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An outline

• About us

• Phenotiki and affordable phenotyping

– Powered by affordable open hardware

– Smart, machine-learning, open software

• Open data

• Lessons (software lakes for data swans)
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The Lab
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10 random images from papers

 Digital Signal  

Signal is encoded in DNA   

Signals are indexed (tagged) 
and then synthesized  

All DNA 
elements are 
placed in a 
storage 
medium. 
Multiple copies 
of every 
element co-

exist.  

DNA database elements  

 IEEE SIGNAL PROCESSING MAGAZINE [129] JULY 2015

outside and in the field introduces addi-

tional challenges. Several approaches 

exist that mount  sensors on specialized 

carriers: human- controlled tractors or 

other ground vehicles, or in the air with 

unmanned aerial vehicles [Figure 1(m)] 

operated either remotely or in an auto-

mated fashion. Image data differ tremen-

dously in resolution, detail, motion blur, or 

clutter, severely affecting subsequent analy-

sis tasks, thus, more robust algorithms are 

necessary. Computational efficiency is an 

issue, as the amount of imaging data pro-

duced is enormous [cf. Figure 1(n)], and 

analysis tasks can be significantly complex. 

Efforts in directly using analysis results for 

cultivation practices are the central theme 

in precision agriculture [3], which aims at 

tailoring treatment at the individual plant 

level. Thus, computer vision becomes cru-

cial in supporting the whole process and 

evidently there is now the additional chal-

lenge of ident i fying low-complexity 

approaches to robust vision. 

AFFORDABILITY:  

COPING WITH RESTRICTIONS

Currently, most versatile solutions are 

too expensive, and many labs instead 

develop highly customized (hardware and 

image analysis) solutions tailored to their 

experimental setting that are capable of 

addressing only specific phenotyping 

problems. Even when they are affordable, 

this variability in methods and setups 

creates standardization problems. 

The use of off-the-shelf commercial 

equipment (such as commercial cameras 

[12] or the Kinect [5]) could facilitate stan-

dardization across experiments, lower the 

entry barrier, offer affordable solutions, and 

help many labs adopt the image-based 

approach to plant phenotyping. 

Our recent project [16] aims to pro-

vide a universal turnkey and modular 

platform based on a distributed sensing 

and analysis framework [13], as shown 

in Figure 2. This distributed approach 

presents several key advantages. Afford-

able and easy-to-install sensors can be 

deployed in laboratories (growth cham-

bers), the greenhouse, or the field to 

cover wide areas, before resort ing to 

more cost ly and complex solut ions 

based on robotics and automation. It is 

easy to become accustomed to a cloud-

based storage and analysis application 

that is always up to date. It  relieves 

users from maintaining a computing 

infrastructure and, importantly, it also 

permit s consistency in exper iments 

among different labs by standardizing 

equipment and analysis. 

This centralized design, particularly 

when combined with an open architec-

ture, can benefit the entire community, 

providing a modular and expandable 

architecture (by changing or adding new 

camera sensors), favoring software reuse 

(e.g., user-contributed algorithms can be 

adopted by other labs), and knowledge 

sharing (e.g., a common repository of 

acquired data and meta-data, and also 

the analysis application itself learning on 

the user’s feedback). 

Affordability and remote processing, 

however, pose technical challenges. The 

choice of optics and the fixed field of view 

restrict the quality (in resolution and 

sharpness) of the acquired images and the 

plants this setup can image (e.g., it may 

not be suitable for not coplanar plants). 

An affordable sensor will have limited 

computational power and knowledge 

access, thus, it requires low-complexity 

algorithms to perform some of the tasks 

outlined in previous sections, and as such 

remote processing is necessary. Then the 

transmission of (possibly) large volumes 

of image data necessitates compression to 

meet bandwidth constraints. While this 

loss of information will affect the accu-

racy of the analysis algorithm, recent 

advances in application-aware compres-

sion can tune compression parameters to 

meet analysis accuracy needs [13], [14]. 

From a software engineering perspective, 

backward compatibility of the analysis 

framework and of the computational 

backbone has to be ensured, such that 

exper imental  protocols and resul ts 

obtained previously remain valid. 

