
A Process Algebraic Approachto Computational LinguisticsTsutomu FujinamiA thesis submitted in ful�lment of the requirementsfor the degree of Doctor of Philosophyto theUniversity of Edinburgh1996

AbstractThe thesis presents a way to apply process algebra to computational linguistics.1 We areinterested in how contexts can a�ect or contribute to language understanding and model thephenomena as a system of communicating processes to study the interaction between them indetail. For this purpose, we turn to the �-calculus and investigate how communicating pro-cesses may be de�ned. While investigating the computational ground of communication andconcurrency, we devise a graphical representation for processes to capture the structure of in-teraction between them. Then, we develop a logic, combinatory intuitionistic linear logic withequality relation, to specify communicating processes logically. The development enables usto study Situation Semantics with process algebra. We construct semantic objects employedin Situation Semantics in the �-calculus and then represent them in the logic. Through theconstruction, we also relate Situation Semantics with the research on the information
ow,Channel Theory, by conceiving of linear logic as a theory of the information
ow. To showhow sentences can be parsed as the result of interactions between processes, we present aconcurrent chart parser encoded in the �-calculus. We also explain how a semantic represen-tation can be generated as a process by the parser. We conclude the thesis by comparing theframework with other approaches.
1The ideas presented in the dissertation have been presented at three occasions. The idea to apply processalgebra to studying Situation Theory was �rst presented at the �rst International Workshop on ComputationalSemantics held at the Institute for Language Technology and Arti�cial Intelligence, Tilburg University, TheNetherlands in December 1994 [Fuj94]. The idea was re�ned and presented also at the 10th AmsterdamColloquium held at ILLC/Department of Philosophy, University of Amsterdam, The Netherlands in December1995 [Fuj96b]. Another idea to apply process algebra to studying feature structures and parsing was presentedat the second Conference on Information-Theoretic Approaches to Logic, Language, and Computation held atLondon Guildhall University in July 1996 [Fuj96a]. i brought to you by

C
O

R
E

V
iew

 m
etadata, citation and sim

ilar papers at core.ac.uk

provided by E
dinburgh R

esearch A
rchive

https://core.ac.uk/display/429734848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DeclarationThis thesis has been composed by myself and it has not been submitted in any previousapplication for a degree. The work reported within was executed by myself, unless otherwisestated.
August 1996

ii

AcknowledgementsThe ideas exploited in the thesis have been developed through a number of discussions withpeople who have in
uenced me in various ways. I owe most to Robin Cooper as my �rstsupervisor, with whom I often discussed how process algebra could be applied to studyingSituation Semantics. Jonathan Ginzburg as my second supervisor helped me notice there wasan interesting problem in the use of the Japanese particle, tte, which motivated me to look intoprocess algebra. The series of meetings with Robin and Jonathan, where David Milward wasalso present, were inspiring and directed me to investigating the problem further. YukinoriTakubo, who had already investigated the use of the particle, kindly sent me his papers withvaluable comments. Megumi Kameyama also helped me notice there was a dynamic aspectin the use of the particle. Jean Carletta pointed out the particle had to do with repair andmotivated me to study the phenomenon in broader contexts. My interest towards concurrencycan be traced back to the time when I worked for a company. Toshinori Watanabe used toencourage me to look into concurrency and convinced me that it was the most importantarea of study. I was lucky for an encounter with Robin Milner, with whom I met at a partyfollowing a concert. Although we did not talk about concurrency at all, his enthusiasm toScarlatti and harpshicords was impressive enough to tempt me to buy his book. BenjaminPierce and David Turner were helpful while I was programming a parser in PICT language.The discussion with Masahito Hasegawa was useful to sort out my ideas on Linear Logic,the �-calculus, and Category Theory. While I was thinking of applying my ideas to parsing,Gert Smolka kindly taught me about their parser encoded in Oz language. Esther K�onig-Baumer advised me to encode a chart parser. I am also thankful to Suresh Manandhar for hisadvice. The conversation with Alan Black was inspiring and a�ected me in shaping up myresearch program. The Map Task corpora were valuable sources to check my idea against realconversations. I thank people who have worked for these corpora, people at HCRC and ChibaUniversity. As for the Japanese version, I am specially thankful to Syun Tutiya and HanaeKoiso, who provided me with the corpus and related documents. Masato Ishizaki helped melook into these corpora with valuable advice. I �nally thank people who helped me come toEdinburgh and go through a di�cult time. The fun and joy I have got from the series ofconcerts at St. Cecilia's Hall made it easy to adapt myself to unfamiliar circumstances andiii

notorious Scottish weather. I thank John and Sheila Barnes, who introduced me to GeorgianConcert Society and invited me sometimes to their home for a musical experience. I owe muchto my wife, Yoshiko. Without her help, I could not �nish my study at all. I am thankful tomy father and mother in law, who understood my purpose for study and supported our lifein Edinburgh. I am also thankful to my mother and late father. I hope they will be amazedto know their genetic code played some role while the thesis was materialising.
iv

ContentsAbstract iAcknowledgements iii1 Introduction 11.1 Language use as actions . 11.2 Contexts: Linguistic data . 21.3 The information
ow by utterances . 71.4 Repair and operational semantics of natural language 111.5 Related work . 161.6 The aim of the thesis and overview . 202 A Calculus of Interaction 222.1 The �-calculus . 222.2 Graphic presentations of processes . 352.3 Representing computation with data
ow graphs 412.4 Constraints on computation . 472.5 The re
exive �-calculus . 562.6 Summary . 573 A logical speci�cation of mobile processes 583.1 Introduction . 58v

3.2 A Combinatorial Linear Logic . 703.3 A molecular language L0 . 743.4 The translation from L0 to C-ILL=e . 823.5 Non-determinism . 843.6 Discussion . 873.7 Conclusion . 944 Representations as processes 974.1 Introduction . 974.2 Primitive Situation Theory . 1004.3 A study of primitive Situation Semantics . 1054.4 Naive Situation Theory . 1144.5 Constraints . 1204.6 Quanti�cation . 1254.7 Discussion . 1304.8 Conclusion . 1415 Parsing as reaction 1445.1 Introduction . 1445.2 Feature structures as processes . 1475.3 Parsing as evolution of systems . 1525.4 A concurrent chart parser . 1625.5 Discussion . 1745.6 Conclusion . 1856 Conclusion 1866.1 Summary . 1866.2 Comparison with other approaches . 187vi

6.3 Future work: plans and goals . 190A Molecular languages 194A.1 The language L0 . 194A.2 Extension towards the full �-calculus . 195
vii

List of Tables2.1 Free and bound names . 283.1 The axiom scheme and rules for tensor theory 633.2 Axioms and rules for Combinatorial Intuitionistic Linear Logic, C-ILL0 . . . 713.3 Axioms and rules for the exponential . 723.4 The rule for thinning and its derivation . 723.5 The rule for contraction and its derivation . 733.6 The axioms for equality . 743.7 Equations for intuitionistic linear categories 954.1 Girard's translation of intuitionistic logic to linear logic 984.2 Axioms and rules for necessity and possibility 1244.3 Axioms and rules for products and coproducts in C-ILL0 1254.4 Axioms and rules for quanti�ers . 1264.5 Equations for quanti�ers . 1264.6 8-adjunction . 1264.7 9-adjunction . 1274.8 The axiom and rule for linear implication, (. 1274.9 The construction of quanti�ed formulas . 1314.10 The principle of information
ow: Barwise's postulates 1424.11 The axioms for Channel Algebra . 143viii

5.1 Encoding the lexicon for \walk" (5.5) as a set of processes 1525.2 The de�nition of C2 and C3 . 1545.3 The steps until C3l(y) is triggered . 1555.4 The state of C30 after recording neighbours 1565.5 Retrieving the information on category of C2 1585.6 The de�nition of C6 . 1595.7 Retrieving the access to C1 and C4 . 1615.8 The de�nition of D4 . 1655.9 Retrieving values of list . 1685.10 The initial state of C3 before recording neighbours 1705.11 The initial state of C6 before recording neighbours 1725.12 Logical formulas specifying the particles in the box 1745.13 The de�nition of C2 to store a discourse marker x 1765.14 The de�nition of C2 with the feature idx . 177A.1 The syntax of L0 . 195
ix

List of Figures1.1 An excerpt from the HCRC Map Task Corpus (1) 41.2 An excerpt from the Japanese Map Task Corpus (1) 41.3 An excerpt from the HCRC Map Task Corpus (2) 51.4 An excerpt from the Japanese Map Task Corpus (2) 61.5 kita-no-numa(east lake) in the map . 61.6 An excerpt from the HCRC Map Task Corpus (3) 71.7 An excerpt from the HCRC Map Task Corpus (4) 71.8 An excerpt from the Japanese Map Task Corpus (3) 81.9 The information
ow by utterances . 91.10 Contexts in the information
ow . 91.11 An example of the use of \tte" (1) . 121.12 An excerpt from the HCRC Map Task Corpus 152.1 A simple automaton . 232.2 A simple communicating system . 242.3 A channel . 242.4 A data communicating system . 252.5 Monadic �-calculus: motivation . 262.6 Monadic �-calculus: mobility . 272.7 Passing channels through private channels . 282.8 Scope intrusion . 29x

2.9 Scope extrusion . 302.10 Reduction relation for the �-calculus . 342.11 Structural congruence relation for the �-calculus 342.12 The description of a vending machine . 352.13 The relation between channel, port, and bu�er 372.14 An ambiguous graph . 382.15 Name depicted as rectangle . 382.16 Name in two colours . 392.17 A representation of (ahbi ja(x)) . 392.18 A modi�ed version with unshaded nodes . 392.19 A �-net node . 402.20 A presentation of ahbi.0 ja(x).0 ��! 0 j0fb=xg 412.21 A representation with the board to record e�ects 422.22 Merging nodes . 422.23 Representation of match with the e�ect board 432.24 Garbage collection . 442.25 Replication with box . 452.26 A wrong graph of (a(x) ja(x) jahbi) . 462.27 The correct graph of (a(x) j a(x) jahbi) . 472.28 A choice arc between ahxi.P and bhxi.Q . 472.29 A data
ow graph . 482.30 The case where the interaction between dhci and d(e) occurs �rst 502.31 The case where the interaction between ahbi and a(c) occurs �rst 512.32 A mobile process interacting with from bottom 532.33 A mobile process interacting with from top 542.34 A data
ow graph with two possible substitution environments 552.35 A target-arc cycle (1) . 57xi

2.36 A target-arc cycle (2) . 573.1 The tree representation of a:(b:0+ c:0) . 593.2 The tree representation of a:b:0+ a:c:0 . 603.3 An initial state of a petri net . 623.4 The state of the net after �ring t and t' . 623.5 A petri net translation of a:0 j a:0 . 643.6 The �nal state of the petri net . 643.7 A modi�ed petri net of a:0 j a:0 . 653.8 The �nal state of the petri net . 663.9 A data
ow graph translation of a(y):0 j ahxi:0 673.10 A data
ow graph translation of a(y):y(z):0 j ahbi:bhxi:0 693.11 The guarding relation of a(x) � b(y)anda(x)� c(z) 763.12 The guarding relation of a(x) � b(y)andc(z)� b(y) 763.13 The data
ow graph composed of particles, ahbi, bhci, a(x), and x(y) 773.14 The data
ow graph decorated with actions 833.15 A non-deterministic interaction . 874.1 Constraints, connections, and links . 1094.2 The structure of the infon, hh smile, r ! j; 1ii 1194.3 The structure of the infon abstract, �[r! x]hh smile, r ! x; 1ii 1194.4 The case where John must smile when Mary sings 1234.5 The case where John may laugh when Mary sings 1234.6 An excerpt from the Japanese Map Task Corpus (4) 1364.7 The data
ow graph of \Mary believes that John smiles" 1374.8 The data
ow graph of a shared situation . 1394.9 The data
ow graph of a more complex shared situation 1405.1 Parsing as interactions . 146xii

5.2 The subsystems connected via accompanying processes 1535.3 The agent C6 and its relation with others . 1595.4 A chart of \a man walks" . 1635.5 A chart of \he sees desks in the room" . 1635.6 The state when D11 is created . 1645.7 The state when D7 is created . 1645.8 The access to C7 passed to D3 and D11 . 1645.9 A single list-cell . 1665.10 An empty list-cell . 1665.11 A list of a and b . 1675.12 Adding c to the list of a and b . 1695.13 The initial state . 1735.14 The state when D7 and D11 are created at the same time 1735.15 The access to C7 is lost for D11 . 1735.16 The structure of interactions between C2 and C3 1755.17 The information
ow by utterances . 1785.18 A system encoding (5.12)a . 1805.19 The subsystems encoding parts of meaning 1815.20 The �rst step of interaction . 1825.21 The second step of interaction . 1825.22 The third step of interaction . 1835.23 The fourth step of interaction . 1836.1 An example of the use of \tte" (2) . 1916.2 An example of the use of \tte" (3) . 192xiii

Chapter 1IntroductionThis thesis presents a formal theory of language use as actions with the emphasis on thenotions of communication and concurrency. Our theory is based on process algebra, namelythe �-calculus [Mil93b, MPW92], with which we model the process of language understanding,i.e., parsing, interpreting, and evaluating utterances. We start this introduction by clarifyingour approach, then discuss how our theory may contribute to understanding language use.1.1 Language use as actionsWe investigate actual utterances rather than our capability of understanding sentences. Theapproach is called performance theory and is contrasted with competence theory advocatedby Noam Chomsky [Cho65], where our capability of understanding sentences is the targetof study, not actual utterances. Although the latter approach has been dominant in thedevelopment of linguistic theories, some people, especially people working on dialogue [Cla92],are turning to the former approach, looking into actual utterances to study language use. Wefollow this move and propose a way to study linguistic performance, not of competence.To investigate actual utterances will raise interesting issues to our study, which was notpaid much attention in competence theory. When we look into a corpus recording actualconversations, for example, we can soon recognise that people do not always utter completesentences. They often pose their utterance, waiting for a response from the other, or eventhey may be interrupted by the other before completing a sentence. They may stop utteringa sentence in the middle and restart uttering a di�erent sentence. Sentences are often notwell-formed and may not even be a sentence, yet people can proceed with their conversationto understand each other. This sort of phenomena go beyond the scope of competence theory,but how can we study them, then? 1

CHAPTER 1. INTRODUCTION 2Our strategy is to view language use as a class of human actions to communicate with eachother as proposed by speech acts theorists such as John Austin [Aus62] and to study itfrom broader perspectives, where utterances are considered as just one way of conveyinginformation from one to another. The key is that people can get themselves understood withvarious means, not limited to language, e.g., pointing an object. The strategy forces us, onone hand, to set up a general theory of information
ow and requires us, on the other hand,to test the theory against real data. In this thesis, we con�ne ourselves to building the theoryand will not test it against data. We explain, however, our motivation of the project throughthe examination of linguistic data, which we believe can be modelled with our approach.1.2 Contexts: Linguistic dataThe factors involved in actual utterances but not in sentences in themselves are often termedas `contexts'. Contexts are thought to determine or at least in
uence the meaning and contentof sentences uttered in a particular occasion. As the term is used in so many di�erent ways,we specify it into just three factors: circumstances, plans and goals, and discourse. These areexplained in the following through the examination of excerpts from the HCRC (the HumanCommunication Research Centre) Map Task Corpus [ABB+91] and the Japanese Map TaskCorpus [AIK+94]. We point out for each factor that communication and concurrency play acentral role.The Map Task is designed at HCRC, University of Edinburgh, to record spontaneous dialoguebetween English native speakers. In the task, the route giver (G) and the route follower (F)are given slightly di�erent maps. For example, an item may be missing in one's map. Thesame item may be labelled with di�erent names. They are then required to draw the correctroute on the follower's map only through conversation and eye contact.1 The giver knowstheir starting point, goal, and the route, while the follower knows only the starting point.The di�erences between their maps may make the task di�cult. Some items are missing onthe other's map, and other items may be labelled di�erently. The Japanese Map Task Corpusis designed and recorded at Chiba University, Japan, following the HCRC project in principlebut for a di�erent target language, Japanese.1.2.1 CircumstancesOne di�erence between utterances and mere sentences is that uttering a sentence involves thecircumstance that the sentence concerns, which may in
uence the meaning and content. The1They may not be allowed for eye contact in a di�erent setting.

CHAPTER 1. INTRODUCTION 3same sentence and word may mean di�erent things under di�erent circumstances. Withoutidentifying the circumstance, we cannot understand what a sentence means in reality, itscontent. In the Map Task, the circumstances are �xed by isolating dialogue participantsinto a room, and their maps comprise most of their circumstances. Given maps as theircircumstances for dialogue, one has to relate labels uttered by another with actual items inhis map. Thus, maps form part of contexts for their conversation.As for circumstances, we are interested in the way they are utilised by participants duringconversations.2 An observation reveals that participants can extract information in parallelfrom circumstances while they are listening or talking to others. In the excerpt shown in the�gure 1.1, the giver is conducting the follower to take the correct route along the west lake,which both can see on their maps. It seems that the follower, hearing the giver's utterance,\a half shape" (G3), is trying to pencil in the route on his map while he is uttering F3 andF4. Replying to the follower, the giver must be paying his attention to the route on his mapwhile he is listening to the follower's utterances and replying to him (G4 and G5).The same thing can happen regardless of the language they use. Figure 1.2 is an excerpt fromthe Japanese Map Task Corpus in the same situation. While they are discussing the shapeof the lake (from G3 to F4), they are clearly paying their attention to the lake on their maps.These evidences should be enough to understand that circumstances serve as contexts whileparticipants are engaged in a conversation and that they can extract information from theircircumstances in parallel to their talking or listening to others.1.2.2 Plans and goalsPlans and goals that participants have in their mind can in
uence their utterances and un-derstandings. Observe another excerpt from the HCRC Map Task Corpus (Figure 1.3) withdi�erent maps from the above, where the giver is trying to conduct the follower to come tothe level of a lake. In G3, the giver �rst tries to conduct the follower directly to come to thelevel, but realizes that he may not recognise the lake and interrupts his utterance (\walk rightup by : : :"). He changes now his plan3 in G4 and asks if the follower has the lake in his mapby saying \do you have a lake?" After con�rming that the follower has it, the giver resumeshis plan in G5. This is an example where plans can in
uence utterances.Plans and goals can also in
uence their understandings. In another excerpt from the JapaneseMap Task Corpus (Figure 1.4), which is another part of the session shown in Figure 1.2, the2Another important issue is how an utterance is systematically evaluated under di�erent circumstances,but it is not the aim of this thesis.3More accurately, this is a plan for discourse, which should be distinguished from that for tasks. I owe toSyun Tutiya in noticing the distinction.

CHAPTER 1. INTRODUCTION 4G1: Okay. We're going straight due north. At the top there there's a west lakeF1: Okay.G2: which we're going to pass on the south erm southeastF2: Mmhmm.G3: side. And we're gonna do that in a curve, almost a half shape.F3: A half shapeG4: Yeah.F4: to the southeast?G5: YeahF5: Right, okay.G6: the southeast. And continue up north slightly.Figure 1.1. An excerpt from the HCRC Map Task Corpus (1)G1: toriaezu migi-hashi-notry righthand sideF1: migi-hasirighthand sideG2: hai, mitizoi-ni zutto itte-ehyes, along the route we are going straight for a whileF2: itte-ehWe are going straightG3: de, minami-no-numa-no-katati-ga nan-kathen, the form of the west lake looks... as ifF3: nan-darou nan-ka kou ue-no hou-de 2-tu-no kouwell as if two things upwards are...G4: wakarete-masu-yo-ne-ehbranching, isn't it?F4: eh eh ehyeah, yeahFigure 1.2. An excerpt from the Japanese Map Task Corpus (1)

CHAPTER 1. INTRODUCTION 5G1: Have you got a white mountain?F1: Yes, I have a whiteG2: Right. UpF2: mountain to my north.G3: past ... Up on the left of the white mountain, walk right up by ...F3: Uh-huhG4: Erm, do you have a lake? Right up at the top?F4: Yes, uh-huh.G5: Right. Walk ... Keep walking north until you get to the level of the lake.F5: Uh-huh. Figure 1.3. An excerpt from the HCRC Map Task Corpus (2)giver tries to take the follower to near a lake. The giver at G3 uses the word mann-naka(centre4) to express the point to which the follower should come to, the point that is shownas A in Figure 1.5. The point is in centre or middle relative to the side it faces. The meaningof the word is however ambiguous as it can mean another point B, too, in Japanese, thecentre inside the lake. Realising the possibility of misunderstanding, the giver is looking foranother appropriate word. The follower however can disambiguate the meaning in F3. Thedisambiguation is easy as the route cannot go into the lake in the task. The giver's joke andthe follower's reaction in G4 and F4, respectively, indicate that they are certainly aware ofthe ambiguity and that they could disambiguate it. We see in the example that the plan5 fortasks may contribute to disambiguating expressions.1.2.3 DiscourseFor the moment, we use the term, discourse, in a very narrow sense, to mean all sentences ut-tered up to an utterance. Discourse provides for references to succeeding utterances. Observethe other excerpt from the HCRC Map Task Corpus (Figure 1.6). The demonstrative, \that",does not make sense without its preceding sentence, which refers to the \abandoned cottage".4In English, it could be better translated to middle, so that the two points can be distinguished lexically.But the word can mean both points in Japanese.5This sort of plan should be distinguished from discourse plan, whose example we have seen in English inthis subsection.

CHAPTER 1. INTRODUCTION 6F1: jaa, golf-jo-no migigawa-wo toht-tethen, righthand side of the golf course we are goingG2: migigawa-wo toht-te-tte kita-no numa-nowe are going righthand side, and as for the east lakeF2: kita-no numa-noas for the east lakeG3: nan-ka, mann-naka nan-tuun-desu-ka kita-no numa-made tuitarawell, centre how can I say, when you come to the east lakeF3: un, mann-naka kita-no numa-no mann-naka-ni toriaezu ike-ba iin-desu-neyeah, centre to the centre of the east lake I should go, shouldn't I?G4: numa-ni okkoccha dame-desu-yo (laugh)into the lake you shouldn't go (laugh)F4: (laugh) az, hai, ikimashi-ta.(laugh) yes, I've come to.Figure 1.4. An excerpt from the Japanese Map Task Corpus (2)

centre A

centre B

route

kita-no-numa
(east lake)

Figure 1.5. kita-no-numa(east lake) in the map

CHAPTER 1. INTRODUCTION 7Another interesting case can be found in Figure 1.7. This time, the follower's utterance, F2,\Over the top of the?", does not make sense in itself. Unless the discourse is given, it cannotbe understood as referring to part of the preceding sentence. The next utterance of the giver,\slate mountain?" (G3), too, needs the discourse to make sense.G1: And immediately below that bend there is an abandoned cottage.F1: OkayG2: And we're passing above the top of that. We're going to continue in that sort of shape,a big wide.F2: Mmhmm Figure 1.6. An excerpt from the HCRC Map Task Corpus (3)G1: When you get to the savannah, before you turn to your left, so you're heading northagain.F1: Okay.G2: Until you get over the top of the slate mountain.F2: Over the top of the?G3: slate mountain?F3: Don't have a slate mountain.G4: Mmhmm Figure 1.7. An excerpt from the HCRC Map Task Corpus (4)Discourse plays an important role in Japanese, too. In the other excerpt from the JapaneseMap Task Corpus (Figure 1.8), one can observe that at F1 the follower repeats part of thesentence prior to it, hidari-naname-mae, as is observed in English.1.3 The information
ow by utterancesIn the above, we have seen that contexts, i.e., circumstances, plans and goals, and discourse,can in
uence the way that the meaning and content of utterances are understood. In thissection, we �t them into a general picture of information
ow by utterances.
CHAPTER 1. INTRODUCTION 8G1: ee-to, 90-do-made ika-nai-n-desu-kedo chotto hidari-yori-nieh, not as wide as right angle, but a little lefthand sidehidari-naname-mae-gurai-ni magaru-n-desu-newe are going to turn forward lefthand side.F1: hidari-naname-mae?forward lefthand side?G2: ee, sinkou-houkouyes, in forward directionFigure 1.8. An excerpt from the Japanese Map Task Corpus (3)1.3.1 Linguistic channelsThe �gure 1.9 depicts our view on the information
ow by utterances, i.e., how informationcan be conveyed from one to another by utterances. In our view, a particular utterancedenotes or signals a particular situation, the situation that the utterance intends to conveyto another. We call the relation between an utterance and a situation signalling relation. Torecognise the signalling relation, participants must classify it as a particular belonging to acertain type.To classify a particular signalling relation between a particular utterance and a situation, onehas �rst to categorise the utterance into a sentence type. We call the phase as parsing. Sen-tence types can be expressed, for example, with syntactic structures and lexical information ofeach word. Syntactic theories are concerned with the sentence type and parsing phase. Givena sentence type, one can relate it with a situation type, whose phase we call interpretation.We also call the phase of relating a situation type with a particular situation as evaluation.We owe Situation Theory [BP83] and Channel Theory [Bar93, BS92, SB93] for depicting theabove picture. The emphasis on the distinction between particulars and types are centralto Situation Theory. We inherit the idea in distinguishing utterances from sentence typesand situations from situation types. The relation between sentence types and situation typesare often termed as constraints in the theory, whose concept is further developed in ChannelTheory. Constraints can also be called indicating relation. The distinction between signallingand indicating relation is central to Channel Theory. They form jointly channels. Respectingthe terminology of the theory, we will call the steps depicted in the �gure linguistic channels.1.3.2 Contexts in linguistic channelsInto the linguistic channels, the three factors that we have listed as comprising contexts canbe �tted as shown in Figure 1.10. Discourse serves as a context to parsing phase, plans and

CHAPTER 1. INTRODUCTION 9

utterance

sentence type

situation

situation type

parsing

interpretation

evaluation

signalsFigure 1.9. The information
ow by utterancesgoals to interpretation phase, and circumstances to evaluation phase. In the previous section,we have observed that circumstances can determine the content of utterances, that plans andgoals can in
uence the meaning, i.e., situation type, and that discourse can play a role inidentifying sentence types of utterances. There could also be interactions between these threefactors of discourse, plan-goals, and circumstances, through which more complex forms ofinteractions between the channel and circumstances may occur. We will however simplify ourconceptualisation in the thesis.

utterance

sentence type

situation

situation type

parsing

interpretation

evaluation

signals

circumstancesdiscourse

plans
& goals

Figure 1.10. Contexts in the information
owGiven the above picture, we can ask three important questions:1. how can discourse interact with the parsing phase?2. how can plans and goals interact with the interpretation phase?, and3. how can circumstances interact with the evaluation phase? enumerate To answer to
CHAPTER 1. INTRODUCTION 10these questions, however, we have to investigate how the following items of informationare organised and represented within an agent:� sentence types, situation types, and� discourse, plans and goals, and circumstances.These issues should be studied with consideration to the above three questions. Thatis,(a) Sentence and situation types must be organised and represented in the way thatthey can interact with discourse, plans and goals, and circumstances at any point,and(b) Discourse, plans and goals, and circumstances, must be represented in the waythat the phases of parsing, interpreting, and evaluating utterances can interactwith them at any point.1.3.3 Communication and ConcurrencyThe three questions and the two desiderata above lead us to the notions central to ourtheory, communication and concurrency. In our approach, we will conceive of linguisticchannels as a system of communicating processes, where various objects such as sentencetypes, situation types, circumstances, and situations are modelled as processes, too.The systems can be conventionally regarded as consisting of three subsystems to parse,interpret, and evaluate utterances, respectively:� The �rst subsystem parses utterances and is composed of four sort of processes: the�rst one for representing utterances, the second one for parsing utterances, thirdone for representing discourse, and the fourth for representing sentence types.� The second subsystem interprets sentence types and is composed of four sort ofprocesses. They represent sentence types, plans and goals, and situation types,and organise processes representing situation types. The processes representingsentence types are shared with the �rst subsystem.� The third subsystem evaluates situation types and is composed of four sort ofprocesses: the �rst one for representing situation types, the second for representingcircumstances, the third for organising processes representing situation types, andthe fourth for representing situations. The �rst sort of processes representingsituation types are shared with the second subsystem.

CHAPTER 1. INTRODUCTION 111.4 Repair and operational semantics of natural languageWhile our modelling of language use enables us to study the spontaneous information
ow brought about by utterances and the in
uence of contexts on it in detail, a ques-tion remains to be asked: How can the modelling contribute to the study of naturallanguage semantics? Put the question di�erently, what aspects of language use can becaptured better in the long run with our approach? In the thesis, we con�ne ourselvesto studying how information can be conveyed from one to another by utterances ratherthan investigating what the meaning of a particular class of sentences is. The latter sortof study consists of the mainstream of research in natural language semantics. Giventhe tendency, one may ask why we have to study the information
ow by utterances,wondering whether such an enterprise is necessary for our understanding of languageuse.It may not be problematic how information can be conveyed as long as we are onlyconcerned with language use in ideal environments. Every utterance can convey toanother what it is intended to mean without failure. This is however not always the casein our real life; One may not hear the other properly, may not understand what he means,or may not relate the meaning to particular situations. We think our approach makesit possible to study the meaning of sentences when there is a failure in communication.We are particularly interested in repair of common ground in dialogue in this respect.The notion of repair can be for example explained by Scheglo� asPast work has given strong indications of a fundamental form of organi-zation in talk-in-interaction that provides mechanisms for the participants todeal with an immense variety of troubles in speaking, hearing, or understand-ing the talk. These range from inability to access a word when needed orto articulate it property, to transient problems in hearing (e.g., due to am-bient noise), to variously based problems of understanding; the \variety oftroubles" thus includes various classes of problems and a virtually unlimitedarray of \sources" or \causes." This \self-righting mechanism" that allowstalk-in-interaction to keep itself going in the face of such \problems" we havetermed the organization of repair. A brief resum�e of some main features ofthe organisation of repair will provide the context for the speci�c concerns ofthis article.([Sch92]: Appendix A)The challenging question in terms of semantics is what the meaning of sentences iswhen they are uttered for repairing their common ground. They cannot denote anyextensional entities as participants may be discussing what they are. They cannot beintensional as participants may negotiate what they mean. Extensions and intensionsmust be somehow �xed so that they could be used as reference points, but they arein
ux while participants are repairing common ground. The term,
oating arena,
CHAPTER 1. INTRODUCTION 12named by Scheglo� [Sch92], expresses the nuance of the problem well. The notionof awareness/vividness studied by Carletta [Car92], too, addresses the issue from adi�erent perspective. We expect we can approach the problem from operational pointof view. Before proceeding to discussion, we examine examples to clarify the issue.1.4.1 A Japanese phrase-�nal particle, \tte"We examine the use of a Japanese phrase-�nal particle, \tte", because it is an examplewhere repair is evident in linguistic expression. In the excerpt from the Japanese MapTask Corpus shown in Figure 1.11, the participants have the same item but nameddi�erently: rotenburo (hot wells) in the giver's map and iwaburo (hot springs) in thefollower's. Just before the conversation starts, they have found that the follower has nota mountain in his map, while the giver has it in his map, and are consequently alerted.To proceed with their conversation, the giver asks G1 if the follower has rotenburo (hotwells) in his map, marking the noun phrase with the particle, \tte". His expectation iscon�rmed by his response, F1, and the fact becomes commonly known that the giverhas rotenburo (hot wells) while the follower does not. Looking at his map, the followerinforms him that he has instead iwaburo (hot springs), marking the phrase with theparticle.G1: jaa, rotenburo-tte arimasu?then, do you have hot wells? (meta)F1: rotenburo-mo nai-mitaiIt seems that I don't have hot wells either.G2: naiz,eh, you don't have it.F2: demo, iwaburo-tte-iu ofuro-wa arubut I have wells called hot springs.(meta)G3: iwaburo, ettoh, sorekanahhot spring! ah, that may be it.Figure 1.11. An example of the use of \tte" (1)One explanation has been proposed by Takubo [Tak89, Tak90, TK92] on the meaningof the particle, who observed it can mark noun phrases whose referent or meaning is notknown to a participant engaged in the dialogue whoever he is, the speaker or the hearer.As the meaning concerns in a sense the mode of meaning, shared or unshared, he callednoun phrases marked with the particle meta-linguistic expression, whose terminologywe follow here. What makes it di�cult to understand the meaning of the particle isthat the speaker can mark a noun phrase with it even when he knows its meaning and

CHAPTER 1. INTRODUCTION 13referent if he thinks the hearer does not, as is observed in the above excerpt (Figure1.11). The factor can be explained as an example of collaboration between participantsor emphaty to the hearer [Kun87].1.4.2 Imperfect information
owThe participants in the above excerpt seem to be communicating with each other in
oating arena. The question to be asked now is what these two sentences, G1 and F2,mean, where the meta-linguistic expression is used. The meaning of G1,rotenburo-tte arimasu? (do you have hot wells? meta),cannot be equivalent with that of another sentence,rotenburo-wa arimasu? (do you have hot wells? topic).Similarly, the meaning of F2,demo iwaburo-tte-iu ofuro-wa aru(But I have wells called hot springs. meta),is di�erent from that of another sentence,demo iwaburo-wa aru (But I have hot springs. topic).What makes these di�erences?The di�erence must be in the speaker's uncertainty to the given items in the hearer'smap. But how can we capture the meaning of sentences uttered in the
oating arena?To this question, our answer is given from an operational point of view: The information
ow by the utterance is imperfect. The notion has been proposed in Channel Theoryand has been studied in detail. When their common ground is �rmly �xed, linguisticchannels work perfect; There is no fear of misunderstanding. One can listen to theother properly, can understand the meaning of sentences, and can �gure out what theydenote. Channels may be imperfect, however; One may not hear the other properly,may not know the meaning, or may not �gure out what they denote. In the aboveexcerpt, the channel works imperfect because it is unsure if they can jointly identify theitems uttered by them.The advantage of adopting the notion, imperfect information
ow, is that we do not needto throw out all the information we have obtained from utterances when communicationpartly fails. Utterances can still contribute to classifying and updating their commonground even the information
ow involved is imperfect. Such a view �ts our intuitionas to how natural language works in communication.Another good point of operational account is that it is harmonious with model-theoreticsemantics. What has been investigated in semantics of natural language is all perfect
CHAPTER 1. INTRODUCTION 14cases, where we do not have to care about the imperfectness. Considering imperfectcases can extend the �eld of study, and we we may study operational aspect of language.The move however does not con
ict with model-theoretic approach. We will showthrough the study of Situation Semantics that formal semantic theories could be builtup on our operational semantics by regarding semantic objects as specifying propertiesof processes. Our work therefore should be regarded as an extension of formal semanticsrather than as a completely new approach.1.4.3 Imperfect information
ow in EnglishWe can apply the idea of perfect/imperfect information
ow to English as well. Figure1.12 shows an excerpt from the HCRC Map Task Corpus. Here the giver has \trigpoint" in his map, while the follower does not. At G4, the giver introduces the item,\trig point", asking the follower if he has it in his map. After realizing he has not it,through F4 to F5, the giver tries to persuade the follower to assume there is a trig pointin his map at G6. Interestingly, he �rst refers to the item as a de�nite description, \thetri(g point)", then repairs his utterance, changing it to an inde�nite description, \a trigpoint". We can observe in this repair that the imperfectness of their communicationcan certainly a�ect one's utterance.The meaning of inde�nite descriptions are accounted for as introducing a new discoursemarker according to dynamic semantics [GS91b]. Given the claim is true, what im-plication can be induced when a speaker utters an inde�nite description repeatedly asis observed in the excerpt? The claim faces a di�culty; the speaker is regarded to beintroducing a new discourse marker each time he utters \a trig point". Our answeris that the claim is true under the condition that the information
ow is perfect, butit does not hold when the information
ow is imperfect. By distinguishing these twomodes, we can retain the meaning of inde�nites as introducing a discourse marker andcan explain why he repeats the noun phrase many times.The approach of introducing the perfect/imperfect
ow to semantics enables us to de�nea meaning for incomplete utterances such as the one observed in G8. The giver istrying to grade-up the status of \trig point" from inde�nite to de�nite description,but he is hesitating to do so, recognizing the follower's di�culty to accept the itemas an established one between them. Such an expression as \the : : : " has not beenconsidered as target of study in semantics, but we can capture the meaning in terms ofthe information
ow.

CHAPTER 1. INTRODUCTION 15

G1: Right, so you're gonna almost follow the course of that right ... that west lake to theeast, the east side of it ... you're gonna follow the c the course of it.F1: Just ... just coming in at the base of it, then?G2: Yeah, just at the base, and then follow the course of it round sort of a u, an s shape.F2: So is it a very very big wide u soG3: Yeah.F3: I'm gonna avoid som ... so that ... I'm avoiding something at theG4: Well you've got a trig point, do you have a trig point?F4: No.G5: No.F5: Nope.G6: Right, so in between your west lake and the tri There's a trig point, right?F6: Right.(after 17 utterances)G7: So in between it would be ... It would be in between the farmed land and I havea trig point.F7: Okay �ne, right.G8: Right, okay. So it's just above the ... just at the ... just before the tip of that west lake,but just at the east co ... just at that east coast, right?F8: Okay, �ne right, yeah. Uh-huh.Figure 1.12. An excerpt from the HCRC Map Task Corpus
CHAPTER 1. INTRODUCTION 161.5 Related work1.5.1 Situation Theory and Channel TheorySituation Theory and Channel Theory are our starting point and form a basis of ourtheory. The project can be regarded as an enterprise to base those theories on a compu-tational ground with an application in mind, natural language processing. The projectis motivated by the result of another project to analyze the meaning of the Japaneseparticle in dialogue with Situation Theory and Channel Theory. The idea of linguisticchannels came out through the investigation of the particle, but machinery provided bythose theories was not enough to implement a natural language processing system totest the idea against real data, which have led the author to process calculi.The project is by no means the �rst attempt to base Situation Theory on a compu-tational ground. There exist two other projects: Astl [Bla92] and Prosit [NPS91].Astl is a computer language whose basis is in Situation Theory. The language imple-ments most important features of Situation Theory: individuals, relations, parameters,situations, situation types, propositions, and constraints. It also o�ers a set of inferencerules to prove propositions about a system of propositions and constraints. Prosit isa knowledge representation language based on Situation Theory and o�ers a represen-tation of individuals, relations, parameters, situations and constraints. The languagehowever provides for more powerful facilities such as forward and backward search byrules, which is not part of Situation Theory. It is fair to say the language is partly basedon Situation Theory but is equipped with other facilities useful as a knowledge represen-tation language. Compared with Prosit, Astl is a more conservative implementationof Situation Theory, and its intended application is natural language processing ratherthan knowledge representation.6Our project is bene�ted from the results of these projects in considering computa-tional issues related to Situation Theory. An important element of the recent versionof Situation Theory which is missing in those languages, however, is abstraction andanchoring. The introduction of the apparatus is motivated to model Discourse Rep-resentation Structures (DRSs). In the research on the semantics of natural language,Discourse Representation Theory (DRT) [Kam84, KR93] has been playing an impor-tant role, and a number of researchers are trying to base the theory to a computationalground. Situation Theoretic DRT [Coo93a, Coo93b] is one of such attempts, whereDRSs are regarded as an abstraction of situations. Computationally, the operation canbe studied in relation with the � abstraction. The problem is that parameters in DRSs6There is also a work by Glasbey [Gla90], who extended Robin Cooper's Situation Theory based processingenvironment in Prolog to implement her theory of tense and aspect.

