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The object of this thesis is to investigate, using Ward 

identities, two aspects of vector-boson field theories. 

The first is to examine, in detail, how the renormalisation 

counter-terms for gauge field theories are accommodated without 

destroying the symmetry or corresponding Ward identities. In 

Chapter One the wave function and coupling constant renormalisa-

tions are studied and in Chapter Two the mass renormalisations. 

The conclusion is that, although there is complete freedom of 

choice of subtraction points for the wave function and coupling 

constant, the mass renormalisations are not so clear and may 

be restricted depending on the theory. 

The second topic is the massive Yang-Mills Lagrangian. 

In Chapter Three, we investigate the Ward identities, and their 

implications, for the tree approximation. In Chapter Four, we 

develope the Ward identities to all orders. The massive Yang-

Mills Lagrangian is shown to be identical to a Lagrangian with 

transverse vector-boson propagators and a compensating scalar 

Lagrangian with an infinite series of interactions. The 

Lagrangian is identical to that of Boulware which was developed 

in the path integral formalism. The Ward identity approach we 

useis shown to be equivalent to Veltman's in Chapter Five. 

Furthermore, it is shown that it is the S-matrices which are 

identical. In Chapter Six, other possible equivalent formalisms 

of the massive Yang-Mills Lagrangian are investigated. The 

formalism of Hsu & Sudarshan is shown to be for mixed spin-one 

spin-zero fields and not pure spin-one fields as required. 

Finally a formulation is discussed which, in conjunction 



with the dimensional regularisation scheme of 't. Hooft and 

Veltman, generates the identical S-matrix from Feynman rules 

which are renormalisable according to power-counting. 
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INTRODUCTION 

Any attempt to construct a plausible field theory of 

the fundamental interactions must include spin one bosons as 

one with zero mass, viz, the photon, is known to mediate the 

electromagnetic interaction. It is also suspected that massive 

ones are present in the weak interactions. 

The presence of vector bosons gives rise to propagators 

with momenta terms present in the numerator. The free 

Lagrangian for a massive spin-one field A 11 (x) is 

- ](311AV - 3'A") 0 A - 3 A ) + M 2 A A '  11 	 z 11  
(0.1) 

V/f2t 
for which the propagator is 	

g - kPk / 1 	• Theories with 
k 2  - M 2 + ic 

these propagators in general are not renormalisable; this can 

(1-3) be assessed by simple power counting of the momenta 	. How- 

ever, this is not a strict criterion and a Lagrangian may be 

renormalisable although power counting indicates otherwise. To 

investigate the contribution of the kkV  terms of the propa-

gator it has been found useful to exploit Ward-Takahashi 

identity relations between amplitudes with physical polarisation 

vectors on external lines replaced by momenta contractions. 

The simplest example of Ward identities occurs in Quantum 

Electrodynamics where they may be expressed as 

q r' 	(q, k...) 	= 	0 . 	 (0.2) 

1- 
00 	 11 	22 	33 

	

The metric g = 1, g 	= g 	= g 	= -1 is used 

here. 



-2- 

The'PV..
is any proper amplitude in which q 1  is the in-

going momentum of a particular photon. 

a) The Massive Yang-Mills Lagrangian 

A theory, whose renormalisability has been extensively 

studied, is that created by the addition of a mass term to the 

Yang-Mills (4)  Lagrangian 

1 a GPV 	 (0.3) a 

where GPV 	=a 11 W 	 - 3v W 11 - g( IX \) f 
a 	 a 

The result is the massive Yang-Mills Lagrangian 

- ! G  GPV + 1 MWW a 
4 11v a 	 a p (0:4) 

By analogy with Q.E.D. it was suspected that the massless Yang-

Mills Lagrangian, (0.3), was renormalisable and, in the belief 

that the massless theory can be obtained as the zero-mass limit 

of the massive S_matrix(5), it was thought that the massive 

Yang-Mills Lagrangian, (0.4), was renormalisable also. In 

general, the method of investigation has been to modify the 

Lagrangian in such a manner that the propagator becomes 

2 PV 	2 	22 - (1-a )k k /(k -a M + ic) for some a 2 . 	If it were the 
- M 2  + i 

only modification this would render the theory renormalisable. 

Unfortunately, in all attempts, it is accompanied by the intro-

duction of a scalar field and the renormalisahility of the 

Lagrangian is now governed by the interactions of this field. 

t Notation: (AXB)a 	abc AbBC where i f abc  are the 

structure constants of a compact Lie group. 
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It has been shown formally, using path integral tech-

niques 6 ' 7 , that there is an infinite series of vertices of 

the scalar particle, with no limit to order, which suggests 

their non-renormalisability. The generating functional for 

amplitudes of the massive Yang-Mills Lagrangian (0.4) is 

GEJJ 	Z1 J d 	exUJdx[- 1G .G1IV+ ..M2 W . WTt 
z 	p —-- 

+ W. ill] } .( 0 . 5 ) 

For convenience we define the field matrices 

'tLY'(x) 	T  W(x) 

VV 
(x) 	T 

a  G 	= 2 W (x) - 	(x) + ig fr1P (x) f.,Y  (x)J 

(0.6) 
TaJ 

where T   are the generators of the rn-dimensional representation 

of the group chosen such that 

tr (Ta Tb) 	= 	ab 	
(0.7) 

The Lagrangian (0.4) may then be rewritten in (0.5) as 

£ 	 trJ, 	+ X_ 1 M2trWW + X_ 1  trW'. (0.8)
PV 	 7 

The massless Lagrangian (0.3) is invariant under the 

infinitesimal transformation 

WV 	WP  - 	+ g W11 x T1  - 	r(x) 
	

(0.9) 

(0.9) is known as the infinitesimal gauge transform for the 

Yang-Mills Lagrangian which is a gauge invariant theory (or 

simply, a gauge theory). The finite transformation corresponding 

to (0.9) is 



MIC 

W" (X) 	0A 

	

abWb - 	abc cd 	
A_l(  W)) 	 (0.10)db 

which can be reformulated in terms of the field matrices as 

(x) 	- 	Q(x)f'(x)Q 1 (x) 	+ Q 	'Q 1/ig 	 (0.11) 

where Q(x) is a local element of the rn-dimensional repre-

sentation of the group: 

Q(X)ab 	{expig Tcn c cx): } ab 	 (0.12) 

and c(x) is an element of the adjoint representation, i.e. 

when 

T 	 abc 

Bouiware () showed that any vector field, v'-' (x) , can be 

written as the transformation of a transverse field, 01 T'  (x) 

11 
-W(x) 	 (Q ap,  W)l 	+ c'c2 /ig . 	 (0.13) 

The spin-one propagator was modified by making the replace-

ment (0.13) in (0.5). The first term is unchanged as the re-

placement is simply the gauge transform for the massless 

Lagrangian. The generating functional becomes 

GT1 	z 1fdidZ[(det M)exp{iJd x L_X 1  tr T ' v  (0.14) 

+X 1 M 2 trPZAT + X lM2tr 	+ X l  M 2 tr  

-1 tr 	UT1Q 

where 	1 11 (x) 	= 	ci 
(0.15) 

2Y(x) 	= ci 1 	Q/ig 

a a  and 	X T 	= 	Q Q, /-ig 	. 	 (0.16) 
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The term det M is the Jacobian factor for the substitution 

where 

det M = c detab 6(x-y) + igW(x) 	D(x-y) 	(0.17) 

with D(x-x')
= 

 

	

f(2Tr

dp 	. e'
are the 

	

) t 	p 	 ab 

field matrices in the adjoint representation. The determinant 

can be expanded using the identity 

det M 	E 	exp[tr log M 	 (0.18) 

such that 

n det M 	= 	c exp{- 	-ig) /n tr[w 	D] fl } 	(0.19) 
n=1 

These contributions are easily represented as closed loops 

generated by the "quasi-charged" scalar Feynman rules of Fig. 

1(b) with c = 0 and a factor (-1) associated with each loop. 

The Feynman rules for the vector-bosons are as Fig. 1(a) for 

the first two terms of the Lagrangian in (0.14). 

Before the remaining terms involving Q(x) can be inter -

preted it is necessary to find a convenient way of representing 

them. Bou1ware 6  restricted (0.6) to the adjoint representa-

tion and chose 

	

(x) 	= 	expQgq(x) 

- 

	

where (x) 	= 	4 a (x) (1)fb 
bc 

Then 
all 	(x) 	= 	+ig 	3,P a Eab T(x) 

where Eba(X) {exp(-ig c ,) 	- I}/ 

and the necessary Jacobian factor 

(0.20) 

(0.21) 



+ gya  + 
 ga ~ (p-k) yl  

bp 	Cl 

:x: 2 	 ( cty 
g abc gcd 

-g 2  

-g 2  

g 6  

9 
6y 

9  Y 

9 a g Y )  

9 a g0) 

gcS gY )  

b 	 a p 	< 
v 	k 	p. 

\)_ 	(l_a2)khik\) g 	
k 2 - ct 2 M 2 +ie 

k2 - Mz + 1i F 	ab 

U. 

b 	 a 

k 

ab 

	

(b) 	
k2-a2M2+ic 

ab - 

	

c) 	
k2_aM2+ic 

ab 

k2_M2+ IC 

b— 	 —c 

ig f abc qa 

1. 	 a 

i 	 a g abc  q 

FIG 1(jdcJA1ternative forms of the ghost rules. 



SXa (X)/ 	b(x') 	= 	- 6(x-x') Eba(X) 	 (0.22) 

for the change of variables. The functional integral over the 

the gauge degree of freedom in (0.14) can be written 

fd[~] Jdet Eab (x)}exp{iJdx(,WT)}(0.23)GQ [WTI z 

where LQ(,wT) 	= 	½M 2 	E E a ab bc p c 

_M2
b 	Wall ba 	() 	 (0.24) 

[

WTI, QA 
- 	

EJb(x) a ab 

Hence, the gauge parameter is interpreted as a scalar field 

but its exact interaction depends on the representation of the 

group. 

Salam and Strathdee 7  utilized a generalisation of the 

(8) Stucke,lberg split 	which incorporated the transform (0.13). 

One of their formulations is formally identical to that of 

Boulware, i.e. (0.14), but they used a different realization. 

Salam and Strathdee restricted the group to SU(2) and chose 

the fundamental representation in (0.6) with the parametriza-

tion 

= 	O(x) + iT.11(x) . 	 (0.25) 

Q(x) is unitary with determinant (+1) if 

cY 2 (x) + 	 = 	1. 	 (0.26) 

The corresponding change in the volume element including the 

Jacobian is 

f d[X a] 	9. 	1 d[lrldflY S(G 2  +  IT. !L - I) 	 (0.27) 
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as expected. In executing the integration of 0(x) and 

replacing it everywhere by /1 - flll 	the scalar interactions 

are again an infinite series but it is suggested they are of 

the Efimov-Fradkin normal type (9-11),  i.e. all divergences can 

be absorbed by a finite number of renormalisation counter-terms. 

To investigate whether the divergen ces caused by the 

scalar vertices would cancel and to avoid questions over the 

validity of the path integral approach, it is necessary to 

investigate the Lagrangian directly. Veltman (5) introduced a 

free scalar particle to the massive SU(2) Yang-Mills Lagrangian: 

E - 	 + 
2
.M2 W .WP - 	 + 	 (0.28) 

The vector boson fields were transformed first according 

to (0.10) with 

abc cd db 	
= 	2Ag 9  a + A292 Rd 

M 2 	p 	
( 0.29) 

	

M 	11 

and second according to 

+ 	. 	 (0.30) 

Under these transforms the Lagrangian (0.28) becomes 

	

, _YM(WP + A 
	! 

	

2 	p a 
a + M2WaWP - la pa - L 	 M a 	(0.31) 

	

- ..A 2 g(w(l  + Ad)RP + L!5-
d 	2M P 	 R + 8M?RP R 

(0.29) can be realised with the choice of parametrization 

	

E exp[iç a()TAa] 
	

(0.32) 

Choosing A = 1 the combination of fields, 

	

To = wp  + 	 (0.33) 



which replaces all the legs of the vector vertices, has the 

Feynman rules of Fig. 1(a), with a = 0. 	All other terms in 

the Lagrangian (0.31) generate the interactions of the scalar 

fields. An infinite series results but in this case as the 

scalar fields were originally free the vertices must be inter-

related and many redundant. Veltman investigated the redun-

dancy as far as the one loop approximation which was shown to 

have an equivalent explicitly renormalisable formulation, 

since only one three point scalar vertex is introduced. 

These rules are as in Fig. 1(b) in the limit a = 0 and the 

rules of Figs. 1(a) and 1(b) are henceforth known as the soft 

rules following Mohapatra, Sakakibara and Sucher 2 . 

Reiff and Veltman (13)  extended the analysis to the two 

loop approximation at which level the self energy diagrams 

do not satisfy unitarity for the simple soft rules employed 

at the one loop level. It was found necessary to introduce 

an additional four point vertex which was non-renormalisable. 

No other amplitudes were considered. 

Finally Veltman (14) approached the whole problem more 

systematically using the "free field" technique to establish 

generalised Ward identities for the massive Yang-Mills 

Lagrangian. To (0.28) a source term W 11  F 	is added and the 

vector-boson fields transformed: 

WP 	WIJ  + 
gX 
 W 

 TJ < 
	- 	. 	 (0.34) 

If A is infinitesimal the first term of the Lagrangian is 

invariant under (0.34) and the Lagrangian becomes 



- 	 + .M 2W .W '  - 	 + 

(0.35) 

+ 	 F11  - AM W11 	 + 	W 	- 

The fields 	remain free up to first order in A and the 

amplitudes to first order in A, but any given order in g 

and F 1  must be identically zero. The Feynman rules for 

(0.35) are those of Fig. 2. 

The following conventions are required. 

Q 
stands for the set of diagrams constructed with the vector-boson 

rules of Fig. 2, i.e. the manifestly unitary rules, for a given 

order in g with any no. of external physical W-lines. The 

F-sources or external 4-lines are to be indicated explicitly. 

- 

indicates that on an external W-line the polarization vector 

has been replaced by (ik') where now the momentum may be off-

mass shell. 

Veltman (14) first demonstrated that the Ward identities, 

(0.36) - (0.38) and Fig. 3, shown below, hold using the free 

field property. 

k 
= 0 	 (0.36) 



Fill no_ We 

b 	 a 
p 

k 

- kPk''/M 2  ab 
kz_M+ ic 

S. 

-ig 	 +abc 

+  ga ~ (p-k)yl 
b 
	

Cl 

_g2ff(9aY g6 - 9 ag Y) 

_ g 2ff (
9
XI36y - gcY 96) 

_g2f 	
bd (9 cc 9Y6 - 

9  6 gYB )  

Cl 
	

am 

a 	 b 
j1 

ci 	 b 

—>-- 
k 

ci b 

k 

ci  
-----0 

k 

6ab F1 
p 

ab 

k 2 -M 1  +ic 

I X Mk 11  ab 

M acb 

i - - k' ab 
 F M 	 bp 

FIG 2 



- 	

m2 g f(q_p)
abc 

bp 	c q 	

a 

uc 

_t 	+ ig2M2 
(66 q  + 6ba6cd 	+ 6cia 6ca 	 cb 

d 	: 

c  

acx 	 32 
-ig 4 M 

j 	

abf 6cd (p9)a + abd 6 	
(P-k)

bc  

f 	 b

a 

+ abc6df (p-q) 
a 
+ aôf6bd 	

a 

e 	 p 
+ f6f(q_k)a + f

adf 6 bc ) 
k 	q  

b \p 	q,c 
/ 	 -q 2M2 

4 	{66 f (2p.q+2k. - k.q-p.k-.q-.p) \ 	,  
\ / 

'\ 	 -p.k-.q-q.p) 
, \ 

/ 

/ 

d k 	f 

FLQ2(p) 	The first vertex is the symmetrized form of 

the scalar vertex in Fig. 1(b) with the appro-

priate factors. p,q,k,Q are the momenta of 
- 	 the scalar lines. 



N I. 

k---' 

q-- ; 
+ 

p\ / 
, 

/ \ 
, 

q----; 

k' 

p.. p 

q- - - 

p.- 

q 

k- - - - 

£163 



q 

= p-  - - - 
/ 

/ 

k' 

q . 

p.-- - - (0.38) 

p.. -. 

q- - 

(0. 37) 

The Ward identities with any number of momenta contractions 

could have been obtained but the above were all that were re-

quired. The additional vertices are given in Fig. 2(a). 

These Ward identities were used to remove the kPkV terms 

from the vector-boson propagators and reduce the amplitudes to 

their least divergent form. It should be noted that in the 

derivation of the Ward identities a transformation, in the form 

of the gauge transform for the massless Yang-Mills Lagrangian, 

is exploited. Only the two loop approximation to the self 

energy amplitude was investigated but it was found to require 

the additional scalar vertices of Fig. 2(a), some of which are 

of a non-renormalisable nature. 

Meanwhile Slavnov and Faddeev 5  and Van Dam and 

Veltman (16) showed that the massless theory does not result 

from taking the zero-mass limit of the massive case. It thus 

became generally accepted that the massive Yang-Mills Lagrangian 
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is not a renormalisable field theory. 

Hsu and Sudarshan 7  re-examined the theory by intro-

ducing a Lagrange multiplier into the Lagrangian which gives 

(18-22) rise to a soft vector-boson propagator 	. The generating 

functional is 

GLJJ 	zT lJdJaE1 exp{iJd x [_ !G.GP \' + .-M 2W.Wh1  

+ aM + 3 X 2  + w.J"]} 	 (0.39) 

with a 2 M 2  =j3. 	On integrating over the multiplier fields 

a 	becomes 

r ! 
	•G 	+ M2W . G[J] 	

Z_1dJ]exp{ifd 
xL- 4pv - 	—p 

WP  

- 1 a2M2 
( W ' ) + w 

p-.  

1e. the soft formulation of Fig. 1(a). 

motion for the X a  are 

(2 + M 2 )X 	= 	+g W x 

(0.40) 

The equations of 

(0.41) 

	

when a = 	/M. Hsu and Sudarshan defined the physical 

state by 

f(x)Iphys> 	= 	0 . 	 (0.42) 

Thus the modification can also be interpreted as equivalent 

to a scalar field being added to the Lagrangian with the 

effective Lagrangian 

	

(x) 	= - 	 - m 2 x2+ g.(Wx) 	(0.43) 

and the subsidiary condition 



11 
i1 	 = 	0. 	 (0.44) 

Hsu and Sudarshan claim that any contribution of the 

scalar field to the S-matrix generated by (0.39) or equivalently 

(0.40) can be removed by adding the determinant D to the 

generating functional (0.40) where 

	

DM½  E [det ( 	- (2 + M2)lgf 	lqbP)j½ 	(0.45) 

fd & ] exP{iJdx(X)} 
(0.45) should be compared to (0.17) and interpreting D 

similarly the complete Feynman rules for the spin-one massive 

Yang-Mills Lagrangian are Fig. 1(a) and 1(b) with o 2 = 1 
- 	 1 
but a factor (- -) associated with each scalar loop. The 

scalar interactions are no longer an infinite series, and so 

the massive Yang-Mills theory would appear to be renormalisable. 

The Feynman rules are the same as those of other authors for 

the one-loop approximation. 

Subsequently Mohapatra, Sakakibara and Sucher (12) extended 

the analysis of Veltman (13, 14) to the four-point interaction 

W+Wb -3 W C  + W d 

as the ingestigation of the self-energy amplitude is not wholly 

relevant to the S-matrix. They found the rules of Hsu and 

Sudarshan insufficient to obtain a theory identical to the 

normal canonically quantized version or even to satisfy 

unitarity. 

The two major ways of finding the equivalent "soft" form 

of the massive Yang-Mills Lagrangian, viz. Boulware's and 
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Veltman  'S generate scalar vertices which at face value seem 

to differ from each other. Specifically, the factors associated 

with the vertices and scalar loops do not seem to tally. 

The analysis of Veltman was the first systematic use of 

the Ward identities to investigate the role of the k ilk terms 

in vector-boson propagators. This approach was developed and 

most successfully applied to the examination of the properties 

of gauge field theories, an example of which has already been 

met in the form of the massless Yang-Mills Lagrangian, (0.3). 

For these theories the Ward identities are associated with 

the gauge invariance of the Lagrangian, e.g. (0.9) for the 

massless Yang-Mills theory, and are sometimes referred to as 

Slavnov-Taylor identities. 

b. 	Gauge Field Theories 

The study of gauge theories was initiated by Feynman (23)  

who, on examining the S-matrix for the massless Yang-Mills 
liv 

Lagrangian constructed with the propagators kz+jC 	found 

the theory not to be unitary. He recognised the need to intro-

duce a fictitious scalar field to restore unitarity, the prob-

lem being that there are no covariant and unitary Feynman rules 

for the Lagrangian (0.3) as the fields W(x) have both a 

spin-one and a spin-zero component. Faddeev and Popov (24,25) 

derived the correct rules for this scalar field, by path 

integral techniques but only for the transverse propagator 

formalism. 

Faddeev and Popov noted that many of the problems in 

quantizing a gauge invariant Lagrangian are associated with 



the degeneracy of the free Lagrangian. The action in the 

functional generator for the massless Yang-Mills Lagrangian 

GEJJ 	z 	fdEwj ex{ifd4x [- 
	

+ w.J"] 	
.
(0.46) 

is constant over the orbits of the fields, i.e. for a field 

all W'(x) such that W' 11 (x) is the gauge transform 

of WP W for some value of the gauge parameter: 

W' 1' (x) a 	ab(Wb 	- 	abc cd db 	
(0.47) 

for some 	i.e. some q (x) in (0.12). These problems ab 

disappear if the functional integral over the vector fields in 

(0.46) is restricted to a surface which intersects each orbit 

once only. This is achieved by multiplying the generating 

functional by 

A 	f d FQ1 	(f[W]) 	= 	const. 	 (0.48) 

WQ is defined by (0.47) and the 6-function picks out some 

surface according to the choice of f. (0.46) becomes 

G[J] 	Z 1  fd 	d[Q] Af(f[W])exP{iJdx[_..G.G 

-1 

+ w. 
Ii 
 jfl} 	• 	 ( 0.49) 

—- J 

Choosing 

fEWJ 	= 	W" (X) 	 (0.50) p a 

Faddeevand Popov restricted the vector fields 'to the transverse 

formulation and all that is required is that the contribution 

of the functional A fI 7J 	defined by (0.48), is evaluated. it 

is straightforward to show 



0 - - -= 	(0.54) 

-15- 

= 	det[c - (2)1 	W b all] 

	

(0.51) 

This should be compared with (0.45) and (0.17) and interpreted 

similarly. The choice of fI3AlJ is known as the choice of 

gauge and for the transverse or Landau gauge for (0.50) the 

Feynman rules are those of Fig. 4(a) with cx = 0 and Fig. 

4(b) with a factor (-1) associated with each fictitious par-

ticle loop. Within the context of gauge theories this scalar 

ghost is called the Faddeev-Popov ghost. 

Fradkin and Tyutin 26  developed a more flexible for-

malism in which the choice of gauge was made by adding a term 

of the form 

-½ f a W f a :W1 	 (0.52) 

to the Lagrangian. 

I t Hooft 27 , using -combinatoric techniques 28 , estab-

lished the following Ward identities for the massless Yang-

Mills theory 

(0.53) 
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The "blobs" have any number of external physical lines 

and are constructed with the rules of Fig. 4(a) and 4(c) with 

a = 1 and a factor (-1) with each closed ghost loop. The + 

indicates the presence of Faddeev-Popov ghost contributions 

and the 0 implies the line which has no polarization vector 

is on-mass shell, i.e. k 2  = 0. The additional vertex 

a___>-_lD 
p 	

.6abk11 	 (0.55) 

Using (0.53) and (0.54) 't Hooft demonstrated the unitarity 

of the theory with the addition of an appropriate ghost 

Lagrangian to generate the Feynman rules of Fig. 4(c). Further-

more, he extended the formalism of Faddeev and Popov and 

Fradkin and Tyutin to a wide range of gauges by giving 

the Faddeev-Popov ghost an orientation; i.e. the ghost field 

becomes quasi-charged and an asymmetry between the scalar legs 

of the scalar vertex is introduced. The result of this for the 

massless Yang-Mills rules, for a general choice of a, is 

shown in Fig. 4(c) where the orientation is indicated by the 

arrow on the scalar lines. This is the arrow in (0.54). 

However, 't Hooft had not established, completely, the 

renormalisability of the Lagrangian. It had still to be 

shown that the Ward identities hold after renormalisation to 

ensure the unitarity of the theory. The coupling constants 

of the vector and scalar-ghost vertices must be identical 

after renormalisation as well as before. Taylor (24) verified 

this using the further generalised Ward identities (which were 

(30) also obtained by Slavnov 	) -. 
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= -->- (0.56) 

where the symbol X denotes the attachment (qq - 

(0.56) trivially reduces to (0.54) and (0.53) as required. 

Although neither the massive nor massless Yang-Mills 

theory is applicable, with much relevance, to the physical 

situation; the importance of the above work lay in the 

belief that spontaneously breaking a symmetry does not in-

crease the degree of divergence of the theory. This was 

(31-34) based on the work of Lee et al. 	who had shown this 

to be the case in the a-model. There is then the possibility 

of constructing theories with vector-boson fields where mass 

is generated by breaking the gauge symmetry of a renormalisable 

massless theory, such as the Salam-Weinberg model (35)  

The basic concept involved in the construction of such 

models was first enunciated by Goldstone (36) The Lagrangian 

G 	
q* Pq - 	- h(*q) 2 	(0.57) 

which is invariant under the global phase transformation 

Ia - 	e 	; 	 -3 (0.58) 

can be treated as a perturbation expansion, as usual, if 

p 2  > 0 to ensure the expansion is about a local minimum. 

