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Abstract

This thesis considers statistical modelling of natural image data. Obtaining ad-

vances in this field can have significant impact for both engineering applications,

and for the understanding of the human visual system. Several recent advances

in natural image modelling have been obtained with the use of unsupervised fea-

ture learning. We consider a class of such models, restricted Boltzmann machines

(RBMs), used in many recent state-of-the-art image models. We develop exten-

sions of these stochastic artificial neural networks, and use them as a basis for

building more effective image models, and tools for computational vision.

We first develop a novel framework for obtaining Boltzmann machines, in

which the hidden unit activations co-transform with transformed input stimuli

in a stable and predictable way throughout the network. We define such models

to be transformation equivariant. Such properties have been shown useful for

computer vision systems, and have been motivational for example in the devel-

opment of steerable filters, a widely used classical feature extraction technique.

Translation equivariant feature sharing has been the standard method for scaling

image models beyond patch-sized data to large images. In our framework we

extend shallow and deep models to account for other kinds of transformations as

well, focusing on in-plane rotations.

Motivated by the unsatisfactory results of current generative natural image

models, we take a step back, and evaluate whether they are able to model a

subclass of the data, natural image textures. This is a necessary subcomponent

of any credible model for visual scenes. We assess the performance of a state-

of-the-art model of natural images for texture generation, using a dataset and

evaluation techniques from in prior work. We also perform a dissection of the

model architecture, uncovering the properties important for good performance.

Building on this, we develop structured extensions for more complicated data

comprised of textures from multiple classes, using the single-texture model archi-

tecture as a basis. These models are shown to be able to produce state-of-the-art

texture synthesis results quantitatively, and are also effective qualitatively. It

is demonstrated empirically that the developed multiple-texture framework pro-

vides a means to generate images of differently textured regions, more generic

globally varying textures, and can also be used for texture interpolation, where

the approach is radically different from the others in the area.
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Finally we consider visual boundary prediction from natural images. The

work aims to improve understanding of Boltzmann machines in the generation of

image segment boundaries, and to investigate deep neural network architectures

for learning the boundary detection problem. The developed networks (which

avoid several hand-crafted model and feature designs commonly used for the

problem), produce the fastest reported inference times in the literature, combined

with state-of-the-art performance.
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Chapter 1

Introduction

1.1 Statistical Modelling of Natural Image Data

The main theme in the thesis is building better statistical models for natural

image data, photographic images of the human living environment. The human

visual system has evolved to process the underlying high-dimensional and highly-

variable stimuli in an efficient manner, to a degree which is fully subconscious for

most humans. For computational vision, many obstacles still remain. Obtaining

advances in the field can have significant impact for several engineering applica-

tions (both existing and novel), and for the understanding of the human visual

system and also the brain [Hyvarinen et al., 2009]

Early computational vision was highly rule-based and hand-engineered, but

statistical learning-based methods have become increasingly popular in modern

approaches. The amount of human supervision in the model design has also been

decreasing, with unsupervised feature learning becoming increasingly common,

replacing hand-engineered feature designs. The workhorse in many recent state-

of-the-art image models is a stochastic artificial neural network, the restricted

Boltzmann machine. This class of models will be the main methodological basis

for the work developed here.

There are several justifications for studying this class of models, including

theoretical ones such as maximum-entropy connections of the models, and em-

pirical ones such as the similarity of the features learned by these architectures

with those found via brain-imaging methods. In several recent application do-

mains, including computer vision applications, hand-engineered features and ad-

hoc model designs have been ‘losing the contests’ to these principled statistical

1



Chapter 1. Introduction 2

machine learning methods. The ability to simulate from the model is one of the

motivations to study generative models, as the researcher is able to see what the

model ‘believes in’, giving possible leverage for hypotheses on model improve-

ment.

1.2 Building Structure into Statistical Models of

Images

Boltzmann machines have shown promise for several statistical modelling tasks [Ben-

gio et al., 2013]. However, they have been unsatisfactory in synthesizing realistic

looking natural images, similar to other generative models for natural images.

Additionally comparisons involving undirected models are problematic under the

assumption of generic natural images. This is due to quantitative comparison

being computationally demanding, as classical methods such as exact likelihood

computations are intractable. Also, it is hard to qualitatively compare the ap-

proaches under the highly variant stimuli by a human observer.

Motivated by these facts, the thesis builds on earlier generative natural image

and texture modelling work, considering a structured approach, starting from

simple to more complex with respect to the data and the model properties. The

thesis considers and develops methods for low-level and mid-level natural image

modelling as described in more detail in the following section, and also provides

suggestions for future work on higher level image understanding.

1.3 Thesis Structure

The following chapter contains the background material. In Chapter 3 we con-

sider unsupervised feature learning from natural images using Boltzmann ma-

chines. We have developed a novel framework for obtaining Boltzmann-machines

and their deep extensions, in which the hidden unit activations co-transform with

transformed input stimuli in a stable and predictable way throughout the net-

work. We define such models to be transformation equivariant. Such property is

clearly useful for computer vision systems, and have been also motivational for

example in the development of steerable filters [Simoncelli et al., 1992]. Transla-

tion equivariant feature sharing (also known as convolutional feature sharing) has
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been the method for scaling image models (including those based on stochastic

neural networks) beyond patch-sized data onto large images. In our framework

we extend shallow and deep models to account for other kinds of transforma-

tions as well, focusing on in-plane rotations in the thesis, and in Kivinen and

Williams [2011].

Motivated by the unsatisfactory natural image generative modelling results

by the current methods, the thesis takes a step back, and evaluates whether they

are able to model a subclass of the data, natural image textures, a necessary sub-

component of any credible model for visual scenes. In Chapter 4, we first assess

the generative performance of a state-of-the-art model on natural images in tex-

ture generation, and perform a dissection of the model architectures, to develop

understanding of the properties important for modelling the data. Our models

produce state-of-the-art results quantitatively and are also qualitatively effective,

and realistic. We then develop in the chapter and in Kivinen and Williams

[2012] structured extensions for more complicated data, textures from multiple

classes, using the single-texture model architecture as a basis. In the chapter it is

demonstrated empirically that the multiple-texture framework provides a means

to generate images of differently textured regions, and also more generic globally

varying textures, and can be used for texture interpolation.

Chapter 5 considers visual boundary prediction from natural images. The

work aims to improve understanding of Boltzmann machines in the generation of

image segment boundaries, and to investigate deep neural network architectures

for learning the boundary detection problem. The developed networks, which

avoid several hand-engineed model and feature designs commonly used for the

problem, produce state-of-the-art prediction results with fastest reported infer-

ence times in the literature at the prediction performance level. A manuscript [Kivi-

nen et al., 2013b] is in preparation on the work.

Chapter 6 summarizes the work in the thesis, and provides a discussion on

future work.



Chapter 2

Background

This chapter provides background for the techniques developed in the thesis,

and discussion of closely related techniques. The main focus will be describing

undirected graphical models, restricted Boltzmann machines in particular, and

learning methods for them.

We start in Section 2.1 by describing undirected graphical models. Section 2.2

then discusses acyclic directed graphical models. Finally, Section 2.3 considers

learning and inference methods for stochastic and deterministic neural networks.

2.1 Undirected Graphical Models

Undirected graphical models, also called as Markov random fields (MRFs), are

probabilistic models on a set of random variables. They can be visualized graphi-

cally with networks consisting of nodes/units for the random variables, and undi-

rected connections or links between the nodes, according to the probabilistic

dependencies the model is set to define. Figure 2.1 visualizes an example MRF.

A set of nodes which are fully connected to each other are called cliques, and

maximal cliques are cliques that cannot be expanded to having additional nodes

(without losing the property of being fully connected and thus being a clique).

The joint probability density of the J random variables {x1, . . . , xJ} in the

network can be written as a normalized product of clique-specific terms (see for

example Koller and Friedman [2009]):

p(x1, . . . , xJ) =
1

Z

∏
c∈C

Φc(xc), (2.1)

where Z is a normalization-constant, also called the partition function, xc denotes

4



Chapter 2. Background 5

nodes within a clique c, each of which are from the set of cliques C of the graph,

and have an associated strictly positive potential function Φc acting on the joint

values of the clique nodes. The cliques can be the maximal cliques of the graph,

but do not need to be.

The networks contain observed/visible units, and can also have hidden/latent

ones. The thesis uses a common graphical notation of shading the observed vari-

ables. The theory allows partially observed networks to be converted onto fully

observed ones, by the so-called process of marginalization. It is mathematically

equivalent to summing or integrating the joint probability density of the visible

and hidden units over the set of hidden unit configurations. Graphically, when

the process is performed on a single node, all nodes connected to the node being

integrated out become coupled, and connections will be added between them, if

not already existing. The same processes are applied, or are conformed to, when

marginal densities of variables (of any sets of variables) are computed.

Let us assume a partition of the nodes into three sets, xS1 , xS2 , and xS3 .

The global Markov property states that nodes xS1 will be independent from xS2 ,

conditional on xS3 , if the former two sets are separated in the graph by xS3 .

Assume that nodes xS3 are the neighbors of a node xj (in other words xNj). This

obviously then implies that conditional on the neighboring variables xNj , xj will

be independent on the rest of the graph x\j,Nj . Mathematically expressed,

p
(
xj | x\j

)
= p
(
xj | xNj ,x\j,Nj

)
= p
(
xj | xNj

)
, (2.2)

where the backslash-operator denotes an exclusion operation, and for example

x\j denotes the set x excluding xj. The Hammersley-Clifford Theorem (see for

example Koller and Friedman [2009]) shows further that the functional form of

the joint density follows that of equation 2.1.

It is then easy to see that a simple local connectivity structure can be very

beneficial in terms of inference and learning, and that marginalization might not

be computationally feasible in practise. Innovating (additional) hidden units onto

the model on the other hand can be a way of making local connectivity structures

simpler, yet maintaining the flexibility of the model. Both of these two strategies

are heavily used in graphical model and algorithm design.

Energy-based statistical models define the joint probability density of the

random variables via an energy-function. The probability is defined using the
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Figure 2.1: Conditional independence on an MRF: Conditional on the nodes within

the blue ellipse, the other nodes become independent of each other. Two example

separations (columns) are shown with two visualizations each (rows).
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Boltzmann distribution as follows:

p(x | θ) =
1

Z
exp {−E(x; θ)}, (2.3)

where E denotes the energy-function on the random variables in the model.

The parameters of the energy-function θ define the specific form of the energy-

function, and parametrize the model. As before, Z is the partition function.

In the following we will briefly review undirected graphical models closely

related to the work in the thesis. See Koller and Friedman [2009] for more details

on generic properties of the models, other specific models, and further details.

We start by discussing MRFs with observed random variables only, followed by a

discussion on MRFs with hidden units, with a focus on energy-based models. We

will then consider parameter sharing methods for learning large image models,

and techniques for building deep belief networks. Finally, we describe MRFs

proposed for generative image modelling.

2.1.1 Fully visible models

The Gaussian Markov random field (GMRF)-model is a classical, yet still often

useful fully visible MRF. The joint probability distribution of the observations

under a GMRF follows a multivariate Gaussian, with some mean vector and a pre-

cision matrix. The model can be graphically illustrated by drawing links between

visible nodes for which the corresponding precision matrix element is non-zero.

In other words, the lack of a connection between two units in a graphical model

of a GMRF means the corresponding element in the precision matrix is zero, and

vice versa. The model can be easy to interpret, and has several computationally

attractive properties. However, it is not a very flexible model as it defines only a

uni-modal distribution over the set of observations (simply because the Gaussian

distribution is unimodal, independent on the number of dimensions it has). If the

target density is multi-modal, a Gaussian can end up wasting significant amounts

of probability mass in regions between data density modes and for example also

outside of them to cover the modes sufficiently well, where the data distribution

might not have any probability mass.

In product-of-experts (PoE) models [Hinton, 2002b], the joint probability of

data v given model parameters θ can be written as a normalized product of po-

tentially un-normalized strictly positive potential functions fα(v; θα), or experts,
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as follows:

p(v | θ) =
1

Z

∏
α

fα(v; θα). (2.4)

Note that setting the potential functions to be strictly positive functions acting

on the cliques of the graph, one obtains the generic formulation of MRFs (see

equation (2.1)). The models can be expressed using the energy-based notation

by defining

E(v; θ) = − log

{∏
α

fα(v; θ)

}
= −

∑
α

log fα(v; θα), (2.5)

and requiring each fα(·; θα) to be strictly positive. Therefore the PoE is widely

applicable, and encapsulates for example the GMRF model.

2.1.2 Partially observed models

Partially observed MRFs include hidden units. It is often natural to assume

the latent variables interact with the observed variables in a certain way. In

undirected graphical models the causality in the interaction needs not to be spec-

ified, which might help in the model description. Including latent variables in

the model might yield computational and representational benefits, as mentioned

earlier. In particular, they might induce high-order dependencies with a small

number of parameters, and reveal latent causes or features interpretable to the

modeler.

In the following we will be reviewing MRFs with hidden variables, focusing on

a class of models called restricted Boltzmann machines (RBMs) [Hinton, 2002a,

Freund and Haussler, 1992, Smolensky, 1986]. Their conditional dependency

structures under the joint model of hidden units and visible units are relatively

simple: a unit within one of the two sets of unit types conditional on the units

on the other set type is independent on the other units on the own type, as

illustrated in Figure 2.1.

In general Boltzmann machines [Hinton and Sejnowski, 1983, Ackley, Hin-

ton, and Sejnowski, 1985], connections can be/are allowed within the two sets

of random variables, and the ‘restricted’ in the name of RBMs comes from the

fact that the connectivity of the Boltmann machine is restricted to not have such

connections. Other restricted forms of a general Boltzmann machine include the

so-called deep Boltzmann machines [Salakhutdinov and Hinton, 2009] in which
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there is less restriction on the connectivity between the hidden units, and the so-

called semi-restricted Boltzmann machines [Osindero and Hinton, 2008], which

define connectivities between the visible units explicitly. In several RBMs de-

scribed below and used in the thesis, there are connectivities between the visible

units, but the structure is not easily described via direct/graphical means, as it

is dependent on the hidden unit configuration.

2.1.2.1 Restricted Boltzmann machines

Restricted Boltzmann machines have a bi-partite structure between the hidden

and visible unit sets. They can be used as effective means in building deep be-

lief networks [Hinton et al., 2006, Bengio, 2009], and also have shown significant

promise in statistical modelling of image data [Bengio et al., 2013]. In the follow-

ing, we will briefly describe them, and their translation equivariant extensions.

See Bengio [2009] for a recent in-depth review on these models.

2.1.2.2 Bi-partite models based on harmoniums

RBMs, also known in the literature as harmoniums and combination machines,

are generative probabilistic models consisting of a bi-partite set of random vari-

ables: visible units (observations) v, and hidden units h, and in the case of binary

units, they are parametrized by their respective biases a and b, and connec-

tions weights W between the partitions. As in fully-visible Boltzmann machines,

the joint probability of the random variables conditional on model parameters

θ = {a,b,W} is given by the Boltzmann-distribution

p(v,h|θ) ∝ exp {−E(v,h|θ)}, (2.6)

where the energy function E(v,h|θ) for any RBM model is bi-linear due to the

bi-partite structure. Assuming binary units, this energy function can be written

as follows:

E(v,h|θ) = −
∑
i

viai −
∑
j

hjbj −
∑
i

∑
j

Wijvihj. (2.7)

An extension to continuous visible units can be obtained with the following

energy-function:

E(v,h|θ) =
∑
i

1

2σ2
i

(
v2
i − 2aivi

)
−
∑
j

hjbj −
∑
i

1

γi

∑
j

Wijvihj. (2.8)
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where σi is a scalar model parameter, and γi = σi [Hinton and Salakhutdinov,

2006]. In Cho et al. [2011] γi = σ2
i , which has advantageous properties compared

to the former in learning, as will be shown shortly.

Due to lack of intra-layer dependencies, the joint conditional distributions of

these models factorize over sites:

p(v|h, θ) =
∏
i

p(vi|h, θ) =
∏
i

exp {〈α, φ(vi,h)〉 − Ai(α)} (2.9)

p(h|v, θ) =
∏
j

p(hj|v, θ) =
∏
j

exp {〈β, φ(hj,v)〉 −Bj(β)}, (2.10)

where in the latter expressions, the conditional distributions are written in an

exponential family form, where α, and β denote the canonical parameters of the

distributions, φ denotes the vector of sufficient statistics, and A and B denote

the log-normalizers of their partition functions. In this case of binary units,

the conditional distributions are Bernoulli-distributed. In the case of the energy

function of (2.8), the conditional probability distributions of visible units are

univariate Gaussians, such that

p(vi | h, θ) = N

(
vi; ai +

σ2
i

γi

∑
j

Wijhj, σ
2
i

)
. (2.11)

Notice that for the expression of Cho et al. [2011], in which γi = σ2
i , the means of

the Gaussians are independent on the σi-parameters, which is not the case when

γi = σi as in Hinton and Salakhutdinov [2006].

The general class of harmoniums consistent with the above formulation (of (2.9)

and (2.10)) are referred to in the literature as exponential family harmoniums [Welling

et al., 2004]. Harmoniums are also examples of the PoE-models described earlier.

For the binary unit harmonium of above, the hidden units can be integrated out,

giving

p(v | θ) =
∑
h

1

Z
exp {−E(v,h|θ)}

=
1

Z
exp

{∑
i

viai

}∑
h

exp

{∑
j

hj(bj +
∑
i

Wijvi)

}
(2.12)

=
1

Z
exp

{∑
i

viai

}∏
j

∑
hj

exp

{
hj(bj +

∑
i

Wijvi)

}

=
1

Z
exp

{∑
i

viai

}
︸ ︷︷ ︸

f0(v;θ)

J∏
j=1

(
1 + exp

{
bj +

∑
i

Wijvi

})
︸ ︷︷ ︸

fj(v;θ)

. (2.13)
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It is often convenient to describe an energy-based model via its free-energy F ,

which describes the energy of the Boltzmann distribution that is associated with

the joint marginal distribution of the visible units (which for models with hidden

units is obtained by integrating them out), as suggested already. Therefore the

general expression to obtain the free-energy for discrete hidden units is

F(v | θ) = − log

{∑
h

exp {−E(v,h)}

}
,

and for continuous hidden units,

F(v | θ) = − log

{∫
exp {−E(v,h)} dh

}
.

Although maximum likelihood learning for most practical harmoniums is in-

tractable1, effective learning algorithms for learning them, and other restricted

Boltzmann machines have been proposed, as we will describe later on. One very

beneficial property of these bi-partite models is that efficient blocked Gibbs sam-

pling schemes are available, for both learning and inference procedures, due to

their conditional independence properties.

2.1.2.3 Boltzmann machines as mixture models

Boltzmann machines with (more than one) hidden units define a (highly struc-

tured) mixture model:

p (v) =

{ ∑
h p (v,h) =

∑
h p (h) p (v|h) , [discrete hiddens]∫

p (v,h) dh =
∫
p (h) p (v|h) dh, [continuous hiddens].

In most of the Boltzmann machine models for natural image data the mixture

components p (v|h) are Gaussian, i.e. p(v | h)=N (v;µ,Λ−1). Below, the typical

structures of these Gaussians are such that the hidden units control i) the means

of Gaussians with diagonal precision matrices (as for example in the Gaussian-

Bernoulli RBM of section 2.1.2.4) ii) the precision matrix structure of zero-mean

Gaussians (as for example in the Product of Student-t experts model [Osindero

et al., 2006] of section 2.1.2.5, and in the cRBM-model [Ranzato et al., 2010a] of

section 2.1.2.6) or iii) both the mean, and the precision matrix structure (as for

1This is related to the fact that the partition function which normalizes the harmonium
distribution enumerates over the state space of units, which grows exponentially with respect
to their number.



Chapter 2. Background 12

example in the mPoT [Ranzato et al., 2010b] of section 2.1.2.8, and mcRBM [Ran-

zato and Hinton, 2010] of section 5.2.1).

The joint conditional distributions of all of these models are thus Gaussian

Markov random fields (GMRF), with connections/edges between visible units i

and k, if and only if Λ(i, k) 6= 0 (by definition). In the case of the Gaussian-

Bernoulli RBM, there are no edges between the sites (Λ(i, k) = 0 ∀ i 6= k),

and the units are conditionally independent. For the other models, the existence

of edges depends on the learned parameters and the hidden unit configuration,

which affect the precision matrix (structure). In the following three subsections

we will describe all of these models in more detail.

2.1.2.4 Gaussian-Bernoulli RBM

As described earlier, the binary hidden units hm of the model are independent

and distributed according to a Bernoulli distribution, conditional on the visible

units v. Conditional on hidden units hm, the visible units have an independent

Gaussian distribution according to (2.11). It is important to note that the pre-

cision matrix of the conditional distribution is diagonal (because the units are

conditionally independent), and the model places significant focus on modelling

the means of these distributions. Having the possibility to have different means

is useful for data containing multiple modes. However, using spherical compo-

nents, and especially with fixed variances as commonly used, many components

are needed for effective modelling performance. However, the exponential nature

of the RBM model latent state space can help in this regard.

2.1.2.5 PoT

The Product of Student-t Experts (PoT) [Osindero et al., 2006] model belongs

to the Product-of-Experts (PoE) framework, with generalized Student-t form

experts:

fj(yj; θ) ∝
1

(1 + 1
2
y2
j )
γj
,

where the model parameters θ = {γj > 0,K}, and y is a linear transform of

observed data v, such that yj =
∑
Kijvi. The free-energy under the model is

thus

F(v | θ) =
∑
j

γj log

{
1 +

1

2

(
K·j
>v
)2}

. (2.14)
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The PoT can be formulated with auxilliary continuous-valued hidden units

hc [Osindero et al., 2006], leading to the energy function:

EPoT(v,hc) =
∑
j

hcj

(
1 +

1

2

[
K·j

>v
]2)

+ (1− γj) log hcj. (2.15)

See Appendix A.3 for a derivation of the free-energy from the above energy func-

tion. Conditional on the visible units, the hidden units are independent with

Gamma distributions. Conditional on the hidden units, the visible units are

distributed jointly according to a zero-mean multivariate Gaussian: p(v | hc) =

N
(
v; 0,Λ =

(
K diag {hc}K>

)−1
)

, where Λ denotes the covariance matrix, diag {hc}
denotes a diagonal matrix with the elements of hc in the diagonal, and K is a

matrix of size the number of visible units times the number of hidden units (or

the experts). In contrast to the Gaussian-Bernoulli RBM, the visible units can

be coupled in their joint distribution conditional on the hidden units because the

precision matrix is not restricted to be diagonal, with the structure being depen-

dent on the hidden unit activation pattern. Highly correlated data-dimensions

are thus not as problematic as with the GB-RBM. As the mean and mode of the

model is fixed to zero and the components are symmetric about it, data densities

that are not symmetric about the origin, and those with modes far away from the

origin, are some examples of potentially problematic distributions for the PoT to

model.

2.1.2.6 cRBM

Ranzato, Krizhevsky and Hinton [Ranzato et al., 2010a] develop an extension

of RBMs in which binary hidden units modulate pairwise interactions between

visible units, according to the following energy function:

E(v,h | θ) = −
∑
i

∑
k

∑
j

vivkh
c
jW

j
ik −

∑
j

djh
c
j = −

∑
j

(
dj + v>W jv

)
hcj,

(2.16)

where the model parameters θ = {d,W}, where the weights W are factorized

such that each weight is a sum of product of three terms W j
ik =

∑
f KifKkfπjf .

The free-energy of this cRBM then becomes

F(v | θ) = −
∑
j

log

{
1 + exp

{
dj +

∑
f

πjf
(
v>K·f

)2}}
, (2.17)
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meaning that the model is a PoE with experts

fj(v; θ) = 1 + exp

{
dj +

∑
f

πjf
(
v>K·f

)2}
.

As in the PoT-model, the joint probability distribution of visible units con-

ditional on the hidden units is a zero-mean multivariate Gaussian, here with

precision matrix Λ−1 = Kdiag(πhc)K>.

2.1.2.7 mcRBM

The mcRBM [Ranzato and Hinton, 2010] extends the cRBM to more general

means. The model is constructed by combining the energy-functions of the GB-

RBM and the cRBM, with shared visible units, but different hidden units for the

two parts:

EmcRBM(v,hc,hm) = EGB−RBM(v,hm) + EcRBM(v,hc). (2.18)

Conditional on the visible units, the hidden units hc, and hm are independent

and distributed according to Bernoulli distributions, as in the two models sepa-

rately. Conditional on the hidden units, the visible units are distributed jointly

as multivariate Gaussians with an adjustable mean vector and precision matrix,

both being dependent on the hidden unit configurations.

2.1.2.8 mPoT

The mPoT [Ranzato et al., 2010b] extends the PoT in a similar way the mcRBM

extended the cRBM: the model is constructed by combining the energy-functions

of the GB-RBM and the PoT, with shared visible units, but different hidden units

for the two parts:

EmPoT(v,hc,hm) = EGB−RBM(v,hm) + EPoT(v,hc). (2.19)

Conditional on the visible units, the hidden units hc, and hm are independent and

distributed according to Gamma, and Bernoulli distributions, as in the two mod-

els separately. Conditional on the hidden units, the visible units are distributed

jointly as multivariate Gaussians. Assuming σi = γi = σ in the GB-RBM en-

ergy as defined in 2.8, we have that p(v | hc,hm) = N (v; Λ (a + σWhm) , Λ),

where Λ =
(
Kdiag {hc}K> + σ−2I

)−1
, and W denotes the weights of the GB-

RBM. Also in this model the mean can be non-zero, and the precision can be

non-diagonal, being dependent on the hidden unit assignments.
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v1 v2 v3 v4 v5

h1 h2 h3 h4 h5

(a) An RBM

v1 v2 v3 v4 v5

h1 h2 h3 h4 h5

w1

w2

w3

(b) A TE-RBM

(c) Weight matrix for the RBM in (a) (d) Weight matrix for the TE-RBM in (b)

Figure 2.2: Graphical comparison of a restricted Boltzmann machine (RBM), and a

translation-equivariant RBM (TE-RBM). In an RBM, each hidden unit hj is connected

to all of the visible units vi, with unit-specific connectivity weights. In the TE-RBM,

hidden units are connected typically only to a finite subset of visible units, specified

by a receptive field system, with a universally shared set of weights. In this TE-RBM

example, the subsets all contain three visible units, and the respective connectivity

weights are encoded with different colours.

2.1.3 Translation equivariant extensions: Convolutional mod-

els

Translation equivariant RBMs (here abbreviated as TE-RBMs) assume a more

restrictive parametrization than a regular RBM, typically involving a reduced

connectivity structure. To achieve translation equivariance, the biases need to

be layer-specific so that each unit in a layer shares the same bias, and the hid-

den units within a layer need to connect to the visible units with layer-specific

connection weights. Typically each hidden unit in a TE-RBM is connected only

to a subset (of fixed cardinality) of the visible units, specified by a receptive

field system. In the example TE-RBMs of Figure 2.2 (b), each hidden unit is
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connected to three of the five visible units with a set of shared kernel of connec-

tivity weights ω = {ω1, ω2, ω3}. To address the issue of finite length unit layers

while maintaining translation-equivariance, the model assumes a (toroidal) wrap-

around. The full connectivity weight matrix W between a hidden layer and the

visible units layer, with elements W (j, i) representing the weight between hidden

unit j and visible unit i, is circulant2, with zero-weights assigned to disconnected

unit pairs. Weight-matrices for the RBM and TE-RBM models of Figure 2.2(a)

and Figure 2.2(b) are shown in Figure 2.2(c) and Figure 2.2(d), respectively.

Thus a TE-RBM is completely specified by a receptive field system, a ker-

nel of connection weights ω for each hidden unit – visible unit layer pair, and

layer-specific unit biases. In a binary-unit TE-RBM with multiple feature layers

(indexed by α), the model energy can be decomposed as follows:

E(v,h|θ) = −a
∑
i

vi −
∑
α

bα
∑
j

hαj −
∑
α

∑
j

hαj
∑
`∈Nαj

v`ω
α
d(j,`)

= −a
∑
i

vi −
∑
j

∑
α

hαj

bα +
∑
`∈Nαj

v`ω
α
d(j,`)

 , (2.20)

where a denotes the visible layer bias, bα denotes the bias for hidden layer α, Nαj

contains the indices of the visible units within the receptive field of hidden unit j

at feature layer α, and ωαd(j,`) is the weight between that hidden unit and visible

unit `, where d(a, b) denotes a map from unit indices to kernel weight indices.

See Figure 2.3 for a graphical illustration of a generic TE-RBM, and Figure 2.4

for a simple TE-RBM with two feature planes for two-dimensional data. These

translation-equivariant models discussed above are often called convolutional in

the literature (as for example in Lee et al. [2009]).

Clearly the marginal distributions of the models can be written in a product-

of-experts form, with site-independent experts fα:

p(v | θ) =
1

Z
exp

{
a
∑
i

vi

}
J∏
j=1

∏
α

fα(vNαj ; θ), (2.21)

where sites are indexed by j. In this homogeneous PoE-representation of the

TE-RBM, the experts are given by

fα(vNαj ; θ) = 1 + exp

bα +
∑
`∈Nαj

v`ω
α
d(j,`)

. (2.22)

2W (j, i) = c(1 + (i − j)mod I), where c is a vector of length I representing weights from
hidden unit h1 to all (I) of the visible units v1, . . . , vI in the visible unit layer, such that c(i)
represents the weight between h1 and vi.
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Figure 2.3: A TE-RBM with many feature planes (2 shown), each by definition

having their own weight-kernels and biases, which are shared across the hidden unit

sites within the planes. In the above graph, three different weight kernel elements

have been colour-coded for both of the layers, shown for the connections between the

first three hidden units in both layers and the first three visible units. Zero-valued

weights (effectively meaning no connectivity) between visible and hidden units have

also been drawn.
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Figure 2.4: An illustration of the connectivity structure of a convolutional Gaussian

RBM having two feature planes each of which have sixteen hidden units, each con-

nected to nine visible units. For both of the feature layers two hidden units as well

as their receptive fields are highlighted. Each of the feature planes is associated with

a filter and a bias, used as the parameters for each of the hidden units within the

feature plane. Although the connections have been drawn with the same colours,

their weights specified by the filters will typically have different values. The visible

unit layer is associated with bias a and σ parameters.
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Without parameter sharing of any kind, RBMs for large visible unit sets,

such as for large images, have too many free parameters to be learned, and such

models have been mainly used as models for image patches. Tying the parameters

in a translation equivariant way enables considering models with large(r) number

of units, and this has been one way to scale beyond patches. The use of such

parameter tying is often justified in the context of modelling natural images by

stationarity in the image data statistics.

The spatial support of images is however not infinite, and images are not

toroidal (as assumed by the default wrap-around boundary handling) at least in

the typical cases, and the mismatch in the data and the model structures due

to inexact boundary assumptions can cause issues. Another obvious downside of

the parameter reduction is that the model becomes less flexible, and potentially

unable to capture the statistics existing in the data to a sufficient degree.

The type of feature sharing has been used for developing several translation

equivariant Boltzmann machines, including convolutional Gaussian RBMs [Lee

et al., 2009], PoT-models [Roth and Black, 2005], and the Bi-FoE model [Heess

et al., 2009]. It will be also used in the following chapter as providing translation

equivariance to the further equivarianced models that will be developed.

Tiled-convolutional parameter sharing (see for example Ranzato et al. [2010b])

is an another approach for reducing parametrization and obtaining translation

equivariance. Figure 2.5 compares two RBMs, one with convolutional, and the

other with tiled-convolutional parameter sharing. On the left of the figure, a

graphical representation of a tiled-convolutional RBM, and its weight matrix are

depicted. Similar to the convolutional model on the right, each hidden unit is

connected to a subset of visible units (here three). Whereas in the convolutional

model hidden units at different spatial offsets have the same parameters, in the

tiled-convolutional model parameters are shared in blocks. Here the block size

is three hidden units, and the hidden unit sets from location 1 to 3, and the

set from 4 to 6 are associated with the same parameters. Notice that in this

example there are three times as many parameters per hidden unit layer in the

tiled-convolutional model when compared to the convolutional model. In both

of the cases the visible unit biases have been tied across the layer. The 2D

equivalent of this parameter sharing scheme is obtained simply by considering

rectangular receptive fields for each hidden unit. Diagonally-tiled-convolutional

parameter sharing uses only the hidden units within the diagonals of the blocks,
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(a) A tiled-convolutional RBM

v1 v2 v3 v4 v5 v6 v7 v8

h1 h2 h3 h4 h5 h6

b b b b b b

a a a a a a a a

(b) A TE-RBM

Figure 2.5: Graphical comparison of a translation-equivariant RBM (TE-RBM), and

tiled-convolutional RBM. The hidden units of the models are connected to a subset of

visible units, specified by a receptive field system. In the TE-RBM a single parameter

kernel of weights and a bias is shared across the hidden unit lattice. In the tiled-

convolutional RBM, a parameter kernel is shared across the hidden unit lattice in a

block-manner.

or a further thinned subset of them by using a fixed offset. Figures 2.6 and 2.7

illustrate graphically two diagonally-tiled-convolutional Gaussian-Bernoulli RBM

instances.

2.1.4 Hierarchical extensions: Deep belief nets

Deep belief networks (see Bengio [2009] for a recent in-depth review) model ob-

servations using a cascade of inter-connected layers of random variables, from the

visible unit layer v to the Lth hidden unit layer hL. Conditional on the param-

eters of the DBN consisting of the intra-connection weights, and the biases, the

joint probability of the random variables in the model factorizes over layer-wise

distributions:

p(v,h | θ) = p
(
v | h1, θ1

)(L−2∏
`=1

p
(
h` | h`+1, θ`+1

))
p
(
hL−1,hL | θL

)
. (2.23)

Deep belief nets have a chain graph representation, with undirected connections

from the top two layers L and L− 1, and top-down directed connections between

the layers below. Efficient learning algorithms utilizing the factorization prop-

erty have been developed to learn model parameters greedily by an incremental

bottom-up training of layer-wise harmoniums, each of the layers ` = 2, . . . , L

using unit probabilities of the layer `− 1 as their training data. Fine-tuning can

be then done by using back-fitting schemes [Hinton et al., 2006, Bengio, 2009].
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Figure 2.6: An illustration of the connectivity structure of a diagonally-tiled-

convolutional Gaussian RBM with three sets of hidden units (red,green,blue), each

having two feature planes each of which have four hidden units. Each of the feature

planes are associated with a filter and a bias, used as the parameters for each of

the hidden units within the feature plane. Under each of the sets, the hidden units

connect to the visible units in a non-ovelapping manner, tiling a certain sized region.

The connectivity structure is the same for each of the feature planes within a set.

The hidden units under different sets connect to visible units in a similar manner, but

are applied with an offset from each other by a diagonal shift of one unit between

neighboring sets. The visible unit layer is associated with bias a and σ parameters.



