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Abstract 
Arboviruses are transmitted between vertebrate hosts by arthropod vectors, such as 

mosquitoes or ticks. In vertebrates arboviruses cause cytopathic effects and disease, however, 

arbovirus infection of arthropods usually results in persistence. Control of arboviral infection 

is mediated by the arthropod’s immune system. Pathways such as RNAi, JAK/STAT, Toll 

and IMD have previously been implicated in controlling arbovirus infections. In contrast, the 

antiviral role of other pathways in mosquitoes, such as melanisation, is unknown. Using high 

through output 454 sequencing the transcriptome of U4.4 cells infected with the model 

arbovirus Semliki Forest virus (SFV)(Togaviridae, Alphavirus) was generated. This 

experiment revealed intriguing patterns of differential transcript abundance that suggest a 

broad impact of SFV infection in U4.4 cells, such as in metabolism, cell structure and nucleic 

acid processing. SFV infection induces differential expression of genes in pathways such as 

apoptosis, stress response and cell cycle. Most interestingly, this study indicated that 

melanisation might have an antiviral role in mosquitoes. In arthropods, melanisation is a 

process involved in wound healing and antimicrobial defences. Phenoloxidase (PO), a key 

enzyme involved in melanisation, is cytotoxic and therefore kept in its inactive form, 

prophenoloxidase (PPO), until activation is triggered. The PPO activation process is tightly 

regulated by serine protease inhibitors (serpins) which inhibit the proteolytic activation 

reaction. In this thesis I demonstrate that the supernatant of cultured Aedes albopictus-derived 

U4.4 cells contains a functional proPO-activating system, which is activated by infection with 

bacteria and virions of SFV. Activation of this pathway reduces the spread and infectivity of 

SFV in vitro and in vivo. In order to further characterise the PO cascade and its antiviral role 

the serpins in Ae. albopictus were also investigated. Using the transcriptome sequencing and 

bioinformatics we identified and classified 11 serpins. We silenced each of the serpins and 

monitored PPO levels and antiviral activity showing that homologues to drosophila’s serpin-

27a plays a role in melanisation against SFV in vitro. Collectively, these results characterise 

the mosquito PO cascade as a novel immune defence against arbovirus infection in 

mosquitoes. 
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Arboviruses, definition, classification and importance. 
Arthropod-borne viruses, or arboviruses, are transmitted among vertebrate hosts by 

haematophagous, or blood feeding, arthropod vectors, such as mosquitoes, midges or ticks. 

Due to this complex multi-host cycle, arboviruses must be able to replicate in the vertebrate 

host as well as in the arthropod vector. Both hosts and their immune systems present several 

barriers that the virus has to overcome. By definition arboviruses are not just mechanically 

transmitted by the vector through contaminated mouth parts, but must undergo replication in 

the vector in order to be transferred (NicholWeaver, 1997). There are a number of different 

ways in which the arbovirus can be transmitted among vectors. The most common form of 

transmission is horizontally through a blood meal from an infected vector via the salivary 

glands to a vertebrate host which then becomes viraemic and allows a second vector to 

become infected when taking a blood meal from it. In this case the virus from the blood meal 

has to be able to infect the midgut, then disseminate within the vector and reach the salivary 

glands. It must then replicate at higher titres and be exported with the saliva during the next 

blood feeding (Weaver and Reisen, 2010). As will be discussed later, the arthropod immune 

system plays an important role in controlling replication and the motility of the virus in the 

vector. Other manners of transmission that are not that common, but should still be 

considered important are; vertical transmission, from an infected female to male and female 

offspring, and venereal horizontal transmission, from a vertically infected male to a female 

vector. Vertical and venereal transmission of arboviruses exclusively among vectors seems to 

be a strategy for the virus to overwinter (Goddard et al., 2003), however, it comes at a fitness 

cost for both the virus and the vector (Lambrechts and Scott, 2009). 

Taxonomically, arboviruses include a wide variety of RNA viruses belonging to the 

Togaviridae, Bunyaviridae, Flaviviridae, Reoviridae, Orthomyxoviridae and Rhabdoviridae 

families (Fenner and Maurin, 1976; Melnick, 1976; Schmaljohn and McClain, 1996; van 

Regenmortel et al., 2000). Having very distinct RNA genomes and replication strategies, 

these viruses appear to have arisen many times during the evolution of RNA viruses. Only 

one DNA arbovirus is known, African Swine fever virus (ASFV) (Asfaviridae, genus 

Asfavirus) (Kemp et al., 1988; van Regenmortel et al., 2000). The lack of DNA arboviruses 

seems to correlate with the lower genetic plasticity and lower mutation rates present in RNA 



Chapter 1 Introduction 

3 
 

viruses, restricting their ability to replicate in physiologically different hosts (Holland and 

Domingo, 1998). 

Arboviruses circulate in the wild among vertebrate populations which are adapted to them, to 

a certain extent, and infection causes only some febrile illness during the period of high 

viraemia required for transmission and they recover later. However, in case of spillover 

transmission to humans and/or domestic animals, they cause disease in what are dead-end 

hosts. Viruses like dengue (DENV) and chikungunya (CHIKV) produce extensive epidemics 

since they have lost the need for an enzootic cycle. Therefore, arboviruses are a major current 

public health and veterinary issue worldwide. On top of that, arboviral outbreaks are 

dynamic, extending beyond their traditional warmer geographical climates into temperate 

areas. The ability of these viruses to cause epidemics and disease depends of a wide range of 

factors; from viral genetics to vector competence and epidemiology (Weaver and Reisen, 

2010). As was previously mentioned, the vector displays several barriers which can restrict 

the virus by reducing competency and transmissibility, and the vector immune system plays a 

key role in the virus transmission cycle, infectivity and vector permissibility. 
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Arbovirus ecological cycles 
Arboviral diseases are generally zoonotic, occurring in populations of wild animals and then 

spilling over into a rural or urban environment where they cause diseases in domestic animals 

and humans. Generally these two hosts are considered dead-end hosts since viraemia is not 

high enough to start a new cycle in that urban area, although, there are exceptions such as 

DENV, CHIKV and YFV which can cause epidemics by human to human transmission. 

DENV is the arbovirus with a highest public health impact worldwide (www.WHO.org). In 

order to describe how these two ecological cycles occur, DENV will be taken as an example 

as it has a sylvatic cycle and an urban cycle (Fig.1.1). 

There are four DENV serotypes, and each of them is maintained in two evolutionary and 

ecologically different transmission cycles; a sylvatic cycle and an urban cycle. The sylvatic 

cycle involves non-human primates and arboreal aedine mosquitoes. It has been documented 

in transmission foci in forest areas of West Africa and the Malay Peninsula. The urban cycle 

involves the domestified Aedes aegypti subsp. aegypti and Ae. albopictus mosquitoes and can 

be found in a diverse range of environments, from cities to rural areas, throughout the tropics 

and subtropics (Mattingly, 1957; Mattingly, 1958). In the human cycle, humans act as the 

only known reservoir hosts and amplification hosts, a unique host usage pattern among 

arboviruses (Weaver and Reisen, 2010). The transmission of DENV between the sylvatic and 

the urban cycle occurs in a transitional rural environment. Arboreal Aedes mosquitoes are not 

adapted to live in urban areas, therefore, this transitional rural area also provides the 

opportunity for DENV to move into domestified Aedes mosquitoes. It has been suggested 

that, in the case of DENV cycles, Ae. furcifer carries the virus from the sylvatic to the rural 

environment, where it coexists with the urban Ae. albopictus. Once DENV is in this rural 

area, Ae. albopictus can bring the virus to the rural transition area and the urban cycle 

(Weaver and Reisen, 2010). It is suggested that the same occurs with other epidemic 

arboviruses, such as with YFV and CHIKV. It has become increasingly clear that of all the 

viruses with the potential to shift from an animal reservoir into humans, the most likely to 

shift are those, like sylvatic DENV, that are carried by our closest relatives, the non-human 

primates (Vasilakis et al., 2011). 

Several factors control the outcome of these ecological cycles as well as the emergence of 

new arboviruses and vectors. These factors, such as vector permissibility, viral evolution and 

ecological and climatic changes will be discussed later in this thesis. 

http://www.who.org/


Chapter 1 Introduction 

5 
 

 

 

 

Fig.1.1. Dengue virus sylvatic and urban cycles. Dengue virus is transmitted by a set of 
aedine mosquitoes in its sylvatic cycle, where it circulates among small vertebrates and non-
human primates. In the urban cycle it is transmitted among humans by another set of 
mosquitoes. Transition between both cycles occurs in rural areas and it is produced by linked 
Aedes mosquitoes, such as Ae. furcifer and Ae. albopictus which are present in sylvatic and 
urban areas respectively. Adapted from (Vasilakis et al., 2011). 
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Medically important arboviruses families 
In the next section, three of the most important arbovirus families will be described in detail. 

Bunyaviruses, flaviviruses, orbiviruses and alphaviruses count for most of the important 

human and veterinary arboviral diseases. 

 

Bunyaviridae 

Bunyaviruses form the largest family of RNA viruses with over 350 isolates. These viruses 

are enveloped and their virions are spherical, around 100 nm in diameter. The most 

characteristic property is the possession of a negative (or ambisense) single stranded RNA 

genome divided into three segments (Nichol, Beaty, and Elliott, 2005). Bunyavirus virions 

are formed by four structural proteins, two of them are external glycoproteins (Gn and Gc) 

and they are encoded by the M (medium) segment of the genome; the nucleocapsid, N, which 

is encoded by the S (small) segment, coats the genomic RNA; and the final protein is the 

RNA dependent RNA polymerase, which is encoded by the L (large) segment of the genome 

(Elliott, 2009). This large virus family is divided into five genera: Orthobunyavirus, 

Hantavirus, Nairovirus, Phlebovirus and Tospovirus, based on serological relationships as 

well as a characteristic conserved patterns of the segments of the RNA genome (Nichol, 

Beaty, and Elliott, 2005).  Hantaviruses are viral zoonotic pathogens of rodents and can cause 

severe human disease, such as haemorrhagic fevers. Tospoviruses are plant pathogens 

transmitted by sap feeding arthropods.  Orthobunyaviruses, nairoviruses and phleboviruses 

are true arboviruses transmitted among vertebrates by haematophagus arthropods, like 

mosquitoes, midges, sandflies and ticks (Elliott, 2009). 

Several bunyaviruses transmitted by vectors cause human or veterinary diseases (Table 1.1). 

The phlebovirus Rift Valley fever virus (RVFV) causes epizoonotic and sporadic epidemics, 

primary in east Africa (Bird et al., 2009). Infection can cause up to 10% fatality in sheep and 

cattle spilling occasionally to humans, in whom it causes severe disease in 1-2% of cases. 

Severe disease includes hepatitis, encephalitis, renitis, blindness, haemorrhagic fever and case 

fatality is 10-20% (Madani et al., 2003). RVFV was endemic to the Rift Valley, in Kenya and 

Tanzania, where outbreaks by the various lineages of this virus were common (Bird et al., 

2008). However, in the second half of last century, outbreaks started appearing in other parts 

of the African continent, such as in the 1950s in South Africa, in the late 1970s in Egypt, in  

the late 1980s in Mauritania and the Maghreb, during the 1990s in Madagascar and in the 
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new millennium it crossed into the Arabian Peninsula (Bird et al., 2009). Emergence of 

RVFV has been correlated with weather conditions and the spread by diverse Aedes species 

mosquitoes (Anyamba et al., 2009; Linthicum et al., 1985).  

 

Genus/virus Disease Principal 
Vector 

Geographical 
distribution 

Orthobunyavirus    

Akabane Cattle: abortion and congenital 

defects 

Midge Africa, Asia, 

Australia 

Cache Valley Sheep, cattle, congenital disorders Mosquito North America 

La Crosse Human: encephalitis Mosquito North America 

Ngari Human: haemorrhagic fever Mosquito Africa 

Oropouche Human: fever Midge South America 

Tahyna Human: fever Mosquito Europe 

Nairovirus    

Crimean-Congo 
haemorrhagic fever 

Human: haemorrhagic fever Tick Eastern Europe, 

Africa, Asia 

Nairobi sheep disease Sheep, goat: fever, haemorrhagic 

gastroenteritis, abortion 

Tick, 

mosquito 

Africa, Asia 

Phlebovirus    

Rift Valley Fever Human: encephalitis, haemorrhagic 

fever, renitis. 

Domestic ruminants: necrotic 

hepatitis, haemorrhage, abortion 

Mosquito Africa 

Naples sandfly fever Human: fever Sandfly Europe, Africa 

Sicilian sandfly fever Human fever Sandfly Europe, Africa 

Table 1.1. Arboviruses belonging to the Bunyaviridae family. Pathogenesis, 
vectors and distribution. 
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Flaviviridae 

The genus Flavivirus in the Flaviviridae family includes arboviruses transmitted between 

vertebrate hosts by mosquitoes and ticks producing disease in humans and animals (see Table 

1.2). They take their name from yellow fever virus (flavus = yellow in Latin). Flaviviruses 

have an enveloped virion and their genome is a positive sense single stranded RNA transcript 

uncapped and non-polyadenylated. Instead, for translation and replication they rely on a 

highly structured UTR at the 5’ and 3’ regions of the viral genome.  The genome is translated 

as a polyprotein that is cleaved by cellular serine proteases and viral proteases (Gould et al., 

2003). 

Several of the most important arboviral diseases are caused by flaviviruses (Table 1.2). 

Yellow fever virus causes jaundice in people who are severely affected (hence its name and 

the name of the whole viral family). Sporadic outbreaks occur in sub-Saharan Africa, and 

yearly incidence rates can reach 200 000 infections, including 30 000 deaths (Gould et al., 

2003).  There are fewer reported cases in the Americas, where YF also occurs, than in sub-

Saharan Africa. The reasons for viral attenuation are unknown. The four DENV serotypes (1 

to 4) cause more than 50 million infections yearly, with vasculopathy in 1–10% of the most 

severe cases (www.WHO.org). Worldwide travel of infected people, failure to control Aedes 

aegypti in epidemic areas, and commercial transportation of infected mosquitoes have 

contributed to the geographic dispersal and epidemic outbreaks. Dengue fever has been 

recognised for over 200 years, but following the 1950s, outbreaks of more severe diseases 

were recognised for the first time (Gould and Solomon, 2008). Japanese encephalitis virus 

(JEV) infects mostly Culex species that feed on birds, humans, pigs, horses, reptiles, or 

amphibia. This virus is the most important human pathogen within its phylogenetic subgroup 

and it has produced up to 50,000 cases of encephalitis every year with case fatality rates of 

about 25% (Mackenzie, Barrett, and Deubel, 2002). West Nile virus (WNV) is related to JEV 

and probably originated in Africa during the past millennium prior to being dispersed north 

and eastwards by migratory birds (Gould et al., 2003). Outbreaks of varying intensity take 

place occasionally in humans, birds, and horses in Africa, Europe, Russia, Australasia and 

recently in America (Bakonyi et al., 2005; Hubalek and Halouzka, 1999; Lanciotti, 1999). 

Outbreaks occur after warm humid summers that provide ideal conditions for mosquito 

amplification and efficient virus transmission. There is also serological evidence of a West 

Nile-like virus circulating in birds in the UK, but no virus has been isolated and no disease in 

people has been recorded, probably due to lack of local vector permissibility (Bakonyi et al., 

http://www.who.org/
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2005). Another virus related to JEV is St Louis encephalitis virus (SLEV), but this has only 

been isolated in the Americas. The virus was possibly transported from Africa on ships 

crossing the Atlantic (Gould et al., 2003). Epidemics affecting up to 800 people per 100 000 

in the population arise every 5–15 years with overall case fatality rates about 7%. Patients are 

affected by age, with highest rates for the elderly. This virus asymptomatically infects birds, 

implying that this relationship between birds, mosquitoes, and the virus has existed for some 

time (Gould and Solomon, 2008). Among the tick transmitted flaviviruses, tick-borne 

encephalitis virus (TBEV) and its relatives can produce mild febrile illness, biphasic fever, 

encephalitis, and even haemorrhagic fever in humans (Gritsun, Nuttall, and Gould, 2003). 

They circulate fairly harmlessly in rodents and birds in forests, moorlands and Steppe regions 

of Europe and Asia. The virulent southeast Asian strains have been reported as far west as 

Latvia and Estonia, possibly carried from the east by migratory birds (Gritsun, Nuttall, and 

Gould, 2003). 
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Virus Location of 
isolation 

Geographic 
distribution 

Principal 
vector species 

Principal host 
species 

Human 
disease 

Alkhurma Saudi Arabia Arabian 
Peninsula? 

Ornithodorus 
savignyi? 

Human beings, 
sheep, camels 

Haemorrhagic 
fever 

Apoi Japan Japan Unknown Rodents? Encephalitis 
Bagaza Central African 

Republic 
Africa Culex spp Unknown Fever 

Banzi South Africa Africa Culex spp Unknown Fever 
Bussuquara Brazil Brazil Culex spp Unknown Fever 
Dakar bat Senegal Africa Unknown Bats? Fever 
Dengue 1 Hawaii Tropics, 

subtropics 
Aedes aegypti Human beings Fever, rash, 

vasculopathy 
Dengue 2 New Guinea Tropics, 

subtropics 
Aedes aegypti Human beings Fever, rash, 

vasculopathy 
Dengue 3 Philippines Tropics, 

subtropics 
Aedes aegypti Human beings Fever, rash, 

vasculopathy 
Dengue 4 Philippines Tropics, 

subtropics 
Aedes aegypti Human beings Fever, rash, 

vasculopathy 
Ilheus Brazil South and 

Central America 
Culex spp? Birds Fever 

Japanese 
encephalitis 

Japan Asia Culex trita-
eniorhynchus 

Birds Encephalitis 

Koutango Senegal Senegal Unknown Rodents? Fever, rash 
Kyasanur 
Forest 
disease 

India India Haemaphysalis 
spinigera 

Monkeys Haemorrhagic 
fever 

Langat Malaysia Malaysia, 
Thailand, Siberia 

Ixodes 
granulatus 

Unknown Encephalitis 

Louping ill Scotland UK, Ireland Ixodes spp Sheep, grouse, 
hares 

Encephalitis 

Modoc USA USA Unknown Peromyscus 
maniculatus 

Encephalitis 

Murray 
Valley 
encephalitis 

Australia Australia, New 
Guinea 

Culex 
annulirostris 

Birds Encephalitis 

Ntaya Uganda Africa Mosquitoes Unknown Fever 
Omsk 
haemorrhagi
c fever 

Russia Western Siberia Dermacentor 
pictus 

Muskrats, 
rodents? 

Haemorrhagic 
fever 

Powassan Russia, USA, 
Canada 

Russia, USA, 
Canada 

Ixodes spp Small mammals Encephalitis 

Rio Bravo USA USA, Mexico Unknown Tadanida 
braziliensis 
mexicana 

Fever 

Rocio Brazil Brazil Culex spp? Birds Encephalitis 
St Louis 
encephalitis 

USA South and 
Central America 

Culex spp Birds Encephalitis 

Sepik New Guinea New Guinea Mosquitoes Unknown Fever 
Spondweni South Africa Africa Aedes 

circumluteolus 
Unknown Fever 

Tick-borne 
encephalitis 

Russia Europe, Asia Ixodes spp Rodents? Encephalitis 

Usutu South Africa Africa Mosquitoes Birds Fever, rash 
Wesselsbron South Africa Africa, Asia Aedes spp Unknown Unknown 
West Nile Uganda Worldwide Mosquitoes, 

ticks 
Birds Encephalitis 

Yellow fever Ghana Sub-Saharan 
Africa, South 
America 

Aedes 
spp/Haemagog
us spp 

Monkeys Pantropic 

Zika Uganda Africa, Asia Aedes spp Monkeys? Fever, rash 
 

Table 1.2. Arboviruses belonging to the Flaviviridae family. Pathogenesis, vectors 

and distribution. 
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Togaviridae 

The Togaviridae family contains two genera, the alphaviruses and the rubiviruses, however, 

only the alphaviruses are considered arboviruses. Currently, there are 29 known alphaviruses, 

each of them with several variants and strains. They are distributed around the world and 

grouped by geographic Old World and New World virus distribution. Alphaviruses have a 

large host and cell range tropism and can cause a broad range of veterinary and human 

diseases. In general the geographical distribution can be associated with the onset of illness 

produce by each of the viruses (Peters CJ, 1990) (Fig.1.2). New World alphaviruses tend to 

cause encephalitis whereas Old World alphaviruses tend to cause arthritis and rashes. 

Exceptions to this rule are Sindbis virus (SINV) and Semliki Forest virus (SFV) which can 

cause neurological disease in mice, and Ross river virus (RRV) and chikungunya virus 

(CHIKV), which cause neurological pathologies in humans (Zacks and Paessler, 2010). 

Alphavirus morphology and replication strategies will be discuss in the next section of this 

chapter. Alphaviruses are not only of interest due to their pathogenicity to humans and 

domestic animals, but also for their potential role as gene therapy vectors and their possible 

weaponization into bioterrorism agents (Lundstrom, 2003; Sidwell and Smee, 2003).  
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Fig.1.2. Phylogenetic tree of alphaviruses. Genetic analysis was done based on the E1 

protein. New World (EEE, WEE, VEE) and Old World Complexes (SFV, SINV, CHKV) can 

be distinguished. Adapted from (Powers et al., 2001). 

 

WEEV, VEEV, and EEEV can cause periodic epidemics in the Americas. The virus is 

maintained in the wild between rodent (WEEV and VEEV) and bird (EEEV and WEEV) 

reservoirs by Culex, Culiseta and Aedes mosquito species. Spillover to horses and humans 

produces epidemics in endemic countries. While all three viruses (EEEV, WEEV, and 

VEEV) cause encephalitis in horses and humans, their virulence and incidence vary greatly 

within these hosts. EEEV is the most virulent of the equine encephalitis trio with human case-

fatality rates estimated to be in the range of 50% to 70% and horse case-fatality rates are 

estimated at 70% to 90% (Zacks and Paessler, 2010) However, EEEV has the lowest 

incidence of human cases of the three with only 257 confirmed human cases occurring in the 

United States from 1964 to 2008 (Weaver and Reisen, 2010). At the moment, there are no 

human vaccines approved against any of these viruses, however, there are some promising 

ones under development (Zacks and Paessler, 2010). Several equine vaccines exist in 
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endemic countries, but these do little to prevent spread since horses are not their primary 

vertebrate reservoirs (Hollidge, González-Scarano, and Soldan, 2010). 

CHIKV is an Old World alphavirus that has re-emerged in the form of outbreaks in the last 

decade (Schuffenecker et al. 2006, Pialoux et al. 2007) (Fig.1.2). In Makonde language, 

chikungunya means “that which bends up” which describes the painful, contorted posture 

shown by those who are infected with this arbovirus. In its endemic African transmission 

cycle, CHIKV relies on wild primates and small rodents. CHIKV is transmitted by aedine 

species; Ae. aegypti and Ae. albopictus are the main vectors in Asia where the virus is 

maintained in an urban amplification cycle (Kumar et al. 2008). In the past decade, a 

mutation (A226V) in the viral envelope (E1) glycoprotein increased the infectivity of CHIKV 

for A. albopictus and resulted in an outbreak on the island of La Reunion in the Indian Ocean 

(Vazeille et al., 2007). During the 2005–2006 La Reunion outbreak, as many as 40% of the 

785,000 inhabitants were infected with CHIKV. The epidemic subsequently spread to the 

Indian subcontinent where outbreaks involving nearly 1.5 million people occurred in India, 

before expanding to South East Asia, and afterwards to Europe (Charrel and de Lamballerie, 

2008; Krishnamoorthy et al., 2009; Nandha and Krishnamoorthy, 2009). Worryingly, during 

the last decade epidemic CHIKV virulence increased causing encephalitis in some elderly 

and infant patients (Robin et al., 2008).  
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Fig.1.3. Global distribution of CHIKV. Blue circles indicate historical distribution 

of CHIKV in countries where the virus has been identified by virus isolation or 

serological evidence. Red circles indicate global re-emergence within the past 

decade. The number of cases, when available, is given in parentheses, along with 

dates of outbreak. Adapted from (Burt et al.) (www.who.org). 

 

Alphaviruses: morphology, and replication cycle 
Alphaviruses are small enveloped viruses with positive single stranded RNA genomes of 

around 11.5 kb that encode 9 different proteins. The genome of these viruses is divided into 2 

distinct open reading frames; the larger 5’ ORF takes over two thirds of the genome and 

contains the non-structural genes that encode the replicase (nsP1-4) The 3’ ORF takes the 

remaining one-third of the genome and encodes the structural proteins that form the virus 

particle (capsid protein C, 6K, and the structural glycoproteins E1-E3) (Kaariainen et al., 

1987) (Fig.1.4). 

http://www.who.org/
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Fig.1.4. SFV genome. A typical alphavirus genome, with the replicase at the 5’ end of the 

genome and the structural proteins under a subgenomic promoter at the 3’ of the genome. The 

leaky stop-codon at position 5536 controls expression of the nsp4 polymerase. Adapted from 

(Firth et al., 2008).  

Alphaviruses enter the cell by receptor mediated endocytosis (Marsh and Helenius, 1980) 

The alphavirus receptor is probably laminin, which is present on a great variety of vertebrate 

and arthropod cells (Strauss et al., 1994). Once the virus has bound, an active clathrin-

dependent endocytic pathway is required for successful infection (DeTulleo and Kirchhausen, 

1998). The endocytosed vesicle fuses with an endosome and then a lysosome so that the 

contents can be broken down (Strous and Govers, 1999). The interior of lysosomes becomes 

an increasingly acidic environment due to lysosome maturation. This low pH induces a 

conformational change in the glycoprotein spike complexes allowing the virus to fuse with 

the lysosome membrane and release the virus genome into the cytosol (Marsh and Helenius, 

1980). The viral genome is capped and polyadenylated, so once the virus genome is released 

into the cytosol, it is treated as cellular mRNA by cellular translational machinery. 

Translation begins at the 5’ end and the nsPs are produced as a single polyprotein. In many 

alphaviruses, including SINV, that an opal termination codon exists between nsp3 and nsp4. 

This produces a translational preference for an nsP123 polyprotein rather than the longer 

nsP1234 polyprotein. Readthrough can only occur at a low frequency (10-20 %). This is one 

mechanism which small simple viruses use for regulating the translation of specific genes, in 

this case the RNA-dependent RNA polymerase (nsP4). However, in some alphaviruses, like 

SFV, this opal codon is generally replaced by a codon for arginine, except in the SFV A7(74) 

strain. It is suggested that the opal codon may be responsible for the attenuation of SFV 

A7(74) as the replacement of the opal codon with arginine increases the virulence of SFV 

A7(74) (Tuittila et al., 2000). This results in a higher proportion of the nsP1234 polyprotein 

being made (Takkinen, 1986) (Hardy and Strauss, 1988). The polyprotein is cleaved into its 

individual peptides by the protease nsp2 (Merits et al., 2001). This processing reaction always 
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occurs in the same order and there is a lag period between each cleavage event. The viral 

polymerase nsP4 is processed almost immediately, followed by nsP1, nsP2 and nsP3 

separately (Kim et al., 2004).  

 

Fig.1.5. Early and late processing of the SFV non-structural polyprotein. (A) Early in 

infection the polyprotein is associated and produces new genomes. (B) Late in infection, the 

polyprotein is disassociated and transcripts from the subgenomic promoter are favoured. 

From (Vasiljeva et al., 2003). 

Once the non-structural proteins have been processed, they stay together forming a 

replication complex that can make copies of the viral genome. Interestingly, timing of the 

processing of the polyprotein dictates which ORF transcription that takes place. A complex of 

the nsP123 polyprotein and cleaved nsP4 efficiently produce a negative strand RNA 

antigenome using the whole positive strand genome as a template. Once nsP1 is processed 
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and cleaved from the polyprotein, and especially after nsP2 and nsP3 are processed, the 

complex loses its affinity for making negative strand genomes and concentrates on making 

positive strand RNA genomes using the antigenomes as a template. Transcription of the 

positive strand RNA can start at the 3’ end so that the whole strand is transcribed or 

alternatively it can start at the subgenomic promoter located upstream of the structural genes. 

The subgenomic RNA can be translated separately to make the structural proteins 

(Kaariainen et al., 1987; Kim et al., 2004). 

Each of the nsPs is multifunctional and they are all crucial to virus genome replication, nsP1 

is known to have methyl and guanyl-transferase activity, and it caps newly made viral 

genomic RNAs (Mi et al., 1989; Scheidel & Stollar, 1991). This protein also coats the interior 

of vesicles, localising the virus genome (to which it is attached) to these cytoplasmic 

vacuoles that hold alphaviruses replication complexes during infection (Kujala et al., 2001; 

Spuul et al., 2007) At the cytoplasmic vacuoles, the membranes invaginate inwards to form 

spherules, in which the replication of virus RNA takes place (Kujala et al., 2001). 

The protease nsP2, as mentioned before, is responsible for the processing of the virus 

polyprotein. However, nsP2 is known to have other functions including NTPase and helicase 

activity (Rikkonen, Peranen, and Kaariainen, 1994). The nsP1 protein needs the association 

of nsP2 for the capping of newly made RNA, through its RNA triphosphatase activity (Merits 

et al., 2001). More importantly, nsP2 has been shown to be an antagonist of cellular 

interferon (IFN) production (Breakwell et al., 2007) and has also been shown to be cytotoxic 

when expressed individually from an expression vector. Studies in SINV attribute the 

cytotoxic effect of nsP2 to its ability to cause a shutdown of transcription, however, this 

mechanism remains unknown (Garmashova et al., 2006). Mutations in SFV nsP2 can reduce 

virus cytotoxicity, although this can often be due to a reduction in RNA synthesis and viral 

replication rather than a direct cytotoxic effect of nsP2. 

nsP3 is a phosphoprotein but its function is as yet unclear. Although some research suggests 

it plays a role in minus strand synthesis (De et al., 2003; Peranen et al., 1988; Wang et al., 

1994) other studies suggest it has a role in creating the viral replication vesicles in the cellular 

membranes (Fros et al., 2012). nsP3 has also been associated with the mammalian protein 

G3BP and the mosquito homologue, Rasputin. Both of these factors are essential for the 

assembly of stress granules (Fros et al., 2012). As mentioned before, nsP4 is the RNA 

dependent RNA polymerase that is essential for virus genome replication. The nsP4 protein 
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has also been shown to have protease activity as it contributes to its own cleavage from nsP3 

(Kaariainen et al., 1987). 

Once the subgenomic RNA is transcribed, translation of the structural proteins in this ORF 

begins. As with the non-structural proteins, the structural proteins are translated as a 

polyprotein. The capsid protein has self-peptidase activity and cleaves itself from the 

polyprotein very quickly (Kaariainen et al., 1987). The p62 protein and the E1 glycoprotein 

are preceded by a signal sequence and a transmembrane domain, which directs the synthesis 

of the following polyprotein to the ER (Bonatti et al., 1984; Melancon and Garoff, 1986). The 

ER and golgi then process the proteins and traffic them to the cell membrane. The processed 

glycoproteins then embed into the cell membrane while the capsid proteins assemble. The 

capsid proteins interact with a packaging signal present on the virus RNA genome and this 

initiates assembly of the nucleocapsid core (Geigenmuller-Gnirke et al., 1991). The 

nucleocapsid then interacts with the cytoplasmic tail of the E2 protein and which induces 

budding of the virus particle (Lopez et al., 1994). The 6K protein is important for the correct 

assembly of budding particles and if absent, virus particles are still made, however, they have 

incorrect glycoprotein spike-like structures and reduced infectivity (McInerney et al., 2004). 
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SFV 
Semliki Forest virus (SFV) is an alphavirus occurring in sub-Saharan Africa and it was 

originally isolated from Aedes abnormalis mosquitoes in 1942 in the Semliki Forest in 

Uganda, hence its name (Smithburn, Haddow, and Mahaffy, 1946). SFV is mainly 

transmitted by two species of Aedes mosquitoes, Aedes africanus and Aedes aegypti (Mathiot 

et al., 1990). Natural hosts included monkeys and small mammals, however, horses and 

humans have been reported to be dead end hosts. In human this virus causes a mild febrile 

illness with symptoms including fever, myalgia, arthralgia and persistent headaches. Only 

one lethal SFV infection has been documented in humans; a laboratory worker in Germany, 

who was probably immunocompromised, was infected with a strain of SFV that has now 

been removed from laboratory circulation (Willems et al., 1979). In 1987, SFV was isolated 

from blood samples of 22 French soldiers with symptoms of a mild febrile illness (Mathiot et 

al., 1990). There are several strains of this virus that infect experimental animals including; 

mice, rats, rabbits and guinea pigs (Bradish, Allner, and Maber, 1971). Originally, two cell 

lines were found to be permissive for SFV infection and they were commonly used for in 

vitro studies (Atkins, Sheahan, and Mooney, 1990), chicken embryo fibroblasts (CEFs) and 

baby hamster kidney (BHK-21) cells. However, this virus has the ability to infect many other 

cell types, from Vero cells to mosquito and tick cells (CJ Leake, 1980; Peleg, 1971). SFV 

infection of laboratory mice is a useful model for the study of viral induced pathogenesis and 

encephalitis (Fazakerley, 2004). There are five strains of SFV which have been studied in 

detail in mammals. The strains known as L10 and prototype are virulent in adult mice 

(Seamer, Randles, and Fitzgeorge, 1967) (Bradish, Allner, and Maber, 1971). A7, A7(74) and 

SFV4 strains are avirulent in adult mice and virulent in neonatal mice (Pusztai, Gould, and 

Smith, 1971) (Atkins, 1983). Age dependent death for mice with avirulent SFV strain is 

unclear. It has been suggested that susceptibility of neurons to undergo apoptosis in response 

to SFV infection might play a role in this process (Fazakerley, 2002). Multiple sequence 

differences have been found between virulent and avirulent strains. These differences occur 

in the nsP2 and nsP3 genes of the replicase as well as in the E2 glycoprotein which have been 

implicated in mammalian neuropathogenicity (Fazakerley, 2002; Santagati et al., 1995; 

Santagati et al., 1998; Tuittila et al., 2000). So far only two strains of SFV have been 

investigated in mosquito cell culture systems, SFV4 and SFV-A7(74).  

SFV infection of mosquito cell culture is characterised by a viremic acute phase, followed by 

a decline and persistent phase (Siu et al., 2011b). During SFV infection of Ae. albopictus 
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derived U4.4 cells, the number of cells in the culture does not vary from an uninfected 

culture. The decline in virus production after the acute phase is possibly due to the cellular 

innate immune response, in particular RNAi, although SFV is known to interact and even 

inhibit some of the other cellular immune signalling pathways (Fragkoudis et al., 2008c). The 

specifics of how SFV interacts with the mosquito cell innate immune system will be 

discussed later in this chapter. SFV has proven a very valuable laboratory arbovirus model 

for investigating innate immune responses against arboviruses (Fragkoudis et al., 2008c; Siu 

et al., 2011b). 

