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Abstract 

Spinal Muscular Atrophy (SMA) is a childhood form of motor neuron disease that 

causes a progressive paralysis that, in its most severe form, results in death before 

two years of age.  There is currently no cure or treatment for SMA.  SMA is caused 

by a reduction in levels of Survival Motor Neuron (SMN) protein, which results in 

the degeneration of lower motor neurons.  This degeneration is first observed at the 

neuromuscular junction (NMJ), where pre-synaptic nerve terminals belonging to the 

motor neuron become dysfunctional and degenerate during the early stages of 

disease.  Several previous studies have shown that the some populations of motor 

neurons appear to have a resistance to SMA pathology, while other neighbouring 

populations are vulnerable.  In this study, we attempted to elucidate the cause of this 

vulnerability spectrum. Initially, we characterised the relative vulnerability of ten 

different motor unit pools in an established mouse model of severe SMA and 

attempted to correlate these vulnerabilities with quantified aspects of motor unit 

morphology.   From this study, no significant correlation could be found with any 

aspect of motor unit morphology examined, suggesting that morphological 

parameters of motor neurons do no influence their relative susceptibility. We then 

attempted to identify changes in basal gene expression between protected and 

vulnerable pools of motor units using microarray analysis.  Motor unit pools were 

labelled using a retrograde tracer injected into muscles that had previously been 

identified as having highly vulnerable or resistant motor units. Labelled motor 

neuron cell bodies were then isolated from the spinal cord using laser capture micro-

dissection and RNA was extracted for microarray analysis.  From this study, we 

identified several molecular pathways and individual genes whose expression levels 
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compared the gene expression profiles of vulnerable and resistant motor units.  Thus, 

molecular differences between motor neuron pools likely underlie their relative 

vulnerability to degeneration in SMA. Lastly, we attempted to identify a novel 

peptide that could be used to label synapses, including neuromuscular junctions, in 

vivo.  This would allow us to non-invasively visualise degenerating NMJs and other 

synapses in human patients without the need for a biopsy.  Such a tool would be 

extremely valuable in assessing the effectiveness of drug trials, both in human 

patients and animal models, and may also contribute to earlier diagnosis of motor 

neuron disorders.  To identify a potentially suitable peptide, we used a phage display 

library and panned for peptides that specifically bound to the outer surface of 

synapses using synaptosome preparations.  From this panning we successfully 

enriched two peptides, the sequences of which were used to manufacture 

fluorescently tagged peptides. 
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Chapter 1: Introduction 

 

1.1 – The Neuromuscular System 

1.1.1 - Motor Neurons 

Motor neurons can be split into two main classes: upper and lower motor neurons.   

Upper motor neurons originate in the motor cortex in the brain and project their 

axons into the spinal cord.  Lower motor neuron cell bodies lie in the ventral horn of 

the spinal cord, and are synapsed by upper motor neurons.   The axons of lower 

motor neurons project into the periphery where they form synapses.   There are two 

main classes of lower motor neurons: α-motor neurons and γ-motor neurons.           

α-motor neurons have large cell bodies and synapse extrafusal skeletal muscle, which 

is responsible for generating tension by contracting (Kanning et al., 2010).  The 

synapse formed between α-motor neurons and extrafusal skeletal muscle is known as 

the neuromuscular junction (NMJ) (Figure 1).  γ-motor neuron cell bodies are 

smaller than those of α-motor neurons, and they innervate intrafusal skeletal muscle.  

Intrafusal skeletal muscle comprises the muscle spindle – a sensory organ involved 

in proprioception and monitoring muscle tension.  γ-motor neurons are not 

responsible for eliciting muscle contraction (Kanning et al., 2010). 
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1.1.2 - The Neuromuscular Junction Structure and Function 

 

Figure 1 – Structure and location of the neuromuscular junction.  Neuromuscular 

junctions form at the interface between lower motor neurons, which extend from the 

spinal cord into the periphery, and skeletal muscle fibres.  The pre-synaptic terminal 

contains vesicles of acetylcholine which is released into the synaptic cleft when 

stimulated by an action potential.  Acetylcholine receptors on the skeletal muscle 

fibre perfectly mirror the shape of the pre-synaptic terminal, and facilitate 

transduction of the action potential from the motor neuron to the muscle fibre.  The 

neuromuscular junction is capped by non-myelinating glia, termed terminal Schwann 

cells, and the extra-laminar capping cell known as the kranocyte. 

 

The neuromuscular junction is a peripheral cholinergic synapse that forms between 

lower α-motor neurons and skeletal muscle fibres (Figure 1).  The NMJ is made up 

of three cell types: the lower motor neuron; the skeletal muscle fibre; and terminal 

Schwann cells (Figure 1).  Recently, a fourth cell type associated with the NMJ was 
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identified by Court et al., 2008.  This extra-laminar capping cell was termed the 

“kranocyte” and is found surrounding the terminal Schwann cell that caps the NMJ 

(Court et al., 2008). The function of the kranocyte has not yet been elucidated, but it 

may be involved in synaptic maintenance (Court et al., 2008).  

Axons of lower motor neurons project from the ventral horn of the spinal cord, to the 

periphery.  Upon entry into a muscle, the motor neuron axons arborise and extend 

their processes to many individual muscle fibres.  One motor neuron and the many 

muscle fibres that it synapses onto make up a motor unit; the higher the number of 

synapses that an individual motor neuron makes, the larger the motor unit.  The pre-

synaptic nerve terminal is formed at the distal end of the motor neuron.  The distal 

axon arborises to form the terminal branches of the pre-synaptic nerve terminal.  The 

pre-synaptic nerve terminal contains synaptic vesicles containing acetylcholine (the 

neurotransmitter released at the neuromuscular junction), synaptic vesicle associated 

apparatus, and mitochondria (Sanes & Lichtman, 1999).  The post-synaptic 

component of the NMJ consists of a large cluster of acetylcholine receptors on the 

muscle fibre surface, which makeup the motor endplate.  The plaque of receptors 

perfectly mirrors the shape of the pre-synaptic terminal for optimal transmission of 

acetylcholine across the synaptic cleft.  The motor endplate contains many post-

synaptic folds, or invaginations, which increase the surface area of the motor 

endplate.  Acetylcholine receptors are found clustered at the crests of the post-

synaptic folds of the motor endplate (Sanes & Lichtman, 1999). Enveloping the 

synapse is a non-myelinating glial cell, known as a terminal Schwann cell.  The 

terminal Schwann cell functions to provide trophic support to the neuromuscular 
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junction, and appears to be involved in NMJ re-modelling during development 

(Griffin & Thompson, 2008).  

The axon of the motor neuron is myelinated by a myelinating Schwann cell (Figure 

1).  The membranes of Schwann cells associate with segments of axons and wrap 

around axons to form a myelin sheath (Figure 1).  The points between individual 

Schwann cells’ myelin along an axon are called the Nodes of Ranvier, and sodium 

channels and other proteins involved in action potential conduction are concentrated 

there.  The myelination of axons facilitates salutatory conduction of action potentials 

- a form of impulse propagation that speeds up action potential conduction along 

large fibres (Quarles et al., 2006).   

 

1.1.3 - Organisation of the Neuromuscular System 

Motor neurons that control skeletal muscle contraction are organised into motor 

units.  When a motor neuron axon enters a muscle, it arborises and synapses skeletal 

muscle fibres.  A motor unit consists of an α-motor neuron, its axon, and all of the 

skeletal fibres that are innervated by that axon (Buchthal & Schmalbruch, 1980).  

Motor units vary in size, with the size of the motor unit being determined by the 

number of synapses that the motor neuron makes onto skeletal muscle fibres.  Small 

motor units innervated a small number of skeletal muscle fibres, and large motor 

units innervate a large number of muscle fibres.  Estimates of motor unit size in 

humans vary from 13 to over 2000, depending on the size of the muscle (Bradley, 

1987).  Motor units are recruited, or activated, in order of size.  This is referred to as 

“the size principle”: small motor units are recruited initially, followed by 
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progressively larger motor units.  All the motor neurons that innervate a single 

muscle make up a motor pool (Buchthal & Schmalbruch, 1980). 

 

1.1.4 – Motor Neuron Diseases 

Motor neuron diseases are a group of untreatable neurological disorders that cause 

the degeneration of motor neurons.  Motor neuron diseases result in a progressive 

paralysis due to the denervation of skeletal muscle.  The most common form of 

motor neuron disease is the adult onset amyotrophic lateral sclerosis (ALS), which 

causes the degeneration of upper and lower motor neurons and results in death 3-5 

years after diagnosis (Al-Chalabi et al., 2012).  Mutations in a number of different 

genes, such as SOD1, TDP-43 and FUS lead to ALS, however it is not known how 

these mutations result in the selective degeneration of motor neurons (Al-Chalabi et 

al., 2012). 

Spinal muscular atrophy (SMA) is a childhood form of motor neuron disease, and is 

the most common genetic cause of infant death (Lunn & Wang, 2008).  SMA causes 

the specific degeneration of lower motor neurons and, in its most severe form, results 

in death before two years of age (Lunn & Wang, 2008).  SMA differs from ALS, in 

that it is caused by a mutation in a single gene, SMN1, resulting in a reduction in the 

levels of SMN protein (Lefebvre et al., 1995; Lorson et al., 1999).  However, it is not 

known why low levels of SMN protein lead to the selective degeneration of lower 

motor neurons (Burghes & Beattie, 2009). 

The degeneration of motor neurons in motor neuron diseases such as ALS and SMA 

are well-characterised, having been reported in both human patients and animal 
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models of the diseases for decades.  More recently, evidence from research has 

shown that not all motor units are equally affected by the pathological processes of 

motor neuron diseases.  Understanding the underlying causes of differences in motor 

unit vulnerability would shed new light onto motor neuron diseases, and may even 

lead to new therapeutic targets, preventing or delaying the degeneration of motor 

neurons. 

In ALS, it is widely recognised that large diameter motor neurons that form large 

motor units are preferentially affected (Bradley et al., 1983; Fischer et al., 2004; 

Hegedus et al., 2007; Valdez et al., 2012).  This evidence has been presented both in 

animal models of ALS, such as the SOD1G93A mouse model, and human tissue.   

There are many similarities between ALS and SMA, the most obvious being that 

they cause the degeneration of motor neurons.  Both ALS and SMA cause a 

degeneration of the peripheral synapse, the neuromuscular junction, which causes a 

progressive paralysis eventually resulting in death.  Additionally, ALS has been 

described in the literature as a dying-back neuropathy (Reviewed by Dadon-Nachum 

et al., 2011), meaning that pathologies begin at the most distal segment of the motor 

neuron, the neuromuscular junction, and progress proximally towards the motor 

neuron cell body (Dadon-Nachum et al., 2011).  Evidence has also been presented 

showing that neuron degeneration occurs in the same fashion in SMA, with 

pathologies occurring first at the neuromuscular junction before symptom onset, and 

progressing proximally towards the cell body in the spinal cord (Cifuentes-Diaz et 

al., 2002; Kariya et al., 2008; Ito et al., 2011).  Based on this evidence, we can use 

the extent of neuromuscular junction pathologies to inform on the health of the entire 
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motor unit.  Neuromuscular junctions that are undergoing degeneration are evidence 

of motor neurons in the first stages of degeneration.   

In this study, motor unit vulnerability in SMA has been characterised in a large 

cohort of muscles by quantifying the extent of neuromuscular junction pathologies 

present in anatomically distinct muscles of the severe mouse model of SMA, Smn-/-

;SMN2+/+.  This data was then used in correlational studies to determine if motor unit 

morphology influenced motor unit vulnerability in SMA, as it does in ALS.  Next, a 

molecular correlate was sought using microarray analysis to determine the gene 

expression profiles of vulnerable and resistant motor units in healthy mice.  This 

provides insight into the underlying molecular mechanisms that may be perturbed in 

SMA, resulting in higher levels of vulnerability, and conversely, insight into 

protective factors present in some motor units.   

From the study carried out here and the evidence that synapses in general are 

severely affected in SMA and other forms of neurodegenerative diseases such as 

ALS, it became evident that in vivo tools to study synapses in detail in humans are 

necessary.  Currently, human synapses can only be accessed in rare post-mortem 

brain, spinal cord or muscle tissue, or muscle biopsies.  Both post-mortem tissue and, 

to a lesser extent, muscle biopsy tissue offer an insight to human synapses only at 

late stages of disease and provide little insight into synapse pathologies as 

neurodegenerative diseases progress.  Based on this need, we also sought to develop 

an in vivo labelling system that could safely be used to transiently label synapses in 

living patients and animal models.  This was carried out using a phage display 

system to screen millions of random peptides for binding affinities to synapses. 
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In this chapter, the literature will be reviewed, detailing: the clinical and genetic 

background of SMA; the structure and function of the neuromuscular junction; 

neuromuscular junction involvement in SMA pathology; evidence for differential 

motor unit vulnerability in SMA; and the pathologies of central synapses in SMA. 

 

1.2 - Spinal Muscular Atrophy 

1.2.1 - Incidence and Aetiology 

Spinal muscular atrophy (SMA) is a fatal childhood form of motor neuron disease for 

which there is currently no treatment or cure.  SMA is caused by mutations in the 

Survival Motor Neuron 1 (SMN1) gene and affects between 1:6000 and 1:10000 live 

births (Pearn, 1978).  This makes SMA the leading genetic cause of infant mortality 

(Lunn & Wang, 2008).   Approximately 1:50 people are carriers of SMA (Ogino et 

al., 2002). 

SMA causes the selective degeneration of lower motor neurons, causing a 

progressive flaccid paralysis and skeletal muscle atrophy (Lunn & Wang, 2008).  

Clinical features of SMA include a symmetrical weakness in legs and arms, with 

postural muscles in the trunk of the body also being severely affected (Lunn & Wang, 

2008; D’Amico et al., 2011).  Patients typically appear to have a bell-shaped upper 

torso due to atrophy of the respiratory muscles with death often resulting from 

breathing difficulties due to denervation of these muscles (Lunn & Wang, 2008).  

Interestingly, the diaphragm appears to be spared denervation in SMA patients and as 

a result many patients exhibit abnormal “abdominal breathing”, or paradoxical 
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breathing, where the diaphragm alone is used to draw breath (Lunn & Wang, 2008; 

D’Amico et al., 2011).   

There are four clinically defined types of SMA which are classified according to age 

of symptom onset and any major motor milestones reached (Table 1; Russman, 2007; 

Wang et al., 2007).  Type I SMA (also known as Werdnig-Hoffmann disease), is 

defined as symptom onset beginning before 6 months of age with patients being 

unable to sit unaided, and death occurring before two years of age (Lunn & Wang, 

2008).  Type I SMA is also the most common, with approximately 50% of SMA 

cases being classed as type I (Markowitz et al., 2004).  Type II is defined as 

symptom onset beginning between 6 and 18 months of age (Lunn & Wang, 2008).  

Patients with Type II SMA are able to sit unaided and possibly stand with assistance, 

but will never walk.  Death occurs after two years of age but patients generally do 

not reach adolescence or adulthood (Lunn & Wang, 2008).  Many Type I and II 

patients’ lives are prolonged by artificial ventilation after the patients become too 

weak to breathe independently (Bach et al., 2002).  Type III SMA (also known as 

Kugelberg-Welander disease) patients show symptom onset after 18 months of age.  

These patients gain the ability to stand and walk independently, but some may be 

confined to a wheelchair later in childhood.  Type III SMA patients generally live 

until adulthood (Lunn & Wang, 2008).  Type IV is considered adult onset and is rare, 

with patients typically developing mild muscle weakness symptoms in their 20s or 

30s (Lunn & Wang, 2008).  Type IV patients do not develop respiratory problems 

and continue to be able to walk during adulthood (Lunn & Wang, 2008). 
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Type Age of Symptom 

Onset 

Motor Milestone Reached Age of 

Death 

I < 6 months Unable to sit 

 

< 2 years 

II 6 – 18 months Able to sit, standing with 

assistance 
 

>2 years 

III >18 months Able to walk with assistance, may 

need wheelchair 
 

Adult 

IV Adult Able to walk unaided Adult 

Table 1 – SMA types as determined by their symptom onset, motor milestones and 

age of death. 

Some muscle groups are spared from paralysis in SMA patients, with the diaphragm, 

ocular muscles, and facial muscles showing little evidence of weakness (D’Amico et 

al., 2011).  Also, proximal muscles such as the muscles of the trunk are generally 

more affected than the distal limb muscles (D’Amico et al., 2011). 

 

1.2.2 - Genetics of SMA 

SMA is caused by a mutation or deletion of the SMN1 gene that leads to a reduction 

in SMN protein.  SMN1 was identified as the genetic determinant of SMA by 

Lefebvre et al. (1995) who found an inverted duplication of a gene at chromosome 

location 5q11.2-13.3, an area that had previously been associated with several 

different clinical manifestations of SMA (Brzustowicz et al., 1990; Melki et al., 

1990).  The two genes found at this location were named SMN1 and SMN2 (Lefebvre 

et al., 1995).  Linkage analysis revealed that SMN1 and SMN2 were almost identical, 

with only five nucleotides differing between the genes (Lefebvre et al., 1995).  

However, SMN1 and SMN2 produce different mRNA transcripts (Lefebvre et al., 
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1995).  SMN2 is differently spliced to SMN1 due to a C to T transition at codon 280 

of exon 7, resulting in the excision of exon 7 from the SMN2 mRNA (Lorson et al., 

1999).  The mRNA transcripts of SMN2 were detectable in all SMA patients and 

controls (Lefebvre et al., 1995).  However, the full length mRNA transcripts of the 

SMN1 gene were missing in SMA patients (Lefebvre et al., 1995).  A study by 

Hahnen et al. (1995) found that 96% of SMA patients had a homologous deletion of 

exon 7 in SMN1. 

Approximately 90-95% of SMN2 mRNA transcripts undergo alterative splicing, 

meaning they lack exon 7 (Lorson et al., 1999).  Translation of the SMNΔ7 mRNA 

results in a truncated and non-functional SMN protein which is rapidly degraded 

(Lorson et al., 1998).  The remaining 5-10% of SMN2 mRNA transcripts retains exon 

7 and produce full length functional SMN protein (Lorson et al., 1999).  It is this 

reduction in SMN protein that leads to SMA, rather than a complete absence of the 

protein; while a complete loss of SMN protein results in embryonic lethality. 

Disease severity in SMA correlates with the copy number of the SMN2 gene 

(Coovert et al., 1997).  Patients with low copy numbers of SMN2 produce very little 

SMN protein and so have more severe clinical manifestations of SMA (Coovert et 

al., 1997; McAndrew et al., 1997).  Patients with high copy numbers of SMN2 have 

higher levels of SMN protein and so have less severe clinical manifestations of SMA 

(Coovert et al., 1997; McAndrew et al., 1997).   
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1.2.3 - SMN Protein Function 

SMN is a 38kDa protein whichis ubiquitously expressed and found in the nucleus 

(Liu & Dreyfuss, 1996; Coovert et al., 1997), cytoplasm (Battaglia et al., 1997; 

Coovert et al., 1997) and synapses of cells (Fan & Simard, 2002).  SMN protein 

contains one Tudor domain, the crystal structure of which was recently characterised 

(Lui et al., 2012).   

SMN protein is expressed in all tissues, but is strongly expressed in the brain, spinal 

cord, skeletal and cardiac muscle, kidneys and liver (Battaglia et al., 1997; Coovert et 

al., 1997), with particularly strong expression being noted in the motor neurons 

(Battaglia et al., 1997).  In the nucleus, SMN protein is found localised in sub-

nuclear structures termed gems, or “Geminis of coiled bodies” (Liu & Dreyfuss, 

1996; Coovert et al., 1997).  Gems are believed to be involved in RNA processing 

and metabolism, due to their association with Cajal bodies (Liu & Dreyfuss, 1996). 

SMN protein’s most characterised function is its role in the production of small 

nucleic ribonuclear protein complexes (snRNPs) known as the splicosome 

(Reviewed by Workman et al., 2012).  snRNPs are involved in the splicing of pre-

mRNA and catalyse the splicing of introns to produce mature mRNA (Workman et 

al., 2012).  The SMN protein complex is required for the formation of splicosomal 

snRNPs in cells by directly binding to snRNAs and Sm proteins and assembling the 

Sm protein core onto the snRNA (Liu & Dreyfuss, 1996; Pellizzoni et al., 2002b; 

Workman et al., 2012).  The SMN complex interacts with Sm proteins via SMN 

protein’s Tudor domain (Liu et al., 2012).  The SMN complex was once believed to 

have pre-mRNA splicing functions but recently it has been shown that the SMN 
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complex only acts to synthesise snRNPs and is not directly involved with pre-mRNA 

splicing (Coady & Lorson, 2011; Workman et al., 2012). 

SMN protein has also been shown to interact with proteins involved in apoptosis 

signalling, such as Bcl-2 (Sato et al., 2000) and P53 (Young et al, 2002).  SMN 

protein binds to Bcl-2 via a region near exon 6, preventing pro-apoptotic signalling 

(Sato et al., 2012).  SMN protein has also been shown to directly bind to P53 protein 

and translocate to the Cajal bodies (Young et al., 2002).  It is thought that by binding 

P53 protein, SMN prevents excess pro-apoptotic signalling (Young et al, 2002). 

As SMN protein is ubiquitously expressed (Lunn & Wang, 2008), it is currently 

unclear why low levels of SMN protein specifically cause the degeneration of lower 

motor neurons (Burghes & Beattie, 2009). 

 

1.3 - Motor Unit Vulnerability in SMA 

1.3.1 - NMJ Pathology in SMA 

Neuromuscular junction pathology in SMA is well-characterised in several different 

mouse models, as well as zebrafish and drosophila models.  NMJ abnormalities were 

first reported in a severe mouse model of SMA by Cifuentes-Diaz et al. (2002).  

Here, they reported that the pre-synaptic terminal of the lower motor neuron pulled 

away from the motor endplate, leaving vacant or partially occupied motor endplates 

on the muscle fibre (Cifuentes-Diaz et al., 2002).  This observation was further 

characterised in a severe mouse model of SMA, the Smn-/-;SMN2+/+ mouse by 

Murray et al. (2008).  This denervation was observed in several different muscles in 
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late stage symptomatic mice, and evidence of pre-symptomatic NMJ abnormalities 

was also noted in the postural transversus abdominis muscle (Murray et al., 2008).  

Also in 2008, Kariya et al. reported similar defects of neuromuscular junctions in a 

different mouse model of SMA, the Smn-/-;SMN2;Δ7 mouse.  Kariya et al. (2008) 

reported abnormal pre-synaptic nerve terminals which became more frequent in 

appearance as the mice aged.  Similarly, Kariya et al. (2008) noted that there was 

evidence for pre-synaptic nerve terminal abnormalities, such as neurofilament 

accumulation, in pre-symptomatic mice in the diaphragm and intercostal muscles.  

Kariya et al. (2008) also described abnormalities at the post-synaptic motor endplate, 

where they noted a delay in maturation of the endplate.  Motor endplates of Smn-/-

;SMN2;Δ7 mice had fewer folds and perforations compared to wild type littermates, 

and continued expression of the embryonic γ subunit of acetylcholine receptors 

(Kariya et al., 2008). 

Since these initial observations by Murray et al. (2008) and Kariya et al. (2008), 

neuromuscular junction abnormalities have been reported extensively in many mouse 

models.  In the Smn-/-;SMN2;Δ7 mouse, studies have shown that the pre-synaptic 

terminals have abnormal ultra-structures, with a decrease in the density of synaptic 

vesicles and mitochondria (Kong et al., 2009).  At the post-synaptic motor endplate, 

several studies have confirmed the results of Kariya et al. (2008) by providing further 

evidence of a delay in the maturation of the motor endplate, both in terms of an 

immature morphology (Kong et al., 2009; Lee et al., 2011) and embryonic 

acetylcholine receptor subunit expression (Kong et al., 2009).  A study by Ling et al. 

in 2012 further described the widespread denervation of NMJs in the Smn-/-

;SMN2;Δ7 mouse model in muscles clinically relevant to human patients.   
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Other mouse models of SMA which have shown defects in their neuromuscular 

junctions include the Smn2B/- mouse, where NMJs have been shown to be denervated, 

have abnormal neurofilament accumulation, and a delay in motor endplate 

maturation (Bowerman et al., 2012; Murray et al., 2013).  Also, a mouse modelling 

an intermediate form of SMA, the Smn1C/C mouse, has shown synaptic defects with 

ectopic acetylcholine receptor clusters appearing and aberrant nerve sprouting from 

neuromuscular junctions (Osbourne et al., 2012). 

Morphological neuromuscular junction abnormalities have also been observed in 

human muscle, both from biopsies of skeletal muscle (Kariya et al., 2008) and post-

mortem tissue (Martinez-Hernández et al., 2013).  In 2008 Kariya et al. described 

about 70% of the neuromuscular junctions from the biopsy of a type I SMA patient 

as showing pre-synaptic abnormalities, such as neurofilament accumulation and poor 

terminal arborisation.  A further study showed an abnormal ultrastructure of the nerve 

terminal and distribution of synaptic vesicles in post-mortem foetal tissue of type I 

SMA (Martinez-Hernández et al., 2013). 

 

1.3.2 - The Neuromuscular Junction Pathologies as a Read-Out of Motor Neuron 

Health 

The pathological features of neuromuscular junctions in SMA are so well 

characterised in mouse models that they are frequently used as a read-out for the 

effectiveness of experimental therapeutics.  Neuromuscular junction abnormalities 

have been used as a read-out of the therapeutic effects of treatments such as histone 

deacetylase inhibitors (HDAC inhibitors), which have been shown to increase Smn 
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gene expression in mouse models of SMA (Tsai et al., 2008; Riessland et al., 2010; 

Kwon et al., 2011).  HDAC inhibitors, such as SAHA (Riessland et al., 2010), 

valproic acid (Tsai et al., 2008) and trichostatin A (Kwon et al., 2011), have been 

shown to significantly increase the percentage of fully occupied endplates found in 

SMA mouse models (Tsai et al., 2008; Riessland et al., 2010), and also increase the 

motor endplate area (Riessland et al., 2010; Kwon et al., 2011).  Other studies of 

drugs such as RG3039 (Meerbeke et al., 2013), fasudil (Bowerman et al., 2012) and 

quercetin (Wishart et al., In Press) have also used neuromuscular junction 

pathologies as a readout for the drugs’ therapeutic effectiveness.   

 

1.3.3 - In Vitro Models of The Neuromuscular Junction 

Understanding the early pathological events that take place at the human 

neuromuscular junction is an important aspect of motor neuron disease research.  

Based on this, and the lack of insight into early pathologies in human neuromuscular 

junctions, many labs have attempted to model neuromuscular junctions in vitro using 

human induced pluripotent stem cells (hiPSCs) (Takahashi et al., 2007).  hiPSCs are 

pluripotent cells produced from fully differentiated adult somatic cells; usually skin 

fibroblasts (Takahashi et al., 2007).  These fully differentiated cells are transformed 

into pluripotent cells usually by transfection of the transcription factors OCT3/4, 

SOX2, C-MYC and KLF4 (Takahashi et al., 2007).  The resulting cells are 

embryonic-like and have the capacity to both self-renew and differentiate into any 

cell type (Takahashi et al., 2007).   As the adult cells used to produce hiPSCs can be 

taken from patients with genetic disorders, cell lines can be produced that retain the 
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genetic mutations responsible for the disease, which can then be differentiated into 

disease-specific cell types (Dimos et al., 2008; Ebert et al., 2009). 

hiPSCs can be differentiated into motor neurons by first neuralising the cells and 

then assigning the cells a caudal positional identity, usually by exposing the cells to 

retinoic acid (Jessel, 2000; Wichterle et al., 2002).  The caudalised neural precursors 

are then exposed to sonic hedgehog agonists which results in a ventral positional 

identity (Wichterle et al., 2002; Li et al., 2005). Neurotrophic factors are then added 

to the culture media and the cells mature over several weeks into motor neuron-like 

cells (Li et al., 2005).  This has been carried out with hiPSCs derived from both ALS 

and SMA patients, resulting in cells with disease-specific phenotypes (Dimos et al., 

2008; Ebert et al., 2009). 

Attempts by several labs to produce neuromuscular junctions in vitro using healthy 

hiPSCs or human embryonic stem cells have proved unsuccessful (Li et al., 2005; 

Singh Roy et al., 2005; Guo et al., 2010; Patani et al., 2011, Marteyn et al., 2011).  

Motor neurons produced from stem cells have been cultured with the murine 

myoblast cell line C2C12 (Li et al., 2005; Patani et al., 2011); human muscle cell 

lines (Marteyn et al., 2011); and primary cultures of rodent muscle (Sing Roy et al., 

2005; Guo et al., 2010) but have failed to produce synapses onto these myotubes.  

Most studies have reported small synaptic contacts forming between the motor 

neurons and myotubes, with small clusters of acetylcholine receptors forming on the 

myotube where a neurite outgrowth is visible (Li et al., 2005; Singh Roy et al., 2005; 

Guo et al., 2010; Patani et al., 2011, Marteyn et al., 2011).  However, these clusters 

of receptors do not recapitulate either the size or complexity of an in vivo 

neuromuscular junction.  The lack of synapse formation in these in vitro models is 
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likely due to the limited time period that the cells can be cultured together; a lack of 

supportive cell types such as myelinating and terminal Schwann cells; and the 

immaturity of both the motor neuron-like cells and myotubes. 

 

1.4 - Selective Vulnerability of Motor Units in SMA 

1.4.1 - Differences in NMJ Vulnerability in SMA 

Degeneration of the neuromuscular junction is well characterised in SMA, but recent 

studies have revealed that not all neuromuscular junctions are equally affected by 

SMA.  This was first observed by Murray et al. (2008) who reported a selective 

vulnerability of motor units innervating the cranial muscle, the levator auris longus 

(LAL).  The LAL consists of two bands of fast twitch muscle fibres: the thin caudal 

band and the thick rostral band.  When quantifying NMJ denervation in this muscle, 

it was noted that NMJs in the caudal band appeared to be severely affected, with a 

large percentage of the NMJs showing signs of denervation (Murray et al., 2008).  

However, in the rostral band, there was little evidence of any neuromuscular junction 

denervation (Murray et al., 2008).  This phenomenon was noted in two different 

severe SMA mouse models; Smn-/-;SMN2+/+ and Smn-/-;SMN2;Δ7 (Murray et al., 

2008).   

Differences in neuromuscular junction vulnerability in SMA have also been reported 

by other groups (Bowerman et al., 2012; Ling et al., 2012).  In 2012, Ling et al. 

carried out a study into a large cohort of clinically relevant muscles in the Smn-/-

;SMN2;Δ7 mouse model in order to assess the extent of NMJ denervation.  They 

found that there was extensive NMJ denervation in a subset of these muscles, notably 
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in axial muscles (Ling et al., 2012).  However, a number of the muscles examined 

did not show any observable signs of NMJ denervation (Ling et al., 2012).   

Selective vulnerability of neuromuscular junctions has also been noted in the 

intermediate mouse model of SMA, Smn2B/- (Bowerman et al., 2012).  Bowerman et 

al. (2012) characterised the extent of NMJ denervation in Smn2B/- mice and noted that 

the postural muscle, the transversus abdominis, was particularly affected in late stage 

mice.  The LAL was also analysed in the study by Bowerman et al. (2012), and 

interestingly, it was found that the caudal band of the LAL in the Smn2B/- mouse was 

resistant to disease and the rostral band was vulnerable, the opposite of what has 

been reported in the Smn-/-;SMN2+/+ and Smn-/-;SMN2;Δ7 mouse models (Bowerman 

et al., 2012).  A delay in endplate maturation and decrease in endplate area were 

found in all muscles examined, regardless of NMJ vulnerability, consistent with the 

findings of Murray et al. (2008) in the Smn-/-;SMN2+/+ mouse model of SMA 

(Bowerman et al., 2012). 

 

1.4.2 - What Underlies Differences in NMJ Vulnerability in SMA? 

There is a clear spectrum of NMJ vulnerability in SMA, but the underlying cause has 

not yet been elucidated.  Ling et al. (2012) suggested that muscle fibre type could 

play a role, as it does in ALS where fast twitch muscles are predominantly affected 

(Frey et al., 2000; Atkin et al., 2005; Pun et al., 2006).  However, many of the 

vulnerable muscles examined in the study were composed of a mix of fast and slow 

muscle fibres and not all fast twitch muscles were found to contain vulnerable 

neuromuscular junctions (Ling et al., 2012).  Additionally, both bands of the LAL are 
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also composed of pre-dominantly fast twitch muscle fibres, but caudal and rostral 

bands show different vulnerabilities (Murray et al., 2008).  Ling et al. (2012) go on to 

suggest that the synapsing phenotype of neuromuscular junctions may play a role in 

vulnerability however no correlation between fast synapsing neuromuscular 

junctions and vulnerability was detected.   

In the study by Murray et al. (2008), the authors characterised the LAL muscle in 

detail and noted that there was a distinct reproducible pattern of innervation in the 

LAL, with two clusters of NMJS present on the thin caudal band and five clusters of 

NMJs present on the thick rostral band.  By tracing the motor units innervating the 

LAL from the point of entry into the muscle to their terminal synapses, Murray et al. 

(2008) found that motor units entering the LAL innervated either the rostral or caudal 

band, but never both.  The authors also noted that motor endplate shrinkage was 

observable in both the rostral and the caudal bands of the LAL (Murray et al., 2008).  

Taken together, these results imply that it is a difference in the intrinsic properties of 

the motor units themselves that underlie this difference in vulnerability to SMA 

pathology. 

 

1.5 – Pathologies of Central Synapses in SMA 

While the neuromuscular junction is the most well-characterised and analysed 

synapse in SMA, there is recent evidence that suggests that central synapses are also 

affected.  Ling et al. first described a reduction in the number of synaptic boutons 

onto lower motor neuron cell bodies in the spinal cord in 2010.  In Smn-/-;SMN2;Δ7 

mice, Ling et al. (2010) examined synapses onto lower motor neurons in the spinal 
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cord and found a reduction in the number of pre-synaptic boutons on the lower motor 

neuron cell bodies.  In order to determine if this reduction in central synaptic boutons 

was due to a loss of synaptic connectivity or a lack of synapse formation, Ling et al. 

(2010) examined the number of synapses present in pre-symptomatic mice and found 

no significant difference in the number of synapses.  This confirmed what was 

already known about synapse degeneration in the peripheral nervous system in SMA, 

which was that synapses have the ability to form normally, but subsequently 

degenerate (Ling et al., 2010).  It was determined that the reduction in central 

synapses is pre-dominantly due to the loss of vGlut1-positive synapses, which are 

known to come from excitatory sensory proprioceptive neurons (Oliveira et al., 

2003). 

In 2011, Mentis et al. confirmed the results of Ling et al. (2010). Mentis et al. (2011) 

used the retrograde tracer dextran to specifically label either sensory neurons from 

the dorsal root, or motor neurons from the ventral roots of isolated spinal cords.  In 

doing so, they confirmed that there was a reduction in the number of proprioceptive 

synapses in the ventral horns of Smn-/-;SMN2;Δ7 mouse spinal cords, and that this 

reduction was specifically due to the loss of vGlut1-positive synapses onto the soma 

and dendrites of α-motor neurons (Mentis et al., 2011).  Importantly, Mentis et al. 

(2011) carried out a temporal analysis of vGlut1-positive synaptic loss in Smn-/-

;SMN2;Δ7 mice.  In doing so, they found that a significant reduction of central 

synapses was evident at post-natal day 4, demonstrating that loss of central synapses, 

as well as peripheral synapses, is an early event in SMA pathology. 

Further studies have also demonstrated the loss of central synapses.  A study by Park 

et al. (2010) showed that by selectively reducing SMN protein expression in motor 
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neurons they could phenocopy the symptoms and pathologies of SMA, including a 

loss of vGlut1 positive synapses onto motor neurons in the spinal cord.  Conversely, 

two studies by Gogliotti et al. (2012) and Martinez et al. (2012) demonstrated that by 

selectively increasing SMN protein expression in motor neurons of a mouse model of 

SMA they could significantly increase the number of vGlut1-positive synapses onto 

motor neurons in the spinal cord. 

 

1.6 - Aims. 

Based on the evidence that NMJ vulnerability varies considerably across motor units 

in SMA, the main aim of this study is to determine the underlying cause of motor 

unit vulnerability in SMA.   

 

Aim 1: Characterise the extent of motor unit vulnerability in a large cohort of 

muscles in a mouse model of SMA. 

In order to determine a pattern of correlation between motor units and vulnerability 

in SMA, a large cohort of motor units must first be characterised in a mouse model 

of SMA to establish their relative vulnerabilities.  This will be addressed using the 

established and well-characterised mouse model: Smn-/-;SMN2+/+.  Having 

established the relative vulnerabilities of these motor units based on the extent of 

NMJ degeneration present in late stage symptomatic mice, attempts will be made to 

correlate different parameters with motor unit vulnerability. 
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Aim 2: Investigate the morphological parameters underlying motor unit vulnerability 

in SMA. 

Based on evidence in ALS, where larger motor units are consistently more vulnerable 

than small motor units, the morphology of motor units innervating with different 

vulnerabilities will be quantified.  This quantification will be carried out in healthy 

mice, as to determine the “baseline” morphology of motor units and avoid 

quantifying aspects of SMA pathology.  Healthy YFP-H mice, which express yellow 

fluorescent protein in a random subset of motor units, will be used to trace motor 

units.  From these traces, morphological parameters such as motor unit size, intra-

muscular arbour length, and branching pattern can be quantified and correlated with 

motor unit vulnerability in the Smn-/-;SMN2+/+ mouse. 

 

Aim 3: Investigate the molecular parameters underlying motor unit vulnerability in 

SMA. 

Again, based on evidence in ALS, differences in gene expression could drive the 

motor unit vulnerability pattern seen in SMA.  A microarray study comparing 

vulnerable and resistant motor units in healthy mice will be used to compare gene 

expression profiles.  The results of this microarray will then be analysed to determine 

if there are differences in pathway activation or gene expression in vulnerable and 

resistant motor units that could underlie motor unit vulnerability in SMA. 
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Aim 4: Develop an in vivo transient synaptic marker. 

