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Abstract

This thesis contains five chapters. The first two are devoted to the background which consists

of integration, Fourier analysis, distributions and linear operators in Hilbert spaces.

The third chapter is a generalization of a work done by Albrecht-Spain in 2000. We give a
shorter proof of the main theorem they proved for bounded operators and we generalize it to
unbounded operators. We give a counterexample that shows that the result fails to be true for

another class of operators. We also say why it does not hold.

In chapters four and five, the idea is the same, that is to find classes of unbounded real-valued

V's for which O + V is self-adjoint on D(O) where O is the wave operator.

In chapter four we consider the wave operator defined on L?(R?) while in chapter five we
do the case L2(R™), n > 3. Throughout these two chapters we will see how different the

Laplacian and the wave operator can be.
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Chapter 0
Introduction

The main subject treated in this thesis is linear operators on Hilbert spaces (especially un-
bounded ones). We devote two chapters to the background that consists of different subjects
such as LP- spaces, distributions, Fourier analysis, interpolation theory of operators, linear

bounded and unbounded operators and perturbation theory.

In Chapter three we generalize work done by Albrecht and Spain [1] who gave a condition
that forced a product of two self-adjoint operators to be self-adjoint whenever it was normal.
The generalization we make here is that the same condition allows us to prove the same thing
for unbounded operators. We also give a shorter proof than theirs in the bounded case and
a counterexample showing that the condition may fail to make a product of two self-adjoint
operators, when it has a normal closure, essentially self-adjoint. In the last section we say why

the proof may fail to work if we want to adapt it to the counterexample cited above.

The generalization and the counterexample form a paper by the author [2] which is due to be

published in the October 2003 issue of the Proceedings of the American Mathematical Society

In Chapters four and five we study the self-adjointness of the perturbed wave operator O + V
(the wave is a hyperbolic operator). We emphasize the word hyperbolic inasmuch as a lot of
work has been done in the case of the perturbed elliptic operator mainly the perturbed Laplacian
which is important in quantum mechanics (for a more detailed treatment of the subject we

recommend [3]).

Since it may be quite hard to solve
O+ V)f==xif...(E)

in L2(R"™) and see whether it has a non-zero solution, we will be using the Kato-Rellich the-

orem to get round solving (E) explicitly. So the whole idea will be to prove estimates of the
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form

Il < allOfll2 + bl fl2

where || - || is a norm to be determined. All that with some interesting counterexamples.

Chapter four is devoted to the case L?(R?) and Chapter five is devoted to the case L%(RM),
n > 3.



Chapter 1

Integration, Fourier analysis and
distributions

1.1 Integration

1.1.1 L” spaces

We cite [4], [S] or [6] as references where one can find detailed proofs of the well-known results

stated in this section.

We start with LP spaces as they will be used often in this thesis. We will only consider LP

spaces on R". We have:

Definition 1. Ler 1 < p < co. We define:

3 =

LP(R") = {f : R™ — C measurable : ||f|, := / |f(z)|Pdx| < o0.}.

For p = oo we say that a measurable function f is in L°(R™) if:
| flleo := inf{K : | f(z)| < K for almost every = € R™} is finite .

Remark 1. We usually define the elements of LP spaces as classes of equivalence rather than
Jfunctions where we say f is equivalent to g if f — g = O a.e. Note that | fllp = 0 if and only if
f=0ae Also,|

“|lp is a norm and LP(R™), equipped with this norm, is a Banach space.
Finally, it will sometimes be convenient to refer to locally integrable functions L}OC(R“); fe

L},.(R™) ifand only if [ |f| < oo for each compact set K in R™.
K

We now collect together some well-known inequalities in the theory of LP spaces which we

will use throughout the thesis. We begin with Holder’s inequality.
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Theorem 1 (Holder’s inequality). Let 1 < p < oo, %+% =1 Let f € LP(R"),g € LI(R™).
Then fg € LY(R™) and
1 7glly < I f1lpllgllg-

Holder’s inequality can be deduced from Young’s inequality which we shall use independently

on several occasions.

Lemma 1 (Young’s inequality). Foralla,b> 0, if L +1 =1, then

The case p = ¢ = 2 in Holder’s inequality is the classical Cauchy-Schwarz inequality.

Corollary 1 (Cauchy-Schwarz inequality).

1791l < I£1l2llgll2-

The following lemma is usually called the converse of Holder’s inequality (for a proof one may

consult [4], pp. 128):

Lemma 2. Let f be a real-valued and measurable function. Let 1 < p < oo and % + % =L
Then

1flle = sup. 79l

gllq=

and the supremum on the right hand side is attained.

Observe that in the previous lemma, the function f is not assumed to be in LP.

Remark 2. The function g (in Lemma 2) which attains the supremum can be taken to be non-

negative.

As a consequence of Lemma 2 we prove Minkowski’s inequality.

Corollary 2. Let 1 < p < 0. Let f,g € LP. Then we have:

I +glls < 1Ifllp + llgllp-
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Proof. By Lemma 2 and the triangle inequality for || - ||;,
If +gllp = sup{l|(f + g)Rll1 : lIkllg = 1}

< sup{|| fhllr : lIbllqg = 1} +sup{lighlls : ||kl = 1}

Thus
N+ gl < I fllp + llgllp-

O

We will need the generalized Holder’s inequality which is an immediate consequence of the

classical case.

Proposition 1 (Generalized Holder’s inequality). Let1 < p,q < ccand i =1 + 1 Ler

f € LPandlet g € LY. Then fg € L™ and

141
p g

Ifgll- < 117 llpllgllq-
Definition 2. The space of infinitely differentiable functions on R™ with compact support will
be denoted by C§°(R™).

Definition 3. Let f and g be two functions in L' (R™). Then we define the convolution of f and

g, and we write f x g, by
(F+9)@) = [ £z - v)gw)dy.
Rn

This integral exists almost everywhere.

Convolutions are often used in approximations. The following theorem is a well-known in-

stance of this.

Theorem 2. Let k be in L'(R"), k > 0 and [ k = 1. For € > 0, define ke(z) = e "k(2),
Rn
so that [ ke = 1and |ke|l1 = ||k|l1. Let f € LP(R™) for some 1 < p < oo and define
Rr
fe:=ke* f. Then

fe € LP(R7), | fellp < 1Kl | fllp and Lim || fe = fllp = O.

Ifk € CP(R™), then f. € C®°(R™) and D* f. = (D°k.) * f = ke % D®f.
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The last equality in the previous line is meant to be in the distributional sense (see Section 1.4.1

below).
One can easily derive from Theorem 2 the following density results.

Corollary 3. The space C§°(R™) is dense in LP(RP) for 1 < p < oo, and hence in particular,
L'(R™) N LP(R™) is dense in LP(R™).

Definition 4. Let A\ > 0 and E) denote the distribution function of f.ie,
Eyx={z e R":|f(z)] > A}
Proposition 2. Let f € LP(R™). Then we have
® -1
19l =p [~ 2B

Proof. Using
1Bl = [ da,
E,

o0 o0
p/ AP Ey|dA =p/ /\”‘l/dzzd)\.
0 0

Ey

we have

Since everything is positive one obtains by using Fubini’s Theorem,

p/ )\P—1|E,\|d/\=p/ (/ /\”‘ld)\> de = / |f(z)Pdz = || fII5.
0 0
R® R?

(Here we have used | - | to denote Lebesgue measure but we will also use it to denote the usual

norm in R™. The context will always be clear.) a

1.1.2 L? Spaces

For references we cite [3] or [7].

Weak LP spaces L%, being larger than the LP spaces, are often used when a particular object
fails to be in L?.
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Definition 5. A function f on R" is said to be in weak-LP, written f € L%, if there is a

constant C < oo such that
Hz : |f(z)| > t}| < Ct7P forallt > 0.

If f € L%, we write
1llpw = sup(”{z : | (z)] > t})7.

Notice that || - ||, is not a norm since it does not satisfy the triangle inequality. However, when

p > 1, L%, carries the structure of a Banach space with a norm which is equivalent to || - {|..-
p q P,

Remark 3. Any function in L? is in L%, and we have:

£ llpyw < £ llp-

In fact for any t > 0,

If1E > / F(@)Pdz > |z : [f(z)] > L}]EP.
|f]>t

The inequality t?|{z : | f(z)| > t}| < || f|I5 is called Chebyshev’s inequality.

Example 1. A typical example is the function |x|_% Then |{z : |f(z)| > t}| = cat P where
Cn is the volume of the unit ball in R™. Thus f € LY,(R™) but f is not in LP(R™).

We come now to a result which will be important for us.

Theorem 3. Letr > 1. Ifr <p < sand f € L},N LS, then f € LP and

I£llz < allfllraw + Bl fllsw (LD
where the constants a and b depend on p, r and s.
Proof. Let f € L7 (R"). By definition

|Exl = {z € R": |f(z)| 2 A} S A7
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Also when f € L (R")
|Ex| = {z € R™: [f(z)| = A}| < csA~*
(here ¢, and ¢, denote || - ||5,., and || - ||-,., respectively). So
(e} 1 0o
oy =7 [ 07BN = | @-iiEsar+p e il
1 0
< per / APT14X + pe, / AP=8=1g,
0 1

Hence

— 1 -
iy < o0 [ 2] e [25]
P—Tlo p

which is finite if » < p < s. Therefore

D
”f”zz,p(Rn) < Tw + S—;—p“f”?,w-

Thus
Il zomny < Ellf 12w + &l £1IZw (1.2)

for some constant ¢ depending on p, r and s.

Now we proceed to make all the powers in (1.2) equal to one. We replace f by cf where c is a

constant to be determined. We then have

_r—p r ] £
Ifllzorny < Ee 7 (| f 1w + éc || f1|Z -

Minimizing the quantity on the right hand side with respect to ¢ shows that

sr_p rarrp Brs—sp +a 7‘2 f
nfnmn><c(||f||"5' B 1715 )+C<Ilfllsw i ;>

Now since the sum of the powers in each part of the right hand side is one, Young’s inequality

(Lemma 1) shows

11l < allfllrw + Bll flls,w,

establishing (1.1).
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a

Finally we recall without proof the dominated convergence theorem.

Theorem 4. Let ( fi.)r be a sequence of measurable functions on R™ such that:

1) each fi, isin L;

2) fx — f ae. for some f;

3) there exists a function G € L'(R™) independent of k such that | fi,| < G a.e. for all k.
Then f € L*(R™) and

flz)dz = lim fi(z)dz = lim [ fi(z)dz.
R[ /k—»oo Ic—»ool;t/n

R

1.2 The Fourier transform

We mention [8], [9], [7] or [3] as references in the literature for this sections.

1.2.1 The L!-Fourier transform

Definition 6. The Fourier transform of f € L*(R™) is denoted by f or F f and defined by
£ 1 —iz.t
Ffx)=f(z)=—F [ f(t)em""dt
(2m)2 A

forall x in R™.

The inverse Fourier transform, F~!, is defined on L'(R™) functions by

Flg(z) = / g(z)e* i tdz.

Rn

(2m)%

Proposition 3. Let f € L, then
a) the mapping f — f is linear and if f € LY, then Flf=fae ;
b) f is a bounded function and || f||oo < ﬁg-”f”l,

X3

c)if f 2 0 then || flloo = || fll = £(0).
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Propositiond. Let f € L'(R) and zf € L*(R). Then f is differentiable and

£ o) = Tl @)

The proofs of Proposition 3 can be found in [7] and that of Proposition 4 can be found in [9] on

page 123.

1.2.2 The L2-Fourier transform

The Fourier transform has a natural definition on L? and its theory is particularly elegant on
this space. It is also important in quantum mechanics to define f for f € L2(R™). In our work

here we will be dealing with operators that are defined on the Hilbert space L2.

There are different routes to define the Fourier transform on L2. The one we will use here is

via the denseness of L' (R®) N LZ(R") in L2(R™), see Corollary 3.

We prefer to state various aspects of the Plancherel theorem in different propositions and then
we will summarize all properties in what will be called the Plancherel theorem. First, we recall

the following facts:

The Fourier transform is defined on L! N L2 since L! N L? ¢ L! and:
(i) L' N L? is a linear subspace of both L! and L2.
(ii) L' N L? is a dense subspace of both L1 and L2.

The following is the basic result.
Proposition 5. If f € L' N L2 then f € L% and ||f||2 = || fl2.

Since L! N L? is dense in L2, Proposition 5 allows us to extend the definition of the Fourier

transform F to all L2,

Proposition 6 (The Plancherel theorem). F is an isometry of L?, i.e. || F flla = ||f|l2 for all
felLz

The proofs of Propositions 5 and 6 can also be found in [7], on page 118.

10
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1.2.3 The L*-Fourier transform for 1 < p < 2.

For f € LP(R"),1 < p < 2, we can decompose f = g + h where ¢ € L'(R"™) and
h € L*(R™). Therefore we can define the Fourier transform of f by f = g + h and this is
well-defined, i.e., f is independent of the decomposition f = g + h.

Theorem 5 (Hausdorff-Young inequality). Suppose 1 < p < 2, and 1-10- + % = 1. Then the
Fourier transform is a bounded map from LP(R"™) to LY(R"™) and

I fllg < cnpllfllp

Jor some constant c;, p.

The proof is an easy application of the Riesz-Thorin theorem (see e.g., [3] Theorem IX.17).

We now state a version of the well-known Sobolev embedding theorem for R" (see e.g., [3]

Theorem IX.28).

Theorem 6. Let f € L2(R™) such that Af € L?>(R™) in the distributional sense (this will be
introduced in Section 1.4.1 below). Then
a) ifn < 3, f is a bounded continuous function and for any a > 0, there is a b, independent of
f, so that

[fllo < allAfllz + bllfIl2

b)ifn=4and 2 < q < o0, then f € LI(R"™) and for any a > 0 there is a b (depending only
on q,n, and a) so that

Ifllg < allAfllz +blIFll2

Furthermore this estimate is false for ¢ = oo. In fact in this case, f may be unbounded in a
neighborhood of every point (see e.g., [10] pp. 159).

cifn>5and2 <q< nQT" then f € LY(R™) and for any a > 0 there is a b (depending only
on g, n, and a) so that

I£llg < allAfll2 + bl fl2-

11
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1.3 The space BMO

The details of the following may be found in [8].
We indicate by Q C R" any cube with sides parallel to the coordinate axes and by |Q)] its
Lebesgue measure. For every locally integrable f, let fg denote the average of f on Q,

fQ=|—617|/Qf-

Definition 7. For f € L} , let fé denote the mean oscillation of f in Q,

loc’

P L _

Definition 8. For f € L} , let

loc’

# — #
M'f(z) = i‘;g fQ(x,r)
where Q(z,7) is the cube of side length r centered at . The operator Mt : f — M f will be

called the sharp maximal operator.

Definition 9. A function f € LlloC has bounded mean oscillation (and we say f € BMO) if
M f € L™ and we set

Ifllaro = 1M £ lco.

Remark 4. The quantity || - ||gmo is only a semi-norm since ||f||Bpo = 0 if and only if
f(t) = C a.e. t. We can make BM O a norm linear space (in fact a Banach space) by passing

to equivalent classes modulo constants.

Remark 5. Every L*-function is in BMO. The converse is not true. In fact log |z| is known
to bein BMO (seee.g., [8] pp. 213).
In Proposition 27 below we will give another example of a function which is in BM O and not

in L>°,

Theorem 7 (Sharp maximal theorem). Ler 1 < ¢ < p, 1 < p < oo, and suppose f €
LI(R™). Then f € LP(R™) if and only if M f € LP(R™) and

CoHIM fllp < (I fllp < CpllM* £l

for some constant Cj,.

12
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A proof of the sharp maximal theorem can be found in {8] on page 220.

1.4 Distributions
Distributions is a huge subject and is treated in many textbooks from which we refer to [11],
[6] and [7].