 

SFV as a model and a tool 

The genome of SFV is a typical alphavirus genome; it contains only 9 genes and has a total 

size of 11.5 Kb. Alphaviruses are often used as viral vectors to express foreign genes in cells. 

SFV vectors have been developed as vaccine delivery systems and for therapeutic gene 

therapy (Atkins, Sheahan, and Liljestrom, 1996; Hoffmann et al., 2001; Lundstrom, 2003). 

Infectious DNA clones can be created and manipulated using SFV complementary 

deoxyribonucleic acid (cDNA). Foreign genes can be inserted into specific locations and then 

expressed efficiently upon infection of mammalian or mosquito cells. As will be described in 

Chapter 5, the SFV genome can be engineered with a ZsGreen attached to nsP3 or a Renilla 

luciferase (RLuc) gene cleaved from the same protein by a cellular peptidase. More 

excitingly, a second subgenomic promoter could be added to the SFV genome to express a 

foreign gene in large amounts (Tamberg et al., 2007). 

Biosafety of recombinant SFV systems can be increased by using replication deficient vectors 

which only undergo one round of infection. SFV replicons are structurally identical to normal 

SFV but the encapsidated genome lacks sequences for the structural genes. A foreign gene 

sequence can be substituted in its place for example, a sequence coding for a short half-life, 

enhanced green fluorescent protein (d1eGFP). The inserted foreign gene (d1eGFP) is under 

the control of the virus subgenomic promoter and is expressed when the structural proteins 

would normally be expressed (Smerdou & Liljestrom, 1999). 

SFV is closely related to CHIKV, however, it lacks the pathogenicity of this virus. Therefore, 

SFV can be used as a model in a lower biosafety level. 
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Arthropod vectors 
As mentioned in this introduction, many arthropods are potential or proven arboviral vectors, 

this includes mosquitoes, ticks, midges and sandflies. In this study, in vitro experiments were 

carried out with Ae. albopictus derived cells whereas in vivo experiments were done with Ae. 

aegypti Liverpool red eye strain mosquitoes optimised for filarial growth, that were kindly 

provided by R. M. Maizels and Y. Harcus (Institute of Immunology and Infection Research, 

University of Edinburgh).. In the following section the intricate aspects of the Ae, albopictus 

ecology and interactions with the virus will be discussed. 

 

Ae. albopictus: classification, geographical distribution, life cycle and disease 
transmission 
The common name of Ae. albopictus is the Asian tiger mosquito. This name could refer to the 

spotty pattern (albopictus = white painted) or also to its high level of aggression (Skuse, 

1894). Although it originated in tropical Asia, it can now be found in Europe, the Americas, 

Africa and a number of locations in the Pacific and Indian Oceans (Paupy et al., 2009). A. 

albopictus geographical spread has occurred in the last three decades, following the spread of 

Ae. aegypti and previously Culex pipiens. All of these cases are examples of competent 

mosquito vectors spreading due to human action (Lounibos, 2002). Initially, the spread of Ae. 

albopictus was considered a reminder of the impact of globalization and a minor public 

health threat. Ironically, Ae. albopictus was also considered as a potential way to control Ae. 

aegypti, because of the competition between both species. However, its vector status 

drastically changed due to the CHKV epidemic during 2006-2007 in the Indian Ocean, Africa 

and Italy, when it became the interest of extensive of research (Mavalankar et al., 2008; 

Nandha and Krishnamoorthy, 2009; Robin et al., 2008).  

In the forest of Southeast Asia where it originated, A. albopictus was most probably 

zoophilic. However, it is likely that it slowly became anthropophilic due to changes in habitat 

and the availability of new blood sources such as domestic animals and humans. This process 

is known as domestication, and it has been also reported for Ae. aegypti in Africa 

(Tabachnick, 1991). These days, Ae. albopictus dwells in rural and suburban areas of Asian 

cities, such as Kuala Lumpur, Singapore and Tokyo (Paupy et al., 2009). Spread from 

Southeast Asia was facilitated by intercontinental travel. It has been suggested that Ae. 

albopictus was introduced into the USA in a shipment of tires in 1985 (Hawley et al., 1987; 



Chapter 1 Introduction 

23 
 

Reiter and Sprenger, 1987). Since then Ae. albopictus has colonized most of the Americas, 

from USA to Argentina, the Pacific Islands and Australia. In 1989 it made its way to South 

Africa and then later to Nigeria, Cameroon, Equatorial Guinea and Gabon. In Europe it was 

first detected in Albania in 1979 and later it extended to the rest of the Balkan peninsula, 

Italy, France, Switzerland, Netherlands and Spain (Scholte, 2007). 

Ae. albopictus success is due to its physiological and ecological plasticity. It can survive 

colder northern climates much better than Ae. aegypti (Mitchell, 1995). A comparison 

between Ae. albopictus and Ae. aegypti vectors will be discussed later. Ae. albopictus is also 

very adapted to live in a range of environments, from tropical jungles, to dense urban areas 

(Paupy et al., 2009). It is a daytime biter and has a wide range of hosts, from reptiles and 

amphibians, to birds and mammals (Scholte, 2007). However, unlike Culex pipiens, it prefers 

to feed on humans in urban areas rather than on birds or other warm-blooded animals 

(Munnoz et al., 2011). Due to the wide range of habitat, Ae. albopictus was initially 

suggested as a ‘bridge vector’ for the transmission of emerging viruses between animals and 

humans, and Ae. aegypti would maintain these viruses in the urban cycle. However, it is now 

understood that Ae. albopictus can also keep urban cycles of arboviral diseases (Delatte et al., 

2008; Paupy et al., 2009).  

  

Fig.1.6. Aedes albopictus at different life stages. Adult female taking a blood meal 

from a human (left) Third and fourth instar larvae (right)(www.vectorbase.org) 

(Paupy et al., 2009). 

 

http://www.vectorbase.org/
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The ability of Ae. albopictus to act a vector has been experimentally proven for 26 viruses 

belonging to the Bunyaviridae, Flaviviridae, Reoviridae and Togaviridae families (Gratz, 

2004; Moore and Mitchell, 1997). However, only 14 viruses have been isolated in the wild 

from these mosquitoes: six flaviviruses (DENV1-4, WNV, JEV), two alphaviruses (CHIKV 

and EEEV) and six bunyaviruses (Potosi virus, Tensaw virus, Keystone virus, La Crosse 

virus and Jamestown Canyon virus). However, to the date, Ae. albopictus only plays a 

significant role in the transmission of DENV and CHIKV (Paupy et al., 2009). Even if Ae. 

albopictus can cause epidemics of DENV, Ae. aegypti is the major vector. However, it is 

clearly the CHIKV outbreaks of the last decade where Ae. albopictus becomes of interest as 

the main vector of the disease (Angelini et al., 2007a; Leroy et al., 2009; Pastorino et al., 

2004). Vector competence was achieved by just a single adaptive mutation in the E1 gene (a 

valine residue replacing alanine at position 226) probably by sporadic contact between the 

virus and Ae. albopictus (de Lamballerie et al., 2008). This mutation provided a selective 

advantage for the transmission, replication and vector competence of the new CHIKV strain 

by Ae. albopictus (Vazeille et al., 2007). This enabled the virus to expand its geographical 

range across the Indian Ocean to other places where Ae. albopictus was present. The 

repercussions of the CHIKV endemic area expansion were discussed in the alphavirus section 

of this chapter.  

The spread of Ae. albopictus transmitted diseases around the globe is affected by several 

factors like climate, environment, globalization and mosquito control (Paupy et al., 2009). It 

is expected that Ae. albopictus transmitted disease will expand, especially in Central America 

and sub-Saharan Africa, since there are a high number of potential niches for this species and 

a number of transmissible diseases that are endemic in those areas, such as YFV (Benedict et 

al., 2007). Climate can be considered a secondary factor for the spread of Ae. albopictus, 

even in the presence of climate change. This mosquito is adapted to extremely variable 

temperature ranges, although, colder temperatures have been correlated with lower arboviral 

transmission rates in Ae. albopictus as vertical transmission reduces vector and viral fitness 

(Lambrechts and Scott, 2009). Historically, YFV and DENV infections occurred further north 

than in recent times, like Brest in France, Glasgow in Scotland and Boston in the USA 

(Barrett, 2000). Environmentally Ae. albopictus is very adaptable and in larval stages it 

outcompetes other Aedes species. As adults they adapt their feeding to almost any animal 

available in that area (Delatte et al., 2008). Globalization is perhaps the factor that 

predominately affects the spread of Ae. albopictus, as was mentioned before, due to the 
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transport of merchandise (tires in the US or potted plants in Holland’s greenhouses)(Hawley 

et al., 1987; Reiter and Sprenger, 1987; Scholte, 2007). 

It can be concluded that geographical expansion of Ae. albopictus will increase in the next 

coming years. Moreover, even in the temperate areas where this vector has been established, 

the R0 transmission value is known to be rising near to one, creating the opportunity of 

human to human transmission (Angelini et al., 2007b).  

 

Interactions between aedine mosquitoes 
It is interesting to notice that in areas where both Ae. aegypti and Ae. albopictus exist, both 

species share the same larval rearing niches. In Central Africa and the Americas there are 

some urban and suburban habitats where both species co-occur (Braks et al., 2004; Juliano, 

Lounibos, and O'Meara, 2004; Simard et al., 2005). However, there is a trend that will 

eventually result in the disappearance of Ae. aegypti from areas where these two species of 

mosquitoes co-exist (Bagny et al., 2009a; Bagny et al., 2009b). This displacement of the 

endemic Aedes species has been observed in many countries after the introduction of Ae. 

albopictus. The most likely reason is the competition for the available food among the larvae 

(Paupy et al., 2009). Experiments addressing this hypothesis have been done both in 

laboratory conditions and in the field, however, the question has remained inconclusive, most 

probably due to the experimental conditions and the use of laboratory mosquito strains for 

these studies. The use of artificial food in laboratory experiments has demonstrated a 

significant advantage of Ae. aegypti in the USA and Asia, where this species is an invader 

(Barrera, 1996; Moore and Mitchell, 1997). However, other similar field studies taking place 

in the USA have suggested the opposite, that Ae. albopictus is favoured over Ae. aegypti  due 

to larval competition over limited food sources (Juliano, Lounibos, and O'Meara, 2004). It 

has been suggested that Ae. albopictus is responsible for the decline of local Brazilian 

populations of Ae. aegypti twenty years after this mosquito was introduced to the country, 

which was confirmed by field and laboratory container studies in this country (Braks et al., 

2004).  

One interesting aspect that should be highlighted is that larval competition between both 

species increases arbovirus transmission. Studies suggest that for Ae. albopictus mosquitoes 

that competed at larval stages with Ae. aegypti have higher infection rates and SINV titres 

than those that did not (Alto et al., 2005). The same was reported with DENV in a similar 
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study (Alto et al., 2008). The difference was only significant in Ae. albopictus, and species 

competition played no role in the increase of arbovirus transmission in Ae. aegypti 

mosquitoes. Vector competence enhanced by species competition is suggested to occur as a 

result of a physiological barrier reduction and could contribute to the efficiency of Ae. 

albopictus in transmitting DENV. 

Ironically, it has been suggested that Ae. albopictus could be introduced to control of Ae. 

aegypti populations due to its lower vector competence. Events in the past decade proved this 

statement wrong and luckily the idea was not put in practice. Understanding the mechanisms 

of vector competence as well as the molecular relations and adaptations between the virus 

and the mosquito are key when formulating strategies for controlling arboviral infections.  

 

Mosquito life cycle 
There are four stages to the mosquito life cycle: egg, larva, pupa and adult. Female Ae. 

aegypti become fecundated before taking a blood meal and start initiating the process of egg 

production. However, this process is arrested at the vitellogenesis step (synthesis of yolk 

protein precursors) until the female has found a host and taken protein rich blood. Taking a 

blood meal involves drastic changes in the female mosquito physiology. A large number of 

genes are induced which include digestive enzymes, as well as the creation of a series of 

membranes around the midgut. Gene induction also lifts the repression on yolk protein 

precursor genes (YPPs) once blood feeding has taken place (Attardo et al., 2003). Male 

mosquitoes only feed on sugar rich plant nectar and do not require a blood meal. A female 

mosquito can lay several hundred fertilised eggs on the surface of water in tree holes, or other 

water-holding containers. Eggs can be clustered or dispersed depending on the species of the 

mosquito. In some mosquitoes eggs can survive desiccation and other extreme weather 

conditions, hatching only when the environment is appropriate. Mosquito larvae can hatch 

from the eggs as soon as within 24 hours. The larvae feed on plant material, algae, bacteria, 

and other micro-organisms. Domesticated larvae kept in an insectary can be fed on 

commercial chicken liver powder or yeast extract. The larvae take 7-14 days before moulting 

into pupae. Mosquito pupae spend 1-4 days transforming into adult mosquitoes 

(metamorphosis) and then leave the pupal case. 
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Virus infection and dissemination in mosquitoes 
Arboviruses have to undergo replication in the mosquito vector in order to be efficiently 

transmitted between vertebrate hosts. The virus has to pass several physical and 

immunological barriers between the blood meal and secretion from the salivary glands. 

Initially, arboviruses are ingested by the mosquito through a blood meal from a viraemic host. 

The viral titres of this infectious blood meal vary between hosts and viruses but it is usually 

considerably high, with an average of 107 PFU per ml of blood (Weaver, 1997). Viral titre, as 

well as number of feeding sessions, increases the virus infection rate of the vector. Once the 

viral infected blood meal has entered the mosquito, it is digested in the midgut. The arbovirus 

has to be able to infect the midgut cells. This step is restricted by the receptors in the midgut 

cells, as well as by digestive enzymes which process the virus glycoproteins (Tchankouo-

Nguetcheu et al., 2010). The mosquito midgut is the major barrier for pathogen transmission. 

After entering the midgut cells, sufficient replication must then occur for the virus to enter the 

heamocoel (Woodring JL, 1996). Between the midgut and the haemocoel there are two 

different tissues known as the matrix and the basal lamina that the progeny virus has to cross. 

Midgut basal lamina is a porous cell barrier impermeable to arboviruses (Romoser et al., 

2005). The matrix is a temporary membrane that the mosquito creates around the midgut after 

taking a blood meal and it is also impermeable to arboviruses (Kato et al., 2008). It is 

suggested that arboviruses, when infecting these tissues, can change cell morphology and 

attachment, inducing motility of the cells thus disrupting and permeabilising these barriers by 

the use of matrix metalloproteinases (Wang et al., 2008b). Arboviruses can then infect other 

tissues such as the fat body and the muscle surrounding the alimentary tract and be 

distributed through the body of the vector by the haemolymph (infection of haemocytes) or 

by infecting tracheal tissue (Woodring JL, 1996). Finally, the virus reaches the salivary 

glands where it replicates at a higher titre than it does in other tissues (Arcà et al., 2007; 

Valenzuela et al., 2002). The reason for these higher salivary gland viral titres is still 

unknown. Viruses are then exported to the saliva and they can be transmitted to another 

vertebrate host following a bite and a bloodmeal. 

One interesting aspect of the arbovirus cycle in mosquitoes is the suggestion of a change of 

behaviour in the successfully infected vector. Mosquitoes infected with several arboviruses 

have been reported to display increased motility, host-seeking behaviour even in the presence 

of repellents (DEET) and number of feeding sessions (Lima-Camara et al., 2011; Qualls et 

al., 2012a; Qualls et al., 2012b). Transcriptomic studies of DENV infected Ae. aegypti 
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females show an unusual upregulation of several olfactory proteins, which could be one of 

the mechanisms explaining how a virus can change vector behaviour (Das et al., 2010; Sim, 

Ramirez, and Dimopoulos, 2012). 

Mosquito cell lines 
In order to understand the most basic molecular mechanisms of arbovirus infection of 

mosquitoes several Aedes derived cell lines have been used. These cell lines are valuable 

tools and they were mainly derived from mosquito larvae. Three cell Ae. albopictus will be 

discussed as they are the most popular ones used in arbovirus studies. The origin of the Ae. 

albopictus and Ae. aegypti derived cell lines can be traced to common ancestral obscure 

cultures known as ‘Singh’ cells, the name of the scientist who started characterising them. 

These cell lines were formed by heterogeneous population of cell types cultivated from 

ground mosquito larvae. These cells were selected for arbovirus growth (Paul, Singh, and 

Bhat, 1969; Singh and Paul, 1968; Singh and Paul, 1969)  and their culture requirements were 

described. Cell cultures were also distributed and, occasionally, cloned (named C3, C6, C7, 

etc)  (Bhat and Singh, 1971; Singh, 1971). 

The most widely used Ae. albopictus derived cells are known as C6/36 (Igarashi, 1978). 

These cells were isolated from Singh cell lines from two different C6 cultures (SAAR from 

the USA and SAAK from Kobe, Japan). These two cultures were combined, propagated and 

selected in several stages for the growth of JEV and SINV (Igarashi, Sasao, and Fukai, 1973) 

(Stollar et al., 1975). In the final stages, clones were isolated in the presence of CHIKV 

serum (Igarashi, 1978). They were tested and selected for their yield of DENV (for all its 

serotypes) and CHIKV. Interestingly, the original clone of C6/36 showed, together with a 

much higher yield of DENV and CHIKV, cytopathic effects following infection by these 

viruses, in contrast to the original clone of (SAAR) cells. However, the cells later became 

persistently infected by these viruses and cytopathology was greatly reduced (Igarashi, 1979). 

Currently, these cells are used to grow arboviruses due to their high production yield. 

However, it has been recently described that these cells have a dysfunctional RNAi pathway 

due to a truncation in the key protein Dicer-2, hence the higher viral yield (Brackney et al., 

2010). In these cells however, stimulation of the Imd pathway seems to have an antiviral 

effect (Avadhanula et al., 2009; Fragkoudis et al., 2008b). The role of the innate immunity 

pathways against arboviruses in mosquitoes will be described later in this chapter. 
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Another widely used Ae. albopictus derived cell line is known as C7-10. These cells also 

originated from Singh cell lines. They were selected as being temperature sensitive and 

produce higher yields of JEV, VSV and SINV (Sarver and Stollar, 1977). These cells were 

subcloned from the C7 culture known as LT C-7 and, as occurred with C6/36, the cytopathic 

effects of arboviruses in these cell lines were eventually eliminated. Interestingly, also like in 

C6/36, the Dicer-2 protein of the antiviral RNAi in this cell line also seems to be defective 

due to a deletion, although not as extensively as in C6/36 (Brackney et al., 2010). 

The final widely used Ae. albopictus cell line, and which was used in this study, is U4.4. 

These cells are considered the direct ancestral descendent of the Ae. albopictus derived Singh 

cells, without suffering any subcloning (Bhat and Singh, 1971; Gliedman, Smith, and Brown, 

1975; Miller and Brown, 1992) These cells share the ancestral culture heterogenicity of cells 

with different morphology. U4.4 cells have also shown a reduction of virus release overtime 

when infected with SINV, unlike C6/36 and C7-10 cells. Millter and Brown also observed 

that, even with reduced viral production, most of the cells remained persistently infected in 

the culture. These cells were used for the study in this thesis since they have intact innate 

immunity signalling pathways (Fragkoudis et al., 2008c). 

As was mentioned before, the initial arboviral infection of mosquito cell culture starts with an 

acute phase and a high titre of virus produced. After 16 hours the virus enters a persistent 

phase with a reduction in titre. Bringing the virus infection from an acute to a persistent phase 

is mediated by the cellular innate immunity, which can strongly reduce viral replication and 

production without completely clearing the pathogen from the cell.   
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Innate immunity in mammals  
In vertebrates IFNs are the main player in controlling a viral infection and are a group of 

cytokines secreted by vertebrate cells. Type I IFN, IFNα and IFNβs are mainly produced by 

leukocytes and fibroblasts (Isaacs and Lindenmann, 1957). This production is triggered by 

pathogen recognition receptors (PRRs) which detect conserved foreign molecular motifs, 

Pathogen-associated molecular patterns (PAMPS), including surface glycoproteins, ssRNA, 

dsRNA and unmethylated CpG DNA-islands. There are two types of PRRs that are known to 

recognize viral PAMPS: Toll-like receptors (TLRs) which reside in the plasma membrane or 

the endosomal compartments and retinoic acid-inducible gene I (RIG-I)-like receptors, which 

reside in the cytoplasm (Alexopoulou et al., 2001; Foy et al., 2005).  

The TLR family is formed by up to 11 transmembrane proteins, of which six of them (TLR2, 

TLR3, TLR4, TLR7, TLR8 and TLR9) are known to have a role in antiviral immunity 

(Galiana-Arnoux and Imler, 2006). TLR2 and TLR4 can be activated by viral surface 

glycoproteins (Galiana-Arnoux and Imler, 2006); TLR7 and TLR8 are triggered by ssRNA 

(Wang et al., 2005b); TLR3 is engaged by extracellular dsRNA112; and TLR9 is activated by 

unmethylated CpG-containing DNA (Miller, Meng, and Tomai, 2008).  

TLRs include RNA helicases (such as MDA5 (melanoma differentiation-associated protein 5; 

also known as IFIH1), RIG-I and PKRs (dsRNA-dependent protein kinases) detect viral RNA 

in the cytoplasm (Baum and Garcia-Sastre, 2010). Since most arboviruses are ssRNA viruses 

that replicate with a dsRNA intermediate, potential sensors include TLR3, TLR7, TLR8 and 

the RLRs.  

Expression of antiviral gene products can trigger dramatic changes in the cell, such as the 

induction of mRNA degradation, translational shut-down and, in many cases apoptosis and 

death of the infected cell. Therefore, the INF response must be tightly controlled to avoid 

severe host damage (Randall and Goodbourn, 2008).  
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Innate immunity in arthropods/insects 
Arboviruses have to be able to replicate both in the vertebrate and invertebrate system. The 

interactions between the mosquito and the arbovirus are not always benign to the vector, 

although, infection of arthropod cell cultures usually develops into a persistent infection after 

an acute phase with high virus production. This efficient control of virus replication and 

production it is thought to be due to the innate immune system of the arthropod. Unlike 

vertebrates, arthropods do not have an INF response, although they are known to secrete an 

array of antiviral molecules and are known to have powerful antiviral cellular pathways. This 

topic has been extensively reviewed in (Fragkoudis et al., 2009), (Merkling and van Rij, 

2012) and (Blair, 2011). 

 

The Toll cascade 
Insects rely on the Toll pathway in order to mount an immune response against fungal 

pathogens and Gram-negative bacteria. Most of the advances in understanding this pathway 

have been carried out in drosophila, however, although it works in a similar way in 

mosquitoes, slight differences arise in the haemotophagus vectors that will be pointed out 

later. In drosophila, the Toll pathway shares similarities with vertebrate Toll-like receptor 

signalling (to whom gave its name) and Interleukin-1 (Lemaitre and Hoffmann, 2007). 

The Toll pathway in drosophila is triggered by Gram-positive bacteria and fungi through two 

different sets of receptors. The first set recognises PAMPs, such as fungal beta-glucans and 

Gram-positive lysine-type peptidoglycans by PRRs, in this case Gram-negative binding 

protein (GNBP)-1 and -3 for beta-glucans, and peptidoglycan receptor proteins (PGRP)-SA 

and PGRP-SD for Gram-positive bacteria cell walls (Gottar et al., 2002; Tauszig et al., 2000). 

The second receptor is the haemolymph protease Persephone, which can sense the proteolytic 

activity that occurs during microbial infection of the haemolymph and triggers a danger 

signal (Chamy et al., 2008; Gottar et al., 2006). Both sets of signalling cascades occur 

extracellularly and lead to the proteolytic cleavage of pro-Spatzle into the active signalling 

cytokine Spatzle, which subsequently binds to the transmembrane receptor Toll. An 

intracellular signalling cascade then allows the translocation of NF-κB like transcription 

factors to the nucleus. These factors are known as Dif (Dorsal-related immunity factor) which 

is present in adult flies, and Dorsal, present both in larvae and adults. Once in the nucleus, 

Dif and Dorsal bind to NF-κB transcriptional factors and they induce the transcription of 
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several genes, among them a specific set of antimicrobial peptides (AMP), such as 

drosomycin and Defensin (Fig.1.7) (Lemaitre and Hoffmann, 2007).  

In mosquitoes, the annotation of A. gambiae, C. quinquefasciatus and Ae. aegypti genomes 

has thrown some light onto the mechanisms of the Toll pathway in these insects 

(Bartholomay et al., 2010; Christophides et al., 2002; Holt et al., 2002; Nene et al., 2007; 

Waterhouse et al., 2007). It is known that mosquitoes lack Dif and that they solely rely on the 

Dorsal orthologue Rel1 to induce AMPs through this pathway. Ae. aegypti expresses two 

isoforms of the Rel1 protein, Rel1-A and Rel1-B, which cooperate to enhance gene 

expression (Shin et al., 2005). 

In addition to bacteria and fungus infection this pathway also has an antiviral role. Infection 

of flies by Drosophila X virus (DXV) induces production of drosomycin at levels comparable 

to those triggered by E. coli. In addition, mutant flies with defective Dif were more 

susceptible and succumbed to viral infection (RA et al., 2005). In DENV infected blood fed 

mosquitoes, microarray transcriptional profiling identified 240 genes that were up highly 

induced (Xi, Ramirez, and Dimopoulos, 2008). Among the up-regulated genes there were 

several components of the Toll pathway, such as Spatzle, Toll, Rel1 and AMP-like defensin. 

In the same study, when Toll adaptor protein MyD88 is silenced by RNAi, viral titres in the 

mosquito midgut increased which suggests the importance of this pathway in controlling 

DENV in Aedes aegypti mosquitoes. In WNV infected C. pipiens resulted in up-regulatation 

of an unknown Toll receptor (Smartt et al., 2009). Toll seems to play a role in antiviral 

immunity against flaviviruses, however, its role in alphavirus infection is unclear. SFV 

infection of Ae. albopictus derived U4.4 cells is not affected by Toll signalling (Fragkoudis et 

al., 2008c). In addition, another microarray study of SINV infected Ae. aegypti mosquitoes 

only detected a modest 1.8 fold induction of Rel1, and neither Rel1, nor other Toll related 

genes were up regulated in later time points (Sanders et al., 2005).  

 

The Imd cascade 

In drosophila, PGRP-LC and LE detect diaminopimelic (DAP) type peptidoglycans from 

Gram-negative bacteria and trigger the Imd pathway. The PGRP activated receptors do this 

by recruiting Imd and triggering an intracellular signalling cascade that proteolytically 

activates another NF-κB like factor, pro-Relish, into Relish by cleavage of its inhibitory IκB 

domain (Lemaitre and Hoffmann, 2007). Once activated, the Rel domain from Relish 
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translocates into the nucleus and induces transcriptions of AMPs such as Cecropin and 

Diptericin. As occurs with Toll, the end effectors molecules of this pathway are different in 

mosquitoes. The mosquito orthologue of drosophila Relish is known as Rel2 in A. gambiae 

and Ae. aegypti mosquitoes (Christophides et al., 2002; Waterhouse et al., 2007). While only 

two Rel2 isoforms exist in A. gambiae, in Ae. aegypti Rel2 occurs in three isoforms (short, 

long and IκB type) (Meister et al., 2005; Shin et al., 2002). Rel2-long is similar to 

drosophila’s Relish, it is the predominant isoform and contains histidine/glutamine-rich and 

serine-rich regions, Death domains, REL-homology domains and inhibitor-like IκB-like 

ankyrin. On the other hand, Rel2-short lacks both the ankyrin and Death domains. The IκB-

type consists solely of  an IκB domain (Shin et al., 2002).  

In drosophila two studies have linked Imd with antiviral immunity (Avadhanula et al., 2009; 

Costa et al., 2009). The first studies suggests that distinct branches of the Imd pathway 

contribute differently to antiviral immunity while activation of the Imd pathway and AMP is 

not related to gene induction in response to cricket paralysis virus infection (CrPV) of the fly 

(Costa et al., 2009). In the other study, transgenic drosophila expressing a SINV replicon and 

mutant flies of several components of the Imd pathway such as Relish, Imd, dFADD and 

Dredd showed higher viral RNA levels. In this study it was also observed that viral 

replication induces the Imd-dependent AMPs Dipterin and Metchnikowin (Avadhanula et al., 

2009). However, since SINV by definition does not leave the cells, thus does not trigger 

extracellular receptor, these genes could be cross activated by other mechanisms. It has been 

suggested that there might be undefined receptors detecting intracellular viral RNA and 

triggering the Imd pathway but no experimental evidence has been provided (Merkling and 

van Rij, 2012). 

In mosquitoes, Imd also has a role in controlling alphavirus infection. A. gambiae infected by 

injection with O’nyong’nyong virus (ONNV) showed upregulation of Imd pathway genes 

(Waldock, Olson, and Christophides, 2012), however, previous findings by this group in 

mosquitoes infected with ONNV by blood feeding does not show any upregulation of the Imd 

pathway, in fact a slight downregulation was observed (Sim et al., 2005). In addition, the 

same study also suggests that silencing key players in the Imd pathway, such as Rel2 and NF-

κB does not have any effect on ONNV titres (Sim et al., 2005). Gene expression profiles vary 

in these studies due to two different means of infecting mosquitoes with ONNV, however, 

blood feeding can be considered the most natural and less invasive method. SFV infection of 

Ae. albopictus derived U4.4 and C6/36 cells triggers induction of the Imd pathway, 
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moreover, the induction of this pathway has a negative effect in viral replication (Fragkoudis 

et al., 2008c). 

 

The JAK/STAT pathway 
This evolutionary conserved pathway was first studied for its role in drosophila development 

(Arbouzova and Zeidler, 2006; Luo and Dearolf, 2001; Zeidler, Bach, and Perrimon, 2000), 

however, it has also been linked with antimicrobial immunity (Agaisse and Perrimon, 2004; 

Agaisse et al., 2003; Buchon et al., 2009; Goto et al., 2010). The pathway is triggered in 

drosophila by the binding of a cytokine, belonging to the Unpaired (Upd) family to the 

receptor Domeless. Drosophila encodes only a single Jak kinase and a single Stat 

transcription factor, which, upon activation, dimerizes and translocates to the cell nucleus 

driving transcription of genes under promoters with Stat binding sites (Agaisse and Perrimon, 

2004). In A. gambiae this pathway is known to also be triggered by bacterial infection 

(Barillas-Mury et al., 1999) and Ae. albopictus STAT proteins have been characterized (Lin 

et al., 2004a). 

JAK/STAT is also known to have anti-viral properties. Drosophila C virus infection of the fly 

is known to trigger the pathway through replication, virus induced cell damage and through 

the production of cell debris (Dostert et al., 2005; Hedges and Johnson, 2008). Several 

orthologues of the key molecules of the JAK/STAT pathway (domeless, hop, Stat, PIAS, 

SOCS) have been identified in drosophila, A. gambiae and Ae. aegypti by comparative 

genomic studies (Souza-Neto, Sim, and Dimopoulos, 2009; Waterhouse et al., 2007; Zou et 

al., 2011). Transcriptomic studies show that DENV infection of Ae. aegypti upregulates the 

receptor Domeless as well as other Jak/Stat related genes up to 10 days after an infectious 

blood meal (Souza-Neto, Sim, and Dimopoulos, 2009; Xi, Ramirez, and Dimopoulos, 2008). 

Silencing of key genes of the pathway, such as hop, resulted in higher DENV titres in the 

midgut (Souza-Neto, Sim, and Dimopoulos, 2009). 
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Fig.1.7. Antimicrobial signalling pathways in drosophila. Based on (Merkling and van Rij, 

2012). 
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RNAi 
RNA interference (RNAi) is the most important antiviral pathway in insects (Blair, 2011). 

The insect antiviral immunity response has been characterised recently and it mainly consists 

of the exogenous RNAi (exo-RNAi). RNAi was first observed in plants in the early 1990s as 

a defence mechanism against transcriptional errors and it was named post-transcriptional 

gene silencing or virus induced gene silencing when directed against virus infection (Lindbo 

et al., 1993). It is now understood that both gene silencing processes belong to the same 

pathway, RNAi. The molecular trigger for the RNAi pathway is dsRNA as was revealed in 

studies in Caenorhabditis elegants and Drosophila melanogaster (Fire et al., 1998; 

Kennerdell and Carthew, 1998). Most of the knowledge we have about RNAi in insects has 

been discovered in drosophila and cultured cells. RNAi is, as it was mentioned before, 

generally the most important antiviral mechanism in insects. In order to mount a response it 

does not need transcriptional induction and it is still unclear if its activation induces 

transcription of antiviral genes (Campbell et al., 2008; Deddouche et al., 2008; Dostert et al., 

2005; Khoo et al., 2010). RNAi is triggered by intracellular detection of dsRNA by Dicer-2 

(Dcr-2). This molecule is an RNase III endonuclease that acts as a PAMP, recognising 

cytoplasmic dsRNA and cleaving it into small interfering RNAs (siRNAs) as a first step in 

the initiation of the RNAi pathway  (Bernstein et al., 2001). Dcr-2 cleaved siRNAs are 

usually 21 bp in length with 5’ phosphates and two nucleotide overhangs on the 3’ hydroxyl 

end (Elbashir et al., 2001; Siu et al., 2011b) . The siRNAs, together with Dcr-2 and R2D2 (an 

dsRNA binding proteins) are loaded into the RNA-induced silencing complex (RISC), which 

contains the key molecule Argonaute-2 (Ago2) in addition to probably many more, 

presumably uncharacterised proteins (Liu et al., 2003; Okamura et al., 2004). In the RISC 

complex one of the siRNA strands is unwound and degraded and the guide strand is used as a 

guide for recognition and annealing of complementary ssRNA sequences. Once a 

complementary sequence has been found and targeted, Ago-2 cleaves this transcript (Miyoshi 

et al., 2005; Schwarz et al., 2002; Schwarz, Tomari, and Zamore, 2004). RNAi drastically 

inhibits viral replication without damaging the host cell. 

In mosquitoes RNAi works in a similar way to that in the previously described drosophila 

system. Antiviral RNAi in these vectors has been reviewed in great detail  (Blair, 2011). 

