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Abstract 

This thesis contains five chapters. The first two are devoted to the background which consists 

of integration, Fourier analysis, distributions and linear operators in Hilbert spaces. 

The third chapter is a generalization of a work done by Albrecht-Spain in 2000. We give a 

shorter proof of the main theorem they proved for bounded operators and we generalize it to 

unbounded operators. We give a counterexample that shows that the result fails to be true for 

another class of operators. We also say why it does not hold. 

In chapters four and five, the idea is the same, that is to find classes of unbounded real-valued 

Vs for which LI + V is self-adjoint on D(Li) where LI is the wave operator. 

In chapter four we consider the wave operator defined on L 2 (R2 ) while in chapter five we 

do the case L 2 (R"), ri > 3. Throughout these two chapters we will see how different the 

Laplacian and the wave operator can be. 
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Chapter 0 
Introduction 

The main subject treated in this thesis is linear operators on Hubert spaces (especially un-

bounded ones). We devote two chapters to the background that consists of different subjects 

such as L"- spaces, distributions, Fourier analysis, interpolation theory of operators, linear 

bounded and unbounded operators and perturbation theory. 

In Chapter three we generalize work done by Albrecht and Spain [1] who gave a condition 

that forced a product of two self-adjoint operators to be self-adjoint whenever it was normal. 

The generalization we make here is that the same condition allows us to prove the same thing 

for unbounded operators. We also give a shorter proof than theirs in the bounded case and 

a counterexample showing that the condition may fail to make a product of two self-adjoint 

operators, when it has a normal closure, essentially self-adjoint. In the last section we say why 

the proof may fail to work if we want to adapt it to the counterexample cited above. 

The generalization and the counterexample form a paper by the author [2] which is due to be 

published in the October 2003 issue of the Proceedings of the American Mathematical Society 

In Chapters four and five we study the self-adjointness of the perturbed wave operator E + V 

(the wave is a hyperbolic operator). We emphasize the word hyperbolic inasmuch as a lot of 

work has been done in the case of the perturbed elliptic operator mainly the perturbed Laplacian 

which is important in quantum mechanics (for a more detailed treatment of the subject we 

recommend [3]). 

Since it may be quite hard to solve 

(D+V)f=±if ... (E) 

in L 2 (R) and see whether it has a non-zero solution, we will be using the Kato-Rellich the-

orem to get round solving (E) explicitly. So the whole idea will be to prove estimates of the 
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form 

11111 <aIIDffI2 + blif 112 

where 	II is a norm to be determined. All that with some interesting counterexamples. 

Chapter four is devoted to the case L 2 (R2 ) and Chapter five is devoted to the case L 2 (R"), 

n>3. 

2 



Chapter 1 
Integration, Fourier analysis and 

distributions 

1.1 Integration 

1.1.1 .0 spaces 

We cite [4], [5] or [6] as references where one can find detailed proofs of the well-known results 

stated in this section. 

We start with LP spaces as they will be used often in this thesis. We will only consider II-' 

spaces on R. We have: 

Definition 1. Let 1 <p < 00. We define: 

L(R) 	, C measurable : Ilf lip := LL if(xPdx] 

For p = 00 we say that a measurable function f is in L°°(R' 1 ) if. 

if II := inf{K: If(x)I :!~ Kfor almost every  E R"} isfinite. 

Remark 1. We usually define the elements of LP spaces as classes of equivalence rather than 

functions where we say f is equivalent to g i ff - g = 0 a. e. Note that I if I Ip  = 0 if  and only if 

f = 0 a.e. Also, 
"i, is a norm and LP(Rf'), equipped with this norm, is a Banach space. 

Finally, it will sometimes be convenient to refer to locally integrable functions Ljoc(Rhl); f E 
L'j(Rn) 

?f and only if f Ill < 00 for each compact set K in R. 
K 

We now collect together some well-known inequalities in the theory of LP  spaces which we 

will use throughout the thesis. We begin with Holder's inequality. 
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Theorem 1 (Holder's inequality). Let 1 <p < oo, 1  + = 1. Let  E LP (RI ), g E L" (R') 

Then fg e L'(R") and 

high 	hlfhlphlghlq. 

Holder's inequality can be deduced from Young's inequality which we shall use independently 

on several occasions. 

Lemma 1 (Young's inequality). For all a, b > 0, if 1  + = 1, then 

a 	b 
ab< — + —  

p 	q 

The case p = q = 2 in HOlder's inequality is the classical Cauchy-Schwarz inequality. 

Corollary 1 (Cauchy-Schwarz inequality). 

ugh' :5 11f 112119112• 

The following lemma is usually called the converse of HOlder's inequality (for a proof one may 

consult [4], pp.  128): 

Lemma 2. Let f be a real-valued and measurable function. Let 1 <p < 00 and + 1  = 1. 

Then 

ii! lip = sup high, 
i9!Iq=1  

and the supremum on the right hand side is attained. 

Observe that in the previous lemma, the function f is not assumed to be in L'3 . 

Remark 2. The function g (in Lemma 2) which attains the supremum can be taken to be non-

negative. 

As a consequence of Lemma 2 we prove Minkowski's inequality. 

Corollary 2. Let 1 < p :5 oo. Let f, g E L. Then we have: 

hi! + giip 	Ill lip + hlghh. 

4 
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Proof. By Lemma 2 and the triangle inequality for 

If + gll p  = sup{iI(f +g)hI( i  : IIhIIq = 1 } 

sup{fhfl 1  IIhII q  = 11 +sup{IghI i  : IIhII q  = 1}. 

Thus 

If + 911P!5 IIfIIp + IIgIIp. 

01 

We will need the generalized Holder's inequality which is an immediate consequence of the 

classical case. 

Proposition 1 (Generalized Holder's inequality). Let 1 < p, q 	00 and = 1  + 1 . Let 

f E L' and let  E Li'. Then fg ELT and 

fgIIr 	IIfIIpIIgIIq 

Definition 2. The space of infinitely differentiable functions on Rn with compact support will 

be denoted by C8°  (R"). 

Definition 3. Let f and g be two functions in L' (R"). Then we define the convolution off and 

g, and we write f * g, by 

(f * g) (x) =f f(x - y)g(y)dy. 
Rn 

This integral exists almost everywhere. 

Convolutions are often used in approximations. The following theorem is a well-known in-

stance of this. 

Theorem 2. Let k be in L'(R), k > 0 and f k = 1. For E > 0, define k € (x) = 
Rn 

so that f k E  = 1 and 11k6111 = Ilkili. Letf E LP(R') for some 1 < p < oo and define 
Rn 

:= k6  * f. Then 

fe  E L(R), 11ff lip c lIkjj j IIf lip  and lim 1 1f, - f lip  = 0. 
6-40 

If k E C°(R"), then f6 E C(R) and Df €  = (Dk€ ) * f = k6  * Daf. 
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The last equality in the previous line is meant to be in the distributional sense (see Section 1.4.1 

below). 

One can easily derive from Theorem 2 the following density results. 

Corollary 3. The space C8° (R") is dense in LP(R) for 1 < p < 00, and hence in particular,  
L1(Rh1) fl LP(Rr1) is dense in LP (R"). 

Definition 4. Let A > 0 and EA denote the distribution function off, i.e., 

EA={xER:If(x)I>Al. 

Proposition 2. Let f e LP(R' 1 ). Then we have 

00 

lif lip = 10 A'EdA. 

Proof. Using 

PEA l =fdx, 

we have 

pZ 
00 

A''lEAldA = f A1'-1 f dxdA. 

Since everything is positive one obtains by using Fubini's Theorem, 

/ foo 

p / A 1 1EA IdA = 	çL If(x)I 
AP_ 1 dA) dx = f lf(x)ldx = lPfll. 

Rn 
Jo 

R' 

(Here we have used 	to denote Lebesgue measure but we will also use it to denote the usual 

norm in R. The context will always be clear.) 	 D 

1.1.2 LP. Spaces 

For references we cite [3] or [7]. 

Weak I)' spaces L, being larger than the LP spaces, are often used when a particular object 

fails to be in L. 

31 
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Definition 5. A function f on R is said to be in weak-L, written f E L,, if there is a 

constant C < oo such that 

l{x : lf(x)I > t} I < Ctfor all t> 0. 

1ff E L, we write 

If Ilp,w = sup(tP{x: lf(x)I > t}. 

Notice that 	is not a norm since it does not satisfy the triangle inequality. However, when 

p> 1, Lpw  carries the structure of a Banach space with a norm which is equivalent to 

Remark 3. Any function in LP is in LPW  and we have: 

IIflip,w 	If lip. 

In fact for any t> 0, 

iflI >— f lf(x)Idx > I{x: I f(x)I > t}lt. 
If I>t 

The inequality tI{x : lf(x)l > t} 	if li is called Chebyshev's inequality. 

Example 1. A typical example is the function lxl'. Then l{x : I f(x)I > t}I = cntP where 

c is the volume of the unit ball in R. Thus f e L(R) but f is not in LP (R'). 

We come now to a result which will be important for us. 

Theorem 3. Let r> 1. If r <p < s and f E L' fl L 3  then f E L and W 	w' 

Ill lip :!~ all! IIr,w + bIll ii,w 	 (1.1) 

where the constants a and b depend on p, r and s. 

Proof Let f E L(R). By definition 

IEA I = If  E R' : If(x)i ~! A}I <cAT 

'A 
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Also when f E L, (R') 

IEl = l{x E W': If(x)I ~
: 

All 
< cA 

(here c3  and Cr denote 	iis,w and 	respectively). So 

P00 	 1 	 00 
II tiip 
IIJIILP(R) =PJ \P_' IEAIdA=PJ A''lEAid+p / A' ' iEAldA 

0 	 0 	 J1 

~ PC, fo 
 AP_r_ld+pCsI°°P_s_dA 
  

Hence 

ill lipLP(Rn) 	PCr1 
A —  1 1 	1A 	100 

+pc3 l 
Lp — rj o 	Lp—si 1  

which is finite if r <p < s. Therefore 

lifllPRfl) 	
' 	

llfil+ sp l 1  p — r 

Thus 

fIILP(Rn) 	IifilW + ëlifIiw 	 (1.2) 

for some constant ö depending on p, r and s. 

Now we proceed to make all the powers in (1.2) equal to one. We replace f by cf where c is a 

constant to be determined. We then have 

S - 
lip Ill IILP(R") < CC 	llfIl7W + & P lIfIps,w• 

Minimizing the quantity on the right hand side with respect to c shows that 

/ 	s(r-p) 	 ______ 

-) + 
( lif i ls,W 	

r(s-p) 
 ( 	p(r-s) 	•• 3p +; 	 - 	(r-s)p pIlfilLP(p.j) ~ C t liflIs,w 	If iir,w 	li lIr,w 

Now since the sum of the powers in each part of the right hand side is one, Young's inequality 

(Lemma 1) shows 

Ill lip < aIIfIlr,w + bIIfII3,, 

establishing (1.1). 
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Finally we recall without proof the dominated convergence theorem. 

Theorem 4. Let (fk)k  be a sequence of measurable functions on 	such that: 

each fk is in L 1 ; 

fk -* f a. e. for some f; 

there exists afunction G E L' (R") independent of k such that IfkI :5 G a.e. for all k. 

Then f E L' (R") and 

f 	k-. 
f(x)dx 

= f urn fk(x)dx = urn f oo 	 k—fly' 
R 

1.2 The Fourier transform 

We mention [8],  [9], [7] or [3] as references in the literature for this sections. 

1.2.1 The L' -Fourier transform 

Definition 6. The Fourier transform off E L' (R " ) is denoted by for .Ff and defined by 

I' 
._,7f(X)  = f(x) 

= 	

1 
(2ir) J f(t)&tdt 

R 

for all  inR. 

The inverse Fourier transform, F-  1 , is defined on L 1 (W')functions by 

1 	1 

= (2 7r) I g(x)&tdx. 

Rn 

Proposition 3. Let f E L', then 

the mapping f -+ f is linear and iff E L', then J1f = f a. e. 

fisa bounded function and 	
(2) hf Iii; 

iff ~! 0 then If IIoo = If 11, = f(0). 
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Proposition 4. Let f E L' (R) and xf E L' (R). Then f is differentiable and 

dt J(t) = 	f(t). 

The proofs of Proposition 3 can be found in [7] and that of Proposition 4 can be found in [9] on 

page 123. 

1.2.2 The L2-Fourier transform 

The Fourier transform has a natural definition on L 2  and its theory is particularly elegant on 

this space. It is also important in quantum mechanics to define / for f E L 2 (R). In our work 

here we will be dealing with operators that are defined on the Hubert space L 2 . 

There are different routes to define the Fourier transform on L 2 . The one we will use here is 

via the denseness of L' (Rn) fl L 2  (R') in L 2 (R"), see Corollary 3. 

We prefer to state various aspects of the Plancherel theorem in different propositions and then 

we will summarize all properties in what will be called the Plancherel theorem. First, we recall 

the following facts: 

The Fourier transform is defined on L' fl L 2  since L 1  fl L 2  C L' and: 

L' fl L is a linear subspace of both L' and L 2 . 
L' fl L is a dense subspace of both L' and L 2 . 

The following is the basic result. 

Proposition 5. 1ff e L' fl L 2, then / E L 2  and 111112 = 111112. 

Since L' fl L is dense in L 2 , Proposition 5 allows us to extend the definition of the Fourier 

transform .F to all L 2 . 

Proposition 6 (The Plancherel theorem). F is an isometry of L 2 , i.e. 11Ff 112 = II! II2for all 

f e L. 

The proofs of Propositions 5 and 6 can also be found in [7],  on page 118. 

10 
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1.2.3 The LP-Fourier transform for 1 <p < 2. 

For f E LP(R), 1 < p < 2, we can decompose I = g + h where g E L 1 (') and 

h E L 2 (R). Therefore we can define the Fourier transform of f by I = + ii and this is 

well-defined, i.e., f is independent of the decomposition f = g + h. 

Theorem 5 (Hausdorff-Young inequality). Suppose 1 < p 2, and 1  + = 1. Then the 

Fourier transform is a bounded map from LP(R) to L(Rt')  and 

ilflIq :5 Cn,piif Il 

for some constant 

The proof is an easy application of the Riesz-Thorin theorem (see e.g., [3] Theorem IX. 17). 

We now state a version of the well-known Sobolev embedding theorem for R" (see e.g., [3] 

Theorem IX.28). 

Theorem 6. Let f E L 2 (R) such that if E L 2 (R") in the distributional sense (this will be 

introduced in Section 1.4.1 below). Then 

if n < 3, f is a bounded continuous function and for any a> 0, there is a b, independent of 

f, so that 

1111100 <allfIl2 + bill 112 

if ri = 4 and 2 < q < oo, then f E L(Rnl) and for any a> 0 there is a b (depending only 

on q, n, and a) so that 

Jfjj q  < aIIzf 112 + bJIfIi2 

Furthermore this estimate is false for q = oo. In fact in this case, f may be unbounded in a 

neighborhood of every point (see e.g., [10] pp.  159). 

if n > 5 and 2 < q 	then f E L(Rfl)  and for any a> 0 there is a b (depending only 

on q, n, and a) so that 

11f Jj q  < aIif 112 + blIfiI2. 

11 
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1.3 The space BMO 

The details of the following may be found in [8]. 

We indicate by Q c R1  any cube with sides parallel to the coordinate axes and by iQi its 

Lebesgue measure. For every locally integrable f, let fQ  denote the average of f on 

fQ= j ff. 

Definition 7. For f EL' , let  to  4 denote the mean oscillation off in Q, 

4 = 
	IQIf() - fQidt. iQI 

Definition 8. For f EL' C , let 

Mf(x) = sup 4 r>O 	(x,r) 

where Q(x, r) is the cube of side length r centered at x. The operator M : f -* Mf will be 

called the sharp maximal operator. 

Definition 9. A function f E L1'0  has bounded mean oscillation (and we say f E BMO) if 

Mf E L and we set 

ill 1IBMO = iiMfIl. 

Remark 4. The quantity Ii IIBMQ is only a semi-norm since I lf IiBM0 = 0 if and only if 

f (t) = C a. e. t. We can make BMO a norm linear space (in fact a Banach space) by passing 

to equivalent classes modulo constants. 

Remark 5. Every L'-function is in BMO. The converse is not true. In fact log lxi is known 

to be in BMO (see e.g., [8]pp. 213). 

In Proposition 27 below we will give another example of a function which is in BMO and not 

in L°°. 

Theorem 7 (Sharp maximal theorem). Let 1 < q p, 1 < p < oo, and suppose f E 
L(R) .  Then f e LP (R') if and only if M O f e LP (R) and 

C'IIMfIi :!~ Ilfli 	CIiMf lip 

for some constant C. 

12 
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A proof of the sharp maximal theorem can be found in [8] on page 220. 

1.4 Distributions 

Distributions is a huge subject and is treated in many textbooks from which we refer to [11], 

[6] and [7]. 

