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ABSTRACT 

This study concerns the analysis of elements involved in the control over entry into 

mitosis in the fission yeast, Schizosaccharomyces pombe. The initial aim was to 

characterise the role of the wini gene in this control system. The winl.1 mutation 

shows a strong interaction with weel and cdc25, genes which had previously been 

shown to play an important role in the control over entry into mitosis, probably 

acting through the cdc2 protein kinase. 

The strategy for the cloning of wini was to isolate sequences capable of suppressing 

the temperature sensitive cdc phenotype arising from the combination of win 1.1 with 

weel.50 and cdc25.22. Following the extensive screening of gene libraries, it proved 

impossible to isolate wini using this approach, although five new genes were isolated 

as multicopy suppressors of this phenotype. None of these sequences correspond to 

any known mitotic control gene, and therefore identify new genes that affect the 

control of entry into mitosis. These were named wis (win suppressing) 1 to 5. 

A molecular analysis was undertaken on the pwis plasmids, and the phenotypes of 

various cell cycle mutant strains containing the pwis plasmids were also examined. 

wisi was found to be capable of reducing the cell length at division in a dosage 

dependent manner, suggesting that wisi is involved in a rate limiting step controlling 

entry into mitosis. A null allele of wisi was constructed and found to results in large 

cells which have poor viability upon entry into stationary phase. DNA sequence 

analysis of wisi predicts a 605 amino acid gene product with a strong homology to 

serine/threonine protein kinases. Strains lacking in wisi function are still sensitive to 

levels of weel and cdc25 expression, suggesting that wisi acts upstream of these 

control elements. 

The interaction of winl.1 with other cell cycle mutants was studied and the wini 

locus mapped. The cloning of the closely linked gene tpsl9 could provide an 

alternative strategy for the isolation of wini. Both win 1.1 and a wisl allele were 

found to be capable of suppressing the hypersporulation phenotype of patIts  

mutations, suggesting that the wini and wisi gene products may play a role in the 

regulation both of mitosis and meiosis. 
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VLADIMIR: Let us not waste our time in idle discourse! 

Let us do something while we have the chance..... 
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CHAPTER 1: INTRODUCTION 

1.1: THE EUKARYOTIC CELL CYCLE 

The cell cycle has been defined as the events which take place between the birth of 

the cell, and its subsequent division into two daughters (Mitchison, 1971). In order 

to study the mechanisms controlling this complex series of co-ordinated events in 

eukaryotes, several approaches have been used. In organisms such as yeast, mutations 

which arrest the cell cycle at specific points have been used, and physiological 

studies on both embryonic cells and higher eukaryotic cells in culture have been used 

to study factors controlling progress through the points in the cell cycle at which 

these cells naturally arrest. 

The eukaryotic cell cycle was originally divided into two phases: mitosis, during 

which the segregation of chromosomes could be observed, and interphase. Interphase 

may be divided into three phases: G1, S, and G2, with mitosis (M) occurring between 

G2 and G1 (Howard and PeIc, 1953). During S phase, chromosome replication takes 

place: this involves not only the precise replication of the entire DNA content of the 

nucleus in a semi-conservative manner, but also the assembly of the structural 

components of the chromosome, such as nucleosomes and scaffold proteins. During 

mitosis the sister chromatids formed during S phase are partitioned equally to two 

daughter nuclei. GI and G2 were once viewed merely as "gaps" in the cell cycle, but 

are now known to be phases during which essential control mechanisms operate. 

1.1.1: Temporal controls 

The series of events required for the completion of a normal cell cycle take place in 

a defined temporal order, and several possibilities exist for mechanisms which 

determine the correct order of events (Fig. 1.1). 

One such possibility for the temporal control of cell cycle events is that each event is 

solely dependent upon the completion of a preceding step. A simple example of such 

a model would be a series of enzyme catalysed reactions, in which the substrate of 

each reaction was the product of the preceding one. 
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Figure 1.1: Models for the control of temporal order 

A 	 A  
I 

B 	 B --C --'D 

A 	X 	E 

I F - G ----H 

A 
C 	

E t 	B 
S%Z,1r 

D 	C 

Linear dependent sequence: each event (A to E) is dependent upon the successful 

completion of the previous event. 

Branched dependent sequence: both pathways are dependent on the completion of 

steps A and E. Component X ensures the dependency of each pathway upon the 

other, acting at steps C and G in the two pathways. 

"Oscillator" model: timing components z and Y determine the timing of the events 

A to E. 
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In many systems, however, it is possible to infer the existence of regulatory control 

machinery from the existence of a "relief of dependency" when abnormal conditions, 

such as chemical treatment, or a mutation 

within the cell, lead to the relief of dependence of a cycle event upon one which 

would normally precede it. 

Such a result suggests that each step is not merely dependent upon the previous one, 

and that at least two pathways exist. Under conditions which result in relief of 

dependency, it is the dependency of one pathway upon another which is relieved, 

rather than the dependency between single events. 

Many examples of such a relief of dependence have been observed (reviewed by 

Hartwell and Weinert, 1989), suggesting that regulatory controls are common. 

Evidence such as that derived from of cell cycle mutants in the yeasts S.pombe and 

S.cerevisiae suggests that several independent sequences exist which intersect at 

defined points within the cell cycle to ensure their co-ordination (Pringle and 

Hartwell, 1981). Under abnormal conditions, these pathways may lose their 

dependence upon each other, suggesting that specific control mechanisms are 

involved. 

Another possibility for the control of the temporal order of cell cycle events is the 

existence of a "master oscillator" with a period equal to that of the cycle time. In 

this system, each event in the cycle would occur independently of other events, and 

separate pathways could continue entire!y independently. Such a model has been 

used to explain the rapid synchronous divisions in early embryos (Kirschner et a!, 

1985). 

1.1.2: The effects of external factors upon the cell cycle 

External factors which influence the cell cycle may be divided into those which 

regulate progress through the cell cycle, and those which regulate a cell's exit from 

the cycle. In micro-organisms such as yeasts, growth temperature and nutrient 

availability are the major influencing factors upon growth rate, so for the cells to 

maintain an approximate mean size at division under varying conditions, cellular 

growth and cell division must be co-ordinated. In such organisms nutrient 

availability is also one of the factors involved controlling exit from the cell cycle: 

cells deprived of essential nutrients will enter a quiescent or stationary phase. Other 

factors involved in signalling exit from the mitotic cell cycle are those involved in 
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sexual responses. 	In multicellular organisms the major factors influencing 

developmental differentiation and other cell cycle responses are growth factors, such 

as those in the serum-containing medium used for the culture of mammalian cells. 

1.1.3: Control points in the cell cycle 

Analysis of proliferation in higher eukaryotic cells has suggested that the major cell 

cycle control regulating proliferation and differentiation lies in G1. In culture, 

untransformed cells require serum, or factors derived from serum, to continue 

proliferation. Once proliferation ceases, such cells enter a quiescent state from a 

particular stage of G1. Such cells differ significantly from Gi  cells in a proliferating 

population in their physiological state (Baserga, 1985), leading to the idea that they 

are in a distinct stage in terms of the cell cycle, which has been termed G0. The 

existence of such a control point was first hypothesised by Pardee (1974), who 

observed that cells arrested by a variety of different treatments ceased growth in G1. 

The work of Zetterberg and Larsson (1985) supports this hypothesis, and divides G1 

in to two phases: G1 (post-mitotic) during which they are sensitive to serum 

concentrations, and G1 (pre-S). Cells in G1 (pre-S) have passed the Gi  control point 

and will go on to progress to division even if incubated in serum free medium. In 

some organisms this control point appears to be a rate limiting step regulating cell 

cycle progress in proliferating cells by imposing a minimum size for entry into S 

phase, although this has not been proved to be the case in mammalian cells. 

An analogous rate limiting control point was identified in S.cerevisiae by Hartwell 

(1974) and termed "start". This is the stage in the division cycle of S.cerevisiae at 

which the cell becomes committed either to the mitotic cell cycle, to stationary phase, 

or to the pathway leading to meiosis and sporulation (diploid) or conjugation 

(haploids). The point of arrest by mating pheromones, or by loss of CDC28 

function, has been used to define start. Nutritionally arrested cultures of S.cerevisiae 

arrest before the completion of start in an unbudded G1 state (Pringle and Hartwell, 

1981). 

In contrast to this, start in S.pombe appears not to be rate limiting for cell cycle 

progress during fast exponential growth (Nurse and Fantes, 1981). Under these 

conditions, it is a point in G2, which appears to be rate limiting, though a G1 control 

becomes evident in cell size mutants (Nurse, 1975) and at slow growth rates 



(Nasmyth, 1985). S.pombe cells may arrest in either Gi  or G2 as a result of 

nutritional starvation (Costello et a!, 1986). 

1.1.4: The co-ordination of growth and division 

A population of cells grown under constant conditions has a mean cell size at division 

which will remain constant over many generations. Under the influence of changing 

nutritional availability, cells will regulate their cell division timing, as failure to do 

so would lead to progressive increases or decreases in cell size. Cell size must be co-

ordinated with division rate, so that deviations from the mean cell size are rapidly 

corrected; this has been demonstrated in several cases (e.g. Prescott, 1956; Fantes, 

1977). There are a number of models which can explain the co-ordination of growth 

with division (Fantes et a!, 1975). The model supported by most experimental 

evidence is that passage through a particular control point is regulated by a "sizer" 

control: the cell must reach a critical cell size before this step may be passed (Nurse 

and Fantes, 1981). An example of this form of control is observed in S.cerevisiae, 

where progress through start has been shown to dependent upon the attainment of a 

critical size Johnston et a!, 1977). In S.pombe there is strong evidence for a critical 

size requirement in G2 (Fantes and Nurse, 1977), and there is also evidence for such 

a G2 control in other lower eukaryotic organisms (reviewed by Berger, 1989). 

1.2: GENETIC ANALYSIS OF THE CELL CYCLE IN YEAST 

1.2.1: Cell cycle mutants 

The genetic analysis of the cell cycle was pioneered by Hartwell and his co-workers 

who isolated conditional lethal "cdc" mutants of S.cerevisiae which were defective in 

progress through the cell cycle (Hartwell et a!, 1974). Such mutants have been 

isolated in several other eukaryotes, but the yeasts S.cerevisiae and S.pombe have 

provided most of the information on the genetic control of the eukaryotic cell cycle. 

Such mutants all define functions which are required for the successful completion of 

the cell cycle, although only a fraction of these will be involved specifically in 

control mechanisms. 
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Mutants in S.pombe were classified as "cdc" on the basis of the elongated morphology 

shown by cells which continue growth without undergoing division (reviewed by 



Fantes, 1989). In contrast, the criterion used to classify S.cerevisiae mutants as cdc 

was that of a uniform terminal morphology at the restrictive temperature (Pringle 

and Hartwell, 1981). 

The terminal morphology at the restrictive temperature was used to indicate the stage 

of cell cycle arrest in each mutant strain. Of particular interest were the "start" 

mutants which were mating-competent at the restrictive temperature, and arrested as 

unbudded cells. 

Two classes of start mutants were defined on the basis of their terminal phenotypes: 

class 1 mutants (such as CDC28) continued cytoplasmic growth at the restrictive 

temperature, while class 2 mutants (C25, C0.33 and OC;35) arrested as unbudded 

cells, but did not continue to grow (Reed, 1980). 

Genes involved in rate limiting steps controlling the cell cycle may be identified 

either using cdc mutants which result in a block in cell cycle progress, or by 

mutations which cause an accelerated passage through a controlling step. In yeasts, 

such genes have been identified by mutant alleles which result in abnormally small 

cells. Examples of such genes include wee) and cdc2 in S.pombe (Nurse, 1975; Nurse 

and Thuriaux, 1980; Fantes, 1981), and CLN3 in S.cerevisiae (Nash et a!, 1988; 

Cross, 1988). 

1.2.2: The use of cell cycle mutants 

Several approaches may be used to utilise the properties of cdc mutants in order to 

examine the control of the cell cycle: 

The terminal phenotype of a cdc mutant may be informative about the stage of 

the cell cycle at which the wild type gene product is required by comparing this 

phenotype to identifiable morphological stages seen as cells progress through the 

normal cycle. 

The transition point of a cdc mutant may be determined by temperature shift 

experiments, and is defined as the last point in the cycle at which the wild type gene 

product is required for cell cycle progress. 

The terminal phenotype of double mutants where each of the single mutants has 

a distinct terminal phenotype may be informative regarding the dependency 

relationship between the two gene functions. 



If two reversible blocks of the cell cycle may be applied independently, then a 

dependency relationship between the two blocks may be established by the reciprocal 

shift method (Hereford and Hartwell, 1974). 

It has been possible to identify elements interacting with the cdc gene in question 

by such means as the isolation of chromosomal mutations capable of suppressing the 

cdc defect. These mutations may identify genes which are involved in the same 

control mechanism as the cdc gene. 

Finally, the development of techniques to transform yeast cells with shuttle 

vectors capable of maintenance both in yeast and E.coli has lead to the cloning of 

many cdc genes by complementation of their mutant phenotypes. This has been 

achieved by the transformation of cells carrying a temperature sensitive cdc mutation 

with a gene library consisting of plasmids containing yeast DNA fragments. Plasmids 

containing the cdc gene may be selected by their ability to complement the 

conditional lethal phenotype of the recipient strain. 

The isolation of cell cycle genes may yield information concerning the function of 

the gene product, and allows in vitro manipulation of such sequences, which may be 

followed by the examination of the effects of such manipulations upon the cell. In 

yeast, gene transplacement allows the normal copy of a gene to be replaced with a 

modified version (Rothstein, 1983). The majority of the coding region may be 

replaced by another marker to investigate the effect of the loss of gene function, or 

the effect of single base changes may be investigated by in vitro mutagenesis. The 

availability of the cloned gene also allows the analysis of transcript levels, and of 

elements involved in the regulation of transcription. In a few cases it has been 

possible to demonstrate evolutionarily conserved cell functions by showing that 

cloned genes from one species are capable of complementing cell cycle defects in 

another species: cdc2 homologues have been isolated from S.cerevisiae and human 

cells which are both capable of complementing cdc2 mutations in S.pombe (Beach et 

a!, 1982; Lee and Nurse, 1987). 

The predicted amino acid sequence of a gene may be derived from the DNA 

sequence analysis of cloned genes, and the comparison of such sequences to those of 

previously characterised proteins may be informative concerning domains involved in 

protein function and regulation. The sequence of non-coding regions may reveal 

motifs concerned with transcriptional control and with mRNA processing. 
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There have 'been many instances where the cloning of cell cycle genes by 

complementation has resulted not only in the isolation of the authentic cdc gene, but 

also in the identification of extragenic suppressors which are capable of suppressing 

the cdc phenotype when present in multiple copies. The isolation of such sequences 

has proved useful for the identification of other cell genes involved in cell cycle 

control, such as cyclin homologues identified in S.cerevisiae (Hadwiger ci a!, 1989), 

and the suci gene in S.pombe (Hayles ci a!, 1986a). 

1.3: THE CELL CYCLE IN S.POMBE 

The fission yeast Schizosaccharomyces pombe was chosen as a model system for cell 

cycle studies by Mitchison in the 1950s principally because of its linear growth 

pattern and symmetrical mode of division (Mitchison, 1990). At the same time, 

Leupold chose S.pombe for genetic studies because it was amenable to genetic 

manipulation, and had a mainly haploid mode of vegetative growth. The life cycle, 

genetics and molecular biology of S.pombe has been extensively reviewed in 

"Molecular Biology of the Fission Yeast" (A.Nasim, P. Young and B.F. Johnson, eds.) 

Academic Press, 1989. 

Under favourable conditions, S.pombe cells reproduce asexually by means of the 

mitotic cell cycle (Fig. 2). Haploid cells may be of two mating types, plus or minus, 

and homothallic strains undergo frequent mating type switching, although 

heterothallic strains with relatively stable mating type may also be isolated. When 

cells experience starvation, diploid zygotes are formed by pairwise cell fusion 

between cells of opposite mating type. As sporulation is also induced by starvation, 

such zygotes usually undergo meiosis immediately, forming four-spored asci. If 

newly formed diploid zygotes are transferred to fresh medium, some will resume the 

vegetative cell cycle as diploids, although upon starvation heterozygous diploid cells 

will enter meiosis, forming azygotic asci. 

The cells of S.pombe are round ended cylinders of nearly constant diameter which 

grow by length extension and divide by medial fission. Following the birth of a new 

cell, growth occurs only at the old end of the cell which existed in the previous 

cycle; the new end starts to grow at a defined stage termed NETO (New End Take 

Off) (Mitchison and Nurse, 1985). G1 is very short in the wild type cell cycle, and 

DNA replication has already taken place by the time of cell division (Nasmyth, 

1979). 



Figure 1.2: The S.pombe life cycle. 
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Haploid cells may be of two mating types, "minus" and "plus", which are relatively 

stable in heterothallic strains (A and B), though homothallic strains switch mating 

type frequently. When a mixed culture of cells experiences starvation, they will 

become agglutinative (C), and diploid zygotes are formed by conjugation and 

karyogamy (D). Usually meiosis follows immediately, followed by sporulation to give 

asci (E), which will break down to liberate four haploid spores. 

If newly formed zygotes are transferred to fresh growth medium, a proportion will 
restart the cell cycle as diploid cells (H). Upon starvation, such cells will sporulate, 

giving rise to an azygotic ascus (I). (Adapted from Egel, 1989) 



As well as providing a convenient physiological model for the study of the cell cycle, 
S.pombe 

is amenable to both molecular and genetic analysis: cells may be propagated 

as haploids or diploids and the relatively small genome (approximately 15Mbp) means 

that it has been possible to construct a fairly detailed genetic map (Munz 
et a!, 1989). 

S.pombe 
may be transformed to a high frequency by either linear or circular DNA 

constructs facilitating the isolation and molecular manipulation of functional DNA 
sequences. 

1.4: MAJOR GENETIC ELEMENTS OF CELL CYCLE CONTROL IN SPOMBE. 

1.4.1: Developmental controls 

Under Conditions of nitrogen starvation, S.pombe cells of an appropriate mating type 
will conjugate to form a diploid zygote. This is normally followed by meiosis, and 

the formation of four haploid spores. The stage in the cell cycle at which haploid 

cells make the decision between the mitotic cell cycle, or entry into conjugation 

followed by sporulatjon lies in GI, at a point analogous to start in 
S.cerevisiae, and 

the choice between the meiotic and mitotic pathways for diploid cells may also lie at 
this point. 

The product of the ranl gene (also known as pall) appears to be involved not only in 
controlling conjugation, but also with the regulation of meiosis (lino and Yamamoto, 
1985; Nurse, 1985). Loss of pall function releases the cells from the normal 
requirements of nutritional starvation and mating type heterozygosjty for meiosis and 

sporulation and releases cells from nutritional, though not from mating type 

requirements, for conjugation. In contrast, over expression of pall blocks entry into 
mitosis. The pall gene product was identified as a putative protein kinase on the 

basis of sequence homologies (McLeod and Beach, 1986), and has been demonstrated 
to show kinase activity in vitro (McLeod and Beach, 1988). 

In contrast to pall, mutations in the mei3 gene block entry into meiosis, while mei3 
overexpressjon derepresses it (McLeod et a!, 1987). The mei3 product has been 
demonstrated to interact with the pall gene product, and to inhibit pall protein 
kinase activity in vitro, suggesting that the decision between mitosis and meiosis is 
determined by a balance between patH and mei3 activities (McLeod and Beach, 
1988). The m62 gene also appears to be important in this control system: mei2 

10 
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function is required prior to pre-meiotic DNA synthesis (Bresch et a!, 1968; Shimoda 

et a!, 1985). mei2 mutants can suppress the meiotic derepression of pall mutants 

(lino and Yamamoto, 1985; Beach et a!, 1985), and transcription of mei2 is induced 

under conditions of nitrogen deprivation, although mei2 overexpression is not 

sufficient to induce meiosis (Watanabe et a!, 1988). 

Cyclic AMP has been shown to be important in the regulation of many cell signalling 

processes, not only in S.pombe (Levitzki, 1988). High levels of cAMP suppress the 

lethal phenotype of patl strains, and also block the transcriptional induction of 

mei2, and of at least two other mating type genes (Watanabe et a!, 1988). However, 

constitutive expression of mei2 blocks suppression of pat) by increased cAMP levels, 

suggesting that the effect of cAMP upon pat) activity may be mediated by changes 

in mei2 expression. 

The role of cAMP as a cellular signaling mechanism has been extensivley studied in 

S.cerevisiae: a mechanism mediated by the action of cAMP-dependent protein kinases 

positively regulates cell growth and inhibits differentiating pathways associated with 

nutrient depletion, such as entry into meiosis and sporulation or entry into stationary 

phase (Matsumoto et a!, 1985). Genes involved in a cAMP cascade response have 

been identified by mutational analysis. 

The activity of one of the two S.cerevisiae RAS genes is essential for cell growth and 

for adenylate cyclase activity. rasi ras2 double mutant strains, or other mutants 

which result in a reduced cAMP level, arrest as single unbudded cells, a phenotype 

similar to that shown by the start mutants cdc19, cdc25, cdc33 and cdc35 at the 

restrictive temperature (Tatchell, 1986). In contrast, mutations that constitutively 

raise intracellular cAMP levels, or result in an unregulated kinase activity result in a 

phenotype characterised by the inability to arrest growth in response to nutrient 

starvation, a lack of glycogen accumulation, and hypersensitivity to heat shock. 

CDC35 (CYRI) has been identified as the structural gene for adenylate cyclase 

(Boutelet et a!, 1985; Casperson et a!, 1985), and CDC25 is believed to act through 

ras proteins as a positive regulator of adenylate cyclase activity (Broek et a!, 1987). 

Mutations which lower intracellular cAMP concentrations enable diploid cells to enter 

meiosis and sporulation in rich media, while mutations activating the cAMP pathway 

prevent the formation of spores. These observations have lead to the suggestion that 

in S.cerevisiae cAMP levels are involved in controlling the transition from mitotic 

growth to meiosis and sporulation (Shilo et a!, 1978; Matsumoto et a!, 1983). In 
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S.pombe, the role of the single identified ras gene appears to be primarily in 

developmental control, which also involves cAMP, though the role of cAMP in other 

aspects of cell cycle control is not yet clear. 

1.4.2: G1 controls 

Cell cycle controlling steps exist in both 01  and G2, although in exponentially 

growing cells, the Gl control point is cryptic (Nurse and Fantes, 1981). That is, 

conditions do not normally prevail under which this control is a rate limiting step. 

In cells which are significantly smaller than would be expected under normal 

conditions due either to mutation (Nurse, 1975; Nasmyth et a!, 1979), or to 

physiological manipulation (Nurse and Thuriaux, 1977; Nasmyth et a!, 1979), a size 

requirement for entry into S phase is revealed. This G1 size control appears to act 

with the completion of the cdclO step at start (Nasmyth, 1979). 

Cells arrested by cdc2 and cdclO mutants were shown to be capable of directly 

entering the meiotic pathway (Nurse and Bisset, 1981), and on this basis cdc2 and 

cdclO were defined as mutants involved in a GI control analogous to Start in 

S.cerevisiae. Novak and Mitchison (1989) have identified the Gi transition point of 

cdc2 in growing cells, and found that it was not coincident with the cdclO transition 

point. In weel cells, the cdc2 transition point is as much as one third of a cycle 

before that of cdclO, and appears to be associated with an early G1 event, rather 

than control over entry into S phase. A role for cdc2 in the determination of the 

temporal dependency of cell cycle events has been suggested by the observation that 

certain mutant alleles of cdc2 affect the dependency relationship between S phase 

and mitosis (Enoch and Nurse, 1990). cdc2 is also involved in the control over entry 

into mitosis, and will be discussed in the following section. 

1.4.3: C2 controls 

During exponential growth, the major rate limiting step in the S.pombe cell cycle 

takes place in 02  and acts to control entry into mitosis. Cells respond to changes in 

medium or growth rate by changes in the timing of entry into mitosis. This may be 

explained if a form of size control is in operation controlling entry into mitosis, 

which may be regulated by growth rate and nutritional conditions (Nurse and Fantes, 

1981). 
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Further evidence for the existence of such a control was provided by the isolation of 

"wee" mutants, which undergo mitosis and cell division at a reduced size. Two genes 
gave rise to such a class of mutant: wee! and cdc2 (Thuriaux et a!, 1978). A 
requirement had already been shown for cdc2 in both G2 and G1 (Nurse and Bisset, 
1981), suggesting that cdc2 occupied a central role in the control of the cell cycle. In 
wee) mutants, the critical size required for entry into mitosis is reduced, and wee! 
cells show no response upon a shift to nitrogen_depleted medium. This is in contrast 

to wild type cells, in which the critical size for entry into mitosis is normally 

dependent upon growth medium components (Fantes and Nurse, 1977), which show a 

transient stimulation of mitosjs and division upon a shift to nitrogen depleted 

medium (Fantes and Nurse, 1978). These observations suggest a role for wee) as a 
monitor of nutritional status. 

The cdr 
mutations were also identified on the basis of their altered response to 

nutritional shifts: both cdrl and cdr2 mutant strains show a reduced division response 

upon a shift to nitrogen_depleted medium compared to that shown by wild type cells 
(Young and Fantes, 1987). wee) is epistatjc to cdr) and cdr2, suggesting either that 
cdrl and cdr2 are required in two separate path ways which each involve wee), or 
that cdr) and cdr2 act in a single pathway involving wee) (Young and Fantes, 1987). 
cdrl is allelic to nirn) (P. Young, Pers. Comm.), which was identified independently 
as an extragenic suppressor of cdc25 (Russell and Nurse, 1987b). 

cdc25 
was implicated in this control point following the observation that mutations in 

wee) were capable of Suppressing the G2 arrest shown by cdc25 cells upon a shift to 
the restrictive temperature (Fantes, 1979, 1981). Subsequent analysis has shown that 
wee) and cdc25 act independently to control entry into mitosis, possibly by regulating 
the activity of the cdc2 gene product (Russell and Nurse, 1986; Russell and Nurse, 
1 987a). 

The cdc13 gene was originally thought to be required during mitosis, judging from 

functional dependency analysis (Fantes, 1982), and the terminal phenotype of 
cdcl3.))7 (Nasmyth and Nurse, 1981). More recently, the observations that complete 
loss of cdc13 function results in cell cycle arrest with a G2 phenotype (Hagan et a!, 
1988; Booher and Beach, 1988), that cdc13 and cdc2 show complex allele specific 
interactions (Booher and Beach, 1987), and that the cdc2 and cdc13 gene products 
show cytological co-localisation and a physical interaction (Booher et a!, 1989) have 
suggested that cdc13 has a role in the G2/M control (see Section 6.1 .c.). 



1.5: A UNIVERSAL MITOTIC CONTROL? 

Recent molecular and biochemical evidence has indicated that the mechanisms 

controlling the eukaryotic cell cycle have been evolutionarily conserved among widely 

divergent species. Homologues of p34, the protein kinase which is the cdc2 gene 

product, the interacting protein p13 encoded by suci, and cyclin-like molecules have 

been implicated in cell cycle controls in a range of organisms (Reviewed by Lewin, 

1990). 

The original observations that the S.pombe cdc2 gene product was functionally 

homologous to the CDC28 gene product in S.cerevisiae (Beach et a!, 1982) suggested 

that cdc2 may be part of fundamental cell cycle control present in all eukaryotic 

cells. Molecular biologists and biochemists involved in cell cycle studies were able to 

settle their differences when the cdc2 protein kinase (p34) was found to be a 

constituent of maturation promoting factor (MPF) in Xenopus Laevis (Dunphy et a!, 

1988; Gautier et a!, 1988). MPF was originally defined as an activity present in 

mature amphibian egg cytoplasm that was capable of inducing the meiotic maturation 

of oocytes in the absence of protein synthesis, and has been the subject of extensive 

biochemical investigation. A highly purified preparation of MPF was found to 

consist of two polypeptides of relative molecular mass 34kD and 45kD (Lohka et a!, 

1988). The 34kD polypeptide was identified as a homologue of cdc2 (Dunphy et a!, 

1988; Gautier et a!, 1988), and the 45kD subunit was demonstrated to be homologous 

to a family of proteins known as cyclins (Draetta et a!, 1989). Cyclins were first 

identified as proteins which showed accumulation during interphase, and rapid 

proteolysis during mitosis in earlyembryos (Evans et a!, 1983) and exist in two 

classes, A and B, which are weakly related, but which share a stretch of 

approximately 150 amino acids known as the cyclin box. The cdc13 gene in S.pombe 

shows a high degree of homology with class B cyclins (Goebl and Byers, 1988; 

Solomon et a!, 1988). Biochemical and genetic evidence suggest a direct physical 

interaction between the cdc2 and cdc13 gene products (Booher and Beach, 1987; 

Booher et a!, 1989). Cyclins appear to be necessary for the activation of the cdc2 

protein kinase homologue in many systems, though their accumulation may not be 

the activating step. 

A class of cyclin-like (CLN) genes have been identified in S.cerevisiae which are 

believed to control the Gl/S activity of CDC28, which is functionally 

14 
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interchangeable with cdc2 (Beach et a!, 1982). These proteins show only weak 

homology to A or B cyclins, and their roles in the cell cycle have not been 

elucidated, although CLN3 function does seem to depend upon an intrinsic 

instability, as with other cyclin proteins (Nash et al, 1988; Cross, 1988). It has 

recently been reported that genes with a strong homology to B cyclins have been 

identified in S.cerevisiae by their interaction with as allele of CDC28 which is 

specifically defective in G2 function (Surana et a!, 1990). 

Homologues of other genes involved in the S.pombe cell cycle have also been 

identified in other species. cdc25 homologues have been identified in both 

Drosophila (Edgar and O'Farrell, 1989) and S.cerevisiae (Russell et a!, 1989) which 

are functionally interchangeable with the cdc25 gene. It has also been demonstrated 

that the weel gene product can delay the initiation of mitosis in S.cerevisiae, 

suggesting a conserved control mechanism. 

1.6: GENETIC ELEMENTS OF THE G2 CONTROL IN S.POMBE 

1.6.1: Major genetic elements of mitotic control 

Many interacting elements have been identified acting to control entry into mitosis in 

S.pombe. The major elements were identified by mutation, and physiological and 

classical genetical studies have been followed by the cloning and molecular analysis 

of the genes involved in this control system. A model for the mechanism by which 

the mitotic control in S.pombe operates is shown in Figure 1.3, and the properties of 

the individual elements are descibed in the following section. 

1.6.1.a: cdc2 

Cells carrying temperature sensitive alleles of cdc2 undergo cell cycle arrest when 

shifted to the restrictive temperature, becoming blocked in either G1 or G2 (Nurse 

and Bissett, 1981). One cold sensitive cdc2 allele has been isolated which appears to 

defective only in progression through G2 (Booher and Beach, 1987) and dominant 

"wee" mutations of cdc2 have been identified which result in an early entry into 

mitosis and division (Nurse and Thuriaux, 1980; Fantes, 1981). These observations 

suggest that cdc2 activity is required both in G1 and G2, and is also involved in a 

rate limiting step controlling progression through the G2/M control point. 



G 2 Phase 	 MPhase 	 G1 Phase 

	

Active 	 Inactive 
Complex 	 Complex 

cdc25 	suci? 

	

[c2J cdc2 	 [cdc2J 	" 

/€9T
weel 	

J03 

e 
nimi 

suci? 

Ic2I 

Degraded 

Figure 1.3: A model for the interaction of elements involved In the mitotic control 

of S.pombe. 

(The cdc13 gene product is also phosphorylated.) 
0 
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The cdc2 

gene product has been identified as a 34kD phosphoprotein with protein 
kinase activity (Simanis and Nurse 1986; Draetta et a!, 1987) Homologues of cdc2 
have been identified by both functional and sequence homologies in a wide range of 

eukaryotes, including yeast, plants, and mammals (Beach et a!, 1982; Draetta et a!, 
1987; Lee and Nurse, 1987; Gautier et a!, 1988; Dunphy et a!, 1988; Anon et a!, 
1988; Labbe et a!, 1988; John, et a!, 1989). In S.pombe, entry into M phase is 
believed to be brought about by the activation of p34 kinase activity, which has been 

demonstrated to be periodic, reaching a peak at the time of M phase, using an 
in vitro 

assay system with histone HI as a susbstrate (Moreno et al, 1989; Booher et a!, 
1989). In cells starved of essential nutrients, protein levels remains unchanged 

though there is a decrease in the level of p34 phosphorylation, which appears to be 

associated with loss of kinase activity in cell extracts (Simanis and Nurse, 1986). 

Regulation of kinase activity in growing cells is not due to changes in either 
transcript (Durkacz et a!, 1986) or protein levels during the cell cycle (Simanis and 

Nurse, 1986), and so is likely to result from Post-transcriptional modification (such 

as Phosphorylation) or subunit interactions, both of which appear to be involved. 

The major phosphorylated amino acids in the p34 kinase phospho-tyrosine and 

phospho- threonine. Dephosphorylation of tyrosine and threonine residues, which 

from site-specific mutagenesis experiments have been implicated in the regulation of 

p34 activity, occurs as cells enter mitosis. Dephosphorylation of particular residues 

appears to be coincident with the rise in kinase activity observed prior to M phase 
(Gould and Nurse, 1989). 

Many elements interacting with p34 have been identified, two of which, nimi 
(Russell and Nurse, 1987b) and weel (Russell and Nurse, 1987a) show a strong 
homology to protein kinases, and one of which (disl/bwsj) is homologous to the 
catalytic subunit of mammalian type-i phosphatase (Ohkura et a!, 1989; Booher and 
Beach, 1989), emphasising the importance of protein phosphorylatjon in the control 

over entry into mitosjs (reviewed by Witters, 1990). Both the suci and cdc13 genes 
show genetic interactions with cdc2, and there is strong evidence to suggest thst they 
regulate cdc2 activity by direct physical interaction with p34 (reviewed by MacNeill 
and Nurse, 1990). 
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1.6.1.b: suet 

A range of allele specific interactions exist between cdc2 and suci, which was first 

identified on the basis of its ability to suppress certain temperature sensitive cdc2 

mutants when present on a multicopy plasmid (Hayles et a!, 1986a). suci mutations 

have been isolated as extragenic suppressors of cdc2tS  mutants (Hayles et a!, 1986b). 

These suci mutations are dominant, suggesting that they are due to an alteration, 

rather than a loss, of suci function. suci levels do not affect cdc2 transcription, but 

a direct physical interaction between p34 and the suci gene product (p13) has been 

demonstrated (Brizuela et al, 1986). p13 is not required for the activation of the p34 

protein kinase at mitosis, but seems to be required at a later stage in the mitotic 

process (Moreno et a!, 1989). Loss of suci function results in cells blocked in the 

cell cycle containing mitotic spindles, and a high kinase activity, suggesting that p13 

may be involved in the post-mitotic inactivation of p34, rather than regulating its 

activity upon entry into mitosis. Over-expression of suci results in cell elongation, 

an effect which appears to be specific to G2 rather than Gi (Hayles et a!, 1986b; 

Hindley et a!, 1987), and strains in which suci is highly over-expressed are defective 

in the second meiotic division (Hayles et a!, 1986b). These observations suggest that 

suci also has a role in regulating the timing of nuclear division. 

1.6.1.c: cdc13 

The cdcl3 gene product is a 56kD protein which shows homologies to type B cyclins 

(Goebl and Byers, 1988; Solomon et a!, 1988; Hagan et al 1988). As is characteristic 

of this class of proteins, it is catastrophically degraded at mitosis (Moreno et a!, 

1989). p34 kinase activity appears to be dependent on the presence of p56 in 

germinating spores, although cdci3.117 cells retain a high level of kinase activity 

upon a shift to the restrictive temperature. One explanation for these observations is 

that p56 is required to regulate p34 kinase activity upon both entry into and exit 

from mitosis. Immunofluorescence staining of the p34 and p56 proteins has shown 

that p56 may be acting as a "molecular chaperone" with a role in determining the 

nuclear localisation of p34 during mitosis (Booher et a!, 1989). The lack of spindle 

formation in cdcl3.117 cells at the restrictive temperature (Hagan et a!, 1988), and 

the sensitivity of such cells to the antimicrotubule drug thiabendazole (Booher and 

Beach, 1988) have pointed to a role for the cdcl3 gene product in processes affecting 

mitotic spindle formation. 
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1.6.1.d: cdc25 

The protein kinase activity of p34 is regulated at the G2/M transition by the 

antagonistic effects of the weel and cdc25 gene products. Evidence for this 

regulation comes from two sources: the allele specific interactions of cdc2w alleles 

with weel and cdc25, and the additive effects of varying weel and cdc25 expression 

levels (Russell and Nurse, 1987a; Russell and Nurse, 1986). 

The cdc25 gene product is a protein of 67kD which shows no homologies with 

previously identified sequences in the current data bases (Russell and Nurse, 1986). 

Upon a shift to the restrictive temperature cdc251s  strains are blocked before the 

initiation of mitosis (Nurse et al, 1976; Fantes, 1979) and contain a low level of p34 

kinase activity (Moreno et a!, 1989), suggesting that cdc25 function is required for 

the activation of p34 kinase activity at mitosis. Once blocked cdc25ts  strains are 

returned to the permissive temperature, a peak in kinase activity coincides with 

chromosome condensation and levels of kinase activity decline at anaphase (Moreno 

et a!, 1989). cdc25 has also been demonstrated to act as a dosage dependent inducer 

of mitosis (Russell and Nurse, 1986). 

cdc25 mutations also result in some alterations with respect to the translational 

machinery of the cell, as they show allosuppressor activity (Nurse and Thuriaux, 

1984). This suggests that cdc25 may be involved in sensing the nutritional state of 

the cell, possibly by monitoring growth rate, which would in turn affect tRNA and 

protein synthesis. Other mutations, such as sa13 and cdr mutations, also show 

phenotypes which combine allosuppressor activity with an effect upon the cell cycle 

(Nurse and Thuriaux, 1984; Young and Fantes, 1984). 

1.6.1.e: weel 

In contrast to cdc25, the weel gene product functions as a dosage dependent inhibitor 

of mitosis. Inactivation of weel results in cell division at a reduced size (Nurse, 

1975), while overexpression causes a delay in the initiation of mitosis (Russell and 

Nurse, 1987a). Loss of weel function relieves the cell of the requirement for cdc25 

activity for entry into mitosis (Russell and Nurse, 1986). The predicted weel gene 

product shows sequence similarities with serine/threonine protein kinases, and, 

although kinase activity has not yet been demonstrated in vitro, mutations predicted 
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to abolish kinase activity have been shown to eliminate weel function in vivo (Russell 

and Nurse, 1987a). 

1.6.2: A model for the control of entry into mitosis 

The extensive studies carried out on the control elements described here has made it 

possible to postulate a model for their interactions. In this scheme, cdc2 activity is 

required to activate entry into mitosis, and this activity is controlled antagonistically 

by the actions of wee! and cdc25. The evidence that cdc2 activity is regulated 

independently by the levels of both wee! and cdc25 rests upon the additive effects 

effects of varying wee) and cdc25 levels, and the interaction of specific cdc2 alleles 

with wee) and cdc25. 

Two forms of cdc2w mutations which bring about advanced entry into mitosis have 

been identified, which show allele specific interactions with wee) and cdc25. Cells 

containing one type of mutation, typified by cdc2.1w, are specifically insensitive to 

weel expression, though respond essentially normally to cdc25 levels (Russell and 

Nurse, 1987a, Thuriaux et al, 1978). In contrast, mutants of the type typified by 

cdc2.3w are sensitive to levels of wee! expression, but show little response to changes 

in cdc25 levels (Russell and Nurse, 1987a). These observations suggest that wee) and 

cdc25 act independently on cdc2 to regulate its activity in G2. This theory is 

supported by the observation that the effects of wee! inactivation and cdc25 

overexpression are additive. Upon a shift to the restrictive temperature, a strain 

with artificially high levels of cdc25 which also has temperature sensitive wee) 

activity undergoes what has been termed "mitotic catastrophe" (Russell and Nurse, 

1986). This phenotype, which causes in a rapid decrease in viability, is also shown 

by cdc2.3w wee ltS strains at the restrictive temperature (Russell and Nurse, 1987a). 

This is the result that would be expected if the cdc2.3w gene product has the 

characteristics of p34 constitutively "on" with respect to activation by cdc25. The 

mitotic catastrophe phenotype appears to be due to cells attempting mitosis and 

division prematurely, and is characterised by a range of mitotic division 

abnormalities (Russell and Nurse, 1987a). 

Since dephosphorylation of cdc2 is required for its activation, an attractive possiblity 

for the interaction between weel and cdc2 is that wee) inhibits cdc2 function by 

phosphorylation, as wee) encodes a putative protein kinase. As cdc25 acts 

antagonistically to weel, this simple model would predict that cdc25 might encoded a 
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phosphatase. The cdc25 gene product shows no homologies to protein phosphatases, 
however, though it may act to control phosphatase activity. 

1.6.3: Other elements involved in the mitotjc control 

I.6.3.a: nimi 

This gene was identified as a suppressor of cdc25ts alleles when present in multicopy, 
and encodes a putative protein kinase (Russell and Nurse, 1987b). Strong 
overexpression of nimi gives a wee phenotype, and deletion results in elongated cells, 
suggesting that nimi, like cdc25, is a positive dosage dependent control element in 
the mitotic control. Loss of wee) function renders the cells insensitive to nimi 
expression levels, and overexpressjon of nim) does not bypass the requirement for 
cdc2 function. These observations suggest that nimi acts through cdc2, possibly by 
regulating wee) activity. Changes in the levels of nimi expression have no effect 
upon wee) 

transcript levels, suggesting that their interaction is post-translational 
One attractive possibility is that the nimi protein kinase regulates the activity of the 
wee) gene product by phosphorylation (Russell and Nurse, 1987b). 

1.6.3.b: bwsl 

This gene was isolated in the form of a sequence which reversed the suppression of 
cdc25 by weel when carried on a multicopy plasmid (Booher and Beach, 1989). It 
seemed likely that the genetic screen from which the bwsl gene was isolated would 
identify weel, or possibly other protein kinases which might be capable of acting 
upon wee) substrates. Suprisingly, the predicted bwsi gene product showed a strong 
homology to the catalytic subunit of mammalian type-i protein phosphatase, and was 
allelic to dis2 which had been cloned independently (Ohkura et a!, 1989). dis2 is one 
of four dis loci in which temperature sensitive mutations block chromosome 
disjunction (Ohkura et a!, 1988). sds2l, which will suppress disi mutations when 
present in multicopy, also encodes a type-I protein phosphatase (Ohkura 

et a!, 1989). The bimG gene in Aspergjllus nidulans appears to be important for the completion of 
mitosis (Doonan and Morris, 1989), and phosphatases have been demonstrated to play 

an important in the cell cycle control of other eukaryotes (Cycer and Thorner, 1989) 



1.6.3.c: The mcs genes 

The six mcs genes were identified because of the ability of mutant alleles to suppress 

the mitotic catastrophe phenotype resulting from the combination of wee) 15  and 

cdc2.3w. All mcs mutant alleles show a range of phenotypic interactions with 

different cell cycle mutations, including the cdc2w alleles, weel.50, cdcl3.117 and 

cdc25.22 (Molz et a!, 1989). Both the pncs2 gene and one extragenic suppressor of 

mcs2 have been cloned and sequenced, and although the predicted mcs2 gene product 

shows no obvious homologies with other identified proteins, its extragenic suppressor 

shows a strong homology with the protein kinase family (Molz, Pers. Comm.). 

1.6.3.d: wini 

A mutation defining the win) gene was identified by its ability to reverse the 

suppression of cdc25 by wee), a similar effect to that resuting from the 

overexpression of bwsi/dis2 (Ogden and Fantes, 1986). Only one mutant allele of 

win) has been isolated, win).), which is temperature insensitive, and in most genetic 

backgrounds results in a slight increase in cell division length. win).) in combination 

with wee) .50 cdc25.22 gives a striking phenotype: the cells are phenotypically wee on 

rich medium, but phenotypically cdc on minimal medium. The interaction is not 

allele specific to wee).50, and will not reverse the suppression of cdc25.22 by 

cdc2.3w. Dominance relations imply that win).) is a recessive mutation. Since 

win).) does not confer a conditional phenotype, it is not possible to determine if 

win) is required at a specific time within the cell cycle. (Ogden and Fantes, 1986) 

1.7: Aim and scope of this project. 

