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ABSTRACT

The object of this thesis is to investigate, using Ward
identities, two aspects-of vector-boson field theories..

The first is to examine, in detail, how the renormalisation
counter-terms for gauge field theories are accommodated without
destroying the symmetry or correéponding Ward identities. 1In
Chapter One the wave function and coupling constant renormalisa-
tions are studied and in Chapter Two the mass renormalisations.
‘The conclusion is that, although there is complete freedom of
choice of subtraction points for the wave function and coupling
constant, the mass renormalisations are not so clgar and may
be restricted depending on the theory.

The second topic is the massive Yang-Mills Lagrangian.

In Chapter Three, we investigate the Ward idenﬁities, and their
implications, for tﬁe tree approkimation. In Chapter Four, we
develope the Ward identitiés to all orders. The massive Yaﬁg4
Mills Lagrangian is shown to be identical to a Lagrangian with
transverse vector-boson propagators and a compensating scalar
Lagrangian with an infinite series of ihteractions. The
Lagrangian is identical to that of Boulware which was developed
in the path integral formalism. The Ward identity approach we
useis shown to be equivalent to Veltman's in Chapter Five.
Furthermore, it is shown that it is the S-matrices which are
identical. 1In Chapter Six, other possible equivalent formalisms
of the massive Yang-Mills Lagrangian are investigated. The
formalism of Hsu & Sudarshan is shown to be for mixed spin—oné
spin—-zero fields and not pure spin-one fields as required.

Finally a formulation is discussed which,. in conjunction -



with the dimensional regularisation scheme of 't. Hooft and
Veltman, generates the identical S-matrix from Feynman rules

which are renormalisable according to power-counting.
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INTRODUCTION

Any attempt to construct a plausible field theory of
the fundamental interactions must include spin one bosons as
one with zero'mass,'vii. the photon, is known to mediafe the
electromagnetic interaction. It is also suspected that massive
ones are present in the weak interactions.

The presence of vector bosons gives rise to propagators
with momenta terms present in the numerator. The free
Lagrangian for a massive spin-one field Au(x) is

1 1

_l.uwv oo v,u _ 1.2 U
4(3 A 9 A )(auAv BvAu) + 5M AuA (0.1)

WV MVt
for which the propagator is g kK k /M . Theories with

k2 - M2+ ie

these propagators in general are not renormalisable; this can

be assessed by simple power counting of the momenta(l—3)

. How-
ever, this is not a strict criterion and a Lagrangian may be
renormalisable although power counting indicates otherwise. To
investigate the contribution of the k"k” terms of the propa-
gator it has been found useful to exploit Ward-Takahashi
identity relations between amplitudes with physical polarisation
vectors on external lines replaced by momenta contractions.

The simplest example of Ward identities occurs in Quantum

Electrodynamics where they may be expressed as

a, r¥Ve+s (q, k...) = 0. (0.2)

T . :
The metric goo = 1, gll = 922 = g33 = -1 1is used

here.
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The TIMVe* g any proper amplitude in which qu is the in-

going momentum of a particular photon.

a) The Massive Yang~Mills Lagrangian

A theory, whose renormalisability has been extensively

studied, is that created by the addition of a mass term to the

Yang—Mills(4) Lagrangian
- _ 1 a uv-
L,y = T Sy Ch (0.3)
HV — H oV aV o H Ve T .
where Ga = ] Wé1 d Wa 4g(ﬂ W )a .

The result is the massive Yang-Mills Lagrangian

1 a

a > Mzw‘;1 W _ (074)

uv

L

1l uv
'*ZG Ga +

By‘analogy with Q.E.D. it was suspected that the massless Yang-
Mills Lagrangian, (0.3), was renormalisable and, in the belief
that the massless theofy can be obtained as the zero-mass limit

(5)

of the massive S-matrix , it was thought that the massive
Yang-Mills Lagrangian, (0.4), was renormalisable also. In
general, the method of investigation has been to modify the

Lagrangian in such a manner that the propagator becomes

g"V - (1-02)k"kV/(k2-a2M2 + ieg)
k2 - M? + ig’

only modification this would render the theory renormalisable.

for some a?. If it were the

Unfortunately, in all attempts, it is accompanied by the intro-
duction of a scalar field and the renormalisability of the

Lagrangian is now governed by the interactions of this field.

b

+ o] . : -
A™B where i fabc are the

Notation: (AxB)? = £, _

structure constants of a compact Lie group.
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It has been shown formally, using path integral tech-
niques(6’7), that there is an infinite series of vertices of
the scalar particle, with no limit to order, which suggests

their non-renormalisability. The generating functional for

amplitudes of the massive Yang-Mills Lagrangian (0.4) is

cg] = 771 f d [w] exp{ifd“x[— %I_C_;_u\).guv+ %Mzﬂu.yju
| + EH.QP]}AO.S)

For convenience we define the field matrices

whx = T W)

ANV SC A M () - a WM (x) + iglet (x) W (x)]
 (0.6)

g,”(x) ER A i

where T2 are the generators of the m-dimensional representation

of the group chosen such that

ab

tr (1 1) A 630, | (0.7)

The Lagrangian (0.4) may then be rewritten in (0.5) as

£

1l

=11 uv -11., u -1 u
A 7 tr{ g,w + AT ZMPtrus wu + A trw j/u. (0.8)

The massless Lagrangian (0.3) is invariant under the

infinitesimal transformation

wos WM

+g W x n(x) - 3" nx) .  (0.9)

(0.9) is known as the infinitesimal gauge transform for the
Yang-Mills Lagrangian which is a gauge invariant theory (or

simply, a gauge theory). The finite transformation corresponding

to (0.9) is
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1
Ag

A-1

A u
£ ch(a Q (x)) (0.10)

u A uo_
Wa(x) v Qab(x)wb abc

db

which can be reformulated in terms of the field matrices as
whx » awrme teo ¢+ e a¥e /g | (0.11)

where Q(x) 1is a local element of the m-dimensional repre-

sentation of the group:

It

Q(x)ab {exp[ig Tcnc(x):l }ab (0.12)

and QA(x) is an element of the adjoint representation, i.e.

when
a _ .
TbC = -1 fabC o
Boulware(s) showed that any vector field,(kru(x), can be

U
written as the transformation of a transverse field, UfT (x) :

H 1

whx = eu® et + et lig . (0.13)

The spin-one propagator was modified by making the replace-
ment (0.13) in (0.5). The first term is unchanged as the re-
placement is simply the gauge transform for the massless

Lagrangian. The generating functional becomes

. e ' N SR N TR Lk
GL;I_i‘ = Jd[__W“ld[:)a_(det M)exp{le x[=2 " gtr g %v (0.14)
-1 1 T, I -1 n, 7 -1 1 y
+A -2~M2trw’ W+ X "MZtr 2TQUC + A sM2trat g
" u n
L tr(Q W™t 4 g ] g/u:]}
where ™ (x) = Q auﬂ_l/ig
(0.15)
2Mx) = -7 ¥ a/ig |
and sx2r? = s o l/-ig : - ' (0.16)
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The term det M is the Jacobian factor for the substitution

where

H .
det M = ¢ det[buvsab § (x~y) + iglug(x)ab avD(x-YW] (0.17)
a* e-ip.(x-x') oM
with D{(x-x') = f———B— -~ . W are the
(2m) " p? Bab

field matrices in the adjoint representation. The determinant

can be expanded using the identity

det M = exp [tr log M:l (0.18)
such that
e ' T“ n
det M = c exp{- ¢ (-ig)n/n tr[?IA 3, Iﬂ } (0.19)
n=1 :

These contributions are easily repnresented as closed loops
génerated by the "quasi-charged" scalar Feynman rules of Fig.
1(b) with o = O and a factor (-1) associated with eéch loop.
The Feynman rules for the vector-bosons are as Fig. 1(a) for
the first two terms of the Lagrangian in (0.14).

Before the remaining terms involving Q(x) can be inter-
preted it is necessary to find a convenient way of representing

(6)

them. Boulware restricted (0.6) to the adjoint representa-

tion and chose

Q(x) = exp[igs(x)] | (0.20) -
where ¢(x) = ¢a(x)(-i)fabc .
bc
Then
¥ ax) = +ig oMy, E_ TPR(x) (0.21)

m

where Eba(x)

({exp(-igg) - I}/ -ig¢]ba

and the necessary Jacobian factor



gV (1-a2)k"k"
b a k2- og“M2+ic
- k% - M? + ie ab

-igfabc[QBY(q-p)a + g7 k-0 B + g%8 (p-) Y]

2 ay B8 _ _ad§ By
g fabcfgcd(g g g g9 )
2 aB S8y _ _ay 8B
9" fadagfgpe 9 9 g 9")
2 aB y8§ _ _ad _yB
9" facgtgpald 9 g g ")
R a o
a
0— — = > — - -0
k
b—- —>— - —C
—_——
q
_ Gab
(b) k?-a?MZ+ie : o 19 fope @
) _ Gab i
. i a
te) lk2~aM2+1e a 9 fabe @
_ 6ab i
(d) 1 (_XT g fabc qO"
arkz-M2+ ie

FIG 1(b)-ld)alternative forms of the ghost rules.
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Gxa(x)/ 6¢b(x') = - §(x-x') E__(x) (0.22)

ba
for the change of variables. The functional integral over the

the gauge degree of freedom in (0.14) can be written

GQ[WT] =zt Jd[d)]{det Eab(x)}exp{ijd"xi@(cp,w'r)} (0.23)

T u -
Lm2
where iﬁ(¢’w ) 5M* 3 ¢a Eab Ebc 3u¢c

_m2nH o T :
“MTOT ¢y Epg Wau(x) (0.24)

T A _ LM
+[:Wa Qab 3 ¢a Eab]Jbu (x) .

Hence, the gauge parameter is interpreted as a scalar field
but its exact interaction depends on the representation of the
group. |

Salam and Strathdee(7) utilized a generalisation of the

Stickelberg split(s)

which incorporated the transforh (0.13).
One of their formulations is formally identical to that of
Boulware, i.e. (0.14), but they used a different realization.
Salam and Strathdee restricted the group to SU(2) and chose

the fundamental representation in (0.6) with the parametriza-

tion
Q(x) = o(x) + it.I(x) . (0.25)

Q(x) is unitary with determinant (+1) if

0% (x) + .1 1. (0.26)

The corresponding change in the volume element including the

Jacobian is

Jd[xa] » f afr]ale] 6(s? + 1L - ) C (0.27)
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as expected. In executing the integration of ¢ (x) and
replacing it everywhere by vI - II-T  the scalar interactions
are again an infinite series but it is suggested they are of
the Efimov-Fradkin normal type(g_ll), i.e. all divergences can
be absorbed by a finite number of renormalisation counter-terms.
To investigate whether the divergen ces caused by the
scalar vertices would cancel and to avoid questions over the
ﬁalidity of the path integral approach, it is neéessary to

(5)

investigate the Lagrangian directly. Veltman introduced a

free scalar particle to the massive SU(2) Yang-Mills Lagrangian:

Ve

1 1 1
'd: = - Zguv°9uv + ?Mzﬂu.ﬂu - %au¢aau¢a + 7M2¢a¢a (0.28)

The vector boson fields were transformed first according

to (0.10) with

A ,.u.A-1 _ 2)g a . A2g? _d
fabc ch(a 2 )db - M au¢ o Ru (0.29)
and second according to
L S L (0.30)
u U M "u

Under these transforms the Lagrangian (0.28) becomes

£

]
= a , Ay 2 vzt - Ly 433Hsa - Ly 4 42
_i,YM(Wu +50,0%) + g wuawa 79,670"¢ 5M ¢_6°  (0.31)

_ 1., o4 A, 4 ¥ A3g d _p g2 _d _u
2—)\ g(wu+Mau¢)Rd+2M Bu(b Rd+-——2—8M R11 Rd

(0.29) can be realised with the choice of parametrization
% = exp[i%x d)a(x)TAa] . | (0.32)
Choosing A =1 'the combination of fields,

yooo Moy % 3M 4 - (0.33)



~8—

which replaces all the legs of the vector vertices, has the
Feynman rules of Fig. 1l(a), with o = 0. All other terms in
the Lagrangian (0.31) generate the_interactions of the scalar
fields. An infinite series results but in this case as the
séalar fields were originally free the vertices must be inter-
related and many redundant. Veltman investigated the redun-
dancy as far és the one loop approximation which was shown to
haveAan equivalent explicitly renormalisable formulation,
since only one three point scalar vertex is introduced.

These rules are as in Fig. 1l(b) in the limit o« = O and the
rules of Figs. 1(a) and 1l(b) are henceforth known as the soft

rules following Mohapatra, Sakakibara and Sucher(lz).

Reiff and Veltman(l3)

extended the analysis to the two
loop approximation at which level the self energy diagrams
do not satisfy unitarity for the simple soft rules employed
at the one loop level. It was found necessary to introduce
an additional four point vertex which was noh—renormalisable.
No other amplitudes were considered.

Finally Veltman(l4)

approached the whole problem more
systematically using the "free field" technique to establish
generalised Ward identities for the massive Yang-Mills
Lagrangian. To (0.28) a source term Wg Fi is added and the
vector-boson fields transformed:

CASSE L L

u
w LU 3" . (0.34)

A
M
If X 1is infinitesimal the first term of the Lagrangian is

invariant under (0.34) and the Lagrangian becomes



The fields ¢a_.remain free up to first order in A and tﬁe
amplitudes to first order in A, but any given order in g
and Fu, must be identically zero. The Feynman rules for
(0.35) are those of Fig. 2.

The following conventions are required.

stands for the set of diagrams constructed with the vector-boson
rules of Fig. 2, i.e. the manifestly unitary rules, for a given
order in g with any no. of external physical W-lines. The

F-sources or external ¢-lines are to be indicated explicitly.
—+k— -=ou

indicates that on an external W-line the polarization vector
has been replaced by (ix"#) where now the momentum may be off-
mass shell.

(14) first demonstrated that the Ward identities,

Veltman
(0.36) - (0.38) and Fig. 3, shown below, hold using the free

field property.

- - - = 0 (0.36)



b < a gV - x"kV/m2 5ab
V- k W k“-M“+ ie

ao

k

-ig fabc[ésY(q—p)a + g¥% (k-q) P

+ ¢%B(p-x)Y]

§ 8
RCAE R JPY(- ol g% - ¢%% ¢fT)

2

-g2f aB &y ay

- S8
adgfgbc (9 9 g )

g

Cq? aB y§ _ _ad _yB
9 facgfgpald 9 g g'")

a ___“_b g2b P
1L U
ae— -ob ) Gab
—_—— k“-M-“+ig
k
a___,. b iamkHe P
——- H
K
, b
a // g
L S o ¥ fach T
~N
~C
O————-e___“—-_:__—‘b 1A KM GabF
S .




I R ~p) &
) Mg fabc(q p)

the scalaxr vertex in Fig.
priate factors. p,qg,k,2%

the scalar lines.

// \\
// \\
b p cq
a &
. 24,2 o o o
P + 1g°M (Gdbscaq + 6baacdp + 5daacbk )
- ] =
d k i b P
I
!
cq
ao 3 2 _
-ig M o\ O L Q
4 {fabf ch (p-2)" + fabd 6bc (p-k)
f b * e’ oG
aily e T fapelar (P £ ebpg(a-t)
8 /7 N P .
/ \
/ A ~ o o
p \ t £l (@K + £ 18 (k=2)7)
k d qc
b p q.c
\\ , ~g2M2
N P 7] {Sbcédf(Zp.q+2k.2 - k.g-p.k-2.9~-2.p)
N/
\/
/
, \\ +8,,£8 4. (2p.242k.g-k. % ~p.k-2.g-q.p)
7 N\
/ N
d k f £ +6bd6fc(2p.k+2q.2—k.q—p.q—l.k—l.p)}
FIG 2{a) _The first vertex is the symmetrized form of

l1(b) with the appro-

are the momenta of



]



P. ‘
P-e._ . |
= , (0.37)
Q"”' // . '
q’ :
Q\\ q\
N \
\
p- - - -= = p-—— -) (0.38)
/', ,/
k,/ k/

The Ward identities with any number of momenta contractions
could have been obtained but the above were all that were re-
quired. The»additional vertices are given in Fig. 2(a).

These Ward identitieé were used to remove the k"k" terms
from the vector-boson propagators and reduce the amplitudes to
their least divergent form. It should be noted that in the
derivation of the Ward identities a transformation, in the form
of the gauge transform for the massless Yang-Mills Lagrangian,
is.exploited. Only the two loop approximation to the self
energy amplitude was investigated but it was found to require
the additional scalar veftices of Fig. 2(a), some of which are
cf a non-renormalisable nature.

15)

Meanwhile Slavnov and Faddeev( and Van Dam and

Veltman (16)

showed that tlie massless theory does not result
from taking the zero-mass limit of the massive case. ‘"It thus

became generally accepted that the massive Yang-Mills Lagrangian



L

is not a renormalisable field theory.

(17)

Hsu and Sudarshan re-examined the theory by intro-

ducing a Lagrange multiplier into the Lagrangian which gives

rise to a soft vector-boson propagator(ls_zz). The generating
functional is
6] =z Y|af]aldexpli|d x|~ 3¢  -c"V + Imzy .uwM
- ’ _ T 4—pyv = 27—y =
u 1 2 H
+ oM 3 W ey + 3B + W -J 0.39
aM 3 Woex + 58x v, __J} ( )
with o2M?2 = B. On integrating over the multiplier fields
Xa {0.39) becomes
_ -1 L [ 1 v 1 ‘u
G[g] = =z IdEW:[eXp{lfd %= 7G,,°G"Y + MW W
. (0.40)
l oM My 2 U
- e o————— a + ]
2~ (00 -Vgu g_]}

i?e. the soft formulation of Fig. 1(a). The equations of

motion for the xa are

(32 + M)y = 49 W X aHx (0.41)
when o = B%/M. Hsu and Sudarshan defined the physical
state by

1+(X)|PhYS> = o . (0.42)

Thus the modification can also be interpreted as equivalent
to a scalar field being added to the Lagrangian with the

effective Lagrangian

Lo = =30, xo¥x - g + gx wxa¥y)] (0.43)

and the subsidiary condition



S WY /A

u 5 _
3 W +8°x = O. . (0.44)

Hsu and Sudarshan claim that any contribution of the
scalar field to the S~matrix generated by (0.39) or equivalently
(0.40) can be removed by adding the determinant Dz to the
generating functional (0.40) where

-
Py

th

[det(Gac - (3% + M)t 9f 4 o wﬁa“)_l'% (0.45)

Jd[xa] exp{ifd“xgé(l) } .

%
M

similarly the complete Feynman rules for the spin-one massive

(0.45) should be compared to (0.17) and interpreting D

Yang-Mills Lagrangian are Fig. 1l(a) and I(b) with a?=1

but a factor (- %) associated with each scalar loop. The
scalar interactions are no longer an infinite series, and so
the massive Yang-Mills theory would appear to be renormalisable.
The Feynman rules are the same as those of other authors for
the one-loop approximation.

(12)

Subsequently Mohapatra, Sakakibara and Sucher extended

(13, 14)

the analysis of Veltman to the four-point interaction

Wa+Wb > WC+Wd

as the ingestigation of the self-energy amplitude is not wholly
~ relevant to the S-matrix. They found the rules of Hsu and
Sudarshan insufficient to obtain a theory identical to the
normal canonically quantized version or even to satisfy
unitarity.

The two major ways of finding the equivalent "soft" form

of the massive Yang-Mills Lagrangian, viz. Boulware's and



Veltman 's generate scalar vertices which at face value seem
to differ from each other. Specifically, the factors associated
with the vertices and scalar loops do not seem to tally.

The analysis of Veltman was the first‘systematic use of
the Ward identities to investigate the role of the k"xV terms
in vector-boson propagators. This approach was aeveloped and
most successfully applied to the examination of the properties
of gauge field theories, an example of which has already been
met in the form of the massless Yang-Mills Lagrangian, (0.3).
For these theories-the Ward identities are aséociated with
the gauge invariance of the Lagrangian, e.g. (0.9) for the
massless Yang-Mills theory, and are sometimes referred to as

Slavnov-Taylor identities.

b. Gauge Field Theories

The study of gauge theories was initiated by Feynman(23)

who, on examining the S-matrix for the massless Yang-Mills

uv
- Lagrangian constructed with the propagators —%——- , found

k“+ie
the theory not to be unitary. He recognised the need to intro-
duce a fictitious scalar field to réstore unitarity, the prob-
lem being that there are no covariant and unitary Feynman rules
for the Lagrangian (0.3) as the fields Wg(x) have both a
spin-one and a spin-zero component. Faddeev and Popév(24’25)
derived the correct rules for this scalar field, by path
integral techniques but only for the transverse propagator
formalism.

Faddeev and Popov noted that many of the problems in

quantizing a gauge invariant Lagrangian are associated with



the degeneracy of the free Lagrangian. The action in the-

functional generator for the massless Yang-Mills Lagrangian
o[ = z7*t Jd[w] exp{ifd“x[ %gw-g“\’ +ﬂu»g“] (0.46)

is constant over the orbits of the fields, i.e. for a field
Wz(x), all W'g(x) such that W'g(x) is the gauge transform

of Wg(x) for some value of the gauge parameter:

1

Lof 9P (VP (%)) g

(0.47)
Ag “abc Tcd '

M = A H -
Wa(x) = Qab(x)Wb(X)

for some Qib' i.e. some na(x) in (0.12). These problems
disappear if the functional integral over the vector fields in
(0.46) is restricted to a surface which intersects each orbit

once only. This is achieved by multiplying the generating

functional by

const, (0.48)

2604 [al s (v

Q

W is defined by (0.47) and the é-function picks out some

surface according to the choice of f£. (0.46) becomes

cB] =zt Jd[w:[ alq] Af[w:](s(f[w])exp{ifd‘*x[—%gw-_c_“"

+ Hf?-g_“]} . (0.49)

Choosing

- u
fw] = 3, Wy (x) . (0.50)

Faddeevand Popov restricted the vector fields to the transverse
formulation and all that is required is that the contribution
of the functional z&ﬂ@], defined by (0.48), is evaluated. It

is straightforward to show
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pe (W] = _‘d-et[:dac - (371 CE _wﬁ a“] ~ (0.51)
This should be compared with (0.45) and (0.17) and interpreted
similarly. The choice of £[W] 1is known as the choice of
gauge and for the transverse or Landau gauge for (0.50) the
Feynman fules are those of Fig. 4(a) with‘a = 0 and Figqg.

4(b) with a factor (-1) associated with each fictitious par-
“ticle loop. Within the context of gauge theories this scalar
ghost is.called the Faddeev~Popov ghost,

Fradkin and Tyutin(26)

developed a more flexible for-
malism in which the choice of gauge was made by adding a term

of the form

-5 £ [W] £2(w] - (0.52)

to the Lagrangian.

(27) (28)

't Hooft , using -combinatoric techniques ; estab-

lished the following Ward identities for the massless Yang-

Mills theory

' =0 (0.53)

R ' = - - - - - = - (0.54)
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The "blobs" have any number of external physical lines
and are constructed with the rules of Fig. 4(a) and 4(c) with
o =1 and a factor (-1l) with each closed ghost loop. The +
indicates the presence of Faddeev-Popov ghost contributions
and the O implies the line which has no polarization vector

is on-mass shell, i.e. k? = 0. The additional vertex

a- - -> - -3 = 183 ¢ ) (0.55)

Using (0.53) and (0.54) 't Hooft demonstrated the unitarity

of the theory with the addition of an appropriate ghost

Lagrangian to generate the Feynman rules of Fig, 4(c). Further-

more, he extended the formalism of Faddeev and Popov and

Fradkin and Tyutin to a wide range of gauges by giving

fhe Faddeev-Popov ghost an orientation; 1i.e. the ghost field

becomes quasi—charged and_an asymmetry between the scalar legs

of the scalar vertex is‘introduced. The result of this for the

massless Yang-Mills rules, for a general choice of o, is

shown in Fig. 4(c) where the orientation is indicated by the

arrow on the scalar lines. This is the arrow in (0.54).
However, 't Hooft had not established, coméletely, the

renormalisability of the Lagrangian. It had still to be

shown that the Ward identities hold after renormalisation to

ensure the unitarity of the theory. The coﬁpling constants

df the vector and scalar-ghost vertices must be identical

(24)

after renormalisation as well as before. Taylor verified

this using the further genéralised Ward identities (which were

also obtained by Slavnov(3o))w
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_— - = - > , (0.56)

where the symbol X denotes the attachment (quqv - nguv).
(0.56) trivially reduces to (0.54) and (0.53) as required.
Although neither the massive nor massless Yang-Mills
theory is applicable, with much relevance, to the physical
situation; the importance of the above work lay in the
belief that spontaneously breaking a symmetry does ﬁot in-
crease the degree of divergence of the theory. This was

(31-34)

based on the work of Lee et al. who had shown this

to be the case in the 6-model. There is tﬁen the possibility
of constructing theories with vector-boson fields where mass

is generated by breaking the gauge symmetry of a renormalisable
massless theory, such as the Salam-Weinberg model(35).