Definition 10. Let Q2 be an open subset of R". A sequence (fn)n in C§°(Q) converges in
C° () to some function f € C§°(R) if and only if there is some fixed, compact set K C

such that the support of f, — f lies in K for all n and for each choice of nonnegative integers

a P1 8 Pm a P1 3 Pm

as n — 0o, uniformly on K.

Pi, -y Pn

Definition 11. A linear form T on C3°(R2) is a distribution if, for every sequence (n)n that

converges to 0 in C§°(SY), the sequence (T (pn))n tends to 0 in C.

We denote by (C§°)’ the set of distributions on €2.
Also the value of a distribution 7" on a test function ¢ € C§°, T'(¢p), is often denoted by

T9)or [ T@)p(a)ds.
Q
Example 2. The Dirac distribution §,, for x € R" is defined by

dz() = p(z).

If f € L}, then for any ¢ € C§°(f2) it makes sense to consider

loc?

Ty(p) = / f(@)o(z)dz
Q

which defines an element in (C§°(€2))’.

Since LP(Q) C L}, (), every LP function is a distribution.

13
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1.4.1 Distributional derivatives

We now define the notion of a distributional or weak derivative. The differentiation operator of
order |p| = Y_7, p; on (C§°)' is defined as follows: If T € (C§°)', set

< DPT, o >= (-1)/Pl < T, DPp > forall p € C°.

y4 Pm
where DP = (%) . (%) . Since the map D? : ¢ — DPyp from C§° to Cg° is
continuous, the linear form DPT defined on C§° is indeed a distribution. Thus the derivative of

a distribution always exists and is another distribution.

Example 3. Let

Then g is continuous but not everywhere differentiable in the classical sense. Since g € L}OC(R)

then g is a distribution and hence has a derivative in (C§°)’. By definition
oo o0
<g p>=—-<g,¢ >= —/ zy' (z)dz = / p(z)dz.
0 0
Thus as distributions g’ = H where H is the Heaviside function

1, z>0
Hiz) = 0 <0
, Z )

H is not even continuous, but it too has a derivative in (C§°®)’ given by

o0
<H,p>=-<Hy >=— /0 ¢ (2)dz = p(0) = 6o().

So H' = 6o and &y also has a derivative defined by < &, p >= —¢'(0).

1.4.2 Multiplication of distributions by C°°-functions

Consider a distribution 7" and 1) € C*. Define the product by its action on ¢ € C§° as

< YT, >=<T,vp > .

14
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That 9T is a distribution is an easy consequence of the fact that the product ¢ € CS° if
p € C§°.

1.5 Sobolev spaces

1.5.1 The space H!(R")

Now we define Sobolev spaces and for a reference see [11] or [7].

Definition 12. We define H'(R™) to be
HYR™ = {f € L}R") : Vf € L} R™)"}.
Here Vf = (%, vy %) is the gradient of f and by saying V f € L?(R™)", we mean each
;%L_ is in L2(R™).
7

Remark 6. If f € L? and f' exists a.e. in the classical sense and f' € L}, then as a

distribution, f' is the distributional derivative of f.

Remark 7. It is not hard to show that C§°(R") is dense in H'(R™) in the norm || - ||3;, =

Il - ll2 + IV ()||2- For a proof see [7], Theorem 7.6 .

By applying exactly the same method one may also show that C§°(R") is dense in {f €
LA(R") :Of € LA(R™)} inthe norm || -|| = /| - l2 + [O()[l2 (here O is the wave operator,
. _ 8 a2 82

ie,f = aé —%a T T -a—mé).

In pretty much the same way one may- show that C*(R?2) is dense in {f € L?*(R?) : 3‘1—25% €

L?(R?2)} (this will be used in Chapter 4, Sections 4.2 and 4.3) with respect to the norm

||~|I=\/

1.5.2 Fourier characterization of H!(R)

()
e R

Theorem 8. Let f be in L?(R) with Fourier transform f. Then f is in H Y(R) if and only if
the function k — kf(k) is in L2(R) and when f € H! (R),

df

(f"Y(k) = ik f(k) where f' = e

15
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We say few words about the proof. One first easily verifies the theorem for C§°(R) functions
and then use a density argument to pass from C§°(R) to L?(R.) (for a detailed proof one may

see [7], pp. 165).

Notation 1. Throughout the thesis we will denote by ¢ an absolute constant whose exact value

may change from line to line.

16



Chapter 2
Linear operators in Hilbert spaces

We cite [12], [6], [13], [14] or [15] for references for this chapter where one can find detailed

proofs of the basic results.

2.1 Hilbert spaces

Definition 13. A complex vector space V is called an inner product space if there is a complex-
valued function < -,- > on V XV that satisfies the following four conditions for all x,y,z € V
and o € C:

a)<z,x>20and < z,x >=0ifand only ifx =0

b)<z,yt+z>=<zr,y>+<z,2>

c)<z,ay>=a<zc,y>

d<z,y>=<y,T>.

The function < -, - > is called an inner product.

A complete inner product is called a Hilbert space.

Example 4. The main example of a Hilbert space is L?>(R™) with the inner product
<tf,9>= [ f@is@s
Rn

which is well-defined by the Cauchy-Schwarz inequality, Corollary 1.

Theorem 9. Let H be a Hilbert space and let M be a closed subspace of H. Then H =
Mo ML,

We also recall Riesz’s lemma.

Theorem 10 (Riesz’s lemma). Let H be a Hilbert space and let f be a continuous linear

functional on H. Then there exists a unique vector a in H such that f(z) =< z,a >,Vz € H.
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2.2 Bounded linear operators on Hilbert spaces

Definition 14. Let H be a Hilbert space. A linear operator A from H into H is said to be
bounded if there exists an M > 0 such that for all f € H we have:

NAfllz < M||f|la- @1

We denote by L(H) the set of all bounded linear operators on H which is a Banach algebra

with norm given by

lAllzery = sup [|Az|a.
el <1

Example 5. Let H = L?(0,1) and let M be definedon H by M f(z) = zf(x). M is called a

multiplication operator. It is certainly linear and bounded.

Theorem 11. Let A € L(H). Then there exists a unique operator A* in L(H) called the
adjoint of A such that:

< Af,9g >=< f,A*g > Vf,g € H and || Al|crry = |1 A% | c(ary-

Proposition 7. Let A,B € L(H) and o € C. Then
1) A** = A

2) (A+ B)* = A* + B*.

3) (aA)* = aA*.

4) (AB)* = B*A*.

5) | A*All = |A4*|| = || A%

7) Ker(A*) = (RanA)*.

The proofs of Theorem 11 and Proposition 7 can be found in [14] pp.311-312.

Definition 15. Let A € L(H). Then A is said to be

a) normal if AA* = A* A,

b) self-adjoint (symmetric or hermitian) if A = A*,

c) unitary if AA* = I = A*A, where I is the identity operator on H,
d) a projection if A2 = A,

e) positive if < Az, x >> 0,Vx € H.

Example 6. The Fourier transform is an important example of a unitary operator on L*(R™).
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Definition 16. A projection P is called an orthogonal projection if it is self-adjoint.

Theorem 12. Let P be an orthogonal projection. Then:
1) Py = y,Yy € RanP.
2) RanP is closed in H. Moreover

H = KerP & RanP.
3)Vz € H,(z — Pz) € (RanP)*.
4D Pllccey = 1(if P #0).
Proposition 8. Letr P and QQ be two orthogonal projections on H. Then RanP 1 Ran() if and
only if PQ = 0.
The proofs of Proposition 8 and Theorem 12 are standard and can be found in ([14], pp. 314).

Definition 17. Let A be a linear bounded operator. Let M be a subspace of H. Say that M
is a reducing subspace for A if AM C M and AML C M-, that is, both M and M* are

invariant subspaces of A.

Proposition 9. Let A be an everywhere defined linear operator on a Hilbert space H with
< f,Ag >=< Af,g > forall f and g in H. Then A is bounded.

Proof. We will prove that G(A) is closed (here G(A) is the graph of A, that s, the set {(f, Af) :
f € H}. More details will be introduced in Definition 20 below) and then A will be bounded
by the Closed Graph Theorem. Suppose that (f,, Afn) — (f,9)- We need to prove that
(f,g9) € G(A), that is, that g = Af. Butforany h € H,

< h,g>= lim < h,Af, >= lim < Ah, f, >=< Ah, f >=< h,Af > .
n—oo n—oo
Thus g = Af and hence G(A) is closed. O

We also recall the Putnam-Fuglede theorem.

Theorem 13 (Putnam-Fuglede theorem). Assume that M, N and A are all bounded operators

on a Hilbert space, M and N are normal, and

NA=AM
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then N*A = AM*.

For a proof see [15] on page 285.

2.3 Unbounded linear operators on Hilbert spaces

2.3.1 Domains, graphs, extensions and adjoints

Definition 18. We say that an operator A is unbounded if it is defined on a linear subspace ,

D(A), of the Hilbert space and if it does not satisfy (2.1) for f € D(A).
The subspace D(A) is called the domain of A.

An operator with dense domain will be called a densely defined operator.

Example 7. Let H = L?(R) and let D(A) = {¢ € L}(R) : zp € L?(R)}. For ¢ € D(A)
define (Ap)(x) = zp(z). It is clear that A is unbounded since if we choose @ to have support

near plus or minus infinity, we can make || Ayp|| as large as we like while keeping ||| = 1.

Theorem 14. If M is a closed invariant subspace of the symmetric operator A (see Definition
23 below) and if the projection P onto M satisfies the relation PD(A) C D(A) then the

subspace M reduces the operator A.

Proposition 10. Let P be the orthogonal projection on a given closed subspace M. Then M
reduces A if and only if:

1) Pf € D(A),

2) PAf = APf

for all f € D(A), i.e., if the operators A and P commute.

We now introduce the notion of a closed operator. Although an operator may not bounded it

may be bounded in a different norm, that is the graph norm.

Definition 19. The graph of an operator A is the set of pairs {(f, Af) : f € D(A)} = G(A).
A is called a closed operator if G(A) is a closed subspace of H x H, i.e., if and only if

V(fn, Afn) € G(A), fo— f,Afn 2 g= fE€D(A)and g = Af.
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Example 8. Let M f(z) = zf(z) and D(M) = {f € L*(R) : zf € L*(R)}. Then M is
closed. Suppose f, — f and zf, — g in L% There is then a subsequence ( fn(k)) such that
fay(x) — f(x),a.e. Hence zf,(1)(z) — zf(x),a.e. On the other hand since x fn, — g in L?
then every subsequence, x fr(x), of (xfn) converges to g in L2. Hence there is a subsequence
of T fn(k) Which converges to g a.e.. Since all subsequences of T fp(x) converges to zf a.e. we

conclude that g = = f a.e. and G(M) is closed.

We have the following proposition:

Proposition 11. Let A be a densely defined operator on a Hilbert space H. We define
< f)g >A=< f7g > +< Af)Ag >Havfag € D(A)

Then, A is closed if and only if (D(A), < -,- > a) is a Hilbert space.

Proposition 11 gives rise to the graph norm. For a densely defined operator A on a Hilbert space

H the graph norm is defined as

171l = \/IF1% + I AFI%-

Definition 20. Let A and B be two unbounded operators. B is said to be an extension of A if
D(A) C D(B) and on D(A), A and B coincide.

Definition 21. An operator A is said to be closable if it has a closed extension. Every closable
operator has a smallest closed extension, called its closure, which we denote by A

Proposition 12. If A is closable, then G(A) = G(A).
Remark 8. If A is closed then obviously A = A.
Definition 22. Let A be a densely defined linear operator on a Hilbert space H. Let D(A*) be
the set of ¢ € H for which there isann € H with
< Ay, p >=<,n > forall € D(A).

For each such ¢ € D(A*), we define A*p = 1. A* is called the adjoint of A. By the Riesz
lemma, ¢ € D(A*) if and only if there exists C > 0 such that | < Ay, ¢ > | < C||¢|| for all
Y € D(A).
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Remark 9. We note that A C B implies B* C A*.
Notice that in order that the adjoint is well-defined we need the fact that D(A) is dense. To see
this let us assume that D(A) is not dense. So if fo € (D(A))* # {0}, then

VfeD(A),< f,A*g+ fo>=< f,A*g>+ < f, fo>=< f,A'g > .

So A*g is not unique.

Definition 23. If A, B are operators in H, then we denote by A + B the operator defined on
D(A+ B) =D(A)ND(B) by (A+ B)(f) = Af + Bf.

Lemma 3. Let A and B be two operators in a Hilbert space H. Then,
1) if A is closed, B bounded, then A + B is closed;

2) if A + B is densely defined, then A* + B* C (A+ B)*;

3) if A is densely defined, B bounded, then A* + B* = (A + B)*.

Definition 24. Let A, B be operators in H. Denote by BA the operator defined on D(BA) =
{f € D(A) : Af € D(B)} by (BA)(f) = B(A[).

Lemma 4. Let A and B be two densely defined operators and let B A be densely defined. Then,
1) A*B* C (BA)*;
2) for B bounded, A*B* = (BA)*.

The proofs of both Lemma 3 and Lemma 4 can be found in ([13] pp. 214-215).

2.3.2 Symmetric and self-adjoint operators

Definition 25, A densely defined operator A on a Hilbert space is called symmetric (or her-
mitian) if A C A*, that is, if D(A) C D(A*) and Ap = A*yp for all ¢ € D(A). Equivalently,

A is symmetric if and only if
< Ap, Y >=< @, Ay > forall o,y € D(A).

Definition 26. The operator A is called self-adjoint if A = A*, that is, if and only if A is
symmetric and D(A) = D(A*).

Remark 10. A symmetric operator A is always closable.
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Definition 27. A symmetric operator A is called essentially self-adjoint if its closure A is
self-adjoint.

Example 9. Let M be the operator defined by M f(x) = zf(z) on D(M) = {f € L*R) :
zf € L2(R)}. Then D(M) is dense in L?>(R) and M is self-adjoint. In fact M is symmetric
since for all f,g € D(M) we have

<Mfg>= [2f(@s@)a = [ f(e)o9f@de =< fag >
R R

Therefore, to prove M is self-adjoint we only need check that we have D(M*) C D(M). Let

Y € D(M*) then ¢ —< My,%p > is continuous on D(M). Thus there exists a unique

M*+ € L?(R) such that

<z, >=< @, M*p > Vo € D(M),

ie, <,z >=< p, M*) > Vo € D(M).

Thus by the density of D(M) one gets M*y) = x1 and hence ¢ € D(M).

2.3.3 The basic criterion for self-adjointness

The following theorem gives us an alternative way to prove a symmetric operator is self-adjoint.

A proof can be found in ([6] pp. 257).

Theorem 15 (basic criterion for self-adjointness). Let A be a symmetric operator on a
Hilbert space H. Then the following three statements are equivalent:

a) A is self-adjoint.

b) A is closed and Ker(A* 1) = {0}.

¢) Ran(A+1i)=H.

Corollary 4. Let A be a symmetric operator on a Hilbert space. Then the following three are
equivalent:

a) A is essentially self-adjoint.

b) Ker(A* £1) = {0}.

¢) Ran(A = ©) are dense.
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It is worth mentioning that condition b) in Corollary 4 means that
A*f = £if
has a zero solution in the Hilbert space.

In Chapters 4 and 5, when we will be dealing with perturbed wave operators, that is, O + V'
where V is real-valued, to say that 0 + V' is essentially self-adjoint means that following weak

PDE (i.e., a PDE in the distributional sense)
@O+V)f==if

has a unique solution in L2, that is, f = 0.

Remark 11. Corollary 4 holds with oi; o > 0 instead of <.

The theorem that follows says that every self-adjoint operator can be diagonalized via a uni-
tary transformation, i.e., every self-adjoint operator is unitarily equivalent to the multiplication

operator by a real-valued function.

