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CONVERSION OF UNITS 

For net photosynthetic rate; 

1 pmol CO  m 2  s- 1 1.584 mg CO 2  dm-2  h- 1 

For stomatal resistance to CO2 ; 

2.44 m2  s moi 1  1 s cm-1  

EXPLANATION OF TERMS 

Coefficient of variation - The standard deviation expressed as a percentage 
of the mean. 

Whorl number - Whorls are counted basipetally from the tree top; growth 
at the apex of a tree in any one season consists of a leading shoot and 
an apical whorl of branches (whorl 1), with increasing whorl numbers 
being branches arising from each node moving basipetally down the trunk. 
The whorl number of a particular branch increases by one every year, as 
a new apical whorl is produced. 

Terminal shoot of whorl x First order lateral of whorl x 
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ABSTRACT 

The aims of this project were to study the effects of mineral nutrient supply 

on the growth, and development of photosynthetic capacity of needles of Sitka 

spruce (Picea sitchensis (Bong.) Carr.). 

Needle development was studied in field material, using healthy mature 

trees (Controls), and trees deficient in P, K or all nutrients. Needle dimensions, 

fresh weight, projected surface area, and dry weight:fresh weight ratio were 

determined, according to needle position on the shoot, throughout the growth 

season, and needle growth was also characterised in terms of cell size and 

number. Variation in material was great, but cell division lasted for about 3 

weeks following bud burst in early May, with cell expansion continuing for a 

further 3 weeks until mid June. The greatest reduction in all variables 

measured was with P deficiency. Cell size and cell number were equally 

important in controlling final needle size, although despite slight treatment 

differences in cell size, differences in final needle size with needle 

position and nutrition were determined by differences in cell number. Final 

needle size was partly predetermined by primordium cell number, as a result of 

nutrient conditions during primordium initiation, but refertilisation of N-deficient 

potted trees showed that limitations to needle growth could be overcome by 

supplying nutrients during the period of needle expansion. 

The development of photosynthetic capacity was studied using healthy 2-3 

year old potted seedlings (Controls), and seedlings where deficiency of Mg, K, 

P, N or all nutrients had been induced by differential fertilisation, and following 

restoration of these trees to full nutrient supply. Some morphological 

characteristics of needle development were also monitored, for comparison 

with field trees. Net  photosynthetic rate was studied throughout the season, as 

well as pigment content, activity of ribulose 1,5-bisphosphate carboxylase, 

stomatal conductance to CO 2'  and the intercellular partial pressure of CO 
2* 

Most photosynthetic variables showed an increase throughout the season, with 

a slight or more obvious decrease in August/September. Some treatment 

differences existed for the photosynthetic variables, and N-deficiency caused 

the largest inhibition to photosynthesis and growth, with fewer effects on 

needle growth being found with other nutrient deficiencies than in the field. 

The differences in photosynthetic variables and the correlations between them, 

XII I 



are discussed with reference to their importance in determining and limiting 

photosynthetic capacity. Major limitations vary with time in the season, and 

with treatment, but stomatal conductance and activity of ribulose 

1,5-bisphosphate carboxylase appear to be important towards the end of the 

season. 

The effect of N nutrition on needle growth and photosynthesis was studied 

in more detail, by refertilising N-deficient potted trees with a range of N 

concentrations. Ribulose 1 .5-bisphosphate carboxylase activity limited 

photosynthetic rate, but chlorophyll content was of major importance. The 

'plasticity' of photosynthetic development in response to nutrient supply was 

shown by refertilisation of N-deficient and totally nutrient deficient trees, which 

caused free growth of shoots to occur, and a rapid increase in photosynthetic 

capacity of current and one year old needles. 

xiv 



CHAPTER 1. INTRODUCTION 

1.1 Sitka Spruce as a Species and a Crop. 

Sitka spruce (Picea sirchensis (Bong.) Carr.), is an evergreen conifer native 

to N. America. It is the largest and most imposing of all the spruces, often 

growing to a height of 60m in the British Isles, and up to 80m in America 

(Morton and Lewis, 1949), and living for up to 750 years (Malcolm. 1987). The 

natural range of Sitka spruce extends for about 200  of latitude of N. America, 

from northern California to southern Alaska, and is restricted to a narrow 

coastal belt characterised by low elevations and moist soils (Harris, 1978). 

Sitka spruce is fast growing under these conditions, often forming leading 

shoots up to 1.5m long in a single season (Dallimore and Jackson, 1954), and 

producing a large volume of timber per unit area. Sitka spruce was introduced 

into Great Britain in 1831 (Fletcher and Faulkner, 1972), although widespread 

planting did not occur until after the first World War. Between 1911 and 1920, 

200 ha of Sitka spruce were planted in Great Britain, and between 1961 and 

1970, this figure was 86,100 ha, representing 5.3% and 41.7% respectively of 

the total area planted by the Forestry Commission (Fletcher and Faulkner, 1972). 

In 1984, 4,592 ha of Sitka spruce were planted in Britain, representing 68% of 

the total area planted (Steele, 1987), making it the most widely planted tree 

species in the United Kingdom, and particularly in Scotland; in 1980, the total 

area of Sitka spruce in Scotland was 48% of the total coniferous high forest 

area (Low, 1987). It has also been planted extensively in northern Europe 

(Harris and Ruth, 1970). Sitka spruce is a valuable timber crop, and was used 

for aircraft construction during the First World War, and also for building 

rowing boats, oars, and for the sound boards of pianos (Hyde, 1961). Although 

the timber is strong for its weight, it has a low density, and is not very suitable 

for constructional purposes. However, it is one of the best all-purpose pulping 

species in the world (Cahalan, 1987), and has been used in Britain for pulp for 

the paper industry since the 1960's, and also in the manufacture of particle 

board and fibreboard (Brazier, 1987). 

1.2 Productivity and Nutrition. 

Sitka spruce seedlings are fairly slow growing, but after a few years, stands 

are extremely productive, even on poor upland soils, and the highest mean 

stem volume increments are 50-100% larger than those achieved by Norway 
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spruce in continental Europe (Christie and Lines, 1979). Sitka spruce is one of 

the highest yielding tree species in Britain, and published productivity values 

under normal management treatment are between 6 and 24 m 3  ha -1  Y_ 1 

stemwood (Malcolm, 1987). Ford (1982) estimated net annual above-ground dry 

matter production for a 17 year old stand in southern Scotland to be over 25 t 

ha 1  y1,  which approaches the highest values for north temperate forests, or 

even well tended agricultural crops (CanneD, 1987). 

Sitka spruce can tolerate a wide range of soil conditions, but as it is often 

grown on poorly fertile upland soils, the major factor limiting productivity is 

insufficient amounts of one or more mineral nutrients. Sitka spruce seedlings 

in a plantation are relatively nutrient-demanding (Miller, 1981), and phosphate is 

often needed (Dickson, 1971). Binns (1962) showed that potassium is also 

required on poorer peat soils, and in the presence of heather, Sitka spruce 

seedlings suffer a check in growth, which is due to inadequate nitrogen uptake 

(Weatherell, 1953). Early growth of Sitka spruce has been improved due to 

planting it along side "nursing" species (larch or Lodgepole pine), which causes 

a greater availability of nitrogen in the soil. The fertiliser needs of young Sitka 

spruce in Britain have been reviewed by McIntosh (1981), who lists whether 

application of N, P or K is required for a particular age of tree on a particular 

soil. Once canopy closure has occurred, no fertiliser inputs are usually 

required, due to efficient nutrient recycling, including recovery of nutrient from 

dying tissue, and from the developing litter layer (Miller, 1981). 

lngestad (1971) has stressed that the nutrient requirement of trees is 

satisfied when all the essential minerals are present in the plant in optimum 

proportion, and the ratio of the nitrogen sources (NH 4  or NO 3 ) in the nutrient 

solution is at an optimum. Hocking (1971) surveyed the literature on nutrition 

studies in conifers, and found concentrations giving good growth were over a 

wide range, as follows: 

Element Concentration (p.p.m.) 

N 25-250 
P 1-200 
K 50-500 
Mg 15-90 

Hocking (1971, 1972) developed a nutrient solution based on studies of 
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nutrient requirements of Lodgepole pine and White spruce in sand culture, and 

found that the Optimum concentrations were the same for both species; 112 

p.p.m. N, 31 p.p.m. P. 156 p.p.m. K, and 48 p.p.m. Mg. Van den Driessche (1968) 

compared the growth responses of Sitka spruce and Douglas fir in sand culture, 

to 5 concentrations of N, P and K. In terms of relative growth rate, and net 

assimilation rate, optimum concentrations for Sitka spruce were found to be 

between 50 and 200 p.p.m. N; 15-30 p.p.m. P and < 200 p.p.m. K. The foliar 

nutrient concentrations of healthy Sitka spruce seedlings from one to three 

years old, grown at a range of sites in S.E.England are reported by Benzian and 

Smith (1973). 

The balance of mineral elements is important, as well as the optimum 

concentration, and from sand culture experiments it is clear that the N/P ratio 

should be > 1, and the P/K ratio always < 1, and the best proportions for 

conifers seems to be; N, 4-10; P, 1; K, 1.5 -2.0; Ca, 5 -10; Mg, 1-4, and S. 2-4 

(Brix and Van den Driessche, 1974), although Ingestad (1959), who studied the 

growth of Picea abies at four to six different concentrations of each major 

mineral nutrient, found the absolute requirement varied in the order N> K > P 

> Mg > Ca. The source of nitrogen is also important, and for most conifer 

seedlings, ammonium nitrogen was found to cause greater growth than nitrate 

nitrogen, (McFee and Stone, 1968; Benzian, 1965; lngestad and Molin, 1960), 

however, mixtures of both nitrogen sources may cause greater growth than 

either alone (Christersson, 1972). Leyton (1952) found little effect on dry 

weight production of Sitka spruce seedlings whether ammonium or nitrate was 

used, but in either case the optimum pH was between 4 and 5. The cyclic 

variation in N, P, K and Ca expressed as a dry weight percentage in needles of 

Pinus sylvestris and Picea abies has been shown by Tamm (1955), with a 

decrease in spring and early summer in all needle age classes. This was 

attributed partly to an increase in dry matter of the needles during spring and 

early summer, and a decrease in the amount of dry matter at the end of the 

summer, and also to some retranslocation of nutrients. Fluctuating soil nutrient 

levels may be compensated for by translocation of nutrients from older needles 

to the required sink, and the content of N, P and K in needles decreases with 

needle age (Tamm, 1955). Although much work has been done to maximise 

early growth of Sitka spruce in the field using fertiliser application, and in 

determining the optimum nutrient requirements, the decrease in productivity 

due to nutrient deficiency has not been quantified at the basic level of growth 



of the needle, and its photosynthetic functions, neither has the role of mineral 

nutrients as yield determining factors. 

Productivity is dependent on the rate of leaf area production per tree, and 

this is determined by the number of shoots, the number of needles per shoot, 

needle size, and longevity. The high productivity of Sitka spruce after canopy 

closure is partly due to the large number of shoot apices, and therefore a large 

amount of foliage which is quickly generated. Numerous branch buds are 

produced from cortical tissues between the (eaves (Cannell and Bowler. 1978), 

the number of which are proportional to the length of the branch (Cannell, 

1974). The seasonal needle duration is 6-8 years (Cannell, 1987), which also 

causes the total amount of foliage to increase rapidly. The number of needles 

per shoot is determined by the rate of needle production at the apex, and the 

seasonal duration of needle production. 

1.3 Bud Development and Apical Growth. 

The annual growth cycle of vegetative buds and shoots of Sitka spruce, has 

been described by Owens and Molder (1976). They classify three phases of 

bud and shoot development, as described by Parke (1959) for Abies conco/or: A 

resting phase including winter dormancy, a phase of shoot elongation and bud 

scale initiation, and a phase of needle primordium initiation. The timing and 

duration of these phases in Sitka spruce has been shown to differ with 

provenance and environmental conditions: Burley (1965) found needle 

production and elongation occurred for longer in more southerly provenances, 

which caused greater height growth than in more northerly provenances. This 

was also found by Lines (1963). A clinal pattern of latitudinal variation in 

height growth and bud set was also found by Birot and Christophe (1983), and 

phenological differences (including time of flushing and cessation of growth) 

were shown in provenance trials (Lines and Mitchell, 1965). Differences in 

timing, duration and rate of apical bud formation were also found by Cannell 

and Wiltet (1975), and Cannell (1978). The rate of shoot extension was also 

found to vary with daytime temperature (Ford et al., 1987a, b). 

The period of shoot and needle growth in Sitka spruce is short, and Cannell 

(1987) reports it to occur for four to six weeks in June/July. Owens and 

Molder (1976) working in British Columbia also report bud burst to occur in 

early June, with shoot elongation being complete by mid-July. The time of 
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bud burst is dependent on photoperiod (Burley, 1965, 1966). Expansion of 

needles usually Occurs from primordia laid down the preceding season,. except 

in some southerly provenances, where some primordia may be initiated before 

the onset of bud scale initiation in the spring (Burley, 1965). Following winter 

dormancy of the bud, Owens and Molder (1976) found the first cell divisions to 

occur about six weeks prior to bud burst. During this period of early cell 

division, initiation of bud scales for the over-wintering bud for the next growth 

season occurs, and continues at a constant rate until the cessation of shoot 

elongation. Apical development then changes to needle initiation, which occurs 

in an "early" and "late" stage. The "early" stage lasts for about six weeks, 

during which time about half the final number of needles are rapidly initiated, 

and the "late" stage lasts for about three months, during which the remaining 

half of the needle primordia are initatiated at a slower rate. 

Cannell and Willett (1975) report that for Sitka spruce growing in Scotland, 

15% of the needle primordia are formed by mid-July, and 85% by the end of 

September. Needle primordia are initiated sequentially, in spiral phyllotactic 

patterns, and some features of apical growth are summarised in Table 1.1 

(reproduced from Cannell, 1987). 

Table 1.1 

Species 
	

Minimum 	Maximum 	Minimum Mean 
Plastochron 	Apical Dome 	Cell Generation 
Duration (h) 	Diameter (mm) Time (h) 

Picea sitchensis 
seedlings 
Picea. abies 
seedlings 
Pinus contorta 
seedlings 
Trifolium spp. 
Pisum sativum 
Silene coell-rosa 

3.5-4.5 

5.7 

8 

86 
46 
70-140 

0.45-0.50 	50-60 

0.32 	 45-78 

0.70 	 120 

0.17 	 16-64 
0.15-0.26 	28 
0.11 	 20 

Sitka spruce seedlings have a very short plastochron duration, compared 

with other conifer species, and herbaceous plants, and also a large apical dome 

diameter, although the mean cell generation time of the apical tissue is fairly 

high (see Table 1.1). The minimum plasotchron duration in leaders of mature 

trees in mid summer may be as short as 1.2 h, with a maximum apical dome 

diameter of 1.6 mm, in mid-summer (Baxter and Cannell, 1978). Sitka spruce 

5 



can produce primordia so quickly, because of the large apical dome, and 

because thd primordia are small (Cannell, 1978). The apical bud therefore, is an 

area of very intense metabolic activity during the summer, and it is not known 

how subsequent cellular growth of the needle proceeds in relation to apical 

growth. 

1.4 Gymnosperm Leaf Growth. 

Studies on vegetative development in Sitka spruce and gymnosperms in 

general, have been limited to bud development at the shoot apex ;see review 

by Johnson (1951); Gregory and Romberger (1972 a,b) for Picea abies; Riding 

(1972) for P/mis cadiata; Owens and Molder (1973) for Western hemlock; Powell 

(1974) for Abies ba/samea; Gabilo and Morgensen (1978) for Pinus monophylla; 

and Sucoff (1971) for Pinus resinosa, but the determinants of needle size for 

Sitka spruce have not been studied, and indeed, studies of needle growth past 

the primordial stage in gymnosperms are few, by comparison with those on the 

development of the angiosperm leaf (see Humphries and Wheeler, 1963; Dale 

and Milthorpe, 1983; Dale, 1988). Leaf development in two members of the 

Taxodiaceae were studied by Cross: Taxodium distichum (1940), and 

Cunninghamia lanceolata (1942). Leaf primordia of Taxodium distichum are 

initiated by apical and sub-apical initials, and laminar growth is initiated by 

marginal and sub-marginal initials. Increase in length of the primordium is by 

apical and intercalary growth until leaves reach 2-3 mm in length, after which 

extension growth proceeds by intercalary cell divisions. In Cunningham/a 

lanceolata, increase in leaf length is largely due to cell divisions in the basal 

half or third of the leaf. Growth in width by cellular divisions ceases early in 

ontogeny, but the basal part of the leaf remains meristematic to give cells for 

increase in length, until the leaf is completely mature. More recently, Owens 

(1968) studied the initiation and development of needles of Douglas fir in 

British Columbia. He found that needle growth following dormancy, at the end 

of March, was mostly due to cell elongation, with most of the cells forming the 

lamina of the needle being present when the needle was 400 um long. He 

suggests that some cell divisions do occur after this early stage, throughout 

most of the needle, and most frequently in the basal intercalary meristem. 

Apical and subapical initials, which were active during needle initiation did not 

divide after the breaking of dormancy. Vanden-Born (1963) studied the 

histochemistry of enzyme distribution in shoot tips of Picea glauca, and states 

that needle growth occurs rapidly at first, by activity of primary meristems, and 



then more slowly, due to activity of a basal meristem. This conclusion was 

based on observations that peroxidase activity, usually associated with rapidly 

dividing cells, or cells about to divide, was particularly noticeable at the base of 

developing needles. 

In pine, needle growth is from a basal intercalary meristem within the 

protective sheath at the very base of the needle. This was shown by Kienholz 

(1934), who marked elongating needles of Red pine, White pine and Pitch pine 

at 2 mm intervals with Indian ink, and remeasured the intervals over a time 

period. Kienholz (1934) also reviews reports that in some species of pine, the 

needle basal meristem may be active during the second year. Riding and 

Aitken (1982) - for Pinus radiata, and Cannell et al. (1976) support the idea of 

needle growth in pine by a basal intercalary meristem. Evidence for the basal 

meristem in pine does not include detailed sectioning past the primordial stage, 

and none of the studies on needle growth in any gymnosperm include data on 

cell number changes, so that the cellular basis of conifer needle growth is 

largely unknown. Apart from the anatomy of the apical regions of Sitka spruce 

already mentioned, few other anatomical studies exist. Marco (1939) examined 

needle anatomy of spruce species, including Sitka spruce, and mentions the 

presence of a thick cuticle, and the thick walls of the epidermal cells, which 

have teeth to project into, and embed within, the cuticle. The mesophyll cells 

are arranged in uniseriate layers, perpendicular to the main axis of the needle, 

with air spaces between the layers. Many aspects of the growth of Sitka 

spruce have been studied (see Harris and Ruth, 1970; Phelps, 1973), although 

little work has been done on vegetative bud development, and no work on 

needle development. 

1.5 Sitka Spruce and Photosynthesis. 

The high productivity of Sitka spruce stands may be attributed to some 

photosynthetic properties of the canopy; because needles are retained for a 

long period, canopies have high leaf area indices, of 8-12, which intercept 

nearly all the non-reflected incoming radiation (Norman and Jarvis, 1974), and 

only reflect 10-15% of the total incoming radiation. The regular arrangement 

of branche and shoots enables an effective penetration of light into the 

canopy, so that a large leaf area receives radiation between light compensation 

and saturation, to give a high quantum efficiency. Also, a considerable amount 

of the total annual photosynthesis occurs in the winter months, and the dry 
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weight of one year old seedlings in Scotland can almost double between late 

September and mid-April (Bradbury and Malcolm, 1978). This is because a 

positive carbon balance is maintained at air temperatures as tow as -5 °C 

(Ludlow and Jarvis, 1971). The optimum temperature for photosynthesis is 

about 18°C for field trees, and 20-22 °C for glasshouse seedlings (Ludlow and 

Jarvis, 1971). During the winter,-this optimum temperature declines to about 

12 °C by April, and stomatal conductances are not reduced until temperatures 

fall to below 0 °C (Neilson and Jarvis, 1975). Needles of Sitka spruce are 

adapted to make efficient use of low flux densities, resulting from shade from 

other parts of the canopy, or shading from other needles on the same shoot. 

This is achieved because shaded needles are arranged more horizontally on the 

shoot, and have lower light compensation points and dark respiration rates than 

unshaded needles (Leverenz and Jarvis, 1979). Sitka spruce has typical C 3  

photosynthesis, where the early stable products in the Calvin-Benson cycle are 

C 3  acids, and the primary carboxylating enzyme is RuBPC. A detailed 

description of the characteristics of the photosynthetic processes, including 

photo respiration, and stomatal and mesophyll resistance has been made by 

Ludlow and Jarvis (1971). Saturated photosynthetic rates are at irradiances of 

between 150 and 200 W m 2, and the slope of the response curve is largely 

determined by rM, which is larger than rs  at all irradiances. The response of 

net photosynthesis to irradiance is linear up to about 3 W m 2  and between 

about 3 W m 2  and 20 W m 2, the slope being greater at the lower irradiances. 

The change in slope is due to the Kok effect, which is a light-induced 

depression of dark respiration and an increase in photorespiration; known to 

occur in Sitka spruce (Comic and Jarvis, 1972), and which can reach values 

equivalent to about 30% of current net photosynthesis (Neilson, 1977). The 

carbon dioxide compensation concentration was found to be 40-50 111 11.  The 

maximum rate of photosynthesis with optimum temperature and non-limiting 

radiation was found to be between 15 and 18 mg CO 2  dm -2  h 1  (9.5-11.4 limol 

CO2  m2 _1)  (Ludlow and Jarvis, 1971), and 14.0 to 14.5 mg CO  dm -2  h 1  

(8.8-9.2 Umol CO 2  m 2  s 1 ) (Fry and Phillips, 1977; Krueger and Ruth, 1969). 

These values are high for a conifer (Larcher, 1969). The rate of dark respiration 

was found to be about 4-6% of the net photosynthetic rate, depending on the 

provenance, and minimum values of stomatal and mesophyll resistance to CO 2  

diffusion are 1.8 cm s- 1  (4.39 m 2  s moi 1 ) and 6 cm s 1  (14.64 m 2  s moi 1 ) 

(Ludlow and Jarvis, 1971). It is known that conifer needles reach their 

maximum rate of photosynthesis by the end of their first season's growth, and 
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then rate diminishes with increasing age (Freeland, 1952). Fry and Phillips 

(1977) showed a Variation in photosynthetic capacity with season and age in 4 

species of conifer, including Sitka spruce, and found that for Sitka spruce, 

photosynthetic rate in new and one year old needles showed a peak in August, 

and one year old needles had lower photosynthetic capacities than current 

needles. Ludlow and Jarvis (1971) measured net photosynthetic rate, and 

stomatal and mesophyll resistances to CO  transfer for developing shoots at 

four times throughout the growth season, and also at different times to these 

for one, two and three year old needles. They found photosynthetic rate rose 

as the shoot elongated, with a maximum in August. This increase was 

attributable initially, to a large drop in mesophyll resistance, and subsequently 

to decreased stomatal resistances. Older needles showed a gradual decrease 

in net photosynthetic rate with increasing age, due to a gradual increase in 

stomatal and mesophyll resistances, with no seasonal variation in any of the 

variables. Their study was limited, in that the variables were measured in 

developing shoots, only from mid-June, when many needles were fully 

expanded, until September, and changes were not correlated with changes in 

any other photosynthetic variable, such as RuBPC activity, or chlorophyll 

content. 

The structure of Sitka spruce chioroplasts and the amounts and proportions 

of chlorophyll a and b are similar to those found in other C 3  species (Jarvis, 

1981), and the seasonal variation in chlorophyll and carotenoid content, specific 

leaf area and dry weight fraction in Sitka spruce was studied by Lewandowska 

and Jarvis (1977). They found an increase in chlorophyll content in developing 

needles until September, then a slight decrease to a winter minimum. Although 

they found the increase in chlorophyll until September was associated with an 

increase in the dry weight ratio, and a decrease in the specific leaf area, no 

data was obtained before June, during the period of most rapid needle 

expansion, and they did not show how changes in chlorophyll and carotenoid 

content were related to changes in any other photosynthetic variable. Activity 

of RuBPC has successfully been extracted and assayed in Scots pine (Gezelius 

1975; Gezelius and Hallen, 1980), and also in Corsican pine, Japanese larch and 

Sitka spruce (Beadle and Jarvis 1977), and Sitka spruce by Beadle et al. (1983), 

who also quote activities for Douglas fir and Lodgepole pine. Beadle et al. 

(1983) showed that the KM  of RuBPC in Sitka spruce was similar to that found 

in herbaceous species, and the ratio of RuBPC:PEPC activity was about 35:1, 
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indicating that PEPC made a very small contribution to carbon fixation. 

Gezelius and Hallen (1980) showed a seasonal variation in RuBPC activity over 

three seasons, with a peak in July to September in all age classes of needle 

studied. They also found very little difference in activity between one and two 

year old needles in most seasons. Studies therefore, have shown changes in 

some photosynthetic variables with conifer needle development and season, 

but there is a large gap in comprehensive knowledge of the development of 

photosynthetic capacity and the factors controlling photosynthesis in 

gymnosperms, and particularly in Sitka spruce. 

1.6 Photosynthesis and Nutrition. 

Compared with effects of nutrient deficiency on photosynthesis and its 

components in herbaceous plants (see review by Natr, 1972), effects in trees 

are less well documented (see Keller, 1967), and studies have concentrated on 

the effect of fertilisation, rather than deficiency. For example, application of N 

and P to Pinus radiata seedlings greatly increased biomass (Waring, 1980), and 

application of N to mature Pinus radiata trees showing no signs of N deficiency 

caused productivity to double over a seven year period (Woolon and Will, 1975; 

Crane, 1981), which must have been due to an increased assimilation rate. 

Nitrogen and phosphorus are the most important nutrients in determining 

forest productivity (Helms, 1976). Helms (1964) did not find any effect on 

photosynthetic rate per unit dry weight in current growth the year following 

addition 560 Kg ha- 1  NH4NO 3  to Douglas fir. This finding was also supported 

for Douglas fir by Brix and Ebell (1969), who found no effect on net 

photosynthetic rate per unit leaf area on current and one year old shoots the 

year after addition of 448 Kg ha -1  NH 4 NO 3. However, Brix (1971) subsequently 

showed that the photosynthetic rate in the same experiment did increase in 

shoots from July in the first season following fertiliser addition in the spring, 

until the following July. 

A significant relationship between degree of N fertilisation and 

photosynthetic rate has been found for Douglas fir (Brix, 1981). for Pinus radiata 

(Squire, 1983), and for Picea abies (Keller, 1972). Photosynthetic rate and foliar 

content of N and P increased following fertilisation of Pinus pinaster with N 

and P (Keay et al., 1968), and a positive relationship has also been found 

between foliar phosphorus content and photosynthetic rate, for Eucalyptus 

p1/u/ar/s (Mulligan and Patrick, 1985); for Pinus radiata (Sheriff et al., 1986; 
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Conroy and Barlow, 1986). Keller (1972) found a 20% reduction in net 

photosynthetic rate of Popu/us nigra under conditions of mild phosphorus 

deficiency, but for 3 species of Eucalyptus, photosynthetic rate did not 

decrease with P deficiency, even though the foliar concentration of N was 

reduced (Mulligan, 1989). For two of the three species, photosynthetic rate 

increased following P deficiency, due to an associated increase in foliar N 

levels. The effect of potassium on photosynthetic rate has been studied by 

Zech et al. (1969), who found a positive effect of K fertilisation in pine. Keller 

(1972) found little effect of K supply on photosynthetic rate in an unnamed 

species of spruce, but with Popu/us nigra, photosynthesis was correlated with K 

supply, when P was expressed per unit dry weight, but not per unit leaf area 

(Keller, 1967). 

Nutrient effects on the partial processes of photosynthesis in gymnosperms 

are very few. Cizkova (1981) studied the chlorophyll content of spruce, larch 

and pine seedlings under N, P. K and Ca deficiencies. N deficiency caused the 

largest decrease in chlorophyll content, and reductions were also found with K 

and P deficiency, whilst Ca deficiency caused a slight increase in total 

chlorophyll content. Gezelius (1986) found that a concentration of 2.5 p.p.m. N 

caused a lower needle chlorophyll content and activity of RuBPC, compared 

with 10 and 50 p.p.m. N treatments, for Scots pine, although the specific 

activity of RuBPC per unit protein did not change between treatments. 

Despite this research, there still exists a lack of quantitative data on nutrient 

deficiency effects on productivity, and the components of the photosynthetic 

process affected by nutrition. Because nutrients may affect photosynthesis in 

many ways, by acting on metabolic processes, such as protein synthesis, or 

directly" on stomata, or chloroplast structure and function, any investigation 

into the effects of mineral nutrients on photosynthetic productivity must focus 

on the biochemical processes of photosynthesis, the partial processes, and 

effects on assimilatory tissue at the level of the leaf and cell. 
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1.7 Aims and Objectives. 

The literature review highlights areas where knowledge of conifer growth 

and effects of mineral nutrient deficiency on development and productivity are 

lacking. The aims of this project were to study growth of needles, these being 

the primary unit of productivity, and the development of photosynthetic 

function of needles, as affected by mineral nutrition. In more detail, the aims 

fall into two areas: 

To study needle development in Sitka spruce in the field, in terms of 

morphological variables and cellular parameters, and to investigate the effect of 

deficiency of the major mineral nutrients on these. 

To study the development of photosynthetic capacity of needles, in terms 

of biochemical and physiological components, and the effects of mineral 

nutrient deficiency on these. 

Initial studies were done on plants of Sitka spruce growing in the field. 

This was because a field site of mature trees growing under a range of nutrient 

deficient conditions was already available, and because of the importance of 

Sitka spruce as a commercial crop, knowledge and implications of nutrient 

effects on productivity and development were considered to be of great 

importance. The measurements of photosythetic variables were carried out in 

a controlled environment, using 3 year old seedlings which had been grown in 

pots and subjected to carefully controlled nutrient deficiencies. The use of 

young potted plants was partly due to practical considerations of sampling and 

measuring photosynthesis under standard, controlled conditions, and also due 

to the need to study nitrogen-deficient trees which were not available in the 

field. During this part of the study, some morphological aspects of needle 

growth were also measured, to try to correlate photosynthetic development 

and the nutrient effects, with those found for material in the field. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 Material. 

The material used throughout these studies was Sitka Spruce, Picea 

sitchensis (Bong.) Carr., Queen Charlotte Island Provenance, either as mature 

trees at a field site planted by the Forestry Commission, or as two year old 

transplants in pots. 

2.2 Source of Material and Initiation of Experiments. 

2.2.1 Field Experiment 1987. 

The experimental field site is in the Glentress Forest at Eddleston, Leadburn, 

19km south of Edinburgh. The site is an upland raised bog, with 7 m deep peat 

overlying boulder clay, at an attitude of 285 m. The peat contains low basal 

levels of potassium, phosphorus and nitrogen. Two series of plots were 

planted with two year old Sitka Spruce, by the Forestry Commission in 1967 

and 1973. Both the 1967 and 1973 series of trees contained a plot of Control 

trees, referred to as "Controls", or "fAll", which were fertilised with all major 

nutrients, and also plots where deficiency of either P. K or Mg had been 

induced, by supplying all major nutrients apart from one (Table 2.1). Trees 

from these plots will be referred to as "-P", "-K" or "-Mg" throughout this 

thesis. The series of plots planted in 1967 also contained trees which received 

no fertiliser. These trees will be referred to as "-All". As part of management 

practice, fertilisers were applied as top dressings annually to both series of 

plots for the first few years, and subsequently every three years to the trees 

planted in 1967, and every four years to the trees planted in 1973. 

A nitrogen deficient plot was also set up in the 1967 series, but the trees 

showed no visible deficiency symptoms, and foliar analysis results showed 

deficiency was not extreme, probably because the application of other nutients 

caused a release of bound nitrogen in the soil (pers. Comm. M.P.Coutts). Because 

of this, no -N treatment was available, and it was decided to sample trees from 

the Control plot, and -P, -K and -Mg treatments from the 1973 planting, and 

-All trees from the 1967 planting. 
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Table 2.1 Type and amount of fertiliser applied to each treatment in 
the field. 

Fertiliser. Application % Nutrient Rate of Plots receiving 
(Kg Ha- 1 ) in fertiliser fertiliser 

fertiliser application 
(Kg Ha -1 ) 

Urea 61.7 45% N 27.8 N +All,-P,-K 
-Mg 

Ground 107.9 12.6% P 13.6 P +All,-K,-Mg 
Mineral 36% Ca 38.8 Ca 
Phosphate 
Sulphate 66.8 41.5% K 27.7 +AIl,-P,-Mg 
of Potash 

Ground 159.3 45% Ca 71.6 -P 
Limestone 46.3 20.8 +All.-K,-Mg 

Epsom Salts 185.0 10% Mg 18.5 +All,-K,-P 

2.2.2 Pot Experiment 1988. 

To investigate nutrient deficiency effects on photosynthesis, pot-grown 

material was used. This enabled measurements to be made under standard 

conditions of light and temperature, as material could be accommodated in a 

controlled environment room. Nutrient deficient material could be produced in a 

more controlled way than in the field, with the added advantage that 

nitrogen-deficient trees could also be produced. It was thought that using two 

year old transplants would simplify sampling compared with the field, with 

material being easier to handle and manipulate, and possibly showing less 

tree-to-tree variation than observed in the field. Use of clonal trees would 

have reduced the variation further, but such material was not available. 

In May 1987, 120, 2 year old Sitka Spruce seedlings (QC.l. provenance) 

produced by the Forestry Commission and referred to by them as 1+1 

transplants, were potted in '8" diameter pots in Edzell grit. The experiment was 

split into 6 treatments, each of 20 trees. The treatments were deficiencies in; 

nitrogen, "-N", magnesium, "-Mg", potassium, "-K", and phosphorus, "-P", or no 

nutrient application, "- All", and a fully fertilised Control, known as "Controls", 

or "+All". The pots in each treatment were colour-coded according to 

treatment, and rows of each treatment were randomised into four blocks with 

six rows, with five trees in each row. The trees were kept at the Forestry 
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Commission Northern Research Station in a sheltered place until they were 

sampled. 

The basic nutrient solution was that of Hocking (1972) - (Table 2.2). The 

solution was made up by adding 4 cm 3  of each of two stock solutions to 1 

dm 3  water, and was modified for each deficiency treatment as shown. Each tree 

was given 250 cm 3  of the appropriate nutrient solution twice-weekly, with 

additional applications of water when necessary throughout the 1987 growth 

season. Watering continued over the winter, and the trees were protected from 

frost by covering with a fine mesh cage. Nutrient application ceased at the 

beginning of September 1987, and recommenced at the beginning of May 1988. 

By the end of the 1987 growth season, trees were beginning to show 

deficiency symptoms, by yellowing of the needles, or by a purple discoloration 

of the needle tips, particularly in the -N and -All treatments. In order to 

investigate the effect of reversing the deficiency treatments, each treatment 

apart from the Controls was divided into two groups of ten trees. One group 

continued to receive the deficiency nutrient regimes as before, with nutrient 

application resuming in May 1988, whilst the other group began to receive full 

Hockings solution. The sub-groups receiving full nutrients are denoted "-M9R", 

"-KR", "-PR", -NR", and -AllR. 
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Table 2.2 Chemical Composition of Hocking's Nutrient Solution. 

Stock solution 1: 

Chemica l name Formula  

Distilled water H 20 1 	litre 
Sulphuric acid (1% v/v) H,SO4  5 cm  
Ammonium chloride NFI 4CI 53.5 g 
Potassium sulphate K2 SO 43.5 g 
Potassium phosphate K2 HP 4  43.5 g 
Boric acid H 3 B0 3  0.563 g 
Molbdenum trioxide moo  0.0035 g 

Stock solution 2: 

Chemical name Formula Quantity 

Distilled water H 2  0 1 	litre 
Calcium nitrate Ca(NO ) .4H 20 118.0 g 
Magnesium chloride MgCl 2.l2O 101.5 g 
Manganous chloride MnCl 2 .4H 20 0.25 g 
Zinc chloride ZnCl 2  0.025 g 
Cupric chloride CuCl 2 .2H 20 0.0125 g 
Ferric chloride FeCI 3.6H20 0.675 g 

For the -N treatment: NH Cl was omitted from stock one, and 
Ca(sJO) 3 ) 2  was replaced in stock two by 
The same quantity of CaCl 2 . 

For the -P treatment: K 2HPO4  was omitted from stock one, and 
• 	 was replaced by the same quantity of KCI. 

For the -K treatment: K 2SO4  and K2 HPO 4  in stock one 
were replaced by similar quantities of Na 2SO 4  
and Na 2HPO4 . 

For the -Mg treatment:MgCl 2  was omitted from stock two. 

2.2.3 Pot Experiment 1989. 

In addition to the nutrient experiment carried out in 1988, an experiment 

was performed during the 1989 growth season to investigate more specifically 

the effect of refertilisation of nitrogen-deficient trees. This was done with 

respect to effects on photosynthesis and some needle morphological 

characteristics. During 1988, 40 pot trees were planted as for the 1987 

experiment. Five of the trees received full Hocking's solution (Controls), and 35 

trees received a nitrogen deficient solution (as for -N trees in 1988). The trees 
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were looked after in the same way as those in 1987. In May 1989, the 35 

nitrogen-deficient trees were randomly separated into 7 treatments, each of 5 

trees. The treatments were a range of nitrogen concentrations, with trees in 

each treament receiving Hocking's solution, with the amount of nitrogen varied 

in an exponential series, (Table 2.3). 