Definition 10. Let 1 be an open subset of R1'. A sequence (fn ),, in C(l) converges in 

C°() to some function f E CO' (Q) if and only if there is some fixed, compact set K c ci 

such that the support of f, - f lies in K for all n and for each choice of nonnegative integers 

Pi;  . .. ,Pn, 

( 
a)P 	/ô\Pm 	f0\Pi 

...(-1 f-+--) ..._-) 
 ( , 

\8x m J 

as ri —* oc, uniformly on K. 

Definition 11. A linear form T on C O' (Q) is a distribution if, for every sequence ( ~on )n that 

converges to 0 in C'°(ci), the sequence (T(~Pn ))n  tends to 0 in C. 

We denote by (Co )' the set of distributions on Q. 

Also the value of a distribution T on a test function W E CO , T(o), is often denoted by 

(T, ) or f T(x)co(x)dx. 

Example 2. The Dirac distribution Jx  for x E R' is defined by 

= 

If  EL 1  , then for any E C8°(Q)  it makes sense to consider 

Tf() = ff(x)(x)dx 

which defines an element in (C8°(1l))'. 

Since LP(Q) C 10C
(Q), every LP function is a distribution. 

13 
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1.4.1 Distributional derivatives 

We now define the notion of a distributional or weak derivative. The differentiation operator of 

order II = 	pi on (Co )' is defined as follows: If T E (Co )', set 

<DT, ço > = (_ i)IPI <T, DPW > for all W E C ° . 

where 
DP = ()P1 ()P 

 Since the map D : W '-p DPW from CO' to CO' is 

continuous, the linear form DT defined on CO' is indeed a distribution. Thus the derivative of 

a distribution always exists and is another distribution. 

Example 3. Let 

I  g(x) x, xO 
= ç 

xO. 

Then g is continuous but not everywhere differentiable in the classical sense. Since g E L 0 (R) 
10 

then g is a distribution and hence has a derivative in (C000 )'. By definition 

00 

>= - < g,' >= _f x'(x)dx = fo W (x) dx. 

Thus as distributions g' = H where H is the Heaviside function 

1, x>O - 1 0, x<O. 

H is not even continuous, but it too has a derivative in (Co )' given by 

00 

<H', w >= - < H,' >= 	'(x)dx = (0) = 

So H' = öo and JO also has a derivative defined by < 8, p >= —'(0). 

1.4.2 Multiplication of distributions by C°°-functions 

Consider a distribution T and E C00 . Define the product by its action on W E C00° as 

<5T, W >=< T,'t'go>. 

14 
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That bT is a distribution is an easy consequence of the fact that the product bço E CO-  if 

(O E C'°. 

1.5 Sobolev spaces 

1.5.1 The space H'(R) 

Now we define Sobolev spaces and for a reference see [I I] or [7]. 

Definition 12. We define H 1  (R') to be 

H'(R') = {f EL 2  (R n)  
: Vf E L 2 (R")}. 

Here Vf = (, ..., 	is the gradient off and by saying Vf e L 2 (R), we mean each 

Xj  
is in L 2 (R"). 

Remark 6. If f E L 2  and f' exists a. e. in the classical sense and f' EL' , then as a 

distribution, f' is the distributional derivative off. 

Remark 7. It is not hard to show that Co' (R') is dense in H'(R) in the norm 	2 = 

llII2+ 11V()11 2 . For aproof see [7],  Theorem 7.6. 

By applying exactly the same method one may also show that C 00° (Re) is dense in {f e 
L 2 (R) :Of E L2(Rn1)}  in the norm 	= 	112 + IIEl() 112 (here El is the wave operator, 

In pretty much the same way one may show that C3°(R 2 ) is dense in {f e L2(R2) :

82  E 

L 2 (R2 )} (this will be used in Chapter 4, Sections 4.2 and 4.3) with respect to the norm 

1 11 = 	
hi 82(.) II + 	112-  

1.5.2 Fourier characterization of H' (R) 

Theorem 8. Let f be in L 2 (R) with Fourier transform f. Then  f is in H 1  (R) if and only if 

the function k '-' kf(k) is in L 2  (R) and when f E H 1  (R), 

 df 
ikf(k) where  f' - — dx 

15 
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We say few words about the proof. One first easily verifies the theorem for C00° (R) functions 

and then use a density argument to pass from C°(R) to L 2 (R) (for a detailed proof one may 

see [7], pp.  165). 

Notation 1. Throughout the thesis we will denote by E an absolute constant whose exact value 

may change from line to line. 

16 



Chapter 2 
Linear operators in Hubert spaces 

We cite [12], [6], [13], [14] or [15] for references for this chapter where one can find detailed 

proofs of the basic results. 

2.1 Hubert spaces 

Definition 13. A complex vector space V is called an inner product space if there is a complex-

valued function < •,• > on V x V that satisfies thefollowingfour conditions for all x, y, z E V 

and c E C: 

a)<x,x>>O and <x,x>=Of  and only fx=O 

b) < x, y + z > =< x, y > + < x, z > 

C) < x, ay >= a < x, y> 

d) < x,y >= < y,x>.. 

The function < , - > is called an inner product. 

A complete inner product is called a Hilbert space. 

Example 4. The main example of a Hubert space is L 2  (R') with the inner product 

<f,g >=f f(x)(dx 
Rn 

which is well-defined by the Cauchy-Schwarz inequality, Corollary 1. 

Theorem 9. Let H be a Hilbert space and let M be a closed subspace of H. Then H = 

M M'. 

We also recall Riesz's lemma. 

Theorem 10 (Riesz's lemma). Let H be a Hilbert space and let f be a continuous linear 

functional on H. Then there exists a unique vector a in H such that f(x) =< x, a >, Vx E H. 
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2.2 Bounded linear operators on Hubert spaces 

Definition 14. Let H be a Hubert space. A linear operator A from H into H is said to be 

bounded if there exists an M > 0 such that for all f E H we have: 

IIAIIIH 	Mill IIH. 
	 (2.1) 

We denote by C(H) the set of all bounded linear operators on H which is a Banach algebra 

with norm given by 

IAILC(H) = sup llAxllii. 
IIxIH< 1  

Example 5. Let H = L 2 (O, 1) and let M be defined on H by Mf(x) = xf(x). M is called a 

multiplication operator It is certainly linear and bounded. 

Theorem 11. Let A E £(H). Then there exists a unique operator A*  in £(H) called the 

adjoint of A such that: 

<Af,g >=< f,A'g > Vf,g e H and llAlLc(H) = lIAlIr(H). 

Proposition 7. Let A, B E L(H) and a E C. Then 

1)A**=A. 

(A + B)* = A* + B*. 

(aA)* = ãA*. 

(AB)* = B*A*. 

IIA*AIl = IIAA*ll = hAil 2 . 

7) Ker(A*) = (RanA)'. 

The proofs of Theorem 11 and Proposition 7 can be found in [14] pp.31  1-312. 

Definition 15. Let A E £(H). Then A is said to be 

normal if AA* = A*A, 

self-adjoint (symmetric or hermitian) if A = A*, 

unitary if AA* = I = A*A, where I is the identity operator on H, 

a projection if A 2  = A, 

positive if < Ax, x > > 0, Vx E H. 

Example 6. The Fourier transform is an important example of a unitary operator on L2  (Ri') 
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Definition 16. A projection P is called an orthogonal projection if it is self-adjoint. 

Theorem 12. Let P bean orthogonal projection. Then: 

1)Py = y,Vy E RanP. 

RariP is closed in H. Moreover 

H = KerP @ RanP. 

Vx E H, (x - Px) E (RanP)'. 

IIIIC(H) = 1 (if P 	0). 

Proposition 8. Let P and Q be two orthogonal projections on H. Then RamP J RanQ if and 

only ifPQ =0. 

The proofs of Proposition 8 and Theorem 12 are standard and can be found in ([14], PP.  314). 

Definition 17. Let A be a linear bounded operator. Let M be a subspace of H. Say that M 

is a reducing subspace for A if AM C M and AM' C M', that is, both M and M' are 

invariant subspaces of A. 

Proposition 9. Let A be an everywhere defined linear operator on a Hilbert space H with 

<f,Ag >=< Af,g >for all f and g in H. Then Ais bounded. 

Proof. We will prove that G(A) is closed (here G(A) is the graph of A, that is, the set { ( f, Af) 

f e H}. More details will be introduced in Definition 20 below) and then A will be bounded 

by the Closed Graph Theorem. Suppose that (f, Af) -p  (f, g). We need to prove that 

(1,9) E G(A), that is, that g = Af. But for any h e H, 

<h,g >= lim <h,Af >= urn <Ah,f >=< Ah,f >=< h,Af>. 

Thus g = Af and hence G(A) is closed. 	 LN 

We also recall the Putnam-Fuglede theorem. 

Theorem 13 (Putnam-Fuglede theorem). Assume that M, N and A are all bounded operators 

on a Hubert space, M and N are normal, and 

rNSINWITTrIl 
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then N*A = AM*. 

For a proof see [15] on page 285. 

2.3 Unbounded linear operators on Hubert spaces 

2.3.1 Domains, graphs, extensions and adjoints 

Definition 18. We say that an operator A is unbounded if it is defined on a linear subspace, 

V(A), of the Hubert space and if it does not satisfy (2. ])for f E V(A). 

The subspace V(A) is called the domain of A. 

An operator with dense domain will be called a densely defined operator. 

Example 7. Let H = L2 (R) and let D(A) = { V E L 2 (R) : xço E L 2 (R)}. For çü E V(A) 

define (Aço) (x) = xço(x). It is clear that A is unbounded since if we choose p to have support 

near plus or minus infinity, we can make IIAII as large as we like while keeping IIWII = 1. 

Theorem 14. If M is a closed invariant subspace of the symmetric operator A (see Definition 

23 below) and if the projection P onto M satisfies the relation PD(A) C V(A) then the 

subspace M reduces the operator A. 

Proposition 10. Let P be the orthogonal projection on a given closed subspace M. Then M 

reduces A if and only 

Pf E 

PAf = APJ 

for all f E D(A), i.e., if the operators A and P commute. 

We now introduce the notion of a closed operator. Although an operator may not bounded it 

may be bounded in a different norm, that is the graph norm. 

Definition 19. The graph of an operator A is the set of pairs {(f, A!) : f E V(A)} = G(A). 

A is called a closed operator if G(A) is a closed subspace of H x H, i.e., if  and only if 

V(f,Af) E G(A),f -p f,Af - g = f e V(A) and  = Af. 

20 



Linear operators in Hubert spaces 

Example 8. Let Mf(x) = xf(x) and D(M) = {f E L2 (R) : xf E L 2 (R)}. Then M is 

closed. Suppose f -* f and xf - g in L 2. There is then a subsequence (fn(k))  such that 

fn(k) (x) -p 1(x), a.e. Hence Xfn(k)  (x) -p xf(x), a.e. On the other hand since xf - g in L 2  

then every subsequence, Xfn(k) Of (411) converges to g in L 2. Hence there is a subsequence 

Of Xfn(k) which converges to g a.e.. Since all subsequences ofxf(k)  converges to xf a.e. we 

conclude that g = xf a.e. and G(M) is closed. 

We have the following proposition: 

Proposition 11. Let A be a densely defined operator on a Hilbert space H. We define 

<1,9 >A=< 1,9 >H + < Af,Ag >H,Vf,g e 'D(A). 

Then, A is closed if and only if (D(A), < •, - >) is a Hilbert space. 

Proposition 11 gives rise to the graph norm. For a densely defined operator A on a Hubert space 

H the graph norm is defined as 

IlfilA = \/11f1 2  + IIAf" 2  H I 	IIH 

Definition 20. Let A and B be two unbounded operators. B is said to be an extension of A if 

D(A) c D(B) and on D(A), A and B coincide. 

Definition 21. An operator A is said to be closable if it has a closed extension. Every closable 

operator has a smallest closed extension, called its closure, which we denote by A. 

Proposition 12. If A is closable, then G() = G(A). 

Remark 8. If A is closed then obviously A = A. 

Definition 22. Let A be a densely defined linear operator on a Hilbert space H. Let V(A*) be 

the set of çü E Hfor which there is an 77 E H with 

<A'ib,ço >=< i,ij> for all b E V(A). 

For each such W E V(A*),  we define A* ço  = s. A*  is called the adjoint of A. By the Riesz 

lemma, e V(A") if and only if there exists C> O such that I <A,ço> I CIIIfor all 

'bED(A). 
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Remark 9. We note that A C B implies B* C  A*. 

Notice that in order that the adjoint is well-defined we need the fact that D(A) is dense. To see 

this let us assume that D(A) is not dense. So iffo E (D(A)) -'-  {O}, then 

Vf E D(A), < f, A''g + fo >< 1 A"g> + <1, fo >< 1, A'g>. 

So A*g  is not unique. 

Definition 23. If A, B are operators in H, then we denote by A + B the operator defined on 

D(A+B)V(A)flV(B)by(A+B)(f)=Af+Bf. 

Lemma 3. Let A and B be two operators in a Hubert space H. Then, 

if A is closed, B bounded, then A + B is closed; 

if A + B is densely defined, then A* + B* C (A + B)*; 

if A is densely defined, B bounded, then A* + B* = (A + B)*. 

Definition 24. Let A, B be operators in H. Denote by BA the operator defined on D(BA) = 

{f E V(A) : Af e D(B)} by (BA)(f) = B(Af). 

Lemma 4. Let A and B be two densely defined operators and let BA be densely defined. Then, 

1) A*B* C  (BA)*; 

2)forB bounded, A*B* = (BA)*. 

The proofs of both Lemma 3 and Lemma 4 can be found in ([13] pp.  214-215). 

2.3.2 Symmetric and self-adjoint operators 

Definition 25. A densely defined operator A on a Hubert space is called symmetric (or her-

mitian) if A C A*, that is, if D(A) C D(A') and Ace = A* co  for all E D(A). Equivalently, 

A is symmetric if and only if 

<Aco,cb >=< co, A'cb> for all ço,'çb E D(A). 

Definition 26. The operator A is called self-adjoint if A = A*, that is, if and only if A is 

symmetric and D(A) = D(A*). 

Remark 10. A symmetric operator A is always closable. 

22 



Linear operators in Hubert spaces 

Definition 27. A symmetric operator A is called essentially self-adjoint if its closure A is 

self-adjoint. 

Example 9. Let M be the operator defined by Mf(x) = xf(x) on D(M) = If E L(R) 

xf E L 2 (R)j. Then V(M) is dense in L 2 (R) and M is self-adjoint. In fact M is symmetric 

since for all f, g E V(M) we have 

<Mf, g >= f xf(x)(dx 
= f f(x)xg(x)dx =< f, xg>. 

Therefore, to prove M is self-adjoint we only need check that we have D(M*)  C D(M). Let 

'i/' E D(M*)  then '-< Mço, i/ > is continuous on D(M). Thus there exists a unique 

M*O E L 2 (R) such that 

<xp, 1' >=< , M >, VV E D(M), 

i.e., <ço,x'çb >=< y,Mi,b >,Vo E D(M). 

Thus by the density of V(M) one gets M* çL, = x1' and hence 0 E D(M). 

2.3.3 The basic criterion for self-adjointness 

The following theorem gives us an alternative way to prove a symmetric operator is self-adjoint. 

A proof can be found in ([6] pp. 257). 

Theorem 15 (basic criterion for self-adjointness). Let A be a symmetric operator on a 

Hubert space H. Then the following three statements are equivalent: 

A is self-adjoint. 

A is closed and K er(A* ± i) = {O}. 

Ran(A ± i) = H. 

Corollary 4. Let A be a symmetric operator on a Hubert space. Then the following three are 

equivalent: 

A is essentially self-adjoint. 

Ker(A* ± i) = {O}. 

Ran(A ± i) are dense. 
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It is worth mentioning that condition b) in Corollary 4 means that 

A*f = ±if 

has a zero solution in the Hilbert space. 

In Chapters 4 and 5, when we will be dealing with perturbed wave operators, that is, 0 + V 

where V is real-valued, to say that U + V is essentially self-adjoint means that following weak 

PDE (i.e., a PDE in the distributional sense) 

(D+V)f=±if 

has a unique solution in L 2 , that is, f = 0. 

Remark 11. Corollary 4 holds with ai; a> 0 instead of i. 

The theorem that follows says that every self-adjoint operator can be diagonalized via a uni-

tary transformation, i.e., every self-adjoint operator is unitarily equivalent to the multiplication 

operator by a real-valued function. 

Theorem 16 (spectral theorem-multiplication operator form). Let A be a self-adjoint oper -

ator on a separable Hubert space H with domain V(A). Then there is a measure space (M, ) 

with p a finite measure, a unitary operator U : H - L2(M, ), and a real-valued function f 

on M which is finite a. e. so that 

0 E D(A)f and only iff(.)(U)(.) E L 2 (M,dji). 

If cp E U[V(A)], then (UAU'p)(x) = f(x)ço(x). 

For a proof we refer to ([6] pp. 261). 