The basic concept involved in the construction of such

models was first enunciated by Goldstone(36). The Lagrangian

Lg

3,0% 8% - u2¢*¢ - h(s*¢)? (0.57)
which is invariant under the global phase transformation

¢ - et ox > ¢re O - (0.58)

can be treated as a perfurbation expansion, as usual, if
u?2 > O to ensure the expansion is about a local minimum.
When u? < O the local minimum is no longer at |¢| = O,

which is now a local maximum, but at |[¢]| = A where
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A = /<~u?/h . To treat (0.57) as a normal field theory,

for u? <0, it is first necessary to make the replacement

¢ - ;§(¢1 + i¢, + 1) . (0.59)
2

The theory is said to have had its symmetry spontaneously
broken as a particular choice for the vacuum expectation value
has been made and the complete theory, i.e. Lagrangian plus
choice of the vacuum expectation value, is no longer in-

variant under (0.58). The Lagrangian, (0.57), becomes

if = %9 o™ + %3 ¥ - Lu2a? - gy L
G = Uq)l 4)1 2 u¢2 ¢2 - 2 '21"
- 2 (% + hi?) = %6.2(u? + 3hA?) - %62(u2 + hir2)
1 1 2
(0.60)
2 2 . h/ . 2y 2
- hl¢l(¢l + ¢2 ) Z(¢1 + ¢2 ) .

The constant has no physical consequences and can be dropped.

From the definition of A it satisfies the equation

u?2 + ha? = 0 (0.61)

and on applying this relation to (0.60) the term linear in

the field ¢l vanish as required but so does the mass term

fof ¢2. That the field ¢2 becomes massless on spontaneously
breaking the symmetry is an example of the Goldstone theorem
ﬁhich states that when a symmetfy is broken by a field
acquiring a non—-zero vacuum expectation value, a massless
scalar appears for each parameter of fhe symmetry which ceases
to govern an exact symmetry, i.e. under which the wvacuum

expectation value *is not invariant.
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Extensive'investigations were made to see if this rather
unphysical result of the Goldstone theorem could be

avoided(37—44). Higgs(37,41,43)

established that the massless
scalars could be absorbed by massless gauge bosons (with two
transverse polarisations) to produce massiye vector-bosons
(with three polarisations). A minimally coupled vector boson

is added to the Goldstone Lagrangian (0.57) to construct the

Higgs model

- 1 .
Ly = -g0,a, -02)7 + [ Gymten el 2] >-nlo| " .
(0.62)

It is invariant under the gauge transformation

a5 A 4 VA, b - oleh(x) o (0.63)

and, for u? > o, corresponds to a massive complex scalar
and a massless vector. If u? < O, the substitution (0.54)

has again to be made and the Lagrangian becomes

l - 2 l 2.2 v l 2y2 _ l 4
_4(8uAv auAu) + e’} A A Su°A 7hA

- ¢lx(p2 + hAz)-%¢§(u2 + hr?)
' (0.64)

v E)0) +eh 95)% + 50D 4, - er ¢1)% = %62 (u? + 3hA?)

R u _ u _ . _ E 2.2
T M (3 0y — enTh)) = hae) (017 6,7) - F(9)%+ ¢2)° .

Ncw, however, the scalar which has become massless, ¢2, is
a ghost, i.e. not a physical field, as can be seen by making

the substitution

1 .
¢ = 5 O x(x) et/ (0.65)
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instead of (0.59). The gauge transformation (0.63) leaves

Xx(x) unchanged but 6(x) transforms as

0(x) > 6(x) + ex A(x) ‘ (0.66)

Therefore, if the gauge transformation is exploited, the

field 6(x) can be removed from the Lagrangian, i.e. A(x)

is chosen to be - éi 8 (x). The corresponding trarmsformation

of the field A is

ab - BY = aM - é% s¥e0 (x) . (0.67)

Expressed in terms of these fields (0.62) takes the form

' - - 1 _ 2 1l -5, u 1 u
o{H = ?I(ava avBu) + e’} BuB + 7811 X 3" x
+ % ezBuz(ka(x) + x(x)?) - %(u2+ 3hA2) x2 (x) (0.68)
o 2
- %(4Ax3(x) + x*(x) = (W) (x) - Bz - %A“

and the vector field has acquired a mass VeZaZl .

With the successful completion of the investigation of
‘the massless Yang-Mills theory, attention centred on theories
with massive bosons constructed by the Higgs mechanism.

(45) made the important step of using the fact, that

't Hooft
a spontaneously broken gauge theory still has a gauge in-
variance, to reformulate massive vector-boson thecries, of the
spontaneously broken type, in an explicitly renormalisable

manner through a judicious choice of gauge. For example,

(0.64) is invariant under

aY s oAb ¢ M ax) .



-2]-

01 (x) » ¢;(x) - 2sin(A(x)/2){sin(A(x)/2) ¢,

+ cos(A(x)-/2)¢2 + sin(A(x)/2))\}

(0.69)
¢, (X)) + ¢, (x) - 2sin (A (x)/2) {sin (A (x)/2) ¢,
| - cos (A(x)/2)¢, + cos(A(x)/2)2}
and the choice of gauge is made by adding the term
- %C(x) C(x) (0.70)
to the Lagrangian, where
cx)y = @& VB, +ae ) gy - (0.71)

. The form of the gauge function (0.71) is chosen so that the
cross—-terms cancel the term -e>‘Au he ¢2 in the Lagrangian,

(0.64), which is now

= _ 31 - 2 _ 1 1 u 2 1l 2,2 u
= - gBA, - AA) - 5 (TA) T+ et A
1. u N S 2y 1 u _ 1 2 2422

(0.72)

N

U 1 2,2,2 _ u 1l 2,2,2
+e8u¢lA ¢2 + 5e Ap¢2_ eau¢2 ATpq + me Au¢l
232 - 2 2y _ h.2 2
+e“AA ¢4 hx¢l(¢l + ¢2) 4(¢l + ¢2V

g"V - (1-a?)k"k"/(k?-02e?A2+ie)

The vector propagator 1is k7 = eZ3? + ie

and to regain the explicitly unitary formalism the limit as
o > « must be taken. In this limit the mass of the scalar
field ¢2 also tends tb ihfinity and it, obviously, must be
a ghost, i.e. unphysical particle. To construct the correct
S-matrix the contributions of'the Faddeev-Popov ghost, appro-
priate for the gauge transform (0;69) and the gauge function,

(G.71), must be included. '+ Hooft, also, demonstrated for
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a certain model, that the electromagnetic mass differences
are finite as suggested by Weinberg(46).

Spontaneously broken gauge theories had only been shown
to be renormalisable according to power counting., Within the
framework of the path integral formulation, Lee and Zinn-

Justin (47749)

showed the renormalisability and unitarity of
various examples of these tﬁeories. Also, the invariance of
the S-matrix under different choice of thé gauge function was
demonstrated. This had been éssumed in much of the above
work. Again Ward identities were heavily relied upon.

(50) dis?elled any doubts, over the

't Hooft and Veltman
use of path integral methods, by demonstrating that the
functional manipulations have diagrammatic equivalents whiéh
can be fully justified by combinatoric manipulations, i.e. by
direct manipulation of the vertices and propagators in an

amplitude. Consider a general Lagrangian, i: (A.), of
: i

INV
the fields Ai(x) invariant under the infiniestimal gauge

transform

. . _ ~ a ~ a
Ai - Ai = Ai + g sia(A) A (x) + tiaA (x) (0.73)

where the Aa(x) are the parametrisation of the transformation.
The circumflex on the ; and E denotes there may be deriva-
tives present which act, also, on the Aa(x). The E is
independent of the fields. For example, if jﬁINv(Ai) is the

massless Yang-Mills ﬁagrangian, (0.3),
A b
g s;,(d) A% (x) = [9 W x _T_I_(X)]
: b
[ - ¥ 0 (x)]

and (0.73) is equivalent to the infinitesimal transformation

(0.74)

~ a
tia A (x)
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(0.9). For the spontaneously broken gauge theory (0.64) the
transformation (0.73) is (0.69). 't Hooft and Veltman(so)
showed how to generate the correct Feynman rules by choosing

a gauge function Ca(x) of the fields, Ai(x), with Ca(x)

transforming as
C(x) » C. (x) +g 8, MAP& +m AP(x) “(0.75)
a a g ab ab ¢

under (0.73). %Caz is subtracted from, and a Faddeev-Popov

ghost Lagrangian

A

Ly = 0% (g +9g 2,6, (0.76)

added to, the Lagrangian:
= - L 2
i - iINV an + Lq) . 4 (0.77)

The Faddeev-Popov ghost loops generated by (0.76) have an
associated factor of (-1) as usual. The scalar ¢a is treated
as if complex to create asymmetric vertices when required,

e.g. for the massless Yang-Mills Lagrangian (0.76) gives rise

to the rules of Fig. 4(c) when the gauge function is

cd(x) = é auwi(x) i (0.78)

If a source term
i
Ri(A)J (0.79)
is added to the Lagrangian such that it transforms as’

R{(A) > Ry(A) *+ g o, AT+ ry a0 (0.80)

(50) demonstrated that the

under (0.73), 't Hooft and Veltman
amplitudes obey the generalised Ward identities of Fig. 5. The

notation used is shown in Fig. 6. The source functions R, (A)



The + désignates the inclusion of Faddeev-Popov ghost loops.

;
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appropriate Lagrangian.
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can be chosen to be anything and the Ji's may be, subse-
quently, dropped from the identities. Using the Ward iden-
tities the invariance of the S-matrix of a gauge theory
(spontaneously broken -gauge theories are covered by the term
gauge theory in this context). under a change of gauge was
proved combinatorically and hence unitarity estéblished for
all gauges. The renormalisability of these theories was also
shown by demonstrating that the original theory plus diver-
gent subtractions was itself a gauge-theory. Therefore,
doing the substractions in a manifestly renormalisable gauge
results in a well-behaved theory. Instrumental in this is
the Tree-Loop theorem(so):

If there exists functions Ca(A), of the fields a and

"~ ~ N "~

matrices sia(A), t

il
ia’ Rab(A) and mob such that

Ca(A) + gzab(A)A + mabA

TH

” a ~ a
Ca(Ai + gsia(A)A + tiaA )
o T (0081)

and the Feynman rules for the Lagrangian, 31 r ©Obey the Ward

identities for tree diagrams, Fig. 7, constructed with Faddeev-
Popov ghost rules 2%

~

ab(A) and mab and source vertices
Rl(A), pia(A) and Tia defined by

A a A
Ri(Ai + g Sia(A)A + tiaA

_ ~ a " a
) = Ry(A) + gp; (BA)AT + r, A

a

(0.82)

for some function R;i then the Lagrangian i: can be rewritten

L - L, - %c,? . (0.83)

where Ll is invariant under the infinitesimal transformation

~ a ~ a
Ai > Ai! = Ay +g sia(A)A + t A . (0.84)



FIG7 Generalised Ward identities for tree diagrams.
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Furthermore, the generalised Ward identities will hold for

diagrams with loops.

The theorem has the important implication that the Ward
idéhtiies contain the full symmetry of the theory in that the
invariance can be deduced from them.

However, it is still necessary to present and execute a
programme of renormalisation for a theory. Such a prégramme

for the Salam-Weinberg model(35)

(51)

was demonstrated by Ross and

it. Hooft and Veltman(so)

Taylor had only considered

the purely divergent contributions to the subtraction constants
and not the finite contributions to them. Ross and Taylor |
found that the renormalisation counter-terms could not be.

freely chosen(Sl’Sz)

on-mass shell in the conventional manner,
as they are interrelated_through the Ward identities and each
constant is involved with more than one process.

To execute Many of the concepts discussed above, it is
necessary to have a regularisation procedure strong enough
not to disturb the symmetry or the Ward ideﬁtities of the field
theory. The dimensional reqularisation scheme of 't. Hooft and

Veltman(53)

» which continues the dimensions of the integration
variables analytically from a region in which the integration
is finite, is just such a scheme.

To obtain the manifestly unitary formﬁlation of a spon-
taneously broken gauge theory the limit o =+ «, in for example
the Higgs' model (0.72), must be taken. To be sure this Jdoes
not affect the renormalisability it must be checked that the

theory may be renormalised in the unitary gauge. The study of
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(54-56) culminated in the demonstration

(57)

theories in the U-gauge
by Mainland, O'Raifeartaigh and Sherry that the renor-
malisation and unitary gauges are connected by a point trans-

formation. Thus the renormalisation in the unitary gauge can

be realised.

c) Synopsis

The object of this thesis is to investigate the following
two aspects of vector-boson theories.

The first is to examine the renormalisation of gauge
theories. We have mentioned that the renormalisability(47’48’50)
of gauge field theories has been shown in that the original
Lagrangian plus the counter-terms, necessary to remove the
purely divergent contributions to the amplitudes, form a gauge
theory themselves. Explicit renormalisation programmes for

(51,52) and it has been

various models have been investigated
found that the choice of the complete renormalisation counter-
terms, i.e. finite plus divergent parts, is restricted by the
symmetries present and the need to absorb the counter-terms

in scaling constants. We explore the renormalisation programme
for any gauge theory, in a model independent manner, to see
what types of counter-terms may be accommodated. 1In particular,
we examine the extent of the restrictions on the points about
which the renormalisation subtractions may be made, i.e. the
choice of the finite parts of the counter-terms. In Chapter
One we consider the wave function and coupling constant renor-

-malisations and find we have complete freedom of choice, in-

cluding the ability to renormalise on-mass shell and absorb
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any -infra-red terms then necessary. The infra-red terms are
those associated with an abelian field as in Quantum Electro-
dynamics and not with a set of non-abelian fields és in the
massless Yang-Mills Lagrangian. The effect of the choice of
renormalisation counter-terms is simply to change the repre-
sentation of the gauge invariance of the renormalised
Lagrangian. In Chapter Two we consider the mass renormalisa-
tions. The situation is not quite so simple in this case.
Some, but not necessarily all, of the masses may be renormalised
independently with complete freedom of choice of the finite
contributions. The number is dependent on the structure of
the Lagrangian but usually onlythe Higgs scalars are restricted.
The choice of counter-terms for the masses does not affect the
representation of the invariance only the form of the
Lagrangian. One interesting subsidiary result is that the
Tree-LoOp theorem of 't. Hooft and Veltman(So) is not as strong
as it seems. We find that for a Lagrangian and a transform
which fulfil all the required conditions Ll’ of (0.83),

is not necessarily invariant under that transform, although

the Lagrangian must be a gauge theory. The method of in-
vestigation in Chapters One and Two is by means of the Ward
identities.

The other topic investigated here is the massive Yang—Mills
Lagrangian. In Chapter Three, we investigate the Ward identities
of the theory for the tree approximation. They are found_td be
very similar to those of the massless Yang-Mills Lagrangian and
a comparison of the implications is made. Oné result is that
the abelian theory is renormaiisable.as is well known(lG'lg).

The analysis of the massive Yang-Mills Lagrangian in terms of
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transverse vector-boson propagators and compensating scalar
fields, which was executed for the self-energy amplitude by

(14)

Veltman and for the four-point interaction by Mohapatra,

Sakakibara and Sucher(lz)

to the two loop approximation only,
is extended to all orders for all interactions by means of
generalised Ward identities in Chapter Four. The effective
scalar Lagrangian is identical to that obtainéd by Boulware(g).
In Chapter Five we demonstrate that our approach is equivalent
to that of Veltman's(l4). Hence we have demonstrated the

(6) (14) reformulations

equivalence of Boulware's and Veltman's
of the massive Yang-Mills Lagrangian. We also explore whether
the massive theory can be reformulated in terms of the soft
rules of Fig. 1, i.e. if we choose the factoriassociated with
each scalar'loop to be (-%) we have the formulation proposed

by Hsu and Sudarshan(l7). It appears we cannot. However, we
further show that it is the S-matrix which is equivalent in

the reformulations of the theory and not the amplitudes. Hence,
these investigations do not entirely rule out the possibility
that the massive Yang-Mills Lagrangian is renormalisable or
that the reformulation of Hsu and Sudarshan is equivalent
although they make it highly improbable. 1In Chapter Six we
investigate the renormalisability of ;he massive Yang-Mills
Lagrangian. First we show the reforﬁulation of Hsu and Sudar-

shan(l7)

is not of a purely spin~one field but incorporates a
componeht with spin~zero. By means of path-integral techniques
two possible altern ative formula£ions are derived for the
SU(n) Lagrangian. The second is substantiated by direct com-

binatorical analysis. It is quasi-renormalisable in the

sense that in conjunction with the dimensional regularisation
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scheme of 't. Hooft and Veltman(53)

the theory can be
expressed in terms of the soft rules of Fig. 1 with

o = 0 and a factor (-%) associated with each scalar loop.
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CHAPTER 1

WAVE FUNCTION AND COUPLING CONSTANT RENORMALISATION

The points, about which subtractions are made, i.e. the .
éhoice of finite contributions, in the renormalisation of a
gauge theory, appear to be restricted by the very symmetry
"that enables the Lagrangian to be renormalisable(Sl’Sz). Here
we shall examine the extent to which the wave function and
coupling constant renormalisation is constrained. An important
consideration is that the counter-terms must be consistent with
the Ward identities, i.e. if initially the theory obeys Ward
identities, the theory plus counter-terms must also obey Ward
identities. This is necessary to ensure that the s-matrix
is invariant under the choice of gauge and that unitarity
continues to hold. |

't. Héoft and Veltmén(so)

have shown gauge theories are
renormalisable to the extent of adding purely divergent counter-
terms to the Lagrangian. The approach in Chapters One and Two

is to add finite counter-terms to the original gauge invariant

Lagrangian:

{

£+ £ = L +c.r. (finite) .

Obviously gﬁl is renormalisable in the sense that the renor-
malisation counter-terms may be chosen as those for ¢f plus

the finite counter-terms previously added. The renormalisation
becomes valid if the Lagrangian il is itself a gauge théory

as then if may be treated in the manner of (50) and the purely
polar terms removed. To realise this, it is only necessary to

i
show 3C obeys Ward identities. These are established using
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the identities for the original Lagrangian iu
The Ward identity restriction on the counter-terms is.
-automatically catered for by the method of investigation. The
finite additions to the Lagrangian are divided intb two types.
Those which modify the Ward identities through a multiplicatife
factor (which may bé dropped) treated in this chapter; and
‘

those, for which the Ward identities for i, are set up by

iterating the identities for j:, which are treated in Chapter

Two.
a) Treatment of Self-Energy Terms
: ' . {28,50)

The notation and treatment follow 't. Hooft and Veltma .
Consider a ‘Lagrangian jZINV(Ai) invariant under the infini-
tesimal gauge transformation

A, »A' = A, +gs. (AA(x) + £, A2 (x) (1.1)

i i i ia ia

and a gauge function ba(x) of the fields Ai(x) with Ca(x)

transforming as

Co(x) > Ca0) + g 2y AP () + my A (%) (1.2)

As discussed in the introduction the complete Lagrangian
is

{ = L - %caz + L (1.3)

INV, ¢

with the Faddeev-Popov ghost Lagrangian
* ~ ’ A
L¢ - ¢a(mab t g zab(A))¢b°
The s-matrix constructed with Feynman rules obtained
directly from this Lagrangian, but with a factor (-1)

assocliated with each ghost loop, is invariant under the choice

(50)

of the gauge function C and unitary Proof of these

a

properties follows from the manipulation of Ward identities.
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If a source term JiRl(A), where R (A) is arbitrary and

»transformé”
R, (B) > Ri(B) +g py  WA%(x) + r; A% (), (1.4)

is added to the Lagfangian (1.3), the theory obeys the
generalised Ward identities shown in Fig. 5. A particular
sﬁbset is the Ward identities for tree diagrams in Fig. 7.

Fér the rest of this chapter in discussing self-energy
terms the mass-like contributions are absorbed into the
denominators of the propagators but not renormalised yet.

The self-energy terms are then of the form of wave function
renormalisations.

The facility to add counter-terms (not necessarily
divergent) to the Lagrangian to renormalise the wave functions

is best shown by the following construction:

A

- - 1 22
If s, (A) = XiajAj + 8iax By B+ o.....
A Al A2
s : ¥ =
define  S!_(a) = ,giamijAj + ziamnijNnkAjAk Foeeens

where N 1is any non-singular matrix.

~S - -1 2, . v s _
Set Tia(A) = Nij S (A)jb NY o where N }s any non
singular matrix and SRR R TR L
‘ ia ~ ij “jb ba °

A new field theory invariant under the transform

A

e ~S a , .t ,a
A, > A} A, + g Tia(A)A + T/ A (1.5)

Ais constructed as below.

In the original theory, 4LINV with gauge function Ca'
C, is restricted to be linear in the fields A;, let



C. = Mai Ai/ for example. Now we define the new gauge
function
' = = ' . . & .
Ca = Gy A, Nlc McJ le A, . (1.6)

Under (1.5) the function Ca' transforms as

CL + 9 Gy Tib(A)A + Gy Toy AT . (1.7)

Hence the ghost vertices and propagator functions become

Vab(A)

~

Néd SL'(A)deN'ef where l'de(A) = Mdi S'(A)ie

IH

A

and Bab = Néd Mie Néb .

As N' is non-singular and the inverse of m exists, B 1is a
proper ghost propagator function which has an inverse.

We construct from f, - %C; a new Lagrangian such

INV
that if Aj Vij Aj is any bilinear it is replaced by
AiNikazszAj and thg vertex terms aijk ceae AiAjAk .ee

are replaced by &ijk .o NizijNkn oo AlAmAn cee s Denote
this I.agrangian by fl .

We have here omitted the possibility qf non-Hermitean
fields but they can be easily accommodated within the con-
struction.

The source terms for the original Lagragg;an 'ZINV are

also chosen to be linear combinations of the fields, e.qg.

A

R, = Rij Aj. For the reconstructed theory we choose for the
1] — (=]
sources Ry = Ry Nijj' They transform under (1l.5) as
RikajAj + g RikajTja(A)A. + RikajTjaA (1.8)

giving the new source-ghost vertices.
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LA . _ ~ A s - _ ~ A . - A" .
PiafB) = RypNpgTS(B) = Ry ST(A) NP, = pf NS
and ;' = §<uN .%t = % E N/ = ; N
ia - ik ki ja - ik kb 'ba - ib 'ba °

It can now be shown that the theory il + Ri'Ji, con-
stfucted above with the ghost Lagrangian generated from Ca'
by the transformation (1.5), satisfies the Ward identities
for tree diagrams (Fig. 7) with a particular choice of N' .

The manipulation of the terms for Eﬁ' equivalent to the
first set of diagrams on the right hand side of Fig. 7 is
as in Fig. 8. The direction in which the diagrams are con-
structed is reversed, so that the vertices etc. can be written
in naturally with the same expressions as in the above deriva-
tioné and definitions. The final line is obtained by noting

that each "physical" propagator appears in the combination

N _ . - X

- o

N1yt

The equivalent identity for the second subset of diagrams
on the right hand side of Fig. 7 is shown in Fig. 9 and the
identity for the left hand side in Fig. 10.

If N' is chosen such that
N' N' = T

e.g. N' = I, the Ward identities for tree diagrams, of Fig.
7, for the original field theory if may be used to prove that

) .
the new theory 'i + constructed as above, obeys the Ward
/
identities of Fig. 11. By the Tree-Loop theorem of (50), ’i
_ , ,
] t . X - ;' t 2 . : . .
may be written as { INV 3 Ca where i:INV 1s invariant

!
under (1.5). i’INV obeys the full Ward identities, which
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may be shown directly or inferred from the Tree-Loop theorem;
It has thus been demonstrated that the finite counter-terms
( £ - fl) may be added to the original Lagrangian. In this
context the N has terms dependent on the coupling constant,:
g, but the bilinear'terms may be separated into a propagator
plus vertices in the perturbation expansion as required.