All trees, including the Controls, were randomised by treatment, into 8 rows, 

each of 5 trees, and kept in the open behind the Botany department. Control 

trees received full Hocking's solution, and the treatments received their 

respective solutions from May 1989, with the same rate of application as for 

trees in the 1988 experiment. 

Table 2.3 The amounts of nitrogenous compounds in stock 1 and 2 of 
Hocking's solution, used in the nitrogen concentration 
experiment, 1989. 

Treatment 	Amount of 	Amount of 
NH4CI in 	Ca(NO 3 ) 2.4H 20 
stock 1 (g 	in stock 2 (g 
added to 1 I 	added to 11 
water) 	 water) 

zero N 
7 ppm. N 3.34 7.38 
14 p.p.m. N 6.69 14.75 
28 p.p.m. N 13.38 29.50 
56 p.p.m. N 26.75 59.00 
112 p.p.m. N 53.50 118.00 
224 p.p.m. N 107.00 236.00 

2.3 Sampling Procedure. 

2.3.1 Shoots. 

There are significant variations in needle morphological characteristics 

associated with canopy position, and whether needles are from shoots with a 

'sun' or 'shade' shoot morphology; needles from sun shoots from the upper 

part of the canopy are more or less vertically inclined and are uniformly 

distributed around the shoot, whilst shade shoots in the lower part of the 

canopy are nearly horizontal, and are orientated in a single plane (Busgen and 

Munch, 1929). It was therefore important to standardise a procedure for 

sampling shoots, and in field material, needles were sampled from a 

mid-canopy position, which was whorl 7 from the trees planted in 1973, to give 
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shoots which did not show extreme sun or shade shoot morphology. Although 

the "-All" trees were slightly older, material was again sampled from whorl 7, 

which was again a mid-canopy position. Terminal shoots from first order 

laterals were sampled in all cases, using extendable pole cutters when 

necessary. In the -P. -K and -All treatments, trees from the edge of the plot 

were avoided, but such trees had to be sampled in Control and -Mg 

treatments, as the close spacing and large size made penetration to other trees 

impossible. With pot material, differences in needle morphology due to canopy 

position were not as important, and needles during the 1988 growth season 

were sampled from terminal shoots from the terminal whorl of 1987 growth 

(whorl 2). 

2.3.2 Needles. 

More needles are present on the top, adaxial surface of the shoot than on 

the bottom, abaxial surface, so that along the ontogenetic spiral, the stem unit 

length, defined as the distance on the shoot between needles, i.e. the needle 

internode length (Cannell et al., 1976), is shorter on the top, adaxial side of the 

shoot than on the lower, abaxial side (Groom, 1907). In any season's growth, 

needle length and width vary along a shoot, such that the most basal needles 

are the widest, and those near the tip of the shoot are the narrowest, with little 

difference along most of the shoot. The longest needles are found at about 

25% to 50% of the distance from the shoot base (Table 2.4). 

(rnn '  

Table 2.4 Lengths and widths/of needles at different positions on 
Control shoots, and for different canopy positions. Values are means 

Shoot Quarter 

Distal 	 Second 	Third 	 Proximal 
Quarter 	Quarter 	Quarter 	Quarter 

Length Width Length Width Length Width Length Width 

Whorl 1 18.52 	2.32 	17.93 	2.28 	16.88 	2.21 	15.35 	2.07 
± 3.66 ± 0.17 ± 3.84 ± 0.23 ± 3.68 ± 0.25 ± 2.69 ± 0.30 

Whorl 5 19.98 	1.72 	20.43 	1.68 	19.25 	1.67 	17.45 	1.61 
± 6.82 ± 0.05 ± 6.74 ± 0.04 ± 5.75 ± 0.02 ± 4.82 ± 0.08 

Whorl 9 18.12 	1.35 	20.51 	1.33 	20.17 	1.33 	19.09 	1.27 
± 1.45 ± 0.17 ± 1.60 ± 0.16 ± 1.35 ± 0.15 ± 1.35 ± 0.13 
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A study of needle growth must therefore involve a sampling regime which 

takes into account the distribution and variation in needle characteristics along 

and around a shoot. 

Needles could be sampled in several different ways e.g. 

From particular distances along the shoot, or from fractions of the length. 

by following needles sequentially along the phyllotactic spiral from shoot 

base to tip. 

The second method was selected, as it was the most reproducible for 

shoots of different lengths from different treatments, and depended less on the 

developmental state of the shoot. Many spirals could be chosen (Fig. 2.1 A), 

varying in the number of turns around the shoot, and the number of needles in 

each. Needle length varies with position in any spiral, such that needles on the 

abaxial side of the shoot may be up to 2 mm longer than those on the adaxial 

side (Fig. 2.2), as found for Picea abies by Frey and lvask (1983). This effect 

becomes less pronounced moving basipetally through the canopy, so that at 

whorl 9 the difference is only about 1 mm (Fig. 2.2). Differences in needle 

length of up to 1 mm due to adaxial or abaxial orientation of the needle on sun 

and shade shoots were also found for Sitka spruce by Leverenz and Jarvis 

(1980). Therefore, the tightest spiral (A) (Fig. 2.1 A) was not chosen, as it was 

affected the most by variations between adaxial and abaxial sides of the shoot, 

as well as distal/proximal differences due to developmental state. The 

intermediate spiral (B) was chosen, as it provided more needles than the loose 

spiral (C), so giving a better indication of needle development according to 

needle position, but without being greatly affected by adaxial/abaxial positional 

differences. 
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Figure 2.1 A 

Diagram showing three possible phyllotactic spirals on stems of 
Sitka spruce. 

Figure 2.1 B 

Diagram showing the measurements made for median longitudinal 
sections of dormant buds from field shoots, in February 1988; 

A = Diameter of the apical dome. 
B = Bud height from the crown region. 
C = Width of the bud core at the position of the most ro,cimciL 

primordium. 

Figure 2.1 C 

Diagram showing the phyllotactic spiral followed in the bud 
for measurement of needle characteristics, in Control field 
buds prior to bud burst 1988, and for the estimation of 
primordium cell number in dormant field buds in 1987. 



 

Figure 2.1 B 

Figure 2JA 

Figure 2.1 C 
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Figure 2.2 Variation in needle length following phyllotactiC spiral A 
from shoot base to shoot tip, for a Control shoot from A) the top half 
of the canopy (whorl 4), and B) the bottom half (whorl 9) in the field. 

	

18.0 	-I-All Whorl 4 
V 

do0d 	 0co 
oo 	0 	0 0 	 00 
VO 	 0 	 000 

	

16.0 	 00 0 D 	 Dc3 0 	 0 oV 
00 	 OO 0 	 wo 	00  

00 0  O 
o  

o 	 0 D 

	

14.0 	00 	
0

CID 
00 

0 	
0 

D C 

.3 	 0 

. 	12.0 	 Key: 
0 
0 
Z 	 D=Most adaxial needle In each turn of the spiral 

V.'Most abaxicil needle In each turn of the spiral 

10.0 0 

	

8.0 	1 i i 	 i 	 i i -  i 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 65 72 76 

Needle Position Number 

	

21.0 	+Ail Whorl 9 

 

-S 	 0 
E 	

V 	00 

	

19.0 	 0 	0 	000g 00000 

	

17.0 	
00 	

0000 	
Do 

0 0
0  0 	 0 

Vo 	

0 	
00 

D 	 DO 0  

0 

0  0 

	

15.0 	0 	 0 

00 
4-,  

C 	 V 

	

13.0 	
o 

0 	 Key: 
0 	 o 
0 	 0 

	

Z 
11.0 	

D'Most adoxial needle In each turn of the spiral 
	

0 
VMost abaxial needle In each turn of the spiral 

[ii 
9.0 

7.0 - 111111 	ii 	1 	

1 	

'i 	' 	ii..' 

0 	4 	8 12 16 20 24 28 32 36 40 44 48 52 56 60 

Needle Position Number 

21 



2.4 Sampling Regime. 

2.4.1 Field Material 1987. 

Following bud burst, samples were taken weekly, but as it was not possible 

to sample every treatment at every sampling time because of the work load, 

only two of the five treatments were sampled at any one time, with different 

treatments being sampled each time. Each treatment was sampled four times, 

on the following dates: 

Treatment 	 Sample Number and Date 

1 2 3 4 

+All May 4 May 18 June 10 June 22 
-Mg May 4 May 25 June 10 June 29 
-K May 11 May 25 June 15 June 29 
-P. May 11 June 1 June 15 July 8 
-All May 18 June 1 June 22 July 8 

Seven shoots per treatment were sampled each time, from different trees 

chosen at random. Four shoots were used for chlorophyll determinations. 

Needles from the remaining shoots were excised following spiral B (Fig. 2.1 A) 

Initially three, and later, two series of needles were removed from each of the 

three shoots, to give replicate needles for each position. Results are presented 

as mean values, to minimise adaxial/abaxial positional differences. Fresh 

weight, length and width measurements were made for needles from two of 

the three shoots, and needles from one of these were used for cell counts. 

Lack of time did not allow these data to be replicated. Needle fresh weights 

alone were measured for the remaining shoot. 

Allocation of 	 7 Shoots from 
Shoots for different 	 Different Trees 
Measurements. 

 
Chlorophyll 	Needle 	Needle Fresh Weight 
Analysis 	Fresh 	 Needle Length 
n=4 	 Weight 	Needle Width 

n=1 	 n=2 

Needle Cell 
Number n=1 
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In addition to the sampling times shown in the table above, one bud from 

the Control treatment was also sampled on April 27, prior to bud burst, for 

needle length, width, fresh weight and cell number. Each measurement was 

made on five needles from each position. Following July 8, the treatments 

were sampled in the same rotation, until the beginning of November, with six, 

and later four, shoots being sampled for chlorophyll estimation only. 

2.4.2 Field Material 1988. 

On four dates prior to bud burst 1988, which occurred just before May 7, 

and once immediately following, one bud was removed from a mid canopy 

position from each of two Control trees in the field. On April 7, the bud was 

too small to remove primordia from each position along the phyllotactic spiral, 

so the bud was cut horizontally, perpendicular to the its main axis, to divide 

the bud into six equal portions according to total bud height. Ten primordia 

were removed at random from each portion, and kept on damp filter paper to 

await measurements. At the remaining sampling times, needles were studied 

along a phyllotactic spiral (Fig. 2.1 C), but this did not correspond to that 

chosen following bud burst 1987, as in the bud, the phyllotactic spirals are 

more compact and it was not possible to trace spirals easily seen on the 

elongating shoot, back to the bud. The number of needles studied for each 

position from each bud, was 5 at April 15; 4 on April 20; and 3 on April 27 and 

May 7. For each needle at each sampling time, including April 7, length and 

width measurements were made, and for each bud, the 3 to 10 needles for 

each position were macerated, and the total cell number was divided by the 

number of needles to give mean cell number per needle. 

2.4.3 Pot Material 1988. 

Material was sampled on a weekly basis but with only some of the 

treatments studied in any one week, so that analysis of all treatments was 

spread over two weeks; during the first week, the -P. -Mg and -K treatments 

were sampled, and also their fully fertilised complements, -PR, -MgR and -KR. 

In week two, -N, -All, -NR and -AllR treatments were analysed. The Controls 

were sampled every week for purposes of comparison, and also to give a more 

detailed time-course for the measured parameters. Two trees were used from 

each treatment at each sampling time, chosen at random, but ensuring that all 

trees were used once. As each treatment only consisted of 20 trees, and the 
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study lasted for 20 weeks, each tree was sampled twice, again choosing trees 

randomly, but ensuring that all trees were sampled no more than twice. Every 

fortnight, 24 trees; 14 for study in week one and 10 for week two, were 

removed from the Forestry Commission Northern Research Station, and kept 

outside the Botany department. Every Friday all the trees for study during a 

particular week were transferred to a growth room, and kept at continuous 

20°C on a 16 h light / 8 h dark cycle. The trees remained in the growth room 

for one week exactly, during which time soluble protein was extracted and 

assayed for RuBPC activity on Monday/Tuesday, chlorophyll analyses were 

made on Tuesday/Wednesday, photosynthetic rate was measured on Thursday, 

and needle areas calculated on Friday. 

Transfer began on Friday April 29th, and measurements on May 2nd, 

continuing until September. Trees from all treatments were sampled further at 

the end of October and the beginning of November. 

2.4.4 Pot Material 1989. 

On August 4 1989, 3 trees from each of the 8 treatments were randomly 

selected and placed in a controlled environment room at a continuous 

temperature of 20 0C, with a 16 hr light/8 hr dark period. One terminal shoot 

was sampled from whorl 2 (the previous season's apical whorl) from each tree, 

in the same way as in 1988, to measure needle pigment content, RuBPC 

activity, and net photosynthetic rate. Mean needle length, projected area, 

number and fresh weight per shoot were also measured for the same shoot 

used to determine the photosynthetic rate. Some shoots from all treatments 

apart from zero and 7 p.p.m. N showed "free growth", with new needle 

prirnordia being laid down during the season. Therefore, shoots in these 

treatments contained needles at a wide range of developmental states, as did 

shoots from -NR and -AIIR treatments in 1988. It was decided to sample 

needles from the shoot mid-point for estimation of chlorophyll content and 

RuBPC activity, as although these needles were not the most mature, the 

values obtained represented a mean for the whole shoot, and therefore 

provided a good comparison with the photosynthetic rate, which was a value 

for the whole shoot. Because some trees showed free growth, in order to 

estimate needle cell number, needles expanding from primordia initiated in 

1988, and those needles arising from new primordia initiated during 1989 had 

to be considered. Two needles were taken from the shoot mid point, from 
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trees in zero, 7 and 14 p.p.m. N treatments not showing free growth, and mean 

needle fresh weight and cell number were estimated. The mean distance of 

the shoot mid point from the base of the shoot in these treatments was used 

as the point from which two needles were taken from the other treatments. 

These needles were also used to estimate mean fresh weight and cell number, 

and are those which were initiated in 1988. From the trees showing "free 

growth", two needles were taken from a point two-thirds (three-quarters in the 

case of the Controls) of the distance along the shoot from the base. These 

needles were initiated during the 1989 season, and were used for fresh weight 

measurements and cell number counts, for estimation of cell volume. The 

exact position from which needles were taken was not important, since results 

from the 1987 experiment showed that the relationship between needle cell 

number and .p.os+tton was linear, irrespective of needle position on the shoot. 

However, the above procedure ensured that needles initiated during both 1988 

and 1989 were sampled, for comparison of mean cell size between needles 

initiated in two different nutrient regimes. 

2.5 Shoot and Needle Characteristics. 

2.5.1 Shoot Length. 

From bud burst until the cessation of shoot elongation in July 1987, shoots 

in the field were measured from the base of the bud scales to the tip of the 

most distal needle. 

2.5.2 Needle Fresh Weight, and Dry Weight:Fresh Weight Ratio. 

The fresh weight of needles from each position on the shoot (Fig. 2.1 A) 

was taken during the 1987 season, (see flow chart, section 2.4.1). Weights 

were taken to 0.1 mg as quickly as possible following needle removal. The dry 

weight:fresh weight ratio was determined throughout the 1987 and 1988 

seasons by taking 25 needles from near the mid-point of the shoots used for 

chlorophyll analysis, and oven drying them at 60 °C for 96h (1987 needles), or at 

105°C (for 1988 needles). The difference between drying needles at these two 

temperatures was found to be no more than 1.8%. 

2.5.3 Estimation of Number of Primordia in the Bud. 

Needle primordia are laid down sequentially in spiral phyllotactic patterns, 

25 



mostly with a divergence angle close to the Fibonacci angle. This gives 

contact parastichies (spirals of primordia) numbering in the series 1,2,3,5,8,13 ...... 

with 50% of apices having clockwise generative spirals of primordia, and 50% 

having anticlockwise spirals (Cannell, 1978). This regular phyllotaxy enabled 

numbers of primordia in dormant buds to be estimated after bud-scale 

removal, by multiplying the number of primordia per parastichy by the number 

of contact parastichies in the bud. 

2.5.4 Measurement of Dimensions of Dormant Buds. 

Dormant buds from terminal whorl 7 shoots from Control, -K, -P and -All 

treatments were studied in February 1988. After removal of the bud scales, the 

bud was cut longitudinally in half using a razor blade under a dissecting 

microscope (x20 objective), and a thin hand section taken from one of the cut 

faces. The section was stained in safranin for a few minutes, rinsed in 

methanol and dehydrated in ethanol for about an hour before mounting on a 

slide in Canada Balsam. Comparison of dehydrated and non-dehydrated 

sections showed shrinkage of linear dimensions to be a mean of about 16%. 

Using a binocular dissecting microscope (x20) objective, the diameter of the 

apical dome was measured, the dome being defined as the area of 

undifferentiated tissue distal to the last discernable primordium (Baxter and 

Cannell, 1978). Also measured was bud height from the crown region to the 

tip of the apical dome, and the width of the bud core at the point of the most 

proximal primordium (see Fig. 2.1 B). 

2.5.5 Measurement of Primordial and Needle Dimensions, and Needle 
projected surface area. 

For primordia, and needles from the 1987 growth season, length and width 

at the widest part were measured to the nearest 0.1 mm using a hand lens 

with a 250 x 0.1 mm eyepiece graticule. Projected surface areas for needles 

sampled during 1987 were calculated from length and width measurements 

using the equation developed by Steele (1987): 

Projected Area = b x (Length x Width) 

-where coefficient b = 0.75243 + 0.00439 x ratio of needle length to width. 

Steele derived this equation by using photographs of needles from needle 

samples from trees of different ages and from different sampling positions, to 
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estimate projected area, then calculating b from the relationship 

b = Area 1. (Length / Width) 

Needle 'dimensions and projected areas from shoots of pot grown trees 

during the 1988 season were determined by Image Analysis, using a Quantimet 

Image Analyser (Cambridge Instruments Ltd.): 

Following mesurement of photosynthetic rate, all needles were removed 

from each shoot, and were stuck in rows, on a sheet of Transpaseal adhesive 

film, ensuring that the flat surface of the needles was uppermost. The needles 

were then analysed in groups of about 100 needles. 

2.6 Analysis of Needle Nutrient Content. 

2.6.1 Preparation of Samples. 

Needles were analysed from field trees in February 1987, and from pot trees 

in April 1988 and in November 1988, for content of nitrogen, phosphorus, 

potassium, calcium and magnesium (see Tables 2.5 to 2.7). Analyses were 

carried out for some samples, by the chemical analysis laboratory, Site Studies, 

Forestry Commission, Alice Holt Lodge, Wrecclesham, Farnham, Surrey, GU10 

4LH. The procedures used were as follows. 

Needles were removed from terminal shoots at a mid-canopy position 

(whorl 7) from field material, and from whorl 2 shoots which had expanded 

during 1986, from pot trees. Two to four replicate samples were taken for each 

nutrient treatment. Needle samples were large enough to give at least 100 mg 

dry weight following oven drying at 105 °C for 48 h. Dry needles were ground 

in a mill, and 100 mg of material was put in a test tube. Digestion of the 

samples was effected by adding 1 cm 3  conc. sulphuric acid to each tube, 

folowed by 2, 0.4 cm  aliquots of hydrogen peroxide, with a short interval 

between additions, and then refluxing the tubes for 30 min at 320— 350 °C. The 

samples were then left to cool. Another 0.4 cm 3  aliquot of hydrogen peroxide 

was then added and the samples reheated to 350 °C for 10 mm. These last two 

steps were repeated until all digest solutions appeared colourless. When cool, 

each resulting Keldahl digest solution was made up to a volume of 15 cm 3  

with distilled water, and was then ready for chemical analysis. 
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2.6.2 Analysis of Potassium, Calcium and Magnesium in Kjeldahl Digest 
Solutions. 

Needle potassium, calcium and magnesium content was determined using a 

DC plasma emission spectrometer (Spectraspan 3): The digest solution was 

sucked into a nebuliser to produce an aerosol, which was passed via a jet into 

an argon plasma. The atoms in the sample became excited, and emitted 

radiation (in the visible or U.V. range), at wavelengths specific to each element 

present. The light emitted by the K. Ca and Mg in the solution was determined 

spectrometrically, and the concentration of the elements in the original samples 

was calculated, on a dry weight basis. 

2.6.3 Analysis of Nitrogen and Phosphorus in Kjeldahl Digests. 

The concentration of nitrogen and phosphorus was determined using 

continuous flow (segmented flow) analysis. Nitrogen was determined as 

ammonium nitrogen using the indo-phenol method (the reaction of ammonium 

ions with sodium phonate and sodium hypochiorite, catalysed by sodium 

nitroprusside), and phosphorus was analysed as phosphate, using the 

phosphomolybdenum complex method, with ascorbic acid as the reducing 

agent. Eight standards were run in duplicate, with nitrogen and phosphorus 

concentrations ranging from 0 to 3.5% dry weight. The colour change in the 

standards and samples due to each assay was measured colourimetrically, and 

the results drawn on a chart recorder. This colourimetric output was then 

analysed by a Trivector computer which measures the peak heights and 

calculates a concentration of N or P on a dry weight basis, by comparison with 

the calibration curves from the standards. A standard plant tissue digest 

sample (usually Sitka Spruce foliage) was run at the start and finish of each 

batch of samples when analysed, to check the reproducibility of the digestion 

step. 
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2.6.4 Foliar Analyses for Field Material. 

Table 2.5 Nutrient analyses of needles from terminal shoots from whorl 
seven, for all field treatments, in February 1988. Values are 
means ± S.E. for four replicate shoots (% dry weight). 

Treatment Nutrient 

N P K Mg Ca 

+All 100d 0.16 0.64 0.09 0.36 
± 0.042 ± 0.006 ± 0.069 ± 0.005 ± 0.048 

-Mg 1.03 0.20 0.69 0.08 0.39 
± 0.027 ± 0.005 ± 0.029 ± 0.006 ± 0.054 

-K 103d 0.18 017d 0.10 0.37 
± 0.043 ± 0.020 ± 0.008 ± 0.007 ± 0.019 

0.94d  0 . 06d1  0.86 0.07 0.37 
± 0.077 ± 0.004 ± 0.092 ± 0.007 ± 0.019 

-All 076d 006d 040d 0.08 0.23 
± 0.076 ± 0.006 ± 0.079 ± 0.007 ± 0.039 

Key: d indicates a deficient concentration (see Binns et al., 1980; 
Forestry Commission leaflet number 76, p16). 

Foliar results (Table 2.5) show that the -Mg set of trees was not deficient in 

Mg; presumably due to a sufficient amount of Mg being present in the soil. All 

treatments had slightly deficient foliar concentrations of N, according to 

deficient concentrations published by the Forestry Commission. However, 

these published values are for young stands of 0.3-3.5 m in height, and 

therefore may only provide a rough guide to the nutritional state of older trees. 

The Controls showed no N deficiency symptoms, and a concentration of 1.00 % 

dry weight in field trees is not interpreted as being deficient. Nitrogen 

concentration in -All trees however, probably was deficient. 
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2.6.5 Foliar Analyses For Pot Material. 

Table 2.6 Nutrient analyses of needles from terminal shoots from whorl 
two of pot trees, from all treatments, in April 1988, prior to 
bud burst. Values are means ± S.E. for four replicate shoots. 
(% dry weight). 

Treatment Nutrient 

N P K Mg Ca 

+All 1.28 0.14 0.76 0.09 0.41 
± 0.040 ± 0.003 ± 0.033 ± 0.058 ± 0.036 

-M9 1.34 0.16 0.76 0.04 0.44 
± 0.042 ± 0.005 ± 0.029 ± 0.005 ± 0.023 

-K 1.23 0.23 
Ø•42d 

0.19 0.53 
± 0.063 ± 0.018 ± 0.023 ± 0.019 ± 0.038 

-P 1.40 0.11 d 0.89 0.08 0.34 
± 0.051 ± 0.004 ± 0.133 ± 0.008 ± 0.023 

-N 0•67d 0.14 1.10 0.09 0.29 
± 0.042 ± 0.009 ± 0.065 ± 0.012 ± 0.030 

-All 0.58" 009d 0.72 0.08 0.30 
± 0.017 ± 0.003 ± 0.007 ± 0.006 ± 0.019 

Key: d indicates a deficient concentration (See Binns et al., 1980; 
Forestry Commission leaflet number 76, p16). 
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Table 2.7 Nutrient analyses of needles from terminal shoots from whorl 
two of pot trees, from all treatments, in November 1988, 
following cessation of growth. Values are means for bulk needle 
samples for -N and -All treatments, otherwise are means ± S.D. 
for two shoots from different trees, and four shoots for +All 
samples (% dry weight). 

Treatment Nutrient 

N P K Mg Ca 

+All 1.48 0.25 1.19 0.14 0.43 
± 0.432 ± 0.019 ± 0.144 ± 0.029 ± 0.135 

-Mg 091d 0.21 1.15 0.07 0.51 
± 0.071 ± 0.057 ± 0.085 ± 0.028 ± 0.106 

-MgR 1.31 0.24 1.49 0.13 0.36 
± 0.170 ± 0.007 ± 0.276 ± 0.007 ± 0.021 

-K 095d 0.24 0.80 0.16 0.42 
± 0.021 ± 0.078 ± 0.028 ± 0.042 ± 0.148 

-KR 1.55 0.27 1.39 0.15 0.41 
± 0.283 ± 0.071 ± 0.141 ± 0.014 ± 0.014 

-P 092d 010d 1.27 0.08 0.25 
± 0.085 ± 0.021 ± 0.113 ± 0.007 ± 0.071 

-PR 1.40 0.19 1.32 0.10 0.36 
± 0.184 ± 0.014 ± 0.085 ± 0.028 ± 0.057 

-N 062d 0.21 1.72 0.11 0.30 

-NR 1.57 0.27 1.63 0.16 0.53 
± 0.049 ± 1.70 ± 	1.11 ± 0.11 ± 0.33 

-AU 096d 0.17 1.11 0.11 0.33 

-AIlR 1.39 0.24 1.67 0.11 0.44 
± 0.318 ± 0.028 ± 0.403 ± 0.000 ± 0.021 

Key: d indicates a deficient concentration (see Binns et al., 1980; 
Forestry Commission leaflet number 76, p16). 

Foliar results for pot trees (Table 2.6) show that trees in all deficiency 

treatments show expected deficiencies of elements, apart from -All trees, 

which were noK-deficient. The concentration of Mg in the -Mg set bordered 

on the published deficiency concentration of 0.03 % dry weight (Forestry 

Commission leaflet no.76), and is interpreted as being deficient. 
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Foliar results for new needles in November 1988 (Table 2.7) show that 

needles in -P and -K treatments also had a deficient concentration of N. 

Refertilisation of each treatment caused a restoration of optimal concentrations 

of elements, apart from the -R treatment, where K deficiency was maintained. 

2.7 Cell Number Estimation. 

2.7.1 Needle Primordia. 

Cell numbers in needle primordia were estimated using a method based on 

that of Sunderland and Brown (1956). After removal of the bud scales, the 

shoot apex was removed, and leaf primordia removed under a dissecting 

microscope (x20 objective), using a fine scalpel and fine tweezers, Onto 

Petri-dishes containing water to prevent des üation. To aid dissection of the 

primordia, horizontal cuts across the bud were made, (perpendicular to the 

main axis of the bud), after bud-scale removal, to divide the bud into quarters 

or sixths of the bud height, and primordia were then removed from each bud 

segment. From the population of primordia from each segment, a few were 

taken at random for cell counting. Alternatively, needle primordia were taken in 

series from the bud base to tip, from the phyllotactic spiral as shown in Fig. 2.1 

C. Due to the small size of the primordia it was hard to excise them exactly at 

the point of attachment to the bud core, so up to five replicate primordia were 

taken from each segment, to minimise the resulting variation. Excised 

primordia were treated with acetic acid/ethanol (3:1,v:v) for 10 mm, and then in 

N Hydrochloric acid for 8 min at 60°C, before being left in Feulgen reagent 

overnight, to stain the nuclei and render the counting of cells easier. The 

softened, stained primordia were then placed on a slide in a drop of glycerol, 

covered with a coverslip cut from a sheet of acetate, and squashed by gently 

rubbing the coverslip with the rounded end of a glass rod. The cells dispersed 

to a single layer, but covered a large area of the slide, so that the total cell 

number had to be counted by scanning the whole slide in a series of transects. 

2.7.2 Needle Maceration and Cell Counting. 

Needle cell numbers were estimated using a technique based on maceration 

in chromic acid (Sunderland, 1960; Brown and Rickless, 1949; Milthorpe and 

Newton, 1963; Maksymowych, 1963). 

lnitially,'needles were soaked in 2 cm  of 5% (w/v) chromic acid solution 
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for 24 h, in a small sealed glass vial, and the tissue was then fragmented 

gently, by stirring with a metal dissecting needle. Further maceration was 

achieved by taking up the tissue fragments into a 5 cm 3  plastic syringe via a 5 

cm long needle and expelling gently to shear the cells apart. This process was 

repeated 20 times, however, due to the large thickness of the cuticle and the 

presence of epicuticular wax, infiltration of chromic acid was reduced, and poor 

macerations resulted. Increasing the concentration of chromic acid used, from 

5% to 10% (w/v) did not increase the degree of maceration, when a drop of the 

suspension was observed under a microscope. The length of time the needles 

were left in 5% chromic acid was increased from 24 h. to 48 h and to 72 h, but 

this only led to breakdown of separated cells, and not to an increase in extent 

of cell separation. Warming needles in 5% chromic acid at 30 °C had no effect 

either, on the extent of cell separation, neither did increasing the concentration 

of acid, time of soaking or temperature together, in any combination. 

Therefore, work was concentrated on developing a pretreatment to break down 

the cuticle to aid acid penetration. 

To dissolve cuticular wax, needles were soaked for 48 h in a solution of 

chloroform:methanol (1:1,v:v), then were rinsed thoroughly with water and 

soaked for a further 48 h in a solution of 5%, 10 M NaOH in methanol, to effect 

alkaline hydrolysis of the cuticle. The length of time the needles were left to 

soak in each solution was varied and 48 h was found to be the optimum 

duration. Following this pretreatment, needles were again rinsed thoroughly 

with water, and then macerated in 2 cm 3  of 5% chromic acid, under a slight 

vacuum to further aid penetration, and were fragmented as described earlier. 

The final cell suspension was fairly even, although it still contained some 

clumps of pidermal cells which were very hard to separate. A drop of the 

suspension was placed on a haemocytometer slide (Hawksley Crystallite 

modified Fuchs Rosenthal), and cell counts made for 6 replicate grids. The 

mean cell number contained per grid was then extrapolated to give the total 

number of cells in the suspension, and hence the cell number per needle, as 

two or three needles for each position in the spiral were used to give the 

suspension. 
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2.8 Estimation of Needle Chlorophyll Content. 

Chlorophyll was measured in needles from the field plots during the 1987 

growth season, and in needles from pot-grown trees during the 1988 growth 

season. Twenty-five needles were taken from the mid-point of extending 

terminal shoots from whorl 7 from trees in the field, and from whorl 2 (1987 

apical whorl) of the pot trees in 1988. 

Obviously the position of the shoot mid-point changed as the shoot 

elongated, so that needles were sampled from a progressively more distal 

position each time, until early July when shoot extension ceased. Chlorophyll 

levels during this period however, increased so rapidly that the effect of the 

slight difference in developmental state of the needles taken for chlorophyll 

analysis was minimised. At each sampling time, needles from four shoots from 

different trees were sampled from the field plots, and needles from two trees 

from each treatment of the pot experiment. The fresh weight of the needle 

sample was taken, before homogenising the needles in a chilled mortar, with 

about 5 cm 3  of 100% acetone and a little acid-washed sand. The brei was 

centrifuged for 10 minutes at 500 g and 4 °C. The supernatant was removed and 

the residue reground in a further few cm 3  of acetone and centrifuged again. 

The supernatants were combined and diluted to a final known volume of 15 - 

25 cm 3. Absorbance readings were taken on a Pye Unicam Spectrophotometer 

at 440.5 nm, 644 nm and 662 nm. The chlorophyll and carotenoid contents (mg 

I_) were calculated by substituting the absorbance values into the following 

equations (Holm, 1954): 

Chlorophyll a = 9.78.A(662) - 0.99.A(644) 
Chlorophyll b = 21.40.A(644) - 4.65.A(662) 
Carotenoids = 4.69.A(440.5) - 0.267(Chl a + Chi b). 

2.9 Assay of RuBPC. 

2.9.1 Preparation of Needle Extracts. 

For measurement of RuBPC activity and soluble protein content, a needle 

protein extract was prepared. The method was based on the single stage 

extraction used by Beadle et al. (1983) for Sitka Spruce and other conifers, 

which was a modification of the method of Gezelius and Hallen (1980). 
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The extraction medium contained the following: 

Tris buffer (Trizma base. Sigma) 	50 mM 
Magnesium chloride (B.D.H.) 	 10 mm 
E.D.T.A. (B.D.H.) 	 0.2 mM 
Dithiothreitol (Sigma) 	 5 mM 

* 	Tween 80 	 1% (v/v) 

The final pH of the medium was adjusted to 7.9 using 1 M HCI. The use of 

E.D.T.A. (0.2 mM) appears to be standard throughout the literature. The 

magnesium needed to maintain enzyme activity (Weissbach et al., 1956) was 

shown by Bassham et al. (1968) and Suguyama et al. (1968) to affect the 

enzyme pH optimum with varying concentration, and at 10 mM Mg 2+  the pH 

optimum lay between 7.8 and 8.0, and so a mean of 7.9 was used. 

Dithiothreitol was selected as the suiphydryl group protective agent in 

preference to -mercaptoethanol, as it is also an inhibitor of polyphenol 

oxidase. This is important in extracting enzymes from conifers, due to the 

large quantities of polyphenols present in the tissues. Tween 80 was used to 

help solubilise the membranes. The extraction medium was made freshly for 

each weekly set of extractions and kept at 2 °C in the dark. Extraction of 

needles was performed in a cold room, where all equipment was left prior to 

use. 0.5 g fresh weight of needles was frozen in a small amount of liquid 

nitrogen, and ground with 10 cm 3  of the extraction buffer, and a little 

acid-washed sand, until a uniform homogenate was produced. This was then 

filtered through 8 layers of cheesecloth, and the residue reground in a further 

10 cm  buffer solution, and refiltered. The combined homogenate was then 

centrifuged at 15,000 g at 1 °C for 15 mm, in a Sorvall RC-5B centrifuge. The 

pellet containing cell debris and sand was discarded, and the supernatant 

containing the carboxylases was decanted and stored on ice. Some of the 

supernatant was frozen in liquid nitrogen, and stored in eppendorf vials at 

-40°C to await protein determination. The remainder was assayed for RuBPC 

activity as quickly as possible. 

2.9.2 RuBPC Assay System 

The basic reaction which RuBPC catalyses is the conversion of Ribulose 

1,5-bisphosphate and carbon dioxide to 3 Phosphoglyceric acid, in the presence 

of magnesium ions. The assay measures RuBPC activity by following the 

incorporation of [ 14C]0 2  from NaH[ 14C]03  into acid stable products. The 
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method used was based on that of Beadle et al. (1983), and experimental 

justification for the technique is given in section 2.10. 

A stock solution of 3 mM RuBP (Sigma) was freshly prepared for each day's 

assays. A stock solution of labelled NaHCO 3  was made, containing 9.5 cm 3  150 

mM cold NaHCO 3, and 0.5 cm  NaH[ 14C]0 3  (1 MC'  cm 3,Amersham), and kept in 

the dark at 2 °C. Speed of assay of the crude extracts was important, and 

assays were carried out within 30 min of extract preparation. Reaction times 

were reduced to 1 mm, to allow maximum linear rates to be obtained (Beadle 

et al., 1983). Duplicate assays were performed on each extract. The final 

reation mixture contained 0.1 M Tricine, 0.025 M MgCl 2, 6 mM Dithiothreitol, 0.2 

mM E.D.T.A., 0.5 mM RuBP, and 0.05 M NaHE 14CIO3  stock. The final reaction 

volume was 300 mm 3, composed of 50 mm 3  3 mM RuBP, 100 mm 3  of stock 

NaH[ 14C]0 3, and 25 mm 3  of each of the four stock solutions of E.D.T.A.. 

Dithiothreitol, MgCl 2  and Tricine. 50 mm 3  of the enzyme extract was 

preincubated with the sodium bicarbonate and the other four constituents in a 

water bath at 25 °C for 10 mm, as the enzyme must be activated by Mg 2  and 

CO2  prior to assay (Jensen and Bahr, 1977). The reaction was started by the 

addition of 50 mm 3  of stock RuBP, and was stopped after 1 min by adding 0.2 

cm 3  5N HCI to degrade excess bicarbonate. Sample vials were shaken, and 20 

mm 3  aliquots of each reaction solution were pipetted onto 30 x 10 mm strips 

of Whatman No.1 filter paper, using 10.tl microcaps (Shandon). Duplicate 

aliquots were pipetted onto different strips for each assay, and the strips left to 

dry for 3 h under a fume hood, along with the -  sample vials, to allow excess 

labelled CO2  to be released safely. The dried paper strips were placed in 

Beckman scintillation vials containing 2 cm 3  scintillant [Analar toluene 

containing 5% (w/v) PPO (2,5 Diphenyloxazole), and 0.5% (w/v) POPOP (1,4 

Di-[2-(5 phenyloxazolyl- benzene)])], and duplicate counts were made for 10 

min in a ISL-3000 liquid scintillation counter. 

