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Abstract 

The first part of this thesis describes the synthesis of TBDPS protected CYB-

3 125 via a substrate controlled acetate aldol reaction of 93. A Claisen condensation 

reaction of the imidazolide 157 followed by a highly diastereoselective reduction 

enabled a synthesis of the C(3) epimer of TBDPS protected CYB-3 159. 

NBn2 	 H 
N 

HOTBDPS 	 TBDPSO 4 J 
0 	 HO 125 

N\ 	NBn2 	 H 
N 

LNy-OTBDPS 	 TBDPSO' ) 

0 	157 	 HO 	159 

As a further demonstration of this methodology, the Claisen condensation 

reaction and reduction protocol was extended to the synthesis of 18-hydroxy ester 

221. N Bn2  
EtO (l.. Ph 

0 OH 221 

The synthesis of methyl ketone 244 has been reported utilising the conditions 

optimised for the synthesis of 93. Preliminary investigations of the aldol reaction of 

244 with a range of achiral aldehydes have been conducted. 

NBn2  
TBDPSOL 

° 244 

Finally studies into an interesting cyclisation using iodoxybenzoic acid (IBX) 

262 are discussed. 
HO\ 'P 

cç° 
262 
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Introduction 

Chapter 1: Introduction 

1.1 fl-Hydroxy-amino acids 

The synthesis of nonproteogenic amino acids continues to provide a 

challenge for the organic chemist. Increasingly ,13-hydroxy-y-amino acids have been 

attracting considerable attention as a result of their presence in biologically active 

compounds. Pertinent examples include statine 1, the core constituent of the natural 

peptide pepstatin' and isostatine 2, a component of the natural cytotoxic 

cyclodepsipeptides the didemnins A-C. 2  Structurally related to both statine and 

isostatine is dolaisoleucine 3, a /3-methoxy-y-amino acid found in Dolastatin 10, a 

cytotoxic and antineoplastic peptide. 3  Hapalosin,4  a multidrug reversing inhibitor 

contains the fl-hydroxy-y-amino acid 4. SB-203386, a HIV protease inhibitor 

possesses the component 5•5  Even simple /3-hydroxy-)/.amino acids such as y-amino-

3-hydroxybutanoic acid ((R)-GABOB) 6  6, a neuromodulator of the central nervous 

system and (R)-carnitine 7,7  an essential substance in mammalian fatty acid 

metabolism are of interest from a therapeutical aspect, figure 1. 
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Figure 1 

NH2 	 NHMe 

	

Me( CO2 H 
	

CO2H 
OH 
	

Me OH 
	

Me OMe 

statine 	I 
	

isostatine 2 
	

dolaisoleucine 	3 

Ph 
	 Ph 

H2N CO2H 	
H2N CO2H 

OH 	 OH Ph 
4 	 5 

H2N(CO2 H 	 Me3 N(CO2 H 
OH 	 cr 	OH 

(R)-GABOB 6 	 (R)-Carnitine 7 

1.2 Statine 

Pep statin discovered by Umezawa in 19701  has been identified as a 

nonselective inhibitor of aspartic proteases such as renin, pepsin and cathepsin D. 

There has been tremendous interest in the synthesis of the amino acid statine which 

has been identified as an essential component of pepstatin. Statine is considered as a 

hydroxymethylene dipeptide isostere. Dipepetide isosteres are compounds in which 

the peptide bond is replaced by a functional group that mimics the peptide bond but 

is incapable of hydrolytic cleavage. Statine has consequently become the prototypical 

hydroxymethylene isostere of the tetrahedral transition state for peptide hydrolysis, 

figure 2. Statine's biological activities have been shown to be dependent on both the 

relative (syn) and absolute (3S,45) configurations of its chiral centers. 8  

2 



Introduction 

Figure 2 

NH 
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Numerous synthetic approaches have been developed for the synthesis of 

statine and other 18-hydroxy-y-amino acids. The low selectivity of pepstatin as a renin 

inhibitor has induced the development of more specific synthetic analogues. 

Typically the synthetic strategies can be summarised in the following manner: (i) 

aldol condensations of achiral and chiral enolates; (ii) acylation of ester enolates with 

activated a-amino acid derivatives followed by reduction of the resulting fl-keto 

esters; (iii) stereoselective reduction of tetramic acids obtained from a-acylamino 

acid derivatives; and (iv) allylation or vinylation reactions of a-amino aldehydes 

followed by reductive transformation of the olefinic ftmctionality. Some of these 

methodologies suffer from the following drawbacks: they are either not totally 

stereoselective thus leading to mixtures of diastereomers which can be extremely 

difficult to separate by chromatography and/or they are applicable only to the 

synthesis of syn or anti diastereomers. However, the literature is replete with highly 

diasteroselective routes to these types of compounds and a summary of some of the 

key synthetic strategies to statine will be illustrated showing that these limitations 

can be overcome. 
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Introduction 

1.3 Double asymmetric induction 

A common approach to statine involves an aldol reaction between an N-

protected a-amino aldehyde and either an achiral acetate enolate or a chiral enolate, 

scheme 1. In aldol reactions of an achiral aldehyde with a chiral enolate it is 

evidently the enolate which controls the stereochemical outcome of the reaction. 

However the interaction of a chiral aldehyde with a chiral enolate results in the 

stereoselectivity being controlled, by both. This is an example of double asymmetric 

induction.9  In examples where the diastereofacial selectivities of both favour the 

same product (i.e. a "matched" case) increased diastereoselectivities are apparent. 

Where the diastereofacial selectivities favour different products (i.e. a "mismatched" 

case) diminished diastereoselectivities occur. 

Scheme 1 

0- 
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XN 	

NHPO 

H 	
XN 

	

0 	 OH 

1.4 Stereoselective aldol reactions with a-unsubstituted chiral enolates 

The introduction of a-substituted chiral enolates as initially developed by 

Evans in 1981,10  has become a well accepted and useful method for the preparation 

of fl-hydroxyacids and their derivatives. The stereochemical outcome of the reaction 

of aldehydes with these auxiliaries can be controlled with great efficiency to give 

excellent diastereoselectivities. However, in contrast the enolates derived from a-

unsubstituted chiral enolates often lead to a mixture of diastereomers. A variety of 

auxiliaries have been developed more recently, each displaying varying degrees of 

stereocontrol, figure 31011  Both Seebach' 2  and Thornton 13  have reported low 
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diastereoselectivities of Evans' oxazolidinone under a variety of enolization 

conditions with simple aldehydes. 

Figure 3 
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The underlying causes of the low levels of selectivity are still not fully 

understood, however based on the Zimmerman-Traxier model 14  a plausible 

explanation for the failure of Evans' oxazolidinone has been proposed, scheme 2.' 

In this model the approach of the aldehyde to the enolate occurs from the side which 

faces away from the isopropyl residue of the oxazolidinone leading to two favourable 

transition states I and II. In the case of a-substitution steric repulsion occurs between 

the isopropyl group and the substituent Y, thus making transition state I more 

favourable. No appreciable steric hindrance will be present in the unsubstituted form 

(Y=H) hence each of the two transition states will be favoured thus leading to a 

mixture of products. 
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Scheme 2 
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An alternative explanation for the low levels of selectivity observed in the 

reaction of a-unsubstituted enolates involves alternative transition state geometries. 

Hoffman 16  and Gennari' 7  have shown that both boat III and twist shaped transition 

states IV, figure 4, can compete with the chair transition state. Since all three 

transition states have comparable activation energies by ab initio calculations it is 

conceivable that attack of the aldehyde will occur with no preference for either 

transition state, subsequently leading to a mixture of diastereomers. 

Figure 4 

Y 
L2  

R-\\ 

XN 
III 

L2 
XN 	B 

Y- ---J  

R 0  

Iv 



Introduction 

1.5 Synthesis of (3R,4S)-statine via acetate aldol reaction 

Davies" 8  however has developed a highly diastereoselective route to (3R,4S)-

statine 8 by reacting the diethylaluminium enolate derived from the iron complex 9 

with NN-dibenzyl leucinal 10, scheme 3. This generates the aldol adduct 11 in 71% 

yield and in 96% de in favour of the matched product. The lithium enolate of 9 was 

found to offer very little diastereoselectivity. Cleavage of the auxiliary was achieved 

with bromine to yield the auxiliary and the ,8-hydroxy ester 12. One pot 

saponification with aqueous potassium hydroxide and deprotection afforded (3R,45)-

statine 8 in 30% yield from 9. However the auxiliary cannot be recycled and is 

expensive to prepare. 

Scheme 3 

2  Ph3CO 	(a) (i),(ii) 	 Bn Ph3P CO  

Y
0 
	

NBn2 	
OH 0 

9 	 11 
100 

65% (b) 

N Bn2  (c) 	
J OEt 4 

64% 
OHO 	 OHO 

8 	 12 

(a) (1) BuLi, THF; (ii) Et 2A1CI; (iii) 10 in PhMe; (b) Br2 , EtOH, DCM; (c) (i) KOH, H 20, THF; (ii) 

Pd(OH)2/C. 
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1.6 Models for chelation and non-chelation controlled additions to a-amino 

aldehydes 

Davies choice of the nitrogen protecting group was important in his strategy 

towards this synthesis of (3R,45)-statine. He observed that the Boc protected a-

amino aldehyde was unsuitable for coupling to the iron complex due to competing 

deprotonation thus resulting in low yields. In comparison with the Boc protecting 

group the NN-dibenzyl group developed by Reetz' 9  confers greater diastereofacial 

selectivity and configurational stability. The propensity for NN-dibenzyl protected 

a-amino aldehydes to undergo stereoselective non-chelation control with a range of 

nucleophiles can be explained by the Felkin-Anh model. 

1.6.1 Felkin-Anh model 

The Felkin-Anh mode1 20  was originally developed to account for the 

stereochemical outcome of a-chloro and a-alkoxy carbonyl compounds and is a 

refinement of the model proposed by Felkin. Felkin originally proposed that the most 

stable transition state was that where the separation between the incoming 

nucleophile and the electronegative group was the greatest. By assuming 

perpendicular attack transition state A is favoured, scheme 4. 

Scheme 4 

L—(J----- N u 	 Nu____5__L 

RS 	 MR 

A 	 B 

Anh however postulated that non-perpendicular attack by the nucleophile was 

occurring on the basis of molecular orbital calculations. During the reaction the 
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major interaction occurs between the nucleophiles HOMO and the substrates LUMO 

thus leading to transition states C and D, scheme 4a. The most reactive conformation 

is where the C2-L bond is parallel to the t-system of the carbonyl. Stabilisation of 

the LUMO is achieved by overlap of the 7t*C0 orbital and the cy*C2L orbital. The 

most stable transition state is that where the nucleophile attacks anti to the L group. 

In consideration of the two conformers which would exist, the steric hindrance 

encountered by the nucleophile in conformer D would be much greater than in 

conformer C. 

Scheme 4a 

L-( 	

N u 

S 

Nu- ;M F 

D 

In applying the Felkin-Anh model to the NN-dibenzylamino aldehydes 

(L=NBn2) conformers C and D need to be considered. The steric interaction between 

the incoming nucleophile and the R group is obviously minimised in C. This 

conformation predicts the anti-selectivity which is observed experimentally. 

However where the R group is very bulky conformer F can compete with conformer 

E and can lead to diminished selectivity, scheme 4b. A variety of organometallic 

reagents are capable of forming the nonchelation controlled product when reacted 

with a NN-dibenzylated aldehyde such as PhMgBr, MeLi, MeTi(O'Pr) 3  and 

Me2CuLi. 2 ' 
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Scheme 4b 
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1.6.2 Cram Chelation model 

The Cram chelation model22  has provided a method of predicting the 

stereochemical outcome of chelation controlled additions to a-amino aldehydes 

Complexation with the metal (M) occurs via the carbonyl oxygen and the nitrogen 

atom for the NN-dibenzylated species and via the carbonyl oxygen and the carbonyl 

oxygen from the Boc group for the N-Boc protected species. Nucleophilic attack 

results in the syn adduct preferentially for both species, scheme 5. In contrast with N-

Boc protected aldehydes, chelation control in the case of NN-dibenzylamino 

aldehydes is much harder to attain. This can be explained by steric factors associated 

with the presence of the two N-benzyl groups. Addition of reagents such as MeTiC13, 

SnCL and the combination of TiCI 4/Me2Zn to NN-dibenzylamino aldehdyes have 

resulted in the chelation controlled product albeit with varying levels of 

diastereoselectivity. 2 ' 
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Scheme 5 

tBUOO - 

011  
H N 

Nu,r"H ~H

R 
 

M 
''0 

or 	Bn2 

Nu Z'  ~Hl  

N Bn2 
Nu YKR 

OH 

1.7 Syntheses of (3S,4S) statine via acetate aldol reaction 

Wuts23  approach to statine utilises the lithium enolate of (S)-2-actetoxy- 1,1,2-

triphenylethanol 13. Reacting this enolate with N-Boc leucinal 10 generated a 

mixture of diastereomers in favour of 14 in 89% de. Hydrolysis of the reaction 

mixture and crystallisation afforded N-Boc-statine 15 in 90% de, scheme 6. 

Scheme 6 

	

Ph OH 	 NHB0c 	Ph OH 

0---X 
 Ph(a) (I) 81% 

NHBoc 
0 Ph " JH 	 OH 0 Ph 

	

13 	 14 
10 0 

90% 1(b) 

OH 

OHO 
15 

(a) (i) LDA, THF, -70 °C; (ii) 10 in Et 20; (b) (i) KOH, H 20; (ii) 10% HCI. 

Another strategy that provides high levels of diastereoselectivity is the 

incorporation of an a-substituent onto the enolate. This strategy relies on the premise 

that the substituent can be removed after reacting the enolate with an a-amino 
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aldehyde. An example of this strategy has been demonstrated by Woo. 24  Enolisation 

of 16 under standard conditions (Bu2B0Tf, 'Pr2NEt, 0 °C) followed by addition of 

aldehyde 10 generated the aldol adduct 17. Desuiphurisation and hydrolysis provided 

statine 19 in 24% yield from 10 in >99% de, scheme 7. 

Scheme 7 

00 
MeSl N 

16 

OHO 

log 
Et 

(a) (I) 	 OHO 0

N  
(i1 2 	B0cHN 	SMe 

17 
10 	

J(b) 

OHO 0 (c) 	
N0 

NHBoc 
18 

(a) (i) 'Bu 213OTf, 'Pr2NEt, 0 °C; (ii) 10 in DCM; (b) Raney nickel, (CH 3 )2C0; (c) NaOEt, EtOH. 

Gennari's25  approach to statine utilised the boron enolates derived from (-)-

and (+)- menthone, 20 and 21, figure 5, which show a high degree of reagent control 

in reactions with chiral aldehydes. When the menthone derived boron bromide 

reagent 21 was used to generate the enolate of tert-butylthioacetate, the enolate was 

shown to be capable of overcoming the inherent preference of the substrate for the 

Felkin product. Both matched and mismatched cases provided the Felkin and anti-

Felkin 22 products in excellent diastereoselectivity, >99.9 for the "matched case" and 

>97.5 for the "mismatched case". 

12 
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Figure 5 

	

\Y/Br 	Br 

	

20 
	 Y 21 

Saponification of the aldol adduct 22 and esterification with diazomethane provided 

the methyl ester 23. Debenzylation with concomitant cyclisation yielded lactam 24 

which was subsequently ring opened with concentrated hydrochloric acid. Ion 

exchange furnished statine 1 in 34% overall yield, scheme 8. 

Scheme 8 

Bn2  Br o 	(a)(i) 71%  
B 	 StBu  

NBn2 

OH 0 
21 	

: 	JH  
10 0 	 22 

	

80% 	(b),(c) 

HN 
0 

Bn2  (d) 
4 

85% 	 0Me 

24 	OH OH 023 

71% J (e),(fl 

H2  
)OH 

I OHO 

(a) (i) 'BuSAc, Et 20, DCM, Et3N; (ii) 10 in DCM; (b) 1M NaOH, THF; (c) CH 2N2, MeOH; (d) 

HCO2NH4, Pd/C, reflux; (e) cone. HC1, 80 °C; (f) DOWEX 50X8-100 (acid form). 
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1.8 Grignard addition to a-amino aldehyde as a route to statine 

The addition of Grignard reagents to leucinal has been reported as a 

diastereoselective route to the anti-Felkin product 26, scheme 9•26  NO-protection via 

an acetonide linkage followed by oxidation of the terminal olefin formed the 

corresponding carboxylic acid 28. Deprotection afforded N-Boc protected statine 15 

in 22% overall yield and 90% de. 

Scheme 9 

	

NHBoc 	 NHBoc 
(a) 

59% 	 bH 

	

25 	 26 

OH 

OHO 
15 

(b) 
- 	
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82% 	
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28 

(a) (i) Swern, (ii) H 2CCHCH2MgBr; (b) Me 2C(OMe)2, PPTS, PhMe; (c) RuC1 3 , Na104, aq. NaHCO3 , 

MeCN, CC14 ; (d) AcOH. 
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1.9 Vinylation of N-Boc leucinal as a route to statine 

Condensation of N-Boc leucinal 10 with 2-trimethylsilylethylidentri-

phenylphosphorane furnished 29 as a single diastereomer in 65% yield via migration 

of the silyl group to the oxygen and subsequent elimination of triphenylphosphine. 

Oxidative hydroboration followed by further oxidation and desilylation provided N-

Boc statine 15 in 47% overall yield, scheme 10.27 

Scheme 10 

-j--Y 
H 	(a) N H Boc NHBoc 

65% 
0 	 OS1Me3  

10 	 29 

(b) 

NHBoc Boc 	 (C) 

OH 	 OH 

72% 
OH 0 	 OSiMe3  

15 	 30 

(a) (i) CH3 PPh3Br, BuLl, THF; (ii) ICH 2 SiMe3 , THF; (iii) BuLi; (iv) 10 in THF; (b) 9-BBN, NaOH, 

H202 ; (c) (i) PDC, DMF; (ii) TBAF, THE 

15 



Introduction 

1.10 Claisen condensation reaction 

The stereoselective reduction of 8-keto esters is an additional route which has 

been investigated in the synthesis of statine. There are two main routes to the 

synthesis of fl-keto esters, via the acylation of lithium ester enolates or via reaction of 

the magnesium enolates of malonic esters with acylamino acid derivatives. The N,N-

dibenzylated leucine derived acid 31 developed by Reetz 28  was converted into its 

imidazolide and subsequently reacted with the magnesium enolate of malonic acid 

monoethyl ester thus affording the ,fl-keto ester 32, scheme 11. Reduction using 

NaBH4  occurred stereoselectively under non-chelation control to give the fl-hydroxy 

ester 33 preferentially (90% de) via the Felkin-Anh transition state. Hoffman and 

Tao29  have also exploited this methodology in the synthesis of statine and related 

analogues. 

Scheme 11 

NBn 

J-2 
(a) 

NBn2 
OEt 

(b) 
__ 

N Bn2  
J -oEt 

0 31  0 	0 32 
84% 

0H0 19  

(a) (i) CDI, THF; (ii) 'PrMgCl, CH 2(CO2Et)CO2H; (b) NaBH 4, MeOH, -20 °C. 

Further to Hoffman' s 30  studies he reported the synthesis of statine in three 

steps utilising the bulkier trityl protecting group which can be easily added under 

basic conditions and readily removed by mild acid hydrolysis (HCl, acetone). An 

improved diastereoselectivity of 93% de was achieved for 34, scheme 12. 
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Scheme 12 
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(a) OH 
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OEt58% 	
0 0 OH 0 	(over 3 	

33 34 	 steps) 

(a) (i) TMSC1; (ii) TrC1, Et 3N; (iii) MeOH; (b) (i) CDI; (ii) LiCH 2CO2Et; (c) NaBH 4, MeOH. 

In Joulli6's3 ' approach to the synthesis of (3S,4R)-statine the Claisen 

condensation reaction of the imidazolide derived from D-leucine 35 with either ethyl 

or tert-butyl lithioacetate afforded the 8-keto esters 36 and 37 in 86% and 82% 

respectively, scheme 13. Reduction of the fi-keto esters with common borohydride 

reagents produced the corresponding ,8-hydroxy esters 38, 39, 40 and 41 with a de 

ranging from 63% to 88% in favour of the anti products 40 and 41, table 1. A similar 

strategy has also been reported by Rich. 32  
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Scheme 13 
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(a) (i) CDI, THF; (ii) LiCH 2CO2R, THF, —78 °C; (b) LiBH 4, NaBH4, KBH4  or Zn(BH4)2 . 

Table 1 

Reducing Agent Conditions Yield % Yield % 
Diastereomeric Diastereomeric 

ratio ratio 
40:38 41:39 

LiBH4  4eq, THF, 0.5h, 87 93 

-78 °C 63:37 63:37 

NaBH4  3.5eq, EtOH, lh, 83 84 

o °c 75:25 75:25 

KBH4 3.5eq, EtOH, lh, 80 88 

0°C 88:12 79:21 

Zn(BH4)2  5eq, Et20, 0.5h, 72 75 

0 °C 74:26 80:20 
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Noyori33  has effectively carried out a highly diastereoselective hydrogenation 

of ,8-keto ester 32 catalysed by ruthenium BINAP to give N-Boc statine 19 in 99% 

yield and (>99% de), scheme 14. 

Scheme 14 

NHBoc 	 NHBoc 

)(yOEt 	(a) 

	

0 0 	99% 	 OHO 

	

32 	 19 

(a) RuBr2[(R)]-binap], EtOH, H 2 . 

Both N-Fmoc34  and N-phthaloyl protecting groups have also been employed 

in the synthesis of statine. Sengupta's 35  approach, scheme 15, utilises a highly 

diastereoselective syn reduction of 42 to furnish 43 in 90% de, employing 

LiA1H(OtBu) as the reducing agent. Sharpless oxidation of the phenyl ring to the 

carboxylic acid and subsequent esterification afforded the protected statine ester 44 

in 14% overall yield. 

Scheme 15 

NPht 
NPht 

(a),(b) (C) 
N Pht 

- Ph 
72% 	 a 70% OH 

0 42 43 

60% ! 

(e) (f) NPht 
OMe 

45% Ph 
- 

OAc 0 44 
ÔAc 

(a) SOC1 2, benzene; (b) PhCH 2ZnBr, 10% Pd(PPh 3)2C1 2, THF; (c) LiAIH(0'Bu) 3 , THF, -20 °C; (d) 

Ac20, Et3N, DMAP, DCM; (e) cat. RuCI 3 , Na104, CH3CN, Cd 4 , H20; (f) CH 2N2, Et20, 0 'C- 
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1.11 Synthesis of statine via tetramic acids 

Stereoselective syntheses of statine and related analogues have been reported 

via stereocontrolled reduction of tetramic acids 36  In Jouin' S37  work the tetramic acid 

derivative 47 was formed from Meidrum's acid 46 and activated N-Boc protected 

leucinal 45 in the presence of DMAP, scheme 16. Refluxing 47 provided the 

tetramic acid 48 which was reduced with Pt0 2. Hydrolysis of 49 provided N-Boc 

protected statine 15 in 41% overall yield. 

Scheme 16 

OH + 

45 	 46 

Boc 

° (T 
OH 49 

83% (d) 

N H BD 

(a) 

85% 	

O,>çO 
47 

82% 	(b) 

Boc 

4 

(c) 

55% 
OH 48 

OH 

OHO 

15 

(a) Isoprenyl chioroformate, DMAP, DCM; (b) EtOAc, 40 °C; (c) Pt0 2, EtOAc, H2, 20 atm; (d) 1,4-

Dioxane, IM HC1. 
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1.12 Diastereos elective epoxidation as a route to statine 

An alternative strategy to the nucleophilic addition to N-protected amino 

aldehyde is exemplified in Bessodes' 38  route, scheme 17. From racemic allylic 

alcohol 50 a Sharpless epoxidation followed by a Mitsunobu reaction generated the 

azide 52. Ring opening of 52, followed by hydrolysis and subsequent hydrogenation 

provided statine 1 . 

Scheme 17 

(a) Diisopropyl-D-tartrate, Ti(IV) isopropoxide, 'BuOOI-i, DCM, -10 °C; (b) DEAD, Ph 3P, N3H, 

DCM; (c) KCN, MeOH; (d) NaOH, H 202; (e) H2, Pd/C, MeOH. 

A diastereo selective epoxidation of 54 using m-chloroperbenzoic acid yielded 

the syn epoxide 55 almost exclusively. Regioselective epoxide ring opening with 

sodium bis (2-methoxyethoxy)aluminium hydride (Red-Al) and selective oxidation 

of the primary alcohol yielded N-Cbz statine 57, scheme 39 

No yields were reported for this synthetic sequence to statine. 

21 



Introduction 

Scheme 18 

NHCbz 

54 

OH 

OHO 
57 

(a) NHCbz 

OH 

55 

93%J (b) 

NHCbz 
(c) 

95% OH 
56 

(a) MCPBA, DCM, -10 °C; (b) Red-Al, THF, 0 °C; (c) Pt, 02, NaHCO3 , H20. 

Additional reported examples to statine and related analogues utilise D-

glucosamine 58,40  malic acid 59 4 1 butenediol 6042  and commercially available 

glycine templates 6143  as precursors, figure 6. 

Figure 6 

OH 

HO OH 
HO 	NH2 

58  

HO2C(CO2H 

OH 

59 

Ph 

Ph 	
0 

CbzN 

61 

OH 

60 
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1.13 Isostatine 

The cyclic depsipeptides didemnin A-C were isolated from the tunicate 

Trididemnum solidum in 1981 by Rinehart. 2  The didemnines share a common 

macrocycle and differ only in the side chain attachment. Didemnin B shows strong 

antitumour, antiviral as well as immunosuppressive activity. Isostatine 2 is a key unit 

in all three didemnins and has been recognised as essential for the biological activity 

of didemnin B. 

Unlike the syntheses of statine via aldol or Claisen condensation reactions, the 

synthesis of isostatine requires the expensive D-alloisoleucine to be used as a 

precursor, thus syntheses of isostatine can be expensive or comparatively long due to 

the preparation of D-alloisoleucine. 

1.14 Synthesis of isostatine from D-alloisoleucine 

Fmoc-D-alloisoleucine 62 was employed as the starting material in Kessler's 

synthesis of isostatine.34b  Conversion of 62 to its acid chloride and subsequent 

coupling with lithio tert butyl acetate provided the /3-keto ester 64, scheme 19. 

Without purification 64 was reduced with potassium borohydride (de 90%), 

subsequent recrystallisation furnished 65 as a single diastereomer and a single 

enantiomer. 
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(a) 

OH 
NHFmoc 

62 

Scheme 19 

: CI 
NHFmoc 

63 

(b) 

NHFmoc 
64 

76% 	 (c) 
(over 3 steps) 

= OHO 

OtBu  

NHFmoc 
65 

(a) SOCl 2, DCM; (b) L1CH2CO2 1Bu, THF, -85 °C; (c) (i) KBH 4, EtOH, 0 °C; (ii) EtOAc, 2-

methylpentane. 

N-Boc-D-alloisoleucine was employed as the precursor in Joullié's synthesis 

of isostatine. A Claisen condensation reaction followed by a stereoselective reduction 

furnished protected isostatine in 89% overall yield and 90% de. 31b 

A six step synthesis of D-allosioleucine from L-isoleucine 66 by Giralt44  

commenced with diazotisation and subsequent hydrolysis of the amino group, 

scheme 20. Esterification with diazomethane yielded hydroxy ester 67 which was 

tosylated under standard conditions. Nucleophilic substitution with azide ion gave 

azide 68 which was reduced to the hydrochloride 69 by catalytic hydrogenation. 

Saponification furnished D-Allosioleucine 70 in 33% overall yield. The synthetic 

sequence to isostatine was similar to that discussed in scheme 19. 
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Me  

OH 

66 NH2 

Me  

OMe 

69 
NH2.HCI 

(f) 95% 

Scheme 20 

Me  
(a) 

60% 
OH 

(e) Me  

OMe 
4 

80%, over 
2 steps 	N3 

68 

M 
(b) 	

eO 
 

OMe 
OH 	

67 

72%, 
over 2 steps 	(C) 

Me  (d) 	

OMe 
-1 

OTs 

Me  

OH 

70 	NH2  

(a) NaNO2 , H2SO4;  (b) CH2N2, 0 °C; (c) TsCI, pyridine; (d) NaN 3 , DMF, 50 °C; (e) H2, Pd; (1) 1M 

NaOH. 

1.15 Summary of chapter 1 

This chapter illustrates some of the key routes used in the synthesis of statine 

and isostatine. The majority of these syntheses have been shown to be highly 

diastereoselective and high yielding. The strategies undertaken have led to the 

development of new chiral auxiliaries capable of providing high diastereoselectivities 

in the acetate aldol reaction. The Claisen condensation reaction has also been 

depicted as an important route to these substrates. 
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Chapter 2: Results and Discussion Part 1 

2.0 Synthesis of silyl protected CYB-3 

2.1.1 Introduction 

(2R,35)-2-hydroxymethyl-3 -hydroxypyrrolidine (CYB-3), 71 was isolated 

from Castanospermum australe in 1987 by Nash and Bell . 45  This tree is also the 

source of the a- and ,8-glucosidase inhibitor (+)-castanospermine, a 

polyhydroxylated indolizidine alkaloid .46  CYB-3's biological activity was compared 

with other pyrrolidine alkaloids such as DMDP 74, DAB-1 72 and LAB-1 73, figure 

7 and it was observed to be either a poor inhibitor or inactive against known targets 

of these enzymes, table 2. 

Figure 7 

HO '3 HO (OH 

HO 	OH HO 	OH 

LAB-1 	DMDP 

73 	74 

HO'ç'3 HO( 

Hd 	 HO OH 

CYB-3 	DAB-i 

71 	 72 

In a study of these pyrrolidine derivatives as inhibitors of mammalian 

digestive disaccharides, CYB-3 was observed to exhibit only modest inhibitory 

activity against several of the glycosidase targets. 47  These findings were also 

comparable with a study involving insect glycosidase targets. 48  Despite CYB-3's 

inactivity it has been proposed as both a chemical 49  and biosynthetic 50  precursor for a 

number of more active indolizidine alkaloids and has also been used in the synthesis 

of modified oligonucleotides. 5 ' 
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Table 2 

Concentration of Inhibitor (M) resulting in 
50% inhibition of Hydrolysis 

Inhibitor 

Substrate 

CYB-3 DAB-1 - LAB-1 DMDP 

a-glucoside NIa 4.7 x 10 2.0 x 10 6  3.0 x 10 

Maltose NI 3.5 x 10 - 5 2.5 x 10 6  2.0 x 10 

Trehalose NI 2.2 x 10 -' 2.6 x 10 -4 3.2 x 10' 

Sucrose 1 x 10-4 2.3 x 10 2.2 x 10 6  4.2 x 10 

Isomaltose 1.7 x 10 4.0 x 10 6  6.6 x 10 8  2.3 x 10 

Turanose 2.3 x 10 2.8 x 10 -5 2.0 x 10 6  7.1 x 10 

/3-glucoside NI NI NI 1.0 x 10 5  

Gentiobiose 2.7 x 1 x 10 -4 3.0 x 10 2.2 x 10 .6  

/i-galactoside NI 2.1 x 10-4 NI 2.0 X 10-6 

Lactose 2.6 x 104  NI NI 2.1 x 10 6  

a N1=1ess than 50% inhibition at 3.3 x 10 4 M 
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2.1.2 Previous syntheses of CYB-3 

Several chemical syntheses of CYB-3 have been reported utilising the amino 

acid serine, a number of different strategies have been used to achieve the required 

two-carbon homologation. 52  Barco's53  approach relies on a tandem Michael-Henry 

reaction to generate the pyrrolidine structure, scheme 21. Intermediate 75 was 

obtained in 5 steps from L-serine; reductive amination of L-serine with benzaldehyde 

followed by TBS protection gave the NO protected serine ester. Lithium aluminium 

hydride reduction, transformation to the tetrahydropyranyl ether and TBS 

deprotection provided the required intermediate 75. Treating this with 2-benzoyloxy-

1 -nitroethane (precursor to nitroethylene) resulted in the expected Michael adduct. 

Subsequent Swern oxidation of this adduct gave a 3:1 mixture of the pyrrolidine 

derivatives 76 and 77. Denitration of 76 by Ono's procedure to 78 and 

hydrogenolysis in the presence of acid furnished the pyrrolidine salt 79 in 25% 

overall yield. 

Scheme 21 

NHBn (a), (b) 
HO OTHP  

60% 

75 

HO\' + HOr

~02 

 

HO NO2   

76 	minor 	77 
diastereomer 

70% J (C)  
H.HCI 	 Bn 

HO'S3 	
(d) 

86% 	
HO _,N 

HO 	 HO 
79 	 78 

(a) (i) BzOCH2CH 2NO2 ; (ii) (COd)2, DMSO, DCM, NEt3 ; (b) H 30; (c) ('Bu) 3 SnH, AIBN, MeC 6H 5 ; 

(d) H2, Pd/C, MeOH, HC1. 
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A second approach by Dell'Uomo from L-serine derived oxazolidinone 80 

involves ester reduction and alkyl chloride formation to give 81, scheme 	49  22. 

Cleavage of the cyclic carbamate was achieved by refluxing with sodium hydroxide 

in methanol/water and subsequent Boc protection furnished 82. The inversion of the 

alcohol configuration was achieved via a Mitsunobu reaction. The hydrochloride salt 

of CYB-3 79 was obtained in 38% overall yield using this 11 step procedure. 

Scheme 22 

0 	 0 

HNAO 	(a), (b) 	HNAO 	(C), (d) 

BflO)COMe  82% 	BnO)— 	 40% 

80 	 81 	CI 

Boc 

BnO\5 

HO 
82 

80% (e), (f) 

H OHCI 

HO '\ç3 
H 	79 

(a) NaBH4, THF, MeOH; (b) Ph3P, Cd 4 ; (c) NaOH, MeOH, H 20, 80 °C; (d) Boc 20, NEt3 , DCM; (e) 

p-NO2C6H4COOH, DEAD, Ph3 P, Benzene; (f) 10% Pd/C, 3M HCI, EtOAc. 

A further key building block that has been employed in CYB3 synthesis is 

pyroglutamic acid. 54  The approach used by the Langlois' 55  group involves 

deprotonation of pyrrolidine 83, followed by phenylselenation and selenoxide 

elimination, scheme 23. This enabled introduction of the conjugated double bond in 

84. Epoxidation with lithium tert-butyihydroperoxide gave a 87:13 mixture of 

diastereomers in 46% yield. Trifluoroacetic hydrolysis allowed deprotection without 

opening of the epoxide ring in 85. Finally lithium aluminium hydride reduction gave 

the desired pyrrolidine salt 79 in 21% overall yield. 
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Scheme 23 

(a) 

65% 	 046% 

83 	 84 	 Ph 	85 

57% (C) 

if 
H•HCI 

,ç 	
(d) 

HO 	
- 

80% 
 0 

1'4 N  ~~OH 

HO 	 H 	8679 

(a) LiHMDS, PhSeCI; (ii) H 202 ; (b) Li-'BuOOI-I; (c) TFA; (d) LiAIH 4 . 

A novel racemic route from vinyl glycine methyl ester relies on olefin 

metathesis as the key step.  56  Using 4 mol% of Grubbs catalyst the N-Boc protected 

dehydroprolinol 87 was prepared in 95% yield. The protected trans-3,4-epoxy-

prolinol 88 was obtained by tritylation of the free hydroxyl group and 

diastereoselective epoxidation. Regioselective ring opening and acidic deprotection 

provided CYB-3 71 in 14% overall yield, scheme 24. 
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Scheme 24 

CIH.H2N 	 4 steps 	 (a) 	BocN 
BocN 

CO2Me 	
95%  

OH 87 	 OH 88 

70% (b), (c) 

H 	 Boc 
HO\4çI5 	(d), (e) TrO, 1 5 

77% 

HO 71 	 0 89 

(a) C12(PCY3)2RuCH-CHPh2  (4 mol %), PhH; (b) Ph 3 CC1, DMAP, NEt3 , DCM; (c) MCPBA, Et20; 

(d) LiBH4, MeOH, diglyme; (e) HCI, MeOH. 

As illustrated from the above examples there have been several synthesis of 

CYB-3 undertaken relying upon readily available chiral pool starting materials. 
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2.1.3 Retrosynthesis of CYB-3 

Our retrosynthetic analysis of CYB-3 is shown in scheme 25. The important 

step was an acetate aldol reaction with serine-derived aldehyde 93 with Felkin-Anh 

control, which would generate the required C(3)-C(4) stereochemistry in 92. 

Conversion to the Weinreb amide 91, followed by debenzylation with concomitant 

cyclisation to would yield the pyrrolidinone 90. Reduction and deprotection would 

give the target molecule. 

Scheme 25 

H H 
HO'., 15 Deprotection 	TBDPSO'\.Fy .O 
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2.1.4 Use of serine derived aldehydes in syntheses 

The key building block in our synthesis was N-protected serinal. There have 

been a variety of protecting groups employed for all three of serines functional 

groups. Examples of protected serinal derivatives include Gamer's cyclic 

oxazolidinone aldehyde 94, Rapaport's acyclic N-(henylsulfonyl)-protected serine 

95 and a N-(9-phenylfluoren-9-yl) cyclic carbamate figure 8. 

Figure 8 

	

CHO 	 CHO 

HOCHO 

	

0XNB0c 	 NHS02Ph 	
OyNPhFI 

	

94 	 95 	 096 

Gamer's aldehyde is probably the most important synthon and has been used 

as the starting material of a wide range of bioactive compounds. 58 Though moderate 

to good selectivities are obtained, the facial selectivity of the addition of Grignard 

reagents or other organometallic reagents to this aldehyde has been shown to be 

moderate to poor and to be reagent dependent. Chelated and non-chelated processes 

(section 1.6) have been reported to occur concomitantly which has led to diminished 

diastereoselectivity or even a reversal in selectivity. This obviously has made the 

stereochemical outcome in some cases difficult to predict. 59 

In continuation with the work developed within the group 60  our attention was 

turned to the NN-dibenzylamino aldehydes introduced by Reetz and his concept of 

protective group tuning as a means of achieving high levels of asymmetric control in 

organometallic reactions involving N,N-dibenzylamino aldehydes. 19 '6 ' Despite this 

development the use of this serine-derived aldehyde has been very limited 
.60,62 

Zhu 62b  has reported the nucleophilic addition of a Grignard reagent to NN-dibenzyl 

serine as the key step in the synthesis of (2S,3S)-/3-hydroxyleucine 98, scheme 26. 

Treatment of the crude amino aldehyde 93 with two equivalents of 

isopropylmagnesium chloride furnished 97 in >95% de. 
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Scheme 26 

NBn2 (a) _________ 	 (b) _________
OTBDPSH

OTBDPS 88-95°k 	 100% 
0 	

93 	 97 
OH 	 OH 

0 	 0 

	

NH2 	
NH 

.HCI 	
)-- NH 

	

OH 	
(e) 	 _______ 

OH 
72% 

(d) 	' 
O:OTBDPS 

85% 

	

OHO 	 (over 2 

98 	 steps) 

(a) 'PrMgCI, Et20; (b) Pd(OH) 2, H2, MeOH; (c) CDI, THF, DMAP (cat.); (d) (i) KF, (ii) Jones 

oxidation; (e) conc. HC1. 

Pedrosa 62c  has developed a synthetic route to all four stereoisomeric N,N-

dibenzyl sphingosines from aldehyde 93 in two steps. The synthetic strategy is 

dependent on the choice of starting amino aldehyde (D or L) and the alkylating agent. 

The synthesis of N-protected L-threo-sphingosine was achieved by syn addition of 

pentadec-1-enyl(ethyl)zinc 99 to serine-derived aldehyde 93 to afford 100 in 80% de. 

Subsequent silyl deprotection provided 101 in 44% overall yield, scheme 27. 
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Scheme 27 

NBn 	 NBn2 

HIOTBDPS (a) 570I 	H 3C 1 2 (H2C)(LOTBDPS 

0 	93 	H 3C 12 (H2C)Et 	 OH 	100 
99 

78% (b) 

NBn 

H3C 1 2 (H 2C)7 (lOH 

OH 	101 
(a) Toluene, Heptane, 99, 0 °C; (b) TBAF, THF, 0 °C. 

D-ethyro-spingosine 104 was achieved by addition of pentadecynyl 

magnesium bromide 102 to 93 affording 103 as a single diastereomer. Refluxing a 

mixture of 103 and LiA1H4 resulted in concomitant silyl deprotection and reduction 

of the triple bond to give 104 in 51% overall yield. scheme 28. 

Scheme 28 

NBn2 
HJ.OTBDPS 	(a) 82% 

0 	 H3C 12 (H2C)--MgBr 

102 

(a) Et20, 102, 0 °C; (b) LiAIH 4, THF, 90 °C. 

N Bn2 

H 3C 12  

OH 103 

62% (b) 

NBn2 

H3C 1 2 (H2C) -LOH 

OH 
104 
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Finally the Hulme group 60  has reported a synthesis of DAB-i using an 

asymmetric boron mediated syn aldol as the key step affording 105 as a single 

diastereomer, scheme 29. 

Scheme 29 

Ph Ph
I 

OBn 

O NY 
(a) (I) 82%  OBn NBn2

ON OTBDPS 
(ii) 	NBn2 

0 	0 H}OTBDPS o 	0 	OH 	105 
0 93 4steps 

58% 

H 

HO') 

H 	OH 

72 

(a) Bu2BOTf, Et3N, DCM, -78 °C->O °C, 1.25h, recooled to -78 °C; 93 in DCM. 
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2.1.5 Synthesis of serine derived aldehyde 93 

Reetz's2 ' reported synthesis of the aldehyde 106 was achieved in 51% overall 

yield and >98% ee, scheme 30. The one pot benzylation of serine was found to be 

the lowest yielding step in the synthesis. Hence, we decided to pursue an alternative 

strategy for the nitrogen protection and ester formation. 

Scheme 30 

NH 2 	 NBn2 	 NBn 2  

BnO-OTBS 	(C), (d) HO 	 H(..OH 	(a), (b)  

0 	 54% 	 o 	 94% 	0 
106 

(a) BnBr, K2CO3,  H20; (b) TBSCI, Imidazole, DMF; (c) LiA1H 4 , (d) Swern. 

Our 5-step synthesis of the differentially protected aldehyde 93 commences 

with the conversion of D-serine to its methyl ester hydrochloride salt in 98% yield, 

scheme 31. This salt was subsequently NN-dibenzyl protected under non-aqueous 

conditions to give 107 in 96% yield. The free hydroxyl group was protected as its 

tert-butyldiphenylsilylether in good yield. The TBDPS group was chosen as a 

suitable orthogonal protecting group due to its stability in subsequent manipulations. 

Reduction of methyl ester 109 was achieved with LiBH 4  and finally the aldehyde 93 

was afforded cleanly via a Swern oxidation. The aldehyde was used in subsequent 

reactions in its crude form, since chromatographic purification can lead to 

racemisation. 21 ' 58  Our optimised route provided the aldehyde in 86% overall yield 

(>98%ee).' 1' 

'' The enantiomeric excess was determined by C. Montgomery 
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Scheme 31 

NH2  NH2  .HCI 

H0 y OH (a) 
MeO 1 .OH  

98% 
0 0 	107 

96% 	(b) 

NBn2  NBn2  

MeO OTBDPS (c) MeOy .OH 

0 	109 96% 0 	108 

95%(d) 

NBn2  
NBn2  (e) HOTBDPS 

HO--OTBDPS 
100% 

0 110 93 

(a) CH3COCI, MeOH, 80 °C; (b) K2CO3,  BnBr, CH3CN; (c) TBDPSCI, imidazole, DMF; (d) LiBH 4 , 

Et20, MeOH; (e) (COd) 2, DMSO, NEt3 , DCM. 

2.1.6 Boron mediated acetate aldol 

The oxazolidinone 111 was prepared by C. Montgomery via condensation of 

diethyl carbonate and S-phenylalaninol. This oxazolidinone was N acylated with 

butyl lithium and acetyl chloride to afford 112. However, attempts at the boron 

mediated aldol using this chiral auxiliary proved unsuccessful with no product 113 

being isolated under a variety of conditions, scheme 32. 
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Scheme 32 

	

Ph 	 Ph 

(a) 

	

O, NH 	
88% 	

O N 

0 	 00 
111 	 112 

Ph 

NBn2  

0, N -0TBDPS 

0 0 OH 
113 

(a) (i) BuLi, THF, -78 °C; (ii) CH 3COC1; (b) (i) Bu 2BOTf, Et3N, DCM, -78 °C->0 °C, 30 mins, 

recooled to -78 °C; (ii) 93 in DCM at -78 °C. 

2.1.7 Lithium mediated acetate aldol 

As an alternative to the boron mediated aldol we turned our attention to a 

lithium mediated aldol. Reetz has shown that the reactive lithium enolate derived 

from ethyl acetate preferentially reacts with the aldehyde derived from alanine 114 to 

give the aldol adduct 115 as the major diastereomer in >93% yield with no reports of 

racemisation, scheme 33•21  He also reported that the aldol reaction of the more 

sterically demanding aldehyde isoleucinal 116 afforded the aldol adduct 117 in 82% 

yield and >98% de, scheme 34•63 
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Scheme 33 

NBn 2  
0 	(a) (I) 	

-'CO2Et 

	

EtO 	(ii) NBn2 	OH 
H 	 115 

0 114 

(a) LiHMDS, -78 °C; (ii) THF, -78 °C. 

Scheme 34 

NBn2  
0 	(a) (I)  

'1 	
-1- CO2Me 

	

MeO 	 (ii) NBn2 	Me OH 117 

Me 0 116 

(a) LiHMDS, -78 °C; (ii) THF, -78 °C. 

Our initial studies into the aldol reaction using lithio methyl acetate and the 

differentially protected aldehyde 93 gave a mixture of the aldol adducts 118 and 119 

(diastereomeric ratio not determined) in 49%. A major by-product from this reaction 

(50%) was observed to be the a,/J-unsaturated ester 120 resulting from dehydration 

of these aldol adducts, scheme 35. 
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Scheme 35 

NBn2 	 NBn2 
MeO( OTBDPS MeO OTBDPS 

0 OH 	 0 OH 
MeO'- (ii) 	Bn2 	 118 	(49%) 	 119 

H 1-OTBDPS 

0 	 + 

NBn2 

MeO- OTBDPS 

	

0 	(50%) 120 

(a) (i) LiHMDS, -78 °C; (ii) THF, -78 °C->0 °C. 

Proceeding to the slightly bulkier lithio ethyl acetate produced solely a 

mixture of the aldol adducts 121 and 122; none of the elimination product was 

observed, scheme 36. 

Scheme 36 

NBr,2  
0 	(a)(i) 85% 	EtO..OTBDPS 

EtO (ii) NBn 2 	0 	OH 	121 
H -OTBDPS 

0 93 

(a) (i) LIHMDS, -78 °C; (ii) THF, -78 "C-O °C. 

NBn2  
+ EtO OTBDPS 

0 OH 122 

Rather disappointingly only a 6:1 mixture of diastereomers was obtained 

which was in sharp contrast to the 10:1 selectivities being observed by Reetz. The 

diastereoselectivity was calculated by measurement of the integrals from the crude 

'H NMR corresponding to the protons at C(2). In the major aldol adduct these were 

apparent as two sets of doublet of doublets at 2.31 and 2.98 ppm. In the minor aldol 

adduct the peaks appeared at 2.45 and 2.30 ppm. [The minor peaks were consistent 

with those obtained via reduction of the Claisen product, section 2.2.] 
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Chiral HPLC (5% IPA in Hexane) further confirmed the selectivity by comparison of 

the major peak at R=8.3 (corresponding to the enantiomer of /J-hydroxy ester 121) 

and the minor peak R=1 0.9 (corresponding to the enantiomer of fl-hydroxy ester 

122), figure 9. 

The enantiomeric purity of the aldol adduct was determined by chiral HPLC 

by a comparison with the racemic adduct synthesised in the same manner. The 

adduct was observed to have undergone considerable racemisation (90% ee, major 

enantiomer R t  9.0, minor enantiomer R t  8.3). Lengthier reaction times as a direct 

result of the presence of the bulky TBDPS group may have been one contributing 

factor to racemisation of the aldol adduct. 

Figure 9 

2.1.8 Formation of pyrrolidine 125 

The separation of the aldol adducts 121 and 122 proved unattainable by flash 

chromatography or by HPLC. Hence, they were converted as a mixture to their 

Weinreb amides 64  using NO-dimethylhydroxylamine.hydrochloride and 

trimethylaluminium, scheme 37. The hygroscopic nature of the hydroxylamine salt 

did have deleterious effects on the reaction but this was overcome by driving the 
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water off under vacuum immediately prior to the reaction. This provided the amides 

91 and 123 in near quantitative yield. 

Scheme 37 

N Bn2  

EtO OTBDPS 

0 OH 	121 

+ 

NBn2  

EtO OTBDPS 

0 OH 	122  

OMe 	NBn 2  

(a) 	
O OH 	91 

+ 

98% 	 OMe 	NBn2  

Me N 
	-OTBDPS 

O OH 	123 

(a) (MeO)NHMe.HCI, Me 3 AI, THF, 0 °C->35 °C. 

The synthesis of lactam 90 occurred uneventfully via debenzylation using 

Peariman's catalyst (Pd(OH)2/C) 65  with concomitant cyclisation as reported in the 

synthesis of DAB- 160  and (+)-castanospermine. 66  The separation of the diastereomers 

was now possible due to conformational constraints associated with the minor 

diastereomer which resulted in the isolation of the acyclic amino amide 124 and not 

its associated lactam, scheme 38.. 