Example 10. The Fourier transform F is an important example of a unitary operator on L2 . 

We consider the operator H = ii-. Then one can show that H is self-adjoint on H'(R) see 

([15] pp. 341). On the other hand by the Fourier characterization of H' (R) we have: 

F 

 (

_) Ff(t) = tf(t), the multiplication operator. 
dx 

Since F is unitary and the multiplication operator is self-adjoint we conclude that A is self- 

adjoint on H'(R). 
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Another example of a self-adjoint operator that will be used often in chapters four and five is: 

 92 
Example 11. The wave operator 0 = 

82 - 
	is self-adjoint on D(C) = If E L(R 2 ) 

Of E L 2 (R2 )1. By using the Fourier transform and the same idea as for the Fourier charac-

terization of H 1  (R) we get: 

= (-772 + 2 )f(77,) := Mf(i,,e). 

So 0 is unitarily equivalent to the multiplication operator that has domain D(M) = {f E 

L 2 (R2) : Mf E L 2  (R 2 )}. So by using this domain and exploiting the unitary equivalence we 

obtain the domain of LI mentioned above. 

2.3.4 Normal operators 

For a wider treatment of this subject we recommend [15] and [14] where most of the proofs for 

the results in the following section can be found. 

Definition 28. A densely defined closed operator N is said to be normal ifNN* = N*N. 

Example 12. Let s be a finite measure on C such that every polynomial in z and 2 belongs 

to L 2 (1s). Let MW(z) = zcc'(z) be defined on V(M) = { W E L : zço E L 2 (j.$)}. Then M is 

normal on D(M). 

2.3.5 Spectral theory of linear operators 

The following definition applies to both bounded and unbounded operators. 

Definition 29. If A : H -p H is a linear operator, p(A), the resolvent setfor A, is defined as 

p(A) = {A e C : AI - A is boundedly invertible }. 

The spectrum of A is the set a(A) which is the complement of p(A) in C. 

Proposition 13. Let A be a bounded linear operator on a Hubert space. Then the spectrum of 

A, a(A), is a non-empty compact set in C included in the closed ball of center 0 and radius 

hAil. 
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Proposition 14. Let A be a linear operator with adjoint A*  and spectrum a(A). Then 

Proposition 15. Let A be a linear operator Then 

if A is seif-adjoint then a(A) lies in the real line. 

if A is normal then it is self-adjoint if and only if cr(A) lies in the real line. 

Remark 12. An unbounded self-adjoint operator has always a non-empty spectrum. 

2.3.6 The spectral theorem for normal operators 

We start with introducing the notion of a spectral measure. 

Definition 30. If X is a set, Q is a a-algebra of subsets of X, and H is a Hubert space, a 

spectral measure is for (X, Q, H) is afunction P: ci -i £(H) such that 

a)for each A in Q, P(z.) is a self-adjoint projection; 

b) P(ø) =O and P(X) =1; 

C) P(L 1  fl 2) = P(Ai)P(A2) for L1 and A2  in ft 

d) zf() 	are pairwise disjoint sets from Il then: 

00 00  P(UAn) =P(z) 

Remark 13. The convergence of the infinite series in d) is meant to be in the strong operator 

topology. 

Theorem 17 (The spectral theorem). If N is a normal operator on H then there is a unique 

spectral measure P defined on the Borel subsets of C such that 

<Nf,g >= f zdP1,9 (z) 	 (2.2) 

o(N) 

where P1,g (A) =< P(L)f, g > defines a complex measure. 

One writes 

N= f zdP(z). 

o(N) 
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By Theorem 17 we can define 1(N), where f is a Borel function, to be 

1(N) 
= J f(z)dP(z). 

a(N) 

The spectral theorem is one the most important theorems in the theory of linear operators if not 

the most important. It has many applications e.g., Proposition 15 is an immediate consequence 

of it. A proof of the spectral theorem can be found in ([15] Pp.  269). 

We can apply Theorem 17 to the special case of a self-adjoint operator and obtain the following 

result: 

Proposition 16 (Spectral mapping theorem). Let A be a self-adjoint operator Let 1 be a 

continuous function on o - (A). Then 1(A) is well-defined as a bounded operator Besides one 

has 

f(a(T)) = 

Example 13. Let N is a multiplication operator by a complex-valued function. Then the spec-

tral measure of N, is the multiplication operator by a characteristic function of a Borel set 

in C (see [15] pp. 271). 

Like self-adjoint operators, normal ones too are unitarily equivalent to multiplication operators. 

The difference is that self-adjoint operators are unitarily equivalent to multiplication operators 

by a real-valued function while normal ones are unitarily equivalent to multiplication operators 

by a complex-valued function. 

Proposition 17. If N is a normal operator on the separable Hubert space H, then there is 

a cr-finite measure space (X, Q , itt) and an Il -measurable function W such that N is unitarily 

equivalent to the multiplication operator by . 

Let us consider the ball BR = {z E C : Izi 	R}. Let PBR  be the spectral projection for N 

defined on the Borel set BR. We have 

Proposition 18. Let N be a normal operator with domain V(N) and spectral projection PB,.  

Then we have 

f E RanPj 	f E D(N'), Vk = 1,2,...3c > 0 such that I INk111 < cRC. 	(2.3) 
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This last proposition was taken from [15] on page 330. 

As a consequence of the spectral theorem we have 

Proposition 19. Let N be a normal operator with spectral projection PB,. Then the subspace 

HR = PBft H reduces N. 

The Fuglede-Putnam theorem is valid for unbounded operators. 

Theorem 18 (Fuglede-Putnam theorem:the unbounded case). If N, M are two unbounded 

normal operators and A is a bounded operator such that AN C MA, then AN*  C  M*A. 

A proof can be found in [16] and [17]. 

For more details about unbounded normal operators see [15] or [14]. 

2.4 Perturbation of unbounded linear operators 

For a reference for this section and for Section 2.5 the reader may consult [3]. 

In this section we will state a theorem which says that if A is unbounded and self-adjoint and if 

B is symmetric and not too large compared to A, then A + B is self-adjoint. 

Definition 31. Let A and B be densely defined linear operators on a Hubert space H. Suppose 

that 

i)D(A) c D(B) 

ii)for some a and b in R and all E D(A), 

IIBII <aIIA , II + bIIII. 

Then B is said to be A-bounded. The infimum of such a is called the relative bound of B with 

respect to A. 

Sometimes it is convenient to replace (ii) in the above definition by 

iii) for some a, b e R and all p E 

IBII 2 	a2IIAII2 + 
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A fundamental perturbation result that we will be using often is the Kato-Rellich perturbation 

theorem, that is 

Theorem 19 (Kato-Rellich theorem). Suppose that A is self-adjoint, B is symmetric, and B 

is A-bounded with relative bound a < 1. Then A + B is self-adjoint on V(A). 

The reader can find a proof in [3], Theorem X.12. 

Example 14. Let - = H0 be the Laplacian defined on the domain D(Ho) = {f E L2 (113) 

Lf E L 2 (R3 )1. If V is real-valued such that V E L 2  + L°° then H0 + V is self-adjoint on 

D(Ho). 

Proof. First write V = V1  + V2 where V1 E L 2 (R3 ) and V2 E L°° (R3 ). We have by applying 

Theorem 6 a), for f E D(Ho ), 

llVfllL2(R3) = ll(Vi + V2)fIlL 2 (R3 ) 	lI"if 112 + II V2f  112 :5 llV1I1211fll 	+ II V2llllf 112 

:5 I V1  ll2(allzf 112 + bllfll2) + II V200f  112 < all V1112Ilzf 112 + (IlV21100 + bllVill2)11f112. 

This implies that D(Ho) c D(V) := If E L 2 : Vf E L 2 1 and since we can make a small 

enough such that all V1 112 < 1 (again by Theorem 6) we conclude by the Kato-Rellich theorem 

that H0 + V is self-adjoint on V(Ho). 

2.5 Limit point-limit circle case 

This section deals with the one-dimensional Schrödinger operator, that is - 	+ V where V 

is a real-valued function that is usually called a potential. We give a criterion that tells us when 

the Schrödinger operator is essentially self-adjoint on C°(R). For a reference consult [3]. 

Definition 32. We will say that V(x) is in the limit circle case at oo (respectively at 0) iffor 

some A e C, and therefore all A, 1  all solutions of 

—"(x) + V(x)p(x) = A(x) 

'In [3],  Theorem X.6 says that if for some A, both solutions are square integrable at oo (at 0), then all solutions 
are so for all A. 
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are square integrable at oo (respectively at 0). If V(x) is not in the limit circle case at oo 

(respectively at 0), it is said to be in the limit point case. 

In the previous definition there are always exactly two independent solutions of the equation 

(see [3]). 

A proof of the following theorem is in ([3] pp. 153). 

Theorem 20 (Weyl's limit point-limit circle criterion). Let V(x) be a continuous real-valued 

function on (0, oo). Then - + V(x) is essentially self-adjoinr on C 000 (0, oo) if and only if 

V(x) is in the limit point case at both zero and infinity. 

Remark 14. The previous theorem has an analogue for more general intervals than (0, oo); 

namely, if V(x) is continuous on (a, b) with —00 < a < b < 00, then - 	+ V(x) is dx 

essentially self-adjoint on C(a, b) if and only if V(x) is in the limit point case at both a and 

b, with the obvious modifications in the definition of V being in the limit point case at any real 

number a. 

The next theorem allows us to say when V is or is not in the limit point case. This theorem is 

due to A. Wintner, see [18]. 

Theorem 21. Let V be a twice continuously differentiable real-valued function on (0, oc) and 

suppose that V(x) -* —oo as x -* 00. Suppose further that 

L( 
1 	'I 

(—V)dx < 00 
(—V) I 

for some c. Then V is in the limit point case at infinity if and only if f(—V(x))dx = oo. 

Example 15. One easily concludes from Theorem 21 that - 	- xa is in the limit point case 

at infinity if and only if a < 2. 

By a change of variable we have the same theorem on (—oo, 0). In fact, 

Proposition 20. Let V be a twice continuously differentiable real-valued function on (—oo, 0) 

and suppose that V(x) - —oo as x -' —oc. Suppose further that 

(—V) ) 
(—V)dx<oo 
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for some d. Then V is in the limit point case at —00 if and only if f(—V(x))dx = 00. 

Example 16. By Theorem 21 and Proposition 20 we can say that V(x) = —x 4  is not in the 

limit point case at both +00 and —oc. Hence by Remark 14, - 
=dx

- x 4  is not essentially 

self-adjoint on 
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Chapter 3 
An application of the Putnam-Fuglede 

theorem to normal products of 
self-adj oint operators 

3.1 Introduction 

In 2000, E. Albrecht and P. G. Spain [1] proved that if we have two bounded self-adjoint op-

erators K, H and if K satisfies a(K) fl o, (—K) C {0} (we shall call this condition on the 

spectrum of K condition C.), then HK normal implies HK self-adjoint. The proof was given 

in a more general context of Banach algebras hence the result in £(H) was just a consequence 

of the main theorem in that paper. However, nothing was said about the case when at least one 

of the operators is unbounded. In this chapter we answer this question positively, i.e., if K is a 

bounded self-adjoint operator satisfying the condition C and if H is any unbounded self-adjoint 

operator then the result holds. Even when both K and H are unbounded self-adjoint operators 

such that K satisfies the condition C, the result also holds. 

In the end we give a counterexample that shows that the product of two unbounded self-adjoint 

operators, when it has a normal closure, is not necessarily essentially self-adjoint even when 

the condition C is satisfied. 

Most of this chapter (Sections 3.2 and 3.3) is a paper by myself [2] that has been accepted for 

publication in the "Proceedings of the American Mathematical Society" and that will appear in 

the October 2003 issue. 

3.2 Normal products of self-adjoint operators 

3.2.1 Bounded normal products of self-adjoint operators 

We recall the Albrecht-Spain theorem: 
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Theorem 22. Let H and K be two bounded self-adjoint operators. Let K satisfy the condition 

C. If HK is normal, then it is self-adjoint. 

We note that one can prove the result of Albrecht-Spain without calling on the theory of Banach 

algebras. The proof is given below. 

Proof. Set N = HK. We have KHK = KN = N*K then using the Putnam-Fuglede 

theorem (Theorem 13) we obtain 

KN* = NK or K 2H = HK2  

and by condition C, we have that 

f : a(K2 ) ,' u(K) : A 2  

is well-defined and continuous then 

f(K 2 )H = Hf(K 2 ) or KH = HK 

which implies that HK is self-adjoint. 

Remark 15. It is easy to construct noncommuting self-adjoint operators H and K with H 2  = 

K 2  = I, so some additional condition is required to get that HK = KH from the fact that 

HK  = K2H. Condition C does the job. 

3.2.2 Unbounded normal products of self-adjoint operators 

Definition 33. Let K be a bounded operator and H an unbounded one. Then K and H are 

said to commute if KH C HK. 

Proposition 21. Let K be a bounded self-adjoint operator and let H be an unbounded self-

adjoint one such that K and H commute. Then for any continuous function f defined on the 

compact set cr(K) we also have 

f(K)H c Hf(K). 

Before we start the proof we need the following lemma: 
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Lemma 5. JfK and H commute where K is self-adjoint then for any real polynomial P. P(K) 

and H also commute. 

Proof. Set P(\) = ao + al  + ... + aA (the coefficients being real). 

Let x E V(H) = D(P(K)H) = D(KH) = V(K 2H) = ... V(KH). K,H commute so 

KH c HK i.e. KHx = HKx for all x E D(KH) and V(KH) C D(HK). Also 

K H = K(KH) c K(HK) = (KH)K c HK 2 , 

i.e., 

K 2Hx = HK 2 X for all x in D(K 2H) = V(H) and V(K 2 H) C D(HK 2 ) 

We do the same to the powers of K until we get KH C HK, i.e., 

KHx = HKx , Vx E V(K Th H) and V(KH) C V(HK). 

Hence Vx E D(P(K)H) = V(H) we have (aoIH + a1KH + a2K2 H +... + aKH)x = 

(HaoI + Ha1K + Ha2K2  + ... + HaK)x and D(P(K)H) c V(HP(K)). This shows 

that P(K) and H commute, i.e., 

P(K)H C HP(K). 

Li 

Now we prove Proposition 21. 

Proof. As the set of polynomials (that are defined on a compact set, here it is a(K)) is dense 

in the set of continuous functions we can say that there is a sequence of polynomials Fn s.t. 

P - f in the supremum norm on cr(K). 

This implies that P(K) -p f(K) in £(H). Let y e D(H). Set x = P(K)y and x = 

f(K)y. We have 

Hx = HP(K)y = P(K)Hy - f(K)Hy. 
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The closedness of H and x -f x imply that 

f(K)y E V(H) and Hx = f(K)Hy, 

i.e., f(K)H C Hf(K). 	 EN 

Remark 16. One only needs the closedness of H in this lemma. 

Theorem 23. Let H be a densely defined self-adjoint operator and let K be a bounded self-

adjoint operator such that ci(K) fl o, (—K) 9 {O}. If HK is normal then it is self-adjoint. 

Proof. N = HK is normal. We know that Nt = (HK)* j KtHt = KH. We have 

KHK = (KH)K = K(HK) = KN = (KH)K c Nt K. 

But N and Nt  are both normal so by means of the Fuglede-Putnam theorem (Theorem 18) we 

get 

KNtcNttK=:NK=NK 

since N is closed. It follows that 

K 2H = K(KH) c KN t  c NK = (HK)K = HK 2 , 

i.e., K 2  and H commute in the sense of the definition given above (Definition 34). Now the 

function 

f: a(K2 ) 	a(K),A 2 	A 

is well-defined thanks to the condition C. Besides f is continuous. This implies that f(K 2 ) and 

H commute or K and H commute i.e. KH C HK. 

KH C HK (HK)' c (KH) t  = Ht Kt  = HK. 

Since HK is normal then V(HK) = D((HK)t) and on D((HK)t) we have (HK)* = HK 

which shows that HK is self-adjoint. 	 0 

Theorem 24. Under the same assumptions as Theorem 23 and instead of assuming that HK 

is normal we assume that KH is normal. Then KH is self-adjoint. 

Proof KH is normal then so is (KH)t. But (KH)t = HK i.e. HK is normal. So as a 
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consequence of Theorem 23 we know that HK is self-adjoint, i.e., (HK)* = HK. On the 

other hand 

(KH)* = HK so that (KH)*  is self-adjoint, 

i.e., (KH)** = (KH)* but 

(KH)** = iR7' = KH since KH is closed (it is normal). 

Thus KH = (KH)*, i.e., KH is self-adjoint. 

Corollary 5. Let K be a bounded positive self-adjoint operator and let H be any unbounded 

self-adjoint operator Then if HK is normal (resp. KH is normal), then it is self-adjoint (resp. 

it is self-adjoint). 

Now we turn to the case where both K and H are unbounded. The result is also true. Besides 

one has a generalization of the Fuglede-Putnam theorem with rather stronger conditions. 