2.9.3 Calculation of Counting Efficiency. 

The counting efficiency of the scintillation counter could not be calculated 

by spotting a known amount of sodium bicarbonate stock solution onto filter 

paper and counting, as exchange of labelled CO 2  with atmospheric CO  would 

occur during drying of the filter paper. A 20 il aliquot of 
[

14C] glycmne (1 jiCi 

cm -3) was therefore spotted onto filter paper which was then dried, and 

duplicate cçunts were made in the same scintillant, in the same way as for the 
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assay samples. This was performed twice, on three separate occasions, and a 

comparison of the counts per minute obtained, with the counts per minute 

expected from the specific activity, the counting efficiency of the scintillation 

counter was found to be 46%. 

2.9.4 Calculation of RuBPC Activity. 

To calculate the activity of RuBPC in the extracts, a comparison has to be 

made between the counts obtained, and the Counts expected by the stock 

bicarbonate solution, corresponding to a known amount of substrate. 

Stock bicarbonate solution: 

g.s cm  of 150 mM NaHCO 3  and 0.5 cm  of NaH[ 14C]03  (1 MC') 

The specific activity of the [14C]_  labelledsodium bicarbonate = 55 mCi mmoi 1  

So the total amount of bicarbonate in 10 cm 3  stock solution = 

1.425 mMol (unlabelled) + 0.01818 mMol (labelled) = 1.44318 mMol (Total) 

Therefore every 0.1 cm 3  used in the assay, contains 14.4318 pmol 
bicarbonate, and 370,000 Bq (10 pCi) activity. 

The d.p.s. of the 20 p1 aliquot counted is equal to; 

c.p.m. * 0.46 (counting efficiency) + 60 (per second) 

Total assay volume = 0.5 cm 3, so d.p.s. x (0.5 / 0.02) = d.p.s. per assay. 
(from a total d.p.s. provided by 0.1 cm 3  stock, of 370,000) 

So total pmol substrate converted per min per assay = 

(d.p.s. fixed per assay * 370,000) x 14.4318 

As 0.05 cm  of needle extract was used in each assay, from a total of 15 
(= 0.5 g. needle mass), then the activity of the extract in Umol CO  g  fr.wt. min 1  

= activity per assay (pmol CO  min -1  x (15 * (0.05 x 0.5 ))) 
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2.10 Kinetic Work With RuBPC. 

As in the study of any enzyme, it was important to check that the substrate 

concentrations used in the assay were on the plateau of the relationship 

between reaction velocity and substrate concentration, and therefore that the 

enzyme was operating under saturating conditions. The work of Beadle et al. 

(1983) was repeated to find optimal concentrations of RuBP and bicarbonate, 

using extracts from Control needles from mid-canopy in the field. 

RuBP:- Using a constant bicarbonate concentration of 50 mM, the RuBP 

concentration in the assay was varied over the range 0.04 mM to 1 mM. 

Reaction velocity against RuBP concentration for two extracts of different 

activities (Fig. 2.3 A) show that the response of reaction velocity to RuBP 

concentration was hyperbolic, with a concentration of 0.5 mM used in the 

assay, falling on the plateau of the relationship. 

Bicarbonate:- Using a constant RuBP concentration of 0.5 mM, the effect 

on reaction velocity was examined by varying the concentration of bicarbonate 

in the assay over the range 1 mM to 50 mM (Fig. 2.3 B). The kinetics of the 

reaction again showed a hyperbolic relationship between velocity and 

bicarbonate concentration, for two extracts of differing activities. 	A 

concentration of 50 mM HCO 3 , used the assay, fell on the plateau of the 

graph, and was therefore not limiting enzyme activity. 
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Figure 2.3 A and B. Velocity of RuBPC reaction. A) against RuBPC concentration, 

with constant bicarbonate concentration (50mM). B) against bicarbonate 

concentration, with constant RuBP concentration (0.5 mM), for an extract 
of high and low RuBPC activity in each case. Values are means for two 
replicate assays ± S.D. 
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It was also necessary to check that an assay duration of 1 min represented 

a period of linear reaction velocity, and that a preincubation time of 10 mm 

was needed, and that preincubation did not cause any CO  fixation: 

C) The reaction velocity was examined against duration of assay in two 

extracts (Fig. 2.3 C). Reaction rate was essentially linear up to 1 min and then 

declined, confirming 1 min to be a suitable assay duration. 

0) Preincubation of the enzyme extract with all constituents apart from 

RuBP, was carried out for 2 mm, 5 min and 10 mm, before the reaction was 

performed. Results showed that maximum velocity was achieved with a 10 mm 

incubation period (Fig. 2.3 D). 

E) In order to test whether the number of counts in control assays was 

affected by length of premncubation, control tubes were left for a range of times 

up to 10 mm, before the addition of water. Preincubation time did not affect 

the counts (Fig. 2.3 E). 
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Figure 2.3 C 
Reaction velocity plotted against duration of assay for two extracts. 
Each value is the mean of two assays ± S.D. 

Figure 2.3 D and E 
Reaction velocity plotted against time of preincubation of reaction 
constituents before the addition of D) RuBP, and E) Water. 



1 	2 	3 	4 	5 	6 	7 	8 	9 	iO 

Duration Of Assay (Mm) 
0 

C) 

800 

E 

600 

C) 

400 

1200 

1000 

WK 

E) 60 

55 

30 .  

25 
0 
0 

20 

15 - 

10 - 

5 -  

A- I 	 I 

D) 300 

250 

200 

E 

gi 150 

0 
0 

100 

50 

0 -1 	I 	II 	I 	I 	I 	 I 	I 	I 	 " 	 I 	I_I 

0 1 2 3 4 5 6 7 8 910 	 0 1 2 3 4 5 6 7 8 910 

Time of Preincubation (mm) 	 Time of Preincubation (mm) 

Before Addition of RuBP 	 Before Addition of Water 

41 



In order to show that the enzyme assay did in fact measure RuBPC activity, the 

Michaelis-Menten constant, KM  of the two substrates was determined, and 

compared with the values in the literature. Double-reciprocal 

(Lineweaver-Burk) plots for data for the extracts/shown in Fig. 2A - A and B. The 

points did not always fall on a straight line (Fig 2.4 A and B), with a tendency 

towards curvilinearity at low concentrations of RuBP or HCO 3  when the 

enzyme activity was high. This suggests some positive allosteric interaction 

between substrate and enzyme may occur, at low substrate concentrations. 

This is the same conclusion as that reached by Beadle et al. (1983), working 

with Sitka Spruce. The KM  values have been calculated by drawing a straight 

line through these higher concentrations (Fig. 2.4 A and B), and assuming that 

the enzyme is fully activated at the higher bicarbonate concentrations i.e. > 3 

mM and < 20 mM (Beadle et al., 1983; Gezelius and Hallgren, 1980). The 

KM(RuBP) values of 0.10 to 0.16 mM compare well with a KM(RuBP)  of 0.12 mM 

(Beadle et al., 1983), and are slightly lower than the value of 0.18 mM reported 

for Scots pine (Gezelius, 1975). The KM  (HCO 3 ) values of 8.9-10.1 mM from this 

study, are about twice as high as that of 4.7 reported by Beadle et al. (1983) for 

RuBPC for Sitka spruce. The reason for this difference may be variation due to 

the small number of extracts used for the determination (n=2 in both cases). 

Alternatively, preincubation of the enzyme and assay constituents prior to assay 

may cause a transition from a low or intermediate KM  form to a high KM  form 

(Bahr and Jensen, 1974), so that the different KM  values for different extracts in 

this study, and the difference between these and those found by Beadle et al. 

(1983) may represent different activated states of the enzyme. The values of 

KM(HCO3) obtained here are similar to those of 8-10 mM found for Pinus 

sy/vestris by Gezelius (1975), who used a slightly higher concentration of Mg 2  

than was used in this study, although at lower concentrations of Mg21.  they 

found higher KM(HCO3)  values. 
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reaction velocity and A) Concentration of RuBP. B) Concentration of HCO 3 , 
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of two determinations. 

I . 	 . 
-12.5-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 

1/LRUBPI 	(xlO Mi 

0 

-0.3 -0.2 -0.1 	0.0 0.1 	0.2 U.J U.f U. 	u.o u., 	V. 

1/[HC031 (x103  II) 

43 



2.11 Protein Estimation. 

The estimation of the total soluble protein content in frozen extracts from 

needles from the pot trees was attempted, using a method similar to that of 

Sarjala et al. (1987), The deep-frozen samples were thawed at room 

temperature, and 0.2 cm 3  of the extract was added to 1.2 cm  of 10% 

trichloroace'tic acid (T.C.A.) in and eppendorf vial. The vials were shaken and 

stood for 30 mm. on ice, to precipitate the protein, before centrifuging for 10 

mm. at 11,000g. The supernatant was discarded, and 0.5 cm 3  0.1 M NaOH was 

added to the pellet to re-solubilise the protein. The vials were vortexed, and 

left to stand for a further 30 mm. to effect thorough resolubilisation, before 

recentrifuging at 11,000g for 10 mm. Protein content was measured using the 

method of Bradford (1976). Absorbance readings at 595 nm were first 

calibrated against a calibration curve, which was prepared using bovine serum 

albumen (B.S.A.) (fraction 5) in the extraction buffer, covering the range up to 

50 mg per 0.1 cm 3  extraction buffer. The calibration samples were passed 

through the same procedure of precipitation and resolubilisation in 0.1M NaOH 

as the samples. However, the extraction buffer gave some background colour, 

even when it contained no added B.S.A., although a quantitative relationship 

existed between A595  and B.S.A. concentration. The reason for this background 

colour was not known, but was possibly due to the presence of Tween 80 in 

the buffer, as detergents are known to interfere with the Bradford reagent. A 

sample of the extraction buffer with no added protein was used as the reagent 

blank in the spectrophotometer, until it was realised that the samples gave a 

lower reading than the blank, due to a suppression of the background colour, 

presumably due to some component of the needle extract. The Bradford 

method was therefore unsatisfactory for the determination of the protein 

content of the samples, and the results were unreliable, and were not used for 

any calculations. 
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2.12 Measurement of Photosynthesis Using Infra-red Gas Analysis. 

The uptake of CO  by shoots was measured using infra-red gas analysis. 

The system consisted of a LCA-2 battery operated portable infra-red gas 

analyser, a mass flow air supply unit, a leaf cuvette (Parkinson leaf chamber), 

and a data logger (all ADC Ltd.). 

2.12.1 Use of the IRGA. 

The equipment was used in an open system (Fig. 2.5), where the plant 

material was placed in a cuvette into which there was a measured flow of air 

of known water vapour pressure and carbon dioxide content. Gas exchange 

rates were then calculated from the flow rate and the concentration differences 

between inlet and exhaust air. The four components of the system and the 

settings used are outlined below; 

The mass flow air supply unit (ASUM) supplied dry air (passed through 

two columns of silica gel) to the Parkinson leaf chamber at a rate of 500 cm 3  

min -1 . This flow rate was chosen as there is a minimum requirement of 150 

cm 3  min -1  for the analyser, and the flow through the leaf chamber must be 

about 50 cm 3  min -1  greater. Also it is recommended flow be about 60 cm 3  

min- 1  for every 1 cm  projected leaf area in the cuvette. As total shoot area 

was likely to be up to several cm 2, a high flow rate was considered necessary. 

The Parkinson leaf chamber contained humidity, light and temperature 

sensors, and these readings were passed directly to the data logger for the 

photosynthetic calculations. 

The gas analyser was used in 'differential' mode, which allowed absolute 

concentrations of CO  in reference and sample gases, and the differential 

concentration to be displayed on the data logger. The analyser had a single 

infra-red beam passed through a filter to restrict radiation to the 4.3 pm 

absorption band. This radiation was passed through a measuring cell of the 

sample gas to a detector. In differential mode the time taken for alternation of 

gas in the measuring cell was 8 seconds: during the first half of the cycle the 

gas in the cell alternated every 2 seconds between sample gas from the 

reference source, and gas which has had CO  removed by soda lime. During 

the second half of the cycle, the alternation was between gas from the leaf 

chamber, and CO 2-free air. Signals from the detector were stored, and 
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Figure 2.5 
The arrangement of IRGA apparaus in the open system for the 
measurement of photosynthetic rate. 
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compared as the measuring cell gas changed, to give absolute concentrations 

for sample and reference gases and the differential reading. 

d) The data logger provided various options for the type of information 

displayed, and calculations made. Option 2 was selected as this allowed the 

flow-rate and leaf projected area, which must be input, to remain constant for 

all measurements, and to input these values only once. As the projected leaf 

area of the shoot was not known until destructive determination following the 

measurement of photosynthetic rate, a constant value of 10 cm 3  was input, as 

this was thought to be a reasonable estimate of the total needle projected area 

of fully extended shoots. Subsequently, the calculated values were adjusted 

after the actual projected areas had been determined. 

2.12.2 Calibration. 

Before use and at regular periods during use, the leaf chamber humidity 

sensor and gas analyser had to be calibrated; 

2.12.2.1 Parkinson Leaf Chamber Humidity Sensor. 

This was calibrated by firstly passing dry air, obtained by passing air 

through a column of Drierite, into the leaf chamber, and adjusting the 

appropriate potentiometer until the reading on the gas analyser was zero. Air of 

known vapour concentration was then obtained by passing air through a 30 cm 

x 5 cm column of FeSO 4 .7H 20, with a maximum flow-through of 150 ml min -1 , 

before passing the air through the leaf chamber. The relative humidity at the 

measured air temperature was obtained from table$, and the span control 

potentiometer was adjusted to give the appropriate reading. 

2.12.2.2 Gas Analyser. 

1) Flow Adjustment. 

The flow of air through the gas analyser had to be maintained above 150 

cm 3  min- 1.  The flow rate was gauged by a flow meter on the side of the 

analyser, and was altered to be above the necessary value by adjusting the 

flow set potentiometer. 
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2) Calibration for Carbon Dioxide. 

Zero adjustment: - For this the analyser was used in 'zero' mode, which 

only allowed gas which had been passed through soda lime to enter the 

measuring cell. The 'zero potentiometer' was then adjusted so that a vpm 

reading of zero was displayed. 

Span calibration: - The analyser was used in 'reference' mode, which 

allowed air in the measuring cell to alternate between CO 2-free air and input 

air supplied from a gas mixer, containing air at a concentration of 350 ppm 

CO 2' The reading was adjusted accordingly. 

The differential calibration: - This was checked by passing air with a 

CO2  concentraion of 350 ppm from a gas mixer, through both inlet and 

reference ports of the analyser in 'differential' mode, and adjusting the reading 

to zero. 

These calibrations were carried out about every 3 weeks of experiments, 

during which time the CO  differential calibration hardly ever changed, and the 

CO  zero and humidity adjustments needed recalibration. 

2.13 Preparation of Material and Measurement of Photosynthetic Rate. 

Measurements were made every Thursday after the trees had been put in 

the growth room the preceding Friday. Lights came on in the growth room at 

9 a.m. and measurements were made from one hour later to allow time for 

maximum photosynthetic rate to be reached. Measurements took 2 hours 

which minimised effects due to diurnal fluctuations in rate. The input gas to 

the ASUM was taken from outside the growth room where all work was done, 

to avoid CO  from breath changing ambient CO  levels. The IRGA was 

switched on only a few minutes before use, as no warm-up time was 

necessary. Before each shoot was put into the leaf chamber, needles were 

removed from about 2 cm of the preceeding year's shoot to ensure none were 

inserted by accident and that a good seal was maintained. All tubing was kept 

short to minimise response times, and constant readings were obtained after 

about 30 sec - 1 mm; the data were recorded and the calculated values from 

the data logger retrieved immediately. The shoot was then excised and 

projected surface area estimated. 
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Z14 Inputs into the Data Logger. 

2.14.1 Manual inputs. 

Manual inputs to the data logger include: 

Volume flow rate of dry air into the cuvetteread from air supply unit). 
Projected leaf area (arbitrary value of 10 cm ). 
Boundary layer resistance to water vapour (determined to be 0.495 m 2  s 
moI 1 ). 
Atmospheric pressure (bar). 

The boundary layer resistance to water vapour was determined by 

suspending wet filter paper (2 cm  area) in the leaf position in the cuvette, and 

measuring the equilibrium relative humidity and cuvette air temperature at a 

flow rate of 5 cm 3  s 1 . The value of rb  was obtained from the % relative 

humidity at the measured temperature, by consulting tables (see Parkinson 

1984). 

A correction factor for the water response of the analyser is sometimes 

needed, when there is a different concentration of water vapour in the sample 

cell during the two halves of the measurement cycle. This may occur if the 

sample air is drier than the soda-lime equilibrium, so that during the CO  free 

part of the cycle, gas having passed through the soda-lime enters the 

measurement cell containing 1-2% water vapour, depending on the temperature 

of the soda-lime. This reduces the measured CO  concentration by about 1 

vpm. The correction factor is a function of EM,  which is the analyser 

response to an infinite concentration of water vapour. It was not employed in 

the calculations, as the sample gas was not drier than the soda-lime 

equilibrium. 

2.14.2 Automatic Inputs to the Data Logger From the Parkinson 
Leaf Chamber. 

These include: 

Relative humidity in cuvette (%). 
Partial pressure of CO  in air entering cuvette(pbar). 
Partial pressure of Co 2  in air leaving cuvette (ibar). 
Photon flux density incident on cuvette (jimol m2 

_1) 

Cuvette air temperature ( °C). 
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2.15 Calculations. 

The other calculated variables, which were performed by hand on the raw 

data for the first four weeks, and subsequently by the data logger, make use of 

the following equations (see abbreviations section for meaning of letters and 

symbols): A) The mass flow of air per unit leaf area through the cuvette; 

W = ((V x P) / ((273 + ta)a)) x 120.311 mol m 2  s 

Assuming that dry air enters the cuvette, the transpiration rate from the 

leaf (E); 

E = (e. / (P - e )) x W mol m 2  s- 1 a 	o 	f 
where e0  = es  x (h 

C 
/ 100) 

To calculate the leaf temperature from the energy balance of the leaf: 

The energy absorbed by the leaf (H): 

H = (Q x 698 / 3190) x ((0.8 x 0.85) + (0.2 x 0.6)) 

where (698/3190) converts the mol quanta (Q), to W m 2; 0.8 is the fraction of 

visible light absorbed by leaves and 0.85 is the fraction transmitted through the 

chamber; 0.2 is the fraction of infra red absorbed by the leaves, and 0.6 the 

fraction transmitted through the leaf chamber. Then: 

At = ((0.175 x Q) - (XE)) / 0.93 x M a  x (C p / r bwater + 4o a (t + 273) 

The leaf temperature: t1 = t  + At 

The stomatal resistance to water vapour: 

r S  =((e I 	0  /e -1) +W) - r b  

The stomatal conductance to water vapour: 

G 	=1/r 
S water 	S 

The stomatal conductance to carbon dioxide: 

G S  =o
s water 

 /1.606 

50 



E) Before the calculation of photosynthetic rate, the analyser CO  

concentration must first be corrected for the diluting effect of water vapour 

picked up in the cuvette: 

C = (P x C) + (P - e) 

F) The assimilation rate: 

P N = (C - C ) x W f  mol m 2  
e 	0  

C) The intercellular concentration of CO 2 : 

C. = (((C - E/2) x C ) - 	/ (0 + E/2) 
where 1 Y = 1.606)16 = 1.37/C 
and where CG =1/r 

	

b 	b water 

2.16 Statistical Analysis. 

A major statistical analysis used in these studies was a single or double 

analysis of variance (ANOVAR), to determine the significance of differences 

among treatment means subject to one or two factors (Parker, 1979). The level 

of significance was determined from the variance ratio, using the tables in 

Kokoska and Nevison (1989). - 

With two factor analyses, significantly different means were distinguished 

by calculating the Least Significant Difference (LSD), and employing it to 

compare the difference between means. For one factor analyses, significantly 

different means were determined by using a Multiple Range Test; involving 

calculation of the Shortest Significant Range (SSR), and using it to test the 

difference between pairs of means according to their relationship in size order. 

Treatments with non-significant differences between means were then unclsr- 

Significant differences between treatment means for some variables were 

tested using 95% confidence limits for P0.01, 0.05 and 0.001. Correlation 

coefficients were tested for significance using the tables in Parker (1979). 

Linear, polynomial and geometric functions were fitted to some data using a 

curve fit programme by Paul Warme (Interactive Microware Inc., P.O.Box 771. 

State college, Pa 16801, America), on an apple 11 microcomputer. 
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CHAPTER 3. RESULTS. NEEDLE GROWTH: MORPHOLOGY. 

This chapter is divided into sections dealing with morphological 

characteristics of needles measured during 1987 on field material, and 1988 on 

pot material. Also included are apical data for field material for 1988. 

3.1 Bud Burst, Shoot Extension. and Needle Number Per Shoot. 

In 1987 in the field, bud-burst of shoots in Control and -Mg trees occurred 

at the beginning of May, but was about two weeks later for -P. -K and -All 

shoots. In 1988, bud burst in Controls occurred at the end of April, but buds 

were smaller than those in the field, and shoots were only large enough to 

sample from May 2. Trees in the deficiency treatments flushed at about the 

same time as the Controls, apart from those in -All, -AIIR, -N and -NR 

treatments, where bud burst was delayed by about two weeks. 

Substantial stem extension occurred from May 18 onwards, for the 1987 

experiment., with shoot elongation being completed in all deficiency plots by 

the harvest on July 8 (Fig. 3.1), and by July 13 in the Controls. The fastest 

rates of extension, up to a mean of 5.6 mm d 1 , were found in Control shoots 

in early June, and these showed the greatest final length. The mean growth 

rate for the whole period of shoot extension was 3.27 mm d 1  (Table 3.1). 

Although the duration of growth was slightly different between treatments, final 

shoot length was related to extension rate, with shoots from the -P set of 

plants extending slowest (Table 3.1), and showing a final length about one third 

of the Controls. Shoots in the -All treatment grew slower initially, but attained 

a significantly greater final length than those in the -P set. The number of 

needles per shoot, for -P and -All treatments was similar in October, and 

significantly less than the values for the other treatments (Table 3.2). When the 

mean stem unit lengths were compared, -K and -All treatments were similar, 

with lower values than the Controls; the shortest shoots were those in the -P 

set, where needles were packed nearly twice as closely as on Control shoots 

(Table 3.2). Shoot extension was not measured in 1988, so no stem unit data 

may be derived. 
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Table 3.1 Mean rates of shoot extension during the whole growth season for 
all treatments. 

Treatment Total Shoot Period of Mean Extension 
Growth Growth Rate (mm d 1 ) 

(mm) (clays) 

Control 236 71 3.32 
-Mg 188 71 2.66 
-K 128 57 2.25 
-P 88 57 1.55 
-All 112 57 1.97 

Table 3.2 Mean lengths, needle numbers and stem unit lengths of first 
order shoots taken from mid-canopy. Trees were sampled in 
October 1987. n=10. 

Treatment Mean Shoot Length Mean Needle Number Mean Stem Unit 
(mm) ± S.E. Per Shoot ± S. E. Length (mm) 

Control 212 ± 6 347 ± 19 0.61 
-Mg 212 ± 10 331 ± 11 0.64 
-K 164 ± 14 326 ± 20 0.50 
-P 85 ± 9 240 ± 11 0.35 
-All 114 ± 6 225 ± 15 0.50 

The mean needle number per shoot in 1988 represents the total number of 

primordia initiated during the prece ding year, for all treatments apart from -N 

and -All. These two treatments showed "free" growth during the 1988 season, 

whereby new needle primordia were initiated, and expanded to give fully 

mature needles within the same season, as a result of favourable growth 

conditions following refertilisation. Since for all other treatments, the needle 

number per shoot was determined during 1987, when the deficiency treatments 

were applied, and before refertilisation of some plots, no difference is to be 

expected between refertilised and deficient sets. When 95% confidence limits 

were compared, -N, -NR, -All and -AIIR treatments had significantly reduced 

needle numbers per shoot compared with., the Controls (Table 3.3). Needle 

number of -N and -All shoots was also significantly lower than that for shoots 

in the respective -NR and -AIIR treatments. This was due to the "free" growth 

of -NR and -AIIR shoots, which began to show considerably higher needle 

numbers compared with -N and -All shoots, from as early as June (Table 3.4). 
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Table 3.3 Needle number per shoot for all treatments, averaged over the 
whole season 1988. Values are means ± S.E. n=35 for Controls 
and 17 or 18 for the other treatments. Asterisks show degree of 
significant difference from the Controls. 

+All -MgR -Mg -KR -K 	-PR -P 	-NR -N 	-AIIR -All 

Mean For 182 	181 	196 	167 	182 211 	185 	116 60 	133 67 
Whole 	±8 	±9 	±11 ±6 	±10 ±13 ±11 ±10 ±3 	±10 ±5 
Season 	 ** 	*** 	* 

% Reduction 	 63% 	67% 
From Control 

Table 3.4 Mean needle number per shoot during the 1988 season, for 
Control, -AIIR, -All, -NR. and -N treatments. n=2. 

Date Treatment 

Control -AIIR -All -NR -N 

May 23 248 82 95 68 59 
June 6 186 85 58 85 64 
June 20 210 105 68 89 55 
July 4 154 94 74 94 54 
July 25 198 143 64 109 74 
Aug 15 130 138 67 138 72 
Aug 22 182 181 79 143 59 
Sept 5 211 202 58 180 53 
Nov 7 146 169 46 136 47 

3.2 Bud Dimensions of Field Material. 

Buds sampled in February 1988 in the Control set were the largest in all 

dimensions, and those in the -P set by far the smallest (Table 3.5 A). No data 

were recorded for -Mg buds. Variation in the linear dimensions of the bud 

core was substantial, with larger differences seen in the calculated areas (Table 

3.5 B). The ratio of basal to surface area varies from 0.35-0.36 for the Control 

and -K set, to 0.25-0.27 for the -P and -All treatments (Table 3.5 B), suggesting 

differences in shape of the bud between the two groups. 
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Table 3.5A Apical bud dimensions from first order lateral shoots from 
mid-canopy, for all nutrient treatments. Buds were sampled 
in March 1988. Data are means of 10 buds ± S.E. 

Treatment Dome diameter Basal diameter Bud height 
(mm) (mm) (mm) 

Control 0.485 ± 0.042 2.045 ± 0.099 2.855 ± 0.0100 

-K 0.470 ± 0.019 1.495 ± 0.097 2.145 ± 0.0113 
-P 0.315 ± 0.026 1.035 ± 0.045 1.925 ± 0.094 
-All 0.420 ± 0.013 1.310 ± 0.105 2.620 ± 0.127 

Table 3.5B Derived apical data from Table 3.5A. 

Treatment Basal area Flank surface area B/F 
(mm 2 ) (mm 2 ) 

Control 3.28 9.20 0.36 
-K 1.76 5.04 0.25 
-P 0.84 3.13 0.27 
-All 1.35 5.39 0.25 

3.3 Needle Extension. 

3.3.1 1987 Experiment. 

One week before bud-burst, mean needle length for five consecutive 

positions in Control buds varied from about 5 mm at the base of the bud, to 2 

mm at the tip (Fig. 3.2 A). By the time of flushing, considerable needle 

elongation had occurred and the basal needles had reached lengths of up to 13 

mm. The fastest mean extension rates were found for positions 1-5 over the 

flushing period, between April 27 and May 4, and reached values of about 1.15 

mm d 1 . This rate was not maintained, and fell to 0.3-0.5 mm d 1  for needles 

at all positions between May 4 and May 18. The data for June 10 are 

anomalous, probably because of tree-to-tree variation, and if these data are 

not considered, the mean rate of needle extension between May 18 and June 

22 fell further to less than 0.2 mm d 1 . Omitting the data from June 10, the 

region of most active needle growth from immediately prior to bud burst 

shifted distally along the shoot, from positions 1-5 between April 27 and May 

4, to positions 11-15 between May 4 and May 18, and to positions 31-35 

between May 18 and June 10. Basal needles ceased growth first, by May 18. 

At final size, on June 22, needle length varied with position, the longest being 

those at positions 15-25 which reached about 22 mm, with those needles 
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Figure 3.2 A to F, (and overleaf). 
Changes in length of needles from whorl 7 shoots of field trees, from 
all treatments at times throughout the 1987 growth season, and according 
to needle position on the shoot. Values have been averaged for groups 
of five needle positions. Points are data for for one shoot, or means 
of two or three values from different shoots ± S.D. Standard deviations 
are printed alongside some graphs for some sample dates. 
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closest to the tip of the shoot about 12 mm shorter. The difference between 

replicates is substantial (e.g. Fig. 3.2 A), but within-harvest variation was less 

than the differences seen in successive harvests Needle numbers per spiral 

also varied between trees, and ranged from 37 to 53. 

Direct comparison of the treatment data is impossible, as harvest times 

vary, but the treatments are qualitatively similar in their pattern of needle 

development: The position where longest needles were situated was initially 

near the shoot base, with a progressive shift of this position distally with time, 

so that at the final harvest, in June or July, mean needle length was greatest 

near the shoot mid-point, at positions 16-20, or to within 5 positions of this 

(Fig. 3.2 B to E). Within-harvest variation for each treatment was again great, 

and tree-to-tree variation sometimes caused anomalous data, e.g. for -Mg and 

-K harvests 2 and 3 (Fig. 3.2 B and C), and for -P harvests 3 and 4 (Fig. 3.2 0) 

so that a smooth increase in needle length with time was not obtained. The 

number of needles per spiral also varied between shoots, so that a needle at a 

particular position at one sampling time could not be equated with a needle at 

the same position at another, in terms of similar relative position on the shoot. 

This makes estimates of rates of needle extension unreliable. However, the 

total increase in needle extension in -P and -All treatments of 7 to 8 mm 

between bud burst and final harvest, means that extension rate was reduced in 

these treatments compared with the Controls. The -Mg data are quantitatively 

similar to those of the Controls, in terms of timing of development and final 

needle size. The onset of needle extension in -P. -K and -All treatments was 

delayed; even though the first harvest in these treatments was one to two 

weeks later than those for the Control and -Mg treatments, the maximum 

needle length of 8-10 mm was shorter than that of Control and -Mg needles 

on May 4. Final needle length was significantly reduced in the -P and -All sets 

(Fig. 3.2 D and E), and needle lengths at the final harvest were in the order 

Control > -Mg = -K > -All > -P. 

Needles in the -K set began extending later than the Controls, yet reached 

a similar length, although the final harvests were two weeks apart. In order to 

compare extension rates, it was important to know whether extension had 

ceased in each treatment by the time of the final harvest. 

A comparison of the data for the final harvest for each treatment with 

length of needles from the shoot mid-point measured at a supplementary 
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sampling in October, (Table 3.6), show that the size ranking of treatments 

follows that at the final harvest. Needle lengths at the final harvest from -P. 

-K and -All treatments were larger than the October means (Table 3.6), because 

of sample variation, but the Control and -Mg data were not significantly 
3.6 

different. The data in Table 1 confirm that needles in the -P treatment were 

smaller than those in the -All treatment. 

Table 3.6. Mean needle dimensions from first order shoots from mid- 
canopy in the field, sampled in October 1987, for all nutrient 
treatments. 	Values are means ± S.E. for 10 shoots, where the 
value for each shoot is the mean of 20 needles from a 
mid shoot position. 

Treatment Mean needle length Mean needle width 	length:width 
in October (± S.E.) in October (± S.E) 	ratio 
(mm) (mm) 

Control 21.79 ± 0.70 1.49 ± (3.55x10 2 ) 	 14.62 
-Mg 20.44 ± 0.89 1.40 ± (3.48x10 2 ) 	 14.59 
-K 19.40 ± 0.84 1.45 ± (6.80x10 2 ) 	 13.38 
-P 11.89 ± 0.50 1.33 ± (4.41x10 2 ) 	 8.94 
-AU 15.62 ± 0.54 1.32 ± (4.51x10 2 ) 	 11.83 

3.3.2 1988 Experiment 

No positional needle length data were obtained during 1988, but the mean 

length for needles from the whole shoot in the Controls increased from bud 

burst at the end of April, until the end of May (Fig. 3.3 A). Subsequently, the 

mean length was just over 10 mm (Table 3.7), with considerable sample 

variation. Data for -PR and -P treatments also showed an initial increase in 

mean needle length, until mid May. For the other treatments, mean length did 

not vary from the beginning of May (Fig. 3.3 B,C,E and F), suggesting extension 

to occur rapidly, within a week or two following bud burst. When the 95% 

confidence limits were compared, only needle lengths in -N and -All treatments 

were significantly lower than the Controls (Table 3.7). There was only a 

significant effect of refertilisation on mean needle length in -NR and -AIIR 

treatments, where there was an increase in length of about 5 mm. 
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Figure 3.3 A to F 
Length of needles from terminal whorl 2 shoots of pot trees 
throughout the 1988 season for each treatment. Needle length 
was averaged for all needles from the shoot, and each point 
is a mean of values from two different trees ± S.D. For 
treatments apart from the Control, closed symbols represent 
nutrient deficient trees, and open symbols represent refertilised 
trees. The letter d shows where standard deviation bars for 
data from deficient and refertilised trees do not overlap at 
any one sample date. 
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Table 3.7. Mean needle length for needles at all positions on the shoot, 
for all treatments from May 30 1988. Values are means ± S.E. 
N=30 for Controls; 14-16 for the other treatments. Asterisks show 
degree of significant difference from the Controls. 

Treatment +All -MyR -Mg -KR -K 	-PR -P 	-NR -N 	-AIIR -All 

Mean 	10.40 9.92 	10.03 11.72 11.20 10.94 11.60 10.53 5.85 	10.98 6.18 

Needle 	±0.29 ±0.54 ±0.65 ±0.33 ±0.52 ±0.36 ±0.45 ±0.49 ±0.32 ±0.46 ±0.38 
Length 
(mm) 

3.4 Needle Width, 1987. 

For Controls, mean needle width immediately prior to flushing on April 27, 

ranged from 0.9 mm for the first five needles, to 0.5 mm for the smallest 

measurable distal needles (Fig. 3.4 A). Needle width only increased greatly 

after May 18, and then increased as the needles extended. The high rate of 

width increase between May 18 and June 10 subsequently fell. Needle width 

was greatest for needles at the, base of the shoot, and by June 10 width 

declined slightly from positions 1-40, and sharply for needles at more proximal 

positions. 

For the deficiency treatments, needle widths at the first harvest for each 

treatment were similar to those of the Controls on May 4 (Fig. 3.4 B to E). The 

most proximal needles were the widest, with a progressive decrease in width in 

all treatments, moving towards the shoot tip, with widths of the most distal 

needles being less than half that of proximal ones. The widths of needles from 

all deficiency treatments at the final harvest was not as high as those in the 

Controls, but variation between samples was sometimes greater than between 

harvests, so that comparisons of absolute size, or estimates of rates of growth 

are not useful. By October, sampling of a larger number of trees showed 

needles from Control, -Mg and -K treatments to be wider than those from -P 

and -All treatments (Table 3.6). The length:width ratio was also reduced in the 

latter two treatments. 
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Figure 3.4 A to E. (and overleaf). 
Change in width of needles from whorl 7 of field trees, from 
all treatments at times throughout the 1987 growth season, and according 
to needle position on the shoot. Values have been averaged for groups 
of five needle positions. Points are data for one shoot, or means of 
two or three values from different shoots ± S.D. Standard deviations 
are printed alongside some graphs, for some sample dates. 
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3.5 Needle Fresh Weight. 

3.5.1 1987 Experiment. 

Immediately following bud burst in the Controls, needle fresh weight 

increased most rapidly in basal needles, until May 18 1987, with the mean fresh 

weight of the most proximal needle remaining constant (Fig. 3.5 A). Maximum 

rates of mean fresh weight increase for the basal needles reached 2.7x 10-4g 

d- 1,  between May 4 and May 18. Between May 18 and June 10, there was a 

shift in the region of greatest increase in fresh weight, from positions 1-5 to 

26-30. Final maximum needle fresh weight for needles about 1/3 of the 

distance along the shoot was about 11.5x10 3  g. 

At the first harvest for each deficiency treatment, needle fresh weight 

showed the same pattern with needle position as in the Controls (Fig. 3.5 B to 

E). The greatest increase in mean fresh weight was subsequently in needles 

towards the middle of the shoot. Needle fresh weight at the final harvest for 

-Mg and -All needles was slightly less than for the Controls, at around 

10.1x10 3g, but for -K needles the maximum was 8.8x10 3g, and for -P needles, 

6.7x10 3  g. 

3.5.2 1988 Experiment. 

Mean needle fresh weight for all pot treatments after May 30 showed that 

needles in -N and -All treatments were significantly lighter than the Controls 

(Fig. 3.6 A to E), and -KR needles were significantly heavier than the Controls, 

when 95% confidence limits were compared (Table 3.8) The increase in needle 

fresh weight on refertilisation of -N and -All sets was also significant at p < 

0.05. 

Table 3.8. Needle fresh weight for all treatments, from May 30 1988. Values 
are means xlO ± S.E. n=30 for Controls, 13-16 for,.-other 
treatments. Asterisks show degree of significant difference from 
the Controls. 