After the publication of the complete mosquito genomes of A. gambiae, Ae. aegypti and C. 

quinquefasciatus the identification of orthologs of the drosophila RNAi pathway, such as 

Dcr-2, R2D2 and Ago-2 was possible (Arensburger et al., 2010; Holt et al., 2002; Nene et al., 



Chapter 1 Introduction 

37 
 

2007; Waterhouse et al., 2007). Viral replication intermediates provide the dsRNA necessary 

for triggering the RNAi pathway. Silencing of any of the proteins in the RNAi pathway 

resulted in an increase in virus replication in vitro and in vivo (Campbell et al., 2008; 

Sanchez-Vargas et al., 2009). siRNAs of viral origin are known as viRNAs (viral induced 

siRNAs), they are derived both the genome and antigenome and are distributed along the 

whole length of the genome in flaviviruses and alphavirus infection (Scott et al., 2010; Siu et 

al., 2011b). Furthermore, it has been shown that, as occurs in drosophila, mosquito cells can 

spread viRNAs from cell to cell in order to ready them for an antiviral response (Attarzadeh-

Yazdi et al., 2009) 

 

Fig.1.8. Antiviral siRNA pathway in mosquito cells. Once a virus enters the cell it triggers 

the RNAi pathway through dsRNA in the form of replication intermediates (in the case of 

Alphavirus and Flaviviruses). dsRNA is then processed by Dicer-2 into viRNAs which can be 

exported to neighbouring cells or processed by RISC complex. Once complementary ssRNA 

from viral genomes are found, the target transcript is degraded. From (Fragkoudis et al., 

2009). 
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Arbovirus counteraction of immune pathways 
Arboviruses have a relatively small genome with a limited number of proteins. The function 

of viral proteins, especially those of non-structural proteins in the case of flaviviruses and 

alphaviruses, are still unknown in mammalian and mosquitoes. Most of these proteins are 

multifunctional and it has been found that some of them interfere with the mosquito innate 

immunity pathways. 

The ns5 protein of JEV is able to inhibit the STAT1 cascade and TYK-2 phosphorylation, 

therefore blocking interfering STAT signalling in vertebrate cells (Lin et al., 2006). In Ae. 

albopictus derived C6/36 cells the ns5 of JEV also blocks the tyrosine phosphorylation of 

STAT (Lin et al., 2004b). SFV infection of Ae. albopictus U4.4 cells inhibits signalling and 

DENV infection of Ae. aegypti mosquitoes inhibits Toll pathway signalling (Fragkoudis et 

al., 2008b; Sim and Dimopoulos, 2010). 

As mentioned before, RNAi is the most important pathway in controlling arbovirus infection 

in mosquitoes. Some researchers have speculated that of a protein RNAi inhibitor existed in 

arboviruses, as described in true insect viruses, however, to the day, no inhibitor of the sort 

has been found. Infection of a mosquito or mosquito cell lines with an alphavirus expressing 

a true insect virus RNAi inhibitor, such as B2, which binds to dsRNA, induces cytopathic 

effects and increased mortality of the vector (Cirimotich et al., 2009). RNAi may to be the 

mechanism which holds the balance between persistent and cytopathic infection. It is not in 

the interest of the arbovirus to severely harm or kill the vector, therefore arboviruses are not 

known to express any protein RNAi inhibitors. On the other hand, like most relations in 

nature, the arbovirus-vector interaction is not stationary, and arboviruses may employ 

different strategies to slightly overcome RNAi and increase virus replication, titre and 

possibly vector infectivity. No arboviral RNAi inhibitor protein has been found, however, 

recently, it has been discovered that several flaviviruses have highly structured 3’ UTRs 

which act as RNAi inhibitors when cleaved from the viral genome (Dr. Esther Schnettler, 

personal communication). In SFV infection of U4.4 cells, the viRNAs produced map along 

the whole virus genome, however some places in the genome produce more than other. These 

are designated hot spots. Other parts of the genome produce a much lower number viRNAs, 

these are called cold spots. viRNAs produced from hot spots have a lower effect silencing 

SFV through the cellular RNAi machinery than those less abundant viRNAs from the cold 

spots. It is suggested that less efficient hot spot viRNAs act as a decoy saturating the system 
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(Siu et al., 2011b). This inhibition would lightly shift the balance to a higher virus production 

without the drastic negative effect of a true insect virus RNAi inhibitor peptide.  

Apoptosis in mosquito cells 
Apoptosis is programmed cell death, this mechanism is important in both development and as 

an innate antiviral response in vertebrate cells to limit virus replication and spread (Best, 

2008). It is unknown if apoptosis plays an important role against arbovirus infection in 

mosquitoes and mosquito cells. In several cases, virus-induced pathology and apoptosis have 

been reported  in infected mosquitoes (Girard et al., 2005; Girard et al., 2007; Mims, Day, 

and Marshall, 1966; Weaver, Lorenz, and Scott, 1992; Weaver et al., 1988). In DENV 

infected mosquitoes it has been shown that there is a differential regulation of enzymes 

involved in apoptosis (Xi, Ramirez, and Dimopoulos, 2008). However, to date, there is no 

conclusive data on the role of apoptosis in mosquito antiviral defence. Mosquito cell lines 

infected by arboviruses usually lack cytopathic effects and infection results in persistence and 

survival of the culture. In Ae. albopictus derived U4.4 cells, the growth rate of the culture 

does not change even if infected with SFV (Fragkoudis et al., 2008c). Cytopathic effects 

reported in mosquito cell lines seem to depend on particular virus strains and cell line clones 

(Condreay and Brown, 1988; Sarver and Stollar, 1977; Stalder, Reigel, and Koblet, 1983). It 

remains unknown whether mosquitoes lack the pathways to activate apoptosis upon infection 

or if arboviruses inhibit this pathway. Some of the core apoptotic genes in Ae. aegypti have 

been identified and it has been noted that the caspase family has been expanded as compared 

to drosophila (Liu and Clem, 2011). Several studies have been done with SINV expressing 

drosophila and Ae. aegypti pro-apoptotic genes, such as Michelob-x (Mx) or Reaper (Rpr) in 

mosquitoes (Wang et al., 2008a). Silencing of the Ae. aegypti anti-apoptotic gene iap1 

(Aeiap1) with dsRNA caused apoptosis in midgut epithelium and enabled SINV to spread 

faster. However, silencing Ae. aegypti droc, an apoptosis inducer, had the opposite effect 

(Wang et al., 2012). These results suggest that SINV cannot inhibit apoptosis if this pathway 

is triggered by a pro-apoptotic gene. In cell culture, the initial viral production was not 

reduced when expressing pro-apoptotic genes, although, later reduction in viral titre was due 

to cell death. In the mosquito, artificially induced apoptosis in the midgut would disrupt three 

of the physical barriers that control arbovirus infection, the midgut, the matrix and the basal 

lamina, thus allowing a faster virus spread through the mosquito. Since the integrity of those 

cell walls are important and the virus can induce cell motility and tissue rearrangement the 

role of apoptosis remains circumstantial. Interestingly, the expression of an RNAi inhibitor 
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such as B2 by an alphavirus causes cytopathic effects in mosquitoes and mosquito cell culture 

(Cirimotich et al., 2009). 

In arboviruses apoptosis does not appear to play a role in the maintenance of a persistent 

infection (Karpf, Blake, and Brown, 1997). Other control mechanisms, such as RNAi might 

be a useful trade-off for both parties; the virus and the mosquito, before inducing cell death or 

other in extremis mechanisms. 
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Limitations in mosquito research and future perspectives 
Very little is still known about mosquito innate immune responses against arboviruses. 

Compared to other arthropod research, such as in drosophila, the number of tools available is 

very limited for mosquito research; only a few mutant aedine mosquitoes are available and 

very few antibodies or molecular reagents. Most work done in cell culture is based on Ae. 

albopictus cell lines derived from Singh, while Ae. aegypti mosquitoes are used for in vivo 

studies (Fragkoudis et al., 2009). Even though the genomes of A. gambiae, Ae. aegypti. and 

C. quinquefasciatus have been sequenced, their annotation is still quite poor and it will take 

several years until most of the genes and their functions are properly annotated. In the case of 

Ae. albopictus genome is not available yet. This vector has become of great importance in 

Europe after recent epidemics and it will probably become important in the Americas during 

this decade, therefore its genome sequence would be a helpful tool to the arbovirus 

community. Unfortunately, there is also a lack of cell lines from other mosquito and insect 

species, such as midges, that would allow comparison of viral replication dynamics under 

different host conditions. 

In the last couple of years, several more developments have been presented. The use of 

transgenic aedine mosquitoes as tools has been described. Genetically engineered mosquitoes 

have been created expressing parts of the DENV genome as dsRNA, making them refractory 

to this arbovirus (Franz et al., 2009), as well as mosquitoes with altered innate immunity 

which can be useful tools for research (Zou et al., 2011). A new field has emerged in 

arbovirology with the discovery of the bacterium Wolbachia as an antiviral factor in insects 

(Hedges et al., 2008). Surprisingly, this bacterium does not naturally infect Ae. aegypti and A. 

gambiae mosquitoes, however, if artificially infected with laboratory strains of this bacteria, 

DENV replication in the midgut becomes inhibited (Bian et al., 2010) although mosquito 

mortality significantly increases (Evans et al., 2009; McMeniman et al., 2009). This 

discovery has opened the door to successful cage field trials in which Ae. aegypti mosquito 

populations become less susceptible to DENV (Hoffmann et al., 2011; Walker et al., 2011). 

Recent research has also started investigating the antiviral role of other arthropod innate 

immunity pathways other than the classical Toll, Imd, JAK/STAT and RNAi. For example, 

the role of the gene vago has awakened some interest. This protein is highly up-regulated 

upon DCV infection in drosophila (Dostert et al., 2005). Mutants for vago also show a higher 

level of viral replication (Deddouche et al., 2008). Induction of vago is triggered by the 

DExD/H-box helicase domain of Dcr-2, without the involvement of Toll, Imd, Jak/Stat or 
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other members of the RNAi pathway. It has been suggested that Dcr-2 acts as a sensor for 

dsRNA which then triggers Vago and mounts an antiviral response, similar to that of RIG-I 

and MDA-5 in mammals. However, the mechanisms of this response are unknown (Merkling 

and van Rij, 2012). Other mechanisms, such as autophagy, might play a role in insect 

antiviral innate immunity, although its roll is still unclear since this pathway might cross talk 

with Toll (Nakamoto et al., 2012). However, this relation so far has only been found in 

drosophila and not in mosquitoes. The heat-shock response has been associated with ONNV 

infection of A. gambiae mosquitoes (Sim et al., 2005). Hsp70B is a chaperone protein which 

has been associated with the control of viral infection in the mosquito. Chaperons Hsp23 and 

Hsp27 have been found to have the same role in drosophila S2 cells infected with FHV (Go 

et al., 2006). Heat-shock proteins might be considered a danger signal that initiates innate 

cellular immune responses. Intriguingly, the Hsp70/90 machinery is critical in loading of 

siRNAs into the RISC in drosophila (Iwasaki et al., 2010). It has been hypothesised that 

induction of Hsp70 upon virus infection facilitates loading of the RISC with viRNAs 

therefore strengthens the antiviral efficiency of RNAi. 

 

There are several innate immunity responses that could have an antiviral role but have not 

been investigated. In this thesis alternative antiviral innate immunity pathways, such the 

phenoloxidase cascade, will be thoroughly investigated with the help of transcriptomic 

studies.   
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Hypothesis 
SFV infection of mosquito cells is controlled by uncharacterised innate immune mechanisms 

such as the melanisation cascade.  

 

Aims 
• To determine and identify yet uncharacterised innate immune responses of Ae. 

albopictus derived U4.4 cell line to SFV infection. 

• To characterise the role of the PO cascade in arboviral infection of mosquitoes.
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Bacterial protocols 

Bacterial culture 
Two strains of Escherichia coli (E. coli) were used; SURE competent cells (Stratagene) and 

DH5-α cells (Invitrogen). Bacteria were grown in Luria-Bertani (LB) medium or on LB 

plates with 1.5% agar. Agar and media were both sterilised by autoclaving and the 

appropriate antibiotics (ampicillin (100µg/ml) or kanamycin (50µg/ml) were added for 

selection purposes prior to use. Agar plates were prepared by pouring melted LB agar onto 10 

cm Petri dishes (Nunc). Transformed bacteria were streaked on the cooled agar surface with a 

glass rod. Plates were allowed to dry, inverted and incubated overnight at 37⁰ C. The whole 

process was done under aseptic conditions in a CL1 cabinet or with a Bunsen burner. Single 

colonies were picked from the plates and inoculated into LB medium with the appropriate 

antibiotic. Flasks were then incubated overnight at 37⁰ C with constant shaking (225 rpm). 

Cells were not allowed to grow for more than 16 h. In some cases, some of the viral proteins 

from plasmids expressed in bacteria could be toxic to cells. The expression of these proteins 

in bacteria was avoided by growing them in Soy Broth media (Sigma-Aldrich). 

List of plasmids 

pAcIE1-Rluc Provided by Dr. Esther Schnettler (Ongus 

et al., 2006) 

Ampicillin 

Resistant 

pSpe6-SFV4(3H)RLuc Provided by Prof. Andres Merits Ampicillin  

Resistant 

CMV-SFV4-(FFLuc/H)-

2SG-Egf1.0_F 

Self provided (see chapter 5) Kanomycin 

Resistant  

CMV-SFV4-(FFLuc/H)-

2SG-Egf1.0_R 

Self provided (see chapter 5) Kanomycin 

Resistant 

CMV-SFV4-(nsP3-

ZsGreen)-2SG-Egf1.0_F 

Self provided (see chapter 5) Kanomycin 

Resistant 

CMV-SFV4-(nsP3-

ZsGreen)-2SG-Egf1.0_R 

Self provided (see chapter 5) Kanomycin 

Resistant 

 



Chapter 2  Materials and Methods 

 
47 

 

Transformation of bacteria 
SURE-competent cells (Stratagene) and DH5-α (Invitrogen) were transformed according to 

manufacturer’s protocol. Briefly, a vial of cells was thawed on ice and 100µl of the bacteria 

suspension was aliquoted into 1.5 ml pre-chilled sterile tubes (Eppendorf). Approximately 

200ng of plasmid was then added to the bacteria culture and incubated in ice for 30 min. 

Cells were then heat-shocked for 30 sec at 42 ⁰ C followed by incubation on ice for 2 min. 

Nine hundred µl of Super Optimal broth with Catabolite repression (SOC) medium (Sigma-

Aldrich) pre-warmed at 30⁰ C was added to the mixture. The tubes were then incubated for 1 

h on an orbital shaker (225 rpm) at 30⁰ C in order to allow the bacteria to express the 

antibiotic resistance genes from the plasmid. Agar plates were then prepared with the 

appropriate antibiotic (ampicillin -100µg/ml, or kanamycin -50µg/ml) as described 

previously. 10, 50 or 100 µl of the transformed bacteria cells were pipetted onto the agar 

plates and evenly spread using sterile glass rods. Positive control transformation was 

monitored using the provided pUC19 plasmid. Once dried, plates were inverted and 

incubated at 30⁰ C overnight (16 h). Colonies on the plates were examined 24 h later. A 

single colony was used to prepare DNA minipreps and maxipreps as described later. 

 

Preparation of glycerol stocks 
Frozen stocks of transformed bacteria were made in order to avoid regular transformation of 

bacteria when making preps. A single colony was isolated from an agar plate and used to 

inoculate 5ml of LB medium containing the appropriate antibiotic. The culture was grown 

overnight (16 h) in an orbital shaker at 30⁰ C. Next day the bacteria were pelleted by 

centrifugation (5 min at 1500 x g) and the pellet resuspended in 1 ml of 50% sterile glycerol 

in H2O. The sample was then transferred to a sterile eppendorf tube and snap frozen using dry 

ice. The tube with the transformed bacteria was then stored at -80⁰ C and when required 

inoculums were obtained from it without allowing it to thaw. 
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Cell culture 

Mosquito cell lines 
All the mosquito derived cell lines were maintained in sterile plasticware (Nunc) at 28⁰ C in 

an incubator and when handled all the procedures were done in a class II biological safety 

cabinet under sterile conditions. 

Maintenance of mosquito cell lines 
U4.4 cell lines were kept in L-15 medium (Leibovitz) containing 10% foetal calf serum 

(FCS)(Invitrogen), 10% tryptose phosphate broth (TPB) and antibiotics 

(penicillin/streptomycin – 100U/ml and 100 μg/ml, respectively) in 175 cm2 tissue culture 

flasks (Nunc). These flasks were kept at 28⁰ C in absence of CO2. To passage the cells, old 

medium was removed from the tissue culture flask and 10 ml of fresh L-15 medium was 

added. The cells were dislodged with a cell scraper (Falcon) and the suspension was 

transferred into a universal tube. The cells were counted by using 10 µl of the suspension, 

diluting it 1/10 with trypan blue and using a haemocytometer. The required number of cells 

was then seeded into fresh culture flasks. Cells were passaged indefinitely.   

 

Baby hamster kidney (BHK-21) cells 
Baby hamster kidney (BHK)-21 cells were used to propagate and titrate viruses. Cells were 

maintained in 175 cm2 tissue culture flasks (Nuclon, UK) in Glasgow’s minimum essential 

medium (GMEM)(Gibco), supplemented with 10% (volume/volume (v/v)) new born calf 

serum (NBCS) (Invitrogen, UK), 10% (v/v) tryptose phosphate broth (TPB) (Invitrogen, 

UK), antibiotics (penicillin/streptomycin -100U/ml and 100µg/ml, respectively) and L-

glutamine (200mM, Merk). Flasks were kept at 37⁰ C in a humidified environment 

containing 5% CO2. BHK-21 cells grow at an optimum pH of 7.2 to 7.4; therefore, a pH 

indicator (phenol red) is incorporated into the growth medium allowing the visual monitoring 

of the pH during cell growth. The culture medium turns yellow when the pH is low and pink 

when it raises.   
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Maintenance of mammalian cell lines 
When cells were at 80-90% confluency, the culture medium was removed and the cell 

monolayer was rinsed with sterile PBS (sPBS). After sPBS was removed, 5ml of 0.05% 

trypsin/EDTA (Invitrogen) were added and the cells were incubated at 37⁰ C until detached 

from the plastic. The trypsin mixture was then diluted in an equal volume of media to 

inactivate the enzyme. The cells were then concentrated at the bottom of a universal tube by 

centrifugation at 400 x gravity (g) for 5 min. The pellet was then resuspended in 10 ml of 

GMEM medium. 10 µl of this was diluted 1/10 with trypan blue and a haemocytometer was 

used to count the cells. The required number of cells was then seeded into fresh culture 

flasks.  

 

Freezing and thawing of cells 
Frozen stocks of all cell lines were prepared as following, cells were frozen when they were 

healthy and in the middle of a growth phase, but never more than 80% confluency. The cells 

were scrapped (in the case of mosquito cells) or trypsinised (in the case of mammalian cells) 

then counted using a haemocytometer. The optimal concentration of mosquito cells for 

freezing was 7 x 106 cells per ml and, in the case of mammalian cells it was 5 x 106 cells per 

ml. Once the cells were counted they were pelleted by centrifugation. The medium was then 

discarded and the cells were resuspended in freezing medium (of 10% dimethyl sulfoxide 

(DMSO) and 90% FCS). 1 ml of this suspension was then placed into 1.5 ml cryovials 

(Nunc), the tubes were then placed in a freezing box (Mr. Frosty, Sigma) containing 

isopropanol, and the box was placed into a -80⁰ C freezer. The isopropanol coat allowed the 

cooling of the cells at approximately 1⁰ C per min. The vials were left at -80⁰ C overnight. 

After 16 h, the cryovials were transferred to a liquid nitrogen storage container. Liquid 

nitrogen cools the cells below -130⁰ C, thus preventing the formation of damaging ice 

crystals.  

When resurrecting cells from liquid nitrogen, it was crucial to warm them up as quickly as 

possible. Ahead of removing the cells from the liquid nitrogen environment, growth medium 

was put into a 25 cm2 flask (Nunc), while another 10 ml of warmed medium was put into a 

universal. The cells were then transported on dry ice from liquid nitrogen to avoid defrosting. 

Prior to warming the cryovials, the caps were loosened slightly to release any gases and 

pressure it might have built up. The cryovials were then placed into a 37 ⁰ C water bath to 
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allow a rapid defrosting of the cells then, mixed gently and transferred to a universal with 

pre-warmed medium. The cell suspension was centrifuged at 450 x g and the supernatant was 

decanted. The cells were resuspended in 10 ml of fresh medium, then transferred to a 25 cm2 

tissue culture flask and incubated in a humidified environment at 37⁰ C with 5% CO2 in the 

case of mammalian cells, or in a 28⁰ C incubator for the mosquito cells. All tissue culture 

procedures were carried out in Class II biological safety cabinet to avoid contamination.  

Mosquitoes 

Rearing of mosquitoes 
4-5 days old adult Aedes aegypti mosquitoes (a Liverpool red eye strain optimised for filarial 

growth) were kindly provided by R. Maizels (Institute of Immunology and Infection 

Research, School of Biological Sciences, University of Edinburgh). Live mosquitoes were 

kept in a stockinette sleeve openable cage (mesh panels on all sides) and reared at 27˚ C, in 

85% humidity and with a 16/8 h light:dark photoperiod (Fig.2.1). To maintain the 

mosquitoes, a sugar meal was given by placing cotton wool soaked in 10%  w/v fructose 

sugar solution on the top of the mosquito cage. Mosquitoes were one or two days old when 

provided, they were not allow to reproduce and they were not kept for more than 3 weeks. All 

the mosquito rearing and experiments were done in a containment level II insectary. 

 

Fig.2.1 Mosquito rearing container 
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In order to use the mosquitoes for experiments, the insects were caged in waxed paper cartons 

during and after infections. The feeding cartons were modified to allow a one way entry point 

and a semi-accessible area for feeding. The entry point was created by cutting a small square 

hole (approx. 2 cm2) at the side of the carton, which was taped over with two layers of elastic 

latex (cut from latex gloves). A small incision was cut on each of the layers (approx. 5mm). 

The lid of the carton was replaced with nylon mesh and sealed with multiple bands (Fig.2.#). 

Females were isolated from the main mosquito cage by suction through a plastic pipette 

containing two consecutive tubes attached to one of the ends. The pipette also contained 2 

layers of nylon mash (one between the pipette and the first tube, the second one between both 

tubes) to avoid the swallowing of mosquitoes while suctioning. Once the females were 

aspirated into the pipette, they were quickly transferred into feeding container. This was 

achieved by introducing the pipette mouth through the little hole in the latex and expelling 

air. No more than 25 female mosquitoes were kept in these containers. 

 

 

Fig.2.2. Mosquito carton. From Ricky Siu’s PhD thesis. 
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Distinguishing between male and female Ae. aegypti mosquitoes 

Only female mosquitoes were used in this project. There are several morphological 

characteristics that allow differentiation of female and male mosquitoes. Females are 

generally of a larger size and they have a larger abdomen. Males have a smaller size and the 

flagelomere (hairs protruding from their antennae) are longer, giving their antennae a feather-

like look (Fig.2.3). 

 

Fig.2.3. Differences between female and male Ae. aegypti mosquitoes. From left to right: 

male, female and feeding female. Adapted from (Goeldi, 1905). 

 

Infection of mosquitoes through a blood-meal 
The mosquito infectious blood-meal consisted of defibrinated ovine blood (TCS Biosciences) 

which was mixed with virus (5 x 107 PFU/ml) and supplemented with 4 mM ATP. The 

blood-meal was placed in a Haemotek membrane feeder (Discovery Workshops, Accrington, 

UK, hemotek@discoveryworkshops.co.uk) to enable the feeding. A collagen membrane 

provided with the machine was used. The Haemotek terminal was placed on the top of the 

nylon mash and the mosquitoes were allowed to feed for 2 h by biting through the mesh. 

After the feeding took place fed mosquitoes were selected for the experiment, the unfed 

mosquitoes were discarded and submerged in ethanol. Selection was achieved by placing the 

feeding containers into cold chambers, generally ice boxes, for 10 min. This will anaesthetise 

the insects and allows handling carefully with forceps. Once the selection was completed, the 

mailto:hemotek@discoveryworkshops.co.uk
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feeding container was sealed once again and moved to a 28⁰ C incubator inside the insectary. 

The blood-meal infection and handling of fed mosquitoes always took place in a glove box 

inside the insectary. 

 

Nucleic acid techniques 

Plasmid DNA extraction from transformed bacteria cultures 

Minipreparation of DNA 

DNA plasmids were purified on a small scale using a Miniprep kit (Qiagen) according to the 

manufacturer’s instructions. In brief, inoculum from the transformed bacteria colony was 

cultured in a volume of up to 10 ml in a universal at 37⁰ C as described before. The bacteria 

were then pelleted by centrifugation at 1500 x g for 5 min and the liquid discarded. The 

bacteria were then resuspended in 250 µl of buffer P1 and transferred into a 1.5 ml tube 

(Eppendorf). Cell lysis was achieved by adding the provided lysis buffer, P2. This alkaline 

buffer solubilises the bacterial membrane and disassociates DNA and proteins. The mixture 

was gently mixed thus avoiding damage to genomic DNA. The reaction was allowed to occur 

for a couple of minutes then 350 µl of buffer N3 was added to neutralise the reaction and 

enable precipitation of protein and membrane lipids. The mixture was then centrifuged at 

17,900 x g for 10 min. After centrifugation the supernatant was transferred into a Qiaprep 

mini column and centrifuged at 17,900 x g for 1 min. The flow-through was then discarded 

and the filter was washed with 750 µl of PE buffer and centrifuged once again at 17,900 x g 

for 1 min. The flow-through was again discarded and the filter was centrifuged at 17,900 x g 

for a further 2 min to allow drying. The plasmid DNA bound to the column was eluted by 

adding of 30 µl of RNase and DNase free water directly onto the centre of the column and 

allowing it to stand for 1 min. Eluted DNA plasmids were collected by placing the filter 

column in a 1.5 ml tube (Eppendorf) and centrifuging at 17,900 x g for 1 min. The plasmid 

DNA was then quantified and stored at -20⁰ C. 

Maxipreparation of DNA 

Maxipreps were used to purify large amounts of plasmid DNA from large volumes of 

transformed bacterial cultures. They were carried out using an endotoxin free maxiprep kit 

(Qiagen). Single colonies of transformed bacteria were inoculated into 250 ml of LB broth 

containing the appropriate antibiotics. After 16 h of growth at 37⁰ C the bacteria were 
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harvested by centrifugation at 6000 x g for 20 min at 4⁰ C. The liquid was discarded and the 

pellet was thoroughly resuspended in 10 ml of buffer P1 then transferred to 50 ml tubes 

(Falcon). As with the miniprep, the bacteria cell was were broken by adding 10 ml of P2 lysis 

buffer and gently mixing it by inverting the tube 4-6 times. The mixture was allowed to stand 

for 5 min at room temperature. In order to neutralise the reaction, 10ml of buffer P3 were 

added and mixed gently. This was then poured into a Qiafilter cartridge and the precipitate 

formed in the previous stage was allowed to settle at the top of the cartridge for 10 min. Then 

the lysate was pushed through the filter in a 50 ml tube (Falcon). Two and a half  mls of ER 

buffer was then added to the flow through and it was mixed thoroughly by inverting 10 times 

then placed on ice for 30 min. During incubation, the Qiagen-tip 500 was equilibrated by 

allowing 10 ml of buffer QTB to flow through it. After the 30 min incubation, the sample was 

poured into the Qiagen tip-500 and allowed to flow through, to bind the plasmid DNA to the 

membrane. The filter was then washed twice with 15 ml of buffer QC and the plasmid DNA 

eluted by passing 15 ml of buffer QN though the filter. In order the precipitate the DNA, 10.5 

ml of room temperature isopropanol was added and the mixture centrifuged at 15,000 x g for 

30 min. The precipitated plasmid DNA formed a pellet at the bottom of the tube and was 

washed with 70% ethanol prior to centrifugation at 15,000 x g for 10 min in order to remove 

traces of isopropanol. The supernatant was poured off at the end of this centrifugation and the 

pellet was allowed to dry at room temperature. The plasmid pellet was then redissolved in 

500 µl of endotoxin free TE buffer (Qiagen). 

 

Restriction enzyme digestion 

In order to perform restriction enzyme digest, up to 1 µg of plasmid DNA were digested with 

1 unit (U) of enzyme. The enzyme unit (U) indicates the amount of a particular enzyme that 

catalyses the cleavage of 1 µg of DNA at its optimum temperature in 1 h. The restriction 

enzyme digests were carried out in a final volume of 20 µl, and contained 2 µl of 10X 

restriction enzyme buffer, 2 µl of 10X acetylated bovine serum albumin (BSA), 1 µl of 

enzyme (1 unit/µl), plasmid DNA, and DNase free H2O made up to a final volume of 20 µl. 

The reactions were incubated at the optimum temperature for 2-4 h. The restriction products 

were analysed using agarose gel electrophoresis and purified for further manipulation (See 

below). 
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Purification of DNA after restriction digestion 

DNA fragments were purified after restriction digestion using a Jetquick DNA purification 

kit (Genomed). The volume of the restriction digest was brought up to 100 µl with DNase-

free H2O. Then 400 µl of binding buffer H1 was added. The mixture was transferred into the 

binding column and centrifuged for 1 min at 12,000 x g. The flow-through was then 

discarded and the column was washed twice with washing buffer H2. Then the column was 

allowed to dry by centrifugation once more in order to remove residual washing buffer. The 

DNA fragments were eluted by adding 30 µl of DNase-free H2O preheated to 60⁰ C directly 

onto the binding matrix. The column was then allowed to stand for 1 min at room 

temperature. The eluted DNA was collected by centrifugation at 12,000 x g into a 1.5 ml 

DNase/RNase-free tube and stored at -20⁰ C. 

In vitro transcription of capped infectious DNA 

1.66 µg of SpeI linearised infectious DNA plasmid was used in the transcription reaction. The 

RNA was synthesised at 37⁰ C for 2 h, using the cap analogue m7G(5’)ppp(5’)G (GE 

Healthcare) to produce capped viral genomic RNA transcripts. The composition of the 

reaction is the following: 

SpeI cut plasmid (1.66μg)         xx μl 

10X SP6 buffer (GE Healthcare)        5.0 μl 

10mM M 7 G (5’)ppp (5’) G (cap)(GE Healthcare)      5.0 μl 

50 mM DL Dithiothretiol (Sigma)        5.0 μl 

rNTP mix (10 mM ATP, CTP and UTP, 5 mM GTP )(GE Healthcare)    5.0 μl 

H20 (Ambion, nuclease free)        x.x μl 

Recombinant RNasin Ribonuclease Inhibitor (60 U/1.5μl)(Promega)    1.5 μl 

SP6 RNA Polymerase (50 U/μl)(GE Healthcare)      1.5 μl 

Total Volume          50.0 μl 

 

Verification of synthesised viral genomic RNA was achieved by agarose gel electrophoresis. 

RNA transcripts were generally used immediately, but when stored they were kept at -80⁰ C. 

Agarose gel electrophoresis 

RNA and DNA fragments were separated in gels containing 1-1.5% agarose (depending on 

fragment size) in 0.5M tris-borate (TBE) buffer with 0.5 µg/ml ethidium bromide to enable 
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visualisation of the nucleic acids under UV light. Samples were mixed with 6X loading 

buffer (NEB) and loaded in the wells of the agarose gel. Then an electric current was applied 

to the gel (70-130 volts depending on the percentage and size of the gel) for approximately 1 

hour in order to separate different fragments of nucleic acids. As a size marker, two different 

DNA ladders were used; 1 Kb and 100 bp ladders (Promega). Nucleic acid fragments were 

visualised using a UV transluminator. 

 

DNA extraction from agarose gel 

DNA fragments were extracted from agarose gels using the PCR purification kit (Roche) 

according to manufacturer’s instructions. Briefly, DNA fragments were separated by 

electrophoresis and a long wavelength UV transluminator was used to visualise the 

fragments. Using a sterile scalpel the fragments were excised from the agarose gel, placed in 

a tube and weighed. 750 µl of binding buffer were added and the sample was incubated at 50⁰ 

C with occasional vortexing until completely dissolved. The sample was then applied to a 

prewarmed filter column and centrifuged for 1 min at 17900 x g to bind the DNA onto the 

silica membrane. The flow-through was discarded and the column washed twice with 500 µl 

of washing buffer. The column was then dry centrifuged at 17900 x g to enable the removal 

of all of the washing buffer. 30 µl of DNase-free water was used to elute the DNA by 

applying them on the silica membrane and allowing it to stand for 1 min at room temperature. 

The DNA was then collected by centrifugation of the column and stored at -20⁰ C until 

required. 

 

Nucleic acid quantification 

All the nucleic acid samples (DNA, ssRNA and dsRNA) were quantified using a NanoDrop 

ND-1000 spectrophotometer (Thermo Fisher Scientific). One µl of nucleic acid sample was 

placed on the lens of the NanoDrop and the quantity and quality were measured.  

 

Polymerase chain reaction (PCR) 

Specific primers and reaction cycles were used are listed below. Two different PCR reactions 

were made depending on the length of the product. The PCR reaction mix had a final volume 
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of 20 µl, and contained 2 µl of 10X PCR buffer (15mM MgCl2 included), 1 µl dNTPs (10 

mM)(Promega), 0.5 µl of each primer, forward and reverse (50pM)(Sigma-Aldrich), 0.3 µl of 

Taq polymerase (Promega), DNA template and RNase/DNase-free water to a final volume of 

20 µl. The reactions were incubated in a thermal cycler (Veriti®, Applied Biosystems) using 

the following settings: an initial denaturation stage of 2 min at 95⁰ C, followed by an 

amplification stage which consisted of 25-30 cycles in 3 steps; denaturation of the template at 

94⁰ C for 30 seconds, annealing at X⁰ C for 30 seconds and extension at 72⁰ C (duration 

depending on the length of amplified region); then a final denaturation of the enzyme at 72⁰ 

C for 15 min. A negative (no template) and a positive (β-actin) control were used to test for 

possible contamination and to confirm reaction functionality. The PCR products were 

examined by agarose gel and stored at -20⁰ C. 