When p 2  < 0 the local minimum is no longer at 4 = of 

which is now a local maximum, but at 	p = A where 
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X = /-p/h . 	 To treat (0.57) 	as a normal field theory, 

for i 2 	< 0, it is first necessary to make the replacement 

-- 	 + i 2  + A) 	. 	 (0,59) 

The theory is said to have had its symmetry spontaneously 

broken as a particular choice for the vacuum expectation value 

has been made and the complete theory, i.e. Lagrangian plus 

choice of the vacuum expectation value, is no longer in-

variant under (0.58). The Lagrangian, (0.57), becomes 

+½pA - 1h 	- 

- 	+ hA2) - ½ 1 2 (p 2  + 3hX2) - 	A 2 (1I 2  + hA 2 ) 

(0.60) 

- hX1(12+ 2 	- 	(12 + 

The constant has no physical consequences and can be dropped. 

From the definition of A it satisfies the equation 

0 
	

(0.61) 

and on applying, this relation to (0.60) the term linear in 

the field 	vanish as required but so does the mass term 

for 	That the field 	becomes massless on spontaneously 

breaking the symmetry is an example of the Goldstone theorem 

which states that when a symmetry is broken by a field 

acquiring a non-zero vacuum expectation value, a massless 

scalar appears for each parameter of the symmetry which ceases 

to govern an exact symmetry, i.e. under which the vacuum 

expectation value is not invariant, 
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Extensive investigations were made to see if this rather 

unphysical result of the Goldstone theorem could be 
(37-44) 	 (37,41,43) avoided 	. Higgs 	 established that the massless 

scalars could be absorbed by massless gauge bosons (with two 

transverse polarisations) to produce massive vector-bosons 

(with three polarisations). A minimally coupled vector boson 

is added to the Goldstone Lagrangian (0.57) to construct the 

Higgs model 

H 	- 	- 	A )2 + 
v1 

(0.62) 

It is invariant under the gauge transformation 

A 11 	
-3- Ali + 	A(x), 	(j) 	- 	e t 	it 	(0.63) 

and, for p 2  > 0, corresponds to a massive complex scalar 

and a massless.  vector. If 112 < 0, the substitution (0.54) 

has again to be made and the Lagrangian becomes 

lh  - 	(A - 	A )2  + 	2X2 	 2X2 	X4 A All- 	- -1V 	pp 

- q 1 X(p 2  + hA2) - ½(p 2  + hA 2 ) 
(0.64) 

+ 12 	eAq)2 +p2 
	eA1)2 - -2 (p 2  + 3h) 

- eA( 2 	eA 1 ) 	hX1(12+ 	h(2 	) 2 

Now, however, the scalar which has become massless, 
2' is 

a ghost, i.e. not a physical field, as can be seen by making 

the substitution 

• 1 
(A ± X(X))e 	 . 	 (0.65) 
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instead of (0.59). The gauge transformation (0.63) leaves 

X(x) unchanged but 0(x) transforms as 

0(x) 	-* 	0(x) 	+ eX A(x) 
	

(0.66) 	- 

Therefore, if the gauge transformation is exploited, the 

field 0(x) can be removed from the Lagrangian, i.e. A(x) 

is chosen to be - 	0(x). The corresponding trarsformation eX 

of the field A is 

-'- B 	= A' - 	0(x) 	. 	 (0.67) e  

Expressed in terms of these fields (0.62) takes the form 

L H 	- 	B - B )2 + ! 2 X  2 B B 1  + 	x 311 
 X 

+ 	e 2 B i (2XX(x) + x(x)2) - 	(Ij 	3hX 2 )X 2 (x) (0.68) 

- 	(4A 	(x)+ X(x)) - (2+hX2)X(x) - PX2
2 	qX 

and the vector field has acquired a mass /e-7-X-=  

With the successful completion of the investigation of 

the massless Yang-Mills theory, attention centred on theories 

with massive bosons constructed by the Higgs mechanism. 

I t Hooft 45  made the important step of using the fact, that 

a spontaneously broken gauge theory still has a gauge in- 

variance, to reformulate massive vector-boson theories, of the 

spontaneously broken type, in an explicitly renormalisable 

manner through a judicious choice of gauge. For example, 

(0.64) is invariant under 

- 	All  
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- 	 1(x) - 2sin(A(x)/2)(Sifl(A(X)/2) 1  

+ cos (A(x)/2)4 2  + sin (A(x)/2)X} 

(0.69) 

2(x) _~ 2(X) - 2sin(A(x)/2){sin(A(x)/2) 2  

- cos (A(x)/2) 1  + cos (A (x) /2) X} 

and the choice of gauge is made by adding the term 

- ½C(x) C(x) 	 (0.70) 

to the Lagrangian, where 

C(x) 	= 	(! 	A + a e X
' 

. 
' 	

(0.71) 
a 	p 

The form of the gauge function (0.71) is chosen so that the 

cross-terms cancel the term -e X A B 11  2 in the Lagrangian, 

(0.64), which is now 

-- 
	A A 2 	

1 1 ( 3  VA  )2 + e 2 X 2 A All 

U p 

2 3hX2)1 + 	p2 	
- a 2 e 2 X 2  

+ 	
- 

(0.72) 

+e1A2 + e2A24 
- e 2  A1 	e 2 

 A2 
 2 

2 

+e 2 XA 2 1  - hXq 1 ( 	+ 	
- T4 11 *I]2 + 

g' _(1_a2)kPk/(k2_a2e2X2±iE) 
The vector propagator is 	 k 2  - e2x2 + ic 

and to regain the explicitly unitary formalism the limit as 

a - = must be taken. In this limit the mass of the scalar 

field 	2 also tends to infinity and it, obviously, must be 

a ghost, i.e. unphysical particle. To construct the correct 

S-matrix the contributions of the Faddeev-Popov ghost, appro- 

priate for the gauge transform (0.69) and the gauge function, 

(0..71), must be included. 	t Hooft, also, demonstrated for 
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a certain model, that the electromagnetic mass differences 

are finite as suggested by Weinberg 46 . 

Spontaneously broken gauge theories had only been shown 

to be renormalisable according to power counting. Within the 

framework of the path integral formulation, Lee and Zinn-

Justin (47-49) showed the renormalisability and unitarity of 

various examples of these theories. Also, the invariance of 

the S-matrix under different choice of the gauge function was 

demonstrated. This had been assumed in much of the above 

work. Again Ward identities were heavily relied upon. 

I t Hooft and Veltman (50) dispelled any doubts, over the 

use of path integral methods, by demonstrating that the 

functional manipulations have diagrammatic equivalents which 

can be fully justified by combinatoric manipulations, i.e. by 

direct manipulation of the vertices and propagators in an 

amplitude. Consider a general Lagrangian, LINvA),of 

the fields A1 (x) invariant under the infiniestimal gauge 

transform 

A1 ' = A + g s ia 	
Aa(X) + tiaA a (X) 	(0.73) 

where the Aa(X)  are the parametrisation of the transformation. 
A 	 A 

The circumflex on the s and t denotes there may be deriva-

tives present which act, also, on the Aa(X). The t is 

independent of the fields. For example, if L'INV(Aj) is the 

massless Yang-Mills Lagrangian, (0.3), 

A 	 b 

	

g Sia(A) Aa(X) 	 x ri(x)] 
(0.74) 

a 	- 	 p 	lb 
tia  11 (x) 	= 	L - 	(x)J 

and (0.73) is equivalent to the infinitesimal transformation 
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(0.9). For the spontaneously broken gauge theory (0.64) the 

transformation (0.73) is (0.69). 'tHooft and Veltman (50).  

showed how to generate the correct Feynman rules by choosing 

a gauge function Ca(X)  of the fields, A(x), with c a (x) 

transforming as 

Ca (X) - Ca(X) + g z abAb 	+ mabA(x) 
	

(0.75) 

under (0.73). 12-Ca2 is subtracted from, and a Faddeev-Popov 

ghost Lagrangian 

A 	 A 

L 	* (m 	+ g kabb 	 (0.76) a ab 

added to, the Lagrangian: 

'INV - ½C2 	+ L  

The Faddeev-Popov ghost loops generated by (0.76) have an 

associated factor of (-1) as usual. The scalar q' is treated 

as if complex to create asymmetric vertices when required, 

e.g. for the massless Yang-Mills Lagrangian (0.76) gives rise 

to the rules of Fig. 4(c) when the gauge function is 

Ca(X ) 	 Wa(X) . 	 (0.78) q pp 

If a source term 

R1 (A)J 1 	 (0.79) 

is added to the Lagrangian such that it transforms as 

R1(A) -* R1  (A) + g Pia  (A)A a (x) + ria fla (x) 	(0.80) 

under (0.73), 't Hooft and Veltman (50) demonstrated that the 

amplitudes obey the generalised Ward identities of Fig. 5. The 

notation used is shown in Fig. 6. The source functions R(A) 
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can be chosen to be anything and the J r 's may be, subse-

quently, dropped from the identities. Using the Ward iden-

tities the invariance of the S-matrix of a gauge theory 

(spontaneously broken -gauge theories are covered by the term 

gauge theory in this context). under a change of gauge was 

proved combinatorically and hence unitarity established for 

all gauges. The renormalisability of these theories was also 

shown by demonstrating that the original theory plus diver-

gent subtractions was itself a gauge theory. Therefore, 

doing the substractions in a manifestly renormalisable gauge 

results in a well-behaved theory. Instrumental in this is 

the Tree-Loop theorem (50)  

If there exists functions Ca (A)i of the fields A,  and 

matrices Sia(A) 	 ab 	and m ab  such that 

A 	 A 
Ca(Ai + gsj(A)Aa + t.Aa) Ca  (A)+ b + 

(0.81) 

and the Feynman rules for the Lagrangian, £ , obey the Ward 

identities for tree diagi ams, Fig. 7, constructed with Faddeev-

Popov ghost rules Y, ab(A) and nab  and source vertices 

R' (A), p ia  (A) and na defined by 

R1 (A1  + g s ia 	
Aa + t. Aa) 	

1 
= R (A) + gp ia 	rjaA (A)Aa 

+ A 	a 

(0.82) 

for some function R1 ; then the Lagrangian £ can be rewritten 

L E L - 	
2 

1 (0.83) 

where L 1  is invariant under the infinitesimal transformation 

A. 
3. 	Ai l = A. + g si a (A)A a  +t A 	. 	(0.84)ia  1 
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Furthermore, the generalised Ward identities will hold for 

diagrams with loops. 

The theorem has the important implication that the Ward 

identiies contain the full symmetry of the theory in that the 

invariance can be deduced from them. 

However, it is still necessary to present and execute a 

programme of renormalisation for a theory. Such a programme 

for the Salam-Weinberg model (35) was demonstrated by Ross and 

Taylor (51). 't. Hooft and Veltman (50)  had only considered 

the purely divergent contributions to the subtraction constants 

and not the finite contributions to them. Ross and Taylor 

found that the renormalisation counter-terms could not be 

52) freely chosen (51, on-mass shell in the conventional manner, 

as they are interrelated through the Ward identities and each 

constant is involved with more than one process. 

To execute many of the concepts discussed above, it is 

necessary to have a regularisation procedure strong enough 

not to disturb the symmetry or the Ward identities of the field 

theory. The dimensional regularisation scheme of 't. Hooft and 

Veltman 53 , which continues the dimensions of the integration 

variables analytically from a region in which the integration 

is finite, is just such a scheme. 

To obtain the manifestly unitary formulation of a spon-

taneously broken gauge theory the limit a - , in for example 

the Higgs' model (0.72), must be taken. To be sure this does 

not affect the renormalisability it must be checked that the 

theory may be renormalised in the unitary gauge. The study of 
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theories in the U-gauge 5456  culminated in the demonstration 

by Mainland, OtRaifeartaighand Sherry (57)  that the renor-

malisation and unitary gauges are connected by a point trans-

formation. Thus the renormalisation in the unitary gauge can 

be realised. 

c) 	Synopsis 

The object of this thesis is to investigate the following 

two aspects of vector-boson theories. 

The first is to examine the renormalisation of gauge 

theories. We have mentioned that the renormalisability (47,48,50)  

of gauge field theories has been shown in that the original 

Lagrangian plus the counter-terms, necessary to remove the 

purely divergent contributions to the amplitudes, form a gauge 

theory themselves. Explicit renormalisation programmes for 

52) various models have been investigated (51, 	and it has been 

found that the choice of the complete renormalisatión counter-

terms, i.e. finite plus divergent parts, is restricted by the 

symmetries present and the need to absorb the counter-terms 

in scaling constants. We explore the renormalisation programme 

for any gauge theory, in a model independent manner, to see 

what types of counter-terms may be accommodated. In particular, 

we examine the extent of the restrictions on the points about 

which the renormalisation subtractions may be made, i.e. the 

choice of the finite parts of the counter-terms. In Chapter 

One we consider the wave function and coupling constant renor-

malisations and find we have complete freedom of choice, in-

cluding the ability to renormalise on-mass shell and absorb 
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any infra-red terms then necessary. The infra-red terms are 

those associated with an abelian field as in Quantum Electro-

dynamics and not with a set of non-abelian fields as in the 

massless Yang-Mills Lagrangian. The effect of the choice of 

renormalisation counter-terms is simply to change the repre-

sentation of the gauge invariance of the renormalised 

Lagrangian. In Chapter Two we consider the mass renormalisa-

tions. The situation is not quite so simple in this case. 

Some, but not necessarily all, of the masses may be renormalised 

independently with complete freedom of choice of the finite 

contributions. The number is dependent on the structure of 

the Lagrangian but usually onlythe Higgs scalars are restricted. 

The choice of counter-terms for the masses does not affect the 

representation of the invariance only the form of the 

Lagrangian. One interesting subsidiary result is that the 

Tree-Loop theorem of 't. Hooft and Veltman (50) is not as strong 

as it seems. We find that for a Lagrangian and a transform 

which fulfil all the required conditions L 1 , of (0.83), 

is not necessarily invariant under that transform, although 

the Lagrangian must be a gauge theory. The method of in-

vestigation in Chapters One and Two is by means of the Ward 

identities. 

The other topic investigated here is the massive Yang-Mills 

Lagrangian. In Chapter Three, we investigate the Ward identities 

of the theory for the tree approximation. They are found to be 

very similar to those of the massless Yang-Mills Lagrangian and 

a comparison of the implications is made. One result is that 

the abelian theory is renormalisable as is well known (16,18) 

The analysis of the massive Yang-Mills Lagrangian in terms of 



transverse vector-boson propagators and compensating scalar 

fields, which was executed for the self-energy amplitude by 

Veltman (14) and for the four-point interaction by Mohapatra, 

Sakakibara and Sucher (12) to the two loop approximation only, 

is extended to all orders for all interactions by means of 

generalised Ward identities in Chapter Four. The effective 

scalar Lagrangian is identical to that obtained by Boulware 6  

In Chapter Five we demonstrate that our approach is equivalent 

to that of Veltman's 4 . Hence we have demonstrated the 

equivalence of Boulware s (6) and Veltman, (14) s 	reformulations 

of the massive Yang-Mills Lagrangian. We also explore whether 

the massive theory can be reformulated in terms of the soft 

rules of Fig. 1, i.e. if we choose the factor associated with 

each scalar loop to be (-½) we have the formulation proposed 

by Hsu and Sudarshan 7 . It appears we cannot. However, we 

further show that it is the S-matrix which is equivalent in 

the reformulations of the theory and not the amplitudes. Hence, 

these investigations do not entirely rule out the possibility 

that the massive Yang-Mills Lagrangian is renormalisable or 

that the reformulation of Hsu and Sudarshan is equivalent 

although they make it highly improbable. In Chapter Six we 

investigate the renormalisability of the massive Yang-Mills 

Lagrangian. First we show the reformulation of Hsu and Sudar-

shan 7  is not of a purely spin-one field but incorporates a 

component with spin-zero. By means of path-integral techniques 

two possible altern ative formulations are derived for the 

SU(n) Lagrangian. The second is substantiated by direct corn-

binatorical analysis. 	It is quasi -renormalisable in the 

sense that in conjunction with the dimensional regularisation 
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scheme of 't. Hooft and Veltman (53) the theory can be 

expressed in terms of the soft rules of Fig. 1 with 

a = 0 and a factor (-½) associated with each scalar loop. 
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CHAPTER 1 

WAVE FUNCTION AND COUPLING CONSTANT RENORMALISATION 

The points, about which subtractions are made, i.e. the 

choice of finite contributions, in the renormalisatjon of a 

gauge theory, appear to be restricted by the very symmetry 

(51,52) that enables the Lagrangian to be renormalisable 	. Here 

we shall examine the extent to which the wave function and 

coupling constant renormalisation is constrained. An important 

consideration is that the counter-terms must be consistent with 

the Ward identities, i.e. if initially the theory obeys Ward 

identities, the theory plus counter-terms must also obey Ward 

identities. This is necessary to ensure that the s-matrix 

is invariant under the choice of gauge and that unitarity 

continues to hold. 

't. Hooft and Veltman (50) 
 have shown gauge theories are 

renormalisable to the extent of adding purely divergent counter-

terms to the Lagrangian. The approach in Chapters One and Two 

is to add finite counter-terms to the original gauge invariant 

Lagrangian: 

= 	+ C.T. (finite) 

Obviously £ 	is renormalisable in the sense that the renor- 

malisation counter-terms may be chosen as those for Z plus 

the finite counter-terms previously added. The renormalisation 

becomes valid if the Lagrangian IC is itself a gauge theory 

as then 1. may he treated in the manner of (50) and the purely 

polar terms removed. To realise this, it is only necessary to 

show 	obeys Ward identities. These are established using 
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the identities for the original Lagrangian 

The Ward identity restriction on the counter-terms is 

automatically catered for by the method of investigation. The 

finite additions to the Lagrangian are divided into two types. 

Those which modify the Ward identities through a multiplicative 

factor (which may be dropped) treated in this chapter; and 

those, for which the Ward identities for f. are set up by 

iterating the identities for 	which are treated in Chapter 

Two. 

a) 	Treatment of Self-Energy Terms 

( 

The notation and treatment follow 't. Hoof t and Veltma n28,50)  

Consider a Lagrangian £INvi)  invariant under the infini-

tesimal gauge transformation 

A1  -- A 	 ia 1 ' 	= 	A + g s (A)Aa(X) + t ia Aa() 	(1.1) 

and a gauge function Ca(x)  of the fields A(x) with Ca(X) 

transforming as 

Ca (X) 	Ca(X) + g k ab(A)A'() + mabAb (x) 	 (1.2) 

As discussed in the introduction the complete Lagrangian 

is 

L. =L • - - c 2 + INV 	2a 	L (1.3) 

with the Faddeev-Popov ghost Lagrangian 

L = a(mab + g abb 

The s-matrix constructed with Feynman rules obtained 

directly from this Lagrangian, but with a factor (-1) 

associated with each ghost loop, is invariant under the choice 

of the gauge function Ca  and unitary 50 . Proof of these 

properties follows from the manipulation of Ward identities. 
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i 
If a source term 	

i J.R (A), where R (A) is arbitrary and 

transforms 

a  R1(A) ± R(A) + g 	 + riaA(x), 	(1.4) 

is added to the Lagrangian (1.3), the theory obeys the 

generalised Ward identities shown in Fig. 5. A particular 

subset is the Ward identities for tree diagrams in Fig. 7. 

For the rest of this chapter in discussing self-energy 

terms the mass-like contributions are absorbed into the 

denominators of the propagators bi at not renormalised yet. 

The self-energy terms are then of the form of wave function 

renormalisations. 

The facility to add counter-terms (not necessarily 

divergent) to the Lagrangian to renormalise the wave functions 

is best shown by the following construction: 

A 

If S.(A) 	ajj + Liak A Ak + 

define Sl a (A) E £i amNmjAj + 	mnNmjNnkAjAk + 

where N is any non-singular matrix. 

Set Ta(A) 	N 	5' (A)jb N'ba where N' is any non- 

-1" 
singular matrix and Tia = 	tjb N ba 

A new field theory invariant under the transform 

A 	A! 
1 	1 

is constructed as 

In the origi 

Ca is restricted 

= 	A + g T a (Aa  + T aAa 	 (1.5) 

below. 

rial theory, LINV with gauge function Car 

to be linear in the fields A,  let 
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Ca  Mai A1 , for example. Now we define the new gauge 

function 

A 	 A 

G A 	N C' 	ai 1 = a 	- 	. 	= 	' 	M CJ 	Ji 	1 . N.. A. 	. 	 (1.6) 
ac  

Under (1.5) the function Ca' transforms as 

C 	ai ib + g G . T (A)Ab + ai ib G 	T 	Ab • 	 (1.7) 

Hence the ghost vertices and propagator functions become 

Vb(A) 	N 	' (A)deN'ef where 	de 	Mdi S' (A)i e  

A 
A 

and B 	N m N' ab 	ad de eb 

	

A 	 A 

As N' is non-singular and the inverse of m exists, B is a 

proper ghost propagator function which has an inverse. 

We construct from'INV - ½C 	a new Lagrangian such 

that if A1  V A is any bilinear it is replaced byij 

AiNIkVkNjAj and the vrtex terms 	ijk •• AjAjAk 

are replaced by alk ... NiNj mNkn  ••• AAA ... . 	Denote 

this Lagrangian by 

We have here omitted the possibility of non-Hermitean 

fields but they can be easily accommodated within the con-

struction. 

The source terms for the original Lagrangian LINV are 

also chosen to be linear combinations of the fields, e.g. 

=ij A. For the reconstructed theory we choose for the 

sources R1' = Rik NkjAj. 	They transform under (1.5) as 

RikNkjAj + g RikNkjTja(A)A + RikNkj T aA a  

giving the new source-ghost vertices. 
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A 	 - 	 A 	 A 	 A A 	 A 

p.' (A) E R N .T (A) 	E R S'(A)kbNba I  ik kj ja 	1k 

A 	 A 	 A 	 A A 

	

j 	

A 

and r' 	 R -. 	 i N T1E 	R t b 	 i Nba 	r NLa 

It can now be shown that the theory 	+ R'J1 	con- 

structed above with the ghost Lagrangian generated from Ca' 

by the transformation (1.5), satisfies the Ward identities 

for tree diagrams (Fig. 7) with a particular choice of N' 

The manipulation of the terms for 	equivalent to the 

first set of diagrams on the right hand side of Fig. 7 is 

as in Fig. 8. The direction in which the diagrams are con-

structed is reversed, so that the vertices etc. can be written 

in naturally with the same expressions as in the above deriva-

tions and definitions. The final line is obtained by noting 

that each "physical" propagator appears in the combination 

N' P 

The equivalent identity for the second subset of diagrams 

on the right hand side of Fig. 7 is shown in Fig. 9 and the 

identity for the left hand side in Fig. 10. 

If N' is chosen such that 

	

N 1  N 1 	= 	I 

e.g. N' = I, the Ward identities for tree diagrams, of Fig. 

7, for the original field theory i may be used to prove that 

the new theory 	, constructed as above, obeys the Ward 

identities of Fig. 11. By the Tree-Loop theorem of (50), 

may be written as 	INV - ½ C 	where 	INv 	invariant 

under (1.5). 	L INV  obeys the full t'7ard identities, which 
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may be shown directly or inferred from the Tree-Loop theorem. 

It has thus been demonstrated that the finite counter-terms 

( 	- 	) may be added to the original Lagrangian. In this 

context the N has terms dependent on the coupling constant, 

g, but the bilinear terms may be separated into a propagator 

plus vertices in the perturbation expansion as required. 

The counter-terms, added to 	by the above construction, 

can be used to renormalise the self-energy terms of the 

physical amplitude since 

In particular 

n N  Nnj (L.lo) 

The N may be chosen such that, with the subsequent removal 

of the divergences, the self-energy terms for the "physical" 

fields are renormalised on mass shell. This varies with 

the gauge but the most logical choice of counter-terms would 

be those that set the U-gauge representation renormalisation 

on-mass shell. 
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b) 	Infra-red Considerations 

If the theory contained the electromagnetic field, the 

on-mass shell counter-terms would carry infra-red divergent 

quantities (58) for the charged fields. The requirement that 

the infra-red terms sum in the usual manner (59)  , imposes rela-

tions between the infra-red contributions to the counter-terms 

which must be shown to be consistent with the relations imposed 

by the symmetry of the Lagrangian, i.e. as the infra-red 

contributions to an amplitude factorize the infra-red con-

tributions to the counter-terms must allow a similar factori-

sation. Here we shall show the addition of infra-red diver-

gent counter-terms, which do not affect the infra-red summa-

tion but leave the on mass shell self-energy terms infra-red 

finite, may be made consistently. 

It is interesting to note that the solution of the infra-

red catastrophe contains an early use of the Ward identity in 

quantum electrodynamics. There because of the equality of 

and Z 	 (also proved by a Ward identity) the charge 

and electron self-energy renormalisations are spurious. 

Yennie, Frautschi and Suura 59 , for simplicity, assume 

initially there are no self-energy parts on external lines. 