Theorem 25. If N is an unbounded normal operator and if K is self-adjoint such that D(N) C 

D(K). Then KN C N*K implies  KN*  C NK. 

Proof. Let PBR  be the spectral projection for N. For convenience we set HR = RariPBR . Let 

us restrict K to the Hilbert space HR. We claim that K : HR -p HR and that K is bounded. 

HR is a subset of D(K) since HR c V(N) by the spectral theorem and D(N) C V(K). On 

the other hand since K/HR is symmetric and defined everywhere then it is bounded on HR by 

Proposition 9. Let us show now that KW E HR for E HR. Let W E HR. By Proposition 18 

we have 

Kço E HR if and only if II(N*)kKcoII < o Rk. 

We also have JIN"çOII < cRk and since K is bounded: IIKN'II < ci RC but for such we 

have IIKN'II = II(N*)'KII as a consequence of the hypothesis in the theorem and hence 

Kço E HR. 

Now we need to show that KN*  C NK, i.e., 

D(KN*) C D(NK) and on D(KN*) : KN* = NK. 

Let V E D(KN*). Define ço = PBcO. Since PB -p I in the strong operator topology we 

deduce that con  -* W. 
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Also 	D(KN*) since both K and N*  are bounded on H. Let us now show that 

KN* con  -* KN*co. Since K is symmetric and maps HR into itself by Theorem 14 HR 

reduces K and hence we have by Proposition 10, PBR K C KPB R . It also reduces N by the 

spectral theorem so that we get: 

KN*co = KN*PBflco = PBKN ço -p KN* co. 	 (3.1) 

Let us show now that W e D(NK). Both K and N are bounded on H then by the Fuglede-

Putnam for bounded operators we have that KNço = N*K con  implies that KN* tp  = 

NKço. This gives us with equation (3.1): NKço -p KN* p . 

N maps HR' = RaThPBCR  to HR' (HR is a reducing space for N) and N' is bounded on 

HR' since in this case N' = fBc dPA and hence 	~ 
. 

We also have 

NKço - KN* co  = KN* ço - KNtço E H* forn> R 

so that if we apply the inverse of N we get Kço -- N_ 1 KN* So . By the closedness of K we 

obtain co E V(K) and Kcp - KW. But N is closed and (NKco n )n  convergent together with 

Kço - KW imply that 

KW E D(N) (i.e, co E D(NK)) and KN*co = NKço, 

establishing Theorem 25. 	 EJ 

Corollary 6. Let K, H be two unbounded self-adjoint operators. If N = HK is normal then 

KN C N*K implies  KN*  C NK. 

Proof. Obvious since V(N) = D(HK) C V(K). 

Theorem 26. Let K, H be two unbounded self-adjoint operators such that a(K) fl o, (—K) ç 

{0}. If HK is normal then it is self-adjoint. 

Proof. Set N = HK. We have 

KHK = K(HK) = (KH)K c (HK)*K 

which implies that KN C N*K. But D(N) C D(K) so by Corollary 6 we can say that 
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KN*CNK 0r  

K 2H c K(HK)*  c HK. 

So we have 

K 2 Hço = HK2  ço for W E V(K 2 H). 

Using the same arguments as in the proof of Theorem 25 we can say that for 	RanPB we 

have: K 2HKço = HK2 Kço as Kço E D(K 2 H) since K 2N is bounded in this case. We have 

K2 Ny = NK 2 ço. 

Now take the same function f taken in the proof of Theorem 23 to get: f(K 2 )Np = Nf(K 2 )ço 

and hence KNp = NKço. But KNp = N*K co  on H. Hence N*Kco = NKço. 

We now use the orthogonal decomposition H = RanK & KerK for the K restricted to H. 

We have 

N = N* on RanK and both are 0 on KerK. 

Hence N = N* on H. This shows that N (N is just N restricted to H) is self-adjoint. 

Hence u(Nn ) C R for all n and then a(N) C R and a normal operator with a real spectrum is 

self-adjoint (Proposition 15). Thus HK is self-adjoint. U 

Corollary 7. Let K, H be two densely defined self-adjoint operators such that K is positive. If 

HK is normal then it is self-adjoint. 

Remark 17. We have seen that the result is true for any couple of self-adjoint operators regard-

less of their boundedness and provided the condition C is satisfied. However, the hypothesis 

"HK normal" cannot be replaced by "HK having a normal closure ". Here we give a counter 

example. 

3.3 A counterexample 

Let us consider the operators K and H defined as: 

H = 	: H'(R) , L 2 (R),K = lxi : D(K) - L 2 (R) 
dx 

where D(K) = {f E L 2 (R) : Ixif E L 2 (R)}. K is obviously positive so that it does satisfy 

the condition C. We also know that those two operators are self-adjoint on the given domains. 
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N = HK is defined on D(HK) that is 

If e D(K) : Kf E D(H)} = If E L 2 (R) : Ixif, —i(ixlf)' E L 2 (R)} 

such that: Nf = —i(lxif)' where the derivative is taken in the distributional sense. 

The operator N is densely defined since it contains C'°(R). It is not closed but it has a closed 

extension N defined on D(N), which consists of the L 2 -functions s.t. lxi!' is in L 2 (R) where 

Ixif' is a distribution on R\{O}, by Nf = —iIxIf' — isignf. 

We need to check that N is closed on this domain with respect to the graph norm of N. Take 

(fTh, Nf7 ) e G () such that (f, Nf) —* (f, g). Since f —+ f in L 2  then in the distributional 

sense we have f,, —* f'. On R\{O} we have Ixlf —p  xf' again in the distributional sense. 

By uniqueness of the limit one gets that 7Vf = ixif' for almost every x hence we have the 

equality in L 2 (R). This tells us that N is closed in this domain. 

The operator N is a closed extension of N. It is in fact the closure of N and this will be shown 

once we have shown that Co' (R\ {01) is dense in D(N) with respect to the graph norm of N. 

Definition 34. The set of the functions in V(N) that have compact support away from the 

origin will be denoted by V(N) ". 

Lemma 6. C'°(R\{O}) is dense in D(N)*  with respect to the graph norm of N. 

Proof. Let f be in D(N)*. Let us find a sequence f in C8°(R\{0})  such that f — f in the 

graph norm of N that is, 

iif — fiI (N)  = un — fii + llxf — xf'li —. 

It suffices to show that the right hand side converges to zero as n tends to infinity. 

Take kn  as in Theorem 2 (take m = 	such that k has compact support so that k * f E 

Co' (R\{O}) for large n. Then by Theorem 2 (for p = 2) we have 

urn Ilf — kn  * 1112 = 0. 	 (3.2) 

Now take fn  = k,, * f. The convergence of fn  to f follows from (3.2). At the same time we 

have xf' E L 2  with support away from the origin. This implies that f' E L 2 . 

Also, in the distributional sense, f = k, * f'. So,  A is in L 2  and has compact support away 
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from the origin. Thus, 

IIx(k * f') - xf 112 :~ oII(k * f') - f'II - 0 by (3.2). 

Therefore, 

IIfnfIIv(W) — 0asn----oo, 

establishing Lemma 6. 	 U 

Lemma 7. D(N)*  is dense in D(N). 

Proof. Let f E D(N). Let us find a sequence f in V(N)* such that f —p  f in the graph 

norm of N. Define the even function ço j  on [, 2n] by 

rt(x  — ) 	if 	'(x< 

	

(x)= 1 	 if 1 < x < n 

— (x — n)+1 if n<x<2n. 

Now take f = fço. We have suppf, gsuppf nsUPM0n 9SUPPWn where 0 suppço. One can 

show that Wn  tends to 1 pointwise. Also exists almost everywhere. We need to show that 

f - f in the graph norm of N. First, we have 

un - flu2 - fR 
lf(x) - f(x)I2dx = fR  

lf(x)l2(n(x) - 1) 2 dx 	0 L2 (R) - 
  

by the D.C.T. (dominated convergence theorem). 

We also have f(x) = f'(x)(x) + f(x)o(x) then 

llxf - xf 11L2(R) 
= f Ixf(x) - xf'(x)l2dx 

<2 f lxf'(x) I2(n(x) - 1) 2dx +2 JR xl (X) WI 
 

The first bit of the integral tends to zero again by the D.C.T. (the dominating function being 

(xf') 2  E L' (R)). For the second bit one has 

	

I
21f(X)121 ~01 (X)12 	

2 	
2n x 2  

R 	

= fn 
x2 n2 lf(x)I 2dx + fn 	

If(x)l2dx. 
 n 
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We have 

f x2n2If(x)I2dx 
4fl 

 f(x)I 2dx = 4 fR IfI 21 , 	0 

by theD.C.T. since urn 1 [ 1 1 (x) = 0. 
n—. n'n 

We also have 

2n 

f 	If(x)Idx 
 4I 

If  (X) 4 1 if (X)1 2 1[ 
 n 	 JR 

which tends to 0 by the D.C.T.. Thus IIxf - Xf'II2(R) -* 0. 

This tells us that 

IIf - fIID(N) 	0, 

establishing Lemma 7. 

C°(R\{O}) is dense in D(N)*  and the latter is dense in D(N). Thus C8°(11\{0})  is dense 

in D(N) with respect to the graph norm of N. 

Corollary 8. The operator N is the closure of N. 

Proof. This follows from C'°(R\{0}) c D(N) c V(N). Hence D(N) is dense in V(N) 

with respect to the graph norm of N. 	 0 

In order to find the adjoint of N on D(N) it suffices to find it on C°(R\{O}). Since if we 

restrict N to C8°(R\{0})  and we denote it by No then N* = N (since N0 = N then, 
= 	

and hence N** = N***. Therefore, N = N* I because N*  is closed for any 

densely defined operator N, see [14] (Theorem 13.9)). 

The domain of N*  is defined as 

D(N*) = {g E L 2  (R)13h E L 2 (R) s.t. <Nf,g >=< f,h > VfE C°(R\{0})}. 

And we have 

Lemma 8. D(N*) = If E L(R)IIxf' E L 2 (R)1. 

'We have used the fact that N = N see [6], Theorem VIII.1. 
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Remark 18. Recall that we denote the action of a distribution T on a test function by (T, ). 

Proof Let I € C'°(R\{O}) and g e L 2 (R). We have 

<Nf,g >= fR (ixlf(x))'ig(x)dx = ((lxIf)',) since  (ixif)' E C°(R\{O}). 

By definitions of the distributional derivative and the product of distributions (c.f. Sections 

1.4.1. and 1.4.2.) since lxi is C°° on R\{O} one has 

- 	 -1 
((ixlf)

,  ,zg) = —(IxIf,—zg) = (f,zixlg). 

We also have < f, h >= (f,/i) where h € L 2 . Hence h = —ilxlg' as a distribution but h is in 

L 2  then xg' € L 2  and then V(N*) = {g € L2: Ixig' E L 2 } and N* g  = —ixIg'. 	El 

Now let us show that N is normal. First, we have that D(N*) = D(N*) 

Clearly N is not self-adjoint (it is not even symmetric as N - N*C ±i). However, it is normal 

as 

cy .N*f(x) = N(—iixlf'(x)) = —i(—iIxllxIf'(x))' = _x2f(x) - 2xf'(x) 

and 
N* .Nf( x ) = N*[_i(Ix if( x ))F] = —x 2 f"(x) - 2xf'(x) 

We also have 

V(N.N*) = If E D(NNf € 	= If € L(R)I, ixlf 1
,x2 f" € L 2 (R)} 

and V(N*.N) is exactly the same. 

Thus, we have found two unbounded self-adjoint operators H, K such that o(K) fl o- (—K) ç 

{O} for which N = HK has a normal closure without being essentially self-adjoint. 

3.4 What went wrong? 

In the Counterexample above N (actually, it is N which is normal but we keep on denoting it 

by N) is a normal operator and so according to Proposition 17 there is a unitary transformation, 

say U, that diagonalizes N. In other words via U, N will be unitarily equivalent to a multipli- 
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cation operator by a complex-valued function. So here we find U explicitly and use the whole 

machinery to investigate what goes wrong in the proof of Theorem 25. 

Proposition 22. Let N be the normal operator defined on D(N) = If E L 2 (R) : xf' E 

L 2 (R)} by Nf = -i(IxIf)'. Then N is unitarily equivalent to M = M M_ where M 

is defined on L 2 (R) by M+f(s) = (s - i)f(s) and M_ is defined on L 2  (R) by M_f(s) = 

(s +i)f(s). The required unitary transformation is given by 

Uf = U+f+  U_f_ 

where f+ is the restriction off to R+, f_ is the restriction of f to R. The operator U+  is 

defined by U 	..T'V where T' is the inverse L 2 -Fourier transform and V : L2 (R+) 

L2 (R) is the unitary operator defined by 

(Vf)(t) = elf (e t ) 

and U_ is defined by U_ = .F'W where W : L 2  (R- ) -p L 2  (R) defined by 

(Wf)(t) = e-12 

Proof. Since we have the decomposition L2(R) = L 2 (R+) L(R) then N may be written 

as N N_ where N satisfies Nh = Nh - ih and N_ satisfies N_h = N.h + ih. Let 

A e a(N+) then A = X—i which gives A = - i.e. u(N±) {a— iIa E R} (it is actually 

equal to this set as we will see later). 

Now let us try to find the eigenvalues of the operator N±. We have —ixh' - ih = Ah or 

= hence h(x) = cx where c is arbitrary and where c = A + i. This h is 

clearly not in L 2 (Rj hence we do not have any eigenvalues but this try will allow us to find 

the unitary equivalence of N. It is done as follows. Define 

1 	f°° 
(U+f)(u) = 	x_iuf( x )dx  where f E L2 (R+) (*) 

The previous equation is a well defined Fourier transform in L 2 (R) by making the change of 

variable x = et in (*). We then get: 

1 
(LT+f)(u) = f[e tf( et)] e tdt. 

R 
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It is well-defined in L 2 (R) since 

.00 

g(t) 2dt fetlf(et)I2dtf = J If(x)I 2dx <oo 
0 

R 	 R 

where we have made the change of variable t = In x and where we have set g(t) = e tf( et). 

The inversion formula is then 

g(t) = k=f(U+f)(u)e_iut du. 

Hence we obtain 

F(t) f( et) = 	= J(Uf)(U)e-12t—'utdu. 	 (3.3) 

R 

Let us check that via equation ( 3.3) N+ is unitarily equivalent to M+ that is in the proposition 

above. We have FF(et) = etf/(et) = xf'(x) and at the same time 

F'(t) = 	f(- - iu)(U+f)( u) e_t_Utdu . 

R 

Hence — iF'(t) - iF(t) = 	- i)(U+f)( u) e_t_2utdu. Then 

N+f(x) = —ixf'(x) - if(x) = - i)(U+f)( u) e t_tdu . 
vf2- _7r f (_ 	2 

Thus 

UNf(s) = (s - i)(U+f)(s) = (MU+f)(s). 

So N+ is unitarily equivalent to M+ and the unitary operator is given by (3.3) and hence 

= {s - is E R}. The proof for the case L 2 (R) is very similar so we shall not do 

it. We just give the unitary operator in this case which is 

f(e_t) = 1 f (U_f)(u)e +'2P— 'ut du 

R 

and hence a(N_) = {s+ 	E R}. 

In the end N = N 	N_ is unitarily equivalent to M = M 	M_ where M+f(o) = 
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(—a — i)f(a) and M_f(a) = (—a + i)f(a). Thus 

1 	 1 
o(N) = or(N) U o(N—) = Is — iIs E R} U {s + iIs E R}- F07 

We have constructed this unitary equivalence to use it to investigate what goes wrong in the 

proof of Theorem 25 if we want to prove the same result for operators that have normal closure 

and that are essentially self-adjoint. 

The first thought is the closedness of the operator. Truly the closedness plays a role in making 

the result untrue but there is something else that is in the proof of Theorem 25 and that is we 

cannot restrict K to HR since HR is not a subset of D(K). 

Lemma 9. Let PBn  be the spectral projection of the normal operator N that is defined in 

Section 3.3. Then HR = PBH is not a subset of D(K). 

Proof. We need to find an f that is in HR and not in D(K) i.e. xf V L 2 (R). It suffices to do 

this in L 2 (Rj and we also denote the spectral projection for N+ by PBR The operator M+ 

has R x {— 1 1 as spectrum. So its spectrum lies in a line. 

Also since the multiplication operator, M+, has the multiplication by a characteristic function, 

say 1Im  as its spectral measure (Example 13) and since N+ is unitarily equivalent to M+ then 

it follows that PBR  is unitarily equivalent to u rn  (rn and —m represent the intersection of the 

disc of radius R and the line y = —) via the transform defined in (3.3). Let us call that 

transform F. Then we have 

FPBF' = u rn  where 'm = [—m, in]. 

