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ultimate compressive strength of concrete in
hending

yvield stress of the longitudinal steel
vield stress of the transverse steel
area of longitudinal steel

area of transverse steel

spacing of the transverse steel
wall-thickness of hollow beanm

depth of neutral-axis below top surface of beam
depth of neutral-axis prior to cracking
depth of neutral-axis at ultimate
moment lever arm

tensile stress of concrete

compressive stress of concrete



[e3]

b=

=

7= \Ib/Mt

M

maximum principal stress

compressive strain of concrete
tensile strain of concrete
compressive force in concrete
tensile force in concrete

Modulus of Elasticity

Modulus of Elasticity in bending
Modulus of Elasticity in compression
Shear Modulus of Elasticity
Poisson's ratio

Moment of inertia about axis of bending
Polar moment of inertia

bhending moment constant

torsion moment constant

geometric constant

torsionali stress

angle of crack up to neutral-axis
angle of crack above neutral-axis

angle of inclination of compression fulecrum at
ultimate

angle of crack across top surface of beam at
failure

bending moment
torsion moment
ratio of bending moment to torsion moment

ultimate resistance of beam subjected to
bending

ultimate resistance of beam subjected to
torsion
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SYNOPS I3

The application of loads normal to the plane of a reinforced
cpncrete grid-frame produces combinations of bending moment and
torsion moment in the beams due to the monolithic connection of
longitudinal and transverse members. The torsion moments are of
secondary importance in practice and are neglected for working load
design according to C.P.114 (1957). Two outstanding exceptions,
however, are the design of edge-beams for Waterloo Bridge and the
balcony of the Royal Festival Hall, in London, The effect of
torsion moments at ultimate load is to reduce the ultimate bending
capacity of the beam so that consideration must be given to this
reduction in calculation of the design load factor. The study is
therefore concerned with the evaluation of moments at the ultimate
load stage.

The extraction of the main longitudinal beam from the grid,
together with the transverse beam connection, permits investigation
only of the effect of the combined moments on the longitudinal beam
and caleulation of its ultimate moment capacity under a known torsion
moment applied through the transverse beam comnnection. A mechanism
of failure is assumed whereby only the ultimate applied loads are
considered and the Principle of Least Work is applied to rotation of
the beam about a compression fulcrum along the neutral-axis. An
expression is dérived which is independent of the combination of load
increments up to ultimate, and is equally trus for bending or torsion
moment .

An investigation is also made of the crack behaviour of the
beam since the resolution of bending moments and torsion moments
about the inclined neutral-axis at the ultimate stage is shown to be

a function of the initial angle of crack. A necessary part of the
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study, therefore, is concerned with the early stages of loading
prior to cracking and the resistance of the beam is shown to be
determined by the properties of the concrete subjected to the
individual bending and torsional stresses. Cracking 1s then
propogated at an angle across the beam section as the concrete
atteins its maximum tensile strength and the ultimate values are
defined at the stage when the failure crack intercepts the neutral-
axis on the vertical sides of the beam.

An experimental investigation is carried out to justify
the assumptions made in the theoretical analysis of the beam and
to give a comparison between calculated and practical values of
wltimate moment. The results of other studies are included in
this comparison.

Finally, the experimental and analytical investigation is
extended to consider the analysis of a reinforced concrete frame.
A mathematical method is outlined for evaluation of moments at
working load and the theory derived in the main part of the study

is discussed for the solution at ultimate load.
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CHAPTER _ 1

INTRODUCT ION

The design of reinforced concrete beams is 1argeiy deter-~
mined by the applied bending moment and any secondary effects due
to torsion are usually considered to be negligible., As a result,
regsearch has been largely concerned with the effects of bending
of beams and few studies, in comparison, have dealt with the
problem of torsion. Further, the application of mathematical
theory to the rectangular section subjected to torsional stresses
is complex so that design-formulae have not been readily evolved.
A review of current Codes of Practice in twenty-two countries by

(1)*

Fisher and Zia shows that only sixteen specify torsion design
requirements and of those only half give more than permissable
stresses. ©.P.114 (1957) contains no recormendation for torsion
design. An interesting point, emerging from the Fisher Review,
is that many codes which have adopted an ultimate strength approach
are still based on the classical elastic theory of St. Venant,

Few examples are available in practice where the torsion
moments control design of the main beam. Two outstanding
exceptions, however, are the design of the bhox-section used in
Waterloo Bridge, London, and the triangular girders supporting
the balcony of the Royal Festival Hall, London.

With the development of the principle of ultimate load
design in reinforced concrete, investigation into combined loading

has become necessary in order to assess the value of ultimate

bending moment to be used in evaluation of the design load factor.

® Numbers in parenthesis denote references at the end of the thesis.



-/ -

Research into problems of combinations of bending and shear or
axial load has again preceded investigations of heams subjected

to combined bending and torsion., It seems likely that new design

(2,3,4)

concepts , at present heing discussed with a view to proposals
for a new Code of Practice for reinforced concrete design will
impose greater responsihility on calculating the valuec of load
factor to be used in assessing an overall design factor.

The main application of combinations of bending and torsion
moment is to longitudinal and transverse reinforced concrete beams
connected together monolithically in a frame which is loaded
normally to its plane. In this case, the longitudinal beams are
subjected to primary bending moments due to the applied loading
anéd to secondary torsion moments induced by the transverse heams
at the rigid beam-to-bheam, or, beam-column-beam connections.

This particular load application forms the basis of the
present study. The author feels that even though the torsional
effect is secondary and has not heen included in the design of the
beam at working load, a more realistic load factor is ohtained for
the design if the torsion moment is considered in calculating the
ultimate moment. In order to simplify the problem, only the
longitudinal beam is considered in this study and the application
of torsional load is simulated by transmitting the torsion moment
through concrete arms rigidly fixed to the beam.

An analytical investigation is made to calculate the
‘ultimate bending moment of a reinforced concrete beam subjected to
combined bending and torsion moments at ultimate. An expression
is derived which is equally true for evaluation of an ultimnate
torsion moment given a known applied hending moment and vice-versa

although the former application is less common in practice. The
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expression is independont of the sequence of applying the loads
and depends only on the values of moment at ultimate, this stage
being defined by the maximum loads resisted by the beam, and more
exactly by a limiting condition of crack propogation in the
eventual failure zone.

An extensive research programme has been carried out
recently in U.S.5.R. and the theory given for a specified failure
mechanism at ultimate has been adopted and modified by the author,
This ultimate equilibrium theory enahles ecguilibrium conditions
to be applied to the rotation of the beam ahout a compression
hinge which forms in thevégécked area, The initial part of the
author's investigation is therefore concerned with the propogation
of cracks in a reinforced concrete beam and, in particular, from
initial application of load up to the loads causing initial
cracking of the concrete, and the final part with the load stage
from initial cracking up to the formation of the final failure
crack.

It is shown that during the initial load stages and prior
to cracking, the resistance of the heam is determined hy the
properties of the concrete only and an expression is derived for
the angle of crack in terms of the bending and torsional stresses
of concrete. The mathematical theory for evaluation of the
torsional stress of a rectangular section is examined and both
elastic and plastic deformations are considered for application to
the behaviour of plain concrete.  Assumptions for the stress-
strain relationship of the concrete under both hending and torsion
loads must then be made.

The second part of the theoretical investigation considers

the hehaviour of the beam beyond initial cracking to the ultimate
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load stage so that redistribution of stress occurs as the lower
fibres of the concrete reach the maxinum tensile strength and
the crack extends across the beamn. An expression for the
crack development at ultimate, determined by the propogation of
the crack up to the neutral-axis position, is then used to derilve
general design equations. Therefore, although only the final
values of applied load are used at the ultimate stage, the design
equation also includes an expression relating the nature of the
crack behaviour under the combined loads applied up to ultimate.

The exact mathematical analysis of the failure mechanism

as given by Lessig(5)

is overelaborate for working design procedure
and the author attempts to simplify the expression by making
assumptions without introducing inaccuracies of magnitude greater
than those accepted in the working design. Further flexibility

is achieved by -éliminating the dependence of the expression on
the load ratic so that the load condition is only introduced as a
final consideration in the design.

Some thought is given to the practical application of the
theoretical equation derived for calculating the ultimate moment,
and the presentation of data in chart form, covering a range of
material properties, is considered; for example, variations in
concrete strengths according to mix design. However, a necessary
restriction on the range of properties for a given section is in
the use of under-reinforced design only, so that the yield stresses
of the reinforcement can be used in the design equation and failure
is brought about by crushing of the concrete in the compression
zone of the beam. This condition is satisfied by balanced
designs for working moments and only in exceptional cases is heam

(6)

failure due to fracture of the steecl. Chinenkov'~’ showed in

the Russian tests that 99% of the beams tested failed according to
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the mechanism considered in this investigation.

An experimental investigation on model reinforced concrete
beams and simulating the longitudinal beam of a frame system with
transverse arms applying the torsion load is carried out to justify
the assumptions made in the theoretical analysis. Results are
also used from other practical studies to illustrate the application
of the derived equations and give a comparison of practical and
calculated moments at ultimate.

The final part of the study'introduces the problem of the
inter-connection of beams as elements of a rigid frame, and
theoretical methods are considered for both working and ultimate
load. The effects of the transverse beam members on the long-
itudinal beams and the transmission of moments by means of the
monolithic connections is examined in relation to the theories
put forward for the simpler longitudinal element considered earlier.

The application of combined hending and torsion moments is
therefore examined for all stages of load,and a particular study
is made of the beam at ultimate and the effect of varying the
torsion moment on the ultimate capacity of the beam in bending.,

The restraining effect of the in-situ slab has not bheen
included in this study and consideration has not heen given to
shear effects, which would exist at all times, The author feels,
however, that research into the problem at present under examination
has not been extensive and that simplifications made at this stage
are justified with a view to further development of the theory

taking these additional factors into account.
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CHAPTER _ 2
REVIEW OF PREVIOUS INVESTIGATIONS

2.1 General:

It is proposed to outline previous investigations into the
problem of combined bending and torsion for both elastic and
plastic behaviour and follow the development of theory from the
circular to the rectangular section., Also, as solutions to the
problem of torsion have been more diffiecult to obtain than for
hending acting alone, it is proposed to ineclude only the invest~
igations into the torsion problem and finally investigations into
combinations of torsion and bending for both working and ultimate
load conditions,

242 Introduction:

Before attempting to investigate analytically the behaviour
of a non-homogeneous material such as concrete subjected to either
bending or torsion stresses, certain basic assumptions must be
made with regard to stress-strain relationships for the concrete
subjected to the different loadings. Tt is proposed to review
in this Chapter theoretical, empirical and experimental invest-
igations that have been carried out to examine in pgrticular the
behaviour of concrete subjected to torsional stresses so that a
hasis may be formed for examination of the behaviour of concrete
in the beam from initial application of the loads through to the
ultimate stage. It is shown in Chapter / that prior to cracking,
the behaviour of a reinforced beam subjected to combined bending
and torsion is determined only by the resistance of the concrete
to the individual bending and torsion stress. It has been
accepted that while solutions are availahle for the properties of

concrete subjected to bending only, a review of previous studies
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is required to assess the resistance of concrete to torsion especially
for rectangular sections. Further, since this investigation is
to be concerned with the behaviour of the beam at all load stages,
some thought is given to the change in properties that may occur
at a load stage defined by initial cracking of the concrete.
Finally, it is proposed to review the work that has already
been carried out on the problem of combined bending and torsion at
the ultimate load stage of a reinforced or prestressed beam and the
extension of this theory to the evaluating of the ultimate moment
of heams forming units or elements of a grid-frame system in which
bending and torsion moments are produced by beams framing in to
the monolithic joint of a reinforced concrete frame loaded normal
to the plane.

2.3 BElastic Torsion Theory:

(a) Circular Section:-- The theory for the apnlication of torsion

to an elastic, isotropic circular section is long estahlished and

(7).

full accounts are given in most textbooks This theory has been
ugsed for plain concrete and an expression obtained for the moment
of resistance in terms of the diameter of the circle and the maximum
torsional shear stress of the concrete occurring at the surface
layer. However the expression is dependent on two assumptions,
namely that the circular boundary remains undistorted, and that
cross-sections remain plane and rotate as is absolutely rigid.
Experimental investigations carried out to study the
distribution of shear stress over a circular section of plain

(8) (9)

concrete include work by MORSCH'~’, ANDERSEN and MARSHALL and

TEMBE(lo). Morseh's tests give first evidence of the now familiar
forty-five degree failure crack due to diagonal tension; Andersen's

tests include strain measurements on the basis of an elastic
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approach and Marshall compares the ultimate tensile strength of
the concrete to a value of stress given hy the average for elastic
and plastic stress distribution.

(b) Rectangular Section:- The original assumptions made for the

circular section are no longer true due to warping of the rect-
angular section and introduction of an additional axial stress.

The theoretical method derived by ST. VENANT(ll)

and later expressed
by LOVE(lZ) is essentially the derivation of a mathematical
expression for the stress function, ¥, and differentiating to
obtain the shear stresses T, and T .  TMOSHENKO and cooprEr¢ 1)
have developed the approach based on FRANDTI!S Membrane Theory(IA).
In both vases, however, the theoretical equations involve hyperbolic
terms with resultant complexity of the final expressions.
Simplifications have all been based upon using the maximum, or

—5(15)_

minimum, values of As the application of the theory to
rectangular sections forms part of the investigation of the
properties of concrete at initial stages of loading, the author
has included the more detailed study of St, Venant's Theory in
Chapter 3.

A large number of experimental and empirical studies have
been carried out on rectangular plain concrete sections, and at
the same time as those investigations for circular secctions, In
addition, the practical application of including reinforcement in

(16)

the section must be considered. BACH and GRAF were probably
first to investigate the effects of various reinforcements and
deduced an expression for maximum noment in terams of the maximum
shearing stress occuring at the mid-point of the longer side.

ANDERSEN(g) suggests for square scctions a parabolic distribution

of shearing stress and derives a relationship between the length
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of side and radius of the equivalent circle using BACH'S formula.
RAUSGH(17) confines his original theory to spifal reinforcement
vith application to column design, and assumes that both the steel
and concrete behave elastically within the strecsses permitted by
the Code of Practice for spiral reinforcement.

(18) .
has extended the theories

More recently however COWAN
of Rausch by applying the principle of strain energy and comparing
the energy stored in the reinforcement and the concrete under
compression against the work done by the torsion moment, modifying
the théory for fhe more practical case of longitudinal reinforcement
using the St. Venant Principle.

In general however the experimental and empirical studies

(20) mupweR  ana paviEs(®),

of YOUNG, SACAR, and HuckEs(1?) wryamoro
and MARSHALL and TEMBE(lO) all indicate a non-elastic behaviour
and equate the torsional strength of the section to the tensile
strength of the concrste. HNevertheless the extensive studies
carried out by Cowan do indicate that some elastic hchaviour takes
place and that design equations based upon elastic theory give
satisfactory results over a specified load range defined by Cowan's
ivisco~elastic" limit.

2.4 Plastic Torsion Theory:

The development of a plastic theory and the experimental
representation of torsional stress distribution for a cylindrical
(22)

or prismatic har is given by NADAI using a sand heap analogy.

This concept is considered in more detail in Chapter 3 for its
application to the rectangular plain concrete section.
2

Experimental evidence has heen gathered hy MARSHALL( 3) to

show that an expression hased upon the assumption that concrete is

fully plastic gives a satisfactory explanation for the value of
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~torsional shear stress at ultimate, and more recently ERNST(24) has
included a plastic equation for evaluation of torque capacity for
reinforced sections. | The general opinion is that near ultimate‘
load, redistribution of stress takes piace over the cross section
and by assuming uniform torsional stress, simpler formulae can be
evolved. This conclusion is substantiated by Marshall's work(lo)
on crack observation by using strips of plaster to investigate
location of the first crack, which is not located at the mid-point
of the longer side as is suggested by an elastic stress distribution.
NYLANDER(QS), basing his statements on a large series of tests,
indicates for T-sections in particular, that the vniform stress
at ultimate is the maximum torsional strength of the concrete.

The relation between any change from an elastic to a plastic
condition and the formation and development of internal cracks has

been studied hy EVANS(26)

for beams subjected to bending load, and
hy KAPLAN(27) who shows experimentally, using sophisticated strain
measuring technigues, that cracking is initiated at loads consid-
erably less than ultimate and suggests concrete strain as the

criterion. DLvans outlines changes in strain distribution hoth

before and after cracking.

2.5 Combined Bending and Torsion:

The application of the stndies mentioned ahove to the
problen of combined bending and torsion indicates that different--
ation must be made between the initial and final stages of applied
load, so that development of formulae has proceeded as for the
studies of bending or torsion acting alone.

() Blastic Theory-Circulaer Section®- The general theory given

by TIMDSHENKO(7) includes a mathematical theory for the application

of combined hending and torsion to circular sections, in which an
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expression is derived for the stress in terms of an equivalent

bending moment.,

(28)

Rectangular Section:~  BORG and GENARO show how the elastic

theories of St. Venant and Prandtl can he applied to structural
steel sections on the assumption that rotation takes place abhout
the shear-centre of the scection, and specify in each case the
degree of restraint against warping. The combined action of
bending and torsion is then considered in frane analysis using
moment distribution techniques in two planes and combining the
individual solutions by super-position. The main studies using
an elastic approach for reinforced concrete are by Cowan(zg) and,
in particular, a theory is given using Rankine's Maximum Principal
Stress criterion and Coulomb's Internal Friction criterion for
problems of combined stress. ‘The experimental investigation is
primarily concerned with the types of failure of the beam rather
than the ultimate values of the combined loading, but Cowan
indicates a correlation of the proposed theory up to the "visco~
elastic™ limit.

(b) Plastic Theories - Rectangular Section'~ The theoretical

application to reinforced concrcte beams must take into account
the non-homogeneous nature of the concrete. Most studles, as

a result, introduce the concept of nlastic behaviour at some stage
of the applied loading. NYIANDER(25) first introduced the problem
of combined bending and torsion to reinforced concrete frames and
on the assumption of full plasticity at failure; FISHER(BO),
investigating the criterion for failure for variahle combinations
of bending and torsion, reviews most of the evidence ohtained from
previous studies of the problem of torsion acting alone, and

previously discussed in sections 2.3 and 2.4 while RAO<31)
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investigates the problem theoretically by assuming that rupture
takes place at the stage where the layer of concrete at the centre
of gravity of the shear stress diagram reaches the value of
ultimate shear stress, and concludes that correlation is obtained
for non-uniform stress distribution in evaluating the ultimate
strength of the concrete.
| The most comprehensive study, however, and the one to be
adopbed by the author, is piven by LESSIG 32)  cunmwmovt®),
rrarin 33, evozpev(?) ana yiIn'?3), The theory is commonly
referred to as the Ultimate Equilibrium Method in which design
_formulaé are developed for the combined moments at ultimate by
assuming failure of a reinforced concrete beam due to yielding
of the reinforcement crossing the crack about which failure takes
place. Two types of failure—crack are considerced in the
experimental investigation, but in all but one test, failure
occurs due to rotation about a compression-hinge acting along the
line of inclination of a horizontal neutral-axis and intercepting
the two vertical sides of the beam. This mechanism of failure
is discussed in more detail in Chapter 5, An exact mathematical
analysis of the Principle of Least “Work applied to the failure-
zone at ultimate load by IESSIG(5) gives complicated equations
which are later modified by YUDIN(BS) hy assuming a constant
" peutral-axis depth.  Experimental studies by OHINENKOV(é),
i 33) ana cuozosv(34) give good correlation with theory and
there is no doubt in the author's mind that the equilibrium approach
to the problem of combined bending and torsion gives a more
realistic picture of the failure mechanism than any other. As a

result, further studies have been undertaken to investigate the

principle.
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SARKAR(Bé) has applied the theory to hollow rectangular
reinforced beams and calculates the depth of the neutral-axis for
bending acting alone, then reduces this value hy N[E_ for combined
hending and torsion, assuming a constant horizontal angle of
inclingtion of 450. Sarkar also simplifiesg the expression for
length of crack hy assuming the angle of crack above the neutral-
axis to be 450. BOAZ(37) confirms the requirement of considering
the combined effects of the applied 5ending and torsion loads and
shows for the range of loadings investigated experimentally that
agreement is not possible using individually calculated moments.
For these values, Boaz used the A4,S.C,E, - A.C.I. recommendations
for ultimate flexural load and an expression for ultimate torsion
related to the St. Venant constants and a value for ultimate
tensile strength.