The spurious charge renormalisation, connected to the usual 

wave function renormalisation diagram by the Ward identity of 

Fig. 12 (60),  is then removed after summation of all possible 

insertions of an additional virtual photon to give 

B(p,p') 1i(p')r(p',p)u(p) + K(p',p;k)  

where 
	CO 

B(p,)= 	je 	fdk ( 2P'-k 	2p-k 	2 
2  (2i) 	

j 12 k 2 _2k.p' 	k2_2kp 
A 



	

- 	 + 	 + 	
x < 

	

r- 
P 	V 	P 	P V 	 P 	P 	 V 	P 

	

< x 	c < 	+  

	

p V 	- 6m 2  P 	P 	-6m 2 	V P 
mu 

rimme 

FIG 12 	p indicates that the line is external and physical. 

is the photon; 	 the charged fermion. 
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ii(p')I'(p',p)u(p) 	is the amplitude before the addition of the 

virtual photon; K(p'p; k) are the contributions to the 

amplitude infra-red finite in k; A is the infra-red cut-

off. As expected the k-integral is ultra-violet convergent 

and no cut-off is necessary. 

As it cannot always be guaranteed Z 1  = 	we shall 

include self-energy terms explicitly and evaluate their 

infra-red component before renorrnalisation. The discussion 

is held within the context of quantum electrodynamics but 

the value of the infra-red components will not be different 

in another field theory and the conclusions are quite general. 

In Appendix A it is shown that if an additional photon 

is added, to an amplitude including self-energy terms, in 

all possible ways the infra-red contribution factorizes as 

B0(pt)r(pT,p)u(p) + K(p',p; k) 	 (1.12) 

where 
A 

B 

	

ie 2  I 	(2p'-k) 2 	(2p'k). (2p-k) 
o = 	(2r)2 J 	(k 2 -2p'.k) 2 	p'.k)(k 2 -2p.k) 

A 
(2p-k) 2 

+2 2 k)2} dk 

A is an ultra-violet cut-off. The virtual infra-red diver-

gences can now be summed, as in (59), to 

00 

MTOT 	exp(B0 ) 	 m0 	 (1.13) 
n=O  

where m0  are the infra-red finite contributions from the n 

amplitudes with n virtual photons. From (1.13) (cf. Appen-

dix A) we obtain the total contribution to the self-energy 

terms 

Co 

MSE E  exp(BSE) 	: 	
S-E 	 (1.14) 

n=o 



A 

	

where 	BSE = 	ie 2 f dk (2p-k) 2  

(20 	k 2 (k 2 -2p.k) 2  
A 

Hence the total contribution to the S-matrix is, 

co  
S-M N 	= exp(B) 	E rn  

n=O 

(59) which agrees with Yennie, Frautschi and Suura 

Using this factorisation the infra-red divergent terms 

from the virtual photons can be shown to cancel with the 

infra-red divergent terms from the real photons (59)
The 

summation, obviously the same for any theory, as above is 

valid for the unrenorma]..jsed S-matrix or for the renormalised 

S-matrix provided the counter-terms are infra-red finite. 

Q.E.D. may be considered as an example of either as the 

relevant renormalisations are spurious. 

Suppose counter-terms are added, as in section a), to 

the Lagrangian with the choice for N of 

N.. 	= 	S iJ  . . n. 
J 	

(no summation over j) 

	

where 	n = 1 if j refers to a neutral particle 

	

or 	n = exp(cx) if j refers to a charged particle. 

Using the relation (1.9), between the amplitudes for the 

original Lagrangian and the amplitudes for the Lagrangian 

plus counter-terms, it is easily seen that the only difference 

this makes to the summation to all orders of the virtual photon 

contributions to an amplitude is to modify (1.13) to 

co 
= 

TOT - 
	e xp(B0  + 2a) 	0 m 	 (1.16) n n=O 
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(1.16) could now be reduced to the correct form for the 

infra-red summation, as in (1.15), by a judicious choice of 

a • The most obvious 

co 

-
2 

 ie2 	f dk 	(2p-k )2 	
(1.17) a 	=  

	

(2ir) 4 	 k 2 	(k2-2p.k)2 

is inappropriate as it is both ultra-violet divergent and 

dependent on Pi the momentum of the charged particle. A 

choice which avoids these difficulties is 

CO 

- 	ie2 	f  a 1'2 
dk 	(2p) 2  

-  

	

(27r) 4 	 k 2  (k 2 -2p.k) 2  

1 

	

e2 	• dx 
= - ½ 	

j 	
(1.18) 

(2ir) 2 
A  

The differences between (1.17) and (1.18) can be assigned to 

the infra-red finite terms and (1.16) becomes 

co 

Oi 

"TOT 	exp(B) 	m 
n=0 	n 

(1.19) 

Immediately we see from (1.10) and (1.14) that the above 

choice for a makes the self-energy terms infra-red finite 

as required (and as necessary, as on generating the S-matrix 

no more infra-red divergences will be introduced and the sum-

mation as in (59) remains valid.) 

Counter-terms can hence be added to the Lagrangian in 

such a manner that the on-mass shell self-energy terms are 

infra-red finite, while keeping the usual form for the sum- 

mation of all contributions of the virtual photons to the 

infra-red divergences. Further infra-red finite counter-terms 
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could then be added to complete the on-mass shell renormalisa-

tion of the self-energy terms. Thus the normal on-mass shell 

renormalisation of self-energy terms may be realised for a 

gauge theory. 

c) 	Coupling Constant Renormalisation 

The coupling constants of a gauge theory are readily 

renormalised similarly to the self-energy terms in section a). 

If the coupling constant g is replaced by g whenever it 

occurs in the Lagrangian and the ghost vertices and source 

terms are modified likewise, the only change in the diagrams 

of the Ward identities for tree diagrams, Fig. 7, is that 

each side gains a factor ()fl, where n is the order in 

coupling constant of the identity. For simplicity let the 

gauge and source functions be linear as before. It is then 

obvious that to obtain the modified ghost vertices and source 

terms the only change necessary is, to replace g by 	g 

whenever it appears in the gauge transform. The new Lagrangian 

is therefore invariant under the modified transform and the 

Ward identities hold to all orders by the Tree-Loop theorem. 

Hence the coupling constant can be suitably renormalised with 

the counter-terms (L - 
If the theory under consideration contains the electro-

magnetic field the electric charge may be connected to other 

coupling constants. However, the normal finite renormalisa- 

(58) tion 	for the electromagnetic charge may still be used as 
(68) 

the appropriate amplitude, A ' (p ' ,p), defining the charge 

renormalisation, is infra-red finite in the limit p = p' and 
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with p set on-mass shell, if the self-energy terms have 

already been renormalised as in section b) . No additional 

infra-red divergences arise. 

The analysis is easily extended to-Lagrangians with more 

than one independent coupling constant whereby each is renor-

malised separately. 

d) 	Discussion 

The three sets of additions to the Lagrangian discussed 

above start from a gauge invariant Lagrangian which obeys the 

Ward identities and end with a gauge invariant Lagrangian 

which obeys the Ward identities. As the same is true of the 

purely divergent counter-terms discussed by 't Hooft and 

Veltman (50) the different sets of counter-terms may be added 

in any order, i.e. they commute. The most convenient order 

of application would be 

add counter-terms necessary to render on-mass shell 

self-energy terms infra-red finite if necessary as 

in section b) 

add finite counter-terms to complete the finite 

renormalisation of the self-energy terms of "physical" 

fields as in section a) , i.e. render self-energy 

terms purely divergent. 

add finite counter-terms to renormalise the coupling 

constant(s) as in section c). 

add purely divergent counter-terms to complete 

renormalisation as in (50) 

The renormalisations should be done order by order in the loop 

expansion approximation.. 
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We thus see that the self-energy and coupling constant 

renormalisation can be done, in the conventional manner, on-

mass shell. As the coupling constant appears in several 

vertices one may be chosen to define it and be renormalised on-

mass shell, e.g. if the Lagrangian includes photons and 

electrons the interaction i e 	could be renormalised 

as in Q.E.D. The charge renormalisation of all other inter-

actions then follow accordingly. 

Since no other way of adding suitable counter-terms 

consistent with the Ward identities, could be found, it seems 

likely that the divergent counter-terms of (50) are of the 

form of sections a) and c). It is the invariance of the 

Lagrangian which makes it possible to render all the vertices 

finite with only one counter-term for each coupling con- 

(31,32,48,51) stant 	 . Similarly the symmetry could be utilized 

to remove the divergences from the self-energy terms by intro-

ducing far fewer independent counter-terms than one for each 

physical field as pro  posed (48150). 

The reformalised theory is indeed invariant under the 

proposed transform as in essence the modifications are only 

changes in the representation of the original invariance. 

However, it has been demonstrated that the representation 

depends on the choice of subtraction points in the renormalisa- 

(50,51) tion and is therefore independent of gauge as required 

The counter-terms can be represented as scaling constants 

quite readily as only one is needed for each "physical" 

field and one for each independent coupling constant. This 

is particularly acceptable in the U-gauge representation 

although applicable to all gauges. Relying on the equality 

of divergences (but not finite terms) many of the scaling 

constants may be made equal, e.g. one for each multiplet of 
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fields as in Ross and Taylor (51)
The latter is much res-

tricted and does not allow on-mass shell renormalisation. 

None of the renormalisations examined in this chapter 

have any relevance to the mass renormalisation. In Chapter 

Two the possible additions to the Lagrangian which may be 

interpreted as mass renormalisation counter-terms will be 

examined. 
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CHAPTER 2 

MASS RENORMALISATION 

So far only additions to the Lagrangian, which may be 

interpreted as charge or wave-function renormalisation counter-

terms, have been investigated. In Chapter Two we consider 

additions which could be used for mass renormalisation 

whether finite or infinite. The technique is similar to 

Chapter One except that the additions preserve the Ward 

identities by iteration rather than factorisation. 

a) 	General Case 

Again we start from the Lagrangian LINV - ½C 	where 

is invariant under 

A1 	= 	A1 ±gj(A)Aa + ca Aa 	. 	 (2.1) 

The notation has been changed by replacing the circumflex, 

whichdenotes the presence of derivatives, by an arrow which 

indicates the presence of derivatives and points in their 

direction of application. Ca  correspon dingly transforms as 

C+g rab (A)Ab 	ab + 	Ab (2.2) 

and supplies the ghost vertices 	ab(A) and propagators 

If sources J1 , J 2 	etc. couple to the field com- 

binations R1 ., R2  ... 	where R. 	transform as 

R.. + g Pij a U 	+ 	Aa ija 

then the Pija (A) and r-4 ija . . 	are the required ghost-source 
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terms for the Ward identity in Fig. 5 

The source functions 	, R3 , etc. are chosen to be 

equal, R say, only R 1  being different and henceforth denoted 

is restricted to be linear in the fields, for 

example VO 
	

OIRli  A. 	The corresponding ghost-source 

functions for R and 	are obtained from 

aa R 	R.+g P . 	A +r.A 
1 	1 

(2.3) 
- a + 	. t j A i *•ç + 	 jaA 	ij 	a 

The double-headed arrow indicates the presence of some 

derivatives acting to the right, some to the left. In practice, 

this only affects diagrams through a change in si gn of some 

momenta terms and the distinction is really superfluous. 

However, it is retained for ease of interpretation. The 

gauge function Ca  is again restricted to be linear such 

4-4  that Ca = M ai  A1  and 	chosen to obey the relations 

S. (A) 	1b .. 	L 	S 	(A) ij 	ja 	 lbj ja 

•t. 	 L.t ij 	3 	 lb 2b 
	j j 	a 

(2.4) 

which introduces the additional vertices of Fig. 13. The 

original Lagrangian LINV - ½C, with the above choice of 

source functions, obeys the Ward identities for tree diagrams 

of Fig. 14. It also obeys the Ward identities with no 

sources of Fig. 15. 

If a Lagrangian 	is constructed such that 

-, 	=. 	- c 2  + 
- INV 	2  a 	aab + 	 + J 1  .R. +ab 	 1 

(2.5) 
* 

. 	+ a (m b + g ab ' (A))b. + ½A  
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FIG 13 	Additional vertices. 
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L will also obey the Ward identities in Fig. 14 and 15. 

The proof is by induction. 

The Ward identity, Fig. 14, is assumed to hold for diagrams 

containing all possible choices of n vertices of the types 

of Fig. 13. (The choices have to remain compatible with the 

order in coupling constant of the diagrams.) Both sides of 

the identify Fig. 14 are multiplied on the left by the set of 

diagrams 

(2.6) 

where the "blob" is constructed from the original vertices only 

and contains any number of the sources R as required. The i's 

are summed over to give the identity in Fig. 16, which is 

obtained using the relations (2.4) to introduce the gauge 

function to the set of diagrams (2.6). The Ward identity of 

Fig. 14 is now applied to the diagrams of (2.6) and we get the 

identity of Fig. 17. The identity has been proved for one 

value of x and y only. If the identities for all values 

of x and y, such that x plus y is constant, are summed 

then the Ward identity Fig. 14 has been established for (n+1). 

The identity is known to hold for n=O when it reduces to 

the Ward identity of Fig. 14 constructed from the original 

Lagrangian. Hence the identity for the Lagrangian (2.5) 

has been established for all n. 

If, at any level of the iteration, the identity of Fig. 

14 had been multiplied by the set of diagrams 
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FIG 16 	The diagrams are all of the tree variety. The notation, more usually used when 

loops are present, has been adopted for brevity. 	 - 
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rather than (2.6) , i.e. the "blob" now has no R -sources, 
the identity would have been established at that value of n 

with only the sources R present. The complete set of 

diagrams constructed from (2.5) for any fixed order in the 

coupling constant may be divided into subsets, each of which 

is distinguished by having the same number of vertices of 

the types in Fig. 13, n. Each subset obviously contains all 

possible diagrams for that value of n and the previously 

established identities for each value of n may be applied. 

Therefore, it has been proved that the Lagrangian (2.5) obeys 

Wa'rdidentities for tree diagrams with sources (2.3) and con-

straints (2.4). 	- 

By the Tree-Loop theorem (50) all that is necessary now 

is to find a transformation, a gauge function and a source 

function which generate the ghost and source terms appro-

priate for the Ward identity. If the gauge function is kept 

the same and we define the transform 

a 
A. - A.' = A. + g TS (A)Aa + T  A 	 (2.7) 

1 	1 	 1 	 ia 	 ia 

where 
-+ 

T ia  (A) 	S = 	
' ia . A) + S. (A) and T. 	= t. 	+ t. ia 	ia 

-) 	4- 

then  we require Maj  S 1 (A) and 

4. 

additional ghost vertices 	' '(A) ab 

-, 	& 
M ai i

t.:b tobethe 

	

and 	ab ' . 	A solution 

of this is 



4-4 	
1 	-+ 

L 	S (A) S '(A) 	t 1. ra 	ldj c C 	 ja  ia 

--1 i- 
t i  m ia 	 c cd 	L2dJ j  

From Appendix B the solution of (2.4) for L 1  and L2  

in terms of A is 

4- 	4- 
- 	4-4 

Lldj 	- 	L2d. 	- mdC t1 	= 	L i 

(2.8) 

(2.9) 

where a satisfies the conditions (B.13). If the source 

term is linear in the fields, i.e. R 1  . 	. •A•, it would 
 1J J 

transform under (2.7) as 

-4  

. 
3 
. -* 13 . . 

3
A. + g Rijja 	+ tjcm dLdkSka (A))A a  1j  

(2.10) 

-.4 	- 	 -, -4W-i 4- -* 	a 

	

+ R ij  . . (t j + t. j m 	L t )A a 	cm 	dkka 

Thus if for the original gauge invariant Lagrangian the source 

functions RJ had been chosen linear with 

Rik 	Rij(jk 6 	+ tj a  mabLbk) 	 (2.11) 

the Ward identities for (2.5) with source term i' A would ik k 

have been demonstrated to hold. We thus expect the Lagrangian 

IINV 	+ A i R, j  A to be invariant under (2.7). 

The generalised Ward identies can be shown to be satisfied 

directly or inferred by the Tree-Loop theorem when 	is 

well-behaved. The final theory is a gauge theory and the 

divergences may be removed as in (50). From the form of the 
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additional vertices of Fig. 13 it is hoped the added term 

Ai 	A may be used as finite counter-terms for the mass 

renormalisations. 

One further restriction on 	. is that it must be 13 

hërmitean, The construction for tree diagrams could accommo-

date an asymmetric R through the asymmetry of the source-

terms A i k J but it would not be possible to identify
ij  

the modified Feynman rules with a Lagrangian and the extension 

to diagrams including loops would fail. It should be noted 

that the construction may involve a change in the gauge para-

meter in the transform as well, i.e. 

b) 	Indeterminacy of the Tree-Loop Theorem 

In section a) we found a transformation (2.7) and source 

term (2.11) which, with the original gauge function, gave rise 

to the necessary terms for the Ward identities, proved to hold 

for the Lagrangian (2.5). This, however, may not be the only 

solution. 

As a preliminary step gather all the bilinear terms to-

gether to obtain the complete propagator function 

ab m 	+ m' ab 	ab. 

Similarly define 	 (2.12) 

4-4 

ab 	ab 	+ ab 

The tree-diagram Ward identities for the Lagrangian (2.5) can 

now be expressed as in Fig. 18. If we further assume (2.12) 

can be rewritten as 
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and 

4 	 - 

in" 	X 	X 	m 
ab 	ac cd db 

- 

=X 	x ab 	- 	ac 	cd 	db(A) 

(2.13) 

where 	Xcd must be non-singular, Fig. 18 immediately gives 

the Ward identity of Fig. 19. Since the transform (2.1) acts 

on the gauge function X b MbiAj 	indicated by Fig. 19, to 

generate the appropriate ghost propagator - (X M)
ab 
 and 

vertices (X)ab  we have shown the additions may be considered 

to have changed the gauge of the original Lagrangian only. 

Hence the subset of additions, A i d%ij  Aj , for which the 

conditions (2.13) hold are in most cases a change of gauge. 

The most general addition can he any mixture of the two 

solutions, i.e. those represented by a change of the invariant 

Lagrangian and corresponding transformation and those by a 

change of gauge, the precise nature of which is model dependent 

and can only be found by direct investigation. However, the 

demonstration of section a) of the existence of a gauge 

function, a source function and a transform which generates 

the correct ghost and source terms for the Ward identities is 

still valid to the extent of proving that the modified Lagrangian 

is a gauge theory although the gauge function etc. found may 

not be the correct ones. 

Thus the equivalence, between the Ward identities and the 

gauge theory nature of the Lagrangian, implied by the Tree-

Loop theorem of (50) is weaker than the statement of the 

theorem would give reason to believe. The theorem should be 

modified to state that if all the appropriate conditions are 

fulfilled the Lagrangian under consideration is a gauge theory 
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but the gauge transform may not be that used in fulfilling 

the conditions. 

A simple example of the additions to a Lagrangián,. 

discussed in this section, is the possible additions to the 

Yang-Mills (4) Lagrangian invariant under local SU(2) transforms. 

INV 
E - 
	

• 	
( 2.14) 

where 	G 11V 	= 	1JV - 	V%q1J - g W xW 	 (2.15) 

is invariant under the infinitesimal gauge transform 

	

+ g WP x i - 	 ( 2.16) 

i.e. 	S. 	0 	-w 
3 	2 

w 	; 	t ia  . E - 	0 	0 

WP 	0 	41 	 0 	- a li 	0 

_WP 	W11 	0 	 0 	0 

Here all derivatives will be taken to act to the right with 

signs adjusted accordingly. The gauge functions are selected 

to be 

Ca 	E a W 	 (2.17) 

i.e. 	Mai 	 0 	0 

0 	a 	 0 

o 	0 	a v  

which gives the characteristic operator of Appendix B 

(I - 	 ) 	
- 	

2 " ) I 	. 	 (2.18) 

(2.18) has three eigenvectors of eigenvalue 0 as expected, 

viz. 



iJ 	
0 

o 	;a 	0 	 (2.19) 

o 	a 	all 

Keeping to an explicitly Lorentz covariant expression each 

element of R is of the form xg + y 311  3 where x and 

y may involve derivatives. To satisfy the necessary con-

ditions (B.13) all the x must be chosen to be zero when 

Y 
	

(2.20) 

Of course a solution of the form of section a) could be 

constructed but it would he inappropriate since 

Y 	(-I +X) 
	

(2.21) 

for any Y, as 	is symmetric. The construction is thus 

equivalent to changing the gauge function from (2.17) to 

Ca' E  XabCb 	for any Xab without changing 'INV' i.e. the 

construction allows us to go to any other Lorentz covariant 

gauge. This is as expected as the massive Yang-Mills Lagran-

gian does not exhibit gauge invariance. 

Another example of interest is the Abelian gauge invariant 

Lagrangian of Higgs (43,47)  

INV 	- 	A - 	A )2 + ( 	+ ieA 	- ieA')4 
"p 	p 	p 

(2.22) * 	* 
- 112 
	 - X( 	)2 

unvariant under - ie4A 
* 	* 	* 

4 + ie A 

A 
11 
- A - 

(2.23) 
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-,. 
i.e. 	Sia 

 

0 

-3- 

t. ia 0 

0 

- 1j  

The gauge function is chosen to be 

-3- 

C 	a V  A 	i.e. 	M ai E 	(O,O,a) 	 (2.24) 

when the characteristic operator is identical to (2.18) with 

the single eigenvector for eigenvalue zero, simply 	D d . 

This time, however, the conditions (B.13) are satisfied by 

the covariant choice of 

0 	0 	0 	 (2.25) 

0 	0 a + b3Y 

The additional terms arising from (2.25) must be broken 

into the two terms 

1j  

½A a(&' - 	V)AV + ½A 	(b + 	AV 	(2.26) 

whereby the first is an addition which is interpreted as of 

the type of section a) with the basic invariant Lagrangian 

being modified but in this particular case the transformation 

is not. The second term is incorporated in a change in gauge 

from 	to (1 + b + a/3 2 )½ 	Thus this example is
ip 

in the form of a mixture of the two types of modification 

In particular choose a M 2  and b = -L-1 -1 when the 
a 

complete Lagrangian becomes 
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- 	(.3 A - 3 A )2 + ( 3 + leA )(3P - ieA) 	
p2(*) 

VP 	P 	P 

- 	*2 + ½M2AAP - ½( 3AP)2 . 	 (2.27) 

In (2.27) the vector boson has become massive with propagator 

1V - ( 1_2) q1l qV 
g 	-2 	2M2 It can be interpreted, as discussed, as 

q 2 -M 2  

a gauge theory which obeys Ward identities with source terms 

generated by the transformation (2.23). The appropriate 

ghost Lagrangian is generated from the gauge function 

1 2 
(-- + 	

/32)2 3 All  I  i.e. there are no ghost vertices and the 

ghost propagator function is - 1 (q 2  - 6 2 M 2 ) ½  (q2) 2 	A con- 

sequence of this is that the S-matrix is invariant under 

variation of ci. and the Lagrangian (2.27) is renormalisable 

as is well known (6). 	When the mass of the vector-boson is 

renormalised the counter-term is equivalent to an addition of 

the form (2.25) or (2.26), i.e. the Lagrangian and gauge 

function is modified by a construction of the form discussed 

in this chapter. The massive abelian theory is further dis-

cussed in Chapter 3. 

c) 	Other Modifications 

So far we have considered only source terms linear in the 

fields being absorbed into the Lagrangian. These led to the 

introduction of bilinear terms with accompanying two-point and 

three-point ghost vertices. The technique may, obviously, be 

extended to bilinear and higher order source functions with 

their corresponding generation of three-point and higher ghost 

vertices. Combinations of different order source terms 



r 
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introduce more flexibility into the choice of functions but 

as these would tend to introduce non-linear terms to the 

gauge functions, and we are chiefly interested in two-point 

vertex additions which - may be interpreted as mass counter-

terms, we restrict ourselves to the linear source situation 

examined in sections a) and b).. 

The one exception to the above restriction is within 

additions being added to the Lagrangian which have no cor-

responding ghost vertices. If J i  R ijAj 	is the additional 

source term for physical fields the ghost source terms for 

the above construction are J 	5ja 	Aa and Jjjj tjaAa . i 13

On multiplying by (2.6) these become equivalent to vertices 

tja and A ik 	 Sja)• 	If these are identicallyij  

zero the additional term 	 A 	may be added to the 

Lagrangian without changing the Faddeev-Popov ghost Lagran gian 

but preserving the Ward identities. This genre of additions 

can be extended to higher orders in the fields as usual and 

includes the set of terms invariant under the gauge transform. 