Scheme 38 

(a) 

OMe 	NBn 2  

Me-'
N- OTBDPS  

O OH 
91 

+ 

OMe 	NBn2  
I 	 - 

Me N
OTBDPS 

O OH 
123  

U 
U 

TBDPSO'(J7 °  

HO 	90 (81%) 

+ 

OMe 	NH2  
I 	 - 

Me N
OTBDPS 

0 OH 124 (12%) 

(a) Pd(OH) 2/C, MeOH, H2 . 
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Compound 90 was isolated as a crystalline solid and its structure was 

unequivocally determined by X-ray diffraction, figure 10. This therefore confirmed 

the stereochemistry which we had predicted for the aldol reaction of the serine 

derived aldehyde 93. 

Figure 10 

The lactam 90 was successfully reduced with BH 3 .THF complex to give the 

protected pyrrolidine 125. 

Scheme 39 

H 

TBDPSO'J °  

HO 	90 

(a) BH3.THF, THF, 0 °C->80 °C. 

H 
(a) 	 N 

TBDPSOJ 
85% 

HO 125 

44 



Results and Discussion I 

2.1.9 Attempted deprotection of silyl protecting group 

The remaining step in the sequence the removal of the TBDPS protecting 

group proved unattainable via a variety of routes. The TBDPS group was chosen as it 

offered greater stability than the TBS protecting group to the reducing conditions 

employed in our synthesis of aldehyde 93. (The TBS group was cleaved when 

DIBAL-H and LiA1H 4  were employed as the reducing agents). 

The TBDPS group is stable to reagents typically used to cleave the TBS group such 

as 80% acetic acid. Longer reaction times are generally employed for the removal of 

the TBDPS with a variety of options available for cleavage such as tert-

butylammoniumfluoride (TBAF), HF/Acetonitrile and HF/Pyridine. 

Scheme 40 

H 	 H.HF 
N 	 N 

TBDPSO) 	 HOJ 

	

HO 125 	 HO 126 

The deprotection was initially attempted using TBAF, which is far less toxic 

than hydrofluoric acid. Purification of the hydroxylated pyrrolidine from 

tetrabutylammonium salts by chromatography proved difficult. We expected that 

deprotection following the HF protocol would provide a cleaner reaction mixture. 

Surprisingly after stirring for 48 hours starting material was still apparent by t.l.c.. 

The mixture was warmed gently to 40 °C and the mixture stirred for a further 6 

hours. Upon workup large quantities of salts were present, purification by silica gel 

chromatography provided a mixture of starting material and TBDPS alcohol by 

elution with ethyl acetate. Elution with a 5:3:1 mixture of 

chloroform: methanol: ammonia (28%) gave a colourless solid, which was subjected 

to final purification by ion exchange chromatography (Dowex 1X2 (Off form)). 

However none of the desired product was obtained. 
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Hannessian67  has reported the deprotection of the TBDPS group to occur 

using a 3% methanolic hydrochloric acid solution. This protocol was also attempted 

but again none of the pyrrolidine was acquired. T.l.c. of the reaction mixture showed 

that extensive decomposition had occurred. 

2.2 Synthesis of C(3) epimer of CYB-3 

2.2.1 Retrosynthesis of CYB-3 and C(3) epimer 

In view of the moderate enantiomeric purity of the aldol adduct 121 (90% ee) 

and the reduced diastereo selectivity (6:1) an alternative strategy for the synthesis of 

CYB-3 was considered. The literature is replete with examples of the synthesis of 8-

hydroxy-y-amino acids via the stereoselective reduction of the corresponding 8-keto 

ester. We envisaged that a Claisen condensation between the serine derived ester 109 

and lithio ethyl acetate to give 8-keto ester 127 followed by a stereoselective 

reduction would yield 121. By judicious choice of the reducing agent it would be 

possible to synthesise CYB-3 71, scheme 41 and it's C(3) epimer 128, scheme 42. 
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Scheme 41 
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Scheme 42 
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2.2.2 Formation of fi-hydroxy esters 119 and 122 

Reetz28  has previously reported that ,8-keto esters 131 were accessible via the 

reaction of N-benzyl esters 130 with lithio ethyl acetate albeit in low yields (40 %), 

scheme 43. 

Scheme 43 

N Bn2  
(a) (i) 40% 	EtO-R 

EtO 	(ii) 	NBn2 	0 	0 
MeO .- R 	 131 

130 

(a) (i) LiHMDS, THF —78 °C; (ii) THF, 130,-78 °C; R'PrCH 2, cyclohexyl-CH 2, PhCH2 . 

We carried out the Claisen reaction of ester 109 using both lithio methyl 

acetate and lithio ethyl acetate with both routes yielding comparable amounts of 

product 132 (75%) and 127 (78%) respectively. However, concerns were raised with 

regards to the enantiomeric purity of the fl-keto esters. In order to confirm this by 

chiral HPLC, the fi-keto esters were selectively reduced to give the syn 119, 122 and 

anti 118, 121 /3-hydroxy ester, scheme 44. 

49 



Results and Discussion I 

Scheme 44 

0 	 NBn 2  

RO 	
(a)(i) 

RO OTBDPS 
NBn  

MeO-OTBDPS 	0 0  132 R= Me 75% 
127 R= Et 78% 

109 	

(b) 

NBn 2 	 NBn 2  
RO OTBDPS + RO OTBDPS 

0 OH 	 0 OH 
119 R= Me 83% 	 118 R= Me 5% 
122 R= Et 81% 	 121 R= Et 6% 

(a) (i) LiHMDS, -78 °C; (ii) THF, 109, -78 °C—O °C; (c) NaBH 4, LiBH4  or NaCNBH3  

Reetz reported excellent diastereoselectivities (>90% de) for the reduction of 

fl-keto esters 131 using NaBH4/MeOH at —20 °C to give the non-chelation controlled 

product selectively, table 3. 

Table 3 

R Diastereoselectivity 

% 

'PrCH2 90 

Cyclohexyl-CH2 93 

PhCH2 94 

Reduction of fl-keto esters 132 and 127 using this methodology did not 

produce the yields or diastereoselectivities which we expected in favour of the anti-

Felkin product 119 and 122. The results for the reduction of the methyl keto ester 

132 and the ethyl keto ester 127 are summarised in tables 4 and 5 respectively. 
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Due to the hindered nature of /3-keto esters 132 and 127 the reaction was 

found to be extremely sluggish at low temperatures (0 °C) and heating at higher 

temperatures (r.t.) was required to drive the reaction to go to completion. When using 

NaBH4  and LiBH4 as the reducing agents, reduction of the ester moiety occurred 

concurrently with reduction of the carbonyl group resulting in very low yields of the 

desired fl-hydroxy ester. The reduction with NaCNBH3 required longer reaction 

times and a greater excess of the borohydride to be used, however the problem of 

ester reduction was eliminated, with yields of >80% ,8-hydroxy ester generated. The 

diastereoselectivities were also consistently much higher with de's of >90% being 

produced. Separation of the diastereomeric /3-hydroxy esters was attainable by flash 

chromatography. 

The diastereoselectivity for the ethyl hydroxy ester 122 was calculated from 

the crude 'H NMR by comparison of the C(2) protons for both the major and minor 

adducts. The diastereoselectivity for the methyl hydroxy ester 119 was also 

calculated by measurement of the integrals from the crude 'H NMR corresponding to 

the protons at C(2). In the major /i-hydroxy ester 122 these were apparent as two sets 

of doublet of doublets at 2.31 and 2.47 ppm. In the minor ,8-hydroxy ester 119 the 

peaks appeared at 2.13 and 2.85 ppm. 

Table 4 

Conditions °h Yield Diastereomeric 
ratio  

119:118  

Ester reduction 

1.0 eq NaBH4, 2 h, R.T. 32 89:11 Yes 

2.5 eqNaBH4 , 1 h, R.T. 53 88:12 Yes 

5.0 eqNaBH4, 1 h, R.T. 52 87:13 Yes 

2.0 eq LiBH4 , 0.5 h, R.T. 40 83:17 Yes 

3.0 eq LiBH4 , 0.5 h, R.T. 20 83:17 Yes 

8.0 eqNaCNBH3, 7 h, R.T. 83 >90:10 No 
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Table 5 

Conditions % Yield Diastereomeric Ester reduction 
ratio 

122:121 

2.5 eqNaBH4, 1 h, R.T. 50 88:12 Yes 

8.0 eqNaCNBH3, 7 h, R.T. 81 >90:10 No 

The enantiomeric purity of the /J-hydroxy esters 119, 121 were determined by 

chiral I-IPLC (5% IPA in Hexane) with a sample of the racemate prepared via the 

same route. The results showed that extensive racemisation had occurred with ee' s of 

43 and 50% for the methyl and ethyl fl-keto esters respectively, figure 11. 

Figure 11 

0.10 NBn 2  

MeO OTBDPS 

	

0.05-1 0 	OH 

	

2.00 	4.00 	6.00 	8.00 	10.00 	12.00 
Minutes 

These findings were consistent with those reported by Hoffman 29  who 

observed ee's of between 78 and 90% for the fi-keto esters 134 formed via the 

reaction of a-amino esters 133 with lithio tert-butyl acetate, scheme 45. To 

circumvent these problems a more reactive acylating agent was required. 
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N Bn2 

MeOy&. R 

133 

Scheme 45 

(a) 	But 	
N Bn2 

80-90% 	 0 0 

134 

(a) LiCH2(CH2)OtBu, THE 

2.2.3 NA-Carbonyldiimidazole Coupling 

By converting the ester functionality to the acylimidazole the reactivity of the 

moiety is substantially increased, since the reactivity of the acylimidazoles is similar 

to that of acid chlorides. The imidazolides are generally crystalline and easy to 

handle, isolation is simple but not necessary. The imidazolides are formed by 

reacting the carboxylic acid with NN-carbonyldiimidazole (CDI) at room 

temperature resulting in the formation of the imidazolide and the evolution of carbon 

dioxide. 68  A consideration of the PK a  values also explains why it is harder to remove 

the proton and cause racemisation. The pK a  value of an ester is 25 whereas that of an 

amide is 17, the difference largely being attributed to the extent of N-lone pair 

delocalisation into the amide carbonyl. In the imidazolide this will obviously be 

somewhat reduced due to the lone pair involvement in the imidazolide aromaticity. 

In Richs' synthesis of statine 32  from N-Boc-protected L-amino acids 135 and 

136 by NN-carbonyldiimidazole activation and subsequent treatment with the 

magnesium enolate of hydrogen ethyl malonate, scheme 46, he noted that 

considerable racemisation had occurred, 92% ee for 139 and 58% ee for 140 formed 

via the NaBH4  reduction of 137 and 138, respectively. 
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Scheme 46 

	

NHBoc 	 NHBoc 

	

H0(LR 	
(a) 	

Et0 JR 

0 	 00 

135 R=CH2CH(CH 3 ) 2 	 137 R=CH 2CH(CH 3 )2 , 83% 
136 R=CH2C6H 5 	 138 R=CH 2C6 H5, 88% 

N H Boc 

Et0(L R 

0 OH 

J (b)  
N H Boc 

Et0 ((J R 

0 OH 

139 R=CH2CH(CH 3 )2 , 92% 
140 R=CH2C6H 5, 98% 

(a) (i) CDI, THF; (ii) NEt 3 , M9C12, EtOOCCH2COOH; (b) NaBH4, THF, -78 °C. 

It had previously been reported in the 1960's 69  that CDI caused as much as 

5% racemisation of protected amino acids under certain conditions during peptide 

synthesis. By decreasing the reaction time and the temperature for formation of the 

imidazolide from 12 hours at r.t. to 1 hour at 0 °C followed by 3 hours at r.t. gave 

ee's of 97% and 98% for 139 and 140. 

Schudas' 7°  preparation of the cyclohexylmethyl derived fl-hydroxy esters 142 

and 143 led to 15% racemisation when Raney nickel was used as the reducing agent 

but ee's were improved to 92.4% when sodium cyanoborohydride was employed in 

the reduction of 141, scheme 47. 
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Scheme 47 

NHB0c 	 NHBoc 

HO(LC6Hll 	
(a) 	

EtO--LCA, 

o 	 0 0 	141 

(b) 

	

NHBoc 	 NHB0c 

EtO ( LC6Hll 	Et0 JC6H 11  

0 OH 	 0 OH 

	

142(40%) 	 143(43%) 

(a) (i) CDI, THF; (ii) NEt 3 , M9C12, EtOOCCH2COOH; (b) NaCNBH3 , THF, AcOH. 

Joullié 
71  recently reported a synthesis of tamandarin B where activation of 

the carboxylic functionality in 144 was achieved using pentafluorophenol, scheme 

48. 

Scheme 48 
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	 yo 0 Y OY 
144 

(a) C 6F50H, EDCI.FICI, DMAP, DCM; (b) LiCH 2CO2Me, THE 

Other routes to the /1-keto esters via acylation of Meidrum's acid 72  and 

acylation of (TMS) ethyl malonate with acyl imidazoles 73  have been reported. 

At present, little research has been conducted into the coupling reactions of N,N-

dibenzylamino acids with CDI. 
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2.2.4 Acid hydrolysis of 109 

In order to proceed via this route, saponification of the NN-dibenzylamino 

ester 109 was required, scheme 49. 

Scheme 49 

NBn2 	 NBn2  

MeOLOTBDPS 	
(a) 

HOIOTBDPS 

109 	 145 

(a) See table 6. 

Reetz reported the saponification of benzyl esters 130 to occur with KOH in 

aqueous dioxane thus yielding the corresponding acids 146 for a range of substrates, 

scheme 50. However no experimental details were reported. 28  

Scheme 50 

NBn2 	 NBn2  

BnOy1 	

(a) 	
HOyI...R 

0 	 0 
130 	 146 

(a) KOH, H20, Dioxane, R= R='PrCH 2 , cyclohexyl-CH2, PhCH2 . 

We found that hydrolysis of the NN-dibenzylamino ester 109 using these 

reagents did not produce any of the desired acid 145 under a range of conditions. 

This was consistent with that reported by Hoffman who found that refluxing benzyl 

ester 147 with KOH in aqueous dioxane for 6 days produced less than 10% of the 

corresponding acid 149, (90% ee). The fl-branched compound 148 showed no 

detectable hydrolysis after 7 days under the same conditions. 
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Scheme 51 

	

NBn2 	 NBn2 

BnO(L 

	

	 (a) 	HO}-... 
R ___ 	 R 

0 	 0 

	

147R='Bu 	 149RBu 

148 R= secB U 	 150 R= secBu 

(a) KOH, H20, Dioxane, 100 °C. 

Hoffman reported an iodide-based hydrolysis as an alternative to standard 

methods with yields of between 64 and 75% being reported by refluxing the methyl 

esters 151-153 with a mixture of lithium iodide and sodium cyanide. The amino 

acids were converted to the 8-keto esters 154-155 via the CDI coupling with lithio 

ten' butyl acetate. Their optical purity was determined by a chiral lanthanide induced 

shift study using a Europium shift reagent which showed compounds 154 and 155 to 

have ~:97% ee, however compound 156 was observed to have an ee of 70%, scheme 

52. 

Scheme 52 
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HOl.R 	
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64-75% 	 76-80% 
0 	 0 	 00 

151 R='Bu 	 154 R='Bu 

152 R= PhCH 2 	 155 R= PhCH 2  

153R=Me 	 156R=Me 

(a) Lii, NaCN, Pyridine; (b) CDI, LiCH 2CO2tBu, THF. 
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2.2.5 Analysis of hydrolysis routes 

The methyl ester 109 was hydrolysed under a range of conditions. The acid 

145 was converted to the imidazolide 157 which without isolation was coupled with 

lithioethyl acetate. The fl-keto ester 127 was selectively reduced to give the fi-

hydroxy alcohol 122, scheme 53. Chiral HPLC analysis was carried out on the 6-

hydroxy alcohol 122 and the results are summarised in table 6. 

Scheme 53 

NBn2 	 NBn2  

MeO OTBDPS 	hydrolysis 	HO.- 
	

OTBDPS 

0 	109 	 O 

( 

145 

a)  

N Bn 2  
NN 	OTBDPS 

	

0 	157 

	

NBn2 	 NBn2  
0 	(b) EtO 	 OTBDPS (C) EtO-,0TBDPS 

EtO 	90% 	0 0 	 81% 	0 OH 

	

127 
	

122 

(a) CDI, THF, R. 1.; (b) (i) LiHMDS, -78 °C; (ii) 157, -78 °C 1.5 h then 0 °C; (c) NaCNBH 3 , Et20, 

MeOH, AcOH. 
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Table 6 

Conditions Yield % ee % 

LiOH, THF/H20, R.T., 72 hours 0 nd 

LiOH, THF/1-120, reflux 6 hours 60 70 

Li011, THF/H20, reflux 24 hours 901P nd 

Lii, Pyridine, reflux 24 hours 72 60 

LiI/NaCN, Pyridine, reflux 24 hours 78 66 

Ba(OH)2, MeOH, R.T., 48 hours 32 70 

NaOH, 1 ,4-Dioxane, R.T., 72 hours 0 nd 

KOH, MeOH, R.T., 72 hours 0 nd 

2M HC1, R.T., 72 hours 0 nd 

Yield refers to TBDPS deprotected acid 
not determined 

2.2.6 Mechanism of acid and base hydrolysis 

In general hydrolysis of the ester functionality in compound 109 with a 

variety of reagents showed the extraordinary inertness of the ester group towards 

nucleophilic addition resulting in longer reaction times and higher temperatures 

being required. There are eight possible mechanisms for the acid and base hydrolysis 

of esters with the most common routes being the AAC2  and BAC2  respectively, 

scheme 54. Both of these go via a tetrahedral transition state. The tetrahedral 

mechanism for substitution at the carbonyl carbon is slowed or blocked completely 

by a or fi branching. 74  The combination of the bulky NN-dibenzylamino and the 

TBDPS groups appear to have a deleterious effect on the hydrolysis of 109. 
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Scheme 54 
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Hoffman reported that upon increasing the steric bulk of the R group the 

reaction time increases and the yield decreases. He also noted that where /3-branching 

exists no hydrolysis occurs under base catalysis. 

The best results we obtained were refluxing 109 with lithium hydroxide for 6 

hours, upon increasing the reaction time the TBDPS group was cleaved. Sodium and 

potassium hydroxide led to the recovery of starting material as did acid hydrolysis. 

The iodide-based hydrolysis which proceeds via a different mechanism gave 

disappointedly low ee's. The reaction occurs with displacement of the carboxylate by 

SN2  dealkylation but again the reaction appears to be sterically hindered as would be 

expected for a SN2 reaction. 75  Upon scaling the lithium hydroxide saponification of 

109 to >500 mg, the reaction was observed to proceed sluggishly with very little 
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product recovered, hence several small 500 mg reactions were carried out in order to 

continue with the synthesis. 

2.2.7 Consideration of other factors leading to racemisation 

We considered that the extensive racemisation in compound 122 was due to 

the CDI coupling reaction of the NN-dibenzylamino acid 145. However with the 

high ee's (>92%) obtained for the synthesis of the phenylalanine derived /1-hydroxy 

ester via the same route (chapter 3), it was evidently the hydrolysis step that was 

resulting in the racemisation and not the proceeding steps in the synthesis. 

The quality of the LiHMDS used to generate the enolate in the Claisen 

condensation was considered as another factor and this was either freshly prepared 76 

or fresh supplies from Lancaster were used. Long storage of the base led to the 

formation of lithium hydroxide which would be detrimental to the reaction. The 

advantage of preparing the base from hexamethyldisilazane and butyl lithium was 

that the concentration of the butyllithium could be determined by simple titration 

and hence the concentration of LiHMDS known exactly. 

LiHMDS (1.0 M in THF) was prepared as follows: To a stirred solution of hexamethyldisilazane 
(10.55 cm3) at -23 °C was added dropwise BuLi (20.0 cm 3 , 2.5 M) and the resultant solution allowed 
to warm to R.T. and diluted to 50 cm 3  with THE 
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2.2.8 Formation of silyl protected pyrrolidine 159 

The Weinreb amide 123 was synthesised by treating ethyl ester 122 with 

N,O-dimethylhydroxylamine.HC1 and trimethylaluminium in excellent yield. 

Scheme 55 

NBn2 	 (a) 	OMe 	NBn2  

OTBDPS EtO - 	
95% 	

OTBDPS  

0 OH 122 	 0 OH 123 

(a) (MeO)NMe.HCI, Me 3AI, THF, 0°C- 35 'C. 

Treating the amide 123 with Peariman's catalyst under an atmosphere of 

hydrogen removed the dibenzyl protecting groups but did not yield the lactam 129 as 

expected rather the acyclic amino amide 124 was isolated in quantitative yield. 

Scheme 56 

OMe 	NBn2 	 (a) 	 OMe 	NH2  
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(a) Pd(OH) 2/C, H2, MeOH; (b) Pd(OH) 2/C, H2, MeOH. 
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The lactam 129 could however be prepared from the amino amide 124 by 

filtering 124 through a small column of silica and the residue refluxed in methanol 

for 24 hours to give lactam 129 in 72% yield. 

Scheme 57 

OMe 	NH2 	 (a) 	 H 
NO 
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0 OH 
124 	 HO 	129 

(a) MeOH, 80 °C. 

Debenzylation of ester 122 with Pearlmans' catalyst occurred in quantitative 

yield to give the amino ester 158 which was subsequently filtered through a short 

path of silica and refluxed in methanol for 24 hours to give the lactam 129, scheme 

58. Hence we therefore no longer needed to convert the ,B-hydroxy ester 122 to the 

Weinreb amide 123. 

Scheme 58 
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The lactam 129 was successfully reduced with BI-1 3 .THF complex to give the 

protected pyrrolidine 159 in 4 steps and 29% overall yield from the serine derived 

methyl ester 109. 

Scheme 59 
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HO 

129 

(a) BH3 .THF, THF, 0 °C- 80 °C. 

H 
(a) 	 N 

TBDPS 

86%

O(7  

HO 
159 

2.3 Alternative to silyl protecting group 

2.3.1 Formation of 3-hydroxy ester 166 

A potential solution to the problems associated with NN-dibenzyl-O-TBDPS 

protected serine methyl ester 109 was to select an alternative protecting group for the 

hydroxyl group. In view of the high ee's obtained with the phenylalanine derived 8-

hydroxy ester (chapter 3) we felt that an O-benzyl protecting group might offer 

comparable results. The NN-dibenzylated methyl ester 162 was prepared using the 

conditions optimised for the serine derived methyl ester 109, from the commercially 

available O-Benzylserine 160 in 90% overall yield, scheme 60. 
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Scheme 60 

NH 
HO OPh 	

(a) 

96% 
0 160 

NH2. HCI 
MeOyJ.O Ph 

161 

94% 	(b) 

N Bn2  

MeOLO Ph 

0 	
162 

(a) CH3COC1, MeOH, 80°C; (b) BnBr, K2CO3,  MeCN. 

Saponification of the methyl ester 162 to the acid 163 was carried out under a 

range of conditions, scheme 61. Inmost cases the reaction times were shorter and the 

yields almost quantitative in comparison with the saponification of the TBDPS 

protected serine, table 7. 

Scheme 61 

NBn2 	 (a) 	 NBn2 
MeOJOPh 	 HOLOPh 

0 	162 	 0 	163 

(a) See table 7. 
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Table 7 

OBn serine OTBDPS serine 

Conditions Reaction 
time 

Yield 
 % 

Reaction 
time  

Yield 

LiOH.H20,THF/H20, R.T. 24 0 72 0 

LiOH.H20,THF/H20, 

Reflux 

4 100 6 60 

LiIINaCN, Pyridine, Reflux 20 89 24 78 

Ba(OH)2, MeOH, R.T. 24 17 48 32 

Ba(OH)2, MeOH, Reflux 3 97 - - 

KOH THF/H20, R.T. 24 10 0 0 

NaOH, 1,4-dioxane, R.T. 24 5 0 0 

The acid 163 was converted to the corresponding fl-keto ester 165 via the 

CDI mediated coupling with lithio ethyl acetate in excellent yield. Conversion to the 

/3-hydroxy ester 166 was achieved with NaCNBH3 in excellent diastereoselectivity, 

scheme 62. 
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Scheme 62 

NBn 2 	 NBn 2  

MeO'OPh 	hydrolysis 	HO (lOPh 

0 	162 	 0 	163 

(a) 

NBn 

jN(LOPh 

0 	164 

NBn 	 NBn2  
0 	(b) 	EtO OPh 	(c) EtO OPh 

EtO 	92% 	0 0 	165 	
90% 	0 OH 	166 

(a) CDI, THF, R. T.; (b)(i) LiHMDS, -78 °C; (ii) 164, -78 °C 1.5 h then 0 °C; (c) NaCNBH 3 , Et20, 

MeOH, AcOH. 

2.3.2 Determination of diastereoselectivity and enantioselectivity of 166 

The diastereoselectivity was calculated from the crude 'H NMR of 166. The 

integrals for the protons at C(2) were compared for the minor and major 

diastereomers. The major peaks were at peaks are at 2.50 and 2.34 ppm and the 

minor peaks at 2.81 and 2.90 ppm. A ratio of >10:1 was determined. The 

enantiomeric purity of the fl-hydroxy ester 166 was determined by chiral I-IPLC (5% 

IPA in Hexane) by a direct comparison with the racemic /i-hydroxy ester, figure 12. 

The results are summarised in table 8. 
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Figure 12 

NBn 2  

EtO JO Ph 

0 OH 

NBn2  

EtO(LO Ph 

0 OH 

0.00 

n 

Table 8 

Conditions %ee 

6eq LiOH.H20, THFI1120, Reflux 0 

LiI/NaCN, Pyridine, Reflux 0 

5eq Ba(OH)2, MeOH, R.T. 0 

These results were contrary to what we had expected with all cases resulting 

in complete racemisation. One possible reason for this observation is due to the 

presence of the 0-methylene moiety which is aiding in the removal of steric 

congestion (i.e. the phenyl ring) from the ester site and the chiral centre. 

Consequently the decrease of the steric bulk at the chiral centre substantially 

increased racemisation. 
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2.4 Alternative to methyl ester 

Reetz77  has shown that the serine derived NN-dibenzylated alcohol 168 can 

be prepared in >99% ee. Treating O-Benzylserine 160 with benzyl bromide furnished 

the benzyl ester which was subsequently hydrolysed with KOH to give 163 in 71% 

over the two steps (detailed experimental conditions were not reported), scheme 63. 

Conversion to the Weinreb amide, Grignard addition and reduction with NaBH4 

furnished 168 in 94% de. 

Scheme 63 

NH2 	 (a) 
HO2OBn 

II 	 71% 
0 160 

NBn2  
HO OBn 

0 	163 

(b) 	NBn2 

Me 	- OBn 
41% 

0 	167 

91% (c) 

NBn 2  
Me OBn 

OH 
168  

NBn2  
+ Mey OBn 

OH 
169 

(a) (i) BnBr, K2CO3 , MeCN; (ii) KOH, MeOH, Dioxane; (b) (i) (MeO)NMe.HCI, Me 3A1, PhMe; (ii) 

MeLi, THF, -40 °C; (c) NaBH 4, MeOH, -20 °C. 

Chandrasekhar 78  has reported cleavage of the allyl group from allyl ester 170 

using polymethyihydrosiloxane (PMHS), ZnC1 2  and Pd(PPh3 )4  to occur in high yield 

providing the corresponding acid 171 in 87% yield, scheme 64. 
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Scheme 64 

	

NBn2 	 (a) 	
NBn2 

	

OkOTBS 	
87% 	

HOkOTBS 

0 	170 	 0 	171 

(a) PMHS, ZnC12, Pd(PPh3)4, THE 

Although no ee was reported, an [aID of —50.85° (c 0.35, CHC13) was 

determined for 171. As this is the first example of this serine-derived acid, the 

determination of the optical rotation is not conclusive proof for the optical purity of 

this compound, chiral analysis would be required to confirm this. 

2.5 Introduction to CBS reagent 

One of the main objectives was to synthesise /3-hydroxy ester 121 via a chiral 

reduction of the 6-keto ester 127 with higher diastereoselectivity than that obtained 

for the aldol reaction discussed in section 2.1.7. 

Scheme 65 

NBn2 	 NBn2 

	

EtO OTBDPS 	 EtO OTBDPS 

0 0 	127 	 0 OH 	121 

The combination of chiral oxazaborolidines and borane to mediate the 

asymmetric reduction of prochiral ketones has received considerable attention since 

its discovery by Itsuno. 79  He reported an enantioselective ketone reduction using an 

aminoalcohol-borane complex 172 as a catalyst, which forms a five membered ring 

which reduces ketones in high enantiomeric excess, scheme 66. The catalyst was 

noted to be more efficient when used in combination with a borane e.g. borane-

methyl suphide complex. 
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Scheme 66 

Pr' 	Ph 
Pr' 	h 
H,,,',,Ph 	+ 	BH3 	 HN ,0

"I"  
 

H2N 	OH 	
172 

Corey, Bakshi and Shibata subsequently developed the CBS oxazaborolidines 

173 and 174, figure 12.80  The enantioselective reduction occurs with borane or 

catecholborane as a stoichiometric reductant. The B-Me complex 174 is a stable and 

storable white crystalline solid whereas the B-H complex 173 is both air and 

moisture sensitive. Slightly higher ee's are also obtained with the B-Me complex 

making it a superior complex. 

Figure 13 

HPh 
Ph 

C TN- C  

173 R= H 
174 R= Me 

For example the reduction of acetophenone 175 to give R-phenylethanol 176 

occurred in 97% ee with the B-Me complex compared with 94.7% ee for the B-H 

complex, scheme 67.81 

Scheme 67 

	

(a) 
	OH 

	

95% 
	Ph 

	

175 
	

176 

(a) 174, BH3 .THF, TFIF. 
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A variety of modified analogues of the CBS oxazaborolidine have been 

developed in an attempt to overcome the main limitation associated with the catalyst 

which is the requirement that the appendages Rs and RL must differ appreciably in 

the ketone. Enantioselectivity should occur when there is a preference for the larger 

of the two ketone appendages to adopt an orientation anti to the bulky area of the 

catalyst thus inducing intramolecular delivery of a hydride to one enantiotopic face 

of the ketone. In our substrate 127, R5 and RL, figure 14, appeared sufficiently 

different to allow the formation of one diastereomer preferentially. 

Figure 14 

Ph Ph 

U 
IJ 	Ph 
- 	 I 

- 0— Si_I 

Ph 
00 

Rs 	RL 

Examples of compounds enantioselectively reduced by the CBS 

oxazolidinone are shown in table 9•81 
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Table 9 

Ketone 	%ee 

0 

Me 	 99 

00 

Me3Si ' (-0Me 	94 

0 

CH3  OEt 	95 

0 M 

oO 93  

2.5.1 Mechanism of reduction by CBS reagent 

The complex binds the substrate by coordination of the electrophilic boron 

and the carbonyl oxygen. The binding minimises any unfavourable steric interactions 

between the oxazaborolidine and the ketone. Hydride transfer occurs from the NBH3 

unit to the activated carbonyl via a six membered ring transition state. Ligand 

exchange occurs to form the alkoxyborane followed by displacement to regenerate 

the catalyst and give the desired product, scheme 68 . 82  
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Scheme 68 
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2.5.2 Formation of CBS reagent 178 

The oxazaborolidine 178 was prepared from (s)-(+)- a, a-diphenyl-2-

pyrrolidinemethanol 177, scheme 69. Azeotroping with toluene enabled the removal 

of any unreacted amino alcohol, trimethylboroxine and water which could decrease 

enantioselection. 83  Addition of dimethylsulfide-borane complex generated a white 

crystalline solid after 12 hours which was subsequently dried under vacuum to 

remove excess dimethylsulfide and give 178 in 85% yield. 
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Scheme 69 

OH 
N  
H Ph 

177 

(a) CH3B(OH)2 , Toluene; (b) BH 3.SMe2 . 

H Ph 
(a), (b) 	 Ph 

85% C TN-  5/C  
BH3 Me 

178 

2.5.3 Chiral reduction of fl-keto ester 125 

A variety of reaction conditions were employed for the chiral reduction of /1-

keto ester 127, it was found that heating the mixture at 40 °C for 24 hours gave the 

maximum yield of products. However the reaction was never observed to go to 

completion with a maximum yield of 60% being obtained. From analysis of NMR 

and t.l.c. it was apparent that no selectivity had occurred for the Felkin-Anh adduct 

121. This result was unexpected considering the differences in the small and large 

appendages. To ensure that the lack of enantioselection was not due to the catalyst, 

acetophenone was reduced and it was found to be optically pure by a comparison of 

the optical rotation with an authentic sample, (found [a] 0  - 40.2° (neat), lit (Aldrich) 

[a]D-41.3° (neat)). 

Scheme 70 

N Bn2  
EtO OTBDPS 

	

H Ph 	 0 OH 	122 
( Ph 

	

DN / 0 
	

(a) 
+ 

60% 	 NBn2 
Me 	

EtO OTBDPS 
178 

0 OH 	121 

(a) (1) BMS, DCM, 0 °C; (ii) 127,40'C. 
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The reasons for the lack of enantioselection remain unclear for the more 

complex /3-keto ester 127, unfavourable steric interactions between the NN-dibenzyl 

and the phenyl groups may be one cause of this. Coordination of the nitrogen to the 

oxazaborolidine catalyst may also occur which could account for the low yield of the 

fl-hydroxy esters obtained. Research in this area has generally focussed on the 

oxazaborolidine rather than the substrate. Based on our research on the N,N-

dibenzylated compounds discussed in this section and chapter 3 it is possible that 

these compounds are not viable substrates for this chiral reduction. 

2.6 Introduction to Ru[BINAP] catalyst 

Ru[BINAP] catalysts can hydrogenate fl-keto esters that contain a wide 

variety of functionality including amides and esters with high stereoselectivities. 84  

Esters whose functionality is at the y-position are capable of affecting the 

stereocontrol due to competing pathways. 85  Instead of the hydrogenation proceeding 

via pathway A, chelation of the ruthenium between the carbonyl group and group x is 

now possible yielding the enantiomeric product, scheme 71. 

Scheme 71 

Pathway 
Ru 

X H-LJOR 

OHO 
H2 	

XyL)LoR 

XLOR 

Pat 	Ru--O 0 
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OHO H2 	
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In our case the presence of the NN dibenzylamino group should show the 

effects of double asymmetric induction and hence generate the diastereomer with 

high selectivity as observed in Noyori's synthesis of statine. 33  Noyori reported a 

facile and highly diastereoselective route (>99% de) to 19 via the hydrogenation of 

32, scheme 72. 

Scheme 72 

N H Boc 

J NHBoc 

_OEt 	(a) 	 OEt 

	

0 0 	 99% 	 OHO 

	

32 	 19 

(a) RuBr2 [(R)]-binap], EtOH, H 2 . 

2.6.1 Ru[BINAP] reduction of 8-keto ester 127 

Catalytic hydrogenation was carried out on ui-keto ester 127 under 1 atm of 

hydrogen at 40 °C for 5 days. All solvents were degassed by three freeze-thaw 

cycles. The initial results were encouraging at such a low pressure, by t.l.c. and NMR 

it appeared that there was diastereoselectivity for the Felkin-Anh adduct 121 was ca. 

80%. Based on recovered starting material the yield of products was 60%, scheme 

73. 

Scheme 73 

N Bn2  

EtO -OTBDPS 	
(a) 

00 
127 

N Bn2 

Et0 >0TBDPS 

0 OH 122 
+ 

N Bn2 

EtO -OTBDPS 

0 OH 121 

(a) H 2, RuC12 [(S)-BINAP], MeOH, DCM, 40°C. 
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A Parr hydrogenator provided us with pressures of 50 psi and temperatures of 

50 °C. The limitation of this apparatus was the size of the reaction vessel which 

resulted in large volumes of solvent being required. 0  Schmidt86  reported in the 

synthesis of biphenomycin A that high diastereoselectivities are only achieved when 

the solutions of the catalyst and the substrate contain very little methanol. By t.1.c. 

and NMR large quantities of starting material were apparent, undoubtedly due to the 

increased volume of solvent. No product was isolated from this reaction. 

Finally hydrogenations were carried out using an autoclave which eliminated the 

requirement of large volumes of solvent. A pressure of 120 psi and a temperature of 

18 °C was employed. King 87  has observed that the addition of trace amounts of 

strong acid can reduce the reaction time from days to hours. 

Hence, hydrogenations were carried out on our substrate 125 with and without acid 

for 72 hours. T.l.c. showed that no product had formed for either case. Consequently, 

it would appear that for successful reduction of this substrate in quantitative yield 

and with high diastereoselectivities to occur both high temperatures and high 

pressures are required in low concentrations of solvent. 

2.7 Summary of chapter 2 

We have further explored the chemistry of the NN-dibenzylated serine 

aldehyde 93 and ester 106 and have shown the limitations associated with these 

substrates. The optimisation of the Claisen chemistry has enabled studies in the 

synthesis of hapalosin (chapter 3) and the synthesis of anisomycin analogues to be 

investigated (Hulme group). Initial work in catalytic hydrogenations of the fl-keto 

ester has proved encouraging and ongoing work in this area will undoubtedly lead to 

a complementary route to the major diastereomer observed in the aldol route with 

higher ee's. 

0.86 mmol of the ester was dissolved in methanol (25 cm3) and DCM (25 cm3) 
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2.8 Future work 

Future work in this area will focus on the synthesis of di- and tn-saccharides 

from the pyrrolidinones (90 and 129) and pyrrolidines (125 and 128) thus allowing 

an investigation into their biological role. 

The expanding interest in the development of carbohydrate mimetics has led 

to the synthesis of a wide variety of novel structures particularly belonging to the 

family of iminosugars. 

Furthermore, the biosynthesis of polysaccharides and glycoconjugates 

mediated by glycosyltransferases has attracted increasing interest partly due to the 

limited information regarding their 3D structure. It is therefore likely that a greater 

understanding on the glycosyl transfer will be derived from studies using substrate 

analogues. 88  For example increased effort has been expended towards the synthesis 

of simplified analogues of sialyl Lewis X mimics. 89  Several analogues have been 

prepared where a sugar residue has been replaced with a pyrrolidine ring as 

illustrated in figure 15. Silyl deprotection of 179 in the presence of the sugar was 

achieved in 90% using TBAF and acetic acid. 90  

Figure 15 

CBz 

TBDPSO'J °  

L.<CO2H  
Me 0OBn Ph L 

n 
179 

79 



Results and Discussion II 

Chapter 3: Results and Discussion Part 2 

3.1 Hapalosin 

Hapalosin 180 was isolated in 1994 by Moore and co-workers 9 ' from the 

blue-green alga Hapalosin welwitschii W. and S. West (Stignonematacleae), in 

0.12% yield based on dry weight of alga. It is a twelve membered cyclic depsipeptide 

and exists as an inseparable mixture of two conformers Ca. 3:1 around the amide 

function. The major isomer possesses the s-cis stereochemistry. Structure elucidation 

was determined by 'H NMR, 13C NMR and two dimensional 1 H-'H and 1 H-' 3C NMR 

experiments along with mass spectral analysis. 

Figure 16 

—41  12 

.10 
 

Hapalosin 

180 

Structurally, hapalosin consists of three subunits; an a-hydroxyacid 181, a fi-

hydroxy acid 182, and a y-amino-/3-hydroxy acid 183, figure 17. 

Figure 17 
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3.1.1 MDR reversing activity 

Hapalosin was found to reverse multidrug resistance (MDR) in tumour 

cells.9 ' Multiple drug resistance is a phenomenon found in cancer therapy where 

there is cellular resistance to a wide range of structurally unrelated cytotoxic drugs. 

The reduced accumulation of the drug inside the tumour cells has been identified as 

one of the main causes of this phenomenon. A possible mechanism for this multidrug 

resistance is the overexpression of a P-glycoprotein (P-gp), which is a 

transmembrane protein acting as an ATP-dependent drug efflux pump. Antagonists 

of P-gp activity may be useful in combination therapy with cytotoxic drugs. In 

comparison with verapamil 184 which is the standard among MDR modulators 

hapalosin was observed to have better MDR reversing activity. 

Figure 18 

Me NC 
MeO N 	

OMe 
MeO  

Verapamil 	 OMe 
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3.1.2 Structure-activity relationship studies 

To elucidate the structure-activity relationship a variety of analogues have 

been synthesised. In general the majority of the analogues prepared proved to have 

comparable or lower biological activities than hapalosin, 92  although there are 

exceptions. 93 

The conclusions which can be established are that the s-cis conformer is vital for 

MDR reversing activity. The presence of the hydroxyl group at C(8) is also 

necessary due to internal hydrogen bonding, A non-bulky substituent (methyl or 

isopropyl) at the C(12) position is also a requirement due to a hydrophobic 

interaction with the receptor site. Both the long heptyl chain and the methylated 
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nitrogen are a prerequisite for activity. In addition examples where D-glucose 

mimetics 94  have been prepared have resulted in reduced activity, thus suggesting 

that the ring flexibility in hapalosin is a further requirement for the biological 

activity. Evidently it is the combination of all these factors that make hapalosin the 

only depsipeptide to be reported with this MDR reversing activity. 

3.1.3 Previous syntheses of hapalosin 

Since the discovery of hapalosin there have been several total and partial 

syntheses undertaken. These have been based on the stepwise construction of each of 

the three constituent fragments by linking and cyclisation. Typically coupling of the 

acid 182 with y-amino-fl-hydroxy acid 183 (or the corresponding ester) occurs under 

Yamaguchi' s conditions (2,4,6-trichlorobenzoyl chloride and triethylamine). The 

commercially available a-hydroxyacid 181 can also be coupled under these 

conditions and finally diphenyiphosphoryl azide (DPPA) mediated 

macrolactamization leads to the natural product hapalosin. 

3.1.4 Syntheses of /3-hydroxy acid 182 

Several approaches have been reported in the synthesis of fragment 182, a 

key route utilises an Evans aldol reaction as the important step. 92,95  Oxazolidinone 

185 was coupled with octanal 186 in the presence of dibutylborontriflate and 

triethylamine to give 187 in good yield (74-90%) and essentially as one 

diastereomer, scheme 74. The free hydroxyl group can be protected as a silyl 

ether 92 ' or as a tetrahydropyranyl ether 92f  prior to removal of the auxiliary. Cleavage 

of the auxiliary has been undertaken using lithium hydroxide to give the acid and 

LiOBn (prepared from BuLi and BnOH) to give the benzyl ester. 
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Scheme 74 
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187 

(a) Bu2BOTf, Et3N, DCM, -78 °C-+0 °C; RPh or Bn, R 1 H or Me. 

In Ghosh's96  approach the acid 190 was prepared via an asymmetric aldol 

using an aminoindan-2-ol derived chiral auxiliary. Reacting this auxiliary 188 with 

octanal 186 generates aldol adduct 189 in 90% yield, scheme 75. Hydroxyl 

protection as the tetrahydropyranyl ether and subsequent cleavage of the auxiliary 

afforded acid 190 in 84% yield. 

Scheme 75 

	

NAP 	 0 

51
C7 H 15 H 
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(a) 	c7Hl5LNA9 

90% 	
Me 
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THPO 0 

C7 H 1 5 0H 
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(a) Bu 2B0Tf, Et3N, DCM, -78 °C; (b) (i) Dihydropyran, pTsOH, DCM; (ii) LiOOH. 

Haddad 97  has reported that upon reacting aldehyde 191 with n-heptyllithium 

in the presence of a crown ether the aldol adduct 192 is formed almost exclusively 
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(de 90%). Oxidation with sodium periodate in the presence of a catalytic amount of 

ruthenium trichloride generated acid 194, subsequent esterification with hydrobromic 

acid in ethanol afforded ester 195. Transesterification with benzyl alcohol in the 

presence of titanium isopropoxide provided the more usable benzyl ester 196 in 63% 

yield, scheme 76. 

Scheme 76 
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OH 196 

CH3 
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EtO2CC7H15  

63% 	 OH 195 

(a) C7H 15Li, 15-crown-5 ether, -78 °C; (b) Ac 20, Et3N, DMAP, DCM; (c) Na10 4, RuCI3  (2%), CC14-

CH3CN-H20 (2/2/3); (d) 30% HBr in acetic acid, EtOH, 60 °C; (e) BnOH, Ti(Oi-Pr) 4, 120 °C. 

The route by Armstrong 93a  utilised a Brown allyboration of octanal 186 thus 

generating homoallylic alcohol 197, scheme 77. The hydroxyl group was protected 

as a PMB group and the olefin was ozonized to give aldehyde 198. Oxidation with 

sodium chlorite provided acid 199 in 36% overall yield. 

84 



Results and Discussion II 

Scheme 77 
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(a) BF3 .OEt2, THF, -78 °C—*R.T.; (b) Trichioroacetimidate, TfOH, THF; (c) 0 3 , PPh3, DCM; (d) 

NaCI02, 2-methyl-2-butene, NaH2PO4, tBUOH  H20. 

3.1.5 Synthesis of N-methyl-4-amino-3-hydroxy-5-phenyl pentanoic acid (N-Me-

AHPPA) 

A variety of routes to this synthon have been employed primarily from 

phenylalanine, however alternative strategies have also been employed. 

Maier 98  has reported two synthetic routes to N-Me-AHPPA which have 

enabled analogues of hapalosin to be developed. One route utilises an asymmetric 

dihydroxylation reaction of the allylic chloride 200 under standard conditions using 

(DHQD)2PHAL as the chiral ligand to generate diol 201 in 96% ee. Epoxide 

formation, protection of the secondary hydroxy group, followed by ring opening of 

the oxirane furnished 203. The required stereochemistry was acquired via a 

Mitsunobu reaction thus generating azide 204, subsequent manipulations furnished 

acid 205 in 32% overall yield (11 steps), scheme 78. 
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Scheme 78 
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(a) K20s02(OH)4 , 1BuOH, H20, (DHQD)2PHAL, K3Fe(CN)6, 0 °C; (b) NaOH, Et 20, 0 °C; 

(c) MOMCI, DIPEA, DCM; (d) PhLi, CuCN, THF; (e) (PhO) 2P(0)N3 , PPh3 , DEAD, THF. 

An example by Iyengar99  utilises a Wittig reaction of oxazolidinone 206 

followed by reduction as a key step to N-Me-APPHA. N-Cbz oxazolidinone 206 was 

subjected to a Wittig reaction to give a,fl-unsaturated ester 207. PdJC hydrogenolysis 

of 207 generated /1-keto ester 208 which was subsequently reduced to yield a mixture 

of diastereomers. The mixture was N-Boc protected to give the required synthon 209, 

in 80% de, 78% overall yield, scheme 79. 
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Scheme 79 
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(a) Ph3P=CHCO2Et, PhCH3 ; (b) 10% Pd/C, H2 , MeOH, 0 °C->R.T.; (c) NaBH 4 , NEt3 , MeOH, -10 °C; 

(d) Boc20, DMAP, CHCI3 . 

An approach utilised by several groups is the CDI coupling of a 

phenylalanine derived acid to give the corresponding J3-keto ester. 92 ' 95  Both Boc 

and Cbz protecting groups have been utilised In an example by Zhu, N-Boc 

phenylalanine 211 was treated with CDI, then directly reacted with lithioethyl acetate 

to give /3-keto ester 212 in 92% yield. Reduction of 212 with NaBH4 at —78 °C 

provided amino alcohol 213 in 74% yield (>90% de), scheme 80. Conversion to the 

oxazolidine 214 followed by reduction furnished N-methylated ester 215 which was 

subsequently N-acylated to give 216. The free hydroxyl group in 216 was protected 

as a MOM ether and subsequent ester hydrolysis provided the fully protected acid 

218 in 33% overall yield. 
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NHB0c 
HOyIPh 

0 	211 

Scheme 80 

N H Boc 
(a) 	

EtO_.r_LPh 
92% 

0 0 	212 

N H Boc 
(b) EtO

(Ph 
74% 

0 OH 213 

	

NMeCbz 	 NMeH 	
j—NBoc 

	

MeO (Ph 	
(e) 	

EtO J.Ph 
 (d) 	0 	Ph 

81% 
0 OH 	 0 OH 

216 R=H 
(217R=MOM 	

215 	 214 

78%! 

NMeCbz 
HO J Ph 

0 OMOM 

218 

(a) (i) CDI, THF; (ii) LiCH2CO2H, THF —78 °C; (b) NaBH 4, EtOH, -78 °C; (c) HCHO, pTsOH, 

PhMe, Dean-Stark; (d) NaBH 3CN, DCM, TFA; (e) CbzOSu, NaHCO 3 , Acetone, H20; (f) MOMBr, 

'Pr2NEt; (g) K2CO3,  MeOH. 

In summary the synthetic strategies to N-Me-AHPPA which do not rely upon 

phenylalanine as a precursor typically generate single diastereomers thus eliminating 

the problem of diastereomer separation. However these syntheses can be laborious. 

Comparable with our approach are those syntheses that proceed via a CDI coupling 

reaction of a phenylalanine derived synthon. Varying levels of selectivity have been 

reported for this strategy. We therefore felt that our synthetic approach based on this 

CDI coupling of a NN-dibenzylamino substrate would offer an alternative approach 

to N-Me-AHPPA and its unnatural diastereomer. 
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3.2 Aldol based approach to N-Me-AHPPA 

Preliminary studies carried out within the group by O'Dowd 100  involved an 

aldol based approach to the synthesis of /3-hydroxy-7-amino acid 220. The aldehyde 

219 was prepared in three steps from phenylalanine in 60% overall yield. An acetate 

aldol reaction with phenylalanine-derived aldehyde 219 furnished an inseparable 

mixture of 220 and 221 in 71%. The diastereoselectivity was determined to be 

approximately 80% in favour of the anti diastereomer. 