The initial aim of the work undertaken for this thesis was to characterise the role of 

win) in the control of the cell cycle. The strategy for this project could be divided 

it into three categories: 

The isolation of the win) gene. This would make possible manipulation of cloned 

sequences to examine the effects of win) overexpression and the deletion of the win) 

functional region on the c 

ell. The analysis of win) transcription, and the determination of the win) DNA 

sequence could also be undertaken, from which the amino acid sequence of the win) 

gene product could be predicted. 

The study of interactions between win) and previously identified cell cycle genes. 

OW 
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(ii) The investigatejon of the nutrient dependent phenotype of the 
weel.50 cdc25.22 win 1.1 triple mutant strain. 

The strategy for cloning wini was dependent upon the isolation of sequences capable 
of suppressing the cdc phenotype arising from the combination of winl.1 with 
weel.50 cdc25.22. Following extensive screening of gene libraries, it proved 
impossible to isolate the authentic wini gene using this approach, although 5 new 
genes presumed to be involved in the mitotic control were isolated as suppressors of 
this phenotype. These were named wis (win uppressing) I - 5. 

The work described here centres on the the molecular and genetic analysis of one of 
these suppressors, wisi, including the determination of its DNA sequence, and the 
study of interactions between winl.1 and Previously identified genes involved in the 
mitotic control. 



CHAPTER 2 
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CHAPTER 2: MATERIALS AND METHODS 

2.1: REAGENTS AND COMMONLY USED BUFFERS 

All reagents used were of analytical grade, except were indicated. 	Nucleic acid 

modifying enzymes were obtained mainly from Amersham, Boehringer Mannheim, 

Gibco-BRL and Pharmacia, and were used according to the manufacturers' instructions. 

Many standard methods for buffer preparation and nucleic acid handling were taken 

from Maniatis et al, (1982). 

2.1.1: Tris-HCI 

Tris Base (Tris[hydroxymethyl]aminomethane) was dissolved in water and the pH of the 

solution adjusted to the required value by the addition of HC1. 'Water was added to give 

a IM stock solution. 

2.1.2: EDTA 

A stock solution of 0.4M EDTA (Ethylenediaminetetramino acid di-sodium salt) was 

made by dissolving solid EDTA in water, adjusting the pH to 8.0, and adding to water 

to the required volume. 

2.1.3: TE 

A buffered solution consisting of 10mM Tris-HC1 and 1mM EDTA (pH7.6). STE buffer 

consisted of TE buffer containing 0.1M NaCl. 

2.1.4: Phenol 

Phenol was pre-equilibrated with IM Tris-HCI, followed by TE buffer (pH 7.6), and 

contained 0.1% hydroxyquinoline and 0.2% 13-mercaptoethanol to retard oxidation 

(Maniatis et a!, 1982). 

2.1.5: Chloroform 

Chloroform refers to a 1:24 (v/v) mixture of chloroform and isoamyl alcohol unless 

otherwise stated. 



25 

2.1.6: Citrate- phosphate buffer (pH5.6) 

0.1M Citric acid monohydrate 42m1 

0.2M Na2HPO4 	 58m1 

2.2: NUCLEIC ACID MANIPULATION 

2.2.1 General methods 

2.2.1.a: Extraction with phenol/chloroform 

Proteins were removed from solutions containing nucleic acids by extraction with phenol 

or with a 1:1 mixture of phenol and chloroform. Traces of phenol were removed by a 

further extraction with chloroform. Extraction was carried out by adding a volume of 

the organic phase equal to that of the solution of nucleic acid. The phases were mixed 

to form an emulsion and then separated by centrifugation. The aqueous phase was then 

transferred to a fresh tube and the nucleic acid recovered by precipitation. 

2.2.1.b: Precipitation of nucleic acids 

DNA was precipitated by one of three methods: 

0.1 volume of 3M NaOAc pH5.2 was added followed by 2 volumes of absolute 

ethanol. 

NaCl was added to give a final concentration of 0.1M, followed by 2 volumes of 

absolute ethanol. 

0.4 volumes of NH40Ac were added followed by 2 volumes of isopropanol. 

In each case the solution was mixed, cooled at -20°C and the DNA recovered by 

centrifugation. The pellet was washed in 70% ethanol, dried briefly, and dissolved in an 

appropriate volume of water or TE buffer. 

2.2.2: Plasmid vectors 

2.2.2.a: pUC-based plasmids. 

The pUC plasmids are used for the manipulation of foreign genes in E.coli. They 

consist of the pBR322-derived ampicillin resistance gene and origin of DNA replication, 

ligated to a portion of the LacZ gene of E.coli. pUC8 and pUC9 contain a polylinker in 

opposite orientations. pUC18/19 plasmids contain a more extensive polylinker than 

pUC8/9 (Vieira and Messing, 1982; Fig. 2.1). The vectors pTZ18/19 are similar to the 
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pUC plasmids, but contain in addition the fi origin of replication (Zoller and Smith, 

1983). If the host cell is superinfected with the helper phage M13K07, replication will 

be initiated at the fi origin, resulting in the production of single-stranded DNA. pTZ 

plasmidS also contain the bacteriophage Ti promoter adjacent to the polylinker for in 

vitro synthesis of large amounts of specific RNA. (Fig. 2.1) 

2.2.2.b: pDB248 

The vector pDB248 was derived from the E.coli plasmid pBR322 (Bolivar et a!, 1977) 

and the S.cerevisiae plasmid pJDB248 (Beggs, 1978). It is capable of autonomous 

replication in E.co!i and S.pombe. The S.cerevisiae LEU2 gene carried by this plasmid is 

capable of complementing mutations in the leul gene of S.pombe and the leuB6 gene of 

E.coli. The plasmid also contains antibiotic resistance genes amp' and tet' which allow 

the use of the antibiotics ampicillin and tetracycline for plasmid selection in E.coli (Fig. 

2.2). 

2.2.2.c: pDB262 

pDB262 is capable of autonomous replication in E.coli and S.pombe. Cloning DNA 

fragments into either the HindilI or BclI inactivates the lambda ci repressor gene 

product, and allows expression of the tetracycline resistance gene which is fused to the 

bacteriophage lambda PR  promoter. This plasmid is especially useful for gene library 

construction, since selection for tetracycline resistance ensures that all E.coli 

transformants contain recombinant plasmids (Wright et a!, 1986; Fig. 2.2). 

2.2.2.d: pIRT2 

This plasmid was constructed from the vector pUC18 by inserting a 1.2kb EcoRI 

fragment containing ARS1 into the EcoRl site in the polylinker, and a 2.2kb HindIll 

fragment containing the LEU2 gene into the Hindu! polylinker site (Russell, 1989). This 

plasmid is capable of autonomous replication in S.pombe and E.coli and allows the use of 

polylinker sites for the cloning of DNA fragments. However, there is no means of 

selecting specifically for recombinant plasmids in E.coli (Fig. 2.2). 

2.2.2.e: pIRTU 

This plasmid is similar to pIRT2, the only difference being that pIRTU contains a 1.7kb 

Hind!!! fragment containing the S.pombe ura4 gene in place of the LEU2 Hindu! 

fragment in pIRT2. 
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Figure 2.2: pDB248, pDB262 and pIRT2. 
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2.2.2.f: pWHS 

This plasmid was Constructed by a modification of pDB262. The truncated 13-lactamase 

gene of pDB262 was restored by the insertion of a 760bp Psi1 fragment from pUNI2I 
into the Psi1 site in pDB262 to allow selection of the plasmid in E.co/j by ampicillin 
resistance. Two new restriction sites (EcoRI and Sma!) were introduced into the ci gene 
by replacing the 1.1kb BcI!-BamHI fragment with the analogous fragment from pUNI2I 
(Wright et a!, 1986). 

2.2.2.g: pDAM6 

The plasmid pDAM6 Consists of the 4.0kb Psil fragment containing the LEU2 gene from the S.cerevjsiae 
vector YEpI3 inserted into the Psil site of pBR325. Cloning of 

fragments into the unique Hind!!! and BamHi sites within this vector results in 
insertional inactivation of the tetracycline resistance gene. This plasmid is capable of 
autonomous replication in E.coII, though not in S.pombe (Wright et a!, 1986). 

2.2.2.h: pSPIOO 

This vector was derived from the plasmid pFL20 (Losson and Lacroute, 1983) by 
deletion of the sib-containing EcoRl fragment. It contains pBR322, the S.cerev,sjae URA3 gene and the S.pombe sequence arsi. 

2.2.3: Molecular analysis of DNA 

2.2.3.a: Restriction enzyme analysis 

Restriction endonucleases were used as recommended by the manufacturers in the 

appropriate buffers supplied with the enzymes. DNA in solution was incubated along 

with the restriction enzyme at 37°C (unless otherwise recommended) for 1-15 hours. 

Digests were terminated by the addition of 0.1 volumes of 0.2M EDTA pH 8.0. 

2.2.3.1,: Treatment with Kienow enzyme for blunt ending 

When it was necessary to convert the staggered ends left by some restriction enzymes to 
blunt ends, the cut DNA (5 - 10 1ug) was treated with the Klenow fragment of DNA 
polymerase I at 25°C in 10 - 20,ul of a buffer containing the following: 
Potassium phosphate (pH 7.4) 130mM 

MgCl2 	 6.5mM 
DTT 	 1mM 
BSA 	 3ug/ml 
dATP/dCTp/dGTp/dVFp 	33,uM 
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2.2.3.c: Ligation of DNA 

Ligation of restriction enzyme termini was carried out in a solution containing the 

following: 

DNA 1 - iOpg/lO 1 

Tris-HC1 (pH 7.6) 66mM 

MgCL2 6.6mM 

DTF 1mM 

ATP 66M 

T4 DNA ligase 	 1 - 2 units/100 

This was incubated for 6-18 hours at 14°C for cohesive termini, and at 25°C for blunt 

ended termini. 

2.2.4: Labelling of DNA fragments with 32P-containing 

nucleotides 

2.2.4.a: Oligonucleotide- primed labelling 

50ng of DNA was routinely labelled using the Pharmacia Oligolabelling kit after the 

method of Feinberg and Vogeistein (1983). Appropriate DNA fragments were isolated 

by excising bands from 0.8% w/v low melting point agarose ("Seaplaque" made by FMC 

BioProducts) gels made with TAE electrophoresis buffer (section 2.2.5). The isolated 

fragment was placed in a pre-weighed microcentrifuge tube, and water added at a ratio 

of 3ml H20/9 of gel. The tube was then placed in boiling water for 10 minutes to melt 

the agarose and denature the DNA. 

The labelling reaction was carried out by the addition of the following reagents: 

H20 (to a total volume of 504) 

10t1 OLB buffer (see below) 

2/1 of 10mg/mi bovine serum albumin 

30 - 50ng DNA in agarose (up to 32.441 total volume) 

51 of [32P]dCTP at 10 Ci/al (Amersham) 

2 units of large fragment of E.coli DNA polymerase I (Klenow). 

The reaction was incubated at room temperature for 4 - 12 hours, before being stopped 

by the addition of 200,l of a solution containing 20mM NaCl, 20mM Tris-HCI (pH 7.5), 

2mM EDTA, 0.25% SDS, 1u.M dCTP. 

OLB is made from the following components: 

Solution 0: 1.25M Tris-HCI, 0.125M MgCl2 at pH 8.0. 
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Solution A: Imi solution 0 + 18,aI 2-mercaptoethanol + 51A of dATP, dTTP and dGTP at 

a concentration of 0.1M. 

Solution B: 2M Hepes, titrated to pH 6.6 with 4M NaOH. 

Solution C: Hexadeoxyribonucleotides (Pharmacia) evenly suspended in TE at 90 OD 

units/mi. 

To prepare OLB, solutions A, B and C were mixed in a ratio of 100:250:150, 

respectively. 

2.2.4.b: Production of labelled single stranded probes 

Single stranded DNA obtained from pTZ plasmids (Section 2.4.1) was annealed with the 

reverse sequencing primer, which is a 17 base oligonucleotide complementary to a 

sequence neighbouring the polylinker in pTZ 18/19, in the following solution: 

5*1 single stranded DNA (0.5pg) 

2,sd reverse sequencing primer (5ng) 

1J Kienow enzyme buffer (as supplied by manufacturers) 

4.5d H20 

The reverse sequencing primer 1. This mixture was heated to 80°C for 10 minutes, and 

then allowed to cool slowly to room temperature. The following solutions were then 

added: 

1,d1 of [ 32P]dCTP at 10 Ci/,il 

g1DTT(0.1M) 

l,l of a solution containing 0.5mM dGTP, dATP and dTTP 

2 units Klénow enzyme. 

This was incubated at room temperature for 1 - 2 hours, before stopping the reaction by 

adding of 1J of 0.4M EDTA. 

2.2.5: Agarose gel electrophoresis of DNA 

2.2.5.a Electrophoresis buffers 

(i) E Buffer 

Tris base 	 36mM 

NaH2PO4 	 30mM 

EDTA 	 1mM 

(final pH 7.6) 
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(ii) TAE buffer 

Tris-acetate 	 40mM 

EDTA 	 1mM 

(final pH 8.0) 

A 5 x concentrated stock was made by dissolving 24.29 of Tris base in water, adding 

57.1ml glacial acetic acid and 25ml O.4M EDTA (pH8.0), and adding water to a final 

volume if 11. 

2.2.5.b: Methods 
For the analysis of cut and ligated DNA preparations, 0.6% agarose gels in a variety of 

shapes and sizes were used. Agarose (type 2, medium EEO, Sigma) was dissolved in 1 x 

electrophoresiS buffer by brief boiling. Gels were run with an applied voltage of 4-8 

volts/cm. Following electrophoresiS, the gel was stained with a 1 ftg/ml solution of 

ethidium bromide for 10-30 minutes. The DNA was then visualised with an ultra-violet 

transilluminatOr (Ultra Violet Products) and photographs taken with a Polaroid MP4 land 

camera and Polaroid Type 667 positive film. 

2.2.5.c: Isolation of DNA fragments 
To isolate DNA fragments from agarose gels, a gel slice containing the appropriate 

fragment was excised from low gelling temperature agarose in TAE buffer. A volume 

of TE buffer equal to three times that of the gel slice was added and the agarose melted 

at 60-65°C for 10 minutes. The mixture was cooled, extracted with phenol and 

chloroform, and the DNA recovered by precipitation with ethanol. The DNA was 

finally resuspended in an appropriate volume of water or TE buffer. 

2.2.6: Agarose gel electrophoresiS of RNA 

2.2.6.a ElectrophoresiS buffer 

A 5x buffer stock (pH 7.0) was made to give a final concentration: 

25mM MOPS 

5mM NaOAc 

1mM EDTA 

2.2.6.b: Methods 

1.2g agarose (type 2, medium EEO, Sigma) was dissolved in 63m1 H20 + 16ml 5x buffer 

by heating, followed by cooling to 60°C. l7ml of 38% w/v solution of formaldehyde 
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was added, mixed, and the gel poured immediately. Samples for loading were prepared 

by the addition of SM NaCl to a final concentration of 0.15M and 2.5 volumes of 

absolute EtOH, followed by precipitation overnight at -20°C. Following centrifugation, 

the pellet was redissolved in 30p1  of the following buffer: 

formamide (deionized) 	 6001aJ 
formaldehyde (38% w/v) 	 200,i4 

5x electrophoresis buffer 

H20 	 l 6Opl. 
Formamide was deionised with mixed bed resin (AG 501-X8 D, BioRad Laboratories, as 

described by Maniatis el al, 1982). The RNA samples were incubated at 60°C for 5 

minutes followed by the addition of lpl  of 2mg/ml ethidium bromide, and loading into 

the gel slots. These gels were run under the same conditions as described in Section 

2.2.5. One slot was loaded with a small amount of tracking dye (containing bromophenol 

blue) as described in Section 2.2.5. 

2.2.7: Filter hybridisation of DNA 

2.2.7.a: Southern blotting. 

A modification of the method of Southern (1975) was used to detect specific DNA 

fragments from plasmids or within the S.pombe genome. GeneScreen or GeneScreen 

Plus nylon membranes (NEN-Du Pont) were used to immobilise the DNA and the 

procedures for hybridisation taken from the manufacturers' instructions. Southern 

blotting was carried out either using capillary absorption or by vacuum blotting. 

When the capillary method was used the agarose gel was soaked in 0.2N NaOH 0.6 NaCl 

for 30 minutes in order to denature the DNA, and then neutralised in blotting buffer 

(0.025M Na2HPO4/NaH2PO4 pH 6.5) for 1 hour with three changes of buffer. The gel 

was then placed on a blotting apparatus that allowed blotting buffer to be drawn up 

through sheets of blotting paper acting as wicks, through the gel, then the nylon 

membrane, and finally to be absorbed into a stack of paper towels. Transfer was 

allowed to continue for at least 12 hours. 

The vacuum blotting method used apparatus from Pharmacia (LKB 2016 VaCuGene 

vacuum blotting system). The gel was treated with depurination buffer (0.25N HCI), 

denaturation buffer (1.5M NaCl 0.5M NaOH), and neutralising buffer (l.OM Tris-HCI 

pH 5.0 2.0 NaCl) for 3-4 minutes each. These were drawn into the gel by the applied 

vacuum, and removed by aspiration after the allotted time. Finally transfer was allowed 
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to proceed for 20-30 minutes in a Solution of 20x SSC buffer (3M NaCl 0.3M sodium 
citrate) through the gel onto the nylon membrane. 

Once transfer was complete, the membrane was removed from the gel and washed in 

water or blotting buffer to remove any residual agarose. The membrane was then air 

dried and, in the case of GeneScreen membrane, baked under vacuum at 80°C for 3 
hours. 

2.2.7.1,: Hybridisation of filters 

Hybrid isation of the two types of membrane was carried out according to the 

manufacturers' instructions, in each case following the preferred protocols described 
using 50% 

formamjde in the prehybridisatjon and hybridjsation solutions. Hybridisatjon5 

were carried out at 42°C and were always allowed to proceed for at least 6 hours. The 

membrane was washed according to manufacturers' instructions in each case, and, after 

washing, allowed to air dry before being wrapped in Saran Wrap and autoradjographed 

2.2.7.c: Autoradiography 

The wrapped filter was placed in an X-ray film cassette adjacent to a preflashed sheet 

of Kodak X-Omat S type 1 film. An intensifying screen (Du Pont Lighting Plus) was  
placed next to the film and the sealed cassette placed at -70°C. After a sufficient 

exposure time, the film was developed in Kodak LX-24 developer for 4 minutes, 

washed in water, and fixed in Kodak FX-40 fixer for 5 minutes. The film was rinsed 
extensively in water and air dried. 

2.2.7.d: Removal of probe from hybridisation filters. 

GeneScreen filters were washed in the following buffer at 65 - 70°C for I - 3 hours: 
Tris-HCI (pH 8.0) 	5mM 
EDTA 	 0.2mM 

Sodium pyrophosphate 	0.05% 
Ficoll 	 0.002% 

GeneScreen Plus filters were washed in 0.4M NaOH at 42°C for 30 minutes, followed by 
0.1 x SSC, 0.2M Tris-HCJ (pH 7.5) at 42°C for 30 minutes. 

2.2.8: Filter hybridjsatjon of RNA 

2.2.8.a: Northern blotting 
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Transfer of RNA samples from gel to membrane was carried out using the capillary 

method, similar to that described for Southern blotting, although the gel required no 

pretreatment. Transfer was carried out overnight onto GeneScreen membrane. Once 

transfer was complete, the membrane was washed in blotting buffer to remove any 

residual agarose, and baked in a vacuum oven at 80 - 100°C for 2 - 4 hours. 

2.2.8.b: Hybridisation 

This was carried out as described for Southern blots. Following hybridisation, filters 

were washed according to the manufacturers instructions for Northern blots. 

2.2.8.c: Autoradiography 

This was carried out as described for Southern blots. 
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2.3: METHODS FOR THE MANIPULATION AND HANDLING OF 

SCHIZOSACCHAROMYCES POMBE 

2.3.1: General methods 

2.3.1.a: Strains 

The wild type and mutant strains of the fission yeast Schizosaccharomyces Pombe 

Lindner were all derived from the heterothallic 972 (mating type h) and 975 (mating 

type h) isolates described by Leupold (1950). 

Strain list: 

(i) winl.1-containing strains: 

weel.50 cdc25.22 win 1.1 h 

weel.50 cdc25.22 winl.1 h 

weel.50 cdc25.22 winl.1 leuI.32 h 

weel.50 cdc25.22 winl.1 leuI.32 h 

winl.1 h 

winl.1 1( 

winl.1 leuI.32 h 

winl.1 leuI.32 h 

cdc13.117 winl.1 h 

weel.50 winl.1 h 

cdc2.Iw winl.1 h 

cdc2.Iw wini.) leuI.32 h 

cdc2.3w winl.1 h 

cdc2.3w winl.1 leul.32 h 

weel.50 winl.1 h 

winl.1 ura4.D18 h 

win 1.1 [adh-cdc25:ura4] ura4.D18 

weel.50 win 1.1 ura4.D18 

weel.50 winl.1 [adh-cdc25:ura4J ura4.D]8 

winl.1 mcs3.12 weel.50 cdc25.22 leul.32 

winl.1 mcs4.13 weel.50 cdc25.22 leul.32 

winl.1 mcs6.13 weel.50 cdc25.22 leuI.32 

winl.1 mcs4.13 



win) .1 ade6.216 ura4.D18 leul.32 h 

winl.1 leul.32 swi5.39 h (SW! and SW2) 

win).) lysl.131 his6.365 swi5.39 h 

win).) lys).)31 his6.365 ural.171 swi5.39 h 

(ii) Ce!l cyc!e mutants: 

wee).50 cdc25.22 h 

wee) .50 cdc25.22 h 

cdcl3.1)7 h 

cdcl3.117 leu).32 h# 

cdc)3.1)7 leu).32 h 

wee) .50 h 

weel.50 Ieu).32 h 

weel.50 leul.32 h 

cdc2.)w leu).32 h 

cdc2.Iw leuI.32 h 

cdc2.3w leul.32 h 

cdc2.3w leuI.32 h 

wee).50 cdc2.lw 

weel.50 cdc2.3w 

weel.50 cdc2.lw h 

wee).50 cdc2.)w h 

weel.50 cdc2.3w h 

weei.50 cdc2.3w h 

[adh-cdc25:ura4] ura4.D18 leuI.32 h 

mcs3.)2 weel.50 cdc25.22 leuI.32 h 

mcs4.13 weel.50 cdc25.22 leu).32 h 

rncsó.)3 weel.50 cdc25.22 leul.32 h 

mcs4.13 leu).32 h 

cdc25.22 leul.32 h 

cdc2.33 ura4.D)8 leul.32 h 

cdr).34 leul.32 h 

cdr2.69 leul.32 h 
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(iii) Developmental mutants 
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patI.114 ade6.216 leuI.32 h 

patl.114 winl.1 h 

cgsl.1 ade6.216 leuI.32 h9°  

cgs2.3 ade6.210 h9°  

wisi disruptant strains: 

wisl.:LEU2 ade6.216 ura4.D18 leul.32 h (134) 

wisl.:LEU2 weel.50 ura4.D18 ade6.216 leul.32 h 

wisl.:LEU2 cdc2.lw ura4.D18 leul.32 h 

wisl::LEU2 cdc2.3w ade6.216 leul.32 h 

wisl.:LEU2 [adh-cdc25:ura4J ura4.D]8 leuI.32 

wisl:.LEU2 patl.114 ura4.D18 ade6.216 leuI.32 h 

wisl:.LEU2 patl.114 ura4.D18 ade6.216 leul.32 h 

wisl::LEU2 winl.1 ade6.216 ura4.D18 leuI.32 h 

wisl..LEU2 winl.I ade6.216 ura4.D18 leuI.32 h 

Others: 

leul.32 h 

leul.32 h 

ural.131 lysl.171 ade6.704 mat2.102 

ural.171 his6.365 lysl.131 ade4.31 swi5.39 h 

swi5.39 h 9°  

ade2.17 swi5.39 h 

ade2.17 h 

tpsl9.17 h 

ade6.210 ura4.D18 leuI.32 h 

ade6.210 ura4.D18 leuI.32 h 

ade6.216 ura4.D18 leu 1.32 h 

ade6.216 ura4.D18 leul.32 h 

Notes: 

Details of strains containing integrated copies of the pwis plasmids are described in 

Table 3.4 and 5.4. 

Details of strains containing increased copies of wisi are described in Section 6.2.2. 



All strains with a disrupted allele of wisi described above are derived from disruptant 

strain D4. 

Mating types are indicated where known. 

2.3.1.b: Media and growth conditions for S.pombe. 

Strains of S.pombe were routinely cultured on solid YEA complex medium containing 

per litre: 

glucose 	 30g 

yeast extract 

adenine 75mg 

uracil 75mg 

For liquid culture, the complex medium YEPD was used containing per litre: 

glucose 30g 

yeast extract 5g 

Bacto-peptone 5g 

The minimal medium used, EMM, was a minor modification of EMM2 (Mitchison, 1970; 

as modified by Nurse, 1975). It contains the following compounds per litre: 

glucose 	 20g 

potassium hydrogen pthalate 3g 

disodium hydrogen phosphate 

(anhydrous) 	 1 .8g 

ammonium chloride 	5g 

Vitamins, salts, and trace minerals were added from sterile stock solutions as described 

by Mitchison (1970). 

EMM-glut contained 3.74g/l monosodium glutamate substituted for NH4CI. For solid 

media, 20g/l agar and lml IN KOH were added. Amino acids, adenine or uracil were 

added from sterile stock to a final concentration of 7.5mg/ml where appropriate. 

Phioxin B was added to a final concentration of 20pg/ml when required after 

autoclaving. This dye aids the detection of colonies containing an increased number of 

dead cells (Kohli et a!, 1977). 1.2M sorbitol was included in solid media for the 

regeneration of osmotically sensitive spheroplasts. 

A nitrogen limiting medium ME consisting of 30g/l malt extract and 20g/1 agar was used 

to induce conjugation and sporulation. 
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2.3.1.c: Storage of pombe 

Strains of S.pombe were stored for up to a few months on yeast extract plates or slants 

at 4°C. Long term storage was carried out on silica gels as described by Gutz 
et a!, 

(1974) or in medium containing 30% glycerol at -70°C. 

2.3.2: Genetic analysis of pombe 

2.3.2.a: Crossing strains 

The standard genetical procedures of Gutz et a!, (1974) and Kohlj et a!, (1977) were 
followed. Strains were crossed by mixing together fresh isolates of two cell types on the 

surface of an ME plate. The mating mix was incubated at 25°C for 2 to 3 days to allow 
zygotes and/or asci to form. Crosses were between strains of h# and h mating types 
unless otherwise indicated. The progeny of crosses were examined either by random 
spore analysis or by tetrad analysis. 

2.3.2.b: Random Spore Analysis 

A loopful of mating mix was resuspended in ImI of sterile distilled water containing 20 1 

of a stock solution of the snail gut enzyme Helicase (Suc d'Helix pomatia, Industrje 

Biologique, France) and incubated overnight at 35°C. The stock is a 1 in 10 dilution of 

the preparation supplied. The spore concentration was estimated by a haemocytometer 

count, and an appropriate dilution plated onto solid media 

2.3.2.c: Tetrad analysis 

Single asci were isolated from a streak of the mating mix on a YEA plate using a fine 

glass needle attached to a Leitz micromanipulator. The plate was then incubated at 35°C 

for approximately 8 hours or overnight at 20°C to allow the ascus wall to break down. 

The spores were then separated on the surface of the plate with the micromanipulator 
and allowed to form colonies. 

2.3.2.d: Analysis of phenotypes 

The phenotypes of the cells within a colony were tested by replica plating or by 

streaking from a master plate onto EMM plus or minus growth supplements for 

auxotrophs, and onto YEA or fully supplemented EMM at the restrictive and permissive 

temperatures for temperature sensitive strains. 
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2.3.2.e: Diploid construction 

Two methods for constructing diploids were used: one involved the mat2.102 (meil.102) 

mutation, and the other complementing alleles of ade6. 

Strains carrying the matl.102 mutation at the mating type locus are able to conjugate 

with either h+  or h strains, but in the case of an h partner, the diploid nucleus formed 

is unable to sporulate. In suitable genetic background, diploid clones may be selected on 

media on which the haploid parents are unable to grow. The two strains were crossed as 

described above, but after incubation overnight, the mating mix was streaked onto a 

suitable selective medium containing Phloxin, and diploid colonies identified by their 

darker red colour. 

If sporulation competent diploids were required, then h+/h_strains  could be constructed 

using complementing alleles of adeó. The alleles ade6.210 and ade6.216 both confer 

adenine requirement for growth, but heterozygous diploids ade6.2101ade6.216 are 

prototrophic. The advantage of this system is that very little recombination occurs 

between these two loci, so very few prototrophic haploids arise. The diploids produced 

may be induced to sporulate easily, which is useful for some forms of genetic 

manipulation, such as deletion of an essential gene. The disadvantage of this system is 

that the diploids must be continuously kept in growth, for they will sporulate once 

stationary phase is reached. Strains carrying the alleles were crossed in the normal way, 

left to conjugate overnight and then streaked onto media that imposed a selection for 

adenine. Diploid colonies were recognised by their colour on phioxin-containing plates, 

and their ability to sporulate checked microscopically. 

2.3.3: Cell physiology 

2.3.3.a: Growth of liquid cultures 

A single colony was inoculated into a lOmi EMM or YE preculture and incubated at the 

permissive temperature until stationary phase was reached. An aliquot of the preculture 

was inoculated into 200m1 of an appropriate liquid medium in a 500m1 Erlenmeyer flask 

and incubated with shaking for 18 - 14 hours at 25°C or 35°C. 

2.3.3.b: Determination of cell number 

Cell number per ml of culture was determined either by haemocytometer count, or from 

a O.lml sample fixed in a filtered 0.1% formaldehyde, 0.1% sodium chloride solution. 
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After sonication to ensure that clumps were broken up, the cells were counted 

electronically with a Coulter counter (Industrial D) as described by Mitchison (1970). 

2.3.3.c: Temperature shift experiments 

A culture of the appropriate strain was incubated with shaking at the permissive 

temperature until the early exponential phase of growth was reached. At this point half 

of the culture was transferred to a fresh flask at the restrictive temperature, with the 

remainder of the culture remaining at the permissive temperature to act as a control. 

2.3.3.d: Cell length measurements 

Cells were grown to a density of 1.0 - 5.0 x 106  cells/mi in the required liquid medium. 

The length of at least 24 septated cells were measured using an eyepiece graticule 

calibrated against a micrometer slide on a Zeiss photomicroscope using a 40 x objective. 

2.3.3.e: Staining of S.pombe to reveal DNA and actin distribution. 

Exponentially growing cells in liquid culture were fixed with 3% formaldehyde, by the 

addition of 1 /10 vol/vol 30% formaldehyde in PM buffer. 

PM buffer (pH 6.5) 

KH2PO4 	 40mM 

K2HPO4 	 40mM 

MgCl2 	 0.5mM 

3g p-formaldehyde was added to approximately 8ml PM buffer and mixed thoroughly. 

This was heated to 60°C and lml SM NaOH added. More was added if the solution did 

not clear. This was then made up to lOml with PM buffer and cooled. Typically cells 

from lOml of a log-phase S.pombe culture were fixed. The cells were kept suspended 

/ during fixation for 30 minutes, after which time they were harvested by centrifugation 

and washed 3 times with fresh PM buffer. The cells were permeablized by resuspension 

in PM buffer containing 1% Triton X-100 for 30 seconds, and then washed again with 

fresh PM buffer 3 times. Following the final wash, the cells were resuspended in 50-

100)ul PM buffer or rhodamine-phalloidin solution (20pg/ml in 10% methanol, 90% PM 

buffer) when required. Monolayers of cells were air dried down onto coverslips and 

inverted onto a drop of l/ml DAPI. The coverslips were sealed with nail varnish and 

observed. 

Stained cells were examined using the 40x (Neofluar) objective on a Zeiss 

photomicroscope. Epifluorescent illumination (Wotan Mercury lamp HBO-50W) was 
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used in combination with Zeiss filter set 48 77 . 15 for rhodamine excitation and 48 77 02 

for DAPI excitation. 

DAPI will complex preferentially with A-T rich double-stranded DNA molecules 

(Williamson and Fennel, 1975) Rhodamine-conjugated phalloidin has been shown to be 

a specific stain for actin (Wehiand et al, 1980). 

2.3.4: Transformation procedures for S.pombe. 

2.3.4.a: Protopiast transformation method 

This method is similar to that described by Beach and Nurse (1981), and gives 

transformation frequencies of up to IxIO transformants per /g plasmid DNA. 

Solutions: 

TFI 

Sorbitol 	 1.2M 

Citrate-phosphate (pH5.6) 	20mM 

13-mercaptoethanol 	1% v/v 

EDTA (pH 5.6) 	 40mM 

TF2 

Sorbitol 	 1 .2M 

Citrate-phosphate (pH5.6) 	20mM 

13-mercaptoethanol 	0.2% v/v 

TF3 

Sorbitol 	 I .2M 

Tris-HCI (pH7.6) 	10mM 

TF4 

Polyethylene glycol 4000 	20% 

Tris-HCI (pH7.6) 	10mM 
* 

CaC12 	 10mM 

TF5 

Tris-HC1 (pH7.6) 	10mM 

Yeast extract 	 0.5mg/mi 

Leucine 	 0.5mg/ml 
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Uracil 	 0.5mg/mi 
* 

CaCl2 	 10mM 

* A sterile 1M solution of CaCl2 was added after autoclaving to the required 

concentration. 

Cells were grown in 200m1 of EMM plus any appropriate supplements to a density of 

approximately 0.5 - 1.OxlO 7/ml, and then harvested in a Sorvall RC-513 centrifuge at 

lkrpm for 5 minutes. The pellet was resuspended in 30ml of TF1 and transferred to a 

sterile polypropylene tube. The cells were then harvested in a MSE benchtop centrifuge 

and the pellet suspended in 5m1 of filter-sterilised TF2 containing 5mg/mi NovoSP 

enzyme. Cells were incubated at 30°C and protoplast formation monitored 

microscopically. When the sample contained approximately 50% spherical protoplasts, 

the cells were harvested a MSE benchtop centrifuge at half speed. The protoplasts were 

washed three times in TF3 by centrifugation, and resuspended to a final density of 

5xl08/ml in TF3 containing 10mM CaCl2. Plasmid DNA in a volume of 10,t11 or less was 

added to 0.lml of the protoplast suspension in an Eppendorf tube, and the mixture 

incubated at room temperature for 15 minutes. 1 ml of Tf4 was added and the mixture 

incubated for a further 15 minutes. The protoplasts were pelleted and resuspended in 

TF5. After incubation at 25°C for 1 hour, the cells were spread gently onto the surface 

of an EMM-sorbitol plate and incubated at 28°C until colonies appeared. 

2.3.4.b: Lithium thiocyanate transformation procedure 

This method is adapted from that described by Keszenman-Pereyra and Hieda (1988) for 

S.cerevisiae and does not require the formation of protoplasts, but gives transformation 

frequencies of only 2 - 5x10 3  transformants per jg plasmid. 

Solutions: 

Tris buffer 

10mM Tris-HC1 (pH 7.6) 

TB (filter sterilised) 

200mM lithium thiocyanate 

1mM magnesium acetate 

0.2mM calcium acetate 

10mM Tris-HC1 (pH 7.6) 

TBT 

lml TB 
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0.15ml triacetin (filter sterilised) 

(iv) PEG 

70g polyethylene glycol 4000 

lOOm! Tris buffer. 

Cells were grown to a density of approximately 0.5 - l.0x10 7/ml. lOml of this culture 

centrifuged in a MSE benchtop centrifuge, the cells resuspended in lOmI sterile water 

and centrifuged again. The pellet was then resuspended in 0.5m1 of freshly made up 

TBT. For each transformation, 0.115ml of this cell suspension was used, to which was 

added 10 1 of a solution containing 250ng to 2Ag plasmid DNA. Two volumes of PEG 

were then added, mixed well, and the cell suspension incubated at 30°C for 2 hours. 

The cells were then heat shocked at 42°C for 5 minutes, lml of Tris buffer added, and 

the cells collected by a short period of centrifugation in a microfuge. The pellet was 

resuspended in 200p1 Tris buffer, and the cells plated directly onto selective media. 

2.3.5: Preparation of DNA from S.pombe 

2.3.5.a: Genomic DNA 

Cells were grown to late log phase (1 - 2x10 7/ml) in 200ml of EMM with appropriate 

supplements. They were harvested by centrifugation for 5 minutes at 7 krpm in a 

Sorvall RC-5B centrifuge, and washed once in 50ml 20mM citrate-phosphate (pH5.6). 

The cells were then harvested by centrifugation in a MSE benchtop centrifuge and the 

supernatant discarded. They were resuspended in 5m1 TF1. A further Smi of this 

buffer was added containing 50mg NovoSP enzyme and the cells incubated at 30°C. 

When more than 80% of the cells had become osmotically sensitive, they were harvested 

at half speed in a MSE benchtop centrifuge and the pellet resuspended in 4m1 0.15M 

NaCl, 0.1M EDTA (pH 8.0). 0.2m1 Proteinase K (1mg/mi) and 0.15ml 25% SDS was 

immediately added and the preparation incubated at 45°C for 1 hour, followed by 15 

minutes at 70°C, and finally cooled on ice. 1/10 volume of 5.OM KOAc was added, and 

the sample incubated on ice for 30 minutes or longer. The sample was then centrifuged 

at 9krpm for 10 minutes, the supernatant transferred to a fresh tube, 0.4ml RNAse 

(1mg/mi) added and the sample incubated at 37°C for 1 hour. Following cooling to 

room temperature, the sample was extracted once with chloroform, and 2 volumes of 

ethanol added to the aqueous phase. The sample was cooled to -20°C and centrifuged to 

recover the precipitate. The pellet was drained well and resuspended in 4m1 TE buffer. 

The sample was extracted with phenol/chloroform, and the DNA recovered by a second 
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precipitation with ethanol. The final pellet was resuspended in 1 ml TE buffer and the 

DNA concentration estimated by comparison with known standards on agarose gels. 

2.3.5.b: Recovery of plasmid DNA from S.pombe 

Cells were grown to a density of 1 - 2x10 7/ml in a volume of lOml under selective 

conditions and harvested in an MSE benchtop centrifuge. The pellet was resuspended in 

1.5m1 TF1 containing 5mg/mi NovoSP enzyme and incubated at 30°C until the cells were 

over 90% osmotically sensitive. The cells were harvested at low speed in a microfuge 

and resuspended in 300,gl TE buffer. 35pl 10% SDS (w/v) was added and the tube 

incubated at 65°C for 10 minutes. 100,4 of SM KOAc was then added, the contents of 

the tube mixed well, and incubated on ice for 30 minutes. The tube was then spun at 

high speed at 4°C in a microfuge for 10 minutes. The supernatant was removed to a 

fresh tube and treated with the GeneClean Kit (Stratech Scientific Ltd.) as follows: 50/il 

of supernatant was added to 100,iJ Nal solution along with J ad of "glassmilk". This was 

incubated at room temperature for 5 minutes and then. spun for 5 seconds to pellet the 

silica particles. The pellet was washed 3 times with 400,al of "NEW" wash. The DNA 

was eluted from the silica twice with 10j1l of TE at 55°C for 3 minutes each time. S,*l of 

this solution (equivalent to 250aJ of original yeast culture) was then transformed into 

100,.l of competent E.coli JA226. 

2.3.6: Preparation of RNA from S.pombe 

A culture of the appropriate strain was grown to late log phase in EMM plus appropriate 

supplements. Cells from 50ml of this culture were harvested by centrifugation, 

transferred to an Eppendorf tube, and washed twice in lml 0.15M NaCl by 

centrifugation in a microfüge. The cells were then resuspended in 0.5m1 of an RNA 

extraction buffer, which consisting of the following components: 

NaCl 	 0.5M 

Tris-HC1 (pH7.6) 	 0.2M 

EDTA 	 0.O1M 

SDS 	 1.0% w/v 

The cell suspension was transferred to a glass tube, and an equal volume of acid washed 

glass beads (0.5mm diameter) added. 0.5m1 of a 1:1 mixture of phenol:chloroform was 

then added, the mixture vortexed for 40 seconds, placed on ice for 60 seconds, and then 

vortexed for a further 40 seconds. The cells lysate was transferred to an Eppendorf tube 

and centrifuged for 5 minutes. The aqueous phase was removed and extracted with 1:1 

phenol:chloroform, followed with an equal volume of chloroform. 2.5 volumes of 

ethanol was added, and the RNA precipitated at -20°C for a few hours, followed by 
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recovery by centrifugation. The pellet was washed once in 70% ethanol, allowed.to  dry, 

and resuspended in 100,Lil TE buffer. The RNA concentration was determined by 

measuring A260nm,  where 1 unit is equivalent to 40,i/ml RNA. The ration of 

A260nm:A260nm was used to estimate the purity of the RNA sample. 



48 
2.4: METHODS FOR Escherichia coli 

2.4.1: General methods 

Methods used for the routine handling of E.coli were taken from Maniatis 
et a! (1982) 

2.4.1.a: Strains 

The following strains were routinely used: 

fl.jn 	noty 

JA221 recAl leuB6 trpE5 hsdR- hsdM+ IacY600 
JA226 recBC leuB6 trpE5 hsdR- hsdM+ lacY600 
DB6656 pyrF::u trp lacZ hsdR- hsdMi- 
JMIOI supE thi D(lac-proAB) (F' traD36 proAB lac!qZDMJ5) 
BJ5 183 F- recBC- sbcB- endA galK met- strR thi- 1 biOT hsdR 
5K F- thi- thr-1 leuB6 lacYl tonA21 supE44 (lambda) - 	m( 
554 araDI89i2 7697t\ lacX74 ga!G guliC hsn hsm strA recAl3 

Mutations in the leuB ( JA221 and JA226) are Complemented by the S.cerevis,ae LEU2 
gene, and mutations in pyrF are Complemented both by the S.cerev,sjae URA3 gene, and 
by the S.pombe ura4 

gene. DB6656 was used specifically for the detection of plasmids 
containing ura+ 

sequences, and JA22 I and JA226 for the detection of LEU2 sequences. 
JA226 and BJ5183 were used for the recovery of plasmid from S.pombe, and JMIOI for 
the propagation of pUC-based plasmids and recovery of single stranded DNA. 5K was 

used in the transposon mutagenesis protocol (Section 2.5). Both JA221 and JMIOI were 
used for routine plasmid propagation. 

2.4.1.b: Media and growth Conditions for E.coli 

Strains of E.doli were routinely cultured on the rich medium LB Consisting of the 
following: 

Bacto-Tryptone 	 I Og/l 
NaCl 	 lOg/I 

Yeast extract 	 5g/l 

Glucose was added from a sterile stock solution to lg/l after autoclaving 
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For the production of single stranded DNA, cells were grown on 2xYT medium. 

Bactotryptone 	 1 6g/l 

NaC1 	 lOg/I 

Yeast extract 	 lOg/I 

Two forms of minimal medium were used: 

DMM (Davis minimal medium 	) 

K2HPO4 (anhydrous) 10.5g/l 

KH2PO4 4.5g/l 

(NH4)2SO4 1 .Og/l 

Sodium citrate 0.5g/l 

•After autoclaving, the following solutions were added: 

20% MgSO4 1 ml 

1mg/mi thiamine iml 

3.75mg/mi tryptophan iOml 

40% glucose Sml 

M9 

Na2HPO4 6g/l 

KH2PO4 3g/l 

NaCi 0.5g/l 

NH4CI 1 g/i 

The pH of this solution was adjusted to 7.4 and then the following components added: 

iM MgSO4 2ml 

20% glucose 1 Oml 

1M CaC12 0.1ml 

Cells were cultured at 37°C unless otherwise stated. Cell growth was estimated by optical 

density on a Unicam SP600 spectrophotometer. 

2.4.1 .c: Antibiotics 

(i) Ampicillin 

A stock solution of 100mg/mi of the sodium salt was made in 50% ethanol 50% water. 

This was used at a final concentration of 50 - 1001s.g/mi. 
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Chloramphenicol 

Solid chloramphenicol was dissolved in 100% ethanol at 34 mg/mI. This was added to 

media at a final concentration of 10g/ml. 

