bound
by the most inner binding force. For example, in the molecule, (v b)[@(b), (v b)[T(b)]], the
second particle, €(b), nested in another molecule is bound by the second inner operator,
not by the first. Therefore, it should be compiled to [@(b),(ba)].

A.1.2 The semantics of £,
Actions

The rule for actions is summarised as follows:

Sl By [CIRE N6 vy Cl«E

where « is unguarded with respect to constraints, C'; and a substitution environ-

ment, F.

A particle, o, is unguarded with respect to constraints, C', and a substitution environ-
ment, F, if

194



APPENDIX A. MOLECULAR LANGUAGES 195

P— M (molecule)
M — (va)[N] (Molecule with restrictions)
[[N] (Molecule without restrictions)
N— AJC (Molecule with constraints)
[A (Molecule without constraints)
A— a (particle)
| P (molecule
[A A (concurrent)
a —  T(Y) (exporting)
|2 () (importing)
|1 (unit)
C— a<a (guarding)
[[z=y] < a (match)
|C.C (conjunction)
f— a (particle)
|1 (no particles enabled)
Table A.1. The syntax of Lg
- there is no particle f in the molecule such that § < a is in C, and
- every match formula in the form of [z = y]| < a, if any, is satisfied with respect to
its substitution environment, f7.
Interaction

The rule for interaction is summarised as follows, assuming the compiling step:

la By 1 CTxExNy [ Cl £

where o and f are a pair of input and output actions connected by a channel, e.g,

a@(b) and a(z), unguarded with respect to C' and F, and

F is updated to F’ by incorporating the substitution occured upon the interaction,

e.g., {".}. The effect of substitution applies to the molecule, [y | C'].

A.2 Extension towards the full 7m-calculus

! and choice, 4+, cannot be specified within the logic, but we give cor-

Replication,
responding molecular forms for completeness. We also define the language that can

express temporal properties, liveness and safety, which is not part of the 7-calculus.
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A.2.1 Replication

Syntax is modified by adding the following rule to P:
P — ' M (replicable molecule)

Semantics is changed for interaction. We add to the rule the following rules, which

replicates a molecular if there is an interactable molecular with it.

- Mal, By 1 C Tl = al,[a, B4 1 C]*
where both « and 8 are ready to interact with each other, unguarded with respect

to C and I

A.2.2 Choice

Syntax is modified by adding the following rule to P:
P— M+ M (non-deterministic molecule)

Semantics is changed for action by adding to it the following rule. The change to the
rule for interaction is trivial.
Slat By T CHEE Ny [CIE

where either & or § is executed, unguarded with respect to constraints, C', and a

substitution environment, K.

A.2.3 Temporal property

Syntax is modified by adding to C' the following rules:
C— o= (liveness)
| #£ 3 (safety)

Semantics is changed for interaction. Only the interactions satisfying temporal property

are allowed to occur.

Sl By Ol EN[Y I ClxE
where o and § are a pair of input and output actions connected by a channel, e.g,
a(b) and a(x), unguarded with respect to €' and I,
the effect on substitution environments upon the interaction does not violate (',
FE is updated to E’ by incorporating the substitution occured upon the interaction,

e.g., {%.}. The effect of substitution applies to the molecule, [y | C'].
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