Theorem 16 (spectral theorem-multiplication operator form). Let A be a self-adjoint oper-
ator on a separable Hilbert space H with domain D(A). Then there is a measure space (M, 1)
with . a finite measure, a unitary operator U : H — L%(M, ), and a real-valued function f
on M which is finite a.e. so that

a) € D(A) if and only if f(.)(U¥)(.) € L*(M, dp).

b) If p € U[D(A)), then (UAU1p)(z) = f(z)¢(x).

For a proof we refer to ([6] pp. 261).

Example 10. The Fourier transform F is an important example of a unitary operator on L?.
We consider the operator H = z‘%. Then one can show that H is self-adjoint on H'(R) see
([15] pp.341). On the other hand by the Fourier characterization of H'(R) we have:

Fi (z%) Ff(t) = tf(t), the multiplication operator.

Since F is unitary and the multiplication operator is self-adjoint we conclude that A is self-

adjoint on H'(R)).
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Another example of a self-adjoint operator that will be used often in chapters four and five is:

Example 11. The wave operator 0 = ;9‘9—:5 - ‘—%27 is self-adjoint on D(O) = {f € L*(R?) :
Of € L2(R2)}. By using the Fourier transform and the same idea as for the Fourier charac-

terization of H'(R) we get:

FHO)Ff(0,€) = (—n* + ) f(n,€) == Mf(n,¢).

So O is unitarily equivalent to the multiplication operator that has domain D(M) = {f €
L%(R?) : Mf € L*(R?)}. So by using this domain and exploiting the unitary equivalence we

obtain the domain of (] mentioned above.

2,3.4 Normal operators

For a wider treatment of this subject we recommend [15] and [14] where most of the proofs for

the results in the following section can be found.
Definition 28. A densely defined closed operator N is said to be normal if NN* = N*N.

Example 12. Let p be a finite measure on C such that every polynomial in z and Z belongs
to L?(u). Let Mp(2) = 2¢(2) be defined on D(M) = {p € L? : z¢p € L?(u)}. Then M is
normal on D(M).

2.3.5 Spectral theory of linear operators
The following definition applies to both bounded and unbounded operators.

Definition 29. If A : H — H is a linear operator, p(A), the resolvent set for A, is defined as
p(A) = {\ € C: Al — Ais boundedly invertible }.

The spectrum of A is the set 0(A) which is the complement of p(A) in C.

Proposition 13. Let A be a bounded linear operator on a Hilbert space. Then the spectrum of
A, o(A), is a non-empty compact set in C included in the closed ball of center 0 and radius
[ All
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Proposition 14. Let A be a linear operator with adjoint A* and spectrum o (A). Then
a(A*) = {X: e o(A)}.

Proposition 15. Let A be a linear operator. Then
1) if A is self-adjoint then o (A) lies in the real line.
2) if A is normal then it is self-adjoint if and only if o ( A) lies in the real line.

Remark 12. An unbounded self-adjoint operator has always a non-empty spectrum.

2.3.6 The spectral theorem for normal operators

We start with introducing the notion of a spectral measure.

Definition 30. If X is a set, § is a o-algebra of subsets of X, and H is a Hilbert space, a
spectral measure is for (X, 2, H) is a function P : Q — L(H) such that

a) for each A in Q, P(A) is a self-adjoint projection;

b)P0)=0and P(X) =1I;

¢) P(A1 N Ag) = P(A1)P(A2) for Ay and Ay in Q)

d) if (Ap)S2, are pairwise disjoint sets from S} then:

o0 o0
P(|JAn) =) P(An)
n=1 n=1
Remark 13. The convergence of the infinite series in d) is meant to be in the strong operator

topology.

Theorem 17 (The spectral theorem). If N is a normal operator on H then there is a unique

spectral measure P defined on the Borel subsets of C such that

< Nf,g>= / 2dPy 4(2) (2.2)
a(N)

where Pr g(A) =< P(A)f, g > defines a complex measure.

One writes

N= / 2dP(2).

o(N)
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By Theorem 17 we can define f(N), where f is a Borel function, to be

() = / f(2)dP(2).

o(N)

The spectral theorem is one the most important theorems in the theory of linear operators if not
the most important. It has many applications e.g., Proposition 15 is an immediate consequence

of it. A proof of the spectral theorem can be found in ([15] pp. 269).

We can apply Theorem 17 to the special case of a self-adjoint operator and obtain the following

result:

Proposition 16 (Spectral mapping theorem). Let A be a self-adjoint operator. Let f be a
continuous function on o(A). Then f(A) is well-defined as a bounded operator. Besides one

has

f(e(T)) = o(£(T)).

Example 13. Let N is a multiplication operator by a complex-valued function. Then the spec-
tral measure of N, is the multiplication operator by a characteristic function of a Borel set A

in C (see [15] pp. 271).

Like self-adjoint operators, normal ones too are unitarily equivalent to multiplication operators.
The difference is that self-adjoint operators are unitarily equivalent to multiplication operators
by a real-valued function while normal ones are unitarily equivalent to multiplication operators

by a complex-valued function.

Proposition 17. If N is a normal operator on the separable Hilbert space H, then there is
a o-finite measure space (X, S, 1) and an Q)-measurable function ¢ such that N is unitarily

equivalent to the multiplication operator by .

Let us consider the ball Bg = {z € C : |z| < R}. Let Pg, be the spectral projection for N
defined on the Borel set Br. We have

Proposition 18. Let N be a normal operator with domain D(N) and spectral projection Pg,.

Then we have
f € RanPg, & f € D(N*),Vk =1,2,...3¢ > 0 such that | N* f|| < cR". (2.3)
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This last proposition was taken from [15] on page 330.

As a consequence of the spectral theorem we have

Proposition 19. Let N be a normal operator with spectral projection Pgy. Then the subspace
Hp = Py H reduces N.

The Fuglede-Putnam theorem is valid for unbounded operators.

Theorem 18 (Fuglede-Putnam theorem:the unbounded case). If N, M are two unbounded

normal operators and A is a bounded operator such that AN C M A, then AN* C M*A.

A proof can be found in [16] and [17].

For more details about unbounded normal operators see [15] or [14].

2.4 Perturbation of unbounded linear operators

For a reference for this section and for Section 2.5 the reader may consult [3].
In this section we will state a theorem which says that if A is unbounded and self-adjoint and if

B is symmetric and not too large compared to A, then A + B is self-adjoint.

Definition 31. Let A and B be densely defined linear operators on a Hilbert space H. Suppose
that

i) D(A) Cc D(B)

ii) for some a and b in R and all ¢ € D(A),

IBell < allAell + bliell-

Then B is said to be A-bounded. The infimum of such a is called the relative bound of B with

respect to A.

Sometimes it is convenient to replace (ii) in the above definition by
iii) for some @,b € R and all € D(A),

IBoll? < a2l Awl| + b2l |l?.
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A fundamental perturbation result that we will be using often is the Kato-Rellich perturbation

theorem, that is

Theorem 19 (Kato-Rellich theorem). Suppose that A is self-adjoint, B is symmetric, and B
is A-bounded with relative bound a < 1. Then A + B is self-adjoint on D(A).

The reader can find a proof in [3], Theorem X.12 .

Example 14. Let —A = Hy be the Laplacian defined on the domain D(Hp) = {f € L?*(R3®) :
Af € L2 R3)}. If V is real-valued such that V € L? + L™ then Hy + V is self-adjoint on
D(Hy).

Proof. Firstwrite V = Vi + V, where V; € L?(R3) and V, € L°°(R3). We have by applying
Theorem 6 a), for f € D(Hp),

IV llzemsy = (V1 + V2) fllzzms) < Vifllz + IVafllz < IVall2llf lleo + IVllooll Fll2

< [Villz(allAfllz + Bl fll2) + [Vallooli fll2 < alVall2llAfll2 + (IValloo + Bl[Vall2)|l fll2-

This implies that D(Hg) € D(V) := {f € L? : Vf € L?} and since we can make a small
enough such that a||V}||2 < 1 (again by Theorem 6) we conclude by the Kato-Rellich theorem
that Hy + V is self-adjoint on D(Hp). O

2.5 Limit point-limit circle case

This section deals with the one-dimensional Schrodinger operator, that is ——d‘% + V where V
is a real-valued function that is usually called a potential. We give a criterion that tells us when

the Schrodinger operator is essentially self-adjoint on C§°(R). For a reference consult [3].

Definition 32. We will say that V(z) is in the limit circle case at co (respectively at 0) if for

some \ € C, and therefore all )\, ' all solutions of

—¢"(z) + V(z)p(z) = Mp(z)

'In [3], Theorem X.6 says that if, for some ), both solutions are square integrable at oo (at 0), then all solutions
are so for all .
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are square integrable at 0o (respectively at 0). If V (z) is not in the limit circle case at oo

(respectively at 0), it is said to be in the limit point case.

In the previous definition there are always exactly two independent solutions of the equation

(see [3]).

A proof of the following theorem is in ([3] pp. 153).

Theorem 20 (Weyl’s limit point-limit circle criterion). Let V(x) be a continuous real-valued
function on (0, 00). Then —d—‘fg + V(x) is essentially self-adjoint on C§°(0, 00) if and only if
V (z) is in the limit point case at both zero and infinity.

Remark 14. The previous theorem has an analogue for more general intervals than (0, 0);
namely, if V(z) is continuous on (a,b) with —0o < a < b < oo, then —di;g + V(z) is
essentially self-adjoint on C§°(a, b) if and only if V() is in the limit point case at both a and
b, with the obvious modifications in the definition of V' being in the limit point case at any real

number a.

The next theorem allows us to say when V is or is not in the limit point case. This theorem is

due to A. Wintner, see [18].

Theorem 21. Let V' be a twice continuously differentiable real-valued function on (0, 0o) and

suppose that V(z) — —oo as x — o0o. Suppose further that

/oo (———[(_V)i]/) (—V)_%dx < o0
c (—V)7

for some c. Then'V is in the limit point case at infinity if and only if | cm(—V(x))_%da: = 00.

Example 15. One easily concludes from Theorem 21 that —d—(i?z — z% is in the limit point case

at infinity if and only if a < 2.

By a change of variable we have the same theorem on (—o0, 0). In fact,

Proposition 20. Let V be a twice continuously differentiable real-valued function on (—oo,0)

and suppose that V(z) — —oo as t — —oo. Suppose further that

]/) (—V)_%dz < 00

¢ =W
[

leef NI
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Jor some d. Then V is in the limit point case at —co if and only ifffoo(—V(a:))_%ds: = o0.

Example 16. By Theorem 21 and Proposition 20 we can say that V (z) = —xz* is not in the

limit point case at both +00 and —oc. Hence by Remark 14, —di:g — z4 is not essentially
self-adjoint on C§°(R).
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Chapter 3

An application of the Putnam-Fuglede
theorem to normal products of
self-adjoint operators

3.1 Introduction

In 2000, E. Albrecht and P. G. Spain [1] proved that if we have two bounded self-adjoint op-
erators K, H and if K satisfies 0(K) N o(—K) C {0} (we shall call this condition on the
spectrum of K condition C.), then H K normal implies H K self-adjoint. The proof was given
in a more general context of Banach algebras hence the result in £(H) was just a consequence
of the main theorem in that paper. However, nothing was said about the case when at least one
of the operators is unbounded. In this chapter we answer this question positively, i.e., if K is a
bounded self-adjoint operator satisfying the condition C and if H is any unbounded self-adjoint
operator then the result holds. Even when both K and H are unbounded self-adjoint operators

such that K satisfies the condition C, the result also holds.

In the end we give a counterexample that shows that the product of two unbounded self-adjoint
operators, when it has a normal closure, is not necessarily essentially self-adjoint even when

the condition C is satisfied.

Most of this chapter (Sections 3.2 and 3.3) is a paper by myself [2] that has been accepted for
publication in the “Proceedings of the American Mathematical Society” and that will appear in

the October 2003 issue.

3.2 Normal products of self-adjoint operators

3.2.1 Bounded normal products of self-adjoint operators

We recall the Albrecht-Spain theorem:
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Theorem 22. Let H and K be two bounded self-adjoint operators. Let K satisfy the condition
C. If HK is normal, then it is self-adjoint.

We note that one can prove the result of Albrecht-Spain without calling on the theory of Banach

algebras. The proof is given below.

Proof Set N = HK. We have KHK = KN = N*K then using the Putnam-Fuglede

theorem (Theorem 13) we obtain
KN*= NK or K*H = HK*
and by condition C, we have that
f:0(K?) - o(K): A2 A
is well-defined and continuous then
f(K*)H = Hf(K*)or KH = HK

which implies that H K is self-adjoint. O

Remark 15. It is easy to construct noncommuting self-adjoint operators H and K with H 2=
K2 = I, so some additional condition is required to get that HK = K H from the fact that
HK? = K?H. Condition C does the job.

3.2.2 Unbounded normal products of self-adjoint operators

Definition 33. Let K be a bounded operator and H an unbounded one. Then K and H are
said to commute if KH C HK.

Proposition 21. Let K be a bounded self-adjoint operator and let H be an unbounded self-
adjoint one such that K and H commute. Then for any continuous function f defined on the

compact set o(K) we also have
f(K)H C Hf(K).

Before we start the proof we need the following lemma:
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Lemma 5. If K and H commute where K is self-adjoint then for any real polynomial P, P(K)

and H also commute.

Proof. Set P()\) = ap + a1 A + ... + ap A" (the coefficients being real).
Let z € D(H) = D(P(K)H) = D(KH) = D(K2H) = ... = D(K"H). K,H commute s
KH CHK ie. KHz = HKz forallz € D(KH) and D(KH) C D(HK). Also

K?H = K(KH)c K(HK) = (KH)K C HK?,

1.e.,

K?Hz = HK?z forall z in D(K?H) = D(H) and D(K?H) c D(HK?).
We do the same to the powers of K until we get K"H C HK",i.e.,
K"Hz = HK"z ,Vz € D(K"H) and D(K"H) C D(HK™").

Hence Vz € D(P(K)H) = D(H) we have (aol H + a1 KH + a2K?H + ... + apn K"H)z =
(Haol + Hay K + HasK? + ... + Han, K™)x and D(P(K)H) C D(HP(K)). This shows
that P(K') and H commute, i.e.,

P(K)H C HP(K).

Now we prove Proposition 21.

Proof. As the set of polynomials (that are defined on a compact set, here it is o(K)) is dense
in the set of continuous functions we can say that there is a sequence of polynomials P, s.t.

P, — f in the supremum norm on o (K).

This implies that P,(K) — f(K) in L(H). Lety € D(H). Set z, = Pyo(K)y and z =
F(K)y. We have
Hz, = HP,(K)y = P,(K)Hy — f(K)Hy.
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The closedness of H and z,, — z imply that
f(K)y € D(H) and Hz = f(K)Hy,

ie., f(K)H Cc Hf(K). O
Remark 16. One only needs the closedness of H in this lemma.

Theorem 23. Let H be a densely defined self-adjoint operator and let K be a bounded self-
adjoint operator such that o (K) N o(~K) C {0}. If HK is normal then it is self-adjoint.

Proof. N = HK is normal. We know that N* = (HK)* D K*H* = KH. We have
KHK = (KH)K = K(HK) = KN = (KH)K c N*K.

But NV and N* are both normal so by means of the Fuglede-Putnam theorem (Theorem 18) we
get
KN*c N*K =NK = NK

since N is closed. It follows that
K?H =K(KH) c KN*C NK = (HK)K = HK?,

i.e., K2 and H commute in the sense of the definition given above (Definition 34). Now the

function
f:o(K? = o(K), A2 X

is well-defined thanks to the condition C. Besides f is continuous. This implies that f(K?2) and

H commute or K and H commutei.e. KH C HK.
KH CHK = (HK)* Cc (KH)* = H*K* = HK.