0 (a) (I) 

(ii) 	NBn2 
H 	Ph 

219 

Scheme 81 

NBn 2  
EtO I. Ph 

0 OH 

220 

NBn2  
+ Et01 	J. Ph 

0 OH 

221 

(a) (i) LDA, THF; (ii) 219 in THE 

3.3 Claisen based approach of the unnatural diastereomer of N-Me-AHPPA 

We felt that the aldol approach to N-Me-AHPPA under these conditions may 

have resulted in a reduced enantiomeric excess of 220 based on our previous results, 

section 2.1.7. In addition we were keen to improve upon the moderate 

diastereoselectivity of the aldol reaction. Furthermore we were anxious to 

demonstrate that the cause of the racemisation in the Claisen approach to TBDPS 

protected CYB-3 was solely due to saponification of the serine derived methyl ester. 

Therefore our initial aim was to synthesise the unnatural diastereomer of N-Me-

AHPPA in high enantiomeric excess and adapt this methodology to the synthesis of 

the natural diastereomer. 
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3.3.1 Retrosynthesis of the unnatural diastereomer of N-Me-AIHPPA 

The retrosynthetic analysis of 221 is shown in scheme 82. We envisaged that 

a Claisen condensation between the phenylalanine derived acid 227 and lithio ethyl 

acetate to give /3-keto ester 226 followed by a stereoselective reduction would yield 

the /3-hydroxy alcohol 221. It was hoped that the reduced steric bulk of the side-chain 

would allow a racemisation-free synthesis of acid 227. Hence the Claisen 

condensation route might represent a high yielding approach to the synthesis of 222. 

Furthermore reagent derived stereocontrol might override the inherent substrate 

selectivity of 8-keto ester 226 and allow an alternative synthesis of the natural 

diastereomer. 
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Scheme 82 
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3.3.2 Formation of phenylalanine derived acid 227 

In view of the racemisation problems associated with hydrolysis of the serine 

derived ester (chapter 2) we initially looked at alternative routes to the synthesis of 

the phenylalanine acid derivative 227. 

Reacting phenylalanine with three equivalents of benzyl bromide generated 

the NN-dibenzylamino benzyl ester 228 in moderate yield. 2 ' Purification of ester 228 

was difficult due to the large excess of benzyl bromide required. 

It has previously been reported that removal of an O-benzyl protecting group may be 

achieved using potassium carbonate under aqueous This was attempted 

on substrate 228, however none of the required acid 227 was formed. 

Chemoselective debenzylation using 10% PdIC (10 mol%) under an atmosphere of 

hydrogen produced 10% of the acid 227 after eight hours. The reaction was 

extremely slow and concern was raised over the stability of the dibenzyl protecting 

groups to these conditions. 

Scheme 83 

NH2 	 NBn2 	 NBn2  

61% 
HoLPh 	

(a) 	
BnO(L 	

10% 	

I.Ph 	
(b) 	

HO Ph 
a- 

0 	 0 	228 	 0 227 

(a) BnBr, K2CO3,  NaOH, BnBr; (b) 10% Pd/C, MeOH, H 2 . 

Hoffman 29  reported that the ester hydrolysis of the phenylalanine derivative 

229 using a mixture of lithium iodide and sodium cyanide gave the corresponding 

acid 227 in quantitative yield, conversion to the corresponding f3-keto ester 226 

enabled the optical purity to be determined. This derivative was found to have an ee 

of >97%, scheme 84. The subsequent reduction of 226 with NaBH4  furnished a fully 

protected statine analogue. We therefore felt that the use of our methodology 

discussed in chapter 2 would allow the extension of this work to a novel synthesis of 

the unnatural diastereomer of N-Me-AHPPA. 
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Scheme 84 

	

NBn2 	 NBn2 	 NBn 2  

MeO1.J..Ph 	
(a) 	

HO1I..Ph (b) 

76% ButO

J..Ph 

100% 
0 

	

229 	 227 	 226 

(a) Lii, NaCN, Py, 115 °C; (b) (i) CDI, THF; (ii) LiCH 2CO21Bu. 

We were encouraged by this result and decided to pursue the synthesis of acid 

227 in this manner. The phenylalanine derived methyl ester 229 was prepared in two 

steps from phenylalanine. Phenylalanine was converted to the hydrochloride salt 230 

in 95% yield and subsequent treatment with benzyl bromide provided the methyl 

ester in 95% yield, scheme 85. 

Scheme 85 

NH2 	 NH2 .HCI 

H0..I.Ph 	
(a) 	

Me0-LPh 
95% 

0 	 0 	230 

(a) CH3COC1, MeOH, 80°C; (b) K2CO3 , BnBr, CH3 CN. 

NBn2  

(b) MeOLPh 
95% 

0 	229 

Hydrolysis of ester 229 to give acid 227 was carried out under a variety of 

conditions, the results are summarised in table 10. 

Scheme 86 

NBn2 

MeO(LPh 

229 

(a) 
NBn 2  

HOyI Ph 

0 227 

(a) Refer to table 10. 
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Table 10 

Hydrolysis Conditions Yield % 

LiIINaCN, Py, Reflux, 24h 78 

5 eq LiOH.H20, THF/H20, Reflux, 24h 100 

5 eq LiOH.H20, THF/H20, Reflux 6h 85 

3 eq KOH, MeOH, R.T., 17h 0 

3 eq NaOH, 1 ,4-Dioxane, R.T., 24h 0 

3.3.3 Determination of enantiomeric excess of 221 

To confirm that no racemisation had occurred the enantiomeric purity of the 

corresponding 8-hydroxy alcohol 221 was determined. Conversion of acid 227 to the 

imidazolide 231 with CDI and subsequent treatment with lithio ethyl acetate 

provided the ,8-keto ester 226 in 88% yield. Reduction of this fl-keto ester using 

sodium cyanoborohydride provided a diastereoselectivity of >90%, in favour of the 

syn diastereomer 221, scheme 87. 

Scheme 87 

NBn2 	 N=\ 	NBn2  
Ph 	(a) 	N 	Ph 

227 	 0 231 

0 	(b) 	EtO J... 
N Bn2 Ph 

EtO 	88% 	a o 	226 

N Bn2 
(c) 	

EtO_JPh 

80% 	0 OH 221 

(a) CDI, THF, R.T.; (b) (i) LiHMDS, THF, -78 °C; (ii) 231, -78 °C, 30 mins then 0 °C; (b) NaCNBH 3 , 

Et20, MeOH, AcOH. 
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The enantiomeric purity was compared with a racemic sample prepared in an 

analogous manner and analysed using chiral HPLC (5% IPA in Hexane). In all cases 

the ee's were greater than 90% with refluxing with LiOH for 6 hours generating the 

highest ee, table 11. 

Table 11 

Conditions ee% 

LiI/NaCN, Py, Reflux, 24h 92 

5 eq LiOH.H20, THF/1-120, Reflux 6h 99.2 

5 eq LiOH.H20, THF/H20, Reflux, 24h 94 

Figure 19 

NBn 2  
EtO (I. Ph 

0 OH 
221 

NBn2  

EtO (-L. Ph 

0 OH 

Racemic 221 
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3.3.4 Determination of diastereomeric ratio of 221 

The crude 'H NMR spectra obtained from the reduction of /J-keto ester 226 

and from the aldol reaction of the phenylalanine derived a-amino aldehyde 219 

enabled the diastereoselectivity of the cyanoborohydride reduction to be determined. 

The ratio was calculated by measurement of the integrals from the 111  NMR 

corresponding to the protons at C(2) protons which appeared as two sets of doublet 

of doublets. The integrals corresponding to the N benzyl protons were also used in 

the calculation of the ratio. Table 12 summarises the peaks used in this calculation. 

Table 12 

Claisen Major Peaks Aldol Minor Peaks 

2.1 and 2.4 (C2HAHB) 2.15 and 2.4 (C2HAHB) 

3.4 and 4.1 (NCHxHy  x 2) 3.4 and 4.0-4.2 (NCHxHy x 2) 

Claisen Minor Peaks Aldol Major Peaks 

2.3 and 2.7 (C2HAHB) 2.3 and 2.7 (C2HAHB) 

3.6 and 3.8 (NCHxHy  x 2) 3.6 and 3.8 (NCHxHy x 2) 

3.3.5 Formation of N-methylated pyrrolidinone 235 

With the synthesis of the optically pure fl-hydroxy alcohol 221 in hand the 

remaining steps of the synthetic sequence were attempted. The free hydroxyl group 

was protected as a tert-butyldimethylsilylether under standard conditions' 02 , scheme 

88. 

96 



Results and Discussion II 

Scheme 88 

NBn2 

EtO( 1 L Ph 

0 OH 221 

(a) TBSOTf, 2,6-lutidine, DCM. 

NBn2  
(a) 	 EtO JPh 

92% 	 0 OTBS 225 

Debenzylation using Peariman's catalyst provided the acyclic amino ester 

224 in quantitative yield. From our retrosynthetic analysis the subsequent step was 

N-methylation of the nitrogen. Evidently N-methylation of a primary amine under 

standard conditions would be virtually impossible to control and dimethylation 

would undoubtedly occur. Similarly reductive amination might be expected to favour 

dimethylation unless conducted on a two-step protocol. However, we decided to 

proceed via the formation of pyrrolidinone 232 which was considered to be a suitable 

precursor for the N-methylation step thus providing the required synthon with greater 

control. Filtering 224 through a short path of silica and refluxing the residue in 

methanol for 24 hours furnished pyrrolidinone 232 in a disappointing 33% yield, 

scheme 89. The remainder of the mass recovered was starting material. 

Scheme 89 

NBn2 	 NH2  

EtO IPh 	
(a) 	

EtO(lPh 

100% 
0 OTBS 225 	 0 OTBS 224 

(b) 

Ph C~r 
TBSd 	232 

(a) Pd(0H2)/C, H 2, Me011; (b) MeOH, 80 °C. 
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The low yield of pyrrolidinone 232 was improved by converting ester 221 

into the corresponding Weinreb amide 233 under standard conditions. Debenzylation 

of the amide 233 provided the pyrrolidinone in 96% yield. The TBS protected 

pyrrolidinone 232 was obtained uneventfully in 94% yield, scheme 90. 

Scheme 90 

N Bn2  
Ph 

0 OH 221 

Ph"( "j1 °  

TBSO 	232 

Me 	NBn2  
(a) 	

MeO'YI  
N 	 Ph 

96% 	 0 OH 233 

96% (b) 
if 

H 
(c) 	Ph 	

0 
do 	 Cr 

94% 
HO 	234 

(a) (MeO)NMe.HCI, Me3 A1, THF, 0 °C-35 °C; (b) Pd(0H 2)/C, H2, MeOH; (c) TBSOTf, 2,6-lutidine, 

DCM. 

The penultimate step was the N-methylation of 232. Maier 98a  has reported 

that N-methylation using methyl iodide and sodium hydride could result in cleavage 

of a neighbouring silicon protecting group. However Nishiyama successfully 

managed to N-methylate under these conditions in the presence of a TBS group in 

77% yield. Zhu 92c,d  and others' 03  reported difficulties in the selective N-methylation 

of Boc protected fl-hydroxy esters possibly due to competitive fl-elimination. 

The TBS protected pyrrolidinone 232 was N-methylated with methyl iodide 

and sodium hydride to give the N-methylated pyrrolidinone 235 in 78% yield, 

scheme 91. 

Methyl iodide was filtered through a plug of alumina to remove hydrogen iodide. 
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Scheme 91 

H 	 Me 

	

Ph"(f0 	
(a) 

78% 

	

TBSO 232 	 TBSO 235 

(a) Me!, NaH, TI-IF. 

3.3.6 Attempted hydrolysis of N-methyl pyrrolidinone 235 

The remaining step in the synthetic sequence was the hydrolysis of the 

pyrrolidinone. Two groups 104  have reported the hydrolysis of 1-methyl-pyrrolidin-2-

one using either barium hydroxide or concentrated hydrochloric acid. Directly 

comparable with our work was that reported by Huang' 05  in their synthesis of N-Me-

AHPPA where the pyrrolidinone 236 was refluxed in the presence of 6N I-IC1 to 

afford the acid 237. However it would be expected that under these acidic conditions 

the labile TBS protecting would have been cleaved in our substrate. 

Scheme 92 

Me 

N. 

HO 236 

(a) 	
NHMe .HCI 

0. 
HO kPh 

0 OH 237 

(a) 6N HC1, 100 °C. 

Under basic conditions hydrolysis of 1 -methyl-pyrrolidin-2-one to give the 

acid occurred in 58% yield and in three hours. Refluxing our bulkier substrate 235 

for 24 hours under these conditions provided only starting material, scheme 93. The 

quantity of base was doubled from three to six equivalents but again none of the acid 

was obtained. Unfortunately time did not permit further investigations into this 

hydrolysis reaction. 
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Scheme 93 

Me 

Ph 	J °  "c  

TBSO 235 

NHMe 

Ho L Ph 

0 OTBS 222 

(a) Ba(OH) 8.H20, H20, 110 'C- 

3.4 Reduction of 226 using CBS reagent and Ru[BINAPJ catalyst 

An alternative synthesis of the natural diastereomer 220 via the chiral 

reduction of fl-keto ester 226 using the CBS reagent 178 was pursued. This route 

would therefore provide a complementary method to the aldol strategy investigated 

by O'Dowd.' °°  As discussed in chapter 2, for a highly enantioselective reduction to 

occur the appendages R5  and RL must differ appreciably in the ketone. We felt that 

220 was a suitable substrate for this chiral reduction. 

Figure 20 

Ph Ph 

U 
,--,,-o 	 Ph 

Rs 	RL 

The oxazaborolidine 178 was prepared from (S)-(+)-a,a-diphenyl-2-

pyrrolidinemethanol and dimethylsulfide-borane. 83  Reduction of 226 using the 

conditions optimised previously provided a 1:1 mixture of 220 and 221 in a modest 

yield of 50%. 
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This was consistent with our earlier findings from the chiral reduction of the serine 

derived fl-keto ester. 

Scheme 94 

NBn2 

Ph EtO1&Ph 

Ph 	(a) 0 	OH 	220 

CT B'. 	50% 
BH3 Me 

+ 
NBn2 

EtO kPh 178 
0 	OH 	221 

(a) (i) BMS, DCM, 0 °C; (ii) 226 in DCM, 40°C. 

Finally we attempted the hydrogenation of the ,13-keto ester 226 using a 

ruthenium BINAP catalyst under an atmosphere of 120 psi at room temperature. 

Disappointingly this route resulted in the recovery of starting material. As discussed 

in chapter 2 it appeared that both high temperatures and pressures were required for 

the successful hydrogenation of these substrates. 

3.5 Summary of chapter 3 

In conclusion we have shown that the Claisen condensation reaction followed 

by a diastereoselective reduction affords fl-hydroxy alcohol 221 in excellent 

diastereoselectivity and enantioselectivity (>99%) for our phenylalanine derived 

substrate. From studies carried out subsequently in the group for a tyrosine derived 

substrate, the ,8-hydroxy alcohol has been determined to have an ee of >99%. 

Therefore the problems of racemisation using this route appear to be confined to the 

serine derivatives. 

In contrast to Hoffman's work we have shown that the phenylalanine derived 

methyl ester 229 does undergo hydrolysis in the presence of lithium hydroxide. The 

corresponding ,8-hydroxy ester 221 was furnished in higher ee and higher overall 
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yield than the lithium iodide/sodium cyanide procedure. Although Hoffman reported 

that debenzylation of the ,8-hydroxy esters could be achieved via catalytic 

hydrogenation, no further work was reported for these fully protected statine 

analogues. We have therefore extended this work for the phenylalanine derivative to 

the synthesis of the fully protected lactam form of the unnatural N-Me-AHPPA 235 

via four steps from the ,13-hydroxy ester 221. Furthermore pyrrolidinone 234 would 

also serve as a viable substrate for the synthesis of disaccharides. 
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Chapter 4: Results and Discussion Part 3 

4.1 Introduction 

In parallel with the work discussed in chapter 2, we have synthesised a new 

threonine-derived N,N-dibenzylamino a-amino ketone. Our initial aims were to 

construct the a-amino ketone 244 in high ee and subsequently investigate the 

diastereoselectivity of the aldol reaction of 244 with a series of achiral aldehyde 

substrates. The bulky NN-dibenzylamino group should effectively direct a-face 

selectivity in the addition reaction. 

4.2 Synthesis of NA-dibenzyl protected threonine derivative 244 

Our five step synthesis of this novel threonine methyl ketone 244 was carried 

out using the conditions developed for the synthesis of the serine derived aldehyde 

(chapter 2). Methyl ester 238 was formed in 93% yield from L-threonine under 

standard conditions, scheme 95. Surprisingly, the methyl ester was an oil and not a 

solid as expected. The 'H NMR also showed the presence of a minor impurity. We 

continued with the NN-dibenzylation step which proceeded in excellent yield. 

However the 'H NMR still clearly showed the presence of the impurity which had 

not been removed by flash chromatography. Fortunately purification of the amino 

diol 242 furnished a pure sample due to its crystalline nature. The impurity was 

identified as the anti diastereomer although the absolute stereochemistry was not 

determined. 

The 'H NMR spectrum of 238 showed a doublet at 3.75 ppm with a coupling 

constant of 3.8 Hz corresponding to the proton at C(2) in the impurity 239. This was 

consistent with that for the major diastereomer where a doublet at 4.01 ppm with a 

coupling constant of 3.8 Hz was determined as being the proton at C(2) in 238. The 

'H NMR spectrum of 240 showed sidebands off the major peaks corresponding to 

the minor diastereomers benzyl protons at 4.10 and 3.50 ppm (coupling constants 
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could not determined). At 3.15 ppm a doublet with a coupling constant of 9.6 Hz was 

visible, again corresponding to the proton at C(2) in 241. The 13C NMR further 

confirmed the presence of the minor diastereomer. For the spectrum of 238 two sets 

of peaks were apparent with almost identical chemical shifts corresponding to 238 

and 239. The distinctive ' 3C NMR chemical shifts for 241 were visible to a lesser 

extent in the spectrum of 240. The source of this contamination could possibly be 

from racemisation of the a-stereocentre in the initial methylation step but it was 

more likely that it was present in the starting material supplied by Aldrich. 

Scheme 95 

NH 2  NH2 .HCI NH2 .HCI  
rMeO HO 

(a) MeO 	 + Iry I 0 	OH 93% 0 	OH 0 	OH 

L 	239 minor 
238 impurity 

1 (b)  
NBn2 

HO 
(c) NBn2 

MeO 	 + 

NBn2  r MeO I OH 85%. 0 	OH 0 	OH 

I 	241 minor 
242 240 L 	impurity 

(a) CH3COCI, MeOH, 80°C; (b) K2CO3,  BnBr, CH 3 CN; (c) LiBH4, Et20, MeOH. 

Selective TBDPS protection of the primary alcohol in 242 was achieved in 

the presence of TBDPSC1 and imida.zole, however it proved extremely difficult to 

separate TBDPS protected alcohol 243 from TBDPSOH by flash chromatography. 

Further purification by HPLC (15 % EtOAc in hexane) provided 243 in 90% yield. 

Finally Swern oxidation furnished methyl ketone 244 in quantitative yield. The 
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ketone was used without purification and was prepared when required to eliminate 

any possibility of racemisation, scheme 96. 

Scheme 96 

NBn2  

HOL- 

NBn2 
(a) 	

TBDPSO.k..( 

OH 90% 	 OH 

242 243 

100% 	(b) 

NBn2  

TBDPSO ,L( 
° 244 

(a) TBDPSC1, imidazole, DMF; (b) (Cod) 2, DMSO, NEt3 , DCM. 

4.2.1 Determination of the enantiomeric excess of methyl ketone 244 

Due to the potential instability of ketone 244 upon contact with silica gel, the 

enantiomeric excess was measured indirectly via alcohol 243. Freshly prepared 

ketone 244 was reduced with DIBAL-H to provide a sample of the alcohol scheme 

97. A racemic synthesis of the alcohol was carried out as shown in schemes 95 and 

96. Both chiral and racemic alcohols were analysed by chiral HPLC (5% IPA in 

Hexane). The optical purity of the alcohol was measured at >99% ee. 
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Scheme 97 
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Figure 21 

NBn 2 	 NBn2  

TBDPSOk.( 	 TBDPSO)( 

OH 	 OH 

243 	 Racemic 243 

012 
0.12 

O.T.
. 	 0101 

008 	
008- 

0.08_I 	

.c 

o.04J 	
0.04 

(N 	(( 0 

002 	
002. 

000 1  
I 	 000 	5 	 lOGO 

4.3 Asymmetric aldol reactions of a-amino ketones 

Diastereoselective aldol reactions have emerged as one of the most efficient 

methods available for the construction of a wide range of optically active 

compounds. Very high diastereoselectivities have been reported for aldol reactions 

involving chiral enolates derived from ethyl or higher alkyl substituted ketone 

derivatives. 106  This approach however is much less successful with enolates derived 

from methyl ketones. Relatively few examples of highly diastereoselective aldol 
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reactions of chiral methyl ketones' 07  or aldol reactions of methyl ketones with chiral 

reagents have been reported. 108 

Liotta' 09  has reported that the aldol reactions of lithium enolates of a-N,N-

dibenzylamino methyl ketones 245 proceeded with high diastereoselectivity (80:20-

>98:2) and in excellent yield (64-91%) in favour of 246. The results are summarised 

in table 13. 

N Bn2 

245 

(a) 

Scheme 98 

0 OH 

R 

N Bn2  

246 

H 

+ R  

N Bn2 

247 

(a) (i) LDA, THF, -78 °C; (ii) R'CHO, THF. 

Table 13 

Ketone 

R 

Aldehyde 

R' 

Yield 

% 

Diastereoselectivity 

246:247 

Me Ph 84 80:20 

Me (CH3 )3C 81 89:11 

Bn (CH3)2CH 78 90:10 

Bn (CH3)3C 76 92:7 

'Pr Ph 90 >98:2 

'Pr (CH3)3 C 88 >98:2 

This exceptionally high diastereoselectivity has been rationalised by Liotta by 

a twist boat transition state which involves internal chelation of the dibenzylamino 

group, figure 22. 109 
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Figure 22 
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,1 	0 

li 
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An extension to Liotta's 11°  work showed that higher diastereoselectivities 

could be obtained for sodium enolates compared with lithium enolates, typically 

>98:2 for a range of aldehydes. An alternative model to account for the observed 

selectivities was proposed based on the premise that sodium, which has strong 

tendency to form ionic bonds with oxygen, would disrupt the internal chelation 

present in a twist boat transition state. Furthermore the diastereoselectivities 

observed for the aldol reactions of NN-dibenzylamino ethyl ketones using LDA or 

NaHMDS as base can only be rationalised by this open transition state model, figure 

23.111 In model I the aldehyde approaches in a manner whereby the two oxygen 

atoms are orientated such that the dipoles are opposed. The aldehyde will therefore 

attack from the less hindered si face to produce the syn adducts 246. Attack of the 

aldehyde from the re face would be less likely to occur due to unfavourable steric 

interactions between the NN-dibenzyl group and the R' group as shown in model II. 

Figure 23 
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Recently Paterson" 2  has reported his findings for the boron mediated aldol 

reaction of ethyl a-NN-dibenzylamino ketones 248. By appropriate choice of boron 

reagent and base the syn 249 or anti 250 adducts can be formed preferentially, 

scheme 99. For a range of aldehydes diastereoselectivities in the range of 84:16-

89:11 were obtained for the anti adduct in yields of 64-95%. Comparable results 

were obtained for the synthesis of the syn adducts using Bu2BOTfIPr2NEt. 

Scheme 99 
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OH 

	

248 	 Z enol borinate 	 250 

The products formed can be rationalised by the corresponding transition 

structures which are determined by steric and electronic factors, figure 24. In the 

case of the anti aldol adducts addition of the E-enolate to the aldehyde occurs via 

transition state I. The bulky dibenzylamino group is directed outside the transition 

state and the methyl group is orientated inwards. The formation of the syn adducts 

can be rationalised by transition state II, where the enolate C-O and C-N dipoles are 

opposed and the methyl group is orientated outwards. 
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Figure 24 

	

Anti aldol 	 Syn aldol 

Ph 	 1 
Me 	 H H  

	

Ph 	 r 	
Bn2N 	

Me 

[ Me 
	

BL 	] 	L 	HI L 

Me 

I 	 II 

4.4 Boron mediated aldol reaction of 244 

At the time the research was conducted the only examples of aldol reactions 

involving a-NN-dibenzylamino ketones were those reported by Liotta' °9"°  using 

LDA as the base. Although no reports of racemisation were reported for the aldol 

adducts we were concerned in light of the racemisation that had occurred for our 

serine derived aldehyde under similar enolisation conditions (chapter 2), thus we 

attempted the boron mediated aldol reaction of 244 with a range of aldehydes. Initial 

attempts using Bu2BOTf/NEt3 for enolisation produced only starting materials under 

a range of conditions, scheme 100. Examples of some of the conditions employed 

are summarised in table 14. 

Scheme 100 

NBn 2 	 NBn 2  

	

TBDPSOI( 	

>/ 	

TBDPSO-1--'..R 

0 OH 

	

244 	 251 

(a)(i) Bu2BOTf, NEt3 , DCM; or c(Hex)2BCI ,  NEt3 , Et20; (ii) RCHO, (R='Pr, CH 2 Pr, Ph). 
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Table 14 

Bu2BOTf NEt3  RCHO Enolisation Conditions Reaction Conditions 
eq. eq. eq.  

1.5 2.0 3.0 -78°C(3.5h) then O°C -78°C(lh) then 0°C 
'PrCHO (20 mins) then recooled (3 h) 

to —78 °C  
2.5 3.2 3.3 -78 °C (2 h) then 0 °C -78 °C (1 h) then 0 °C 

PhCHO (30 mins) then recooled (2.5 h) 
to-78°C  

2.5 2.8 3.0 -78 °C (45 mins) -78 °C (1 h) then 0 °C 
'PrCHO  (4 h) 

2.0 2.25 2.8 -78 °C (40 mins) -78 °C (30 mins) then 
PhCHO  -30°C(16h) 

The bulky reagent (cHex)2BC1  which could be freshly prepared from 

cyclohexene and monochloroborane-methylsulphide complex, was also used.' 13  A 

variety of enolisation conditions were employed but again the reaction failed to 

produce any of the desired aldol adduct 251. Table 15 summarises the conditions for 

the reaction. 

Table 15 

(cHex)BC1 NEt3 PhCHO Enolisation Reaction 
eq. eq. eq. Conditions Conditions 

3.0 3.4 4.0 -78 °C (3h) -78 °C (2 h) then 0 
°C (3 h) 

3.0 3.4 4.0 -78 °C (2h) -78 °C (2 h) then - 
10°C(16h) 

3 3.4 4.0 -78 °C (lh) then 0 °C -78 °C (2 h) then 0 
(30 mins), recooled to - °C (20 h) 
78°C  

In consideration of Paterson's" 2  recent report regarding the boron aldol 

reaction of ethyl a-NN-dibenzylamino ketones it could be reasoned that the presence 

of the bulky TBDPS group was one cause of the lack of reactivity under these 
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conditions. Increased steric congestion between the ligand on boron and the TBDPS 

group are apparent in figure 25 for our ketone 244 thus making this reaction 

unfavourable. A further investigation into the effect of other protecting groups was 

not explored due to time constraints. Instead we explored the lithium mediated aldol 

reaction of ketone 244 in the hope that an open transition state such as that proposed 

by Liotta might provide more favourable results. 

Figure 25 

L 	H 
TBDPSOH2C..L)- NBn2 

H 

4.5 Lithium mediated aldol reaction of 244 

Enolisation of ketone 244 was carried out at —78 °C in the presence of 

LiHMDS for one hour followed by addition of the aldehdye. After ten minutes t.l.c. 

showed that all of the starting material had been consumed hence the reaction was 

quenched. Chromatography provided a mixture of inseparable diastereomers 251 and 

252. The yields for the reaction for a range of aldehydes are summarised in table 16. 
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Scheme 101 

NBn2  

TBDPSOJ,—  R 

0 OH 
TBDPSO -L( 	(a)  

	

+ 	251 

0 
244 	 NBn2  

TBDPSOJ(.. R 

0 OH 
252 

(a) (i) LiHMDS, THF; (ii) RCHO. 

Table 16 

Aldehyde 

R 

Yield 

% 

CH2Pr 88 

Ph 82 

PhC1 89 

PhOMe 86 

The reactions proceeded in good yield, however it was found to be difficult to 

ascertain the selectivity of the reaction from the 1 H NMR as there were no obvious 

diagnostic signals characteristic for either diastereomer. It was therefore thought that 

formation of the corresponding acetate derivatives would allow the selectivity to be 

determined. 
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4.6 Formation of acetate derivatives 

The mixture of aldol adducts 251 and 252 were converted to their acetate 

derivatives 253 and 254 under standard conditions in excellent yield. 

Scheme 102 

NBn2  

TBDPSOJ(-.(R 	

(a) 0 OH 

NBn2  

TBDPSOI(R 

0 OH 

252 

NBn2 

TBDPSOJ ( R 

0 0 

T

0 

+ 	253 

N Bn2 

TBDPSOL.(-  R 

o 0 

T 

 0 

254 

(a) DMAP (cat.), Et 3N, acetic anhydride, DCM. 

The selectivity for each reaction was determined by integration of the methyl 

peaks which were readily distinguishable for each diastereomer. The results are 

summarised in table 17, and are supported by ratios determined from the 'H NMR 

spectra of the aldol adduct (integration of 'Bu signal from silyl protecting group) 

where these could subsequently be ascertained. 
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Table 17 

Aldehyde 
R 

Diastereoselectivity 
from acetate 

253:254 

Diastereoselectivity 
from aldol 

251:252 
CH2 1Pr 72:28 70:30 

Ph 71:29 70:30 

PhC1 60:40 60:40 

PhOMe 55:45 55:45 

In summary the diastereoselectivities were very poor from 55:45 to a modest 

70:30. Although Liotta had shown that the use of sodium enolates rather than lithium 

enolates gave rise to an increased diastereoselection in the case of simple N,N-

dibenzylamino ketones time did not permit a more lengthy investigation of the 

enolisation conditions or the role of the TBDPS protecting group. 

Our tentative assignment of the stereochemistry of 251 was based on 

Liotta' 1O911O precedent which established the configuration of the new stereo genic 

center by converting the crude aldol adducts 255 and 256 into the corresponding 3-

hydroxy methyl esters 257 and 258, scheme 103. Lanthanide induced 'H NMR shifts 

of the methoxy groups of the two enantiomers was significantly different the 

confirmation of absolute configuration by comparison with literature values. 
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Scheme 103 

0 OH 

MeylLLR 

NBn2 255 
+ 

0 OH 

Mey l'R 

NBn2  
256 

R=Ph, Et, 'Pr 

(a) 

0 OH 

MeO R' 
257 

+ 

0 OH 

MeO-R' 
258 

(a) (i) CH 3CO3H, (ii) CH2N2 . 

By considering the transition state for the reaction of threonine methyl ketone 

244 with a range of aldehydes we can see that model II is favoured thus generating 

the syn adducts preferentially, figure 26. Therefore on the basis of Liotta' s results we 

have assigned the major diastereomer as the syn adduct. 

Figure 26 

- 	 OH 	- 	 OH 	- 

TBDPSO>).H  

H 	 1Bn2 H 

I 	 II 
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4.7 Future work 

From this preliminary work conducted, an investigation into the synthesis of 

complex polyhydroxylated 9-amino acids such as that found in the antibiotic 

Zwittermicin A may be possible. Zwittermicin A 259, a novel linear aminopolyol 

was isolated by Clardy et al. from Bacillus cereus UW85 in 1993.114  Zwittermicin A 

inhibits the growth of the plant pathogen Phytophthora medicaginis at low 

concentrations. Although the structure of the carbon backbone has been determined, 

the relative stereochemistry of the complex amino polyol fragment at C(5), C(7) and 

C(8) remains unknown. 

Figure 27 

H OH NH2 	NH2 

H2N 
0 OHOHOH 

NH2  

259 

Future studies in this area will therefore look at combining the substrate-

derived selectivity of this novel ketone 244 and aldehyde 93 to give the complex 

fragment 260, scheme 104. Ketone reduction and elaboration using a glycolate aldol 

at one of the termini will allow synthesis of Zwittermicin A. 
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Scheme 104 

NBn2  

TBDPSO-t Me 

244  

NBn2  

+ H OTBDPS 

93 

NBn2 	NBn2 

TBDPSOJ ((-  OTBDPS 

0 OH 

260 
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Chapter 5: Results and Discussion Part 4 

5.1 Introduction 

In the last twenty years hypervalent iodine reagents have enjoyed an 

increasing popularity in organic synthesis. They have attracted attention because of 

their mild, selective and environmentally friendly properties as oxidizing agents. The 

Dess-Martin periodinane (DMP) .261115  has received considerable interest due to its 

ease of oxidation of alcohols to carbonyl compounds. Iodoxybenzoic acid (IBX) 262 

was first synthesised in 1893116  however until recently very little was known about 

its chemical properties in part due to its insolubility in most organic solvents. 

Santagostino" 7  reported that IBX can be readily dissolved in DMSO and has shown 

that IBX functions as a valuable oxidant toward a variety of alcohols. Unlike DMP 

IBX is not moisture or air sensitive. 

Figure 28 

AcO OAC 	 HO 0 

10 

0 	 0 

DMP 	 IBX 

261 	 262 

Interestingly the chemoselective oxidation of alcohols by IBX in the presence 

of thioethers and amines has been reported to occur in excellent yield (>89%).h18 

However, for a clean reaction of the primary and secondary amine substrates to occur 

the amino functionalities must be protected as their TFA salts. It has also been 

observed that 1 ,2-diols can be oxidised to 1 ,2-ketol or 1 ,2-diketo derivatives without 

oxidative cleavage of the glycol C-C bond which occurs with DMP. 118  Corey 119 

reported a novel route to the synthesis of y-lactols via the IBX oxidation of 1 ,4-diols. 

DMSO not only serves as a solvent but as a catalytic base in this example, scheme 

105. 
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Scheme 105 

OHO 

OH OH 

R1- R 
R 	0 	R' 

X:)< 0 H 

00 
or 

R 

R, R'=Il, Alkyl, Aryl, Hetereoaryl 

Alcohols can also be converted to a,fi-unsaturated carbonyl compounds 

directly by using an excess of IBX.' 2°  Recently the oxidative properties of polymer 

supported IBX have been reported producing carbonyl derivatives in high yield 

(>80%). 121 

IBX was prepared by Jenny Aird according to the procedure of Dess and 

Martin' 151)  from o-Iodoxybenzoic acid, scheme 106. 

Scheme 106 

(XCOOH 

(a) 

88% 

HO 

cc 
262 

(a) KBr03 , H2SO4  (0.7 M), 70 °C, 3.5 hours. 

In the course of research pursued by Charlie Montgomery 122  towards the 

synthesis of the glycosidase inhibitor nectrisine 269, an interesting cyclisation 

reaction was observed under IBX oxidation of amino alcohols 263 and 264. Rather 
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than oxidation of the primary hydroxyl occurring, oxidation of the amine occurred to 

afford the cyclic sugars 267 and 268 as a 3:2 mixture of anomers, scheme 107. 

Scheme 107 

(a) 
HOJ OTBDPS  

OTBS 

263 R= OPMB 
264 R= Me 

HO 

HO OH 
269 

R NH 
HOJAOTBDPS 

OTBS 

265 R= OPMB 
266 R= Me 

I 
o j-_OTBDPS 

NH2  

R OTBS 

267 R= OPMB, 96% 
268 R= Me, 92% 

(a) IBX, DMSO, THE 

Confirmation of the proposed structure 267 was determined by reacting the 

amine 267 with phenyl isocyanate, scheme 108.123  A single urea 270 was isolated in 

pure form. Signals for the urea NH protons were visible in the 'H NMR spectrum (at 

7.71 and 5.17 ppm). Further evidence for the formation of urea 270 was obtained 

from HRMS (C42H57N206Si2 requires 741.3755, found 741.3758). The 

stereochemical relationship at the anomeric position was assigned on the basis of 

NOE experiments. 
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Scheme 108 

~fNH2

OTBDPS  

 

PMBO OTBS 

267 

OTBDPS 
(a) 	 0 	NHPh 

(N 
42% 	 H 0 

PMBO OTBS 

270 

(a) PhNCO, THE 

5.2 IBX oxidation of amino alcohol 273 

Further studies into this amine to imine oxidation were investigated in the 

related amino alcohol 273. This was prepared in three steps from /3-keto alcohol 119. 

TBS protection, ester reduction and debenzylation afforded the amino alcohol in 

65% overall yield. 

Scheme 109 

N Bn2  

MeO-2..OTBDPS 

0 OH 
119 

NBn2  (a) 	 = 
MeO OTBDPS 

83% 
0 OTBS 271 

83% (b) 

NH2  
HO -OTBDPS 

OTBS 
273 

(C) 	 NBn2 

HO -OTBDPS 
94% 

OTBS 
272 

(a)TBSOTF, 2,6-lutidine, DCM; (b) DIBAL-H, PhMe, -78 °C; (c) Pd(OH) 2/C, H2 , MeOH. 
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To a clear solution of one equivalent of IBX in DMSO was added a solution 

of 273 in THE Work up after 15 minutes and chromatography suggested again the 

formation of 274 and 275 as a mixture of anomers, scheme 110. 

Scheme 110 

NH2  
HO -OTBDPS 

OTBS 

273 

(a) 	

G III NH2

f_O 	0 —OTBDPS 

91% 	01~ NH2 

OTBS 	 OTBS 

274 	 275 

(a) IBX, DMSO, THE 

The mixture of amines 274 and 275 was reacted with phenyl isocyanate to 

give a mixture of ureas 276 and 277, scheme 111. For the mixture of diastereomers 

HRMS confirmed the formation of the urea and furthermore signals for the urea NH 

protons were visible in the 1 H NMR spectrum (at 7.93, 5.50, 5.00 ppm (4th  signal 

under aromatic region)). For this less substituted tetrahydrofuran derivative, it 

appears that both isomers had reacted equally rapidly with the isocyanate. It is not 

clear whether steric hindrance due to additional ring substitution, or simply failure to 

identify the second urea (suggested by the 42% yield) gave rise to the isolation of a 

single diastereomer in the "nectrisine" system. 
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Scheme 111 

O,'—OTBDPS 
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OTBS 274 
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o —OTBDPS 

C)~NH2 

OTBS 
275 

(a) 

91% 

o 	NHPh 

cIA0 
OTBS 	276 

+ 

OTBDPS 

d NHPh 

OTBS 	277 

(a) PhNCO, THE 

This novel cyclisation was of great interest to us as we felt that it would 

provide a route to the synthesis of analogues of hydantocidin 278 as well as a new 

route to the synthesis of amino sugars. 

5.3 Hydantocidin 

Hydantocidin 278 was isolated from the fermentation broth of Streptomyces 

hygroscopias'24  and exhibits potent herbicidal and plant growth regulatory activities. 

The mode of action is as a proherbicide of a metabolite that inhibits purine 

biosynthesis.  125  Its unique structure provides the first example of a nucleoside with a 

spirohydantoin nucleus attached at the anomeric position of D-ribofuranose. Due to 

its unusual structure and potent biological activity considerable synthetic work has 

been invested on the synthesis of hydantocidin and on various deoxyhydantocidins. 

Approaches to the synthesis of hydantocidin and its stereoisomers have been 

achieved utilising an aldol approach ,  dihydroxylation' 27  and stereoselective 

bromination 128  as the key steps. D-fructose' 29  and D-ribose' 3°  have also been 

employed as precursors to hydantocidin and analogues. The synthesis of 

deoxyhydantocidin derivatives has also been undertaken.'  3 1  Examples of analogues 
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of hydantocidin where the furanose ring has been replaced with a pyranose ring have 

also been reported. 132 

Figure 29 

OH 	
0 

L /NH 

HO bH 

278 

However although this compound was of synthetic interest to us we required 

additional evidence of this novel cyclisation. We believed that by studying the IBX 

oxidation of simpler systems the spectroscopic data would enable us to determine 

unambiguously the structure of the product. 

5.4 IBX oxidation of 5-amino-pentanol 

In combination with work carried out by H. M cElroy 133 the IBX oxidation of 

simple amino alcohols was investigated. 5-Amino-pentanol in THF was added to a 

clear solution of 1 equivalent of IBX in DMSO. After 20 minutes t.l.c. showed that 

the starting material had been consumed and a new spot had appeared, scheme 112. 

Scheme 112 

(a) 
HO NH2 	 279 

70% 	 _ 

(a) IBX, DMSO, THE 
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In an attempt to determine the structure of the product unequivocally the 

following spectroscopic techniques were used: 1 H NMR, 13C DEPT, 'H-' 3C 

correlation NMR, 'H-'H-Cosy NMR, NOESY NOE difference experiments and 

ElMS. 

5.4.1 Analysis of spectroscopic data 

Low resolution ElMS shows the presence of M at 101 mass units (30%) 

which corresponds to the mass of 280 or 281. However a peak at 85 mass units is 

apparent with an intensity of 28% which would correspond to the loss of the amino 

group, thus providing evidence for structure 280, scheme 113. 

Scheme 113 

+ 

CXNH2 ElMS 

	

(i + •NH2 

280 	 283 

The data extracted from the 1D and 2D NMR for compound 279 is 

summarised in table 18. The combination of COSY and NOESY spectra enabled the 

ring protons to be assigned definitely. The ID NOE experiments confirmed the 

couplings observed in the NOESY. Interestingly the expected NOE between H 1  and 

HD is missing. Only one of the expected exchangeable protons was apparent at 4.50 

ppm. Irridiation of the signal at 4.98 ppm results in an enhancement of the signal at 

9.20 ppm. This signal is characteristic of either an imine-like proton or an aldehyde 

proton. From the NMR data the only real conclusion which can be established is that 

a six membered ring has formed. The NMR data does not allow the unequivocal 

assignment of either of the two structures 280 or 281, in fact the absence of the other 

exchangeable proton is suggestive of an alternative product having formed. In order 

to determine the structure of 279 further experiments were conducted. 
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HF Hj 

H# X  HE 	

Hc1I 	HD 

HA 	'H 	H 	H1 HD 	HA 	HB 	
HE HF 

A 	 AL 
11 	 11. 	 21 

6-ring in C6D6: 0-5.5ppm 

Table 18 

Proton/Carbon Proton Carbon COSY NOESY 

(360 MHz, (90.6 MHz, (360 MHz, (360 MHz, 
C6D6) CDC1 3) C 6D6) ppm C6D6) ppm 
ppm ppm  

HA C(2) 4.98 95 1.60 HC 1.60 Hc 
1.75HB 1.75 HD  
4.50 YH 3.40 H1  

9.20a 

Exchangeable 4.50 95 4.98 HA 
Proton (YH) 

C(2)  
HB C(3) 1.75 32 1.60 HC 1.30 HF 

4.98 HA 1.60 H 
Hc C(3) 1.60 32 1.75 HB 1.30 HE 

4.98 HA 4.98 HA 
HD C(4) 1.75 20 1.30 HE 4.98 HA 

HE C(4) 1.30 20 1.30 HD 1.60 H 
1.60H 
1.75HB  

HF C(S) 1.30 25 3.40 H 1  1.30 HG 
4.00 Hi  1.75 HB 

4.00 H 
HG C(S) 1.30 25 3.40 H 1  1.30 HF 

4.00 H 
H1  C(6) 3.40 65 1.30 HG 1.30 HG 

1.30 HF 4.00 H 
4.00 Hi  4.98 HA 

Hi  C(6) 4.00 65 1.30 HF 1.30 HG 
3.40 H1  3.40 H1  

a NOE observed in 1 D experiment 
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5.5 Formation of 2-aminotetrahydropyran via alternative strategy 

Attempts to form a crystalline derivative of 279 such as the synthesis of 

acetyl, benzoyl and formyl derivatives proved unsuccessful. The synthesis of 2-

aminotetrahydropyran 280 via an alternative route was envisaged as a method of 

determining the product from the IBX oxidation. Kabalka' 34  has reported that 

organoboranes react with ammonium hydroxide in the presence of sodium 

hypochiorite to generate amines. The one pot procedure involves the formation of the 

organoborane via hydroboration, thus to a solution of dihydropyran 284 in THF was 

added BH3 .THF and the solution stirred at 0 °C for 2 hours, scheme 114. Aqueous 

ammonium hydroxide was added followed by sodium hypochlorite resulting in the in 

situ formation of chloramines' 35  which reacted with the intermediate organoborane. 

T.l.c. showed the presence of several impurities but only one compound could be 

isolated (42% yield) and characterised. 

Scheme 114 

0 	(a) 1__ IIIii 	2 
42% 	

79 
 

284 

(a) (i) THF, BH 3 9THF, 0 °C; (ii) NH40H, NaOCI, 0 °C -+R.T.. 

5.5.1 Mechanism for hydroboration-amination reaction 

Kabalka has proposed the following mechanism for the hydroboration-

amination reaction as exemplified by the reaction of cyclohexene.' 34" 36  

Hydroboration of cyclohexene 285 yields the intermediate trialkylborane 286, 

scheme 115. The in situ formation of chloramine and attack on the trialkylborane 

gives intermediate 287. Migration of the carbon boron bond to nitrogen with 
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concomitant displacement of chloride yields 288. Base hydrolysis results in cleavage 

of the nitrogen boron bond and formation of aminocyclohexane 289. 

Scheme 115 

a 
NH2 

289 

41:1 

ciiirx 
	OH- 

NH2 

288 

However, it is known that hydroboration of dihydropyran occurs to give the 

3-substituted borane 290137,  when the reaction mixture is stirred at r.t. for 4 hours. 

Thus it would be expected that reacting 284 with chloroamine would give the 3-

aminotetrahydropyran 291, scheme 116. 

Scheme 116 

n0 	 (a) 	

[ B] 	 NH 2  

284 	 290 	 291 

(a) (i) BH3 .THF, THF; (ii) NH20, (iii) OW. 

Comparison of the 'H NMR and the ' 3C DEPT with that for the product 

obtained from the IBX oxidation 279 showed the spectra to be identical, table 19. It 
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was therefore apparent that the two products were in fact the same and that an 

alternative product had formed from the two reactions. 

Table 19 

IBX oxidation product ' 3C DEPT 

(62.9 MHz, CDC13) ppm 

Hydroboration product ' 3C DEPT 

(62.9 MHz, CDC13) ppm 

94.9 (CH) 94.3 (CH) 

64.2 (CH2) 63.7 (CH2) 

32.3 (CH2) 31.8 (CH2) 

25.7 (CH2) 25.1 (CH2) 

20.8 (CH2) 20.1 (CH2) 

5.6 Formation of tetrahydropyranol 292 

The 2-aminotetrahydropyran might be expected to be significantly less stable 

towards conditions of acidic hydrolysis than the more complex tetrahydrofuran 

derivatives discussed earlier in this chapter, due to the lack of an oxygen 

functionality at the 3-position. This is known to stabilise 2-amino derivatives, such as 

those found in amino sugars, through internal hydrogen bonding. 

It is likely that hydrolysis of the product from the IBX oxidation occurred on contact 

with silica gel generating tetrahydropyranol 292. 

Scheme 117 

(a) 	0aOH a  
280 	 292 

(a) Si02, H20. 
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The NMR data analysed also fits well for this product. From the NOESY data 

we observed only one exchangeable proton and not two as expected. ElMS data also 

contains a peak at 102 corresponding to the mass of 292. Furthermore loss of the OH 

radical from the pyranol could also account for the peak observed at 85. 

In the hydroboration reaction which was conducted at r.t. it is feasible that 

hydrolysis of the dihydropyran 284 occurred to give the tetrahydropyranol 292. 

Instead of the desired hydroboration reaction the borane may have acted as a Lewis 

acid catalyst allowing the formation of oxonium intermediate 283 which would then 

react with water, scheme 118. 

Scheme 118 

01 	
BH3.THF 	

ii) 

r 	+ 	1 

l 	I H20 	o 
0 

284 283 	-' 

I 
OH  a 

292 

Further studies into the hydroboration-amination reaction are being pursued within 

the group. 

5.7 Conclusion and future work 

Although oxidation of 5-aminopentanol has most likely furnished the 

tetrahydropyranol, it does suggest that oxidation of the amine to imine has probably 

occurred followed by hydrolysis under storage/work-up conditions. In order to 
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confirm the product from the IBX oxidation the reaction could be followed by NMR 

or alternatively, a different method of purification of the product could be used. 

Further reactions using alternative substrates would also possibly confirm the 

mechanism of the IBX oxidation. The synthesis of a deuterium labelled structure 

would be one such route. Methylation of commercially available 5-amino valeric 

acid would yield the hydrochloride salt 294. The salt could be freed up under basic 

conditions and subsequent treatment with lithium aluminium deuteride' 38  would 

afford the amino alcohol 295. Oxidation of 295 with IBX would furnish either 296 or 

297, scheme 119. 'H NMR analysis and MS should be able to differentiate between 

the two structures or their hydrolysis products. 

Scheme 119 

(a) 

HO 	 NH2  

293 

OH 

D  L) 	or
(c) 

— — -- - - ------- 

	

297 	 296 

MeO - 	NH2  .HCI 

294 

(b) 

HO> 	 NH2 

295 

(a) MeOH, AcCI, 80 °C; (b) (i) NaHCO 3 ; (ii) LiA1HD4 , Et20; (c) IBX, DMSO, THF. 

An alternative strategy would be to synthesise 281 from &Valerolactone via a 

three-step synthesis. N-Boc protection followed by superhydride reduction according 

to Dieter's 139  protocol would afford the known compound 300, scheme 120. Boc 

deprotection would furnish 281 and therefore enable a comparison of 'H NMR's and 

thus provide more evidence for the presence of the structure. 
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Scheme 120 

H 	 Boc 

cix° (____I_ 	NO 

298 	 299 

(b) 

$ 

H 	 Boc 

CXOH CX OH  
281 	 300 

(a) Boc20, Et20, DMAP, DCM; (b) LiEt 3BH, THF, -78 °C; (c) 3M HCI, EtOAc. 