+All -MgR -Mg -KR -K 	-PR -P 	-NR -N -AIIR -All 

Needle 	2.81 	2.53 2.84 3.53 3.26 2.72 3.42 3.20 1.65 3.57 1.49 
Fresh 	±0.12 ±0.29 ±0.31 ±0.21±0.22 ±0.14 ±0.17 ±0.17 ±0.29 ±0.26 ±0.15 
Weight 	 * 	 * 

(g) 
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Figure 3.5 A to E, (and overleaf). 
Fresh weight of needles from whorl 7 shoots of field trees, from all 
treatments at times throughout the 1987 growth season, and according 
to needle position on the shoot. Values have been averaged for groups 
of five needle positions. Points are data for one shoot only, or means 
of two or three values from different shoots ± S.D. Standard 
deviations are printed alongside some graphs, for some, sample dates. 
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Date 	Needle position number 
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5 10 15 20 25 30 35 40 45 

June 22 	2.0 2.3 2.7 2.3 1.9 2.1 2.4 1.0 0.0 
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Figure 3.6 A to .F 
Fresh weight of needles from whorl 2 shoots of pot trees 
throughout the 1988 season for each treatment. Needle fresh 
weight has been averaged for needles at all shoot positions, 
and each point is a mean of values from two different trees 
± S.D. For treatments apart from Controls, closed 
symbols represent nutrient deficient trees, and open symbols 
represent refertilised trees. The letter d shows where 
standard deviation bars for data from deficient and 
refertilised trees do not overlap at any one sample time. 
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3.6 Dry Weight:Fresh Weight Ratio. 

The dry weight:fresh weight ratio for needles from field material in 1987, 

showed similar seasonal trends for all treatments, being at around 0.2 until 

early June, then rising sharply to a plateau of 0.38-0.48 by the end of July (Fig. 

3.7). Analysis of variance on the data for harvests over the period September 

to early November (4 harvests with 4 values taken random from the total 

number of replicates on each occasion) (Table 3.9), showed differences 

between nutrient treatments to be significant, with -.P and -K needles having 

higher dry weight:fresh weight ratios than the Controls. 

The seasonal change in the ratio for needles in 1988 from pot trees was 

similar to that in 1987, increasing in all treatments from a minimum of about 

0.2 at bud burst, to a maximum by the end of July (Fig. 3.8 A and B), although 

the spread was slightly greater than that seen in 1987. The lag until early June 

seen in the ratio of needles from the field was not seen with needles from pot 

trees, where the ratio increased linearly with time. Analysis of variance on the 

last 4 harvests of the -MgR, -Mg, -KR, -K, -PR, and -P treatments (Table 3.10 

A), and the' Control data for these dates (2 values for each treatment), again 

showed significant differences to exist between treatments, with -P and -K 

needles having a significantly higher ratio than the Controls. The only 

significant difference in the dry weight:fresh weight ratio between deficient and 

refertilised trees involved K, with -KR needles having lower ratios than -K 

needles. A similar analysis of variance for -AIIR, -All, -NR, and -N treatments 

in Fig. 3.8 A (4 harvests, 2 values for each), and the Controls (Table 3.10 B), 

showed treatment differences not to be significant. 



Figure 3.7. Dry weight:Fresh weight ratio throughout the 1987 season, for all 

field treatments, 1987. Each point is the mean of 4 to 6 values. 
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Table 3.9. ANOVAR on the data for the last 4 harvests for treatments in Fig. 3.7. 

Source of Degrees of Mean Variance 

Variation Freedom Square Ratio 

Treatment 4 8.19x10 3  14.50 

Time 3 6.68x10_ 3 10.34 *** 

Interaction 12 5.65x10 4  0.87 

Error 60 6.46x10 4  

L.S.D. = 0.018 

Means for the last 4 harvests: 

Control -Mg -K -P 	-All 

0.415 0.409 0.447 0.458 	0.412 
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Figure 3.8A. Dry weight:Fresh weight ratio for needles from Control and 
some of the pot treatments throughout the 1988 season. 
Each point is the mean of two values. 

Table 3.10A. ANOVAR for data for the last 4 harvests in Fig. 3.8A. 

Source of Degrees of Mean Square Variance 
Variation Freedom Ratio 

Treatment 6 3.98x10 3  3.43 * 
Time 3 11.17x10 3  10.13 *** 
Interaction 18 1.16x10 3  1.05 
Error 28 i.10xiO 3  

L.S.D. = 0.039 

Means for the last 4 harvests: 

Control -Mg -MgR -K 	-KR -P 	-PR 
0.393 	0.420 0.395 0.452 0.395 0.433 0.407 

Figure 3.813. Dry weight:Fresh weight ratio for needles from Control and 
some of the pot treatments throughout the 1988 season. 
Each point is the mean of two values. 

Table 3.10B. 	ANOVAR for data for the last 4 harvests in Figure 3.88. 

Source of 	Degrees of 	Mean Variance 
Variation 	Freedom 	Square Ratio 

Treatment 	4 	 8.47x10 3  1.97 n.s. 
Time 	 3 	 5.33x10 3  3.89 * 
Interaction 	12 	 4:29x10 3  3.14 * 
Error 	 19 	 1.37x103 
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3.7 Needle Projected Area. 

3.7.1 1987 Experiment. 

For the Controls, mean projected area for harvests up to May 18 was 

greatest for basal needles, and decreased for needles towards the. shoot tip 

(Fig. 3.9 A). In the period May 4 to May 18, projected area of basal needles 

increased from 3 mm 2  to 18 mm 2, whilst that of distal needles did not increase. 

Subsequently, the greatest increase in projected area was for needles at a 

mid-shoot position. 

Mean needle projected area in the deficiency treatments showed the same 

pattern of increase as the Controls. Maximum projected area at the final 

harvest in June or July for -Mg and -K needles was slightly less than for the 

Controls, at about 22 mm 2. Needles from the -All treatment had slightly lower 

final maximum areas, at about 20 mm 
2, and needles in the -P treatment had 

considerably lower areas, with a maximum of just over 14 mm  (Fig. 3.9 B to 9. 

3.7.2 1988 Experiment 

Mean needle projected area for Controls increased during the first week of 

May (Fig. 3.10), until attainment of final needle length, and reached a mean of 

about 7 mm 2. Projected area of -N and -All needles was significantly lower 

than for the Controls, (Fig. 3.10 E and F, and Table 3.11), and refertilisation of 

these treatments caused a significant increase in projected area (Table 3.11). 

Projected area of needles in -NR and -AIIR treatments continued to increase 

until early September, which is the same pattern as for needle length (section 

3.3.2), and is partly due to free growth. All other treatments showed no 

increase in needle projected area from early May (Fig. 3.10 B to D), with only 

the projected area of -KR needles being subsequently significantly different to 

that of the Controls, wheA 95% confidence limits are compared (Table 3.11). 

Table 3.11 Mean needle projected area for all treatments from May 30 1988. 
Values are means ± S.E. n=30 for Controls; 13-16 for other 
treatments. Asterisks show significant difference from the Controls. 

+All 	-MgR -Mg 	-KR 	-K 	-PR 	-P -NR 	-N 	-AIIR -All 

Mean 6.61 	6.29 	6.25 	8.27 	7.56 	6.86 	7.71 6.73 	3.62 	7.41 3.50 
Needle ±0.27 ±0.49 ±0.56 ±0.43 ±0.49 ±0.31 	±0.40 ±0.32 ±0.45 ±0.42 ±0.25 

Area * *** 
(mm') 
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Date 	 Needle Position Number 

1- 6- 11 - 16- 21- 28- 31- 36- 41- 46- 
5 10 15 20 25 30 35 40 45 50 

May 25 	3.2 3.7 3.9 5.1 5.0 6.3 0.0 0.0 -- -- 
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Figure 3.10 A to F 
Projected surface area of needles from whorl 2 shoots of pot 
trees throughout the 1988 season for each treatment. Needle 
projected area was averaged for needles at all shoot positions, 
and each point is a mean of values from two different trees 
± S.D. For treatments apart from the Controls, closed 
symbols represent nutrient deficient trees, and open symbols 
represent refertilised trees. The letter d shows where 
standard deviation bars for data from deficient and 
refertilised trees do not overlap at any one sample time. 
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3.8 Specific Leaf Area. 

3.8.1 1987 Experiment 

Differences in specific leaf area for the field treatments in 1987 (Table 3.12) 

were not significant, even though mean needle fresh weight and projected area 

followed the same ranking with treatment as for needle length (Table 3.6). 

Table 3.12 Mean projected area, fresh weight and specific leaf area for 
needles from all treatments sampled from first order shoots 
from mid canopy in October 1987. Values are means ± S.E. 
based on data for 10 shoots, where the value for each shoot 
is the mean of 20 needles from a mid shoot position. 

Treatment Projected Area Fresh Weight 	Specific Leaf 
(mm 2 ) 	 (9) 	 Area 

(cm 2  g_ 1 ) 

+All 	26.35 ± 0.70 	0.0144 ± 0.0005 	18.43 ± 0.78 
-Mg 	23.42 ± 1.44 	0.0122 ± 0.0029 	19.41 ± 0.41 
-K 	22.83 ± 1.36 	0.0120 ± 0.0009 	19.24 ± 0.53 
-p 	12.56 ± 0.81 	0.0068 ± 0.0005 	18.79 ± 0.33 
-MI 	16.58 ± 0.94 	0.0085 ± 0.0008 	20.15 ± 1.00 

3.8.2 1988 Experiment. 

For all pot treatments during the 1988 season, a good linear relationship 

was obtained between total needle projected area of the whole shoot, and total 

needle fresh weight of the same sample, with between 73% and 99% of the 

variation accounted for by the fitted lines (Fig. 3.11). This enables the 

projected area of a needle sample from any treatment to be made from the 

fresh weight of the sample. The linearity of this relationship suggests that the 

specific leaf area (cm 2  projected area fresh weight) did not alter during the 

season, after May 30. The mean specific leaf area for each treatment was 

calculated by dividing the total shoot projected area and total fresh weight by 

the number of needles per shoot, at each sampling time and averaging over 

the whole season. Data show that -NR and -AIIR treatments had lower specific 

leaf areas than other treatments (Table 3.13), but only the -AIIR treatment 

showed a significant difference from the Controls when 95% confidence limits 

were compared. None of the treatments showed any significant differences in 

specific leaf area on refertilisation. 

76 



Figure 3.11 
The relationship between total needle projected area per shoot, and total 
shoot needle fresh weight, for terminal shoots from whorl 2 of pot trees. 
Values are for individual shoots, for all sample times throughout the 
1988 season. 
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Table 3.13 Specific leaf area (cm 2  9- 1 fresh weight), for all treatments, from 
May 30 1988. Values are means ± S.E. n=30 for Controls and 
13-16 for other treatments. Asterisks show degree of significant 
difference from the Controls. 

+All -MgR -Mg -KR -K 	-PR -P 	-NR -N -AIIR -All 

Specific 	23.74 25.34 23.76 23.26 23.63 25.71 22.65 21.68 24.50 21.14 23.87 
Leaf Area. ±0.33 ±1.29 ±1.10 ±0.75 ±0.65 ±0.97 ±0.46 ±0.72 ±0.72 ±0.48 ±1.23 

** 

3.9 Total Needle Projected Area Per Shoot. 

3.9.1 1987 Experiment. 

The final mean needle projected area for needles at all positions (from Fig. 

3.9) was calculated for each treatment, and multiplied by the mean number of 

needles per shoot. (Table 3.2 ), to estimate the total needle projected area per 

shoot. The estimate was highest for Control shoots, and lowest for -P shoots, 

with the other treatments having intermediate values (Table 3.14). 

Table 3.14 Total needle projected area per shoot, for all treatments at 
the final harvest (June or July 1987). 

Treatment Total Needle Projected 
Area Per Shoot 
(cm 2) 

+AlI 	 80.4 
-Mg 	 64.9 
-K 	 61.0 
-P 	 27.0 
-All 	 46.1 

3.9.2 1988 Experiment. 

Total needle projected area per shoot for Control trees in 1988 was about 

14% of the value for 1987 (Table 3.15). In contrast to 1987 data, there was no 

effect of P or K deficiency on the total area, and the only treatments which had 

significantly lower total needle area than the Controls, when the 95% 

confidence limits were compared, were -N and -All. In these two treatments 

there was a significant effect of refertilisation (p < 0.05). In the other three 

deficiency treatments there was no significant effect of refertilisation on the 

total needle area (Table 3.15). 
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Table 3.15 Mean total needle projected area per shoot (cm 2) for all 
treatments, from May 30 1988. Values are means ± S.E. 
n=30 for Controls; or 18 for the other treatments. 

+All -MgR -Mg -KR -K 	-PR -P 	-NR -N -AIIR -All 

Total 	11.64 10.82 12.32 13.62 13.75 14.51 14.65 7.95 	1.87 	10.04 2.46 
Area 

±0.76 ±0.86 ±1.50 ±0.87 ±1.27 ±1.33 ±1.59 ±1.00 ±0.20 ±118 ±0.30 

Asterisks show degree of significant difference from the Controls. 

3.10 Discussion. 

3.10.1 Seasonal Development. 

The data show shoot extension in 1987 to begin in early May and end in 

early July. This is some 2-3 weeks earlier than the period of extension found 

by Ford et al. (1987a,b), who investigated seasonal variation in shoot extension 

of 1.2 year old trees of Picea sitc/7ensis grown in the Moffat forest about 60 km 

from Leadburn, at an altitude of 335 m. For the 1973 season they found shoot 

extension to begin in the latter part of May and to cease after 55-60 days, in 

late July-early August. However, the shoots of the Control set in 1987 in the 

present study grew substantially more than those at Moffat (Ford et al. 

1987a,b), probably because of a higher seasonal mean temperature at Leadburn 

during the study. 

There were only small effects of nutrient treatment on the timing of shoot 

elongation and of leaf expansion in 1987 and 1988. In 1987, the onset of shoot 

extension was delayed by about two weeks in the nutrient treatments and was 

completed by early July in all cases; there was no indication that the small 

delay in the onset of extension in the treatments was compensated for by a 

longer period of development. The shorter final length of the shoot in the 

deficiency treatments reflected partly this shorter extension period, but also a 

slower extension rate (Table 3.1), In 1988, the period of needle expansion was 

very short  for all treatments, in comparison with that of 1987, and was 

complete by the end of May. This is because the needles in 1988 were much 

smaller than those of field trees in 1987, and -. . had a slower extension 

rate. This short extension period for seedlings effectively increases the growth 

season, which is useful during seedling growth, to enable the apical bud to be 
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enlarged and to initiate more needle primordia than during the preceding year. 

The final length of the Control shoots in 1987 was nearly double that of 

those of the other treatments and was not correlated with bud height, 

measured on field trees in 1988, as reported for Pinus ponderosa (Hanover, 

1963), and Pinus resinosa (Rehfeldt and Lester 1966), but was more closely 

related to the diameter of the bud core (Table 3.5 A). Little (1970) also found 

shoot length to be correlated with shoot diameter as well as bud length, in 

Pinus strobus. Interpreting correlations for data obtained in different seasons 

has to be made with caution but bud diameter may be an index of the potential 

for development of vascular connections to the extending shoot which may 

control growth. 

Nutrient deficiency also affected final needle number per shoot in 1987 and 

1988 (Tables 3.2 and 3.3). In 1987, needle number was not correlated with 

shoot length, and mean stem unit length varied from 0.61 mm in the Control 

treatment, to 0.50 in -K and -All treatments, to 0.35 in the -P treatment. This 

crowding of the needles in the deficiency treatments suggests that stem 

elongation is affected more than needle initiation. This reduced stem 

elongation may be due to an effect of mineral deficiency in decreasing the 

cytokinin content of stems, as reported for leaves and roots of sunflower 

(Salama and Wareing, 1979). This is probably via an indirect effect on the 

roots. There was no relationship between bud surface area, treated as a cone, 

and final needle number, although these were measured in different seasons for 

this comparison. In 1988 the smaller needle number per shoot in -N and -All 

treatments is probably due to a smaller apical bud, although bud sizes were not 

measured for pot trees. Neither was it possible in 1988 to confirm an effect of 

nutrient deficiency in decreasing stem unit length, as found in 1987. 

The acropetal developmental sequence of needles along the shoot has been 

reported for species of Pinus (Kienholz. 1934), for long shoots of Larix laricina 

(Clausen and Kozlowski, 1970), and Larix decidua (Frampton, 1960). The time 

interval between commencement of rapid expansion of the proximal and distal 

most needles is probably about 3 weeks although the widely spaced harvest 

intervals make it difficult to be more precise. It means that until the later 

harvests, the largest needles are always at the base of the shoot and even 

when extension is complete the most distal needles remain the shortest and 

narrowest; the most proximal needles are also shorter, but wider, than those 
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towards the middle of the shoot. This ontogenetic trend resembles that found 

for spikelet size in barley (Cottrell et al., 1982). In both cases the basal 

structures are initiated following cessation of production of a different kind of 

organ, in barley the leaves, and in Spruce the scale cataphylls. It is possible 

that closeness to the zone of transition influences the size of the spikelet or 

needle in the two cases. 

The strong correlation between needle fresh weight and projected needle 

area for each treatment in 1988 is important, and enables needle weight from 

young trees to be of predictive use in estimating surface areas, as for Pinus 

radiara (Ohmart and Thomas. 1986). The b values change slightly between 

treatments, reflecting the differences in the relationship, caused by nutrition, 

although the specific leaf area, represented by these b values is only 

significantly reduced in the -AIIR treatment, compared with the Controls. 

However, the difference in specific leaf area between -All and -AIIR needles is 

not significant, nor those between other deficiency and refertilised treatments, 

even though significant differences exist between fresh weight and projected 

area of -N and -NR needles, and -All and -AIIR needles. Therefore, needle 

weight upon refertilisation of -N and -All trees increases in proportion to 

increases in needle size. In contrast to the present data, Bhat et al. (1979) 

found increased N supply increased the leaf area ratio (cm 2  g dry wt.) in rape. 

This difference is probably because conifer needles have a relatively small 

projected area and high weight, so that the specific leaf area is less sensitive 

to changes in either variable, compared with a broad leaved species. Needles 

in the -KR treatment are significantly heavier than the Controls, but needle 

projected area is not significantly greater, which may provide indirect evidence 

for a change in needle thickness between these treatments, but this is not 

supported by the 1987 data, leaving the possibility that the significance of the 

difference between fresh weight of -KR and Control needles is a Type 1 error. 

The value for specific leaf area for the Controls in 1987 of 18.4 cm  g  fr.wt. is 

lower than that of 24.1 cm  g  fr.wt. reported for needles of Sitka spruce at a 

similar canopy position by Lewandowska and Jarvis (1977), who also showed 

specific leaf area to decrease from 28.3 cm  9- 1 fr.wt. to 20.0 cm  9- 1 fr.wt. 

with decreasing canopy position, according to whether needles had a "sun" or 

"shade" shoot morphology. Needles sampled in October 1987 were from trees 

on the edge of the plot, and so had greater "sun" shoot morphology and hence 

a higher specific leaf area, than the shoots at a similar position within the 
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canopy, as sampled by Lewandowska and Jarvis (1977). The significantly higher 

dry weight:fresh weight ratio of -P and -K needles compared with the Controls 

in 1987 and 1988 is interesting, and reflects a change in the pattern of 

partitioning of carbon. This may be due to thicker cell walls, or a thicker 

cuticle, alterations in the amount of surface wax on the needle, or a higher 

amount of assimilates retained in the needle, possibly because of a reduction in 

translocation of assimilates out of the needle under nutrient deficient 

conditions. 

The -Mg set of trees in the field in 1987 did not have deficient foliar 

amounts of Mg (see Table 2.5). The lower shoot extension rate than Controls 

(Table 3.1) is probably therefore due to variation in material, as shoot length for 

a larger sample in October (Table 3.2), showed no difference to the Controls. 

No significant difference was found between needle length and width of -Mg 

and Control needles (Table 3.6), or in any of the other variables measured, so 

that the -Mg field data may be considered as a second Control. 

It is of interest that -P trees in 1987 had the lightest, shortest, narrowest 

needles, with the most reduced projected area and needle growth rate and the 

shortest shoots and smallest apical buds. These effects were all greater than 

for -All trees, suggesting that nutrient imbalance resulting from phosphorus 

deficiency reduces growth and therefore potential productivity more than that 

of potassium deficiency, or deficiency of P and K as represented by total 

nutrient deficiency, and that P is therefore the most important element of those 

studied, for growth. However, the needle characteristics measured in 

P-deficient trees in 1988 did not show the same reductions as in 1987, and 

neither did those resulting from K deficiency. This may be due to differences 

in tree age, with seedlings showing less extreme growth effects. Reduction in 

needle characteristics for -All trees was greater in 1988 than in 1987, as there 

was a greater effect of N deficiency in pot trees, as N deficiency is not 

regarded by the Forestry Commission as being present at the field site (pers. 

Comm. M.Coutts). The spectacular increase in needle length, fresh weight and 

projected area of -N and -All trees following refertilisation, and the increases 

in the morphological variables with increasing N supply, in 1989 support the 

findings of Brix and Ebel[ (1969), who found an increase in needle area with N 

fertilisation of Douglas fir. 
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3.10.2 Free Growth. 

Free growth observed upon refertilisation of -N and -All trees in 1988 is 

interesting; Jablanczy (1971) reported a tendency for free growth in young 

seedlings of spruce and fir, which disappears between 5 and 10 years of 

growth. Nienstaedt (1966) found that capacity for free growth in White spruce 

disappeared after 4 years. Pollard and Logan (1974) suggested that free growth 

is a response to photoperiod, and serves to increase leader height and 

therefore seedling survival in early years of growth. 

This photoperiodic free growth response was found to decline with age for 

Pinus res/nosa and Pinus strobus (Watt, 1961), and for Picea abies (Balut and 

Zelawski, 1955). In the present study, free growth appears to be a response to 

favourable nutrient conditions, and particularly after a period of unfavourable 

conditions. It is unlikely to be a result of exposure to a 16 h ptiotoperiod in 

the controlled environment room, as not all the treatments showed the 

response, and it was observed in -NR and -AIIR trees prior to placing them in 

the controlled conditions. The increase in needle size, fresh weight and cell 

number due to free growth must have important implications in productivity 

during early years of growth. - 
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CHAPTER 4. RESULTS. CELLULAR PARAMETERS OF NEEDLE GROWTH 

The results in this chapter describe primordium cell number, and the cellular 

parameters of needle growth in field trees from all nutrient treatments, from 

bud burst to maturity. Also presented are results for the early growth of 

Control needles of field trees, prior to bud burst in 1988. 

4.1 Needle Cell Number, 1987. 

4.1.1 Primordium Cell Number. 

Because of the labour involved in counting cells in primordia, only limited 

data are available (Tables 4.1 and 4.3). Mean values were obtained for 

primordial cell number of needles at proximal (basal), median proximal, median 

distal and distal (apical) positions in the dormant bud, for Control, -K and -P 

treatments (Table 4.1). Between 2 and 5 primordia were counted from each 

position (see Materials and Methods, section 2.7.1), from each of two buds. For 

each bud, two of the estimates of primordium cell number for each position 

were taken at random, and the average of the four values found. The largest 

primordia at the base of the bud had the largest cell numbers, with the distal 

primordia having the smallest. Analysis of variance (Table 4.2) on the data 

showed a small, but significant interaction between position and nutrient 

treatment, with cell number at the proximal (base) position greatest in the 

Control primordia and least in the -P treatment. Primordia from the -P 

treatment had fewer cells than the Controls at other positions as well, however, 

at the distal position, primordia from the -K treatment had fewest cells. 
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Table 4.1 Cell numbers in needle primordia from dormant buds from mid-
canopy, for i-All, -K and -P treatments, and at different positions 
in the bud. Values are means for two primordia from each of two 
separate buds, to 3 significant figures. 

Position of primordium in the bud. 

Treatment 	Base 2nd Quarter 3rd Quarter Apex 

Control 	6640a 6450a 4020d 2930 f 

-K 	 5390b 4090d 3615e 1890 

-P 	 3820c 4090cd 3480e 2170 

LSD (p=0.05): for position = 319 
for treatment = 362 

Similar letters in rows and columns indicate non-significant differences. 

Table 4.2 Analysis of variance on primordium cell number data. 

Source of Degrees of Mean Variance 
Variation Freedom Square Ratio 

Treatment 2 578190.5 6.56 ** 
Position 3 10555933 51.63 
Interaction 6 88138 4.31 ** 
Error 12 204453 

Primordium cell numbers were also counted from two Control buds, and 

one -P and -K bud, from mid canopy in the field, according to position in the 

bud (see Fig. 2.1 C, Materials and Methods). Data show the same decrease in 

cell number in primordia towards the bud apex (Table 4.3), with highest cell 

numbers in basal primordia for each treatment. Control buds also had higher 

primordium cell numbers than the deficiency treatments. 
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Table 4.3 Primordium cell number according to position of the 
primordium in the bud. 

Position number 	 Treatment 
of primordium 
in the bud* 	+All 	 +All 	 -K 	 -P 

(Replicate Buds) 

1 --- --- 4460 ± 1350 
2 5340 ± 60 5590 --- 	 3560 
3 --- --- 4380 
4 4450 ± 370 
5 --- 5380 --- 	 2660 ± 350 
6 4840 
8 4790 --- --- 	 3170 ± 410 
10 --- 5090 --- 	 2470 ± 400 
12 5280 
13 --- --- --- 	 2250 ± 200 
14 1900 
15 Apex Apex Apex 
16 Apex 

Values are for one measurement only, or means ± S.D. of up to three 
replicate primordia from the same bud. 
*For explanation of primordium position number, see Materials and Methods, section 2.7.1. 

4.1.2,Needle Cell Number 1987. 

Data for needle cell number varied according to position on the shoot, as 

did primordium cell number with position in the bud. Third or fourth order 

polynomial curves were fitted to the data for successive harvests (Fig 4.1) and 

accounted for not less than 52%, and usually over 80% of the observed 

variance. 

One week before bud-burst, Control needles at the base of the bud were 

already showing a large increase in cell number, with values of between 50,000 

and 70,000 cells per needle. This represents at least a tenfold increase over the 

values in Table 4.1, and can be accounted for by assuming at least 3-4 cycles 

of cell division of all cells prior to sampling. At bud-burst (May 4), cell number 

in these basal needles had reached 130,000, indicating that at least another 1-2 

cycles of cell division had occurred. Mean cell cycle time was thus a maximum 

of 1 week at this stage. Subsequently cell number increased more slowly in 

these needles. For needles at positions along the rest of the bud, the rates of 

cell division following bud burst were slightly higher, between positions 20-35, 

there was a three-fold increase in needle cell number in one week, from April 
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27 to May 4. This is equivalent to between 1 and 2 cycles of cell division, with 

a mean cell cycle time of not more than 112 hours. Between May 18 and June 

22, changes in needle cell number were seen for all except the distal needles; 

these may have continued to show cell division beyond this point, but data are 

lacking. For the Controls, final cell numbers for needles in the proximal half of 

the shoot were between 180,000 and 200,000. These values are higher than 

those for needles in the deficiency treatments (Figs 4.1 B to E). In all these 

treatments, needle cell number showed similar trends with position and time to 

that of the Controls. However, final needle cell number varied; needles in the 

-All and -K treatments did not vary significantly from each other, but needles 

in the -P set showed maximum cell number to be generally not more than 

80,000. 

Figure 4.1 A to E. (and overleaf). Needle cell number according to needle 
position on the shoot, for each treatment in the field throughout the 1987 
growth season. Each value is a mean, obtained by dividing the total cell 
number in each maceration solution by the number of needles macerated 
(n = 2 to 5), for one shoot only. For equations of the fitted curves see 
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Equations of the fitted polynomial curves, and r 2  
values for data in Fig. 4.1. 

Treatment Sampling Fitted equation r2  
Date 

Control April 27 y = 49167.4 + 5848.5X - 451.1X 2  - 0.09X3  0.96 
May 4 y = 140148.4 - 2415.7X + 240.1X2  - 6.4X3  0.95 
May 18 y = 185547.4 - 3352.5X + 276.5X 2  - 6.1X3  0.94 
June 10 y = 68865.3 + 8925.4X - 197.5X2  + 0.4X 3  0.91 
June 22 y = 167458.5 + 1009X + 109.3X2  - 4X3  0.92 

-Mg May 25 y = 119742 + 440.4X + 65.4X2  - 2.3X3  0.82 
June 10 y = 55241.1 + 4968.9X - 127.4X2  0.52 
June 29 y = 86926.1 + 5100.7X - 56.2X2  - 1,8X3  0.84 

-K May 11 y = 67282.1 + 17511.8X - 1256.4X2  - 0.4X 3  0.97 
June 1 y = 107130.1 + 4593.9X - 110.9X2  - 0.2X3  0.85 
June 15 y = 80356.5 + 3602.1X + 93.3X 2  - 5.1X 3  0.80 
july 8 y = 101219.1 + 3498X - 2.4X2  - 2.6X 3  0.83 

-P May 11 y = 61743.7 -- 1657.7X - 67.6X2  + 0.9X 3  0.89 
May 25 y = 80677.7 + 5196X - 175.8X2  + 0.9X 3  0.64 
June 15 y = 60868.7 + 514.8X + 29.5X 2  - 1.8X 3  0.91 
June 29 y = 51570.8 + 4865.8X - 300.5X 2  + 3.9X 3  0.82 

-All May 18 y = 75194.3 + 602.3X + 41X2  - 5.4X3  0.97 
June 1 y = 102210.6 + 4221.2X - 181.5X2  - 0.4X 3  0.95 
June 22 y = 85162.2 + 1673.1X + 132.2X2  - 4.6X3  0.64 
July 8 y = 125795 + 169.8X + 166.9X2  - 6X3  0.69 
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4.2 Duration of Cell Expansion and final cell size, 1987. 

For each sampling date for each treatment, the plot of needle cell number 

and fresh weight gave a highly significant linear relationship (Fig. 4.2 A to E, 

with the fitted lines accounting for between 50% and 97% of the observed 

variation (Table 4.4). For the Controls, the slope of the fitted line decreased at 

successive harvests, as mean fresh weight per cell increased to a value of 

about 7.0x10 8g on June 10 (Fig. 4.2 A). For the -K and -All treatments, the 

slope of the relationship also decreased with each sampling time (Fig. 4.2 C 

and E), and also for the other deficiency treatments, (Fig.4.2 B,C,D), although 

these showed slightly more variation in material between sampling times. The 

time at which the slope of the relationship, b, ceased to change (Table 4.4), 

indicates when maximum needle cell fresh weight was reached, and hence 

when cell expansion, had ceased. 

Table 4.4 Table of regression coefficients, b (x 10), for the relationship 
between needle cell number and fresh weight, for all treatments 
at each sampling time, (see Fig. 4.2). 

Sampling Coefficient 
	

Treatment 
Time 

Control -Mg -K -P -All 

1 b 9.998 --- --- 

r2  0.964 --- --- 

2 (1) b 5.042 --- 8.141 3.266 3.704 
r2  0.793 --- 0.946 0.878 0.937 

3 (2) b 3.163 1.808 1.993 8.757 2.143 
0.822 0.896 0.899 0.501 0.982 

4 (3) b 1.422 9.297 1.570 1.306 1.364 
0.897 0.73 0.97 0.949 0.929 

5 (4) b 1.4645 1.436 1.642 1.237 1.390 
0.989 0.86 0.909 0.916 0.766 

Numbers 1 to 5 refer to the order of sampling dates in the key of Fig. 4.2 A 
for the Controls, and numbers in brackets refer to the sampling dates in the 
keys to Fig. 4.2 B to F for the deficiency treatments. 
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Figure 4.2 A to E 
The relationship between needle cell number and fresh weight 

for all sampling times throughout the 1987 growth season, for 
each treatment in the field. Fitted lines are described by 
the coefficients in Table 4.4. The points at any one sample 
time represent the data in Fig. 4.1, for the same positions 

on the shoot. 
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The rate of increase in mean needle fresh weight per cell was similar for all 

treatments until early June (Fig. 4.3 A) Subsequently, values reached a plateau, 

apart from cells in the -All treatment which continued to increase in fresh 

weight. Mean fresh weight per cell at the final harvest (Table 4.5) varied in the 

order; -P > -All > -Mg > Control > -K. However, cells from the -Mg and -K 

treatments showed a lower mean fresh weight at the final harvest than for the 

preceeding one, indicating tree-to-tree variation; using the final data set as an 

indication of cell size (Table 4.5) must therefore be done with caution. Because 

the amount of dry matter per cell increases during needle development (Figs. 

3.7 and 3.8), a more accurate estimate of cell size is obtained from.the mean 

cell water content. The fresh weight values for the needles used for cell 

counting were therefore corrected for the proportion of dry weight (from the 

dry weight:fresh weight ratio). Mean cell water content increased in all 

treaments (Fig. 4.3 B) in a similar way to mean cell fresh weight; increasing at 

the same rate, until a maximum in mid June. Cells from the -All treatment did 

not increase in water content after this time, as they did in fresh weight. 

When the mean cell water contents for needles at all positions are averaged 

for the last two sampling times (Table 4.6) it is seen that cells from needles in 

the -P set are still larger than those of the Controls, and cells from -K needles 

are smaller than the Controls, confirming the interpretation based on the fresh 

weight per cell data. 

Table 4.5 Mean fresh weight and cell number of needles from all 
treatments at the final harvest. 

Treatment Mean fresh Mean cell Mean Fresh Fresh weight 
weight per number per weight per per cell 
needle needle cell expressed as 
(x10 3g) (x10 5 ) (x10 8g) % of Control 

Control 9.8 1.47 6.67 
-Mg 7.4 1.06 6.98 105 
-K 6.3 1.10 5.73 86 
-P 4.6 0.54 8.52 128 
-All 9.8 1.27 7.72 116 
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Figure 4.3 A) Mean fresh weight per cell (x1O 8g), B) Mean cell water 

content (xlO 8g), for each treatment in the field, at each sampling time 
throughout the 1987 growth season. Values are means ± S.E. (n = 11-14) 
for the data for needles at all positions in Figure 4.2 at each sampling 

time. 
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Table 4.6 Mean cell water content, for needles along the whole shoot, 

averaged for the last two harvests. 

Treatment Mean cell water Expressed as % 
content of control 

(xlO 8 g) 

Control 5.06 
-Mg 5.85 116 

-K 4.59 91 

-P 6.08 120 

-All 5.06 100 
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4.3 Early Needle Development in Field Material, 1988. 

During the 1987 study it was found that at bud burst, Control needles had 

already extended several mm in length, and undergone considerable cell 

division. A more detailed analysis of needle growth prior to bud burst was 

therefore made in 1988, for needles from Control trees from the field, to give a 

fuller description of the pattern of increase in cell number and length during 

this early period. Position numbers refer to those in the spiral in Fig. 2.1 C. 

4.3.1 Needle Size. 

On April 7, one month before bud burst, mean needle length at all bud 

positions ranged from 0.9 to 1.9 mm (Fig. 4.4). The pattern of mean needle 

length increase with time was the same as that observed following bud burst 

in 1987; distal needles extended the least, and proximal ones the most, so that 

by April 27 distal needles were still about 2 mm in length, whilst needles at 

positions 1-11 were more than 5 mm long. Between April 15 and April 20, 

rates of extension between positions 1-10 varied from 0.14-0.18 mm d 1 , and 

continued at these values until April 27, subsequently increasing in the period 

up to and immediately following bud burst on May 7. Rates were now between 

0.61 and 0.77 mm d- 1  for needles at positions 4-10, but rates were less for the 

basal three needles, so that the needle at position four was the longest, over 

13 mm, with progressively shorter needles towards the tip of the bud, these 

being less than 2 mm long. 

At the time of first harvest (April 7; Fig. 4.4 B), the broadest needles were at 

the bud base, with those at the tip being about 30% narrower. By the time of 

bud burst (May 7), differences in width extension rate along the bud meant that 

the basal needles had reached a final width of more than 9 mm whereas those 

at the tip were less than 4 mm wide. 

postfonS 	 -17  

The needle length:widtti ratio was greatest for needles at/all sampling 

times, and decreased in needles towards the shoot tip. With time, this 

difference became more pronounced (Fig. 4.5). 
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Figure 4.4 A and B 
The change in A) Needle length; B) Needle width, for Control 
needles from terminal shoots from whorl 7 of field trees, 
at times prior to bud burst 1988, and according to needle 
position in the bud (see Fig. 2.1 C). Values for each position 
at each sampling time are means ± S.D. for two buds, where 
the value for each bud is the mean of 3-10 needles. 
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Figure 4.5 
The change in length:width ratio for the data in Figure 4.3. 

Figure 4.6 
The change in cell number for Control needles from terminal 
shoots from whorl 7 of field trees, at several times prior 
to bud burst 1988, and according to needle position in the 
bud (see Fig. 2.1 C). Values for each position at each 
sampling time are means ± S.D. for two buds, where 
the value for each bud is the mean of 3-10 needles. 
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4.3.2 Needle Cell Number. 

On April 7 mean needle cell number ranged from about 14,000 at the bud 

base, to less than 2,000 at the tip (Fig. 4.6). Cell number increased with time, 

and from April27, maximum rates of increase in cell number occurred for 

needles at positions 3-7 (Table 4.7). Immediately following bud burst, cell 

number of needles at the shoot tip were still only about 13,000, whilst those at 

position 5 were over 110,000. The most basal needle had a smaller rate of cell 

number increase at each sampling time. Although the rate of cell number 

increase was more between April 27 and May 7 than previously, the time taken 

for the cell number to double, increased from about 8 days between April 7 and 

15, to more than 10 days between April 27 and May 7. 