Kanamycin 

Kanamycin sulphate was dissolved in water at 25 mg/mI. This was used at a final 

concentration of 50 - 70fl/ml. 

Tetracycline 

Tetracycline hydrochloride was dissolved in 50% ethanol 50% water at 12.5mg/ml. This 

was used at a final concentration of 12.5 - 15p9/ml. 

Antibiotic stock solutions were stored at -20°C and were added to autoclaved media 

cooled to 55°C. 

2.4.1.d: X-gal 

X-gal (5-bromo-4-chloro-3-indolyl-13-D-galactoside) stock solution was made in 

dimethylformamide at 20mg/ml and stored at 4°C. It was used at a final concentration of 

20/ig/mi. 

2.4.1.d: Storage 

Strains were stored for up to a month on LB agar plates at 4°C. Long term storage was 

in medium containing 20% glycerol at -70°C. 

2.4.2: Transformation of E.coli 

Two methods of preparing competent cells were used: the first method gives cells that 

could be used the same day or the day after. The second method described here gives 

competent cells that can be stored for long periods at -70°C before use. 

2.4.2.a Calcium chloride procedure 

A stationary phase culture of E.coli in LB was diluted I in 100 into fresh LB medium 

and incubated with shaking at 37°C. When the culture reached an optical density A650 

= 0.2 the cells were chilled on ice for 10 minutes, then transferred to sterile McCartney 

bottles and harvested by centrifugation at 4°C. The cells were resuspended in half the 

original culture volume of ice cold 0.1M CaC12 and incubated on ice for 20 minutes. 

The cells were pelleted again, and resuspended in 1/100th of the original culture volume 
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of ice-cold 0.IM CaCl2. Aliquots of O.lml were dispensed into Eppendorf tubes and 

DNA added in a volume of l0,iJ or less. After incubation on ice for a further 30 

minutes, the transformation mixture was heat shocked at 42°C for one minute and then 

returned to ice. 400,iLl of LB was added and the cells incubated at 37°C for 30 minutes to 

1 hour to allow expression of plasmid borne antibiotic resistance. Appropriate aliquots 

were spread onto LB plates containing the appropriate antibiotic, which were then 
incubated overnight at 37°C. 

2.4.2.b: Competent cells for frozen storage 
Solutions: 

TfBI 

CaCl2.6H20 	 2.2g/l 
Glycerol 	 1 50g/l 
NaOAc 	 2.86g/l 

The volume was made up to 11, and the pH adjusted to 5.9'by the addition of a few 
drops of glacial acetic acid. The following were then added in solid form: 
RbCI 	 12g/l 
MnCl2 	 9.9g/l 

TfBII 

MOPS 	 2.09g/I 
RbC12 	 I .2g/l 
CaCl2.6H20 	 16.4g/l 
Glycerol 	 I 50g/l 

The pH was adjusted to 6.8 by the addition of iON KOH. 

Psi broth 

Tryptone 20g/l 

Yeast extract 5g/l 

After autoclaving, 20ml/l of the following solution (filter sterilised) was added: 
MgSO4.7H2o 246g/l 
NaCI 29g/l 
KCI 18.6g/l 

0.2m1 of a stationary phase culture of E.colj in LB was inoculated into 20m1 psi broth 
and grown to A550 of 0.48. This culture was cooled briefly on ice, and the cells 
harvested in a pre-cooled Sorvall RC-513 centifuge. The cells were resuspended in 33m1 
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of ice cold TfBI and incubated on ice for 15 minutes. The cells were then harvested as 

previously, and resuspended in 4ml of ice cold TfBII. The cells were incubated on ice 

for 20 minutes, after which time 0.2ml aliquots were frozen in liquid nitrogen and stored 

at -70°C. When required, tubes were thawed on ice and 0.1ml volumes of competent 

cells utilized as described for Method 1. 

2.4.3: Isolation of plasmid DNA from E.coli 

Plasmid DNA was isolated by the boiling method described below (Maniatis et at, 1982) 

when several small scale preparations were required, or by a modification of the alkaline 

lysis method of Birnboim and Doly (1979) when larger amounts were required. 

2.4.3.a: Small scale plasmid preparations. 

5ml of stationary phase culture of E.coli grown with shaking in the presence of the 

appropriate antibiotic were centrifuged in a MSE benchtop centrifuge, and the resulting 

pellet resuspended in 250,uI of STET (8% sucrose, 5% triton-100, 50mM EDTA, 50mM 

Tris-HC1 pH 8.0). 251 of STET containing lOmg/ml lysozyme was added and the 

mixture incubated on ice for 10 minutes. The tubes were then plunged into boiling 

water for 40 seconds and then returned to ice. The tubes were spun in a microfuge for 

10 minutes and the resulting gelatinous precipitate removed with a toothpick. One 

volume of isopropanol was added and the samples incubated at -20°C for 10 minutes, 

followed by centrifugation in a microfuge for 5 minutes. The pellet was resuspended in 

100,z1 of STE buffer and 2 volumes of ethanol added. Following incubation at -20°C 

for 1 hour, the tubes were centrifuged as previously, the pellets dried, and resuspended 

in 50t1 of TE or water. 

2.4.3.b: Large scale plasmid preparations 

250 ml of a stationary phase culture of E.coli grown with shaking in the presence of the 

appropriate antibiotic in LB medium were harvested in a Sorvall RC-513 centrifuge at 

7krpm for 10 minutes. The pellet was resuspended in 6ml of the following solution: 

10mM EDTA, 15% sucrose, 2mg/mi lysozyme, 25mM Tris-Hl(pH 8.0) and the sample 

incubated on ice for 20 minutes. 12ml 0.2M NaOH containing 1% SDS was added and 

mixed carefully by inversion. After incubation on ice for a further 10 minutes, 7.5ml 

3M NaOAc pH 4.6 was added, mixed carefully by inversion, and the sample returned to 

ice for a further 20 minutes. . The sample was the centrifuged at l0krpm for 10 minutes, 

and the supernatant transferred to a fresh tube. 504 of RNAse (1mg/mi) was added and 

the tube incubated at 37°C for 20 minutes. The aqueous phase was extracted twice-with 
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an equal volume of a 1:1 mixture of phenol/chloroform, and 2 volumes of ethanol added 

to precipitate the DNA. The pellet was resuspended in 1 .6ml water, and 0.4ml 4M NaCl 

added. 2m1 13% PEG 4000 was added and the sample incubated on ice for 1 hour. The 

plasmid DNA was recovered by centrifugation at 10krpm for 10 minutes, the 

supernatant removed, and the pellet washed in 70% ethanol before being dried and 

dissolved in 0.25m1 TE Buffer or water. 

2.4.5: Production of single stranded DNA 

The plasmids pTZ18/19 contain the fI origin of replication so, on infection with the 

helper phage M13KO7, cells containing these plasmids will synthesize single stranded 

DNA from this origin, which will be released in the form of phage particles (Section 

2.2.2.a). High titre preparations of helper phage were produced by growing a culture of 

infected E.coli (JM1O1) in 2xYT in the presence of 70 g/ml kanamycin. Cells were 

removed by repeated centrifugation. 

In order to produce single stranded DNA, a colony of the required clone in pTZ18/19 

was grown overnight in LB plus ampicillin. This culture was diluted I in 20 into 2xYT 

plus ampicillin and grown to A600 = 1.0. 2ml of this culture was infected with MI3KO7 

at a concentration of 10 pfu/cell, and shaken vigorously at 37°C for 1 hour. After this 

time 4000 of infected cells was added to lOml of 2xYT plus kanamycin (70jtg/ml), and 

this culture grown overnight with good aeration. The cells were removed by repeated 
1oe'I74#aA 4  

centrifugation until no pellet was produced, after which I .5m1 ofphage suspension was 

mixed with 0.2ml 27% PEG 4000, 3.3M NaCl. After standing for one hour at room 

temperature, this was centrifuged for 10 minutes in a microfuge and the supernatant 

removed. The pellet was resuspended in 0.65ml TE, and 40% PEG 4000 followed 

by 80d 5M NaCl were added. This was mixed well, allowed to stand for 30 minutes at 

room temperature, and then centrifuged for 10 minutes as above. The supernatant was 

discarded, the pellet resuspended in 200sil TE, and the resulting suspension extracted 

twice with an equal volume of 50:50 phenol/chloroform. The DNA was precipitated 

with EtOH, and resuspended in an appropriate volume of TE. The amount of single 

stranded DNA produced was estimated by comparison with known standards on agarose 

gels. 

2.5: Tn5 TRANSPOSON MUTAGENESIS 

The aim of using this form of mutagenesis was to produce clones of a plasmid species 

which contained the transposon Tn5 inserted at a different site in each clone. This 
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method was used to delimit function regions within plasmids containing S.pombe 

sequences. The Tn5-containing clones could be identified by the sequences conferring 

kanamycin resistance (KanR)  contained within the transposon. 

2.5.1: Preparation of a high titre phage lysate 

The phage used as the source of Tn5 was (lambda)c1857 0am  with the insertion of Tn5 

in the red gene. The phage was propagated in the strain 5K which is supE, because of 

the amber mutation in the 0 gene. A 5m1 culture of 5K was grown overnight in LB 

supplemented with 0.2% maltose. An infection was set up with 50pl cells and lOOpl 

phage (106pfu/ml) and incubated at room temperature for 10 minutes to allow the phage 

to adsorb. 6ml LB top agar was prepared, pre-cooled to 45-50 C, and added to the 

cells. The mixture was poured onto a LB plate, allowed to set for 10 minutes, and the 

plate incubated at 37°C. After 3-4 hours the plates were inspected for the onset of lysis, 

and used when nearly confluent lysis had occurred (typically after a further 2-3 hours). 

The phage were recovered by breaking off the top agar and collecting it in a glass tube, 

which was centrifuged at 15krpm for 15 minutes. The agar pelleted to about half the 

total volume, and the aqueous supernatant was collected and stored over CH3CI 

containing no isoamyl alcohol. The phage lysate was titrated against E.coli strain 5K at 

appropriate dilutions. A typical lysate gave at least 1010  pfu/ml. 

2.5.2: Mutagenesis using (Iambda)::Tn5 

This procedure depends on infecting a plasmid-containing E.coli strain with 

(lambda)(Tn5) and selecting for kanamycin resistant clones which arise from integration 

of the transposon into either plasmid or E.coli genomic sequences. This is done under 

conditions were the phage can neither lysogenise (c1857 at 37°C), nor replicate (Oam in a 

sup0  background), so that KmR  colonies reflect transposition events. 

The target plasmid to be mutagenised was first transformed into E.coli strain 554 which 

is sup°. A culture of this strain containing the required plasmid was then grown up 

overnight in LB plus the relevant antibiotic for the selection of plasmid sequences. This 

culture was diluted 1/100 in LB plus antibiotics plus 0.2% maltose and grown up to 

0D550 = 0.5. 5m1 of cells were harvested by centrifugation and resuspended in 2.5ml 

SM phage buffer (Maniatis et a!, 1982). lml of phage suspension was added to lml of 

this cell suspension and incubated at room temperature for 10 minutes. 4ml of LB was 

then added and the mix incubated at 42°C for 10 minutes, followed by 37°C for 30 
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minutes. The cells were then collected by centrifugation, resuspended in a small volume 

and spread onto LB plates containing kanamycin and any antibiotic resistance markers 

carried on the target plasmid. This plate was incubated overnight, and gave an almost 

confluent growth of colonies. 

These colonies represent transposition events not only into the target plasmid, but also 

into the E.coli genome. In order to isolate plasmid clones containing integrated 

transposon sequences, a bulk preparation of plasmid DNA was made by combining the 

transformants in a cell suspension and using this to inoculate a culture which was grown 

overnight in LB plus kanamycin. Plasmid DNA was prepared by the miniprep boiling 

method (2.4.3.a), and this plasmid preparation used to transform 5K to KmR.  Single 

transformants were then screened for the nature of plasmid::Tn5 they contained. 

Restriction endonuclease mapping was used to determine the position of integration, and 

a selection of plasmids used to transform S.pombe to determine if they retained the 

activity for which they had originally been selected. 

2.6: DNA SEQUENCING OF wisl 

2.6.1: Production of deletions 

A library of unidirectional "nested deletions", which consists of a series of plasmid 

subclones with progressively more of the wisi sequence deleted, was prepared as a 

convenient strategy for DNA sequencing (Henikoff, 1984). These experiments were 

carried out using the Pharmacia nested deletion kit, following the manufacturers 

instructions. 

In order to construct unidirectional deletions, plasmid DNA is digested with two 

restriction enzymes with unique sites in the polylinker, one to generate a blunt, or 5'-

overhanging end adjacent to the target sequence, and the other to generate a 3'-

overhang. This doubly digested DNA is treated with Exonuclease III which results in a 

progressive removal of nucleotides from one strand of the target sequence, creating a 

single stranded region which is subsequently removed with Si nuclease. The 3'-

overhang, which is not susceptible to Exo III, protects the vector sequences from 

digestion. Nested deletions are generated by the removal of aliquots at timed intervals 

during Exo III digestion. Following Si treatment, the plasmids are recircularised by 

treatment with Ti DNA ligase, and preparations transformed into competent E.coli. It is 
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then possible to screen the resulting deletion library by electrophoretic analysis of 

plasmid preparations from individual transformants. 

Digestion of wisl-containing plasmids to generate appropriate 3'- and 5'-overhanging 

ends was performed with the following enzymes: 

Enzymes 

Plasmid blunt/3'-overhang 5'-overhang 

pX2 Smal SphI 

pBX2 Smal BamHI 

pX3 Smal SphI 

pBX3 Smal BamHI 

2.6.2: Sequencing reactions 

Dideoxy sequencing reactions using T7 DNA polymerase were performed with the 

Pharmacia T7 sequencing kit, according to the manufacturers' instructions. 

This sequencing method depends upon base-spec: ific termination of enzyme catalysed 

primer extension reactions (Sanger et a!, 1977). Four reactions are performed, all 

containing primer, template, and four deoxynucleotides, but each including a different 

chain-terminating dideoxynucleotide. This leads to a mixture of fragments, each 

terminated with the particular dideoxynucleotide present in the reaction. When the 

products of the four reactions are electrophoresed side by side, the sequence in which 

nucleôtides are added to the primer may be deduced from the sequence in which 

successively larger fragments occur in the four lanes. The positions of the separated 

fragments are detected by virtue of radioactive label (in this, case [A- 35S]dATPAS) 

introduced before the primer extension reactions. 

The first stage in the sequencing reaction procedure was the annealing of primer to 

template. 1.5 - 2/ g  of a single stranded DNA preparation from a deletion clone, or 

other plasmid, was incubated in a buffered solution containing 8.88ng of reverse 

sequencing primer at 80°C for 10 minutes. This was followed by slow cooling to room 

temperature to allow annealing. The next stage was the labelling reaction. To the tube 

containing the annealed primer and template, lOjCi of [A- 35S]dATPAS was added, along 
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with 3 units of T7 DNA polymerase, and a labelling mix which contained dCTP, dGTP 

and dTTP. This reaction mix was incubated at room temperature for 5 minutes. The 

final stage was the termination reactions. Equal aliquots from the labelling reaction mix 

were transferred to microcentrifuge tubes prewarmed to 37°C, each containing different 

termination mixes. Each termination mix contains a different variety of 

dideoxynucleotide along with all four deoxynucleotides. Following 5 minutes incubation 

at 37°C, a stop solution was added to the reactions. Prior to acrylamide gel 

electrophoresis, an aliqsjot of each stopped reaction was transferred to a MicroSample 

plate (Pharmacia) and heated at 75 - 80°C before loading onto the prepared gel. 

2.6.3: Acrylamide gel electrophoresis 

Electrophoresis was carried out using the BRL Model S2 Sequencing gel electrophoresis 

system, following the manufacturers' instructions. 

The glass plates were cleaned thoroughly, and treated with dimethylchlorosilane, before 

being assembled, separated by "wedge" spacers, and sealed with tape. The following 

solutions were prepared: 

40% acrylamide stock, containing 380g/l acrylamide and 20g/1 bisacrylamide dissolved 

in 11 H20 and filtered through Whatman 3MM paper. 

10% ammonium persulphate made up freshly in H20. 

lOx Tris-borate-EDTA buffer (TBE), containing 121.1g/1 Tris base, 55g/l boric acid 

and 7.4g/l EDTA dissolved in 11 H20. 

A standard 6% polyacrylamide/urea gel was prepared as follows: 

40% acrylamide stock 	15ml 

Urea 	 50g 

lOx TBE 	 lOml 

H20 	 35m1 

TOTAL 	 99ml 

lml of 10% ammonium persuiphate and 201 4 of TEMED were added to this mixture to 

initiate polymerisation, and the gel poured immediately. Loading slots were formed with 

"sharkstooth" combs, following the manufacturers' instructions. 

Electrophoresis was carried out at approximately 1,500V (30-45mA) for a total of 6 

hours, with a duplicate set of samples added halfway through each run. 
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2.6.5: Autoradiography 

The glass plates sandwiching the gel were separated so that the gel remained attached to 

one plate. The gel/plate was then soaked in 10% methanol/10% acetic acid for 20 

minutes to fix the gel. The gel was transferred to a sheet of filter paper, covered with 

plastic wrap, and dried on a vacuum gel drier. Once dry, the gel on its filter paper 

support was exposed to X-ray film in a cassette overnight, followed by developing and 

fixing as described in Section 2.7. 

2.6.6: Sequence analysis 

The polylinker derived from pTZ plasmid sequences was used to identify the start of the 

wisi sequence. The sequence was deduced from the sequence in which successively 

larger fragments were present in each of the four lanes resulting from the termination 

reactions. The sequence was analysed using the UWGCG package available from the 

Seqnet VAX facility at Daresbury. 
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CHAPTER 3: GENETICS AND PHYSIOLOGY OF wnl 

3.1: INTRODUCTION 

One mutant allele of wini (winl.1) has been isolated (Ogden and Fantes, 1986). This 

chapter describes the examination of the phenotype shown by weel.50 cdc25.22 wini.] 

strains, the investigation of the interaction of winl.1 with other cell cycle genes, and the 

mapping of the wini locus. 

3.2: THE NUTRITIONALLY SENSITIVE PHENOTYPE OF THE weel.50 cdc25.22 

winl.l TRIPLE MUTANT STRAIN 

3.2.1: Introduction 

A particularly interesting aspect of the win1.1 mutation is the nutritionally sensitive 

nature of its interaction with weel and cdc25 (Ogden and Fantes, 1986). Cells of the 

genotype weel.50 cdc25.22 winl.1 show a predominantly cdc phenotype on EMM at 

35°C, while cells grown on rich medium such as YE are much shorter, and are able to 

grow and divide. Cell length is heterogeneous in both cases, and the cdc phenotype 

appears to be affected by plating density, as a significant amount of bulk growth occurs 

in areas of high cell density on EMM at 35°C. 

3.2.2: Investigation of growth medium effects 

In order to investigate the nature of the nutritionally sensitive phenotype of weel.50 

cdc25.22 winl.1 strains, cell growth was examined on various media at 25°C and 35°C, 

and compared to that of the corresponding wini#  strain. The heterogeneity in cell 

length shown by these strains made the evaluation of cell length phenotypes by the 

measurement of cell length very difficult. In the experiments described here, cell 

growth on plates was examined after 24 - 48 hours, and the ability of each strain to 

form colonies in sparsely plated areas was assessed. Examination of the strains described 

here was undertaken either on streaked plates, or on plates upon which a dilute 

suspension of cells had been uniformly spread. 

One possible explanation for the heterogeneous phenotype shown by weel.50 cdc25.22 

winl.1 strains at 35°C on EMM was that growth resulted from an incomplete loss of 

cdc25 function. If this were the case, then it might be expected that incubation at 37°C 



would reduce the temperature sensitive activity of cdc25.22, and thus lead to a more 

extreme cdc phenotype. It was observed that weel.50 cdc25.22 winl.1 cells did not show 

a markedly stronger cdc phenotype on EMM or YE at 37°C, compared to that at 35°C, 

suggesting that this was not the case. 

The colony forming abilities of weei.50 cdc25.22 winl.J strains compared with those of 

weel.50 cdc25.22 strains on YE and EMM were investigated to confirm that the two 

phenotypes could be easily distinguished on EMM. This was undertaken as preliminary 

to the gene library screening experiments aimed at cloning wini, which are described in 

detail in Chapter 4. 

Small cultures of the strains weel.50 cdc25.22 winl.1 and weel.50 cdc25.22 in YE were 

grown to stationary phase at 25°C. Plate inoculated with various dilutions of these 

cultures incubated at 35°C and at 25°C, and after 4 days the number of colonies/plate 

was counted (Table 3.1). From these observations it was concluded that it would be 

possible to distinguish winl.1 and win1 phenotypes in a weel.50 cdc25.22 genetic 

background on the basis of their colony forming ability on EMM at 35°C. It was also 

possible to conclude that the presence of 1.2M sorbitol (which would be present in plates 

used for the regeneration of protoplasts following transformation with gene libraries) had 

no effect upon the cdc phenotype of these cells. Some cdc mutants have been shown to 

be suppressed by high osmotic strength. 

In further experiments, cells of the genotype weel.50 cdc25.22 winl.1 were grown at 

35°C upon various media, and their phenotypes compared to those of the same strain 

grown at 25°C, and a control wini+  strain. The media examined are listed in Table 3.2. 

Casamino acids (Oxoid) is an acid hydrolysate of casein, which is rich in amino acids 

(not including tryptophan) and also contains various trace elements. Various substances 

were added to either 20g/l glucose, or to "EMM base", which consisted of EMM minus 

NH4C1. 

The observations from these experiments may be summarised as follows: the substitution 

of Casamino acids and YE for NH4C1 in the EMM formula resulted in weel.50 cdc25.22 

win 1.1 cells with the shortest lengths, and also gave rise to the largest colonies. The, 

phenotype of cells grown on the glutamate-containing medium was one of shorter cell 

length than those on EMM (NH4C1), though colony forming ability was only slightly 

better. Cells grown on EMM with both YE and NH4C1 
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Table 3.1: Results of experiments testing the colony forming abilities of winl.1 and 

win 1+  strains. 

25°C 

Growth medium: YE EMM 
* 

EMMS 

Genotype: 

weel.50 cdc25.22 58% 63% 63% 

weel.50 cdc25.22 winl.1 36% 49% 47% 

35°C 

Growth medium: YE EMM 
* 

EMMS 

Genotype: 

weel.50 cdc25.22 73% 64% 63% 

weel.50 cdc25.22 winl.1 7% 0.5% 1% 

* 
EMMS denotes EMM containing 1.2M sorbitol. 
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Table 3.2: Media used for the examination of the weel.50 cdc25.22 winl.l phenotype. 

Basis of medium Nitrogen source (5g/1) 

EMM NH4CI 

EMM NH4CI (1.2M sorbitol) 

EMM NH4C1 and YE 

EMM YE 

EMM 
* 

Sodium glutamate 

EMM Casamino Acids (Oxoid) 

Glucose YE 

Glucose Casamino Acids (Oxoid) 

"EMM" as the basis of medium indicates the components of EMM 

with no NH4CL. "Glucose" indicates 20g/1 glucose to which the appropriate supplement 

was added. All media described here contained 20g/l agar. 

* Sodium glutamate was added at 3.72g/l 
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as nitrogen sources were longer than those growing on medium consisting of an EMM 

base with YE as a nitrogen source. This suggests that the presence of 5g/l NH4C1 is 

exerting an over-riding effect upon the wee) .50 cdc25.22 win).) phenotype. Cells grown 

upon the medium containing both NH4C1 and YE, however, were still able to form 

colonies, suggesting that a balance of effects is involved. 

In order to make a closer examination of the effects described above, cells of the 

phenotype weel.50 cdc25.22 win).) and weel.50 cdc25.22 were streaked out upon solid 

EMM-based media containing either NH4CI or Casamino acids as nitrogen source at 

both 25°C and 35°C. The phenotypes of such strains were examined after 24 - 48 hours, 

and the numbers of cells falling into various classes recorded (Table 3.3) 

The observations described suggest that nitrogen source is an important factor in 

deciding the temperature sensitive phenotype of wee).50 cdc25.22 win).) cells. Rich 

media result in cells with a phenotype similar to the corresponding win) strain at 35°C, 

while those containing NH4C1 as a nitrogen source give rise cells with predominantly 

cdc phenotype. To test the possibility that the presence of one amino acid might have 

been responsible for the effects described above, the growth of wee) .50 cdc25.22 win).) 

cells was observed upon EMM supplemented with individual amino acids. Each amino 

acid was present in the same concentration as in medium supplemented with Casamino 

acids. It was not possible to draw any clear cut conclusions from these experiments. 

In order to determine the effect of carbon source of the wee).50 cdc25.22 win).) 

phenotype, cells were grown on EMM with glycerol substituted for the glucose present 

in the standard formula. There was little growth of either wee).50 cdc25.22 win).) or 

wee).50 cdc25.22 strains at 35°C, and growth at 32°C was so poor that it was impossible 

to interpret the results of examination of the cells. 

3.2.3: Temperature shifts 

The roles of wee) and cdc25 in the cell cycle have been examined extensively (reviewed 

by Fantes, 1989), and have been shown to be involved in the control over entry into 

mitosis. The loss of cdc25 function results in a 02  arrest, prior to entry into mitosis, 

which is relieved by loss of wee) function. One possible explanation for the cdc 

phenotype shown by weel.50 cdc25.22 win).) cells is that win).) directly reverses the 

effect of wee).50. If this were the case, then wee).50 cdc25.22 win).1 would be 
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Table 3.3: Results from the microscopic examination of weel.50 cdc25.22 winl.1 and 

weel.50 cdc25.22 cells grown on media containing Casamino acids or NH4CI as nitrogen 

source. 

Nitrogen source: NH4CI 

(25°C) 	 (3 5°C) 

win1 	wini 	 win1 	 winl 

Colony forming: 	83 	 73 	 76 	 1 

cdc-: 	 2 	 4 	 1 	 83 

No growth: 	15 	 24 	 23 	 15 

Nitrogen source: CAA 

(25°C) 	 (35°C) 

win[ 	winf 	win1 	 winl 

Colony forming: 	85 	 76 	 76 	 34 

cdc: 	 2 	 3 	 1 	 36 

No growth: 	13 	 21 	 20 	33 

Cells in sparely plated areas were examined microscopically following 24 - 48 hours 

incubation at 35°C. The cells were divided into three classes: "colony forming" - groups 

of growing cells, "cdc" - isolated cells with an elongated morphology, and "no growth" 

isolated cells stained red with Phloxin B showing no signs of growth or division. 



expected to show a first cycle arrest in the G2 phase of the cell cycle upon a shift to the 

restrictive temperature. 

In order to test this possibility, temperature shift experiments were performed with the 

weel.50 cdc25.22 winl.1 and weel.50 cdc25.22 strains on minimal medium. Cells were 

grown at 25°C in EMM liquid culture to a density of approximately 5 x 106  cells/ml and 

shifted to 35°C. Cell samples were taken periodically for microscopic examination and 

to determine cell density (Fig. 3.1). 

These experiments indicate that the combination of wini.i with weel.50 and cdc25.22 

does not result in a first cell cycle block upon a shift to the restrictive temperature. The 

patterns of cell number changes in both winl.1 and winl+  strains are very similar, 

although there is a slightly longer plateau in cell number in the weel.50 cdc25.22 win1.1 

strain before the onset of logarithmic growth. Microscopic examination of weel.50 

cdc25.22 win1.1 cells following a shift to 35°C revealed a very heterogeneous population, 

rather than uniformly elongated cells. After 4 hours' incubation at 35°C it was possible 

to detect some cells containing multiple septa, and after 6 hours the population contained 

a high proportion of cell abnormalities, including multiple septa, eccentric septa, bent 

and branched cells, and multinucleate cells. These observations suggest an effect upon 

the spatial distribution of the processes involved in mitosis and cell division in these 

strains. 

The observations described in this section show a contrast in the long and short term 

effects of wini in a weel.50 cdc25.22 background following a shift to 35°C. Following 

incubation at 35°C on solid EMM for 18 - 24 hours, the phenotype of a weei.50 

cdc25.22 winl.1 is cdc, although examination of the short term effects of such a shift 

shows that this phenotype is not due to a first cell cycle arrest. It seems likely that some 

form of cumulative effect gives rise to the cdc phenotype shown by weel.50 cdc25.22 

winl.1 strains. 
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Figure 3.1: Increases in cell number of the strains weel.50 cdc25.22 and weel,50 

cdc25.22 winl.1 following a shift to 35°C. 
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Cells were grown in EMM to a density of 3-7x10 6  cells/mi at 25°C. Following a shift to 

35°C, cell densities from each culture were determined at 20 minute intervals. 

by constructing double mutants and examining their phenotypes. 

• weel.50 cdc25.22 

• weel.50 cdc25.22 winl.l 
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3.3: INTERACTIONS BETWEEN winl.1 AND OTHER CELL CYCLE MUTATIONS 

3.3.1: Experimental strategy 

Genetic techniques are a very powerful tool for the analysis of the role of a gene and its 

product in the cell. Interactions between mutant alleles of the gene in question, and 

alleles of other genes of interest may be investigated 

The winl.1 mutation was first isolated on the basis of its striking interaction with the 

mutant alleles weel.50 and cdc25.22, and its lack of interaction with certain other 

mutations known to affect mitosis had already been investigated (Ogden and Fantes, 

1986). Double mutant strains combining winl.1 with mutations in each of the cell cycle 

genes cdcl, cdc2, cdc13, and to cdrl and cdr2, which have an altered mitotic response to 

nutritional starvation, were examined. Comparison of the phenotypes of the double 

mutant strains with those of the corresponding winl+  strains showed no noticeable 

differences, apart from a slight increase in cell length. 

This form of analysis was applied to re-examine the interactions of winl.1 with cdc13, 

various alleles of cdc2, and several of the mcs genes. A genetic analysis was also 

performed to determine if winI.1 would affect phenotypes resulting from the 

interactions of cdc25 and cdc2.3w with weel.50 (Russell and Nurse, 1986; 1987a). 

3.3.2: Interactions between winl.l and cdc13.117 

The cross between the strains cdcl3.117 leuI.32 and win1.1 was subjected to tetrad 

analysis. This cross resulted in a spore viability of less than 50%, though it was possible 

to distinguish progeny with cells of a different phenotype from either of the parental 

strains at the restrictive temperature (35°C). The phenotype of these presumed double 

mutant strains was cdc, but the cells appeared longer, and lacked the septa characteristic 

of cdcl3.117 (Nasmyth and Nurse, 1981). Two of these strains were backcrossed to a 

wild type strain, and the phenotypes of the resulting progeny examined. Four 

phenotypic classes were observed: one corresponding to wild type cells, two to the 

parental strains wini.] and cdc13.117, and the fourth to the strain under analysis, which 

was deduced to be the double mutant strain cdcl3.117 winl.i. 

In order to examine the morphology of the double mutant strain more closely, 

temperature shift experiments were carried out, with the strain cdcl3.117 as a control, 

and samples taken periodically for analysis. The cells were examined to determine the 

fraction of cells with septa (Fig. 



Figure 3.2: Proportions of septated cells in cultures of 

the strains cdcl3.117 and winl.l cdcl3.117, following a shift to 35CC. 
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Cells were grown in EMM containing 0.5% glucose to a density of approximately 1x10 6  

cells/mi prior to the shift. 200 cells of each strain were examined at hourly intervals, 

and the proportion of cells containing single, or multiple septa calculated. 

Circles indicate cdcl3.117 and squares winl.1 cdc13.117. 

Dotted lines indicate multiple septa, and solid lines total septated cells. 
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3.2), and were fixed to allow their staining with DAPI and rhodamine-phalloidin. 

After three to four hours it was possible to see condensed chromosomes under DAPI 

staining in the win 1+  strain, though this was not observed in the double mutant strain, 

where staining revealed a round, somewhat diffuse nucleus. After four hours incubation 

at 35°C, more than half the cells from the cdcl3.117 strain contained condensed 

chromosomes. In contrast, not more than 3% showed this phenotype in the winl.1 

cdcl3.117 strain. In the winl+  strain, rhodamine-phalloidin staining revealed actin rings 

which are laid down prior to the formation of the septum (Marks and Hyams, 1985). In 

the winl.1 strain these were not present, and the actin distribution observed was more 

characteristic of interphase cells, with dots visible at each end of the cell. This evidence 

suggests that the winl.1 mutation is preventing the "leak-through" into the form of 

"mitotic" terminal phenotype normally observed in cdc13.117 mutant cells at the 

restrictive temperature of 35°C. 

cdcl3.117 strains show a hypersensitivity to the anti-microtubule drug TBZ: at a TBZ 

concentration of 15 g/ml wild type cells are capable of forming colonies on agar plates, 

whereas cdcl3.117 strains are not (Booher and Beach, 1988). Similar experiments were 

performed to compare winl.1 with wild type cells on plates containing various 

concentrations of TBZ, but no differences were found between the two strains. 

3.3.3: Interactions between winl.1 and mutant allele combinations showing the mitotic 

catastrophe phenotype 

3.3.3.a: Mitotic catastrophe caused by the combination of weel.50 and cdc2.3w. 

Strains of the genotype weel.50tS  cdc2.3w have a lethal phenotype at the restrictive 

temperature which is thought to result from cells attempting to undergo premature 

mitosis and division. This phenotype is characterised by aberrant division which takes 

place at a very small cell size and has been termed "mitotic catastrophe" (Russell and 

Nurse, 1987a). winl.1 shares many characteristics with the mcs mutations, which are 

capable of suppressing the mitotic catastrophe phenotype resulting from the combination 

of weel.50 and cdc2.3w (Molz et a!, 1989). Experiments were performed to determine if 

win1.1 was capable of suppressing the mitotic catastrophe phenotype. 

Strains of the genotype cdc2.1w and cdc2.3w were crossed to weel.50 mutant strains, and 

tetrad analysis carried out. Tetrads of non-parental ditype were selected, and the 
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putative weel.50 cdc2w double mutant strains backcrossed to wild type strains to confirm 

their genotypes. Sixteen segregants were examined at 25°C and 35°C in order to 

differentiate between the phenotypes of weel.50 and the cdc2w alleles. Strains which on 

backcrossing gave rise to progeny with two classes of wee phenotype (temperature 

sensitive and non-temperature sensitive) were deduced to be of genotype weel.50 cdc2w. 

The phenotypes of these double mutant strains were examined at 35°C. The results of 

this analysis agreed with those previously reported (Russell and Nurse, 1987a): the 

genotype weel.50 cdc2.3w was lethal under these conditions, in contrast to that of 

weel.50 cdc2.Iw which merely resulted in a wee phenotype. Tetrad analysis was then 

performed upon a cross between the strains weel.50 cdc2.3w and weel.50 winl.1. One 

tetrad (C) which appeared to be a tetratype was chosen for further analysis, and cells 

examined at 25°C and 35°C (Table 3.4). In order to confirm the genotypes of the 

segregants in this tetrad, they were backcrossed to a wild type strain, and the progeny 

examined by random spore analysis (Table 3.5). 

The conclusions that may be drawn from this data are as follows: 

winl.i does not suppress the mitotic catastrophe phenotype resulting from the 

combination of weel.50 and cdc2.3w. Thus, winl.1 is not a mcs-type mutation. 

At 25°C, the winl.i phenotype of slightly elongated cells is not completely suppressed 

by the presence of cdc2.3w (See section 3.3.4). 

3.3.3.b: Mitotic catastrophe caused by the combination of weel.50 and a high level of 

expression of cdc25+ 

A second form of mitotic catastrophe is observed in cells with an artificially high level 

of the cdc25 gene product in a weel.50 background at 35°C (Russell and Nurse, 1986). 

The cdc25 gene is over-expressed to give a high level of product by linking the cdc25 

coding region to promoter sequences from the S.pombe adh (alcohol dehydrogenase) gene 

(Russell and Hall, 1983). A strain containing such a construct (which leads to a wee 

phenotype) integrated within the genome was supplied by Paul Russell (Pers. Comm.). 

This contained an adh-cdc25 construct including ura4+  sequences integrated at the cdc25 

locus in a ura4.D18 background. A series of crosses were performed to determine if 

winl.1 was capable of suppressing this second form of mitotic catastrophe. 

A cross between the strains wini.1 ura4.D18 h and [adh-cdc25:ura4j ura4.D]8 Ieul.32 

h was examined by tetrad analysis. The presence of the adh-cdc25 construct could be 



Table 3.4: Phenotypes of progeny in tetrad C resulting 
from a cross between the strains weel.50 win1.1 and 
weel.50 cdc2.3w. 

Temp.: 	25C 	 35C 

WMIFITPL I. 

Cl 	wee 	 MC* 	weel.50 cdc2.3w 
C2 	wee/wild type MC* 	weel.50 cdc2.3w win1.1 
C3 	winl 	 wee 	weel.50 win1.1 
C4 	wild type 	wee 	weel.50 

*MC = mitotic catastrophe 
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Table 3.5: Results of backcrossing to wild type the strains Cl, C2 and C3 which 

resulted form the cross of weel.50 win!.1 and weel.50 cdc2.3w. 

Mutation 	 weel.50 	 cdc2.3w 	 win].) 

Strain 

Cl 	 + 	 + 	 - 

C2 	 + 	 + 	 + 

C3 	 + 	 - 	 + 

The symbols + and - indicate the presence or absence of progeny with phenotypes 

corresponding to those of the named mutant alleles 

Table 3.6: Tetrads resulting from the cross between strains winl.1 ura4.Dl8 h+  and 

Iadh-cdc25:ura4l ura4.D 18 leu 1.32 h 

a b c 	 d 

Phenotype ura win ura win ura win 	ura win 	Class 

Tetrad 

1 - 	- + + 	 - 	 T 

2 + - 	+ - 	+ 	+ 	 NPD 

3 + + - 	+ 	 - 	+ 	 NPD 

4 - 	+ + - 	 + 	+ 	 PD 

5 + - 	+ + 	 - 	+ 	 NPD 

All cells with a ura4+ phenotype showed a wee phenotype. 

The abbreviations for class of tetrad are as follows: 

T - tetratype, PD - parental ditype, NPD - non-parental ditype. win! could not be 

scored unambiguously in a ura4+ strain (see text). 
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followed by the wee phenotype and its close linkage to the integrated ura4  marker. 

winl.1 was followed its cell elongation phenotype, though this could only be determined 

with certainty in a ura4 background, as it was not possible to predict the phenotype of 

a [adh-cdc25:ura4] ura4.D18 

winl.1 strain. Five tetrads were examined, and the results shown in Table 3.6. 

Two strains from tetrad 3 (3a and 3b) were chosen for further examination, since they 

were presumed to have the genotype winl.1 [adh-cdc25:ura4] ura4.D18, given that the 

other two members of that tetrad were winl+  ura4. The phenotype of the strains was 

wee, indicating that the presence of the winl.I mutation had little or no effect upon 

cells containing the adh-cdc25 construct. These two strains were then crossed to a 

weel.50 winl.1 ura4.D18 and tetrad analysis performed (Table 3.7). All the progeny of 

this cross carry winl.1. Those carrying weel.50 were identified by the temperature 

sensitive wee phenotype and those strains with the adh-cdc25 construct were 

distinguished by their ura4 phenotype. Segregants ic and 2b were deduced to be of the 

genotype weel.50 winl.1 [adh-cdc25:ura4.D18 (Table 3.7). These results indicate that 

win].) is not capable of suppressing the mitotic catastrophe phenotype caused by the 

overexpression of cdc25+  in a weel.50 mutant background. 

3.3.4: Interactions with cdc2w alleles 

In order to produce the win1.1 cdc2w double mutant strains a win1.1 strain was crossed 

to strains cdc2.Iw and cdc2.3w. The cross to cdc2.1w gave poor spore viability (50%), 

compared to that in the cross to cdc2.3w (70%). Because of this, it was difficult to use 

tetrads to analyse these crosses genetically. However, several strains appeared to have 

darker red colour previously noted to be associated with winl.1 strains when grown on 

Phioxin B plates, though without the phenotype of increased cell length characteristic of 

winl.1. Two putative double mutants were picked from each cross and backcrossed to a 

wild type strain. Random spore analysis of these crosses revealed progeny with 

phenotypes corresponding to those of winl.1 and the cdc2w mutants, confirming that 

they were double mutant winl.1 cdc2w strains. At this stage it was noted that the cells 

of genotype winl.1 cdc2.3w were longer than those of genotype wini.1 cdc2.Iw. The cell 

lengths at division of these strains were determined (Table 3.8). 

These results indicate that while the phenotype of increased cell length conferred by 

winl.1 is strongly suppressed by cdc2.Iw, -• 	cdc2.3w has very little effect. The cell 



Table 3.7: Phenotypes of tetrads arising from the cross: 

winl.1 weel.50 ura4.D18 

x 

winl.l Fadh-cdc25.22 ura4l ura4.D18. 

Tetrad 1: 

73 

PhenotyDe 

ura4 

25°C 

35°C 

Tetrad 2: 

PhenotyDe 

ura 

25°C 

35°C 

a 	 b 	 c 	 d 

+ 	 + 

win 	win 	* 	 win 

win 	win 	MC 	wee 

a 	 b 	 c 	 d 

+ 	 + 	 - 

win 	* 	 win 	win 

win 	MC 	win 	wee 

MC = mitotic catastrophe 

* = cells too ill to determine their phenotype in terms of cell length. 
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Table 3.8: Cell length at division of strains with combinations of winl.l with 

cdc2w alleles. 

Temperature: 	25°C 	 35°C 

Genotype 

wild type 	 14.17 (0.43) 

cdc2.lw 8.65 (0.64) 

cdc2.3w 9.05 (0.51) 

winl.1 16.65 (0.70) 

win).! cdc2.lw 9.83 (0.76) 	10.10 (0.84) 

win).) cdc2.3w 14.86 (1.61) 	14.29 (1.35) 

Cells were grown in EMM at the temperature indicated. Cell lengths are given in urn, 

and Figures in brackets indicate standard deviation. 
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length at division of the winl.i cdc2.3w double mutant strain is slightly smaller than that 

a of winl.1 strain. 

3.3.5: Interactions with mcs mutations 

3.3.5.a: Description of mcs conferred phenotypes 

The six mcs genes were identified as a result of the ability of mutant alleles to suppress 

the mitotic catastrophe phenotype caused by the combination of weel.50 and cdc2.3w 

(Molz et a!, 1989). The only mcs mutant alleles to show any recognisable phenotype in 

an otherwise wild type background are mcs1.77 and mcs4.13. The phenotypes shown by 

these mutations, (both of increased cell length at division) are suppressed by weel.50. 

All mcs mutant alleles show a range of interactions with different cell cycle mutations, 

including the cdc2w alleles, weel.50 and cdcl3.117 (Molz et al, 1989). 

Of the most immediate interest was the ability of mutations in mcs3.12, mcs4.13, and 

mcs6.13 to reverse the suppression of cdc25.22 by weel.50, similar to win1.1. The 

mutation mcs4.13 shows the strongest similarity to win1.1, in that its interaction with 

weel.50 cdc25.22 is growth medium specific, and in an otherwise wild type background 

its phenotype is one of slight cell elongation. These observations raised the possibility 

that mcs3, mcs6, or, in particular, mcs4 might be allelic to wini, despite the fact that 

win1.1 had already been shown to be incapable of suppressing the mitotic catastrophe 

phenotype. It was possible that this difference in phenotype between win1.1 and 

mcs3.12, mcs4.13 and mcs6.13 might be due to allele specific effects. 