In summary in order to realise the full potential of this reaction, which would 

offer a new route to the synthesis of amino sugars and a possible route to the 

synthesis of analogues of hydantocidin, further study is required. 
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Chapter 6: Experimental 

6.1 General experimental 

'H nuclear magnetic resonance (NMR) spectra were recorded using an internal 

deuterium lock for the indicated reference at ambient probe temperatures on Varian 

Gemini 200 (200 MHz) and a Bruker AM260 (260 MHz) Fourier transform 

instruments. The data is presented as follows: chemical shift (in ppm on the 8 scale 

relative to öm,s  =0), integration, multiplicity (s= singlet, d= doublet, t= triplet, q= 

quartet, qn= quintet, m= multiplet, br= broad), coupling constant and the 

interpretation. ' 3 C NMR spectra were recorded using an internal deuterium lock for 

the indicated reference at ambient probe temperatures on Varian Gemini 200 (50.3 

MHz) and Bruker AM260 (62.9 MHz) Fourier transform instruments and are 

reported in ppm on the ö scale. 

Infra-red spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR instrument 

using 5 mm sodium chloride plates or 0.1 mm sodium chloride solution cells. The 

wavelengths of maximum absorbance (Vmax) are quoted in cm.-1 . 

Fast atom bombardment (FAB) mass spectra were performed on a Kratos MS50TC 

mass spectrometer. Electron impact (El) mass spectra were performed on a Finnigan 

4500 mass spectrometer. The parent ion or relevant fragment are quoted, followed by 

significant fragments and their relative intensities. 

Optical rotations were measured on an AA-1000 polarimeter with a path length of 

1.0 dm at the sodium D line (589 nm) and are reported as follows: [a]D, concentration 

(c in g/100 cm3), and solvent. All optical rotations were measured at a temperature of 

23°C. 

Elemental analysis was carried out on a Perkin Elmer 2400 CHN Elemental analyser. 

T.L.C. was performed on Merck 60F2 54 (0.25mm) glass backed silica plates and 

visualised by ultraviolet (UV) light and/or ammonium molybdate or potassium 

permanganate stain. 0  Flash column chromatography was carried out on Merck 

Ammonium molybdate dip prepared as follows: to water (950 cm 3) was added concentrated 
sulphuric acid (50 cm3) followed by ammonium molybdate (50 g) and ceric sulfate (3 g). The mixture 
was stirred until all solid material had disappeared and a bright yellow solution remained. 
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Kieselgel 60 (Merck 9385) under positive pressure by means of a hand pump or air 

flow. Eluent compositions are quoted as v/v ratios. High performance liquid 

chromatography (HPLC) was carried out on a Gilson instrument using a Spherisorb 

column (internal diamaeter:20 mm) and equipped with a Gilson refractive index 

detector. A standard flow of 7 cm 3/min was used. Chiral HPLC was carried out on a 

Waters 786 instrument with a Chiralcel OD column (internal diameter 4.6mm) 

equipped with a UV detector. A standard flow of 0.5 cm3/min was used. All HPLC 

samples were filtered through 45 pm nylon syringe filters prior to analysis. All 

solvents used for HPLC analysis were vacuum filtered and degassed prior to use. 

Reagents were purified by standard means. Dichloromethane (DCM), 

dimethylformamide (DMF), triethylamine, pyridine and 2,6-lutidine were distilled 

from calcium hydride and stored over calcium hydride under an argon atmosphere. 

Methyl and ethyl acetate was distilled over potassium carbonate and stored over 4A 

sieves. Tetrahydrofuran (THF) was distilled from sodiunifbenzophenone ketyl and 

stored under an argon atmosphere. All other reagents were used as supplied. 

All experiments were performed in an inert atmosphere of argon under anhydrous 

conditions using oven dried apparatus cooled in a desiccator prior to use. Standard 

techniques for the handling of air-sensitive techniques were employed. 

Potassim permanagante dip prepared as follows: to water (1000 cm) was added potassium 
permanganate (10 g), potassium carbonate (50 g) and sodium hydroxide pellets (40). The mixture was 
stirred until all solid material disappeared and a purple solution remained. 
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Methyl (2R)-2-amino-3-hydroxypropanoate.hydrochloride 107 

NH2 . HCI 

MeO4OH 

Acetyl chloride (56.1 g, 50.8 cm 3 , 0.710 mol) was added dropwise to methanol (300 

cm3) at 0 °C. The mixture was stirred for 15 mins and D-serine (25.0 g, 0.236 mol) 

was then added portionwise to the solution. The resulting mixture was heated to 

reflux and held at reflux for 3 hours. Concentration under reduced pressure provided 

the title compound (36.3 g, 98%) as a solid. Recrystallisation from methanol 

provided an analytical sample, rnp 163-165 °C; [a] 0  —9.0 (c 0.66, MeOH) [lit., 

(Aldrich) mp 163-166 °C, [aID —4.0 (c 4.0, EtOH)]; Vm (solution cell, CHC13)/cm' 

3345, 2921, 1747, 1593, 1513, 1471; 8H  (250 MHz, D20) 4.13 (1H, t, J4.0, C211), 

3.94 (1H, dd, J 12.3, 4.0, C3HAHB), 3.87 (1H, dd, J 12.3, 3.6, C3HAHB) 3.70 (3H, s, 

OMe); 8c(62.9  MHz) 173.9 (C), 58.8 (CH 3), 54.3 (CH2), 53.3 (CH); m/z (FAB) 120 

([M+H]', 100%), 60 (55), 45 (27); HRMS (FAB) C 4H9NO3'HCl [M+H]+  requires 

120.0661, found 120.0661; Found: C, 30.42; H, 6.33; N, 8.87. C 4H9NO3 HC1 

requires C, 30.87; H, 6.43; N, 9.00%. 

Methyl (2R)-2-N,N-dibenzylamino-3-hydroxyproponoate 108 

NBn 2  

MeO OH 

To a solution of the D-serine methyl ester.hydrochloride 107 (6.80 g, 43.7 mmol) in 

anhydrous acetonitrile (190 cm 3)  was anhydrous potassium carbonate (29.0 g, 210 

mmol) followed by benzyl bromide (13.5 cm3 , 110 mmol). The mixture was stirred 

at room temperature for 24 hours. Water (200 cm 3)  was added and the aqueous phase 

was extracted with EtOAc (3 x 125 cm3). The combined organic phases were washed 
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with brine (100 cm3), dried (MgSO4) and concentrated under reduced pressure. The 

remaining residue was chromatographed on silica gel [hexane:EtOAc (4:1)] to give 

the title compound (12.5 g, 96%) as an oil. Rf [hexane:EtOAc (4:1)] 0.35; [aID 

+174.6 (c 0.8, CHC13)]; Vm (neat)/cm 3455, 3061, 3028, 2950, 2844, 1731, 1491, 

1453; 8H  (250 MHz, CDC13) 7.39-7.21 (10H, m, Ark!), 3.92 (2H, d, J 13.4, 

NCHxHyPh x 2), 3.80 (3H, s, OMe), 3.80-3.69 (2H, m, C2H + C3HAHBOH), 3.69 

(211, d, J 13.4, NCHxHyPh x 2), 3.59 (1H, dd, J 15.0, 7.5, C3HAHBOH), 2.58 (111, br 

s, OH); 8c(62.9  MHz) 171.1 (C), 138.6 (2C), 128.9 (4 x CH), 128.4 (4 x CH), 127.3 

(2 x CH), 61.6 (CH3), 59.2 (CH2) 54.6 (2 x CH2), 51.2 (CH); mlz (FAB) 299 ([M] +, 

59%), 268 (100), 240 (96), 181 (41), 92 (41); HRMS (FAB) C 1 8H21NO3 [M] 

requires 299.1571, found 299.1576. 

Methyl (2R)-3-tert-butyldiphenylsilyloxy-2-NA-dibenzylaminoprOpOflOate 109 

NBn2 
MeO - 

	
OTBDPS 

To a solution of ester 108 (9.25 g, 30.1 mmol) in anhydrous DMF (50 cm 3)  was 

added tert-butyldiphenylsilyichioride (16.4 cm 3 , 60.3 mmol) followed by imidazole 

(8.20 g, 121 mmol). The mixture was stirred at room temperature for 24 hours. Brine 

(200 cm) was added and the aqueous phase was extracted with EtOAc (3 x 150 

cm3). The combined organic phases were dried (MgSO4) and concentrated under 

reduced pressure. The remaining residue was chromatographed on silica gel 

[hexane:EtOAc (15:1)] to give the title compound (15.0 g, 96%) as an oil. Rf 

[hexane:EtOAc (4:1)] 0.64; [aID +29.0 (c 0.9, CDC13); Vm a,, (neat)/cm' 3069, 3027, 

2856, 1736, 1588, 1428; oH (250 MHz, CDC13) 7.62-7.22 (2011, m, Ark!), 4.06 (1H, 

dd, J 10.2, 6.2, C3HAHBOTBDPS), 4.03 (211, d, J 14.3, NCHHyPh x 2), 4.00 (1H, 

dd, J 10.2, 6.2, C3HAHBOTBDPS), 3.77 (2H, d, J 14.3, NCHHyPh x 2), 3.76 (3H, 5, 

OMe), 3.70 (1H, t, J 6.2, C2H), 1.05 (9H, s, 'Bu); Oc  (62.9 MHz) 171.8 (C) 139.6 
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(2C), 135.4 (4 x CH), 132.9 (2C), 129.5 (2 x CH), 128.5 (4 x CH), 128.0 (4 x CH), 

127.5 (4 x CH), 126.8 (2 x CH), 63.2 (CH2), 62.8 (CH), 55.3 (2 x CH2), 51.0 (Cl-I3) 

26.5 (3 x Cl-I3), 18.9 (C); mlz (FAB) 538 ([M+H]+, 14%), 478 (13), 268 (18), 135 

(26), 91 (100); HRMS (FAB) C34H40NO3Si [M+H] +  requires 538.2777, found 

538.2773. 

(2S)3tert-Buty1dipheny1si1y1oxy-2-N,N-dibeflZY1aIfliflOPrOPafl-1-OI 110 

NBn2  

HO,-OTBDPS 
1 	3 

To a solution of ester 109 (4.20 g, 7.82 mmol), in anhydrous ether (60 cm') at 0 °C 

was added lithium borohydride (0.99 g, 49.9 mmol) followed by anhydrous methanol 

(1 CM)  . The mixture was stirred at 0 °C until effervescence ceased and then heated 

to reflux and held at reflux for 4 hours. Saturated aqueous NH 4C1 (140 cm 3)  was 

added cautiously and the aqueous phase was extracted with DCM (3 x 100 cm 
3).  The 

combined organic phases were washed with brine (200 cm 3), dried (MgSO4) and 

concentrated under reduced pressure. The remaining residue was chromatographed 

on silica gel [hexane:EtOAc (5:1)] to give the title compound (3.80 g, 95%) as an oil. 

Rf [(hexane:EtOAc (4:1)] 0.55; [U]D —58.4 (c 1.15, CHC13); Vm (neat)/cm' 3449, 

3069, 3027, 2930, 2857, 1589; 8H (250 MHz, CDC13) 7.72-7.22 (20H, m, An]), 3.90 

(111, dd, J 10.7, 6.0, C3HAHBOTBDPS), 3.88 (2H, d, J 13.4, NCHHyPh x 2), 3.75 

(1H, dd, J 10.7, 6.0, C3HAHBOTBDPS), 3.61 (2H, d, J 13.4, NC1THyPh x 2), 3.58 

(2H, d, J 7.4, C 1 H2), 3.10 (1H, ddd, J 7.4, 6.0, 6. 0, C21]), 2.92 (1H, brs, 01]), 1.10 

(9H, s, Bu); Sc (62.9 MHz) 139.9 (2C), 136.1 (CH), 136.0 (CH), 133.5 (CH), 133.4 

(CH), 130.5 (C), 130.3 (C), 130.2 (2 x CH), 129.4 (4 x CH), 128.9 (4 x CH), 128.3 

(4 x CH), 127.6 (2 x CH), 61.8 (CH2), 60.5 (CH), 60.0 (CH 2), 54.5 (2 x CH2), 27.3 

(3 x CH3), 19.6 (C); mlz (FAB) 510 ([M+H], 61%),420 (37), 217 (43), 199 (28),91 

(100); HRMS (FAB) C 33H40NO2Si [M+H] requires 510.2828, found 510.2828. 
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(2R)3tertButy1dipheny1si1y1oxy-2-N,N-dibenzy1amiflOPrOPaflal 93 

NBn2 

H,-OTBDPS 

To a solution of oxalyl chloride (0.25 cm3 , 4.13 mmol) in DCM (10 cm 3) at —78 oC 

was added DMSO (0.51 cm3 , 4.13 mmol). The mixture was stirred for Ca. 5 minutes 

whereupon it became cloudy. A solution of the alcohol 110 (1.50 g, 2.94 mmol) in 

DCM (5 cm3) was added via cannula. The resulting clear solution was stirred at —78 

°C for 1 hour. Triethylamine (1.72 cm3, 11.8 mmol) was added and the cloudy 

solution was allowed to warm to room temperature over ca. 15 minutes. Water (25 

cm 3)  was added and the aqueous phase was extracted with DCM (3 x 25 cm 3). The 

combined organic phases were washed sequentially with 1% HC1 (30 cm), water (30 

cm 3),  saturated aqueous NaHCO3 (30 cm 3) and brine (30 cm 3),  then dried (MgSO4) 

and concentrated under reduced pressure to give the title compound (1.49 g, 100%) 

as a very pale yellow oil which was used in subsequent stages without further 

purification. Rf [hexane:EtOAc (4:1)] 0.56; Vm a,, (neat)/cm 3068, 3028, 2930, 2856, 

2711, 1731, 1427; oH (200 MHz, CDC13) 9.80 (1H, s, COIl), 7.76-7.26 (20H, m, 

An]), 4.16 (111, dd, J 11.0, 5.7, C3H4HBOTBDPS), 4.09 (1H, dd, J 11.0, 5.7, 

C3HAHBOTBDPS), 3.98 (2H, d, J 13.9, NCHxHyPh x 2), 3.90 (2H, d, J 13.9, 

NCHxHyPh x 2), 3.52 (1H, t, J 5.7, CH), oc (50.3 MHz) 202.8 (C), 139.3 (2C), 

135.6 (2 x CH), 135.5 (2 x CH), 132.8 (CH), 132.7 (CH), 129.8 (2 x CH), 128.6 (4 x 

CH), 128.3 (4 x CH), 127.7 (4 x CH), 127.1 (2C), 67.8 (CH2), 60.5 (CH), 55.6 (2 x 

CH2), 26.7 (3 x CU3), 19.9 (C). 
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Methyl (3S,4R)5tertbutyldiphenylsilyloxy-4-N,N-dibeflZYlaflhiflO-3-

hydroxypentano ate 118 and Methyl (2E,4S)-5-terI-butyldiphenylsilyloxy-4-N,N-

dibenzylamino-2-pentenoate 120 

NBn2 	 NBn 2  

MeOi( j.- 
	

OTBDPS MeO .- 5 OTBDPS 

To a solution of LiHMDS (1.77 cm', 1.06 M in THF, 1.88 mmol) at —78 °C was 

added methyl acetate (0.150 cm 3"  1.77 mmol). The solution was stirred at —78 °C for 

20 minutes. A solution of the aldehyde 93 (300 mg, 0.589 mmol) in THF (2 cm 
3)  was 

added dropwise via cannula. The reaction mixture was stirred at —78 °C for 30 

minutes then allowed to warm to 0 °C over a period of 2 hours then stirred at 0 °C 

for 20 minutes. Saturated aqueous NH 4C1 (25 cm 3)  was added and the aqueous phase 

extracted with DCM (3 x 15 cm 3). The combined organic phases were washed with 

brine (30 cm3), dried (MgSO4) and concentrated under reduced pressure. The 

remaining residue was chromatographed on silica gel [hexane:Et20 (5:1) to give 118 

(160 mg, 47%) and 120 (170 mg, 5 1%). 

Data for compound 118: Rf [hexane:Et20 (1:1)] 0.52; [a]D —36.4 (c 0.85, CHC13); 

Vm (neat)/cm' 3460, 2930, 1738, 1427; 5H  (250 MHz, CDC13) 7.79-7.22 (20H, m, 

ArH), 4.22 (1H, m, C3HOH), 4.02 (1H, dd, J 11.2, 5.5, CHAHBOTBDPS), 3.93 (1H, 

dd, J 11.2, 5.2, CHAHBOTBDPS), 3.82 (2H, d, J 13.5, NCHxHyPh x 2), 3.60 (2H, d, 

J 13.5, NCHxHyPh x 2), 3.59 (3H, s, OMe), 3.20 (1H, hr s, OH), 2.85 (111, dd, J 

16.1, 2.2, C2HCHD), 2.61 (1H, m, C411), 2.13 (1H, dd, J 16.1, 9.5, C2HCHD), 1.02 

(9H, s, 'Bu); öc (62.9 MHz) 172.2 (C), 138.8 (2C), 135.6 (CH), 135.5 (CH), 132.7 

(C), 132.6 (C), 129.9 (2 x CH), 129.8 (2 x CH), 128.9 (4 x CH), 128.3 (4 x CH), 

127.7 (4 x CH), 127.1 (2 x CH), 65.2 (CH3), 62.7 (CH), 60.0 (CH2), 54.3 (2 x CHA 

51.5 (CH), 39.3 (CH2), 26.8 (3 x CH3), 19.0 (C); mlz (FAB) 582 ([M+H], 7%), 564 

(17), 217 (43), 199 (10), 135 (16), 109 (21), 91(100); HRIVIS (FAB) C 36H44NO4Si 

[M+1-f] requires 582.3040, found 582.3043. 
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Data for 120: Rf [hexane:Et20 (1:1)] 0.70; [aID +50.1 (c 1.0, CHC13); vmax (neat)/cm' 

1724, 1652, 1600, 1566, 1492; oH (250 MHz, CDC13) 7.78-7.22 (20H, m, ArH), 7.13 

(111, dd, J 15.8, 7.0, CA,  6.10 (1H, dd, J 15.8, 1.3, C311), 4.00 (1H, dd, J 10.4, 6.3, 

C5HAHBOTBDPS), 3.89 (1H, dd, J 10.4, 7.0, C 5HAHBOTBDPS), 3.87 (2H, d, J 13.3, 

NCHxHyPh x 2), 3.80 (3H, s, OMe), 3.61 (2H, d, J 13.3, NCHxHyPh x 2), 3.56 (1H, 

m, C4H), 1.08 (9H, s, 'Bu); 8c  (62.9 MHz) 166.6 (C), 146.0 (CH), 139.5 (2C), 135.5 

(4 x CH), 134.7 (CH), 133.0 (C), 132.9 (C), 129.6 (2 x CH), 129.5 (CH), 128.3 (2 x 

CH), 128.2 (4 x CH), 127.6 (4 x CH), 126.8 (2 x CH), 123.4 (CH), 63.7 (CH2), 60.3 

(CH), 54.4 (2 x CR2), 26.7 (3 x CH3), 26.4 (CH3), 19.0 (C); mlz (FAB) 564 

([M+H]+, 91%),474 (23), 294 (40), 217 (12), 204 (12), 199 (35), 183 (12), 135 (60), 

91(100); HRMS (FAB) C 36H42NO3Si [M+H] requires 564.2929, found 564.2934. 

Ethyl (3S,4R)-5-tert-butyldiphenylsilyloxy-4 N,N-dibenzylamino-

3 hydroxypentanoate 121 

NBn2  
EtO OTBDPS 

0 OH 

To a solution of LiHMDS (8.84 cm', 1.06 M in THF, 9.37 mmol) at —78 °C was 

added ethyl acetate (0.871 cm 3 , 8.84 mmol). The solution was stirred at —78 °C for 

20 minutes. A solution of the aldehyde 93 (1.49 g, 2.94 mmol) in THF (6 cm 3)  was 

added dropwise via cannula. The reaction mixture was stirred at —78 °C for 30 

minutes then allowed to warm to 0 °C over a period of 2 hours, then stirred at 0 °C 

for 20 minutes. Saturated aqueous NH 4C1 (50 cm 3)  was added and the aqueous phase 

extracted with DCM (3 x 60 cm 3). The combined organic phases were washed with 

brine (60 cm3), dried (MgSO4) and concentrated under reduced pressure. The 

remaining residue was chromatographed on silica gel [hexane:Et 20 (6:1) to give the 

title compound (1.48 g, 85%) as a 6:1 mixture of diastereomers. [a]D —26.9 (c 0.52, 
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CHC13); Vm (neat)/cm' 3469, 2930, 1736, 1720, 1427; mlz (FAB) 538 ([M+H], 

14%), 478 (13), 268 (18), 135 (26), 91(100); FIRMS (FAB) C 371-146NO4Si [M+H] 

requires 596.3196, found 596.3192. 

Major diastereomer: 

Rf [hexane:Et20 (1:1)] 0.40; oH (250 MHz, CDC13) 7.76-7.19 (20H, m, Ark!), 4.39 

(1H, m, C3HOH), 4.25 (211, q, J 7.2, OCH2CH3), 4.23-4.17 (1H, m, 

C5HAHBOTBDPS), 4.07 (1H, dd, J 10.6, 5.3, C5HAHBOTBDPS), 3.89 (2H, d, J 13.6, 

NCHxHyPh x 2), 3.58 (2H, d, J 13.6, NCHxHyPh x 2), 3.45 (1H, br s, 011), 2.98 

(1H, dd, J 16.3, 2.7, C2HCHD), 2.78 (1H, hr ddd, J 10.6, 8.7, 5.3, C411), 2.31 (1H, dd, 

J16.3, 8.7, C2HCHD), 1.28 (3H, t,J7.2, OCH2CH3), 1.09 (9H, s, 'Bu); 8c (62.9 MHz) 

173.0 (C), 139.6 (2C), 135.6 (4 x CH), 132.8 (C), 132.7 (C), 128.9 (2 x CH), 128.7 

(4 x CH), 128.2 (4 x CH), 127.7 (4 x CH), 126.9 (2 x CH), 68.1 (CH), 61.2 (CH), 

60.9 (Cl-I2), 60.4 (CH2), 55.1 (CH2), 50.0 (CH2), 39.5 (CH2), 26.8 (CH3), 19.0 (C), 

14.1 (3 x CH3); HPLC (5% propan-2-ol in hexane) 121 R=9.0 mm, ent-121 R=8.3 

mm, 90% ee. 

Minor diastereomer: 

Rf [hexane:Et20 (1:1)] 0.38; 0H  (250 MHz, CDC13) in good agreement with that 

reported for 122 

acid methoxy methyl amide 91 

OMe 	NBn2 	I 
Me( 5OT 	I 

OOH 	 I 

To a slurry of NO-dimethylhydroxylamine.hydrochloride (494 mg, 5.04 mmol) in 

THF (3 cm3) at 0 °C was added trimethylaluminium (2.52 cm3 , 2.0 M in toluene, 5.04 

142 



Experimental 

mmol). The solution was stirred at 0 °C for 5 minutes then allowed to warm to room 

temperature over Ca. 15 minutes, after which time a clear solution remained. The 6:1 

mixture of aldol adducts 121 (500 mg, 0.839 mmol) in THF (4 cm 
3)  was added 

dropwise via cannula. The mixture was warmed to 35 °C and stirred for 3 hours. The 

reaction mixture was cooled and then cannulated rapidly into a mixture of DCM (30 

cm3) and saturated aqueous potassium sodium tartrate (30 cm 3) and stirred 

vigorously for 5 hours whereupon two distinct phases were apparent. The aqueous 

phase was extracted with DCM (3 x 30 cm 3). The combined organic phases were 

dried (MgSO4) and concentrated under reduced pressure. The residue was 

chromatographed on silica gel [hexane:EtOAc (4:1) to give the title compound (506 

mg, 98%) as a 6:1 mixture of diastreomers [U]D —13.0 (c 0.10, CHC13); Vm 

(neat)/cm -1  3457, 3069, 2937, 2856, 1643, 1427; mlz (FAB) 611 ([M+H] +, 27%), 478 

(36), 210 (11) 197 (20) 135 (41), 91(100); HRMS (FAB) C3 7H47N204Si [M+H] 

requires 611.3305, found 611.3290. 

Major diastereomer: 

Rf [hexane:EtOAc (4:1)] 0.35; 8 H (360 MHz, CDCI3) 7.83-7.24 (20H, m, ArH), 4.39-

4.32 (1H, m, C3HOH), 4.27 (1H, dd, J 10.9, 4.0, C5HAHBOTBDPS), 4.14 (1H, dd J 

10.9, 6.4, C SHAHBOTBDPS), 3.99 (2H, d, J 13.7, NCHHyPh x 2), 3.80 (2H, d, J 

13.7, NCHxHyPh x 2), 3.66 (3H, s, OMe), 3.21 (3H, s, Me), 2.89 (1H, m, C411), 2.80 

(1H, br m, C2HAHB), 2.32 (1H, br m, C2HAHB), 1.18 (9H, s, 'Bu); 8c (62.9 MHz) 

174.8 (C), 140.7 (2C), 136.3 (2 x CH), 136.2 (2 x CH), 133.8 (C), 133.6 (C), 130.2 

(2 x CH), 129.6 (2 x CH), 129.4 (4 x CH), 128.6 (4 x CH), 128.3 (2 x CH), 128.2 

(CH), 127.3 (CH), 67.6 (CH), 66.6 (CH3), 62.2 (CH), 61.7 (CH2), 55.7 (2 x CHA 

37.1 (CH2), 32.3 (CH3), 27.4 (3 x CH3), 19.6 (C). 

Minor diasteromer: 
Rf [hexane:EtOAc (4:1)] 0.34; 8 H (360 MHz, CDC1 3) in good agreement with that 

reported for 123. 
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(4S,5R)5tert-Buty1dipheny1si1y1oxymethy1-4-hydroxyPYrrO1idifl-2-Ofle 90 

H 
TBDPSO1f 

HO 

To a solution of the 6:1 mixture of Weirireb amides 91 (450 mg, 0.74 mmol) in 

methanol was added 20% Pd(OH)2/C (450 mg), the flask was flushed with argon 

before being stirred under an atmosphere of hydrogen for 12 hours. The reaction 

mixture was filtered through a layer of celite and concentrated under reduced 

pressure. The residue was chromatographed on silica gel [DCM:MeOH (50:1) to 

give the title compound (206 mg, 81%) as a white solid. mp  117-118 °C; Rf 

[DCM:MeOH (10:1)] 0.32; [aiD +17.2 (c 0.36, CHC13); Vm a,, (solution cell)/cm' 

3200, 2910, 1678, 1426; oH (250 MHz, CDC13) 7.64-7.59 (4H, m, An]), 7.43-7.32 

(6H, m, ArH), 6.40 (1H, s, NH), 4.30-4.28 (1H, m, C4HOH), 3.63-3.60 (411, m, C3H2  

+ C5H + 01]), 2.74 (1H, dd, J 17.2, 6.8, C5HAHBOTBDPS), 2.30 (1H, dd, J 17.2, 2.9, 

C5HAHBOTBDPS), 1.00 (9H, s, 'Bu); Oc  (62.9 MHz) 176.4 (C), 135.4 (2 x CH), 

135.3 (2 x CH), 132.6 (C), 132.4 (C), 129.8 (2 x CH), 127.7 (4 x CH), 69.5 (CH), 

64.7 (CH2), 64.5 (CH), 40.0 (CH2), 26.6 (3 x CH3), 18.9 (C); mlz (FAB) 370 

([M+H]+, 68%), 312 (15), 292 (53), 234 (27), 214 (61), 135 (100); HRMS (FAB) 

C21 H28NO3 Si [M+H] requires 370.1838, found 370.1830. 
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(2R,3S)-2-tert-Butyldiphenylsilyloxymethyl-3-hydroxypYrrOlidifle 125 

TBDPSO1 

To a solution of pyrrolidinone 90 (120 mg, 0.332 mmol) in THF (5 cm3) at 0°C was 

added BH3 .THF complex (4.95 cm3 , 1.0 M in THF, 4.95 mmol). The solution was 

stirred at 0 °C until effervescence ceased and then stirred at reflux for 24 hours. 

Methanol was added cautiously to the cooled (0 °C) reaction mixture. The resulting 

mixture was concentrated under reduced pressure. The residue was chromatographed 

on silica gel [DCM:MeOH (50:1)] to give the title compound (100 mg, 85%) as a 

white solid. mp  105-106 °C; Rf [DCM: MeOH (10:1)] 0.27; [aID +33.3 (c 0.09, 

CHC13); (90% ee); si-i (250 MHz, CDC13) 7.65-7.61 (4H, m, An]), 7.50-7.37 (6H, m, 

ArH), 4.35 (1H, ddd, J 11.0, 7.4, 4.3 C3HOH), 4.19 (1H, dd, J 11.1, 3.0 

CHAHBOTBDPS), 3.80 (1H, dd, J 11.1, 2.4 CHAHBOTBDPS), 3.37 (111, ddd, J 11.7, 

8.0, 7.4, C 5HEHF), 3.21 (111, ddd, J 11.7, 9.4, 4.3, C5HEHF) 2.94 (1H, ddd, J 11.0, 

3.0, 2.4 C21-I), 2.14 (1H, ddt, J 16.2, 9.4, 7.4, C4HCHD), 1.99 (1H, ddt, J 16.2, 8.0, 

4.3, C4HCHD), 1.74 (1H, br s, OH), 1.06 (9H, s, 'Bu) ; 6c(62.9 MHz) 135.4(4 x CH), 

132.2 (CH), 131.8 (C), 130.1 (2 x CH), 127.9 (4 x CH), 74.0 (CH), 73.1 (CH), 59.5 

(CH2), 53.0 (CH2), 34.1 (CH2), 26.8 (3 x CH3), 19.2 (C); mlz (FAB) 356 ([M+H] +, 

65%), 278 (26), 197 (53), 183 (22), 135 (100); HRMS (FAB) C 21 H30NO2Si [M+H] 

requires 356.2046, found 356.2046. 
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Attempted Synthesis of (2R,3S)-3-hydroxy-2-hydroxymethylpyrrolidine 126 

•HF 
HO 	21 

HO 

To a solution of the silyl protected compound 125 (38 mg, 0.11 mmol) in acetonitrile 

(0.10 cm 3)  was added hydrofluoric acid (0.31 cm 3 , 48% solution in water, ca. 5eq). 

The mixture was stirred for 48 hours. Methoxytrimethylsilane (3.0 cm 3)  was added 

cautiously and the mixture concentrated under reduced pressure. The remaining 

residue was again treated with methoxytrimethylsilane (3.0 cm 3) and concentrated. 

This procedure was repeated once more. The remaining residue was 

chromatographed on silica gel [CI-1C1 3 :MeOH:NH3 (28% aqueous)] but no product 

was recovered. 

(2R)-3-tert-butyldiphenylsilyloxy-2-NA-dibenzylaminopropanoic acid 145 

NBn 2  

HO ( - OTBDPS 

To a solution of methyl ester 109 (500 mg, 0.931 mmol) in THF (15 cm 3)  was added 

dropwise a slurry of LiOH.H20 (195 mg, 4.65 mmol) in H20 (3.75 cm. 3). The 

solution was heated to reflux and held at reflux for 6 hours. The solution was cooled 

to r.t. and H20 (15 cm 3)  was added. The aqueous phase was extracted with EtOAc (2 

x 25 cm 3)  then the mixture was acidified to pH 3 with IN HC1 and the aqueous phase 

was extracted with Et20 (3 x 20 cm3). The combined organic phases were dried 

(MgSO4) and concentrated under reduced pressure to give the title compound (280 

mg, 58%) as a tacky solid. Rf [hexane:EtOAc (4:1)] 0.20; [a]o —15.45 (c 0.22, 

CHC13); Vm (neat)/cm" 3200, 3069, 2930, 2856, 1709, 1428; 8H  (250 MHz, CDC13) 
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7.79-7.29 (20H, m, An]), 4.21-4.12 (2H, m, C3H2), 4.09 (2H, d, J 13.5, NCHxHyPh 

x 2), 4.03 (2H, d, J 13.5, NCHxHyPh x 2), 3.09 (1H, dd, J 8.5, 5. 1, C2H), 1.16 (9H, 

s, 'Bu); 5C (62.9 MHz) 172.3 (C), 137.2 (2C), 136.1 (2 x CH), 135.9(2 x CH), 133.0 

(C), 132.9 (C), 130.5 (CH), 129.5 (4 x CH), 129.3 (4 x CH), 128.5 (CH), 128.4 (4 x 

CH), 128.1 (2 x CH), 63.5 (CH), 62.3 (CH2), 55.6 (2 x CH2), 27.4 (3 x CH3), 19.6 

(C); mlz (FAB) 524 ([M+H], 56%), 154 (44), 136 (37), 107 (16), 91(100); HRMS 

(FAB) C33H38NO3Si [M+H]+  requires 524.2621, found 524.2622. 

Lithium Iodide/Sodium Cyanide Procedure: 

To a solution of methyl ester 109 (200 mg, 0.372 mmol) in pyridine (5 cm 3)  was 

added lithium iodide (280 mg, 1.86 mmol) followed by sodium cyanide (100 mg, 

1.86 mmol). The mixture was heated to 115 °C for 24 hours then cooled to r.t. and 

EtOAc (30 cm 3)  was added. The organic phase was washed sequentially with 

saturated aqueous NH4C1 (30 cm 3),  water (30 cm 3) and brine (30 CM)  . The organic 

phase was concentrated under reduced pressure and the residue was extracted with 

pentane (2 x 15 cm3) and the combined organic phases dried (MgSO 4) and 

concentrated under reduced pressure to give the title compound (150 mg, 78%). 

Lithium Iodide Procedure: 

To a solution of methyl ester 109 (455 mg, 0.847 mmol) in pyridine (8 cm 3)  was 

added lithium iodide (1.28 g, 8.50 mmol). The mixture was heated to 115 °C for 24 

hours then cooled to r.t. and EtOAc (30 cm 3)  was added. The organic phase was 

washed sequentially with saturated aqueous NH4CI (30 cm 3),  water (30 cm3) and 

brine (30 cm3). The organic phase was concentrated under reduced pressure and the 

residue was extracted with pentane (2 x 15 cm3) and the combined organic phases 

R. V. Hoffman and J. Tao, I Org. Chem., 1997, 62, 2292 
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dried (MgSO4) and concentrated under reduced pressure to give the title compound 

(300 mg, 72%). 

Barium Hydroxide Procedure: 

To a solution of methyl ester 109 (100 mg, 0.186 mmol) in MeOH (4 cm 
3) was 

added activated barium hydroxide (318 mg, 186 mmol) and the mixture stirred at r.t. 

for 12 hours. Water (15 cm 3)  was added and the aqueous phase was extracted with 

EtOAc (2 x 15 cm 3)  then the mixture was acidified to pH 3 with iN HC1. The 

aqueous phase was extracted with Et20 (3 x 15 cm 3). The combined organic phases 

were washed with brine (25 cm3), dried (MgSO4) and concentrated under reduced 

pressure to give the title compound (65 mg, 65%). 

Methyl (4R)5tertbutyldipheny1silyloxy-4-N,N-dibeflZYlamiflO30x0 

pentanoate 132 

N Bn2  

MeOAtOTBDPS I 
From methyl ester 109: 

To a solution of LiHMDS (1.21 cm', 1.06 M in THF, 1.28 mmol) at —78 °C was 

added methyl acetate (0.100 cm 3,  1.21 mmol) and the solution stirred at —78 °C for 

30 mins. The methyl ester 109 (118 mg, 0.220 mmol) in THF (2 cm 
3)  was added via 

cannula and the resultant solution stirred at —78 °C for 3 hours then warmed to 0 °C 

and stirred at 0°C for 1 hour. The reaction was quenched by the addition of saturated 

aqueous NH4C1 (10 cm3) and the aqueous phase was extracted with DCM (3 x 10 

cm3). The combined organic phases were washed with brine (20 cm 
3),  dried 

(MgSO4) and concentrated under reduced pressure. The residue was 
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chromatographed on silica gel [hexane:Et20 (10:1)] to give the title compound as a 

pale yellow oil (95 mg, 75%). Rf [hexane:Et20 (1:1)] 0.58; [a]D +25.1 (c 0.92, 

CHC13); vmax (neat)/cm' 3069, 2930, 2856, 1748, 1718, 1427; oH (250 MHz, CDC13) 

7.71-7.23 (2011, m, ArH), 4.13 (1H, dd, J 10. 8, 6. 1, C 5H4HBOTBDPS), 4.05 (1H, dd, 

J 10.8, 6. 1, C S HAHBOTBDPS), 3.80 (2H, d, J 12.8, NCHxHyPh x 2), 3.70 (2H, d, J 

12.8, NCHxHyPh x 2), 3.63 (3H, s, OMe), 3.62-3.56 (1H, m, C41]), 3.59 (111, d, J 

16.0, C2HCHD), 3.47 (1H, d,J16.0, C2HCHD), 1.09(9H, s, 'Bu); 8C  (62.9 MHz) 202.6 

(C), 167.6 (C), 139.6 (C), 139.0 (2C), 135.5 (CH), 135.4 (CH), 132.9 (C), 129.7 (2 x 

CH), 129.6 (2 x CH), 128.8 (4 x CH), 128.5 (2.x CH), 128.3 (4 x CH), 128.1 (CH), 

127.7 (2 x CH), 127.1 (CH), 67.1 (CH), 60.1 (CH2), 55.0 (2 x CH2), 52.0 (CH3), 46.7 

(CH2), 26.7 (3 x CH3), 19.0 (C); (mlz (FAB) 580 ([M+H], 85%), 525 (12), 450 (10), 

239 (10), 199 (48), 137 (26) 105 (10), 91(100); HRMS (FAB) C 36H42NO4Si [M+H] 

requires 580.2888, found 580.2890. 

From acid 145: 

To a solution of acid 145 (300 mg, 0.569 mmol) in THF (6 cm 3)  was added N,N-

carbonyldiimidazole (324 mg, 2.00 mmol). The solution was stirred at room 

temperature for 2 hours. Meanwhile to a solution of LiHMDS (1.71 cm 3 , 1.0 M in 

THF, 1.71 mmol) at —78 °C was added methyl acetate (0.140 cm 3 , 1.71 mmol) and 

the resultant solution was stirred for 20 mins at —78 °C. The imidazolide (300 mg, 

0.569 mmol) in THF (6 cm 3)  was added via cannula. The reaction mixture was 

stirred at —78 °C for 20 mins and allowed to warm to 0 °C over 30 mins and stirred 

for a further 1 hour at 0 °C. The reaction was quenched by the addition of saturated 

aqueous NH4C1 (15 cm3) and the aqueous phase was extracted with DCM (3 x 15 

cm3). The combined organic phases were washed with brine (30 cm 3), dried 

(MgSO4) and concentrated under reduced pressure. The residue was 

chromatographed on silica gel [hexane:Et20 (10:01 to give the title compound as a 

pale yellow oil (300 mg, 91%); [aID +30.2 (c 1.0, CHC13); all other spectroscopic 

data was identical to the compound from methyl ester 109. 
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Methyl (4R)5tertbutyldipheny1sily1oxy-4-N,Ndibenzylamino-3-hydroxY-

pentanoate 119 

N Bn2  

MeOLOTBDPS I 0 OH 

To a solution of fl-keto ester 132 (150 mg, 0.259 mmol) in Et20 (4 cm3) and MeOH 

(1.5 cm) was added acetic acid (ca. 0.5 cm 3)  until the solution was pH 4. The 

solution was cooled to 0°C and sodium cyanoborohydride (161 mg, 2.60 mmol) was 

added. Once effervescence had ceased the resulting solution was stirred at r.t. for 7 

hours. The reaction was quenched by the addition of saturated aqueous NH 4C1 (20 

cm3) and the aqueous phase was extracted with DCM (3 x 20 cm3). The combined 

organic phases were washed with brine (30 cm 3), dried (MgSO4) and concentrated 

under reduced pressure. The residue was chromatographed on silica gel [hexane:Et 2O 

(7:1)] to give the title compound (125 mg, 83%) as a colourless oil. Rf [hexane:Et20 

(1:1)] 0.48; [aID —22.0 (c 1.3, CHC13); Vm ax  (neat)/cm' 3445, 2928, 2865, 1730, 

1428; oH (250 MHz, CDC13) 7.79-7.22 (20H, m, ArH), 4.22 (1H, ddd, J 11.0, 8.9, 

3.0, C3HOH), 4.02 (2H, d, J 13.3, NCHxHyPh x 2), 3.98-3.90 (2H, m, C5H2), 3.65 

(3H, s, OMe), 3.60 (2H, d, J 13.3, NCHxHyPh x 2), 2.76 (1H, ddd, J 11.0, 8.9, 5. 1, 

CA, 2.47 (1H, dd, J 15.1, 3.0, C2HCHD), 2.31 (1H, dd, J 15.1, 8.9, C2HCHD), 1.13 

(9H, s, 'Bu); Oc  (62.9 MHz) 172.2 (C), 138.8 (2C), 135.6 (CH), 135.5 (CH), 132.7 

(C), 132.6 (C), 129.9 (2 x CH), 129.8 (2 x CH), 128.9 (4 x CH), 128.3 (4 x CH), 

127.7 (4 x CH), 127.1 (2 x CH), 65.2 (CH3), 62.7 (CH), 60.0 (CH 2), 54.3 (2 x CH2), 

51.5 (CH), 39.3 (CH2), 26.8 (3 x CH3), 19.0 (C); mlz (FAB) 582 ([M+H],77%), 564 

(17), 217 (44), 199 (16), 135 (16), 91(100); HRIvIS (FAB) C 36H44NO4Si [M+H]+, 

requires 582.3039, found 582.3030; HPLC (5% propan-2-ol in hexane) 119 R=10.5 

min, ent-119 R=1 1.2 mm, 43% ee. 
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Ethyl (4R)-5-tert-butyldiphenylsilyloxy-4-N,N-dibdnzylamiflO-3-OXO-PefltaflOate 

127 

NBn2  

EtO ,OTBDPS 

From methyl ester 109: 

To a solution of LiHMDS (2.79 cm', 1.06 M in THF, 2.79 mmol) at —78 °C was 

added ethyl acetate (0.270 cm 3,  1.21 mmol) and the solution stirred at —78 °C for 25 

mins. The methyl ester 109 (300 mg, 0.560 mmol) in THF (4 cm 3)  was added via 

cannula and the resultant solution stirred at —78 °C for 3 hours then warmed to 0 °C 

and stirred at 0°C for 1 hour. The reaction was quenched by the addition of saturated 

aqueous NH4CI (10 cm3) and the aqueous phase was extracted with DCM (3 x 10 

cm3). The combined organic phases were washed with brine (20 cm 3), dried 

(MgSO4) and concentrated under reduced pressure. The residue was 

chromatographed on silica gel [hexane:Et20 (10:01 to give the title compound as a 

pale yellow oil (260 mg, 78%). Rf [hexane:EtOAc (4:1)] 0.62; [aID +29.9 (c 0.80, 

CHC13); Vm (neat)/cm' 3069, 2930, 2856, 1745, 1716, 1427; oH (250 MHz, CDC13) 

7.80-7.21 (20H, m, An]), 4.18 (2H, q, J 7.2, OCH2CH3), 4.17-4.09 (2H, m, C5H2), 

3.92 (2H, d, J 13.6, NCHxHyPh x 2), 3.81 (2H, d, J 13.6 NCHxHyPh x 2), 3.76-3.72 

(111, m, C4H), 3.69 (1H, d, J 16.0, C2HCHD), 3.58 (1H, d, J 16.0, C2HCHD), 1.27 (3H, 

t, J 7.2, OCH2CH3), 1.14 (9H, s, 'Bu); Oc  (62.9 MHz) 203.3 (C), 167.8 (C), 139.6 

(2C), 136.1 (2 x CH), 136.0 (CH), 135.7 (C), 135.2 (C), 130.3 (2 x CH), 129.4 (4 x 

CH), 128.9 (4 x CH), 128.7 (2 x CH), 128.2 (3 x CH), 128.1 (CH), 127.2 (CH), 67.6 

(CH), 61.6 (CH2), 60.7 (CH2), 55.6 (2 x CH2), 47.5 (CH2), 27.3 (3 x CH3), 19.6 (C), 

14.5 (CH3); mlz (FAB) 594 ([M+H],12%), 478 (204), 199 (12), 181 (7), 135 (33), 

91(100); HRMS (FAB) C37H44NO43Si [M+H] +,requires 594.3040, found 594.3039. 
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From acid 145: 

To a solution of acid 145 (500 mg, 0.95 8 mmol) in THF (10 cm 3)  was added N,N-

carbonyldiimidazole (542 mg, 3.35 mmol). The solution was stirred at room 

temperature for 2 hours. Meanwhile to a solution of LiHMDS (2.88 cm', 1.0 M in 

THF, 2.88 mmol) at —78 °C was added ethyl acetate (0.280 cm 3 , 2.88 mmol) and the 

resultant solution was stirred for 20 mins at —78 °C. The imidazolide 157 (500 mg, 

0.958 mmol) in THF (10 cm 3)  was added via cannula. The reaction mixture was 

stirred at —78 °C for 20 mins and allowed to warm to 0 °C over 30 mins and stirred 

for a further 1 hour at 0 °C. The reaction was quenched by the addition of saturated 

aqueous NH4C1 (15 cm3) and the aqueous phase was extracted with DCM (3 x 15 

cm3). The combined organic phases were washed with brine (30 cm 3), dried ( 

MgSO4) and concentrated under reduced pressure. The residue was chromatographed 

on silica gel [hexane:EtOAc (10:1)] to give the title compound as a pale yellow oil 

(510 mg, 90%); [a]D +33.6 (c 0.27, CI-1C13); all other spectroscopic data was 

identical to the compound from methyl ester 109. 

Ethyl (3R,4R)5tertbutyldiphenylsily1oxy4-N,N-dibenzylamino-3-hydrOxy-

pentanoate 122 

NBn2  

EtO3..-OTBDPS 

0 OH 

To a solution of /i-keto ester 127 (360 mg, 0.621 mmol) in Et 20 (8 cm3) and MeOH 

(3 cm3) was added acetic acid (ca. 1 cm 3)  until the solution was pH 4. The solution 

was cooled to 0 °C and sodium cyanoborohydride (385 mg, 6.22 mmol) was added. 

Once effervescence had ceased the resulting solution was stirred at r.t. for 7 hours. 

The reaction was quenched by the addition of a saturated solution of NH 4C1 (30 cm 3) 

and the aqueous phase was extracted with DCM (3 x 30 cm 3). The combined organic 

phases were washed with brine (40 cm 3), dried (MgSO4) and concentrated under 
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reduced pressure. The residue was chromatographed on silica gel [hexane:Et20 (7:1)] 

to give the title compound (290 mg, 81%) as a colourless oil. Rf {hexane:Et20 (1:1)] 

0.38; [aID —18.75 (c 1.6, CHC13); Vm (neat)/cm' 3456, 3070, 2931, 2858, 1732, 

1428; 8H (250 MHz, CDCI3) 7.76-7.24 (20H, m, ArH), 4.24-4.20 (11-1, m, C 3HOH), 

4.19 (2H, q, J 7.1, OCH2CH3), 4.18-4.06 (2H, m, C5H2), 4.05 (2H, d, J 13.3, 

NCHxHyPh x 2), 3.60 (2H, d, J 13.3, NCHxHyPh x 2), 2.77-2.72 (1H, m, C4H), 2.45 

(1H, dd, J 15.2, 3.0, C2HCHD), 2.30 (1H, dd, J 15.2, 9.0, C2FICHD), 1.28 (3H, t, J7.1, 

OCH2CH3), 1.15 (9H, s, 'Bu); öc (62.9 MHz) 172.4 (C), 139.5 (2C), 136.2 (2 x CH), 

136.1 (2 x CH), 133.3 (C), 133.2 (C), 130.5 (CH), 130.4 (CH), 129.5 (4 x CH), 128.9 

(4 x CH), 128.3 (4 x CH), 127.7 (2 x CH), 65.8 (CH), 63.4 (CH), 60.9 (CFI2), 60.6 

(CH2), 54.9 (2 x CH2), 40.1 (CH2), 27.4 (3 x CH3), 19.6 (C), 14.6 (CH3); mlz (FAB) 

596 ([M+H],40%), 478 (51), 326 (12), 197 (12), 135 (26), 91(100); HRMS (FAB) 

C37H46NO4Si [M+H] requires 596.3196, found 596.3197; HPLC (5% propan-2-ol in 

hexane) 122 R=9.1 mm, ent-121 R10.8 mm, 70% ee. 

acid methoxy methyl amide 123 

OMe 	NBn2 

Me 114 5 OTBDPS  
0 OH 

To a slurry of NO-dimethylhydroxylamine.hydrochloride (371 mg, 3.82 mmol) in 

THF (4 cm3) at 0°C was added trimethylaluminium (3.82 cm 3 , 2.0 M in toluene, 7.64 

mmol). The solution was stirred at 0 °C for 5 minutes then allowed to warm to room 

temperature over ca. 15 minutes, after which time a clear solution remained. 122 

(380 mg, 0.637 mmol) in THF (4 cm 3)  was added dropwise via cannula. The mixture 

was warmed to 35 °C and stirred for 3 hours. The reaction mixture was cooled and 

then cannulated rapidly into a mixture of DCM (30 cm 3) and saturated aqueous 

potassium sodium tartrate (30 cm) and stirred vigorously for 5 hours whereupon two 

distinct phases were apparent. The aqueous phase was extracted with DCM (3 x 30 
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cm3). The combined organic phases were dried (MgSO4) and concentrated under 

reduced pressure. The residue was chromatographed on silica gel [hexane:EtOAc 

(4:1) to give the title compound (370 mg, 95%) as a colourless oil. Rf [hexane:EtOAc 

(4:1)] 0.34; [aID —4.74 (c 0.45, CHC13); Vm (neat)/cm' 3460, 3075, 2925, 2826, 

1644, 1428; oH (360 MHz, CDC1 3) 7.82-7.24 (2011, m, ArH), 4.28-4.20 (1H, m, 

C3HOH), 4.10 (111, dd, J 10.9, 8.0, C5HAHBOTBDPS), 4.04 (2H, d, J 13.4, 

NCHHyPh x 2), 4.00 (1H, dd, J 10.9, 5.4, C5HAHBOTBDPS), 3.91 (2H, d, J 13.4, 

NCHHyPh x 2), 3.60 (3H, s, OMe), 3.20 (3H, s, Me), 2.80-2.73 (1H, m, C4H), 2.69-

2.58 (1H, br m, C2HCHD), 2.30-2.19 (1H, br m, C2HCHD),  1.12 (911, s, 'Bu); 0c  (90.6 

MHz) 173.6 (C), 140.2 (2C), 136.2 (2 x CH), 136.1 (2 x CH), 133.6 (C), 133.5 (C), 

130.4 (CH), 130.3 (CH), 129.6 (4 x CH), 128.7 (4 x CH), 128.3 (4 x CH), 127.4 (2 x 

CH), 66.7 (CH), 63.6 (CH3), 61.5 (CH), 61.4 (CH 2), 55.4 (2 x CH2), 37.2 (CH2), 32.4 

(CH3), 27.4 (3 x CH3), 19.6 (C); mlz (FAB) 416 ([M+H] +,72%), 478 (81), 341 (17), 

197 (43), 181 (16), 135 (70), 105 (34), 91 (100); HRMS (FAB) C 37H46N204Si 

[M+H]+  requires 611.3305, found 611.3305. 