The counter-terms, added to iﬁ by the above construction,
can be used to renormalise the self-energy terms of the

physical amplitude since

(1.9)

In particular

i-—€>—{‘|||||||l}—_>“j Ezfim

The N may be chosen such that, with the subsequent removal

(1.10)

of the divergences, the self-energy terms for the "physical"
fields are renormalised on mass shell. This varies with

the.gauge but the most iogical choice of counter-terms would
be those that set the U-gauge representation renormalisation

on-mass shell.
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b) Infra-red Considerations

If the theofy contained the electromagnetic field, the
on-mass shell counter-terms would carry infra-red divergent

(58)

guantities for the charged fields. The requirement that

(59)

the infra-red terms sum in the usual manner , imposes rela-
tions between the infra-red contributions to the counter-terms
which must be shown to be consistenﬁ with the relations imposed
by the symmetry of the Lagrangian, i.e. as the infra-red |
contributions to an amplitude factorize the infra-red con-
tributions to the counter-terms must allow a similar factori-
sation. Here we shall shdw the addition of infra-red diver-
gent counter-terms, which do not affect the infra-red summa-
tion but leave the on mass shell self-energy terms infra-red
finite, may be madeAconsistently.

It is interesting to note that the solution of the infra-
- red catastrophe contains an early use of the Ward idéntity in
quantum electrodynamics. There because of the equality of
(58)

Zq and Z2 (also proved by a Ward identity) the charge

and electron self-energy renormalisations are épurious.
Yennie, Frautschi and Suura(sg), for simplicity, assume
initially there are no self-energy parts on external lines.
The spurious charge renormalisation, connected to the usual
wave function renormalisation diagram by the Ward identity of
1, (60)

Fig. , is then removed after summation of all possible

insertions of an additional virtual photon to give

B(p,p') U(p")T(p',p)ulp) + K(p',p;k) (1.11)
where
‘ ie? ® u
B(p,p) = % " d'k (ZP'U‘k' - Zpu'kgﬁ)z
k2 ‘k2-2k.p' k?2-2k.p

A



'p'm P o MW YW,
~<< A < -+ —_—— 4 “< -+ < X
P \% P P v P P vV
-+ <« O—« -+ < o Y =
PV -gm2 P P -sm? Vv P
u
U
-P=p
FIG 12 P indicates that the line is external and physical.

AN 1s the photon;

the charged fermion.
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ﬁ(p')F(p',p)u(p) is the amplitude before the addition of the
virtual photon; X(p'p; k) are the contributions to the
amplitude infra-red finite in k; X is the infra-red cut-
-off. As expected the k-integral is ultra-violet convergent
and no cut-off is necessary.

As it cannot always be guaranteed Z, = Z, we shall
include self-energy terms explicitly and evaluate their
infra-red component before renormalisatidn. The discussion
is held within the context of guantum electrodynamics but
the value of the infra-red components will not be different
in another field theory and the conclusions are quite general.

In Appendix A it is shown that if an additional photon
is added, to an amplitude including self-energy terms, in

all possible ways the infra-red contribution factorizes as

B, u(p")T(p',plulp) + K(p',p; k) (1.12)
where -7
A
B - ie? {(2p'—k)2 - _ (2p'-k).(2p=k)
o (2m) 2 (KZ=2p'.k) 2 (K2=2p .k )(k2=2p.K)
A , _
(2p-k)?
P &ITozp. R 2 d;? .

A is an ultra-violet cut-off. The virtual infra-red diver-

gences can now be summed, as in (59), to

(o} . '
m° (1.13)

™ 8

MTOT

HH

exp(Bo)

n=0

where mg are the infra~red finite contributions from‘the
amplitudes with n virtual photoné. From (1.13) (cf. Appen-
dix A) we obtain the total contribution to the self-enerqgy

terms

O o )
gop) B omoE (1.14)
¥ n=0

=2
hi

exp (B
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S-E ie? Ad“k (2p-k) 2
where B = f P :
(2m)* k?(k?-2p.k)?
A

Hence the total contribution to the S-matrix is,

M

I > 8

m ‘ (1.15)

exp (B) n

n=0

which agrees with Yennie, Frautschi and Suura(sg).

Using this factorisation the infra-red divergent terms
from the virtual photons can be shown to cancel with the

(59). The

infra-red divergent terms from the real photons
summation, obviously the same for any theory, as above is,
-valid for the uﬁrenormalised S-matrix or for thé renofmalised
S-matrix provided the counterntermsvare infra-red finite.
Q.E.D. may be considered as an example of either as the
relevant renormalisations are spurious.

Suppose counter~terms are added, as in section a), to

the Lagrangian with tﬂe choice for N of

Nij = 6ij nj (no summation over_J)
where nj =1 if j refers to a neutral particle
or nj = exp (a) if j refers to a charged particle.

Using the relation (1.9), between the amplitudes for the
original Lagrangian and thé amplitudes for the Lagrangian

plus counter-terms, it is easily seen that the only difference
this makes to the summation to all orders of the virtual photon
contributions to an amplitude is to modify (1.13) to

= exp(BO + 2a)

'M%OT = (1.16)

™ 8
3

n=0
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(1.16) could now be reduced to the correct form for the

infra-red summation, as in (1.15), by a judicious choice of
. The most obvious

o
, _ie? J a*k  (2p-k )?
2
(2m)* k? (k2-2p.k)?

o = - (1.17)

A
is inappropriate as it is both ultra-violet divergent and
dependent on p, the momentum of the charged particle. A

choice which avoids these difficulties is

o - -y def [ d'k - (2p)°®
(2m)* k? (k2-2p.k)?2
1
o e? ax . ' :
= L P J > | (1.18)

The differences between (1.17) and (1.18) can be assigned to

the infra-red finite terms and (1.16) becomes

M&OT = exp(B) (1.19)

I~ 8
3

n=0

Immediately we see from (1.10) and (1.14) that the above
choice for o makes the self-energy terms iqfré?red finite
as required {(and as necessary, as on genérating the S-matrix
no more infra-red divergences will be introduced and the sum-
mation as in (59) remains valid.)

Counter-terms can hence be added to the Lagrangian in
such a manner that the on-mass shell self-energy terms are
infra-red finite, while keeping the usual form for the sum-~
mation of all contributions of the virtual photons to the

infra-red divergences. Further infra-red finite counter-terms
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could then be added to complete the on-mass shell renormalisa-
tion of the self-energy terms. Thus the normal on-mass shell
renormalisation of self-energy terms may be realised for a

gauge theory.

c) Coupling Constant Renormalisation

The coupling constants of a gauge theory are readily
renormalised similarly to the self-energy terms in section a).
If the coupling constant g is replaced by Bg whenever it
occurs in the Lagrangian and the ghost vertices and source
terms are modified likewise, the only change in the diagrams
of the Ward identities for tree diagrams, Fig. 7, is that
each side gains a factor (B)n, where n is the order in
coupling constant of the identity. For simplicity let the
gauge and source functions be linear as before. It is then
obvious that to obtain the modified ghost vertices and source
terms the only change necessary is to replace g by Bg.
whenever it appears in the gauge transform. The new Lagrangian
is therefore invariant under the modified transform and the
Ward identities hold to all orders by the Tree-Loop theoremn.
Hence the coupling constant can be suitably renormalised withA
the counter-terms ( i" - i,) .

| If the theory under consideration contains the electro-
maghetic field the electric charge méy be connected to other
coupling constants. However, the normal finite renormalisa-

(58)

tion for the electromagnetic charge may still be used as

(68)
the appropriate amplitude( Au(p',p), defining the charge

renormalisation, is infra-red finite in the limit p = p' and
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with p set on-mass shell, if the self-energy terms have
already been renormalised as in section b). No additional
infra-red divergences arise.

The analysis is easily extended to-Lagrangians with more
than one independent coupling constant whereby each is renor-

malised separately.

d) Discussion

The three sets of additions to the Lagrangian discussed
above start from a gauge invariant Lagrangian which obeys the
Ward identities and end with a gauge invariant Lagrangian
which obeys the Ward identities.b Aé the same is true of the
purely divergent counter-terms discussed by 't Hooft and

Veltman(so)

the different sets of counter-terms may be added
in any order, i.e. they commute. The most convenient order
of application would ge

(i) add counter-terms necessary to render on—-mass shell
self-energy terms infra-red finite if necessary as
in section b).

(ii) add finite counter-terms to complete the finite
renormalisation of the self-energy terms of "physical"
fields as in section a), i.e. render self-energy
‘ferms purely divergent.

(iii) add finite counter-terms to renormalise the coupling
constant(s) as in section c).

(iv) add purely divergent counter-terms to complete
renormalisation as in (50).

The renormalisations should be done order by order in the loop

expansion approximation.
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We thus see that the self-energy and coupling constant
renormalisation can be done, in the conventional manner, on-
mass shell. As the coupling constant appears in several
vertices one may be chosen to define it and be renormalised on-
mass shell, e.g. if the Lagrangian includes photons and
electrons the interaction i e Yy X ¢ could be renormalised
as in Q.E.D. The charge renormalisation of all other inter-
actions then follow accordingly.

Since no other way of adding suitable counter-terms
consistent with the Ward identities. could be found, it seems
likely that the divergent counter—-terms of (50) are of the
form of sections a) and c). It is the invariance of the
Lagrangian which makes it possible to render all the vertices
finite with only one counter-term for each coupling con-
stant<3l'32’48’51). Similarly the symmetry could be utilized
to remove the divergences from the self-energy terms by intro-
ducing far fewer independent counter-terms than one for each
physical field as proposed(48'50).

The reformalised theory is indeed invariant under the
?roposed transform as in essence the modifications are only
changes in the representation of the origiﬁal invariance.

. However, it has been demonstrated that the representation
depends on the choice of subtraction points in the renormalisa-
tion and is therefore independent of gauge as required(50’51).
The counter-terms can be representéd as scaling constants
quite readily as only one is needed for each "physical"

field and one for each independent coupling constant. This
is particularly acceptable in the U~gauge representation
although applicable to all gauges. Relying on the equality

of divergences (but not finite terms) many of the scaling

constants may be made equal, e.g. one for each multiplet of



fields as in Ross and Taylor(51). The latter is much res-

tricted and does noﬁ allow on-mass shell renormalisation.
None of the renormalisations examined in this chapter
have any relevance to thé mass renormalisation. In Chapter
Two the possible additions to the Lagrangian which may be
interpreted as mass renormalisation céunter—terms will be

examined.
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CHAPTER 2

MASS RENORMALISATION

So far only additions to the Lagrangian, which may be
interpreted as charge or wave-function renormalisation counter-
terms, have been investigated. 1In Chapter Two we consider
additions which could be used for mass renormalisation
whether finite or infinite. The technique is similar to
Chapter One except that the additions preserve the Ward

identities by iteration rather than factorisation.

a) General Case
Again we start from the Lagrangian Zﬁle —,%C; where
jZINV is invariant under
, _ T a , — a
A; » A = A, +g 5, (A)A +t A . (2.1)

The notation has been changed by replacing the circumfléx,
which denotes the presence of derivatives, by an arrow which
indicates the presence of derivatives and points in their

direction of application. C, correspon dingly transforms as

- b - b
Ca + g Qab(A)A + mab A | (2.2)

and supplies the ghost vertices ?ab(A) and propagators

- ~1 .
~m_y, - If sources Jli' J2i etc. couple to the field com-
binations Rli’ R2i e whege Rij transform as
a a
ij t g plja(A)A M 1JaA
- — .
then the pija(A) and rija are the rqulred ghost-source
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terms for the Ward identity in Fig.§.

The source functions R2' R3, etc. are chosen to bé
equal, R say, only Rl being different and henceforth denoted
by @L. R is restricted to be linear in the fields, for
example @l. = ﬁz.. A.. The corresponding ghost—sourcé

i ij "3
functions for R and @l are obtained from

- a , = .a
Ri -+ Ri + g pia(A)A + riaA
(2.3)
D a <> — a
R, + R, + IR §’ja(A)A + Ry Eya0°

The double-headed arrow indicates the presence of some
derivatives acting to the right, some to the left. 1In practice,
this only affects diagrams through a change in sign of some
momenta terms and the distinction is really superfluous.
However, it is rétained for ease of interpretation. The

gauge function Ca is again restricted to be linear such

that C, = ﬁéi Ay anQA —Ezij chosen to obey the relations
) —_ < “—> —
Rij Sjum = M, T 08,
. . —— . (2.4)
Riy 52 = Mib Loby $4a

which introduces the additional vertices of Fig. 13. The

original Lagrangian EﬁINV - %C;, with the above choice of

source functions, obeys the Ward identities‘for tree diagrams
of Fig. 1l4. It also obeys the Ward identities with no R,
sources of Fig. 15.

, :
If a Lagrangian :ﬁ is constructed such that

!
—

*
- —;*2 - .
’JﬁINV 2Ca + ¢a (mab + gjLab(A)M)b + JiRi + Ji'ﬂ'

1

1

(2.5)

>

L “
+ %Ai'&%ij Aj + ¢, (méb + g_léb(A))¢b'



< a R atad <> <>
- 2 (A = L S._(A)
ba lbj ja
a <> <> <>

Xt
!
A

|
B_
n
[
t

P

ij

FIG13 Additional vertices.



)

= a

®

———é_—?_—é_ -

> > - -> -

b c-a
< UJG

'5 &0

+-:§{E§U,//§/ over other blobs

Only the sources

@l are shown specifically attached to blobs.



n
&)




-46—

jd will also obey the Ward identities in Fig. 14 and 15.
The proof is by induction.

The Ward idenfity, Fig. 14, is assumed to hold for diagfams

qontaining all éossible choices of n vertices of the types
of Fig. 13. (The choices have to remain compatible with the
order in coupling constant of the diagrams.) Both sides of
the identify Fig. 14 afe multiplied on the left by the se£ of

diagrams

(2.6)

where the "blob" is constructed from the original vertices bnly

and contains any number of the sources R as required. The 1i's

are summed over to giéejthe identity in Fig. 16, which is
obtained using the relations (2.4) to introduce the gauge
function to the set of diagrams (2.6). The Ward identity of
Fig. 14 is now applied to the diagrams of (2.6) and we get the
identity of Fig. 17. The identity has been proved for one
valﬁe ofr x and y only. If the identities for all valués'
of x and vy, such that x plus y 1is constant, are summed
then the Wardvidentity Fig. 14 has béen established for (n}l).
The identity'is known to hold for n=0 when it reduces to
the Ward identity of Fig. 14 constructed from the original
Lagrangian. Hence the identify for the Lagrangian (2.5)
has been established for all n.

‘If, at any level of the iteration, the identity of Fig.

14 had been multiplied by the set of diagrams



5 m I & «— = a
—g Rfm Mic Lch'tjc—<_
blobs
-<_
S S
| blobs k ! : l
/m m
-—> L d
L R Koy _
FIG 16 The diagrams are all of the tree variety. The notation, more usually used when

loops are present, has been adopted for brevity.
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rather than (2.6), i.e. the "blob" now has no @l-sources,
the identity wéuld have been established at that value of n
with only the sources R present. -The complete set of
diagrams constructed from (2.5)_for any fixed order in the
coupling constant may>be divided into subsets, each of which
is distinguished by having the same humber of vertices of

the types in Fig. 13, n. Each subset obviously contains all
possible diagrams for that value of n and the previously
established identities for each value of n may be applied. 
Therefore, it has been proved that the Lagrangian (2.5) obeys
Ward identities for tree diagrams with sources (2.3) and con-

straints (2.4).

——

By the Tree-Loop theorem(so)

all that is necessary now
is to find a transformation, a gauge function and a source
function which generate the ghost and source terms appro-

priate for the Ward identity. If the gauge function is kept

the same and we define the transform

_ Hé a Ht a '
' —1
A, > A, A, + g Tia(A)A + T/ A (2.7)
where
S = <! et '
Tia(A) = Sia(A) + Sia(A) and Tia = tia + tia
. - ~ ' - [redi}
then we require Mai Sib(A) and Mai tib to be the
additional ghost vertices ?ég(A) and H;g . A solution

of this is
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@) = T 3 D .. S. (&)
B =t Mg Bigy S4a
ia
(2.8)
& - i — =1 & — ’
ia - tic Meq L2dj tja °
From Appendix B the solution of (2.4) for Ll and L2
in terms of R is
«) -~ "C 1 "c > [ d
lej = L2dj = mgo ty &Lij = Laj (2.9)

where 4% satisfies the conditions (B.13). If the source

" term is linear in the fields, i.e. R, EiﬁijAj, it would

transform under (2.7) as

- - - -—)16-' a

Rjj25 >~ R385 + 9 Rij(§ () + tJC AR ka(A))A
' (2.10)
- — ._. —)—]_4-; -—) a

+ R..(t._ + m

ij‘'ja ]C cd dk ka)A *

Thus if for the original gauge invariant Lagrangian the source

functions RiJi had been chosen linear with

“«> > > >
« ' -1

Rix Ri504% ja Mab Lpk’ (2.11)

the Ward identities for (2.5) with source term R! 1k k would
have been demonstrated to hold. We thus expect the Lagrangian

[
iTNV -+ Ai i3 Aj to be invariant under (2.7).

The generalised Ward identies can be shown to be satisfied
, e _
directly or inferred by the Tree-Loop theorem when (28 is
well-behaved. The final theory is a gauge theory and the

divergences may be removed as in (50). From the form of the
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additional vertices of Fig. 13 it is hoped the added term
Ai ??i Aj may‘be used as finite counter—-terms for the mass
renormalisations.

One further restriction on ?i}j is that it must be
hermitean., The construction for tree diagrams could accommo-
date an asymmetric R through the asymmetry of the source-
terms AiZ$ij Jj but it would not be possible £o identify
the modified Feynman rules with a Lagrangian and the extension
to diagrams including loops would fail. It should be noted

that the construction may involve a change in the gauge para-

meter in the transform as well, i.e. , Aa > ZabAb'

L) Indeterminacy of the Tree-Loop Theorem

In section a) we found a transformation (2.7) and source
term (2.11) which, with the original gaugé function, gave rise
to the necessary terms‘féf the Ward identities, proved to hold
for the Lagrangian (2.5). This, however, may not be the only
solution.

As a preliminary step gather all the bilinear terms to-

gether to obtain the complete propagator function

<« —) P
Map 5 Map toMLy
Similarly define | , ‘ . (2.12)
«~ - « ‘
n - ]
LA (B = oL (R) o+ 2l (B) .

The tree-diagram Ward identities for the Lagrangian (2.5) can
now be expressed as in Fig. 18. If we further assume (2.12)

can be rewritten as
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Mab 4= Xac Xcd Mab
and (2.13)
> 4:? <« -
2ab = Xac Xcd de(A)
o ]
where Xcd must be non-singular, Fig. 18 immediately gives

the Ward identity of Fig. 19. Since the transform (2.1) acts
on the gauge function Xab MbiAj’ indicated by Fig. 19, to
dgenerate the appropriate ghost propagator - (X m);é and
vertices (X&l)ab we have shown the additions may be considered
to have changed the gauge of the original Lagrangian only.

ad

Hence the subset of additions, Aiébij Aj, for which the
conditions (2,13) hold are in most cases a change of gauge.

The most general addition can be any mixture of the twp
solutions, i.e. those représented by a change of the invariant
Lagrangian and corresponding transformation and those by a
change of gauge, the precise nature of which is model dependent
and can only be found by direct investigation. However, the
demonstration of section a) of the existence of a gauge
function, a source functicn and a transform which generates

the correct ghost and source terms for the Ward identities is
still valid to the extent of proving that the modified Lagrangian
is a gauge theory although the gauge function etc. found may
not be the correct ones.

Thus the equivalence, between the Ward identities and the
gauge theory nature of the Lagrangian, implied by the Tree-
Loop theorem of (50) is weaker than the statement of the
theorem would give reason to believe. The theorem should be
modified to state that if all the appropriate conditions are

fulfilled the Lagrangian under consideration is a gauge theory
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but the gauge transform may not be that used in fulfilling
the conditions.

A simple example of the additions to a Lagrangian,
discussed in this section, is the possible additions to the

(4)

Yang-Mills Lagrangian invariant under local SU(2) transforms.

szNV = T I8y & | (2.14)
where 'V o= MW - VWM - g WMWY (2.15)

is invariant under the infinitesimal gauge transform

w o> W+ g xp- oV (2.16)

r 3\ ’ LN
=4 - ¥ o, g = |-q¥H
i.e. ‘Sia = O W3 W2 ; tia = 9 O' 0
u M ' _aH

W3 v o} Wl 0 o 0]

_taH H _aH

W, Wy 0 o 0 3
\ e J : L J

Here all derivatives will be taken to act to the right with

signs adjusted accordingly. The gauge functions are selected

to be
- \V
C, = 93, W, (2.17)
M = [ 5 0 o
i.e. M = v
0 av o)
o} o) Bv
\ J
which gives  the characteristic operator of Appendix B
N oA=1 u' a“av (3)
(I - Mm t) = (8 v 57 ) I ) (2.18)

(2.18) has three eigenvectors of eigenvalue O

viz.
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( 3 ( 3 ( 3

ia 0 0

o | : aH| o) (2.19)
M

0 0 3

L) ) L)

Keeping to an explicitly Lorentz covariant expression each
element of . @% is of the form giU'+ y 3"3Y where x and
y may involve derivatives. To satisfy the necessary con-

ditions (B.13) all the x must be chosen to be’zero when

A = My 5, - (2.20)

Of course a solution of the form of section a) could be:

constructed but it would be inappropriate since
) ")
Y = (~I + XX) ' (2.21)

for any Y, as K is symmetric. The construction is thus
equivalent to changing the gauge function from (2.17) to
C.' = X

a abe for any Xab without changing i; i.e. the

INV/
construction allows us to go to any other Lorentz covariant
gauge. This is as expected as the massive Yang-Mills Lagran-
gian ddes not exhibit gauge invariance.

Another example of interest is the Abelian gauge invariant

Lagrangian of Higgs(43'47)

i:INV

1 2 . * u URTIN
- e, A - + + -
4(8u v 8vAu) (3u 1eAu)¢ (9 ieA™)¢

(2.22)
* *
= ui(¢ ¢) = A (¢ ¢)?2
unvériant under ¢ > ¢ - iedA ,
o7 > o 4 des A (2.23)
ab o aM - ¥y |
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-> r N -> r 3
i.e. Sia = -i¢ H tia = (0]
. . *
i¢ ‘ o)
0 -3
\ J L J

The gauge function is chosen to be

>
C = avA i.e. M, = (O,O,BV) (2.24)

when the characteristic operator is identical to (2.18) with
the single eigenvector for eigenvalue zero, simply a¥.
This time, however, the conditions (B.13) are satisfied by

the covariant choice of

<> r 4
R.. = 0 o 0
ij
o o o (2.25)
U u
0 o ash +bdfa
| : )

~ The additional terms arising from (2.25) must be broken
into the two terms

atHs

u Vv, .V U a
A §° - A+ 3A 9" (b + —
% u a ( v —37—) 5 u (

)3 A" (2.26)
32 ¥ ~
whereby the first is an addition which is interpreted as of
the type of section a) with the basic invariant Lagrangian
being modified but in this particular case the transformation
is not. The second term is incorporated in a change in gauge
from BuAu to (1 ¥ b + a/BZ)% auA“. Thus this example is
in the form of a mixture of the two types of modification

In particular choose a = M2 and b = J;—1 when the
o

complete Lagrangian becomes
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- %(a A

- 2 . *U__-- u - 2 *
N BvAu) + (3u + 1eAu)¢ (3 ieA") ¢ (o ¢)

1

- (0¥ a2 2n M - 1L (2.27)
Ao ¢) + M AUA %(a

s aHy2z |
u

In (2.27) the vector boson has become massive with propagator
w_ (1-a?)q"q"

g2 - M2

g9

e It can be interpreted, as discussed, as

a gauge theory which obeys Ward identities with source terms
generated by the transformation (2.23). The appropriate

ghost Lagrangian is generated from the gauge function
2 1
M /32)"7 auA“, i.e. there are no ghost vertices and the
%

ghost propagator function is - %(q2 - a2M?)