CHAPTER 1. INTRODUCTION 17must be abstracted over and anchored to simultaneously, which goes beyond the fa-cility of the �-calculus. Confronted with the problem, most researchers are trying toenrich the �-calculus. The solution proposed in EKN is, for example, to index parame-ters so that they can be anchored to regardless of the order of substitution operations(x4.2.5 and x4.2.6). Pinkal's compositional DRT [BMM+94] preserves the �-calculus,but devises a compose function that will do the same job, i.e., managing the anchoringoperation so that parameters can be substituted by proper values.Given our motivation to study linguistic acts, the issue of abstraction and anchoringmust be investigated as the most important problem in our project. To base simultane-ous abstraction on a computational ground, however, we do not extend the �-calculus,but choose a process calculus.1.5.2 Process calculiGoing back to the intuition to regard DRSs as an abstract object, one can argue thatDRSs are meant to model a frame of mind, whose slots will be �lled with concrete val-ues when embedded into an environment. In this conceptualisation, anchoring can beregarded as a process of �lling those slots. Such a process can be captured with the ideaof simultaneous abstractions, but it can be modelled more directly as concurrent inter-actions of an agent with environments [Fuj94]. This conceptualisation �ts with a recentdevelopment of Situation Theory, too, where indices are not merely natural numbers orutterances, but a more complex object that involves a referring action [Coo93a].To implement the idea of concurrent interactions, we turn to a process calculus, namelythe �-calculus [Mil93b, MPW92]. The calculus is proposed as a model for concurrentprocesses and can be used to model linguistic acts mentioned above as well, which is themain argument of this thesis. The striking point of the calculus is that it can model theindexed abstractions naturally. The following is, for instance, an explanation on termsof the calculus:The �rst class of terms consists of guarded terms g:P , where P is a termand g is a guard; guards g have the formg ::= xhyi j x(y)Informally, xhyi.P means `send the name y along the link named x, and thenenact P '; on the other hand, x(y).P means `receive any name z along the linknamed x, and then enact Pfz=yg'. Thus the guard x(y) is like the �-pre�x �yin that it binds y. ([Mil92c]: p.121)Thus, we can see a �-calculus term, x(y), as an indexed abstraction over y with x. Thiscorrespondence motivates us to look into the calculus in depth for linguistic applications.
CHAPTER 1. INTRODUCTION 18It may appear to be odd to model situation theoretic objects based on process calculi,but Situation Theory has been historically bene�ted from work on process calculi. Forinstance, one of the motivations of Non-Well-Founded Set Theory [Acz88], which lays afoundation for Situation Theory [AL91], is to de�ne a semantics for Synchronous Cal-culus of Communicating Systems (SCCS) [Mil83, Mil89], a precursor to the �-calculus.Therefore, it should not be so di�cult to model an earlier version of Situation The-ory [BE87] with SCCS. But we are here interested in exploring the �-calculus to modelmore recent versions of Situation Theory.It has been shown that with the �-calculus we can encode various data structuressuch as list [Mil93b, MPW92], the �-calculus [Mil92c], and a concurrent object-orientedlanguage [Wal95]. Our project is bene�ted from these encodings and aims to apply thetechnique to computational linguistics.1.5.3 Dynamic semanticsIn connection with DRT, there are several projects for reworking the theory in logicalsetting, which are often termed as dynamic semantics (e.g., [GS91a, GS91b, Mus92,Mus93]). The diversity of those projects makes it di�cult to compare our work withthem in detail, but we take the same approach in formalising ideas, program logic. Thedi�erence is in the selection of models.To clarify our relationship with those projects, we examine the relation between programand logic. The aim of dynamic logic [Pra81], a source of insight for dynamic semantics,is to characterise programs and infer its properties logically, e.g., what value will beassigned to a variable when an instruction is executed. Let P be a program denoting afunction or relation, and ' a formula. A dynamic logic formula is expressed as:[P]'where the program is embedded in the formula as modal operators. The meaning ofthe expression is that the state of machine after executing P is characterised as '. AHoare-style formula too can be categorised into this formalism since f'gPf g, the statechanges from ' to when P is executed, can be translated to ' j= [P] .In dynamic semantics, roughly speaking, the programs are conceived of as an instructionthat can change the state of memory of computer by assigning a value to a variable.The meaning of the program is then captured as the change of memory states upon theexecution of interactions, say '! . Additional conditions specifying relations betweenvalues or their properties make it possible to express complex structures, e.g., DRSs.Comparing such a conceptualization with ours, our notion of program is di�erent. Inour study, programs are several processes that run concurrently and can interact with

CHAPTER 1. INTRODUCTION 19each other to exchange data. The di�erent programs mean that our model is di�erentfrom those for dynamic semantics.A strategic di�erence lies in the way to characterise programs logically. FollowingHennessy-Milner logic [HM85], we will characterise programs by describing the proper-ties pertaining to them:P j= 'where P is a program and ' is a formula. These two characterisations are, however, notso di�erent from each other as their appearances suggest. It has been known that theformer is an alternative formulation of a meta-language to specify programs [Abr91].In dynamic semantics, the idea of concurrency is recently considered to temper theproblem of nondeterministic computation [Fer93]. The solution is to preserve all alter-natives with disjoint union when a source of nondeterminism is encountered. In thismodel, however, the idea of communication is still missing. Therefore, the work is notparticularly related with ours.1.5.4 Concurrent natural language processingHere is a note on the di�erence between parallel and concurrent. While parallel ar-chitectures for computation are studied in computer science, the notion of concurrencyis an independent concept of parallel processing. Parallelism is to do with executionon hardware or very low level software architectures, whilst concurrency concerns withdesign of systems or programs.7As for concurrent natural language processing, the most relevant model in spirit withours is proposed by Br�oker, Hahn, and Schacht [SHB94, BHS94, BSSH94]. In theirParseTalk model, parsing is modelled as message passing based on Hewitt's actor model[Agh86]. Grammar rules are not separated from lexicon, but encoded into each lexicalitem. Such a lexical item is encoded as an actor, and actors can communicate witheach other to parse sentences. Our project share the intuition to model lexical itemsas autonomous agents, but the level of modelling is di�erent. While their model isde�ned at a higher level, say actor model, ours is de�ned at more primitive level, sayprocess algebra. Our advantage is that we can model feature structures and other datastructures in the same framework as the model is so �ne grained, while their modelforces to combine di�erent frameworks, e.g., introducing feature structures in separateform. But the point should not be exaggerated; the aim of the project is to builda practical system while ours to investigate a concurrent theory for NLP. Our model7I owe to Gert Smolka in realising this.

CHAPTER 1. INTRODUCTION 20should serve as a basis to analyse and compare various concurrent NLP models such asParseTalk model in broader contexts. Another di�erence is their emphasis on generalknowledge and ambiguity. Class hierarchy is, for instance, employed to disambiguatesyntax. That sort of issue is not considered in this thesis.Oz is a concurrent constraint programming language developed by Gert Smolka andhis group at DFKI (German Research Center for Arti�cial Intelligence) [Smo94b]. Thelanguage combines ideas from the �-calculus with constraint programming and can �nda solution satisfying constraints e�ectively owing to concurrency. The emphasis is on thedesign of concurrent constraint language, but application to NLP is planned. One way toencode feature structures as concurrent objects has been proposed by Smolka [Smo94a]and a bottom-up parser is implemented as a demo program. The facilities providedby the language is so rich that it seems that anything can be encoded with it. Thedi�erence in strategy and objectives, however, should be pointed out with our project.While the language is rich in facilities, we start with primitive elements of computation.The complex behaviour of systems will be modelled through combining small buildingblocks. This is because we use the �-calculus as a model to study the meaning ofconcurrent objects. The simpler the model is, the easier to study its properties. Weare interested in identifying the least set of operations and how complex objects canbe built up using them. The Oz language is on the other hand designed as a practicalprogramming language to build systems. Therefore, they cannot be compared witheach other. Our results should, however, contribute to building NLP systems using Ozlanguage.1.6 The aim of the thesis and overview1.6.1 The aim of thesisThe aim of the thesis is to construct linguistic channels as a system of communicatingprocesses. The ultimate goal is to answer the three questions: (1) how discourse caninteract with the parsing phase, (2) how plans and goals can interact with the interpre-tation phase, and (3) how circumstances can interact with the evaluation phase. Butthere are many things to be done towards the goal. The �rst step is to show how wecan model linguistic channels as a system of communicating processes, while respectingthe two desiderata: (a) sentence and situation types must be organised and representedin the way that they can interact with discourse, plans and goals, and circumstances atany point, and (b) discourse, plans and goals, and circumstances, must be representedin the way that the phases of parsing, interpreting, and evaluating utterances can in-teract with them at any point. Once we succeed in the project, we can go forward to

CHAPTER 1. INTRODUCTION 21empirical studies on how contexts can in
uence the phases of language understandingin detail through simulation.In the thesis, we will turn to the �-calculus to describe systems of communicating pro-cesses. The project may sound unusual, but we do not intend to invent a completely newlinguistic theory. We will rather reinterpret conventional theories in the light of con-currency and communication. We will introduce, for example, feature structures [PS94]to express syntactic types and Extended Kamp Notation (EKN) [BC91, BC93] to ex-press situation types. These notations will serve as constraints to specify possible classof computations. In this respect, the project can be seen as de�ning an operationalsemantics to those remodelled theories, but one should not be misguided by the sidee�ects. We are interested in modelling the information
ow by utterances as a systemof communicating processes in order to study roles that contexts can play in languageuse.1.6.2 OverviewThe thesis is organised as follows:Chapter 2 We �rst explain the �-calculus. Since the calculus, and probably the ideaof communication and concurrency, too, can be unfamiliar to the reader, the ex-planation is given in detail and self-contained so that the succeeding chapters canbe understood without any prior knowledge of process calculi.Chapter 3 We investigate how logic can be used to specify mobile processes. We turnto Combinatorial Intuitionistic Linear Logic and show how processes de�ned in the�-calculus and a molecular language can be speci�ed in the logic.Chapter 4 We construct semantic objects employed in Situation Semantics in the �-calculus. The result obtained in the previous chapter is used to relate our studyon Situation Semantics with Channel Theory.Chapter 5 We encode a concurrent chart parser in the calculus. We start by encodingfeature structures and then encode a parser that analyses sentences as a resultof interactions between agents. We show how a semantic representation can beconstructed by the parser.Chapter 6 We conclude the thesis by comparing our framework with other approaches.
Chapter 2A Calculus of InteractionThe aim of this chapter is to give the reader an insight into concurrent computationand communication. We start by explaining the �-calculus because our modelling isbased on it. Through examination of its underlying computation, we investigate whatconcurrent computation and communication are and how they can be controlled. Theinvestigation enables us to identify the minimum set of elements we need to de�nesystems of communicating processes.2.1 The �-calculus2.1.1 From simple automata to systems of communicating processesThe section introduces the reader to the �-calculus [MPW92, Mil93b]. We start by pre-senting simple automata, then will enrich them till we obtain the polyadic �-calculus [Mil93b].The section �rstly aims to give the reader basic ideas on the calculus, then we de�neits syntax and semantics formally in x2.1.4. In what follows, capital letters, A, B, andC range over automata or agents, P , Q, and R over processes, and italics a; b; � � � ; overactions. The terminology of automata or agent is used to indicate entities modelled asprocesses. Processes are de�ned with respect to actions.Simple automataLet A be an automaton that accepts a sequence of symbols, ha; bi, and terminates(Figure 2.1). We de�ne the initial state of A, P0, by its possible courses of actions, e.g.accepting a and b, then terminating. We express such a state asP0 =def a:b:0 22

CHAPTER 2. A CALCULUS OF INTERACTION 23where 0 means termination1. After accepting the symbol a, the state of A turns intoanother state, P1, such as accepting b and terminating, written asP1 =def b:0To express the change of the state caused in A by accepting a, we writeP0 a�!P1

P0 P1

a b
A Figure 2.1. A simple automatonSimple communicating systemsSimple automata can only accept symbols, but we can think of another sort of action,emitting symbols. A system of automata which can interact with each other by emittingand accepting symbols forms a communicating system. Let the initial state ofA be P0 asbefore and the initial state of another automaton B, Q0, such as emitting the sequenceof symbols, ha; bi (Figure 2.2). We distinguish such an output action with overline andwrite the de�nition asQ0 =def a:b.0Suppose a communicating system is composed of A and B, whose initial state is de�nedas P0 jQ0, meaning that P0 and Q0 are concurrently active. Because they are active,they can communicate, e.g., by B's emitting a symbol and A's accepting it. Supposenow B emits a and A picks it up. Upon this interaction, the state of the system turnsinto another state, which is expressed asP0 jQ0 ��! P1 jQ1where P1 is as before and Q1 =def b.0. The symbol, `� ', read as silent action, meansthe interaction between A and B is invisible from outside. Hereinafter, we may write�! for a �nite sequences of ��! for readability.1Hereinafter, 0 may be omitted for readability.

CHAPTER 2. A CALCULUS OF INTERACTION 24
P0 P1

a b
A

Q0 Q1

a b
BFigure 2.2. A simple communicating systemData communicating systemsThe interaction between A and B can be regarded as establishing a communicationchannel or port through which data can be exchanged. In the �gure 2.3, we depict theagents, A and B, as circles with bold line and channels between them, a and b, as lineswhose ends are emphasised with squares.2

A B

a

bFigure 2.3. A channelNow suppose A is willing to receive a number from B through a port c and B wants toemit `5' through it (Figure 2.4). Let P10 be A's initial state, de�ned asP10 =def c(x).P11where x is a parameter to be substituted for upon the interaction, whereas B's initialstate, Q10, is de�ned asQ10 =def ch5i.Q11where `5' is the number to be emitted.3 Upon the interaction, the number `5' is emitted2It may be confusing that we use the same alphabets, a and b, to indicate both the actions establishingchannels and channels established by them. We may adopt a di�erent font for channels, e.g., a and b, to avoidthe confusion, but we follow in the thesis the convention adopted in the literature [Mil89].3One may wonder why ch5i is not expressed simply as c(5). There is a historical reason for this. In someversions of the calculus, hi is used to indicate the name is free, while () to indicate it is bound. In fact, therewere the notions of free input, e.g., chxi, and bound output, e.g., c(5), as well as bound input and free outputexplained here. See x2.1.2 to know about the notions of free and bound names.

CHAPTER 2. A CALCULUS OF INTERACTION 25to A, and x is substituted by it, which we write asP10 jQ10�!P11f5=xg jQ11The expression, P11f5=xg, means any x appeared in P11 to be substituted by `5'.

P0 P1

c

A

Q0
Q1

c

B
5

x 5
5Figure 2.4. A data communicating systemThe monadic �-calculusWe have so far distinguished ports from data, but we can treat them uniformly asnames , which enables us to model mobility: an access to a port can be exchanged, too.Suppose B needs to emit `5' to C and wants A to take over the job. Suppose also C isaccessible only through a port a, and A and B communicates with only through anotherport b. Assume �rst A would have an access to a (Figure 2.5). Then, what B needs todo is to send A `5' so that it can emit the number to C. A's state P20 may be de�nedas b(x).ahxi.P21, B's state Q20 as bh5i.Q21, and C's state R20 as a(y).R21. Upon B'semitting `5' to A and its emitting it to C, the state of the system would change asfollows: A B Cb(x).ahxi.P21 j bh5i.Q21 j a(y).R21(B emits 5 to A via b.)�! ah5i.P21f5=xg j Q21 j a(y).R21(Receiving it, A substitutes it for x, and emits it to C via a.)�! P21f5=xg j Q21 j R21f5=yg(C receives 5 and substitutes it for y.)Now, suppose that A does not have the access to C, the port a (Figure 2.6). How canB pass the job to A? Since A does not have the access, B has to �rst emit it to A,

CHAPTER 2. A CALCULUS OF INTERACTION 26
A B

a

b

CFigure 2.5. Monadic �-calculus: motivationwhich is made possible in the �-calculus. B �rst sends A the port name a via b, then thenumber. Let A's initial state P30 be b(x).b(z).xhzi.P31, B's state Q30 =def bhai.bh5i.Q31,and C's state R30 =def a(y).R31. The state of the system will change upon interactionsas follows: 4 A B Cb(x).b(z).xhzi.P31 j bhai.bh5i.Q31 j a(y).R31(B emits a to A via b.)�! b(z).ahzi.P31fa=xg j bh5i.Q31 j a(y).R31(A substitutes it for x. B emits 5 to A via b.)�! ah5i.P31fa=x;5=zg j Q31 j a(y).R31(A substitutes it for z and emits it to C via a.)�! P31fa=x;5=zg j Q31 j R31f5=yg(C substitutes 5 for y.)The polyadic �-calculusIn the polyadic version, agents can exchange sequences of data, not only a single item,upon a single interaction. Suppose, for instance, A wants to receive a sequence of threeitems, while B wants to emit a sequence, h4; 5; 6i, where they are linked through a portd. Let the A's state P40 be d(x; y; z).P41 and the B's state Q40 =def dh4; 5; 6i.Q41. Thestate of the system would change upon a single interaction as follows:A Bd(x; y; z).P41 j dh4; 5; 6i.Q414In the transition, the name x standing for a port name in b(z).xhzi.P31 is substituted by a after the �rstinteraction between A and B.

CHAPTER 2. A CALCULUS OF INTERACTION 27

A B

a

b

C

A B

a

b

CFigure 2.6. Monadic �-calculus: mobility�! P41f4=x;5=y ;6=zg j Q412.1.2 Free and bound namesIn the above examples, we assumed that all names are free, that is, accessible fromany processes. However, as is the case in logic, introducing the distinction betweenfree and bound names is useful to describe communication between processes. In the�-calculus when a name is bound, only the processes within its scope can get access toit. This enables one to de�ne local names analogous to the local variables in proceduralcomputer languages or provides one with a similar function to data-hiding in objectoriented languages. The name-passing ability of the calculus brings about interestingphenomena, scope intrusion and scope extrusion, which is explained in this section.De�nitionThe free and bound names are de�ned as is shown in table 2.1. The names that will besubstituted by another names, e.g., y in x(y), are bound while the names emitted arenot. The names used for communication, e.g., x in x(y) or xhyi, are free unless theyare bound explicitly. The restriction operator, � , read \new", can bind any name inits scope. The name y in (� y)(xhyi) is, therefore, bound. We will utilise bound namesin chapter 5 to encode a concurrent chart parser, where we model channels betweenadjacent agents as bound ones, the agents that are assigned to words or phrases ofsentences.Passing channels through private channelsWhen a name is bound, it is accessible only among the processes within the scope. Inthe example below, b is private between A and B, not accessible from C.
CHAPTER 2. A CALCULUS OF INTERACTION 28expressions bound freex(y) fyg fxgxhyi ; fx; yg(� y)(xhyi) fyg fxg(� x)(xhyi) fxg fyg(� x; y)(xhyi) fx; yg ;(� x)(x(y)) fx; yg ;Table 2.1. Free and bound namesA B C(� b)(b(x).b(z).xhzi.P j bhai.bh5i.Q) j a(y).R�! (� b)(b(z).ahzi.Pfa=xg j bh5i.Q) j a(y).RGraphically, private channels are depicted as a link whose label is put on at its bothends within the process, not in the middle (Figure 2.7).

A B

a

b

C

A B

a

b

C

b b
Figure 2.7. Passing channels through private channelsScope intrusionWhen a process receives a channel whose name con
icts with its private channel, theprivate one will be renamed to avoid confusion. In the following example, the privatechannel, a, between A and D will be renamed to a0 when A receives another channelfrom B, the channel which happens to bear the same name a (Figure 2.8).D A B C(� a)(a(v) j b(x).b(z).xhzi.ahzi.P) j bhai.bh5i.Q j a(y).R�! (� a0)(a0(v)fa0=ag j b(z).ahzi.a0hzi.Pfa=xgfa0=ag) j bh5i.Q j a(y).R

CHAPTER 2. A CALCULUS OF INTERACTION 29

A B

a

C

A B

a

C

b b

a
D

a

a’
D

a’

scope of a scope of a’

Figure 2.8. Scope intrusionScope extrusionWhen a process emits a private channel, its scope is extruded to the receiving process.In the example (Figure 2.9), the scope of a private between B and C is extruded to Awhen it is passed to A through b. (There is a familiar example in the C programminglanguage, where a module passes another an address of or pointer to its local variableso that it can read or write the value of the variable.)A B Cb(x).b(z).xhzi.P j (� a)(bhai.bh5i.Q j a(y).R)�! (� a)(b(z).ahzi.Pfa=xg j bh5i.Q j a(y).R)2.1.3 Other operatorsIn the calculus, there are another three operators, replication, match, and choice.ReplicationThe replication operator, !, replicates the process �nitely many times. For example, aprocess de�nition, ! ch5i, means �nitely many copies of ch5i:
CHAPTER 2. A CALCULUS OF INTERACTION 30

A B
a

C

A B

a
C

b b

a

a

a

scope of a

Figure 2.9. Scope extrusionch5i j ch5i j ch5i j � � � j ch5iTypically, the replication operator is used to allow a single process to provide data toall processes that request it. Observe, for example, the following case:ch5i j c(x).P j c(y).QThis system may change into two di�erent states. If the second process, c(x).P , interactswith the �rst, ch5i, the transition is shown as:ch5i j c(x).P j c(y).Q �! Pf5=xg j c(y).Qwhile it changes into di�erent state if the third, c(y).Q, interacts with it:ch5i j c(x).P j c(y).Q �! c(x).P j Qf5=ygIf the �rst process, ch5i, is replicated twice, both processes can get the number. Thatis, if we de�ne the �rst process as:! ch5i j c(x).P j c(y).Qthen it can provide for the number twice:! ch5i j ch5i j ch5i j c(x).P j c(y).Qtherefore, both processes can get 5 as is expected:! ch5i j ch5i j ch5i j c(x).P j c(y).Q �! ! ch5i j Pf5=xg j Qf5=yg

CHAPTER 2. A CALCULUS OF INTERACTION 31Replication and bound namesThe combination of the scope of bound names and replication may complicate thecalculus slightly. Imagine what e�ects the following system brings about:! ch5i j ! c(x).0The e�ect is not just a �nite number of substitutions of a single name x by 5, but thenumber will substitute �nitely many distinct xi because the system can be presentedas: ! ch5i j c(x).0 j c(x).0 j c(x).0 j c(x).0 j � � � j c(x).0which is alphabetically equivalent to:! ch5i j c(x1).0 j c(x2).0 j c(x3).0 j c(x4).0 j � � � j c(xn).0where each xi is a distinct name as they are bound by di�erent binding occurences. Onthe other hand, in the following system the number will substitute a single name, x,�nitely many times as each x is within the scope of the preceeding xs:! ch5i j c(x).c(x).c(x).c(x) � � � c(x).0The same is true for output actions. While each x receives the same number, 5, in theabove example, they will receive di�erent names if the emitted datum is a bound name:! (� a)chai j c(x).c(x).c(x).c(x) � � � c(x).0Since the name a is bound, the action chai emits a distinct name, ai, each time it emitsa datum. Therefore, x will be substituted by di�erent names each time the input action,c(x), is performed.This will change however if the scope of restriction, (� a), is outside that of replication,(!),as follows:(� a)(! chai) j c(x).c(x).c(x).c(x) � � � c(x).0Since a created by chai is the same each time, the input actions, c(x) will replace theidentical a for x each time it receives it.

CHAPTER 2. A CALCULUS OF INTERACTION 32MatchThe match operator restricts the performance of actions by referring to substitutionenvironments. In the following system, for example, the formulas, [x = 5] and [x = 3],allow their operant actions to be active only when they are satis�ed. Therefore, whileboth actions can be performed if they were not restricted with, only the action, ahdi, ispossible when the name x is substituted by 5 through c:ch5i.0 j c(x). ([x = 5] ahdi.0 j [x = 3] bhei.0)�! 0 j [x = 5] ahdi.0f5=xg j [x = 3] bhei.0f5=xgahdi���! 0 j 0 j [x = 3] bhei.0f5=xgChoiceThe choice operator, +, ensures only one action among more than one candidates isperformed and eliminates others. It is used typically combined with the match operator.In the following example, the action bhei will be eliminated when the other action, ahdi,is chosen to perform.ch5i.0 j c(x). ([x = 5] ahdi.0 + [x = 3] bhei.0)�! 0 j [x = 5] ahdi.0f5=xg + [x = 3] bhei.0f5=xgahdi���! 0 j 0Note the operator may make transitions nondeterministic although it is useful to excludeunneeded actions. See, for example, a system such asch5i.0 j c(x).(ahdi.0+ bhei.0)is nondeterministic as it is unpredictable which action, either ahdi or bhei, will beperformed after the name x is substituted by 5.2.1.4 Formal de�nitionNow that we have shown how the �-calculus models processes, we de�ne the full calculusformally.SyntaxThe syntax is de�ned as follows, where P and Q range over processes, and � a particle.Also x and y are names, and ~x and ~y vectors of names.

CHAPTER 2. A CALCULUS OF INTERACTION 33P �! 0 (termination)j� (particle)j� . Q (pre�x)j (� x)P (restriction)j [x = y]P (match)j !P (replication)jP j Q (parallel)jP +Q (choice)� �! xh~yi (exporting)jx(~y) (importing)j � (silent action)SemanticsThe semantics is de�ned with the set of reduction rules over processes and the structuralcongruence relation between them. The reduction relation is the smallest relation sat-isfying the rules shown in the �gure 2.10.5 The structural congruence relation, which isreferred in struct, is de�ned as is shown in the �gure 2.11. The structural congruencerelation is useful to avoid tedious de�nition of reduction relation. The combination ofstruct and the structural congruence relation, for example, can deduce many otherreduction rules. In the de�nition res, n(�) means all names comprising �. In the de�-nition of par, bn(�) means the bound names in �, while fn(Q) means the free namesin Q.To illustrate how the semantics works6, observe the following example of a vendingmachine7. Suppose there is a vending machine that sells a big chocolate bar for a 2pcoin and a little one for a 1p coin when pressed a button, big or little. Such a machine,depicted in the �gure 2.12, can be de�ned as:V en =def 2p.V enb + 1p.V enlV enb =def big.collectb.V enV enl =def little.collectl.V enwhere each importing action such as 2p receives no name upon interactions, but is justperformed. Note also we do not care about who performs which action, but its behaviouras a system composed of the vendor machine and buyers. Getting a coin, 2p or 1p, and5pre stands for \pre�x", com for \communication", res for \restriction", rep for \replication", par for\parallel", sum for \summation", and struct for \structural congruence".6This approach, advocated by Plotkin [Plo81], is called Structural Operational Semantics. The approachis syntactic, not model-theoretic.7The example is taken from [Mil89]

CHAPTER 2. A CALCULUS OF INTERACTION 34pre: �.P ��! P com: P ahyi���! P 0 Q a(x)���! Q0P j Q ��! P 0 j Q0fy=xgres: P ��! P 0(� y)P ��! (� y)P 0 y 62 n(�) match: P ��! P 0[a = a]P ��! P 0rep: P j !P ��! P 0!P ��! P 0 par: P ��! P 0P j Q ��! P 0 j Q bn(�)\fn(Q) = ;sum: P ��! P 0P +Q ��! P 0 struct: Q � P P �! P 0 P 0 � Q0Q �!Q0Figure 2.10. Reduction relation for the �-calculus
alpha-convertible: P � Q whenever P is alpha-convertible to Qsynmetric monoid laws for j : P j 0 � PP jQ � Q jPP j (Q jR) � (P jQ) jRsynmetric monoid laws for +: P + 0 � PP +Q � Q+ PP + (Q+ R) � (P +Q) + Rreplication: !P � P j !Prestriction: (� x)0 � 0(� x)(� y)P � (� y)(� x)P(� x)(P jQ) � P j (� x)Q if x is not free in PFigure 2.11. Structural congruence relation for the �-calculus

CHAPTER 2. A CALCULUS OF INTERACTION 35pushed a button, big or little, should be performed by the vending machine, whilegetting a big or little chocolate bar, collectb or collectl, should be performed by aperson, but it is not explicitly mentioned in this example.

Ven

1p

Ven
b

Ven
l

collect b. Ven

2p

collect l . Ven

big little

collect b collect lFigure 2.12. The description of a vending machineNow given the semantics, we can prove that the state of the machine would change fromV en to V enb when it gets 2p as follows (the goal comes at bottom):2p.V enb 2p��! V enb2p.V enb + 1p.V enl 2p��! V enbV en 2p��! V enb preby sumby de�nitionThe �rst formula is the axiom, pre. The step from the �rst to the second is carried outby applying the sum rule. The �nal step is just to rewrite the antecedent to V en basedon the �rst de�nition of the vending machine.2.2 Graphic presentations of processesWe look into the underlying computational mechanism of the �-calculus in depth inorder to make it easy to de�ne a language (x3.3).8 As we believe it helps to grasp theessence of computation intuitively, we devise a graphic notation to discuss computationalissues.8It will turn out that the �-calculus is too restrictive in terms of pre�xing to model situation-theoreticobjects (Chapter 4). We will therefore propose a language L0 in the next chapter, which is more relaxed inthat respect. We can however disregard the intention here.

CHAPTER 2. A CALCULUS OF INTERACTION 362.2.1 State transition graphsAn example of graphical presentation is State Transition Graphs (STGs) such as shownin the �gure 2.12. The diagram is useful to depict the behaviour of a single process, butnot so much when applied to systems of communicating processes because every edge islabelled simply as � when there are interactions. Suppose there is a system composedof two processes such as:ahbi.chdi ja(x).c(y)These two processes can communicate with each other by the �rst process consecu-tively emitting b and d through a and c, respectively, while the second receiving andsubstituting them for x and y. Their interactions are, however, invisible from outside:ahbi.chdi.0 j a(x).c(y).0 ��! chdi.0 j c(y).0fa=xg ��! 0 j0fa=x;b=ygAs we cannot distinguish these two transitions, STGs are not of much use to investigateinteractions between processes.2.2.2 Data
ow graphsCon�ning ourselves to the transaction of names at the moment, we will depict thedependency between names respecting to name-passing as a graph whose nodes arenames and edges actions operating on them, exporting or importing.Bu�er and channelsTo introduce our own graphical representation, we see �rst what characteristics of the�-calculus should be depicted graphically. An observation reveals that a name may playtwo roles in interactions as bu�er and channel:Bu�er A name may work as a bu�er in the sense that it can be read out, e.g., b inahbi, or another name can overwrite it, e.g., x in a(x).Channel A name can work as a channel through which names can be exported, e.g.,a in ahbi, or imported, e.g., a in a(x).The operations on them are accordingly categorised into two sorts, source and targetarcs:Source arc Source arcs represent the
ow from bu�er to channel. They are expressedas exporting action such as ahbi in the �-calculus, where the name b is exportedto the channel a.

CHAPTER 2. A CALCULUS OF INTERACTION 37Target arc Target arcs represent the
ow from channel to bu�er. They are expressedas importing action such as a(x), where the name x will be replaced by anothername imported through a.Here is a clari�cation of the terminology of channel, port, and other notions relatedto them. As is shown in the �gure 2.13, two bu�ers are connected via a channel. Wecall, thus, a in (ahbi ja(x)) channel as it connects b to x. Changing our perspective,when we observe the picture with our point of view in bu�er, the left end of the channelcan be seen as output port because a name can be exported there from the bu�er tothe channel. Similarly, the right end can be seen as input port because a name can beimported there from the channel to the bu�er. Therefore, we may sometimes call a inahbi output port and input port if it is in a(b).9

buffer bufferchannel

output port input port

exporting importingFigure 2.13. The relation between channel, port, and bu�erThe above observation leads to a graph whose nodes are either bu�er or channel andedges either source or target arcs. We should, however, pay attention to the ambiguityfound in the graphic representation due to the two roles that can be played by a name atthe same time if we depict the graph straightforwardly. If we depict relations betweennames simply as the graph shown in the �gure 2.14, its meaning is ambiguous becauseit means either(a) `a' is a channel, exporting `b' and importing it to `c', or(b) `a' is a bu�er, importing a name through `b' and exporting it through `c'.As the example shows, we have to distinguish graphically these two aspects of names,which could be done in many ways. One way is to change its shape so that it consistsof two di�erent parts. A rectangle, for example, can be used for the purpose because itconsists of pairs of long and short sides. When we depict names as rectangles, we candistinguish the two di�erent roles, bu�er and channel, by mapping them to di�erent9Alternatively, we can exchange \output port" and \input port" by taking channel as central. We arehowever not much concerned about the terminology since they will be rarely used in the following.
CHAPTER 2. A CALCULUS OF INTERACTION 38

ab cFigure 2.14. An ambiguous graphlength of sides (Figure 2.15). The presentation is, however, redundant because a rolecan be mapped to two di�erent sides, e.g., bu�er mapped to either top or bottom side.
Buffer

C
h

an
n

el

Buffer

Export Import

Export

Import

C
h

an
n

elFigure 2.15. Name depicted as rectangleAnother way is to divide the node into two parts and paint them in di�erent colours asis shown in the �gure 2.16. In the �gure, the bu�er part of the node is painted whitewhile the channel part gray. Arcs are also distinguished by di�erent colours of heads.The heads of target arcs are painted black while source arcs white. The advantage ofour colouring to shaping is that we can make it clear that the properties of being bu�eror channel are attributed to `nodes' while the properties of being source or target to`arcs'. Choosing this way, we can present a system, (ahbi j a(x)), as is shown in the�gure 2.17.The representation could be improved if we leave nodes unshaded when they do notwork as a channel.10 If we adopt the convention, then the �gure may be drawn asis shown in the �gure 2.18, which clearly shows the names b and x are used only as10The suggestion is due to Robin Cooper.

CHAPTER 2. A CALCULUS OF INTERACTION 39

Channel

Buffer

ImportExport
Source Arc

Target Arc

ExportImportFigure 2.16. Name in two coloursbu�er. We can further extend the discipline by painting di�erent types of names withdi�erent colours or patterns.11 We will however refrain from adopting the discipline herealthough we admit there is certainly a number of advantages with it. The disciplineshould be investigated more fully in another place.

b

a

xFigure 2.17. A representation of (ahbi ja(x))
b

a

xFigure 2.18. A modi�ed version with unshaded nodes11We will look into channel types in chapter 5.

CHAPTER 2. A CALCULUS OF INTERACTION 402.2.3 �-netsBefore examining the underlying computation of the �-calculus in detail using thegraphic notation, we look into our source of insights, �-net, proposed by Milner [Mil93a,Mil94] to present computation of the �-calculus graphically. The �-nets are basically avariation of rectangles presented above (Figure 2.15). We get a �-net node by allowingboth sides of channel to import and export names and by allowing the bu�er part toimport only one name. For an aesthetic reason, it is depicted as a drop shown in Figure2.19.
Buffer

C
h

an
n

el

Buffer

ExportImport

ImportExport

C
hannel

Export

ImportFigure 2.19. A �-net nodeWe have already discussed a disadvantage of shaping, which applies to the �-nets, too.Another point to be mentioned here is the restriction on importing to bu�er that onlyone name can be imported. The intention of this restriction is to prohibits a name frombeing substituted by more than one names. In fact, such a case never occurs for theprocesses de�ned in the �-calculus. Observe, for example, the following case:a(x):P j b(x):QAlthough the two occurrences of x seem to be identical and to be replaced by a nameimported through either a or b non-deterministically, they are not and can be rewrittento the following:a(x):P j b(y):Q

CHAPTER 2. A CALCULUS OF INTERACTION 41We do therefore not need to worry about the possibility of multiple-substitutions aslong as we work with the �-calculus. We can however think of other languages thatallow for such a case.12 Due to the restriction, �-nets falls short of representing thecase. Given our motivation to study varieties of communication, we prefer not imposethe same restriction on our representation as the nets do. Our representation can beused to depict systems to which multiple-substitutions may occur.2.3 Representing computation with data
ow graphsNow that we have proposed our graphical representation, we elaborate it to depict thecomputation more fully.2.3.1 E�ectsUsing the data
ow graphs we have presented above, a computation carried out by asystem of processes, (ahbi ja(x)), can be depicted as is shown in the �gure 2.20. Weremove arcs after they are activated in order to show the computation denoted by themhas been done. In the �-calculus notation, it can be expressed as: ahbi.0 ja(x).0 ��!0 j 0fb=xg.

b

a

x b

a

bFigure 2.20. A presentation of ahbi.0 j a(x).0 ��! 0 j0fb=xgIn the �gure, the e�ect of the computation can be observed from the fact that two arcshave gone and the node named x is renamed to b. What is missing in the �gure, however,is the substitution environment, fb=xg. As substitutions are the e�ects obtained as theresult of computations, we should keep a record of them. To record such a substitutionenvironment, we introduce a board. With the board, the computation can be depictedas is shown in the �gure 2.21.12The language L0 proposed in next chapter is one of the examples.

CHAPTER 2. A CALCULUS OF INTERACTION 42
b

a

x b

a

b

b -> xFigure 2.21. A representation with the board to record e�ects2.3.2 Merging nodesWe will identify a node by its name stored in the bu�er. Given this, when a nameis substituted by some another name, it is always the case that two di�erent nodesbear the same name as is observed from the above example (Figure 2.20). Once thishappens, we will merge them into a single node. When nodes are merged, arcs pointedto or strung from them are merged, too. Figure 2.22 shows an example of merge. The�gure depicts a computation carried out by the system, (� b; c)(ahbi ja(c) j bhei j c(d)),whose transitions can be expressed as:(� b; c) (ahbi.0 j a(c).0 j bhei.0 j c(d).0)��! (� b) (0 j 0 j bhei.0 j b(d).0)In this system, the node c will be substituted by b after the interaction between ahbiand a(c), and the system will end up with two nodes named b. Then, they are going tobe merged into the single b node, where their arcs are also merged.

b

e

a

c

d

a

de

bb

e

a

d

b
Merge

Figure 2.22. Merging nodes

CHAPTER 2. A CALCULUS OF INTERACTION 432.3.3 MatchThe match operator is used to control computation by suppressing the activation ofparticles. Recall in the system below, the particle bhei will never be performed becauseits match formula, [x = 3], is not satis�ed by its substitution environment, f5=xg.ch5i.0 j c(x). ([x = 5] ahdi.0 j [x = 3] bhei.0)�! 0 j [5 = 5] ahdi.0f5=xg j [x = 3] bhei.0f5=xgahdi���! 0 j 0 j [x = 3] bhei.0f5=xgWe put the match formulas just beside of arcs to show they control the execution ofthe particle (Figure 2.23). After the interaction between ch5i and c(x), the substitutionf5=xg will be recorded to the board. Each arc with a match formula, e.g., [x = 5]ahdi,must inspect the board to check if its formula is satis�ed with respect to the substitutionenvironment. Since the formula [x = 5] is satis�ed by the environment, the particle ahdican then be performed, but not the other particle bhei because its formula, [x = 3], isnot satis�ed by the substitution environment.

5

c

x

a

d

b

e

[x=5] [x=3]

5

c

a

d

b

e

[x=5] [x=3]

5->xFigure 2.23. Representation of match with the e�ect board2.3.4 Garbage collectionsTo base our presentation to a real machine as much as possible, we explicitly introducegarbage collection mechanism into our representation. The garbage that would soonbe noticed is the nodes that are not connected by any arcs. In Figure 2.23, the nodes
CHAPTER 2. A CALCULUS OF INTERACTION 44named c and 5 are not connected by any arcs, therefore, can be eliminated (Figure 2.24left).Another possible garbage is the arcs with a match formula that will never be satis�ed.Again in the same �gure, the particle bhei will never be performed, therefore, can beeliminated (Figure 2.24 right). When the arc is eliminated, the two nodes linked by thearc, too, can be eliminated for the reason just mentioned.

a

d

b

e

[x=5] [x=3]

5->x
a

d

b

e

[x=5]

5->xFigure 2.24. Garbage collection2.3.5 ReplicationWhile the meaning of replication is �nitely many copies of processes, they are in practicenot generated at once, but will be generated each time it is requested. That is, thetransitions of a system of !ahbi ja(x) ja(y) would be in practice as follows:!ahbi j a(x).0 ja(y).0� !ahbi jahbi.0 j a(x).0 ja(y).0��! !ahbi j 0fb=xg ja(y).0� !ahbi jahbi.0 j 0fb=xg ja(y).0��! !ahbi j 0fb=xg j0fb=ygwhere !ahbi replicates the particle ahbi if there is a particle that can interact with it. Inthis sense, the particle with the replication operator is not in the working memory, butstored in a heap area from which a number of copies can be made upon request.To visualise the separated area, we introduce a box to keep replicable particles. Giventhe machinery, the part of the above transitions can be depicted as is shown in Figure2.25. In the �gure, the gray arrows indicate that the particle ahbi is spawned at thestep from the box.