 

List of primers 

 
Name of primer 

                 
                                 Primer sequence (5’-3’) 

Melting 
temperatur
e (mT) 
used 

Egf1.0_BamHI F agGGATCCATGTCGAACAACATTTTCCTG 65⁰ C 

Egf1.0_BamHI R agGGATCCCTAATCAAGAGTTTCTTGATCGATTATTC 65⁰ C 

 
Serpin A 
External F 

 
5´ CCTAACGgCAGAGGAAATGT 3´ 
 

 
55OC 

 
Serpin A 
External R 

 
5´GCGCCTTCTTCATTGACTTC3´ 
 

 
55OC 

 
Serpin A 
 T7 F 

 
5´TAATACGACTCACTATAGGGAGACGGCAATAAGAGCCTCA3
´ 
 

 
55OC 

 
Serpin A 
 T7 R 
 

 
5´GTGCACAACCTTGGAAACCTGGGATATCACTCAGCATAAT3´ 
 

 
55OC 

 
Serpin B 
External F 
 

 
5´ATTTCGCCATTTTCCATCAG3´ 
 

 
55OC 

 
Serpin B 
External R 
 

 
5´GTGCACAACCTTGGAAACCT3´ 
 

 
55OC 

 
Serpin B  
T7 F 
 

 
5´TAATACGACTCACTATAGGGAGACGGCAATAAGAGCCTCA3
´ 
 

 
65OC 

 
Serpin B  
T7 R 

 
5´GTGCACAACCTTGGAAACCTGGGATATCACTCAGCATAAT3´ 
 

 
65OC 
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Serpin C T7 F 

  
5´TAATACGACTCACTATAGGGCggtGTACTACAAGgCGAAg3´ 
 

 
55OC 

 
Serpin C T7 R 

 
5´CATAGTAGACTTGtCCTTTTGATATGGCGGGATATCACTCAG
CATAAT3´ 
 

 
55OC 

 
Serpin D Ext F 
 

 
5´CTGGAGATTGCCACCAAGTT3´ 
 

 
55OC 

 
Serpin D Ext R 
 

 
5´AAGAACAAGAAGGGCCGATT3´ 
 

 
55OC 

 
Serpin D T7 F 
 

 
5´TAATACGACTCACTATAGGGCCACGGTTGACAAAGTTCCT3´ 
 

 
55OC 

 
Serpin D T7 R 
 

 
5´GCTGCATAGGCTTCACTTCGGGATATCACTCAGCATAAT3´ 
 

 
55OC 

 
Serpin E Ext F 
 

 
5´CCAAGTATCAGATCATTTCaGATCA3´ 
 

 
59OC 

 
Serpin E Ext R 
 

 
5´aTGGGACAATCGTCCATCTT3´ 
 

 
59OC 

 
Serpin E  
T7 F 
 

 
5´TAATACGACTCACTATAGGGCCACGGTTGACAAAGTTCCT3´ 
 

 
60OC 

 
Serpin E  
T7 R 
 

 
5´CGCtTCATTTGGTTGGATCTGGGATATCACTCAGCATAAT3´ 
 

 
60OC 

 
Serpin F Ext F 
 

               
 5´ AACAAtGcCCTGGAGATGAT3´ 
 

 
55OC 

 
Serpin F Ext R 
 

                       
  5´tTGATaAACGTcCGCCaAAC3´ 
 

 
55OC 

 
Serpin F  
T7  F 
 

 
5´TAATACGACTCACTATAGGGactcGCaGGTCGAACTCAAT3´ 
 

 
60OC 

 
Serpin F  
T7  R 

 
5´CTCGACGACCtTCTCCaAAGGGGATATCACTCAGCATAAT3´ 
 

 
60OC 

 
Serpin G Ext F 
 

 
 5´ATTTCGTCGAAGCCGATCT3´ 
 

 
59OC 

 
Serpin G Ext R 
 

                        
 5´ TGTGCTGCTGTTGGCtTACt3´ 
 

 
59OC 

 
 
Serpin G T7 F 
 

 
 
5´TAATACGACTCACTATAGGGAGAAAGCCGAAAAaTCAGCA3´ 
 

 
 
65OC 

 
 
Serpin G T7 R 
 

 
 
5´CGAAACGGAGAAAATGCTTCGGGATATCACTCAGCATAAT3´ 
 

 
 
65OC 

 
Serpin H Ext F 
 

 
5´CAGCACACGCTTGCTATGTT3´ 
 

 
55OC 

 
Serpin H Ext R 
 

 
5´CGTCCCAACTCGCATAGATT3´ 
 

 
55OC 
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Serpin H T7 F 
 

 
5´TAATACGACTCACTATAGGGAGCTCTCCATCGCCAaCTAa3´ 
 

 
60OC 

 
Serpin H T7 R 

 
5´CCAAACACATTGAACGCATGGGATATCACTCAGCATAAT3´ 
 

 
60OC 

 
Serpin I  
Ext F 
 

 
5´TTCCAGTGTGCAAAGCAAAG3´ 
 

 
55OC 

 
Serpin I  
Ext R 
 

 
5´GGCGTTTTGtGTTCGATTTT3´ 
 

 
55OC 

 
Serpin I  
T7 F 
 

 
5´TAATACGACTCACTATAGGGCTCGTTTTCAGCAGCATCAG3´ 
 

 
60OC 

 
Serpin I  
T7 R 

 
5´AAAGTCCAGGTATTGGGTTTCAGGGATATCACTCAGCATAA
T3´ 
 

 
60OC 

 
Serpin J Ext F 
 

 
5´TGCCATTTACTTCAAGGGACT3´ 
 

 
57OC 

Serpin J Ext R 
 

5´CCAGTCGATTCCTCCTCGAT3´ 
 

57OC 
 

Serpin J  
T7 F 
 

5´TAATACGACTCACTATAGGGACCGTTCACTACCGCATTtC 67OC 
 

 
Serpin J  
T7 R 

 
5´AGGAACGGACGATTCAcaAGGGATATCACTCAGCATAAT 
 

 
67OC 
 

 
Serpin K Ext F 
 

 
5´GGAATCTTCCAACGATCCTG 
 

 
63OC 

 
Serpin K Ext R 
 

 
5´ACTTTGAGGAACGCATCCTG 
 

 
63OC 

 
Serpin K  
T7 F 

 
5´TAATACGACTCACTATAGGGGGATCTTTTCCAAGCTGCTG 
 

 
68OC 

 
Serpin K  
T7 R 
 

 
5´CCGAGCTTCTTCAGTGGTTCGGGATATCACTCAGCATAAT 
 

 
68OC 

Table.2.2. List of primers used in this study 

 

Reverse transcription PCR 

Reverse transcription PCR (RT-PCR) was used to create cDNA from mRNA templates using 

Oligo dT (NEB) as primer using SuperScript III kit (Invitrogen). Each reaction contained 1 µl 

10 mM dNTP solution (Promega), 1 µl Oligo dT primer (500 µg/ml) (Promega), 4 µl of 

MgCl2 (25mM), 5 µg of mRNA and dH2O made up to a total volume of 10.5 µl. This mixture 

was incubated at 65⁰ C for 5 min then cooled on ice for 2 min. The 4 µl of 5X first strand 

buffer (Invitrogen), 2 µl of dithiothreitol (DTT, 0.1 M) (Invitrogen), 0.5 µl RNaseIn 
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(Promega) and 1 µl of SuperScript III (Invitrogen) were mixed and combined with the 

previous mixture. This reaction was then incubated at 50⁰ C for 1 hr.  The reaction products 

were visualised on a 1% agarose gel. 

 

Long dsRNA production 

Long dsRNA transcripts were produced using MegaScript RNAi kit (Ambion) according to 

the manufacturer’s instructions. This kit uses a T7 DNA dependent RNA polymerase, 

therefore all the primers used had a T7 sequence. 

 

Total RNA extraction from cell monolayers 

Total RNA was isolated from U4.4 cells using Trizol reagent (Invitrogen) according to the 

manufacturer’s guidelines. Cells were grown on monolayers in 6-well plates. They were 

infected or mock-infected as indicated and after the required time the culture medium was 

removed, and 1 ml of Trizol was added into each well (approximately 1 ml per 10 cm2). The 

cells were then scraped and the lysate was pipetted into a 1.5 ml RNAse free tube 

(Eppendorf). The lysate was passed through a 20 g syringe several times and left to stand for 

5 min to allow the disassociation of protein and nucleic acid complexes. Following this, 200 

µl of chloroform were added to the lysate and the mixture was shaken vigorously for 15 

seconds. It was then allowed to stand at room temperature for 2 to 3 min before being 

centrifuged for 15 min at 12,000 x g at 4⁰ C in order to precipitate membranes, fat, 

polysaccharides and high molecular weight DNA. The top aqueous phase containing the 

RNA was removed and transferred to an RNAse free 1.5 ml tube. 500 µl of molecular grade 

isopropanol (Invitrogen) was added to allow precipitation of RNA. The mixture was 

incubated at room temperature for 10 min and centrifuged at 12,000 x g for 10 min at 4⁰ C.  

The supernatant was removed and the RNA pellet was left untouched at the bottom of the 

tube. This pellet was washed by addition of 1 ml of 75% molecular grade ethanol (7.5ml 

ethanol (Invitrogen) and 2.5 ml RNase-free water (Invitrogen)) and mixed by gently turning 

the tube, followed by 5 min of centrifugation at approximately 7.500 x g at 4⁰ C. The 

supernatant was then discarded and the pellet was air dried for 10 min prior to resuspension 

in 50 µl of RNAse-free water and stored at -80⁰ C. 
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Total RNA extraction from whole mosquitoes 

Individual mosquitoes were placed in single 1.5 ml tubes in a cold chamber inside a glove-

box. Those tubes were then labelled and dropped into a liquid nitrogen container where they 

snap froze. Plastic pestles were used to shatter the frozen mosquitoes and allow the extraction 

of RNA from the chitin rich insect body. The tips of the pestles were frozen before pressing 

the mosquitoes against the walls of the tube to enable keeping the body of the insect at a low 

temperature (brittle) thus making it easier to shatter. Trizol reagent (Invitrogen) was then 

used to extract the total RNA from the shattered mosquitoes as indicated above. 

 

Transfection of cultured cells by electroporation 

DNA in plasmid form or RNA from in vitro transcription was transferred into BHK-21 cells 

using a BioRad Gene pulser Xcell electroporator. On the day of the experiment, the cells 

were collected, counted and resuspended in ice-cold phosphate buffered saline (PBS) at a 

concentration of 6.25 x 106 cells per ml. Nucleic acids were mixed with 800 µl of cell 

suspension. Four hundred µl of the cells/nucleic acid mixture were added to a 0.4 cm 

electroporation cuvette, and cells were pulsed twice using a square wave of 140 volts for 25 

milliseconds. Electroporated cells were transferred to 175 cm2 tissue culture flasks containing 

fresh complete GMEM medium was added. The flasks were incubated at 37⁰ C with 5% CO2.  

 

Transfection of cultured mosquito cells using liposomes 

In order to prepare mosquito cells for transfection, 24-well plates were seeded with U4.4 cells 

in 1 ml of medium per well 24 h prior to transfection. At the time of transfection each well 

contained 1.3 x 105 cells. Nucleic acids such as plasmid DNA, dsRNA or ssRNA were 

adjusted to the desired concentration and diluted in Opti-MEM medium (Invitrogen) and 

mixed gently in a polystyrene tube. Following that, 1 µl of Lipofectamine 2000 (Invitrogen) 

was diluted into 50 µl of Opti-MEM medium in a separate polystyrene tube. The two 

mixtures were incubated separately for 5 min and then added together and incubated for 

further 20 min at room temperature. 100 µl of the Opti-MEM, nucleic acid and liposome 

mixture was added into each well. The plate was then incubated for 5 h at 28⁰ C before the 

medium was replaced with fresh complete L-15 medium. 
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Virus techniques 
All the recombinant viruses were made from cDNA plasmids kindly provided by Prof Andres 

Merits, (University of Tartu, Institute of Technology, Estonia). These plasmids were 

amplified by transforming chemically competent E. coli, growing cultures and harvesting the 

plasmids as described above. Two kinds of SFV plasmids were provided, one in which a 

CMV promoter transcribes an infectious SFV mRNA transcript directly from the plasmid 

following  electroporation into the cells, and a second system in which an in vitro transcribed 

RNA with a cap analogue is required to produce infectious genomic SFV RNA. For the 

second type of SFV infectious DNA clone, the cDNA was linearised using Spe I and used as 

a template for in vitro transcription to produce capped viral RNA. Viral RNAs were then 

electroporated into BHK-21 cells. Virus was harvested in the supernatant at 24 and 48 h after 

electroporation. All the purified virus stocks were stored at -80⁰ C. 

Virus purification 

48 h after electroporation of SFV in vitro transcribed RNA or SFV CMV plasmids into BHK-

21 cells, the cultures were monitored for cytopathic effects. The supernatant was collected 

and clarified three times to remove cell debris by centrifugation (27,000 x g) at 4⁰ C for 30 

min, using a JA 20 rotor in a J2-21 centrifuge (Beckman Instruments). In order to pellet the 

virus, the clarified supernatant was ultracentrifuged through a 20% sucrose cushion. Aliquots 

of 17.5 ml of virus were added to Beckman SW28 ultracentrifuge tubes followed by addition 

of 20% (w/v) sucrose (Sigma) in TNE buffer pH 7.4 (50 mM Tris HCl pH 7.4, 100 mM NaCl 

and 0.1 mM EDTA pH 8.0, filter-sterilised) underneath the supernatant using a pipette until 

the tube was filled. Virus particles were pulled and purified through the sucrose cushion at 

84,600 x g for 90 min at 4⁰ C. The supernatants were then decanted from the ultra-centrifuge 

tube and the pellet re-suspended in 100 μl of TNE buffer on a rocker overnight at 4⁰ C. The 

resuspended virus was then aliquoted into 1.5 ml tubes (Eppendorf). The centrifuge tube was 

then rinsed with 50 μl of TNE buffer in order to collect any remaining virus. The total pooled 

purified virus was aliquoted into 1.5 ml (Eppendorf) tubes (50 µl working stocks per tube) 

snap frozen on dry ice and stored at -80⁰ C. 

Virus infection of cells 

When infecting cell monolayers virus was suspended and diluted in phosphate buffered saline 

(PBS) and BSA (PBSA, 0.75 g BSA per 100 ml PBS [0.75%]). The albumin proteins prevent 

virus binding to the charged plastic walls of the tube, pipette tip or other plastic surfaces. In 
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order to infect cells on a plate, the culture medium was removed from the wells and the 

required amount of virus was diluted into 450 µl (6-well plate) or 110 µl (24-well plate) of 

PBSA. 400 µl or 100 µl were added into each well, being careful not to disrupt the 

monolayer. The cells were then placed on a rocker at room temperature for an 1 hr to allow 

an even spread of the virus. After 1 h, the PBSA containing the virus was removed and the 

appropriate amount of fresh complete culture media was added into each well.  

 

Titration of virus 

SFV titres were determined by a standard plaque assay in BHK-21 cells (Strauss, Lenches, 

and Stamreich-Martin, 1980). Agar was prepared by mixing 4 g of Bacto-agar per 100 ml of 

PBS. This was then autoclaved to ensure it was free from contamination. BHK-21 cells were 

seeded with 2 ml of 10% GMEM at a density of 5 x 105 cells per well at the time of infection. 

Ten-fold serial dilutions of the samples or stock to be titrated were prepared using PBSA. 

Media from the wells was then removed and 400 µl of each dilution was placed into 2 wells 

of the 6-well plate, each dilution was done in duplicate. The plates were placed to rock for 1 h 

in a humid chamber. During the hour of rocking, the agar was melted in a water bath at 90⁰ C 

then cooled to 55⁰ C. GMEM medium with 2% NBCS (v/v) was prepared and warmed to 37⁰ 

C. After the infection, the agar at 55⁰ C was mixed with the 2% GMEM medium in a 1:3 

ratio (agar: medium) by gently pipetting and the mixture was carefully added to the cell 

monolayers. After the agar hardened the plates were then incubated at 37⁰ C and 5% CO2 for 

3 days. 

After 3 days the cells were fixed with 10% neutral buffered formaldehyde (NBF)(Surgipath) 

by pouring it directly on top of the agar and leaving the plates at room temperature for at least 

40 min. The NBF was then poured off and the agar plug was then removed using a metal 

spatula. Approximately, 1 ml of 0.1% toluidine blue was added into each well to stain the 

cells. The plates were then placed on a rocker for 1 hour to allow staining of the cell 

monolayer. The dye agent was poured off and the wells were gently washed with tap water. 

To calculate the plaque forming units (PFU) per ml content of each sample, the following 

formula was used: 

�
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑞𝑢𝑒𝑠
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚 (𝑚𝑙)

�  × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 
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Fixing and visualisation of mosquito cells 

In order to visualise fluorescent marker proteins such as ZsGreen cells were grown on glass 

coverslips and fixed with 10% neutral buffered formaldehyde for 45 min. The glass slide was 

then washed 3 times with PBS for 10 min each time. The converslip was drained before being 

mounted with fluorescent mounting medium, one converslip per microscope slide, and sealed 

with nail polish. The fixed slide was kept at 4⁰ C in the dark. To check for the presence of 

ZsGreen fluorescence, a Nikon inverted microscope fitted with UV light (with excitation 

filter 485 and emission filter 530) was used in order to excite the green fluorescent protein. In 

order to determine infection rate or cytopathic effects in cell culture. Slides were checked 

under a Nikon inverted microscope. To check for the presence of ZsGreen fluorescence a 

Nikon inverted microscope fitted with UV light (with excitation filter 485 and emission filter 

530) was used. 

 

Detection of proteins on membranes 

Isolation of protein for Western Blots 
The cell lysis buffer consisted of 50 µl of β-mercaptoethanol (Sigma) mixed with 950 µl of 

Laemmli buffer (Bio-rad). Cells in a well of a 6-well plate were lysed by removing the 

culture medium and adding 200 µl of lysis buffer. The mix was then collected after 1 minute 

of incubation at room temperature and boiled for 10 min at 100⁰ C. The samples were then 

frozen at -20⁰ C until required. 

 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 
A 12% acrylamide resolving gel was made with 30 ml of 40% acrylamide (Sigma), 43 ml of 

dH2O, 25 ml of 1.5M tris-base pH8.8 (Sigma), 1 ml 10% sodium dodecyl sulphate 

(SDS)(Sigma). The solution was polymerised following the addition of 5 µl of 

tetramethylethylenediamine (TEMED, Sigma) and 50 µl of 10% ammonium persulfate (APS, 

Sigma) were added to 5 ml of the solution and it was poured between the glass plates used to 

make the gel. A space of approximately 2 cm was left at the top for the stacking gel to fit. 

This space was filled with isopropanol (Sigma) while the gel set, to prevent air bubbles 
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forming and allow the gel surface to set flat and straight. To make the 4% stacking gel, 10 ml 

of 40% acrylamide (Sigma) was mixed with 64 ml of dH2O, 25 ml 0.5M tris-base pH 6.8 

(Sigma) and 1 ml of 10% SDS (Sigma). Fifty μl of APS (Sigma) and 5 μl of TEMED (Sigma) 

were again added to 5 ml of the previous solution to enable the polymerisation of the gel. The 

isopropanol was removed once the resolving gel had set and the stacking gel was poured on 

top. A comb was then inserted to make the wells. Once the gel had set it was placed in an 

electrophoresis tank which was subsequently filled with running buffer (see recipe below). 

An equal amount of protein solution was loaded into each well as well as a rainbow 

molecular weight marker (GE Healthcare). The gel was then run at 30 V for 30 min to allow 

the protein to enter and pass through the stacking gel slowly and then run at 130 V until the 

blue dye band reached the bottom of the gel.  

Transfer of proteins from the SDS-PAGE gel to a nitrocellulose membrane 
The gel was carefully removed from the scaffold and glass plates and the stacking gel was 

removed. The nitrocellulose membrane (Hybond ECL, GE Healthcare) was cut to the same 

size of the cell and soaked in H2O for 10 min prior to the transfer. Whattmann papers (GE 

Healthcare) were soaked in semi-dry blotting buffer buffer. The transfer sandwich was then 

assembled starting with a piece of filter paper. The gel was then placed on top of the filter 

paper with the nitrocellulose membrane on top of the gel. The ‘sandwich’ was finished with 

another piece of filter paper on the top. This was placed in a semi-dry transfer apparatus. The 

proteins in the gel are negatively charged after mixed with the Laemmli buffer, so an 

electrical charge allows them to transfer to the positively charged nitrocellulose membrane. 

The transfer was run at 15 V for 30 min and the current at a maximum of 3 mA/cm2 for 30 

min. Once the transfer was complete, the sandwich was taken apart and the nitrocellulose 

membrane was placed in a petri dish with 2% blocking buffer (2% (w/v) milk powder in 

PBS+0.1% Tween) overnight at 4⁰ C or 1 hour at RT on a rocking plate. 

Detection on membranes 
After the nitrocellulose membrane finished blocking, it was washed with PBS + 0.1 % Tween 

(v/v) – 20 (PBS-T)(3 x 5 min). 10 ml 0.2% blocking buffer and primary antibody (eGF1.0 at 

1:35000) Then the membrane was incubated with the primary antibody (Egf1.0 at 1:35000) 

diluted in 10 ml 0.2% blocking buffer for 1 h at room temperature. It was then washed with 

PBS + 0.1 % Tween – 20 (PBS-T)(3 x 5 min). Primary antibodies were detected by 

incubating the secondary antibody diluted 1:5000 in PBS-T for 1 h with the membrane (Goat 
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anti-rabbit-AP; Abcam, ab6722). It was then washed with PBS + 0.1 % Tween – 20 (PBS-

T)(3 x 5 min). The protein band was visualised by adding 10 ml of AP-buffer and 200 µl of 

NBT/BCIP solution (Roche) and then incubating on a rocking plate until the band was 

visible. The reaction was stopped by washing the membrane in H2O (3 x 5 min).   

 

Western Blot Buffers 
 

Semi-dry blotting buffer    Running buffer 

39 mM glycine      25 mM Tris 

48 mM Tris Base      250 mM glycine 

0.037 % w/v SDS      0.1 % w/v SDS 

20 %  v/v Methanol 

 

All the materials required for the preparation of the transfer and running buffers were 

obtained from Sigma 

 

 Blocking buffer     AP Buffer 

5% w/v blocking powder (GE Healthcare)  100 mM NaCl 

PBS + 0.1% w/v Tween-20 (Sigma)   5mM MgCl2 

       100 mM Tris-HCl pH 9.5 

 

Dual luciferase assay 
A Dual-Glo Luciferase Assay System (Promega) was used to measure both Renilla (RLuc) 

and Firefly luciferases (FFLuc). Infected cell monolayers or infected whole mosquitoes were 

lysed by removing the media from the wells. The tissues were agitated for 5 min to enable the 

disruption of the cell membranes. 1 µl of the lysate was mixed with 70 µl of luciferase assay 

reagent and measured in a luminometer (Turner Designs, model TD-20/20) with a 10 sec 
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equilibration time and a 10 sec integration time. 70 µl of Stop & Glo reagent was then added 

to inhibit the FFLuc activity and determine RLuc activity. 

 

Roche 454 Sequencing 
A six-well plate with 6.5 x 105 U4.4 cells per well was infected with a multiplicity of 

infection of 10 PFU of SFV.  A similar plate was mock-infected. Total RNA from infected 

and uninfected U4.4 cells was isolated using Trizol (Invitrogen) 16 h p.i. The presence of 

viral RNA in both infected and uninfected control cells was tested by PCR using non-

structural protein 3-specific (nsP3) primers. The quality of the samples was assessed by 

NanoDrop ND-1000 spectrophotometer (Labtech). A total of 30 µg of RNA pooled from 3 

separate infected or uninfected wells were sent for 454 pyrosequencing (Roche 

FLX)(Genepool, Edinburgh). 50 Mb were sequenced per sample.  

The sequences were retrieved in FASTA format and contigs were assembled de novo. Contig 

coverage was calculated as a form of transcript quantification. Contigs from both samples 

were aligned to the Ae. aegypti genome (GenBank ref. AAGE00000000). The confidence 

value used was 1e-05. The infected sample also had the contigs aligned against SFV genome 

(GenBank ref. X04129) with an e-value of 1e-01. This lower confidence value was used since 

a 1e-05 value only showed 9 hits. Random sampling of 15 these contigs was analysed 

through Basic Alignment Search Tool (BLAST). Each of the sampled contigs aligned to the 

SFV genome showing that the stringiness was sufficient to include SFV transcripts without 

obtaining any Ae. aegypti transcripts. The contig coverage was also provided, giving some 

quantification to the sequencing. The contig coverage was calculated using the following 

formula: 

contig (x) ofLenght 
(250)  contig  average oflenght t x  transcrip(x) of repeats ofNumber  contig (x) of coverage =  

 

Phenoloxidase activity assay 
Conditioned cell culture medium from Ae. albopictus-derived U4.4 mosquito cells was 

harvested 48 h post-cell seeding (4x106 cells in a 75cm2 flask) and was centrifuged at 2000 

rpm for 5 min in order to eliminate residual cells. Approximately 5 μl of pelleted E. coli 
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JM109 culture (New England Biolabs) or 3.5 x 107 PFU of SFV were added to 1 ml of cell 

culture supernatant and incubated for 10 min at room temperature. The mixture was then 

centrifuged at 3000 x g for 10 min at 4˚C in order to remove the bacteria. Phenoloxidase (PO) 

activity assays were carried in 96-well plates with 20 μl of cell culture medium added to 100 

ul of substrate (50 mM Sodium Phosphate buffer (pH 6.5) containing 2 mM dopamine 

(Sigma-Aldrich)). PO activity was monitored by measuring absorbance at 490 nm using a 

plate reader (Dynatech MR5000) over a period of 30 min. It should be noted that this assay 

predominantly detects dopachrome and/or dopaminechrome rather than melanin itself. One 

unit of PO activity was defined as ΔA490 = 0.001 after 30 min, as previously described 

(Beck and Strand, 2007). Each experimental condition was measured in 10 independent 

reactions per experiment. 

 

Cell staining for PPO 
Intracellular PO activity was detected by fixing U4.4 cells in wells with glacial methanol 

(100%)(Sigma Aldrich). Glacial methanol in addition to fixing the cells also activates PPO 

into PO. Cells were then rinsed with PBS and incubated for 1 h in 50 mM Sodium Phosphate 

buffer (pH 6.5) containing 2 mM dopamine (Sigma-Aldrich).  

 

Statistics 
Statistical analysis in chapters 4 and 5 were done with the assitance of Dr. Margo Chase-

Topping, from the Centre for Immunity, Infection and Evolution, Ashworth Laboratories, 

Kings Buildings, University of Edinburgh. Statistical analysis in the rest of the chapters was 

done using Prism 5 (GraphPad Software) Data with 2 groups were analysed using either t-

test, in luciferase assays, or Mann Whitney tests, in the case of PO activity assays. Data with 

more than 2 groups was analysed using General Linear Models (GLM). Survival analysis 

curves were tested using Kaplan-Meier estimator and the log-rank test. Where appropriate, 

multiple comparisons were performed and the Bonferroni correction was applied. Kaplan-

Meier tests and GLM were conducted using SAS v9.1.3 (SAS Institute Inc., Cary, NC, USA). 

Analysis with p<0.05 values would be reported as exhibiting formal statistical significance. 
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INTRODUCTION 
In recent years, transcriptome analyses have become a popular tool to identify differentially 

regulated genes. Most research in mosquitoes however, focuses on infection of Ae. aegypti 

mosquitoes using gene arrays (Bonizzoni et al., 2012; Colpitts et al., 2011; Price et al., 2011; 

Sim, Ramirez, and Dimopoulos, 2012). The practical reason is that, unlike Aedes albopictus, 

the Aedes aegypti genome has been sequenced and annotated (Nene et al., 2007). 

Transcriptome analysis is likely to become more popular for studies in mosquitoes in the 

future. Contig assembly and aligments are a considerably easier task when a reference 

genome is available. Annotated genomes enable the use of technologies like RNA 

pyrosequencing or microarrays which give more detailed quantification and analysis of gene 

regulation. Several arbovirus vector genomes, such as insects and ticks, have been annotated, 

at least in part (see table 3.1), however, important vectors such as Ae. albopictus still require 

a reference genome. There has been a previous investigation into the transcriptome of Ae. 

albopictus derived C6/36 cells challenged with bacteria and there are many similarities 

between that study and this one (Dixit, Patole, and Shouche, 2011). Comparisons between 

those transcriptomes already published will be further analysed in the discussion. 

 

Organism Strain Assembly Version Gene build 

An. gambiae PEST, M, S AgamP3, Feb 2006 

AgamM1, Oct 2010 

AgamS1, Oct 2010 

AgamP3.6, Dec 2010 

Ae. aegypti Liverpool LVP AaegL1, Mar 2006 AegL1.3, April 2012 

C. quinquefasciatus Johannesburg (JHB) CpipJ1 CpipJ1.3, April 2012 

I. scapularis WIKEL IscaW1 IscaW1.2, April 

2012 

 

Table 3.1. Sequence data available to this date for vector organisms. Major vector arthropods, 

except for Ae. albopictus, have their genome sequenced and assembled, however notation and 

idenfication of gene function are still on progress. (vectorbase.org) 
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Here we use the Roche 454 platform to sequence and assemble the transcriptome of Ae. 

albopictus derived U4.4 cells infected or mock-infected with SFV. This will also generate 

some valuable information about this cell line and mosquito species.  

 

Sequencing platforms: Roche’s 454 vs. Illumina’s Solexa 

RNA sequencing technologies advance as fast as digital technologies. Both Roche 454 and 

Illumina Solexa technologies were recently available at the time of the study. Illumina Solexa 

produces more readings and a deeper sequencing than Roche 454, but shorter reads (~250 

bp). Solexa sequencing technology is based on reversible dye-terminators. DNA molecules 

are first attached to primers on a slide, and then they are amplified so that local clonal 

colonies are formed. This process is known as bridge amplification. Four types of reversible 

terminator bases are added, and non-incorporated nucleotides are discarded. DNA in these 

amplifications can only be extended one nucleotide at the time. A camera takes images of the 

fluorescently labelled nucleotides, then the dye,  along with the terminal 3’ blocker, is 

chemically removed from the DNA, allowing it to proceed to the next cycle (Mardis, 2008b).  

However, the 454 produced longer readings than Solexa sequencing that could be easily 

assembled against a reference genome if the original species genome is not available, such as 

it was in this case.   

454 Life sciences developed a version of pyrosequencing, which was then was acquired by 

Roche Diagnostics. A workflow diagram of 454 pyrosequencing can be seen in figure 3.1. In 

454 sequencing, DNA is amplified inside an aqueous buffer droplet in an oil solution, with 

each droplet containing a single DNA template attached to a single primer-coated bead, 

which then forms a clonal colony. The sequencing apparatus, known as a picotitre plate 

(PTP), contains many wells each containing a single bead and sequencing enzymes. 

Pyrosequencing uses luciferase to generate light for detection of the individual nucleotides 

added to the nascent DNA. The combined data is used to generate sequence read-outs 

(Margulies et al., 2005). This technology provides intermediate read length and not achieved 

with Solexa sequencing. 
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Figure 3.1. Roche 454 sequencing workflow. During library construction 454-specific 

adapters are bound to the DNA fragments. This couples the amplification beads with DNA in an 

emulsion PCR to amplify fragments before sequencing. The beads are loaded into the diminute wells 

which cover the picotiter plate. The bottom panel illustrates the pyrosequencing reaction that occurs 

on nucleotide incorporation to report sequencing by synthesis. From (Mardis, 2008a). 
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Objectives 

- Generation of a transcriptome database for the study of Ae. albopictus functional 

genetics, due to the limited genetic information currently available for this mosquito 

species. Once the data base has been generated, the sequences of transcripts can be, 

for example, used to for a gene silencing experiment. 

- Identification of transcripts differentially regulated in SFV4 infection of U4.4 cells in 

order to obtain an overview of immune responses in this cell line. 
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454 pyrosequencing and contig assembly. Experimental set up. 

A six-well plate with 6.5 x 105 U4.4 cells per well was infected with a multiplicity of 

infection of 10 PFU of SFV4.  A similar plate was mock-infected. Total RNA from infected 

and uninfected U4.4 cells was isolated using Trizol (Invitrogen) 16 hours post-infection. This 

time point was chosen because it near is the transition point between the acute phase and the 

persistent phase of viral infection in U4.4 mosquito cells. The presence of viral RNA in both 

infected and uninfected control cells was tested by PCR using SFV non-structural protein 3-

specific (nsP3) primers. The quality of both samples was assessed by NanoDrop ND-1000 

spectrophotometer (Labtech). A total of 30 µg of RNA from 3 separate infected or uninfected 

wells were pulled together into one sample for each condition (infected and uninfected) and 

sent for 454 pyrosequencing (Roche FLX) (Genepool, Edinburgh). 50 Mb were sequenced 

per each of the two samples.  

The sequences were retrieved in FASTA format and contigs were assembled de novo using 

an algorithm for self aligment. This step was done by the bioinformatics team who provided 

the sequencing service at Genepool, University of Edinburgh. The low value cut off value for 

the reading length is 90 bp so no siRNAs or viRNAs were analysed in this study. Contigs 

from both samples where then aligned to the Ae. aegypti genome (GenBank ref. 

AAGE00000000) in order to identify cellular genes. A contig (from contiguous) is a set of 

overlapping DNA segments that together represent a consensus region of DNA.  When using 

454 sequencing not all the transcripts are complete, mostly they are fragmented. Moreover, 

454 sequencing occurs indiscriminately from either the 3’ end or the 5’ end of the transcript. 

Therefore we cannot assume that each fragment of transcript does equal a whole transcript. 

Contig coverage takes into account the transcript length as well as the number of repeats it 

appears. It represents the number of nucleotide bases belonging to each gene which has been 

sequenced. In de novo sequencing projects, such as this one, a contig refers to overlapping 

sequence data (reads) (Gregory, 2005). The confidence cut-off value used for the aligment 

was 1e-05 ensuring that there was a significant probability that homologue genes were 

notated. The infected sample also had the contigs aligned against SFV genome (GenBank ref. 

X04129) with a cut-off e-value of 1e-01. This lower confidence value was used since a 1e-05 

value showed only 9 hits. A random sampling of 15 of these contigs were analysed using 

Basic Alignment Search Tool (BLAST). Each of the sampled contigs aligned to the SFV 

genome showed that the stringiness that was enough sufficient to include SFV transcripts 

without obtaining any Ae. aegypti or other species of transcripts included. The contig 
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coverage was also provided, giving some quantification to the sequencing and was calculated 

using the following formula: 

 

contig (x) ofLenght 
 contig  average oflenght t x  transcrip(x) of repeats ofNumber  contig (x) of coverage =  

 

Normalisation 

Normalisation between the RNA from uninfected and infected cells was attained by 

equalizing the contig coverage number in the 40S ribosomal protein S7. It is established that 

the levels of this transcript generally do not change upon cell stress or infection in mosquitoes 

and it has been used in several transcriptome microarray analysis (Das et al., 2010; Zou et al., 

2011) based on data from (Bolstad et al., 2003). 
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RESULTS 

Sequencing of RNA transcript and data analysis 

A total of 102,689,480 bp were sequenced from the infected sample, whereas 76, 401, 262 bp 

were sequenced from the uninfected sample. From the infected sample 10332 contiguous 

reads (transcripts) were made with an average length of 301 bp per read and an average of 

11.48 copies per transcript. In case of the uninfected sample, 13099 contiguous transcripts 

were sequenced with an average length of 292 bp and 11.88 copies per read. 

 

 

Figure 3.2. Profile of RNA transcripts. Transcripts of RNA are plotted according to length and copy 

number. Infected cells (A) and uninfected cells (B) distribution. Highly abundant transcripts, above 

1250 copies, are marked (*). 
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There is no difference between the length and transcript number distribution between the 

infected and the uninfected samples. However, in both samples there is a tendency towards a 

high abundance of longer transcripts (linear regression infected: r2=0.01219 linear regression 

uninfected: r2=0.01127, analysis done in Prism5).  