GESUMD, SCHUETTE, BUCHANAN and GRAY(BS) also extend the
ultimate equilibrium principle by using design sections to ensure
yielding of both longitudinal and transverse stoel, hut including
in the ultimate moment equations expressions for the resistance
of the longitudinal reinforcement due to dowel action and due to
bending of the bars. A modified failure scheme is also consid-
ered whereby an S-—shaped hinge is formed on the top surface of
the heam and intercepts the vertical side cracks vhich are perp-—
endicular at the bottom and horizontal towards the top of the

verbical sides of the heanm..

(c) Prestressed congrete:- Experimental investigations into the
application of combined bending and torsion to prestressed concrete
T~beams by REEVES(Bg) and to prestressed concrete I-heams by
GARDENER(AO) indicate the need for further resecrch in this field.

Both studies are concerned with variations in the sequence of
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applied loads and its effect on ultimate strength. ROWE(Al) had
‘reported earlier on this subject and suggested the possible use
of interaction curves, He also emphasised the importance of the
bearing supnort to ensure rotation about the centroidal-axis and
stated that failure of a prestressed beam under combined load is
sudden and exnlosive,.

(d) Grid Frames:- The final field of investigation is the problem

of combined bending and torsion occurring in grid frames loaded
normally to the plane, REYNOIDS(AZ) calculates collapse loads
for prestresscd concrete grillages by assuming rotation about
plastic-hinges and comparing values found by Lower Bound and Upper
Bound techniques, By introduction of a sufficient number of
bending and torsion hinges, normal or skew-grid frames are solved
and without ecalculation of the hinge rotation. Reynolds assumes
however that rotation of the transverse heams takes place at the
joint, due to the form of nrestressing, and this raermits further
simplification as there is zero torsional moment in the transverse
members of the grillage.

GOUDA(AB) presents a method for analysing and determining
the actual stressss in beams and slabs monolithiecally connected
and taklng into consideration the effect of the torsional rigidity
of each on tha other. The necessary assumptions, however, are
for an clastic, homogeneous condition and that the ends of the beam
are rigidily fixed, so that the appliecation is limited. The
valuable work of BAKER‘44s 455 48) poo not vet been extended to
space-frames with resnldant introduction of both bending and
torsion moments. A large research programme on plastic—hinges<47’ 43)
has been carried out with application to reinforced eoncrete plane-

frames and it remains to extend this rescareh to space-frames.
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It would seem, therefore, that future investigation will
he concerned with these aspects, meanwhile, the author's own work
is concerned with a reinforced beam as an element of the frame

and subjected to both bending and torsion moments.
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CHAPTER

TORSION THEORY APPLIED TO A RFECTANGUIAR SECTION

3.1 General:

Reference has heen wade in Chapter Two to the application
of pure torsion to a rectangular section and tQ the complexity of
the equations based on an exact mathematical treatment of this
problem. The author has therefore included a separate Chapter
for amplification and assessment of these equations so that a bhasis
may be formed for investigation of the hehaviour of concrete in
Chapter Four.

3,2 Introduction:

It is proposed to outline in this Chapter the two main
methods by which the application of the elastic torsion theory to
a rectangular section has been developed firstly by St. Venant(ll)
and later adopted by Love(lz), and secondly by Prandtl's Membrane
Theory as given by Timoshenko and Goodier(lB). The degree of
complexity of the equations due to the inclusion of hyperbolie terms
has limited their application, and it is shown how computer
programmes give solutions for specified sections, The mein
application of the original equations, however, has heen in the
form of expressions involving only the maximum stress values.

This method of representation is given in most text-books on the
subject and has heen adopted by most investigators in applying
elastic conditions to the rectangular section.

It is further proposed to outline the plastic theory applied
to rectangular sections as developed by Nadai(zg), using a sand-

heap analogy, in view of the experimental evidence for non-elastic

behaviour of concrete at later stages of loading. This theory is
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used for derivation of an equation expressing the hehaviour of a

reinforced concrete beam subjected to combined bending and torsion

prior to cracking.

3,3 3t. Venant Theory:

St. Venant considers the problem of torsion of prismatical

bars, by couples applied at the ends, using a semi-inverse method

in which assumptions are made as to the deformation of the twisted

bar, then equations derived to satisfy both the equilibrium and

houndardy conditions.

Thus from Fig., 1.3:-

N
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eanp(2f) GO 2 U A snbnin
"4 \x 2~/ b . os/l(zn-/)z:b 2a
7=/ 2a.
. [Zn-/)zx
b sinh 2b s/-n(zn-/)xy
a (an-1)xa Rb
COS/l '—2'—1_)—
W Y - Ge 3—i
0o - Rn-)=xy
ob §(£; &) i (n-)=x
&Ob 15 @R g @r)Rb 2a
S.
7~/ 2a.
U
- Goa +2%"—'
) n-1 (ar-1xy
( a4 )2 (=) cosh za s/nL—-——zn-l) kg
“\xs (an-1)* (an-1)xb 2a.
COSR-—F—
=/ za |
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Consider a standard rectangle, and introduce non-dimensional

funetions:=-

k = a/b, p = x/a, q =y/b, then

) sinh@n-I)5-pk
yz - _G"eb'(?(:)iz (32(n/-)/)2 L2z i X Cos.(zn-/).%q

cosh( Zn-/).-;—:- k.

i hzn-)EPK
and Z - Geb|2g - ( i}[ ok iﬁhﬁﬁ-ﬁéﬁz SinRn-1)%q
-/

An identical solution is given by Iove only introducing 'n + 1!

to replace St. Venant's term in 'n', so that

0 » ,
(-71) S/n/l,(2n+/)-,§p.k.

/o
- Geb = - : x.
Yz - @b x* (=m+1)* cos/L(2n+/7%k cos(2n+/),:_&. 7
”-0

00

i Z - Gobl-20+ 2 ('/)% cosh(Rm)5 Pk (27)E

et (Rn+ % cos/L.(Q'/L*/)%' Simlan =1
7-0

and these final expressions in YZ and Zx have been incorporated in
a computer programme for solution, giving values as shown in
Fig. 2.3 for grid points on the quarter cross-section, The

programme and results are given in Appendix Z.

2
Q@ —/) cosh(zn)Epk 4
< = m 22% 2n+/)2' cosh(Rn)%-K 5/712%/)
o0
2
Uy (-1 ) sinh(2m)s pk E.
= (2n+ /)% Cosfz(Zou/)gk cos(zn/)
71:0
and ,tand- ad

/)" sinh(znv)E pk ] cosh@mBpk. sin(2r)59
“ (2_52 (2%+ % cos/l(,’z,/ul)i_ k cos (2 /);(‘2 Sl/'\/l(z_’lvl)%.lblc,cos(,.?/w)é%
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where,
td = %X/gen, tn = ‘%/Geb
Q= JBezd
Fig, 2.3:—§ é/
_g
7
6
)
4
3
AL
/
P I = I
o / 2 3 4 x

3,4 Membrane Theory:

A second approzach to the problem is given by Timoshenko
and Goodier using the membrane analogy developed by Prandtl in 1906,
in which a homogeneous membhrane supported at the edges with the
same outline as the twisted cross-section is considered.  This
application is therefore true for both elastic conditions and beyond
yield(lA) since the membréne represents stress distribution over
the elastic region and the stress over the plastic area i1s given

hy a surface of constant maximum slope corresponding to the yield

stress.

Consider,

uniform tension at edges = s/unit length

and uniform lateral pressure = g/unit area
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then, using the St. Venant rectangle.

X% ¥z
(1) —> + = - -2
> 5y* S
ob
z b, ces Y,
n=/’3'9"....
bl’ b3, «so constant coefficients
1, YB’ «a» functions of y
(iii)
to satisfy condition (i) -
>z nx . MEX
S > =7 éz 2a ™ 2a. n
n=/535:"""
o0
'z x> AKX
3= “> by gaa €5 5z Tn
n=/’3'5,....
pve)
= - - .COS, .
dy ; 795 2a Tn
n=/’3,5'.
. o
Xz NI 7
il = - COs. .
zgz g bn s 2a X”’
=135,
so that,
) n-/ XY
i cosh
y /g a* L0 ® o 28
= 5 3
ﬂ=/,3)5)”“ 23

satisfying symmetry and zero deflection at y = : ks

therefore from (ii)

general expression for deflection surface of membrane

0

765/ cosd'nzqy
V7X-X- / 24
z - L) (-0 |-
Y. 4 7 nxbh
cosh

M=ty 3,8, za

cas

N X
=a.
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(iv)
by analogy, stress function is given by
g R -/ xy
¢ _ 32G0a* i (_/)2 /- cost 2a cos nAX
x? 7? cosh. nxb 28
=/, 3,5, 2a.
(v)
so that, o0 _ i
> = cosh T | e
Y, - -£ - + Zaea ~/ /- ==
z d3x x> ) nxh za
cosh
7Z.=/,3,5."" L Qa'
©0 -/ . oz,xz 1
z - 28 _ _ % cea)y L (_,)2’ St cos =X
x Y <2/ n* nxb ‘2a.
cosh RED
ﬂ=/,3,5,"" Qa
and for the standard rectangle
o0 n-7 [ ;(g
2 cosh ] .
- e N L () /— k| n 2P
GOa. x* 7 ch m: 2
ﬂ=’,3,5,"" co - 2k
e Ladd h TEL
= s/
tm R . _ BANYaY) 2k nxh
&e4a T2 n* Cos,
’ ) nx< 2
'n=/’ 3’ 5, seee COS/L ‘_27——

and,

2 = S0P+ (tn)?

tL/tm

The asove expressions and those given in section 3.3 differ

i

tan G

essentially in the length of side 'a! or 'b' used, so that in
comparing solutions in ZX and YZ, account must be taken of the

factor 'b/a', equal to two in this case. Comments on these

results are given in section 3.7,
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3.5 Approximate Expressions:

Approximate expressions -#liminating the hyperbolic terms
have been developed by many authors by assuming a specified stress
distribution over the sides of the rectangie and deriving an
equation in terms of the maximum strésses, assumed to occur at the
mid-points of the sides.

;49 )

Seele uses Bach's Method and assumes a parabolic
distribution with maximum stress at the mid-point of the longest
side of the rectangle to simplify the St. Venant equations. The

value for torsion moment is then given as

M, = o (23)2 (2b)z’max

and values of o« are tabulated for 'h/a' varying between 1 and®o,
Timoshenko(7) gives the same equationandalmost identical
oe~values,
Approximate formulac are similarly obtained from the
vembrane Theory by assuming that the maximum value of stress occurs

at maximum slope of the membrane, and Timoshenko and Goodier hy

nxb

approximating the converging series in cosh give,

o 2
L{t - }_2 (23) (Zb)tmu.x

Values of k, are given for variable 'b/a'.

The practical application is thercfore onc of expressing
the maximum torque in terms of the maximum stress occurring at
some specified location in the rectangular section. The
consideration of maximum values introduces the concept of plastic
behaviour.

3.6 Plastic Theory = Sand-Heap Analogy:

The condition of plasticity at which a shearing stress T

reaches the yield point of the material is given by a relation
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between shear stress components‘t& and'z& as,

2 2
77x + 12Y = k2 = congtant

The function F(x,y) is defined as thc plastic stress function

of the cross section, and at the points beyond yield
2 2 2
F -
(*Thx)" + (PFpy)" = x
Finally, at every point along the region of plastic deformation

Ty ax + Tedy = (3T ax)ax +(>"F/by)dy = 0
The plastic stress function can be considered to be a surface of
constant maximum slope constructed over the edge of the cross
section and analogous therefore to a sand-heap taking up a shape
of slope equal to F and independent of the amount of twist.

The application to a rectangular secction and complete
plasticity is governed by the same rules as for the elastic torsion
case so that, at any point on the surface, the resulting shear
stress is given by the slope of the stress surface; the contour
lines for constant F(x,y) are stress lines for the twisted section;
and the torsion moment, Mt’ is given as twice the wolumo conbained

by the surface, or, for the rectangle being considered,

r, = 2F//(x,g). dx .ay.

(za) | (28)-(2b-22)

i

max.| 3 2
2 a
= tmax.(ga)' b - 3

3,7 Conclusions:?

The results given in Appendix E are for solution by a
KDF 9 Computer of the torsion stresses induced in a rectangular

section, of 1h/a! ratio equal to two, using the elastic equations
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outlined in Sections 3.3 and 3.4. The results obtained by the
Membrane Theory approach are illustrated in Fig. 3.3. The follow-
ing conclusions are therefore made on these results and the
application of the various theories.

1l. The results given by the two elastic methods of analysis
are very similar and»any differences are insignificant for represent-
ation as shown in Fig. 3.3.

2. Due to the rapid convergence of the hyperbolic express-
ion in the St. Venant eguations, a large number of terms in 'n’
must be taken. Two sets of results are given, for n = 20 and for
n = 40 and the difference between results for any given point is
only introduced in the fourth decimal place. As a result, even
for n = 40, the houndary condition is not yet satisfied at x = : a,
and there is a residual stress at the corner point, although
convergence is less rapid for this value.

3, The Membrane Theory gives equivalent results for n =9,
and boundary conditions are satisficd with zero stress at the
corner. These results are plotted in Fig. 3.3 and the stress
contours illustrate the basic principle of the theory first examined
by Prandtl.

L. To study the problem of combined bending and torsion,
additional computing is required to rssolve the torsion stresses
with the appropriate bending stress and evaluate the resultant

i
hstress in a third plane. The author's opinion is that this final

i
| stress distribution represents the stress condition in concrete at

I

‘the early stages of loading.

5, The large amount of computation necessary for the elastic
theory is avoided hy considering only the maximum values of torsion

stress. However, in applying maximum conditions to concrete, a



FIG: 3.3 =~
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theory based on plastic behaviour must be investigated.

6. The author feels that for application of the torsion
theory to rectangular sections of concrete, the equations developed
by Nadai are more closely related to the behaviour of the section
at maximum values of torsion stress. Also, the equations are much
simpler in form, and it is proposecd to adopt this theory for
investigation in Chapter Four of the behaviour of a reinforced

concrete beam prior to cracking.
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CHAPTIER 4
THE BEHAVIOUR OF A REINFORCED CONCRETE

BEAM PRIOR TO CRACKING

4ol General:

It is proposed to consider the resistance of reinforeed
conorete subjected to combined bending and torsion in two stages.
Chapter 4 will deal with the range of combined loadings up to the
initial cracking of the concrete. Chapter 5 is then concerned
with combined loadings beyond the initial cracking stage up to
the ultimate stage and will then deal with resultant failure of
the beam,

L.2 Introduction:

In this Chapter, the resistance of the beam 1is defined by
the concrete properties, and, in particular, the tensile strength
of the concrete. Working on the basis of specified assumptions
for stress distribution in the concrete, an expression is derived
for the moment of resistance of the beam for pure bending and for
pure torsion. An expression for the angle of crack is then found
for the case of combined bending and torsion loading in terms of
the original independent stresses.

A similar procedure has been developed by Evans and Sarkar(5o)
for hollow rectangular beams but due to initial differences in the
value for the depth of the neutral axis, the subsequent expressions
are of different form. The author shows that the angle of crack
is the same for hollow and solid rectangular beams,

The design formulae to be developed in Chapter 5 for
combined bending and torsion will be derived using the initial

angle of crack in the concrete. It is shown in this Chapter that
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the angle is determined only by considering the concrete stresses
so:that, it-is not necessary to consider any properties of:the
reinforcement,at this stages Finally a simplified expression for
the aggle of crack is derived in terms of the ratio of applied
bending moment to applied torsion moment. The design expressions
to be evolved in Chapter 5 are mainly concerned with strength
properties of the concrete and steel, linear dimensions of the beam-
section andﬁtrigonometrical terms involving the angle of crack and
the angle of inclination of the compression hinge ahout which
fotation eventually takes place. An expression for this angle is
- ??erived in terms of the angle of crack and a geometric property

H

bf the section.

Le3 Moment of Resistance to Pure Bending:

: \J s
¥ (‘ The resistance of a reinforced concrete beam to pure
[ ¢

¥V>Ji///{bending during the stage prior to cracking depends upon the nature
Rpf the stress-—strain relationship assumed for the concrete. For
this work a semi-plastic stress distribution has heen adopted

(51)

& similar to that given by Cowan and the assumed stress~strain

relationship is represented by the following diagrams.

Fige 142~

g E. 2
; Jer
IN
N
t
R ft/
1 Zi;;;:j :
E | —la
“Z” rz;j ¢ ¢ r Es 1 E,
2 2

iy G (iii) ).
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These relationships arc used to determine the depth of the neutral
axis; 'n',from the upper surface of the beam for (a) solid rect-
angular section (b) hollow rectangular section.

(a) solid rectangle - plain conarete

fo _ B €&
f‘b - %’:Etet fig., 1.4 (lV)
f
c _ _2n . ‘o
;; = T -n fig, (iid)

equating resultant tensile and compressive forces,

21y b(d - n) = —%—fcbn

so that n = + 0.449 4

(b) hollow rectangle — plain concrcte

fo _ 2n
f‘b d-n

equating resultant tensile and compressive forces

(fe + foq)

Lfont +Ffent >

J(b-2t)t
=% £ (@ =-n) 2t + (b ~2t)% fiy

assume ftl = ft then

£ :;,i(d—ﬂ«) + (b - 2¢) an
£ n 4 @ Z2oan-t) (@-n)
2N

solving for n, glves
2 2 £12 B
on® + n(8a + 9b = 18t) ~ (437 + bt + 3bd -~ 0% - 6t3d) =0
b/ s

2 2 _ g2 4 = a2
then, t =8/, 3 ta=0/ 5 =416 t = 8/,2

i

assume bt

|
o

2
‘ d
and, n2 + n % (8 + /oK) - = (4 + 3fex2 + 3/2k) =

d : 23,2
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Evans and Sarkar have used the same stress-strain relationships
for their work on hollow rectangular beams but their expression
for 'n' differs from that given above by the author and therefore j
values of 'n!', given for specific 'k! ratios (= d/b), are not the‘
same, These expressions are now used to deduce values for lever
arm, and finally an expression for the moment of rcsistance of the
section, As a result, these expressions will differ from those
of previous authors.

Table 1.4:

'n! - values (t =b/4)

d/b 1.0 1,25 1.5 2.0 3.0

n 044354 0.4354 0.4354d 0.4354 0.4354

By inspection of Table 1.4, it is proposed to consider 'n' as
constant for any value of 'k', within the given range of valuns,
and for both solid and hollow rectangular scctions.