A series of crosses were performed to determine if wini was allelic to mcs3, mcs4, or 

mcsó, using strains supplied by Lisa Molz and David Beach. The strain weel.50 

cdc25.22 mcs3.12 showed a striking cdc phenotype on both YE and EMM. The strain 

weel.50 cdc25.22 mcs4.13 showed a nutritionally sensitive phenotype very similar to that 

of weel.50 cdc25.22 winl.1: elongated cells which are unable to form colonies at 35°C on 

EMM, and shorter, colony forming cells on YE. mcs6.13 has a very weak interaction 

with weel.50 cdc25.22, which results in slightly elongated cells when compared with the 

equivalent mcs 6+ strain. The crosses described below were performed in a weei.50 

cdc25.22 genetic background which made tetrad analysis difficult, due to a high 

proportion of two spored asci. 
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3.3.5.b: Interaction with mcs3 

Tetrad analysis of the cross between strains of the genotypes weel.50 cdc25.22 win).) 

leul.32 h and wee) .50 cdc25.22 mcs3.12 IeuI.32 h gave one tetratype tetrad which was 

selected for further analysis. One segregant was identifiable as win )* mcs 3+,  and two 

segregants were similar to the parental strains. The fourth segregant appeared darker 

red on phloxin medium at 25°C and displayed a much stronger cdc phenotype than 

either parental strain at 35°C on both YE and EMM. (It was possible to distinguish 

between the two parental strains on the basis of growth on EMM and YE at 35°C.) This 

putative win).) mcs3.12 strain was backcrossed to a strain of genotype weel.50 cdc25.22 

leuI.32 h+  and the cross subjected to random spore analysis. Of the segregants from this 

cross showing cdc phenotype, two classes were observed, one of which was nutritionally 

sensitive, the other not. On the basis of this data it was deduced that win) and mcs3 

were not allelic, and that the phenotype of the mutant strain wee).50 cdc25.22 mcs3.12 

win).) showed a stronger similarity to that of wee).50 cdc25.22 mcs3.12 than to that of 

weel.50 cdc25.22 win).). 

3.3.5.c: Interaction with mcs4 

A similar analysis to that described above was carried out with mcs4. From the cross 

between the strains wee).50 cdc25.22 win).) leu).32 h and weel.50 cdc25.22 mcs4.13 

leuI.32 h two tetratypes were examined which contained one segregant with a wee).50 

cdc25.22 phenotype. The remaining three segregants in each tetrad were 

indistinguishable, so to determine which was of the genotype weel.50 cdc25.22 win).] 

mcs4.13, three such segregants from one tetrad were backcrossed to strains of the 

genotype wee).50 cdc25.22. Backcrosses of one of these segregants resulted in tetrads 

with either a 2:2 or a 3:1 segregation of cdc to cdc, suggesting this segregant had the 

genotype wee) .50 cdc25.22 win).) mcs4.13. The other two segregants,, on back crossing, 

gave a 2:2 segregation pattern of cdc to cdc, indicating that they had the genotypes of 

the original parent strains: 

A further cross was made between strains of genotypes win).) leu).32 h and mcs4.13 

leuI.32 h#  which was subjected to tetrad analysis. Putative double mutants were 

identified by their slightly increased cell length in comparison with the parental strains, 

and their genotype was confirmed by backcrossing to a wild type strain. 
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These results demonstrate that win) is not allelic to mcs4, and, despite their phenotypic 

similarities, the effects of these mutations are not additive. 

3.3.5.d Interaction with mcs6 

From the cross between the strains wee).50 cdc25.22 win).) leu).32 h and weel.50 

cdc25.22 mcs6.13 leuI.32 h one tetratype was chosen for analysis. The presence of a 

segregant with a weel.50 cdc25.22 phenotype immediately suggested that the two 

mutations were not allelic. The two parental strains were easily distinguished on the 

basis of their phenotypes on EMM at 35°C. The fourth segregant in this tetrad showed 

a phenotype distinct from those of the parental strains: the cells were very elongated at 

the restrictive temperature when grown on EMM or YE. This was a much stronger cdc-

phenotype than that shown by a wee).50 cdc25.22 win).! strain on EMM at this 

temperature. This segregant was backcrossed to a strain of genotype weel.50 cdc25.22, a 

cross whose asci were almost entirely two spored asci. In some dyads both segregants 

were sporulation competent due to heterozygosity at the mating type locus. These 

diploids were themselves subjected to tetrad analysis to confirm that the genotype of this 

segregant was wee) .50 cdc25.22 win).) mcs6.13. These results indicate that win! in not 

allelic to mcsó, and that wini.) and mcs6.13 show a strong interaction in the wee).50 

cdc25.22 genetic background. 

3.3.6: Interaction with patl.114 

Mutant alleles of pat) were isolated (Nurse, 1985) as mutations which released the cells 

from the normal requirements for sporulation necessary in wild type cells. In an 

independent investigation, pat! chromosomal mutations were isolated as suppressors of 

mat2.102 (1mb and Yamamoto, 1985), which also showed a phenotype of 

hypersporulation similar to that of the pat! mutant alleles. ran) and pat) were later 

shown to be allelic, and the locus is now designated pat) (Kohli, 1987). pat) mutations 

allow strains of opposite mating types to conjugate, and h p/h diploids to sporulate, in 

rich medium. They also allow haploid cells of either h or h mating type to undergo 

aberrant meiosis and sporulation. 

A cross between the strains win!.) leu).32 h+ and patl.114 ade6.M216 leu).32 h 

(supplied by Maureen McLeod) was subjected to 	tetrad 	analysis. 	There was no 

detectable linkage between the two markers pat) and win). 	One putative pasl.114 

win).) double mutant strain was selected from a tetratype tetrad for further analysis. 
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The phenotype of this strain was examined microscopically on YE and supplemented 

EMM at 28°C, 32°C and 35°C with the parental patI.114 strain as a control. At the 

permissive temperature of 28°C the two strains appeared similar, with the win 1.1 

patl.114 double mutant showing slightly longer cells at division. Following one or two 

days growth at either 32°C or 35°C, the double mutant strain showed a much lower level 

of sporulation than the patl.114 single mutant strain. The cells from both strains ceased 

growth and became very swollen, though the cells of the double mutant remained longer 

than those of the patl.114 strain. After prolonged incubation at 32°C and 35°C some 

very abnormal cell morphologies were seen in the double mutant strain, including 

branched cells and multiple septa. These experiments indicate that the combination of 

winl.1 with patl.114 prevents the hypersporulation phenotype of shown by patltS  strains 

at the restrictive temperature, though winl.l does not suppress their growth defect. 

Mutant alleles of the genes cgsl and cgs2 were isolated on the basis of their ability to 

suppress the temperature sensitive phenotype of patl.114 (Maureen McLeod, Pers. 

Comm.). In order to determine if either cgs mutation was allelic to win 1, crosses was 

made between winl.1 leuI.32 hand the strains cgsl.1 ade6.216 leul.32 h9°  and cgs2.3 

ade6.210 h9°  and subjected to tetrad analysis. These crosses showed that wini showed 

no significant linkage to either cgsl or cgs2, indicating that they were not allelic (data 

not shown). 

The predicted cgsl product shows a high homology with the regulatory subunit of 

cAMP-dependent protein kinase from S.cerevisiae and other eukaryotes (McLeod and 

Beach, 1989), and elevated levels of intracellular cAMP have been shown to suppress the 

phenotype of pathS  strains (Beach et at, 1985). In order to examine the effect of 

increased cAMP levels on winl.1 strains, a comparison was made between win 1.1 and 

wild type cells grown on plates containing various concentrations of caffeine 

(trimethyixanthine), which is an inhibitor of cAMP phosphodies te rase. winl.1 strains 

showed it slightly increased sensitivity to caffeine compared to that of wild type cells 

when grown on either YE or EMM-glutamate. Both strains were capable of forming 

colonies at a concentration of 15mM caffeine, whereas only winl+  strains were colony 

forming at 20mM. 
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3.4: GENETIC MAPPING OF THE win! LOCUS 

3.4.1 Mapping strategy 

The strategy used for the mapping of the wini locus was first to allocate the gene to one 

of the three S.pombe chromosomes by mitotic haploidisation (Chapter 2, Kohli et a!, 

1977). The second step was to locate the gene within the chromosome using the swi5 

system which allows genetic mapping over relatively large distances due to reduced 

meiotic recombination in homozygous swi5 strains (Schmidt et a!, 1987). The third step 

was to find genetic markers closely linked to the wini locus using classical genetic 

mapping methods. 

3.4.2: Chromosome allocation 

An induced haploidisation procedure similar to that described by Kohli et a! (1977) was 

used to allocate wini to one of the three S.pombe chromosomes. Stable diploid strains 

were constructed by utilising the ability of mat2.102 strains to conjugate with h strains 

giving rise to diploids which are unable to undergo meiosis and sporulation. In an 

appropriate genetic background, selective medium will only allow growth of diploid 

cells. In practice, a. mating mix of mat2.102 and h strains are incubated overnight on 

ME at 25°C, before streaking out onto selective medium containing phloxin. 

The diploid strains used for induced haploidisation were of the genotype ural.1311+ 

lysl.1711+ ade6.7041+ winl.1/+ leuI.321+ mat2.1021h (Table 3.9). Three independent 

diploid strains were constructed as described above. Haploidisation was induced by 

growth overnight at 25°C on YE plates containing the anti-microtubule drug MBC at 

10 g/ml. Following drug treatment, the cells were suspended in water and several 

dilutions plated onto YE-phloxin medium. These plates were then incubated at 28°C to 

allow colonies to form. Haploid colonies were picked to YE master plates which were 

replicated to appropriate selective media for the scoring of auxotrophic markers, along 

with fully supplemented medium. The winl.1 phenotype was scored by microscopic 

examination of cells growing on fully supplemented medium on the basis of cell length. 

One hundred colonies from each of the three independent diploid strains were examined 

and, of these, about half were haploid. The phenotypes of the haploid segregants were 

scored, and the segregation pattern of winl.1 with respect to each of the auxotrophic 

markers analysed (Table 3.9). 



Table 3.9: Results of mitotic haploidisation experiments. 

Diploid strain 

Phenotype iQJ iQ2 
07L 14,r,Jo;d3 

winF ade4 12 13 18 

winF ade4 17 10 22 

win1 	ade4 13 11 16 

win1 	ade4 13 9 8 

.winl 	leul 12 10 13 

winl 	Ieu1 17 13 27 

win1 	leul 17 10 9 

winl 	1eu1 9 10 15 

winF ural 0 0 0 

winl 	uraf' 29 23 40 

win1 	ural 24 20 24 

win1 	ura1 2 0 0 

wini- lysi- 0 0 0 

wini- lysl+ 29 23 40 

winl+ lysi- 25 20 24 

winl+ lysl+ 1 0 0 

Diploid construct used for mitotic haploidisation: 

Chromosome: I 	 II 	 III 	? 

ural.131 lysI.171 	mat2.102 + 	ade6.704 	+ 

+ 	 h 	leul.32 	+ 	winl.1 

No.3 



81 

The distribution of the markers win I, ura) and lysi showed a very high proportion of 

the parental combinations, as opposed to the random assortment shown by wini, leul and 
ade6. This data strongly suggests that wini is located on chromosome I, although it 

gives no indication of the position with respect to other genetic markers of the gene 

within this chromosome. 

3.4.3: Location of winl within a region of chromosome I 

The second stage in the mapping procedure was to allocate win) to a region of 

chromosome I. In order to do this, crosses were made 	- involving win).) in a 

swi5 genetic background. 	Loss of swi5 function reduces intra- and intergenic 

recombination by a factor of approximately ten, which makes it possible to undertake 

genetic mapping over long distances (Schmidt et al, 1987). A win1.1 swi5.39 h strain 

was crossed to a winl+  swi5.39 strain carrying several auxotrophic markers distributed 

throughout chromosome I, and the recombination frequencies between win).) and the 

auxotrophic markers used to estimate the position of the win) locus. Such a marked 

strain (HE564) of genotype ura).171 his6.365 lysI.131 ade4.31 swi5.39 h was kindly 

supplied by Henning Schmidt, along with a strain of genotype swi5.39 h 90 . 

Before any crosses could be made with the aim of mapping win), it was necessary to 

construct a strain of genotype win).) swi5.39 h. The effect of swi5 upon mating type 

switching was used to identify swi5.39 strains: swi5.39 h 9°  strains grown on ME medium 

show a mottled staining pattern when exposed to iodine vapours due to reduced mating 

type switching, in contrast to the homogeneous staining of swi5 h 9°  strains. This is the 

most easily recognisable phenotype of swi5.39. 

In order to construct a strain of genotype winl.1 swi5.39 h#/h,  the following cross was 

carried out: swi5.39 h9°  x wini.) leuI.32 h. The heterothallic h strain was present in a 

three-fold excess in the mating mix, in order to lower the proportion of asci resulting 

from conjugation of the homothallic strain with itself. Following tetrad analysis, it was 

possible to exclude tetrads resulting from homothallic conjugation by testing the progeny 

for leucine auxotrophy, as these tetrads were entirely leu. The remaining tetrads were 

replicated to ME plates, and after a few days exposed to iodine vapours. NPD tetrads 

were then identified since they have  two homogeneous iodine positive colonies of the 

genotype swi5 h 90, and two iodine negative colonies of the genotype swi5.39 h. These 

heterothallic 



Table 3.10: Crosses of HE564 to winl.l and winl.1 swi5.39: 

Crosses 1 and 2: 	winl.i leul.32 swi5.39 h 

x 

ural.171 his6.365 lysl.13I ade4.31 swi5.39 h 

Cross 3: 	 winl.1 leul.32 h- 

x 

ural.171 his6.365 lysl.131 ade4.31 swi5.39 h 

lOa: Analysis of linkage between auxotrophic markers. 

Cross 

1 2 3 

PhenotyDe 

his6 	uraF 33 52 19 

his6 	ura1 7 6 19 

his6 	uraF 11 6 24 

his6 	ura1 43 32 33 

his6 	lysl 32 45 18 

his6 	1ys1 10 13 20 

his6 	lysl 5 5 29 

his6 	1ys1 49 33 29 

ade4 	lysl 28 32 22 

ade4 	1ys1 23 19 29 

ade4 	lysl 9 18 24 

ade4 	1ys1 36 27 20 



lOb: Analysis of linkage between win! and auxotrophic 

markers (See Table 3.7a). 

Cross 

1 2 3 

Phenotype 

winl ade4- 7 14 19 

winl ade4 40 38 21 

win1 ade4 40 35 32 

win! ade4 5 7 23 

winl his6 18 25 15 

winl his6 29 27 26 

win1 his6 24 31 23 

win1 his6 25 11 32 

winl lysF 10 20 21 

winl 1ys1 37 32 20 

winf lysl 27 28 26 

win1 1ys1 22 14 29 

winl ural 23 27 16 

win' ura1 24 25 24 

win! ural 23 39 27 

win1 ura1 26 13 28 

83 



Figure 3.3: Genetic map of S.pombe. 

From Munz el a!, 1989. 

Highlighted markers are those used for the mapping of win!. 
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Figure 3.4: Results of mapping crosses in a swi5.39 genetic background. 
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The short arm of chromosome I, with distances taken from Figure 3.3. 

Distances shown in panels B, C and D are the averages of results from duplicate crosses 

in a swi5.39 genetic background. The figures shown in this diagram were calculated as a 

fraction of the lysi - ade4 linkage in a swi5.39 genetic background (33 recombination 

units).Lia..,iw,,c1indicate the predicted position of win) with respect to the auxotrophic 

markers used for mapping. 

Predicted position of win! with respect to lysi and ade4 

Predicted position of win) with respect to lysi and ade2. 

Distance between lysi and ade2. 
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Table 3.11: Linkage between markers in crosses involving SW!, SW2, winl.1 leul.32 and 

HE564 (see Table 3.10 for details of crosses). 

Crosses 

1 	 2 	 3 

Markers 	% Recombination 

his6-ural 18.7 12.5 45.3 	20.5 

his6-lysl 15.6 18.7 51.0 	16.6 

ade4-lys1 33.3 38.5 55.8 	32.6 

winl-ade4 12.5 22.3 44.2 

winl-his6 44.8 38.3 48.9 

winl-lysl 33.3 36.2 51.9 

winl-ural 51.0 42.5 46.3 

Distances were calculated from the data given in Tables 3.7a and 3.7b. "" refers to 

figures supplied by Henning Schmidt (Pers. Comm.) for crosses in a swi5.39 genetic 

background. 
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strains were then scored for win].] phenotype by examining cell length in freshly 

growing patches. 

Two independent isolates of the genotype win].] leul.32 swi5.39 h (SWI and SW2) were 

crossed to the marked strain HE564. A win].] leu].32 h strain was also crossed to 

HE564 as a control. These crosses were subjected to random spore analysis and 96 

progeny from each cross scored (Tables 3.10a and 3.I0b). 

The linkage data from these crosses indicate that win] is located on the short arm of 

chromosome I, and, in a swi5.39 genetic background, between 12 and 22 recombination 

units from the ade4 locus (Table 3.11 and Fig. 3.3). However, the linkage data are not 

additive, in particular the sum of the ade4 - win] and lysi - win] linkage is greater 

than the ade4 - lysi linkage, so there was some uncertainty about the exact position of 

win]. The data from the control cross (3) which was in a swi5 heterozygous background 

show no strong linkage between ade4 and win], which indicates that win] is at least 

40cM from ade4. 

In order to locate win] more precisely within this region, crosses were performed 

involving win].] and an ade2 mutant allele. ade2 is located approximately midway 

between ade4 and lysi (Fig. 3.3). A strain of genotype ade2.17 swi5.39 h was made 

using a similar method to that described for the 

construction of the win].] swi5.39 strain. Strains of the genotypes ade2.17 h and 

ade2.17 swi5.39 h were crossed to the strains SW1.1 (win].] lysl.]3] his6.365 sivi5.39 

h) and SW1.4 (win].] lysI.131 his6.365 ura].17] swi5.39 h p). SWI.1 and SWI.4 were 

derived from the cross of SW1 to HE564. The crosses were subjected to free spore 

analysis and 96 progeny scored in each case (Table 3.12). 

The data from the crosses carried out in a swi5.39 genetic background give a 

recombinant fraction of ade2 to lys] of 22-28%, which is slightly more than would be 

expected on the basis of previously published mapping data (Munz et a!, 1989). In a 

swi5.39 genetic background, the recombinant fraction between wini and ade2 is 16-18%, 

which confirms that the win] locus is close to that of ade4 (Fig. 3.4). 

The nearest identified marker to ade4, excluding cdc4 and rad2 which are very tightly 

linked to ade4, is tps19. Two independent crosses were analysed between the strains 

winl.1 



Table 3.12: Results of crosses between ade2.17 and winl.1 

in a swi5.39 genetic background. 

Cross 4: ade2.17 swi5.39 h 

x 

winl.1 lysl.31 his6.365 swi5.39 h 

Cross 5: ade2.17 swi5.39 h 

x 

winl.1 lysl.31 his6.365 ural.171 swi5.39 h 

Cross 6: ade2.17 h 

x 

winl.1 lysl.31 his6.365 swi5.39 h 

Crosses 

PhenotyDe 	 4 	 5 	 6 

ade2 winl 	 9 	 9 	 14 

ade2 win1 	 44 	 29 	 30 

ade2 wini 	 37 	 48 	 29 

ade2 win1 	 6 	 8 	 23 

lysl winF 	 29 	 37 

lysl win1 	 15 	 16 

1ys1 winl 	 17 	 20 

1ys1 win1 	 35 	 21 

ade2 lysl 	 11 	 12 

ade2 1ys1 	 42 	 26 

ade2 lysF 	 33 	 43 

ade2 lys1 	 10 	 15 



Table 3.13: Results of the crosses between winl.l leul.32 h+ and tps19.17 h. 

PhenotyDe 	 Number of segregants 

winl tpsl9 	3 	 2 

winl tps19 	50 	 43 

win1 tpsl9 	40 	 47 

wini' tps19 	2 	 2 

ME 



leul.32 h and tps]9.]7 h, the results of which are shown in Table 3.13. These data 

indicate that win] is 4-5 cM from 1psI9. 

3.5: DISCUSSION 

This chapter describes various genetic interactions between win].] and other cell cycle 

mutations. The aim of these experiments was to investigate, by examining genetic 

interactions, the possible role of win] within the cell. The terminal phenotype of a 

win].] cdc]3.]17 double mutant upon a shift to the restrictive temperature of 35°C was 

that of an arrest of in G2, similar to that shown by cdc25. This is contrast to that of a 

cdcl3.117 strain, which shows a cdc phenotype, but with many characteristics of a 

mitotic cell (Nasmyth and Nurse, 1981). One possible explanation for the double mutant 

phenotype is that win].] causes the reduction of a residual level of cdc13 activity present 

in cdcl3.117 cells at the restrictive temperature. The phenotype of cells completely 

lacking cdc13 function has been shown to be one of G2 cdc arrest (Hagan et a!, 1988; 

Booher and Beach, 1988), i.e. similar to that of a win].] cdc13.117 double mutant strain. 

The interactions between win].] and chromosomal mutations or artificial constructs 

involving cdc25 which result in a wee phenotype were investigated. The wee mutations 

wee].50 and cdc2.1w and the over-expression of cdc25+  were all capable of suppressing 

the cell length phenotype of win).]. However, the combination of win].) with cdc2.3w 

resulted in a phenotype more similar to that of win].]. These observations show that 

win].] cell are still sensitive to wee] and cdc25 expression levels, and suggest an allele 

specific interaction between win].] and cdc2w alleles. 

Neither of the two forms of mitotic catastrophe phenotype, which are caused by the 

combination of either cdc2.3w or over-expressed cdc25+  with wee].50, is suppressed by 

win].]. 

win].] is not allelic to mcs3.12, mcs4.13 or mcs6.13, which are mitotic catastrophe 

suppressing mutations. 

Like win].], mcs3.12, mcs4.13 and mcs6.13 are capable of reversing the suppression of 

cdc25 by wee]. The closest phenotypic similarity with win].] is shown by rncs4.]3: both 

mutations have a phenotype of increased cell length, and show a nutritionally sensitive 

phenotype when combined with weel.50 and cdc25.22. In order to investigate 

interactions between these mutations, the phenotypes resulting from the combination of 

win].) with these three mcs mutant alleles in a wee] .50 cdc25.22 genetic background was 
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examined. The results of these experiments are difficult to interpret, as the resulting 

strains contain combinations of four cell cycle mutations. However, one possible 

interpretation of these results is that mcs4 and win! may lie in the same pathway, not 

only from the evidence of their similar phenotypes, but from their mutual epistasis when 

combined in a weel.50 cdc25.22 genetic background. 

The combination of win!.) with pat).114 results in a suppression of the hypersporulation 

phenotype normally shown by pat 1tS  strains at the restrictive temperature, although cells 

of the double mutant strains do not continue to grow and divide, win) is not allelic to 

cgsl or cgs2, mutant alleles of which are also capable of suppressing the 

hypersporulation of pati.114. Elevated levels of cAMP have been shown to suppress the 

phenotypes of both pati.114 and a pat) null allele (Beach et a!, 1985). In S.cerevisiae, 

loss of the regulatory subunit of cAMP-dependent protein kinase has been shown to 

inhibit meiosis (Matsumoto 1983). The situation appears to be analogous in S.pombe, as 

cgsi, which was identified as a chromosomal mutation capable of suppressing pati.114, 

is highly homologous to the regulatory subunit of cAMP-dependent protein kinase in 

other eukaryotes. win).! strains show an increased sensitivity to caffeine, which is an 

inhibitor of cAMP phosphodiesterase, suggesting that these strains have an altered 

response to intracellular cAMP levels, or an intrinsically higher level. These 

observations are difficult to interpret without further details of the interactions between 

win! and pat), although one possible explanation is that win) is involved in some from 

of signalling mechanism, possibly nutritionally based, which is involved in sporulation. 

The final part of this chapter describes the genetic mapping of win!. The win) locus 

was first mapped to chromosome I by a mitotic haploidisation procedure, followed by 

allocation to a region of that chromosome by a series of crosses in a swi5.39 mutant 

background. One problem in using this system to map win) was that there appeared to 

be an increase in meiotic recombination involving win).!, compared with that between 

other markers. From the data described here, it is difficult to identify any specific 

causes for this effect, although it seems likely that it is because the crosses were carried 

out in swi5.39 background, in which recombination is obviously altered (Henning 

Schmidt, Pers. Comm.) 

Finally win! was mapped using conventional techniques to a locus 4 - 5cM from tps)9. 

One possible application of this data is to design an alternative strategy for cloning win), 

which would involve the cloning of tpsi9 by complementation, followed by chromosome 

walking, initially using tps19 sequences as a probe, to isolate win!. Plasmid clones have 
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been identified which are capable of suppressing the tpsl9.17 phenotype (Maria-Victoria 

Zarate, Pers. Comm.) 



CHAPTER 4 
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CHAPTER 4: ISOLATION OF PLASMID CAPABLE OF SUPPRESSING A winl.l 

CONFERRED PHENOTYPE 

4.1: ISOLATION OF PLASMIDS 

4.1.1: Cloning strategy 

The initial aim of these experiments was the isolation of the wini gene. The strategy 

used was based on the initial observation that the triple mutant strain weei.50 cdc25.22 

wini.! showed a very low colony forming ability when plated on EMM at the restrictive 

temperature of 35°C (Ogden and Fantes, 1986). This phenomenon was examined more 

closely by plating out cell suspensions at varying concentrations onto plates consisting of 

various solid media. 

The results of these experiments (presented in Chapter 3) showed that it would be 

possible to discriminate between cells with wini' and winl genotypes in this genetic 

background on the basis of their ability to f6im colonies on EMM at 35°C. They also 

confirmed that the presence of 1.2M sorbitol (which would be present in solid medium 

used for the regeneration of protoplasts following the transformation procedure) would 

not suppress the temperature sensitive phenotype of strains of genotype weel.50 cdc25.22 

winl.1. 

The approach taken was to transform a strain of the genotype weei.50 cdc25.22 win 1.1 

leul.32 with various gene libraries consisting of random S.pombe genomic sequences 

contained within autonomously replicating plasmid vectors. The presence of plasmid 

could be selected for by means of the S.cerevisiae LEU2 gene present in the plasmid 

vectors, which is capable of complementing the leu phenotype of leuI.32 strains. It was 

hoped that the presence of plasmid-borne winl*  sequences could be detected by selecting 

for growth of the cells on EMM at 35°C. 

4.1.2: Gene library screening 

Several gene libraries were screened in the course of these experiments (Table 4.1). 

Following the transformation procedure, protoplasts were allowed to regenerate at 28°C, 

until small colonies could be observed on the plates (3 - 5 days). Two procedures were 

used to select for cells able to grow at 35°C: the EMM-sorbitol plates were either 

replicated 



Table 4.1: Gene libraries. 

Library Vector Insert DNA Source 

A pDB262 
* 

Hindu! Ogden 

B pDB262 HinD!!! partial Ogden 

C pDB262 HinD!!! Nurse 

D pDB262 HinD!!! Nurse 

E pDB248 Sau3A partial Ogden and Fantes 

F pDB248 Sau3A partial Ogden and Fantes 

G pDB248 Sau3A partial Beach 

H pWH5 Sau3A partial Young 

I pWH5 HinDu! partial Young 

* 
DNA prepared from a strain of genotype weel.6 
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directly to EMM-Phloxin at 35°C, or the cells were scraped off the sorbitol containing 

plates, resuspended in a small volume of water and immediately replated onto EMM-. 

Phioxin plates at a density of approximately 10,000 cells per plate. In each experiment, 

a number of cells equal to more that ten times the original number of transformants was 

plated, to ensure plasmid bearing cells representative of each original transformant 

would be present. Cells were replated because the strain weel.50 cdc25.22 wini.! leuI.32 

shows significant bulk growth on EMM at 35°C. The direct replication of the original 

EMM-sorbitol plates resulted in large numbers of cells being transferred to the EMM-

Phioxin plate at 35°C. This made growing colonies arising from plasmid-borne 

complementation of the temperature sensitive defect difficult to distinguish from 

background growth. 

4.1.3: Analysis of transformants 

For each gene library, a total of at least 5000 to 10,000 transformants were screened in 

two separate experiments. All colonies that formed at 35°C were picked and grown up 

at 25°C for further examination. The cells were streaked out on EMM at 35°C in order 

to confirm their ability to form colonies, and to examine cell size microscopically. Cells 

of the genotype weel.50 cdc25.22 have a cell length less than that of wild type cells 

grown under these conditions. In contrast, cells of the genotype weel.50 cdc25.22 win 1.1 

show a very heterogeneous cell length, with a high proportion of very long cells. 

Strains that showed a high colony forming ability at low plating densities were selected 

for further analysis to determine if their change in phenotype was due to plasmid borne 

sequences. Plasmid sequences will not show a high mitotic stability once selection for 

plasmid-borne markers is relaxed. Growth of cells on non-selective medium will result 

in many losing plasmid. It is then possible to determine if two markers are unstable, 

and if they co-segregate, by replicating colonies representative of the cell population to 

appropriate selective media. If two markers are shown both to be unstable and to co-

segregate in such a test, then it is highly likely that both are plasmid-borne. 

The transformants isolated from the screen described above were grown on YE at the 

permissive temperature for 24 hours in order to relax selection for both the leu+  and the 

win 1+  markers. Cells were then streaked out and grown for several days under the same 

conditions. Single colonies were isolated and analysed to determine if the win 1+ 

phenotype cosegregated with the leu+  phenotype by replicating to EMM at 25°C (to test 

for leul phenotype) and EMM plus leucine at 35°C (to test for wini phenotype). In the 

cases of strains which showed co-segregation of the two markers, a l eu+ colony was 

selected and plasmid isolated from the cells. 
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4.2: ANALYSIS OF PLASMIDS ISOLATED FROM GENE LIBRARY SCREENING 

4.2.1 ConfIrmation of wini suppression 

Plasmid DNA isolated from the primary transformants was re-introduced into a weel.50 

cdc25.22 winl.1 leul.32 strain in order to confirm that these plasmids were the ones 

responsible for the cdc+  phenotype of the primary transformants. Each plasmid 

recovered was found to be capable of suppressing the cdc phenotype of this strain as 

judged by cell size viewed microscopically, and the transformants' ability to form 

colonies when streaked out on EMM-Phloxin at 35°C. 

4.2.2 Comparison of S.pombe insert sequences 

The various plasmids described were isolated from several transformation experiments 

carried out over a period of time. When new plasmids were isolated, one of the first 

stages in their analysis was to determine if they shared insert sequences with any 

plasmids already isolated in this screen. This was done by a combination of restriction 

site mapping and Southern blot analysis. In many cases it was possible to show that 

various plasmids isolated from one library were all of one species by comparing the sizes 

of restriction enzyme digest fragments. Where there was any uncertainty; Southern blot 

analysis was used to determine if there was any homology between the S.pombe genomic 

sequences carried by the different plasmids. 

4.2.3: Plasmids resulting from gene library screening 

In the first screening experiment (involving gene libraries A - F; see Table 4.1 and 

Table 4.3) only two transformants, both from gene library A, were identified as 

containing plasmid sequences capable of complementing the temperature sensitive 

phenotype of the strain weel.50 cdc25.22 wini.! Ieul.32. Plasmids isolated from these 

transformants were judged to be of the same species from restriction enzyme analysis 

(Fig 4.1). One was chosen for further analysis and named pKb. 

In the second screening experiment involving gene libraries A - 0, four transformant 

colonies resulting from transformation with gene library A were isolated, three colonies 

from gene library E, and two colonies from gene library G (Table 4.1 and 4.3). Plasmid 

DNA was isolated from these transformants, and subject to restriction analysis. The 
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four transformants from gene library A yielded plasmids identical to pKb. Of the three 

transformants from gene library E, two gave rise to identical plasmids. These were 

named pCi. The third yielded a plasmid which was clearly related to PCI, but had a 

slightly different pattern of restriction sites (Fig. 4.1). This (named pC3) was shown by 

restriction mapping to contain a slightly larger S.pombe genomic insert than pCi which 

includes a BglII and a HinLIII site (Fig. 4.2). The two transformants from gene library 

G gave rise to two plasmids with identical restriction fragment patterns. This plasmid 

was named pH3. 

In order to determine if the three plasmids described above contained shared S.pombe 

sequences, 32P labelled samples of plasmids pC3 and pH3 were used to probe a Southern 

blot which carried samples of the plasmids pKb, pCi, pC3, pH3, p25.27 (which carries a 

6.0kb fragment of the sequences encoding nirni (Russell and Nurse, 1987b)), and 

pDB248, all of which were digested with Hindu! (Fig. 4.3). The libraries from which 

pCi, pC3 and pH3 were constructed consisted of sized S.pombe genomic fragments 

resulting from partial digestion with the- enzyme Sau3A, which gives DNA termini-

compatible with ligation to BamHl termini. The presence of a HinIII site in the vector 

used (pDB248) means that Hin1III digest of such plasmids will result in two restriction 

fragments containing vector sequences. In contrast, the construction of the gene library 

from which pKb was derived involved the insertion of S.pombe Hind-li! fragments into 

the Hind.. HI site in the vector pDB262. Hind.!!l digestion of plasmids made in this way 

results in only one DNA fragment containing vector sequences. 

in experiments designed to determine if plasmids contain shared sequences, it can be 

more informative to use the entire plasmid as a probe in order to ensure that the full 

extent of the insert sequences are tested for hybridisation. However, this does result in 

hybridisation between vector sequences which must be taken into consideration. 

Labelled pC3 sequences showed no hybridization with the S.pombe sequences contained 

in p25.27 or pKb (Fig. 4.3). There was hybridisation between pC3 and the two HinIII 

fragments of pH3, due to the presence of vector sequences in both fragments. There was 

also strong hybridisation with all 



Figure 4.1: pKb and pLa plasmid isolates, and restriction analysis of pwis2-C1, pwis2-

C2, pwis2-C3, and pwis3-1. 

Plasmids were digested with HinLIII and subject to agarose gel 

electrophoresis. 

 

Lane 1: pkb 

Lane 2: pkb 

Lane 3: pla 

Lane 4: pla 

Lane 5: A Hin.d.IlI (molecular weight markers) 

 

Lane 1: A HincAIII (molecular weight markers) 

Lane 2: pkb 

Lane 3: pcI 

Lane 4: pc2 

Lane 5: pc3 

Lane 6: pH3 
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Figure 4.2: Preliminary restriction analysis of pwis2-Ci and pwis2-C3. 

Junctions between vector and insert sequences were formed by the ligation of Sau3A 

and BaniHI restriction digest termini. 



Figure 4.3: Southern blot analysis of pwisl, pwis2 and pwis3 plasmids. 

Plasmids were digested with Hin drii, separated by agarose gel electrophoresjs, 

Southern blotted and probed with pc3 (panel A) and pH3 (panel B). p25-27 
contains a HindlIl fragment of the nirni gene. 

Lane I: wild type DNA (undigested) 

Lane 2: pDB248 
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the Hindu! fragments of pCi, showing that they share the same insert sequences. 

Labelled pH3 sequences also showed no hybridization with the S.pombe sequences 

contained in p25.27 or pKb (Fig. 4.3). There was very weak hybridization between pH3 

sequences and the 3.1kb fragment of pCi and the 0.4kb fragment of pC3. This was 

consistent with the fact that these Hind!!l fragments contain a small section of vector 

sequence. There is no hybridization other than between vector sequences, implying that 

pH3 shares no insert sequences with pCi or pC3. 

The following conclusions may be drawn from this data: 

None of the plasmids pKb, pC3 and pH3 share S.pombe insert sequences. 

pCi and pC3 share a large portion of insert sequences. One margin of the insert is 

the same in both cases, judging from restriction analysis, but at the other margin, pC3 

contains slightly more S.pombe sequence. 	Further experiments were carried out 

involving only S.pombe-derived sequences as probes at a later stage (Table 4.2). The 

plasmids were then re-named: pKb as pwisi-i, pCi and pC3 as pwis2-C1 and pwis2-

C3, respectively, and pH3 as pwis3- 1 (wis denotes jn-suppressing). 

In the third screening experiment involving gene libraries 0, H and I, four cdc+ 

transformants were recovered, two from gene library H, and two from gene library I 

(Table 4.1 and Table 4.3). Restriction analysis of the plasmids recovered from these 

transformants (pNl, pN2, pN3 and pN4) showed that they were all closely related. The 

plasmids derived from each gene library (pNl and pN2 from gene library I and pN3 and 

pN4 from gene library H) were identical to each other, as judged from size of restriction 

fragments (Fig. 4.4). The two species of plasmids contained similar insert sequences as 

they gave similar patterns of restriction fragments upon digestion with other enzymes, 

although those derived from library H contained a slightly larger S.pombe insert (data 

not shown). The two species of plasmid were named pwis4-1 (from gene library H) and 

pwis4-2 (from gene library I). Neither of these two newly isolated plasmids contained a 

BglII site. It therefore seemed probable that they did not contain the same functional 

sequences as the previously described plasmids, which in subsequent analysis had all 

been shown to contain a BglII site within their functional sequences. 

The final screening experiment carried out also involved gene libraries G, H and I. 

Four cdc+  transformants were recovered from gene library G, six from gene library H, 

and fourteen from gene library I (Table 4.1 and Table 4.3). The four transformant 
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Table 4.2: Pattern of Hybridisation between insert sequences of the pwis plasmids. 

Probe derived from: 

P1asmid 	 pwisl-1 	pwis2-C3 	pwis3-1 	pwis4-1 

pwisl-1 	 + 	 - 	 - 	 + 

pwis2-C3 	 - 	 + 	 - 	 - 

pwis3-1 	 - 	 - 	 + 	 - 

pwis4-1 	 - 	 - 	 - 	 + 

pDa 	 + 	 - 	 - 	 - 

pSf 	 - 	 - 	 - 	 - 

pSk 	 + 	 - 	 - 	 - 

- = no hybridisation 	+ = hybridisation 

Probes: 4.1kb XbaI fragment of pwisl-1 

3.8kb BglII fragment of pwis2-C3 

4.0kb BglII fragment of pwis3-1 

5.0kb BamHI - PvuII fragment of pwis4-1 

The plasmids tested were digested with HindIII and transferred to GeneScreen Plus 

membrane. 
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Table 4.3: Summary of plasmids isolated in gene library screening experiments. 

Plasmid 	Gene Library Number Isolated Library Form 

pwisl-1(pKb) A 6 HindIII 

pwisl-2 (pH) I 14 HincbIII 

pwisl-3 (pDa) G 4 Sau3A 

pwisl-4 (pSf) H 3 Sau3A 

pwis2-C1 (pCi) E 2 Sau3A 

pwis2-C3 (pC3) E 1 Sau3A 

pwis3-1 (pH3) G 2 Sau3A 

pwis4.-1 (pN4) H 2 Sau3A 

pwis4-2 (pN2) 1 2 HinctIII 

pwis5-1 (pSk) H 3 Sau3A 

The initial name given to plasmid isolates is given in brackets. The name given is that 

of the particular isolate chosen for further analysis. The restriction enzyme names listed 

under "library form" are those of the restriction enzyme used in the construction of the 

library to digest the S.pombe genomic DNA 
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the same plasmid species as judged from restriction analysis which was named pDa (data 

not shown). 

Of the six transformants from gene library H, three yielded one class of plasmid (pSf) 

and the other three a second class (pSk) (Fig. 4.4). The transformants resulting from 

gene library I all yielded the same species of plasmid (pH). This library was constructed 

by the ligation of a sample of partially Hind!!! digested S.pombe genomic DNA into the 

vector pWH5. Upon digestion with Hind!!!, the pH plasmids gave three fragments, one 

corresponding to the vector, and the others identical in size to the two larger insert 

Hind!!! fragments in pwisl-1 (data not shown). Upon digestion with XbaI and BglII, 

the pH plasmids gave fragments that were also identical in size to those derived from the 

S.pombe sequences contained within pwisl-1 (data not shown). From this evidence it 

was decided that the pH plasmids contained the same functional sequences as pwisl-1, 

so this plasmid species was named pwisl-2 and no further analysis carried out. 

In order to determine if the other newly isolated plasmids contained S.pombe sequences 

already identified in previously isolated plasmids, Southern blot analysis was carried out 

with filters carrying Hindill-digested samples of the following plasmids: pwisl-1, pwis2-

C3, pwis3-1, pwis4-1, pDa, pSf and pSk. These filters were probed with restriction 

fragments from pwisl-1, pwis2-C3, pwis3-1 and pwis4.-1 which consisted entirely of 

S.pombe insert sequences (Table 4.2). The use of probes consisting entirely of S.pombe 

sequences avoids the problem of hybridisation between vector sequences. 

These results show that pDa and pSk share insert sequences with pwisl-1, and 

presumably the same functional sequences. These plasmids were named pwisl-3 and 

pwisl-4, respectively. Of the plasmids recovered from this screen, only pSf contained 

previously unidentified S.pombe sequences. This plasmid was then re-named pwis5-1. 

Preliminary restriction site analysis of these plasmids indicated that none of them 

contained the cdc25 gene. This was later confirmed by further investigations (see 

Chapter 5). 

In order to investigate the phenotype of cells of the genotype wee] .50 cdc25.22 win].] 

containing cdc25 sequences carried on multicopy plasmids, the plasmid pcdc25-1 was 

transformed into such a strajn. This plasmid contains cdc25 sequences in the form of 

three 	 Hindlil 	 fragments 	 in 	 the 



Figure 4.4: pN (pwis4), pSk (pwisl-4) and pSf (pwis5-1) isolates 

Plasmids were digested with HinDlil and subject to agarose gel 

electrophoresis. 
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vector pWH5 (Young, Pers. Comm.). The phenotypes of such transformants were tested 

by streaking them out thinly on EMM at 35°C, and examining the cells microscopically 

after a varying periods of growth. The cells showed a phenotype of very small length at 

division, with many aberrant divisions. They also showed a very low growth rate with 

respect to colony forming ability, which was presumably due to a high level of cdc25 

expression in a weel background (Russell and Nurse, 1986). 

In all, five independent sequences were isolated that were capable of suppressing the 

temperature sensitive phenotype of the strain weel.50 cdc25.22 win1.1 leul.32 when 

carried on multicopy plasmids (Table 4.3). 

4.3: DO ANY OF THE ISOLATED PLASMIDS CONTAIN THE wnl GENE? 

4.3.1: Strategy for analysis 

The next stage in the analysis of these plasmids was to determine if they contained the 

authentic wini gene. In order to do this, integrant strains were made which resulted 

from homologous recombination between plasmid-borne sequences and genomic 

sequences using each of the plasmid species described above. Once the integration event 

had been shown to have occurred by homologous recombination, the integrants were 

crossed to a strain of genotype win).) leuI.32. It was then possible to determine if the 

plasmid-contained S.pombe sequences (as followed by the plasmid-borne leu+ phenotype) 

were closely linked to the win) locus, which could be followed by the win).) conferred 

phenotype of slightly elongated cells. Close linkage between the two would indicate that 

the plasmid-contained sequences were derived from the wini locus, and were very likely 

to contain the wini gene. 

4.3.2: Production of integrant strains 

A preliminary restriction analysis was performed upon each of the plasmids to find an 

enzyme which would cut once or twice exclusively within the S.pombe insert sequences. 

Plasmids linearized in this way show a higher frequency of homologous recombination 

with the genome compared to circular plasmids, as described in S.cerevisiae by Orr-

Weaver et a!, (1983). Approximately 1 - 5 g of linearized plasmid was used to transform 

a leul.32 h strain using the standard transformation procedure. Transformants were 

then subjected to stability analysis: colonies were picked to YE plates and grown for 24 

hours non-selectively, after which time they were streaked out for single colonies upon 
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non-selective (YE) plates. At least 20 colonies from these plates were picked to a YE 

master plate, and this plate replicated to EMM. When all the colonies derived from one 

transformant were capable of growth, it was taken to imply that this leu+  phenotype was 

due to recombination between plasmid and genomic sequences resulting in the 

integration of one or more copies of the plasmid. 

4.3.3: Molecular analysis of integrant strains 

Using molecular techniques, it is possible to determine if the S.pombe sequences 

contained within plasmids isolated from gene libraries are colinear within the S.pombe 

genome, rather that resulting from a ligation artefact. It is also possible to determine if 

integrant strains have resulted from homologous recombination between plasmid and 

genomic sequences. 

In order to determine if the insert sequences are co-linear within the genome, wild type 

DNA is digested with a restriction enzyme with no sites in the plasmid under analysis, 

and subjected to Southern blot analysis. If only one band shows hybridisation to labelled 

plasmid sequences, then the insert sequences are very likely to be colinear within the 

genome. If the hybridising band is shifted to a higher molecular weight in DNA 

samples from integrant strains digested with the same restriction enzyme, this is strong 

evidence that these strains have resulted from plasmid integration by homologous 

recombination. 