[FIG2] (a) Affordable camera sensors (e.g., based on the Raspberry Pi [17]) acquire time-lapse sequences of the scene, including 
one or multiple plants. (b) Images are compressed and transmitted to the cloud, where high computational power and a broad 
knowledge base enable sophisticated computer vision tasks (e.g., leaf segmentation and tracking, optical flow analysis). 
Additionally, information is fed back to the sensor. Relying on Web-based graphical user interfaces, (c) phenotyping r esults are 
presented to the user for interpretation.
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(Phenotype)

• Appearance / behavioral 

variability in organisms

e.g., how we look,

how we respond to stress 

• Genotype x Environment x Random Variations 

Phenotype
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Phenotyping is important

• Population increases, 

resources decrease,

climate change 

• We need sustainable

agriculture

• Phenotyping: measuring 

traits & reactions

• Missing link to other 

omics technologies
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Phenotyping is (was) a true Bottleneck

• Growth rate

• Flowering time

• Seed set

• Seed shape

• Leaf shape

• Colour changes

• Root density

• Nutrient utilisation

• Light sensitivity

• ...
Collecting phenotypes manually is hard!

Use cameras and images to help collection
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High throughput phenotyping

• Automated imaging and semi-automated analysis

– Automation to collect imaging data

– However, customized and costly solutions
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Affordable Plant Phenotyping

with Phenotiki

• Really affordable sensor(s) 

<200€

• Distributed sensing and analysis

• Robust analysis software running 

on a cloud infrastructure

+   Easy maintenance / 

deployment, no software 

needed

+   Transparent to the user

+   Expandable to other 

organs/plants

http://phenotiki.com
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3 steps

• Setup the sensor <200£

• Connect it to the internet

• Analyze the 2D data 

– On a workstation

– On the cloud [iPlant]
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The secret: Machine Learning Algorithms

• Algorithms rooted in machine learning 

– Robust to changing environment (different labs)

– Learn from user interaction

• Once we teach the algorithms

– Fully automated plant growth 

– Fully automated leaf counting (1st ever in 2D)

– Semi-automated leaf segmentation

Traits:

• Projected Leaf Area (PLA) 

• Diameter 

• Perimeter  

• Compactness

• Stockiness 

• Leaf count 

• Relative Growth Rate 

• Color



15

SA Tsaftaris

Getting the phenotypes: the true bottleneck

• Sometimes easy…

(rosette area)

• Most times hard…

challenging:

– content 

(moss, drought, 

water)

– phenotype 

(leaf, flower) 

• Particularly when we have to image different 

things in different settings
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A bottleneck that analysis together with 

machine learning (ML) can help address

• ML: teach machines from diverse examples

– Give images & desired output (trait)  let algorithms decide

– E.g. Contrast this with deciding (by eye) thresholds to 

delineate plants for background plus cleaning for PLA 
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However developing ML algorithms needs 

data

• When we started in 2011 there was no open data 

available

– Despite major academic players (and companies) having 

made significant contributions in the area

– Our plant scientists collaborators did not have imaging 

equipment in place yet

• Luckily we were developing Phenotiki

– We were doing our own experiments

– We were collecting our own data

– We were free to do whatever we wanted with the data
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About 2 years ago

• Purposely in a vision journal

• Data + evaluation routines

• If adopted we can track progress

http://www.plant-phenotyping.org/datasets

http://www.plant-phenotyping.org/datasets
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Collected data

• Collected 

– different 

experiments of Arabidopsis

– Tobacco 

– Different cameras

– Different setups

– Different illumination

• Recruited annotators and

designed an annotation

whitepaper
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An annotation hierarchy

• We setup a hierarchy

• Minimize annotation 

effort

• Metadata: easy

• Image-level

annotations: harder

• Found the lowest 

element to annotate 

(the leaf) derived different annotations from 

that

5

Image&level)annota- ons)

Tray)Image)Data)

Raw)Image)
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Experimental)and)Imaging)Metadata)

Metadata) Metadata))
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Fig. 6: Hierarchy of relationships among data, metadata, and annotations. In

parentheses we provide examples of annotation variables, and we also pro-

vide pictorial examples of imaging data and annotations such as segmentation

masks, bounding boxes, and leaf boundaries. Gray boxes denote metadata.

Dataset size refers to the current state of annotation as to the

current date.

3.1. Overview of semantic hierarchy

Each experiment has generated a vast amount of imaging

data with Arabidopsis experiments showing tray images whilst

tobacco individual plants. Our internal database and annotation

strategy follows the hierarchy visible in Figure 6. These origi-

nal images are higher in our semantic hierarchy.

Gray boxes in Figure 6 denote related annotated metadata:

experiment type, mutant type, camera used, acquisition time,

experimental treatment, segmentation difficulty, etc. Non-

shaded boxes denote imaging and image level annotations.