Using the stress-strain diagrams of Fig. 1.4, and values
for 'n' from above, an expression is now derived for the lever
arm, '1;' of the scction,

(2) solid rectangle — plain concrete

Fig- 2.4 -

T T T/ ¢
R
‘SU
N -
R
“U 7 _-__JL;'?‘Q
/™)
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—\r
o~
1
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L = d—%-%(d-n)

t

d - 0.154 - 0,375 0.551d

0.6434

1

(b) hollow rectangle — plain concrete

Fig. 3.4:-
| , T e —
3 & [T &% c/ >
' .._ﬂ"—'\ | o
e Ca O Cz i)
3
i
e I ~
w|im| =l PP Y
T_f“*l T "
' Jt
Compressive forces:-
t
) n -5, (2rn - tb -2t}
C - f—210 2t)t - # o
6, = font
so that
(2n-t) t(3n t) n
9_ _ Ve ® -2t)t. Slan d) + £ty
jgﬁ%—;—t’)—(b -2t + fnt

(b -2t)t(3n-t) + 27°
3(2n-2)(b -2t) + 67"

assume t = b/, then
v o= 2 =355 ¢
Lk
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and (Bg-L)Lw + 293
T -d " ek /8k? 9
3 / 2
(23~ z¢) +eq
Tensile-Forces:~
T, = ft(b—-2t)t
T, = ££,(d -n)t *2
T = fy t[4/3(d-n)+(b-2t)]
and

= £b-20% + F£E@-n. 2.3 (-7
7 (6-2¢8) + 4(d —n)

G - 200t + (d-n)?
R 3(b-2at) +4(d-nr)

assuning t = b/ gives

P R
. 53?+4(/—g) J

General expression for Z;:-
(&

/Z - d _(32—4%)8—22 * 2‘23.[__ 3 —8/?2-'-(/—%2 ‘,
- / 2
a. ﬁ@?‘ﬂ + 69 J 2 27% +4(/-9) J

This is a general expression for lever-arm in terms of 'q', the
neutral-axis depth constant, and ‘k', a geometric constant for
the section, and for a given wall-thickness,

However, for the given 't' = h/4, using the evaluated

n = 0.435d, the expression further simplifies as

/
Y d (/-305 —;,/g)ﬁz + O/6% . F‘—gkz + 0'3/‘7]
= / I —_ /.
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Table 2,4

l;‘~ values (t = h/4)
a/b 1.0 1,25 1.50 2.0 3.0
¢ 0.6804 0.697d 0.702d 0.7074 0.701d

The moment of resistance of the section prior to cracking is now
derived in terms of the tcnsile force, T, and lever-arm, '1;', as
given in Figs, 2.4, 3.4. It is preferable to consider tho ﬁoment
in terms of the tensile properties of the concrete. In order to
study the relative effects of combined hending and torsion it is
necessary to exclude the offects of shear on the resistance of
the beam. No consideration has been given to shear-resistance.

(52)

However it has been shown that the compressive stress of
concrete under combined loading varies as the ratio of compressive
stress to shear stress.

(a) solid rectangle - plain concrete

M = 4 £t b= 0,551d x 0.643d

pa? _ .. bd

LeR34

(b) hollow rectangle - plain concrete

M

i

£

b BE @=n) v (-2 L

fr b @2 (1 + 1,50/k) g/ZP

i1

2k
. bd?
Tt 8k
g(1 + 1.504k)
2
. _ ba
1eCe NIb e ft Cb

The Moment of Resistance to pure-bending is thercfore a function of
the geoaetrical properties of the section for hoth sclid and hollow

rectangular heans.
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For the hollow rectangular scction, the value of the

constant Cb varies a$ 'k'! given by the relation

gk
Gb = where g is given in

g(1 +1,504k)

Table 2.4 as Ig = g.d

The values of Cb tabulated in Table 3.4 arce for the values
of k considered in this thesis, and rcprescntative of practical
design values.
Table 3.4
G, _vwvalues

b-—--———-—
k =d/b 1.0 1.25 1.5 2.0 3.0

solid rect. 423/ 4234 4234 La234 4234
hollow rect. 4.697 44983 54249 54645 6,211

Lo/, Moment of Resistance to Pure Torsion

As for pure bending, in investigating the resistance of
the beam to pure torsion prior to cracking only the characteristics
of the concrete necd be considered.‘? Several authors have invest-
igated the stress-strain relationship for plain concrete subjected
to pure torsion and in varticular the case of the rcoctangular

2
(10, 21, “3), going as far back as 1934,

section.y) Thesc studies
but more recently an extensive study in America<53) all suggest
a plastic distribution of torsional stress., This has been

accepted in deriving the exoression for moment of resistance of

the section to pure torsion.

(2) solid roctangle = plain concrete

(22)

Using the sand-heap analogy developed hy Nadai for a
rectangular cross-section, and outlined in Chapter 3 the moment

of resistance in the completely plastic state is given by
_ (3K - 1) T 2

= er b4

y T via

My,

il
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that is, the moment of resistance is a function of the geometrical
properties of the secction and the maximum torsional stress T .
Finally, the torsion constant ¥ is also a function of the 'k!
ratio and the values given in Table 4.4 are for the range of k-
values under consideration.

Table 44

b'values

d/b (a) (v) .-
1.0 0.333 0,291

1.25 0.367 0,308
1.50 0.389 0.319
2.00 0.417 0.333

3.00 0444 0.347

(b) hollow rectangle - plain concrete

The application of Nadai's egquation to hollow rectangular
scctions is given by considering thc core to be negative and the
values are included in Table 4.4 for t = b/4.

Lo5 Angle of Crack:

The angle of crack in a roinforced concrete heam subjected
to combined bending and torsion is now derived in terms of the
individual bending and torsion stresses, fy and T . Cracking will
occur in a2 plane normal to the dirszction of the principal tensile
stress, so that the initial erack takes place at a point where the
resolution of ft and T is o maximum, that is, at the bottom corner
of the beam. Since a full plastic distribution of torsional stréss
has been assumed, maximun T occurs along the longer length, namely |
the vertical side of the beam, and is constant.

These values for ft and T have been previously determined

so that an cxpression for oL , the angle of crack is found.
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Fige Lod i~

T
T &
@) n | &
St
| T
_T 2 T.cos«
Sinot
J
A ¢ Jp Je
Jp.cos
1T 'As'/'r(:_of" ' T
(b) stresses. () forces.

Considering the equilibrium of the wedge,

_ Tcos
fp * ft T sine oo (1)
coseX
a_nd’ P Sind - t se 0 (2)

Solve (1) and (2) and take maximun fp then

£, = e, + Jr2 e at? ) e (3

and in direction opposite to that shown in Fig. 4.4(b).
In the above expression, ft ané T have previously been
found in terms of the geometrical properties of the beam section

and the strength properties of the concrete.

. Cy M, - My
" 5 —7

b d ypa
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Substituting these values in equation (3) gives an expression for
fp in terms of the section characteristics and the applied bending

moment and twisting moment as,»

£ _%Cbe+ <Gbe2+4 w, |°

P b ¢ ba? ypa
where Mb and M% are the respective bending moment and torsion moment
being applied to the section at the load stage where cracking is
initiated.

From fig. L4

T T
t= 2 =
R N R )
2b.a* 2ba* y6d

This expression for cot & can be simplified by assuming a constant
relation, Z, given by the ratio of applied bending-moment to

applied twisting moment so that

",

g = vy and
1

cot ¢ ~ =
2, 1)

7+, 7

1

where
s d Jo _ Cy il J
/7 - 24 - 2k

and is constant for a given scction and specified combined loading

ratio,

Having adopted a suitable heam shape, it is shown that the

~angle at which the concrete first cracks is largely determined by

the ratio of applied bending moment to torsion moment, It has
been observed(5o) that any subsequont change, as is likely, in the
# ratio will not effect the propogation of the crack upwards, or

across the bottom of the beam, The author intends to discuss this



- 40 -

point in the following Chapter in view of its importance with
regard to calculations at ultimate load when the crack has fully
traversed the cross-section; also, at a later stage with reference
to experimental work carried out to examine the actual crack
propogation. It can be mentioned here however that the influence

/’
of both longitudinal and transverse reinforcement must be considered

I
|
in an investigation of crack propogation in a reinforced concrete ”
beam beyond initial cracking.
The effect of varying the cross—section constant k and the
ratio @ on the angle of crackoe, is examined at this point for

hoth solid and hollow rectangular scctions with significant result

as shown in Table 5.4 and Fig. 5.4.

Table 5.4
i 1,0 2.0 40 2,0
k= 1.25 H.R. 0.5591 0.3560 0.1961 0.1009
SR 60-55 70--35 79-02 84-19
(o
H.R. 60~45 70~21, 73=51, 84,14
S.Re 06483 0. 4478 0.2610 0.,1374
cot X
k = 2.00 H.E, 0,6339 0.4315 0.2487 0.1303
) S.R. 5702 6552 7522 82-11
(o &
H.R. 57-38 66=40 76=02 323/,
S.R. 0.5921 0.32874 0.2177 0.1125
cot o
k = '1.50 H.R. 0.5873 0.3827 0.2139 0.,1107
S.R. 59-21 68-50 77-43 33-35
oL
H.R. 59~-34 69-03 7755 €3-40

Applying limits to the expression for the special cases of pure
)
torsion and pure hending gives cotoc¢= 1 for g=0, oroc= 45 as

expected for the pure torsion case since the element considered
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in Fig, 4.4 is now subjected to equal T stresses, the resultant of
which 1s a diagonal tensile stress causing fracture of the section
at an angle of 450; and for =00, cotoe =0 or & = 90° thus
simulating the case of purc bending with a 900 fracture caused by
bending stress ft only.

The intermedia'tc: values of cot o¢ for @ = 1.0, 2.0, 4.0,
8.0 have been tabulated in Table 5.4, and a graph of angle o
plotted agoainat @ is shown in Fig. 5.4.

Within the range of accuracies to which reinforced concrete
designers usually work, the conclusion is that a single curve can
be drawn from which values of initial angle of crack & can be
found for any given @ ratio and any recténgle, solid or hollow,
lying within the range of k-values considered.

Relation between & and#,@ , & and 9:-

Fig. 6.4:"'

The angle, o, at which the crack propogates upwards and

ncross the beam-section determines the values of angle/@, or
angle of inclination of the compression fulcrum, and angle 6,

the angle at which the crack finally connects horizontally across
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the upper surface of the beam to the vertical side cracks at failure.

(Fig. 6.4).

A
axis position|since i will be shown in Chapter 5 that rotation

The value of angle,g is further determined by the neutrali//
at ultimate load takes place about 2 compression fulecrum in the
plane of the neutral-axis. The neutral-axis depth is no longer
as previously calculated for angle o€ at initial cracking of the
concrete, but the depth at ultimate load,

At the load-stage beyond initial cracking, the resistance

of the heam to increasing tensile stress is provided by the —
P. ¢

(‘J‘ ,QZ/O £ 7

\reinforcement so that the neutral-oxis depth 'n' remains constant

kfor increasing stoel-stress., At the same time, an increasing
area of concrete rcaches the tensile stress at which cracking is
initiated so that the crack moves up the heam. The hypothetical
stress-block is reprecsented in dingrammatic form in Fig. 7.4 for
nure bending. The addition of torsional stresses as in combined
loading will increasc the value of stress by an amount given by |
the component of torsional stress acting in the same direction as
the bending siress, It is assumed, in the general case, that

JV | the bending-stress is the greater, corresponding to @ values

g:greater than 2.

| The change point occurs when the reinforcement reaches its
yield stress. Any further increase in applied loading will be
resisted by the beam by an increcase in the length of the lever-arm
with resultant decrcase in the value of 'a',  The raising of the
neutral-axis proceeds with continucd loading, exposing an increasing

depth of concrete to the eritical cracking stress, so that crack

propogation continucs and at constant angle,
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Ultimate load is rocached when the area of concrete
resisting the applied moments in compression is reduced to the
point where ths resistance«of the beam in compression is equal to
the applied moment. TFailure is now reached due to crushing of
the concrete in the compression zone at the upper surface of the
beam.

Therefore, an expression for_/3 is derived using the depth
of the neutral-axis at ultimate load since any design equations
deduced in Chapter 5 are for ultimate design. Assuming that
values for &, the angle of crack on the beam face, and for 'a',
the depth of the neutral-axis at ultimate load are known, the
value of/B is dependent upon the geometrical properties of the
section, Now, applying the theory for the angle of crack and the
crack propogation as developed in Fig. 8.4, an expression forJe
is found, given as

cot/e = cot & (2jk + 1)

The crack crosses the underside of the beam at angle e since the
resultant stress remains constant across this length as far as

the opposite face. At this point, due %o a reversal in direction
of the torsional stress, the crack continues up the beam at an
angle o but in direction opposite to that on the front face,

In the limit, for #=0, cot o =1 and j =1, and
i:cot‘/g is a function of 'k', not necessarily unity, so that pure
Ltorsion gives = /3 value not necessarily equal to 450. Thié fact
has been investigated experimentally and is reported in Chapter 7
and Appendix A but accepting 45° cracks up the front and back-faces
of o beam subjccted to pure torsion, the value of:/e is necess-~
arily less than 450. For @ =90, both & and /3 = 900, thus

agreeing with the practical case of pure bending.
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An expression can be similarly derived for 6, although

this angle is of less significance in the design concept. The

values of © and_je are theoretically nhot the same a%Ehough towards
ul?%pqt§“§@}§w@;§§ggggggMis reduced as the position of the neutral- 1
axis tends towardshthgdggpgngurface of the beam,

Although the gcneral prineciple for‘calculation of the angle
of crack, oL, is acceﬁtable, some thought is now given to its
complex form particularly as in the final design equation it is
intended to include cotex, and also sinje, cos/a, coseq/e, expressed
in terms of cot®, thus introducing square-rocot terms. The nature
of the cot ok against @ plot does not cehable results to be taken
readily. Further, with a view to a general design equation, it
is desirable to use a general expression for cot o and hence the
corresponding S terms.

A graph of log cot o against log @ is shown in Fig. 9.4.

The graph falls essentially into three parts according to B value i~

(a) g<2
(b) @>2,< 8.
(c) @>8.

This breakdown agreces with a practical assessment of @ in
which @ values less than two give predominant torsion conditions,
@ values lying between two and eight can be considered as combincd
loading, and ¢ values larger than eight produce cssentially a pure
bending condition.

Consider the equation of the graph to be

log cot ot = log k + n log &
so that

cot X = k ¢n
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(a) §< 2:— from fig. 9.4.
logk = =-0.2 = 1,8
n = gradient of straight line = -0.5

0.63/J 8

so that cot ot

(h) 2< @< I

log k = 1.9

n = gradient - 1.0

so that cotet = 0.,8/¢
(c) B> 8:-

Beyond @ values of eight, the plot of cotot changes, and
as values of ot are now greater than eighty degrees, a large
increase in @ will produce a relatively small increase in cotet,
Therefore, to retain as simple an expression as possible, cot®
is considered to he constant over this region and given by

cot oo = 0,1
Using thesc approximate expressions for cot ot , values,

comparable to those given in Table 5.4, are evaluated as shown in

Table 6.4

] cot ot o
1.0 0.63 57° /31
2.0 (a) 0.416 67724

(b) 0.400 68°<2/,
4.0 0.315 720.-30"
8.0 (b) 0.1 84°-/21
(¢) 0.1 84C~/21
10.0 0.1 84021

Although slight discrepancies are incurred at change points,
this does not affect the final design equations as shown in
Chapter 5. A comparison between theoretical and practical values

is made in Chapter 7.
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Ls6 Conclusions:

The behaviour of a réinforced concrete beam during the
period from initial application of the load up to initial cracking
of the beam, is determined only by the properties of the concrete.
At this stage, the maximum tensile strength of the concrete is
reached. Behaviour of the beam beyond cracking will then depend
primarily upon the reinforcement.,

Although it is the author's intention to study the cffects
of combined bending and torsion on tho beam, it is necessary to
consider the resistance of the concretc to pure bending and to pure
torsion, The exact nature of the assumptions made as to whether
concrete behaves elasto-plasticelly, semi-plastically or completely
plastic, influences the conclusion drawn for this initial pre-
cracking stage. The conclusions given in this Chapter are hased
on the assumptions that the concrete behaves visco-elastically in
bending and plastically in torsion.

Since only concrcte properties are being considered,
iIdifferences in the moments of resistance of a solid rectangulor
:section and a hollow ractangular soction of the same shape to pure
bending are to be expected. = However, in hoth caseos, the depth
of the neutral axis and the length of the lever arm remain constant
and proportional to depth. The moments of resistonce can then be
expressed as functions of the tensile strength of the concrete and
the geometrical properties of the section in terms of constant k',

For purc torsion, the equations of Nadai have been accepted
for the solid rectangular section and modified to include hollow
sections. In both cases, the moment of resistance is determined

by the maximum torsional stress and the geometrical properties of

the section.
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The angle of crack formed on the sides of the beam is

f derived by considering the combined tensile and torsion stresses

{ resulting from the applicd bending and torsion moments, This:
‘crack forms at right angles to the maximum principal stress and
therefore at the bottom corner of the beam, The propogation
upwards and across the beam is at a constant angle, determined by
the moments of resistance constants for the concrete, the geo-
metrical properties of the section and the ratio of the applied
bending to torsion moment. TFor design purposes the angle of
crack can be considered to be dependent only on this ratio for
both solid and hollow rectangular sections.

It is finally concluded that the angle ahout which rotation
of the section takes place along the neutral axis due to combined
bending and torsion at the ultimate stage can be related to the
angle of cracking of the section up to the neutral axis depth at
this stage. Consequently, the angle of rotation is also determined
by the ratio of applied bending momecnt to torsion moment.  An
extensive study has been made of the prohlem of deriving an
expression for /9 and Appendiz A has been included on this subject.

However, it is the author's opinion that the most satisfactory

available expression for./g has been adopted.,
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CHAPTER _ 5
ULTIMATE TOAD DESIGN

5s1 General:

| This “hapter deals with the behaviour of a beam at ultimate
load, that is, immediately prior to failure. A value can be
obtained for the ultimate resistance of the section when subjected
to both bending and torsion. This value is then compared with
design preporties of the gection at working load. The working
design may, or may not, have included the torsion moment.
Nevertheless by comparing the working design moment with the
ultimate design moment as given in this Chapter, a more realistic
load-factor is obtained.

5.2 Introduction

In considering the equilibrium of the cracked section of
a reinforced concrete beam at ultimate load, values for the
resistance of the beam can be found on the basis of the resistance
of the concrete in the combression zone together with the moments
provided by each unit of reinforcement, longitudinal or transverse,
intercepted by the crack.

The concept of this design procedure is largely due to -

(5, 6, 32, 33, 34, 35), as reported in

work carried out in Russia
Chapter 2 and now referred to as the Ultimate Equilibrium Method.
This method is said to reproduce most accurately the actual
behaviour of the'reinforced concrete structure., The disadvantage
of the Russian approach is the complexity of the design equations,
mainly due to an exact mathematical treatment of the failure

(50)

mechanism. Further study has been carried out in Leeds to
express these design equations more simply, assuming a constant

depth of neutral-axis over the area of the crack.
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It is proposed in this CGhapter to introduce further
simplifications based on the conclusions drawn in Chapter 4 for
the ahgle of crack and angle of inclination of the compression
fulerum.  The Russian theory and more recent studies have been
mentioned briefly in Chapter 2.

It is further intended to derive a new expression for the
ultimate bending load, given any specific applied torsional load.
The main disadvantage of the ultimate equilibrium method and any
subsequent modified theory is that the ratio of applied bending
moment to torsional moment is used in the design equation.  Thus,
the solution is dependent on the @ ratio remaining constant during
the load stage from working to ultimate load. It is proposed to
develop new design equations to allow for the substitution of any
torsional-moment and, in particular, the torsion moment being
applied at the ultimate stage.