The results of the Southern blot analysis of wild type and integrant strains with the 

plasmid pwisl-1 is shown in Figure 4.5. Samples of genomic DNA from a wild type 

strain, and integrant strains Int3 and Int5 were digested with MluI, which has no sites 

within pwisl-1. These samples were then subjected to Southern blot analysis, probed 

with all the sequences contained within pwisl-1 (Fig. 4.5). Wild type DNA shows only 

one hybridising band, indicating that the insert sequences contained within pwis 1-1 are 

colinear within the S.pombe genome. DNA samples from the integrant strains also show 

a single hybridising band, but one which is of a higher molecular weight compared to 

that in the wild type samples. This indicates that plasmid integration has taken place by 

homologous recombination. 
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Table 4.4: Restriction enzymes used for the linearisation of plasmids, and the resulting 

integrant strains. 

Plasmid Enzyme Integrant sDecies 

pwisl-1 PvuII Int2, Int3 

pwis2-c3 Sac! C3A, C3B 

pwis3-1 BglII HC, HD 

pwis4-1 SstI N211 

pwis4-2 XhoI N411, N412, N413 

pwis5-1 XhoI W511, W512 
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Further experiments involving wild type strains and those listed in Table 4.4 showed that 

in the case of each plasmid the insert sequences were colinear within the genome. They 

also demonstrated that each integrant had resulted from homologous recombination 

between plasmid and genomic sequences (data not shown). 

4.3.4: Genetic analysis of integrant strains 

The integrant strains described above were then used in a genetic analysis to determine 

if the sequences carried by the pwis plasmids contained the authentic wini gene. In 

these integrant strains, the locus from which the plasmid-borne sequences were derived 

is tagged with the LEU2 marker in a leul background. If this were the wini locus, 

then when such integrants are crossed to a strain of the genotype win).) leul.32, there 

should be little or no recombination between the wini locus and the LEU2-tagged locus 

from which the plasmid sequences were derived. 

The results of such crosses between the integrant strains derived from the pwis plasmids 

and wini.) leuI.32 h*  are shown in Tables 4.5 to 4.9. Each cross was subjected to free 

spore analysis, and the phenotypes of approximately 50 colonies scored in each case. 

The leu+/_  phenotype was scored by testing for growth on minimal medium, and the 

win) phenotype scored by examination of cell length microscopically. 

The results of these experiments showed that, in four cases out of five, there was no 

linkage between the plasmid contained insert sequences and the win) locus. In the case 

of the remaining plasmid, the insert sequences showed a loose linkage to the win) locus, 

but not the figure that would be expected if the plasmid contained the authentic wini 

gene. 

These results from this genetic analysis show that the S.pombe genomic sequences 

contained within the pwis plasmids do not contain the authentic win) gene, as there is 

no close genetic linkage between win) and the loci from which the inserts were derived. 

However, several points of interest are raised by the results of these crosses. In the case 

of the pwis2-C3 integrants, the recombination between the site of integration and the 

win).) locus was 12%. This indicates that pwis2-C3 does not contain the authentic win) 

gene, but contains sequences which are genetically linked. More interestingly, 

microscopic examination of strains containing integrated copies of pwisl-1 showed that 

their cell length at division shorter than that of wild type. This effect is discussed in 

detail in Chapter 6. 



Table 4.5: Genetic Analysis of Crosses Involving pwisl Integrant Strains. 

Integrant strains 

PhenotvDe 	 Int2 

win leu 	 10 (21%) 

win 1eu 	 12 (25%) 

wink  Ieu 	 13 (27%) 

wink  leu 	 13 (27%) 

Int3 

12 (26%) 

15 (32%) 

6 (13%) 

14 (30%) 

Table 4.6: Genetic Analysis of Crosses Involving pwis2 Integrant Strains. 

Integrant strains 

Dhenotype C3A C3B 

win 	leu 22 (45%) 23 (47%) 

win 	1eu 2 (4%) 3 (6%) 

wink  leu 4 (8%) 3 (6%) 

wink  1eu 21(43%) 20 (41%) 

Table 4.7: Genetic Analysis of Crosses Involving pwis3 Integrant Strains. 

phenotyDe 

win leu 

win_ leu+ 

wink leu 

wifl+ leu+ 

Integrant strains 

HC 

18 (40%) 

13 (29%) 

4 (9%) 

10 (22%) 

HD 

18 (35%) 

6 (12%) 

13 (25%) 

15 (29%) 
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Table 4.8: Genetic Analysis of Crosses Involving pwis4 Integrant Strains. 

Integrant strains 

henotyDe N211 N411 N412 N413 
win 	leu 11(23%) 12 (25%) 14 (29%) 5 (11%) 
win 	1eu 15 (31%) 12 (25%) 12 (25%) 11(23%) 
wink  leu 12 (25%) 10 (21%) 8 (17%) 20 (43%) 
wink  1eu 10 (21%) 14(29%) 14(29%) 11(23%) 

Table 4.9: Genetic Analysis of Crosses Involving pwis5 Integrant Strains. 

Integrant strains 

phenotyDe 

win leu 

win leu+ 

wink leu 

w in+ leu+ 

w511 	 W512 

23 (34%) 	 9 (12%) 

16 (24%) 	 13 (17%) 

18 (26%) 	 32 (41%) 

11(16%) 	 24(31%) 
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Figure 4.5: Southern blot analysis of pwisl-1 integrant strains. 

S.pombe genomic DNA was digested with MluI, separated by agarose gel 

electrophoresis, Southern blotted, and probed with labelled plasmid pkb. 

Lane 1: wild type 

Lane 2: mt 3 

Lane 3: mt 5 

Lane 4: pkb digested with HinDill 



1 	2 	3 	4 	kb 

4 

-18 

I.- 4 s 4 

a, 	'-32 



113 

4.4: DISCUSSION 

This chapter describes the extensive screening of gene libraries with the aim of isolating 

sequences encoding the win) gene. Five independent sequences have been isolated which 

are capable of suppressing the temperature sensitive phenotype of strains of the genotype 

weel.50 cdc25.22 win).), although none of them represent the authentic wini gene, as 

demonstrated by integration and genetic mapping. One shows loose linkage with the 

win) locus. 

There remain two questions arising from these experiments: why cdc25+  sequences were 

not identified, and why the authentic win) gene was not isolated in the gene library 

screening. If cdc25 in multicopy were capable of suppressing the temperature sensitive 

phenotype of the strain weel.50 cdc25.22 win).), then the fact that such sequences were 

not isolated might indicate that the gene libraries described here had not been 

thoroughly screened. In order to investigate the phenotype of such transformants, a 

reconstruction experiment was performed involving the transformation of such a strain 

with cdc25+  sequences. Very high levels of cdc25 expression resulting from stimulation 

of transcription with the ad promotor have been shown to be lethal in a weel .50 genetic 

background (Russell and Nurse, 1986). Multiple copies of cdc25 in such a wee) .50 

win).) background were shown not to be lethal, but are evidently detrimental to the cell, 

which may explain why such transformants were not isolated in the gene library screen 

described. 

A possible reason to explain why win) was not isolated is that the effect of multiple 

win) copies in a wee) genetic background has a similar effect to that seen in the case 

of cdc25. This effect may be lethal, or so detrimental to the cell that transformants are 

impossible to recognise or recover. 

After extensive screening without the isolation of win), work was directed towards 

alternative protocols for the isolation of win), and towards the study of the sequences 

isolated as suppressors. 
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CHAPTER 5: ANALYSIS OF PWIS PLASMIDS 

5.1: MOLECULAR ANALYSIS 

5.1.1: Analysis of pwisl-1 

5.1.1.a: Delimitation of pwisl-1 functional sequences by subcloning 

The plasmid pwisl-1 Consists of an 8.8kb S.pombe genomic insert in the vector 

pDB262. The library from which it was isolated was constructed by partial digestion 

of S.pombe genomic DNA with HindilI, followed by ligation with pDB262. The 

S.pombe insert in pwisl-1 consists of three HindIlI fragments of sizes 4.4kb, 3.2 kb 

and 1.2kb (Fig. 5.1). The first stage in the delimitation of the functional sequences 

contained within pwisl-.l consisted of various subcloning experiments: each of the 

three Hindill fragments was subcloned into pDB262. In addition, a construct was 

made which lacked the 1.2 BglII fragment by total digestion of pwisl-1 with BglII, 

followed by religation (Fig. 5.1). 

Each of these constructs was assayed for wis activity by transformation into the 

strain weel.50 cdc25.22 winl.1 leui.32 and the phenotype of the transformants 

examined at the restrictive temperature. None of the plasmids described showed any 

activity in this assay, so it could be concluded that one or more of both the HindilI 

and BglII sites were within the functional sequence of pwis 1-1. 

5.1.1.b: Transposon analysis of pwisl-1 

The next stage in the analysis was the use of transposon mutagenesis. The strategy 

behind these experiments was to treat a plasmid sample in such a way as to give a 

library of plasmid clones, each containing a single transposon integrated at a random 

site within the S.pombe insert. These transposon-containing plasmids could then be 

assayed for wis activity in the same way as that described for the subclones above. 

The effect upon plasmid function of individual transposon integrations could then be 

used to delimit the functional sequence contained within the plasmid in question. 

An E.coli transformant strain containing pwisl-1 was treated with a bacteriophage 

lambda isolate containing the transposon Tn5, as described in Chapter 2, and a 

library of plasmids containing random insertions of the transposon prepared. 



Figure 5.1: The molecular analysis of wisl. 

Restriction map of S.pombe insert in pwisl-l. 

Subclones of pwisl-1, and their wisl activity. 

Results of transposon mutagenesis. Numbers indicate individual transposon clones. 

Circles indicate the position of integration of transposons affecting wisi activity, and 

squares the positions of those not affecting wisi activity. 
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The position of transposon integration in each case was determined by restriction 

analysis. In the case of pwisl-1, plasmids were initially subject to restriction 

analysis with Hind!!l to determine which of the four Hind!!! fragments contained the 

transposon (Fig. 5.1). Tn5 contains two Hind!!! sites, symmetrically placed 1.0kb 

from the termini of the transposon (Fig. 5.2). The pattern of Hindul fragment sizes 

from a transposon-treated pwisl-1 clone was different from that of pwisl-1, with 

one Hind!!! fragment disappearing to be replaced with three. Two of these 

fragments corresponded to the two parts of the original Hind!!! fragment with an 

extra 1.0kb in each consisting of transposon sequences. The third Hind!I! fragment 

consisted entirely of Tn5 sequences, and was present in all transposon containing 

plasmids. The largest Hindul fragment of pwisl-1 contains the entire pDB262 

vector sequence, so from the examination of Hind!!! digests it was possible to 

exclude from further analyis those plasmids containing a transposon within the 

vector. 

Of those plasmids containing transposons within the S.pombe insert sequences, it was 

normally possible to allocate the transposon integration site to one of two positions 

on the basis of Hindlil fragment size data. Further restriction analysis, with the 

restriction enzyme BamHI which has one site within the transposon (Fig. 5.2), was 

used to determine the position of integration unequivocally. 

A number of plasmids were selected and transformed into the strain weel.50 

cdc25.22 winl.1 leul.32 in order to determine if the transposon integration had 

affected plasmid function. The sites of the transposon integrations in the plasmids 

were examined and the functional regions of the insert determined from their 

positions. 

5.1.1.c: Delimitation of wisi functional region by comparison of the S.pombe insert 

sequences contained within three pwisl plasmid isolates 

It was also possible to use information concerning the S.pombe genomic inserts in 

pwisl-2 and pwisl-3 to delimit the functional sequence of wisi. Restriction maps of 

the inserts within the plasmids were made, and the extent of overlap between the 

three plasmids determined (Fig. 5.3). The functional sequence could be assigned to 

this overlap region, though it was not possible to include pwisl-4 in this analysis, as 

the extent of the insert sequences could not be determined by restriction mapping. 
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Figure 5.2: Restriction map of the transposon Tn5. 

(From: Jorgenson et a!, 1979.) 
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Figure 5.3: S.pombe genomic sequences contained within pwisl plasmids isolated 

from various gene libraries. 
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This was presumably due to plasmid re-arrangement, or some form of ligation 

artefact. From this data, it was possible to delimit the functional region 

of wisi to a 5.8kb region between the left-hand XbaI site and the Hind!!! site at the 

right hand side of the 3.2kb HindlIl fragment (Fig. 5.4). 

5.1.1.d: Isolation of a 4.1kb fragment containing the functional region of pwis1.1 

The data from the transposon mutagenesis experiments suggested that a subclone of 

pwisl-1 containing only the internal 4.1kb XbaI fragment should contain the wisi 

functional region. This fragment was subcloned into pTZI8 in both orientations to 

give plasmids pX2 and pX3 (Fig. 5.4). In order to construct the plasmid pIRT-X3, 

this 4.1kb XbaI fragment was subcloned into the plasmid pIRT2 using the flanking 

sites, SphI and Sac!, from the polylinker in pTZ18 (Fig. 5.3). pIRT-X3 was shown 

to have activity in suppressing the cdc phenotype of the triple mutant strain weel.50 

cdc25.22 winl.1, and in suppressing the cell length phenotype of a win 1.1 strain. 

5.1.2: Analysis of pwis2-C1 and pwis2-C3 

5.1.2.a: Delimitation of wis2 functional region by subcloning 

A similar strategy of subcloning followed by transposon mutagenesis was followed in 

the case of wis2. Hindul subclones were made from pwis2-C1 (See Fig. 5.5). None 

of these plasmids showed any wis activity, as described above. In order to further 

delimit the wis2 functional region, a construct was made which contained only the 

sequences to the right hand side of the central BamHI site in the insert sequences of 

pwis2-C3. The strategy for the construction of this plasmid involved a transpôson-

containing plasmid clone of pwis2-C3. The plasmid pC3-Tn5-6 contained the 

transposon TO integrated within vector sequences 0.5kb from the leftmost (vector) 

Hind!!! site in pwis2.C3 (Fig. 5.5). Due to the presence of a single BamHI site 

within the transposon (Fig. 5.2), digestion of this plasmid with BamHI, followed by 

religation, resulted in the loss of the S.pombe sequences to the left hand side of the 

central BamHI site within the insert of pwis2-C3. The resulting plasmid, pC3-Tn5-

6D, which contains only the insert sequences to the right hand side of the central 

BamHI site, was shown to have wis activity. The combination of results from these 

experiments and the Hind!!l subclone analysis indicate that the functional sequence 

of pwis2 includes the Hind!!l site at the far right in Fig. 5.5. It is not possible to 

exclude the possibility that the Hindill site close to the BamHI site within the pwis2-

C3 is within the functional region, although this seemed unlikely, as it was within 
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Figure 5.4: Plasmid pX3. 

pX3 consists of the 4.1kb XbaI fragment from pwisl-1 subcloned into pTZI8. 

Plasmid pX2 contains the same insert sequences, but in the opposite orientation in 

pTZI8. 
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Figure 5.5: The molecular analysis of wis2. 

Restriction map of S.ponibe insert in pwis2-C3. 

Subclones of pwis2-C2 and pwis2-C3, and their wis2 activity. 

Results of transposon mutagenesis. Numbers indicate individual transposon clones. 

Squares indicate the positions of transposons not affecting wis2 activity (no clones 

were identified with transposons which affected wis2 activity). 
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0.1kb of the BamHI site. This possibility was excluded by results from the 

transposon analysis described below. 

In order to delimit the functional region of wis2 further, subclones were constructed 

using the BglII sites contained within the insert sequences of pwis2-C3. The 

plasmid pBB-16 was derived by digestion of pwis2-c3 with BglII followed by 

religation at low DNA concentration. It contained mainly vector sequences, but 

included the very small fraction of S.pombe insert beyond the leftmost BglII site, 

and the 2kb of insert sequences to the right of the BglII site at the right hand side. 

pBB15 consisted of the 6.2kb BglII fragment of pwis2-C3 subcloned into pDB248 

(Fig. 5.4). Neither of these constructs showed any activity in the assay described. 

The most likely explanation of this data is that the functional sequences of wis2 are 

in the region of the right hand side BglII and Hindul sites, though from these 

experiments it is not possible to exclude the possibility that they include the central 

BglII site. 

5.1.2.b: Transposon analysis of pwis2.C3 

pwis2-C3 was subjected to transposon mutagenesis in the same way as that described 

for pwisl-1. Individual transposon containing plasmids were first subject to 

restriction analysis with Hindill, which was followed by analysis involving one or 

more of XhoI, BamHI or PvuII, which all have site within the transposon (Fig. 5.2), 

depending on the position of the transposon integration. Different restriction 

enzymes were employed in order to give restriction fragments of a small enough size 

for their length to be determined accurately by agarose gel electrophoresis. 

Despite the analysis of 55 such transposon-containing plasmids, it was not possible to 

find one with an integration site within the region defined by clones 9 and 25 (Fig. 

5.5). This "cold spot" was contrasted by two "hot spots" at the left hand side of the 

insert and in the centre. None of the integration events shown had any effect on wis 

function. 

The results of the transposon mutagenesis experiments were in agreement with those 

derived from subcloning: the functional sequence of wis2 includes the Hindu! and 

BglII sites at the right hand side of the restriction map shown, and is within the 

integration sites of the transposons in clones 9 and 25. This delimits the functional 

sequence to 2.8kb. A subclone of this region was made using the Smal site and the 



Sall site within the flanking vector sequences (Fig. 5.5). This fragment was 

subcloned into pTZ18 to give plasmid pC3-16. 

5.1.3: Analysis of pwis 3-1 

5.1.3.a: Restriction analysis of pwis3-1 

The plasmid pwis3-1, of approximately 17.5kb, was isolated from a library consisting 

of S.pombe genomic DNA partially digested with Sau3A contained within the vector 

pDB248. Restriction analysis showed that the vector, and possibly the S.pombe 

derived sequences, had undergone some form of re-arrangement. Because of this, 

restriction sites within the insert sequences difficult to map in relation to known sites 

within the vector. It was, however, possible to construct an outline map of the 

plasmid showing that it contained a single PstI site, two Hindu! sites and two BglII 

sites, and to determine their relative positions (Fig. 5.6). From this restriction 

analysis it was possible to deduce that the two BglII site lay within S.pombe-derived 

sequences, as the vector pDB248 contains no BglII sites. It was also possible to 

deduce that one of the Hindu! sites was also derived from S.pombe sequences, as it 

lay between the two BglII sites (Fig. 5.6). 

5.1.3.b: Delimitation of the pwis3-1 functional region by subcloning 

The first experiments aimed at delimiting the functional sequences of wis3 were to 

subclone the two fragments resulting from the Hindul digest of pwis3-1 into 

pDB262 (Fig. 5.6). The resulting plasmids, pSH3-11 (containing the 2.5kb fragment) 

and pSH3-16 (containing the 15.0kb fragment which consisted predominantly of 

vector sequences) were transformed into the strain weel.50 cdc25.22 winl.1 leuI.32 

h to assess their wis function. pSH3-16 showed an effect similar to the parental 

plasmid pwis3-1 on this strain, while pSH3-11 had no effect. This suggests that the 

functional sequences of wis3 were contained within pSH3-16. 

A construct was made from pwis3-1 that lacked the 3.0kb fragment by total 

digestion with BglII followed by religation. This plasmid (pH3-B) showed no wis 

function when subjected to the assay as described above. 
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Figure 5.6: The molecular analysis of wis3 
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Restriction map of plasmid pwis3 -1, linearised with Pstl. 

Subclones of pwis3-1 and their wis3 activity. 

Results of transposon mutagenesis. Numbers indicate individual 

transposon containing clones. Circles indicate the position of 

integration of transposons affecting wis3 activity, and squares the 

positions of those not affecting wis3 activity. 



On the basis of the subcloning experiments with Hindu! and BglI! it could be 

concluded that the functional sequences contained no Hind!!l site, but one BglII site. 

It was also possible to deduce that this BglII site was not the one within the 2.5kb 

Hind!!l fragment, as loss of this fragment had no effect upon the wis function of 

pwis3-1. 

5.1.3.c: Transposon analysis of pwis3-1 

The next stage in the analysis consisted of transposon analysis as described for wisi 

and wis2. Individual transposon-containing plasmids were first subject to Hind!!! 

restriction analysis, followed by Psi! restriction analysis 

to assign unequivocally the site of transposon integration (Fig. 5.5). The results of 

these experiments indicate that the transposons capable of affecting the wis function 

of pwis3.1 lie within a 3.6kb region flanking the right hand side Bgl!I site, which is 

in agreement with the results of the subcloning experiments. 

In order to facilitate further analysis, a DNA fragment containing the wis3 

functional sequences was subcloned. To do this, use was made of the Hind!!l sites 

contained within the transposon Tn5 in the transposon-containing clone no.17. A 

Hind!!l fragment of approximately 9kb was subcloned into the vector pDB262, 

resulting in the plasmid pW3. This plasmid was shown to have wis activity and was 

subjected to restriction analysis (Fig. 5.7). 

5.1.4: Analysis of pwis4-1 and pwis5-1 

Restriction analysis was performed upon pwis4-1 and pwis5-1, but no experiments to 

delimit their functional sequences were performed (Fig. 5.8). 

5.1.5: Comparison of restriction data from wis functional regions with that from 

previously identified cell cycle genes 

Once restriction maps of the S.pombe inserts contained within the pwis plasmids had 

been determined, it was possible to compare these with restriction maps of other cell 

cycle genes which had already been isolated and characterised. From this data it was 

possible to determine if the pwis plasmids contained sequences corresponding to any 

of these genes. None of the previously identified genes 
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Figure 5.7: Restriction map of the S.pombe insert sequences in plasmid pW3. 

This insert was derived from the Tn5-containing clone of pwis3-1, H3-Tn5-17, and 

consists of a 9kb HinDu! fragment containing both S.pombe and Tn5 sequences 

subcloned into pDB262. 
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Figure 5.8: Restriction analysis of wis4 and wis5. 

S.pombe genomic sequences contained within pN2 (pwis4-1). These insert 

sequences also contain at least a further 5 HinD!!! sites. 

S.pombe genomic sequences contained within pSf (pwis5-1). 
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Figure 5.9: Restriction analysis of previously identified S.pombe cell cycle genes. 

Arrows indicate positions and directions of open reading frames. 

References: cdc25: Russell and Nurse (1986). weel: Russell and Nurse (1987a). cdc2: 

Durkacz el a! (1985). niml: Russell and Nurse (1987b). suci: Hayles et a! (1986). 

cdcl3: Hagan et a! (1988); Booher and Beach, (1988). 
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examined showed any similarity to the pwis sequences. Those 

genes examined include cdc2, cdc25, weel, nimi, suci and cdc13 (Fig. 5.4). 

5.2: GENETIC ANALYSIS 

5.2.1 Experimental strategy 

In order to investigate possible interactions of the five wis genes with other cell 

cycle genes involved in the control over entry into mitosis, the effect of introducing 

the wis genes carried on multicopy plasmids into various cell cycle mutants was 

investigated. 

5.2.2: Interactions of pwis plasmids with winl.l 

Of primary interest was the effect on the winl.1 mutation in an otherwise wild type 

background: only pwisl-1 (data no shown) and pwis4-1 (Table 5.1) were capable of 

suppressing the phenotype of increased cell length at division characteristic of this 

mutant. In order to determine if this were due to a specific suppression of winl.1, 

or a general effect upon cell length, plasmids carrying the wis genes were introduced 

into a leuI.32 strain, and cell lengths at division determined (Table 5.2). These 

results suggest that wisi has a general effect upon cell length; in high copy number 

it will induce an early entry into mitosis. It is possibly this effect which results in 

the suppression of the win 1.1 single mutant phenotype. In contrast, wis4 appears to 

be a specific suppressor of winl.1: when present in multicopy it has no significant 

effect upon wild type cells. 

5.2.3: Interactions of pwis plasmids with cdc25 

The pwis plasmids were isolated as suppressors of the temperature sensitive cdc 

phenotype of a strain carrying the mutation cdc25.22. These plasmids were 

transformed into a strain of genotype cdc25.22 IeuI.32 h and the phenotype of the 

transformants examined at the restrictive temperature. The results of these 

experiments showed that the pwis plasmids showed no effect in suppressing the cdc 

phenotype of cdc25.22 in an otherwise wild type background. This shows that the 

effect of these plasmids in multicopy is not directly to reverse the effect of loss of 

cdc25 function. 
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Table 5.1. Effects of pwis4.1 upon cell length phenotype of winl and winl.1 

strains 

Plasmid Strain Cell length/film SD 

pwis4.1 leul.32 h 13.56 0.84 

pDB248 leuI.32 h 14.34 0.64 

pwis4.1 winl.1 leuI.32 h 13.97 0.75 

pDB248 winl.1 leuI.32 h 17.20 0.58 

Cells were grown to mid log phase in EMM at 25°C. 

Table 5.2. Cell lengths of transformants containing the pwis plasmids in the strain 

leul.32 h. Cells were grown to mid log phase in EMM at 25°C. 

Plasmid Cell length/pm SD 

pDB248 12.99 0.85 

pwisl.l 10.69 0.53 

pwis2.C3 13.03 0.71 

pwis3.1 12.83 0.50 

pwis4.1 13.56 0.84 

pwis5.1 14.01 0.69 
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5.2.4: Interactions of pwis plasmids with mcs3, mcs4 and mcs6 

Several chromosomal mutations (mcs3.12, mcs4.13 and mcs6.13) have been isolated 

which share with winl.1 the capacity of reversing the suppression of cdc25 by weel 

(Molz et a!, 1989). Thus, the phenotype resulting from the combination of one of 

these mutations with weel.50 and cdc25.22 is cdc or semi-cdc. See Chapter 3 for a 

further description of the mcs mutations. The pwis plasmids were transformed into 

the following strains to determine if they were capable of suppressing their 

temperature sensitive phenotypes: weel.50 cdc25.22 mcs3.12 leuI.32 h, weel.50 

cdc25.22 mcs4.13 leul.32 h, weei.50 cdc25.22 mcs6.13 leuI.32 h. For results, see 

Table 5.3. 

In order to determine if the functional sequences contained within the pwis plasmids 

were allelic to the mcs mutations whose phenotypic effect they were capable of 

suppressing, a genetic analysis was performed. This involved constructing strains of 

the genotype weel.50 cdc25.22 [pwisN:LEU2] leui.32 h, where [pwisN:LEU2] 

denotes integrated copies of a pwis plasmid, which has previously been shown to 

have integrated by homologous recombination (Chapter 4). These crosses were 

performed in a weel.50 cdc25.22 genetic background as it was believed at the time 

that mcs3.12, mcs4.13 and mcs6.13 showed no observable phenotype in an otherwise 

wild type background. It later came to light that mcs4.13 does show such a 

phenotype, which is one of a slight increase of length at division (Molz et a!, 1989). 

The genetic locus of the wis sequence could be followed in these crosses by its close 

linkage to the leu+  phenotype resulting from the associated plasmid sequences. The 

cdc phenotype was scored by microscopic examination of growing cells at the 

restrictive temperature. The crosses were examined by either tetrad analysis or free 

spore analysis, and the results shown in Table 5.4. These results show that none of 

the plasmids capable of suppressing mcs mutant alleles contain the equivalent mcs + 

sequences. 

The plasmids pwisl-1, pwis2-C3 and pwis3-1 were transformed into the strain 

mcs4.13 leuI.32 h. Of these, only pwisl-1 suppressed the phenotype of increased 

cell length at division shown by this strain. However, as in the case of winl.1, it is 

possible that this is a result of a general effect upon cell length show by wisi when 

present in multicopy. 
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Table 5.3. Effects of pwis plasmids upon phenotypes of strains carrying mcs mutant 

alleles in a weel.50 cdc25.22 leul.34 h genetic background. 

Mutant allele 	 mcs3.12 	mcs4.13 	mcs6.13 

Plasmid 

pwisl-1 	 - 	 - 

pwis2-1 	 ++ 	 ++ 	 ++ 

pwis3-1 	 + 	 + 	 + 

pwis4-1 	 - 	 - 	 - 

pwis5-1  

Levels of effect graded from +-+-+ (strong suppression) to - (no effect) by microscopic 

examination of growing cells on EMM at 35°C. 
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Table 5.4. Results of crosses involving pwis integrant strains and those containing 

various mcs mutant alleles in a weel.50 cdc25.22 leul.32 genetic background. 

[pwisl-.1] weel.50 cdc25.22 ura4.D18 leul.32 h#  crossed to weel.50 cdc25.22 mcs4.13 

leuI.32 h. 

mcs+ 	mcs ' _ 	mcs 

1eu 	 11 	 7 	 0 

leu 	6 	 0 	 8 

[pwis2-C1] weel.50 cdc25.22 leuI.32 h crossed to weel.50 cdc25.22 mcs3.12 leul.32 

h. 

mcs+ 	mcs+ 	mcs 

Ieu 	 14 	 9 	 1 

leu 	 13 	 0 	 9 

[pwis2-C1] weel.50 cdc25.22 leul.32 h crossed to weel.50 cdc25.22 mcs4.13 leul.32 

h. 

mcs+ 	mcs+'_ 	mcs 

leu 	 18 	 0 	 8 

leu 	7 	 0 	 3 

[pwis2-C1] weel.50 cdc25.22 leul.32 h crossed to weel.50 cdc25.22 mcs6.13 leuI.32 

h. 

mcs+ 	mcs+ / _ 	mcs 

1eu 	 17 	 0 	 4 

leu 	 16 	 0 	 11 
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Table 5.4. (continUed) 

[pwis3-11 weel.50 cdc25.22 leul.32 h crossed to wed.50 cdc25.22 mcs3.12 leuI.32 

h. 

	

mcs4 	mcs' 	mcs 

leu 	 16 	 8 	 0 

leu 	5 	 1 	 16 

[pwis3-I] weel.SO cdc25.22 leuI.32 h crossed to weel.SO cdc25.22 mcs4.13 leul.3
2  

h. 

mcs+ 	mcs+/ 	incs 

leu 	29 	 0 	 1 

leu 	 14 	 0 	 4 

[pwis3-I] weel.SO cdc25.22 leul.32 h crossed to wee).50 cdc25.22 mcs6.13 leul.32 

h. 

mcs+ 	mcs' 	mcs 

2 
leu 	6 	 0 

leu 	0 	 0 	 2 



5.2.5: Interactions of the pwis plasmids with other cell cycle mutations 

No phenotypic effects were observed when the pwis plasmids were transformed into 

strains containing the following mutant alleles: cdc2.33, cdc2.1w, cdc2.3w, weel.50 

cdcl3.117, cdrl.34 (nimi) and cdr2.69. This shows that the effect of these plasmids 

in multicopy is not acting to reverse the effect of loss of function of these genes. 

5.3: DISCUSSION 

This chapter describes the analysis of the pwis plasmids by restriction mapping, 

subcloning, and by transposon mutagenesis. In the cases of wisi, wis2 and wis3, 

functional sequences were identified within the original clone and subclones made. 

Restriction maps of the pwis genomic sequences were compared with those of 

previously identified cell cycle genes and no similarities found. The phenotypes of 

various cell cycle mutant strains containing the pwis plasmids in multicopy were 

examined. The most striking effect was shown by wisi, which was capable of 

reducing the cell length on division of an otherwise wild type. strain when present in 

multicopy. This suggests a possible role for wisi as a dosage dependent inducer of 

mitosis. 

None of the pwis plasmids showed any effect upon the phenotype of cdc25.22 in an 

otherwise wild type background. This suggests that they are not acting to 

compensate directly for loss of cdc25 activity. Only wisi and wis4 were capable of 

suppressing the winl.1 phenotype in an otherwise wild type background. Their 

effect upon the weel.50 cdc25.22 winl.i phenotype may be due to an effect upon 

wini activity. 

Several of the pwis plasmids were shown to affect the phenotype of strains with 

specific mcs mutations in a weel.50 cdc25.22 mutant background. Genetic mapping 

experiments showed that the wis genes were not allelic to the specific mcs mutations 

they were capable of suppressing. It is difficult to draw any conclusions from the 

interactions between pwis plasmids and mcs mutations, as so little is known about 

either. It is possibly worth noting that wis2 and wis3, when present in multiple 

copies, are capable of affecting the phenotypes of win1.1, rncs3.12, mcs4.13 and 

mcs6.13 in a weel.50 cdc25.22 mutant background. In contrast, wisi only showed an 

interaction with mcs4.13, which shows a phenotype strikingly similar to that of 
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winl.1. The interactions between winl.1 and the mcs mutations are described in 

Chapter 3. 
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CHAPTER 6: GENETIC AND MOLECULAR ANALYSIS OF wisl 

6.1: ANALYSIS OF wisl TRANSCRIPTION 

6.1.1: Identification of the wisl transcript 

RNA was prepared from both a wild type cells and an strain containing multiple 

integrated copies of pwisl-l. Following agarose gel electrophoresis, the samples were 

transferred to hybridisation membrane, and probed with wisi sequences in a 

Northern blot procedure. Two probes were used: one consisting of the 4.1kb Xbal 

fragment from pX2, and another consisting of a 1.5kb EcoRI fragment from deletion 

pX3-E2. The latter plasmid was constructed in the course of the sequencing of wisi 

(Chapter 7), and gives a 1.4kb DNA fragment from within the proposed wisi open 

reading frame upon digestion with EcoRI (Fig. 6.1). Both these probes showed 

hybridisation with a single mRNA species of approximately 2400 nucleotides (nt) 

which was present at a higher level in the pwisl-1 integrant strains (Fig. 6.2). The 

size of the hybridising band was calculated using the S.pombe 28S and 17S ribosomal 

RNAs as size markers (3400 and 1800 nt respectively). 

6.1.2: Analysis of transcriptional direction 

In order to determine the direction of transcription of wisi, Northern blots were 

carried out in a similar way to those described above. Single stranded DNA was 

prepared from plasmids containing wisi sequences cloned in opposite orientations in 

pTZ18 (Fig. 6.1), and used to prepare radioactively labelled single stranded DNA 

using the M13 reverse sequencing primer and Klenow enzyme. RNA samples from 

both wild type and a pwisl-1 integrant strain were probed separately with labelled 

DNA made from plasmids containing alternate orientations of wisi. Only one probe 

(derived from plasmid pC17) showed hybridisation with the RNA samples, and it 

gave a similar pattern of hybridisation to that of the double stranded probe derived 

from the wisi open reading frame, confirming that this was the wisi transcript. 

From the pattern of hybridisation of these two probes, it was possible to deduce that 

the direction of transcription was that shown in Figure 6.1. 
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Figure 6.1: Strategy for Northern blot analysis of wisl. 

Restriction map of the 4.1kb XbaI fragment from pwisl-1, and the arrow above 

indicates the extent and transcriptional direction of the predicted wisi open reading 

frame. 

Double stranded probes used for the detection of the wisi transcript, and the 

plasmids from which they were derived. 

Plasmids from which single stranded probes were made which were used for the 

analysis of wisi transcript direction. 
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Figure 6.2: Northern blot analysis of wisl. 

RNA was prepared from the strains indicated below, subject to denaturing 

agarose gel electrophoresis, Northern blotted and probed with the sequences 

indicated below: 

Lane 1: wild type 

Lane 2: D6X1-2 

Lane 3: Int3 

Lane 4: D4 

Probed with the EcoRI fragment from plasmid pAE2 

Lane 5: wild type 

Lane 6: Int3 

Probed with the XbaI fragment from plasmid pX2 

(see Figure 6.1 for details of probes) 
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6.2: EFFECTS OF INCREASED wisi DOSAGE 

6.2.1: Experimental strategy 

As has already been described, multiple copies of wisi, either carried upon 

autonomously replicating plasmids or integrated into the S.pombe genome, resulted in 

a reduction of cell length at division of approximately 20%. In order to determine if 

this was a dosage dependent effect, strains were constructed containing one extra 

copy, and two extra copies of wisi, and the phenotypes of such strains compared 

with those containing multiple integrated copies. 

6.2.2: Construction of strains with increased wisl copy number 

To construct such strains, it was necessary to make a plasmid which contained the 

wisi functional sequence and an auxotrophic marker, but no autonomously 

replicating sequences, so that any transformant strains resulting from the treatment of 

cells this plasmid would contain a low number of integrated copies. Previously 

described integrant strains were obtained by the treatment of cells with linearised 

plasmid, which results in a large number of integrated copies. In order to construct 

such a plasmid, the 2.2kb SaIl - XhoI fragment from pDAM6 which contains the 

LEU2 functional sequence was subcloned into the polylinker-derived Sall site in pX3 

to produce the plasmid pD6Xl (Fig. 6.3). 

This plasmid was used to transform a Strain of the genotype leui.32 h, and two 

stable transformants were selected for further analysis (D6X1-2 and D6XI-3). Total 

genomic DNA was prepared from these strains, digested separately with the 

restriction enzymes MluI and SstI, and subjected to Southern blot analysis, probing 

with the 4.1kb XbaI fragment from pX3 (Fig. 6.4). Neither of these enzymes cuts 

within the wisi sequences in pD6XI, although one site for SstI exists within the 

plasmid polylinker sequences. Wild type DNA shows one hybridising band when 

digested with either enzyme. In contrast, the integrant D6XI-2 shows two 

hybridising bands when digested with SsiI, which would be expected if it contained 

one integrated copy of pD6XI (Fig. 6.5). The integrant D6X1-3 shows two bands 

similar to those in D6XI-2, (the larger band appears very faint in Figure 6.4) and an 

extra band of a size 9 kb equal to that of linearised pD6Xl, suggesting that this 

strain contains more than one copy of integrated plasmid (Fig. 6.5). The M'luI 
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Figure 6.3: Construction of the plasmid pD6XI. 

pD6XI consists of a Sal!- XhoI fragment containing the S.cerevisiae LEU2 gene 

subcloned into pX3 (see text for details). 
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Figure 6.4: Southern blot analysis of strains containing integrated copies of pD6X1. 

S.pombe genomic DNA was digested with the restriction enzymes indicated 

below, subject to agarose gel electrophoresis, Southern blotted and probed 

with plasmid pD6X-l. 

Lane 1: wild type SsiI 

Lane 2: D6XI-2 SstI 

Lane 3: D6XI-3 SstI 

Lane 4: wild type MluI 

Lane 5: D6XI-2 MluI 

Lane 6: D6XI-3 Miul 
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Figure 6.5: Schematic diagram showing the predicted results of the integration of 

one or two copies of pD6X1. 

Bars indicate the sizes of SstI fragments which would be expected to hybridise to the 

4.1kb S.pombe insert in pX3. 

A: Integration of pD6XI into the wild type genome. 

B; One integrated copy of pD6X1. 

C: Two integrated copies of pD6X1. 
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digested DNA from wild type, D6X1-2 and D6X1-3 show a single hybridising band 

in each case. The size of the hybridising fragment is increased in the integrants, 

being largest in D6X1-3. These results demonstrate that plasmid integration has 

taken place by homologous recombination in both integrant strains. Judging from 

the estimated sizes of the hybridising fragments in the MluI digested samples, 13kb 

for wild type, 19kb for D6X1-2 and 25kb for D6X1-3, it is possible to calculate that 

D6X1-2 contains one integrated copy, and D6XI-3 two integrated copies of pD6XI. 

6.2.3: Analysis of the dosage dependent effects of wisl upon the cell 

In order to determine the effect of varying wisi copy numbers upon the cell, cell 

lengths at division were determined for the strains described above (Table 6.1). To 

confirm that increased wisi copy number results in a concomitant rise in wisi 

transcript level, Northern blot analysis was performed on RNA prepared from the 

following strains: wild type, D6X1-2 and Int3. Radioactively labelled DNA derived 

from the wisl 4.1kb XbaI fragment was used to probe the blot, and the results shown 

in Fig. 6.2. RNA prepared from D6X1-2 shows a similar or slightly increased level 

of wisi transcript to that in wild type RNA, but there is a significantly increased 

transcript level in the sample derived from Int3, which contains multiple integrated 

copies of pwisl-1. 

The results from these experiments imply that the effect of wisi upon cell length at 

division is dosage dependent, with a progressive decrease in size correlating with 

increased wisi copy number (Fig. 6.6). This suggests that wisi is involved either 

directly, or indirectly, in a rate limiting step controlling entry into mitosis and cell 

division. 

6.3: EFFECTS OF LOSS OF wisi FUNCTION 

6.3.1: Construction of strains resulting from the deletion of portions of the wisl 

functional sequence 

The next stage in the analysis was to determine the effect upon the cell of loss of 

wisi function. This was done by the technique of gene transplacement, described in 

S.cerevisiae by Rothstein, 1983). A portion of the functional region of the gene in 

question is replaced with a selectable marker, usually an auxotrophic one, in a 

plasmid construct. Restriction enzyme digests are then performed on this construct 



Table 6.1: Cell length at division of strains containing one, two, three and multiple 

copies of wisi. 

Strain No. of cooies Cell length4im S.E.M 

972 1 12.99 0.41 

D6X1-2 2 11.34 0.27 

D6X1-3 3 11.06 0.30 

mt 3 multiple 10.75 0.25 

S.E.M. = Standard error of mean 
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Cells were grown on EMM at 25°C. 



Figure 6.6: The effect upon cell length at division of increased wisl copy number. 

Cells lengths at division were determined from the following strains: wild type, 

D6X1-2, D6X1-3 and Int3. Cells were grown in EMM at 25°C to mid log phase, 

and at least 20 cells measured from each strain. Bars indicate standard error of 

mean. 
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to give a fragment of DNA which consists of the selectable marker flanked with 

regions of S.pombe sequences from each side of the functional region. Cells are then 

treated with this fragment, using standard transformation techniques, and stable 

transformants isolated. Gene transplacement relies upon a double - recombination 

event taking place (Fig. 6.7), so that the functional region of the gene in the S.pombe 

genome is replaced by the selectable marker sequences. If the gene in question were 

vital to cell growth and division, then loss of function would be lethal, and no 

transformants would be isolated. To avoid this, such experiments are normally 

performed with diploid strains, so that a heterozygous diploid will result which may 

then be induced to sporulate, and the haploid progeny analysed. Several methods for 

the maintenance of diploid strains in S.pombe exist (Russell, 1989), but the method 

chosen here was the utilisation of complementing alleles of adeó in haploids of h 

and h mating type. This method which has the advantage of resulting in cells 

which will remain diploid under conditions of adenine selection, and which will 

sporulate spontaneously when placed under conditions of nitrogen starvation to give 

rise to haploid segregants which may then be analysed. 

Two separate experiments were performed with the aim of producing a strain which 

lacked wisi function. The first- involved the deletion of a small section (less that 

lOObp, see Chapter 7 for details) of functional sequence from wisi, and its 

replacement with a 3.0kb fragment containing the LEU2 gene. Although the 

resulting construct contained a large segment of DNA within the functional sequence, 

it retained a detectable level of wisi function. The second experiment was then 

performed in which over 1kb of functional sequence was deleted and replaced with a 

LEU2-containing fragment. This gave rise to strains which were presumably 

completely lacking in wisi function, as over two thirds of the predicted wisi open 

reading frame had been lost (Chapter 7). 

6.3.1.a: Deletion of wisi sequences with the construct pXPL-3 

The first stage in this experiment was to create a version of pTZI9 which lacked the 

polylinker BamHI site. To do this, pTZ19 was digested with BamHI, treated with 

Klenow 'enzyme to produce 'blunt' ends, and subsequently religated. The resulting 

plasmid was named pTZ19B-5. The 3.5kb Psi! - XbaI fragment from pwisl-1 was 

then cloned into the corresponding polylinker sites of pTZ19B-5, to give the plasmid 

pXP-3 (Fig. 6.8). The 3.0kb BglII fragment containing the LEU2 functional 

sequence from pDAM6 was then cloned into pXP3 using the closely spaced BglII and 
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Figure 6.7: One step gene transplacement in yeast. 
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(Adapted from Rothstein, 1983) 

The cloned fragment containing GENE Z is digested with one or more restriction 

enzymes which cleave within the GENE Z sequence. A fragment containing a 

selectable yeast gene (LEU2 in this example) is cloned in to the sites within GENE Z. 

The fragment containing the disrupted gene Z is liberated from the plasmid 

sequences, making certain that homology to the GENE Z region remains on both 

sides of the insert. Transformation of yeast cells with the linear fragment results in 

the substitution of the linear disrupted sequences for the chromosomal sequence. 



Figure 6.8: Construction of pXPL-2. 

The 3.5kb PstI - XbaI from pwisl-1 was subcloned into pTZ19-135 to give the 

plasmid pXP-3. The 3.0kb BglII fragment containing the S.cerevisiae LEU2 gene 

was then cloned into the S.pombe sequences to give the plasmid pXPL-2 (see text for 

details). 
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Bam 	sites within the wisi sequences. This resu 
HI 	

lted in the plasmid pXPL-2 (Fig. 