  

Origin of RNA transcripts in U4.4 cells 

After calculating the proportion of SFV or host cell transcripts from the infected sample it 

shows that most of the RNA transcripts sequenced derived for the host cell. The number of 

viral transcripts sequenced in relation to the total number of RNA transcripts is very small 

(Fig.3.2). It is interesting to notice that, 1312 transcripts from the infected sample aligned to 

the SFV sequence. The total infected sample coverage was 79400. Thus only 1.65% of the 

total RNA isolated from the infected cells belonged to SFV. The alignment of these 

transcripts to the viral genomes, as well as the possible rise of mutations or variants in the 

culture was not investigated in this study.  

 

Figure 3.3. Percentage  of origin of total RNA sequenced transcripts from infected U4.4 cells. Of 

a total of 79400 transcripts sequenced, 1312 (1.65%) were of viral origin whereas 78088 (98.35%) 

were of cellular origin.  
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SFV transcripts

Cellular transcripts
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Identification of transcripts in U4.4 cells 

RNA transcripts were assembled into genes and aligned to the Ae. aegypti genome for 

annotation. The total number of unique Ae. albopictus transcripts identified after combining 

both samples was 2874, out of which 222 were unique to the uninfected sample; 399 genes 

were unique to the infected sample and 2253 genes were present in both infected and 

uninfected. 

 

 

Figure 3.4 Number of transcripts identified in the sequencing. The total number of unique 
transcripts identified are in the large white circle; present uniquely in the uninfected sample are in 
green and genes unique to the infected sample in red. Genes present in both infected and uninfected 
appear in the convergent zone.  
 

Not all the transcripts mapped to annotated genes in the Ae. aegypti genome. A total of 651 

(22.6%) transcripts coded for unknown hypothetical genes; 7 (3.11%) were present only in 

the uninfected cells and 644 (28.58%) present in both infected and uninfected cells. Those are 

very high percentages, which imply that, although the Ae. aegypti mosquito genome has been 

sequenced, there is still a great proportion of genes that need to be annotated. 

 

222 2253 399 

2874 
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Differential gene expression during SFV infection of U4.4 cells 

The following analysis takes into account those transcripts present in both infected and 

uninfected cells. We decided the threshold to classify a gene as ‘up-regulated’ or ‘down-

regulated’ was a 2 fold change in differential gene expression which, in this case, is 

represented as contig coverage. It was found that 2091 genes were not differentially 

expressed; 99 genes were down-regulated and 32 genes were up-regulated when comparing 

genes present in both samples. 

 

 

Fig. 3.5. Differential gene expression during SFV infection of U4.4 cells. Down-regulated genes 
depicted in green, and up-regulated genes in red. The individual gene numbers are followed by the 
percentage. Transcripts are not present in similar numbers between infected and non-infected cells 
indicated in blue. 
 

SFV infection of U4.4 cells does not lead to strong differential expression of host genes. A 

94% of the genes did not show any differential expression. It has to be noted however, that 

SFV infection results almost three times as many down-regulated genes than up-regulated 

genes. In SFV4 infection of U4.4 a mild shut down of gene expression was also observed, 

thus inhibiting immune signalling. Both up- and down-regulated differentially expressed 

genes, were selected for further analysis (Fragkoudis et al., 2008c).  

  

Up-regulated, 
32, 1.44% 

Un-regulated, 
2091, 94.10% 
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regulated, 99, 
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Analysis of up-regulated transcripts 

Transcripts with at least a 2 fold difference up-regulated in contig coverage were considered 

for further analysis. A total of 32 genes fell into this criterion. These genes were classified 

ontologically (see table 3.2). A brief description of several functional classes will be 

provided.  A quarter of the up-regulated genes are of unknown function when aligned and 

annotated, therefore they were not classified. 

 

Ae. aegypti gene 

homologue 

Annotation Fold 

upregulation 

Ontology 

AAEL003383-RA actin 57.09138998 ST 

AAEL004172-RA tubulin alpha chain 11.73217832 ST 

AAEL014414-RA dead box ATP-dependent rna helicase 10.7202167 NAP, DV 

AAEL011206-RA aminoacylase, putative 7.85771773 MT 

AAEL013310-RA Mytosis associated protein 7.715596987 CC 

AAEL013656-RA BM-40 SPARC precursor 4.442301208 DV, CS, CC 

AAEL007967-RA Hypothetical serpin 4.236093292 SIG, IM 

AAEL001952-RA 28 kDa heat- and acid-stable phosphoprotein (PDGF-

associated protein), putative 

4.228247768 UK 

AAEL000951-RA elongation factor 1-beta2 4.113695127 NAP 

AAEL003336-RA conserved hypothetical protein 3.959790223 UK 

AAEL003610-RA serine protease 3.730662808 SIG 

AAEL006946-RA Chaperonin 3.414740273 MT, IM, CS 

AAEL000055-RA conserved hypothetical protein 3.307766339 UK 

AAEL003294-RA fibrinogen and fibronectin 3.266488925 IM 

AAEL000270-RA 26S proteasome regulatory subunit 7, psd7 3.070958411 MT, IM 

AAEL010906-RA conserved hypothetical protein 2.929196358 UK 

AAEL010558-RA conserved hypothetical protein 2.863533033 UK 

AAEL015458-RA Transferrin 2.759020551 MT, CS 

AAEL015143-RA glycine rich RNA binding protein, putative 2.721155225 NAP 

AAEL007006-RA serine protease 2.641147228 SG 

AAEL008192-RA 40S ribosomal protein S3 2.546307913 MT 

AAEL012836-RA cytochrome B561 2.503256607 CS 

AAEL011803-RA prohibitin, putative 2.503055097 ST 

AAEL004500-RA eukaryotic translation elongation factor 2.493390207 NAP 

AAEL000147-RA single-stranded DNA binding protein, putative 2.240509563 NAP, IM, CS 

AAEL002334-RA eukaryotic translation initiation factor 3 subunit 2.22969323 NAP 

AAEL012095-RA 26S protease regulatory subunit 2.22168645 MT, CS 
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AAEL012523-RA transcription factor TFIIH-subunit, putative 2.098220899 NAP 

AAEL007702-RA Chaperonin 2.043692212 MT, IM, CS 

AAEL006952-RA conserved hypothetical protein 2.027205499 UK 

AAEL010954-RA conserved hypothetical protein 2.002891026 UK 

AAEL008802-RA conserved hypothetical protein 2.00082568 UK 

 

Table 3.2 Up-regulated genes in SFV infection of U4.4 cells. Genes were annotated after 

aligment to the Ae. aegypti genome classified by fold differences in expression and ontology: UK 

(unknown), NAP (Nucleic Acid processing), MT (metabolism), IM (immunity), CS (cell stress), ST 

(structure), SG (Signalling), DV (development). Genes not annotated by the Ae.aegypti genome are 

stated (D. melanogaster, C. pipiens, A. gambiae). 

 

Cell structure 
Actin and tubulin, two proteins involved in cell trafficking and structure, are the most highly 

up-regulated molecules in this study. There are several mechanisms in which these two 

proteins could interact with SFV. It has been shown that in Bunyamwera virus infection of 

Ae. albopictus derived C6/36 the virus modulates the cellular actin-matrix scaffold to 

facilitate replication in virus factories as well as the exportation of enveloped virions. In this 

process the virus also changes the morphology of the cell creating pseudopodia by actin 

scaffold remodelling (López-Montero and Risco, 2011). In U4.4 cells however, changes in 

cell morphology upon SFV infection where not detected by video-microscopy (Ricky Siu 

PhD thesis, 2010, University of Edinburgh). Another study, this time with DENV-2, suggests 

that actin and tubulin, also highly up-regulated in DENV-2 infection, might act as receptors 

to help flavivirus entry (Paingankar, Gokhale, and Deobagkar, 2010). Prohibitin is an 

evolutionary conserved multifunctional protein with ubiquitous expression, however, its 

molecular roles are largely unknown. It has been found in drosophila, mosquitoes and 

silkworm (Lv et al., 2012; Paingankar, Gokhale, and Deobagkar, 2010). It is suggested that 

prohibitin is utilised by DENV-2 as a receptor to gain entry (Kuadkitkan et al., 2010; 

Paingankar, Gokhale, and Deobagkar, 2010). It is tempting to speculate that SFV utilises 

these structural  proteins in the same way as DENV-2, however further studies should be 

done to reach this conclusion.  
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Nucleic acid processing 
Genes in this category are involved in nucleic acid replication, transcription as well as nucleic 

acid processing. It is unknown if any of these genes have any immunological function 

however this group is differentially regulated in several transcriptome studies (Bartholomay 

et al., 2004; Colpitts et al., 2011; Sim, Ramirez, and Dimopoulos, 2012). The function of the 

Deadbox atp-dependent RNA helicase (AAEL014414-RA) is not known, however, 

upregulation of this molecule has also been found in DENV infected Ae. aegypti derived 

Aag2 cells (Sim and Dimopoulos, 2010). It has been recently shown that Drosophila Dcr-2, a 

DExD/H-box helicase, is capable of sensing viral dsRNA aind inducing the production of a 

putative antiviral effector molecule (Deddouche et al., 2008). It is also noteworthy 

mentioning that, in this study there is not differential expression of Dcr-2 or other RNAi 

pathway component. 

Immunity 
Several serine proteases, fibrinogen and fibronectin transcripts are up-regulated upon SFV 

infection of U4.4 cells. Fibrinogen and fibronectin have also been found up-regulated in 

DENV infected Aag2 cells (Sim and Dimopoulos, 2010). Although nothing is known about 

the potential role of serine proteases in arbovirus immunity, their up-regulation suggests these 

cells are able to mount other immune responses in addition to the established antiviral IMD, 

Jack-STAT and RNAi pathways. Serine proteases and serine proteases inhibitors (serpins) 

control several immunity related pathways in insects, such as melanisation (Cerenius and 

Söderhäll, 2004; Felföldi et al., 2011). These pathways are known to activate immune 

responses against fungi, bacteria and parasites in insects; however their role in viral infection 

has not been investigated. Further research into this aspect will be shown in following 

chapters of this thesis.  

Members of the fibrinogen family are evolutionary conserved and contain fibrinogen-

immunolecting domains which are also found in mammalian ficolins. This family of genes is 

present in the order Diptera and, interestingly, it is more abundant in mosquitoes families 

than in Drosophila (Wang, Zhao, and Christensen, 2005) Fibrinogens and fibronectings have 

the ability once secreted, to form multimers in the cell supernatant or, in the case of whole 

insects, in the haemolymph. These multimers can occur in numerous combinations and 

possess different binding specificities towards microbial products, including parasites and 

bacteria, by acting as PAMP receptors and/or trapping the microbe (Cirimotich et al., 2010; 
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Dixit et al., 2008; Wang et al., 2004). However, to the date, no investigation has been done to 

assess the role of these molecules in viral immunity in insects. 

 

Cell stress and apoptosis 
Chaperonins, proteasomes, SPARC (Secreted Protein, Acidic and Rich in Cystein), 

transferrin and cytochrome are up-regulated as a result of stress response induction. In 

mammalian cells, the build-up of SFV capsid protein and DENV proteins are known to 

induce ER stress which evolves into proteasome activation and apoptosis (Barry et al., 2010; 

Doolittle and Gomez, 2011). In insect cells, baculovirus, DENV and ONNV infection is 

known to induce a proteasome and heatshock protein, HsP70-90, activity upon infection 

(Carinhas et al., 2011; Lyupina et al., 2011; Sim and Dimopoulos, 2010; Waldock, Olson, 

and Christophides, 2012). Upregulation of cytochrome was also found in flavivirus infection 

of mosquitoes (Colpitts et al., 2011). However, to the date, there is no study that characterises 

the unfolded protein response in insect cells. 

The role of SPARC in drosophila cells has been well characterised. During development and 

stress situations, ‘winner cells’ eliminate ‘losing’ neighbouring cells by inducing apoptosis. 

Winner cells then proliferate to even the cell numbers. SPARC is secreted by the ‘loser’ cells 

inhibiting apoptosis (see Figure 3.5) (Portela et al., 2010). It is unknown if the up-regulation 

of this gene is driven by the cell upon infection or by the virus. It can only be speculated how 

the virus would benefit from keeping infected cells from being eliminated by continuous 

virus production from infected ‘losing cells’. 
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Fig 3.6 The role of SPARC in cell elimination in D. melanogaster. ‘Loser’ cells with low 

survival factor signalling (SF) inhibit apoptosis by production of SPARC. Adapted from (Portela et 

al., 2010). 
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Down-regulated transcripts 

As with the up-regulated genes, in this study we only consider transcripts with a fold 

difference of at least two fold contig coverage (expression) between the infected and the 

uninfected sample RNA.. A total of 99 genes fell into this criterion. These genes were 

classified ontologically (see table 3.3). A brief description of several functional classes will 

be provided.  A total of 21 down-regulated genes have unknown function when aligned and 

annotated, therefore they were not classified ontologically. 

 

gene notation Fold up/down 
regulation 

Ontology 

AAEL011634-RA fibrinogen and fibronectin -37.24816 IM 

AAEL000186-RA conserved hypothetical protein -23.99085 UK 

AAEL011302-RD annexin -18.45973 MT, IM 

AAEL013937-RA serine protease inhibitor, serpin -16.76929 SG, IM 

AAEL013731-RA kynurenine formamidase -15.65555 MT 

AAEL014548-RA peroxiredoxins, prx-1, prx-2, prx-3 -14.09325 CS 

AAEL004859-RA atp-dependent rna helicase -12.13185 NAP 

AAEL014944-RA cytochrome c oxidase polypeptide -10.86334 CS 

AAEL004381-RA capicua protein -8.556937 NAP 

AAEL006438-RA dolichyl glycosyltransferase -7.662562 MT 

AAEL002851-RA tubulin beta chain -7.595396 ST 

AAEL013236-RA proteasome subunit beta type 5,8 -6.431762 CS 

AAEL011616-RA serine protease, putative -6.199566 SG, IM 

AAEL005084-RA tubulin beta chain -5.903127 ST 

AAEL007383-RD secreted ferritin G subunit precursor, putative -5.732737 CS, IM 

AAEL009078-RA nadh-ubiquinone oxidoreductase sgdh subunit -5.219013 CS 

AAEL008920-RA anopheles stephensi ubiquitin, putative -5.201915 MT, CS 

AAEL013045-RA exosome complex exonuclease RRP41, putative -4.872546 NAP 

AAEL007368-RA hypothetical protein -4.79003 UK 

AAEL007451-RA wd-repeat protein -4.698928 SG, NAP, 

ST 

AAEL004276-RA C. pi - C10 protein -4.600326 IM 

AAEL001164-RA NADH:ubiquinone dehydrogenase, putative -4.326879 MT 

AAEL012812-RA exosome complex exonuclease RRP41, putative -4.19555 NAP 

AAEL004740-RA 35 kDa GTP-binding protein, putative -4.186419 UK 

AAEL002368-RA C. pi ubiquitin/ribosomal protein S27a  -3.995776 MT 

AAEL001547-RA hypothetical protein -3.995776 UK 
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AAEL004060-RA C. ele Putative ATP synthase epsilon chain, 

mitochondrial  

-3.949477 UK 

AAEL010170-RA ras-related protein Rab-8A, putative -3.916731 SG, IM 

AAEL000508-RA fibrinogen and fibronectin -3.772682 IM 

AAEL010318-RA polyadenylate-binding protein -3.646749 NAP 

AAEL011905-RA myosin i -3.577896 ST 

AAEL012875-RA snare protein sec22 -3.558144 MT 

AAEL004070-RA hypothetical protein -3.445366 UK 

AAEL009140-RA hypothetical protein -3.437438 UK 

AAEL008153-RA C. pi- arrestin domain-containing protein 2 -3.424532 UK 

AAEL000804-RA conserved hypothetical protein -3.321268 UK 

AAEL002825-RA NADH:ubiquinone dehydrogenase, putative -3.307712 MT 

AAEL008403-RA C. pi- 26S proteasome non-ATPase regulatory 

subunit 10 

-3.284695 CS 

AAEL007514-RA oviductin -3.215837 SG, IM 

AAEL002797-RA conserved hypothetical protein -3.172963 UK 

AAEL007820-RA Human LSM12 homolog -3.160261 NAP 

AAEL011773-RA calreticulin -3.14544 CS, IM 

AAEL005678-RA UDP-galactose transporter -3.097463 MT 

AAEL008741-RA importin (ran-binding protein) -3.060561 NAP 

AAEL013942-RA aminoadipate-semialdehyde dehydrogenase -3.050334 MT 

AAEL004823-RA superoxide dismutase [mn] -2.99446 CS 

AAEL002183-RA oligosaccharyl transferase, subunit, putative -2.949713 MT 

AAEL005636-RA eukaryotic translation initiation factor 2b, 

epsilon subunit 

-2.947442 NAP 

AAEL011293-RA vitamin-K-epoxide reductase (warfarin-

sensitive), putative 

-2.92007 CS 

AAEL009667-RA conserved hypothetical protein -2.917119 UK 

AAEL001194-RA fatty acid synthase -2.839667 MT 

AAEL000138-RA NADH dehydrogenase, putative -2.78521 MT 

AAEL012862-RA hypothetical protein -2.768201 UK 

AAEL003749-RA Drosop. -Transcription elongation factor 1 

homolog 

-2.687762 NAP 

AAEL003344-RA metaxin -2.653099 CS 

AAEL012679-RA Juvenile hormone-inducible protein, putative -2.635014 CS 

AAEL010361-RA rer1 protein -2.609322 ST 

AAEL013613-RA pyruvate dehydrogenase -2.504608 MT 

AAEL004282-RA protein-(glutamine-N5) methyl transferase, 

putative 

-2.472741 MT 

AAEL011155-RA Human Required for meiotic nuclear division -2.472178 CC 
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protein 1 homolog. 

AAEL009474-RA peptidoglycan recognition protein-lc isoform -2.471118 IM 

AAEL004997-RA U3 small nucleolar ribonucleoprotein protein 

imp4 

-2.465714 NAP 

AAEL002427-RA transcription factor IIIB 90 kDa subunit 

(TFIIIB90) 

-2.457541 NAP 

AAEL005638-RA C. pi- 60S ribosomal protein L7 -2.412454 MT 

AAEL006727-RA multisynthetase complex, auxiliary protein, p38, 

putative 

-2.386908 CS 

AAEL006458-RA alcohol dehydrogenase -2.380221 MT, CS 

AAEL004808-RA Dros - double-stranded RNA binding -2.358896 UK 

AAEL012161-RA Dros- Aldehyde dehydrogenase type III  -2.34245 MT 

AAEL009305-RA numb-associated kinase -2.341348 SG 

AAEL007375-RA pyruvate dehydrogenase -2.337085 MT 

AAEL013260-RA alpha methylacyl-coa racemase -2.326412 MT, 

AAEL002304-RA porphobilinogen synthase -2.298104 MT 

AAEL003695-RA conserved hypothetical protein -2.283035 UK 

AAEL010227-RA dolichol-phosphate mannosyltransferase -2.282551 MT 

AAEL005146-RA conserved hypothetical protein -2.253033 UK 

AAEL009373-RA n-acetyltransferase -2.237042 MT 

AAEL010501-RA zinc finger protein -2.229736 UK 

AAEL012313-RA charged multivesicular body protein 5 -2.21963 ST, MT 

AAEL006395-RA hypothetical protein -2.204883 UK 

AAEL007980-RA hypothetical protein -2.201734 UK 

AAEL001077-RA conserved hypothetical protein -2.180407 UK 

AAEL002843-RA conserved hypothetical protein -2.167397 UK 

AAEL008738-RA dead box atp-dependent rna helicase -2.165336 NAP 

AAEL012538-RA conserved hypothetical protein -2.163989 UK 

AAEL005880-RA conserved hypothetical protein -2.161065 UK 

AAEL009227-RA kinesin heavy chain -2.150995 CS 

AAEL005829-RA conserved hypothetical protein -2.124817 UK 

AAEL013890-RA 26S proteasome non-atpase regulatory subunit -2.120998 CS 

AAEL003634-RA Hsp70-interacting protein, putative -2.090667 CS 

AAEL007822-RA ubiquitin-conjugating enzyme E2 g -2.080365 CS 

AAEL010430-RA ras-related protein, putative -2.077866 SG, IM 

AAEL009483-RA conserved hypothetical protein -2.075132 UK 

AAEL007300-RA syntaxin binding protein-1,2,3 -2.053778 NAP, IM 

AAEL009671-RA snrnp sm protein -2.050406 NAP 

AAEL011611-RA serine protease, putative -2.042331 SG, IM 

AAEL001872-RA voltage-dependent anion-selective channel -2.041745 ST, MT 
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AAEL006764-RA glutathione transferase D10, putative -2.035482 CS, IM 

AAEL013410-RA conserved hypothetical protein -2.032396 UK 

AAEL007009-RA conserved hypothetical protein -2.017594 UK 

 

Table 3.3. Down-regulated genes in SFV infection of U4.4 cells. Genes were annotated after 

aligment to the Ae. aegypti genome classified by fold difference of expression and ontology: UK 

(unknown), NAP (Nucleic acid processing), MT (metabolism), IM (immunity), CS (cell stress), ST 

(structure), SG (Signalling), DV (development). Genes not annotated by the Ae. aegypti genome are 

stated (D. melanogaster, C. pipiens, A. gambiae). 

 

Immunity 
Fibrinogen and fibronectin transcripts are down-regulated. This finding contradicts other data 

in this study, which suggested that fibrinogen and fibronectin were up-regulated (table 3.2). 

However, further investigation showed that these three genes, AAEL003294 (up-regulated), 

AAEL011634 (down-regulated) and AAEL000508 (down-regulated), share no homology 

with each other.  

Annexins are members of a protein family characterized by the presence of four to eight 

annexin repeats. Their function is variable and they have been shown to play a role in 

processes such as apoptosis, differentiation, membrane fusion as well as endo- exocytosis and 

immunity. In An. gambiae and D. melanogaster, they bind to Plasmodium berghei ookinetes 

(Kotsyfakis et al., 2005). More importantly, they have also been implicated in the receptor 

mediated uptake of certain viruses, like hepatitis B or human cytomegalovirus (Depla, 2000). 

The role of annexins in arbovirus infection has not been investigated. 

Ferritins are proteins involved in scavenging and storing of iron. They have been shown to 

play a key role in host-pathogen interactions, such as Wolbachia intracellular bacteria, which 

interferes with iron metabolism in insects (Kremer et al., 2009). To the date, no interactions 

between arboviruses and ferritin have been shown in insects. 

The role of the Rab GTPase family in insects is unclear. While some Rab protein appears to 

be important for alphavirus endocytosis and entry (Colpitts et al., 2007), others are important 

in mTOR (mammalian target of rapamycin) activation and regulation (Li et al., 2010). The 

mTOR signalling pathway seems to have a role in DENV infection of Ae. aegypti, however it 
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is not well understood (Behura et al., 2011). Other proteins of the Rab family are responsible 

for exporting drosomycin (an anti-microbial) vesicles (Shandala et al., 2011). 

 Interestingly, Syntaxin binding and Snare proteins are also down-regulated in SFV infection. 

Syntaxin is involved in the anti-microbial peptide secretion pathway in Drosophila (Shandala 

et al., 2011), and the SNARE complex is associated with Syntaxin upon an external stimulus, 

such as infection (Jewell et al., 2011). It is possible that the down-regulation of both Rab and 

Syntaxin associated proteins that we see in SFV infection could be involved in activating the 

machinery of anti-microbial peptide vesicle export; however this hypothesis is still to be 

proven. All these anti-microbial studies have been done with bacteria, however; drosomycin 

has been shown to be part of the anti-viral immune response in insects (Luna et al., 2003; 

Thoetkiattikul, Beck, and Strand, 2005; Tsai et al., 2008). 

Calreticulin is a chaperone protein associated with the ER. While in insects it has not been 

associated with virus infections, in human cells this protein inhibits replication of DENV. It 

has indeed been shown that calreticulin also colocalised with viral dsRNA and replication 

complexes of DENV (Khadka et al., 2011). 

 

Cell stress 
Regulators of active oxygen species, such as peroxiredoxins, are down-regulated during SFV 

infection of U4.4 cells. Peroxiredoxins are a ubiquitous family of antioxidant enzymes and 

seem to play a role in controlling baculovirus infection of B. mori (Lee et al., 2005). Other 

oxidative stress related proteins which also regulate active oxygen species, such as NADH-

ubiquinone oxidoreductase, superoxide dismutase, vitamin-K-epoxide reductase, metaxin and 

glutathione transferases in general are all down-regulated. 

Some proteosome related proteins, as with calreticulin, are down-regulated. Another protein 

known as Hsp70-interacting protein is also down-regulated. It is not known if this Hsp70-

interacting protein is pro- or anti-viral, or even if it positively or negatively regulates 

proteasome complexes.  
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Other pathways 
SFV infection of U4.4 cells also seems to down-regulate some genes involved in endocytosis 

(charged multivesicular body protein 5), fatty acid metabolism (alpha methylacyl-coa 

racemase) and ER integrity (rer1 protein). Lipid metabolism is extremely important for 

viruses which replicate in the cytoplasm and they induce extensive ultrastructural changes in 

infected cells. Host-derived membranes are rearranged to provide extensive platforms that 

help to assemble arrays of replication factories. Fatty acids also have signalling functions. In 

C6/36 infected with DENV fatty acid metabolism is highly altered (Perera et al., 2012). The 

fatty acid metabolism transcripts found in this study remain uncharacterised.  Genes involved 

in mRNA processing and degradation (polyadenylate-binding protein, snrnp sm protein) are 

also down-regulated. As it has been shown for mammalian cells (Garmashova et al., 2006), 

and DENV infected Aag2 cells (Sim and Dimopoulos, 2010), there is a trend towards 

transcript downregulation in SFV infected U4.4 cells. 

 

Genes uniquely expressed in infected or uninfected cells 
Caution has to be taken when analysing genes present only in infected or uninfected cells. 

Fold difference expression cannot be calculated and contig coverage is the only quantitative 

available value. This information is still worthy of further analysis.  
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Transcripts only present in uninfected cells 

The first striking observation in transcripts only present in unifected cells is the presence of 

kinesin, which is not detected in SFV infected cells. Kinesin are motor proteins in charge of 

transporting molecules along microtubules. How SFV or other arbovirus infection affects the 

number of transcripts of this protein is unknown. Other potentially interesting molecules only 

present in uninfected cells is a proteasome inhibitor (AAEL001422). This finding correlates 

with the fact that proteosome subunit transcripts were also found up-regulated in this study. 

SFV could induce the formation of proteasomes through an unfolded protein response 

(Table.3.4).  

Gene Notation Fold up-
down 
regulation 

Notation 

AAEL014084-RA kinesin eg-5 4,575 CC 

AAEL004484-RA predicted protein 18.7 CC 

AAEL011387-RA leucine-rich repeat 12.22 CS 

AAEL007176-RA rabkinesin-6 9.57 CC, MT 
AAEL001422-RA proteasome inhibitor 8.98 CS 

AAEL000884-RA eukaryotic translation initiation factor 2 alpha 

kinase 1 (heme-regulated eukaryotic initiation 

factor eif-2-alpha kinase) 

8.25 NAP 

AAEL000983-RA clathrin coat assembly protein ap19 7.86 ST 

AAEL006150-RA brca1-associated protein (brap2) 7.28 NAP 

AAEL004942-RA helicase 6.83 NAP 

AAEL002866-RA cyclin l 6.79 CC 

AAEL003220-RA rho-type gtpase activating protein 6.76 SG 

AAEL001176-RA s-adenosylmethionine decarboxylase 6.44 MT 

AAEL002943-RA che-11 6.36 NAP 

AAEL008741-RA importin (ran-binding protein) 6.25 ST 

AAEL003759-RA calcium-activated potassium channel alpha subunit 6.2 MT 

AAEL009179-RA molybdopterin biosynthesis protein 5.84 CS 

AAEL003546-RA gamma-tubulin complex component 4 (gcp-4) 5.83 ST 

AAEL010717-RA ecdysone receptor isoform-B (EcRB) 5.81 DV 

AAEL002766-RA glutamyl-tRNA(Gln) amidotransferase subunit A 5.81 NAP 

AAEL010449-RA huntingtin interacting protein 5.71 DV 
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AAEL012211-RA microfibrillar-associated protein, putative 5.63 NAP 

AAEL010432-RA exocyst complex-subunit protein, 84kD-subunit, 

putative 

5.56 DV 

AAEL006840-RA U2 small nuclear ribonucleoprotein a 5.43 NAP 

AAEL011303-RA cell division protein ftsj 5.32 CC 

AAEL003522-RA protein arginine n-methyltransferase 5.29 MT 

 

Table 3.4. The top 25 transcripts only present in uninfected cells. Genes were annotated 

after aligment to the Ae. aegypti genome, classified by contig coverage and ontology: UK (unknown), 

NAP (Nucleic Acid processing), MT (metabolism), IM (immunity), CS (cell stress), ST (structure), 

SG (Signalling), DV (development) CC (Cell cycle). 
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Transcripts only present in infected cells 

We can only assume that those genes only present in the transcriptome of infected cells are 

induced upon virus infection. 

Gene Notation Contig 
coverage 
 

Ontology 
 

AAEL012353-RA antifreeze protein, putative 18.52 CS 
AAEL010668-RA quinone oxidoreductase 8.38 CS 
AAEL009080-RB importin 7, 7.75 NAP 
AAEL010119-RA ER-derived vesicles protein ERV14, putative 7.29 ST 
AAEL004425-RA ctg4a 7 IM, SG 
AAEL011822-RA gamma glutamyl transpeptidases 6.49 MT 
AAEL004098-RA neuromusculin 6.49 IM 
AAEL001333-RA protein arginine n-methyltransferase 1, 6.44 MT 
AAEL011063-RA tumor endothelial marker 7 precursor 6.3 UK 
AAEL002976-RA Aspartyl beta-hydroxylase, putative 6.25 SG 
AAEL005597-RA dna helicase recq5 6.2 NAP 
AAEL003246-RA deoxyribose-phosphate aldolase 6.17 NAP 
AAEL012154-RA 2,3-cyclic-nucleotide 2-phosphodiesterase 6.16 MT 
AAEL001066-RA mitochondrial ribosomal protein, L22, putative 6.16 MT 
AAEL013652-RA oxidoreductase 6 CS 
AAEL003179-RA protein arginine n-methyltransferase 1, 5.89 MT 
AAEL014946-RA protease U48 caax prenyl protease rce1 5.81 MT 
AAEL012120-RA fad oxidoreductase 5.76 CS 
AAEL001580-RA otefin, putative 5.73 ST 
AAEL013820-RA Bj1 protein, putative 5.64 NAP, DV 
AAEL010610-RA serine palmitoyltransferase i 5.63 MT 
AAEL008649-RA L-galactose dehydrogenase, putative 5.62 MT 
AAEL011245-RA deoxyhypusine synthase 5.61 IM 
AAEL006039-RA dehydrodolichyl diphosphate synthase (dedol-pp synthase) 5.51 MT 
AAEL006833-RA succinyl-CoA synthetase small subunit, putative 5.51 MT 
AAEL001396-RA mandelate racemase 5.49 ST 
 

Table 3.5. The top 25 transcripts only present in infected cells. Genes were annotated after 

aligment to the Ae. aegypti genome classified by contig coverage and ontology: UK (unknown), NAP 

(Nucleic acid processing), MT (metabolism), IM (immunity), CS (cell stress), ST (structure), SG 

(Signalling), DV (development). 

 

The profile of transcripts only present in the infected cell samples is interesting. There are 

several proteins related to the oxidative stress pathways, including several oxidoreductases. 

Their enzymatic role is the opposite of peroxiredoxins (down-regulated) and superoxide 

dismutases (down-regulated). Other transcripts only present in infected cells include 

molecules ER and cell vesicle trafficking, such as ERV14, serine palmitoyltransferase and 
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lipid storage droplets surface binding proteins. Immune related molecule transcripts present 

include ctg4a, also known as Toll receptor 4, and neuromusculin, which is an 

immunoglobulin. Deoxyhypusine synthase is an anti-parasitic molecule which is also down-

regulated in infected cells, but its anti-viral properties have not been investigated (Moritz et 

al., 2004). However no trancripts of defensins or other traditionally induced IMD, JAK/STAT 

or Toll pathway were detected. This confirms previous observations that SFV does not induce 

these immune signalling pathways (Fragkoudis et al., 2008c).  
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Overall transcript profile 

As shown before, there is a trend towards downregulation in SFV infected U4.4 cells. 

Downregulation of cellular transcripts is shown in other transcriptomic studies with DENV 

and ONNV (Sim and Dimopoulos, 2010; Sim, Ramirez, and Dimopoulos, 2012; Waldock, 

Olson, and Christophides, 2012). Metabolism, cell stress and immunity gene transcripts seem 

to be the most affected by this down-regulation. However, with the data provided here it is 

not possible to tell whether up-regulated or down-regulated genes are anti- or pro- viral or 

perhaps have no effect at all. 
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Fig.3.7. Comparison between the number of genes differentially regulated during SFV 

infection of U4.4 cells. Each individual gene up-regulated and down-regulated is classify by 

function. Gene ontology represented in colours. Ontology was manually assigned according to gene 

function published in the literature.  
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Discussion 
Our hyphothesis at the beginning of the project was that SFV infection of Ae. albopictus 

derived U4.4 cells would drive differential regulation of cellular genes. In order to understand 

which transcripts are differentially expressed transcriptomic analysis of the total cellular 

RNA was carried out. The sequenced data was aligned to the Ae. aegypti genome, the closest 

Ae. albopictus relative that has been sequenced. The choice was appropriate since there is 60-

80% average similarity at nucleotide level in genes between these two related mosquitoes, 

allowing identification of transcripts as well as the identification of vector interspecies 

differences.  

There were certainly restrictions in this study, for example, no other time points were 

analysed. However the study gives us a general idea of what happens in the cell at a 

transcription level during viral infection. Our aim was to identify differentially expressed 

genes so they could be silenced, in the long term, their effect on SFV infection verified, and 

to generate some sequence information for Ae. albopictus generally.  

Contig coverage was chosen over transcript number due to the sequencing limiations. 454 

sequencing can start indiscriminately from the 3’ or from the 5’ end of the transcript. If the 

transcript is degraded or cut at some point, then the read will appear as two different copies of 

at the same gene. Long RNA transcripts are quite fragile and during the process of preparing 

the sample for sequencing some will break. It can be assumed that contig coverage is a good 

indicator of the amount of transcript since, when normalizing, the amount of 40S ribosomal 

protein 7S transcripts was only 25.65% higher in the infected cells. This means there was 

only a quarter of a fold difference in transcript level that had to be corrected. 