The first part of the Chapter is concerned with the
fundamental principles of the ultimate equilibriun design concept.
The latter parts of the Chapter will deal with the author's own
developments to obtain new design equations for both solid and
hollow rectangular sections and with either longitudinal only, or
longitudinal and transverse reinforcement.

5.3 Ultimate Equilibrium Method of Design:

The general case of the ultimate equilibrium theory applied
to a reinforced concrete beam, reinforced both longitudinally and
transversely and subjected to combined bending moment and torsion
moment will be considered. Although two failure schemes are
possible,only the more likely case of a horizontal neutral-axis
crossing the vertical sides of the beam as shown in Fig. 1.5 will

be considered,
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The following assumptions are made., Rotation takes place
about the neutral axis NA inclined at an angle to the longitudinal
axis of the beam. NA is therefore considered as the compression
plastic hings., 411 steel components, longitudinal or transverse,
passing through the crack-area contribute to the resistance of the
beam. Por this purpose, it is necessary to assume a constant
spacing of the transverse steel over the length of the crack.
Further, it is assumed that all the reinforcement passing through
the crack has reached its yield-stress at ultimate load. Finally,
the effect of any steel in the comprassion zonc, also the tensile
strength of the concrete, is neglected. It is therefore a
necessary part of this analysis to provide an under-reinforced
design and thus ensure that the reinforcement reaches its yield-
stress.

The derivation of the design equation then follows on the
pasis of The Principle of Least Work, and in particular, that the

sum of the external moments due to bending and torsion is equal
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to further simplification of the expression. Denoting Mt as a

function of M, and @, the equation now reduces to

M, - fz'b nf"cosecﬁ + £ AL smB(c-n)

@
cos@ + ¢$/n/9
+ .ﬁ"sﬁf b3.cot . cos/g (& -a, - 7)

AT oy [ jeotol's (1= ))eot ] sing
a [ jeotout (1~ jlcot + by (cotot-cotfl

A further simplification can be achieved by considering specifie
values of /8 such as 450 or 60°. Tt is shown, however, in Appendix A
that variations in assumed values of /3 do produce significant
differences in the calculated results for ultimate moment. A
completely satisfactory value for .,5 will only be found by analysis
of the resultant stresses in the compression zone. Meanwhile, the
author feels that it is more satisfactory to adopt a definite
procedure for determining /3 . The expression for ﬁ derived in
Chapter 4 can now be used to obtain a more direct expression.
However, the fequation for ultimate hending moment given
above can be evaluated for any specific @ ratio by substituting
the details of the beam section,' these detalls having been obtained
by the normal design process for working load. The aSSleption(s 0)
that o = X, and gU': 5& = 45° provides further simplification

without significant effect on the calculated result:-

My, = _21’]2' b n.zcosecﬁ +F£A,. S/m/g(dr‘")

&
cos/3 + psing

+ %_b& cot ot-cosff (o ~ds - 7)

[t ))

a [/ +/(cotx-1) +b5 [cot:o(-coc/ej
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5.4 Degion Bauations for Ultimate Moment

The conclusions from Chapter / with regard to angles o«
and /3 can now be included in order to simplify the ultimate
equilibrium expression for ultimate moment. It is proposed to
consider first the application to the simpler case of a rectangular
section with longitudinal reinforcement only. The same prineiple
can then be developed for the more general case of a rectangular
section with longitudinal and transverse reinforcement.

The modified expressions for o« and [3 are, in general,

co‘b/g = coto (2jk + 1)
and for cot o, three expressions depending on the range of values

of @:-

Lo+

g<2 cotoe= 0,63/8

2< g<8 cotx= 0.8/¢

3> 8 cotxx= 0.1

The theory is applicable to both solid and hollow rectangular

sections, hut it will he necessary' to consider three design equations
according to these limits. This procedure is not very satis-
factory and at a later stage the author outlines a more general
expression.

(a) Longitudinal reinforcement only

The modified ultimate equilibrium expressions for ultimate

moment, Mb’ and neutral axis depth, n, are

g a1 2 :
M = (L £ b n cosecB+ £ A sinfa -n))
Ib COSﬂ+¢Sil’lj5 c -/8 'L /8 1
_ fLAL sin%@
and n =
fc'b

so that, alternatively

AL sinﬂ(dl - n/2)

_ )
% cosﬁ+ i} sinﬂ *
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Substituting values for_/g gives, for example,

1l

(a) =145 M, 8. fLAL(dl—-f-ﬁL-)

1+ f LEND
| A
(b) = 60° - 38 ., 34y
s % 143 ¢ fr A (4 8fci'b)

1}

(¢) B=9° M =0, M 2 £t bn?+ £ A (d,-n) =
c L'L £ %L
L
£rA(d) - )
2£ 1D

and this the pure bending case;

= 40 - - 2 _
(a) ﬂ— 457 M =0, M =flbn+f A (dq=n) = £A () -

and -this is the pure torsion case;
. . ~ -1 .
(e) or, in particular /6 = cot (cot o2k + 1))

The relevant trigonometrical functions are

i

. 1
o ﬁ ~1+ co’o2ﬂ

I

cot
COSJB V1 + cot?B
and cosec /3 = 1 + cotzﬁ

It is also necessary, in addition to specifying a range

of values for @, to choose specific values for the geometric

constant "k". For this purpose, values are chosen relating to

practical design values.

One major assumption is made, namely with regard to the

depth of the neutral-axis. It has already been shown (Ch,. 4
Fig. 7.4) that the position of the neutral axis changes with
increasing applied load from its position at initial cracking

(Table 1.4) to an ultimate position given/by equating forces

t

LE,

fify

b

)
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normal to the compression-hinge just prior to failure. It can
be assumed therefore, that for the purposes of ultimate design,

the value of n is very small compared to the depth of the section

and so
take j = 1
B values: - g<2
cot/5= %‘/—;_-3(2}{+1)
sinjé’ = N/B—
B+ 02k + 1)2
COS/@ - 0.63(2k + 1)
B+ 0.2k + 1)
2
coseq/g = N/b + 0.4(2k + 1)
Jg
£ A
so that,  n = w5 i 5
c @+ 0.4(2k + 1)
£ A
= L 'L ¢ se o (105)
£,' b g+ A
where A = 0.4(2k + 1)2
= z frA (4 = 7/5)
and, M, . iy (& =77
g+ 282 (2 1)
n
= _B— a(ay =", .. (2.5)
yj +
N/
where B = 0.,63(2k + 1)
2 PpL 8-

cot B = 9-5-5<2k+1>
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; g
smﬂ =
J + 06402k + 1)

cos B = 0.8(2k + 1)

\/ééi+ 0.64{(2k + 1)2

COSec/g = "/E + 0,64(2k + ]_)2

)]
so that,
£, A
n = f L' L see (3.5)
sz + A fc b
where A = 0.64(2k + 1)2
2
a.nd’ Mb = ;'EQ:'; fLAlx(dl - n/z) e (/+05)

1

«/gg; 0,01(2k + 1)2

2
008/5 = O'l(‘“k * 1)

ﬁ+ 0.01(2k + 1)2

coseg/e = N/ﬂ + 0,01(2k + 1)2

so that,
A fA ,
n = "'—'_-LL- XX (5-5)
f b
where A = L
1+ 0,01(2k + 1)2
+ B

where B = 0,1(2k + 1)
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Table 1.5 gives values of the constants A and B for a

practical range of k~values from 2 to 1

k=values

) 2,0 1.5 1.25 1.0

<2 A 10.0 6.4 4e9 3.6
B 3.15 2.52 2.205 1.89

>2,<8 A 16.00 10.2/ 7.8, 5.76
B 4,400 3420 2,80 2440
>8 A 0,80 0.862 0.891 0.917
B 0.50 0,40 0.35 0.30

The value k = 1 has been included in Table 1,5 as it is intended
to include calculations in Chapter 6 for beams of square section.

(b) Longitudinal and transverse reinforcement

The same principles can now be applied to the general
expression for ultimate moment of a reinforced concrete beam
containing both longitudinal and transverse reinforcement and
subjected to combined bending and torsion.

The acsumption that j = 1 reduces the complicated expression
representing the contribution of the vertical transverse steel

moment of resistance in the ultimate equilibrium expression to the

following

f. A
T =T .
- =3 d3 Slnjgcoto( (d cotbec+ b3 (cotot— cotf)).

Finally assume b3 = b (the error introduced by this assumption is
only of importance in beams with above average concrete cover for
the reinforcement.) Tt is therefore proposed to develop the

original equilibrium equation in the following simpler form:-

M, sin/3+ My cos/3 = 4 £tb n° cosecje+ £ AL sirj_/g (dl - n)
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£ A

+ ._I..S_E b3 cotoLco_Sﬂ(d - ds ~-n)
£f. A v
+ TS L a d3 sinﬂcotztx. veo (7.5)
LA .smfB + J—Cﬁi'fb .coto(.-cos/g
g L s 3 ' .
where n = - cee (345)
]é. b. Cosecﬁ
n-values:-
LA AN , £hry 0063 _063(2k +)

ﬂg&bn=A/¢+o4abf S P S B rorzk+)*
£b) ¢ +oslzk)
NE

£a.d + AT b,

1)
(¢ +B)£ b
e e (9.5)
where A = 0.2k + 1)
B o= 0.k + 1)
2 < g%< 81~
j‘c_. '4/-' ¢ +ﬁ7ﬁ1b o8 08(2k+/)

7 = '\/¢z + 0-64(2.k+/)z s 3 ¢ J¢z + 0 oA (2k+1)*
Lo P+ ootk )*
¢

£A
Jﬁ.AL. ¢z+ A ?Tba
B oo (10.5)

(¢ + 8) £ b

where A 0.64(2k + 1)

1

3 0.64(2k + 1)
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JAL
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7.5 0-0/(24+1)

__%._

£6./) 1 + oor(zk+)*

fi

where A

o
I

8 £.b

0.01(2x + 1)

1+ 0,01(2k + 1

)2

-+
Jrow o-o/(zk+1)* J / + o-or(2k+)*

ves (11.5)

The values of the constants are given in Table 2.5.

Table 2,5
k~values

g 2.0 1.5 1.25 1.0

<2 A 2,0 1.6 1.4 1.2

B 10,0 6.4 4.9 3.6

>2,<8 A 3.20 2,56 2.2/ 1,92
B 16,00 10.24 7.84 5.76
> 8 A 0,50 0.40 0.35 0.30

B 1.25 1.16 1,123 1.09

Three design equations for ultimate moment can now he

ohtained for the specified range of #, with a table of constants

for each equation.

The expression now involves a larger number

of terms and consequently more substitutions are required to produce

the simplification achieved for sections with longitudinal reinforce-

ments only. It is therefore proposed to derive an expression for

one range of ¢~values and to tobulate values for the other two,
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For this purpose the most general application will bhe chosen, that
1s, for a range of @-values betwecen two and eight. In order to
keep the expression as general as possible, the assumptions
mentioned in dealing with the longitudinal reinforced section will
be introduced at intermediate points in the development., To
avoid unnecessary complexity, no substitution is made for "n" in

terms of the derived @ expression.

2L p<L8

98 (2jk+1)
v g\
b 2 ¢ . 2 + t 2 B 2
J ¢ + O-b4(2Jk+/) ,\/ ¢ + 0.64-(2/,e+/)

= $fthn J¢ +064(231r+1)

C
o]
+ £ A (4, - n)
Ay {4y
S+ 06425k + 1)
f 'd
. T:TbB 0.8 0.6(29k + 1) (4 -a_ )

7 \/sz+064(?3k+l

f .08 + - e 1
) T‘;‘T s pGC/g) + (1 = jleotgpt) d(j%§+(1-j)cot¢')
JE + 0.64(25x + 1)

e
+ b%‘f(l ~ 2k = 1)

The assumptions made for the above expression are b =b,, and

3’
cotel! = cot . Now aszsume j = 1 and express Mt as Mb/ﬁ then,

2 .
multiplying throughout hy £ x N/&ﬁ + 0,64(2k + 1)~ gives

M, £+ M, 0.8(2k+ 1) = 1lb n? (@ + 0.64(2k + 1)°)

» e (4 - )
£k

+ b064(2k+l(d-d -n)
S 3
£ A
7

+ 5= 0.64 ad,

This may he replaced by
Moo= : oo (12,5)
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where,
A = L' bn® 4 A (d. - n)
¢ L AL V%41
f A fA
_ 2 T T T
= 1 et - -
B Dflbn” +E —5— by (4 - dg n) +F g dd,

C = 0.9(2k + 1)

D

H

0.32(2k + 1)2

E 0.64(2x + 1)

1l

The ahove expression is now in the general form whereby, on the
hasis of the assumptions made, Mb can be given as a design-equation
in terms of constants A, B, O, defined by the shape of the section
together with the properties of the working design, that is the
areas of steel, spacing of stéel in both longitudinal and transverse
sections and strength properties of concrete and steel at ultimate.
The ultimate compressive strength of the concrete in bending is
taken as two thirds of the cube strength and the longitudinal and
transverse stesl are assumed to have reached their respective
yield-points. The derived expression is therelore only satis-
factory for an under-reinforced design.

The values of constants C, D, E and F are tabulated as
shown in Table 3.5.
gL 2:-

Using the appropriate substitution farJB and ol , an

exoression for Mb is similary derived as

- + B
Yy = Fe LT aee (13.5)
-— 1 1 2 s )
where A = F L ba" + L Ay (dl -n

_ PR S 1 - A
B = Dflbn +E—3 b3 (a dg n) + F 5 ad,

i

Q

0.63(2k + 1)
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D = 0.2(2k + 1)
E = 0.4(2k + 1)
and F = 0.4

The values for constants C, D, E, and F for the range of

k-values being considered is given in Table 4.5.

Tahle 3.5
k=values
2.0 1.5 1.25 1.0
C 440 3.2 2.8 Rely
D 8.0 5.12 3.92 2.88
E 3.2 2.56 2624 1.92
F 0.64 0.£4 0.64 0.64
Table 4«53
k-values
2.0 1.5 1.25 1.0
C 3.15 2452 2,205 1.29
D 5.00 3.20 2.45 1,80
B 2,00 1,60 1.40 1.20
F 0.4 0.4 0.4 0.4

Q > 8c-

The corresponding design equation for J-values greater

than eight is similarly derived, and given as

A
I\/I.b = '¢—l'+'.‘QB' TN (lz{.d5)

where fTA -

N o= 2, e - LT - n LT

A = Cf bn + fLAL(dl n)+ D S b3 (d—ds n) + & == d d3

B = 0.1 (2x + 1)

_ (1+0,01(2k + 1)%)
c = P
D = 0.,01(2k + 1)

E = 0.01
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The values of constants B, C, D and E for the range of

values of k being considered is given in Table 5.5

Table 5.5
kevalues
2.0 1.5 1.25 1
B 0.50 0.40 0.35 0.30
c 0.625 0.580 0.561 0.545
D 0.05 0.0/, 0.035 0.03
E 0.01 0.01 0.01 0.01

Using these design equations, and substituting the relevant
constants for the given beam—shape,Avalues of My are calculated
for a specific applied torsion-moment, F%. The application of
these equations to the model reinforced concrete beams tested
in the laboratory is reported on in Chapter 6, together with
calculations based on experimental work carried out elsewheré6’5o’54’38?
In each case, values are avallable for F% and Mt’ measured
experimentally as the applied bending and torsion moments at
ultimate load, this stage being defined by the maximum loads
resisted by the beam and not those causing complete failure.
The @-value and design characteristics of the bean, namely concrete-
strength, steel-strengths, areas and layout detail, are known so
that Mﬁ can be found from the expression and compared with the
practical value. These calculations are presented in tabular
form in Chapter 6, along with discussion and conclusions, There--
fore the comments made at this point are only those which have an
influence on the development of the subsequent design equations,
The objective throughout has been to establish a design

equation from which a realistic value for ultimate moment can

be obtained and used ss the criterion for load~factor design of
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a structure subjected to combined bending and torsion., Since the
expressions given above are wholly dependent on the @ value, their
application to previously obtained experimental results is straight-
forward. On the other hand, the more practical application to
the design of a structure is only possible where some substitution
for @ is made since in this case the ultimate loads are not known,
indeed they are the subject of the investigation. It is necessary
therefore to assume that any increase in the applied loads is
such that the @ ratio remains constant and is therefore known at
the ultimate stage. This further assumes that the ratio of
bending-moment to torsion-moment at working-loads is known.
Consider for example, the design of longitudinal and transverse
floor beams subjected to combined bending and torsion due to
uniformly distributed loading of the supported floor slab; then
an increasing distributed load condition up to ultimate stage will
satisfy the requirement for constant @, and the @ value is there-
fore known from the working condition. However, any additional
concentrated loading applied to the system during this range will
upset the necessary conditlon.

The practical application of these design equations is

consequently limited to the design moments Mb and Mt remaining , /'
!

proportionally constant throughout so that a correct evaluation {:
at ultimate load can he made. ’
The author feels that such limitations are not a true
reflection of the original principle of the ultimate equilibrium
theory in which external and internal moments of the beam arec
equated at the ultimate load stage due to formation of the com-

pression hinge and resultant rotation. It is the author's

opinion therefore that the loading sequence up to ultimate should
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not impose restrictions on the final design equations and only the
values of the applied loads at the point where the hinge forms
should be considered. An expression which allows for variation
in either or hoth of the applied loadings, Mh, Mt’ is not only
desirable from a practical point of view but reflects the true
nature of the failure mechanism, The derivation of this express-
ion results from calculations of the Mb values using the three
design equations given above applied to a given cross-section and
over a range of @ values. This development is now covered in
Section 5.5.

5.5 Fllipse Theory:

In an effort to overcome the disadvantage of having three
design equations rather than one, the values for Mb are compared
for a given beam-section by substitution of the # value into the
two relevant design equations at a change-point. Thus for a value
for @ of 8, either the equation for 2 < § €8, or the equation for
# > 8 can be used; similarly for(change-poin%)ﬁ =2, values of Mb.73*ﬁfff
are compared for the given section. As a result, using the derived J
equations appropriate to the chosen design section, values-for Mb
and M% can be calculated for a range of @ values lying within the
limits of pure hending and pure torsion respectively, these
limiting values being merely special values of the general case in
which the angle of crack o and hence/Q are known,

that is, in particular for @ = oo (pure hending)
o = 907, cot o« = 0
A= 90°  cot B =0
so that the general expression reduces to
2

A — A I -
M, o= F £ b n% o+ fy A (dl n)
n

where = fLAL/fé b



b -

and, for § = O (pure torsion)
o = 45°, cotoe=1
cot B = cot o (2k + 1) = (2k + 1)

Sinjg= L
'\./1+(21<+1)2

(2x + 1)
/;+ (2k + 1)2
cosec/3 ﬁ+ (2k + 1)?

Tu cosjg = $fL Db n? coseojg + £ A (dl - n)sin/g

¢}
o]
3]
>
i1

1l

£ . fris
TT T .
* 3 b3 coslg(d -dg - n) + 3 dd3 sm/g
£ L (dl - n)

2
Tu (2k+l,L_ :%f'bn~ﬂ+(21’+l)) LL

S+ (2 o+ 12 ° S 1+ (2x + 1)?

fTAT § (d—ds—n)(Zk + 1) . £ AT a dB

5 P3 g
S+ (2x + 1)) S1 o+ (2x + 1)?

2
multiply throughout by 1+ (2k +1)

-+

- 1 1 . 2 2 _
u = R ) W1+ (R + 1) £ hn” + £y by (a4 n)
f L fo 4L
) y o1 _ T T
+ (2% + 1) =g by (a4, n) + —g—d dy

AL brRs fald-m) + a5 b, (- dy-m) + B
C

where

£ A . fﬂr (Rk+1)
/\/—/-1- (C2k+/)z S f+ ’,?.k+/)

jglb / + (Q.k+l)
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£A
FA + 8% by

2ALb

The values of constants A, B, and C are given in Table 6.5.