Since HK is normal then D(HK) = D((HK)*) and on D((HK)*) we have (HK)* = HK
which shows that H K is self-adjoint. O

Theorem 24. Under the same assumptions as Theorem 23 and instead of assuming that HK

is normal we assume that K H is normal. Then K H is self-adjoint.

Proof. KH is normal then so is (K H)*. But (KH)* = HK ie. HK is normal. So as a
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consequence of Theorem 23 we know that HK is self-adjoint, i.e., (HK)* = HK. On the
other hand
(KH)* = HK so that (K H)" is self-adjoint ,

ie., (KH)* = (KH)* but
(KH)* = KH = KH since K H is closed (it is normal).

Thus KH = (KH)*, i.e., KH is self-adjoint. O

Corollary 5. Let K be a bounded positive self-adjoint operator and let H be any unbounded
self-adjoint operator. Then if HK is normal (resp. K H is normal), then it is self-adjoint (resp.

it is self-adjoint).

Now we turn to the case where both X and H are unbounded. The resuit is also true. Besides

one has a generalization of the Fuglede-Putnam theorem with rather stronger conditions.

Theorem 25. If N is an unbounded normal operator and if K is self-adjoint such that D(N') C
D(K). Then KN C N*K implies KN* C NK.

Proof. Let Pg,, be the spectral projection for V. For convenience we set Hg = RanPp,. Let
us restrict KX to the Hilbert space Hg. We claim that K : Hp — Hpg and that K is bounded.
Hp is a subset of D(K) since Hg C D(N) by the spectral theorem and D(N) C D(K). On
the other hand since K/Hp, is symmetric and defined everywhere then it is bounded on Hg, by
Proposition 9. Let us show now that K¢ € Hpg for ¢ € Hr. Let ¢ € Hg. By Proposition 18

we have
Ko € Hpifand only if | (N*)* K| < aR".

We also have | N*y|| < cR* and since K is bounded: [|[KN¥yp|| < aRF but for such ¢ we
have ||[K N*yp| = ||(N*)*K|| as a consequence of the hypothesis in the theorem and hence
Ky € Hp.

Now we need to show that KN* C NK, i.e.,
D(KN*)c D(NK)andon D(KN*): KN* = NK.

Let ¢ € D(KN*). Define ¢, = Ppg,¢. Since Pg, — I in the strong operator topology we
deduce that ¢, — .
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Also ¢, € D(KN*) since both K and N* are bounded on H,,. Let us now show that
KN*p, — KN*p. Since K is symmetric and maps Hpg into itself by Theorem 14 Hg
reduces K and hence we have by Proposition 10, Pg, K C K Pp,. It also reduces N by the

spectral theorem so that we get:
KN*p, = KN*Pg, o = Pg, KN*p — KN*p. 3.1

Let us show now that ¢ € D(NK). Both K and N are bounded on H,, then by the Fuglede-
Putnam for bounded operators we have that KNy, = N*Ky, implies that KN*p, =
N K. This gives us with equation (3.1): NK¢, — KN*p.

N maps H RT = RcmPBg2 to Hrt (Hgis a reducing space for N) and N~! is bounded on

Hpgt since in this case N1 = IBs +dP) and hence |}| < #.

We also have
NKoyn,— KN*¢ = KN*p, - KN*p € Hi forn > R

so that if we apply the inverse of N we get K, — N~1KN*p. By the closedness of K we
obtain ¢ € D(K) and K¢, — K. But N is closed and (N K ¢,), convergent together with
Ky, — Ky imply that

Ky € D(N) (i.e,o € D(NK))and KN*¢p = NKy,

establishing Theorem 25. . a

Corollary 6. Let K, H be two unbounded self-adjoint operators. If N = H K is normal then
KN C N*K implies KN* C NK.

Proof. Obvious since D(N) = D(HK) C D(K). O

Theorem 26. Let K, H be two unbounded self-adjoint operators such that o(K) N o(—K) C
{0}. If HK is normal then it is self-adjoint.

Proof. Set N = HK. We have
KHK = K(HK) = (KH)K c (HK)*K
which implies that KN C N*K. But D(N) C D(K) so by Corollary 6 we can say that
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KN* C NK or
K?’H c K(HK)* c HK?.

So we have
K?Hyp = HK?y for ¢ € D(K?H).

Using the same arguments as in the proof of Theorem 25 we can say that for ¢ € RanPpg, we
have: K2HKyp = HK?Ky as K € D(K2H) since K?N is bounded in this case. We have
K2Nyp = NK?¢.

Now take the same function f taken in the proof of Theorem 23 to get: f(K2)Ny = Nf(K?)p
and hence KNy = NKp. But KNp = N*Kp on H,. Hence N*Kp = NKo.

We now use the orthogonal decomposition H, = RanK P Ker K for the K restricted to H,.
We have
N = N* on RanK and both are 0 on KerK.

Hence N = N* on H,. This shows that N, (IV, is just NN restricted to Hy) is self-adjoint.
Hence o(N,,) C R for all n and then ¢(N) C R and a normal operator with a real spectrum is

self-adjoint (Proposition 15). Thus H K is self-adjoint. a

Corollary 7. Let K, H be two densely defined self-adjoint operators such that K is positive. If

H K is normal then it is self-adjoint.

Remark 17. We have seen that the result is true for any couple of self-adjoint operators regard-
less of their boundedness and provided the condition C is satisfied. However, the hypothesis
“H K normal” cannot be replaced by “H K having a normal closure”. Here we give a counter

example.

3.3 A counterexample

Let us consider the operators K and H defined as:

d
H=—i
‘d

— H'(R) — L*(R), K = |z : D(K) — L*(R)

where D(K) = {f € L3(R) : |z|f € L?*(R)}. K is obviously positive so that it does satisfy

the condition C. We also know that those two operators are self-adjoint on the given domains.
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N = HK is defined on D(HK) that is
{f € D(K) : Kf € D(H)} = {f € L*(R) : |zlf, —i(|z|f)' € L*(R)}

such that: Nf = —i(|z|f)’ where the derivative is taken in the distributional sense.

The operator N is densely defined since it contains C§°(R). It is not closed but it has a closed
extension N defined on D(IV), which consists of the L2-functions s.t. |z|f’ is in LZ(R) where

|| f/ is a distribution on R\{0}, by N f = —i|z|f’ — isignf.

We need to check that IV is closed on this domain with respect to the graph norm of N. Take
(fny N fn) € G(N) such that (fn, Nfn) — (f, g). Since f,, — f in L? then in the distributional
sense we have f}, — f’. On R\{0} we have |z|f}, — |z|f’ again in the distributional sense.
By uniqueness of the limit one gets that N f = |z|f’ for almost every x hence we have the

equality in L?(R). This tells us that N is closed in this domain.

The operator N is a closed extension of N. It is in fact the closure of N and this will be shown

once we have shown that C§°(R\{0}) is dense in D(IV) with respect to the graph norm of N.

Definition 34. The set of the functions in D(N) that have compact support away from the
origin will be denoted by D(N)*.

Lemma 6. C°(R\{0}) is dense in D(N)* with respect to the graph norm of N.

Proof. Let f be in D(IN)*. Let us find a sequence f, in CS°(R\{0}) such that f, — f in the
graph norm of IV that is,

1fn = Fipy = I = FI3 + llzfy = 2f13 — -

It suffices to show that the right hand side converges to zero as n tends to infinity.
Take k, as in Theorem 2 (take n = %) such that k£ has compact support so that k, * f €
C°(R\{0}) for large n. Then by Theorem 2 (for p = 2) we have

lim ||f — kn * fll2 =0. (3.2)
n—oo

Now take f, = kn * f. The convergence of f, to f follows from (3.2). At the same time we
have zf' € L? with support away from the origin. This implies that f’ € L2.

Also, in the distributional sense, f/, = k, * f'. So, f/ is in L? and has compact support away
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from the origin. Thus,
lz(kn * ) — zf'll2 < Ell(kn = f) = £'ll2 — O by (3.2).

Therefore,

/o — f”D(ﬁ) —0asn — oo,
establishing Lemma 6. O
Lemma 7. D(NV)* is dense in D(N).

Proof Let f € D(N). Let us find a sequence f, in D(N)* such that f, — f in the graph

norm of N. Define the even function ¢, on [%, 2n] by

n(z — ) if %§x<%
pn(z) =< 1 if 2<z<n
—Lliz-n)+1 if n<z<2n

Now take f, = fon. We have supp fn, Csupp f \suppyn, Csuppyr, where 0 €supppy,. One can
show that ¢, tends to 1 pointwise. Also ¢;, exists almost everywhere. We need to show that

fn — f in the graph norm of N. First, we have

1 = FBamy = /R |fal() — f(z)de = /R |£(@)X(¢n(a) - 1)dz — 0

by the D.C.T. (dominated convergence theorem).
We also have f/(z) = f'(z)pn(z) + f(z)p;,(x) then
lof = ey = [ lafa(@) - of (@)de
<2 [ 1af'@)Ponls) ~ D +2 [ laf(e)e(@) e
The first bit of the integral tends to zero again by the D.C.T. (the dominating function being

(zf')? € LY(R)). For the second bit one has

2n 1132 9
Z\f@)Pda.

/R 1@ Ple(@)de = [ o0l (@) P + /
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‘We have

7 entl@Pde <a [T If@Pd = 4 [ 7@ @3z -0

n

by the D.C.T. since lim 11 2)(z) = 0.

n-—00

We also have
n 2 9 2n 9 9
| Slr@Pa <4 [ 1Pz = 4 [ 1£@)P1pan()de

which tends to O by the D.C.T.. Thus ||z f}, — xf’||%2(R) — 0.
This tells us that

o = Ffllo@wy — 0,
establishing Lemma 7. d
C§°(R\{0}) is dense in D(IV)* and the latter is dense in D(NN). Thus C$°(R\{0}) is dense
in D(N) with respect to the graph norm of N.
Corollary 8. The operator N is the closure of N.

Proof. This follows from C$°(R\{0}) € D(N) C D(N). Hence D(N) is dense in D(N)
with respect to the graph norm of N. O

In order to find the adjoint of N on D(N) it suffices to find it on C§°(R\{0}). Since if we
restrict N to C$°(R\{0}) and we denote it by Ny then N* = N§ (since Ny = N then,
No* = N” and hence Ng** = N***. Therefore, N = N* ! because N* is closed for any
densely defined operator N, see [14] (Theorem 13.9)).

The domain of N* is defined as
D(N*) = {g € L*(R)|3h € L*(R)s.t. < Nf,g >=< f,h > Vf € C(R\{0})}.

And we have

Lemma 8. D(N*) = {f € L2(R)||z|f' € L}(R)}.

'We have used the fact that N** = N see [6], Theorem VIIL1.
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Remark 18. Recall that we denote the action of a distribution T on a test function o by (T, p).
Proof. Let f € Cg°(R\{0}) and g € L?(R). We have

< Nf,g>= L(lef(w))'g(?)dw = ((lz|f)’, 2g) since (|z|f)’ € C5°(R\{0}).

By definitions of the distributional derivative and the product of distributions (c.f. Sections

1.4.1. and 1.4.2.) since |z| is C* on R\ {0} one has

((Iz]£),39) = =(lzlf, —i7) = (£, ilx|7)-

We also have < f,h >= (f, h) where h € L?. Hence h = —i|z|g’ as a distribution but A is in
L2 then |z|¢g’ € L? and then D(N*) = {g € L? : |z|¢g’ € L*} and N*g = —i|z|g". O
Now let us show that IV is normal. First, we have that D(N*) = D(N").

Clearly IV is not self-adjoint (it is not even symmetricas N — N~ C #4). However, it is normal

as
NN f(z) = N(=ilz|f'(2)) = —i(=ilzllelf'(2)) = —2*f"(2) - 22f'(x)

and
N'Nf(z) = N'[-i(|z| f(z))] = —2*f" () — 22" (z)

We also have
D(NN") = {f e DIN")|N"f e DIN)} = {f € L*(R)|, ||/, z° f" € L*(R)}

and D(N".N) is exactly the same.

Thus, we have found two unbounded self-adjoint operators H, K such that o(K) No(-K) C

{0} for which N = HK has a normal closure without being essentially self-adjoint.

3.4 What went wrong?

In the Counterexample above N (actually, it is N which is normal but we keep on denoting it
by N) is a normal operator and so according to Proposition 17 there is a unitary transformation,

say U, that diagonalizes N. In other words via U, N will be unitarily equivalent to a multipli-
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cation operator by a complex-valued function. So here we find U explicitly and use the whole

machinery to investigate what goes wrong in the proof of Theorem 25.

Proposition 22. Let N be the normal operator defined on D(N) = {f € L?*(R) : zf' €
L?(R)} by Nf = —i(|z|f). Then N is unitarily equivalent to M = M, & M_ where M
is defined on L?(R)) by M f(s) = (s — %) f(s) and M_ is defined on L*(R) by M_f(s) =

(s+ %z) f(8). The required unitary transformation is given by
Uf=Us+fr®U-f-

where f. is the restriction of f to R*, f_ is the restriction of f to R™. The operator Uy is
defined by Uy = F~'V where F~! is the inverse L2-Fourier transform and V : L*(Rt) —
L?(R) is the unitary operator defined by

(V) = €2 f(€)
and U_ is defined by U_ = F~W where W : L>(R™) — L?(R) defined by

(W) = e 5 f(e™).

Proof Since we have the decomposition L2(R) = L*(R*) @ L?(R™) then N may be written
as Ny ® N_ where N, satisfies Nyh = Nih — ih and N_ satisfies N_h = NXh + ih. Let
X € o(Ny) then A = X —4 which gives S\ = —1 i.e. o(Ny) € {a— 3ila € R} (it is actually

equal to this set as we will see later).

Now let us try to find the eigenvalues of the operator Ny. We have —izh/ — ith = Ah or

%%2 = i()‘:’) hence h(z) = cz~ 2+ where c is arbitrary and where o = A + 4. This h is

clearly not in L2(R*) hence we do not have any eigenvalues but this try will allow us to find

the unitary equivalence of N. It is done as follows. Define

UsH)(u \/_/ —3+i% £ (1) dg where f € L2(R™) (%)

The previous equation is a well defined Fourier transform in L?(R) by making the change of

variable = = e in (*). We then get:
U+ F)(w) / (3 ()] d.
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It is well-defined in L2(R.) since

2—etet2=°°.’1:29:00
Zlg(t)l dt—! |Feh) Pt /0 1f(2)Pdz <

where we have made the change of variable ¢t = Inz and where we have set g(t) = ezt f(eb).

The inversion formula is then
9(0) = o= [ U D du.
Vor J

Hence we obtain

F(t) = f(et) = \/—12_; / (U f)(w)e 3=, (33)
R

Let us check that via equation (3.3) N, is unitarily equivalent to M. that is in the proposition

above. We have F'(et) = e'f'(e') = z f'(z) and at the same time

1 1 1, .
F'(t) = —= [ (=5 = @w)(Usf)(w)e™ 2" du.
V ZWZ 2
Hence —iF'(t) — iF(t) = —\/12=7T J(—u-— %i)(U+f)(u)e"%t‘i“tdu. Then
R

Ny (@) = =iaf (@) = (&) = = [ (u= g0 e ¥ du
R

Thus
UrNef(s) = (5 = 50U )(s) = (MyUs1)(s).

So N, is unitarily equivalent to M, and the unitary operator is given by (3.3) and hence
o(Ny) = {s — Li|s € R}. The proof for the case L*(R™) is very similar so we shall not do

it. We just give the unitary operator in this case which is

flet) = — [(U_p)wertt=ivtan
'y

and hence o(N_) = {s + 3|s € R}.