6.5kb fragment containing 
6.8). pXPL-2 was digested with PstI and XbaI, and the  

LEU2 sequences flanked by wisi sequences was purified by electrophOresis, followed 

by isolation from low melting point agarose. Approximately 3pg of purified 

fragment was used to transform a diploid of the genotype 
ade6.2101ade6.216 

ura4.D181ura4.Di8 leui.321leul.32 hf/h. 

Transformants were initially screened for the mitotic stability of the 
LEU2 marker, 

and for their ability to sporulate. Two such stable transformants (Dl and D44) were 

selected for further analysis. These diplOidS were induced to sporulate by growth on 
resultant asci. Both strains 

ME medium, and tetrad analysis performed upon the  

gave a : 2 segregation  of the LEU2 
marker, with a phenotype of increased cell length 

at division cosegregating with LEU2 (Table 6.2). 

In order to confirm that the sequences containing the 
LEU2 marker sequences had 

integrated at the wisi locus, LEU2 segregants from Dl and D44 were crossed to 

strains of genotype 
[wis]:ura41 ura4.Di8 leui.32, containing the ura4 gene 

is of these crosses showed only 
integrated adjacent to the wisi locus. Tetrad analys  

ith respect to the LEU2 and ura4 markers. 
parental ditypes in ten tetrads examined w  
This evidence shows that the level of recombination between the 

ura4+ and LEU2+ 

tagged loci in these crosses is very low, indicating that the integration events giving 

rise to the leu phenotypes of Dl 
and D44 both took place by homologous 

recombination.  

Since these recombination events had not given rise to a lethal phenotype for the 

disruption, it remained a possibility that there was still 
wisi function present in these 

strains. To check the activity of the construct used to make these strains, the 

plasmid pXPL-2 was transformed into the strain 
weel.50 cdc25.22 wini.i leui.32 h. 

This plasmid could be relatively stably maintained, indicating that it contained ARS 

activity (see Chapter 7). The presence of this plasmid in multicopy means that any 

residual activity should be detectable by its ability to suppress the temperature 

sensitive phenotype of this strain. In this case, it was possible to detect a very low 

level of suppression, so it was assumed that Dl and D44 still retained a low level of 

wisi 
activity. A second experiment was therefore devised which involved deletion of 

nce in order to completely abolish function. 
a larger section of wisi functional seque  



Table 6.2: Cell length at division of strains containing disruptant alleles of wisl 

Strain Cell length/jm SD 

972 12.99 0.54 
ED667 13.23 0.50 
Dl 21.24 1.36 
D4 24.30 1.87 

D4 (YE) 19.56 0.79 

Cells were grown in supplemented EMM at 25°C unless otherwise indicated. ED667 
has the genotype leuI.32 ura4.D18 ade6.216. SD = standard deviation. 
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6.3.1.b: Deletion of wisi sequences with the construct pXPL-9 

The plasmid pTZ19R-4, which consisted of the plasmid pTZI9 with the EcoRI site 

removed, was constructed in a similar way to that described for pTZI9B-5. The 

3.5kb Psi! - Xbal from pwisl-1 was subcloned into this plasmid to produce the 

plasmid pXP-9 (Fig. 6.9). This plasmid was digested with EcoR!, treated with 

Klenow enzyme to produce blunt ends, and then treated with BglII. A DNA 

fragment was then subcloned into these sites which consisted of the BglI! - XhoI 

LEU2 fragment from pDAM6, which had been treated in a similar way to that 

described for pXP-9 to give a BglII - blunt end fragment. This gave rise to the 

plasmid pXPL-9 (Fig. 6.9). 

A similar procedure to that used in the case of pXPL-2 was used to treat diploid 

cells with over 10 g of purified Psi! - XbaI fragment from pXPL-9. Lesser amounts 

did not give rise to any stable transformants, possibly due to the reduced length of 

S.pombe flanking sequences in this fragment compared to that derived from pXPL-2. 

This difference may have led to reduced recombination frequencies. 

Of 17 transformants examined, all were stably leu, one had lost the ability to 

sporulate, and, upon tetrad analysis, 11 showed a phenotype of increased cell length 

co-segregating with the LEU2 marker. Five strains were selected and subjected to 

Southern blot analysis. A diagram showing the expected result from a one step gene 

transplacement event with this DNA construct is shown in Figure 6.10. 

Genomic DNA was prepared from the five transformant strains described above, 

digested separately with Hind!!! and EcoRI, and this DNA subjected to Southern blot 

analysis. Such a blot probed with an equimolar mixture of the 4.4kb and 3.2kb 

Hind!!! fragments from pwisl-1 is shown in Figure 6.11. This probe shows 

hybridisation with the two equivalent fragments in wild type DNA digested with 

Hind!!!, but in the case of the disruptant strains, there is hybridisation with very 

high molecular weight DNA which has not been transferred efficiently to the filter. 

This result would be expected if multiple integration events had occurred involving 

the sequences between the flanking Hind!!l sites, which had also resulted in the loss 

of the central Hindu! site. Since multiple gene transplacement events would simply 

result in repeated replacement of genomic sequences with incoming fragments, the 
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Figure 6.9: Construction of pXPL-9. 

The 3.5kb PstI - XbaI from pwisl-1 was subcloned into pTZ19-R4 to give the 

plasmid pXP-9. The 2.9kb BglII - XhoI fragment containing the S.cerevisiae LEU2 

gene was then cloned into the S.pombe sequences to give the plasmid pXPL-9 (see 

text for details). 
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FIgure 6.10: 	Schematic diagram Indicating the expected result of gene 

transpiacement with the pXPL-9 construct, and showing the probes used for the 

analysis of wisi disruptant strains. 

Arrow indicates the extent and direction of the predicted wisi open reading frame. 
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Figure 6.11: Southern blot analysis of wisi disruptant strains 

S.ponibe genomic DNA was digested with the restriction enzymes indicated 

below, subject to agarose gel electrophoresis and Southern blotted. 

Panel A - probed with the 4.4kb and 3.2 kb HinDu! fragments from pwisl-
* 

Panel B - probed with the LEU2 containing BglII fragment from pDAM6.
*  

Lane 1: wild type 	Hind!!! 

Lane 2: D2 HindIII 

Lane 3: D4 Hindu! 

Lane 4: D5 Hindu! 

Lane 5: D7 HindIII 

Lane 6: D1O Hindill 

Lane 7: wild type EcoRI 

Lane 8: D2 EcoRI 

Lane 9: D4 EcoRI 

Lane 1 O:D5 EcoRI 

Lane 11:137 EcoRI 

Lane 12:1310 EcoRI 

Panel C - probed with the BglII - EcoRI fragment from pwisl-1.
*  

Lane 1: wild type 	EcoRI 

Lane 2: D2 EcoRI 

Lane 3: D4 EcoRI 

Lane 4: D5 EcoRI 

Lane 5: D7 EcoRI 

Lane 6: D1O EcoRI 

Lane 7: wild type Hind!!! 

Lane 8: D2 Hindu! 

Lane 9: D4 Hind!!! 

Lane 10:135 Hindu! 

Lane I 1:D7 Hindill 

Lane 12:1310 Hind!!! 

* see Figure 6.10 for details of probes. 
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net result would be in a small change in molecular weight: in this case a change from 

two bands of 4.4kb and 3.3kb to one of 8.3kb (Fig. 6.11). The results seen in Fig. 

6.11 suggest that much more complicated recombination events have occurred, 

possibly involving concatenated fragments. These recombination events have resulted 
the loss of the central Hindu! site, and the replacement of these sequences by a large 
fragment lacking in Hindlil sites. 

This probe shows hybridisatjon to three fragments in the case of EcoRl digested wild 
type DNA. In the case of the corresponding disruptant samples, a very complex 

pattern of bands may be seen, again suggesting complex integration events have 

taken place. The smaller bands seen in this digest, compared to the 
Hindlil treated 

DNA, very likely result from the presence of an EcoRl site within the LEU2 sequences. 

The same blot probed with the LEU2-containing BglII fragment from pDAM6 is 
shown in Fig. 6.11. There is no hybridisation with wild type sequences, but the 

patterns of hybridising bands with the disruptant DNA samples are similar to that 
seen with the Hind!!! fragment probe. This confirms that the complex integration 
events have involved LEU2 sequences. Given the complexity of the transplacement 
constructs, it was necessary to confirm that the wisi sequences replaced by the LEU2 
fragment in pXPL-9 were not present. A blot similar to that described above was 
probed with the BglII - EcoRI fragment from pX3, i.e. those sequences removed in 
the construction of the plasmid used for the disruptions. This fragment shows 

hybridisatjon with a fragment of approximately 4kb in wild type DNA digested with 
EcoRI, 

and with two bands of aPproximately 4kb and 3kb in wild type DNA 
digested with Hindu! (Fig 6.11). There is no hybridjsatjon however, with any DNA 

samples derived from the disruptant strains, implying that this 1.2kb 
BglII - EcoRI 

fragment is absent from these strains. When probed with the 4.4 and 3.2kb 
Hindul 

fragments described above, hybridising bands are present in each track containing 
S.pombe DNA samples in this blot (data not shown). 

In order to confirm that a strain with these sequences deleted showed no 
wisi 

activity, the plasmid pXPL-9 was transformed into the strain 
weei.50 cdc25.22 

winl.i leui.32 h to assess its wisi functional activity. This plasmid showed no 

activity in suppressing the temperature sensitive phenotype of this strain. The 

disruptant strains described here 'ere judged to have a complete lack of 
wisi 

activity, due to the loss of 1.2kb of functional sequence. The sequence analysis of 
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wisi (Chapter 7) showed that the sequences deleted represented two thirds of the 

predicted wisi open reading frame. One strain (134) was selected for further analysis. 

Analysis of the wisi transcript showed a truncated mRNA species present in D4 of 

approximately 1500 bases compared with the 2400 nt wisi mRNA in wild type cells. 

No transcript of a size corresponding to that of the wild type wisi mRNA could be 

detected in D4 (Fig. 6.2). 

The disruptant strains (Dl and D44) described earlier showed some residual activity, 

though at a very reduced level compared to that in wild type. The fact that the 

plasmids pXPL-2 and pXPL-9 could be sustained as autonomously replicating 

plasmids suggests that they contain ARS function, which is very likely to be 

contained within the S.pombe sequences. For further details, see Chapter 7. 

6.3.2: Characterisation of strains resulting from gene transpiacement experiments 

Strains with both forms of disruption construct described above showed phenotypes 

of an increased cell length at division. The increase was greater in the case of D4, 

and examination of this strain showed that the cell length increase was more marked 

on minimal medium compared to yeast extract medium (Table 6.2). D4 cells also 

showed a phenotype of very much reduced viability upon entry into stationary phase, 

which was first observed by microscopic examination of cells stored upon solid media 

for several days. In order to quantify this effect, known numbers of cells were 

plated onto solid media from exponentially growing cultures, and the platings 

repeated once these cultures had been allowed to enter stationary phase (Table 6.3). 

Tetrad analysis was performed on a cross between two disruptant isolates which both 

lacked the BglIf - EcoR! fragment missing in D4. The fact that this cross gave rise 

to relatively normal asci which, in the majority of cases, contained four viable spores 

suggests that wisi activity is not essential for conjugation, meiosis and sporulation. 

In order to confirm that the disruptant phenotype was solely due to the loss of wisi 

function, wild type wisi sequences were introduced into the disruptant strains, and 

the phenotype of the transformant strains assessed. The 3.5kb XbaI - PstI fragment 

from pX3 was subcloned into the plasmid pIRTU to give the plasmid pXIU. This 

plasmid was transformed into the disruptant strain D4, and the phenotypes of one 

such transformant strain compared to one containing the plasmid pSPlOO as a control 



Table 6.3: Effect of the plasmid pXIU upon wisi disruptant strains. 

(a) Cell length at division 

Plasmid 
	

Cell length4em 	SD 

157 

pSP100 15.60 0.84 

pXIU 9.35 1.22 

None 24.30 1.87 

(b) Viability upon entry into stationary phase 

Viability (%): 

Strain Log phase 

ED667 97.2 

Dl 99.0 

D4 51.0 

Stationary phase 

68.3 

12.6 

3.2 

Cells were grown to mid log phase in YEPD at 25°C and dilutions of each culture 

plated onto YE. Following 2 days' incubation, further samples were taken for 

plating. Viability was calculated from the number of colonies formed as a fraction 

of total cells plated. 
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(Table 6.3). 	The results from these experiments showed that the disruptant 

phenotype of increased cell length was solely due to the loss of wisi function. 

Five independent disruptant strains were examined, all of which showed a phenotype 

of reduced viability upon entry into stationary phase which co-segregated with the 

LEU2 marker integrated at the wisi locus. From this evidence, and from the 

examination of disruptant transformants containing the plasmid pXIU upon entry 

into stationary phase, it seemed very likely that both phenotypes of increased cell 

length, and low viability upon entry into stationary phase resulted from the loss of 

wisi function. 

6.4: INTERACTIONS BETWEEN A DELETION ALLELE OF wisi AND OTHER 

CELL CYCLE MUTATIONS 

6.4.1: Interaction with weel 

In order to investigate the interaction of a wisi deletion allele with weel, a double 

mutant strain was constructed and characterised. The cross between the strains 

weel.50 leul.32 h and wisl::LEU2 ade6.216 ura4.D18 leuI.32 h' (134) was subjected 

to tetrad analysis. Putative double mutant segregants were obtained from tetratype 

tetrads which showed a phenotype of cell length greater than wild type at 25°C, and 

shorter than wild type at 35°C. These putative double mutants were all leu, 

indicating that they were wisl. 

One putative weel.50 wisl segregant was backcrossed to a strain of genotype leui.32 

h, to distinguish strains carrying the wisl::LEU2 construct. The segregations 

observed in this cross indicated that the original segregant chosen had the genotype 

wisl::LEU2 weel.50 ura4.D18 ade6.216 leul.32 h. In order to investigate the 

phenotype of this weel.50 wisl strain more closely, the cell length at division of this 

strain was measured. Cells grown at the two temperatures 25°C and 35°C were used 

in order to assess the effect of the temperature sensitive weel.50 allele (Table 6.4). 

The weei.50 wisl strain showed a temperature sensitive wee phenotype indicating 

that weel.50 is epistatic to the wisl deletion allele. 
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Table 6.4: Cell length at division of strains containing a wisi deletion allele 

combined with a mutation which has a wee phenotype. 

Strain Cell length/jim SD 

972 12.99 0.87 

wisl::LEU2 24.30 1.87 

wisl::LEU2 winl.1 24.56 1.74 

weel.50
* 
 7.46 1.35 

weel.50 w:sl::LEU2
* 
 8.00 0.93 

cdc2.Iw 8.65 0.64 

cdc2.Iw wisl::LEU2 13.60 0.67 

cdc2.3w 9.05 0.51 

cdc2.3w wisl::LEU2 13.35 0.71 

adh-cdc25 8.44 0.77 

adh-cdc25 	wisl::LEU2 11.20 0.45 

Cells were grown in supplemented EMM at 25°C unless otherwise indicated. * 

indicates 35°C. At least 24 cells were measured in each sample. 
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4.2: Interactions with cdc2w alleles 

A similar analysis to that described above was carried out to determine the effect of 

combining cdc2.Iw and cdc2.3w with the wisi deletion allele. The cross between 

cdc2.lw leul.32 h and wisl::LEU2 ura4.D18 ade6.216 leuI.32 h gave a particularly 

low spore viability. Putative double mutant strains were chosen from tetratype 

tetrads, which, in the case of both cdc2w alleles, were very slow growing and a dark 

red colour on Phloxin B containing media. Colonies from these strains consisted of 

slightly misshapen cells which were of a length between that of wild type and a 

wisl strain. The genotypes of these strains were confirmed by backcrossing to a 

leuI.32 strain, followed by tetrad analysis. Two strains of genotypes wisl::LEU2 

cdc2.Iw ura4.D18 leuI.32 h and wisl::LEU2 cdc2.3w ade6.216 leul.32 h were 

chosen for further analysis, and cell lengths at division determined (Table 6.4). The 

wisl::LEU2 cdc2.w double mutant strain both showed cell lengths at division 

intermediate between those of the single mutants. These results indicate a form of 

interaction between the cdc2w alleles and wisi which is not strongly allele specific. 

6.4.3: Interaction with over-expressed cdc25+ 

A cross between the strains [adh-cdc25:ura4] ura4.D]8 leuI.32 h and wisl::LEU2 

ura4.D18 ade6.216 leuI.32 h was subjected to tetrad analysis. It was possible to 

follow the adh-cdc25 construct be the ura4 marker, and the wisi deletion by the 

LEU2+ marker. Putative double mutant strains with a l eu+ ura+ phenotype were 

selected. The adh-cdc25 construct is present as an integrated plasmid which is lost at 

a relatively high rate. Following a period of growth on YE, it was possible to isolate 

ura4 segregants from the putative double mutants, and to confirm their wisl 

genotype by examination of their cell length phenotype. The cell length at division 

was determined from a wisl::LEU2 [adh-cdc25:ura4] ura4.D18 leul.32 strain (Table 

6.4). These observations suggest that the division length of wisi deletion strains are 

sensitive to the cdc25#  expression level. 

6.4.4: Interaction with pat! 

The strain wjsl::LEU2 ade6.216 ura4.D18 leui.32 h was crossed to a strain of 

genotype patl.114 ade6.216 .leuI.32 h (supplied by Maureen McLeod). Tetrad 

analysis showed no evidence of linkage between wisi and pat]. Putative double 

mutant strains were selected from tetratype tetrads. At 25°C the double mutants 
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showed a phenotype similar to that of the wisl strain. No sporulation at all was 

seen in the wisl patl.114 double mutant strains upon a shift to 35°C. The cells 

remained similar in length to wis) cells, but the cells were only capable of forming 

microcolonies consisting of up to 100 cells. These results indicate that loss of wisi 

function completely blocks the hypersporulation phenotype which normally results 

from loss of pall activity, but does not completely relieve the growth defect shown 

by pall.114 strains at the restrictive temperature. This is similar to the interaction 

shown by win).) with pat!.114 (Chapter 3). Comparison of the restriction maps of 

sequences containing wis), cgsl and cgs2 established that wis) was not allelic to 

either cgsl or cgs2, mutations in which suppress both the growth and 

hypersporulation phenotypes of pat 1ts  strains. 

6.4.5: Interaction between winl.l and 	j- 
 
- 

A cross was made between the strains win!.! ade6.216 ura4.D18 leuI.32 h and 

wisl.:LEU2 ade6.216 ura4.D18 leul.32 h which was subjected to tetrad analysis. 

Two putative wis! win).! double mutant strains were selected from tetratype 

tetrads. These segregants showed a phenotype very similar to that of the parental 

wis) strain. Backcrossing to a leul.32 strain was used to confirm the phenotype of 

these putative double mutants and their cell length at division determined (Table 6.4). 

These results show that it is not possible to differentiate between win!.1 and win!.) 

wis! strains on the basis of cell length. 

6.5: DISCUSSION 

This chapter describes the analysis of the wis) transcript, including its levels in cells 

containing increased wis! copy number, and the effect upon transcription caused by 

deletion of large section of the wisl functional region. The effect upon the cell of 

altered wisi dosage is described, both in the form of increased copy number, and in 

the form of loss of wisi function, both partial and complete. Finally, the 

interactions between a wis! deletion allele and mutations which result in wee 

phenotype are described. 

The fact that increased copy number results in a decrease in cell length, and that this 

effect is dependent on wis) dosage, suggests that wisi is involved in a rate limiting 

step controlling entry into mitosis and division. The observation that complete loss 

of wisi function is not lethal to the cell implies that wisl function is not vital for 



cell growth and division. The genetic studies described here suggest that strains 

lacking in wisi function are still sensitive to levels of weel and cdc25 expression 

with respect to cell length, and that the combination of cdc2w alleles with a wisi 

deletion allele results in a substantial decrease in cell length. Loss of wisi function 

strongly suppresses the hypersporulation phenotype of patl.114, which is similar to 

the effect shown by win!.]. 

The phenotype of increased cell length of the disruptant strains again points to a role 

for wisi as a regulator of entry into mitosis and division, and the phenotype of low 

viability upon entry into stationary phase gives a further clue to the role of wisi in 

the cell. One possibility is a role in some form of nutritional sensing, so that wisl 

cells are not receiving signals to stop growth and enter stationary phase upon 

starvation. 

The epistasis of wisl over win].] suggests that wis] and win] may both lie in the 

same pathway. 
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CHAPTER 7 



CHAPTER 7: SEQUENCE ANALYSIS OF wisi 

7.1: INTRODUCTION 

The determination of the DNA sequence of a gene isolated by molecular cloning 

techniques can give information concerning transcriptional regulation, transcript 

processing and the function and characteristics of the gene product. From the 

nucleotide sequence of an identified functional region of DNA, it is normally 

possible to identify an open reading frame, which may be interrupted by introns, 

and from this to deduce the amino acid sequence of the gene product. Identification 

of the open reading frame (ORF) and its flanking sequences facilitates further 

molecular manipulation of the isolated gene, such as deletion of the coding region by 

gene transplacement techniques, and gives an accurate and exhaustive restriction map 

of the sequences involved. 

In some cases it is possible to identify a putative function for the gene product by 

the comparison of the predicted amino acid sequence with previously sequenced 

genes of known function. In this way, it may be possible to identify specific regions 

in the predicted gene product involved in protein function and regulation. The 

amino acid sequence may also yield information about structural features of the 

gene, such as the three-dimensional protein structure, and features such as 

hydrophobic regions which may be membrane associated. 

In the sequence of regions flanking the coding region it may be possible to identify 

elements concerned with the regulation of transcription, and the processing of 

mRNA. The sequences include "upstream" elements such as the TATA box which 

has been shown to be involved in the initiation of transcription (Guarente, 1988), 

and downstream elements required for transcriptional termination and 

polyadenylation of mRNA (Zaret and Sherman, 1982; Proudfoot and Brownlee, 

1976). 
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7.2: EXPERIMENTAL STRATEGY 

The sequence of wisi was determined by a combination of the phagemid system 

devised by Vieira and Messing (1987) and the chain termination sequencing method 

of Sanger el a!, (1977). 

The plasmids pX2 and pX3 contain the 4.1kb XbaI fragment from pwisl-1 subcloned 

into the plasmid vector pTZ18R in opposite orientations (see Section 5.1.1). The 

pTZ18R and pTZI9R vectors contain both the pBR322 origin of replication for the 

generation of double stranded DNA within E.coli, and the Ml3 fi origin, which may 

be used to generate single stranded DNA. In order to prepare single stranded DNA, 

cells carrying the phagemid are infected with the helper virus M13K07, which 

results in the production of bacteriophage particles containing single stranded copies 

of the phagemid genome (Section 2.2.2). 

To prepare suitable subclones for the sequencing procedure, deletions were made 

from the ends of the inserts contained within the plasmids pX2, pX3, pBX2 and 

pBX3 proximal to the reverse sequencing primer hybridisation site in the phagemid. 

The plasmids pBX2 and pBX3 were generated from pX2 and pX3 by digestion with 

BamHI, followed by religation. The method used to generate deletions was that of 

Henikoff (1987) in which Exonuclease III is used to digest blunt or 5' protruding 

ends of DNA, followed by Si nuclease to generate blunt ends for ligation. For the 

details of this procedure, see Section 2.6.1. 

Once the sizes of the deletion constructs resulting from this procedure had been 

screened by restriction analysis, those of appropriate sizes were used for the 

preparation of single stranded DNA. These preparations were used in sequencing 

reactions, and the sequence determined by acrylamide gel electrophoresis, followed 

by the detection of radioactively labelled DNA by autoradiography. The DNA 

sequence described here was determined entirely by the use of deletion constructs, 

with the exception of one 200 - 300 bp section which was determined by the use of 

a synthetic 18bp oligonucleotide as a primer for the sequencing reactions (Fig. 7.1). 

The methods used are described in detail in Section 2.6. 
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Figure 7.1: Strategy for the sequencing of wisi. 

Each arrow indicates the extent and direction of sequence determined from each 

deletion Construct. 

•1 
—* 

BgBa 	 H 	 E 

4 	 4 	 4 

1kb 	
Bg-BgIII Ba-BamHI H-HinDIII E-EcoRI 
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7.3: THE wisl SEQUENCE 

7.3.1: Results 

The sequence of a section of DNA consisting of 3276bp was determined, and the 

results shown in Fig. 7.2. The entire sequence was determined on both strands, with 

the exception of the first 440nt, which were determined from three independently 

isolated clones on one strand only. 

7.3.2: Restriction site analysis 

The positions of Hg!!!, HindIII and EcoRI restriction sites from the sequence were 

found to be in close agreement with those determined by previously described 

restriction analysis. The position of a PvuH site known to be situated between the 

BamH! and Hindul sites from subcloning experiments was confirmed. In addition, a 

second PvuII site was detected approximately 390bp distant. A site for XbaI was 

detected at position 1310 (Fig. 7.2), which was surprising, as the DNA isolate used 

for sequencing had been isolated initially as a 4.1kb XbaI fragment. Examination of 

the sequences immediately adjacent to this XbaI site were shown to match the 

consensus for methylation by the dam methylase in E.coli. Xbal recognises the 

sequence 5'-TCTAGA-3', and the Xbal recognition sequence in this case was 

followed by 5'-TC-3'. The dam methylase will transfer a methyl group from S-

adenosylmethionine to the N6 position of the adenine residue in the sequence 5'-

GATC-3', and this will prevent recognition of the sequence by Xba! (Geier and 

Modrich, 1979). Since the E.coli strains used for plasmid propagation were all dam, 

it seems likely that this restriction site was not recognised in plasmid preparations 

due to methylation of the recognition sequence. Southern blot analysis with wild 

type S.pombe DNA (which is unmethylated) digested with XbaI and probed with 

sequences from this region revealed two hybridising fragments of approximately 2kb 

in place of the 4.1kb fragment seen in plasmid XbaI digests, which confirms this 

hypothesis (data not shown). 
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Figure 7.2: DNA sequence of the region containing wisi 

I AACGTGTTGT CTGACTTTCG TTATCCTTTT ATCCTTCACC AACTCCATCC 

51 CATTCCACCT TCTTGTATAC CCAAACATAC CCCAGCCGGC TGGCGATACG 

101 TGGGATTCCT AATCTCTCAA GCATTCCCTT TCGACGTGTA TATCTTATTT 

151 ACATCGTACC GACTACACTT CCTATTTTAT CACCCTCCCT AAATTTTCCC 

201 ATTTCCTTTA AAGAGCAGAA TTTTTTTTGC TCTTTACTGT AAGAGAAAAG 

251 CGTTTCTGAA TTTTTTCTCT TCCTTCCACA CCCTTACGTG TTATCTTTTT 

301 AGAAAGATAA TTTCAAATTT CTTTCCTTTT TTATTTCGTG TTTGTGAATT 

351 ATTACTTTTT CTCCTTACCT TGCCTTCCTT ACTCGTCGGT CATACTCGGT 

401 TTAAAGGTAT TGACTTCTCG GACTTAAGAT TAACCACACT TTACTTTTTT 

451 TTCTTTAGTT CTCCTTGGGA AATTTATTAT CTAAGCCCCT GTTTCTTCCA 

501 GTTTCTGGCT TTTGCTGTTA AATTTAAACC CTTCCAAACC TCCTTTTTTT 

551 CCGTGGCATT TACCTACACA AAGCTACTCG TAGGTGATTG CCTTTAAACT 

601 TCCTTTTTTT TTCTTGGAAT ATCCTTCCTG CGGACTTTTT AGACCACCGC 

651 TTTTTTTTTC CTTCTTCGTC GGAGACGACT CGTAATTGAT TGTCTAATTT 

701 TAATTGTTCT TTTCACCCAA GATACCTTTT TTGTATTGCC ATCTCACTTT 

751 CGTTCATCTT CACTTTTGCT TCATTTATAT TACCGGAATT TAGTTTACCT 

801 AATTTTTTTT TCTTTTTTTT TAAGTTTGTG AAGCACATTT ATTTTATATG 
PvuII 

851 TCTTCTCCAA ATAATCAACC CTTGTCTTGC TCATTGAGAC AGCTGTCTAT 

901 TTCTCCTACC GCACCTCCCG GTGATGTTGG TACTCCCGGC TCGCTCCTTT 

951 CTCTTTCGTC TTCAAGTTCT TCAAACACCG ATTCTTCTGG TTCTTCCTTG 

1001 GGTTCCTTGT CTTTAAATTC TAACAGTAGT GGCAGTGACA ATGACICAAA 

1051 GGTTTCTTCT CCTAGTCGTG AAATACCTTC CGATCCCCCT CTTCCCCGTG 

BgI II 
1101 CCGTGCCTAC GGTCAGACTT GGCAGATCTA CGTCCAGTCG GAGTCGTAAC 

BamH I 
1151 TCTCTTAACC TTGACATGAA GGATCCTTCG GAAAAACCTA GACGTTCACT 

PvuII 
1201 TCCTACAGCA GCTGGTCAGA ACAATATTGG ATCTCCTCCT ACTCCACCGG 

1251 GCCCATTTCC TGGAGGACTT TCAACTGATA TACAGGAGAA ATTGAAGGCC 

XbaI 
1301 TTCCATGCAT CTAGATCAAA ATCAATGCCG GAAGTAGTCA ACAAGATCAG 

1351 TAGTCCAACT ACCCCTATTG TCGGTATGGG TCAACGAGG' AGTTATCCTT 

1401 TGCCTAACTC TCAACTTGCT GGTCGATTAA GTAATTCGCC CGTAAAGTCT 

1451 CCGAATATGC CAGAGTCCGG GCTTGCAAAA TCACTTGCTG CTGCTAGGAA 

1501 TCCTTTACTC AACCGTCCAA CGTCCTTCAA TCGACAAAC AGAATCCGTC 

1551 GTGCACCACC TGGAAAACTC GATTTATCCA ATTCCAATCC CACCAGCCCT 

1601 GTCAGTCCGT CTAGCATGGC TTCTCGCCGT GGCCTAAACA TTCCTCCCAC 
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Figure 7.2 contd. 

1651 CCTTAAACAG GCTGTTTCGG A.AACCCCTTT TTCCACATTT TCGGATATTT 

1701 TGGATGCAAA ATCAGGCACC TTAAATTTTA AAAACAAAGC CGTGTTAAAT 

1751 TCAGAAGGTG TTAACTTTTC ATcTGGCTCT TCGTTTCGTA TTAATATGTC 

HinD III 
1801 AGAGATTAIT AAGCTTGAAG AACTTGGAAA AGGTAACTAT GGTGTTGTGT 

1851 ATAAAGCATT GCATCAACCG ACTGGTGTCA CTATGGCCTT GAAGGAAATT 

1901 AGGTTGTCCT TAGAAGAAGC AACATTTAAT CAAATTATAA TGGAATTGGA 

1951 TATTTTACAT AAAGCAGTTA GTCCTTATAT CGTTGACTTT TATGGTGCCT 

2001 TTTTTGTGGA AGGTTCTGTT TTTATTTGTA TGGAATATAT GGATGCTGGT 

2051 AGCATGGACA AACTGTATGC TGGTGGTATC AAAGACGAAG GAGTTTTAGC 

2101 TAGAACTGCT TATGCTGTAG TGCAAGGCCT CAAAACTTTG AAAGAGGAGC 

2151 ATAATATCAT TCATCGTGAC GTTAAACCTA CTAATGTTTT GGTAAATTCT 

2201 AATGGCCAGG TTAAGTTATG TGACTTTGGC GTGAGTGGGA ATCTTGTGGC 

2251 TTCTATATCC AAAACGAACA TTGGATGTCA ATCTTACATG GCTCCTGAAA 

EcoRl 
2301 GAATTCGTGT TGGTGGACCT ACCAATGGCG TCTTGACTTA CACCGTACAG 

2351 GCTGATGTGT GGTCTCTAGG CCTTACCATT TTAGAAATGG CTTTAGGAGC 

2401 TTATCCGTAT CCACCTGAAT CATATACTTC AATATTTGCA CAACTATCGG 

2451 CGATTTGCGA TGGCGATCCA CCTTCTCTCC CCGATTCATT TTCTCCCGAA 

2501 GCTCGTGATT TTGTAAACAA GTGTTTGAAT AAAAACCCGT CTTTGCGTCC 

2551 CGATTATCAT GAGTTGGCTA ACCATCCATG GTTGTTAAAA TATCAAAATG 

2601 CAGATGTGGA CATGGCTTCA TGGGCAAAAG GCGCTCTTAA AGAGAAAGGT 

2651 GAAAAAAGAA GCTAAAGGTT CGCCTGCTTT CTAATTGCCT GCTCTGTTTT 

2701 AAAGTACCCA TGCGCATTGG TGTTTGTCTT TAATTTCGAA TGCATGACTA 

2751 TTACGTGATC CATAATTATG TTTCAGCAGA ACCGACGCTA TTTTGCATTT 

2801 GTGCTTTTTC ATAAATTTAA TAATTTGGGT ATGATTCCGT ATAACGGTAG 

2851 TtGATGTTTG CATTTTTGCT TTAAATTAAA ACGGGTATTT AATGTGTTAT 

2901 TACATTTGTT TAAGGCATTT ACGTCCACCA TAAAAAACTT TTTTTTTATT 

2951 TAACTAAGGG GCTTTAGAAG TGCAAACGAA AGTTTGCAAT TGTAAAAGTT 

3001 ACTTGTACTG TATTAATTTA TTTCTTTTAA AACTTCGTTG ACTGGCTCCG 

3051 TCGTTTTAGC TACTATGATC TCCTGTTTCC TACAATGGTG ATTACTTAGA 

3101 GAGATTGAAT CCATCGTAAA ATGCAAGTGT TAATAGATAT TATATCGACC 

3151 TAATAATAAT TACTTAAACT ATTAATATAT TACTCAAAGA GATTTGAGGT 

3201 ATTCATTTAT TTAAAAAGTA CGAGACTTTT ATATATCAAA GAAACAAATT 

3251 CTCCCAACAT AAGTCCAACA AGGTAA 

Putative start and stop codons 

Restiction endonuclease sites 

Regions with ARS homology 
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7.3.3: ARS consensus sequences 

The 3.5kb Psi! - XbaI fragment of pwisl-1 had been shown to contain ARS activity 

(described in section 6.3.1). The plasmid pXPL-9 which contained this Psi! - XbaI 

fragment with the BglII - EcoRI fragment replaced with 2.9kb containing the 

S.cerevisiae LEU2 gene showed ARS activity. This suggests that ARS activity was 

present in the remaining S.pombe sequences, as the remainder of the plasmid was 

made up of pTZ19 and the LEU2 region, neither of which show ARS activity. 

No perfect matches to the lint ARS consensus identified by Maundreli et a! (1988) 

were found in the sequence described here. However, three sequences with one 

mismatch were identified (Table 7.1) which all lie within 300nt in a region of DNA 

outside the proposed wisi open reading frame (Fig. 7.2). The section of DNA 

containing the three ARS matches were present in pXPL-9, a plasmid construct used 

for the deletion of wisi which showed ARS activity. pXPL-9 contains the 3.5kb 

XbaI- Psil fragment from pwisl-i subcloned into pTZ19-B, with the BglII - EcoRI 

fragment replaced with the Bg!II - XhoI LEU2 fragment from pDAM6 (Section 

6.3.l.b). 

It is possible to draw several conclusions from these observations: an ARS consensus 

sequence may lie within the small region of the Psi!- XbaI subclone not sequenced. 

Alternatively, the consensus may lie outside the subclone, as Maundrell found that 

this consensus was found associated with ARS activity, rather that being essential for 

it. The third possibility is that the sequences shown in Table 7.1 are responsible for 

the ARS activity, despite their mismatches to the consensus. 

7.4: IDENTIFICATION OF THE wisi ORF 

7.4.1: Identification of initiation and termination codons 

The ATG codon shown is most likely to define the start of translation (Fig. 7.3a). It 

is preceded by a region of 847nt with no ATG codon in any reading frame, and is 

followed by a 1815nt open reading frame. Translation of eukaryotic genes has been 

shown to start at the first ATG codon in the majority of cases (Kozak, 1983). An 

optimum sequence for the site of initiation by eukaryotic ribosomes has been 
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Table 7.1: Sequences showing homology to the S.pombe ARS consensus sequence. 

Consensus: A/T Pu T T T A T T T A T/A 

Posn.2945: T t T T T A T T T A A 

Posn.3206: c A T T T A T T T A A 

Posn. 3010: A A T T T A T T T c T 

Lower case letters indicate mismatches to the consensus sequence proposed by 

Maundrell et a! (1988). 

Positions refer to the numbering in Figure 7.2 
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determined (Kozak, 1986) which is a consensus of 5'-ACCATGG-3'. The sequences 

adjacent to the ATG proposed here as the initiation of translation (5'-TATATGI-3') 

show no homology to this consensus sequences. One possibility is that translation 

may occur at a second ATG codon if the first one encountered by the ribosome is 

not optimum for binding (Kozak, 1986). In this case the next ATG in frame is 

318nt downstream, and also shows no match to the consensus sequence, making this 

possibility unlikely. A suggestion made by Kozak is that the start of a coding 

sequence with an ATG codon with low ribosome binding affinity may be to limit the 

synthesis of a protein which is potentially harmful to the cell in high dosage. 

The open reading frame described here terminates in a TAA codon 1815 nucleotides 

downstream of the proposed initiation codon (Fig. 7.3d). The position of this open 

reading frame is within the wisi functional region defined by subcloning and 

transposon mutagenesis (see Section 5.1.1). 

7.4.2: Introns 

Many genes in S.pombe have been shown to contain introns (reviewed Russell, 1989). 

No sequences matching that of the 5' consensus for S.pombe introns 

(G/TGTANGT/A) were found within the wisi open reading frame, suggesting that 

no introns are present. 

7.4.3: Codon usage 

In S.pombe, as in S.cerevisiae, genes which are highly expressed use only a subset of 

the degenerate codons available. Using information about the codon usage in such 

highly expressed genes, it is possible to calculate a codon bias index (CBI) as a 

measure of the codon usage bias for a gene under investigation (Bennetzen and Hall, 

1982; Russell and Hall, 1983). It may be possible to make a prediction concerning 

the level of expression of a gene from its CBI value, as CBI has been shown to 

correlate with transcript levels in several S.pombe genes examined (Russell, 1989). 

Table 7.2 shows the CBI calculated for various S.pombe genes, including wisi. The 

CBI is calculated by the equation CBI=(P-R)/(T-R), where P is the number of times 

preferred codons are used, R the expected number of times the preferred codons 

171 



Table 7.2 : Codon bias index of the predicted wisi open reading frame. 

Gene CBI value 

adh 0.88 

Ipi 0.82 

cyc 0.51 

weel 0.19 

cdc25 0.16 

cdc2 0.00 

wisl 	 0.12 

CBI was calculated as described in Section 7.4.3. Figures for CBI of S.pombe genes 

apart from wisi taken from Russell (1989) 
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would be used if codon usage were random, and T the total number of codons in the 

gene, not including Met, Asp and Trp codons. The preferred codons used to 

calculate this value were from a compilation of the S.pombe-genes adh (alcohol 

dehydrogenase) and tpi (triose phosphate isomerase) which are highly expressed 

(Russell, 1989). The CBI value for wisi is relatively low, similar to that of weel and 

cdc25, which predicts a low level of expression. 

7.4.4: Direction of transcription 

The direction of transcription of the proposed open reading frame agrees with that 

predicted by Northern blot analysis (Section 6.1.2). 

7.5: UPSTREAM ELEMENTS 

The nature of RNA polymerase II promoters in S.pombe is not clear. The evidence 

available indicates that upstream regions contain upstream activator sites (UAS) 

which may include enhancer-like elements and regulatory regions, and TATA boxes, 

which specify the site of the initiation of transcription. Very little evidence is 

currently available concerning the nature of upstream regulatory elements in 

S.pombe. Deletions up to 1kb upstream of the transcriptional start site may impair 

promoter function (Russell, 1989). More specifically, sequences involved in the 

regulation of transcription of the matl-Pi gene have been identified immediately 

upstream of the putative TATA box. This sequence is necessary and sufficient for 

the stimulation of transcription by nitrogen starvation signals of heterologous genes. 

This upstream activating sequence contains direct repeats of a nonamer 5'-

CTTTGTTCC-3', which is also present in other mating type genes whose 

transcription is induced by nitrogen starvation (Aono and Shimoda, 1990). The nine 

histone genes of S.pombe contain a 17 nucleotide consensus sequence located 

upstream of the TATA box in each case, which is a likely candidate for the 

regulatory region involved in controlling the periodic transcription of these genes 

(Matsumoto and Yanagida, 1985) 

The S.pombe TATA box, which has a consensus sequence TATAAA, is generally 

situated up to 250 nucleotides upstream of the initiation of translation. In those 

genes where the transcriptional start has been determined, this is generally 35 to 45 
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nucleotides downstream of the TATA box (Russell, 1989). There are several 

sequences with homology to a TATA motif within 250 nucleotides upstream of the 

proposed wisi translational start. At position -254 relative to the initiation codon, 

there is a sequence with one A/T mismatch to the TATAAA consensus, and at 

positions -71 and -148 there are sequences with two A/T mismatches (Fig. 7.34). 

These observations raise the possibility of multiple sites for transcriptional initiation, 

though further experiments would be necessary to determine if this were the case. 

Struhi (1985) has shown that poly-A/poly-T homopolymer sequences are present in 

the upstream activating sequences in some S.cerevisiae genes. These act to stimulate 

transcription and are required for efficient expression. Similar homopolymer 

sequences have been observed in the upstream sequences of many S.pombe genes, 

and several such sequences are present in the wisi upstream region, notably (T)7 at 

position -303, (T)8 at position -402, and (T)9 at positions -196 and -243. The 

striking sequence (A)2(T)9C(T)9(A)2 is present between -46 and -24 nucleotides 

upstream of the initiation codon (Fig. 7.3a). Its position downstream of identified 

TATA sequences suggests that it is unlikely to be a promoter element, but it may 

nevertheless play a role in transcriptional regulation. 

7.6: DOWNSTREAM ELEMENTS 

Most higher eukaryotic mRNA5 have a polyadenylated 3' terminus that occurs 

approximately 20 nucleotides downstream from a sequence related to 5'-AATAAA-

5'. Transcription may proceed beyond the polyadenylation site, with endonucleolytic 

cleavage and poly-A addition generating the mature 3' end (Birnstiel el al, 1985). 

Although nearly all higher eukaryotic genes contain the AATAAA signal downstream 

to the termination of translation, many genes in S.cerevisiae and S.pombe lack this 

sequence altogether. In S.cerevisiae, the consensus sequence 5'-

TAG .... TATGT .... TTT-3' has been proposed as a terminator which signals 

transcriptional termination a short distance downstream (Zaret and Sherman, 1982). 

This motif is positioned up to 160 nucleotides downstream of the termination codon. 

There is no sequence corresponding to the higher eukaryotic AATAAA 

polyadenylation signal in the wisi downstream sequences. It is possible, however, to 

distinguish the motif TATGT .... TTT similar to that described as a termination signal 

in S.cerevisiae (Fig. 7.3d). 
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Figure 7.3a: Upstream sequences and the -NH4 terminus of the wil product. 