Chapter 2. Background 22

v

h1 2,1

h1 2,2

h1 2,3

h1 2,4

h1 1,1

h1 1,2

h1 1,3

h1 1,4

h2 2,1

h2 2,2

h2 2,3

h2 2,4

h2 1,1

h2 1,2

h2 1,3

h2 1,4

h3 2,1

h3 2,2

h3 2,3

h3 2,4

h3 1,1

h3 1,2

h3 1,3

h3 1,4

h4 2,1

h4 2,2

h4 2,3

h4 2,4

h4 1,1

h4 1,2

h4 1,3

h4 1,4
b41,W

4
·,1

b42,W
4
·,2

b31,W
3
·,1

b32,W
3
·,2

b21,W
2
·,1

b22,W
2
·,2

b11,W
1
·,1

b12,W
1
·,2

a, σ

Figure 2.7: An illustration of the connectivity structure of a diagonally-tiled-

convolutional Gaussian RBM with four sets of hidden units (associated with different

colours), each having two feature planes each of which have four hidden units. Each

of the feature planes are associated with a filter and a bias, used as the parameters for

each of the hidden units within the feature plane. Under each of the sets, the hidden

units connect to the visible units in a non-ovelapping manner, tiling a certain sized

region. The connectivity structure is the same for each of the feature planes within a

set. The hidden units under different sets connect to visible units in a similar manner,

but are applied with an offset from each other by a diagonal shift. The visible unit

layer is associated with bias a and σ parameters.
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2.1.5 Generative models for image patches

There exists a wealth of generative models based on undirected and chain graphs

(which contain both directed and undirected connections), many of them using

product of experts (PoE)-models and their extensions as their building blocks.

Many of these have conditionally Gaussian representations, as is also very popular

amongst the models for wavelet decomposed images. Many of the conditionally

Gaussian models mentioned earlier (for example the PoT, cRBM, and mcRBM

models) were developed in the context of modelling image patches.

Deep belief nets [Hinton et al., 2006] are an example of models having a

chain graph representation. Lee et al. [2008] develop a DBN with two layers

for natural image patches by using contrastive divergence training with sparsity

regularization to learn the layer-specific RBMs within the model. The bottom

layer RBM is the Gaussian-Bernoulli model, whereas the top layer is a binary unit

(Bernoulli) RBM. The PoT model is extended to topographical and hierarchical

representations in Osindero et al. [2006]. Osindero and Hinton [2008] develop a

deep architecture with lateral connections, based on semi-restricted Boltzmann

machines, which extend RBMs to have connections within the visible unit layer.

However, as mentioned by the authors, more powerful DBNs (models) can be

obtained when the hidden units can modulate the pairwise interactions between

the visible units (as for example in the PoT, and cRBM-based models).

2.1.6 Generative models for images

Most of the energy-based models that have been proposed in the literature for

whole images are MRFs, with parameter sharing across sites, in either convolu-

tional or tiled-convolutional manner. In the former case, they form homogeneous

PoE-models, with a set of experts shared across sites. Denoting neighborhood of

node i as N(i) (defined with a neighborhood system), we write the free-energy

for such models as follows:

F(v | θ) = −
∑
i

∑
j

log
{
fj(vN(i); θ)

}
, (2.24)

where fj denotes the site-independent expert function (of index j). Koster et al.

[2009] use experts defining logistic distributions on the filter responses of the

neighborhood data3. In the Fields-of-Experts (FoE) model [Roth and Black, 2007]

3Via personal communication
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the potential functions of the experts are un-normalized Student-t distributions

fj(vN(i); θ) =

(
1 +

1

2

[
K·j

>vN(i)

]2)−γj
,

where K·j is the jth filter, and γj > 0, resulting in the following (free-)energy

F(v | θ) =
∑
i

∑
j

γj log

{
1 +

1

2

[
K·j

>vN(i)

]2}
. (2.25)

Note that this basically defines a homogeneous PoE extension of the PoT-

model.

Several other expert distributions have been proposed. For example, the Bi-

modal FoE model [Heess et al., 2009] extends FoE experts to be bi-modal, with

fj(vN(i); θ) =

(
1 +

1

2

[(
K·j

>vN(i) + bj
)2

+ dj

]2)−γj
, (2.26)

where bj, dj, and γj are scalar parameters. Weiss and Freeman [2007] on the

other hand use discrete zero-mean Gaussian scale mixtures as the experts,

fj(vN(i); θ) =
K∑
k=1

wkN
(
K·j

>vN(i); 0, σ2
k

)
, (2.27)

where wk denotes a mixing weight of kth Gaussian mixture component, with

variance σ2
k. Ranzato et al. [2010b] develop tiled-convolutional extensions to the

mcRBM, and the mPoT models.

Recently deep belief networks have been developed for whole images, using

both translation equivariant and tiled-translation equivariant feature sharing.

Both Lee et al. [2009] and Norouzi et al. [2009] propose translation equivari-

ant DBNs by using parameter sharing in the layer-wise RBMs (TE-RBMs) which

are used to construct the deep architectures. As has been found useful in the lit-

erature to learn localized filters, the models in the papers are learned by encour-

aging/forcing the feature layer activations to be sparse. Ranzato et al. [2011b]

extend the mPoT to deep delief net architectures, using tiled-convolutional fea-

ture sharing for modelling image data.

It is clear that similar translation equivariant extensions could be developed

for many other translation variant models discussed earlier. In any case, these

models would deal image transformations equivariantly only with respect to trans-

lation, and not also with respect to other transformations, such as in-plane rota-

tion. Memisevic and Hinton [2009] describe how to learn transformations based
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on pairs of training images using factored 3-way Boltzmann machines. Such a net-

work could be used in to identify for example rotated versions of a given pattern,

e.g. by fixing a reference version of the pattern and inferring the transformation.

However, it seems rather excessive to learn the machinery for this when it can be

built in, as will be shown in the following chapter, where the main ideas related

to this work will be outlined.

2.2 (Acyclic) Directed Graphical Models

In acyclic directed graphical models (DAGs) the connections between the nodes

are directed, and are not allowed to form any directed cycles or loops. The di-

rections can be interpreted as defining causality in the model. Acyclic directed

graphical models with deterministic nodes are called feed-forward neural net-

works. With stochastic nodes the models are called Bayesian belief networks,

or belief nets for short. Hybrid networks with both kinds of nodes have been

also considered in the literature. Models with stochastic nodes are in principle

more flexible than the ones with deterministic nodes, allowing e.g. one-to-many

input-output mappings, and can perform explaining away.

For belief nets, the joint probability density of the J random variables {x1, . . . , xJ}
factorizes as a product of node-specific conditional probability distributions:

p(x1, . . . , xJ) =
J∏
j=1

p
(
xj | xPa(xj)

)
, (2.28)

where Pa(xj) denotes the parents of node xj. Marginally each node is dependent

on its parent nodes, child nodes, and the parents on the child nodes, which define

the so-called Markov blanket of the node [Koller and Friedman, 2009]. Recall in

the case of the undirected models/MRFs, the local Markov property is defined

based on only the directly connected nodes. However, belief nets can be converted

onto MRFs, by the process of ‘moralization’. For details on moralization, and for

generic properties of the class of models, see Koller and Friedman [2009].

In the following we will only briefly review directed graphical models which

are closely related to the work in the thesis, and applications of them for im-

age modelling tasks. We start by describing image models developed in the

computer vision community based on stochastic nodes/belief nets. In order to

do this, we first discuss models for patches. The models for large images are
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typically built on wavelet coefficients, and thus in describing the models we first

describe wavelet decompositions in Sec. 2.2.1.2, and then models built on top of

them in Sec. 2.2.1.3. Wavelet decompositions are widely used in the computer

vision community in extracting features for early vision. We then discuss in

Sec. 2.2.1.4 hierarchical image models based on compositional models developed

to learn semantically higher level image representations. Finally in Sec. 2.2.2 we

will describe feed-forward neural nets.

2.2.1 Generative Models for Image Data

2.2.1.1 Generative models of image patches

Motivated by a so-called efficient coding hypothesis, methods known as sparse

coding or sparse components analysis aim to find an overcomplete linear basis op-

timal in terms of maximal sparseness and statistical independence of transform

coefficients in response to natural images [Olshausen and Field, 1997]. These

methods assume a linear observation model, where observed images v are noisy

versions of a linear combination of basis functions/components W·j, with associ-

ated mixing coefficients hj:

vi =
∑
j

hjWij + ni, (2.29)

where n is used to describe system noise. The probability of an image conditional

on the basis functions is then

p(v |W) =

∫
p(h,v |W) dh =

∫
p(v | h,W) p(h) dh, (2.30)

where p(h) =
∏

j p(hj) is a factorial prior over the transform coefficients to in-

corporate statistical independence, and the distributions p(hj) are chosen from

heavy-tailed, highly kurtotic distributions to encourage sparsity. These meth-

ods are closely related [Olshausen and Field, 1997] to the probabilistic versions

of the independent component analysis (ICA) methods by Bell and Sejnowski

[1996]. Obtained basis functions with these methods resemble the receptive fields

of primary visual cortex, and also those of wavelet decompositions [Olshausen

and Field, 1997]. Even though uncorrelated responses to natural images can be

obtained with these bases, it is well known that strong residual dependencies

typically remain [Wainwright et al., 2001, Simoncelli and Olshausen, 2001]. Mo-

tivated by the typically invalid assumption of independence, several approaches



Chapter 2. Background 27

have been proposed allowing dependence amongst the latent components, includ-

ing the Independent Subspace Analysis (ISA) approach [Hyvarinen and Hoyer,

2000] and other hierarchical models such as those in Karklin and Lewicki [2003,

2005] and Garrigues and Olshausen [2008].

Tenenbaum and Freeman [2000] develop an extension of linear models with an

additional set of variables, to factor image patches according to content (feature

type), and style (transformation) with a bilinear function where

vi =
∑
j

∑
k

hjzkW
j
ik, (2.31)

so that the basis function Wj
·k that is associated with feature type j, and trans-

formation k, is modulated by their respective coefficients hj, and zk. Grimes and

Rao [2005] extend these ideas into a sparse coding framework to learn bilinear

sparse components. See Olshausen et al. [2007] for similar models for image se-

quences. Several other generative models for image patches based on directed

graphical models have been proposed, see Hyvarinen et al. [2009] for discussions

on many of them. To scale onto large images, wavelet decompositions are often

utilized which will be discussed in the following.

2.2.1.2 Wavelet decompositions

Wavelet decompositions define linear transformations of their input and can be

written follows: y = Ax, where x denotes the input (a I × 1-vector for a single

input image/signal), y denotes the output (a J×1-vector), and A defines the par-

ticular decomposition (a J × I-matrix, where J ≥ I). The operation in practice

performs filtering/convolving typically by a set of band-pass and low-pass filters,

which are based on their respective canonical filter kernels by scaling/dilation and

also rotation in the former case. Applying these filters, the classical orthogonal

wavelet decompositions produce a set of (I) invertible transform coefficients y,

which can be partitioned onto so-called detail and scaling coefficients, and or-

ganized in a pyramid [Mallat, 1989]. The fixed set of band-pass basis functions

(consisting of translated, dilated, and rotated versions of a common kernel) are

qualitatively similar to the receptive fields of the primary visual cortex [Olshausen

and Field, 1996]. To obtain transformation equivariance4 into the representation,

using overcomplete bases (where J > I) has been necessary [Simoncelli et al.,

4In a slightly weaker form termed shiftability.
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(a) Basis functions illustration (b) Natural image responses (high-pass

residual not shown)

Figure 2.8: Illustration of basis functions for 3rd-order steerable pyramids [Simoncelli

et al., 1992], and the transform coefficients of a natural image (peppers). The top-

left basis function corresponds to a low-pass filter/scaling function, whereas the other

basis functions illustrated are oriented band-pass filters. The basis function images

have been obtained by reconstructing a steerable pyramid with a single non-zero

coefficient positioned at the center of the corresponding subband; also cropped and

resized for visualization purposes. Figure credit: Kivinen et al. [2013a].

1992]. Although these transforms have benefits over the classical wavelet trans-

forms for image analysis [Kivinen et al., 2007a,b, Portilla et al., 2003, Szeliski,

2010], the basis functions are fixed and the transform coefficients (see Figure 2.8

for an illustration of these for a transform instance) may not be always exactly

invertible [Olshausen and Field, 1997] and then complicate the building of statis-

tical models for images. In the following we will discuss models for the transform

coefficients. See Szeliski [2010] for a recent review on wavelet transforms for more

details on them.

2.2.1.3 Generative models for wavelet decomposed images

There are numerous efforts to capture the regularities existing in the decom-

posed images, ranging from local to global statistical analysis of the transform

coefficients, and here we will describe only the most relevant to our work. See Sri-

vastava et al. [2003] for a relatively recent review for a broader perspective, and

also Simoncelli [2005], which focuses more on wavelet-based models. The marginal

distributions associated with the ‘detail’ wavelet coefficients typically have high

kurtosis and “heavy tails” when compared to a Gaussian (see Figure 2.9 for an
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Figure 2.9: Empirical histogram (blue solid line) of a natural image subband coeffi-

cient values with maximum likelihood Gaussian fit overlaid (red dashed line). Figure

credit: Kivinen et al. [2013a].

illustration for a typical case). These findings have motivated the development of

wavelet marginal models based on generalized Gaussians5 [Mallat, 1989, Srivas-

tava et al., 2003], and mixture distributions. One widely used [Simoncelli, 2005]

continuous mixture is the Gaussian scale mixture (GSM). These model a wavelet

coefficient vi as the product of two independent variables:

vi =
√
hisi hi ≥ 0, si ∼ N (0,Λ) . (2.32)

Integrating out the scalar multiplier hi produces the marginal density, which

mixes Gaussians of varying scales:

p(vi) =

∫
N (vi; 0,Λ) dG(Λ). (2.33)

There are several mixing distributions G(Λ) for these continuous mixtures good

for modelling the marginal statistics [Wainwright et al., 2001, Kivinen et al.,

2007b]. However, considering marginal statistics is typically not sufficient. In

particular, wavelet decomposed images typically lead to coefficients containing

dependencies, which is especially the case with overcomplete bases [Willsky, 2002,

Srivastava et al., 2003]. Typical behaviour of large-magnitude detail coefficients

persisting through scales and clustering at nearby locations can seen in Figure 2.8

(right). To model joint dependencies, Portilla et al. [2003] model wavelet coeffi-

cients in independent local neighborhoods. The orientation adaptive GSM [Ham-

mond and Simoncelli, 2008] augments this model with scalar latent variable to

5In which the probability of a wavelet coefficient vi given model parameters θ = {σ, ρ} is
p(vi | θ) ∝ exp {−|vi/σ|ρ}.
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describe dominant local orientation, allowing for example modelling of oriented

texture at arbitrary rotations.

In Lyu and Simoncelli [2009] the basic local GSM is extended to model wavelet

subbands with homogeneous fields of Gaussian scale mixtures, where coefficient

fields (as opposed to scalars) are modeled as element-wise products of two in-

dependent random variable fields, both described with homogeneous Gaussian

Markov random fields. A global tree-structured model for wavelet statistics based

on GSMs has been developed in Wainwright et al. [2001]. It models wavelet coef-

ficients in a vector-form combining subband coefficients at a particular scale and

position over all of the orientations. The vectors (for each position at each scale)

are marginally distributed according to GSMs but form a tree of observations

evolving according to the following random processes: A premultiplier MAR pro-

cess captures self-reinforcing dependencies while a white noise process controls

correlation structure among wavelet coefficients, which are then generated via a

nonlinearity. The paper considers only fixed forms of nonlinearity and fix the

order of the multiplier process making the underlying representation suffer in

expressiveness [Kivinen et al., 2013a].

In Kivinen et al. [2007a,b] a hidden Markov tree of unbounded number of hid-

den states is built to learn global models for images, which appropriate dimension-

ality is automatically learned from the data using nonparametric Bayesian meth-

ods. Wavelet coefficient vectors are also in these HDP-HMT models marginally

described using infinite mixtures of Gaussians, but they are generalized from

GSMs to have discrete mixing distributions with the use of Dirichlet process pri-

ors. Fixed tree structures are traditionally linked with estimation errors in form

of boundary artifacts. One potential way to reduce such estimation errors is

increasing the state space [Willsky, 2002]. In the HDP-HMT dependencies be-

tween features are captured with an unbounded number of states, dimensionality

of which is automatically inferred from the training data in an adaptive way6.

In the models built in this work the features are learned from the data rather

than being fixed as with wavelet transforms. The learned features turn out to have

differences qualitatively when learning them for different kinds of data (such as

different natural textures or natural textures compared to generic natural images;

see and compare the results in Chapter 4 and Chapter 5, for example), or when

training them according to a generative or a discriminative modelling application

6New states can be learned when new data is observed.
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(as will be found in Chapter 5). There are also other issues with wavelet-based

image modelling, as mentioned in Sec. 2.2.1.2.

2.2.1.4 Stochastic image grammar models based on recursive composi-

tional principles

Most of the image models based on directed graphical models above have focused

on modeling images with shallow architectures, which are limited in terms of

representing data at multiple levels of abstraction. There are several recent mod-

els proposed in the literature that address this issue using hierarchical, dynamic

representations. Fundamental work includes the dynamic tree models proposed

in Storkey and Williams [2003] and Adams and Williams [2003], in which each of

the nodes in a latent variable tree is allowed to choose its parent. Many of the

more recent ones are based on stochastic image grammars built by recursively

grouping image features into more complex ones by using compositional princi-

ples. These compositions based on the groupings, are often called as parts, each

part defined recursively from its subparts, at all representation levels.

Jin and Geman [2006] propose a compositional system based on AND/OR

graphs (in which the OR nodes allow to choose between multiple graph struc-

tures when modeling data), which is adapted for representing license plates of

cars. The model is actually not learned from the data, but is hand crafted in-

stead. Fidler and Leonardis [2007] develop a compositional system for objects

in images, and an algorithm for learning its recursive grammar using bottom-

up grouping of frequently occurring features into more complex ones, starting

from wavelet responses of natural images. The system uses several thresholding

operations in learning and inference, and does not define a proper generative

model. The system is closely related to that of Zhu et al. [2008], which has a

compositional structure with a top-down stage to fill in missing structures in

their AND/OR graph based system. See also Zhu and Mumford [2006] for an

extensive compositional system based on AND/OR graphs. One major goal in

the transformation equivariant RBM model developed in the following chapter is

to obtain a ‘compositional’ system based on DBNs, where bottom-up/top-down

inference in the face of ambiguity or missing data falls out naturally based on a

fully specified generative model.
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2.2.2 Feed-forward Neural Networks

The thesis will use feed-forward neural networks in Chapter 5, in a supervised

visual boundary prediction task, predicting an existence of a visual boundary at

each point in a previously unobserved image. The networks, which are trained in a

supervised manner, contain only deterministic nodes, and have logistic activation

functions. In the case of single-layer networks, they are equivalent to logistic

regression models.

A major advantage of models with deterministic nodes over stochastic ones [Neal,

1992] is the typically much more simpler learning (and inference which is deter-

ministic) for the models. Supervised learning of feed-forward neural nets with de-

terministic nodes is typically performed by gradient descent methods, for which

the partial derivatives of the objective function with respect to the full set of

network parameters can be computed using the chain-rule of differentiation, the

computation of which is formalized and efficiently implemented by the back-

propagation algorithm [Rumelhart et al., 1986].

The practical use of the models involves considering several ‘tricks of the

trade’, involving those related to parameter initialization, and hyper-parameter

settings such as learning rates, through-out the course of learning. See Bengio

[2012], and Bishop [1995] for in-depth discussions on these in a generic setting.

For convolutional neural networks Simard et al. provides several useful strategies

for tuning the models.

2.3 Learning and Inference Methods for Neural Net-

works

Here we will describe learning and inference methods for neural networks, with

emphasis on stochastic neural networks, and restricted Boltzmann machines in

particular. The next subsection describes the high-level picture of typical maximum-

likelihood based learning for RBMs. The detailed methodologies, Monte Carlo in-

tegration, Markov chain Monte Carlo sampling, and iterative optimization meth-

ods are discussed in sections 2.3.2, 2.3.3, and 2.3.4, respectively.
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2.3.1 Parameter estimation for RBMs

Maximum likelihood learning is a commonly used method for learning various

probabilistic models. The idea in the method is to estimate parameters of the

model so as to maximize the probability of the training data under the model.

The log-likelihood of training data assuming N training cases, and conditional

on model parameters θ for an RBM, can be written as follows:

L(θ) = log p
(
v(1), . . . ,v(N) | θ

)
= −N logZ+

N∑
n=1

log

{∑
h

exp
{
−E
(
v(n),h | θ

)}}
.

(2.34)

At an optimum of L(θ) the partial derivatives of the data log-likelihood with

respect to the model parameters will be zero. As shown in Appendix A.1, the

partial derivatives take the following form:

∂L(θ)

∂θ
=

N∑
n=1

〈∂E(v,h | θ)
∂θ

〉
p(v,h|θ)

−

〈
∂E
(
v(n),h | θ

)
∂θ

〉
p(h|v(n),θ)

 . (2.35)

While analytical expressions can be available for the expressions, the first one of

these at least, which results from the partial derivative of the partition function

with respect to the model parameters, is intractable to evaluate for most real-

world problems, and thus exact maximum likelihood learning is not possible for

them. Many of the commonly used learning methods, including those used in

the thesis, will use approximations of maximum-likelihood learning. In all of

cases considered, the intractable integrations are approximated by Markov chain

Monte Carlo (MCMC) methods. In the following we will discuss main ingredients

of these. For tricks of the trade, and practical recommendations, see Hinton

[2010b], Bengio [2009, 2012], Bengio et al. [2013].

2.3.2 Monte Carlo Averaging

Assume we are interested in computing an expectation∫
X
g(x)p(x)dx = Ep(x)[g(x)] = 〈g(x)〉p(x) = c, (2.36)

where c is a scalar, and g is some function of x. Let {x(s)}Ss=1 denote S i.i.d.

samples from p(x). The Monte Carlo estimate for c is then [Andrieu et al., 2003,

MacKay, 1998, Neal, 1993]

ĉ =
1

S

S∑
s=1

g(x(s)) ≈ c. (2.37)
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Increasing the number of the i.i.d. samples, the Monte Carlo error decreases.

Assuming we can draw samples from the distributions under which we take ex-

pectations in (2.35), we can then obtain a Monte Carlo estimate of the partial

derivatives of the log-likelihood with respect to model parameters by averaging

the partial derivatives of the energy functions with respect to the parameters

evaluated at the samples. Sampling from the densities under which we take the

expectations is non-trivial, but several methods are available which can be effec-

tive. In our case we will be using Markov chain Monte Carlo methods, which use

specifically constructed Markov chains in the procedure.

2.3.3 Sampling from complicated high-dimensional distribu-

tions using Markov chain Monte Carlo methods

In the following, we will discuss shortly several MCMC methods. For a review

on the methods for probabilistic inference, see Neal [1993]. Andrieu et al. [2003]

provide an introduction to MCMC methods for machine learning.

2.3.3.1 Markov Chains

Markov chains can be seen as Bayesian networks with a chain structure. The

joint probability density over the random variables factorizes as the marginal

distribution of the initial node times the product of the probability distribution

of each successor node conditional on its parent node.

In Markov chains, the initial state is chosen according to an initial state prob-

ability distribution, and the parent-conditional distributions are called transition

probabilities. In stationary/homogenous Markov chains, the transition probabil-

ities are the same at all positions, and define a transition probability kernel. The

kernel parametrizes a Markov process, in which the probability of a state in some

state-space at any specific time given all earlier states in the process, is depen-

dent only on the previous state, and is determined according to the transition

probability kernel value. Note that computing the unconditional probability of

being in a particular state at a specific time will need to integrate over all of

the possible states to arrive to the particular state. As an example, assuming a
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discrete state space X , we can write that

p(x(t)) =
∑

x(t−1)∈X

p(x(t),x(t−1)) =
∑

x(t−1)∈X

p(x(t−1))p
(
x(t) | x(t−1)

)
(2.38)

=
∑

x(t−1)∈X

p(x(t−1))T(x(t),x(t−1)), (2.39)

where p(x(t)) denotes state probabilities at time t, T denotes the associated

transition probability kernel matrix, and T(x(t),x(t−1)) denotes the transition

probability from state x(t−1) to x(t), p
(
x(t) | x(t−1)

)
. Note that p(x(t−1)) =∑

x(t−2) p(x(t−1),x(t−2)) and thus the computation structure recurses until the

initial time is reached, i.e. until the computation of p(x(1)) =
∑

x(0) p(x(1),x(0)).

Then given any initial state in the state-space, repeated state sampling ac-

cording to the transition probability kernel will simulate the Markov process,

perfectly so at equilibrium, where the initial condition has been forgotten, and

the state probabilities have converged (i.e. p
(
x(t) | x(0)

)
= p

(
x(t+1) | x(0)

)
=

. . . = limt→∞ p
(
x(t) | x(0)

)
= limt→∞ p(x

(t))) and define the so-called equilibrium

distribution.

2.3.3.2 Markov chain Monte Carlo

In Markov chain Monte Carlo (MCMC) methods, Markov chains are constructed

so that the equilibrium distribution matches the distribution of interest. In our

case this could be the probability distribution of the visible units an RBM de-

fines. Drawing a sample from the distribution can be then done by initializing

the state of the random variable, simulating the Markov chain dynamics (updat-

ing the states of the random variables conditional on the previous states), and

recording the state of the chain after the initial condition has been forgotten.

See e.g. Andrieu et al. [2003] on properties required for the transition probability

kernel to define a valid MCMC method.

It is often important to pay attention to the conditional independence assump-

tions in the distribution of interest, when using MCMC methods. This is because

they might suggest the specific form of the sampling scheme to use and/or not

to use. Many samples can be collected simply by simulating multiple chains with

independently chosen initial conditions, and recording a state as above. Many

samples can be collected from a single converged chain, but one needs to take

care in ensuring the samples are effectively i.i.d., and so for example neighboring

states should not be used (as they are dependent by definition).
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The commonly used MCMC algorithms are Metropolis-Hastings, Gibbs sam-

pling, and Hybrid Monte Carlo, described in Sec. 2.3.3.3, 2.3.3.4. and 2.3.3.5

respectively.

2.3.3.3 Metropolis-Hastings algorithm

In Metropolis-Hastings (MH)-algorithms [Hastings, 1970], at each iteration new

state x∗ is proposed/sampled based on the current state x(t) with an arbitrary

user-defined state-transition proposal probability distribution q (i.e. x∗ ∼ q(x(t),x∗)).

The proposal x∗ is then either accepted or rejected, with acceptance probability

as

T (x(t+1) = x∗,x(t)) = min

{
1,
p(x∗)q(x(t),x∗)

p(x(t))q(x∗,x(t))

}
. (2.40)

If the proposal distribution is symmetric, the q-specific terms cancel out, and

the approach is the same as that of the Metropolis algorithm [Metropolis et al.,

1953] (min
{

1, p(x∗)

p(x(t))

}
). It is noteworthy that the distribution p needs to be able

to be evaluated only up to a normalization constant, as it cancels out in the

ratio of the p-specific terms. This is a very useful property for models such as

Boltzmann machines in which the log-partition function is intractable to compute

under non-trivial setups.

2.3.3.4 Gibbs sampling

The Gibbs-sampler [Geman and Geman, 1984] is a special case of the MH-

algorithm. In the basic formulation, random variables are sequentially sampled,

each from their full conditional distribution, which conditions on all of the other

variables, at their latest states. The sampled values are the proposals under the

MH, which however are always accepted. Often the practical applications concern

models in which the full conditionals simplify onto distributions conditional only

a relatively few random variables, and analytical expressions are available. The

fact that there are no tunable parameters can make the approach appealing in

practice.

The theory allows variables to be updated in blocks, and such blocked sam-

pler might mix (explore the state-space) better than a non-blocked one. Assuming

there are two sets of random variables h = {h1, . . . , hJ}, v = {v1, . . . , vI}, initial-

ized to values h(0), and v(0), respectively, the sampling alternates (until t below
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is sufficiently large) as follows:

... (2.41)

h(t) ∼ p
(
h | v(t)

)
(2.42)

v(t+1) ∼ p
(
v | h(t)

)
(2.43)

h(t+1) ∼ p
(
h | v(t+1)

)
(2.44)

... (2.45)

In RBMs with a bi-partite structure the hidden units are conditionally indepen-

dent of each other given the visible units, and vice versa, and so the variables in

the blocks can be sampled independent of each other. Note that if the ordering of

the sampling with full conditionals is such that when sampling random variables

in a set, they are updated all before the variables in the other set are updated

again, the sampling algorithm will be the same as above. The thesis considers the

ordering/blocking-setup with Gibbs sampling, which will be used within Chap-

ters 3, 4 and 5 to draw samples from several RBMs. In other cases, which would

be likely unwise, the sampling would be different, and would be expected to mix

slower. Asymptotically any ordering and/or blocking (assuming every variable

will be updated) would, however, result in the same results.

Problematic conditional distributions are those which include high correla-

tions between the random variables, due to the fact that the chain moves in

axes-aligned steps, and typically can be seen as performing a random walk in the

state-space. As the correlations increase, increasingly more (and smaller) steps

are expected to be needed to explore a specific distance along the major axes of

them [Neal, 1993, Sec. 4.4].

2.3.3.5 Hybrid Monte Carlo

Hybrid Monte Carlo (HMC) [Duane et al., 1987] is a Metropolis-Hastings based

MCMC method for models with continuous random variables which can be ex-

pressed using the energy-based notation (as say in eq. 2.3), and for which the

partial derivatives of the associated energy function with respect to the random

variables are computable. The method avoids the random walk behaviour de-

scribed above, and provides potential means for making the exploration of the

state-space much faster [Neal, 2011]. It can also provide computationally less

demanding approach than Gibbs sampling for sampling from certain RBMs, by
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integrating out the hidden units analytically; the thesis uses the method for sam-

pling from PoT-based models in Chapter 4, from mcRBM models in Chapter 5,

and from some GB-RBM-based models in Chapter 4 and in Appendix C.1.1.

The method adds auxiliary variables to the model, called momentum variables

m, one for each of the random variables in x (called position variables), and aims

to produce samples from the following joint distribution:

p(x,m) =
1

Z
exp {−F (x)−K(m)}, (2.46)

where F (x) is the free-energy of the probability density of the marginal distri-

bution of x, and typically the kinetic energy K(m) = 1
2
m>m. Together the

random variables will be used to describe the state-space of a dynamical system

simulated according to Hamiltonian dynamics, in which the sum of the ener-

gies remains constant. The dynamical update is typically implemented using the

Leapfrog-algorithm, and due to discretization errors and non-perfect simulation

occurring, the numerator and denominator will not exactly cancel out in the

Metropolis-Hastings acceptance/rejectance criterion, and states will be rejected.

Each iteration of such algorithm involves choosing/sampling a random mo-

mentum, followed by the updating of the position and momentum variables by

a number of Leapfrog-steps using some step-size, and accepting the updated po-

sition with probability according to the minimum of one and the ratio of the

joint probabilities of the position and momentum variables, under the initial and

updated states (i.e. min
{

1, exp
{
F (x(t))− F (x∗) +K(m(t))−K(m∗)

}}
). As

the acceptance/rejectance-decision is based on the joint random variable con-

figuration, low-acceptance probability configurations under the marginal model

containing only the random variables of interest can become accepted with high-

probability given suitable configurations of the momentum variables. This could

mean for example escaping from a local optima. Furthermore, as the updates in

the position take into account the partial derivatives of the energy-landscape of

the model, random walk behaviour will be reduced. However, effective use of the

method involves tuning several hyperparameters, which can be hard in practice.

See Neal [2011] for more details.

See Zhang and Sutton [2011] for a recent advance to improve convergence

speed/effectiveness of the method by utilizing approximate second-order gradient

(Hessian) information about the target density from first-order information within

an adaptive setting.
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2.3.3.6 Practicalities

To obtain samples from the correct distribution, the MCMC-sampler needs to

forget the initial configuration; the sampler needs to be ‘burned-in’. Although

methods exist for the estimation of the burn-in times (such as the potential scale

reduction factor [Brooks and Gelman, 1998]), this estimation can be complicated

in practice. In many machine learning applications, this is not feasible in practice,

and computational requirements often lead to relatively early sample collection

(certainly so with respect to asymptotic conditions, where guarantees of consis-

tency are strong). Several i.i.d. samples can be obtained by running as many

chains as samples that are wanted, initialized to different randomly chosen initial

conditions, and setting the samples to the last states of the chains after burn-in.

If more samples are wanted than the number of chains run, several states will

need to be recorded from the chains. The selection of the states onto samples will

need to take into account that neighboring states within the chains are dependent.

Taking them by offsets, as in the method of thinning (see for example Gelman

et al. [2003]) will reduce the dependence of the samples. The thesis uses Con-

strastive Divergence-based methods described in 2.3.4.2 for learning Boltzmann

machines, and here thinning is actually not necessary. For the synthesis task,

however, this is a valid consideration.

In synthesis the thesis considers multiple chains (as many as samples are

needed), and from each collects only the last state. In the constrained synthesis

tasks of inpainting in Chapter 4 and in Appendix C.1.1, the inpainting frame

specifies which regions to be inpainted, and these values are initialized to zeros.

In unconstrained synthesis the thesis uses full-zero images and/or samples from

a spherical-covariance and zero-mean Gaussian. We run the chains in a parallel

fashion on a GPU, and at any particular iteration the chains use different random

number generator states. The number of iterations were set between 5000-100000

iterations, chosen based on three necessary criteria to be met: (i) computational

feasibility, (ii) compatibility for comparisons, and (iii) refuting of non-convergence

by visual monitoring of samples and/or monitoring of their free-energies.

When using HMC, we used either 20 or 30 Leapfrog steps. During learning the

associated step-size was adapted at to obtain and maintain (around) 0.9 accep-

tance rate, but held constant for sampling from a particular model instantiation.

During inference the step-size was fixed after a short adaptation period during
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which it was set (by trial and error adjustment of associated parameters) to obtain

(around) 0.65 acceptance rate once fixed. The adaptation produced stochastic-

ity onto the final fixed step-sizes across different runs/starts. The adaptation

measured the acceptance rate as an exponentially weighted moving average of

observed values with a smoothing factor of 0.9. The step size was increased or

decreased by an exponential factor similar to the bold-driver technique (as de-

scribed in Bishop [1995, Sec. 7.5.3.]). This factor was however adaptive and

dependent on whether it was previously changed towards the same direction (in-

crease or decrease), changed also by using an exponential factor. The step-sizes

were also set minimum and maximum accepted values, and the initial step-size

was set to relatively small value compared to the final fixed one.

Appendix C.1.1 and Sec. 4.4 considers both the above sampling technique

and block-Gibbs sampling (which does not have tunable parameters) for un-

constrained and constrained synthesis from several diagonally-tiled-convolutional

RBM-based models, for performance texture synthesis and inpainting, respec-

tively. Performance metrics under the tasks with the approaches were similar,

and so were the samples qualitatively.

2.3.4 Iterative optimization methods

This subsection discusses iterative optimization methods for parameter estima-

tion, with focus on stochastic gradient descent methods, which will be used in

learning all of the models developed in the thesis. In the following the basic gra-

dient descent algorithm will be discussed. Then we will describe in Sec. 2.3.4.2

Contrastive Divergence-based methods, which use gradient descent methods in

learning Boltzmann-machines. Finally we discuss typical regularization methods

used within the learning; encouraging sparse feature activations in Sec. 2.3.4.3

and parameter decay in Sec. 2.3.4.4.

2.3.4.1 Gradient descent methods

Assume an objective function L(θ) defined in the space of variables θ. Suppose the

task is to find a variable configuration which corresponds to an optimum under the

objective function. In our case the variables θ would correspond to model/network

parameters, and the function L would be for example the negative log-likelihood

of the data. At each optimum (local or global), the partial derivatives of the
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function with respect to the parameters will need to equate to zero. In practice,

solving the associated equation for the parameters of the model is often not

possible, and iterative methods are resorted to. This is the (necessary) scenario

for training all of the models considered in the thesis.

The methods start from some initial configuration of the variables θ(0), and

iteratively update their configurations as follows:

θ(t) ← θ(t−1) + (∆θ)(t) , (2.47)

where (∆θ)(t) defines the position increment, a step, which has a specific direction,

and a size/length along that direction.