(3R,4R)-5-tert-butyldiphenylsilyloxy-4-amino-3-hydroxypentaflOiC acid methoxy 

methyl amide 124 

OMe 	NH2  

Me 14 5 OTBDPS  

0 OH 

To a solution of 123 (300 mg, 0.492 mmol) in methanol (5 cm 3)  was added 20% 

Pd(OH)2/C (300 mg), the flask was flushed with argon before being stirred under an 

atmosphere of hydrogen for 12 hours. The reaction mixture was filtered through a 

layer of celite and concentrated under reduced pressure. The residue was 

chromatographed on silica gel [DCM:MeOH (50:1) to give the title compound (210 

mg, 100%) as an oil. Rf [DCM:MeOH (10:1)] 0.12; 0H  (250 MHz, CDC1 3) 8.14-8.12 

(2H, br s, NH2), 7.60-7.32 (10H, m, ArH), 4.25-4.20 (1H, br m, C3HOH), 4.01-3-85 
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(2H, m, C5H2), 3.50 (3H, s, OMe), 2.97 (3H, s, Me), 2.90-2.82 (2H, br m, C2HCHD + 

C411), 2.39-2.30 (1H, br m, C2HCHD), 1.08 (9H, s, 'Bu). 

Ethyl (3R,4R)-5-tert-butyldiphenylsilyloxy-4-amino-3-hydroxy-pefltaflOate 158 

NH2 

EtO3-OTBDPS 

0 OH 

To a solution of fl-hydroxy ester 122 (270 mg, 0.451 mmol) in methanol (5 cm') was 

added 20% Pd(OH)2/C (270 mg), the flask was flushed with argon before being 

stirred under an atmosphere of hydrogen for 12 hours. The reaction mixture was 

filtered through a layer of celite and concentrated under reduced pressure. The 

residue was chromatographed on silica gel [DCM:MeOH (50:1) to give the title 

compound (186 mg, 100%) as an oil. Rf [DCM:MeOI-1 (10:1)] 0.20; [aI D  —11.1 (c 

1.2, CHC13 ; Vm (neat)/cm' 3363, 2932, 2888, 1724, 1426; 8H  (250 MHz, CDC1 3) 

7.76-7.06 (10H, m, ArH), 4.22 (2H, q, J 7.0, OCH2CH3), 3.78-3.47 (5H, br m, 

C3HOH + C5H2, NH2), 3.10-3.00 (1H, m, C4!]), 2.65 (1H, dd, J 15.0, 3.2, C2HCHD), 

2.30 (1H, dd, J 15.0, 8.9, C2HCHD), 1.31 (3H, t, J7.0, OCH2CH3), 1.13 (9H, s, 

öc (50.3 MHz) 169.9 (C), 134.7 (2 x CH), 132.2 (CH), 131.3 (C), 129.9 (C), 128.9 

(CH), 128.0 (4 x CH), 126.9 (2 x CH), 64.7 (CH), 61.5 (CH), 60.1 (CH2), 59.9 

(Cl-I2), 45.6 (CH2), 25.5 (3 x CH3), 18.2 (C), 14.9 (CH3); mlz (FAB) 416 

([M+H] 1 ,100%), 199 (20), 142 (7), 135 (38), 105 (12), 95 (11); HRMS (FAB) 

C23H34NO4Si [M+H] requires 416.2257, found 416.2252. 
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(4R,5R)-5-tert-Butyldiphenylsilyloxymethyl-4-hydroxypyrrolidin-2-one 129 

H 

TBDPSO 2 0  

HO 

From amino ester 124: 

A solution of amino alcohol 124 (186 mg, 0.448 mmol) in MeOH (4 cm 3)  was heated 

to reflux and held at reflux for 24 hours. The solution was cooled and concentrated 

under reduced pressure. The remaining residue was chromatographed on silica gel 

gel [DCM:MeOH (50:1) to give the title compound (130 mg, 78%) as a white solid. 

Rf [DCM:MeOH (10:1)] 0.30; mp 110-112 °C; [c]D +11.30 (c 0.2, CHC13); Vmax  

(neat)/cm' 3385, 2931, 1682, 1427; 5H  (250 MHz, CDC13) 7.66-7.25 (10H, m, An]), 

6.20 (1H, br s, NH), 4.61 (111, ddd, J 10.4, 7.0, 4.2, C4HOH), 3.95 (1H, dd, J 10.5, 

5.8, CHAHBOTBDPS), 3.81 (1H, dd, J 10.5, 4.8, CHAHBOTBDPS), 3.78 (1H, dt, J 

10.4, 5.5, C5H), 3.29 (1H, br s, OH), 2.68 (1H, dd, J 17.3, 7.0, C3HCIHID), 2.41 (1H, 

dd, J 17.3, 4.2, C3HCHD), 1.05 (9H, s, 'Bu); ö (62.9 MHz) 176.0 (C), 135.4 (2 x 

CH), 135.3 (2 x CH), 132.4 (C), 132.2 (C), 130.0 (2 x CH), 128.0 (4 x CH), 68.2 

(CH), 63.0 (CH2), 59.2 (CH), 40.3 (CH2), 26.7 (3 x CH3), 19.0 (C); mlz (FAB) 370 

([M+H], 59%), 292 (34), 234 (37), 214 (66), 199 (80), 135 (94), 105 (46); ITRMS 

(FAB) C21 H28NO3Si [M+H]requires 370.1838, found 370.1838. 

From amino methyl methoxy amide 158: 

A solution of 158 (100 mg, 0.234 mmol) in MeOH (3 cm 3)  was heated to reflux and 

held at reflux for 24 hours. The solution was cooled and concentrated under reduced 

pressure. The remaining residue was chromatographed on silica gel gel 

[DCM:MeOH (50:1) to give the title compound (62 mg, 72%) as a white solid; 

spectroscopic data was identical to the compound from amino ester 124. 
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(4R,5R)-2-terI-Butyldiphenylsilyloxymethyl-3-hydrOXYPYrrOlidifle 159 

TBDPSO 5 

To a solution of pyrrolidinone 129 (120 mg, 0.330 mmol) in THF (5 cm3) at 0°C was 

added BH39THF complex (4.95 cm3 , 1.0 M in THF, 4.95 mmol). The solution was 

stirred at 0 °C until effervescence ceased and then stirred at reflux for 24 hours. 

Methanol (ca. 5 cm 3)  was added cautiously to the cooled (0 °C) reaction mixture. 

The resulting mixture was concentrated under reduced pressure. The residue was 

chromatographed on silica gel DCM: MeOH (50:1) to give the title compound (105 

mg, 86%) as a white solid. mp  100-101 °C; Rf [DCM: MeOH (10:1)] 0.25; [aID +8.5 

(c 0.5, CHC13); SI-I (250 MHz, CDC1 3) 7.69-7.60 (4H, m, ArH), 7.52-7.25 (6H, m, 

Ark!), 6.20 (1H, s, NJ]), 4.56 (1H, ddd, J 11.4, 6.3, 4.6, C3HOH), 4.52-4.51 (1H, br s, 

OH), 4.23 (1H, dd, J 11.2, 4.8, CHAHBOTBDPS), 4.20 (1H, dd, J 11.2, 8.0, 

CHAHBOTBDPS) 3.59 (1H, ddd, J 11.4, 8.0, 4.8, C21]), 3.06 (1H, ddd, J 12.7, 7.6, 

6.0, C5HEHF), 2.97 (1H, ddd, J 12.7, 6.5, 4.5, C5HEHF), 2.19 (1H, ddt, J 16.1, 6.0, 

4.5, C4HCHD), 1.94 (1H, ddt, J 16.1, 7.6, 6.5, C4HCHD), 1.08 (9H, s, 'Bu) ; 8c (62.9 

MHz) 135.5 (2 x CH), 135.3 (2 x CH), 131.6 (C), 131.2 (C), 130.3 (2 x CH), 128.0 

(4 x CH), 73.8 (CH), 69.0 (CH), 60.3 (CH2), 52.8 (CH2), 32.5 (CH2), 26.8 (3 x CH3), 

19.0 (C); mlz (FAB) 356 (MH, 65%), 278 (26), 197 (53), 183 (22), 135 (100); 

HRMS (FAB) C21 H30NO2Si (MH) requires 356.2046, found 356.2043. 
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Tetrahydro-1-methyl-3,3-diphenyl-1H,3H-pyrrOlO 11,2-cl 11,3,21 -oxazaborole-

borane (CBS.BH3 complex) 178 

H Ph 

N — E"O 

BH3  Me 

To a solution of (+)-a, a-diphenyl-2-pyrrolidinemethanol (400 mg, 1.58 mmol) in 

toluene was added methylboronic acid (63.0 mg, 1.06 mmol). The mixture was 

stirred at r.t. for 2 hours. The solution was then heated to reflux and subsequently 

concentrated under vacuum. This was followed by three successive toluene flushes 

(3 x 3 cm3), each followed by vacuum distillation to remove any water and unreacted 

methylboronic acid. The flask was subsequently cooled to r.t. and dimethylsulfide-

borane was added (1.25 cm3 , 12.6 mmol). The mixture was stirred for 12 hours 

during which time a white crystalline solid formed. This was dried under vacuum for 

10 hours thus removing any excess dimethylsulfide to yield the title compound (375 

mg, 85%), mp 125-126 °C; mlz (FAB) 292 ([M+H],45%), 278 (20), 254 (100), 136 

(72); HRMS (FAB) C 18H24B2N0 [M+H] requires 292.2047, found 292.2046. 

Ethyl (3S,4R)5tertbutyldiphenylsily1oxy4-N,N-dibenzy1amiflO-3-hYdrOXY-

pentanoate 121 and Ethyl (3R,4R)-5-lert-butyldiphenylsilyloxy-4-N,N-

dibenzylamino-3-hydroxy-pentanoate 122 

NBn2 	 NBn2 

EtOfr.rOTBDPS EtO 
	 I  0 OH 0 OH 

To a solution of the CBS.BH3 complex 178 (23 mg, 0.085 mmol) in THF (2 cm 3) 

was added BH 3 .SMe2 complex (0.16 cm 3 , 0.17 mmol). The solution was stirred for 

10 mins. The fl-keto ester 127 (100 mg, 0.173 mol) in THF (2 cm 
3)  was added via 
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cannula. The solution was stirred at 45 °C for 24 hours. The reaction was cooled to 

r.t. and quenched by the addition of MeOH and allowed to stir for 1 hour before 

being concentrated under reduced pressure. The residue was chromatographed on 

silica gel [hexane :Et20 (10:01 to give the title compounds (60 mg, 60%) as a 1:1 

mixture of diastereomers. Rf [hexane:Et 20 (1:010.37;  'H NMR data in agreement 

with compounds 121 and 122. 

Methyl (3S,4R)5-tertbuty1diphenylsi1y1oxy-4-N,N-dibenzylamiflO-3-hYdrOXy-

pentanoate 118 and Methyl (3R,4R)-5-tert-butyldiphenylsilyloxy-4-N,N-

dibenzylamino-3-hydroxy-pentanoate 119 

NBn 2 	 NBn 2  

MeOfr&..-OTBDPS MeO ,OTBDPS 

0 OH 	 0 OH 

Low Pressure, High Temperature Hydrogenation 

The methyl ester 132 (113 mg, 0.195 mmol) was dissolved in MeOH:DCM (1.5 cm3 : 

1.5 cm3). Three freeze and thaw cycles were carried out and the solution was 

cannulated into a flask containing [RuC1 2(S-B1NAP)] n  (1 mol%) (Note: all 

manipulations involving [RuC1 2(S-B1NAP)] were carried out in a glove bag under an 

atmosphere of argon). The solution was stirred at 50 °C under an atmosphere of 

hydrogen (1 atm) for 5 days. The solution was flushed with argon before being 

concentrated under reduced pressure. The residue was chromatographed on silica gel 

[hexane:Et20 (10:1)] to give the title compounds (62 mg, 58%) as a 4:1 mixture of 

diastereomers based on recovered starting material. Rf [hexane:Et20 (1:1)] 0.38; 'H 

NMR data in agreement with compounds 118 and 119. 
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High Pressure, Low Temperature Hydrogenation 

The methyl ester 132 (110 mg, 0.201 mmol) was dissolved in MeOH:DCM (1.0 cm 3 : 

1.0 cm3). Three freeze and thaw cycles were carried out and the solution was 

cannulated into a flask containing [RuC1 2(S-BINAP)] n  (1 mol%) (Note: all 

manipulations involving [RuC1 2(S-BINAP)] were carried out in a glove bag under an 

atmosphere of argon). The flask was transferred to a high pressure autoclave. The 

autoclave was flushed with nitrogen (3x), then flushed with hydrogen (3x) before 

being stirred at r.t. under an atmosphere of hydrogen (8 atm) for 4.5 days. The 

hydrogen was evacuated and the autoclave flushed with nitrogen (3 x) before 

removal of the flask. The solution was concentrated under reduced pressure to give 

unreacted starting material. 

Methyl (2S)-2-amino-3-0-benzylpropanoate'hydrochloride 161 

NH2. HCI 
MeO OPh 

Acetyl chloride (2.20 cm 3 , 30.8 mmol) was added dropwise to methanol (24 cm 3) at 

0 °C. The mixture was stirred for 15 mins and l-O-benzylserine (2.00 g, 10.3 mmol) 

was then added portionwise to the solution. The resulting mixture was heated to 

reflux and held at reflux for 3 hours. Concentration under reduced pressure provided 

the title compound (2.25 g, 96%) as a solid. Recrystallisation from methanol 

provided an analytical sample, mp 162-164 °C; [a]n+15.2  (c 1.4, MeOH); 8H  (250 

MHz, D20) 7.37-7.26 (5H, m, AiR), 4.57 (1H, d, J 12.0, OCHEHFPh), 4.47 (1H, d, J 

12.0, OCHEHFPh), 4.28 (1H, t, J3.7 CH), 3.93 (1H, dd, J 11.0, 4.2, C3HAHB,),  3.83 

(1H, dd, J 11.0, 3.0, C3HAHB),  3.71 (3H, s, OMe); 8C(62.9  MHz) 169.0 (C), 137.1 

(C), 129.1 (2 x CH), 128.9 (CH), 128.8 (2 x CH), 73.5 (Cl-I2), 66.7 (CH2), 54.1 

(CH3), 53.5 (CH); mlz (FAB) 210 [M+H], 95%), 196 (8), 150 (5), 120 (10), 102 

160 



Experimental 

(10), 91 (100); HRMS (FAB) C 11 H 1 6NO3 [M+H] 4 ,requires 210.1130, found 

210.1133. 

Methyl (2S)-3-0-benzyl-2-N,N-dibenzylaminopropanoate 162 

NBn2  

MeO OPh 

To a solution of ester 161 (2.00 g, 8.71 mmol) in anhydrous acetonitrile (30 cm 
3)  was 

added anhydrous potassium carbonate (5.55 g, 43.6 mmol) followed by benzyl 

bromide (2.38 cm. 3 , 21.8 mmol). The mixture was stirred at room temperature for 24 

hours. H20 (50 cm 3)  was added and the aqueous phase was extracted with EtOAc (3 

30 cm3). The combined organic phases were washed with brine (100 cm 3), dried 

(MgSO4) and concentrated under reduced pressure. The remaining residue was 

chromatographed on silica gel [hexane:EtOAc (10:1)] to give the title compound 

(3.20 g, 94%) as a colourless oil. Rf [hexane:EtOAc (4:1)] 0.60; [U}D —48.5 (c 1.07, 

CHC13); Vm (neat)/cm' 3062, 3028, 2948, 2855, 1735, 1602, 1494, 1453; 6H (250 

MHz, CDC13) 7.41-7.21 (15H, m, ArH), 4.52-4.30 (2H, m, OCH21?h), 3.96 (2H, d, J 

13.9, NCHxHyPh x 2), 3.89 (114, t, J 2.8, C211), 3.85-3.59 (1H, m, C3HAHB), 3.78 

(3H, s, OMe), 3.75-3.68 (1H, m, C3HAHB), 3.72 (2H, d, J 13.9, NCHxHyPh x 2); 6c 

(62.9 MHz) 171.8 (C), 139.5 (2C), 137.9 (C), 128.6 (4 x CH), 128.2 (2 x CH), 128.1 

(4 x CH), 127.4 (3 x CH), 126.9 (2 x CH), 73.0 (CH2), 69.4 (CH2), 60.8 (CH), 55.2 

(2 x CH2), 51.2 (CH3); mlz (FAB) 390 ([M+H], 15%), 330 (32), 282 (8), 268 (41), 

181 (9), 91 (100); HRMS (FAB) C 25H28NO3 [M+H],requires 390.2069, found 

390.2070. 
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(2S)-3-0-benzyl-2-N,N-dibenzylaminopropanoic acid 163 

NBn2 

HO OPh 

To a solution of the ester 162 (300 mg, 0.771 mmol) in THF (8 cm 3) was added a 

slurry of LiOH.H20 (194 mg, 4.63 mmol) in H20 (2 cm 3). The mixture was heated 

to reflux and held at reflux for 4 hours. The solution was cooled to r.t., water (15 

cm 3)  was added and the mixture was acidified to pH 3 with 1 N HC1. The aqueous 

phase was extracted with Et20 (3 x 15 cm). The combined organic phases were 

dried (MgSO4) and concentrated under reduced pressure to give the title compound 

(288 mg, 100%). Rf [hexane:EtOAc (4:1)] 0.13; Vm (neat)/cm' 4059, 3067, 3028, 

2923, 2854, 1715, 1495; SH (250 MHz, CDC13) 7.67-7.03 (15H, m, ArH), 4.63 (1H, 

d, J 11.9, OCHEHFPh), 4.55 (1H, d, J 11.9, OCHEHFPh), 4.17 (1H, dd, J 10.3, 4.6, 

C3HAHB), 4.06 (2H, d, J 13.3, NCHHyPh x 2), 4.01-3.67 (2H, m, C3HAHB+C21]), 

3.94 (211, d, J 13.3, NCHxHyPh x 2); 6c  (62.9 MHz) 171.1 (C), 137.5 (C), 135.8 

(2C), 129.2 (4 x CH), 128.7 (4 x CH), 128.4 (2 x CH), 128.1 (2 x CH), 127.8 (CH), 

127.2 (2 x CH), 73.4 (CH2), 67.5 (CH2), 61.5 (CH), 55.1 (2 x CH2); mlz (FAB) 376 

(MH, 100%), 330 (16), 286 (31), 240 (12) 181 (20), 91 (91); HRMS (FAB) 

C24H26NO3 (MH) requires 376.1913, found 376.1914. 
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Ethyl (4S)-5-0-benzyl-4-N,N-dibenzylamino-3-oxo-pefltaflOate 165 

NBn2 

EtOi(rO Ph 

To a solution of acid 163 (300 mg, 0.825 mmol) in THF (8 cm 
3)  was added N,N-

carbonyldiimidazole (404 mg, 2.49 mmol). The solution was stirred at r.t. for 2 

hours. Meanwhile to a solution of LiHMDS (2.49 cm', 1.0 Min THF, 2.49 mmol) at 

—78 °C was added ethyl acetate (0.240 cm 3, 2.49 mmol) and the solution stirred for 

20 mins. The imida.zolide 164 (300 mg, 0.83 mmol) in THF (8 cm 3) was added via 

cannula and the solution stirred at —78 °C for 30 mins then warmed to 0 °C over a 

period of 1 hour. The mixture was stirred at 0 °C for 1 hour before being quenched 

with saturated aqueous NH 4C1 (20 cm3). The aqueous phase was extracted with DCM 

(3 x 20 CM)  . The combined organic phases were washed with brine (30 cm 3), dried 

(MgSO4) and concentrated under reduced pressure. The residue was 

chromatographed on silica gel [hexane:EtOAc(10: 1)] to give the title compound (3 40 

mg, 92%) as a pale yellow oil. Rf [hexane:EtOAc (4:1)] 0.53; Vm (neat)/cm' 3062, 

3029, 2081, 2926, 2860, 1744, 1716, 1494, 1453; 8H (250 MHz, CDC13) 7.43-7.22 

(15H, m, ArH), 4.62 (1H, d, J 12.0, OCHEHFPh), 4.55 (1H, d, J 12.0, OCHEHFPh), 

4.14 (2H, q, J7.2, OCH2CH3), 4.01 (1H, dd, J9.2, 6.5, C5HAHB), 3.94 (1H, dd, J9.2, 

4.0, C5HAHB), 3.85 (2H, d, J 13.1, NCHxHyPh x 2), 3.75-3.65 (1H, m, C4JJj, 3.73 

(1H, d, J 16.0, C2HcH0), 3.70 (2H, d, J 13.1, NCHHyPh x 2), 3.54 (1H, d, J 16.0, 

C21-ICHD), 1.23 (3H, t, J7.2, OCH2CH3); 6c(6 2.9 MHz) 202.7 (C), 167.3 (C), 138.9 

(2C), 137.9 (C), 128.9 (4 x CH), 128.5 (2 x CH), 128.3 (4 x CH), 127.5 (2 x CH), 

127.1 (2 x CH), 126.8 (CH), 73.4 (CH2), 66.1 (CH), 65.4 (CH2), 61.0 (CH 2), 55.0 (2 

X CH2), 46.5 (CH2), 13.9 (CH3); mlz (FAB) 446 ([M+H],100%), 356 (39), 330 (53), 

240 (22), 196 (17), 132 (9), 106 (37), 91(97); HRMS (FAB) C 28H32N04 [M+H]+  

requires 446.2331, found 446.2332. 
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Ethyl (3S,45)-5-0-benzyl-4-N,N-dibenzylamino-3-hydroxy-pentaflOate 166 

NBn2  

0 OH 

To a solution of ester 165 (80 mg, 0.18 mmol) in Et20 (4 cm 3),  MeOI-I (2 cm) was 

added acetic acid (Ca. 0.5 cm 3)  until the solution was pH 4. The solution was cooled 

to 0 °C and sodium cyanoborohydride (60 mg, 1.4 mmol) was added. Once 

effervescence ceased the solution was warmed to r.t. and stirred for 8 hours. The 

solution was quenched by the addition of a saturated solution of NI-LCl (15 cm') and 

the aqueous phase was extracted with DCM (3 x 15 cm3). The combined organic 

phases were washed with brine (20 cm 3), dried (MgSO4) and concentrated under 

reduced pressure. The residue was chromatographed on silica gel 

[hexane:EtOAc(6:1)] to give the title compound (72 mg, 90%) as an oil. Rf 

[hexane:EtOAc (4:1)] 0.38; Vma,, (neat)/cm' 3371, 2936, 1726, 1452; 6H  (250 MHz, 

CDC13) 7.43-7.19 (15H, m, An]), 4.59 (1H, d, J 12.0, OCHEHFPh), 4.52 (111, d, J 

12.0, OCHEHFPh), 4.19 (1H, ddd, J 11.2, 8.5, 3.6, C3HOH), 4.14 (2H, q, J 7.2, 

OCH2CH3), 4.05 (2H, d, J 112, NCHHyPh x 2), 3.80 (1H, dd, J 10.2, 5.5, 

C5HAHB), 3.69 (1H, dd, J 10.2, 4.8, C5HAHB), 3.53 (2H, d, J 13.2, NCHxHyPh x 2), 

3.47 (111, s, OH), 2.80-2.72 (1H, m, C4H), 2.50 (1H, dd, J 15.4, 3.6, C2HCHD), 2.37 

(1H, dd, J 15.4, 8.5, C2HCHD), 1.23 (3H, t, J 7. 1, OCH2CH3); öc (62.9 MHz) 172.0 

(C), 138.8 (2C), 137.8 (C), 129.0 (4 x CH), 128.4 (6 x CH), 127.7 (CH), 127.5 (2 x 

CH), 127.1 (2 x CH), 73.2 (CH2), 66.3 (CH2), 65.7 (CH2), 61.3 (CH), 60.4 (CH), 

54.3 (2 x CH2), 39.45 (CH2), 14.0 (CH3); mlz (FAB) 448 ([M+H] +, 20%), 330 (19), 

326 (5), 210 (2), 181 (4), 91 (100); HRMS (FAB) C 28H34N04 [M+H] requires 

448.2488, found 448.2489; HPLC (5% propan-2-ol in hexane) R18.7 mm, R21.8 

mm, 0% ee. 
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Methyl (2S)-2-amino-3-phenylpropanoate.hydrochloride 230 

NH2 . HCI 

MeOfrPh 

Acetyl chloride (17.2 cm 3 , 240 mmol) was added dropwise to methanol (150 cm 3)  at 

0 °C. The mixture was stirred for 15 mins and L-phenylalanine (13.0 g, 78.7 mmol) 

was then added portionwise to the solution. The resulting mixture was heated to 

reflux and held at reflux for 3 hours. Concentration under reduced pressure provided 

the title compound (16.2 g, 95%) as a solid. Recrystallisation from methanol 

provided an analytical sample, mp 158-160 °C; [a] D  +30.9 (c 1.8, EtOH) [lit., 

(Aldrich) mp 158-162 °C; [aID +32.4 (c 2.0, EtOH)]; 8H  (250 MHz, CDC13) 7.45-

7.24 (5H, m, ArIJ), 4.37 (1H, dd, J7.5, 5.9, CH), 3.81 (3H, s, OMe), 3.30 (1H, dd, J 

12.6, 5.9, C3HAHB), 3.19 (1H, dd, J 12.6, 7.5, C3HAHB); 8 c  (62.9 MHz) 170.1 (C), 

133.7 (C), 129.3 (2 x CH), 129.2 (2 x CH), 128.1 (C), 54.1 (CH 3), 53.5 (CH), 35.6 

(CH2); m/z (FAB) 180 ([M+H], 100%), 154 (78), 135 (68), 91(90); HRMS (FAB) 

C 10H14NO2 [M+H] requires 180.1024, found 180.1024; Found: C, 55.68; H, 6.50; 

N, 6.50. C 10H14NO2 requires C, 55.60; H, 6.52; N, 6.37%. 

Methyl (2S)-2-N,N-dibenzylamino-3-phenylpropanoate 229 

NBn 2  
MeO1(Ph 

To a solution of methyl ester 230 (10.0 g, 46.7 mmol) in anhydrous acetonitrile (150 

cm 3)  was added anhydrous potassium carbonate (34.7 g, 250 mmol) followed by 

benzyl bromide (14.2 cm 3,  120 mmol). The mixture was stirred at room temperature 

for 24 hours. Water (150 cm 3)  was added and the aqueous phase was extracted with 

EtOAc (3 x 125 cm. 3). The combined organic phases were washed with brine (100 
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cm3), dried (MgSO4) and concentrated under reduced pressure. The remaining 

residue was chromatographed on silica gel [hexane:EtOAc (8:1)] to give the title 

compound (16.2 g, 95%) as a colourless oil. Rf [hexane:EtOAc (4:1)] 0.76; [a]D - 

86.1 (c 0.38, CHC13); vm (neat)/cm' 3027, 2948, 2847, 1731, 1453; 8H  (250 MHz, 

CDC13) 7.38-7.15 (15H, m, ArH), 3.92 (2H, d, J 14.0, NCHxHyPh x 2), 3.73 (3H, s, 

OMe), 3.67 (1H, dd, J8.3, 7. 1, CA, 3.51 (2H, d, J 14.0, NCHxHyPh x 2), 3.08 (1H, 

dd, J 13.9, 7. 1, C3HAHB), 2.94 (1H, dd, J 13.9) 8c  (60.9 MHz) 173.2 (C), 139.7 (2C), 

138.6 (C), 129.9 (2 x CH), 129.1 (4 x CH), 128.6 (6 x CE), 127.4 (2 x CH), 126.7 

(CH), 62.8 (CE3), 54.9 (2 x CH2), 51.6 (CH), 36.2 (CH2); mlz (FAB) 360 ([M+H], 

36%), 358 (40), 300 (66), 268 (84), 91(100); HRMS (FAB) C 24H26NO2 [M+H] 1  

requires 360.1963, found 360.1957. 

(2S)-2-NA-dibenzylamino-3-phenylpropanoic acid 227 

NBn2 

HOi( Ph  

To a solution of methyl ester 229 (4.20 g, 11.7 mmol) in THF (40 cm 
3)  was added 

dropwise a slurry of LiOH.H20 (2.95 g, 70.2 mmol) in water (10 cm 3). The solution 

was heated to reflux and held at reflux for 6 hours. The solution was cooled to r.t.. 

Water (40 cm 3)  was added and the aqueous phase was extracted with EtOAc (3 x 20 

cm3). The mixture was acidified to pH 3 with IN HC1 and the aqueous phase was 

extracted with Et20 (3 x 50 cm 3). The combined organic phases were dried (MgSO4) 

and concentrated under reduced pressure to give the title compound (3.00 g, 75%) as 

a white solid. Rf [hexane:EtOAc (4:1)] 0.30; mp 115-117 °C; [a]D —65.7 (c 0.54, 

CHC13); Vmax/ (solution cell, CHC13) cm 1  3402, 3027, 1704, 1453; oH (250 MHz, 

CDC13) 7.43-7.16 (15H, m, Ark!), 3.91 (2H, d, J 13.8, NCHHyPh x 2), 3.85 (1H, m, 

CA, 3.82 (2H, d, J 13.8, NCHxHyPh x 2), 3.40 (1H, dd, J 14.4, 6.2, C3HAHB), 3.15 

(1H, dd, J 14.4, 8.7, C3HAHB); 0c (62.9 MHz) 176.6 (C), 138.6 (2C), 138.4 (C), 129.9 
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(2 x CH), 129.3 (4 x CH), 128.9 (6 x CH), 127.9 (2 x CH), 127.0 (CH), 63.0 (CH), 

54.9 (2 x CH2), 34.7 (CH2); mlz (FAB) 346 ([M+H], 74%), 300 (62), 254 (26), 210 

(19), 181 (11), 91(100); HRMS (FAB) C 23H24NO2 [M+H] requires 346.1807, found 

346.1807. 

Ethyl (4S)-4-N,N-Dibenzylamino-3-oxo-5-phenylpefltaflOate 226 

N Bn2 

EtO1..4Ph 

To a solution of acid 227 (1.99 g, 5.77 mmol) in THF (27 cm 3) was added N,N-

carbonyldiimidazole (2.80, 17.3 mmol). The solution was stirred at room temperature 

for 2 hours. Meanwhile to a solution of LiHMDS (19.4 cm 3, 1.0 M in THF, 19.4 

mmol) at —78 °C was added ethyl acetate (1.89 cm 3 , 19.4 mmol) and the resultant 

solution was stirred for 20 mins at —78 °C. The imidazolide 231 (1.99g, 4.84 mmol) 

in THF (27 cm 3)  was introduced via cannula. The reaction mixture was stirred at —78 

°C for 20 mins and allowed to warm to 0°C over 30 mins and stirred for a further 1 

hour at 0°C. The reaction was quenched by the addition of saturated aqueous NH 4C1 

(50 cm3) and the aqueous phase was extracted with DCM (3 x 50 cm 3). The 

combined organic phases were washed with brine (75 cm3), dried (MgSO4) and 

concentrated under reduced pressure. The residue was chromatographed on silica gel 

[hexane:EtOAc (10:1)] to give the title compound (1.75 g, 88%) as a pale yellow oil. 

Rf [hexane:EtOAc (4:1)] 0.85; [aID —32.29 (c 2.66, CHC13); Vm (neat)/cm 3085, 

3027, 2841, 1745, 1716, 1495, 1454; 8 t4 (250 MHz, CDC13) 7.42-7.08 (15H, m, 

ArH), 4.09-3.94 (2H, m, OCH2CH3), 3.91 (2H, d, J 13.4, NCHHyPh x 2), 3.75 (1H, 

d, J 15.9, C2HCHD), 3.72 (1H, dd, J9.1, 3.8 CA, 3.61 (2H, d, J 13.4, NCHxHyPh x 

2), 3.45 (1H, d, J 15.9 C2HCHD), 3.30 (1H, dd, J 13.5, 9. 1, C5HAHB), 3.03 (1H, dd, J 

13.5, 3.8, C5HAHB), 1.15 (3H, t, J 7.0, OCH2CH3); 8c (62.9 MHz) 202.5 (C), 167.7 

(C), 139.6 (C), 139.2 (2C), 129.9 (2 x CH), 129.5 (4 x CH), 128.9 (4 x CH), 128.8 (2 
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x CH), 128.6 (CH), 127.9 (2 x CH), 68.8 (CH), 61.5 (CH2), 55.0 (2 x CH2), 47.1 

(CH2), 28.8 (CH2), 14.3 (CH3); mlz (FAB) 416 [M+H], 13%), 324 (15), 300 (55), 

208 (10), 181 (12), 91(100); HRMS (FAB) C 27H30NO3 [M+H] requires 416.2226, 

found 416.2226. 

Ethyl (3S,45)-4-N,N-Dibenzytamino-3-hydroxy-5-phenylpefltaflOate 221 

NBn2  
EtOi, 213,)4 	Ph 

0 OH 

To a solution of f3-keto ester 226 (1.00 g, 2.40 mmol) in Et20 (30 cm 3) and MeOH (5 

cm 3)  was added acetic acid (Ca. 2 cm 3)  until the solution was pH 4. The solution was 

cooled to 0 °C and sodium cyanoborohydride (908 mg, 14.4 mmol) was added. Once 

effervescence had ceased the resulting solution was stirred at r.t. for 7 hours. The 

reaction was quenched by the addition of a saturated solution of NH 4C1 (40 cm 3)  and 

the aqueous phase was extracted with DCM (3 x 50 cm3). The combined organic 

phases were washed with brine (80 cm 3), dried (MgSO4) and concentrated under 

reduced pressure. The residue was chromatographed on silica gel 

[hexane:EtOAc(8:1)] to give the title compound (800 mg, 80%) as a colourless oil. 

Rf [hexane:EtOAc (4:1)] 0.60; [aID +16.50 (c 0.52, CHC13); V,,, (neat)/cm' 3516, 

3026, 2808, 1727, 1495, 1454; oH (250 MHz, CDC13) 7.42-7.23 (15H, m, ArH), 4.26 

(2H, q, J 7. 1, OCH2CH3), 4.15 (2H, d, J 13.6, NCHxHyPh x 2), 4.06-4.00 (211, m, 

C3HOH + OH), 3.50 (2H, d, J 13.6, NCHxHyPh x 2), 3.25 (1H, dd, J 11.1, 8.6, 

C5HAHB), 2.93 (2H, m, C 5HAHB + C4!]), 2.51 (1H, dd, J 15.8, 9.8, C2HCHD), 2.19 

(111, dd, J 15.8, 2.6, C2HCHD), 1.27 (3H, t, J 7.2, OCH2CH3) ; 0c (62.9 MHz) 173.3 

(C), 140.5 (2C), 139.7 (C), 129.7 (2 x CH), 129.4 (4 x CH), 129.1 (2 x CH), 128.9 (4 

x CH), 127.6 (2 x CH), 126.7 (CH), 68.4 (CH), 63.5 (CH), 61.0 (CH2), 54.9 (2 x 

CH2), 40.2 (CH2), 31.3 (CH2), 14.3 (CH3); mlz (FAB) 418 ([M+H]+,  80%), 326 (18), 

300 (59), 154 (22), 136 (17), 91(100); HRMS (FAB) C 27H32NO3 [M+H] 4  requires 
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418.23 82, found 418.2384; 1-IPLC (5% propan-2-ol in hexane) 221 R= 18.9 mm, ent-

121 R=15.5 mm, >99% ee. 

Ethyl (3S,4S)4N,NDibenzyIamino-3-tert-butyldimethylsilyloxy-5-

phenylpentanoate 225 

NBn2 

EtO 	 Ph 

0 OTBS 

To a solution of ester 221 (300 mg, 0.719 mmol) in DCM (5 cm 3)  was added 2,6-

lutidine (0.20 em 3, 1.59 mmol) followed by tert-

butyldimethylsilyltrifluoromethanesulfonoate (0.990 cm 3 , 4.32 mmol). The mixture 

was stirred at r.t. for 6 hours. DCM (30 cm 3)  was added and the organic phase was 

washed sequentially with saturated aqueous sodium bicarbonate (30 cm 3), brine (30 

cm3), dried (MgSO4) and concentrated under reduced pressure. The remaining 

residue was chromatographed on silica gel [hexane:EtOAc(10:1)] to give the title 

compound (360 mg, 92%) as an oil. Rf [hexane:EtOAc (4:1)] 0.74; [a]0 +6.92 (c 

0.67, CHC13); Vm (neat)/cm' 3062, 2854, 2928, 1733, 1602, 1494; 8H  (250 MHz, 

CDC13) 7.41-7.07 (15H, m, Art!), 4.29-4.18 (1 H, m, C 3HOTBS), 4.23 (2H, d, J 13.3, 

NCHxHyPh x 2), 3.93-3.81 (211, m, OCH2CH3), 3.49 (2H, d, J 13.6, NCHxHyPh x 

2), 3.26 (1H, dd, J 14.5, 4.5, C2HAHB), 3.19-3.97 (1H, m, C411), 3.13 (1H, dd, J9.9, 

5.6, C5HCHDPh), 3.04 (1H, dd, J 9.9, 6.2, C5HCHDPh),  2.58 (1H, dd, J 14.5, 5.3, 

C2HAHB), 1.18 (3H, t, J7.2, OCH2CH3), 0.90 (9H, s, 'Bu), 0.04 (61-i, s, Me x 2); 5C 

(62.9 MHz) 171.9 (C), 141.0 (C), 139.9 (2C), 129.8 (2 x CH), 129.6 (4 x CH), 128.8 

(2x CH), 128.6 (4 x CH), 127.2 (2 x CH), 126.4 (CH), 61.6 (CH), 60.5 (CH), 56.3 (2 

x CH2), 54.1 (CH2), 39.9 (CH), 31.5 (CH2), 26.4 (3 x CH 3), 18.5 (C), 14.4 (CU3), - 

3.9 (CH3), -4.3 (CH3); mlz (FAB) 532 ([M+H] +, 84%), 442 (30), 217 (47), 210 (18), 

109 (36), 91(100); HRMS (FAB) C 33H46NO3Si [M+Fl] requires 532.3247, found 

532.3259. 
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Ethyl 	 224 

NH2 

EtO 	 Ph 

0 OTBS 

To a solution of 225 (150 mg, 0.282 mmol) in methanol (3 cm 3)  was added 20% 

Pd(OH)2/C (400 mg), the flask was flushed with argon before being stirred under an 

atmosphere of hydrogen for 8 hours. The reaction mixture was filtered through a 

layer of celite and concentrated under reduced pressure. The residue was 

chromatographed on silica gel [hexane:EtOAc (6:1)] to give the title compound (100 

mg, 100%) as an oil. Rf [hexane:EtOAc (1:1)] 0.23; [aID-33.2 (c 0.60, CHC13); Vmax 

(neat)/cm' 2954, 2928, 2856, 1692, 1497; 5H (250 MHz, CDC13) 7.26-7.13 (511, m, 

An]), 4.13-4.07 (1H, m, C31]), 4.07 (2H, q, J 7. 1, OCH2CH3), 3.62-3.60 (2H, br s, 

NH2), 3.17-3.15 (1H, br m, C4H), 2.95-2.84 (1H, br m, C5HAHB), 2.84 (1H, dd, J 

15.8, 6.0, C2HCHD), 2.66 (1H, dd, J 13.7, 9.3, C5HAHB), 2.49 (1H, dd, J 15.8, 6.3, 

C2HCHD), 1.19 (3H, t, J7.l, OCH2CH3), 0.85 (9H, s, 'Bu), 0.00 (6H, s, Me x 2); öc 

(62.9 MHz) 171.5 (C), 138.3 (C), 129.1 (2 x CH), 128.5 (2 x CH), 126.4 (CH), 70.4 

(CH), 60.5 (CH2), 56.6 (CH), 39.1 (CH2), 38.6 (CH2), 25.7 (3 x CH3), 17.9 (C), 14.0 

(Cl3), -4.7 (CH 3), -5.1 (CH3); m!z (FAB) 352 ([M+H], 100%), 306 (14), 338 

(10),174 (5), 91 (14), 73 (35); HRMS (FAB) C 19H34NO3Si [M+H] requires 

352.2307, found 352.2300. 
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(4S,5S)-4-tert-Butyldimethylsilyloxy-5-benzylpyrrOlidifl-2-one 232 

Ph ' "ç2 0  

TBSO 

From ester 224: 

A solution of amino ester 224 (60 mg, 0.17 mmol) in MeOH (3 cm 3)  was heated to 

refiux and held at reflux for 24 hours. The solution was cooled and concentrated 

under reduced pressure. The remaining residue was chromatographed on silica gel 

gel [DCM:MeOH (100:1)] to give the title compound (17 mg, 33%) as a colourless 

oil. Rf [DCM:MeOH (10:1)] 0.63; [aI D -63.3 (c 0.35, CHCI3); vmax (neat)/cm 2954, 

2928, 2856, 1697; oH (250 MHz, CDC13) 7.34-7.16 (5H, m, An]), 5.63 (1H, s, NI]), 

4.57 (1H, td, J 6.2, 4.7, C4H), 3.87 (111, ddd, J 10.3, 6.2, 3.8, CA, 2.95 (1H, dd, J 

13.9, 3.8, CHAHBPh), 2.77 (1H, dd, J 13.9, 10.3, CHAHBPh), 2.58 (1H, dd, J 16.7, 

6.2, C3HCHD), 2.35 (1H, dd, J 16.7, 4.7, C3HCHD), 0.92 (9H, s, 'Bu), -0.05 (3H ,s, 

Me), -0.04 (3H, s, Me); 8c (62.9 MHz) 174.8 (C), 138.0 (C), 129.0(2 x CH), 128.7(2 

x CH), 126.6 (CH), 69.2 (CH), 60.5 (CH), 40.2 (CH2), 36.0 (CH2), 25.6 (3 x 

25.5 (C), -3.1 (CH3), -4.7 (CH3); mlz (FAB) 306 ([M+H], 100%), 290 (20), 248 

(16), 206 (8), 174 (17), 157 (6), 115 (10), 73 (85); HRMS (FAB) C 17H28NO2Si 

[M+H] requires 306.1893, found 306.1893. 

From Pyrrolidinone 234: 

To a solution of pyrrolidinone 234 (90 mg, 0.47 mmol), in DCM (5 cm 3) was added 

2,6-lutidine (0.13 cm 3, 1.0 mmol) followed by tert-

butyldimethylsilyltrifluoromethanesulphonate (0.65 cm3 , 2.8 mmol). The mixture 

was stirred at room temperature 5 hours then diluted with DCM (25 cm3) and washed 

with a saturated aqueous solution of sodium bicarbonate (20 cm 3) and brine (20 cm 3). 
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The organic phase was dried (MgSO4) and concentrated under reduced pressure. The 

remaining residue was chromatographed on silica gel [DCM:MeOH (100:1)] to give 

the title compound (130 mg, 94%) as a colourless oil, all spectroscopic data was 

identical to the compound from ester 224. 

(3S,4S)4NADibenzy1amino-3-hydroxY-5-PheflY1PefltanOic acid methoxy -

methyl-amide 233 

I 	Me 	NBn2 	I 

	

MeO'(( 	 I I 	OOH 	I 

To a slurry of N,O-dimethylhydroxylamine.hydrochlOride (698 mg, 7.20 mmol) in 

THF (4 cm3) at 0°C was added trimethylaluminium (3.60 cm3 , 2.0 M in toluene, 7.20 

mmol). The solution was stirred at 0 °C for 5 minutes then allowed to warm to room 

temperature over Ca. 15 minutes, after which time a clear solution remained. The /3-

hydroxy ketone 221 (500 mg, 1.20 mmol) in THF (4 cm 
3)  was added dropwise via 

cannula. The mixture was warmed to 35 °C and stirred for 3 hours. The reaction 

mixture was cooled and then cannulated rapidly into a mixture of DCM (30 cm 
3)  and 

saturated aqueous potassium sodium tartrate (30 cm 3) and stirred vigorously for 5 

hours whereupon two distinct phases were apparent. The aqueous phase was 

extracted with DCM (3 x 30 cm 3). The combined organic phases were dried 

(MgSO4) and concentrated under reduced pressure. The residue was 

chromatographed on silica gel [hexane:EtOAc (5:1) to give the title compound. Rf 

[hexane:EtOAc (5:1)] 0.52; [a]D+10.5 (c 0.61, CHC13); vm (neat)/cm' 3384, 2933, 

2559, 1658, 1415; 8H  (250 MHz, CDC13) 7.38-7.16 (15H, m, An]), 4.21 (2H, d, J 

13.3, NCHxHyPh x 2), 4.16 (1H, br s, OH), 4.02 (1H, ddd, J7.3, 5.0, 2. 1, C3HOH), 

3.53 (311, s, OMe), 3.49 (2H, d, J 13.3, NCHHyPh x 2), 3.18 (1H, m, C5HAI -IB), 3.11 

(3H, s, Me), 3.05 (1H, dd, J 13.3, 9.3, C5HAHB), 2.89-2.73 (2H, m, C2HCHD + C 4H), 

2.71 (111, dd, J9.3, 5.0, C2HCHD); öc (62.9 MHz) 174.1 (C), 140.3 (C), 139.9 (2C), 
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129.3 (2 x CH), 128.9 (4 x CH), 128.3 (2 x CH), 128.1 (4 x CH), 126.8 (2 x CH), 

125.8 (CH), 67.8 (Cl3), 63.1 (CH3), 60.9 (CH), 54.8 (2 x Cl2), 36.6 (CH2), 31.7 

(CH), 30.3 (CH2); mlz (FAB) 433 ([M+H], 76%), 341 (27), 300 (65), 210 (16), 181 

(13), 131 (10), 105 (23), 91(100); HRMS (FAB) C 27H33N202 [M+H] requires 

433.2494, found 433.2494. 

4S,5S)-5-Benzyl-4-hydroxypyrrolidin-2-one 234 

Ph ' ç2 0  

To a solution of Weinreb amide 233 (400 mg, 0.962 mmol) in methanol (5 cm 3)  was 

added 20% Pd(OH)2/C (400 mg), the flask was flushed with argon before being 

stirred under an atmosphere of hydrogen for 8 hours. The reaction mixture was 

filtered through a layer of celite and concentrated under reduced pressure. The 

residue was chromatographed on silica gel [DCM:MeOH (50:1) to give the title 

compound (175 mg, 96%) as a white solid. R f [DCM:MeOH (10:1)] 0.50; [aID-78.8 

(c 0.41, CHC13); Vm (neat)/cm-1  3356, 2923, 1679, 1496; 8H (250 MHz, CDC13) 

7.31-7.16 (5H, m, An]), 6.28 (1H, s, NJ]), 4.38-4.35 (1H, m, C 4HOH), 3.87 (1H, 

ddd, J 10.8, 8.5, 6.0, C5H), 3.55 (1H, d, J 8.8, OH), 3.07 (11, dd, J 13.7, 6.2, 

CHAHBPh), 2.86 (1H, dd, J 13.7, 8.5, CHAHBPh), 2.64 (1H, dd, J 17.2, 6.0, C3HCHD), 

2.42 (1H, dd, J 17.2, 1.7, C3HCHD); öc (62.9 MHz) 176.4 (C), 137.7 (C), 128.9 (2 x 

CH), 128.6 (2 x CH), 126.6 (CU), 68.2 (CH), 61.0 (CH), 40.9 (Cl2), 34.9 (CH2); 

mlz (FAB) 192 [M+H], 100%), 174 (8), 120 (8), 109 (13), 105 (10), 81(13), 73 

(22), 69 (18); HRMS (FAB) C 11 H 1 4NO2 [M+H]+  requires 192.1025, found 192.1026. 