In the end N = N, @ N_ is unitarily equivalent to M = M, & M_ where M, f(a) =
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(~a— $9)f(a) and M_f(@) = (~ + §i)f(@). Thus
o(N) = o(N)Uo(N-) = {s — zils € R}U{s + %i|s € R}.
O

We have constructed this unitary equivalence to use it to investigate what goes wrong in the
proof of Theorem 25 if we want to prove the same result for operators that have normal closure

and that are essentially self-adjoint.

The first thought is the closedness of the operator. Truly the closedness plays a role in making
the result untrue but there is something else that is in the proof of Theorem 25 and that is we

cannot restrict K to Hg since Hp is not a subset of D(K).

Lemma 9. Let Pg,, be the spectral projection of the normal operator N that is defined in
Section 3.3. Then Hr = P H is not a subset of D(K).

Proof. We need to find an f that is in Hg and not in D(K) ie. zf ¢ L?(R). It suffices to do
this in L2(R*) and we also denote the spectral projection for N *+ by Pg,. The operator M

has R x {—%} as spectrum. So its spectrum lies in a line.

Also since the multiplication operator, M, has the multiplication by a characteristic function,
say 1;_, as its spectral measure (Example 13) and since V is unitarily equivalent to M then
it follows that Pp,, is unitarily equivalent to 17, (™ and —m represent the intersection of the
disc of radius R and the line y = —%) via the transform defined in (3.3). Let us call that

transform F'. Then we have
FPg F~! =1, where I, = [-m,m].
Hence Pp,F~! = F~'1;, . So forg € L?(R*) one has
f=PpFlg=F11,4

We observe that to say that f € Hp or Ff = 1;_g,9 € L2(R") is the same thing hence we

seek an f such that F'f(s) = 1 on [0, m] and zero otherwise (we have taken g = 1(g ;) such
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that of ¢ L2(R¥) or e’ f(e') ¢ L%(R). By (3.3) we have

fe = = [ et =
- Vor Jo it\/2m

6_%t(1 _ e—imt)'

Of course
fe L2 (R*) but el f(e!) ¢ L2(R)

. t t
/|—,1£e%t(1 —e7M)|2dt = / _et_(2 — 2cos(mt))dt > / %(2 — 2cos(mt))dt = oo.
1
R R R+
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Chapter 4

Self-adjointness of the perturbed wave
operator on L(R?)

4.1 Introduction

There are many classes of unbounded real-valued V's for which —A + V is self-adjoint (see,
[3], Section X.1 to Section X.6) which is very important in quantum mechanics. Many of those
results exploit the fact that —A is positive (see, e.g., [19]). What we will be doing in the next
two chapters is to investigate the self-adjointness of O + V' (there is no need to say that it is
easier to prove that something is self-adjoint than to prove that it is not). This work may not
have any direct application to another science and for the moment it is only a mathematical

curiosity.

We will also observe the difference between the wave operator and the Laplacian in the way
they behave. There is also another difference that is worth mentioning that is: the Laplacian
is a positive operator while the wave operator has no sign. In the end we will also give a

counterexample showing another difference.

In this chapter we are only interested in the case L2(R?). We want to find a class of unbounded
V : R? — R such that O + V is self-adjoint on D(0O). For V essentially bounded the result
is true either as a consequence of the Kato-Rellich perturbation theorem or as will be shown
below. We also recall that O + V is essentially self-adjoint on C§°(R?) (see the discussion
after Corollary 4 and Remark 11) if
0? 8? :
(@ - 530_2) U(z,t) + V(z,t)U(z,t) = £iaU(z,t) (o > 0)

has a unique solution in L2(R?) (that is U = 0) and eventually self-adjoint on D(0J) N D(V)
if we also prove that O + V is closed on D(0O) N D(V).
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4.2 First class of self-adjoint L1 + V'

Remark 19. The natural domain of V is {f € L2 : V f € L?}.

Proposition 23. Let 1 be the wave operator on L*(R?). Let V € L°°(R?2) be real-valued.
Then O + V is essentially self-adjoint on C3°(R?2).

Proof. We shall attempt to solve the adjoint equation directly by using the Fourier transform.

We need to show that the following PDE
Ou +i0u =Vu 4.1)

has a unique solution in L?(R2) that is, u = 0. Put M = ||V||c. We also choose a > M.

Now take the Fourier transform in equation (4.1) and we get:

(- + 2 £ ai)a= V.

Then

I(=n% + €2 £ ad)alla > eldllz = a|ull2.
Also

1(=n% + €2 £ i)l = [[Vullz < M|ull2.
Hence

0<alullzs £ M|ull2 = (M = a)|lulla >0=u=0.
O

Remark 20. The result is true in any dimension n > 2 by the same method and for any con-
stant coefficient symmetric partial differential operator. Also, it is known that a multiplication
operator by a real-valued essentially bounded function, when added to a self-adjoint operator,
does not destroy its self-adjointness. In fact, it is an immediate consequence of the Kato-Rellich

Theorem (Theorem 19).

First recall that O is an unbounded self-adjoint operator on D(0) = {f € L?(R?) : Of €
L?(R?)} by means of the Fourier transform (c.f. Example 11).

We now we give the first class of unbounded V's for which the operator (J + V is self-adjoint

on D(O) but before that, we get classes of real-valued V for which Tg}y + V is be self-adjoint
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on
82

B%p
D Ozly

)={p e L}(R?): 520y © L*(R?)}.

And then the results for O will follow by a change of variables.

Definition 35. Set

”_ 2 2,3290 2192

and set
M? = {p € L*(R?) : Op € L*(R?)}.

. 82
We also denote by p, the function 53?8%'

Proposition 24. For all a > 0, there exists b > 0 such that

2

32
2N+l 4.2)
2

0xdy

ess sup / lo(z+ Ay +N)|?dA < a
z,y€ER
R
forall p € M2,

Proof. We shall first prove the proposition for C§° functions then extend the result to functions

in M'2. Let ¢ € C§° then we have the following identity for

o(z,9) =/z/typw(x,t)w(s,y)—so(s,t>

which is an easy consequence of the fundamental theorem of calculus. We also note that s and
t are yet to be chosen.

We have

Z+A  py+A
o ryt = [ [ prpat A0+ ey N oo
S t

where A is a real number.

Then

z+A Y+
lo(z+ Ay + V)| < / / 1ol + [o(@ + A Ol + (s, 5 + V| + (s, 0. @3)
8
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But applying the Cauchy-Schwarz inequality, Corollary 1, gives us

RS WPYTRS } T+ py+A 9 % 1 1
/ /t ol < (/ /t |p|) (z+A— s F(y + A— e},
S 8

Squaring both sides of Equation (4.3) gives us

z+A  py+A
lo(z+ My + NP <@ / / 1121 + A= s)(Jy + A — &) + g + 2 6)]?
s t

+&lp(s,y + M) + &ew(s, )]

Now we choose sand t suchthatk +z < s<k+z+landk+y <t <k+y+1where
k € Z and take A suchthatk < A< k+ 1. Then|z+ A—s|<land|y+ A —t| < 1. So

\ stktl ytktl \ \ \
p(e+2, g+ )| <c( / / 1pI2 + @+ A )2 + lo(s,y + M| +|so(s,t>|)-
y+

Integrating in ), s and ¢ in their respective ranges gives us

k+1 T+k+1 k+1
/ lo(z + N,y + N)|%d) < E/ / ol + E/ / lo(z + A, t)|%dtdX
k - Ja+k R k R

k+1 z+k+1
+C / / lo(s,y + N)|PdsdX + ¢ / / lo(s, t)|2dtds.
k R r+k 4

Now sum in k to see

[ otz + 2y + NP < el + el @4

Taking the essential supremum of both sides in z and y in R establishes (4.2).

We now proceed to make the constant in front of || g;g% ||2, in (4.2), arbitrary.
Set o, (z,y) = ¢(rz,ry), r > 0. Then one gets

sup /|c,or(x+)\ y+)\)|2d)\— — sup /|<p (rz + A, ry +rA)|2d(rN).
ar:,yeRR z,y€R
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Also

(X, Y) |’
Ox0y

dXdyY.

pr(z y) _
“ozoy | W= //
R2

8p(rz,ry) |’ _ .2
R2

Finally,
1
liorll3 = =5 ll

Applying (4.2) to ¢, gives us

- 1
es8 sup / lo(z + Xy + NP < Sl + = lolZ]
z,yeRR r

Since r is an arbitrary positive number we can take the constant in front of ||p||3 arbitrary.

We now show that using a density argument one can extend this result to functions in M'2.

Let f € M'2. Then there exists a sequence, ¢, of functions in C§° (Remark 7) such that

82<pn
dzdy Oxdy 9

l¢n = fll2 — 0 and \

We can then extract a subsequence ¢y, such that ¢, (z,y) — f(z,y) ae. . On the other
hand

lonlz = Iz and || 222
0zxdy 0z0y ||,
Now, for all z, y and k we apply (4.4) to @p 1) to get

/ On (@ + Ay + NPdA < a

2
‘ % 0n (k)
R

2

But

/ 1f(z+ Ay +2)2dr = /likm inf |@npy (T + Ay + A)|2dA.
— 00
R R

Applying Fatou’s Lemma tells us that for a.e.

/If(z F Ay )‘)IQd/\S li]clllillf/lwn(k)(z Ay >‘)|sz
—00
R

2

. on(k) 2
ghkrggéf a 520y 2'|‘b||<Pn(lc)||2
/ Y51



Self-adjointness of the perturbed wave operator on LZ(R?)

Taking the essential supremum in z and y establishes (4.2) for functions in M 2, O

We now give the first class of unbounded V's.

Theorem 27. Let O be the wave operator in L2(R2). Suppose V is real-valued such that
IVI|2 = [ sup|V(n,€)|2dé < oo. Then O + V is self-adjoint on D(O) = M? C L*(R?).
R n€R

Proof. Set

p(z,y) =9 (xgyz—;ﬂ> =9, §)

(then % = 1% where O is %’z ~ 8%2, )
We have
1volE = [ 1vin €y, e)Pande.
R2

We also have

/ IV (n, )6 (m, €)[2dn < sup [V (n, &) 2 / I (n, €) .
neR &

R
But
/ p(n, )2 = / (o + &1 — €)[2dn = / oA+ € A — E)Pd.
R R R
Hence
vulg< | lsupww,af / |¢<A+5,A—e>|2ou] d.
neR
R R
Therefore

IVll3 < sup/ltp(/\+€,/\—£)l2d/\ usnpr(n,E)lzdﬁ} :
EGRR neR

Now by Proposition 24 one obtains

0%y

ozdy

2
+ b|I<P||§) :
2

IVyll3 < /supr(n,ﬁ)Izdf <a
R neER

Thus

(allOw|I3 + bllw113) - 4.5)

IVyli3 <é [‘Z:gglV(n,é)IQdﬁ

By Equation (4.5) we can see that D(V)) € D(0). Hence V is [-bounded and since we can
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Self-adjointness of the perturbed wave operator on L?(R?)

make the constant a in front of |||, as small as we like (Proposition 24), we conclude by the

Kato-Rellich theorem (Theorem 19) that O + V is self-adjoint on D(0O). O

Remark 21. In Chapter five we will give another method to get exactly the same norm of V by
using Fourier transforms. We do not want to give this method here since it also works in higher

dimensions so we prefer to leave it until then.

4.3 M" and the space BMO

Now we prove an important estimate that will allow us to say that (0 + V' is self-adjoint for any
real-valued V € L2t¢(R?), Ve > 0.

Before that we show that M2 ¢ BMO(R?). Then it will follow by the sharp maximal
theorem (Theorem 7) that M"2 C LP, 2 < p < oo. We will then deduce that M? C LP(R?);
2 < p < oo. We first have

Theorem 28. Let ¢ € M2 Then o € BMO(R?) and

lellBrmoms) < a

&%y

where a and b are two constants.

Theorem 28 will only be proved for C§°-functions (to get the estimate (4.6) for functions in
M'? we use the usual density argument c.f. the proof of Proposition 24). The following lemma

will be needed in the proof of Theorem 28.

Lemma 10. Fixy; € R and put fi(x) = p(z,y1) where p € C§°. Then f; € BMO(R) with
uniform BMO bound, i.e.,

T <o Z2| +olel
tismom) = | 55|, oll2

Also fix zy then y — g1(y) = ¢(x1,y) is in BMO(R).

Proof. We have to prove ﬁ[ f; 1fi(z) — fildz < c where c does not depend on y;, and where
fi= ﬁ[ J; fi(z)dz . Then we have

1

- 1)(@) = / p(z, 2)dz where f(z) = p(z, 1)

Y
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and where we have the freedom to choose the y that is convenient for us. Then we have

IC ~ Y13 = /R (1 — £ (@) dz = /R | / plz, 2)dz[%dz.
Y

Thus
I(f1 = £)II5 < (w1 = y)llpll3 < oo with the assumption y < y1 .

So (f1 — f)' € L*(R) hence (fi — f)' € L},.(R) and so f; — f is absolutely continuous on
every compact set of R hence continuous. So the average f; — f is (fi — f)(c) where c € I

and such a c exists by the intermediate value theorem. So

(L—-NE)-fH—Ff=(Hh-H)=(fLr— o).

Since f1 — f is absolutely continuous on I, it is differentiable almost everywhere, (fi— f)’ € L*

and i
(i = (@) - (f = F)(c) = / (f1 — £ ()t
and then
(1 - @) = (f1 = ) < / (1 = £ ®)dt < (z — )2 N|(fr = ) llo-
Then
I = (@) = (fr = P < (b= a)FlI(fr = Hll2 = TIZ1I(f1 = £)ll2
and hence

T 6= D@ = (= £)@lde < 11 = 'l

But we have |[[(f1 — f)'|l2 < (y1 - y)% llell2- So in order to find a uniform bound for || f; —
fllBao for this particular I it suffices to take y such that (y; — y)% < ITT{ and in such case we

will have:

i 1= D@ = G=Tldz <l

But our interest is in the function f) itself not in f; — f so from fi(z) — f1 = fi(z) — f(z) —
Fi+F+ f(z) — f (since f — g = f — g) we can find a BMO bound for f; for this particular
I if we come to show that f is BMO. We have

! 7 1 1 1
m/{lf(m)—fldmﬁ U_I/Ilf(m)ldx+I—I—I/I(m/llf(t)'dt)d‘”
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Then

20l
i @) - Tide < 25

So far we have not used the fact that ¢ € L2(R?)! To have a uniform BM O bound for f we
need for instance || f||2 < ¢|I |% (¢ > 0, to be determined). Let us assume that there is no y such

that |y; — y| < ﬁ; and such that the previous inequality holds i.e.

1

€ ——
V’yER, |y1 y| = (b—a)

and
[ et wPdz> .
R

Hence

1
o> [ [ loteo)Pdady > 2 - ) s =
EJR (b—a)

where E = {y € R|y1 — ﬁ <y< (bi—a; + 1 }. To obtain a contradiction it is enough to
choose ¢ = 2||¢||2. Hence 3y € E such that ]%[ J; 1 f(z) = fldz < &l|oll2- So we now have

1 — - -
H /I f1(@) - Tilde < allplla + &l

We do that for all intervals I.

The proof for g; is merely the same.

Now we prove Theorem 28.