Gradient descent updates the configuration by moving it towards the direction

of the negative of the partial derivative of the objective function with respect to

the variables:

θ(t) ← θ(t−1) − α(t)∇L(θ), (2.48)

where α(t) denotes a non-negative constant known as the learning rate. As can

be seen from the equation, the size/length of the step that is made, is controlled

by the gradient value, and the learning rate. In a batch-version of the gradient

descent, all of the data points are used in the computation of ∇L(θ). Provided

the step-size is sufficiently small, the approach is guaranteed to improve the con-

figuration, unless it it zero due to the gradient being zero, in which case the

configuration defines an optimum.

Often it is not possible in practice to consider all of the data points to up-

date the configurations, and better performance can be obtained (for example

in a computational resources limited setting) in a sequential/stochastic-version

of gradient descent, in which only a subset of the data is used in the evaluation

of the gradient at each step. Typically the subsets are equally-sized sets of the

training data, called mini-batches [Bengio, 2012].

The initialization, and the selection or the scheme how to set up the learning

rates, can be crucial in practice. There exist techniques for optimizing the step-

size selection such as line-search [Bishop, 1995] (where the step-size is selected so

that the updated position optimizes the objective function values along the line

from the current point to the direction of the gradient sufficiently far away), but

for the problems considered in this work, they are not in general feasible and/or

useful.
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In many cases the gradient descent might produce oscillating updates. One

approach to reduce oscillations is via the reduction of the learning rate(s). An-

other is by using a ‘momentum’-term in the configuration update [Bishop, 1995],

so that

(∆θ)(t) = −α(t)∇L(θ) + β(t) (∆θ)(t−1) , (2.49)

where β(t) ∈ (0, 1), and defines the rate of the momentum for the epoch. The use

of momentum is often adopted in learning RBMs with the Contrastive divergence

learning approach described below. As for example Hinton [2010b] points out, the

parameters no longer change according to the direction of the steepest descent.

However, learning can nevertheless be faster [Hinton, 2010b, Bishop, 1995].

If the objective function and its partial derivatives can be computed exactly,

which in our case is typically not the case, methods using local second-order

derivative information about the optimization landscape, such as the conjugate

gradient algorithm are available, and might provide more effective optimizers.

See for example Bishop [1995] for more details on such algorithms for the class of

models, and also on further properties on the gradient descent. For the latter, see

also [Bengio, 2012] and the suggested deepening reference [Bottou, 2012] therein.

2.3.4.2 Constrastive divergence-based algorithms

Contrastive divergence (CD) [Hinton, 2002b] is a method commonly used for

learning restricted Boltzmann machines, and many other energy-based mod-

els [Teh et al., 2003]. The approach starts from a gradient descent scenario

with gradient defined as in (2.35). As previously mentioned, computing the ex-

act gradient under an RBM with more than few hidden units intractable. In

computing the gradient, the CD method replaces the distribution over which the

first expectation is taken in (2.35), the model distribution, by a different distri-

bution. The averaging distribution in the second term is left intact, but as with

the first term, the expectation will be approximated by using Monte Carlo aver-

aging. Samples for the second term, called ‘positive phase’ data, can be obtained

directly. Samples for the first term, called ‘negative phase’ data, are obtained by

MCMC.

In CD-k, the Markov chains are initialized to the training data, and instead

of running sampling until the equilibrium distribution is reached, only one or a

few steps (k) will be taken. This will reduce variance in the resulting estima-
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tors, but introduces bias; the approach has been shown to work well in several

applications [Hinton, 2010a, Bengio, 2009].

In the persistent chains CD [Tieleman, 2008, Zhu et al., 1998, Younes, 1988],

the data for the negative phase is given by a maintained set of negative particles.

The negative particles are in the beginning of the algorithm started from some

setting, such as training data, or set some other way such as randomly. After

the initial condition, no further reference to the training data will be made. The

negative particles are updated with MCMC with the current model distribution

as the distribution with sampling of interest.

Outside of the setting of the negative phase data, the algorithm is the same

as the CD. However, the approach can be made to perform maximum likelihood

estimation asymptotically, as opposed to the basic CD (assuming finite k). Al-

though learning is typically slower than with the basic CD (due to the fact that

learning rates need to be typically lower to not make the learning diverge), the

approach is considered to be preferable for density modelling [Hinton, 2010b].

The algorithm was proposed for RBMs in Tieleman [2008], but the same esti-

mation idea has been used in different but still MRF-based contexts significantly

earlier, for example in Zhu et al. [1998], and in Younes [1988].

The fast-persistent chains CD [Tieleman and Hinton, 2009] considers two sets

of parameters, so-called regular parameters, and fast parameters, the sum of

which is used to describe the parameters for the model distribution. In practice

the fast parameters are associated with a larger learning rate than the regular

ones, but the fast parameters (not necessarily their learning rates) are annealed

during the course of learning, and will vanish asymptotically. The scheme is

demonstrated to increase mixing from the PCD. See Bengio et al. [2013] for a

more in-depth discussion on the methods, and other commonly used learning

techniques for the class of models considered. See Hinton [2010b] for practical

recommendations in the context of RBMs.

2.3.4.3 Regularization: Encouraging sparse feature activations

Encouraging sparse feature activations is common regularization method in un-

supervised feature learning. While there are biological motivations using spar-

sity [Olshausen and Field, 1996, 1997], typically the motivation for having such

a term in the learning objective function relates to having interpretability in the

features. Discriminative settings may also benefit from it [Hinton, 2010b].
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A commonly used objective function for model learning is of the following

form:

C(θ) = C1(θ)− λC2(θ), (2.50)

where C1(θ) = − 1
N

∑N
n=1 log p(v(n)|θ) is the negative log-likelihood of data, acting

as a data-fit term, and the second term is the term for encouraging sparsity, where

λ is a regularization constant. A commonly used form for C2(θ) under an RBM

is the following:

C2(θ) =
1

J

J∑
j=1

H (p∗, qj) (2.51)

where H (p∗, qj) is the cross-entropy between a Bernoulli target distribution p∗

with success probability a, and the distribution qj = 1
N

∑N
n=1 p

(
hj | v(n), θ

)
(which

records the average probability of the unit hj being off or on over a dataset). The

goal of the sparsity term (as used in Lee et al. [2008], Nair and Hinton [2009]) is

to encourage a hidden unit to come on a proportion a of the time; typically a is

set to a small value close to zero. A closely related form is the following:

C2(θ) =
1

N

N∑
n=1

H
(
p∗, q(n)

)
, (2.52)

where q(n) = 1
J

∑J
j=1 p

(
hj | v(n), θ

)
. Notice that this approach encourages the

average hidden unit activations per image to be a, rather than the average of

activations of a feature over a set of images. In the RBM training guide [Hinton,

2010b], Hinton recommends to set the distribution q according to an exponentially

weighted average (rather than directly based on the observed activation level; this

assumes online learning setting based on the use of mini-batches). This scheme

is also adopted in [Nair and Hinton, 2009]. In the approach of Ngiam et al. [2011]

both the sparsity of a feature over different examples (lifetime sparsity), and that

of the features together to a specific example (population sparsity) is encouraged.

None of these approaches guarantee spatial coherence in the feature activations.

One way to encourage such is to connect the hidden units laterally within their

feature planes, possibly in a local way.
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2.3.4.4 Regularization: Parameter decay

The commonly used regularization functions for the parameter decay are the

following [Hinton, 2010b]:

L2(θ) =

(∑
i

θ2
i

)1/2

(2.53)

L1(θ) =
∑
i

|θi|, (2.54)

where θ denotes the parameters for the regularization. When used in learning,

the overall objective function includes the regularization function multiplied with

a regularization constant (say λ) hyperparameter.

There are two main motivations for using parameter decay in learning: one

is to make the learning more robust, including to avoid overfitting and the diver-

gence of learning. The other one is to obtain more interpretable parameters.



Chapter 3

Transformation Equivariant

Boltzmann Machines

3.1 Introduction

We consider the problem of using deep belief net (DBN) architectures to model

the structure occurring in natural images. One of the desiderata for a computer

vision system is that if the input image is transformed (e.g. by a translation of

two pixels left), then the inferences made by the system should co-transform in

a stable, and predictable way; this is termed equivariance (see discussion on in-

tensity and translation equivariance in Nair and Hinton [2010b]). This behavior

has been motivational in the development of steerable filters [Simoncelli et al.,

1992] (where it is termed shiftability), and we argue that obtaining such transfor-

mation equivariant representations is important for the architectures that we are

considering as well. Translational equivariance is readily built in by a convolu-

tional architecture as found in neural networks [Waibel et al., 1989, LeCun et al.,

1998], and more recently for RBMs, see e.g. Lee et al. [2009]. However, there are

additional transformations that should be taken into account: in this work we fo-

cus on equivariance with respect to in-plane rotations. Building in such property

is important to avoid the system having to learn rotated versions of the same

patterns at all levels in the network. For example in Fig. 2 of Lee et al. [2009]

many of the learned filters/ filter combinations shown are rotated versions of each

other. The goal of this work is to build a DBN architecture that is translation and

rotation equivariant. To do this we introduce a novel kind of rotational/steerable

unit for Boltzmann machines, as described in section 3.2. Section 3.3 discusses

46
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inference and learning for the models, and Section 3.4 conducts experiments with

them using artificial and real image data.

One of the inspirations for this chapter is the work of Fidler and Leonardis

[2007], in which conjunctions of edge and bar (sine and cosine) Gabor features

are built up into more complex patterns that occur frequently in the input image

ensemble. Their architecture is translation and rotation invariant. However,

their method does not define a generative model of images, but rather performs a

layerwise grouping of features from layer `− 1 to create features at layer `. This

means that it is heavily dependent on various thresholds used in the learning

algorithm, and also that it is unable to carry out bottom-up/top-down inference

in the face of ambiguous input or missing data. We show how such translation

and rotation invariant groupings arise naturally in a fully-specified multi-layer

generative model.

3.2 Building in Transformation Equivariance

We first discuss the rotation-equivariant restricted Boltzmann machine (STEER-

RBM) model which has one hidden layer; this hidden layer contains the ‘steerable’

units which are a particular feature of our architecture. Next in section 3.2.2 we

describe a translation equivariant version of the model, and finally in section 3.2.3

generalize this to a deep belief net, which is the multi-hidden-layer generalization

of the translation and rotation equivariant model.

3.2.1 Rotation Equivariant RBMs

The key feature of the STEER-RBM is the construction of the stochastic steer-

able hidden units, each of which combines a binary-valued activation variable

hj turning the unit on/off with an associated discrete-valued rotation variable

rj taking on possible states k = 1, . . . K, whose effect is to in-plane rotate the

weights of the unit by 360(k−1)/K degrees. Let Wj(·, 1) be the canonical pattern

of weights connecting hidden unit hj to visible units v under no rotation. The

transformed weights Wj(·, k) for rotation k are derived from the canonical view

using geometrical knowledge of in-plane rotations, so that

Wj(·, k) = R(k)Wj(·, 1) ⇒ Wj(i, k) =
D∑
`=1

R(k)(i, `)Wj(`, 1), (3.1)
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where R(k) is a fixed D×D transformation matrix applying an in-plane rotation

of 360(k − 1)/K degrees, and D denotes the number of pixels/visible units in

v. Note that by choosing K large we can approximate rotations to any desired

accuracy. An example of this rotation in action is shown in the top row of Figure

3.3. In our implementation, we bilinearly interpolate the weights into their new

locations, such that each of the elements in the rotated view is computed as a

convex combination of (maximally) four neighboring rotated canonical weights,

each of which have been rotated about the center of the canonical weights plane1.

Thus each row of the rotation matrices maximally contains four non-zero elements

which sum to one.

Given this architecture, the joint probability density of a STEER-RBM model

consisting of visible units v and binary hidden units (h, r) is given by the Boltz-

mann distribution p(v,h, r | θ) ∝ exp {−E(v,h, r | θ)} with the following energy,

assuming continuous, conditionally Gaussian units:2

E(v,h, r | θ) =
∑
i

v2
i − 2avi

2σ2
−
∑
j

hjbj −
1

σ

∑
j

hj
∑
i

viWj(i, rj) (3.2)

where θ = {a,b,W, σ} consist of hidden unit biases b, visible unit biases a,

connection weights W, and the standard deviation of the Gaussian conditional

distributions of the visible units σ. The energy function for binary visible units

can be obtained by removing the quadratic term v2
i , and setting σ to unity. As

Wj(i, rj) =
∑K

k=1 δ(k, rj)Wj(i, k), the model defines a mixture of RBMs, but in

contrast with the implicit mixture RBM model of Nair and Hinton [2009], there

is parameter sharing between the mixture components due to rotation equivari-

ance. Although we have described RBMs above, extensions of other energy-based

models to use rotational units could be also considered, such as conditionally full-

covariance Gaussian models [Ranzato et al., 2010b].

3.2.2 Rotation and Translation Equivariant RBMs

To learn models for whole images, a translation equivariant extension of the

STEER-RBM is used, assuming a reduced connectivity structure so that a hidden

1To avoid boundary artifacts with non-circular receptive fields, one can zero pad the canon-
ical weights plane such that each of the rotated canonical weights are within the boundaries
defined by the extended plane for any rotation angle.

2The joint probability density of the visible units conditional on the hidden units and model
parameters factorizes as a multivariate spherical-covariance Gaussian.
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unit hj is connected to a subset of visible units specified by a receptive field

system, and parameter sharing is used so that the responses of units to a stimulus

are translation equivariant. We call the hidden units sharing these parameters

a feature plane. To extend convolutional RBMs, the STEER-RBM also adds

input rotation equivariance to hidden unit activation. Thus we consider a weight

kernel ωα for feature plane α, which is sufficient to define the connection weights

between the hidden units in feature layer α and the visible units. The energy

function for the convolutional STEER-RBM is then

E(v,h, r | θ) =
∑
i

v2
i − 2avi

2σ2
−
∑
α,j

hαj

bα +
1

σ

∑
`∈Nαj

v` ωα(d(j, `), rαj)

 (3.3)

where a is visible unit layer bias, bα is the bias for hidden unit feature plane

α, Nαj indexes the visible units within the receptive field of hidden unit hαj, σ

defines the standard deviation of the univariate Gaussian conditional distribution

p(vi | h, r, θ), and d(j, i) computes the spatial-offset dependent index of the weight

kernel weight that is used to connect hidden unit hj to vi.

3.2.3 Rotation and Translation Equivariant Deep Belief Nets

To learn higher-level patterns from images, we follow the DBN approach of Hinton

et al. [2006], stacking multiple layers of convolutional STEER-RBMs on top of

each other. In this model, each of the hidden units in a higher level STEER-RBM

is connected to a subset of the hidden units in each of the feature planes in the

hidden layer below, again via by a receptive field system. As both the higher and

lower level units are rotational, we now need a triply indexed weight parameter

ω`α`−1β
(j,m, k) which connects a unit in feature plane α in layer ` to feature plane

β in layer ` − 1 below. Here j denotes the spatial offset, while m and k index

the rotational states in the lower and higher layers respectively. Thus the energy

function between layers ` and `− 1 is of the following form:

E
(
h`−1, r`−1,h`, r` | θ`

)
= −

∑
β

b`−1
β

∑
i

h`−1
βi −

∑
α

b`α
∑
j

h`αj

−
∑
α

∑
j

h`αj
∑
β

∑
i∈N`αj

h`−1
βi ω

`α
`−1β

(d(j, i), r`−1
βi , r

`
αj). (3.4)

The computation of the transformed weights for these higher hidden layers has

to be different from that of the first layer, since changing the rotational state of
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↑

↑

← ← ←

↑

(a) convolutional Steer-DBN patterns

for a stimulus

↓

↓ ← ←

↓

←

(b) convolutional Steer-DBN patterns for a ro-

tated stimulus

Figure 3.1: Illustration of how a Steer-DBN is constructed to behave under a pattern

rotation.

a higher level pattern needs to rotate the lower level rotational states/patterns

accordingly. See Figure 3.1 for an illustration.

The transformations for each feature can be again done by knowledge using

fixed transformation operators, by first in-plane rotating the lower-level rotation-

specific canonical weight matrix slices, and then circularly shifting the dimensions

of the resulting matrix. The non-canonical view of a level ` weight kernel can be

thus written as follows:

ω`α`−1β
(j,m, k) =

K∑
ρ=1

S(k)(ρ,m)
∑
δ

R(k)(j, δ)ω`α`−1β
(δ, ρ, 1), (3.5)

where S(k) is a fixed K×K binary matrix applying a circular shift (of k−1 shifts)

forward to the columns of R(k)ω`α`−1β
(·, ·, 1).
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3.3 Inference and Learning in the Models

As with standard RBMs, the conditional distributions of the hidden units are

independent given v for the convolutional STEER-RBM. Thus we have for (3.3)

that p(h, r | v, θ) =
∏

α

∏
j p(hαj | v, θ) p(rαj | hαj,v, θ), where

p(hαj | v, θ) =

∑K
k=1 exp

{
hαj

(
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
)}

K +
∑K

k=1 exp
{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
} ,(3.6)

p(rαj | hαj = 1,v, θ) =
exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), rαj)
}

∑K
k=1 exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
} . (3.7)

The key quantity in this computation is aαj(k) =
∑

`∈Nαj
v` ωα(d(j, `), k) which

computes the dot product of the visible variables in Nαj with weight kernel wα at

rotation k. (3.6) evaluates a nonlinear combination of these quantities summed

over k compared to K in order to compute p(hαj | v, θ). Similarly in (3.7)

p(rαj | hαj = 1,v, θ) is computed based on the relative strengths of the aαj(k)

terms. For a multi-layer network a crude approximation to full inference is to

sample from the learned STEER-RBMs layerwise from bottom to top. More so-

phisticated alternatives are possible, such as the up-down algorithm described

in Hinton et al. [2006], or e.g. some other Markov chain Monte Carlo sampling

methods.

As usual with DBNs we learn the parameters of the models layer-wise. We

have used stochastic gradient-descent based methods to train the models in the

experiments, optimizing an objective function consisting of a data fit term, plus

a term that encourages sparsity, according to equations (2.50) and (2.52)3. For a

datafit term based on the log likelihood L, the gradient wrt a parameter θ is given

by ∂L
∂θ

= 〈∂E
∂θ
〉+ − 〈∂E

∂θ
〉−, where 〈·〉+ denotes expectation with the training data

clamped, and 〈·〉− the unclamped phase. In fact we generally use the contrastive

divergence CD-1 approximation, described in Section 2.3.4.2, to the negative

phase. To understand how the model learns under optimization, it is instructive

to consider the partial derivatives of the energy function with respect to the

canonical features. Assuming the model of (3.3), we have that

∂E(v,h, r | θ)
∂ωα(δ, 1)

= − 1

σ

∑
j

hαj
∑
`∈Nαj

v` R
(rαj)(d(j, `), δ). (3.8)

3Non-sparsity is penalized proportional to a sum of feature-plane specific cross-entropies,
each between a Bernoulli target distribution, and the distribution recording the average prob-
ability of a unit being off or on at the plane, similar to Nair and Hinton [2010a].



Chapter 3. Transformation Equivariant Boltzmann Machines 52

This has the effect of multiplying the visible pattern in Nαj by (R(rαj))T . As

this is a close approximation to applying a reverse rotation, patterns which are

detected to be present in a non-canonical orientation, are rotated ‘back’ into the

canonical view, in which the feature-specific canonical statistics are then updated.

The learning is similar for the higher layer models, where the alignment also takes

into account the lower unit’s rotation assignment. Partial derivatives with respect

to the biases take the standard forms.

3.4 Experiments

The following subsection experiments with a rotation equivariant RBM on mod-

elling small patches of binary data. We then consider in Section 3.4.2 experiments

on modelling natural image data, using also translation equivariant feature shar-

ing, in a shallow architecture and in a deeper architecture.

3.4.1 Rotated Handwritten Letters

This experiment considered the problem of modeling data consisting of rotated

versions4 of handwritten letters and blank images, with STEER-RBM having a

single hidden unit. Although using biases would help in this task because there

exist locations within the images that are biased to be on or off, they were not

used in order to demonstrate that it is possible to learn a good model even without

them. See Figure 3.2(a) for a sample of training data examples. Learning was

based on minimizing negative log-likelihood of the training data, where

log p
(
v(1), . . . ,v(N) |W

)
= −N logZ +

N∑
n=1

∑
j

log gj(v
(n)|Wj), (3.9)

where

gj(v
(n)|Wj) = K +

K∑
k=1

exp {[v(n)]
>
R(k)Wj(·, 1)},

and the partition function

Z =
∑
h,z

∏
i

(
1 + exp

{∑
j

hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]
Wj(·, 1)

})
.

4Using 16 different rotation angles from the full range of possible rotations.
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(a) Training data instances.

(b) Most likely visibles conditional on an active unit with the (16) different rotational

states under learnt model.

Figure 3.2: Learning a STEER-RBM on a data set consisting of blank images and

images of rotated handwritten letters.

A scaled conjugate gradient algorithm was used for the optimization 5. Com-

putation of the exact gradient was possible because the model contained only

one hidden unit. The partial derivatives of the data log-likelihood with respect

to model parameters (needed in the SCG-algorithm) are given in Appendix B.3.

Figure 3.2(b) shows expected visible units conditional on an active unit with

the different rotational states under learned model from 1000 training images.

We can see from the figure, that the generative model correctly believes that the

data consists of rotated ’E’-letters (and blank images - to save space the expected

visibles conditional on turning off the hidden unit have been omitted).

3.4.2 Natural Image Data

We first learnt RBM models (3.3) from a set of whitened natural images [Ol-

shausen and Field, 1996] using CD-1 learning6. Fig. 3.3 (left, top) shows the type

of feature consistently learnt as the most significant, at various rotations. This is

an “edge detector”, similar to the features found e.g. in Lee et al. [2009] at vari-

ous orientations. The bottom row shows a natural image patch, and most likely

states colour-coded according to orientation, at each location. The responses

occur at edge-like structures; notice the steady rotational response change, e.g.

while tracing the outline of the central object. We have also trained this model

with several feature planes; results using three are shown (right).

To validate the higher-layer learning we first considered modeling artificial

5The scg-function of the Netlab-toolbox version 3.3 was used.
6σ was set close to the data standard deviation. The total target activation for sparsity

encouragement was 0.1.
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Rotational Views of a Feature 3 Features

Input Stimulus Most Likely States

Figure 3.3: Left-top: Learned feature at various orientiations (with receptive field

diameter = 9). Left-bottom: Whitened natural image region, and most likely unit

states (colour-coded according to rotation). Right: Weights of the learned set of 3

features.

rotational pattern data simulating first-layer responses. Fig. 3.4 shows input

patterns; the four colours denote four different orientation responses. There are

two patterns in the noisy data, one consisting of 3 active inputs, and the other

of 2. These are successfully learned, see panels 2 and 4, and the caption for more

details. The higher-layer feature visualization extends the Hinton-plot from 2 to

3 dimensions: A Hinton-plot encodes a 2D-matrix of values with a grid/lattice

of squares, with a square per matrix element, with colour encoding the sign, and

the size encoding the magnitude of the respective element. Such could be used

to visualize the first layer basis functions, with the squares encoding the basis

function elements. In the higher-layer filters, there is an additional dimension

which encodes the orientation of the lower-layer basis function from its canonical

view. To visualize the higher-layer filters, we consider the Hinton-plot but replace

each square with an oriented line-segment, with colour again endoding the filter

element’s sign, the length encoding the magnitude, and the orientation encoding

the rotation of the lower-layer basis function from its canonical view under the

particular position.

We have also applied the learning to the natural images, using the single

edge-like feature in the first layer. The results (see Fig. 3.6 which shows the first-

layer basis function and the second-layer basis functions, in their canonical views)

show this yields higher-order conjunctions of this feature, such as extended and
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Activations (Feat. 1) Feature 1 Activations (Feat. 2) Feature 2

Figure 3.4: Features learned from rotation colour-coded (→,↑,←,↓) artificial data

containing rotated, randomly placed instances of two rotational shapes, in clutter.

Panels 1 and 3 show the data, with the respective higher level features denoted by

bounding boxes of the units’ receptive field size centered on the unit location, and

coloured according to the rotation assignment. In panels 2 and 4 the 5× 5 canonical

weight kernels are visualized using oriented black/white line segments, placed to start

from an evenly spaced grid. The grid locations denote the spatial offsets for the weight

kernels weights, the different orientations index the lower-level rotational states, the

segment lengths denote the weight magnitude, and colour denoting the sign with

black denoting a negative, and white denoting positive a weight. (Essentially this

extends the Hinton-plot to deal with (multi-way-)oriented weights.)

curved edges, and intersections. Note that these features are similar to SIFT-

descriptors [Lowe, 2004], but in a generative framework. Note also that only

the canonical views of the features are shown in Fig. 3.6; see Figure 3.5 for an

illustration of several views per a second layer feature.

3.5 Related Work

We have discussed above the work of Fidler and Leonardis [2007]. The work

of Zhu et al. [2008] is similar to it, except that there is a top-down stage to the

learning process (but not in the given inference algorithm) to fill in missing parts

of the hierarchy. Both papers use hand-crafted algorithms for detecting groupings

of lower-level features, involving various thresholds. In contrast we formulate

the problem as a standard DBN learning algorithm, but build in transformation

equivariance. One advantage of the DBN is that it is naturally set up for bottom-

up/top-down inference in the face of ambiguity or missing data.

The orientation-adapted Gaussian scale mixture (OAGSM) model [Hammond

and Simoncelli, 2008] describes how a Gaussian model for a wavelet coefficient
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Figure 3.5: Rotational views of a second-layer weight kernel. 1st and 3rd row from

the top: 8 rotational views (thinned from a set of 16) of a second layer weight kernel

(displayed as in Fig. 3.4) . 2nd and 4th row from the top: The leftmost panel shows

the first-layer basis feature; the other panels show the (linearly combined) first layer

basis projections of the 8 second-layer features visualized above.
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Figure 3.6: 1st and 3rd row from the top: The second layer weights (displayed as in

Fig. 3.4) for 8 second-layer features. 2nd and 4th row from the top: The leftmost

panel shows the first-layer basis feature; the other panels show the (linearly combined)

first layer basis projections of the 8 features visualized above.
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responses corresponding to an image patch can be augmented with latent variables

to handle signal amplitude and dominant orientation. This allows e.g. modelling

of oriented texture at arbitrary rotations. The learned edge filters at the first

level of our model are analogous to the wavelet responses, while our second level

units model the correlations between the coefficients. However, note (i) that the

OAGSM model is only a model for patches not entire images, and (ii) that it does

not provide a mixture model over the types of higher-level regularity, e.g. lines,

corners, T-junctions etc. On the other hand the real-valued modelling of wavelet

coefficients by OAGSM is more powerful than the binary activations of units in

the STEER-DBN.

Our goal is to build in equivariance to known (translational and rotational)

transformations. In contrast Memisevic and Hinton [2010] describe how to learn

transformations based on pairs of training images using factored 3-way Boltzmann

machines. Such a network could be used in to identify rotated versions of a

given pattern, e.g. by fixing a reference version of the pattern and inferring the

transformation. However, it seems rather excessive to learn the machinery for this

when it can be built in. Our work should not be confused with the directional unit

Boltzmann machine (DUBM) network of Zemel et al. [1995]. Although DUBM

units contain a rotational variable, this is not used to model relative rotations

of subcomponents. For example in Mozer et al. [1992] the authors present a

convolutional architecture where the rotational variable denotes the phase of an

oscillator, relating to the theory of binding-by-synchrony.

3.6 Discussion

As we have shown, the STEER-DBN architecture handles translation and rota-

tion invariances. The other natural transformation to consider is image scaling.

However, this can be relatively easily handled by the standard computer vision

method of downsampling the input image by various factors, and applying the

similar processing to each scale. Higher layers at a given scale can also take in-

puts from various scales. Alternatively one could introduce scaling assignment

variables for each unit similar to the ones for rotation, scaling the features. These

transformations would be always local, and choosing over several kinds of local

transformations conforming to our framework has been later investigated in Sohn

and Lee [2012]. Our work above and in Kivinen and Williams [2011] considers al-
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ready local transformation with respect to in-plane rotation with the translation

and rotation equivariant models.

Also later to our work Schmidt and Roth [2012] propose a related but different

approach to encode transformations into an RBM. They demonstrate state-of-the-

art results on rotation-invariant recognition and detection tasks, and suggest the

usefulness of transformation equivariant models (as also ours) for categorization

purposes. Possible future work not already mentioned includes learning more

hidden layers, and using more expressive bottom-layer models, such as those al-

lowing dependent Gaussian distributions for the visibles conditional on the hidden

units [Ranzato et al., 2010b].



Chapter 4

Multiple Texture Boltzmann

Machines

4.1 Introduction

The previous chapter focused on models constrained to have certain equivari-

ance properties, and in the context of natural images such properties were built

into Gaussian-Bernoulli restricted Boltzmann machines with convolutional fea-

ture sharing. In this chapter we focus in building effective generative models for

visual textures based on more general Boltzmann machines.

One of the most flexible models for natural images proposed in the liter-

ature is the recent Product of Student-t Experts (PoT) with non-zero means

(mPoT) [Ranzato et al., 2010b], which includes third-order interactions between

visible and hidden units. Visual analysis of the samples drawn from the model

(with tiled-convolutional weight sharing) as shown in Ranzato et al. [2010b, Fig-

ure 3] suggests that although piecewise smooth segments with clear intensity

discontinuities at their borders can be generated, the model (as trained on nat-

ural image patches) does not hallucinate textured regions. The flexibility of the

model can be increased by adding additional layers of hidden units, but the sam-

ples shown in Ranzato et al. [2011b, Figure 3] again do not show textured regions.

These results suggest it is over-optimistic to expect a single mPoT model to be

able to generate the wide variety of textures seen in natural scenes. However, such

a model could be effective for a sufficiently small subproblem such as modelling in-

dividual textures. The generation of visual texture is a necessary sub-component

of any credible model for visual scenes.

60
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This chapter has three main contributions. First, we assess the power of the

mPoT as a model for textures by specifically training on this task. A key advan-

tage of the texture task is that one can assess the generative performance directly

e.g. using the texture similarity score from Heess et al. [2009]. In contrast, cur-

rent quantitative assessment of generic natural image models is typically based on

discriminative performance of a classifier using features derived from the models,

which is a very indirect way of evaluating generative performance. As well as as-

sessing the texture modelling power of the mPoT with tiled-convolutional weight

sharing, we also analyze the relative contributions of the mean and covariance

parts of the mPoT by comparing its performance to those of its subcomponents,

tiled-convolutional versions of the PoT/FoE and the Gaussian-Bernoulli restricted

Boltzmann machine (GB-RBM). Our results suggest that while state-of-the-art

or better performance can be achieved using the mPoT, similar performance can

be achieved with the mean-only model.

Secondly, we develop a Boltzmann machine which is able to generate multiple

textures; a natural extension of the model for specific textures. The model mod-

ulates a set of parameters shared across multiple textures with texture-specific

parameters to create appropriate texture features. We compare the multi-texture

model to single-texture models for constrained and unconstrained texture syn-

thesis, and demonstrate comparable performance of the multiple texture model

to individually trained texture models.

Thirdly, we will develop a method for generating globally varying textures,

and applying texture interpolation, based on the multiple texture framework.

We begin in Section 4.2 by briefly reviewing the models for individual textures.

We then describe the experimental setup for the analysis of these models, includ-

ing data, assessment methods, modelling and inference details in Section 4.3. This

section also gives the results, where we evaluate and analyze the performance and

suitability of the methods as models of textures. Section 4.4 then develops a multi-

texture Boltzmann machine and analyzes its properties, including a comparison

of the generative performance of the model to those of single-texture models.

Section 4.5 discusses texture morphing methods, and develops an approach for

generating globally varying textures, and a texture interpolation method based

on the multiple texture Boltzmann machine framework. Section 4.6 provides a

summary and discussion.
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4.2 Modelling of Individual Visual Textures with

Boltzmann Machines

In our experiments we consider three models based on Boltzmann machines: the

Gaussian-Bernoulli RBM, the Product of Student-t Experts, and the Product of

Student-t Experts with non-zero means - all of which model the visible units v

as normally distributed conditional on the hidden units h; this is a setup popular

in the modelling of continuous-valued data, such as natural images. We will use

the same notation as in Section 2.1.2.1 of Chapter 2 where the details related to

the models are given. Although other models providing such parameterizations

do exist, these three models provide the typical spectrum of structure, namely

whether the mean is constrained to be zero or not, and whether the covariance

matrix is constrained to be diagonal or not. In order to scale up to large images,

we use tiled-convolutional weight sharing (see Section 2.1.3 of Chapter 2), as

in Ranzato et al. [2010b]. Below we denote the GB-RBM, the PoT, and the mPoT

using tiled-convolutional weight sharing as Tm, TPoT, and TmPoT respectively.

Of course texture modelling has a long history and is not restricted to Boltz-

mann machine models. One simple texture model is a Gaussian random field;

for example Heess et al. [2009] consider a simplified FoE with quadratic poten-

tials, which they call the Gaussian FoE (GFoE). The FoE was extended to use

bimodal potentials in Heess et al. [2009] to create the BiFoE model, and their

results show that this generally improved performance over the GFoE and FoE

models. See Section 2.1.6 for more details on these models. In earlier work Zhu

et al. [1998] proposed a model based on fixed (rather than learned) filters, but

with non-parameteric potentials. Finally we mention the nonparametric texture

synthesis method in Efros and Leung [1999]. This grows a patch of texture from

a seed, but does so without an explicit generative model; instead it pastes in new

pixels based on the match to a reference sample of texture.

4.3 Dissecting Boltzmann Machine Texture Models

In this section we analyze the performance of the conditionally Gaussian Boltz-

mann machine models in texture modelling. Below we first discuss the data used

for the experiments, and then in section 4.3.2 give details of how the models were

trained. Results for unconstrained texture synthesis are given in section 4.3.3,
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and for constrained synthesis (inpainting) in section 4.3.4.

4.3.1 Data

The data used in the experiments were Brodatz-texture images1. We applied

similar rescaling as in Heess et al. [2009]: the 640x640 textures were rescaled to

either 480x480 or to 320x320, preserving all major texture features. We then

normalized each texture to have zero mean, and applied global scaling so that

the standard deviation of each texture was 4. This scaling was used because the

parameter σ in eq. 2.8 controlling the standard deviation of the Gaussian distri-

butions in the GB-RBM density was fixed to unity in our code; it is equivalent

to setting σ = 1/4 in the GB-RBM energy (and rescaling a) if the texture were

normalized to unit variance. The evaluation metrics used for quantitative anal-

ysis are insensitive to these normalization steps. Each image was divided into a

top half used for training, and a bottom half for carrying out testing.

4.3.2 Learning

The training data consisted of patches of size 98 × 98 randomly cropped out

of the the preprocessed training textures, and processed in batches of size 64.

We experimented with several receptive field sizes, and the number of hidden

units for the models. Increasing the number of hidden units typically improved

the generative quality. We used a receptive field size of 11 × 11, and the tiling

was done diagonally with a stride of one pixel. Thus there are 11 sets of filters

(one for each offset), and we used 32 filters per set for both the mean hm and

covariance hc hidden units, when applicable. We held the visible unit biases a of

the Tm-models fixed to zero.