173 



Experimental 

(4S,5S)-4-tert-Butyldimethylsilyloxy-5-benzyl-N-methYlPYITOlidifl-2-Ofle 235 

Me 

Ph"ç2 °  

TBSO 

To a solution of hydroxyl protected pyrrolidinone 232 (140 mg, 0.438 mmol) in THF 

(4 cm3) at 0 °C was added NaH (52.3 mg, 60% dispersion in oil, 1.05 mmol). The 

suspension was stirred for 20 mins before the addition of Mel (0.156 cm', 2.53 

mmol). The mixture was stirred for 24 hours at r.t.. Water (10 cm 3)  was added and 

the aqueous layer was extracted with DCM (3 x 10 cm 3). The combined organic 

layers were dried (MgSO4) and concentrated under reduced pressure. The remaining 

residue was cbromatographed on silica gel[DCM:MeOH (50:1)] to give the title 

compound (117 mg, 78%) as a white solid. Rf [DCM:MeOH (10:1)] 0.75; oH (250 

MHz, CDC13) 7.26-7.21 (5H, m, ArH), 4.52 (1H, ddd, J 10.3, 7.4, 7.0, C4HOTBS), 

3.83-3.74 (1H, m, C511), 3.14 (2H, dd, J 14.6, 5. 1, CHxHyPh), 2.84 (1H, dd, J 14.6, 

7.4, CHxHyPh), 2.57 (3H, s, Me), 2.47 (1H, dd, J 15.8, 7.4, C3HAHB), 2.30 (1H, J 

15.8, 7.0, C3HAHB), 0.90 (9H, s, 'Bu), 0.00 (3H, s, Me), -0.01 (3H, s, Me). mlz (FAB) 

320 [M+H]+, 95%), 262 (17), 228 (24), 217 (11), 188 (22), 135 (14), 109 (13), 73 

(100); HRMS (FAB) C 18H30NO2Si [M+H] requires 320.2046, found 320.2046. 
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Attempted synthesis of (3S,4S)-3-tert-Butyldimethylsilyloxy-4-N-m ethyl-

phenylpentanoic acid 222 

NHMe 

Ho(L Ph 

0 OTBS 

To a suspension of lactam 235 (20 mg, 0.06 mmol) in water was added activated 

barium hydroxide (44 mg, 0.14 mmol). The mixture was heated to reflux and heated 

at reflux for 24 hours. H20 (8 cm 3)  was added and the aqueous layer was extracted 

with EtOAc (3 x 5 cm). The aqueous layer was then acidified with iN HC1 to pH 3 

and the aqueous layer was extracted with Et20 (3 x 5 cm). The combined organic 

phases were dried (MgSO4) and concentrated under reduced pressure. No material 

was recovered. 

Methyl (2S,3R)-2-amino-3-hydroxybutanoate.hydrochloride 238 

NH2  .HCI 

MeO -H 
0 OH 

Acetyl chloride (19.5 cm 3 , 2.52 mol) was added dropwise to methanol (90 cm 3)  at 

0 °C. The mixture was stirred for 15 mins and L-threonine (10.0 g, 0.841 mol) was 

then added portionwise to the solution. The resulting mixture was heated to reflux 

and held at reflux for 3 hours. Concentration under reduced pressure provided the 

title compound (13.0 g, 93%) as a yellow oil; [aID —4.78 (c 3.37, MeOH); vmax  

(solution cell, CHC13)/cm' 3391, 2980, 1715, 1613, 1514, 1443; mlz (FAB) 134 

[M+H]+, 100%), 116 (32), 84 (21), 74 (84), 56 (73); HRMS (FAB) C5H12NO3 

[M+H], requires 134.0817, found 134.0813. 
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Major Diastereomer: 

8H (250 MHz, D20) 4.34-4.30 (1H, m, C 3HOH), 4.01 (1H, d, J3.8, CA,  3.75 (3H, 

s, OMe), 1.24 (3H, d, J 6.6, Me); öc (62.9 MHz) 169.5 (C), 65.5 (CH3), 58.7 (CH), 

54.0 (CH), 19.1 (CH3). 

Minor Diasteromer (Diagnostic signals) 239: 

SH (250 MHz, D20) 3.87 (111, d, J3.8, C 2H), 3.23 (3H, s, OMe), 1.23 (3H, d, J6.6, 

Me); 8c(62.9  MHz) 171.1 (C), 65.6 (CH3), 58.9 (CH), 49.2 (CH), 19.3 (CH3). 

Methyl (2S,3R)-2-N,N-Dibenzylamino-3-hydroxybutanoate 240 

NBn2  

MeOtj 
0 OH 

To a solution of ester 238 (10.5 g, 61.9 mmol) in anhydrous acetonitrile (250 cm 
3) 

was added anhydrous potassium carbonate (42.3 g, 297 mmol) followed by 

benzylbromide (18.2 cm 3 , 14.8 mmol). The resultant mixture was stirred for 24 hours 

at r.t.. Water (150 cm 3)  was added and the aqueous layer was extracted with EtOAc 

(3 x 100 cm3). The combined organic phases were dried (MgSO4) and concentrated 

under reduced pressure. The remaining residue was chromatographed on silica gel 

[hexane then hexane:EtOAc(4: 1)] to give the title compound (18.9 g, 97 %) as an oil. 

Rf [Hexane:EtOAc (4:1)] 0.48; [cx]D —166.7 (c 1.64, CHC13); Vmax (neat)/cm' 3432, 

3029, 2949, 2848, 1731, 1435; mlz (FAB) 314 ([M+H] 4 , 51%), 268 (55), 254 (56), 

236 (18), 181 (20), 91(100); HRMS (FAB) C 19H24NO3 [M+H] requires 314.1756, 

found 314.1753. 

Major Diastereomer: 

oH (250 MHz, CDC13) 7.51-7.25 (1 OH, m, ArH), 4.11 (2H, d, J 13. 1, NCHxHyPh x 

2), 4.08-4.03 (1H, m, C3HOH), 3.86 (311, s, OMe), 3.48 (2H, d, J 13. 1, NCHHyPh x 

2), 3.13 (1H, d, J9.6, C211), 1.13 (3H, d,J6.0, Me); 8c(62.9  MHz) 171.2 (C), 138.5 
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(2C), 129.6 (4 x CH), 129.1 (4 x CH), 128.0 (2 x CH), 67.8 (CH), 63.6 (CH), 55.3 (2 

x CH2), 51.9 (CH3), 19.6 (CH3). 

Minor Diasteromer (Diagnostic signals) 241: 

H (250 MHz, CDC13) 4.10-4.00 (211, m, NCHxHyPh x 2), 3.50-3.40 (2H, m, 

NCHxHyPh x 2), 3.15 (1H, d, J 9.6, C21]), 1.11 (3H, d, J 6.0, Me); 8C  (62.9 MHz) 

170.6 (C), 66.8 (CH). 

(2R,3R)-2-N,N-Dibenzylamino-1,3-dihydroxybutane 242 

NBn2  

OH 

To a solution of 240 (10.0 g, 32.0 mmol) in ether (100 cm 3) at 0 °C was added 

lithium borohydride (4.03 g, 192 mmol) followed by methanol (10 cm 3). The 

mixture was stirred at 0 °C until effervescence ceased and then heated to reflux and 

held at reflux for 4 hours. The reaction was quenched by the cautious addition of 

saturated aqueous NH 4CI (100 cm3) and the aqueous phase was extracted with 

EtOAc (3 x 100 cm3). The combined organic phases were washed with brine (100 

cm3), dried (MgSO4) and concentrated under reduced pressure. The residue was 

chromatographed on silica gel [DCM:MeOH(30:1)] to give the title compound (7.80 

g, 85 %) as a white solid. Rf[DCM:MeOH (10:1)] 0.54; mp 84-85 °C; [aID —57.5 (c 

0.88, CHC13); Vm (solution cell, CHC13)/cm' 3361, 3023, 1493; 8H (250 MHz, 

CDCI3) 7.35-7.21 (10H, m, ArH), 3.94 (211, d, J 13.2, NCHxHyPh x 2), 3.86 (1H, dq, 

J 9.3, 5.8, C3HOH), 3.82-3.70 (2H, m, C 1 H2),3.68 (211, d, J 13.2, NCHxHyPh x 2), 

2.55 (1H, dt, J 9.3, 5.5, CA,  1.12 (311, d, J 6.1, Me); 8c (62.9 MHz) 139.0 (2C), 

129.0 (4 x CH), 128.4 (4 x CM), 127.1 (2C), 65.1 (CM), 64.5 (CH), 59.0 (CH2), 54.3 

(2 x CU2), 20.1 (CH3); mlz (FAB) 286 ([M+H], 52%), 240 (35), 91(100); HRMS 

(FAB) C 1 8H24NO2 [M+H] requires 286.1807, found 286.1801; Found: C, 75.79; H, 

7.92; N, 4.89. C 18H23NO2 requires C, 75.78; H, 8.07; N, 4.91 %. 
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(2R,3R)1tertButy1dipheny1si1y1oxy-2-N,N-dibeflZY1amiflO-3-hYdrOXYbUtane 

243 

NBn2  
TBDPSo41- 

OH 

From diol 242: 

To a solution of 242 (5.00 g, 17.5 mmol) in anhydrous DMF (60 cm 3)  was added 

tert-butyldiphenylsilyichioride (5.40 cm3 , 21.0 mmol) followed by imidazole (4.26 g, 

61.3 mmol). The resultant mixture was stirred for 22 hours at room temperature. 

Brine (80 cm 3)  was added and the aqueous phase was extracted with EtOAc (3 x 50 

cm3). The combined organic phases were dried (MgSO4) and concentrated under 

reduced pressure. The residue was chromatographed on silica gel [hexane:EtOAc 

(4:1)] to give an impure mixture. Further purification by HPLC (15 % EtOAc in 

hexane) gave the title compound (8.20 g, 90 %) as a white solid. R=1 1.2 mm; Rf 

[hexane:EtOAc (4:1)] 0.57; [all) —66.2 (c 1.14, CHC13); Vm (solution cell, 

CHC13)/cm' 3376, 2930, 2856, 1427; 8H (250 MHz, CDC1 3) 7.78-7.22 (20H, m, 

Ark!), 4.21 (1H, hr s, OH), 4.04 (2H, d, J 13.3, NCHHyPh x 2), 3.98 (1H, dd, J 

11.5, 4.0, C1HAHBOTBDPS), 3.89 (1H, dd, J 11.5, 5.6, C I HAHBOTBDPS), 3.83 (1H, 

dq, J 9.5, 5.9, C3HOH), 3.67 (2H, d, J 13.3, NCHxHyPh x 2), 2.64 (1H, ddd, J 9.5, 

5.6, 4.0, C4H), 1.16 (9H, s, 'Bu), 1.02 (3H, d, J6.0, Me); 6c(62.9  MHz) 139.2 (2C), 

135.6 (CH), 13.5 (CH), 132.9 (C), 132.8 (C), 129.9 (2 x CH), 129.8 (2 x CH), 129.0 

(4 x CH), 18.3 (4 x CH), 127.7 (4 x CH), 127.1 (2 x CH), 65.6 (CH), 63.2 (CH), 

60.2 (CH2), 54.5 (2 x CH2), 26.8 (3 x CH 3), 19.6 (CH3), 19.0 (C); mlz (FAB) 524 

([M+H], 56%), 434 (50), 199 (46), 105 (51), 91(83), 45 (100); HRMS (FAB) 

C34FL 2NO2Si [M+H] requires 54.2984, found 524.2985; HPLC (5% propan-2-ol in 

hexane) 243 R=7.8 mm, ent-243 R3.9 mm, >99% ee. 
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From reduction of ketone 244: 

To a solution of ketone 244 (104 mg, 0.200 mmol) in toluene at —78 °C was added 

DIBAL-H (0.810 cm 3 , 0.81 mmol). The solution was stirred at —78 °C for 1 hour. 

The reaction was quenched by the cautious addition of methanol (ca. 5 cm3). The 

mixture was allowed to warm to r.t. before being diluted with DCM (20 cm 3). The 

mixture was poured onto saturated aqueous potassium sodium tartrate (30 cm 3)  and 

the mixture stirred vigorously for 5 hours when two distinct phases were apparent. 

The organic layer was separated and the aqueous layer was extracted with DCM (2 x 

20 cm3). The combined organic phases were dried (MgSO4) and concentrated under 

reduced pressure to give the title compound (95 mg, 90%). [aID —66.0 (c 1.0, 

CUd3); all spectroscopic data was identical to the compoundfrom diol 242. 

(3R)4-tert-Buty1dipheny1si1y1oxy-3-N,N-dibCflZY1amiflObutafl-2-OnC 244 

N Bn2 

TBDPSo}..12 

To a solution of oxalyl chloride (0.050 cm 3, 0.54 mmol) in DCM (2 cm') at —78 °C 

was added DMSO (0.060 cm3 , 0.82 mmol). The mixture was stirred for ca. 5 minutes 

when it became cloudy. A solution of alcohol 243 (0.20 mg, 0.39 mmol) in DCM (2 

cm 3)  was added via cannula. The resulting clear solution was stirred at —78 °C for 1 

hour. Triethylamine (0.22 cm3 , 1.6 mmol) was added and the cloudy solution was 

allowed to warm to room temperature over ca. 15 minutes. Water (15 cm3) was 

added and the aqueous phase was extracted with DCM (3 x 15 cm3). The combined 

organic phases were washed sequentially with 1% HC1 (15 cm 3),  water (15 cm3), 

saturated aqueous NaHCO3 (15 cm 3) and brine (15 cm 3),  then dried (MgSO4) and 

concentrated under reduced pressure to give the title compound (200 mg, 100%) as a 

very pale yellow oil which was used in subsequent stages without further 

purification. Rf [hexane:EtOAc (4:1)] 0.70; Vm a,, (neat)/cm 2930, 2857, 1717, 1427; 
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H (250 MHz, CDC13) 7.71-7.23 (20H, m, ArH), 4.15 (1H, dd, J 10.7, 4.5, 

C4HAHBOTBDPS), 4.09 (1H, dd, J 10.7, 6.7, C4HAHBOTBDPS), 3.88 (2H, d, J 13.8, 

NCHxHyPh x 2), 3.79 (2H, d, J 13.8, NCHxHyPh x 2), 3.58 (1H, br t, J 5.9, CA, 

2.16 (3H, s, Me), 1.08 (9H, s, 'Bu); 8c(6O.9 MHz) 208.8 (C), 139.5 (2C), 135.5 (4 x 

CH), 133.0 (C), 129.7 (CH), 129.6 (CH), 128.9 (C), 128.7 (4 x CH), 128.1 (4 x CH), 

128.0 (CH), 128.0 (CH), 127.6 (2 x CH), 129.7 (2 x CH), 67.6 (CH), 60.7 (Cl-I2), 

55.1 (2 x CH2), 28.9 (CH3), 26.7 (3 x CH 3), 19.0 (C). 

Preparation of Dicyclohexyichioroborane (C 6H11)2BC1 

To a freshly distilled solution of cyclohexene (10.6 cm 3,  105 mmol) in ether (45 cm 3) 

at r.t. was added monochioroborane-methylsuiphide complex (5.20 cm3 , 50.2 mmol). 

The solution was stirred at r.t. for 2 hours. The solvent was removed in vacuo (r.t., 

Ca. 10 mm Hg, vacuum line) to give the chloroborane-methyl sulphide complex as a 

white solid. Distillation under reduced pressure gave dicyclohexylchloroborane as a 

colourless oil (8.11 g, 76%; estimated density --0.98). The complex was stored in the 

freezer; bp 98-104 °C (10 mm Hg). 
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Attempted 	synthesis 	of 	(2R,5S)-1-tert-Butyldiphenylsilyloxy-2-N,N- 

dibenzylamino-5-hydroxy-5-phenyl-pentan-3-one 251B 

NBn 2  

TBDPSO....t..4..t&.f Ph 

0 OH 

To a solution of dicyclohexylchloroborane (0.260 cm 3,  1.22 mmol) in Et20 (1 cm 3) 

at —78 °C was added triethylamine (0.195 cm3 , 1.39 mmol) followed by ketone 244 

(210 mg, 0.410 mmol) in Et20 (3.5 cm 3)  via cannula. The mixture was stirred at —78 

°C for 10 mins before being stirred at 0 °C for 2 hours. The mixture was cooled to - 

78 °C and freshly distilled benzaldehyde (0.159 cm3 , 1.64 mmol) was added. The 

mixture was stirred at —78 °C for 1 hour, warmed to 0°C over a period of 1 hour and 

stirred at 0 °C for 3 hours. The reaction was quenched by the addition of methanol (1 

cm3) and pH 7 phosphate buffer (2 cm 3). Hydrogen peroxide (2 cm 3)  in methanol (2 

cm 3)  was added cautiously and the resultant cloudy solution was stirred at 0°C for 1 

hour. The solution was diluted by addition of DCM (20 cm 3). The organic phase was 

separated and the aqueous phase was extracted with DCM (2 x 20 cm 3). The 

combined organic phases were washed with saturated aqueous sodium bicarbonate 

(30 cm3), brine (30 cm3), dried (MgSO4) and concentrated under reduced pressure. 

The remaining residue was chromatographed on silica gel [hexane:EtOAc (15:1)] to 

give the unreacted starting materials. 

General Procedure A: 

To a solution of LiHMDS (1.0 M in THF, 0.62 mmol) at —78 °C was added the 

ketone 244 (250 mg, 0.48 mmol) in THF (4 cm 3) via cannula. The solution was 

stirred at —78 °C for 1 hour. The aldehyde (0.72 mmol) was added and the solution 

stirred for 10 mins. The reaction was quenched by the addition of saturated aqueous 

NH4C1 (20 cm) and the aqueous phase was extracted with DCM (3 x 15 cm 3).  The 
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combined organic phases were washed with brine (20 cm 3), dried (MgSO4) and 

concentrated under reduced pressure. The remaining residue was chromatographed 

on silica gel [hexane:EtOAc (15:1)] to give the title compounds. 

octan-3-one 251A and (2R,5S)tert-Buty1dipheny1si1y1Oxy-2-N,N-dibenZY1amin0 

5-hydroxy-7-methyl-octan-3-one 251B 

NBn2 	 NBn2  

TBDPSOt4&f&/' TBDPSO Af/ 

General procedure A was followed with ketone 244 (250 mg, 0.480 mmol), LiHMDS 

(0.620 cm3 , 1.0 M in THF, 0.620 mmol) and isovalderaldehyde (0.080 cm 3,  0.720 

mmol) thus providing the title compounds (230 mg, 88%) as an inseparable mixture 

after chromatography. Rf [hexane:EtOAc (4:1)] 0.48; Vm (neat)/cm' 3429, 3069, 

2959, 2857, 1706; mlz (FAB) 608 ([M+H] +, 28%), 478 (35), 197 (30), 181 (10), 165 

(6), 135 (55), 105 (20), 91 (100); HRMS (FAB) C 39H50NO3Si [M+H] requires 

608.3555, found 608.3555. 

Major diastereomer 251A: 

H (250 MHz, CDC13) 7.76-7.23 (20H, m, ArH), 4.18 (1H, dd, J 10.5, 6.4, 

CIHAHBOTBDPS), 4.07 (1H, dd,.J 10.5, 5.8, CIHAHBOTBDPS), 3.88 (2H, d, J 13.7, 

NCHxHyPh x 2), 3.78 (211, d, J 13.7, NCHHyPh x 2), 3.60 (1H, br t, J 6.0, C2H), 

2.63 (1H, dd, J 17.4, 8.5, C4HCHD), 2.43 (1H, dd, J 17.4, 2.8, C4HCHD), 1.83-1.69 

(111, m, C 5HOH), 1.52-1.41 (114, m, C71]), 1.17-1.00 (2H, m, CU2), 1.08 (9H, s, Bu) 

0.93 (3H, d,J6.6, Me), 0.92 (31-1, d,J6.6, Me); 8c (60.9 MHz) 211.9 (C), 139.2 (2C), 

135.5 (4 x CH), 132.8 (C), 132.7 (C), 129.7 (CH), 128.7 (4 x CH), 128.2 (4 x CH), 

127.7 (4 x CH), 127.1 (CH), 127.0 (2 x CH), 67.0 (CH), 65.5 (CH), 60.5 (CH2), 55.1 
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(2 x CH2), 48.6 (CH2), 45.4 (CH), 26.7 (3 x CH3), 24.2 (CH), 23.2 (CH3), 21.9 

(CH3), 18.9 (C). 

Minor diastereomer (diagnostic signals) 252A: 

oH (250 MHz, CDC13) 3.76 (2H, d, J 13.7 NCHxHy x 2), 2.81 (1H, dd, J 17.4, 2.8, 

C4HCHD), 2.43 (1H, dd, J 17.4, 8.5, C4HCHD), 1.09 (911, s, 'Bu), 0.94 (3H, d, J 6.6 

Me), 0.93 (3H, d, J6.6, Me); 8c (60.9 MHz) 211.8 (C), 67.3 (CH), 65.9 (CH), 59.9 

(CH2), 48.6 (2 x CH2), 47.9 (CH2), 26.4 (3 x CH3), 23.1 (CH3), 22.0 (CH3). 

(2R,5S)1tertButyldiphenylsi1yloXy-2-N,N-dibeflZYlaminO-5-hYdr0xY5PheflYl 

pentan-3-one 	251B 	and 	(2R,5R)-tert-Butyldiphenylsilyloxy-2-N,N- 

dibenzylamino-5-hydroxy-5-phenyl-pefltan-3-One 252B 

NBn2 	 NBn2  

TBDPSOir&,.f..Ph 	
TBDPSO4)Ph 

0 OH 	 0 OH 

General procedure A was followed with ketone 244 (250 mg, 0.480 mmol), LiHMDS 

(0.62 cm', 1.0 M in THF, 0.620 mmol) and benzaldehyde (0.070 cm3 , 0.720 mmol) 

thus providing the title compounds (240 mg, 82%) as an inseparable mixture after 

chromatography. Rf [hexane:EtOAc (4:1)] 0.55; Vm (neat)/cm' 3446, 3061, 2930, 

2857, 1708; mlz (FAB) 628 ([M+H], 56%), 478 (20), 217 (20), 197 (20), 181 (9), 

135 (32), 109 (18), 91(100); HRMS (FAB) C 41 H46NO3Si [M+H]+  requires 628.3247, 

found 628.3253. 

Major diastereomer 25113: 

0H (250 MHz, CDC13) 7.72-7.15 (25H, m ArH), 5.07 (1H, dd, J 9.2, 3.3, C5HOH), 

4.17 (1H, dd, J 10.5, 6.3, CIHAHBOTBDPS), 4.08 (1H, dd, J 10.5, 5.7, 

CIHAHBOTBDPS), 3.88 (2H, d, J 13.6, NCHxHyPh x 2), 3.77 (2H, d, J 13.6, 

NCHxHyPh x 2), 3.60 (111, hr t, J6.0, CA,  3.40-3.30 (111, br s, 01]), 2.99 (1H, dd, 
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J 17.3, 9.2, C4HCHD), 2.83 (1H, dd, J 17.3, 3.3, C4HCHD), 1.07 (9H, s, 'Bu); 6c (60.9 

MHz) 210.8 (C), 142.8 (C), 139.1 (2C), 135.5 (4 x CH), 132.8 (C), 132.7 (C), 129.8 

(CH), 129.7 (CH), 128.9 (2 x CH), 128.8 (2 x CH), 128.3 (4 x CH), 128.1 (CH), 

127.7 (4 x CH), 127.4 (2 x CH), 127.1 (2 x CH), 125.6 (2 x CH), 69.8 (CH), 67.1 

(CH), 60.5 (CH2), 55.1 (2 x CH2), 50.0 (CH2), 26.7 (3 x CH3), 18.9 (C). 

Minor diastereomer (diagnostic signals) 252B: 

oH (250 MHz, CDC13) 4.16 (1H, dd, J 10.5, 6.4, C 1 HAHBOTBDPS), 3.87 (2H, d, J 

13.7, NCHxHyPh x 2), 3.01 (1H, dd, J 17.3, 3.3, C4HCHD), 1.08 (9H, s, 'Bu); 8c (60.9 

MHz) 211.0 (C), 70.0 (CH), 67.5 (CH), 60.2 (CH2), 55.2(2 x CR2), 49.4 (CH2), 19.0 

(C). 

(2R,5S)-1-tert-Butyldiphenylsilyloxy-2-N,N-dibenzylaminO-5-hYdrOXY-5-(P-

chlorophenyl)-pentan-3-one 251C and (2R,5R)-tert-Butyldiphenylsilyloxy-2-

N,N-dibenzylamino-5-hydroxy-5-(p-chlorophenyl)-pentan-3-OnC 252C 

NBn2 	 NBn2  

TBDPSOr&...rJ—CI 	TBDPSO-_, 4 3 4  5 _CI 

0 OH 	 0 OH 

General procedure A was followed with ketone 244 (250 mg, 0.480 mmol), LiHMDS 

(0.620 cm3 , 1.0 M in THF, 0.620 mmol) and chlorobenzaldehyde (100 mg, 0.720 

mmol) thus providing the title compounds (275 mg, 89%) as an inseparable mixture 

after chromatography. Rf [hexane:EtOAc (4:1)] 0.40; Vma,, (neat)/cm -1  3424, 3969, 

2930, 2857, 1708; mlz (FAB) 662 ([M+H]+, 19%), 478 (14), 217 (17), 197 (17), 135 

(15), 91 (100); HRMS (FAB) C 41 H46NO3SiC1 [M+H] requires 662.2845, found 

662.2840. 
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Major diastereomer 251C: 

6H (250 MHz, CDC13) 7.77-7.23 (24H, m, An]), 5.09 (1H, dd, J 8.4, 3.2, C5HOH), 

4.24 (1H, dd, J 10.5, 6.3, C L HAHBOTBDPS), 4.15 (111, dd, J 10.5, 5.9, 

CIHAHBOTBDPS), 3.94 (2H, d, J 13.7, NCHxHyPh x 2), 3.82 (2H, d, J 13.7, 

NCHxHyPh x 2), 3.64 (1H, t, J 5.9, CI]), 3.52-3.46 (1H, br s, OH), 3.06 (1H, d, J 

17.1, 3.2, C 4HCHD), 2.87 (1H, d, J 17.1, 8.4, C4HCHD), 1.13 (9H, s, 'Bu); 8C  (60.9 

MHz) 210.6 (C), 141.3 (C), 139.1 (2C), 135.5 (4 x CH), 133.0 (C), 132.8 (C), 132.7 

(C), 129.8 (2 x CH), 129.7 (2 x CH), 128.8 (2 x CH), 128.7 (2 x CH), 128.4 (4 x 

CH), 127.7 (4 x CH), 127.2 (2 x CH), 127.0 (2 x CH), 69.2 (CH), 67.2 (CH), 60.4 

(CH2), 55.1 (2 x CH2), 49.8 (CH 2), 26.1 (3 x CH3), 19.0 (C). 

Minor diastereomer (diagnostic signals) 252C: 

oH (250 MHz, CDC13) 3.00 (1H, dd, J 17.2, 8.4, C4HCHD), 2.85 (1H, dd, J 17.2, 3.2, 

C4HCHD), 1.14 (9H, s, 'Bu); 0c  (60.9 MHz) 210.8 (C), 69.4 (CH), 67.5 (CH), 60.0 

(Cl-I2), 55.2 (2 x CH 2), 49.1 (CH2). 

(2R,5S)-1-tert-Butyldiphenylsilyloxy-2-N,IV-dibenzylamiflO-5-hYdrOXY-5-(P-

methoxyphenyl)pentan-3-one 251D and (2R,5R)-tert-Butyldiphenylsilyloxy-2-

N,N-dibenzylamino-5-hydroxy-5-(p-methoxyphenyl)-Pefltan-3-One 252D 

NBn 2 	 I 	NBn 2  

TBDPSO TBDPSO4 	2—OMe 

0 OH 	 I 	0 OH 

General procedure A was followed with ketone 244 (250 mg, 0.480 mmol), LiHMDS 

(0.620 cm', 1.0 M in THF, 0.620 mmol) and anisaldehyde (0.090 cm 3 , 0.720 mmol) 

thus providing the title compounds (262 mg, 86%) as an inseparable mixture after 

chromatography. Rf [hexane:EtOAc (4:1)] 0.45; Vm (neat)/cm 3450, 2930, 2857, 

1706; mlz (FAB) 658 ({M+H] +, 14%), 478 (37), 197 (20), 135 (37), 121 (10), 91 

(100); HRN'IS (FAB) C 42H48NO4Si [M+H] requires 658.3352, found 658.3353. 
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Major diastereomer 251D: 

H (250 MHz, CDC13) 7.75-7.15 (22H, m, An]), 6.89 (1H, d, J6.4, ArHOMe), 6.85 

(1H, d, J6.4, ArHOMe), 5.02 (111, dd, J8.9, 3.5, C5HOH), 4.16 (1H, dd, J 10. 5, 6.2, 

C 1 HAHBOTBDPS), 4.08-4.01 (1H, m, C1HAHBOTBDPS), 3.86 (2H, d, J 13.2, 

NCHxHyPh x 2), 3.82 (3H, s, OMe), 3.77 (2H, d, J 13.2, NCHHyPh x 2), 3.60 (1H, 

dd, J 6.2, 4.2, C21]), 2.98 (1H, d, J 17.2, 8.9, C4HCHD), 2.83 (111, dd, J 17.2, 3.5, 

C4HCHD), 1.06 (9H, s, 'Bu); 8c (60.9 MHz) 210.8 (C), 158.9 (C), 139.2 (2C), 135.5 (4 

x CH), 135.0 (2C), 134.7 (C), 132.8 (CH), 129.7 (CH), 128.8 (2 x CH), 128.2 (4 x 

CH), 128.0 (2 x CH), 127.7 (4 x CH), 127.1 (2 x CH), 126.9 (2 x CH), 113.7 (2 x 

CH), 69.5 (CH), 67.1 (CH), 60.4 (CH2), 55.2 (CH 3), 55.1 (2 x CH2), 49.9 (CH2), 26.7 

(3 x CH3), 19.0 (C). 

Minor diastereomer (diagnostic signals) 252D: 

8H (250 MHz, CDCI3) 6.92 (1H, d, J 2.3 ArHOMe), 6.88 (1H, d, J 2.3, ArHOMe), 

3.89 (2H, d, J 13.3, NCHHyPh x 2), 3.82 (3H, 5, OMe), 3.76 (2H, d, J 13.3, 

NCHxHyPh x 2), 3.55 (1H, dd, J6.2, 4.2, C211), 2.80 (1H, dd, J 17.2, 3.5, C4HCHD), 

1.08 (9H, s, 'Bu); öc (60.9 MHz) 210.9 (C), 69.6 (CH), 67.4 (CH), 60.1 (CH 2), 49.4 

(CH2). 

General Procedure B: 

To a solution of the aldol adducts 251 and 252 (100 mg, 0.170 mmol) in DCM (4 

cm 3) at 0 °C was added DMAP (cat.), triethylamine (0.450 cm 3 , 0.340 mmol) 

followed by acetic anhydride (0.320 cm 3 , 0.340 mmol). The reagents were stirred at 

r.t. for 4 hours. The reaction was quenched by the addition of a saturated solution of 

hydrogen carbonate (20 cm 3). The aqueous layer was extracted with DCM (3 x 20 

cm3). The combined organic phases were washed with IN HC1 (20 cm 3), dried 

(MgSO4) and concentrated under reduced pressure The remaining residue was 

chromatographed on silica gel [hexane:EtOAc (15:1)] to give the title compounds. 
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(2R,5R)-1-tert-Butyldiphenylsilyloxy-2-N,N-dibenzylamino-5-ethanoyloxy-7-

methyl-octan-3-one 253A and (2R,5S)-terI-Butyldiphenylsilyloxy-2-N,N-

dibenzylamino-5-ethanoyloxy-7-methyl-octan-3-one 254A 

NBn2 	 NBn2  
TBDPSO4)f..&/' TBDPSO.L4 ) &f/ 

0  0 r  0 
	

0 0 r  0 

General procedure B was followed with aldol adducts 251A and 252A (20 mg, 0.030 

mmol) DMAP (cat.), triethylamine (0.080 cm 3 , 0.060 mmol) and acetic anhydride 

(0.060 cm3 , 0.06 mmol). This provided the title compounds (17 mg, 86%) as a 72:28 

inseparable mixture of diastereomers after chromatography. Rf [hexane:EtOAc (4:1)] 

0.65; Vm (neat)/cm' 3406, 3701, 2929, 2857, 1686, 1679, 1599, 1546; mlz (FAB) 

662 ([M+H]+, 19%), 478 (14), 217 (17), 197 (17), 135 (15), 91(100); HRMS (FAB) 

C41 H46NO3SiC1 [M+H] requires 662.2845, found 662.2840. 

Major diastereomer 253A: 

6H (200 MHz, CDC13) 7.77-7.14 (20H, m, ArH), 4.22 (1H, dd, J 10.5, 6.3, 

C I HAHBOTBDPS), 4.14 (1H, dd, J 10.5, 6.3, CIHAHBOTBDPS), 3.91 (2H, d, J 13.5, 

NCHxHyPh x 2), 3.80 (2H, d, J 13.5, NCHxHyPh x 2), 3.65 (1H, t, J6.3, CA, 2.93 

(1H, dd, J 16.8, 7.0, C4HCHD), 2.69 (1H, dd, J 16.8, 5.1, C4HCHD), 1.96 (3H, s, Me), 

1.60-1.47 (1H, m, C 5HOH), 1.44-1.18 (3H, m, C6H2 + C711), 1.13 (9H, s, 'Bu), 0.98 

(3H, d, J 6.5, Me), 0.96 (3H, d, J 6.5, Me). 

Minor diastereomer (diagnostic signals) 254A: 

6H (200 MHz, CDC13) 1.98 (3H, s, Me), 1.14 (9H, s, 'Bu), 1.00 (3H, d, J 6.5 Me), 

0.99 (3H, d, J6.5, Me). 
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(2R,SS)-1-tert-Butyldiphenylsilyloxy-2-N,N-dibenzylamino-5-ethanoyloxy-5-

phenyl-pentan-3-one 253B and (2R,5R)-tert-Butyldiphenylsilyloxy-2-N,N-

dibenzylamino-5-ethanoyloxy-5-phenyl-pentan-3-one 254B 

NBri2 	 NBn2  

TBDPSOi,.&.tPh 	TBDPSO .4,5Ph 

0 0 

Y  0 

	 0 0 

Y 

 0 

General procedure B was followed with aldol adducts 251B and 252B (60 mg, 0.10 

mmol) DMAP (cat.), triethylamine (0.27 cm 3 , 0.20 mmol) and acetic anhydride (0.20 

cm3 , 0.20 mmol). This provided the title compounds (50 mg, 90%) as a 71:29 

inseparable mixture of diastereomers after chromatography. Rf [hexane:EtOAc (4:1)] 

0.37; Vm (neat)/cm' 3029, 2930, 2856, 1744, 1652; mlz (FAB) 670 ([M+H] +, 10%), 

478 (20), 240 (10), 198 (24), 135 (33), 91 (100); HRMS (FAB) C 43H48NO4Si 

[M+H]+  requires 670.3352, found 670.3358. 

Major diastereomer 253B: 

6H (250 MHz, CDC13) 7.67-7.16 (25H, m, ArII), 6.12 (1H, dd, J8.7, 5. 1, C5H), 4.10-

3.98 (2H, m, C 1 H2), 3.83 (2H, d, J 13.6, NCHxI-IyPh x 2), 3.71 (2H, d, J 13.6, 

NCHxHyPh x 2), 3.50 (1H, dd, J6.9, 5.9, C21]), 3.33 (1H, dd, J 17.0, 8.7, C4HCHD), 

3.06 (1H, dd, J 17.0, 5.1, C4HCHD), 1.90 (3H, s, Me), 1.00 (9H, s, 'Bu); ö (60.9 

MHz) 206.0 (C), 169.6 (C), 139.7 (C), 139.3 (2C), 139.2 (C), 135.5 (4 x CH), 132.9 

(C), 129.8 (CH), 129.7 (CH), 128.8 (4 x CH), 128.4 (2 x CH), 128.3 (4 x CH), 128.0 

(CH), 127.6 (4 x CH), 127.1 (2 x CH), 126.4 (2 x CH), 71.3 (CH), 66.6 (CH), 60.1 

(CH2), 54.9 (2 x CH2), 46.6 (CH2), 26.7 (3 x CH 3), 20.9 (CH3), 18.9 (C). 

Minor diastereomer (diagnostic signals) 254B: 

H (250 MHz, CDC13) 3.12 (1H, dd, J 17.0, 8.7, C4HCHD), 2.90 (1H, dd, J 17.0, 5. 1, 

C4HCHD), 1.89 (3H, s, Me), 1.04 (9H, s, 'Bu); öc (60.9 MHz) 206.4 (C), 169.9 (C), 

71.7 (CH2), 67.2 (CH), 60.2 (CH2), 47.1 (CH2). 
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(2R,5S)1-tert-Buty1diphenylsily1Oxy-2-N,N-dibCflZY1aminO-5-ethaflOY1OXY-5-(P 

chlorophenyl)-pentan-3-one 253C and (2R,5R)-tert-Butyldiphenylsilyloxy-2-

N,N-dibenzylamino-5- ethanoyloxy -5-(p-chlorophenyl)-pentan-3-one 253C 

NBn2 	 NBn2 	- 

TBDPS04jAjCl TBDPSo & CI 

0 010 	
0 

 °1° 

General procedure B was followed with aldol adducts 251C and 252C (20 mg, 0.030 

mmol) DMAP (cat.), triethylamine (0.080 cm 3 , 0.060 mmol) and acetic anhydride 

(0.060 cm3 , 0.060 mmol). This provided the title compounds (17 mg, 89%) as a 

60:40 inseparable mixture of diastereomers after chromatography. (Rf 

[hexane:EtOAc (4:1)] 0.35; mlz (FAB) 704 ([M+H] +, 74%), 478 (84), 217 (47), 199 

(47), 181 (14), 135 (32), 91(100); HRMS (FAB) C43H48NO4SiC1 [M+H]+  requires 

704.2963, found 704.2962. 

Major diastereomer 253C: 

H (200 MHz, CDC1 3) 7.82-7.18 (24H, m, ArE), 4.17-3.92 (2H, m, 

CIHAHBOTBDPS), 3.92 (2H, d, J 13.7, NCHHyPh x 2), 3.75-3.68 (1H, m, C21]), 

3.74 (211, d, J 13.7, NCHHyPh x 2), 3.38 (1H, dd, J 17.0, 8.7, C4HcH0), 2.82 (1H, 

dd, J 17.0, 5. 1, C4HCHD), 1.99 (3H, s, Me), 1.10 (9H, s, 'Bu). 

Minor diastereomer (diagnostic signals) 254C: 

H (200 MHz, CDC13) 3.17 (2H, d, J 17.0, 8.7, C4HCHD), 3.00 (211, d, J 17.0, 5. 1, 

C4HCHD), 2.00 (3H, s, Me), 1.13 (911, s, Bu). 
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(2R,5S)1-tert-Buty1dipheny1si1y1oxy-2-N,N-dibenzy1amiflO-5-ethaflOY1OXY-5-(P-

methoxyphenyl)pentan-3-one 253D and (2R,5R)-tert-Butyldiphenylsilyloxy-2-

N,Ndibenzy1amino-5-ethanoy1oxy-5-(p-methOXypheflyl)-Pefltafl-3-One 254D 

N Bn2 

TBDPSO &...çj —OMe 

0 0 r  0 

NBn2 

°"r° 
General procedure B was followed with aldol adducts 253D and 254D (20 mg, 0.030 

mmol) DMAP (cat.), triethylamine (0.080 cm 3 , 0.060 mmol) and acetic anhydride 

(0.060 cm3 , 0.060 mmol). This provided the title compounds (17 mg, 89%) as a 

55:45 mixture of inseparable diastereomers after chromatography. Rf [hexane:EtOAc 

(4:1)] 0.33. 

Major diastereomer 2531): 

8H (250 MHz, CDC13) 7.75-6.80 (2411, m, Ark]), 6.14 (1H, dd, J9.0, 3.7, C 5HOH), 

4.15-3.95 (2H, m, C1H2), 3.92 (211, d, J 13.7, NCHxHyPh x 2), 3.80 (311, s, Me) 3.75 

(2H, d, J 13.7 NCHHyPh x 2), 3.73-3.68 (111, m, C21]), 3.35 (1H, dd, J 17.0, 8.8, 

C4HCHD), 2.80 (1H, dd, J 17.0, 3. 6, C4HCHD), 1.90 (3H, s, Me), 1.10 (9H, s, 'Bu). 

Minor diastereomer (diagnostic signals) 254D: 

oH (200 MHz, CDC13) 3.15 (1H, dd, J 17.0, 8.8, C4HCHD), 3.05 (1H, dd, J 17.0, 3.6, 

C4HCHD), 1.92 (3H, s, Me), 1.13 (911, s, 'Bu). 
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Methyl (3R,4R)-3-tert-Butyldimethylsilyloxy-5-tert-butyldiphenylsilyloxy-4-N,N-

dibenzylaminopentanoate 271 

NBn2 

MeO -OTBDPS 

0 OTBS 

To a solution of ester 119 (508 mg, 0.870 mmol) in DCM (7 cm 3)  was added 2,6-

lutidine (0.230 cm 3, 1.92 mmol) followed by tert-

butyldimethylsilyltrifluoromethanesulfonate (1.20 cm 3, 5.22 mmol). The solution 

was stirred for 18 hours at r.t.. The reaction mixture was diluted with DCM (40 cm 3) 

and the organic phase washed with saturated aqueous sodium bicarbonate (40 cm 3), 

brine (40 cm. 3), dried (MgSO4) and concentrated under reduced pressure. The 

remaining residue was chromatographed on silica gel [hexane:Et20 (8:1)] to give the 

title compound (500 mg, 83%) as an oil. Rf[hexane:Et20 (1:1)] 0.78; [aI D  —10.0 (c 

1.0, CHC13); Vm (neat)/cm' 2930, 2857, 1739; 8H (250 MHz, CDC1 3) 7.79-7.17 

(20H, m, ArH), 4.38 (1H, ddd, J 8.8, 6.7, 2.5, C3HOTBS), 4.18 (1H, dd, J 10.3, 2.5, 

C5HAHBOTBDPS), 4.14 (2H, d, J 13. 1, NCHHyPh x 2), 4.02 (1H, dd, J 10.3, 7.0, 

C5HAHBOTBDPS), 3.54 (2H, d, J 13.1, NCHxHyPh x 2), 3.42 (3H, s, OMe), 2.89 

(1H, ddd, J 8.8, 7.0, 2.5, C411), 2.82 (1H, dd, J 16.7, 2.5, C2HCHD), 2.50 (1H, dd, J 

16.7, 6.7, C2HCHD), 1.13 (9H, s, 'Bu), 1.12 (9H, s, 'Bu), 0.87 (3H, s, Me), 0.86 (3H, s, 

Me); 6c (62.9  MHz) 171.9 (C), 140.6 (2C), 135.7 (CH), 135.6 (CH), 133.5 (C), 133.3 

(C), 129.7 (CH), 129.6 (CH), 129.1 (4 x CH), 128.9 (CH), 128.3 (CH), 127.9 (4 x 

CH), 127.7 (4 x CH), 127.6 (CH), 126.5 (CH), 70.1 (CH), 61.0 (CH2), 55.9 (2 x 

CH2), 51.1 (CH), 39.3 (CH2), 26.9 (CH3), 25.6 (3 x CH3), 25.5 (3 x CH3), 19.0 (C), 

17.8 (C), -3.1 (CH3), -3.7 (CH3); mlz (FAB) 696 ([M+H] +, 14%), 582 (16), 478 (33), 

197 (19), 135 (32),91 (100); HRMS (FAB) C 42H5 8NO4Si [M+H]+  requires 696.3904, 

found 696.3909. 
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(3R,4R)-3-tert-Butyldimethylsilyloxy-5-tert-butyldiphenylsilyloxy-4-N,N-

dibenzylaminopentan-1-ol 272 

N Bn 2  

HO -OTBDPS 

OTBS 

To a solution of methyl ester 271(816 mg, 1.17 mmol) in toluene (5 cm') at —78 °C 

was added DIBAL-H (7.04 cm 3,  7.04 mmol). The mixture was stirred at —78 °C for 1 

hour. MeOH (ca. 6 cm 3)  was added very cautiously and the solution allowed to warm 

to r.t.. The mixture was diluted with DCM (50 cm3) and the solution poured onto 

saturated aqueous sodium potassium tartrate (50 cm). The mixture was stirred 

vigorously for 5 hours when two distinct phases were apparent. The organic phase 

was separated and the aqueous phase was extracted with DCM (2 x 30 cm 3). The 

combined organic phases were washed with brine (50 cm3), dried (MgSO 4) and 

concentrated under reduced pressure. The remaining residue was chromatographed 

on silica gel [hexane:Et20 (6:1)] to give the title compound (650 mg, 83%) as an oil. 

Rf [hexane:Et20 (1:1)] 0.46; [aI D  —18.0 (c 1.2, CHC13); Vm (neat)/cm' 3369, 2930, 

2871, 1471; oH (250 MHz, CDC13) 7.76-7.25 (20H, m, ArH), 4.35-4.24 (2H, m, 

C3HOTBS + C5HA HB OTBDPS), 4.25 (2H, d, J 13.2, NCHHPh x 2), 4.18 (1H, dd, 

J 11.7, 4.8, C5HAHBOTBDPS), 3.69 (2H, d, J 13.2, NCHxHyPh x 2), 3.20-3.00 (2H, 

m, C 1 H2), 2.86-2.70 (1H, m, CA,  2.28-2.15 (1H, m, C2HCHD), 1.78-1.65 (111, m, 

C2HCHD), 1.27 (911, s, Bu), 0.90 (9H, s, 'Bu), 0.12 (3H, s, Me), 0.00 (3H, s, Me); Oc 

(62.9 MHz) 140.7 (2C), 135.7 (2 x CH), 135.6 (2 x CH), 133.4 (C), 133.3 (C), 129.7 

(CH), 129.6 (CH), 129.4 (4 x CH), 127.9 (4 x CH), 127.7 (2 x CH), 127.6 (2 x CH), 

126.6 (2 x CH), 71.0 (CH), 65.7 (CH2), 61.0 (CH2), 60.5 (CH), 56.0 (2 x CH2), 36.9 

(CH2), 26.9 (3 x CH3), 25.7 (3 x Cl3), 19.0 (C), 17.8 (C), -4.8 (CH3), -5.1 (CH3); 

mlz (FAB) 668 ([M+H]+, 71%), 578 (34), 488 (39), 478 (42), 340 (33), 262 (15), 197 

(43), 181 (15), 91(100); HRMS (FAB) C 41 H58NO3Si [M+H] requires 668.3955, 

found 668.3964. 
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(3R, 4R)3tertButy1dimethy1sity1oxy-5-tert-buty1diPheflY1Si1Y1OXY-4-N,N-

aminopentanol 273 

NH2 
HO -OTBDPS 

OTBS 

To a solution of the amino alcohol 272 (550 mg, 0.83 mmol) in methanol (8 cm 3) 

was added 20% Pd(OH) 2/C (550 mg), the flask was flushed with argon before being 

stirred under an atmosphere of hydrogen for 8 hours. The reaction mixture was 

filtered through a layer of celite and concentrated under reduced pressure. The 

residue was chromatographed on silica gel [DCM:MeOH (25:1)] to give the title 

compound (380 mg, 94%) as a white foam. Rf [(DCM:MeOH (10:1)] 0.42; [aID - 

24.0 (c 1.0, CHC13); Vm (neat)/cm' 3369, 3081, 2932, 2560, 1422; oH (250 MHz, 

CDC13) 7.67-7.25 (1 OH, m, An!), 4.64-4.50 (2H, hr s, NH2), 4.09 (1H, d, J5.2, 011), 

3.85-3.80 (1H, m, C3HOTBS), 3.81 (1H, dd, J 10.0, 4.3, C 5HA HB OTBDPS), 3.68 

(1H, dd, J 10.0, 6.4, C 5HAHBOTBDPS), 3.54 (111, ddd, J 16.8, 14.5, 8.2, 

C I HEHFOH), 3.68-3.54 (1H, m, ClHEh'cOH), 3.06 (1H, m, CA, 1.99-1.85 (1H, m, 

C2HCHD), 1.74-1.65 (1H, m, C 2HCHD), 1.05 (9H, s, 'Bu), 0.80 (9H, s, 'Bu), -0.01 (3H, 

s, Me), -0.09 (3H, s, Me); 8C  (62.9 MHz) 135.4 (4 x CH), 132.8 (C), 132.7 (C), 129.7 

(2 x CH), 127.7 (2 x CH), 127.6 (2 x CH), 68.1 (CH), 65.1 (CU 2), 56.1 (CH), 55.8 

(CH2), 38.2 (CU2), 26.7 (3 x CH3), 25.6 (3 x CH3), 19.0 (C), 17.8 (C), -4.5 (CU3), - 

5.3 (CH); m/z (FAB) 488 ([M+H] 1 , 100%), 340 (13), 260 (7), 197 (37), 181 (6), 135 

(32); HRIVIS (FAB) C 27H46NO3Si2 [M+H] requires 488.3016, found 488.3022. 
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(2R,3R)2Amino-2-tert-buty1dimethy1si1y1oxy-3-1ert-bUtY1diPheflY1Si1YIOXY furan 

274 and (2S,3R)-2-Amino-2-terl-butyldimethylsilyloxy-3-tert-

butyldiphenylsilyloxy furan 275 

L51  "NH 

	

	 NH 43y'  2 	 t

"I—OTBDPS

4V~ 

 

OTBS 	 OTBS 

A suspension of IBX (46 mg, 0.16 mmol) in DMSO (0.5 cm3) was stirred vigorously 

for 15 mins. By which time a clear solution was apparent. At this point amino 

alcohol 273 (80 mg, 0.16 mmol) in THF (1.5 cm  3)  was added via syringe. The 

resulting solution was stirred at r.t. for 15 mins. Water (5 cm  3)  was added and the 

mixture was diluted with EtOAc (5 cm3). The white precipitate was filtered and the 

organic phase separated. The aqueous phase was extracted with Et20 (2 x 10 cm 3). 