Proof. We already have
1 - ~ -~
i/ lo(z,y) — B(y)ldz < é|pll2 + éllell2 :== K

where B(y) = ]—}T J; o(z,y)dz. We only need to show the estimate:

1
I /J PW) - pldy < K

where G = Tﬁﬂ J1xs P(x,y)dzdy. Put R = I x J where R is a rectangle.
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We have ]%[ J; lo(z,y) — B(y)|dz < K then

1 1
_ —3(w)d < — | Kdy = K.
|R| / Icp(x,y) ‘P(Z/)| zdy < |J| /] dy

To finish off the proof we need to bound 1717[ Jr [8(y) — Bldzdy by K. We have

1 1 1 1
— [ o) -pldy = = [ | \y)dz — — , 2)dzd
|J|/J|so<y) Zldy |J|/J|I|/Iso(xy)x |R|/Rso(zz>xz

_ |17| /J /1 w(m,y)dx_l—}l /R o(z, 2)dwdz
[ ([
i ey 0]
< | [ @ -5 [ ee 2

< ()

dy

dy

dy

dy

dzdy

dz) dzx

1
o(e.9) - 77 /J oz, 2)dy

Si/dezK
1] Jr

by the BM O bound of g. Thus

1 1
_— B(y) — Bld <—/Kda:=K.
|R|/Rl<p(y) Pldy < &l /.

So for all rectangles R in R? we have:
1 _ 1 _ _ _
= / lo(z,y) — Pldzdy = = lo(z, ¥) — P(y) + P(y) — Pldzdy
|R| Jr |R| Jr
1 _ 1 _ _
<R lo(z,y) — P(y)ldzdy + —/ |?(y) — Pldzdy
|R| Jr |R| Jr

that is

llellBaro < allpllz + blle||2,

establishing (4.6). 4

56



Self-adjointness of the perturbed wave operator on L?(R?)

Proposition 25. Let ¢ € M'2. Then for all a > 0, there exists a b > 0 such that

lells < lloll2 + bllell2 4.7)

where 2 < p < 0.

Remark 22. The case p = oo is false as will be shown in Proposition 27 below.

Proof. Let ¢ € M'? hence ¢ € BMO(R?) by Theorem 28.
We also know, by Theorem 7, that ||¢||, < &||M?¥p]|,. So to prove this proposition we are only
required to show that M¥p € LP(R2). We have

|MEp||2 < &lle|l2 so Mt € L? since € L2.

Also by definition of a BM O we have M¥p € L (since p € BMO). So one gets

2 1—2
1M¥oll, < 1MP)13 1M P plloo ™
So Mty € LP. But || M¥o|leo = |l@llBrmo and || MPo||2 < &]|¢]|2. Hence for 2 < p < oo

2 1-2
1Ml < Ellell3 llellsaio

and thus

2 1-2
lells < Elleliz el aro-

We also have by Theorem 28 that ||¢||samo < allpll2 + bl|¢||2 then

N 2 1—2 N 2 1-2
lellp < elleli el gato < ellellz (allollz + bllell2) 7

1
Now take >

p
::1, = - = —
o 2andﬁ 72

and for 2 < p < co we obtain by using Young’s inequality (Lemma 1),

_2
s{lllz + lloll2)?* 77

s

<é

+

: lolle?
- > 1—
lellp < allllZ (ollz + lell2) I
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Then v
ell2? | .(allollz + Blloll2):
lell, < EF2— +¢ — :
2 p—2
So
- - p—2
llell, < Ellelle + €lloll2 + € > llell2-
Thus

lells < allpllz + bll¢ll2-

Corollary 9. Let f € M?2. Then for all a > 0, there exists b > 0 such that

[fllp < allBfll2 + bl fll2 (4.8)

where 2 < p < 00.

Remark 23. Corollary 9 could have been a corollary to Theorem 28 as this latter is true for
@ € M? since we have the elementary fact that the BMO norm (up to a constant) is invariant

under the change of variables we made in the proof of Theorem 27.

Before giving the second class of self-adjoint I + V' we give the following lemma:

Lemma 11. The constant a in (4.8) may be made as small as we would like.
Proof. Take py(z,y) = p(Az, Ay) : A > 0. We get:
1 1
IT@xllz = MBell2; lipallz = Sliellz and lloally = )\_2”‘10”1"
p
Thus the estimate (4.8) applied to ¢ instead of ¢ becomes:
Zn 2
lellp < ad?™ ||Opllz + 627" (lll2, A > 0,p > 2.

Take A small enough and the constant in front of ||TJyp||2 will be arbitrarily small. O

Theorem 29. Let (1 be the wave operator on L>(R?). Let ¢ > 0 and let V : R® — R such
that V € L*t¢(R2). Then O+ V is self-adjoint on D(O).
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Proof. We have by Corollary 9,
lellp < allOell2 + bllellz, for2 < p < oo.

Then by the generalized Holder’s inequality:

1 1,1
IVellz < IVilellells < allVIlgBell + blIVliglell2, for 5 = st

qg= 172_% (this actually means that g — 2 as p — 00).

Since the constant in front of ||(Ji||2 may be made arbitrarily small so that we have a||V||; < 1,
we conclude by the Kato-Rellich perturbation theorem that O + V is self-adjoint on D(0O) =
M2, a

Remark 24. Adding a bounded multiplication operator by a real-valued function does not

destroy the self-adjointness and we have:
Proposition 26. Let V € L*<(R?) + L®(R?2) be a real valued function, € > 0. Then O +V
is self-adjoint on D(O).
Proof. We have
lellp < allTepll2 + bllpll2-
Put V = Vi + Vo where V; € L?*¢, V, € L. Then ||[Vpll2 = ||[(V1 + V2)¢||2 and by the

generalized Holder’s inequality (Proposition 1)

IVella < IVill2+ellellp + IVallollellz < allVill2+€lBellz + ([[Valleo + ) lIll2-

Since we can take a as small as we like, (0 + V is self-adjoint on M2 by the Kato-Rellich

Theorem. O

Example 17. Let s > 1. Take V(z,t) = (2%2)2_- Choose € > 0 such that % < 2. Then
x<+414)2Zs

V € L¥*€ 4 L™ and hence O + —1— is self-adjoint on M>.
(22+12)%s

4.4 Counterexamples

It was mentioned in Remark 22 that a function in M’2 needed not be in L. So we have
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Proposition 27. Let p € L?(R?) such that 36;23% € L?(R2). Then ¢ need not be essentially
bounded on R2.

We give two methods of how to do this. First we give an explicit counterexample that we

construct in the following proof:

Proof. We are going to build up the counterexample by using a linear interpolation. We define

(z,y) — o(z,y) on R X (yn, Yn+1] by

0(@,4) = ———— [y — 9) fas1() = (U — Ys1) ()] Where fu(z) = (2, yn)
Yn+1 Yn

and the f,, and y,, are to be defined below.

Observe that ¢ is only defined for y > y; := 0. At the end of this proof we will extend it to the

case y < 0 by a symmetry.

Hence on R x (0, c0) we have

lelly = // o(z,y)|*dedy = Z // (z, y)|*dzdy

R x(0,00) PR (¥nsYn+1]

In order to have ¢ in L2(R x (0, 00)), it is sufficient to have

> (yns1 = va) (Ifall3 + [ Fns11) < oo.
1

We also have

0 "2 _ 1 1 /
3aty OV = 5y (@)~ £2@):

In order to have %23’3 in L2(R x (0, 00)), it is sufficient to have

P -~ ||¢nl|2 < 00 where ¥n(2) = fa41(z) — folZ)-
1 n

We are going to to define f, by first constructing 1y, then putting fr(z) = Z Vi ().

We also want f,, ¢ L®(R) so that ¢ L®(R?2).
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Take
n 1 .
S if —e"<z<0,
Yn(z) =¢ -z 4+l if 0<z<e™,

Hence ||¢)||2 ~ %’; and ||9n |2 ~ e—;} We also have

p

S e .
||fn||2<2||¢kn2=az-—~/ sy [Tetan
n

Now if we choose yn+1 — yn = €™ then the series

o0 o0
=2 — x —_— = obviously converges .
21: ™ II%IIz Z 21: y g

And so does the series

% o e—(n+l)  mn @ g

Z(yn-i—l - yn)(”fn“% + Ilfn+1||2 Z ( +1)2 7 + ne ] ~ Z n2

1 1 1

Now the ¢ defined on R X (yn, yn+1) is given by
o(z,y) =€ l(y — Yn) (—Z wk(w)> — (¥ = Ynt1) <—Z wk(w))] :
n+1 n

This ¢ is actually defined only for z € R and y > 0. To extend it to the case y < 0 we define
pforx € Rand —yn41 < y < —yn, as follows:

0(2,4) = ———[(y = ¥n) far1(2) = (¥ = Yns1) f(@)]-

Yn+1 — Yn

This ¢ is clearly in M’2, Now we need to show that ¢ is not in L*°(R2). Let z > 0 and
z<eFthenlnz < —korlni > k. So

|In —J k |In —J [In lj

fa(z) = —mZ—+Z (-z +1)Z

k=n
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But

1 1 1 1 1
= - — - = it — -1+ =+... .
k lek Xlzk Pt g - Uttt =7)

But from 1 + § + ... + 2 ~ Inn + v (here y represents Euler’s constant) we have

oty 1 1
Z Ewln[lnEJ+’y—(1+§+...+

n

1

n —

)-
Now as ¢ — 0 then [In1] — oo hence In|In1] — oco. Thus —fn(z) — 0o which implies
that o(z,y) — co. So ¢ ¢ L®(R2). O

Remark 25. This counterexample found is actually a BM O function by Theorem 28.

The second method is proving the existence of such a function without exhibiting an explicit
one. It is done as follows:
Proof. First, consider f : R2 — R such that

1

flu,v) = TH o]

The function f is obviously positive. Besides, it does not belong to L?(R?2) ! since

1 fo'e} fo's) 1 R R 1
—  dudv > —  _dudv = li — dud
//<1+|uv|>2 ‘“’-/o /o 1 +uv)2 Rféo/o /o 1+ w2
R2

But
1 1 R

R
1 _ 1 -nr_1_ _
/0 (1+uv)2du_[ U(1+uv) o= v v(l+Rv) 1+Rv’

So

R
R

2> i = i R: i 2 = .

1715 > Jim, [ =dv = Jim i + R = i a1+ R =0

Now by Lemma 2 and Remark 2 we know that there exists 20 > 0, € L? such that+ f ¢ L1.
Since f € L™, 9 f belongs to L? and it legitimate to define ¢ = F~1(3f) where F is the

'In fact f is notin LP(R?2) for any p > 1.
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L?-Fourier transform. By the Plancherel theorem ¢ is in L2. Also

d (afél) = woFp = wvih(u,v) f ().

Since (u,v) — e € L*(R?) and since ¢ € L?(R?) it follows that 277 € L?*(R?)

2
and hence, as a consequence of the Plancherel theorem, one gets that %5‘% € L*(R?).

Before carrying on the proof we give the following lemma:

Lemma 12. Let o € L?>(R™). If ¢ ¢ LY(R™) with p > 0, then ¢ ¢ L=°(R™).
Proof. Let ¢ € L%(R™). Suppose ¢ € L>®(R™). Take
fp,m(f’?) = (¢ * ¥p)gm(z)

where 1, is a smoothing function like the one defined in Theorem 2 that satisfies I¥plloo < 1
(take % = €). We assume that g,, > 0 and it is a C§°-function. We finally assume that g,,, tends

to one pointwise. Then we have fpn € L'(R™) and fpm > 0.

We now apply Proposition 3 to have

”fp,m“l = ”fp,m”oo-

Applying Young’s inequality for convolution, taking $(z) = ¢(—z) and since $ = @ gives us

1 ~
(@ * ¥p)gmllL = @n )g I(@¥p) * gmllo < e lE¥plleoligmll1 < oo.

16 *¥)gmlh < gl

So as p tends to infinity we obtain

(@ * ¥p)gmlls = lPgmll1-

In the end one has

1
oz llolloo-

[ #@gn(@)dz = lpgmlh < o )nusowpuoo_ o7

Rn
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Taking the lim inf of each side and applying Fatou’s lemma and since ¢ > 0 give us that
$ € LY(RM). O

Now we finish the proof. Since F(y) € L2, since it is positive and since F(yp) ¢ L', Lemma
12 allows us to say that ¢ ¢ L. O

Remark 26. One may wonder if p € M'? then under what more conditions ¢ will be in L™ ?

The answer is given in the following proposition:

Proposition 28. Let ¢ € L?(R?) such that 32, %5 and ?T;é% are all in L*(R?). Then ¢ €
LY(R?2) and hence p € L®(R2).

Proof. Let ¢ € L?(R2) such that 52, %‘5 and %25‘% are all in L2(R?2). Then by the Plancherel
theorem we have @, 1@, €@, nép € L2(R?). Hence
(1+ [nl + €] + €)@ € L*(R?) and so

1
L+ |n| + €] + [n€

11l ey = “ (1+ o] + €] + |na|)¢n .
| L1(R?)

1 2 2\ o
But FER I ER e | el (R ) since

/ / dnde _ / / dndg _ dn de
/] (1 + || + €] + Inél)? J9 (14 |nD)2(1 + 1€])? 2 (1+|77l)2R (1+€))?

which is finite, say equal to a positive number ¢, hence by the Cauchy-Schwarz’s inequality

1
p < L+ |nf + & + [7€]) &l L2 (m2)-
1905 < || T 1 171 61 1Dl
So
8l (r2) < clll@llzmzy + M@l L2me)y + 11601 L2(r2) + MBI L2(R2))-
Thus
9? 0 o
ollo < (|| .22 Oe +“—‘° el ) -
020y || 2m2) 110 Iy 119 llL2m2)

a

Now we come to the counterexample that shows that 0+ V can fail to be essentially self-adjoint
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if V € L? (RZ) and we have:

loc

Proposition 29. Let O be the wave operator defined on L2(R?2). Then there exists a real-valued
V,V € L2 (R?) such that O + V is not essentially self-adjoint on Cg§°.

loc

Proof. Basically we want to show that the following PDE has a non-zero solution in L?(R?)
for some V € L2 (R?):

loc
0? 02 .
(@ - %3) p(z,t) + V(z, t)p(z, t) = 2ip(z, 1).

By Example 16 we can say that the following ODE:

d? 4

—Wf(x) -z f(z) = if(z) 4.9)

has a non-zero solution in L2(R). And we can say the same thing about

d? 4 .

Now by multiplying (4.9) by g(t) and (4.10) by — f(z) we obtain:

2
~g(t) 3 (x) — * f(2)g(e) = i (2)(2) @.1)

and )
F(@)259(0) + £ F(@)g(0) = i () (t). (4.12)

Now by adding up (4.11) and (4.12) we get
02 02 4 P _
(& - 2) F@90 + (¢ =Y @) = 21 @a). @13

Take @(z,t) = f(x)g(t). Since f, g are both in L2(R) then ¢ will be in L?(R?) and (4.13)
will have a non-zero solution in L2(R2) with V' (z,t) = t4 — 2% € L? (R?).

loc

Thus 3%27 - 3%27 + t* — z* is not essentially self-adjoint on D(0). O
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4.5 Open problems

1) Let V be a real-valued function such that V € L2(R2). The question is: is [0+ V essentially

self-adjoint on C§°?

This is more likely to be wrong since we did not obtain (for p = c0)

I£1lp < allTf 2 + bll fl2,

which would have allowed us to conclude that (J + V is self-adjoint for V' real-valued and in

L%(R?) or essentially self-adjoint on C{°.

It is worth mentioning that —A + V is self-adjoint on D(—A) ¢ L?(R3) (c.f. Example 14)
and the proof of that exploits

Iflloo < all = Afllz + 11 fll2

(Theorem 6) and the Kato-Rellich theorem.

So one may even conjecture that if for some self-adjoint partial differential operator P one does

not have an inequality of the type

Iflloc < allPfll2 + bIlfl2,

then there exists a real-valued V, V € L2(R™), n > 1 for which P + V is not essentially

self-adjoint on C§°.