All of the models were trained by approximate maximum likelihood, using

stochastic gradient ascent based on Fast Persistent chains Contrastive Divergence

(FPCD) [Tieleman and Hinton, 2009] (see also Section 2.3.4.2). The implemen-

tation for training the models heavily used the code by Marc’Aurelio Ranzato2,

especially for the tiled-convolutional mPoT. We will now describe the main de-

tails of the learning algorithms: The hidden variables in the TmPoT energy can

be integrated out analytically to give the free energy, as in Ranzato et al. [2010b,

1http://www.ux.uis.no/∼tranden/brodatz.html.
2http://www.cs.toronto.edu/~ranzato/publications/mPoT/mPoT.html

http://www.cs.toronto.edu/~ranzato/publications/mPoT/mPoT.html
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eq. 6]. Parameter learning can be then done by computing the difference of posi-

tive and negative phase expectations of the free-energy gradients. In our learning

procedure we initialized the negative particles, which are used in the computation

of the negative phase, to zeros. They were updated during each iteration using

a single-step of hybrid Monte Carlo (HMC) [Neal, 1996] (see also Sec. 2.3.3.5),

which used a random momentum sampled from a zero-mean, spherical Gaussian,

and applied 30 Leapfrog steps.

The models did not have any special boundary units, and therefore at the

boundaries and especially at the corners (due to diagonal offsets between the

tiles) there were sites which we less constrained than in the center of the image.

This often caused boundary artifacts unless care was taken. We tried various ways

of dealing with these problems, for each of the models and textures. The results

we report use a mixed way of dealing with them: For all models except TPoT,

we clamped the borders of the negative particles to zero as in Ranzato et al.

[2010b]. For the TPoT, we simply discarded the boundary data in computing the

gradients for parameter updates, which seemed to work best for this model. An

analysis of the effect of different boundary handling methods to texture synthesis

performance under the Tm-model is provided in Appendix C.1.2.

As in Ranzato et al. [2010b], the covariance filters of the TmPoT were pre-

multiplied with a whitening transform matrix3, and during training their L2-norm

was maintained at unity individually by normalization. The normalization avoids

the decay of experts to zero, but removes scale adaption, the necessity of which

is lessened by the whitening transform.

We initialized the mean weights M and covariance weights C, and other pa-

rameters in general to small random values. The hidden biases b were, however,

initialized to −2. We experimented with various parameter learning rates and

combinations for the different models under different textures, but these did not

matter much for reasonable ranges of values. For TPoT, we used equal learning

rates of 0.001 for C and the parameters γ (see eq. 2.14). For Tm, we used a

learning rate of 0.001 for M, and 0.1 for b. We used half of these learning rates

for the parameters of the TmPoT models. The learning rates were held fixed for

the fast parameters, but annealed for the regular parameters. We also used a

small L1-decay on the weights.

3We used texture-class specific ZCA whitening (see for example Bell and Sejnowski [1996]).
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4.3.3 Unconstrained texture synthesis

Our quantitative analysis of generative performance first considered the quality

of texture samples. To obtain samples from the models we ran HMC sampling

for a large number of iterations, after which their states were stored for analysis.

128 samples of size 120 × 120 were collected for each model under each texture

class. Texture patches and representative model samples (with boundary sites

discarded) are shown in Figures 4.1 and 4.2. Visual inspection shows that while

the samples from the TmPoT and Tm are good, TPoT clearly fails to provide a

faithful model of the data. Sample filters learned for the different textures using

the Tm are shown in Figure 4.6.

To provide a quantitative evaluation we compute the Texture Similarity Score

(TSS) defined in Heess et al. [2009] between each sample and the testing texture

patch. For a sample s and texture image x the TSS is defined as the maximum

of normalized cross correlation (NCC) between them:

TSS(s,x) = max

{
x(1)

>s

‖x(1)‖‖s‖
, . . . ,

x(I)
>s

‖x(I)‖‖s‖

}
, (4.1)

where x(i) denotes a patch within the image matching the size of s, located

at position i, and I denotes the number of possible patch locations. We used

matching window of size 19× 19 to compute the score, extracted from a random

location in each sample, which is the same size as those of the samples used

in Heess et al. [2009] to compute their scores. (Note that the results in Heess

et al. [2009] use the whole texture for both training and texting; in contrast we

have a training/test split, see sec. 4.3.1.)

As in Heess et al. [2009], the textures considered for quantitative analysis

were D6, D21, D53, and D77 (see top rows of Figure 4.1). Figure 4.3 (left) and

Table 4.1 (top) show a summary of quantitative analysis results based on the

TSS. The scores for the TmPoT and the Tm are excellent for all the textures,

even for the D77, which appears the least homogenous of the textures. While

performance of the TmPoT for most textures the highest, it is closely matched

by the Tm. The scores for the TPoT are much worse than those of either of the

above models; this is consistent with the inability of the FoE model (convolutional

PoT) considered in Heess et al. [2009] to produce high-quality texture samples.

The fact that TPoT doesn’t distinguish between v and −v is not the only reason

for its poor performance in synthesis: scores obtained using absolute values of

NCC are still significantly lower for TPoT than for other models (Abs-TSS sample
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Figure 4.1: Example data patches (top row), and model samples (other rows), with

each case scaled independently to cover the full intensity range.

mean±stds: D6: 0.6207 ± 0.0670, D21: 0.8214 ± 0.0591, D53: 0.8173 ± 0.0975,

D77: 0.7080± 0.0796).

When comparing these results to Figure 3(a) in Heess et al. [2009], note

that the filters used there were 7 × 7, and that 9 sets of filters were used, in a

fully convolutional rather than (diagonally) tiled-convolutional fashion. Although

many more parameters need to be learned for our models, within each 11 × 11

block in the image (except for boundaries) there were only 11×32 experts due to

the diagonal stride between tiles used in our experiments; this is clearly less than

11 × 11 × 9 experts of Heess et al. [2009]. There are also the training/test split

differences noted above. With these caveats we note that all mean TSS scores

are clearly superior even with the Tm models over BiFoE, and the difference is

particularly noticable for D6 and D77.
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Figure 4.2: Synthesis results. Example data patches (top row) with representative

results for Tm-models (middle row) and a multi-Tm (bottom row). Each case has

been scaled independently to cover the full intensity range. The Multi-Tm model has

128 features per site.

Synthesis Inpainting

Figure 4.3: Quality assessment for the models, based on TSS/NCC between sample

patches/inpainted area and corresponding Brodatz texture for unconstrained (left)

and constrained (right) synthesis. The Multi-Tm model has 256 features per site.

Boxes indicate the upper and lower quartiles as well as the median (red bar) of the

TSS/NCC distributions; whiskers show extent of the rest of the data; red crosses

denote outliers.
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Synthesis (TSS):

Brodatz Texture

Model D6 D21 D53 D77

TmPoT 0.9395± 0.0066 0.9182± 0.0554 0.8566± 0.0513 0.8693± 0.0072

TPoT 0.5651± 0.0792 0.8004± 0.0670 0.8051± 0.1026 0.6898± 0.0852

Tm 0.9299± 0.0149 0.8888± 0.0811 0.8548± 0.0475 0.8658± 0.0087

Multi-Tm (96) 0.8229± 0.1154 0.8897± 0.0507 0.8679± 0.0404 0.8191± 0.0287

Multi-Tm (128) 0.8886± 0.0932 0.9139± 0.0302 0.8914± 0.0353 0.8341± 0.0183

Multi-Tm (256) 0.9327± 0.0184 0.9377± 0.0172 0.9243± 0.0089 0.8623± 0.0082

Multi-Tm (256,BG) 0.9309± 0.0304 0.9383± 0.0155 0.9233± 0.0091 0.8624± 0.0082

Multi-Tm (256,BG-) 0.9502± 0.0323 0.9553± 0.0157 0.9413± 0.0091 0.8814± 0.0074

Tm (BG) 0.9312± 0.0125 0.8857± 0.0833 0.8430± 0.0689 0.8652± 0.0139

Tm (BG-) 0.9526± 0.0118 0.9020± 0.0848 0.8607± 0.0706 0.8869± 0.0140

Bi-FoE 0.7573± 0.0594 0.8710± 0.0317 0.8266± 0.0869 0.6464± 0.0215

Inpainting (NCC):

Brodatz Texture

Model D6 D21 D53 D77

TmPoT 0.9106± 0.0144 0.9134± 0.0120 0.8785± 0.0162 0.7736± 0.0268

TPoT 0.8709± 0.0139 0.8770± 0.0182 0.9028± 0.0113 0.6867± 0.0303

Tm 0.9041± 0.0137 0.9041± 0.0175 0.8667± 0.0159 0.7698± 0.0280

Multi-Tm (96) 0.8793± 0.0217 0.8862± 0.0091 0.8514± 0.0203 0.6968± 0.0400

Multi-Tm (128) 0.8871± 0.0200 0.8931± 0.0092 0.8718± 0.0169 0.7112± 0.0453

Multi-Tm (256) 0.9010± 0.0214 0.9047± 0.0090 0.8901± 0.0178 0.7282± 0.0454

Multi-Tm (256,BG) 0.9017± 0.0208 0.9046± 0.0091 0.8898± 0.0178 0.7270± 0.0471

Multi-Tm (256,BG-) 0.9210± 0.0213 0.9224± 0.0090 0.9081± 0.0182 0.7451± 0.0487

Tm (BG) 0.9032± 0.0141 0.9040± 0.0179 0.8670± 0.0154 0.7707± 0.0260

Tm (BG-) 0.9240± 0.0140 0.9217± 0.0182 0.8860± 0.0156 0.7908± 0.0263

Efros&Leung 0.8746± 0.0239 0.8724± 0.0262 0.8732± 0.0412 0.6211± 0.0582

Bi-FoE 0.8769± 0.0163 0.8653± 0.0244 0.9145± 0.0125 0.6567± 0.0205

Table 4.1: Sample means and standard deviations of the texture synthesis (top) TSS-

and inpainting (bottom) NCC-scores. We thank Nicolas Heess for providing the Bi-

FoE results for the synthesis task. The inpainting results for Bi-FoE [Heess et al.,

2009] are shown for rough comparison/indicative purposes, as they were obtained

using a slightly different experimental setup. See Figure 4.7 and Table 4.2 for the

inpainting results w.r.t MSSIM and TSS.
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4.3.4 Constrained texture synthesis

We used an inpainting evaluation protocol very similar to Heess et al. [2009]: We

took patches out of the test texture images, and created a square hole inside by

setting texture values within the square to zeroes. The inpainting task was then

to produce reasonable values to the zeroed out pixels. The quality was measured

by the (i) NCC score with the ground truth region, (ii) mean structural similarity

index (MSSIM) [Wang et al., 2004] (see also Appendix A.5) between the inpainted

region and the ground truth region, and (iii) TSS between the inpainted region

and the test portion of the Brodatz texture. Instead of using 70× 70 images, we

used 76× 76 images and used a 54× 54 instead of a 50× 50 inpainting square as

in Heess et al. [2009]. The reference frame border was then 11× 11, compared to

10×10 of Heess et al. [2009]. The inpainting was done for the models by running

HMC sampling, during which we constrained the reference border. The number

of inpainting frames used in the experiments was 20 for each texture class, and

the inpainting was done with 5 different random number generator initial states,

producing 100 result images for each model under each texture class. We also

compared against the nonparametric method by Efros & Leung (E&L) [Efros and

Leung, 1999], and our implementation of that method used the training half of

the image as the training data. The ‘neighbourhood window’ for infilling from

the training data was 15× 15, as used in Heess et al. [2009].

Example inpainting results for the models are shown in Figure 4.4. Inpainting

results are summarized quantitatively w.r.t. NCC in Figure 4.3 (right) and Ta-

ble 4.1 (bottom). Our experiments suggest that by providing a reference frame,

the models are able to improve the quality of the samples as measured by the TSS4

over those from texture synthesis5. As in the texture synthesis task, the scores

for the TmPoT and the Tm model are highest in general, and comparable to each

other. Interestingly, providing the reference frame provides a performance boost

to the TPoT in relation to the other models: Although it still scores slightly

lower than the other models on most textures, its performance is even slightly

better than the other models for the D53 texture6. Comparing to the Efros &

Leung and BiFoE results (last row of Table 4.1), we observe very similar results

4MSSIM cannot be used for assessing both of the tasks.
5The sampling and inpainting scores are not directly comparable because the patch sizes for

scoring were different, and typically the smaller the patch the larger the score.
6The slightly worse performance of the TmPoT is likely to be related to local optima and

boundary issues (which for that model were most problematic).
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Figure 4.4: Inpainting results. Example inpainting frames (top row) with representa-

tive results for the models (other rows). Each case has been scaled independently to

cover the full intensity range.

for D6, D21 and D53, but that our performance is markedly better for D77.

We have also analyzed the inpainting results w.r.t. MSSIM (computed be-

tween the inpainted region and the ground truth data for that region) and TSS

(computed between the inpainted region and the test portion of the Brodatz tex-

ture) which are summarized in Figure 4.7 and Table 4.2. MSSIM is typically

considered to be perceptually more valid than metrics based on mean squared

error for assessing image quality in the task, and is widely used in assessing in-

painting quality. The results have a similar pattern to the NCC results with

respect to all textures except for D77, in the case of which the TPoT and the

Efros&Leung scores are clearly lower/worse.



Chapter 4. Multiple Texture Boltzmann Machines 71

The following section develops a novel framework for Boltzmann machines

to generate multiple textures, where we will use Tm as the base-model, since it

obtained state-of-the-art results, and it is computationally much less complicated

than the TmPoT7.

4.4 Multi-Texture Boltzmann Machines

The above Boltzmann machine models are for individual textures. Here we de-

scribe a framework for multiple textures. Our model has two sets of parameters

Θ; θglobal are shared parameters across the different classes, while the parameters

{θm} are specific to each individual texture class m = 1, . . . ,M .

Let Vm denote the visibles of the images in texture class m. We assume that

each of the M probabilities p(Vm | θm, θglobal) are defined by Gaussian-Bernoulli

RBMs. The weights M of these models are set to be global, while the biases b

are set to be texture-specific, so that p(V1, . . . ,VM | Θ) =
∏M

m=1 p(Vm | bm,M).

Switching between the different classes is achieved by having a high-level cate-

gorical variable y with M states denoting the different textures. The appropriate

biases are switched in by selecting the state of y, similar to the implicit mixture

construction in Nair and Hinton [2009].

As in the previous experiments, we use tiled-convolutional weight sharing with

the model in the following experiments. We denote this model the multi-Tm. To

further motivate the multi-Tm, imagine that we start with a single-Tm model

for a specific texture, and then add the filters from all the other texture models

to the energy, but setting the biases for the filters from all of the models to large

negative values. This will have the effect of “turning off” the filters from the

other models, leaving in effect the original single-Tm model. Thus this model

can be made to mimic each of the original single-Tm models by adjustment of

the biases. However, the real multi-Tm can be more powerful by sharing filters

across textures.

4.4.1 Learning

We learned the parameters of the models by approximate maximum likelihood,

using stochastic gradient ascent based on Fast Persistent chains Contrastive Di-

7Boundaries were typically also easier to deal with it.
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vergence (FPCD), as above. We assigned sets of 64 negative particles to each of

the texture classes, which were updated with HMC sampling, so that for texture

class m samples at an epoch were drawn from the model specified by current

parameters bm and weights M, using similar techniques as described before. Our

implementation loops over texture classes updating their negative particles which

are then used to compute the gradients and parameter updates for their class-

specific biases, and accumulates gradients w.r.t weights which are used to update

the weights once all classes have been sweeped/statistics collected.

4.4.2 Experiments

We have trained models for 8 Brodatz texture categories (D6, D21, D53, D77,

D4, D16, D68, and D103) with 96, 128, and 256 features for each tile set, shared

over all of the textures; the models for individual textures (single-Tms) each have

32 specific features, totalling 32× 8 = 256 features.

To investigate the specificity/generality of features of a multiple texture model

we considered a 256-feature model trained on the full textures, and evaluated

hidden unit activation probabilities of each feature with each of the bias settings

(one per texture class) as a response to samples from each of the texture classes.

We then applied multi-class Fisher’s linear discriminant analysis (see e.g. Bishop

[2006, §4.1.6]) to these vectors to rank the features according to their separa-

bility/texture specificity, using the J(W) criterion from Bishop [2006]. Thus for

each feature type we aim to find linear projections y = Wx of the feature-specific

vectors x which would separate the texture classes as well as possible. The sep-

aration criterion is set to score high when the between-class covariance of the

projections is high and within-class covariance is small. The particular form we

use defines:

J(W) = Tr
{(

WSWW>)−1 (
WSBW>)} , (4.2)

where Tr denotes a matrix-trace operator, SW denotes a within-class covariance

matrix, and SB denotes a between-class covariance matrix. The covariance ma-

trices are defined as follows:

SW =
∑
k

∑
n∈Ck

(
x(n) − µk

) (
x(n) − µk

)>
(4.3)

SB =
∑
k

Nk (µk − µ) (µk − µ)>, (4.4)
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Figure 4.5: A sampling of weights of a multi-Tm, ordered from left-to-right and top-

to-bottom with increasing Fisher LDA score in each block. The top block shows the

features with the 16 smallest scores, the bottom block the 16 largest scores, and the

middle block a thinned set of 128 features.

where Nk denotes the number of cases in class Ck, µk = 1
Nk

∑
n∈Ck x(n) (class-

specific average under a feature), and µ = 1P
k Nk

∑
n x(n) (average of all vectors

under a feature). The optimization amounts to solving an eigenvalue problem;

we solve W for each feature by computing the number of texture classes minus

one eigenvectors of S−1
W SB associated with the largest eigenvectors.

Based on this ranking, we visualize these features in Figure 4.5 so that the top

row illustrates 16 least separable features, the block below it shows a thinned set

of 128 features, and the row below it 16 most separable features, with increasing

separability from left-to-right and top-to-bottom. Many of the most separable

ones resemble filters in texture-specific (single-Tm) models for the same data as

shown in Figure 4.6.

We have evaluated the sampling and inpainting performance of the models

using the setup of previous section. Representative samples from the model with

128 features per site are shown in Figure 4.1 (bottom row), Figure 4.2 (bottom

row) and Figure 4.4 (second row from the bottom). Visual inspection of the

figures shows that they are comparable to those of the individually trained Tm-

models, and that the models can capture the statistics of a wide variety of textures
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Figure 4.6: A sampling of weights of single-Tm-models.

effectively. Numerically the performances are also similar, as can be seen from

Figure 4.3 and Table 4.1, with the exception of higher synthesis performance

for multi-Tm models on D53, and higher NCC inpainting performance for the

individually trained D77. Table 4.1 shows that the performance of the multi-Tm

in general improves as the number of features is increased. The results w.r.t.

MSSIM and TSS summarized in Figure 4.7 and Table 4.2 have a similar pattern

to the NCC results with respect to all textures except for D77, for which the

multi-Tm scores are now similar to those of the texture-specific TmPoT- and

Tm-models, and (as mentioned before) the TPoT and the Efros&Leung scores

are clearly lower.

Finally we consider two additional inference approaches for synthesis and in-

painting with the Tm and the Multi-Tm (256) based on block-Gibbs sampling,

denoted BG and BG-. BG sets the result texture images as the actual samples

(in synthesis at iteration number 10,000 starting from a zero-initialization and in

inpaiting at iteration number 5,000) whereas BG- sets them as the conditional

means of visible units given hidden units (and only lacks the i.i.d. Gaussian

(which is here standard) noise added to obtain the BG). The obtained results

are summarized numerically in Tables 4.1 and 4.2. We can see from the table

that (i) synthesis results with the baseline HMC and the BG are similar, and

(ii) the BG- obtains clearly better results than the BG (and the baseline HMC).

Appendix C.1.1 finds similar results on an experiment which also considers the
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MSSIM TSS

Figure 4.7: Constrained synthesis quality assessment for the models, based on MSSIM

between inpainted area and corresponding Brodatz texture area (left) and TSS be-

tween inpainted area and the test portion of the Brozatz texture (right). The Multi-

Tm model has 256 features per site. Boxes indicate the upper and lower quartiles as

well as the median (red bar) of the MSSIM/TSS distributions; whiskers show extent

of the rest of the data; red crosses denote outliers.

effect of the sampling method in learning single-texture models with a Tm. As

also stated in the appendix, using the conditional mean as the estimator can be

seen as applying Rao-Blackwellization [Blackwell, 1947]. These results have not

been published in Kivinen and Williams [2012] and are novel.

4.5 Morphing and Interpolating Textures

We have demonstrated above with the multiple texture framework the synthesis

of homogeneously textured images of several classes. We have also experimented

with varying the biases in a spatial fashion, so to synthesize globally varying

textures using a texture-by-numbers approach. In Figure 4.8 bias settings corre-

sponding to two different textures have been used for manually specified image

regions, including letters and the background; the model transitions nicely be-

tween the two textures8. Motivated by the effective performance, we now extend

the methods further to consider even more complicated texture analysis prob-

lems, called texture morphing. Texture morphing includes several areas including

8Samples were drawn by HMC.
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Inpainting (MSSIM):

Brodatz Texture

Model D6 D21 D53 D77

TmPoT 0.8629± 0.0175 0.8748± 0.0108 0.8607± 0.0228 0.7668± 0.0322

TPoT 0.8447± 0.0176 0.8624± 0.0284 0.8932± 0.0143 0.6419± 0.0396

Tm 0.8591± 0.0167 0.8666± 0.0179 0.8482± 0.0234 0.7632± 0.0316

Multi-Tm (96) 0.8278± 0.0172 0.8509± 0.0101 0.8292± 0.0301 0.7030± 0.0376

Multi-Tm (128) 0.8346± 0.0152 0.8568± 0.0097 0.8471± 0.0249 0.7194± 0.0391

Multi-Tm (256) 0.8508± 0.0161 0.8682± 0.0096 0.8642± 0.0251 0.7345± 0.0399

Multi-Tm (256,BG) 0.8511± 0.0165 0.8682± 0.0093 0.8635± 0.0251 0.7340± 0.0427

Multi-Tm (256,BG-) 0.8770± 0.0170 0.8901± 0.0090 0.8851± 0.0252 0.7555± 0.0443

Tm (BG) 0.8586± 0.0164 0.8663± 0.0184 0.8488± 0.0224 0.7645± 0.0282

Tm (BG-) 0.8853± 0.0163 0.8878± 0.0188 0.8705± 0.0225 0.7861± 0.0290

Efros&Leung 0.8524± 0.0318 0.8566± 0.0344 0.8558± 0.0578 0.6012± 0.0760

Inpainting (TSS):

Brodatz Texture

Model D6 D21 D53 D77

TmPoT 0.9173± 0.0073 0.9179± 0.0087 0.8859± 0.0117 0.7992± 0.0240

TPoT 0.8722± 0.0135 0.8782± 0.0178 0.9029± 0.0108 0.6846± 0.0243

Tm 0.9103± 0.0066 0.9114± 0.0138 0.8740± 0.0123 0.7983± 0.0210

Multi-Tm (96) 0.8873± 0.0085 0.8939± 0.0067 0.8610± 0.0137 0.7484± 0.0272

Multi-Tm (128) 0.8956± 0.0069 0.8998± 0.0059 0.8800± 0.0101 0.7597± 0.0187

Multi-Tm (256) 0.9096± 0.0054 0.9106± 0.0062 0.9010± 0.0116 0.7720± 0.0276

Multi-Tm (256,BG) 0.9099± 0.0058 0.9106± 0.0063 0.9009± 0.0115 0.7726± 0.0301

Multi-Tm (256,BG-) 0.9298± 0.0056 0.9286± 0.0060 0.9192± 0.0119 0.7920± 0.0313

Tm (BG) 0.9098± 0.0069 0.9114± 0.0140 0.8740± 0.0124 0.7989± 0.0195

Tm (BG-) 0.9307± 0.0068 0.9289± 0.0144 0.8930± 0.0126 0.8198± 0.0196

Efros&Leung 0.8789± 0.0194 0.8789± 0.0219 0.8843± 0.0261 0.6541± 0.0533

Table 4.2: Sample means and standard deviations of the texture inpainting MSSIM-

(top) and TSS-scores (bottom).
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Figure 4.8: Texture results obtained by using different bias settings for different

manually specified regions, including letters and the background.

texture blending, texture metamorphosis (Liu et. al. 2002), and texture inter-

polation (Ruiters et. al. 2010). In texture blending the goal is to create a novel

texture based on two or more source textures, so that the resulting texture has

features from the different source textures; the generated texture can be seen as

a blend of the source textures. In texture metamorphosis, the task is to generate

a sequence of texture images, from a source texture to a target texture, with

smooth transitioning between the texture images. Texture interpolation takes

the problem of texture metamorphosis to the generation of spatially varying tex-

ture, with the task of filling in missing data in an image with data from multiple

textures.

So far we have not explored the synthesis of novel texturing possibly needed in

all of the tasks, or creating smooth texture transitioning in the synthesis for tex-

ture metamorphosis and texture interpolation. In the following we will extend our

earlier methods for enabling also these remaining components, and demonstrate

their effectiveness in several example problems.
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4.5.1 Spatially interpolated bias fields

The basic idea is to create spatially interpolated bias fields by forming convex

combinations of the biases at each location. The energy-function of the model

used to generate the texture images and scenes is defined as follows:

E(h,v) =
∑
i

(vi − a)2

2σ2
−
∑
s,t

J∑
j=1

hs,tj

(
K∑
k=1

πs,tk b
s,j
k +

1

σ2
Ms(·, j)>vNs,t

)
, (4.5)

where π denotes so-called hidden unit bias combination weights, with K dif-

ferent values for each filter application position , indexed by diagonal offset s

for the different tilings and patch index t (which together identify the patch

location within the visibles lattice). The other parameters are those of a tiled-

convolutional multiple-texture Gaussian RBM, with M denoting the weights of a

multiple texture model, and {bk}Kk=1 the K sets of training texture-class specific

biases associated with them. In this example, the visible bias a, and σ is common

to all of the texture classes.

We can view the models used in earlier experiments using categorical hidden

unit bias combination vectors, and the category was either fixed (to generate

homogeneously textured images) or varied spatially (to generate globally varying

texture images). In the following experiments we will be considering tasks where

the combination vectors are not categorical, but will be from a K − 1 simplex9,

with the same or different values for the different positions, depending on the

application.

In blending textures k and m the combination vectors are defined as follows:

πs,t` = 0.5δ(` ∈ (k,m), 1) ∀ s, t, and so the effective hidden unit biases of the

model will be the average of those associated with training texture k, and m. The

rationale is that the biases affect the activation probabilities of features common

to all textures, and for a blend the features should be active with probability

according to the average of those associated with the source pairs classes, and

their biases should be thus averaged. In texture interpolation, the combination

weights are based on interpolation coefficients, varying spatially from the ground-

truth categorical combination vectors defined by the existing texture data. We

used bi-linear interpolation in our experiments.

9Meaning the bias combination vectors per site define convex combinations.
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4.5.2 Related work

We discuss here closely related work to ours, see Ruiters et al. [2011] for a re-

view of texture interpolation methods, and Wei et al. [2009] for a recent review

of state-of-the-art methods for example-based texture synthesis for related other

methods. Many of the texture morphing and interpolation methods are based on

using image warping methods, and in general image metamorphosis/morphing

methods. One of the earliest of these approaches is that of Liu et al. [2002],

who introduced the problem of texture metamorphosis/morphing. Similar to

typical image morphing methods, the approach divides the problem of obtaining

a smooth morphing sequence of frames into two problems (i) of making corre-

spondences between the source and the target images, and (ii) the problem of

estimating a warping function to accommodate the changes in a smooth manner.

Due to the complexity of making correspondences for even typical texture scenes,

manual user assistance is used by specifying patterns (patches) in the source and

in the target images, and specifying correspondences of features in them using

landmarks. Based on this information, similar patterns are detected in the full

images, for which correspondences are made automatically. The correspondence

is formulated as an integer programming problem, and solved using the Hun-

garian algorithm. The warp function is then obtained by combining the pattern

and the landmark correspondences, and is estimated by using a sparse points

interpolation technique – a standard morphing path estimation algorithm.

Matusik et al. [2005] also consider a warp-based method for morphing tex-

tures, but in contrast to the approach in Liu et al. [2002], the correspondence

estimation for morphing is fully automatic. Key to this is the analysis of mor-

phability/similarity between textures, as measured by the residual error of a

warping method optimizing the feature alignment between the textures. Based

on this metric, a simplicial complex is created, with nodes of the graph represent-

ing different textures, and connections between nodes denoting that a morphing

can happen between the associated textures, which is the case if the respective

warping residual error is small enough. After the initial model is built, novel

textures (which become novel nodes) can be then morphed from the nodes of the

graph within a clique with a warping method, by linearly blending all pairwise

morphs of the clique node textures, with convexly combined warps between each

source node and its target nodes. The warp computation is done on feature map
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representations of the textures, in a coarse-to-fine search in which smoothness is

encouraged using a regularization technique. The method also includes sharpness

preservation by a histogram matching method, operating on steerable pyramid

coefficients. High-frequency statistics preservation via similar techniques is used

also in other works, including in Ruiters et al. [2011]. In the paper a simplicial

complex of roughly 1500 nodes is built (from roughly 1500 textures of size 128 x

128, rotated and scaled to have approximately the same orientation and feature

size) using approximations for computing the graph connectivity.

The local homogeneity of statistics under globally varying textures has mo-

tivated several MRF-based or -inspired synthesis approaches. Many of these

are texture resampling based, inspired by the nonparametric texture resampling

method in Efros and Leung [1999] (or extensions such as that in Efros and Free-

man [2001]), with local search using some similarity metric to feed the texture

synthesis for the positions. The image analogies work [Hertzmann et al., 2001]

considers several modalities of image data to create analogies with respect to

the modalities, with the search performed over the joint modality representa-

tions. The approach has been adopted in several methods for globally varying

texture synthesis, including in Liu et al. [2004], and in Zhang et al. [2003]. Zhang

et al. [2003] consider several control maps: a texton mask defining the textons,

an orientation field defining the orientation of progression, and transition func-

tion defining the rate of texture change/progression, each of which are defined

manually.

Ruiters et al. [2011] combine several techniques proposed in the field in their

method, mostly extending the approach of Kwatra et al. [2005]. To interpolate

two textures, their method performs nearest-neighbor search for corresponding

neighborhoods from manually defined binary feature maps for the textures, from

both of the sets. The approach then interpolates the neighborhoods, which in-

cludes color adjustment (so-called α-blending) and feature warping, and synthe-

sizes them using a multiscale approach of Kwatra et al. [2005], with the addition

of several ad-hoc techniques to obtain effective visual quality, as is common with

many of the approaches in the field.

The image melding method [Darabi et al., 2012] is a state-of-the-art texture

interpolation method, which is also one of the most unified and self-contained

ones. For a target interpolation position, similar neighborhoods are searched

for using not only from the raw textures, but also from their geometrically and
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photometrically transformed sets, and in the joint representation of them and

their (automatically extracted) gradient information. In texture interpolation,

multi-modal neighborhoods are searched from the source sets, similar to Ruiters

et al. [2011], here by optimizing an energy function of a convex combination

of source-specific energies, each consisting of weighted distances in terms of the

colour and gradient data. The target image is then set according to a screened

Poisson equation solver.

Similar to the method of Darabi et al. [2012], our approach is fully automatic,

does not need user interaction, does not use warping, and is created with a

global consistency criterion. Our approach can use data/features from images

outside of the textures being interpolated, whereas the image melding approach

in Darabi et al. [2012] relies only on the two source textures, although it could in

principle be adapted to such settings easily. In contrast to several other methods,

the model features in our case are learned from the data, rather than hand-

engineered. Similar to most state-of-the-art methods, the interpolation is not

done on the actual pixel values. In many of such methods it is done at the

feature level, but in our case on the probability distributions over the feature

states/activations. Furthermore our model also defines a fully specified generative

model to accomplish the texture generation.

4.5.3 Texture interpolation experiments

By using convex combinations of the biases corresponding to pairs/several differ-

ent textures suggest that plausible novel textures to those considered in training

can be generated from the multiple texture model. A few such cases are shown in

Figure 4.9, where each middle column image has been synthesized from a model

with biases set as the average of two training texture specific biases used in the

synthesis of the images on the left and on the right of the case10. All of the

images produced by the model with averaged biases differ from those produced

by a model with any of the training texture specific biases.

We have also experimented synthesis by spatially varying the biases using the

spatial interpolation mechanism. Our results suggest that both abrupt texture

changes and smooth morphs are possible based on appropriate spatial adjust-

ments of the multiple texture model biases. These can be also seen from the

10The simulation was according to the BG- approach, as with the rest of the results in this
chapter.
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Source 1 Blend Source 2

Figure 4.9: Example texture synthesis results obtained by a tiled convolutional Gaus-

sian Bernoulli RBM (Tm) with weights of the multi-Tm of [1] with 256 features per

site, trained on eight Brodatz textures, and biases set either to texture-specific bi-

ases, or set as the average of two texture-specific biases. The leftmost and rightmost

columns show samples by using texture-specific biases. The middle column shows

samples obtained using the average of the texture-specific biases used for the images

on the left and on the right of each case.
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Figures 4.10, 4.11, and 4.12. In Figure 4.10 the biases used in the synthesis

of the middle column images are interpolated horizontally between two training

texture specific biases which have been used in the synthesis of the images on the

left and right. The middle column images demonstrate smooth texture morphing,

and in some cases the creation of a novel texture. In Figures 4.11 and 4.12 the

bias field used in the synthesis of the middle column images are again based on

spatial interpolations between two training-texture-specific biases. Images syn-

thesized with the training-texture-specific biases are shown on the left and on

the right of each morphing case. The mixing proportions of the texture specific

biases used in the morphing are visualized at the top row. In Figure 4.11 the bias

field specification was such that the two sets of biases were used at the corners

so that the biases of each pair of neighboring corners were different from each

other (and so the biases were the same for the opposing corners). The biases at

the other locations were interpolated from those at these corners by using bilin-

ear interpolation. In Figure 4.12 the mixing weights were specificied in a more

complicated way, but also using bilinear interpolation from control point values.

Notice here how both clear texture borders and smoothly varying texture changes

are generated.

We also considered source and target textures being of the same texture type,

but associated with different viewpoints and/or illumination conditions, focusing

on a texture from the CUReT database. Figure 4.13 shows raw texture data, and

synthesized samples from a multi-Tm learned on 80 different views (viewpoint and

illumination varied) of the texture, each associated with a different class under

the model (and having class-specific hidden unit biases). Although the samples

can be easily differentiated from the raw data, the directionality property is rather

well captured with the model. Figure 4.14 shows texture interpolation results,

with horizontal morphing between left and right source/target textures. Similar

to earlier results, we can see the source/target textures being generated at their

respective locations, and other kinds of texturing in the middle, with visually

effective transitioning throughout the morph.