Table 4.7 The rate of cell number increase for Control needles prior to 
bud burst 1988, according to needle position. (For total cell 
number for positions 2,6,10 and 14, see Table 4.8). 

Mean Rate of Cell Number Increase (Cells d 1 ) 

Needle Position April 15 - April 20 - April 27 - 
Number in bud April 20 April 27 May 7 

1 3199 3025 2278 
3 2844 2370 4862 
5 1866 2460 5451 
7 2218 3113 4584 
9 2436 3371 3616 
11 2843 2309 3958 
13 2815 1913 3088 
15 1847 1855 2156 
17 1312 1212 1249 
19 470 --- 445 
21 --- 
23 --- 

The increase in cell number in needle halves, taken from the buds used for 

total cell number counts was also measured, to try to locate the area of major 

meristem activity. Needles at positions 2, 6, 10 and 14 were removed, and cut 

exactly in half according to length with a fine scalpel. Cell numbers in distal 

and proximal halves were counted (Table 4.8). 

Data show similar proportions of cells in distal and proximal halves of the 

needles at all positions at each sampling time, with about 30% of cells in the 

distal half, and 70% in the proximal half. 
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Table 4.8 Cell number in distal or proximal halves of Control needles, 
according to position in the bud, prior to 1988 bud burst. 

Needle 	 Cell number ± S.D and % proportion 
Position 	 of the total, in each portion. 
Number 

April 20 	 April 27 	 May 7 

Needle Cell Number % of Cell % of Cell Number % of 
Portion Total Number Total Total 

2 Distal 11950 ± 4050 29.5 20300 30.6 35450 ± 3150 34.0 
Proximal 28550 ± 3600 70.5 46000 •69.4 68950 ± 1850 66.0 
Total 40500 66300 104400 

6 Distal 12700 ± 200 34.1 25000 34.7 35600 ± 1050 33.0 
Proximal 24550 ± 8300 65.9 47150 65.3 71700 ± 9500 67.0 
Total 37250 72150 107300 

10 Distal 10550 ± 1050 27.6 19750 32.0 31500 ± 7300 34.4 
Proximal 27700 ± 9850 72.4 41950. 68.0 60200 ± 6350 65.6 
Total 38250 61700 91700 

14 Distal 9850 ± 2650 33.4 16100 30.7 22350 ± 2000 33.9 
Proximal 19650 ± 4500 66.6 36400 69.3 43600 ± 5250 66.1 
Total 29500 52500 65950 

4.4 Discussion 

No published data are available for comparison of primordial cell numbers 

(Tables 4.1 and 4.2) with those of other gymnosperms or angiosperm trees. 

However, the range of primordial cell numbers recorded here compare with 

data of Sunderland and Brown (1956), who found cell number in the four 

youngest primordia at a mid-plastochron stage in Lupinus a/bus to vary from 

1,630 to 7,400. No data are available for the number of cells contributing to 

the primordium at its inception but if the number is around 120 as found by 

Poethig and Sussex (1985) using clonal analysis for Nicotiana, then a minimum 

of 5-6 doublings of cell number must occur during primordial growth prior to 

dormancy. However, the plastochron is very short in Sitka Spruce, with up to 7 

primordia per day being initiated in apices of shoots at a mid-canopy position 

during August (Cannell, 1978), resulting in 300 or more primordia in the bud 

(see Table 3.2, Chapter 3). Mitotic activity in the bud must therefore be 

intense, yet diffused over a large number of primordia. What is not known is 



whether the duration of mitotic activity is similar for all primordia or whether 

first-formed primordia show a longer period of cell division with cessation 

being governed by environmental factors rather than ontogenetic ones. 

Owens and Molder (1976), working on Sitka Spruce in British Columbia 

reported cell division to resume in primordia during March, and for the material 

here, cell number in the basal primordia had risen to about half the final value 

as a result of very rapid division immediately prior to bud burst (i.e. during 

April). Rapid rates of division were also seen early in expansion of the more 

distal needles. It must be stressed that the estimates of mean cell cycle times 

assume that all the cells in the needle remain meristematic and capable of 

division; if progressively fewer cells enter successive divisions (Dale. 1970; 

Milthorpe and Newton, 1963; Wilson, 1966), then mean cell cycle times will be 

shorter. At any time following the resumption of primordial growth, the ratio 

of cell number in basal and proximal halves of the needle was similar (Table 

4.8), suggesting cell division to occur over the whole blade. These data do not 

support the existence of a basal meristem, as reported for Picea glauca (Fraser, 

1962; Vanden-Born, 1963), Pseudotsuga menziesii (Owens, 1968), and Pinus 

(Kienholz, 1934), nor do they rule it out. It may be that such a basal meristem 

-functions during the early stages of needle growth, and that generalised cell 

divisions, as occur in the marginal meristems of angiosperm leaves become 

more obvious with time, so that small changes in cell number due to activity of 

a basal meristem are not noticed amongst large generalised cell divisions. 

The minimum mean cell generation time of not more than 112 h reported 

here, is much higher than published values for expanding leaves of perennial 

plants; 39-53 h for Trifolium repens (Denne, 1966); 22-52 h for Xanthium 

(Maksymowych, 1973; Maksymowych and Blum, 1966); 17 h for Cucumis 

(Wilson, 1966), and means that relatively few generations of cells are needed 

for the needle to reach final cell number. 

The maximum number of about 200,000 cells per needle, attained in the 

Controls by Mid-May (see Fig. 4.1), was found some 3 weeks before the 

attainment of maximum mean cell fresh weight, indicating that, as in many 

dicotyledon species, the final period of leaf expansion is marked by cell 

expansion free from division (see Dale, 1976; 1988). This was found also for 

the other treatments, and the time- scales for increase in cell number and size, 

and hence needle expansion, were similar despite final differences. As already 
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noted, the inevitable gaps between harvests mean that more precise timings 

cannot be given. 

Evidence from many species suggest that the increase in cell number is 

exponential during early leaf development (Maksymowych, 1973; Milthorpe and 

Newton, 1963; Hannam, 1968; and Lyndon, 1968). The present data show this 

trend prior to bud burst (Fig. 4.6), but only for needles at positions 3 to 7. 

Needles at more distal positions show a decreasing rate of cell number 

increase, and the rate only increases following bud burst (Fig. 4.1). 

For the Controls, mean cell size between April 27 and June 22 increased 

about 6-fold. This is not as great as the 22-fold increase seen during early 

expansion of the 2nd leaf of sunflower (Sunderland, 1960), or the 15-fold 

increase for primary leaves of Phaseolus vulgar/s. (Murray, 1968; Verbelen and 

De Greef, 1979), and is probably a reflection of the difference in final leaf 

morphology between a lamina angiosperm leaf and a gymnosperm needle. The 

increase in cell number between April 27 and June 22, is less than 4-fold; not 

quite equivalent to the magnitude of increase in cell size. It is usually 

accepted that the cell number changes during leaf expansion are greater than 

those in cell size, so that leaf size is determined mainly by cell number 

(Humphries and Wheeler, 1963). However, superficial interpretation of the 

present data suggests that cell expansion is at least as important as cell 

number in determining the final size of any particular needle. This 

interpretation requires modification for differences in needle size at different 

shoot positions. The relationship between needle cell number and fresh weight 

(Fig. 4.2) is important; the values included in Fig. 4.2 are for needles taken 

along the length of the expanding shoot, and since the needles extend in 

acropetal sequence, at different developmental stages. Yet despite this, for 

each sampling date the data fall on a straight line, with no indication of any 

strong curvature. This must mean that mean cell fresh weight, given by the 

slope of the line, is similar for all sizes of needle sampled; it follows that the 

distal needles which commence expansion later, nevertheless have cells of 

similar sizes to proximal needles which are larger and which commenced 

expansion earlier. In other words, cell enlargement appears to be related more 
Conrrol 

to calendar time rather than to needle position. Thedata for May 4, which 

show a slight curvature, suggest that early in the expansion period distal 

needles may contain cells up to 40% smaller than in proximal needles. Data 

for the cell number:Ieaf weight relationship for the other treatments are 
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qualitatively similar to those of the Controls (Fig. 4.2). Because mean cell size 

is constant in needles at all positions for each treatment, the final size of the 

needle is a function of cell number irrespective of position on the shoot. In 

shoots of Liquidambar and Picea, variation in needle stem unit length has also 

been attributed to differences in pith and cortical cell numbers rather than to 

cell length (Lam and Brown, 1974; Baxter and Cannell, 1978). Considering the 

differences in cell size between treatments (Tables 4.5 and 4.6), which are not 

as great as the differences in needle cell number and needle length, also 

suggests that it is cell number which causes differences in final needle size 

between treatments. In the case of P deficiency, mean cell size is increased, 

whilst it is the reduction in needle cell number which is more important, 

causing the final size of the needle to be reduced. In so far as data are 

available, the differences in final needle cell number reflect differences in 

primordium cell number (Tables 4.1 and 4.3). Since the time course of cell 

division between treatments was similar, as already stated, it is likely that the 

potential for needle expansion under nutrient deficient conditions is determined 

by controls acting during primordium initiation. 

The mean cell size in the -K treatment was significantly smaller than that of 

the Controls. This could be a result of the suggested role of potassium as an 

osmoticum for leaf expansion (Mengel and Kirby, 1982). Marschner (1986) 

reports results of Arneke showing also, that cell size in leaves of K-deficient 

beans was significantly lower than in Controls supplied with potassium. In 

contrast, increasing the supply of potassium to leaf discs of spinach increased 

cell size (Marschner and Possingham, 1975). Mean cell size for the -P 

treatment was larger than for the Controls; this is interesting since deficiency 

of phosphorus was found to inhibit cell expansion in cotton plants (Radi'n and 

Eidenbock, 1984). The central role of this element in plant nutrition makes it 

difficult to explain the observed effects. Deficiency may lead to accumulation of 

solutes in the expanding needles with consequent increase in turgor and cell 

expansion; alternatively deficiency might affect wall characters (Tomos, 1985; 

Dale, 1988) leading to greater cell wall extensibility or a lower wall yield 

threshold, thus allowing greater enlargement. The dry weight:fresh weight ratio 

was significantly higher for needles in the -P treatment and could indicate 

thicker cell walls. Such a change would be unlikely to increase wall 

extensibility, although the possibility that deficiency affects extracellul -ar 

components, such as surface wax, which would not affect wall properties 
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cannot be ruled out. Interpretation of the effect of nutrient supply on growth 

must take into consideration effects on the phytohormone balance. 	Mineral 

deficiency has been shown to decrease the cytokinin content of the leaves (N, 

P and K deficiency in 	sunflower - 	 Salama 	and 	Wareing, 1979; 	P 	and 	N 

deficiency in Betula pendula - Horgan 	and Wareing, 	1980; N 	deficiency 	in 

pumpkin - Goring and Mardanov, 1976), and this may inhibit cell division and 

cell expansion. 

Until April 15, needles at all positions showed similar increases in all 

variables measured, but subsequently the data show the same trends in needle 

development with position as following bud burst (see Chapter 3); It is the 

needles near the shoot base which have the fastest extension rates, and show 

the largest increase in cell number, with the exception of the most basal two 

or three needles. These are the widest of all needles, but begin to show 

reduced extension rates and rates of increase of cell number by April 7. The 

positional differences in needle dimensions and cell number become more 

pronounced with time, so that by bud burst, the differences in size and cell 

number for needles at different positions is already established. This shows 

that to some extent, final differences in size and cell number are due to 

different rates of change of the variables, more than due to different durations 

of growth, although the data in chapter 3 show that the most distal needles 

undergo more rapid development slightly later in the season than proximal 

needles. These pronounced ontogenetic differences due to needle position on 

the shoot therefore appear to be established very early in development. To 

some extent this is a result of the differences in size and cell number found in 

dormant primordia according to position, where the most distal primordia are 

those last to be formed, during the preceding winter, in unfavourable growth 

conditions, and they might be expected to show a lower growth potential. 

However, this does not explain the smaller size of the most proximal needles. 

These are the first needles to be initiated at the shoot apex, following the 

cessation of bud scale formation, and they may represent an intermediate 

organ between a bud scale and a needle. This is supported by the low 

length:width ratio for these needles, which is more a characteristic of bud 

scales. The control of the switch from bud scale to needle production is not 

well known, but may be largely hormonal, so that basal needles may retain 

some hormonal inhibition to development, associated with the control of bud 

scale development. 
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CHAPTER 5. RESULTS. PHOTOSYNTHETIC DEVELOPMENT. 

5.1 Introduction. 

The data in Chapters 3 and 4 describe needle development and the effect of 

nutrient deficiency in field and pot-grown trees, in terms of morphological 

variables, and for field material also in terms of cell number and size. The aim 

of this chapter is to present results on the development of photosynthetic 

capacity. This was mainly studied in pot material, but needle pigments were 

also measured in field material in 1987. It is also aimed to show whether 

treatment differences exist in net photosynthetic rate, or some of its main 

components; chlorophyll content, RuBPC activity, or stomatal conductance to 

COT  The following sections examine how each photosynthetic variable 

measured changes throughout the season, and the effect of nutrient deficiency 

or re-fertilisation treatments. The correlations between photosynthetic rate, 

chlorophyll content and RuBPC activity are then presented. 

5.2 Leaf Pigments. 

Pigment data have been expressed per unit fresh weight, consistent with 

most of the literature in general, and for Sitka spruce in particular. On a leaf 

developmental basis, expression of pigment content on a projected area basis 

is useful, but in conifers, needle projected areas are small, and the specific leaf 

weight is high. It was therefore considered justified to express pigment 

content on a fresh weight basis. Data for projected area was not available for 

needles used for pigment analysis in 1987, so in order for comparison of the 

1988 data with those of 1987, these too were expressed per unit fresh weight. 

RuBPC activity has also been expressed per unit fresh weight, to be consistent 

with the chlorophyll data, but has also been expressed per unit chlorophyll, to 

give more meaning to changes in terms of photosynthetic capacity, instead of 

developmentally. 

5.2.1 Total Chlorophyll Content. 

5.2.1.1 1987 Experiment. 

Total chlorophyll content in Control needles decreased between the first 

and second harvests, then increased steadily, from 0.2 mg g  fr.wt. on May 18, 

to a maxim(Jm of over 1.2 mg g  fr.wt. at the beginning of October (Fig. 5.1 A). 
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Two harvests in November gave slightly lower values, possibly indicating some 

breakdown, as reported during Winter by Lewandowska and Jarvis (1977) for 

Sitka spruce, and Linder (1972) for Scots pine and Norway spruce. Changes in 

chlorophyll content of needles in the -Mg set were virtually indistinguishable 

from the Controls throughout the season (Fig. 5.1 A). In the -P and -All 

treatments, needles showed similar rates of increase in chlorophyll content as 

the Controls, from early May to a maximum in October, although the similarity 

in the curves was less marked than for the -Mg set. For needles in -P and -All 

treatments (Fig. 5.1 C and D), a plateau in chlorophyll content was not reached, 

and it is not known whether levels continued to increase during December. 

Needles in the -P treatment had a significantly lower chlorophyll content than 

Controls until mid June, reflecting the delayed onset of needle development. 

After an initial rapid rise, needles from the -K treatment had significantly lower 

chlorophyll content than Controls during August and September (Fig. 5.1 B). 

52.1.2 1988 Experiment. 

Total chlorophyll content (n=2) of Control needles in 1988 increased from 

0.5 mg g 1  fr. wt. shortly after bud burst, to a maximum of about 2 mg g fr. 

wt. at the end of October (Fig. 5.2 A) i.e. about 70% greater than comparable 

values from the field trees, with a faster rate of increase. 

In all deficiency treatments, apart from -N,-All and possibly -K, total 

chlorophyll content increased steadily until the final harvest (Fig. 5.2 B to F). At 

the final sampling time, content in needles from the -Mg treatment was lower 

than the Controls, at about 1.25 mg g  fr.wt. Chlorophyll content in -N and 

-All needles increased to a maximum level of about 1 mg g- 1  fresh weight in 

late August: and then decreased. The effect of refertilisation was small for the 

-K and -P sets, but three weeks after refertilisation on May 1, needles in -NR 

and -AIIR treatments showed increased chlorophyll levels when compared with 

-N and -All needles (Fig. 5.2 E and F). This effect continued, and the difference 

became larger throughout the growth season, with refertilisation causing 

maximum levels to reach between 2.0 and 2.5 mg g 1  fr. wt. The effect of 

refertilisation on the -Mg set was much less spectacular. 
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Figure 5.1 A to D. 
The change in total chlorophyll content for needles from 
terminal shoots from whorl 7 of field trees throughout the 
1987 season, for each treatment. Each point is the mean 
± S.E. of 4 to 6 determinations, each from different 
trees. 
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Figure 5.2 A to F. 
The change in total chlorophyll content for needles from 
terminal shoots from whorl 2 of trees from each pot treatment 
throughout the 1988 season. Each point is the mean of two 
determinations, each from different trees. For treatments 
apart from the Controls, closed symbols represent nutrient 
deficient trees, and open symbols respresent refertilised trees. 
Bars for some treatments represent ± the standard deviation, 
and the letter d for other treatments shows 'where standard 
deviation bars for data from deficient and refertilised 
treatments do not overlap at any one sample date. 
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5.2.2 Chlorophyll a/b Ratio. 

5.2.21 1987 Experiment. 

The chlorophyll a/b ratio of Control needles increased rapidly following bud 

burst, nearly doubling between May 4 and May 18, and continuing to increase 

until mid June (Fig. 5.3 A). A summer maximum was maintained at a value of 

about three, which declined from early September until sampling ceased. The 

seasonal trend in the chlorophyll a/b ratio of needles in -Mg, -K and -All 

treatments was not significantly different to that of the Controls (Fig. 5.3 A, B 

and D), but for -P needles, the ratio was significantly lower than that of the 

Controls from mid June onwards (Fig. 5.3 C). 

5.2-22 1988 Experiment. 

The chlorophyll a/b ratio of Control needles was roughly constant 

throughout the whole of the season, varying between 2.0 and 3.0 (Fig. 5.4 A). 

No significant seasonal trend was seen either, in the ratio for needles for -Mg, 

-K and -P treatments, and values varied between about 1.75 and 3.00, with no 

effect of refertilisation (Fig. 5.4 B to F). In -N and -All treatments, needles had 

much reduced ratios from those of the Controls, but again, no seasonal trend 

was found. Refertilisation of these treatments caused a very rapid increase in 

the ratio, which increased until early July, and reached a plateau at a ratio 

more than twice as high as that of -N and -All needles, and slightly higher 

than that for all other treatments. 
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Figure 5.3 A to D. 
The change in chlorophyll a/b ratio for needles from 
terminal shoots from whor; 7 of field trees throughout 
the 1987 season, for each treatment. Each point is the mean 
± S.E. of 4 to 6 determinations, each from different 
trees. 



A) 3.25 - 

3.00 - 

2.75 - 

2.50 

0 

0 
2.25 

.0 

0 

2.00 - 

0. 

2 
1.75 - 

0 

1.50 - 

1.25 - 

1.00 -J  

11111111111111111111111111111111 

4 18 1 15 29 13 27 10 24 7 21 5 19 2 18 30 
May June July Aug Sept Oct Nov 

Time 

IIIIIIIIIIIIIIIuIIIl1IIIIIIIIII I 

4 18 1 15 29 13 27 10 24 7 21 5 19 2 16 30 
May June July Aug Sept Oct Nov 

Time 

B) 3.25 - 

3.00 - 

2.75 - 

2.50 - 

0 

a 2.25 - 
.0 

U 

2.00 

0. 
2 

1.75 
0 

1.50 - 

1.25 

1.00 - 

	

1.50 	 - 

	

1.25 	 0 +PJI 
• J. 

1.00 

liii 1111111111111111111111 I III I I 

4181 152913271024721 51921830 
May June July Aug Sept Oct Nov 

Time 

D) 3.25 - 

3.00 - 

2.75 - 

2.50 - 

0 
4-. 
0 

2.25 - 
.0 

0 

2.00 - 
-C 
0. 

2 
1.75 - 

C) 

1.50 - 

1.25 11 	 0 -f-All 

x-Jl 

1.00 

II1II1I11l1I1III11f 1111111111 I I I 

4 18 1 15 29 13 27 10 24 7 21 5 19 2 16 30 
May June July Aug Sept Oct Nov 

Time 

C) 3.25 - 

3.00 - 

2.75 - 

2.50 

0 

? 2.25 - 

2.00 

0. 

2 
1.75 

0 

108 



Figure 5.4 A to F 
The chlorophyll a/b ratio for needles from terminal shoots 
from whorl 2 of trees from each pot treatment throughout 
the 1988 season. Each point is the mean of two determinations, 
each from different trees. For treatments apart from the 
Control, closed symbols represent nutrient deficient trees, 
and open symbols represent refertilised trees. Bars for 
some treatments represent ± the standard deviation, and 
the letter d for other treatments shows where standard 
deviation bars for data from deficient and refertilised 

do not  
treatments/ overlap at any one sample time. 



A) 	 B) 
Control 

	

3.50 - 	 3.50 - 	 E -Mg 

D-MgR 

3.00 	 3.00 - 

0 
2.50 2.50 - 

Ix 

.0 

U 2.00 2.00 - 

0 

	

1.50 - 	 1.50 -  
-c 

o 	 0 

	

1.00 - 	 1.00 - 

	

0.50 - 	 0.50 - 
11111 	11111 	I I I 	I 	11111111111 	 I I 	111111 	1111111111111 	I 	I I 

	

2 18 30 13 27 11 25 8 22 5 19 3 17 31 	 2 18 30 13 27 11 25 8 22 5 19 3 17 31 

May June July Aug Sept Oct 	 May June July Aug Sept Oct 

Time 	 Time 

C) 	- 	 D) 

	

3.50 - 	 3K -K 	3.50 	 E -P 

	

a-KR 	 a-PR 

	

- 	d 
3.00 

0 
2.50 	 V 0 

3.00 	

2.50 
ir 

1-11 	 d 
2 	- 

.0 

o 2.00 	 .00  

0. 	 0. 

	

150 - 	 1.50 - 0 
:2 
o 	- 	 0 

	

1.00 - 	 1.00 - 

	

0.50 - 	 0.50 - 
III 	11111111111 	111IllIllIllI 	I 	 I 	1111 	I 	I 	I 	I 	1111 	11111 I 	II 

	

2 16 30 13 27 11 25 8 22 5 19 3 17 31 	 2 16 30 13 27 11 25 8 22 5 19 3 17 31 

May June July Aug Sept Oct 	 May June July Aug Sept Oct 

Time 	 Time 

E) 	- 	 F) 	- 

	

3.50 - 	* -N 	 3.50 - 	* -All 

- a-NR 	 - a-MR 

	

3.00 - 	 3.00 - 

.2 	 .9 
- 	250 - 	 -- 2.50 - 0 

	

D 2.00 - 	 ° 2.00 - 

0. 	 0. 

150 	
0 

	

- 	 '- 1.50 - • 	 .9 
:2 
o 	• 	 0 	- 

	

1.00 - 	 1.00 -ry  

	

0.50 - 	 0.50 - 
1111111 	I 	11111111111 I 	I 	1111111 	 I I 	111111 	I 	I 	I 	1111111111 I I 11111 

	

2 16 30 13 27 11 25 8 22 5 19 3 17 31 	 2 16 30 13 27 11 25 8 22 5 19 3 17 31 

May June July Aug Sept Oct 	 May June July Aug Sept Oct 

Time 	 Time 

109 



5.2.3 Carotenoid Content. 

5.2.3.1 1987 Experiment. 

Carotenoid content of Control needles increased rapidly from 0.06 mg g 1  

fr.wt. at the start of May to 0.18 mg g- 1 
 fr.wt. at the end of July, and then 

increased more SIOWIV until December, reaching a final value of 0.26 mg g 1  

fr.wt. (Fig. 5.5 A). Carotenoid contents of needles in -Mg and -K treatments 

showed similar seasonal trends to those in the Control treatment (Fig. 5.5 A 

and B), but carotenoid content of -P and -All needles increased steadily to 

higher mean values than the Controls (Fig. 5.5 C and 0), although the 

differences were not significant. 

5.2.32 1988 Experiment. 

Carotenoid content of Control trees increased steadily from 0.13  mg g 1  

fr.wt. at the start of May, until mid-August, when a plateau at about 0.4 mg 

fr.wt. was reached (Fig. 5.6 A). These values are much higher than for Control 

needles in the field in 1987 (Fig. 5.5). Needles in the deficiency treatments 

showed a similar change in carotenoid content as the Controls (Fig. 5.6 B to F), 

although in -KR needles, content increased until mid-September, and in -NR 

and -AIIR needles, carotenoid content reached a peak in mid-August and then 

declined. The effect of refertilisation on carotenoid content in -Mg, -K and -P 

needles was not significant, but in the -NR and -AIIR sets, values were higher 

than for -N and -All needles at all harvests, and the difference became larger 

throughout the season (Fig. 5.6 E and F). The carotenoid content of -Mg 

needles was equivalent to that of Control and -Mg needles in 1987, but for the 

other deficiency treatments, values were higher than for the same treatments 

in the field in 1987. 
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Figure 5.5 A to D 
The carotenoid content of needles from terminal shoots from 
whorl 7 of field trees throughout the 1987 season, for each 
treatment. Each point is the mean ± S.E. of 4 to 6 
determinations, each from different trees. 
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Figure 5.6 A to F 

The carotenojd content of needles from terminal shoots from 
whorl 2 of trees from each pot treatment throughout the 1988 
season. Each point is the mean of two determinations, each 
from different trees. For treatments apart from the Control, 
closed symbols represent nutrient deficient trees, and open 
symbols represent refertilised trees. Bars for some 
treatments represent ± the standard deviation, and the 
letter d for other treatments shows where standard deviation 

do mt- bars for data from deficient and refertilised treesorlap 
at any one sample time. 
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5.3 RuBPC Activity. 

5.3.1 Field Material 1987. 

Following the experiments to check the conditions and concentrations used 

in the RuBPC assay procedure (see Materials and Methods, section 2.10), RuBPC 

activity was measured in needles from Control, -K and -P treatments in the 

field, in January 1988. This was in order to consolidate the technique as a 

prelude to applying it to pot trees throughout the 1988 growth season, and 

also to see whether treatment differences in RuBPC activity existed in field 

material. Only -P and -K plots were sampled, as it was thought these would 

show greatest treatment effects, as -P needles had shown the most extreme 

morphological effects in 1987, and -K needles had the lowest chlorophyll 

content of the treatments studied. 

Table 5.1 Chlorophyll content, and RuBPC activity expressed per unit 
chlorophyll, per g fresh weight and per g dry weight, for needles 
from Control, -K and -P treatments in the field, sampled January 
1988. Values are means ± S.D. (n=2). 

Treatment Total Chi 	 RuBPC activity 
Content 

mg g 	fr.wt. Llmol CO P -1 
 pmol CO2  g i.tmol CO 	mg -1 

 

fr.wt. min dry wt. min 1  Chi. mm 

Control 	1.12 ± 0.003 6.65 ± 0.93 17.11 ± 2.44 5.95 ± 0.82 

-K 	 0.69 ± 0.13 3.40 ± 0.81 8.39 ± 1.550 5.10 ± 2.12 

-P 	 0.97 ± 0.06 1.82 ± 0.15 4.42 ± 0.550 1.88 ± 0.26 

RuBPC activity, expressed per g. fr.wt. and per g. dry wt. was reduced in the 

-K treatment, and still more in the -P treatment (Table 5.1). However, needle 

chlorophyll content was not correlated with RuBPC activity, and when 

expressed per mg Chl.. RuBP activity in needles from the -K plot showed no 

difference from the Controls, although the reduction in the -P plot was much 

greater. 
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5.3.2 1988 Experiment. 

Sampling of treatments began at the beginning of May, at the start of 1988 

needle growth, and in Control trees the seasonal trend for RuBPC activity 

followed a sigmoid curve, reaching a plateau in late September (Fig. 5.7 A). In 

-NR and -AllR treatments, activity increased from early June, as in the case of 

the Controls (Fig. 5.7 E and F); for the other treatments the rise in activity 

occurred 3-4 weeks later (Fig. 5.7 B to 0). Maximum RuBPC activity in the 

refertilised sets was between 7.0 and 8.0 jimol CO  s- 1 
9-  1 fr.wt., and was 

achieved between mid-August (-M9R) and mid-September (-PR). The 

maximum activity in all refertilised treatments was not different to that of the 

Controls. The peak in activity was followed by a sharp decrease in RuBPC 

activity, consistent with the autumn decline found in 1 and 2 year old needles 

of Pinus sy/vestris by Gezelius and Hallen (1980). This contrasts with the 

plateau seen in the Controls, although if later harvests had been made a 

decrease may have been seen. With the exception of the -K treatment, the 

deficiency treatments showed much lower RuBPC activities than the refertilised 

treatments, especially -N and -All treatments, and the highest activities were 

again found in late summer/early autumn. For the -K treatment, maximum 

activity was only slightly less than in the -KR set. Comparing the maximum 

activities from Control, -K and -P treatments with the values obtained from the 

field (Table 5.1), the ranking with respect to treatment is the same, and the 

values are similar, even though the field material was assayed in the winter, 

possibly indicating higher values in the field in summer. 

When RuBPC activity is expressed per mg chlorophyll, all deficiency 

treatments except -Mg and -K showed lower activities than the respective 

refertilised treatments (Fig. 5.8 B to F). The maximum value of RuBPC activity 

in all refertilised treatments was not different to that of the Controls, and was 

between 4.0 and 5.0 pmol CO 2  mg - ' Chi. 
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Figure 5.7 A to F 
Activity of RuBPC per g fresh weight, in needles from terminal 
shoots from whorl 2 of trees from each pot treatment 
throughout the 1988 season. Each point is the mean of two 
determinations, each from different trees. For treatments 
apart from the Control, closed symbols represent nutrient 
deficient trees, and open symbols represent refertilised 
trees. Bars for some treatments represent ± the standard 
deviation, and the letter d for other treatments show 
where standard deviation bars for data from deficient 

do not 

and refertilised treatments/overlap at any one sample time. 



A) 11.0 

10.0 

T 	9.0 

8.0 

Cr

7.0  

6.0 

 5.0 
0 

4.0 

3.0 

5 2.0 

1.0 
a. 
M  0.0 

B) 11.0 

10.0 

1. 	9.0 
C 

E 8.0 

7.0 

T 6.0 

d' 50 
0 

4.0 

3.0 

5 2.0 

1.0 

' 	0.0 

2 16 30 13 27 11 25 8 22 5 19 3 17 31 
	

2 16 30 13 27 11 25 8 22 5 19 3 17 31 

May June July Aug Sept Oct 
	

May June July Aug Sept Oct 
Time 
	

lime 

C) 11.0 

10.0 

r 	9.0 
C 

E 8.0 

Cr

7.0  

 5.0 
0 

4.0 

3.0 

5 2.0 

1.0 

' 	0.0 

D) 11.0 

10.0 

T • 	9.0 
C 

E 8.0 

7.0 

6.0 

d' 5.0 
0 

4.0 

3.0 

2.0 

1. 
a. 
M 0.0 
Ir 

2 16 30 13 27 11 25 8 22 5 19 3 17 31 
	

2 1630132711258225 183 1731 

May June July Aug Sept Oct 
	

May June July Aug Sept Oct 

Time 
	

Time 

E) 11.0 

10.0 

ç 9.0 
C 

E 	8.0 

7.0 

T 6.0 

CV 5.0 
0 

4.0 

15  3.0 

5 2.0 

1.0 
a. 

0.0 

F) 11.0 

10.0 

1 	9.0 
C 

E 8.0 

7.0 

6.0 

5.0 

4.0 

3.0 
2? 
:2 	2.0 

1.0 

' 	0.0 

 

2 18 30 13 27 11 25 8 22 5 19 3 17 31 

May June July Aug Sept Oct 
Time 

 

  

May June July Aug Sept Oct 
lime 

115 



Figure 5.8 A to F 

The data in Fig. 5.7 expressed per unit chlorophyll. All 
symbols and details as for Fig. 5.7. 



A) 6.0 

c5.0 
C 

E 

4.0 

Cr 
3.0 

2.0 

1.0 

0.0 

6.0 

5.0 
C 

E 

4.0 

E 
- 3.0 

0 
 

1 2.0  
1.0 

0 

0.0 

x -Mg 

0 -MgR 

2 183013271125 822 5 19 3 1731 
	

2 18 30 13 27 11 25 8 22 5 19 3 17 31 

May June July Aug Sept Oct 
	

May June July Aug Sept Oct 

Time 
	

Time 

2 18 30 13 27 11 25 8 22 5 19 3 17 31  

May June July Aug Sept Oct 

Time 

* -P 

o -PR 

2 16 30 13 27 11 25 8 22 5 19 3 17 31 

May June July Aug Sept Oct 

Time 

C) 6.0 

p5.0 
C 

E 

4.0 

3.0 

Is 

1.0 

03 

C.) 

0.0 
lx 

D) 6.0 

5.0 
C 

E 

4.0 

E 
.. 3.0 

0 
C) 

2.0 

1.0 

IL 
03 

0.0 
It 

E) 6.0 

5.0 
C 

E 

4.0 

3.0 

2.0 

1.0 

C) 
0 
m 

0.0 

F) 6.0 

. 5.0 
C 

E 

4.0 

3.0 

1 2.0  
p 1.0 

0 

0.0 

2 16 30 13 27 11 25 8 22 5 19 3 17 31 
	

2 163013271125 822 5 193 1731 

May June July Aug Sept Oct 
	

May June July Aug Sept Oct 

Time 
	 Time 

116 



5.4 Net Photosynthetic Rate, 1988. 

For all treatments, net photosynthetic rate increased with time to a 

maximum in August, and then declined. Second or third order polynomial 

functions have been fitted to the data and all show values of r 2  of at least 0.53 

(see overleaf). In Control shoots, P N  increased from about 1.5 iimol CO 2  m 2  

at bud burst, to a maximum of about 7.0 Umol CO 2  m 2  in July and 

August (Fig. 5.9 A), and then decreased slightly by the end of November. All 

other treatments showed an increase in P N from bud burst, to a summer 

maximum, followed by a decrease at the beginning of September (Fig. 5.9 B to 

F). Maximum mean values of P N in shoots from -Mg, -MgR, -K, -KR, -P and 

-PR treatments were of the order of 5.0 to 7.0 .ig CO 2  m 2  s 1 , and there were 

only slight differences in P N between deficient and refertilised shoots of these 

treatments. However, maximum values of P N in shoots from -AIIR and -NR 

treatments were higher than for Controls, at about 9.0 jig CO 2  m 2  s 1 , and 

values for -All and -N shoots were lower than this at all harvests, apart from a 

peak in September. The maximum values of P N were calculated from the fitted 

curves, and are compared with the actual maximum values (Table 5.2). 

Table 5.2 	A comparison of the maximum values of P 	(mol CO 	m 2  s- 1 

from the fitted curves in Fig. 5.9 A to F, wih the maximum 
actual values measured. 

Treatment 	Maximum Maximum 
Calculated 	Actual 
Value Value 

+All 	 6.36 6.83 

-Mg 	 5.28 6.30 
-MgR 	 4.63 4.85 

-K 	 5.53 6.39 
-KR 	 5.29 5.57 

-P 	 5.60 6.74 
-PR 	 5.88 6.19 

-N 	 6.89 8.41 
-NR 	 7.87 8.76 

-All 	 5.66 9.59 
-AIIR 	 7.90 9.44 
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Maximum values from the fitted curves are similar to actual maxima, except for 

-N and -All treatments. In these treatments, although the mean of the values 

is lower than for -NR and -AIIR treatments, some values are exceptionally high. 

The standard deviations of the data in -N and -All treatments are much higher 

than those in -NR and -AIIR treatments (see Fig. 5.10 A and B, for a 

comparison of -N with -NR). The high values of P observed in -N and -All 

treatments must be treated with caution; shoots from these treatments had 

very small projected areas, often < 1 cm i, and < 5% of the area of -NR and 

-AIIR shoots, and the IRGA readings were also very small, often 1 v.p.m. or 

less. Therefore, a small error in the analysis CO  concentration, due to a 

drifted zero calibration, or the usual fluctuation in the reading, would give an 

enormous error when the values are expressed on a m 2  basis. It is suggested 

that the low values in -N and -All treatments represent times at which the 

IRGA was newly calibrated, and high values represent times where the 

calibration had drifted, since the data points are alternately high and low on a 

monthly cycle, corresponding to when the IRGA was calibrated. 

Figure 5.10 A and B 
Data from Fig. 5.9 E replotted with ± S.D. for the two determinations. 
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5.5 Resistance Pathway to CO 2'  1988. 

5.5.1 Stomatal Conductance to CO  Transfer. 

For the Controls, the stomatal conductance increased as the shoot 

extended, reaching a peak at the end of July and the beginning of August (Fig. 

5.11 A). Maximum mean values were 0.19 mol m 2  S_ 1  (equivalent to 2.16 cm 
_1)• 

From August the stomatal conductance declined until sampling ceased. 