Hence PBF' = F 1 1Irn  So for  e L 2 (R+) one has 

f = PBF'g = F'1Im 9 

We observe that to say that f e HR or Ff = 1Jg, g E L 2 (Rj is the same thing hence we 

seek an f such that Ff(s) = 1 on [0, m] and zero otherwise (we have taken g = 10,m]) such 
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that xf V L 2 (R) or etf(et)  V L 2 (R). By (3.3) we have 

1 	prn 
f( et) = 	J e_t_i8tds = 	1 6_t(i - e_zmt) 

it/ 

Of course 

f E L(R) but etf(et)  V L 2 (R 

since 

I I e t(1 - e_imt)I2dt 
= f -(2 - 2cos(mt))dt ~ f -(2 - 2cos(mt))dt = 00. 

it 
R 	 R 
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Chapter 4 
Self-adjointness of the perturbed wave 

operator on L 2 (R2 ) 

4.1 Introduction 

There are many classes of unbounded real-valued Vs for which — L + V is self-adjoint (see, 

[3], Section X.1 to Section X.6) which is very important in quantum mechanics. Many of those 

results exploit the fact that — A is positive (see, e.g., [191). What we will be doing in the next 

two chapters is to investigate the self-adjointness of 0 + V (there is no need to say that it is 

easier to prove that something is self-adjoint than to prove that it is not). This work may not 

have any direct application to another science and for the moment it is only a mathematical 

curiosity. 

We will also observe the difference between the wave operator and the Laplacian in the way 

they behave. There is also another difference that is worth mentioning that is: the Laplacian 

is a positive operator while the wave operator has no sign. In the end we will also give a 

counterexample showing another difference. 

In this chapter we are only interested in the case L 2  (R2 ). We want to find a class of unbounded 

V: R2  - R such that D + V is self-adjoint on D(D). For V essentially bounded the result 

is true either as a consequence of the Kato-Rellich perturbation theorem or as will be shown 

below. We also recall that 0 + V is essentially self-adjoint on C8°(R2)  (see the discussion 

after Corollary 4 and Remark 11) if 

/ 2 82  

- 	

U(x, t) + V(x, t)U(x, t) = ±iaU(x, t) (ce> 0) ~jt_2 ~~X_2 )  

has a unique solution in L 2 (R2 ) (that is U = 0) and eventually self-adjoint on D(D) fl D(V) 

if we also prove that U + V is closed on D(E) fl D(V). 
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4.2 First class of self-adjoint El + V 

Remark 19. The natural domain of V is {f E L : Vf E L 2 } 

Proposition 23. Let 0 be the wave operator on L2 (R2 ). Let V E L°°(R 2 ) be real-valued. 

Then 0 + V is essentially self-adjoint on Co' (R2 ). 

Proof. We shall attempt to solve the adjoint equation directly by using the Fourier transform. 

We need to show that the following PDE 

Ou±iau= Vu 
	 (4.1) 

has a unique solution in L 2 (R2 ) that is, u = 0. Put M = llVlI. We also choose c > M. 

Now take the Fourier transform in equation (4.1) and we get: 

(2 + 2 ± ci)ü= t?. 

Then 

1I(_2 + 2 
± ai)ü11 2  ~! a ll fL I12 = IIUII2. 

VIVMS 

II(_2 + e2  ± ci)1iLII2 = IIvu1I2 :!~ M11u112. 

Hence 

0 < a11u112 	M11u112 = (M - a) 11u112 > 0 	u = 0. 

. 
Remark 20. The result is true in any dimension n > 2 by the same method and for any con-

stant coefficient symmetric partial differential operator. Also, it is known that a multiplication 

operator by a real-valued essentially bounded function, when added to a self-adjoint operator, 

does not destroy its self-adjointness. In fact, it is an immediate consequence of the Kato-Rellich 

Theorem (Theorem 19). 

First recall that Li is an unbounded self-adjoint operator on D(0) =  If E L 2 (R 2 ) : Of E 

L 2 (R2 )} by means of the Fourier transform (c.f. Example 11). 

We now we give the first class of unbounded Vs for which the operator 0 + V is self-adjoint 

on D(0) but before that, we get classes of real-valued V for which
92 
 + V is be self-adjoint 
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on 
82   

	

D(5) = { e L2  (R2 ) : 	E L2  (R2 )} 8 	 . 

And then the results for 0 will follow by a change of variables. 

Definition 35. Set 

M'2 = {9 E L 2 (R2 ): 	E L 2 (R2 )} 

and set 
M2 = 

{ 
E L 2 (R2 ) E E L2 (R2 )}. 

We also denote by p, the frnction 	
. 

Proposition 24. For all a> 0, there exists b> 0 such that 

2 	2  

	

ess sup f ,(x + A, y + A)I2dA 	
2 

a 
 5X 	

+ bIIII 	(4.2) 
x,yER 

R 

for all E M12  

Proof. We shall first prove the proposition for CO' functions then extend the result to functions 

in M12 . Let p  e CO' then we have the following identity for 

f
p

(x, y) 
= J 

 p + (x, t) + (s, y) - (s, t) 
 t 

which is an easy consequence of the fundamental theorem of calculus. We also note that s and 

t are yet to be chosen. 

We have 

Ix+\ py+) 
ço(x + A, y + A) 

= 	J 	p + (x + A, t) + (s, y + A) - (s, t) 
 t 

where A is a real number. 

Then 

zx+.\ py+A 

k(x + A, y  + A) I ~ 	J 	I,I + k(x + A, t)I + k(s, y + A) I + I(s, t)  I. 	(4.3) 
 t 
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But applying the Cauchy-Schwarz inequality, Corollary 1, gives us 

x+A y+A 

  p1 
(IX+A  f y+ 

IPI) (Ix+A—sI)(Iy+A—tI)  12 

Squaring both sides of Equation (4.3) gives us 

x 	y+) 
I(x + A,y + A)12 <f 

+A 
 f 	pI(Ix + A - sl)(ly + A - ti) + I(x + A,t)1 2  

+I(s, y + A)  12  + ëI(s, t)1 2  

Now we choose s and t such that k + x < s < k + x + 1 and k + y < t < k + y + 1 where 

keZ and take AsuchthatkA<k+1. Then Ix+A — sl!~,1 andly+A — tIl.So 

(fx+k  fy+k  
k(x+A, y+A)12 	e

x+k+1 y+k+1 
p1 2  + I,(x + A, t)1 2  + I(s, y + A)1 2 + (s,t)1 2  

Integrating in A, s and t in their respective ranges gives us 

pk+1 	

fx+k

x+k+1 ç 	
fk

k+1 
 (x+A,y +A)I 2dA C I II +C I l(x + A,t)I 2 dtdA 
  J 	J 

R 	 R 
x+k+1 

	

fk+1 j 	

fx +k 	

p 

 J Ico(sY+A)I2dsdA+C 	J (s,t)I2dtds. 

	

R 	 R 

Now sum in k to see 

(x + A, y + A)I 2dA ~ C[p + lIII1. 	 (4.4) f  

R 

Taking the essential supremum of both sides in x and y in R establishes (4.2). 

We now proceed to make the constant in front of II 112, in (4.2), arbitrary. 

Set cor (x,y) = ço(rx,ry), r > 0. Then one gets 

Sup f r(x + A, y + A)I 2 dA = sup II(rx + rA, ry + rA)1 2 d(rA). 
x,yER 	 r x,yER 

R 	 R 
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Also 

If ö2cor(x, 2 dxdy ff  82  ço(rx, ry) 2 02 (X, Y) 2 
axl9y = 	ôxôy 	

dxdy = r2 ff 
R2 	 R2 	 R2  

Finally, 

	

Ik2rII = 	II'pI 

Applying (4.2) to W, gives us 

ess sup f (x + A, y  + A) 12 	e[r3 IIpII + IIII]. 
x,yER 	 r 

R 

Since r is an arbitrary positive number we can take the constant in front ofarbitrary. 

We now show that using a density argument one can extend this result to functions in M'2  

Let f e M'2 . Then there exists a sequence, ço, of functions in Co' (Remark 7) such that 

	

ii 	- 	I 
IIn - fII -* 0 and 

82 	0 21
I - 0. 

	

Moo 	8x0yI 2  

We can then extract a subsequence n(k)  such that co(k)(x, y) -p f(x, y) a.e. . On the other 

hand 

fl 	 92f
PII2—IIfII2ad oxoy 	aXay 2 

Now, for all x, y and k we apply (4.4) to 	to get 

	

2 	lIo2() 
2  

	

<all 	+bIkOfl(k) 11 2 . f 	+ A, y + A)I dA - 1 

R 

But 

f If(x+ A,y + A)I 2 dA = f 1iminfI fl(k) (x + A,y+ 
k-400 

R 	 R 

Applying Fatou's Lemma tells us that for a.e. 

If(x + A,y + A)I 2dA liminff fl(k)(x + A, y + A)I 2dA f k—oo 
R 	 R 

	

<liminf (a 	
+blIfl(k) 

82 c 2  

	

- koo 	OxOy 	
II). 

51 
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Taking the essential supremum in x and y establishes (4.2) for functions in M12. Li 

We now give the first class of unbounded Vs. 

Theorem 27. Let LI be the wave operator in L 2 (R2 ). Suppose V is real-valued such that 

11V11 2  = f suplV(ij, e)I 2d <oo. Then Li + V is self-adjoint on V(E) = M 2  C L 2 (R2 ). 
R 7ER 

Proof Set 

(x,y)(x+y x—y\ 
= 	2 ' 	 2 

)/)(77i) 

(then 	= 	
02 	82  

where Li is 	- 

We have 

IIVII = ffIv(me(m)I 2dde. 
R2  

We also have 

f V (71 , e)(m )I2d 	sup I V(, e)12 J 	, ) 12 d77. 
ijER 

R 	 R 

But 

f I(m)Idi 
= f (i+- 

 e)12 d77
= f IA +e,A - )I2dA. 

Hence 

IIVIl 	f supIVI2 fI 	+,A)I 2dA d. 
ijER 

R 	 R 

Therefore 

iiVii ~ 	I( +  	)I2   	IV( 	)I 2    sup 	 dA 	sup 	d 
ER

f 
	 ijER Lf  

Now by Proposition 24 one obtains 

/ 	 2 

IIVII 	Isp IV(m)I 2 d
R 	

a 	+ bIIII)
tER 

Thus 

IIVII ~ o 
LfV121 

(aIIDII + bIIII). 	(4.5) 
 77ER 

By Equation (4.5) we can see that D(V) C D(D). Hence V is Li-bounded and since we can 
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make the constant a in front of 1100 112 as small as we like (Proposition 24), we conclude by the 

Kato-Rellich theorem (Theorem 19) that 0 + V is self-adjoint on D(0). 	 0 

Remark 21. In Chapter five we will give another method to get exactly the same norm of V by 

using Fourier transforms. We do not want to give this method here since it also works in higher 

dimensions so we prefer to leave it until then. 

4.3 M12  and the space BMO 

Now we prove an important estimate that will allow us to say that 0 + V is self-adjoint for any 

real-valued V E L 2 (R 2 ),Ve > 0. 

Before that we show that M12  C BMO(R 2 ). Then it will follow by the sharp maximal 

theorem (Theorem 7) that M12  C L", 2 < p < 00. We will then deduce that M 2  C LJ'(R2 ); 

2 < p < oo. We first have 

Theorem 28. Let E M'. Then E BMO(R 2 ) and 

II 	II 
IkPIIBMO(R2) <a 0x 	I2 

+ bIIII2 	 (4.6) 

where a and b are two constants. 

Theorem 28 will only be proved for C6°-functions  (to get the estimate (4.6) for functions in 

M12  we use the usual density argument c.f. the proof of Proposition 24). The following lemma 

will be needed in the proof of Theorem 28. 

Lemma 10. Fix y' E R and put fi  (x) = p(x, Yi)  where o e C°. Then f' E BMO(R) with 

uniform BMO bound, i.e., 

IIf1IIBMo(R)a "0 II  
+ bII , Il2 axay 2  

Also fir x 1  then y -f  gi(y) = ço(x i , y) is in BMO(R). 

Proof. We have to prove M1 f1 Jfi(x) - iIdx < c where c does not depend on y,  and where 

= -} T f1 f i (x)dx. Then we have 

fV

yi  
(Ii - H(X) = 	 p(x, z)dz where 1(x) = (x, y) 
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and where we have the freedom to choose the y that is convenient for us. Then we have 

fyi 

	

1(1' - f)'II = [I(fi - f)'(x)I 2dx = [i 		p(x, z)dzl 2 dx. 
JR 	 JR  

Thus 

(li - f)'II ~ (i - 	 <00 with the assumption y < y. 

So (fl 
- f)' E L(R) hence (fi 

- 1)' e L' (R) and so f - f is absolutely continuous on 
10 

every compact set of R hence continuous. So the average fi - f is (fl - f)(c) where c E I 

and such a c exists by the intermediate value theorem. So 

(fi —  MX)  — fi — f= (fi —  MX)  — (fi — MO. 

Since fi —f is absolutely continuous on I, it is differentiable almost everywhere, (fl —f)' E L' 

and 

(f' - MX) - (fi - f)(c) 
= 

f 	- f)'(t)dt 

and then 

(li - MX) - U1 - f)(c)I f (fl - f)'(t)Idt < (x - c) 11 (fl - f)'112. 

Then 

(fi - f)(x) 
- (1' - f)(c)I <(b - a) II(fi - f)'112 = III II(fi - f)'112 

and hence 

fI(fi - f)(x) — (fi — f)(c)Idx < IIIII(fi - f)'112. 

But we have I(fi - f) ' 112 	(yi - Y) '!  IIPI12- So in order to find a uniform bound for 1 1fi 
- 

Ill BMO for this particular I it suffices to take y such that (y, 
- y) 	_Lr  and in such case we 117  

will have: 

jj 	(f' - f)(x) 
- (1' - f)Idx 	IItII. 

But our interest is in the function Ii itself not in fi 
- f so from f,(x) - 	 fi(x) - f(x) - 

Ti + 7+ f  —7 (since  f --g = f - ) we can find a BMO bound for Ii for this particular 

I if we come to show that f is BMO. We have 

1 I  1 1 if(t)Idt)dx jj 	If 	- lids 	jj j, if(x)idx + -j J(j 
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Then 

If (x) - lldx 
< 2 111 II2 
- lIl 

So far we have not used the fact that E L 2 (R 2 )! To have a uniform BMO bound for I we 

need for instance 111112 <clIl 2 (c> 0, to be determined). Let us assume that there is no y such 

that Iyi - I < 1 and such that the previous inequality holds i.e. 

Vy E R, Iyi - I < 	
1 

(b — a) 

and 

JR 
I(x, y)I2dx> C2 

Hence 

lIIl> fE / (x,y)I2dxdy > c(b— a)_
1 	

= c2  
JR 	 (b — a) 

where E = { y E RIyi - y 	+ y}. To obtain a contradiction it is enough to 

choose c = 2IIII2. Hence 3y E E such that 	.11 11(x) - lIdx < cII'II2. So we now have 

j J Ifi(x) - iIdx —< ö11t112 + clIII2. 

We do that for all intervals I. 

The proof for gj is merely the same. 

Now we prove Theorem 28. 

Proof. We already have 

JJ i: I(x, y) - (y) Idx < eIIplI2 + C1k2112 := K 

where (y) = M  1 f1 x, y)dx. We only need to show the estimate: 

F  ' ( I() - Idy < K 

where iT = Txl—jT 	(x, y)dxdy. Put R = I x J where R is a rectangle. 
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We have J'1 k'(x, i') - (y)Idx < K then 

F  ' f I W (x, y) — iT(y) I dxdy :5 j 1jj fKclY=I< 

To finish off the proof we need to bound -k fR I() - TJdxdy by K. We have 

f J~P(y) — Idy= j f jj f ço(x,y)dx — 	f cO(x, z)dxdz dy 

1 fI[d 	1  fR  RI jIi 	 JI 

1 	(jRI iii 	 IJI 	 ) 	I 

= j-ff PX,Y)_ jjjc(xz)dz)] dxdy 

< 1Ii 	 1I 
-  I 

- IRI 	 fi 

-iii
1 f (jH(x,y)_ f (x,z)dydz ) dx  

< j fKdx = K 

by the BMO bound of g. Thus 

FR I L I() - Idy 	I Kdx = K. IRI J 

So for all rectangles R in R2  we have: 

-j f (x, y) - Idxdy 
= -1 j  f k(x, y) - (y) + (y) - Idxdy 

1' 	 I'  

-J Ic'(x,y) —(y)Idxdy+ 
1 

-J I() — Idxdy IRI R 	 IRI R  

that is 

Ik°IIBMO : ~ aIIpII2 + bII'II2, 

establishing (4.6). 	 701 
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Proposition 25. Let W E M12  . Then for all a > 0, there exists a b > 0 such that 

koII :5 11P112 + bIIwII2 	 (4.7) 

where 2 < p < 00. 

Remark 22. The case p = oo is false as will be shown in Proposition 27 below. 

Proof. Let V E M12 hence 'P  E BMO(R 2 ) by Theorem 28. 

We also know, by Theorem 7, that II'PIIp !~ E 11MOW 11 p . So to prove this proposition we are only 

required to show that M O W E LP (R2 ). We have 

IIM'II2 :5 Z 11W112 so  M O W E L 2  since W E L. 