GATTAACCACACTTTACTTTTTTTTCTTTAGTTCTCCTTGGGAAATTTATTATCTAAGCC 
-419 ---------+---------+ --------- + ---------+---------+---------+ -360 

CTAATTGGTGTGAAATGAAAAAAAAGAAATCAAGAGGAACCCTTTAAATAATAGATTCGG 

CC TGT TTCTTCCA GTTTCT GGCT ITT GC I GTT AAATT TAAACCCT ICC AAA CCI C CTTTT 
-359 ---------+---------+---------+---------+---------+---------+ -300 

GGACAAAGAAGGTCAAAGACCGAAAACGACAATTTAAATTTGGGAAGGTTTGGAGGAAAA 

TTTCCGTGGCATTTACCTACACAAAGCTACTCGTAGGTGATTGCCTTTAAACTTCCTTTT 
-299 ---------+---------+---------+---------+---------+---------+ -240 

AAAGGCACCGTAAATGGATGTGTTTCGATGAGCATCCACTAACGGAAATTTGAAGGAAAA 

TTTTTCTTGGAATATCCTTCCTGCGGACTTTTTAGACCACCGCTTTTTTTTTCCTTCTTC 
-239 ---------+---------+---------+---------+---------+---------+ -180 

AAAAAGAACCTTATAGGAAGGACGCCTGAAAAATCTGGTGGCGAAAAAAAAAGGAAGAAG 

GTCGGAGACGACTCGTAATTGATTGTCTAATTTTAATIGTTCTTTTCACCCAAGATACCT 
-179 ---------+---------+---------+ ---------+---------+---------+ -120 

CAGCCTCTGCTGAGCATTAACTAACAGATTAAAATTAACAAGAAAAGTGGGTTCIAIGGA 

TTTTTGTATTGCCATCTCACTTTCGTTCATCTTCACTTTTGCTTCATTTATATTACCGGA 
-119 ---------+---------+---------+---------+---------±---------+ -60 

AAAAACATAACGGTAGAGTGAAAGCAAGTAGAAGTGAAAACGAAGTAAATATAATGGCCT 

ATTTAGTTTAC C TAATTTTTTTTICTTTTTTTTTAAGTTTGTGAAGCACATTTATTITAT 
- 59 ---------+ ---------+-------------------+---------+---------+ U 

TAAATCAAATGGATTAAAAAAAAAGAAAAAAAAAITCAAACACTTCGTGTAAATAAAATA 

ATGTCTTCTCCAAATAATCAACCCTTGTCTTGCTCATTGAGACAGCTGTCTATTTC ICCI 

	

+---------+---------+---------+---------+---------+ 	60 
TACAGAAGAGGTTTAITAGTTGGGAACAGAACGAGTAACTCTGTCGACAGATAAAGAGGA 
MS S P N N OP L SC S L R 0 L SI S P 

ACCGCACCTCCCGGTGATGTTGGTACTCCCGGCTCGCTCCTTTCTCTTTCGTCTTCAAGT 

	

61 ---------+-------------------+ ---------+---------+---------+ 	120 
TGGCGTGGAGGGCCACTACAACCATGAGGGCCGAGCGAGGAAAGAGAAAGCAGAAGTTCA 
T A P PG DV G T PG S L L S L S S S S 

TCTTCAAACACCGATTCTTCTGGITCTTCCTTGGGTTCCTTGTCTTTAAATTCTAACAGT 

	

121 ---------+---------+---------+ -- + + + 	180 
AGAAGTTTGTGGCTAAGAAGACCAAGAAGGAACCCAAGGAACAGAAATTTAAGATTGTCA 
S SN ID S S G S S L G S L S L N S N S 

Poly-T sequences 

Possible TATA boxes 



Figure 7.3b: wisl DNA sequence and predicted gene product 

AGTGGCAGTGACAATGACTCAAAGGTTTCTTCTCC TAGTCGTGAAATACCTTCCGATCCC 
181 ---------+---------+---------+---------+---------+---------+ 240 

TCACCGTCACTGTTACTGAGTTTCCAAAGAAGAGGATCAGCACTTTATGGAAGGCTAGGG 
S 	G 	SD 	N 	Os 	K 	VS 	S 	PS 	RE 	I 	PS 	OP 

CCTCTTCCCCGTGCCGTGCCTACGGTCAGACTTGGCAGATCTACGTCCAGTCGGAGTCGT 
241 ---------+---------+---------+---------+---------+---------+ 300 

GGAGAAGGGGCACGGCACGGATGCCAGTCTGAACCGTCTAgATGCAGGTCAGCCTCAGCA 
P 	L 	PR 	A 	VP 	TV 	R 	L 	G 	R 	ST 	S 	SR 	SR 

AACTCTCTTAACCTTGACATGAAGGATCCTTCGGAAAAACCTAGACGTTCACTTCCTACA 
301 ---------+---------+---------+---------+---------+---------+ 360 

TTGAGAGAATTGGAACTGTACTTCCTAGGAAGCCTTTTTGGATCTGCAAGTGAAGGATGT 
N 	S 	L 	N 	L 	0 	N 	K 	OP 	SE 	K 	PR 	R 	S 	L 	PT 

GCAGCTGGTCAGAACAATATTGGATCTCCTCCTACTCCACCGGGCCCATTTCCTGGAGGA 
361 ---------+---------+---------+---------+---------+---------+ 420 

CGTCGACCAGTCTTGTTATAACCTAGAGGAGGATGAGGTGGCCCGGGTAAAGGACCTCCT 
A 	AG 	ON 	NI 	G 	S 	PP 	1 	p 	p 	G 	P 	F 	PG 	G 

CTTTCAACTGATATACAGGAGAAATTGAAGGCCTTCCATGCATCTAGATCAAAATCAATG 
421 ---------+---------+---------+---------+---------+---------+ 480 

GAAAGTTGACTATATGTCCTCTTTAACTTCCGGAAGGTACGTAGATCTAGTTTTAGTTAC 
L 	ST 	DI 	0 	E 	K 	L 	K 	A 	F 	H 	A 	SR 	S 	K 	SM 

CCGGAAGTAGTCAACAAGATCAGTAGTCCAACTACCCCTATTGTCGGTATGGGTCAACGA 
481 ---------+---------+-------------------+---------+---------+ 540 

GGCCTTCATCAGTTGTTCTAGTCATCAGGTTGATGGGGATAACAGCCATACCCAGTTGCT 
P 	E 	V 	V 	N 	K 	I 	S 	S 	PT 	1 	P1 	V 	GM 	G 	OR 

GGAAGTTATCCTTTGCCTAACTCTCAACTTGCTGGTCGATTAAGTAATTCGCCCGTAAAG 
541 ---------+---------+---------+---------+---------+---------+ 600 

CCTTCAATAGGAAACGGATTGAGAGTTG.AACGACCAGCTAATTCATTAAGCGGGCATTTC 
G 	S 	Y 	P 	L 	P 	N 	SQ 	L 	A 	G 	R 	L 	SN 	S 	P 	V 	K 

TCTCCGAATATGCCAGAGTCCGGGCTTGCAAAATCACTTGCTGCTGCTAGGAATCCTTTA 
601 ---------+---------+---------+---------+---------+---------+ 660 

AGAGGCTTATACGGTCTCAGGCCCGAACGTTTTAGTGAACGACGACGATCCTTAGGAAAT 
S 	P 	NM 	P 	ES 	G 	LA 	K 	S 	LA 	A 	A 	RN 	P 	L 

CTCAACCGTCCAACGTCCTTCAATCGACAAACGAGAATCCGTCGTGCACCACCTGGAAAA 
661 ---------+---------+---------+---------+---------+---------+ 720 

GAGTTGGCAGGTTGCAGGAAGTTAGCTGTTTGCTCTTAGGCAGCACGTGGTGGACCTTTT 
L 	N 	R 	PT 	SF 	N 	R 	0 	T 	RI 	R 	R 	A 	P 	PG 	K 

CTCGATTTATCCAATTCCAATCCCACCAGCCCTGTCAGTCCGTCTAGCATGGCTTCTCGC 
721 ---------+---------+---------+---------+---------+---------+ 780 

GAGCTAAATAGGTTAAGGTTAGGGTGGTCGGGACAGTCAGGCAGATCGTACCGAAGAGCG 
L 	DL 	SN 	S 	N 	PT 	S 	P 	VS 	PS 	S 	MA 	SR 

CGTGGCCTAAACATTCCTCCCACCCTTAAACAGGCTGTTTCGGAAACCCCTTTTTCCACA 
781 ---------+---------+---------+---------+---------+---------+ 840 

GCACCGGATTTGTAAGGAGGGTGGGAATTTGTCCGACAAAGCCTTTGGGGAAAAAGGTGT 
R 	G 	L 	NI 	PP 	T 	L 	K 	0 	A 	V 	S 	E 	T 	P 	F 	ST 

TTTTCGGATATTTTGGATGCAAAATCAGGCACCTTAAATTTTAAAAACAAAGCCGTGTTA 
841 ---------+---------+---------+---------+---------+---------+ 900 

AAAAGCCTATAAAACCTACGTTTTAGTCCGTGGAATTTAAAATTTTTGTTTCGGCACAAT 
F 	SOIL 	OAKS 	G 	T 	L 	N 	F 	K 	N 	K 	A 	V 	L 

AATTCAGAAGGTGTTAACTTTTCATCTGGCTCTTCGTTTCGTATTAATATGTCAGAGATT 
901 ---------+---------+---------+---------+---------+---------+ 960 

TTAAGTCTTCCACAATTGAAAAGTAgACCGAGAAGCAAAGCATAATTATACAGTCTCTAA 
N 	SE 	G 	V 	N 	F 	S 	S 	G 	S 	SF 	RI 	N 	MS 	El 
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Figure 7.3c: wisl DNA sequence and predicted gene product 

ATTAAGCTTGAAGAACTTGGAAAAGGTAACTAIGGTGTTGTGTATAAAGCATTGCATCAA 
961 ---------+---------+---------+---------+---------+---------+ 1020 

TAATTCGAACTTCTTGAACCTTTTCCATTGATACCACAACACATATTTCGTAACGTAGTT 
I 	K 	L 	E 	E 	L 	G 	KG 	NY 	G 	V 	V 	Y 	K 	AL 	H 	Q 

CCGACTGGTGTCACTATGGCCTTGAAGGAAATTAGGTTGTCCTTAGAAGAAGCAACATTT 
1021 ---------+---------+---------+---------+---------+---------+ 1080 

GGCTGACCACAGTGATACCGGAACTTCCTTTAATCCAACAGGAATCTTCTTCGTTGIAAA 
PIG 	VT 	MA 	L 	K 	El 	R 	L 	S 	L 	E 	E 	A 	IF 

AATCAAATTATAATGGAATTGGATATTTTACATAAAGCAGTTAGTCCTTATATCGTTGAC 
1081 ---------+---------+---------+---------+---------+---------+ 1140 

TTAGITTAATATTACCTTAACCTATAAAATGTATTTCGTCAATCAGGAATATAGCAACTG 
N 	Q 	II 	M 	E 	L 	D 	IL 	H 	K 	A 	VS 	P 	Y 	IV 	0 

TTTTAT GGTGC C TTTTTTGT 3 GA A GGTTC TGTTTTTA TTTGTA TGGAA TATA T GGA I GC I 
1141 ---------+---------+---------+---------+---------+---------+ 1200 

AAAAIACCACGGAAAAAACACCTTCCAAGACAAAAATAAACATACCTTATATACCTACGA 
F 	Y 	G 	A 	F 	F 	V 	E 	G 	S 	V 	F 	1CM 	E 	Y 	MD 	A 

GGTAGCAIGGACAAACTGTATGCTGGTGGTATCAAAGACGAAGGAGTTTTAGCTAGAACT 
1201 ---------+---------+---------+---------+---------+---------+ 1260 

CCATCGTACCTGITTGACATACGACCACCATAGTTTCTGCTTCCTCAAAATCGATCTTGA 
G 	SM 	D 	K 	L 	Y 	AG 	G 	1K 	0 	E 	G 	V 	LA 	R 	T 

GCTTATGCTGTAGTGCAAGGCCTCAAAACTTTGAAAGAGGAGCATAATATCATTCATCGT 
1261 ---------+---------+---------+---------+---------+---------+ 1320 

CGAATACGACATCACGTTCCGGAGTTTTGAAACTTTCTCCTCGTATTATAGTAAGTAGCA 
A 	Y 	A 	V 	V 	Q 	G 	L 	K 	T 	L 	K 	E 	E 	H 	Nil 	HR 

GACGTTAAACCTACTAATGTTTTGGTAAATTCTAATGGCCAGGTTAAGTTATGTGACTTT 
1321 ---------+---------+---------+---------+---------+---------+ 1380 

CTGCAATTTGGATGAITACAAAACCATTTAAGATTACCGGICCAATTCAATACACTGAAA 
DV 	K 	P 	T 	N 	V 	LV 	N 	SN 	G 	Q 	V 	K 	L 	C 	D 	F 

GGCGTGAGTGGGAATCTTGTGGCTTCTATATCCAAAACGAACATTGGATGTCAATCTTAC 
1381 ---------+---------+---------+---------+---------+---------+ 1440 

CCGCACICACCCTTAGAACACOGAAGATATAGGTTTTGCTTGTAACCTACAGTTAGAATG 
G 	VS 	G 	N 	LV 	A 	SI 	S 	K 	TN 	I 	G 	C 	Q 	S 	Y 

ATGGCTCCTGAAAGAATTCGTGTTGGTGGACCTACCAATGGCGTCITGACTTACACCGTA 
1441 ---------+---------+---------+---------+---------+---------+ 1500 

TACCGAGGACTTTCTTAAGCACAACCACCTGGATGGTTACCGCAGAACTGAAIGTGGCAT 
MA 	P 	ER 	I 	R 	V 	G 	GRIN 	3 	V 	L 	T 	Y 	TV 

CAGGCTGATGTGTGGTCTCTAGGCCTTACCATTTTAGAAATGGCTTTAGGAGCTTATCCG 
1501 ---------+---------+---------+---------+---------+---------+ 1560 

GTCCGACTACACACCAGAGATCCGGAATGGTAAAATCTTTACC3AAATCCTCGAATAGGC 
Q 	A 	DV 	W 	S 	L 	G 	L 	T 	I 	L 	E 	MA 	L 	G 	A 	Y 	P 

TATCCACCTGAATCATATACTTCAATATTTGCACAACTATCGGCGATTTGCGATGGCGAT 
1561 ---------+---------+---------+ ---------+---------+---------+ 1620 

ATAGGTGGACTTAGTATAIGAAGTTAIAAACGTGTTGATAGCCGCTAAACGCTACCGCTA 
VP 	P 	ES 	Y 	IS 	IF 	A 	Q 	L 	S 	A 	IC 	D 	GD 

CCACCTTCTCTCCCCGATTCATTTTCTCCCGAAGCTCGTGATTTTGIAAACAAGTGTTTG 
1621 ---------+---------+---------+---------+---------+---------+ 1680 

GGTGGAAGAGAGGGGCTAAGIAAAAGAGGGCTTCGAGCACTAAAACATTTGTTCACAAAC 
PP 	S 	L 	PD 	SF 	S 	P 	E 	A 	R 	OF 	V 	N 	K 	CL 
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Figure 7.3d: Downstream sequences and -COOH terminus of the predicted wisi gene 

product 

AATAAAAACCCGTCTTTGCGTCCCGATTATC.ATGAGTTGGCTAACCATCCATGGTTGTTA 
1681 ---------+---------+---------+---------+ ---------+---------+ 	1740 

TTATTTTTGGGCAGAAACGCAGGGCTAATAGTACTCAACCGATTGGTAGGTACCAACAAT 
N K N PS L R PD Y H E L A N HP W L L 

AAATATCAAAATGCAGATGTGGACATGGCTTCATGGGCAAAAGGCGCTCTTAAAGAGAAA 
1741 ---------+---------+---------+---------+---------+---------+ 	1800 

TTTATAGTTTTACGTCTACACCTGTACCGAAGTACCCGTTTTCCGCGAGAATTTCTCTTT 
KY Q N A DV D M A SW A K G A L K E K 

GGTGAAAAAAGAAGCTAAAGGTTCGCCTGCTTTCTAATTGCCTGCTCTGTTTTAAAGTAC 
1801 ---------+---------+---------+---------+---------+---------+ 1860 

CCACTTTTTTCTTCGATTTCCAAGCGGACGAAAGATTAACGGACGAGACAAAATTTCATG 
GE 	KR 	S 	* 

CCATGCGCATTGGTGTTTGTCTTTAATTTCGA.ATGCATGACTATTACGTGATCCATAATT 
1861 ---------+---------+ ---------+---------+---------+---------+ 1920 

GGTACGCGTAACCACAAACAGAAATTAAAGCTTACGTACTGATAATGCACTAGGTATTAA 

ATGTTTCAGCAGAACCGACGCTATTTTGCATTTGTGCTTTTTCATAAATTTAATAATTTG 
1921 ---------+---------+---------+ ---------+---------+---------+ 1980 

TACAAAGTCGTCTTGGCTGCGATAAAACGTAAACACGAAAAAGTATTTAAATTATTAAAC 

GGTATGATTCCGTATAACGGTAGTtGATGTTTGCATTTTTGCTTTAAATTAAAACGGGTA 
1981 ---------+---------+ ---------+---------+ ---------+ ---------+ 2040 

CCATACTAAGGCATATTGCCATCAaCTACAAACGTAAAAACGAAATTTAATTTTGCCCAT 

TTTAATGTGTTATTACATTTGTTTAAGGCATTTACGTCCACCATAAAAAACTTTTTTTTT 
2041 ---------+---------+---------+---------+ ---------+---------+ 2100 

AAATTACACAATAATGTAAACAAATTCCGTAAATGCAGGTGGTATTTTTTGAAAAAAAAA 

ATTTAACTAAGGGGCTTTAGAAGTGCAAACGAAAGTTTGCAATTGTAAAAGTTACTTGTA 
2101 ---------+---------+---------+---------+ ---------+---------+ 2160 

TAAATTGATTCCCCGAAATCTTCACGTTTGCTTTCAAACGTTAACAT7TTCAA73AACAT 

CTGTATTAATTTATTTCTTTTAAAACTTCGTTGACTGGCTCCGTCGTTTTAGCTACTATG 
2161 ---------+ ---------+ ---------+ ---------+ ---------+---------+ 2220 

GACATAATTAAATAAAGAAAATTTTGAAGCAACTGACCGAGGCAGCAAAATCGATGATAC 

ATCTCCTGTTTCCTACAATGGTGATTACTTAGAGAGATTGAATCCATCGTAAAATGCAAG 
2221 ---------+ ---------+---------+---------+---------+ ---------+ 2280 

TAGAGGACAAAGGATGTTACCACTAATGAATCTCTCTAACTTAGGTAGCATTTTACGTTC 

TGTTAATAGATATTATATCGACCTAATAATAATTACTTAAACTATTAATATATTACTCAA 
ACAATTATCTATAATATAGCTGGATTATTATTAATGAATTTGATAATTATATAATGAGTT 

AGAGATTTGAGGTATTCATTTATTTAAAAAGTACGAGACTTTTATATATCAAAGAAACAA 
2341 ---------+---------+---------+---------+---------+---------+ 	2400 

TCTCTAAACTCCATAAGTAAATAAATTTTTCATGCTCTGAAAATATATAGTTTCTTTGTT 

ATTCTCCCAACATAAGTCCAACAAGGTAA 
2401 ---------+ ---------+--------- 2429 

I AA GA GGGTT GTA TIC AGGTTGT ICCA IT 
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Of higher eukaryotic mRNAs, many show an over-representation of the trinucleotide 

TGT, found sometimes repeated and in conjunction with poly-T stretches, in region 

known as a G/T cluster. This is found generally 30 nucleotides downstream of the 

AATAAA motif, and less than 20 nucleotides downstream of the polyadenylation 

site, and may be involved in mRNA processing (Birnstiel et a!, 1985). wisl 

downstream sequences contain a motif similar to a G/T cluster situated 

approximately 50 nucleotides downstream of the termination codon, which consists of 

the sequences 3'-TTGGTGTTTGT-3' (Fig. 7.3d). One possibility for the processing 

of the 3' terminus of the wisi mRNA is termination of transcription downstream of 

the TATGT sequence, followed by endonucleolytic cleavage and polyadenylation at a 

site upstream of the proposed G/T cluster. Very little is known about mRNA 

terminal processing in S.pombe, and further experiments would be required to 

determine the wisi polyadenylation site. 

7.7: THE wisi GENE PRODUCT 

The wisi ORF described above predicts a protein of 605 amino acids with a relative 

molecular mass of approximately 60kD which appears to be relatively hydrophilic 

(Figs. 7.3a, b, c, d). The amino acid composition of the wisi gene product is shown 

in Table 7.3, along with that of an "average" protein. The most notable features of 

this comparison are the high levels of serine and proline, and the relatively low 

levels of histidine,tryptophan, and glutamine in the predicted wisi product. 

7.8: HOMOLOGIES BETWEEN wisl AND PREVIOUSLY IDENTIFIED GENES 

7.8.1: Results 

The homology search algorithm FASTA (Lipman and Pearson, 1985) was used to 

search both the NBRF and EMBL protein sequences data bases for proteins showing 

similarity to the predicted wisi gene product. The results of these data base searches 

strongly indicate that the wisi product is related to the protein kinase family of 

polypeptides, as the 50 highest scoring matches were all kinase, or kinase related, 

proteins. The 20 best matches from a search of the EMBL data base are shown in 
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Table 7.3: Amino acid composition of the predicted wisi gene product. 

Amino acid No. of % comOosition 

residues 

wisi Average 

A Ala 39 6.4 7.7 

CCys 6 1.0 1.8 

D Asp 26 4.3 5.2 

E Glu 26 4.3 6.3 

F Phe 17 2.8 4.0 

G Gly 45 7.4 7.2 

H His 7 1.2 2.3 

I lie 27 4.5 5.4 

K Lys 33 5.5 5.9 

L Leu 58 9.6 9.1 

M Met 15 2.5 2.3 

N Asn 39 6.5 4.4 

P Pro 54 8.9 5.1 

Q Gin .16 2.6 4.1 

R Arg 29 4.8 5.2 

S Ser 87 14.4 7.1 

T Thr 29 4.8 5.8 

V Va! 34 5.6 6.5 

WTrp 3 0.5 1.3 

Y Tyr 15 2.5 3.2 

Total 	605 

The figures for the amino acid composition of an average protein were obtained by 

taking the average composition of 15409 entries in the EMBL protein data base. 
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Table 7.4: Proteins with homology to the predicted wisl gene product identified 

from data base searches. 

Gene Organism 

I 	PBS2 Polymyxin B resistance protein S.cerevisiae 

2 	byrl Protein kinase S.pombe 

3 STE7 Regulatory protein S.cerevisiae 

4 	ninA long protein Drosophila 

5 cdc2 homologue Human 

6 cdc2 homologue Mouse 

7 cdc2 homologue Chick 

8 SCH9 cAMP dependent protein kinase homologue S.cerevisiae 

9 	Protein kinase C Drosophila 

10 CDC28 S.cerevisiae 

11 NimA G2 specific protein kinase Aspergillus 

12 cdc2 S.pombe 

13 K1N28 S.cerevisiae 

14 LSK proto-oncogene tyrosine kinase Mouse 

15 TPK2 cAMP dependent protein kinase S.cerevisiae 

16 TPKI cAMP dependent protein kinase S.cerevisiae 

17 YPKI protein kinase S.cerevisiae 

18 TPK3 cAMP dependent protein kinase S;cerevisiae 

19 Protein kinase C (type epsilon) Mouse 

20 c-tkl tyrosine kinase Chick 

Matches 4 - 20 show an identity of approximately 25% to the predicted wisi gene 

product in an overlap of approximately 200 to 270 amino acids. 

PBS2, byrl and STE7 showed a higher homology (see Figs. 7.5, 7.6, 7.7 and text). 
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Table 7.4, and the optimum alignment between the predicted wisi gene product and 

the three best matches are shown in Figures 7.5, 7.6 and 7.7. 

In Figure 7.4, the wisi amino acid sequence is compared to the predicted amino acid 

sequences of the PBS2 and STE7 genes from S.cerevisiae, and the byrl gene from 

S.pombe, which show the closest homologies to the predicted wisi product. All 

protein kinases are closely related over a stretch of about 260 amino acids which 

constitutes the kinase catalytic domain. Of particular note are the sequence elements 

outlined in Figure 7.4 which were identified by Hanks et al, (1988) as highly 

conserved protein kinase domains. The sequence Gly-Xaa-Gly-Xaa-Xaa-Gly is 

thought to be involved in ribose ring interactions with ATP. A second conserved 

sequence, Ala-Xaa-Lys, is found another 15-20 amino acids towards the COOH 

terminus in all protein kinases. There is evidence that the conserved lysine residue is 

involved in a phosphate group interaction at the catalytic centre. A second group of 

conserved sequences [His-Arg-Asp-Leu-(Xaa) 1  7...Asp-Phe-Gly-(Xaa)20.-Ala-Pro-

Glu-(Xaa)16-Asp-Xaa-Trp-Xaa-Gly] thought to be involved in phosphoreceptor 

activity is also present (Fig. 7.4). The sequences following the His-Arg-Asp-Leu 

motif indicate the serine/threonine or tyrosine specificity of the kinase. In the case 

of wisi, this sequence is Lys-Pro-Thr-Asn, which is closely related to the Lys-Pro-

Glu-Asn consensus for serine/threonine protein kinases. 

Protein kinases related to that encoded by the cdc2 gene in S.pornbe all contain a 

tyrosine residue at position 5 within the Gly-Xaa-Gly-Xaa-Xaa-Gly conserved 

region, and in cdc2, phosphorylation of this tyrosine residue has been shown to be 

important for the regulation of cdc2. kinase activity (Gould and Nurse, 1989). Both 

the wisi and PBS2 predicted gene products contain a tyrosine residue at this site, 

and of other putative protein kinases identified in S.pombe, only the rani protein 

kinase contains a tyrosine residue at this position (McLeod and Beach, 1986). These 

observations raise the possibility that the activity of the wisi gene product may also 

be regulated by the phosphorylation of the equivalent tyrosine residue. 

Nearly all of the protein sequences identified in the data base searches described 

above share a high degree of homology in a region of approximately 260 amino 

acids, which represents the protein kinase functional region. The PBS2 and STE7 

gene products share a strong homology with wisi over a more extensive region (Figs. 

7.5 and 
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Figure 7.4: Comparison between the protein sequences of PBS2, STE7, byrl and wisi. 

350 	 399 

Byrl RPAWISD ... ........ LD NSSLEVVRHL GEGNGGAV. . SLVKHRNIFM 
Ste7 ......OILS GTSNGNY.IQ  LQDLVQLGKI GAGNSGIVVK ALHVPDSKIV 

Pbs2 KLSLSSKGID FSNGSSSRIT LDELEFLDEL GHGNYGNVSK VLHKPTNVIM 
Wisi KAVLNSEGVN FSSGSSFRIN MSEIIKL.EEL GKGNYGVVYK ALHQPTGVTM 

k..1.sdg.. fssgss..i. lsele.1.el G.GNyG.V.k aLhkptnvim 

400 	 449 
Byrl ARKTVYVGSD SKLQ.KQILR ELGVLHHCRS PY. . IVGFYG AFQ.. .YKNN 
Ste7 AKKTIPVEQN NSTIINQLVR ELSIV.KNVK PHENIITFYG AYYNQHINNE 

Pbs2 ATKEVRLELD EAKF.RQIL.M ELEVLHKCNS PY. . IVDFYG AFF... IEGA 
Wisi ALKEIRLSLE EATF.NQIIM ELDILHKAVS PY. . IVDFYG AFF. . .VEGS 

A.K..r.eld eatf.nQil. EL..lhkcvs Py. .IvdFYG Aff ... ie. 

450 	 499 
Byrl ISLCMEYMDC GSLDA.I. .L . . .R.EGG.P . .1... .PLD ILGKIINSMV 
Ste7 IIILMEYSDC GSLDKILSVY KRFVQRGT.V SSKKTWFNEL TISKIAYGVL 

Pbs2 VYMCMEYMDG GSLDK.I. .Y D. .E. .SSEI GGI .... DEP QLAFIANAVI 
Wisi VFICMEYMDA GSMDK.L. .Y . . .A. .GG.I . .K.. . .DEG VLARTAYAVV 

icMEYmDc GS1Dk .... y ......gg.i .......de. .lakia.aVv 

500 	 549 

Byrl KGLIYLYNVL HIIHRDLKPS NVVVNSR.GE  IKLCDFGVSG ELVNSVAQTF 
Ste7 NGL.DHLYRQY KIIRDIKPS NVLINSK.GQ  IKLCDFGVSK KLINSIADTF 

Pbs2 HGLKELKEQH NIIHRDVKPT NILCSANQGT VKLCDFGVSG NLVASL.AKTN 
Wisi QGLKTLKEEH NIIHRDVKPT NVLVNSN.GQ  VKLCDFGVSG NLVASISKTN 

.GLk.L.eqh nIIHRDvKP. Nvlvnsn.Gq .KLCDFGVSg nLv.SiakT. 

550 	 599 
Byrl VGTSTYMSPE RIRGG ..... .. KYTVKSDI WSLGISIIEL ATQELPWSFS 
Ste7 VGTSTYMSPE RIQ.G ... N. V. .YSIKGDV WSLGLMIIEL VTGEFPLG. 
Pbs2 IGCQSYMAPE RIKSLNPDRA . . TYTVQSDI WSLGLSILEM ALGRYPYP.. 
Wisi IGCQSYMAPE RIRVGGPTNG VLTYTVQADV WSL.GLTILEM ALGAYPYP.. 

• G ... YM.PERIr.g ... fl. ..tYtv.sD. WSLG1sI.E. a.geyPyp.. 

600 	 649 
Byrl NIDDSIG. .1 LDLLHCIVQE EPPRLP.SS. FPEDLRLFVD ACLHKDPTLR 
Ste7 .GHNDTPDGI LDLL.QRIVNE PSPRLPKDRI YSKEMTDFVN RCCIKNERER 

Pbs2 .PETYDN. .1 FSQLSAIVDG PPPRLPSDK. FSSDAQDFVS LCLQKIPERR 
Wisi .PESYTS. .1 FAQLSAICDG DPPSLP.DS. FSPEARDFVN KCLNKNPSLR 

.pe.yt ... I .d.Lsalvd. ppPrLP.ds. fs..ardFVn .C1.Krp.1R 

650 	 699 

Byrl ASPQQLCAMP YFQQALMINV D.LAS.WA.S NFRSS 
Ste7 SSIHELLHHD LIMKYVSPSK DDKFRHWCRK IKSKIKEDKR IKREALDRAK 

Pbs2 PTYAALTEHP WLVKYRNQDV H.MSE.YI.T ERLERRNKIL RERGENGLSK 
Wisi PDYHELANHP WLLKYQNADV D.MAS.WA.K GALKEKGEKR S 

psyheL..hp wl.ky.n.dv d.mas.wa.k ..lk.k. .kr ..R ......K 

The protein sequences were aligned with the "Bestfit" program from the UWGCG 

	

package. 	The lowest line indicates a consensus sequence where capital letters 

indicate identity between all sequences. 

Highly conserved protein kinase domains. 
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7.6), possibly suggesting similar functions for these proteins. The PBS2 and STE7 

gene products have previously been assigned to a particular subfamily of protein 

kinases, though it is not clear if byrl also belongs to this subfamily as its sequence 

was not available at the time of the analysis (Hanks et al, 1988). A further data base 

homology search was undertaken with the 311 amino acid amino-terminal region of 

the predicted wisi gene product. This was done to determine if the wisi product 

showed homologies to previously identified proteins in a region outside that 

containing highly conserved protein kinase domains. Monomeric protein kinases 

commonly include discrete regulatory domains, which may contain pseudosubstrate 

sequences involved in negative regulation (Hunter, 1987). However, the only 

significant homology detected in this search was between wisi and the equivalent 

region in the PBS2 gene product. 

7.8.2: Homology between wisl and 

The gene product showing the highest homology to the predicted wisi sequence is 

that of the S.cerevisiae gene PBS2, with a 49% identity (82% homology) in a 460 

amino acid overlap, and 45% identity (58% similarity) overall (Fig. 7.5). The PBS2 

gene was identified by it ability to confer resistance to the antibiotic polymyxin B 

when present in multicopy (Boguslawski and Polazzi, 1987). Analysis of the regions 

of PBS2 and wisi not showing significant homology revealed several highly 

hydrophilic regions, with a high serine content. Boguslawski and Polazzi (1987) 

describe a hydrophobic pocket containing proline and leucine residues starting at 

position 94 in the PBS2 gene product. Examination of the amino acid sequence of 

the wisi gene product shows that the equivalent protein regions also show strongly 

hydrophilic areas, with a similar hydrophobic pocket consisting of the sequence 

PPLPRAVP situated between two hydrophilic regions particularly high in serine 

residues (Fig. 7.5). The significance of these observations is not clear, but they are a 

further pointer to a possible similarity in function between PBS2 and wisi. One 

striking difference between the two proteins is that the PBS2 polypeptide terminates 

in a short, strongly hydrophobic string of amino acids, reminiscent of the S.cerevisiae 

RAS proteins, while no equivalent hydrophobic region is present in the wisi gene 

product. 



Figure 7.5: Comparison between the PBS2 and wisi gene products. 

(wisi sequence on top tine.) 

9 LSCSLRQLSISPTAPPGDV .......GTPGSLLSLSSSSSSNTDSSGSSL 51 

	

.. 	
I ....... I 

I MEDKFANLSLHEKTGKSSIQLNEQTGSDNGSAVKRTSSTSSHYNNINADL 50 

52 G ..............SLSLNSNSSGSDNDSKVSSPSREIPSDPPLPRAVP 87 
I 	I. 	II 	I. 	 I 	 • I 	 I 	 . 	 . 	III 

51 HARVKAFQEQRALKRSASVGSNQSEQDKGSSQSPKHIQQIVPP... 97 

88 TVRLGRSTSSRSRNSLNLDMKDPSEKP. .RRSLPTAAGQN. . . .NIGSPP 131 
I 	 II. 	 ..... I 	 I 	 • 	 I 	 II 	 II 

II 

98 . . . LPVAGSSKVSQRMSSQVVQASSKSTLKNVL.DNQETQNITDVNINIDT 144 

132 TPPGPFPGGL.STDIQEKLKAFH.ASRSKSMPEVVNKISSP ........TTP 173 
..... ........... 

145 TKITATTIGVNTGLPATDITPSVSNTASATHKAQLLNPNRRAPRRPLSTQ 194 

174 IVGMGGRGSYPLPNSQLAGRLSNSPVKSPNMPESGLAKSLA..AARNPLL 221 

	

I. 	
I 	................ .

I  

195 HPTRPNVAPHKAPAIINTPKQSLSARRAVKLPPGGMSLKMPTKTAQQPQQ 244 

222 NRPTSFNRQTRIRRAPPGKLDLSNSNPTSPV ......SPSSMASRRGLNI 265 
I. 	 III 	 I 	 . 	 It 

I.. 	I• 	 ...... III . l 	 l.I 

245 FAPSPSNKKHIETLSNSKVVEGKRSNPGSLINGVQSTSTSSSTEGPHDTV 294 

266 PPTLKQAVSETP ...........FSTFSDILDAKSGTLNFKNKAVLNSEG 304 

	

I.. 	II •I 	It 	It 	II 	•I 	I.t.t 

295 GTTPRTGNSNNSSNSGSSGGGGLFANFSKYVDIKSGSLNFAGKLSLSSKG 344 

305 VNFSSGSSFRINMSEIIKLEELGKGNYGVVYKALHQPTGVTMALKEIRLS 354 
III 	It 	 I 	 I.IIt 	Pill 	 I 	 I 	II 	II 	 I 	II 

I-Ill 	 I 	...... I.IItIII 	I 	 I 	I•tI • I 	I•III 

345 IDFSNGSSSRITLDELEFLDELGHGNYGNVSKVLHKPTNVIMATKEVRLE 394 

355 LEEATFNQIIMELDILHKAVSPYIVDFYGAFFVEGSVFICMEYMDAGSMD 404 
I 	II.tII..III 	 tIll 

395 LDEAKFRQILMELEVLHKCNSPYIVDFYGAFFIEGAVYMCMEYMDGGSLD 444 

405 KLYAG .... GIKDEGVLARTAYAVVQGLKTLKEEHNIIHRDVKPTNVL.VN 450 
I 	 II 	 II 	 I 	 I 	I..t 	II 	III 

I 	 II 	• 	 II 	 I 	II 	III1I 	.1 	III 

445 KIYDESSEIGGIDEPQLAFIANAVIHGLKELKEQHNIIHRDVKPTNILCS 494 

451 SN.GQVKL..CDFGVSGNLVASISKTNIGCQSYMAPERIRVGGPTNGVLTY+ 499 
I 	 I 	IIIIIIIIIIIIIII. 	IIIIIIIIIIIIIII 	 I 	 • 

I 	IIIIIIII 	111114 	I.•I 	IIIIIII 	IlillI 	.. ..... III 

495 ANQGTVKLCDFGVSGNLVASLAKTNIGCQSYMAPERIKSLNPDRA. .TYT 542 

500 VQADVWSLGLTILEMALGAYPYPPESYTSIFAQLSAICDGDPPSLP.DSF 548 
II 	l.IIIII 	1111111 	111111 	 I 	 II 	11111 	II 	II 	II 	 I 

I.' 

543 VQSDIWSLGLSILEMAL.GRYPYPPETYDNIFSQLSAIVDGPPPRLPSDKF 592 

549 SPEARDFVNKCLNKNPSLRPDYHELANHPWLLKYQNADVDMASWAKG.. 595 
I 	 .1 	III 	 II 	 t 	 I 	 II 	 I 	 I 	.IIII.II 	 I 	It 	 I 	 . 

I. 	 I 	....... III 	•tItI 	I 

593 SSDAQDFVSLCLQKIPERRPTYAALTEHPWL.VKYRNQDVHI'ISEYITERLE 642 

596 . . . . ALKEKGEK 603 

543 RRNKILRERGEN 654 
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Figure 7.6: Comparison between the STE7 and wisi gene products. 

(wisi sequence on top line.) 

90 RLGRSTSSRSRNSLNLDMKDPSEKPRRSLPTAAGQNNIGSPPTPPGPFPG 139 

1 MFQRKTLQR.RNLKGLNLN .........LHPDVGNNGQLQEKTETHQGQS 40 

140 GLSTDIQEKLKAFHASRSKSMPEVVNKISSPTTPIVGMGQRGSYPLPNSQ 189 
I.. 	 . 	 . 	I 	 . 	• .I. 	 II 

41 RIEGHVMSNINAIQNNSNLFLRRGIKK.... KLTLDAFGDDQAISKPNTV 86 

190 LAGRLSNSPVKSPNMPESGLAKSLAAARNPLLNRPTSFNRQTRIRRAPPG 239 
• 	.. 	I•II 	 • 	.. . . I. 	I• 	•• 	 I 

87 VIQQPQNEPV .... LVLSSLSQSPCVSSSSSLSTPCIID .......AYSN 125 

240 KLDLSNSNPTSPVSPSSMASRRGLNIPPTLKQAVSETPFSTFSOILDAKS 289 
I 	 I 	 II 	. 	• 	 • 	 . 	.1 	 . 	. 	. 	I 

126 NFGLSPSSTNS. .TPSTIQGLSNIATPVENEHSIS.. . LPPL.EESLSPAA 170 

290 GTLNFKNKAVLNSEGVNFSSGSSFRINMSEIIKLEELGKGNYGVVYKALH 339 
I 	. 	•.. 	I. 	• 1 	II 	I 	I 	1114 

I 	II 

171 ADLK ......... DTLSGTSNGNY. IQLQDLVQLGKIGAGNSGTVVKALH 210 

340 QPTGVTMALKEIRLSLEEAT. FNQIIMELDILHKAVSPY. . IVDFYGAFF 386 

	

• 	.4 	I 	I 	. 	.. 	 .11.. 	II 	I. 	 I 	 I. 	11*1.. 

	

I 	 . ...............I 

211 VPDSKIVAKKTIPVEQNNSTIINQLVRELSI KNVKH 	TFYGAYY 259 

387 • . .VEGSVFICMEYMDAGSMDKLYA ........GGIK ......DEGVLAR 419 
I 	II 	I 	11.1 	I. 	 I 	. 	 • 1 

I 	III 	I•I 	III•• 	 I... 	 • . 

260 NQHINNEIIILMEYSDCGSLDKILSVYKRFVQRGTVSSKKTWFNELTISK 309 

420 TAYAVVQGLKTLKEEHNIIHRDVKPTNVLVNSNGQVKLCDFGVSGNLVAS 469 
11.1. 	II 	I 	. 	11111.11 	111.11 	11.11111111 	I. 

310 IAYGVLNGLDHLYRQYKIIHRDIKPSNVLINSKGQIKLCDFGVSKKLINS 359 

470 ISKTNIGCQSYMAPERIRVGGPTNGVLTYTVQADVWSLGLTILEMALGAY 519 

	

I 	• I 	 II 	1111 	 I 	• 	.1111111 	1.1. 	I 
1111•• 	 • ..... 1111111 	I•I•• 

360 IADTFVGTSTYMSPERIQGN .......VYSIKGDVWSLGLMIIELVTGEF 402 

520 PYPPESYT. SIFAQLSAICDGDPPSLPDS. . FSPEARDFVNKCLNKNPS 565 
I 	 I 	.1. 	4 	I 	 II 	 .1 	I 	lilt_I 	II 

	

I 	•1 	 I 	......... 1 1 	I 

403 PLGGHNDTPDGI LDLLQRIVNEPSPRLPKDRIYSKEMTDFVNRCCIKNER 452 

566 LRPDYHELANHPWLLKY .....................QNADVDMASWAK 594 

	

III 	.1 	...Il 	 .• 	. 

It ....... II 

453 ERSSIHELLHHDLIMKYVSPSKDDKFRHWCRKIKSKIKEDKRIKREALDR 502 

595 GALKEKGEKRS 605 
I 	I 	 II 

• 	 II 

503 AKLEKKQSERS 513 
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Figure 7.7: Comparison between the byrl and wisl gene products. 

(wisi sequence on top line.) 

234 RRAPPGKLDLSNSNPTSPVSPSSMASRRGLMIPPTLKQAVSETPFSTFSD 283 
II 	I 	I 	I 	 II 	 I 	I 	 I 	 I 	I. 

4 	4 	I 	I 	 I 	 • 	. I 

4 RRRNPKGLVL. . . NPNASVKSSD ..........NDHKEELINNQKSFESN 40 

284 ILDAKSGTLNFKNKAVLNSEGVNFSSGSSFRINMSEIIKLEELGKGNYGV 333 
I• 	 . 	I.. 	• 	•II • II 

41 VEAFMEQCAHMNRRPAWISD ...........LDNSSLEVVRHLGEGNGGA 79 

334 VYKALHQPTGVTMALKEIRLSLEEATFNQIIMELDILHKAVSPYIVDFYG 383 
I 	 I 	 . 	II 	I 	• 	.. 	. 	 II. 

80 V. .SLVKHRNIFMARKTVYVGSDSKLQKQILRELGVLHHCRSPYIVGFYG 127 

384 AFFVEGSVFICMEYP4DAGSMDKLY.AGGIKDEGVLARTAYAVVQGLKTLK 432 
.111111 	11.1 	 II 	 ..I 	 .1 	II 	I 

I ...... I4IIII • I 	................... II 	I 

128 AFQYKNNISLCMEYMDCGSLDAILREGGPIPLDILGKIINSMVKGLIYLY 177 

433 EEHNIIHRDVKPTNVLVNSNGQVKLCDFGVSGNLVASISKTNIGCQSYMA 482 

	

11.111 	..IIIIIIIII.lI 	I. 	I 	.1 	 II 
............................................ 

178 NVLHIIHRDLKPSNVVVNSRGEIKLCDFGVSGELVNSVAQTFVGTSTYMS 227 

483 PERIRVGGPTNGVLTYTVQADVWSLGLTILEMALGAYPYP... PESYTSI 529 
11111 	I 	 III 	1.1111. 	1.1.1 	 I. 	 • 	 • 1 

111111 	 111.I.tII 

228 PERIRGG.......KYTVKSDIWSLGISIIELATQELPWSFSNIDDSIGI 270 

530 FAQLSAICDGDPPSLPDSFSPEARDFVNKCLNKNPSLRPDYHELANHPWL 579 
I 	I 	...II 	II 	II 	. 	I 	II. 	11.1.1 	II 	 • .I 

	

1II11I 	 I 	11 	14111 ........ I ..  

271 LDLLIICIVQEEPPRLPSSFPEDLRLFVDACLHKDPTLRASPQQLCAM'F 320 

580 LKYQNADVDMASWAKG 595 
.11. 	I 	III 

321 QQALMINVDLASWASN 336 
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The wisi gene was tested for its ability to confer polymyxin B resistance on S.pombe. 

Cultures of cells containing either pwisl-1, or pDB248 as a control, were grown to 

mid-log phase in selective medium, and plated at two different dilutions onto EMM-

glut plates containing various concentrations of polymyxin B. Transformants 

containing either pDB248 or pwisl-1 showed a similar sensitivity to Polymyxin B: 

cells were resistant to a concentration of 0.2mg/ml, but sensitive to 0.3mg/ml 

polymyxin B. These observations indicate that wisi when present in multicopy was 

not capable of conferring polymyin B resistance on S.pombe. 