(S +
(qz)%. A con-
sequence of this is that the S-matrix is invariant under
varjation of o and the Lagrangian (2.27) is renormalisable
as is well known(6). When the mass of the vector-boson is
renormaliséd the counter-term is equivalent to an addition of
the form (2.25) or (2.26), i.e. the Lagrangian and gauge
functioﬁ'is modified by a construction of the form discussed

in this chapter. The massive abelian theory is further dis-

cussed in Chapter 3.

c) Other Modifications

| So far we have considered only source terms linear in the
fields being absorbed into the Lagrangian. Thesé led to the
introduction of bilinear terms with accompanying two-point and-
three-point ghost vertices. The technigque may, obviously, be
extended to bilinear and higher order source functiohé with
their corresponding generation of three-point and higher ghost

vertices. Combinations of different order source terms
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introduce more flexibility into the choice of functions but
as these would tend to introduce non-linear terms to the
gauge functions, and we are chiefly interested in two-point
vertex additions which -may be interpreted as mass counter-
terms, we restrict ourselves to the linear source situation
examined in sections a) and b)..

The one exception to the above restriction is within
additions being added to-the Lagrangian which have no cor-

<>

responding ghost vertices. If Jiél is the additional

. AL
13 ]

source term for physical fields the ghost source terms for

4&-? -> a “« -> a

the above construction are Ji i3 Sja(A)A and JiélijtjaA .

On multiplying by (2.6) these become equivalent to vertices
<> > - >

Ai@lij tja and Ai&bij Sja(A);+ If these are identically

zexro the additional term Ai&Lij Aj may be added to the

Lagrangian without changing the Faddeev-Popov ghost Lagran gian
but preserving the Ward identities. This genre of additions
can be extended to higher orders in the fields as usual and
includes the set of terms invariant under the gauge transform.

For example, for the Lagrangian (2.22)

<>
g%ij could have been chosen ) O. a (0]
a O (6]
0] (0] (0]
<> > “~> >
a_ . a
when Ji&ijtja/\ = 0 and Ji&,ijs;ja(A)A S
= (Ji) 0 -iea o) )
iea 0 0 ¢* A
0 o 0 a¥
\ J \ J
“«-> > )
a . . . *
Ai&Lij Sja(A)A is identically zero and the term a¢ ¢ may

“be added to the Lagrangian.
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These additions may be disguised by being combined with

additions to the Lagrangian of the form of Chapter 1. An

(35,51)

example is the Salam-Weinberg model in which the mass

renormalisation counter-terms are made explicit by the refor-

mulation:
- 1 2 - - 2 .1, M,» - 2
L= - fureu, - ow HH ) = TG (,B,70,B,)
. i (0]
+ (M2 + ki . - % + = (. - 2
(M?) | (3, + %igT.W - %igIB )¢ ﬁ(g W= IB) ()
~xu?M2 (g oo + /7 o (‘i) + /2 (0,1)0 )2
., (2.27)
2 . .
- P——g——lf—' (g o676 + /2 o ((1)) + /2 (0,1)0)

+ T (i - YgT. - % H1 48R (i - H
o L(J.au 59T ﬂu ngBu)Y L BR(lau gBu)Y R
- L Tor + f(?)R + L R oL + R(O,1)1L)
V2 V2 :
invariant under the transformation

W > W + W 'x - 3
o+ u, g(_u n) Wl

® -+ & + %ig(t.n - In*)eo + iL(l.ﬂ - In“)(?)
/2

L -+ L + %ig(t.n + In")L

R - R+ ig n* R .

’ 2
As each separate term is invariant the constants Moz, (ﬁ% ’

M2, u?M?, o, B and m may be scaled to facilitate mass

renormalisation without affecting the Ward identities. Similar-
- (47,48,51)
ly K can be used to remove the tadpole terms as necessary

(51)

To obtain the more usual form the following replacements

should be made



LR Y B, * @ Byr Nt o~ om0

F2) 2 2 2
1
o »9 . M > xgF, ur>—2 K7 2(F -E)/F
m -~ /2 GF, M. - 1, o> 1, B+ 1.

We have not included wave function renormalisation as it can
always be treated separately as in the previous'chapter. It
can also be seen from the above form that the coupling constant

renormalisation can be facilitated as suggested in Chapter 1.

d) Conclusions

From the preceding analysis it is evident that for any
gauge theory there is complete freedom of choice of the finite
counter-terms for the self-energy terms and the coupling con-
stant. It is only in the mass renormalisation that the choice
may be restricted as in the Salam~Weinberg model (2.27) where
the counter-terms for the Higgs scalars are related. In the
likelihood that there are no further consistent additions to
the Lagrangian possible the same counter-terms as discussed
must also be responsible for removing the divergences. By
considering the counter-terms broken down to the forms dis-
cussed we see, for example in (2.27), the relations between
couplings and masses must hold for renormalised we well as
the bare theory.

One further point to pote is that thé connection between
the Ward identities and a specific invariance is not as strong
as implied by the Tree-Loop theorem(SO). However, the con-

clusion that there exists an invariance is not invalidated.



-58~

CHAPTER 3

MASSIVE AND MASSLESS YANG-MILLS LAGRANGIANS

In section b) of the previous chapter a certain overlap
between a massive and massless abelian Lagrangian was shown
to exist to the extent that_the existence of Ward identities
for the massless theory could be used to establish themvin
the massive situation. A similar extension is also possible

for the non-abelian Yang-Mills Lagrangian.

a) Existence of Ward Identities

Following the prescription of Chapter 2 we consider the

non-abelian Lagrangian

- 1 uv ’
where "V = YWY - V" - g wxw

which is invariant under the infinitesimal gauge transform

wos oWt n

+g wWxn - 3% . O (3.2)

The gauge function is chosen to be

u¥a - ©(3.3)

and the source function

D

ébij = M25ab a“v . ' (3.4)

When the Ward identity of Fig. 16 is constructed for

this Lagrangian the contribution of the form



-50~

vanishes identically as £ is anti-symmetric in d and

dea

e. The other ghost-source additions are of the necessary form

<> -> 1 < a
= L 2
R,ij tia =5 9y (@MDEL . (3.5)
Hence it is possible to interpret the additions as (2.4)
>
but with lej =z 0. On absorbing the mass terms into the

propaéators we obtain the Feynman rules of Figs. 1l(a) and 1l(c)
which obey the Ward identities for tree diagrams of Fig. 7 with
the appropriate source terms generated by the transform (3.2).
The gauge function (3.3) is linear in the fields and we
shall also reétrict the source functions to be linear, i.e.

- -

Ca/E Mai Ai and Ri = Rij Aj. The conditions which need to

be satisfied in order that the Tree-Loop theorem may be applied

are
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> . > ' _ ot . > - - <y
Rij 852 = Rig 8327 Ry 555 2 Fi5 Ha
, > > A <~ > > > ' : > > - (3.6)
. ) - v L - | fed [ ) 1 ]
_and Maj Sjb(A) = Maj Sjb(A), mip = aj tjb

. v ' v ' .
for some ‘Ri., Sja(A) and tja' where mly 1is the complete

ghost propagator function for the massive theory. On assuming
>

. . s
Rij is non-singular
> <—+_l -> > > <> 1 > ->
' = v ’ - 1 = v
o Sja®) F ORGSRy S e T Ry Ry Yia (3.7)
3 3 t
and multiplying on left by Mbj
-> > A “~> > “~> <——>_l > ->
J— ] ] = ] 1
My S35 (R) = Mpy S5L(A) = Mpy R Ry S;,(8)
> < (3.8)
> <> -1 > >
3 - ' t =
i.e. (Mbi Mbj Rjk Rki)sia(A) 0.

However, all eigenvectors, with eigenvalue zero, for Sia(A)

as defined by (3.2) involve the fields WZ whereas

M - M'R'—lR does not and we are forced to conclude
> . <——; P-;—; 1 >
= L (e )
Mpi Miy Rk Rei (3.9)

(3.9) implies

ES > “+> > > > <> > g

= ' 1 = ' ' = '
Myi tia Mps RixRes ®3a = Mpy tia Mpg (3-10)

which precludes any additions of the type (3.4) from satis-
fying the conditions (3.6). The Tree-Loop theorem( therefore,
cannot be invoked on this occasion to imply the invariance of
the Lagrangian corresponding to the Feynman rules of Figs.
l1(a) and 1(c). If *;;j had been chosen to be singular a
solution to the conditions (3.6) could have been found but
+he Tree-Loop theorem would aéain no longer have been

applicable.

To see whether the Ward identities hold for diagrams-
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involving loops must now be examined directly. This will be

done later.

b) Direct Derivation of Ward Identities

The Ward identities for the massive Yang-Mills Lagrangian
can be deduced more directly than above.
V(Ai) invariant under

(l.i). Instead of following the usual prescription for genera-

First we consider a Lagrangian ;iiN

ting a gauge invariant field theory as in section a) of
Chapter 1, we use a more general "gauge" fun ction %G(A)

(which may not be a perfect square) and define a Lagrangian

dﬁ = GEINV - 5G(A) + J Ry (B) (3.11)

with source term JiRi(A). The Lagrangian~is not a gauge
theory and this method is only a device to enable the Ward
identities to be found. ...

Under the infinitesimal transform (l.i) the source term

transforms as (l1.4) and
G(A) ~ G'(A) = G(A) + gﬁa(A)Aa + 6a(A)Aa . (3.12)

The "gauge" is restricted to the set of functions such that

~N

P,(R) = 2C (AL, (A); Q_(A)

2Cb(A)Mba (3.13)

and Mba is non-singular. Following the technique of (50)

free particle fields of mass m are added to the Lagrangian:

= - L ay2 _ p..2p2
ii = i%NV sG(A) + JiRi(A) + %(SUB ) sm°BY (3.14)

which under the transform
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(3.15)

becomes

Y

= L - eC () (M + gLy (a)B? . + ed; (gp 4 (A) + ria)Ba

(3.16)
where e 1is infinitesimal. It is immediately evident as

in (50) that the field theory constructed by adding a ghost

Lagrangian
Ly = ¢ (1, + nga(A)]q;a (3.17)
to (3.11):
L =7 - G(A) + J,R, (A) + ¢*[§1 + gL .(A):lq; (3.18)
= &Ny T 2 iti btba T Itpa a ‘>°

obeys the Ward identities for tree diagramé, cf. Fig. 7.
Let L_, (A) transform according to

~ ~ A -

- S c 2
Lab(A) > Léb(A) = Lab(A) + gDabC(A)A + E

abcAC . (3.19)

To extend the Ward identities to diagrams including loops,

Fig. 5, it is sufficient to demonstrate that the auxiliary
(50)
"

A

vertices Dabc(A) and E b satisfy the "group property

C

of Fig. 20(a). Let Ri(A)==A.

i in the Lagrangian (3.11) and

vary the fields according to

- a ~ a
By > By +95;,(B)B% + ¢t B

. A 'a A |a .
and A; > Ay +9S, (A)B'Y + ¢, B'?;

1

then their inverses



! ' \
\\\ /7{ Qk 7{ \l\ / N /4
~ -~ A A ~ \n - A
Ep- —>— -l + D — E¥»-—>-<0 — «_JB
7/ /
A A A 7.
/ 4 / /
(a)
%
\ N A ' ZEERN A

FIG 20 For vertex notation cf. Fig. 16(i), (ii) and (iii).
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Finally on redefining the fields:

_ _ & -1 2 bo,c _ L.boc, _ -1p
By = By - 95;,9M 4 Egpc (B B’ B'"B) t gMad dbc-
x (BbB'c _ b c)
. (3.11) becomes
ii + J.A, - C, (A)g(gD, . _(A) - L (MM-YE ) (B3R C-B'35C)

INV i%i b ' 919ac Itpa defeac

4 “ -1/ ~oALyA b _,a.b
T J39(9Vap (B) + U, - 95 (A)Mcd dab~ti Mchdab)(B °B'°-B'°B)

A N N A AN c A A
+ (gzbc(A)+mbc)B°(nga(A)+Mba)Bra- (90 (A)+my, )B' (gL, (A) 41 )

2 b (3.20)
- J; g(gv b(A)+u ap) (BB B3Py 4 Cb(A)g(quac(A)

~

a,c yap1C
+ Ebac)(B B+ B B

)

N c A A a N ~
+ (gzbc+mbc)B (nga(A) + Mba)B + (gzbc(A)+mbC)

I

- B'“(gL,_(A) + M )B°

>

A ~ . A

where lba(A), mar V and u.

jab are defined according to-

iab
A A A

- a a, _ a
Cp (Ai49S, (A% + £,.0%) = ¢ () + g8y (MA® + m A

a

(3.21)

and
A

0>

A b ~
S a(Aj+gSjb,(A)A + t

b b b
ij ) (A) + gv ab (A) A +ulabA
- (3.22)

For a well behaved theory it can be established(so), by con-
sidering diagrams involving one BB' pair only, that the group

property holds if

(9hy o (A)+m, ) BS (gL, _ (A) 41, ) B' @~ (g2, _ (A) +m_)B' S (gL, _ (A)

+ Mba)Ba = 0 . (3.23)



-64-

~ Therefore the theory (3.18) with sources generated by
(1.4), i.e. under the gauge transform for the corresponding
gauge invariant Lagrancian, obeys the Ward identities of
Fig. 5 to all orders if the condition (3.21) is satisfied.
There are two trivial examples. The normal gauge theory

. : _ 2 A _ A
constructed with G(a) = Ca(A) and Rab(A) = Lab(A) and
m, = Mab‘ Or the abelian theory with bilinear G(3)
when zab(A) = Lab(A) = 0.
Let ;EINV be the normal massless Yang-Mills Lagrangian

(3.1) and choose the "gauge" function
ca) = - M?w " o+ (2oVw )2, (3.24)
—u°—= o —u

(3.24) transforms under (3.2) to

2M2W .9 n + 2 — 3'W .93 (ng*n - 93 °n)
o2 ' v
= 2(—3 W ) . ("“ ‘—32“ - CXMZ) n + 2(“'3 W ) .ga (WVXH)' v (3.25)

which is open to interpretation (3713) with

c.=XowY; L., =35 ¢ v

- " = - N2 2
a o u a’ ab ERRY) acch’ Mab = éa aM )6ab (3.26)

where the dotted derivatives act on everything on the right.
The massive Yang-Mills Lagrangian

1
a2

- _l.a UV Lm2u@gH 1 n v
;f = 4Guv Ga + M pra 5 o (auwa)(avwa) (3.27)

has been constructed, with Feynman rules as in Figs. 1l(a)
and 1(c), i.e. the identical theory to that of section a) of
this chapter. We have thus verified that the massive Yang-

Mills Lagrangian satisfies the Ward identities constructed
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with rules of Figs. 1l(a) amd 1l(c) and the same source terms

as the massless case.
Variation of Lab (3.26) with respect to (3.2) generates

A

the auxiliary vertices D and E, (i) and (ii) of Fig. 21.
For these vertices the group property is not satisfied; in-
stead the equation expressed as Fig. 20(b) holds. The

additional vertex F is defined as (iii) of Fig. 21, i.e.

the left hand side of identity Fig. 13(b) is

aM?

(p+q)? - aM?

- s 2 u .. i
i g°f foca T k . (3.28)

o

eab

This is as expected as the sufficiency condition (3.23)

. . . - _ 1 \V
obviously does not hold with the vertices Qab = Egavfacbwc
A _ 1'2 - A A N
and m.p = aa §ab' and Lab and Mab as (3.26). Therefore,

although the Ward identities hold for tree diagrams for this
massive Yang-Mills Lagrangian for all o, they do not hold
for diagrams involving loops generally. However, for o = 0O
the contributions from (3.28) vanish when the ghost vertices
reduce to those for the massless Yang-Mills Lagrangian(27)
with the same transform (3.2). The condition (3.23) is also
satisfied. The Ward identities, therefore, hold to all orders
for this "gauge".

So far no physical lines have been included in the
diagrams contributing to the Ward.idéntities. Let the source
terms include Ji Wg (no summation implied over a), for each
vector field, with vertices ; and 8 as Fig. 21(iv) and

(v). For an example consider the Ward identity with one source

only shown in Fig. 22. To make the external vector boson line



b

(iv)

— —> - —=Xu.,a

k

: -
ik 5a

ag
[
D
N
= 3

b

r

a
I
|
k
|
AY.+
Ej
s
q
= _ 1
- a g abc
N



No summation is implied over a.

Diagrams with poles at k2 = M2,

(b)




-66-

on the left of Fig. 22 physical, drop the Jg, multiply by
the inverse of the propagator, viz. (k?- Mz)guv—(l— %z)kukv,
then by a physical polarization vector ev(k) and finally
set k? on-mass shell, i.e. k?= M?, Nothing is assumed
about the form of the polarization vector other than it is

perpendicular to the 4-momentum

i.et e(k) .k = 0 . (3.29).

Fence the above procedure is equivalent to multiplying by
eu(k) follbwéd by (k? - M?) and only then is k? set
on-mass shell.

The diagrams involving ; vanish automatically. If the
ghost mass is different from the vector mass then the diagrams
with ; vanish when the factor (k2 - M?) is set on-mass
shell. When the masses are the same diagrams of the form of
Fig. 18(a) or (b) would not vanish in the on-mass shell limit.
Through considerations—of_Lorentz invariance these diagrams
must be proportional to ka' Therefore, they also vanish
under condition (3.29).

The diagrams in the Ward identities can now be extended
to include physical external W-lines with no corresponding
ghost-source terms. The Ward identities are as for the
massless Yang—-Mills Lagrangian and the extra physical polariza-

tion in the massive theory does not affect them as the con-

dition (3.29) is automatically satisfied.
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c) Invariance of the S-matrix

The Lagrangian of sections a) and b) may be written
= ;f/ —L (—m2 H 1 Hy 2 i
c

*
+¢a[(— L 22-m2)6% + & go £ ]% (3.30)

which gives Feynman rules equivalent to Figs. 1l(a) and 1(d).

If the parameter o 1is varied infinitesimally such that

1 1 _
then the Lagrangian (3.30) changes by the amount
_ _ 2¢ 2 U, 2 - 2_8 2 * _n2 ab acb \)--.I
A;ﬁ = %(37 +€ )(aug )< + (a2 +€ )¢a[ 9°87 7490 £ WqJ¢b-
(3.32)

Invariance of the S-matrix under (3.31) follows if a change
in the Lagrangian proportional to (3.32) does not change the
S-matrix elements between physical states constructed with

(3.30) (39

. In addition to (3.32), for the S-matrix, the
changes in the self-energy factors .Ze , multiplying each
external physical line, must be taken into account. This is
expressed graphically in Fig. 24 where the negative sign
associated with the ghost loop is shown explicitly. Fig. 24
differs from the usual relation(so) for invariancé in that
an additional factor of % appears in association with the
first set of diagrams. It arises from combinatorical con-

siderations as explained later.

Consider the Ward identity with one source term



* 2
b, - K~ &

kv 1N
| !
©
o
- 0Zo
1G 24 The lines with a P are physical lines including external line factors Z o The

guantities § Ze are the changes in Ze due to the change of "“gauge".

2

/ k ~ » ’
N y Igfabc K
) V’a biM c)\
3 .
+

-+ etc. =0

n
—4
\)
N
(@)
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a

J auwg. All other sources are Jiw“

a as in the discussion

of external physical lines. The "C-source" and the source

g2 8uwg can then be folded together to obtain Fig. 25 with
r and p as Fig. 21(iv) and (vi). All other sources are

now made physical as in section b). The same arguments apply

to the last two diagrams of Fig. 25 except for those such as

As in (50) these terms are the change in the external
line factors, Ze’ du? to (3.31). It can be seen that in
thié case Fig. 25 does not reduce fo Fig. 24. 1If, however,
each ghost loop had associated with it a factor of (-%)
instead of (-1) then the middle two sets of diagrams of Fig.
24 would also have a factor % associated with them and

Fig. 25 would reduce to the appropriate relation corresponding
to figl 24: The S-matrix is therefore invariant under
variation of o if each ghost loop has a factor (-%) and the
Ward identities are wvalid. In this proof the Ward identities
for the (n-1) loop approximation are used to prove the in-
variance of the n loop approximation of the S-matrix.

The invariance immediately shows that the massive non-
abelian theory, with Feynman rules of Figs. l(a) and 1(c)

and a factor (-%) asscciated with the ghost loops, is both
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renormalizable and unitary as is well known(5’6’l3’l7).

When o =1 the Feynmén rules become renormalizabie accord-
ing to power counting and in the limit o > o the rules are
fhe'normal ones associated with the canonical quantization
of the massive Yang-Mills field when no ghosts are present.
The theory is therefore unitary, and identical to the usual
massive theory, up to the one loop apprbximation. ’

The massive abelian theory is similarly renormalisable
and unitary to all orders and the S-matrix for all o 1is
identical to the canonically qguantized formulation as antici-
pated in section b) of Chapter 2. By‘coﬁsidering the formalism
for /a.= 1 or O it would appear not to be necessary to
associate a multiplicative factor exp[}%(g/m)zD(OX] with
each "charéed" field as suggested by the investigatioh of
Boulware(G). Similarly Nakanishi's quantizatio%”is that for

o = 0 and generates an S-matrix identical to the normal

canonical guantization. =

d) Unitarity

In section c¢) it was shown that the massive non-abelian
Yang-Mills Lagrangian formulated as in section b) must be
unitary up to the one loop approximation when a factor (-%)
is associated with each loop. Thus at the one loop level it
must be possible to prove the unitarity directly using the
Ward identities of sections a) and b) in any anuge".

The notation is as (27).

As the vector boson propagator
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TSV (l—az)k“:véab wv _ kMkY sab N
g KZ= MZ+ie _ 3 M2 . KxV 53
k? - M?2 + ig k? - M? + ie k2-a2M? + ie
the appropriate cutting rule(zs) is
VvV i LL - _ 1 . 2 _wm2 - ]J\)_ kuk\)_ -
. E | , = -3 §(k M )e(kng —ﬁfa)éab
{
! 2_ 52 KMk
VI § (k*-a?M?) 0 (k) ~Fz— 8,1
If we define
\4 \E M - 1 22 UV UV o
b ?E a = VOE §(k°~M )e(ko)@ k"k"’ /M )éab
1 “ . .
1% [ 1 2_ 22 Hy V r2
A/ AN = = - A
N o 4 VOE §(k“=a*M )6(%)k k"’ /M 6ab
| o
! 2 2
1 —
B _ T?f— o TE%T? 6(% o M )e(ko)éab
a
|
= i 08 (k2- aZM?)6 (k )a'
(2m) o’ “ab

then

AAANAANNANAAN (3.34)

{
TTXTFERRST
+

t
|
' =
1
i
If the equation

1
. 1o . . .
“ I : . ' . . .

A H\
+
|
O

(3.35)
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can be proved,unitarity is verified. Two Ward identities are
needed. The first is the identity for diagrams with no un-

physical sources which is equivalent to

=
o
=
1"
o

. (3.36)

The second has a single source Ja(-az- azMz)vai such that

(3.37)

I
]
Q
<
|
x<Vvao
|
t
Vo
1

For this the diagrams must be at least first order in g..
These identities hold for tree diagrams only for all «.

For the one loop épproximation, using (3.34),

1
O+C-0—+CE - oo
. . . ] .
|

since at least one of the sub-diagrams is a tree diagram and
(3.36) can be applied to it.

' Similarly

‘\}\\\\\\;\‘
S e
i

1 t

1 ‘ o
| t | :
t : |
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Applying (3.37) to both sub-diagrams which must be tree

diagrams in the one loop approximation

(3.40)

With (3.38), (3.39) and (3.40) the left hand side of
(3.35) becomes

U;;q $o)

(3.41) 1is zero and unitarity is proved asithis is the
(28,61,62)

! A

correct form for the Cutkééky rules "to be applied
if the ghost loops have an associated factor (—%).

As the Ward identities hold for the rules of Fig. 1 to
all orders when o = O the gquestion now is whetherlunitarity
can be proved directly to all orders for that gauge even though
invariance of the S-matrix may no longer be invoked. The
answer must be no, since to generalize (3.41) would require
that the Ward identities hold when the factor associated with
the ghost loops is (- %) and not (-1) as is the éase. It
would thus seem that the "soft" rules of Hsu and Sudarshan(l7)
are inappropriate to describe the massive Yang-Mills Lagrangian
to all orders. We shall, however, examine this in more detail

in Chapters Five and Six.