CHAPTER 2. A CALCULUS OF INTERACTION 45

a

x y

a

b

a

x y

a

bb

a

y

a

b

b->x

a

y

a

bb

b->x

box

Figure 2.25. Replication with box
CHAPTER 2. A CALCULUS OF INTERACTION 462.3.6 Free and bound namesThe distinction between free and bound names may lead to wrong graphs without anadditional step. Suppose there is a system composed ofa(x) ja(x) jahbiAs the target of importing particles are bound, the two occurrences of x in the �rstand the second particle are not identical. Recall that the system is �-equivalent to thefollowing one:a(y) ja(z) jahbiIf we do not care about this subtlety, the system may be depicted wrongly as is shownin the �gure 2.26.

a

b xFigure 2.26. A wrong graph of (a(x) j a(x) jahbi)To avoid this kind of confusion, we number names with di�erent natural numbers incre-mentally each time a binding occurs so that we can distinguish it from others bearingthe same name. Thus, the above system is rewritten to:a(x1) ja(x2) jahbibefore being depicted graphically. With this step, the above �gure can be drawn cor-rectly as is shown in the �gure 2.27. In the thesis, we may however suppress thesubscripts where no confusion arises for readability.2.3.7 ChoiceThe operator a�ects computation by allowing only one particle among candidates to beperformed. For example, either ahxi.P or bhxi.Q, but not both, can be performed afterthe process receives 5 through c, replacing it for x, by executing c(x).

CHAPTER 2. A CALCULUS OF INTERACTION 47

a

b x2x1Figure 2.27. The correct graph of (a(x) ja(x) jahbi)ch5i.0 j c(x).(ahxi.P + bhxi.Q)To indicates the choice between ahxi.P and bhxi.Q, we may link those links with aparticular arc (Figure 2.28). (The �gure does not depict particles consisting of P andQ.) We ensure the other arc should be eliminated when either arc is activated byreferring to choice arc.

c

5 x

a b

choiceFigure 2.28. A choice arc between ahxi.P and bhxi.QThe elimination operation can be slightly complicated to eliminate the succeeding par-ticles in P and Q as well, but it can be done just by introducing another board to recordsets of particles to be eliminated altogether.2.4 Constraints on computationWe have so far con�ned ourselves to the description of the domain where computa-tion occurs, but have not paid much attention to how it can be controlled except ofmatch and choice. We now look into the control of computation in depth. When wediscuss about \control", we are concerned with how particles are executed, sequentially
CHAPTER 2. A CALCULUS OF INTERACTION 48or concurrently, and which particles can be executed under what condition. To con-trol computation, the �-calculus, for example, provides us with three operators: pre�x,match, and choice. After considering on the nature of control, we discuss what opera-tions are appropriate to control computation.2.4.1 ConstraintsWe start by observing what those data
ow graphs presented above denote. The graphshown in the �gure 2.29, for example, can denote a number of processes de�ned in the�-calculus, among them are:(a) ahbi ja(c).dhci jd(e)(b) ahbi ja(c).dhci.d(e)(c) ahbi.a(c).dhci jd(e)(d) ahbi.a(c).dhci.d(e)(e) ahbi.d(e) ja(c).dhciThe reason why so many processes can be denoted is that the graph does not specify theorder by which these particles are executed. Note that this is the necessary consequenceof concurrency. Concurrent computation generalises sequential computation by notspecifying the order of execution. An observation may reveal that the �fth processshown in the above is a specialisation of the �rst in that it ensures that ahbi is executedbefore d(e), while there is no mention to such an order in the �rst process.

a

b c

d

eFigure 2.29. A data
ow graphGiven the observation, we take the denotation of graphs as the set of computationspeci�ed by them. We will, then, characterise the computation from two aspects. Oneis, as we observed just now, the order by which particles are executed, and the other isthe e�ects that the interactions between particles bring about. The denotation of graphsare, therefore, the set of all possible execution orders of particles with their e�ects. It

CHAPTER 2. A CALCULUS OF INTERACTION 49should be now clear how we can control computation. One way is, as provided in the�-calculus by the pre�x operator, `.', to restrict the order of execution. By imposingconditions on execution by this way, we can slim down the set of possible computationsby the graph. The other way is to restrict the e�ects to be brought about by the graph.The latter is not exploited in the �-calculus although it is the central idea in constraintlogic programming and has been exploited in the modal mu-calculus [Sti92], too.To sum up, processes can be de�ned with the set of particles and constraints on them:Processes = Particles + ConstraintsThe particles form a data
ow graph as is shown above. In this section, we introducetwo ways to de�ne constraints corresponding to the two aspects of computation, orderand e�ects.2.4.2 GuardingOur guarding operator generalises the pre�x operator in the �-calculus. Our strategyto represent information on the order of execution is to separate it from the declarationof particles. Observe the following system of processes de�ned in the �-calculus:ahbi.d(e) ja(c).dhcican be decomposed to a set of particles and constraints on them. As for particles, theyconsist of four particles, ahbi, d(e), a(c), and dhci. As for constraints, two constraintsare imposed, one of which is to execute ahbi before d(e) and the other is to execute a(c)before dhci, which we will express as ahbi � d(e) and a(c) � dhci, respectively. Giventhis notation, the above program may be rewritten as:13[ahbi; d(e); a(c); dhci � ahbi � d(e); a(c) � dhci]where � separates the set of particles from constraints. The formulas to express theinformation on guarding can be elaborated by introducing boolean operators, but wediscuss general principles for guarding before enriching the formulas.The reason why we should discuss general principles is that we are concerned withChurch-Rosser property of the calculus, which we obviously want to obtain. To un-derstand hazardous points, observe �rst an ideal case, the graph shown in the �gure2.29. For the graph, we have two possible interactions, one of which is between ahbi anda(c), the other is between dhci and d(e), where a and d work as channels. Of these twopossible interactions, it does not matter which interaction occurs �rst because the result13Processes are de�ned in this manner in the language L0 presented in next chapter.
CHAPTER 2. A CALCULUS OF INTERACTION 50is always the same as long as we are concerned with only substitution environments.For example, if the interaction between dhci and d(e) occurs �rst (Figure 2.30), theresulting e�ects are the substitutions, fc=e;b=cg.

a

b c

d

e

a

b c1

ec

c

->

ec ->

b c->Figure 2.30. The case where the interaction between dhci and d(e) occurs �rstMeanwhile, if the interaction between ahbi and a(c) occurs �rst (Figure 2.31), the re-sulting e�ects are the substitutions, fb=c;b=eg.Although these two sets of e�ects seem to be di�erent at a glance, they are actually thesame because both results support exactly the same constraints on substitutions, say b

CHAPTER 2. A CALCULUS OF INTERACTION 51

a

b c

d

e

e->

b c->

d

e

b c->

b

bFigure 2.31. The case where the interaction between ahbi and a(c) occurs �rst
CHAPTER 2. A CALCULUS OF INTERACTION 52= c = e.There is however a case where the order does matter. Suppose we add to the previousgraph (Figure 2.30 or 2.31) the two arcs, fhai and f(d). If we start the computationfrom bottom, we are simply getting another new e�ect, fa=dg, in addition to fb=c;c=eg,no matter how those bottom interactions are executed (Figure 2.32).On the other hand, if we execute the interaction between fhai and f(d) �rst, thenanother e�ect may be brought about, which was unavailable in the above case (Figure2.33). By the �rst interaction, the node a substitutes d and the structure of the graphchanges as is shown in the �gure. Now there is a new possibility that c interacts withitself in addition to the previous cases. If c substitutes itself, then another possiblee�ect is only fb=eg, and other e�ects fb=c;c=eg will be lost.The cause of this cumbersome situation is in the mobility enabled by the calculus. Inthe graph, the interaction between ahbi and a(c) occurs at a, and another between dhciand d(e) occurs at d. We call these a and d the location of communication. Whatmakes things complicated is these locations are mobile because they can communicatethrough f . As long as a node is mobile, allowing interactions at the location mayeliminate some possible computations. The useful strategy to avoid such a situationis to allow communication to occur only at immobile locations. Such locations can beeasily discovered in graphs. A node is immobile if there is no arrow pointed to or fromin the bu�er part. We will employ this principle when we de�ne our language in nextchapter. Our graphical representation is useful to detect immobile nodes because theyalways come up to top. In the �gure, for example, only f node is immobile.2.4.3 Temporal propertiesAnother way to restrict computation is to require it to satisfy particular formulas even-tually with respect to substitution environments.14 Observe an example, (ahbi jahcija(x) j a(y)), which may end up with two cases of substitution environments (Figure2.34). If the particle ahbi interacts with a(x), then the �nal substitution environment isfb=x;c=yg. On the other hand, if the particle interacts with a(y), the environment resultsinto fb=y;c=xg.Assume we want only the �rst substitution environment to realise. If we resort toguarding, we may de�ne the computation as:[ahbi; ahci; a(x); a(y) � ahbi � ahci; a(x) � a(y)]14This sort of control is not included in the �-calculus. The original intention of looking into the sort ofcontrol was to build a basis rich enough to study concurrent constraint programming [Smo94a], but I foundthe subject going beyond the scope of the thesis. We will however in next chapter investigate to what extentthe sort of control is computationally expensive.

CHAPTER 2. A CALCULUS OF INTERACTION 53

a

b c

d

e

f

a

b

d

f

c

c e

->

->

b c

c e

->

->

a d->Figure 2.32. A mobile process interacting with from bottom
CHAPTER 2. A CALCULUS OF INTERACTION 54

a

b c

d

e

f

a

b c e

a d

a

b e

a d

->

->

c c->

Figure 2.33. A mobile process interacting with from top

CHAPTER 2. A CALCULUS OF INTERACTION 55

a

b

x

y

c

a

y

c

a

x
y

c

b ->x

b ->x
c ->y

b ->

c -> x
yb -> Figure 2.34. A data
ow graph with two possible substitution environments

CHAPTER 2. A CALCULUS OF INTERACTION 56or [ahbi; ahci; a(x); a(y) � ahci � ahbi; a(y) � a(x)]which leads to fb=x;c=yg.Although the encoding works, it is not neat to restrict execution order when what wereally want is to get a particular substitution environment eventually. Also, while theencoding leads to the substitution environment, we may only want to ensure at leastthe �rst substitution, fb=xg, should be obtained. In that case, it does not make sense torestrict the execution order that way.Our solution is to require the system to satisfy particular formulas eventually as theresult of computation. If we want the system to satisfy at least a formula, b = x, weshould add it to the system as a constraint as follows:[ahbi; ahci; a(x); a(y) � b = x]Once this restriction is imposed on, only the �rst reduction is possible, but not thesecond is prohibited, as we want. We call the temporal property that \somethinggood does eventually happen" liveness. The dual notion is safety, \nothing bad everhappens", which can be de�ned using negation, e.g., b 6= y.Finally, we see how these operators, guarding (�) and temporal properties are relatedwith match, e.g., [x = y]�. Guarding and match share the same objective to restrictthe execution of particles. The di�erence is that guarding suppresses an execution untilanother particle is executed, while match does the same job by inspecting substitu-tion environments. The common property between match and temporal properties isthat both inspect substitution environments, but they are di�erent in that temporalproperties restrict possible interactions while match restricts the execution of a singleparticle.2.5 The re
exive �-calculusFinally, we mention the re
exive �-calculus[Mil93a]. In the normal �-calculus, graph-ically speaking, it is not allowed to include target-arc cycles in graphs, while we allowthem for our language. Target-arc cycles can be formed in two ways:(a) A name exports its name to a node and imports it to itself (Figure 2.35), or(b) A name imports a name from its own channel (Figure 2.36).In the �rst �gure (Figure 2.35), which can be expressed as (bhxi j b(x)), the name x issubstituted by itself, keeping other names from substituting it. If we impose a restriction

CHAPTER 2. A CALCULUS OF INTERACTION 57on processes such that a name can be substituted only by one name, this cycle e�ectivelycloses o� itself from others. On the other hand, the second �gure (Figure 2.36), whichcan be expressed as xhxi, shows a case where a bu�er will be substituted by the nameit is conveying.One reason why these cycles are prohibited may be in its self-referential nature. Butthe re
exivity may be of some use and is admitted in the re
exive �-calculus. In there
exive version, it is argued that the �rst sort of cycles may model the e�ect of therestriction operator, � . However, the use of target-arc cycles is yet to be investigated.

b

x

b

x/xFigure 2.35. A target-arc cycle (1)

xFigure 2.36. A target-arc cycle (2)2.6 SummaryIn this chapter, we looked into a model for concurrency through examination of the�-calculus. To make it easy to understand the computation, we have proposed a graph-ical representation based on �-nets. We have also seen that the computation can becontrolled by guarding particles and requiring systems to satisfy temporal properties asthe result of interactions.

Chapter 3A logical speci�cation of mobileprocesses3.1 IntroductionThe chapter presents a linear logical speci�cation of mobile processes. The logic, onone hand, enables us to study communicating and mobile processes at certain abstractlevel and makes it possible, on the other hand, to relate the calculus of interaction withour interest, Situation Theory and Channel Theory, in logical and categorical setting.We start this chapter by explaining the background of the project and general ideas. Wethen present a version of linear logic, combinatorial intuitionistic linear logic (x3.2), anda language L0 serving as a bridge between the �-calculus and the logic (x3.3). Afterexplaining how data
ow graphs presented in the previous chapter can be utilised topredict possible interactions between processes (x3.4), we investigate the issue of non-determinism(x3.5). Finally, we discuss limitations of the logic and how the work can berelated with other works (x3.6).3.1.1 Background: Program LogicOne of the motivations to use logic to study processes is that it enables one to specifyprocesses compositionally.1 In such a logic, which is sometimes called Program Logic,programs or processes are taken to be models while formulas are regarded to expressproperties of processes. A theory is, therefore, often described in the form of P j= ,where P is a program and a formula. With the logic, one should be able to identifya class of processes satisfying the same properties. It is one of the central problems in1See, for example, Larsen [Lar90] for the discussion on speci�cation formalisms.58

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 59computer science how to capture the sameness, which is termed bisimulation relation.The notion is important because it de�nes a model on which a program logic may bebuilt. Di�erent de�nitions lead to di�erent program logics.Hennessy-Milner logic (HML) [HM85] is a classical example of program logic, whosemodel is labelled transition systems (LTSs) [Mil89]. A LTS can be de�ned as triplet ofprocesses, actions, and transition relations of processes upon actions, i.e., (P ; Act; ��!),where � 2 Act. They can be depicted as a tree whose nodes correspond to states ofprocess and edges to actions. Suppose, for example, there is an agent A de�ned asA =def a:(b:0+ c:0).2 It may be depicted as is shown in the �gure 3.1.

A

a

b cFigure 3.1. The tree representation of a:(b:0+ c:0)A simple logic, PL, over such trees may be de�ned as follows:� P j= h�iF if, for some P 0, P ��! P 0 and P 0 j= F� P j= :F if it is not the case that P j= F� P j= Vi2I Fi if, for all i 2 I; P j= FiWe also de�ne true as the empty conjunction Vi20 Fi and false as :true. With thesede�nitions, the agent satis�es the following formula:A j= hai(hbitrue^ hcitrue)Assume agents whose tree representations are identical are bisimular to each other, notbisimular otherwise. Let B be another agent de�ned as B =def a:b:0+a:c:0. The agentmay be depicted as is shown in the �gure 3.2 and expressed in PL as:B j= haihbitrue^ haihcitrueNotice A and B are not bisimular although they can accept the same sequence of actions,a.b or a.c. They can be distinguished by di�erent tree representations or by di�erentformulas specifying them. The di�erence between A and B characterised by HML or2The example is taken from [Mil89]

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 60
B

a

b c

aFigure 3.2. The tree representation of a:b:0+ a:c:0tree representation is the capability after accepting a; A can accept b or c then, while Bcan only accept either one depending on the transition upon the interaction. In otherwords, the decision whether it will receive b or c is made when it receives a, while sucha decision is not made in A.It is known that HML can characterise the bisimular relation sketched above [HM85].It should be mentioned that a number of de�nitions have been proposed as for theequality between processes other than the one characterised by HML. For instance, onecan de�ne the relation based on traces, i.e., the set of sequences of possible actions. Theprocesses, A and B, are then regarded to be equivalent if we are only concerned withtraces. Comparing the bisimulation relation de�ned by HML with trace equivalence,one can say the former is more re�ned than the latter since the processes equivalent inHML are always so in terms of traces but its converse does not always hold. In thischapter, we will not go into the taxonomy of equivalence relations on processes since itis out of our scope.3 It is enough for us to memorise the following three points:(a) Processes may be depicted graphically.(b) Logical formulas can specify the graphical representation.(c) The graphic representation represents a model for the logic.3.1.2 Linear LogicLinear Logic is claimed to be able to specify concurrent computation at logical level[Gir87, Gir95]. The logic is said to be resource-bound as the rules for weakening andcontraction, shown below in the form of classical logic, are dropped from structuralrules, which allows a theorem prover to use a formula only once.A ^ B) A weakeningA) A ^ A contraction3See Abramsky and Vickers [AV93] for a proposal, for example.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 61The restriction will in turn bene�t us with the ability of expressing current state, whichmeans that the implication relation can be regarded to model state changes such aschemical reaction. Metaphorically, we can express a chemical equation, 2H2 + O2!2H2O, as a logical formula such as 4H2
 H2
 O2 (H2O
 H2Owhere(is the linear implication. The connective,
, which is sometimes called tensor,means intuitively that the composites are concurrently active.We turn to linear logic to specify concurrent computation, which makes a shift frommodel-theoretic characterisation of processes, P j= �, to proof-theoretic speci�cation, ` �. The shift should be regarded as a re�nement to program logic. As a steppingstone, we look into how petri nets, as an example of concurrent computation, may bespeci�ed using linear logic.3.1.3 Linear logical speci�cation of petri netsPetri nets consists of places and transitions. The �gure 3.3 shows the initial state of apetri net, whose places, depicted as circles, are a; b; c; d; e and f , and transitions are tand t0 depicted as rectangles.5 The dots in places indicate tokens for computation. Thedigit numbers on arrows from places to transitions indicate how many tokens may beconsumed when the transition occurs. For example, the digit number 1 on the arrowfrom the place, a, to the transition, t, means one token stored in a will be taken awaywhen t occurs. On the other hand, the digit numbers on arrows from transitions toplaces indicate how many tokens may be put in when the transition occurs. The digitnumber 3 between t and d, for example, means that three tokens will be put into d whent occurs.The �gure 3.4 shows the state of the petri net after the transitions, t and t0, occured.Consumed tokens by these transitions are one token stored in a, three tokens in b, ofwhich two are taken by t and one by t0, and three tokens in c. The tokens put in arethree tokens in d, three tokens in e, of which two are put by t and one by t0, and fourtokens in f .To specify the transitions, t and t0, in linear logic, we represent them as two specialaxioms such as:t : a
 b
 b ` d
 d
 d
 e
 e, andt0 : b
 c
 c
 c ` e
 f
 f
 f
 f4The example is taken from [Gir95].5The example is taken from [MOM91].

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 62
t t’

1 2 1 3

3 2 1 4

a b c

d e fFigure 3.3. An initial state of a petri net

t t’

1 2 1 3

3 2 1 4

a b c

d e fFigure 3.4. The state of the net after �ring t and t'

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 63where the number of alphabets, e.g., b
 b, corresponds to the number of tokens tobe taken from or put into the place when the transition occurs. Suppose we adopt
(tensor)-theory, a fragment of linear logic, which is de�ned with the axiom schemeand rules shown in the table 3.1.6(id) idA : A ` A(cut) � : A ` B : B ` C� � : A ` C (
) � : A ` B : C ` D�
 : A
 C ` B
DTable 3.1. The axiom scheme and rules for tensor theoryWith the axiom scheme and rules, the state change can be derived as below, where therepetition of alphabets is indicated with superscript, e.g., b
 b = b2:t : a
 b2 ` d3
 e2 t0 : b
 c3 ` e
 f4t
 t0 : a
 b3
 c3 ` d3
 e3
 f4 (
) id : a
 b ` a
 b(t
 t0)
 id : a2
 b4
 c3 ` a
 b
 d3
 e3
 f4 (
)Given this example, we may expect there would be some correspondence between linearlogic and petri nets. The relationship between them has been studied on the basis of acategory [MOM91] and an algebra [EW90, EW93]. Engberg and Winskel have shownthat in fact a version of linear logic can be interpreted using petri nets and is completeon them [EW93]. The question we want to ask is whether we can do a similar thing tothe �-calculus, that is, to capture the calculus in linear logic.3.1.4 A petri net interpretation of CCSTo investigate the relationship between linear logic and the �-calculus, we �rst considerthe relation between petri nets and CCS (Calculus of Communicating Systems) [Mil89],which can be thought of roughly as the �-calculus minus mobility [MPW91]. By relatingCCS with petri nets, which can be a model for a version of linear logic, we can estimatewhat needs to be considered in specifying the �-calculus within linear logic.Suppose there is a process, C, de�ned as 76Strictly speaking, ` should be written as `
, but we write ` for simplicity. In the following sections, wewill actually adopt a combinatorial linear logic, not
-theory, but it is enough at the moment to sketch basicideas. Note also we write � � in de�ning cut rather than � � for convenience.7The example is taken from [GM84] with a slight modi�cation based on the material found in [BC94].
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 64C =def a:0 j a:0The process can be translated to a petri net shown in the �gure 3.5, where t means asilent action. In the net, a transition may occur either by �ring a and a independently orby �ring t, but not by �ring both, because the tokens in p and q will be consumed whent is �red, which prohibits a and a from �ring and vice versa. In either case, however,the �nal state is the same (Figure 3.6).

t

1 1

1 1

1

1

1

1

a a
_

p q

r sFigure 3.5. A petri net translation of a:0 j a:0

t

1 1

1 1

1

1

1

1

a a
_

p q

r sFigure 3.6. The �nal state of the petri netAnalogous to the linear logical speci�cation of petri nets, one may think of specifyingthe CCS programs by adding the following axioms to
-theory. The state change can be

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 65inferred either by t alone or by applying the
-rule to a and a, i.e., a
a : p
 q ` r
 s.(a) a : p ` r(b) a : q ` s(c) t : p
 q ` r
 sWe can now ask how the states, p; q; r; and s, can be characterised. Recall that theprecondition and postcondition are de�ned in terms of tokens consumed or producedupon transitions for the case of petri-nets. By applying the idea to CCS, we can see thestate, p, can for example be characterised with the resource to perform the action, a.The state, q, then can analogously be characterised as a. We replace u and v for a anda as term and characterise the states, r, s, and r
 s as 0, 8 the state where no resourceis available. After the modi�cation, the �gure 3.5 and 3.6 are redrawn to 3.7 and 3.8,respectively.9

t

1 11 1

a a
_

0

u vFigure 3.7. A modi�ed petri net of a:0 j a:0The axioms too are rede�ned as below. One may notice the �rst two of the axiomscorrespond to the process de�nition in the �-calculus that a:0 and a:0, respectively. Weconceive of the �-calculus de�nition of processes as stating state changes.(a) u : a ` 0(b) v : a ` 0(c) t : a
 a ` 08We will later replace 1 for 0.9Strictly speaking, it is odd to depict 0 as if it were a place, but it is convenient to indicate the transition.
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 66

t

1 11 1

a a
_

0

u vFigure 3.8. The �nal state of the petri netWe have seen it is possible to translate CCS processes to petri nets as long as they donot exchange messages. But how can we translate them if they exchange messages?Consider for example the following program C 0, where x will substitute y upon theinteraction through a:C0 =def a(y):0 j ahxi:0How can the e�ect that y is substituted by x be expressed? Petri nets cannot expressthe extra information on substitutions, but its linear logical speci�cation can, by addingan extra formula to the third axiom to de�ne the e�ect:(a) u : a(y) ` 0(b) v : ahxi ` 0(c) t : a(y)
 ahxi ` 0
 !(x = y)Here, the formula, !(x = y), added to t expresses the e�ect upon the interaction betweena(y) and ahxi. The of-course operator, !, ensures the information can be provided for asmany times as it is requested. This is because the information on substitution should beavailable forever. Another point is that we express substitutions as the equality betweennames, e.g., x = y.The encoding of substitutions as equations makes it possible to de�ne match. Supposein the program C 0 the execution of ahxi was restricted by a match formula, b = c:

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 67C 00 =def a(y):0 j [b = c]ahxi:0The restriction can be expressed by adding the extra condition to v and t:(a) u : a(y) ` 0(b) v : ahxi
 !(b = c) ` 0(c) t : a(y)
 ahxi
 !(b = c) ` 0
 !(x = y)By adding to them the formula, !(b = c), we can ensure that the axioms v and t areapplied to only when the condition is satis�ed, which may be thought of as simulatingthe e�ect by match.Now that it becomes clear that the petri net translation falls short of expressing thecases where messages are exchanged, we turn back to our graphical representation,data
ow graphs, and consider how it can be related to linear logic. Let us see �rst howthe program C 0 may be depicted in the graph (Figure 3.9).

x y

a

0 0

a<x>
_

a(y)

tv uFigure 3.9. A data
ow graph translation of a(y):0 j ahxi:0In the �gure, v and u on the arrows indicate their corresponding actions. t on the lineconnecting v and u indicates the interaction between them. As depicted in the �gure,we put the states before action in upper and those after action in lower part of arrows.This is because we execute computation from upper parts depicted in the �gure tolower parts. We will �ll in the lower part of arrows with resources made available byexecuting the action, which are typically resources for actions immediately guarded byit.10 The translation from data
ow graphs to linear logic is straightforward. We startby observing each arrow, u and v, and translate them into u : a(y) ` 0 and v : ahxi ` 0,respectively. t is �rst translated to t : a(y)
 ahxi ` 0, and then !(x = y) is added to itsconsequence by inspecting the nodes connected by t.10More detailed explanation can be found in x3.6.4.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 683.1.5 A linear logical speci�cation of the �-calculusThe �nal step is to express mobility in linear logic. How can for example the followingprogram be speci�ed, where the channel b is passed to the �rst process from the second?D =def a(y):y(z):0 j ahbi:bhxi:0In our graphical representation, the program may be depicted and be decorated as isshown in the �gure 3.10. The arrow v2 is decorated with bhxi and 0, and another arrowu2 with y(z) and 0. bhxi and y(z) appear in the lower part of the arrows above them,too, which means the resources to execute u2 and v2 are provided for by executing u1and v1, respectively. t1 is same as t presented previously. We have to be cautious inspecifying mobility, however. If we specify t2, the possible interaction between v2 andu2, in the same way as t1, it might be expressed as:t2 : y(z)
 bhxi ` 0
 !(x = z)But the speci�cation is incomplete as it allows the interaction to occur even when thereis no interaction between v1 and u1. Since the interaction between v2 and u2 becomespossible only when b substitutes y, we should express it by adding to the antecedentthe extra condition (b = y):t2 : y(z)
 bhxi
 !(b = y) ` 0
 !(x = z)The processes are therefore speci�ed as follows:(a) u1 : a(y) ` y(z)(b) u2 : y(z) ` 0(c) v1 : ahbi ` bhxi(d) v2 : bhxi ` 0(e) t1 : a(y)
 ahbi ` y(z)
 bhxi
 !(b = y)(f) t2 : y(z)
 bhxi
 !(b = y) ` 0
 !(x = z)Finally, we replace 1 for 0 and assume an axiom 1
 1 ` 1, which holds in the logic.With these axioms, we can infer the transition from the initial state, where the actions,a(y) and ahbi, are possible, to the �nal state, where no action is possible with thesubstitution environment, x = z and b = y as follows:t1 : a(y)
 ahbi ` y(z)
 bhxi
 !(b = y) t2 : y(z)
 bhxi
 !(b = y) ` 1
 !(x = z) id : (b = y) ` (b = y)!id :!(b = y) `!(b = y) !t2
!id : y(z)
 bhxi
 !(b = y)
 !(b = y) ` 1
 !(x = z)
 !(b = y)
t2
!id : y(z)
 bhxi
 !(b = y) ` 1
 !(x = z)
 !(b = y) cont1 � (t2
!id) : a(y)
 ahbi ` 1
 !(x = z)
 !(b = y) cut

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 69

b y

a

u

a
_

a(y)

t

z

y(z)

x

b<x>
_

b<x>
_

y(z)

0 0

v1 1

v2 u 2

1

t2Figure 3.10. A data
ow graph translation of a(y):y(z):0 j ahbi:bhxi:0In this derivation, we assume a contraction rule shown below, which will be proved validin our logic shortly (x3.2.2). The term can also be reduced to t1 � t2 using the equationsgiven in the table 3.7. A
 (!B
 !B) ` CA
 !B ` C con3.1.6 The strategyIn this chapter, we show how mobile processes can be speci�ed using linear logic. Toexplain the translation, we go through the following steps:processes de�ned in the �-calculus+expressions in L0+decorated data
ow graphs+linear logic formulasThe language L0 serves as an intermediate language between the �-calculus and deco-rated data
ow graphs, and can simulate a fragment of the �-calculus without replication,!, and choice, +. The reason why we employ the language is that the �-calculus is toorestrictive in terms of pre�xing to encode some of the situation-theoretic objects innext chapter. Since the restriction is not essential, the language can be seen as a gen-eralisation of the calculus.11 We could therefore have started the previous chapter by11The improvement has been proposed by Milner [Mil92b].

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 70presenting the language, skipping the explanation about the �-calculus. But we optedfor starting by examining the calculus because it makes it easier to understand the ideasof communication and concurrency. One should however not be misguided to believethat our aim in this chapter is limited to de�ne processes in the �-calculus with linearlogic.3.2 A Combinatorial Linear LogicWe turn to a combinatorial intuitionistic linear logic (C-ILL), which may be regardedas a system for deriving sequent of the form A) B. A rule for sequential compositionis de�ned for example as follows:a : A) B b : B) Ca � b : A) CThe choice of combinatorial linear logic rather than usual intuitionistic linear logic de-�ned as natural deduction systems (N-ILL) is motivated by our interest; Its connectionwith category theory help us to relate our system with Situation and Channel theories.Note that we loose nothing by turning to combinatorial linear logic. It is known thatN-ILL and C-ILL are equivalent in the sense that if � : A) B is derivable in C-ILL,there is a deduction of A ` B in N-ILL, and if A1; : : : ; An ` B in N-ILL, there is aterm � such that � : A1
 � � �
An) B is derivable in C-ILL ([Laf88, Tro92]).3.2.1 De�nition of Combinatorial Intuitionistic Linear LogicThe Table 3.2 lists the axioms and rules for Combinatorial Intuitionistic Linear Logicwithout exponentials, C-ILL0.12 As is mentioned above, we write �� , not ��, whentwo sequences � and are sequentially composed. 1 means a unit, and > and 0 topand bottom, respectively.13 In the following, we may drop for simplicity the subscripts,e.g. A;B, and C in idA and curA;B;C.The intuitive meaning of connectives can be explained as follows:- tensor (
): A
B means both A and B are available or concurrently active.- with (&) : A&B means only one of them is available, but the choice is up to thetheorem prover.- plus (�) : A� B means either one can be chosen, but the theorem prover has noright in the decision.12The source of the section on combinatorial linear logic is [Tro92], Chapter 9.13The relation between 1, >, and 0 is confusing because not (1, 0) but (>, 0) are dual. The symbol, ?, isreserved for multiplicative disjunction, which is excluded from combinatorial intuitionistic linear logic.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 71

Sequential composition:� : A) B : B) C� � : A) C idA : A) AParallel composition:� : A) B : C) D�
 : A
 C) B
D 1 : 1) 1Adjointness of (and
:� : A
B) CcurA;B;C(�) : A) B(C evA;B : (A(B)
A) BSymmetry, associativity, and unit:
A;B : A
B) B
 A�A;B;C : A
 (B
 C)) (A
B)
 C ��1A;B;C : (A
B)
 C) A
 (B
 C)�A : 1
A) A ��1A : A) 1
 AProducts:� : A) B : A) Ch�; i : A) B&C �A;B;i : A0&A1) Ai (i 2 f0; 1g)>A : A) >Coproducts:� : B) A : C) A[�;] : B � C) A �A;B;i : Ai) A0 � A1 (i 2 f0; 1g)0A : 0) ATable 3.2. Axioms and rules for Combinatorial Intuitionistic Linear Logic, C-ILL0
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 72The di�erence between & and � lies in the di�erent sources of non-determinism: outerand inner non-determinisms, a notion investigated in computer science. Note the `with'operator, &, should not be regarded as disjunction although the operator certainlyexhibits the feature. Observe the following example to understand its intuitive meaning,where you can only buy one bottle of red or white wine for $2.99: 14Wine of the monthRed& Only for $2.99!White3.2.2 Axioms and rules for the exponentialThe combinatory intuitionistic linear logic with the exponential, ! (of-course), abbrevi-ated as C-ILLe, is de�ned by adding to C-ILL0 (Table 3.2) the axioms and rules shownin the table 3.3.Exponential:� : A) B!� : !A)!B sA : !A)!!A rA : !A) A t : !>) 1pA;B : !(A&B)) !A
 !B p�1A;B : !A
 !B) !(A&B)Table 3.3. Axioms and rules for the exponentialOnce these axioms and rules are added to C-ILL0, thinning and contraction are recov-ered as is shown in the table 3.4 and 3.5, respectively.Thinning: B) C!A
 B) CDerivation:A) >!A)!> ! B) B!A
B)!>
 B
 !>) 1 B) B!>
B) 1
B
 1
 B) B B) C1
 B) C �!>
B) C �!A
 B) C �Table 3.4. The rule for thinning and its derivation14In the original, & was +, which I found at a shop, Margiotta in Marchmont, Edinburgh.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 73Contraction:A
 (!C
 !C)) DA
 !C) DDerivation:A) A !C)!C
 !CA
 !C) A
 (!C
 !C)
 A
 (!C
 !C)) DA
 !C) D �The derivation of !C)!C
 !C:!C)!!C !C) C C) C C) CC) C& C &!C) C& C �!!C)!(C& C) !!C)!(C& C) � !(C& C))!C
 !C!C)!C
 !C �Table 3.5. The rule for contraction and its derivation3.2.3 The axioms for substitutionsWe need special axioms to incorporate substitutions into the logic. They should, for ex-ample, allow for the following inference, where every occurrence of d in the consequenceis replaced by c when the information contained in !(c = d) is consumed.A) !(c = d)
 !(d = e)A) !(c = e)For this purpose, we extend the logic by introducing a predicate expressing equalityor identity between names. Let the symbol `=' be the predicate, which takes twoarguments. We write `c=e' for `=(c,e)' as usual and call the extended logic C-ILL=ebecause it is C-ILLe plus the equality predicate.The axioms for `=' are de�ned as is shown in the table 3.6.15 The �rst rule eq1 de�nesthe relation as re
exive and states the formula, !(t = t), holds without any assumptions.The second rule de�nes the relation as symmetric. The third one de�nes the rule forsubstitutions. [t=x] in P [t=x] means the occurrence of t standing for x in P , and P [s=x]means to replace s for every x. In the table, the alphabets s or t, connected with `=',must be a name, not a proposition.Given the set of rules, we can check that `=' is transitive, i.e., !(s = t)
 !(t = u)) !(s =u), directly from eq3 because eq3 : !(s = t)
 !(t = u)[t=x]) !(s = u)[s=x]. Note wecould obtain the same result even if the two formulas in the antecedent were swapped,15More succinctly, one can de�ne the axioms without ! with an additional axiom, eq�1 : (t = t)) 1.
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 74Equality:eq1 : 1) !(t = t)eq2 : !(s = t)) !(t = s)eq3 : !(s = t)
 P [t=x]) P [s=x],Table 3.6. The axioms for equalityi.e., !(t = u)
 !(s = t)) !(s = u), because the antecedent can be transformed by eq2to !(u = t)
 !(s = t), and then eq3 can be applied to, i.e., !(u = t)
 !(s = t)[t=x])!(s = u)[u=x].3.3 A molecular language L0The language L0 is a syntactic variant of the �-calculus without choice, +, and replica-tion, !, but less restrictive in the use of pre�xing. It is equipped with the restriction, � ,but the e�ects are treated di�erently. Translating processes in the �-calculus into thelanguage does not alter the semantics within the limitation.3.3.1 Parallel compositionWe assume by default particles are concurrently active and do not introduce a particularsymbol to the language for parallel composition. For instance, a de�nition of process inthe �-calculus:ahbi ja(b)can be expressed as:[ahbi; a(b)]In the following, we call the unit indicated by [and] molecule in that it is distinguishedby the boundary.16 We allow molecules to be nested in other molecules. For instance,the following expression is legitimate in our language.[[ahbi; a(b)]; [chdi; c(e)]; ghhi]16The metaphor of molecules is proposed by Berry and Boudol [BB92]. The notation is adopted from[Mil93a].