Synapses are an early pathological target of SMA and many other neurodegenerative 

conditions.  The ways in which we can visualise synapses in humans is extremely 

limited, often restricted to post-mortem tissue which only gives insights to end-stage 

disease pathology, or rare biopsy tissue.  This necessitates the need for a synaptic 

marker that could transiently label synapses in vivo which could then be visualised, 

either through the skin using a specialised camera, or using in vivo imaging 

techniques.  Using a phage display library, an attempt was made to identify a peptide 

that has a weak binding affinity to synapses that could be developed into an in vivo 

pan-synaptic marker for use in human patients and animal models. 
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Chapter 2:  Motor neuron vulnerability does not correlate with motor 

unit morphology in spinal muscular atrophy. 

2.1 - Introduction 

The breakdown of the neuromuscular junction is a well characterised event in SMA 

pathology.  Nerve-muscle and NMJ abnormalities have been described in both 

patients and animal models of the disease.  Swoboda et al. (2005) assessed SMA 

patients using two electrophysiological techniques and found that both motor unit 

numbers and maximum compound action potential amplitudes declined as the 

disease progressed.  Furthermore, structural analysis of human pre- and post-natal 

tissue has also shown abnormalities of NMJs, such as abnormal acetylcholine 

receptor clustering, synaptic vesicle defects, and aberrant ultrastructure of nerve 

terminals (Martinez-Hernandez et al., 2013).  Animal models of SMA have also 

provided insights into NMJ degeneration in SMA, for example: a reduction of SMN 

protein in Drosophila melanogaster larvae resulted in motor behaviour abnormalities 

and disorganised synaptic boutons (Chan et al., 2003).  Several different mouse 

models of SMA also proved invaluable in demonstrating NMJ abnormalities, such as 

the Smn-/-;SMN2+/+ (Murray et al. 2008); Smn-/-;SMN2;Δ7 (Murray et al., 2008; 

Karyia et al., 2008; Ling et al., 2010; Ling et al., 2012); and Smn2B/- (Bowerman et 

al., 2011; Murray et al., 2013). 

However, the rate of NMJ degeneration varies extensively between muscles.  For 

example, the levator auris longus (LAL) is a cranial muscle that is split into two 

bands: the caudal band (LALc) and the rostral band (LALr) (Murray et al., 2010).  In 

2008, Murray et al. reported that NMJ degeneration was significantly different 
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between the LALc and LALr at a post-symptomatic time point of the Smn-/-;SMN2+/+ 

mouse.  The LALc was severely denervated whereas the LALr showed almost no 

observable NMJ abnormalities.  This disparity across muscles has also been found in 

other mouse models of SMA, such as the Smn−/−;SMN2;Δ7 mouse model (Ling et 

al., 2012).  These studies have undoubtedly shown that NMJ degeneration is a 

hallmark of SMA and that the rate of degeneration varies considerably.  However, 

why some motor units appear to have a resistance to SMA pathology whereas others 

are particularly susceptible has not yet been elucidated.   

In the most common form of motor neuron disease, adult onset amyotrophic lateral 

sclerosis (ALS), there is a well-characterised correlation between susceptibility to 

disease and motor unit size.  In ALS, large motor units are preferentially affected and 

this has been demonstrated both in human post-mortem tissue and animal models of 

ALS (Bradley et al., 1983; Fischer et al., 2004; Hegedus et al., 2007; Valdez et al., 

2012).  In 1983, Bradley et al. demonstrated in post-mortem human tissue that ALS 

patients had 33% fewer large myelinated fibres in the phrenic nerve than that of 

controls.  This trend was also true for the sural nerve, which had 30% fewer large 

myelinated fibres than that of controls (Bradley et al., 1983).  This correlation has 

been confirmed in animal models of ALS, specifically the SOD1G93A mouse model 

(Fischer et al., 2004; Hegedus et al., 2007; Valdez et al., 2012).  In a systematic time 

course study, Fischer et al. (2004) found that there was a significant decrease in large 

diameter axons in the ventral roots of SOD1G93A mice from age P80 until death.  

Also observed was an increase in small calibre axons which may have been 

compensatory sprouting or regeneration (Fischer et al., 2004).  The correlation 

between motor unit susceptibility and motor unit size in the SOD1G93A mouse has 
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been demonstrated through electromyographical analysis (Hedegus et al., 2007).  

Hedegus et al. (2007) found that there was a parallel decline in tetanic force of 

muscles and motor unit number over time in SOD1G93A mice, which implies that the 

large motor units responsible for forceful muscle contractions were degenerating.  

Also, Valdez et al. (2012) found that motor units that are vulnerable in ALS are also 

vulnerable to age-related changes at the NMJ.  They went on to show that small 

motor units were resistant to these age-related changes, whereas large motor units 

were more susceptible (Valdez et al., 2012).   

There is considerable evidence that ALS and SMA are linked at the molecular level 

(Zou et al., 2007; Turner et al., 2009; Kariya et al., 2012; Yamazaki et al., 2012).  In 

2007, Zou et al. showed that SMN protein was able to protect NSC34 cells from the 

toxic effects of mutant SOD1 protein.  This relationship between SOD1 and SMN 

has also been demonstrated in animal models (Turner et al., 2009; Kariya et al., 

2012).  Turner et al. (2009) found that reducing SMN protein levels in SOD1G93A 

mice exacerbated the ALS phenotype.  Similarly, Kariya et al. (2012) found that 

over-expressing SMN protein in two different mouse models of mutant SOD1 

delayed symptom onset but did not increase the lifespan of mice.  SMA and ALS 

have also been linked through FUS (fused in sarcoma) in a study that showed FUS 

and SMN interact directly.  FUS expression is necessary for gem formation, where 

the majority of SMN protein is found, and a reduction in gems has been found in 

fibroblasts of ALS patients with both FUS and TDP-43 mutations (Yamazaki et al., 

2012).  Based on this evidence that ALS and SMA are molecularly linked, it seems 

likely that similar mechanisms would underlie motor unit vulnerability in ALS and 

SMA. 
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We hypothesised that the pattern of motor unit vulnerability in SMA might be similar 

to the well-characterised selective vulnerability in ALS, and so we decided to 

investigate whether there was a correlation between motor unit morphology and 

vulnerability in SMA.  Motor unit morphology can be mapped using the transgenic 

mouse model Thy.1-YFP-H (Feng et al., 2001).  The Thy.1-YFP-H mouse expresses 

yellow fluorescent protein (YFP) in a random subset of neuronal cells under the 

control of the Thy.1 promoter (Feng et al., 2001).  This means that only a small 

fraction of motor neurons are visible in skeletal muscle and so entire axonal arbours 

of motor units can be visualised and traced throughout a muscle, from the point of 

entry to the terminal branches.  From these traces, many morphological 

characteristics can be assessed and quantified, such as motor unit size, branching 

pattern and intramuscular arbour length.  Motor unit tracing has previously been used 

for quantification of motor unit size (Valdez et al., 2012).  

Here, a cohort of skeletal muscles were selected for analysis to create a heat map of 

motor unit vulnerability in the Smn-/-;SMN2+/+ mouse model of SMA, using NMJ 

pathology as a readout of motor unit vulnerability.  The extent of NMJ degeneration 

was quantified in each of these muscles using immunohistochemical staining and 

confocal microscopy.  Next, a number of the same muscles were dissected from 

young adult Thy.1-YFP-H mice and entire motor unit arbours were reconstructed 

using fluorescent microscopy.  Various morphological aspects of the motor units 

were quantified and Spearman correlation analysis was used to test for correlations 

between motor unit morphology and vulnerability. In all tests carried out, no 

significant correlation was found between motor unit vulnerability in SMA and 

motor unit morphology.  Other morphological and developmental parameters that 
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might affect motor unit vulnerability were also measured, such as terminal Schwann 

cell number and synapse elimination rate.  Again, no correlation was found with 

motor unit vulnerability in SMA.  Other parameters were also examined, such as 

body axis position, muscle fibre type, motor endplate area, motor endplate 

morphology and synapsing phenotype however, no significant correlation with motor 

unit vulnerability could be detected. 

 

2.2 – Method 

2.2.1 - Ethics Statement 

All animal experiments were approved by a University of Edinburgh internal ethics 

committee and were performed under license by the UK Home Office (Project 

License number 60/3891). 

 

2.2.2 - Animal Husbandry  

Smn+/-;SMN2+/+ mice (Jackson Labs strain no. 005024) on a congenic FVB 

background were maintained as heterozygous breeding pairs under standard SPF 

conditions in animal care facilities in Edinburgh.  All animal procedures and 

breeding were performed in accordance with Home Office and institutional 

guidelines.  Retrospective genotyping was carried out using standard PCR protocols 

detailed below. 
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Thy.1-YFP-H (Feng et al., 2001) on a congenic C57Bl/6 background were originally 

obtained from Jackson Labs and maintained under standard SPF conditions in animal 

care facilities in Edinburgh. 

Neonatal (P5) Smn-/-;SMN2+/+ and unaffected littermates were killed by overdose of 

anaesthetic via intraperitoneal injection of sodium pentobarbital (Euthenal).  Young 

adult Thy.1-YFP-H mice were killed by overdose of anaesthetic via inhalation of iso-

fluorane.  

 

2.2.3 - Genotyping of Smn-/-;SMN2+/+ Mice 

After death, 5mm tail tips were taken from mice for retrospective genotyping.  The 

tail tip was digested overnight in Tail Tip Lysis Buffer + 5µl/ml proteinase K at 

55oC.  The next day, the tail tips were vortexed to make sure they were fully 

dispersed and centrifuged at 14000rpm for 5 minutes.  The supernatant was aspirated 

and added to a new 1.5ml eppendorf containing 500µl iso-propanol. This was mixed 

by gently inverting the tube several times, until strands of DNA could be seen.  This 

mixture was centrifuged at 14000rpm for 5 minutes to pellet the DNA.  The DNA 

pellet was washed twice in 70% ethanol and then dried for approximately 20 minutes 

at 37oC to ensure all traces of ethanol had evaporated.  The DNA was then re-

suspended in 200µl autoclaved deionised water.   

Genotyping was performed by carrying out two separate PCR reactions: one testing 

for the presence of the endogenous Smn mouse gene; the other testing for the 

presence of the neomycin cassette used to insert the human SMN2 gene into the 

mouse genome.  Presence of only the endogenous Smn mouse gene in a sample 
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would indicate a wild type pup, whereas presence of only the neomycin cassette 

would indicate a knockout pup.  If both genes were present in a sample, the pup was 

a heterozygote and considered an unaffected littermate as these mice are 

indistinguishable from wild type mice. 

 

PCR Forward Primer Reverse Primer  Product 

Length 

Neo-

mycin 

CTTGGGTGGAGAGGCTATTC AGGTGAGATGACAGGAGATC 280bp 

Smn TTTTCTCCCTCTTCAGAGTGAT CTGTTTCAAGGGAGTTGTGGC 420bp 

Table 1: PCR primer and product size information. 

 

PCRs were carried out using GoTaq Green Master Mix (Promega Express, M7112) 

according to the manufacturer’s instructions.  1µl of extracted DNA was added per 

reaction.  Positive and negative controls were run with each PCR; previously 

identified heterozygote tissue was used as a positive control, and a reaction with 1µl 

water replacing DNA was used as a negative control.  Samples were run on a PCR 

machine using the following programme: 
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Step Temperature (oC) Time (s) 

1 94 120 

2 94 30 

3 61 30 

4 72 45 

Go to step 2, repeat 27 times. 

5 72 120 

6 4 Hold 

Table 2: PCR programme setup for Smn-/-;SMN2+/+ genotyping. 

Samples were then resolved on a 1.5% agarose gel at 100v for approximately 30 

minutes with a 100bp DNA ladder (Promega Express, g2101) and visualised. 

 

2.2.4 - Dissections  

2.2.4.1 - Cranial Muscles 

The cranial muscles were removed intact from the mouse by removing the muscle 

mass on top of the skull, along with the overlying skin and ear pinnae.  The 

dissection was pinned into a Sylgard dish using insect pins, with the deep muscles 

facing up.  Excess muscle tissue was cut away until the midline and thin cranial 

muscles could be visualised.  The dissection was then fixed in 4% PFA for 10 

minutes on a rocking platform.  After fixation, the dissection was washed in 0.1M 

PBS.  Any remaining large muscles were removed along with excess fat, connective 

tissue and skin.  The cranial muscles were then dissected individually starting with 

the most superficial – the intersuctularis (IS) followed by the adductor auris longus 

(AAL), auricularis superior (AS) and finally the levator auris longus (LAL).  All 
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muscles were cut flush at the point of attachment at the pinnae of the ear, carefully 

reflected in a lateral to medial manner until they could be cut flush at the midline.  

The muscles were then cleaned by removing fat and connective tissue by blunt 

dissection before staining. 

 

2.2.4.2 - Triangularis Sterni 

The mouse was decapitated and skinned from the abdomen.  When removing the 

skin, the pectoralis muscles were also cut away so that the fore limbs were removed 

along with the skin.  The abdominal wall was cut all the way around and the spinal 

cord was also cut at the thoracic region.  The hind limbs and pelvis of the mouse 

were removed, along with the abdominal organs.  The remaining spinal cord was 

removed by cutting along its length, in a caudal to rostral direction.  The chest wall 

could now be opened, and pinned out inside out in a Sylgard dish using insect pins.  

The diaphragm and the internal organs were removed and the dissection was fixed in 

4% PFA for 10 minutes on a rocking platform before being washed in 0.1M PBS.  

The ribcage was then cut between the sternum and mammary vessels.  The edge of 

the triangularis sterni (TS) could then be identified and gripped with a pair of 

forceps.  By gently lifting and blunt dissecting away fat and connective tissue, the 

triangularis sterni could be removed from the ribcage.  The join between bone and 

cartilage along the ribs was used as a guide as to the shape of the TS muscle.  After 

removal from the ribcage, the TS was cleaned by removing fat and connective tissue 

by blunt dissection. 
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2.2.4.3 - Transversus Abdominis 

The mouse was skinned from the abdomen and an incision was made in the 

abdominal wall.  This incision was extended across the abdomen, up both sides of 

the spinal column and across the sternum, cutting away the diaphragm along the way.  

The dissection was removed and pinned out in a Sylgard dish using insect pins.  The 

superficial abdominal muscles were removed by cutting down the midline and 

reflecting the muscle to reveal the transversus abdominis (TVA) underneath.  Blood 

vessels that run down each side of the midline, superficial to the TVA, were then 

removed and the dissection was fixed in 4% PFA for 10 minutes on a rocking 

platform before being washed in 0.1M PBS. 

After fixation, ribs were removed to expose a larger area of the TVA.  The majority 

of the TVA was then removed by cutting down the midline, through the sternum and 

as close to the ribs as possible.  The TVA was then removed by cutting following the 

direction of the muscle fibres near the oblique muscles.  Once removed from the 

abdominal wall, the cartilaginous segment of sternum that was attached to the TVA 

was removed by blunt dissection.  The TVA was then cleaned of excess connective 

tissue by blunt dissection. 

 

2.2.4.4 - Hind Limb Muscles 

Hind limb muscles were dissected by removing the limb from the body at the femur 

using bone scissors.  The skin was then reflected over the limb, what was then pinned 

out in a Sylgard dish using insect pins and fixed with 4% PFA on a rocking platform 

for 15 minutes, before being washed with 0.1M PBS.  After fixation, the muscles of 
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interest, the tibialis anterior (TA), extensor digitorum longus (EDL), and 

gastrocnemius (GS) were identified and removed by cutting the tendon at the ankle, 

then blunt dissecting out the muscles until they had to be cut at the knee.   

 

2.2.4.5 - Sectioning of Hind Limb Muscles 

Hind limb muscles were sectioned before staining.  Muscles were cyro-protected in 

approximately 5ml 30% sucrose in 0.1M PBS overnight at 4oC, until the muscle had 

sunk to the bottom of the bijou.  The muscles were then briefly washed in cold 0.1M 

PBS and embedded in OCT on the freezing platform of a freezing microtome.  The 

muscle was cooled to -40oC for 10 minutes, warmed to -20oC and 100µm 

longitudinal sections were taken from the muscle.  These sections were stored in cold 

0.1M PBS so that sucrose and OCT could dissolve before staining. 
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2.2.5 – Immunohistochemistry 

Antibody Raised in Concentration Secondary Concentration 

Neurofilament 

(2H3, 

Developmental 

Studies 

Hybridoma 

Bank) 

Mouse 1:200 AffiniPure 

Dylight 488 

Donkey Anti-

Mouse (H+L) 

1:100 

SV2 

(Developmental 

Studies 

Hybridoma 

Bank) 

Mouse 1:100 AffiniPure 

Dylight 488 

Donkey Anti-

Mouse (H+L) 

1:100 

S100 (Dako) Rabbit 1:400 Dako Swine 

Anti-Rabbit 

FITC 

1:60 

Table 3: Primary and secondary antibody information.  Neurofilament and SV2 

antibodies were used to stain muscles for occupancy counts and synapse elimination 

rate quantification.  S100 was used to quantify terminal Schwann cell number. 

 

For muscles from P5 Smn-/-;SMN2+/+ mice and littermates and P7 and P14 

littermates, muscles were stained by permeabilising the tissue in 2% Triton X-100 in 

0.1M PBS for 30 minutes.  The muscles were then blocked in 4% BSA + 1% Triton 

X-100 in 0.1M PBS for at least 30 minutes.  Primary antibodies were dissolved in 

blocking solution according to Table 3 and the muscles were incubated in primary 

antibody solution at 4oC overnight on a rocking platform.  The following day, 

muscles were washed in four changes of cold 0.1M PBS for 30 minutes each.  The 
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muscles were then stained with 5µg/ml TRITC-conjugated α-bungarotoxin in 0.1M 

PBS for 10 minutes in the dark on a rocking platform.  All subsequent incubations 

and washes were carried out in the dark.  Bungarotoxin was washed off in three 

changes of cold 0.1M PBS for 5 minutes each.  Secondary antibody was then made 

up in 0.1M PBS according to Table 3, and muscles were washed in this for 2-4 hours 

at room temperature on a rocking platform.  The muscles were washed again in three 

changes of 0.1M cold PBS for 10 minutes each.  At this stage, muscles that were to 

be used for terminal Schwann cell counts were also stained with TO-PRO-3 for 10 

minutes before being washed in three changes of cold 0.1M PBS for 5 minutes each.  

Muscles were then mounted onto glass with glass coverslips using Mowiol 

containing DABCO as an anti-fade agent.  Slides were left to set at room temperature 

overnight in the dark before being viewed on the fluorescent microscope to check for 

adequate staining. 

For Thy.1-YFP-H mice, muscles were dissected as above, but prior to fixation they 

were washed in 5µg/ml TRITC-conjugated α-bungarotoxin in 0.1M PBS in the dark 

for 10 minutes.  They were then washed in several quick changes of cold 0.1M PBS 

and fixed in 4% PFA in 0.1M PBS for 10 minutes.  The post-fix dissection was then 

carried out as above and the muscles were cleaned of connective tissue and fat.  The 

muscles were then mounted on glass slides with glass coverslips using Mowiol 

containing DABCO as an anti-fade agent.  Slides were left to set at room temperature 

overnight in the dark before being viewed on the fluorescent microscope. 
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2.2.6 - Imaging 

NMJs, terminal Schwann cells and YFP-labelled axons were visualised using a Zeiss 

LSM 710 laser scanning confocal microscope (20x objective/0.4NA; 40x 

objective/1.3NA oil objective; 63x objective/1.4NA oil objective).  488nm, 543nm 

and 633nm laser lines were used for excitation and confocal Z-series were merged 

using Zen software.  Laser intensity and gain was set individually, so that there was 

no saturation of signal.  Z-stack slices were 1µm in thickness and each line was 

averaged twice to improve image quality. 

Micrographs for the reconstruction of motor units were taken using a standard epi-

fluorescent microscope equipped with a chilled CCD camera using a 10x objective; 

0.3NA. (Nikon IX71 microscope; Hammamatsu C4742-95; OpenLab software).  

YFP-labelled axons were imaged using 488nm excitation and 520nm emission 

optics; TRITC-labelled motor endplates were imaged using 543nm excitation and 

590nm emission optics.  

 

2.2.7 - Quantification and Analysis 

For motor unit vulnerability studies, a minimum of 80 NMJs per muscle per mouse 

were quantified from confocal images taken with x20 and x40 objectives.  For 

occupancy counts, individual NMJs were categorised as either: fully occupied 

endplates, defined as the nerve terminal (identified by neurofilament and SV2 

staining) covering more than 50% of the motor endplate; partially occupied 

endplates, defined as the nerve terminal covering less than 50% of the endplate but 

still being in contact with the motor endplate; or vacant, defined as no longer being 
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contacted by a nerve terminal.  These data were then converted into percentages and 

plotted as bar charts using Graph Pad Prism v5.  Mann-Whitney U tests were used to 

analyse statistical significance. 

Motor unit reconstructions from Thy.1-YFP-H mice were used to quantify 

morphological characteristics of single motor neurons.  Motor unit reconstructions 

were produced by Masters student Joya Nahon, under my supervision.  Motor unit 

size was determined by counting the number of motor endplates per axon from 

reconstructed motor units.  Total intramuscular arbour length was measured by 

tracing the axons in reconstructed images by hand from the point at which the axon 

entered the muscle to all the nerve terminals.  This was achieved using ImageJ 

software using the “measure” function and line tool. The sum of the primary axon 

trunk and all the distal branches made up the total intramuscular arbour length.   The 

number of branch points was measured by marking branch points by hand on the 

motor unit reconstructions.   These data could then be used to create schematic 

branching diagrams based on entire motor unit reconstructions.  From these 

schematics, the branch order for each terminal branch could be determined by 

counting the number of branch points between the nerve terminus and the axon’s 

point of entry into the muscle.  Endplate area was determined by measuring the area 

of the motor endplate from Maximum Intensity Z-stock images taken on a confocal 

microscope.  The outline of the endplate was manually traced on ImageJ and the 

software calculated the total area of the endplate. 

For synapse elimination studies, P7 and P14 unaffected littermates from Smn+/-

;SMN2+/+ litters were used.  The number of axonal inputs in neonatal muscles was 
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measured by counting the number of axons converging on a single motor endplate.  

A minimum of 80 endplates per muscle per mouse was counted.   

For terminal Schwann cell counts, P5 unaffected littermates from Smn+/-;SMN2+/+ 

litters were used.  Maximum intensity Z-stack projections of endplates were taken on 

a confocal microscope and analysed in Adobe Photoshop.  To be counted as a 

terminal Schwann cell, the cell had to be positive for S100 with a TO-PRO-3 labelled 

nucleus and be overlying a motor endplate. 

Spearman correlation analysis was carried out in Graph Pad Prism v5 to determine if 

any correlations had statistical significance.  Spearman correlation analysis 

determines whether there is a significant correlation where data contains ordinal 

variables, as is the case for the vulnerability spectrum data. 

 

2.3 - Results 

2.3.1 - Selection, Preparation and Staining of Muscles 

In order to determine the extent of the variation in motor unit susceptibility to SMA, 

anatomically distinct skeletal muscles innervated by distinct motor unit pools in late 

stage (P5) Smn-/-;SMN2+/+ mice were chosen for analysis (Figure 1).   
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Figure 1 – Schematic of muscles dissection from P5 Smn-/-;SMN2+/+ mice and 

unaffected littermates.  (A) The location of the four cranial muscles: the levator auris 

longus rostral and caudal bands, the adductor auris longus, the auricularis superior, 

and the interscutularis. (B) The location of the trunk muscles: the triangularis sterni, 

and the transversus abdominis. (C) The location of the three hind limb muscles: the 

tibialis anterior, extensor digitorum longus and the gastrocnemius. 

 

Muscles were dissected from various body regions, specifically the cranial region 

(Figure 1A; Figure 2), torso (Figure 1B; Figure 3 and Figure 4) and hind limbs 

(Figure 1C; Figure 5), in order to determine if body position had an effect on motor 

unit vulnerability in SMA.  Muscles were chosen that could be dissected out prior to 

fixation, which removes the need to perfuse the whole mouse and improves staining 

quality of skeletal muscle.  Thin flat muscles were also preferentially selected for 

analysis as they do not require to be sectioned in order to visualise NMJs.  The use of 

whole mount muscle preparations and confocal microscopy allow the entire depth of 

the muscle to be visualised and ensures that all NMJs are intact for quantification.   
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Figure 2 – Cranial muscle dissections.  The cranial muscles of interest are the most 

superficial of the cranial muscle groups and are used for independent ear movement.  

They were dissected by removing the muscle mass on top of the skull intact with the 

skin and ears.  (A) An incision was made between the eyes and extended around the 

top of the head, underneath each ear, until the original incision was met.  The skin, 

ears and underlying muscle mass were then removed by cutting along the skull and 

reflecting the skin.  Care was taken to angle the blades towards the skull to minimise 

the risk of cutting a superficial cranial muscle.  (B) Once completely detached, the 

muscle mass was pinned out (deep muscles facing up) in a Sylgard dish using insect 

pins.  The muscles of interest are now the deepest layer.  (C) The large mass of thick 

muscles was then carefully removed until the thin intact cranial muscles and midline 

(white arrow) could be seen.  At this point, the muscles were fixed using 4% PFA in 

0.1M PBS for 10 minutes on a rocking platform. (D) After fixation, the remaining 

thick muscles were removed and excess skin underneath the muscle layer was 

removed.  The layers of thin cranial muscles were now fully visible and could be 

removed starting with the most superficial muscle.  The IS was removed by cutting it 

at the midline, then reflecting the muscle in a medial to lateral manner.  The muscle 

was then cut flush at the point of attachment on the skin.  (E) The AAL was removed 

by cutting the attachment at the skin by the ear canal.  The muscle was then reflected 

in a lateral to medial manner before being cut flush at the midline.  (F) The AS was 

removed by cutting the attachment by the ear canal.  The AS was then removed by 

reflecting the muscle in a lateral to medial manner, being careful not to remove the 

LALc as the two muscles are closely connected by a layer of connective tissue.  The 
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AS was then cut flush at the midline.  (G)  The LAL was then removed as a single 

muscle, by cutting the point of attachment along the ear and then cutting the muscle 

flush along the midline.  (H) The muscles are then cleaned of fat and connective 

tissue.  The different sizes and shapes of the muscles are clear when they are 

removed and separated.  Here the muscles are shown in the order (from left to 

right); IS, AAL, AS and LAL (LALr and LALc). 

Figure 3 – Transversus abdominis dissection.  (A) The mouse was skinned to expose 

the abdominal and chest wall. (B) The abdominal wall was removed from the mouse 

and pinned out in a Sylgard dish using insect pins. (C) The overlying superficial 

abdominal muscles were reflected to reveal the TVA underneath.  A superficial blood 

vessel was also removed.  The TVA was then fixed in 4% PFA for 10 minutes on a 

rocking platform. (D) Portions of the ribs were removed to expose a larger area of 

the TVA. (E) The TVA was cut from the abdominal wall, with the cartilaginous 

sternum attached. (F) The sternum was carefully removed by blunt dissection and the 

TVA was cleaned of fat and connective tissue for staining.
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Figure 4 - Triangularis sterni dissection.  (A) The mouse was decapitated, skinned 

and arms removed. (B) The hind limbs, tail, pelvis and lower abdominal organs were 

removed. (C) The spinal cord was removed. (D) The chest organs and diaphragm 

were removed. (E) The chest wall was pinned out, deep muscles facing up, in a 

Sylgard dish using insect pins and fixed for 10 minutes in 4% PFA on a rocking 

platform.  An incision was then made in the chest wall between the sternum and the 

mammary vessel (black arrow).  The TS was now the most superficial muscle, and its 

cut edge could be identified from this incision.  The TS could be lifted using forceps 

and reflected by cutting the underlying connective tissue. (F) Once the TS had been 

removed from the chest wall, it was cleaned of fat and connective tissue before 

staining. 
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Figure 5 – Hind limb dissections.  (A) The hind limb was removed as proximally as 

possible using bone scissors. (B)  The skin was reflected over the foot and removed. 

(C) The leg was pinned out straight in a Sylgard dish using insect pins and fixed 

using 4% PFA in 0.1M PBS for 15 minutes on a rocking platform. (D) The muscles 

of interest were dissected out by cutting the appropriate tendon at the ankle and 

reflecting the muscle in a distal to proximal manner until the muscle could be cut 

flush at its origin.  The three muscles dissected from the hind limb are shown after 

they have been removed from the leg.  From left to right: tibialis anterior, extensor 

digitorum longus, and gastrocnemius. 
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Where the need for sectioning muscle was necessary, as for the large-bellied hind 

limb muscles, a new sectioning protocol was developed.   Muscles were 

longitudinally sectioned on a freezing microtome at 100µm and then stained using 

the same protocol as whole mount muscles.  Sectioning the hind limb muscles at 

100µm allowed for intact NMJs to be visualised through the depth of the muscle 

section on a confocal microscope.  

 

Name of muscle 

 

Processing Staining Quality 

LALc Dissected fresh, 4% PFA 

 

Excellent 

LALr Dissected fresh, 4% PFA 

 

Excellent 

AAL Dissected fresh, 4% PFA 

 

Excellent 

AS Dissected fresh, 4% PFA 

 

Good 

IS Dissected fresh, 4% PFA 

 

Excellent 

TVA Dissected fresh, 4% PFA 

 

Good 

TS Dissected fresh, 4% PFA 

 

Excellent 

TA Dissected fresh, 4% PFA, 30% 

sucrose, sectioned 

Excellent 

EDL Dissected fresh, 4% PFA, 30% 

sucrose, sectioned 

Excellent 

GS Dissected fresh, 4% PFA, 30% 

sucrose, sectioned 

Excellent 

Table 4: Details of how the muscles were processed and the quality of staining 

achieved from each muscle.  Quality of staining was based on a qualative assessment 

of intensity of 2H3/SV2 fluorescent signal and intensity of background staining. 
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In total ten muscles were chosen for analysis: LALc, LALr, AAL, AS, IS, TVA, TS, 

TA, GS, and EDL (Figures 1, 2, 3, 4 and 5; Table 4).   

NMJs were visualised by staining with antibodies against neurofilament (2H3, 

Developmental Studies Hybridoma Bank) and the synaptic vesicle-associated protein 

SV2 (Developmental Studies Hybridoma Bank) to visualise the axon and nerve 

terminal (Figure 6A).  The motor endplate was visualised using TRITC-conjugated 

α-bungarotoxin, which selectively binds to acetylcholine receptors (Figure 6B).  

After staining, Z-stack images were taken using a confocal microscope.  The 

confocal microscope was used as it produces images higher quality images than 

those taken from a standard fluorescent microscope.  Z-stack images were taken so 

that larger numbers of NMJs would be in focus in a single micrograph. 

 

 

Figure 6 – Neuromuscular junction staining.  Neuromuscular junctions were stained 

using immunohistochemistry to label axons and nerve terminals, and bungarotoxin 

staining to label motor endplates. (A) Axons and nerve terminals were visualised 

using antibodies against neurofilament (2H3, Developmental Studies Hybridoma 

Bank) and SV2 (SV2, Developmental Studies Hybridoma Bank), respectively.  Both 

of these antibodies are raised in mouse, and so they can be labelled with the same 
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anti-mouse secondary antibody resulting in an apparently continuous staining of 

axon and nerve terminal. (B)  Motor endplates on the muscle fibre are visualised 

using TRITC-conjugated α-bungarotoxin.  α-bungarotoxin is a naturally occurring 

toxin that is isolated from the venom of the Banded Krate, and specifically binds to 

the α subunit of the nicotinic acetylcholine receptor.  (C) A merged image of the 

2H3/SV2 staining (A) and TRITC-conjugated α-bungarotoxin (B).  

 

2.3.2 - Quantification of NMJs 

Figure 7 – NMJ categories. Neuromuscular junctions from P5 Smn-/-;SMN2+/+ mice 

and healthy littermates were quantified by assignment to one of three categories: 

fully occupied (A), partially occupied (B) and vacant (C). (A) Endplates were 

designated “fully occupied” when SV2 and neurofilament staining (green) could be 

seen overlying more than 50% of the motor endplate (red). (B) Endplates were 

designed “partially occupied” if the SV2 and neurofilament staining (green) was 

seen to be overlying less than 50% of the motor endplate (red), but the axon was still 

in contact with the motor endplate. (C) Endplates were considered “vacant” when 
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no neurofilament or SV2 staining (green) could be seen overlying or in contact with 

the motor endplate (red).  Scale bars = 5µm. 

 

NMJs were quantified by being assigned to one of three groups: fully occupied 

(Figure 7A); partially occupied (Figure 7B); or vacant (Figure 7C).  NMJs were 

classed as being fully occupied if the nerve terminal staining overlay the motor 

endplate by more than 50%.  NMJs were classed as being partially innervated if the 

nerve terminal occupied less than 50% of the endplate, but there was still 

innervation.  NMJs were classed as vacant if there was no evidence of a nerve 

terminal overlying the motor endplate. 

Consistent with results from Murray et al. (2008) a significant reduction in the 

percentage of fully occupied endplates was observed in the LALc of P5 Smn-/-

;SMN2+/+ mice compared to unaffected littermates (Figure 8).   
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Figure 8 – Cranial muscles endplate occupation quantification. Bar charts (mean ± 

S.E.M) showing the percentage of fully occupied, partially occupied, and vacant 

endplates in the cranial muscles of the Smn-/-;SMN2+/+ mouse (black bars) and 

unaffected littermates (white bars).  Mann Whitney U test, ns = not significant, * = p 

≤ 0.05; n ≥ 3 mice per muscle per genotype. 

 

Also consistent with Murray et al. (2008) was the apparent resistance of the motor 

units of the LALr to SMA pathology at the NMJ, with no significant difference in the 

percentage of fully occupied endplates observed between P5 Smn-/-;SMN2+/+ mice 

and unaffected littermates (Figure 8).  The AS and AAL were also found to have a 

significantly reduced percentage of fully occupied endplates in P5 Smn-/-;SMN2+/+ 

mice (Figure 8).  A cranial muscle that was not examined by Murray et al. (2008) 

was the IS.  This muscle was found to have no significant difference in the 
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percentage of fully occupied endplates between P5 Smn-/-;SMN2+/+ mice and 

unaffected littermates (Figure 8), similar to the LALr. 

 

Figure 9 – Abdominal muscles endplate occupation quantification.  Bar charts 

(mean ± S.E.M) showing the percentage of fully occupied, partially occupied, and 

vacant endplates in the abdominal muscles of the Smn-/-;SMN2+/+ mouse (black bars) 

and unaffected littermates (white bars).  Mann Whitney U test, ns = not significant, * 

= p ≤ 0.05; n ≥ 3 mice per muscle per genotype. 

 

The endplate occupation of two abdominal muscles was quantified.  The TVA has 

previously been characterised in late symptomatic Smn-/-;SMN2+/+ mice by Murray et 

al. (2008), and the results here were similar, with the TVA showing a significantly 

reduced percentage of fully occupied endplates (Figure 9).  The endplate occupation 

status of the motor units of the TS had not previously been quantified in Smn-/-

;SMN2+/+ mice, and was found to also be vulnerable, with both the percentage of 

fully occupied and partially occupied endplates significantly reduced (Figure 9). 
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Hind limb motor units, such as those of the TA, EDL and GS had not previously 

been quantified in Smn-/-;SMN2+/+ mice.  The results showed that both the TA and 

GS showed significantly reduced percentages of fully occupied endplates and 

significantly increased percentages of partially innervated endplates compared to 

unaffected littermates (Figure 10). The EDL motor units, however, seemed to show a 

resistance to SMA with no significant difference found in the number of fully 

occupied, partially occupied or vacant endplates between Smn-/-;SMN2+/+ mice and 

unaffected littermates (Figure 10). 

 

Figure 10 – Hind limb muscle endplate occupation quantification. Bar charts (mean 

± S.E.M) showing the percentage of fully occupied, partially occupied, and vacant 

endplates in the hind limb muscles of the Smn-/-;SMN2+/+ mouse (black bars) and 

unaffected littermates (white bars).  Mann Whitney U test, ns = not significant, * = p 

≤ 0.05; n ≥ 3 mice per muscle per genotype. 

 

Using the percentage of fully occupied endplates, the muscles were ranked in order 

of motor unit vulnerability.  The bars representing the fully occupied endplate 

percentages of the Smn-/-;SMN2+/+ mice were colour-coded using a graduated yellow 
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to red colour scheme, to reflect the spectrum of vulnerability observed. In Figure 11, 

the yellow bars indicate a relative resistance to SMA pathology whereas the red bars 

indicate that the motor units were vulnerable (Figure 11).   

This ranking was then used in all subsequent correlation studies, in order to 

determine if any morphological aspect of motor units influenced vulnerability.  The 

colour code in Figure 11 is also maintained in all subsequent diagrams in order to 

convey each muscles’ relative motor unit vulnerability. 

 

Figure 11 – Bar chart (mean ± SEM) with colour-coded ranking of motor unit 

vulnerability in Smn-/-;SMN2+/+ mice.  The relative motor unit vulnerability of a 

muscle was determined by its percentage of fully occupied endplates in P5 Smn-/-

;SMN2+/+ mice (n ≥ 3 mice per muscle).  These values were used to rank the motor 

units in order of motor unit vulnerability, from the least vulnerable to the most 

vulnerable.  The bars representing Smn-/-;SMN2+/+ mouse data were then colour-
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coded using a graduated colour scheme from yellow to red, with yellow designating 

low vulnerability motor unit pools and red designating high vulnerability motor unit 

pools.  This colour-code system is used in subsequent figures to identify the relative 

vulnerability of motor units in each muscle.  The percentage of fully occupied 

endplates in muscles of unaffected littermates are represented by white bars (n ≥ 3 

mice per muscle).   

 

2.3.3 - Correlation of Vulnerability with Muscle and Motor Unit Characteristics 

 

2.3.3.1 - Muscle Fibre Type and Body Axis Position 

 

Vulnerability Muscle Fibre Twitch Type Body Position 

Low LALr Fast Cranial 

 EDL Fast Hind limb 

 IS - Cranial 

 TS Slow Torso 

 TVA Slow Torso 

 GS Mixed Hind limb 

 TA Fast Hind limb 

 AS Slow Cranial 

 AAL Fast Cranial 

High LALc Fast Cranial 

Table 6: Details of the fibre twitch type and body position of each muscle in the 

cohort (Lionikas et al., 2005; Murray et al., 2008; Murray et al., 2010). 