Now we go back to our open problem. One way of showing that [J + V is not self-adjoint (or
at least not essentially self-adjoint on C§°(R2)) is to construct a V which is in L2(R?) and not
in L*(R?) for s > 2 and show that

2 2
(% - %) 7(@,6) + V(z,0) f(z,1) = £if (z, )

has a non-zero solution which belongs to L2(R?2).
2) If V > O is real-valued and in L2, is O 4 V essentially self-adjoint on C§°?

loc?

If V > 0 we cannot use the same method as the proof of Proposition 29 since it is known (see
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[19]) that for V > Qand V € L? —Ji—zy + V is essentially self-adjoint on Cg°.

loc

This question too has probably a negative answer. A possible counterexample would be V (z,t) =

|t* — z*| but one has to investigate that.
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Chapter 5

Self-adjointness of the perturbed wave
operator on L>(R™),n > 3

5.1 Introduction

In this chapter we investigate the self-adjointness of 0 + V for n > 3 and V real-valued and
unbounded. The wave operator worsens in higher dimensions and as a result we will have

smaller classes of V's and hence more open problems.

5.2 A class of self-adjoint (] + V on L*(R"),n > 3

Definition 36. We set

M™ = {u € L*R") : Ou, as a distribution, is an L*(R™) function }.

We first start by the case n = 3. Before we give the first proposition let us discuss the following

Cauchy problem:

(... Ut — Ugpy — Uyy = f(z,y,1), (z,y,t) € R? x Rt
u(x, Y, O) = cp(:r,y);ut(:c, y,O) = 1/1(337 y)'

Now let us take the Fourier transform of (I) in the (z, y)-plane only. We get:

(f) 'att+ (772'*'52)&: f('l’],f, t)
a(n,€,0) = ¢(n,€); t(n, €,0) = P(n, €).

() is a second order ODE in ¢ with constant coefficient (with respect to t) and it has the
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Self-adjointness of the perturbed wave operator on L2(R™),n > 3

following solution in the homogeneous case:

i ¢(8) = B, €) cos(t /7P T ) + \}’—n%%; sin(tv/7? 1 &2).

Then by using the Duhamel’s principle the general solution of (f ) will then be:

Tne(t) = @(n, &) cos(tv/n? + €2) + \/z__sm(t\/n + £2)
/ it S) o ST E( - (5.1)
” Vi + €

The previous holds for ¢t > 0. Also for ¢ > 0 (I) becomes, after setting @(z, y, t) = u(z, y, —t),

@ U — Ugz — Uyy = (2,9, —1), (z,y,t) € RZ x R~
T a9, 0) = o(z,y); @z, v, 0) = —¥(z,y).

Now we “fourier” everything in the (z, y)-plane to obtain

f) ﬁtt+(772+§2)'t:t= f(ﬂ, 67 _t)
&(77, ga 0) = 95(77) &), ﬁt(na 6: 0) = _’&(na 5)

which has the following solution:

dne(—t) = Ung(t) = @(n, ) cos(tv/n? + €2) — _lp\/n(2’7’=§)2 sin(tv/n? + €2)
(5.2)

L sin P E Rt = 9)
+ O f(’r”€7 m

and this holds for ¢ > 0. After adding up (5.1) and (5.2) one gets (sfill fort > 0)

t Y w1
inclt) = 2001, os P E) + [ fnei )Y
. (5.3)

=t sin/n? + €2(—t — s) .
+ o f(ﬂaﬁ, S) \/m ds — u‘r],ﬁ(_t)

Now Equation (5.3) is unchanged if ¢ is replaced by —t. So (5.3) holds for all £ € R.

Now we can change our Cauchy problem by introducing different initial conditions mainly for
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the ¢ variable i.e. instead of working on the intervals (0,¢) and (—t,0) we will be working on
(452,t) and (o, 2) where a is any real number that will be chosen freely (observe that if we

set o = —t then we go back to the initial problem).

Now given u € C§° we can regard u as a solution to the Cauchy problem with u € C§° where

f = Ou, u(z, y,0) = (z,y) and us(z,y,0) = ¥(z, y). Then (5.3) will be:

A, €, 6) = 20(n, &, =) cos [\/W (“Ta)] — a(m, € &)+

5.4)
5 sin 17 +§2 t—s) n\/n2+§2(a—s)

t

Proposition 30. For all a > 0, there exists b > 0 such that
eSng}I{”“(-, s )ll2mey < allOull 2rs) + bllullL2(rs)
forallu € M3,
Proof. We shall prove the proposition for functions in C§° first then the result follows for

functions in M since C$° is dense in M3 in the graph norm of O (c.f. Remark 7 in Chapterl).

We choose « such that |t — | < 1 and one then obtains:

(o

t ~ ~
4,601 < 200 & TN +e [ 17 g s)lds+¢ [ 1Fn,6,9)lds + faln.&, o)l
’ ’ (5.5)

where we have used the fact that |ﬂ"7)—(-| < 1. Using Cauchy-Schwarz inequality shows that

[an,€,8)| < I(n,ﬁ,H—a)|+C< L. If(n,5,8)|2d8> +a( [ |f(n,s,s>|2ds)

+éli(n, €, o).

Now square the previous inequality to get

o0, 6,0 < laCn, &, D v [ 1706 s+ [ 1o )fas 6

+éla(n, € )%
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Then integrate (5.6) with respect to 77 and £ in R? to obtain

// [a(n,€, &) Pdnde < & / i, &, 5% Pandg + & // /; \F(n. &, ) Pandeds-+

// / |£(n,€, 5)[*dndéds + & / la(n, €, )| %dnde.

.7

And hence

/ [ 1o, ¢, t)Pande < 2 / [ 1atn,&, 5% Pnds + ¢ / / |f(n,&,5)[2dndeds

+& / [ 1atn,¢,0)Pdnde.

Now integrate everything with respect to « in the segment |t —a| < lie. t—1<a<t+1

to get:
t+1 ) el A i+
/ / lu(n,é,t)lzdndfdasC/ / |a(n, & —— )|>dndédor
=1 Re t-1 JJ
t+1 R 1
+a/ // |f(fi,§,8)|2dnd§dsda+é/ / la(n, &, ) 2dndéda.
=1 RS t—1 o
Hence

//Iﬁ(n,f,t)IandE < c// |ﬁ(n,§,t+°‘)l2d déda
R2 RS

+c / / |£(n,&, s)|2dnd€ds + & / / |a(n, €, o)|2dndéder.
R3 R3

Thus by the Plancherel theorem one has:

lus - )l 2(ray < allBulZzms) + bllulzems)- (5.8)
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Taking square roots of both sides then the essential supremum in ¢ over R:

eSSqu}z llu(.s - llL2(rz) < allOulfz2rs) + bllullL2(r3)- (5.9)
€
The result for functions in M follows by the density of C§° in M?3. a

Before giving the main theorem here, we first have the following proposition:

Proposition 31. The constant a in (5.9) can be made as small as we want.
Proof. Take ur(z,y,t) = u(rz,ry,rt),r > 0. Then
oDy = [ [ ur(e,,8) Py = / [u(re, ry, rt) Pdady
R2

/ [ Stutraryr)Paeradcry).

which implies that:

1
"uT('a " t)||L2(R.2) = ;“ur(’ .,Tt)”Lz(Rz).

We also have:

||Ur||%z(Rs) = /// lur (2, y,t)|2dzdydt = /// [u(re, ry, rt)|2dzdydt
RS RS
= %/// |u(ra:,ry,rt)|2d(rm)d(ry)d(rt).
R3

that is

1
llurll2(msy = r_%”u”LZ(RS)-

Finally

0w Axny = [ [ 10ur @y, ) Pdadydt = [ [[ r*1utra, vy, r) Paadyar
RS R3

- / / / r[Cu(re, ry, rt) 2d(ra)d(ry) d(rt).
s

Hence

10ur || 2(rsy = V7 IIOu|lL2(msy-
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Self-adjointness of the perturbed wave operator on L(R™),n > 3

Thus (5.9) ! becomes:

1
Fosssup [u(. - 78) || 2(mzy < av7|Oullzzrs) + —b||u||L2(R3)-

Or

3
esssup |u(., ., 7t)|| L2(r2) = esssup [Ju(., . t)llL2r2) < ar2||Oull 2rs) + —= ||u||L2(R3)
teR teR va

Choosing r small enough makes the constant in front of ||[Ou|| 2(rs) arbitrarily small. d

Now we have the following theorem:

Theorem 30. Let O be the wave operator defined on L*(R3). Let V be a real-valued function
such that f v, ,t)]le(Rz)dt < 0o. Then O + V is self-adjoint on D(0OJ).

Proof. We have by the generalized Holder’s inequality:
/ |V(:l), Y, t)u(m) Y, t)lzdxdy S ”V(’ '7t)”%°°(R2) ”u('a " t)”%'Z(R2)
2
<ess ?gg”u(: "t)“%P(R?)(”V(', B t)”iw(Rz))'

Then
IVullfz(rs) < eSSfélRPIIU(-,.,t)lliz(m)/IIV(-,-,t)IIiw(Rz)dt-
R

Therefore,
IVaullZe(rs) < (R/“V(-,-,t)“%oo(m)dt (a“Du”%%RS) + b”““%z(RS)) :

Since we can choose a small enough to have a f V(o) (r2)dt < 1 we conclude by the

Kato-Rellich perturbation theorem that [J + V is self-adjoint on D([J). O

Remark 27. It has been proved previously that 0+V is self-adjoint on D(O) for V real-valued
and [ _|[V(, )3 Too(R)4Y < 00 (Theorem 27). So Theorem 30 is an analogue of that result.

'We use u, instead of u in (5.9).
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Besides one has another method to find that norm of V' as the method in this work is applicable

to the two-dimensional case and even to any dimension and we have:

Proposition 32. For all a > 0, there exists b > 0 such that

ess féllg llw(..., )l 2mny < allCullp2(rn+ry + bllullL2ma+ry

forallu € M™+1, n > 1.
Proof. The same as for Proposition 30 with the obvious changes. O

We also have the following theorem whose proof is a word for word translation of that of

Theorem 30 2:

Theorem 31. Let O be the wave operator defined on L2 (R™*1). Let V be a real-valued
function such that [*°_||V(...,t) ||%°°(Rn)dt < 00. Then O+ V is self-adjoint on D(0O).

We also have

Proposition 33. Let V| be as in Theorem 31. Let Vo € L®(R™) and real-valued. Let
V = Vi + Vo. Then O + V is self-adjoint on D(0J).

Example 18. Take V(z,t) = I—Il_{ where x € R™ andt € R. Then O + V is self-adjoint on
t
D(O) since

1 1 n xz,t 1 n z,t
Ve, t) = — = Vile ) + Vale, £) = {(zeR ,|t|f1}( ) 4 Lzer ,ltlfl}( )
It]2 || |t

The result then follows since [°_||Vi(..., t)||%°°(Rn)dt < oo and Vo € L®(R™T1),

We can also improve the norm on the left hand-side of the inequality in Proposition 30 in order

to get a better norm of V' for which the operator (J + V will be self-adjoint. We have:

Proposition 34. For all a > 0, there exists b > 0 such that

o0
D> ess sup |u( - t)l1Fa(may < allBullfzms) + bllulliz(rs)
k<t<k+1

k=—00

forallu € M3.

2The only difference lies in considering the Cauchy problem in R™ x R™*.
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Proof. Letu € C§°. We have by (5.7)
2 N t+a, 4 t R 9
“u(a -)t)"LZ(R2) S. a |u’(77a€) T)l dndf + b tho |f(77)§y S)| dﬂdfdé""
R? ? R2

c [ [ 1fmg o)andeas + a [[ 1an, &, oands.
Z R2 RZ

Letk € Zandlettandabesuchthat: k <t <k+landk<a<k+1l(then|t—a| <1

which does not contradict our choice). Then k < H‘T" < k 4+ 1 and so:

t R k+1 A
Lo [[ im0 Pandeas < [T [ 17n.¢,5) Pandeds since (£52,¢) < (i)
* R2 R2

and

o . k+1 A
/ﬂ //|f(77,§,8)|2d71d§ds < /k / |£(n,€, s)Pdndé&ds since (H—Ta,a> C (k, k+1).
T Rz 2

Also

k+1 t+ o trktl )
[ [ ame S randsaa=2 [ 7 [[ tatn, e ryanagar
k ttk

R2 2 R2

k+1
32/ /Iﬁ(n,ﬁ,r)lzdndédrsince (t;k,t+§+l)c(k,k+l).
k
R2

Then we get
k+1 ) k+1 . \
lu(e o D)l o) < & /k / (a(n, €,r)|2dnd€dr + & /k / 1£(1,€, ) 2dndeds.
R? R2

Hence

k+1 k+1 X
e sup fu( Dl <e [ [[1amenPandsarse [ [[ 176 oandeas.
R? R2

k<t<k+1

Thus

o0
> ess sup lul,. )lFxme) < allDullfgs) + bllulliz(as
(R?) (R3) (R3)
o kSt<k+l

where we have used the Plancherel theorem and the fact that uyy — uze — uyy = f(z,y,t).
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Using the usual density argument allows us to obtain the desired result for M 3 functions (see

the proof of Proposition 24). O

Theorem 32. Let O be the wave operator defined on L?(R3). Let V be a real-valued function

k+1
such that sup/ v, ., t)||%w(nz)dt < 00. Then O + V is self-adjoint on D(D).
k€Z Jk

Proof. We have

o k+1
WViltswsy = Y. [ [[ Vv 0u@v.0Pdedyat
k=—o0 k Rz

oo k+1 9 9
<Y [ I O IV Dl equny
k=—00

Hence
k+1

luC o D222y /,c VG DIz oyt

o
||Vu||%2(R3) < Z ess sup
W k<isht

So that

k+1 oo
IVaulZamsy <sup [ VG DlBoqmaydt D ess sup Jul-8)lams
(R3) (R2) (R?)
keZ Jk o k<t<k+1

kt1
< Sup/ IV (s s )1 00 2yt (a”DuH%z(Rs) + b||ul|%2(R3))
ez Jk

where a can arbitrarily small (by the same argument). Hence O+V is self-adjointon D(0). O

Example 19. We show that Theorem 32 is stronger than Theorem 30 by giving an example. We
want a ¢ : R — R such that ¢ ¢ L°(R),

k+1 s k+1
sup/ lo(t)|%dt < oo and Z / lo(t)|?dt = oo.
keZ Jk oo U K
The condition on the right hand side of the last equation means that ¢ ¢ L*(R). We do not
want ¢ € L?(R) only because this case is already included in the class of V s that was found

in Theorem 30.
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Fix—% < a < 0 and define p ineachinterval k <t <k+ 1,k € Z, by

o(t) = (t - k)%

Then o is certainly not essentially bounded on R. Moreover one has

k41 k+1
/ lo(6)[2dt = / (t— k)™t =
k k

200+ 1
Hence
k-+1 9 1 1
su t)|“dt = su = < 0.
And
2+1
=—00

Now take V(z,y,t) = ¢(t). Thus O+ V is self-adjoint on D(0).

Remark 28. The V constructed in Example 19 does not satisfy the conditions of Proposition
33.

Again we have the same results in n-dimensions.

Proposition 35. For all a > 0, there exists b > 0 such that

oo
E ess sup |lu(..., t)“2LZ(Rn) < a||Du||%2(Rn+1) + b“ulI%Z(Rn-{-l)
p k<t<k+1

forallu € M™*1,

Theorem 33. Let O be the wave operator defined on L2(R®*1). Let V be a real-valued
k+1
function such that sup/ ..., t)||%oo(R,,)dt < 00. Then O+ V is self-adjoint on D(0).
keZ Jk

By going back to equation (5.4) we can do more, i.e., we have a better estimate than the one in

Proposition 30.

Proposition 36. For all a > O, there exists b > 0 such that
esssup |[u(., ., t)|Lrmr2) < allOul| 2(ms) + bllullL2(rs), where2 < T < 4.
teR

forallu € M3,
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We first need several lemmas.