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 753.3.2 GuardingThe speci�cation of the guarding is separated from the declaration of particles, e.g., aprocess,ahbi.chdi.0is translated to:[ahbi; chdi � ahbi � chdi]where \ahbi, chdi" preceding � declares particles comprising the program, and \ahbi �chdi" following it expresses how these particles are guarded, i.e., ahbi guards chdi.The tree structure of guarding relationsWe impose a restriction in constraining the execution of particles with guarding. Weensure that a particle should be guarded by at most one particle. That is,[a(x); b(y); c(z) � a(x) � b(y); a(x) � c(z)]is admissible17 since both particles, b(y) and c(z), are guarded by only one particle,a(x), but the following expression:[a(x); b(y); c(z) � a(x) � b(y); c(z) � b(y)]is not since b(y) is guarded by two particles, a(x) and c(z). More graphically, theguarding relations should form a tree as is shown in the �gure 3.11, not a graph (Figure3.12). 18In the �-calculus, the syntax is de�ned so that it does not allow for the constructionforming a graph. Recall that a program such as:a(x).(b(y).0 j c(z).0)is legitimate, but the below is not.(a(x).0 j c(z).0).b(y).017Hereinafter, we may omit 1 and its relating guarding information for simplicity. The expression shouldhave been [a(x); b(y); c(z) � a(x) � b(y); b(y) � 1; a(x) � c(z); c(z) � 1], more precisely.18The restriction can be lifted with a trick. See x3.6.4.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 76
a(x)

b(y) c(z)

root

Figure 3.11. The guarding relation of a(x) � b(y) and a(x) � c(z)

a(x)

b(y)

c(z)

root

Figure 3.12. The guarding relation of a(x) � b(y) and c(z) � b(y)

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 77The obligatory guarding of mobile particlesIn addition to the constraint, another constraint should be imposed on guarding inconnection with mobility . As is observed in x2.4.2, the execution of mobile particlesmust be postponed until they are immobilised. Therefore, the particle mobilising aparticle must guard it. When we declare the following molecules, for instance:- [ahbi; bhci]- [a(x); x(y)]we have to add to them the guarding such as:- [ahbi; bhci � ahbi � bhci]- [a(x); x(y) � a(x) � x(y)]As we have seen in the previous chapter, the mobilising relations can be checked bydepicting data
ow graphs. As is presented in the �gure 3.13, the mobile particles areplaced in lower levels than the particles mobilising them.

b

c

x

y

a

a

b<c>
_

a(x)

x(y)

b<c>
_

x(y)

1 1

_

Figure 3.13. The data
ow graph composed of particles, ahbi, bhci, a(x), and x(y)Notice, however, that the mobile particles need not be guarded directly by its mobilisingparticle, but other intermediate particles can be inserted in the guarding tree betweenthem as long as it is reachable in the structure. For example, the expression:[ahbi; dhei; bhci � ahbi � dhei; dhei � bhci]respects the constraint as the relation, ahbi � bhci, can be deduced owing to the tran-sitive nature of guarding.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 783.3.3 Restriction and the scope of bound namesTo restrict access to names, we may declare the restriction in front of its molecule. Thatis, a process(� b)(ahbi.chdi.0)is translated to a molecule(� b)[ahbi; chdi � ahbi � chdi]The declaration also binds the name and determines its scope within the molecule.Analogously, the scope of bound names by input action is within the molecule, too. Forexample, when we translate a process such as:a(x).c(y).0into: [a(x); c(y) � a(x) � c(y)]the scopes of x and y, which are bound by input actions at a and c, respectively, arewithin the molecule.Since we allow for nested molecules, the restriction does not need to be declared as toindividual particles. For example, a process such as:(� b)(ahbi) j a(x)can be translated to:[(� b)[ahbi]; a(x)]by turning ahbi into a molecule.3.3.4 MatchThe match operator is treated in a similar way to guarding as its purpose is to guardparticles. Observe in the following process that the match formula, [x = b], can beregarded as guarding the particle, c(y), by not allowing it to be executed until thecondition is satis�ed by substitution environments:a(x):[x = b]c(y):0We will, therefore, add to the above expression the extra condition, (x = b) � c(y):[a(x); c(y) � (x = b) � c(y); a(x) � c(y)]

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 79The guarding by the match formula is not counted as the guarding by particles, thus anynumber of match formulas can guard a particle without modifying the tree structure ofguarding relations.3.3.5 The rule for actionsThe dynamic semantics for L0 is de�ned with the rules specifying actions and inter-actions within and between molecules. The transition rule for actions speci�es theconditions under which a particle can be executed. In short, a particle can be executedif it is not guarded by any particle or match formula. For example, a molecule such as[ahbi; chdi; ehfi] can degenerate to [chdi; ehfi] after executing ahbi, which is expressedas: [ahbi; chdi; ehfi] ahbi& [chdi; ehfi]Then, the molecule can degenerate further either to [chdi] or [ehfi]. Assume we wouldlike to ensure chdi should be executed prior to ehfi. The execution can be controlledby adding to the molecule a constraint such that chdi � ehfi:[chdi; ehfi � chdi � ehfi] chdi& [ehfi]The constraint, chdi � ehfi , is eliminated once chdi is consumed because it is now void.Then, the remaining particle, ehfi, can be executed:[ehfi] ehfi& ;To guard a particle with a match formula, we have to keep a record of substitutions assubstitution environments, E. We may, for example, express a substitution environmentfa=xg as:[a(y)] � fa=xgwhere the expression, �fa=xg, following the molecule records the substitution, a = x.Given the record, we can control the execution with match by referring to the envi-ronment. For example, in a molecule with an environment below, the particle, a(y), isexecutable:[a(y) � (a = x) � a(y)] � fa=xga(y)& ;while it is not in a di�erent environment below because the formula, (b = x), is notsatis�ed by the environment, fa=xg.[a(y) � (b = x) � a(y)] � fa=xg

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 803.3.6 The rule for interactionsThe interaction between an input and output particles may occur when both of them areexecuted at the same time, provided that they are connected with each other througha channel. Upon the interaction, the substitution environment is updated with the newsubstitution. For example, in the molecule below, ahbi and a(x) can interact with eachother, updating the substitution environment E by fb=xg:[ahbi; a(x); chdi] �E�& [chdi] �E [fb=xgThe substitution can apply to the molecule if the substituted name appears there. Ifehxi was in the molecule, it would have been rewritten to ehbi as the result of theinteraction as follows:[ahbi; a(x); chdi; ehxi] �E�& [chdi; ehbi] �E [fb=xgThe substitution should apply to constraints, too. Suppose we impose a constraint,a(x) � ehxi, on particles in the molecule. Then, the constraint is rewritten as well: 19[ahbi; a(x); chdi; ehxi � a(x) � ehxi] �E�& [chdi; ehbi � a(b) � ehbi] �E [fb=xgThe same does not apply to match formulas, however. Suppose the output action, ehxi,is guarded by a match formula, (b = x). Despite the fact that the name x is substitutedby b, the formula remains to be the same as follows:[ahbi; a(x); chdi; ehxi � (b = x) � ehxi] �E�& [chdi; ehbi � (b = x) � ehbi] �E [fb=xgScope intrusion and extrusionAs we have seen in the previous chapter, the interaction between particles and the e�ectof the restriction operator, � , bring about scope intrusion and extrusion. Observe, forexample, that the scope intrusion requires us to rename a in the �rst molecule below toa0 to avoid that it crushes with a in the second molecule.[(� a)[b(x); ahzi]; [bhai; ahci]] �E= [(� a0)[b(x); a0hzi]; [bhai; ahci]] �E�& [(� a0)[a0hzi]; [ahci]] �E [fa=xg19Strictly speaking, the constraint would not appear as it is void.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 81As for scope extrusion, observe the next example, where the scope of a is extruded fromthe second molecule to the �rst upon the interaction:[[b(x); x(z)]; (� a)[bhai; ahyi]] �E�& [(� a)[a(z); ahyi]] �E [fa=xgTo de�ne particular rules for scope intrusion and extrusion may complicate the seman-tics. Suppose we keep records on substitution environments as to each molecule in orderto de�ne a rule for scope intrusion, for example. The transition may occur as follows:[(� a)[b(x); ahzi] �E1; [bhai; ahci] �E2]= [(� a0)[b(x); a0hzi] �E1 [fa0=ag; [bhai; ahci] �E2]�& [(� a0)[a0hzi] �E1 [fa0=a;a=xg; [ahci] �E2]This way of de�ning transitions is not particularly appealing. The rules may be com-plicated because the decision on which pair of particles will interact has to be madeeach time in advance to renaming particles. Nested molecules may make things morecomplicated, which are allowed for in our language.An early renaming strategyWe treat the matter of bound names and their scopes based on a di�erent strategyfrom that adopted in the �-calculus. We consider bound names as a convenient wayto make them unique in their scopes. The scope extrusion is thought of as a way topreserve uniqueness of bound names, which will disappear once our strategy is adopted.Reconsider the timing when bound names are renamed in the �-calculus. Since theyare not renamed until there is a crush, we call it late renaming strategy. Contrary toit, our strategy may be called early renaming strategy as we rename any bound namesto unique ones in the beginning.Suppose we would like to de�ne a molecule such that two distinctive names are emittedfrom a channel, a. One way to do this is to use two distinctive names, i.e.,[ahbi; ahci]But with binding force, we are released of the labour to assign two distinctive names tothem. The following molecule does the same job as two occurences of b in the �rst andsecond molecules are distinctive owing to the e�ect of the restriction, � .[(� b)[ahbi]; (� b)[ahbi]]

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 82Similarly, a molecule such that it inputs two names and substitutes two distinctivenames with them can be expressed as [[a(x)]; [a(x)]], not as [a(x); a(y)].By regarding binding names as a convenient way to introduce distinctive names, wecompile the expressions containing bound names to those assigned unique names. Sincewe do not need to worry about the scope, we can dissolve all molecules into a single one.The easiest way to make a name unique is to mark it with consecutive natural numbersas subscripts. We may, therefore, compile the above program, [(� b)[ahbi]; (� b)[ahbi]],to [ahb1i; ahb2i].20 Given the compilation step, we do not need any rules for scopeintrusion and extrusion. The step is also necessary to translate processes de�ned inthe �-calculus to logical formulas because the logic cannot deal with the phenomena ofscope extrusion and intrusion.The syntax and semantics of L0 are summarised in Appendix A, where extended lan-guages with the replication and choice operators are also de�ned.3.4 The translation from L0 to C-ILL=e3.4.1 The translation via data
ow graphsThe translation from L0 to C-ILL=e is straightforward. Guardings are translated to theaxioms of combinatorial linear logic just by replacing) for � and adding to it a term.For example, chdi � ehfi is translated to � : chdi) ehfi. The match formulas aretranslated to formulas with `=', e.g., (b = x) � ehfi is translated to : ! (b = x))ehfi. By combining these translations, we can translate a process, chdi:[b = x]ehfi, to' : chdi
 !(b = x)) ehfi.The simple translation can, however, only capture actions, not interactions. To expresspossible interactions between processes in our logic, we have to represent particles inL0 as data
ow graph so that we can predict all possible interactions. We have alreadyseen how a process in the �-calculus can be depicted as a data
ow graph (x3.1.5). Oncea process is depicted as a data
ow graph, pairs of actions that can interact with eachother can be easily predicted. By taking the top node as root in the �gure, they arein the same depth or distance from the root. Observe, for example, how the depth iscounted in the �gure 3.14, which was shown originally as Figure 3.10 in the section.21As we have seen in the section, the interactions, t1 and t2, are translated to the following:(a) t1 : a(y)
 ahbi) y(z)
 bhxi
 !(b = y)20Recall we needed to rename them to depict data
ow graphs correctly (x2.1.2).21We suppress subscripts where no confusion arises.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 83

b y

a

a
_

a(y)

t

z

y(z)

x

b<x>
_

b<x> y(z)

1 1

0

1

depth

_

1

t 2Figure 3.14. The data
ow graph decorated with actions(b) t2 : y(z)
 bhxi
 !(b = y)) 1
 !(x = z)The general principle is that a pair of exporting and importing particles may interactwith each other if� they are in the same distance from a common node through which they are reach-able, and� they are located at the same place, i.e., they are connected through a channel.The second condition is irrelevant when they are in the distance of 0, but it mustbe stated explicitly otherwise. Thus, we have to add the formula, !(b = y), to theantecedent of t2 to ensure that the pair of bhxi and y(z) should be connected througha channel, b.One of our major inventions is certainly the graphical representation of particles. Whileit may be trivial to translate guardings into axioms of combinatory linear logic, itrequires another step, data
ow graph representation, to detect possible interactions.3.4.2 Extension from C-ILLe to C-ILL=eOur logic, C-ILL=e , is an extension of C-ILLe. As for axioms, we have added threeaxioms for substitutions. As for expressions, one can think that we have introduced tothe logic three special predicates: equal, export, and import.(a) The equal predicate, =, has two arguments a and b, where both must be a name.An expression such as a = b is the abbreviation of a formula, equal(a; b).
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 84(b) The export predicate, ahbi, has two arguments, where both a and b must be aname. The �rst argument is a channel through which the second argument isexported. The expression, ahbi, is the abbreviation of a formula, export(a; b).(c) The import predicate, a(b), has two arguments, where both a and b must be aname. The �rst argument is a channel through which a name is received to replacefor the second argument. The expression, a(b), is the abbreviation of a formula,import(a; b).One may recognise the logic is neither propositional nor �rst order. The additionalpredicates are, however, restricted to just these three.3.4.3 Extension to the polyadic �-calculusThere is no problem in extending the language to treat the polyadic version of the �-calculus though we con�ned ourselves to the monadic version for simplicity. To expresspolyadic input or output particles in L0, we use the same notation as the polyadic�-calculus, e.g., ahb; c; di, when we abbreviate it. To translate it fully into the logic,we simply increase the number of arguments. That is, ahb; c; di is to be translated toexport(a; b; c; d).Accordingly, it will increase the number of formulas stating the e�ect on substitutionenvironments upon interactions between polyadic particles. For example, if ahb; c; di anda(x; y; z) interact with each other, then three formulas are needed to express the e�ect,e.g., !(b = x); !(c = y), and !(d = z). There is no di�culties in adding the formulas toaxioms.3.5 Non-determinismWe encounter two sort of non-determinism in the �-calculus, one of which is caused bythe use of the choice operator, +, and the other of which occurs when there are morethan one possible interactions, e.g., when more than one importing particle competeto get access to an exporting particle or when more than one exporting particles areavailable for an importing particle. We discuss the �rst case of non-determinism, thenthe second.3.5.1 The choice operator as external non-determinismThe non-determinism by choice operator occurs for example when a process belowde�ned in the �-calculus tries to output a name, b or c from channels y or z, respectively,after emitting x from a channel a.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 85ahxi.(yhbi + zhci)One way to express the non-determinism of the process is to translate the choice operatorto additive conjunction, & (with). In that case, the above program may be translatedinto the below, where the non-deterministic choice is regarded as external one.ahxi) yhbi&zhciThe translation is reasonable if we can understand the program as stating two possibletransitions, one of which is to execute ahxi then yhbi, and the other of which is to executeahxi then zhbi, where the decision is up to the process. The two possible transitions areexpressed as axioms such as ahxi)yhbi, and ahxi)zhci, respectively. By the inferencerule of & (with), we can infer the above axiom as follows:s : ahxi) yhbi t : ahxi) zhcihs; ti : ahxi) yhbi&zhci (&)Then the decision to choose either one is derived with the projection, �, as follows:22s : ahxi) yhbi t : ahxi) zhcihs; ti : ahxi) yhbi&zhci (&) �0 : yhbi&zhci) yhbihs; ti � �0 : ahxi) yhbi (�)Note that the expression, ahxi) yhbi&zhci should not be confused with an expressionwith
, ahxi) yhbi
 zhci. While the former means the choice between the twoparticles, the latter means both can be executed. The latter, therefore, corresponds toa process such as:ahxi.(yhbi j zhci)One may wonder how a case where a process starts by choosing one among others canbe expressed. For example, the following process must start by choosing either one:yhbi.0 + zhci.0As we cannot �nd out any antecedent for them, the translation seems to fail. Recall,however, 1(unit) can appear anywhere. The process can therefore be rewritten to1.(yhbi + zhci)which enables us to translate it to the following formula using &:1) yhbi&zhciAlthough such translation might appear to be cumbersome, there is no problem theo-retically in the translation.22The term, hs; ti � �0, is written as �0 � hs; ti in standard notation, and reducible to s.
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 863.5.2 The choice operator as internal non-determinismAnother way to deal with choice is to regard it as expressing internal non-determinism,� (plus). If we adopt this approach, we have to modify the syntax of the �-calculusrather drastically so that the above program can be written as(yhbi + zhci).0Then, the program is translated to yhbi � zhci) 0, which is derived as follows:u : yhbi) 0 v : zhci) 0[u; v] : yhbi � zhci) 0In this case, it is appropriate to interpret the null process, 0, as 0 in linear logic, notas 1(unit) because we are supposed to interpret the meaning of choice as internal non-determinism, whose neutral element is 0. The trouble of this interpretation is that notall processes terminate; Some processes never terminate. Observe, for example, thebehaviour of a process, P + Q, where P =def ! yhbi and Q =def ! zhci. As they repeatforever the actions, yhbi and zhci, respectively, they will never turn into the identicalstate, 0. Thus, we cannot express choice as internal non-determinism.To sum up, it is impossible to interpret choice as internal non-determinism withoutaltering the �-calculus. We have to ensure both options should be �nite, which seemsto be too restrictive as a translation of the �-calculus. We prefer, therefore, interpretingchoice as external non-determinism.3.5.3 Non-deterministic interactionAnother sort of non-determinism can occur in evolution, for example, when two im-porting particles compete to get access to an exporting particle. Observe the followingsystem where the name b may substitute either x in the second process or y in the thirdprocess non-deterministically:ahbi:P j a(x):Q j a(y):RIf the second process gets access to the �rst process, then the system turns into thefollowing state:P j Qfb=xg j a(y):RWhile the system turns into another one shown below if the third one gets access:P j a(x):Q j Rfb=yg

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 87This kind of non-deterministic interaction can be captured as follows: We �rst turn theprocess into a graph shown in the �gure 3.15, then translate it into the following linearlogical formulas:(a) p : ahbi) P(b) q : a(x)) Q(c) r : a(y)) R(d) s : ahbi
 a(x)) !(b = x)
 P
 Q(e) t : ahbi
 a(y)) !(b = y)
 P
 R

b x

a

a
_

a(x)
t

y

P Q

R
a(y)

sFigure 3.15. A non-deterministic interactionThen, the non-deterministic interaction can be derived as below:23s : ahbi
 a(x)) !(b = x)
 P
 Q id : a(y)) a(y)s
 id : ahbi
 a(x)
 a(y)) !(b = x)
 P
 Q
 a(y) t : ahbi
 a(y)) !(b = y)
 P
 R id : a(x)) a(x)t
 id : ahbi
 a(x)
 a(y)) !(b = y)
 P
 R
 a(x)hs
 id; t
 idi : ahbi
 a(x)
 a(y)) (!(b = x)
 P
 Q
 a(y)) & (!(b = y)
 P
 R
 a(x))The decision to choose either one is derived with the projection, �, as is explained inx3.5.1. It is pleasant to see that both kind of non-determinism, one by choice operatorand the other by non-deterministic interaction, can fall into the same sort of non-determinism, external non-determinism.3.6 Discussion3.6.1 ReplicationThere are of course limitations to our speci�cation. First of all, we cannot capturethe behaviour of processes with replication, !. Consider how a process de�ned in the23In the right part of the proof, we skip for simplicity the step to swap a(y) and a(x), i.e., turning a(y)
a(x)into a(x)
a(y).

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 88�-calculus, !ahbi, may be expressed in our logic. If the action is performed only once,it would be expressed as:t1 : ahbi) 1If the action is performed twice, then it should be expressed as:t1 : ahbi) 1t2 : ahbi) 1This suggest we have to consider how many copies are needed when we compile processesto logical formulas. The solution works as long as the number of interactions is boundto be �nite. For example, in the case below we know the particle, ahbi, should be copiedtwice so that both importing particles, a(x) and a(y), can receive the name, b.! ahbi j a(x) j a(y)But the solution cannot be applied to the case where both exporting and importingparticles are replicable. There is no way to count how many copies are required in thefollowing case:! ahbi j ! a(x) j ! a(y)A better solution is therefore to provide for an extra-logical mechanism generating anew axiom when it is needed. Recall that neither Hennessy-Milner logic [HM85] nor itsextention to mobile processes [MPW91] does not deal with the issue and that �xed-pointoperators had to be introduced to express properties such as \performing some actionsforever" [Sti92]. The fact suggests that we have to extend the logic rather drasticallyto incorporate replication into it.Another approach is to admit axioms to be used as many times as needed. In this casewe have to give up with the view that terms correspond to a particular action, but to amore abstract computation. Even the approach still can see a trouble when replicationis combined with restriction. To specify a process such as !(� b)(ahbi), �nitely many biare needed as b must be a fresh name each time it is created, which cannot be copedwith by the approach either. Only �nite cases can be dealt with. This is also the casefor petri nets; Only �nite petri nets could be investigated by linear logic [MOM91].3.6.2 Bound and free namesWe have not investigated the issue of bound/free names. In our treatment, bound namesare assigned unique names when processes are translated into logical formulas so thatthey will never crash with each other. This might expose another limitation when the

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 89restriction operator, � , is combined with the replication, !, as we have seen in the above.To solve the problem, one may think of introducing to the logic existential quanti�er,9. For example, one may try to express a process (� b)(ahbi) ass1 : 9b:ahbi) 1The solution will however not work because the scope of the quanti�er is limited towithin the formula. Observe for example how the following process can be translatedto a set of formulas:! (� b)ahbi.bhci.bhdi.0which can be translated into the following set of formulas, where the name, b, is bound:u1 : 9b:ahbi) bhciv1 : 9b:bhci) bhdiw1 : 9b:bhdi) 1The problem is that the scope of the existential quanti�er does not expand beyond anaxiom, and therefore the names, b, are not identical between these axioms. Thus, theapproach falls short of capturing the meaning of bound names. In fact, we need tointroduce more powerful operators to deal with the problem than those provided forin standard logics. Dam for example adopt the �-abstraction and application [Dam93].With more powerful operations, abstraction and concretion, discussed in [Mil93b], wemay express those axioms as:u1 : hi(ahbi) bhci)[b]v1 : hbi(bhci) bhdi)[b]w1 : hbi(bhdi) 1)[]where hbi preceeding to the formula abstracts it over b, and [b] following to the axiomexports the name to another formula combined with it. Given these axioms, we cansuccessfully import b from u1 to v1 as follows:u1 : hi(ahbi) bhci)[b] v1 : hbi(bhci) bhdi)[b]u1 � v1 : hi(ahbi) bhdi)[b]Pursuing the idea further leads to an algebraic theory, action structures [Mil92b, Mil93a,Mil95]. Such an investigation goes beyond the scope of the thesis, however.
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 903.6.3 Temporal propertiesWe have seen that interactions can be controlled by imposing a constraint on substitu-tion environments (x2.4.3). For example, there are six possible cases of interactions inthe following system:ahbi j ahci ja(x) ja(y)(a) between ahbi and a(x),(b) between ahbi and a(y),(c) between ahci and a(x),(d) between ahci and a(y),(e) between ahbi and a(x), and between ahci and a(y), or(f) between ahbi and a(y), and between ahci and a(x)If we impose a constraint such that b should substitute x eventually, only the �rst and�fth interactions are allowed to occur. That sort of control goes beyond the ability ofthe logic and may be considered as a meta-level inference in the sense that proofs areregarded as objects. Let us see how the example can be treated in our logic. The actionsand interactions observable in the system are speci�ed with the following set of axioms:(a) t : ahbi) 1(b) u : ahci) 1(c) v : a(x)) 1(d) w : a(y)) 1(e) p : ahbi
 a(x)) !(b = x)
 1(f) q : ahbi
 a(y)) !(b = y)
 1(g) r : ahci
 a(x)) !(c = x)
 1(h) s : ahci
 a(y)) !(c = y)
 1Then, the admissible derivations are the axiom p itself and the following one composedof p and s.24 Other axioms, q, r, and s, and the theorem inferred from q and r, are notadmissible.p : ahbi
 a(x)) !(b = x)
 1 s : ahci
 a(y)) !(c = y)
 1p
 s : ahbi
 a(x)
 ahci
 a(y)) !(b = x)
 !(c = y)
 124We skip the step to turn 1
 1 into 1 and another one to swap 1 and !(c = y), for simplicity.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 91The observation suggests that temporal properties are computationally expensive. Infact, liveness and safety are expressed by introducing a �xed-point operator in themodal mu-calculus [Sti92]. It is not certain whether or not introducing �xed-points isthe only solution, but the issue should certainly be investigated in a higher order levelthan �rst order.3.6.4 The restriction on guarding relationsWe have seen that guarding relations must form a tree to be faithful to the �-calculus(x3.3.2).The �rst molecule of the followings for example is admissible, while the second is notsince b(y) is guarded by two particles, a(x) and c(z):(a) [a(x); b(y); c(z) � a(x) � b(y); a(x) � c(z)](b) [a(x); b(y); c(z) � a(x) � b(y); c(z) � b(y)]The restriction can, however, be lifted. Let us �rst examine where the problem is.What we would like to mean by the constraints, \� a(x) � b(y); c(z) � b(y)", is thatthe particle b(y) should be ready only when both a(x) and c(z) have been executed. Ifwe translate these guarding formulas straightforwardly into linear logic formulas, theywould be translated to the followings, respectively, where we express the third oneexplicitly.- � : a(x)) b(y)- : c(z)) b(y)- ' : b(y)) 1The problem of this translation is that it alters the process; it means that b(y) can beexecuted either when a(x) or c(z) has been executed.25 To avoid the problem, we canmodify the antecedent of the third formula by duplicating the particle as follows:- � : a(x)) b(y)- : c(z)) b(y)- ' : b(y)
 b(y)) 1Since the axiom, ', requires two occurences of b(y), it can only be applied to when �and are combined by parallel composition to compose a formula.Similar asymmetry can also be found in translating the constraint, � a(x) � b(y); a(x)�c(z), to logical formulas. To mean that both b(y) and c(z) are executable after a(x) isexecuted, one has to express it as a(x)) b(y)
 c(z). We have solved the problem bydecorating data
ow graphs using the multiplicative connective,
, not the additive, &.25This is because [�;] : a(x)� c(z)) b(y) is constructed out of � and as coproduct in the logic.
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 923.6.5 Comparison with Hennessey-Milner LogicAn improvement of the logic to Hennessey-Milner logic (HML) [HM85] is that we canexpress internal structures of interaction. Observe how transitions occuring between theprocesses shown below may be expressed in HML, which was presented in the �gures of3.10 and 3.14, ahbi.bhxi.0 j a(y).y(z).0��! bhxi.0 j b(z).0fb=yg��! 0 j 0fb=y ;x=zgAs the transitions are invisible from outside, it is speci�ed by the below formula, whichmeans the process may end up with true after performing the two consecutive silentactions, � . The substitution environment is expressed as an extra condition:P j= h�ih�itrue, where fb=y;x=zgOn the other hand, the logic can trace the steps by which processes turn into a particularstate. The same transitions can be described in the logic as follows, which has beenshown in x3.1.5:t1 : a(y)
 ahbi) y(z)
 bhxi
 !(b = y) t2 : y(z)
 bhxi
 !(b = y)) 1
 !(x = z) id : (b = y)) (b = y)!id :!(b = y))!(b = y) !t2
!id : y(z)
 bhxi
 !(b = y)
 !(b = y)) 1
 !(x = z)
 !(b = y)
t2
!id : y(z)
 bhxi
 !(b = y)) 1
 !(x = z)
 !(b = y) cont1 � (t2
!id) : a(y)
 ahbi) 1
 !(x = z)
 !(b = y) cutIn the derivation, the information about how interactions occured is stored in the term,t1 � (t2
!id), which means there was �rst an interaction, t1, then t2:26 We can also seethat the system was initially in the state such that it is ready to perform two particles,a(y) and ahbi, concurrently, and that it ended up with the state such that there is nomore possible actions with a substitution environment, x=z and b=y . The silent action, � ,may be captured by de�ning term reduction as if it were 1.What we cannot express in the logic is however negative information. HML can forexample specify a process such that ahbi is never followed by a silent action as 27P j= [ahbi][�]false, where fb=y ;x=zg26This is because the term can be reduced to t1 � t227This is because a(y) must be performed before the interaction between bhxi and y(z) occurs. Anotherformula is however legitimate, the formula that P j= hahbiiha(y)ih�itrue.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 93The false in HML is classical in the sense it is de�ned as unprovability of true. Asour logic is an intuitionistic and constructive, we cannot deal with HML's false withoutmodi�cation to the logic. If we choose to adopt the classical negation, we have to extendthe logic to classical one by introducing multiplicative disjunction, &, the dual of
,with its neutral element, ?. Then, :P is de�ned as P (?. On the other hand, if weremain within intuitionistic logic, we de�ne it as P (0, which is adopted in Girard'stranslation of intuitionistic logic to linear logic [Gir87]. 28 We would like to adopt thelatter approach and to remain within intuitionistic logic because Situation Theory hasto do with intuitionistic logic as is observed in [BE90].The other problem is that the logic is so powerful that it can derive unwanted deriva-tions, too, when used to specify processes. See for example with the following set ofaxioms, we can infer not only h � i : a(t)) 1 but also h
 i : a(y)
 y(z)) y(z)
 1by parallel composition, which obviously we would like to avoid deriving.(a) h : a(y)) y(z)(b) i : y(z)) 1This is because the motivation to apply linear logic to concurrency, i.e., originally topetri nets, was to investigate reachability problem, e.g., whether a state change is pos-sible for a net. The solution taken by HML to constrain inference, if we try to �ndany, is to introduce modality to the logic. In HML, we can ensure the particle a(y)should be executed before y(z) by imposing an order on execution as a modality such asha(y)ihy(z)itrue. If we persue that direction, we may end up with something similar tothe work by Dam [Dam94], a modal linear logic. We try to introduce a form of modalityinto our logic, which will be explained in x4.5.2. But there might be another way toconstruct formulas under control. Recall the formulas in HML specify labelled transi-tion systems (LTS). Since LTSs can be thought to correspond to proof trees in the logic,we can regard the modal information encoded in HML to operate on proofs. Given thisview, we could apply meta-programming technique to control theorem provers. Butsuch investigation goes beyond the scope of the thesis.3.6.6 The �-calculus speci�ed in linear logicIt is not the �rst attempt to capture the computation by �-calculus using linear logic.There are at least two works by Miller [Mil92a] and Okada [Oka93], but their aims andapproaches are di�erent from ours. Miller starts by examining classical linear logic andmaps each rule to that of the �-calculus. After these mappings have been done, he28There is also another proposal to simulate classical negation within intuitionistic linear logic [EW93], wherethey de�ne :P as P&1(0 with other additional axioms.

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 94adds to the logic particular rules to capture the e�ects brought about in the �-calculusbecause the only rules mapped from the calculus fall short of capturing them fully.Additional rules are introduced to encode guarding, choice, replication, and match,which go beyond linear logic. Okada pursuits that approach further and devises anumber of axioms and rules so that asynchronous and synchronous communication canbe captured as well as mobility. Higher order process calculi, where even processes canbe exchanged, are also studied in the framework.While they are interested in enriching linear logic by adding to it a number of axiomsand rules so that the full-version of the �-calculus can be expressed within it, we areinterested in �nding out an appropriate computational ground for communication andconcurrency for our purpose rather than simulating a particular language. That is whywe have chosen combinatory intuitionistic linear logic because it can be related with abasic category, i.e., symmetric monoidal category with product. Through translation ofprocesses in the �-calculus to formulas in the logic, we could understand the nature ofnon-determinism in the calculus.The table 3.7 shows equations for the categories, which is called intuitionistic linearcategory by Troelstra [Tro92]. The category axioms and functional character of
with natural isomorphisms for
, �, and � de�ne a symmetric monoidal category. Theequations for x(� make the category closed. The last two columns shows equationsfor products and coproducts. We do not include equations for the exponentials andcoherence conditions into the table for simplicity as we do not go into the discussion oncategories.29 We also adopt standard notation as for `�', i.e., � � reads in standardmanner.3.7 ConclusionIn this chapter, we have proposed a way to specify mobile processes using a combinatoryintuitionistic linear logic with additional axioms for substitutions and three specialpredicates. We have shown how the processes de�ned in the �-calculus can be speci�edin the logic; they are �rst translated into a language L0, a syntactic variant of thecalculus, then depicted as a data
ow graph to predict possible interactions, and �nallyexpressed as formulas of the logic. While we could not specify the programs withreplication, !, and restriction, � , in the logic, its computational model is kept simple:a symmetric monoidal category (SMC) with product. Through discussion, we haveclari�ed the limitation of the logic and what to be done towards specifying the full29Troelstra's text or Bierman's paper [Bie95] is helpful to know the issue in more detail.30
 means interchange of factors in a product. It is, therefore, self-inverse, i.e.,
�1 =
:

CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 95arrows �; ; �identity idA : A �! Anatural transformations
A;B : A
 B �! B
A�A;B;C : A
 (B
 C) �! (A
 B)
 C�A : 1
 A �! Aif � : A
B �! C then curA;B;C(�) : A �! (B(C)category axioms (� �) � � = � � (� �)id � � = �� � id = �functional character (� � �0)
 (� 0) = (�
) � (�0
 0)of
 id
 id = id1 = id1natural isomorphisms
 � (�
) = (
 �) �
for
,
 �
 = id 30�, ((�
)
 �) � � = � � (�
 (
 �))� � ��1 = id��1 � � = idand � � � (1
 �) = � � �� � ��1 = id��1 � � = idEquations for x(� cur(�) � = cur(� � (
 id))ev � (cur(�)
) = � � (id
)cur(ev) = id : (A(B) �! (A(B)Equations for products �1 � h�; i= ��2 � h�; i= h�; i � � = h� � �; � �ih�1; �2i = idA&B>A � � = >B : B �! > if � : B �! A>> = id>Equations for coproducts: [�;] � �1 = �[�;] � �2 = � � [�;] = [� � �; � �][�1; �2] = idA�B� � ?A = ?B : ? �! B if � : A �! B?? = id?Table 3.7. Equations for intuitionistic linear categories
CHAPTER 3. A LOGICAL SPECIFICATION OF MOBILE PROCESSES 96version of the �-calculus.

Chapter 4Representations as processes4.1 IntroductionIn this chapter, we base Situation Semantics on a computational ground of commu-nication and concurrency. One of the core ideas of Situation Semantics is ecologicalrealism, the idea that meaning arises from the interaction between a cognitive agentand his or her environment. We model both the agent and environment as a processand study the interaction as a system of communicating processes. To elaborate theidea, we turn to the �-calculus [MPW92] and construct semantic objects employed inSituation Semantic [BC93] as processes. The construction helps us relate SituationSemantics with Linear Logic, through our translation of the calculus to CombinatoryIntuitionistic Linear Logic.4.1.1 Computational aspects of Situation SemanticsA lot of work has already been carried out on the foundation of Situation Semantics.For instance, Non-Well-Founded Set Theory [Acz88] and Aczel-Lunnon universe [AL91]provide for a basis to study semantic objects employed in Situation Semantics. Whilethe aim of the investigation is to de�ne a mathematical universe in which semanticobjects can be properly constructed, we start by assuming the existence of a properuniverse and study computational aspects of Situation Semantics. By \computationalaspects", we mean the following issues:� Given the expression of a semantic object and a model, how can one prove that itis the model for the expression?� Given the expression of a semantic object, how can one prove that there exists amodel for it? 97

CHAPTER 4. REPRESENTATIONS AS PROCESSES 98� How can semantic objects and models be represented to investigate these issues?To answer to the �rst and second questions, we have to answer to the third question. Ourapproach is to represent semantic objects employed in Situation Semantics as a theoryof the logic presented in the previous chapter. Once we succeed in establishing theconnection between Situation Semantics and the logic, the questions can be answeredthanks to the result obtained through the investigation into linear logic.4.1.2 Channel Theory and Situation SemanticsAnother aim of the investigation is to relate Channel Theory [Bar92, Bar93, BS92, SB93]to Situation Semantics. The theory studies how information can be conveyed from oneto another and re�nes the notion of constraint in Situation Theory. A number ofnotions have been invented and studied, but it is yet to be clari�ed how the result canbe imported to and utilised in Situation Semantics.The work relating Situation Semantics with Linear Logic through the �-calculus suggestsone way to �ll the gap between Channel Theory and Situation Semantics, especiallySituation Theoretic Discourse Representation Theory [Coo93a, Coo93b], which havebeen hitherto studied rather independently. Intuitionistic linear category [Tro92] canactually cover Barwise's postulates on the principle of information
ow [Bar93]. We willconclude the chapter by discussing the issue.4.1.3 Representing situation-theoretic objects in linear logicWe sketch here our strategy to represent situation-theoretic objects in linear logic. Wetranslate the connectives employed in Situation Semantics, conjunction, ^, disjunction,_, to &, and � in the logic, respectively, hinted by Girard's translation of intuitionisticlogic into linear logic (Table 4.1) [Gir87]. Constraints are in the beginning translated to), but later to(to deal with concepts belonging to higher order such as quanti�cation.Intuitionistic Logic Linear Logicp� := p (p atomic)(A) B)� := !A� (B�(A^ B)� := A�&B�(A_ B)� := !A�� !B�(:A)� := !A� (0* is translation functionTable 4.1. Girard's translation of intuitionistic logic to linear logic

CHAPTER 4. REPRESENTATIONS AS PROCESSES 99We adopt the translation of negation as well to make our logic intuitionistic. We canalternatively use ?, the neutral element of multiplicative disjunction, &, for 0 to makethe logic classical, but we prefer intuitionistic negation to classical one because wethink it is more appropriate to model the theory of infons. After these mappings, weare still left with multiplicative conjunction,
. We exploit the freedom to build varioussituation-theoretic objects such as infons and types.4.1.4 Constructing situation-theoretic objects in the �-calculusTo understand underlying ideas in representing situation-theoretic objects in linear logic,it is helpful to encode them into the �-calculus although it lacks the ability to expressdisjunctive information, say �. We therefore encode them into the �-calculus whereapplicable. We may even skip the translation to linear logic for simplicity because thecorrespondence has already been explained in the previous chapter. Not only the �-calculus, but also molecular language may we sometimes employ, e.g., when encodingsimultaneous abstraction, because the use of guarding in the calculus is too restrictiveto encode some objects.In the chapter, we consider two versions of Situation Theory, primitive and naive.The �rst version is a simpli�ed Situation Theory to explain our ideas in construct-ing situation-theoretic objects as processes. Some part of the construction of primitivesituation-theoretic objects has been presented by the author in [Fuj94].4.1.5 Related workThe project is by no means the �rst attempt to construct semantic objects in a type-theoretic framework. Some type theories have already been used to represent semanticobjects employed in semantics for natural language. Ranta for example adopted Martin-L�of's Type Theory and analysed `donkey' anaphora using dependent types [Ran91].Ren�e Ahn [Ahn94] proposed to use Pure Type Systems as a \Language of Thought"to model dynamic knowledge states and argued that the system could be seen as ageneralisation of Discourse Representation Structures (DRSs). Muskens has employedthe �rst order part of ordinary type logic to express DRSs [Mus93, Mus94].Their approaches and systems employed are fairly di�erent, but they share the view thattype theory may provide for �ne-grained tools to study the semantics of natural languagethan the �rst order logic does. It is also expected that type theoretical foundation mightenable us to study computational issues in more detail owing to the connection withcomputer science. There must be a number of ways in exploiting the possibility. Ourproject is another attempt in the area.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 1004.2 Primitive Situation TheoryWe review semantic objects employed in primitive Situation Semantics. It is primitivein that we do not include relations and situation-theoretic types. We include them innaive Situation Semantics and postpone discussion related to those complex objectsuntil the section x4.4. The reason why we do not include relations and types in theprimitive situation semantics is that we would like to start with as simple theory aspossible to make it easier to understand our ideas. Quanti�cation is also discussed laterin x4.6.We start by explaining about infon, situation, and proposition. These notions form thecore of Situation Semantics. To explain them informally, infons are items of information,and situations are objects that may or may not support them. Infons and situationsconsist of propositions such that a situation supports an infon. We then review theobjects obtained through abstractions. By incorporating parameters into objects andabstracting them over parameters, we obtain infon abstracts and proposition abstracts.The operation to assign concrete objects to parameters is called anchoring. Theseabstract objects are turned into concrete objects through the operation.4.2.1 Basic infonsWe adopt mainly the Extended Kamp Notation (EKN) [BC91, BC93] to explain aboutsemantic objects employed in Situation Semantics, along with linear notation. In EKN,the information such as \John smiles" is expressed as is shown in (4.1), where `j' ofsmile(j) denotes the person who is called \John" and smiles. The predicate, `smile',is called a relation and `j' an argument. The relation whose number of argument isjust one may sometimes be called property. It may also be expressed as (4.2) in linearnotation previously used in the literature. The number `1' appearing in the expressionindicates that the information is positive.smile(j) (4.1)hh smile, j; 1ii (4.2)Similarly, the negative information such as \John does not smile" is expressed as isshown in (4.3) or (4.4). The symbol, `:', in (4.3) and the digit number, 0, in (4.4)indicate the information is negative. The indication of positive or negative is called

CHAPTER 4. REPRESENTATIONS AS PROCESSES 101polarity. The reason for explicitly referring to the polarity comes from our motivationto capture the meaning of natural language sentences. If one knows that John does notsmile, he knows the fact. Such an item of knowledge should be distinguished from hislack of knowledge about John's physical movement. If we regarded negative informationsimply as lack of knowledge, then we would fail to capture the intuitive meaning of thesentence. :smile(j) (4.3)hh smile, j; 0ii (4.4)4.2.2 Conjunctive and disjunctive infonsThe basic infons can be combined with connectives, ^ and _, to represent more complexitems of information. Suppose we would like to express an item of information such as\John smiles and Mary sings." Then, it may be expressed either as (4.5) in EKNnotation or as (4.6) in linear notation. smile(j)sing(m) (4.5)hh smile, j; 1ii ^ hh sing, m; 1ii (4.6)Basic infons may also be combined disjunctively. We may express an item of informationsuch as \John smiles or Mary sings." either as (4.7) or (4.8).smile(j) _ sing(m) (4.7)hh smile, j; 1ii _ hh sing, m; 1ii (4.8)
CHAPTER 4. REPRESENTATIONS AS PROCESSES 1024.2.3 PropositionsInfons are just items of information and can neither be true or false in and by themselves.For an infon to be true or false, it must be an item of information about some situation.The observation is central to Situation Semantics, and it is important to distinguishinfons related to situations and those unrelated. We call the infon related to situationspropositions. Suppose from a situation s one extracts an item of information such as\John smiles", hh smile, j; 1ii, possibly by seeing the situation. The proposition thatJohn smiles at the situation s is expressed as either (4.9) or (4.10). The proposition istrue if he certainly smiles at the situation, false otherwise.s smile(j) (4.9)(s j= hh smile, j; 1ii) (4.10)We say that a situation s supports an infon �, or that a situation s is of type � whenthe proposition is true. We can combine propositions with the connectives, ^ and _, toconstruct more complex propositions as is the case with infons.4.2.4 Parametric objectsIn the above, we only consider infons whose arguments are some concrete objects, e.g.,John. There can however be infons some of whose arguments are to be �lled with someobjects. Suppose we think of an abstract idea of \smile", and it does not matter whoeversmiles actually. Then, it is appropriate to use a parameter, x, to �ll the argument toexpress it can be anyone. We call such infons including parameters parametric infons.The abstract idea of \smile" may be expressed as below (4.11) or (4.12).smile(x) (4.11)hh smile, x; 1ii (4.12)However it does not make the theory complete just introducing a parameter to theobject. We have to incorporate parameters in a theoretically sound manner. Traditional