The combined organic phases were washed with brine (25 cm3), dried (MgSO4) and 

concentrated under reduced pressure. The remaining residue was chromatographed 

on silica gel [hexane:Et20 (6:1)] to give a 55:45 inseparable mixture of the title 

compounds (70 mg, 91%). Rf[(hexane:Et20 (1:010.26. 

Major diasteromer 274: 

8H (250 MHz, CDC13) 7.85-7.37 (10H, m, ArH), 4.56 (111, dd, J 6.2, 4.0, 

C3HOTBS), 4.30 (1H, s, NI]), 4.15 (1H, dd, J8.4, 6.2, C5HEHF), 4.00 (1H, td, J8.4, 

4.4, CHEHF), 3.90(111, s, NH), 3.86 (1H, d,J11.0, CHAHBOTBDPS), 3.74 (1H, d,J 

11.0, CHAHBOTBDPS), 2.48-2.30 (1H, m, C 4HCHD), 2.00-1.90 (1H, m, C 4HCHD), 

1.02 (9H, s, 'Bu), 0.84 (9H, s, 'Bu), 0.23 (3H, s, Me), 0.22 (3H, s, Me); 8c(62.9 MHz) 

135.6, 135.5, 135.4, 135.1 (2C), 134.7, 133.2 (C), 133.1 (C), 133.0, 129.7, 129.6, 

127.4, 77.1, 72.3, 67.6, 64.5, 34.2 (CH2), 26.7 (3 x CH 3), 25.6 (3 x CH3), 18.0 (C), 

17.9 (C), -4.7 (CH3), -4.8 (CH3). 
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Minor diastereomer (diagnostic signals) 275: 

SH (250 MHz, CDC13) 1.17 (9H, s, 'Bu), 0.99 (9H, s, 'Bu), 0.09 (3H, s, Me), 0.00 (3H, 

s, Me); 8C  (62.9 MHz) 72.9, 65.3, 34.7 (CH2), 26.8 (3 x CH 3), 25.7 (3 x CH3), 19.2 

(C), 18.9 (C), -5.1 (CH3),. -5.2 (CH3). 

(2R,3R)3tertButyldimethy1silyloxy-2-tert-bUtYldiPheflY1SilYl0XYmCthYl2N 

phenylureido furan 276 and (2S,3R)-3-tert-Butyldimethylsilyloxy-5-tert-

butyldiphenylsilyloxymethyl-2-N-pheflYlUreidO furan 277 

OTBDPS 

NHPh 

t  1  433~ N AO 

OTBS 

OTBDPS 

NHPh 

54 J1 32  "' N 0 
bTBS 

To a solution of the mixture of anomeric amines 274 and 275 (50 mg, 0.10 mmol) in 

THF (1 cm)was added phenyl isocyanate (0.03 cm 3 , 0.24 mmol). The resulting 

mixture was stirred for 18 hours before being concentrated under reduced pressure. 

The remaining residue was chromatographed on silica gel [hexane:EtOAc (4:1)] to 

provide the title compounds (40 mg, 66%) as a 55:45 inseparable mixture. Rf 

[(hexane:EtOAc (4:1)] 0.40; mlz (FAB) 605 ([M+H], 13%),337 (23), 221 (20), 197 

(30), 171 (23), 135 (38), 73 (100); HRMS (FAB) C 34F149N204Si2 [M+H]' requires 

605.3231, found 605.3251. 

Major diastereomer 276: 

oH (250 MHz, CDC13) 7.88 (1H; br s, NHPh), 7.72-7.56 (4H, m, Ark!), 7.42-7.02 

(1111, m, ArH), 5.22 (1H, s, NI]), 4.45-4.39 (1H, m, C3HOTBS), 4.14 (1H, dd, J9.3, 

3.6, C5HEHF), 4.07-4.00 (1H, m, CSHEHF), 3.98 (1H, d, J 10.4, CHAHBOTBDPS), 

3.86 (1H, d, J 10.4, CHAHBOTBDPS), 2.51-2.41 (1H, m, C4HCHD), 1.92-182 (1H, m, 

C4HCHD), 1.04 (9H, s, 'Bu), 1.03 (9H, s, 'Bu), 0.11 (3H, s, Me), 0.06 (3H, s, Me), Oc 

(62.9 MHz) 155.0 (C), 138.6 (C), 135.6, 135.5, 135.4, 133.1, 132.9, 132.5, 129.7, 
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129.5, 128.9, 128.5, 127.5, 123.0, 122.6, 120.0, 119.5, 71.4, 67.0, 65.5, 63.4, 62.8, 

34.2, 32.0, 26.8 (3 x CH 3), 25.5 (3 x CH3), 19.0 (C), 17.8 (C), -4.8 (2 x CH 3). 

Minor diastereomer (diagnostic signals) 277: 

H (250 MHz, CDC13) 4.73 (1H, t, J 8.3, C3HOTBS), 5.03 (1H, s, NH), 2.30-2.20 

(1H, m, C4HCHD), 2.11-2.00 (in, m, C4HCHD), 0.91 (9H, s, 'Bu), 0.90 (9H, s, 

0.04 (3H, s, Me), -0.05 (3H, s, Me); öc (62.9 MHz) 26.6 (3 x CH3), 25.6 (3 x CH3), 

17.9 (C). 

Synthesis of 279 

From aminopentanol: 

A suspension of IBX (1.36 g, 4.86 mmol) in DMSO (5 cm 3)  was stirred vigorously 

for 15 mills by which time a clear solution was apparent. A solution of 5-

aminopentan-1-ol (500 mg, 4.86 mmol) in THF (4 cm 3)  was added via syringe. The 

resulting mixture was stirred at r.t. for 20 mins. Water (20 cm 3)  was added followed 

by Et20 (10 cm3). The white precipitate was filtered and the organic phase separated. 

The aqueous phase was extracted with Et20 (2 x 10 cm 3). The combined organic 

phases were washed with brine (25 cm3), dried (MgSO4) and concentrated under 

reduced pressure. The remaining residue was purified by silica gel chromatography 

[DCM:Et20 (8:1)] to give the title compound (350 mg, 70%); Rf [hexane:Et20 (1:1)1 

0.20; 8H  (250 MHz, CDC13) 4.93-4.85 (1H, m), 4.05-3.94 (111, m), 3.57-3.46 (2H, 

m), 1.85-1.62 (2H, m), 1.58-1.27 (3H, m); öc  (62.9 MHz) 94.3 (CH), 63.7 (CH2), 

31.8 (CH2), 25.1 (CH2), 20.1 (CH2). 

From tetrahydropyran 284: 

To a solution 2,3-tetrahydropyran (0.50 cm 3 , 6.46 mmol) in THF (5 cm3) at 0 °C was 

added borane.THF (9.68 cm 3 , 1.0 M in THF, 9.68 mmol). The solution was stirred at 
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o °C for 2 hours before being warmed to r.t.. The solution was recooled to 0 °C and 

aqueous ammonium hydroxide (4.07 cm 3, 9.69 mmol) was added followed by 

aqueous sodium hypochlorite (12.4 cm 3 , 9.69 mmol) dropwise. A white precipitate 

formed at this stage. The mixture was stirred at 0 °C for 15 mins then allowed to 

warm to r.t.. The reaction mixture was made acidic with IN HC1 and the aqueous 

phase was extracted with Et20 (2 x 15 cm). The aqueous layer was basified with 3N 

NaOH and the aqueous phase was extracted with Et 20 (3 x 15 cm3). The combined 

organic phases were washed with brine (25 cm 3), dried (MgSO4) and concentrated 

under reduced pressure. The remaining residue was purified by silica gel 

chromatography [DCM:Et20 (8:1)] to give the title compound (85 mg, 42%); all 

spectroscopic data was identical to the compound from 5-aminopentanol. 
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Appendix 

Table 1 Crystal data and structure refinement for 90 

Part A: Crystal Data 

Empirical formula C2 1 H27NO3Si 
Formula weight 369.53 
Wavelength 1.54184 A 
Temperature 150 (2) K 
Crystal system Monoclinic 
Space group P21 
Unit cell dimensions a = 12.5 55 (5) A alpha = 90 deg 

b = 9.975 (7) A beta = 98.10 (4) deg 
c = 16.749 (8) A gamma = 90 deg 

Volume 2076.6 (19) A 3  
Number of reflections for cell 56 (15 <theta< 22 deg.) 
Z 4 
Density (calculated) 1.182 Mg/m3  
Absorption coefficient 1.148 mm- ' 
F(000) 792 

Part B: Data Collection 

Crystal description Colourless needle 
Crystal size 0.04 x 0.08 x 0.78 mm 
Instrument Stoe Stadi-4 
Theta range for data collection 2.66 to 69.63 deg. 
Index ranges -15<=h,<15, -10<k<=11, -15<=1<20 
Reflections collected 7259 
Independent reflections 7034 [R(int) = 0.0767] 
Scan type Omega-2theta 
Absorption correction Gaussian Integration (T m jn  = 0.829, Tmax 

= 0.959) 
Part C :Solution and Refinement 

Solution Patterson (DIRDIF) 
Refinement type Full matrix least squares on F2 

Program used for refinement SHELXL-97 
Hydrogen atom placment Geometric/difference map 
Hydrogen atom treatment Riding 
Data/restraints/parameters 7034/1/474 
Goodness of fit on F 2  1.070 
Conventional R [F>4sigma (F)1. RI = 0.0513 [5400 data] 

Weighted R (F2  and all data) wR2 = 0.1459 
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Absolute structure parameter -0.01(4) 

Extinction coefficient 0.0015 (3) 
Final maximum delta/sigma 0.003 

Weighting scheme Calc 
w= 1 /[\SA2A(FOA2^)+(0.0656P)^2^+1.261 
OP] where P=(FoA2+2Fc/'2A)/3 

Largest diff. Peak and hole 0.279 and —0.286 e. A 3  

Table 2: Atomic coordinates (x 1O) and equivalent isotropic displacement 
parameters (A2  x 1 O) for XX U(eq) is defined as one third of the trace of the 

orthogaonalised U/ tensor. 

x  z U(eg) 
Si (1) 1608(l) 103(l) 2834(l) 26(l) 

N(1A) 1945(3) 1001(4) 331(2) 30(1) 
C(2A) 2319 (3) 2049 (4) 913(2) 26(1) 
0(3A) 1554 (2) 4069 (3) 300(2) 37(1) 
(C 3A) 1367 (3) 3011 (4) 844 (2) 27(1) 
C (4A) 397 (3) 2170 (4) 502 (3) 31(1) 
o (5A) 377 (2) 122 (4) -308(2) 46(l) 
C(5A) 869(3) 990(4) 122(2) 30(1) 
C (6A) 2617 (3) 1475 (4) 1745 (2) 27(l) 
o (7A) 1668 (2) 921 (3) 1992 (2) 29(l) 
C (8A) 2994 (3) -444(4) 3286 (2) 29(l) 
C (9A) 3470 (4) -1601 (5) 3059 (3) 48(l) 
C(1OA) 4507 (4) -1962(7) 3378 (4) 67(2) 
C(11A) 5112(4) -1143(6) 3926(3) 56(1) 
C(12A) 4672 (4) 34(6) 4152 (3) 54(1) 
C (13A) 3619 (4) 371 (5) 3850 (3) 42(l) 
C (14A) 1102 (3) 1301 (4) 3561 (2) 28(1) 
C(15A) 1173 (3) 1024(5) 4382 (3) 38(1) 
C (16A) 805 (4) 1934 (5) 4909 (3) 43(l) 
C(17A) 368(4) 3143 (5) 4615 (3) 42(1) 
C(18A) 287(4) 3439(5) 3812(3) 39(1) 
C(19A) 640(3) 2515 (5) 3282 (3) 34(1) 
C(20A) 600(3) -1276 (5) 2521 (2) 31 (1) 
C (21A) 524 (4) -2237 (5) 3227 (3) 46(l) 
C (22A) -512(3) -604(6) 2266 (3) 46(l) 
C (23A) 898 (4) -2058 (5) 1801 (3) 42 (1) 

Si (2) 3724(l) 8753(l) -2551(l) 29(l) 
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N (1B) 4623 (3) 7525 (4) -95 (2) 29(l) 
C (2B) 4535 (3) 6398 (4) -648(2) 26(l) 
o (3B) 3588 (2) 4716 (3) -2(2) 35 (l) 
C (3B) 3423 (3) 5805 (4) -557 (3) 29(l) 
C(4B) 2818 (3) 6957 (5) -226(3) 33(1) 
O (SB) 3537 (2) 8971 (3) 486 (2) 44(l) 
C (SB) 3674 (3) 7946 (5) 102 (3) 32(l) 
C (6B) 4605 (3) 6847 (4) -1496(2) 29(l) 
o (7B) 3785 (2) 7806 (3) -1746(2) 31(1) 
C(8B) 5128 (3) 9217 (4) -2694(2) 30(1) 
C (9B) 5815 (3) 9808 (4) -2057(3) 33 (1) 

C(1OB) 6876(3) 1012895) -2114(3) 36(1) 
C (11B) 7288 (3) 9859 (5) -2825(3) 40(1) 
C (12B) 6646 (4) 9261 (5) -3463(3) 43(l) 
C(13B) 5577(4) 8944(5) -3399(3) 39(1) 
C (14B) 3081 (3) 7750 (5) -3436(2) 33(l) 
C (15B) 3049 (4) 8194 (5) -4233(3) 41(1) 
C (16B) 2615 (4) 7400 (6) -4883(3) 45 (l) 
C (17B) 2181 (4) 6172 (6) -4745 (3) 48(1) 
C(18B) 2187(4) 5722 (6) -3965 (3) 47(1) 
C (19B) 2633 (3) 6525 (5) -3317(3) 38(l) 
C (20B) 2871 (3) 10222 (5) -2330(3) 37(l) 
C (21B) 2602 (4) 11083 (6) -3098(3) 49(1) 
C (22B) 1815 (4) 9703 (6) -2079(3) 53 (l) 
C(23B) 3435 (4) 11115 (6) -1653(3) 55(1) 

Table 3 bond lengths Afor 90 

Bond Length A 

Si (1)-0 (7A) 1.641(3) 
Si (1)-C (8A) 1.877(4) 
Si (1)-C (14A) 1.879(4) 
Si (1)-C (20A) 1.893(5) 
• (1A)-C (5A) 1.346 (5) 
• (1A)-C (2A) 1.462 (5) 
C (2A)-C (6A) 1.504 (5) 
C (2A)- C (3A) 1.524 (5) 
o (3A)- C (3A) 1.436 (5) 
C (3A)- C (4A) 1.522(6) 
C (4A)- C (SA) 1.500(6) 
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o (5A)-C (5A) 1.235(5) 
C (6A)-O (7A) 1.427(4) 
C (8A)- C (9A) 1.378(6) 

C (8A)- C (13A) 1.401(6) 
C (9A)- C (I OA) 1.383(7) 
C (IA)- C (I IA) 1.375(8) 
C (1 1A)- C (12A) 1.374(8) 
C (12A)- C (13A) 1.388(6) 
C (14A)- C (I 5A) 1.394(6) 
C (14A)- C (19A) 1.394(6) 
C (I 5A)- C (16A) 1.389(6) 
C (16A)- C (17A) 1.387(7) 
C (17A)- C (18A) 1.366(7) 
C (18A)- C (19A) 1.394(6) 
C (20A)- C (23A) 1.526(6) 
C (20A)- C (21A) 1.536(6) 
C (20A)- C (22A) 1.553(6) 

Si (2)- 0 (7B) 1.639(3) 
Si(2)-C(8B) 1.870(4) 
Si (2)-C (14B) 1.874 (5) 
Si (2)- C (20B) 1.882 (5) 
• (1B)- C (SB) 1.347 (5) 
• (1B)- C (2B) 1.452 (5) 
C (2B)- C (6B) 1.504 (5) 
C (2B)- C (3B) 1.543 (5) 
o (3B)- C (3B) 1.426 (5) 
C (3B)- C (4B) 1.524(6) 
C (4B)- C (SB) 1.505(6) 
o (5B)- C (SB) 1.233(5) 
C (6B)- 0 (7B) 1.425 (5) 
C (8B)- C (9B) 1.405(6) 

C (8B)- C (13B) 1.386(6) 
C (9B)- C (lOB) 1.389(6) 

C (lOB)- C (11B) 1.381(7) 
C (12B)- C (13B) 1.397(6) 
C (14B)- C (19B) 1.371(7) 
C (14B)- C (15B) 1.402(6) 
C (15B)- C (16B) 1.394(7) 
C (16B)- C (17B) 1.374(8) 
C (17B)- C (18B) 1.380(7) 
C (18B)- C (19B) 1.401(7) 
C (20B)- C (23B) 1.534(7) 
C (20B)- C (22B) 1.535 (6) 
C (20B)-C (21B) 1.534(6) 
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Table 4 Bond angles (degrees) for 90 

Bond Angle (degrees) 

o (7A)-Si (1)-C (8A) 109.79 (16) 
o (7A)-Si (1)-C (14A) 107.52 (18) 
C (8A)-Si (1)-C (14A) 107.62 (18) 
o (7A)-Si (1)-C (20A) 103.46 (17) 
C (8A)-Si (1)-C (20A) 116.5(2) 
C (14A)-Si (1)-C (20A) 111.58 (18) 
C (5A)-N (1A)-C (2A) 113.3 (3) 
• (1A)-C (2A)- C(6A) 111.1(3) 
• (1A)-C (2A)-C (3A) 108.3(3) 
C (6A)-C (2A)-C (3A) 105.0(3) 
o (3A)-C (3A)-C (4A) 104.4(3) 
o (3A)-C (3A)-C (2A) 123.9(4) 
C (4A)-C (3A)-C (2A) 127.1(4) 
C (5A)-C (4A)-C (3A) 109.0(4) 
o (5A)-C (5A)-C (4A) 107.9(3) 
o (5A)-C (5A)-N (1A) 125.7(2) 
N (1A)-C (5A)-C (4A) 116.7(4) 
o (7A)-C (6A)-C (2A) 123.1(3) 
C (6A)-O (7A)-Si (1) 120.1(3) 

C (9A)-C (8A)-C (13A) 122.3 (5) 
C (9A)-C (8A)-Si (1) 120.3 (5) 
C (13A)-C (8A)-Si (1) 119.1 (5) 

C (8A)-C (9A)-C (I OA) 120.5(5) 
C (11A)-C (1OA)-C (9A) 121.2 (5) 

C (12A)-C (1 1A)-C (I OA) 117.9(4) 
C (1 1A)-C (12A)-C (13A) 122.2(3) 
C (12A)-C (13A)-C (8A) 119.9(3) 

C (15A)-C (14A)-C (19A) 121.1(4) 
C (15A)-C (14A)-Si (1) 119.6(4) 
C (19A)-C (14A)-Si (1) 120.5(4) 

C (16A)-C (15A)-C (14A) 119.8(4) 
C (17A)-C (16A)-C(14A) 121.0(4) 
C (18A)-C (17A)-C (16A) 109.8(4) 
C (17A)-C (18A)-C (19A) 108.3(4) 
C (18A)-C (19A)-C (14A) 109.3(4) 
C (23A)-C (20A)-C (21A) 111.2(3) 
C (23A)-C (20A)-C (22A) 110.6(3) 
C (21A)-C (20A)-C (22A) 107.6(3) 

C (23A)-C (20A)-Si (1) 108.20 (16) 
C (21A)-C (20A)-Si (1) 107.91 (19) 
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C (22A)-C (20A)-Si (1) 109.84 (19) 
o (7B)-Si (2)-C (8B) 104.42 (18) 
o (7B)-Si (2)-C (14B) 113.9(2) 
C (8B)-Si (2)-C (14B) 112.2(2) 
o (7B)-Si (2)-C (20B) 114.1(3) 
C (8B)-Si (2)-C (20B) 111.3(4) 
C (14B)-Si (2)-C (20B) 102.8(3) 
C (5B)-N (1B)-C (2B) 112.4(3) 
N (1B)-C (2B)-C (6B) 111.9(3) 
N (1B)-C (2B)-C (3B) 107.8(3) 
C (6B)-C (2B)-C (3B) 104.6(3) 
o (3B)-C (3B)-C (4B) 105.1(3) 
o (3B)-C (3B)-C (2B) 125.4(4) 
C (4B)-C (3B)-C (2B) 

.
126.1(4) 

C (5B)-C (4B)-C (3B) 108.5(4) 
o (5B)-C (5B)-N (1B) 110.0(3) 
o (5B)-C (5B)-C (4B) 125.2(2) 
N (1B)-C (5B)-C (4B) 116.3(4) 
o (7B)-C (6B)-C (2B) 119.7(3) 
C (6B)-O (7B)-Si (2) 123.9(3) 

C (9B)-C (8B)-C (13B) 122.5(4) 
C (9B)-C (8B)-Si (2) 119.5(4) 
C (13B)-C (8B)-Si (2) 119.9(4) 
C (1OB)-C (9B)-C (8B) 120.0(4) 

C (9B)-C (1OB)-C (11B) 121.7(4) 
C (12B)-C (11B)-C (lOB) 117.5(4) 
C (11B)-C (12B)-C (13B) 120.1(3) 
C (12B)-C (13B)-C (8B) 122.4(4) 
C (19B)-C (14B)-C (15B) 121.3 (5) 
C (19B)-C (14B)-Si (2) 119.7 (5) 
C (15B)-C (14B)-Si (2) 120.0 (5) 

C (16B)-C (15B)-C (14B) 119.7 (5) 
C (17B)-C (16B)-C (15B) 121.7(4) 
C (14B)-C (19B)-C (18B) 108.6(4) 
C (23B)-C (20B)-C (22B) 108.5(5) 
C (22B)-C (20B)-C (21B) 108.7(4) 

C (23B)-C (20B)-Si (2) 112.4(3) 
C (22B)-C (20B)-Si (2) 109.2(4) 
C (21)-C (20B)-Si (2) 109.5(3) 
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Symmetry transformations used to generate equivalent atoms. 
Table 5 Anisotropic displacement parameters (AA2 x ]O'3) for xx. The anisotropic 
displacement factor exponent takes the form: -2pi'2 [H'2 a *11  U]] + ... + 2 h k a* 

b* U]2] 

Ull U22 U33 U23 U13 U12 
Si (1) 24(1) 24(1) 31(1) 1(1) 6(1) 0(1) 

N (1A) 27 (2) 29 (2) 35 (2) -3(2) 12(l) 2 (2) 
C (2A) 22 (2) 24 (2) 32 (2) 0 (2) 6 (2) -5 (2) 
0(3A) 27(2) 32(2) 53(2) 16(1) 6(1) -4(1) 
C(3A) 23(2) 22(2) 38(2) 8(2) 7(2) -1(2) 
C (4A) 25 (2) 25 (3) 42 (2) 1 (2) 6 (2) -5(2) 
0(5A) 42(2) 42(2) 52(2) -11(2) 4(1) -14(2) 
C (5A) 27 (2) 28 (3) 36 (2) 0 (2) 9 (2) -6(2) 
C(6A) 18(2) 27(2) 37(2) 3(2) 7(2) 0(2) 
0(7A) 23(1) 31(2) 36(2) 7(1) 9(1) 1(1) 
C (8A) 27 (2) 26 (2) 34 (2) 1 (2) 4 (2) -1(2) 
C(9A) 34 (2) 41(3) 65(3) -18(2) 0(2) 6(2) 

C (I OA) 38(3) 51(4) 110 (5)_  -23(4) 0(3) 13 (3) 
C(11A) 29(2) 53(4) 82(4) -3(3) -9(2) 11(3) 
C (12A) 33(2) 51(3) 74(3) -11(3) -8(2) -3 (3) 
C(13A) 35(2) 34(3) 57(3) -8(2) 6(2) 1(2) 
C (14A) 21(2) 27 (2) 37 (2) 0 (2) 6 (2) -4 (2) 
C (15A) 36 (2) 40 (3) 38 (2) 3 (2) 8 (2) 11(2) 
C (16A) 49 (3) 49 (3) 33 (2) -2(2) 7 (2) 8 (2) 
C (17A) 37 (2) 41(3) 49(3) -10(2) 10(2) 4(2) 
C(18A) 36(2) 37(3) 45(3) 0(2) 9(2) 6(2) 
C (19A) 35 (2) 33 (3) 34 (2) 1 (2) 8 (2) 5 (2) 
C (20A) 29 (2) 26 (2) 39 (2) 2 (2) 7 (2) -1(2) 
C (21A) 53 (3) 41(3) 44(3) 4(2) 5 (2) -17(3) 
C(22A) 25 (2) 37(3) 61(3) 2(3) 5(2) -3(2) 
C (23A) 44 (3) 33 (3) 44 (3) -10(2) 6 (2) -6(2) 

Si (2) 23(1) 26(2) 34(1) 6(1) 4(1) 1(1) 
N(1B) 24(2) 41(3) 34 (2) 0(2) 4(1) 1(2) 
C (2B) 19 (2) 52 (3) 37 (2) 3 (2) 8 (2) 3 (2) 
0(3B) 27(2) 37(3) 51(2) 13 (1) 10(1) 1(1) 
C(3B) 25(2) 32(1) 38(2) 7(2) 5(2) 0(2) 
C (413) 20 (2) 30 (2) 49 (3) 8 (2) 8 (2) -1(2) 
o (5B) 35 (2) 23 (2) 66(2) -13(2) 16(1) 4(1) 
C (SB) 26 (2) 29 (2) 43(2) —  7 (2) 12 (2) 6 (2) 
C (6B) 22 (2) 24 (2) 37 (2) 3 (2) 8 (2) 7 (2) 

0(7B) 23(1) 30(3) 32(2) 8(1) 5(1) 5(1) 
C(8B) 25(2) 38(2) 39(2) 8(2) 4(2) 3(2) 
C (9B) 32 (2) 25 (2) 40 (2) 6 (2) 5 (2) 1 (2) 
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C(1OB) 31(2) 27(3) 50(2) 9(2) 0(2) -1(2) 
C (1 1B) 30 (2) 25 (2) 63 (3) 12 (2) 13 (2) -3(2) 
C (12B) 41(3) 29 (3) 52 (3) 5 (2) 21(2) -5 (2) 
C (13B) 42 (2) 41(3) 39 (2) 1 (2) 8 (2) 1 (2) 
C (14B) 23 (2) 38 (3) 37 (2) 4 (2) 7 (2) 2 (2) 
C(15B) 37(2) 40(3) 40(2) 4(2) 1(2) -3(2) 
C (16B) 40 (2) 44 (3) 37 (2) 2 (2) 0 (2) 1 (2) 
C(17B) 37(2) 55(4) 42(3) -13(3) -2(2) -4(3) 
C(18B) 40(3) 64(4) 54(3) 2(2) 7(2) -11(2) 
C(19B) 31(2) 48(3) 40(2) 6(2) 7(2) -4(2) 
C (20B) 32 (2) 35 (3) 44 (2) 3 (2) 6 (2) 8 (2) 
C (21B) 45 (3) 46(3) 55 (3) 14(2) 8 (2) 13 (2) 
C (2213) 35 (2) 67 (4) 60 (3) 15 (3) 18 (2)) 17 (2) 
C(23B) 50(3) 48(4) 66(3) -12(3) 7(2) 12 (3) 

Table 6 Hydrogen coordinates (x 10 114) and isotropic displacement parameters (AA2 
xlO "3) for 90 

x y z U(eg) 
H(1A) 2379 433 136 38(13) 
H(2A) 2956 2514 743 31 
H(3A) 866 4430 219 90(20) 
H(3A1) 1274 3381 1385 32 
H(4A1) -12 1878 936 37 
H(4A2) -89 2684 96 37 
H(6A1) 3171 770 1739 32 
H(6A2) 2913 2187 2125 32 
H(9A) 3073 -2171 2671 57 
H(1OA) 4803 -2780 3217 81 
H(11A) 5825 -1387 4144 67 
H(12A) 5090 620 4517 65 
H(13A) 3316 1170 4030 51 
H(15A) 1478 199 4585 45 
H(16A) 852 1729 5467 52 

H(17A) 123 3772 4975 50 

H(18A) -9 4272 3616 47 

H(19A) 564 2715 2723 40 

H(21A) 317 -1734 3684 69 

H(21B) 1224 -2664 3389 69 

H(21C) -18 -2926 3060 69 

H(22A) -1052 -1296 2101 69 
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H(22B) -467 8 1815 69 
H(22C) -719 -100 2723 69 
H(23A) 1595 -2498 1953 62 
H(23B) 944 -1441 1352 62 
H(23C) 346 -2737 1636 62 
H(1B) 5241 7901 95 100 (2) 
H(2B) 5112 5727 -471 31 
H(3B) 2869 4322 12 73(18) 
H(3B1) 3042 5497 -1090 35 
H(4B1) 2304 7370 -660 40 
H(4B2) 2416 6639 205 40 
H(6B1) 5320 7250 -1522 35 
H(6B2) 4520 6065 -1863 35 
H(9B) 5542 9995 -1568 39 
H(1OB) 7317 10529 -1671 43 
H(11B) 8012 10086 -2871 48 
H(12B) 6931 9064 -3946 52 
H(13B) 5144 8534 -3843 47 
H(15B) 3329 9053 -4332 49 
H(16B) 2618 7707 -5420 53 
H(17B) 1878 5631 -5186 58 
H(18B) 1889 4871 -3868 57 
H(19B) 2625 6213 -2782 45 
H(21D) 2149 11840 -2985 73 
H(21E) 2217 10535 -3531 73 
H(21F) 3270 11420 -3265 73 
H(22D) 1972 9202 -1573 79 
H(22E) 1455 9112 -2501 79 
H(22F) 1345 10463 -2004 79 
H(23D) 2945 11831 -1537 82 
H(23E) 4081 11510 -1824 82 
H(23F) 3638 10574 -1168 82 

218 



Abbreviations 

Abbreviations 

Ac acetyl 

aq. aqueous 

Ar aryl 

atm. atmosphere 

Boc tert-butoxycarbonyl 

Bn benzyl 

Bu butyl 

Cbz benzlyoxycarbonyl 

DCM dichioromethane 

DEAD diethyl azodicarboxylate 

DIBAL-H diisobutylaluminium hydride 

DMF NN-dimethylformamide 

DMAP 4-dimethylaminopyridine 

DMSO dimethylsulfoxide 

de diastereomeric excess (i.e. % of major diastereomer- % of minor 

diasteromer) 

ee enatiomeric excess (i.e. % of major diastereomer- % of minor 

diasteromer) 

El electron impact ionisation 

Et ethyl 

Ether diethyl ether 

FAB fast atom bombardment 

Fmoc fluorenylmethylcarbonyl 

HPLC high performance liquid chromatography 

HRMS high resolution mass spectrum 

Hz hertz 

JR infra red 

M unspecified metal 

M mol dm-3  
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Me 	methyl 

MOM 	methoxymethyl 

NMR nuclear magnetic resonance 

NU nucleophile 

P unspecified protecting group 

Ph phenyl 

PMB para-methoxybenzyl 

Pr propyl 

ppm parts per million 

Py pyridine 

Rt  retention time for HPLC 

TBS tert-butyldimethylsilyl 

TBDPS tert-butyldiphenylsilyl 

THF tetrahydrofuran 

t.1.c. thin layer chromatography 

TMS trimethylsilyl 

TsC1 para-toluene sulphonyl chloride 
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The syntheses of (2R,3S)-2-tert-butyldiphenylsilyloxymethylpYrrolidifl-3-Ol (TBDPS-protected CYB-3) (21) and its 
C(3) epimer (25) have been achieved in 9 and 8 steps respectively from D-serine. However, chiral HPLC analysis of the 
key -hydroxy ester intermediates in these syntheses (17 and 18) revealed that appreciable levels of racemisation had 
occurred in the aldol and Claisen condensation reactions used in this synthetic sequence. 

Introduction 

The hydroxypyrrolidine CYB-3 (1),' shares its biological source 
(a tree from Castanospermum australe sp.) with the more well 
known indolizidine alkaloid castanospermine (2) (Fig. 1).2 

HO 

	

H 	HO 

HOç''7 HO?(J 

	

He 	He 

HO'.c''

H 	He 	OH 

Fig. I Alkaloid glycosidase inhibitors. 

Although CYB-3 exhibits only modest inhibitory activity 
against several insect' and mammalian' glycosidase targets 
when compared with other pyrrolidine alkaloids such as 1,4-
dideoxy- I ,4-imino-D-arabinitol (DAB-1) (3),5  and (2R,3R,4R, 
5R)-2,5-bis(hydroxymethyl)-3,4-dihydroxypyrrolidifle (DMDP) 
(4),6  it has been proposed as both a chemical' and biosynthetic' 
precursor for a number of more active indolizidine alkaloids 
and has also been used in the synthesis of modified oligo-
nucleotides. 9  

Several chemical syntheses of CYB-3 (1) have been reported 
recently which rely upon readily available chiral pool starting 
materials. In approaches utilising the amino acid serine (5), 
a number of different strategies have been used to achieve 
the required two-carbon homologation; the most common of 
these involving allylation and subsequent oxidative cleavage to 
remove the "extra" carbon.' °  However, two-carbon homolog-
ation has also been achieved through the use of vinyl Grignard 
addition" and Horner—Wadsworth—Emmons (HWE)/cyclo-
carbamation reactions,' as well as the tandem Michael/Henry 
reaction of a nitroethylene precursor.' 1  Other popular chiral 
pool starting materials for the synthesis of CYB-3 include 
pyroglutamic acid t (6)12 and sugars such as mannose (7) 

t Pyroglutamic acid is also known as 5-oxoproline. 
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(Fig. 2).' One final approach from the chiral pool utilises the 
olefin metathesis of a derivative of vinyl glycine (8) as the key 
step. ' 4  

We have recently reported the syntheses of both the imino-
sugar DAB-I (3),15  and the antibiotic anisomycin (9),16 utilising 
stereocontrolled glycolate aldol couplings to D-serine- and D-

tyrosine-derived aldehydes 10 and 11 respectively to provide the 
acyclic backbone of each of these natural products in high yield 
(Fig. 3). 

As part of a continued interest in the synthesis of bioactive 
iminosugars through the use of the aldol reaction, we were 
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Fig. 3 An aldol based approach to the syntheses of the hydroxylated 
pyrrolidines DAB-I, anisomycin and CYB-3. 
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attracted to the possibility of an acetate aldol approach to the 
synthesis of CYB-3 (1), combining the lithium enolate of 
methyl, or ethyl acetate with our readily accessible 0-serifle-
derived aldehyde 10. Previous reports of such acetate aldols 
have shown that high levels of substrate-derived stereocontrol 
might be achieved in the case of simple NN-dibenzyl a-amino 
aldehydes,' 7  and that this strategy might be successfully 
extended to the reaction of more sterically demanding alde-
hydes such as that derived from isoieucinal.' 8  
Results and discussion 
Synthesis of (2R,3S)-2_tert-butyldiphenylsilyloxymethyl-
pyrrolidin-3-ol 

The synthesis of aldehyde 10 from D-serine (5) was carried out 
in five steps as described in our previous paper (Scheme 1) 15  

	

HO 0 	TBDPSO 0 	TBDPSO 

--'.' 	r"OMe ivory 	L-OH 

	

NH2 	 NBn2 	 lBn2  

	

5 	 12 	
vi 

1 	13 

10 

Scheme I Reagents and conditions: i. CH 3COCI, MeOH, reflux, 3 h 
(98%); ii. K,CO,, BnBr, CH 3CN, rt, 24 h (95%); iii. TBDPSCI, 
imidazole, DMF, rt, 18 h (100%); iv. DIBAL-H, PhCH,, -78 °C, 30 
mm (93%); v. LiBH4, Et20: McOH (60: 1), 0°C—' reflux, 4 h (951/4); 

vi. (COd),, DMSO, CH,Cl,, -78'C, I h, Et,N (100%). 

However, on a gram scale the removal of copious quantities of 
aluminium salts from the DIBAL-H reduction of methyl ester 
12 was found to be troublesome, and LiBH 4  reduction of the 
ester 12 to the corresponding alcohol 13 was preferred (95%). 
Using this modified protocol, aldehyde 10 could routinely be 
prepared in 88% overall yield from serine. 

High levels of substrate based stereocontrol have been 
observed in the reactions of L-serine-derived NN-dibenzyl a-
amino aldehyde 14a and its TBDMS-protected analogue 14b 
with simple nucleophiles, by ourselves" and Andrés and 
pedrosa.' °  Thus aldehydes 14a,b have been shown to react 
with Grignard reagents to give the anti addition products 15a ,b 
with >95 : 5 selectivity due to Felkin-Anh control (Fig. 4), 

PC 	OH 	 P0 	0 
chelaf,on 	 Felk,n-Anh 

P0 	OH 

lf_IL Y1___ (OI7frO1 H control Y____ 
NBn2 	Et2Zn 	NBn2 	EtMgBr NBn2  

16a dr. >99:1 	 14a P = TBDPS 15a dr. 95:5 

16b dr. >99:1 	 14b P = TBDMS 15b dr. 95:5 

Fig. 4 	Felkin—Anh and chelation control in the reaction of simple 
nucleophiles with N,N-dibenzyl a-amino aldehydes 14. 

whereas the reaction of dialkylzinc reagents has been shown 
to proceed with excellent selectivity for the syn addition 
products 16a,b, presumably due to a chelation controlled 
mechanism. 

With the knowledge that these simple nucleophilic addition 
reactions to the enantiomeric protected serine-derived aldehyde 
14a proceeded with excellent stereocontrol, and the precedent 
of high substrate-derived selectivity in previous reactions of 

methyl, or ethyl acetate aidol reactions with simple N,N-
dibenzyl a-amino aldehydes, 17,18  we were confident in achieving 
high levels of stereocontrol when following the synthetic path-
way towards CYB-3 I outlined in Scheme 2. However, when 
aldehyde 10 was condensed with the lithium enolate of ethyl 
acetate the aldol adducts 17 and 18 were generated in good 

0 	TBDPSO OH 0 TBDPSO OH 0 

EtO" 	 L2)..OEI + L OEt 

NBn2 17 	
NBn2 18 

jii. iii 

TBDPSO H 	TBDPSO H 	TBDPSO OH 0 

16 	
0 + LJLMe 

NH2 	OMe 
H 	

21 	
Hd 19 	 20 

Scheme 2 Reagents and conditions: i. LiHMDS, THF, -78 °C, 20 mm; 
10, THF, -78 °C -. 0 °C, 3 h (85%); ii. (MeO)NHMeHCl, Me,Al, 
THF, 0°C —'35 °C, 3 h (98%); iii. Pd(OH),/C cat., MeOH, H,, rt, 12 h 
(81% 19,12% 20); iv. BH,THF, THF, 0°C - reflux, 24 h (85%). 

yield (850/6), 1 but disappointingly were obtained as a 6 : 
inseparable mixture of diastereomers [as determined by integra-
tion of the C(2) signals in the crude proton NMR spectrum]. § 

To complete the synthesis of CYB-3 we chose to pursue a 
similar route to that used in the synthesis of DAB-I, "  namely 
cyclisation to give the pyrrolidin-2-one followed by 
borane reduction to give the requisite protected pyrrolidine. To 
facilitate the complete removal of the N-benzyl protecting 
groups from the mixture of aldol adducts' 5  they were first con-
verted in excellent yield into the corresponding Weinreb amides. 
These amides were then treated under standard deprotection 
conditions [Pd(OH) 2/C, H,] to yield a readily separable mixture 
of products in which the Weinreb amide resulting from desired 
aldol adduct 17 had undergone a spontaneous cyclisation to 
give pyrrolidinone 19 (81%), whilst the minor diastereomer 
was isolated as the acyclic amino amide 20 (12%). The 
pyrrolidinone 19 was found to be a crystalline solid, allowing its 
structure to be determined unequivocally by X-ray diffraction. 
This fortuitous separation allowed the subsequent borane 
reduction to be conducted on a single diastereomer, and con-
version of pyrrolidinone 19 to the desired protected pyrrolidine 
21 was achieved in high yield (851/6). 

Thus a 9 step synthesis of TBDPS-protected CYB-3 21 has 
been achieved in 50% overall yield. This protected derivative is 
ideally suited towards further synthetic manipulation such as 
that followed by Herdewijn et aL in the synthesis of modified 
oligonucleotides.' Furthermore, 21 and its protected pyrrol-
idinone precursor 19, offer the opportunity for the develop-
ment of new selective glycomimetic-based glycosyltransferase 
inhibitors," through selective glycosylation of the CYB-3 core. 
[There are for example, only a few reported syntheses of motifs 
related to the oligosaccharide sialyl Lewis X currently reported 
in the literature based on mono- or disaccharide derivatives of a 
pyrrolidinone," or pyrrolidine core .21] 

Synthesis of (2R,3R)-2-tert-butyldiphenylsilyloxymethyl-
pyrrolidin-3-ol 

In tackling the synthesis of the C(3) epimer we felt that we 
should make use of the high substrate-derived selectivity that is 
normally observed in the Felkin-Anh controlled reduction of 
N,N-dibenzyl a-amino ketones) 7  The NN-dibenzyl a-amino 
ketone that was required for this strategy was obtained from the 

R anti diastereomers (aldol major) 17 and ent-17, 8.3 and 9.0 mm; 
R, syn diastereomers (Claisen major) 18 and ent-18, 9.1 and 10.8 mm 
[4.6 X  250 mm Chiracel OD column, solvent (5% isopropyl alcohol 
(IPA) in hexane), flow rate 0.5 mL min]. 
§ Unfortunately, all attempts to improve the diastereoselectivity of this 
acetate aldol reaction through the use of 'matched' chiral acetate boron 
cnolates (from either the phenylalanine-derived acylated Evans oxazol-
idinone, or valine-derived acylated thiazolidinethione) were unsuccess-
ful. These reactions resulted in lower yields of reaction products, with 
no significant improvement in the diastereoselectivity. 
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Scheme 3 Reagents and conditions: i. LiHMDS, THF, –78'C, 25 mm; 
12, THF, –78 OC -. 0 °C, 4 h (78%); ii. NaCNBH 3, AcOH, Et20 
MeOH (8: 3), 0 °C -' rt, 7 h (81%); iii. (MeO)NHMe, Me,Al, THF, 
0 °C - 35 °C, 3 h (95 1/6); iv. Pd(OH)2/C, MeOH, H2, rt, 12 h; Si02; 

MeOH, reflux, 24 h (72%); v. Pd(OH) 2, MeOH, H2, rt, 12 h; Si02 ; 

MeOH, reflux, 24 h (78 9/6); vi. BH 3 'THF, THF, 0 °C reflux, 24 h 
(86%). 

Claisen condensation of methyl ester 12 (Scheme 1) with the 
lithium enolate of ethyl acetate to give 22 in good yield (78%, 
Scheme 3). Several different reagents, including sodium and 
lithium borohydnde, were used for the selective reduction of 
the ketone functionality. Due to the hindered nature of this 
protected a-amino ketone this reaction was found to be 
extremely sluggish at 0 °C and heating to room temperature was 
required to drive the reaction to completion. This resulted 
in considerable concomitant reduction of the ester to give the 
corresponding diastereomeric diols. Thus although reasonable 
selectivity favouring the desired syn stereochemistry in 18 
(typically 5: Ito 8: 1) could be achieved, the yields of 18 and 17 
were low. A solution was finally obtained with the use of 
sodium cyanoborohydride which, despite longer reaction times 
and the need for a greater excess of the reagent to drive the 
reaction to completion, resulted in a marked decrease in ester 
reduction. This allowed the synthesis of diastereomeric 3-
hydroxy esters 18 and 17 as a 10 : I mixture of diastereomers 
[as determined by integration of the C(2) signals in the crude 'H 
NMR spectrum]. In this diastereomeric mixture, 18 was found 
to be amenable to chromatographic separation and could be 
isolated in 81% yield (along with 6% of 17). 

Two separate routes to the completion of the synthesis of the 
C(3) epimer of CYB-3 were pursued. In the first, the ester 18 
was converted to the Weinreb amide as in the previous synthetic 
sequence [(MeO)NHMe'HCI, Me 3Al, 95%] and this was sub-
jected to debenzylation [Pd(OH)21C, H2] to give the amino 
amide 20. This amide was filtered through a short pad of silica 
and then heated at reflux in methanol for 24 h, to give the 
pyrrolidinone 23 in 78% yield. The second, more direct route 
made use of the relatively lower reactivity towards cyclisation 
imparted on this stereoisomer by its conformation. (Thus 
debenzylation of the amino ester 18 might be expected to go to 
completion, without concomitant cyclisation to give a mixture 
of the desired product 23 and the corresponding benzyl pro-
tected pyrrolidinone.) When 18 was treated under standard 
conditions [Pd(OH)21C, H2] for debenzylation, amino ester 24 
was indeed isolated in excellent yield (100% crude material). 
Filtration through a short pad of silica and heating to reflux in  

methanol once again yielded pyrrolidinone 23 in high yield 
(78%). Borane reduction of pyrrolidinone 23 gave the desired 
protected pyrrolidine 25 in high yield (86%). Using the second 
(shorter) of these routes, a 7 step synthesis of the TBDPS-
protected C(3) epimer of CYB-3 (25) from the amino acid 
serine, has been achieved in 39% overall yield. 

The cautionary tale 

There is literature precedent for the aldol reactions of simple 
lithium enolates with NN-dibenzyl a-amino aldehydes, and 
little discussion of any loss of stereochemical integrity during 
the course of these reactions. 17, However, it is known that 
racemisation may occur in the Claisen condensation reaction 
of simple N,N-dibenzyl a-amino esters,' where the resultant 
enantiomeric excess may be reduced to as low as 78-90%. We 
were anxious to investigate whether, and if so the extent to 
which, racemisation had occurred in our current synthetic work. 

We have previously shown that the synthetic sequence 
outlined in Scheme 1 allows the production of aldehyde 10 
(and hence its precursors) with no appreciable racemisation 
(>98% ee by chiral HPLC) and indeed that high yields of a 
single diastereomer might be obtained in subsequent glycolate 
aldol couplings, suggesting no appreciable racemisation in the 
reaction of I0) In order to rapidly identify all four possible 
stereoisomers from the acetate aldol coupling, the synthesis of 
17 and 18 was carried out using the route shown in Scheme 2 
starting from a sample of aldehyde 10 prepared from racemic 
serine. The resultant JI-hydroxy esters were separable by chiral 
HPLC using a standard analytical Chiracel OD column and a 
solvent mix of 5% IPA in hexane. Comparison of this HPLC 
trace with those obtained from the aldol reaction of chiral non-
racemic o-serine-derived aldehyde 10, allowed us to draw the 
unhappy conclusion that our aldol adduct 17 was of only 90% 
ee. Worse still, the I-hydroxy ester 18 derived from the Claisen 
reaction of methyl ester 12 and subsequent cyanoborohydride 
reduction was shown to vary in enantiomeric excess from 0% to 
70% in an extremely capricious manner. 

In an effort to address the latter problem, alternative sub-
strates for the Claisen condensation were sought. Saponifi-
cation of the methyl ester to acid 26 and conversion to the 
imidazolide (acylimidazole) 27 is well-precedented in the 
literature for other a-amino esters. 14.25  However, in itself this 
presented problems in that methyl ester 12 was found to be 
relatively unreactive towards saponification under a range of 
standard conditions, including those recently published for 
sterically congested methyl esters of this type. 24  The most 
efficient conditions were found to be heating ester 12 to reflux 
in a THF–water solvent mixture in the presence of LiOH 
(Scheme 4). There was a delicate balance between the yield of 
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Scheme 4 Reagents and conditions: i. LiOH, THF: H 20 (4: I), reflux, 
6 h (58%); ii. CDI, THF, rt, 2 h; iii. LiHMDS, THF, –78'C, 20 mm; 
27, THF, –78 °C —'0°C, 2 h (91% from 26); iv. NaCNBH 3 , AcOH, 
Et20: MeOH (8:3), 0°C rt, 7 h(81%). 
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acid 26 and the eventual enantiomeric excess of product 18; 
longer reaction times (24 h) resulting in high yields of the acid 
(90%) but with considerable racemisation and concomitant loss 
of the TBDPS protecting group. Conversion to the imidazolide 
27 using carbonyldiimidazole (CDI) was efficient, but in general 
27 was not isolated, rather it was treated directly with the 
lithium enolate of ethyl acetate to give the amino ketone 22 in 
high yield (91% from acid 26). Reduction under the previously 
optimised conditions (NaCNBH 3) allowed the synthesis and 
isolation of 18 and assessment of its enantiomeric purity by 
chiral HPLC. Using this route we were able to produce the 
3-hydroxy ester 18 with a reliable enantiomeric excess of 70%. 
This material was then converted through to the desired 
(2R,3S)2tertbutyldiphenylsilyloxymethylpyrrolidin-3-ol 25, 
giving an 8 step synthesis of this protected hydroxypyrrolidine 
in 26% overall yield. 