Future work for the texture morphing includes the development of joint models

of texture data and (bias) control parameters.
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Left Source Horizontal Morph Right Source

Figure 4.10: Example texture synthesis results obtained by a tiled convolutional Gaus-

sian Bernoulli RBM (Tm) with weights of the multi-Tm of [1] with 256 features per

site, trained on eight Brodatz textures, and biases set by convex combinations of two

training-texture-specific biases. The left and right columns show samples by using

training-texture-specific biases. The middle column shows samples by using bias fields

whose biases are horizontally varied from one of the training-texture-specific biases to

the other one. Samples using only the corresponding training texture specific biases

are shown on the left and on the right of each case.
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Source 1 Source 2

Morph

Figure 4.11: Example texture synthesis results obtained by a tiled convolutional Gaus-

sian Bernoulli RBM (Tm) with weights of the multi-Tm of [1] with 256 features per

site, trained on eight Brodatz textures, and biases set by convex combinations of two

training-texture-specific biases. The middle column shows samples using bias fields in

which the biases vary spatially. Specifically the training-texture-specific biases have

been placed at the corners of the bias fields such that the biases of each pair of neigh-

boring corners are different from each other (and so the biases are the same for the

opposing corners). The biases at other locations are obtained by bilinear interpolation

from these corner biases. The images on the left and on the right of each morph

are samples by using the training-texture-specific biases. The top row visualizes the

mixing proportions of the biases used in the morphing.
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Source 1 Source 2

Morph

Figure 4.12: Example texture synthesis results obtained by a tiled convolutional Gaus-

sian Bernoulli RBM (Tm) with weights of the multi-Tm of [1] with 256 features per

site, trained on eight Brodatz textures, and biases set by convex combinations of two

training-texture-specific biases. The middle column shows samples using bias fields in

which the biases vary spatially. The images on the left and on the right of each morph

are samples by using the training-texture-specific biases. The mixing proportions of

the texture-specific-biases are visualized at the top row.
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Figure 4.13: CUReT texture training views vs. model samples.
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Source 1 Horizontal Morph Source 2

Figure 4.14: Interpolating horizontally between two different view samples of a CUReT

texture.
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4.6 Summary and Discussion

We have analyzed the generative power of mPoT and its subcomponents for

the task of single texture modelling. Our results show that it is essential to

not restrict the conditional mean of visible units to be zero, consistent with

previous findings in Heess et al. [2009]. The results on the texture synthesis and

inpainting tasks are generally as good as and sometimes better than the start-of-

the-art results in Heess et al. [2009]. Our results show that for this task it is the

mean hidden units that are much more important, especially in unconstrained

sampling.

We have then developed Boltzmann machines capable of modelling multiple

textures, and applied it to the tiled-convolutional Gaussian-Bernoulli RBM. By

considering a shared set of weights but texture-specific hidden unit biases, we

have shown comparable performance to the individually-trained texture models

which already provide state-of-the-art results. The feature sharing by multi-

texture models is expected to yield savings in terms of the number of features

needed to model several categories, and provides a natural route for extension to

a more comprehensive natural image model.

In Appendix C.1 we have also analyzed the effect on texture synthesis qual-

ity of using either hidden units and using block-Gibbs sampling or integrating

them out and using HMC in model learning and in inference. We have there

also developed novel boundary handling methods, assessed their effect on texture

synthesis quality under the Tm-model, and discussed several other considerations

for effective texture modelling.

We have demonstrated that the multiple texture Boltzmann machine based

on the tiled-convolutional RBM can produce images containing multiple textures,

with controlled spatial extent. We have then developed a texture interpolation

method based on the multiple texture Boltzmann machine, and shown that by

interpolating the hidden unit biases associated with training texture classes, novel

textures can be generated. Textures can be interpolated spatially by simply

interpolating the biases spatially.

Future work includes extending the model to be able to switch (without super-

vision) between generating differently textured regions, and interpolating them.

This can be done by letting the biases b in EGB−RBM (or the bias combination

weights in 4.5) depend on a higher layer of hidden units.
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Multistream Networks for Visual

Boundary Prediction

5.1 Introduction

In this chapter we consider predicting visual boundaries in natural images. Martin

et al. [2004] give the definition “A boundary is a contour in the image plane that

represents a change in pixel ownership from one object or surface to another.”

Boundary detection is to be contrasted with edge detection, which is a low-level

technique to detect an abrupt change in some image feature such as brightness

or colour. So, for example, a heavily textured region might give rise to many

edges, but there should be no boundary defined within the region. Thus it is

more involved with detecting abrupt changes in more global information, such

as texture. Accurately finding boundaries subserves many vision tasks including

segmentation, recognition and scene understanding.

Recent work on boundary detection makes heavy use of the ground truth

provided by the Berkeley Segmentation Data Set (BSDS) [Arbelaez et al., 2011],

where each of the 500 images was processed by multiple human annotators. The

(deliberately vague) instructions to the annotators were [Martin et al., 2004]:

“Divide the image into some number of segments, where the segments represent

‘things’, or ‘parts of things’ in the scene. The number of segments is up to you, as

it depends on the image. Something between 2 and 30 is likely to be appropriate.

It is important that all of the segments have approximately equal importance.”

Our main interest in the thesis has been building generative models of natu-

ral image data based on Boltzmann machines. Generation of texture is clearly a

90
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necessary subcomponent of any credible model for visual scenes. So also is the

creation of several image segments, and thus the existence of contours as bound-

aries between segments. As we saw in the previous chapter focusing on modelling

textures based on conditionally Gaussian models, it is important to have hidden

units to control their means (especially for unconstrained synthesis). While we

showed that multiple textures can be created based on ‘mean-only’ models, re-

sults in the literature suggest the importance of covariance units for modelling

the more generic class of natural images.

Our goal in this chapter is two-fold: Firstly, we wish to improve understand-

ing of what are the roles of the mean and the covariance hidden units of such

conditionally Gaussian models in the generation of image segment boundaries.

Secondly, we investigate deep neural network architectures for learning the bound-

ary detection problem, which is expected to be useful also for further generative

model development.

Notable aspects of the work is (i) the use of “covariance features” [Ranzato

and Hinton, 2010] which depend on the squared response of a filter to the input

image, and (ii) the integration of image information from multiple scales and se-

mantic levels via multiple streams of interlinked, layered, and non-linear ”deep”

processing in an end-to-end optimizable architecture. Our results on the Berkeley

Segmentation Data Set 500 (BSDS500) show comparable or better performance

to the top-performing methods gPb [Arbelaez et al., 2011], SCG [Ren and Bo,

2012], and Sketch Tokens [Lim et al., 2013]. Additionally, our approach provides

the fastest reported prediction times, and avoids several hand-engineered and/or

computationally complex designs which are part of the the first two approaches

cited above. We provide a careful disection of the performance in terms of ar-

chitecture, feature-types used and training methods, which provides clear signals

for model understanding and further development.

The structure of the chapter is as follows: the following section contains the

theory part, including descriptions of the models considered and related work.

Section 5.3 describes the experiments, including descriptions of the data consid-

ered, model training, and inference results. Section 5.4 provides a summary, and

describes ongoing and future work1.

1I thank Nicolas Heess for feedback, comments and discussions on many parts of the work
presented in this chapter. His suggestions concerning the presentation of Kivinen et al. [2013b]
have also been useful here. The main ideas and work presented in this chapter are by the thesis
author, supervised by Prof. Christopher K. I. Williams.
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5.2 Theory

In section 5.2.1 we describe a variation of the mean-and-covariance restricted

Boltzmann machine (mcRBM) architecture of Ranzato and Hinton [2010], and

its deep belief net extension, both of which we have developed and which we

use as basic feature extraction models. The use of these features in supervised

learning of boundary prediction is described in section 5.2.2, and related work is

discussed in section 5.2.3 .

5.2.1 The mcRBM and a mcDBN extension

The mcRBM-model [Ranzato and Hinton, 2010] (see also Sec. 2.1.2.7) is a gen-

erative model for images. We assume the following generalization of the model

so that it assigns an energy to the joint configuration of visible units v and its

hidden units h as follows:

E = −
∑
j

hcj

(
dj −

∑
f

πfj
2

[
K·f

>Av
]2)

+
∑
i

(vi − a)2

2σ2
−
∑
`

hm`

(
b` +

1

σ2
M·`

>v

)
,

(5.1)

where K·f denotes a factor-to-image-units filter for a factor with index f , and we

define the pooling matrix elements so that πjf ≥ 0 ∀ j, f and
∑

f πjf = 1 ∀ j.
Extending the basic model, we introduce/consider A, which denotes a whitening

basis2. M·` denotes the mean-hidden-unit-to-visible-unit filter for unit type `.

Each of the covariance units hcj and mean hidden units hm` are associated with

biases dj and b`, respectively. a is the visible unit bias, and σ is a positive

scalar. The joint hidden unit probability distribution conditional on the visibles

factorizes over sites:

p
(
hcj = 1 | v, d, π,K

)
= sig

(
dj −

1

2

∑
f

πfj
[
K·f

>Av
]2)

, (5.2)

p(hm` = 1 | v, b, σ,M) = sig

(
b` +

1

σ2
M·`

>v

)
, (5.3)

where sig(z) denotes the logistic sigmoid function sig(z) = 1/(1 + e−z).

2The basis was learned from all 8× 8 patches in the training data. Each of the 63 retained
dimensions was scaled according to the inverse of the square root of the associated eigenvalue
of the scatter matrix, similar to ZCA. A whitening front-end for covariance filters has been
used also in the TmPoT in Ranzato et al. [2010b], and in our experiments with such models in
Chapter 4. We note that it is unclear from Ranzato et al. [2010b, page 6, paragraph 1] whether
the above variant has been explored, as the whitening-frontend footnote refers to TmPoT code
only (no code for the TmcRBM, or comments on such is provided).
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The models used in our experiments assume diagonally-tiled convolutional

parameter sharing, with 8×8 receptive fields, stride of 2 units, and 64 features of

both kinds per site. Figure 5.1 illustrates a diagonally-tiled convolutional mcRBM

(TmcRBM) model instance (with different receptive field sizes and stride than

what are used in our experiments). We fixed the pooling matrix π to the identity,

σ to unity, and the visible unit bias to zero. Each full image to be processed with

the model was normalized to have zero mean and unit variance.

Figure 5.2 (left) shows samples from a generatively trained TmcRBM, which

have been drawn with HMC, and from a tiled convolutional mPoT (TmPoT) with

pooled covariance filter-outputs (a state-of-the-art shallow image model TmH-

PoT) [Ranzato et al., 2010b] are shown in Figure 5.2 (right). Qualitatively the

samples are similar to those shown in Ranzato et al. [2010b, Fig. 3, panel C].

Figures 5.3 and 5.4 visualize hidden unit activations as a response to different

image patches under the TmcRBM. In each of these figures, the rectangles over-

laid on the input image denote boundaries of receptive fields of example hidden

unit stacks, for each of the four different parameter sets (due to 8×8 filters and

a stride of 2). Together the stacks form all of the hidden units which connect

to the visible unit position marked with a magenta-coloured circle. The figures

also visualize the weights of these sets, and the activations of the units at the

positions. We can see that many of the covariance filters of the model are very

clearly structured, and resemble Gabor-filters; in contrast the mean hidden unit

filters are less localized in general.

Covariance hidden units of the kind that are on penalize edge-like structure

at the corresponding location, scale and orientation. Intuitively the covariance

units are expected to want to be off at such edge-like image structures, as other-

wise there would be a large energy increase, due to the squared response of the

filter and the matched edge (either positively or negatively correlated). Using

covariance units for structures having invariance to the sign of the input is more

economical than when using the mean units, which are sensitive to the sign.

In natural images edge-like structures appear often in their sign-inverted form

(dark-to-light versus light-to-dark edge), although there exist certain biases due

e.g. to gravitation affecting the orientation of structures, and also the direction

of illumination.

In Figure 5.3 the receptive fields are located at a vertical surface boundary

(between a building and sky). Notice that these stimuli give rise to very small
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Figure 5.1: A graphical illustration of a diagonally-tiled-convolutional mcRBM. The

visible units visualized in the middle layer connect to the J covariance hidden unit

layers of the model at the top, and to the L mean hidden unit layers of the model at

the bottom. Within these layers the hidden units are partitioned into different sets

(red,green,blue), associated with different parameters for their hidden units. Each of

the hidden units connect to a region of visible units, and the filter applications within

a set are non-overlapping and tile a certain-sized region of visible units, and those of

different sets are offset diagonally with a stride between the neighboring sets. .
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TmcRBM TmHPoT

Figure 5.2: Samples (130× 130 boundary-cropped images from 142× 142 samples)

from a TmcRBM (left), and from a TmHPoT [Ranzato et al., 2010b] (right; from

the authors), trained on 200 training images from the BSDS500. The sample images

are globally normalized to fill the full intensity range.

activations (very dark blocks) for several covariance units, and that their filters

have mostly-vertical Gabor-type appearance. The other covariance units have

much larger activations, and which are similar to each other. Some of the units

have filters with mostly-vertical Gabor-type appearances, but for example are

not centered at the boundary. In Figure 5.4 the receptive fields have sharp in-

tensity changes in several directions, and much larger amount of covariance-unit

inactivation can be observed.

We develop a deep belief network (called the mcDBN) from the mcRBM,

extending it to have an additional layer of binary hidden units on top, similar to

the DBN extension of the mPoT model in Ranzato et al. [2011a]. We also use

diagonally-tiled convolutional feature sharing there, using a stride of one second

layer unit (corresponding to 8 units in the visible layer). A top-layer hidden unit

layer takes input from a 3 × 3 region of mcRBM (64 + 64) hidden unit stacks

under each of the 4 shifts, containing 512 input ‘channels’ in total. Thus each

of the second-layer hidden units are directly influenced by a 30 × 30-region of

visible units3. We used 512 feature planes, and thus the second-layer has 3 sets

of 512 hidden units, each with their own sets of weights and biases. Figure 5.5

33 replicas of 8 × 8 filters at all of the diagonal-2-shifts (6 unit offsets between the 1st and
the last).
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Image (Context) Receptive Fields (Zoom-Up)

Covariance Unit Filter&Activation-Pairs

Mean Unit Filter&Activation-Pairs

Figure 5.3: Hidden unit activations as a response to image patches under a TmcRBM.

The rectangles in the input image denote boundaries of receptive fields of example

hidden unit stacks, under each of the four different parameter sets. Together the

stacks form all of the hidden units which connect to the visible unit position marked

with a magenta-coloured circle. The weights of these sets, and the activations of the

units at the positions are visualized in horizontal pairs, with a pair per black rectangle.

White/black activation means an active/inactive feature. Best viewed on screen.
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Image (Context) Receptive Fields (Zoom-Up)

Covariance Unit Filter&Activation-Pairs

Mean Unit Filter&Activation-Pairs

Figure 5.4: Hidden unit activations as a response to image patches under a TmcRBM.

The rectangles in the input image denote boundaries of receptive fields of example

hidden unit stacks, under each of the four different parameter sets. Together the

stacks form all of the hidden units which connect to the visible unit position marked

with a magenta-coloured circle. The weights of these sets, and the activations of the

units at the positions are visualized in horizontal pairs, with a pair per black rectangle.

White/black activation means an active/inactive feature. Best viewed on screen.
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illustrates a diagonally-tiled convolutional mcDBN (TmcDBN) model instance.

Note that in the illustration the receptive fields are much smaller than in the

model considered in our experiments, and the connections are drawn only from

few selected hidden units to their receptive fields.

5.2.2 Supervised boundary prediction

We consider feedforward neural networks for boundary prediction, where each

pixel vi has a corresponding contour unit. Let ui denote the predicted probability

that contour unit i takes value 1 (i.e. is a contour). Based on a vector of features

x (which could arise from multiple hidden layers of a network), the prediction ui

is obtained via logistic regression according to:

ui = sig

(
g +

∑
j

Wjixj

)
, (5.4)

where Wij denotes a weight between feature xj and contour unit site i, and g

denotes a scalar bias. We are considering many networks with several layers of

logistic units, starting from the initial features defined by the activation proba-

bilities of the mean and covariance units, as in (5.3) and (5.2), respectively.

We consider three architectures of boundary prediction networks, as shown

in Fig. 5.6. The “shallow” network has only a single layer of hidden units, those

corresponding to the features of the mcRBM model. The “deep stream” archi-

tecture makes contour predictions based on the mcDBN-type hidden units, while

the “two-stream” architecture (see Fig. 5.6 and 5.7) uses the connection patterns

of both the shallow and deep streams via skip-layer connections (see e.g. Ripley

[1996, page 144]). Importantly we can think of each stream having two parts:

image feature extraction, and hypothesis propagation/read out (solid vs. dashed

lines in Fig. 5.6)4. In our networks, we use mirrored connectivity structure for

these two parts. For example, in the shallow networks each hidden unit receives

input from an 8 × 8 region of visible units, and sends information to an 8 × 8

region of contour units, with the same relative positioning. Adding an additional

encoding layer thus adds another read-out hidden layer. One reason for doing so

is the reduction in the hidden unit grid locations in the deeper networks. For ex-

ample for a 142×142 input image, there are only 5×5 hidden unit stack positions

4The boundary between these can be blurred in practice, especially in the case that network-
wide parameter changes are allowed in training.
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Figure 5.5: A graphical illustration of a diagonally-tiled-convolutional mcDBN. The

visible units v visualized in the bottom layer connect to the covariance hidden unit

hc and mean hidden unit hm layers (L(1) feature planes in total) in the middle, which

connect to the second layer hidden units at the top (having L(2) feature planes).

Within the hidden unit layers, the units are partitioned into different sets (red,green,

and blue in the first layer, and cyan and magenta in the second layer), associated

with different parameters for their hidden units. Each of the hidden units connect to

a region of units below, and the filter applications within a set are non-overlapping

and tile a certain-sized region of units, and those of different sets are offset diagonally

with a stride between the neighboring sets. Connections are drawn only from few

selected hidden units to their receptive fields.
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Figure 5.6: An illustration of the different streams in the considered networks. The

dots in the layers illustrate hidden units, and the blocks receptive fields (with no size-

consistency). The solid and dashed arrows denote feature extraction parameters, and

hypothesis read-out parameters, respectively.

at the second hidden layer, per each of the 3 shifts. In these deeper streams, the

number of feature planes is also applied in an anti-symmetrical fashion, and so

the first and the last hidden layers in the stream have equal numbers of planes.

More complicated structures could be considered, such as using (additional) hid-

den layer(s) in the integration of the streams, with possible skip-layer connections

for gradual integration.

Figures 5.8, and 5.9 visualize contour prediction for an input pattern with

a shallow model ([mcRBM init] using the notation of Sec. 5.3.3.1), showing the

covariance hidden unit feature activation and contribution patterns in Figure 5.8,

and those of the mean hidden units ones in Figure 5.9. Figures 5.10, and 5.11

show similar analysis, but for a different input pattern. The prediction messages

in the figures are relative contributions of the particular features to the contour

unit input (hidden unit activation times its weight to the contour unit, normalized

(by maximum absolute value) across all hidden units in the receptive field for

the particular contour unit site denoted by the magenta circle). In the case of

Figures 5.8 and 5.9, the receptive fields contain a surface boundary, whereas in the

case of Figures 5.10 and 5.11 there is no boundary. We can see that in the former

case, the covariance feature contribution to the prediction is clearly stronger.

The models containing multiple streams are motivated by the need to capture

image information at multiple scales and semantic levels. The shallow networks
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Figure 5.7: A graphical illustration of a two-stream model for contour prediction. The

visible units v in bottom left send information to the covariance and mean hidden

units directly above, which send information to the second layer hidden units at the

top and also to the contour units u at the bottom right. The second layer hidden

units send information to the hidden units h3 below right, which send information

to the contour units below. As before, within the hidden unit layers, the units are

partitioned into different sets, associated with different parameters for their hidden

units. Receptive and send connections are shown only for few of the hidden units.
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Receptive Field Model Prediction Cov. Feat. Contrib.

Fine-Tuned Covariance Unit Filter&Activation-Pairs

Fine-Tuned Covariance Unit Filter&Prediction Message-Pairs

Figure 5.8: Contour prediction properties under a shallow full model [mcRBM init].

The covariance unit filters and activation pairs are visualized as e.g. in Fig. 5.4.

The prediction messages are outputs of the features to the (input of the) particular

contour unit denoted by the magenta circle. The model prediction (logistic function of

contour unit input at each site) value is visualized with intensity, with white denoting

probability of one for boundary, and black denoting probability of zero for boundary.

Best viewed on screen.
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Receptive Field Model Prediction Mean Feat. Contrib.

Fine-Tuned Mean Unit Filter&Activation-Pairs

Fine-Tuned Mean Unit Filter&Prediction Message-Pairs

Figure 5.9: Contour prediction properties under a shallow full model [mcRBM init].

The mean unit filters and activation pairs are visualized as e.g. in Fig. 5.4. The

prediction messages are outputs of the features to the (input of the) particular con-

tour unit denoted by the magenta circle. The model prediction (logistic function of

contour unit input at each site) value is visualized with intensity, with white denoting

probability of one for boundary, and black denoting probability of zero for boundary.

Best viewed on screen.
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Receptive Field Model Prediction Cov. Feat. Contrib.

Fine-Tuned Covariance Unit Filter&Activation-Pairs

Fine-Tuned Covariance Unit Filter&Prediction Message-Pairs

Figure 5.10: Contour prediction properties under a shallow full model [mcRBM init].

The covariance unit filters and activation pairs are visualized as e.g. in Fig. 5.4.

The prediction messages are outputs of the features to the (input of the) particular

contour unit denoted by the magenta circle. The model prediction (logistic function of

contour unit input at each site) value is visualized with intensity, with white denoting

probability of one for boundary, and black denoting probability of zero for boundary.

Best viewed on screen.
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Receptive Field Model Prediction Mean Feat. Contrib.

Fine-Tuned Mean Unit Filter&Activation-Pairs

Fine-Tuned Mean Unit Filter&Prediction Message-Pairs

Figure 5.11: Contour prediction properties under a shallow full model [mcRBM init].

The mean unit filters and activation pairs are visualized as e.g. in Fig. 5.4. The

prediction messages are outputs of the features to the (input of the) particular con-

tour unit denoted by the magenta circle. The model prediction (logistic function of

contour unit input at each site) value is visualized with intensity, with white denoting

probability of one for boundary, and black denoting probability of zero for boundary.

Best viewed on screen.
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analyze the input image very locally, each site being affected by a 14 × 14 pixel

area around it. It is expected that such a network could only detect very local

image discontinuities such as edges. In order to distinguish texture discontinuities

effectively, deeper networks taking input from larger areas are likely to be needed.

Our experiments show significantly better results with such models.

Due to the sparse spatial application of the filters throughout the networks,

the deeper scales are expected to have only much coarser-scale information about

the data, and contour sites with very local discontinuities cannot be detected

efficiently. Being able to consider combinations of the streams is expected to

be beneficial, and our results for this demonstrate enhanced recall-rates over the

deep-only networks.

5.2.3 Related work

The Canny edge detector [Canny, 1986] computes the edge response magnitude√
G2
x +G2

y at each pixel, where Gx (resp. Gy) denotes the response of a Gaussian

first derivative in the x (resp. y) direction, followed by stages of non-maximum

suppression and hysteresis thresholding. Note that like our method it involves

a squared filtering operation followed by non-linear processing, but in contrast

there are a small, hand-crafted set of filters and post-processing steps.

An important reference method for boundary detection is gPb [Arbelaez et al.,

2011]. gPb is based on a Pb (probability of boundary) [Martin et al., 2004] predic-

tor that considers differences between histograms of brightness, colour and texture

in two opposing half-circles, which together compose a circular receptive field,

around a position at several orientations. The brightness and colour histograms

are based on luminance and chrominance data (respectively) whereas the texture

histograms are based on counts of vector quantized filter responses assigned to

their nearest prototypes (textons). Second-order Savitsky Golay-filtering is used

in conjunction of some of the features for improving localization of the contour

detector, which operates on the half-circle feature difference computation results.

Martin et al. [2004] study using Pb with several different detectors, finding lo-

gistic regression-based methods favorable, and demonstrate significantly better

results with Pb than with the Canny edge detection method (which is the best

out of several edge detection methods considered) on the BSDS300 data. In gPb,

the difference computations are performed and combined across multiple scales
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(using receptive fields of several sizes; also done in Ren [2008]), and a ”global-

ization” step based on spectral clustering is added. These operations are mainly

hand-crafted, although there is some optimization of cue combination coefficients.

There have been a number of papers that have considered more wholesale

learning approaches, taking as input an image patch and predicting the pres-

ence/absence of a boundary at the centre pixel of the patch. For example Dollar

et al. [2006] consider a large number of generic features such as gradients and

differences between histograms at multiple locations, orientations and scales, and

a probabilistic boosting tree is used as a classifier. Prasad et al. [2006] use raw

patches aligned to the Canny edge direction, and a SVM classifier. Kokkinos

[2010] considers the gPb pipeline, but uses Adaboost to learn the local cues

(which are there discriminatively compressed SIFT-descriptors), with an approx-

imate F-score used as the metric to optimize the model. Both Mairal et al. [2008]

and Ren and Bo [2012] have used representations based on sparse coding, ei-

ther directly (the former) or via pooling over oriented half-discs (the latter) to

train linear classifiers. The approach in Mairal et al. [2008] considers only image

positions detected as contours with the Canny edge-detection method. These

positions are in training divided into two categories, those agreeing well with

human annotations, and those not, and generic and class-specific sparse coding

dictionaries are built of data around the locations. The prediction is then based

on the output of a (linear) classifier operating on data reconstruction errors using

the dictionaries. The sparse code gradients (SCG) method [Ren and Bo, 2012]

(again) considers the gPb detection pipeline, but replaces the hand-crafted gra-

dient measures by representations learned specifically for the task, (this time) by

using sparse coding methods. This approach currently has the best performance

according to the results at Martin et al. [2013b].

In contrast to these learning approaches, our method builds in the idea of

filters with a squaring non-linearity (from the gated MRF work), but also allows

several layers of adaptive ”deep” nonlinear processing before the classification

stage. To ensure each decision takes into account image information from multiple

scales and many semantic levels effectively, such layered processing is done via

multiple different but interlinked streams, each corresponding to networks with

different depths. In order to make the learning and inference effective and fast,

we use tiled-convolutional feature sharing strategies in our networks5.

5The hidden units are typically less correlated in such networks compared to those in fully-
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Another line of work has addressed linking together edge fragments in or-

der to create extended smooth contours. See e.g. Parent and Zucker [1989] for

early work, and Zhu and Shi [2007] for a more recent approach. See the review

in Arbelaez et al. [2011] for further references. We also note that region segmen-

tation is closely related to boundary detection, although contour detectors do not

necessarily produce closed contours which partition the image into regions.

The boundary labelling problem (classifying each pixel as lying on a boundary

or not) can be generalized to the pixel labelling problem (classifying each pixel

into one of a given set of labels). For example, the ”segmentation” challenge

in the PASCAL VOC competition [Everingham et al., 2010] labels each pixel as

belonging to one of 20 object classes, or background. Conditional random field

(CRF) methods are often used to tackle this problem, due to correlations between

nearby labels. One could also consider CRFs for boundary detection, e.g. to

allow for multiple high-probability configurations, although note that evaluation

method for the BSDS dataset (described in Martin et al. [2004]) only utilizes a

per-pixel confidence score. This is a weakness related to the evaluation protocol

(see Hou et al. [2013] for an analysis of issues with this protocol), which however

is the best available at the moment.

5.3 Experiments

We consider a number of experiments to evaluate our boundary prediction net-

works, each using the standard datasets and benchmark methodologies, as de-

scribed in section 5.3.1. The supervised and unsupervised network training pro-

cedures are described in section 5.3.2. We have two main goals in our experiments:

The first is to evaluate the performance of our methods in comparison to other

relevant methods, and second assessing the influence of architectural and other

hyperparameter settings contributing to the results. The results for shallow and

deep networks are described in section 5.3.3.

5.3.1 Data

We consider the BSDS500 dataset (with main focus on its grey-scale version) and

benchmark in our experiments. The dataset consists of 500 natural images and

convolutional ones, which makes faster and thus more effective learning. Typically more pa-
rameters are needed, but for many applications, including this one, that is not problematic.
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associated boundary annotations by several humans, and is divided into three

subsets: training, validation, and test. We follow strictly the protocol in the

benchmark, including not using the test set for model development and selection.

Examples of test data (grey-scaled, cropped) are shown in Figure 5.21, and also

in Appendix D.4.

The predictions of each method are evaluated by the standard BSDS protocols,

involving computation of a precision-recall (P-R) curve, as explained in Martin

et al. [2004]. As in Arbelaez et al. [2011], the P-R curve can be summarized by

computing the F-measure score (the harmonic average of precision and recall) at

a particular threshold. This threshold can either be optimized across the data

set (ODS), or on a per image basis (OIS). The F-score is considered the main

metric of the benchmark (see for example Martin et al. [2013a] and Martin et al.

[2013b]). The P-R curve can also be summarized by the average precision (AP).

5.3.2 Training of the models

The mcRBM/mcDBN models were trained using stochastic gradient ascent for

approximate maximum likelihood learning based on the FPCD [Tieleman and

Hinton, 2009], with implementation inspired by the TmPoT training code [Ran-

zato et al., 2010b]. The mean and covariance filters were initialized to small

random values, the mean and covariance biases were set to -2 and to 2, respec-

tively, and their learning rates assumed the ratios 0.05:0.0025:0.0025:0.0005, re-

spectively, similar to in Ranzato and Hinton [2010]. Only the regular parameter

learning rates were annealed, using 1
t
-type annealing, starting at epoch 200, and

ending at 0.25 of the initial rates by the end of training at epoch 800. The 32

negative particles (of size 142 × 142) were drawn and updated by a single step

of HMC-sampling with 20 Leapfrog steps, with step-size set automatically to

maintain 90 percent sample accept rate according to an exponentially weighted

moving average with smoothing factor of 0.9. We used a L1-weight decay, with

rate 0.001. The mcDBNs were trained in the usual greedy manner, layer-by-layer,

using exactly the same hyperparameter settings as above, except the all of pa-

rameters had the same learning rate, 0.00025 divided by the number of feature

plane grid locations (as in the shallow models).

The training of each boundary prediction network is based on a stochastic

gradient ascent algorithm, optimizing a function consisting of a sum of two terms:
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the supervised log-likelihood L of the training data, and a regularization term of

λ times the L2-norm of the parameters, with λ = 0.001. The data log-likelihood

L =
∑

n,i y
(n)
i log u

(n)
i + (1− y(n)

i ) log(1−u(n)
i ), where y

(n)
i denotes the label of the

ith contour unit in nth training image, and u
(n)
i denotes network prediction for the

unit, according to equation (5.4). The read-out weights were initialized to small

random values, and the biases to zeroes except for the contour bias g, which was

set so that the sigmoid function evaluated at that value was equal to the overall

probability of a contour in the training data.

The shallow model parameters had equal learning rates, starting from α =
0.05·β
M ·T , where M denotes the batch size, and T the number of sites the parameter

was shared over per image. β was set to 1 and 10 for the feature extraction and

read-out parameters, respectively. In the deeper models, the learning rates in the

shallow stream were set to 0.5 times those of the above, and those for the deeper

stream parameters were set with β = 5, and setting T as for the shallow layer.

Each epoch used as many batches as there were training images. Each batch

was comprised of M = 8 images of size 142 × 142-sized randomly cropped from

the training images. The learning rates were annealed after 700 epochs using a
1
t
-type annealing, ending at 0.1 ·α at epoch 800. We used a momentum of 0.4 for

the first two epochs, and 0.9 for the later ones.

5.3.3 Results

We discuss the results for shallow and deep architectures in turn. In addition to

the different stream architectures, we also assess (i) the relative importance of the

mean and covariance units, and (ii) the effect of generative pre-training [Hinton

et al., 2006]. In the latter case the three options were (a) initialization of the

parameters to those of the mcRBM/mcDBN followed by supervised fine-tuning,

(b) fixing (i.e. freezing) the learned unsupervised mcRBM/mcDBN parameters,

and (c) starting them from random settings (initialized as those in the generative

training). We did not explore the full combinatorial space of settings, but focused

on the most important cases.

5.3.3.1 Dissecting Boundary Prediction with Shallow Networks

We considered first boundary prediction with the shallow networks. Table 5.1

summarizes the results, and Figure 5.12(top) shows precision-recall curves, for



Chapter 5. Multistream Networks for Visual Boundary Prediction 111

the BSDS500 test set. We observe that when the parameters are not fine-tuned

[mcRBM fixed entries], the covariance units tend to carry more contour informa-

tion, as the performance without the mean units nearly matches that of the full

model, while performance without the covariance units is clearly weaker.

When fine-tuning is in place, the performances increase significantly, especially

so for the mean-only model, but the relative order of the models is still main-

tained. Interestingly, initialization of the feature extraction parameters from the

generatively trained mcRBM yields better results than random initialization.

Figures 5.13 and 5.14 visualize the full set of weights in the full shallow model,

without and with fine-tuning of the feature extraction (mcRBM) parameters. The

fine-tuning results in clear changes in the filter appearances and properties. We

can observe in Figure 5.14 for example that the mean feature extraction filters

change in appearance to be more localized, and the associated read-out weights

become larger in amplitude, thus influencing the prediction more. In Figure 5.13,

the checker-patterned fine-detail covariance feature extraction filters have mostly

disappeared after fine-tuning. Figures 5.15, 5.16, 5.17,and 5.18 compare hidden

unit activations as a response to different image patches (as in Figures 5.3 and 5.4)

under the two different models. From the figures we can see sparser hidden unit

activations by the model with the fine-tuned parameters in general. Figure 5.19

visualizes contour prediction by the model with the fine-tuned feature extraction

parameters for several positions, and also the contributions by the covariance,

and the mean hidden unit features to the prediction. There is a surface boundary

only under Position 1, and the model is producing strongest predictions there.

Although both the covariance and the mean contributions are markedly high

there, the former is clearly more distinct. Figure 5.20 visualizes results by the

model without fine-tuned feature extraction parameters. The predictions under

Position 1 are now clearly weaker, and much higher boundary predictions are

obtained under the other positions, which do not actually contain a boundary.

Also the mean features are relatively meaningless, with very similar predictions

for all of the sites in any position. The largest activation, and the variation in

it occurs for Position 3, which does not even contain a boundary. These results

further highlight the importance of the fine-tuning, and that the mean features,

as expected, are not having a large role in the generation of boundary sites.

Figure 5.21 shows example inferences for a large test image. For comparison,

Canny edge detection (obtained with default settings in the matlab implemen-
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Figure 5.12: Contour prediction results on the BSDS500 as measured by precision-

recall curves, with shallow models (top), and with deeper models (bottom). The

numbers in the legends denote the maxima of the curves w.r.t. the ODS F-measure

(left), and the average precision (right).
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Figure 5.13: All of the shallow model covariance unit weights, with and without

mcRBM-parameter fine-tuning. The small black-boxes each contain the image fea-

ture extraction (left part) and contour prediction (right part) filter pairs. The filters

connecting to the image data are normalized invidually, whereas the filters connecting

to the contour data are globally normalized, so as to be on the same scale and to fill

the full intensity range.
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Figure 5.14: All of the shallow model mean unit weights, with and without mcRBM-

parameter fine-tuning. The small black-boxes each contain the image feature extrac-

tion (left part) and contour prediction (right part) filter pairs. The filters connecting

to the image data are normalized invidually, whereas the filters connecting to the

contour data are globally normalized, so as to be on the same scale and to fill the

full intensity range.
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Image (Context) Receptive Fields (zoom-up)

Covariance Unit Filter&Activation-Pairs

Fine-Tuned Covariance Unit Filter&Activation-Pairs

Figure 5.15: Covariance hidden unit states under an mcRBM trained generatively

vs. discriminatively for contour prediction. The rectangles in the input image denote

boundaries of receptive fields of example hidden unit stacks, under each of the four

different parameter sets. Together the stacks form all of the hidden units which

connect to the visible unit position marked with a magenta-coloured circle. The

weights of these sets, and the activations of the units at the positions are visualized

in horizontal pairs, with a pair per black rectangle. Best viewed on screen.
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Image (Context) Receptive Fields (zoom-up)

Mean Unit Filter&Activation-Pairs

Fine-Tuned Mean Unit Filter&Activation-Pairs

Figure 5.16: Mean hidden unit states under an mcRBM trained generatively vs.

discriminatively for contour prediction. The rectangles in the input image denote

boundaries of receptive fields of example hidden unit stacks, under each of the four

different parameter sets. Together the stacks form all of the hidden units which

connect to the visible unit position marked with a magenta-coloured circle. The

weights of these sets, and the activations of the units at the positions are visualized

in horizontal pairs, with a pair per black rectangle. Best viewed on screen.
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Image (Context) Receptive Fields (zoom-up)

Covariance Unit Filter&Activation-Pairs

Fine-Tuned Covariance Unit Filter&Activation-Pairs

Figure 5.17: Covariance hidden unit states under an mcRBM trained generatively

vs. discriminatively for contour prediction. The rectangles in the input image denote

boundaries of receptive fields of example hidden unit stacks, under each of the four

different parameter sets. Together the stacks form all of the hidden units which

connect to the visible unit position marked with a magenta-coloured circle. The

weights of these sets, and the activations of the units at the positions are visualized

in horizontal pairs, with a pair per black rectangle. Best viewed on screen.
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Image (Context) Receptive Fields (zoom-up)

Mean Unit Filter&Activation-Pairs

Fine-Tuned Mean Unit Filter&Activation-Pairs

Figure 5.18: Mean hidden unit states under an mcRBM trained generatively vs.

discriminatively for contour prediction. The rectangles in the input image denote

boundaries of receptive fields of example hidden unit stacks, under each of the four

different parameter sets. Together the stacks form all of the hidden units which

connect to the visible unit position marked with a magenta-coloured circle. The

weights of these sets, and the activations of the units at the positions are visualized

in horizontal pairs, with a pair per black rectangle. Best viewed on screen.
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Figure 5.19: Contour prediction properties under a shallow full model [mcRBM init].