CHAPTER 4. REPRESENTATIONS AS PROCESSES 103approach to parameters is to regard them as variables and express abstract ideas usingthe �-abstraction. For example, the concept of \smile" may be expressed as �x.smile(x).Such an idea is exploited by the �-DRT [BMM+94], and the example might be expressedin the theory as �x smile(x) (4.13)The approach taken by Situation Theory is, on the other hand, more radical than the�-calculus. While in the calculus the order of abstractions does matter, it does not forthe abstraction adopted in Situation Semantics, thus called simultaneous abstraction.For example, in the �-calculus, the meanings of two expressions, �xy:[eat(x; y)] and�yx:[eat(x; y)], are di�erent because the former is an abbreviation of �x�y:[eat(x; y)],while the latter is that of �y�x:[eat(x; y)], which are di�erent functions in the �-calculus.4.2.5 AbstractionTo abstract semantic objects simultaneously over several parameters, we introduce tothe theory a notion of role, which indicates which abstraction is to be applied to whichassignment function. With these roles, we obtain more
exibility in abstracting se-mantic objects over parameters because we do not need to specify in what order theseparameters should be substituted. Let us see some examples. When we abstract theobject above with a role r, it is expressed as follows:r ! xsmile(x) (4.14)�[r! x]hh smile, x; 1ii (4.15)With this notation, we express the abstract idea on eating relation as (4.16) or (4.17):
CHAPTER 4. REPRESENTATIONS AS PROCESSES 104r1 ! x, r2 ! yeat(x, y) (4.16)�[r1! x; r2! y]hh eat, x, y; 1ii (4.17)Since the roles serve as a key to get access to a particular parameter, the order ofabstractions over x and y does not matter. We can swap x and y as follows withoutchanging the meaning: r2 ! y, r1 ! xeat(x, y) (4.18)�[r2! y; r1! x]hh eat, x, y; 1ii (4.19)In addition, we assume �-equivalence between abstract objects, i.e., alphabetical vari-ances for parameters do not matter. Also, not only basic infons but also propositionscan be abstracted in the same way. If we abstract the proposition (4.9) or (4.10) overthe parameter x, which replaced `j', we get the proposition abstracts, (4.20) or (4.21).r ! xssmile(x) (4.20)�[r! x](s j= hh smile, x; 1ii) (4.21)4.2.6 AnchoringAbstract objects are turned into concrete objects, i.e., basic infons or propositions,when assigned objects to parameters. Suppose we assign `j', the person John, to x inthe infon abstracts shown as (4.14) or (4.15). Such operation is expressed either as(4.22) or (4.23):

CHAPTER 4. REPRESENTATIONS AS PROCESSES 105r ! xsmile(x) [r! j] (4.22)�[r! x]hh smile, x; 1ii[r ! j] (4.23)As the result of the application, we obtain the basic infon (4.1) or (4.2), which meansthat \John smiles.": smile(j) (4.1)hh smile, j; 1ii (4.2)The same goes for proposition abstracts and propositions. In Situation Semantics, theabstract object provided with assignments and its result of application are thought tobe identical, i.e., �-conversion.4.3 A study of primitive Situation SemanticsWe represent semantics objects employed in primitive Situation Semantics in C-ILL=e ,the intuitionistic combinatorial linear logic with equality. We encode them �rst into the�-calculus or L0 if necessary, then translate them to the formulas in the logic.4.3.1 Basic infonsWe regard infons as processes providing for items of information and conceive of themas corresponding to output processes. In encoding them into the �-calculus we takerelations as channels and arguments as data emitted through them. This is the approachtaken by Fujinami [Fuj94] and Okada [Oka93]. For example, the infon, hh smile, j; 1ii,shown as (4.1) or (4.2), is encoded as smilehji (4.24)
CHAPTER 4. REPRESENTATIONS AS PROCESSES 106The encoding may appear to be strange, but remember how actions are usually codedin prolog. Propositions such as \Mary sings" or \John eats an apple" are for exampleoften coded as sing(mary) or eat(john, apple), respectively, where one translatesactions to relations. Comparing with the practice in prolog programming, representingactions as channels is rather natural. One may even admit to translate relations orproperties to channels, then.When we encode infons into the �-calculus, we do not express the polarity, 1, becausewe relate capability of performing actions to `1' and incapability to `0'. The point is thatone does not de�ne incapable actions in the �-calculus because it is designed to de�necapable actions only. That is why we can only express positive infons in the �-calculus.But it can be expressed in the logic. We translate it to the formula (4.25) 1 and thenegative infon hh smile, j; 0ii, shown in (4.4), to the formula (4.26).smilehji (4.25)smilehji(0 (4.26)The representation however contradicts our intuition that the infon such as \Johnsmiles" is available for the time being. At least, it should not disappear just afterproviding for the information once. Given the observation, the infon had better be en-coded in the �-calculus as a replicable process, e.g., ! smilehji. But we cannot translatereplicable processes to formulas in the logic. We therefore give up with the intuitionand regard the investigation to be done at more abstract level.4.3.2 Conjunctive and disjunctive infonsTo encode conjunctive infons into the �-calculus, we use the choice operator, +. Forexample, the conjunctive infon, hh smile, j; 1ii ^ hh sing, m; 1ii, shown as (4.5) or (4.6),is encoded as smilehji+ singhmi (4.27)We relate the choice operator to additive conjunction, &, and represent it as1The expression is an abbreviation for export(smile; j)) 1.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 107smilehji& singhmi (4.28)The formula may be constructed as product of two formulas below, (4.29) and (4.30).The formula (4.31) states that smilehji and singhmi can be executed under any condi-tion. Remember smilehji+ singhmi can be regarded as 1:(smilehji+ singhmi).1) smilehji (4.29)1) singhmi (4.30)1) smilehji& singhmi (4.31)Disjunctive infons cannot be encoded into the �-calculus since it is not equipped with anoperator corresponding to disjunction. We can however express them in the logic withadditive disjunction, �. For example, a disjunctive infon, hh smile, j; 1ii _ hh sing, m; 1ii,shown as (4.7) or (4.8), can be de�ned as smilehji�singhmi, constructed as coproductsof the formulas below, (4.32) and (4.33). smilehji) 1 (4.32)singhmi) 1 (4.33)smilehji � singhmi) 1 (4.34)4.3.3 LinksSituations and propositionsFor convenience, we �rst regard the notion of situations in Situation Semantics tocorrespond to processes. The relation between situations and infons such as (s j= �), asituation s supports an infon �, can be regarded to correspond to the relation betweenterms and formulas, by relating terms to situations and formulas to infons. Then theproposition, (s j= hh smile, j; 1ii), shown as (4.9) or (4.10), is thought to represent thefollowing expression in the logic: s : 1) smilehji (4.35)If we de�ne it as an axiom, then it is true. An expression can also be true if it isconstructed of the set of given axioms. For example, the expression (4.38) is true when
CHAPTER 4. REPRESENTATIONS AS PROCESSES 108the axioms, (4.36) and (4.37), are given because it can be constructed as product ofthem. s : 1) smilehji (4.36)t : 1) singhmi (4.37)hs; ti : 1) smilehji& singhmi (4.38)The logic can thus determine whether an expression is true relative to given axiomsif it is the case. If it can be constructed with given axioms, then it is true. Giventhe correspondence between terms and situations, the logic can be said to constructsituations supporting infons. Unfortunately, the logic cannot determine whether or nota given expression is false because the logic is undecidable [Tro92].Connections and linksTo elaborate the above notion of situations, we turn to another notion of connectionsdeveloped in Channel Theory. Observe that what we represent with) corresponds toconstraints between infons. For example, the following formula (4.39) states a constraintsuch that \If John smiles and Mary sings, then John smiles" rather than an infonsupported by a particular situation.smilehji& singhmi) smilehji (4.39)Connections are the counterpart of situations and can be thought to support constraintsin the same sense that situations support infons. The relation between these two setsof notions can be depicted as is shown in the �gure 4.1 and explained as follows:� A particular situation s supports an infon �, \John smiles and Mary sings", whichwe express as a proposition, (s j= �).� Another particular situation t supports an infon & , \John smiles", which we expressas a proposition, (t j= &).� There is a connection, c, between the situations s and t, which we express as s c7! t.� There is a constraint,
, between the infons � and & , which we express as �
=) & .� The particular connection c supports the constraint
, which we express as a link,(c j=
). The term, link, is introduced as a counterpart of proposition.With this conceptualization, the following expression (4.40) whose term is u can bethought to represent a link, where u is regarded as a connection.u : smilehji& singhmi) smilehji (4.40)

CHAPTER 4. REPRESENTATIONS AS PROCESSES 109

John smiles
and Mary sings

John smiles

connectionsituation situation

constraint

infon infon

support

proposition

link Figure 4.1. Constraints, connections, and linksThe situation supporting the antecedent, \John smiles and Mary sings", is the precon-dition of u, and another situation supporting the consequence, \John smiles", is thepostcondition of u. Let �u and u� be the precondition and postcondition of u, respec-tively. Then, the above expression (4.40) can be transformed into a link as below:2smilehji & singhmi
=) smilehjij= j= j=�u u7! u�Therefore, what the logic actually constructs through derivation are connections sup-porting constraints, not situations supporting infons.4.3.4 Parametric infonsWe have to recover the distinction between constants and variables to encode parametricinfons in the �-calculus. Such modi�cation is not problematic at all because the notion ofnames was originally introduced to simplify the calculus by discarding the distinction[MPW92].3 Variables are special channels through which no names are exchanged.Constants are names such that no other names can substitute them. They can also notbe used as channels. Hereinafter, we let a; b; : : : ; range over constants, and x; y; : : : ;2The pre and post conditions are identical in logically valid inference, but they may be di�erent for con-straints in general.3The Pict language for example distinguishes variables and constants, a language whose design is based onthe �-calculus[Pie94].

CHAPTER 4. REPRESENTATIONS AS PROCESSES 110variables. With this modi�cation, the parametric infon, hh smile, x; 1ii, shown as (4.11)or (4.12), can be encoded as smilehxi (4.41)It is trivial to translate the process into the logic since it distinguishes constants andvariables. The above x would be treated as a free variable.4.3.5 AbstractsInfon abstractsThe attempt to encode situation-theoretic objects into the �-calculus turns out to bemost bene�cial when we encode abstract objects. As we have seen in the �rst chapter(x1.5.2), the calculus enables us to encode simultaneous abstractions naturally. In thefollowing process, P , for example, the guard r(x) behaves like the �-pre�x, �x, in thatit binds x in smilehxi. P =def r(x):smilehxiIn this guise, the process certainly encodes the infon abstract, �[r ! x]hh smile, x; 1ii,shown as (4.14) or (4.15), where the channel r corresponds to the role indexing theparameter x.The encoding of abstracts as input actions seems to work �ne, but there is a problem,for which we employ molecular language. Consider how the infon abstract, �[r1 !x; r2 ! y]hh eat, x, y; 1ii, shown as(4.16) or (4.17), can be encoded in the �-calculus.We may want to encode it as either(r1(x) j r2(y)). eathx; yi, or(r2(y) j r1(x)). eathx; yiThe encoding expresses our intuition on simultaneous abstractions; the process importstwo constants through r1 and r2 simultaneously and substitutes them for x and y,respectively. But the problem is that the syntax of the calculus does not allow parallelprocesses to guard an action. We can only encode it either asr1(x).r2(y).eathx; yi, orr2(y).r1(x).eathx; yi

CHAPTER 4. REPRESENTATIONS AS PROCESSES 111and as the result the abstraction looks more like the �-abstraction. Making themindependent processes as below does not work because x and y in the �rst two processesare not the same as those appearing in eathx; yi.r1(x) j r2(y) j eathx; yiThis is because the scope of names bound by these input actions are limited withinthe guarded actions by them, which does not apply to the case. Another way to usethe restriction operator, too, cannot extend the scope of x and y across j because thebinding forces by the input actions are stronger than that of the restriction operator.The following two de�nitions are therefore equivalent.(� x; y)(r1(x) j r2(y) j eathx; yi)r1(x) j r2(y) j (� x; y)(eathx; yi)The molecular language L0, on the other hand, is less restrictive with respect to thescope of binding. Since the scope of bound names is de�ned to be within the moleculein which they appear, we can encode it as below.[r1(x); r2(y); eathx; yi] (4.42)Now consider how the above program can be translated into the logic. Unfortunately,it is not straightforward because we have to compile bound names to unique constants.If we translated it without compiling them, we would end up with the following set ofaxioms, (4.43) to (4.45). The problem is that the scope of variables cannot go acrossbetween axioms. s : r1(x)) 1 (4.43)t : r2(y)) 1 (4.44)u : eathx; yi) 1 (4.45)Let x and y be unique constants assigned to x and y in (4.42), respectively, and rewritethe above axioms to those below. Since they are constants, they can now denote thesame object among di�erent axioms.s : r1(x)) 1 (4.46)t : r2(y)) 1 (4.47)u : eathx; yi) 1 (4.48)
CHAPTER 4. REPRESENTATIONS AS PROCESSES 112Proposition abstractsThe above translation works for infon abstracts but not for proposition abstracts, the ab-stract objects obtained by abstracting propositions over parameters. Recall the abstractobject obtained of the parametric proposition, (s j= hh smile, x; 1ii), by abstracting itover x was the one such as (4.20) or (4.21), not (4.49).r ! xssmile(x) (4.20)�[r! x](s j= hh smile, x; 1ii) (4.21)(s j= �[r! x]hh smile, x; 1ii) (4.49)The de�nition (4.21) means that the abstraction can operate on the situation s, too.In fact, Situation Semantics allows to parameterise the situation s and abstract theproposition over it as follows: r1 ! S, r2 ! xSsmile(x) (4.50)�[r1! S; r2! x](S j= hh smile, x; 1ii) (4.51)Since terms and formulas are not interchangeable, we can neither encode such abstractobjects into the �-calculus nor translate it to the logic. This might appear to be prob-lematic, but we will approach the problem from a di�erent direction in x4.7.3, where weregard situations as channels to infons.4.3.6 Assignments and transitionsAssignments are encoded as output actions connected through channels to input ac-tions abstracting objects. Suppose we encode in the molecular language, L0, the infonabstract, �[r! x]hh smile, x; 1ii, shown as (4.14) or (4.15), as follows (4.52), where thechannel r corresponds to the role indexing the parameter x.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 113[r(x); smilehxi] (4.52)Then, an assignment anchoring x to `j' can be encoded as an output action, rhji. Theabstract object with the assignment, �[r ! x]hh smile, x; 1ii[r ! j] can, therefore, beencoded as the following molecule:[rhji; r(x); smilehxi] (4.53)The molecule will evolve into [smilehji] upon the interaction via the channel r as below.The end result corresponds to the infon, hhsmile, j; 1ii.[rhji; r(x); smilehxi]�& [smilehxi] �fj=xg� [smilehji]When translated to the logic, the molecule is expressed as the set of the followingaxioms: s : r1(x)) 1t : r1hji) 1u : smilehxi) 1v : r1(x)
 r1hji) !(x = j)id : smilehxi) smilehxiand the transition is derived as below:4v : r1(x)
 r1hji) !(x = j) id : smilehxi) smilehxiv
 id : r1(x)
 r1hji
 smilehxi) !(x = j)
 smilehxi eq3 : !(x = j)
 smilehxi) smilehji(v
 id) � eq3 : r1(x)
 r1hji
 smilehxi) smilehjiThe above example shows that �-conversion is realized as transition in our formulation.One may however wonder how the equivalence between the following two objects canbe captured as argued in Situation Semantics.- �[r! x]hh smile, x; 1ii[r! j], and- hh smile, j; 1ii4We skip the steps to swap (x=j) to (j=x).

CHAPTER 4. REPRESENTATIONS AS PROCESSES 114To capture the equivalence, we turn to the notion of bisimular relation, �. Intuitively,the relation A � B means that a process A can simulate the behaviour of anotherprocess B and vice versa. Observe how the two processes, P and Q, encoding the abovetwo objects may behave. In the table below, the lefthand side shows the behaviour ofthe process, P , encoding �[r! x]hh smile, x; 1ii[r! j], and the righthand side that ofthe process, Q, encoding hh smile, j; 1ii, as a molecule.P Q[rhji; r(x); smilehxi]�& [smilehxi] �fj=xg� [smilehji] [smilehji]smilehji& ; smilehji& ;The left process, P , performs the sequence of actions, h �; smilehji i, while the rightone, Q, the single action, h smilehji i. These two sequences may appear to be di�erent,but recall that the silent action, � , is invisible from outside. We can neglect � and canregard these two as equivalent. We de�ne weak bisimular relation, �w, as the processequivalence neglecting the silent action, � . Obviously, it holds that P �w Q.5 When weconceive of transitions as LTS, the issue of bisimulation is reduced to mapping betweendirected acyclic graphs. An interesting question for us is how data
ow graphs devisedin the thesis may contribute to de�ning a bisimulation relation, but it is outside thescope of the thesis.4.4 Naive Situation TheoryThe version of situation theory presented so far has been slightly simpli�ed in orderto explain our ideas to investigating Situation Semantics. Some objects employed inSituation Semantics are in fact more complex. In this section, we look into infons withappropriate conditions, relations, and types. We call the theory naive because we stillpostpone the study constraints and quanti�cations.4.4.1 InfonsAs we have seen, an infon consists of three elements: relation, argument, and polarity.Of which, we elaborate the notion of relation now. Relations are objects in SituationSemantics and have a type of assignments associated with their appropriateness condi-tions. Relations are a particular kind of abstract and thus they have indexed roles and5Strong bisimular relation, �s, may be de�ned as the equivalence where the silent action, � , counts. SeeMilner's text [Mil89] for more detailed explanation and de�nitions.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 115restrictions on their assignments. The type of assignments associated with a relationcharacterises what assignments are appropriate to it. This means that a more explicitand correct notation for infons should mention the assignments and indices explicitly[Coo92]. The basic infon, shown as (4.1) or (4.2), should for example be expressed moreprecisely as (4.54) or (4.55) with a role r:smile(j) (4.1)hh smile, j; 1ii (4.2)smile(r ! j) (4.54)hh smile, r ! j; 1ii (4.55)To encode the infon into the �-calculus, we have to change our encoding since thestraightforward translation (4.56) is not possible. This is because the calculus does notallow for processes to be exchanged through channels. Although such a restriction willbe lifted in the higher-order �-calculus, we opt for the �rst order version to keep ourtheory as simple as we can. smileh rhji i (4.56)Our solution is to encode it as a system composed of two processes, (4.57).(� r)(smilehri j rhji) (4.57)The system will emit the role r from the channel smile. Since the emitted role r, too,serves as a channel through which the object, `j', can be emitted, some other processhaving access to the process, smilehri, can successfully get access to the object. In thisencoding, the assignment, r ! j, to the relation, smile, is encoded in the same way asthat of abstract objects such as infon abstracts or proposition abstracts. The encodinginto L0 and translation into the logic can thus be done in the same manner. The system(4.57) can be expressed in L0 as (4.58).

CHAPTER 4. REPRESENTATIONS AS PROCESSES 116(� r)[smilehri; rhji] (4.58)4.4.2 Abstract objects and assignmentsAs we have changed our encoding of infons, we have to modify our encoding of abstractobjects. For example, how can the following infon abstract, (4.14) or (4.15), be encoded?r ! xsmile(x) (4.14)�[r! x]hh smile, x; 1ii (4.15)Our solution is not so di�erent from the original encoding. We replace r for x in smilehxias (4.59). (� r)[smilehri; r(x)] (4.59)The encoding of assignments is however di�erent from the previous. To understandthe motivation, we look into the problem which we encounter if we would stick to theprevious encoding. Assume we add a particle encoding an assignment, e.g., rhji, to themolecule (4.59). Then, it would evolve as follows:(� r)[smilehri; r(x); rhji]�& (� r)[smilehri]�fj=xgAlthough the variable x has certainly been substituted by `j', not only the input process,r(x), but also the output process, rhji, encoding the assignment, have disappeared. Toavoid the trouble, we encode the assignment as a replicable process, i.e., ! rhji. Theencoding �ts with our intuition that sources of information which we plug in through achannel may provide us with items of information as many times as we request for. Toimplement the idea, we equip the language with replication, !.6 Given the modi�cation,6See Appendix A for de�nition.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 117the encoding and transition becomes as follows:7(� r)[smilehri; r(x); ! [rhji]]� (� r)[smilehri; r(x); rhji; ! [rhji]]�& (� r)[smilehri; ! [rhji]]�fj=xgObserving the encoding and transition, one may wonder what use of the input process,r(x), actually is. It is in fact possible to exclude it and take simply smilehri as an infonabstract. That is, the infon abstract shown as (4.14) or (4.15) can be encoded as (4.60).To discuss the issue, we have to investigate another sort of complex object, relation.(� r)[smilehri] (4.60)4.4.3 RelationsIn Situation Semantics, there is an idea called predication. To understand the idea,observe that the infon abstracts shown as (4.14) and (4.15) can be regarded as a relation,whose argument must be �lled in with an assignment. To distinguish infon abstractsserving as relations from those mere abstract objects, we express infon abstracts asrelations as (4.61). r ! xsmile(x) (4.61)Since it is a relation, it can constitute an infon given an assignment such as (4.62).When we compare it with the basic infon (4.54), the di�erence is subtle.7It is not desirable to introduce replication because replicable processes cannot be dealt within the logic.The problem will partly be tempered in next subsection.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 118r ! xsmile(x) (r ! j) (4.62)smile(r ! j) (4.54)It is argued that they are equivalent in the sense that a situation supports (4.62) if andonly if it supports (4.54). They are however di�erent in structure. Such a di�erenceis utilised in Situation Theoretic Grammar, which is one of the reasons to maintainthe di�erence [Coo92]. For example, utterances of words and phrases are used as roleindices on the relation. We will however take a di�erent approach to grammar andtherefore do not see particular reasons to maintain the di�erence. We rather regardthem as identical objects so that we can assign to them the same term. We express thusboth of them as is shown in (4.63). In the molecule, the assignment, rhji, need not bereplicable because it will not be consumed by an input particle.(� r)[smilehri; rhji] (4.63)The decision that we regard both objects as identical further motivates us to regardboth relations in (4.62) and (4.54) as identical object. We will hence regard the object(4.61) to be encoded as (4.60), where the variable x is excluded. It might make ourintention clear to depict (4.63) in data
ow graph. Figure 4.2 shows the graph depictingthe structure of the infon.When we parameterise the object with respect to the �rst argument and abstract it overthe parameter, the �gure changes to that shown in the �gure 4.3. From the di�erence,one can see that we represent infon abstracts as structured objects whose parts aremissing, the parts that provide for items of information on the �ller of argument.4.4.4 TypesIn the way that infon abstracts are turned into relations, proposition abstracts areturned into types. The proposition abstracts shown as (4.20) can for example be turnedinto a type such as shown in (4.64).

CHAPTER 4. REPRESENTATIONS AS PROCESSES 119

r

smile

jFigure 4.2. The structure of the infon, hh smile, r ! j; 1ii
r

smileFigure 4.3. The structure of the infon abstract, �[r! x] hh smile, r ! x; 1ii
CHAPTER 4. REPRESENTATIONS AS PROCESSES 120r ! xssmile(x) (4.64)Then, what is typed by the type is its assignments. If we have an assignment suchas [r ! j], they would comprise a proposition such as (4.65), which is claimed to beequivalent, but not identical, to the object (4.66):r ! jr ! xssmile(x) (4.65)ssmile(j) (4.66)It takes us into a trouble to admit assignments to be typed in this way. Since our systemadmits only proofs as typeable, it con
icts with our principle to regard formulas speci-fying assignments as terms. We could for example de�ne two axioms, t : smilehri) 1and u : rhji) 1, and construct the situation supporting the infon as below, which byno means corresponds to (4.65).t : smilehri) 1 u : rhji) 1t
 u : smilehri
 rhji) 1The use of types was partly motivated to analyse propositional attitudes such as beliefs[Coo92]. Although we cannot de�ne situation-theoretic types in the logic, we approachthe problem from a di�erent perspective in x4.7.3.4.5 ConstraintsThe issue of constraints is still open to debate in Situation Semantics. We exploittherefore our own ideas to investigate it. To express constraints which always hold, we

CHAPTER 4. REPRESENTATIONS AS PROCESSES 121introduce to our logic a `necessary' operator, �. We also introduce a `possible' operator,�, to express constraints which sometimes hold. These operators will be elaborated inthe next section (x4.6) to deal with quanti�cation, where � is related to 8, and � to9. For simplicity, we are back in this section to the primitive Situation Theory (x4.2)when encoding basic infons.4.5.1 Constraints as transitionsAs explained in x4.3.3, a constraint, �
=) , is captured in terms of state change inour approach. We apply the idea of constraint to studying the meaning of conditionalsentences such as (4.67) and represent it as a process such that an event where \Marysings" is followed by another where \John smiles."(4.67) If Mary sings, then John smiles.If we encode such a process into the �-calculus, it may be encoded assinghmi.smilehji.0which may be speci�ed in our logic by the following expression:s : singhmi) smilehji4.5.2 NecessityThe approach can represent the meaning of a particular constraint, but how can weextend it to studying the meaning of more general constraint such as (4.68)?(4.68) Whenever Mary sings, John smiles.When encoded as a process, it may be expressed as (4.69), which behave as singhmi:smilehji:0no matter which one is chosen. The way to represent the meaning of universally quan-ti�ed sentences by means of non-deterministic choice is reminiscent to the approach to`donkey' anaphora in original DRT [Kam84]. The other process (4.70) does on the otherhand not represent the meaning because the third case corresponds to an event wherean event of Mary's singing is followed by John's laugh.singhmi:smilehji:0 + singhmi:smilehji:0 + singhmi:smilehji:0 (4.69)singhmi:smilehji:0 + singhmi:smilehji:0 + singhmi:laughhji:0 (4.70)
CHAPTER 4. REPRESENTATIONS AS PROCESSES 122To represent the necessary constraint, we introduce to the logic an operator, &(bigsum), a generalised operator of additive conjunction, &. Suppose the cases in (4.69) aretranslated to the following set of axioms:s : singhmi) smilehjit : singhmi) smilehjiu : singhmi) smilehjiThen, by conjoining them together, we get a formula, singhmi) &smilehji:8s : singhmi) smilehji t : singhmi) smilehji u : singhmi) smilehjihs; t; ui : singhmi) &smilehji (&)The meaning of& in&smilehji is reminiscent to the modal operator,�, in that singhmialways leads to smilehji. We may therefore replace � for &s : singhmi) smilehji t : singhmi) smilehji u : singhmi) smilehjihs; t; ui : singhmi) � smilehji (�)Since terms can be regarded as comprising a Kripke model, the following derivationshould also be admissible:v : singhmi) laughhjihvi : singhmi) � laughhji (�)Given this observation, the above process (4.70) corresponds to the formula, singhmi)� smilehji & � laughhji, which is derived as below.s : singhmi) smilehji t : singhmi) smilehjihs; ti : singhmi) � smilehji (�) v : singhmi) laughhjihvi : singhmi) � laughhji (�)hs; t; hvii : singhmi) � smilehji & � laughhji (&)4.5.3 Necessity in Hennessy-Milner LogicIt may clarify our approach to modality to compare our treatment with HML. We depictthe processes, (4.69) and (4.70), as labelled transition systems to make the meaningexplicit. The �rst process can be depicted as is shown in the �gure 4.4, while thesecond one as is shown in the �gure 4.5.In Hennessy-Milner Logic, the �rst process (Figure 4.4) satis�es the formula (4.71) belowbut not (4.72). On the other hand, the second process (Figure 4.5) can satisfy both ofthem because HML formulas specify processes partially.8We write hs; t; vi for hhs; ti; vi.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 123

sin
g<

 >m

si
ng

<

 >
m

sm
ile

< >j

sing< >
m

smile< >j

sm
il

e<

> jFigure 4.4. The case where John must smile when Mary sings

sin
g<

 >m

si
ng

<

 >
m

sm
ile

< >j

sing< >
m

laugh< >j

sm
il

e<

> jFigure 4.5. The case where John may laugh when Mary sings
CHAPTER 4. REPRESENTATIONS AS PROCESSES 124[singhmi][smilehji]true (4.71)[singhmi][smilehji]true^ [singhmi][laughhji]true (4.72)The formula (4.71) cannot therefore specify the set of processes representing the mean-ing of \Whenever Mary sings, John smiles." To express such a property, one has toexplicitly state that \unacceptable, otherwise." An extension of HML in that directionhas been done by Stirling [Sti92] by introducing �xed-point operators. We do not, onthe other hand, need to be bothered with the problem because we explicitly recordterms satisfying the properties. That is, the formula, hs; t; vi : singhmi) � smilehji,simply cannot be constructed from the following set of axioms:s : singhmi) smilehjit : singhmi) smilehjiv : singhmi) laughhji4.5.4 The axioms and rules for necessity and possibilityThe axioms and rules for necessity, �, and possibility, �, are given in the table 4.2.These are analogous to those for products and coproducts (Table 4.3). We regard thebig plus, L, as � as we regard the big sum, &, as �. We therefore make termsreminiscent to those of products and coproducts. The term, h�1; �2; � � � ; �ni, gathersall the cases where A is always followed by B. The term �i picks up a particular casefrom the cases satisfying A. The term, [�1; �2; � � � ; �n], gathers all the cases leading toA. The term, �i, turns a particular case satisfying A into a general statement of A.Necessity:�1 : A) B �2 : A) B � � � � � � �n : A) Bh�1; �2; � � � ; �ni : A) �B (�) �i : �A) AiPossibility:�1 : B) A �2 : B) A � � � � � � �n : B) A[�1; �2; � � � ; �n] : �B) A (�) �i : Ai) �ATable 4.2. Axioms and rules for necessity and possibility

CHAPTER 4. REPRESENTATIONS AS PROCESSES 125Products:� : A) B : A) Ch�; i : A) B&C �A;B;i : A0&A1) Ai (i 2 f0; 1g)Coproducts:� : B) A : C) A[�;] : B � C) A �A;B;i : Ai) A0 � A1 (i 2 f0; 1g)Table 4.3. Axioms and rules for products and coproducts in C-ILL04.6 Quanti�cation4.6.1 The axioms and rules for quanti�ersUniversal and existential quanti�ers are introduced to the logic in analogous mannerto modal operators; We replace 8 and 9 for � and �, respectively. The di�erence isthat formulas can be parameterised and that we record the mappings from constants tovariables, and vice versa. Figure 4.4 shows the axioms and rules for quanti�ers. Theyare explained as follows:� The �rst rule for universal quanti�er serves as introduction rule and allows one togeneralise particular formulas to a universally quanti�ed formula by parameterisingconstants to the same variable. These expressions B must be identical when theyare parameterised. The proof of the quanti�ed formula is the product of all proofs,where the mapping from the constant to the variable is recorded for each formula.For example, �a1x means that the constant, a1 is replaced by x.� The second rule for universal quanti�er serves as elimination rule and allows toinstantiate a universally quanti�ed formula to a particular formula by substitutinga constant, a, for a variable, x. The proof of the quanti�ed formula is a projectionsuch that it chooses a particular substitution environment.� The �rst rule for existential quanti�er introduces the quanti�er in lefthand side andserves as elimination rule. The antecedent of each formula must be identical whenits constant is parameterised with a variable. The proof of the obtained formulais the coproduct of proofs, where the mapping from the constant to the variable isrecorded for each formula.� The second rule for existential quanti�er serves as introduction rule and allows toreplace a variable for a particular constant. The proof is a function recording themapping.The variable, x, must be eigenvariable as usual for the �rst rules of universal andexistential quanti�ers. The equations are de�ned analogously with those for & and �,
CHAPTER 4. REPRESENTATIONS AS PROCESSES 126Universal quanti�er:�1 : A) B[a1=x] � � � � � � �n : A) B[an=x]h�a1x ; � � � ; �anx i : A) 8xB x 62 fv(A) �ax : 8xA) A[a=x]Existential quanti�er:�1 : B[a1=x]) A � � � � � � �n : B[an=x]) A[�a1x ; � � � ; �anx] : 9xB) A x 62 fv(A) �ax : A[a=x]) 9xATable 4.4. Axioms and rules for quanti�ersrespectively, as is shown in the table 4.5.h� � � ; �ax; � � �i � �ax = � �ax � [� � � ; �ax; � � �] = �Table 4.5. Equations for quanti�ersThe rules for quanti�ers are the same as those proposed by Engberg and Winskel for lin-ear intuitionistic logic [EW93]. As is the case for their system, 8 and 9-adjunction holdas well. 8-adjunction means � : A) B and h�xi : A) 8x:B can be bi-directionallyconstructed. If the latter is assumed, then the former can be derived as is shown in theleft of the table 4.6 by using �x. By the equation, the term, h�xi � �x, is equivalent to�. The opposite direction is just a special case of the �rst rule as is shown in the rightof the table.h�xi : A) 8x:B �x : 8x:B) Bh�xi � �x : A) B � : A) Bh�xi : A) 8x:BTable 4.6. 8-adjunction9-adjunction means : B) A and [x] : 9x:B) A can be bi-directionally con-structed. If the latter is assumed, then the former can be derived as is shown in the leftof the table 4.7. By the equation, the term, �x � [x], is equivalent to . The oppositedirection is just a special case of the �rst rule as is shown in the right of the table.4.6.2 Internalising transitions to linear implicationAs a step to encoding quanti�ed objects, we alter our encoding of situation theoreticobjects by internalising transitions from) to linear implication, (. That is, objectsencoded in the form of A) B are now encoded as 1) A (B or) A (B by

CHAPTER 4. REPRESENTATIONS AS PROCESSES 127�x : B) 9x:B [x] : 9x:B) A�x � [x] : B) A : B) A[x] : 9x:B) ATable 4.7. 9-adjunctionsuppressing 1. Such a change does not a�ect on the use of other connectives althoughunderlying computation becomes complicated by making it closed category.We can prove the following relation holds: A) B i� 1) A (B. Remember theaxiom and rule for linear implication (Figure 4.8). The =) direction holds by taking Ain the left rule of the table as 1, B and C as A and B, respectively. The (= directionholds by the following derivationA) 1
 A 1) A(B A) A1
A) (A(B)
AA) (A(B)
A (A(B)
A) BA) BAdjointness of (and
:� : A
B) CcurA;B;C(�) : A) B(C evA;B : (A(B)
A) BTable 4.8. The axiom and rule for linear implication, (.As a result of the modi�cation, derivations becomes long. For example, emulating cuttakes longer steps as demonstrated below, but possible. Hereinafter, we may suppress1 in the antecedent for simplicity.1) A(BA) B as above 1) B (CB) C as aboveA) C1) A(C4.6.3 The construction of quanti�ed formulasThe advantage of the quanti�cation presented is that it makes it possible to quantifysemantic objects over assignments because propositions representing assignments canbe parameterised. If we regard formulas encoding assignments as witnesses, we canregard the construction of universally quanti�ed formulas as the procedure to gatherwitnesses supporting the formula.In this section, we employ the encoding we have proposed for naive situation theory.An infon such as hhwoman, a; 1ii is then encoded into the �-calculus as processes P =def
CHAPTER 4. REPRESENTATIONS AS PROCESSES 128womanhri j rhw1i. To express the meaning of a sentence, \A woman sings a song", weneed to discuss how it should be encoded, however. Traditionally, the sentence has beentranslated in classical logic to (4.73) whilst the sentence, \Every woman sings a song",is translated to either (4.74) or (4.75), depending on interpretation.9x9y: [woman(y)^ song(x) ^ sing(y; x)] (4.73)8y: [woman(y)! 9x: [song(x)^ sing(y; x)]] (4.74)9x: [song(x)^ 8y: [woman(y)! sing(y; x)]] (4.75)The di�erence between (4.73) and (4.74) has often been criticised as arti�cial becauseone cannot recognise such a syntactic di�erence in original sentences. The reason whyone has to use implication, !, comes from the semantics of classic logic. The formula,P ! Q, is equivalent to :P _ Q thus to :(P ^ :Q). One may say that what theformula does is after all to check that no cases satisfy P ^:Q and that it does not careabout at all if any women certainly exist. On the other hand, the linear implication,(, is stronger than the classical implication in that it demands there is a term or proofsupporting the formula, P (Q. The characteristic point of linear implication leads toa di�erent interpretation of sentences including \Every" and \A".Imagine how the case where a woman, w1, sings a song, s1, can be represented as aprocess. We can without doubt encode the assignments to w1 and s1 as a process such asrhw1i and uhs1i, respectively. But there are two ways to encode the information aboutwoman, sing, and song. One way is to encode it as (4.76), analogous to (4.73). Theprocess may randomly either emit r, the reference to the woman w1, through womanchannel, emit r and u, the reference to s1, through sing channel, or emit u throughsong channel. The other way (4.77) is, focussing on woman, to emit r through womanchannel, then emit other references, randomly.(womanhri+ singhr; ui+ songhui) j rhw1i j uhs1i (4.76)womanhri:(singhr; ui+ songhui) j rhw1i j uhs1i (4.77)When translated into the logic, they may be represented as (4.78) and (4.79), respec-tively. In the translation, we omit processes encoding assignments for simplicity.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 129� : 1) womanhri&singhr; ui&songhui (4.78) : womanhri) singhr; ui&songhui (4.79)Of these interpretations, we prefer (4.79) to (4.78) because we would like to regard themeaning of quanti�ed sentences as constraint. A sentence such as \A woman sings asong" is for example understood as stating a constraint between a situation where awoman exists and another where she sings a song. Such a constraint is true if there isat least one connection, , supporting the constraint, but not all connections need tosupport it. Universally quanti�ed sentences such as \Every woman sings a song" can,on the other hand, be regarded as stating stronger constraints, that is, any situationwhere a woman exists leads necessarily to another situation where she sings a song.To see quanti�er relation as constraints seems to be natural, but we need to elaborate itfurther to express the di�erence between the meanings (4.74) and (4.75). We start withthe explanation about what object can be quanti�ed over. The above expression, (4.79),is expressed as (4.80), when internalised to (. We add to it the formulas representingassignments. :) (womanhri((singhr; ui&songhui))
 rhw1i
 uhs1i (4.80)To construct the existentially quanti�ed expression, we parameterise the formulas en-coding assignments, rhw1i and uhs1i, to y and x, respectively, and quantify it over them.Since we apply the 9-introduction rule twice to it, we obtain the term shown in (4.81),which may be thought of as a witness supporting the claim that there is a woman whosings a song by recording the replacement of y and x.(� �rhw1iy) � �uhs1ix :) 9x9y: [(womanhri((singhr; ui&songhui))
 y
 x](4.81)From traditional model-theoretic point of view, the truth condition of the sentence iscaptured in terms assignments, that is, whether there is an assignment to the womanand song satisfying the constraint that the woman sings the song.In the example, the order of replacement of y and x does not matter, but it matterswhen we construct universally quanti�ed expressions. As we have seen at the beginning
CHAPTER 4. REPRESENTATIONS AS PROCESSES 130of this subsection, two interpretations are possible for the sentence, \Every woman singsa song". One case is such that some women sing di�erent songs, and another is suchthat they sing the same song. We start with the �rst case. To encode the case asprocesses, we express them as follows, where each woman, wi, sings a particular song,si. (womanhri:(singhr; ui+ songhui) j rhw1i j uhs1i) +(womanhri:(singhr; ui+ songhui) j rhw2i j uhs2i) +...(womanhri:(singhr; ui+ songhui) j rhwni j uhsni)We can construct the formula, 8y 9x: (womanhri(singhr; ui&songhui)
 y
 x, cor-responding to 8y 9x: woman(y) ! sing(y; x)^ song(x), as is shown in the upper partof the table 4.9. To transform the formulas corresponding to each case in the sameshape except to the assignment of woman, rhwii, we transform them into an existen-tially quanti�ed formula. Then, we construct the universally quanti�ed formula byconjoining them with respect to the assignment to woman.The other case where every woman sings the same song can be expressed as processessuch as (womanhri:(singhr; ui+ songhui) j rhw1i j uhsi) +(womanhri:(singhr; ui+ songhui) j rhw2i j uhsi) +...(womanhri:(singhr; ui+ songhui) j rhwni j uhsi)To construct the formula,) 9x 8y: (womanhri (singhr; ui&songhui)
 y
 x, cor-responding to the other interpretation, 9x 8y: woman(y) ! sing(y; x) ^ song(x), we�rst quantify all formulas universally over the assignment to woman, then quantify itexistentially over the assignment to song, uhsi. Note such an operation is impossiblein the �rst case because the formulas encoding assignments to song, uhsii, are di�erentfrom each other.4.7 Discussion4.7.1 Reference as �rst-class objectWhen we apply the ideas from the �-calculus to natural language semantics, one of themost bene�cial point is in mobility because it enables one to treat roles as �rst-classobject. The approach can for example simplify Cooper's analysis of Frege's Hesperus &Phosphorus puzzle using EKN [Coo93a]. We brie
y review how the puzzle was analysed:

CHAPTER 4. REPRESENTATIONS AS PROCESSES 131

Theconstructionforthe
readingof8y9x:woman(

y)!sing(y;x)̂song(x)
:

Foranyformula,� i,itho
ldsthat

� 1:)(womanhri(sin
ghr;ui&songhui)
rhw 1i

uhs 1i�uhs 1i x:(womanhri(sing
hr;ui&songhui)
rhw 1i

uhs 1i)9x:(womanhri(
singhr;ui&songhui)
rhw

1i
x
� 1��uhs 1i x:)9x:(woma

nhri(singhr;ui&songhu
i)
rhw 1i
x

Therefore,itfollowsthat � 1��uhs 1i x:)9x:(womanhri(
singhr;ui&songhui)
rhw

1i
x������� n��uhs ni x:)9x:(womanhri(
singhr;ui&songhui)
rhw

ni
x
h(� 1��uhs 1i x)rhw 1i y���(� n��uhs ni x)rhw ni yi:8y9x:(womanhri

(singhr;ui&songhui)

y
x

Theconstructionforthe
readingof9x8y:woman(

y)!sing(y;x)̂song(x)
:

Itholdsthat 1:)(womanhri(sin
ghr;ui&songhui)
rhw 1i

uhsi������ n:)(wo
manhri(singhr;ui&son

ghui)
rhw ni
uhsi
h 1rhw 1i y��� nrhw 1i yi:)8y:(womanhri

(singhr;ui&songhui)

y
uhsi

Since �uhsi x:8y:(womanhri(si
nghr;ui&songhui)
y
u

hsi)9x8y:(womanhri(
singhr;ui&songhui)
y

x
Itfollowsthat h 1rhw 1i y��� nrhw 1i yi��uhsi x:)9x8y:(womanhri

(singhr;ui&songhui)

y
x

Table 4.9. The construction of quanti�ed formulas
CHAPTER 4. REPRESENTATIONS AS PROCESSES 132Frege [Fre93] pointed out that the ancients did not realize that Hesperus(the evening star) was the same heavenly body as Phosphorus (the morningstar) and that this created a problem for semantics. The ancients presumablydid realize that Hesperus was identical with itself. But if Phosphorus is thesame thing as Hesperus, how come they did not realize that too? The answergiven here is a rather obvious and simple one. What the ancients did not knowhad to do with the relationship between linguistic labels and objects in theworld. They did not know that they were linking the two words `Hesperus'and `Phosphorus' to the same object, thought in fact that is what they weredoing.[Coo93a]The meaning of the sentence, \Hesperus is not Phosphorus", uttered by the ancientsthen can be expressed in EKN as a relation such as9Hesperus ! X ,Phosphorus ! Yis-not(X , Y) (4.82)which means that Hesperus is not identical with Phosphorus. The representation shouldbe contrasted with other meanings such as(4.83) a. Hesperus is not identical with Hesperusb. Hesperus is not identical with itselfwhich may be expressed in EKN, respectively, asHesperus1 ! X ,Hesperus2 ! Yis-not(X , Y) (4.84)Hesperus ! Xis-not(X , X) (4.85)When we encode these three objects into the �-calculus, the �rst one (4.82) may beencoded as (4.86), the second one (4.84) as (4.87), and third one (4.85) as (4.88), by9It should be expressed more precisely as a situation-theoretic type, but we treat it for simplicity as if itwere a relation.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 133directly encoding linguistic labels, `Hesperus' and `Phosphorus' as channels, h and p,respectively: is-nothh; pi (4.86)is-nothh1; h2i (4.87)is-nothh; hi (4.88)We have to be cautious in distinguishing (4.84) from (4.85), which leads to distinguishingthe two propositions, (4.83a) and (4.83b), because (4.84) assumes that the same propername, Hesperus, can be used as di�erent linguistic labels, Hesperus1 and Hesperus2. Ifwe did not admit that the same proper name to be used as di�erent roles, the object(4.84) would have been written as (4.89). Then, there is no ground to distinguish (4.84)and (4.85), and both could be encoded as (4.88).Hesperus ! X ,Hesperus ! Yis-not(X , Y) (4.89)The representation (4.84) may be acceptable if we extend the idea that \linguisticexpressions as labels" to linguistic actions as labels. One can think of the case wherethe two expressions of `Hesperus' can be uttered with di�erent meanings. Suppose aperson who is ignorant of astronomy mistakenly believed a wrong star was Hesperusfor a long time, say from his childhood. One day, he may suddenly notice that hewas wrong when one of his friends happens to point out the star, saying \The star isHesperus." Then, the person might say, \Ah, Hesperus is not Hesperus!". The meaningsof the �rst and second occurences of `Hesperus' in this case are di�erent. If we pursuethe idea further, roles can be more complex objects. The move has been initiated byCooper [Coo93a]. In such an approach, the example can be analysed as (4.90), whereX corresponds to the referent of the �rst utterance of `Hesperus' and Y corresponds tothat of the second utterance.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 134h ref;Hesperus1 i ! X ,h ref;Hesperus2 i ! Yis-not(X , Y) (4.90)How such an extention can be dealt with in our approach? Mobility can play an im-portant role then. To implement and re�ne the idea that linguistic actions as labels, weregard such actions as a sort of process. We express the referring processes of the �rstand second utterances as independent input processes, ref1(h1) and ref2(h2), expressingthem in molecule form as (4.91).[ref1(h1); ref2(h2); is-nothh1; h2i] (4.91)These two input processes will import some indices through ref1 and ref2 and replacethem for h1 and h2, respectively. Such input processes can be more complex. Thechannel, ref1, itself might be imported through another channel. But our approachbasically provides for the necessary machinery to implement more complex referringprocesses. Notice it is mobility that makes it possible to abstract objects over roles andimport them. Since roles or channels are treated as �rst-class object, we can importand export them freely from or to other objects. Our approach can therefore give aclear insight on what is going on when we introduce these complex indices into EKN.4.7.2 Mental states as processesOur encoding of situation-theoretic objects into the �-calculus as processes may sheda new light on situation-theoretic analysis of mental states. Mental states are thoughtof as a sort of situation which can support infons. The person's mental state, whorealised he was wrong in identifying Hesperus, can for example be expressed as (4.92).The �rst argument of the relation believe, a, is the agent who is in the mental state, thesecond is the internal state of a, the third is his connections to the world, and the fourthindicates time. msa is his mental state conceived of as a situation. If we understandhis utterance, \Ah, Hesperus is not Hesperus!", as \(The star he has been regarding as)Hesperus is not (actually) Hesperus", the �rst occurrence of `Hesperus' denotes a wrongheavenly body, m, while the second the correct one, v (Venus).

CHAPTER 4. REPRESENTATIONS AS PROCESSES 135msabelieve(a, h ref;Hesperus1 i ! X ,h ref;Hesperus2 i ! Yis-not(X ,Y) , �h ref;Hesperus1 i ! mh ref;Hesperus2 i ! v �, t) (4.92)To encode such a mental state as processes, we assume the heavenly bodies, m and v, areaccessible through channels r1 and r2. They are thus encoded as output processes suchas r1hmi and r2hvi, respectively. We disregard the relation, believe, and the agent a forthe moment. His connections to these heavenly bodies are established �rst by emittingthese channels through ref1 and ref2, then by replacing them for h1 and h2. After then,the agent can get access to m and v through received channels. The following showsthe transition. The �rst molecule encodes his initial internal state, and the second hisconnections.[[ref1(h1); ref2(h2); is-nothh1; h2i]; (� r1; r2)[ref1hr1i; ref2hr2i; r1hmi; r2hvi]]�& (� r1; r2)[ref2(h2); is-nothr1; h2i; ref2hr2i; r1hmi; r2hvi]�fr1=h1g�& (� r1; r2)[is-nothr1; r2i; r1hmi; r2hvi]�fr1=h1 ;r2=h2gThe actual referring and anchoring processes must be more complex than just demon-strated above, but it su�ces to show that the idea to regard mental states as processes�ts very well with our intuition about mental states. They can be better capturedas processes rather than situations. Our approach can re�ne the situation theoreticanalysis of mental states in natural way.The remaining question at hand is how to encode the infon including another complexobject as its argument. To start with the investigation, we argue that relations, too,can be indexed as object. Observe we often need to specify the meaning of relationsor properties in conversation. For example, in the excerpt shown in the �gure 4.6, theroute follower asks the giver to clarify the meaning of chotto (a little bit). Based onthe observation, we think relations can be parameterised with roles.If we allow to abstract semantic objects over parameters replacing relations, the encod-ing of infon, hhsmile, j; 1ii, is modi�ed from (4.93) to (4.94), where r0 is the channel tothe relation, smile. There appears to be a new channel, i, however, for which we needsome explanation. We would like to regard it as a channel to get access to the infon.Once we admit such channels, we are ready to encode complex objects.
CHAPTER 4. REPRESENTATIONS AS PROCESSES 136G1: de-e, hanshu-kurai sita-ra chotto hidari-ni iku-n-desu-yoand, after you go around about half you go leftward a little bitF1: chotto-tte dono-kurai?What do you mean by \a little bit"?Figure 4.6. An excerpt from the Japanese Map Task Corpus (4)(� r1)[smilehr1i; r1hji] (4.93)(� i; r0; r1)[ihr0; r1i; r0hsmilei; r1hji] (4.94)We encode as an example the following infon (4.95) as processes, the infon that Marybelieves John smiles.msMarybelieve(m, r0 ! R, r1 ! XR(X) , �r0 ! smiler1 ! j �, t) (4.95)Assuming the information about John's smiling is available through a channel, i, theinfon can be encoded as(� i; j; r2; r3)[jhr2; r3; ii; r2hbelievei; r3hmi] (4.96)where j is the channel to get access to the infon, r2 is the index to the relation, believe,and r3 the index to Mary, m. Since the information about John's smiling can be encodedas (4.94), the molecule we obtain as the result is the merged one of them (4.97), whichcan be depicted in datagraph as is shown in the �gure 4.7.(� i; j; r0; r1; r2; r3)[jhr2; r3; ii; ihr0; r1i; r2hbelievei; r3hmi; r0hsmilei; r1hji] (4.97)

CHAPTER 4. REPRESENTATIONS AS PROCESSES 137
r

smile

r2

r

r3 i

10

j

mbelieve

j

Figure 4.7. The data
ow graph of \Mary believes that John smiles"
CHAPTER 4. REPRESENTATIONS AS PROCESSES 1384.7.3 Shared-situations as processesThe channels introduced to index infons in the above enables one to encode a particularuse of situations to describe common knowledge. In [Bar89], Barwise proposed a shared-situation approach to study common knowledge, which developed the idea proposed byClark and Marshall in [CM92]. In maptask, such knowledge is central because the goalof the task is to establish common knowledge such that- the giver knows the follower reaches the goal,- the follower knows the giver knows he(f.) reaches the goal,- the giver knows the follower knows he(g.) knows he(f.) reaches the goal,- the follower knows the giver knows he(f.) knows he(g.) knows he(f.) reaches thegoal, and so on.In fact, the participants have to establish their common knowledge as to every item inthe map having to do with the route.The shared-situation approach can be summarised as follows:� s j= �� s j= g knows s� s j= f knows sIn the de�nition, � means the fact established as common knowledge, s is the sharedsituation, g and f are the giver and follower, respectively. The point of the de�nition isthat both of them have the access to the situation s such that it supports the fact andtheir states of communication, where s itself is involved in the infon.In that approach, one can see the situation s plays two roles, one of which is to supportinfons, the other of which is to provide for access to itself in order to extract infor-mation.10 Of these, the latter role can be implemented in our approach by regardingthe channels to infons as the access to situations. Suppose the infon, �, is accessiblethrough a channel, s. Then, the de�nition can be encoded as processes such as(� s)(sh�i +(� r1; r2; r3)(shr1; r2; r3i j r1hknowsi j r2hgi j r3hsi) +(� r4; r5; r6)(shr4; r5; r6i j r4hknowsi j r5hfi j r6hsi))where � is a sequence of channels to a relation and arguments. The encoding may notgive much insight, but one can see the structure of the common knowledge when it10Such a view on situations is adopted in designing Prosit [NPS91].

CHAPTER 4. REPRESENTATIONS AS PROCESSES 139is depicted in data
ow graph as is shown in the �gure 4.8. In the �gure, the arcs riconnected to the boxes mean they are sorted out in that order. Now, one can observetwo cyclic paths in the graph. One is the path, r3 s r3 � � �, and the other isthe path, r6 s r6 � � �. Such cyclic paths enable other processes to extract thoseitems of information as if they are in�nitely nested when they are replicable. That is,one can follow a path such as r3 s r6 s � � �, which can be thought to representcommon knowledge between the giver and follower.

r r 31

s

r 2

g

r r 64 r 5

f

know

Sigma

Figure 4.8. The data
ow graph of a shared situationThe process-algebraic view can also shed a new light on the relation between di�erentstructures of common knowledge. Let us see another example of common knowledge,which is more complex than the previous one.� s1 j= �� s1 j= g knows s1� s1 j= f knows s2� s2 j= �

CHAPTER 4. REPRESENTATIONS AS PROCESSES 140� s2 j= g knows s1� s2 j= f knows s2There should be models satisfying this de�nition, but the previous one. How can sucha di�erence be captured? We �rst depict the de�nition in data
ow graph (Figure 4.9).One can see the structure of the common knowledge is fairly enriched. The cyclic pathsare now extended to the following three, where the third path did not exist in theprevious de�nition, the cycle emphasised with bold line in the �gure. It is the path thatestablishes common knowledge.- r3 s1 r3 s1 � � �,- r6 s2 r6 s2 � � �- r6 s2 r3 s1 r6 s2 � � �
r r 31

s

r 2

g

r r 64 r 5

f

know

Sigma

1

2s

Figure 4.9. The data
ow graph of a more complex shared situation

CHAPTER 4. REPRESENTATIONS AS PROCESSES 141The structures are di�erent, but what relation would hold between them? They aredi�erent, but still have much in common. To capture the relation, we employ the notionof simulation. Observe the structure (Figure 4.9) becomes equivalent to that shown inFigure 4.8 when the two nodes, s1 and s2, are merged and renamed to s. Given thisobservation, we say the system, P (Figure 4.9), simulates another, Q (Figure 4.8), underthe operation and express the relation as Q < P .114.8 ConclusionIn the chapter, we have applied the ideas from the �-calculus to studying SituationSemantics. Our aim was to base Situation Semantics to a computational ground ofcommunication and concurrency and to linear logic. In constructing semantic objectsfor primitive Situation Semantics, communication and concurrency play an importantrole to implement simultaneous abstractions and applications. The �-calculus furtherenables us to encode situation-theoretic objects more e�ectively thanks to mobility. Asreferences are treated as �rst-class object, we can encode abstract objects as objectswithout assignments. Mobility also enables us to encode more complex abstractionsand applications involving referring actions as processes. Quanti�cation relation hasbeen de�ned constructively, where terms serve as witnesses. We �nally discussed theissues of mental states and common knowledge.Through the chapter, we have also presented a way to bridge the gap between theresearch on information
ow, i.e., Channel Theory, and the project to build a well-formed semantic universe for linguistic applications, i.e., Situation Theoretic DiscourseRepresentation Theory [Coo93a, Coo93b], which have been so far studied rather inde-pendently. We have encoded various situation-theoretic objects into the �-calculus andhave shown in the previous chapter how the calculus can be related with a combinatorialintuitionistic linear logic, which can be regarded as stating the principle of information
ow.Let us review the principle of information
ow proposed by Barwise [Bar93] shown inthe table 4.10. We can relate these postulates with the axioms and rules of the logic asfollows:� `Xerox Principle' corresponds to sequential composition, � (cut).� `Logic as Information Flow' states our view itself. The slight di�erence is that wewrite s : t1) t2 for s : t1 �! s : t2.11Bisimulation relation A � B can be de�ned as the relation such as A < B and A > B. The relation isstrongly bisimular when we strictly map a graph to another. If we disconsider parts corresponding to � , thenthe relation is weekly bisimular. We do not go into detail of these notions as it is outside our scope.
CHAPTER 4. REPRESENTATIONS AS PROCESSES 142� `Addition of Information' corresponds to parallel composition,
 (multiplicativeconjunction).� `Exhaustive Cases' can be derived using the rules for coproducts and cut.� : t1) t2 � t02 1 : t2) t3 2 : t02) t3[1; 2] : t2 � t02) t3� � [1; 2] : t1) t3� `Contraposition' does not hold in our system because the logic is intuitionistic. Itwill, however, hold if we make the logic classical by introducing &, the dual of
with its neutral element, ?.1. Xerox Principle:s1 : t1 �! s2 : t2 s2 : t2 �! s3 : t3s1 : t1 �! s3 : t32. Logic as Information Flow:t1 ` t2s : t1 �! s : t23. Addition of Information:s1 : t1 �! s2 : t2 s1 : t01 �! s2 : t02s1 : t1 ^ t01 �! s2 : t2 ^ t024. Exhaustive Cases:s1 : t1 �! s2 : t2 _ t02 s2 : t2 �! s3 : t3 s2 : t02 ! s3 : t3s1 : t1 �! s3 : t35. Contraposition:s1 : t1 �! s2 : t2s2 : :t2 �! s1 : :t1Table 4.10. The principle of information
ow: Barwise's postulatesCloser look will, however, reveal subtle di�erences. Table 4.11 shows the axioms forChannel Algebra [MS94] except those for the invertible. In the table, c1 � c2 meanssequential composition, c1 ^ c2 parallel composition, and 1 identity. The axioms, (i)and (ii), hold in our system, too, but not (iii) because the logic is linear. The axioms,(iv) and (v), hold in our system, too, by category axioms though we use id ratherthan 1. The axioms, (vi) and (vii), do not hold, however. Instead, we have a naturalisomorphism,
 � (�
) = (
 �) �
. The di�erence comes from the lack of (iii).To sum up, comparing our foundation with Channel Theory, ours is slightly di�erent inthat it is intuitionistic and linear, but otherwise they share much in common. In fact,Barwise proposed a way to view linear logic as a theory of information
ow [Bar92].We think therefore our approach is still in track of Channel Theory. Although there arestill many rooms for further development, we believe our approach is a promising wayto construct semantic objects on a rigorous foundation for Situation Semantics.

CHAPTER 4. REPRESENTATIONS AS PROCESSES 143

(i) c1 ^ c2 = c2 ^ c1 ^ is commutative(ii) c1 ^ (c2 ^ c3) = (c1 ^ c2) ^ c3 ^ is associative(iii) c ^ c = c ^ is idempotent(iv) c1 � (c2 � c3) = (c1 � c2) � c3 � is associative(v) 1 � c = c � 1 = c 1 is the unit of �(vi) c1 � (c2 ^ c3) � (c1 � c2) ^ (c1 � c3) left semi-distribution of � over ^(vii) (c2 ^ c3) � c1 � (c2 � c1) ^ (c3 � c1) right semi-distribution of � over ^Table 4.11. The axioms for Channel Algebra
Chapter 5Parsing as reaction5.1 IntroductionIn this chapter, we present a parser that can utilise di�erent sources of information whileanalysing syntactic information of sentences. By \di�erent sources", we mean contexts,which we have elaborated in the �rst chapter to discourse, plan-goal, and circumstances.We have claimed then based on our observation that a parser must be designed so that itcan extract freely items of information from di�erent sources in parallel. To implementthe idea in a parser, we propose a parser that analyses syntactic information as the resultof a course of reactions. Designed as a reactive system, the parser can spontaneouslyextract information from environments, not only from sentences uttered, and evolvesinto another state.While the reactive parser meets our requirement, it will call in a new problem, too, theproblem that we cannot design a particular algorithm to control the global behaviourof the system of interacting processes. Since sentences are parsed as the result of anumber of interactions between processes comprising the system, all we can directlyprogram is the behaviour of each process upon interactions. It is therefore desirablethat we can ensure that a system as a whole should turn into a particular state in aparticular context. We would like for example to know if the state turns into s (sentence)after receiving a sequence of words, e.g., \a man walks." The problem is the same asthe reachability problem for petri-nets, and our approach is e�ective in studying theproblem, too.The idea of parsing as reactions can be sketched as follows:� Each word uttered evokes a process, and an utterance of a sentence evokes a setof processes. 144

CHAPTER 5. PARSING AS REACTION 145� Each process is connected with its neighbours through channels and may exchangefeature information with them.� The communication may leads to creating a new process depending on the infor-mation available. The created process is connected with its neighbours through itsown channels, too.The �gure 5.1 shows an example of parsing the sentence, \a man walks." In the �gure,each process encoding a lexical item is depicted as a circle, connected through channelsto its right and left neighbours. Each process encodes feature information and maycreate new processes upon interaction. For example, if the process, Q, encoding MAN,extracts feature information of another process, P , encoding the determiner, A, andthe information meets a condition, then Q generates a new process, Q0, encoding anoun phrase. The connections between processes are recon�gured upon the evolution.In this case, the process Q0 created is connected to V at the left, the process encodingthe end of the previous sentence, and R at the right, the process encoding the lexicalinformation of WALKS. The process R creates another process R0 corresponding tosentence upon the interaction with Q0, which is connected with W , at its right position,which is the process encoding the �rst item of the next sentence.The idea to parse sentences as the result of message passing is not novel. The ParseTalkmodel proposed by Br�oker, Hahn, and Schacht [SHB94, BHS94, BSSH94] has alreadyinvestigated how sentences can be parsed through communication between agents, basedon Hewitt's actor model [Agh86]. There is also a concurrent constraint programminglanguage, Oz, developed by Gert Smolka and his group at DFKI (German ResearchCenter for Arti�cial Intelligence) [Smo94b], who have proposed a way to encode fea-ture structures as concurrent processes. Yet many things remain to be investigated.Although the ParseTalk model has proposed an interesting approach to parsing, thelevel of modelling is still informal as they de�ne grammatical information at a level ofprogramming language, whose semantics must be formalised further so that we can inferthe behaviour of the parser. The possibility of Oz language is also yet to be exploited toparsing sentences.1 Our model should serve as a basis to analyse and compare variousproposals to concurrent natural language processing.As our aim is to investigate a general framework to modelling concurrent natural lan-guage processing, the parser presented here does not commit to any particular grammartheory. The reason why we employ feature structures to represent lexical information ismerely because it is most widely adopted by linguists. The chapter is organised as fol-lows: We present how lexical information can be encoded as a process (x5.2), then go onto presenting how sentences may be parsed as a result of interactions (x5.3), which will1A parser is encoded in Oz, which is found as one of demo programs in the package [Smo94b].
CHAPTER 5. PARSING AS REACTION 146

P

A

V

HER

W

HE

Q

MAN

R

WALKS

P

A

V

HER

W

HE

Q

MAN

R

WALKS

Q’

P

A

V

HER

W

HE

Q

MAN

R

WALKS

Q’

R’

NP

SFigure 5.1. Parsing as interactions

CHAPTER 5. PARSING AS REACTION 147be further elaborated in the following section (x5.4). We discuss then logical checkingof concurrent parsers, syntax-semantics interface, and structure of feature descriptionsbased on channel types.5.2 Feature structures as processes5.2.1 The basic ideaWe start by looking into the simplest form of feature structures. We conceive of asimple feature description (5.1) as (5.2). The additional information, r0 and r1, indicatechannels through which items of information are available. That is, the whole itemof information is accessible through r0, and verb, the value of feature cat (category),through r1. �cat: verb� (5.1)r0 �cat: r1 verb� (5.2)The feature description (5.2) is encoded into the �-calculus as a process such as(� r0; r1)(! c(d):dhr0i:r0(x):[x = cat]dhr1i:r1hverbi)The behaviour of the process can be explained as follows:� By c(d).dhr0i, it receives from another process through c a channel replacing d. r0is emitted through the channel to provide the process with the access. We assumethe channel replacing d is bound name, which ensures that other processes shouldnot receive r0 through the channel.� Then, the process receives through r0 a feature name x to return r1 through thereceived channel, if the feature name matches to cat.� Through r1, it emits verb.� The channels, r0 and r1, are private to the process.� The system will be recreated as many times as requested with the same channels, r0and r1, each time. In practice, this allows several processes to extract informationof the process at the same time.The above encoding shows our basic idea in encoding feature descriptions as processes.One may wonder, as for the way the value is accessed from other processes, why not
CHAPTER 5. PARSING AS REACTION 148the process returns verb directly, rather than r1. That is, why do we not encode it asthe following?(� r0)(! c(d):dhr0i:r0(x):[x = cat]dhverbi)The reason is rather subtle and has to do with typing of channels. We would like to usethe received channel d only to send channels, r0 and r1. The above encoding violatesthe principle as d is used to emit as value, verb. We would also like to use channels,r0 and r1, only for exchanging feature names or values, which we treat as string, not aschannels.2 The type of these channels then can be said to be of exchanging strings. Sucha convention contributes to simplifying the type of d, that is, a channel for exchangingchannels to exchange strings. We do not go into the discussion on typing of channels3, but we care about it in our encoding because such a practice will become importantwhen designing models for NLP systems.5.2.2 Flat structuresWe go on to encoding slightly complex feature descriptions. Suppose we representlexical entry for `walk' as (5.3). The entry o�ers at r0 a new item of information thatits phonetic form is \walk". r0 24cat: r1 verbphon: r2 walks35 (5.3)The description can be encoded as below. The �rst part of receiving a channel to replaced is the same as before, but the process has two choices in evolving into another state,depending on the name replacing x. One of which is the same as before, and the otheris to evolve into a process such that it returns r2 if the received name matches to phonand emits walks through r2.(� r0; r1; r2)(! c(d).dhr0i.r0(x).([x=cat]dhr1i.r1hverbi+ [x=phon]dhr2i.r2hwalksi))5.2.3 Nested structuresThe encoding can be extended to encode nested feature structures. Let us see how thestructure (5.4) can be encoded, which represents the agreement information (agr) that2That is the reason why we use the di�erent font for them.3See for example [Pie94] to know the type system adopted in PICT.

CHAPTER 5. PARSING AS REACTION 149person (per) is third (3rd). r0 24agr: r3 �per: r4 3rd�35 (5.4)The description can be encoded as below. The �rst part is the same as before, but thechannel, r3, which the process returns through d, does not o�er a value but the accessto the process for further inquiry. It receives another feature name to replace y at r3and returns r4 if it matches to per. The value 3rd is now o�ered through r4.(� r0; r3; r4)(! c(d).dhr0i. r0(x).[x=agr]dhr3i. r3(y).[y=per]dhr4i. r4h3rdi)By combining these techniques, one can encode a feature description for \walk" (5.5)as the process shown below.r0 26666664cat: r1 verbphon: r2 walksagr: r3 24per: r4 3rdnum: r5 sing3537777775 (5.5)(� r0; r1; r2; r3; r4; r5)(! c(d).dhr0i.r0(x).([x=cat]dhr1i.r1hverbi+ [x=phon]dhr2i.r2hwalksi+ [x=agr]dhr3i.r3(y).([y=per]dhr4i.r4h3rdi+ [y=num]dhr5i.r5hsingi)))5.2.4 Shared structuresWhen describing features, a structure can be shared. Abstractly, one may represent afeature such as (5.6), where the structure [h : a] is shared between f and g.r0 2664f: r1 �h: r2 a�g: r1 3775 (5.6)
CHAPTER 5. PARSING AS REACTION 150As to such a shared structure, a straightforward encoding encounters a problem. If weencode it as below, some other process cannot extract the information [h : a] when ittries to get access to it through g because the information is lost when [x=g]dhr1i ischosen to perform.(� r0; r1; r2)(!c(d).dhr0i.r0(x).([x=f]dhr1i.r1(y).[y=h]dhr2i.r2hai+ [x=g]dhr1i)One solution is to regard the above structure (5.6) as an abbreviation of (5.7). Then,one can encode it as below, avoiding the problem.r0 26664f: r1 �h: r2 a�g: r1 �h: r2 a�37775 (5.7)(� r0; r1; r2)(! c(d).dhr0i.r0(x).([x=f]dhr1i.r1(y).[y=h]dhr2i.r2hai+ [x=g]dhr1i.r1(y).[y=h]dhr2i.r2hai)The solution does however not capture the meaning of \shared" because the latter itemof the information is a copy. To represent the fact that the same structure is shared,we have to re�ne our encoding by letting the processes o�ering the information beindependent. When we treat each action as processes independent of others, the featuredescription is encoded as below. The �rst part of getting the channel to replace d is thesame as before, but then the process evolves into three processes. One of which is toreceive a name at r0 and emits r1 if the name matches to f or g. The second processreceives a name at r1 and emits r2 if it matches to h. The third emits a through r2.Since the actions for emitting the channel r2 and for emitting the value a are performedby independent processes, they do not disappear no matter which name is receivedthrough r0.(� r0; r1; r2)(! c(d).dhr0i.(r0(x).([x=f]dhr1i + [x=g]dhr1i)j r1(y).[y=h]dhr2ij r2hai))Pursuing the approach further, one may think of separating the process, c(d).dhr0i, too,as below. But this encoding does not work because d in c(d).dhr0i and those appearingin other actions are not identical. Remember the scope of d in c(d) is limited to onlyactions guarded by it.

CHAPTER 5. PARSING AS REACTION 151(� r0; r1; r2)(! (c(d).dhr0ij r0(x).([x=f]dhr1i + [x=g]dhr1i)j r1(y).[y=h]dhr2ij r2hai))To make each processes completely independent, we have to ensure that each processshould receive a channel, f , to return the access.(� r0; r1; r2)(! (c(d).dhr0ij r0(x; f).([x=f]fhr1i + [x=g]fhr1i)j r1(y; f).[y=h]fhr2ij r2hai))The encoding however violates the typing principle as r2 returns only a value, a, whileother channels, r0 and r1, receive a name and a channel. To preserve the typing scheme,we ensure the value should be returned through a di�erent sort of channel, s. Giventhe change, the system should return the channel, s, through a di�erent channel otherthan f . Let v be such a channel to return s, the access to the value. We modify thenour encoding to the following.(� r0; r1; s)(! (c(d).dhr0ij r0(x; f; v).([x=f]fhr1i + [x=g]fhr1i)j r1(y; f; v).[y=h]vhsij shai))The system �rst returns r0 when it receives a request for access to its feature informa-tion. Through the channel, other processes can interrogate it by emitting a particularfeature name and two channels, f and v, which are used to receive another interrogablechannel or a channel to extract a value, respectively. The system returns s through vwhen it is interrogated through r1 given a feature name, h. When the system returnsa channel through v, not f , it means that now it is ready to o�er a value rather thanreturning another interrogative channel. Once the channel, s, is received, the interro-gating processes can extract the value, a, through it.5.2.5 Feature structures as a set of processesIn what follows, we opt for encoding feature descriptions as is sketched in the above(x5.2.4). To re�ne it further, we make each process replicable as the replication operator,!, distributes over the parallel composition operator, j , i.e., ! (P jQ) � !P j !Q. Theabove encoding is therefore equivalent to the below.

CHAPTER 5. PARSING AS REACTION 152(� r0; r1; s)(! c(d).dhr0ij ! r0(x; f; v).([x=f]fhr1i + [x=g]fhr1i)j ! r1(y; f; v).[y=h]vhsij ! shai)Since we have introduced a di�erent type of channel, s, to return the value, the featuredescription (5.6) should also be modi�ed to (5.8).r0 2664f: r1 �h: s a�g: r1 3775 (5.8)To sum up, if we encode the description (5.5), whose channels, r1, r2, r4 and r5, arereplaced by s1, s2, s4, and s5, respectively, it may be encoded as is shown in the table5.1. It will be explained in x5.3.4 how items of information can be retrieved from otherprocesses. In the following, we often suppress the processes encoding feature structures,e.g., FS(c) for the feature description, where c indicates the channel through which theinformation is accessible.(� r0; r3; s1; s2; s4; s5)(! c(d).dhr0ij ! r0(x; f; v).([x=cat]vhs1i+ [x=phon]vhs2i+ [x=agr]fhr3i)j ! r3(y; f; v).([y=per]vhs4i+ [y=num]vhs5i)j ! s1hverbij ! s2hwalksij ! s4h3rdij ! s5hsingi)Table 5.1. Encoding the lexicon for \walk" (5.5) as a set of processes5.3 Parsing as evolution of systems5.3.1 AgentsWe explain how a sentence can be parsed as the result of interactions between pro-cesses. Suppose P , Q, and R are subsystems encoding features of `a', `man', and `walk',

CHAPTER 5. PARSING AS REACTION 153respectively. Although we have previously depicted the whole system for the sentenceas if each subsystems were connected directly with each other (Figure 5.1), they arenot connected in that way, but through independent processes accompanying to eachsubsystem. Let Ci be such an accompanying process. The relation between them andwith subsystems encoding features can be depicted as is shown in the �gure 5.2.

P

A

V

HER

W

HE

Q

MAN

R

WALKS

C2C1 C5C3 C4

c c c c c

e5e3 e4e1 e2l rFigure 5.2. The subsystems connected via accompanying processesIn the �gure, for example, C3 acts as an agent for Q encoding the lexical entry, `man',and is connected to it through a private channel, c. With other agents C2 and C4acting for P and R, respectively, it is connected at left and righthand side. C3 o�ersthe access to itself at e3, which is open only to C2 and C4. This is done by informingonly C2 and C4 of the access channel, e3.5.3.2 Agents to trigger actions of other agentsTo start the computation, each agent will trigger actions of its neighbours by emittingto them its channel, ei, through which the neighbour may communicate with it. Sup-pose the feature descriptions of `a' and `man' are abbreviated to FS2(c) and FS3(c),respectively. The agents C2 and C3 with P and Q encoding these feature descriptions,are encoded as subsystems as is shown in the table 5.2. The e2 and e3 appearing in thede�nitions of C2 and C3 are the same although the de�nition does not mean it.4 Thede�nitions for C2l(y), C2r(z), C3l(y), and C3r(z) will be given later.An agent may communicate with another agent when it receives the access, e.g., e2 or e3,through a particular channel, l (left) or r (right). Let us see how the system of (C2 jC3)would evolve into another state. The table 5.3 shows the steps until C3l(y) is triggered4This is because for simplicity we omit the process by which C2 and C3 are generated given the same boundnames, e2 and e3. C2 is actually parameterised over e1, e2, and e3, and C3 over e2, e3, and e4. They shouldlook like C2(x2; y2; z2) and C3(x3; y3; z3), respectively, and the parameters x2; y2; and z2 will be substitutedby e1, e2, and e3, and x3; y3, and z3 by e2, e3, and e4. The names from e1 to e4 are all bound names to becreated by the process initialising C2 and C3.