 

To assess if the muscle fibre type correlated with motor unit vulnerability, a manual 

literature search was performed to determine the twitch type of the muscles.  
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Information on the composition of muscle fibres was found for all muscles, except 

the IS (Lionikas et al., 2005; Murray et al., 2008; Murray et al., 2010).  Using this 

information, it was determined that muscle fibre type did not correlate with disease 

susceptibility.  Both the LALr and LALc are composed mainly of fast twitch fibres, 

but were on opposite ends of the vulnerability spectrum (Table 6; Figure 11).  

Similarly, the EDL and TA are both fast twitch muscles, but are differently affected 

in late stage Smn-/-;SMN2+/+ mice (Table 6; Figure 11) 

Body position relating to motor unit vulnerability was assessed qualitatively (Table 

6).  It was determined that there was no correlation between body position and 

vulnerability. 

 

2.3.3.2 - Motor Unit Size, Intramuscular Arbour Length and Branching Pattern 

After determining that muscle fibre type and body position did not affect motor unit 

vulnerability to SMA, we next sought to determine whether intrinsic morphological 

characteristics of the motor units innervating the different muscles correlated with 

motor unit vulnerability.  To do this, we reconstructed entire single motor units 

innervating several of the muscles that were analysed in the motor unit vulnerability 

study.  Entire motor units were reconstructed for the LALc, LALr, AAL, AS, IS and 

TS using muscles taken from young adult Thy.1-YFP-H mice (Feng et al., 2001).  

This transgenic mouse model was initially made by Feng et al. (2001) who generated 

transgenic mice that expressed different spectral variants of GFP in neuronal cells.  

Feng et al. (2001) produced 25 different transgenic lines, each of which expressed a 

fluorescent protein in a random subset of neuronal cells.  The Thy.1-YFP-H mouse 
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expresses yellow fluorescent protein in a small random subset of neurons, meaning 

that only a small percentage of motor neurons innervating a muscle will be visible 

(Feng et al., 2001). This allows us to confidently trace individual motor neurons from 

their point of entry into the muscle to their terminal branches.  These experiments 

were performed in healthy mice in order to ensure that we were comparing intrinsic 

morphological characteristics of motor neurons rather than their responses to disease 

stimuli.   

Motor units were reconstructed from young adult Thy.1-YFP-H mice by dissecting 

out the required muscles using the same dissection techniques as for the P5 SMA 

mice (Figures 1, 2, 3, 4 and 5).  With the Thy.1-YFP-H mice, the muscles were 

stained with TRITC-conjugated α-bungarotoxin only, as a random subset of the 

motor units were already labelled in the muscles and so only the motor endplates 

needed to be visualised.  Bungarotoxin staining was performed before the muscle 

was fixed, in order to reduce high background levels.  The muscles were then fixed 

in 4% PFA in 0.1M PBS, dissected out and cleaned of connective tissue and fat 

before being mounted onto glass slides.  Once the mounting media had set, 

fluorescent micrographs were taken of the labelled axons.  These micrographs were 

taken along the length of the axon, overlapping slightly and following all branches of 

the motor unit, from where the axon entered the muscle to all of the terminal 

branches.  These images were then overlaid with one another on Adobe Photoshop 

until the entire motor unit had been reconstructed (Figure 12).  From these 

reconstructed images, of which over 100 were made, motor unit arbour length, motor 

unit size, and motor unit branching pattern could be quantified. 
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Figure 12 – Composite fluorescent micrograph of a YFP-labelled motor unit.  

Overlapping fluorescent micrographs were taken, following a YFP-labelled motor 

neuron from the point at which it entered the muscle, to all the terminal branches.  

Using Adobe Photoshop, the fluorescent micrographs were overlaid until a single 

large image of the motor unit was produced. The YFP-labelled motor neuron can be 

seen in green, and the motor endplates on muscle fibres are visible in red.  Motor 

endplates that are being contacted by the YFP-labelled motor neuron appear yellow. 

 

As motor unit size correlates with motor unit vulnerability in ALS (Bradley et al., 

1983; Fischer et al., 2004; Hegedus et al., 2007; Valdez et al., 2012) we first sought 

to determine whether motor unit size also correlated with motor unit vulnerability in 

SMA.  To measure motor unit size, the total number of motor endplates that were 
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contacted by the terminal branches of a motor neuron were counted.  There was a 

large range in motor unit size between the muscles, but no significant correlation was 

found between motor unit size and vulnerability to SMA (Spearman correlation, r = 

0.3143, p = 0.5639) (Figure 13B).  For example, the motor units innervating the 

AAL and AS are both vulnerable in SMA, based on the ranking system (Figure 11).  

However, the AAL has relatively large motor units whereas the AS has relatively 

small motor units (Figure 13A).  This was also true for motor units that were more 

resistant to synaptic degeneration – the TS has relatively large motor units, and the IS 

has relatively small motor units (Figure 13A), however, they both show similar 

levels motor unit resistance (Figure 11).  

 

 

Figure 13 – Motor unit size correlation.  The average size of a motor unit 

innervating the LALc, LALr, AAL, AS, IS and TS muscles was quantified by counting 

the number of synapses made by a single motor unit.  (A) Bar chart (mean ± SEM) of 

resistant motor units colour-coded yellow and vulnerable motor units colour-coded 

red (n ≥ 3 per muscle).  Bars are ordered according to the size of the motor unit, 

from largest to smallest.  (B)  Scatter plot of motor unit size.  Spearman correlation 
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analysis was carried out and no significant correlation was found between motor 

unit size and vulnerability (Spearman correlation, p ≥ 0.05; n ≥ 3 per muscle). 

We next examined whether there was a correlation between motor unit vulnerability 

and total intramuscular axon arbour length.  To determine a motor neuron’s total 

intramuscular arbour length, axons were manually traced over the reconstructed 

motor unit images in Adobe Photoshop (Figure 14).  The motor neuron was traced 

from the point at which it entered the muscle, to the tip of all the terminal branches at 

neuromuscular junctions.  The length of these traces was then measured on ImageJ 

and the sum of all the branches was used in correlational studies.   

 

  

Figure 14 – Example of a reconstructed motor unit and its tracing. (A) 

Reconstructed motor unit from the LALr. (B) An example of a tracing taken from the 
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motor unit depicted in A.  From this tracing, intramuscular arbour length and 

branching patterns could be quantified using ImageJ soft 

ware.. 

 

The AAL was found to contain motor units with the largest intramuscular arbour 

length, at approximately 2.5cm (Figure 15A), while the motor units innervating the 

IS were the smallest, at approximately 1cm (Figure 15A).  The motor units of the 

caudal and rostral bands of the LAL had similar intramuscular arbour lengths (Figure 

15A), however they appear at opposite ends of the vulnerability spectrum (Figure 

11).  No significant correlation was found between intramuscular arbour length and 

motor unit vulnerability (Spearman correlation, r = 0.6571, p = 0.1750) (Figure 15B). 

  

Figure 15 – Intramuscular arbour length quantification and correlation.  The 

average intramuscular arbour length of a motor unit was quantified by measuring 

the total length of all axonal arbours from the point of entry to the terminal 

branches. (A) A bar chart (mean ± SEM) showing intramuscular arbour lengths.  

The bars are ordered from largest intramuscular arbour length to smallest, with 

muscles innervated by resistant motor units colour-coded in yellow and muscles 
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innervated by vulnerable motor units colour-coded in red (n ≥ 3 per muscle).  (B) A 

scatter plot of intramuscular arbour length.  Spearman correlation analysis was 

carried out and no significant correlation was found between intramuscular arbour 

length and relative vulnerability of motor units (Spearman correlation, p ≥ 0.05; n ≥ 

3 per muscle). 

Branching patterns were examined next, to determine if the number of branches a 

motor unit made would correlate with vulnerability in SMA.  Initially, the number of 

branch points per motor unit was measured.  Branch point number was measured 

using the reconstructed motor units from Thy.1-YFP-H mice.   

Figure 16 – Number of branch points per motor unit correlation. Branch points were 

quantified by counting the number of branch points per motor unit. (A) A bar chart 

(mean ± SEM) of branch points per motor unit.  The bars are ordered from largest to 

smallest number of branch points, with muscles innervated by resistant motor units 

colour-coded yellow and muscles innervated by vulnerable motor units colour-coded 

red (n ≥ 3 per muscle).  (B) A scatter plot of number of branch points per motor unit.  

Spearman correlation analysis was carried out and no significant correlation was 

found between the number of branch points per motor unit and relative vulnerability 

(Spearman correlation, p ≥ 0.05; n ≥ 3 per muscle). 
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A branch point was defined as the point at which an axon split into two.  The AAL 

was found to be innervated by motor units with the highest number of branch points 

per motor unit, at just over 20 (Figure 16A), while the IS was innervated by motor 

units with the smallest number of branch points per motor unit at around 10 (Figure 

16A).  Again, the values for the motor units of the caudal and the rostral bands of the 

LAL were similar (Figure 16A) while their motor unit vulnerabilities are strikingly 

different (Figure 11).  When a Spearman correlation was carried out, no significant 

correlation was found between vulnerability and the number of branch points per 

motor unit (Spearman correlation, r = 0.6000, p = 0.2417) (Figure 16B). 

 

We next decided to investigate whether the pattern of motor unit branching 

influenced vulnerability, rather than simply the number of branches in a motor unit.  

Motor unit branching pattern was quantified using a system developed by Valdez et 

al. (2012) in which the number of times an axon branches before it forms a synapse 

is quantified.  Schematic diagrams of motor neurons were produced where each new 

branch of a motor unit was assigned a new branch order (Figure 17).   
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Figure 17 – Example Branch order diagrams. Schematic representations of motor 

units were produced in order to quantify branching patterns.  Branch orders were 

created and each synapse was assigned to a branch order relating to how many 

times its axon had branched before forming the synapse.  The first branch after the 

motor unit’s entry into the muscle (white circle) was designated branch order 1.  The 

second branch was designated branch order 2, and so on.  In the diagrams, synapses 

are depicted as black circles.   The number of synapses in each branch order was 

then used to quantify the branching pattern (Figure 19). 

 

 

 



77 
 

Figure 18 – Branch order quantification.  Frequency plots (mean ± SEM) were 

produced from branching diagrams in Figure 17.  The number of synapses in each 

branch order was quantified and is represented here as frequency plots.  The 

frequency plots looked similar between all the motor unit groups examined and did 

not show any signs of skewing.  Both the motor units of LALc and LALr have the 

largest number of synapses in branch order 4, however they appear at opposite ends 

of the vulnerability spectrum in Figure 11.  From this we concluded that the 

branching pattern of motor units does not influence motor unit vulnerability in SMA. 

 

The number of synapses per branch order was then quantified and is represented as 

frequency charts (Figure 18). No skewing of synapse branch order frequency was 

noted in any of the muscles examined (Figure 18) and so no qualitative correlation 
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could be reported between synapse branch order frequency and motor unit 

vulnerability. 

 

2.3.3.3 - Endplate Size and Morphology 

 

To determine if there were any correlations between motor unit vulnerability and 

average size of synapses or endplate morphology, high magnification maximum 

intensity Z-stack projections of motor endplates from Thy.1-YFP-H mice were taken 

on a confocal microscope.  First, motor endplate area was measured by tracing 

around the outline of the motor endplate in ImageJ, from which the total area (µm2) 

could be measured.  No correlation was observed between motor endplate area and 

motor unit vulnerability (Spearman correlation, p = 0.1361, r = 0.7143) (Figure 19). 
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Figure 19 – Endplate area correlation study.  The area of motor endplates in young 

adult Thy.1-YFP-H mice was quantified by tracing around the area of TRITC-

conjugated α-bungarotoxin staining on ImageJ.  The area was measured as µm2.  No 

correlation was found between motor endplate area and motor unit vulnerability in 

SMA (Spearman correlation, p ≥ 0.05; n ≥ 3 per muscle). 

 

Next, the morphology of motor endplates in each muscle was examined.  Immature 

endplates are smooth and plaque-like, and as they mature they become perforated 
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and fold until they resemble the classic adult “pretzel” morphology.  Endplate 

morphology was measured qualitatively and it was determined that all motor 

endplate displayed similar adult “pretzel”-like morphology.  We concluded that there 

was no correlation between endplate morphology and motor vulnerability (Figure 

20). 

 

Figure 20 – Endplate morphology.  Endplate morphology was examined using high 

magnification (x40) Z-stack confocal micrographs.  Qualitative analysis of motor 

endplates showed a mature pretzel-like morphology in all motor endplates examined.  

Based on this, we concluded that there was no difference in NMJ morphology 

between vulnerable and resistant motor unit pools.  Scale bars = 30µm. 
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2.3.3.4 - Synapse Elimination Rate 

After no correlation with motor unit vulnerability could be detected in any of the 

morphological parameters examined, we decided to investigate synapse elimination 

as a potential developmental correlate.  At birth, the majority of NMJs receive pre-

synaptic inputs from more than one axon (Figure 21A).  Over the three weeks 

following birth, these excess inputs withdraw from the motor endplate in a process 

known as synapse elimination.  After synapse elimination, each motor endplate is 

innervated by only one axonal input (Figure 21B) (Gillingwater & Ribchester, 2003).   

Figure 21 – Synapse elimination example figures.  (A/B) High magnification (x40) 

confocal z-stack micrographs of NMJ stained with 2H3/SV2 (green) and TRITC-

conjugated α-bungarotoxin (red).  (A) A poly-innervated endplate from a P7 mouse.  

Two individual axons can be seen converging on one motor endplate (white arrows). 

(B) A mono-innervated endplate from a P14 mouse.  Only one axon can be seen 

innervating the motor endplate (white arrow).  Synapse elimination was quantified 

by counting the number of axonal inputs per endplate in a range of muscles (LALr, 

LALc, AAL, AS, IS and TS) in healthy mice at P7 and P14.  Endplates were classed 

as poly-innervated if they had two or more axonal inputs converging on a single 

endplate. 
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There are many similarities between the process of synapse elimination and synaptic 

degeneration, in terms of compartmental degeneration and actin dynamics 

(Gillingwater & Ribchester, 2003).  In Smn-/-;SMN2+/+ mice, pathological changes in 

motor units are taking place as synapse elimination is occurring (Gillingwater & 

Ribchester, 2003).  We hypothesised that the rate of synapse elimination could vary 

between motor unit pools, and that this could act as a read out of different motor 

units’ intrinsic abilities to remodel axons.  Any differences in motor units’ ability to 

remodel axons may reveal an underlying mechanism in differential motor unit 

vulnerability.  Based on this we carried out correlation studies between synapse 

elimination rate and motor unit vulnerability. 

 
Synapse elimination rates were quantified in P7 and P14 unaffected littermates of 

Smn+/-;SMN2+/+ litters.  A range of muscles with vulnerable and resistant motor unit 

pools were used for quantification; LALr, LALc, AAL, AS, IS and TS.  The total 

number of axonal inputs innervating a single motor endplate was quantified and the 

data was analysed in two ways: initially, the percentage of poly-innervated endplates 

per muscle was determined.  Secondly, the average number of inputs per motor 

endplate was quantified from the same data set. 

 

We found that at P7, approximately 50% of endplates remain poly-innervated in all 

muscles examined (Figure 22A).  Using Spearman correlation analysis, it was 

determined that there was no correlation between poly-innervation and motor unit 

vulnerability at P7 (Spearman correlation, r = 0.3143, p = 0.5639) (Figure 22A).  At 

P14, all muscles examined showed either very low levels of poly-innervation or no 
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poly-innervation (Figure 22B).  From this we concluded that synapse elimination 

occurs at a similar rate in all the motor units examined.  A correlation analysis was 

carried out but no significant correlation was observed between the percentage of 

poly-innervation and motor unit vulnerability at P14 (Spearman correlation, r = 

0.2000, p = 0.7139) (Figure 22B). 

 

The synapse elimination data was also analysed using the average number of inputs 

per motor endplate.  We found that at P7 the average number of axonal inputs per 

motor endplate was comparable across all muscles examined (Figure 22C).  

Correlational analysis revealed no significant correlation between average axonal 

input number at P7 and motor unit vulnerability (Spearman correlation, r = 0.3134, p 

= 0.5639) (Figure 22C).  By P14, the average number of axonal inputs per motor 

endplate was consistently close to 1 and no significant correlation was observed with 

motor unit vulnerability (Spearman correlation, r = 0.2000, p = 0.7139) (Figure 

22D). 

 

 

 

 

 

 

 



84 
 

 

Figure 22 – Synapse elimination rate correlation. (A) Scatter plot of percentage 

poly-innervated endplates at P7 ordered from low to high vulnerability motor units 

(n = 3 per muscle).  Spearman correlation analysis showed no significant 

correlation between percentage of poly-innervated endplates and motor unit 

vulnerability (Spearman correlation, p ≥ 0.05; n= 3 per muscle).  (B) Scatter plot of 

percentage of poly-innervated endplates at P14, ordered from low to high 

vulnerability motor unit pools (n = 3 per muscle).  Spearman correlation analysis 

showed no significant correlation between percentage of poly-innervated endplates 

and motor unit vulnerability (Spearman correlation, p ≥ 0.05; n = 3 per muscle).  

(C) Scatter plot of the average number of axonal inputs per endplate at P7, ordered 

from low to high vulnerability motor unit pools (n = 3 per muscle).  Spearman 

correlation analysis showed no significant correlation between average axonal input 

per endplate and motor unit vulnerability (Spearman correlation, p ≥ 0.05; n = 3 per 
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muscle).  (D) Scatter plot of average number of axonal inputs per endplate at P14, 

ordered from low to high vulnerability motor unit pools (n = 3 per muscle).  

Spearman correlation analysis showed no significant correlation between average 

number of axonal inputs per endplate and motor unit vulnerability (Spearman 

correlation, p ≥ 0.05; n = 3 per muscle). 

 

2.3.3.5 - Terminal Schwann Cell Number 

 

Terminal Schwann cells represent another morphological characteristic of 

neuromuscular junctions that may influence motor unit vulnerability in disease (De 

Winter et al., 2006; Murray et al., 2013; Voigt et al., 2013).  Terminal Schwann cells 

are a specialised form of glial cell that overlie the nerve terminal of the 

neuromuscular junction.  Previous work in SMA mouse models has shown that 

terminal Schwann cells numbers are reduced (Murray et al., 2013) and that their 

ultrastructure is abnormal (Voigt et al., 2013).  Similarly, terminal Schwann cells 

have been linked to ALS pathology (De Winter et al., 2006).  Terminal Schwann 

cells are also known to be involved in NMJ development and maintenance (Sugiura 

& Lin, 2011).  We hypothesised that terminal Schwann cells may have an influence 

on synaptic degeneration at the neuromuscular junction, and so we quantified 

terminal Schwann cell number for use in correlational analysis. 

Terminal Schwann cells were quantified from P5 unaffected littermates of Smn+/-

;SMN2+/+ litters.  A range of muscles with vulnerable and resistant motor units were 

used, as for the synapse elimination studies.  Immunohistochemistry using antibodies 
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against S100 protein was used to detect terminal Schwann cells (Figure 23).  During 

quantification, cells were counted as terminal Schwann cells if the S100-positive 

cytoplasm was directly overlying a motor endplate (Figure 23).  The number of 

Schwann cells over a motor endplate was determined by staining nuclei with the 

nuclear marker TO-PRO-3 (Figure 23).   

All neuromuscular junctions examined had at least one terminal Schwann cell and 

the maximum number of terminal Schwann cells found was five.   The mean number 

of terminal Schwann cells was comparable between muscles, with the majority of 

neuromuscular junctions having two overlying Schwann cells (Figure 24A).  No 

correlation was found between the number of terminal Schwann cells per NMJ and 

motor unit vulnerability in SMA (Spearman correlation, r = -0.3769, p = 0.4972) 

(Figure 24B). 
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Figure 23 – Example images of terminal Schwann cell counts. (A/B)High 

magnification (x40) Z-stack confocal micrographs of motor endplates in P5 healthy 

mice.  TRITC-conjugated α-bungarotoxin (BTX) (red) staining was used to identify 

the motor endplates.  S100 staining (green) was used to visualise the cytoplasm of 

Schwann cells. TO-PRO 3 staining (blue) was used to identify nuclei of terminal 

Schwann cells. A cell was defined as a terminal Schwann cell if the S100 positive 

cytoplasm was overlying and within the boundaries of the motor endplate and 

contained a TO-PRO-3-positive nucleus. The number of nuclei overlying the motor 
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endplate that were surrounded by S100 positive cytoplasm were used to count the 

number of terminal Schwann cells per endplate.  (A) A motor endplate with two 

overlying terminal Schwann cells.  The white arrows in the BTX and S100 channels 

show a single endplate and S100 positive cytoplasm.  The white arrows in the TO-

PRO-3 channel show two nuclei present.  (B) Two motor endplates each with a 

single overlying terminal Schwann cell.  The white arrows in the BTX and S100 

channels show two separate motor endplates and two separate S100 positive areas of 

cytoplasm.  The white arrows in the TO-PRO 3 channel show one nucleus each 

overlying the motor endplate.  (A/B) Scale bars in merge images = 5µm. 

 

Figure 24 – Terminal Schwann cell counts correlation.  (A) Bar chart (mean ± SEM) 

showing terminal Schwann cell number per endplate in healthy P5 mice (n = 3 per 

muscle).  Muscles innervated by resistant motor units are colour-coded yellow and 

muscles innervated by vulnerable motor units are colour-coded red.  Bars are 

organised according to the number of terminal Schwann cells per endplate, from 

highest to lowest.  (B)  A scatter plot of terminal Schwann cell number per endplate.  

Spearman correlation analysis showed no significant correlation between terminal 
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Schwann cell number per endplate and motor unit vulnerability (Spearman 

correlation, p ≥ 0.05; n = 3 per muscle). 

 

2.4 – Discussion 

 

The findings of this chapter show that motor unit vulnerability in SMA is not 

influenced by the gross morphology of motor units, or other morphological 

parameters.  Initially, the results of this chapter demonstrated that motor unit 

vulnerability to SMA varies across muscles.  At a late-symptomatic time point (P5) 

in the Smn-/-;SMN2+/+ mouse, some muscles, such as the LALc, AAL and TA, 

showed widespread denervation of motor endplates with only 40% of endplates 

remaining fully occupied.  However, other muscles, such as the LALr, IS and EDL, 

showed relatively little denervation of motor endplates.  This difference in motor unit 

vulnerability was striking and particularly interesting as many of the differentially 

affected motor units were closely linked anatomically.  The LALc and LALr, for 

example, are considered to be one anatomically distinct muscle.  The TA and EDL 

are also differentially affected in the Smn-/-;SMN2+/+ mouse model, but are both 

found on the anterior compartment of the lower hind limb. 

Secondly, the results showed that this variation in vulnerability does not correlate 

with any aspect of gross motor unit morphology, as it does for ALS (Bradley et al., 

1983; Fischer et al., 2004; Hegedus et al., 2007; Valdez et al., 2012).  Large motor 

units are known to be preferentially affected in ALS and there is a growing body of 

evidence suggesting that ALS and SMA are linked molecularly (Zou et al., 2005; 
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Turner et al., 2009; Kariya et al., 2012; Yamazaki et al., 2012).  Based on this, we 

hypothesised that larger motor units would also be preferentially affected in SMA. 

However, we could find no correlation between motor unit size and vulnerability.  

We also investigated other aspects of motor unit morphology, such as intramuscular 

arbour length, number of branch points and branching patterns.  No significant 

correlation was found for any morphological aspect of motor units that we examined.  

Thirdly, the results also showed that other morphological factors such as body 

position, muscle fibre type, endplate morphology, and synaptic size did not correlate 

with motor unit vulnerability in SMA.   

Fourth, this chapter demonstrates that motor unit dynamics, quantified by synapse 

elimination rates, also do not correlate with motor unit vulnerability in SMA.  Motor 

unit vulnerability may have been related to synapse elimination as there are several 

similarities between synapse elimination and degeneration, in terms of actin 

dynamics and remodelling (Gillingwater & Ribchester, 2003).  We hypothesised that 

motor units dynamics might be more or less vulnerable to pathological changes in 

SMA.  However, we did not see any obvious difference in synapse elimination rates 

between muscles.  Also, neither the percentage of poly-innervated endplates nor the 

average number of axonal inputs per motor endplate at P7 or P14 showed a 

significant correlation with motor unit vulnerability in SMA. 

Lastly, this chapter showed that terminal Schwann cell number did not correlate with 

motor unit vulnerability in SMA.  Terminal Schwann cells are known to influence 

NMJ development and maintenance and are involved in NMJ repair and regeneration 

(Sugiura & Lin, 2011), and are linked to altered neuromuscular junction pathology in 
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both ALS and SMA (De Winter et al., 2006; Murray et al., 2013; Voigt et al., 2013).  

Based on this, we hypothesised that terminal Schwann cell numbers might correlate 

with motor unit vulnerability in SMA.  However, no obvious variation in terminal 

Schwann cell number was found across the range of muscles that were quantified and 

no significant correlation was found between terminal Schwann cell number and 

motor unit vulnerability in SMA. 

 

2.4.1 - Molecular links between SMA and ALS. 

Despite compelling evidence that ALS and SMA are molecularly linked (Zou et al., 

2005; Turner et al., 2009; Kariya et al., 2012; Yamazaki et al., 2012), we did not find 

the same pattern of motor unit vulnerability in SMA that has been demonstrated in 

ALS (Bradley et al., 1983; Fischer et al., 2004; Hegedus et al., 2007; Valdez et al., 

2012).   

It is possible that age plays an important role in motor neuron degeneration.  SMA 

affects motor neurons in the early stages of life, whereas ALS does not affect motor 

neurons until much later.  As the pattern of neuro-degeneration in ALS has been 

proven to correlate with age-related abnormalities (Valdez et al., 2012), it is possible 

that larger motor neurons are simply more vulnerable in an aged nervous system.  

This could potentially explain why no correlation between large motor units and 

SMA pathology was seen in this experiment. 

There are also conflicting reports regarding the contribution of SMN2 copy number 

to ALS in patients (Veldink et al., 2001; Gamez et al., 2002; Corcia et al., 2006).  

Veldink et al. (2001) showed that patients with ALS were more likely to have a 
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homozygous deletion of SMN2 than unaffected controls.  However, similar studies in 

2002 and 2006 failed to find a significant difference in the likelihood of SMN2 

deletion between ALS patients and controls (Gamez et al., 2002; Corcia et al., 2006).   

While more recent studies in animal models (Turner et al., 2009; Kariya et al., 2012; 

Yamazaki et al., 2012) have shown compelling evidence for a molecular link 

between SMN protein and genes associated with ALS, the reality of their relationship 

may be much more complicated. 

 

2.4.2 - SMN protein variation across motor unit pools. 

The results undoubtedly show that motor unit morphology and vulnerability in SMA 

are not linked.  The most likely explanation for this finding is that motor unit 

vulnerability in SMA is driven by distinct molecular properties of motor units, rather 

than morphological properties, as is the case in ALS.  The most likely molecular 

candidate for influencing synapse vulnerability in SMA would, of course, be SMN 

protein.  There is a large body of evidence suggesting that there is a critical threshold 

of SMN protein that must be expressed in order for motor neurons to remain healthy 

(Bowerman et al., 2012).  There is also a well-documented correlation between 

SMN2 copy number and disease severity (Feldkötter et al., 2002; Mailman et al., 

2002; Wirth et al., 2006).  It is possible that in SMA, SMN protein reduction is not 

equal between pools of motor units, or indeed between different tissues (Ruggui et 

al., 2012).  This could potentially explain why some motor units seem to have a 

resistance to SMA. 
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2.4.3 - Intrinsic protective factors in some motor unit pools. 

An alternative explanation for the selective vulnerability of some motor units in 

SMA is the possibility of the presence of an intrinsic protective factor in these motor 

units.  There is a large body of literature describing neuro-protective factors that have 

been identified in other neuro-degenerative diseases and traumatic brain or spinal 

cord injuries.  It is possible that an up-regulation of one or more of these “protective” 

factors in some pools of motor units could allow the motor units to better cope with 

the cellular stresses brought on by a reduction in SMN protein, thereby delaying or 

avoiding synapse degeneration.  Alternatively, the opposite could also be true, in that 

some pools of motor units may have an up-regulation of a gene that is detrimental, or 

enhances the effects of a reduction in SMN protein.   

 

2.4.4 – Study Weaknesses 

Although every attempt was made to ensure that this study was as robust as possible, 

there are several areas of weakness that should be noted.  First, is the use of young 

adult mice to reconstruct motor units.  Ideally, the mice used to reconstruct motor 

units would have been of the same age (P5) as the Smn-/-;SMN2+/+ mice to control for 

any changes to motor unit morphology during development.  However, Thy.1 

expression in neurons increases during development and is expressed at low levels in 

neonates (Feng et al., 2001).  Based on this, the decision was made to reconstruct 

motor units in adult mice, so that a strong YFP signal would be detected and accurate 

motor unit reconstructions could be produced.  
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Also regarding the use of Thy.1-YFP-H mice – it has previously been shown that 

YFP expression induces abnormalities in motor neurons (Comley et al., 2011).  We 

chose to reconstruct motor units in healthy mice in order to determine characteristics 

of motor units that were not under the influence of any pathological process; to 

assess their “default” morphologies.  However, as YFP expression is known to 

induce certain abnormalities at the NMJ (Comley et al., 2011), there is a small risk 

that the motor unit reconstructions produced here are not representative of 

completely healthy motor units. 

Another weakness in this study is the lack of clinically relevant muscles selected for 

analysis, such as the diaphragm and extra-ocular muscles.  In SMA patients, the 

diaphragm is spared from denervation and as a result patients often exhibit behaviour 

known as “abdominal breathing”, where the intercostal muscles are paralysed and so 

the patient uses only the diaphragm to draw breath (Lunn & Wang, 2008).  Extra-

ocular muscles are also spared denervation in ALS (Nimchinsky, et al. 2000).  

Initially, attempts were made to quantify NMJ pathology in the diaphragm of Smn-/-

;SMN2+/+ mice, however, the relative thickness of the diaphragm and the presence of 

thick connective tissue made good quality staining impossible.  High levels of 

background fluorescence and weak signal meant quantifying NMJ abnormalities in 

the diaphragm was likely to be inaccurate.  Similarly, diaphragms dissected from 

Thy.1-YFP-H mice showed extremely high background fluorescence that made 

accurately tracing individual motor units impossible.  Attempts were also made to 

dissect the extra-ocular muscles from the eyeball.  This was initially attempted in 

adult mice, before progressing to neonates.  However, it proved impossible to dissect 

these muscles away from the eyeball intact.  Also, to perform these dissections, the 
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eyeball was removed from the skull, and the muscle dissected away from the eyeball 

in 0.1M PBS.  Due to its roundness, it was impossible to prevent the eyeball from 

spinning and therefore impossible to accurately distinguish different extra-ocular 

muscles.  Based on these preliminary dissections in adult mice, the decision was 

made not to attempt extra-ocular muscle dissections in neonates or Smn-/-;SMN2+/+ 

mice. 

 

2.4.5 – Conclusion 

From these results, we can conclude that there is a spectrum of vulnerability in motor 

units throughout the Smn-/-;SMN2+/+ mouse model of SMA.  This vulnerability 

spectrum does not correlate with any aspect of motor unit morphology that we 

quantified.  This is strikingly different to the well-characterised correlation between 

motor unit size and vulnerability which is observed in ALS.  Additionally, motor unit 

vulnerability did not correlate with aspects of muscle morphology that have 

previously been suggested may underlie motor unit vulnerability in SMA.  
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Chapter 3: Microarray analysis of vulnerable and resistant motor unit 

gene expression. 

3.1 – Introduction 

In Chapter 2, the results demonstrated that there is a spectrum of vulnerability to 

SMA pathology in motor units in SMA mice.  However, no morphological correlate 

for motor unit vulnerability in SMA could be identified.  Motor unit size, intra-

muscular arbour length, and branching pattern were quantified, along with synapse 

elimination rates, terminal Schwann cell numbers, and motor endplate size but no 

aspect of morphology was found to correlate with motor unit vulnerability.  Based on 

this, we hypothesized that the underlying cause of the vulnerability spectrum was 

distinct molecular properties of the vulnerable motor units.   

There are several lines of evidence that suggest molecular properties drive selective 

vulnerability in adult onset motor neuron diseases, such as ALS (Saxena et al., 2009; 

Ringer et al., 2012; Brockington et al., 2013).  In 2009, Saxena et al. isolated 

differentially effected populations of motor neurons in SOD1G93A mice at various 

time points and used microarray analysis to compare their gene expression profiles.  

They found that motor units that were known to be vulnerable to ALS expressed 

endoplasmic reticulum (ER) stress markers from birth, whereas motor units known to 

be resistant to ALS did not (Saxena et al., 2009).  They also showed that ubiquitin 

signals increased in both vulnerable and resistant motor units before denervation was 

detectable, but the unfolded protein response and microglial activation were only 

detected in the vulnerable subset of motor units (Saxena et al., 2009).  Also, in 2013, 

Brockington et al. performed microarray analysis on differentially affected 
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populations of motor neurons from post-mortem tissue of healthy human patients.  

Motor neuron cell bodies were extracted from the oculomotor nucleus, the motor 

neurons of which are known to be resistant to ALS pathology (Nimchinsky et al., 

2000); and the lumbar spinal cord, the motor neurons of which are known to be 

vulnerable to ALS pathology.   When the gene expression profiles of the different 

motor neuron cell bodies were compared, several GABA receptor subunits were 

identified as being differentially expressed (Brockington et al., 2013).  This may 

relate to the cells’ abilities to cope with excitotoxicity, a pathophysiological 

phenomenon known to occur in ALS (Reviewed by Bogaert et al., 2010). Differences 

in GABA and AMPA receptors between vulnerable and resistant groups of motor 

neurons in ALS, has been previously reported (Lorenzo et al., 2006). Brockington et 

al. (2013) also found that several molecular pathways were altered between the two 

types of motor neurons, including pathways involved in synaptic transmission, 

ubiquitin-dependent proteolysis, and the extracellular matrix.  A separate study 

correlated the expression of a specific gene, α-calcitonin gene-related peptide 

(αCGRP), with the relative vulnerability of motor neurons in different areas of the 

spinal cord (Ringer et al., 2012).  They found that in end-stage SOD1G93A mice, 

numbers of motor neurons with high levels of αCGRP were reduced by 80%, 

whereas those with low levels of αCGRP were reduced by 50%, and motor neurons 

with no αCGRP expression were not significantly reduced (Ringer et al., 2012).   

Based on these studies in ALS, we decided to analyse the gene expression profiles of 

differentially affected motor units in SMA.  In order to examine gene expression 

profiles, it is first necessary to isolate motor units that are known to be differentially 

affected in SMA.  We chose to perform these studies in healthy mice, in order to 
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avoid including pathological alterations to gene expression in our analysis.  From 

Chapter 2, two muscles were chosen which had been shown to contain differentially 

affected motor units: the tibialis anterior and the extensor digitorum longus.  In order 

to label the motor neuron cell bodies in the spinal cord, a retrograde tracer was 

injected; HRP-conjugated wheat germ agglutinin (HRP-WGA).  Wheat germ 

agglutinin (WGA) is a plant lectin that is taken up into neurons by binding to surface 

membrane oligosaccharides and internalised during endocytosis (Broadwell & Balin, 

1985).  WGA is then transported along axons towards the cell body.  WGA-HRP 

tracer injection is a well-established method for tracing motor neurons.  Studies 

where WGA-HRP has been injected into muscles to label motor neuron cell bodies 

or axons have been carried out in cats (Chen & May, 2007), guinea pigs (Sagade, 

1990), and mice (Baba et al., 1997; Koyanagi et al., 2006).  As in the ALS selective 

vulnerability studies (Saxena et al., 2009; Brockington et al., 2013), we then 

performed microarray analysis on the isolated motor neuron cell bodies.  By 

analysing the microarray data, we could detect alterations in both functional 

networks and individual genes that may have neuro-protective or neuro-detrimental 

effects. 

From these results, it is possible that new therapeutic targets for SMA may be 

identified.  By targeting functional networks that are known to be perturbed in SMA, 

and are also altered between resistant and vulnerable motor units, we may be able to 

convey a “protected” status on all motor units, rather than only a select few.  

Additionally, another possible outcome is the therapeutic targeting of individual 

genes that are altered between vulnerable and resistant motor units.  It is possible that 

some motor pools intrinsically express higher levels of either neuro-protective genes, 
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or neuro-detrimental genes.  By increasing or decreasing their expression via drug 

targeting, it may also be possible to convey a “protected” status on all motor units.   

In this chapter, motor neuron cell bodies of motor units that were previously 

identified as being differentially affected in SMA mice were labelled via a retrograde 

tracer system.  The labelled motor neuron cell bodies were isolated from spinal cord 

sections using laser capture micro-dissection and RNA was extracted and amplified 

for microarray analysis.  From the microarray results, 1029 genes were identified as 

being significantly differentially expressed between the two motor pools.  Of these 

significantly (p ≤ 0.05) differentially expressed genes, the gene expression of 196 

genes was more than 20% up- or down-regulated between the two motor pools.  The 

list of identified genes that were significantly (p ≤ 0.05) and more than 20% altered 

between the two motor pools was used in pathway analysis.  Several pathways of 

interest were identified, such as pathways involved in cellular development, skeletal 

and muscular system development, and cell death and survival, amongst others.  

Several individual genes of particular interest were identified from the list as they 

had previously been implicated in neuro-protection or neuro-degeneration.    

 

3.2 – Methods 

3.2.1 - Ethics Statement 

All animal experiments were approved by a University of Edinburgh internal ethics 

committee and were performed under license by the UK Home Office (Project 

License number 60/3891). 
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3.2.2 - Animal Husbandry  

Phenotypically normal heterozygotic Smn+/-;SMN2tg/0  mice on an FVB background 

were maintained under standard SPF conditions in animal care facilities in 

Edinburgh.  All animal procedures and breeding were performed in accordance with 

Home Office and institutional guidelines.   

 

3.2.3 - Ink Trial Injections 

4-week-old male FVB mice were sacrificed by overdose of anaesthetic via inhalation 

until no breath had been taken for more than 1 minute and there was no plantar reflex 

when the foot was stimulated.  Approximately 3µl of black ink was injected into the 

tibialis anterior (TA) via a small incision in the skin.  Separately, approximately 1µl 

of black ink was injected into the extensor digitorum longus (EDL) via a small 

incision in the skin.  The muscles were then dissected out, and the ink staining was 

compared to the appropriate un-injected muscle. 