Note that an experiment may contain both tray and individual

plant images such asArabidopsis for example. However, this is

not arule: for example, for tobacco datasets tray images arenot

available, and for Arabidopsis experiments no treatment was

performed. To construct each of the standalone datasets de-

scribed below, we trace information in this hierarchy and pro-

vide related metadata and annotations wherever appropriate.

3.2. Expert segmentations

A significant number of object-based annotations, e.g.,

bounding boxes, can be obtained computationally on the basis

of pixel-level segmentation masks of plants and leaves, respec-

tively, which have been manually annotated by experts. Here

we describe how we obtained the latter and next we detail the

level of annotation for each task.

Annotation consisted of three steps. First, we obtained a

binary segmentation of the plant objects in the scene in a

computer-aided fashion. For Arabidopsis, we used the ap-

proach based on active contours described by Minervini et al.

(2014), while for tobacco, a simple color-based approach for

(a) Ara2012

(b) Ara2013 (Canon)

(c) Tobacco

Fig. 7: Examples of single plant images at di↵erent developmental stages with

the corresponding ground truth leaf labeling denoted by color.

plant segmentation was used. The result of this segmentation

was manually refined using raster graphics editing software, to

ensure that all the visible part of the shoot is included in the

plant mask and that the background (earth, moss, etc.) is ex-

cluded. Next, within the binary mask of each plant, we de-

lineated individual leaves (including both the petiole and the

blade) completely manually. A pixel with black color denotes

background, while all other colors are used to uniquely iden-

tify leaves of the plants in the scene. Across the frames of

the time-lapse sequence, we consistently used the same color

code to label occurrences of the same leaf. To reduce observer

variability and increase accuracy, the labeling process involved

always two annotators: one annotating the dataset and one in-

specting the other. For future extensions of the datasets, the

annotation of additional images is supported by a tool that we

recently released for semi-automated leaf segmentation and an-

notation (Minervini et al., 2015a). Figure 7 shows examples of

plant images from the datasets, with corresponding pixel level

annotation masks.

On a secondary inspection of the data, additional categori-

cal qualitative annotations were recorded by annotators such

as: estimate of segmentation difficulty (in the 1[easy]-5[hard]

scale), plant appears in focus, leaves appear in vertical posi-

tions which is typical in tobacco (due to the so called nastic

movements), plant is occluded by another one (when pots are

placed close by), and scene contains complexities (water in the

background, green moss on soil, debris or damage on leaves).
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Build a tool to delineate leaves to minimize 

variation and time
• Remarkable segmentation 

results (≈ 97% accuracy)

• Easier and faster
(1 min) vs. raster 
graphics editors (30 min)

• Publicly available software tool and source code

– Web page: http://www.phenotiki.com

– GitHub repository: https://github.com/phenotiki/LeafAnnotationTool

Minervini, et al BMVC 2015.

http://www.phenotiki.com/
https://github.com/phenotiki/LeafAnnotationTool
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HOW DATA HAVE BEEN USED
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Collating expertise

• Benefits of having open data

• Organized challenges (2014,2015,2017)

• 4 groups around the world; compared on the 

same dataset

un
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f
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Abstract Image-based plant phenotyping is a growing1

application area of computer vision in agriculture. A key2

task is the segmentation of all individual leaves in images.3
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Brief

Results
Rosette

segmentation ok

Leaf

Depends:

• Young 

vs mature

• Occlusion a main problem 

Thankfully science evolves

Ren & Zemel End-to-End Instance Segmentation and Counting with Recurrent Attention CVPR 2017

Table 1: Leaf segmentation and counting performance, averaged over all test images, with standard deviation in

parentheses

SBD " |DiC| #

RIS+ CRF [19] 66.6 (8.7) 1.1 (0.9)

MSU [20] 66.7 (7.6) 2.3 (1.6)

Not t ingham [20] 68.3 (6.3) 3.8 (2.0)

Wageningen [26] 71.1 (6.2) 2.2 (1.6)

IPK [14] 74.4 (4.3) 2.6 (1.8)

PRIAn [6] - 1.3(1.2)

Ours 84.9 (4.8) 0.8 (1.0)

Image GT Ours Image GT Ours

F igur e 4: Examples of our instancesegmentation output on CVPPP leaf dataset. In this paper, instancecolors are

determined by the order of the model output sequence.

with theground-truth, and falsenegativeis thenumber of ground-truth instancesthat do not overlap with

the predict ion.

|DiC| =
1

N

X

i

|count i − count⇤i | (33)

4.1 Result s & D iscussion

Exampleresultson theleaf segmentation task areshown in Figure4. On thistask, our best model outperforms

thepreviousstate-of-the-art by a largemargin in both segmentation and counting (seeTable1). Wefound

that the models with FCN overfit on this task, and we thus utilized the simpler version without input

pre-processing. This is not surprising, as the dataset is very small, and including the FCN significantly

increases the input dimension and number of parameters.