Also by definition of a BMO we have M O W E L (since W e BMO). So one gets 

IIMcoIIp :!~ IIMpII 2 	 00 IIMI 

So Mt ço  E L'3 . But IIMIl = II'PIIBM0 and  IIMII2 :!~ all W I12. Hence for 2 <p < 00 

IIMcoIIp :!~ EIIVI12P  Ik°IIBMQ 

and thus 
1- 

'P 	c p_ 'P2
p 
 IIVII BMPO I  

We also have by Theorem 28 that II'PIIBM0 :~ ap2 + bIJ'P112 then 

IkII < CII'P112 lI'PII 	o < oIIII(aIIpII2 + 

. Now take 1 2 = , 
1 
- 

_ 1 - . Hence 

and for 2 <p < oo we obtain by using Young's inequality (Lemma 1), 

3(1-) 

cIIII 	(11P112 + II'P112) 	 + 	M2 + I'P112) II'PIIp ~ 
 

a 	 13  

57 



Self-adjointness of the perturbed wave operator on L2 (R 2)  

Then 
2 p 

IIWIIP 	
ii 	11 	(aIIpII2 + bIIcII2) 1  

_2. 
2 	 p-2 

So 

Il9iI !~ C1k0112 + E IIPI12 
+ 

Thus 

III 	a11p112 + bIIII2. 

07 

Corollary 9. Let f e M 2 . Then for all a> 0, there exists b> 0 such that 

Ill lip <aJLJf 112 + bIll 112 	 (4.8) 

where 2 < p < 00. 

Remark 23. Corollary 9 could have been a corollary to Theorem 28 as this latter is true for 

E M 2  since we have the elementary fact that the BMO norm (up to a constant) is invariant 

under the change of variables we made in the proof of Theorem 27 

Before giving the second class of self-adjoint D + V we give the following lemma: 

Lemma 11. The constant a in (4.8) may be made as small as we would like. 

Proof Take A(x,y) = çoAx,Ay) : A >0. We get: 

1 	 1 
II0oA1I2 = AIILipII2, II'A112 = 	ikII2 and  IIAIIp = --II'II. 

Thus the estimate (4.8) applied to ço instead of ço becomes: 

JIVIl p  <aAp 	+ bA'IIII 2 , A > O,p ~: 2. 

Take A small enough and the constant in front of IILiI12 will be arbitrarily small. 	0 

Theorem 29. Let 0 be the wave operator on L2 (R 2 ). Let e > 0 and let V : R2  -' R such 

that V E L 2 (R2 ). Then 0 + V is self-adjointon V(D). 
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Proof We have by Corollary 9, 

	

<aflD 	+ bIII12, for 2 < p < 00. 

Then by the generalized Holder's inequality: 

Il'II2 :5 flVlI q llll p  :~ aIVIJ q ilElço112 + biIVil q ll2Il 2 , for 1  
= 	

1 
- + - or 
p q 

q = 	(this actually means that q -* 2 as p -* oo). 

Since the constant in front of 	may be made arbitrarily small so that we have allVlI q  < 1 

we conclude by the Kato-Rellich perturbation theorem that 0 + V is self-adjoint on D(El) = 

M 2 . 	 0 

Remark 24. Adding a bounded multiplication operator by a real-valued function does not 

destroy the self-adjointness and we have: 

Proposition 26. Let V E L 2 (R2 ) + L°°(R2 ) be a real valued function, €> 0. Then El + V 

is self-adjoint on D(D). 

Proof. We have 

	

llyllp <aE 	+ bllll2. 

Put V = V1 + V2 where V1 e 	V2 E L°°. Then llV,112 = lI(Vi + V2)l12 and by the 

generalized Holder's inequality (Proposition 1) 

	

llVco112 :~ llV1ll2+€Il11 + llV2I111'l12 	all V1  lI2+€llDPll2 + (llV2I1 	+ b)ll112. 

Since we can take a as small as we like, 0 + V is self-adjoint on M2  by the Kato-Rellich 

Theorem. 	 0 

Example 17. Let s > 1. Take V(x, t) = 	1 
1 Choose c > 0 such that 2+ < 2. Then 

7X2 +t2) 	 S 

V E L 2  + L°° and hence 0 + 	1 	is self-adjoint on M 2 . 
(x2 +t2 ) 2 

4.4 Counterexamples 

It was mentioned in Remark 22 that a function in M 12  needed not be in L°°. So we have 
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Proposition 27. Let 	L 2 (R2 ) such that a2 	2  ff  Y  E L(R 2 ). Then w need not be essentially 

bounded on R2 . 

We give two methods of how to do this. First we give an explicit counterexample that we 

construct in the following proof: 

Proof. We are going to build up the counterexample by using a linear interpolation. We define 

(x, y) '-p (x, y) on R x (yn, yn+i] by 

(x, ) 
= 

Yn+i 1 - 
Yn [(y - y)f+1(x) - (y - y1)f(x)] where f. (x) = (x, y) 

and the f and yr, are to be defined below. 

Observe that p  is only defined for y> y := 0. At the end of this proof we will extend it to the 

case y < 0 by a symmetry. 

Hence on R x (0, oc) we have 

00 

koII= ff Iw(x,y)I2dxdy=> 	ff I(x,y)I2dxdy 

Rx(O,00) 	 1 Rx(y,yi] 

In order to have in L 2 (R x (0, oo)), it is sufficient to have 

00 

(y.+1 - ym)(IIfII + IIfm+iII) <Oo. 

We also have 
1 

= Yn+1 
- (f 1 (x) - f(x)). 

Yn 

In order to have 
82- 

 in L 2 (R x (0, oo)), it is sufficient to have 

00 
1  

IIP'  
flhI

2  2 <00 where '(x) = fm+i(x) - f(x). 
Yn+1 - Yn 

00 

We are going to to define fn  by first constructing 	then putting fn  (x) = - 	Vk(x). 

We also want fn L°°(R) so that ço L°°(R 2 ) 
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Take 

n 
— 	 1 

{ 

— 	- e--x OrL  (x)  

0 

if —eTh<x<O, 

if 0<x<e, 

if lxi > e. 

Hence il/ 	and li'nli - 	We also have 

00 	 00 _! 	 00 	
X 	 -z 

2 	 e 	1 
100 

— 	e 2 

2=a - J —  dx< —  e 2 dx-----ifll2 ~ 	lkbkii 	Ti 	 — 
k=n 	k=n 

Now if we choose Yn+1 - = e72  then the series 

00 	
1 	

002 	
1 	e 	00 

E iinil2= 	X 
- 	

2 	obviously converges. 
n+ 	

/ 2 

And so does the series 

00 00 	 00 	 e' 	1 2 i 	2 	 ____ X 	 21 'i2 
1 	 1 

Now the W defined on R x (y, Yn+i) is given by 

00 	 00 

(x )  y) = e 	[(Y_Yn 
(—n+l

k(x)) 
- (yyn+1) (_k(x))]. 

This p is actually defined only for x E R and y > 0. To extend it to the case y < 0 we define 

for x E R and Yn+1  <y < 	as follows: 

1 
(x, y) = 	 [(y - ym )fm+i (x) 

—  (y - 
Yn+1 — Yn 

This p  is clearly in M'2 . Now we need to show that p is not in L°°(R 2 ). Let x > 0 and 

X < e_c then In x < —kor1n > k. So 

in J k 	[in 	
1 	

[in j 1 
f(x)=—x 	-+ 	.(_x2+1) 
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But 
1n J 	1n 	

1 	1 	1 i =  i k= 1+...+  Li1j_ (1+_  2  +... n— + 	1 k=n 	1 	1 

But from 1 +.1 + ... + ".' in n + -y (here  y  represents Euler's constant) we have 

1n 1 j 

1n [In .j+y—(1+ +... + 
1 

n- n 

Now as x -* 0 then [in j -* 00 hence in [in j -* 00. Thus —f , (x) -p 00 which implies 

that (x, y) -* 00. So 	L°°(R 2 ). 	 L] 

Remark 25. This counterexample found is actually a BMO function by Theorem 28. 

The second method is proving the existence of such a function without exhibiting an explicit 

one. It is done as follows: 

Proof. First, consider f : R2  -* R such that 

1 
f(u,v) =  

1 + Iuv 

The function f is obviously positive. Besides, it does not belong to L 2 (R 2 ) since 

11 	
dndv = urn 

fo

R  1R

ff(l+IuvI)2dv ~ L L (1+uv)2 	Roo 	Jo (l+uv)2dudv 
R2  

But 
pR 	1 	 1 

du=[--(1+ 	—1R 

Jo (1+uv)2 
	UV) ] 	

1 	1 	R 
V v(1+Rv) 1+Rv 

So 

çR 11f11 2 > urn / 	R dv = urn [ln(1 + Rv)] = urn in(1 + R 2 ) = 00. 
R—oo .10 1 + Rv 	R—oo 

Now by Lemma 2 and Remark 2 we know that there exists 0 ~! 0, O E L 2  such that Of L 1 . 

Since f E L°°, Of belongs to L 2  and it legitimate to define 	..T' (0f) where ..F is the 

'In fact! is not in L' (R') for any p > 1. 

62 



Self-adjointness of the perturbed wave operator on L 2  (R2 ) 

L 2 -Fourier transform. By the Plancherel theorem V is in L 2 . Also 

( axay) 
a 	

= UVJC"W = uv(u,v)f(u,v). 

uv uv - 	 ______ Since (u, v) i-p 1+IuvI 	L°°(R 2 ) and since E L 2 (R 2 ) it follows that 1+IuvI  E L 2 (R 2 ) 

and hence, as a consequence of the Plancherel theorem, one gets that ffx- y E L 2  (R2 ). 

Before carrying on the proof we give the following lemma: 

Lemma 12. Let 	L 2 (R"). If ç  V L'(R') with 0 > 0, then W V L°°(R) 

Proof Let W E L 2 (R"). Suppose W e L(R). Take 

fp,m(X) = P * ',bp)gm(x) 

where Op  is a smoothing function like the one defined in Theorem 2 that satisfies Ik1'pII 	1 

(take 1  = E). We assume that 9m > 0 and it is a C°-function. We finally assume that 9m  tends 

to one pointwise. Then we have fp,m e L' (Rn) and fp,m > 0. 

We now apply Proposition 3 to have 

IIfp,7n111 = lIfp,mIIoo 

Applying Young's inequality for convolution, taking ç(x) = (—x) and since ç' = gives us 

-. 
II (P * çbp)gmIIi 

= 	

1 

(2ir) 
II(') * g. 11. 	

1 

(2ir) 
II(Pp II oo Il gm II 1  <00. 

Or 

11 P * bp)gmi 	
(2r) 121  

So as p tends to infinity we obtain 

IN * 1p)gmi - IIc'gmII1. 

In the end one has 

f (x)gm(x)dx = 9gmII1 	
(27r) 121 

IkoPIIoo 	
(2ir) 

Rn 
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Taking the urn inf of each side and applying Fatou's lemma and since 	0 give us that 

çEL'(R). 	 0 

Now we finish the proof. Since F() e L 2 , since it is positive and since .F() V L', Lemma 

12 allows us to say that ço L°° 
	

U 

Remark 26. One may wonder if ço E M 12  then under what more conditions will be in L' ? 

The answer is given in the following proposition: 

Proposition 28. Let 	L 2 (R2 ) such that , 	and 	are all in L2 (R 2 ). Then ç' E 

L'(R 2 ) and hence V E L oo  (R 2 ). 

Proof. Let E L 2 (R2 ) such that 	and 	are all in L 2 (R 2 ). Then by the Plancherel 

theorem we have 0 , 770, , rç e L 2 (R 2 ). Hence 

(1 + 1,qj + 	+ 'qj)c' E L 2 (R 2 ) and so 

	

1 	
II 
II  

(1 + ijl + II + II)' IIIIL1(R2) = 1+ 	+ ii + 174 1IL 1 (R2 ) 

But 	1 	E L 2 (R2 ) since 

if d7j< 	
- ff 	d77d 	f dij 	f  

	

(1+ II + iei + II)2  - 	( 1+ II) 2 (1 + II) 2  = 	( 1+ I1) 2  1 (1+ II) 2  
R 2 	 R2 	 R 	R 

which is finite, say equal to a positive number c, hence by the Cauchy-Schwarz's inequality 

II 

L2(R2) 
10IILl(R2) < 	1+I 	

II 	11( 1  + IiI + II + II)cIIL 2 (R 2 ). 

	

77I+l 

1 	

)I II 1  I+I  

So 

I10IILl(R2) < c[IIcIIL2 (R 2 ) + II77011L2(R 2 ) + IIe0IIL2 (R 2 ) + II 7)0IIL2(R2)1. 

Thus 

IIPlIo 
- 	

( a

Y  
	

x 
   	IIlI 

19Y+ 
II 

210  	 ( 	) 	
). 

Now we come to the counterexample that shows that LI + V can fail to be essentially self-adjoint 
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if V E L(R2)  and we have: 

Proposition 29. Let LI be the wave operator defined on L 2  (R2 ). Then there exists a real-valued 

V. V E L2 (R2 ) such that LI + V is not essentially self-adjoint on C. 

Proof. Basically we want to show that the following PDE has a non-zero solution in L 2  (R2 ) 

for some V E L(R 2 ): 

782 	82 \ 
- -) (x, t) + V(x, t)ço(x, t) = 2iço(x, t). 

By Example 16 we can say that the following ODE: 

d2  

	

——.f (x) - x 4 f(x) = if (x) 	 (4.9) 

has a non-zero solution in L 2  (R). And we can say the same thing about 

d 	
—ig(t). 	 (4.10) 2  

—-g(t) - t 4g(t) =  

Now by multiplying (4.9) by g(t) and (4.10) by —f(x) we obtain: 

d2  

	

—g(t)—f(x) - x 4 f(x)g(t) = if 	 (4.11) 

and 

f(x)j 
d2 

 g(t) + t4 f(x)g(t) = if(x)g(t). 	 (4.12) 

Now by adding up (4.11) and (4.12) we get 

/02 02  

	

- -) f(x)g(t) + (t 4  - x 4)f(x)g(t) = 2if(x)g(t). 	(4.13) 

Take (x, t) = f(x)g(t). Since f, g are both in L 2 (R) then cc' will be in L 2 (R2 ) and (4.13) 

X 4 	2 will have a non-zero solution in L 2  (R2 ) with V(x, t) = t4  - 	E L(R 2 ). 

Thus- 	+ t4  - x4  is not essentially self-adjoint on V(D). 	 Li 
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4.5 Open problems 

Let V be a real-valued function such that V E L 2  (R2 ). The question is: is 0+ V essentially 

self-adjoint on C? 

This is more likely to be wrong since we did not obtain (for p = oo) 

II! lip < ailEf 112 + bllf 112, 

which would have allowed us to conclude that 0 + V is self-adjoint for V real-valued and in 

L 2 (R2 ) or essentially self-adjoint on Co'. 

It is worth mentioning that - + V is self-adjoint on D(—/) C L 2 (R 3 ) (c.f. Example 14) 

and the proof of that exploits 

f1100 <all - 	f112 + 11f112 

(Theorem 6) and the Kato-Rellich theorem. 

So one may even conjecture that if for some self-adjoint partial differential operator P one does 

not have an inequality of the type 

11100 <alIPfI12 + blIf 112, 

then there exists a real-valued V, V E L 2 (R'), n > 1 for which P + V is not essentially 

self-adjoint on C000 . 

Now we go back to our open problem. One way of showing that 0 + V is not self-adjoint (or 

at least not essentially self-adjoint on C°(R 2 )) is to construct a V which is in L 2  (R 2 ) and not 

in L(R 2 ) for s > 2 and show that 

( 	- 	
f(x, t) + V(x, t))f(x, t) = ±if(x, 

has a non-zero solution which belongs to L 2 (R2 ) 

If V > 0 is real-valued and in L2 
C, 

is Li + V essentially self-adjoint on C000 ? 

If V > 0 we cannot use the same method as the proof of Proposition 29 since it is known (see 



Self-adjointness of the perturbed wave operator on L 2  (R 2 ) 

r2 	d2  [191) that for V > 0 and V 	'1oc' - 	+ V is essentially self-adjoint on C°. 

This question too has probably a negative answer. A possible counterexample would be V(x, t) 

It4 - X41 but one has to investigate that. 
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Chapter 5 
Self-adjointness of the perturbed wave 

operator on 	n > 3 

5.1 Introduction 

In this chapter we investigate the self-adjointness of E + V for n > 3 and V real-valued and 

unbounded. The wave operator worsens in higher dimensions and as a result we will have 

smaller classes of Vs and hence more open problems. 

5.2 A class of self-adjoint LI + Von L 2 (Rrt), n > 3 

Definition 36. We set 

= {u E L 2 (Rh1) : Lu, as a distribution, is an L 2 (R n1 )function I. 