CHAPTER 5. PARSING AS REACTION 154C2 =def (� e1; e2; e3)((� c; l; r)(! e2hc; l; rij FS2(c)j ! l(y):C2l(y)j ! r(z):C2r(z))j e1(c1; l1; r1).r1he2ij e3(c3; l3; r3).l3he2i)C3 =def (� e2; e3; e4)((� c; l; r)(! e3hc; l; rij FS3(c)j ! l(y):C3l(y)j ! r(z):C3r(z))j e2(c2; l2; r2).r2he3ij e4(c4; l4; r4).l4he3i)Table 5.2. The de�nition of C2 and C3with the access to e2. We suppress in the table e1(c1; l1; r1).rhe2i and e4(c4; l4; r4).lhe3ifor simplicity. At the second step, C3 creates a copy of e3hc; l; ri. Then, it o�ersthe process e3(c3; l3; r3).l3he2i items of information through e3. At the third step, thechannel l of C3 is emitted, and in turn through which e2, the access to C2, is returnedby executing the copy, l(y):C3l(y). Through similar steps, C2r(z) will be trigerred withthe access to e3.5.3.3 Recording and retrieving access to neighboursThe process, C3l(y), �rst records the access to its left neighbour, e2. We record theinformation on left and right neighbours at particular locations, pln3 and prn3, abbre-viation for Private record of Left Neighbour and Private record of Right Neighbour,respectively. The output action, e3hc; l; ri, is modi�ed to e3hc; l; r; ln3; rn3i by addingto it ln3 and rn3, both of which are private to C3. Other processes can get access tothe locations, ln3 and rn3, to retrieve the access to C3's left and right neighbours. LetC30 be the modi�ed version of C3. The channels, ln3 and rn3, are private to C30. AfterC3l(y) and C3r(z) record their neighbours, the whole system should turn into the oneshown in the table 5.4.The last two processes, ! pln3he2i and ! prn3he4i, are created by C3l(y) and C3r(z), re-spectively. With these replicable processes, the other two processes, ln3(x):pln3(y):xhyi

CHAPTER 5. PARSING AS REACTION 1551. The initial state of (� e2; e3)(C2 jC3)(� e2; e3)((� c; l; r)(! e2hc; l; ri j FS2(c)j ! l(y):C2l(y) j ! r(z):C2r(z)) j e3(c3; l3; r3).l3he2ij (� c; l; r)(!e3hc; l; ri j FS3(c)j ! l(y):C3l(y) j ! r(z):C3r(z)) j e2(c2; l2; r2).r2he3i)2. C3 creates a copy of e3hc; l; ri(� e2; e3)((� c; l; r)(! e2hc; l; ri j FS2(c)j ! l(y):C2l(y) j ! r(z):C2r(z)) j e3(c3; l3; r3).l3he2ij (� c; l; r)(e3hc; l; ri j ! e3hc; l; ri j FS3(c)j ! l(y):C3l(y) j ! r(z):C3r(z)) j e2(c2; l2; r2).r2he3i)3. The process e3(c3; l3; r3).l3he2i interacts with the created process. The scope of l of C3extrudes to C2.(� e2; e3)((� c; l; r)(! e2hc; l; ri j FS2(c)j ! l(y):C2l(y) j ! r(z):C2r(z)) j (� l)(lhe2ij (� c; r)(e3hc; l; ri j ! e3hc; l; ri j FS3(c)j ! l(y):C3l(y) j ! r(z):C3r(z))) j e2(c2; l2; r2).r2he3i)4. C3 creates a copy of l(y):C3l(y)(� e2; e3)((� c; l; r)(! e2hc; l; ri j FS2(c)j ! l(y):C2l(y) j ! r(z):C2r(z)) j (� l)(lhe2ij (� c; r)(e3hc; l; ri j ! e3hc; l; ri j FS3(c)j l(y):C3l(y) j ! l(y):C3l(y) j ! r(z):C3r(z))) j e2(c2; l2; r2).r2he3i)5. Through l, the created process receives e2, and the process C3l(y) becomes active. Thescope of l of C3 migrates to itself.(� e2; e3)((� c; l; r)(! e2hc; l; ri j FS2(c)j ! l(y):C2l(y) j ! r(z):C2r(z))j (� c; l; r)(e3hc; l; ri j ! e3hc; l; ri j FS3(c)j C3l(e2)fe2=yg j ! l(y):C3l(y) j ! r(z):C3r(z))) j e2(c2; l2; r2).r2he3i)Table 5.3. The steps until C3l(y) is triggered
CHAPTER 5. PARSING AS REACTION 156C3 =def (� e2; e3; e4)((� c; l; r; ln3; rn3; pln3; prn3)(! e3hc; l; r; ln3; rn3ij FS3(c)j ! l(y):C3l(y)j ! r(z):C3r(z)j ! ln3(x):pln3(y):xhyij ! rn3(x):prn3(y):xhyij ! pln3he2ij ! prn3he4i))Table 5.4. The state of C30 after recording neighboursand rn3(x):prn3(y):xhyi, can return the access to C2 and C4, e2 and e4, through thereceived channel x when they receive it through ln3 and rn3, respectively.The two processes, C3l(y) and C3r(z), are de�ned as below. The names, y and z,are received through l(y) and r(z), respectively. Thus C3l(y) can create the process,! pln3he2i, because y is substituted by e2.C3l(y) =def ! pln3hyiC3r(z) =def ! prn3hziAlthough we assume here that there exists only one neighbour for each position, atleft and right, which means that C3l(y) and C3r(z) are assumed to be executed onlyonce, the assumption will be relaxed and the interaction for recording and retrieving theinformation on neighbours becomes more complex by employing list data structure. Thedevelopment is necessary to parse every possible syntactic structures. We will presentour solution in x5.4.5.3.4 Retrieving feature informationWhen trigerred, the process will look into the feature information through the givenchannel and may generate a new agent depending on the items of information it extractsof. Suppose that the process, C3l(e2)fe2=yg, interacts with C2 through e2 and generatesa new agent corresponding to noun phrase if it can extract items of information thatindicates the category of its left neighbour is determiner. Let C3l(y)0 be a processperforming the series of actions. The de�nition of C3l(y) is modi�ed, added the processas follows:C3l(y) =def ! pln3hyi jC3l(y)0

CHAPTER 5. PARSING AS REACTION 157where C3l(y)0 is de�ned asC3l(y)0 =def (� d; f; v)(y(c; l; r; ln; rn):chdi:d(r0):r0hcat; f; vi:v(s1):s1(x):[x = det]C3lg)The table 5.5 shows how it retrieves the information on category of C2. The processperforms the following series of actions:(a) e2(c; l; r; ln; rn): The process receives c; l; r; ln; and rn through e2, which substi-tuted y.(b) chdi: It emits its private channel d through c.(c) d(r0): Then it waits for the reply at the channel, which will replace the channel tothe top level of the feature structure for r0.(d) r0hcat; f; vi: Once it gets the channel, it emits a request, cat, along with twochannels, f and v. The second channel, v, is used to get access to the informationon category.(e) v(s1): The reply is received through v to substitute s1.(f) s1(x): Then it can retrieve the information on category through s1.(g) C3lg: It will proceed to next actions of generating a subsystem corresponding tonoun phrase if the category matches to det. It terminates otherwise.5.3.5 Generating new agentsWe look into how a new agent can be generated by considering as an example whatprocesses C3lg above may generate. Let C6 be the subsystem to be generated andFS6(c) the set of processes encoding its feature information. The �gure 5.3 shows itsrelation with other agents. Its left neighbour is C1 and right one is C4. Analogous toC2 and C3, the subsystem could be de�ned as is shown in the table 5.6.To generate such a subsystem, C3lg will evolve into C6(left; self; right), where the pa-rameters, left; self , and right, must be instantiated with channels to its left neighbour,itself, and its right neighbour, respectively. The channel, self , can be instantiated withan arbitrary channel created freshly, say e6, but left and right have to be instantiatedwith e1 and e4. Let C30lg be the process retrieving these channels, de�ned at the momentas C3lg =def (� e6)(C30lg:C6(left; e6; right))It is not hard for C3 to retrieve e4 as it is its right neighbour. It needs only to performonce the input action, prn3(right). Let C3rlg be the process to retrieve the access to theright neighbour, which is de�ned as

CHAPTER 5. PARSING AS REACTION 158The step 1(� c; l; r; ln2; rn2)(e2hc; l; r; ln2; rn2ij (� r0; s1)(c(d).dhr0i j r0(x; f; v).[x=cat]vhs1i j s1hdeti))j (� d; f; v)(e2(c; l; r; ln; rn).chdi.d(r0). r0hcat; f; vi.v(s1).s1(x). [x = det]C3lg)The step 2(� c)((� r0; s1)(c(d).dhr0i j r0(x; f; v).[x=cat]vhs1i j s1hdeti)j (� d; f; v)(chdi.d(r0). r0hcat; f; vi.v(s1).s1(x). [x = det]C3lg))The step 3(� d)((� r0; s1)(dhr0i j r0(x; f; v).[x=cat]vhs1i j s1hdeti)j (� f; v)(d(r0). r0hcat; f; vi.v(s1).s1(x). [x = det]C3lg))The step 4(� r0)((� s1)(r0(x; f; v).[x=cat]vhs1i j s1hdeti)j (� f; v)(r0hcat; f; vi.v(s1).s1(x). [x = det]C3lg))The step 5(� v)((� s1)(vhs1i j s1hdeti)j v(s1).s1(x). [x = det]C3lg)The step 6(� s1)(s1hdetij s1(x). [x = det]C3lg)The step 7C3lg Table 5.5. Retrieving the information on category of C2

CHAPTER 5. PARSING AS REACTION 159C6(left; self; right) =def (� c; l; r; ln6; rn6; pln6; prn6)(! self hc; l; r; ln6; rn6ij FS6(c)j ! l(y):C6lj ! r(z):C6rj ! ln6(x):pln6(y):xhyij ! rn6(x):prn6(y):xhyij left(c; l; r; ln; rn).rhselfij right(c; l; r; ln; rn).lhselfi)Table 5.6. The de�nition of C6

P

A

V

HER

W

HE

Q

MAN

R

WALKS

C2C1 C5C3 C4

c c c c c

e5e3 e4e1 e2l r

Q’

C6

c

e6Figure 5.3. The agent C6 and its relation with others
CHAPTER 5. PARSING AS REACTION 160C3rlg =def prn3(right)It is however more di�cult to retrieve e1, the access to C1, as C3 does not have directaccess to it. To retrieve it, it has to consult C2. Let C3llg be the process to retrieve e1,which is de�ned as follows:C3llg =def (� w)(pln3(v):v(c; l; ln; rn):lnhwi:w(left))The �rst action, pln3(v), substitutes e2 for v, as there is a replicable process, ! pln3he2i,recording the access to the left neighbour of C3. Then, by executing e2(c; l; ln; rn), itcan retrieve ln, the access to C2, to retrieve the access to its left neighbour. Throughthe channel, it emits a private channel, w, to get the access to C2's left neighbour, e1.The table (5.7) shows how left and right in C6(left; self; right) will be substituted bye1 and e4, respectively. The �rst line shows the relevant de�nition of C2 to return theaccess to its left neighbour. The process, pln2he1i, o�ers the access through pln2. Thesecond line shows processes o�ering the access to left and right neighbours of C3. Thethird line shows the sequentially combined process of C3rlg and C3llg. The table can beexplained as follows:(a) The channel, right, in C6(left; e6; right) is substituted by e4 when prn3(right)interacts with prn3he4i.(b) v in v(c; l; ln; rn) is substituted by e2 when pln3(v) interacts with pln3he2i, whichmakes it possible to retrieve information from e2.(c) After retrieving information from e2, the channel ln2 replaces ln in lnhwi.(d) Through the channel, the private channel w is emitted to replace x in ln2(x). Thescope of w extrudes to C2.(e) y is replaced by e1 upon the interaction between pln2(y) and pln2he1i.(f) Finally, it gets e1 through w to replace it for left.Now we have almost done with the generation procedure. At last, C3 needs to in-form C6 that C1 and C4 are its neighbours because the actions, e1(c; l; r).rhe6i ande4(c; l; r).lhe6i, the instantiated actions of left(c; l; r; ln; rn).rhselfi and right(c; l; r; ln; rn).lhselfi,only inform C1 and C4 that C6 is newly created and positioned at right to C1 and atleft to C4, respectively. The noti�cation can be done by the following two processes:e6(c; l; r; ln; rn).rhe4ie6(c; l; r; ln; rn).lhe1iwhich leads to creating ! prn6he4i and ! pln6he1i, respectively, and possibly to anothergeneration process. Now that we have already got the access, e1 and e4, these processes

CHAPTER 5. PARSING AS REACTION 161The initial state(� c; l; r; ln2; rn2; pln2)(e2hc; l; r; ln2; rn2i:ln2(x):pln2(y):xhyi j pln2he1i)j (� pln3; prn3)(pln3he2i j prn3he4ij prn3(right):(� w)(pln3(v):v(c; l; ln; rn):lnhwi:w(left):C6(left; e6; right)))The step 1(� c; l; r; ln2; rn2; pln2)(e2hc; l; r; ln2; rn2i:ln2(x):pln2(y):xhyi j pln2he1i)j (� pln3)(pln3he2ij (� w)(pln3(v):v(c; l; ln; rn):lnhwi:w(left):C6(left; e6; e4)))The step 2(� c; l; r; ln2; rn2; pln2)(e2hc; l; r; ln2; rn2i:ln2(x):pln2(y):xhyi j pln2he1i)j (� w)(e2(c; l; ln; rn):lnhwi:w(left):C6(left; e6; e4))The step 3(� ln2)((� pln2)(ln2(x):pln2(y):xhyi j pln2he1i)j (� w)(ln2hwi:w(left):C6(left; e6; e4)))The step 4(� w)((� pln2)(pln2(y):whyi j pln2he1i)j w(left):C6(left; e6; e4))The step 5(� w)(whe1ij w(left):C6(left; e6; e4))The step 6C6(e1; e6; e4) Table 5.7. Retrieving the access to C1 and C4
CHAPTER 5. PARSING AS REACTION 162can be initialised at the same time as C6 when x and y are replaced by them. Thewhole process of generation can be summarised asC3lg =def (� e6) (C3rlg:C3llg:(C6(left; e6; right)j e6(c; l; r; ln; rn):rhrighti j e6(c; l; r; ln; rn):lhlefti))Through similar steps, the sentence \a man walks" can be analysed to be a sentence.When C6(left; self; right) is instantiated with e1, e6, and e4, it is accompanied bye4(c; l; r; ln; rn).lhe6i, which informs C4 that a new left neighbour is created at left withthe access, e6. C4 will then check through the channel if the category of C6 matchesto np to generate another new agent C7 corresponding to sentence category if it is thecase.Note also the information on features can be retrieved from agents in long distance, notlimited to just neighbours. As is shown in the above, the agent C3 could retrieve e1, theaccess to C1, with which it could extract information of C1 crossing over C2. Nothingprohibits an agent from searching items of information in long distance no matter howfar the source is away as long as it is reachable through channels. The number of sourcesis also unlimited. Although in the above example C3 looks into only C2, it could lookinto other agents as well. Our parser can therefore analyze tree structures, not limitedto binary branching.5.4 A concurrent chart parser5.4.1 Multiple neighboursIn the above example of \a man walks", we did not worry about how many neighboursmight exist for an agent. We assumed that an agent need to communicate with atmost one neighbour at either side. The assumption causes no problem as long as weparse a simple sentence such as \a man walks". Let us see the situation by using moreconventional diagram. The �gure 5.4 shows a chart for the sentence. In this guise, onecan conceive of each agent, C2; C3; C4; C6, and C7 as edges. As we have seen, C3 needsonly to communicate with C2 to create C6. C4 also needs only to communicate withC6 to create C7. Although C4 might have communicated with C3 in vain, it causes noproblem as it is noti�ed of C6 when it is created so that it can look into it.The situation may be di�erent when we come to parsing sentences of more complexsyntax. Let us examine a sentence, \he sees desks in the room.", which is conventionallyassigned two syntactic trees. One structure can be represented as [sees [desks [in theroom]]], where PP `in the room' is related with NP `desks'. The other can be represented

CHAPTER 5. PARSING AS REACTION 163

a man walks

C2 C3 C4

C6

C7Figure 5.4. A chart of \a man walks"as [[sees desks] [in the room]], where PP is related with VP, `sees desks'. The �gure 5.5shows its chart. One can see the agent for `in' has two left neighbours, one for `desk'and the other for `sees desks'.

he sees desks in the room

Figure 5.5. A chart of \he sees desks in the room"It is important for the agent D4 acting for `in' to record the access to both agents D3and D11, acting for `desks' and `sees desks', respectively. Observe what the state theparser in when D11 is created before D7, the agent for `in the room' (Figure 5.6). Whenit is created, D11 knows only D4 as its right neighbour and have access to it, f4. D4 isnoti�ed of the existence of D11 when it is created and knows it has two left neighbours,D3 and D11, with the access to them, f3 and f11. These agents, D3 and D11, waitfor D7 to be created. When it is created, D7 inherits D4's access to left neighbours, f3and f11 (Figure5.7). It can therefore notify D3 and D11, through f3 and f11, of itscreation and the access to itself, f7 (Figure 5.8). Given the access, D3 can creates D8,the agent for NP `desks in the room', and D11 can create D12, the agent for VP `seesdesks in the room'.

CHAPTER 5. PARSING AS REACTION 164
he sees desks in the room

D4D3D2

D11

(f3,f11)

(f4)Figure 5.6. The state when D11 is created
he sees desks in the room

D4D3D2

D11

(f3,f11)

D7(f4)
(f3,f11)Figure 5.7. The state when D7 is created

he sees desks in the room
D4D3(f7)D2

D11

(f3,f11)

D7(f4,f7)
(f3,f11)

D8

D9,D12Figure 5.8. The access to C7 passed to D3 and D11

CHAPTER 5. PARSING AS REACTION 165We have to modify our encoding to allow agents to record more than one neighbours.Before proceeding to modi�cation, we look into what problem might happen if we applythe previously presented encoding to the sentence. Assume D4 is encoded as is shownin the table 5.8, where D4l(y) =def ! pln4hyi. When it receives the access to D3 andD11, i.e., f3 and f11, the process is evoked to create two processes, ! pln4hf3i and! pln4hf11i. When D7 is created, these channels must be retrieved of D4, which is doneby interacting with the process, ln4(x).pln4(y).xhyi. Now the problem comes here.Since there are two sorts of processes providing it with the access to left neighbour, theretrieving process receives either f4 or f11 randomly. The process may try to retrievethese channels by repeating the action several times. But there is no guarantee that itsucceeds in retrieving both as the chance is completely random.D4 =def (� f3; f4; f5)((� c; l; r; ln4; rn4; pln4; prn4)(! f4hc; l; r; ln4; rn4ij FSd4(c)j ! l(y):D4l(y)j ! r(z):D4r(z)j ! ln4(x):pln4(y):xhyij ! rn4(x):prn4(y):xhyi)j f3(c; l; r; ln; rn).rhf4ij f5(c; l; r; ln; rn).lhf4i)Table 5.8. The de�nition of D45.4.2 Encoding list as a set of processesTo solve the problem, we introduce list data structure to our encoding. If we can recordthe left neighbours of D4 as a list of hf3; f11i, other processes can retrieve both withoutrelying on luck. Since it has already been investigated in the literature how list structurecan be encoded using the �-calculus [Mil93b], we only go though it brie
y. The sectionsfrom x5.4.2 to x5.4.4 are due to Milner [Mil93b].The �gure 5.9 depicts a single list-cell located at l0, storing a pointer to its value v andanother to its successor cell located at l1. It may be encoded asl0(c; n):chv; l1iwhich receives two names in sequence at l0 to substitute the �rst one for c, and emitthrough it the sequence of v and l1. By parameterising it over l0, v and l1, a parametricprocess, Cell, can be de�ned as

CHAPTER 5. PARSING AS REACTION 166Cell(l0; v; l1) =def l0(c; n):chv; l1iSimilarly, the empty list-cell, nil (Figure 5.10), is de�ned and parameterised over l tode�ne a parametric process, Nil, which returns just n without any arguments.Nil(l) =def l(c; n):n
Cell

l0 l1

vFigure 5.9. A single list-cell
Nil

lFigure 5.10. An empty list-cellWe consider now how a list, ha; bi, may be encoded (Figure 5.11). The element a isencoded as a process such that it receives a channel as a request through a particularchannel v to return a through it. To encode a and b shown in the �gure, one may encodethem as follows:A(v) =def v(x):xhaiB(v) =def v(x):xhbiAs a whole, the list is encoded as a system of processes such as(� v1; l1) (Cell(l0; v1; l1) j A(v1) j(� v2; l2) (Cell(l1; v2; l2) j B(v2) j Nil(l2)))5.4.3 Retrieving valuesNow let us see how these values can be retrieved from other processes. We �rst de�neHead and Tail as below, which get hold of the �rst element and the remainder of anarbitrary list value.

CHAPTER 5. PARSING AS REACTION 167

Cell

l0 l1

v

Cell

l2

1
v
2

Nil

a bFigure 5.11. A list of a and bHead(l0; d) =def (� c; n)(l0hc; ni:c(v; l1):xhvi)Tail(l0; e) =def (� c; n)(l0hc; ni:c(v; l1):yhl1i)Head, parameterised over l0, emits private names, c and n, through l0 and waits fora sequence of names to be returned through c to substitute v and l1. The name, v, isthe channel to the process storing the �rst element, and l1 is another channel to theprocess encoding the remainder. Tail is almost identical with Head, but it returns l1.To return these channels, both get particular channels, d and e.The table 5.9 shows the steps for P to retrieve a. The �rst line of the initial stateencodes the list of ha; bi, and the �rst process in the second line encodes Head locatedat l0, and the second the process P . The steps can be explained as follows:(a) Head emits c and n through l0. The scope of these names extrudes to the processencoding the list.(b) Head receives v1 and l1 through c to replace v for v1.(c) Through d, P receives v1 to replace x.(d) Through v1, the list process receives w to replace its x.(e) P receives a through w to replace y.To retrieve the second element, the retrieving process �rst receives l1, then follows thesame steps as l0 is utilised to retrieve a. By repeating the procedure, any elements canbe retrieved of list. Finally, to provide for data as many times as required, the processencoding the list must be replicable. That is, the above de�nition of list should bede�ned as follows:(� v1; l1) (!Cell(l0; v1; l1) j !A(v1) j(� v2; l2) (!Cell(l1; v2; l2) j !B(v2) j !Nil(l2)))
CHAPTER 5. PARSING AS REACTION 168

The initial state(� v1; l1)(l0(c; n).chv1; l1i j v1(x).xhai j (� v2; l2)(l1(c; n).chv2; l2i j v2(x).xhbi))j (� c; n; d)(l0hc; ni.c(v; l1).dhvi j (� w)(d(x).xhwi.w(y).P))Step 1(� v1; l1; c; n)(chv1; l1i j v1(x).xhai j (� v2; l2)(l1(c; n).chv2; l2i j v2(x).xhbi)j (� d)(c(v; l1).dhvi j (� w)(d(x).xhwi.w(y)).P))Step 2(� v1; l1; c; n)(v1(x).xhai j (� v2; l2)(l1(c; n).chv2; l2i j v2(x).xhbi)j (� d)(dhv1i j (� w)(d(x).xhwi.w(y).P)))Step 3(� v1; l1; c; n)(v1(x).xhai j (� v2; l2)(l1(c; n).chv2; l2i j v2(x).xhbi)j (� w)(v1hwi.w(y).P))Step 4(� v1; l1; c; n; w)(whai j (� v2; l2)(l1(c; n).chv2; l2i j v2(x).xhbi)jw(y).P)Step 5(� v1; l1; c; n; w)((� v2; l2)(l1(c; n).chv2; l2i j v2(x).xhbi)jPfa=yg) Table 5.9. Retrieving values of list

CHAPTER 5. PARSING AS REACTION 1695.4.4 Adding valuesWe also need to add a value to list. To add a value, we place it at the �rst place. The�gure 5.12 depicts how a cell can be concatenated. To connect the process encodingthe cell pointing to the new element c and the old one, one can only need to add thefollowing process, de�ned as Add:Add(l0; v3; l3) =def l3(c; n):chv3; l0iBy adding it to the system of processes, it will become to return v3 and l0 when inter-rogated at l3.

Cell

l0 l1

v

Cell

l2

1
v
2

Nil

a b

Cell

l3 l1

v

Cell

l2

1
v
2

Nil

a b

Cell

l0

v
3

c

l3
Cell

v
3

c

Figure 5.12. Adding c to the list of a and bIt is also possible to add the element at last place, i.e., ha; b; ci, but it is not worth doingbecause the order of elements does not matter for us. In fact, a number of operationscan be encoded in the �-calculus, let alone retrieving and adding elements. Deletingand inserting an element at a particular location is also possible, but the above encodingis enough for us to record neighbours.5.4.5 Recording and retrieving neighbours using listThe way to record neighbours is modi�ed by adopting list data structure. The table5.10 shows the initial state of C3, the agent acting for `man', when list data structure
CHAPTER 5. PARSING AS REACTION 170is applied to. The channels, pln3 and prn3, are now used to store the channel, lc3 (leftcell) or rc3 (right cell), to the �rst element of the list, not the access to its neighbour.These data is however not replicable. This is because the channel to the �rst elementchanges when a new item is added. In the initial state, the list contains only nil item.The behaviour of C3l(y) is de�ned as below. When retrieving the access to its neigh-bours, it will receive the current channel to the �rst element of the list through pln3 toupdate it to a new channel l that becomes the channel to the new �rst element. Addcreates a new cell and links to it the former �rst element. The access to its neighbouris stored as value and available upon the interaction with v(x).xhyi. The channels, vand l, are fresh names and private to C3.C3l(y) =def (� v; l)(pln3(lc):pln3hli j !Add(lc; v; l) j ! v(x):xhyi)Retrieving the access to neighbours too is modi�ed when we adopt list data structures.C3 will now return the channel to the �rst element, not the access itself. For example,the process ln3(x):pln3(y):pln3hyi:xhyi receives a channel through ln3, retrieves thechannel to the �rst element, and returns it through the received channel. The channelto the �rst element is restored so that it is not lost by the reading action.C3 =def (� e2; e3; e4)((� c; l; r; ln3; rn3; lc3; rc3; pln3; prn3)(! e3hc; l; r; ln3; rn3iFS3(c)j ! l(y):C3l(y)j ! r(z):C3r(z)j ! ln3(x):pln3(y):pln3hyi:xhyij ! rn3(x):prn3(y):prn3hyi:xhyij pln3hlc3i j !Nil(lc3)j prn3hrc3i j !Nil(rc3))j e2(c2; l2; r2; ln2; rn2).r2he3ij e4(c4; l4; r4; ln4; rn4).l4he3i)Table 5.10. The initial state of C3 before recording neighbours5.4.6 Generating new agents using listThe way that new agents are generated is made complicated by adopting list structureto record neighbours. Formerly, the procedure for C3 to generate C6 was to read itsaccess to the right neighbour and the left neighbour's access to its left neighbour in

CHAPTER 5. PARSING AS REACTION 171order to instantiate left and right with e1 and e4, respectively. It also needed to informitself of its left and right neighbour. The retrieving of access is not much di�erentwhen we use list data structure. C3rlg below shows the previous encoding to retrieve itsaccess to the right neighbour, and C3r0lg the modi�ed version. We use x and y to avoidconfusion. C3llg shows the previous encoding to retrieve the left neighbour's access toits left neighbour, and C3l0lg is its modi�ed version.C3rlg =def prn3(right)C3r0lg =def prn3(y):prn3hyiC3llg =def (� w)(pln3(v):v(c; l; ln; rn):lnhwi:w(left))C3l0lg =def (� w)(pln3(v):prn3hvi:v(c; l; ln; rn):lnhwi:w(x))The major di�erence is that the names replacing x and y are not the access to neigh-bours, but channels to the �rst element of the list. These channels will be used toinitialise C6 which is now parameterised over the channels to the �rst element of thelist. Its de�nition is given in the table 5.11. Note in this encoding, C60 shares theelements of the list locating after lc6 and rc6 with C3. It does therefore not hold ofany processes returning the values by itself in the initial state. One may also notice theprocesses to inform its left and right neighbours of its creation have disappeared, whichshould have been such ase1(c1; l1; r1; ln1; rn1).r1he6i, ande4(c4; l4; r4; ln4; rn4).l4he6iThe job is taken up by C3, the agent creating C6, as it is rather complicated job. Whatelse we have to encode are the processes to inform C6 of its left and right neighbour.Suppose all these jobs would be performed by Link(e6; x; y). The de�nition of C3lg isthen modi�ed to C30lg.C3lg =def (� e6)(C3rlg:C3llg:(C6(x; e6; y)j e6(c; l; r; ln; rn):rhyij e6(c; l; r; ln; rn):lhxi))C30lg =def (� e6)(C3r0lg:C3l0lg:(C60(x; e6; y) j Link(e6; x; y)))The de�nition of Link(e6; x; y) is given as follows:� Link(e6; x; y) =def (� t)(thxi:Linkl(e6; t)) j (� t)(thyi:Linkr(e6; t))The �rst process does the job concerning left neighbours, and the second concerningright neighbours. Before evoking Linkl(e6; t), it stores the given channel x at t,which is freshly created and private to it.� Linkl(e6; t) =def ! t(x):x(c; n):(c(v; l):thli:Linkle(e6; v) + n)The process repeats a sequence of actions until n (nil) is returned. It retrieves achannel at t, retrieves the cell through it, and evokes Linkle(e6; v) if c is returned.
CHAPTER 5. PARSING AS REACTION 172The channel retrievable at t is then updated to l, the channel to the remainder.The process terminates if n is returned.� Linkle(e6; v) =def (� y)(vhyi:y(e):(e(c; l; r; ln; rn):rhe6i j e6(c; l; r; ln; rn):lhei)The process retrieves through y the value e, the access to one of its left neighbours.Then, it informs the neighbour that e6 is available at its right position and informsC6 of its left neighbour.� Linkr(e6; t) =def ! t(x):x(c; n):(c(v; l):thli:Linkre(e6; v) + n)Linkre(e6; v) =def (� y)(vhyi:y(e):(e(c; l; r; ln; rn):lhe6i j e6(c; l; r; ln; rn):rhei)These do similar jobs as the above ones. Linkre(e6; v) informs the right neighbourthat e6 is available at its left position and informs C6 of its right neighbour.C60(lc6; e6; rc6) =def (� c; l; r; ln6; rn6; pln6; prn6)(! e6hc; l; r; ln6; rn6ij FS6(c)j ! l(y):C6l(y)j ! r(z):C6r(z)j ! ln6(x):pln6(y):pln6hyi:xhyij ! rn6(x):prn6(y):prn6hyi:xhyij pln6hlc6ij prn6hrc6i)Table 5.11. The initial state of C6 before recording neighbours5.4.7 Propagating channels to neighbours upwardThe parser presented in the above can parse sentences correctly as long as each subsys-tem corresponding to a word or phrase evolves at di�erent timing. However, a problemarises when subsystems evolve concurrently. Let us see, for example, what trouble wemay encounter if D7, the agent acting for PP `in the room', and D11, the agent for VP`sees desks', evolve at the same time.In the initial state, D3, the agent for `desks' knows its right neighbour is D4, and D4,the agent for `in' its left neighbour is D3 (5.13). Suppose then D7 and D11 are createdat the same time. Since at that stage D3 does not know about D7, and also D4 doesnot know about D11, the created agents do not know each other (5.14). SubsequentlyD3 and D4 will know that D7 and D11 are created as its neighbours, respectively, butD11 and D7 will by no means be informed of each other. Therefore, in the next stageonly D8, the agent for `desks in the room', is created, and followed by D9, the agent

CHAPTER 5. PARSING AS REACTION 173for the structure [sees [desks [in the room]]], but D12, the agent for the structure [[seesdesks] [in the room]] (5.15).

he sees desks in the room

D4D3
(f3)(f4)Figure 5.13. The initial state

he sees desks in the room
D4D3

D11

(f3)

D7(f4)
(f3)

(f4)Figure 5.14. The state when D7 and D11 are created at the same time
he sees desks in the room

D4D3(f7)D2

D11

(f3,f11)

D7(f4)
(f3)

D8

D9Figure 5.15. The access to C7 is lost for D11One way to solve the problem is for the subagent to record with which created agent itshares neighbours and to inform it of the newly created neighbours when it is informedof them. In the example, D3 should inform D11 that D7 is created, and D4 shouldinform D7 that D11 is created. What each agent should do can be summarised asfollows:� If its information on neighbours, left or right, is used to create an agent, it records
CHAPTER 5. PARSING AS REACTION 174the access to the agent as a list. This is because more than one agent can becreated by inheriting the agent's information on its neighbours.� If it is noti�ed of some agent that is newly created at its neighbouring position, itsearches its record to check if the agent is registered. If it is already in the record,the agent does nothing. Otherwise, it informs the agent who shares neighbours ofthe news. The agent then proceeds to the usual procedure, i.e., adding the channelto the neighbour to its list, and so forth.The procedure can be encoded as processes by applying the techniques that have beenexplained in the subsection. We are therefore not bothered to encode it here.5.5 Discussion5.5.1 Logical checking of concurrent parsersThe translation from the �-calculus to the combinatorial linear intuitionistic logic en-ables us to check if the concurrent parser can change its state from a particular oneto another as we expect. The �gure 5.16 depicts parts of de�nition of C2 and C3 indata
ow graph, whose de�nitions are the basic version presented in x5.3.2. We specifyhere only the part inside the polygon5 as logical formulas (Table 5.12).a : e3hc3; l3; r3i) l3(y3)
 r3(z3)b : l3(y3)) pln3hy3ic : r3(z3)) prn3hz3id : e3(c03; l03; r03)) l03he2ie : e3(c03; l03; r03)) r03he4if : e3hc3; l3; r3i
 e3(c03; l03; r03))! (c3 = c03)
! (l3 = l03)
! (r3 = r03)
 l3(y3)
 l03he2ig : e3hc3; l3; r3i
 e3(c03; l03; r03))! (c3 = c03)
! (l3 = l03)
! (r3 = r03)
 r3(z3)
 r03he4ih : l3(y3)
 l03he2i
! (l3 = l03))! (y3 = e2)
 pln3hy3ii : r3(z3)
 r03he4i
! (r3 = r03))! (z3 = e4)
 prn3hz3iTable 5.12. Logical formulas specifying the particles in the boxGiven these formulas, one can infer that after the two interactions occur betweene3hc3; l3; r3i and e3(c03; l03; r03), there is a state such that the action pln3he2i and prn3he4i5Strictly speaking, the node e4 is outside the polygon, but it is referred to. Also, the node c03 is in thepolygon, but it is not referred to.

CHAPTER 5. PARSING AS REACTION 175

c3

e3

l3

y3 e2d3 z3

pln3 prn3

r3 c3’ l3’ r3’

c2 l2

y2 e1d2 z2

pln2 prn2

r2 c2’ l2’ r2’

c1’ l1’ r1’

e4

c4’ l4’ r4’

FS3

FS2

Figure 5.16. The structure of interactions between C2 and C3
CHAPTER 5. PARSING AS REACTION 176become ready for execution with the substitution environment, (c3 = c03); (l3 = l03), and(r3 = r03), by referring to the special axioms, f; g; h, and i, and by applying to themthe rules for parallel and sequential compositions, and substitution. That is, we canconstruct the following formula:�e3hc3; l3; r3i
 e3hc3; l3; r3i
 e3(c03; l03; r03)
 e3(c03; l03; r03)�) pln3he2i
 prn3he4i
! (c3 = c03)
! (l3 = l03)
! (r3 = r03)5.5.2 Feature description structured based on channel typesIn the previous subsection, we have managed to return the discourse marker x in thesame way as r0 is returned. If we encode C2 in that way, the full de�nition may be givenas is shown in the table 5.13. The de�nition seems to be rather chaotic as the result ofus encoding them bit by bit. We wonder why we can not treat the whole subsystem asif it were a feature structure.C2 =def (� e1; e2; e3)((� c;m; l; r; ln2; rn2; lc2; rc2; pln2; prn2)(! e2hc;m; l; r; ln2; rn2ij FS2(c)j (� x)(!m(y):yhxi)j ! l(y):C2l(y)j ! r(z):C2r(z)j ! ln2(x):pln2(y):pln2hyi:xhyij ! rn2(x):prn2(y):prn2hyi:xhyij pln2hlc2i j !Nil(lc2)j prn2hrc2i j !Nil(rc2))j e1(c1; l1; r1; ln1; rn1).r1he2ij e3(c3; l3; r3; ln3; rn3).l3he2i)Table 5.13. The de�nition of C2 to store a discourse marker xThe feature description (5.9) shows a proposal to represent all items of information inthe form of feature structure. The channel to the top level is e2, the access to C2. Thefeature syn stores lexical information, idx the discourse marker. The feature add:leftstores the channel to inform C2 of its left neighbour and add:right the channel to informit of its right neighbour. The feature nbh:left stores the list of left neighbours of C2 andnbh:right that of right ones, whose values are nil in the initial state.

CHAPTER 5. PARSING AS REACTION 177e2 2666666666666664syn: r0 �FS2 �idx: m xadd: a0 24left: lright: r 35nbh: n0 24left: ln2 nilright: rn2 nil353777777777777775 (5.9)The principle governing the structure is typing of channels. The channel m must beindependent of others because it is used to receive a channel through which the discoursemarker is emitted. Similarly, a0 and n0 are of di�erent types. The feature structurecan be encoded as a set of processes as is shown in the �gure 5.14. The structure offeature descriptions can of course be investigated from a number of points of view. Ourapproach to the issue is to refer to channel types.C2 =def (� e1; e2; e3)((� r0; m; l; r; ln2; rn2; lc2; rc2; a0; n0; pln2; prn2)(! e2(k; d; f; g0; h0).([k = syn]dhr0i+ [k = idx]fhmi+ [k = add]g0ha0i+ [k = nbh]h0hn0i)j ! a0(k; g1).([k = left]g1hli+ [k = right]g1hri)j !n0(k; h1).([k = left]h1hln2i+ [k = right]h1hrn2i)j FS2(r0)j (� x)(!m(y).yhxi)j ! l(y):C2l(y)j ! r(z):C2r(z)j ! ln2(x):pln2(y):pln2hyi:xhyij ! rn2(x):prn2(y):prn2hyi:xhyij pln2hlc2i j !Nil(lc2)j prn2hrc2i j !Nil(rc2))j e1(c1; l1; r1; ln1; rn1).r1he2ij e3(c3; l3; r3; ln3; rn3).l3he2i)Table 5.14. The de�nition of C2 with the feature idx
CHAPTER 5. PARSING AS REACTION 1785.5.3 Integrating multiple information sourcesBefore concluding the chapter, we show how the proposed formalisation of feature struc-tures as processes is related to our notion of integrating multiple information sources,which has been presented in Introduction. To refresh our memory, Figure 5.17 repro-duces Figure 1.9 shown in Introduction. Our goal is to implement the information
owas systems of communicating processes. In the previous chapter 4, we were concernedwith semantic part of the construction and have shown how situation types and theiranchoring to situations can be described as processes. In this chapter 5, we have workedout the syntax part and have shown how feature structures can be constructed as pro-cesses and sentences can be parsed as a result of reactions. The remaining task is toestablish the syntax-semantics interface also as processes.

utterance

sentence type

situation

situation type

parsing

interpretation

evaluation

signalsFigure 5.17. The information
ow by utterancesBefore presenting how we establish the interface, it is useful to ask here why we wouldlike to describe everything as processes. To answer the question, we have to trace backour motivation into Cooper's work on Situation-Theoretic Grammar (STG) [Coo91].The characteristic point of STG is that it applies the same framework to studyingsyntax, the framework that is primarily applied to studying semantics. The applicationbecomes possible by regarding utterances as a situation supporting various linguisticinformation. For example, let u1 be an utterance of `man'. The utterance regardedas a situation can support many items of linguistic information, among them are theitem that its category is `noun' and another item that it is characterised phonetically as`man'. The situation can be expresses in Extended Kamp Notation (EKN) as follows:(5.10) u1cat(u1, noun)use-of(u1, `man')

CHAPTER 5. PARSING AS REACTION 179STG can be studied in itself, but what most interests us is its connection with SituationSemantics. For the sake of discussion, we consider an example, \A man walks", whosemeaning can be expressed as follows:(5.11) r! Xman(X)walk(X)The representation (5.11) is an infon abstracted over the parameter X indexed with therole, r. Presented the representation, one is entitled to ask what the role is. Technically,we can leave the question out by assuming unlimited supply of roles, e.g., using naturalnumbers as role indices. But more philosophically sound answer is desirable, and onesolution proposed by Cooper in [Coo93a] is to regard utterances as role indices. In theabove example, we can use the utterance u1 as the role to index the parameter X asbelow:(5.12) a. u1 ! Xman(X)walk(X)b. u1cat(u1, noun)use-of(u1, `man')As Cooper claims, the technical advantage of this approach is that it avoids us havingto make some arbitrary decisions about generating enough unique role indices. Moreimportantly, however, there is also a theoretical advantage obtained by combining theitems of information concerning syntax and semantics. One application among otherspresented by Cooper in [Coo93a] is to study how utterances contribute to transferring ameaning from the speaker to the addressee in dialogue. The point is that the utterancesituation can be shared between dialogue participants, thus, it serves as a commonground by providing them with common indices to parameters that may be representeddi�erently among participants.We do not go into the study of dialogue phenomena in the approach. What is insightfulfor us in the use of utterance situation as a role is that the semantic representation(5.12)a is abstracted over its corresponding syntactic information (5.12)b. We are con-cerned to know how the relation between syntax and semantics could be formalised.One possibility is to apply the �-calculus and study the relation in terms of functional
CHAPTER 5. PARSING AS REACTION 180abstraction and application. The other direction, which we present in the following, isto regard the relation as a process.We complete now our construction of linguistic channel (Figure 5.17) as systems ofprocesses by sketching how the syntax-semantics interface can be described as a process.Adopting our graphic representation, we represent (5.12)a as a system of processes asshown in Figure 5.18. For the sake of simplicity, we adopt here a simple encoding andintroduce to our graphic representation some boxes. In the �gure, we use r as role andx as parameter. To indicate r and x are bound within the system, we enclose the wholesystem with the dotted box, putting r and x in upper part. The parts enclosed withthe bold box means that these parts are available as many times as requested. As awhole, the �gure depicts a system of processes such that x will be replaced by someother individual imported through the role r and the role is accessible through bothman0 and walk0 �nitely many times.

r

x

man’ walk’

r, x

Figure 5.18. A system encoding (5.12)aTo construct the system as the result of interactions, we add to each lexical item en-coded as a process a subsystem encoding parts of the meaning. Figure 5.19 depicts thesubsystems connected with each other at a certain location. The leftmost part depictsthe meaning of `a' of the sentence, \A man walks". The subsystem contains the partimporting some individual through r to replace it for x. The subsystem is abstractedover the role r with an index u, through which it is connected to its right neighbour.The middle part depicts the subsystem encoding the meaning of `man'. The part to beintegrated into the resulting system is abstracted over s with an index v, through whichit is connected to its left neighbour. Since we have already explained in this chapterhow each subsystems can be connected with each other, we leave the location of inter-action anonymous for simplicity. The rightmost part depicts the subsystem encoding

CHAPTER 5. PARSING AS REACTION 181the meaning of `walks'. The part is also abstracted over t with an index w, which isconnected to its left neighbour at an anonymous location.

r

x

r, x, u

u

s

man’

v, s

v

t

walk’

w, t

w

Figure 5.19. The subsystems encoding parts of meaningWe follow brie
y the steps from the initial state towards the end result. Firstly, theleft two subsystems in the �gure interact with each other when the two words, `a' and`man', are recognised as forming the noun phrase (Figure 5.20). We assume that the twosubsystems are connected in the same way as the subsystems encoding feature structuresget into touch with each other. The point here is that the connection between thetwo subsystems encoding parts of meaning are established as the result of interactionsin syntax part. In other words, the way the parts for semantic representations arecombined with is determined by the way the parts for syntax is organised. As the resultof interaction between the subsystems encoding syntactic information for `a' and `man',the two subsystems encoding the parts of meaning is connected with. Then, u replacesv and the scope of bound names are extruded accordingly. Upon the interaction via u,the created subsystem is further evolving into another subsystem encoding the meaningof `a man' when r replaces s (Figure 5.21).To continute the interaction, the subsystems encoding the parts of the meaning for `aman' and `walks' make a copy of their parts that can be provided with as many asrequested (Figure 5.22). The two subsystems interact with each other as the two wordsare recognised as forming a sentence. Upon the interaction, w is replaced by man0, andfurther t is replaced by r (Figure 5.23). The result is the same as the system shown inFigure 5.18. By removing the man0=w node and conjoining the nodes bearing the samename, r, we obtain the system encoding the meaning of the sentence, \A man walks".
CHAPTER 5. PARSING AS REACTION 182

r

x

r, x, u, s

u

s

man’

t

walk’

w, t

w

Figure 5.20. The �rst step of interaction

r

x

r, x

man’

t

walk’

w, t

w

Figure 5.21. The second step of interaction

CHAPTER 5. PARSING AS REACTION 183

r

x

r, x

man’

t

walk’

w, t

wman’

r t

walk’

Figure 5.22. The third step of interaction
x

r, x

r/t

walk’man’/wman’

r r/t

walk’

Figure 5.23. The fourth step of interaction
CHAPTER 5. PARSING AS REACTION 184We argue that the above formalisation of the syntax-semantics interface is a re�nementof the approach proposed by Cooper in [Coo93a] and that our approach is also a faithfulimplementation of the relational theory of meaning proposed by Barwise and Perryin [BP83]. Recall that Barwise and Perry argue in the book that the meaning ofsentences must be captured in terms of the relation between utterance situations anddescribed situations. The relation plays a central role in Situation Semantics. One cancontrast the situation-theory approach with other theories. In Montague-style approach,for example, it is simply assumed that there is some (metaphysical) correspondencebetween syntax and semantics, i.e., between categories and types. In classical DiscourseRepresentation Theory (DRT) [KR93], the relation is established via a set of rulesrewriting syntax trees into Discourse Representation Structures. We can say that inDRT the syntactic information is operationally related to the semantic information,but the ontological status of the rules has never been questioned about. On contrary,the relation between syntax and semantics is part of the meaning in our approach.Recent development in Channel Theory [Bar93, SB93] enables us to speak about therelation in terms of constraints and connections. Our work presented in the dissertationcan be understood as implementing the situation/channel theory approach to meaningin process algebra.We also argue that our approach enables us to describe other factors that may con-tribute to anchoring semantic representations to described situations. Cooper suggestsin [Coo93a] that not only utterance situations but also described situations and resourcesituations can be used to index parameters. It is also argued there that even a bodymovement in the utterance situation such as pointing a man could serve as an index.These topics need further research, but we believe that our approach can be applied tomodelling all these factors as a process.We should also mentioned here that representing both syntactic and semantic informa-tion in the same framework enables us to study how the way a sentence is parsed can bea�ected by the preceding semantic representations. Let us consider a short discourse,\A man walks. He coughs." How the discourse marker introduced in the �rst sentencecan be exported to the semantic representation for the second sentence? We think thatthe discourse marker is passed to through the syntactic structure of \He coughs". Inother words, the syntactic structure is abstracted over the reference that resides in thepreceding semantic representation. We believe that the parser presented in the chapteris expressive enough to encode such a mechanism. For example, the name r used as arole in Figure 5.18 can be freely exported to other processes for parsing upon requestprovided a suitable port. Detailed study is, however, left for future project.