In theKITTI task, Figure5 showsthat our model can segment cars in a widevariety of poses. It achieves

state-of-the-art results(seeTable2) acrossseveral of therelevant measures, including IoU, weighted coverage,

and falsepositives. Notehowever that our MUCov is lower than results reported by Uhrig et al. [24]. One

possible explanation is their inclusion of depth information during training, which may help the model

disambiguatedistant object boundaries. Moreover, their bottom-up “ instancefusion” method playsa crucial

10
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Built state of the art algorithms

• Deep learning approach direct image to count (for any plant)

• Winner of the 2017 Leaf Counting Challenge (CVPPP 2017)

• Benefits by pooling data sources together

– Extension to multimodal data [e.g. fluorescence, depth, infrared] 

forthcoming

• Results improve with more sources and more labeled data

• Results improve with synthetic data

Dobrescu et al CVPPP @ ICCV 2017
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Getting more labelled data

• 20000 annotated plants in 3 months

https://www.zooniverse.org/projects/venchen/leaf-targeting
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Creating synthetic data: Can you tell the 

fake from the real?

Giuffrida et al CVPPP @ ICCV 2017
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How others use the data (2 years after)

• 23 citations

• ~800 downloads

• We succeeded in attracting new 

CV/ML scientists 

– Most are researchers and students

– most students are in computer science

• 7 papers in deep learning using the data […]
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Lessons and what we need in the future

• Going from benchmark small scale open data to…

• “Data lakes for software swans”

– Ways to curate of available data/feedback

– Communicate with users

– A common framework to collect

data for the purpose of developing and testing algorithms 

from a variety of sites, systems etc

– Ways to collect annotations for tasks

– Ways to obfuscate biological knowledge

• Focus on underlying vision problem [openly]

• Test and evaluate algorithms then merge with biological knowledge 

“privately”
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Thank you

Funding:

NIH 4R01HL091989

NIH 1R01HL136578

EP/N510129/1 

EP/P022928/1

BB/N02334X/1

BB/P023487/1

Sotirios A. Tsaftaris, PhD

Email: S.Tsaftaris@ed.ac.uk

URL: http://tsaftaris.com

mailto:S.Tsaftaris@ed.ac.uk


36

SA Tsaftaris

Leaf segmentation with recurrent neural 

nets

• Impressive segmentation/counting accuracy

Ren & Zemel End-to-End Instance Segmentation and Counting with Recurrent Attention arXiv

Table 1: Leaf segmentation and counting performance, averaged over all test images, with standard deviation in

parentheses

SBD " |DiC| #

RIS+ CRF [19] 66.6 (8.7) 1.1 (0.9)

MSU [20] 66.7 (7.6) 2.3 (1.6)

Not t ingham [20] 68.3 (6.3) 3.8 (2.0)

Wageningen [26] 71.1 (6.2) 2.2 (1.6)

IPK [14] 74.4 (4.3) 2.6 (1.8)

PRIAn [6] - 1.3(1.2)

Ours 84.9 (4.8) 0.8 (1.0)

Image GT Ours Image GT Ours

F igur e 4: Examples of our instancesegmentation output on CVPPP leaf dataset. In this paper, instancecolors are

determined by the order of the model output sequence.

with theground-truth, and falsenegativeis thenumber of ground-truth instancesthat do not overlap with

the predict ion.

|DiC| =
1

N

X

i

|count i − count⇤i | (33)

4.1 Result s & D iscussion

Exampleresultson theleaf segmentation task areshown in Figure4. On thistask, our best model outperforms

thepreviousstate-of-the-art by a largemargin in both segmentation and counting (seeTable1). Wefound

that the models with FCN overfit on this task, and we thus utilized the simpler version without input

pre-processing. This is not surprising, as the dataset is very small, and including the FCN significantly

increases the input dimension and number of parameters.

In theKITTI task, Figure5 showsthat our model can segment cars in a widevariety of poses. It achieves

state-of-the-art results (seeTable2) acrossseveral of therelevant measures, including IoU, weighted coverage,

and falsepositives. Notehowever that our MUCov is lower than results reported by Uhrig et al. [24]. One

possible explanation is their inclusion of depth information during training, which may help the model

disambiguatedistant object boundaries. Moreover, their bottom-up “ instancefusion” method playsa crucial

10
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