We first start by the case n = 3. Before we give the first proposition let us discuss the following 

Cauchy problem: 

(I) f Utt - 	- u = f(x )  Y, 0, 	 (x )  y, t) E R2  x 

u(x,y,O) = (x,y);u t (x,y,O) = b(x,y). 

Now let us take the Fourier transform of (I) in the (x, y)-plane only. We get: 

(I) 	I 	(77  

( 77, 	= 

(I) is a second order ODE in t with constant coefficient (with respect to t) and it has the 
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following solution in the homogeneous case: 

= (m ) COS  (t 	+ + 	sin(t -+V ). 
V772 + 2  

Then by using the Duhamel's principle the general solution of (I) will then be: 

= ( 77, ) COS (ti12  + 2) + V772 +2 sin(t 
	+ 2) 

(5.1) 
/ 2  +2(t - s)d + / f(is,,$) 

sin 

Jo 

The previous holds for t > 0. Also for t > 0 (I) becomes, after setting u(x, y, t) = u(x, y, —t), 

(I) f 	 (x7y,t)ER2xR 

u(x,y,O) = (x,y);üt(x,y,O) = —'L(x,y). 

Now we "fourier" everything in the (x, y)-plane to obtain 

I tt + (2 + (I)  
(m, 0) = 	 ,O)  

which has the following solution: 

= 	t) = 	cos(t2) - 	sin(t 	2) 
V77  2 -+ V 

(5.2) 

f
-t v' 2  + 2(—t - s)

d+ 	
+

d,9 
 e2  

and this holds fort > 0. After adding up (5.1) and (5.2) one gets (still fort > 0) 

= 2(ij,)cos(tj2  + 2 ) + [ 	
s)  sin 
	

+(t - s) 
ds 

+f—t
s) 

sin ii2  + 2 (—t - s) 	
ii 	

(5.3) 

ds — 	(— t) 

Now Equation (5.3) is unchanged if t is replaced by —t. So (5.3) holds for all t E R. 

Now we can change our Cauchy problem by introducing different initial conditions mainly for 

MIG 
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the t variable i.e. instead of working on the intervals (0, t) and (—t, 0) we will be working on 

(, t) and (a, ) where a is any real number that will be chosen freely (observe that if we 

set a = —t then we go back to the initial problem). 

Now given u E CO' we can regard u as a solution to the Cauchy problem with u E CO' where 

f = Eu, u(x, y, 0) = V (x, y) and ut(X, y, 0) = 'iI(x, y). Then ( 5.3) will be: 

t+a  
ü(i,t) = 	2 )cos [v2 +2 (t a)] —,,a)+ 

(5.4) 

f
t 

it +
f(, , s)Sfl 	+ 2(t - 

s) ds + f J(, , s) 
sin 7 2  + e2(a - s)dS  

2 

Proposition 30. For all a> 0, there exists b> 0 such that 

	

ess sup IIu(., ., 0 11L 2 (R2 ) 	aIlE1uIIL2(Ra) + bIIuIIL2(Ra) 
teR 

for all u E M3 . 

Proof. We shall prove the proposition for functions in C3° first then the result follows for 

functions in M3  since C00°  is dense in M3  in the graph norm of Li (c.f. Remark 7 in Chapterl). 

We choose a such that It - at < 1 and one then obtains: 

	

t + a 
+ oft If(m 	, s)Ids + ëf IJ(ii, , s)Ids + I(j, , a)I. I'(i,t)I2Iu(me, 	2 	)I 2 	 2 

(5.5) 

where we have used the fact that 	I < 1. Using Cauchy-Schwarz inequality shows that 

1 

+ (f 
If 

t + a + (ft 
If(' , s)I2ds) 	

2 

2 2 2 

+OIü(ii, C a) I. 

Now square the previous inequality to get 

t + a 2 
+ 

lt+Q
t if (77, 	s)I 2ds + of 	I f (77, 

, 8)I2ds OIu(me, 2 
2 	 2 	 (5.6) 

+OIü(i, , a). 
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Then integrate (5.6) with respect to 71 and in R2  to obtain 

I
tt+affIi(me,t)I 2 d?id ~ ffiU 	2 )I2 ff 	Ij(me,$)l2didds+ 

 
R2 	 R2 	 R2 	2 

iff If (,q, 
 , s)I2diideds + ff ü(i 	a)l2diid. 

L± 
R2 	

2 	 R2 

(5.7) 

And hence 

 u(m , t) 2djd 
	
Ii(m 

t  a) 
2dde + 	lf(m , s)

LIL 
 

LI 
Iu(m , a) I 2  did. 

	

Now integrate everything with respect to a in the segment It - a 	1 i.e. t - 1 < a < t + 1 

to get: 

	

i

t+1 	 t+1 	 t+ 
ffIu(m,t)I 2ddda ~ oL_ ff ium 	2)I2d1deda 

R2 	 R2 

	

t+1 	 t+1 

+oj_1 N  lf(ri,,$)I2diiddsc1a+  f if 
R3 	 R2  

Hence 

LI 
Iu(m.,t)I 2did :5 oJ I(m, t±a)I2d,dda 

+aN If(m', s)l 2diidds + E 
N

If,  (m e, a)I2dijdda. 

R3 	 R3 

Thus by the Plancherel theorem one has: 

t)  11 2 	 2 	 2 L2(R2) < alIDuIIL2(R3) + bIIuII2(R3). 	 (5.8) 
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Taking square roots of both sides then the essential supremum in t over R: 

ess sup IIu(., ., t)11L2(R2) < aIlDuIIL 2 (R3 ) + blIuIIL2(R3). 	 (5.9) 
tER 

The result for functions in M 3  follows by the density of CO' in M 3 . 	 Cl 

Before giving the main theorem here, we first have the following proposition: 

Proposition 31. The constant a in (5.9) can be made as small as we want. 

Proof Take Ur(X,y,t) = u(rx, ry, rt), r >0. Then 

Hur 	t) 1IL2(R2) = ff U(X y, t)I2dxdy = ff Iu(rx, ry, rt)I 2 dxdy 

R2 	 R2  
ft 1 

= Jj —u(rx,ry,rt)I2d(rx)d(ry). 

R2  

which implies that: 
1 

1r(., ., t) IIL2(R2) = - Ilttr(.) ., rt) I1L 2 (R 2 ). r 

We also have: 

UrlI 2 (R3 ) Niur(X,Y,t)I2dxdydt = N Iu(rx,ry,rt)I2dxdydt 

R3  

= 	N Iu(rx, ry, rt) 2 d(rx)d(ry)d(rt). 

that is 
1 

U7- IIL 2 (R3 ) = 3 I1LIIL2(R3). 
r2 

Finally 

IIThsrII2(R3) N 	=
ILItt r (x, y, t)I2dxdydt = N r4 10u(rx, ry, rt)I 2 dxdydt 

R3 	 R3 

= fff rIDu(rx, ry, rt) 1 2 d(rx)d(ry)d(rt). 

Hence 

IIt1rIIL2(R3) = FIIU1IL2(R3). 
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Thus (5.9) ' becomes: 

i   	 IIuIIL2(R3) +ess sup Iu(, ., rt) 11L2(R2) <a\  	bIIUIIL2 (R3 ). 

Or 

b 
ess sup IIu(., ., rt)11L2(R2) = ess sup IIu(., ., 011L2(R2) 	ar2 IIOUIIL 2 (R3 ) + — IIuIIL 2 (R3). 

teR 	 tER 

Choosing r small enough makes the constant in front of IIDuIIL2(a3)  arbitrarily small. 	Li 

Now we have the following theorem: 

Theorem 30. Let 0 be the wave operator defined on L 2  (W). Let V be a real -valued function 

such that IIV(., ., t)lI(R2)dt < oo. Then Li + V is self-adjoint on D(C). 

Proof. We have by the generalized Holder's inequality: 

ff V(x, y, t)u(x, y, t) I 2dxdy 	IIV(., ., t) IIL(R2) IIu(., ., t) II2(R2) 

R2  

< ess sup Iu(., ., t) IIL2(R2)(IIV(., ., t) IILOO(R2)). 
teR 

Then 

IIVulI2(Rs) ~ ess sup IIu(., .,t)II2(Rz) f IIV(•, ., t)II(R2)dt. 
tER 

R 

Therefore, 

IVuII2(Ra) 	Lf IIV(., ., t) II(R2)dt) (allEuII 
2 
L2(R3) + bIIuJI2(R3)). 

Since we can choose a small enough to have a  IIV(., ., t)II(R2)dt < 1 we conclude by the 

Kato-Rellich perturbation theorem that Li + V is self-adjoint on D(0). 	 Li 

Remark 27. It has been proved previously that Li + V is self-adjoint on D(D) for V real-valued 

and fff  11  V(., y)If(R)dy <00 (Theorem 27). So Theorem 30 is an analogue of that result. 

'We use Ur instead of  in (5.9). 
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Besides one has another method to find that norm of V as the method in this work is applicable 

to the two-dimensional case and even to any dimension and we have: 

Proposition 32. For all a> 0, there exists b> 0 such that 

ess sup llu( .... t)11L 2 (Rn) 	aIJUuIIL2(an+i) +bIIuIIL2(Rn+1) 
tER 

for all u E Mn1 , j > 1. 

Proof. The same as for Proposition 30 with the obvious changes. 	 U 

We also have the following theorem whose proof is a word for word translation of that of 

Theorem 30 2 :  

Theorem 31. Let U be the wave operator defined on L2 (R'). Let V be a real-valued 

function such that f°° IIV(..., t)II(Rfl)dt < oo. Then U + V is self-adjoint on V(D). 

We also have 

Proposition 33. Let V1 be as in Theorem 31. Let V2 E L0 (R1 +) and real-valued. Let 

V = V1 + V2. Then U + V is seif-adjoint on D(U). 

Example 18. Take V(x, t) = 1  where x E R and t e R. Then U + V is self-adjoint on 
t 17:1  

D(U) since 

V(x,t ) - -j-  = VI (x,t) + V2(x,t) = 
1 {XERn,ItI<1}(X,t) 	1 {XERn,ItI ~ 1}(X,t) _1 	 ________  

ItI 	
1 	 + 

ItI 	 It  .41  

The result then follows since f 	IIV1(..., t )  11 	< oo and V2 E L°°(R') 

We can also improve the norm on the left hand-side of the inequality in Proposition 30 in order 

to get a better norm of V for which the operator U + V will be self-adjoint. We have: 

Proposition 34. For all a> 0, there exists b> 0 such that 

00 

'2 	+ bIIuI' 2  

	

ess sup IIu(., .,t)II2(R2) <  aII Uu IIL 2 (R3 ) 	1L2 
 

(R3) 
k<t<k+1 

for all u E M 3 . 

'The only difference lies in considering the Cauchy problem in R' x R+. 
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Proof. Let u E C'°. We have by (5.7) 

t) II2(R2)  <aff Iu(m 	+ a)I2d 	+ bf ff If(m , s) I 2 thideds+ 

R2 	 2 R2 

C ,  I f! I!(m , s)l 2dujdds + dff I2(m e a)I 2dd. 

	

2 R2 	 R2  

Let k E Z and let t and a be such that: k <t < k + 1 and k < a < k + 1 (then It - a I < 1 

which does not contradict our choice). Then k < 	< k + 1 and so: 

ffft 	
k+1 	 /t+a \ If(Th,$)I2dI)deds <  j 	ff IJ(me,$)l2d11cidssince 	2 t) C (k, k+1) 

2 R2 	 R2  

and 

fff If(m , s)l 2ddds < f ff J(m , s)f 2di1dds since (t + a, a) C (k, k+1). 
2 R2 	 R2  

Also 

k+1 

f ff I(m 	± a)I2ddd 	2 = 2 / 	jj  ü(i, ,  r) 12 d7jd~dr 
J L±! 

R2 	 2 	R2 

<  2J
k+1 	 (t+k t+k+1) ff Ju(me,r)I 2d7)ddr since 	, 	 c(k,k+1) 

k 	 2 	2 
R2  

Then we get 

Iu(, .,  0 11L2(R2) 	f 
 

k+1 

ff ü(i, , r)I 2dijddr + of
k 

k±1 ff IJ(m , 
 8

)I2dideds.  
R2 	 R2  

Hence 

ess sup IIu(., ., t)IIL2(R2) < 0
J 

	
ff 

  
Iu( i , , r)I2driddr+Ef

k   
k+1 ff  

J(r, , 
 8

)I2didds. 
k<t<k+1   

R2  

Thus 
00 

2 	<ajIDuI2 ess sup 	IIu(., ., t)11L2(R2) - 	 lL2(R3) + bIIuII2(R3) 
k<t<k+1 k=—oo 

where we have used the Plancherel theorem and the fact that Utt - 	 - 	 = f(x, y, t). 
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Using the usual density argument allows us to obtain the desired result for M3  functions (see 

the proof of Proposition 24). EN 

Theorem 32. Let Li be the wave operator defined on L 2  (W). Let V be a real-valued function 

Ik

k+ 1  
such that sup 	IIV(., ., t)IIQ(R2)dt < oo. Then Li + V is self-adjointon V(L]). 

keZ  

Proof We have 

00 	k+1 
IVuII2(R3) = i j 	fflv(x,y,t)u(x,y,t)I2dxdydt 

k=—oo 	R2 
CO 	k+1 

i2  fk 	IIu(., ., t)  112 2(R2 )  IIV(., ., t) IIL°O(R2)dt. 1k=—oo 

Hence 

	

00 	 k+1 
IVuII2(R3) 	ess sup IIu(., ., t)II2(R2) f 	IIV(., ., t)Il(R2)dt. 

k=— oo 
k<t<k+1 

So that 

k+1 	 00 

IVuII2(Ra) 	sup Jk 	
IIV(., .,t)II(R2)dt 	ess sup IIu(., .,t)II2(R2) 

kEZ 	 k=— oo k<t~k+1 

k+ 1 2 .  <supf 	IIV(., ., t) IIL(R2 )dt  (all LiuII
2  
L2(R3) + bIIuII

2  
L2(R3)) 

kEZ k 

where a can arbitrarily small (by the same argument). Hence L1+V is self-adjointon D(0). 0 

Example 19. We show that Theorem 32 is stronger than Theorem 30 by giving an example. We 

want a ço : R i-* R such that W 0 LOO (R), 

supf

k+1 00 k+1 

k'(t)I 2 dt <00 and >f I(t)I 2 dt = 00. 

The condition on the right hand side of the last equation means that L 2  (R). We do not 

want E L 2 (R) only because this case is already included in the class of Vs that was found 

in Theorem 30. 
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Fix - I < a < 0 and define Win each interval k <t <k + 1, k E Z, by 

(t) = (t - k)a. 

Then W is certainly not essentially bounded on R Moreover one has 

Ik 
k+ 1   

Ico(t)I2dt= 
jk+l 

(t—k)2°dt= 
 2c+1 

Hence 

sup  I
k+1 	 1 	1 

I(t)I 2 dt = Sup- 	<00. 
kEZJk 	 kEZ 2 + 1 2a+ 1 

And 

E
00

1 
=00. 

2a + 1 
k=—oo 

Now take V(x, y, t) 	o(t). Thus LI + V is seif-adjoint on 

Remark 28. The V constructed in Example 19 does not satisfy the conditions of Proposition 

33. 

Again we have the same results in n -dimensions. 

Proposition 35. For all a> 0, there exists b> 0 such that 

00 

ess 	sup 	II(.•., t)II2(Rn) ~ aIILJuIIL2(Rfl+1) + bIIuII2(Rn+1) 
k =— CIO k <t<k+1  

for all u E 

Theorem 33. Let LI be the wave operator defined on L2 (Rn1+ ). Let V be a real-valued 
tk+ 1 

function such that sup] 	IIV(..., t)II)o(Rn)dt < 00. Then 0 + V is seif-adjoint on D(D). 
kEZ k 

By going back to equation (5.4) we can do more, i.e., we have a better estimate than the one in 

Proposition 30. 

Proposition 36. For all a> 0, there exists b> 0 such that 

esssup IIu(., .,t)IILr(R2) 	aIIDUIIL2(R3)  + bIluIIL2(Rs), where 2< r <4. 
tER 

for all u E M 3 . 
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We first need several lemmas. 

Lemma 13 (Sobolev's inequality). For I e H' (R2 ) the inequality 

Ill Il <aIIVfII2(R2)2 + bIIfII2(R2) holds for all 2 < q < oo. 

For a proof see [7] (Theorem 8.5). We prefer here to use a proof which uses Fourier transforms 

where we do not care about the constant a because we can always make it as small as we want. 

Proof. Since f, , 	L(R 2 ), then by the Plancherel theorem we get: 1 l7f,  f E L 2 (R 2 ) 

and hence 1, 1771f, 	L(R 2 ) which gives us: 

(1 + lq l + II)f E L 2 (R2 ). Now let 2 < q < oo and let p be the conjugate of q (this implies 

that 1 <p < 2). So: 

IJ II 
IIIIP 	-LP(R2) - 1(1 + 1 711 + IIY'.( 1  + liiI + IeI)IJIIlL1(R2). 