Table 6.5;

constant k—=values
2.0 1.5 1.25 1.0
A 13 8.5 6.625 5
B 5 b 345 3

Alternatively, the values for sinjg, cosfe, and COSGC/g
can be evaluated directly and applied to the general equation.

The values of Mb and Mf, evaluated from the general
expression for a given @, are plotted to give the curve shown in
Fig. 3.5, The plot is continuous with no interuptions indicated
at the change~-noints for @, and as this is a general statement
curves can novw he drawn for rectangular beams containing hoth
longitudinal and transverse reinforcenent or longitudinal
reinforcement only, and for scuare heamns. The exanples chosen
are for two tynes of rectangular heam of nominal design of section

. - . i (32)
and a square section similar to those used in the Laerican tests .
Tn order to facilitate calculation, nominal values are chosen for
the section details.

In all cases, a continuous curve is ohtained between the
two linits of pure torsion and pure bending as derived from the
general expression. It is proposed to examine the curve as an
ultimate load curve for the given section, since on the hasis of
the assumptions made for the initial design equatlions, any

comhination of hending-moment, Mb, and torsion-moment, M,

satisfying this equation lie on the curve,
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The main difference, however, between the previous design
equations and the suggested ultimate load curve is with respect
to the problem of the loading ratio. The curve is independent
of this ratio so that the disadvantage of the design equations is
overcome. Fig. 4.5 represents the condition in which the ultimate
load curve is defined by the resistance of the heam in pure bending,
Mu’ the resistance in pure torsion, Tu’ and any intermediate point,
C, at which an ultimate moment of resistance, Mﬁ, is given by the
design equation for an applied torsion-moment at ultimate, Mt'
In applying the previous design equations only route LBC can be
considered or, rather route BC where B defines the arbitrary limit
stated as working load, and so it is only necessary to assume
constant @~value beyond this stage. Using the ultimate load
curve, the value of Mb is attained by any one of several routes
LBCy LDCj; LEC; simulating in practice the application of a constant
applied loading, MB/Mt; an initial torsion-moment, N%, with
increasing bending moment up to }%; and an initial bending moment,
M» with increasing torsion moment up to Mt' It can therefore
be suggested that the calculated value, (Mb, Mt) is independent
of the path taken in reaching the uwltimate point, that is, the
value is independent of the load sequence.  This statement may
also be true for a similar curve drawn through 3 defining the
working load curve for the given section.

The assumption that the ultimate position (Mb, Mt> can
be attained for any condition of applied loading 1ying‘within
the limits defined by an initially applied Mt with an increasing
bending moment up to value Mb, and an initially applied Mﬁ with

an increasing torsion moment up to value Mt’ is dependent on the
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beam resisting wholly the applied moments, This is necessarily
true but further research is necessary to examines the true value

of the applied moment Mt' Some preliminary thoughts on this
aspect are given in Lppendix B where the inclusion of a factor,

py» defined as M, applied (actual) = p,» M, applied (as measured)
in the design-equations is considered. However, for the remainder
of this thesis it will be assumed that Py = 1 so that any error

in measurement of the applied loads will be included in the value
of Mb’ or Mi, as calculated from design equations using the
ultimate load curve of Fig. Le5.

The application of any onc curve, for a particular beam
section, is determined only by the design values used for
calculation of the limiting conditions Mu and Tu and not by the
loading sequence as before. 4 curve can therefore be drawvn for
each of the heams tested and from each curve the value of ultimate
bending moment is found by the interscction of the ultimate load
curve and the straight line defining the value of torsion moment
applied to the section, and vice-versa.

L curve is plotted for each beam by substituting values
of @ between the limits of § =0 (Tu) and @ =00 (Mu). The
svaluation of ultimate moment for a given desien ssction and
variable applied loading requires a large amount of preliminary
calculation and although the nature of this work is readily
suited for a computer, it is preferable to present the theory as
an algebraic equation for the curve, and this aspeet is now
investigated.,

L suitable equation for the curve may be ohtained in
a number of ways, for example by expressing the equation as a

polynonial in x, ¥ and solving for the constants, as shown in
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Fig. 5.5, by substituting values of x = Mb and y = Mt obtained

from the design equations in {J for a chosen @ value;

Fig, 5.5:~

Y|

7. /45- 7;*'85/7b,+ aBOQQ»)z

y=8,+a,x+a,x+.----

g,

., |
2 Mle, =To+a,Mbs +a,(/7b)2'

My,

’ ”bz /7b 3 =
alternatively,

by selecting a particular curve of known equation and comparing
values of Mb and Mt obtained from the chosen equation and those
obtained from the original design equations. Fig. 6.5 shows

the comparison obtained by choosing for the equation of the curve,

the egquation of an ellipse given by
xz/a2 + y2/b2 = 1, or, in particular

(Mb/Mu)z + (Mt/Tu)2 = 1

so that,

[l

Muﬁ - (M) ver (15.5)
Tu\/l - (ope)? oo (16.5)

"y

M

i

In Fig. 6.5 the three sections previously considersd in
Fig. 3.5 are shown and, for each, the M, Mt values are plotted
between the P-wlues definsd by M and T, together with an

ellipse drawn for the same values of Mu and Tu’ and using a
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graphical construction, In all three cases the difference between
the two curves drawn for the same section is within the limits of
accuracy accepted for the des}gn of reinforced concrete.

Hence, given any applied torsion moment, Mf, the ultimate
bending moment of a reinforced concrete section can be found in
terms of M£ and the moments of resistance to pure bending and pure
ltorsion, Mu and Tu' It is proposed to refer to this application
as the Ellipse Thedry, and the statement is equally true for a
known applied bending moment.

Using this theory, values are calculated for the two
series of beams tested in the laboratory as well as those of
other investigators, as for the previous design equations., These
calculations are given in Chavter 6.

For a given design section, two calculations are now
necessary, hamely for Mu and Tu‘ These values are substituted
in the Ellipse theory and using these equations ultimate moments
can be calculated for any chosen applied bending or torsion moment,
and, in particular, the moment being anplied to the beam under
consideration. The ultimate moment and design working moment
can then be compared to assess the load-factor of the design.,
Further calculation is required only for alteration in the design
detail, for example a change in the nitch of the transverse
reinforcement as this involves revised values for both working
and ultimate moment., This form of calculation, in which a
large number of factors are fixed and the final design depends
upon a small number of variables lends itself to the use of
computers., For illustration, consider a heam of fixed section-
dimensions and so k-factor, recommended percentages of longitudinal

and transverse steel based on sectional area, and 'economic design'
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taking into account permissable stresses for working load and
yield - stresses at ultimate; the detail dimensions are also
preliminary fixed at this stage -~ any subsequent changes will

be small and negligible in the calculation of Mu and Tu' The
calculation for Mu and Tu’ and hence the equation of the ellipse,
1s determined in this case by concrete strength so that a chart
consisting of a series of ellipses can be drawn for a range of
concrete compressive strengths, The designer then selects a
suitable concrete mix for the given design in order to obtain the
desired load factor.

Therefore, after preliminary calculations to fix the
design details, the amount of additional calculation is kept to
a minimum by using charts of ellipses for the various design
sections under consideration. The author feels that the practical
application of the Ellipse theory lies in this method of present-
ation, It is emphasised at this stage that the Ellipse theory
has been developed on the basis of a balanced design so that at
ultimate load the steel stresses have attained their respective
yield points. Consequently, a limitation must be placed, on,
for example in the above illustration, the range of concrete
compressive strengths which can be used.

546 Conclusionss

The main objective of this Chapter, to reduce the original
equation for ultimate load as given hy the Russian Ultimate
Equilibrium Method to a more straightforward expression is achieved
by making a number of assumptions, some of which have been
Adiscussed in the conclusions for Chapter 4. Justification of the
remaining assumptions will be investigated in Chapter 6 by

cbtaining a numerical comparison of values calculated from the
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derived expressions with values obtained from experimental
investigations, . Nevertheless, certain comments are relevant at
this stags.

The extensive work carried out by Messrs., Lessig, Yudin,
Chinenkov, Gvozdev, and Lyalin has led to general acceptance of
the Ultimate Equilibrium Theory for the design of reinforced
concrete structures in U,S,5.,R, In particular, its application
to the problem of combined bhending and torsion presents a more
realistic picture of the mechanism of failure than any other
method available, in that the formation of a plastic hinge along
a line contained within the plane of the nentral-axis permits
rotation and the application of two of the six equilibrium
equations. A modification of the original equations using a
neutral-sxis depth constant over the cross-section has been
adopted in this thesis.

The extension of these principles limits the application
of any subsequent expressions to under~reinforced design, and
further to a specified failure scheme in which the neutral-axis
intercepts the vertical sides of the beam. A second failure
scheme based on a vertical neutral-axis is less common in practice.
However, these restrictions allow further simplification since
the caleulation for ultimate design now requires that reinforcement
has attained its yield stress, and is therefore known. Finally,
experimental techniques in the laboratory investigation must be
taken to elliminate shear which otherwise will be included in the
assessment of combined stresses.

The main assumption made in this Chapter is that the

neutral-axis at ultimate load has moved sufficiently far up the
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beam from its position at initial cracking as to consider the
angle of crack to be of constant valuec throughout the area of the
failure-zone, This allows simplification of the trigonometrical
terms in./? and also a much simpler term for the internal moment
of resistance provided by the vertical transverse steel which
permits further equations to he developed.

The three design equations given for ultimate moment are
applicable to various shapes of beam section by substitution of
appropriate constants and, for the specified k-ratio, evaluation
of the moment is determined using the applied moment ratio. The
applications of the equations are therefore limited and not
suitable for a range of applied loads where the ratio of bending
to torsion moment may be altered at any stage of the loading
sequence,

The Ellinse Theory developed from these design equations
is not denendent on a specified sequence of loading., The
expression for the ultimate design momont depends only on the
loads being applied at ultimate and the theory cnn he used for
calculation of either the ultimate hending moment of a heam for
a given applied torsion moment or the ultimate torsion moment
of the beam when subjected to a given applied bending moment.

It is suggested that the practical application of the
Bllipse Theory is in the form of & chart, consisting of a series
of ellipses drawn for a constant beam scction and selected variable
such as concrete strength. By incorporating the moments at
working load on the same chart, the value of load factor for the
chosen section could then he found dircetly.  The range of
concrete strengths considered in this cnse must ensure that the

design remains under-reinforced.
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In view of previous studies carried out on structural

>4
steel sections(s’) and in particular the representation of the
combination of bending moment and torsion moment at full plas-
ticity by an interaction curve corresponding to a lower bound
(56)

solution , the concept of the Ellipse Theory for reinforced

concrete beams subjected to combined bending and torsion is not
unreasonable. Having accepted the expressions for calculating
the limiting values in pure bhending and in pure torsion, the
development of the equation of the curve connecting these values
and, at the same time, satisfying the condition for any inter-
mediate combination of load, follows. Finally, an experimental
investigation to justify these analytical procedures is made in

Chapters 6 and 7.
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CHAPTER 6

CALCUIATIONS FOR ULTIMATE MOMENT

6.1 General:

In Chapters 4 and 5 the author has developed a number of
design equations based on an initial assumption as to the
mechanism . of failure of a reinforced concrete beaﬁ subjected to
combined bending and torsion and on subsequent assumptions intro-
duced to obtain a simpler and more general design equation. It
is also stated that these assumptions do not introduce errors of
magnitude greater than the order of accuracy accepted in design.
Numerical investigations are therefore made in this Chapter to
justify the validity of these statements.

6.2 Introduction:

It is proposed to apply the design equations given in
Chapter 5 to practical tests carried out in the laboratory in
order to compare both the extent of calculation involved and the
variation between practical and theorectical values obtained
for each test using the different design equations. As the
number of tests carried out is coﬁsidered to he insufficient to
enable general conclusions to be made, it is further proposed to
include in this Chapter the results of experimental studies carried
out recently in other laboratories. In selecting these results
it has been necessary to exercise the limitations specified in
Chapter 5 with respect to the design heing under-reinforced so
that, in all cases, values of yield stress for the reinforcement,
whether longitudinal or transverse, can be used, On the other
hand, it is possible by selection to cover the range of geometrical
constant "k" considered in the general expressions, these being

tpue for both solid and hollow sections.
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The application of the design-equations will be made
according to their sequence of development in Chapter 5, so that
equations 7.5, 8.5, which are derived initially from the ultimate
equilibrium method and modified only in the vertical transverse
steel term are dealt with first and will be referred to as
Design Equation A, The derived equations 1 - 6,5 and 9 ~ 14.5,
expressing the trigonometrical terms as functions of the moment
ratio, are referred to as Design Equation B and finally the
design equations 15.5, 16.5, based upon the ellipse theory, are
referred to as Design Equation C and dealt with last.

A general description is given of the calculation
procedures to illustrate differences in the three methods, and
general conclusions are given for the tabulated results of all
tests.

6,3 MNtimate Moment Calculations:

The practical data necessary for application of the
design-equations can be classified into the following. First,
information is required on the details of the working-design of
the reinforced concrete section, as will be available from the
design drawings of the structural member. This is, in effect,
the real objective of the study, namely to make use of this
data to deduce the load factor of the design by comparing the
-ultimate-moment, so derived, with the working-moment for the
design, Second, with particular application in this case to the
laboratory tests, information is required on the ratio of
bending-moment and torsion-moment at ultimate, This information
in practice is only necessary for design equations A and B,

It is not proposed to include in this Chapter details

of the design of the sections being considered, as this is
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available by reference to the study quoted. Details of the
author's design are given in Chapter 7 and Appendix D, Table 3.D,
and therefore it is felt sufficisnt to mention the particular
study under investigation and obtain results for the design-
equations under consideration. -

(a) Design Equation A:-

Design equation A is ohtained from the general expressions

7«5, 8.5 derived in the previous Chapter.

£ A sinﬂ + J%S-Ar 53 cotd..cosje

£, b.cosec B

n =

eeo (A1)

and, /M

- $
b cos/B + 75,5171/6’

!
4 :E ; b.%?casecf/e

+.7EAL$;7L/5 (d,-7)

#Ar p

- 5,cotoc.cosj6’[d—d5—ﬂ')

+

_ +~£Tsi" d.ds. smp cot’st.

ees (B2

The results of an experimental study carried out at
Ieeds on hollow beams<5o) to investigate a similar expression
have been used by the author to examine Design Equation 4.
The general calculation procedure for a given beam-
design is as follows:-
1. For the @ ratio, find the value of o from Fig, 5.4.
2, For the given heam section constant, "k",
cot B = cot«x (2k + 1), hence/e , and sin/B, cosﬁ
and cosec /5 .
3. Calculate the neutral~axis depth 'n', from equation 4 1.

4. Calculate Mb from equation A 2, using the value of 'n' from 3.

5. Calculate M since My = Mb/ d.
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A numerical example is given in Appendix C. Hence, by
substitution of the appropriate data, values for the ultimate
bending and torsion moment are calculated and compared with the
applied moments as shown in Table 1,6. The same equation is
applicable to the author's own Series of tests, D/2, and the
calculated and practical results ére given in Tahle 2.6.

The application of the equation to beams with long-
itudinal reinforcement only is obtained by modification of the

general equation so that 5
fL AL sinJg

1
£

n =

(= g : n

and, M= T e Fsinp £rA; sin ﬁ(dl- /2)
The author's Series of tests, C/2, are used to examine

this equation., The calculation procedure is as already described

and calculated and practical values are given in Table 3.6.

(b) Desien Equation B:- This equation is developed by the author

using previously derived expressions for the angle of crack, oC,
and the angle of inclination of the compression hinge,JB , and
substituting these values in Design Equation A, so that the
equation for ultimate moment, Mb, can now he expressed in terms
of the ratio of hending to %orsion moment, 4. It is proposed to
apply this equation to all the available test results. The general
calculation procedure for a given bsam section is as follows:=-
1. According to the given ﬂ ratio and section constant, "k",
select the appropriate equations for 'n' and ME.(Section 504).
2, Substituting the details of the working design section,
calculate 'n'.
3. Substituting the value of 'n' from 2, calculate Mb.

L. Calculate Mt since Mt = Mb/ﬁ.



Table 1,6:= all values in in.lbs.x ].O3

. 'Bendi{xg—moment, My R, Torsion-Moment, M r,
ean ) appil_ed th:o. =2/1 app;.ied thzo . = 4/3
110 - - - L4 1 52,76 | 1.20
2| 1.97| 6.8 | 625 | 0.94 | 33.9 | 37 | 0.94
3| 3.69( 75.3 7344, 0.97 | 20.4 19.9 0.97
4| 5.20| 81.6 83.6 1.02 | 15.7 16.1 1,02
5| 6,174 81,5 81.8 1,00 | 13.2 13,2 1.00
6| o | 845 87.3 1.03 - - -
710 - - - | 3.4 52,8 | 1,46
8 | 3.712| 79.6 31.6 1.02 | 21.4 21.9 1,02
9 | 4e65| 85.1 93.5 1.10 | 18.3 20,1 1,10
10 | 5.28| 91.3 96.2 1.05 | 17.3 18.2 1.05
11 | 6.67| 94.0 9.4 1.03 | 14.1 AVAVA 1.03

12 | oo 105.6 93.9 0.89 - - -
13| 0 - - - | 51.3 66,9 | 1.30"
14 | 1.97| 82.1 88.5 1.08 | 41.7 4is9 1.08
15 | 3.71| 111,0 | 107.0 0.96 | 29.9 2¢.8 0.96
16 | 5.21| 122,0 | 127.2 1.04 | 23.4 2444 1.04
17 | 6.36| 126.0 | 125.5 1.00 | 19.8 19.7 1.00
18 | oo | 143.0 | 129.8 0.91 - - -




Table 2.6:-~ all values in in.lbs.X 10°

Bending l;Ioment,Mb F Torsion Moment, Mt F
Beam g applied | theo. =b2 /sy | epplied| theo. __:t 1/3

1 2 3 L

D/2/1% 12,86 | 9.913 | 14.227 |1.43% | o.7m1 | 1.106 | 1.43°
p/2/2% | 3.04 | 5.345 | 12,110 [2.27%| 1.7%0 | 3.983 | 2.27"
D/2/3 | 5:96 | 15.047 | 14.475 |0.96 2,525 | 2.429 | 0.96
D/2/L | O - - - 4295 | 6.328 | L1.47
D/2/5 | 7.08 | 13.860 | 15.045 |1.08 1.957 | 2.125| 1.08
D/2/6 | 4.665| 13.399 | 13.575 |1.01 2.873 | 2.910| 1.01
D/2/2/R| 8.08 144250 | 14.713 | 1.03 1.763 1.839 | 1.03
Table 3.6:—~ all values in in.lbs.x lO3

Bending-Moment, Mb F Torsion-tfoment,M tlp
Beam ) applied| theo, ___b 2 applied | theo, =t/+/3

1 2 1 3 4

¢/2/1 |10.92 4435 5.162 | 1,16 0.406 0.473 | 1.16
c/2/2 |11.18 9.2/0 9,380 | 1,01 | 0,826 | 0.839 | 1.01
c/2/3 $.98 13.921 | 14.424 | 1.04 | 1.568 | 1.606 | 1.04
¢/2/4 | 6.03 | 11.614 | 12.746 | 1.10 | 1.925 | 2.114 | 1.10
c/2/5 oo 9.240 | 9.778 | 1.06 - - -
C/2/6 | 3.56 §.911 | 11.832 | 1.33% 2.505 | 3.323 | 1.33%
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An example of this procedure is given in Anpendix C.