This chapter has been confined to the massive Yang-Mills
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Lagrangian but the implications of the above for the massless
fheory is discussed in Appendix C. It may be noted that, as
the massive rules obey the same Ward identiﬁies to ‘all orders
in the Landau gauge, i.e. a = O, infra-red divergent terms
in the massless theory may be regularized by simply adding a

mass term in the Landau gauge.
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CHAPTER 4

EQUIVALENT FORMULATIONS OF THE MASSIVE

YANG MILLS LAGRANGIAN =~ I

In Chapter 3 it was shown that the Ward identity tech-

niques developed in the context of gauge theorieé(27'45’50’53)

are applicable to the Massive Yang-Mills Lagrangian in the
tree and one loop approximation.

In investigating whether the massive Yang-Mills theory
is renormalisable it is advantageous to reformulate the theory
such that the vector boson propagator becomes
gHV= (1-K)kMKV/(k° - KM®)

k? + M?2 + ie

for some K. The reformulation

l.(5'13'l4), using Ward

has been achieved by Veltman et a
identities, for the self energy terms and by Mohapatra,
Sakakibara and Sucher (12) fér the four-point interaction,

but only to the two loop approximation. In Chapter 4 we
extend the Ward identities of Chapter 3 to all orders in loops
to reformulate all possible }nteractions to all orderé in the
loops. Our approach is shown to be equivadlent to that of
Veltman et al. in Chapter 5, and the resultant Feynman rules

are identical to those derived, in the path integral for-

mulation, by Boulware (61)

a) ~ Combinatorial Factor Considerations

The normal vector-boson propagator can be factorized:
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(1-a2)x"kY ab

i HV_ —~2M2+1
2 ab g k2-0?M2+ie §
v THRY
g - k"k"/M 6
k2 - M2+ ie T k2 - M? o+ e
2
-xMkV/m sab
N (4.1)
- k? - a?M? + ie

where the terms spoiling the renormalizgbility according to |
power counting have been separated. The left hand side is
the hard vector-boson propagator and the first term on the

right hand side of (4.1) the soft propagator, as in (12).
If

is equivalent to the set of all

diagrams contributing to an amplitude and the replacement

(4.1) is made for all_pfopagators, then

The suffix H indicates that the hard'propagator is used for
all vector-boson propagators; similarly S for the soft
propaéator. The VAN in the."blob" denote the replace-
ment, in all possible ways, of a vector-boson propagator by
the second term on the right hand side of (4.1). The series
- continues up to the set of diagrams in which all propagators

are replaced by AN . We wish to separate the terms
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~MAAAy into two independent momenta contractions which may
then be treated as sources for the Ward identities. However,
the amplitudes from which we start and those to which the
Ward identities are applied have different combinatorial
factors(l4), the difference between which must be taken into
account on splittihg an internal line. An example of this has
already been met in the factor % present in Fig. 24.

Firstly, we consider the second term on the right hand

side of (4.2) which can be represented as

N §3b§ (prp) /M2 a,p o
= = jd"p [d p' (4.3)
2 J p? - a’M2+ ie
b,p'
U a,u -
where ANNHA» = kK7 —>—90, It should be noted that with
a,k k

this construction there is at least one vertex connected to

each source AN . The set of diagrams

is symmetrized in the external legs, i.e. the notation is the - _

same as 't. Hooft(27)

except for the symbol for contraction
with the momentum vector. That % is the correct combina-
torial factor is demonstrated aé follows.

The same diagram with two external sources cannot be
generated by splitting a propagator in different diagrams as

reversing the process would imply the original diagrams were

identical. The only way a diagram with external legs can be

generated repeatedly is'by replacing indistingquishable propagators
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in the same diagram by ~MVWw . The number of ways of
COnstructiné the original diagram froﬁ the'indiﬁidual
verticeé is the number of ways of constructing the corres-
ponding diagram with the vertex legs which would form the n
indistinguishable propagators unconnected and undesignated,
N say, times the number of ways of connecting these legs to
form the required diagram, i.e. n!xN. The number of ways
of constructing the associated diagram, leaving two uncon-
nected legs to form the pair of external sources, is N times
the number of ways of choosing which two legs are not to be
connected, times the number of Ways of constructing the remain-
ing (n-1) indistinguishable propagators, i.e.
n?(n-1)!xN = n(n!xN). But n is the number of repetitions
of the diagram constructed with a pair of external sources
and the repeated generation of the same diagram supplies the
factor necessary to modify the original combinatorial factor
associated with each Aiagram to its correct value, cf.
Appendix of Veltman(l4).

It remains for the unconnected pair of sources to be
labelled. For the set of diagrams non-symmetric in the un-
connected sources there is only one way of doing so as they

are already distinguishable. This set is denoted by

their combinatorial factors are automatically correct. For
the set of diagrams symmetric in the sources there are two

ways of labelling the legs. . This set is denoted by

their factorials are thus half the required value. Hence,
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§3P6 (p+p') /m?

= [a*pfa*p’
p? - o?M?+ ie

To regain the usual notation the external sources must be
symmetrized. This is already so for the second set of
diagrams on the right hand side but for the first set it will

entail a doubling of the number of diagrams. Thus

6ab6 (p+p,)/M2

= % fd'pfdp’ (4.4)

p? - a?M? + ie

The set of diagrams represented by the "blob" on the right
hand side contains all possible»diégrams contributing to the
new amplitude; the diagram from which any diagram with a pair
of sources was constructed can be obtained by reconnecting
the sources. Included are diagrams which correspond to those
on the left, with tadpole terms, which vanish anyway on con-
tracting. For example, consider the self energy term of

order g? (the factorials are shown explicitly)

H

| H
2—@——+2 + 2

gives rise to
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where — — stands for the integral contraction.
The analysis as above can be repeated indefinitely to

give before symmetrization of the external sources
' 1 m  msl n

—

where the contractions have been explicitly labelled 1 to n.

Let us consider the subset of diagrams
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which only differ through the labelling

of the external sources. Any diagram produced by connecting
two sources can contribute to no other subset. Hence, as
this subset contains all the permutations of labelling the
sources, any diagram and an associated one, which differs
only through an interchange of the labels 6n a contracted
pair of non-symmetric sources, produce the same resuit on
evaluation. Also any permutation of the labels on the
contractions have the same outcome. Therefore, on sym-

metrizing the "blob" as usual we find

(4.6)

The set of diagrams on the right of (4.6) are now of

the form to which fhe Ward identities may be applied.

b) Generalised Ward Identities

To evaluate the contribution of the momenta contractions
we wish to treat them as the sources (either "C-sources"
or "R-sources", as required, in the language of (50)) in Ward
identities and so generate the équivalent Feynman rules for a
scalar particle. If there were only two sources present in
én amplitude which was of no higher than second order in the

loops the Ward identities of Chapter -3 could be used to generate
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the soft rules of Fig. 1 which were shown to be equivalent
to that order of approximation. To generalize the Wara
identities it is easier to follow the original method of
't. Hooft(27) (all references in this section are to this
paper). Initially we shall not include any ghost terms in
the amplitudes unlike (27) or Chapter 3 where there were
ghost loops present from the beginning.

As in 84 of (27) the identities 4.4Db) ahd 4.4c) hold as
they involve pure vector-boson vertex identities which are
unchanged. The identity 4.4a) is not necessary here and has'

in fact no ¢ontent in this context.

a8 - T

\l N < \’

/ A A
+ + - d + !

\\ " -

, )

. N
1

+ \ + \

\\ ‘\_ )
a

where ////J\\\\ nd are the vector boson vertices

of Fig. 1(a) and

o (4.7)

’
-

N

\
~
i.e.
\
and

O (4.8)

38

- D
C

\ P
[H]
O
|_l
&
=
o))
o]
o

Lo . *
Cl_ —_ e = 6\) gfabc . (4.9)

<

In terms of the notation used previously

__.>-..=L§L = ->—e=(z_—,g (4.10)
a k b a k b
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Similar manipulations to (4.5), (4.6) and (4.7) of

(27) can be made :

i |
Y -V
| l

( .
\4
]
i
| l<jf%%i:> (ff?§i§>
2!
i » \ \
A" N\ IR 1
e v
| ,l |
-7
= 1
— %I — %<ff?§§> — ﬁéff??fg + i :
| , / \ /
\ /
/ \i ‘:I _ :
|
@ @ @ @ : ll)
where ->_ 1nd1cates any other termlnatlon of the ghost

line other than at a pure vector-boson vertex. The identity

equivalent to 4.8a) of (27) is

- —< -
|
N\
|
Ve

] |
! ]

v
! + M | (4.12)
1 ]

c-< -b—s o——J > -
in which the ghost propagators and vertices are as in Fig.
1(b). (4.12) can be verified either directly or by noting
that it is merely the Ward identity of Chapter 3 with two

a .
sources Jg W, ~and of order one in g. Also the Ward
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a

H ,
order one in g is the identity corresponding to 4.8b) of

identity for one source JY w and a physical particle of
a _

(27), viz.

(4.13)

On applying (4.12) and (4.13) to (4.11l) we obtain corresponding

(
| ,
Y , ‘
!
+ + (4.14)

By iterating (4.14) the scalar ghost line can be traced through

to (4.9) of (27)

the diagrams until it is terminated by either the second or
third term on the right hand side.

For the general amplitude

-+, starting

from the first external source on the left, there are two
sets of possible terminations:-
(i) the scalar line turning and terminating on itﬁelf
(ii) terminating at another external source.
These are illustrated in Fig..26, For the subset (i) the

additional vertices required are

~



FIG 26 The (!i'-) is present since A~AAD =
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a « d
l -
v ik = -gf k 4 = ig?f  f @
! = "9t pe <9 7 = 19 L abctage”
b- > - > ¢ b->- & > ¢
T B (4.15)

cf. Fig. 16 (i) and (ii). For (ii) the additional vertices

are

k2 (k2- azMz)Gab

(4.16)

= 9 _f (k2-a2M?)kM

a? bac

and

where P 1is the vector boson propagator. As each source is
attached to at least one vertex the two terms in (4.16) can

be combined such that

(iM?)

- > - > - (4.17)

cf. (3.37). As a shorthand let both amendments to vertices,
(4.9), be represented in diagrams by the first, e.g. both

vertices in (4.15) are denoted by ¢ except where

|
- > U 5 -

explicitly indicated. Thus Fig. 26 can be rewritten as Fig.
27.
The process may be repeated starting from the next

unexploited external source in any subset of diagrams on the



FIG 27 The M? associated with a scalar line which does not terminate internally has
' been split between both sources and a factor M has been given to all other

scalar lines-
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right hand side of Fig. 27, except that there are now additional
points at which the scalar line may terminate, i.e. at the ‘
additional vertices introduced above or on a previously

created scalar line. The result of tracing an additional

line for the first subset on the right hand side of Fig. 27

is shown in Fig. 28. By repeating until all external sources
have been utilized in all diagrams we obtain_the general Ward
identities thch are constructed with a family of scalar ver-
tices; with no limit on.the order, in addition to those of

Fig. 1(b). When the factor (%ﬁ)’ associated with each in-
vgding scalar line for which there is no corresponding outgoing
line, is incorporated in the vertices, the family is as in

Fig. 29. ~ :

c) The Duplication Factors

Having absorbed the factors (%—) into the vertices we
iM

are left with a factor M on each external scalar line. How-
ever, adjacent pairs of external sources were originally con-
' 2
tracted, as in (4.6), by fd“pfd“p' 63b5§E$P')/M where
v | p°=-a“M® + iec
p and p' are the momenta of the sources. Thus the factors

M op the external lines and the %7 in the contraction
completely cancel and the remainder of the contraction may
be identified as (~1) times the scalar propagator. If these
externally created propagators could be reabsorbed into the
diagrams by the reverse process to that of section a), the
contributions of the various scalar configurations (by con-
figuration here we mean the overall topology of the scalaf

lines including external propagators without considering the



.Ml

FIG 28
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FIG 29
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The next pair of vertices is constructed by making the additions (4.9) to the

lower one of the previous pair.
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vector-boson vertices) might be described by a conventional
Lagrangian. However, the same final scalar configuration
can be generated repeatedly with different numbers of exter-
nal propagators from different subsets on the right hand side
of (4.2). To obtain the Feynman rules for the scalar ghdéts
the number of duplications of each different scalar configura-
tion must be evaluated. To eése the problem of counting we
use the rule that when a scalar line terminates at an exter-
nal source or internally, the first available external source
from the left is used to originate the next scalar line,
cf. for example Figs. 30 and 31.

First we consider the scalar configurations before
absorption into the diagrams. They consist of sections of
the following forms:-

(i) A simple line starting at an external source and

terminating at another.

(ii) Trees involving any number of vertices of any order
with only one outgoing scalar line. In the diagrams with one
particular set of external sources used in the construction
of a tree, the outgoing line may terminate at any one of the
sources involved except the one furthest left. Note that in
the trees there are lines from vertex to vertex which include
no externally constructed propagators.

(iii) Trees with only one.closed scalar loop incorporated.
There is no way in which two closed scalar loops could be
constructed and joined together without involving externally
created propagators. This set includes the simplest possible

configurations \'
]

-~
. ' , the p-loop. There is no

\>/



== -+

FIG 30 The Ward identity for the second set of diagrams on the right of (4.2)

constructed using the rules suggested in the text.



The Ward identity for the third set of diagrams on the right of (4.2).

FLG 31
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outgoing line for the trees involved in this set.

The branches of the trees in (ii) and (iii) can be
distinguished by the vector-boson attachments but, having
labelled them, the branches can originate from any selection
of sources (this is without reference to the directional
© arrows). If two branches originate from a cohtracted pair
of external sources, they do so symmetrically. Members of
(i) may be thought of as forming chains whereby a line may
end at an external source which is contracted to the be-
ginniné of another etc. The chains may connect members of
(ii) or (iii) through external propagators or two legs of
the same tree. Within the chains the choice of source-
pairs are again free and symmetric within each pair. The
only other possibility is that the head and tail of a chain
are themselves connected by an external propagator to form
a closed scalar loop when absorbed into the diagrams. How-
ever, for loops although any selection of source-pairs may
be involved, the total symmetricity of choice within a pair
is no longer available and these configurations will be
treated separately.

We, thus, see that any n-point interaction of the original.
explicitly unitary formalism of the massive Yang-Mills field
can be expressed in terms of the soft rules but with the
additional vertices of Fig. 29. Using the Ward identities
it is straightforward though tedious to do the conversion for
any specific example although it may not generally be reduced
to the simple algebra of a normal field theory. As the ex-

ternally created propagators carry a factor (-1) many
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cancellations can be expected but not enough to render the
formalism explicitly renormalizable. To find a lower bound
to the cancellations for a general choice of o the scalar
vertices shall be treated as if totally symmetric and hence

- the directional arrows cease to have any meaning. Obviously
if the contributions of the vertices of Fig. 292 do not cancel
exactly with this simplification, they cannot do so in the
original férm. With tﬁis assumption of symmetry which will
be discussed in section e), the scalar contributions can be
reduced to a standard field theory.

Ih the formatioh of scalar loops' the arrows on the
separate lines may now be reversed. Thus starting from the
source in the loop furthest to the left, the directional
arrow is followed to the source at which the line terminates.
The arrow-must automatically point away from the original
source by virtue of the cpnstruction procedure. The loop
is followed through tﬂé externally created propagator and the
line attached to its other end, reversing the arrow if necessary
to point in the required direction. Continue until the chain
reaches the external propagator éonnected to the original

source. The arrows now point round the loop in the same

direction
U S A B A B N W
U [}
poarY Aoy VY ! Y ? T Y
| R TR T D I N O R T I O T N O
1 LI | ] . i i
i
evgv [ \ ! / ! : / l
! \ S < __[/ \_’_|_>_, ]
_ 1
O
\ !
< /
- e e _<_ — —

The asymmetry within the originating source-pair can now be
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]
. |
seen explicitly as it may only be constructed Y ¢
- P L e
| T A
whereas any other pair might be constructed y A or <.
. 7\
! I
| I

7N
! t

If there was a free involved this asymmetry would be removed
by the method of construction. Let a loop involve» n
SOurcenpairs in a configuration with a total of n source-
pairs. The loop cén be constructed by any selection of ng,

- external propagators, i.e. a duplication of TE%%ETT . Also,
as all but the originating source-pair, furthest to the left,
ﬁay be connected to the rest of the loop in either of the two
ways illustrated, there is further duplication by the amount
2nL—l. Keeping the directional arrow on the vertices the
loops may be treated as those for a pseudo-charged field with
Feynman rules of Fig. 1b), when the appropriate combinatorial

factor is one. The loop can therefore be absorbed into the

diagrams to give Fig. 32. There the extra factor % is

associated directly with the scalar loop.

In Fig. 32 the externally created propagators have been
indicated by an asterisk and each carries a factor (-1).
The example shown has four such external propagators which
may be any selection of four from all the scalar propagators
in the loop. There is thus an additional duplication factor
('rzn)(-l)4 where the (-1) of the external propagators has
been inclﬁded in the duplication factor. However, with the
rest of the scalar configuration remaining unchanged, the
same loop can be created by the different subsets on the
right of (4.2) with any number of external propagators from

1 to nL‘ and the total duplication is



FIG 32

The summation is over all equivalent configurations in the loop. n and n' are

the number of source-pairs in the diagrams and * denotes the externally created
propagators absorbed into the diagrams. '
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) 2 Ny, n
(=0 G + (-1) (BL) + oo (1) L

n
L

= (1 -1) -1 -1 .

Hence any loop created can be incorporated in the diagrams
1

if it has an associated factor (- l) and a factor
. 2 nllzn

remains with the rest of the scalar configuration where n'
is the number of source-pairs left in the rest of the con-
figuration. The loops continue to be treated as pseudo-
charged fields.

Having absorbed all the loops into the diagrams we are
left with all other scalar configurations. To treat them the
assumed symmetry of the scalar vertices is exploited to drop
the arrows on the scalar chains and trees involved. If for
any purely tree section of the configuration only one exit
source for the outgoing arrow were allowed the diagrams could
be considered as those appropriate for a standard field theory
with vertices as Figs. 1(a), 1(b) and 29 and the appropriate
combinatorical factor. But all but the source furthest to
the left may be the exit point. For the chains of simple
lines there is no probiem but for the sections of configura-
tion which are trees with a closed loop attached, the com-
binatorical factor is not appropriate. The arrow in the.
construction of the scalar loop discriminates between the
same loop created with a clockwise or anti-clockwise ordering
of the vertices in the loop, when these are not identical.
Here the combinatorical factor should be one but each diagram

appears twice on dropping the arrow. When the clockwise and



-9]1-

anti-clockwise orderings are identical

they are created once only but the associated combinatorical
factor should be % for a ﬂormal scalar field theory cf.
Section a). Thus, on dropping the arrows and associating
with these trees, the appropriate combinatorical factor,
each diagram carries a duplication factor of twd. Hence,
when any particular diagram is given the correct combiné-
torical factor consistent with the ghosts being described
by a normal scalar field theory, it has a duplication factor
associated only with the ghost configuration. The factor
has a multiple of two for each tree with an attached closed
loop and a multiple (nfl) for each tree when n 1is the
number of branches terminating at a source. When a tree

has an attached loop there is no factor of (n-1l) since
there is no outgoing scalar line to produce the repetition
of construction.

If we consider subsets of diagrams with the same scalar
tree and loop structure but with different numbefs‘of lines
and eternally created propagators the duplication factor for
each diagram in the subset is the saﬁe. We now redefine a
line to start from a member of Fig. 29 and to end at a
member of Fig. 29 without reference as to whether external
propagators are involved. For each subset the final overall
- scalar configuration is identical for each diagram with a

fixed selection of lines containing no external propagators.
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For those lines with external propagators any number can be
present, up to and including the case when all the propagators
in a line are externally created, but at least one must be.
From the method of constructing the scalar lines it is obvious
that each must start and finish at a vertex of Fig. 29. The
same final configuration can be generated from different sub-
sets of diagrams but with a different selection of lines
haviné no external propagators.

Because of the complete symmetry in external sources of
all sections of a configuration except those that form
isolated closed loops, as noted earlier, the configuration
under consideration here caﬁ have its external propagators
reabsorbed into the diagrams by the reverse process of
section a). As before the combinatorical factors have to be .

reconciled with the new diagrams but it only entails the

i 1
n'l on'

ébsorption of the factorg . It does not matter that
all possible diagrams do not have the same duplication factors
as the insertion of the external propagators can be done
diagram by diagram. For any subset we obtain a fixed scalar
configuration with some of the lines containing all selections
from one té n;, propagators carrying a factor (-1) as they
were originally generated eternally. n; is the total number
of scalar propagators in the line. As the only weighting
factors associated with the diagrams are now the duplication
factors, the combinatorial factors having been completely
removed, they are not dependent on fhe number of external
propagators involved, only on the topology. Hence, the
duplications due to havipg all selections of propagators in
any line, with at least one external propagétor, each carrying

a factor (-1) can be summed to give a total factor of (-1)

as for the isolated loop.
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From here we only consider connected configurations.
There is a minimum number of lines which can be chosen to
contain external propagators for any set scalar configuration.
This is easily seen as there must be at least one propagator
externally created for each attachment, (4.9), to a scalar
vertex, i.e. if Vi ~is the number of scalar lines attached
to the ith scalar vertex the minimum number is N = Z(Vi—2)/2.
Within this restriction any selection of lines in a configura-
tion may be chosen not to contain any external propagators.
These correspond to the various subsets above which Would
generate the same configurations. The total duplication
factor associated with any scalar coﬁfiguration may be cal-
culated from the following rules:-

(1) Draw a diagram of the purely scalar configuration
for each possible selection of from O to‘ L-N lines not
containing any external propagators where L vis the total
number of lines in thé configuration. Here lines with no
external propagators will be indicated by a wavy line with
all other lines indicated by a solid line.

(ii) A factor zero is given to all diagrams with two
loops made up of and connected solely by wavy lines. By
the construction none can appear. This rule is to some extent
precluded by (i).

(iii) Fof a vertex composed solely of hard lines
muitiply by a factor (V-1) where V 1is the number of lines
in the vertex. |

(iv) For a tree structure composed solely of wavy lines
multiply by a factor (T-1) where T is the total number

of hard lines emanating from the tree of wavy lines. (iii)
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and (iv) are the factors (n-1) associéted with the dif-
ferent exits for the outgoing scalar line in a tree with n
branches.
(v) For a tree of wavy lines with an attached loop
made up solely of wavy lines, a factor 2.
(vi) For each hard line a factor (-1).

(vii) The total duplication factor is the sum of the
factors for each diagram of (i). The factors are calculated
by the rules_(ii) to (vi).

For example consider the dumb-bell shaped scalar con-

figuration

Its duplication factor is calculated as follows. As N = 1

the following possibilities arise

(-1)%2 x 2 (-1)2%2 x 2 (-1)23 (-1)22 x 2
(-1) 2 ' (-1) 2 x 2 o (-1)2

= -4+ 4 +3+4-2-4-2 = -1.
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Similarly - - --p—=--= _
/ i \
( : \
‘ ' ' N =1
/ ’ -
\ |
~ Ve
~— e e - J., —_— e ame ™
(-1)32 x 2 (-1) 23 (-1) 23 (-1)23
+ + + = -1
(-1)2 (-1)2 (~1)2
And - - —
\.\ / \\
/
/ \\ // \
1 a |
8 . \\ ) )
(-1) 23 (=1)2 (-1)2

The above examples are the only ways in which a écalar con-
figuration can be created with N =1 and in each case the
total duplication factor is (-1).