For example, for the Lagrangian 	(2.22) 

Rij 	could have been chosen 0 a 	0 

when 	Ji/ijtjaAE  0 and 

(J.) 0 	-iea 

iea 0 0 	A 

0 0 0 	Ali 

4. 	
a 	 * 

Sja(A)A 	is identically zero and the term aq 4 may 

be added to the Lagrangian. 
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These additions may be disguised by being combined with 

additions to the Lagrangian of the form of Chapter 1. An 

example is the Salam-Weinberg 35 ' 51  model in which the mass 

renormalisation counter-terms are made explicit by the refor-

mulation: 

1M 
(B 	 2 B 	B ) 

	

E - ( M ) 2 (B W - B W - gW 	 - xW 	
2 )2 - 

	() 	v v p 

	

4 	o 	i-i---v 	V  
V 

+(M2) I (B + ½iT.W - ½iIB) 	+ ---( T 	
p

. W - lB ) ( O 
l

2 

p 	 il 

-½p 2 M 2 (g 	+ /- + () + i:- ( 0,  1) (D ) 2 

- 

(2.27 )'. 
11  2 M

g 	
2. (g 	+ 	+ () + 	(O,1)) 

2 g-[.W 	-_Ij 	 11 	 11 

- 	LR + 	+ 	R 	+ R(O,l)L) 1 

invariant under the transformation 

  1J 
+ g(Wx) - TI 

B - B - B 

	

p 	p 	
p TI 4 

-* 	+ ½ig(T.n - ITI 	+ --- (T.n - I) (0) 
-- 	 1 

L - * L + ½ig(T.n + I)L 

R *R+ignkR 

2 
As each separate term is invariant the constants M 0 2 , (-) , 

	

M 2 , p 2M 2 , c, 	and m may be scaled to facilitate mass 

renormalisation without affecting the Ward identities. Similar- 
(47,48,51) 

ly K can be used to remove the tadpole terms as necessary 

To obtain the more usual form (51) the following replacements 

should be made 
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± 

N' -*.g 

B - —B, 
P 	M p 

M 	½gF, 

M' 
T1 

4
-j;j-  1 

F2X 	 2 	2 	2 0 
1 K 	2(F-E)/F 

m 	 - 	1, 	a - 	1, 	-* 1 

We have not included wave function renormalisation as it can 

always be treated separately as in the previous chapter. It 

can also be seen from the above form that the coupling constant 

renormalisation can be facilitated as suggested in Chapter 1. 

d) 	Conclusions 

From the preceding analysis it is evident that for any 

gauge theory there is complete freedom of choice of the finite 

counter-terms for the self-energy terms and the coupling con-

stant. It is only in the mass renormalisation that the choice 

may be restricted as in the Salam-Weinberg model (2.27) where 

the counter-terms for the Higgs scalars are related. In the 

likelihood that there are no further consistent additions to 

the Lagrangian possible the same counter-terms as discussed 

must also be responsible for removing the divergences. By 

considering the counter-terms broken down to the forms dis-

cussed we see, for example in (2.27), the relations between 

couplings and masses must hold for renormalised we well as 

the bare theory. 

One further point to note is that the connection between 

the Ward identities and a specific invariance is not as strong 

as implied by the Tree-Loop theorem (50)
However, the con-

clusion that there exists an invariance is not invalidated. 
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CHAPTER 3 

MASSIVE AND MASSLESS YANG-MILLS LAGRANGIANS 

In section b) of the previous chapter a certain overlap 

between a massive and massless abelian Lagrangian was shown 

to exist to the extent that the existence of Ward identities 

for the massless theory could be used to establish them in 

the massive situation. A similar extension is also possible 

for the non-abelian Yang-Mills Lagrangian. 

a) 	Existence of Ward Identities 

Following the prescription of Chapter 2 we consider the 

non-abelian Lagrangian 

L 	= 	- !G .GPV 	 (3.1) INV 	- 4—iiv - 

where G 1_1v 	- 	pwv - 	- g WxW - 

which is invariant under the infinitesimal gauge transform 

	

+ g Wxr - 	. 	 (3.2) 

The gauge function is chosen to be 

C a 	cx pa 	 (3.3) 

and the source function 

ij 	E M26ab 611 	. 	 (3.4) 

When the Ward identity of Fig. 16 is constructed for 

this Lagrangian the contribution of the form 



f
deci 

a - - 	-< - - - 
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Aery 
M  Q 	ij Si0 [•11 

vanishes identically as idea  is anti-symmetric in d and 

e. The other ghost-source additions are of the necessary form 

t. 	 (aM) 	 (35) 
ij ja 	a p 	c 

Hence it is possible to interpret the additions as (2.4) 

but with 11bj 	0. 	On absorbing the mass terms into the 

propagators we obtain the Feynrnan rules of Figs. 1(a) and 1(c) 

which obey the Ward identities for tree diagrams of Fig. 7 with 

the appropriate source terms generated by the transform (3.2). 

The gauge function (3.3) is linear in the fields and we 

shall also restrict the source functions to be linear, i.e. 

Ca  Mai A and R.= R A.. The conditions which need toij 

be satisfied in order that the Tree-Loop theorem may be applied 

are 



4- 	-  
R 	. 	 S 	(A) E 	R! . S 	(A); 

-3- 	4- 
R. . 	 t . 	E 

4-3- 
. 

-4-4- 
t 

i j 	a j ij ja ij 	ja ij 3  

•-+---* 

	

( 3 . 6 )  -3- 	± 4- -3.- .4--)- -~ -~--*- 
and 	Maj Sjb(A) M Sjb(A); mb tib 

for some R j , S (A) and t 
, where m' 	is the complete 

i 	ja 	 ja 	 lb 

ghost propagator function for the massive theory. On assuming 

Rj 	is non-singular 

= Rjk Rki Si a (A) 	t'ja 	R 1  R j  tia 	(37) 

and multiplying on left by Nj 

Mbj Sja(A) = M L j Sjb(A) 	E 	
4-. 

 4--1 Rki S(A) 

(3.8) 

i.e. (Mbj 	
;,_i 

Rki)Sia(A) 	= 	0. 

+ 

However, all eigenvectors, with eigenvalue.zero, for Sja(A) 

as defined by (3.2) involve the fields W whereas 

M - M'R' 1R does not and we are forced to conclude 

Mbj 	= 	Rk1  Rki 	 . 	 (3.9) 

(3.9) implies 
4- 4. 

M 	t ia = M 	Rk1Rki ti 	= 	t! 	= ma (3.10) 
bi  

which precludes any additions of the type (3.4) from satis-

fying the conditions (3.6). The Tree-Loop theorem, therefore, 

cannot be invoked on this occasion to imply the invariance of 

the Lagrangian corresponding to the Feynman rules of Figs. 

l(a) and 1(c). If 	had been chosen to be singular a 
13 

solution to the conditions (3.6) could have been found but 

the Tree-Loop theorem would again no longer have been 

applicable. 

To see whether the Ward identities hold for diagrams 
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involving loops must now be examined directly. This will be 

done later. 

b) 	Direct Derivation of Ward Identities 

The Ward identities for the massive Yang-Mills Lagrangian 

can be deduced more directly than above. 

First we consider a Lagrangian LINv(A) invariant under 

(1.1). Instead of following the usual prescription for genera-

ting a gauge invariant field theory as in section a) of 

Chapter 1, we use a more general "gauge" fun ction ½G(A) 

(which may not be a perfect square) and define a Lagrangian 

£ 	INV - ½G(A) + JR(A) 	 (3.11) 

with source term J±R i ( A). The Lagrangian is not a gauge 

theory and this method is only a device to enable the Ward 

identities to be found. 

Under the infinitesimal transform (1.1) the source term 

transforms as (1.4) and 

G(A) 	G' (A) 	= 	G(A) + gP(A)Aa +a 
	 . 	(3.12) 

The "gauge" is restricted to the set of functions such that 

E 2Cb(A)Lba (A); 	 2Cb(A)Mb 	 (3.13) 

andMba is non-singular. Following the technique of (50) 

free particle fields of mass m are added to the Lagrangian: 

LI
NV - ½G(A) + J.R. (A) + ½(Ba)2 - ½m 2 B 	(3.14) 11 

which under the transform 
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A 	 A 

A 	A.' = A. 
1 	 Ia + eg S (A)Ba + et Ia B 	 (3.15) 1 	1  

becomes 

J 	A 	 A 	 A 	 A 	 A 

£ 	- cCb (A) ba + gL (A))Ba + E  (gp j  (A) + n a ) Baba 

(3.16) 
where c is infinitesimal. It is immediately evident as 

in (50) that the field theory constructed by adding a ghost 

Lagrangian 

L E 	bMba + gL(A) Oa 	 (3.17) 

to (3.11): 

INV - ½G(A) + J1R1(A) + 	[ba + gL(A)] 	(3.18) 

obeys the Ward identities for tree diagrams, cf. Fig. 7. 

Let Lab(A)  transform according to 

A 	 A 	 A 	 A 

L (A) - L' (A) = L (A) + gD 	
A + abc 	. 	(3.19) b 	 ab 	abc ab 	a  

To extend the Ward identities to diagrams including loops, 

Fig. 5, it is sufficient to demonstrate that the auxiliary 

vertices Dabc(A)  and  Eabc  satisfy the "group p roperty u( 50 ) 

of Fig. 20(a). Let R1 (A) =A1  in the Lagrangian (3.11) and 

vary the fields according to 

+ gSj(A)Ba.+ tiaBa 

and 	A - A + gSj(A)Bta + t iaB la  

then their inverses 

A. 	A 1  . - 
gSj(A)Ba - tiaBl a  

1  

a 	a and 	A - A1 - gSj(A)B - tiaB 



/ 

- 	

- 	

' 	

- 

 

ME 

4 	 4 	 / 

7 - ->- - - 

	+ 

	- 

	- -> - -- - 

 

Or\  

(b) 

FIG 20 	For vertex notation cf. Fig. 16(1), (ii) and (iii). 
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Finally on redefining the fields: 

A1  = A- gjg:;; EdbC(BB 	- B1 b 	- 

(BbBC - B,bBC) 

(3.11) becomes 

	

A 	 A 	
)M 1E 	) (BaBIc_BtaBC) 

	

LINV + J1A - Cb (A) g (gD 	(A) 	gL (A de eac 

A 	 A 	 ^- i^ 	 A A-1  A 

+ ig(gViab 	+ Uiab 	
(BaBtb_BtaBb) 

+ (gz (A) +rnbc) BC (gL (A)+M ba) ,a_ 	(A) %ctC ( gLba (A)+Mballbc 

A 	 (3.20) 
- 	 (BaBb+BaB,b)+ C(A)g(gD(A) 

+ E bac ) (BaBC + BIaBIC) 

+ 	
+ Mba)B + 

-- 	 (gLba 	+ 

where 2 ba (A) 	mba, 'iab and Ujab  are defined according to 

C(Aj+gSj(A)a 	
ia + t Aa) = Cb(A) + gS,(A)Aa + mbai\ 

(3.21) 

and 
A A 	 A 

Sia j 
(A.+gS(A)Ab + tibAb ) E S ia 	lab . (A) + gv 	(A)Ab+ujabAb  

(3.22) 

(50) For a well behaved theory it can be established 	, by con- 

sidering diagrams involving one BB' pair only, that the group 

property holds if 

(A) +mbC) BC L (A) +Mba) B, a 
	(A) +m 	B' 

C  (gL (A)ba 

+ Mba)B 	= 	0 	 (3.23) 
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Therefore the theory (3.18) with sources generated by 

(1.4) , i.e. under the gauge transform for the corresponding 

gauge invariant Lagrancian, obeys the Ward identities of 

Fig. 5 to all orders if the condition (3.21) is satisfied. 

There are two trivial examples. The normal gauge theory 

constructed with G(A) = C(A) and kab 	Lb(A) and 

nab = Mab Or the abelian theory with bilinear G(A) 

when k ab 	= Lab(A) = 0. 

Let INV be the normal,massless Yang-Mills Lagrangian 

(3.1) and choose the "gauge" function 

G(A) 	- M2W .wT.l  + (!'w )2 • 	 (3.24) 

	

-11- 	a -P 

(3.24) transforms under (3.2) to 

2M2W.fl + 2 1  a  

	

(gW" x - 	r) 
a 2   

E 2(1 W) . ( 	 aM)ri+ 2(I 	W)  .g(W"xn) 	(3.25) 
a 11 a 

which is open to interpretation (3.13) with 

a 	a p a 	Lab 	vfacbW 	Mb 	(_ 	- aM2)ab (3.2.6) C  

where the dotted derivatives act on everything on the right. 

The massive Yang-Mills Lagrangian 

- Ga GUV + ½M2 WaWP - - 
 -i -(W) (D W') 	 (3.27) 

4pv a 	pa 

has been constructed, with Feynman rules as in Figs. 1(a) 

and 1(c), i.e. the identical theory to that of section a) of 

this chapter. We have thus verified that the massive Yang-

Mills Lagrangian satisfies the Ward identities constructed 
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with rules of Figs. 1(a) amd 1(c) and the same source terms 

as the massless case. 

Variation of Lab  (3.26) with respect to (3.2) generates 

the auxiliary vertices D and E, (i) and (ii) of Fig. 21. 

For these vertices the group property is not satisfied; in-

stead the equation expressed as Fig. 20(b) holds. The 
A 

additional vertex F is defined as (iii) of Fig. 21, i.e. 

the left hand side of identity Fig. 13(b) is 

aM2 	k' 	. 	 (3.28) - 	g2 	
ecd 1 (p+q)2 - am ,  

This is as expected as the sufficiency condition (3.23) 

obviously does not hold with the vertices 2ab = 

1 526 
and mab - 	ab' and Lab  and  Mab  as (3.26). Therefore, 

although the Ward identities hold for tree diagrams for this 

massive Yang-Mills Lagrangian for all a, they do not hold 

for diagrams involving loops generally. However, for a = 0 

the contributions from (3.28) vanish when the ghost vertices 

reduce to those for the massless Yang-Mills Lagrangian 27  

with the same transform (3.2). The condition (3.23) is also 

satisfied. The Ward identities, therefore, hold to all orders 

for this "gauge". 

So far no physical lines have been included in the 

diagrams contributing to the Ward. identities. Let the source 

terms include J W 	(no summation implied over a), for each 

vector field, with vertices r and p as Fig. 21(iv) and 

(v). 	For an example consider the Ward identity with one source 

only shown in Fig. 22. To make the external vector boson line 
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FIG 22 	No summation is implied over a. 
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FIG 23 	Diagrams with poles at k 2  = M 2 . 
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on the left of Fig. 22 physical, drop the J, multiply by 

the inverse of the propagator, viz. (k 2 - M 2 ) g _(l_ 2 )kkV, 

then by a physical polarization vector e(k) and finally 

set k 2  on-mass shell, i.e. k 2 = M 2 . Nothing.is  assumed 

about the form of the polarization vector other than it is 

perpendicular to the 4-momentum 

i.e. 	e(k).k 	= 	0 
	

(3.29) 

Hence the above procedure is equivalent to multiplying by 

e(k) followed by (k 2  - M 2 ) and only then is k 2  set 

on-mass shell. 

The diagrams involving r vanish automatically. If the 

ghost mass is different from the vector mass then the diagrams 

with p vanish when the factor (k 2  - M 2 ) is set on-mass 

shell. When the masses are the same diagrams of the form of 

Fig. 18(a) or (b) would not vanish in the on-mass shell limit. 

Through considerations of Lorentz invariance these diagrams 

must be proportional to k. 

under condition (3.29). 

Therefore, they also vanish 

The diagrams in the Ward identities can now be extended 

to include physical external W-lines with no corresponding 

ghost-source terms. The Ward identities are as for the 

massless Yang-Mills Lagrangian and the extra physical polariza-

tion in the massive theory does not affect them as the con-

dition (3.29) is automatically satisfied. 
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c) 	Invariance of the S-matrix 

The Lagrangian of sections a) and b) may be written 

= 	_ 2 (_M 2 . W 11  + 	WP) 2)+ JR1(A) 
- INV 

*r- 

aL 	
j2 32_M2)ab + 	facbWv] 	(3.30) 

which gives Feynman rules equivalent to Figs. 1(a) and 1(d). 

If the parameter a is varied infinitesimally such that 

(3.31) 
a 	a 

then the Lagrangian (3.30) changes by the amount 

AL = 	(- 6 	P 2 	2c 	2 	ab 	acb \fl 
+ ) ( W ) + (-- +s ) 	[_ a 2 s +g 	f 	Wcj4b a 	P 	a 	a 

(3.32) 

Invariance of the S-matrix under (3.31) follows if a change 

in the Lagrangian proportional to (3.32) does not change the 

S-matrix elements between physical states constructed with 

(3.30) (50) 	In addition to (3.32), for the S-matrix, the 

changes in the self-energy factors Z  11 multiplying each 

external physical line, must be taken into account. This is 

expressed graphically in Fig. 24 where the negative sign 

associated with the ghost loop is shown explicitly. Fig. 24 

differs from the usual relation (50) for invariance in that 

an additional factor of ½ appears in association with the 

first set of diagrams. It arises from combinatorical con-

siderations as explained later. 

Consider the Ward identity with one source term 
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W ' . 	All other sources are 	aP as in the discussion pa 	 pa 

of external physical lines. The "C-source" and the source 

a a W11  can then be folded together to obtain Fig. 25 with 

r and p as Fig. 21(iv) and (vi). All other sources are 

now made physical as in section b). The same arguments apply 

to the last two diagrams of Fig. 25 except for those such as 

U, 

(3.33) 

As in (50) these terms are the change in the external 

line factors, Zel due to (3.31). It can be seen that in 

this case Fig. 25 does not reduce to Fig. 24. If, however, 

each ghost loop had associated with it a factor of (—½) 

instead of (-1) then the middle two sets of diagrams of Fig. 

24 would also have a factor ½ associated with them and 

Fig. 25 would reduce to the appropriate relation corresponding 

to Fig 24: The S-matrix is therefore invariant under 

variation of a if each ghost loop has a factor (—½) and the 

Ward identities are valid. In this proof the Ward identities 

for the (n-i) loop approximation are used to prove the in-

variance of the n loop approximation of the S-matrix. 

The invariance immediately shows that the massive non-

abelian theory, with Feynman rules of Figs. 1(a) and 1(c) 

and a factor (—½) associated with the ghost loops, is both 
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(5,6,13,17) renormalizable and unitary as is well known 

When a = 1 the Feynman rules become renormalizable accord-

ing to power counting and in the limit a - 	the rules are 

the normal ones associated with the canonical quantization 

of the massive Yang-Mills field when no ghosts are present. 

The theory is therefore unitary, and identical to the usual 

massive theory, up to the one loop approximation. 

The massive abelian theory is similarly renormalisable 

and unitary to all orders and the S-matrix for all a is 

identical to the canonically quantized formulation as antici- 

pated in section b) of Chapter 2. By considering the formalism 

for a = 1 or 0 it would appear not to be necessary to 

associate a multiplicative factor expj(/m)2D(0) 	with 

each "charged" field as suggested by the investigation of 

(6) 	 (1) 
Boulware 	. Similarly Nakanishi's quantization is that for 

a = 0 and generates an S-matrix identical to the normal 

canonical quantization. 

d) 	Unitarity 

In section c) it was, shown that the massive non-abelian 

Yang-Mills Lagrangian formulated as in section b) must be 

unitary up to the one loop approximation when a factor (-½) 

is associated with each loop. Thus at the one loop level it 

must be possible to prove the unitarity directly using the 

Ward identities of sections a) and b) in any "gauge". 

The notation is as (27). 

As the vector boson propagator 
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IJV 	(i_a2)k11I 	ab 
g 	k 2 +i c 	= 

k 2  - M2  + ic 

pv 	klkV ab 
g  - ____ 

k 2  - M2  + ic 

+ k l k' ) /M 2 	6 ab 

k 2 -a 2 M 2  + Ic 

the appropriate cutting rule (28) is 

	

_ 	 k V 	 1 	 \) __ 

	

I 	 (21)3kM)00) 	- M' 
k" 

 ab - b k 	a 
1 cS(k 2 _ (Y 2 M 2 )O(k) 

	

- (27r) 	
0 	

M 2 	ab  

If we define 

V 	- 	1 

b 	k 	a 	= - 2Tr) 	
kPkV/M2)ab 

S (k 2 -a 2 M 2 ) 0 (kckPkV/M2 ab 
b 	kI 	a 	(2rr) 

	

I 	 - 

	

1 	k 2  -a M2)0(k)6b - -->4--- 
b 	k 	a 	(27r)3 

- 	1 	
ct6(k 2-  a 2 M 2 ) 0 (k O )ób 

then 	 I  

= 	 + 	 (3.34) 

If the equation 



b 
 -? - -- ( 3.37) 
q 

V 2 0
q 	—M -- 
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can be proved, unitarity is verified. Two Ward identities are 

needed. The first is the identity for diagrams with no un-

physical sources which is equivalent to 

ik' 0 (3. 36) 

The second has a single source 	 a 2M 2 ) )Wa  such that 

For this the diagrams must be at least first order in g.. 

These identities hold for tree diagrams only for all ct. 

For the one loop approximation, using (3.34), 

= 
	 (3.38) 

since at least one of the sub-diagrams is a tree diagram and 

(3.36) can be applied to it. 

Similarly 

= 	 - 

= 	
- : : 	(3.39). -C 
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Applying (3.37) to both sub-diagrams which must be tree 

diagrams in the one loop approximation 

(3.40) 

With (3.38), (3.39) and (3.40) the left hand side of 

(3.35) becomes 

+ 	+ D-H--KII  

-½ 	 -½ 

(3.41) is zero and unitarity is proved as this is the 
- 	

(28,61,62) correct form for the Cutkosky rules 	 to be applied 

if the ghost loops have an associated factor (-½). 

As the Ward identities hold for the rules of Fig. 1 to 

all orders when a = 0 the question now is whether unitarity 

can be proved directly to all orders for that gauge even though 

invariance of the S-matrix may no longer be invoked. The 

answer must be no, since to generalize (3.41) would require 

that the Ward identities hold when the factor associated with 

the ghost loops is (- ½) and not (-1) as is the case. It 

would thus seem that the "soft" rules of Hsu and Sudarshan 7  

are inappropriate to describe the massive Yang-Mills Lagrangian 

to all orders. We shall, however, examine this in more detail 

in Chapters Five and Six. 

This chapter has been confined to the massive Yang-Mills 
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Lagrangian but the implications of the above for the massless 

theory is discussed in Appendix C. It may be noted that, as 

the' massive rules obey the same Ward identities to all orders 

in the Landau gauge, i.e. ct = 0, infra-red divergent terms 

in the massless theory may be regularized by simply adding a 

mass term in the Landau gauge. 
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ruomT'D A 

EQUIVALENT FORMULATIONS OF THE MASSIVE 

YANG MILLS LAGRANGIAN - I 

In Chapter 3 it was shown that the Ward identity tech-

niques developed in the context of gauge theories(27I45l5O153) 

are applicable to the Massive Yang-Mills Lagrangian in the 

tree and one loop approximation. 

In investigating whether the massive Yang-Mills theory 

is renormalisable it 

such that the vector 
2 

gl-IV_ (l_K)kPkv/(k - 

k 2  + M 2  + iei 

has been achieved by 

identities, for the 

is advantageous to reformulate the theory 

boson propagator becomes 
2 

KM) 
for some K. 	The reformulation 

Veltman et al. 5 ' 13 ' 14 , using Ward 

self energy terms and by Mohapatra, 

Sakakibara and Sucher (12) for the four-point interaction, 

but only to the two loop approximation. In Chapter 4 we 

extend the Ward identities of Chapter 3 to all orders in loops 

to reformulate all possible interactions to all orders in the 

loops. Our approach is shown to be equivalent to that of 

Veltman et al. in Chapter. 5, and the resultant Feynman rules 

are identical to those derived, in the path integral for-

mulation, by Boulware (61) . 

a) 	Combinatorial Factor Considerations 

The normal vector-boson propagator can be factorized: 
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9_kTk'V/M
2  6 ab 

V - M 2 + iE 	= 

(1_ a 2 )kk')  ab 
g 11 "- k2_a 2 M 2 +ic 5 

k 2  - M 2  + ic 

_khikV/M2 	ab 
+ 	 (4.1) 

k 2  - a 2 M 2  + iE: 

where the terms spoiling the renormalizbility according to 

power counting have been separated. The left hand side is 

the hard vector-boson propagator and the first term on the 

right hand side of (4.1) the soft propagator, as in (12). 

If 

is equivalent to the set of all 

diagrams contributing to an amplitude and the replacement 

(4.1) is made for all propagators, then 

+ 

S 

(4.2) 

The suffix H indicates that the hard propagator is used for 

all vector-boson propagators; similarly S for the soft 

propagator. The 	'"'..' in the "blob" denote the replace- 

ment, in all possible ways, of a vector-boson propagator by 

the second term on the right hand side of (4.1). The series 

continues up to the set of diagrams in which all propagators 

are replaced by 	 . 	We wish to separate the terms 
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into two independent momenta contractions which may 

then be treated as sources for the Ward identities. However, 

the amplitudes from which we start and those to which the 

Ward identities are applied have different combinatorial 

factors 4 ', the difference between which must be taken into 

account on splitting an internal line. An example of this has 

already been met in the factor 1 present in Fig. 24. 
2 

Firstly, we consider the second term on the right hand 

side of (4.2) which can be represented as 

6ab6P+Pt/M2 O:arp 
.- f d

4 p fdp' 
P2 - ct 2M-1- ic 

b,p' 

a, 11 

where /\tAE  k 	> 	It should be noted that with 
a,k 

this construction there is at least one vertex connected to 

each source /\'\/'/ . The set of diagrams 

is symmetrized in the external legs, i.e. the notation is the 

same as I t. Hooft 27  except for the symbol for contraction 

with the momentum vector. That 1  is the correct combina- 
.2 

tonal factor is demonstrated as follows. 

The same diagram with two external sources cannot be 

generated by splitting a propagator in different diagrams as 

reversing the process would imply the original diagrams were 

identical. The only way a diagram with external legs can be 

generated repeatedly is by replacing indistinguishable propagators 
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in the same diagram by "''v . 	The number of ways of 

constructing the original diagram from the individual 

vertices is the number of ways of constructing the corres-

ponding diagram with the vertex legs which would form the n 

indistinguishable propagators unconnected and undesignated, 

N say, times the number of ways of connecting these legs to 

form the required diagram, i.e. n!xN. The number of ways 

of constructing the associated diagram, leaving two uncon- 

nected legs to form the pair of external sources, is N times 

the number of ways of choosing which two legs are not to be 

connected, times the number of ways of constructing the remain-

irig (n-i) indistinguishable propagators, i.e. 

n 2 (n-l)!xN = n(n!xN). But n is the number of repetitions 

of the diagram constructed with a pair of external sources 

and the repeated generation of the same diagram supplies the 

factor necessary to modify the original combinatorial factor 

associated with each diagram to its correct value, cf. 