In -Mg, -K and -P treatments, and the respective refertilised sets, the change 

in Cs  with time was not as great as in the Controls (Fig. 5.11 B to F). Values 

remained fairly constant throughout the season although these treatments 

showed a rise in C in May and early June, during the period of most rapid 

needle extension. Data from the -K set showed a slight peak in C at the end 

of August. Refertilisation of -Mg, -K and -P trees had no effect on G, but 

refertilisation of -N and -All trees caused G 5  to increase rapidly and linearly, 

from early June until November (Fig. 5.11 E and F). Final values in -NR and 

-AIIR sets were between 0.20 and 0.31 mol m 2  S_ , and were much higher than 

the Control values at the same time. Stomatal conductance in -N and -All 

treatments remained low throughout the whole season. 

5.5.2 Intercellular Partial Pressure of CO 2 . 	- 

No treatment showed a significant difference in C. from the Controls 

throughout the season (Fig. 5.12 A to F), although -N and -All treatments had 

slightly higher values than the other treatments (Fig. 5.12 E and F). Values 

ranged from 207 Mbar to 380 i.ibar. The difference in C. between -N and -NR 

treatments was greater than for other treatments, where there was no effect of 

refertilisation. 
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Figure 5.11 A to F. 
Stomatal conductance to CO 2  for terminal whorl 2 shoots from 
each pot treatment throughout the 1988 season. Values are 
means for two determinations, each on different trees. For 
treatments apart from the Control, closed symbols represent 
nutrient deficient trees, and open symbols represent 
refertilised trees. Bars for some treatments represent ± 
the standard deviation, and the letter d for other treatments 

• shows where standard deviation bars for data from deficient 
and refertilised treesTerlap at any one sample time. 
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Figure 5.12 
The intercellular partial pressure of CO 2  measured on 
terminal whorl 2 shoots from each pot treatment throughout 
the 1988 season. Each point is the mean of two determinations, 
each on different trees. For treatments apart from the 
Control, closed symbols represent nutrient deficient trees, 
and open symbols represent refertilised trees. Bars for 
some treatments represent ± the standard deviation, and 
the letter d for other treatments shows where standard 
deviation bars for data from deficient and refertilised 
treatmentsoverlap at any one sample time. 
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5.6 Correlations Between Photosynthetic Variables, 1988. 

5.6.1 Correlation Between Photosynthetic Rate and Chlorophyll Content. 

Net photosynthetic rate was significantly correlated with total chlorophyll 

content (Fig. 5.13 for Control data), with the exception of three treatments 

(Table 5.3), although the highest value of r only reached 0.76, and the lowest, 

0.19. Considering the relationship between P and chlorophyll a only gave 

higher values of r in -N and -All treatments, and effects on the coefficient in 

other treatments were small. The photosynthetic efficiency per unit 

chlorophyll) for the Control data inceased with increasing chlorophyll content 

for the first part of the season, and then declined at higher chlorophyll 

concentrations (Fig. 5.14). 

Table 5.3 Correlation coefficients for the linear regression between 
expressed as mg CO 2  m 2  s 1 , and total chlorophyll or chlorophyll 
a content, expressed as mg m 2  projected area for all treatments. 
Values are for samples all samples between May and November. 
n=38 for Controls, and n=18 for all other treatments. 

Treatment 	Correlation Coefficient r 

and Total 	P and 
Chlorophyll 	Chlorophyll a 

+All 0.44 ** 0.47 ** 

-Mg 0.46 0.49 * 
-M9R 0.28 0.28 

-K 0.76 *** 0.76 *** 
-KR 0.62 ** 0.62 ** 

-P 0.52 * 0.51 * 
-PR 0.54 * 0.52 * 

-N 0.19 0.29 
-NR 0.68 ** 0.70 ** 

-All 0.55 * 0.60 ** 
-AIIR 0.55 * 0.56 * 
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Figure 5.13 
The relationship between net photosynthetic rate and total 
chlorophyll content for Control pot trees, throughout the 
1988 season. Each point represents one measurement for 
each variable, from one tree, for all sample times. 

Figure 5.14 
The relationship between photosynthetic efficiency (N  per 
unit chlorophyll), and total chlorophyll content, for Control 
pot trees throughout the 1988 season. Each point represents 
data for one tree, for all sample times. Circles are for data 
to July 11 inclusive, and crosses represent subsequent data 
until early November. 
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Figure 5.15 A to F. 

The relationship between total chlorophyll content and RuBPC 
activity for each pot treatment throughout the 1988 season. 
Each point represents one measurement for each variable, 

-from different trees, for all sample times. Equations of 
- the fitted curves are as follows: 

Control 	y = 1.2512 X07423  

-Mg y = 1.3708 X 1363  
-MgR y = 1.4043 X 26088  

-K y = 1.1179 X25496  
KR y = 1.1183 X2-9263  

P y = 0.8925 X22885  
PR y = 1.1051 X30954  

-N y = 0.6771 X 115  
-NR y = 0.5085 X 38°  

-All y 	0.6300 X 16908  
-AIIR y = 0.8501 X25040 
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5.6.2 Correlation Between RuBPC Activity and Total Chlorophyll Content 

The relationship between RuBPC activity and total chlorophyll content can 

be described by a geometric curve, when both are expressed per g fresh 

weight (Fig 5.15 A to F). The correlation coefficients for the fitted functions 

were all significant at p < 0.01, apart from data for -All and -Mg treatments 

(Table 5.4), with values of r 2  ranging from 0.27 to 0.86. 

Table 5.4 Correlation coefficients for the fitted curves in Fig. 5.15 A to F, 
relating RuBPC activity, expressed as .imolCO 2  g 1  fr.wt. min- 1,  and total 
chlorophyll content, expressed as mg 9 1  fr.wt., for all treatments. 
Values are for all samples between May and November. 

Treatment n Coefficient r 

+All 37 0.86 *** 

-Mg 19 0.52 * 
-MgR 18 0.77 *** 

-K 20 0.75 *** 
-KR 18 0.81 *** 

-P 19 0.87 *** 
-PR 20 0.93 *** 

-N 17 0.64 ** 
-NR 18 0.91 *** 

-All 17 0.74 ** 
-AIIR 18 0.74 *** 

5.6.3 Correlation Between Photosynthetic Rate and RuBPC Activity. 

The relationship between photosynthetic rate and RuBPC activity (both 

expressed on a m 2  S_ 1  basis), showed that for Controls, P 
N increased rapidly 

with increasing in RuBPC activity up to about 15 jimol CO  m 2  s (Fig. 5.16). 

At higher activities of RuBPC, P N  did not increase, and decreased at activities of 

RuBPC higher than about 40 limol CO  m 2  s 1 . A curve has been fitted by eye 

to the data in Fig. 5.16, as mathematically fitted curves could not account for 

the sharp increase in P at low RuBPC activities, or the decrease in P at high 

RuBPC activities. The relationship between P and RuBPC activity for other 

treatments was qualitatively similar to that of the Controls. 
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Figure 5.16 
The relationship between photosynthetic rate and RuBPC activity for 
terminal shoots and needles from whorl 2 of Control trees in the pot 
experiment. Values are for individual trees, for all sampling times 
throughout the 1988 growth season. 
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5.6.4 Correlation Between Net Photosynthetic Rate, and Stomatal 
Conductance to CO 

2' 

The correlation between P and G 5  was only significant in -Mg and -NR 

treatments (Table 5.5), but the maximum value of r 2  was only 0.27. 

Table 5.5 Correlation coefficients for the linear regression of P N  (imol 
Co m s 2 1 ), onto G 5  (mol m 2  s 1 ) for all treatments. Values 
inciaude data for all samples between May and November. 

Treatment n Coefficient r 

+All 35 0.34 

-Mg 17 0.48 * 
-MgR 17 0.15 

-K 17 0.41 
-KR 17 0.43 

-P 17 0.02 
-PR 17 0.36 

-N 18 0.34 
-NR 18 0.52 * 

-All 18 0.14 
-AIIR 18 0.34 

5.7 The Effect of Canopy Position on Photosynthetic Components. 

The effect of shoot position in the canopy on RuBPC activity, total 

chlorophyll content and carotenoid content was also studied, to confirm the 

importance of a standardised sampling procedure, and to see whether 

differences were as large as between treatments in the field. One shoot was 

taken from a "top" position (apical whorl), a "mid" position (whorl 6), and a 

bottom" position (whorl 12), from each of two Control trees in the field, in 

March 1988. 

Chlorophyll a, chlorophyll b and total chlorophyll content of needles 

increased at lower canopy positions (Table 5.6), although none of the 

differences were significant. Carotenoid content remained virtually constant, 

regardless of canopy position. RuBPC activity, expressed per g fresh weight 

and per g dry weight was non-significantly lower at the bottom position than 

mid or top positions. On a mg chlorophyll basis, there was a trend for RuBPC 
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Top 

0.80 ± 0.12 

0.62 ± 0.09 

3.47 ± 0.09 

0.25 ± 0.12 

Middle 	Bottom 

1.05 ± 0.07 	1.26 ± 0.12 

0.79 ± 0.05 	0.88 ± 0.09 

3.10 ± 0.02 	2.35 ± 0.04 

0.27 ± 0.01 	0.28 ± 0.03 

activity to decrease in shoots towards the base of the canopy, but again, the 

positional differences did not reach significance. 

Table 5.6 Chlorophyll a, chlorophyll a/b ratio, total chlorophyll and 
carotenoid content, and RuBPC activity, for different canopy 
positions in Control trees in the field, sampled in March 1988. 
Values are means ± S.D. n=2. 

Variable 
	

Canopy Position of Shoot 

Total Chlorophyll 
(mg g 1  fr.wt.) 

Chlorophyll a 
(mg g- 1 fr.wt.) 

Chlorophyll a/b 
Ratio 

Carotenoid Content 
(mg g- 1 fr.wt.) 

RuBPC Activity 
(pmol CO2  g 
fr.wt. mm  1) 

RuBPC Activity 
(pmol CO g 
dry wt. min. 1 ) 
RuBPC Activity _

1  CO2  mg 1  
Chi. min.) 

6.51 ± 1.53 	6.35 ± 1.43 	3.09 ± 0.32 

15.06 ± 2.57 	15.26 ± 4.42 	7.70 ± 0.26 

8.37 ± 3.18 	6.02 ± 0.97 	2.91 ± 0.63 

5.8 The Effect of Needle Age on Needles and Photosynthesis. 

Using pot trees, the effect of needle age on the variables monitored in the 

1988 experiment, was investigated using terminal shoots from whorl 7, which 

had expanded during 1987. Measurements were made on shoots from two 

trees, from +All, -N, -NR, -All and -AIIR treatments, following measurements 

on, and removal of, the current season's growth. Time did not allow 

measurement of P N'  chlorophyll and carotenoid content, and RuBP activity to be 

carried out together, in addition to the main experiment, so these were each 

measured on a separate occasion (for dates, see Table 5.8). 
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5.8.1 Needle Number Per Shoot. 

Variation in needle number for shoots expanded in 1987 was not due to 

treatment, because needle primordia on these shoots were initiated in 1986, 

prior to the start of the experiment in May 1987. Hence low needle numbers 

per shoot for the Controls were due to chance. Needle number in Control 

shoots in 1988 (i.e. number of primordia laid down in 1987), was significantly 

higher than in 1987 (Table 5.7), but in the -N and the -All sets, needle numbers 

were smaller. A significant increase in needle number, as a result of new 

primordia being initiated during the season, by "free growth" of the shoots was 

seen in -AIIR trees and one -NR tree. 

5.8.2 Needle Length. 

Significant variations were found in mean needle length between replicates 

in both 1987 and 1988 needles (Table 5.7), and variation in needle length 

between successive growth seasons was also found. However, there was a 

large, significant reduction in mean needle length in -N and -All treatments in 

1988, compared with lengths of needles expanded in 1987, which were initiated 

before the onset of deficiency treatments. Refertilisation had large effects on 

needle length, bringing values much closer to those of Control needles. 

Table 5.7 Needle number per shoot and mean needle length, for each of 
two current, and one year old shoots, from +All, -N, -NR. -All 
and -AIIR treatments, sampled July 25 1988. 

One Year Old Needles Current Needles 

Treatment Needle Mean Needle Needle Mean Needle 
Number Length (mm) Number Length (mm) 
per shoot ± S.E per shoot ± S.E. 

Control 55 10.90 ± 0.23 179 13.80 ± 0.17 
27 11.30 ± 0.42 217 10.40 ± 0.21 

-NR 92 9.22 ± 0.20 79 8.45 ± 0.19 
80 10.70 ± 0.30 139 10.40 ± 0.28 

-N 114 11.10 ± 0.18 75 5.43 ± 0.09 
109 12.70 ± 0.26 73 7.57 ± 0.17 

-AIIR 79 11.50 ± 0.31 146 11.80 ± 0.32 
85 9.41 ± 0.20 140 12.60 ± 0.37 

-All 88 10.90 ± 0.19 78 5.16 ± 0.08 
83 10.50 ± 0.20 50 4.97 ± 0.10 
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5.8.3 Photosynthetic Rate, Chlorophyll Content and RuBPC Activity. 

The difference in P N'  total chlorophyll content and RuBPC activity between 

one year old and current needles (Table 5.8) proved not to be significant. It 

was therefore considered justified to pool the data for these variables for both 

age classes of needle, in order to test treatment differences. Analyses of 

variance on these data (four values for each treatment (Tables 5.9-5.12)), 

showed significant treatment differences. These differences were further 

analysed by a Multiple Range Test (see after Tables 5.9-5.12), and showed that 

shoots in -N and -All treatments had a significantly lower photosynthetic rate, 

chlorophyll content and RuBPC activity than those in Control, -NR and -AIIR 

treatments. For photosynthetic rate, -N shoots also had significantly lower 

values than -All shoots (see Table 5.9). There was no significant difference in 

the variables between -AIIR and -NR, and Control treatments, although the 

mean values for -AIIR and -NR shoots were higher than the Controls in every 

case. These data show that refertilisation of -N and -All trees caused an 

increase in photosynthetic rate and RuBPC activity, and a synthesis of 

chlorophyll in one year old needles, in addition to affecting development of 

current needles, and this increase gave higher values than for the Controls. 

5.8.4 Carotenoid Content. 

All treatments studied showed non-significantly higher carotenoid content 

in one year old needles compared with current needles (Table 5.8). The 

carotenoid content of needles in the -NR and -AIIR treatments was higher than 

that of the Controls, for current and one year old needles, but again, the 

difference was not significant. 
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Table 5.8 Net photosynthetic rate (i.imol  CO2  m 2  s 1 ), total chlorophyll 
content (mg g- I  fr.wt.), carotenoid content (mg g 1  fr.wt.) and 
RuBPC activity (.imol CO, fr.wt. min -1  and j.imol CO2  mg  
Chi. min 1 ) of current and one year old needles from Control, 
-NR, -N, -AIIR treatments. Sample dates are weeks beginning 
as follows; N'  July 25; Chlorophyll content, August 15; RuBPC 
activity. August 22 1988. Values are means ± S.D. (n=2). 

Variable 	Needle age 	 Treatment 
class 

+All -NR -N -AIIR -All 

1987 4.37 ± 5.48 ± 	1.25 ± 4.49 ± 3.34 ± 
0.66 0.43 0.23 0.59 0.62 

1988 5.37 ± 5.61 ± 	1.51 ± 6.01 ± 1.94 ± 
0.04 0.16 0.65 0.08 0.39 

Total 1987 1.81 ± 2.05 ± 	0.60 ± 2.42 ± 0.64 ± 
Chlorophyll 0.35 0.44 0.03 0.11 0.07 

1988 1.30 ± 2.03 ± 	0.98 ± 1.70 ± 0.62 ± 
0.24 0.13 0.23 0.53 0.004 

Carotenoid 1987 0.43 ± 0.46 ± 	0.22 ± 0.55 ± 0.23 ± 
Content 0.05 0.09 0.002 0.04 0.01 

1988 0.22 ± 0.39 ± 	0.15 ± 0.43 ± 0.22 ± 
0.08 0.10 0.01 0.03 0.01 

RuBPC 1987 3.95 ± 8.01 ± 	0.50 ± 5.31 ± 0.27 ± 
Activity 0.09 1.08 0.20 2.29 0.12 
Per g 
fr.wt. 1988 3.52 ± 4.37 ± 	0.59 ± 4.26 ± 0.83 ± 

4.12 1.17 0.32 3.49 0.38 

RuBPC 1987 2.21 ± 2.12 ± 	1.00 ± 1.79 ± 1.34 ± 
Activity 2.70 0.12 0.58 1.52 0.73 
Per mg 
Chlorophyll 1988 3.10 ± 3.98 ± 	0.50 ± 3.06 ± 0.57 ± 

0.65 0.80 0.08 0.40 0.20 
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Tables 5.9-5.12 
Analyses of variance on pooled data for current and one year old needles, 
for treatment effects on photosynthetic rate, chlorophyll content and RuBPC 
activity, following use of a Multiple Range Test. Treatments with non-
significant differences are underlined. n.s. = not significant. 

Table 5.9. Photosynthetic Rate (pmol CO  m s 

Source of Degrees of Mean Square Variance 
Variation Freedom Ratio 

Treatment 4 12.78 31.34 *** 
Error 15 0.41 

Treatment -N 	-All Control 	-AIIR 	-NR 
Mean 1.38 	2.64 4.87 	5.00 5.54 

Table 5.10. Total Chlorophyll Content (mg g 	fr.wt.). 

Source of Degrees of Mean Square Variance 
Variation Freedom Ratio 

Treatment 4 1.83 16.53 *** 
Error 15 0.11 

Treatment -All 	-N Control -NR -AIIR 
Mean 0.63 	0.79 1.55 	2.04 2.06 

Table 5.11. RuBPC Activity (iimol  CO  g 1  fr.wt min 1 ). 

Source of 	Degrees of 	Mean Square 	Variance 
Variation 	Freedom 	 Ratio 

Treatment 	4 	 25.80 	 7.43 ** 
Error 	 15 	 3.47 

Treatment 	-N 	-All 	Control -AIIR 	-NR 
Mean 	 0.55 	0.55 	3.73 	4.78 	6.19 

Table 5.12. RuBPC Activity (pmol CO  Mg - 	min - 

Source of 	Degrees of 	Mean Square 	Variance 
Variation 	Freedom 	 Ratio 

Treatment 	4 	 4.50 	 3.61 n. s. 
Error 	 15 	 1.25 
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5.8.5 Stomatal Conductance to CO2 , and Intercellular Partial Pressure 
of CO 2* 

In current and one year old needles, C. did not change significantly between 

treatments when the 95% confidence limits were compared. However, the 

difference between current and one year old -All needles was significant (Table 

5.13). Values of G were also not significantly different between treatments 

following comparison of the 95% confidence limits in one year old needles, but 

in current needles the differences were the same as for Fig. 5.11. Significant 

reductions in G were found in one year old needles in Control and -AIIR 

treatments, compared to current needles. 

Table 5.13 Stomatal conductance to COGS, 	(mol m2 _1),  and the inter- 
cellular partial pressure of c62  (pbar), for current and one year 
old needles from Control, -NR, -N, -AIIR and -All treatments. 
The sample date is the week beginning July 25 1988. 

Variable Needle age 	 Treatment 
Class 

1987 

G5  
1988 

1987 

C. 
1988 

Control -NR 

0.188 ± 0.093 ± 
0.010 	0.033 

0.031 ± 0.051 ± 
0.002 0.009 

276.9 ± 289.4 ± 
6.7 9.7 

328.2 ± 318.1 	± 
15.1 10.0 

-N 	-AIIR 

0.026 ± 0.154 ± 
0.002 	0.001 

0.031 ± 0.037 ± 
0.001 0.003 

332.2 ± 341.3 ± 
11.5 3.1 

340.1 ± 335.1 ± 
2.2 1.7 

Mil 

0.024 ± 
0.005 

0.051 ± 
0.006 

284.4 ± 
3.8 

330.4 ± 
0.6 
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5.9 Discussion. 

5.9.1 Leaf Pigments. 

The Control data show a maximum chlorophyll content in field material in 

September, with a slight decline in November. This is in agreement with Linder 

(1972), who found seasonal variation in needle chlorophyll content, with a 

maximum in August and a minimum during the winter, for Scots pine and 

Norway spruce. The same seasonal trend was also found by Gerold (1959) for 

Scots pine, and by Lewandowska and Jarvis (1977), for Sitka spruce. The 

changes in plastid structure, underlying this winter decrease in chlorophyll 

content were studied by Senser et al. (1975) for Picea abies. They found that 

the thylakoid system became disorganised and deformed in the autumn and 

winter, and the number and size of grana were reduced. The maximum 

chlorophyll content of Controls in 1987, of 1.2 mg g 1  fr.wt. and 1.5 mg g 1  

fr.wt. in 1988 is slightly lower than 1.6 mg g- 1  fr.wt. reported for Sitka spruce 

by Lewandowska and Jarvis (1977), for needles at a similar canopy position. 

Linder (1972) quotes maximum values of 1.5 and 1.7 mg g 1  fr.wt. for needles 

of Scots pine and Norway spruce, and the data fall within the range of 

0.76-2.19 mg g- 1  fr.wt reported for a range of 15 forest tree species by Wolf 

(1956). 

The fall in chlorophyll a/b ratio needles late in the 1987 season, and the 

maximum value reached in the winter differ from data of Lewandowska and 

Jarvis (1977), who found an increase during the winter, and lower maximum 

values during the summer. Since total chlorophyll does not fall significantly at 

the end of the season, the fall in the ratio must be due to an increase in 

chlorophyll b and a balancing drop in chlorophyll a. The sharp increase in the 

ratio during early needle development, in June, indicates rapid chloroplast 

development. This was also shown by Valanne et al. (1981), who found that the 

a/b ratio increased during the development of chloroplast ultrastructure in 

leaves of Silver birch, and work with irradiation of etiolated radish has shown 

that chlorophyll a is intitally synthesised in preference to chlorophyll b 

(Lichtenthaler et al., 1981). Nilsen and Bao (1987) also found that the 

chlorophyll a/b ratio was low at leaf initiation in Rhododendron maximum and 

increased rapidly following leaf expansion due to an increase in chlorophyll a. 

The a/b ratio of Control needles in 1988 did not increase during early 

development, and remained constant all season. The reason for this is not 
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known, and it may be that the ratio increased rapidly during early needle 

elongation, prior to bud burst, and was therefore not detected. The chlorophyll 

a/b ratio reflects the distribution of chlorophyll between the various 

chlorophyll-protein complexes in the chloroplast (Leong and Anderson, 1984). 

As the decrease in total chlorophyll with N deficiency and total nutrient 

deficiency in 1988 was also associated with a decrease in the chlorophyll a/b 

ratio, the distribution of chlorophyll between the chlorophyll-protein complexes 

was also affected, so that there was a reduction in the amount of chlorophyll a 

in reaction centres in comparison to the amount of light harvesting chlorophyll 

b. 

Carotenoid content of Control needles in 1987 and 1988 showed no sign of 

a decrease towards the end of the season, as reported by Linder (1972) for 

Scots pine and Norway spruce in August, and data are consistent with those of 

Lewandowska and Jarvis (1977) who observed a continued increase throughout 

the winter in needles of Sitka spruce. A winter maximum in carotenoid content 

was also found in needles of Pine and Fir (Sirotkin and Anufrieva, 1973), and 

needles of Scots pine (Gerold, 1959). Values in October and early November of 

0.20 mg g  fr.wt. are slightly lower than the value of just over 0.30 mg g- I 

fr.wt. reported for needles of Sitka spruce at a similar canopy position by 

Lewandowska and Jarvis (1977). The higher control values of carotenoid 

content at bud burst and in October in 1988, compared with those in 1987, may 

be because shoots from the seedlings were exposed to higher irradiances than 

field shoots, as they received less shading from other foliage. Carotenoid 

biosynthesis may therefore have been stimulated by higher light intensities, 

because of their capacity to act as antennae pigments, and their role to protect 

the chlorophylls from photobleaching (Krinsky, 1964). 

The chlorophyll content of needles in the -Mg set in the field, in 1987 was 

not different to that of the Controls, probably for the reasons already discussed 

(Chapter 3), concerning adequate levels of Mg in the peat. Under more 

controlled pot conditions, the lower chlorophyll content seen in -Mg needles is 

consistent with findings of Dorenstouter et al. (1985), for sun and shade shoots 

of Poplar: Pandev et al. (1982) for sunflower; and Baszinski et al. (1980) for rape. 

Because magnesium deficiency has been shown to reduce protein synthesis 

(Bamji and Jagendorf, 1966), the reduction in chlorophyll content is probably 

more due to inhibited protein synthesis, rather than to a lack of Mg 2  for 

incorporation into chlorophyll molecules. A reduction in protein synthesis 
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explains why carotenoid content is also reduced with Mg deficiency, as also 

found by Baszynski et al., 1980 - for rape; Pandev et al., 1982 - for sunflower. 

The slight increase in chlorophyll content from July onwards upon 

refertilisation differs from findings of Peaslee and Moss (1966), who found that 

the decrease in chlorophyll content caused by magnesium deficiency in maize, 

could not be increased by readdition of Mg. This may be because the capacity 

to synthesise chlorophyll once Mg becomes available may be lost; this does 

not seem to be the case in Sitka spruce. 

The effect of K deficiency on leaf pigments in the literature is variable. In 

seedlings of Picea abies and Larix decidua grown in K deficient nutrient 

solution for 200 days, total chlorophyll content was significantly lower than in 

the Controls, but there was no effect of K deficiency for Pinus sylvestaris 

(Cizkova, 1981). No effect of K deficiency was seen on the chlorophyll content 

of rice (Kabaki et al., 1979). The 1987 data show a lower amount of chlorophyll 

in K deficient trees from August onwards. No effect prior to this may be due 

to the translocation of K within the tree to the developing shoot to buffer 

deficiency. By August probably . K+  is becoming limiting in the new shoots. No 

effect on chlorophyll content was found with K deficiency in 1988, maybe also 

due to internal translocation of K, although this is unlikely in view of the 

deficient levels of K in needles in the -K set (see Materials and Methods, 

Tables 2.6 and 2.7). An absence of an effect due to K deficiency in pot trees 

may also be due to a difference in severity of response compared with field 

trees, because of the young age of the trees. 

Nitrogen deficiency, together with total nutrient deficiency caused the 

greatest reduction in chlorophyll content of all the treatments. A reduction of 

chlorophyll content with N deficiency is widely found in many species (Atriplex 

- Medina, 1971a; spinach - Evans and Terashima, 1987; sunflower - Pandev et 

al., 1982; three species of conifer - Cizkova, 1981). The increase in chlorophyll 

content see'n with refertilisation of nitrogen-deficient trees in 1988 is supported 

by Ingestad and Kahr (1985), who observed regreening in needles of Pinus 

sy/vestris, Picea abies and Pinus contorta, when seedlings grown in low 

nutrient solutions were resupplied with N, although no chlorophyll data are 

given. 

Phosphorus deficiency did not cause a change in chlorophyll content for the 

Controls in 1987 or 1988. Deficiency of P usually causes an increase in 
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chlorophyll content on a leaf area or fresh weight basis, as it retards cell and 

leaf expansion more than chlorophyll synthesis (Hecht-Buchholz, 1967). Data 

show no change in chlorophyll content in comparison with the Controls, for 

trees in the -P set in 1987 or 1988. Results in 1987 (Tables 4.5 and 4.6) 

showed that P deficiency increased cell size, so must also cause an increase in 

chlorophyll synthesis per cell. 

5.9.2 RuBPC Activity. 

During leaf development of broad leaved species, RuBPC activity usually 

reaches a maximum at, or prior to, the attainment of maximum leaf area, and 

then declines (Callow, 1974; Gordon et al., 1978; Lloyd, 1976; O'Toole et al., 

1977). Dickmann (1971) found RuBPC activity to increase sigmoidally during 

leaf ontogenesis in Popu/us de/toides throughout the first season. Work with 

conifers has concentrated on seasonal trends in RuBPC activity, rather than 

ontogenetic changes with needle development. The data here, show changes 

in activity with season, superimposed onto changes associated with needle 

growth. 

The peak in RuBPC activity in August and September, occurred some time 

after shoot and needle growth had ceased. Gezelius and Hallen (1980) also 

found a peak in RuBPC activity in August in current needles of Scots pine, but 

only on a fresh weight basis, with no change or a decline, per unit dry weight, 

protein or chlorophyll. They also found a marked seasonal variation in RuBPC 

activity in older needles, with a peak in August and September when activity 

was expressed per unit dry weight, chlorophyll or protein, but not on a fresh 

weight basis. An increase in RuBPC activity could be due to increasing 

amounts of the enzyme, or an increase in the specific activity, or both. 

Gezelius and HaIlen (1980) attributed the seasonal increase in RuBPC activity in 

older needles, to an increase in specific activity. This was because total 

soluble protein, including RuBPC, decreased between April and July, and was 

used as a nitrogen reserve for the developing shoot. In contrast, they found a 

decrease in specific activity in current needles in August. Unfortunately data 

are not available for changes in total soluble protein throughout the season, so 

these alternatives cannot be explored for Sitka spruce. It is known that RuBPC 

protein can accumulate throughout the summer, and during conditions of 

favourable N supply (Millard and Thomson, 1989 - for Ma/us; Millard, 1988 - for 

potato), so that the seasonal increase in RuBPC activity in all treatments apart 
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from -N and -All may partly be a response to N supply, as well as an 

ontogenetic increase. In wheat, however, not all the accumulated RuBPC 

protein was found to be functional (Lawlor et al., 1987b). Analysis of actual 

amounts of RuBPC present in the needles would therefore be useful in 

determining to what extent non-functional N-storage RuBPC is present. In 

trees, spring growth occurs before the uptake of N by the roots is optimal 

(Millard and Neilsen, 1989), so that stored N from older tissues is particularly 

important for early growth of young trees. This emphasises that the low 

RuBPC activity in -N trees is not only due to a lack of supplied nitrogen during 

needle expansion, but also due to a lack of N for storage during N-deficient 

conditions in the preceding year. 

The reasons for the decline in RuBPC activity seen at the end of the season, 

and following leaf expansion in non-evergreen leaves, may be due to 

proteolytic enzyme(s) which may be specific to RuBPC Protein (Peterson and 

Huffaker, 1975; Peoples and Dalling, 1978). Changes in isoenzyme composition 

of the RuBPC protein may also occur (Shomer-Ilan and Waisel, 1975; Huner and 

Macdowall, 1976). 

Maximum activities of RuBPC in Control needles of 6.5 Umol CO  g  fr.wt. 

min. 1 , which are equivalent to 950 pmol CO 2  g 1  dry wt. h 1 , are higher than 

the 600pmol CO 2  g 1  dry wt. h- 1  found in current needles of Pinus sy/vesrris 

(Gezelius and Hallen, 1980), but lower than values of up to 1500 11mol CO 2  g 1  

dry wt. h 1  found by Beadle and Jarvis (1977) for fully expanded current 

needles of two year old Sitka spruce. Maximum values of up to 1100 pmol 

CO2 g  dry wt h have been reported for mature trees of Picea abies 

(Schmeiden-Kompalla et al., 1989). 

The reduction in RuBPC activity in all deficiency treatments is not surprising 

considering the key role of many elements in protein synthesis. The slight 

decrease in RuBPC activity per unit fresh weight in -K needles compared with 

the Controls, is probably partly due to the role of K' in protein translation 

(Evans and Wildes, 1971; Wyn Jones et al., 1979): Peoples and Koch (1979) 

showed the synthesis of RuBPC to be reduced with K deficiency, and also the 

specific activity on a unit protein basis. Refertilisation with K increased enzyme 

activity slightly, which would be expected if K' caused normal protein synthesis 

to resume. The activity of RuBPC per unit chlorophyll was not different in -K 

or -KR treatments to the Controls, which would support the hypothesis that K 
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deficiency inhibits protein synthesis, if chlorophyll synthesis is inhibited to the 

same extent as RuBPC protein. However, the chlorophyll content of -K needles 

was not different to that of the Controls. 

Magnesium functions as a bridging element for the aggregation of ribosome 

subunits (Cammarano et al., 1972), so that with Mg deficiency the subunits 

begin to dissociate, and protein synthesis is impaired. The absence of a 

reduction in RuBPC activity with Mg deficiency from that of the Controls per 

unit chlorophyll also supports this view, as an inhibition of protein synthesis 

would affect the formation of chlorophyll to the same extent as that of RuBPC. 

The reduction in RuBPC activity on a fresh weight and chlorophyll basis 

with nitrogen deficiency and total nutrient deficiency was larger than for any 

other treatment, and suggests that a lack of nitrogen causes a severe decrease 

in the amount of protein synthesised in the cell. A similar large reduction 

found with N deficiency in RuBPC activity was found with N deficiency in rice 

(Kabaki et al., 1979). 

The lower activity of RuBPC with P deficiency was also apparent per unit 

chlorophyll, unlike with Mg deficiency. This suggests that the effect of P 

deficiency is not due to a general reduction in protein synthesis, since 

chlorophyll synthesis is unaffected. However, it has been shown that P 

deficiency reduces the rate of formation of ATP and NADPH (Tombesi et al., 

1969), which in turn might be expected to reduce the metabolic processes of 

the cell, including the regeneration of RuBP and the synthesis of RuBPC protein, 

although this still does not explain why the synthesis of chlorophyll is 

unaltered. The failure of protein determination using the Bradford method was 

unfortunate,'and means that it is not known whether effects on RuBPC activity 

were due to changes in amount of RuBPC protein, or the specific activity per 

unit protein. The suppression of colour of the Bradford reagent with the 

presence of the needle extract (see Materials and Methods. section 2.11) may 

have been due to interference by polyphenols, resins or tannins which are 

present in conifer needles in large amounts. The problems of studying enzyme 

characteristics and activities in conifers are recognised for this reason (Beadle 

et al., 1983), and the isolation of active proteins is difficult using conventional 

techniques (Loomis and Bataile, 1966). The presence of differing amounts of 

ployphenols in different extracts may cause some proteolytic action, although 

1% (v/v) Tween 80 (used here), was found to be the best protective aóent 
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(Gezelius and Hallen, 1980). This may explain why data for RuBPC activity were 

variable between trees. 

5.9.3 Net Photosynthetic Rate. 

During leaf ontogeny in broad leaved species, P N  increases rapidly, reaching 

a maximum before full leaf area expansion is complete, and then declining 

during later developmental stages (Nicot/ana - Wada et al., 1967; Glycine - 

Dornhoff and Shibles, 1974; P/sum - Bethlenfalvay and Phillips, 1977). The 

same developmental trend has been found in some tree species (Popu/us - 

Dickmann and Gordon, 1975; Prunus - Sams and Fiore, 1982). For conifers, 

there is also a seasonal trend in P N'  which is also superimposed onto 

developmental changes in current needles, whereby P 
N  reaches a maximum in 

late summer, and then declines towards winter, increasing again in the 

following spring (Scots pine - Zelawski and Coral, 1966; Picea sitchensis, Abies 

grand/s. and Tsuga heterophylla - Fry and Phillips, 1977). The data for all 

treatments show this seasonal trend, and maximum values for the Controls 

were up to 7.0 pmol CO  m 2  s- , equivalent to 11.09 mg CO  dm -2  h. This 

is slightly lower than the maximum reported for Sitka spruce by Fry and Phillips 

(1977), and the 14.32 mg CO  dm -2  ti 1  reported for two year old seedlings of 

Sitka spruce preconditioned in 31% shade (Krueger and Ruth, 1969), and much 

lower than the 18.00 mg CO  dm' h measured by Ludlow and Jarvis (1971). 

This is almost certainly because the published values are for saturating 

irradiances (150-200 W m 2, calculated as 0.61 - 0.91inmol m2 1; Ludlow and 

Jarvis, 1971), whilst the trees in 1988 were measured at irradiances of 0.41 to 

0.71 mmol m 2  s 1 . Maximum values of P N  during the 1989 experiment were 

only 2.5 to 3.0 Umol CO  m 2  at light intensities of 0.27-0.29 mmol m 2  s- . 

Values of P of 2.0 pmol CO  m 2  s were found in Controls, even in early 

May, before any needles had reached maturity, showing that photosynthesis of 

the shoot exceeded respiration. This differs from findings of other workers, 

that negative, or very low positive values of P occurred during early leaf 

expansion; Dickmann, 1971 - for Popu/us de/toides; Loach and Little, 1973 - for 

Abies ba/samea; Bourdeau, 1959 - for Norway spruce and blue spruce. This 

difference may be because of the very short period of needle extension in Sitka 

spruce, compared with broadleaved trees and other conifer species, such that 

needles become photosynthetically independent from older needles early in 

their development. 
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The similarity of the decrease in P in the -All and -N treatments suggests 

that the effect of total nutrient deficiency is due to N deficiency, and also 

because the effect of treatment on -All trees is much greater than for any of 

the other treatments, apart from -N. A decrease in N supply is usually found 

to decrease P N  (Slobodskaya et al., 1970 - for pea, bean and sunflower; Yoshida 

and Coronel, 1976 - for rice; Kabaki et al., 1979 - for rice; Longstreth and 

Nobel, 1980 - for Gossypium; Ojima et al., 1965 - for soybean; Evans, 1983 for 

wheat; Evans and Terashima, 1988 - for spinach). 

The lack of effect of Mg deficiency on P is in contrast to the data of 

Peaslee and Moss (1966), who found a decrease in P with Mg deficiency, 

which was due to chlorophyll deterioration. 

A decrease in P has been reported for K deficiency for Phaseolus vulgar/s 

(Ozbun et al, 1965); for Zea mays (Peaslee and Moss, 1966); for Pinus (Zech et 

al., 1969); for Trifolium subterraneum (Bouma, 1970); for Beta vulgaris (Terry 

and Ulrich, 1973); and for Gossypium hirsutum (Longstreth and Nobel, 1980). 