 

3.2.4 - WGA Tracer Injections 

P14 mice were anaesthetised with 3-5% iso-fluorane in air.  Fur was clipped from the 

anterior surface of the hind limbs and a small incision was made above the TA.  For 

TA motor neuron labelling, 3µl of HRP-conjugated wheat germ agglutinin (HRP-

WGA) (PL-1026, Vector Laboratories) was injected into each TA using a Hamilton 

syringe and a 26G needle.  After injecting, the needle was held in the muscle for a 

further 10 seconds to prevent leakage of the HRP-WGA.  For EDL motor neuron 
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labelling, the fascia surrounding the TA was cut and the EDL identified underneath 

the TA by its distinctive tendon.  1µl of WGA was injected into each EDL and the 

needle was held in the muscle for 10 seconds after injection to prevent WGA 

leakage.  The incision was sutured and an injection of Veteragesic was given 

subcutaneously.  After anaesthesia recovery, analgesia was provided to the mice via 

edible jelly. 

 

3.2.5 - Removal of Spinal Cord 

72 hours after tracer injections, the mice were sacrificed by overdose of iso-fluorane 

via inhalation until no breath had been taken for approximately 1 minute and there 

was no plantar reflex when the foot was stimulated.  The tissues were then cryo-

protected by trans-cardial perfusion of approximately 3ml 0.1M PBS followed by 

approximately 3ml 30% sucrose solution in 0.1M PBS.   A laminectomy was 

performed and the thoracic region of the spinal cord was removed and embedded in 

OCT contained in a foil boat.  The spinal cord and OCT were then frozen in dry 

ice/ethanol slurry.  Once frozen, the spinal cords were stored at -80oC. 

 

3.2.6 - Sectioning and Staining 

Sectioning of spinal cords was carried out at Sheffield University.  Frozen thoracic 

regions of spinal cord were cut in half vertically and mounted cut side up on a 

cryostat chuck.  10µm sections were cut on a cryostat and mounted onto untreated 

glass slides. 



103 
 

Sections were allowed to warm up to room temperature for 1-2 minutes, then fixed in 

ice cold acetone for 5 minutes.  Excess acetone was wiped from slides and the 

sections were stained with DAB Peroxidase Substrate Kit (SK-4100, Vector 

Laboratories) following the manufacturer’s instructions.  DAB solution was added to 

the slides for approximately 3 minutes, until a reaction could be seen occurring under 

a microscope.  The slides were then washed with sterile water to remove DAB.  

Sections were then dehydrated in an alcohol series, from 70% to 100% ethanol 

followed by xylene.  After dehydrating in xylene, the slides were air-dried for at least 

45 minutes. 

 

3.2.7 – Laser Capture Micro-dissection 

Laser capture micro-dissection was carried out by Masters student Mark Wen-Yo Tu 

and myself.  WGA-labelled motor neuron cell bodies were extracted from sectioned 

spinal cords using Arcturus PixCell II laser capture micro-dissection machine.  A 

CapSure Macro LCM Cap (Life Technologies, LCM0211) was loaded onto the arm 

of the PixCell II and placed over the tissue.  When a labelled cell was identified the 

laser was fired using the settings indicated in Table 1. 
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Laser Setting 

Power 20-39 mW 

Duration 25.0 ms 

Target 0.25 V 

Current 4.4-4.6 mA 

Spot Size 7.5 µm 

Table 1 – Arcturus PixCell II laser settings. 

 

After all of the labelled cells had been captured from a spinal cord, the cap was 

removed from the laser capture micro-dissection machine and immediately used for 

RNA extraction. 

 

3.2.8 - Extraction and Amplification of RNA 

RNA extraction and amplification was carried out by Masters student Mark Wen-Yo 

Tu, Dr Paul Heath, and myself at Sheffield University.   

 

3.2.8.1 - RNA Extraction 

RNA was extracted from the LCM captured cells using the PicoPure RNA Isolation 

Kit (Arcturus, KIT0202).  The transfer film with adhered motor neuron cell bodies 

from the laser capture micro-dissection was removed from the cap with forceps and 

placed in a sterile 0.5ml tube with Extraction Buffer.  The samples were then 
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centrifuged briefly to ensure the film was fully submerged and incubated at 42oC for 

30 minutes to dissolve the transfer film.  Meanwhile, RNA Purification Columns 

were conditioned using Conditioning Buffer for 5 minutes at room temperature then 

centrifuged at 16000 x g for one minute.  70% ethanol was added to the cell extract 

and mixed by pipetting before being added to the purification columns.  The columns 

were then centrifuged at 100 x g for 2 minutes, then 16000 x g for 30 seconds.  Wash 

Buffer 1 was added and the columns were centrifuged for one minute at 8000 x g, 

followed by Wash Buffer 2 that was added to the column and centrifuged for 2 

minutes at 16000 x g.  The purification column was then transferred to a new 0.5ml 

tube and Elution Buffer was added.  The samples were incubated for 1 minute at 

room temperature before being centrifuged at 1000 x g for one minute, followed by 

another 16000 x g centrifugation for one minute.  The concentration of extracted 

RNA was then measured on a Nanodrop. 

 

3.2.8.2 - RNA Amplification 

3.2.8.2.1 - First Round of RNA Amplification  

RNA was then amplified using the IVT Express Kit to synthesise a strand of cDNA 

which was then used to amplify the RNA signal via in vitro transcription (IVT) using 

GeneChip 3’IVT Express Kit (Affymetrix, 901228) according to the manufacturer’s 

instructions.  Briefly, the First-Strand Master Mix was made up and mixed with the 

extracted RNA.  This was incubated at 42oC for 2 hours.  Immediately after 

incubation, Second-Strand Master Mix was added to the samples and incubated at 

16oC for 1 hour, followed by 65oC for 10 minutes.  Immediately after incubation, 
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IVT Master Mix was added to the samples and incubated at 40oC for 16 hours.  After 

incubation, the aRNA was purified using RNA Binding Beads.  60µl of RNA 

Binding Mix was added to each sample and transferred to a U-Bottom Plate well.  

100% ethanol was added to each sample and mixed by pipetting.  The samples were 

mixed thoroughly on a shaking platform for 2 minutes before the plate was moved to 

a magnetic stand for 5 minutes to capture the RNA Binding Beads.  The supernatant 

was aspirated and discarded and the plate was removed from the magnetic stand.  

RNA Wash Solution was added to each sample and the samples were mixed 

thoroughly on a shaking platform for 1 minute.  The plate was then moved to the 

magnetic stand again for 5 minutes and the supernatant aspirated and discarded, 

before the RNA wash step was repeated.  The RNA was eluted from the RNA 

Binding Beads by adding aRNA Elution Solution pre-heated to 60oC.  The plate was 

shaken vigorously for 3 minutes on a shaking platform before being moved to the 

magnetic stand.  The supernatant was removed and stored at -20oC. 

 

3.2.8.2.2 - Second Round of RNA Amplification 

A second round of RNA amplification was then carried out using the MessageAmp II 

aRNA Amplification Kit (Ambion, AM1751).  aRNA amplification was carried out 

using the optional Second Round Amplification step of the MessageAmp II aRNA 

Amplification Kit.  Briefly, RNA from the first round of RNA amplification was 

added to a micro-centrifuge tube and Second Round Primers were added.  The 

samples were then incubated at 70oC for 10 minutes.  Reverse Transcription Master 

Mix was added to each sample and pipetted up and down to mix.  The samples were 
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then incubated at 42oC for 2 hours.  RNase H was added to each reaction and 

incubated at 37oC for 30 minutes to degrade aRNA, leaving only single stranded 

cDNA.  Immediately after this incubation, second strand synthesis was carried out.  

T7 Oligo(dT) Primer was added to each sample and then incubated at 70oC for 10 

minutes.  Second Strand Master Mix was then added to each reaction and pipetted up 

and down to mix before being incubated at 16oC for 2 hours.  T4 DNA polymerase 

from GeneChip Hybridization, Wash and Stain Kit (Affymetrix, 900720) was added 

to the double-stranded cDNA and incubated at 16oC for 10 minutes, followed by 4oC 

for 2 minutes.  cDNA was then purified using the cDNA Filter Cartridges that were 

supplied with the MessageAmp II aRNA Kit.  250µl cDNA Binding Buffer was 

added to each sample and pipetted up and down to mix thoroughly.  The mixture was 

then pipetted onto the centre of the cDNA Filter Cartridge and centrifuged at 10000 x 

g for 1 minute.  The flow-through was discarded and Wash Buffer was added to each 

cDNA Filter Cartridge and centrifuged again at 10000 x g for 1 minute.  The flow-

through was discarded and the filter cartridges were centrifuged at 10000 x g for 1 

minute again to remove all traces of Wash Buffer.  The cDNA Filter Cartridges were 

then moved to cDNA Elution Tubes and nuclease-free water at 55oC was added to 

the filter for 2 minutes before being centrifuged at 10000 x g for 1 minute. 

Using this eluted cDNA, overnight IVT was carried out again using the GeneChip 3’ 

IVT Express Kit (Affymetrix, 901228) to produce a second round of amplified 

biotin-labelled RNA. At each stage of RNA extraction and amplification, the 

concentration of RNA was measured using a Nanodrop. 
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3.2.9 - Biotin-Labelled cRNA Fragmentation 

Biotin-labelled cRNA was fragmented using the 5x Array Fragmentation Buffer 

supplied in the GeneChip 3’IVT Express Kit (Affymetrix, 901228).  15µg of biotin-

labeled cRNA was added to a microcentrifuge tube, along with 8µl of 5x Array 

Fragmentation Buffer and made up to 40µl with Nuclease-free water.  These samples 

were then incubated at 94oC for 35 minutes before being placed on ice immediately 

after the reaction. 

 

3.2.10 - RNA Quality Checks 

aRNA samples were quality checked after the first round of RNA amplification; after 

the second round of RNA amplification; and after fragmentation. 

RNA 6000 Pico Kit (Agilent Technologies, 5067-1513) was used to measure RNA 

quality.  Briefly, 1µl of RNA 6000 Pico dye concentrate was added to 65µl filtered 

RNA 6000 Pico gel matrix and vortexed thoroughly before being centrifuged at 

13000 x g for 10 minutes. 9µl of the gel-dye mix was then pipetted into the G 

marked wells of the RNA Pico 6000 chip and pressurised through the capillaries.  

9µl of RNA 6000 Pico conditioning solution was added to the white well marked CS 

and 5µl of RNA 6000 Pico marker was added to the well marked with the ladder 

symbol and each of the 11 sample wells.  1µl of RNA 6000 Pico ladder was added to 

the well marked with the ladder symbol.  1µl of each aRNA sample was then added 

to each well.  The chip was then placed in a horizontal vortex mixer and vortexed at 

2000rpm for 1 minute.  The chip was then inserted into an Agilent 2100 Bioanalyzer 

machine and analysed using 2100 Expert Software. 
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3.2.11 – Microarray 

Microarrays were carried out by Dr Paul Heath in Sheffield University.  The 

GeneChip Hybridization, Wash and Stain Kit (Affymetrix, 900720) was used to 

perform the microarrays. GeneChip Mouse Genome 430 2.0 Arrays (Affymetrix, 

9000496) were used to perform the microarrays. 

 

3.2.11.1 – Hybridisation 

Hybridization Cocktail was made up for each array, according to Table 2 to a total 

volume of 300µl and containing 15µg of fragmented RNA. The Hybridization 

Cocktail was then heated to 99oC for 5 minutes on a heat block, followed by 45oC for 

5 minutes.  The Hybridization Cocktail was then centrifuged at 14000rpm for 5 

minutes. 

Component Volume (µl) 

Fragmented and Labelled cRNA Variable 

Control Oligonucleotide B2 (3nM) 5 

20X Eukaryotic Hybridization Controls  

(bioB, bioC, bioD and cre) 

15 

2X Hybridization Mix 150 

DMSO 30 

Nuclease-free water Variable 

Table 2 – Components and volumes of Hybridization Cocktail required for one 

reaction. 
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Meanwhile, 200µl Pre-Hybridization Mix was added to the array probe by filling the 

array through one of the septa and incubated at 45oC for 10 minutes with rotation in 

the Hybridization oven.  The array probe was then removed from the oven and the 

array was vented with a clean pipette and the Pre-Hybridization Mix was removed 

from the array.  The array was then refilled with 200µl of the Hybridization Cocktail.  

The probes were then placed into the Hybridization oven set at 45oC and rotated at 

60rpm for 16 hours. 

 

3.2.11.2 - Washing, Staining and Scanning the Array Probes 

After hybridisation, the probe was vented by inserting a pipette tip into one of the 

septa and the Hybridization Cocktail was removed through the remaining septum.  

250µl Wash Buffer A was then inserted into the probe array.  The probe array was 

then inserted into a Fluidics Station 420/250 for washing and staining.  The Fluidics 

Station 420/250 was controlled by Affymetrix GeneChip Command Console 

software.  The probe arrays were washed and stained according to the programme 

listed in Table 3.  All reagents used were supplied by Affymetrix. 
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Step Reagent Number of 

Cycles 

Temperature 

(oC) 

Post-hybridization Wash #1 Wash Buffer A 10 25 

Post-hybridization Wash #2 Wash Buffer B 4 50 

1st Stain  SAPE Solution 1 25 

Post Stain Wash Wash Buffer A 10 25 

2nd Stain Antibody Solution 1 25 

3rd Stain SAPE Solution 1 25 

Final Wash Wash Buffer A 15 25 

Final Wash Wash Buffer A 15 25 

Table 3 - Fluidics Protocol for washing and staining probe arrays.  All stains were 

incubated for 10 minutes. 

 

After staining and washing, the probe arrays were scanned in an Affymetrix 

GeneChip Scanner 3000 controlled by Affymetrix GeneChip Command Console 

software. 

 

3.2.12 - Data Analysis 

Microarray quality control was carried out using Expression Console software from 

Affymetrix.  .CEL files produced by the Affymetrix GeneChip Command software 

were uploaded to Expression Console and normalised using the MAS5 algorithm in 
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order to generate quality control graphs.  Expression Console’s report metrics was 

used to generate the quality control line graphs. 

Microarray data was analysed using QIUcore software.  .CEL files produced by 

Affymetrix GeneChip Command Console software were uploaded to the QIUcore 

software and separated into two groups (TA, n = 3; EDL, n = 3) for analysis and the 

data was normalised using PLIER normalisation.  From the QIUcore software, PCA 

plots and heat maps of gene expression were generated.  Lists of genes up- and 

down-regulated across the two groups were generated using the QIUcore software.  

Filter variance was set at 0 and the p value was set at 0.05.  The q value was set 

automatically by the software.  The gene lists were exported from the QUIcore 

software as Excel spread sheets for further analysis. 

 

3.2.13- Pathway Analysis 

Pathway analysis was performed using IPA software from Ingenuity Systems.  This 

list of genes was filtered to include only genes that had a significance value of 0.05 

or less and were more than 20% up- or down-regulated.  The genes symbols and their 

respective ratios (EDL/TA; in that a ratio of 1.2 or more signified an up-regulation of 

the gene in the EDL-labelled motor neurons, and a ratio of less than 0.8 signified an 

up-regulation of the gene in the TA-labelled motor neurons) were submitted for 

pathway analysis.  Analysis parameters were set to include both direct and indirect 

protein/gene interactions that had been confirmed by experimental observation only.  

All protein and gene databases were searched and interactions observed in all species 

and cell types were included in analysis. 
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3.2.14 - Literature Search 

The list of up- and down-regulated genes was subjected to a manual literature search.  

Genes that were more than 20% altered between motor neuron groups were subjected 

to the literature search.  Systematically, gene symbols, names and aliases were 

searched on PubMed for any implication in neuro-degeneration, neuro-protection, 

cell death pathways, or involvement at the synapse.   

 

 

3.3 - Results 

3.3.1 - Ink Trial Injections 

Muscles were chosen for labelling based on their motor unit vulnerability, as 

identified in Chapter 2, and whether the muscles could be injected with the WGA 

tracer.  A large number of muscles analysed in Chapter 2 were eliminated due to 

their thinness.  While this was an extremely valuable attribute for NMJ analysis, the 

thinness of the muscles meant that it would be impossible to accurately and 

confidently inject specific muscles with WGA tracer.  However, the hind limb 

muscles analysed in Chapter 2 are large-bellied muscles, which could be easily 

identified and confidently injected.  Two hind limb muscles were chosen for tracer 

injections which were on opposite ends of the vulnerability spectrum and could 

easily be identified and injected: the tibialis anterior (TA), innervated by vulnerable 

motor units; and the extensor digitorum longus (EDL), innervated by resistant motor 

units. 
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In order to test whether tracer injections would be successful in muscle, the TA and 

EDL were injected with artists’ ink in dead mice.  The ink injections were also used 

to trial various depths and angles that the needle should be inserted into the muscles 

to ensure an accurate injection, and also the optimal position of the mouse leg and 

incision for identifying the TA and EDL (Figure 1A).  Black ink was injected into 

the TA (3µl) or EDL (1µl) of dead mice and the hind limbs were removed, skinned, 

and the TA and EDL muscles were dissected and examined (Figure 1B). 
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Figure 1 – TA and EDL muscles injected with black ink.  Black artist’s ink was 

injected into the TA or EDL of dead mice to test whether small volumes could 

accurately be injected into these muscles. (A) The foot of the dead mouse was taped 

into place to prevent movement.  The best angle for the foot to be taped relative to 

the mouse’s body for access to the different muscles was also tested.  The black 

arrow shows where the incision was made in the skin in order to access the TA 

muscle for injection.  (B)  After injection, the hind limb was removed from the dead 

mouse and the skin was reflected in order to assess the ink’s penetration into the 

muscle and surrounding tissues.  In this image, we can clearly see that the TA muscle 

has been stained with black ink, but the surrounding muscles have not.  (C)  

Dissection of the TA and EDL muscles where the TA was injected with black ink.  

The TA (black arrow) is clearly marked with black ink, but there is no evidence of 

black ink in the EDL.  (D)  Dissection of the TA and EDL muscles where the EDL 

was injected with black ink.  The EDL (black arrow) is clearly marked with black 

ink, but there is no evidence of black ink in the TA. 

 

It was found that the ink did not spread from one muscle to another when injected 

into either the TA or the EDL (Figure 1C and 1D).  Also, the ink injections 

confirmed that, although the EDL is a considerably smaller and thinner than the TA, 

it could be successfully injected by identifying the muscle tendon and following this 

tendon with the needle (Figure ID).  A problem that was identified during the ink 

trials was leakage of the ink out of the muscle after the injection.  This was overcome 

by holding the needle in place for approximately 10 seconds after the injection. 
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3.3.2 - WGA-HRP Injections and Laser Capture Micro-Dissection 

P14 mice were injected with 3µl WGA in both TAs (n = 3) or 1µl WGA in both 

EDLs (n = 3) under anaesthesia (Table 4).   

Mouse ID Muscle Injected Volume of WGA 

Injected (µl) 

1 TA 3 

3 TA 3 

6 TA 3 

11 EDL 1 

31 EDL 1 

33 EDL 1 

Table 4 – Volumes of locations of injections of HRP-WGA in P14 mice. 

 

72 hours later, the mice were sacrificed by overdose of anaesthetic via inhalation 

before being trans-cardially perfused with 30% sucrose to cryo-protect the spinal 

cord.  The spinal cord was then removed and embedded in OCT before being frozen 

on a dry ice and ethanol slurry, and stored at -80oC.  The tissue was then transported 

to Sheffield University on dry ice where it was sectioned at 10µm on a cryostat.  The 

sections were fixed with ice-cold acetone and stained with DAB in order to identify 

motor neurons that had been labelled with HRP-tagged WGA (Figure 2).  The 

sections were then dehydrated in an alcohol series and xylene before being air-dried.  

Once dried, the labelled cells could be removed from the tissue by laser capture-

micro dissection.  
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Figure 2 – WGA-HRP labelled motor neurons in the spinal cord.  This image was 

taken from tissue that had been processed through a xylene and alcohol series to 

remove water, stained with DAB, and air-dried on a glass slide for use on the 

Arcturus PixCell II.  No glass coverslip or mounting media was used for this picture, 

which is why the tissue has a very granular appearance.  (A) Three positively 

labelled motor neuron cell bodies (black arrows) in the spinal cord of mice injected 

in the EDL with WGA-HRP.  This pattern of three motor neuron cell bodies clustered 

together was always observed in the EDL-labelled spinal cords. (B)  An identical 

image to Figure 2A, with the outlines of the motor neuron cell bodies highlighted in 

red.  Scale bar = 10µm. 

 

An Arcturus PixCell II laser capture micro-dissection machine was used to do isolate 

the labelled motor neuron cell bodies. Caps with a transfer film bonded to the lower 

surface are inserted into the arm of the machine, which is then swung over the tissue 

and lowered so that it is in direct contact with the tissue (Figure 3).  When a labelled 

motor neuron was identified the laser was aimed and fired through the cap, which 
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melts the transfer film on the cap.  The melted transfer film bonds to the tissue and 

when the arm of the laser capture machine is lifted, the tissue that has bonded to the 

transfer film is also lifted from the slide.   

 

 

Figure 3 – Arcturus PixCell II laser capture micro-dissection machine.  The white 

arrowhead shows the arm of the machine where the cap is placed.  This arm can be 

swung over the tissue on the slide and the laser is fired down through the cap to melt 

the transfer film and bond it to the tissue. 
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3.3.3 - RNA Extraction 

To extract RNA, the transfer film with adhered motor neuron cell bodies was 

removed from the cap by peeling it off with forceps.  The film was dissolved in 

extraction buffer from the Arcturus Pico Pure RNA Isolation Kit and RNA was 

extracted following the manufacturer’s instructions.  After extraction, RNA 

concentrations were measured on a Nanodrop (Table 5). 

 

Sample Concentration (ng/µl) 260/280 

1 5.55 1.51 

3 14.73 1.73 

6 8.26 1.52 

11 8.92 1.33 

31 3.76 2.46 

33 8.36 1.68 

Table 5 – Concentrations and qualities of RNA extracted from motor neuron cell 

bodies isolated from the spinal cord of P14 mice by laser capture micro-dissection. 

 

3.3.4 - RNA Amplification 

While the extraction of RNA from the laser capture micro-dissection tissue was 

successful, the yield of RNA was far too low to carry out a microarray, which 

required 15µg of RNA.  Based on this, extracted RNA was amplified using a 

modified in vitro transcription (IVT) protocol (Figure 4).  IVT was carried out using 
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the GeneChip 3’IVT Express Kit (Figure 4), and a second round of RNA 

amplification was carried out using the optional second round RNA amplification 

step of the Ambion MessageAmp II aRNA Amplification Kit to synthesise cDNA 

from the already amplified RNA (Figure 5).  A second round of IVT was then carried 

out using the GeneChip 3’IVT Express Kit (Figure 5). 

 

Figure 4 – Schematic of the first round of RNA amplification using the GeneChip 

3’IVT Express Kit.  Extracted RNA (red) is primed with T7 Oligo (dT) primers, 

which bind to the poly-A tail of mRNA.  A first strand of anti-sense cDNA (green) is 

then synthesised from the RNA strand.  Next, RNA is removed from the cDNA strand 
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using RNase H enzyme and in the same step, a second strand of cDNA is synthesised 

using random primers to bind along the length of the anti-sense cDNA strand.  From 

this double-stranded cDNA, in vitro transcription (IVT) is carried out to produce 

multiple copies of anti-sense RNA. 

 

Figure 5 – Schematic of the second round of RNA amplification using Ambion 

MessageAmp II RNA Amplification Kit and GeneChip 3’IVT Express Kit.  The anti-

sense amplified RNA (red) from the first round of IVT was used to synthesise a first 
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strand of cDNA (green) using random primers to bind along the length of the RNA 

strand.  RNase H was then added to remove RNA and leave a single strand of sense 

cDNA.  A T7 Oligo (dT) primer was then used to bind to the poly-A tail of the sense 

cDNA, from which a second strand of cDNA was synthesised.  From this double-

stranded cDNA, IVT took place once again, resulting in multiple copies of anti-sense 

RNA.  During IVT, the RNA strands were labelled with biotin. 

 

3.3.4.1 - First Round of RNA Amplification 

Using GeneChip 3’ IVT Express Kit, a strand of cDNA was synthesised from the 

extracted RNA.  An Oligo (dT) primer binds to the polyA tail of mRNA strands, 

from which First-Strand Master Mix synthesises an anti-sense strand of cDNA.  

Second-Strand Master Mix then simultaneously removed RNA and synthesises a 

second strand of cDNA.  In vitro transcription was then carried out overnight using 

this cDNA.  Following overnight IVT, the amplified RNA (aRNA) was purified 

using magnetic beads that specifically bind to RNA and the concentration of aRNA 

was measured using a Nanodrop (Table 6).   
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Sample Concentration (ng/µl) 260/280 

1 149.31 1.99 

3 125.25 1.99 

6 158.14 1.96 

11 97.36 1.99 

31 136.61 2.00 

33 111.86 1.98 

Table 6 – Concentrations and qualities of RNA amplified using the GeneChip 3’IVT 

Express Kit. 

 

Amplified RNA quality was checked using a Bioanalyzer and PicoChip 6000 to 

detect various lengths of RNA fragments (Figure 6). 
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Figure 6 – Amplified RNA qualities as determined by Agilent 2100 Bioanalyzer. (A) 

The fragments of amplified RNA as it appeared through the capillaries of the 

PicoChip.  (B-G) Quantification of the fluorescence intensity (arbitrary units) of 

different lengths of RNA fragments (number of nucleotides).  In high quality RNA, we 
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would expect to see two peaks of fluorescence intensity, corresponding to 18S and 

28S ribosomal RNA.  Due to the nature of the tissue processing and RNA 

amplification, these peaks were not observed in the sample RNA, which was 

expected.  The fragments sizes of RNA that were present in the samples were 

comparable.  The peak present at 25nt is a marker that was added to all RNA 

samples. 

 

3.3.4.2 - Second Round of RNA Amplification 

While the concentrations of RNA were increased by the IVT, the concentrations of 

RNA were still too low to carry out a microarray, which requires 15µg of RNA.  In 

order to further increase the yield of RNA, a second round of RNA amplification was 

carried out using the optional Second Round Amplification step of the MessageAmp 

II aRNA Amplification Kit.  RNA from the first round of IVT was used to synthesise 

the first strand of cDNA using Second Round Primers that bind randomly along the 

length of the aRNA, and are elongated by Reverse Transcription Master Mix.  RNase 

H was added to degrade RNA present in the reaction, leaving only a single strand of 

sense cDNA.  A second strand of cDNA was then synthesized by adding T7 oligo 

(dT) primers, which bind to the poly-A tail of the sense cDNA.  A second strand of 

cDNA is then synthesised from the T7 oligo d(T) primer.  After cDNA second strand 

synthesis, a T4 DNA polymerase from GeneChip Hybridization, Wash and Stain Kit 

was added in order to fill any gaps in the cDNA produced during cDNA synthesis.  

The cDNA was then filtered through a cDNA cartridge to purify it.  Labelling IVT 

was then carried out using the GeneChip 3’ IVT Express Kit once again, to produce 
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biotin-labelled amplified RNA for fragmentation. The concentrations of aRNA from 

the second round of amplification are listed in Table 7. 

 

Sample Concentration (ng/µl) 260/280 

1 3837.48 1.72 

3 3564.06 1.75 

6 2890.17 1.91 

11 3530.84 1.78 

31 3583.41 1.76 

33 2013.32 2.04 

Table 7 – Concentrations and qualities of RNA produced from the second round of 

RNA amplification. 

  

RNA quality was again analysed using Bioanalyzer 6000 (Figure 7).  Similar peaks 

in RNA fragment size were detected in all samples.  This spread of RNA fragment 

lengths is expected from RNA that has been processed, extracted, and amplified 

using this method.  
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Figure 7 – Bioanalyzer information after second round of RNA amplification. (A) 

The fragments of amplified RNA as it appeared through the capillaries of the 

PicoChip.  (B-G) Quantification of the fluorescence intensity (arbitrary units) of 

different lengths of RNA fragments (number of nucleotides).  The samples showed a 
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similar spread and intensity of aRNA fragments after the second round of 

amplification.  This spread of RNA fragment sizes was expected due to the 

processing of RNA. 

 

3.3.5 - Microarray 

Once the cRNA was labelled with biotin, it was then fragmented by heating the 

biotin-labelled cRNA at 94oC for 35 minutes with Fragmentation Buffer, which 

fragments the RNA strands into fragments 35-200 nucleotides in length.  Bioanalyzer 

analysis showed that biotin-labelled aRNA was successfully fragmented and 

produced RNA fragments of the expected sizes (Figure 8). 
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Figure 8 – Amplified and biotin-labelled RNA qualities after fragmentation.  

Fragmentation of biotin-labelled aRNA should produce fragments of RNA between 

35-200 nucleotides long, according to the GeneChip 3’IVT Express Kit User 

Manual.  (A) The fragments of amplified RNA as it appeared through the capillaries 
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of the PicoChip.  (B-G) Quantification of the fluorescent intensity (arbitrary units) of 

different lengths of RNA fragments (number of nucleotides).  The samples show a 

similar spread of RNA fragment sizes, between approximately 35-200 nucleotides in 

length.  The samples also show a similar fluorescent intensity of RNA after 

fragmentation. 

 

After fragmentation, biotin-labelled cRNA was incubated with a GeneChip Mouse 

Genome 430 2.0 Array Probe at 45oC in a rotating oven for 16 hours.  After 

hybridisation, the probe arrays were washed and stained with the biotin-binding 

fluorescent streptavidin solution (SAPE Solution).  This streptavidin solution was 

then washed off and a second stain was performed using a biotinylated anti-

streptavidin antibody.  A third stain was performed using streptavidin solution once 

again, in order to further amplify the fluorescent signal.  After two washes, the array 

probes were scanned on an Affymetrix GeneChip Scanner 3000. 
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Figure 9 – Scan of an array chip (M1).  (A) A low magnification scan of an array 

probe after being hybridised with biotin-labelled fragmented RNA, stained and 

washed.  (B) High magnification image of the array probe showing quality control 
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data.  Probes are designed to encode the details of the array when control RNA 

correctly hybridises.  This also serves as a way of aligning the probes when 

scanning, to ensure that fluorescence intensities for the correct probes are being 

recorded.  Other quality control probes are present on the array, such as the dotted 

line visible around the edge of the probe field, a cross in the centre of the probe field, 

and a square of increasing fluorescent intensities in the centre of the probe field.  

When these quality control probes are visible, it serves as further assurance that 

RNA has correctly hybridised to the array probe. 

 

3.3.5.1 - Microarray Quality Control 

In order to assess and compare the quality of the microarrays, Expression Console 

software from Affymetrix was used to analyse the signal and noise levels of each 

microarray chip.  .CEL files were uploaded to Expression Console software and 

normalised using the MAS5 algorithm.  The log signal for each array was generated 

using Expression Console software and plotted as a box plot for comparison (Figure 

10A).  The box plots represent the distribution of signal values for each probe set in 

the microarray, relative to the other arrays (Figure 10A).  As Figure 10 shows, no 

array appears to show a divergent signal distribution.  The arrays’ signal is also 

represented by a histogram (Figure 10B).   
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Figure 10 – Box plots and histogram of log signal of probes. (A) Box plots of signal 

were generated using Expression Console software from Affymetrix.  The box plots 

show the log signal of probe arrays after normalisation.  All box plots are 

comparable, and no box plot appears to be different to any other. (B)  A histogram of 

signal values generated from normalised data.  All histograms are comparable, with 

no probe array skewing from the bell-shaped curve. 
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The signal values for housekeeping gene probe sets of each array were compared 

using Expression Console software (Figure 11).  The signal values for probe sets 

representing GAPDH and β-actin were compared across arrays (Figure 11).  Figure 

11 shows that similar signal values for both β-actin and GAPDH were detected 

across all arrays, with β-actin signal values being higher and slightly more variable 

(Figure 11).   

 

 

Figure 11 – GAPDH (red) and β-actin (blue) 3’ signal intensity across probes after 

normalisation.  Although there is slight variation in the intensity of both GAPDH and 

β-actin across the probe arrays, no probe array appears to be particularly divergent.  

GAPDH and β-actin signal intensities are fairly stable across all array probes.   

 

Next, the percentage of probe sets defined as present (a probe set in which a signal 

was detected) was calculated by the Expression Console software (Figure 12A).  

Figure 12A shows that on average, approximately 50% of probe sets were defined as 

present across the arrays.  Array M33 shows a slightly reduced percentage of probe 
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sets present, at 46.58% (Figure 12A).  Figure 12B shows the average signal (relative 

intensity units) of the present probe sets in each array.  Despite having a marginally 

lower percentage of present probes (Figure 12A) array M33 has a higher average 

intensity of present probes (Figure 12B). 

 

 

Figure 12 – Percentage of probe sets present.  (A) The percentage of probe sets in 

which a signal was detected for each array, after normalisation.  Approximately 50% 

of probe sets on the array probe were identified by the Expression Console software 

as being present.  This percentage was slightly reduced for M33, with approximately 

47% of probe sets being present.  (B) The average intensity of probe sets defined as 
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present.  The signal intensity of the present probe sets was comparable across all 

probe arrays, with M33 showing a slightly more intense signal.   

 

The degree of noise present in each array was calculated by the Expression Console 

software (Figure 13).  The noise values were calculated based on the degree of pixel-

to-pixel signal variation among probe cells used to calculate background (Figure 

13A).  Figure 13A shows that array M33 had the lowest levels of noise, which 

perhaps explains why M33 had the lowest percentage of present genes (Figure 12A), 

but the highest average intensity values (Figure 12B).  The average background 

intensity (relative intensity units) followed a similar trend as the noise values (Figure 

13B). 
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Figure 13 – Noise present in each array. (A) RawQ data is generated by Expression 

Console software from the degree of pixel-to-pixel variation among probe sets used 

to calculate noise, or background levels of signal.  Noise levels are comparable 

across arrays, with M33 showing a reduced level of noise compared to the other 

arrays.  (B) The average noise signal intensity for each probe array. 

 

During the RNA amplification process, the 3’:5’ ratios for each mRNA strand 

become skewed.  This is due to the less than 100% efficiency of the enzymes during 

replication, resulting in slightly shortened mRNA strands.  Figure 14 shows the 3’:5’ 

skewing in housekeeping genes, GAPDH (Figure 14A) and β-actin (Figure 14B).  In 

both GAPDH and β-actin, there is a higher signal intensity (relative intensity units) 

in probes that detect the 3’ end of the mRNA strand (Figure 14).  However, this does 
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not represent a significant issue in terms of probe detection, as the array chips used 

are Mouse Genome 430 2.0 arrays, in which the majority of probes are designed to 

detect the 3’ end of the mRNA strand.  From these data, the arrays were considered 

of sufficient quality to continue with gene expression analysis.  Additionally, 3’:5’ 

skewing of probe set signals appear to be comparable between all probe arrays 

(Figure 14). 

 

Figure 14 – 5’:3’ skewing graphs (A) Signal intensities for 3’ GAPDH probe sets 

(red) and 5’ GAPDH probe sets (blue).  The signal intensity for the 5’ GAPDH probe 

sets is lower than that of the 3’ probe sets due to the 3’:5’ skewing induced by aRNA 

amplification rounds.  (B) Signal intensities for 3’ β-actin probe sets (red) and 5’ β-

actin probe sets (blue).  The signal intensity for the 5’ β-actin probe sets is lower 

than that of the 3’ probe sets, following the same trend as the GAPDH signal 

intensities.  However, as the vast majority of probe sets on the GeneChip Mouse 
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Genome 430 2.0 Array Probe are designed against the 3’ end of the RNA fragments, 

this 3’:5’ skewing will not influence the gene expression ratios produced. 

 

Expression Console data shown here demonstrates that the probe arrays are all 

comparable in terms of signal intensity, number of probe sets present, housekeeping 

gene expression, noise levels and 3’:5’ skewing of RNA. This confirms that 

hybridization, staining and scanning of probe arrays did not introduce any significant 

degree of variation into the signal intensities and any changes in gene expression 

found from the microarrays is due to a difference in gene expression rather than 

divergence of an entire probe array. 

 

3.3.6 - Microarray Data Analysis 

The .CEL files generated from the microarray were then uploaded onto QIUcore 

software for PLIER normalisation and analysis of gene expression.  After 

normalisation, principal component analysis (PCA) graphs were generated showing 

that the gene expression profiles of the three vulnerable motor units, and three 

resistant motor units clustered together (Figure 15).  This shows that the gene 

expression profiles of motor neurons cell bodies of vulnerable motor units are more 

similar to each other than to the gene expression profiles of motor neuron cell bodies 

of resistant motor units, and vice versa (Figure 15).   
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Figure 15 – PCA graph of probe arrays after PLIER normalisation.  PCA is a 

mathematical algorithm that reduces the complexity of data.  PCA identifies 

principle components in which the data varies.  By using a few of these components, 

each sample can be plotted onto a 3D graph, in order to visually assess how similar 

the samples are.  Samples that are similar will appear to group together.  Here, gene 

expression profiles of motor neuron cell bodies that innervate the TA are represented 

in blue, and appear to cluster closely together.  Gene expression profiles of motor 

neuron cell bodies that innervate the EDL are represented in yellow and also appear 
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to cluster together, somewhat separately from the motor neurons that innervate the 

TA. 

 

 

Figure 16 – Heat map of gene expression differences.  This heat map shows the 

relative gene expression of 1029 genes which were found to be significantly altered 

between vulnerable and resistant motor units.  Green represents genes which are 

down-regulated, while red signals an up-regulation of gene expression.  Columns 

headed in blue represent the relative gene expression profiles of array probes of 

vulnerable motor units (M1, M3 and M6).  Columns headed in yellow represent the 

relative gene expression profiles of array probes of resistant motor units (M11, M31 

and M33). 