Then by Holder's inequality: 

IIIIILP(R2) < 10 + IiI + IIY"IILr(R2)iI( 1  + liii + I0IJIIILs(R2) 

where 1  + = 1. Let 

C = 10 + IiI + IeIY'IILr(R2) 

which is finite if pr > 2. 

Now define r = 2  (this gives us pr > 2 so c is finite) and define s = (the exponents s and 

r are conjugate). 

We now use the fact that f e H 1  (R2 ). We have 

10 + II + I0IfIIILs(R2) = (11(1+ 1771 + Il)P8IfIP9dde) 
R2  

= 

 (

ff ( i + ii + 1)2 IJI2dde) = 1(1 + ini + II)IJIII2 (R2 ) . 
NR2  
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Thus for 1 <p < 2 we have: 

ifiiL1(R2) 	cfl(l + iiil + 1i)1fl1iL2 (R2). 

Hence 
1 

ifiiLp(R2) < C
1

1' f liL2(R2) + c' 11 (ll + lei)ifIliL2 (R2 ). 

Thus: 

if IILP(R2 ) :!~ Cf  llL2 (R2 ) + CIIVfIIL 2 (R2 ) 2 . 

Thus by the Hausdorff-Young inequality (Theorem 5), we deduce that for 2 < q < oo: 

III iILg(R2) < allVfllL2 (R2 ) 2  + bill llL2 (R2 ). 

. 

Lemma 14. Let w E L ' 

(R 2 ). Assume for all e > 0, there exist V,g such that w = V + g, 

de and 1191Iq <; c, d being two constants. Then w E L(R 2 ) and 

< Zc + d 	 (5.10) 

where  = 	and  < q < 00. 

Proof. Let E,\ = {x: lu(x)I ~! Al. Then, since u= V + g 

A 
E C {x: IV(x)l ~: }U{x: g(x)l > _ 

2 —}. 

So that 
A 

IEA 1 :!~-  l{x: IV(x)i ~! 	 > _lI. }i+l{x: g(x)i 
- V 

Then using Chebyshev inequality 

lEAi :!~ 4)c 2
11Vi1 + 

But we have the freedom to choose any e(A) > 0. So take e(A) = Ab (b to be determined). 

With this choice we obtain: 

EAI < (4d2A21_2 + 	 or 
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)IEAI < 4d2 A 22  + 

So in order that u belongs to L(R 2 ) it suffices to have: 

sup[4d2P+21_2 + 	 <oo. 

which occurs ifb= -andp= _2_ 2+q 
Therefore, 

2 

IwIIp,w 	+ cc'. 

Finally, apply the same method as in the end of the proof of Theorem 3 to establish (5.10). 0 

We shall now prove Proposition 36. 

Proof. Let u e C°(R3 ). For a fixed t, let w(x, y) = u(x, y, t). We let 

= 

 

t 	 \ 
2 ~ e2  2ü (77, 	2 

+ o 

) 

cos [ 	
(t_)] 

— u(me,a) 	(5.11) 

and 

t 	 sin\/172 + 2 (ck _s) 
ds 

t 	

sin2+2(t—s)ds+J 
f(is) , ) = [ f(, , s) 	

2 + 	 2 + e2 2 	 t+Q j t+c 

where f = Eu and c is yet to be chosen. We observe that both V and depend on c. 

Note that ib = V + , by (5.4). It is clear that V E L2 (R2 ) and hence § E L 2 (R2 ). We let 

V and g be their inverse Fourier transforms, so w = V + g. We aim to apply Lemma 14 by 

showing that, given e> 0, we can choose & in such a way that 11V112 <dE and Jj9jj q  < . Here, 

q will satisfy 2 < q < oo, and c and d will be constants depending on 11u112 and  110u112. The 

estimate for 1191I q  will follow from Lemma 13 once we have shown that Vf e L 2 (R2 ) 2  with 

suitable estimates. 

We shall only consider the term ( 77, 	[ 	in (5.11) and the term 

j1~ f(7), , s) 
sin \/?12±2(t8) 

ds in (5.12) and we denote them by 17(, ) and 	). The 

proofs for the other two terms are similar. 
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Let us start by showing that Vf E L 2 (R2 ) 2 . Since 	L2 (R2 ) and since 

sin  -,177  2 + 2 (t - s) 	sin /2 + 2 (t - s) 
E L°°(R 2 ), 

	

- 	 _____ 	 _____ 

then —iij, — i 	L(R 2 ) which implies that Vg E L 2 (R 2 ) 2  since 

IIVgII2(R2)2 
= ff IVg(x, y)I 2 dxdy = IIII,2 (R2 ) 2  

= 	I 	77,e)I 2di1de+ffI(77,e)I 2d71ck, but 

R2 	 R2 

t t 

s'n2+2(t—s)'d<J 
IJ(i,$)Ids. 

	

I(m)I 	I 	If(m,$)II 
2 	

.J 2  + 2   
2 

Then by using Cauchy-Schwarz 

It 	 It 

	Ff!V
1

i, e)i ~ f If(m , s) 2 ds 	1ds a If(m , s)I 2 dsIt -  al 
I +a 

And so 
t 

a2t21t  - aif I!(m, s)I 2ds. 
2 

By applying the same method one will also get 

e2I(m )p2 < at - al l+Q IJ(m ,  8)I 2 ds. 

Now we choose a such that It - al <' . Hence 
67  

IIVgIIL2(R2)2 
= 
ff Ii (m )I2dde 

+ ff I(m )I 2diid 

2a2 rr 
~ 

--- JJ J± If(me,$)I2diidds. 62 

R2 	2 

Thus 

IIV9IIL2 (R2 ) 2  < — IIDUIIL2(R3). 
E 

In a similar way one gets lIgIIL2(R2) 	--IlDullL2(R3). So for E > 1 we have II9II L2( R2) ~ 
eu 
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II Dull L2(R3). In such case we get 

	

II9IIL2(R2) 	II 1-]UIIL2(R3) S O 11911L(R2) :!~ 	IIDulIL2(R3) 
C 	 C 

by Lemma 13 where 2 < q < 00. 

We also obtain the estimates when using J+c J(i, , s) Sfl V',?2±2(_s) ds. 
2 	 V17 

2+e 

Now we come back to the case C < 1 after finding the bound for V which will be needed for 

the case € < 1. 

For V we have 

	

( 	t+a\  
= 2u 	

2 ) cos [2 + e2 
(t a)] 

, then 

IIVII2(R2) 	4ff I 2 (m ,t +2 a )I 2 thld 

R2  

and by integrating with respect to a E {a : It - al < I one obtains: 

pt+ 	
Iff t+a)I2ddda 

~ 4 IIüII 

	

L2(Rz)d 	 a. 

	

Jt_17 
IIVIIa 

~ 	 2 
R2  

Then there exists a E (t - 	 t + ) such that 

(R3 ) 

	

VII2(R2) 	
4 IIülI L2 	

and so IIVIIL2(R 2 ) 	dCIIuIIL2(R3). 

The same applies to '2(7, , a) and we will get the same estimate. 

Now for the case E < 1 one has to use § = 'ii' - V to obtain 

II9Il L2(R2) :~ ö(IlwIIL2(R2) + IIVIIL2 (R2 )). 

Then using the estimate for V, that is, IV IILZ(R2) 	dCIIuIjL2(a3) and Equation (5.8) give us 

I191IL2(R2) < aIILJuIIL2(R3) + bIlullL2(R3)  + CdIIUIIL 2(R3) :!5 ö(I1LuIIL2(R3) + bIIulIL2(R3)) 



Self-adjoin tness of the perturbed wave operator on L 2  (R"), n > 3 

since E < 1. Thus 

I9IILQ(R 2 ) < 	[IIDuIIL 2 (R3 ) + 11u11L2(R3)1. 

So one has by Lemma 13 

IWIIp,w :~: C11U115,2(R3) + CIIflUIIL2(R3). 	 (5.13) 

Equation (5.13) shows that w E LPW  and since w e L (in fact, it belongs to L 2 ) then by (1. 1), 

E L for 2 <r <p and 

liWlir :~ CJIWII2,w + IIWIIp,w. 	 (5.14) 

We then get 

IIWIILr(R2) :5 CWj2, w  + allW11p,w !~ (IIwIl + IIEJUIIL2(R3)  + IIUIIL2(R3)). 

Now taking the essential supremum in t over R and using Proposition 30 shows that 

esssupllu(., ., t)1JjrCp2 :5 CIIDUIIL 2 (R3 ) + CIIUIIL2(R3). 	(5.15) 
tER 

Equation (5.15) holds whenever 2 < r < 4 since we have the constraints: p = , 2 q < 00 

and 2 <r <p. 

Finally, to obtain the result for arbitrary e M3  we use the usual approximation argument. E 

We also have the result in higher dimensions. 

Proposition 37. For all a> 0, there exists b> 0 such that 

ess sup IIu(., ., t) IILr(Rn) 	aIIEIuIIL2(Rn+1) + bIIuIIL2(Rn+1) 
teR 

for all u E 	
-... 

2n where n ~ 2 and where 2 < r 
 

We are going to need another Sobolev's inequality in higher dimensions. 

Proposition 38. Let n > 2. Let f e H' (R) then f e L(Rn')for 2 < q <and we 

have: 

IIfII < aIIVfIIL2(Rn)n +bIIfIIL 2 (Rn ) . 

Remark 29. Observe that the case n = 2 gives us 2 < q < oo which was Lemma 13. 
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Remark 30. Observe that the proof in [7] (Theorem 8.3), is true even for the case q = 

But for our problem we do not mind whether this q is sharp or not. 

We also have the following theorem: 

Theorem 34. Let 0 be the wave operator defined on L 2 (R3 ). Let V be a real -valued firnction 

such that f IIV(., .,t)II$(R2)dt < oo where= - and 2 < r < 4. Then 0 + V is 

self-adjoint on D(D). 

Proof We have by the generalized Holder's inequality, for 1  = 1  +, 2 <r <4: 

if V(x, y, t)u(x, y, t)I 2dxdy IV(., ., t) IL'(R 7 ) IIu(., ., t) IILr(R2) 

R 2  

	

2 	11 2 

	

esssupu(., ., t)  112 
	., t)sp). 

tER 

Then by using Proposition 36 and by integrating with respect to t over R one gets 

IVuII2(R3) <a 	
11  V(., ., 

t)II$(R2)dt) II0uII + b Lf IIV(., ., t)IIS(R2)dt) IuII. 

Since we can choose a small enough to have a f IIV(., ., t)II(R2)dt < 1 we conclude by the 
R 

Kato-Rellich perturbation theorem that 0 + V is self-adjoint on D(D). 	 0 

Theorem 35. Let n > 3. Let 0 be the wave operator defined on L 2 (R'). Let V be a 

real-valued function such that f 	IIV(..., t)II5(Rfl)dt < oofor = - and 2 < r < 

Then 0 + V is self-adjoint on D(0). 

5.3 Counterexamples: 

We show that there exists a o E L 2 (R) such that 0 E L 2 (Rr) and p L°°(R). We 

do the same as for the second proof of Proposition 27. So one only need show that f = 
L2 (R " ) (in fact f is not in LP (R') for any 1 < p < oo). We have I+lt2-X2 	21 

If 112-
-   	

d_t_dx_2_ ...  _d_x_ 	 d_td_x_2_  ...  d_x 

( 1 +It2 —x—...—x 	f( 1 + 2 ++_2 

 
t2_)2JR 	

_ 	 _ 
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where D = {(x2, ...x, t) E R'Ix  + ... + x, ~ t2 , t > O}. Now using "generalized polar 

coordinates" we get 

foo r 2 drdt 	f r.r 3drdt 
c fo  111112 ~ C

f oo 
	

(1 + r2  - t2 ) 2   	(1 + r2  - t2 ) 2  

So 

fo
00 	P00 	rdr 	

fo

00

lfII ~.c 	t3dt / 	= 
Jt (1 + r2  - t 2 ) 2  	

2 tdt = 00. 

Remark 31. As it is known for the Laplacian that tf  W is in L 2 (R) such that 	L 2 (Rr) 

then W E L°°(R") for n < 3 and E L(Rhl)  for ii > 4 and where 2 < q < (c.f. 

Theorem 6). Here we show the existence of a W e L 2 (R4) such that 	E L 2 (R4 ) and 

while 	L 00 (R4 ) 

Proposition 39. Let W E L 2 (R 4 ) such that 	L 2 (R4 ). Then need not be essentially 

bounded on R4 . 

Proof One only need check that 

(x ) y,z,t) 	f(x,y,z,t) 
= 	

L 
1 +x2  +y +z2  +t2 	

(R4) 

(which is an easy integration exercise). Then one has only to apply the same method as the 

second proof of Proposition 27. Li 

We also show that there exists a real-valued V E L2 C(Rn+ l) such that Li + V is not essentially 

self-adjoint on C°. We have 

Proposition 40. Let LI be the wave operator in n-dimensions defined on L 2  (R). Then there 

exists a real-valued V E L 0 (R 1 ) such that Li + V is not essentially self -adjoint on Co . 

Proof. We know by Example 16 that - 	 - X1 is not essentially self-adjoint on CI (R) hence 

the ODE: 
d2  
 —— fi(xi) - 	 = ifi(xi) 

x 1  

has a non-zero solution in L 2 (R). We can say the same thing about: 

d2  
f2 (X2) - Xf2(X2) = if2(x2) 

x2  
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Self-adjointness of the perturbed wave operator on L 2  (R"), n > 3 

and 
d2  

—--f(x) - X' fn =  if (x) 
dx2 

Also the following ODE has a non-zero solution in L 2 (R): 

d2  
—g(t) - t 4g(t) = _'9  (t) 

or 
d2  Wt2g(t) + t4g(t) = +ig(t). 

Multiplying each of the previous equations by the functions that are solutions to other equations. 

For instance we multiply the first equation by f2 (x2)...f(x fl ).g(t) and so on. Then by adding 

them up together, we have 

/82 	82 82 \ 	 / 	n 
- 	- ... - 
	

fi (xi)  ... f(x)g(t) + 	- 	x) f i (x i ) ... f(x)g(t) 

= (n + 1)ifi (x 1 ) ... f(x)g(t). 

(5.16) 

Take = fi (xj) ... f(x)g(t). Since f1,...,f,g are all in L2 (R) then p is in 

L2 (R'') and is a solution of (5.16). 

n 
So V(x i , ...,x, t) = t4 - 	E L(R') and 

k=1 

82 a2 	a2 
	Exk - 

k=1 

is not essentially self-adjoint on C'°(R'). 	 0 

5.4 Open problems 

In this chapter there are more open problems than the previous one. They are: 

is LI + V self-adjoint for V real-valued and in L 2 (R")? or essentially self-adjoint on Co ? 

(see comments on Section 4.5, Question 1). 

Assume V > 0 and such that V e 10C (Rn). Is 0 + V essentially self-adjoint on C000 ? 

RE 
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(also, see comments on Section 4.5). 

Do we have M c BMO(R)? Observe that for n = 2 we do have M 2  C BMO(R 2 ) 

(see Remark 23). 

If Question 3) has a negative answer then do we have Mn C L7 (R) for some p> 2? This 

question may have a negative answer simply because we have not obtained any global estimate 

of the type 

Jjfjjp < auDi 112 + bllffl2, 

for any p> 2 (p  is far from infinity). 

We say a few words concerning this question. There are known estimates for the wave equation 

of the type 

I IIq 	CIIDfIl 

for some p and q (see [20] and [2 fl) but none of these is helpful for our purpose. For instance, 

The estimate, J. Harmse gets in [20], is 

Theorem 36. Assume n > 2. Suppose - = 2  and 

n+1 	2 	1 n—i 

	

<— < 	 (5.17) 
2nn+i q 	2n 

Then there is a constant C such that for every f E 

II! II :!~ CIILIfII. 	 (5.18) 

If we want to apply this theorem to our problem one has to start with p = 2. But, with this 

choice, q = 2(11±31) does not satisfy the condition (5.17) for any n > 2. 

Also, in [21], it is proved that 

Ill II 	MIIDuII 

for q = 2(n+1) and p = 2(n+1) Observe that the case p = 2 cannot occur in this case. n+3 

Finally, more 'Strichartz estimates' have been proved since Strichartz's paper [21] and one of 

the important papers is [22]. 

We have by Proposition 37 an estimate which is true for 2 < r < 	So the natural 
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question is: can we push the result beyond 	i.e., can we have the following estimate for 

r> 2n and n>3: 

ess sup IIu(..., t)IILr(Rn) < aIIDuIIL 2 (Rn+ 1 ) + bIIuIIL2(Rn+1)? 
teR 

5.5 Conclusion 

Finally, most of the results obtained in Chapters 4 and 5 (mainly Theorem 28, Proposition 25, 

Proposition 27 (the first proof), Proposition 30, Proposition 37 and Theorem 35) form a paper 

by myself [23] which has been accepted for publication. 
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