However, no influence of leaf potassium content on P was found for Glycine 

(Ojima et al., 1965), and for sugarcane, Ham (1969; 1970) found that P did not 

decrease until K deficiency became severe. Re-application of K to K-deficient 

maize caused a recovery of P within 24 h (Peaslee and Moss, 1966), and 

within 10 days of refertilisation of K-deficient sugarbeet, P N  increased by 49% 

(Okanenko et al., 1965). In the present study, no difference in P from the 

Controls was found in the -K treatment, even though foliar analysis (Materials 

and Methods, Tables 2.6 and 2.7) showed the K content to be deficient in -K 

needles. This low foliar content of K shows that the high value of P in the -K 

set was not due to internal retranslocation of K' to the developing needle. It is 

possible that Sitka spruce seedlings have a high tolerance to K deficiency. 

A deficiency of P did not decrease P N'  consistent with findings of Andreeva 

and Pessanov (1970). Other reports of the effect of phosphorus deficiency on 

are variable: Ojima et al., (1965) found only a small decrease in P with P 

deficiency, and Natr and Purs (1970) found a decrease in barley, but Only after 

several weeks. Lal and Subba Rao (1960) even found that P increased slightly 

in members of the Graminae, under conditions of P deficiency, but Longstreth 

and Nobel (1980) found a decrease in P for Gossypium hirsutum, attributable 

to an increase in r M,  which was similar to the conclusion of Terry and Ulrich 

(1973) for sugar beet. 

142 



5.9.4 Resistance Pathway to CO 
2' 

The ontogenetic trend of change in Cs  in broad-leaved species is similar to 

that of net photosynthetic rate i.e. an increase to a maximum, then a decrease 

(Catsky et al., 1985). Changes in P N  may therefore be partly explained by, 

changes in Cs. The relationship was found by Rawson and Woodward (1976) 

for Glycine max, and by Jewiss and Woledge (1967) for Festuca arund/nacea, 

both sets of workers showing that P and C 5  reached maximum rates at the 

same time as the attainment of maximum leaf area. However, maximum 

photosynthetic rate was not found to be coupled to maximum C for Phaseolus 

vulgar/s (Catsky et al., 1976), or for Hellanthus annuus (Rawson and Constable., 

1980). 

For Sitka spruce, the most detailed study reported is that of Ludlow and 

Jarvis (1971), who measured r 5  and rM  to CO2  transfer at four times between 

June and September in current needles, of 20 year old forest trees. They 

attributed the rise in net photosynthetic rate during needle development to a 

large drop in mesophyll resistance initially, with only small changes in rs. This 

is in contrast to the data obtained in this study, which show an obvious 

increase in 0 during May and early June, i.e. the period of rapid needle 

expansion, in all treatments apart from -N and -All. An increase in stomatal 

conductance is to be expected during leaf development, due to the increase in 

pore size as guard cells differentiate and become fully functional. 

The maximum value of C 5  in Controls, of 0.19 mol m 2  s is equivalent to 

a resistance to CO 2  transfer of 2.16 s cm- , which is rather higher than the 

minumum value of 1.8 s cm- 1 
 reported for Sitka spruce by Ludlow and Jarvis 

(1971). However, these values are lower than those for a range of other tree 

species (Holmgren et al., 1965), and may account for the higher values of P in 

Sitka spruce when compared with other tree species (Larcher, 1969). A reason 

for the decrease in Cs  from late August, may be the build up of wax in the 

stomatal antechamber during late needle development. This has been shown 

to contribute over 30% of the total pathway resistance to CO  (Jeffree et al., 

1971). It is possible that deficiency of Mg, K or P causes more wax to be 

deposited, or affect stomatal development and thereby limit conductance earlier 

in time than in the Controls. However, refertilisation of -Mg, -K and -P sets at 

the onset of needle growth had no effect on Cs; this would not be expected if 

needle anatomical development was affected by deficiency, unless by this stage 
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the number of stomata and the nature of their development was already 

established. The increase in Os  in -NR and -AIIR treatments compared with 

-N and -All treatments, and to higher values than the Controls, is probably a 

reflection of the free growth observed in these treatments: new needles were 

initiated and continued to expand throughout the season, so that younger 

needles would have less wax than needles in other treatments. There may also 

be differences in needle anatomy; larger stomata, a higher density per unit 

area, or changes in the thickness of the cuticle which may affect the degree to 

which the stomata are sunken. Treatment differences in needle anatomy are 

likely, considering the significant effects on shoot and needle morphology 

outlined in chapter 3, ãd more data on anatomical differences due to 

treatment would be useful in interpreting the data. No data are available on 

changes in mesophyll resistance with treatment and time, which would be 

useful in interpreting the limitations operating on the availability of CO  to the 

cells. It is known that nitrogen deficiency causes an increase in concentration 

of ABA in plants (Goldbach et al., 1975), and a lower cytokinin concentration 

(Radin et al., 1982; Krauss and Marschner, 1982). Phosphorus deficiency also 

increases the sensitivity of stomata to ABA. These effects are important in 

causing stomata to close more rapidly (Mitteiheuser and Van Steveninck, 1971), 

usually in conditions of water stress, but may also lower maximum pore 

dimensions, and hence decrease 0S'  as seen in -P. -N and -All treatments. 

The role of potassium in causing the increase in turgor in the guard cells 

responsible for stomata[ opening is well known (Humble and Raschke, 1971), 

and therefore K-deficiency may cause stomatal closure. This could explain the 

reduced stomatal conductance in -K trees, compared to the Controls, although 

no effect was observed following refertilisation with K. 

Wong et al. (1985) found that decreasing the availability of N or P led to a 

reduction in both Cs  and photosynthetic rate for Zea mays and Gossypium 

hits utum. Refet-tilisatioñ of N deficient Zea mays plants caused an increase in 

both these variables. The increases and decreases in P and G were in the 

same proportion, so that the intercellular partial pressure of CO  was 

unaffected. Raschke (1975) discusses the theory of feedback mechanisms 

controlling stomata, and Wong et al. (1979) suggest that stomata respond to 

the capacity of the mesophyll cells to fix CO 2'  by maintaining the intercellular 

concentration of CO  at a constant level, which could be achieved by negative 

feedback by RuBP, ATP or NADPH. 
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The decrease in C. upon refertilisation of -N and -All trees, although slight, 

is in contrast with findings of Longstreth and Nobel (1980) for Gossypium 

hirsutum, and implies that the increase in mesophyll conductance (G M ) is 

greater than that in G. This indicates that the response of 
0M 

to nutrition 

may be more important than G 5  in determining the overall diffusive resistance 

of CO  to the cells. 

To assess the importance of the components processes of photosynthesis 

in determining P 
N' a study of the possible correlations between them is 

necessary. 

5.9.5 Correlations Between Photosynthetic Variables. 

It is generally agreed that there is a relationship between photosynthetic 

rate and chlorophyll content; this was found to be linear for soybean (Buttery 

and Buzzell, 1977), and for leaves arranged at different positions on the stem of 

Nicotiana tabacum and Brassica oleracea ( Sestak, 1963). The data for Controls 

(Th.t'le. S.3 ), and all treatments except -Mg, -MgR and -N show a significant 

linear relationship between total chlorophyll content and P 
N  per unit area. 

However, there are many reasons why a linear relationship is not always found; 

for example, during early leaf expansion, chlorophyll formation precedes 

measurable activity of the photosystems (Sestak et al., 1985). Wieckowski 

(1959; 1960 a,b; 1961) showed that in early leaf growth, the rate of pigment 

synthesis exceeds that of area increase, and subsequently the situation is 

reversed, so that correlations between chlorophyll content and photosynthetic 

rate depend on the basis on which both are expressed. A discrepancy in the 

correlation is sometimes observed, due to photosynthetic rate reaching a 

maximum earlier in leaf ontogeny than chlorophyll content (Hernandez-Gil and 

Schaedle; 1973 for Popu/us; Sestak and Bartos, 1963 forZea). The present data 

show the1  situation, with P N  reaching a peak before chlorophyll content, 

but this discrepancy still reduces the significance of the correlation. The 

correlation coefficients for the relationship between P and total chlorophyll 

content for the period up to August are higher than the calculated values using 

data from the whole season. The dependence of photosynthetic rate was 

found to be higher with respect to chlorophyll a content rather than chlorophyll 

(a+b) content, in only a few of the treatments (Table 5.3), but is usually 

reported to be more significant (Sestak. 1966; Okubo et al., 1975). The reason 

for this is that chlorophyll a plays a more leading role in vivo in photosynthetic 
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reactions than chlorophyll b (Witt et al., 1965). Explanations of the relationship 

between chlorophyll and photosynthesis involve the concept of the 

photosynthetic unit", a hypothetical unit being defined as the amount of 

chlorophyll molecules per one molecule of the reaction centre of photosystem 

1. The capacity of the photosynthetic apparatus must therefore be closely 

linked to the number of photosynthetic units present. During chloroplast 

development, the synthesis of the photosynthetic units is thought to proceed 

either by the rapid synthesis of reaction centres of the units, followed by the 

synthesis of bulk chlorophyll which surrounds the reaction centres, or by the 

synthesis of one complete unit after another (Heron and Mauzerall, 1972). In 

the first case, photosynthetic efficiency per unit chlorophyll) would be 

expected to increase with increasing chlorophyll content, as chlorophyll a is 

synthesised, then decrease as chlorophyll b is synthesised. An increase in the 

chlorophyll a/b ratio followed by a levelling off or a decrease would also be 

expected. In the second case, photosynthetic efficiency and chlorophyll 

content would be expected to increase in parallel, and the a/b ratio to remain 

constant. The data for 1988 show the chlorophyll a/b ratio to be constant, and 

therefore support the second interpretation, although a sharp increase in the 

ratio may have occurred prior to bud burst and the start of sampling. However, 

the photosynthetic efficiency in 1988 increased with increasing chlorophyll 

content in the first part of the season, for Control needles, which is 

inconsistent with the second theory. The increase in the chlorophyll a/b ratio 

in 1987 in field trees, followed by a levelling off would support the first 

interpretation. The process of photosynthetic unit development in Sitka spruce 

is therefore unclear. Possibly, chlorophyll content is not limiting P 
N  in 1988, so 

that photosynthetic efficiency increases for other reasons. It may be that in 

juvenile trees photosynthetic units develop sequentially, and there is a shift 

with increasing age, to development based on the first interpretation. Earlier 

measurement of the chlorophyll a/b ratio immediately prior to bud burst in pot 

trees might detect an increase, and resolve the apparent differences in 

interpretation between field and pot trees. 

Although the photosynthetic capacity P N  and the number of photosynthetic 

units present (e.g. chlorophyll content) are fundamentally related, the 

correlation is improved when the conditions under which photosynthesis is 

measured, particularly light intensity are optimum (Sestak, 1963; Sestak and 

Bartos, 1963). The light intensities used in this study were not saturating, and 
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as needles are fairly thick, lower layers of chloroplasts may not be as saturated 

as upper layers. A higher correlation would therefore be obtained by 

expressing chlorophyll content on a fresh weight or a dry weight ("chlorophyll 

concentration") basis, rather than per unit area. The effects of nutrient 

deficiency on needle morphology, and particularly effects on needle or cuticle 

thickness, may be significant in determining the extent to which the 

chloroplasts are light saturated, thereby altering the P-I response curve. This 

could be important in conditions of low light intensity. 

The relationship between total chlorophyll content and RuBPC activity 

during leaf ontogeny is similar to that reported for Theobroma cacao (Baker 

and Hardwick, 1973), when both are expressed per unit fresh weight. Because 

of the apparent geometric nature of the relationship, it appears that during 

needle expansion, chlorophyll synthesis exceeds the synthesis of 

photosynthetic enzymes. This is not surprising considering the higher priority 

that must be given to development of the light harvesting system. Following 

needle elongation, synthesis of photosynthetic enzymes is greater than that of 

chlorophyll, which is more likely to limit photosynthesis during this period of 

maximum photosynthetic capacity. 

The data show a poor correlation between photosynthetic rate and RuBPC 

activity. This is interesting, since a correlation between maximum RuBPC 

activity and maximum photosynthetic rate has been found by many authors 

(Smillie, 1962 - Pea; Medina, 1971a - Atrip/ex patula; Tselniker 1981, - Aspen; 

and Steer, 1971 - Capsicum), and has led to the belief that RuBPC is a major 

limiting factor of photosynthesis. This view is also supported by the high 

abundance of RuBPC in the cell, contributing up to 33% of the total leaf protein 

(Collatz et al., 1979). The data show that for some treatments (-Mg, -MgR and 

-N), maximum photosynthetic rate does coincide with maximum RuBPC activity 

(per unit fresh weight) (compare Fig. 5.7 with Fig. 5.9), however, in other 

treatments, P N  reaches a peak slightly prior to the peak in RuBPC activity. 

During the needle expansion phase, until mid June, RuBPC activities in all 

treatments are very low and do not increase, although P 
N 

increases rapidly in 

all treatments, indicating that during early needle development, RuBPC activity 

is not a limiting factor to A decline in RuBPC activity from September 

onwards is matched by a decrease in P N'  although the discrepancy in the 

timing of the peaks, with that of RuBPC being later, does not suggest that 

RuBPC activity limits P late in the season. Some authors agree that RuBPC 
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activity is not a limiting factor to 	at least during early leaf ontogeny 

(Blenkinsop and Dale, 1974; Thomas and Thorne, 1975). Baker and Hardwick 

(1973) found that a plot of RuBPC activity per unit photosynthetic rate against 

time showed enzyme activity to increase during leaf expansion, with no 

increase in photosynthetic rate. This is in contrast to the relationship found 

here during early needle expansion, but is similar to that found later in the 

season, when the increases in RuBPC activity are not matched by similar 

increases in The reason for the discrepancy in maximum rates of RuBPC 

activity and P N'  may be due to differences in carboxylating activities in leaf 

extracts and in .vivo in the leaf. For example, assay of RuBPC in vitro may give 

lower measured activities than those occurring in vivo, due to incomplete 

extraction from the leaf, or higher activities in vitro due to providing optimum 

conditions for the reaction. It is therefore difficult to relate an enzyme activity 

to a reaction rate, and any interpretation of the correlation between RuBPC 

activity in vitro and P must bear this in mind. Some studies have shown that 

RuBPC is not fully activated in vivo (Perchlorowicz et al., 1981; Perchlorowicz 

and Jensen, 1983), but this was concluded for tow concentrations of CO 
2' 

where RuBPC was likely to be rate-limiting. Caemmerer and Farquhar (1981), 

Seeman et al., (1981), and Seeman and Berry (1982) concluded that RuBPC 

activity was consistent with in vivo photosynthetic rates, only if full activation 

of RuBPC is assumed. 

In the present study, Os  increases in parallel with P for all treatments in 

May and early June, but subsequently, changes in G are not proportional to 

those in P N'  and the correlation between both variables (Table 5.5) is poor for 

most treatments. Although P N  and 0 vary independently, C. remains fairly 

constant throughout the season and between treatments, and this supports the 

hypothesis of Wong et al. (1979), that the constant value of C. is controlled by 

the stomata reponding to the capacity of the mesophyll cells to fix CO 2*  Some 

workers report that Cs  is the prime controlling factor in photosynthesis 

(McPherson and Slatyer, 1973; Pasternak and Wilson, 1973), whilst others 

maintain that photosynthesis is primarily controlled by 0M'  (Fraser and Bidwell, 

1974; Berry and Farquhar, 1978; Bierhuizen and Slatyer, 1964). The usual finding 

is that G and 0M  change in parallel as leaves age (Wilson and Ludlow, 1970; 

O'Toole et al., 1977), so that the concentration of CO  in the intercellular 

spaces remains constant. The data here show that this is true for all 

treatments, so we may conclude that even though data for GM  are not 
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available, values of C. reflect changes in both G and GM,  so that P is affected 

by similar changes in both. However, the rate for -NR and -AIIR treatments 

show that this duality of response of G 5  and G M  may be disrupted by nitrogen 

nutrition, with G 5  increasing more than GM,  in response to favourable N supply. 

for all treatments is probably limited to some degree by CO  diffusion, as 

well as by biochemical factors; because C 3  plants are not saturated in normal 

air (Pearcy and Ehleringer, 1984), every step in the diffusion pathway represents 

a concentration drop in CO  which decreases photosynthesis. Diffusional 

limitations completely limit P when the CO  concentration at the carboxylation 

sites falls below the CO  compensation point. Ludlow and Jarvis (1971) found 

that G and GM  in needles of Sitka spruce did not change in parallel, and 

during initial needle development, GM  increased more rapidly than G, and 

following needle elongation, C 5  increased by much more than Evans 

(1983) has concluded that for wheat, the liquid-phase diffusion resistance to 

CO  usually imposes relatively small limitations on P N'  but when leaves develop 

exceptionally high biochemical capacities, limitations by liquid-phase resistance 

become important. Ludlow and Jarvis (1971) suggest that the liquid-phase 

transfer conductance component of °M  may be more important in needles of 

Sitka spruce as a rate limiting step in CO  availability than in broad leaves. 

This is because of the densely packed arrangement of large mesophyll cells, 

with a small internal volume of intercellular spaces for gaseous diffusion. 

5.9.6 Limitations on Photosynthetic Rate. 

From the data for the Controls in 1987 and 1988, the following pattern 

emerges for the development of photosynthetic capacity: chlorophyll synthesis 

precedes that of RuBPC, and is of primary importance in the establishment of 

photosynthetic capacity, by providing a light capture system. In field trees, 

chlorophyll a synthesis precedes that of chlorophyll b, so that the reaction 

centres of the photosynthetic units develop first, followed by the synthesis of 

light-harvesting chlorophyll. Pot trees however, provide some evidence for the 

sequential development of photosynthetic units, and this ontogenetic difference 

may be due to tree age. 

Photosynthetic rate during needle expansion increases more rapidly than 

chlorophyll content or RuBPC activity, and is probably more limited by stomatal 

resistance to COT  which changes in parallel with P 
N during needle 

development. Photosynthetic rate reaches a peak prior to that of RuBPC 
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activity and chlorophyll content, and is probably not limited by chlorophyll 

content. The limitation of P in vivo by RuBPC activity is more difficult to 

assess, due to the difficulty already mentioned, of relating an enzyme activity in 

vitro, to a reaction rate in viva. It is possible that in viva, P N  and RuBPC 

activity are both reduced by other limiting factors dependent on the season, 

such as levels of NADPH or ATP, or amounts of RuBP. Photosynthesis towards 

the end of the season is probably also limited by Cs. 

In -NR and -AllR treatments, Cs  and 0M (as inferred from a constant C.), 

continued to increase until November, so cannot account for the decrease in 

in September. Chlorophyll content also remained high, so again, the decrease 

in RuBPC at the end of the season is most closely related to the decrease in 

Bouma (1970) found that with N deficiency, P N  in Trifolium subterraneum 

decreased per unit area, but not per unit chlorophyll. When the plants 

recovered from N stress, an increase in P N  preceded an increase in chlorophyll 

content, indicating that a recovered chlorophyll content was not the sole 

reason for the fall in The present data show a rapid increase in P and 

chlorophyll content together, immediately following refertilisation with N, 

suggesting that chlorophyll content was limiting P 
N  in N-deficient trees. 

However, 0 also increased rapidly on refertilisation of -N trees, making it hard 

to determine which is the main N-induced factor limiting As it is, a 

combination of low RuBPC activity, low chlorophyll content, and high stomatal 

resistance to CO  transfer appear to be involved. However, Nevins and Loomis 

(1970) found a rapid increase in P to normal rates within 4 days of 

refertilisation of N-deficient sugar beet. They suggest that the rapidity of 

recovery indicates the remedying of a lack of nitrogenous components 

(including RuBPC), rather than long term morphological alterations of the leaf 

(i.e. changes in r 5). In contrast, the present study shows that the increase in 

RuBPC activity following refertilisation of -N and -All trees is not as great as 

that in chlorophyll content and 0S'  and it is probably these which limit 

under conditions of N deficiency. However, the rise in P to a maximum in 

August is not accompanied by an increase in Cs, and cannot be limited by it, 

which suggests that chlorophyll content is the more important factor in 

N-deficient conditions. 

Interestingly, despite P 
N not being affected by other deficiency treatments, a 

reduction in chlorophyll content was found in -Mg and -MgR treatments, a. 

reduction in RuBPC activity in -Mg, -P and to a small extent, -K treatments, 
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and a reduction in G 5  in all these treatments, compared with the Controls. This 

does not implicate a major limiting factor on the maximum value of 

although as already stated, this maybe due to non-saturating light levels used. 

For most treatments, the decrease in P at the end of the season, is followed 

by a decrease in RuBPC activity, and it may be that either RuBPC activity is 

causal in decreasing P N'  or P 	 is causal in decreasing RuBPC activity. 

Alternatively, other factors may act within the needle, to affect P and RuBPC 

independently. Data for the -Mg set do not show a large drop in RuBPC 

activity or chlorophyll content concomitant with that in P 
N'  which may be 

caused by the decrease in G 5  from mid-September. In the -P treatment, the 

decrease in P is independent of any change in chlorophyll content, RuBPC 

activity or G, which also implicates the involvement of other factors, such as 

electron transport or limitations of other photosynthetic enzymes or substrates. 

5.9.7 Effect of Canopy Position on Photosynthesis. 

Differences in amount of chlorophyll and RuBPC activity with different 

canopy positions (Table 5.6) are related to whether shoots have "sun" or 

"shade" characteristics, and reiterate the importance of a standardised sampling 

regime, since differences due to canopy position are larger than some 

treatment differences (e.g. Fig. 5.1 and Table 5.1). The increased chlorophyll 

content with decreasing position in the canopy is consistent with findings of 

Lewandowska and Jarvis (1977), and is a typical response to shade conditions 

(Boardman, 1977). The decrease in the chlorophyll a/b ratio in "shade" shoots, 

suggests that the increase in total chlorophyll is largely due to an increase in 

the light-harvesting pigment, chlorophyll b, so providing a more efficient 

system of light capture in a light-limiting environment (Goodchild et al., 1972). 

This is also in agreement with Alberte et al. (1976), who suggest that "Shade" 

needles may have fewer and larger photosynthetic units than "sun" needles, 

and it has been shown that "sun" needles have a larger capacity for electron 

transport through photosystem I and II than "shade" needles (Lewandowska et 

al., 1977; Lewandowska and Jarvis, 1978). The tendency of RuBPC activity to 

decrease at lower canopy positions (Table 5.6), especially per unit chlorophyll, 

is to be expected for "shade" leaves (Bjorkman, 1968), and it is supported by 

Beadle (1977), who found higher activities of RuBPC, on an area basis, in "sun" 

needles rather than in "shade" needles. 
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5.9.8 Effect of Needle Age on Needles and Photosynthesis. 

It is reported that in leaves with a duration of more than one year, P 
N 

decreases with leaf age (Field and Mooney, 1983). In conifers, the effect of age 

has been studied in 6 species by Freeland (1952), who found that 

expressed per needle, reached a maximum at the time of needle maturity in the 

first season, and then declined with increasing age, beginning with the second 

season. However, Stafelt (1924) concluded that for spruce, photosynthetic rate 

per g fr.wt. decreased with increasing needle age, but only because the weight 

of the needles increased with age, and the photosynthetic rate per number of 

needles increased with increasing age for five years before declining. The data 

show slightly higher rates of P in current needles rather than in one year old 

needles in all treatments studied, apart from -All. The significant differences in 

Os in Table 5.13 do not account for the differences in P 
N'  although the C. 

values also showed no significant differences between age classes apart from 

the -All treatment, where the significantly lower values found in one year old 

needles accord with the higher measured The data for G 5  contrast with 

those of Ludlow and Jarvis (1971) who found G and G to decrease with 

increasing needle age. A general comment here is that the sample size of two 

trees was not large enough to detect small differences in the parameters 

measured, given the tree-to-tree variation which existed. The total chlorophyll 

content of Controls did not vary significantly between the two age classes, 

whereas Koch (1976) found chlorophyll a and b to increase per unit dry matter 

in spruce, from current to 5 year old sun and shade needles. Wood (1974), 

however, found the chlorophyll content per unit dry matter or needle area to 

decrease from 1 to 4 year old needles. Linder (1972) also found that total 

chlorophyll content per g fresh weight was higher in current needles of Scots 

pine and Norway spruce compared with one year old needles. The higher 

carotenoid content in 1 year old rather than current needles from all treatments 

(Table 5.9 ) is supported by Godnev et al. (1969) for Picea pungens and Picea 

exce/sa, who found that a maximum content was not achieved for several 

years; whether greater values would have been found in years 2 onwards 

remains unknown. Gezelius and Hallen (1980) found slightly higher RuBPC 

activities in 1 and 2 year old needles of mature Scots pine than in current 

needles, on a dry weight basis, but successively lower values with increasing 

needle age per unit chlorophyll. Activity of R 'uBPC was not found to vary 

between needle age classes on a g fr.wt. or mg chlorophyll basis (Table 5.5 ), 
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again, possibly because the sample size did not allow small differences to 

show significance. It may be that differences in the photosynthetic variables 

with nutrient stress become more pronounced as trees become older. It is 

interesting that the increase in total chlorophyll content, P N'  and RuBPC activity 

following refertilisation of -All and -N treatments also occurs in 1 year old 

needles, and to the same extent as in current needles. This demonstrates how 

plastic the response of the photosynthetic apparatus is to changes in nutrient 

availability. It also shows that considerable synthesis of chlorophyll and 

photosynthetic enzymes can occur in fully developed chloroplasts, which are 

likely to have had fewer and more compartmentalised grana, as a result of N 

deficiency (Vesk et al., 1966; Thomson and Weier, 1962). 
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CHAPTER 6. RESULTS. THE EFFECT OF SUPPLIED NITROGEN ON 
NEEDLE CHARACTERISTICS AND PHOTOSYNTHESIS 

6.1 Introduction. 

Results from the 1988 experiment (Chapter 3), showed that the greatest 

reduction in, all morphological and photosynthetic variables measured was in 

needles from -N and -All treatments, and that there were spectacular increases 

in these variables on refertilisation of these treatments. Sitka spruce is widely 

grown on nitrogen-deficient sites, and it was decided to study the effect of 

refertilising N-deficient trees, in more detail, and in particular, to attempt to 

quantitatively correlate the degree of response to the amount of supplied 

nitrogen. Trees were therefore supplied with a range of nitrogen 

concentrations (see Materials and Methods, section 2.2.3), and the same 

morphological and photosynthetic characteristics were measured as in the 1988 

experiment. The sample size was increased to three trees per treatment, to 

allow more detailed statistical analyses to be performed, in particular, analyses 

of variance (see Materials and Methods, section 2.16). Results are shown 

below, with an analysis of variance table for each variable. Following each 

table is a list of the treatments, in ascending order of their means for that 

variable. Treatments having non-significant differences (p < 0.05) are 

underlined. In each case, degrees of freedom are 7 for treatments and 16 for 

error. In each figure, the Control value, for trees not subjected to any 

deficiency of nitrogen, and fertilised with Hockings solution in 1988 and 1989, is 

plotted as a broken line across all concentrations of N, for comparison. 

6.2 Results. 

6.2.1 Leader Length. 

Mean leader length increased with increasing concentration of supplied 

nitrogen, to a maximum with 112 p.p.m. N (Fig. 6.1). With 112 p.p.m. and 224 

p.p.m. treatments, the length of the leading shoot did not differ significantly 

from that of the Controls. Leader length was significantly reduced with zero 

and 7 p.p.m. nitrogen treatments, compared with the Controls. Trees in all 

treatments apart from zero, 7 p.p.m. and some trees in the 14 p.p.m. treatment 

showed free growth. Since harvest in these treatments occurred before free 

growth had ceased, leader lengths at the end of the season would be greater 
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in these trees, so that differences between Controls and trees in the most 

deficient treatments would be greater than shown in Fig. 6.1. 

Leader Length 
(mm) 	 Source of 

Variation 

Treatment 
Error 

Treatment 	7 	0 	14 
Means 	16.7 23.3 48.0 

Mean 
Square 

5235.80 
924.38 

28 	56 
67.7 87.7 

Variance 
Ratio 

5.66 ** 

+AlI 224 112 
105.0 118.3 124.3 

6.2.2 Needle Number Per Shoot. 

Mean needle number per shoot increased with increasing N concentration 

(Fig. 6.2), and analysis of variance showed needle number per shoot with zero, 

7 and 14 p.p.m. N to be significantly lower than that of the Controls. The value 

with zero N was equivalent to that in the -N treatment in 1988 (section Chapter 

3, Table 3.3). 

Needle Number 	Source of 	Mean 	Variance 
Per Shoot 	 Variation 	Square 	Ratio 

Treatment 	11099.8 	14.93 *** 
Error 	743.4 

Treatment 	0 	7 	14 
Means 	52 	63 	88 

28 	56 	112 +All 224 
141 	176 	180 188 205 

6.2.3 Needle Length. 

The response of needle length to treatment was more variable than that 

found for leader length; shortest needles were found in the zero and 7 p.p.m. 

treatments, and needles in zero, 7 and 28 p.p.m. treatments were all 

significantly shorter than the Controls (Fig. 6.3). Maximum needle length was 

obtained with 112 p.p.m. nitrogen. Mean needle lengths were longer in 1989 

than in 1988; for example, needles in the zero, 112 p.p.m. and Control 

treatments were 7.6, 14.5 and 12.6 mm long, compared with lengths of 5.8, 10.3 

and 10.5 mm for the -N, -NR and Controls in 1988. This probably reflects the 

warmer spring in 1989. 
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Needle Length (mm). 

Source of Mean 	Variance 
Variation Square 	Ratio 

Treatment 18.15 	6.11 ** 
Error 2.97 

Treatment 7 0 28 14 56 224 +All 112 
Means 7.31 7.62 9.54 10.22 11.50 11.67 12.60 14.53 

6.2.4 Needle Projected Area. 

Changes in needle projected area with nitrogen concentration showed the 

same pattern as needle length, with the exception of a higher projected area at 

7 p.p.m. than with zero nitrogen (Fig. 6.4). All treatments up to and including 

28 p.p.m. had significantly lower projected areas than Control needles. Because 

needle projected area with 14 p.p.m. was significantly lower than in the 

Controls, whilst needle length was not, implies that needle width was smaller 

with 14 p.p.m. than in the Controls. Values for zero, 112 p.p.m. N and Control 

treatments were up to 50% higher than for corresponding -N, -NR and Control 

treatments in 1988 (compare values in Fig. 6.4 with Table 3.11). 

Needle Projected Area (mm 2) 

Source of Mean 	Variance 
Variation Square 	Ratio 

Treatment 11.21 	5.84 ** 
Error 192 

Treatmert 0 7 28 14 224 56 +All 112 
Means 3.84 4.59 5.78 5.98 7.29 7.32 8.35 9.66 

156 



Figure 6.1 
Leader length in early August 1989, plotted against concentration 
of nitrogen supplied to nitrogen-deficient pot trees. Each point 
is a mean of three values ± S.E., each from dfferent trees. The 
broken horizontal line represents the Control value (also a mean 
of three measurements), and the vertical bar on the right 
reresents the S.E. of the Controls. 

Figures 6.2 to 6.4 
Needle number per shoot, mean needle length per shoot, and 
mean needle projected area per shoot, for terminal shoots from 
whorl two of Nitrogen-deficient pot trees refertilised with a range 
of nitrogen concentrations. Replication and symbols are as 
for Figure 6.1. 
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6.2.5 Needle Cell Number, Fresh Weight and Cell Volume. 

For needles expanding from primordia initiated in 1988, cell number 

increased with increasing N concentration above 28 p.p.m. Needles with zero 

and 7 p.p.m. N had similar cell numbers to those with 14 p.p.m. N (Fig. 6.5.) 

The same pattern was seen for the change in fresh weight with N 

concentration, for the same needles initiated in 1988 (Fig. 6.6). For needles 

initiated in 1989, increases in cell number and fresh weight were found with 

increasing N supply (Figs. 6.5 and 6.6), apart from with 224 p.p.m. N, where the 

values were less than with 112 p.p.m. N. These treatment differences in cell 

number and fresh weight have not been tested for significance against the 

Controls, for needles initiated in 1988 or 1989, because the position on the 

shoot from where the needles were taken, differed between the Controls and 

the other treatments (see Materials and Methods, section 2.2.3), and this limited 

meaningful interpretations from an analysis of variance. Data for needle cell 

number and fresh weight for needles initiated during the 1989 season are 

higher than for those initiated in 1988, for all treatments studied apart from 224 

p.p.m. N. Since needles initiated in different seasons had to be taken from 

widely different parts of the same shoot (see Materials and Methods, section 

2.2.3), statistical analyses were not performed, as it was impossible to tell 

whether any differences were due to time of primordium initiation (and 

therefore the current nutritional environment), or merely due to positional 

effects of the needle on the shoot. The main aim was to see whether mean 

fresh weight per cell, which was not found to differ much with needle position 

on the shoot, in 1987, was affected in needles arising from free growth (and 

hence initiated during exposure to different degrees of nitrogen availability, 

rather than nitrogen deficiency). 

Data show that for needles expanding in 1989, from primordia laid down in 

1988 or 1989, there was no significant difference in mean cell volume (as 

estimated as mean fresh weight per cell) in any of the treatments, compared 

with the Controls (Fig. 6.7). The Control values of needle cell fresh weight for 

current needles initiated in 1988 or 1989 were almost identical, so that 

differences in other treatments between both sets of data were not significant. 

Therefore, even though increasing the degree of refertilisation increases needle 

length, this was not due to an increase in cell size, irrespective of whether the 

expanding primordium was initiated during the previous or current year. 
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Figures 6.5 to 6.7 
Needle cell number (thousands), fresh weight (mg), and mean 
fresh weight per cell (xlO 9 9  ), measured in early August 1989, 
1989, for needles from terminal shoots from whorl 2 of nitrogen-
deficient trees refertilised with a range of nitrogen concentrations. 
Data are for needles expanded from preformed primordia (circles), 
or primordia initiated by free growth (crosses). Each point is 
the mean of three values, each from different trees ± S.E. Broken 
horizontal lines represent Control values (also means of three 
measurements), for needles expanded from preformed primordia 
(1988), or from newly initiated primordia (1989). The vertical 
bar on the right represent the S.E. of the Controls. 
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Mean Fresh Weight Per Cell: 

Needles Initiat ed In 1988. 

Source of 
	

Mean 	Variance 
Variation 
	

Square 	Ratio 

Treatment 
	

1.68 	2.13 n. s. 
Error 
	

0.79 

Needles Initiated In 1989. 

Source of Mean 	Variance 
Variation Square 	Ratio 

Treatment 0.66 	1.12 n.s. 
Error 0.60 

6.2.6 Total Chlorophyll Content. 

Total needle chlorophyll content increased with increasing N concentration, 

except that values for zero p.p.m. were slightly, but not significantly higher than 

with 7 p.p.m. N (Fig. 6.8). Values for needles in Control and 112 p.p.m. 

treatments were equivalent, but chlorophyll content with 224 p.p.m. was 

significantly higher than for the Controls. A total chlorophyll content of about 

2.0 mg g fr.wt. for Control and 112 p.p.m. treatments is equivalent to the 

values obtained for Control and -NR treatments in 1988 (Chapter 5. Fig. 5.2 A 

and F), but a mean of 1.24 mg g 
 fr.wt. for zero N is about twice the value for 

-N needles at the same time in 1988. 

Total Chlorophyll Content (mg g'  fr.wt) 

Source of 
Variation 

Treatment 
Error 

Treatment 	7 	0 	14 
Means 	1.14 1.24 	1.61 

Mean 
Square 

0.53 
0.06 

28 	56 
1.82 	1.86 

Variance 
Ratio 

8.67 *** 

112 +All 224 
1.95 	1.95 2.44 
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6.2.7 Chlorophyll a/b Ratio. 

Although the chlorophyll a/b ratio increased between zero and 28 p.p.m. N, 

and the qualitative response of the ratio was similar to that shown by other 

variables (Fig. 6.9), no differences between treatments were significant. This 

contrasts with the significant reduction in chlorophyll a/b ratio seen in 

N-deficient needles in 1988 (Chapter 5, Fig. 5.4 E). Values for 112 p.p.m. N and 

Controls of about 2.9 were slightly higher than the values of 2.5-2.7 obtained in 

-NR and Control treatments in 1988 (Chapter 5, Fig. 5.4 E and A). 

Chlorophyll a/b Ratio. 

Source of 	Mean 	Variance 
Variation 	Square 	Ratio 

Treatment 	0.047 	0.96 n.s. 
Error 	0.049 

6.2.8 Carotenoid Content 

Carotenoid content showed similar changes with N concentration as total 

chlorophyll content, although 56 p.p.m. N gave lower values than with 28 

p.p.m.N (Fig. 6.10). Needles in the 224 p.p.m. treatment had a significantly 

higher carotenoid content than the Controls, and values with zero and 7 p.p.m. 

were slightly lower. The mean carotenoid content of needles in zero, 112 

p.p.m. and Control treatments was between two and three times greater than 

the values for needles in -N. -NR and Control treatments *  in 1988 (Chapter 5, 

Fig. 5.6 E and A). 