Appendix of Veltman (14) 

It remains for the unconnected pair of sources to be 

labelled. For the set of diagrams non-symmetric in the un-

connected sources there is only one way of doing so as they 

are already distinguishable. This set is denoted by 

their combinatorial factors are automatically correct. For 

the set of diagrams symmetric in the sources there are two 

ways of labelling the legs.. This set is denoted by 

their factorials are thus half the required value. Hence, 



OBC 

a. 	b 

= fd 4  pfd p' Uj p2 - ct 2M 2 + ic 	 2  

To regain the usual notation the external sources must be 

symmetrized. This is already so for the second set of 

diagrams on the right hand side but for the first set it will 

entail a doubling of the number of diagrams. Thus 

ci 	b 

P 	p1 

- fd pfd p' 	 (4.4) 
2 	 p2 - (X 2M2 + i 

The set of diagrams represented by the "blob" on the right 

hand side contains all possible diagrams contributing to the 

new amplitude;.the diagram from which any diagram with a pair 

of sources was constructed can be obtained by reconnecting 

the sources. Included are diagrams which correspond to those 

on the left, with tadpole terms, which vanish anyway on con-

tracting. For example, consider the self energy term of 

order g 2  (the factorials are shown explicitly) 

H 	 HQ 

1 
H _ 	 lH} 

gives rise to 
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9 +_ _ _ 

+{9 
+S} 

"V 	
+t. 

2~ 	 + V  + )S 

2

1 

 

6 S 

	8i,  i 
where I stands for the integral contraction. 

The analysis as above can be repeated indefinitely to 

give before symmetrization of the external sources 

1 
n 	m 

M=O.2  
(4.5) 

where the contractions have been explicitly labelled 1 to n. 

Let us consider the subset of diagrams 



2 

2n 

which only differ through the labelling 

of the external sources. Any diagram produced by connecting 

two sources can contribute to no other subset. Hence, as 

this subset contains all the permutations of labelling the 

sources, any diagram and an associated one, which differs 

only through an interchange of the labels on a contracted 

pair of non-symmetric sources, produce the same result on 

evaluation. Also any permutation of the labels on the 

contractions have the same outcome. Therefore, on sym-

metrizing the "blob" as usual we find 

2\ 
i 

1= 	n 
/ 	2 n' 

K -- 

(4.6) 

The set of diagrams on the right of (4.6) are now of 

the form to which the Ward identities may be applied. 

b) 	Generalised Ward Identities 

To evaluate the contribution of the momenta contractions 

we wish to treat them as the sources (either "C-sources" 

or "R-sources", as required, in the language of (50)) in Ward 

identities and so generate the equivalent Feynman rules for a 

scalar particle. If there were only two sources present in 

an amplitude which was of no higher than second order in the 

loops the Ward identities of Chapter 3 could be used to generate 



the soft rules of Fig. 1 which were shown to be equivalent 

to that order of approximation. To generalize the Ward 

identities it is easier to follow the original method of 

't. Hooft 27  (all references in this section are to this 

paper). Initially we shall not include any ghost terms in 

the amplitudes unlike (27) or Chapter 3 where there were 

ghost loops present from the beginning. 

As in §4 of (27) the identities 4.4b) and 4.4c) hold as 

they involve pure vector-boson vertex identities which are 

unchanged. The identity 4.4a) is not necessary here and has 

in fact no content in this context. 

'I 
/ 

I' 

i.e. 	 + 	 + 	 =0 (4.7) 

I 
and 	 + 	 = 0 (4.8) 

	

where 	 and 	>< are the vector boson vertices 

of Fig. 1(a) and 

E 
k 	P. 

- ->- 	- 6 ik 	and 	
El = 

	

ci 	 = 	ca 	 - 	,, 	. 	(4.9) 

In terms of the notation used previously 

P. 	 C 1 

	

--.>--=ID = -> 	 ( 4. 10 
ci k 	b 	a 	b 



, 

, 
C-,  €1 

Similar manipulations to (4.5), (4.6) and (4.7) of 

(27) can be made : 
I 	 I 

I 	 I 	 I 	 I 

EII ± 
+ 

= A -  
where 	 indicates any other termination of the ghost 

line other than at a pure vector-boson vertex. The identity 

equivalent to 4.8a) of (27) is 

'If 
+ 	 I 

I> p 

(4.12) 

in which the ghost propagators and vertices are as in Fig. 

1(b). (4.12) can be verified either directly or by noting 

that it is merely the Ward identity of Chapter 3 with two 
a 

sources J a
11 W  and of order one in g. Also the Ward 



, 
, 

4- 
, 

, 
P 

V 
(4.13) 

P 

identity for one source JP W  and a physical particle of 
a p 

order one in g is the identity corresponding to 4.8b) of 

(27) , viz. 

On applying (4.12) and (4.13) to (4.11) we obtain corresponding 

to (4.9) of (27) 

/ 
I 	 / 

E11 = o + CIII ± 	
( 4.14) 

By iterating (4.14) the scalar ghost line can be traced through 

the diagrams until it is terminated by either the second or 

third term on the right hand side. 

For the general amplitude 

starting 

from the first external source on the left, there are two 

sets of possible terminations:- 

the scalar line turning and terminating on itself 

terminating at another external source. 

These are illustrated in Fig. 26. For the subset (i) the 

additional vertices required are 



U) 	 (ii) 

   

1... 

+ 

U. 

•1- 

I - 

I' 
II 

FIG 26 	The 	is present since 



NAM 

a 

E -gf 	kg; 
abc 

b- >-L  -c 
q 

cf. Fig. 16 (1) and (ii). 

are 

od 

I 	/ 
I 	A- 
I / 	

ig2ffqa 

b- > ---c 

	

q 	 (4.15) 

For (ii) the additional vertices 

a > _ p-lb 	i k(k2-  a2M2)6ab 

b\\ 	

a 	
(4.16) 

and 	- _ N( 	- 	f 	(k 2 (I 2 MZ)kP 

k 	
a bac 

where P is the vector boson propagator. As each source is 

attached to at least one vertex the two terms in (4.16) can 

be combined such that 

- 	- -( + 	- 	 - 	(iM2 4.17) 

Of. (3.37). As a shorthand let both amendments to vertices, 

(4.9), be represented in diagrams by the first, e.g. both 

vertices in (4.15) are denoted by 	 except where 

-> 

explicitly indicated. Thus Fig. 26 can be rewritten as Fig. 

27. 

The process may be repeated starting from the next 

unexploited external source in any subset of diagrams on the 



M 

M 

M 

4- -I- 

M 
- 

= k1 

-I- 	------- 	-1- 

M M 

FIG 27 	The M2  associated with a scalar line which does not terminate internally has 

been split between both sources and a factor M has been given to all other 

scalar lines. 
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right hand side of Fig. 27, except that there are now additional 

points at which the scalar line may terminate, i.e. at the 

additional vertices introduced above or on a previously 

created scalar line. The result of tracing an additional 

line for the first subset on the right hand side of Fig. 27 

is shown in Fig. 28. By repeating until all external sources 

have been utilized in all diagrams we obtain the general Ward 

identities which are constructed with a family of scalar ver-

tices, with no limit on the order, in addition to those of 

Fig. 1(b). When the factor (4-), associated with each in- 
im 

going scalar line for which there is no corresponding outgoing 

line, is incorporated in the vertices, the family is as in 

Fig. 29. 

C) 	The Duplication Factors 

Having absorbed the factors (L) into the vertices we 
iM 

are left with a factor M on each external scalar line. How-

ever, adjacent pairs of external sources were originally con- 

tracted, as in (4.6), by Id pfd  p' ab (p+p )/M
2

where 
P , -a'm' + ic 

p and p' are the momenta of the sources. Thus the factors 

M on the external lines and the 	in the contraction 

completely cancel and the remainder of the contraction may 

be identified as (-1) times the scalar propagator. If these 

externally created propagators could be reabsorbed into the 

diagrams by the reverse process to that of section a), the 

contributions of the various scalar configurations (by con-

figuration here we mean the overall topology of the scalar 

lines including external propagators without considering the 
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FIG 29 	The next pair of vertices is constructed by making the additions (4.9) to the 
lower one of the previous pair. 



vector-boson vertices) might be described by a conventional 

Lagrangian. However, the same final scalar configuration 

can be generated repeatedly with different numbers of exter- 

nal propagators from different subsets on the right hand side 

of (4.2). To obtain the Feynman rules for the scalar ghosts 

the number of duplications of each different scalar configura-

tion must be evaluated. To ease the problem of counting we 

use the rule that when a scalar line terminates at an exter-

nal source or internally, the first available external source 

from the left is used to originate the next scalar line, 

cf. for example Figs. 30 and 31. 

First we consider the scalar configurations before 

absorption into the diagrams. They consist of sections of 

the following forms:- 

A simple line starting at an external source and 

terminating at another. -  

Trees involving any number of vertices of any order 

with only one outgoing scalar line. In the diagrams with one 

particular set of external sources used in the construction 

of a tree, the outgoing line may terminateat any one of the 

sources involved except the one furthest left. Note that in 

the trees there are lines from vertex to vertex which include 

no externally constructed propagators. 

Trees with only one closed scalar loop incorporated. 

There is no way in which two closed scalar loops could be 

constructed and joined together without involving externally 

created propagators. This set includes the simplest possible 

configurations 	V 

1=-  - 
/ 

, the p-loop. There is no 
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FIG 30 	The Ward identity for the second set of diagrams on the right of (4.2) 

constructed using the rules suggested in the text. 
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FIG 31 The Ward identity for the third set of diagrams on the right of (4.2). 



outgoing line for the trees involved in this set. 

The branches of the trees in (ii) and (iii) can be 

distinguished by the vector-boson attachments but, having 

labelled them, the branches can originate from any selection 

of sources (this is without reference to the directional 

arrows). If two branches originate from a contracted pair 

of external sources, they do so symmetrically. Members of 

Ci) may be thought of as forming chains whereby a line may 

end at an external source which is contracted to the be-

ginning of another etc. The chains may connect members of 

(ii) or (iii) through external propagators or two legs of 

the same tree. Within the chains the choice of source-

pairs are again free and symmetric within each pair. The 

only other possibility is that the head and tail of a chain 

are themselves connected by an external propagator to form 

a closed scalar loop when absorbed into the diagrams. How-

ever, for loops although any selection of source-pairs may 

be involved, the total syrnmetricity of choice within a pair 

is no longer available and these configurations will be 

treated separately. 

We, thus, see that any n-point interaction of the original 

explicitly unitary formalism of the massive Yang-Mills field 

can be expressed in terms of the soft rules but with the 

additional vertices of Fig. 29. Using the Ward identities 

it is straightforward though tedious to do the conversion for 

any specific example although it may not generally be reduced 

to the simple algebra of a normal field theory. As the ex-

ternally created propagators carry a factor (-1) many 
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cancellations can be expected but not enough to render the 

formalism explicitly renormalizable. To find a lower bound 

to the cancellations for a general choice of a the scalar 

vertices shall be treated as if totally symmetric and hence 

the directional arrows cease to have any meaning. Obviously 

if the contributions of the vertices of Fig. 29 do not cancel 

exactly with this simplification, they cannot do so in the 

original form. With this assumption of symmetry which will 

be discussed in section e), the scalar contributions can be 

reduced to a standard field theory. 

In the formation of scalar loops the arrows on the 

separate lines may now be reversed. Thus starting from the 

source in the loop furthest to the left, the directional 

arrow is followed to the source at which the line terminates. 

The arrow must automatically point away from the original 

source by virtue of the construction procedure. The loop 

is followed through the externally created propagator and the 

line attached to its other end, reversing the arrow if necessary 

to point in the required direction. Continue until the chain 

reaches the external propagator connected to the original 

source. The arrows now point round the loop in the same 

direction 

_ - - - - 

I 	I • 	'' 	
, 	il 	' 	ii 	II 

I 	i\i  
11111 	

II 
I 	liii 	It 	II 	till 	I 	Ii 

I 	 I 	 I 
I 	 I 	/ 	 I 	 / 

4 - 	 - 
-r 

e , g. 	 - - 	- 	- - 

- - - I- -- -' 

/ 

The asymmetry within the originating source-pair can now be 



ORRE 

I 	I 
seen explicitly as it may only be constructed 

_ I I 
i 	i 	A 

whereas any other pair might be constructed , A or 

	

I 	 i 	' 
I 	I 	 I 	f 

If there was a tree involved this asymmetry would be removed 

by the method of construction. Let a loop involve n L 

source-pairs in a configuration with a total of n source-

pairs. The loop can be constructed by any selection of n L  

external propagators, i.e. a duplication of 	n! 	• Also, 
(IL). 

as all but the originating source-pair, furthest to the left, 

may be connected to the rest of the loop in either of the two 

ways illustrated, there is further duplication by the amount 

2 	. Keeping the directional arrow on the vertices the 

loops may be treated as those for a pseudo-charged field with 

Feynman rules of Fig. lb), when the appropriate combinatorial 

factor is one. The loop can therefore be absorbed into the 

diagrams to give Fig. 32. There the extra factor 1 is 

associated directly with the scalar loop. 

In Fig. 32 the externally created propagators have been 

indicated by an asterisk and each carries a factor (-1). 

The example shown has four such external propagators which 

may be any selection of four from all the scalar propagators 

in the loop. There is thus an additional duplication factor 
n .  

( L) (-1) 	where the (-1) of the external propagators has 

been included in the duplication factor. However, with the 

rest of the scalar configuration remaining unchanged, the 

same loop can be created by the different 	subsets on the 

right of (4.2) with any number of external propagators from 

1 to n L  and the total duplication is 
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FIG 32 	The summation is over all equivalent configurations in the loop. n and n' are 

the number of source-pairs in the diagrams and * denotes the externally created 

propagators absorbed into the diagrams. 
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2 	 nL 
(-1) (IL) + (-1) (nL) + ..... (-1) 	nL 

n 
(11) L 1 

 

Hence any loop created can be incorporated in the diagrams 

if it has an associated factor ( 1) and a factor 
2 	 n'!2' 

remains with the rest of the scalar configuration where ii' 

is the number of source-pairs left in the rest of the con-

figuration. The loops continue to be treated as pseudo-

charged fields. 

Having absorbed all the loops into the diagrams we are 

left with all other scalar configurations. To treat them the 

assumed symmetry of the scalar vertices is exploited to drop 

the arrows on the scalar chains and trees involved. If for 

any purely tree section of the configuration only one exit 

source for the outgoing arrow were allowed the diagrams could 

be considered as those appropriate for a standard field theory 

with vertices as Figs. 1(a), 1(b) and 29 and the appropriate 

combinatorical factor. But all but the source furthest to 

the left may be the exit point. For the chains of simple 

lines there is no problem but for the sections of configura-

tion which are trees with a closed loop attached, the corn-

binatorical factor is not appropriate. The arrow in the 

construction of the scalar loop discriminates between the 

same loop created with a clockwise or anti-clockwise ordering 

of the Vertices in the loop, when these are not identical. 

Here the combinatorical factor should be one but each diagram 

appears twice on dropping the arrow. When the clockwise and 
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anti-clockwise orderings are identical 

- 

e. g. 	 and 
.- 

they are created once only but the associated combinatorical 
1 

factor should be 	for a normal scalar field theory cf. 

Section a). Thus, on dropping the arrows and associating 

with these trees, the appropriate combinatorical factor, 

each diagram carries a duplication factor of two. Hence, 

when any particular diagram is given the correct cornbina-

torical factor consistent with the ghosts being described 

by a normal scalar field theory, it has a duplication factor 

associated only with the ghost-configuration. The factor 

has a multiple of two for each tree with an attached closed 

loop and a multiple (n-l) for each tree when n is the 

number of branches terminating at a source. When a tree 

has an attached loop there is no factor of (n-i) since 

there is no outgoing scalar line to produce the repetition 

of construction. 

If we consider subsets of diagrams with the same scalar 

tree and loop structure but with different numbers of lines 

and eternally created propagators the duplication factor for 

each diagram in the subset is the same. We now redefine a 

line to start from a member of Fig. 29 and to end at a 

member of Fig. 29 without reference as to whether external 

propagators are involved. For each subset the final overall 

scalar configuration is identical for each diagram with a 

fixed selection of lines containing no external propagators. 
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For those lines with external propagators any number can be 

present, up to and including the case when all the propagators 

in a line are externally created, but at least one must be. 

From the method of constructing the scalar lines it is obvious 

that each must start and finish at a vertex of Fig. 29. The 

same final configuration can be generated from different sub-

sets of diagrams but with a different selection of lines 

having no external propagators. 

Because of the complete symmetry in external sources of 

all sections of a configuration except those that form 

isolated closed loops, as noted earlier, the configuration 

under consideration here can have its external propagators 

reabsorbed into the diagrams by the reverse process of 

section a). As before the combinatorical factors have to be 

reconciled with the new diagrams but it only entails the 

absorption of the factors -• 	does not matter that 
nl 2n' 

all possible diagrams do not have the same duplication factors 

as the insertion of the external propagators can be done 

diagram by diagram. For any subset we obtain a fixed scalar 

configuration with some of the lines containing all selections 

from one to nL  propagators carrying a factor (-1) as they 

were originally generated eternally. 	nL  is the total number 

of scalar propagators in the line. As the only weighting 

factors associated with the diagrams ar now the duplication 

factors, the combinatorial factors having been completely 

removed, they are not dependent on the number of external 

propagators involved, only on the topology. Hence, the 

duplications due to having all selections of propagators in 

any line, with at least one external propagator, each carrying 

a factor (-1) can be summed to give a total factor of (-1) 

as for the isolated loop. 
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From here we only consider connected configurations. 

There is a minimum number of lines which can be chosen to 

contain external propagators for any set. scalar configuration. 

This is easily seen as there must be at least one propagator 

externally created for each attachment, (4.9), to a scalar 

	

vertex, 	i.e. if V 	is the number of scalar lines attached 

to the th  scalar vertex the minimum number is N 	(V -2 )/ 2 . 

Within this restriction any selection of lines in a configura-

tion may be chosen not to contain any external propagators. 

These correspond to the various subsets above which would 

generate the same configurations. The total duplication 

factor associated with any scalar configuration may be cal-

culated from the following rules:- 

(i) 	Draw a diagram of the purely scalar configuration 

for each possible selection of from 0 to L-N lines not 

containing any external propagators where L is the total 

number of lines in the configuration. Here lines with no 

external propagators will be indicated by a wavy line with 

all other lines indicated by a solid line. 

A factor zero is given to all diagrams with two 

loops made up of and connected solely by wavy lines. By 

the construction none can appear. This rule is to some extent 

precluded by (i). 

For a vertex composed solely of hard lines 

multiply by a factor (V-i) where V is the number of lines 

in the vertex. 

For a tree structure composed solely of wavy lines 

multiply by a factor (T-l) where T is the total number 

of hard lines emanating from the tree of wavy lines. (iii) 
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and (iv) are the factors (n-i) associated with the dif-

ferent exits for the outgoing scalar line in a tree with n 

branches. 

For a tree of wavy lines with an attached loop 

made up solely of wavy lines, a factor 2. 

For each hard line a factor (-1). 

The total duplication factor is the sum of the 

factors for each diagram of (i). The factors are calculated 

by the rules (ii) to (vi). 

For example consider the dumb-bell shaped scalar con-

figuration 

/ 

I 

— ool , 

- — - 

Its duplication factor is calculated as follows. As N = 1 

the following possibilities arise 

C)--O+(D--O + C)--O + C)--O  

(-l)2 x  2 
	 (_l) 2 2 x 2 

	 (l) 2 3 	(_l) 2 2 x 2 

+ C~ 	+ C~_ + QwQ 

(-1) 2 
	

(-1) 2 x  2 
	

(-1)2 

E -4 + 4 + 3 + 4 - 2 - 4 - 2 = -1. 
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Smi1arly 	, 	 - 

/ 	 I  

I 	
I 
I 	

/ 	; 	N=1 
V -  - - - - - - 

CD CD. M CD 
(-1) 3  2 x 2 	 (1) 23 	 (1) 23 	 (1) 23 

+ 	 + 	 + 	 -1 

(-1)2 	 (-1)2 	 (-1)2 

And 
- 	

- 	 / 

\ I 	 \ / 

I 	 I 

N1 

C~<O (:>o 
(_1)23 	 (-1)2 	 (-1)2 

The above examples are the only ways in which a scalar con-

figuration can be created with N = 1 and in each case the 

total duplication factor is (-1). 

Any scalar - configuration with a certain value for N 

can be considered to have been constructed by the addition 

of a line or a p-loop to a scalar configuration with 

"minimum number" (N-l '). It is shown in Appendix D that the 

duplication factor, F', for a configuration created by the 



addition of a line or loop in any manner to a configuration 

with duplication factor F is just (-l)F. Hence by in-

duction any scalar configuration has a duplication factor 

(...1)N 	This predicts for 

- - 	 - 
/ 

I 	 I 
I 

/ - / 	 - 	a duplication factor 

(_1)2 = 1 which can be verified by direct calculation. 

d) 	The Scalar Lagrangian 

In section c) we saw that the connected configurations 

of scalar lines constructed from the Feynman rules of Figs. 

1(b) and 29 have an associated duplication factor of (_1)N 

which can be absorbed into the vertices of Fig. 29 by attach-

ing a factor (i) V-1  to each vertex where V is the number 

of scalar lines in the vertex. As we have assumed that the 

vertices are totally symmetric the scalar Lagrangian, which 

gives rise to these Feynman rules, is 

1 
P =1 

- 2 	 a2M2a4a 

ab 41  1  (i)+ 	
! ()

3 	

1Y1b 

(4.18) 

• - 	f4 ( .a )  + . 	( 9 	
2 + ••! 	

•• } ab 
a 2!M 	3!M pb 

where 4 ab 	-i abc 1 ° 	In the second term of (4.18) every =  

interaction term odd in q vanishes and (4.18) may be rewritten 
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T 	ab 
[E 	E ()] 	pb - ..a 2M 2  a a  

(4.19) 

- M ji4a E()b W 	+ M 	Wa 

	

when E () a [(exp( 2- ) - l)/ 	ab • 
	On setting a = 0 

M = ab 

(4.19) is identical to the scalar Lagrangian, found to be 

necessary by Bou1ware 6 , within the transform 

M a  cf. (0.24). 

These rules, however, give rise to closed scalar loops 

with the normal combinatorical factor compared with the 

pseudo-charged loops of section c) and their factors of 

(- ). When the arrow on pseudo-charged loops is dropped, 

clockwise and anti-clockwise loops which would otherwise be 

distinguishable become identical and double counting occurs. 

When the clockwise and anti-clockwise loops are indistinguish-

able the appropriate combinatoric factor for a scalar 

Lagrangian is () and again double counting occurs. Hence 

the loops generated by (4.19) can be reformulated as pseudo-

charged loops but with an associated factor (+ 2). To get 

the correct amplitudes, in addition to (4.19), a Lagrangian 

a 	 - a2M2* - g(ali1p)fb c 	(4.20) 

with a factor (-1) associated with each loop is required. 

We have thus demonstrated directly that the explicitly 

unitary Lagrangian for the massive Yang-Mills fields 

- -  	 + 	. M 2W1J .W 1 	 (4.21) 

is equivalent to 



+ .M2WJ.W1 - 1(3 	i w) 2  + 	+ 	(4.22) 

whereG_Pvf and 4,p are defined by (3.1), (4.19) and 
(4.20). 

e) 	Symmetrization of the Scalar Vertices 

In the derivation of the Lagrangian (4.22) it was assumed 

that the scalar vertices of 	were totally symmetric. Al- 

though it is not generally true the assumption can be justified 

for the "gauge" 	a = 0. 

First it is necessary to remove the directional depen-

dence of the basic scalar vertex of Fig. 1(b) and so render 

the arrow on the scalar lines redundant. For a = 0 it is 

self-evident as 

(4.23) 
+ 

->- 	 _>S 

OCX 

where 	b_SJ _c 	ig f(q_p)a  the symmetrizedabc  

vertex, and p 
	q 

OCX 

b 	j 	c 	-1 

	

- -> A   	
ig abc 	the anti symmetric 

vertex. 



Thus in any diagram the basic scalar vertex can be sym-

metrized in the transverse "gauge". 

Let us now consider the simple tree sections of a con-

figuration and in particular any component scalar vertex of 

Fig. 29. Because the scalar contributions were generated 

from diagrams, which had been totally symmetrized in their 

sources in section a), the trees must be symmetric in the 

labelling of the branches. However, the detailed structure 

of a vertex is only dependent on the order of creation of 

its legs, i.e. on their left to right ordering in the con-

struction, and the lines themselves have no directional bias 

when ci. = 0. Hence, in this case, each possible ordering of 

the attachment of the scalar lines, labelled by their vector 

connections, occurs with equal weighting and the vertices 

themselves can be symmetrized over those legs. 