The design equation for each test series varies according
to the hean section and loading ratio used. Consider first the
application to beams with longitudinal reinforcement only.

(i) Author's Series C/2:~ 0/2/1 (plain concrete) and C/2/5

(pure bending) are considered separate.

c/2/4, C/2/6:~

— ¢2 fLAL @2 n
n = 5 1 = f_ A (d - 2)
# 16 1o M, AR e A /

c/2/2, C/2/3:~

0.8 f1Ap R
n T —Frg M = 8 fLAL(dl—_/Z)
c ﬂ+ 005

The calculated and practical values are tabulated in
Table 4.6.

(54),

(ii) American beans

Beams 1, 2:~ pure bending

Beaas 3, A:-

£ A
_ Joj LL. ‘—L/.@‘? .7£-Al. (dl_ ” )

g+ 3,60 flb ¢V¢T

B
|
Us—\
1

Beams 5 — 8:—
2 £ A 2
, = 2 LL; o = T—ﬁ——— £A, (4 - 7/2)
F 576 £ 7+ 2,40

2 f A 2
i I Sl el AN
go+ 16 £l D g+ 4
The calculated and practical values are tabulated in Tahle 5.6.
Design Equation B 1is similarly anplied to beams with

longitudinal and transverse reinforcement.



3

Table 4.6:= in,1bs x 10
Bending—Moment,N% F Torsion—Moment,Mi 7

Beam | g | applied| theo., | °2 | applicd| theo, |_'4

1 2 1 3 A 3
C/2/1 | 10,92 | 4.435 | 5.746 | 1.29 | 0.406 | 0.526 | 1.29
C/2/2 | 11,18 9.240 | 9.641 | 1.04 | 0.226 | 0.862 | 1.04
c/2/3 8,98 | 13.921 |14.335 | 1.03 | 1.568 | 1,596 | 1.03
C/2/4 | 6.03| 11.614 | 12.594 | 1.08 | 1.925 | 2,088 | 1.08
6/2/5 | oo 9.240 | 9.778 | 1.06 - - -
C/2/6 | 3.56| €.911 | 12.216 | 1.37%| 2.505 | 3.431 | 1.37%

Beam C/2/5 was tested for a different span length to the other

heans.
Table 5.6:= all values in in.lbs.X lO3
Bending-Moment, Mb F, Torsion-ilonent, Mt P
Beam| # | apnlied| theo. 2 applied| theo. :t yA
1 2 1 3 4 3

11 o - - - 36 25 0.69™
2|0 - - - | 3 45 1.15%
311 58 39 0.67% | 58 39 0,67%
L1 1| 64 69 1,08 64, 69 1.08
51 2| 86 123 1.43% | 43 61 1.43%
6| 3108 156 1447 | 36 52 1.44%
713|177 159 0.90 59 53 0,90
8| 4195 175 0.90 | 48.75 | 43.875 | 0,90
9| 2| &3 159 1.91% | 41.5 | 79.3 1.91%

10| 4156 243 1.56™ | 39 61 1,56




(iii) Author's Series D/2:-

All beams except D/2/L (pure torsion):-

o EAPH 32588,
@+ L b

My = 72’—;4— (4L bn>da(d,-n)]g? + &£ bn”

825X b (dh-ds-7) + 00rTfEody

The calculated and practical values are tabulated in

Table 6.6,
(iv) Leeds Beams(so):- Beams 1, 6, 7, 12, 13 and 18 are special
cases.
Beams 2 = 5:i- £4
\ﬁAL-¢2 + 224 '%Ib_g
(@* + 789 L.b
Mb = ?’-—{-_ﬁ [Elaglb.ﬂ2+ ‘7£A1_ (dz,—ﬂ)]¢z + 3'72\75?[).722
+2-24”—2LA’b3 (ad-dsn) + o-w’%’—’d.dg
Beams 8 ~ 11:— £A
" - £A P + 256 by
(¢2 + /O'Z‘QJg.Ib
/ 7 r 2 2 ! 2
M= —Fsa (4 £67% £A.(@,-7)| $* + s2fbm

+ 256 %’4—’ by (ad-ds-7) + 004 %q-’dcg

Beams 14 = 17:¢~

£AP + 32 s,
(& 0fb

7. =




Table 6,6:- all values in in.lbs.X lO3

Bending-Moment, Mb

Torsion-Moment, M

F. t| T
Beam A applied | theo, :b 2 applied | theo. :P L
1 2 1 3 A 3
D/2/1 | 6.43 |  9.913 | 14.426 | 1.46°| 1.54 | 2.243 | 1.46%
D/2/2 | 3.04 | 5.345 | 12.026 | 2.25°| 1.760 | 3.996 | 2.25%
D/2/3 | 5.96 | 15.047 | 14.523 | 0.96 R.525 | 2.4k 0.96
p/2/4 | ©O - - - 4.295 | 6.150 | 1.43"
D/2/5 7.08 13.860 | 15.133 | 1,09 1.957 | 2.14 1.09
D/2/6 4665 13,399 | 13.967 | 1.04 2.573 | 2.99 1.04
D/2/2/R| 8,08 14.250 | 14.780 1.04 1.763 1.93 1.04




= —' | |& a -, *+ & bR?
My= g | £ 67 A (@ M | 8* + af
+3zf—’-ib (ad-ds-71) + o-m""4 ads
The calculated and practical values are given in

Tahle 7.,6.

(v) American Beaméss)

Beams 1 ~ 2
n = J£A1.¢ -+ /‘Q%bs
(% + 3L b

| /
¢ //.39 [‘Zl-ag‘bnz'*Jf.AL'{d/'n)]‘é + ﬁgyﬁ.b.ﬂﬁ‘
+ P —

12 B b (d-dsm) + oa'Haa; |

Beamns 3 - 8§ £EA
n = JfAL ¢2 + / 72 g Tba
(p* + 570)£..
r / -
% = —Tiﬁ B-ngnz+ £A, (d-,-ﬂf)J ¢2 + 2-88356.1&"
+/-92 f_'b (d-ds-n) + oo frArd.dj
Beamg 9 = 12 f4
n = £AL P> + 32757 bs

(¢2 +/b)fc.b

Mb = "55/_'_—4— F[’é;{bﬂz + £A (d,—ﬂ)] ¢2 + 8.{.13.722

t 32 \fSLATb.B (d ~-ds —n) + O'¢4#Ard'd3
- i



Table 7.6:=

all values in in.lbs.x 10

3

Bending-Moment, Mb T Torsion~Moment, Mt P
Beam ) applied| theo. _P 2 | applied | theo. _F A
1 2 "1 T 1 3 4 -3
1|0 - - - byl 5248 1.20%
2 | 1.97 | 66.8 60.3 0.90 | 33,9 30.6 0.90
3| 3.69 75.3 735 0.92 20.4 20.0 0.9¢
L | 5.20 | 81.6 52,0 1.00 | 15.7 15.7 1.00
5 1 6,174 91.5 80.2 0,98 | 13.2 12.9 0.98
6| oo 845 87.3 1.03 ~ - -
710 - - - 36.1 52,8 1.46™
8| 3.72 | 79.8 1.4, 1,02 | 21.4 21.83 1,02
9 | 4.65 | 85.1 91.9 1,08 2.3 19.8 1,08
10 | 5.28 91.3 96.3 1.05 17.3 18.2 1.05
11 | 6.67 | 94.0 96.9 1.03 | 14.1 14.5 1.03
12 | oo 105.6 9349 C.89 - - -
13 | © - - - 51,3 65.9 1.30%
14 | 1.97 | &2.1 89.1 1,08 | 41.7 45.0 1.03
15 | 3.71 | 111.0 10%.,9 0.92 | 29.9 29.3 7.9
16 | 5.21 | 122.0 128.1 1.05 | 23.4 24.6 1.05
17 | 6.36 | 126.0 132.4 1.05 | 19.5 20,8 1,05
18| oo | 143.0 129.6 0.91 - - -
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The calculated and practical values are given in Table 8,6.

(vi) Russian Beams(6)

Series 1l:=- except beam 23 (pure torsion)

£ A 3%
(@10 2L b

Q

My~ grraa |B67 - £Alam] g

' 2
+5/12£.607 + 0-64‘1%—'4—7614(13
The calculated and practical values are given in Table 9.6.
Series 2:=

Beams 1, 2:
7

A
FEAL *'C>4Fq%§;rb5
!
/-/ejg.b

/ !
Mlp= o4 o-58£.bn* + £A (d)-7n)

+o-o4‘fg‘ﬁ'b3 (d-ds-7) + o-oﬂf*-ﬂ"-'d.%

s
Beams 3 - 13:-
” LA D+ 2-56’—?—%3
(B>+ /0-24)J£fb
My~ ¢2: 32 {% £.67+ £A( d/-n)] @2 + 51267
t=56 {79_471% (d-dg-7) + o-e4%"—’d.d3

The calculated and practical values are given in Tahle 10.6.

(c) Design #guation C:~ Design Equation © can now be devcloped

from the equation of the curve ohbtained by plotting the Mb values
against the M, values as given by Design Lguation B. Tt has heen

shown in Chapter 5 that, over the range of accuracies to which a



Table

.

6

3

all values in in.lbs.X 10

Bending-loment, 113

Torsion-lioment, M "

Bean [} ) fb 2 ; f?_t 4
applied | theo., |= 6l applied | theo. = 3
1 2 3 A

1 79 91 1.15 79 91 1.15

2 1 102 117 1.15 102 117 1.15

3 2 122 136 1.11 61 67 1.11

4 2 134 154 1,15 67 74 1.15

5 3 147 155 1.05 49 51 1.05

6 3 168 16/, 0,98 56 55 0.9¢

7 4 173 166 0.9% 42,25 | 40,56 | 0.96

g 4 176 173 0.9 by 43 0.98
9 2 120 163 1.36™ 50 e 1.367
10 4 176 235 1.33% bd, 53 1.33%
1. 2 132 178 1.29% 69 g9 1.29%

12 L 213 241 1.13 53.25| 60.17 | 1.13




Table 9,6:~

all values in kg.cms, X lO5

Bending~Moment, Mb

Torsion-lMoment, M

F t| T
Beam|  # applied| theo. =b % applied| theo. =F %
1 2 3 4
1|5 5.6 5.35 | 0.9% 1.12 1.07 | 0.96
2|5 5.6 5.76 | 1.03 1.12 1.15 | 1.03
315 48 5.34 | 1.11 0.96 1.07 | 1.11
4|5 5.2 5,58 | 1.07 1.04 1.11 | 1.07
515 5.2 5,28 | 1.01 1.04 1,05 | 1.01
6|5 5.2 5.03 | 0.97 1,04 1,01 | 0,97
715 5.2 5.7 | 1.15 1.04 1,20 | 1,15
g |5 6.4 6.49 | 1.01 1.28 1.29 | 1,01
915 6.4 6.75 | 1.05 1.28 1.3, | 1.05
10| 5 6.4 6,97 | 1.9 1.28 1.39 | 1.09
11 | 3.33 beals 477 | 1108 1.3 1.43 | 1.08
12 | 4.3 5.6 5.21 | 0.93 1.32 1.23 | 0.93
13 | 3.32 4 5,02 | 1.05 1.44 1.51 | 1.05
1 | 3.33 4.0 A7 | 1,19 1.20 1.43 | 1.19
15 | 3.33 4.2 4.0 | 1,14 1.26 1.4, | 1.14
1% | 2.5 4.0 493 | 1.23 1.60 1.97 | 1.23
17 | 2.5 3.8 3,99 | 1.05 1.52 1.60 | 1.05
18 | 2.5 3.3 440 | 1,337 1.32 1.7 | 1.33"
19 | 2.64 2.6 L4 | 1.15 1.36 1.56 1.15
20 | 2.5 3.4 420 | 1.23 1.36 1.67 | 1.23
21 | 2.5 3.6 4,50 1,25 1.4 1.20 1.25
22 | 2.5 48 5,68 | 1.17 1.92 2.27 | 1.18
23| 0 - - - 1,28 2,10 | 1.647
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designer would assess his calculations, the equation of an ellipse

given by
x:z/a2 + yz/b2 = 1 where
X = applied bending-moment = ﬁb
y = applied torsion moment = Mt
a = Mu = ultimate moment of resistance of the section to pure-hending
b = Tu = ultimate moment of rasistance of the section to pure~torsion,

is of the same form as the Design Equation B curve plotted for ¢
varying between 0 and oo ,

Accepting this equation as the final Design Equation C, we

have
6 F 2 / % F
M, = Myl - It/Tu » My = Tu - /}u

where,
C = 1 G
M0 n fLAL/fcb ves C1
) = 1 pt 2 -
and M, = 3.0l fL.AL(dl n) ee. C2
T ¢~
u

_]{ A[_S/nﬂ “+ ig{.qzbscos.ﬁ
Jgfb,oosecje

1.L: w0 CB

i -ng'.b.n,zcosecye + £A, . smB(a,-n)

/
u COfg? 2

£ Ar FAr
r '/ —Ae- ST T s/ !
+ I by.cosfB(cl-dsm) + = sinfB d.dg |
- A
This is the general exnression applicahle to all heams for
all @ values so that the equation is considerably more stralghtforwvard
in its anvlication.
The calculation procecdure is as follows:-—

(i) Caleculate the resistance of the beam to nure bending using

equations Cl, C2, and substituting the details of the hHeam section,



Table 10,6:~

all values in kg.cms.x 10

5

Bending~Moment, Mb

Torsion-Moment, Mc,

F F
Bean ? apolied| theo, =b -i— applied| theo. =t -é*
1 2 3 4
1 |10 5.6 Le5 0.81 0.56 0.45 | 0.81
2 |10 5.4 RS 0.85 0.54 0.46 | 0.35
3 5 4.8 45 0.94 0.9% 0.90 | 0,94
4 5 4.8 L5 0.94 0.9% 0,90 | 0.9/
5 3.5 4.0 40 1.00 1.14 114 | 1.0
6 2.5 fia? fa2 1.00 1.68 1,68 | 1,00
7 | 2.5 440 43 1.07 1.60 1.71 | 1,07
8 2.5 4.2 A 1.05 1.6% 1.76 | 1.05
9 2.5 A 4.6 1.05 1.76 1.85 | 1.05
10 | 2.5 3.6 4.6 1.28%| 1.4 1.84 | 1.20%
11 2.5 3.8 4.3 1.13 1.52 1.72 | 1.13
12 2.5 40 VA 1.10 1.62 1.76 | 1.10
13 o5 5.0 5.0 1.00 1.12 1.12 | 1,00
Tahle 11.56:~ all values in in.lhs.x 103
Bending=iloment, P% P Torsion~oment, Mt i
Beam g applied | theo, :b 2 anplied| theo. :t 4
1 2 1 3 A 3
c/2/1| 10.92 4el35 - - 0.406 - -
C/2/2| 11,18 9.240 | 9.421 | 1,02 0.826 | 0.940 | 1,14
C/2/3| 8.98| 13.921 |14.096 | 1.01 1.558 1.651 | 1,05
c/2/L| 6.03 11.614 {11,301 | 0.97 1.925 | 1.339 |0.955
8/2/5| o° 9.240 | 9.772 | 1.06 - - -
a/2/6| 3.56 3.911 | 10.405 1.17 2,505 | 2,756 |1.10
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(11) Calculate the resistance of the heam to pure torsion using
equations C3, C4. For this, ohtain the values for sinje, cos B,
cosecﬁ , from tables using cotﬂ = cotee(Rk + 1) = (2k + 1)
where 'k' is given for the béﬂm section,

(iii) Either (a) using the values of M, from (i) ana T, from (1i)
construct :an ellipse of equation

/)Py )P =1

this curve is now the general ultimate load curve appliccble to
any combined loading

7,

h) using the design equations
— / R /72 / M%
= N - = -
Moo= M A1 It/Tu or M =T~N1 /Ni

substitute for M from (1), T, from (ii) and the applied moment,

or (

M, (or Mb) to cnlculate the ultimate moment M (or Mt)'
An example of this »rocedure is given in Appendix C.
Ag the loading condition is -introduced n~s o final sten in the
caleculntion, the equations cover all conditions including pure=~
hending and pure-torsion,
The design egqnation is now used to calculate the results
of 211 the tests considered and these values together with those
measured experimentally cre given in Tables 11.6, 12.6, 13.6,

1.6, 15.6, 16.6 ond 17.6.