Lemma 13 (Sobolev’s inequality). For f € H'(R2) the inequality

I£112 < allV flI32(maye + bllf I 72(ra) holds for all2 < q < co.

For a proof see [7] (Theorem 8.5). We prefer here to use a proof which uses Fourier transforms

where we do not care about the constant a because we can always make it as small as we want.

Proof. Since f, 9L, %5 € L%(R2), then by the Plancherel theorem we get: f,nf,&f € L%(R2)
and hence f, |n|f, |€|f € L*(R?) which gives us:

(1 + || + €])f € L?(R?). Now let 2 < g < oo and let p be the conjugate of ¢ (this implies
that1 < p £ 2). So:

1A% 0 2y = 1L+ Il + 1ED7P-(1 + Inl + 1EDPIA Pl (ray-
Then by Holder’s inequality:
11202y < 1+ [l + €D Pl ray- (L + Il + EDPIFPlLs(r2)
(R?) =

where % + % =1.Let
c= (1 +Inl + [ED)PllLr w2
which is finite if pr > 2.
Now define r = 5—3—}) (this gives us pr > 2 so c is finite) and define s = % (the exponents s and

T are conjugate).

We now use the fact that f € H'(R?). We have

1L+ Il + [EDPIFPll s (ra) = //(1 + Inl + [€1)P°| f1P*dndg
R2

p

) J [ @ i+ e frnds | = 1+l + DUy
R2
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Thus for 1 < p < 2 we have:

o 1 A
Ifllzemay < c?ll(L + ] + [ED1fllL2m2)-

Hence

. Los 1 >
| fllerz) < cP I fllzmzy + c? (Il + [ED1fIll 22y

Thus:
£l oy < @l Leeray + EIV Fll2(raye.

Thus by the Hausdorff-Young inequality (Theorem 5), we deduce that for2 < g < oo:
I fllLar2y < allVfllLzr2)z + bl fllL2(r2)-
a

Lemma 14. Let w € L} _(R?2). Assume for all € > O, there exist V, g such thatw =V + g,

loc

IVll2 < deand ||gllq < & ¢, d being two constants. Then w € LY (R?) and

lwllpw < éc+ cd (5.10)
where p = 5‘% and 2 < q < co.
Proof. Let E) = {z : |u(z)| > A}. Then,sinceu =V + g

}-

| >

Brc(e: V@] 2 3} Ule: lo@)] >

So that \
Bl < Iz : V()] 2 5} + {z: o(2)| 2 3}

Then using Chebyshev inequality
|Exl S 4AT2|VII3 + 29279 |g g

But we have the freedom to choose any () > 0. So take €(A) = b (b to be determined).

With this choice we obtain:
|Ex| < (4d®A%72 4 29¢I0A759—9) or
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NP|E)| < 4d?APt20=2 4 90c9)\P—ba=g,

So in order that u belongs to LE,(R?) it suffices to have:

sup[4d? XP+20=2 4 29cI\P~0979] < oo,
A>0

i if b= 2= = 2
which occurs if b = =2 and p = 53%.

Therefore,
2
[wllpw < &d? + &c?.

Finally, apply the same method as in the end of the proof of Theorem 3 to establish (5.10). O
We shall now prove Proposition 36.

Proof. Letu € CP(R3). For a fixed ¢, let w(z, y) = u(z,y,t). We let

V(n,€) = 2a (n,f, ”TO‘) cos [\/772 + ¢ (t >

a)] —'&(7],570‘) (511)

and

t ST (4 — t /P2 £2( oy —
§(n,€) = L?f(n,f,s)Sln \’7/7%% ) s + HTaf(n,é,s)sm :7/7;%? %) s

where f = Ou and « is yet to be chosen. We observe that both V and § depend on a.
Note that & = V + g, by (5.4). It is clear that V € L?(R?) and hence § € L?(R2). We let

(5.12)

V and g be their inverse Fourier transforms, so w = V + g. We aim to apply Lemma 14 by
showing that, given ¢ > 0, we can choose « in such a way that ||V'||2 < de and ||g||q < €. Here,
g will satisfy 2 < g < o0, and c and d will be constants depending on ||u||2 and ||Ou||2. The
estimate for ||g||, will follow from Lemma 13 once we have shown that Vf € L?(R?)? with

suitable estimates.

We shall only consider the term 4 (n, £, &%) cos [\/n +£2 (52 ] in (5.11) and the term
sm 72+£2(t—3) ~
fwTa f(n,&,9) S ds in (5.12) and we denote them by V(n,£) and §(n,§). The

proofs for the other two terms are similar.
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Let us start by showing that V f € L?(R?)2. Since § € L>(R?) and since

nyn?+&2(t—s) sin /12 + £2(t — 5) L°(R2
VEre o e Sl )

then —ing, —i&§ € L?(R?) which implies that % € L?(R?)? since

IVol2sne = [ [ 1V9(a )Pdady = 199123 gy
R2

- / / Ind(n, €) [2dnde + / 1€3(n, €)[Pdnde, but
R2 R2

. b nsin v/n? + E2(t — 5) .y
< [, g NI s < [ 17 olas

2

Then by using Cauchy-Schwarz

t t t L
7901, )] < \/ /... If(n,E,S)Pds\/ [ 125 < \/ [, Vg o)i2dse — al?.

And so

t
2yA 2 o 24 ; 2
15(m O < alt — af /L 1F(n. €, 9)ds.

By applying the same method one will also get
lon, &) < @t — ol / f(m.&, 9)ds.

Now we choose « such that |t — o < Elg Hence

Vg1l 2(may. = / / Ing(n, §)dnd¢ + / / 1€9(n, §)|*dndé

// /_-a-_ (n, &, s)|*dndéds.

Thus
C
IVglir2raye < <[IBull L2(ms)-

In a similar way one gets ||g||z2rz2) < —Cg||Du||Lz(Rs). So for ¢ > 1 we have ||g]|z2(r2) <
€
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£[|Bu|| L2(rs)- In such case we get

C C
llgllz2(r2y < ;”DUIIL?(RS) 50 |9l Lo(r2) < ’€'||DUHL2(R3)

by Lemma 13 where 2 < g < c0.

)sin n2+§2(a—s)d8.

Ve

Now we come back to the case € < 1 after finding the bound for V' which will be needed for

We also obtain the estimates when using f tta n, £, s

the case e < 1.

For V we have

V(n,€) =24 (n,é, El;—a> cos [\/772 +¢2 <

t—a)] , then
t+ o

V1222 < 4 / i, €, 52 Pdnde
R2

and by integrating with respecttoa € {a: |t — a| < 217} one obtains:

t+ t+a .
/ 1V 122 ey < 4 / / / a(n, &, %) Pandeda < 4l ga.

Then there exists o € (t — Elg, t+ ;17) such that

2

IVl Z2(may < and 50 ||V || 2(r2) < delluf|L2(ms)-

€

The same applies to 4(n, &, ) and we will get the same estimate.

Now for the case ¢ < 1 one hastouse § = W — V to obtain

gl r2rzy < EllwllLzmay + IV ||l L2m2))-

Then using the estimate for V/, that is, ||V || .2(r2) < de||ul|L2(r3) and Equation (5.8) give us

lgllzzrzy < allOullL2(rsy + bllull L2(rsy + edllullp2(rsy < E(I|0ull L2(rs) + bllullL2rs))
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since € < 1. Thus

c
lgllLe(r2y < p; (10wl 2(rs) + llull L2(rs)] -
So one has by Lemma 13
lwllpw < Ellullzmsy + El0u||L2(rs)- (5.13)

Equation (5.13) shows that w € L%, and since w € Lﬁ, (in fact, it belongs to L?) then by (1.1),
we€ L for2 <r < pand

lwllr < Ellwllzw + Ellwllp,w- (G.14)

We then get
lwllzr ey < Elwllzw + Ellwllpw < &lwlla + Dullzams) + lullzams):
Now taking the essential supremum in ¢ over R and using Proposition 30 shows that
ess f;l%i”“(" S O)llrw2) < €l0ull2rs) + EllullL2(rs)- (5.15)

Equation (5.15) holds whenever 2 < r < 4 since we have the constraints: p = 2—‘%, 2<g< o0
and2 < r <p.

Finally, to obtain the result for arbitrary ¢ € M? we use the usual approximation argument. [

We also have the result in higher dimensions.

Proposition 37. For all a > 0, there exists b > 0 such that
esssup lu(., - )llr@n)y < al|Oul| Lzgra+1y + bl|uf|L2rn+1)
€
forallu € M™* wheren > 2 and where 2 < r < 22

We are going to need another Sobolev’s inequality in higher dimensions.

Proposition 38. Letn > 2. Let f € H'(R™) then f € LY(R™) for 2 < q < ;2% and we

have:

Ifllg < allV£llzz@nys + bl fllL2mn)-

Remark 29. Observe that the case n = 2 gives us 2 < q < oo which was Lemma 13.
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Remark 30. Observe that the proof in [7] (Theorem 8.3), is true even for the case ¢ = 2%,

n—2

But for our problem we do not mind whether this q is sharp or not.

We also have the following theorem:

Theorem 34. Let O be the wave operator defined on L?(R3). Let V be a real-valued function
such that [ ||V (., .,t)||2,(R2)dt < oo where L = § — land2 <r <4 ThenO+Vis
self-adjoint on D(0O).

Proof. We have by the generalized Holder’s inequality, for % = % + %, 2<r<4:
J[ W@ tyute, .0 dody 1V 01t O s

R2
< ess ngDIIU(-, S Er@ay IV (s o D) Fo(r2))-

Then by using Proposition 36 and by integrating with respect to ¢t over R one gets
WValsqn S @ | [ 1V OBumarde | 10013+ | [ 1V 0l mayde | 1l

Since we can choose a small enough to have a [ ||V (., ., t) ||i°°(R2)dt < 1 we conclude by the

R
Kato-Rellich perturbation theorem that [J + V is self-adjoint on D(OJ). O

Also

Theorem 35. Let n > 3. Let O be the wave operator defined on L*(R™*1). Let V be a
real-valued function such that [%_ ||V (..., t)||%s(Rn)dt <ooforl=1-land2<r< 20
Then O + V is self-adjoint on D(0J).

5.3 Counterexamples:

We show that there exists a ¢ € L2(R™) such that Op € L%(R™) and ¢ ¢ L®(R"™). We
do the same as for the second proof of Proposition 27. So one only need show that f =

m ¢ L?(R™) (in fact f is not in LP(R™) for any 1 < p < 00). We have

12 = / dtdzs...dz, S / dtdzs...dzy,
2T Jre 12 —2f— .. =222 T Jp (L +3f+ .. + 2 —12)?
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where D = {(zg,...zn,t) € R®|zZ + ... + 22 > t2,t > 0}. Now using “generalized polar

coordinates” we get
1112 > c/ / " 2drdt / / r.r"3drdt
2 1+ r2—¢2)2 (1472 -2

2> / "3t / L / ~n 3t =
I7llz > ¢ A . (I+r—e °J, 2 &

Remark 31. As it is known for the Laplacian that if p is in L2(R™) such that —Ayp € L*(R?)
then ¢ € L®(R™) forn < 3 and p € LY(R®) forn > 4 and where 2 < q < 2 (cf.
Theorem 6). Here we show the existence of a p € L?(R*) such that —Ayp € L?(R*) and
while ¢ ¢ L°(R*).

So

Proposition 39. Let ¢ € L%(R?) such that —Ayp € L?(R*). Then ¢ need not be essentially
bounded on R%.

Proof. One only need check that

1
1+a24+y2+22+

(2,9, 2,8) = £(&,9,2,t) = > ¢ LY(RY)

(which is an easy integration exercise). Then one has only to apply the same method as the

second proof of Proposition 27. a

We also show that there exists a real-valued V' € L? (R™*1) such that O+ V is not essentially

self-adjoint on C§°. We have

Proposition 40. Let (1 be the wave operator in n-dimensions defined on L*(R®11). Then there

exists a real-valued V € L (R™*1) such that O+ V is not essentially self-adjoint on C§°.

Proof. We know by Example 16 that — -2 — 7 is not essentially self-adjoint on C$°(R) hence
1
the ODE:

d? .
_d_gfl(ml) -z} fi(z1) = ifi(z1)
Z]
has a non-zero solution in L?(R). We can say the same thing about:

2

_dd_m%fz(m) — T3 fa(z2) = i fa(z2)
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and

d? 4 -
_Efn(mn) — &y fn(Tn) = ifn(zn)

Also the following ODE has a non-zero solution in L2(R.):

L)~ tig(0) = —ig(®)

or

d? 4
Z29(8) +17g(t) = +ig(?).

Multiplying each of the previous equations by the functions that are solutions to other equations.
For instance we multiply the first equation by fo(z2)...fn(2n).g(t) and so on. Then by adding

them up together, we have

2 2
(% - aa—le, — T 5 ) Ji(z1)... fn(zn)g(t) + (t4 Z%) f1(@1)..- Fa(zn)g(2)

k=1
= (n + 1)if1(z1)... fa(2a)9(t)-
(5.16)

Take (1, ..., Tn, t) = f1(@1)...fn(2n)g(t). Since fi, ..., fn, g are all in LZ(R) then ¢ is in
L?(RP*1) and is a solution of (5.16).

n
So V(z1,..., Tn,t) = t* — Zmi € Ll2oc(Rn+1) and

k=1
2 & \
g 2 _ -2 4
52~ 917 axn Zm
is not essentially self-adjoint on C$°(R™*1). O

5.4 Open problems

In this chapter there are more open problems than the previous one. They are:

1) Is O + V self-adjoint for V real-valued and in L?(R™)? or essentially self-adjoint on C§°?

(see comments on Section 4.5, Question 1).

2) Assume V > 0 and such that V € L2 (R™). Is O+ V essentially self-adjoint on C§°?
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(also, see comments on Section 4.5).

3) Do we have M™ C BMO(R™)? Observe that for n = 2 we do have M2 ¢ BMO(R?)
(see Remark 23).

4) If Question 3) has a negative answer then do we have M™ C LP(R"™) for some p > 2? This
question may have a negative answer simply because we have not obtained any global estimate
of the type

Ifll> < allOfll2 + bl fll2,

for any p > 2 (p is far from infinity).

We say a few words concerning this question. There are known estimates for the wave equation
of the type
Ifllq < ClOS Nl

for some p and ¢ (see [20] and [21]) but none of these is helpful for our purpose. For instance,

The estimate, J. Harmse gets in [20], is

1_1_ _2
Theorem 36. Assume n > 2. Suppose 5T 7= nil and

n+1 2 1 n—1
<

- - . 5.17
2n n+1l ¢ 2n ( )
Then there is a constant C such that for every f € CS°(RP+1),
Ifllg < CIOF I (5.18)

If we want to apply this theorem to our problem one has to start with p = 2. But, with this

choice, ¢ = 3(7%2 does not satisfy the condition (5.17) for any n > 2.

Also, in [21], it is proved that
[Ifllg < M||Oull,

forq = —2(—1?:“}12 and p = 2—(:%1) Observe that the case p = 2 cannot occur in this case.

Finally, more ’Strichartz estimates’ have been proved since Strichartz’s paper [21] and one of

the important papers is [22].

2n

5) We have by Proposition 37 an estimate which is true for 2 < r < 2. So the natural
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question is: can we push the result beyond % i.e., can we have the following estimate for
2n

r2 7 andn > 3:

eSSféllg Nu(..., )l rrey < al|Dullpz(mra+ry + blullL2gn+1)?

5.5 Conclusion

Finally, most of the results obtained in Chapters 4 and 5 (mainly Theorem 28, Proposition 25,
Proposition 27 (the first proof), Proposition 30, Proposition 37 and Theorem 35) form a paper
by myself [23] which has been accepted for publication.
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