The prediction value is visualized with intensity, with white denoting probability of

one for boundary, and black denoting probability of zero for boundary (same scale

for the different positions). The feature contributions to site input are also visualized

with intensity, whiter meaning greater input (same scale for the different positions).

The rectangles denote boundaries of receptive fields of example hidden unit stacks,

under each of the four different parameter sets. Together the stacks form all of

the hidden units which connect to the visible unit position marked with a magenta-

coloured circle. See the Figures above for the corresponding hidden unit filters and

activations. Best viewed on screen.
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Figure 5.20: Contour prediction properties under a shallow full model [mcRBM fixed].

The prediction value is visualized with intensity, with white denoting probability of

one for boundary, and black denoting probability of zero for boundary (same scale

for the different positions). The feature contributions to site input are also visualized

with intensity, whiter meaning greater input (same scale for the different positions).

The rectangles denote boundaries of receptive fields of example hidden unit stacks,

under each of the four different parameter sets. Together the stacks form all of

the hidden units which connect to the visible unit position marked with a magenta-

coloured circle. See the Figures above for the corresponding hidden unit filters and

activations. Best viewed on screen.
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F-score

Model type [feature extraction setting] ODS (P,R) OIS (P,R) AP

Full [mcRBM fixed] 0.619 (0.690,0.562) 0.643 (0.739,0.569) 0.601

Full [random init] 0.629 (0.689,0.579) 0.651 (0.737,0.583) 0.613

Full [mcRBM init] 0.648 (0.699,0.604) 0.668 (0.745,0.605) 0.637

Covariance-only [mcRBM fixed] 0.615 (0.691,0.555) 0.641 (0.739,0.565) 0.598

Covariance-only [mcRBM init] 0.642 (0.707,0.587) 0.660 (0.740,0.596) 0.624

Mean-only [mcRBM fixed] 0.525 (0.667,0.432) 0.539 (0.670,0.451) 0.437

Mean-only [mcRBM init] 0.629 (0.689,0.578) 0.652 (0.736,0.585) 0.613

Table 5.1: Statistics on boundary prediction under the BSDS500 test set by the

shallow prediction model by using different feature sets.

tation) which produces a binary edgemap output is also shown. The feature

extraction parameters of the shallow network is trained with the mcRBM param-

eter initialization, and fine-tuning. We see that it correctly places probability

mass on locations where humans have placed annotations, but also in regions

with repeated local structure. See Appendix D.4 for more examples.

5.3.3.2 Dissecting Boundary Prediction with Deeper Networks

Table 5.2 summarizes the test-set results for the deep stream and two-stream net-

works. Our models were trained on the 200 training images, and hyperparameter

selection (e.g. setting learning rates, etc.) was done on the validation set. Similar

to the earlier experiments, we can see under any particular initialization setting,

that the covariance-only models perform better than the mean-only models. We

can also see that the generative pre-training helps the full two-stream model in

an even more pronounced way than the shallow-stream model (compare random

init. vs. mcRBM and mcDBN init). Allowing fine-tuning of the feature ex-

traction parameters (compare fixed vs. init for a particular model setting) again

results in improved performance. See also Figure 5.12 (bottom) for P-R-curves

of many of these cases for further verification.

When comparing the performance summaries related to the different streams,

it is noticeable that the deep model is clearly better than the shallow model. This

can be also seen in the Figure 5.21 inference example, with improved ability to

filter out predictions in textured regions containing many edges. We can see for
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Raw Canny

Shallow Deep

Two-stream Humans

Figure 5.21: Contour prediction result example on the grey-scale BSDS500. The

prediction value is visualized with intensity, with black denoting probability of one

for boundary, and white denoting probability of zero for boundary. Best viewed on

screen.



Chapter 5. Multistream Networks for Visual Boundary Prediction 123

example many building windows appearing in a locally repeated fashion being

removed. This can also be seen in the deep-stream contributions in Figure 5.22.

See Appendix D.4 for more inference examples, and D.5 for dissections of the

two-stream model inference with respect to different components.

Although the numerical performance of the deep model is comparable to the

two-stream model with respect to the ODS and OIS metrics (across the different

cases in Table 5.2), the average precision is clearly worse. We can see from

the Figure 5.12 (bottom) that the two-stream model is able to obtain higher

recall rates, with the P-R curve of the deep-only model dropping off earlier.

Our best-performing model (ODS 0.702, OIS 0.718, AP 0.687) using the binary

annotation data was obtained by taking the model which performed best on the

validation set (two-stream with mcRBN and mcDBN init), and training it on

all 300 train+val images. Note that this is following the guidelines precisely,

using the train/val splits for hyperparameter selection, and then producing a

final model using train+val. This model outperforms gPb [Arbelaez et al., 2011]

on all three measures, and SCG (local) on ODS and OIS.

Both gPb and SCG (global) use a computationally expensive “globalization”

step which involves computing image-sized eigenvectors, and a rather ad hoc in-

tegration of this information with the local predictions tuned to directly optimize

the F-scores. Our unoptimized implementation of the two-stream model inference

takes 0.1 to 0.2 s per test image. This compares very favorably with the figures

quoted in Lim et al. [2013], which are 60s (gPb local), 100s (SCG local), 240s

(gPb global), 280s (SCG global) and 1 sec (Sketch tokens [Lim et al., 2013]). We

have confirmed the gPb global figure on our local machines. Our implementation

is on a GPU, but this emphasizes the easily parallelizable nature of our method.

We note that Catanzaro et al. [2009] have reduced the runtime of gPb global to

1.8s using GPUs, so we are still a factor of 10 faster than them. In general the

evidence is that one may typically obtain 10x speedups by going to GPUs, when

comparing tuned implementations for both CPU and GPU [Lee et al., 2010].

5.3.3.3 Tuning the Prediction Performance

Here we describe four simple modifications to the learning described above in or-

der to tune the networks for optimal prediction performance. As before the model

selections were done using the ‘val’ set, and the models trained on ‘train+val’ use

the hyperparameter settings of the respective model trained on ‘train’ and se-
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure 5.22: Dissecting a contour prediction result on the grey-scale BSDS500. The

prediction value is visualized with intensity, with black denoting probability of one for

boundary, and white denoting probability of zero for boundary. The stream contribu-

tions are normalized to be on the same scale, which also fills the full intensity range.

Best viewed on screen.
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lected on the ‘val’. Two of the modifications involve changes in setting the batch

data for training. When training the networks above, the images in each batch

were set by cropping patches of a certain size (142×142) from any of the training

images from random locations, and the labels for each of the patches were set

by randomly choosing a single annotation from all of the annotations. The first

of the modifications sets the labels as averages of the contour annotations. This

reduces noise in the learning, and our results were consistently better with the

approach6. See Appendix D.2 for further information and discussion on using

such data in training and also in testing.

The second modification standardizes the image patches, subtracting their

mean from them, and dividing by their standard deviation. The motivation

for this standardization is to make the network more robust to data variations

(shifts and scaling in global intensity within the extracted training patches) not

considered to be relevant to the problem of deciding whether a site should be a

boundary or not.

The third modification involves encouraging hidden unit activation levels

(measured as an exponentially weighted moving average of the observed levels

with smoothing factor of 0.9) to be at/near specific levels, by adding to the ob-

jective function cross-entropy penalties between the target and measured levels,

as in (2.51). This was applied to the final hidden unit layer in the deep stream

with target activation level of 0.1, with non-sparsity penalty of 0.001, and also

to the mean hidden units (with target activation level of 0.1, with non-sparsity

penalty of 0.01).

The fourth modification (which we call shift-averaging) addresses the lack of

full translation equivariance. The developed technique is related to the cycle-

spinning method by Coifman and Donoho [1995] who share a similar motivation

but for (non-steerable) wavelet-based image denoising. They address the issue by

applying wavelet-domain denoising for all circlularly shifted versions of a noisy

image, unshift and average the results (as the denoised image). We similarly ‘av-

erage out’ shift-dependence by averaging unshifted prediction results on shifted

versions of the test image at hand. Note that only very few shifts out of all

possible shifts typically need to be considered for obtaining all possible network

prediction results (due to the diag-tiled-convolutional sharing); this is, loosely

speaking, upper-bounded by the number of pixels within input image region a

6The learning rates were also scaled by a constant.
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contour unit is affected by. Also instead of circular shifting we pad (further) the

test images by mirror reflection according to the shift amounts (and crop them out

after prediction).The modification makes the full prediction slower but fortunately

the computations for the different shifts-specific images can be done in a paral-

lel fashion7. Fully-convolutional model would have the translation-equivariance

property built-in. However, training natural image models with such parameter

sharing has been reported to be harder [Ranzato et al., 2010b] and generative

pre-training was shown to be important for our networks. Similar averaging with

respect to orientation and scale might provide further improvements, but such

experiments, along with fully-convolutional and other transformation equivariant

versions of our networks, are left for future work.

As can be seen from Table 5.3 where the results on the BSDS500 dataset are

summarized, by using only the first three modifications, our approach yields the

same or slightly higher performance in terms of the F-score (ODS) than SCG

(global), and is thus the highest ranking method reported on the benchmark

with also fastest reported inference time (which is the same as reported above).

By considering also the fourth modification (where we consider all shifts within

[0, 1, . . . , 13]2) we clearly outperform the state-of-the-art in terms of the ranking

metric F-score (ODS).

Table 5.4 compares our prediction results on the BSDS300 data set to the main

competitors numerically. For these data, the result images by the competitors

were available online (at Martin et al. [2013b]), and we can report their scores

to 3 decimal places. Our F-scores (ODS) of 0.696 (basic) and 0.704 (with shift-

averaging) obtained on the BSDS300 (grey-scale) test set are the highest reported,

with the closest competitors including the gPb-ucm and SCG (global) obtaining

the scores of 0.684 and 0.682, respectively [Martin et al., 2013b]. However, as we

have done model selection using the BSDS 300 test set (which is the BSDS 500

validation set), our results on it could be optimistic.

We have not redone the dissection computations using these ‘tricks’. Reasons

for this include that they are expected to be mostly orthogonal to the dissection,

and would complicate the procedure by requiring several additional hyperparam-

eters to be chosen, and training modifications to be done.

7which implementation is left for future work.
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5.4 Discussion

We have investigated several feed-forward network architectures for visual bound-

ary prediction, each built on top of a diagonally-tiled convolutional mcRBM.

The architectures allow end-to-end optimization, and fast and scalable inference

for prediction. Our best results are comparable or better to those of the best-

performing methods on the grey-scale BSDS500 dataset, and do not require an

expensive “globalization” step. Our method is fast, and has a very different ar-

chitecture from the others proposed in the literature (e.g. both Pb and SCG use

hand-crafted oriented half-disc pooling, while ours has no such procedure).

In all of the architectures considered covariance features were shown to be

more important than mean features for the task. Deep networks, which were able

to discount interiors of textured regions as being boundaries, were clearly bet-

ter than the more local shallow ones. Combining the shallow and deep streams

resulted in additional improvements. We also observed significant benefits of

generative pre-training, with marked performance improvements over random

parameter initializations. Fine-tuning of the parameters allowed further improve-

ments, and was crucial for the mean-only shallow model, sheding light on what

the different types of mcRBM units are doing in the generative setting.

We are currently exploring the extension of the networks to colour data (see

Appendix D.3 for preliminary results), and especially to further improved ini-

tialization techniques. In this chapter the read-out parameters were initialized to

random values. Although greedy modality-specific generative training is possible,

a more principled alternative would be to consider a joint model of the image and

contour data. In the shallow domain, such a model can be obtained by con-

necting the (now stochastic) contour units u to the hidden units of the mcRBM,

and defining the energy of the image and contour RBM (icRBM) model as:

EicRBM(h,v,u) = EmcRBM(h,v)−
∑
j

hcjW
c
·j
>u−

∑
`

hm` Wm
·`
>u−g

∑
i

ui, (5.5)

where Wc
·j and Wm

·` denote a filter from the jth covariance, and `th mean hidden

unit to contour units, respectively. The same technique can be used to merge

information from the different modalities in the deeper layers, both defining in-

stances of dual-wing harmoniums [Xing et al., 2005]. Such joint models would

allow for also other kinds of interesting applications, including image-prediction

from boundary data (de-sketching) and image completion. For the latter task,
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boundary data might be available, and improve performance.

Other potential, and possibly simpler extensions include more-flexible stream

integration models, and using transformation-equivariant covariance filters to pro-

vide direction-encoding. The networks can also be extended for other image

analysis tasks, such as image restoration.

A benefit of the deterministic units in the network is the simplicity associated

with learning and inference. However, regardless of how many hidden units are

used, and their connectivity structure before the final contour unit layer, deci-

sions at the final layer are always done at each site independently of the other

sites. Conceptually this is a problem, for which a solution is to consider stochas-

tic units in place of deterministic units, possibly only in a few layers and feature

planes. However, there would need to be stochastic units for which Markov blan-

ket would include other spatially-offset stochastic units for communication of the

states, and thus enable ‘globalization’ (obtaining spatial coherence, here via node

state dependence on neighboring/surrounding node states) to happen. The con-

nections between the stochastic nodes could be made undirected in the case of

which one would obtain a CRF-structure (see e.g. Sutton and McAllum [2012] for

details on CRFs). For a similar performance level, it might be the case that the

number of parameters under a deterministic network might become so large that

combatting overfitting might become problematic. With the increased represen-

tational capacity would come increased computational complexity in learning and

inference. However, this is a conceptually simple, yet a statistically principled,

approach for extending the model to obtain globalization. Of course the icRBM

and icDBN models would allow globalization as well, but could be more difficult

to work with8.

Finally, we mention extensions related to boundary prediction assessment.

A widely used metric in assessing image restoration quality is the structural

similarity index (SSIM) [Wang et al., 2004] (see also Appendix A.5). This metric

takes spatial context into account in the quality assessment. One possible avenue

for future work on better evaluation methods is adapting methodologies within

the SSIM metric or its extensions to the assessment of contour prediction quality.

This quality could be defined in terms of the accuracy of contour probability map

provided by the algorithm, compared to that obtained by taking the average

of the human annotation maps, effectively producing a probability map. See

8for example due to the need for negative phase in training [Neal, 1992].
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Appendix D.2 for further discussion, and experimental results related to using

such approach.



Chapter 6

Conclusions and Future Work

6.1 Summary and Contributions

6.1.1 Transformation equivariant Boltzmann machines

In Chapter 3 we have developed a novel framework for obtaining Boltzmann

machines and their deep extensions, in which the hidden unit activations co-

transform with transformed input stimuli in a stable and predictable way, through-

out the network. We define such models to be transformation equivariant. Such

a property is clearly useful for computer vision systems, and has also been mo-

tivational, for example, in the development of steerable filters. Transformation

equivariance is accomplished in our framework by encoding such properties into

the network, by considering transformed versions of canonical-view parameters,

and allowing hidden units to choose from the set of views.

Translation equivariant feature sharing (also known as convolutional feature

sharing) has been the method for scaling image models (including those based

on stochastic neural networks) beyond patches. In our framework we extend

shallow and deep models to account for other kinds of transformations as well,

focusing on in-plane rotations in the thesis and in Kivinen and Williams [2011].

The key idea is to associate each hidden unit with a latent transformation vari-

able, which describes the selection of the transformed view of the canonical unit

weights. In learning, only the canonical view weights need to be learned, as

the transformations can be described by fixed geometrical transformation oper-

ators. Models based on the framework thus avoid having to learn transformed

versions of the same patterns at all levels in the network, which is useful for

133
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obtaining parsimonious and interpretable representations. The hidden units can

be seen having an AND/OR-property with the unit activation variable applying

the AND-operation, and the view-selection variable applying the OR-operation.

AND/OR networks have been considered for example in Zhu and Mumford [2006],

Zhu et al. [2008], and our approach can be seen as a principled way of having

such nodes under a Boltzmann machine architecture.

6.1.2 Boltzmann machines for texture modelling

Our texture modelling work was motivated by the inability of state-of-the-art

generative models to produce realistic natural images, including creating textured

regions which are necessary subcomponents of any credible model of visual scenes,

and complications in the quantitative assessment for such a highly variable class

of data. In Chapter 4 we took a step back, and asked whether such models

are able to generate textures, and what are the contributing factors to texture

generation performance in terms of architectural properties. All of such models

were conditionally Gaussian, and the analysis effectively achieved by focusing on

the mPoT-model (Ranzato et. al., 2010), which has hidden units to control both

the means and the precision matrices. To understand the differences we conducted

a dissection by taking out hidden units of one of the two types, assessing the

performance of the resulting models and the full model in the generation and

inpainting of Brodatz-textures. The models used for these results covers the

spectrum of Boltzmann machines typically used for image modelling. In the

experiments we demonstrated performance comparable or better than state-of-

the-art texture synthesis with the mPoT, which was nearly matched by the mean-

only model. The results underlined the importance having hidden units to control

the means of the components, under unconstrained synthesis.

We then considered structured extensions for modelling more complicated

data, developing the multiple texture Boltzmann-machine framework. In this

framework the joint probability density over texture images from several classes

factorizes as a product of texture-class-specific probability distributions on the

class-specific texture images, each defined by Boltzmann machines. The key idea

is that only some of the parameters are class-specific, while the rest are shared.

We showed that with the mean-unit-only model as the base model, and having

only the hidden unit biases as the class-specific parameters, synthesis results were
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obtained comparable to the individually-trained texture models which already

provided state-of-the-art results. Importantly we then demonstrated empirically

that the model provides means to generate images of differently textured regions.

This is accomplished by considering the base model and the full set of learned pa-

rameters, and associating hidden unit biases at each position to those associated

with the texture classes from which generation should happen there.

6.1.3 Texture interpolation Boltzmann machines

We have shown in section 4.6 that interpolating the hidden unit biases under

our multiple texture models resulted in texture interpolation. This generated

novel texture-type data, with smooth and abrupt transitioning effects between

different texture types, according to the spatial interpolation pattern defined, in

an effective manner. This was also shown for a single texture but under different

view-points and illumination conditions, each defining their own classes. The

feature sharing by these multi-texture models is expected to yield savings in

terms of the number of features needed to model several categories, and provides

a natural route for extension to a more comprehensive natural image model. It is

also shown to address considering several computational photography problems

under a single, principled statistical framework.

6.1.4 Multistream networks for visual boundary prediction

In Chapter 5 we considered contour detection, i.e. prediction of the presence of

a visual boundary at a given image location. The motivation for the work was

two-fold: Firstly, we wanted to improve understanding of what are the roles of the

mean and the covariance hidden units of such conditionally Gaussian models, in

the generation of image segment boundaries. Secondly, we wanted to investigate

deep neural network architectures for learning the boundary detection problem,

which is expected to be useful also for further generative model development.

We have developed and evaluated a range of neural network architectures for

the task. Notable aspects of the work is (i) the use of “covariance features” [Ran-

zato and Hinton, 2010] which depend on the squared response of a filter to the

input image, and (ii) the integration of image information from multiple scales

and semantic levels via multiple streams of interlinked, layered, and non-linear

”deep” processing in an end-to-end optimizable architecture.
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Our results on the Berkeley Segmentation Data Set 500 (BSDS500) show

comparable or better performance to the top-performing methods gPb [Arbelaez

et al., 2011], SCG [Ren and Bo, 2012], and Sketch Tokens [Lim et al., 2013]. Addi-

tionally, our approach provides the fastest reported prediction times, and avoids

several hand-engineered and/or computationally complex designs which are part

of the the first two approaches cited above. Although the SCG [Ren and Bo,

2012] is more learning-based, both of these include hand-crafted oriented half-

disc pooling, and also the use of computationally complex globalization which

involves eigenvector calculations of matrices of the size of the input image (ex-

pected to scale cubically to the number of pixels, as opposed to linearly as in

our approach). In our analysis, we provide a careful disection of the performance

in terms of architecture, feature-types used and training methods, which provide

clear signals for model understanding and further development.

6.2 Future Work

6.2.1 Extensions to the transformation equivariant modelling

The thesis has developed models equivariant with respect to translation and in-

plane rotation. As discussed, a natural further equivariance to consider is scale.

Without loss of generality, the transformations could be several other kinds of

geometrical transformations. What is required is that they are fixed (linear)

transformations of the input.

Considering additional local transformations (to rotation considered already in

translation and rotation equivariant models in Kivinen and Williams [2011] and in

Chapter 3) is another direction of extension as future work, but they might result

in non-transformation equivariant models. Such an idea was explored by Sohn

and Lee [2012]. Examples of such transformations include local affine transfor-

mations, so the transformational state variable would describe the view selection

of a canonical feature transformed using a local affine transformation. A simple

example of a different local transformation than what we have already considered

would be a local shift. This could provide effective means for border handling, as

the shifts would provide a means to control the amount of local constraints per

visible lattice site. This approach would provide a data-adaptively-convolutional

feature sharing method.
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When used as a generative image model, the mcRBM typically produces

Gabor-like covariance filters, as seen in Chapter 5. By making the associated

hidden units equivariant by our framework, the models might yield benefits for

learning and inference, including making the model easier to interpret. Building

in further transformation equivariance onto the the contour prediction networks

might result in similar benefits.

6.2.2 Extensions to the texture modelling algorithms

Here we discuss extensions to the multiple-texture model developed in Chapter

4. One direction is a hierarchical extension, in which the biases at each site,

which affect the texture type to be generated there, depend on a higher layer

hidden units; the simplest case is discrete random variables specifying the tex-

ture class. A different novel direction is placing a prior distribution on the fields

of biases; this could be achieved using a gated MRF, which is good in mod-

elling data discontinuities. The framework, including the prior on the biases, and

the multiple-texture sampling function, would allow the generation of multiply-

textured images, without the need to specify how many textures to generate, their

spatial arrangement, texture gradients and so on. These setups have empirical

support from the thesis experiments, where interpolation of the hidden unit bi-

ases under the multiple texture model is shown to allow interpolation of texture

data. This includes the generation of novel texture data (outside the training

textures), with both smooth and abrupt transitioning effects between different

texture types.

Luo et al. [2013] demonstrates improved performance in generative texture

modelling by using deep belief networks as opposed to shallow ones, based on a

convolutional Spike-and-Slab RBM. In the Chapter 4 experiments, only shallow

models were considered as the base models. However, the framework allows for

considering deeper networks. Such a deep base model could be, for example, an

mcDBN as used in Chapter 5 as a part of the contour prediction network, and the

hidden unit biases (both mean and covariance) would be texture-class specific,

and the rest shared across the different classes.
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6.2.3 Extensions to the visual boundary prediction methods

Here we discuss extensions to the boundary prediction networks developed in

Chapter 5. As discussed in the chapter, while some of the parameters were ini-

tialized by using generative pre-training, many of the parameters (the so-called

read-out parameters) were initialized to random values. One thread for future

work is building joint models of the image data and the boundary annotations

(called icRBM, and icDBN models in Chapter 5). These models would con-

tain the full set of parameters for the initialization of the boundary prediction

network. Such joint models would allow for also other kinds of interesting appli-

cations, including image-prediction from boundary data (de-sketching) and image

completion. For the latter task, boundary data might be available, and improve

performance.

A different line of future work is involved with architectural extensions to the

boundary prediction networks. These could include more-flexible stream integra-

tion models, and using transformation-equivariant covariance filters to provide

direction-encoding. It is noted that also the boundary prediction networks could

be extended for other image analysis tasks, such as image restoration.

Finally we mention extensions for obtaining ”globalization” in the boundary

prediction task, i.e. having a joint conditional distribution so that the predic-

tions at each site are dependent on those at several other sites (and optimally

all). As discussed in Chapter 5, using only deterministic units in the prediction

networks means that decisions at the final layer are always done at each site in-

dependently of the other sites. Clearly the joint models discussed above would

allow for globalization, but the fully generative setting might not work well in the

discriminative application. Another statistically principled way to meet the goal

would be to consider stochastic units in place of deterministic units in the predic-

tion networks, possibly only in a few layers and feature planes. However, there

would need to be stochastic units for which Markov blanket would include other

spatially offset stochastic units for communication of the states, and thus enable

globalization to happen1. For a similar performance level, it might be the case

that the number of parameters in a deterministic network might become so large

that combatting overfitting might become problematic. With the increased repre-

sentational capacity would come increased computational complexity in learning

1The connections between the stochastic nodes could be made undirected in which case one
would obtain a CRF-structure.



Chapter 6. Conclusions and Future Work 139

and inference. However, these models containing Bayesian network structures do

not have a negative phase in training (as opposed to the training of the icRBM

and icDBN models), which can be beneficial [Neal, 1992].



Appendix A

Background

A.1 Generic form of the log-likelihood gradient un-

der a Boltzmann machine

Here we will derive the result in (2.35). The log-likelihood of training data as-

suming N training cases, conditional on model parameters θ can be written as

follows

L(θ) = log p
(
v(1), . . . ,v(N) | θ

)
= −N logZ +

N∑
n=1

log
∑
h

exp
{
−E
(
v(n),h | θ

)}
.

(A.1)

Taking the derivative, we obtain that

∂L(θ)

∂θ
= −N 1

Z

∂Z

∂θ
−

N∑
n=1

∑
h exp

{
−E
(
v(n),h | θ

)}∂E(v(n),h|θ)
∂θ∑

h exp {−E(v(n),h | θ)}
. (A.2)

Expanding the first term, and using cancelling terms 1/Z in the second term we

obtain that

∂L(θ)

∂θ
= N

1

Z

∑
v,h

exp {−E(v,h | θ)}∂E(v,h | θ)
∂θ

−
N∑
n=1

1
Z

∑
h exp

{
−E
(
v(n),h | θ

)}∂E(v(n),h|θ)
∂θ

1
Z

∑
h exp {−E(v(n),h | θ)}

= N
∑
v,h

1

Z
exp {−E(v,h | θ)}∂E(v,h | θ)

∂θ

−
N∑
n=1

∑
h

1
Z

exp
{
−E
(
v(n),h | θ

)}∂E(v(n),h|θ)
∂θ∑

h
1
Z

exp {−E(v(n),h | θ)}
. (A.3)
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Using definitions related to energy-based models, and those of conditional prob-

ababilities and the marginalization principle, we obtain that

∂L(θ)

∂θ
= N

∑
v,h

p(v,h|θ)∂E(v,h | θ)
∂θ

−
N∑
n=1

∑
h p
(
v(n),h | θ

) ∂E(v(n),h|θ)
∂θ

p(v(n) | θ)

= N
∑
v,h

p(v,h | θ) ∂E(v,h | θ)
∂θ

−
N∑
n=1

∑
h

p
(
h | v(n), θ

) ∂E
(
v(n),h | θ

)
∂θ

= N

〈
∂E(v,h | θ)

∂θ

〉
p(v,h|θ)

−
N∑
n=1

〈
∂E
(
v(n),h | θ

)
∂θ

〉
p(h|v(n),θ)

=
N∑
n=1

〈∂E(v,h | θ)
∂θ

〉
p(v,h|θ)

−

〈
∂E
(
v(n),h | θ

)
∂θ

〉
p(h|v(n),θ)

 .

A.2 Gradients in training a translation equivariant

RBM

Here we consider training translation equivariant RBMs using an objective func-

tion consisting of two terms, a scaled negative data log-likelihood and a sparsity

encouraging term, as in (2.50).

A.2.1 Log-likelihood gradient

Using the notation of (2.20), the log-probability of visible units v of a single

training data case can be written as follows

log p(v|θ) = − logZ + a
∑
i

vi +
∑
k

∑
j

log

1 + exp

bk +
∑
`∈Nkj

v`ω
k
d(j,`)


,

where the normalization constant

Z =
∑
h

exp

{∑
k

bk
∑
j

hkj

}∏
i

1 + exp

a+
∑
k

∑
`∈N(i)

hk`ω
k
d(`,i)


 .
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The partial derivatives of the log-likelihood with respect to the model parameters

can be then written as follows:

∂ log p(v | θ)
∂a

= − 1

Z

∂Z

∂a
+
∑
i

vi (A.4)

∂ log p(v | θ)
∂bk

= − 1

Z

∂Z

∂bk
+
∑
j

logistic

bk +
∑
`∈Nkj

v`ω
k
d(j,`)

 (A.5)

∂ log p(v | θ)
∂ωkh

= − 1

Z

∂Z

∂ωkh
+
∑
j

ve(j,h)logistic

bk +
∑
`∈Nkj

v`ω
k
d(j,`)

 , (A.6)

where logistic(z) = 1
1+exp (−z) (which applies the logistic-function element-wise for

vectors), and e(j, h) is such that d(j, e(j, h)) = h. The partial derivatives of the

log-normalization constant are obtained as:

1

Z

∂Z

∂bk
=

∑
h

p(h)
∑
j

hkj (A.7)

1

Z

∂Z

∂a
=

∑
h

p(h)
∑
i

logistic

a+
∑
k

 ∑
`∈N(i)

hk`ω
k
d(`,i)

 (A.8)

1

Z

∂Z

∂ωkh
=

∑
h

p(h)
∑
i′

hf(i′,h)logistic

a+
∑
k

 ∑
`∈N(i′)

hk`ω
k
d(`,i′)

 , (A.9)

where f(i, h) is such that d(f(i, h), i) = h, and i′ is such that
∑

j δ(d(j, i′), h) = 1.

Gathering the results, we obtain

∂ log p(v | θ)
∂a

=
∑
i

vi −
∑
h

p(h)
∑
i

logistic

a+
∑
k

 ∑
`∈N(i)

hk`ω
k
d(`,i)


(A.10)

∂ log p(v | θ)
∂bk

=
∑
j

logistic

bk +
∑
`∈Nkj

v`ω
k
d(j,`)

−∑
h

p(h)
∑
j

hkj (A.11)

∂ log p(v | θ)
∂ωkh

=
∑
j

ve(j,h)logistic

bk +
∑
`∈Nkj

v`ω
k
d(j,`)


−
∑
h

p(h)
∑
i′

hf(i′,h)logistic

a+
∑
k

 ∑
`∈N(i′)

hk`ω
k
d(`,i′)

 .

(A.12)
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For N training data cases, the partial derivatives become:

∂ log p
(
v(1), . . . ,v(N) | θ

)
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=
N∑
n=1

∑
i

v
(n)
i

−N
∑
h
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 ∑
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 (A.13)
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)
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p(h)
∑
i′

hf(i′,h)logistic

a+
∑
k

 ∑
`∈N(i′)

hk`ω
k
d(`,i′)

 . (A.15)

A.2.2 Sparsity regularization term gradient

Let us assume

p(h
k(n)
j = 1|v(n), θ) = logistic

bks +
∑
`∈Nkj

v
(n)
` ωkd(j,`)

 ,

and thus gradient of the sparsity regularization term is

∂p(h
k(n)
j = 1|v(n), θ)

∂θk
= p(h

k(n)
j = 1|v(n), θ)

·
(

1− p(hk(n)
j = 1|v(n), θ)

) ∂

∂θk

bks +
∑
`∈Nkj

v
(n)
` ωkd(j,`)

 . (A.16)

We can then find that

∂p(h
k(n)
j = 1|v(n), θ)

∂bks
= logistic

bks +
∑
`∈Nkj

v
(n)
` ωkd(j,`)


·

1− logistic

bks +
∑
`∈Nkj

v
(n)
` ωkd(j,`)


 , (A.17)
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and similarly

∂p(h
k(n)
j = 1|v(n), θ)

∂ωkh
= logistic

bks +
∑
`∈Nkj

v
(n)
` ωkd(j,`)


·

1− logistic

bks +
∑
`∈Nkj

v
(n)
` ωkd(j,`)


 ve(j,h), (A.18)

where (as above) e(j, h) is such that d(j, e(j, h)) = h.

A.3 Marginalizing hidden units under PoT

We will start by deriving the free-energy under a PoT from its hidden unit ex-

panded form, using the following relation [Osindero et al., 2006]

Γ
(
α + 1

2

)
Γ(α)

√
2π

(
1 +

1

2
τ 2

)−(α+ 1
2)

=

∫
dλ

(
1√
2π
λ

1
2 exp

{
−1

2
τ 2λ

})(
1

Γ(α)
λα−1 exp {−λ}

)
.

(A.19)

Taking the logarithm of both sides we obtain that

log

{
Γ
(
α + 1

2

)
Γ(α)

√
2π

}
−
(
α +

1

2

)
log

{
1 +

1

2
τ 2

}
=

log

{∫
dλ exp

{
−λ
(

1 +
1

2
τ 2

)}}
+ log

{
1

Γ(α)
√

2π

}
. (A.20)

Defining β = α + 1
2
, and simplifying we obtain that

log {Γ(β)}− β log

{
1 +

1

2
τ 2

}
= log

{∫
λβ−1 exp

{
−λ
(

1 +
1

2
τ 2

)}
dλ

}
(A.21)

By definition, the free-energy of the PoT with continuous auxiliary hidden

variables h can be written as

FPoT(v|θ) = − log

{∫
H
dh exp {−EPoT(h,v|θ)}

}
. (A.22)

Let us define

EPoT(v,h|θ) = −
∑
j

[
(γj − 1) log hj − hj

(
1 +

1

2

[
C·j
>v
]2)− log {Γ(γj)}

]
.

(A.23)
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Then we obtain that

FPoT(v|θ) = (A.24)

− log

{∫
H
dh exp

{∑
j

[
(γj − 1) log hj − hj

(
1 +

1

2

[
C·j
>v
]2)− log {Γ(γj)}

]}}
(A.25)

=
∑
j

log {Γ(γj)} − log

{∏
j

∫
dhj exp

{
(γj − 1) log hj − hj

(
1 +

1

2

[
C·j
>v
]2)}}

(A.26)

=
∑
j

log {Γ(γj)} −
∑
j

log

{∫
dhj exp

{
(γj − 1) log hj − hj

(
1 +

1

2

[
C·j
>v
]2)}}

.