6./ Summory of results:-

Tt is proposed to use as a basis for comrarison of the
vnlues celculated hy the different design equ~tions, the volues
Fb’ defined as the ratio of theoretical ultimate bending moment
to actual ultimnte hending moment nnd Ft,.defined as the ratio of

theoretical to actual ultimate torsion moment. It has been

stated in Chapter 5 that the benm necessarily resists the moments



Table 12.,6:-

all values in in.lhs.x 10

3

BendingnMoment,P% 7 Torsion—Moment,Mt
Beam applied | theo. :P 2 | applied | theo.,
1 2 1 3 b
1 (o] - - -~ 36 _5
2 0 - - - 39 45
3 1 58 o - 58 31
4 1 64, 54 0.84 64, 3
5 2 86 133 1.55% | 43 58
6 3 108 147 1.36™ | 36 52
7 3 177 29 0.5% | 59 23
g 4 195 143 0.82 | 48.75 25
9 2 83 21¢ 2.63% | 41.5 61
10 156 230 147 39 54

Table 13.6:~ all values in in.lbhs.X 103
Bending—Moment,Mb 7 Torsion-ﬂoment,}%
Bean applied | theo. :P 2 apnrlied! theo.
1 2 1 3 L,
2/1 9.913 [15.036 | 1.52% | 0.771 | 4.175
D2/2 5.345 [15.051 | 2,527 | 1,70 | 5.158
D2/3 15.047 |15.257 | 1.02 2.525 2.666
D2/4 - - - 4.295 | 6,150
n2/5 13.350 |15.077 | 1.09 1.957 | 2.321
D2/6 13.399 | 14.014 | 1,05 2,073 3.362
D2/2/R 14,250 | 14.636 1,03 1.763 | 2.279




Table 14.6:~ all values in in.lbs.x lO3

Beam

o3

Bending—Moment,MB

Torsion~Moment,

7 el
g applied | theo. :h 2 applied | theo, :t A
1 2 1 3 4 3
0 - - - bl 50,4 | 1.14
1.97 66.8 66.2 0.99 | 33.9 33.5 | 0.99
3.69 75.3 1.1 1.07 | 20.4 27.4, | 1.3L%
5.20 81.6 8349 1.03 | 15.7 19.9 | 1.27%
6.174 81.5 £1.3 1,00 | 13.2 12.5 | 0.95
0 S4e5 7.3 1.03 - - -
0 - - - 36.1 47.2 | 1.46%
3.72 79.6 79.3 1.00 | 21.4 7.9 | 1.30%
465 85.1 95.3 1.12 | 15.3 31.0 | 1.697
5.28 91.3 99.1 1.08 | 17.3 20,0 | 1.61%
6.67 9.0 98.4 | 1.05 | 14.1 21,3 | 1.55%
o0 105.6 93.9 119 - - -
0 - - - 51.3 92.2 | 1.30°
1.97 2.1 116.6 1.2 L7 60.1 | 1.44°
3.71 111.0 115,28 1.04 | 29.9 34,.0 | 1.15
5,21 122.0 133.0 1.09 | 23,4 3%.5 | 1.56°
6.36 126.,0 135.9 1.08 | 19.¢ 33.3 | 2.4
o0 143.0 129.¢ 0.97 - - -




Table 15.6:-

all values in in.lhs.x 10

3

Bending-Moment ’Mb

Torsion -tioment, Mt

r F
Beam 1] anplied| theo. :b 2 applied | theo. :t A
‘ 1 2 1 3 4 3
1 1 79 141 1.79%| 7 152 145"
2 1 102 152 1.49%| 102 156 1.53"
3 2 122 159 1.30%| 61 94 1.55"
4 2 134 167 1.25 67 125 1.67°
5 3 147 163 1.11 49 71 1.45%
6 3 168 168 1.00 56 57 1.02
7 4 173 170 0,97 12 37 | 0.8
8 4 176 177 1,00 L, 47 1.06
9 2 120 222 1.84 | 60 & 1,48
10 4 175 245 130 | 44 75 | 172
11 2 138 2.1 1.75° | 69 129 | 177
12 4 213 252 1.12 53 65 1.21




Table 16,6:- all values in kg. cms.x 10°

Boan y Bendir‘lg-Moment ’Mb Fb Torsic:n—Moment oM " Ft
applied| theo. - 2 applied | theo. | _ " 4
1 2 1 3 4 3
1|5 5.6 4.5 .80 1,12 0.54 | 0.48%
215 5.6 5.0 3490 1.12 0.8, | 0.75™
315 4.8 4.9 1.03 0.96 1.03 | 1,07
4|5 5.2 5,1 0.98 1.0 0.99 | 0.96
5|5 5.2 Lo 0.90 1.04 0.75 | 0.72%
61 5 5.2 L2 0,81 1.04 0.43 | 0.46%
715 5.2 5.5 1.06 1.04 1.24 | 1.19
8| 5 6.4 6.0 0.93 1.28 0,98 | 0.76
9| 5 6.4 6.4 1.00 1.22 1.26 | C.92
10| 5 6.4 6.5 1.01 1,20 1.32 | 1.03
11| 3.33 WA 3.7 0.85 1.32 1.12 | 0.85
12| 4.3 5.6 4.0 | 0,71 1.32 0.53 | 0.40"
13 | 3.33 AR 4.0 0.34 1.44 1.12 | 0.2
14 | 3.33 40 4.3 1.05 1.25 1.32 | 1.10
15| 3.33 42 fe? 1.00 1.26 1.26 | 1.00
16| 2.5 IR 49 1.23 1.50 1,69 | 1.18
17| 2.5 3.8 2.3 0.617| 1.52 1.20 | 0.73
18| 2.5 3.3 4.2 1.26% ] 1.32 1.52 | 1.15
19| 2.64 3.6 4.0 1.10 1.36 1.46 | 1.07
20| 2.5 3.4 3.7 1.10 1.3% 1.45 | 1.07
21| 2.5 3.6 L7 | 1.30%| 1.4 1.80 | 1.25
22| 2.5 L8 4 ib 0.95 1.92 1.87 | 0.97
23| o - - - 1.25 2,10 | 1T




Table 17,6:= all values in kg. cms.X 105

Bending~Moment ,Mb F Torsion-Moment ’Mt
Beam| @ applied | theo. | _° 2 | applied| theo.
1 2 1 3 A
1 |10 5.6 P - 0.56 w5
2 |10 5k e - 0.5 e
3 5 L8 " W - 0.96 3
b | 5 4e8 e - 0.96 P
5 | 3.5 440 3.5 0,87 1.14 0.52
& | 2.5 42 3.9 0:93 1.68 1.55
71 2.5 4.0 4ol 1,02 1.60 1.63
8 | 2.5 42 4.3 1,03 1.68 1.73
9 | 2.5 bl 3.9 0.88 1.76 1.69
10 | 2.5 3.6 41 1.14 1.44 1.67
11| 2.5 3.8 42 1.12 1.52 1.72
12 | 2.5 4.0 bl 1.10 1.50 1.82
13 | 4.5 5.0 4aT5 0,95 1.12 0.81
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being applied to the section and therefore by definition F, = Ft =
These values are tabulated in Table 18,5.

Table 18.6:=

F . ‘s css . .
b F, (1) | (1) ] (i11) | (iv) | (v) [(+i) | (viL)
Fb ’ 1007 - 1.02 1.00 - - —
A
Fb 1,10 [ 0.96| 1.03 1,00 1.07 {1.09 ¢ 1,02
B
Ft 1,10 0,96 1.03 1.00 1.07 11.09 | 1.02
Fb 1.05| 0.83| 1.05 1.03 | 1,08 10,93 |1.00
C
Ft 1,06 1,06| 1.10 1.03 1.03 | 0,93 | 1,01

The numbers refer to the sequence of tests as given for
Design Tountion B,  Any difference from unity con he considered
as consisting of either an error introduced in mensurement of the
anylied moments in the experimental investigntion or the error
resulting from differences hetueen the simplified design equation
and the expression obtained from the evact mothematical analysis
of the failure mechnnism, Tt will he assumed that any difference
greater then 0,25 Indicates an sxperinental error greater than
normal and this result will not he used in assessing the accuracy
of the design equations. For example, the honc failure of heam
D/2/1 which gives Fb values of 1.43, 1.46, and 1,52 for the three
design equ~tions respectively hos not Heen included in Tahle 12,5
so that general cpnclusions can he made.,

Both design equations 4 and B denend upon an initinlly
known ratio of applied bending moment to torsion moment so that

aleulation is hased on the assumption that the values of Fb and
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Ft are the same. Thus, in Table 1.6 and 7.6 for hean 4, the
value of @ is given as 5,20 and used for evaluation of MB. Mt
is then found.directly to he E\Ib/5.20 so that Fb/z?,c = ¢/¢ = 1.

In Design FEouation d, the Mb and Mt values are evaluated
independently and further use con he made of the Fb/Ft rotio in
assessing the validity of the practical values, The calculations
given for Design Equation C are those ohtained by substitution
of both'Mb and Mt’ the respective applied hending and torsion
moments, since in the experimental investigations hoth these
values are known at ultimate. These values are illustrated in

Fig. 1.6.

Fig . 106 - (o.ﬂ) ,

y — (N Ng) (/76 ’ﬂt)

G/ A

%,7%)

1,9

Du@ to errors in measurement, the applied moments at ultimate
(Mﬁ, Mt) are not necessarily on the elliptical curve defined
by M and T l -Thus, substituting M, in the design equation gives

| M' 7?\/1 - Jb/w and an ultlnhte value (WE,M ) on the

curve. Slmllarly subotltutlng for M, gives M! = Tag/i (M /T

and a second point on the curve Mb', Mt)'
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In order to assess the accuracy of hoth equations the
resilts given are for (ME', M%') so that the values R, = be/Mh,
and Ft = Mti/Tg can be used indcpendently:  The true ellipse
solution lying “etween (Mb', Mt') and (Mﬁ, Mt) is not evaluated
in this study since the differences are small:  The practical
application will he to calculetion of say the ultimate bhending
moment, Mﬁ, for a known applied torsion moment iI, so that in this

t

case the values lie on the ellipse and only one of the design

equations is used, that is, i, =M J1 - (M./T )%

Considering again the bond failure in heam D/2/1, the
Fb/Ft value is 1.52/5.41 = 0.28 indicating that the condition that
ultimate moment is equal to applied moment is not satisfied,
Compare the hehnviour of “eam D/2/3 which conforms to the predicted
theoretical failure and has values of Fb/Ft from Table 13.6 of
1.02/1.06 = 1.

The results which have not heea accepted on this hasis
as not complying with the theoretienl mode of failure and not
included in Tohle 18,5 are indicated thus®  Finally, the general
application of Design Equation C can he used as o check that the
design section conforms to the necessary requirement of heing under-
reinforced.- An example of this 1s given by beaas 1 - 4 of the
Russian tasts (Toble 17.6) where the calculated moment of resistance
to pure bending is less than the actual bending moment 2pplied to
the heam in comhinced loading so that the design equation eannot
be anplisd. A1l beams exhibit extremely low concrete strengths
so that the design agrnin docs not conform to the theoretical

assumptions made for deriving the design equation,
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§.5 Conclusions:-

The following conclusions ara made for the three design
equntions derived in Chapter 5, and examined by application to a
ranpge of benm sections in this Chanter.

1. Design equntions L and B nececsarily use the ratio of
applied hending to torsion moment in the calculation of ultimate
moment Mb. The @ value must therefore he known and any error
introduced in the calculation of ME igs included in the calculated
value of Mt' The ratios of theorctical to applied moments must
he egual for hoth as shown in Tables 1 - 10.6.

2. Using the Fb, Ft ratios for any series of rzsults, a
comparison of the relative accuracies of the three design equntions
can he made on the assumption that erperimental errors are constant
for any one series of tests. Thus, considering the Leeds tests,
the Fb ( and Ft) values of 1,00, 1.00, and 1.03 for the equations
4, By and T respectively do not indiente significant differenres
in the three exnressions. It is concluded therefore that any
error introduced in the progressive derivation of the design
aquations does not exceed the magnitude of error accented in the
design as a whole - in this case 3%, and 10% in gencral.

3, For Design Zquation C, further use can he made of the
Fb/Ft ratio, ns the expression is not devendent on 2 Fb/Ft ratio
of 1, This caleculated rotio can therefore he used to ensure
fhnt the theoreticrl assumntions are satisfied since any violntion
of these assumptions, as may he caused hy premature failure of the
heam, is indieated hy comparing the Fb/Ft value with unity.

L. The use of the three design equotions is restricted
to under-reinforced rectangular szctions as the theory is bnsed

on the steel having reached its yicld stress, Using Design
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Zquation C, the preliminary calculations to find the strength of
the heam subjected to pure bending and pure torsion indicate that
where these values arc less than the applied moments, the condition
is not satisfied.

5. Design Eguntion A includes trigonometrical terms which
cre evaluated in terms of the applied load ratio and prior to
calculation of the ultimate moment, Mb. The author feels that
the use of those terms introdnces unnecessary computation. in
addition, the use of the @~value at an initial stage in the
calculation restricts the application to the load ratio heing
considered.

. In Design Bquotion B, diréct substitution of the @-
value is made in QValuatingb_, thus overcoming one of the
disadvontages of Disign Bquation i.  Iowever, in achieving this,
the range of # must he classified and as many ns three different
equations may be used in the calculations for one test series,
for excmple, in calculating Table S.6.  Also, as for Design
iIgquation A, the calculntion for 2 given scction is only anplicahle
for the speciified 7 ratio.

7. Design Squntion C is 2 reneral cwnression, applicanhle
to a given section for all values of #. and independent of

aitinl calculotion for the section

[

trigonometrical tarms. The
is applicnhle to any specified loading and use can he made of
zraphs to clliminote further caleculation for that saction, As
the loading condition is introduced as a final condition, this is
the only exnression in which the ratio of bending to torsion

moment need not be known or maintained constant throughout the

load=-cycle.
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It is the author's opinion that the design equation
hased upon an elliptical relationship hetween hending and torsion
moments expressed as functions of the hean's resistance to pure
hending and pure torsion, and on 2 failure mechnnism wherehy a
hinge is formed at ultimate and rotation takes place ahout the
neutral=oxis, is of equal accuracy and the most flexible hoth

for investigations into the problem and for practical applicatioh.
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CHAPTER 7

EXPERIMENTAL INVESTIGAT ION

7,1 General:

Chapter 7 describes a Series of practical studies carried
out to investigate the problem of combined bending and torsion.
These tests have been referred to in Chapter 6 as Series C and D,
and Series B will be considered in Chapter & with particular
reference to the theoretical analysis of grid frames. The main
objective is to investigate experimentally the application of
the torsion moment by means of lengths of concrete arm framing
into the main beam., It is proposed to rely on the results of
other investigators to compare the application of the torsion
moment by direct loading onto the main heam. The author feels
that the former is the more realistic in the application of this
theory to grid frame systems.

7.2 Introduction:

The experimental investigation is in three narts. A
preliminary study of model reinforced micro-concrete beams,
simulating a moin heam framing into a column and secondary heom,
is carried out to illustrate the effoct of adding torsion to
results for simple bending tests. The examination is then extended
to model concrete beams of larger scale to provide more consistent
results and, at the same time, the complex beam to column mono=
lithic joint is simplified so that the effects of the torsion
load being transmitted into the main beam by the secondary heams
can be more easily studied. These two Series of tests, C znd D,
differ only in the form of reinforcement used and for each Series,

the section design is kept constant in order to confine the
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investigation to measuring the effect of varying the applied
loading ratio.  Special nrecautions are tnken to maintain con-
sistent concrete properties in nll tests by nrecise hatching and
mixing so that the structural and not the material properties

can he studied. The main criterion in the design of the heam
section is that it should he under-reinforced, so that at ultimate
the s£eel reinforcement has attained its yield stress and is
therefore known,

Finally, thg application to simple grid-frames is
considered in Series B, in which four tests are made using a heam
section identical to the one used for the Series G tests. In
this Series however, the torsion moment is introduced by the
secondary effect of the transverse beams of the grid and only direct
bending load is applied to the main longitudinal heom under
examination,

7,3 Prelininary Investigation-

The purpose of this investigotion is to make a rapid
assessment of the 1ethods of applying combined loading to =
reinforced concrete heam, simulating in the laboratory as near
as possible the location and behaviour of the beam in the actual
structure. The results of these pnreliminary tests arc useful in
planning more extensive and comprehensive tost systens to he used
for Series B, C, and D,

(a) Mould and Section Design:- The section used is as shown in

fig. 1.7 and the mould is constriucted of hardboard which is

sufficiently strong for this purpose.

(b) Materials:— The following materials were used:-

(i) mix proportions:- 1l:1l:3. = Ferrocrste cement: aggregate

passing Mo, 25¢ aggregate passing No. 100.
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(i1) water-cement ratio:- 0.7
(iii) reinforcement, longitudinal and transverse:~ 1/16" diameter .

steel welding rod.

Fig. lt7:‘"

. /6
N |
L +
»
~
W
~

{c) Testss= The heams were rémoved from the curing tank five

days after casting, discs attached to the unner surface of the

beam at two inch intervals along its span, and testing carried

out at seven days by applying dead loads at the centre~point in
pure hending, and in addition, dead loads on the arms at a distance
of three inches from the centre-line of the heam for the comhined
bending and torsion case. easurcments of deflection were taken
using dial gauges attached to maghetic bases mounted directly
below the discs, for loads within the limit of proportionality and
finally to failure. Ohservations of cracking in the heam were

made, and graphs of deflection plotted against load are shown

in Figs. 2-7’ 307, 4-7, and 507-
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74 Series C, Series D:

Series C and D are discussed together since they differ
only in the form of reinforcement nsed. These tests constitute
the major part of the research programme. Differences hetween
the two Series are only indicated where necessary dnd in general,
materials, mould, testing arrangement, instrumentation and
presentation of results are the same.

(a) Section design and Mould:—

The szction design was calculated according to normal
balanced design procedure and details are given in Table 3.D,
Appendix D,

Tt is important that the design of the section conforms
to the Design Code(57) at this stoge so thot it is only at
ultimate load thet the ultimate properties of the heam are taken
into account. Thus these sections were adopted for testing
and the mould designed accordingly.

A photograph of the mould is shown in plate 1.7, with
steel rsinforcement in place for Series D. The plan dimensions
are given in Fig. 6.7.
4t positions A and B in the mould, a half-inch diameter pipe
was fixed to the reinforcement for application of the torsion
moment through the loading arms. The mould was constructed
of &" thick African Teak and attached to o haseboard by special
springs. The complete Series of test heams was obtained
using this mould. Nevertheless, variations in cross-section
are unavoidable and micromcter measuremnents of the heam-secfion
were taken over the length of span under exanination, and in
particular, at the failure zone. TFrovision was made in the

aould construction at the left hand surport point for the
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inclusion of a steel shaft in the concrete during placing.

(Plate 2.7).

Fig. 6,7:~
Ml
-fA
i 2 20" /1"
* t t M
S.P (bearing) SP
LP P -
L -
S.P. - support-point L.P.>~ loading-noint

(h) Materials:-

Although an investigation of materials does not form part
of this investigation, the author hos devoted a considerahle time
to ensuring the production of consistent naterial properties for
the beams for structural analysis.  The summary of this work is
given in two parts.

1. Concrete:-

The concrete materials used were Ferrocrete cement and

Eddleston -&" aggregate.  The mix proportions were desighed for

(58) ¢

a rounded river grovel according to vicIntosh and Erntroy

give good workability - this is of speoial importance for Series D

with elose spacing of the transverse steel -~ and a concrete

- .
strength at twenty--elght days of 46,000 Ins/ins™. Tahle 1.7 gives

the mix proportions and agrrerate grading required for one test,
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including control—testss59) the results of which are summariscd
in Tahle 2.,7.

Table 1,7:=

cement :~ 25 1b, w/ec = 0.55

water:- 13,75 1b.  a/c = 4.05

aggregate:~ 101.25 1b.

Vo, B.S Sieve size Height 1hs, Weight %
1 = 3/16" 40.5 40.0
2 3/16" - no.7 14.25 14.08
3 no,7 = no.l4 9.125 9.01
A no.l4 — no.25 9,125 9.01
5 no.25 = no.52 “LuaF 14.08
6 no.52 - no,100 17,00 10.86
7 no, 100 3,000 2.96

Total - 101.25 100

For each batch, the aggregate was dried, broken down into
its fractions by sieving and finally recombined at hatching to
conform to the proportions given in Tahie 1.7. This process
occupied o considerahle time hut the author feels this was justified
by the consistency of the control test results shown in Table 2.7,
Also, Kaplan's study of strain measurement and crack hchaviour of
reinforced beams(27) shows thﬁt changes in aggresate volume effect
the beam behaviour and it was considered imnortant to eliminate
this aspect in investigating the effects aue only to changes in
the ratio of applied loading.

The concrete was mixed in a two cubic-foot canacity
nQum~-flow’ type mixer for two minutes, then wnoured and vibrated

into the mould and covered with damp hessian. The bheam and
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Table 2,7:~

Beam Cubé strength | Split. Load Ep Eg Mod. of

No, lbs/ins2 Tons lbs/ins%<106 lbs/insleo6 §E£}§i§2
C/2/1 6,030 - 0.412 3.269 598.5
c/2/2 5,600 29,12 0.540 2,946 611,1
c/2/3 6,200 26,00 0.551 3.190 579.6
c/2/4 6,178 30.0 0.550 2,823 516.6
C/2/5 5,959 - 0.394 2.985 579.6
c/2/6 6,212 - 0.755 3.040 617.4
D/2/1 7,000 - 0,913 2.930 648.9
D/2/2 7,303 - 0.965 2.990 658.4
D/2/3 7,612 - 0,951 3,026 765.4
D/2/. 7,052 - 1.002 2,865 626.8
D/2/5 6,440 - 0.931 2,671, 645.7
D/2/6 6,375 - 0.896 2.727 504..0
D/2/2/R 6,533 - 1.032 2,548 504.0

control specimeon were demoulded after twenty-—four hours then placed
in a curing tank and water-—cured at a constant tempersture of 65OF
for twenty-five doys. The specimen were then removed from the
water and air-dried nrior to testing at twenty-eight days. Dach
hYeam was air-dried for twenty-four hours to remove surface moisture
then prepared for testing. This procedure included rubbing-down
the four foces of the heam with emery-paper, washing with acetone,
filling the spores with durafix, marking the grid points and
reference morks, attachment of "Decmec! discs, dial-gauge discs,

and measurement of the sectional dimcnsions.
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2. Steel:~

The main property of the steel is its hehaviour under
stress and for these tests,.it is essential that the steel is
sufficiently ductile to maintain a constant stress heyond yield
for increasing applied load up to ultimate heyond which failure
is broughbahout due to crushing of the concrete in the compression
zone, For this purpose, the nroperties of 3" diameter black
mild steel were found to be suitable and for each test, samples
of each reinforcement were tested in a Hounsefield Tensometer to
check that the required condition was satisfied and also to measure
accurately the stress in the steel during the constant stress stage
as this value is used in the design equation.