 

From the QIUcore software analysis, a list of 1029 genes was identified as being 

significantly differentially expressed between the two groups of motor units (Figure 
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16).  343 genes were significantly up-regulated in the resistant motor neurons (motor 

neurons that innervated the EDL); and 686 genes were significantly up-regulated in 

vulnerable motor neurons (motor neurons that innervated the TA).  A heat map of 

significantly up- or down-regulated genes (p ≤ 0.05) was also generated from the 

QIUcore software (Figure 16).   

 

In order to produce a robust list for pathway analysis and gene searching, a filtered 

list was created (Figure 17).  First, the ratios of gene expression between 

significantly altered genes were produced, with ratios over 1 representing genes up-

regulated in the resistant motor units; and ratios lower than 1 representing genes up-

regulated in the vulnerable motor units (Figure 17).  Next, genes that had a fold 

change of 20% or less were removed from the list (Figure 17).  The remaining genes 

represented a robust list of 196 genes which were significantly altered between the 

two groups of motor neurons. 
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Figure 17 – Scatter plot of ratios of differentially expressed genes.  The ratios of 

differentially expressed genes were plotted with each dot representing a different 

gene which was found to be significantly up- or down-regulated in vulnerable or 

resistant motor units.  Ratios above 1 represent genes that were up-regulated in 

resistant motor units, while ratios below 1 represent genes that were up-regulated in 
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vulnerable motor units.  Genes that had a ratio of less than 1.2 and more than 0.8 

were removed from analysis.  This represents a 20% change cut-off for genes to be 

included in analysis.   Of the 1029 genes that were significantly altered between 

vulnerable and resistant motor units, 196 genes were also more than 20% up- or 

down-regulated.  This filtered list of 196 genes was used for pathway analysis and in 

the literature search. 

 

The top 25 genes that were significantly and more than 20% up-regulated in the 

resistant motor units are listed in Table 8; and the top 25 genes that were 

significantly and more than 20% up-regulated in the vulnerable motor units are listed 

in Table 9. A full table of altered genes can be found in Supplementary Tables 1 and 

2.  The full lists of genes were used for pathway analysis using IPA software and 

were also subjected to a thorough manual literature search. 
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Table 8 – The top 25 most up-regulated genes in resistant motor units. 

Gene Name Gene Symbol Ratio p Value 

uncharacterized LOC100861869 LOC100861869 5.84 0.0156 

expressed sequence C87122 C87122 5.79 0.0316 

keratin 14 Krt14 5.03 0.0088 

cDNA sequence BC021785 BC021785 3.86 0.0134 

listerin E3 ubiquitin protein ligase 1 Ltn1 2.57 0.0478 

RIKEN cDNA 2810429I04 gene 2810429I04Rik 2.40 0.0003 

schlafen 10, pseudogene Slfn10-ps 1.94 0.0255 

cyclin B1 Ccnb1 1.88 0.0360 

RIKEN cDNA 4932429P19 gene 4932429P19Rik 1.81 0.0110 

aldo-keto reductase family 1, member 

C20 

Akr1c20 1.76 0.0437 

--- --- 1.75 0.0299 

basic helix-loop-helix family, member a9 Bhlha9 1.74 0.0158 

RIKEN cDNA 5830490A04 gene 5830490A04Rik 1.73 0.0368 

RIKEN cDNA 9430031J08 gene 9430031J08Rik 1.71 0.0021 

eosinophil-associated, ribonuclease A 

family, member 11 

Ear11 1.70 0.0253 

protease, serine, 37 Prss37 1.67 0.0417 

--- --- 1.65 0.0360 

nuclear factor, erythroid derived 2, like 2 Nfe2l2 1.64 0.0009 

--- --- 1.63 0.0338 

ankyrin repeat domain 55 Ankrd55 1.63 0.0312 

tumor necrosis factor (ligand) 

superfamily, member 13b 

Tnfsf13b 1.57 0.0497 

--- --- 1.57 0.0169 

toll-like receptor 7 Tlr7 1.55 0.0498 

zinc finger and AT hook domain 

containing 

Zfat 1.55 0.0472 

platelet-activating factor receptor Ptafr 1.55 0.0240 
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Table 9 – The top 25 most up-regulated genes in vulnerable motor units. 

 

Gene Name Gene Symbol Ratio p Value 

--- --- 100.70 0.0009 

epidermal growth factor receptor Egfr 10.99 0.0030 

--- --- 7.77 0.0097 

multiple endocrine neoplasia 1 Men1 4.80 0.0268 

angiopoietin-like 3 Angptl3 4.65 0.0389 

RIKEN cDNA 1700108M19 gene 1700108M19Rik 3.67 0.0014 

ryanodine receptor 1, skeletal muscle Ryr1 3.00 0.0215 

purinergic receptor P2Y, G-protein coupled 2 P2ry2 2.99 0.0273 

angiogenin, ribonuclease A family, member 2 Ang2 2.60 0.0307 

interferon activated gene 202B Ifi202b 2.55 0.0063 

DENN/MADD domain containing 2D Dennd2d 2.46 0.0094 

tubulin, beta 4B class IVB Tubb4b 2.21 0.0047 

elongation factor RNA polymerase II 2 Ell2 2.19 0.0246 

piwi-like homolog 1 (Drosophila) Piwil1 2.07 0.0140 

erythrocyte protein band 4.1-like 4b Epb4.1l4b 2.02 0.0433 

G protein-regulated inducer of neurite 

outgrowth 1 

Gprin1 1.89 0.0316 

RIKEN cDNA 1700120E14 gene 1700120E14Rik 1.83 0.0327 

RIKEN cDNA 4633402D09 gene 4633402D09Rik 1.80 0.0406 

Casitas B-lineage lymphoma Cbl 1.75 0.0099 

nidogen 1 Nid1 1.75 0.0232 

DNA segment, Chr 2, Brigham & Women's 

Genetics 1423 expressed 

D2Bwg1423e 1.75 0.0377 

ubiquitously transcribed tetratricopeptide 

repeat gene, Y chromosome 

Uty 1.69 0.0475 

bone marrow stromal cell antigen 1 Bst1 1.58 0.0324 

piwi-like homolog 4 (Drosophila) Piwil4 1.58 0.0330 

ATP-binding cassette, sub-family G (WHITE), 

member 5 

Abcg5 1.56 0.0157 
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3.3.7 - Pathway Analysis 

The list of significantly altered genes was subjected to pathway analysis in order to 

identify specific networks which contained significant numbers of differentially 

expressed genes.  This analysis may help identify particular pathways that, while still 

functional in both motor pools, may be altered in such a way that they react 

differently when SMN protein is reduced.  This may help explain why some motor 

pools are better able to cope with the stresses placed upon motor neurons when faced 

with a reduction in SMN protein. 

IPA Pathway Analysis software was used to identify altered networks of genes 

between the two sets of motor neurons, based on interactions of the proteins that they 

code.  A list of genes that were significantly different between the two groups of 

motor neurons (p ≤ 0.05) and were more than 20% up- or down-regulated was 

submitted to the IPA software for analysis.  The ratio denoted the magnitude of 

change for each gene, with ratios above 1 denoting genes up-regulated in the 

resistant motor units; and ratios less than 1 denoting genes that were up-regulated in 

the vulnerable motor units.  From this initial list of 196 genes, 149 could be mapped 

into protein networks by the IPA software.  Protein networks were identified that 

contained either direct or indirect interactions between proteins, and had been 

confirmed by experimental observation.  The IPA software identified five Molecular 

and Cellular Functions pathways that contained significant numbers of altered genes 

(Table 10).  Of these five pathways identified, all have been shown to be perturbed in 

SMA (Young et al., 2002; Oprea et al., 2008; Wishart et al., 2010; Nölle et al., 2011; 

Rathod et al., 2012).   
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Pathway P Value Number of 

Molecules 

Percentage 

of Gene List 

Reference 

Cell-to-cell 

signalling and 

interaction 

 

4.33E-06 – 1.26E-

02 

27/149 18.12% Rathod et 

al., 2012 

Cellular Assembly 

and Organisation 

 

4.33E-06 – 1.26E-

02 

9/149 6.04% Oprea et 

al., 2008 

Cellular Movement 

 

3.86E-05 – 1.26E-

02 

27/149 18.12% Nölle et 

al., 2011 

 

Cell Death and 

Survival 

 

2.11E-04 – 1.26E-

02 

19/149 12.75% Young et 

al., 2002 

Cellular 

Development 

2.49E-04 – 1.26E-

02 

46/149 30.87% Wishart et 

al., 2010 

Table 10 – Molecular and Cellular Functions pathways that were identified as 

containing differentially expressed genes, according to IPA software. 

 

IPA software analysis also identified Physiological System Development and 

Function pathways that contained significant numbers of altered genes between the 

two groups of motor neurons (Table 11).  Each of the pathways identified were 

related to SMA.  16.77% of genes in the list uploaded to IPA software related to the 

pathway Skeletal and Muscular System Development and Function (Shanmugarajan 

et al., 2007). Additionally, 23.48% of the gene list was involved in pathways relating 

to Organ Development.  This finding was particularly interesting, as SMA is known 
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to have effects on internal organs such as the heart and spleen (Menke et al., 2008; 

Hamilton & Gillingwater, 2013; Shababi et al., 2013).   

 

 

Pathway P Value Number of 

Molecules 

Percentage 

of Gene List 

Reference 

Skeletal and 

Muscular System 

Development and 

Function 

 

1.25E-05 – 

1.26E-02 

25/149 16.77% Shanmugarajan 

et al., 2007 

Connective Tissue 

Development and 

Function 

 

1.25E-05 – 

1.26E-02 

22/149 14.76% Rathod et al., 

2012 

Organ 

Development 

1.25E-05 – 

1.26E-02 

35/149 23.48% Shababi et al., 

2013 

Table 11 - Physiological System Development and Function pathways that contained 

differentially expressed genes, according to IPA software. 

 

Figure 19 shows an example of a protein pathway that was identified as containing a 

large proportion of altered genes, in a Skeletal and Muscular System Development 

and Function pathway.  This pathway was particularly interesting, as an obvious 

central protein could be identified, ubiquitin C, which directly interacts with several 

of the genes that were altered between resistant and vulnerable motor units (Figure 

18).  Ubiquitin-related proteins are of interest with relation to SMA because recently 
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an interaction between ubiquitin-related proteins and SMN protein has been reported 

(Hsu et al., 2010; Han et al., 2012; Kwon et al., 2013). 

 

Figure 18 – Protein pathway identified by IPA software analysis.  IPA software 

analysis mapped a pathway in which several genes which were significantly and by 

more than 20% altered between vulnerable and resistant motor units were involved.  

This pathway shows that several of the proteins produced by genes named in the 

robust filtered list directly interact with ubiquitin C.  Proteins denoted in red 

represent genes found to be significantly up-regulated in resistant motor units, 
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whereas proteins denoted in green represent genes found to be significantly up-

regulated in vulnerable motor units.  Proteins in white represent genes which are 

part of this pathway but were not identified as being significantly changed in the 

microarray. 

 

3.3.8 – Neuro-Protective and Neuro-Detrimental Genes 

The list of significantly altered genes was subjected to detailed literature search 

analysis in order to identify individual genes which may have previously been 

implicated in neuro-degeneration or neuro-protection; have an involvement in cell 

death pathways; or an association with the synapse.  Each gene was investigated 

individually, by conducting a manual literature search using the NCBI PubMed 

database.  The findings of this literature search generated a list of genes up-regulated 

in resistant or vulnerable motor units which were considered to be of interest.  These 

genes were then rated out of five stars, to denote which genes were of most interest 

for further studies. 

A five star rating was awarded to genes that had previously been shown to have a 

direct influence on neuro-degeneration or neuro-protection, or were known to 

directly interact with SMN protein.  A four star rating was awarded to genes that had 

previously been shown to been involved in cell death or apoptosis pathways, or had 

been implicated to interact with SMN protein.  A three to one star rating was 

awarded to genes that had weaker links to the cell death pathway, had an influence 

on neuro-degeneration, or had an involvement at the synapse.  Genes which had a 

larger number of publications linking them to neuronal or cell death were given a 

higher star rating. 
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Gene Name Gene 

Symbol 

Ratio p Value Rating 

listerin E3 ubiquitin protein ligase 1 Ltn1 2.57 0.04789 ***** 

nuclear factor, erythroid derived 2, like 2 Nfe2l2 1.64 0.00095 ***** 

chaperonin containing Tcp1, subunit 6b 

(zeta) 

Cct6b 1.46 0.01739 ***** 

N-ethylmaleimide sensitive fusion protein 

attachment protein beta 

Napb 1.53 0.02820 ***** 

BCL2-like 11 Bcl2l11 1.26 0.02869 ***** 

cyclin B1 Ccnb1 1.88 0.03609 **** 

protease, serine, 37 Prss37 1.67 0.04170 **** 

chemokine (C-X-C motif) receptor 5 Cxcr5 1.30 0.02004 **** 

toll-like receptor 7 Tlr7 1.55 0.04988 *** 

zinc finger and AT hook domain 

containing 

Zfat 1.55 0.04726 *** 

STE20-related kinase adaptor alpha Strada 1.32 0.03990 *** 

cytochrome P450, family 17, subfamily a, 

polypeptide 1 

Cyp17a1 1.29 0.00871 *** 

calcium/calmodulin-dependent protein 

kinase IV 

Camk4 1.22 0.03863 *** 

nebulin Neb 1.52 0.01180 ** 

MORN repeat containing 1 Morn1 1.33 0.02228 * 

tumor necrosis factor receptor 

superfamily, member 11a 

Tnfrsf11a 1.22 0.03777 * 

linker for activation of T cells family, 

member 2 

Lat2 1.21 0.02914 * 

Table 12 - Genes that were identified as genes of interest, generated from a literature 

search of genes that are more than 20% up-regulated in motor units resistant to 

SMA. 
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Gene Name Gene 

Symbol 

Ratio p Value Rating 

epidermal growth factor receptor Egfr 10.996748 0.003065 ***** 

angiogenin, ribonuclease A family, 

member 2 

Ang2 2.6098124 0.030703 **** 

purinergic receptor P2Y, G-protein 

coupled 2 

P2ry2 2.9968904 0.027308 **** 

DENN/MADD domain containing 2D Dennd2d 2.4693437 0.009495 **** 

solute carrier family 38, member 5 Slc38a5 1.456894 0.027874 **** 

signal transducer and activator of 

transcription 1 

Stat1 1.4444052 0.043592 **** 

ADP-ribosyltransferase 3 Art3 1.3701618 0.036438 **** 

carnosine dipeptidase 1 (metallopeptidase 

M20 family)  

Cndp1 1.302297 0.046738 **** 

caspase 4, apoptosis-related cysteine 

peptidase 

Casp4 1.2396865 0.046496 **** 

integrin alpha 4 Itga4 1.2373559 0.03353 **** 

ryanodine receptor 1, skeletal muscle Ryr1 3.0068712 0.02152 *** 

nidogen 1 Nid1 1.753184 0.023204 *** 

golgin, RAB6-interacting Gorab 1.4388443 0.030606 *** 

nuclear receptor subfamily 2, group F, 

member 2 

Nr2f2 1.3407696 0.047936 *** 

dual specificity phosphatase 23 Dusp23  1.5099871 0.023197 ** 

follistatin Fst 1.3958034 0.030996 ** 

interleukin 7 receptor Il7r 1.2936924 0.049496 ** 

ArfGAP with GTPase domain, ankyrin 

repeat and PH domain 1 

Agap1 1.2835385 0.028188 ** 

AHNAK nucleoprotein (desmoyokin) Ahnak 1.2714255 0.034136 ** 

G protein-coupled receptor 126 Gpr126 1.2063884 0.040024 ** 

ceruloplasmin Cp 1.4014308 0.034951 * 

bone marrow stromal cell antigen 1 Bst1 1.5892216 0.032415 * 

sema domain, immunoglobulin domain 

(Ig), transmembrane domain (TM) and 

short cytoplasmic domain, (semaphorin) 

4D 

Sema4d 1.3914891 0.027624 * 
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Table 13 - Genes that were identified as genes of interest, generated from a literature 

search of genes that are more than 20% up-regulated in motor units vulnerable to 

SMA. 

Of the genes which were significantly and more than 20% up-regulated in resistant 

motor units, 17 genes were identified which had previously been implicated in neuro-

degeneration or neuro-protection, had an involvement in cell death pathways, or had 

an association with synapses (Table 12).  Five of these 17 genes were noted as being 

of particular interest, denoted by their five stars ranking in Table 12.  In vulnerable 

motor units, 23 genes of interest were identified in a literature search (Table 13).  

Only one of these genes, Egfr, was noted as being of particular interest, with a five 

star rating (Table 13).  However, nine genes were considered to be worthy of further 

investigation, and awarded four star ratings (Table 13).  

 

3.4 - Discussion 

The findings of this chapter show that vulnerable and resistant motor units have 

distinct molecular properties, which may cause their differing vulnerabilities to SMA 

pathology.  In this chapter, motor neuron cell bodies that had previously been 

identified as belonging to vulnerable or resistant motor units were successfully 

labelled with a retrograde tracer.  Next, these labelled motor neuron cell bodies were 

identified in the spinal cord and isolated using laser capture micro-dissection. RNA 

was then successfully extracted from the cells and amplified for use in microarray 

analysis. Microarrays were performed and the results analysed using QIUcore 

software.  The list of significantly altered genes between the two groups of motor 
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neurons was refined according to the magnitude of the fold change in order to 

produce a robust list for in depth analysis.  This refined list was then subjected to 

IPA Pathway Analysis where several pathways of interest were identified such as 

Cellular Development, Cell-to-Cell Signalling, Organ Development and Connective 

Tissue.  In particular, a specific pathway was identified from Skeletal and Muscular 

System Development and Function, where several altered genes directly interacted 

with ubiquitin C.  Ubiquitin has previously been identified as being involved in SMA 

through an interaction between ubiquitin-related proteins and SMN protein (Hsu et 

al., 2010; Han et al., 2012; Kwon et al., 2013).  Also, a list of individual genes of 

interest was generated from the refined list by performing a literature search.  Several 

genes were identified that have been previously implicated in neuro-degeneration or 

neuro-protection that may represent new therapeutic drug targets for SMA. 

Importantly, Smn mRNA transcripts were not found to be significantly altered 

between vulnerable and resistant motor units.  This is an important finding, as the 

vulnerability spectrum observed in motor units could potentially be explained by 

different levels of SMN protein expression.  However, no significant difference in 

Smn expression was found, providing evidence that differential motor unit 

vulnerability in SMA is not driven by varying levels of full length SMN protein. 

 

3.4.1 - Functional Pathway Analysis in Vulnerable and Resistant Motor Units 

IPA software analysis identified several functional pathways that were altered 

between vulnerable and resistant motor units.  These pathways can be linked to SMA 

pathologies, and several of the pathways and their relevance to SMA are discussed 
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below. While the pathways identified by the IPA software undoubtedly link with 

SMA pathologies, the precise molecular mechanisms underlying motor unit 

vulnerability or resistance cannot be elucidated from this type of analysis.  However, 

pathway analysis does serve as an important guide to mechanisms and pathways that 

may underlie motor unit vulnerability.   

 

3.4.1.1 - Cellular Development 

Of the 149 genes which could be mapped to functional networks by the IPA 

software, 30.87% of these genes were found in pathways involved in Cellular 

Development.  There are many examples of alterations in cellular development 

pathways in SMA, particularly in pathways controlling axon guidance and 

maturation.  Reduced axon outgrowth and growth cone size has been reported in 

primary motor neuron cultures from mouse models of SMA (Rossoll et al., 2003).  In 

SMA Drosophila models, axons display guidance defects and abnormal arborisation 

(Rajendra et al., 2007) and the motor axons of SMA zebrafish are characterised as 

being abnormally short with excessive branching (Gassman et al., 2013; Hao et al., 

2013; Sleigh et al., 2013).  Also in zebrafish, Hao et al. (2013) demonstrated that 

SMN protein is required for normal motor neuron development.  By conditionally 

inducing SMN expression in smn mutant fish, Hao et al. (2013) were able to rescue 

the developmental motor neuron defects, but only when SMN protein was induced 

soon after motor neurons were born.  SMN complex activity has also shown to be 

developmentally regulated in healthy mice, with the complex being most active 

during embryonic development, and declining after P10 (Gabanella et al., 2005).  A 
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study by Liu et al. (2009) revealed neurodevelopmental alterations in a severe mouse 

model of SMA, with apoptosis being increased in the telencephalon of developing 

embryos and truncation of the lumbar and facial nerves being observed.  

Additionally, perinatal brain development has been shown to be altered in an SMA 

mouse model, with decreased cell density in the hippocampus and a decrease in 

neurogenesis (Wishart et al., 2010).  Also, a delay in maturation of the motor 

endplate of the neuromuscular junction has been observed in several mouse models 

of SMA, which could be due to altered signalling from the nerve terminals (Kariya et 

al., 2008; Kong et al., 2009; Lee et al., 2011).  Based on the high percentage of genes 

altered between vulnerable and resistant motor neurons belonging to pathways 

involving cellular development, and the evidence that SMN protein is involved in 

developmental processes, it seems likely that differences in developmental pathways 

in different groups of motor neurons could contribute to variations in motor neuron 

vulnerability in SMA. 

 

3.4.1.2 - Cellular Assembly and Organisation 

IPA software analysis identified 9 genes which are altered between vulnerable and 

resistant motor units as being involved in Cellular Assembly and Organisation 

pathways.  Perturbation in cell organisation has been linked to SMA by filamentous 

actin.  SMN protein has been shown to form complexes with proteins and transport 

mRNA for β-actin (the monomer of filamentous actin) along the axon (Rossoll et al., 

2003).  Filamentous actin is an important component of the cytoskeleton in nerve 

terminals, where it is involved in synaptic vesicle recycling (Shupliakov et al., 2002), 
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caging synaptic vesicles to the reserve pool and transporting them to the active zone 

(Bleckert et al., 2012). Studies in SMA mouse models have shown a reduction in 

synaptic vesicle density throughout the nerve terminal and specifically at the active 

zone (Kong et al., 2009).  Importantly for this study, examples of alterations to 

Cellular Assembly and Organisation pathways being protective in SMA already 

exist.  The filamentous actin bundling protein, plastin 3, has been identified as a 

protective factor for SMA in humans (Oprea et al., 2008).  High levels of plastin 3 

appeared to confer protection on individuals, who despite having a homozygous 

deletion of SMN1, did not develop SMA (Oprea et al., 2008).  Plastin 3 has also 

shown to rescue axon growth defects in primary cultured cells with reduced SMN 

levels (Oprea et al., 2008) and in zebrafish models of SMA (Hao et al., 2012).  

However, the protective effects of Plastin 3 alone are likely to be limited, as a mouse 

model of SMA which also ubiquitously over-expressed Plastin 3 showed an increase 

in muscle fibre diameter, endplate size, and the number of fully occupied endplates, 

but no increase in lifespan, motor activity or weight gain (Ackermann et al., 2013). 

While Plastin 3 was not identified as being altered between resistant and vulnerable 

motor units in this study, it may be possible that another gene belonging to this 

functional category may also convey protection on motor neurons via the 

cytoskeleton. 

 

3.4.1.3 - Cell Death and Survival 

IPA software analysis of the microarray results showed that 19 genes were involved 

in Cell Death and Survival pathways.  Interactions between SMN protein and 
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apoptotic-regulators have been reported previously, such as a direct interaction 

between SMN protein and the pro-apoptotic gene p53 (Young et al., 2002). Young et 

al. (2002) showed that SMN protein interacts with P53 and when P53 is activated 

they co-localised in Cajal bodies.  In the fibroblasts of SMA patients where SMN 

protein expression was significantly reduced, P53 was found to localise in the 

nucleus leading Young et al. (2002) to hypothesise that aberrant P53 signalling in 

SMA could lead to inappropriate activation of cell death pathways.  To test this 

theory Tsai et al. (2006) crossed a p53 knockout mouse with a severe SMA mouse 

line and disappointingly found no increase in life span or reduction in disease 

severity.  However in the same year Tsai et al. also crossed their severe SMA mouse 

model with a different pro-apoptotic gene knockout mouse, Bax.  Here, they found 

that there was a modest increase in lifespan and an increase in the number of motor 

neurons in the spinal cords of Smn-/-;Bax-/-;SMN2+/- mice, with almost double the 

number of motor neuron cell bodies being present in Smn-/-;Bax-/-;SMN2+/- compared 

to SMA mice with endogenous BAX expression (Tsai et al., 2006).  Also, in human 

foetal spinal cords, Soler-Botija et al. (2003) found that there was a decrease in the 

anti-apoptotic BCL-2 protein expression in 15 week spinal cords, and a delay in the 

expression of another anti-apoptotic protein, BCL-X.  It may therefore be possible, 

that aberrant apoptosis induction occurring through distinct pathways may contribute 

to motor neuron degeneration in SMA.  Alterations in the levels of individual 

apoptotic pathway components between groups of motor neurons may underlie 

differences in motor unit vulnerability. 
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3.4.1.4 - Ubiquitin C Pathway 

A specific pathway of interest was found in the IPA software analysis that involved 

several differentially expressed genes directly interacting with UbC, a gene that 

codes for ubiquitin C, a poly-ubiquitin protein.  Ubiquitin is a protein that is 

conjugated onto other proteins to tag them for degradation.  Under stressful 

conditions, ubiquitin protein monomers are released from poly-ubiquitin proteins and 

used to tag proteins for degradation (Ryu et al., 2007).  The genes, UbB and UbC 

code for the ubiquitin monomers that form the poly-ubiquitin proteins that are broken 

down under stressful conditions (Ryu et al., 2007). 

Recently, an ubiquitin pathway was identified as being perturbed in a mouse model 

of SMA (Wishart et al., in press).  Ubiquitin-like modifier activating enzyme 

(UBA1) protein was found to be down-regulated in a severe mouse model of SMA, 

compared to wild type mice (Wishart et al., In Press).  Suppressing uba1 expression 

in zebrafish embryos was sufficient to cause an SMA-like phenotype, with truncated 

motor axons and excessive axonal branching (Wishart et al., In Press).  Additionally, 

both monomeric and multimeric ubiquitin protein levels were down-regulated in 

SMA mice compared to controls (Wishart et al., In Press). 

The pathway identified by the IPA software shows that many of the differentially 

expressed genes directly interact with ubiquitin C, but the nature of these interactions 

is not documented.  However, based on these results, and those of Wishart et al. (In 

Press) it may be possible that differences in the efficiency of poly-ubiquitin C protein 

degradation to monomeric ubiquitin under stressful conditions is different between 
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vulnerable and resistant motor units, allowing resistant motor units to better cope 

with cellular stresses induced by a reduction in SMN protein. 

 

3.4.2 - Individual Genes of Interest 

The analysis of individual genes which were found to be altered between vulnerable 

and resistant motor units may provide a greater insight into specific molecular 

mechanisms underlying motor unit vulnerability in SMA than pathway analysis.  For 

this reason, a literature search of significantly altered genes was conducted.  Several 

of the genes identified as being of particular interest are discussed below. 

 

3.4.2.1 - Ltn1 

Ltn1 was first identified as a gene of interest due to its involvement in neuro-

degeneration (Chu et al., 2009).  A genome-wide mutagenesis screen carried out by 

Chu et al. (2009) produced a model mouse which developed age-dependent 

weakness of the hind limbs, loss of motor axons and had a shortened life span, with 

the mice living to only 2-3 months.  Gene mapping identified a gene on chromosome 

13, of previously unknown function, with an A-T transversion (Chu et al., 2009).  

This mutated gene, named listerin1 (Ltn1), produced a protein missing 14 amino 

acids, and miss-spliced mRNA transcripts could be detected in the brain and spinal 

cord (Chu et al., 2009).  LISTERIN protein was further characterised in the study, 

and was found to contain a RING finger domain at its C-terminus (Chu et al., 2009).  

RING finger containing proteins commonly function as E3 ubiquitin ligases 
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(Deshaies & Joazeiro, 2009), which suggests that LISTERIN protein is involved in 

the ubiquitination pathway (Chu et al., 2009).  The microarray analysis showed that 

Ltn1 gene expression was increased 2.57 fold in resistant motor units compared to 

vulnerable motor units in healthy mice.  Based on this, and the fact that a reduction 

in full length Ltn1 transcripts in mice leads to neuro-degeneration (Chu et al., 2009), 

it may be possible that LISTERIN protein has a neuro-protective effect in neurons.  

Interestingly, LISTERIN protein may also be involved in ubiquitination pathways 

which have also been identified as being perturbed in SMA mice (Chu et al., 2009; 

Hsu et al., 2010; Han et al., 2012; Kwon et al., 2013).   

 

3.4.2.2 - Nfe2l2 

Nfe2l2 (aka Nrf2) is an antioxidant response element that regulates expression of 

phase II detoxification enzymes (Joshi & Johnson, 2012).  Under unstressed 

conditions, Nrf2 is associated with Keap1, ubiquitinated, and rapidly degraded (Joshi 

& Johnson, 2012).  Under conditions of oxidative stress, this association with Keap1 

is disrupted and Nrf2 is translocated to the nucleus where it can increase expression 

of detoxification enzymes, such as superoxide dismutase 1 (SOD1), among others 

(Joshi & Johnson, 2012).  There is a growing body of evidence suggesting that 

oxidative stress plays a major role in many different neurodegenerative disorders, 

such as Alzheimer’s disease (Ramsey et al., 2007; Kanninen et al., 2008; Nouhi et 

al., 2011), Parkinson’s disease (Chen et al., 2009), and ALS (Sarlette et al., 2008; 

Neymotin et al., 2011).  In Parkinson’s disease mouse models, knocking out Nrf2 

resulted in a greater loss of dopamine transporters in the striatum (Burton et al., 
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2006).  In Alzheimer’s disease Nrf2 expression is reduced in the nucleus of 

hippocampal neurons (Ramsey et al., 2007).  In vitro studies of Alzheimer’s disease 

have shown that over-expression of Nrf2 protected against Aβ1-42 neuronal death in 

cultured hippocampal cells (Kanninen et al., 2008).  Animal models of Alzheimer’s 

disease have also demonstrated the neuro-protective effects of Nrf2, with β-amyloid-

injected rats showing a reduction in both β-amyloid accumulation and β-amyloid-

induced apoptosis (Nouhi et al., 2011).  In ALS, Nrf2 neuro-protective properties 

have also been reported (Sarlette et al., 2008; Neymotin et al., 2011).  Post-mortem 

studies of human motor cortex and spinal cord revealed a down-regulation of both 

Nrf2 mRNA and protein (Sarlette et al., 2008).  Also, in SOD1G93A mutant mice, 

administration of Nrf2 activators to the spinal cord significantly delayed the 

progression of symptoms and extended the lifespan of SOD1G93A mice (Neymotin et 

al., 2011).   

Oxidative stress involvement in SMA pathology is less well characterised, with some 

evidence of oxidative damage to DNA being reported in post-mortem brain tissue of 

type I SMA patients (Hayashi et al., 2002).  However, a study by Wan et al. (2008) 

demonstrates that there may be a link between oxidative stress and SMN protein.  

Wan et al. (2008) showed in HeLa cells, that SMN complex activity is reduced by 

reactive oxygen species (ROS) in a dose dependent manner. 

Based on these studies and the up-regulation of Nfe2l2 mRNA in resistant motor 

units, it may be possible that higher baseline levels the neuro-protective Nfe2l2 

transcripts could underlie the resistance of some motor units to SMA pathology.  It is 

possible that higher levels of Nrf2 in some motor units could result in lower levels of 
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ROS, thereby allowing SMN complex activity to function at levels necessary for 

normal motor neuron physiology.  

 

3.4.2.3 - Egfr 

Epidermal growth factor receptor (Egfr) mRNA was found to be up-regulated 10.99 

fold in vulnerable motor units, compared to resistant motor units.  Egfr belongs to a 

family of transmembrane receptors with intrinsic tyrosine kinase activity (Liu et al., 

2006).  Under normal conditions, Egfr is not present in mature astrocytes but Egfr 

and its ligands become rapidly up-regulated in astrocytes following damage to 

neurons, through ischemia, traumatic injury or in brains of Alzheimer’s disease 

patients (Liu et al., 2006).  It is the activation of the Egfr pathway that causes 

quiescent astrocytes to become activated (Liu et al., 2006).  Importantly, Egfr mRNA 

transcripts have been found to be up-regulated 10-fold in the spinal cord of both ALS 

patients and SOD1G93A mouse models (Offen et al., 2009).  Additionally, studies 

have shown that neuro-degeneration can be delayed using Egfr inhibitors (Le Pichon 

et al., 2013).  In SMA, GFAP-positive astrocytes have been detected in both mouse 

models of SMA (Caraballo-Miralles et al., 2013) and human post-mortem tissue 

(Simic et al., 2008). It may be possible, therefore, that this higher base-line level of 

Egfr transcripts in some groups of motor neurons makes them more vulnerable, 

either to the toxic effects of reactive astrocytes in SMA or via the Egfr pathway 

being activated within the motor neurons themselves. 
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3.4.2.4 - Dennd2d 

DENN/MADD domain contained 2D (Dennd2d) mRNA expression was found to be 

2.47 times up-regulated in vulnerable motor units compared to resistant motor units 

in the microarray study.  Dennd2d encodes a protein reported to induce apoptosis in 

non-small cell lung cancer (Ling et al., 2012).  Ling et al. (2012) found that 

expression of Dennd2d mRNA and protein was reduced in non-small cell lung 

cancer cell lines and patient tumour tissue.  By over-expressing Dennd2d via plasmid 

transfection, Ling et al. (2012) were able to inhibit the proliferation of non-small cell 

lung cancer cells in vitro, and suppress tumorigenicity in a xenograft assay in mice.  

They propose that DENND2D induces apoptosis by blocking MADD protein binding 

to the death domain of tumour necrosis factor receptor 1 (TNFR1), which leaves the 

death domain of TNFR1 free to activate cell apoptosis (Ling et al., 2012).  Based on 

this study, it is possible that higher levels of the apoptosis-inducing factor 

DENND2D in some motor units may leave the cells more vulnerable to the stresses 

induced by a reduction in SMN protein. 

 

3.4.2.5 - Slc38a5 

The Slc38a5 gene codes for the protein SNAT5 (aka SN2) which is an amino acid 

bidirectional transporter which binds to both glutamine and glycine and is found in 

glial cells in the brain, and other tissues (Cubelos et al., 2005).  SNAT5 has recently 

been implicated in synaptic plasticity via regulation of NMDA receptors by a 

proposed mechanism of releasing glycine into the synaptic cleft to stimulate NMDA 

receptors under appropriate conditions (Hamdani et al., 2012).   
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Slc38a5 mRNA splicing is known to be altered in SMA (Zhang et al., 2008; Liu et 

al., 2010).  A study by Zhang et al. (2008) revealed that SMN protein depletion 

results in alterations to ratios and miss-splicing of mRNAs in many different tissues.  

Zhang et al. (2008) show that Slc38a5 is down-regulated almost three-fold in the 

spinal cord of Smn-/-;SMN2;Δ7 mice with alterations to 9 out of 16 of its exons, and 

two-fold in Smn-/-;SMN2;Δ7 brains with 5 out of 16 exons affected.  Miss-splicing of 

Slc38a5 transcripts was also found in embryos of a severe mouse model of SMA 

(Liu et al., 2010).  In this study, higher levels of Slc38a5 mRNA were found in 

vulnerable motor units compared to resistant motor units in healthy mice.  This opens 

up the possibility that miss-spliced Slc38a5 mRNA products are somehow 

detrimental to motor neurons.   

 

3.4.3 - Further Work 

In order to both validate the microarray and assess the neuro-protective effects of 

over- or under-expressing the identified genes, genes will be screened in a zebrafish 

model of SMA by an expert zebrafish laboratory in the near future.  Briefly, genes 

found to be up-regulated in resistant motor units will be over-expressed using over-

expression constructs which are introduced into the developing zebrafish embryos.  

Genes found to be up-regulated in vulnerable motor units will be knocked-down by 

injecting zebrafish embryos with oligonucleotide morpholinos.  Morpholinos are 

anti-sense oligonucleotides that reduce gene expression by blocking transcription or 

modification of target mRNAs. 
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The efficacy of up- or down-regulating genes of interest will be measured using 

confocal analysis to analyse motor neuron branching patterns, from which the health 

of the motor neurons can be assessed.  It is our hope that by up-regulating genes 

found in resistant motor units, or down-regulating genes found in vulnerable motor 

units in zebrafish motor neurons, the neuro-protective effects of these genes can be 

assessed.  After screening in zebrafish, any genes that have been found to have a 

neuro-protective effect would then be tested in mouse models of SMA, most likely 

using drugs to inhibit or enhance target gene expression.  

Zebrafish were chosen to screen genes for neuro-protective activity due to the 

relative ease with which zebrafish genomes can be manipulated.  SMA models of 

zebrafish can be screened simply by the injection of morpholinos into the embryos, 

which are readily accessible, or by the addition of drugs into the water.  Additionally, 

defects in zebrafish motor neurons are easily characterised and quantified, with 

characteristic truncated, excessively branched motor neurons being a hallmark of 

SMA pathology in zebrafish (Gassman et al., 2013; Hao et al., 2013; Sleigh et al., 

2013).  

 

3.4.4 - Study Weaknesses 

One weakness of this study is that for vulnerable and resistant motor units, only one 

motor pool was analysed.  In order to produce a more robust reliable list of candidate 

genes that could be implicated in motor unit vulnerability, a larger cohort of motor 

pools should be labelled and analysed.  By analysing the gene expression of a larger 

number of motor pools on different ends of the vulnerability spectrum in SMA, we 
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could begin to identify genes or pathways that are common to all vulnerable, or all 

resistant, motor units.  However, this was not possible in this study as almost all 

other muscles examined in Chapter 2 were extremely flat thin muscles which would 

have proved impossible to confidently inject with WGA tracer.  The motor unit 

vulnerability of other large bellied accessible muscles would need to be determined 

before the gene expression of other motor pools could be analysed.  

A major assumption in the IPA pathway analysis is that all the genes which are up- 

or down-regulated at the mRNA level, as identified by the microarray, are also up- or 

down-regulated at the protein level.   Similarly, another assumption is that mRNAs 

that were not found to be changed between vulnerable and resistant motor units are 

not altered at the protein level.  Ratios between mRNAs and proteins are determined 

by mRNA translation and protein degradation, with many factors influencing the rate 

at which these often independent processes occur (de Sousa Abreu et al., 2009).  A 

meta-analytical study by de Sousa Abreu et al. (2009) revealed that there is a 

correlation, albeit a weak correlation, between mRNA and protein levels in bacteria, 

yeast, and human tissue.  Based on this, we can assume that most of the genes 

identified as being up- or down-regulated in the microarray are also similarly altered 

at the protein level.   