It is known that SFV infection of U4.4 follows a timeline with an acute phase lasting up to 

16-24 h p.i. followed by a persistent infection marked by a lower virus production 

(Fragkoudis et al., 2008b). Since funds for this transcriptomic studies were limited, only one 

time point was analysed. The time point chosen was at 16 h post-infection, towards the end of 

the acute phase. Genes involved in controlling SFV infection would have been induced at this 

time or otherwise responding to infection. It can be assumed that the profile from 

differentially expressed gene transcripts would vary depending of the stage of infection. Most 

transcriptomic studies verify sequencing data with some other methods, such as PCR, qPCR 

or northern blot. Verification of the data was not carried out because of limited time. Contig 

coverage gives a very high quality quantified amount of RNA bases per transcripts so PCR 
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verification was not a priority. The next step would have been silencing of up-regulated genes 

with RNAi. Several candidate genes were going to be silenced and their effect on SFV 

infection monitored. This was not done since it was decided to follow the role of the 

melanisation pathway in SFV infection (see following chapters). Potential elements of this 

pathway, such as serpins, together with genes involved in oxidative stress such as peroxidases 

and oxireductases, were shown to be highly differentially expressed upon SFV infection in 

this study. 

There is little knowledge regarding the amount or percentage of viral RNA in infected 

mosquito cells in relation to cellular/host RNA. In mammalian systems, some studies suggest 

that the percentage of viral RNA can vary over infection duration but it is between 20-40% of 

the total cellular RNA in influenza infected eggs (Varich et al., 1981). In insects including 

mosquitoes, the percentage of viral transcripts as of total cellular RNA is unknown. The low 

percentage of virus transcripts found also relates to discoveries made in the small RNA field. 

Several recent studies suggest that virus induced siRNAs in mosquito cells, also known as 

viRNAs, make up a relatively low percentage of the total infected cell sRNAs pool: in WNV 

(0.43%), SINV (4.79%) LACV(8.39%), and in SFV (2%) (Brackney et al., 2010; Siu et al., 

2011b).  

There was a general downregulation of gene expression during SFV infection. This correlates 

with findings from other transcriptome studies with DENV and ONNV in Ae. aegypti and A. 

gambiae (Bartholomay et al., 2004; Colpitts et al., 2011; Sim and Dimopoulos, 2010; Sim, 

Ramirez, and Dimopoulos, 2012; Waldock, Olson, and Christophides, 2012). Experimentally 

SFV has proven to induce a mild shut down in Ae. albopictus derived cells (Fragkoudis et al., 

2008c). Gene expression is also tissue specific, and though the U4.4 cell culture system is 

quite heterogeneous, it lacks the specialisation of individual tissues. In recent times there has 

been an increase of transcriptome analysis of specific tissues, especially those important in 

arbovirus infection of mosquitoes, such as the salivary glands or the midgut. It has been 

found that there is a tissue specific differential gene expression in Ae. aegypti mosquitoes 

infected with WNV, YFV and DENV (Colpitts et al., 2011; Zou et al., 2011). 

Some of the differential gene expression observed here correlates with findings from a 

previous study involving a much less deep transcriptome analysis of Ae. albopictus derived 

C6/36 cells stimulated with bacteria (Dixit, Patole, and Shouche, 2011). However, for our 

purpose, U4.4 cells are more apt since, unlike C6/36 cells, they have an intact RNAi system 
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and Imd, Jak/Stat and Toll pathways (Brackney et al., 2010; Fragkoudis et al., 2008b). U4.4 

cells therefore represent a more realistic study system. 

Though RNAi is the most important anti-viral immune pathway in mosquitoes, RNAi 

associated genes are largely absent in this study. Dicer-2 transcripts were present but there 

are not significant differences between samples. The reason this could be is that RNAi 

components are not differentially regulated upon SFV infection and also present at given 

time. Other components of classic anti-viral pathways such as Toll and IMD were not 

differentially regulated in this transcriptome, for example Spätzle 1A (Spz1A) was only up-

regulated 0.78 fold in infected cells. This is different in DENV, YFV and WNV infection of 

Aag2 cells and Ae. aegypiti mosquites, where the signalling pathways are heavily up-

regulated (Colpitts et al., 2011; Sim and Dimopoulos, 2010). 

In this study showed several proteasome and chaperon subunits and regulatory units are 

differentially expressed in SFV infection of U4.4 cells. There is enough evidence to suggest 

that the unfolded protein response  and ER stress play a role in SFV  and DENV infection of 

mammalian cells (Barry et al., 2010; Doolittle and Gomez, 2011), however this topic is not 

understood in anti-viral immunity in mosquitoes. Down-reguation of genes that are inhibitors 

of reactive oxygen species, such as glutathione, is evident in SFV infection of U4.4. Active 

oxygen species are known to have virucidal properties (Tuladhar et al., 2012) and in insects 

they are also by-products of melanisation (Kumar et al., 2003). As it will be shown later, 

melanisation is an antiviral immune response against viruses in mosquitoes.  

Taken together, this experiment revealed intriguing patterns of differential transcript 

abundance that suggest a broad impact of SFV infection in U4.4 cells, such as in metabolism, 

cell structure and nucleic acid processing. SFV infection induces differential expression of 

genes in pathways such as apoptosis, stress response and cell cycle. Several studies have tried 

to illuminate the possible antiviral role of these pathways in mosquitoes upon virus infection, 

but it is still largely unclear (Wang et al., 2008a; Wang et al., 2012).  

As compared to other previously published transcriptome studies, the differential expression 

of SFV infected U4.4 cells shows a very similar profile to that of ONNV infection of A. 

gambiae cells (Waldock, Olson, and Christophides, 2012) and DENV, YFV and WNV 

infection of Ae. aegypti cells and mosquitoes (Colpitts et al., 2011; Sim and Dimopoulos, 

2010; Sim, Ramirez, and Dimopoulos, 2012), where heatshock proteins, serine proteases  and 
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oxidative stress molecules were up regulated and signalling pathways were down regulated. 

In SFV infection of U4.4 cells however transcripts from signalling pathways genes are not 

differentially regulated. Similar findings were observed in ONNV infection of A. gambiae 

mosquitoes (Sim et al., 2005). 

It is clear that, when analysing the transcriptome data in this study, pathways and gene 

ontology cannot stand alone. Successful response against viral infection requires a more 

elaborate gene interactive network. It has been suggested that cross talk between the different 

immunity pathways, as well as with some non-immune networks, such as stress responses 

and cell cycle modulation, are essential to mount an immune defence against viruses (Behura 

et al., 2011). The magnitude and intrinsic nature of these networks is such that a lot more 

resources and research will be needed to understand the cellular mechanisms behind 

arbovirus defence in mosquitoes.  
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Summary of findings 

• Most cellular transcripts are not differentially regulated. Only 2% of gene transcripts 

were up-regulated and 4% of gene transcripts were down-regulated. 

• Transcripts up-regulated transcripts upon SFV infection of U4.4 cells were related to 

nucleic acid processing and serine proteases, as well as other immune related genes, 

unfolded protein response genes and other stress responses 

• Transcripts down-regulated upon SFV infection were involved in exocytosis and 

vesicle export pathways; RNA degradation, and reactive oxygen species metabolism. 
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INTRODUCTION 
After analysing the results from the transcriptome studies, it was decided to investigate the 

importance of melanisation and the phenoloxidase ((PO) cascade in SFV infection of U4.4 

cells. The phenoloxidase cascade is a very important humoral component of the insect 

immune system and regulates the formation of melanin following wounding or infection 

(Cerenius and Söderhäll, 2004; Kanost, 2008). This reaction can be triggered by pathogen-

associated patterns (PAMPs) including microbial compounds such as peptidoglycans and 

LPS, which bind to host microbial pattern recognition receptors (PRRS) and result in the 

activation the PO cascade. This cascade consists of multiple clip-domain serine proteases and 

culminates with the activation of prophenolxidase-activating proteases (PAPs) that process 

the zymogen prophenolxidase (PPO) to active PO. PO then catalyses the conversion of mono- 

and di-phenolic substrates present in the haemolymph to intermediate products like 5,6-

dihydroxyindole or dopamine, which are then further converted into melanin. By-products of 

PO activity are reactive oxygen species (ROS) that are potent antimicrobial and cytotoxic 

agents (Cerenius and Söderhäll, 2004). The final products of the PO cascade are largely 

cytotoxic. This cascade is negatively regulated by host factors including multiple serine 

proteases inhibitors (serpins) which inhibit the clip-domain serine proteinases in the PO 

cascade (Cerenius, Lee, and Söderhäll, 2008; Cerenius and Söderhäll, 2004; Christensen et 

al., 2005; Marmaras and Lampropoulou, 2009; Tang, 2009).  
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Fig.4.1. The melanisation pathway. PAMPs trigger a serine protease cascade which cleave 

and activate phenoloxidase activating proteins (PAPs). These molecules then activate PPO into PO 

which oxidates tyrosine into dopamine prior to further conversion into cytotoxic products, active 

oxygen species and melanin polymerisation.  

 

PO cascade proteins are found extensively in arthropods and plants (Ashida and Brey, 1995; 

Cerenius, Lee, and Söderhäll, 2008; Kanost, Jiang, and Yu, 2004; Mayer, 2006). In plants, a 

PO like protein can induce food browning after activation (Mayer, 2006). In insects, the PO 

precursor PPO is usually produced by different haemocyte cell types. In Lepidoptera, it is 

produced by oenocytoids (Ashida and Brey, 1995) and in drosophila it is produced in 

lamellocytes and crystal cells (Irving et al., 2005; Tang, 2009). Interestingly, in mosquitoes, 

the production of PPO is more complex and left to specific cell types. Studies in C. pipiens 

suggest that, during larval developmental stages, plasmocytes and the smallest 

proheamocytes produce PPO. However, after blood feeding in adults, the haemocyte cells 
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producing PPO are granulocytes and oenocytoids (Wang et al., 2011) (Castillo, Robertson, 

and Strand, 2006). Such a specialized production of PPO suggests melanisation is important 

when fighting pathogens in mosquitoes. Moreover, the number of PPO genes varies across 

insect species. In Lepidoptera, there are two PPO genes (Ashida and Brey, 1995), drosophila 

has three (Irving et al., 2005) and mosquitoes are known to encode many more; An. gambiae 

encodes nine and A. aegypti express up to 10 (Zou et al., 2008b; Zou et al., 2010). It is still 

unknown why insects like mosquito express a variety PPO genes and if these different genes 

have diverse properties because of the difficulty to purify and isolate one PPO from another 

(Chen et al., 2012). However, it is tempting to think that they are involved in controlling a 

wide range of pathogens in the insect.  

In drosophila, melanisation can be activated by pathogens in several distinct tissues, such as 

the haemolymph, fat body, midgut, trachea or respiratory system as well as in other epithelial 

tissues (Tang, 2009; Tang et al., 2008). There are limited studies about the PO cascade in 

mosquitoes, although what is known suggests that this pathway seems to be active and 

complex (Ashida, Kinoshita, and Brey, 1990). In mosquitoes, pathogen induced melanisation 

can occur in the haemolymph, midgut and thoracic musculature. Although cellular 

melanisation is not common, it is mostly a humoral reaction (Hillyer, Schmidt, and 

Christensen, 2003). 

Previous studies implicate the deposition of melanin in defence against fungal infection, 

multicellular parasites and bacteria (Soderhall and Cerenius, 1998). However, little is known 

about the role of the PO cascade as an antiviral immune mechanism. It has been suggested 

that the plasma from the lepidopteran Heliothis virescens (tobacco budworm moth) contains 

factors with antiviral activity against Helicoperva zea single capsid nucleopolyhedrovirus 

(HzSNPV)(most likely linked to phenoloxidase activity) and other viruses including SINV. 
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Also, bioassays with 5,6-dihydroxyindole show that it rapidly inactivates Autographa 

californica nucleopolyhendrosis virus (AcNPV) (Popham et al., 2004) (Ourth and Renis, 

1993; Shelby and Popham, 2006; Zhao et al., 2011). Reactive intermediates, such as 5,6-

dihydroxyindole, have been shown to be cytotoxic (Zhao et al., 2011). Antiviral activity 

against the polydnavirus MdBV has also been correlated with hemolymph melanisation in 

Lepidoptera (Beck and Strand, 2007). In the case of arboviruses, it is interesting to note that 

knockdown of PPO I in the mosquito Armigeres subalbatus by a recombinant SINV 

expressing a dsRNA targeting PPO I resulted in reduced PO activity and higher SINV titres 

(Tamang et al., 2004). However, it still remains unknown whether arboviruses can activate 

the PPO cascade in mosquitoes and whether products of the PO cascade exhibit biologically 

relevant antiviral activity. 
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Objectives 
- To determine whether there is a PO cascade in conditioned cell culture medium from 

Ae. albopictus derived U4.4 cells. 

- If there is PO activity, investigate whether SFV can activate the PO cascade in Ae. 

albopictus derived U4.4 cells. 

- Investigate if PO activity affects SFV infection of U4.4 cells. 
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RESULTS 

The presence of melanisation in U4.4 cell culture medium 
Mosquitoes have a functional PO cascade which is an important part of their innate 

immunity. The haemolymph of Ae. aegypti readily melanises in response to wounding and 

infection. They also encode multiple PPO genes, some of which some are expressed in 

response to bacterial infection (Zou et al., 2008a). Multiple PPO genes are also detected in 

haemocyte-like cell lines derived from Anopheles gambiae (Muller et al., 1999). In contrast, 

little is known about PO activity in other mosquito cell lines. Ae. albopictus U4.4 cells have 

proven to be a useful model to study innate immune responses against arboviral infection in 

mosquitoes (Attarzadeh-Yazdi et al., 2009; Fragkoudis et al., 2008a; Siu et al., 2011a) In 

order to assess if there is any PO activity in the conditioned cell culture medium of U4.4 

cells, a PO activity assay was developed based on enzymatic studies (Hall et al., 1995). Cell 

free culture medium, which had been in contact with the cells for 48 h, was incubated for 10 

min. with E. coli or purified SFV. E. coli was used as a positive control. Conditioned cell 

culture medium alone was used as a negative control and then assessed for PO activity. A PO 

activity assay was then carried out (see Materials & Methods for details) which involved the 

determination of PO activity through absorbance increase in the culture medium due to 

dopamine oxidation (Fig.4.1). 

These assays revealed significantly higher levels of PO activity in conditioned medium 

challenged with E. coli than in conditioned medium alone (General Linear Model, P=0.004) 

(Fig. 4.1). Results also showed that purified SFV significantly increased PO activity in 

conditioned cell culture medium when compared to control conditioned medium (P=0.021) 

(Fig. 4.1). There was no significant difference between E. coli and SFV induced PO 

activation. It can therefore be stated that SFV virions, like E. coli, are activators of the PO 

cascade. 
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Fig.4.1. PO activity in U4.4 conditioned cell culture medium. PO activity was measured 

through absorbance due to the oxidation of dopamine in conditioned medium when E. coli or purified 

SFV were added. One unit of PO activity was defined as ΔA490=0.001 after 30 minutes incubation; 

absorbance changes due to the oxidation of the dopamine substrate by PO activity (see Materials and 

Methods). The Y axis indicates PO activity units (U). Each bar represents the mean from 10 reactions; 

error bars represent standard deviation. The experiment was repeated three times with similar results. 

 

SFV virion viability in U4.4 cell culture medium 
In the polydnavirus MdBV infection of M. sexta, melanisation reduces virus viability by three 

logs and inhibition of this pathway prevents this effect (Beck and Strand, 2007). In order to 

assess if potential PO activity in U4.4 cell culture affects SFV viability, a simple preliminary 

experiment was designed. A total of 2 x 108 PFU ml of SFV (titrated in BHK-21 cells) was 

incubated for 1 h at 28 °C with conditioned or unconditioned U4.4 cell culture medium. 

Afterwards, both the conditioned and unconditioned culture media containing the virus were 

titrated. 
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Fig.4.3. SFV viability after incubation with conditioned or unconditioned 

U4.4 cell-free culture medium. Viability was then determined by titration of SFV on 

BHK-21 cells. PFU: plaque forming units. Each bar represents the mean from triplicate 

incubations; error bars show standard deviation. This experiment was repeated three times 

with similar results. 

 

Virion viability is reduced by almost 50% in conditioned medium. This correlates with 

findings with MdBV virus (Beck and Strand, 2007). Together with the other findings in this 

chapter this suggests that PO activity can reduce virion viability. 
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Identifiying the source of PO activity in U4.4 cell culture medium 
Ae. albopictus derived U4.4 is a heterogeneous cell line, it contains cells of different 

morphologies and origins, some of them possibly haemocytes. It is known that PPO genes are 

expressed in haemocytes in mosquitoes, in particular granulocytes and oenocytoids (Castillo, 

Robertson, and Strand, 2006). This experiment was done to determine whether cells in the 

U4.4 culture express and secret PPO and thus contribute to the PO cascade in conditioned 

culture medium. U4.4 cells were seeded and after 24 h the cell culture medium was removed 

and the monolayer was washed with glacial methanol. Methanol and other amphipathic 

molecules activate the PO cascade (Kanost, 2008) The monolayer was then covered with the 

PO activity assay substrate buffer (50 mM Sodium Phosphate buffer (pH 6.5) containing 2 

mM dopamine) and the cells were incubated for 1 h at room temperature in the dark. Cells 

expressing PPO genes will stain dark due to the PO activity on the dopamine containing 

buffer. 

 

 

Fig.4.4. PPO producing cells in U4.4 cell culture. U4.4 cells were fixed with glacial 

methanol. PO activity assay buffer was then added, the culture was incubated for 1 h at room 

temperature and placed under the light microscope for observation of PO positive cells. This 

experiment is representative of three independent experiments. 
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As seen in Fig.4.4, most of the cells were not melanised. A small proportion of melanised 

cells, as little as approximately 0.2% are probably haemocytes which carry PPOs in vesicles 

ready to secret them. The type of haemocytes which constitutively express PPO genes are 

known as oenocytoids. They are morphologically round and bigger as well as they stain 

positive for PO activity (Castillo, Robertson, and Strand, 2006). This result revalidates that 

melanisation occurs in U4.4 cell culture, as well as indicates that a small population of 

specialised cells that also show the features of oenocytoids are responsible for the expression 

of PPO. Indeed, PPO-expressing haemocytes are just a small proportion of the plasma cells 

(1% or less) (Castillo, Robertson, and Strand, 2006). 
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The effect of glutathione (GSH) in counteracting melanisation in U4.4 cell 
culture medium. 
Glutathione (GSH) is a tripeptide thiol found in all the metazoans which exists in both 

reduced (GSH) and oxidized (GSSG) forms. In mammals it protects cells from the destructive 

effects of reactive oxygen species and free radicals (Meister and Anderson, 1983). In insects, 

GSH has been linked to oxidative stress and aging (Jovanović-Galović et al., 2004; Lipke and 

Chalkley, 1962; Sohal, Arnold, and Orr, 1990). It is produced, exported to the haemolymph 

and regulated by the haemocytes. These cells are also capable of recycling oxidized 

glutathione (GSSG) to active GSH. Melanisation does not occur in the insect plasma until 

secreted GSH levels fall below 20 µM. GSH is a potent inhibitor of PO activity and 

melanisation. (Clark, Lu, and Strand, 2010). 

GSH is used to inhibit melanisation by adding it to the U4.4 cell culture medium. GSH is a 

naturally occurring peptide in cells, so it was assumed that it had low toxicity. Nevertheless 

an experiment was carried out to assess the highest concentration of GSH that could be added 

to the cells without causing a loss in cell viability. U4.4 cells were transfected with a plasmid 

expressing Renilla luciferase under a baculovirus promoter (pAcIE1-RLuc) (Ongus et al., 

2006) and incubated for 48 h, with cell culture medium containing different concentrations of 

GSH. 

GSH does not seem to affect cell viability until reaching very high concentrations such as 1 

or 2mM (Fig 4.5). As mentioned before 20 µM is enough to inhibit melanisation but, since 

our experiments can take 48 h, a concentration of 0.5 mM was used in experiments to make 

sure melanisation was inhibited. 
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Fig. 4.5. U4.4 cell viability in different concentrations of GSH.  U4.4 cells were 

transfected with pAcIE1-Rluc plasmid and cultured with different concentrations of GSH added to 

the medium. RLuc readings were taken after 48 h. Each bar represents the mean from triplicate 

cultures; error bars represent standard deviation. This experiment is representative of three 

independent experiments. 

 

In the following experiment, the effect of GSH as PO activity inhibitor on SFV infection of 

U4.4 cells was analysed. U4.4 cells were infected with SFV expressing Renilla luciferase 

(RLuc) (SFV4(3H)-RLuc) at low MOI (0.005), thus allowing the virus to spread through the 

culture. GSH was added to the cell culture medium to a final concentration of 0.5 mM and 

the luciferase readings, indicators of viral replication and spread, were taken after 48 h.  
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Fig 4.6. Effect of the PO activity inhibitor gluthatione (GSH) on SFV 

infection of U4.4 cell culture. Cells were infected with SFV4(3H)-RLuc at low MOI 

(0.005)(allowing virus spread to uninfected cells through cell culture medium and multiple 

rounds of replication) and treated or not with 0.5 mM GSH. RLuc readings were taken 48 h 

post-infection; Y axis indicates light units. Each bar represents the mean from triplicate 

cultures; error bars represent standard deviation. This experiment is representative of three 

independent experiments. 

 

The addition of GSH has a positive effect on viral spread. SFV replicates and spreads through 

the culture significantly better (t-test, P value= 0.0014) than virus in culture medium without 

GSH. Since GSH inhibits melanisation and does not appear to have another negative effect in 

cell metabolism, it can be assumed that inhibition of melanisation by GSH favours viral 

spread through the culture.  
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DISCUSSION 
Melanisation is an important immune defence against bacterial, fungal and parasitic infection 

in mosquitos and other arthropods. Here I demonstrate that the antimicrobial properties of 

this pathway also extend to arboviral infection of mosquito cell cultures. I also show that cell 

conditioned culture medium from Ae. albopictus derived U4.4 cells contains an active PO 

cascade which can be triggered by SFV virions or E. coli. PO activity affects SFV virion 

viability and affects virus spread in cell culture. As it has been previously speculated for An. 

gambiae cell lines (Muller et al., 1999), some cells in the U4.4 cell population seem to 

produce PPO and have haemocyte-like properties. The presence of glutathione counteracts 

the effects of the PO cascade during SFV infection of U4.4 cells.  

The mechanisms by which SFV triggers melanisation are still unknown. The extracellular 

soluble particle recognition proteins that activate the cascade when in contact with PAMPs 

remain largely uncharacterised and but there are several candidate proteins involved. It is 

believed that immulectins 1 and 2 play an important role in triggering melanisation in the 

tobacco hornworm Manduca sexta (Ling and Yu, 2006; Yu and Kanost, 2004). Immulectins 

are members of the C-type (calcium-dependent) lectin superfamily. They are produced in 

haemocytes and function as humoral pattern recognition receptors binding to parasites, such 

as C. elegans and to the human filarial nematode Brugia malayi, inducing melanisation and 

encapsulation (Ling and Yu, 2006). Gram-negative bacteria can trigger melanisation through 

another type of extracellular receptor, peptidoglycan-recognition protein (PGRP)-LE, which 

consists of 12 members in Drosophila, some of them expressed extracellulary (Werner et al., 

2000). Interestingly, in addition to the activation of the PO cascade in the haemolymph, 

PGRP-LE can also activate an IMD-mediated antibacterial response in Drosophila (Takehana 

et al., 2002). Other molecules that have been linked to activation of melanisation are β-1,3-

glucan recognition proteins (GRP) which exist on the surface of bacteria, independently of 

their Gram-trype, and fungi. Pathogen cell walls can be detected by GRP which are 

constitutively expressed in Ar. subalbatus and, once activated, trigger the proteolytic cascade 

leading to melanisation (Wang et al., 2005a; Wang et al., 2006). Although there is 

speculation as to which receptors are involved in the induction of melanisation by parasites 

and bacteria, the receptors recognising viruses are not known at this stage. The affinity of the 

previously mentioned receptors to the glycoproteins in the virion has not been tested. It is 

tempting to hypothesise that this unknown virus receptor will not be specific and could be 
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activated by several virus families, and that glycoproteins (clustered on the virion) are 

recognised by a humoral receptor. 

How the PO cascade negatively affects the virus infection and spread it is also not known. 

One possibility is the melanisation and encapsulation of virions though this is difficult to 

observe. A possible mechanism is the destruction of the virion are reactive oxygen species 

(ROS) intermediates of the PO cascade, such as 5,6-dihydroxyndole, which have shown to 

mediate antiviral activity (Popham et al., 2004). The lethal role of ROS against parasites, 

bacteria and fungi as well as the underlining biochemical mechanisms have been reviewed 

extensively (Nappi, Poirié, and Carton, 2009). Elevated levels of ROS cause tissue damage 

by various mechanisms, such as nucleic acid damage, lipid peroxidation, sulfhydryl oxidation 

and protein cross-linking. Species like oxygen peroxide (*OH) are able to react with any 

organic molecules and its production requires the reduction of certain transition metals, like 

Cu2+ and Fe3+, as well as interactions with nitrogen peroxide (*NO). Fe3+ and *NO 

unregulation has been linked to mediating various toxic and antimicriobial responses in 

arthropods (Foley and O'Farrell, 2003; Kremer et al., 2009). In the host, a good balance and 

tight regulation of the production of ROS is needed in order to avoid the generation of 

cytotoxic compounds at nonspecific sites within the host hemocoel (Nappi, Poirié, and 

Carton, 2009). Molecules like the previously mentioned glutathione GSH are responsible for 

controlling ROS. Addition of GSH to the cell culture, thus removing ROS, resulted in an 

increase of viral infection and spread. Therefore, it can be hypothesised that melanisation 

affects the virus by ROS and cytotoxic agent production, however, the specific biochemical 

mechanisms of the interaction between these molecules and the virion are not known. 

Melanisation in response to virus infection of mosquitoes may be important as an immune 

response, however, other inducible pathways such as Toll, IMD and, more importantly RNAi 

are also key to controlling the arboviruses. This will be explored further in future chapters. 

One interesting and significant aspect of melanisation is not just that the pathway itself 

affects the virus, but that, independent of how efficient the PO cascade is, it can also trigger 

other immune pathways. In drosophila, tracheal melanisation induces systemic expression of 

the antimicrobial peptide drosomycin, an end product of the Toll and IMD pathways, in the 

fly’s fat body (Tang et al., 2008). Induction of melanisation and cross talk with the Toll 

pathway has also been suggested in Ae. aegypti infection with Wolbachia and DENV (Rancès 

et al., 2012). However, the mechanisms  linking melanisation with the Toll pathway and the 
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production of antimicrobial peptides are still obscure (Ligoxygakis et al., 2002; Scherfer et 

al., 2006). As mentioned before, PRG-LE activated receptors can also trigger anti-bacterial 

IMD/relish induced transcripts (Takehana et al., 2002). However, with the exception of 

drosomycin, nothing is known about the induction of anti-viral peptides and other antiviral 

activities. ROS produced during melanisation can also activate NF-κB due to pro-

inflammatory cytokine release (Nappi, Poirié, and Carton, 2009). Activation of NF-κB seems 

to be important for virus infection in arthropods since several polydnaviruses have evolved 

inhibitors against these molecules (Thoetkiattikul, Beck, and Strand, 2005).  

This chapter demonstrates the importance of the PO cascade as an innate response against 

viral infection of mosquito cells and this will be further explored, however there are still 

several unknown aspects of this pathway. To add complexity, in mosquitoes several distinct 

melanisation pathways exist and the in vivo mechanisms of this cascade following virus 

infection may be even more intricate (Zou et al., 2010). In the following chapters the role of 

melanisation during virus infection will be studied further using melanisation inhibitors. 

Also, the role that serine protease inhibitors (serpins) have in the PO cascade during viral 

infection will be investigated. 
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Summary of findings 

• There is a melanisation cascade and PO activity in U4.4 cell conditioned medium. 

 

• SFV and E. coli can activate the PO cascade in U4.4 cell culture medium. 

 

• SFV replication and spread is affected by intermediates of the PO cascade. 
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Introduction 
Melanisation is a highly conserved pathway across insect families, key enzymes of this 

cascade do not differ excessively across insect families. This has allowed parasitoid wasps, 

thanks to the expression of PDV proteins (Lu et al., 2008), to overcome the immunity of this 

pathway while depositing their eggs across a great variety of insect species larvae as 

described in Chapter 1. Microplitis demolitor bracovirus (MdBV) is carried by the braconid 

wasp M. demolitor and allows the wasp to parasitize the larval stage of several Lepidoptera 

species (Kadash et al., 2003). The genome of MdBV is 189 kb long, divided in 15 segments 

and encodes for 61 predicted genes (Webb et al., 2006). Most of these genes belong to four 

families, mucin-like cell surface genes (Glc family), IκB-like genes (Vankyrins), protein 

tyrosine phosphatase (PTP) genes, and epidermal growth factor-like motif genes (Egf 

family). Previous studies suggest that members of the Glc, Vankyrins and PTP families can 

disrupt phagocytosis, encapsulation and NF-κB signalling, however they do not affect the 

host’s melanisation response. On the other hand, proteins of the Egf family have shown anti-

melanisation properties. The Egf family is composed of 3 proteins, Egf1.5, Egf1.0 and Egf0.4 

(Beck & Strand, 2007). While Egf1.5 and Egf1.0 inhibit melanisation the smallest protein, 

Egf0.4, does not (Lu et al., 2008 and 2010). For this study we have focused on the properties 

of the Egf1.0 gene product, which has been mainly developed by the Strand group 

(University of Georgia) using Manduca sexta (tobacco hornworm) as a model insect 

melanisation system. 

Egf1.0 is 26.0 kDa protein containing an N-terminal 9 cysteine-rich, trypsin inhibitor-like 

domain (CD), a secretion signal, and a C-terminus repeat domain (RD) comprised of three 

nearly identical 35 amino acid repeats arranged in tandem array (Strand et al., 1997). Egf1.0 

displays dual-activity inhibition of the PO cascade which suppresses melanisation in two 

fashions. The first one is by completely inhibiting PAP enzymatic activity via cleavage at its 

reactive amidolytic site (LCYR*FQQF) by the CD. Secondly, Egf1.0 also blocks activation 

and processing of pro-PAP1 and pro-PAP3 by competitively binding through the RD in a 

dose dependent manner (Lu et al., 2008). Taken together these processes suppress the ability 

of host plasma to melanize. Experiments further indicate that inhibition of melanisation 

enhances survival of M. demolitor and MdBV itself in lepidoptera’s haemolymph (Beck & 

Strand, 2007). 
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The expression and inhibitory efficiency of Egf1.0 has been tested in Ae. aegypti mosquitoes 

haemolymph to see its effect on parasite inducible melaninsation (Beck and Strand, 2007). In 

order to investigate the effects of this inhibitor on virus spread and replication in the 

mosquito system and the effect of PO activating in virus spread, we produced SFV constructs 

expressing this gene.  

The 26S subgenomic promoter which drives the expression of the viral structural proteins is 

very potent in alphaviruses. To take advantage of the strong, prolonged expression properties 

of the subgenomic promoter without sacrificing the ability of the virus to replicate 

productively, viral constructs expressing the foreign gene of interest under the control of a 

duplicated subgenomic promoter have been constructed and utilized in various studies. Such 

replication-competent vectors have been described for several alphaviruses including SFV 

and SINV (Ehrengruber and Lundstrom, 2002).  

 For more convenient virus production in BHK-21 cells, the SFV vector chosen was based on 

a CMV promoter backbone (pCVM-SFV4). This construct has a full length infectious cDNA 

clone of SFV4 under the control of a CMV promoter (pCMV-SFV4) which allows direct 

transfection of the cDNA into BHK-21 cells instead of RNA, which is more efficient (Ülper 

et al., 2008). 

In the present chapter, several SFV vectors expressing Egf1.0 under a second 26S 

subgenomic promoter were constructed and characterized in vivo and in vitro. The effects this 

inhibitor has on viral replication and spread were investigated. 
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Objectives 

 

• To clone the Egf1.0 gene into SFV4, and express this PO activity inhibitor in Ae. 

albopictus derived U4.4 cells. 

• To functionally test the effect of Egf1.0 expressed by these viral constructs in the 

melanisation pathway. 

• To examine the effect of Egf1.0 on SFV replication and spread in U4.4 cell culture. 

• To investigate the effect of Egf1.0 on SFV infection of Ae. aegypti mosquitoes. 
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Construction of recombinant SFV expressing Egf1.0 under a second 
subgenomic promoter 
 

Recombinant viruses used for this project were constructed at the Tartu University Institute 

of Technology with the assistance of Margus Varjak and Prof. Andres Merits. A novel SFV 

vector, annotated as pCMV-SFV4 (Ulper et al, 2008.), was used as the backbone. The use of 

a CMV promoter backbone has several advantages including simplifying the cloning process, 

low toxicity in E. coli and ease of transfection. A duplicated subgenomic promoter was 

placed behind the structural proteins as described in Rausalu et al, 2009 The duplicated 

subgenomic promoter used was T37/17, which is 37 nucleotides upstream and 17 nucleotides 

downstream of the start-site of the subgenomic mRNA. Expression vector pCMV-SFV4-

T37/17 had been established previously by Margus Varjak and Andres Merits. In short, this 

T37/17 second subgenomic promoter sequence was inserted into pCMV-SFV4 so that a 

BamHI restriction site could be used for placing the insert. The Egf1.0 sequence fragment 

was PCR amplified with primers EGF1.0_F and EGF1.0_R in a manner that BamHI 

restriction sites were added to both, 5’ and 3’ termini. PCR amplified EGF was cloned into 

BamHI-digested pCMV-SFV4-T37/17. Since the both ends of PCR fragment had BamHI 

restriction sites Egf1.0 was cloned in both forward and reverse orientations as negative 

control (Fig.5.2). The ZsGreen and DsRed markers were inserted into the C-terminal region 

of nsP3 via a XhoI site naturally occuring in the SFV genomic sequence (leading to 

expression of nsP3 containing ZsGreen), while Firefly luciferase (FFLuc) was inserted 

between duplicated nsP2 cleavage sites at the nsP3/4 junction as a cleavable reporter, using 

strategies previously shown in Tamberg et al, 2007.  
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Fig 5.1 Cloning Egf1.0 under a second subgenomic promoter in SFV Semliki Forest 

virus. The foreign gene is inserted using specific restriction enzyme sites and adapted primers with 

restriction enzyme recognition sequences. The expression of the foreign gene is regulated by a 

modified second subgenomic promoter (SG 17/37). The presence of a random 21bp region between 

the promoter and the foreign gene is essential to ensure the expression of the foreign gene under the 

second subgenomic promoter.  
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Results 
The following 4 SFV-Egf1.0 constructs were produced. 