For the trees with an associated loop the symmetriza-

tion is not quite so straightforward. There, the legs of 

the scalar vertices which terminate at external sources may 

be symmetrized as above. Also the two legs of the vertex 

which are connected to form the closed loop may be sym-

metrized as the connecting line is totally symmetric when 

= 0. In the transverse gauge the scalar propagators and 

vertices are identical to those for the gauge invariant 

massless Yang-Mills Lagrangian and any identities valid for 

the latter are also valid for the former. The simplest 

identity is the "group property" of Fig. 20(a). In the 

set of diagrams 
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:•: 

12 
- 

(4.24) 

the "group property" can be used to symmetrize the legs 

a, b of the scalar vertex. Hence the first pair of vertices 

of Fig. 29 can be symmetrized when they are generated by a 

closed loop. 

For the second pair of vertices of Fig. 29 an equivalent 

identity to Fig. 20(a) is required. For the massless Yang-

Mills Lagrangian it may be obtained by generalizing the 

technique of Appendix B of (50). The vertices in question 

are denoted by d 3- 	(A) and e 1 	where 
abcd 	 abcd 

d 	(A) -  d 	(A)±g d1 	Ad + el bdA abc 	abc 	abcd 

under the transform (3.2). With the usual notation and 
F' 

v 	(A) transforming as 
lab 

(A) -*v 	(A) + gvi 	(A)Ac + Ûl 	Ac 
jab 	jab 	iabc 	iabc 

transform 	- . C 2  + J. Ai through B, B', B" and - B, 
INV 

-B 1 , -B" 

'I 	- 	
c 2  + J. A. - 	- .. 	

1 
C 2  + J. 

1 
A 

NV 	
. 

INV 2  
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- J (g) (g 	+ ii 	){(BI1 aBb_BaB 1tb) + (BtIaBb_ BaBI'b) 
iab 	jab 

+ (BtaBb_ BaBb)J 

+ C(g) (g abc  + eabc ) ((B B- BbBc)  + (BhtbBc_ BbBttc) 

+ (B bBc_ BbBtc)} 

- C(g 2 ) (g dabcd+ eabcd) f B,bBCB ,, d - BbBh, CB,d + B  jib  BCB,d 

	

+ J.(g 2 )(g \7iabc+ Ulabc){BBB 	
- BaB ,,DB ic  + B ,, aBbB ,C 

- B1aBsbBc} 

The second and third terms of (4.25) simply reflect the 

"group property" of Fig. 20(a) and may be dropped. Finally 

on transforming by 

c d 	b 	d 	b c  
-g m ef efbCd 

2 	
Al 	{B,bBcBtd - BbBI B' + B" B B' - B' B" B } 

we obtain 

£ - 

INV 	2 C 
2  + J.A. 

~ L 	- 1 C 2  + J.A. 	 (4.26) a 	 a 	iiINV 

9 2C (g d1 (A) 	g (A) nf - abcd 	ae ef efbCd)BB 	
BbB,,CB,d 

- 

—: 

(A) 	 "-1 "1 +g2J.(g iabc 
	+ Uiabc 

- gSj(A) mef efb C d - tiemefefhcd) 

bc d 	b C d 	bC d 	b C 
{B'BB" -BB"B' +B"BB' -B' B"B 

d 
 J. 
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From (4.26) we get the identity 

Aj 	 A 	Al Al 

u 	-t i  rn 	e 	= 0 	 (4.27) 
iabc 	e ef fabc 

and the required vertex identity, Fig. 33. The legs a and 

c are joined to form the closed loop and the other two legs. 

b and d are symmetrized to give the identity of Fig. 34(a). 

Using this identity the second pair of vertices in Fig. 29 

may be symmetrized also when they occur in a closed loop. 

The technique can be systematically extended to vertices 

of all orders. However, it is not really necessary as the 

required identities can be obtained from Fig. 20(a) by build-

ing up the vertices with the additions (4.9). For example 

instead of Fig. 33 the identities of Figs. 35(a) and (b) 

together with Fig. 20(a) could be used. Thus, all vertices 

involved with scalar loops can be symmetrized. In each case 

above, in syrnmetrizing the purely scalar vertices of Fig. 29, 

it was necessary to have an accompanying vertex in the loop. 

Hence we still need to examine the case of a loop with no 

other vertices. 

The simplest such case with the vertex of Fig. 21(u) 

can be ignored as fabc óbc E 0. For the 4-point vertex 

\ 	. 

the selections of the two legs to form the loop may carry zero, 

one or two momentum vectors. The net effect of the zero 

momentum ones are equivalent to those carrying one momentum 

vector as on connecting b to c, instead of a to c in 

Fig. 33, we obtain Fig. 34(b). The outgoing line a of Fig. 

34(b) must involve another vertex but this may be accommodated 



b 	 b 	 b 	 b 
\ 

N 

d 	 d 	 d 

k 	 b 
b 	 b 
\ 

\ 

C\ Q 	
+ 

Al 

d" 

FI-G3 3 
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- d- -k -- 
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+ d---(H 

() 	Notice the similarity to the identity Fig. 15(a). 
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+ d- 
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FIG 35 	The basic 3-point vertex must be included in first diagram on both sides of (b) 

in order that the preceding scalar vertex can be symmetrized using Fig. 20(a). 
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by going through an externally created propagator if necessary. 

For higher ordered vertices we can again attach bits of the 

form (4.9) until it is of the desired form. The only exception 

is if the lines a and d of Fig. 34(b.) connect to each other 

immediately but in that situation the loop formed by the ex-

ternal propagator can be treated as the original when it no 

longer has zero momentum dependence. However, with a suitable 

regularisation (53)  the loops, dependent on the momentum vector 

once, vanish on integrating. We are left only with those loops 

dependent on the momentum squared. 

Therefore, on symmetrizing the \rertices involved with 

scalar loops it is necessary to include an additional purely 

scalar term in the Lagrangian to cancel these momentum squared 

integrals. This is just the 	'(0) term of Boulware 6 , 

cf. (0.22), and wehave exactly reproduced his scalar terms 

in the equivalent massive Yang-Mills Lagrangian in the 

transverse "gauge". 
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CHAPTER 5 

EQUIVALENT FORMULATIONS OF THE MASSIVE 

YANG-MILLS LAGRANGIAN - II 

In Chapter 4 Bou1ware's' 6  equivalent formulation of the 

massive Yang-Mills Lagrangian in the transverse gauge was 

verified directly using Ward identities. One of the aims of 

this chapter is to show that our approach is exactly equi-

valent to that of Veltman et al. 5 ' 12 ' 13 ' 14) . Hence, the 

two approaches to obtaining equivalent formulations, viz. 

Boulware and Veltman et al., are equivalent and the latter 

does not give rise to a form any less divergent (63)_. 

The second topic discussed is the role of the self-energy 

terms. These were ignored in Chapter 4 for clarity but the 

necessary amendments are discussed here. 

a) 	The Veltman Ward identities 

Instead of expanding the amplitudes, with hard propagators, 

in terms of amplitudes with soft propagators, as in section a) 

of Chapter 4, the very opposite could be done, i.e. expand 

the amplitudes with soft propagators in terms of the hard 

propagators. The factorisation corresponding to (4.1) is 

(l_a 2 )kPkV 
gilV - k2 _2M2+ 

- M 2  + i 

I-tv 
ab- g -i __________ ab 6 	= k 2  - M2 

F 
 + ic 

	

khikV/M2 	6ab 	(5.1) + k 2  - a 2M 2  + ie 
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If (5.1) is substituted for all propagators we obtain, 

cf. (4.2), 

+ + + 	(5.2) 

where '"-'"" is now 	 áb 
k 2 -a 2M 2 +ic 

momentum contractions as sources 

On treating the 

  

2 

i 
n n  n 2 n! 

H/ 

(5.3) 

where -- 	fd 
pfd p' (_1)ab(P+P.)/M2 

p 2 -a 2M 2 +ie 

We now require the Ward identities for t  the right hand 

side of (5.3) to re-express the momentum contractions as a 

scalar particle and its interactions. These are easily 

obtained by considering the Ward identities for the soft 

amplitudes of section b), Chapter 4, for any a and taking 

the limit a -* . 	Obviously any diagram with scalar pro- 

pagators vanishes to leave Fig. 36, i.e. each scalar leg of 

a vertex immediately terminates at a source and there are no 

scalar propagators. The scalar vertices are the same as 

Fig. 29. The identities are the same as those of Ve1tman 14 . 

On cancelling the 	of the external contractions, 
M 



M 
M 	I 

'I 	- .4. 	I 
M 
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V 	/ 

M 
W\ +  

I 

-i.. etc 

M 
M 

M 
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M 

  

M 

 

M 
+-. 

M M 
->- 

FIG 36 	All scalar vertices are explicitly indicated. 
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with the factors of M with each scalar line, they can be 

interpreted as propagators for a scalar field of mass 

o 2M 2 . There is no additional factor of (-1) this time and 

all propagators in a scalar configuration are created ex-

ternally. As all sections making up a configuration are 

simple trees, with only one vertex, the vertices including 

the basic one of Fig. 1(b) may be symmetrized in the scalar 

lines immediately, for all ct, and the external propagators 

re-absorbed into the diagrams as in Chapter 4. The only 

duplication factors are due to the multiplicity of choice 

of branch for the outgoing scalar line of each tree. This 

gives a factor (v-l) for every vertex, (where v is the 

number of scalar legs in the vertex), which may be absorbed 

into the vertices 	. 	The simple closed scalar loops, 

also, have the correct combinatoric factor for a normal 

Lagrangian. Hence, there is no need for an additional 

scalar Lagrangian equivalent to (4.20) and no need for a 

term to cancel the contributions to the diagrams, when both 

legs of the purely scalar vertices carrying the momenta 

vectors are directly connected by a propagator, unlike 

section e) of the previous chapter. Thus, the diagrams 

with the soft vector boson propagators are identical, for 

all c, to the diagrams constructed with the hard propagator 

plus all scalar contributions constructed with the Lagrangian 

2M 2  
au 

- 	a4a 

- 	 ) + •! ( 	

2 + 	 3 	• }abq 

(5.4) 
- iM 	{1 a q:) + 2 ,g 	2 + 	 3 + • } ab 

a 2!'M 	3!'M 	4. m 11b 
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i.e. we have found a closed form for all a in this situation. 

b) 	Elimination of the Scalar Contributions to the Soft 

Diagrams 

Instead of (5.2) we could expand the set of diagrams 

with a scalar loop constructed by Fig. 1(b) already present 

i.e. 

= 	

+ 12-U 
S\H 

(5.5) 

   

2' 	2 
.- -. 

+ - 

The external sources can be converted into scalar vertices, 

as in section a), by the usual Ward identity technique. Here, 

however, we have additional terminations of the scalar lines 

on the loop introduced to the soft diagrams. To symmetrize 

these-vertices it is necessary to restrict a to zero and 

treat as in section e) of Chapter 5. If the pseudo-charged 

loops put into (5.5) by hand had an associated factor (2.) 

as indicated, the arrow could. be  dropped on both sides to 

give the normal scalar loops as we are in the transverse 

"gauge " . The external propagators are now re-absorbed as 



usual to give the contributions of the Lagrangian (5.4) but 

with an additional duplication factor for each scalar con-

figuration, viz, the number of ways in which a loop or set 

of scalar lines which form a closed loop can be chosen to 

have been the original scalar loop introduced to the left 

hand side of (5.5). Furthermore, the scalar vertices con-

structed on the loop have no outgoing line with its multi-

plicity of sources and if the rules of (5.4) are to be re-

tamed, a duplication factor of 	1  must be supplied for 

each vertex in the loop chosen to be the original one. This 

must be done for every selection of the loop. 

In syinmetrizing the purely scalar vertices there is no 

need to introduce additional terms to the Lagrangian to re-

move the momentum squared terms, as before, since there must 

be at least two vertices in the loop added to the soft 

diagrams. However, the purely scalar vertices are still 

anomalous in that when they occur in a scalar configuration 

in a loop with no other vertices, the loop cannot have been 

the original loop of the left hand side of (5.5) and the 

duplication factor is different from normal. 

The equivalent construction can be done for the soft 

diagrams with two scalar loops, i.e. on dropping the Un-

necessary arrow for c = 0 

Again we get the normal set of diagrams with scalar con- 

figurations in the 'hard formulation but the duplication factor 
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becomes the number of ways of choosing the two original loops 

in that particular configuration. The construction can be 

done for any number of loops. 

The soft rules suggested by Hsu and Sudarshan 7  as 

being equivalent to the massive Yang-Mills Lagrangian can now 

be tested directly to all orders. Indeed the investigation can 

be widened to considering the soft rules but with any multi-

plicative factor associated with the scalar loops and not 

necessarily the same for all loops. We consider the set of 

diagrams 

where a 	y etc. are arbitrary. We require the sum of the 

duplication factors for each scalar configuration to be zero 

so that the total set of diagrams is equivalent to the set 

of diagrams with hard vector-boson propagators and no scalar 

contributions, i.e. the explicitly unitary set. This is 

obviously impossible as the duplication factor for each con- 

iguration depends on the shape of that configuration and the 

number of different configurations far outnumbers the 

arbitrary constants introduced above. Hence, there is no way 

that the purely soft rules can be used to emulate the normal 

hard rules whether with the factor of (- .) of Hsu and 

Sudarshan for each loop or any arbitrary factor as above. 

To regain the diagrams with hard Feynman rules it is 



I •- 
+i( 	•;' 	

l+Ycf 'C- 	 I I 
-I, 

-1.10- 

necessary to include, in the set of soft diagrams, all con-

figurations of the scalar lines each with an associated 

factor, i.e. the set 

(5.7) 

As there is an arbitrary factor associated with every possible 

scalar configuration it is now possible to choose a 	, y 

etc. such that in the equivalent hard formalism the duplica-

tion factor for each scalar configuration is zero. This is 

the programme executed by Veltman (14)  for the two loop app roxi-

mationto the self-energy terms and by Mohapatra, Sakakibara 

and Sucher 12  for the two loop approximation to the four-

point interaction. On doing the summation (5.7) to-all orders 

one undoubtedly obtains the values for a, .8, y  etc. which 

correspond to the duplication factors obtained by the direct 

construction of Chapter 4. For example, all the factors for 

configurations of isolated loops only, a, , etc. are (-l) 

where 9. is the number of loops in the configuration (if 

the arrows are dropped); y =-1 on reducing the vertices 

to Fig. 29 as the first set in (5.7) contributes 4 

(where a factor 2 has been removed from each vertex) 

and the second set -3 as the original loop can be chosen 

in three ways and a 	l. Similarly 6 = -1 as the first 

set in (5.7) contributes 4 ( 	r - - -% 	1 the second 
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-41 	)---- 	\ 	 and 

The anomalous duplication factors 

one purely scalar vertex leads to 

ducing further terms to the Lagra 

as in Chapter 4. 

the third +1 	- - 
\ 	/ 

for the loops with only 

the necessity of intro-

rigian associated with 

Therefore, we see the approach of Veltman et al. 24) 

is equivalent to that of Boulware 6 ) in that they both give 

rise to the same scalar ghost Lagrangian. We have also 

demonstrated that the soft rules of Hsu and Sudarshan 17  

are insufficient for any order of loops other than the first. 

One fact which should be noted is the similarity of the 

scalar vertices in generating the equivalent soft formulation 

having started from the hard formulation or vice-versa. We 

have thus shown directly the equivalence of the various 

approaches to generating equivalent formulations of the 

massive Yang-Mills Lagrangian and the implication would seem 

to be that the theory is non-renormalizable. 

c) The Self-Energy Terms 

In deriving the Ward identities of Chapters 4 and 5 

use was made of the identity (4.13). The derivation of it. 

involves terms proportional to (k 2  - M 2 ) which are taken 

to vanish as the physical particle is on-mass shell. This 

manifestly cannot always be true when (4.13) is applied to 

self-energy terms with an accompanying pole. Instead of 
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formulating the equivalence in terms of amplitudes we should 

have considered the S-matrix as pointed out by Biabynicki-

Bfru1a 64 ' 65 ). Both Veltman (14)  and Mohapatra, Sakakibara 

and Sucher( 12 ) fail to take these self-energy-terms into 

account. Boulware 6  glosses over the problem for the non-

abelian theory but considers them fully for the abelian 

Lagrangian. Unfortunately, his treatment leads to the con-

clusion that it is necessary to associate a factor 

expjj. . (a) 2 D(0)j 	with each "charged" field which we 

found unnecessary in Chapter 3. We replace any "physical" 

lines in the hard diagrams by an external source which is 

later made "physical" as in section b) of Chapter 3. The 

sources are ja WV (no summation implied over a) for each 
P a 

vector field which are made physical only after all mani-

pulations are completed. 

If the previous constructions of Chapters 4 and 5 are 

now repeated with all the physical lines replaced by the 

above source we have, instead of (4.13) 

I 	 - 

C1 
J tJ  

, 
, 

, 
/ 

er' 	 -T a  

(5.8) 

= 	. 	 + 
	 V 	

+ 
	-k 

3 a 	 a p 

i.e. a scalar line may terminate at one of these sources 
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through (4.9) to form the vertices Fig. 21(iv) and (v). 

From these a hierarchy of vertices is generated as in Fig. 

29, since scalar lines may terminate at previously created 

source-vertices to form the vertices of Fig. 37. The 

additional vertices as they only contain ingoing scalar lines 

are trivially symmetrized and straight-forward to absorb 

into the diagrams as usual. 

In the context of Chapter 4 it remains for the duplica-

tion factor for the configurations, including the vertices 

of Fig. 37, to be obtained. In the configurations before 

absorption of the external propagators there are now trees 

with an external line source. These trees cannot have an 

associated closed loop and as all scalar lines are ingoing 

their multiplicity is one. The total duplication factor 

becomes (_1)N,  where N now includes the terms V3 

2 
when V 

Si 
 is the number of scalar legs of the i-th source 

vertex, as can be proved by induction following section c) 

of Chapter 4. 

The source has to be treated like a vertex with an 

attached closed wavy loop with an associated factor of (+1) 

in Appendix D and it is found again that if a line or p -

loop is added to a configuration, the only change to the 

duplication factor is to multiply by (-1). For configura-

tions with one external source a basic shape is 

/ 

(5.9) 

UnA 

which has a duplication factor (-1) as required since any 

number but at least one of the propagators in the loop may have 

been generated externally. The other basic configuration 

with one source can be deduced from (5.9). For example 



b , 	\ 

k 

b 
Xl-LQ ik 	5 	; 1—Ml-  iM 	abc - - 

-> 

k 

b eb 

,C .3_f  iM abc& 
 C 

iM dea iM abc 

\ \' 

; 
v,d v,d 

FIG 37 	The factors 	(i) iM from the momentum contraction sources are shown explicitly in 

connection with the sources, cf. Fig. 29. 
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1 
I f  

D. F. 	 r - - --=( 	= (- 1) D.F.  

= D. F.  
/ 

- - 

As well as the duplication factor for the lowest order con-

figurations with one source we require to show the lowest 

order configurations with any number of sources is consistent 

with (_1)N• 
 This can be deduced by starting from the con-

figuration made up solely of the appropriate number of 

sections like (5.9) and connecting up the separate parts. 

For two sources 

r 	 ---I 
/ 

D. F. 	- - - - - 

	

= (_ l) 2D.F.[ 

 

= (-1) D.F.lX'  
I 	' 	 / 

	

.L 	•-_-' 

The duplication factors are absorbed into the scalar 

- 

/ 

vertices as in section d) of Chapter 4 with a factor (i) for 

every scalar leg of the source-vertices of Fig. 37. Thus 

for the soft diagrams the Lagrangian (4.22) is modified by 

the addition of a source term 
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{' + 1 (!9 q) + 'j'! 
	

ab 
+...} 	j 

M pa 	2! M = 	M = 	 b 

(5.10) 

+ W (I + (+ a 	+ 1 (+lg ) 2 + 	} ab .p 
pa 	M = 	2! M 

which can be re-expressed as 

- I a 	E(-)J + W {exp(+29. 	ab ii 
M P a 	 pa 	M 	b 	 (5.11) 

(5.11) is exactly the source terms found by Bou1ware 6  

and Salam and Strathdee 7  cf. (0.24). 

In the corresponding construction from soft to hard 

diagrams of section a) of this chapter the additional source 

terms for the Lagrangian (5.4) are 

aP{I 4, (1 ) 	
2 + • • } ab .P 

11 a 

(5.12) 

+ w {i + ( g ) + 	(g ) 2 + • 	} ab .1i 
ap 	M= 	2' M 

d) 	Invariance of the S-matrix 

The consequence of the sources (5.11) is that the 

S-matrix and not the amplitudes are identical, for the 

soft and hard formulations, on making the external sources 

physical. When the sources of section c) are included, the 

identity proved is represented graphically by Fig. 38. The 

external lines are made physical in the usual manner. Of 

the contributions which may be detached from the rest of the 



 

OR 

 

+ I. 

41  
:: 

U. 
I. + + 

   

jS_  

11.0  

The + indicates the presence of terms constructed from the scalar 

Lagrangian (4.19). The source-vertices are symmetrized. 
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diagram by cutting a dressed propagator, Fig. 39, only 

those shown in Fig. 40 do not vanish. In particular, when 

there are only two external sources, the identity is as in 

Fig. 41 if all unnecessary terms are omitted. In order that 

the external lines are set on-mass shell for the physical rather 

than the bare particle all mass-like factors in the dressed 

propagators are quasi-renormalised by absorption into the 

bare vector boson propagator. With the definitions 

111 
z  ephys 	limit 	 (k2-M2phys)e j 

k 2 --M 2 phys. 

z eV(phys ) 	limit 	I ° 	<III)IT° (k2_M2phys)eP] 

k 2 -*M 2 phys. 	 (5.13) 

F e ' (phys) 	limit 	+ 	 +-]e, 

k 2 -*M 2 phys. 

in which the source function J has been dropped and 

eV(phys ) obeys the condition (3.29), the identity Fig 41 is 

=F2 	F = Z 2  / Z 2  
H 	S 

(5.14) 

On applying (5.14) to the terms of Fig. 40 in Fig. 38 we 

obtain 



Q ( +) 	

± 

+ 	
: : 	

± > 

+ etc. 

FIG 39 

-+ etc. 

F IC 40 	Only proper diagrams are included in the "blobs" shown. 



+ 

± Wl 
/ 

± etc. 

FIG 41 
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i.e. 

Therefore, it is the Smatrices which are equal. The equi-

valent can be done in going from the soft to hard formalisms 

of section a) with the corresponding function to F, 
1 

F' = IF = Z/Z 

However, in considering the renormalizability of the 

massive Yang-Mills Lagrangian we are more interested in the 

proper amplitudes 

1 
F 

II 
I 

(5.16) 

rather than the S-matrix. The presence of the factors 1  IF 

in (5.16) make the evaluation of the degree of divergence 

of the hard vertex functions much less clear. On treating 
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the right hand side of (5.16) as a perturbation approximation, 

by expanding 1/F as a polynomial in g, it cannot be expected 

that all non-renormalisable divergences mutually cancel. How-

ever, if we consider the contributions of the vertices of 

Fig. 29 and Fig. 37 only,to the "blob" and the function F 

we see they are similar. To be more precise on using the 

dimensional regularisation (53 ) each produces a polynomial 

in the pole factor F(2 - ). 	The exact solution requires 

the diagrams to all orders to be taken into consideration, 

in which case, these polynomials become infinite and both 

the expressions are essential singularities. How the com-

plete expression behaves cannot be determined. 