Any scalar configuration with a certain value for ‘N
can be considered to have been constructed by the addition
of a line or a p-loop to a scalar configuration with
"minimum number" (N-1). It is shown in Appendix D that the

duplication factor, F', for a configuration created by the
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addition of a line or loop in any manner to a configuration
with duplication factor F is just (~1)F. Hence by in-
duction any scalar configuration has a duplication factor

(-1)N.  rThis predicts for

/ \____/ \
[ \/ ! ,
\ L -\

/
N / N a duplication factor

— ~ -

-

(-1)2 = 1 which can be verified by direct calculation.

d) The Scalar Lagrangian

In section c) we saw that the connected configurations
of scalar lines constructed from the Feynman rules of Figs.
1(b) and 29 have an associated duplication factor of (-1)N

which can be absorbed into the vertices of Fig. 29 by attach-

ing a factor (j_)V'1 to each vertex where V 1is the number
of scalar lines in the vertex. As we have assumed that the
vertices are totally symmetric the scalar Lagrangian, which

gives rise to these Feynman rules, is

f/ lu a':!.'zza
o 5 9 ¢a3u¢ T2 a™%97 ¢

n

-3H 1 ig 1 /ig 1 ig 3 A ‘
e 3T G @Y TG O 5 Gr @) ) futy

(4.18)
1 1 1l /i ab
- Mauqba {5' (DlT—:) + ‘3'! (bidg %)2 + g ('I\Jfl‘g" g_) 34+ e} W‘Ub
where g b z -i fobe €. In the second term of (4.18) every

interaction term odd in ¢ vanishes and (4.18) may be rewritten
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T b
oMo [E(e) E (0)]%° 2 - %azmz 0% 0a

&%
©
tn
N

W0 |
(4.19)

_ y,a b
M 3¢ E(¢)ab Wu

+ M Mo, wi

when Eab(¢) [(ekﬁ(ﬁg $) - 1)/ %ﬂ i]ab' On setting o = O

(4.19) is identical to the scalar Lagrangian, found to be
heceésary bleoulware(G), within the transform
62 > M ¢, cf. (0.24).

These-rules, however, give rise to closed scalér loops
with the normal combinatorical factor compared with the
pseudo-charged loops of section c¢) and their factors of
(- %). When the arrow on pseudo-charged loops is dropped,
clockwise and anti-clockwise loops which would otherwise be
distinguishable become identical and double counting occurs.
When the clockwise and anti-clockwise loops are indistinguish-
able the appropriate combinatoric factor for a scalar
Lagrangian is (%) and again double counting occurs. Hence
the loops generated by (4.19) can be reformulated as pseudo-
charged loops but with an associated factor (+ %). To get

the correct amplitudes, in addition to (4.19), a Lagrangian

:ﬁw = vaulp*auw - aZMZw*w - g(aulp;)fabc WIJ (pc (4.20)

with a factor (-1) associated with each loop is required.
We have thus demonstrated directly that the explicitly

unitary Lagrangian for the massive Yang-Mills fields

T Guv-G6 ~ + F MW,..W A (4.21)

is equivalent to
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-1 wv 1 2 YRS S R TR
7 Guy-G + 5 MWW 5(5 9 ﬂu) +£¢ + £¢ (4.22)

where G ﬂ5¢, and iiw are defined by (3.1), (4.19) and

e) Symmetrization of the Scalar Vertices

In the derivation of the Lagrangian (4.22) it was assumed
that the scalar vertices of iﬂ¢ were totally symmetric. Al-
though it is not generally true the assumption can be justified
for the "gauge" o = O,

First it is necessary to remove the directional depen-
dence of the basic scalar vertex of Fig. 1l(b) and so render

the arrow on the scalar lines redundant. For o =0 it is

——

self-evident as

= + (4.23)
- > -4 > - —>—A -> - —>—S > -
a;x
b S c _-1. o .‘
where -j;:- > - =3 ig fabc(q—p) the symmetrized
vertex, and P 9
a
&
b A c -1
- -> -> - = 3 ig fabc 2%  the anti symmetric

vertexX.
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Thus in any diagram the basic scalar vertex can be sym-
-metrized in the transverse "gauge".

Let us now consider the simple tree sections of a con-
figuration and in particular any component scalar vertex of
Fig. 29. Because the scalar contributions were generated
from diagrams, which had been totally symmetrized in their
sources in séction a), the trees must be symmetric in the
labelling of the branches. However, the detailed structure
of a vertex is only dependent on the order of creation o%
its legs, i.e. on their left to right ordering in the con-
struction, and the lines themselves have no directional bias
when a = O. Hence, in this case, each possible ordering of
" the attachment of the scalar lines, labellgd by their vector
connections, occurs with equal weighting and the vertices
themselves can be symﬁetrized over those 1egs;

For the trees with an associated loop the symmetriza-
tion is not quite so straightforward. There, the legs of
the scalar vertices which terminate at external sources may
‘be symmetrized as above. Also the two legs of the vertex
which are cqnnected to form the closed loop may be sym-
metrized as the connecting line is totally symmetric when
o = O. In the transverse gauge the scalar propagators and
vertices are identical to those for the gauge invariant
massless Yang-Mills Lagrangian and any identities valid for
the latter are also valid for the former. The simplest
identity is the "group property" of Fig. 20(a). In the

set of diagrams



(4.24)

fhe‘"group property" can be used to symmetrize the legs
a, b of the scalar vertex. Hence the first pair of vertices
of Fig. 29 can be symmetrized when they are generated by a
closed loop.

For the second pair of vertices of Fig. 29 an equivalent
identity to Fig. 20(a) is required. For the massless Yang?
Mills Lagrangian it may be obtained by generalizing the

technique of Appendix B of (50). The vertices in question

are denoted by al (A) and el where
abcd . abcd -

A A | a, "1 d

dabc(A) ~ dabc(A) tg dabcdA + eabch

under the transform (3.2). With the usual notation and
v (A) transforming as
iab

v. @) +~ 3. @) +g vl @a)yac + 31 ac
C

iab ia iab iabc
tran;form ;i, - L2 4 g, Al through B, B', B" and - B
"2‘ a i g ’ 7 ’

INV
_Bl ’ "'B" .

ji ~lct+aga > -1lc?s+an,
INV 2 11 INV 2 e
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- J (g) (g{; 4+ .G ){(BuaB|b_BlaBnb) >+ (BuaBb_ BaBub)
i iab iab :

+ (BlaBb_ BaB-b) }

Pp1C) + (B"PB°- BPB"°)

-+

Ca(g)(g dabc + eabc){(B' B B B

+ (B'PBC®- BPB'C)}

1 1

2 A ~ b fo) d
- Ca(g ) (g dabcd® eabcd) {B'"B"B"

d

- BbBlchl + BllecBld

— BlellCBd}

1 b

2 ol apbouC _ papn b
+ J.(9%) (g Viagpet Uiapc) {(B'7BTB B B'

B'C + B pPp°

- prap"bpcy

The second and third terms of (4.25) simply reflect the
"group property" of Fig;-ZO(a) and may be dropped. Finally

on transforming by

P N d
l l BllCBld + BllecBld - Ble"cB }

2 d b
9 M, ®fbca

{B'bBCB" - B

we obtain

l .
- >C.%2 + J.A, ji -lc 24+, .
jiINV 2 a M A T2 % TR (4.26)
” ~ A A b.c_.d b_.c_.d
-gzca(g dl(A)abcd -9 R(A)aem;% e%bcd){B' B B" - B'B" B'
+ B"Pp%p19 _ prPpucpd)
2 Al Al _ A A_l Al _ A A_lAl .
Y9793 (Vi ape )+ Uiape T 9510 (B) Mok Sfpea T tieMefSincal

. b d b ol c d
{B" BCB" - B B"CB' + B"bB B! - B'bB"CBd}.
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" From (4.26) we get the identity

Aq A I\_l l\l

uiabC» tie mef efabc = 0 (4.27)

and the reqﬁired vertex identity, Fig. 33. The legs a and
c are joined to form the closed loop and the other two le§s4
b and d are symmetrized to give the identity of Fig. 34(a).
'Using this‘identity the secbnd bair of vertices in Fig. 29
may be symmetrized also when they occur in a closed loop.

The technique can be systematically extended to vertices
of all orders. However, it is not really necessary as the
required identities can be obtained from Fig. 20(a) by build-
ing up the vertices with the additions (4.9). For example
instead of Fig. 33 the identities of Figs. 35(a) and (b)
together with Fig. 20(a) could be used. Thus, all vertices
involved with scalar loops can be symmetrized. In eqch case
above, in symmetrizing the purely scalar vertices of Fig. 29,
it was necessary to have an accompanying vertex in the loop.
Hence we still need to examine the case of a loop with no
other vertices.

The simplest such case with the vertex of Fig. 21(ii)

can be ignored as f_. Spc £ 0. For the 4-point vertex

> !
\\\ v

N !

1
- > - —_> -

the selections of the two legs to form the loop may carry zero,
one or two momentum vectors. The net effect of the zero
momentum ones are equivalent to those carrying one momentum
vector as on connecting b to C, instead of a to c¢ in
Fig. 33,'w¢ obtain Fig. 34(b). The outgoing line a of Fig.

34 (b) must involve another vertex but this may be accommodated






{q) = Notice the similarity to the identity Fig. 15(a).

(b)

EIG 34
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(b)
FIG 35 The basic 3-point vertex must be included in first diagram on both sides of (b)

in order that the preceding scalar vertex can be symmetrized using Fig. 20 (a).
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by going through an externally created propagator if necessary.
For higher ordered vertices we can again attach bits of the
form (4.9) until it is of the desired form. The only exception
. is if the lines a and d of Fig. 34(b) connect to each other
.immediately but in that situation the loop formed by the ex--
ternal propagator can be treated as the original when it no
longer has zero momentum dependence.. However, with a suitable
vregularisation(53) the loops, dependent on the momentum vector
once, vanish on integrating; We are left only with those loops
dependent on the momentum squared.

Therefore, on symmetrizing the vertices involved with
scalar loops it is necessary to include an additional purély
scalar term in the Lagrangian to cancel these momentum squared
integrals. This is just the &%(0) term of Boulware(G),
cf. (0.22), and we have exactly reproduced his scalar terms
in the equivalent massive Yang-Mills Lagrangian -in the

transverse "“gauge". e
gaug
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CHAPTER 5

EQUIVALENT FORMULATIONS OF THE MASSIVE

YANG-MILLS LAGRANGIAN - TI

In Chapter 4 Boulware's(6) equivalént formulation of the
massive Yang-Mills Lagrangian in the transverse gauge was
verified directly using Ward identities. One of the aims of
this chapter is to show that our approach is exactly equi-
valent to that of Veltman et al.(5'12'l3'14). Hence, the
' two approaches to obtaining equivalent formulations, viz.
Boulware and Veltman et al., are equivalent and the latter
does not give rise to a form any less‘divergent(631.

The second topic discussed is the role of the self-energy

terms. These were ignored in Chapter 4 for clarity but the

necessary amendments are discussed here.

a) The Veltman Ward identities

Instead of expanding the amplitudes, with hard propagatofs,
in terms of amplitudes with soft propagators, as in section a)
of Chapter 4, the very opéosite could be done, i.é. expand
the amplitudes with soft propagators in terms of the hard

propagators. The factorisation corresponding to (4.1) is

y (1-g2)kHkV v kHkV
gtV - X2 3 ?M2%2+ie sab = g - "HM? sab
k? - M? + ie T k- MP o+ e
HyV /ar2
kTk /M §ab (5.1)

* x?2 - o2M? + ie
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If (5.1) is substituted for all propagators we obtain,

cf. (4.2),

() C)-E)n

THAONE S
where ~AMAAN s now 21X K /M sab
k2-q2M2+i¢

. On treating the

momentum contractions as sources

(5.3)

where ——— = jd“pfd“p'(‘1)5ab5(P+P')/M2 .

p2-a®M?+ic

We now require the Wafd identities for the right hand
side of (5.3) to re-express the momentum contractions as a
scalar particle and its interactions. These are easily
obtained by considering the Ward identities for the soft
amplitudes of section b), Chapter 4, for any o and taking
the limit o -+ o, Obviously any diagram with scalar pré—
pagafors vanishes to leave Fig. 36, i.e. each scalar leg of
a vertex immediately terminates at a source and there are no
scalar propagators. The scalar vertices are the same as
(14)

Fig. 29. The identities are the same as those of Veltman

On cancelling the lT of the external contractions,
M



FIG 36 All scalar vertices are explicitly indicated.
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with the factors of M with each scalar line, they can be
interpreted as propagators for a scalar field of mass

a?M?. There is no additional factor of (-1) this time and
all propagators in a scalar configuration are created ex-
ternally. As all sections making upAa configuration are
simple trees, with only one vertex, the vertices including
the basic one of Fig. 1(b) may be symmetrized in the scalar
lines immediately, for all a«a, and the external propagators
re-absorbed into the diagrams as in Chapter 4. The only
duplication factors are due to the multiplicity of choice
of branch for the outgoing scalar line of each tree. This
gives a factor (v-1) for every vertex, (where v 1is the
number of scalar legs in the vertex), which may be absorbed
into the vertices . The simple closed scalar loops,
also, have the correct combinatoric factor for a normal
Lagrangian. Hence, fhere is no need for an additional
scalar Lagrangian equivalent to (4.20) and no need for a
term to cancel the contributions to the diagrams, when both
legs of the purely scalar vertices carrying the momenta
vectors are directly connected by a propagator, unlike
section e) of the previous chapter. Thus, the diagrams
with the soft vector boson propagators are idenﬁical, for
all o, to the diégrams constructed with the hard propagator

plus all scalar contributions constructed with the Lagrangian
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i.e. we have found a closed form for all o in this situation.

b) Elimination of the Scalar Contributions to the Soft

Diagrams
Instead of (5.2) we could expand the set of diagrams
with a scalar loop constructed by Fig. 1l(b) already present

i.e.

[H
+
+
:

t
+
Nl

The external sources can be converted into scalar vertices,

as in section a), by the usual Ward identity technique. Here,
however, we have additional terminations of the scalar 1lines
-on the loop introduced to the soft diagrams. To symmetrize
these .vertices it is necessary to restrict o to zero and
treat as in section e) of Chapter 5. If the pseudo-charged
loops put into (5.5) by hand had an associated factor (%)

as indicated, the arrow could be dropped on both sides to
give the normal scalar lqops as we are in the transverse

"gauge". The external propagators are now re—absorbed as
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ﬁsual to give the contributions of the Lagrangian (5.4) but
with an additional duplication factor for each scalar con-
figuration, viz. the number of ways in which a loop or set
of scalar lines which form a closed loop can be chosen to
have been the original scalar loop introduced to the left
hand side of (5.5). Furthermore, the scalar vertices con-
structed on the loop have no outgoing line with its multi-
plicity of sources and if the rules of (5.4) ére to be re-

tained, a duplication factor of _lI must be supplied for

V=
each vertex in the loop chosen to be the original one. This
must be done for every selection of the loop.

In symmetrizing the purely scalar vertices there is no
need to introduce additional terms to the Lagrangian to re-
move the momentum squared terms, as before, since there must
be at least two vertices in the loop added to the soft
diagrams. However, the purely scalar vertices are still
anomalous in that when they occur in a scalar configuration
in a loop with no other vertices, thé loop cannot have been
the original loop of the left hand side of (5.5) and the
duplication factor is diffefent from normal.

The equivalent construction can be done for the soft

diagrams with two scalar loops, i.e. on dropping the un-

necessary arrow for a = O

Again we get the normal set of diagrams with scalar con-

figurations in the hard formulation but the duplication factor
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becomes the number of ways of choosing the two original loops
in that particular configuration. The construction can be
done for any number of loops.

The soft rules suggested by Hsu and Sudarshan(l7) as

being equivalent to the massive Yang-Mills Lagrangian can now
be tested directly to all orders. Indeed the investigation can
be widened to considering the soft rules but with any multi-
plicative factor associated with the scalar loops and not
necessarily the same for all loops. We consider the set of

diagrams

+ o + B + v +...
(5.6)

where a B Yy etc. a;o-arbitrary. We require the sum of the
duplication factors for each scalar configuration to be zero
so that the total set of diagrams is equivalent to the set

of diagrams with:hard vector-boson propagators and no scalar
contributions, i.e. the explicitly unitary set. This is
obviously impossible as the duplication factor for each con-
figuration depends on the shape of that configuration and the
number of different configurations far outnumbers the
arbitrary constants introduced above. Hence, there is no way
that the purely soft rules can be used to emulate the normal
hard rules whether with the factor of (- %) of Hsu and
Sudarshan for each loop or any arbitrary factor as above.

To regain the diagrams with hard Feynman rules it is
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necessary to include, in the set of soft diagrams, all con-
figurations of the scalar lines each with an associated

factor, i.e. the set

+ 8 + ... (5.7)

As there is an arbitrary factor associated with every possible
scalar configuration it is now possible to choose a By Y oo
etc. such that in the equivalent hard formalism the duplica-
tion factor for each scalar configuration is zero. This is

the programme executed by Veltman(l4) for the two loop approxi-

mationto the self—enefgy»terms and by Mohapatra, Sakakibara
and Sucher (12) for the two loop approximation to the four-
point interaction. On doing the summation (5.7) to.all orders
one undoubtedly obtains the values for a, B, y etc. which
correspond to the duplication factors obtained by the direct
construction of Chapter 4. For example, all the factors for
configurations of isolated loops only, a, B, etc. are (—l)2
where ¢ ié the number of loops in the configuration (if
the arrows are dropped); y =-1 on reducing the vertices
to Fig. 29 as the first set in (5.7) contributes 4 (ffz
(where a factor 2 has been removed from each vertex) N
and the second set -3 as the original loop can be chosen
in three ways and o ==1. Similarly & = -1 as the first
PN Pl

~set in (5.7) contributes 4 ( F--A !  the second
. N -7
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< = VAR N
-4 1 F - - - \ and the third +1 - - = )

N \ v N
The anomalous duplication factors for the loops with only
one purely scalar vertex leads to the necessity of intro-
ducing further terms to the Lagrangian associated with
8" (0) as in Chapter 4. |

Therefore, we.see the approach of Veltman et al.(12-14)

is equivalent to that of Boulware(G) in that they both give
rise to the same scalar ghost Lagrangian. We have also
demonstfated that the soft rules of Hsu and Sudarshan(17)
are insufficient for any order of loops other than the first.
One fact which should be noted is the similarity of the
scalar vertices in generating the equivalent soft formulation
having started from the hard formulation or vice~versa. We
have thus shown directly the equivalence of the various
approaches to generating_equivalent formulations of the

massive Yang-Mills Lagrangian and the implication would seem

to be that the theory is non-renormalizable.

c) The Self-Energy Terms

In deriving‘the Ward identities of Chapters 4 and 5

- use was made of the identity (4.13). The derivation of it .
involves terms proportional to (k? - M?) which are taken
to vanish as the physical particle is on-mass shell. This
manifestly cannot always be true when (4.13) is applied fo

self-energy terms with an accompanying pole. Instead of
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formulating the equivalence in terms of amplitudes we should

have considered the S-matrix as pointed out by Biabynicki-

Birula(64,65), Both Veltman(14) and Mohapatra, Sakakibara
and Sucher (12) fail to take these self-energy terms into
account. Boulware(6) glosses over the problem for the non-
abelian theory but considers them fully for the abelian
Lagrangian. Unfortunately, his treatment leads to the con-
clusion that.it is necessary to associate a factor
exp [1 % (%)ZD(Ox] with each "charged" field which we
found unnecessary in Chapter 3. We replace any "physical"
lines in the hard diagrams by an external source which is
later made "physical" as in section b) of Chapter 3. The
sources are Ji Wg (no summation implied over a) for each
vector field which are made thsical only after all mani-
pulations are completed.

If the previous constructions of Chapters 4 and 5 are
now repeated with all the physical lines replaced by‘the

above source we have, instead of (4.13)

| /7
! /s
v P
. - //
. I a & a
° T Iu
(5.8)
! 1 AN
| i \\
!
= Y + : Y + A\
' a ! a T a
PO I o] - ©- _
== T > =Ty am

i.e. a scalar line may terminate at one of these sources
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through (4.9) to form the vertices Fig. 21(iv) and (v).

From these a'hierarchy of vertices is generated as in Figqg.
29, since scalar lines may terminate at previouslf created
source-vertices to form the vertices of Fig. 37. The
additional vertices as they only contain ingoing scalar lines
are trivially symmetrized and straight-forward to absorb
into the diagrams as usual.

In the context of Chapter 4 it remains for the duplica-
tion factor for the configurations, including the vertices
of Fig. 37, to be obtained. In the configurations before
absorption of the external propagators there are now trees
with an external line source. These trees cannot have an
associated closed loop and as all scalar lines.are ingoing
their multiplicity is one. The total duplication factor
becomes (—l)N, where N now includes the terms Yél

A 2
when V | is the number of scalar legs of the i-th source

si
vertex, as can be proved by induction following section c)
of Chapter 4.

., The source has to be treated like a vertex with an
attached closed wavy loop with an associated factor of (+1)
in Appendix D and it is found again that if a line or p-
_loop is.added to a configuration, the only change to the

duplication factor is to multiply by (-1). For cbnfigura-

tions with one external source a basic shape is

\

\
\
S N

which has a duplication factor (-1) as required since any

\

. (5.9)

number but at least one of the propagators in the loop may have
been generated externally. The other basic configuration

with one source can be deduced from (5.9). For example
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FIG 37 The factors (fﬁ) from the momentum contraction sources are shown explicitly in

connection with the sources, cf. Fig.

29.
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\ i N -~
/ - .
D.F. r- - - =X = (-1) D.F. 2 -———%:)(
\ Y, /
N . N -
RN
/ \
= D.F. | =X | = (-1)
\ 7
~ /7
—~—

As well as the duplication factor for the lowest order con-
figurations with one source we require to show the lowest
order configuratiqns with any number of sources is consistent
with (—l)N. This can be deduced by starting from the con-
figuration made up solely of the appropriate number of
sections like (5.9) and qonnecting up the seéeparate parts.

For two sources

(-1) D.F.XI{/ Vo \>;X= (-1)
\ 1\
N 7 ~

i

The duplication factors are absorbed into the scalar
vertices as in section d) of Chapter 4 with a factor (i) for
every scalar leg of the source-vertices of Fig. 37. Thus
for the soft diagrams the Lagrangian (4.22) is modified by

the addition of a source term
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1 1 -i + 1 (=i 2 ab _qu
- = + = (T19 = (Ti9 +... J
M au¢a{I 2!( M g) 3!( M g) } b
(5.10)
. . b
+ w {r + (tig 4+ L1 (tig )2 4 .. .13P ,u
pa ( M g) 2!( M 2) } Jb
which can be re-expressed as
-1 Eab'— J¥ v w exp (+i9 ab _u .
5 au ¢_E (-¢) b ua{ P+ g)} Iy (5.11)

(5.11) is exactly the source terms found by Boulware(s)
and Salam and Strathdee!?) cf. (0.24).
In the corresponding construction from soft to hard

diagrams of section a) of this chapter the additional source

terms for the Lagréngian (5.4) are

1 - 1 .
5,0,(1 45, (g 9 + 3 Cf

. (5.12)

|

+g 1
+Wau{1+(ﬁi)+5

a) Invariance of the S-matrix

The consequence of the sources (5.11) is that the
S-matrix and not the amplitudes are identical, for the
soft and hard formulations, on making the external sources
physical. When the sources of section c) are included, the
identity proved is represented graphicélly by Fig, 38. The
external lines are made physical in the usual manner. Of

the contributions which may be detached from the rest of the



The + . indicates the presence of terms constructed from the scalar

Lagrangian (4.19). The source-vertices are symmetrized.
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diagram by cutting a dressed propagator, Fig. 39, only

those shown in Fig. 40 do not vanish. In'particular, when
there are only twb external sources, the identity is as in

Fig. 41 if all unnecessary terms are omitted. 1In order that
the external lines are set on-mass shell for the physical rather
‘ than the bare particle all mass-like factors in the dressed
propagators are quasi-renormalised by éﬁsorption into the

bare vector boson propagator. With the definitions

v
ZH ev(phys)_z limit [ > > by (kz_szhys)eu]
| k2?->M2phys.

Zg ev(PhYS) = limit [ J4 > . by (kz-szhYs)eﬁ}

k2+M2phys. 15.13)
v . Yy, - By "I K ]

F e (phys) = limit [ + + ¥4 -.le
J T—_@/\——X k 0

k2-»M2phys.

o .
in which the source function Ju has been dropped and

ev(phys) obeys the condition (3.29), the identity Fig 41 is

L
2 = 7 _ F? F = 2% / zé . (5.14)

5
H : S H
On applying (5.14) to the terms of Fig. 40 in Fig. 38 we

obtain



+ etc. : \

FIG 38
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_ 1 (5.15)
772 YA -
‘ S
Therefore, it is the S-matrices which are equal. The equi-
valent can be done in going from the soft to hard formalisms
of section a) with the corresponding function to F,
T
S H °
However, in considering the renormalizability of the

massive Yang-Mills Lagrangian we are more interested in the

proper amplitudes .