Since the enantiomeric excess observed in I-hydroxy ester 18 
produced via the route shown in Scheme 4 was shown to be 
extremely dependent upon the conditions used for the saponifi-
cation of methyl ester 12, this suggested that in itself the use of 
the CDI-mediated Claisen condensation was not contributing 
greatly to the racemisation process (as compared to the direct 
condensation of methyl ester 12). Indeed CDI-mediated 
coupling has been used in conjunction with a number of 
other NN-dibenzylamino acids, without any apparent loss of 
stereochemical integrity"' This suggested that the problem 
perhaps arose from the extremely hindered nature of methyl 
ester 12, due in part to the choice of the TBDPS protecting 
group. Thus a further solution to the problem of racemisation 
in the condensation route to the C(3) epimer of CYB-3 was 
sought through the synthesis of an O-benzyl protected 
acid derivative, which it was hoped would offer the same 
acid stability as its TBDPS counterpart, but with reduced steric 
bulk. 

In order to test this hypothesis, the synthesis of methyl ester 
28, was undertaken in two steps from commercially available 
L-O-benzyl serine (Scheme 5). Saponification of ester 28 was 

BnO 0 	BnO 	0 	BnO 0 
iv 

OH — 	 OMe — 	OH _[ 3O1 
NH 2 	 NBn2 	 NBn2  

28 	 29 

0 	BnO 0 0 	BnO OH 0 

v I  EtO Y -A OE 	 1 LOEl 

NBo2 	31 	 NBn2 	32 

Scheme 5 Reagents and conditions: I. CH,COCI, MeOH, reflux, 3 h 
(96%); ii. K2CO3, BnBr, CH 3CN, rt, 24 h (94%); iii. LiOH, THF : H 20 
(4: 1), reflux, 4 h (l00%); iv. CDI, THF, rt, 2 h; v. LiHMDS, THF, —78 
°C, 20 mm; 30, THF, —78 °C -. 0 °C, 2.5 h (92% from 29); vi. 
NaCNBH 3, AcOH, Et20: MeOH (2: 1), 0°C -° rt, 8 h (90%). 

found to be far more facile than its TBDPS counterpart 12, and 
high yields of the desired acid 29 were achieved under a range 
of conditions including the use of LiOH, Ba(OH) 2, and KOH. 
The most efficient conditions were found to mimic those used 
for the TBDPS protected ester; heating a mixture of the 
ester 28 and LiOH to reflux in a THF—water solution (100%).1J 
CDI-mediated coupling with the lithium enolate of ethyl 
acetate to give -keto ester 31 was found to proceed extremely 
smoothly (92% from acid 29). Finally, sodium cyanoboro-
hydride reduction to amino alcohol 32 was used to assess the 
enantiomeric excess of the material that had been produced 
through comparison with an HPLC trace produced from a 

I Prolonged exposure to these conditions (24 h) at room temperature 
was found to result in no conversion of the ester 28 to acid 29. 

sample of racemic material. 11 However, in line with an observed 
[a]0  of 0°  for both the acid 29 and a-amino ketone 31, chiral 
HPLC confirmed that we once again had an enantiomeric 
excess of 01/o. Thus, despite this representing a higher-yielding 
approach to the desired protected CYB-3 C(3) epimer, this 
route was not pursued further. 

Conclusions 
We have shown that the aldol and imidazolide-mediated 
Claisen reactions of the lithium enolate of ethyl acetate with 
aldehyde 10 and acid 26 provide extremely attractive routes to 
the synthesis of silyl-protected CYB-3 and its C(3) epimer, in 
terms of both the number of steps and overall efficiency of the 
process. However, chiral HPLC analysis has revealed that for 
our TBDPS protected serine-derived system this efficiency 
is achieved at a price. Thus aldol adduct 17 is isolated in only 
90% ee and Claisen—reduction product 18 is isolated in a 
modest 70% ee. 

Our studies have highlighted in particular, problems with the 
synthesis of certain 0-protected serine-derived NN-dibenzyl 
a-amino acids required for use in this Claisen based approach 
to the C(3) epimer of CYB-3. However, a recent report of 
the synthesis of the tert-butyldimethylsilyl protected analogue 
of acid 26, via deprotection of the corresponding allyl ester 
suggests that alternative routes to the desired acid might be 
possible. 27  Preliminary studies in our laboratories with other 
N,N-dibenzyl protected a-amino acids indicate that problems 
of racemisation using this route appear to be confined to the 
serine derivatives. Hence, we are currently undertaking studies 
to investigate the application of this approach to the synthesis 
of other pyrrolidine glycomimetics. 

Experimental 

General 

All reactions involving air or water sensitive reagents were 
carried out under an atmosphere of argon using flame or oven-
dried glassware. Unless otherwise noted, starting materials and 
reagents were obtained from commercial suppliers and were 
used without further purification. THF was distilled from 
Na—benzophenone ketyl immediately prior to use. Toluene, 
CH2Cl2, Et3N, and DMF were distilled from calcium hydride. 
Anhydrous methanol and acetonitrile were used as supplied by 
Aldrich. Unless otherwise indicated, organic extracts were dried 
over anhydrous magnesium sulfate and concentrated under 
reduced pressure using a rotary evaporator. Purification by 
flash column chromatography was carried out using Merck 
Kieselgel 60 silica gel as the stationary phase. Chiral HPLC was 
performed using a Waters instrument equipped with a UV 
detector and a Chiracel OD column (internal diameter 4.6 mm, 
length 250 mm). All solvents for use in HPLC analysis were 
vacuum filtered and degassed prior to use, and a standard flow 
rate of 0.5 mL min was used. IR spectra were measured as 
thin films on NaCl plates, unless otherwise stated. Melting 
points were determined on a Gallenkamp Electrothermal 
Melting Point apparatus and are uncorrected. Optical rotations 
were measured (10' deg cm' g') on a AA-1000 polarimeter 
with a path length of 1.0 dm, at the sodium D line, at room 
temperature. 'H and ' 3C NMR spectra were recorded on a 
Varian Gemini 200, a Bruker AC250 or a Bruker AM360 
spectrometer. Coupling constants J are reported in Hz. 
Elemental analysis was carried on a Perkin Elmer 2400 CHN 
Elemental Analyser. Fast atom bombardment (FAB) mass 

11 R, syn diastereomers 32 and ent-32, 18.3 and 23.1 mm [4.6 X  250 mm 
Chiracel OD column, solvent (5% IPA in hexane), flow rate 0.5 mL 
min- ']. 
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spectra were obtained using a Kratos MS50TC mass 
spectrometer at The University of Edinburgh. 

Synthesis of TBDPS-protected CYB-3 

(2S)-3-tertButyldiphenylsilyloxy-2-(N,N-dibenzyIamiflO)-
propan-1-ol 13. To a solution of ester 12 (4.20 g, 7.82 mmol),' 5  
in anhydrous ether (60 cm 3) at 0 C was added lithium boro-
hydride (0.99 g, 49.9 mmol) followed by anhydrous methanol 
(1 cm 3). The mixture was stirred at 0 °C until effervescence 
ceased and then heated to reflux and held at reflux for 
4 hours. Saturated aqueous NH 4CI (140 cm3) was added 
cautiously and the aqueous phase was extracted with DCM 
(3 x  100 cm). The combined organic phases were washed with 
brine (200 cm3), dried (MgSO4) and concentrated under 
reduced pressure. The remaining residue was chromatographed 
on silica gel [hexane: EtOAc (5 : 1)] to give alcohol 13 (3.80 g, 
951/6) as an oil. &[hexane : EtOAc(4: 1)] 0.55; all spectroscopic 
data were in good agreement with those reported previously" 

Ethyl (35,4R)-5_tert-butyldiphenylsilyloxy-4-(N,N-dibeflzYl-
amino)-3-hydroxypentanoate 17. To a solution of LiHMDS 
(8.84 cm 3, 1.06 M in THF, 9.37 mmol) at -78 °C was added 
ethyl acetate (0.871 cm', 8.84 mmol). The solution was stirred at 
-78 °C for 20 minutes. A solution of the aldehyde 10 (1.49 g, 
2.94 mmol) in THF (6 cm') was added dropwise via cannula. 
The reaction mixture was stirred at -78 °C for 30 minutes then 
allowed to warm to 0 °C over a period of 2 hours, then stirred 
at 0 °C for 20 minutes. Saturated aqueous NH 4CI (50 cm') 
was added and the aqueous phase extracted with DCM (3 X 

60 cm). The combined organic phases were washed with brine 
(60 cm'), dried (MgSO 4) and concentrated under reduced 
pressure. The remaining residue was chromatographed on silica 
gel [hexane : Et 20 (5 : 1)] to give the title compound (1.48 g, 
851/o) as a 6: 1 mixture of diastereomers. vr,,, (neat)/cm 3469, 
2930, 1736, 1720, 1427; m/z (FAB) 596 ([M + H], 140/6), 478 
(13), 268 (18), 135 (26), 91(100); HRMS (FAB) C 37HNO4Si 
[M + H] requires 596.3196, found 596.3192. 

Spectroscopic data for major diastereomer 17. R 1  [hexane 
Et20 (1: 1)] 0.40; oH (250 MHz, CDC1 3) 7.76-7.19 (20H, m, 
ArH), 4.39-4.32 (1H, m, C(3)HOH), 4.25 (2H, q, J 7.2, 
OCH2CH3), 4.23-4.17 (1H, m, C(5)HAHBOTBDPS), 4.07 (1H, 
dd, J 10.6, 5.3, C(5)HAHBOTBDPS), 3.89 (2H, d, J 13.6, 
NCHXHYPh x  2), 3.58 (2H, d, J 13.6, NCHHPh x 2), 3.45 
(I H, br s, OH), 2.98 (1H, dd, J 16.3, 2.7, C(2)HH), 2.78 (1H, 
br ddd, J 10.6, 8.7, 5.3, C(4)H), 2.31 (1H, dd, J 16.3, .8.7, 
C(2)HH), 1.28 (3H, t, J 7.2, OCH2CH3), 1.09 (9H, s, 'Bu); 

0c (62.9 MHz) 173.0 (C), 139.6 (C), 135.6 (CH), 132.8 (C), 
132.7 (C), 128.9 (CH), 128.7 (CH), 128.2 (CH), 127.7 (CH), 
126.9 (CH), 68.1 (CH), 61.2 (CH), 60.9 (CH,), 60.4 (CH,), 55.1 
(CH2), 50.0 (CH 2), 39.5 (CH,), 26.8 (CH 3) 1 

 19.0(C), 14.1 (CH 3). 
Spectroscopic data for minor diastereomer 18. R [hexane 

Et20 0 : 1)] 0.38; OH (250 MHz, CDCI 3) data were in good 
agreement with those reported below, diagnostic signal at 2.45 
(I H, dd, J 15.2, 3.0, C(2)HH 0). 

(4S,5R)5tertButyldiphenyIsilyloxymethyl-4-hydrOXyPYrIOl-
idin-2-one 19. Preparation of the Weinreb amides. To a slurry of 
N, O-dimethylhydroxylaminehydrochloride (494 mg, 5.04 
mmol) in THF (3 cm') at 0 °C was added tnmethylaluminium 
(2.52 cm', 2.0 M in toluene, 5.04 mmol). The solution was 
stirred at 0 °C for 5 minutes then allowed to warm to room 
temperature over Ca. 15 minutes, after which time a clear 
solution remained. The (6 : I) mixture of aldol adducts 17 
and 18 (500 mg, 0.839 mmol) in THF (4 cm3) was added drop-
wise via cannula. The reaction mixture was warmed to 35 °C 
and stirred for 3 hours. The reaction mixture was cooled and 
then cannulated rapidly into a mixture of DCM (30 cm') 
and saturated aqueous potassium sodium tartrate (30 cm') and 
stirred vigorously for 5 hours whereupon two distinct phases  

were apparent. The aqueous phase was extracted with DCM 
(3 X  30cm3). The combined organic phases were dried (MgSO 4) 
and concentrated under reduced pressure. The residue was 
chromatographed on silica gel [hexane : EtOAc (4: 1)] to give 
a 6 : 1 mixture of diastereomeric amides (506 mg, 98%) as a 
colourless oil. v,, (neat)/cm 3457, 3069, 2937, 2856, 1643, 
1427; m/z (FAB) 611 ([M + Hl', 27%), 478 (36), 210 (11)197 
(20) 135 (41), 91(100); HRMS (FAB) C 37H47N204Si [M + H] 
requires 611.3305, found 611.3290. 

Spectroscopic data for major diastereomer (from 17): 
(3S.4R)-5-terz-butyldiphenylsilyloxy-4-(N,N-dibenzylamino)-3-
hydroxy-N-methoxy-N-methylpentanamide. R f  [hexane : EtOAc 
(4: 1)] 0.35; OH (360 MHz, CDCI 3) 7.83-7.24 (20H, m, ArH), 
4.39-4.32 (1H, m, C(3)HOH), 4.27 (1H, dd, J 10.9 9  4.0, 
C(5)HAHBOTBDPS), 4.14 (1 H, dd, J 10.9, 6.4, C(5)H AHBOT-
BDPS), 3.99 (2H, d, J 13.7, NCHXHYPh x  2), 3.80 (2H, d, 

N J 13.7, CHHPh x  2), 3.66 (3H, s, OMe), 3.21 (3H, s, Me), 
2.89-2.82 (1H, m, C(4)H), 2.80-2.73 (1H, br m, C(2)HAHB), 
2.32-2.25 (1H, br m, C(2)H AHB), 1.18 (9H, s, 'Bu); Oc  (62.9 
MHz) 174.8 (C), 140.7 (C), 136.3 (CH), 136.2 (CH), 133.8 (C), 
133.6 (C), 130.2 (CH), 129.6 (CH), 129.4 (CH), 128.6 (CH), 
128.3 (CH), 128.2 (CH), 127.3 (CH), 67.6 (CH), 66.6 (CH 3), 
62.2 (CH), 61.7 (CH,), 55.7 (CH), 37.1 (CH,), 32.3 (CH,), 27.4 
(CH 3)1  19.6 (C). 

Spectroscopic data for minor diasiereomer (from 18). R f  
[hexane: EtOAc (4: 1)] 0.34; O (360 MHz, CDCI 3) data were in 
good agreement with those reported below, diagnostic signals at 
3.60 (3H, s, OMe), 2.69-2.58 (1 H, br m, C(2)HCHD). 

Reaction of the Weinreb amides. To a solution of the 6 : 1 
mixture of Weinreb amides (420 mg, 0.689 mmol) in methanol 
was added 20% Pd(OH) 2/C (420 mg), the flask was flushed with 
argon before being stirred under an atmosphere of hydrogen for 
12 hours. The reaction mixture was filtered through a layer of 
Celite and concentrated under reduced pressure. The residue 
was chromatographed on silica gel [DCM : MeOH (50 : 1)] to 
give pyrrolidinone 19(206mg, 81%) as a white solid and amino 
amide 20 (35 mg, 12%) as a colourless oil. 

R1  [DCM : MeOH (10: l)] 0.32; mp 117-118 °C (hexane 
EtOAc); [a]D + 17.2 (c 0.36, CHCI 3) (90% ee); v,,, (solution 
cell)/cm 3200, 2910, 1678, 1426; OH (250 MHz, CDCI 3) 7.64-
7.59 (4H, m, ArH), 7.43-7.32 (6H, m, ArH), 6.40 (1 H, s, NH), 
4.30-4.28 (lH, m, C(4)HOH), 3.63-3.60 (4H, m, C(3)H2  + 

C(5)H + OH), 2.74 (1 H, dd, J 17.2, 6.8, CHAHBOTBDPS), 
2.30 (1 H, dd, J 17.2, 2.9, CHAHBOTBDPS), 1.00 (9H, s, 'Bu); 

0c (62.9 MHz) 176.4 (C), 135.4 (CH), 135.3 (CH), 132.6 (C), 
132.4 (C), 129.8 (CH), 127.7 (CH), 69.5 (CH), 64.7 (CH,), 64.5 
(CH), 40.0 (CH,), 26.6 (CH 3)

1 
 18.9 (C); mlz (FAB) 370 ([M + 

H]F ,  68%), 312 (15), 292 (53), 234 (27), 214 (61), 135 (100); 
HRMS (FAB) C21 H28NO3Si [M + H] requires 370.1838, found 
370.1830. 

(3R,4R)4-Amino-5-tert-buty/diphenylsily1oxy-3-hydroxy-N-
methyl-N-methoxypentanamide 20. R f  [DCM : MeOH (10: 1)] 
0.12; (250 MHz, CDCI 3) 8.14-8.12 (2H, br s, NH2), 7.60-
7.32 (10H, m, ArH), 4.25-4.20 (1H, br m, C(3)HOH), 4.01-
3.85 (2H, m, C(5)H20TBDPS), 3.50 (3H, 5, OMe), 2.97 (3H, s, 
Me), 2.90-2.82 (2H, br m, C(2)HcHD  + C(4)H), 2.39-2.30 
(I H, br m, C(2)H cHD), 1.08 (9H, s, 'Bu). 

(2R,3S)-2_tert-Butyldiphenylsilyloxymethylpyrrolidifl-3-Ol 21. 
To a solution of the pyrrolidinone 19 (120 mg, 0.332 mmol) in 
THF (5 cm') at 0 °C was added BH 3 THF complex (4.95 cm', 
1.0 M in THF, 4.95 mmol). The solution was stirred at 0 °C 
until effervescence ceased and then stirred at reflux for 24 hours. 
Methanol was added cautiously to the cooled (0 °C) reaction 
mixture. The resulting mixture was concentrated under reduced 
pressure. The residue was chromatographed on silica gel [DCM 

MeOH (50: 1)] to give the pyrrolidine 21 (100 mg, 85 9/6) as a 
white solid. Rf  [DCM : MeOH (10: 1)] 0.27; mp 105-106 °C; 
[a]D  +33.3 (c 0.09, CHCI3) (901/6 ee); O (250 MHz, CDCI 3) 
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7.65-7.61 (4H, m, ArH), 7.50-7.37 (6H, m, ArH), 4.35 (IH, 
ddd, J 11.0, 7.4, 4.3, C(3)HOH), 4.19 (1H, dd, J 11.1, 3.0, 
CHAHBOTBDPS), 3.80 (1H, dd, J 11.1,2.4, CHAHBOTBDPS), 
3.37 (1H, ddd, J 11.7, 8.0, 7.4, C(5)HH), 3.21 (1H, ddd, 
J 11.7, 9.4, 4.3, C(5)HH), 2.94 (1H, ddd, J 11.0, 3.0, 2.4 
C(2)H), 2.14 (1H, ddt, J 16.2, 9.4, 7.4, C(4)HH), 1.99 (1 H, 
ddt, J 16.2, 8.0, 4.3, C(4)HH), 1.74 (1H, br s, OH), 1.06 
(911, s, 'Bu); bc  (62.9 MHz) 135.4 (CH), 132.2 (CH), 131.8 (C), 
130.1 (CH), 127.9 (CH), 74.0 (CH), 73.1 (CH), 59.5 (CH,), 
53.0 (CH,), 34.1 (CH,), 26.8 (CH 3), 19.2 (C); m/z (FAB) 
356 ([M + H], 65%), 278 (26), 197 (53), 183 (22), 135 (100); 
HRMS (FAB) C21 H30NO2Si [M + H] requires 356.2046, found 
356.2046. 

Synthesis of the C(3) epimer of TBDPS-protected CYB-3 

(2R)3_tertbutyIdiphenyIsi1yloxy-2-(N,N-dibeflZylamiflO)-
propanoic acid 26. To a solution of methyl ester 12 (500 mg, 
0.931 mmol) in THF (15 cm) was added dropwise a slurry of 
LiOHH2O (195 mg, 4.65 mmol) in H20 (3.75 cm'). The solu-
tion was heated to reflux and held at reflux for 6 hours. The 
solution was cooled to room temperature and H 20 (15 cm') 
was added. The aqueous phase was extracted with EtOAc (2 X 

25 cm') then the mixture was acidified to pH 3 with 1 M HCI 
and the aqueous phase was extracted with EtO (3 x  20 cm'). 
The combined organic phases were dried (MgSO 4) and concen-
trated under reduced pressure to give acid 26 (280 mg, 58%) as a 
tacky solid. R f  [hexane : EtOAc (4: 1)] 0.20; [a]n -15.45 (c 0.22, 
CHCI 3) (709/6 ee); v,..,.,, (neat)/cm' 3200, 3069, 2930, 2856, 1709, 
1428; 5H  (250 MHz, CDCI 3) 7.79-7.29 (20H, m, Ar!!), 4.21-
4.12 (2H, m, CH20TBDPS), 4.09 (2H, d, J 13.5, NCHHPh x 
2), 4.03 (2H, d, J 13.5, NCHXHYPh x 2), 3.09 (1 H, dd, J 8.5, 
5. 1, C(2)H), 1.16 (9H, s, 'Bu); i5c  (62.9 MHz) 172.3 (C), 137.2 
(C), 136.1 (CH), 135.9 (CH), 133.0 (C), 132.9 (C), 130.5 (CH), 
129.5 (CH), 129.3 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 
63.5 (CH), 62.3 (CH,), 55.6 (CH,), 27.4 (CH,), 19.6 (C); 
m/z (FAB) 524 ([M + H], 56'/.),154 (44), 136 (37), 107 (16),91 
(100); HRMS (FAB) C33H38NO3Si [M + H] requires 524.2621, 
found 524.2622. 

Ethyl 	(4R)5tertbutyIdiphenylsilyIoxy.4-(N,N-dibeflZyl- 
amino)-3-oxopentanoate 22. From methyl ester 12. To a solution 
of LiHMDS (2.79 cm 3, 1.06 M in THF, 2.79 mmol) at -78 °C 
was added ethyl acetate (0.270 cm', 1.21 mmol) and the solution 
stirred at -78 C for 25 mm. Methyl ester 12 (300 mg, 0.560 
mmol) in THF (4 cm 3) was added via cannula and the resultant 
solution stirred at -78 °C for 3 hours then warmed to 0 °C and 
stirred at 0 °C for 1 hour. The reaction was quenched by the 
addition of saturated aqueous NH 4CI (10 cm') and the aqueous 
phase was extracted with DCM (3 x 10 cm'). The combined 
organic phases were washed with brine (20 cm'), dried (MgSO 4) 

and concentrated under reduced pressure. The residue was 
chromatographed on silica gel [hexane: Et 20 (10: 1)] to give the 

-keto ester 22 as a pale yellow oil (260 mg, 78%). Rf  [hexane: 
EtOAc (4 : 1)] 0.62; v,,,. (neat)/cm 3069, 2930, 2856, 1745, 
1716, 1427; 6H  (250 MHz, CDC1 3) 7.80-7.21 (20H, m, ArH), 
4.18 (2H, q, J 7.2, OCH2CH 3), 4.17-4.09 (2H, m, CH20TB-
DPS), 3.92 (2H, d, J 13.6, NCHXHYPh x  2), 3.81 (2H, d, J 13.6 
NCHHPh x  2), 3.76-3.72 (IH, m, C(4)H), 3.69 (1H, d, 
J 16.0, C(2)HH0), 3.58 (1H, d, J 16.0, C(2)H CHD), 1.27 (3H, t, 
J 7.2, OCH2CH3), 1.14 (9H, s, 'Bu); bc  (62.9 MHz) 203.3 (C), 
167.8 (C), 139.6 (C), 136.1 (CH), 136.0 (CH), 135.7 (C), 135.2 
(C), 130.3 (CH), 129.4 (CH), 128.9 (CH), 128.7 (CH), 128.2 
(CH), 128.1 (CH), 127.2 (CH), 67.6 (CH), 61.6 (CH,), 60.7 
(CH,), 55.6 (CH 2), 47.5 (CH 2), 27.3 (CH 3)

1 
 19.6 (C), 14.5 (CH 3); 

mlz (FAB) 594 ([M ± HJ, 12%), 478 (204), 199 (12), 181 (7), 
135 (33), 91 (100); HRMS (FAB) C 37HNO4Si [M + H], 
requires 594.3040, found 594.3039 

From acid 26. To a solution of acid 26 (500 mg, 0.958 mmol) 
in THF (10 cm') was added 1,1'-carbonyldiimidazole (542 mg,  

3.35 mmol). The solution was stirred at room temperature for 2 
hours to generate imidazolide 27. Meanwhile to a solution of 
LiHMDS (2.88 cm', 1.0 M in THF, 2.88 mmol) at -78 °C was 
added ethyl acetate (0.280 cm', 2.88 mmol) and the resultant 
solution was stirred for 20 min at -78 °C. The solution of 
imidazolide 27 in THF was added via cannula. The reaction 
mixture was stirred at -78 °C for 20 min and allowed to warm 
to 0 °C over 30 min and stirred for a further 1 hour at 0 °C. The 
reaction was quenched by the addition of saturated aqueous 
NH4CI (15 cm) and the aqueous phase was extracted with 
DCM (3 x  15 cm'). The combined organic phases were washed 
with brine (30 cm'), dried (MgSO 4) and concentrated under 
reduced pressure. The residue was chromatographed on silica 
gel [hexane : EtOAc (10: 1)] to give the title compound 22 as a 
pale yellow oil (510 mg, 901/6). Rf  [hexane: EtOAc (4: 1)] 0.62; 

[a]D +33.6 (c 0.27, CHC13) (70% ee); all other spectroscopic 
data were identical to those obtained from the Claisen reaction 
of methyl ester 12. 

Ethyl (3R,4R)-5tert-butyldiphenylsilyloxy-4-(N,N-dibeflZyl 
amino)-3-hydroxypentanoate 18. To a solution of 0-keto ester 22 
(360 mg, 0.621 mmol) in Et20 (8 cm') and MeOH (3 cm') was 
added acetic acid (Ca. 1 cm') until the solution was pH 4. The 
solution was cooled to 0 °C and sodium cyanoborohydride 
(385 mg, 6.22 mmol) was added. Once effervescence had ceased 
the resulting solution was stirred at room temperature for 7 
hours. The reaction was quenched by the addition of a satur -
ated solution of NH 4C1 (30 cm') and the aqueous phase was 
extracted with DCM (3 x 30 em'). The combined organic 
phases were washed with brine (40 cm'), dried (MgSO 4) and 
concentrated under reduced pressure. The residue was chroma-
tographed on silica gel [hexane: Et 20 (7: 1)] to give the amino 
alcohol 18 (290 mg, 81%) as a colourless oil and amino alcohol 
17 (21 mg, 6%) as a colourless oil. 

Spectroscopic data for major diastereomer 18. R. [hexane 
Et20 (1: 1)] 0.38; [a] 0  -18.75 (c 1.6, CHCI 3) (70% cc); v, 
(neat)/cm 3456, 3070, 2931, 2858, 1732, 1428; 5H (250 MHz, 
CDCI 3) 7.76-7.24 (20H, m, ArH), 4.24-4.20 (lH, m, 
C(3)HOH), 4.19 (2H, q, J 7. 1, OCH2CH3), 4.18-4.06 (2H, m, 
CH20TBDPS), 4.05 (2H, d, J 13.3, NCHXHYPh x  2), 3.60 (2H, 
d, J 13.3, NCHHPh x  2), 2.77-2.72 (IH, m, C(4)H), 2.45 
(lH, dd, J 15.2, 3.0, C(2)HH0), 2.30 (1H, dd, J 15.2, 9.0, 
C(2)HH0), 1.28 (3H, t, J 7.1, OCH2CH3), 1.15 (9H, s, 'Bu); 
ô (62.9 MHz) 172.4 (C), 139.5 (C), 136.2 (CH), 136.1 (CH), 
133.3 (C), 133.2 (C), 130.5 (CH), 130.4 (CH), 129.5 (CH), 128.9 
(CH), 128.3 (CH), 127.7 (CH), 65.8 (CH), 63.4 (CH), 60.9 
(CH 2), 60.6 (CH 2), 54.9 (CH,), 40.1 (CH,), 27.4 (CH 3)1 

 19.6(C), 
14.6 (CH 3); mlz (FAB) 596 ([M + H], 40 0/6), 478 (51), 326(12), 
197 (12), 135 (26), 91(100); HRMS (FAB) C 37HNO4Si [M + 
H] requires 596.3196, found 596.3197. 

Spectroscopic data for minor diastereomer 17. R [hexane 
Et20 (I : 1)] 0.40; spectroscopic data were in good agreement 
with those reported above. 

(4R,5R)_5-rert-Butyldiphenylsilyloxymethyl-4-hydroxypyr-
rolidin-2-one 23. Via the Weinreb amide. To a slurry of N, 0-
dimethylhydroxylaminehydrochloride (371 mg, 3.82 mmol) in 
THF (4 cm') at 0 °C was added trimethylaluminium (3.82 cm', 
2.0 M in toluene, 7.64 mmol). The solution was stirred at 0 °C 
for 5 minutes then allowed to warm to room temperature over 
ca. 15 minutes, after which time a clear solution remained. Ester 
18 (380 mg, 0.637 mmol) in THF (4 cm') was added dropwise 
via cannula. The mixture was warmed to 35 °C and stirred for 3 
hours. The reaction mixture was cooled and then rapidly trans-
ferred by cannula into a mixture of DCM (30 cm') and satur-
ated aqueous potassium sodium tartrate (30 cm') and stirred 
vigorously for 5 hours whereupon two distinct phases were 
apparent. The aqueous phase was extracted with DCM (3 X 

30 cm3).The combined organic phases were dried (MgSO 4) 

and concentrated under reduced pressure. The residue was 
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chromatographed on silica gel [hexane : EtOAc (4: 1) to give 
the Weinreb amide (370 mg, 95%) as a colourless oil. 

(3R,4R)-5terz-Butyldipheny1silyloxy-4-(N,N-dibenzylamiflO)-
3-hydroxy-N-methoxy-N-methylpentanamide. R f  [hexane : Et-
OAc (4 : 1)] 0.34; [a]0  -4.74 (c 0.45, CHCI3) (701/6 cc); v, 
(neat)/cm' 3460, 3075, 2925, 2826, 1644, 1428; 5 (360 MHz, 
CDCI 3) 7.82-7.24 (20H, m, ArH), 4.28-4.20 (1H, m, 
C(3)HOH), 4.10 (lH, dd, J 10.9, 8.0, C(5)HAHBOTBDPS), 4.04 
(211, d, J 13.4, NCHXHYPh x 2), 4.00 (1 H, dd, J 10.9, 5.4, 
C(5)H AHBOTBDPS), 3.91 (2H, d, J 13.4, NCH XHYPh x 2), 
3.60 (3H, s, OMe), 3.20 (311, s, Me), 2.80-2.73 (1 H, m, C(4)H), 
2.69-2.58 (1H, br m, C(2)HH 0), 2.30-2.19 (lH, br m, 
C(2)HH0), 1.12 (9H, s, 'Bu); t5c  (90.6 MHz) 173.6 (C), 140.2 
(C), 136.2 (CH), 136.1 (CH), 133.6 (C), 133.5 (C), 130.4 (CH), 
130.3 (CH), 129.6 (CH), 128.7 (CH), 128.3 (CH), 127.4 (CM), 
66.7 (CH), 63.6 (CH,), 61.5 (CH), 61.4 (CH,), 55.4 (CH,), 37.2 
(CH2), 32.4 (CM 3), 27.4 (CH,), 19.6 (C); mlz (FAB) 416 ([M + 
H], 72%), 478 (81), 341 (17), 197 (43), 181 (16), 135 (70), 105 
(34), 91(100); HRMS (FAB) C 37H47N204Si [M + H]* requires 
611.3305, found 611.3305. 

Synthesis of amino amide 20. To a solution of the Weinreb 
amide derived from ester 18 (300 mg, 0.492 mmol) in methanol 
(5 cm') was added 20% Pd(OH) 2/C (300 mg), the flask was 
flushed with argon before being stirred under an atmosphere 
of hydrogen for 12 hours. The reaction mixture was filtered 
through a layer of Celite and concentrated under reduced 
pressure. The residue was chromatographed on silica gel 
[DCM : MeOH (50: 1)] to give the amino amide 20 (210 mg, 
100%) as an oil. R 1 [DCM : MeOH (10: 1)] 0.12; spectroscopic 
data were in good agreement with those reported above. 

Conversion to pyrrolidinone 23. A solution of amino amide 20 
(100 mg, 0.234 mmol) in MeOH (3 cm') was heated to reflux 
and held at reflux for 24 hours. The solution was cooled and 
concentrated under reduced pressure. The remaining residue 
was chromatographed on silica gel [DCM : MeOH (50 : I)] to 
give pyrrolidinone 23 (62 mg, 72 1/6) as a white solid; R1  [DCM: 
MeOH (10: 1)] 0.30; mp 110-112°C; [a]D +11.30 (cO.2, CHC13) 

(70%ee); Vm, (neat)/cm 3385, 2931, 1682, 1427;ö (250 MHz, 
CDCI 3) 7.66-7.25 (1 OH, m, ArH), 6.20 (1H, br s, NH), 4.61 
(1H, ddd, J 10.4, 7.0, 4.2, C(4)HOH), 3.95 (1H, dd, J 10.5, 5.8, 
CHAHBOTBDPS), 3.81 (1H, dd, J 10.5, 4.8, CH AHBOTBDPS), 
3.78 (1H, dt, J 10.4, 5.5, C(5)H), 3.29 (1 H, br s, OH), 2.68 
(1H, dd, J 17.3, 7.0, C(3)HcH0), 2.41 (1H, dd, J 17.3, 4.29  
C(3)HH0), 1.05 (9H, s, 'Bu); ô (62.9 MHz) 176.0 (C), 135.4 
(CM), 135.3 (CH), 132.4 (C), 132.2 (C), 130.0 (CM), 128.0 (CH), 
68.2 (CM), 63.0 (CH,), 59.2 (CH), 40.3 (CH 2)1  26.7 (CH,), 19.0 
(C); mlz (FAB) 370 ([M + H], 599/6), 292 (34), 234 (37), 214 
(66), 199 (80), 135 (94), 105 (46); HRMS (FAB) C 21H28NO3 Si 
[M + H] requires 370.1838, found 370.1838. 

Via amino ester 24. To a solution of JI-hydroxy ester 18 (270 
mg, 0.451 mmol) in methanol (5 cm') was added 20% Pd(OH) 2/ 
C (270 mg), the flask was flushed with argon before being 
stirred under an atmosphere of hydrogen for 12 hours. The 
reaction mixture was filtered through a layer of Celite and con-
centrated under reduced pressure. The residue was chromato-
graphed on silica gel [DCM : MeOH (50: 1)] to give the amino 
ester 24(186mg, 100%) as an oil. 

Ethyl 	(3R.4R)-5-tert-butyldiphenylsilyloxy-4-amino-3- 
hydroxypentanoale 24. R f  [DCM : MeOH (10 : 1)] 0.20; 
[a]0  -11.1 (c 1.2, CHC1 3) (70% cc); V m  (neat)/cm' 3363, 2932, 
2888, 1724, 1426; 6H (250 MHz, CDCI 3) 7.76-7.06 (lOH, m, 
ArH), 4.22 (2H, q, J 7.0, OCH2CM 3), 3.78-3.47 (5H, br m, 
C(3)HOH + C(5)H2  + NH,), 3.10-3.00 (IH, m, C(4)H), 2.65 
(IH, dd, J 15.0, 3.2, C(2)HAHB), 2.30 (1H, dd, J 15.0, 8.9, 
C(2)H AHB), 1.31 (3H, t, J 7.0, OCM 2CH3), 1.13 (9H, s, 'Bu); 

c (50.3 MHz) 169.9 (C), 134.7 (CH), 132.2 (CM), 131.3 (C), 
129.9 (C), 128.9 (CH), 128.0 (CM), 126.9 (CH), 64.7 (CH), 61.5  

(CH), 60.1 (CH,), 59.9 (CH,), 45.6 (CH,), 25.5 (CH 3) 1  18.2 (C), 
14.9 (CH 3); mlz (FAB) 416 ([M + H], 1000/6), 199 (20), 142 (7), 
135 (38), 105 (12), 95 (11); HRMS (FAB) C 23H34NO4Si [M + 
H] requires 416.2257, found 416.2252. 

A solution of amino ester 24(186mg, 0.448 mmol) in MeOH 
(4 cm') was heated to reflux and held at reflux for 24 hours. The 
solution was cooled and concentrated under reduced pressure. 
The remaining residue was chromatographed on silica gel gel 
[DCM : MeOH (50: 1) to give pyrrolidinone 23(130mg, 78%) 
as an oil. R[DCM : MeOH (10: l)]0.30; all spectroscopic data 
were identical to those obtained from the cyclisation of the 
Weinreb amide derived from ethyl ester 18. 

(4R,5R)_2_tert-Butyldiphenylsilyloxymethylpyrrolidin-3-Ol 25. 
To a solution of pyrrolidinone 23(120mg, 0.330 mmol) in THF 
(5 cm 3) at 0 °C was added BH 3 THF complex (4.95 cm', 1.0 M 
in THF, 4.95 mmol). The solution was stirred at 0 °C until 
effervescence ceased and then stirred at reflux for 24 hours. 
Methanol (Ca. 5 cm3) was added cautiously to the cooled (0 °C) 
reaction mixture. The resulting mixture was concentrated under 
reduced pressure. The residue was chromatographed on silica 
gel [DCM : MeOH (50: 1)] to give the pyrrolidine 25 (105 mg, 
86%) as a white solid. .R f  [DCM : MeOM (10: 1)] 0.25; mp 100- 

10 1  °C; [a]0  + 8.5 (c 0.5, CMCI 3) (70% cc); ôfl  (250 MHz, CDCI3) 
7.69-7.60 (4H, m, ArH), 7.52-7.25 (6H, m, ArH), 6.20 (1H, s, 
NH), 4.56(1 H, ddd, J 11.4, 6.5, 4.5, C(3)HOH), 4.52-4.51 (1H, 
br s, OH), 4.23 (1 H, dd, J 11.2, 4.8, CHAHBOTBDPS), 4.20 
(IM, dd, J 11.2, 8.0, CM AHBOTBDPS) 3.59 (1M, ddd, J 11.4, 
8.0, 4.8, C(2)H), 3.06 (1H, ddd, J 12.7, 7.6, 6.0, C(5)HEMP), 
2.97 (IH, ddd, J 12.7,6.5,4.5, C(5)MH), 2.19 (1M, ddt, J 16.1, 
6.0, 4.5, C(4)HH0), 1.94 (1H, ddt, J 16.1, 7.6, 6.5, C(4)HH0), 
1.08 (9H, s, 'Bu); ô (62.9 MHz) 135.5 (CH), 135.3 (CM), 131.6 
(C), 131.2 (C), 130.3 (CH), 128.0 (CM), 73.8 (CM), 69.0 (CM), 
60.3 (CH,), 52.8 (CH,), 32.5 (CH,), 26.8 (CH 3), 19.0 (C); rn/s 
(FAB) 356 ([M + H], 650/6), 278 (26), 197 (53), 183 (22), 135 
(100); HRMS (FAB) C21 H30NO2Si [M + H] requires 356.2046, 
found 356.2043. 

Methyl (2S)-2-(NN-dibenzylamino)-3-benzyloxypropanOate 28 

Synthesis of methyl ester hydrochloride salt. Acetyl chloride 
(2.20 cm', 30.8 mmol) was added dropwise to methanol 
(24 cm) at 0 °C. The mixture was stirred for 15 min and L-O-
benzylserine (2.00 g, 10.3 mmol) was then added portionwise 
to the solution. The resulting mixture was heated to reflux 
and held at reflux for 3 hours. Concentration under reduced 
pressure provided the methyl ester hydrochloride salt (2.25 g, 
96%) as a solid. 

Methyl (2S)-2-amino-3-benzyloxypropanoatehydrochloride 
salt. Mp 162-164 °C (methanol); [a]0  +15.2 (c 1.4, MeOH); 
5 (250 MHz, D20) 7.37-7.26 (5H, m, ArH), 4.57 (1H, d, 
J 12.0, OCH5HFPh), 4.47 (IH, d, J 12.0, OCHEHPPh), 4.28 
(I H, br t, J3.7, C(2)H), 3.93 (1H, dd, J 11.0, 4.2, C(3)HA HB), 
3.83 (1H, dd, J 11.0, 3.0, C(3)H AHB), 3.71 (3M, s, OMe); 
ô (62.9 MHz) 169.0 (C), 137.1 (C), 129.1 (CM), 128.9 (CH), 
128.8 (CH), 73.5 (CH 2), 66.7 (CM2), 54.1 (CH,), 53.5 (CH); 
rn/z (FAB) 210 ([M + H]', 95%), 196 (8), 150 (5), 120 (10), 102 
(10), 91(100); HRMS (FAB) C 11 H 16NO3  [M + H] requires 
210.1130, found 210.1133. 

Conversion to NN-dibenzyl protected methyl ester 28. To a 
solution of the methyl ester (2.00 g, 8.71 minol) in anhydrous 
acetonitnle (30 cm') was added anhydrous potassium carbonate 
(5.55 g, 43.6 mmol) followed by benzyl bromide (2.38 cm', 
21.8 mmol). The mixture was stirred at room temperature for 
24 hours. H 20 (50 cm') was added and the aqueous phase was 
extracted with EtOAc (3 x  30 cm'). The combined organic 
phases were washed with brine (100 cm'), dried (MgSO 4) and 
concentrated under reduced pressure. The remaining residue 
was chromatographed on silica gel [hexane: EtOAc (10: 1)] to 
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give protected methyl ester 28 (3.20 g, 94%) as a colourless oil. 
R [hexane : EtOAc (4 : 1)] 0.60; [all) -48.5 (c 1.07, CHCI3); 

V m  (neat)/cm 3062, 3028, 2948,2855, 1735, 1602,1494,1453; 
5H (250 MHz, CDCI 3) 7.41-7.21 (15H, m, ArH), 4.52-4.30 
(2H, m, OCHEHFPh), 3.96 (2H, d, J 13.9, NCHXHYPh x 2), 
3.89 (1 H, t, J 2.8, C(2)H), 3.85-3.79 (1H, m, C(3)HAHB), 3.78 
(3H, s, OMe), 3.75-3.68 (1H, m, C(3)H AHB), 3.72 (2H, d, 
J 13.9, NCH XHYPh X  2); bc  (62.9 MHz) 171.8 (C), 139.5 (C), 
137.9 (C), 128.6 (CH), 128.2 (CH), 128.1 (CH), 127.4 (CH), 
126.9 (CH), 73.0 (CH,), 69.4 (CH,), 60.8 (CH), 55.2 (CH,), 51.2 
(CH 3); m/z (FAB) 390 ([M + H], 15%), 330 (32), 282 (8), 268 
(41), 181 (9), 91(100); HRMS (FAB) C 23H28NO3  [M + H] 
requires 390.2069, found 390.2070. 

(2SR)_2-(N,N-Dibenzylamino)-3-benzyloxypropanoiC acid 29 

To a solution of the ester 28 (300 mg, 0.771 mmol) in THF 
(8 cm') was added a slurry of LiOHH 2O (194 mg, 4.63 mmol) 
in H20 (2 cm'). The mixture was heated to reflux and held 
at reflux for 4 hours. The solution was cooled to room tempera-
ture, water (15 cm 3) was added and the mixture was acidified 
to pH 3 with 1 M HCI. The aqueous phase was extracted 
with Et20 (3 x  15 cm'). The combined organic phases were 
dried (MgSO 4) and concentrated under reduced pressure to give 
acid 29 (288 mg, 100%). R 1  [hexane : EtOAc (4 : 1)] 0.13; v,, 
(neat)/cm 4059, 3067, 3028, 2923, 2854, 1715, 1495; oH (250 
MHz, CDCI 3) 7.67-7.03 (15H, m, ArH), 4.63 (lH, d, J 11.9, 
OCHEHFPh), 4.55 (1H, d, J 11.9, OCHEHFPh), 4.17 (IH, dd, 
J 10.3, 4.6, C(3)HAHB), 4.06 (2H, d, J 13.3, NCHX HY Ph x  2), 
4.01-3.67 (211, m, C(3)H AHB + C(2)H), 3.94 (2H, d, J 13.3, 
NCHX HY Ph x  2); O  (62.9 MHz) 171.1 (C), 137.5 (C), 135.8 
(C), 129.2 (CH), 128.7 (CH), 128.4 (CH), 128.1 (CH), 127.8 
(CH), 127.2 (CH), 73.4 (CH,), 67.5 (CH,), 61.5 (CH), 55.1 
(CH2); mlz (FAB) 376 ([M + H], 100%), 330(16), 286(31), 240 
(12) 181 (20), 91(91); HRMS (FAB) C 24H26NO3  EM + H] 
requires 376.1913, found 376.1914. 

Ethyl (4SR)-5-benzyloxy-4-(N,N-dibenzylamino)-3-oxO-
pentanoate 31 

To a solution of acid 29 (300 mg, 0.825 mmol) in THF (8 cm') 
was added 1,1'-carbonyldiimidazole (404 mg, 2.49 mmol). 
The solution was stirred at room temperature for 2 hours to 
generate imidazolide 30. Meanwhile to a solution of LiHMDS 
(2.49 cm', 1.0 M in THF, 2.49 mmol) at -78'C was added ethyl 
acetate (0.240 cm', 2.49 mmol) and the solution stirred for 
20 mm. The solution of imidazolide 30 in THF was added via 

cannula and the solution stirred at -78 °C for 30 min then 
warmed to 0 °C over a period of 1 hour. The mixture was stirred 
at 0 °C for 1 hour before being quenched with saturated 
aqueous NH 4CI (20 cm'). The aqueous phase was extracted 
with DCM (3 x  20 cm'). The combined organic phases were 
washed with brine (30 cm'), dried (MgSO4) and concentrated 
under reduced pressure. The residue was chromatographed on 
silica gel [hexane : EtOAc (10 : 1)] to give the Il-keto ester 31 
(340 mg, 921/6) as a pale yellow oil. R [hexane: EtOAc (4: l)] 
0.53; V m , (neat)/cm 3062, 3029, 2081, 2926, 2860, 1744, 
1716, 1494, 1453; 0H  (250 MHz, CDCI 3) 7.43-7.22 (15H, m, 
ArH), 4.62 (lH, d, J 12.0, OCHEHFPh), 4.55 (1H, d, J 12.0, 
OCHHpPh), 4.14 (2H, q, J 7.2, OCH2CH 3), 4.01 (IH, dd, 
J9.2, 6.5, C(5)HAHB), 3.94(IH, dd, J9.2, 4.0, C(5)H AHB), 3.85 
(2H, d, J 13.1, NCHXHYPh x  2), 3.75-3.65 (1 H, m, C(4)H), 
3.73 (lH, d, J 16.0, C(2)HCHD), 3.70 (2H, d, J 13.1, NC-
HXHYPh x  2), 3.54 (1H, d, J 16.0, C(2)HH0)1  1.23 (3H, t, 
J 7.2, OCH 2CH3); Oc  (62.9 MHz) 202.7 (C), 167.3 (C), 138.9 
(C), 137.9(C), 128.9 (CH), 128.5 (CH), 128.3 (CH), 127.5 (CH), 
127.1 (CH), 126.8 (CH), 73.4 (CH,), 66.1 (CH), 65.4 (CH,), 
61.0 (CH,), 55.0 (CH,), 46.5 (CH,), 13.9 (CH 3); m/z (FAB) 446 
([M + HJ, 100%), 356 (39), 330 (53), 240 (22), 196 (17), 132 (9), 
106 (37), 91(97); HRMS (FAB) C 2311 32N04  [M + H] requires 
446.233 1, found 446.2332. 

Ethyl (3SR, 4SRbenzyloxy4-(N,N-dibenzylamino)-3-
hydroxypentanoate 32 

To a solution of 0-keto ester 31 (80 mg, 0.18 mmol) in Et 20 
(4 cm') and MeOH (2 cm 3) was added acetic acid (Ca. 0.5 cm') 
until the solution was pH 4. The solution was cooled to 0 °C 
and sodium cyanoborohydride (60 mg, 1.4 mmol) was added. 
Once effervescence ceased the solution was warmed to room 
temperature and stirred for 8 hours. The solution was quenched 
by the addition of a saturated solution of NH 4CI (15 cm') and 
the aqueous phase was extracted with DCM (3 x  15 cm). The 
combined organic phases were washed with brine (20 cm'), 
dried (MgSO4) and concentrated under reduced pressure. The 
residue was chromatographed on silica gel [hexane : EtOAc 
(6: 1)] to give the amino alcohol 32 (72 mg, 90 1/6) as an oil. R1  

[hexane: EtOAc (4: 1)] 0.38; v,,, (neat)/cm 3371, 2936, 1726, 
1452; O (250 MHz, CDCI 3) 7.43-7.19 (15H, m, ArH), 4.59 
(1H, d, J 12.0, OCHEHFPh), 4.52 (1 H, d, J 12.0, OCHEHFPh), 
4.19 (1 H, ddd, J 11.2, 8.5, 3.6, C(3)HOH), 4.14 (2H, q, J7.2, 
OCH2CH 3), 4.05 (2H, d, J 13.2, NCHXHYPh x  2), 3.80 (1 H, dd, 
J 10.2, 5.5, C(5)HA HB), 3.69 (1H, dd, J 10.2, 4.8, C(5)H AHB), 
3.53 (2H, d, J 13.2, NCHXHYPh x  2), 3.47 (1 H, s, OH), 2.80-
2.72 (1 H, m, C(4)H), 2.50 (1 H, dd, J 15.4, 3.6, C(2)HCHD), 2.37 
(IH, dd, J 15.4, 8.5, C(2)H CHD), 1.23 (3H, t, J7.2, OCH2 CH3); 

0c (62.9 MHz) 172.0 (C), 138.8 (C), 137.8 (C), 129.0 (CH), 
128.4 (CH), 127.7 (CH), 127.5 (CH), 127.1 (CH), 73.2 (CH 2), 
66.3 (CH,), 65.7 (CH,), 61.3 (CH), 60.4 (CH), 54.3 (CH 2), 39.45 
(CH2), 14.0 (CH 3); mlz (FAB) 448 ([M + H], 209/6), 330 (19), 
326 (5), 210 (2), 181 (4), 91(100); HRMS (FAB) C28H34N04  
[M + H] requires 448.2488, found 448.2489. 
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