(A.27)

Using the result in (A.21) we obtain that

FPoT(v|θ) = (A.28)∑
j

log {Γ(γj)} −
∑
j

log

{∫
dhj

[
h

(γj−1)
j exp

{
−hj

(
1 +

1

2

[
C·j
>v
]2)}]}

(A.29)

=
∑
j

log {Γ(γj)}+
∑
j

[
γj log

{
1 +

1

2

[
C·j
>v
]2}− log {Γ(γj)}

]
(A.30)

=
∑
j

γj log

{
1 +

1

2

[
C·j
>v
]2}

. (A.31)

Note that by defining

EPoT(v,h|θ) = −
∑
j

[
(γj − 1) log hj − hj

(
1 +

1

2

[
C·j
>v
]2)]

, (A.32)

one would obtain that

FPoT(v|θ) =
∑
j

[
γj log

{
1 +

1

2

[
C·j
>v
]2}− log {Γ(γj)}

]
. (A.33)

A.4 Experiment: Modeling 1.5D data with a TE-

RBM

In this experiment, we explored the problem of modeling binary data of 1.5D

structure with a binary-unit translation-equivariant RBM (TE-RBM). As shown
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in Figure A.1(d), the data consisted of an exhaustive set of spatially shifted

versions of a canonical image, containing a single spatially contiguous segment of

ones (referred to as a bar) on otherwise zero data (background).

One of the main goals of this experiment was to explore the capability bound-

aries of the parameter-reduced model, and the required model complexity in

the context of this binary-data modeling problem. Another main goal was to

investigate the possibility of learning without imposing discriminative learning

terms, and the properties of a TE-RBM model, which would be a good gener-

ative model, but would produce sparse activation patterns in response to the

data. The property of sparsity is desirable with deep belief networks for example

in terms of interpretability of inferences, and the encouragement of sparsity has

been reported to be relatively essential in practice to learn features resembling

the receptive fields of the primary visual cortex [Lee et al., 2008].

The TE-RBM that was used in the experiments contained a single hidden

unit layer with same number of units as in the visible layer (13), a single bias for

each of the hidden and visible layers, and connection weights wrapping around

toroidally as in the TE-RBM of Figure 2.2(b). To learn model parameters we

optimized a cost function containing log-likelihood of data under the model, and

a sparsity encouragement term, as in (2.50). The log-probability of visible units

in a single graph under this model can be written as follows:

log p(v|θ) = − logZ + a
∑
i

vi +
∑
k

∑
j

log

1 + exp

bk +
∑
`∈Nkj

v`ω
k
d(j,`)


,

(A.34)

where the normalization constant

Z =
∑
h

exp

{∑
k

bk
∑
j

hkj

}∏
i

1 + exp

a+
∑
k

∑
`∈N(i)

hk`ω
k
d(`,i)


 . (A.35)

As the model contained so few units, computation of the exact gradient was pos-

sible. The learning was then done by using a scaled conjugate gradient (SCG)

method 1. The partial derivatives of the cost function with respect to model pa-

rameters (needed in the SCG-algorithm) are given in Appendix A.2.1, and A.2.2.

To study the flexibility and sparsity properties of the model, the receptive

field size and the regularization constant λ of the sparsity encouragement cost

function term were varied. Target activation rate was set to 1/13. Due to the

1The scg-function of the Netlab-toolbox version 3.3 was used.
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existence of multiple local optima, learning was done by using multiple starts,

each with different small random weights and biases. Figure A.1 shows results

from learning assuming sparsity regularization constant λ = 1 and receptive field

width 11, which was the narrowest possible to obtain optimal log-likelihood and

sparsity rate assuming λ = 1. Figure A.2 shows most likely unit joint states

assuming the model parameters, which confirm them good for the problem, since

13 most likely joint visibles are equal to the training data instances, and 13

most likely joint hidden unit states contain a single active unit, and the other

configurations for both of these cases are much less probable. To summarize the

findings, learning the model optimally with respect to the log-likelihood2 required

that the receptive field size was sufficiently large, in any case larger than the bar.

In order to reach the target activation level as well, the regularization rate needed

to be within a range of values; for too small values, the activation level was not

met, and for too large values, the activation level was obtained but by having

many of the hidden units weakly turned on.

A.5 Image Quality Assessment with the Structural

Similarity Index (SSIM)

The structural similarity metric [Wang et al., 2004] assesses the similarity of

two signals x and y of same dimension with J elements, using a function on

three comparison functions which (aim to) measure differences in signal luminance

contrast, and structure:

SSIM(x,y) = [`(x,y)]α · [c(x,y)]β · [s(x,y)]γ , (A.36)

where the signal luminance comparison function `(x,y) operates on signal sample

means (µz = 1
J

∑J
j=1 zj), the contrast comparison function c(x,y) operates on

signal standard deviations (variance σ2
z = 1

J−1

∑J
j=1 (zj − µz)2), the structure

comparison function s(x,y) is a correlation-based measure between the signals,

and α > 0, β > 0 and γ > 0 denote scalars to adjust the relative importance of

the three components.

The thesis uses the form implemented in Wang et al. [2004] in which α = β =

2As there are 13 data instances each having one of the 13 possible equally occurring patters,
the optimal log-likelihood is 13 log(1/13) = −33.3443.
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(a) Model parameters (b) Expected hidden units conditional on

data

(c) Reconstruction (d) Training data

Figure A.1: Results from learning a TE-RBM with receptive field width 11, assum-

ing sparsity regularization constant λ = 1 from circularly shifting binary data shown

in A.1(d). (a) shows parameters of one of the TE-RBM models, with shared best ob-

jective function value, and conditional on the parameters, (b) shows expected hidden

units given the data, (c) shows reconstruction by computing expected visible units

conditional on expected hidden units given data (which is basically perfect). Note

that both the log-likelihood and sparsity are optimal given the model parameters.
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(a) 50 most likely visible unit states and their probabilities.

(b) 50 most likely hidden unit states and their probabilities.

Figure A.2: Most likely joint states assuming model parameters as in A.1(a). Because

the model is translation equivariant, states differing by translation are equally prob-

able. From (a) we can see that the first 13 most likely visible joint states form the

training data instances, and the other joint configurations are highly unlikely in com-

parison. From (b) we can see that the 13 most likely hidden joint states contain only

one active unit, and the other joint configurations are highly unlikely in comparison.
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γ = 1, and the specific form of the SSIM index is the following:

SSIM(x,y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) , (A.37)

where σxy = 1
J−1

∑J
j=1 (xj − µx) (yj − µy), and C1 and C2 are scalars dependent

on the dynamic range of the signals.

For image quality assessment Wang et al. [2004] recommends to apply the

index locally (within local windows) and average the local quality assessments

for an overall quality measure, called the mean SSIM (MSSIM) index:

MSSIM =
1

I

I∑
i=1

ˆSSIM(xNj ,yNj), (A.38)

where zNj denotes a local (2D) window within an image, I denotes the number

of local windows in the image, and ˆSSIM(xNj ,yNj) is an evaluation of a modifi-

cation of (A.37) to avoid ”blocking” artifacts. In particular, the local SSIM eval-

uations are smoothed with a circularly symmetric Gaussian weighting function

w. The modified evaluations can be then seen to apply (A.37) but assume µz =∑J
j=1wjzj, σz =

(
1

J−1

∑J
j=1wj (zj − µz)2

) 1
2
, and σxy =

∑J
j=1wj (xj − µx) (yj − µy).

The thesis uses the same settings (considered default/standard) in the eval-

uation as in Wang et al. [2004], with C1 = (0.01 · 255)2, C2 = (0.03 · 255)2 (the

dynamic range of images assumed to be 255), and the Gaussian smoothing filter

is of 11 × 11 size, assumes standard deviation of 1.5 samples, and is normalized

to unit sum.
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Transformation Equivariant

Modelling

B.1 In-plane image rotations

For the in-plane rotations we consider, images consisting of 2D grids of pixels

with locations x (with size N × 2 specifying the N Cartesian coordinates of the

grid) are rotated (counter-clockwise) about their center x̂ with a certain rotation

angle θ (in radians), with a geometric rotation matrix

T (θ) =

(
cos θ − sin θ

sin θ cos θ

)

to produce a rotated grid of pixels with locations y = T (θ)(x − x̂) + x̂. We call

the grid of pixels in the output image as the measurement grid. For rotation

angles of multiples of 90 degrees, the grid of rotated pixels and the measurement

grid align, and there exists a one-to-one mapping between the grid values. For

other rotation angles, the grids do not align, and interpolation is necessary to

faithfully obtain pixel values at the measurement grid locations1. See Figure B.1

for an illustration of in-plane rotations for both of these cases, in which the top-

most dotted grid of pixels in the figure is rotated about its center 45, and 90

degrees. Our implementation uses bilinear interpolation, each measurement grid

pixel evaluated as a convex combination of (maximally) four neighboring pixels

of the rotated grid. Each of the weights is computed as a product of two terms

which depend on the horizontal and vertical distance of the measurement grid

1with the exception of the center pixel

151
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pixel with the rotated grid, to the pixels which are used in the interpolation. De-

noting a1 and a2 as the (horizontal and vertical) coordinates of the measurement

grid pixel within the rotated grid, b1 and b2 those of a pixel to which interpola-

tion weight w is computed, then w = (1− |a1 − b1|)(1− |a2 − b2|)2. To compute

the location of the measurement grid pixels within the coordinate system of the

rotated grid, each measurement grid pixel is rotated with negative rotation angle

−θ. These locations are then used to find the neighboring units, and their asso-

ciated interpolation weights. Note that the measurement grid also needs to be

larger than the original image grid (or the grid of pixels we care about), since for

some rotation angles the rotated grid positions extend outside of a grid of size of

the original image, with the corners tracing out a bounding circle for a full range

of rotations.

Note that T (θ)−1 = T (θ)> = T (−θ). The transformation matrix (consisting

of interpolation weights / mapping coefficients), that is used to rotate images

with rotation angle ak = 360(k− 1)/K degrees, is denoted by R(k), where k is an

integer ranging from 1 to K. If no interpolation would be necessary it would hold

that transforming an image with [R(k)]
>

would equal transforming the image with

transformation matrix that rotates an image by −ak or equivalently by 360− ak
degrees. However, non-multiples of 90 degree rotations need interpolation, and

differences may arise.

B.2 Conditional distributions related to the convo-

lutional STEER-RBM

Here we will derive the conditional distributions in Section 3.3. As mentioned

in 3.2.2, the energy for a convolutional STEER-RBM can be written as follows:

E(v,h, z | θ) =
1

2σ2

∑
i

(
v2
i − 2avi

)
−
∑
α

∑
j

hαj

bα +
1

σ

∑
k

zαjk
∑
`∈Nαj

v`ω
α(d(j, `), k)

 ,

(B.1)

where a is visible unit layer bias, bα is a bias for hidden unit feature plane α,

Nαj indexes the visible units within the receptive field of hidden unit hαj , and σ

defines the standard deviation of the univariate Gaussian conditional distribution

2these weights are then normalized to sum to one, when interpolation has to be done from
less than 4 pixels
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Figure B.1: An illustration of in-plane rotations of the top-most dotted grid of pixels

about its center. The bottom grid shows an example of a 90 , and the middle

45, degree rotation counterclockwise. In the latter case, the rotated grid of pixels

is overlaid on the measurement grid whose pixels are marked as black-filled circles,

and the dimensions of the original grid is overlaid as a green square. In this case,

computation of most of the measurement grid pixels requires interpolation. And for

example the value of the pixel marked as a black-filled circle with yellow circumference

is computed as a convex combination of the neighboring four yellow-filled circles in

the rotated grid. The dashed blue circle in the middle grid depicts the circle that the

corners of the rotating grid trace out.



Appendix B. Transformation Equivariant Modelling 154

Figure B.2: Comparison of transforming an image (left-most images) by applying a

transpose of a rotation matrix (images at the bottom row), and by applying a rotation

matrix for inverted rotation angle (images at the top row). For multiples of 90 degrees

they are exactly the same.

p(vi | h, z, θ), as will be shown in the following.

Let us start by computing the joint marginal distribution of the visible units,

first marginalizing out the hidden units:

p(v, z | θ) ,
∑
h

p(v,h, z | θ) =
∑
h

1

Z
exp {−E(v,h, z | θ)}

=
1

Z
exp

{
− 1

2σ2

∑
i

(
v2
i − 2avi

)}∑
h

∏
α,j

exp

hαj
bα +

1

σ

∑
k

zαjk
∑
`∈Nαj

v`ω
α(d(j, `), k)


=

1

Z
exp

{
− 1

2σ2

∑
i

(
v2
i − 2avi

)}∏
α,j

∑
hαj

exp

hαj
bα +

1

σ

∑
k

zαjk
∑
`∈Nαj

v`ω
α(d(j, `), k)


=

1

Z
exp

{
− 1

2σ2

∑
i

(
v2
i − 2avi

)}∏
α,j

1 + exp

bα +
1

σ

∑
k

zαjk
∑
`∈Nαj

v`ω
α(d(j, `), k)


 ,

where the second-last equality follows from using the technique of ‘pushing sums

into products’ (the exponential terms on the right of previous line contain only

one hidden unit, and so the sums can be pushed into the products). We then

marginalize the rotation assignment variables to get the joint marginal of the
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visible units, using similar reasoning:

p(v | θ) ,
∑
z

p(v, z | θ)

=
1

Z
exp

{
− 1

2σ2

∑
i

(
v2
i − 2avi

)}∑
z

∏
α,j

1 + exp

bα +
1

σ

∑
k

zαjk
∑
`∈Nαj

v`ω
α(d(j, `), k)




=
1

Z
exp

{
− 1

2σ2

∑
i

(
v2
i − 2avi

)}∏
α,j

∑
zαj

1 + exp

bα +
1

σ

∑
k

zαjk
∑
`∈Nαj

v`ω
α(d(j, `), k)




=
1

Z
exp

{
− 1

2σ2

∑
i

(
v2
i − 2avi

)}∏
α,j

K +
K∑
k=1

exp

bα +
1

σ

∑
`∈Nαj

v`ω
α(d(j, `), k)


 .

Proceeding on deriving the partial derivatives in Section 3.3, we then compute

p(h, z | v, θ) ,
p(v,h, z | θ)
p(v | θ)

=

1
Z

exp
{
− 1

2σ2

∑
i (v

2
i − 2avi)

}∏
α,j exp

{
hαj

(
bα + 1

σ

∑
k z

α
jk

∑
`∈Nαj

v`ω
α(d(j, `), k)

)}
1
Z

exp
{
− 1

2σ2

∑
i (v

2
i − 2avi)

}∏
α,j

(
K +

∑K
k=1 exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
})

=
∏
α,j

p
(
hαj , z

α
j | v, θ

)
,

where

p
(
hαj , z

α
j | v, θ

)
=

exp
{
hαj

(
bα + 1

σ

∑
k z

α
jk

∑
`∈Nαj

v`ω
α(d(j, `), k)

)}
K +

∑K
k=1 exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
} . (B.2)

Thus we obtain that

p
(
hαj | v, θ

)
=
∑
zαj

p
(
hαj , z

α
j | v, θ

)
=

∑K
k=1 exp

{
hαj

(
bα + 1

σ

∑
`∈Nαj

v`ω
α(d(j, `), k)

)}
K +

∑K
k=1 exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
} ,
(B.3)

as in (3.6). This can be then used to compute the ‘remaining’ conditional distri-

bution

p
(
zαj | hαj ,v, θ

)
,
p
(
hαj , z

α
j | v, θ

)
p
(
hαj | v, θ

) =
exp

{
hαj

(
bα +

∑K
k=1 z

α
jk

1
σ

∑
`∈Nαj

v`ω
α(d(j, `), k)

)}
∑K

k=1 exp
{
hαj

(
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
)} ,

which is equal to (3.7). An alternative factorization of the joint conditional of

the hidden units p(h, z | v, θ) to those shown in (3.6) and (3.7) is given below,
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but using them in sampling is computationally more wasteful (in theory)3

p
(
zαj | v, θ

)
=

1 + exp
{
bα +

∑K
k=1 z

α
jk

1
σ

∑
`∈Nαj

v`ω
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K +
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} (B.4)

p
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} . (B.5)

To derive the full conditional distribution of a visible unit, we note that

p(v | h, z, θ) ,
p(v,h, z | θ)
p(h, z | θ)

=

1
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exp
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α,j bαh
α
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∑
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∏
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where

p(vi | h, z, θ) = N

vi; a+ σ
∑
α

∑
j∈N(i)

hαj
∑
k

zαjkω
α(d(j, i), k), σ2

 , (B.6)

which is obtained by using the ‘completing the square’-technique.

B.3 Gradients in training a rotation equivariant RBM

(STEER-RBM)

The objective function used in the experiments was based on log-likelihood of

data under the model:

log p
(
v(1), . . . ,v(N) |W

)
= −N logZ +

N∑
n=1

∑
j

log gj(v
(n)|Wj),

where

gj(v
(n)|Wj) = K +

K∑
k=1

exp {[v(n)]
>
R(k)Wj(·, 1)}.

3If a hidden unit is not turned on (its state is zero), it is then not necessary to sample its
rotation assignment variable.
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The gradient of the objective function with respect to the canonical weights for

feature j is thus

∂ log p
(
v(1), . . . ,v(N) |W

)
∂Wj(·, 1)

= −N 1

Z

∂Z

∂Wj(·, 1)
+

N∑
n=1

1

gj(v(n)|Wj)

∂gj(v
(n)|Wj)

∂Wj(·, 1)
.

(B.7)

Using the fact that
∂gj(v

(n)|Wj)

∂Wj(·,1)
=
∑K

k=1 [R(k)]
>
v(n) exp {[v(n)]

>
R(k)W j

·1}, we ob-

tain

1

gj(v(n)|Wj)

∂gj(v
(n)|Wj)

∂Wj(·, 1)
=

∑K
k=1 [R(k)]

>
v(n) exp {[v(n)]

>
R(k)W j

·1}
K +

∑K
k=1 exp {[v(n)]

>
R(k)Wj(·, 1)}

=
K∑
k=1

[R(k)]
>
v(n)p(zj(k) = 1, hj = 1|v(n),W ). (B.8)

The gradient of the partition function Z is a bit more involved. Marginalizing

out the visible units, we obtain

p(z,h|W) =
1

Z

∏
i

(
1 + exp

{∑
j

hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]
Wj(·, 1)

})
(B.9)

=
1

Z

∏
i

fi(h, z|W), (B.10)

where fi(h, z|W) =
(

1 + exp
{∑

j hj

[∑K
k=1 zj(k)R(k)(i, ·)

]
Wj(·, 1)

})
. There-

fore we find that

Z =
∑
h,z

∏
i

fi(h, z|W)

=
∑
h,z

∏
i

(
1 + exp

{∑
j

hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]
Wj(·, 1)

})
. (B.11)

Denoting the set visible unit indices as I, we obtain a representation for the

gradient of Z:

∂Z

∂Wj(·, 1)
=
∑
h,z

∑
i

∏
`∈I\i

f`(h, z|W)

 ∂fi(h, z|W)

∂Wj(·, 1)
(B.12)

=
∑
h,z

∑
i

[∏
i∈I

fi(h, z|W)

]
1

fi(h, z|W)

∂fi(h, z|W)

∂Wj(·, 1)
(B.13)

=
∑
h,z

∏
i

fi(h, z|W)
∑
i

1

fi(h, z|W)

∂fi(h, z|W)

∂Wj(·, 1)
. (B.14)
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This can be then used to obtain the gradient of its logarithm:

∂ logZ

∂Wj(·, 1)
=

1

Z

∂Z

∂Wj(·, 1)
=
∑
h,z

1

Z

∏
i

fi(h, z|W)
∑
i

1

fi(h, z|W)

∂fi(h, z|W)

∂Wj(·, 1)
.

(B.15)

Because 1
Z

∏
i fi(h, z|W) = p(z,h|W), we obtain

∂ logZ

∂Wj(·, 1)
=
∑
h,z

p(h, z|W)
∑
i

1

fi(h, z|W)

∂fi(h, z|W)

∂Wj(·, 1)
, (B.16)

where

∂fi(h, z|W)

∂Wj(·, 1)
= hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]>
exp

{∑
j

hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]
Wj(·, 1)

}
.

(B.17)

By plugging in terms into (B.15) and simplifying, we obtain

∂ logZ

∂Wj(·, 1)
=

∑
h,z

p(h, z|W)
∑
i

hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]>
logistic

(∑
j

hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]
Wj(·, 1)

)
.

(B.18)

Using an auxiliary variable vector c = [1 . . . K]> (which picks the rotation

assignment number of unit j, when inner-producted with zj) we arrive at an

alternative form

∂ logZ

∂Wj(·, 1)
=
∑
h,z

p(h, z|W)
∑
i

hj

[
R(c>zj)(i, ·)

]>
logistic

(∑
j

hjR
(c>zj)(i, ·)Wj(·, 1)

)
.

(B.19)

Plugging this and (B.8) in (B.7) and simplifying, we finally obtain that

∂ log p
(
v(1), . . . ,v(N) |W

)
∂Wj(·, 1)

=
N∑
n=1

(∑K
k=1 [R(k)]

>
v(n) exp {[v(n)]

>
R(k)W j

·1}
K +

∑K
k=1 exp {[v(n)]

>
R(k)Wj(·, 1)}

)

−N
∑
h,z

p(h, z|W)
∑
i

hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]>
logistic

(∑
j

hj

[
K∑
k=1

zj(k)R(k)(i, ·)

]
Wj(·, 1)

)

=
N∑
n=1

K∑
k=1

[R(k)]
>
v(n)p(zj(k) = 1, hj = 1|v(n),W )

−N
∑
h,z

p(h, z|W)
∑
i

hj

[
R(c>zj)(i, ·)

]>
logistic

(∑
j

hjR
(c>zj)(i, ·)Wj(·, 1)

)
.

(B.20)
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B.4 Gradients in training a STEER-DBN

B.4.1 Partial derivatives related to training the first level STEER-

RBM

Assuming a convolutional STEER-RBM as defined in (3.3) (and constant σ) the

partial derivatives are:

∂E(v,h, z | θ)
∂a

= − 1

σ2

∑
i

vi
∂E(v,h, z | θ)

∂bα
= −

∑
j

hαj (B.21)

∂E(v,h, z | θ)
∂ωα(β, 1)

= − 1

σ

∑
j

hαj

K∑
k=1

zαjk
∑
`∈Nαj

v`R
(k)(d(j, `), β) (B.22)

= − 1

σ

∑
j

hαj

K∑
k=1

zαjk
[
R(k)(·, β)

]>
vNαj (B.23)

= − 1

σ

∑
j

hαj

[
R(c>zαj )(·, β)

]>
vNαj (B.24)

∂p
(
h
α(n)
j = 1 | v(n), θ

)
∂bα

=
K
∑K

k=1 exp
{
bα + 1

σ

∑
`∈Nαj

v`ω
α(d(j, `), k)

}
[
K +

∑K
k=1 exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
}]2
(B.25)

∂p
(
h
α(n)
j = 1 | v(n), θ

)
∂ωα(β, 1)

=

K
∑K

k=1

∑
`∈Nαj

1
σ
v`R

(k)(d(j, `), β) exp
{
bα + 1

σ

∑
`∈Nαj

v`ω
α(d(j, `), k)

}
[
K +

∑K
k=1 exp

{
bα + 1

σ

∑
`∈Nαj

v`ωα(d(j, `), k)
}]2 . (B.26)

B.4.2 Partial derivatives related to training the higher level

STEER-RBMs

Consider a STEER-RBM at level ` > 1 in a deep structure, and considering it as

a stand-alone STEER-RBM. The energy function for the stand-alone model can

be then written as

E
(
h`−1, z`−1,h`, z` | θ`

)
= −

∑
δ

b`−1
δ

∑
i

h`−1δ
i −

∑
α

b`α
∑
j

h`αj

−
∑
α

∑
j

h`αj
∑
δ

∑
i∈Nαj

h`−1δ
i ω`α`−1δ

(d(j, i), c>z`−1δ
i , c>z`αj ), (B.27)
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where as before, the auxiliary variable vector c = [1 . . . K]>. The partial deriva-

tives of this energy function with respect to model parameters are then the fol-

lowing:

∂E
(
h`−1, z`−1,h`, z` | θ`

)
∂b`−1

δ

= −
∑
i

h`−1δ
i

∂E
(
h`−1, z`−1,h`, z` | θ`

)
∂b`α

= −
∑
j

h`αj

(B.28)

∂E
(
h`−1, z`−1,h`, z` | θ`

)
∂ω`α`−1δ

(β, γ, 1)
=

−
∑
j

h`αj

K∑
k=1

z`αjk
∑
i∈Nαj

h`−1δ
i R(k)(d(j, i), β)

K∑
m=1

z`−1δ
im S(k)(γ,m) (B.29)

= −
∑
j

h`αj
∑
i∈Nαj

h`−1δ
i R(c>z`αj )(d(j, i), β)S(c>z`αj )(γ, c>z`−1δ

i ). (B.30)

Let us now consider the partial derivatives
∂p(h`αj =1|z`αj ,h`−1,z`−1,θ`)

∂θ`
.

p
(
h`αj = 1 | z`αj ,h`−1, z`−1, θ`

)
=

∑K
k=1 exp {A(k)}

K +
∑K

k=1 exp {A(k)}
, (B.31)

where

A(k) = b`α +
∑
δ

∑
i∈Nαj

h`−1δ
i ω`α`−1δ

(d(j, i), c>z`−1δ
i , k).

Therefore,

∂p
(
h`αj = 1 | z`αj ,h`−1, z`−1, θ`

)
∂φ

=
K[

K +
∑K

k=1 exp {A(k)}
]2 K∑

k=1

exp {A(k)}∂A(k)

∂φ
.

(B.32)

In the case φ = b`α,
∂A(k)
∂φ

= 1. The case φ = ω`α`−1δ
(β, γ, 1) is more complicated:

∂A(k)

∂ω`α`−1δ
(β, γ, 1)

=
∑
i∈Nαj

h`−1δ
i R(k)(d(j, i), β)S(k)(γ, c>z`−1δ

i ). (B.33)



Appendix C

Texture Modelling

In the following section we develop and assess methods for handling boundaries,

an issue empirically found to be of significant practical importance. We also

study the effect of using hidden unit augmentations and block Gibbs sampling

versus integrating them out and using hybrid Monte Carlo (HMC) in learning and

texture synthesis tasks. In both of these studies we focus on the GB-RBM with

tiled-convolutional feature sharing, which is the building block of the multiple

texture model developed in Chapter 4. Section C.2 gives partial derivatives for

gradient-based learning of texture models in Chapter 4.

C.1 Practical Modelling Considerations

There are many practical considerations involved with training and inference with

the texture models of Chapter 4. This section considers two such issues, namely

the use of hidden units in training and inference; and handling image boundaries.

Although the models considered in experiments in Sec. 4.3 have hidden unit

augmentations available, and are amenable to block Gibbs sampling, the joint

conditional distribution of visible units given hidden units factorizes over sites

only with the GB-RBM model. For the other models the distribution to sample

from is a multivariate Gaussian distribution, with potentially full precision matrix

over full-image dimensions, and for large images the sampling can be complicated

in practice.

To study the effect of using hidden unit augmentations to generative per-

formance, the following subsection C.1.1 analyzes the texture synthesis quality

of a GB-RBM with tiled-convolutional feature sharing (Tm) when hidden units

161
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are either used or integrated out in training and/or testing. Based on these re-

sults, subsection C.1.2 analyzes several boundary handling methods under the

best augmentation setup. The boundary handling methods include the approach

considered above, and three other ones.

We then discuss how to further extend the model to deal with colour images,

using receptive fields at various scales, and making the feature sharing data-

adaptive, for making the model applicable to very generic scenarios.

C.1.1 The use of latent variables

Here we assess the effect of using latent variables to synthesis performance of a

Tm-model by analyzing unconstrained and constrained texture synthesis perfor-

mance under two Brodatz textures (D21,D77) when latent variables are used or

integrated out in training and/or in testing. Similar to the experiments in Sec. 4.3

and 4.4, the train/test data are top/bottom parts of the respective texture images.

In our experiments the parameter update formulas in training were set to

be equivalent for all of the cases. That is also the case for the values of the

hyperparameters. The only thing that was different was the way negative particles

or model samples were drawn/updated: when latent variables were used, negative

particles or model samples were drawn/updated by using block-Gibbs sampling

(BG). In the case when the hidden units were integrated out, hybrid Monte Carlo

(HMC) was used instead.

C.1.1.1 Training

The models were trained using FPCD, similar to the techniques in the previous

section. A batch size of 128 samples of size 71×71 was used, of which for negative

particles boundaries of 7 units wide were clamped to zero. The training algorithm

was run for 50,000 iterations, using a learning rate 0.0005 for weights, and 0.032

for visible biases. The learning rates were annealed after 5,000 iterations, such

that they assumed 1
t
-type annealing, adjusted so that the learning rates were 0.1

of the initial learning rate at the end of the training. The HMC-based negative

particle updates used 30 Leapfrog-updates, with step sizes adjusted for 90 percent

acceptance rate.
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C.1.1.2 Unconstrained texture synthesis

Samples were collected by storing the states of 128 independently and randomly

initialized chains after 100,000 iterations of Markov chain Monte Carlo for each

analysis case. Figure C.3 shows example model samples, and raw test data

patches of similar size. The quality of the model samples were analyzed quan-

titatively by computing TSS-scores of the samples to the test portions of the

corresponding textures, at various matching window sizes. These results are

summarized in Table C.1, and in Figures C.1 (D21), and C.2 (D77). Assum-

ing a trained model, the results are largely insensitive to whether block-Gibbs

sampling (BG) or HMC is used, provided the model was not exhibiting strong

failure indications or artifacts when compared to the ground truth as with the

D77 using HMC in training. The D77 synthesis results of models trained with

HMC based negative particle updating are clearly weaker than those of based

on block-Gibbs sampling, as is also clear from Figure C.3. Overall there seems

to be slightly more robust performance associated with the models trained with

using hidden units and block-Gibbs sampling. However, as our results in Chap-

ter 4 demonstrate, excellent performance (under several textures which include

the considered textures here) can be obtained by using HMC to draw negative

particles in model training. In this appendix we have used considerably less time

in choosing the hyperparameters, and there are several differences to the setup in

Chapter 4. The best performance is, however, clearly achieved with an approach

modified from the BG sampling denoted as BG-. In this approach the inference

result is set as the conditional mean of visible units given the last state of hidden

units as opposed to a sample from the joint conditional distribution, and yields

clear improvements over the BG approach on both textures.

C.1.1.3 Constrained texture synthesis

Inpainting performance was assessed on 20 cases per texture, each consisting of a

79×79 unit image, having 11-unit ground truth borders, and a 57×57 inpainting

hole in the center. Each of the cases had a corresponding ground truth texture

patch within the test portion of the corresponding Brodatz-texture, and their

positions were chosen randomly.

Inpainting was performed for each case by running the Markov chain Monte

Carlo algorithms with 5 chains started from the inpainting frames each associated
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Figure C.1: Effect of (train,test) sampling method combination to synthesis quality:

D21 Brodatz texture synthesis quality assessment for the methods measured as texture

similarity score between model samples and the testing half of the texture, using

different window sizes in the score computation (horizontal blocks). Boxes indicate

the upper and lower quartiles as well as the median (red bar) of the TSS distributions;

whiskers show extent of the rest of the data; red crosses denote outliers. HMC

denotes hybrid Monte Carlo, BG denotes block-Gibbs, and BG- denotes block-Gibbs

with last state of visible units in the sampling set as the mean of the joint conditional

distribution of visible units given hidden units.
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Figure C.2: Effect of (train,test) sampling method combination to synthesis quality:

D77 Brodatz texture synthesis quality assessment for the methods measured as texture

similarity score between model samples and the testing half of the texture, using

different window sizes in the score computation (horizontal blocks). Boxes indicate

the upper and lower quartiles as well as the median (red bar) of the TSS distributions;

whiskers show extent of the rest of the data; red crosses denote outliers. HMC

denotes hybrid Monte Carlo, BG denotes block-Gibbs, and BG- denotes block-Gibbs

with last state of visible units in the sampling set as the mean of the joint conditional

distribution of visible units given hidden units.
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Figure C.3: Example data patches (top row), and samples under different approaches

which use different (training,testing) sampling method combinations (other rows),

with each case scaled independently to cover the full intensity range. HMC denotes

hybrid Monte Carlo, BG denotes block-Gibbs, and BG- denotes block-Gibbs with

last state of visible units in the sampling set as the mean of the joint conditional

distribution of visible units given hidden units.
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with different random number generator seed for 10,000 iterations, and storing

the last states as result images. Figure C.5 shows examples of these.

To obtain quantitative results, for each sample the normalized cross-correlation

(NCC) and mean structural similarity index (MSSIM) were computed between

inpainted region and the corresponding ground truth texture region, and the tex-

ture similarity score between the inpainted region and the test portion of the

corresponding texture. These results are summarized in Figure C.4 and in Ta-

ble C.2. Similar to unconstrained synthesis, assuming a trained model the choice

of the sampling method does not matter. This also should be the case for valid

samplers assuming they have burnt in. Also similar to unconstrained synthesis,

skipping the addition of i.i.d. zero-mean white Gaussian noise in the last visible

unit update step in block-Gibbs sampling yields better results, and the BG- ap-

proach gives the best performance in general. Using the conditional mean as the

estimator can be seen as applying Rao-Blackwellization [Blackwell, 1947].

C.1.1.4 Discussion

In terms of texture synthesis performance the issue of the use of hidden unit

augmentations and using block-Gibbs versus integrating them out and using HMC

did not largely matter. We note that there are many caveats in the study and

therefore cannot draw strong conclusions for generic situations. It is however

expected that using the Gibbs sampling is simpler to adopt, which is also the

typical scenario for the models considered.

The results, however, suggested clear benefits of using the conditional mean of

visible units given hidden units as opposed to a sample from the joint distribution

of visible units given hidden units as the inference result in both unconstrained

and constrained synthesis. The latter can be obtained from the former by adding

i.i.d. zero-mean white Gaussian noise with standard deviation σ. While with

the former the inference is not based on a sample from the model, the results

suggest practical benefits of the approach for the tasks considered. Using the

conditional mean as the estimator can be seen as applying Rao-Blackwellization.

These results are in line with those obtained with the Tm and the Multi-Tm

(256) in Sec. 4.4.

In the following subsection where different boundary handling methods are

compared, both learning and inference use hidden unit augmentation and block-

Gibbs sampling, and the inferences are based on conditional means of visible
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NCC

MSSIM TSS

Figure C.4: Quality assessment for the different approaches which use different (train-

ing,testing) sampling method combinations, based on NCC/MSSIM/TSS between in-

painted area and corresponding Brodatz texture. Boxes indicate the upper and lower

quartiles as well as the median (red bar) of the TSS/NCC distributions; whiskers

show extent of the rest of the data; red crosses denote outliers. HMC denotes hybrid

Monte Carlo, BG denotes block-Gibbs, and BG- denotes block-Gibbs with last state

of visible units in the sampling set as the mean of the joint conditional distribution

of visible units given hidden units.
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Figure C.5: Example inpainting frames (top row), ground truth (bottom), and

approach-specific samples (other rows; sampling method used in training, sampling

method used in testing), with each case scaled independently to cover the full in-

tensity range. HMC denotes hybrid Monte Carlo, BG denotes block-Gibbs, and BG-

denotes block-Gibbs with last state of visible units in the sampling set as the mean

of the joint conditional distribution of visible units given hidden units.
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units given the last states of hidden units in the block-Gibbs sampling scheme,

adopting the most effective setup of the study in this subsection.