A lack of microarray validation, for example by real time quantitative PCR, is a 

weakness of this study.  In preparation for RT-qPCR validation, primers were 

generated to assess the relative gene expression between RNA extracted from 

vulnerable and resistant motor units.  However, after the microarray had been 

performed there was simply not enough RNA left over to perform PCRs.  Instead, 

the microarray will be validated in a later study by screening these genes in 
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zebrafish.  Plans to validate changes in protein levels of altered genes were also in 

place, but during the course of the experiment, it became evident that extracting 

appropriate quantities of protein from the labelled motor neuron cell bodies would 

not be possible. 

 

3.4.5 – Conclusion 

Based on the results obtained here, it seems likely that distinct molecular properties 

of motor units drive selective motor unit vulnerability in SMA.  Whether this is due 

to differential expression of a single neuro-protective or neuro-detrimental gene; or 

due to the altered state of many protein pathways is yet to be determined.   Further 

work examining the effects of over- or under-expressing individual genes in a 

zebrafish model of SMA will hopefully shed more light onto the molecular 

mechanisms of motor unit vulnerability in SMA.  It is hoped that by altering 

expression of these individual genes, a protected status can be conveyed onto all 

motor units and potentially become a new therapeutic target for SMA. 
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Chapter 4: Identification of a peptide with potential synapse binding 

abilities using phage display.  

4.1 - Introduction 

Pathological changes that take place at the neuromuscular junction in SMA are well-

characterised in mice, but comparatively little is known about these changes in 

human patients.  A study by Martínez-Hernández et al. (2013) in aborted foetal tissue 

showed that there were changes in acetylcholine receptor clustering at the motor 

endplate; an abnormal distribution of vesicles in the nerve terminal; and an aberrant 

ultrastructure of the nerve terminal in pre-natal type I spinal muscular atrophy, 

compared to control tissue. Similarly, Karyia et al., 2008 found that approximately 

70% of neuromuscular junctions in type I SMA patient biopsy tissue showed signs of 

pre-synaptic abnormalities. 

Visualising synapses in humans is extremely difficult for a number of reasons.  

Synapses of the CNS are only ever available to study in post-mortem tissue, and in 

the case of SMA, this is mostly from elective termination of pregnancies (Martínez-

Hernández et al., 2013).  In other post-mortem tissues, synapses are at the end stage 

of disease which gives little insight into disease progression. Neuromuscular 

junctions are by far the most accessible synapse in humans but can only be accessed 

via invasive muscle biopsy procedures.  

Importantly, the neuromuscular junction is not the only synapse to be affected in 

SMA: central nervous system synapses are also known to be affected (Ling et al., 

2010; Park et al., 2010; Mentis et al., 2011; Gogliotti et al., 2012; Martinez et al., 

2012).  Mentis et al. (2011) demonstrated that vGlut1-positive synapses onto lower 



172 
 

motor neurons in the spinal cord were significantly reduced between wild type and 

Smn-/-;SMN2;Δ7 mice, implying a perturbation of proprioceptive feedback.  

Observing synaptic breakdown in vivo, both in human patients and animal models of 

SMA, using a non-invasive technique would be hugely beneficial to our 

understanding of the degeneration process.  Not only this, but it would allow us to 

view this dynamic process in real time and correlate synaptic changes with physical 

symptoms – a read-out likely to be extremely valuable in drug testing.  Also, in vivo 

imaging of synapses would allow for a faster and more accurate diagnosis of not only 

SMA, but other motor neuron diseases as well.  Based on this need, we sought a 

molecule that could transiently bind to synapses to label them.  To create this 

molecule, we screened synaptic preparations with phage display libraries in the hope 

of identifying peptides that specifically bound to synaptic membranes.   

Phage display libraries have been used in the past to screen for peptides that display a 

binding affinity to a protein of interest (Whitney et al., 2011; Wu et al., 2011).   

Bacteriophage (phage) are viruses that specifically infect and replicate inside 

bacterial cells.  The M13 filamentous phage consists of a single stranded circular 

genome core that is surrounded by thousands of coat proteins (pVIII) (Rodi & 

Makowski, 1999).  Clustered at one end of the phage are five copies of coat proteins 

pIII and pVI, which are involved in infecting the host cell by binding to the F-pilus 

(Rodi & Makowski, 1999).  In 1985, Smith reported that phage particles could be 

manipulated to express a foreign peptide on the N-terminal of minor coat protein pIII 

by inserting a foreign DNA sequence into gene III of the phage genome (Smith, 

1985).  This technique was adapted to create phage display libraries, in which 

millions of random DNA sequences could be inserted into phage particles, resulting 
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in millions of phage particles each of which express a different random peptide on 

their surface (Cwirla et al., 1990). 

Phage display libraries are “panned” using a protein of interest that is immobilised on 

a plastic surface or bead (Figure 1A).  The library is incubated with the target protein 

to allow any fusion peptides with an affinity to the target protein to bind (Figure 1B).  

The unbound phage are washed away, the bound phage is then eluted and amplified 

in bacteria (Figure 1C).  This creates a new phage display library that is enriched in 

phage particles that display fusion peptides with a binding affinity to the target 

protein.  Panning is usually carried out three times to sufficiently enrich the library. 

 

 

Figure 1 - Schematic of phage display panning principle.  (A) A target protein is 

immobilised onto a surface, usually a cell culture plate or plastic bead.  (B) The 

phage display library containing millions of phage particles is washed on to the 
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immobilised target.  The phage particles each express a random fusion peptide of 

which there are millions of combinations.  Some of these random fusion peptides may 

show a binding affinity with the target. (C) The unbound phage particles are washed 

away, leaving only the bound phage due to its binding affinity with the target.  The 

bound phage can now be eluted from the target and amplified in bacteria to produce 

a new phage library.  This new phage library will be enriched in phage particles that 

display a fusion peptide that has a binding affinity with the target protein. 

Next, the DNA of individual phage clones is sequenced.  Sequencing of phage clones 

reveals whether the library has indeed been enriched in phage particles that bind to 

the target protein, and also the DNA sequence of those peptides.  Phage clones are 

isolated by infecting bacteria with the bound phage elute and culturing this bacteria 

on an agar plate.  The bacteria form a homogeneous lawn that is interrupted by phage 

plaques.  These plaques represent areas of diminished bacterial cell growth due to 

phage infectivity.  These plaques are isolated from the agar plate and amplified 

individually in bacteria.  The phage particles are then isolated and DNA is extracted 

from the phage and sequenced.  An identical peptide can then be manufactured using 

the DNA sequence information. 

Phage display libraries have previously been used to screen for peptides that could be 

used for transient in vivo imaging of the nervous system, specifically those that have 

a weak binding affinity to myelin protein (Whitney et al., 2011; Wu et al., 2011).  

The DNA sequence obtained from successive rounds of panning with myelin protein 

was used to manufacture a peptide with a conjugated fluorescent dye (Whitney et al., 

2011; Wu et al., 2011).  When this peptide was washed on to peripheral nerves of 

mice during surgery the nerve could be visualised in finer detail than with the naked 
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eye, allowing surgeons to avoid cutting fine nervous processes (Whitney et al., 2011; 

Wu et al., 2011).  Importantly, the labelled peptide produced by Whitney et al. 

(2011) did not bind permanently to the myelin, with no fluorescent signal being 

observable 24 hours after application. 

Using a similar approach, we sought to identify a peptide that displayed a weak 

binding affinity to the outer membrane of synapses.  To be used for in vivo imaging, 

any candidate peptides would need to display a low affinity binding so that they 

could be easily washed away after imaging.  The candidate peptide would also have 

to bind to a target present on the outer membrane of synapses so that it would not 

interfere with synapse function. 

To do this, we used synaptosome preparations to pan phage display libraries.  

Synaptosomes are membranous sacs composed of pre-synaptic membranes (Dunkley 

et al., 2008).  They contain nerve terminal cytoskeleton, mitochondria, and synaptic 

vesicles along with other organelles and cytoplasm present in the pre-synaptic 

bouton.  Synaptosomes are prepared from the homogenisation of fresh brain tissue in 

an iso-tonic sucrose buffer.  The sheer force of homogenisation causes the pre-

synaptic boutons to tear away from the axons, post-synaptic cell, and surrounding 

glial cells; while the iso-tonic sucrose solution forces the pre-synaptic membrane to 

reseal, maintaining the pre-synaptic intracellular environment (Dunkley et al., 2008).  

Synaptosomes are then separated from the remaining cellular debris by 

centrifugation.  Synaptosome preparations remain physiologically active for several 

hours and are routinely used to study synaptic vesicle recycling (Whittaker et al., 

1964; Ashton & Ushkaryov, 2005), along with many other physiological properties 
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of pre-synaptic terminals (De Robertis et al., 1962; Dunkley et al., 1988; Polosa & 

Attardi, 1991).   

We hoped that by panning a phage display library with synaptosomes we could 

enrich for phage particles that specifically bound to the outer membrane of synapses.  

By using whole brain homogenate to produce the synaptosomes, we hoped to avoid 

selecting for phage that would only bind to synapses from a specific brain region.  

Instead, we hoped that we would identify phage that had a binding affinity for all 

pre-synaptic membranes: a pan-synaptic marker.  This pan-synaptic marker could 

potentially be used to label synapses not only in the central nervous system, but 

possibly also synapses of the peripheral nervous system such as the neuromuscular 

junction. 

In this chapter, a phage display library was panned using synaptosome preparations 

from whole wild type mouse brains.  Initially, we demonstrate phage particles can 

successfully bind to a substrate in the synaptosome preparation.  Next, enriched 

phage libraries were produced by panning with synaptosome preparations and 

amplifying the bound phage.  Individual phage clones were then successfully 

amplified, their DNA extracted and sequenced to determine the sequence of the 

random DNA insert that codes for the fusion peptide on the surface of the phage 

particle.  Sequencing of 16 phage clones showed two enriched peptide sequences, 

and the two most common sequences were taken forward for peptide synthesis.  A 

plasmid was produced that incorporated one of the peptide sequences fused to an 

mCherry protein and a His-tag, under the control of a T7 promoter.  This plasmid 

was then inserted into (DE3)pLysS cells, which were induced to express genes under 

the control of a T7 promoter and the resulting protein was collected and purified.  
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The fluorescently tagged peptide was tested to find if it would bind to synapses using 

primary cortical neuron cultures and skeletal muscle.  By washing the tagged peptide 

onto unfixed primary neuron cultures we found mCherry positive punctate staining 

on the surface of the cell bodies of neurons.  However, no staining was noted in 

skeletal muscle preparations.   

 

4.2 – Methods 

4.2.1 - Ethics Statement 

All animal experiments were approved by a University of Edinburgh internal ethics 

committee and were performed under license by the UK Home Office (Project 

License number 60/3891). 

 

4.2.2 - Animal Husbandry  

FVB mice were maintained under standard SPF conditions in animal care facilities in 

Edinburgh.  All animal procedures and breeding were performed in accordance with 

Home Office and institutional guidelines.  

 

4.2.3 - Phage Display Library 

The Ph.D.-12 Phage Display Peptide Library Kit (E8110S) was purchased from New 

England Biolabs.  The Ph.D-12 system consisted of a M13 phage vector that had 

been modified to express a peptide that was twelve residues long and present on all 
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five minor coat pIII proteins.  The library contained 109 individual clones and had a 

starting concentration of 1 x 1013 plaque forming units (pfu)/ml.  The kit contained 

sequencing primers, -28 gIII sequencing primer (100pM/µl) and -96 gIII sequencing 

primer (100pM/µl).  These primers bind to phage DNA 28 and 96 base pairs 

downstream of the random DNA insert on the non-coding strand, respectively.  Also 

supplied was the host strain E.coli ER2738 which was used to titre and amplify 

phage particles. 

 

4.2.4 - E.coli ER2738 Characterisation 

The number of ER2738 cells was quantified using spectrophotometric analysis.  

10ml of LB broth supplemented with 20µg/ml tetracycline was inoculated with 

ER2738 and grown in a shaking incubator at 37oC for 24 hours.  0.1ml of overnight 

culture was diluted in 9.9ml of sterile 0.1M PBS to make a 10-2 dilution.  This 

dilution was repeated to obtain 10-4, 10-6 and 10-8 dilutions.  0.1ml and 1ml samples 

were taken from dilutions 10-4 to 10-8 and mixed with 3ml top agar which was held at 

45oC in a water bath.  The top agar was then poured onto agar dishes containing 

20µg/ml tetracycline and incubated at 37oC for 24 hours.  The number of colonies 

was then counted from plates that had between 30-300 colonies.  The following 

formula was used to calculate the number of bacteria per ml. 

 

5ml of the same 24 hour culture was then diluted in 5ml LB broth.  5ml of this 

dilution was then further diluted in 5ml LB broth.  This was repeated to obtain 
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dilutions 1, ½, ¼, 1/8th and 1/16th.  The optical density (OD) of these dilutions was 

then measured on a spectrophotometer at 600nm (OD600). 

Using the data obtained from the colony counts, a graph of bacterial number against 

OD600 was made and a linear line of best fit added in Microsoft Excel.  The line 

equation from this graph was used to determine the number of bacteria at different 

optical densities throughout the phage panning and amplification experiments. 

 

4.2.5.1 - Synaptosome Preparation 

Synaptosomes were prepared from young adult FVB mouse brains.  Mice were 

sacrificed with an overdose of iso-fluorane anaesthetic via inhalation until no plantar 

reflex could be detected and no breath was taken for at least one minute.  To remove 

the brain, the mouse was decapitated and the skull was cut from foramen magnum 

along the midline.  Perpendicular cuts were then made from the centre of the midline 

cut and the skull was opened using strong tweezers.  The brain was removed and 

homogenised immediately in 2ml ice cold sucrose solution (0.32M sucrose, 1.3mM 

EDTA, 5mM Tris-HCl, pH7.4).  Homogenisation took place in a Dounce 

homogeniser with a 0.1-0.15mm clearance.  A total of 12-15 strokes were used to 

fully homogenise the mouse brain.  The homogenised brain was then centrifuged at 

900rcf for 10 minutes to pellet the P1 fraction.  The supernatant (S1 fraction) was 

removed and added to a new eppendorf and kept on ice.  The P1 fraction was then re-

suspended in 250µl sucrose solution and centrifuged again at 900rcf for 10 minutes.  

The supernatant was then added to the original S1 supernatant and this was 

centrifuged at 15000rcf for 15 minutes to pellet the P2 fraction.  The supernatant was 
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removed and discarded and the P2 pellet gently re-suspended in 1ml sucrose 

solution, then centrifuged again at 15000rcf for 15 minutes.  The supernatant was 

removed again and discarded and P2 pellets from both eppendorfs were gently re-

suspended in 1ml sucrose solution. 

 

4.2.5.2 - Western Blot 

Protein from the P1 and P2 fraction of synaptosome preparations was extracted by 

homogenising the pellets with RIPA buffer (Pierce, 89900) supplemented with 

5µl/ml Halt Proteinase Inhibitor (Thermo Scientific, 1861278) – 600µl of RIPA 

buffer was used for P1 and 200µl for P2.  The samples were then centrifuged at 

14000rpm for 20 minutes.  A BCA assay was then carried out using a Micro BCA 

Protein Assay Kit (Pierce, 23235). A master mix was made up containing 40µl 

reagent A, 0.38µl reagent B and 0.02µl reagent C per reaction.  80µl of this master 

mix was added to 1.5ml eppendorfs.  A protein standard curve was produced by 

adding increasing volumes of 2mg/µl BSA Albumin Protein Standard (Pierce, 

23209). 1µl of each sample was added to the 80µl reaction and was measured in 

triplicate.  The samples were vortexed and then incubated at 60oC for one hour.  The 

absorbance of the samples was then measured on the Nanodrop at 562nm.  The 

absorbance readings for the standard curve samples were used to generate a standard 

curve and the equation of this line was used to calculate the concentration of the P1 

and P2 protein extraction samples. 

40mg of protein per lane was used for western blots.  Samples were made up by 

diluting with the appropriate volume of water to make a 10µl volume for each lane.  
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To this, 5µl of NuPage LDS Sample Buffer (Novex, NP0007) was added and 

vortexed to mix.  The samples were then incubated at 98oC for 2 minutes before 

being vortexed.  15µl of samples were loaded into a NuPage 4-12% Bis-Tris Gel 

(Novex, NP0323BOX) along with 5µl Sharp Pre-Stained Protein Standard (Novex, 

LC5800) and run at 80v for 5 minutes, followed by 180v for 45 minutes. The gel was 

then removed from the cassette, trimmed, and placed onto an iBlot Transfer Stack 

(Invitrogen, IB3010-01) and transferred onto a membrane using the iBlot Fast 

Transfer System.  The membrane was then removed and washed in Odyssey 

Blocking Buffer (Licor, 402-467-0700) for 30 minutes on a rolling platform.  

Primary antibody against H2B (LP Bio, AR-0139-200) was added to blocking 

solution at a concentration of 1:1000 and this was incubated with the membrane on a 

rolling platform overnight at 4oC.  The following day, the primary antibody was 

washed with 6 x 5 minute washes in 0.1M PBS.  The membrane was then incubated 

in Odyssey Blocking Buffer + 1:1000 Tween 20 and a 1:5000 dilution of IRDye 

680RD Goat Anti-Rabbit IgG (H+L) (Licor, 926-68071) for 1 hour at room 

temperature on a rolling platform. The membrane was then washed in 6 x 5 minute 

washes with 0.1M PBS.  The membrane was then dried and scanned on the Licor 

Odyssey at 700nm. 

 

4.2.6 - Phage panning 

Serial dilutions were made of synaptosomes (200µl of synaptosomes added to 800µl 

sucrose solution).  These dilutions were arbitrarily labelled 1, 2, 3, 4 and 5; with 1 

being the most concentrated synaptosome sample.  Dilutions 2, 3, 4 and 5 were used 
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to pan phage libraries.  5µl/ml Proteinase Inhibitor Cocktail was added to each 

dilution. 

Following the Ph.D.-12 Phage Display Peptide Library Kit manual, a 1:100 dilution 

of the phage library was added to each synaptosome dilution and incubated for one 

hour at 4oC on a rocking platform. 

800µl of the synaptosome dilutions were then transferred to new 1.5ml eppendorfs 

and centrifuged at 15000rcf for 15 minutes to pellet the synaptosomes.  The 

supernatant was removed and discarded and the pellets were re-suspended in 1ml 

ice-cold sucrose solution.  This was repeated twice and the pellets were then re-

suspended in 1ml ice cold pH 7.5 tris buffered saline (TBS) (50mM Tris-HCl, 10mM 

Tris Base, 150mM NaCl, pH7.3). 

To ensure that phage had bound to synaptosomes the samples were titered.  1µl of 

each synaptosome dilution was further diluted in 9µl LB broth to obtain a dilution 

series ranging from 10-1 to 10-4.  200µl of OD6000.5 ER2738 grown in LB broth 

supplemented with 20µg/ml tetracycline was then added to each sample and left at 

room temperature for 5 minutes.  Each sample was then added to 3ml top agar 

supplemented with 20µg/ml tetracycline that was held at 45oC and transferred to an 

agar plate containing 20µg/ml tetracycline.  Samples were incubated overnight at 

37oC (for no more than 18 hours) and the number of plaques was counted. 
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4.2.7 - Phage Library Amplification 

Synaptosome bound phage particles were amplified the following day to create a 

new enriched phage display library. An overnight culture of ER2738 grown in 10ml 

LB broth supplemented with 20µg/ml tetracycline was diluted 1:100 in 20ml LB 

broth supplemented with 20µg/ml tetracycline, and 5µl of synaptosome dilution 2 

was added.  This was incubated in a shaking incubator for 4.5 hours at 37oC.  This 

was then centrifuged at 12000rcf for 10 minutes to pellet the bacteria.  The 

supernatant was transferred to a clean tube and centrifuged again at 12000rcf for 10 

minutes.  The supernatant was then transferred to a 50ml falcon tube and 1/6th of the 

volume of 20% PEG: 2.5M NaCl was added.  This was left overnight at 4oC to 

precipitate the phage.  The following day the sample was centrifuged at 10000rcf for 

15 minutes to pellet the phage.  The supernatant was removed and the samples 

centrifuged briefly and the remaining supernatant was removed using a P1000.  The 

phage pellet was re-suspended in 1ml pH7.5 TBS and 1/6th of the volume 20% PEG: 

2.5M NaCl was added and incubated on ice for 45 minutes.  The phage was then 

centrifuged at 14000rpm for 10 minutes to pellet the phage.  The supernatant was 

removed, the sample centrifuged again briefly and the remaining supernatant 

removed with a P200 pipette.  The pellet was then re-suspended in 200µl pH7.5 TBS 

and centrifuged at 14000rpm for 1 minute.  The supernatant was then transferred to a 

new eppendorf and mixed with 200µl sterile glycerol and stored at -20oC.  This was 

the new amplified phage library.  This process, including panning the libraries with 

synaptosomes, was repeated three times. 
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4.2.8 - Phage Clone Amplification 

Individual phage clones were amplified by picking phage plaques from titre plates.  

Plates that had between 30 and 100 plaques present were chosen for picking.  Well 

separated plaques were picked by pushing a sterile glass Pasteur pipette into the 

centre of the phage plaque and removing this core along with the underlying agar.  

Plaques were then blown into 1.5ml eppendorfs and suspended in 100µl pH7.5 TBS 

and kept on ice.  These individual phage clones were titered in order to estimate the 

number of plaque forming units per plaque.  1µl of the re-suspended phage plaques 

were diluted in 9µl LB broth.  This was then mixed with 3ml top agar held at 45oC 

and plated onto agar supplemented with 20µg/ml tetracycline plates.  They were 

incubated overnight at 37oC and the number of plaques was counted the following 

day. 

10µl of re-suspended phage plaque was added to 1ml OD6000.1 and incubated in a 

shaking incubator for 4.5 hours at 37oC.  Samples were then transferred to 1.5ml 

eppendorfs and centrifuged at 14000rpm for 30 seconds.  The supernatant was 

transferred to a new eppendorf and centrifuged at 14000rpm for 30 seconds again.   

 

4.2.9.1 - DNA Extraction 

500µl of the supernatant was then transferred to a new eppendorf.  200µl 20% PEG: 

2.5M NaCl was added to each sample, vortexed to mix and left to stand at room 

temperature for 10 minutes.  The samples were then centrifuged at 14000rpm for 15 

minutes.  The supernatant was removed and the samples briefly centrifuged again.  

The remaining supernatant was removed.  The phage pellet was re-suspended in 
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200µl pH7.5 TBS.  200µl phenol was added and the samples were vortexed, then 

centrifuged at 14000rpm for 10 minutes.  The aqueous phase of the phenol was 

added to a new tube, being careful not to disturb the interface.  The phenol extraction 

was repeated.  The aqueous phase was removed again and transferred to a new tube.  

200µl of chloroform was added to each sample, vortexed and centrifuged at 

14000rpm for 10 minutes.  The aqueous phase was removed and the chloroform 

extraction was repeated. 

1/10th the volume (10µl) 3M pH6.5 NaOAc was added to each sample followed by 

2.5 volumes (250µl) ethanol.  Samples were left to precipitate overnight at -20oC. 

The following day, samples were centrifuged at 14000rpm for 15 minutes to pellet 

the DNA.  The supernatant was removed and 1ml 95% ethanol was added to each 

sample.  The samples were centrifuged at 14000rpm for 30 seconds.  The supernatant 

was removed and the 95% ethanol wash was repeated.  The supernatant was removed 

and the samples centrifuged briefly.  The remaining supernatant was then removed 

with a P200 and the samples were placed in a heat block at 37oC for approximately 

15 minutes to evaporate all traces of ethanol.  The samples were then re-suspended in 

30µl tris-EDTA (TE) buffer and stored at -20oC. 

 

4.2.9.2 - DNA Sequencing 

DNA concentration was measured using a Nanodrop.  Approximately 100ng of DNA 

in 5µl was used per sample with 1µl -96 gIII sequencing primer (100pmol/µl).  DNA 

was sequenced at The GenePool, Ashworth Laboratories, The King’s Buildings, The 

University of Edinburgh, using Sanger Sequencing technique with BigDye reagents 
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and an ABI 3730 capillary sequencing instrument 

(http://genepool.bio.ed.ac.uk/sanger/index.html).  DNA sequences were then viewed 

using Sequencher 5.1 Demo. 

 

4.2.10 - Peptide Synthesis 

4.2.10.1 - PCR 

A pET30a(+) vector was linearised using PCR (Table 1).  In a separate PCR, the 

peptides of interest were cloned into His-tagged bacterial expression vectors for 

mCherry (Table 1).  Additionally, 15bp which were complementary to the linearised 

pET30a(+) vector were added to the peptide + mCherry vector ends. 
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PCR 5’ Primer 3’Primer Product Length 

(Approximate) 

P1 + mCherry TCT TCT GAG 

TTT CCT CGG 

TCT TGG GAT 

ATG GAG ACT 

AAT ATG GTG 

AGC AAG GGC 

GAG 

 

GCA GCC GGA 

TCT CAG CTA 

CTT GTA CAG 

CTC GTC 

700bp 

P2 + mCherry TCT TGG TCT 

GAG TAT GAT 

ATT CCG ACT 

CCG CAG ATT 

CCG ATG GTG 

AGC AAG GGC 

GAG 

 

GCA GCC GGA 

TCT CAG CTA 

CTT GTA CAG 

CTC GTC 

700bp 

P1 pET30a(+) 

vector 

 

AGG AAA CTC 

AGA AGA AGC 

CAT GGC CTT 

GTC GTC GTC G 

 

CTG AGA TCC 

GGC TGC TAA 

CAA AGC C 

5500bp 

P2 pET30a(+) 

vector 

ATA CTC AGA 

CCA AGA AGC 

CAT GGC CTT 

GTC GTC G 

CTG AGA TCC 

GGC TGC TAA 

CAA AGC C 

5500bp 

Table 1 – Primer sequences. 
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PCR was performed using Phusion High Fidelity DNA Polymerase (MO530S, New 

England BioLabs).  5x Phusion HF Buffer was used in the reactions which were 

made to a 50µl final volume.  PCRs for linearisation of pET30a(+) vectors were 

performed according to Table 2; PCRs for peptide addition to mCherry expression 

vectors were performed according to Table 3. 

100ng of His-tagged bacterial expression vector for mCherry (kindly gifted by Dr 

Jing Qui) was added to P1+mCherry and P2+mCherry reactions.  100ng  pET30a(+) 

template vector was added to the pET30a(+) vector reactions. 

 

Step Temperature (oC) Time (s) 

1 96 120 

2 50 30 

3 72 240 

4 96 20 

 Go to Step 2, repeat 5 times  

5 60 10 

6 72 240 

7 96 20 

 Go to Step 5, repeat 20 times  

8 72 240 

Table 2 – PCR settings for pET30a(+) linearised vector. 
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Step Temperature (oC) Time (s) 

1 96 120 

2 50 30 

3 72 60 

4 96 20 

 Go to Step 2, repeat 5 times  

5 60 10 

6 72 60 

7 96 20 

 Go to Step 5, repeat 20 times  

8 72 60 

Table 3 – PCR settings for peptide addition to His-tagged bacterial expression 

vector for mCherry. 

 

4.2.10.2 - Ligation 

PCR fragments were purified from an agarose gel using a QIAGEN Quick DNA 

Extraction Kit (QIAGEN, 28104).  PCR products were resolved on a 0.8% agarose 

gel for 45 minutes at 100v.  Using an Invitrogen SafeImager, the PCR fragments 

were visualised and cut from the gel using a clean razor blade.  The excised agarose 

was weighed in 1.5ml eppendorfs before being dissolved in 3 volumes (300µl buffer 

per 100mg gel) of buffer QG at 50oC for 10 minutes with vortexing every 2-3 

minutes.  1 gel volume of isopropanol was added and mixed.  The samples were then 

transferred to QIAquick columns in 2ml collection tubes and centrifuged at 
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13000rpm for 1 minute.  0.5ml Buffer QG was added to the columns and centrifuged 

at 13000rpm for 1 minute.  0.75ml Buffer PE was added to the columns before being 

allowed to stand for 2 minutes and then centrifuged at 13000rpm for 1 minute.  The 

flow through was discarded and the columns were centrifuged again at 13000rpm for 

1 minute to remove all traces of ethanol from Buffer PE.  The columns were then 

moved to clean 1.5ml eppendorfs and 50µl Buffer EB was added to the membrane 

and allowed to stand for 1 minute before being centrifuged at 13000rpm for 1 

minute.  This step was repeated with the flow through to ensure maximum DNA 

concentration. 

Gel purified PCR fragments were ligated using In-Fusion HD Cloning Kit (Clontech, 

PT5162-1).  Approximately 50ng of PCR fragments P1+mCherry and P1 pET30a(+), 

and separately P2+mCherry and P2 pET30a(+) were ligated at 50oC for 15 minutes 

before being placed on ice. 

One Shot TOP10 Chemically Competent E.coli (Invitrogen, C4040-03) cells were 

transformed with the newly ligated plasmid.  Two vials of cells were thawed on ice 

before 4µl of the ligation mixture was added and mixed gently.  This was incubated 

on ice for 30 minutes before being heat shocked at 42oC for 30 seconds.  The bacteria 

were then placed on ice again for 2 minutes.  Next, 250µl S.O.C. media was added 

and the bacteria were incubated at 37oC in a shaking incubator for one hour.  Two 

volumes, 20µl and 200µl were then plated out on agar plates containing 50ng/ml 

kanamycin and incubated overnight at 37oC. 
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4.2.10.3 - Sequencing 

The following day, three colonies from 20µl plates were selected and amplified up 

separately in 1ml LB broth containing 50ng/µl kanamycin for 16 hours.  A Miniprep 

Kit (QIAGEN, 27104) was used to extract the DNA from the bacteria.  Briefly, 

bacteria were pelleted at 10000rpm for 3 minutes and the supernatant was removed.  

Cells were re-suspended in 250µl buffer P1 + RNase + LyseBlue.  250µl lysis buffer 

P2 was added and the eppendorfs were gently inverted until a uniform blue colour 

had appeared, indicating complete lysis of the cells. 350µl Buffer N3 was added and 

mixed immediately by inverting the tubes until the blue colour had completely 

disappeared and the solution had become cloudy.  The samples were then centrifuged 

at 13000rpm for 10 minutes.  The supernatants were then added to QIAprep spin 

columns and centrifuged at 13000rpm for 1 minute.  0.5ml Buffer PB was then added 

to the spin columns and centrifuged at 13000rpm for 1 minute.  0.75ml Buffer PE 

was then added and the spin columns were centrifuge at 13000rpm for 1 minute.  The 

flow through was discarded and the columns were centrifuged again at 13000rpm for 

1 minute to ensure all traces of ethanol from Buffer PE were removed.  The spin 

columns were removed from their collection tubes and transferred to clean 1.5ml 

eppendorfs.  50µl Buffer EB was added to the membrane and allowed to stand for 1 

minute before being centrifuged at 13000rpm for 1 minute.  This step was repeated 

with the flow through in order to maximise the concentration of DNA. 

DNA extracted from the mini-prep was measured using a Nanodrop.  Approximately 

200ng of DNA in 5µl was used per sample with 1µl 25ng/ml T7 Promoter Primer (5’ 

– TAATACGACTCACTATAG – 3’).  DNA was sequenced at The GenePool, 

Ashworth Laboratories, The King’s Buildings, The University of Edinburgh, using 
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Sanger Sequencing technique with BigDye reagents and an ABI 3730 capillary 

sequencing instrument (http://genepool.bio.ed.ac.uk/sanger/index.html).  DNA 

sequences were then viewed using Sequencher 5.1 Demo. 

 

4.2.10.4 - Peptide Synthesis 

DNA from colonies that had ligated correctly were used to transform Rosetta 

(DE3)pLysS cells (EMD Millipore, 70956).  (DE3)LysS cells were grown on agar 

plates supplemented with 34µg/ml chloramphenicol overnight at 37oC, and then a 

single colony was used to inoculate 10ml LB broth supplemented with 34µg/ml 

chloramphenicol.  The bacteria were incubated in a shaking incubator at 37oC until it 

reached log phase.  The bacteria were then made electro-competent by pelleting the 

bacteria and washing the bacteria in ice cold water three times.  Bacteria were then 

re-suspended in S.O.C media. DNA from the mini-prep was diluted 1:10 and 3µl was 

added to 50µl of (DE3)pLysS bacteria and electroporated.  300µl S.O.C. media was 

used to flush the bacteria out of the electroporation cuvette and this was incubated at 

37oC with shaking for 40 minutes.  The bacteria were then plated on agar plates 

containing 50ng/ml kanamycin and 34µg/ml chloramphenicol overnight at 37oC. 

The following day, a single colony was used to inoculate 10ml LB broth containing 

50ng/ml kanamycin and 34µg/ml chloramphenicol.  This was incubated overnight at 

37oC with shaking.  The following day, this overnight culture was added to 150ml 

LB broth containing 50ng/ml kanamycin and 34µg/ml chloramphenicol and 

incubated in and shaking incubator at 37oC until it reached OD600 0.8.  50mM IPTG 
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was then added and this was incubated at room temperature overnight in a shaking 

incubator. 

The following day, the bacteria were pelleted at 10000 x g for 10 minutes, the 

supernatant was discarded and the bacterial pellet was re-suspended in 10ml buffer 

(50mM sodium phosphate, 300mM sodium chloride).  This was frozen at -80oC.  The 

suspension was then thawed at room temperature and the bacteria were allowed to 

lyse for 40 minutes with gentle agitation. The suspension was passaged through a 

30G needle until no longer viscous and centrifuged at 10000 x g for 10 minutes. 

 

4.2.10.5 - Peptide Purification 

The peptide + mCherry tag was then purified on a TALON 2ml Disposable Gravity 

Column (ClonTech, 635606).  The supernatant was applied to the column and 

allowed to flow through.  The column was then washed with wash buffer (50mM 

sodium phosphate, 300mM sodium chloride, 5mM imadizole).  The P1+mCherry tag 

was then eluted from the column with elution buffer (50mM sodium phosphate, 

300mM sodium chloride, 150mM imadizole). 

Imidazole was removed from the elution by inverse filtration.  The elution was added 

to a centrifuge inverse filtration unit and centrifuged at 2000 x g for 30 minutes.  The 

filtrate was removed and centrifugation repeated several times.  0.1M PBS was 

added to the elution and the centrifugation was repeated.  This was repeated several 

times.  The elution was then centrifuged several times without the addition of PBS to 

concentrate the protein.  Finally, elute was mixed 1:1 with sterile glycerol and stored 

at -20oC. 
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4.2.11 - Peptide Analysis 

4.2.11.1 - Concentration Analysis 

A BCA assay was carried out as described above.  The protein concentration of the 

purified peptide was measured in triplicate.  Using the slope of the line generated 

from the standard curve, the concentration of protein (mg/µl) in the P1+mCherry 

purification was calculated. 

 

4.2.11.2 - Molecular Weight Analysis 

5µl samples of non-induced (DE3)pLysS bacteria, induced (DE3)pLysS bacteria, 

gravity column run through, gravity column wash, and purified peptide were diluted 

with 5µl water in 1.5ml eppendorfs.  5µl NuPage LDS Sample Buffer 4x (Novex, 

NP0007) was added and thoroughly mixed before being heated at 98oC for 2 

minutes.  15µl of the samples and 5µl Sharp Pre-Stained Protein Standard (Novex, 

LC5800) were then run on a NuPage 4-12% Bis-Tris Gel (Novex, NP0323BOX) for 

5 minutes at 80v followed by 45 minutes at 180v.  The gel was then stained in 0.1% 

Coomassie (0.1% Coomassie, 40% methanol, 10% acetic acid) for one hour on a 

rocking platform.  The gel was then de-stained in three changes of 50% methanol + 

10% acetic acid for 1.5 hours.   
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4.2.12 - Binding Analysis 

4.2.12.1 - Primary Cortical Neuron Binding Analysis 

15 days in vitro (15 DIV) mouse primary cortical neuron cultures were kindly 

provided by Sean McKay.  A 1:50-1:100 dilution of P1+mCherry was added to 

media in a selection of wells for 30 minutes at 37oC, the cells were briefly washed 

with 0.1M PBS prior to fixation with 4% PFA in 0.1M PBS for 10 minutes at room 

temperature.  Cells were then permeabilised with 0.25% triton X-100 in 0.1M PBS 

for 10 minutes followed by blocking in 1% BSA + 0.25% triton X-100 in 0.1M PBS 

for 30 minutes.  Primary antibody solution was a 1:100 dilution of mouse anti-SV2 

(Developmental Studies Hybridoma Bank) in blocking solution. Primary antibody 

solution was incubated for one hour at room temperature then washed off with 3 x 5 

minute 0.1M PBS washes.  Secondary antibody solution was a 1:100 dilution of 

AlexaFluor 488 Donkey Anti-Mouse (H+L) (Jackson Immuno, 715-545-150) in 

blocking solution. Secondary antibody was incubated for one hour at room 

temperature in the dark, then washed off with 3 x 5 minute 0.1M PBS washes.   

Cells that had not been exposed to the P1+mCherry protein prior to fixation were 

then incubated with 1:50 -1:100 dilutions for 10-30 minutes before being washed 

briefly with 0.1M PBS. Cells were then mounted on glass slides with Mowiol and 

left to dry at room temperature overnight. 

Each dilution of P1+mCherry was tested on at least three different coverslips, both 

before and after fix. 
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4.2.12.2 - Skeletal Muscle Binding Analysis 

Lumbricals were removed from the hind limbs of young adult male FVB mice.  The 

lumbricals were then either fixed in 4% PFA for 10 minutes on a rocking platform; 

or were incubated with a 1:50-100 dilution of the P1+mCherry protein in PBS for 30 

minutes before being fixed with 4% PFA for 10 minutes on a rocking platform.  A 

selection of lumbrical muscles were then stained with FITC-conjugated α-

bungarotoxin (5µl/ml) for 10 minutes on a rocking platform before being washed 

with 0.1M PBS.  Lumbricals that were not incubated with P1+mCherry were then 

washed with 1:50-1:100 dilutions of P1+mCherry in 0.1M PBS for 10-30 minutes 

before being washed briefly in 0.1M PBS.  All lumbricals were mounted onto glass 

slides with glass coverslips using Mowiol mounting medium. 