 

5' nsP1 nsP2 nsP3CAP nsP4 Capsid p62 6K E1 3'AAAAFirefly

(A)

(B)

Egf1.0

5' nsP1 nsP2 nsP3CAP nsP4 Capsid p62 6K E1 3'AAAA

5' nsP1 nsP2 nsP3CAP nsP4 Capsid p62 6K E1 3'AAAAZsGreen

(C)

Egf1.0

5' nsP1 nsP2 nsP3CAP nsP4 Capsid p62 6K E1 3'AAAAFirefly

Egf1.0

5' nsP1 nsP2 nsP3CAP nsP4 Capsid p62 6K E1 3'AAAAZsGreen

Egf1.0

 

Fig 5.2 Viral constructs used in this study. (A) SFV4, a laboratory prototype strain of SFV. (B) 

SFV(3H)-FFLuc-Egf1.0F and SFV(3H)-FFLuc-Egf1.0R, encoding Firefly luciferase (FFLuc) as part 

of the non-structural protein (inserted between duplicated nsP2 cleavage sites at the nsP3/4 junction). 

The melanisation inhibitor was expressed from a duplicated subgenomic promoter (black arrow) in 

sense (F virus; top) or in antisense oritentation (R virus; bottom) as a negative control. (C) SFV(3F)-

ZsGreen-Egf1.0F or R reporter viruses expressing the fluorescence protein ZsGreen instead of FFLuc. 

In this case ZsGreen is inserted into the C terminus of nsP3 which enables the visualisation of 

replicating complexes. A virus expressing DsRed instead of ZsGreen was also created but it was not 

used due to its inability to produce fluorescence.  
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Troubleshooting 

The DsRed virus failed to produce visualisation of replication complexes, even though it was 

functional. The virus was able to replicate and produce cytopathic effect which was observed 

in BHK-21 cells when purifying the virus and also when titrated in a plaque assay. DsRed 

works as a tetramer and in this setting it was expected to work as a monomer, like monomeric 

(m)Cherry. Therefore that seems to be the reason it was not visualised. The rest of the 

constructs were tested for either FFLuc or ZsGreen activity. All the clones were sequenced 

for the correct orientation of Egf1.0. A mutation in this gene was found, however this 

mutation it was also present in the original plasmid and in the Strand laboratory constructs, 

who provided us with the clone (Fig.5.3). The functionality of Egf1.0 has been tested with 

positive result in in vitro and in vivo tests (Beck and Strand, 2007).  

 

Subject start position 
 Score = 1223 bits (1356),  Expect = 0.0 
 Identities = 680/681 (99%), Gaps = 0/681 (0%) 
 Strand=Plus/Plus 
 
Query  19   ATGTCGAACAACATTTTCCTGTTTGCATTTTTCGCTCTCGTCGGCTTCACACGGATTGAA  78 
            ||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||| 
Sbjct  1    ATGTCGAACAACATTTTCCTGTTTGCATTTTTCGCTCTCGTCGGCTTGACACGGATTGAA  60 
 
Query  79   GCAATGCCTACTAAAGGAAGTGAAGGGACCTGGGACGTGGATTACGAAGATCAAGAACAC  138 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  61   GCAATGCCTACTAAAGGAAGTGAAGGGACCTGGGACGTGGATTACGAAGATCAAGAACAC  120 
 
Query  139  ACAGGCATTACATGCAGAGAAAACGAGCATTACAACAGCACGCGGATAGAGTGTGAAGAT  198 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  121  ACAGGCATTACATGCAGAGAAAACGAGCATTACAACAGCACGCGGATAGAGTGTGAAGAT  180 
 
Query  199  GAGTGCAACGATCGTAATAACAAACTATGCTACCGGTTCCAGCAATTCTGTTGGTGCAAC  258 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  181  GAGTGCAACGATCGTAATAACAAACTATGCTACCGGTTCCAGCAATTCTGTTGGTGCAAC  240 
 
Query  259  GAGGGTTACATACGAAATTCATCACACATTTGTGTAAAACTTGAAGATTGCCTTAAGGAC  318 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  241  GAGGGTTACATACGAAATTCATCACACATTTGTGTAAAACTTGAAGATTGCCTTAAGGAC  300 
 
Query  319  GAAGAACAGAAATCAGAGACTTTAGCATCCAGTGCCAACAATGATTCTTCAAAACGGCTT  378 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  301  GAAGAACAGAAATCAGAGACTTTAGCATCCAGTGCCAACAATGATTCTTCAAAACGGCTT  360 
 
Query  379  GAAGATGATCTAAAATTATTCTCACATGATTCGGTTTCACATACCTCTTTAGAACCTGAA  438 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  361  GAAGATGATCTAAAATTATTCTCACATGATTCGGTTTCACATACCTCTTTAGAACCTGAA  420 
 
Query  439  ACGCAAGCACAGAAGTTTAACGGAATAATCGATCAAGAAACTCTTGATTTGGTGTTTGGA  498 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  421  ACGCAAGCACAGAAGTTTAACGGAATAATCGATCAAGAAACTCTTGATTTGGTGTTTGGA  480 
 
Query  499  AAACCTGAAAACTCTTGGGCTGAAAATAAACCCTTAGAAACTAAAACGCAAGCACAGAAG  558 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  481  AAACCTGAAAACTCTTGGGCTGAAAATAAACCCTTAGAAACTAAAACGCAAGCACAGAAG  540 
 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&BLAST_SPEC=blast2seq&DATABASE_SORT=0&DESCRIPTIONS=100&DISPLAY_SORT=0&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Nucleotides&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=1FF3K7KP11R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=11&HSP_SORT=4#65285
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Query  559  TTTAACGGAAAAATCGATCAAGAAACTCTTGATTTGGTGTTTGGAAAACCTAAAAACTCT  618 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  541  TTTAACGGAAAAATCGATCAAGAAACTCTTGATTTGGTGTTTGGAAAACCTAAAAACTCT  600 
 
Query  619  TCGGCTGAAAAGAAACCCTTAGAAACTGAAACGCAAGCACAGAAGTTTAACGGAATAATC  678 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  601  TCGGCTGAAAAGAAACCCTTAGAAACTGAAACGCAAGCACAGAAGTTTAACGGAATAATC  660 
 
Query  679  GATCAAGAAACTCTTGATTAG  699 
            ||||||||||||||||||||| 
Sbjct  661  GATCAAGAAACTCTTGATTAG  681 

 

Fig.5.3 Egf1.0 gene sequence used in cloning (subject) compared with Egf1.0 sequenced 

found in PubMed database (query). Notice mutation at position 48. This discrepancy is the 

result of a mistake in the published database entry. Amino acid translation resulted  in the 

entry codon being TT*C* (Phe) instead of TT*G* (Leu). Subject protein functionality has 

been tested with positive results. 
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Effect of melanisation on SFV replication and spread dynamics in U4.4 cells 
In order to assess the impact that a melanisation inhibitor has on virus replication and spread, 

Ae. albopictus derived U4.4 cell monolayers were infected with SFV4(3H)FFLuc-Egf1.0F 

viruses. The SFV clones with Egf1.0 in a reverse orientation (R viruses) were used as 

negative controls. Two different multiplicities of infection (MOI) were used; high (MOI 10) 

and low (MOI 0.005). The high MOI will result in a primary infection of most cells with little 

chance for virus spread. At the low MOI, virus can spread through the culture thus mimicking 

in vivo infection. Virus spreading through the culture medium from infected to uninfected 

cells also allows induction of PO activity in conditioned medium. Firefly luciferase 

expression levels were measured from cell lysates 24 h and 48 h post-infection.  

In a similar fashion, this experimental procedure was carried out with viruses carrying 

ZsGreen fluorescent protein (SFV4(3F)-ZsGreen-Egf1.0 F/R) fused to nsP3. This fusion 

allowed the visualisation of replication complexes after infection. The same MOIs (MOI 10 

and 0.005) were used and the cells were fixed at the same two time points (24 h and 48 h) 

before visualisation by confocal microscopy. 

 

Dectection of viral replication and spread in the presence of absence of Egf1.0 by 

luciferase assay 

At high MOI, the presence of a melanisation inhibitor did not show any effect on viral 

replication of SFV4(3H)FFLuc-Egf1.0F over SFV4(3H)FFLuc-Egf1.0R at 24 h or 48 h post-

infection. Replication rates are higher at 24 h post-infection and drop drastically at 48 h post-

infection as the culture enters the persistent phase of infection, as it has been previously 

described in cell culture (Fragkoudis et al., 2008c) (Fig 5.4). Conversively, at low MOI, the 

virus expressing the inhibitor showed higher levels of spread and replication at 48 h than the 

virus without the inhibitor, (GLM, P=0.004) (Fig.5.4). At 24 h post-infection 

SFV4(3H)FFLuc-Egf1.0F and SFV4(3H)FFLuc-Egf1.0R viruses did not show any 

significant differences in luciferase levels at any of the two MOIs (GLM, P>0.005). 
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Fig 5.4. SFV expressing FFLuc and Egf1.0 either in forward (Egf1.0F) or reverse (as negative 

control)(Egf1.0R) were used to infected a U4.4 cell culture. Two different MOIs were used, high 

(MOI 10), mimicking primary infection, and low (MOI 0.005), allowing the virus to spread through 

the culture. Firefly luciferase was measured as a quantification of viral activity at 24 h and at 48 h. At 

high MOI the differences between the virus expressing the inhibitor and the one that does not are not 

significant. However at low MOI at 48 h the virus expressing Egf1.0 produces significantly more 

luciferase.  Each bar represents the mean from triplicate cultures; error bars represent standard 

deviation. This experiment is representative of three independent experiments. 

 

 

Dectection of viral replication and spread in the presence or absence of Egf1.0 by 

confocal microscopy 

Viral replication complexes can be visualized as punctuate green cytoplasmic signals due to 

the nsP3/ZsGreen fusion (Fig.5.5). The expression of green fluorescence corroborates the 

luciferase findings. At high MOI (10), most of the cells in the culture were infected with 

either of the viruses SFV4(3F)-ZsGreen-Egf1.0F or SFV4(3F)-ZsGreen-FFLuc-Egf1.0R, 

either at 24 h or 48 h. At the low MOI of 0.005, after 48 h, more infected cells were detected 

with SFV4(3L)-ZsGreen-Egf1.0F than with SFV4(3F)-ZsGreen-Egf1.0R, thus suggesting 

that the virus expressing Egf1.0 is able to spread better through U4.4 cell culture. 
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Fig 5.5 Infection of U4.4 cells with Egf1.0 expressing SFV. Cells were infected with 

SFV4(3F)ZsGreen-Egf1.0F (A, C) or SFV4(3F)ZsGreen-Egf1.0R (B, D) as a negative control. As in 

the previous experiments, two MOIs were used, high (MOI 10) mimicking primary infection (A, B), 

and low (MOI 0.005) allowing the virus to spread (C, D). The cells were fixed after 48 h and the cell 

nuclei were labelled using TOPRO3. The reporter viruses contain ZsGreen as fluorescent marker 

fused to nsP3; viral replication complexes are visualized as green dots (indicated by arrows). This 

experiment was repeated three times. 
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Egf1.0 expression, functionality and characterization in U4.4 cell culture. 

A series of experiments were designed in order to further characterise SFV-expressed Egf1.0, 

in particular expression and secretion. A western blot carried out in order to investigate if 

recombinant Egf1.0 is expressed from SFV in U4.4 cells. U4.4 cells were infected either with 

SFV(3F)FFLuc-Egf1.0 F, SFV(3F)FFLuc-Egf1.0 R at an MOI of 10. After 24 h conditioned 

cell culture medium was collected. Egf1.0 antiserum was kindly provided by Prof. Michael 

Strand (University of Georgia, Athens, GA, USA) and used to detect Egf1.0 protein in the 

cell lysate and conditioned cell culture medium. 

Expression of Egf1.0 by SFV4(3H)FFLuc-Egf1.0F but not by control reverse was 

demonstrated in conditioned cell culture medium and cell lysate, which demonstrated that the 

recombinant protein was exported from the cell. This confirms our previous results which 

suggested that Egf1.0 was active in U4.4 cell culture medium (Fig.5.6). Similar experiments 

were carried out by the Strand lab with extracts of SFV4(3H)-ZsGreen-Egf1.0F or R infected 

cell lysates or conditioned medium. The same results were obtained (not shown). 
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Fig.5.6  Detection of Egf1.0 in conditioned cell culture medium of U4.4 cells infected  at 

high MOI (10) with SFV4(3F)-FFLuc-Egf1.0F (F) or SFV4(3F)-FFLuc-Egf1.0R (R). 

Molecular weight markers (Page Ruler Plus pre-stained protein ladder, Thermo Scientific) are 

indicated. NBT/BCIP detection system was used to detect Egf1.0 in the conditioned cell 

culture medium (A) or in the cell lysate (B). Egf.10 is ~27kb (indicated by arrow), higher 

bands indicate different glycosylation stages of this protein. (6µl) and (2µl) indicate the 

amount of lysate loaded in the well. 
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Inhibition of PO activity by SFV4 expressed Egf1.0 

Previous studies demonstrate that the protein Egf1.0 functions as a PAP inhibitor that 

disables activation of the PO cascade and melanisation in multiple insect species, including 

Ae. aegypti (Beck and Strand, 2007). The amino acid alignment showed that the proteolytic 

cleavage sites used by Egf1.0 were indeed conserved between the different PPOs (Fig.5.6). 

Egf1.0 acts as a competitive inhibitor of the PO cascade in Ae. aegypti.  

 

Fig.5.6. Alignment of the reactive site loop of Egf1.0 to the predicted cleavage sites for the PPOs 

encoded by Ae. aegypti (indicated as AedAePPO). Identical P1-P1’ residues R-F  of Egf1.0 and PPO 

family members at which cleavage occurs are underlined. Black highlighting indicates identical 

residues. UniProt database identifiers in parentheses to the left of the alignment. (Provided by Markus 

Beck, University of Georgia). 

 

Egf1.0 inhibits PO cascade activation in U4.4 cell conditioned medium 

Conservation of Egf1.0 PO inhibitory activity was also confirmed in a PO activity assay. 

U4.4 cells were infected at high MOI (10) either with SFV4(3H)FFLuc-Egf1.0F, 

SFV4(3H)FFLuc-Egf1.0R or mock infected. After 48 h post-infection the cell culture 

medium was collected and the PO activity was measured as described in chapter 4. E. coli, 

was used as a control for activation of PO activity, and the PO activity readings taken.  

The ability of recombinant Egf1.0 to inhibit the PO cascade remains intact when expressed 

from a SFV4 construct. Conditioned U4.4 cell culture medium infected with 
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SFV4(3H)FFLuc-Egf1.0F showed a significant decrease (~75%) in PO activity compared to 

conditioned medium from cells infected with control virus SFV4(3H)FFLuc-Egf1.0R 

(P<0.001) and was not different from PO activity in conditioned medium from the uninfected 

control cultures (P=1). It should also be noted that infection with SFV4(3H)FFLuc-Egf1.0R 

activated the PO cascade when compared to activity recorded from supernatant from 

uninfected control cells (P=0.0031), which corroborates previous findings that virus alone in 

cell culture medium is sufficient to trigger PO activity. Activators of the melanisation 

cascade, such as E. coli, do not rescue the PO activity in the presence of Egf1.0. Compared to 

conditioned medium alone from uninfected control cultures, incubation with E. coli did not 

result in significant increase of PO activity in SFV4(3H)FFLuc-Egf1.0F infected cell culture 

medium (P=0.251). Incubation of cell culture medium from uninfected control cells with E. 

coli resulted in high PO activity.  
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Fig 5.7 PO activity in conditioned cell-free culture medium of U4.4 cells infected with 

SFV4 expressing or not Egf1.0. 6.5 x 105 U4.4 cells were infected with SFV4(3H)-FFLuc-

Egf1.0F (labelled Egf1.0F), or SFV4(3H)-FFLuc-Egf1.0R (labelled Egf1.0R), at an MOI of 10 or 

uninfected (labelled control). Medium was collected 48 h p.i. and the PO cascade induced with E. coli 

where indicated; PO activity in samples was determined by measuring increase in absorbance of a 

dopamine based substrate (see Materials and Methods). Y axis indicates PO activity units (U). Each 

bar represents the mean from 10 reactions; error bars represent standard deviation. This experiment is 

representative of three independent experiments. 
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Effect of Egf1.0 on SFV infection of BHK-21 cells 

As a final control experiment, Egf1.0 expression was tested under conditions where 

melanisation should not have an antiviral role. Melanisation does not take place in vertebrate 

cells, therefore the constructs expressing Egf1.0 should not have any advantage over those 

which do not express it.BHK-21 cells were infected with either SFV4(3H)-FFLuc-Egf1.0F or 

SFV4(3H)-FFLuc-Egf1.0R at low MOI (0.005), thus allowing for spread of the infection. 

After 24 and 48 h the cells were lysed and luciferase readings were taken as an indicator of 

viral replication and spread.No significant differences were observed between SFV4(3H)-

FFLuc-Egf1.0F and SFV4(3H)-FFLuc-Egf1.0R (GLM; P=0.642). Vertebrate cells do not 

have an equivalent of the melanisation cascade, the Egf1.0 expressing virus did not obtain an 

advantage in replication in contrast in what we observed in U4.4 cells. 

 

 

 

 

 

 

 

 

 

Fig 5.8. Infection of BHK-21 cells with SFV4(3H)-FFLuc-Egf1.0F or SFV4(3H)-FFLuc-
Egf1.0R. Infections were done at a low MOI (MOI 0.005), allowing the virus to spread along 
the culture. FFluc activity was determined at 24 h and 48 h post-infection. Each bar 
represents the mean from triplicate; error bars represent standard deviation. This experiment 
is representative of three independent experiments. 
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The effect of GSH in U4.4 infection with SFV expressing Egf1.0 

As it was mentioned previous chapter, GSH inhibits melanisation by reducing quinones 

(Clark, Lu, and Strand, 2010a). In order to assess the effects of reactive intermediate by-

products of the PO cascade in the presence of SFV expressing Egf1.0, U4.4 cells were 

infected with these viruses at low MOI (0.005) and 0.5mM of GSH were added to the culture 

medium. After 48 h p.i. FFLuc activity was measured. The results show that inhibition of 

melanisation by adding GSH into the cell culture medium increases the spread of SFV4(3H)-

FFLuc-Egf1.0R in comparison to medium without the addition of GSH (p>0.001). However, 

it did not alter the spread of SFV4(3H)-FFLuc-Egf1.0F (p=0.139) (Fig.5.9). 

 

 

 

 

 

 

 

Fig.5.9. Addition to GSH into U4.4 cell culture medium reduces the advantage 

conferred by Egf1.0 to the virus. 6.5 x 105 U4.4 cells were infected at MOI 0.005 either 

with SFV4(3H)-FFLuc-Egf1.0F or SFV4(3H)-FFLuc-Egf1.0R and GSH (0.5 mM) was added 

or not to the culture media . Luciferase activity was measured at 48 h. p.i. Each bar represents 

the mean from triplicate cultures; error bars show standard deviation. This experiment was 

repeated three times with similar results. 
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Effect of Egf1.0 expression on SFV4 infection of Ae. aegypti mosquitoes 
In order to assess the role of the PO cascade in SFV infection of mosquitoes the SFV4-Egf1.0 

constructs were tested in Ae. aegypti mosquitoes. When inhibiting pathways with antiviral 

relevance in mosquitoes, by expressing for eample RNAi inhibitors, there has been a reported 

increase in mosquito mortality. This was proven by infection of a mosquito with an 

alphavirus expressing RNAi inhibitors (Cirimotich et al., 2009; Myles et al., 2008). Ae. 

aegypti mosquitoes have been shown to be permissive to SFV infection and they are also able 

to transmit this virus in laboratory conditions (Davies and Yoshpe-Purer, 1954; Nye and 

Bertram, 1960; Woodall and Bertram, 1959).  

Cohorts of Ae. aegypti females were fed bloodmeals containing 5 x 107 PFU/ml of 

SFV4(3H)-FFLuc-Egf1.0F, SFV4(3H)-FFLuc-Egf1.0R, or no virus (mock-infection). 

Engorged females were separated (cohorts of 22 to 25 mosquitoes) and survival was 

monitored for the following days indicated (Fig.5.10) 

 

 

 

 

 

 

 

 

 

 

Fig 5.10. Survival of mosquitoes fed with a blood meal containing SFV4(3H)-FFLuc-

Egf1.0F (red), SFV4(3H)-FFLuc-Egf1.0R (green), or no virus (blue). This result shows 

the combined results of three independent experiments with 22-25 blood-fed female 

mosquitoes per cohort. 
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Mosquito survival was significantly dependant on the virus included in the blood meal 

(Kaplan Meier χ2=25.37; P<0.001). Mosquitoes fed with blood containing SFV4(3H)-FFLuc-

Egf1.0F showed a significantly lower survival rate than either the mosquitoes infected with 

SFV4(3H)-FFLuc-Egf1.0R or the mock-infected mosquitoes (P<0.001). Statistical analysis 

(Post Hoc) showed that that there was no significant difference in survival rates between the 

mock-infected control and mosquitoes infected with virus which did not express the Egf1.0 

inhibitor (P=0.98). Therefore, we can conclude that inhibition of the PO cascade resulted in a 

negative effect on survival of Ae. aegypti mosquitoes. 

In order to assess whether the reduced survival of SFV4(3H)-FFLuc-Egf1.0F-infected 

mosquitoes was associated with enhanced viral replication and not to a secondary infection 

with fungi or bacteria due to the inhibition of the PO cascade a further control experiment 

was designed.  

Cohorts of Ae. aegypti female mosquitoes were fed bloodmeals containing SFV4(3H)-

FFLuc-Egf1.0F or SFV4(3H)-FFLuc-Egf1.0R. The blood-fed females were separated and 

taken for further analysis. Total RNA was then extracted from 10 mosquitoes per cohort at 3 

days post-bloodmeal. SFV genome copy number was then determined by qPCR for each 

individual.  The time point at three days post blood-meal was chosen because it just precedes 

quantifiable differences in mosquito survival and thus avoiding bias induced by mosquito 

mortality.  

Results showed that mosquitoes fed with SFV4(3H)-FFLuc-Egf1.0F  had higher genome 

copy numbers than mosquitoes fed with SFV4(3H)-FFLuc-Egf1.0R (Mann-Whitney test, 

p=0.04)(Fig.5.11). Interestingly, infection rates were also higher when mosquitoes were 

infected with SFV4(3H)-FFLuc-Egf1.0F than SFV4(3H)-FFLuc-Egf1.0R. This correlates 

with previous findings where infection rates were higher if alphaviruses expressed RNAi 

inhibitors (Cirimotich et al., 2009), and suggests that inhibitory PO activity can increase 

infection rates. 
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Fig.5.11 SFV genome copy number as determined by real time qPCR. RNA was 

extracted 3 days post-bloodmeal from mosquitoes infected with SFV4(3H)-FFLuc-Egf1.0F 

or SFV4(3H)-FFLuc-Egf1.0R was quantified using SFV4 nsP3 primers. Viral genome RNA 

levels from 10 mosquitoes per virus are shown. Values at 0 represent uninfected mosquitoes. 

Horizontal bar indicates average genome copy number from infected mosquitoes. This 

experiment was repeated three independent times showing similar results. 

 

  



Chapter 5 SFV expression of the melanisation inhibitor 
Egf1.0 and its effects on the PO cascade 

 
140 

 

Discussion 

Taken together, these results suggest that inhibiting PO activity shuts down the melanisation 

cascade and provides SFV an advantage to spread in mosquito cell culture. PO has a central 

and essential role in the melanisation cascade in mosquitoes. As was mentioned before, 

recent studies suggest that the PO family has expanded in mosquitoes as compared to other 

members of the Diptera family, such as flies. Anopheles gambiae has nine PPOs, whereas Ae. 

aegypti has ten and C. quinquefasciatus has nine (Waterhouse et al., 2007) (Arensburger et 

al., 2010). One can argue that the expansion of the PO family members is due to the pressure 

of parasitic infections, however neither Ae. aegypti nor Culex quinquefasciatus act as major 

parasite vectors. The essential role played by PO in melanisation implies that, by inhibiting 

this pathway, the end products such as melanin as well as cytotoxic products are not 

produced. Parasitic wasps with the help of polydnaviruses have taken advantage of this by 

expression of the PO inhibitor Egf1.0. This protein expressed here by SFV through a 

duplicated subgenomic promoter resulted in strong inhibition of PO which might be difficult 

to achieve by just silencing the PO cascade through RNAi. Expressing Egf1.0 from a second 

subgenomic promoter also ensures a higher production of the protein. Egf1.0 has been shown 

to keep its inhibitory properties across several insect families (Beck and Strand, 2007) and 

the results suggest that, expressed in a recombinant manner in SFV, it is successfully 

exported from the cell and keeps its activity. It was important to confirm that the recombinant 

Egf1.0 expressed by SFV was exported into the U4.4 culture medium, thus being able to 

access and inhibit the PO cascade proteins. Inhibition of the PO cascade was not rescued by 

the addition of PO cascade activators such as E. coli. It was also proved that the virus 

expressing Egf1.0 had no replication or spreading advantage in systems in which 

melanisation does not exist, such as vertebrate cells. 

In the presence of a PO cascade inhibitor, SFV spread through U4.4 cell culture does not 

increase as extensively as similar experiments with SFV expressing an RNAi inhibitor, 

however, the effects are still significant for infection dynamics. RNAi probably acts as the 

major antiviral pathway in mosquitoes; however melanisation clearly has some importance. 

The next step is to investigate where melanisation acts on SFV in mosquitoes, however for 

reasons of time this could not be addressed during this project. 
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Summary of findings 

 

• The melanisation inhibitor Egf1.0 was cloned into SFV4 to be expressed under 

control of a secondary subgenomic promoter. 

• Egf1.0 can inhibit melanisation across several insect species in vivo and in vitro, 

including mosquito cell culture medium (U4.4 cells). 

• Egf1.0 expressed from SFV4 is exported into the cell culture medium in U4.4 cells. 

• Egf1.0 expression increases spread of SFV in U4.4 cell culture medium. 

• Egf1.0 expressed by SFV4 can inhibit PO activity and melanisation in U4.4 cell 

culture medium medium. 

• Egf1.0 expressed by SFV4 construct does not confer replication or spreading 

advantages to SFV in mammalian cell culture medium (BHK-21). 

• Inhibition of melanisation in SFV infected mosquitoes decreases insect survival. 

• Egf1.0 expression by SFV4 results in enhancement of replication and infectivity in 

Ae. aegypti mosquitoes. 
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INTRODUCTION 
Serine proteases play essential roles in a wide range of biological processes, including innate 

immunity. In vertebrates they are components of the complement cascade, whereas in 

arthropods they form part of the Toll and melanisation cascades. Melanisation is involved in 

wound healing and as a defence mechanism against bacteria, fungi and parasites in insects 

(Cerenius and Söderhäll, 2004). In this study melanisation has also been identified as an 

antiviral mechanism in mosquitoes. Once pathogens activate detection systems (PPRs), serine 

protease cascades are able to amplify and enhance those signals to the appropriate immune 

response. Regulation of these cascades is complex (Kanost, Jiang, and Yu, 2004). In some 

cases such as the melanisation pathway, the immune responses regulated by serine protease 

cascades are cytotoxic and can damage the host. Therefore, the serine protease cascades that 

lead to melanisation are tightly controlled by serine protease inhibitors called serpins. These 

proteins ensure that the cascade end products are activated at the proper time and location and 

therefore it is important to understand how serpins regulate this cascade as well to determine 

if they regulate anti-viral PO activity. 

In the case of melanisation, the protease cascade is orchestrated by clip-domain serine 

proteases (cSPs). PO, the key enzyme in this reaction, occurs as an inactive precursor PPO. 

The proteolytic activation of PPO into PO is carried out by phenoloxidase-activating 

proteases (PAPs) which have been previously activated by cSPs themselves (Soderhall, 

Cerenius, and Johansson, 1994). cSPs are trypsin-like proteases with an N-terminal 

disulphide-knotted clip domain and a C-terminal domain with protease activity, whereas 

PAPs have an N-terminal clip domain and a non-catalytic protease-like domain. Active PAPs 

have been reported to be very efficient drivers of melanisation (Cerenius and Söderhäll, 

2004). Spontaneous melanisation, which is harmful for the host, is inhibited by serine 

protease inhibitors (serpins) present in the insect’s haemolymph (Kanost, 1999). The absence 

of serpins either through RNAi silencing or mutation results in spontaneous melanisation and 

formation of melanotic pseudotumors in the trachea, cuticle and internal organs (De Gregorio 

et al., 2002; Ligoxygakis et al., 2002; Tang et al., 2008; Zou et al., 2008b).  

Serpins belong to a super family of proteins with a distinctive structure containing three β-

sheets and seven to nine α-helices. The protein folds into a conserved tertiary structure with a 

reactive centre loop (RCL) near the c-terminal (Law et al., 2006).   
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In recent studies, using the arthropod model organism D. melanogaster, the specifics of 

serine proteases and serpin interactions regulating the Toll and melanisation cascades have 

been untangled (De Gregorio et al., 2002; Ligoxygakis et al., 2002). Microbial-induced 

melanisation in drosophila is controlled by Spn27A (De Gregorio et al., 2002). In the case of 

the silkworm Bombyx mori, 34 serpins have also been described, with serpin-3, a homologue 

of drosophila Spn27A, controlling microbial induced melanisation (Zou et al., 2009). The 

tobacco hornworm M. sexta, is perhaps the model organism in which the role of serpins 

regulating the melanisation pathway has been described in the most detail (Fig.6.2).  

 

 

Fig. 6.2. Serpin regulation of the melanisation and Toll pathways in the M. 

sexta model. Haemolymph proteinases (HPs) are also known as cSPs. Dotted lines represent weak 

inhibition. Adapted from (An and Kanost, 2010). 

So far 7 serpins have been identified in M. sexta. Serpin-1J and serpin-3 regulate the PO 

cascade by inhibiting PAPs (Jiang et al., 2003; Zhu et al., 2003). Interestingly, serpin-3 is a 

homologue of drosophila Serpin27A and B. mori serpin-3. Serpins 4 and 5 inhibit 

melanisation upstream of PAPs (Tong, Jiang, and Kanost, 2005; Tong and Kanost, 2005). In 
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addition, these two serpins, together with serpin-6, interact with haemolymph proteinases 

(HP6-8), which are involved in production of PO as well as in the induction of antimicrobial 

peptide genes that are end products of the Toll pathway (An et al., 2009). 

As with most molecular pathways, the information in mosquitoes is much less detailed. Most 

studies have been done in A. gambiae and in Ae. aegypti.  In A. gambiae, 18 serpins have 

been identified (Suwanchaichinda and Kanost, 2009). Some of them have been shown to be 

immune regulators of the melanisation cascade triggered by parasite infection, such as 

SRPN10 and SRPN6, which are expressed by haemocytes and midgut cells and are induced 

upon Plasmodium berghei infection (Abraham et al., 2005; Danielli, Kafatos, and Loukeris, 

2003). However, SRPN2 seems to be the major regulator of melanisation upon microbial 

infection. A knockdown of SRPN2, results in a 97% decrease of P. berghei oocyst formation 

due to an increase in melanisation (Michel et al., 2005). In Ae. aegypti, 26 serpins have been 

identified, 13 of which are induced during microbial infection in adult females (Waterhouse 

et al., 2007; Zou et al., 2008b). Melanisation in Ae. aegypti mosquitoes occurs in two distinct 

activation pathways; tissue specific and haemolymph. These two pathways are driven by 

different sets of cSPs and their respective serpins (Zou et al., 2010). Tissue melanisation is 

characterised by the formation of melanotic pseudo-tumours and is regulated by Serpin-2. 

This melanisation pathway does not seem to form part of the defence against fungi or 

parasites, however, it is also involved in the regulation of the Toll pathway (Zou et al., 2010). 

Haemolymph specific melanisation is controlled by Serpin-1 and it has been associated with 

parasite defence (Zou et al., 2010). Interestingly, all the serpins characterised as regulators of 

melanisation during antimicrobial infection are related to each other. The closest homologue 

of Ae. aegypti Serpin-2 is A. gambiae Serpin-2. These genes are closely related and in the 

same gene cluster with Ae. aegypti Serpin-1, A. gambiae Serpin-1, D. melanogaster 

Serpin27A, M. sexta Serpin-3 and B. mori Serpin-3 (Kanost, 1999; Suwanchaichinda and 

Kanost, 2009; Zou et al., 2009; Zou et al., 2010). 

Ae. albopictus is an important arbovirus vector, however, due to the lack of genomic studies 

published to the date, most of its serpins remain uncharacterised. Using the data gathered 

from the transcriptomic studies in SFV infected Ae. albopictus U4.4 cell line (Chapter 3), 

serpins will be identified and characterised. Also, the possible role that serpins have in 

controlling SFV infection of U4.4 cells will be investigated. 
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Objectives 
-Retrieving the sequence of Ae. albopictus serpins from transcriptomics data. 

-Comparison of Ae. albopictus serpin sequences to other insects serpins. 

-Characterisation of serpins in U4.4 cells.  
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RESULTS 

Identification of serpins from the transcriptome of Ae. albopictus derived U4.4 
cells. 
Ae. albopictus serpin sequences were retrieved as queries from a BLAST search of the 

database generated after sequencing RNA of U4.4 cells (infected or non-infected with 

SFV)(see Chapter 3). A cut off e-value of 0.1 was used. The reference genome alignment 

used was Ae. aegypti as there is no Ae. albopictus sequenced genome available at present. 

According to the combined list of accession numbers, nucleotide sequences of putative 

serpins were retrieved. In most cases the contigs did not cover the whole mRNA sequenced 

so they were aligned and assembled. In case of discrepancies, the quality of the sequence was 

retrieved and assessed to correct base errors. Later on the quality of the alignments was 

confirmed by sequencing cDNA.  Serpin sequences were aligned using ClustalX 2.0, a 

Blosum 30 matrix, with a gap penalty of 10 and an extension gap penalty of 0.005 was 

selected for the multiple sequence aligment as described in (Suwanchaichinda and Kanost, 

2009; Zou et al., 2009). Phylogenetic trees were created with MEGA 5.05 (MegaSoftware)  

from multiple sequence alignments made in ClustalX. 

A total of 11 different serpin transcripts were isolated from the sequences, however, after 

alignment and corrections only 7 serpins were brought forward for further research. The 

serpins were named serpin A-K for further analysis. These names are provisional, to avoid 

confusion with the already characterised serpins of other insect species. The whole available 

coding transcript sequence was used for the alignments, even if the sequence was incomplete. 