In mammalian cells, polymyxin B has been shown to be a specific inhibitor of 

protein kinase C (Nel et a!, 1985). It seems highly unlikely that PBS2 and wisi are 

the yeast equivalents of protein kinase C, as they do not show any homology to 

cloned protein kinase C sequences apart from those in the kinase functional region. 

In particular, PBS2 and wisi lack the characteristic sequences present in this family 

of protein kinases necessary for interaction with Ca2+/calmodulin,  diacylglycerol and 

phospholipid which include cysteine-rich sequences similar to the "zinc finger" motifs 

found in metallo-proteins (Nishizuka, 1988). It is interesting to note, however, that 

a region of the protein kinase C epsilon subgroup also shows homology with a region 

of wisi outside that conserved between all protein kinases. This is a region highly 

conserved within the epsilon subgroup, but not within the protein kinase C family as 

a whole (Nishizuka, 1988).. The role of these sequences is not presently clear, but it 

seems likely that they play some role in regulatory functions unique to the epsilon 

subgroup. The significance of the homologies between these sequences and the 

sequence of wisi is not clear. 

7.8.3: Homology between wisl and STE7 

The S.cerevisiae gene STE7 encodes a putative protein kinase which appears to be 

involved in the pathway leading to the transcriptional induction of a-specific and A-
specific genes by mating factors (Teague et a!, 1986; Herskowitz, 1989). The 

mating-factor receptors themselves, products of the STE2 and STE3 genes 

communicate with a G protein complex consisting of alpha, beta and gamma 

subunits. The STE7 and STEJI gene products, which are both putative protein 

kinases, are believed to act downstream of the G protein complex, although their 

precise roles and substrates are not clear. The product of the STE12 gene has been 
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demonstrated to be a phosphoprotein capable of binding a short region of DNA 

known as the "pheromone response element" which is involved in the induction of 

transcription by mating factors. An appealing hypothesis is that the activity of the 

STEI2 gene product is determined by its phosphorylation state, which is in turn 

determined by the activity of protein kinases involved upstream in this signalling 

pathway (Herskowitz, .1989). 

7.8.4: Homology between wisi and byrl 

The predicted wisi and byrl gene products show a high degree of homology, 

although the homologous region in each case is limited to that defined as the protein 

kinase catalytic region (Fig. 7.7). There is a strong homology, however, in sequences 

between the highly conserved kinase domains, and this sequence similarity is not 

specific to S.pombe protein kinases. byrl was identified as a gene which may 

mediate the meiosis and sporulation function of rasi, and has been shown to allelic 

to stel: mutant strains are completely defective in conjugation and sporulation 

(Nadin-Davis and Nasim, 1988; 1990). In S.pombe, rasi has been shown to be 

important for sexual differentiation, though ras function does not seem to be 

mediated by changes in cAMP levels, as has been observed in S.cerevisiae (Fukui et 

a!, 1986a). Loss of rasi function leads to sterility, and rasi has been shown to be 

allelic to ste5 (Nadin-Davis and Nasim, 1990). The ste gene family in S.pombe are 

believed to function in a signal transduction pathway co-ordinating the elevated 

expression of certain mating type specific genes with low levels of extracellular 

nutrients such as nitrogen (Nadin-Davis and Nasim, 1990). 

7.9: DISCUSSION 

This chapter describes the determination of the sequence of the wisi functional 

region, and its analysis. The sequence of a section of DNA consisting of 3276bp was 

determined, which contained a 1815nt open reading frame. The position of this 

ORF was in agreement with previous experiments defining the wisi functional 

region. It was possible to confirm the positions of previously identified restriction 

sites from the sequence, with the exception of one XbaI site, which is presumed not 

to have been recognised in previous experiments due to dam methylation of plasmid 

clones. Three sequences with a close agreement to the consensus for ARS activity in 



S.poinbe were identified in a 280bp region outside the ORF, which correlates with 

ARS activity shown by plasmids containing this sequence. 

The open reading frame identified here contains no consensus sequences for intron 

splicing in S.pombe, and predicts a wisi gene product of 605 amino acids. The - 

COOH terminal half of the predicted wisi protein shows a strong homology to 

serine/threonine protein kinases, and contains all the conserved domains necessary 

for protein kinase function, described by Hanks et a! (1988). The -NH4 terminal 

half shows no significant homologies to non-kinase proteins. 

The predicted wisi gene product shares the closest homology with the PBS2 and 

STE7 genes in S.cerevisiae, and the byrl gene in S.pombe. The PBS2 and STE7 

genes have previously been identified as related, and assigned to a subfamily of 

protein kinases (Hanks et a! 1988). It is not clear if the byrl gene product may be 

assigned to this family. The strongest homology is between PBS2 and wisi: when 

present in multicopy, the PBS2 gene confers on S.cerevisiae cells resistance to the 

antibiotic polymyxin B (Boguslawski and Polazzi, 1987), though wisi is not capable 

of conferring such resistance in S.pombe. The biological role of PBS2 is not clear, 

though one model is that the PBS2 kinase is involved in the phosphorylation of a 

membrane component (possibly encoded by the PBSI gene) which is affected by 

polymyxin B. The effect of polymyxin B upon the phosphorylation of the receptor 

may be overcome by the overexpression of the PBS2 proteinkinase. 

The STE7 and byrl genes also appear to involved in signal transduction pathways. 

STE7 is believed to be involved in the pathway leading to the transcriptional 

induction of mating type specific genes in response mating factor signalling (Teague 

et al, 1986; Herskowitz, 1989), and byrl in the pathway co-ordinating the elevated 

expression of certain mating type specific genes with low levels of extracellular 

nutrients such as nitrogen (Nadin-Davis and Nasim, 1988; 1990). 

Based on the evidence described here it is possible to postulate a role for the wisi 

gene product in a signalling pathway regulated by phosphorylation. A likely 

function for such a pathway would be the mediation of the effects of extracellular 

nutrients upon the cell cycle. Such possibilities are discussed in Chapter 8. 
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CHAPTER 8: DISCUSSION 

8.1: OVERVIEW 

The study of elements involved in the control of the eukaryotic cell cycle has 

recently entered a highly productive phase. In the last few years, it has been 

possible to bring together the powerful genetic techniques available in the study of 

the yeast cell cycle with biochemical studies undertaken in other organisms. 

Evidence is mounting that conserved mechanisms for the control of the cell cycle 

exist in organisms which are highly evolutionarily divergent. 

This study concerns the analysis of elements involved in the control over entry into 

mitosis in the fission yeast Schizosaccharomyces pombe. The initial aim of the 

project was to characterise the role of the win! gene in this control system. win! was 

initially defined by a mutant allele which showed a strong interaction with wee! and 

cdc25 (Ogden and Fantes, 1986), genes which had previously been shown to play an 

important role in the control over entry into mitosis, probably acting through the 

cdc2 protein kinase (Russell and Nurse, 1986; Russell and Nurse, 1987a). The aims 

of this project included the isolation and characterisation of win), and the 

investigation of the genetic interactions between win! and other cell cycle genes. 

The strategy for cloning win! was dependent upon the isolation of sequences capable 

of suppressing the cdc phenotype arising from the combination of win!.) with 

wee! .50 and cdc25.22 at the restrictive temperature. Following the extensive 

screening of gene libraries, it proved impossible to isolate win! using this approach, 

although 5 new genes presumed to be involved in the mitotic control were isolated as 

multicopy suppressors of this phenotype. These were named wis (win suppressing) 1 

to 5. 

The work described here mainly concerns the molecular analysis of the wis genes, a 

more detailed molecular and genetic analysis of wisi (including the determination of 

its DNA sequence), and the study of interactions between win!.! and previously 

identified genes involved in the mitotic control in S.pombe. 



8.2: SUMMARY OF RESULTS 

8.2.1: Genetics and physiology of wini 

The most striking characteristic of the win).! mutation is the nutritionally sensitive 

nature of its interaction with wee) and cdc25. Cells of the genotype weei.50 
cdc25.22 win!.) show a predominantly cdc phenotype on EMM at 35°C, while cells 

grown on rich medium, such as YE, are much shorter and are capable of growth and 

division (Ogden and Fantes, 1986). An investigation of the effects of growth 

medium on weel.50 cdc25.22 win!.1 strains suggested that nitrogen source was an 

important factor, and that media rich in amino acids suppressed the cdc phenotype of 

wee) .50 cdc25.22 win!.) strains. Temperature shift experiments indicated that 

wee!.50 cdc25.22 win!.! cells did not show a first cell cycle arrest upon shift to the 

restrictive temperature, implying that it is some form of cumulative effect which 

gives rise to the cdc phenotype shown by such cells when grown on minimal medium 

at 35°C. 

The fact that win!.! shows little or no interaction when combined with many other 

cell cycle mutants had already been demonstrated by Ogden and Fantes, (1986). 

Work described here shows that win).) interacts with cdc13: the terminal phenotype 
of a win!.1 cdc)3.117 double mutant upon a shift to the restrictive temperature was 

that of an arrest in G2, in contrast to that of a cdcl3.117 strain, which shows a cdc 

phenotype, but with many characteristics of mitotic cells (Nasmyth and Nurse, 1981). 

wee) is epistatic to wini.) (Ogden and Fantes, 1986), and experiments described here 

show that over-expression of cdc25 also results in the suppression of the win!.! 

phenotype of increased cell length at division, implying that win).! cells are still 
sensitive to levels of cdc25 expression. The win!.! mutation is not capable of 

suppressing the two forms of mitotic catastrophe phenotype which result from the 

combination of wee!.50 with either cdc2.3w or with high levels of cdc25 expression. 
Interestingly, the combination of win!.! with two cdc2w alleles resulted in different 

phenotypes: cdc2.Iw was capable of suppressing the win!.) phenotype, though the 
combination of cdc2.3w with win!.) resulted in a cell length phenotype more similar 

to that of win).). 

Six mcs genes were identified by Molz et a! (1989) by mutations which were capable 

of suppressing the lethal mitotic catastrophe phenotype arising from the combination 
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of cdc2.3w with loss of wee) function. Three mcs mutations, mcs3.12, mcs4.12 and 

mcs6.13 share with win).) the property of reversing the suppression of cdc25.22 by 

weel.50. These three mcs mutations were shown not to be allelic to win).1, and the 

phenotypes of the quadruple mutants mcsX weel.50 cdc25.22 win).) examined. The 

results of these experiments are difficult to interpret, as the resulting strains contain 

four cell cycle mutations. However, one possible interpretation of the results is that 

win) and mcs4 lie in the same pathway, judging not only from the evidence of their 

strikingly similar phenotypes, but from their mutual epistasis when combined in a 

weel.50 cdc25.22 genetic background. 

The combination of win).) with pat).114 was found to suppress the hypersporulation 

phenotype normally shown by pat)tS  strains at the restrictive temperature (lino and 

Yamamoto, 1985; Nurse, 1985), although cells of the double mutant strain do not 

continue to grow and divide, win).) is not allelic to cgs) or cgs2, mutant alleles of 

which are also capable of suppressing the hypersporulation phenotype of patl.))4 

(McLeod and Beach, 1989). win).) strains show an increased sensitivity to caffeine, 

which is an inhibitor of cAMP phosphodiesterase, suggesting that such strains have 

an altered response to intracellular cAMP levels. The implications of these results 

are discussed in detail in Section 8.5. 

The wini locus was mapped to a position within 4 - 5 cM of tps)9, which is situated 

on the short arm of chromosome I. win) was first mapped to chromosome I by a 

mitotic haploidisation procedure, and subsequently allocated to a region of 

Chromosome I by a series of crosses undertaken in a swi5.39 genetic background, 

which results in a reduction in meiotic recombination frequency (Gutz and Schmidt, 

1985). Finally, win) was mapped relative to tpsl9 using conventional techniques. 

8.2.2: The isolation and analysis of plasmids capable of suppressing a winl.1-

conferred phenotype 

Five independent sequences were isolated which were capable of suppressing the 

temperature sensitive phenotype of strains of the genotype wee).50 cdc25.22 win).). 

None of these contained the authentic win) gene, as demonstrated by integration and 

genetic mapping, although one showed loose genetic linkage with the win) locus. 

These were named wis (win suppressing) 1 to 5. A molecular analysis was carried 

out on these plasmids, including the determination of restriction maps of the S.pombe 

sequences contained within them to confirm that none represented previously isolated 



cell cycle genes. In the cases of wisi, wis2 and wis3, functional sequences were 

identified within the original clone by a combination of subcloning and transposon 

mutagenesis, and functional subclones isolated. 

The phenotypes of various cell cycle mutant strains containing the pwis plasmids in 

multicopy were also examined. None of the plasmids showed any effect upon the 

cdc25.22 phenotype in an otherwise wild type background, suggesting that their 

effect upon a weel.50 cdc25.22 winl.1 strain was not simply to compensate for loss 

of cdc25 activity. Only wisi and wis4 were capable of suppressing the win1.1 

phenotype in an otherwise wild type background. 

Several of the pwis plasmids were shown to affect the phenotype of strains with 

specific mcs mutations in a weel.50 cdc25.22 mutant background. Genetic mapping 

experiments showed that the wis genes were not allelic to the specific mcs mutations 

they were capable of suppressing. wis2 and wis3, when present in multiple copies 

are capable of affecting the phenotypes of win1.1, mcs3.12, mcs4.13 and mcs6.13 in a 

weel.50 cdc25.22 mutant background. In contrast, only wisi showed an interaction 

with mcs4.13, which shares many phenotypic similarities with wini.1. The most 

striking result from the study of the effects of the pwis plasmids was that wisi was 

found to be capable of reducing the cell length on division of an otherwise wild type 

strain when present in multicopy. This suggested a possible role for wisi as a dosage 

dependent inducer of mitosis, and wisi was selected for further analysis. 

8.2.3: The analysis of wisi 

In the study of wisi, emphasis was laid upon the examination of changed wisi dosage 

upon the cell. This included a study of the dosage dependent effects of increasing 

copy number, and the effect of deleting a large section of the wisi functional region. 

An increase in the number of copies of the wisi functional region present in the cell 

was found to decrease cell length at division in a dosage dependent manner. This 

suggests that wisi is involved in a rate limiting step controlling entry into mitosis and 

division. A single transcript of approximately 2400 nucleotides was identified, and 

was found to be present in elevated levels in strains containing increased wisi copy 

number. A large section of the wisi functional region was deleted by one step gene 

transpiacement, and was found to result in highly elongated cells which showed a 

dramatic drop in viability upon entry into stationary phase. 
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A genetic study was carried out to determine the effect of combining a wisi deletion 

allele with mutations or genetic constructs which result in a wee phenotype. These 

experiments suggested that strains lacking in wisi function were still sensitive to 

levels of wee! and cdc25 expression, as a wis) deletion allele in combination with 

either over-expressed cdc25+,  or a weel.50 mutation at the restrictive temperature, 

resulted in a wee phenotype. The combination of a wisi deletion allele with cdc2.1w 

or cdc2.3w mutations resulted in a substantial decrease in cell length, although the 

double mutant strains were significantly longer than either the parental cdc2w strains. 

Loss of wisi function was found to strongly suppress the hypersporulation phenotype 

of pat!.114, which is similar to the effect shown by win!.), though, as in the case of 

winl.1, wisf patl.114 double mutants were not capable of vegetative growth at the 

restrictive temperature. 

The sequence of a 2.5kb region of DNA containing the wisi functional region was 

determined on both strands using exonuclease III deletion constructs (Henikoff, 

1884), and the chain termination sequencing method of Sanger et a! (1977). This 

contained a 1815nt open reading frame encoding a predicted wisl gene product of 

605 amino acids. Protein sequence data base homology searches revealed that the 

wisi gene product showed a strong homology to the serine/threonine protein kinase 

family. 

8.2.4: Unanswered questions 

This summary of results leaves many questions unanswered. The following are 

amongst the most important: 

What is the role of the win! gene product in the control of the cell cycle? Since 

it proved impossible to clone win) using the method described here, models for the 

role of win! must be based on purely genetic evidence involving the win!.) mutant 

allele. 

Why did it prove impossible to isolate the win) gene by complementation of the 

cdc phenotype shown by wee).50 cdc25.22 win!.1 strains on minimal medium at 

35°C, and what alternative strategies exist for the cloning of win)? 

Why are the five wis genes capable of suppressing the cdc phenotype of wee).50 

cdc25.22 win).! strains when present in multicopy, and, with special emphasis on 

wisi, what is their normal role in the cell? 
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8.3: PLASMIDS CAPABLE OF SUPPRESSING A winl.1-CONFERRED 

PHENOTYPE 

8.3.1: Why were winl and cdc25 not isolated? 

Several plasmids from various gene libraries were identified 	by 	their 	ability 	to 

suppress the cdc phenotype of a wee].50 cdc25.22 win].) strain on EMM. 	These 

plasmids defined five 	functional 	regions which were named 	wisi 	- 	 5. 	It was 

predicted that such a gene library screen would identify both the win] and cdc25 

genes, although none of the plasmids isolated carried either of these genes. It has 

previously been shown that strong over-expression of cdc25+  in combination with 

loss of wee] function is lethal (Russell and Nurse, 1986). This suggests that a 

possible reason why cdc25+  transformants of the weel.50 cdc25.22 win].] strain were 

not identified is that the combination of multicopy cdc25#  with a weel.50 mutation 

was either lethal or detrimental to cell growth. The transformation of wee].50 

cdc25.22 win).] with a plasmid carrying cdc25 revealed that such transformants 

were capable of growth at 35°C, but were very slow growing, and so would probably 

not have been identified in this screen. 

The result obtained with cdc25 suggested a possible reason why the win] gene was 

not isolated. The exhaustive screening of gene libraries without isolating win] 

suggests either that the sequence is not present in any of the libraries used, which 

seems unlikely, or that high levels of win] expression are detrimental to growth in a 

weel.50 cdc25.22 win].] genetic background, as is the case for cdc25. 

8.3.2: Alternative strategies for the cloning of wi n i 

Several alternative strategies exist for the isolation of the win] gene: one possibility 

would be to avoid problems due to high levels of win] expression by using a gene 

library constructed in a low copy number plasmid to transform a wee].50 cdc25.22 

win).] strain, and to select for growth at 35°C on EMM. Unfortunately, although 

such plasmids are available for use in S.cerevisiae, they are not yet available in 

S.pombe. 

A second possibility would be to use the win).] phenotype of slightly elongated cells 

to screen gene libraries for plasmids containing the win 1+  gene. No positive selection 
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would be possible using this strategy, which would involve the detailed microscopic 

examination of many thousands of transformants. 

A third possibility is the use of win! genetic mapping data to clone wini. This 

would involve the cloning of the closely linked zpsl9 gene by complementation of the 

temperature sensitive phenotype of tps!9.14, which would be followed chromosome 

walking, initially using tpsl9 sequences as a probe, to isolate win]. 

8.3.3: How do the five wis genes suppress the cdc winl.l -conferred phenotype used 

for gene library screening? 

The question remains of why the five wis gene are capable of suppressing the cdc 

phenotype of a wee!.50 cdc25.22 win).! strain when present in multicopy. There has 

been shown to be negligible wee! activity in weel.50 strains at the restrictive 

temperature (Russell and Nurse, I 987a), suggesting that the wis gene products do not 

interact with wee!. In contrast, the cdc25.22 allele is not functionally equivalent to a 

cdc25 null allele at 35°C (Russell and Nurse, 1986), so it is possible that high levels 

of wis expression are raising residual levels of cdc25 activity. If this were the case, 

then it would be expected that the pwis plasmids would show suppression of cdc25.22 

in an otherwise wild type background, which was demonstrated not to be the case. 

Little is known concerning levels of win) activity in win!.! strains, so a third 

possibility, is that the effect of the pwis plasmids was to raise the level of win! 

activity. Only pwisl-1 and pwis4-1 are capable of suppressing the win!.) phenotype 

of increased cell length at division in an otherwise wild type background, suggesting 

that they may be acting directly to reverse the effect of decreased win! function, 

although it is impossible to determine from the available data if they interact directly 

with the win] gene product. wis! appears to have a more general effect upon cell 

length, as it is capable of reducing the cell division length of wild type cells when 

present in multicopy. 

The mutations mcs3.12, mcs4.13 and mcs6.13 share with win!.! the property of 

reversing the suppression of cdc25.22 by weel.50 (Molz et a!, 1989). The plasmids 

pwis2.cl and pwis3.1 are capable of suppressing the cdc phenotypes which arise from 

the combination of either of these four mutations with wee!.50 and cdc25.22. Of the 

three mcs mutations, only mcs4.13 shows a mutant phenotype in an otherwise wild 

type background, and this is not affected by the presence of either pwis2.cl  or 
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pwis3.1. wis2 and wis3 are not allelic to any of these three mcs genes. These results 
suggest that wis2 and wis3 show some form of general activity which will reverse the 
action of any mutation which results in a cdc phenotype when combined with 
weel.50 and cdc25.22. It is possible that wis2 and wis3 share some enzymatic 
function which may be extended to non-specific substrates when these genes are 
highly expressed. The interactions between mcs4.13, wini.] and wisi will be 
discussed in Section 8.4.5. 

There is strong evidence that wee] and cdc25 interact to control the activity of the 
cdc2 gene product (Russell and Nurse 1986; 1987a). It is possible that the action of 
the wis genes, when present in multicopy, is to bypass the control of cdc2 by wee] 
and cdc25, and since their action is to suppress a block in division, they would be 
predicted to activate the cdc2 gene product. None of the pwis plasmids are capable 
of suppressing the cdc phenotype of a cdc2.33 strain at the restrictive temperature, 
suggesting that this simple model is not an explanation, though this evidence does not 

exclude some form of allele specific interaction between cdc2 and the wis gene 
products. No phenotypic effects were observed when the pwis plasmids were 

transformed into strains containing mutant alleles of weel.50, cdc13.117, cdrl.34 and 
cdr2.69, suggesting that the effect of these plasmids in multicopy is not to reverse 
the loss of function of these genes. cdrl has been recently shown to be allelic to 
ni,,,], which is believed to regulate wee] function (Russell and Nurse, 1987b). 

8.4: The roles of win! and wisi in the control of mitosis 

As described above, the win].] mutant allele was isolated by Ogden and FanteS 
(1986) on the basis of its interaction with wee] and cdc25 mutant alleles, and shows a 
phenotype of a slight increase in length in an otherwise wild type background. Their 

results, examining dominance relationships for win].] in a weel.6 cdc25.22 genetic 
background, indicate that win].] is a recessive mutation, suggesting that it encodes a 

protein product with substantially reduced function. Unfortunately, it is presently 

impossible to deduce to what extent the activity of the win].] gene product is 
affected, making the interpretation of genetic data difficult. In contrast, it could be 
concluded that the wisi deletion allele resulted in a complete loss of wisi function, as 
two thirds of the predicted wisi open reading frame was deleted in the construct 
used for genetic studies. The observation that complete loss of wisi function is not 
lethal to the cell implies that wisi function is not vital for cell growth and division. 
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8.4.1: The interaction of winl and wisi with weel and cdc25 

The over-expression of cdc25 has a similar effect upon win! and wisi mutant cells as 

does the loss of wee! function. This result suggests that both strains are sensitive to 

cdc25 expression. 

wee! is epistatic to both win! and wisl mutant alleles with respect to cell length, 

demonstrating that both mutant strains are sensitive to wee! activity. This may be 

because the effect on the cell length due to the loss of wee! function overrides the 

effect of reduced win! and wisi function, or that the effects of win! and wisl are 

mediated by the wee! gene product. If this were the case then it would be predicted 

that the wis! gene product would inhibit wee! activity, as wee! acts as an inhibitor 

over entry into mitosis. The observations that increased wisi expression results in a 

reduced cell length, and that an increased level of wis! expression has no effect upon 

the cell length of wee! strains fit with this model. 

wee! and cdc25 have been shown to act independently in a dosage dependent manner 

to control entry into mitosis. A control element which inhibits weel function might 

be expected to suppress cdc25ts  alleles to some extent. Such a role has been 

proposed for the nimi gene, which was isolated as a multicopy suppressor of 

cdc25.22. In contrast to nimi, wis! does not suppress cdc25 when present in 

multicopy, suggesting that a similar argument can not be applied in this case. 

Increased levels of wisi expression result in a decrease in cell length in wild type 

cells and also in strains carrying either win!.! or mcs4.13, mutations which lead to an 

increased cell length at division. Interestingly, increased wisi expression has very 

little effect on the cell length phenotype of either cdrl.34 or cdr2.69 strains, 

suggesting that these genes may play a role in mediating wisi function. 

8.4.2: The interaction of winl.l with cdc13.117 

The interaction of win!.1 with cdc!3.117 lends further support to the proposal that 

win! is involved in the control over entry into mitosis. The cdc13 gene product is a 

cyclin homologue (Goebl and Byers, 1988; Solomon et al, 1988; Hagan et al, 1988) 

which shows a physical interaction with the cdc2 protein kinase (p34), and may be 

involved in the nuclear localisation of p34 at mitosis (Booher et a!, 1989). A deletion 

of the cdc13 gene results in a block in G2 prior to entry into mitosis, which suggests 

that the "mitotic" phenotype associated with the cdcl3.117 mutation is due to residual 



cdc13 activity (Hagan et a!, 1988; Booher and Beach, 1988). At the restrictive 

temperature, cdc)3.117 win).) cells show a phenotype similar to that resulting from a 

complete loss of cdc13 function, suggesting that win).) affects cdc13 activity. It is 

not possible to determine if win) is required for cdc13 action, as it is not known to 

what extent win).) affects win) activity. If such a requirement did exist, then 

complete loss of win) function would be expected to result in a block in the cell 

cycle prior to mitosis. 

Several possibilities exist to explain the nutritionally sensitive phenotype of the 

wee).50 cdc25.22 win).) strain. One possibility is that such cells are in a finely 

balanced state, possibly due to a very low residual win) activity, and that a small 

change in the cells' biochemistry, such as that induced by growth rates on various 

media, may be enough to shift a balance between a cdc phenotype, and the ability to 

form colonies. A second, more attractive possibility is that win) is directly involved 

in the nutritional sensing machinery of the cell. Such a signal has been proposed a a 

modulator of the cell size control over entry into mitosis (Fantes and Nurse, 1977) 

and it seems likely that wee) and cdc25 are involved in this control (Fantes and 

Nurse, 1978; Nurse and Thuriaux, 1984). In double wee) win).) mutants, the wee) 

mutation is epistatic to win).), independent of the wee! allele. This suggests that 

win) may act through wee), which has been shown to have a dosage dependent effect 

on cell size at division (Russell and Nurse 1987a), and this model is supported by the 

interaction of win).) with cdc2w alleles. 

8.4.3: The interaction of winl with cdc2 

Several alleles of cdc2 have been identified which show a phenotype of small cells, 

resulting from an early entry into mitosis and division (Nurse and Thuriaux, 1980); 

Fates, 1981). These wee alleles fall into two classes (Thuriaux et a!, 1978; Fantes, 

1981; Russell and Nurse, 1987a): one, typified by cdc2.1w, is specifically insensitive 

to wee) expression, though responding essentially normally to cdc25 levels . A 

second class, typified by cdc2.3w, is sensitive to levels of wee) expression, but show 

little response to changes in cdc25 levels. The cell length phenotype of win).) is 

strongly suppressed by cdc2.1w, though the combination of win).) with cdc2.3w has 

little effect upon the win!.) phenotype. One possible explanation for these results is 

that wini negatively regulates wee! levels, so that loss of win! function gives a raised 

level of wee) function, which results in longer cells. This model would explain the 

specific interactions between cdc2w alleles and win).), though would predict that 
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weef cells would be completely insensitive to win] dosage. This is evidently not the 
case, since weel.50 cdc25.22 win!.] cells show very different phenotypic 
characteristics from weel.50 cdc25.22 win] cells. 

8.4.4: Possible roles for wisi 

The cell length phenotype of wisf strains is strongly suppressed either by loss of 
weel function, or by over-expression of cdc25, and is also affected by either of the 
cdc2w alleles tested. These observations suggest that wisi function either regulates 
both wee] and cdc25 activity, or acts independently of wee! and cdc25 on cdc2, 
assuming that wis! is involved in this control mechanism. It seems most likely that 
wisi acts upstream of wee] and cdc25 in some form of signal transduction pathway 
involved in the sensing of nutritional conditions. The phenotype of wisi deletion 
strains also lends support to the theory that wisi is involved in the sensing of 
nutritional conditions, as such strains appear either to be unable to recognise 

conditions of starvation, or to respond to them by entering stationary phase. It is not 
yet known if loss of wis] function affects the starvation induced transcription of 
genes such as mei2, mei3 and the mating type genes. If wisi activity were required 
for the function of these genes, then it might be expected that wisl strains would 
be sterile, which is not the case. 

8.4.5: wini, wisi and rncs4 may lie on the same control pathway. 

The mcs4.13 mutation shares many phenotypic characteristics with win!.!: both result 
in slightly elongated cells, and both reverse the suppression of cdc25 by weei in a 
medium dependent manner. A cross between strains of the genotype weel.50 
cdc25.22 win].] and wee!.50 cdc25.22 mcs4.13 gives rise to a quadruple mutant strain 
weel.50 cdc25.22 win].] mcs4.13 which is indistinguishable from its parents. In 
addition a win].] mcs4.13 strain is only slightly longer than the single mutant parent 

strains. An important difference between the two mutations is that mcs4.13 is 
capable of suppressing the mitotic catastrophe phenotype, whereas win].] is not. 
These observations suggest that win] and mcs4 may share related, though not 
identical, roles in the control of the cell cycle. The observation that win].] wis] 
double mutant strains appear to be phenotypically identical to wis! single mutants 
suggests that wisi and win! may lie on the same pathway. 
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A high level of expression of wisi can suppress both the single mutant phenotype of 
mcs4.13, and the cdc phenotype which results from the combination of mcs4.13 
with wee 1.50 and cdc25.22 at 35°C on EMM. Plasmjd borne wisi sequences are not 
capable of suppressing the cdc phenotype resulting from the combination of either 
mcs3.12 or mcs6.13 with weel.50 and cdc25.22. This suggests that wisi does not 
have some form,eneral activity which will reverse the action of any mutation which 

results in a cdc phenotype when combined with weel.50 and cdc25.22. 

8.4.6: wisl encodes a putative protein kinase 

Further clues to the role of wisi in the cell may be gleaned from the comparison of 
the predicted wisi sequence with those of proteins of known function. 

The three proteins showing the highest homology to the predicted wisi gene product 
(PBS2 and STE7 from Saccharomyces cerevisiae, and byrl from Schizosacclzaromyces 
pombe) are all thought to be serine/threonjne protein kinases involved in signalling 
mechanisms. The PBS2 gene was identified by its ability to confer resistance to the 
antibiotic polymyxin B when present in multicopy in S.cerevisjae, and has not been 
extensively characterjsed. Boguslawskj and Polazzj (1987) suggest that 
phosphorylatjon of the PBSI gene product by the PBS2 protein kinase may block its 
mediation of the polymyxin B signal. 

The role of the S.cerevjsjae STE7 protein has been more extensively characterised, 
and is believed to act in a signalling pathway mediating the effects of mating factors 

on the induction of gene expression. The STE7 and STEJI gene products are both 
phosphoprotejns with protein kinase activity which are believed to act downstream 
of the G protein complex in this pathway (Teague et a!, 1986; Errede et a!, 1990; 
reviewed by Herskowitz, 1989). 

The S.pombe byrl gene was first identified as a multicopy suppressor of the 
sporulation defect observed in rasl strains (Nadin-Davis and Nasim, 1988). 
S.pombe contains a single ras gene, which is not essential for vegetative growth, but 
is important in sexual differentiation (Fukui and Kaziro, 1985; Nadin-Davis et a!, 
1986a and 1986b; Fukuj et a!, 1986). rasr strains are incapable of conjugation, but 
are capable of sporulation. A possible role for rasi lies in the nutritional sensing 
apparatus of the cell, which prepares both h and h+ strains to receive specific 
mating signals. Loss of byrl function results in sterility, whilst over-expression 
overcomes loss of rasi function, suggesting it plays a role in the ras signalling 



pathway (Nadin-Davis and Nasim, 1988; 1990). Neither byri or rasi mutations 
suppress the hypersporulation phenotype of pat) t' mutations, suggesting that they 

function upstream of pati (Nadin-Davis and Nasim, 1990). 

8.5: THE ROLES OF wini AND wisi IN THE CONTROL OVER ENTRY INTO 

CONJUGATION AND MEIOSIS 

The observation that both win).) and wisl alleles are capable of suppressing the 

hypersporulatjon phenotype of patl.114 strains suggests that these genes may play a 

role in the control over entry into meiosis and/or sporulation. 

6.1: Genetic elements involved in the control over entry into meiosis 

Loss of pat) function results in a complex phenotype: the mitotic cell cycle ceases, 

and cells undergo meiosis irrespective of mall configuration and nutritional 

conditions. At the semi-permissive temperature, conjugation occurs irrespective of 

nutritional conditions, although this will only occur between cells of opposite mating 

type (lino and Yamamoto, 1985a; Nurse, 1985). Partial inactivation of the pat) gene 

product induces transcription of the mat) genes (Nielson and Egel, 1990) thus 

mimicking conjugation of wild type cells under conditions of nitrogen starvation. 
patitS mutants undergo premeiotic DNA synthesis and meiotic recombination when 

shifted to the restrictive temperature, suggesting that inactivation of pat)' gene 

product activates an early step in the normal meiotic pathway (Beach et a!, 1985). 

The mei3 gene is only expressed when the two conditions of mating type 

heterozygosity and nitrogen starvation are met. Artificially high levels of expression 

of mei3 result in uncontrolled sporulation (McLeod et a!, 1987). Loss of mei3 
activity does not affect the pat] phenotype (1mb and Yamamoto, 1985a; Beach et a!, 

1985), and meiosis is derepressed when both genes are simultaneously over-expressed 

(McLeod and Beach, 1988). These results suggest that the decision between meiosis 

and mitosis is decided by a balance of mei3 and pat) activities, and direct 

interactions between the mei3 and pat) gene products have been demonstrated. The 

pat] gene product shows protein kinase activity, which is inhibited by physical 

association with the mei3 gene product (McLeod and Beach, 1988). 

Changes in several parameters can suppress the expression of the pall phenotype: 
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Loss of niei2 activity. 

Transcription of mei2 is stimulated by nitrogen starvation, and is not dependent on 

mating type (Shimoda et a!, 1987; Watanabe et a!, 1988). It is possible is that the 

mei2 gene product acts as a substrate for the pall protein kinase. 

Loss of steX activity. 

Mutations in the steX gene (probably allelic to a! fi) result in sterility, and block the 

induction of mei2 by nitrogen starvation (Watanabe et a!, 1988). 

High levels of pacl activity. 

The pacl gene (t compensating) when present in multicopy blocks the induction of 

mei2 by nitrogen starvation, and also inhibits mating and sporulation. pacl activity 

is essential for vegetative growth, and the pacl gene product shows a strong 

homology with ribonuclease III from E.coli, and also shows a ribonuclease Ill-like 

activity in cleaving dsRNA in vitro (Sugimoto et a!, 1990). A possible role for pad 

lies in the post-transcriptional regulation of expression of genes concerned with 

meiosis and sporulation. 

Mutations in cgsl or cgs2. 

Cells with mutations in either of the cgs genes are sterile and meiotically defective. 

cgsf cells rapidly loose viability as they become limited for nutrients, and become 

aberrantly elongated in response to nutrient depletion. Sequence analysis of the cgsl 

gene reveals that the predicted gene product is highly homologous to the regulatory 

subunit of cAMP dependent protein kinase from S.cerevisiae and other eukaryotes 

(McLeod and Beach, 1989). 

8.5.2: A model for the control of conjugation and meiosis 

Conjugation is normally regulated by the mating types of the cells concerned, and is 

triggered by nitrogen starvation, pall obviously plays some role in the control of 

sporulation, as pat jt5  cells no longer require starvation as a prerequisite for 

conjugation at the semipermissive temperature (lino and Yamamoto, 1985a; Nurse, 

1985). The influence of various ste genes on patl-driven conjugation and/or meiosis 

has been analysed by Sipiczki (1988). None of the previously known mutants (stel-

9) interfered with patl-driven sporulation, but "untimely" conjugation was possible in 

mutants of stel (byrl), ste3 and ste8. Cells with mutations in ste5/rasl and s1e6 are 

able to undergo meiosis when diploid, suggesting that these genes play a role in 

conjugation specifically. Further mutants, such as steX and the cgs mutants, have 

been identified as sterile suppressors of the temperature sensitive growth arrest of 

pathS strains. - 
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Meiosis is also dependent on mating type configuration and nitrogen starvation. A 

model has been proposed for the regulation of meiosis (Fig. 8.1) in which the 

combination of starvation, and the expression of both mating type loci results in the 
expression of mei3. Starvation also signals a stimulation of mei2 transcription 
(Watanabe et a!, 1988). In this model, mei3 functions to inactivate the pall protein 
kinase, which would otherwise act to reduce mei2 activity, probably by post-
transcriptional regulation. An attractive possibility is that pall regulates mei2 
activity by phosphorylation. mei2 activity then leads to meiosis. 

8.5.3: The cAMP connection. 

Artificially high levels of cAMP are capable of suppressing the phenotype of patItS 
strains, an effect which is potentjated by caffeine, a known inhibitor of cAMP 

phosphodiesterase cAMP shows a range of effects upon the sexual life cycle of 
S.pombe: it has been demonstrated to reduce the conjugation efficiency of haploids, 

and the sporulatjon efficiency of diploids, at levels which do not affect the growth 

rate of vegetative cells, suggesting that the effect is specific to sporulation and 
meiosis (Watanabe el at 1988). The treatment of cells with a combination of cAMP 
and caffeine not only prevents the induction of the mall transcripts Pm and Mm, but 
also inhibits the inducible transcription of mei2, suggesting that cAMP generally 
counteracts the induction of sexual life cycle genes by starvation (Watanabe el a!, 
1988). It has been demonstrated that cAMP can no longer suppress the 

pall 
phenotype when mej2 is constitutively supplied, suggesting that the inhibition of 
mei2 transcription by cAMP is the primary reason for its suppression of pall 
(Watanabe el a!, 1988). 

It has recently been reported that the adenylate cyclase gene of S.pombe (acyl) has 
been isolated (Maeda el a!, 1989). Surprisingly, increased dosage of acyl does not 
suppress pall, possibly suggesting acyl activity is regulated POst - transcriptionally. In 
contrast, transformation of patllS strains with the adenylate cyclase gene of 
S.cerevisiae (CYRI) results in a high 

level of intracellular cAMP and in the suppression of the pall phenotype (Beach et 
a!, 1985). When a patltS strain containing the CYRI gene is grown to stationary 
phase, cells become highly elongated compared to wild type cells, due to a 

continuation of cell growth following the cessation of cell division. 
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Figure 8.1: A model for the control of meiosis in S.pombe. 

(adapted from Watanabe et at, 1988) 

MEl OSIS 

'- Positive, transcriptional regulation 

- Negative, post-transcriptional regulation 
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The cgsl gene in S.pombe is highly homologous to the regulatory subunit of cAMP 

dependent protein kinase. Mutations in cgsl result in a cell length phenotype similar 

to that resulting from the transformation of pathS strains with CYRI. cgsl mutants 

are sterile, and show a reduced viability upon entry into stationary phase, though it 

is not clear if S.pombe CYR I transformants share these attributes. 

In S.cerevisiae, cAMP is though to be the positive signal for growth elicited in 

response to a sufficient nutrient supply. This signal pathway acts through one of the 

two ras homologues which have been identified in S.cerevisiae. The RAS gene 

products are GTP-binding proteins which are believed to transduce information 

concerning environmental conditions into the activity of membrane bound adenylate 

cyclase. RASh and RAS2 appear to have overlapping functions, as only one is 

essential for cell growth and adenylate cyclase activity. rasl7ras21s double mutants 

arrest as single unbudded cells, a phenotype similar to that of nutritionally arrested 

cells, and to that of CDC19, CDC25, CDC33 and CDC35 mutants. CDC35 (CYR1) is 

the structural gene for adenylate cyclase, and CDC25 is believed to interact in a 

regulatory manner with the long variable regions of the RAS gene products. 

In contrast, the single ras gene identified in S.pombe is not required for vegetative 

growth, but plays an essential role in mating. rasl+,  rasf and activated rasi'L7 

strains all contain similar cAMP levels, and comparable adenylate cyclase activities, 

suggesting that adenylate cyclase modulation is not the basis of rash function in 

S.pombe. The region of the S.cerevisiae RAS2 polypeptide required for adenylate 

cyclase modulation has been mapped, and found to lie in sequences that are either 

lost or not conserved in the S.pombe gene. It is not clear if cAMP is involved in 

growth control in S.pombe, though it has been found that the transcript levels of the 

adenylate cyclase gene in S.pombe are not affected by starvation, suggesting there is 

no strong involvement. 

Strains lacking in wish activity show a phenotype similar in many ways to that which 

would be expected from an elevated intracellular cAMP concentration. Such cells 

become elongated upon nutritional limitation, and appear to be unable to respond to 

starvation by entering stationary phase. However, if this were the simple explanation 

of the wisl phenotype, then wisl strains would also be expected to be sterile. 

Surprisingly, such strains appear to be capable of responding to starvation by 

undergoing conjugation followed by normal meiosis and sporulation. 
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A very attractive explanation for the suppression of the pat) phenotype by wis! is 

that the effect is due to raised intracellular levels of cAMP. However, the conditions 

described above which raise intracellular levels of cAMP suppress not only the 

hypersporulation of pat)t  strains, but also suppress the block in vegetative growth 

which results from loss of pat) function. In contrast, the combination of wis) with 

pat 1ts  results in the complete suppression of the hypersporulation defect at the 

restrictive temperature, but does not allow vegetative growth. A similar effect arises 

from the combination of win].) with patit.  This result may suggest that loss of 

pat) function causes hypersporulationand the cessation of vegetative growth through 

separate signalling pathways, one of which involves wis) and win].]. It is not yet 

known if the derepression of conjugation by pat 1t5  at the semi-permissive 

temperature is affected by wisi or win!.), or if diploids homozygous for pat)tS  and 

wis) or win!.) undergo meiosis at the restrictive temperature. cAMP levels in wisi 

and win).1 strains have not yet been investigated, although win].] strains are 

sensitive to caffeine. 

8.6: SUMMARY 

The wis) gene was isolated by virtue of its interaction with the mitotic genes cdc25, 

wee] and win!, and appears to play an important role in the regulation of entry into 

mitosis, as it acts as a dosage dependent inducer of entry into mitosis and cell 

division. wisi activity is not essential for vegetative growth and division, and does 

not prevent conjugation, meiosis and division. wis! cells show an elongated cell 

morphology, suggesting that their entry into mitosis and division is delayed relative 

to wild type cells, though this has not been directly demonstrated. A second notable 

characteristic of wis) cells is that they do not respond normally to nutrient 

starvation, becoming aberrantly elongated, and undergoing a rapid reduction in 

viabilityj a phenotype similar to that caused by elevated intracellular cAMP levels. 

This evidence suggests that wis! may play a role in the regulation of mitosis by 

nutritional signals, possibly in a mechanism involving cAMP. wis] encodes a 

putative protein kinase, which shows homology to several protein kinases involved in 

signal transduction pathways. 

win!.] was isolated on the basis of its interaction with cdc25 and wee], which are 

both involved in the control over entry into mitosis (Russell and Nurse 1986; 1987a). 

The interaction between win].] and cdc!3.117 confirms the role of win! in the 

regulation of mitosis. The interaction of win).) with cdc2w alleles suggests that win! 



may act through weel. Further genetic evidence suggests that wini, wisi and rncs4 

may act through the same pathway. 

The artificial induction of sporulation by loss of pail function is suppressed both by 

winl.I, and by loss of wisi function, though wisl cells are capable of undergoing 

normal meiosis and sporulation. patl1  strains cease vegetative grow that the 

restrictive temperature, a phenotype which is not suppressed by winl.l or wisl. 

The question of why winl and wisl affects pail-induced, but not normal meiosis and 

sporulation, must remain unanswered for the present. 
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VLADIMIR: That passed the time. 

ESTRAGON: It would have passed in any case. 

VLADIMIR: Yes, but not so rapidly. 

(Pause) 

ESTRAGON: What do we do now? 

VLADIMIR: I don't know. 
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