Each dilution of P1+mCherry was tested on at least three different lumbrical 

muscles, both before and after fix. 

 

4.2.12.3 - Imaging 

Images were taken at IMPACT Imaging Facility at the University of Edinburgh on a 

Zeiss LSM510 laser scanning confocal (63x Plan Apochromat oil objective/1.4NA). 

488nm and 543mn with long pass filter laser lines were used for excitation and 

confocal Z-series were merged using Zeiss LSM510 AIM v3.2 software. 
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4.3 - Results 

4.3.1 - Bacteria Characterisation 

Initially, the number of bacterial cells per ml (cfu/ml) of E.coli ER2738 was 

determined.  This information was necessary in order to ensure that an optimal 

multiplicity of infection (the ratio of bacterial cells to infectious agents) was 

achieved during phage amplification.  Bacterial numbers were estimated using 

turbidity/spectrophotometry analysis.  Briefly, a single colony of ER2738 was used 

to inoculate 10ml LB broth supplemented with 20µg/ml tetracycline and cultured in a 

shaking incubator for 24 hours.  From this culture, a dilution series was made and 

plated on agar plates containing 20µg/ml tetracycline which were incubated for 24 

hours.  The number of colonies on these plates was counted (Figure 2) (from plates 

containing between 30 and 300 colonies) and the following equation was used to 

determine the number of bacterial cells present per ml: 

 

 

 

Secondly, a standard curve of the 24 hour culture’s optical density was generated.  A 

second dilution series of the initial 24 hour culture was made in LB broth.  The 

OD600 of each dilution was measured using a spectrophotometer and the results were 

recorded.  The OD600 was plotted against the number of bacteria per ml and a linear 
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line of best fit was added (Figure 3).  The equation of this line was used to determine 

the number of bacterial cells at any given OD600. 

 

Figure 2 - Agar plates with ER2738 colonies.  A dilution series of a 24 hour culture 

of ER2738 was produced.  From dilutions 10-4 to 10-8, a 1ml and 0.1ml sample were 

added to top agar and plated on agar plates.  These plates were incubated for 24 

hour at 37oC and the number of colonies on plates with fewer than 300 colonies was 

counted (A/B/C/D). (A) A 1ml sample of 10-7 dilution of ER2738.  (B) A 0.1ml sample 

of 10-7 dilution of ER2738.  (C) A 1ml sample of 10-8 dilution of ER2738.  In this 

plate, there are noticeably fewer colonies than in the 1ml sample of 10-7 dilution.  

The number of plaques on this plate was counted to estimate the number of bacteria 

in the undiluted 24 hour culture.  (D) A 0.1ml sample of 10-8 dilution of ER2738. 
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Figure 3 - Scatter plot of number of bacteria per ml and mean absorbance at 600nm.  

A scatter plot was generated using the number of bacterial per ml plotted against the 

mean absorbance at 600nm for each dilution.  The number of bacteria per sample 

was halved for each dilution to give an estimate of the number of bacteria per 

dilution.  A linear line of best fit was added and the equation of this line was used to 

calculate the number of bacteria present at different optical densities in the study. 

 

4.3.2 – Proof of Concept Concentration Dependant Binding Assay 

4.3.2.1 – Synaptosome Preparation and Analysis 

Phage panning is usually carried out using a target protein or peptide that has been 

adhered to a surface such as a plastic well or bead, however in this study, 

synaptosomes were used to pan the phage library.  Synaptosomes were produced 

from fresh brain tissue (Figure 4) and kept in suspension in an iso-tonic sucrose 

buffer (Figure 5). 
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Figure 4 - Mouse brain removal for homogenisation. The mouse was decapitated (A) 

and an incision was made in the skin which was reflected to reveal the skull (B).  An 

incision was made from the foramen magnum along the midline (white arrow) (C).  

Perpendicular incisions were made from the midline incision (white arrows) (D).  

The skull was opened using strong forceps to reflect the skull and expose the brain 

(E).  The brain was removed and placed in ice-cold sucrose solution in a Dounce 

homogeniser and homogenised immediately (F). 
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Figure 5 - Synaptosome preparation from homogenised fresh brain tissue.  (A) The 

whole brain homogenate was centrifuged at 900rcf for 10 minutes to pellet cell body 

debris (P1).  (B) The supernatant (fraction S1) was removed and transferred to a 

clean 1.5ml eppendorf before being centrifuged at 15000rcf to pellet the 

synaptosomes (P2).  (C) The supernatant was removed and the pellet of 

synaptosomes was re-suspended in sucrose buffer before being centrifuged again at 

15000rcf.  This pellet was then re-suspended in sucrose buffer again and used for 

phage panning. 

 

To ensure that synaptosome preparations were relatively pure of cell body 

contamination, a western blot was performed.  Protein was extracted from P1 (cell 

body and debris) (Figure 5A) and P2 (synaptosome) fractions (Figure 5C) and run on 

an SDS-PAGE gel.  The protein was then transferred to a PVDF membrane using 

iBlot Fast Transfer System and incubated with an antibody against histone H2B, a 
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histone protein specific to the nucleus.  Figure 6 shows that at approximately the 

15kDa band of the Sharp Pre-Stained Protein Standard, a protein band was clearly 

present in the P1 (or cell body) fraction but was absent from the P2 (or synaptosome) 

fraction.  From this, it was concluded that there was little or no cell body 

contamination in the P2 fraction and therefore the synaptosomes were sufficiently 

pure to use in the phage panning experiments. 

 

Figure 6 - Western blot of anti-H2B (~14kDa) of P1 and P2 synaptosome fractions.  

A western blot was carried out to ensure no cell body contamination was present in 

the P2 fraction of synaptosomes which would be used to pan the phage library.  An 

antibody against the histone protein H2B (approx. 14kDa) was used to detect 

nuclear contamination.  In the P1 fraction, which contains cell bodies, there was a 

strong band present at approximately 15kDa (black arrow).  In the P2 fraction, 

which contains synaptosomes, there was no protein band present at approximately 

15kDa.   

 

4.3.2.2 – Concentration Dependent Binding Assay 

In order to determine that M13 phage particles could bind a target in suspension, a 

concentration dependent binding assay was carried out.  A dilution series of 
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synaptosomes was prepared (Figure 7) and a 1:10 dilution of the original phage 

library was added and incubated for 1 hour at 4oC. 

 

Figure 7: Schematic representation of synaptosome dilution series.  After 

purification, the P2 fraction containing synaptosomes was re-suspended in 1ml 

sucrose buffer which was used to create a dilution series.  200µl of the neat 

synaptosome fraction was diluted in 800µl sucrose buffer to create dilution 1.  From 

this, 200µl was diluted in 800µl sucrose buffer to create dilution 2 and so on until 

dilution 5 was reached.  Each dilution was mixed gently by inverting several times to 

ensure the synaptosomes were fully dispersed. Dilutions 2-5 were used for 

synaptosome panning.  Proteinase inhibitor cocktail (5µl/ml) was added to each 

dilution and a 1:10 dilution of the original phage library was added to each dilution 

before being incubated at 4oC on a rocking platform for 1 hour. 
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The synaptosomes were then pelleted at 15000rcf for 15 minutes and washed in 

sucrose buffer to remove unbound phage particles.  This washing step was repeated 

twice and the synaptosomes with bound phage were finally re-suspended in TBS 

buffer.  

 

 

Figure 8: Schematic representation of synaptosome dilution series titering. Each 

synaptosome dilution series was titered after being washed with sucrose buffer twice 

and re-suspended in TBS buffer.  1µl was taken from each synaptosome dilution and 

diluted in 9µ LB broth to make a 10-1 dilution.  Each of these was then diluted 10 

fold until a 10-4 dilution was reached.  To each of these, 200µl OD6000.6 ER2738 was 

added and incubated for 5 minutes at room temperature before being added to 3ml 

top agar that was held at 45oC in a water bath and plated onto LB agar plates 

supplemented with 20µg/ml tetracycline. 
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Each sample was diluted ten-fold until the series reached 10-4 (Figure 8).  To each 

dilution, 200µl of OD6000.5 ER2738 bacteria was added and incubated at room 

temperature for 5 minutes.  The samples were then transferred to 3ml top agar that 

was held at 45oC and plated onto an agar plate containing 20µg/ml tetracycline.  

Cultures were incubated overnight at 37oC and the number of plaques was counted 

the following day. 

Following overnight incubation at 37oC, phage plaques were observed on the 

bacterial lawn (Figure 9).  The phage plaques appeared as dark areas on an otherwise 

homogeneous bacterial lawn (Figure 9).  When held against a light source, or dark 

background, the phage plaques could be easily distinguished from the bacterial lawn.  

Qualitatively, the number of plaques appeared to diminish as the dilution series 

increased (Figure 9).  
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Figure 9 - The number of phage plaques observed on the bacterial lawn decreased 

with increasing dilutions of bound phage.  (A) A 1:10 dilution of bound phage 

particles from synaptosome dilution 4 is shown.  There were a large number of 

phage plaques interrupting the bacterial lawn. (B) A 1:100 dilution of bound phage 

particles from synaptosome dilution 4.  Fewer phage particles were observed on the 

bacterial lawn. (C) A 1:1000 dilution of bound phage particles from synaptosome 

dilution 4.  There were only six phage plaques on the bacterial lawn.  (D) A 1:10000 

dilution of bound phage particles from synaptosome dilution 4.  No phage particles 

were observed on the bacterial lawn. 
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The number of phage plaques per plate was counted and plotted against dilution 

(Figure 10).   Between each synaptosome dilution series, the number of phage 

plaques observed decreased with synaptosome concentration (Figure 10).  Similarly, 

in each synaptosome dilution series, the number of phage plaques observed 

decreased with the concentration of synaptosomes that had been exposed to phage 

particles (Figure 10).  From this relationship, it was concluded that the phage 

particles did have a binding affinity with an unknown target in the synaptosome 

preparation.  Not only this, but the phage particles were able to bind to this target in 

solution. This binding affinity was used to create new phage libraries which were 

enriched with phage particles that specifically bound to synaptosome preparations. 

 

 

 

Figure 10 - Concentration dependent binding assay quantification.  Bar chart (mean 

± SEM, n = 3) showing number of phage plaques present on a bacterial lawn for 

different dilutions of synaptosomes and phage.  Black bars represent the most 
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concentrated synaptosome sample from which accurate plaque counts could be 

made, dilution 3.  Grey bars represent phage plaque counts from synaptosome 

dilution 4, and white bars represent phage plaque counts from the most dilute 

synaptosome dilution, dilution 5.  After incubation with the original phage library, 

synaptosome samples were washed and titered.  Phage plaque counts from two 

titering plates are shown here for each synaptosome dilution: titres 10-3 and 10-4.  

From these results, we can see that as the concentration of synaptosomes decreased, 

the number of phage plaques also decreased.  Similarly, the phage particles also 

decreased down the titre dilution.  Together, these results provide evidence of the 

concentration dependent binding of phage particles to a substrate present in the 

synaptosome sample. 

 

4.3.3 - Library Amplification 

 

Once it had been established that phage particles could bind to synaptosomes in 

suspension, rounds of phage panning were carried out followed by library 

amplification.  The original phage library was panned using the same protocol as for 

the concentration dependant binding assay.  The following day, a 5µl sample of 

synaptosome dilution 2 was added to an overnight culture of ER2738 which had been 

diluted 1:20 in 20ml LB broth containing 20µg/ml tetracycline.  This was incubated 

in a shaking incubator at 37oC for 4.5 hours.  During this time, phage particles that 

have bound to synaptosomes infect the bacterial cells and replicate, resulting in an 

amplification of phage particles with fusion peptides that had a binding affinity with 

synaptosomes. 
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After 4.5 hours, bacteria were removed from the suspension by centrifugation and 

the phage particles were precipitated out overnight at 4oC using 20% PEG: 2.5M 

NaCl.  The following day, the phage particles were removed from suspension by 

centrifugation and re-suspended in 1ml TBS.  The phage particles were then re-

precipitated again briefly using 20% PEG: 2.5M NaCl.  The re-precipitated phage 

was then pelleted out by centrifugation and re-suspended in 30µl TBS.  This was the 

newly amplified phage library.  This new library was used in the next round of 

panning and a second new amplified library was produced which was further 

enriched in phage particles that specifically bound to synaptosomes.  Each new 

library produced was titered to ensure phage particles were present (Table 4).   

 

Library Plaque Forming Units (per 10µl) 

Original 1x1013 

New Library 1 5.6x1010 

New Library 2  3.1x1010 

New Library 3 2.9x1010 

Table 4 – Titration results for each new phage display library produced from 

panning. 

 

Panning was carried out a third time to produce a third new amplified phage library 

and it is from this library that phage plaques were picked, amplified individually and 

the DNA of each clone was sequenced. 
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4.3.4 - Plaque Amplification 

After three successive rounds of panning and library amplification it was assumed 

that any phage particles which exhibited binding affinity to the target would be 

sufficiently enriched to show a consensus binding sequence.   

Plaques were picked from titering plates from synaptosome panning with the third 

new amplification library.  Plaques were picked by stabbing an individual plaque 

with a sterile Pasteur pipette and blowing the plaque and agar into a 1.5ml eppendorf 

(Figure 11).  Each plaque should have contained phage particles that had identical 

DNA sequences.  From a titering plate with less than 100 phage plaques, 16 plaques 

were chosen at random for Sanger sequencing.  Typically, between 10 and 20 

plaques are needed to reveal a consensus binding sequence. 

Before plaque amplification was carried out, the plaque and agar were dissolved in 

100µl TBS buffer and titered to determine the average number of pfu/10µl for each 

plaque.  This was carried out to ensure that an optimal multiplicity of infection was 

used when amplifying the phage clone.  Initially, entire phage plaques were used 

during the amplification process, which resulted in poor amplification and a low 

yield of DNA being extracted.  By titering the plaques, it was determined that the 

number of pfu/10µl was in the thousands for each plaque. 
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Figure 11: Schematic of plaque extraction from agar plate.  (A) Plaques were picked 

from agar plates that had between 30 and 100 well separated plaques.  (B) A sterile 

Pasteur pipette was used to stab the plaque through the entire depth of the agar.  (C) 

Gentle suction was applied and the pipette tip was removed, bringing with it a plug 

of agar and the phage plaque.  This was then blown into a 1.5ml eppendorf where it 

was re-constituted in 100µl TBS. 

 

In order for phage particles to efficiently infect bacterial cells, the bacterial cells 

must be in the early log stages of the growth curve and the number of bacterial cells 

must be in considerable excess.  An optimal multiplicity of infection for M13 phage 

particles is 10-4 (Reddy & McKenney, 1996).  Using the turbidity analysis that had 

been performed on ER2738 earlier, it was determined that the number of bacteria 

present in the early log stages of the growth curve (OD600 0.1) was approximately 

8.269x108 cells per ml.  Based on these data, adding 10µl of re-constituted phage 

plaque to 1ml of OD600 0.1 resulted in an optimal multiplicity of infection.  Phage 

clones were amplified for 4.5 hours before the bacteria were removed by 

centrifugation and phage particles were precipitated out of solution using 20% PEG: 
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2.5M NaCl.  DNA was extracted from the phage pellet using a phenol: chloroform 

extraction method with an ethanol precipitation step being carried out overnight at     

-20oC.  The DNA concentrations for each plaque were measured on the Nanodrop 

and a sufficient yield of DNA was obtained for sequencing (Table 5). 

Phage Clone ssDNA Concentration (ng/µl) 260/280 

1 12 2.58 

2 18.9 2.18 

3 11.7 2.44 

4 12.3 2.57 

5 4.6 2.88 

6 16 2.24 

7 17.7 2.19 

8 27 2.14 

9 22.3 2.11 

10 25.5` 2.03 

11 19.4 2.21 

12 20.6 2.29 

13 31.1 2.10 

14 6.2 3.31 

15 24.9 2.10 

16 27.2 2.14 

Table 5 – Concentrations (ng/µl) and 260/280 absorbance ratios for DNA extracted 

from amplified phage clones. 
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4.3.5 - DNA Sequencing 

DNA sequencing was carried out by The GenePool using BigDye reagents and an 

ABI 3730 capillary sequencing instrument.  Approximately 100ng of DNA in 5µl 

was used per sample with 1µl -96 gIII sequencing primer (100pmol/µl) as per The 

GenePool’s request. 

Chromatographs were viewed on Sequencher 5.1 Demo software.  The “find” 

function in Sequencher 5.1 Demo software was used to highlight the reverse 

complementary sequence of phage DNA that was immediately downstream of the 

random 36bp DNA insert.  From this sequence, the next 36 base pairs were noted.  

After the 36 base pair sequence, the reverse complementary sequence of phage DNA 

that was upstream of the DNA insert was always observed, ensuring that the correct 

region was always read. 

Figure 12 - Raw chromatographs.  High quality sequences were obtained from all 16 

phage plaques that were sequenced by The GenePool.  The correct reading frame 

was identified in each sequence by using Sequencher 5.1 Demo Software’s “Find” 
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function to highlight the sequence of phage DNA immediately downstream of the 

random DNA insert: ACC TCC ACC.  This sequence was detected in all sequences, 

approximately 80bp into the DNA sequence. 

Table 6 – Sequences obtained from the sequencing of 16 individual phage clones and 

their quality scores. 

Chromato-

graph 

Sequence Quality 

1 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 89.3% 

2 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 77.9% 

3 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 78.2% 

4 CGG AAT CTG CGG AGT CGG AT ATC ATA CTC AGA CCA 79.7% 

5 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 76.3% 

6 CGG AAT CTG CGG AGT CGG AT ATC ATA CTC AGA CCA 77.8% 

7 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 87.9% 

8 CGG AAT CTG CGG AGT CGG AT ATC ATA CTC AGA CCA 79.1% 

9 ATG CGA ATT AAT CTA ATG CTG AGT CAA AGG CAG ATT 83.7% 

10 CGG AAT CTG CGG AGT CGG AT ATC ATA CTC AGA CCA 76.7% 

11 ATG ATT AGA ATT ATG CGT AGG ATC AAG CTT ATT CGT 84.4% 

12 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 77.8% 

13 ATG CGA ATT AAT CTA ATG CTG AGT CAA AGG CAG ATT 78.9% 

14 CGG AAT CTG CGG AGT CGG AT ATC ATA CTC AGA CCA 76.0% 

15 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 88.6% 

16 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 84.3% 



215 
 

From the 16 raw chromatographs (Figure 12; Table 6), four unique peptide 

sequences were detected in the random DNA insert.   

 

Reference Sequence Frequency 

(%) 

P1 ATT AGT CTC CAT ATC CCA AGA CCG AGG AAA CTC AGA 50 

P2 CGG AAT CTG CGG AGT CGG AT ATC ATA CTC AGA CCA 31.25 

P3 ATG CGA ATT AAT CTA ATG CTG AGT CAA AGG CAG ATT 12.5 

P4 ATG ATT AGA ATT ATG CGT AGG ATC AAG CTT ATT CGT 6.25 

Table 7 – Sequence references and frequency of observation (%). 

 

Sequences P1 and P2 appeared most frequently; eight and five times, respectively.  A 

third sequence, sequence P3 appeared twice and sequence P4 appeared just once 

(Table 6; Table 7).  From these data, we can conclude that panning with 

synaptosomes enriched phage particles that specifically bound to a target protein in 

the synaptosome preparation.  Based on their frequency of appearance, sequences 1 

and 2 were taken forward for peptide synthesis. 
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4.3.6 - Peptide Synthesis 

4.3.6.1 - Plasmid Synthesis 

4.3.6.1.1 – Design 

In order to test if the peptides identified from panning the phage library actually 

bound specifically to synapses, we decided to produce fluorescently tagged peptides.  

To do this, a plasmid was designed that when induced, would express the peptide of 

interest fused to mCherry protein (Figure 13).   

To produce an mCherry tagged version of the peptides of interest, the peptide 

sequences were first cloned into DNA vectors for mCherry.  Then, the fusion vectors 

were inserted into a plasmid so that they could be transcribed and translated by 

bacterial cells.  The plasmid that was chosen for this was pET30a(+), as it contains a 

T7 promoter site.  After sequencing to ensure the plasmid contained the correct 

sequence necessary to produce the mCherry tagged peptide, the plasmids were 

electroporated into bacterial cells could be induced to produce protein under the 

control of a T7 promoter.  Once the bacterial cells had produced a large quantity of 

protein, they were lysed and the protein was collected and purified (Figure 13).  The 

tagged peptide was then incubated with preparations that were known to contain 

synapses to determine if the peptide did indeed bind specifically to synapses. 
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Figure 13 – Schematic of basic plasmid design.  A plasmid was synthesised that, 

when induced, would produce the peptide sequence of interest fused to an mCherry 

protein.  To do this, the peptide sequence was cloned into an mCherry vector using 

PCR.  In a separate PCR reaction, a pET30a(+) vector was linearised.  A ligation 

reaction was then used to join the peptide + mCherry vector into the linearised 

pET30a(+) vector to produce a plasmid.  This plasmid was then inserted into 

bacteria, amplified and checked for the correct sequence.  Once the correct plasmid 

sequence had been identified, it was inserted into a different type of bacteria for 

peptide synthesis.  A single colony of transformed bacteria was grown and induced 

to express protein from the plasmid.  The resulting protein was then extracted and 

purified. 

 

4.3.6.1.2 - Plasmid Synthesis 

To construct a plasmid that expressed the peptide of interest fused to mCherry 

protein, PCRs were carried out in order to amplify expression vectors with 

complementary ends for ligation. 

 

Figure 14 - Schematic of P1+mCherry PCR.  This shows the 5’ primer of the 

P1+mCherry PCR and how it incorporated the peptide sequence and the linearised-
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pET30a(+) complementary ends.  The last 18 base pairs of the primer (red) were 

complementary to the 5’ end of the His-tagged bacterial expression vector for 

mCherry (black).  Upstream of the mCherry complementary region was the peptide 

coding sequence (blue) and the complementary ends of the linearised vector (green).  

During the PCR, this extension primer became incorporated into the PCR product.  

The resulting PCR product contained the peptide-coding sequence, followed by the 

mCherry-coding sequence.  Additionally, the PCR product had complementary ends 

to the linearised vector, for ligation. 

 

The peptide sequence was added into a His-tagged bacterial expression vector for 

mCherry (Figure 14).  This was achieved by designing 5’ primers that contained the 

peptide sequence followed by the first 18 complementary base pairs of the mCherry 

vector (Figure 14).  This meant that during replication, the peptide coding sequence 

would be replicated along with the mCherry vector, resulting in a PCR product that 

contained both the peptide coding sequence and the mCherry coding sequence 

(Figure 14).  The 5’ primer also contained 15bp extensions homologous to the vector 

ends of the pET30a(+) linearised vector (Figure 14).  The 3’ primer for this PCR 

reaction also added 15bp extensions homologous to the vector ends of linearised 

pET30a(+). 

In a second PCR, a pET30a(+) vector was linearised by performing PCR with 

primers that were complementary to 22 base pairs in the vector. These primers also 

added an additional 15 base pairs to the vector ends that were complementary to the 

mCherry vector with the P1 peptide sequence. 
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Figure 15 – PCR products on an agarose gel.  After the PCR had been performed, 

samples of the PCR products were resolved on an agarose gel to check that they 

were the expected sizes.  The His-tagged bacterial expression vector with the 

attached peptide sequence was expected to be around 700bp in size and the 

linearised pET30a(+) vector was expected to be around 5000bp in size.  Both PCR 

product fragments were observed at the expected sizes.  In order to perform a 

ligation, DNA of the correct size was excised from the agarose gel and purified using 

QIAGEN Quick DNA Extraction Kit.  Samples of the purified DNA were resolved on 

an agarose gel again to check that the DNA was sufficiently free of contamination 

and was still of the correct size. 
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The DNA fragments from each PCR were purified using QIAGEN Quick DNA 

Extraction Kit (Figure 15).  The PCR products were resolved on a 0.8% agarose gel 

and cut from the gel using a razor blade over an Invitrogen Safe Imager.  The excised 

agarose was weighed and the DNA was extracted from the agarose following the 

manufacturer’s instructions (Figure 15).  A Nanodrop was used to measure DNA 

concentration of each DNA fragment (Table 8). 

 

PCR Product Concentration (ng/µl) 260/280 

P1+mCherry 14.7 1.85 

P2+mCherry 8.5 1.72 

P1 pET30a(+) 10.2 1.77 

P2 pET30a(+) 25.2 1.87 

Table 8 – Concentration (ng/µl) of DNA fragment excised and purified from agarose 

gel. 

The linearised pET30a(+) vector and its complementary peptide + mCherry 

expression vector were ligated using In-Fusion HD Cloning Kit (PT5162-1, 

Clontech).  4µl of the ligation reaction was then used to transform one aliquot of One 

Shot TOP10 Chemically Competent E.Coli (C4040-3, Invitrogen) by heat-shocking 

the cells and forcing them to take up the plasmid.  The cells were then plated on agar 

containing 50ng/ml kanamycin plates and incubated overnight at 37oC.  The 

following day, many colonies were observed, confirming that the transformation was 

successful (Figure 16). 
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Figure 16 - Colonies of transformed TOP10 E.coli on agar supplemented with 

50ng/ml kanamycin plates.  Three individual colonies from each plate were amplified 

and the plasmid DNA sequence was checked to ensure that the plasmid had ligated 

correctly.  (A) Colonies can be seen growing on the agar plate after the 

P1+mCherry plasmid was inserted into TOP10 cells.  (B) Colonies of TOP10 E.coli 

that contained the P2+mCherry plasmid.   

In order to ensure that the ligation had occurred as expected, a Miniprep was 

performed on three colonies selected at random from P1+mCherry and P2+mCherry 

plates.  The extracted DNA concentration and quality was tested on a Nanodrop 

(Table 9) and sent to The GenePool for sequencing.   
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Colony Concentration (ng/µl) 260/280 

P1.1 31.3 1.87 

P1.2 31.5 1.84 

P1.3 30.5 1.85 

P2.1 28.6 1.82 

P2.2 29.6 1.87 

P2.3 29.4 1.80 

Table 9 – Concentration (ng/µl) and 260/280 absorbance ratios of DNA extracted 

from Minipreps of colonies of transformed TOP10 cells. 

 

Sequencing of the plasmids by The GenePool was successful for two out of six 

Minipreps, with P1.3, P2.1, P2.2 and P2.3 producing no readable sequence.  

Chromatographs for P1.1 confirmed that the ligation had occurred correctly (Table 

10).  However, the chromatographs for P1.2 showed that a codon of the peptide was 

incorrect and the mCherry coding sequence was disrupted as a result (Table 10).  No 

DNA from Minipreps of any of the P2 colonies was taken forward for peptide 

synthesis.  Peptide synthesis continued with only P1 using the DNA from Miniprep 

P1.1. 
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Colony Sequence 

P1.1 ATG GCT TCT TCT GAG TTT CCT CGG TCT TGG GAT ATG 

GAG ACT AAT ATG GTG 

P1.2 ATG GCT TCT TCT GAG TTT CCT CGG TCT TGG GAT ATG 

GAG ACT AGG TGA GCA 

P1.3 N/A 

P2.1 N/A 

P2.2 N/A 

P2.3 N/A 

Table 10 – Sequences obtained from Minipreps.  The peptide sequence is highlighted 

in bold text. 

 

 

4.3.7 - Peptide Synthesis, Extraction, and Purification 

 

In order to synthesise large quantities of the tagged peptide, (DE3)pLysS cells were 

used.  These cells can express any protein that is under the control of a T7 promoter, 

which the pET30a(+) vector contained.  Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) un-inhibits the lacUV5 promoter and allows transcription of the T7 RNA 

polymerase gene, thereby driving expression of genes under the control of a T7 

promoter.   

(DE3)pLysS cells were made electro-competent and electro-porated with 5µl of a 

1:10 dilution of P1.1 mini-prep extracted DNA.  The cells were plated on agar plates 

supplemented with 50ng/ml kanamycin and 34µg/ml chloramphenicol and incubated 
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overnight at 37oC.  The following day, many colonies were observed on the plates, 

confirming that the electroporation was successful (Figure 17). 

 

 

 

Figure 17 - Double selective agar plate (50ng/ml kanamycin supplemented with 

34µg/ml chloramphenicol) with successfully transformed (DE3)pLysS cells.  Electro-

competent (DE3)pLysS cells were electro-porated with the P1+mCherry plasmid 

that had ligated correctly (P1.1).  

 

In order to force (DE3)pLysS bacterial cells to produce large quantities of protein 

from the inserted plasmid, cells were induced by addition of 50mM IPTG.  The 

following day, the induction of mCherry was apparent as the bacteria appeared a 

bright pink colour (Figure 18A).  In order to extract the P1+mCherry protein, the 

(DE3)pLysS bacteria must undergo a freeze/thaw cycle.  This disrupts the plasma 
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membrane of the bacteria, allowing lysosomes to leak out of the cells.  These 

lysosomes then lyse the bacterial cells, releasing the cells contents into the buffer. 

After the freeze/thaw cycle, the cells were centrifuged at 10000 x g for 10 minutes to 

pellet cell debris and non-lysed cells (Figure 18B).  The supernatant was collected 

and stored at 4oC. 

 

 

Figure 18 – mCherry expression in induced (DE3)pLysS cells.  (A) Bacterial cells 

were induced overnight at room temperature with 50mM IPTG.  Production of 

mCherry protein was evident in the bright pink colour of the bacteria after induction.  

(B)  The induced cells were pelleted and re-suspended in phosphate buffer where the 

pink colour of the mCherry protein was even more evident. 
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The P1+mCherry protein was then purified from the supernatant using a Disposable 

Gravity Column (Figure 19).  The mCherry bacterial vector contained a His-tag 

which produced a cluster of histidine residues on the N-terminus of the mCherry 

protein.  This cluster of histidines has a binding affinity with ions such as nickel and 

cobalt, which can be utilised to purify the protein.  The supernatant was applied to 

the Gravity Column containing cobalt ions and allowed to flow through (Figure 

19A).  The binding of the P1+mCherry protein to the cobalt ions in the column could 

be observed by a strong pink colour which accumulated in the gel (figure 19B).  The 

Gravity Column was washed to remove any lingering bacterial proteins, and the P1+ 

mCherry protein was then eluted from the column using a high concentration 

imidazole buffer (150mM imidazole, 50mM sodium phosphate, 300mM sodium 

chloride), which competed with the His-tag to bind to the cobalt ions (Figure 19C).  

The flow through was collected and the imidazole was removed by repeated inverse 

centrifuge filtration, with the protein being re-suspended in 0.1M PBS.  The protein 

was then mixed 1:1 with sterile glycerol, aliquotted, and stored at -20oC. 

Figure 19 - Purification of P1+mCherry using a Gravity column.  (A) The protein in 

buffer was added to the Gravity column and allowed to flow through. (B) The protein 
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had bound to the cobalt ions in the gel.  The black arrow shows a concentrated 

section of the gel where the majority of the pink P1+mCherry protein had bound.  

(C) After washing the gel with a low (5mM) imidazole buffer to remove excess 

bacteria proteins, the bound P1+mCherry protein was eluted using a high (150mM) 

imidazole buffer.  The cobalt gel had returned to its original green-blue colour as the 

pink mCherry protein was washed out. 

 

The molecular weight of the purified P1+mCherry (expected to be around 24kDa) 

was determined using by running the protein, along with samples from various stages 

of purification, on an SDS-PAGE gel along with a Sharp Pre-Stained Protein 

Standard (Figure 19).  In the non-induced (DE3)pLysS bacteria lysate (Figure 20A), 

no protein band was detectable at ~24kDa as would be expected.  In the induced, but 

un-purified lysate, a band was detectable at ~24kDa confirming that a protein of the 

correct molecular weight was produced by the 50mM IPTG induction (Figure 20B).  

The run-through from the Gravity Column showed that no protein with a molecular 

weight of ~24kDa was present, confirming that this protein had efficiently bound to 

the cobalt ions in the column due to the His-tag present on the protein (Figure 20C).  

The purified and concentrated protein sample showed that a protein of approximately 

24kDa was present and appeared to be more concentrated than the 24kDa protein 

detected in the un-purified lysate (Figure 20D).  Additionally, an approximately 

50kDa protein was detectable in all lanes but was particularly strongly expressed in 

the induced bacteria lysate and the purified and concentrated protein (Figure 20).  

We hypothesised that this 50kDa protein was possibly a dimer of the P1+mCherry 

protein.  An additional approximately 30kDa protein band was detected in all 
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samples.  It was suspected that this was a bacterial protein, due to its presence in the 

non-induced bacteria lysate sample (Figure 20A), that happened to have a binding 

affinity with cobalt ions in the Gravity Column. 

 

 

Figure 20 – An SDS-PAGE gel showing weights of proteins present at different 

stages of P1+mCherry protein induction and purification.  (A) Protein extracted 

from non-induced (DE3)pLysS cells. (B) Protein extracted from induced but un-

purified (DE3)pLysS cells.  (C) Run-through from the Gravity Column. (D) Purified 

and concentrated P1+mCherry protein, mixed 1:1 with glycerol. 

 

A BCA assay was carried out in order to determine the concentration of the 

P1+mCherry protein.  From this, it was determined that there was 11.63mg/µl 

protein in the purified protein sample when mixed 1:1 with glycerol (Figure 21). 
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Figure 21 – BCA assay standard curve graph. A BCA assay was carried out to 

determine the concentration of protein in the purified lysate (mg/µl).  The BCA assay 

for the purified lysate gave a mean 562nm absorbance reading of 1.003 (n = 3).  

Using the equation of the line from the standard curve graph, this equates to a 

concentration of 11.63mg/µl of protein, when mixed 1:1 with glycerol. 

 

 

4.3.8 - Peptide Binding Assays 

 

To test whether the P1+mCherry protein could bind to synapses, varying 

concentrations were incubated in mouse primary cortical neuron cultures at 15DIV.  

It was expected that this would be the most likely synaptic preparation in which the 

protein would bind, as the phage library had been panned with synaptosomes 

produced from whole brain homogenate.   
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The P1+mCherry protein was diluted 1:50 and 1:100 in the cells’ media and 

incubated with the live cells at 37oC for 30 minutes.  The media was removed, the 

cells were washed briefly in room temperature 0.1M PBS, and then fixed with room 

temperature 4% PFA for 10 minutes.  From this procedure, mCherry-positive 

staining was observed in puncta around the cell body, as would be expected from a 

synaptic marker stain (Figure 22 and 23).  Cells were also stained with the vesicle 

marker, SV2 in order to identify areas of pre-synaptic contact (Figure 24B).  In these 

dual-labelled cells SV2-positive punctate staining was also observed around the cell 

body; however it did not co-localise with the mCherry-positive puncta (Figure 24C).   
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Figure 22 – Z-stack confocal images of mCherry-positive (red) puncta in 15DIV 

primary cortical neuron cultures.  A 1:50 dilution of P1+mCherry was incubated 

with cells for 30 minutes prior to fixation.  Punctate staining was visible on the cell 

surface of neurons (white arrows), suggesting that the P1+mCherry protein had a 

binding affinity with a peptide present on the cell surface.  Larger aggregates of 

mCherry-positive staining were also observed on the coverslip where no cells were 

present.  However, these aggregates appeared larger and more angular than the 

punctate staining observed on the cell surface.  The large angular aggregates were 

also observed less frequently than the punctate staining on the cell surfaces.  Scale 

bar = 10µm. 

 

 

Figure 23 – Z-stack confocal images of P1+mCherry-labelled cells with outline.  (A) 

A cell body of a primary culture neuronal cell with punctate P1+mCherry staining 

on the surface of the cell. (B) The same cell is shown, but with a white outline added 
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in Adobe Photoshop to highlight the shape of the cell.  The P1+mCherry puncta 

observed on the cell are concentrated around the cell surface.  Scale bar = 10µm 

 

Figure 24 – Z-stack confocal images of dual-labelled cells with SV2 (green) and 

mCherry (red).  A 1:50 dilution of P1+mCherry was incubated with cells for 30 

minutes prior to fixation.  After fixation, cells were co-stained with anti-SV2 (green).  

(A) mCherry-positive puncta are again observed on the cell surface.  (B) Punctate 

staining of SV2, a vesicle protein, is also observed on the surface of cells.  (C) A 

merged image of mCherry (red) and SV2 (green) staining shows that there is no co-

localisation between the puncta on the surface of the cells.  Scale bars = 10µm. 

 

The P1+mCherry protein’s binding ability was also tested on cells fixed with 4% 

PFA (Figure 25).  After cells were fixed and stained with SV2, 1:50 and 1:100 

dilutions of the P1+mCherry protein in 0.1M PBS was incubated with the cells for 30 

minutes, before being washed off briefly with 0.1M PBS.  Under these conditions, no 

mCherry-positive puncta were observed in the cultures (Figure 25B), however SV2-

positive puncta were still observed (Figure 25A and 25C).  A possible explanation 

for this lack of mCherry-positive staining after fixation is that the process of fixation 
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altered the binding site of the peptide in such a way that the peptide no longer had a 

binding affinity.   

 

Figure 25 – Z-stack confocal images of 15DIV primary cortical neuron cells stained 

with a 1:50 dilution of P1+mCherry after fixation and SV2 staining.  (A) SV2 

punctate staining was visible on the cell surface.  (B) No mCherry-positive puncta 

are visible on the surface of the cells when the P1+mCherry protein is applied to 

cells after fixation. (C)  A merged image of SV2 staining (green) and mCherry 

staining (red).  Scale bars = 10µm. 