Parameters were fixed to grant a low penalty for gaps and an extremely low penalty for 

extension gap (gap penalty: 10, gap extension penalty: 0.005). It should also be noted that 

sequences for the serpins were retrieved from infected and uninfected U4.4 cells. There were 

no serpins uniquely expressed in one condition alone. This may be due to low transcription 

levels. 
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Serpin alignment and phylogenetic tree 
Ae. albopictus serpin sequences were compared after alignment. The relationships between 

the different serpins are shown below in a multiple sequence alignment. Most serpins share at 

least 70% of sequence similarity (Fig. 6.1).  

Aedes_alb_SpnF AGATGCCAATCTGATGATCATCAATACTCTTACATTGAATGCTTCCTGGGAGTATCCACT 
Aedes_alb_SpnH AGACGCCAATCTGATGATTATCAACACTGTTACGCTGAACGCTTCCTGGGAACACCCGTT 
Aedes_alb_SpnA TATGACGCGTTTGGTGCTGGTCAATGCAATTCATTTCAAGGGCACATGGACGCATCAGTT 
Aedes_alb_SpnB TATGACGCGTTTGGTGCTGGTCAATGCAATTCATTTCAAGGGCACATGGACGCATCAGTT 
Aedes_alb_SpnG GCAGACCAAACTGGCCATTGCCAATGCTGCCTACTTCAAGGGAACTTGGCAGGCTGAATT 
Aedes_alb_SpnD AGCGGTTA---TCACGTTGATCAACGCCATATACTTCAAGGGACTGTGGACTTACCCATT 
Aedes_alb_SpnE AGCGGTTA---TCACGTTGATCAACGCCATATACTTCAAGGGACTGTGGACTTACCCATT 
Aedes_alb_SpnJ TACCGTCC---TGTTACTGGTGAATGCCATTTACTTCAAGGGACTATGGGTCAACGTTTT 
Aedes_alb_SpnC -----------------TGGCCAGNACGGTGTACTACAAGGCGAAGTGGCAAACCATGTT 
Aedes_alb_SpnI CACCATGC---TTGTCATTGCCAACACCTTGTATCTGAAGGCTGAATGGGCGGAGCCCTT 
Aedes_alb_SpnK GGACATGATGATGCTCCTAGTGAACGCAATCTACTTCAAGGGTACCTGGTTGTATAAATT  

 

Aedes_alb_SpnF GC---TGGGCG-----TACATAAGGATGAATTCCGTTTCCGA----AACGGAGTAAAAGA 
Aedes_alb_SpnH TTATACGAGCAGTT--TGCAGAAAAGTGACTTTCAGTTCCTG----AACGGAGTCAGAAA 
Aedes_alb_SpnA CAACCCGGCGAGC---ACCAGACCGATGCCGTTCTGGATCAGTGAGACAGAATCAGTGGA 
Aedes_alb_SpnB CAACCCGGCGAGC---ACCAGACCGATGCCGTTCTGGATCAGTGAGACAGAATCAGTGGA 
Aedes_alb_SpnG CAAGCCAGATCAA---ACCAACAAGGAAATCTTCTACGTTTCCAGTGAACGCCAAGCGTT 
Aedes_alb_SpnD CCCA--GAATACA---CGCCAATGTTGACCTTCCATGGCAAG----CAGAAGCAAGTGCA 
Aedes_alb_SpnE CCCA--GAATACA---CGCCAATGTTGACCTTCCATGGCAAG----CAGAAGCAAGTGCA 
Aedes_alb_SpnJ CCTACCAAGTGCT---ACCACAGAGCAACCGTTCACTACCGCATTTCGTAAAACCGTTCA 
Aedes_alb_SpnC CATCGAACAGGAC---ACCCGACCAAGACCGTTCCATATCAACGGACCTAATGCTGCTCC 
Aedes_alb_SpnI CCTGAGAGATGGA---ACCAAGCCGAGACCATTTTTCCCGGATGGGCCCAACAGACCGTC 
Aedes_alb_SpnK CAACGAAACGGAAACAAACAAACGGGCTACATTCGAATCTTCCAAAAATAATAAGATGCC  

 

Aedes_alb_SpnF AGTTGACATG------ATGCAAATTAACAAGGGACTCAGATCTTGTGAAATTG--GCGAT 
Aedes_alb_SpnH AGTTGATATG------ATGCGAACTTACAAGGGCTTTCGGTATTGTGAAATCG--ATGCT 
Aedes_alb_SpnA TGTTCCCATG------ATGAACACCAAAAAACACTTCAAGCACGGTGTTTTCG--ATGAC 
Aedes_alb_SpnB TGTTCCCATG------ATGAACACCAAAAAACACTTCAAGCACGGTGTTTTCG--ATGAC 
Aedes_alb_SpnG CGTCGACATG------ATGCATGTCTTGGGAACCTTCAACCACGCTGCTAACG--AGAAG 
Aedes_alb_SpnD AGCTCCATTC------ATGGAACAAAATGGTCAGTTCTACTACGATGATTCAG--CGGCA 
Aedes_alb_SpnE AGCTCCATTC------ATGGAACAAAATGGTCAGTTCTACTACGATGATTCAG--CGGCA 
Aedes_alb_SpnJ AGTCCCATTC------ATGAAGCAAATTCAGGAACACTACTTCGTTGATTCCA--AAGTA 
Aedes_alb_SpnC AGTTGACATCGATACTATGGCCACTAATGGGTGTTTTCCGACCTACGAAGATA--AACAA 
Aedes_alb_SpnI GATCAACGTTCCGATGATGGTTCATGGTGGATGTTTCCCGTACTATTACTGGA--AGGAA 
Aedes_alb_SpnK GGTCCATATGATGTCGCAGACGAACAAACTTCGCTTCGGTGAAATCAACTATGGCATGTA 

 

Fig. 6.3. Multiple nucleotide sequence alignment of Ae. albopictus serpins. 
The central region of the serpins, where complete sequences were available was used for simplicity to 

visualise the relative homology between the transcripts. 
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Aedes_alb_SpnA VNFSDNTAAAKKINTWVEQKT-NDKIKDLISPDS--------LDDMTRLVLVNAIHFKGT 
Aedes_alb_SpnB VNFSDNTAAAKKINTWVEQKT-NDKIKDLISPDS--------LDDMTRLVLVNAIHFKGT 
Aedes_alb_SpnD SSFLQPEKCRRTDNNWVNKTT-HGRISELVTPDG--------LEGAV-ITLINAIYFKGL 
Aedes_alb_SpnE -PFSNPKNAAELINNWVNKTT-HGRISELVTPDG--------LEGAV-ITLINAIYFKGL 
Aedes_alb_SpnF VPISGPEQVVNSVXRWASRFT-NGLVGDVFYGGG--------YSRDANLMIINTLTLNAS 
Aedes_alb_SpnH VPISAVRNRW-ILSTDGLPVSPTGWXGDVFNGAG--------YSRDANLMIINTVTLNAS 
Aedes_alb_SpnC ---------------------------------------------------AXTVYYKAK 
Aedes_alb_SpnG LDFEKDADGQRLYINNWVENVTQGEIKDLLIPGS--------ITKQTKLAIANAAYFKGT 
Aedes_alb_SpnJ QR-LPANRKGC-DNQ-LGFDSTRGMIPQLVRPEN--------IKDTV-LLLVNAIYFKGL 
Aedes_alb_SpnK SKGPRIKDSFP-CSKAQQH-NERC-LCKCIPGCK-C-RMG-HPNPRKYSTGYNRTGYLSG 
Aedes_alb_SpnI SRMIRPKM-PSLGGSLTSATTTTTKMKTIPRRSQRPSNEANGTPKNRLKSTWAMEFLQSL 
                                                                               
 
Aedes_alb_SpnA WTHQFNPASTRPMPFWI--SETESVDVPMMNTKKHFKHGVFDDLGLAALEMTYND----S 
Aedes_alb_SpnB WTHQFNPASTRPMPFWI--SETESVDVPMMNTKKHFKHGVFDDLGLAALEMTYND----S 
Aedes_alb_SpnD WTYPFP--EYTPMLTFH--GKQKQVQAPFMEQNGQFYYDDSAALDAQLXRLSYRG----G 
Aedes_alb_SpnE WTYPFP--EYTPMLTFH--GKQKQVQAPFMEQNGQFYYDDSAALDAQLLRLSYRG----G 
Aedes_alb_SpnF WEYPLLG--VHKDEFRF--RNG-VKEVDMMQINKGLRSCEIGDL--RIVELAYER----T 
Aedes_alb_SpnH WEHPFYTSSLQKSDFQF--LNG-VRKVDMMRTYKGFRYCEIDAL--RIVELAYKR----T 
Aedes_alb_SpnC WQTMFIEQDTRPRPFHINGPNAAPVDIDTMATNGCFPTYEDKQLDAKIVGLPYQK----D 
Aedes_alb_SpnG WQAEFKPDQTNKEIFYVS--SERQAFVDMMHVLGTFNHAANEKLGCHVLEMPYKGQDEST 
Aedes_alb_SpnJ WVNVFLPSATTEQPFTT--AFRKTVQVPFMKQIQEHYFVDSKVLKAQLVRLPYSD----G 
Aedes_alb_SpnK HDDAPSERNLLQGYLVV-IQRNGNKQTGYIRIFQK--DAGPYDVADEQTSLR-NQLWHVL 
Aedes_alb_SpnI VESSITSTNTSPKKSMVLKPNTWTLKIEHKTPFAPLTIGLNGKLAGRLQKSCRN----AP 
                                                                               
 
Aedes_alb_SpnA DVSMLILLPHERT-----------GLTKLEENLQNID---------IPDMLTKMYSQEVE 
Aedes_alb_SpnB DVSMLILLPHERT-----------GLTKLEENLQNID---------IPDMLTKMYSQEVE 
Aedes_alb_SpnD KFAMYFILPHQGK-----------TVDDVLEKITPTT---------LHQALWYMDETEVN 
Aedes_alb_SpnE KFAMYFILPHQGK-----------TVDDVLEKITPTT---------LHQALWYMDETEVN 
Aedes_alb_SpnF SDLSMLFIKSDSQ-----------PLEKVVERLDLQM---------YRTI---------- 
Aedes_alb_SpnH ADLSMLIIKSDSQ-----------PLEKVVERLDLGM---------YRSIDERLYEDRFK 
Aedes_alb_SpnC KSTMYX------------------------------------------------------ 
Aedes_alb_SpnG RISMFVFLPPAAPN----------SLDKVLARLTSDTGI-------LSEIVNEGIPRMVD 
Aedes_alb_SpnJ RFSMIIVLPNETAV-ASS-T-SHLILSMQLSETWKRSK--------TFNCRDSALITIVP 
Aedes_alb_SpnK RLGARIALGRATV--------WR-AVDDCSSPKDPVPIG-----RNGAPCQRKPLPGNFP 
Aedes_alb_SpnI TPCLSLPTPCI-RLNGRSPS-EMEPSRDHFSRMGPTDRRSTFR-WFMVDVSRTITGRKCK 
 

Fig. 6.4. Multiple amino acid sequence alignment of Ae. albopictus serpins. 
The central region of the serpins, where complete sequences were available was used for simplicity to 

visualise the relative homology between the transcripts. 
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Figure 6.4. Phylogenetic tree of Ae. albopictus serpins found in the U4.4 transcriptome. 

The un-rooted tree is based on a multiple sequence nucleotide alignment created in ClustalX 

with previously described parameters. Serpins A and B, D and E and F and H are the most 

closely related. Serpin K is un-rooted  
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Identification of Ae. albopictus serpin homologous to other insect serpins 
In order to easily describe the relationships within the phylogenetic tree, each clade of related 

serpins was colour coded. This colour clade classification is based on previous phylogenetic 

studies on serpins (Zou et al., 2009) (Fig.6.4).  

Fig.6.4. Phylogenetic relationship between the serpins of Ae. albopictus, B. 

mori, M. sexta, D. melanogaster and Ae. aegypti. Red diamonds indicate the Ae. 

albopictus serpins identified in this study. Based on alignment similarities serpins were classified in 

several coloured groups. Unclassified serpins are un-rooted. 
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The dark yellow clade is formed by B. mori serpin 6, D. melanogaster Serpin-5 and Ae. 

aegypti serpin 9. They have been linked to M. sexta serpin-6, which is known to form 

complexes with HP8 and PAP1/PAP3 (Wang and Jiang, 2004). However, no Ae. albopictus 

serpins were found in this clade. 

The brown clade is represented by Ae. aegypti serpins-7, 20 and 21, however, there is little 

information about the serpins in this clade. The closest homologues to serpins-20 and 21 are 

C. quinquefasciatus serpins. In one study, the depletion of Ae. aegypti serpin-20 does not 

activate the PO cascade (Zou et al., 2010). There is no molecular analysis or functional 

characterisation of serpins-7 and 21. Serpin H and F are in this clade. 

The green clade is formed by Ae. aegypti serpins-11 and 17. Depletion of either of these two 

serpins does not activate the PO cascade, therefore they are not involved in the melanisation 

reaction (Zou et al., 2010). No other experimental data is available for these serpins. Ae. 

albopictus serpin K also belongs to this clade.  

The cyan clade is formed by Ae. aegypti serpins-4, 5, 6 and 16 which have been classified as 

homologues of A. gambiae serpins-4, 5, 6 and 16 (not used in this study due to simplicity) 

(Zou et al., 2009). This group of serpins shows a greater expansion in mosquitoes than in 

other insects, although no biochemical or characterisation analysis has been carried out for 

any of the clade members with the exception of the A. gambiae homologue of serpin-6 which 

has been linked to mediating anti-malaria immunity in the mosquito (Abraham et al., 2005; 

Zou et al., 2009). Ae. albopictus serpins C and I belong to this clade. 

The aquamarine clade is formed by B. mori serpins-4, 7 and 8, M. sexta serpins-4s, 5s and Ae. 

aegypti serpin-8 and 12 belong to this clade.  In previous classification and characterisations 

these serpins have been found to be related (Zou et al., 2009). Biochemical studies with some 

members of this group such as M. sexta serpin-4  and 5 suggest that these serpins can inhibit 

multiple humoral proteases involved in immune responses (Tong, Jiang, and Kanost, 2005). 

No Ae. albopictus serpin homologues were found in this clade.  

The blue clade is formed by D. melanogaster serpin-27A, M. sexta serpin-3, B. mori serpin-3 

and Ae. aegypti serpins-1, 2 and 3. A. gambiae serpins-1, 2 and 3 are also part of this group 

but were not included in this analysis (Suwanchaichinda and Kanost, 2009). Serpins in this 
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group are known to regulate the PO cascade as well as Spatzle activation (Abraham et al., 

2005; Hashimoto et al., 2003; Zhu et al., 2003; Zou et al., 2010). The Ae. albopictus serpins 

in this clade are D, E and J. 

The dark blue clade contains B. mori Serpin-1A, 1B, 2 and 9. B. mori serpin-2 (Bmserpin-2) 

is known to play an antiviral role in BmNPV infection in the silkworm (Pan et al., 2009). It 

has been found that B. mori serpin-2 negative mutants allow lower levels of viral replication. 

The current mechanism of this response has not been clarified, although it has been suggested 

that the serine proteases inhibited by Bmserpin-2 can cleave viral proteins. These proteases 

remained unidentified and the link between Bmserpin-2, its target serpin protease and 

melanisation were not investigated in this study.  

The purple clade is formed by drosophila serpins-1, 2, 3, 4, 6, 7, 43a, 43b and Ae. aegypti 

serpin-10. These drosophila genes form part of a cluster which is involved in regulating the 

Toll pathway and has been extensively described (Hoffmann and Reichhart, 2002).  These 

genes are in the drosophila’s second chromosome 43A–E region (hence their names) and 

mutations in these proteins result in black necrotic spots, which is another name by which 

these genes are known (nec) (Heitzler et al., 1993).  These black spots in 43A-E mutant flies 

are due to the accumulation of cleaved Spatzle and constitutively active serine proteases in 

the Toll pathway (Levashina et al., 1999). The presence of black necrotic spots could also be 

due to a cross-talk between the melanisation and Toll pathways. However, in drosophila these 

two pathways have not been linked with this cluster of serpins. There is little information 

about the rest of Drosophila serpins in this group. Most of them are linked to signalling in 

olfactory, neurological, hormonal and developing functions (Osterwalder et al., 2004; 

Reichhart, 2005; Smart et al., 2008). Ae. aegypti serpin-10 was discovered in a transcriptome 

from uninfected mosquito salivary glands, however, its functions remain unknown 

(Valenzuela et al., 2002). Two Ae. albopictus serpins were found in this clade, serpin-A and 

serpin-B.  

There are several serpins that do not cluster into any clade. These serpins are not homologous 

to any other serpins used in the analysis; however, they are still classified as serpins due to 

their sequence characteristics.   

Serpins-A and B are likely to be homologues of Ae. aegypti serpin-10. Serpin-C is 

homologous to Ae. aegypti serpin-4. Serpins-D and E are closely related to Ae. aegypti serpin 
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2 and, in the same clade, serpin-J is likely to be homologous to Ae. aegypti serpin-3. Serpins 

F and H are relatives of Ae. aegypti serpin-21 and to a lesser extent serpin-20. Serpin-K is a 

homologue of Ae. aegypti serpin-11. Serpin-I could be a homologue of either Ae. aegypti 

serpins-5, 6 or 16. Serpin G does not have any close homology to any other serpins used in 

this analysis. 

These relationships are based purely on sequence homology. It has to be noted that the same 

homology analysis were done on the amino acid sequences. However, nucleotide alignments 

are shown since they provide higher homology resolution. In order to fully classify them 

biochemical and functional studies need to be carried out. 
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Silencing of serpins and effect on PO activity 
In order to further characterise and investigate the role of Ae. albopictus serpins in 

melanisation, serpins were silenced using specific long dsRNA in the following manner: 

serpin sequences which will produce long dsRNA fragments of at least 400 bp were selected 

and checked for excessive sequence homology before designing primers, those were designed 

to target specific serpins. RNA was extracted from U4.4 cells and reverse transcription was 

done. Initially, unique serpin primers containing a T7 promoter region were used to amplify 

fragments of at least 400 bp by PCR. This strategy was not successful for most of the serpins 

since their transcripts are not very abundant and the addition of the T7 promoter to the primer 

made the PCR reaction less efficient. Therefore, external primers without the T7 promoter 

were designed and DNA fragments were amplified. Using these fragments in addition to a 

second set of internal primers containing the required T7 promoter site, DNA fragments were 

successfully generated. From these internal DNA fragments flanked by T7 sequences, long 

dsRNA were generated as stated in Materials and Methods (Chapter 2). Long dsRNA 

molecules were then transfected into U4.4 cells and PO activity was measured from the cell 

culture medium after 48 h using the PO activity assay described Materials and Methods 

(Chapter 2). Each of the identified Ae. albopictus serpins was named with a letter A-K until 

further characterisations were made. 

  



Chapter 6 The role of serpins in controlling the 
melanisation cascade in U4.4 cell conditioned 
medium 

 
156 

 

 

Fig. 6.6. PO activity assay in U4.4 cell culture medium after serpin silencing. 

6.5 x 105 cells U4.4 cells were transfected with specific serpins long dsRNAs and PO activity 

was measured from the cell culture medium after 48 h using the PO activity assay  The red 

discontinuous line represents the average of the unspecific long dsRNA control. Purified SFV is used 

as a positive control and cell culture medium from untransfected cells is used as a negative control. 

Each of the Ae. albopictus silenced serpins was identified with a letter A-K. One unit of PO activity 

was defined as ΔA490=0.001 after 30 minute incubation; absorbance changes due to oxidation of the 

dopamine substrate (see Materials and Methods) by PO activity. The Y axis indicates PO activity 

units (U). Each bar represents the mean from 10 reactions; error bars represent standard deviation. 

This graph is representative of 3 independent experiments. 

 

As expected, the addition of purified SFV to conditioned cell culture medium also resulted in 

an increase of PO activity. Silencing of serpins E, H, I and J resulted in a significant increase 

of PO activity  and, therefore, these serpins appear to inhibit serine proteases directly 

involved in this pathway in Ae. albopictus (serpin E, t-test: P<0.0001; serpin H, t-test: 

P=0.0003; serpin I, t-test: P=0.0002; serpin J, t-test: P=0.0003). There was also an increase 

with serpin D, although it was not significant. These serpins are homologues of Ae. aegypti 

serpins 2, 3 and 21. All these genes have been previously described as being directly involved 

in controlling the PO cascade (Valenzuela et al., 2002; Zou et al., 2010). It has to be noticed 
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that the transfection of unspecific (eGFP) long dsRNA also triggers PO activity, probably due 

to the nature of the Lipofectamine 2000 liposomes which are able to trigger the PO cascade. 

Indeed amphipathic molecules and alcohol activate insect PPOs (Kanost, 2008). Therefore, 

only serpins that produced a higher than control increase of PO activity were considered for 

further studies. 

Silencing of serpins and effect on SFV replication and spread 
The effect that serpins have on SFV infection and spread in U4.4 cell culture was examined 

in the following experiment. Serpins were silenced using specific long dsRNAs as described 

above and infected with SFV expressing RLuc.  

A monolayer of U4.4 cells was transfected using Lipofectamine 2000 with the serpin specific 

long dsRNA fragments described in the previous experiment. After 24 h, the monolayer of 

cells was infected with a low MOI (0.005) of SFV4(3H)RLuc, thus allowing it to spread 

through the culture and luciferase readings were taken after 48 h post infection. Long dsRNA 

from eGFP was transfected as a negative control. 
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Figure 6.7. The effect of serpin silencing on SFV replication and spread. Long 

dsRNA from different serpins were transfected into U4.4 cells as shown. The red segmented line 

represents the average of the control wells transfected with unspecific long dsRNA (eGFP). Each of 

the Ae. albopictus serpins was identified with a letter (A-K). RLuc was measured 48 h p.i. Each bar 

represents the mean from triplicate cultures; error bars represent standard deviation. This experiment 

is representative of three independent experiments. 

 

All the serpins, with the exception of serpin H, had a significant effect on reducing the 

amount of viral spread and replication (serpin A, t-test: P=0.0364; serpin D, t-test: P=0.0265; 

serpin E, t-test: P=0.0059; serpin I, t-test: P=0.0370; serpin J, t-test: P=0.0116; serpin K, t-

test: P=0.0255). Serpin H is homologous to Ae. aegypti serpin-21 and, as mentioned before, 

there is no evidence of this serpin’s function in the PO cascade. It is a peculiar case that this 

serpin, even when PO activity is increased, does not reduce viral spread and replication. This 

serpin could belong to a different pathway that does not affect SFV, or be a transfection 

artefact. There are no publications in the literature about this serpin and the closest of its 

relatives, serpin-20, has been shown to not be involved in the activation of PO (Zou et al., 
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2010). It should also be highlighted that only dsRNA was transfected, transcript silencing 

efficiency was not further verified by, for example, RT-PCR.  

 

Silencing of multiple serpins and effect of SFV replication and spread 
The serpins from the blue clade, which are involved in melanisation were selected for further 

analysis. As in previous experiments in this chapter, serpins were silenced using specific long 

dsRNAs following which the culture was infected with SFV4(3H)RLuc and viral spread and 

replication were monitored. 
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Figure 6.8. The effect of serpin silencing on SFV replication and spread. Long 

dsRNA from different serpins were co-transfected into U4.4 cells as indicated. If multiple serpins 

were co-silenced the same fraction of each long dsRNA was used.  The red segmented line represents 

the average of the control wells transfected with unspecific long dsRNA (eGFP). RLuc was measured 

48 h p.i. Each bar represents the mean from triplicate cultures; error bars represent standard 

deviation. This experiment is representative of three independent experiments. 

 

There is no significant difference between silencing these serpins individually or jointly, 

though they reduced SFV replication and spread compared to eGFP control. This is not 

surprising as each of the serpins work at different steps within the pathway. Most likely 
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silencing the serpin at the top of the activating cascade will make the role of the downstream 

serpins unimportant, or vice versa. 

All these experiments are preliminary and only shed some light on the possible functions of 

the Ae. albopictus serpins. It is worth noticing that Ae. aegypti serpin-1 is responsible for 

humoral melanisation, which is thought to affect virus infection. In this study no serpin-1 was 

retrieved from Ae. albopictus derived U.4.4 transcriptome sequencing. However, we cannot 

completely discount that one of those three serpins found in the blue clade (E, D, and J) are 

its homologues.   
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DISCUSSION 
In this study, several Ae. albopictus serpins were identified and associated with Ae. aegypti 

homologues. Serpins A and B are likely to be homologous to Ae. aegypti serpin 10. Serpin C 

is homologous to Ae. aegypti serpin 4. Serpins D and E are closely related to Ae. aegypti 

serpin 2 and, in the same clade, serpin J is likely homologous to Ae. aegypti serpin 3. Serpins 

F and H are relatives of Ae. aegypti serpin 21 and, to a lesser extent, to serpin 20. Serpin K is 

a homologue of Ae. aegypti serpin 11. Serpin I could be a homologue of either Ae. aegypti 

serpins 5, 6 or 16. Serpin G does not have any close homology to any other serpins used in 

this analysis. 

Further analysis of these Ae. albopictus serpins showed that some, especially those related to 

Ae. aegypti serpin 2, drosophila 27A, M. sexta and B. mori serpin 3, increase PO activity 

when silenced, correlating to similar findings in Ae. aegypti (Zou et al., 2010). In addition, 

Ae. albopictus Serpin H, or Ae. aegypti serpin 21 also induces an increase PO activity when 

silenced. This fact was previously undocumented. SFV spread and replication in U4.4 cell 

culture is reduced when all serpins are silenced (with the exception for serpin H), and thus the 

PO cascade is constitutively activated.  

Several issues arose during these experiments. Some of the serpins, such as serpin C, had 

only been partially sequenced, and the available sequenced information was not enough for 

the transcript to be silenced. Additionally, some serpin sequences, especially among those in 

the same clade, are very similar and therefore it was difficult to find optimal primers that 

could distinguish one from another. All the DNA fragments amplified were sequenced before 

the production of long dsRNAs in order to remove cross-silencing. For example serpin B was 

removed as it was very similar to serpin A and the long dsRNA sequence was not specific 

enough to distinguish between the two. Therefore when silencing serpin A, both serpin A and 

B were silenced. It was also noted that liposomes, and amphipathic molecules in general, 

such as Lipofectamine 2000 can trigger melanisation during transfection as has been 

described for amphipathic molecules (Kanost, 2008). 

The PO cascade is a very complex, and the characterisation of the serpins that control it in 

Ae. albopictus is no simple task. This study showed some preliminary data as a pioneering 

step towards establishing the mechanisms that control this pathway in Ae. albopictus. 
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The better studied PO cascade in Ae. aegypti mosquitoes occurs through two different 

pathways (Zou et al., 2010). It can only be assumed that the same case would occur in Ae. 

albopictus mosquitoes. Characterisation of the specific serpins which control the two distinct 

melanisation pathways is a difficult assignment since the specific serpins that control each of 

these pathways (serpin 2 for tissue melanisation and serpin 1 for haemolymph melanisation) 

are quite similar at both nucleotide and amino acid level. The apparent absence of Ae. 

albopictus serpin-1 from sequencing data prevents the possibility of knowing if this serpin 

has any importance in Ae. albopictus PO response against SFV or if that serpin is one of the 

three found in the same clade (D, E, and J). As mentioned before, serpin 2 of A. aegypti is 

also a regulator of the Toll pathway (Bian et al., 2005; Zou et al., 2010). The involvement of 

serpins is this pathway also occurs in drosophila. Serpins 27A, 5, 43AC and 77BA are known 

to be involved in Toll regulation in the fruit fly (Green et al., 2000; Levashina et al., 1999; 

Ligoxygakis et al., 2002; Robertson et al., 2003). With regards to our system, the decrease in 

SFV replication and spread following the knock down of serpin 2-related serpins in Ae. 

albopictus derived U4.4 cells could be due to the increase in Toll activity. However, this 

statement is unlikely since alphaviruses are not affected by Toll (Fragkoudis et al., 2008c). 

Therefore, the effect of silencing Ae. aegypti serpin 2 homologues on SFV in Ae. albopictus 

cells is likely due to the activation of pathways leading to  PO activity. 

The importance that melanisation has on pathogens, as well as the efficiency by which 

serpins control this pathway, is demonstrated by the fact that the insect host is not the only 

organism expressing serine protease inhibitors. It is known that parasites, such as 

microfilariae of Brugia malayi, express serpins in order to inhibit melanisation to their 

advantage (Zang et al., 1999). Another example of a serpin-like peptide expressed by an 

insect pathogen is Egf1.0 protein from the MdBV (Beck and Strand, 2007). However, to date 

no arboviruses have been shown to express serpins.  

Understanding the role of serpins may be of use in controlling mosquito viability when 

spreading infectious parasitic and viral diseases. The interaction of serpins with cSPs has 

been correlated with mosquito life expectancy. In A. gambiae, depletion of SRPN2 increases 

adult female mortality late in life (An et al., 2011), thus this gene has been proposed as a 

novel insecticide target (Read, Lynch, and Thomas, 2009). ‘Late in life’ acting insecticides 

inhibiting SRPN2 would kill mosquitoes prior to parasite transmission by minimizing 

selection pressure for resistance. Using the same principle, insecticides against aedine 
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mosquitoes could be developed which would reduce the number of mosquitoes prior to virus 

transmission.  
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Summary of findings 

• Ae. albopictus serpin sequences were identified from the transcriptome of U4.4 cells 

analysed in Chapter 3. 

• Ae. albopictus serpin sequences were aligned and classified alongside serpins from 

other insect species, finding several potential homologues. 

• Silencing of several Ae. albopictus serpins triggers the PO cascade in conditioned 

U4.4 cell culture medium. 

• Silencing of some Ae. albopictus serpins reduces SFV spread and replication in U4.4 

cells culture.  
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Concluding Remarks 
 

During this project, uncharacterised innate immune responses of Ae. albopictus derived U4.4 

cells to SFV infection have been identified and investigated. The role of the PO cascade as a 

novel immune response against arbovirus infection has been determined. 

In the transcriptomic study it was found that most cellular transcripts are not differentially 

regulated during infection. In fact, only 2% of gene transcripts were up-regulated and 4% of 

gene transcripts were down-regulated. The majority of the up-regulated transcripts induced 

upon SFV infection of U4.4 cells were related to nucleic acid processing and serine proteases, 

as well as other immune related genes, unfolded protein response genes and other stress 

responses. On the other hand, transcripts which were down-regulated upon SFV infection 

were involved in exocytosis and vesicle export pathways; RNA degradation, and reactive 

oxygen species metabolism. The results of this transcriptome study are still to be validated by 

other means such as RT-PCR, however, contig coverage gives a very high quality, quantified 

number of RNA bases per transcript so PCR verification was not a priority. The next step 

would have been silencing of up-regulated genes with RNAi. Several candidate genes were 

going to be silenced and their effect on SFV infection monitored. This was not carried out 

further for reasons of time, since it was decided to follow up the role of the melanisation 

pathway in SFV infection in more detail. 

Until now, melanisation was not considered to act as an immune response against arboviruses 

in mosquitoes. In this thesis it has been demonstrated that there is a melanisation cascade and 

PO activity in U4.4 cell-conditioned medium. The model arbovirus SFV and E. coli can 

activate the PO cascade in conditioned cell culture medium, however, the mechanisms by 

which SFV triggers PO activity are still unknown. SFV replication and spread is affected n all 

likelihood by reaction intermediates and cytotoxic by-products of the PO cascade, but how 

the PO cascade negatively affects the virus infection and spread it is also not known. 

The bracovirus melanisation inhibitor Egf1.0 was cloned into SFV4 to be expressed under 

control of a secondary subgenomic promoter in order to further investigate the PO cascade. 

Egf1.0 works in an inter species manner, and was found to inhibit the PO cascade in 

mosquito cell culture (U4.4 cells). As expected, Egf1.0 expressed from a second subgenomic 

promoter within SFV was exported into the U4.4 cell culture medium. The expression of this 
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protein was found to increase the spread of SFV. However, in mammalian cell culture (BHK-

21 cells), this protein does not confer any replication or spreading advantages to SFV. In vivo 

experiments showed that the inhibition of melanisation by Egf1.0 in SFV infected mosquitoes 

decreases vector survival. Egf1.0 expression by SFV4 also resulted in the enhancement of 

viral replication and infectivity in Ae. aegypti mosquitoes. The transcriptome of U4.4 cells 

also allowed the identification of Ae. albopictus serpin sequences which were used in further 

study of the PO cascade. Ae. albopictus serpin sequences were aligned and classified 

alongside serpins from other insect species, finding several potential homologues. Silencing 

of several of these serpins triggers the PO cascade, reducing SFV spread and replication in 

conditioned U4.4 cell culture medium. 

 

In summary, my results give the first insight into the transcriptome of Ae. albopictus U4.4 

cells, and provide much needed, currently missing genomic information for this important 

vector species. I also show that the PO cascade has antiviral activity and can be added to the 

list of immune responses responsible for controlling arbovirus replication in mosquitoes.  

Future research in the antiviral role of the PO cascade is required. A large number of players 

in the mosquito melanisation cascade are unknown. One of the most important aspects that it 

is yet to be determined is the identification of the PAMP receptor that triggers this cascade. 

These types of receptors have an extracellular soluble particle recognition protein nature and 

remain largely uncharacterised; however there are several candidate proteins involved, such 

as immunolectins. The nature of the PAMP that activates the cascade, whether it is a lipid 

vesicle or glycoproteins, is also unknown and should be investigated in the future. It is 

suggested that ROS are the cascade’s end product responsible for virucidal activity. The 

interaction between these reactive molecules and the virion are unknown and also deserve 

further investigation.  

It has been shown that in order to mount a successful defence against viral infection, 

mosquitoes require input from different immune pathways. The magnitude and intrinsic 

nature of these pathways is such that a lot more research and resources will be needed to 

understand the mechanisms behind arbovirus defence in mosquitoes. How SFV (and possibly 

other viruses) activate the PO cascade and how this pathway is regulated should be 

investigated. The transcriptome data obtained in the course of this study may help these 
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investigations. This thesis opens the door to further investigations into the role of the PO 

cascade as an antiviral mechanism. 

 Mosquitoes are part of nature and play an essential role in ecosystems, specifically by 

bringing nitrogen back from higher vertebrates into the environment. Removing mosquitoes 

as a mechanism to reduce human arboviral infections, wheather with pesticides or traps, 

might just be a short term solution which will damage the environment. Understanding the 

role of antiviral pathways in mosquitoes might lead, someday, to applications which will help 

in the fight against arboviral diseases, such as dengue fever, without the need for eliminating 

mosquitoes, for example with the creation of transgenic mosquitoes lines or the use of 

symbiotic organisms, such as wolbachia. 
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