CHAPTER 5. PARSING AS REACTION 1855.6 ConclusionIn this chapter, we have developed a parser that analyses the syntactic structure ofsentences as the result of a course of interactions between agents. We have shown abottom-up chart parser can be implemented as a system of communicating processes.We have also shown how state transitions of the parser can be inferred using the com-binatory intuitionistic linear logic. We have also discussed how semantic representationmay be generated and have proposed a way to organise feature structures based onchannel types.The research on concurrent parsing is still under development, and few works havebeen reported. To investigate and compare proposals to concurrent parsing, we need atheoretical basis which is expressible enough to describe various models. While empiricalstudy is yet to be done, we have shown that the �-calculus can meet the requirement.Not only its �ne-grained algebraic theory, but also its relation with linear logic, whichwe have studied in this thesis, should help us investigate the possibility of concurrencyapplied to parsing.

Chapter 6Conclusion6.1 SummaryIn this thesis, we have proposed to regard language use as actions and have re�nedthe information
ow by utterances as linguistic channels. The information conveyedby an utterance is perfect when the
ow is recognised by an agent, who classi�es aparticular utterance as certain sentence type, maps it to a situation type, then anchorsit to a particular situation that the utterance concerns. We have also observed threefactors are involved in and may in
uence the information
ow; discourse while parsingsentences, plans and goals while interpreting sentence types, and circumstances whileevaluating situation types. To model the interactions between the information
ow byutterances and these three factors, we have constructed the linguistic channels as asystem of communicating processes.Our modelling is based on the �-calculus. To study the calculus in logical setting, weturned to combinatorial intuitionistic linear logic and showed how processes de�nedin the calculus could be speci�ed in the logic. We have constructed semantic objectsemployed in Situation Semantics in the calculus and have related Situation Semanticswith Channel Theory by relying on the translation from processes in the calculus tolinear logic. We have then shown how our approach could be applied to a concurrentparser. In the parser, lexical information expressed in feature structures and grammarrules are both encapsulated into a small unit of computation called agent, and sentencesare analysed through interactions between them. We have also shown how processescorresponding to semantic representations could be created as the result of interactions.Thus, we have seen how the information
ow by utterances can be modelled as a systemof communicating processes. 186

CHAPTER 6. CONCLUSION 1876.2 Comparison with other approachesIn this section, we comment on other approaches sharing the same interest with us. Asfor simultaneous abstractions and Situation Semantics, we share the interest with PeterRuhrburg, who de�nes a Simultaneous Abstraction Calculus and formalises it withinan axiomatic framework to describe and compare various semantic theories [Ruh96].As for feature descriptions, constraint-based approaches have been well-known, withwhich we compare our approach to feature structures. Finally, we relate our approachto Dynamic Semantics.6.2.1 Simultaneous abstraction calculusPeter Ruhrburg has recently developed a Simultaneous Abstraction Calculus (SAC) [Ruh96]to overcome the strict ordering requirements of the standard �-calculus. He has shownusing SAC how various semantic theories such as Discourse Representation Theory [KR93]and Situation Theory [BC93] can be de�ned within an axiomatic, property-theoreticframework [Tur90].The characteristic point of his approach is that he extends the standard �-calculusminimally to give a uni�ed picture of various semantic theories where abstractions playan important role. The result is a version of �-calculus, but objects can be abstractedover more than one parameter simultaneously. For example, to represent an idea, xlikes y, the relation holding between x and y, like(x; y), can be abstracted over the twoparameters at the same time, i.e., �fx; yg:like(x; y), rather than representing it as aunary function such as �x�y:like(y)(x).SAC is inspired by the way free variables behave in standard logic and chooses to regardthem as discourse markers. The core system itself is not so powerful as to encode varioussemantic theories directly. For example, the alphabetical equivalence does not hold, i.e.,�fx; yg:like(x; y) 6= �fy; xg:like(y; x), but by adding to the core various axioms, onecan simulate the behaviours needed to implement semantic theories.Our starting point is di�erent from SAC in the sense that we seek our model in systemsof communicating processes, not in the �-calculus, although the motivation of lookingfor more
exible calculi in terms of abstraction and application are shared in commonbetween both approaches. The reason why we turn to the �-calculus is that we areconcerned with the ontological status of the role indices, e.g., r1 and r2 in �fr1 !x; r2 ! yg:like(x; y). In our model, roles are primitive objects, i.e., port or channel,while they are de�ned in SAC as a special free variable whose behaviour is speci�edwith additional axioms.

CHAPTER 6. CONCLUSION 188There is a trade-o� between these two approaches, and they serve well for di�erentpurposes. Our model is richer than SAC, but one does not need additional axioms. Touse SAC, one has to add to it special axioms, but the core remains to be simple. Theformer is more e�cient than the latter when implemented because additional axiomsneeded are already compiled in the model. The latter gives us a nice tool to comparedi�erent semantic theories. We justify our approach taken here by reminding the readerof our motivation. We are interested in developing the idea to consider utterances as arole into a rigid framework and have established a syntax-semantics interface based onthe idea. Comparing various semantic theories is not our intention.The di�erent choices of formalisms pose another question. We have not enriched thebasic axioms and rules of Linear Logic to keep the system as simple as we can, but haveproposed a systematic method to translate data
ow graphs into the logic. It may beinteresting project to investigate how Ruhrburg's approach can be applied to formalisingthe computation speci�ed using our data
ow graphs. The formalisation must help uslocate our approach among other semantic theories.6.2.2 Constraint-based approaches to feature descriptionsIn constraint-based approaches, linguistic objects are speci�ed with a set of constraintsto be satis�ed. The advantage is that one only needs to specify partial information he isconcerned with and thus it becomes easy to combine various linguistic objects withoutbeing bothered with unnecessary details. Here we compare our modelling of featurestructures as processes with other constraint-based approaches. In short, constraint-based formalisms are concerned with model theoretic aspects of linguistic objects, whilewe are interested in proof-theoretic aspects.As an example of constraint-based approaches, we consider Kasper-Rounds logic (KRL) [KR86]for comparison because it is a pioneering and well-known work in the area. In their ap-proach, feature structures are modelled as directed acyclic graphs (dags), and upon themodel, a logic is de�ned in the same spirit as Hennessey-Milner logic (HML) [HM85].There is actually a strong connection between KRL and HML because dags can be re-garded as a labelled transition system (LTS) and the development of KRL was inspiredby HML.1 It is, therefore, appropriate to discuss the relationship to constraint-basedapproaches through the comparison with HML. By relating KRL to HML, we can alsoavoid to going into the detail of KRL, focusing on the essential di�erence betweenconstraint-based approaches and ours.The aim of HML/KRL is to specify a semantic object, a LTS/dag, logically. The1Personal communication with Rounds, April 1995.

CHAPTER 6. CONCLUSION 189satisfaction relation between a LTS/dag and a formula is de�ned logically, e.g.,M j= �,where M is a LTS/dag and � a formula. Besides the advantage of partial speci�cation,the bene�t of this approach is that one can check systematically if a particular modelsatis�es a formula.While constraint-based approaches are concerned with models of linguistic objects, theissue we would like to investigate by our approach is proof-theoretic, that is, how orwhether such objects can be constructed of given parts de�ned as special axioms. Oneadvantage of adopting intuitionistic linear logics is that it is guaranteed that thereexists a model satisfying the formula whenever we can construct it through inference.The property is useful for synthesising correct feature structures automatically. Thisproperty should be contrasted with the fact that HML can only be applied for modelchecking. Our intuitionistic linear logic is, however, not as powerful as HML when it isseen as a speci�cation formalism as we have seen in Chapter 3 (x3.6.5). The problem isopen to further study.It should also be noted that the model-theoretic approach and proof-theoretic approachdo not compete with each other, but are complementary. See, for example, that Smolka,one of the major developers of constraint-based approaches [Smo92], turns to the �-calculus to study e�cient constraint solving [Smo94a]. The two approaches study dif-ferent aspects of the same phenomena. The model-theoretic approach is concerned withthe speci�cation of problem, while the proof-theoretic approach is concerned with howto solve it.6.2.3 Dynamic semanticsThe most important point advocated by dynamic semantics, e.g., [KR93, GS91b], isto capture the meaning of sentences as the state changes caused by the utterance ofsentences. Although approaches to dynamic semantics are divergent, the view to themeaning is shared among them. The di�erence will only come up by their di�erentde�nitions and formalisations of states and states changes. In this broader perspective,our approach can be seen as a member of dynamic semantics family. Recall that thestate changes can be depicted schematically as:s0 u1��! s1 u2��! s2 � � �sn�1 un��! snwhere an utterance, u1, turns the state, s0, into another, s1, and each succeedingutterance, ui, turns si�1 into si until un turns sn�1 into sn. Each state, si, representsa static meaning such as a discourse representation structure. Notice that the scheme
CHAPTER 6. CONCLUSION 190can be seen as a simple process or a labelled transition system. One may see that atthe bottom our approach shares the same view as dynamic semantics.We have, however, enriched the dynamic model further by combining several processesand allowing them to run in parallel. We have also allowed processes to communicatewith each other. The notions of concurrency and communications are what we haveadded to the dynamic view. Introducing parallelism to dynamic semantics frameworkhas been recently considered by Fernando to temper the problem of non-determinism,where he proposes to preserve all alternatives with disjoint union [Fer93]. The dis-joint union is rather reminiscent to the additive conjunction in our system, not to themultiplicative conjunction. As we take the multiplicative conjunction to capture par-allelism and concurrency, the notion of concurrency is adopted in di�erent senses, andFernando's notion of concurrency has little to do with our notion of concurrency.The bene�t of enriching the underlying model as we do is that we can study howparticular states can be updated by an utterance with the same framework as we applyto studying semantic representations. To show that such an approach is possible tosyntax, we have modelled the way an utterance is processed as a state change causedto a system of communicating processes. By formalising the two domains within thesame framework, we can study the dynamics of syntax/semantics interface in greatdetail. Although we have not exploited the possibility in the thesis, we believe that ourapproach enables one to study the e�ect of context during semantic construction fromsyntactic information. The research will be a future project.6.3 Future work: plans and goalsWe have not investigated the in
uence of plans and goals on linguistic channels becausethe topic forms another area of study and goes beyond the scope of the thesis. Weconclude the thesis by discussing the issue. As we has argued in the �rst chapter, theplans and goals that an agent has in his mind can in
uence his utterance. Coming backto the use of the Japanese phrase-�nal particle, \tte", there is actually a case where themarking is a�ected by plans. We keep in mind that the term \repair" is a category ofplan in dialogue.Figure 6.1 shows an excerpt from the Japanese Map Task Corpus. Here the giver hasmitisirube (trig point) in his map, while the follower does not. At �rst, he does notrecognize that the follower does not have it in his map and attempts to attract hisattention to it (G1). As he does not have the item, he tells him so (F1). The point to benoted is that the follower marks the item with a topic marker, wa, to contrast his lackof knowledge although he does not know where it is. He should have marked it with the

CHAPTER 6. CONCLUSION 191particle, \tte", if the particle was to mark noun phrases whose referent is not known tothe speaker. The response from the giver respects the rule, however. Knowing him nothaving the item in his map, the giver informs him that he has it righthand side of thewest lake (G2, G3), marking the noun phrase with the particle.G1: dez, mitisirube-no tokoroko-woand at the trig pointF1: ez, mitisirube-wa nai-desueh, I don't have a trig point.(topic)G2: ez, nai-desu-ka ee, jaa, minami-noeh, you don't have it. eh, then, in the west,F2: haiyesG3: numa-no migi-gawa-ni mitisirube-tte aru-n-desu-yorighthand side of the lake, there is a trig point.(meta)F3: haiyesG4: eh, ue-no, deko-tte-site-iru-tokoro arimasu-yo-neeh, in upper part, you can see a round place, can't you?F4: ah, haiah, yes Figure 6.1. An example of the use of \tte" (2)The example suggests we need to consider another sort of information than meaningand referent to explain the use of the particle since they are not su�cient to explain thecase. The meaning has to do with the schema of shared knowledge updates. That is, wethink that the speaker marks a noun phrase when he initiates a repair as for the item.At G3 in the excerpt, we think the giver marks the noun, mitisirube (trig point), withthe particle to repair their misunderstanding. His next utterance, G4, indicates that heis still in repair mode, trying to teach him where it is. (Soon later he will give up it andwill forget about the item.)The point may become clearer by looking at the other excerpt (Figure 6.2).2 Thegiver here conducts the follower to go leftwards chotto (a little). When they �rstagree to move left (G1 and F1), they think the expression is speci�ed enough for theircollaboration, thus do not mark it at all. But when they come to move leftwardsactually, the giver cannot tell him the precise length (G2), and the follower initiates hisrepair by asking about it, marking the expression with the particle (F2).2The example was referred to in x4.7.2, too, as a ground for parameterising relations.
CHAPTER 6. CONCLUSION 192G1: deh, hanshu-kurai sitara hidari-ni chotto hidari-ni chotto ikun-desu-yoand after we go round half way a little bit towards left (repeat) we are going toF1: chotto chotto hidari-nia little bit towards leftG2: hidari-ni gomennasai-ne, nan-ka-nehtowards left I'm sorry, how can I say...F2: chotto-tte dono-kuraihow a little far is it? (meta)Figure 6.2. An example of the use of \tte" (3)Clearly, the use of the particle has to do with their plans and goals for their dialogue;They do not mark the expression until they try to carry out their collaboration to thenext step. Note also the particle marks an adverb, chotto (a little), not a noun phrase.The particle can actually mark other phrases as well such as verb phrases and post-positionals. We can also observe that the marker is usually used only once when thespeaker initiates a repair. Once they agree to enter the repair mode, they will no longermark the expression with the particle. These observations suggest that the meaning ofthe particle may be better captured in terms of functions in conversation, that is, toinform the other that they will repair their misunderstanding as to the item.To investigate the in
uence of plans and goals on language use, we are interested inthe approach initiated by Pollack, who considered plans and goals as complex mentalattitudes [Pol90]. We may model such complex attitudes as a system of communicatingprocesses. It should not be di�cult to implement a planner although we have not inves-tigated how it can be constructed. Take a planner, for instance, that infers transitions ofcommunication states upon utterances. It can be implemented as a production system,which infers state changes by referring to a set of state transition rules.3 The featurestructures encoded in Chapter 5 should be used to represent knowledge.What can such an modelling in turn bene�t the research on planners? Di�erent fromlogical approach initiated by Cohen and Levesque [CL90], which formalises speech actstheory as a modal logic, we model planners as a reactive system, which re
ects actualsystems more closely. The di�erence does not mean that our approach con
icts withlogical approach. As we have seen in the thesis, we can conceive of such a logic as aspeci�cation language of processes. Once we succeed in relating our model with thelogic of actions, we may introduce the notion of imperfect actions to the logic, whichmust be useful in studying the meaning of actions.3David Traum for example suggested his theory [Tra94] may be implemented in the �-calculus.

CHAPTER 6. CONCLUSION 193We should however note that the notion of plans and goals is used di�erently in variouscontexts. Some plans are only concerned with the structure of dialogue, while otherswith that of tasks. The use of the particle, \tte", may be studied in terms of its functionin structuring dialogue plans. There are a lot of things to be investigated in the areaof study. We hope we can investigate the issue and can study the interaction betweendialogue plans and task plans with our approach. Appendix AMolecular languagesA.1 The language L0A.1.1 The syntax of L0The syntax of L0 is de�ned as is shown in the table A.1. The last rule ensures that 1comes only in consequent of guarding formula. We also omit 1 in molecules because itis always present. This is justi�ed by the rule, 1 : 1) 1 in the logic. In fact, everyexecution of a particle can be followed by 1, which is not explicitly expressed in thelanguage for simplicity.Some words follow on binding in nested molecules. We ensure a name should be boundby the most inner binding force. For example, in the molecule, (� b)[ahbi; (� b)[chbi]], thesecond particle, chbi, nested in another molecule is bound by the second inner operator,not by the �rst. Therefore, it should be compiled to [ahb1i; chb2i].A.1.2 The semantics of L0ActionsThe rule for actions is summarised as follows:- [�; �; : : : ;
 � C]�E �& [�; : : : ;
 � C]�Ewhere � is unguarded with respect to constraints, C, and a substitution environ-ment, E.A particle, �, is unguarded with respect to constraints, C, and a substitution environ-ment, E, if 194

APPENDIX A. MOLECULAR LANGUAGES 195P �! M (molecule)M �! (� x)[N] (Molecule with restrictions)j [N] (Molecule without restrictions)N �! A � C (Molecule with constraints)jA (Molecule without constraints)A �! � (particle)jP (molecule)jA;A (concurrent)� �! xh~yi (exporting)jx(~y) (importing)j1 (unit)C �! � � � (guarding)j [x = y] � � (match)jC;C (conjunction)� �! � (particle)j1 (no particles enabled)Table A.1. The syntax of L0- there is no particle � in the molecule such that � � � is in C, and- every match formula in the form of [x = y] � �, if any, is satis�ed with respect toits substitution environment, E.InteractionThe rule for interaction is summarised as follows, assuming the compiling step:- [�; �;
 � C] �E �& [
 � C] �E 0where � and � are a pair of input and output actions connected by a channel, e.g,ahbi and a(x), unguarded with respect to C and E, andE is updated to E 0 by incorporating the substitution occured upon the interaction,e.g., fb=xg. The e�ect of substitution applies to the molecule, [
 � C].A.2 Extension towards the full �-calculusReplication, !, and choice, +, cannot be speci�ed within the logic, but we give cor-responding molecular forms for completeness. We also de�ne the language that canexpress temporal properties, liveness and safety, which is not part of the �-calculus.
APPENDIX A. MOLECULAR LANGUAGES 196A.2.1 ReplicationSyntax is modi�ed by adding the following rule to P :P �! !M (replicable molecule)Semantics is changed for interaction. We add to the rule the following rules, whichreplicates a molecular if there is an interactable molecular with it.- [! [�]; �;
 � C] �E � [! [�]; [�]; �;
 � C] �Ewhere both � and � are ready to interact with each other, unguarded with respectto C and EA.2.2 ChoiceSyntax is modi�ed by adding the following rule to P :P �! M +M (non-deterministic molecule)Semantics is changed for action by adding to it the following rule. The change to therule for interaction is trivial.- [�+ �; : : : ;
 � C]�E �& [: : : ;
 � C]�Ewhere either � or � is executed, unguarded with respect to constraints, C, and asubstitution environment, E.A.2.3 Temporal propertySyntax is modi�ed by adding to C the following rules:C �! � = � (liveness)j� 6= � (safety)Semantics is changed for interaction. Only the interactions satisfying temporal propertyare allowed to occur.- [�; �;
 � C] �E �& [
 � C] �E 0where � and � are a pair of input and output actions connected by a channel, e.g,ahbi and a(x), unguarded with respect to C and E,the e�ect on substitution environments upon the interaction does not violate C,E is updated to E 0 by incorporating the substitution occured upon the interaction,e.g., fb=xg. The e�ect of substitution applies to the molecule, [
 � C].

Bibliography[ABB+91] Anne H. Anderson, Miles Bader, Ellen G. Bard, Elizabeth H. Boyle,Gwyneth M. Doherty, Simon C. Garrod, Stephen D. Isard, Jacqueline C.Kowtko, Jan M. McAllister, Jim Miller, Catherine F. Sotillo, Henry S.Thompson, and Regina Weinert. The HCRC Map Task Corpus. Languageand Speech, 34(4):351{366, 1991.[Abr91] Samson Abramsky. Domain theory in logical form. Annals of Pure andApplied Logic, 51:1{77, 1991.[Acz88] Peter Aczel. Non-Well-Founded Sets. Center for the Study of Languageand Informaiton, Stanford, California, 1988.[Agh86] Gul A. Agha. Actors : a model of concurrent computation in distributed sys-tems. The MIT Press series in arti�cial intelligence. MIT Press, Cambridge,Mass., 1986.[Ahn94] Ren�e Ahn. Dynamic knowledge states in type theory. In Bunt et al.[BMR94], pages 1{10.[AIK+94] Motoko Aono, Akira Ichikawa, Hanae Koiso, Shinji Sato, Makiko Naka,Syun Tutiya, Kenji Yagi, Naoya Watanabe, Masato Ishizaki, Michio Okada,Hiroyuki Suzuki, Yukiko Nakano, and Keiko Nonaka. The Japanese MapTask Corpus: an interim report. In Spoken Language Processing, volumeSLP3(5), pages 25{30. Information Processing Society of Japan, 1994. inJapanese.[AIKP93] Peter Aczel, David Israel, Yasuhiro Katagiri, and Stanly Peters, editors.Situation Theory and its Applications, volume 3. Center for the Study ofLanguage and Informaiton, Stanford, California, 1993.[AL91] Peter Aczel and Rachel Lunnon. Universes and parameters. In Jon Barwise,Jean Mark Gawron, Gordon Plotkin, and Syun Tutiya, editors, SituationTheory and its Applications, volume 2, pages 3{24. Center for the Study ofLanguage and Informaiton, Stanford, California, 1991.[Aus62] John L. Austin. How to do things with words. Oxford University Press,Oxford, 1962.[AV93] Samson Abramsky and Steven Vickers. Quantales, observational logic andprocess semantics. Mathematical Structures in Computer Science, 3:161{227, 1993.[Bar89] Jon Barwise. On the model theory of common knowledge. In The Situationin Logic, pages 201{220. Center for the Study of Language and Informaiton,1989. 197

BIBLIOGRAPHY 198[Bar92] Jon Barwise. Information links in domain theory. In S. Brookes, M. Main,A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings of the Mathe-matical Foundations of Programming Semantics Conference, volume 598 ofLNCS, pages 168{192. Springer Verlag, 1992.[Bar93] Jon Barwise. Constraints, channels, and the
ow of information. In Aczelet al. [AIKP93], pages 3{27.[BB92] G�erard Berry and G�erard Boudol. The chemical abstract machine. Theo-retical Computer Science, 96:217{248, 1992.[BC91] Jon Barwise and Robin Cooper. Simple situation theory and its graphicalrepresentation. In Jerry Seligman, editor, Partial and Dynamic SemanticsIII, pages 38{74. Centre for Cognitive Science, University of Edinburgh,1991. DYANA Report R2.1.C.[BC93] Jon Barwise and Robin Cooper. Extended kamp notation: a graphicalnotation for situation theory. In Aczel et al. [AIKP93], pages 29{53.[BC94] G�erard Boudol and Ilaria Castellani. Flow models of distributed computa-tions: three equivalent semantics for CCS. Information and computation,114:247{314, 1994.[BE87] Jon Barwise and John Etchemendy. The Liar: An Essay on Truth andCircularity. Oxford University Press, 1987.[BE90] Jon Barwise and John Etchemendy. Information, infons and inference. InRobin Cooper, Kuniaki Mukai, and John Perry, editors, Situation Theoryand its Applications, volume 1, pages 33{78. Center for the Study of Lan-guage and Informaiton, Stanford, California, 1990.[BHS94] Norbert Br�oeker, Udo Hahn, and Susanne Schacht. Concurrent lexicalizeddependency parsing: The ParseTalk model. In 15th International Confer-ence on Computational Linguistics, volume 2, pages 379{385. 1994.[Bie95] G. M. Bierman. What is a categorical model of intuitionistic linear logic? InProceedings of International Conference on Typed Lambda Calculi and Ap-plications, Edinburgh, Scotland, April 1995. to appear in Springer LectureNotes in Computer Science.[Bla92] Alan W. Black. A situation theoretic approach to computational semantics.PhD thesis, Department of Arti�cial Intelligence, University of Edinburgh,1992.[BMM+94] J. Bos, E. Mastenbroek, S. McGlashan, S. Millies, and M. Pinkal. A compo-sitional DRS-based formalism for NLP applications. In Bunt et al. [BMR94],pages 21{30.[BMR94] Harry Bunt, Reinhard Muskens, and Gerrit Rentier, editors. InternationalWorkshop on Computational Semantics, Institute for Language Technologyand Arti�cial Intelligence, Tilburg University, The Netherlands, December1994.[BP83] Jon Barwise and John Perry. Situations and Attitudes. MIT Press, Cam-bridge, Mass., 1983.

BIBLIOGRAPHY 199[BS92] Jon Barwise and Jerry Seligman. The rights and wrongs of natural reg-ularity. In James Tomberlin, editor, Philosophical Perspectives. 1992. inpreses.[BSSH94] Norbert Br�oeker, Michael Strube, Susanne Schacht, and Udo Hahn. Coarse-grained parallelism in natural language understanding: parsing as messagepassing. In The International Conference on New Methods in Language Pro-cessing (NeMLaP), volume 2, pages 182{189. September 1994. Manchester,U.K.[Car92] Jean Carletta. Risk-taking and Recovery in Task-Oriented Dialogue. PhDthesis, Department of Arti�cial Intelligence, University of Edinburgh, 1992.[Cho65] Noam Chomsky. Aspects of the theory of syntax. MIT Press, Cambridge,Mass., 1965.[CL90] Philip R. Cohen and Hector J. Levesque. Rational interaction as the basisfor communication. In Philip R. Cohen, Jerry Morgan, and Martha E.Pollack, editors, Intentions in communication, pages 221{255. MIT Press,Cambridge, MA, 1990.[Cla92] Herbert H. Clark. Arenas of language use. The University of Chicago Pressand Center for the Study of Language and Information, Chicago, 1992.[CM92] Herbert H. Clark and Catherine R. Marshall. De�nite reference and mutualknowledge. [Cla92], pages 9 { 59.[Coo91] Robin Cooper. Three lectures on situation theoretic grammar. In MiguelFilgueiras, Luis Damas, Nelma Moreira, and Ana Paula Tom�as, editors,Proceedings of Natural Language Processing, EAIA 90, number 476 in Lec-ture Notes in Arti�cial Intelligence, pages 101{140. Springer Verlag, 1991.[Coo92] Robin Cooper. A working person's guide to situation theory. In Ste�en LeoHansen and Finn Soerensen, editors, Topics in Semantic Interpretation,Samfundslitteratur, Frederiksberg, Denmark, 1992.[Coo93a] Robin Cooper. Integrating di�erent information sources in linguistic in-terpretation. In First International Conference on Linguistics at ChosunUniversity, pages 79{109, Kwangju, Korea, November 1993. Foreign Cul-ture Research Institute, Chosun University.[Coo93b] Robin Cooper. Towards a general semantic framework. In Robin Cooper, ed-itor, Integrating Semantic Theories. ILLC/Department of Philosophy, Uni-versity of Amsterdam, 1993. Deliverable R2.1.A, Dyana-2.[Dam93] Mads Dam. Model checking mobile processes. In Proceedings of 4th Inter-national Conference on Concurrency Theory, volume 715 of LNCS, pages22 { 36. Springer Verlag, August 1993.[Dam94] Mads Dam. Process-algebraic interpretations of positive linear and relevantlogics. Journal of Logic and Computation, 4(6):939{973, 1994.[EW90] U�e Engberg and Glynn Winskel. Petri nets as models of linear logic.volume 431 of LNCS, pages 147{161, Copenhagen, Denmark, May 1990.Springer Verlag.[EW93] U�e Engberg and Glynn Winskel. Completeness results for linear logic onpetri nets. MFCS'93, Gda�nsk, Poland, August 30 - September 3, 1993.
BIBLIOGRAPHY 200[Fer93] Tim Fernando. Generalized quanti�ers as second-order programs | \dy-namically" speaking, naturally. In Proceedings of the Amsterdam Collo-quium. 1993.[Fre93] Gottlob Frege. �Uber sinn und bedeutung. In Zeitschrift f�ur Philosophie undphilosophische Kritik, volume 100, pages 25{50. 1893.[Fuj94] Tsutomu Fujinami. Representations as processes: situation-theoretic ob-jects encoded in the �-calculus. In Bunt et al. [BMR94], pages 91{100.[Fuj96a] Tsutomu Fujinami. A dynamic syntax-semantics interface. In Proceedingsof the second Conference on Information-Theoretic Approaches to Logic,Language, and Computation, pages 63{72. London Guildhall University,July 1996.[Fuj96b] Tsutomu Fujinami. A process algebraic approach to situation seman-tics. In Paul Dekker and martin Stokhof, editors, Proceedings of the 10thAmsterdam Colloquium, volume 2, pages 263{282, The Netherlands, De-cember 1996. ILLC/Department of Philosophy, University of Amsterdam.ftp://ftp.ims.uni-stuttgart.de/pub/papers/tsutomu.[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1{102,1987.[Gir95] Jean-Yves Girard. Linear logic: its syntax and semantics. In Jean-YvesGirard, Yves Lafont, and Laurent Regnier, editors, Advances in LinearLogic, pages 1{42. Cambridge University Press, 1995.[Gla90] Sheila R. Glasbey. Tense and aspect in natural language processing - a situa-tion theory approach. Master's thesis, Department of Arti�cial Intelligence,University of Edinburgh, 1990.[GM84] Ursula Goltz and Alan Mycroft. On the relationship of CCS and petri nets.volume 172 of LNCS, pages 196{208, Antwerp, Belgium, July 1984. SpringerVerlag.[GS91a] Jeroen Groenendijk and Martin Stokhof. Dynamic Montague grammar. InMartin Stokhof, Jeroen Groenendijk, and David Beaver, editors, Quanti�ca-tion and Anaphora I. Centre for Cognitive Science, University of Edinburgh,1991. DYANA Report R2.2.A.[GS91b] Jeroen Groenendijk and Martin Stokhof. Dynamic predicate logic. Linguis-tic and Philosophy, 14(1):39{100, 1991.[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for non-determinismand concurrency. Journal of the Association for Computer Machinery,32(1):137{161, January 1985.[Kam84] Hans Kamp. A theory of truth and semantic representation. In J. A. G.Groenendijk, T. M. V. Janseen, and M. Stokhof, editors, Truth, Interpre-tation and Information: Selected Papers from the Third Amsterdam Collo-quium, pages 1{41. Dordrecht: Foris Publication, 1984.[KR86] Robert T Kasper and William C Rounds. A logical semantics for featurestructures. In Proceedings of 24th ACL, pages 257{266, 1986.

BIBLIOGRAPHY 201[KR93] Hans Kamp and Uwe Reyle. From Discourse to Logic: Introduction toModel theoretic Semantics of Natural Language, Formal Logic and DiscourseRepresentation Theory. Dordrecht: Kluwer, 1993.[Kun87] Susumu Kuno. Functional Syntax. University of Chicago Press, Chicago,1987.[Laf88] Yves Lafont. The linear abstract machine. Theoretical Computer Science,59:157{180, 1988.[Lar90] Kim Guldstrand Larsen. Ideal speci�cation formalism = expressivity +compositionality + decidability + testability + � � � . volume 458 of LNCS,pages 33{56. Springer Verlag, 1990.[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theoretical ComputerScience, 25:267{310, 1983.[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, New York,1989.[Mil92a] Dale Miller. The �-calculus as a theory in linear logic: Preliminary results.In E. Lamma and P. Mello, editors, Proceedings of Workshop on Exten-sions to Logic Programming, volume 660 of LNCS, pages 245{265. SpringerVerlag, October 1992.[Mil92b] Robin Milner. Action structures. Technical Report ECS-LFCS-92-249, De-partment of Computer Science, University of Edinburgh, December 1992.[Mil92c] Robin Milner. Functions as processes. Journal of Mathematical Structuresin Computer Science, 2(2):119{141, 1992.[Mil93a] Robin Milner. Action structures and the �-calculus. Technical Report ECS-LFCS-93-264, Department of Computer Science, University of Edinburgh,May 1993.[Mil93b] Robin Milner. The polyadic �-calculus: a tutorial. In F. L. Bauer,W. Brauer, and H. Schwichtenberg, editors, Logic and Algebra of Speci-�cation, pages 203{246. Springer Verlag, 1993.[Mil94] Robin Milner. Pi-nets: a graphical form of �-calculus. In Proceedings ofESOP '94, volume 788 of LNCS, pages 26{42. Springer Verlag, 1994.[Mil95] Robin Milner. Calculi for interaction. Unpublished ms., April 1995.[MOM91] Narc��so Mart��-Oliet and Jos�e Meseguer. From petri nets to linear logic.Mathematical Structures in Computer Science, 1:69{101, 1991.[MPW91] Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobileprocesses. In Jos C. M. Beaten and Jan Frisco Groote, editors, Proceedingsof 2nd International Conference on Concurrency Theory, volume 527 ofLNCS, pages 45 { 60. Springer Verlag, August 1991.[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobileprocesses, parts I and II. Information and Computation, 100:1{40 and 41{77, 1992.[MS94] L. Moss and Jerry Seligman. Classi�cation domains and information links:a brief survey. In J van Eijck and A Visser, editors, Logic and InformationFlow. MIT Press, 1994.

BIBLIOGRAPHY 202[Mus92] Reinhard Muskens. Anaphora and the logic of change. Technical Report 34,Institute for Language Technology and Arti�cial Intelligence, Tilburg Uni-versity, The Netherlands, 1992.[Mus93] Reinhard Muskens. A compositional discourse representaiton theory. InProceedings of the Amsterdam Colloquium, pages 467{486. 1993.[Mus94] Reinhard Muskens. Categorial grammar and discourse representation the-ory. In 15th International Conference on Computational Linguistics, vol-ume 1, pages 508{514. 1994.[NPS91] Hideyuki Nakashima, Stanley Peters, and H Sch�utze. Communication andinference through situations. In Proceedings of the 12th International JointConference on Arti�cial Intelligence, volume 1, pages 75{91. 1991.[Oka93] Mitsuhiro Okada. Mobile linear logic as a framework for asynchronous andsynchronous mobile communication calculi (preliminary report). Unpub-lished ms., March 1993.[Pie94] B. C. Pierce. Programming in the pi-calculus: An experiment in concurrentlanguage design. Technical report, Computer Science Department, Univer-sity of Edinburgh, 1994. Tutorial Notes for PICT.[Plo81] Goldon D. Plotkin. A structural approach to operational semantics. Tech-nical Report DAIMI-FN-19, Computer Science Department, Aarhus Uni-versity, 1981.[Pol90] Martha E. Pollack. Plans as complex mental attitudes. In Philip R. Cohen,Jerry Morgan, and Martha E. Pollack, editors, Intentions in communica-tion, pages 77{103. MIT Press, Cambridge, MA, 1990.[Pra81] V. R. Pratt. Dynamic logic. In J. W. de Bakker and J. van Leeuwen, editors,Foundations of Computer Science III Part II, volume 109 of MathematicalCentre Tracts, pages 53{84. 1981. Centrum voor Wiskunde en Informatica,Amsterdam.[PS94] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar.The University of Chicago Press and Center for the Study of Language andInformation, Chicago, Ill. and Stanford, Ca., 1994.[Ran91] Aarne Ranta. Intuitionistic categorial grammar. Linguistics and Philosophy,14:203{239, 1991.[Ruh96] Peter Ruhrberg. Simultaneous Abstraction and Semantic Theories. PhDthesis, Centre for Cognitive Science, University of Edinburgh, Edinburgh,1996.[SB93] Jerry Seligman and Jon Barwise. Channel theory: toward a mathematicsof imperfect information
ow. Unpublished ms., May 1993.[Sch92] Emanuel A. Scheglo�. Repair after next turn: The last structurally provideddefense of intersubjectivity in conversation. American Journal of Sociology,97(5):1295{1345, 1992.[SHB94] Susanne Schacht, Udo Hahn, and Norbert Br�oeker. Concurrent lexical-ized dependency parsing: A behavioral view on ParseTalk events. In 15thInternational Conference on Computational Linguistics, volume 2, pages489{493. 1994.

BIBLIOGRAPHY 203[Smo92] Gert Smolka. Feature constraint logics for uni�cation grammars. Journalof Logic Programming, 12:51{87, 1992.[Smo94a] Gert Smolka. A foundation for concurrent constraint programming. InConstraints in Computational Logics, volume 845 of LNCS, pages 50{72.Springer Verlag, September 1994.[Smo94b] Gert Smolka. An Oz primer. Technical report, German Research Center forArti�cial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken,Germany, 1994. available from http://ps-www.dfki.uni-sb.de/oz/.[Sti92] Colin Stirling. Modal and temporal logics for processes. Technical ReportECS-LFCS-92-221, Department of Computer Science, University of Edin-burgh, June 1992.[Tak89] Yukinori Takubo. Meishikku-no modality (the modality of noun phrases). InNihongo-no modality (The modality in Japanese), pages 211{233. Kurosio,Tokyo, 1989. in Japanese.[Tak90] Yukinori Takubo. On the role of hearer's territory of information: A con-trastive study of dialogic structure in Japanese, Chinese, and English asmanifested in the third person pronoun system. In Advances in JapaneseCognitive Science, volume 3, pages 67{84. Kodansha Scienti�c, Tokyo, 1990.in Japanese.[TK92] Yukinori Takubo and Satoshi Kinsui. Discourse management in terms ofmental domains. Unpublished ms., to appear in Travaux de LinguistiqueJaponaise, 1992.[Tra94] David R. Traum. A computational theory of grounding in natural languageconversation. PhD thesis, Computer Science Department, University ofRochester, New York, 1994.[Tro92] Anne Sjerp Troelstra. Lectures on linear logic, volume 29. Center for theStudy of Language and Informaiton, Stanford, California, 1992.[Tur90] Raymond Turner. Truth and Modality for Knowledge Representation. Pit-man, London, 1990.[Wal95] David Walker. Objects in the �-calculs. Information and Computation,116(2):253{271, 1995.