 

In order to test whether the P1+mCherry protein would bind to any off-target 

peptides, 1:50 and 1:100 dilutions of the protein in 0.1M PBS were incubated with 

skeletal muscle, before and after muscle fixation.  Under these conditions, no 

mCherry-positive staining was noted in any of the muscle fibres, or other cell types 

present in skeletal muscle such as neurons, glial cells, fibroblasts or endothelial cells 

(Figure 26B).  It was initially hoped that P1+mCherry protein would have the ability 

to bind to any synapse, including peripheral synapses. However, no mCherry-

positive staining was observed at neuromuscular junctions (Figure 26B and 26C). 
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Figure 26 – Z-stack confocal images of wild type adult mouse skeletal muscle stained 

with a 1:50 dilution of P1+mCherry (red) prior to fixation and FITC-conjugated α-

bungarotoxin (green).  (A) FITC-conjugated α-bungarotoxin staining the 

acetylcholine receptor clusters of neuromuscular junctions.  (B) mCherry staining of 

skeletal muscle.  No puncta or aggregates were observed in the skeletal muscle.  (C) 

A merged image of FITC-conjugated α-bungarotoxin (green) and mCherry (red) 

showing no co-localisation in skeletal muscle. Scale bars = 20µm. 

 

4.4 - Discussion 

In summary, a peptide with a binding affinity for central synapses was identified via 

a phage display system and synthesised with a fluorescent label.  Initially, it was 

demonstrated that it was possible to produce repeatable concentration dependent 

binding of phage particles to synaptosomes in suspension.  As far as we are aware, 

this method of panning a phage display library has not been previously published.  

Next, we showed that it was possible to enrich specific phage clones by panning a 

phage display library with synaptosomes in suspension.  Out of 16 individual phage 
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clones sequenced, eight were identical, implying that this fusion peptide was the 

most likely to show binding affinity for a target in the synaptosome preparation. 

Once the sequences of the fusion peptides displayed on the phage particle had been 

identified, it was possible to synthesise an identical peptide fused to an mCherry 

protein by producing a plasmid containing the peptide sequence followed by an 

mCherry sequence and a His-tag, all under the control of a T7 promoter.  This 

plasmid was successfully introduced to (DE3)pLysS bacteria where it was expressed 

by inducing the bacteria to produce transcripts from a T7 promoter.  The 

P1+mCherry protein was then successfully collected and purified. 

Lastly, the results showed that this tagged peptide had the ability to bind to central 

synapses.  By incubating the peptide with primary cortical neuron cultures, we were 

able to observe punctate staining on the surface of the cell body, similar to that of the 

vesicle protein, SV2.  The P1+mCherry protein was also shown to have specificity 

for these sites, as the protein did not show a binding affinity to any cell type present 

in skeletal muscle.  However, synaptic binding was not observed in peripheral 

synapses such as the neuromuscular junction, implying that this peptide has specific 

affinity for central synapses rather than being a pan-synaptic marker as we had 

initially hoped. 

It will be necessary to further test the P1+mCherry protein’s ability to bind to 

synapses before a definite conclusion can be reached about its specificity.  

Immunocytochemical staining for more specific synaptic markers, such as the post-

synaptic markers PSD-95 and synGAP, and pre-synaptic marker synaptobrevin, 

would be helpful in addressing whether the protein is binding to synapses.  
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Quantification of the number of mCherry-positive puncta being formed over time 

and correlating with the number of synapses being formed in developing primary 

cortical neuron cultures would also add weight to the theory that P1+mCherry 

protein is binding to a synaptic target. 

 

4.4.1 - Strategy Rationale 

Most phage display panning is carried out using a specific target protein immobilised 

on a plastic surface.  However, we specifically wanted to target extra-cellular 

domains of synaptic proteins, to ensure that the final produced peptide would be able 

to bind to the intended target without interfering with synaptic function.  By coating 

a plastic surface with a target protein, we would have no control over which domain, 

extra-cellular or otherwise, the phage would show affinity for.  By using 

synaptosome preparations, we can ensure that only phage particles with an affinity 

for an extracellular protein motif present at the surface of the synapse will be 

selected for.  Additionally, we may have selected for phage which bind to a 

previously unidentified extra-cellular synaptic protein. 

An mCherry tag was chosen to label the peptide as mCherry is very bright and 

photostable.  Additionally, an mCherry vector with a His-tag was readily available to 

use for this projet.  However, mCherry has a molecular weight of 25kDa which may 

have affected the peptide’s ability to enter into small areas such as the synaptic cleft.  

Choosing a fluroscent tag with a smaller molecular weight may have been beneficial. 

The peptide sequence was inserted into the mCherry vector so that P1 would be 

directly conjugated onto the mCherry protein.  With hindsight, it would have been 
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beneficial to also produce a P1+mCherry protein with a linker connecting the P1 

sequence and the mCherry protein.  This linker region may have allowed the P1 

peptide to access small areas of the synapse that the mCherry protein was too large to 

enter.   

 

4.4.2 - Improvements in Experimental Design 

In order to ensure that the mCherry-positive punctate staining observed around cell 

bodies was not an artefact, it would be necessary to produce an mCherry protein in 

an identical manner but with no fusion peptide.  This would ensure that any signal 

was not simply due to the mCherry protein, or the His-tag, binding to an unintended 

target present on the cell body.  However, given that no mCherry signal was detected 

in skeletal muscle preparations, it seems unlikely that the mCherry or His-tag are the 

cause of the punctate staining observed on the primary cortical neuron cell bodies.   

Although no nucleic contamination was detected in the P2 fraction of synaptosomes 

in these preparations, the synaptosomes produced for panning are known as “crude 

synaptosomes”.  This is due to the fact that the P2 fraction may still contain 

contaminating myelin, plasma membrane and mitochondria (Dunkley et al., 2008).  

This contamination means that there is a small risk of selecting for phage particles 

with fusion peptides that have an affinity for contaminates instead of synaptic 

membranes.  It is possible to produce very pure synaptosome preparations using 

discontinuous gradients of Percoll (Dunkley et al., 2008).  Percoll is essentially a 

suspension of plastic-coated silica particles approximately 17nm in diameter 

originally developed for subcellular fractionation (Dunkley et al., 2008).  To prepare 
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pure synaptosomes using a Percoll gradient, different concentrations of Percoll are 

layered on top of one another, from most concentrated to least concentrated (Dunkley 

et al., 2008).  The S1 fraction of homogenised brain tissue is then gently added on 

top of this gradient and centrifuged at 20000rpm for 5 minutes (Dunkley et al., 

2008).  During this centrifugation, different components of the S1 fraction are caught 

at the interfaces down the Percoll gradient, including synaptosomes, mitochondria, 

membranes and myelin (Dunkley et al., 2008).  Synaptosomes are collected at the 

interface between the 15% and 23% layers (Dunkley et al., 2008).  Panning the phage 

library with these ultra-pure synaptosomes would ensure that only phage particles 

with fusion peptides capable of binding to a protein on the surface of a synapse 

would be enriched.  However, the gradients must be produced perfectly in order to 

ensure pure synaptosomes – any blurring of the interfaces could result in 

contamination.  For these reasons, and the lack of detectable nucleic contamination 

in the P2 fraction, it was decided that crude synaptosome preparations would be 

adequately pure to pan the phage library.  Additionally, the synaptosomes produced 

for this study were not examined for pre- or post-synaptic markers. 

To further ensure that any enriched peptide sequences were specifically binding to a 

target that was present in only the P2 fraction of the synaptosome preparation, a 

second amplified phage library could have been produced by panning the phage 

display library with the P1 fraction.  This would enrich for phage particles with 

fusion peptides which had the ability to bind to unwanted targets such as cell body 

contaminates, glial cells, or mitochondria.  By sequencing phage particles from this 

second enriched library, it would be possible to eliminate peptide sequences that 
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appeared in both the P1 and P2 panned libraries and therefore did not bind 

specifically to a target present in the synaptosome fraction. 

 

4.4.3 – Conclusion 

In conclusion, we have shown here that it is possible to pan a phage library with 

synaptosomes held in suspension.  The peptide sequences enriched by the successive 

rounds of panning may have a synaptic binding ability, as shown by the punctate 

staining visible on cell bodies of primary culture neurons.  However, further testing 

is required to ascertain whether the peptide has a specific affinity for areas of 

synaptic contact. 
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Chapter 5: General Discussion 

The work presented in this study has shown that motor unit vulnerability varies 

across a spectrum in a severe mouse model of SMA.  This motor unit vulnerability 

does not correlate with motor unit morphology, as it does in ALS.  Motor unit 

vulnerability also did not correlate with any other morphological factor investigated.  

Microarray analysis of vulnerable and resistant motor unit gene expression revealed 

significant differences in pathways known to be associated with SMA, and 

significant differences in a number of genes known to be involved in neuro-

protection and neuro-degeneration.  Based on this, it is likely that the spectrum of 

vulnerability in SMA is driven by specific molecular properties of motor units.  

Additionally, a peptide was identified that has shown a potential affinity with areas 

of synaptic contact.  It is hoped that this peptide can be developed further and used to 

transiently label synapses in vivo in both humans and animal models as a research 

and diagnostic tool. 

 

5.1 - Motor Unit Vulnerability in SMA 

The findings of a spectrum of vulnerability in a severe mouse model of SMA are 

consistent with previous findings (Murray et al., 2008; Ling et al., 2012).  Murray et 

al. (2008) first reported differences in the extent of denervation found in the levator 

auris longus muscle in two SMA mouse models.  This study found the same pattern 

of denervation as Murray et al. (2008), with the caudal band being severely 

denervated and the rostral band being almost unaffected.  Murray et al. (2008) also 

noted extensive denervation of the transversus abdominis, a postural muscle found in 
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the trunk.  This study has also observed denervation in the transversus abdominis, 

and extended the characterisation of trunk muscles to include the triangularis sterni 

which was also found to be extensively denervated.  The triangularis sterni is one of 

the innermost intercostal muscles, a group of muscles which are known to be 

denervated in SMA patients, contributing to their characteristic bell-shaped upper 

torso (Lunn & Wang, 2008).  Furthermore, the study by Ling et al. (2012) found a 

spectrum of vulnerability in a different cohort of muscles, in a different mouse model 

of SMA.  They noted that the postural muscles appeared to be more susceptible to 

denervation than muscles of other body areas.  The findings of extensive denervation 

in trunk and postural muscles, which are known to be affected in SMA patients, 

further demonstrates that this selective denervation follows a distinct pattern rather 

than being caused by random degeneration of motor units.   

Additionally, this study has extended the characterisation of NMJ pathology in the 

Smn-/-;SMN2+/+ mouse model by analysing muscles of the hind limbs.  Here, 

vulnerable motor units were found to innervate the tibialis anterior and 

gastrocnemius muscles, while the extensor digitorum longus muscle was innervated 

by resistant motor units.  These data reported here, and in previous studies, serve as 

evidence that denervation of motor units in mouse models of spinal muscular atrophy 

follow a distinct pattern and are not merely a result of natural variation between 

mice, mouse models, or litters.   
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5.2 - Underlying Cause of Motor Unit Vulnerability 

Prior to this study, there was little evidence of an underlying cause of differential 

motor unit vulnerability in SMA.  Previous studies had suggested muscle fibre type 

or the synapsing phenotype of motor units could underlie differential vulnerability 

(Murray et al., 2008; Ling et al., 2012).  However, no correlation between muscle 

fibre type and motor unit vulnerability could be found in this study or the studies by 

Murray et al. (2008) and Ling et al. (2012).  Additionally, pathologies in the post-

synaptic compartment of the neuromuscular junction do not correlate with motor unit 

vulnerability (Murray et al., 2008).  Taken together, these data effectively rule out a 

muscle-based driver of differential motor unit vulnerability in SMA. 

In the adult onset motor neuron disease, ALS, a correlation has been extensively 

reported between large motor units and increased vulnerability, both in mouse 

models and human patients (Bradley et al., 1983; Fischer et al., 2004; Hegedus et al., 

2007; Valdez et al., 2012).  In contrast to what has been found in ALS, no correlation 

could be detected between motor unit size and vulnerability in SMA in this study.  

This implies that mechanisms underlying motor unit vulnerability differ between 

ALS and SMA, a result that was quite surprising given the recent evidence 

suggesting that ALS and SMA are linked at the molecular level (Zou et al., 2007; 

Turner et al., 2009; Kariya et al., 2012; Yamazaki et al., 2012).  This could have 

important implications on the development of therapeutics in motor neuron disease.   

Currently, the only licensed treatment for ALS is the anti-glutamatergic drug riluzole 

which modestly increases lifespan by providing some protection to neurons against 

excitotoxicity (Cifra et al., 2013).  A number of studies of the effects of riluzole on 
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SMA have been carried out with disappointing results.  In 2003, Haddad et al. 

administered riluzole to a mouse model of SMA and reported a modest increase in 

lifespan but no effect on the loss of axons.  Also in 2003, Russman et al. conducted a 

phase I clinical trial of the tolerance of riluzole in type I SMA patients.  More than 

half of the SMA patients prescribed riluzole died within the time period expected for 

type I SMA, bringing the effectiveness of riluzole as a treatment for SMA into 

question (Russman et al., 2003).  It is possible that riluzole’s lack of effectiveness in 

SMA is due to differences in the mechanisms underlying motor unit vulnerability in 

ALS and SMA. 

 

5.3 – Gene Expression Profiles in Vulnerable and Resistant Motor Units 

This is the first microarray study to be carried out which has compared the gene 

expression profiles of vulnerable and resistant motor units in healthy mice.  A similar 

study was carried out in 2013 by Brockington et al. in healthy human post-mortem 

tissue to determine underlying gene expression differences in motor units vulnerable 

to degeneration in ALS.  However, the study by Brockington et al. (2013) was 

carried out using a less robust design than the microarray performed here.  

Brockington et al. (2013) examined the gene expression profiles of entire populations 

of motor units, from areas of the spinal cord that were known to contain vulnerable 

or resistant motor units in ALS.  In this study, specific motor pools which had 

previously been characterised were labelled and isolated, meaning that the RNA 

extracted from these motor neurons was much more specific.  Brockington et al. 

(2013) also examined motor neuron populations from two different regions of the 
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spinal cord, meaning that some of the changes in gene expression observed may 

simply be due to regional differences, rather than being actual modifiers of motor 

unit vulnerability.  The motor pools examined in this study both innervate hind limb 

muscles, which are closely related, and groups of labelled cell bodies were always 

observed in similar areas of the spinal cord.  

This microarray has identified individual genes which are known to be involved with 

neuro-protection or neuro-degeneration as being altered between vulnerable and 

resistant motor units.  If, through further testing in a zebrafish model of SMA, any of 

these genes are shown to have a protective effect on axonal pathologies, then they 

could potentially be developed into a new therapeutic target for SMA.  However, 

SMN protein expression is reduced in all body tissues, not only the motor neurons 

(Lunn & Wang, 2008), and recent studies of pathological changes in other body 

tissues have established that SMA is a multi-organ disease (Hamilton & 

Gillingwater, 2013; Shababi et al., 2013).  Therefore any therapies for SMA that 

specifically focus on ameliorating the pathology of the neuromuscular system may be 

ineffective in treating other pathological components of SMA, unless used in 

combination with a therapy that increases levels of full length SMN protein such as 

gene therapy.  Mouse models of SMA that have been treated with gene therapy show 

limited improvements (Lorson & Lorson, 2012).  Modest extensions in SMA mouse 

lifespan have been noted, along with improvements in weight and loco-motor 

activities (Dominguez et al., 2010; Foust et al., 2010; Valori et al., 2010).  One of the 

main criticisms of gene therapy as a treatment for SMA is the difficulty of ensuring 

the viral vector can enter the central nervous system and deliver a sufficiently high 

titre (Lorson & Lorson, 2012).  It may be possible that a combination of gene therapy 
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with a therapeutic targeted specifically to the nervous system could overcome this 

obstacle.  By increasing expression or activity of a neuro-protective factor or 

pathway, lower titres of viral vector in the central nervous system may no longer be a 

limiting factor in gene therapy efficiency in treating SMA. 

 

5.4 – In Vivo Synaptic Labelling 

Many studies have highlighted the importance of synaptic pathology in SMA.  The 

pathology of the neuromuscular junction has been characterised extensively in mouse 

models of SMA (Cifuentes-Diaz et al., 2002; Murray et al. 2008; Karyia et al., 2008; 

Ling et al., 2010; Bowerman et al., 2011; Ling et al., 2012; Murray et al., 2013), but 

little work has been carried out on human neuromuscular junctions (Kariya et al., 

2008; Martinez-Hernandez et al., 2013).  Additionally, recent evidence has suggested 

that central synaptic connections are also vulnerable in SMA, with vGlut1-positive 

synapses onto lower motor neurons in the spinal cord also showing evidence of 

denervation in mouse models (Ling et al., 2010; Park et al., 2010; Mentis et al., 2011; 

Gogliotti et al., 2012; Martinez et al., 2012).  However, to date, no work on 

denervation of central synapses has been carried out in human tissue.  Additionally, 

studies carried out on central synaptic connectivity in humans would be limited to 

post-mortem tissue, which only provides insights into end stage pathology. 

The peptide identified in this study, which has shown a potential synaptic binding 

affinity, has the potential to be developed into an in vivo synaptic label that may 

allow us to study these central synaptic connections in SMA in living patients.  

Previous studies using phage display technology have developed fluorescently 
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labelled peptides to assist surgeons during operations by highlighting small 

peripheral nerves (Whitney et al., 2010; Wu et al., 2011).  In these studies, the 

peptide was able to specifically and transiently bind to the myelin sheath of the 

peripheral nerves, with no fluorescence being observed 24 hours after application 

(Whitney et al., 2010).  It was using a similar approach that a peptide with potential 

synaptic binding abilities was identified in this study, but with some important 

differences.  Phage panning was carried out by Whitney et al. (2010) using a purified 

protein, in this case myelin, which was immobilised on a plastic surface.  In this 

study, a phage display library was panned using synaptosomes in suspension.  It was 

not known if phage particles had the ability to bind to target peptides in suspension, 

however a concentration-binding assay revealed that phage particles did have this 

ability.  Secondly, unlike the panning carried out by Whitney et al. (2011), the target 

peptide in this instance was against an unknown surface protein or peptide present at 

the pre-terminal of the synapse.  While the identity of the protein that the peptide is 

targeted against is still unknown, the punctate staining observed around the cell body 

of the primary culture neuronal cells suggests that this protein is indeed concentrated 

at synapses. 

It is hoped that with further testing and development, this peptide will be proved to 

bind specifically and reversibly to synapses in vivo.  If this were the case, then it 

could potentially be developed into an in vivo synaptic labelling tool for examining 

synaptic connections in SMA patients, and indeed other patients with neuro-

degenerative conditions. 

 



248 
 

5.5 – Model of Motor Unit Vulnerability in SMA 

Based on the results of these studies, it is probable that differences in motor unit 

vulnerability are caused by the different gene expression profiles of the motor units 

themselves.  From the results of Chapter 2, it was determined that SMA motor unit 

vulnerability was not based on motor unit morphology, as is the case in ALS 

(Bradley et al., 1983; Fischer et al., 2004; Hegedus et al., 2007; Valdez et al., 2012).  

It was also determined that motor unit vulnerability was not linked to other cell 

types, such as muscle and terminal Schwann cells.  Additionally, it was determined 

that developmental dynamics did not influence motor unit vulnerability.  The results 

of the microarray performed in Chapter 3 suggests that individual motor units have 

different gene expression profiles.  Genes known to be directly involved in 

neurodegeneration and neuro-protection were altered between resistant and 

vulnerable motor units.  Based on this, it is likely that the ubiquitous reduction in 

SMN protein that occurs in SMA affects these motor units differently.  Motor units 

which are high-expressors of neuro-protective genes, or low-expressors of neuro-

degenerative genes, are better placed to cope with the cellular stresses that are caused 

by a reduction in SMN protein.  For example, SMN protein is known to bind to and 

the pro-apoptotic protein Bcl-2 (Sato et al., 2000).  It may be possible that some 

motor units have higher levels of anti-apoptotic proteins which can suppress the 

excess Bcl-2 activity, whereas others cannot.  Motor units that cannot cope with the 

cellular stresses would begin to undergo degeneration, with the NMJ being the first 

compartment of the neuron to break down. 



249 
 

The purpose of having different gene expression profiles in different motor units has 

not been elucidated in this study, but is likely to correlate with a motor unit function 

or morphology which was not analysed, such as an electrophysiological property. 

 

5.6 - Conclusion 

In conclusion, motor unit vulnerability varies in SMA and this variation is not due to 

morphological differences between motor units, as it is in ALS.  Microarray analysis 

of groups of motor units with differing vulnerabilities revealed differences in gene 

expression profiles, providing evidence that intrinsic molecular properties of motor 

units underlie differences in vulnerability in SMA.  Many of the genes which were 

differentially expressed between the two groups of motor units have previously been 

implicated in neuro-degeneration or neuro-protection and may represent new 

therapeutic targets in SMA.  Separately, a fusion peptide was developed to 

transiently label synapses in vivo.  When tested, the peptide produced punctate 

staining of the cell bodies of primary neuron cultures which may represent areas of 

synaptic contact. With further development, this peptide could be used to study 

synapses in neuro-degenerative conditions in vivo in living human patients and 

animal models. 
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Supplementary Table 1 – A list of genes significantly (p ≤ 0.05) up-regulated in 

resistant motor units, by more than 20%. 

Gene Symbol Gene Title p-value 

Fold 

Change 

 

LOC100861869 uncharacterized LOC100861869 0.01563 5.843 

C87122 expressed sequence C87122 0.03165 5.800 

Krt14 keratin 14 0.00882 5.031 

BC021785 cDNA sequence BC021785 0.01343 3.862 

Ltn1 listerin E3 ubiquitin protein ligase 1 0.04789 2.579 

2810429I04Rik RIKEN cDNA 2810429I04 gene 0.00030 2.404 

Slfn10-ps schlafen 10, pseudogene 0.02556 1.949 

Ccnb1 /// Gm5593 cyclin B1 /// predicted gene 5593 0.03609 1.886 

4932429P19Rik RIKEN cDNA 4932429P19 gene 0.01110 1.817 

Akr1c20 aldo-keto reductase family 1, member C20 0.04378 1.764 

--- --- 0.02994 1.751 

Bhlha9 basic helix-loop-helix family, member a9 0.01581 1.747 

5830490A04Rik RIKEN cDNA 5830490A04 gene 0.03689 1.732 

9430031J08Rik RIKEN cDNA 9430031J08 gene 0.00213 1.712 

Ear11 

eosinophil-associated, ribonuclease A 

family, member 11 0.02538 1.701 

Prss37 protease, serine, 37 0.04170 1.678 

--- --- 0.03608 1.656 

Nfe2l2 nuclear factor, erythroid derived 2, like 2 0.00095 1.649 

--- --- 0.03390 1.639 

Ankrd55 ankyrin repeat domain 55 0.03123 1.630 

Tnfsf13b 

tumor necrosis factor (ligand) superfamily, 

member 13b 0.04975 1.580 

--- --- 0.01696 1.574 

Tlr7 toll-like receptor 7 0.04988 1.560 

Zfat zinc finger and AT hook domain containing 0.04726 1.554 

Ptafr platelet-activating factor receptor 0.02402 1.552 

Gm4850 THO complex 4 pseudogene 0.01326 1.541 
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Napb 

N-ethylmaleimide sensitive fusion protein 

attachment protein beta 0.02820 1.535 

--- --- 0.01157 1.530 

Neb nebulin 0.01180 1.522 

4930408K08Rik RIKEN cDNA 4930408K08 gene 0.04270 1.484 

Cct6b 

chaperonin containing Tcp1, subunit 6b 

(zeta) 0.01739 1.467 

Serpina3m 

serine (or cysteine) peptidase inhibitor, 

clade A, member 3M 0.04746 1.462 

D4Ertd199e 

DNA segment, Chr 4, ERATO Doi 199, 

expressed 0.00873 1.437 

1700066C05Rik RIKEN cDNA 1700066C05 gene 0.03740 1.430 

Ptgr2 prostaglandin reductase 2 0.04453 1.421 

Arhgap26 Rho GTPase activating protein 26 0.00628 1.410 

Tnfrsf22 /// 

Tnfrsf23 

tumor necrosis factor receptor superfamily, 

member 22 /// tumor necrosis factor receptor 

superfamily, member 23 0.00385 1.405 

--- --- 0.00992 1.385 

Six3os1 Six3 opposite strand transcript 1 0.02441 1.377 

Msr1 macrophage scavenger receptor 1 0.04248 1.372 

Anxa10 annexin A10 0.04011 1.357 

4921501E09Rik RIKEN cDNA 4921501E09 gene 0.03546 1.352 

--- --- 0.03753 1.340 

4933406F09Rik RIKEN cDNA 4933406F09 gene 0.00660 1.335 

Morn1 MORN repeat containing 1 0.02228 1.334 

Strada STE20-related kinase adaptor alpha 0.03990 1.325 

--- --- 0.00075 1.324 

9430019H13Rik RIKEN cDNA 9430019H13 gene 0.03736 1.322 

Eda ectodysplasin-A 0.00894 1.321 

Dspp dentin sialophosphoprotein 0.02996 1.312 

2700078F05Rik RIKEN cDNA 2700078F05 gene 0.03092 1.312 

Krtap16-5 keratin associated protein 16-5 0.04236 1.306 

LOC639905 /// 

Sap30bp 

SAP30-binding protein-like /// SAP30 

binding protein 0.02249 1.305 

8430419K02Rik RIKEN cDNA 8430419K02 gene 0.01742 1.304 
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Cxcr5 chemokine (C-X-C motif) receptor 5 0.02004 1.304 

Cyp17a1 

cytochrome P450, family 17, subfamily a, 

polypeptide 1 0.00871 1.299 

4930503B20Rik RIKEN cDNA 4930503B20 gene 0.02121 1.287 

--- --- 0.02486 1.284 

C77137 expressed sequence C77137 0.03107 1.278 

Sh3rf3 SH3 domain containing ring finger 3 0.04177 1.277 

Slurp1 secreted Ly6/Plaur domain containing 1 0.02586 1.273 

Bcl2l11 BCL2-like 11 (apoptosis facilitator) 0.02869 1.266 

Rap1gds1 RAP1, GTP-GDP dissociation stimulator 1 0.04117 1.265 

B4galt4 

UDP-Gal:betaGlcNAc beta 1,4-

galactosyltransferase, polypeptide 4 0.00238 1.259 

--- --- 0.00633 1.258 

Esrrg estrogen-related receptor gamma 0.03180 1.251 

2010002M12Rik RIKEN cDNA 2010002M12 gene 0.04500 1.250 

--- --- 0.04832 1.243 

4930526D03Rik RIKEN cDNA 4930526D03 gene 0.02244 1.242 

--- --- 0.00539 1.241 

4930449I04Rik RIKEN cDNA 4930449I04 gene 0.01528 1.236 

9630013A20Rik RIKEN cDNA 9630013A20 gene 0.03464 1.233 

--- --- 0.03909 1.232 

Fry furry homolog (Drosophila) 0.04022 1.230 

Tnfrsf11a 

tumor necrosis factor receptor superfamily, 

member 11a 0.03777 1.227 

Camk4 

calcium/calmodulin-dependent protein 

kinase IV 0.03863 1.222 

Lat2 

Linker for activation of T cells family, 

member 2 0.02914 1.219 

--- --- 0.01404 1.219 

Dzip1 DAZ interacting protein 1 0.03359 1.216 

Dmrt2 

doublesex and mab-3 related transcription 

factor 2 0.03149 1.210 

Gm7969 predicted gene 7969 0.04736 1.202 
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Supplementary Table 2 – A list of genes significantly (p ≤ 0.05) up-regulated in 

resistant motor units, by more than 20%. 

Gene Symbol Gene Title p-value Fold 

Change 

--- --- 0.0010 100.703 

Egfr epidermal growth factor receptor 0.0031 10.997 

--- --- 0.0097 7.772 

Men1 multiple endocrine neoplasia 1 0.0268 4.802 

Angptl3 angiopoietin-like 3 0.0389 4.652 

1700108M19Rik RIKEN cDNA 1700108M19 gene 0.0015 3.678 

Ryr1 ryanodine receptor 1, skeletal muscle 0.0215 3.007 

P2ry2 purinergic receptor P2Y, G-protein 

coupled 2 

0.0273 2.997 

Ang2 angiogenin, ribonuclease A family, 

member 2 

0.0307 2.610 

Ifi202b /// 

LOC100044068 

interferon activated gene 202B /// 

interferon-activable protein 202-like 

0.0064 2.551 

Dennd2d DENN/MADD domain containing 2D 0.0095 2.469 

Tubb4b tubulin, beta 4B class IVB 0.0047 2.216 

Ell2 elongation factor RNA polymerase II 2 0.0247 2.192 

Piwil1 piwi-like homolog 1 (Drosophila) 0.0141 2.075 

Epb4.1l4b erythrocyte protein band 4.1-like 4b 0.0434 2.024 

Gprin1 G protein-regulated inducer of neurite 

outgrowth 1 

0.0316 1.895 

1700120E14Rik RIKEN cDNA 1700120E14 gene 0.0327 1.833 

4633402D09Rik RIKEN cDNA 4633402D09 gene 0.0406 1.801 

Cbl Casitas B-lineage lymphoma 0.0100 1.757 

Nid1 nidogen 1 0.0232 1.753 

D2Bwg1423e DNA segment, Chr 2, Brigham & 

Women's Genetics 1423 expressed 

0.0378 1.751 

Uty ubiquitously transcribed tetratricopeptide 0.0476 1.691 



283 
 

repeat gene, Y chromosome 

Bst1 bone marrow stromal cell antigen 1 0.0324 1.589 

Piwil4 piwi-like homolog 4 (Drosophila) 0.0331 1.584 

Abcg5 ATP-binding cassette, sub-family G 

(WHITE), member 5 

0.0157 1.568 

--- --- 0.0386 1.550 

Cep55 centrosomal protein 55 0.0448 1.520 

--- --- 0.0142 1.512 

Dusp23 dual specificity phosphatase 23 0.0232 1.510 

AI451250 expressed sequence AI451250 0.0406 1.504 

--- --- 0.0062 1.499 

Abca8a ATP-binding cassette, sub-family A 

(ABC1), member 8a 

0.0303 1.476 

Ccr9 chemokine (C-C motif) receptor 9 0.0260 1.475 

Vgll3 vestigial like 3 (Drosophila) 0.0487 1.465 

Ceacam10 carcinoembryonic antigen-related cell 

adhesion molecule 10 

0.0363 1.457 

Slc38a5 solute carrier family 38, member 5 0.0279 1.457 

Scn7a sodium channel, voltage-gated, type VII, 

alpha 

0.0162 1.446 

Stat1 signal transducer and activator of 

transcription 1 

0.0436 1.444 

Gorab golgin, RAB6-interacting 0.0306 1.439 

Limd2 /// 

LOC632329 

LIM domain containing 2 /// LIM 

domain-containing protein 2-like 

0.0373 1.436 

--- --- 0.0239 1.434 

4933416I08Rik RIKEN cDNA 4933416I08 gene 0.0238 1.433 

Plekha4 pleckstrin homology domain containing, 

family A (phosphoinositide binding 

specific) member 4 

0.0323 1.432 

Fam122c family with sequence similarity 122, 

member C 

0.0060 1.429 
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Gngt1 guanine nucleotide binding protein (G 

protein), gamma transducing activity 

polypeptide 1 

0.0343 1.421 

2810403D21Rik RIKEN cDNA 2810403D21 gene 0.0152 1.419 

Slc36a2 solute carrier family 36 (proton/amino 

acid symporter), member 2 

0.0427 1.415 

--- --- 0.0373 1.412 

Dlgap5 discs, large (Drosophila) homolog-

associated protein 5 

0.0120 1.405 

Cp ceruloplasmin 0.0350 1.401 

Frem1 Fras1 related extracellular matrix protein 

1 

0.0335 1.400 

Fst follistatin 0.0310 1.396 

Rreb1 ras responsive element binding protein 1 0.0149 1.394 

--- --- 0.0225 1.393 

Sema4d sema domain, immunoglobulin domain 

(Ig), transmembrane domain (TM) and 

short cytoplasmic domain, (semaphorin) 

4D 

0.0276 1.391 

Car3 carbonic anhydrase 3 0.0100 1.388 

Tfpi tissue factor pathway inhibitor 0.0498 1.385 

Myo1b myosin IB 0.0168 1.383 

Gtf2e1 general transcription factor II E, 

polypeptide 1 (alpha subunit) 

0.0118 1.379 

Sostdc1 sclerostin domain containing 1 0.0089 1.378 

Plekha7 pleckstrin homology domain containing, 

family A member 7 

0.0210 1.372 

Gabrg3 gamma-aminobutyric acid (GABA) A 

receptor, subunit gamma 3 

0.0453 1.371 

Art3 ADP-ribosyltransferase 3 0.0364 1.370 

Lect1 leukocyte cell derived chemotaxin 1 0.0184 1.352 

Nr4a2 nuclear receptor subfamily 4, group A, 0.0081 1.352 
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member 2 

2900002K06Rik RIKEN cDNA 2900002K06 gene 0.0301 1.351 

Nr2f2 nuclear receptor subfamily 2, group F, 

member 2 

0.0479 1.341 

--- --- 0.0349 1.340 

3830422I06Rik RIKEN cDNA 3830422I06 gene 0.0410 1.337 

D16Ertd472e DNA segment, Chr 16, ERATO Doi 472, 

expressed 

0.0354 1.337 

Twist1 twist homolog 1 (Drosophila) 0.0211 1.336 

Cd37 CD37 antigen 0.0162 1.333 

4930544N03Rik RIKEN cDNA 4930544N03 gene 0.0038 1.332 

--- --- 0.0160 1.329 

Rimklb ribosomal modification protein rimK-

like family member B 

0.0488 1.327 

1700030C10Rik 

/// 

3110053B16Rik 

/// Gm9158 

RIKEN cDNA 1700030C10 gene /// 

RIKEN cDNA 3110053B16 gene /// 

predicted gene 9158 

0.0095 1.322 

--- --- 0.0375 1.322 

1110059G02Rik RIKEN cDNA 1110059G02 gene 0.0317 1.320 

1810028F09Rik RIKEN cDNA 1810028F09 gene 0.0083 1.314 

Itgav integrin alpha V 0.0150 1.312 

D13Ertd150e DNA segment, Chr 13, ERATO Doi 150, 

expressed 

0.0412 1.311 

Fam101a family with sequence similarity 101, 

member A 

0.0390 1.310 

Arhgef17 Rho guanine nucleotide exchange factor 

(GEF) 17 

0.0154 1.305 

Slc25a35 solute carrier family 25, member 35 0.0350 1.305 

Ceacam1 carcinoembryonic antigen-related cell 

adhesion molecule 1 

0.0485 1.304 

Cndp1 carnosine dipeptidase 1 0.0467 1.302 
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(metallopeptidase M20 family) 

Tssk4 testis-specific serine kinase 4 0.0291 1.300 

Smr2 submaxillary gland androgen regulated 

protein 2 

0.0070 1.300 

--- --- 0.0326 1.299 

Il7r interleukin 7 receptor 0.0495 1.294 

Ttc23 tetratricopeptide repeat domain 23 0.0349 1.293 

Moxd1 monooxygenase, DBH-like 1 0.0273 1.290 

Sall1 sal-like 1 (Drosophila) 0.0214 1.289 

Galc galactosylceramidase 0.0309 1.289 

Il1rap interleukin 1 receptor accessory protein 0.0374 1.289 

Olfr17 olfactory receptor 17 0.0379 1.287 

Agap1 ArfGAP with GTPase domain, ankyrin 

repeat and PH domain 1 

0.0282 1.284 

Prrx1 paired related homeobox 1 0.0152 1.281 

--- --- 0.0066 1.279 

Clec4n C-type lectin domain family 4, member n 0.0427 1.276 

C030030A07Ri

k 

RIKEN cDNA C030030A07 gene 0.0260 1.275 

--- --- 0.0083 1.274 

Gxylt2 glucoside xylosyltransferase 2 0.0435 1.273 

Cphx /// 

Gm2104 /// 

Gm2135 

cytoplasmic polyadenylated homeobox 

/// predicted gene 2104 /// predicted gene 

2135 

0.0402 1.273 

--- --- 0.0039 1.272 

Ahnak AHNAK nucleoprotein (desmoyokin) 0.0341 1.271 

Olfml3 olfactomedin-like 3 0.0004 1.271 

Gm13111 predicted gene 13111 0.0110 1.270 

Plscr4 phospholipid scramblase 4 0.0064 1.266 

1700026J04Rik RIKEN cDNA 1700026J04 gene 0.0119 1.263 

--- --- 0.0337 1.257 

Ccdc64b coiled-coil domain containing 64B 0.0466 1.257 
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Xlr3a /// Xlr3b 

/// Xlr3c 

X-linked lymphocyte-regulated 3A /// X-

linked lymphocyte-regulated 3B /// X-

linked lymphocyte-regulated 3C 

0.0362 1.254 

1700010N08Rik RIKEN cDNA 1700010N08 gene 0.0193 1.251 

Chrdl1 chordin-like 1 0.0190 1.250 

--- --- 0.0274 1.243 

Ch25h cholesterol 25-hydroxylase 0.0418 1.242 

Slc22a27 solute carrier family 22, member 27 0.0109 1.241 

--- --- 0.0162 1.241 

Casp4 caspase 4, apoptosis-related cysteine 

peptidase 

0.0465 1.240 

Itga4 integrin alpha 4 0.0335 1.237 

Epsti1 epithelial stromal interaction 1 (breast) 0.0248 1.237 

--- --- 0.0493 1.233 

A430107P09Rik RIKEN cDNA A430107P09 gene 0.0067 1.232 

4930512B01Rik RIKEN cDNA 4930512B01 gene 0.0489 1.232 

Pou3f1 POU domain, class 3, transcription factor 

1 

0.0424 1.228 

Scn7a sodium channel, voltage-gated, type VII, 

alpha 

0.0335 1.221 

Naaladl2 N-acetylated alpha-linked acidic 

dipeptidase-like 2 

0.0459 1.221 

Fmo1 flavin containing monooxygenase 1 0.0087 1.218 

AU021884 expressed sequence AU021884 0.0191 1.218 

4833413E03Rik RIKEN cDNA 4833413E03 gene 0.0229 1.214 

Tmigd1 transmembrane and immunoglobulin 

domain containing 1 

0.0357 1.213 

Gpr126 G protein-coupled receptor 126 0.0400 1.206 

Taf7l TAF7-like RNA polymerase II, TATA 

box binding protein (TBP)-associated 

factor 

0.0448 1.205 

4930434J08Rik RIKEN cDNA 4930434J08 gene 0.0178 1.203 



288 
 

Cphx Cytoplasmic polyadenylated homeobox 0.0468 1.203 
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