(5.16)

rather than the S-matrix. The presence of the factors l/F
in (5.16) make the evaluation of the degree of divergence

of the hard vertex functions much less clear. On treating
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the right hand side of (5.16) as a perturbation approximation,
by expanding l/F as a polynomiai in é, it cannot be expected
that all non-renormalisable divergences mutually cancel. How-
ever, if we consider the contributions of the vertices of

Fig. 29 and Fig. 37 only,to the "blob" and the function F
weisee they are similar. To be more precise on using the
dimensional regularisation(53) each produces a polynomial

in the pole factor T (2 - %). The exact solution requires

the diagrams to all orders to be taken into consideration,

in which case, these polynomials become infinite and both

the expressions are essential singularities. How the com-
plete expression behaves cannot be determined.

The root cause of the presence of the vertfzes of Fig. 37
in all the formal derivations of the equivalent formalism,
with soft vector-boson propagators, is that at some stage
there is a rotation of the physical subspace of the Fock
space of the fields(7i. The rotation is a finite gauge trans-
form for the massless theory. 1In Boulware (6) the transform
is between the vector-boson field and its transverse equi-

valent; in Salam and Strathdee(7) the transform is used to

generalize the Stuckelberg split! in Veltman et al. (12-14)
it is used to set up the Ward identities. Because the trans-
form is of infinite order in g (5.16) must be considered to

all orders in above.
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CHAPTER 6

RENORMALISABILITY OF THE MASSIVE YANG-MILLS LAGRANGIAN

It would be advantageous to find equivalent formalisms
for the massive Yang-Mills Lagrangian for which the factor F
was more simply behaved than in Chapter 5. We could realise

this by having a derivation which is not dependent on the

finite gauge transform. The derivation of Hsu and SudarShan(l7)

in which the scalar ghosts are introduced by a Lagrange multi-

plier is an example. One implication of (5.16) is that the

(12)

investigation of Mohapatra, Sakakibara and Sucher and

Chapter 5, section b), as to the validity of the formalism of
Hsu and Sudarshan, is not wholly valid. We discuss it in

section a). In sections b) and c¢) we revert to the for-
(6)

malism of Boulware and examine a parametrization of the

transform which considerably sim?lifies F and the scalar

Feynman rules.

a) The Lagrange Multiplier Scheme

(17)

Hsu and Sudarshan considered the Légrangian

"
!
| =
o
b=
<
+

MW WY - am ﬂ“.aux + 58x%  (6.1)

but with a?M? = g8 . They showed that the equations of motion
for the Lagrange multiplier, Xgqr Wwere the normal ones for a
scalar particle with a renormalizable interaction. We shall

examine (6.1l) in the Hamiltonian formalism. The fields are

WE and their canonical wvariables

kK - _ .k K k
Wwa = S W gW, x W ) 4 (6.2)
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evaluated by integrating over the scalar field to get(l7)
T _ 1 Hv 2 u a?M? 2
= - = . + % MW W - % .
i 7 Suv-C ; MPW W s g7~ (3, W) (6.10)
Hsu énd Sudarshan defined the physical state by
)Q(+)(X) |Phys.> = 0 ' - (6.11)

and noted that the equation of motion (6.9) could have been

obtained from
i x) = - %[3ul'3ul - M2x? + gx- (v_vuxa“x_):l (6.12)

with the subsidiary condition

L .
auv_v”+32x = 0 . (6.13)

They then removed, from the S-matrix generated by (6.10),

any contributions of the scalar field by adding the deter-

5
M

minant D to the functional integral where

_1/2 - ac - 2 2 -1 b U -%
DM = det (6 (3“+M*) gfabC wua )
(6.14)
= fax®] exp{ifd"xi(l(_)}
i.e. Di% is the total contribution of the scalar fields to

the original Lagrangian (6.1). The Feynman rules are, thus,
those of Fig. 1 with o =1 and a factor (- %) associated
with each scalar loop.

The above manipulation wéuld appear not to be wholly
valid as no account was taken of how the determinant would

affect the equations of motion of the vector-boson. However,




-122-

if a suitable source term were included in the Lagrangian

(6.1) to generate "Ward identities" between diagrams generated
by (6.10) and (6.4), the programme of section b), Chapter 5,
could be executed to remove the contributions of xa to the
diagrams for (6.4). The Feynman rules for (6.10) are as in
Fig. 1l(a), except for the scalar propagator and vertex.
Quantizing (6.4) canonically as in Appendix E, without worrying
about the indefinite metric or formulating in an explicitly

Lorentz invariant manner(l3’66)

’ we obtain the Feynman rules
of Fig. 42. The degree of divergence of the resultant rules
would be no worse than those of (6.4) and so Hsu and
Sudarshan's conclusion, that the massive Lagrangian is renor- -

malizable, would appear to be qualitatively correct.

The free Hamiltonian is obtained by setting g = 0O in

(6.4):
_uok ok _ 1Tk ) 3 S W
Hoppep = 4o-I0 - = rlw.a.gx+%awk (33w*-a%w?) + ymow
(6.14)
- % eIl .I - kex.x - oM wF.a¥y
which may be re-written as
- 1k Kk 1l . k:k Jq3 k3 o]
= 9 1 - =
ﬂFREE = %EW'E-W + 2’1\72‘(3 .IlW)’(a EW) + 2[@?](.8 (W Ma X)
m,n o .n 4
.[z (W -5 9 x)] (6.15)
fmn
k a .k k a .k
+%M2(w-ﬁax).(w-ﬁax)
"1 o .k _k ¢ NJnd
- L - = - '
s o7 (L, =5 I '_(Ex ¥ o I

- 123k - I k
50°07X. 97X = EBX.X — o oK (EW.EX)
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Wk k k o .k k k k
L = - — [3 ' =
= - ﬂ - E M 3 X7 EW > EW EW
(6.16)
1 a .k _k
1] —_ - ! - — - —
x > X' = o Lo I ALV VIR

can be made without spoiling the Hamiltonian formalism we would

- obtain

' S S 1 .k ,k i,k o oKeed n
= L7 ' 1 ' ' 1 ' "
Hopper = 500515 + % 5 . 700 + TR N
+ xmwk wX (6.17)
_% E"H' - %3kX"3kl' - %8/a2 Kl.ll

‘on dropping the divergence term. What is required is that

the transform (6.16) is canonical, i.e.
fda_z[ﬂa(x)dfba(x) - 'na'(x)dd)u(x)] = aw(e) (6.18)

where ¢a(x) are the original fields with canonical variables

wa(x) and @a(x) the transformed fields with corresponding
canonical variables Ha(x). For (6.16) dw = O and the
transformation is canonical.

The first.part of (6.17) is the free Hamiltonian for

spin-one fields of mass M(67);. the second part is the free

L
Hamiltonian for spin-zero fields of mass 8°%/a (67).‘ Hence

we see that just subtracting the contributions of the -xa'

(17)

fields as in Hsu and Sudarshan does not leave a pure
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spin onelLagrangién, i.e. the unitary formalism for the massive
Yang-Mills Lagrangian, which can be confirmed by considering
the W-W propagator in Fig. 42. To regain the pure spin-one
Lagrangian the transformation (6.16) must be made first, but
that introduces scalar vertices with multiple derivatives and
the rules are non-renormalizable again.

We may compare the massive formalism, above, to the
massless with the Lagrangian

= _ 1 MV u 1
i = ’Zguvfg + aauﬂ X+ 2—6 x,x | (6.19)

and canonical variables to the fields Wz and WZ

x _ X k
Tga = akwoa T AW, T M EY)
(6.20)
Hoa = axa .
The Hamiltonian is .
. -k k . -k .k Sk .5k k.3
= %k 1 -
o= ahak o+ nfoeku + nedwk, a3nk - oud)
B ' k. k
- 1
- % /el I+ 3CW LT | (6.21)

. . 2 . »
- 970 . @) + /eI L @I®) + g k. @)

If we apply the transform

ﬂk—rﬂlk:.v_qk : __I_[v];-r_rlv'\lk: _]_'[:;+3k_1ﬂo
(6.22)
Eo > W'© = ﬂo ; m° » m'© = -Bo - akgk B/az

to (6.21) the free part may be rewritten as



2 .
ﬁ' z Hv'qu‘Hp'qu _ %W_'Lk-.az E,Lk + %(98_ _ l)BkﬂlLk.Bjﬂ'Lj
FREE W=
t .
+ oy TR TR o g TR 2y TK (6.23)
-W =W - £ =
+ 535w O %W ® -y nrO.nr© B2

where the fields ‘ﬂ'k have been split into transverse (T)
and longitudinal (L) parts. The transform (6.22) is canonical
as

aw(t) = af a*x(XwC.w% . ‘ (6.24)

If we choose 6/a2 = 1 the Hamiltonian (6.23) can be

interpreted to consist of three different sets of fields. The

(67); the second are mass-

less spin-one fields in the radiation gauge(67); the third

first are spin-zero massless fields

are massless spin-one fields with a negative metric. The
influence of the spin-zero fields from the amplitudes may be
removed as before. In this case we are left with a renor-
malizable theory as the transform (6.22) does not generate

any non-renormalizable vertices. 1In this construction of

the unitary rules for the massless Yang-Mills Lagrangian
gauge invariance has not been used, only the dynamics of the
fields have been exploited and we obtain the Feynman rules for

one gauge only.
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b) A Parametrization of the SU(2) Lagrangian

- The only option left in investigating whether the massive
Yang—Mills Lagrangian is renprmalizable is to choose a more
convenient parametrization of the gauge transform than
Boulware(G). We follow Boulware .as far as éstablishing that
the explicitly unitary formalism can be rewritten in terms of
the transverse fields.

For the Lagrangian with only the Yang-Mills fields and a

source-function, the generating functional is

o] = zfal] exetifatx[ - 36,,.6" + wew, .+ uw,.3"])
- (6.25)

For convenience define the_field matrices

72 wH
a

Wt (x)

g,w (x)

M’ (x) - sWwM(x) + ig[w“ (x),w"(x)] (6.26)

72 gHV
a

H, . a |
.} (%) T  J,

: a . s
where T are the generators of the n-dimensional representa-

tion of 8U(2) chosen such that

tr(r® T°) = A 63P . (6.27)

The Lagrangian may then be rewritten

2

_ -1 Hv -1 u -1 u
= - L
i = = 4tr»g, v + A TyerW w’u + A triv }u. (6.28)

Under the finite gauge transformation
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wheo > Wl = amwr e te + et ig
(6.29)

the Lagrangian (6.28) transforms:

L1 = 27 e ,g/uv%v # A7 wmzer M+ 2 [w, + 2,1
+ A7 et 4 E”_’]g/u (6.30)
where ™Hx)y = @ apgil/ig
Mix) = -0 taYasig (6.31)

and §(x) 1is a local element of the n~-dimensional representa-
tion of SU(2).

Any vector field W! (x) can be written as the gauge

(6)

transform of a transverse field ’ {U;(X)- However, in the

generating functional (6.25) any transformation of the fields
must be accompanied by a Jacobian factor. Hence, (6;25) is

equivalent to

e =z tfam"lald (det m) exp{ifd“xl:‘x_l%trgmv 4 uv

" ymz ey wTH wﬁ + 271

s A Y [p ™) 4 4] }u] (6.32)

Mztrzuw'ﬁ + %A'.letrQuSLu

where det M is the appropriate Jacobian factor
_ IAVI _ . Tu AV _ (6.33)
det M = C det [é 6ab6(x y) + 1gLUA ab(x)a D (x y)]

-ip. (x-x"')

. . : d"p -e .
with D(x-x') = 2 57 and the parametriza-
A . : oo -1, . H .
tion in (6.32) is &y = 8Q Q ~/-ig. tijA are the field
ab
matrices in the adjoint representation of the grou.p.i.e.Ta = -t

bc abc
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where tébc are the structure constants of the group. The
net effect of (6.33) is just to intréduce scalar loops to
the amplitudes as in section a).

An explicit parametrization of Q(x) must now be chosen.

(16)

Boulware made the choice

2(x) = exp(-igT?_ (x)) (6.34)

for the adjoint representation. Then

Ma(x) = -iga”¢a B, Tpf (6.35)

where Ey . () Lt - 1) /-igex) T,

and the necessary Jacobian factor

éxa(x)/6¢b(x') = §{(x-x"') E (6.36)

ab(x) .

We restrict ourselves, now, to the fundamental representa-

(7)

tion of SU(2) with the parametrisation
Q(x) = (1 +o(xNI+izx.0 . (6.37)

Q(x) is unitary with determinant (+1) if
20(x) + o%(x) + I.I. = O (6.38)

The corresponding change in the volume element including the

Jacobian is

de(aj »~ fda[r_ld[c]s(20 + o2 + I.I) (6.39)

as expected(7). Further, it should be noted that

n
4
@
=
Ee)
¥
Eo)

u
272 .
H g H (6.40)

Hence the generating functional (6.32) can be rewritten
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‘ -1 T 2.2 20 T
G[Od] = z fd[w ]d[ﬂ]d[d] (det M)$§(4Mgo + g202 + g2I.I)

. y T T 2 H H H
i |_ . V4 L . + L + % .
exp{ Id X G v G zM W W 28 03. O 23 nN.a It

u
g 9. T
+ M(l + 4Mo)<ﬂ_ﬂ_ '-‘Iu (6.41)

TH

+ g 9,0 Q.HTU_ - g3 IxW™  + wh.g

u

_ 29 g T _ g% TH
(L5 o) LW “xﬁu iz (W XE).(EXQU)

M -1 9 5y M M
+ 527 3% 1.3, - 5 + 55o)o g, + Tl mxg, 13

where the o(x) and na(x) fields have been rescaled by ﬁ%.
The source terms in (6.41) are of no real account as they

only ensure the Sfmatrix is identical to the unitary formalism.
Hence the Feynman rules on treating the formalism as an equi-
valent Lagrangian are as in Figs. l(a) and (c) with a = 0.
plus the additional vertices of Fig. 43 if the §-function ié
ignored. To interpret-the §-function we first reformulate

in the generating functional as
§ (4Mgo+g?o?+g2I.1) = fd[@]exp{-ifd“xC(x)(4Mgo+g202+gzﬂ,£)}
= fd[?']det_l(4Mgc+g202+gzﬂ.ﬂ)exp{-ifd“xc'(x)} (6.42)
on substituting
C(x) =+ C'(x) = C(x)(4Mgo + g?c? + gZI.0).

The integral over C' <can be incorporated in the normalising
factor and the é-function is replaced by

det_l(4Mg0 + g?o? + g?I.0).
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c) A Parametrization of the SU(n) Lagrangian

The parametrization of section b) is specifically for
SU(2). However, in general any SU(n) Lagrangian can be re-
formulated similarly. To the SU(n) Lagrangian we add a

free field, designated Wug, and redefined

wh =) = .Taw'g + oTWg etc. (6.43)
i.e. the Lagrangian (6.28) is rewritten for the group U(n)
rather than SU(n) with generators T of the SU(n) algebra
plus aTI. The a is chosen such that condition (6.27)
still holds. On transforming the generating functional with
the appropriate U(n) transformation (6.29) we obtain the
form equivalent to (6.32).

The choice of paramétrization of the group elements is
made considerably easier since there are now the same number
of group parameters as matrix elements of the fundamental re-
presentation. If we agaiﬁ>restriqt ourselves to the funda-

mental representation we may parametrize by the n? functions

v 4y = 03P (x) - 3P (6.44)

The Jacobian factor is det|I + W|-n and the integrations are
over the n? dimensional surface, T, in the function space
mapped out by the requirement that  is unitary. The generat-

ing functional is now

6[3] = 2 tfalwt]a[¥] (det M)det|T+¥] Texplifatx|-a" tytrfTHVeT
uv

r
- - 2 - - .
+ A 1%M2ter“w§ + A 1%%, era” [+ to, 4] (6.45)

-1, _ - -
A M tr [T+¥] lau[Iw]wT“ +A 1tr{[1+\ijT“[1+wj 1

ig
- -1,. -
+[1+v] 3, [1+¥] " /ig} }U_I }
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We now utilize a similar trick to section b) by introducing
the field ¥ such that

[x+ 9™

(6.46)

!
~
+
|

, when (6.45) becomes

G[J] = z'l[ d[wT]d[w]dl:ﬂ (det M) (det |TI+¥| ™)s( [I+‘{’J_l— [Iﬁ:,)

r

.exp{ifd"x[—k-l Ltr Q/Tu\). '111‘\) +)\-1%M2tr wTH wE

-1 (6.47)

ig

-1, M2 A M2

u._
+ —t -
) g r 9V auw

tr ¥ o v W
2 Ler{ Ty w™ [Iﬁ] + [x+v]s" ¥/ig) g’u:l}

which is equivalent to

c[@] 7271 [d[wﬂd[}ﬂd[ﬂ (det M) (det].I+‘¥[-(n-l)).

I‘ . .
. (det_1|W+W+WWl)exp{in“x LTy .(6.48)

In (6,48) the blinear in the "scalar" fields is of the cor-

rect form for a Lagrangian as

tra“Wau\y ¥ ¥

ab %y Yap -

Although the formalism (6.48) contains n? tranvsverse vector-
boson fields the SU(n) Lagrangian can be abstracted from it

as the additional field remains free.
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d) Discussion

The two alternative parametrizations of sections b) and
c) must be interpreted with care. Since there are no sources
for the ghosts fields present in the formulations\we cannot be
certain that they can be interpreted as perturbation expansions.
If the fields na(x) and o (x) of section b) are con-
sidered as polynomials of the scalar fields of Boulware(G),
i.e. the scalar fields of Chapters 4 and 5, the lowest order
term of o(x) is 0(¢2?). It thus seems improbable that the
formalism of section b) can be expanded as a perturbation
series and the Feynman rules of Fig. 43.are not justifiable.

To investigate the formalism of section c) we start from
the formalism of Boulware. It should be noted that the latter
formélism is open to the same query over interpretation but it

has been completely verified in Chapters 4 and 5. (6.45) is

then obtained by making the transformation

02 > f% tr{T? log (I+Y¥)}  (6.49)
which is easily justified by diagrammatical means as in (28).
Similar methods can be used to support (6.47) and to find the

correct interpretation of the field V . First we note that

any term of the expansion of

1

tr{(auW)au(I+W)- } (6.50)

n

e.g. (-1) tr{(a“W)au(ww e W)}

i

= (-1)" tr{o¥(vy ... MY (6.51)

by the rotation property of the trace. Thus in the vertices
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created by (6.50) there are two legs, labelled 1 and 2, either
of which may be considered to carry the inverse propagator

term (32).

(6.52)

The basic reason for the property (6.51) is the symmetry of
the purely scalar contribution to (4.19).

If the higher order vertices including Wﬁ are denoted

by

(6.53)

the scalar vertices obey the identity

Al A2 | \
+ + = 0
(6.54)

In the combina%orics of the usual transformation of a field

¢, with propagator term %6Vd, two vertex functions of the
form 59VF (®) are obtained to give the cancellation (6.54)(28).
In the present case the two terms from the symmetry of the

vertices in legs 1 and 2 are required;

Hence, in a general scalar configuration only the lowest
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order scalar-vector vertices remain and the legs of the higher
~order, purely scalar vertices are connected such that 1 and 2
do not attach to the scalar-vector boson vertex. If we start
from one of these purely scalar vertices, a path can be traced
out by leaving it on leg 1. At the vertex this leads us to
we may again leave on leg ], unless that was the leg at which
we arrived. In the latter case we leave from leg 2. As the
path is restricted to the purely scalar vertices, it must
eventually form a closed loop. The closed loops can be con-
sidered to be equivalent to a-determinant term in the Lagrangian,
as in (28), but here the combinatoric factors are unusual |
since two possible ways of constructing the configuration are
deleted by (6.54) and two corresponding ways of connecting
each verfex to the loop included. It is not necessary to
check if these factors account for the determinants in (6.48)
as the exact form is superfluous.

The way to interpret the field V¥ is obviously to keep
Vonly the lowest order scalar-vector vertex, i.e. to replace
¥ by V¥ and calculate the combinatoric factors as for a
normal scalar Lagrangian. Hence, the formalism of section c)
demonstrates how td group the vertices of the formalism of
Boulware, (4.22), such that all higher order vertices vanish
except for the determinant contributions. The resultant rules
are those of Fig. 1 with a = O and a factor (-%) associated
with each scalar loop plus the determinant terms.

If the amplitudes are calculated using the dimensional
reqgularisation scheme(53), all contributions from the deter—

minants and loops of the previous paragraph vanish and the

Feynman rules which are left are renormalisable according to
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power counting. 'With the rules of Fig. 1 the ghost for the
field WS and so Wg completely decouple and the free field
Wg can be dropped to leave the SU(n) Lagrangian.

Finally we reflect on the interpretation of this regulari-
sation dependent formalism. If we assume that the problems
raised by the identity (5.16) reflect the inadequacy of the
perturbation formalism and that in an exact solution all
non-renormalizable terms converge in the limit as. n - 4, we
could calculate the renormalizable contributions, with any
regularization scheme, and add by hand thosé finite terms
necessary to render the S-matrix unitary. The additional
finite terms being assumed to be the limit of the non- |
renormalizable terms. As the complete theory is unitary
regardless of the regularisation procedure the S-matrix ob-
tained by the formalism of the previous parégraph must be
-unitary and the limit of the non-renormalizable contributions
taken to be zero.AAIf the dimensional regularization scheme
is viewed as only being a convenient mathematical trick and
the massive Yang-Mills theory is still taken to be inherently
unrenormalizable, we could take the "renormalizable" fqr—
malism to be an alternative, unitary, spin-one Lagrangian

o
whose S-matrix differs from the normal Lagrangians by di-
vergent terms which vanish under the dimensional regularization.
Alternatively a pragmatic attitude could be adopted in thét
the formalism be considered a method of calculating renor-
malizable amplitudes for thé massive Yang-Mills Lagrangian
and that the use of the dimensional regularisation scheme
contains no inherent difficulties.

We have only considered here Lagrangians with a mass term
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of the form %Mzﬂu.ﬂu but the procedure could be generalised

b

, b
to addition of a mass term %Mzwi M*P WM as long as it could

be expressed as

Mz er w'M wu (6.55)

in (6.28). It is still necessary to demonstrate that the
renormalization counter-terms can be absorbed in scaling
factors. A similar argument to that used by't. Hooft and

Veltman(so)

for gauge theories can be used. For the S-
matrix obtained by the "renormalizabie" rules to be unitary
it is required that amplitudeé in the explicitly unitary
rules are related to those for the ﬁrenormalizable" rules
by Ward—type'identities obtainable by including ‘a suitable
éource term in the Lagrangian. These identities must survive
reﬁormalization to preserve unitarity and so may restrict the
form of the renormalizgd theory. This arguﬁént is of course
not so strong as in the gauge theories, as there is no equi-
valent of the Tree-Loop theorem.

Finally we note the reformalism of the SU(n) Yang-Mill§

Lagrangian of section c) could equally well be applied to the

U(n) Lagrangian.
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- Appendix A: Self-Energy Terms in the Infrared Summation

In Quantum Electrodynamics the proper self-energy terms

for the electron may be written(58) as

* *

2(p) = A+ (pmB + (F-mi, (p) (pm). (a.1)

Henceforth, we shall consider diagrams where the mass-like
contribution A has been absorbed by the propagator (not

necessarily renormalised). Exploiting (A.l) the Ward identity

*

Z_p) + A (p,p) = O (A.2)
apu M
may be interpreted as Fig. A.l(a). Equivalent to Fig. Al(a) is

the expression represented by Fig. A.1l(b) as the infrared
terms in k can only possibly arise for the diagrams on the
left in the limit as k > O when the infrared contributions
must cancel by Fig. A.l(a). (In fact the limit of K(k) as
k - 0 must vanish altogether.)