Carotenoid Content (mg g  fr.wt) 

Source of 
Variation 

Treatment 
Error 

Treatment 	7 	0 	14 
Means 	0.54 0.62 0.81 

Mean 
Square 

0.11 
0.01 

28 	56 
0.89 0.86 

Variance 
Ratio 

10.57 

+All 112 224 
0.94 0.95 	1.15 
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Figures 6.8 to 6.11 
Total chlorophyll content, chlorophyll a/b ratio, carotenoid 
content and RuBPC activity measured in early August 1989, in 
needles from shoots from whorl 2 of nitrogen-deficient 
pot trees refertilised with a range of nitrogen concentrations. 
Each point is a mean of three values, each from different trees 
± S.E. The broken horizontal line represents the Control 
value (also a mean of three measurements), and the vertical 
bar on the right represent the S.E. of the Controls. 
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6.2.9 RuBPC Activity. 

The data for RuBPC activity show considerable variation, with coeffecients 

of variation as large as 89% for the zero p.p.m. treatment. Analysis of variance 

on the data showed RuBPC activity per g fresh weight was not significantly 

different to the Controls in any treatment, but zero and 7 p.p.m. N gave lower 

mean RuBPC activity than other treatments (Fig. 6.11). RuBPC activity in the 

Controls was about half the value measured in 1988 (Chapter 5, Fig. 5.7 A), and 

activity with zero and 112 p.p.m. N were also much lower than that found for 

-N and -NR needles in 1988 (Chapter 5, Fig. 5.7 E). Because of the variation in 

chlorophyll content with varying N supply, analysis of variance showed RuBPC 

activity per unit chlorophyll did not differ with treatment. 

RUBPC Activity. 

jLrnoI CO  g fr.wt. min. 1  

Source of 	Mean 	Variance 
Variation 	Square 	Ratio 

Treatment 	10.65 	2.38 n.s. 
Error 	4.47 

imol CO  mg 1  Chi min. 1  

Source of 	Mean 	Variance 
Variation 	Square 	Ratio 

Treatment 	1.46 	1.3 n.s. 
Error 	1.12 

6.2.10 Net Photosynthetic Rate. 

increased rapidly with increasing N supply up to 14 p.p.m., and a plateau 

was then reached (Fig. 6.12), probably because light was not saturating in the 

controlled environment room used. Only shoots with no supplied nitrogen had 

a significantly lower photosynthetic rate than the Controls, and the rate was 

negative, showing that respiration exceeded photosynthesis. Values for zero, 

112 p.p.m. and Control treatments were much lower than for corresponding -N, 

-NR and Control treatments in 1988 (Chapter 5, Fig. 5.9 E and A). This also, is 

probably due to the lower light intensities used in 1989. 
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Net Photosynthetic Rate (.tmol CO  m2 1) 

Source of 	Mean 	Variance 
Variation 	Square 	Ratio 

Treatment 	4.13 	4.68 ** 
Error 	0.88 

Treatment 	0 	7 	+All 28 	112 14 	56 	224 
Means 	-0.65 1.82 2.43 2.53 2.57 2.71 2.79 2.88 

6.2.11 Stomatal Conductance to CO  Transfer, and Intercellular Partial 
Pressure of CO 

2* 

Stomatal conductance increased with increasing N supply, reaching a 

plateau with concentrations above 112 p.p.m. N (Fig. 6.13). treatments with up 

to 28 p.p.m. N gave lower values of G 5  than the Controls, although no 

differences between treatments were significant. The value of C. decreased 

with increasing concentration of nitrogen (Fig. 6.14), and analysis of variance 

showed that values with zero p.p.m. N were significantly higher than for all 

other treatments. 

Stomatal Conductance, Gs. 

Source of 	Mean 	Variance 
Variation 	Square 	ratio 

Treatment 	4.01 x 10 	2.44 n.s. 
Error 	1.65 x 10 

Intercellular Partial Pressure of CO 2'  C. (p bar). 

Source of Mean 	Variance 
Variation Square 	Ratio 

Treatment 2446.88 	9.81 *** 

Error 249.33 

Treatment 	+All 112 224 56 	14 	28 	7 	0 
Means 	293 297 301 304 322 324 342 378 
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Figures 6.12 to 6.14 
Net photosynthetic rate, stomatal conductance to CO 2. and inter-
cellular partial pressure of CO2. measured in early August 1989 
for terminal shoots from whorl two of nitrogen-deficient pot trees, 
refertilised with a range of nitrogen concentrations. Each point is 
the mean of three values, each from different trees ± S.E. The 
broken horizontal line represents the Control value, and the 
vertical bar on the right represents the S.E. of the Controls. 
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6.3 Discussion. 

The effects on needle morphology in response to refertilisation of 

N-deficient trees in 1989 were the same as in 1988; namely a significant 

increase in needle length and projected area with increased N supply. 

Deficiency of nitrogen usually causes an inhibition of leaf growth (Radin, 1983), 

for a range of broadleaved species. Nitrate has more effect on leaf growth 

than any other major nutrient (Trewavas, 1985), and addition can cause final 

leaf area to increase over three-fold (Dale, 1982; Terry et al., 1983). For trees, 

it was found that an increase in N supply increased the rate of leaf area 

increase for N-deficient birch seedlings (Ingestad and Lund, 1979), and N 

fertilisation of Douglas fir caused an increase in needle length and width (Brix 

and Ebell, 1969). It is not known whether these effects are primarily due to an 

increase in cell size, or cell number of the leaf. Terry (1970) found that 

increased nitrogen supply in sugar beet increased mean cell size, as well as the 

number of cells per leaf and the rate of cell expansion. Radin and Parker (1979) 

also found that cell size was related to N nutrition in cotton plants, with 

smaller cells being the result of N deficiency. This is suggested to be a result 

of a decrease in hydraulic conductivity in the roots, which causes water deficit 

in expanding leaves (Radin and Boyer, 1982). In the present study however, no 

effect on mean cell size was found with any concentration of N, although 

higher N concentrations caused larger needles with more cells, The effect of 

nitrogen nutrition therefore, is on cell division rather than on cell expansion. 

Differences in needle size at different nitrogen concentrations is determined by 

cell number, regardless of whether needles were initiated during the previous 

season, during N-deficient conditions, or during the current season through 

free growth, during favourable nutrient conditions. This conclusion is the same 

as that in Chapter 4, that differences in needle size between treatments are 

primarily determined by differences in cell number. It is not known whether 

the greater needle cell number due to N addition is due to a faster rate of cell 

division, or a longer duration of the period of cell division. These alternatives 

can not be further distinguished, as cell number was not measured throughout 

the season. 

The correlation between chlorophyll content and N concentration, was also 

shown for Poplar (Keller and Koch, 1962) and for Gossypium (Sage et al., 1987). 

The increases in the chlorophyll a/b ratio which accompanied the increase in 

total chlorophyll content with up to 28 p.p.m. N, is the same response found 
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following refertilisation of N-deficient trees in 1988. This suggests that 

nitrogen nutrition has an effect not only on chlorophyll content, but on the 

distribution of different chlorophylls, with a higher proportion of chlorophyll a 

than chlorophyll b being present at low N concentrations. These data are in 

contrast to data of Evans and Terashima (1987), in studies with spinach, who 

found that N nutrition had no effect on the chlorophyll a/b ratio. The present 

data contrast even more markedly with those of Gezelius (1986), who found 

that an increase in total chlorophyll content in needles of Scots pine seeedlings 

with 10 and 50 p.p.m. N compared with 2.5 p.p.m. N, was accompanied by a 

decrease in the chlorophyll a/b ratio. This difference in response of Sitka 

spruce and Scots pine seedlings to N supply cannot be explained, but may 

represent differences in the size and composition of the photosynthetic units 

between species. The increase in the chlorophyll a/b ratio with increasing N 

supply is the same response found in needles at low light intensities near the 

base of the canopy (Chapter 5, Table 5.6), and may be a general stress 

response to limiting conditions for photosynthesis, to provide a more efficient 

system for light capture. Carotenoid content of needles here were higher than 

in 1988 and 1987, and may be explained, by the spring and summer in 1989 

being much warmer and sunnier than in 1988 and 1987, so that needles were 

exposed to higher light intensities, which may have caused the synthesis of 

more carotenoids to protect the chlorophylls from photobleaching. It is 

interesting to note that for pigment data, and for many of the other variables 

studied, a concentration of 28 p.p.m. N was enough to restore values to similar 

levels as the Controls. The very low concentrations of N needed to limit 

growth and photosynthesis severely, suggests that Sitka spruce is tolerant to 

low N supply, and that it responds well to very small additions of N, which is 

an important feature for any management practice. 

A strong correlation has been reported between RuBPC activity and N 

availability (Medina, 1971a - for Atrip/ex; and Wong. 1979 - for several C 3  and 

C4  spp.; Mooney et al., 1983 - for 6 Eucalyptus spp.; and Field et al., 1983 - for 

5 spp. of evergreen trees and shrubs). In the present study, RuBPC activity and 

N supply are poorly correlated, although the reduction in RuBPC activity with 

the lowest nitrogen concentration treatments, despite not being significant, 

agrees with findings of other workers (Gezelius, 1986 - for Scots pine; Sage et 

al., 1987 - for Chenopodium album and Amaranthus retroflexus). The decrease 

in RuBPC activity was not as great as that found for the -N treatment in 1988, 
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which may be due to variation in material, coupled with different prevailing 

climatic conditions in different summers. It is not known to what extent the 

decrease in RuBPC activity with increasing N deficiency is caused by a change 

in the specific activity of the enzyme, or merely lower amounts of enzyme, 

however, Gezelius (1986) found the specific activity of RuBPC in needles of 

Scots pine was slightly reduced with 2.5 p.p.m. N compared with that at 10 and 

50 p.p.m. N. 

It is known that the RUBISCO protein can act as a storage of N in many 

species, and plays an important role in N cycling within plants; increasing the N 

application to potato plants from zero to 25 g m 2  caused concentrations of 

RUBISCO in the leaves to increase by 120%, and during tuber growth, 

Rubisco-N was mobilised more readily than N from other proteins (Millard and 

Ca", 1988). In conditions of favourable N supply, the concentration of RUBISCO 

has also been shown to increase for leaves of Triticum (Lawlor et al., 1987a), 

and by more than that of other soluble proteins (Huffaker, 1982 - for Hordeum 

vu/gate; Yamashita, 1986 - for Morus a/ba). The acumulation of RUBISCO in 

leaves was not associated with a change in the specific carboxylation activity 

for rice (Makino et al., 1984), or by a change in the rate of carbon assimilation 

for Triticum aestivum (Lawlor et al., 1987b). It has been suggested (Lawlor et 

al., 1987b), that for wheat, under conditions of high N supply, only half the 

RUBISCO catalytic sites are activated and functional, supporting the hypothesis 

that the protein is accumulated for storage of N, as well as having a catalytic 

role. From the data, it cannot be determined whether the concentration of 

RuBPC in the needles increases with increasing N supply, although activity does 

show some correlation with N supply, especially at low concentrations. 

Although the estimates of RuBPC activity with zero N are higher than for the 

-N treatment in 1988, those at 112 p.p.m. are lower than for -NR needles in 

1988. This may be due to seasonal differences in material, or to the prevailing 

climate during needle development. 

In view of the key role of RuBPC as a rate-limiting factor in photosynthesis 

(Medina, 1971a; Woolhouse and Batt, 1976; Avdeeva and Andreeva, 1973), and 

that P and RuBPC activity vary in parallel with nitrogen availability (Medina, 

1971b - for Atrip/ex /7astata), supported by this study, evidence is strong that 

is determined by RuBPC activity. Alternatively, in nitrogen deficient 

conditions, P N  may determine RuBPC activity, by a regulation of nitrogenous 

compounds to reflect photosynthetic capacity, or both P and RuBPC may be 
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affected by other parameters in response to nitrogen deficiency. 

A line of evidence indicating that RuBPC activity rather than other 

nitrogenous compounds controls P N'  is from studies where RuBPC protein was 

not a constant proportion of the total soluble protein, and yet P 
N  was better 

correlated with the amount of RuBPC than of total protein (Medina, 1971b; 

Wittenbach, 1983). From the present data is seems likely that a biochemical 

limitation on P N  by RuBPC activity exists, and can partly explain reduced P at 

low N concentrations. Field and Mooney (1986), working with a group of 21 

spp. of trees, shrubs and herbs suggest that variation in RuBPC alone cannot 

account for the PN/N  relationship, as levels of many nitrogenous compounds 

must be changing in concert. They propose that limitation of P 
N  by N may also 

operate via an effect on RuBPC regeneration; the investment of N in the 

components of RuBPC regeneration is substantial, and possibly greater than 

that in RuBPC (Kirk and Tilney-Basset, 1978). A low allocation of N to carbonic 

anhydrase, which catalyses the interconversion of CO  and bicarbonate, to help 

deliver CO  to the sites of fixation, can decrease P 
N  by a reduction of CO  

transport (cowan, 1986). No data are available for Sitka spruce from this study, 

on effects of N supply on RuBPC regeneration, nor on the effect on 

liquid-phase transfer of CO 2'  but possible effects on P via CO  diffusion can 

be considered. 

Shimshi, (1967) found that N deficiency in wheat decreased stomatal 

aperture, which would be expected to decrease G. and an increase in stomatal 

and mesophyll resistance to CO  transfer has also been found as a result of N 

deficiency for several species (maize - Ryle and Hesketh, 1969; sugar beet - 

Nevins and Loomis, 1970; barley - Natr, 1970). The decrease in Os with 

increasing N deficiency in the present study support these findings, and may be 

due directly to a reduction in the size of the stomatal aperture. However, 

Longstreth and Nobel (1980) found little effect of N deficiency on G in 

Gossypium, but GM  decreased with decreasing N concentration. The 

intercellular concentration of CO  also decreased with increasing nitrogen 

supply. This decrease is slightly larger than that found between the 

comparable -N and -NR treatments in 1988 (Chapter 5, Fig. 5.12 E), where C. 

was only slightly reduced by nitrogen refrfflisation and must mean that the 

efficiency of CO  transfer into the mesophyll cells increases with increasing 

nitrogen supply. It is therefore likely that the mesophyll conductance to CO 
2' 

(G M ) ,  increases in parallel with the increase in G 5  with increasing N supply, but 
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to a greater extent, allowing C 1  to decrease. This points to a greater 

importance of °M  than G in controlling CO  availability to the cells. This 

might partly explain the increase in P observed up to 14 p.p.m. N, and P at 

higher N concentrations is probably limited by light intensity, which was lower 

than for the 1988 experiment. The reason for the greater response of C. to N 

supply in 1989 than in 1988 may be due to differences in experimental design; 

in 1989 the wide range of treatments, with a sample size of three, made it 

easier for differences to be statistically quantified, in comparison with 1988, 

where n was only two, and there were only two treatments, namely the 

presence or absence of nitrogen. The data for 1989 is also for one sample 

time in August, compared with the larger number of sample times in 1988, so 

that although G M  was found to be more important in 1989, it does not preclude 

the possibility that it is less important earlier in the season. Since needle 

development is dependent on environmental conditions during development 

(Terry et al., 1983), it is also possible that the different conditions in 1988 and 

1989 caused slight differences in leaf architecture, affecting G 
S 

and GM. 

A quantitative correlation has been found between foliar N concentration 

and P N  (Natr, 1975; Brix, 1981 - for Douglas fir; Keller, 1972 - for Norway 

spruce; Keller and Koch, 1962 - for poplar; Medina, 1971a - for Atrip/ex; Wong, 

1979 - for several C and C spp.). The present data show a similar 
6.11 

relationship between P and concentration of supplied N (Figp, although at 

higher N concentrations, light levels in the controlled environment room 

probably limit A distinction must be made here between concentration of 

supplied N on which the correlation between N and P is based here, and foliar 

N concentration, on which most of the correlations in the literature are based, 

and for which data are not available in this study. 

As 75% of the nitrogen in a leaf is contained in chioroplast proteins 

(Stocking and Ongun, 1962; Morita and Kono, 1975), it is more likely that N 

deficiency effects operate at the chloroplast level as well as altering the 

availability of CO  to the cells. Even though N deficiency decreases the 

amount of chlorophyll, the rate of electron transport, amount of thylakoid 

components, and the rate of oxygen evolution, each expressed per unit 

chlorophyll, are unaffected (Medina, 1971a for Atrip/ex; Evans and Terashima, 

1987; Terashima and Evans, 1988 for spinach). This suggests that N deficiency 

decreases the amount of thylakoids without altering their properties. Although 

the data (Fig 6.11) show variable RuBPC activity with N treatment, the general 
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decrease in activity with decreasing N concentration shows the same trend as 

chlorophyll content, so that the ratio of RuBPC activity to chlorophyll content is. 

independent of the N supply. In Atrip/ex (Medina, 1971a), and Gossypium 

(Wong, 1979), the ratio of RuBPC protein and chlorophyll content was found to 

decrease with increasing N stress, but in Pliaseolus (Caemmerer and Farquhar, 

1981), and Triticum (Evans, 1983; 1985), the ratio was independent of N 

nutrition. Because electron transport activity remains independent of N 

nutrition, but that of RuBPC decreases with increasing N stress, the efficiency 

of carboxylation decreases. So although low P in N-deficient trees is partly 

explained by low RuBPC activity, because the increase in activity on 

refertilisation, which was much more marked in 1988 (Fig. 5.7 E and F, section 

5.3.2) is not as rapid as that in chlorophyll content (Fig. 5.2 E and F, section 

5.2.1.2), it appears that the major limiting factor to P is chlorophyll content. 
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CHAPTER 7. GENERAL DISCUSSION. 

7.1 Introduction and General Considerations 

The aim of this thesis has been to study the effects of mineral nutrient 

deficiency on needle development and photosynthesis in field and pot-grown 

trees. This chapter discusses the major findings in general terms. Some 

general problems associated with this type of study are discussed first, then 

the role of nutrients in determining growth and productivity are considered. 

Two of the problems in studying nutrient deficiency effects in trees are 

those of nutrient balance, and variation in material. Nutrient deficiencies can 

be induced in field and pot trees by withholding a particular element or 

elements, however, the transport and distribution of nutrients within the plant 

may complicate interpretation of results. For example, the nutrient content of 

roots may differ considerably from the content of leaves. Therefore, the effects 

on photosynthesis of an inadequate nutrient supply to the roots may not be 

predicted, and foliar nutrient analysis can be important in explaining differences 

in variables measured on leaves. It is also known that interactions between 

nutrients have important effects (Nichiporovich and Chen'-In', 1959; MacLeod 

and Carson, 1969). Natr and Purs (1969; 1970) found that N deficiency in barley 

caused an increase in P concentration in the leaves, and a beneficial effect of 

nitrogen supply on phosphate nutrition in barley roots was found by Humble et 

al. (1969). A close relationship between Fe and P metabolism is known 

(Machold and Scholz, 1969), so that an increase in P content in the tissue may 

bind more Fe, and induce P deficiency effects. It is therefore sometimes hard 

to explain a causal relationship between a particular nutrient deficiency and a 

change in a specific variable, since the effect of any one mineral element 

cannot always be isolated from that of other elements (Peck et al., 1969). In 

the field, differential application of fertiliser may alter the solubility of nutrients 

in the soil, or lead to ion antagonism. Nutrient deficiency effects may also vary 

with plant age and genotype (Odurukwe and Maynard, 1969). In current work, in 

the field, the -K and -P sets in 1988 were deficient in -K and -P respectively, 

and the -All set were deficient in N, P and K. However, needles in the supposed 

-Mg set were not deficient in Mg; presumably the soil contained adequate 

amounts of Mg. The foliar analyses for pot trees (Materials and Methods, 

Tables 2.5 to 2.7) show deficient foliar concentrations of elements in the 

172 



corresponding deficiency treatments, although -All needles had rather higher 

concentrations of K and Mg than in -K and -Mg treatments respectively. Also, 

needles in -P and -K pot treatments in November 1988 were N deficient, 

perhaps due to an inhibition of N uptake during growth. 

Variation in material was great for all variables measured, in both pot and 

field trees. In the field, differences in needle characteristics with canopy 

position and position on the shoot were minimised or accounted for by the 

shoot and needle sampling procedure (see Materials and Methods). However, 

this procedure was not totally successful, and differences in some needle 

characteristics in the field between trees, exceeded those between successive 

harvests (e.g. Fig. 3.2 B, C, and D). Tree-to-tree differences in the field could 

partly be due to differences in local nutrient availability, or local soil 

characteristics within a plot, but is probably a natural consequence of sampling 

from a genetically heterogeneous population. The use of clonal material for 

the pot experiments might have reduced the variation, but such material was 

not available. The variation could have been reduced by increasing the sample 

size. However, this was limited by the need to measure many variables on 

many treatments, and time did not allow larger samples to be taken. A sample 

size of only two limited the type of statistical analysis which could be 

performed, and meant that differences in variables between treatments in 1988 

were hard to detect. 

7.2 Refertilisation and Free Growth. 

Free growth, although noticeable in some individuals of most refertilised 

treatments in 1988, arose mainly through refertilisation of -N and -All trees in 

1988, and in trees supplied with 14 p.p.m. N and more in 1989. In these 

refertilised seedlings in 1989, free growth increased shoot length, and needle 

number per shoot, and the newly initiated needles due to free growth were 

larger and heavier, with a greater cell number than needles expanding from 

existing primordia. Also, needles expanding from existing primordia and subject 

to higher nitrogen concentration treatments also showed increases in all the 

variables measured, over needles from nitrogen deficient trees. Unfortunately, 

data for chlorophyll content, RuBPC activity and photosynthetic rate were 

estimates for the whole shoot, or mean values, for needles taken from the 

shoot mid point. A comparative study of the photosynthetic characteristics of 

needles expanding from pre-formed primordia and those expanding from 
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primordia initiated by free growth, as was done for needle fresh weight and cell 

number in 1989, might well have shown interesting differences. Time did not 

allow such a study, and profitable future research might be to characterise 

these differences, to extend knowledge about the control of photosynthesis by 

fertilisation. Free growth provides an excellent system for such studies, as 

growth is indeterminate, and needle initiation and development occur without 

the usual temporal separation, and can therefore be easily manipulated by 

conditions applied for a short period of time. It is not known whether free 

growth would be caused by application of nitrogen later in the season, and 

more work should be done to determine whether the timing of application is 

critical. 

It is impossible to distinguish to what degree the elevated photosynthetic 

rates in -NR and -AIIR treatments in August are due to increased area arising 

from free growth, and how much they are due to a direct effect of 

refertilisation on expansion and development of existing primordia. The effect 

of refertilisation on needle development is very great, and spectacularly rapid, 

with most needle and photosynthetic characteristics increasing in comparison 

with -N and -All seedlings: Total chlorophyll and carotenoid content and the 

chlorophyll a/b ratio increased within 1-2 weeks of refertilisation, 

photosynthetic rate increased after about 2 weeks, G after about 4 weeks, and 

RuBPC activity after about 6 weeks. This order points to the primary 

importance of chlorophyll formation for photosynthetic development, although 

RuBPC seems to limit maximum photosynthetic rate later in the season, and 

maybe cause the seasonal changes seen following the August peak. 

It is surprising that refertilisation effects on photosynthesis should be seen 

to a similar extent in one year old foliage. This indicates that photosynthetic 

productivity is not rigidly determined by the nutrient conditions in previous 

seasons, since the capacity to synthesise components of the photosynthetic 

apparatus exists long after the cessation of needle growth. It also suggests 

that the timing of N addition at the start of needle expansion may not be 

critical in determining the potential photosynthetic component of productivity, 

and this could be further investigated by refertilising N deficient trees at 

successively later times throughout the growth season. However, it is not 

known whether the degree of the refertilisation response diminishes with 

increasing age of the tree, and maybe the time of fertiliser application becomes 

more important in older trees. Although photosynthetic development was not 
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studied for a range of nitrogen concentrations, the response near the end of 

the season to a small concentration of added nitrogen was large, and even 

though 112 p.p.m. is a good estimate of the optimum concentration, 14-28 

p.p.m. is enough to halve the difference between trees in zero and 112 p.p.m. N 

treatments in most variables measured in 1989. A concentration of 14 p.p.m. N 

was enough to give free growth, so that a large increase in potential 

productivity can be achieved for a relatively small amount of applied nitrogen. 

7.3 Control of Needle Size. 

Needle size is affected by nutrient deficiency and needle position on the 

shoot. Although cell size was shown to be as important as cell number in 

determining final needle size, differences in cell size seen with -P and -K 

treatments in the field were not as great as those in cell number. It is cell 

number alone which determines the difference in size between -N and -NR 

needles of pot trees, and the difference in needle size with position on the 

shoot in all field treatments. The significantly lower number of cells in 

primordia of -P and -K needles compared with the Controls is reflected in a 

lower final cell number, so that to some extent, potential needle cell number is 

predetermined at the primordial stage. This limitation to final needle cell 

number only exists under nutrient deficient conditions, and the refertilisation 

data show that a restoration of favourable nutrient conditions to N-deficient 

trees causes a greater number of cell divisions to occur in needles, than in 

N-deficient needles. This suggests that needle size, as determined by cell 

number, is a result of prevailing nutrient status during needle expansion, which 

can override any limitations due to nutrient conditions at the time of 

primordium initiation. Future work should investigate whether this N-induced 

increase in cell number is the result of a faster rate of cell division, or a longer 

duration of the period of cell division. No data are available on needle cell 

number responses to refertilisation of P and K deficient needles, and future 

work should further investigate the role of nutrition on cell division by 

determining cell number in P- and K-deficient needles following refertilisation. 

The effect on cell number of restoring N, P or K supply to -All trees at 

progressively later times during needle elongation could also be studied, to 

determine the stage at which final cell number can no longer be altered by 

refe rti I isation. 

In the same way as the ability for free growth declines with increasing 
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seedling age (Watt, 1961; Balut and Zelawski, 1955), so might the plasticity of 

response of needle cell number to nutrient availability during expansion, and 

this should be studied further. Highest final cell number is found in needles at 

a mid-shoot position, whereas maximum primordium cell number is found in 

primordia at the base of the bud, so that positional differences in needle cell 

number are not completely determined by the number of cells in the 

primordium. Therefore, other controls must operate to determine the number 

of cell divisions occurring in a needle, according to its position on the shoot. 

These controls are probably not due to environmental (i.e. climatic) effects. As 

evidence for this, distal needles elongate later than proximal needles, when the 

temperature is warmer and the photoperiod is longer, however, they reach a 

smaller size. This may be because proximal needles act as a sink, so that more 

distal needles become increasingly stressed; for example, they might lack 

phosphorus for nucleic acid synthesis, and carbohydrates for cell walls. 

Carbohydrate stress would be expected to reduce cell size as well as cell 

number, and this is supported by data for Control needles in the field in early 

May 1987, which show a slight curvature in the relationship between needle 

cell number and fresh weight (Fig. 4.2 A), indicating that distal cells may be 

smaller than proximal cells. Subsequently, cell size is not altered by needle 

position on the shoot, and the hypothesis that early in shoot expansion distal 

needles are limited in cell division and expansion by carbohydrate supply and 

nutrient deficiency, and later by nutrient deficiency alone, is proposed. 

Therefore, as for differences in needle size in the nutrient deficient treatments, 

needle size according to position on the shoot is reduced due to limiting 

nutrient conditions during growth. 

7.4 Photosynthesis. 

A general point concerning the measurement of P for all treatments, is 

that it is expressed per unit projected area, based on the total needle projected 

area for the whole shoot. Due to a high degree of mutual shading, the 

projected outline area of a shoot is only about half the total projected area of 

the needles (Norman and Jarvis, 1974). Therefore, if the measured values of 

are calculated per shoot projected area, values would be higher than those 

recorded here. The contribution of the stem to net photosynthesis of the 

shoot has been shown to be near enough to zero, at irradiances above 20-50 

W m 2  (Ludlow and Jarvis, 1971), and can be neglected in interpretation of 
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The trend in all treatments for photosynthetic rate to increase until about 

August, and then to decrease, reflects a seasonal limitation to P 
N  mirroring the 

activity of RuBPC. Changes in RuBPC activity may cause the seasonal changes 

in P N'  or alternatively, P N  and RuBPC activity may both be limited by some 

other factor. Superimposed onto this seasonal fluctuation in P are the 

nutrient limitations observed with N deficiency, in -N and -All trees. 

As the activity of RuBPC was studied during needle development, during 

which time the activity varied 40 fold or more, it was very important to show 

that the substrate concentrations used in the assay were not limiting for any 

treatment at any time throughout the season. This was established using 

Control extracts from the field, in March 1988 (see section 2.10), which showed 

higher activities than for Control pot trees. Future work should involve 

estimates of the amount of total protein in needles throughout their 

development, to relate activity to specific activity. This would show whether 

the seasonal change in activity is due to a direct adjustment of RuBPC 

synthesis, or of the specific activity, and whether the amount of enzyme 

increased as a store of nitrogen, in relation to nitrogen nutrition. The amount 

of RuBPC Ørotein in relation to total protein chould also be investigated, by 

quantitatively assaying the bands obtained from electrophoresis of the etracts, 

to further answer these questions. 

Because the photosynthetic rate in -P needles is not different to that of the 

Controls, and yet field data show the cells are larger, this must mean that 

photosynthetic capacity per cell is greater with phosphorus deficiency. This is 

not due to an increase in RuBPC activity per cell, which is reduced in the -P 

treatment, and is more related to chlorophyll content, which is also higher per 

cell than for the Controls. However, interpreting data from pot trees using 

those from field trees must be done carefully, as large differences in response 

of morphological variables with nutrient treatment were found between the two 

sets of material, and it may be that -P pot trees do not show an increase in 

cell size with P deficiency. 

The development of assimilation capacity (Chapter 5, section 5.6.2), differs 

from that outlined for Pinus sylvestr/s (Kovalev and Malkina, 1985), in the only 

published study of the development of photosynthesis related to needle 

development in a gymnosperm. In this species the period of mesophyll growth 

and development of photosynthetic capacity could be divided into 4 sections: 
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From the beginning of needle growth to 20% of final needle length; dark 

respiration is high, and P is negative and limited by low chlorophyll content. 

Needle growth is supported by photosynthate imported from older needles. 

Between 20% and 40% of final needle length; dark respiration decreases, 

and P becomes positive, although still limited by chlorophyll content. 50% of 

the mesophyll cells are mature at this stage. 

Betw'een 40% and 70% of final needle length; P 
N 

reaches a maximum, 

and all mesophyll cells are mature. 

Between 70% and 1000/s  of final needle length; chlorophyll content 

reaches a maximum, P 
N 

declines, due to an increase in r  to CO 
2* 

Pine needles grow indeterminately, from a basal meristem (Kienholz, 1934), 

so that there is a gradient of maturity from the distal end of the needle, as in 

monocots, which means that photosynthetic maturity of the whole needle is 

reached more slowly than for Sitka spruce. The Control data for development 

of photosynthetic capacity in Sitka spruce can be roughly divided into three 

stages, summarised as follows: 

Needle expansion, from bud burst to early June; P 
N 

rapidly increases, 

together with Cs  for CO 2'  and chlorophyll content. Cells and needles reach 

final size. 

Needle maturity, early June to September: P 
N  and C5  reach a maximum, 

RuBPC is synthesised rapidly, chlorophyll content continues to increase. 

Needle ageing and close of growth season: September onwards; RuBPC 

activity reaches a maximum, then declines, chlorophyll content reaches a 

maximum slightly later, and declines slightly. P N  and Cs decrease. 

Following the first growth season: Data for young pot trees show that for 

needles in their second growth season, carotenoid content is higher, P 
N 

is 

slightly higher, and G 5  lower, than for current needles. There is no difference 

in RuBPC activity, chlorophyll content, or C. between current and one year old 

needles. 

An interesting feature is that P 	 is positive during early needle 

development, immediately following bud burst, unlike for Pinus sy/vestris 
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(Kovalev and Malkina, 1985); Popu/us de/toides (Dickmann, 1971); Picea abies 

(Loach and Little, 1973), and chlorophyll content is not limiting at this time. 

This reduced dependence of developing needles on photosynthates from other 

organs, means that productivity of the whole tree at this time is very high, and 

a large amount of assimilates may be accumulated and stored, to use for apical 

bud development later in the season, when photosynthesis decreases. It is not 

known if the high P N  in young needles is a characteristic only found in 

seedlings, and whether developing needles of field trees are more dependent 

on older needles. Not enough data has been collected on photosynthesis in 

the field, and the summary above formulated for seedlings may not apply for 

older trees, with more pronounced reductions in photosynthetic capacity 

possibly being found in older needles. A further characterisation of the 

development of photosynthetic capcity in the field is therefore needed. 

The implications of the lack of a principal meristem during needle 

expansion, with general cell divisions occurring along the length of the needle, 

are that the needle matures as a whole, and can extend more rapidly than if 

extension was dependent on a basal meristem, as in pines (Kienholz, 1934). 

This means needles reach a peak area for light interception early in the season, 

before optimum climatic conditions for photosynthesis. Although proximal 

needles on the shoot mature before distal ones in terms of size, it is not 

known whether there is the same acropetal trend in attainment of 

photosynthetic capacity, which should be an area for future research, together 

with the determination of the degree to which distal needles may be dependent 

on proximal ones for photosynthates. The significant increase in the dry 

weight:fresh weight ratio with P and K deficiency in pot and field trees is 

interesting, as it suggests a change in carbon allocation within the needle. It is 

not known whether this is due to an increase in the structural or soluble 

fraction, and an analysis of soluble carbohydrate in the needle throughout the 

season would show which is the case. Even though photosynthetic rate is 

unaffected in these treatments, further work on the fate of assimilates may 

show treatment differences, perhaps with -P and -K needles storing more 

photosynthates within the needle. 
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7.5 Productivity. 

Productivity is dependent on the size of the shoot, since the number of 

branches is determined by the length of the shoot (Cannell, 1974), and also on 

the number of needles per shoot, needle size, and assimilation rate. Hence 

productivity may be reduced in nutrient deficient conditions, by a reduction in 

shoot and needle area, a reduction in P N  per unit area, or a reduction in both. 

Field results from 1987 showed that -P trees have fewest needles per 

shoot, with the smallest projected area, and the shortest stem unit length. The 

importance of the stem unit length is considerable, with respect to the degree 

of mutual shading on the stern, which is a constraint to photosynthesis 

(Cannell, 1987). Phosphorus deficient shoots in the field therefore have the 

greatest limitations to light interception, and might be expected to show 

reduced photosynthetic rates. Results with seedlings in 1988 did not support 

this hypothesis, since photosynthetic rates in -P trees did not differ from the 

Controls. However, seedlings in 1988 did not show the same reductions in 

morphological characteristics found for field trees in 1987. This lack of 

response to P deficiency by young trees may indicate that a long period of 

growth in deficiency conditions is needed before morphological effects of P 

deficiency are established. In 1988, the largest limitation to growth and 

photosynthesis was due to N deficiency in -N and -All treatments. It is 

important to know whether P of P shoots in particular, in the field, is reduced 

relative to that of Control trees, in view of the more extreme morphological 

effects than seen for P-deficient seedlings, and also the decreased stem unit 

length, and increased mutual shading of the needles of field trees. It appears 

that inhibition of needle development with P deficiency is more marked in older 

trees than in seedlings, and it is not known whether P declines in parallel, as 

tree age increases. It may be that P in mature, P-deficient trees does not 

differ from 'that of Control trees per unit area. However, it is the amount of 

photosynthesis per shoot, rather than P N'  which is more important in terms of 

productivity for the tree, and this should be estimated for field trees. In 

seedlings, N-deficiency not only reduces P 
N'  but the size, area and number of 

needles, and shoot length, so that P 
N  per shoot is drastically reduced, more 

than that of any other treatment, to levels which barely support growth. 

Data from chapter 3 show that in the field, deficiency of P and K cause the 

apical dome size to be reduced, so reducing the number of needle primordia 
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initiated for growth the following season (Cannell, 1978), thereby reducing 

potential productivity. In seedlings, this may be overcome by free growth, but 

in mature trees where free growth does not occur, productivity may be limited 

more by nutrient deficiency effects on shoot and needle morphology, than by 

per unit area is not affected, as much. In 3/4 year old seedlings, 

needle and shoot morphology and photosynthesis are only significantly reduced 

with N deficiency, and although photosynthetic capacity may be increased by 

addition of N in subsequent seasons, it is not known whether a greater 

increase is found with addition at the start of the season, rather than later on. 

It may be that the timing of fertiliser application makes a large difference, 

despite the apparent plasticity of the response of photosynthetic components 

to nutrition. Data in Chapter 6 showed that needle and shoot growth are 

highly related to N concentration, and that needle size is determined by 

nutrient conditions during needle expansion regardless of previous nutrient 

conditions. Therefore, maximum productivity is achieved by fertilisation at the 

time of needle expansion, with a concentration of 14-28 p.p.m. N being 

adequate to give a substantial increase in needle size compared with nitrogen 

deficiency. However, with field trees, needle growth is also more dependent on 

nutrient conditions during primordium initiation, and it is not known whether 

the photosynthetic capacity of all needle age classes responds as well as in 

pot trees. Because nutrient requirements of stands decrease with increasing 

tree age (Miller, 1981), maximising productivity of young trees for the first few 

years is of principal importance, to ensure high yields of older stands. 

Therefore these data support the practice of annual fertiliser application, and 

especially nitrogen, just prior to needle growth in young trees. If the peak of 

RuBPC activity and chlorophyll content coincided with that in P N'  assimilation 

rate might be improved, although there is no easy way of selecting for trees 

where this is the case, or inducing this to happen, so that the response to 

fertiliser application at the right time remains the best way to maintain 

productivity. 
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