C.1.2 Boundary handling

In this subsection we discuss and develop methods for handling boundaries when

using tiled-convolutional feature sharing, and evaluate the effectiveness of them

in texture synthesis. In the experiments we use the Gaussian-Bernoulli RBM

(Tm) as the image model, but the techniques are applicable to other models as

well.

C.1.2.1 Methods for handling boundaries

We consider four different methods for handling boundaries, one of which (neg-

BordersZero) has been used in the previous experiments in this chapter with the

Tm-models. The approaches use the default visible and hidden unit grid spacings

associated with the models, and do not use a wrap-around connectivity. The way

they deal with boundary units are the following:

negBordersZero (NBoZ) Border visible units (the width of the square fil-

ter/receptive field minus one units assuming a stride of one) are clamped

to zeros for the negative phase data, and when sampling from the model.

bordersZero (BoZ) This is similar to the above, with the exception that during

training the positive phase data is also masked to zeros at the borders.

specialBiases (SBi) The approach assumes the same connectivity structure as

the above. However, the parameterisation is different (extended): Each of

the feature planes of the hidden units are associated with a (global) bias as

in the above. However, these are scaled (multiplied by a scalar) and shifted

(a scalar is added) at different sites. The scalars are shared across feature

planes, and also assume a sharing based on the spatial pattern of weight

connectivity to it. The number of these scaling and shifting variables is the

number of unique weight connectivity patterns, and is independent of the

number of features used per site. In practice the number is also independent

of the lattice size due to the spatial sharing, and dependent only on the

receptive field size, and the stride used in tiling. In the experiments here

(in which the receptive field size was 8×8, and the stride was 1) the number
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of both shifting and scaling variables was 62, a relatively small amount of

variables when compared to the total amount of parameters in the model

(the model also had 256 hidden unit biases (8 sets of 32 biases, one set per

tiling) and 16,384 weights (8 sets of 32 weights of size 8 × 8)). This was

also the amount of extra parameters when compared to the other boundary

handling methods in this study.

latentBorders (LBo) Border visible units for the positive phase data are con-

sidered to be missing. In our experiments with this approach each of the

hidden units were associated with the same number of visible units, and at

the borders there were visible units which did not receive inputs with all

the possible connectivity weights, and all of those units were considered to

be latent/missing. There is no special treatment for the negative phase.

C.1.2.2 Learning

The models were trained using FPCD, using the techniques of previous subsection

assuming the use of hidden units and block-Gibbs sampling to update negative

particles. The training similarly used a batch size of 128 samples of size 71× 71.

The missing positive phase boundary data for the latentBorders-method were

outpainted by using block-Gibbs sampling for ten iterations starting from zero

unit values within each iteration of the outer loop FPCD training algorithm.

The learning rates for the different methods assumed a similar annealing scheme

as in the previous subsection, but had different initial learning rates. Appro-

priate learning rates for the different methods were investigated experimentally,

and here we report the results with the ones that obtained best results per ap-

proach. The NBoZ and the BoZ-methods used learning rates of 0.0005 for the

weights, and 0.032 for the hidden unit biases. The LBo-method used 0.5 times

the above learning rates. The SBi-method used learning rates of 0.0005 for all of

the parameters.

C.1.2.3 Unconstrained Synthesis

Samples were collected by storing the conditional means of visible units given the

hidden units of 128 independently and randomly initialized states after 100,000

iterations of Markov chain Monte Carlo for each analysis case. Figure C.8 shows

example samples, and raw test data patches of similar size. The quality of the
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Figure C.6: D21 Brodatz texture synthesis quality assessment for the methods mea-

sured as texture similarity score between model samples and the testing half of the

texture, using various window sizes in the score computation (horizontal blocks).

Boxes indicate the upper and lower quartiles as well as the median (red bar) of the

TSS distributions; whiskers show extent of the rest of the data; red crosses denote

outliers.

samples were analyzed quantitatively by computing TSS-scores of the samples

(with boundary data cropped out) to the test portions of the corresponding tex-

tures, at various matching window sizes. These results are summarized in Fig-

ures C.6 (D21), and C.7 (D77), and in Table C.3. From these summaries we

can see that the latentBorders-method achieves the best results for both of the

textures, and clearly so in the case of the D77 texture.

C.1.2.4 Constrained Synthesis

Inpainting performance was assessed on the 20 cases of previous subsection, each

consisting of a 79 × 79 unit image, having 11-unit ground truth borders, and a

57×57 inpainting hole in the center. Each of the cases had a corresponding ground
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Figure C.7: D77 Brodatz texture synthesis quality assessment for the methods mea-

sured as texture similarity score between model samples and the testing half of the

texture, using various window sizes in the score computation (horizontal blocks).

Boxes indicate the upper and lower quartiles as well as the median (red bar) of the

TSS distributions; whiskers show extent of the rest of the data; red crosses denote

outliers.
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Brodatz Texture D21 Synthesis (TSS):

Boundary Handling Approach

W.s. negBordersZero bordersZero specialBiases latentBorders

19× 19 0.9328± 0.0460 0.9437± 0.0331 0.8931± 0.0735 0.9565± 0.0062

25× 25 0.9272± 0.0361 0.9237± 0.0700 0.8802± 0.0782 0.9487± 0.0089

31× 31 0.9117± 0.0684 0.9049± 0.0860 0.8669± 0.0820 0.9434± 0.0089

37× 37 0.9135± 0.0420 0.9048± 0.0864 0.8557± 0.0880 0.9371± 0.0145

43× 43 0.9002± 0.0642 0.8917± 0.0899 0.8520± 0.0841 0.9315± 0.0341

49× 49 0.8912± 0.0721 0.8719± 0.1129 0.8437± 0.0951 0.9269± 0.0329

55× 55 0.8820± 0.0916 0.8631± 0.1149 0.8366± 0.0943 0.9238± 0.0283

61× 61 0.8801± 0.0824 0.8547± 0.1228 0.8310± 0.0949 0.9177± 0.0423

67× 67 0.8721± 0.0933 0.8454± 0.1298 0.8251± 0.1008 0.9124± 0.0451

73× 73 0.8673± 0.0895 0.8387± 0.1292 0.8213± 0.0976 0.9089± 0.0418

Brodatz Texture D77 Synthesis (TSS):

Boundary Handling Approach

W.s. negBordersZero bordersZero specialBiases latentBorders

19× 19 0.8547± 0.0173 0.8532± 0.0439 0.8551± 0.0272 0.8770± 0.0227

25× 25 0.8288± 0.0247 0.8227± 0.0536 0.8303± 0.0374 0.8601± 0.0216

31× 31 0.8156± 0.0169 0.8123± 0.0518 0.8164± 0.0279 0.8453± 0.0171

37× 37 0.8026± 0.0217 0.7905± 0.0675 0.8037± 0.0381 0.8347± 0.0216

43× 43 0.7950± 0.0260 0.7751± 0.0747 0.7877± 0.0495 0.8271± 0.0219

49× 49 0.7837± 0.0256 0.7597± 0.0845 0.7809± 0.0390 0.8187± 0.0223

55× 55 0.7738± 0.0219 0.7434± 0.0919 0.7694± 0.0409 0.8123± 0.0227

61× 61 0.7647± 0.0268 0.7305± 0.0893 0.7564± 0.0474 0.8043± 0.0232

67× 67 0.7536± 0.0251 0.7179± 0.0923 0.7442± 0.0462 0.7956± 0.0229

73× 73 0.7392± 0.0263 0.6990± 0.0941 0.7277± 0.0496 0.7865± 0.0242

Table C.3: Sample means and standard deviations of the texture synthesis TSS-

scores for D21 (top) and D77 (bottom), under different methods (columns) and

using different window sizes (W.s.) in the score computation (rows).
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Figure C.8: Example data patches (top row), and method-specific model samples

(other rows; see text for description), with each case scaled independently to cover

the full intensity range. Borders are constrained to be zeros for all models, except for

the latentBorder-method.
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Brodatz Texture D21 Inpainting:

Boundary Handling Approach

Metric negBordersZero bordersZero specialBiases latentBorders

NCC 0.9154± 0.0118 0.9088± 0.0142 0.9162± 0.0115 0.9153± 0.0132

MSSIM 0.9081± 0.0154 0.8795± 0.0188 0.9097± 0.0148 0.9086± 0.0172

TSS 0.9246± 0.0055 0.9240± 0.0045 0.9253± 0.0047 0.9283± 0.0041

Brodatz Texture D77 Inpainting:

Boundary Handling Approach

Metric negBordersZero bordersZero specialBiases latentBorders

NCC 0.7644± 0.0198 0.7675± 0.0254 0.7294± 0.0276 0.7948± 0.0182

MSSIM 0.7603± 0.0185 0.7692± 0.0227 0.7337± 0.0276 0.7838± 0.0284

TSS 0.7886± 0.0099 0.7947± 0.0169 0.7609± 0.0180 0.8160± 0.0142

Table C.4: Sample means and standard deviations of the texture inpainting scores for

D21 (top) and D77 (bottom), under different methods (columns) and performance

metrics (rows).

truth texture patch within the test portion of the corresponding Brodatz-texture,

and their positions were chosen randomly.

Inpainting was done for each case by applying block-Gibbs sampling with 5

chains started from the inpainting frames each associated with different random

number generator seed for 9,999 iterations, sampling hidden units given visible

units, and using the conditional means of visible units given the hidden units as

the results. Figure C.10 shows example inpainting problems under both of the

Brodatz textures, and results under each of the boundary handling methods.

To obtain quantitative results, normalized cross-correlation (NCC), and mean

structural similarity index (MSSIM) were computed between inpainted region

and the corresponding ground truth texture region, and texture similarity score

between the inpainted region, and the test portion of the corresponding texture,

for each sample. These results are summarized in Figure C.9, and in Table C.4.

Similar to unconstrained synthesis, the latentBorders-method yields clearly best

performance in the D77-texture case. In case of the D21-texture this approach

performs similarly to the best of the rest.
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NCC

MSSIM TSS

Figure C.9: Quality assessment for the boundary handling methods, based on

NCC/MSSIM/TSS between inpainted area and corresponding Brodatz texture. Boxes

indicate the upper and lower quartiles as well as the median (red bar) of the TSS/NCC

distributions; whiskers show extent of the rest of the data; red crosses denote outliers.
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Figure C.10: Example inpainting frames (top row), ground truth (bottom row), and

method-specific model samples (other rows; see text for description), with each case

scaled independently to cover the full intensity range.
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C.1.2.5 Discussion

Taking both the unconstrained and constrained texture synthesis quality into

account, the latentBorders-method yields clearly the best results. Amongst the

other approaches, the negBordersZero-method obtained overall best average per-

formance, with the two other performing rather similarly on average across the

textures, with mixed ranks for the two different textures.

The latentBorders-approach could be combined with a wrap-around, a com-

monly used method in the literature. While all of the units would be equally

constrained in such approach, it is possible that the latent boundary would need

to be much larger than considered here for obtaining effective performance, and

even for very large such boundaries, the approach might be problematic for some

textures. The problem is associated with obtaining a seamless texture pattern in

an unfolded representation without distorting textons and their joint statistics.

C.1.3 Other considerations

In this this appendix and in Chapters 3 and 4 we have considered only single-

channel input images (gray-scale texture images). It is straightforward to extend

the methods to deal with multi-channel inputs, by using multi-channel weight

kernels.

To add robustness to scale variations, and to reduce the amount of manual

registration work, filter kernels at various sizes could be used to connect to visible

units. Also in Chapter 4 tiled-convolutional feature sharing was used, whereas the

methods in Chapter 3 considered non-tiled convolutional feature sharing. Cur-

rently there are no quantitative results suggesting the usefulness of one approach

over the other in terms of generative performance. It could be the case that this

would be dependent on the data to be modelled. A data-adaptive approach could

be obtained by utilizing the transformation-equivariant modelling framework, as

described in Chapter 6.
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C.2 Partial derivatives in learning the texture mod-

els

Free-energies under the tiled-convolutional single-texture Tm, TPoT, and TmPoT

models can be written as:

FTm(v) =
∑
i

(vi − a)2

2σ2
−
∑
s

∑
t

∑
`

log

{
1 + exp

{
bs` +

1

σ2
Ms
·`
>vNs,t

}}
(C.1)

FTPoT(v) =
∑
s

∑
t

∑
j

γsj log

{
1 +

1

2

[
Cs
·j
>vNs,t

]2}
(C.2)

FTmPoT(v) = FTm(v) + FTPoT(v) (C.3)

Let F (v) = FTmPoT(v), and σ2 = exp {z}. Partial derivatives of the free-energy

with respect to the parameters can be written as follows:

∂F (v)

∂a
=
∑
i

(vi − a)

σ2
(C.4)

∂F (v)

∂Ws
·`

= − 1

σ2

∑
t

exp
{
bs` + 1

σ2M
s
·`
>vNs,t

}
1 + exp

{
bs` + 1

σ2Ms
·`
>vNs,t

}vNs,t (C.5)

∂F (v)

∂bs`
= −

∑
t

exp
{
bs` + 1

σ2M
s
·`
>vNs,t

}
1 + exp

{
bs` + 1

σ2Ms
·`
>vNs,t

} (C.6)

∂F (v)

∂z
= − 1

σ2

[∑
i

(vi − a)2 −
∑
s

∑
t

∑
`

exp
{
bs` + 1

σ2M
s
·`
>vNs,t

}
1 + exp

{
bs` + 1

σ2Ms
·`
>vNs,t

}Ms
·`
>vNs,t

]
(C.7)

∂F (v)

∂Cs
·j

=
∑
t

γsjC
s
·j
>vNs,t

1 + 1
2

[
Cs
·j
>vNs,t

]2 (C.8)

∂F (v)

∂γsj
=
∑
t

log

{
1 +

1

2

[
Cs
·j
>vNs,t

]2}
(C.9)

Partial derivatives of the free-energies with respect to a visible unit vi are the

following:

∂FTm(v)

∂vi
=
vi − a
σ2

− 1

σ2

∑
s,t:vi∈vNs,t

∑
`

exp
{
bs` + 1

σ2M
s
·`
>vNs,t

}
1 + exp

{
bs` + 1

σ2Ms
·`
>vNs,t

}Ms
t→i,`

(C.10)

∂FTPoT(v)

∂vi
=

∑
s,t:vi∈vNs,t

∑
j

γsjC
s
·j
>vNs,tC

s
t→i,j

1 + 1
2

[
Cs
·j
>vNs,t

]2 (C.11)

, (C.12)
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where Ms
t→i,` and Cs

t→i,j denote the connection weights in Ms
·` and in Cs

·j as-

sociated with position s, t to visible unit vi, respectively. Finally, we have that

∂FTmPoT(v)

∂vi
=
∂FTm(v)

∂vi
+
∂FTPoT(v)

∂vi
. (C.13)



Appendix D

Modelling Natural Images and their

Contours

D.1 Gradient-based Learning

D.1.1 Partial derivatives in learning an mcRBM

The free-energy under a tiled-convolutional mcRBM (TmcRBM) in terms of the

covariance part is the following:

F c(v) = −
S∑
s=1

T∑
t=1

J∑
j=1

log

{
1 + exp

{
dsj −

1

2

∑
f

πsjf
[
Ks
·f
>AvNs,t

]2}}
, (D.1)

where vNs,t denotes visible units in the tile with index t under a shift index s.

There are S sets of parameters each containing J covariance unit biases, F factor

filters, and a pooling matrix πs of size J × F . These are shared at T different

locations, and assuming square images with T 1/2 × T 1/2 tile grid size, the image

lattice is of size T 1/2D + 2(D/2 − 1) × T 1/2D + 2(D/2 − 1), where D is the

even vertical and horizontal dimension of a square filter under the model. Partial

derivatives of the free-energy with respect to the model parameters, and data are

184
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thus the following:

∂F c(v)

∂dsj
= −

T∑
t=1

S(Rs,j
t ) (D.2)

∂F c(v)

∂Ks
·f

=
T∑
t=1

AvNs,t

J∑
j=1

S(Rs,j
t )πsjf

[
Ks
·f
>AvNs,t

]
(D.3)

∂F c(v)

∂πsjf
=

1

2

T∑
t=1

S(Rs,j
t )Ks

·f
>AvNs,t (D.4)

∂F c(v)

∂vi
= A

∑
s,t:vi∈vNs,t

J∑
j=1

S(Rs,j
t )

F∑
f=1

πsjf
[
Ks
·f
>AvNs,t

]
Ks
s,t→f , (D.5)

where Rs,j
t = dsj − 1

2

∑
f π

s
jf

[
Ks
·f
>AvNs,t

]2
, S(x) = 1/(1 + exp {−x}), the logis-

tic function, and Ks
t→i,f denotes the connection weight in Ks

·f associated with

position s, t to visible unit vi.

D.1.2 Partial derivatives in learning a logistic regression net-

work for contour prediction

The training of the network was based on a stochastic gradient ascent algorithm,

optimizing a function

C = L − λR, (D.6)

where L denotes the log-likelihood of the training data, where

L =
∑
n,i

[
y

(n)
i log u

(n)
i + (1− y(n)

i ) log {1− u(n)
i }
]
, (D.7)

where y
(n)
i denotes the state of the contour unit with index i in training image

with index n, and u
(n)
i denotes the prediction with the method for that unit,

according to equation (5.4). The other term is a regularization term R = 1
2
‖θ‖22,

where λ is a positive regularization constant, and θ denotes the model parameters.

Let us first consider the partial derivative of L with respect to the parameters

θ:

∂L
∂θ

=
∑
n,i

[
y

(n)
i

u
(n)
i

∂u
(n)
i

∂θ
− (1− y(n)

i )

1− u(n)
i

∂u
(n)
i

∂θ

]
(D.8)

=
∑
n,i

 y
(n)
i − u

(n)
i

u
(n)
i

(
1− u(n)

i

) ∂u(n)
i

∂θ

 (D.9)

(D.10)
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Let S(x) = 1/(1+exp {−x}). We can then write that u
(n)
i = S

(
g +

∑
jWjif

(n)
j

)
=

S(Ai,n). As
∂u

(n)
i

∂θ
=

∂S(Ai,n)

∂θ
= S(Ai,n) (1− S(Ai,n))

∂Ai,n
∂θ

= u
(n)
i

(
1− u(n)

i

)
∂Ai,n
∂θ

,

we find by substitution and simplification that

∂L
∂θ

=

[∑
n,i

(
y

(n)
i − u

(n)
i

) ∂Ai,n
∂θ

]
, (D.11)

where Ai,n = g +
∑

jWjif
(n)
j . As ∂R

∂θk
= θk, we find that

∂C
∂Wji

=

[∑
n

(
y

(n)
i − u

(n)
i

)
f

(n)
j

]
− λWji (D.12)

∂C
∂g

=

[∑
n,i

(
y

(n)
i − u

(n)
i

)]
− λg. (D.13)

(D.14)

D.1.2.1 Back-propagating errors for adjusting network parameters

Let φ denote the parameters of a TmcRBM. The partial derivatives of the log-

likelihood w.r.t. the parameters

∂L
∂φ

=

[∑
n,i

(
y

(n)
i − u

(n)
i

) ∂Ai,n
∂φ

]
(D.15)

=
∑
n,i

(
y

(n)
i − u

(n)
i

)∑
j

Wji

∂f
(n)
j

∂φ
. (D.16)

As the hidden unit activations f
(n)
j are defined using sigmoidal functions, we can

write f
(n)
j = S(B

(n)
j ), and thus

∂L
∂φ

=
∑
n,i

(
y

(n)
i − u

(n)
i

)∑
j

Wjif
(n)
j

(
1− f (n)

j

) ∂B(n)
j

∂φ
. (D.17)

For deeper networks the computation recurses in a similar fashion, proceed-

ing from the last layer to the first layer, applying the chain-rule of differentiation

for partial derivatives for parameters earlier in the networks. Note that a lot of

computation is typically shared, and it would be naive to compute each partial

derivative independently of other ones. The thesis uses computation sharing as

in the back-propagation algorithm/formalization of the partial derivative com-

putations [Rumelhart et al., 1986], with computations done in a layer-sweeping

manner.
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D.2 Metrics in model learning

In the main text, the models were learned by optimizing (ignoring the regulariza-

tion terms) the discriminative log-likelihood of the training data, in which it is

assumed that each point in the contour unit lattice is distributed according to a

Bernoulli distribution, with success probability given according to the prediction

(probability of contours) with the approach (i.e. p(yi = zi|ui) = uzii (1− ui)1−zi).

Alternatively it can be viewed as optimizing the cross-entropy between the distri-

bution of contour state and the probability of contour according to the prediction

model:

H(pi.qi) = −
∑
s

pi(s) log qi(s), (D.18)

where pi = [1− yi yi], and qi = [1− ui ui], where yi denotes the label of contour

unit with index i, and ui is given by equation (5.4).

For any given image there are annotations by several humans, with binary

decisions for the existence of contour under any image position. As Hou et al.

[2013] discuss, a large amount of the positions marked containing a contour are

from only one of the annotators. To avoid issues this causes under the benchmark

metric, the paper proposes to consider the detection of strong contour positions

(where there is a consensus among all of the annotators) as opposed to any

contours.

In the following we are considering learning averages of the annotations per

position. This could be related to the probability that humans consider the

position to be a contour-position. In comparison to the strong-contour detection,

this approach does not throw away annotation data as much. In both approaches,

imperfections are expected due to alignment issues.

The benchmark metric ignores spatial dependencies, as each pixel is evaluated

independent of the other ones1, which could be more problematic than noisy

annotation data. There are fidelity metrics for image data which take spatial

coherence into account. One such is the structural similarity index [Wang et al.,

2004] (see also Appendix A.5), which is widely used for example in the image

restoration community.

Building on these observations and ideas, we consider in the following the

1The metric declares a predicted edge correct if there exists an edge within any of the
annotations at or around the prediction location. The metric does not consider prediction sites
jointly, and so spatial coherence/continuation within the prediction images, the annotations,
and their differences are not assessed.
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task of predicting the probability for active contour annotation, and evaluate it

according to the mean structural similarity index (MSSIM). We first assessed

the performance for models optimized using the binary training data (optimizing

a function consisting of the the discriminative log-likelihood and regularization

terms). We then trained the two-stream model based on the probability im-

ages, optimizing a function consisting of regularization terms and cross-entropy

as above but setting pi = [1 − µi µi], where µi is the average of the A label

annotations for position i i.e. µi = 1
A

∑
a y

a
i . Note that if in training each batch

contains all of the available annotations for each image data, the approaches are

related by scalings (but using the average makes the training faster).

Tables D.1 and D.2 summarize the results for the BSDS500 test set under

the shallow and deeper models, respectively. Figure D.1 visualizes the MSSIM

scores for the 200 test images, sorted according to the score, for shallow (top)

and deeper models (bottom), and shows performance summaries in the form of

average MSSIM. We observe that ordering of the approaches remains effectively

the same in comparison to the results using the benchmark metrics, except for the

two-stream model with 200 versus 300 training images, where the former performs

better than the latter, as opposed to the other way around using the benchmark

metrics. The models trained with probabilities are best also according to the

MSSIM-based metrics, being there markedly best. The latter two properties can

be also seen in Figure D.2, which compares the prediction results with for two-

stream model, trained with either method, using either the benchmark P-R curves

(top), or the MSSIM-score based curves (bottom). To summarize, we have

proposed a novel benchmarking task of contour probability prediction and an

evaluation method for assessing the performance. The performance evaluation

uses the structural similarity index as the quality metric. We have considered

the approach under the BSDS500 test data, setting the ground-truth contour

probability images as the averages of the image-specific binary annotation results,

evaluating with all of the models in the main chapter.

We found that the model performance orderings under the large set of models

using the MSSIM approach were similar to those when using the BSDS bench-

mark evaluation methods. Although the evaluation metrics are expected to be in

general complementary, there are some other expected advantages of the MSSIM

approach over the benchmark evaluation. For example, the SSIM-metric takes

spatial coherence into account, in contrast to the benchmark metric, and the
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Figure D.1: Contour probability prediction results on the BSDS500 as measured by

curves based on sorted MSSIM-scores, with shallow models (top), and with deeper

models (bottom). The numbers in the legends denote the average MSSIMs.
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Figure D.2: Contour existence (top) and probability (bottom) prediction results on

the BSDS500 as measured by P-R curves (top) and curves based on sorted MSSIM-

scores (bottom), with the two-stream model using different training sets. Top: The

numbers in the legends denote the maximums of the curves w.r.t. the harmonic mean

(left), and the average precision (right). Bottom: The numbers in the legends denote

the average MSSIMs.
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MSSIM-based sample statistics

Model Min. Mean ± St. Dev. Median Max.

Full [mcRBM fixed] 0.171 0.408± 0.084 0.419 0.565

Full [random init] 0.181 0.451± 0.114 0.463 0.719

Full [mcRBM init] 0.193 0.475± 0.107 0.490 0.720

Cov.-only [mcRBM fixed] 0.180 0.395± 0.068 0.411 0.532

Cov.-only [mcRBM init] 0.202 0.474± 0.102 0.490 0.715

Mean-only [mcRBM fixed] 0.128 0.177± 0.018 0.179 0.221

Mean-only [mcRBM init] 0.184 0.449± 0.111 0.462 0.709

Table D.1: Mean structural similarity index-based statistics on boundary probability

prediction under the BSDS500 test set by the shallow prediction model by using

different feature sets. The feature extraction settings for the models are shown within

the parentheses.

evaluation is expected to be computationally much less demanding .

It is noted that is is possible to tune the model parameters by optimizing

the MSSIM-metric directly, as it is exactly differentiable, as opposed to the F-

score (although approximations exist, and which have been used in this context

for learning models, as in Kokkinos [2010]), but we did not consider such. One

of the reasons for it is the following: although the metric has useful benefits as

previously mentioned, it is still a proxy with also disadvantages, and expected

not to be universally better than the other metrics, but to complement them.

D.3 Colour-Domain Model Results

Table D.3 compares the prediction results of our approach to the competing

methods on the BSDS500 (colour) data set. As can be seen from the table, our

approach yields state-of-the-art performance. The networks here had twice the

number of hidden units compared to the networks for grey-scale data. They were

trained on RGB-domain image data using a similar setup as for the gray-scale

domain model but with two exceptions: (i) the target activation level for the mean

hidden units in the colour-domain was 0.025 as opposed to 0.1 in the grey-scale

domain, and (ii) learning rates were scaled to account for more input channels

and also for more hidden units: the diagonally-tiled-convolutional mcRBM in the
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colour-domain had 1/6 the learning rates of the one in the grey-scale domain

and the TmcDBN models were trained with a shared learning rate of 0.0001 as

opposed to the 0.00025 in the grey-scale domain.

D.4 Boundary Prediction Result Comparison Exam-

ples

Figures D.3, D.4, D.5, D.6, D.7, and D.8 show BSDS500 test image data contour

prediction examples with the Canny-method, the shallow-stream model, the deep-

stream model, and the two-stream model.

D.5 Two-Stream Boundary Prediction Result Dis-

sections

Figures D.9, D.10, D.11, D.12, D.13, D.14, D.15, D.16, D.17, and D.18 visual-

ize BSDS500 test image data contour prediction examples with the two-stream

model, and contributions of different components under the model to the predic-

tions.

D.6 Generative models for joint representations of

images and their contours

Here we develop generative models based on Boltzmann machines for joint gen-

erative models of natural image data, and their segment boundaries.

D.6.1 The Image and Contour Boltzmann Machine (icRBM)

We extend the (T)mcRBM by connecting the contour units to the hidden units for

simplicity in such way that they enter each hidden unit specific term additively,

and so the energy function (as a function of the hidden units h, visible image
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Two-stream Humans

Raw Canny
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Figure D.3: Contour prediction result example on the grey-scale BSDS500. Best

viewed on screen.
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Figure D.4: Contour prediction result example on the grey-scale BSDS500. Best

viewed on screen.



Appendix D. Modelling Natural Images and their Contours 197
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Figure D.5: Contour prediction result example on the grey-scale BSDS500. Best

viewed on screen.
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Figure D.6: Contour prediction result example on the grey-scale BSDS500. Best

viewed on screen.
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Figure D.7: Contour prediction result example on the grey-scale BSDS500. Best

viewed on screen.
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Raw Canny

Shallow Deep

Two-stream Humans

Figure D.8: Contour prediction result example on the grey-scale BSDS500. Best

viewed on screen.
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.9: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.10: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.11: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.12: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.13: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.14: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Raw Humans
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Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.15: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.16: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.17: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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Raw Humans

Deep-stream contribution Two-stream

Shallow-stream cov. contrib. Shallow-stream mean contrib.

Figure D.18: Dissecting a contour prediction result on the grey-scale BSDS500. The

stream contributions are normalized to be on the same scale, which also fills the full

intensity range. Best viewed on screen.
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units v, and contour units u) of the model is thus:

E(h,v,u) = −
∑
j

hcj

(
dj −

1

2

∑
f

πfj
[
K·f

>Av
]2

+Wc
·j
>u

)

+
∑
i

(vi − a)2

2σ2
−
∑
`

hm`

(
b` +

1

σ2
M·`

>v+Wm
·`
>u

)
−g
∑
i

ui (D.19)

where v denotes observed image pixels values, and u denotes observed contour

unit states, whose grid sizes are the same. As in equation (5.1) we denote the

filter of a factor unit with type f to image units as K·f , and the filter of a mean

hidden unit with index ` as M·`. Similarly we denote the covariance hidden unit,

mean hidden unit, and visible image biases by d b, and a respectively, A is a

whitening basis frontend, and σ is a positive scalar. The addition of contour units

introduces three highlighted terms, in which Wc
·j denotes covariance hidden unit

with index j to to contour units filter, and Wm
·` denotes mean hidden unit with

index ` to contour units filter, and g a scalar contour unit bias. We denote these

models as icRBMs, and their tiled-convolutional extensions as TicRBMs.

Figure D.19 illustrates an instance of a tiled-convolutional icRBM. The same

technique can be used to merge information from the different modalities in the

deeper layers, both defining instances of dual-wing harmoniums [Xing et al., 2005].

Such joint models would allow for also other kinds of interesting applications,

including image-prediction (de-sketching) and image completion. For the latter

task, boundary data might be available, and improve performance.

There are of course other ways of connecting the contour units to the hidden

units, and also using different base-models. For example the contour units could

be connected to PoT-style rather than cRBM-style covariance hidden units, how-

ever not without any additional constraints to retain a valid model: For valid

models the distributions for a covariance hidden unit conditional on the visible

units need to be Gamma-distributed with scale parameters greater than zero.

Denoting θj as the scale parameter for a hidden unit with index j, we require

that θj = 1 +
[
K·j

>Av
]2

+ Wc
·j
>u ≥ 0, which clearly is dependent on the last

term. Using the proposed formulation there are no such problems, and the con-

ditional distributions are Bernoulli-distributed as before, but with the contour
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Figure D.19: A graphical illustration of a tiled-convolutional icRBM. The visible units

(image brightness values v and contour states u) visualized in the middle layers

connect to the J covariance hidden unit layers of the model at the top, and to the

L mean hidden unit layers of the model at the bottom. Within these layers hidden

units are partitioned into different sets (red,green,blue), associated with different

parameters for their hidden units. Each of the hidden units connect to a region of

visible units (brightness values, contour states), and the filter applications within a

set tile a two times the area horizontally and vertically, and those of different sets are

offset diagonally with a stride of one unit between the neighboring sets, under both

of the modalities of visible units. Note that even though all of the weight kernels

specifying the connection weights between the hidden units of a certain type and the

visible units have been drawn with uniform colours (cyan, magenta, pink, orange),

they will typically have different values.
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filter responses as additional terms:

p
(
hcj = 1 | v,u, d, π,K,Wc

)
= sig

(
dj −

1

2

∑
f

πfj
[
K·f

>Av
]2

+Wc
·j
>u

)
,

p(hm` = 1 | v,u, a,M,Wm) = sig

(
b` +

1

σ2
M·`

>v+Wm
·`
>u

)
, (D.20)

where sig(z) = 1/ exp (−z). The conditional distribution of contour units given

hidden units is Bernoulli-distributed, with

p(ui = 1 | h, g,W) = sig

(
g +

∑
j

hcjW
c
ij +

∑
`

hm` W
m
i`

)
. (D.21)

As the image and contour units are independent given the hidden units, the

joint conditional distribution of visible units given hidden units is the same as

in the regular mcRBM. As previously mentioned sampling such distribution is

expected to be computationally demanding, as for large images large potentially

full precision matrices would need to be computed (and inverted). However, it

is possible to use a block-Gibbs sampling scheme, sampling first contour units

conditional on hidden units as above, and image units conditional on the contour

units running (say) a single step of HMC on the free-energy

F (v; u) = −
∑
j

log

{
1 + exp

{
d+ Wc

·j
>u− 1

2

∑
f

πfj
[
K·f

>Av
]2}}

+
∑
i

(vi − a)2

2σ2
−
∑
`

log

{
1 + exp

{
b+ Wm

·`
>u +

1

σ2
M·`

>v

}}
, (D.22)

with step-size set automatically as done for learning TmcRBMs in previous sec-

tion.

D.6.2 Partial derivatives in learning an icRBM

The free-energy under a tiled-convolutional icRBM (TicRBM) is the following:

FTicRBM(v,u) = −
S∑
s=1

T∑
t=1

∑
j

log

{
1 + exp

{
dsj + Cs

·j
>uNs,t −

1

2

∑
f

πfj
[
Ks
·f
>AvNs,t

]2}}

+
∑
i

(vi − a)2

2σ2
−

S∑
s=1

T∑
t=1

∑
`

log

{
1 + exp

{
bs` + Ws

·`
>uNs,t +

1

σ2
Ms
·`
>vNs,t

}}
−g
∑
i

ui,

(D.23)
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where vNs,t denotes visible units in the tile with index t under a shift index s.

There are S sets of parameters each containing J covariance unit biases, F factor

filters, and a pooling matrix πs of size J × F . These are shared at T different

locations, and assuming square images with T 1/2 × T 1/2 tile grid size, the image

lattice is of size T 1/2D + 2(D/2 − 1) × T 1/2D + 2(D/2 − 1), where D is the

even vertical and horizontal dimension of a square filter under the model. Partial

derivatives of the free-energy with respect to the model parameters, and data are

thus the following:

∂F (v,u)

∂dsj
= −

T∑
t=1

S(Rs,j
t ) (D.24)

∂F (v,u)

∂Cs
·j

= −
T∑
t=1

S(Rs,j
t )uNs,t (D.25)

∂F (v,u)

∂Ks
·f

=
T∑
t=1

AvNs,t

J∑
j=1

S(Rs,j
t )πsjf

[
Ks
·f
>AvNs,t

]
(D.26)

∂F (v,u)

∂πsjf
=

1

2

T∑
t=1

S(Rs,j
t )Ks

·f
>AvNs,t (D.27)

∂F (v,u)

∂bs`
= −

T∑
t=1

S(Qs,`
t ) (D.28)

∂F (v,u)

∂Ws
·`

= −
T∑
t=1

S(Qs,`
t )uNs,t (D.29)

∂F (v,u)

∂Ms
·`

= −
T∑
t=1

S(Qs,`
t )vNs,t (D.30)

∂F (v,u)

∂vi
= A

∑
s,t:vi∈vNs,t

J∑
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1
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∑
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where Rs,j
t = dsj + Cs

·j
>uNs,t − 1

2

∑
f π

s
jf

[
Ks
·f
>AvNs,t

]2
, Qs,`

t = bs` + Ws
·`
>uNs,t +

Ms
·`
>vNs,t , S(x) = 1/(1+exp {−x}), the logistic function, and Ks

t→i,f ,and Ms
s,t→i,`

denote the connection weights in Ks
·f and in Ms

·` associated with position s, t to

visible unit vi, respectively.
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