Firstly we evaluate the contribution of an additional
virtual photon added in all possible ways to an amplitude
involving self-energy terms. The me£hod follows (59). First
consider the additions where both ends of the additional
photon do not terminate on the same external electron line
or its self-energy terms, i.e. diagrams of the type of Fig.
A;2. Applying the identity of Fig. A.l(b) the infrared
contributions from the legs on an external line and its self-
energy terms cancel except for the last insertion, i.e. the
diagrams of Fig. A.2 reduce to those of Fig. A.3 plus some
infrared finite factor. Fig. A.2 is evaluated as usual in

(59) and the total infrared contribution of Fig. A.2 is
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The shading indicates only proper diagrams present;
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e % <%;> g left-leg to left of X
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B'U(p')T (p',p)u(p) + K(p',pik) - (2. 3)

A .
where B' = iezu f - (2p'~k) . (2p-k) a'k .
(2m) (k?-2p'k) (k?-2p.k)

Next we evaluate the contributions of a photon where
both ends terminate on the same external line or its self-
energy terms. The set of diagrams are of the form of Fig.

A.4. 1Instead consider the equi&alent self-energy terms in
~ o -

fx = limit | /,—\\ < é < (A.4)
k>0 | Pk\__/P-k P

T A

0

By Fig. A.l(a) the right-hand side of (A.4) is equivalent
to the tefms in Fig. A.5 in the limit as & » O. The photon
line is always terminated in the proper self-energy term
which involves the additional virtual photon. On applying
the identity Fig. A.1(b) to the virtual photon in the dia-
grams Fig. A.5(a) - (d) we see that, where the additional
photon joins more than one proper self-energy part, there

is no infrared contribution from it, i.e. diagrams Fig.
A.4(a) - (d) have no net infrared contribution. Diagrams,
Fig. A.S(e)l- (g) are evaluated as

A
jie? I d*k  =-(2p'-k). (2p-k)

(2m) "

+X (k)

(-l) —

, k¥ (k2-2p!k). (k2-2p.k) -P P

(A.5)
Hence, on using Fig. A.l(b) again and taking the limit as
'p > p' we obtain the infrared contribution of diagrams

Fig. A.4(e) - (9)



(a)

(f)

(e)

FIG A4
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A

ie? I d*k - (2p-k)? gza ..... 6%% (A.6)
(2m* /) k* (k*-2p.k)?

Diagrams Fig. A.5(h) can be immediately evaluated to get the

contribution from Fig. A.4 (h)

A

e [ T Lz <€%§?““"€2§}<? """ (A.7)
(2m)* §  k? (k?-2p.k)?

(A.7) differs from (A.6) in sign as it is not necessary to

use Fig. A.1l(b) again in obtaining (A.7).

There is a contribution (A.6) for each set of.proper
diagrams in the self-energy terms and a contribution (A.7)
for each line connected to the proper diagrams. Hence,
the infrared contribution for all diagrams in Fig. A.4 is
(A.7). Adding all infrared contributions of Fig. A.4 to
(A.3) we obtain (1.12). The factorisation of the self-
energy terms could be iterated as usual to give (1.14) as
required by consistency as (1.14) ié related to (1.13)

through the identity Fig. A.l(a).
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<>

Appendix B: Solutions for éL

ij—~

Here we shall examine the possible solutions to the

B
constraint equations on 28 i3
> -> t >
S =
“«> -> <. <>
R,ij tig ° M Loy (B.2)

Some solutions of (B.l) can easily be obtained by

_ %
multiplying on the left by tCi :
« s > < “«>
ECJ. ij Sja(A) = Mep lea
S tarow o
*+ Dipa B Mpe tey Big S55(R) (B.3)

- &

for most general solutioh, ézij must satisfy

<« -> < 1—_1 “ > > “«=>
Ri_j Sya(B) = Hy mpl E &kj Sia(B) + X;, (B.4)
< “«-> .
where toi X3 = o} . . (B.5)
<> <« «->
But to satisfy (B.1l) X, °F M.y Yy
>
and (B.5) implies Yba = o .

Therefore, most general 6Q satisfies

<—<—_l<- “~> >
(I-Mm T Rs = o. (B.6)

Similarly we require
<+« < <« «> >

I-MntH R t= o, (B.7)
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A T .4 PRI N
As (I - Mm t)M = o, (I ~Mm t) cannot be

non-singular and neither ﬂ,t nor R s is zero.

We now consider the eigenvector equation

-1

204
g4
ted

(1 - ) X = Ax . (B.8)

<

> ) . ~

As m is non-singular and an nxn matrix the rank of m
-

is n and the rank of M must be greater than n as

Min(R(A), R(B)) 2 R(AB) , where A and B are any matrices.
+
But rank of M 1is less than n as M is an m X n matrix.
< -
Therefore the rank of M is n. Similarly the rank of ¢t
-+

is n as f is an n X m matrix.

P
< X
) = ——
If Mo - (-O ) where X 1is a non-singular nxn
matrix
« « ,
M = PM'Q where P and Q are non-singular.

Let t! = t P where t! = (Y:Z) and Y is an
nxXxn matrix
“« <« <«
Thus Mm@ - ¥ = P ( S T A W (B.9)
- - ..| -------
¢ 0
and (B.8) is equivalent to
1 - p(r.: ¥t B\t x = ax (B.10)
0 o)
: '(-—l <
or 0O + ~-Y Z\y = iy : (B.11)
o I

where y = P X .
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We have thus obtained the eigenvalue equation

' «-] < _
PhiTtot 0 T°
o . A-mI _.
ie. (=0T @-0™" = 0 (B.12)
P '
and (I - Mm ~ t) has eigenvalues A = O (nth order degenerate)

and X =1 ((m—n)th order de-
generate) .

Il
O
o))
[a}
(

I

The eigenvectors for A Pzi, where

Y; = g? for 1 €« i ¢« n
and for A =1 are x; = Py; where
Yi = g? for n+l € i £ n
. m _ m
with (_e_i)j = Gij .

For (RS) and (Rt)  to satisfy the conditions

« <« <« “« <«

(I -mmPDHARS = (I - M m

<
1 t) Rt = O they must be con-

structed such that their column vectors are linear combinations
“« « “«

of the eigenvectors of (I - M ﬁ-l t) for eigenvalue X = O,

n
ie. 3™ column of ®S) = & AS, x
i=1 It T
and " " " (®t) = I AL, x,
jo1 31T

Thus the most general solution to (B.1l) and (B.2) is to choose

R to satisfy (B.13) when

“« “« > )
L, = @R'PER)E
« . o« > (B.14)
L, = m i R)® .
<+~ < “-> - <+
A particularly simple choice is = M X K for any X .

jk ja
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Appendix C : The Massless Yang-Mills Lagrangian

The maésless Yang-Mills fields may be quantized with aﬁ
arbitrary gauge function as in (50). The S-matrix exhibits
the usual gauge invariance for diagrams constructed with a
factor (-1) associated with ea;h ghost loop. In particular

consider the subset of gaugeé Ca‘ = %

Wg . The proof of
invariance of the S-matrix, up to the one.loop approximation,
under variation of o for diagrams with a factor (- %)
associated with each ghoét loop, of section c¢) of Chapter 3
also holds for this set of gauges. |
This is easily verified directly as the ghost loops are
independent of a . The o dependence of the vertices and

propagators mutually cancel. The identity corresponding to

(3.37)

(C.1)

holds for tree diagrams in both approaches and ensures that
the o dependent terms %%%%%;TZ in the vector-boson pro-
pagator does not contribute in either.

It is imperative to note thaﬁ neither construction has a
manifestly unitary gauge as for no o does the pseudo-scalar
ghost become insignificant. If any given « giﬁes rise to
expliqitly unitary Feynman rules for one formalism, then the
other formalism must also be unitary which is of course

unacceptable. This contrasts with the situation for the

massive theory where both formalisms have an explicitly
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unitary form in the limit o > O. There, it is the formalism
which is invariant under variation of o« which is the correct
one.

| For the massless Yang-Mills Lagrangian to be unitary, it
must be proved implicitly for some set of rules. t. Hooft(27)

has done this in the formalism with a loop factor (-1) when

a = 1. Instead of (3.34) use the relation

[+
o
il
-
]
|

—o + ¢ { — — D + (C.2)
1
]
here — < L————«P =- 1 §(k2)e(k )8 kuiv
w : -, = (21 3 o' “ab 2[k[%
!
-k

and the physical cut is for the two transverse polarizations

only. The two cut line diagrams become

E RN
TTETRCRRCCF<®

I
<& - -
- 'l I !.
. - 'D l ’
. . -1 .
_ |
which is the form of the Cutkosky rules for the formalism

with loop factor V(—l.).  The proof is extended to all orders

by induction.
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Appendix D: The Addition of a Line or Loop to a Duplication

Factor Diagram

The most general insertion to be demonstrated is that of

a line between two completely independent lines in a scalar

configuration
? T @ ?
I
] ! : !
i.e. l ! - ) O
, I i I
I I ! !
§ 8 5 L

the scalar Vertices. Within the context

duplication. factor the replacement to be
G

O
[+
[~

where e represents

of calculating the

considered is

-

NN

1L

TTITT
I
TTT

S
+

[, S LN )

Ot~ ~r®

LIl l—
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+H +H +
+ }'-’-ﬂi + }’v~ﬂf-§
All theée replacements may be made for all possible attach-
ments of hard and wavy lines to the vertices and so must be
evaluated using the rules. in Chapter 4, section c). As the
mathematics is identical whether the vertex is purely hard-
line or an isolated wavy-line tree, the vertices may be
iabelled Ny, Ny, Ny, Ny where n; is the number of.legs

of the hard-line vertex or the number of hard-line connections
to the wavy-line trees. 1In the above definition the vertices
are considered in isolation without any connecting lines.
.Only wavy-line contributions will actuélly be used in cal-
culation to avoid repetition. Below all possible vertex
attachments are considered; the expression above each diagram
is the duplication factor before insertion of the additional
~line and the expression below, after. R is the contribution

to the duplication factor of the rest of the diagram. It is

different for each configuration.



- N
N n,n,n, nyn,ny - nn,n,

R< —n1n3n4 - n2n3n4 + nln2 + nln37
tnn, + n,n; + n,n, + ngn,- n,
k:-n2 - n3 - n4 +1 | 3

N, n,
(-n.n.n.n,+ n.n.n.+ n.n.n
NyfpN3fy™ Mnong+ nynony,

R { *nynyn,+ nynan,- nno- nyng o
=njN = Nyng= non,- ngn g+ ng
.tz +ny +n, - J

. n nin, nn; - nn,

—n3n4~+ n + n3+ n4 - 1
w

n

3

374

+n3n4- n

-nn

+ n n,+ nn

3

T N3T Ny

4

+ 1
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- ~
n n2n4 n n, n 3
R < }
-n.n, +n+n, +n,- 1
_ 24 - 2 4 P
L”i
* ]
\\?,,
-n n2n4 + n n, + n n3
R
+n2n4 - n-n, - n,-
. 2nln2n4— 2n2n4 - 2nln2
r—2nln4+ 2nl+ 2n2 + 2n4— 2
[ ]
9
'1
. -2nln2n4+ 2n2n4+‘2nln2
+2nln4- an- 2n2— 2n4+ 2
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R {n ng, -n-n, + 1} ‘ R {nln2 - n; - n, + 1}

- o
TN
N

R {--nln2 + ny + n, - 1}

'R {nl ,~n-n +1} R {2n n,-2n;-2n +2} R{2n n4-2n2—2n4+2}

N \@/ [

S )

R{- =N n,+n;+n,- | R{- -2n,n,+2n3+2n, —2} R{—2n2n4+2n2+2n4-2}
R{2n n4-2n—2n4+2} R{2n n, -2n-2n +2} R{4n n,-= 4n +4}
N ) C} L
[ ] n [ ]
9 ?
R{-2n n, +2n+2n —2} R{ 2n n +2n+2n4—2} R{- 4n2n4+4n +4n - 4}
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R{flnlnz—4nl—4n2 + 4} R{n - 1} _ R{n-1}

RRE

v n
; ;¢
R{—4nln2+4nl+4n2 - 4} R{-n + 1} | R{-n + 1}
R{2n - 2} R{2n - 2} : R{2n, - 2}

-R{-2n + 2} R{-2n + 2}
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R{2n - 2} \ R{4n, - 4} R{4n, - 4}
n %
J ?
OO T W
R{-2n + 2} R{—4n4 + 4} R{—4n4 + 4}
R{4n - 4}A R{4n - 4} ‘ ' R{8n4 - 8}
9 n 9
SRS OO W
R{-4n + 4} R{-4n + 4} R{-8n, + 8}



R{2}

R{-2}

R{4}

" R{-4}
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R{2} R{2}

) )
- R{-2} - R{-2}
- R{4} R{4}
J ?

R{-4} ‘ R{-4}
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R{8} _R{S} R{16}

oG O

3 O oo O

R{-8 } R{-8} R{-16}

In each possibility the inclusion of thé extra line only
causes the duplication factor to acquire a multiple (-1).
Hence the total duplication factor only changes by that
amount. .

Another insertiohwébuld be that of a line between a

vertex and an independent line

! | °
| |
| ’/ : //m
i.e. : €~ - —> [ - - = -~ < - —
~ | S o
| [
¢ | )

for which the corresponding replacement in'calculating the

duplication factor is
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Y
o——_—@

~ =
et R

R{- n n,n,+n n, R{-n n,+n+n, - R{-n n 3¥ning -

tnyns;tn,n3=n,
—n,~nj + 1}
AR
r<2
®

)

7

R{nln2n3-nln2 R{+nn2—n—.n2 + 1} R{nn3—n—n3 + 1}

~Nyn3=hyNaing

+n,+n; - 1}
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R{—2n1n3+2nl+2n3—2} R{-2n2n3+2n +2n —2} R{-n + 1}
Os < >

R{2nln3-2nl-2n3+2} R{2n2n3-2n2—2n3+2} R{n - 1}
R{-n + 1} R{-2n + 2} ‘R{-2n + 2}

I/‘; n Bj” O

R{n - 1} ' R{2n - 2} R{2n - 2}

R{- 2n + 2} R{-2n
\ms F <

R{2n3 - 2} R{2n2 - 2} R{4n2 - 4}



R{-4n, + 4}

R{:Z}

R{2}

R{-8}

& O

~ R{8}
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R{-2}

R{2}

R{jA}

R{4}

R{-2}

R{2}

R{-4}

R{4}
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The inclusion of a line between two vertices

~ - ~ -
” ~ ”~
i.e. - - > K-- —> —— P - - - - - «® - —
- \\ // ~
- T N
'l
N J . . \\ I/ \\ /’
which obviously includes “® - - ---2] —> & - - - - ¥%]
. - ~ - ~

VrequiresAthe replacement

in the following situations:

R{nln2-nl—n2 + 1} R{n - 1} R{2}

R{—nln2+nl+n2 - 1} - R{-n + 1} R{-2}
R{2n2- 2} R{4} R{2} -
O <O OO
R{-2n2+ 2} R{-4} R{-2}

In both the above methods of adding a line to a configuration
the duplication factor only changes by (-1).
We now consider the attachment of an additional loop. It

may be attached to a line between independent vertices by
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—_— -i’ or . \ 7

Q.0 .9
229
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The replacements for the second are

~O0.-. 0. 0.0

Py

In the following situations the expression below is
the duplication factor with either of the above replacements

(they are the same in all cases).

R{—nln2+nl+n2—l} 3{-2q2+ 2} R{-n + 1}
n n., o N e
R{nlnz—nl-n2+l} R{2n, = 2} R{n - 1}
R{-2} : R{-4} R{-2}

O O

R{2} R{4} R{2}

1
\p ©°

é
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The loop may also be added to a vertex, i.e.

/ AN
i } PEEERN
/ |
\f' . |
7/
R —> or S
’.\ ! /7 \
/ N [-% Vs ! hY
i R |
4 AN
1
o N
-~ ~ /"\ /-~ D
which includes ' Vs \ or )/ ;; etc.
\ /’ \ / AN ,
S ~ - e el
N | - 7 N\
/I N l’ S 7 \
I K4 !
§ - S
V4 hY
7 \

The replacements for the first are

¢ 999

and for the second

NoEse

'For these ‘there are only two possibilities:

R{n - 1} | R{2}

,//J&*\\ and {:::}
n
R{-n + 1} _ R{-2}

Again for the addition of a loop the only change in the

duplication factor is the multiple (-1).
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The types of additions still to be considered are:

\ ’ N 7’
N 7/ N -~ s
N / N ~ 4
- - -0 - — ¢ —> o =- e - «
,' ) N P . N
Y
7/ | \\ 4 | N
I 1
N ’
7 \ ‘
\\ 7 \\ .o = \\ ”
- - == - -« —> e /- - -
4 N 4 N
, . V N
7/ N 7/ A}
AY /7 N 7’
N - - / N\ - T~ 7
\ - ~ Vi . b ' ~ Ve
/d\ /V\ ""9 '“\ 1 ’,\d\
7 ~ - — - -~ N 7 ~ o L — N
’ : N ’ N
AN 7 N 7/
N 4 ~ - ’
N\ 7 ~ - ~ r'd
o - - - - - -& —> 6 - - —-/'— - - K
’ N ’ L
4 \ ’ N
4 N / N
-~
- / -
VA N . N
1 \ ‘\ /, / ' / '
\ ! q ' / ' /
7/ . ~
Soc _— h H ~ e —_— V¢
VAR L 7 N 7/ N
Ve N LIRS 7/ A S / AN
/ \ ’
1 !
rd
~
’Q'\ PR
Ve N \
’ \ ! |
/
l"\ /1..\ ' -\ ,/-\\
\ ‘o \ [ 1
! N , T !
N\ N - * - AN /
-3 A ; £ )
s N RN /7 N s N
7 \ ’ AN V2 \ ’ \

These méy be verified directly or deduced from additions
already demonstrated. (The addition * is required to

justify those following it). For example
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N - =~ 7/ \\ PERSEERN /
D.F. p- L - o -2 4 = (-1)D.F.| p~¢ -¢-«
7/ i N\ 4 ' 1 \
4 ! N 7 ' I N
o - . VoL
/ :
\
I\ ]
\ / ‘\ /
\ Ve . N : P
= D.F, B -9- o- -« = (=1)D.F.] o —~ 29— — ¢
/ [] } N ,, 1 N
7/ ] | N . | \
' 1 '
{
\ /
-~

In each addition the duplication factor (D.F.) only changes
by (-1).

Hence any insertion of a line or loop only causes the
duplication factor for the amended diagram to be (-1) times

the duplication factor for the original.
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Appendix E : The Canonical Quantization of (6.4)

We wish to canonically quantize the free Hamiltonian

..k k1 k Kk ik .5 k.3 , "
=1 - = 1L - L
1%%REE_ M-y~ oy @ Iy + 297w . (3 Ek 3TWY) + kM Ek.g
- % é%‘ﬂxaﬂx - %BX.X - aMﬂk.akx _ (E.2)

with the interactions

f%INT = —g(ajﬂk).(ﬂjxﬂk)-+ %;(ﬂjxﬂk),(ﬂjxﬂk)

- & @) (E.2)

It is necessary to split j%FREE such that
fCFREE = Ho v H (E.3)

with o

H, = %25-25 - £§E§~3EEX + %ajgk.kajgk - Bkﬂj)+ %Mzﬂk.ﬂk
- %-é%ﬂx.gx - % a’?M? x.x - oM Ek.akx (E.4)
Hy = -'%(B.- a?M?)x.x | ‘ (E.5)

Hl is added to the interaction Hamiltonian (E.2) and we
quantize Ho‘

. The equations of motion for H are

. (o]
W= E; - fﬁ 3KEX | | (E.6)
X = - I+ g oty C(E.7)
;X = uzM?x - aM Bk Wk (E.8).
*k

2
Mg = 7R+ o Ry + (g gRE - gkt (E.9)
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We choose the operator expansion

diq

k _ 1 = -ig.x _k ig.x ,+k
W (x) = 373 f 55 Le A (q) + e” A " (@)} (E.10)
(2m) q
1 diq . . k
k _ -ig.x Lk ig.x _+
m,. (x) = I {e " B_(q) + e B, (g)} (E.11)
Wa , (2ﬂ)3/2 2w a a
1 -dag -ig.x ig.x .+
X5 (%) = 373 J T d- C, (@) +e """ c (q)} (E.12)
. (2m) q '
| d’q . . '
_ 1 -ig.x ig.x _+
Hxa(x) = (2n)3/2 f 50 {e D (q) + e Da(q)} (E.13)
where d, = wg = /g? + M%7 . For consistency the ex-
pansions (E.9) - (E.13) must satisfy the equations of motion
(E.6) - (E.9). To do so we require
B = -ie, AN + i b (q) (E.14)
a'd - Wq Pa'd aMm  “a'd .
ot VORI
C.(@ = —rD (@ +L iq% ak(q) (E.15)
a'd - a‘M a'd am 9 a'd :

The normal quantization can now be carried out requiring

oy, eas W] |

e |
_ - i85 8%(x - y) (E.16)
XY ab =

- - 3 3 -
[ﬁxa(x)r xb(ydj Ixo=yo = i8, 6°(x-y) (E.17)
and all other equal time commutation relations zero. To
satisfy the egual time commutation relation the operators

must obey the commutation relations

: k .
B2 @, 2 @] Ix

2wg 876y, s¥ (g - g") (E.18)

D, (@, b (@] - 20Mug 6y 87(g - g") (E.19)
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with ‘all others zero.
The complete commutation relations for the fields with

(E.18) and (E.l19) are

WEeo, we] = iy [ate & T sty e (@) 6%,

k 2 - 1 : -ig. (x- . Lk
[Hwa (x), Wb (y)] = __..._(2“)._ Iduq e 1gJ. (X Y)(S (qZ-MZ)E(q) ("lqo)é Gab
kK 2 - -

Uy 600 My ) = e farg o749 ) s g2t e (@) (o} ¥
k 2 :
-a*q"ys
M2 x), 12(9)] = oy |a%q e 1TV 5 (q2-m2) (. ) (~a2M2)§
x e WY = Tmn qe (q e(q) (-a ab
oy f . _ '
(e, ] =y [ata e TE Vs gty e (@ -1a%) 6,
—a b 17 [atg e T 5 g2y e (q) () 8
D( (x), x (Y)] ERVIER . ' o ab
_ S .k
[y 0, @] = oy Jd«q LY (qrme)e () (-amid®) 6y,
a ,

I
@)

i

(s (x0) /1 (3)]

k
X, [Hwa(X) ' Xa (y)]

These have the corresponding time ordered vacuum expectation

values: -



<o| T{ws (x)wk (y) }| 0>

<0|T{H§ (x)W§(y)}|o>

a

L

k
<O|T{HW (x)nWb

a

<o|T{nX (x)nxb(y)}[o>

a

_<O|T{HX (x)xb(y)}!o>

a

<O|T{xa(x)xb(y)}lo>

<O|T{W§(X)xb(y)}|0>

<O|T{H§ (x) 1
a Xp

-

13
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q e 1A (x7Y)

e-iq(x—y)

o~ 1ia(x-y)
o~ 1q (x-y)
o~1a (x~y)
e-iQ(x—y)

e—iq(x—y)

k&
g?-M%+ie 6ab
-iqg le
g?-M%+ie dab

k2 k %
qzé6" " -q'q

g’-MZ+ieg S ab

-02M?

g?-M%+ie aab
-iq

o
g?-MZ+ig éab

1, , -
/o s
gZ-M +ie “ab

—ig®/am s
g?-M%+ie " ab

—iank s
g?- M?%+ie ab

We thus have the propagators of Fig. E.l which on absorbing

the bilinear vertex of Hl

b

a

- - 2.2
(B~ M“a )Gab

generate the Feynman rules of Fig.

42.



b,j a,k
© << -0
W q w
b, j a.k
@ < —0
W g W
b,j a,k
© < O
My a Ty
b a
e - - < - -8
My 4 Ty,
b a
e - —< - -9
Ty 9 %
b a
- - - - -
K q X
b,k a
© . < —0
w q X
b,k a
o— << S
My a T

k3J
g?-M2+ie g

iqod
gZ-M%+ie

e

k

~q2 653 ]
9,8 °+ a'q

g‘-M%+ie

o?M? 5
g -M%+ie ab

iqo
g?-M?+ie dab

-1/a2
g“-M“+ie

igq/aM . s
gZ-M?+ig ab

iank
P vy arway
g -M“+ie ab

-e

~a

-e

-,
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