The root cause of the presence of the vertices of Fig. 37 

in all the formal derivations of the equivalent formalism, 

with soft vector-boson propagators, is that at some stage 

there is a rotation of the physical subspace of the Pock 

space of the fields 7 . The rotation is a finite gauge trans-

form for the massless theory. In Boulware 6  the transform 

is between the vector-boson field and its transverse equi-

valent; in Salam and Strathdee 7  the transform is used to 

generalize the Stuckelberg split,' in Veltman et al. (12-14) 

it is used to set up the Ward identities. Because the trans-

form is of infinite order in g (5.16) must be considered to 

all orders in above. 
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n?T .n nmnn p 

RENORNALISABILITY OF THE MASSIVE YANG—MILLS LAGRANGIAN 

It would be advantageous to find equivalent formalisms 

for the massive Yang-Mills Lagrangian for which the factor F 

was more simply behaved than in Chapter 5. We could realise 

this by having a derivation which is not dependent on the 

finite gauge transform. The derivation of Hsu and Sudarshan 7  

in which the scalar ghosts are introduced by a Lagrange multi-

plier is an example. One implication of (5.16) is that the 

investigation of Mohapatra, Sakakibara and Sucher (12) and 

Chapter 5, section b), as to the validity of the formalism of 

Hsu and Sudarshan, is not wholly valid. We discuss it in 

section a). In sections b) and c) we revert to the for-

malism of Bou1ware 6  and examine a parametrization of the 

transform which considerably simplifies F and the scalar 

Feynman rules. 

a) 	The Lagrange Multiplier Scheme 

Hsu and Sudarshan 7  considered the Lagrangian 

— 	 + ½M2W.W — cM 	+ 	 (6.1) 

but with tx 2M2  = 	. 	They showed that the equations of motion 

for the Lagrange multiplier, Xal were the normal ones for a 

scalar particle with a renormalizable interaction. We shall 

examine (6.1) in the Hamiltonian formalism. The fields are 

W and their canonical variables 

k 	= _kw 	+wC_g(wxwk) 	 (6.2) 1TWa 	- 	oa 	0 a 	
0 

 



eq uo (19) UT '@ -ETdT4Tnw e5uxb'i eqq. 30 eDuese.td O44 30 

3e33e efl. UISTTt?UEtO3 I.XbeUT TU0TUn3 aqq 30 qxaquoo efl. UI 

(69) 
	 =X( Z W + e) 

T U0TnFDe .t13S eqq Ueq 	'w/ g = 	eo0qo eq 
I 

qM uqspns pup  nsri  Aq peuqo uoToW 30 SU0Tflbe aqq o 

o;uep ei (9) - (9) 	MO4S o4 p11Zo34q51s sç i 

MLe N e 	 e5 - cx(,MxcM)z 

(89) 
X— M— wo 

- Mx(Me) 5  + II X NU - + 7 eWO + —M Z W -  = 

(L9) 	 wr - 	= X 

	

—M—W 7 	M— N'3 	X-_ 'o 
(g9) 	 xll -- + Nue T + II 	- = 

(S •9) 	 x 	
- X 

e 	- 	= 

UOT0U1 30 suoTnbe t3T' 

—X-.- .M—W 	- - + ( (MxcM) (ixM) - 	xM) (e) 5  - 

(v9) 
	 - x.xi - T - 	- 

+ (Me - 	
+ Xire.Mir 	- 

ST UTUOITUIH eqj 

(E9) 	 0MW73- 	E 	 U 

saqi1A I3TU0UO  aTaq4 PUP p X pU 
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evaluated by integrating over the scalar field to get  ( 17 )  

- i G .G IV + ½ M2W W11 - 2 
a2M2  0 W) 

4pv 
 

Hsu and Sudarshan defined the physical state. by 

(x) IPhys.> = 	0 

(6.10) 

(6.11) 

and noted that the equation of motion (6.9) could have been 

obtained from 

	

f . 	
—

() 	= - ½[3xx - M 2 X 2  + g (WxX)] 	 6.12) 

with the subsidiary condition 

32-  

11 
W 1 + 	 = 	0 	. 	 . 	 (6.13) — 

They then removed, from the S-matrix generated by (6.10), 

any contributions of the scalar field by adding the deter-

minant D to the functional integral where 

D½ = 	 (,ac - (2+M2) 1 Wb~~, )] 2 

	

M 	- gfabc 11 
(6.14) 

fd1 <aJ exp{ifdL x ( x )} 

i.e. DM_ 2  is the total contribution of the scalar fields to 

the original Lagrangian (6.1) . The Feyriman rules are, thus, 

those of Fig. 1 with a = 1 and a factor (- ½) associated 

with each scalar loop. 

The above manipula tion would appear not to be wholly 

valid as no account was taken of how the determinant would 

affect the equations of motion of the vector-boson. However, 
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if a suitable source term were included in the Lagrangian 

(6.1) to generate "Ward identities" between diagrams generated 

by (6.10) and (6.4), the programme of section b), Chapter 5, 

could be executed to remove the contributions of x 
a

to the 

diagrams for (6.4). The Feynman rules for (6.10) are as in 

Fig. 1(a), except for the scalar propagator and vertex. 

Quantizing (6.4) canonically as in Appendix E, without worrying 

about the indefinite metric or formulating in an explicitly 

Lorentz invariant manner 13 ' 66 , we obtain the Feynman rules 

of Fig. 42. The degree of divergence of the resultant rules 

would be no worse than those of (6.4) and so Hsu and 

Sudarshan's conclusion, that the massive Lagrangian is renor-

malizable, would appear to be qualitatively correct. 

The free Hamiltonian is obtained by setting g = 0 in 

(6.4) : 

FREE E ½H.II - 	 + ½jWk. ( wk_ wJ) + 

(6.14) 
k k .11 	— 	—  —x 	 am W . x 

— x 

which may be re-written as 

= p11 k 11k + ½(ak). JJ + ½Ljk k(wj — 
FREE -  

r E3 m ( W n - 	sn)] 	 (6.15) 
Lmn 

k a 	k a k +½M 2 (w 	dX).(W —) 

— ½ 	— 	k!) . 
	- 	

all) 

— ½a 2 a kx.X — 	-. 	
k(11kfl) 



w w b, k 

	

6jk 	qqk(M2_/a2)/M2 

+ (q 2  M 2 +j ) (q _/a2  +1c 	

6ab 

iq 6 k, 	 2  j jk 

6 0 	ab 	 bk 	aJ -q0  +q q ab 

q2-M'+ic
i_lw q 	

qL_MZ+16 	0 

b,k 	ci,j 
p 

W q W 

b,k 	a u  

T-T w 	w 

b 	ci 
— — -0 

TT%  q rr%  
22 q0 2  (M 2 a 2 -) 

(q 2 -M 2 +ic) (q 2_/a 2 +i c  
6 ab 

b 	ci 
0-  
TT%  q 

b,k 	a 
p 

W q S 

b,k 	ci 
-ø 

W 	q rT%, 

iq 06 
 ab 

q 2 _/a 2 +ic 

ik.
/ 	ab q oM6 

q 2 _/a 2 +i 

b 	a 
0- - -<--- — -. 

q 

b,k 
, 	 p 

TTW  q VT%  

1/a 26ab 

q 2 ./a 2 +ic 

ictMq k 6 
 ab 
 

q-M 4  +ie 

igka/M(M2_/ (y,2) (_1q0 ) 

(q2-M2+ic) (q2/2+jc) 

g f 	[6q(q_ ) P + 	 .+ 6qp - q 9--1 abc 

9 2 	f ecci[6P6k _ 6 pt 6kg] 

+ 9 2 eac ebd f 	[6Pk6a - 6p 2  gk] 

+ 9 2 f 	f 	[6pk6q _ 6pa 6 k] 
ead ebc 

i_lw ci 	p 

p 	 - 	f 	6p abc 

kwC 	b 

FIG 42 
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If the transformation 

Wk 
~

W, = 

X 	-* 	x'  

k 	k 	 k 
—w = 

(6.16) 
!(fl 	a kk 

—x 	--x 	a —x 

can be made without spoiling the Hamiltonian formalism we would 

obtain 

= 	11 ,k 11,k 
+ ½ 

l(kflik) • (ll') + ½( 	kw .  J) ( 	Ifltfl) 

	

FREE 2 	—w 9.kj 	9.,mn 

+ ½M w,k.w,k 	 (6.17) 

½ TI' IT 	½kxkxI - ½/a 2  
_x —x 

on dropping the divergence term. What is required is that 

the transform (6.16) is canonical, i.e. 

fd 3 rll (x)d 	Cx) 
- 	 (x)d(x)1 	

= 	dW(t) 	 (6.18) 

	

—La 	a 	a 

where 4a(x) are the original fields with canonical variables 

rra(x) and 	a(x)  the transformed fields with corresponding 

canonical variables lla(x)•  For (6.16) dW 	0 and the 

transformation is canonical. 

The firstpart of (6.17) is the free Hamiltonian for 

spin-one fields of mass M 67 ; the second -Dart is the free 

(67) Hamiltonian for spin-zero fields of mass 	 .. Hence 

we see that just subtracting the contributions of the 

fields as in Hsu and Sudarshan 	does not leave a pure 
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spin one Lagrangian, i.e. the unitary formalism for the massive 

Yang-Mills Lagrangian, which can be confirmed by considering 

the W-W propagator in Fig. 42. To regain the pure spin-one 

Lagrangian the transformation (6.16) must be made first, but 

that introduces scalar vertices with multiple derivatives and 

the rules are non-renormalizable again. 

We may compare the massive formalism, above, to the 

massless with the Lagrangian 

-+ cW' .X + 	 (6.19) 

and canonical variables to the fields W and a 	a 

ll a 	= - aki'q + 	wk - g (Wx 	a oa 	0 	
0 

 

11oa 	= 	Xa 

(6.20) 

The Hamiltonian is 

½ n .rr + 	+ ½ 	 - kwi) 

- ½ /2E.1 +k wk.n0 	 (6.21) 

- g (Wk) (Wi xwk) + 94 (WxW1) (WJxWk) + g ri. (W0xWk) 

If we apply the transform 

= 	 ii + kiqO 

(6.22) 

= wo  ; 	Ho RI O 
 = o 	kk /2 

to (6.21) the free part may be rewritten as 
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 11 ,Lk 11,Lk - ½w,I...a2 wtLk + ½- - l)k4 Lk .  Jw ILJ 

+ ½]' Tk 111Tk - ½tT 	2w,Tk 	 (6.23) -.w •-w 

+ ½W0.0 - ½ fl'll' 	/a2 

where the fields w,k  have been split into transverse (T) 

and longitudinal (L) parts. The transform (6.22) is canonical 

as 

dW(t) 	df d3 x (W0 . Wk) 	. 	 (6.24) 

If we choose 	= 1 the Hamiltonian (6.23) can be 

interpreted to consist of three different sets of fields. The 

first are spin-zero massless fields (67);  the second are mass- 

(67) 

	

less spin-one fields in the radiation gauge 	; the third 

are massless spin-one fields with a negative metric. The 

influence of the spin-zero fields from the amplitudes may be 

removed as before. In this case we are left with a renor-

malizable theory as the transform (6.22) does not generate 

any non-renorrnalizable vertices. In this construction of 

the unitary rules for the massless Yang-Mills Lagrangian 

gauge invariance has not been used, only the dynamics of the 

fields have been exploited and we obtain the Feynman rules for 

one gauge only. 
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b) 	A Parametrization of the SU(2) Lagrangian 

The only option left in investigating whether the massive 

Yang-Mills Lagrangian is renormalizable is to choose a more 

convenient parametrization of the gauge transform than 

Boulware 6 . We follow Boulwareas far as establishing that 

the explicitly unitary formalism can be rewritten in terms of 

the transverse fields. 

For the Lagrangian with only the Yang-Mills fields and a 

source-function, the generating functional is 

G[J 	Z1fdW expifd4x[_ 'G .GPV + ½M 2W .w + w 
—U — 	-ii--- 

(6.25) 

For convenience define the field matrices 

E 	T  

U1  

= T  

WU.  a 

- Ow" (X) + ig[tyP(x),wv(x)] (6.26) 

G •V 

a 

T  
jp 

where T a are the generators of the n-dimensional representa-

tion of SU(2) chosen such that 

tr (Ta Tb) 	=. 	6ab • 	 (6.27) 

The Lagrangian may then be rewritten 

j E-X 	¼trf v.t v  + A ½trW'tAf + A 	trW. (6.28) 

Under the finite gauge transformation 
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= 	c(x) top (x)ci'(x) + 
(6.29) 

the Lagrangian (6.28) transforms: 

	

E -X 	¼tr + X 	½M2trIC&J + 	Cw' + 11 

+ A' trQW" Q 1  + 	 ( 6.30) 

-1 
where 	x) 	= 	c 	'ci /i-g 

(6.31) 

and Q(x) is a local element of the n-dimensional representa-

tion of SU(2). 

Any vector field W(x) can be written as the gauge 

transform of a transverse field 6 , -'W(x). 	However, in the 

generating functional (6.25) any transformation of the fields 

must be accompanied by a Jacobian factor. Hence, (6.25) is 

equivalent to 	- 

GJ 	= Z 1 fd 	(det M)  exP{ifd4x[X-134,tr   Q'Pv T 
11V 

+Xl½M2trtLJTPW + A 1M 2 tr2YtLTT + ½A lM 2 tr9.. 

+ A_1tr[WTPQ_l + 	
uj ] 
	

(6.32) 

where det M is the appropriate Jacobian factor 

det M = C det 	' 'ó(x-y) + igW()D(x_y)] (6.33) 

f
dp 	 (x-x')

with D(x-x 
 

(270'. - 	
and the parametriza- 

tion in (6.32) is S = ÔQ ci 1/-ig 	W 	are the field 
ab 

matrices in the adjoint representation of the group i.e. T c= tb 
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where tabc  are the structure constants of the group. The 

net effect of (6.33) is just to introduce scalar loops to 

the amplitudes as in section a). 

An explicit parametrization of 	(x) must now be chosen. 

Boulware 6  made the choice 

Q (x) 	= 	exp(_igT(x) . ) 	 (6.34) 

for the adjoint representation. Then 

3 110(x)= 	igq Eba  Tb 	 (6.35) 

where 	Eba(X) 	E :cc(x) - l)/-ig4(x) TA ba  

and the necessary Jacobian factor 

= 6(x-x') E(x) 	. 	(6.36) 

We restrict ourselves, now, to the fundamental representa-

tion of SU(2) with the parametrisation' 7  

(x) 	= 	(1 + o(x))I+i r.]T 	. 	 (6.37) 

Q(x) is unitary with determinant (+1) if 

2cr(x) + c 2 (x) + 	11.11 	= 	0 	 (6.38) 

The corresponding change in the volume element including the 

Jacobian is 

f 	- 	fd:d:s(2cy + a 2  + 11.11) 	 (6.39) 

as expected (7)
Further, it should be noted that 

k il t 
p 
	= 	1 	i 	

(6.40) 

Hence the generating functional (6.32) can be rewritten 
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GEn = z_1Jd [WTI  dda(det  M)6(4Mga + g 2 a 2  + g 2 11.rI) 

expli fd X j:_GT  .GTPV+ ½M2 W .W' + 	+ ½II.3 II 
-liv - 	-ii -  11- 

+ g ao nwTii - gii.nxwTl' + w'.j + 	+) aw TP 4M 	 (6.41) 

- 	(1 +9_ )ITWTPJ - 
	

(Tfl) . (flxJ 
M 	M 	 —11 	 - —1-' 

+ 2 	a ll.J - 	(l + .j 	 rrI c)fl.J 	+ 	.IIxJ J} 

where the a(x) and rra(x)  fields have been rescaled by yr. 

The source terms in (6.41) are of no real account as they 

only ensure the S-matrix is identical to the unitary formalism. 

Hence the Feynman rules on treating the formalism as an equi-

valent Lagrangian are as in Figs. 1(a) and (c) with a = O. 

plus the additional vertices of Fig. 43 if the 6-function is 

ignored. To interpret the 6-function we first reformulate 

in the generating functional as 

6(4MgG-1-g2a2+g211.11) 	fdCJexp{_ifdxC(x)(4Mga+g22+g2llll)} 

fd[Ctdetl(4Mga+g2a2+g21T.11)exp{_ifdxcI(x)} 	(6.42) 

on substituting 

C(x) 	- 	C' (x) 	E C(x)(4Mga + g 2 o 2  + g 2 lT.fl). 

The integral over C' can be incorporated in the normalising 

factor and the 6-function is replaced by 

det 1 (4MgG + g 2 a 2  + g211.IT). 



b 	 ci 	 - ab 

ab 
• 	 •0 

k 

-ig k t5aab  

ig c(q _k)a 

b* 	k 
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The a field is represented by 

and the 7 fields by - -. - - - - 
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c) 	A Parametrization of the SU(n) Lagrangian 

The parametrization of section b) is specifically for 

SU(2). However, in general any SU(n) Lagrangian can be re-

formulated similarly. To the SU(n) Lagrangian we add a 

free field, designated 	and redefined 

1jJ1(x) = 	TaW + cLIW 	etc. 	 (6.43) 

i.e. the Lagrangian (6.28) is rewritten for the group U(n) 

rather than SU(n) with generators T  of the SU(n) algebra 

plus ctl. 	The a is chosen such that condition (6.27) 

still holds. On transforming the generating functional with 

the appropriate U(n) transformation (6.29) we obtain the 

form equivalent to (6.32). 

The choice of parametrization of the group elements is 

made considerably easier since there are now the same number 

of group parameters as matrix elements of the fundamental re-

presentation. If we again restrict ourselves to the funda-

mental representation we may parametrize by the n 2  functions 

ab W() 	ab ()  - 6 ab 
(6.44) 

The Jacobian factor is detll + 	and the integrations are 

over the n 2  dimensional surface, r, in the function space 

mapped out by the requirement that Q is unitary. The generat-

ing functional is now 

GJJ 	Zhfd[WT]dJ (det M)detII+WIexp{ifdx[_X_1¼trqh1,T 

+ A½M 2 tr WTT (JT + x½-- trI+ j'] ' aI+'y 	 (6.45) 

A_ 2 t 	-1 	
i+ WTP.  +X 1tr{ Li+: tUT,  Ei+fl -1 

+i+i+/ig} j} 
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We now utilize a similar trick to section b) by introducing 

the field V such that 

LI + 'YJ E 	I + 'Y 	 (6.46) 

when (6.45) becomes 

GJJ 	
Z_lJrd[wTIdDI]d[VII (det M) (det

I I+y  I -n)6([I+y] 

.exp{iJdx_X_ 1  ¼tr Tpv,T +A_ l ½M 2tr WT hJ  w- 
 11N)

+ A1½ m2 tr 	V D T- 
 X1M2 tr 

V 	
(6.47) 

p 	ig 	 ii 

+ A_lt{EI+p]t.JThJ[I+V1 + [I +T] a I V/jg}]} 

which is equivalent to 

GEJ 	Z_ 1  f d [WT] d Lf d [71] (det M)(detfI+W!). 

.(detl+V+I)expjJdkxC} .(6.48) 

In (6,48) the blinear in the "scalar" fields is of the cor-

rect form for a Lagrangian as 

ab p ab 

Although the formalism (6.48) contains n 2  tranvsverse vector-

boson fields the SU(n) Lagrangian can be abstracted from it 

as the additional field remains free. 
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d) 	Discussion 

The two alternative parametrizations of sections b) and 

c) must be interpreted with care. Since there are no sources 

for the ghosts fields present in the formulations we cannot be 

certain that they can be interpreted as perturbation expansions. 

If the fields lTa(X) and 0(x) 	of section b) are con- 

sidered as polynomials of the scalar fields of Boulware 6 , 

i.e. the scalar fields of Chapters 4 and 5, the lowest order 

term of a(x) is 0(2). It thus seems improbable that the 

formalism of section b) can be expanded as a perturbation 

series and the Feynman rules of Fig. 43 are not justifiable. 

To investigate the formalism of section c) we start from 

the formalism of Boulware. It should be noted that the latter 

formalism is open to the same query over interpretation but it 

has been completely verified in Chapters 4 and 5. (6.45) is 

then obthined by making the transformation 

a 	1 	a - 	- tr{T log(i-i-'Y)} ig (6.49) 

which is easily justified by diagrammatical means as in (28). 

Similar methods can be used to support (6.47) and to find the 

correct interpretation of the field 'Y . First we note that 

any term of the expansion of 

tr)(I--W)} 	 (6.50) 

e.g. 	 (_1)fl trl(@IIT)D 
11 
	... 'IJ )} 

(_1)n tr{(Wq' ... 'Y)'P} 	 (6.51) 

by the rotation property of the trace. Thus in the vertices 



-133- 

created by (6.50) there are two legs, labelled 1 and 2, either 

of which may be considered to carry the inverse propagator 

term (2) 

(6.52) 

The basic reason for the property (6.51) is the symmetry of 

the purely scalar contribution to (4.19). 

If the higher order vertices including W 	are denoted 
11 

by 

(6.53) 

the scalar vertices obey the identity 

+ + MENUS 

(6.54) 

In the combinatorics of the usual transformation of a field 

,, with propagator term 	 two vertex functions of the 

form 	½vF() are obtained to give the cancellation (6.54) (28) 

In the present case the two terms from the symmetry of the 

vertices in legs 1 and 2 are required. 

Hence, in a general scalar configuration only the lowest 
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order scalar-vector vertices remain and the legs of the higher 

order, purely scalar vertices are connected such that 1 and 2 

do not attach to the scalar-vector boson vertex. If we start 

from one of these purely scalar vertices, a path can be traced 

out by leaving it on leg 1. At the vertex this leads us to 

we may again leave on leg 14 unless that was the leg at which 

we arrived. In the latter case we leave from leg 2. As the 

path is restricted to the purely scalar vertices, it must 

eventually form a closed loop. The closed loops can be con- 

sidered to be equivalent to a determinant term in the Lagrangian, 

as in (28), but here the conthinatoric factors are unusual 

since two possible ways of constructing the configuration are 

deleted by (6.54) and two corresponding ways of connecting 

each vertex to the loop included. It is not necessary to 

check if these factors account for the determinants in (6.48) 

as the exact form is superfluous. 

The way to interpret - the field V is obviously to keep 

only the lowest order scalar-vector vertex, i.e. to replace 

V by 'I' and calculate the combinatoric factors as for a 

normal scalar Lagrangian. Hence, the formalism of section c) 

demonstrates how to group the vertices of the formalism of 

Boulware, (4.22), such that all higher order vertices vanish 

except for the determinant contributions. The resultant rules 

are those of Fig. 1 with ci. = 0 and a factor (-½) associated 

with each scalar loop plus the determinant terms. 

If the amplitudes are calculated using the dimensional 

regularisation scheme (53), all contributions from the deter-

minants and loops of the previous paragraph vanish and the 

Feynman rules which are left are renormalisable according to 
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power counting. With the rules of Fig. 1 the ghost for the 

field wij and so W 11  completely decouple and the free field 

WIJ can be dropped to leave the SU(n) Lagrangian. 

Finally we reflect on the interpretation of this regulari-

sation dependent formalism. If we assume that the problems 

raised by the identity (5.16) reflect the inadequacy of the 

perturbation formalism and that in an exact solution all 

non-renorrnalizable terms converge in the limit as. n - 4, we 

could calculate the renormalizable contributions, with any 

regularization scheme, and add by hand those finite terms 

necessary to render the S-matrix unitary. The additional 

finite terms being assumed to be the limit of the non-

renormalizable terms. As the complete theory is unitary 

regardless of the regularisation procedure the S-matrix ob-

tained by the formalism of the previous paragraph must be 

unitary and the limit of the non-renormalizable contributions 

taken to be zero. If the dimensional regularization scheme 

is viewed as only being a convenient mathematical trick and 

the massive Yang-Mills theory is still taken to be inherently 

unrenormalizable, we could take the "renormalizable" for-

malism to be an alternative, unitary, spin-one Lagrangian 
0 

whose S-matrix differs from the normal Lagrangians by di-

vergent terms which vanish under the dimensional regularization. 

Alternatively a pragmatic attitude could be adopted in that 

the formalism be considered a method of calculating renor-

malizable amplitudes for the massive Yang-Mills Lagrangian 

and that the use of the dimensional regularisation scheme 

contains no inherent difficulties. 

We have only considered here Lagrangians with a mass term 
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of the form ½M2 w.w but the procedure could be generalised 

to addition of a mass term ½ M2 Wa Mab wbii as long as it could 

be expressed as 

½XM2trWh7fltAX 	 (6.55) 

in (6.28). It is still necessary to demonstrate that the 

renormalization counter-terms can be absorbed in scaling 

factors. A similar argument to that used by't. Hooft and 

Veltman (50) for gauge theories can be used. For the S-

matrix obtained by the "renormalizable" rules to be unitary 

it is required that amplitudes in the explicitly unitary 

rules are related to those for the "renormalizable" rules 

by Ward-type identities obtainable by including a suitable 

source term in the Lagrangian. These identities must survive 

renormalization to preserve unitarity and so may restrict the 

form of the renormalized theory. This argument is of course 

not so strong as in the gauge theories, as there is no equi-

valent of the Tree-Loop theorem. 

Finally we note the reformalism of the SU(n) Yang-Mills 

Lagrangian of section C) could equally well be applied to the 

U(n) Lagrangian. 
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Appendix A; 	Self-Energy Terms in the Infrared Summation 

In Quantum Electrodynamics the proper self-energy terms 

for the electron may be written (58) as 

* 	
E A + (5-m)B + (-m) I f  (p) (-m). 	 (A. 1) 

Henceforth, we shall consider diagrams where the mass-like 

contribution A has been absorbed by the propagator (not 

necessarily renormalised). Exploiting (A.l) the Ward identity 

(p) + A (p, P) 	= 	0 
pJ 	

U 
(A.2) 

may be interpreted as Fig. A.l(a). Equivalent to Fig. A1(a) is 

the expression represented by Fig. A.l(b) as the infrared 

terms in k can only possibly arise for the diagrams on the 

left in the limit as k -* 0 when the infrared contributions 

must cancel by Fig. A.l(a). (In fact the limit of K(k) as 

k - 0 must vanish altogether.) 

Firstly we evaluate the contribution of an additional 

virtual photon added in all possible ways to an amplitude 

involving self-energy terms. The method follows (59). First 

consider the additions where both ends of the additional 

photon do not terminate on the same external electron line 

or its self-energy terms, i.e. diagrams of the type of Fig. 

A.2. Applying the identity of Fig. A.l(b) the infrared 

contributions from the legs on an external line and its self-

energy terms cancel except for - the last insertion, i.e. the 

diagrams of Fig. A.2 reduce to those of Fig. A.3 plus some 

infrared finite, factor. Fig. A.2 is evaluated as usual in 

(59) and the total infrared contribution of Fig. A.2 is 



P+ ESWI 

(a) 
k=O 

P + = K(k) 

(b) 

FIG Al 	The shading indicates only proper diagrams present; P shows the line is 

physically polarized; K(k) is infrared finite in k. 



() 	 Left-leg of virtual photon 
as shown below line 

(b) Right-leg of virtual 
photon as shown below line 

right-leg to right of X 

left-leg to left of X 

FIG A2 	The unshaded blobs represent self-energy terms both proper and improper. 

PO 	
P 

 AXA p 
k 

(C) 	 ~ r_,~ 	A~~ 	r_~ - 

k 

(d) 

FIG A3 
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B t u(p')r(p',p)u(p) + K(p',p;k) 	 (A. 3) 

where B' = ie 2 	
f

-(2p'--k) . (2p-k) 	dkk 
(211)k 	

(k 2 -2p!k) (k 2 -2p.k) 

Next we evaluate the contributions of a photon where 

both ends terminate on the same external line or its self-

energy terms. The set of diagrams are of the form of Fig. 

A.4. Instead consider.the equivalent self-energy terms in 

limit 	 I k-'O 
[ 

P-k  
(A. 4) 

By Fig. A.l(a) the right-hand side of (A.4) is equivalent 

to the terms in Fig. A.5 in the limit as 2 - 0. The photon 

line is always terminated in the proper self-energy term 

which involves the additional virtual photon. On applying 

the identity Fig. A.l(b) to the virtual photon in the dia-

grams Fig. A.5(a) - (d) we see that, where the additional 

photon joins more than one proper self-energy part, there 

is no infrared contribution from it, i.e. diagrams Fig. 

A.4(a) - (d) have no net infrared contribution. Diagrams, 

Fig. A.5(e) - (g) are evaluated as 

A 

	

(-1) _ie2 	f d 1 k 	-(2p'-k).(2p-k) 	 .... / < +K (k) 

	

(21T) 	k 2 	(k 2-2pk) . (k 2-2p.k) -P 	 P 
(A.5) 

Hence, on using Fig. A.l(b) again and taking the limit as 

p p' we obtain the infrared contribution of diagrams 

Fig. A.4(e) - (g) 



(ci) (b) 

p 
	

Cd) 

(e) 
	

(f) 	p 

(g) 	A ;~~ 	. - - 
	

(h) 

FIG A4 



- (h)- ~rA-  - - r7~ 
IL"~ VZ/)  - VZ//,  

(g) - 

(a)— (b) - 

(c) - Cd) - 

(e) - (f) - 

FIG A5 The minus is included to give direct equivalence to Fig. A.4. 
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A 
ie 2 	Jd 4  k 	- (2p-k)2 	

(A.6) 
(2 Tr 	k 2 	(k2 - 2p.k) 2 

Diagrams Fig. A.5(h) can be immediately evaluated to get the 

contribution from Fig. A.4(h) 

A 

	

i e 2  f d'k 	(2p-k)2 	
(A.7) 

(2ir) 	k 2  (k2-2p.k)2 	K614 	V_1~4  

(A.7) differs from (A.6) in sign as it is not necessary to 

use Fig. A.l(b) again in obtaining (A.7). 

There is a contribution (A.6) for each set of proper 

diagrams in the self-energy terms and a contribution (A.7) 

for each line connected to the proper diagrams. Hence, 

the infrared contribution for all diagrams in Fig. A.4 is 

(A.7). Adding all infrared contributions of Fig. A.4 to 

(A.3) we obtain (1.12). 	The factorisation of the self- 

energy terms could be iterated as usual to give (1.14) as 

required by consistency as (1.14) is related to (1.13) 

through the identity Fig. A.l(a). 
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Appendix B: 	Solutions for 

Here we shall examine the possible solutions to the 

constraint equations on k 
 ij 

	

ij 
S j a (A) 	Mib Liba  

I
ij 	ja t 	Mjb L2ba 	 (B.2) 

Some solutions of (B.l) can easily be obtained by 

multiplying on the left by t ci  

	

t 	3- 	S 	(A) 	= 	ff 
Ci ij 	•ja 	- 	 cb lba 

1ba 	'I 	ciij 5ja 	 .(B.3) 

-(-9 

for most general solution ; . iJ must satisfy 

j 

	

S (A) 	 Eckkj Sj a (A) + X 	(B.4) 

	

ij 	a 	 ib bc 

	

+ 	+9- 

where 	tci  Xia 	= 	0 	 (B.5) 

But to to satisfy (B.l.) 	X 	Mib 	FY 

~ + 

and (B.5) implies 	Y ba 	= 0 

Therefore, most general 	satisfies 

E) ks 	= 	0 . 	 (B.6) 

Similarly we require 

	

(I - M i 	E) 	t = 0, 	 (B.7) 



-141- 

t t- 1  t t 	 t t-1 t 
As 	(I - M m 	t)M 	= 	0, 	(I - Mm 	t) cannot be 

non-singular and neither At nor 	S is zero. 

We now consider the eigenvector equation 

(I - i1 m 	t) x 	= A x . 	 (B.8) 

As ii is non-singular and an n xn  matrix the rank of 

is n and the rank of M must be greater than n as 

Min(R(A), R(B)) 	R(AB) , where A and B are any matrices. 
t 

But rank of M is less than n as M is an m x  n matrix. 
t 	 4_ 

Therefore the rank of M is n. 	Similarly the rank of E 
.4- 

 is n as t is an n X  m matrix. 

4- 

 If M 	
= () 	where X is a non-singular n 

x  n 
matrix 

P f ' Q where P and Q are non-singular. 

Let 	to 	t P where 	to 	E (Y :Z) and Y is an 

flXfl matrix 

Thus 	fi iY 	t=p 	Y 	Z 	P 	 (B.9) 

o0 	I 
and (B.8) is equivalent to 

	

.+.-1 	-11 
II - 	

Z  	I 	x 	= Ax 	(B. 10) 

L 	0)] 

I 	 I 	 -1 or 	 ( 0 	-Y 	Z 	. = A1 	 (B.11) 

I  ) 

where I = 
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We have thus obtained the eigenvalue equation 

-:-r' 	 = 
0 n-,  

: 	(1-X)I 
I 	rn-n 

i.e. 	(-X)' (1A)mn 	= 	0 	 (B.12) 

4- 4- 	t 
and (I - M rn 1  t) has eigenvalu.es A = 0 (nth order degenerate) 

and A = 1 ((rnn) th order de- 
generate). 

The elgenvectors for A = 0 are x = P. where 

y. =e 	 for 1in 

and for A = 1 are x = Pyi  where 

M =ei  for n+l < i < n 

with (eT ).  = 
For (AS) and (t) to satisfy the conditions 

(I - 	)S = (I - S 	 = 0 	they must be con- 

structed such that their column vectors are linear combinations 
4_ .4- 	+ 

of the eigenvectors of (I - M ffi 	t) for eigenvalue A = 0, 

i.e. J th  column of (S) 	X. X. 

n 	t 	 (B.l3) 
and 	 tt  Mt) E E A 

Thus the most general solution to (B.1) and (B.2) is to choose 

to satisfy (B.13) when 

+ 	.4- 4-4 	 - 

L 	E 	(fftE) 1 
	 (B.14) t  

-S 	
4 

L 2 	E (m-1  t)t 

A particularly simple choice is 	k MjaXak fOr any x 
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Appendix C : 	The Massless Yang-Mills Lagrangian 

The massless Yang-Mills fields may be quantized with an 

arbitrary gauge function as in (50). The S-matrix exhibits 

the usual gauge invariance for diagrams constructed with a 

factor (-1) associated with each ghost loop. In particular 

1  consider the subset of gauges Ca 	Wu . 	The proof of 

invariance of the S-matrix, up to the one loop approximation, 

under variation of a for diagrams with a factor (- ½) 

associated with each ghost loop, of section c) of Chapter 3 

also holds for this set of gauges. 

This is easily verified directly as the ghost loops are 

independent of a . The a dependence of the vertices and 

propagators mutually cancel. The identity corresponding to 

(3.37) 

k > 
k 

v , b v 
> q=O 
q (C. 1) 

holds for tree diagrams in both approaches and ensures that 

the a dependent terms 	a2kk'(k2+i) 2 in the vector-boson pro- 

pagator does not contribute in either. 

It is imperative to note that neither construction has a 

manifestly unitary gauge as for no a does the pseudo-scalar 

ghost become insignificant. If any given a gives rise to 

explicitly unitary Feynman rules for one formalism, then the 

other formalism must also be unitary which is of course 

unacceptable. This contrasts with the situation for the 

massive theory where both formalisms have an explicitly 
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unitary form in the limit ct - 0. There, it is the formalism 

which is invariant under variation of c'. which is the correct 

one. 

For the massless Yang-Mills Lagrangian to be unitary, it 

must be proved implicitly for some set of rules. 	't. Hooft 27  

has done this in the formalism with a loop factor (-1) when 

= 1. Instead of (3.34) use the relation 

I 	 I 	 I 
I 	 I 	 I 

o (C. 2) 
I 	 I 

a 	____b 	 k  
11 V where 	--i 	-o 	

— 	1 	6(k 2 )O(k 6 b  

	

V 	(2ir)3 	 a 2 

—>-- k 

and the physical cut is for the two transverse polarizations 

only. The two cut line diagrams become 

which is the form of the Cutkosky rules for the formalism 

with loop factor (-1.). 	The proof is extended to all orders 

by induction. 
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endix D: 	The Addition of a Line or Loop to a Duplication 

Factor Diagram 

The most general insertion to be demonstrated is that of 

a line between two completely independent lines in a scalar 

configuration 

i.e. 	 —> 

I 	 I 	 I 

6 	6 

the scalar vertices. Within the context 

duplication, factor the replacement to be 

11 	I 	+ 	I 
11 	I + I 	1+  

where e represents 

of calculating the 

considered is 

I 	+ 	I 	I 
HIl 

11 	I 

1 I H + 1 1I I H 
1HHI I 



-146- 

HHHI 1H 
HH 

All these replacements may be made for all possible attach-

ments of hard and wavy lines to the vertices and. so  must be 

evaluated using the rules in Chapter 4, section c). As the 

mathematics is identical whether the vertex is purely hard-

line or an isolated wavy-line tree, the vertices may be 

labelled n 1 , n2 , n 3 , n where n1  is the number of legs 

of the hard-line vertex or the number of hard-line connections 

to the wavy-line trees. In the above definition the vertices 

are considered in isolation without any connecting lines. 

Only wavy-line contributions will actually be used in cal-

culation to avoid repetition. Below all possible vertex 

attachments are considered; the expression above each diagram 

is the duplication factor before insertion of the additional 

line and the expression below, after. R is the contribution 

to the duplication factor of the rest of the diagram. It is 

different for each configuration. 
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n 1234  - n ln 2 n 3  - nln 2 n 4  

R 	134 - 
234  + i2  + 

I + n 2 n + fl 2 fl 4  + fl 3 fl 4- n il  

fl2-n3-n4+1 	 -J  

n n 2  n - n n 2  - n n 3  

R 

+ n + n2  + n4 - 1 

N - 
. 	In 

) 

-cl 
1 234+ nln2n3+ 

R 	+n 1n 3 n 4 + n 2 n 3 n 4 - 

I - i4-n 23  

+ n 3  + n4  - 1 

n ln 2 n 4  

Ln12_ fin3 

n 3  n  4  + n1  

Vn- 
1-n n 2  n  4 + n n 4  + n n3  

R J+n 2 n  4 - n - n 2 - n  4-  1 

R £ " n 
34  - n n3  - n n 4  

L 34 -+ fl + n 3 + n 4  - 1 
R[124 2n

2 n 4  - 2n1 n 2  

j-2n 1n 4 + 2n 1 + 2n 2  + 2n 4 - 2) 

S 

, 

I -n n 3 n 
 4  + n fl: -) + 

fl 

R-  

L + 3 n 4 - n - n 3- n 4  + 1 

c  t 2n 1 n 2 n 4 + 2n 2n4 + 2n 1 n 2  
R 

2n 1n 4 -  2n 1- 2n 2- 2n 4 + 2 
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0 

R In n 4  - n - 	 + 1) 

"4 

R {-n n 4  + n + n 4  - 1} 

R {n1n 2  - n1  - 	 + 1} 

R {-n 1n 2  + n1  + n2  - i} 

R {n 1n2-n1--n 2 +1} 

\110~ ni  

/f\ 

R{-n 1n2 +n 1+n 2-1} 

R {2n 3n 4-2n 3-2n 4 +2} 

Vn 
R{-2n 3n 4 +2n 3 +2n 4-2} 

R{2n 2n 4 -2n 2-2n 4 +2 } 

; 

R(-2n 2 n 4 +2n 2 +2n 4 -2} 

R{2n n 4-2n-2n 4 +2} R{2n n4-2n-2n4 +2} 

No 
R{4n2n 4-4n2-4n 4  +4} a  t 

; 	5 n 	 0 

R{-2n n 4 +2n+2n 4 -2} R(-2n n 4+2n+2n 4 -2} 
	

R{-4n2n4 +4n 2 +4n 4 - 4} 
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R{n - 1) 
	

R{n-1} 

C 

9 
C 

 

R{-n + 1) 

 

R{-n + 1) 

R{4n 1 fl 2-4n 1-4n2  + 4} 

00 
R[-4n 1n2 4-4n 1 +4n 2  - 41 

R{2n - 2) 
	

R{2n - 2} 
	

R{2n4  - 2) 

/0,**'~~ 

S 

R{-2n + 2} 	 R{-2n + 21 
	

R{-2n4  + 2} 



R{2n - 2} 

, 

R{-2n +2} 
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S 	R{4n4  - 4} . 	 R{4n4  - 41 

0 

0 	
4 	 4 

p{-4n 4  + 41 	 Rf-4n4  + 4} 

R{4n - 4} 

\V~l ~, 

R{ 4n - 4} 	 R{8n 4  - 81 

0 a 
n 

9 

00 OO 
R{-4n + 4} 
	

R{-4n + 41 	 R{-8n4  + 8} 



R{2} R{ 21 R( 2 } 

e 

, 

R{-2} 	 R{-2} R[ - 2) 

R{4} R{4} R{4} 
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R{-4} 	 R{-4} 	 R{-4} 
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R{ 8} 
	

R{8} 	 R{16} 

cT 
	00 0 
;J 

00 000 
R{-8 } 
	

R{-8} 	 R{-16} 

In each possibility the inclusion of the extra line only 

causes the duplication factor to acquire a multiple (-1). 

Hence the total duplication factor only changes by that 

amount. 

Another insertion could be that of a line between a 

vertex and an independent line 

I 	 I 

i.e. 	I 
I 	 ..- 

6 

for which the corresponding replacement in calculating the 

duplication factor is 
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0 + 
	

0 

> 	 G + 	 0 + I 	0 	+ 

in the situations 

R{-n 1n 2 n 3 +n 1 n 2  

+fl 1n 3 +fl 2 fl 3-fl 1  

-n 2-n 3  + 1) 

<n 

R{-n n 2 + 2  

 

R{-n n 3 +n+n 3  - 11 

n <n 

n 37 
	

n  -7 
R{n 1n 2 n 3 -n 1n 2 	 R{+nn 2-n-n2  + 1} 

	
R{nn 3-n-n 3  + 1} 

-n ln 3 -n2 n 3 +n l  

- i} 
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R{-2n 1n3 +2n1+2n 3 -2} 	R{-2n2n 3 +2n 2 +2n 3-2} 

: 

 

ni 

~A 	C 
0; 	<n 

,c,7•. 
R{2n 1n 3-2n 1-2n3 +2} 	R{2n2n 3-2n 2-2n 3 +2} 

R{-n + 1) 

Rin - 1) 

R{-n + 1} 

R1n - 1)  

R{-2n + 2) 	 R{-2n + 2} 

--o 
0 

2 
R{2n - 2) 	 R{2n - 2} 

R(-2n 3+ 2} 

n37 

R{2n 3  - 21  

R{-2n 2  + 2) 	 R{-4n2  + 4} 

C): 
<n 	<n  

2o 
R{2n2  - 2} 	 R{4n2  - 4) 



• 	{-4n3  + 4} 

0. 
R{-2} R{-2} 

R{-2} 

R{2} 
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R{4n 3  - 4} 
	

R{ 2 } 
	

R{ 2 1 

R{1} 	 R{-4} 

0 
2 

R{4} 
	

R(4} 

R{-8} 

0 
0 
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The inclusion of a line between two vertices 

i.e.  

S.. 

• 	
S 	 - 	 S 	 S 	 - 

which obviously includes 	-. - - - - -ø - 	 - - - - 

requires the replacement 

0 	 • S •- 	 0 

in the following situations: 

R{n 1fl 2-n 1-n 2  + l} 	 R{n - 1} 
	

RI 2) 

n>1 	<n 0 

~n 
R{-n 1n2 +n 1+n2  - l} 	- - 	 R{-n . + 11 
	

R(-2) 

R{2n2 - 2} 	 R{4} 
	

R{2) 

0 4;Q 
R{-2n2 + 2} 	 R{-4} 
	

R{-2} 

In both the above methods of adding a line to a configuration 

the duplication factor only changes by (-1). 

We now consider the attachment of an additional loop. It 

may be attached to a line between independent vertices by 
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/ 
	

or 
	 , 

\ 

I 
0-- - -G- - -4 

0__.L_ 

The replacements for the first are 

e 

+ 	 + p 

	

+

O Y  0 

by 
	

+ 	 +± 

++ .+ + 
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The replacements for the second are 

[I 

pJ 4  	+ 0--a 

+ 

In the following situations the expression below is 

the duplication factor with either of the above replacements 

(they are the same in all cases). 

R{-n 1n2 +n1+n 2-l} 
	

R[-2n2+ 2) 
	

R{-n + l} 

<2 ;O <n *  
R{n1n2-n 1-n2 +l} 
	

R2n2 - 2} 
	

R{n - l} 

R{-2} 
	

R{-4} 	 R{-2} 

C) - (D ; 
R{ 2) 
	

R{2} 
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The loop may also be added to a vertex, i.e. 

I 	I 

	

/ 	 I 

c - 	' 	or 
I 	

, 	 \ 
' 	 I 

I 	 I 
/ 

which includes I 
I 	\ 

\ 

I 	
I, 

, 

-,' 
/ - 
, 	'I or 	 I 	etc. 

, \ 
, 	\ 

The replacements for the first are 

Y. 
and for the second 

0 
For these there are only two possibilities: 

R{n - l} 	 R{2} 

and 	 0 
R{-n + l} 	 R{-2} 

Again for the addition of a loop the only change in the 

duplication factor is the multiple (-1). 
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The types of additions still to be considered are: 

/ 
, 

, 

b- --Q- --- 
/ 	

I 
7 

I  

S. 
7 

I - 	 'S  

7 

/ 

/ 

7 	 S. 

S. 	
7' 5- 	 7 	

•5* 	 7 

I. 	 'S 

7 	 5 
7 

S. 

-.. 7 

S. 

.5 	 7 

S. 
7 	 .5 

S. 	 7 
S. 	 7 

5 	 7 

5- 

S. 

* 

S. 

/ 
I 

I 

7 S. 
7 	S. 

7 	 •5 

-4, 
7 	 S. 

I 

I 
	I 

I 	/ 

I 
7 	5% 	

/ 

I 	/ 

; 
/ 	•5. 	 7 	'S 

These may be verified directly or deduced from additions 

already demonstrated. (The addition * is required to 

justify those following it). 	For example 
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D. F. 

r 
Is* 	 , 

E D.F.I 	---9-----c( 

I 	I 
I 	.L 

'S 

/ 
.5--- 

r 
I' 	 -- 

(-l)D.F.I 	-'----,--'- 
I 	I  

I 	 .2. 

I 

— 

['S 
5.. 	 / 

(_1)D.F.[ 5  

In each each addition the duplication factor (D.F.) only changes 

by (-1) 

Hence any insertion of a line or loop only causes the 

duplication factor for the amended diagram to be (-1) times 

the duplication factor for the original. 
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appendix E 	The Canonical Quantization of (6.4 

We wish to canonically quantize the free Hamiltonian 

FREE ½1T.1T - 111kk11 + ½k.(j_j )  + ½M2wk.w k  

- ½ - 	- ½x.x - 	 ( E.2) 
 

1 
 11 IT 

with the interactions 

	

HINT _g (OW  k) .  (& xWk) 	(Wi x Wk ) (WJ x Wk )  

- 	.i. 	• 	 ( E.2) 

on 
It is necessary to split YLIFREE such  that 

PP 
FREE 	

= 	
0 
H +H1 	 (E.3) 

with 	 -- 	 - 

H E ½n.n - 111kk11 + 
	(iwk - kwi) +  ½ M 2Te7k . Wk  

a 2 M 2 	-  
am W  

H1  - 	32- (13 	- 	ct 2 M 2 )X.X  

H1 	is added to the interaction Hamiltonian 	(E.2) and we 

quantize H0 . 

The equations of motion for 	H0 	are 

= 	
11kl a k 11 

- —W 	aM —x  

1 
=  

1 	k 	k 
 

—XaM —W 

fl =Ot 2M2. 
- am 	

k 	k  

= 	_M2Wk + aM 	
+ ( 2 k9. - 	 (E.9) 
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We choose the operator expansion 

d  

J  {l1•X A(q) + 	i•.x 	A(q)} (E. 10) W(x) 	
= (2 Tr ) 3 '2  2w q  

1 d 3 q 

J 	-  
-iq.x 

fe 
k B(q) iq.x 	k 

+ e 	B 	(q)} (E. 11) 3/2 (2ir) _q a  

Xa(X) 	= 
1 
3/2 

d3_q 

J 	- -iq.x 
{e C(q) a 

iq.x 
+ e 	c(q)} (E.12) 

(2ir) _q 

= x 
1 _______ /2 

f d
(x) {_iq.x 

D(q) iq.x 	
(q)} D (E.13+e 

a (2ii) 

where q0  =W =2 + M 2  . 	For consistency the ex- 

pansions (E.9) - (E.13) must satisfy the equations of motion 

(E.6) - (E.9). To do so we require 

B(q) = 	_ Wq  A(q)+ 4- D(q) 	 (E.14)am 	a 

Ca  (q) 	= 	aZMZ D(q) + jj—M  iq A(q) 	 (E.15) 

The normal quantization can now be carried out requiring 

W(y) 	 63(x - 	(E.16)X0 YO 	 ab 

Xa' Xb(Y)] x0=y 	= 	- 	6ab 63(x - 	 .(E.17) 

and all other equal time commutation relations zero. To 

satisfy the equal time commutation relation the operators 

must obey the commutation relations 

CA' ( q), A(q 	= 	2w 6 Jk Ô b  6( - 	 (E.18) 

ED(q) i  D (q')J 	= 	- 2 2M2w 6ab 6 3 (a - 	 (E.19) 
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with all others zero. 

The complete commutation relations for the fields with 

(E.18) and (E.19) are 

7(x), W(y)J 	= 	(2i) 	f d 4  q e (q2_M2)c(q) 
	 ab 

En, W' (y)J = ( 2ir) fd q 	 6ab 
 

ll(y). = 	 kL
PTO f d q e 	 (q 	(q) (q 0 

lJ1(x), ll(y)J 

QT(x), xb(y) 

a 	b a (x), X (Y)] 

Lw(x), x' yJ 

1 
= (2) 	fdq 	 (M)6b 

1 ___ 	 .0 
- (2) 	fdq 	(x-y) (q 2 -M 2 ) £ (q) (-iq 	ab 

1jdq 
= (27r) 3  

- 1  
- (2w) J 	

oM 
dq  

0 ab 

- 	1 
- (2w) 	f d 4  q _ig(x_y) 

 (q2-M2)c(q) (_Miqk)  ab 

= 	Wa 	
Xa(Y) 	= 	0 

Ella(X) ll(y) 

[Wk (X) 
 

These have the corresponding time ordered vacuum expectation 

values:- 
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<OITW(x)W(y)}IO> 	(2Tr)i 	e 	 q Z_Mz+i c  6 ab 

<OlT{1T(X)W(Y)}IO> (2ir)i 

k2. 
_ig(x_Y 	

q2-M2+ic ób 

k2. 	k 2.. 

__ 	
q S -qq  

<OITlla(X)llb(Y)}!O> - (21 	fdq 	 q z_Mz+i c 	ab 

<OIT{fl 	(x) 11 	(y)}tO> 	 J 	+i 
dq _ig(x_y) 	-a 2 M 2  

	

Xa 	Xb 	 (2ir)i 	 qZMZE 'ab 

______ 	 -iq0  

	

-1 	 __________ <01 TOT (x)xb(y)}IO> 	(2)4i fdq 	ig(xy q
2 -M+ic ab a 

12 

	

-1 	f q 	

1g(xy) 	/c 
<OT1Xa(X)Xb(Y)}IO> 	(2ir) 4 i 	 q 2 -M +i6 	ab 

-1 
<OlT{W(x)xb(y)}IO> 	(2)i fdq 	ig(x_y) _ jqk 

q _Mz+i c  ab 

<OITll 	(x) IT 	(x)}IO>-1 	f dq _ig(x_y) _jMqk 

	

a 	Xb 	- (2iri 	 q 2 - MZ+i ab 

We thus have the propagators of Fig. E.1 which on absorbing 

the bilinear vertex of H 1  

	

- - - - 	- (_ 

generate the Feynman rules of Fig. 42. 



b,j 	ak 	 _ 6 kj 

W 	q 	w 	q2-M2+ie 

kj 
bj 	ci k  

< -0 

IT 	q 	w 	q2-M2+i6 

2 
b,j 	cik 	_qokj+ qkqi 
p 	< 	-0 

TTW 	q 	FT 	
qZ_MZ+i c 	ab 

b 	 a 	 2 M 2  
0-- -<- - -0 	 a 
 TIX,

q_MZ+1c 	ab 
11% 	1 

b 	 a 	 iq0 
- 	 qZ.....M+i c 	ab 

I •I % 

b 	 a 	 -1/a2 - 	- 	 qz.....M+i c 	ab 

b,k 	a 	iq/ctM 

W 
qZ_MZ+i E 	ab 

q 

b, k 	-< 	 iaMqk  

TI, 	q 	 q 2 -M+ic 6 ab 

FIG El 
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