For the Series C heams, resistance strain gauges of
gauge-~factor, 2.0, and resistance, 50 ohms, were attached to the
reinforcement, prior to placing the concrete, and rendered
.waterproof by covering the gauge with 2 waler-repsllant wax,
Measurements of strain recorded on a Transducer Meter and halanced
agninst 2n identical gouge set in an unstrained bheam, gave
readings of strain in the reinforcement as well as indicating
that the condition of constant stress was reached prior to failure.
The yield stresses of the steel used for the Series C henns
varied hetween 30,000 and 50,000 1bs/sq. in. In the Series D
tests however, better quality steel was used giving consistent
yield stresses of 50,000 1bs/sq.in. ond satisfying the condition
of constant stress beyond yield under increasing applied load.
Although samples were taken from each benm for testing in the
tensometer, no strain gauge measurements were taken during the
actual tests for Series D as it was considered more desirable

to elliminnte the effects of the strain gauge wire nassing
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internally along the beam, The use of 4" diameter bright mild
steel for the transverse reinforcement was not suitable as no
definite yield point could;be determined before rupture of the
steel, Black mild steel of 3" diameter was also unsuitable due
to non-uniformity of the cross-section, so the bright mild steel
vas annealed at 900°C to give properties similar to those of the
longitudinal steel and a-consistent yield stress of 45,000 lbs/sq.
in, Tensometer tests were taken for steel samples from each
beam to ensure the necessary condition and measure accurately
the values to he used for calculation. The spacing of the
transverse steel was kept constant at two inches over the gauge
length for beams D/2/1, 2 and 3, and 13" for the remainder.

The reinforcement used in the loading arms was designed
to prevent failure as this part of the beam was not under
investigation. In addition the transverse reinforcement was
used to anchor the +" diameter niping in vosition during mixing
(Plate 1.7). As bheams D/2/1 and D/2/2 failed prematurely due
to hond slip, the lopgitudinal steel in the remaining beams of
the Series was cranked at 900 at both ends to prevent further
. failures of this kind.

(c) Testing Procedures

The main requirements in testing Series C and D were
firstly the measurement of the applied loads and in particular
the ultimate load, and secondly the measurement of the heam
hehaviour from initial application of the loads up to ultimate.

The test frame, shown in nlates 3.7, 4.7, provided the
support for the spherical rollers on which the beam was supported
and the load frame against which the bending load was applied,

by a hydraunlically operated Black-Hawk jack of 5 ton capacity
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acting through a proving~-ring on to a twenty-inch long loading bar
placed centrally on the beam. The torsion moment was independently
applied hy dead weights transmitted through steel wires, one of
which passed over a pulley, on to the concrete loéding arms

(Plate 5,7). The overturning moment was resisted by the left hand
beam support in the fora of a shaft passing through the concrete

and held in the plane by two Skifco self-aligning bearings supported
in plummer hlocks bolted to the test frame (Plate 6.7). The
torsion moment is therefore constant along the full length of the
heam from the loading arms to the bearing support. Also, this
length is not subjected to shear forces so that the investigation
vas in compliance with the assumptions made in Chapters 4 and 5.
Although this method of loading is not as flexible as for example
using a torsion machine, the author feels that it simulates more
closely the practical application of torsion moment to the bheam

in the grid-frame systenm. The direct hending load was measured

by taking readings on the dial gauge of the proving ring and using
the calibration graph given in Fig, 7.7.

The exnerimental investigation also included the study of
the actual hehaviour of the beam under the applied loads from
initial application of the load up to ultimate. Tor this,
observations of the crack propogation were made at each load stage,
and "Demec readings taken at 2" intervals along the constant
bending moment area. In addition, dial gauge readings were
taken to record the vertical movement of the loading arms,.

The pattern and sequence of cracking is of major importance
in the study and details were recorded at every load stage to
investigate the crack propogation as the loading increases to

ultimate. The form of notation used was to mark the number of
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the load stage on the beam at the position where the crack had
reached at that stage. The angles of crack were measured on
completion of the test. In Series D, the initial micro-cracks
were detected more quickly by coating the face of the heam with
a thin layer of durafix so that visual detection of the hreakdown
in bond at the durafix-concrete interface was possihle for lower
surface strains than for visual cracking of the concrete, The
position of the initial durafix cracks was indicated by adding
the suffix 'd' to the load stage nuaber. An example of the
data recorded for beam D/2/6 is given in Table 1.D, Appendix D.

Cracking of the concrete then followed at a later stage. This

Table 3.7:-
angle of crack in degrees
Beam Practical Theoretical
n/2/1 82 8/,
c/2/2 85 85
c/2/3 76 33
C/2/4 79 80
C/2/5 90 90
c/2/6 70 71,
D/2/1 60 805
D/2/2 70 72
D/2/3 30 793
n/2/. 45 45
D/2/5 3 814
D/2/6 75 77:
D/2/2/R 81 837




- 103 =

information isvbééﬁbpresented by deveioping in the same plane
photographs taken of the crackingon the four faces of each beam
and is given in Plates 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17,
and 18.,7. The practical values of the angle of the failure
crack are compared with those given by Fig. 5.4 Chapter 4 in
Table 3.7.

No measurements of the width of crack were possible hut
use was made of the "Demec" readings. The main object of this
investigation was to study the effect of an applied torsion moment
on the ultimate hending moment resisted by the beam, so that
strain measurements were taken parallel to the longitudinal axis
of the beam and only the component of the torsional stress acting
in this direction is therefore included., Although an eight inch
"Demec' has been used throughout, the setting of the discs at
two inch intervals along the constant moment zone of the bheam
enahled readings to be taken within each gauge lengch.  Thus,
average strain measurements were obtained at three points, a, e
and i, covering the length of heam nnder examination (Fig, 2.7,
Plate 19.7) and the remaining measurements used to locate crack
movenent. The load--stage when initial cracltiing occurred and the
concrete attained its maximum tensile strength was indicated hy
a large increment in the "Demec" readings at that point, and
readings taken beyond this stage were used to give an estimate of
the ecrack width since further increase in the gauge reading is
related to the opening up of the crack., The effect of a partic-
ular crack could be assessed by examining consecutive readings at
that point, for example in Fig. 8.7? a crack in the area 2-3 is
indicated by the readings 'a! and 'b', and the reading 'e' is

only affected by propogation of the crack into the area 3-4.







































Similarly, the propogation upwards is traced using the readings
aps ags bB’ bG etc. The "Demec" rcadings have also heen used to
1llustrate the upward movement of the neutral-axis with increasing
load towards ultimate, and an examnle is included for Beam D/2/6
in Figs., 1,D, 2,D, Aprendix D.

Initial "Demec and dial gauge readings were taken prior
to applying the torsion load and at every load stage, hefore and
after observing and marking the crack propogation on the beanm,
Aprroximately ten minuteswere required for this procedure at each
Joad stage giving a total period of test of abont 100 minutes and
creep effects have not heen included. The test load was main-
tained for up to 43 hours to investigate the load sustained by
the heam after ultimate, Symmetrical apnlication of the torsional
load was checked hy talking dial gauge and cathetometer readings
at the ends of the loading arms (Plate 3.7).

7.5 Series B:-

The investigation proc-durc was similar to that used for
Series C and D and ounly the egsential differences are given,

(a) 3ection design and Mould:- As this investigation is an

extension of the Jeries C and D tests, the same design section
vas used. The plan dimensions of the grid are shown in Fig. 9.7,
and the mould used for the Series is shown in Plate 20,7. The
mould was constructed so that during placing, the reinforcement
could be inserted in the becm after pouring of the hulk of the
conerete. This inversion of the mould produced a hetter finish
for the upper face of the heams, and by screving the ends of the
trangverse bars, the longer external formwork was held in

position at the speeified width during placing.
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1, Concretg:~

The method of mix design used

for Series C and D was repeated for Series B with adjusted weights

of the various materials to give the ewxtra volume of concrete

required.

:.Pa.ble A:-7 il

The details are given in

Tables 4.7 and 5.7.

cement:= 30 1bs. w/e = 0.55
water:- 156.5 1hs. a/c = 405
ageregate:-- 121.5 lbs.
lo. B.S. Sieve Weight 1bs. Weight %
1 2/8n ~ 3/16" 8.5 39.90
2 3/16" = no.7 17.0 14.00
3 no.7 = no.l4 11.0 9.05
A no.l4 = no.l5 11.0 9,05
5 no.25 = no.52 17.0 14.00
6 no.52 - no.100 13.5 11.12
7 no, 100 3.5 2,58
Total - 121.5 100,00
Tahle 5.7:-
Beam | Cube strength | Split.loads Ep Eq §Od' of
o, 1bs/1ns” Tons | lbs/ins10°| Ibs/insx10° ;‘}Z}ﬁgz
B/2/1 6,200 - 0.555 - 743
3/2/2 6,440 25.0 0,242 - 593
B/2/3 6,200 22.65 0.294 34337 604.8
B/2/4 6,030 25.75 0.412 3.269 598.5
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2. Steel:~ The requirement for the properties of the steel are
as for Series C and D, but due to there being reinforcement in
the transverse beams, the longitudinal hars were bent up to pass
over the transverse bars at the joints, as shown in Plate 20,7,
in order to retain equal moments of resistance in all members of
the grid.

{c) Testing Procedure:~ The testing procedure was different

from the procedure used for Series C and D as only the bending
moment was applied directly to the grid-frame, the torsion moment
being applied internally by the moments of resistance of the
members of the frame acting in different planes at the joints.
Thus, the torsion moment is transmitted by the transverse beam
into the longitudinal heam as simulated by the loading arms in
Series C and D but without applying the load directly.

The loadiig frame, shown in Plate 21.7, was designed to
apply a direct compressive load of up to 20 tons on to the grid-
frame hy Losenhausenwerk hydraulic jacks, and the cross-hean and
uprights designed to give variable positioning of the jack., Tor
tests B/2/1 and 2, the load was applicd at the central joint on
onc side of the frame, and for tests 3/2/3 and / the load was
apnlied equally to the same joint and at a point six inches along
the transverse hean. The frame was supported at the four corners
on two inch square metal plates seated on one inch spherical hall-
nearings (Plate 22.7).,

"Demec" readings were taken to give strain measurements
along the outer face of the longitudinal beam sudjected to the
applied hending, similar to the procedure for 3eries C and D, and
in addition, readings vere taker along the central transverse

heam The general layout is shown in TFig. 10.7. The spacing
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of the discs at two inch gauge and using an eight inch "Demec
gave information on crack initiation as in Series C and D.
However, for this Series of tests, the main failure crack formed
under the point of application of the load. "Demec" discs were
placed at some supports and the unloaded joint to locate the
subsidiary cracking (Plates 23.7, 24.7). Dial gauge readings
were of greater importance in this Series with regard fo ¥he
theoretical investigation to be outlined in Chapter 8, and discs
were fixed to the upper surface of the frame at the locations
numbered in Fig. 9.7. As the load-system in this Series does
not produce a region of zero shear stress, clamps were used to
prevent shear failure at the joints and the position of these
clamps is shown in Fig. 9.7 and Plate 25.7. This technique was
also found necessary by Reynolds in his work on pre-stressed
concrete frames€42)

7.6 Summary of Observations:

Fach beam was subjected to a different ratio of applied
hending to torsion moment so that the cracking hehaviour differs
for each test. An illustrated summary of the individual crack
patterns has heen given as developed views in Plates 7 - 18.7.

The following ohservations were made for the four Series as a
whole: - '

1. The ultimate moment values from tests D/2/1 and D/2/2
have not been used for comparison with the analytical investigation
as in both cases premature failure occurred due to bond slip,

This non-conformity with the theoretical mechanism of failure

has been discussed in Chapter 6 with application to design

equation C.
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2. The addition of a torsion moment produces an increased
number of smaller cracks compared to the crack behaviour in a
beam stressed only in bhending.

3« o general sequence of crack formation was observed,
but the initial crack ohserved does not form the final crack
causing failure, the eventual failure crack forming at loads necar
to ultimate when cracking has alrcady reached the upper parts of
the beam elsewvhere along the constant moment length.

Le Vith formetion of the failure crack, propogation of
the other cracks decreases as the failure crack moves rapidly
over the cross section, This observation was confirmed by the
MNemec! readings which increased only in the area of the failure
erack heyond this stage.

5, The location of the failure crack varied in Series C
and D, but for the majority of heams wvas immediately below one
of the loading points for applied bending moment.

6, Fdr the: pure torsion case, although cracking occurred
along the length of the beam, the main failure erack was located
near the hearing supnort despite closer spacing of the transverse
steel in this arex.

7, The initial crack in all cases was obscrved on the sanme
face and at the hottom of the heam. This fnace was conseguently
used as the side of the beam for craclk ohservation. Readlngs
of the dial gauges and cathetomcter indicated that the torsion
moment was applied symmetrically.

4. There is good agreement betueen practical values of e,
measurcd Trom the beam, and theoretical wvalues o»taincd from

Pice 54 hese results are tebulated in Tahle 3.7, and the

mractical values given are the average of the mean line following
&

the crack.
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9. There was no sudden failure in the Series of tests,
and a combined load of 75% ultimate was resisted by the beam for
a period of up to 48 hours, In the test for beam C/2/3, the
bending load was removed immediately after ultimate and prior to
removal of the torsion-moment, with resultant rotation of the
beam and failure (Plate 5.7).

10. The main failure crack for the four grids tested in
Series B occurred under the applied load at the joint and was
pyramoidal in shape (Plate 23.7). Increased loading beyond
ultimate caused rotation of the heams and some of the corners to
1ift off the spherical seatings. Subsidiary cracks weré less
predictahle and varied for each beam, occurring at some of the
supports and the other central joint., 4s in Series C and D, no
sudden failure occurred and a load of 75% of ultimate was resigsted
by the grid for up to 48 hours after.

7.7 Conclusions:

The following are the main conclusions for the experimental
investigation of model reinforced concrete beams Series A, B, C
and Di~

1. The total research progranme was not extensive con-
sisting of twenty tests of beams of dimensions not greater than
two inches wide by four inches deep, and loading not excceding two
tons. Although these tests simulate practical load applications,
the author feels that research on full scale beams would provide
more information particularly with regard to the crack behaviour
at early stages of loading when the micro-crack propogation in
the model heams cannot he detected visnally. Also, as crack
widths are a criteria in the design for working load, measurement

of crack width in the full scale heam could be made in addition
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to locating the crack propogation at the various load stages.

2. The Series A tests, on a limited scale, provide a
means of simulating the structural unit under consideration, that
is, the transverse heam to column to longitudinal beam connection.
It is essential for simplification of the problem ot this stage
to be able to extract the main component from the frame and examine
the behaviour of the longitudinal beam,

3. Series C and D form the main part of the investigation
to examine the effect of combined bending and torsion on the
longitudinal beam with two arms simulating the transverse heam
connections. The author feels that the application of the
torsion moment through concrete arms, rigidly fixed to the main
beam, is a necessary intermediate stage hetween the difect
application by Torsion Machine and the practical application in
the grid-frame. All measurements taken arc for evaluation of
the behaviour of the longitudinal heam to combined loading and
no consideration is given to the transverse beam,

L. Series B is a prcliminary investigation into the full
problem using a simple grid with no fixities at the support and
loads applicd only at the joint under examination. In this
case the effects on the beam system as a whole are considered
although the resistance of the longitudinal beam forms the main
part of the study.

5, In Series A, B, C and D, the use of uniform, identical
beams produced by accurately measured quantities of materiels and
constant conditions of mixing, curing and preparation cnables
conclusions to be made on the effects of the variations of

applied loading on the beanm section.
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The experimental investigation therefore forms an
important part of the research programme., The assumptions made
in the theoretical investigation, and necessary for deriving the
various design equations, are examined by test and assessments
are made of the accuracies attainable by comparing the experimental
imoments applied to the beams at ultimate with those calculated

using the design equations given in Chapter 5.
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CHAPTER &

GRID-FRAMES .

8.4 General:

The previous Chapters have been concerned with the
investigation of a longitudinal reinforced concrete beam subjected
to combined bending and torsion and simulating a load condition
brought about by other heams framing into the main member as in
frame systems. In Chapter 8, it is proposed to first outline a
method for solution of the bending and torsion moments in a grid-
frame at working-load, and then to consider the application of
the theory derived in the earlier parts of the investigation to
the beams forming the gtrid-frame at a stage beyond working-load
and up to ultimate.

3,2 Introduetion:

The linear elastic analysis of a rigid jointed grid-frame
structure loaded at right angles to the plane of the frame has
been given by several authors, and in particular by Hendry and

(60)

Jaeger using a harmonic analysis method of solution and

assuming a spread medium for the transverse beams; and by

(61, 62)

Lightfoot and Sawko using generalised slope-deflection

equations. A general procedure, using the latter avnproach, is

(63, 64, 65)

given by Livesley for multi-heam systems and it is
proposed to use this method for solution of the working-load
moments in the reinforced concrete frames investigated
experimentally by the author.

Beyond working-load, the method of analysis is related

to the formation of plastic hinges and calculation of ultimate

load is possible using the Lower and Upper Bound approach of
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Greenherg and Prager(66’67)

(68)

Reynolds has described this application to prestressed concrete

for an assumed mechanism of fallure.

frames on the assumption that joint rotation takes place and that
the presence of bending has no effect on the torsion hinge and
similarly torsion on the bending hinge.

The apnlication of the expression obtained by the author
for the ultimate bending moment of a beam subjected to combined
bending and torsion is considered using the ratio of hending
moment to torsion moment found from the elastic analysis.

A comparison of results for deflections at working-loads
is given using theoretical values obtained by the elastic analysis
and the practical values measured in the Series B tests.

Finally, conclusions are given on the basis of this preliminary
study for the behaviour of grid-frames at both working and
ultimate loads.

8.3 Bguilibrium Metheds

A comprehensive account of the equilibrium method for
the analysis of skeletal structures is given by Livesley(69).
Tt is proposed therefore to outline the application of this method
to the grid-frames investigated hy the author and indicate the
extension of the hasic theory to multi-beam systems with rigid
joint connections. The main assumption made is that the
structure is linear, that is the internal forces are linear
functions of the applied loads, and so the principle of super-
position can be applied., This method of solution is therefore
for working-loads only.

The equilibrium method (or displacement method) considers

displacement as the basic unknown and the general procedure 1s

as follows:-
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(a) Express the member end-loads in terms of the corres-
ponding end-displacéments.' (by integration of the differential
equation of extension, flexure or torsion.)

(b) Express the member end~displacements in termé of
joint displagements using conditions of compatibility.

(c) Substitute the member end loads in equations for
joint equillbrium: (givés the load-displacement equations Gf the
structure, one equation per joint, relating a known load to an
unknown displacement.) |

(d) Solve for the unknown joint displacements.

(e) Use equilibrium equations to find the member end~loads,

This procedure is now applied to the grid-fram using the
notation given in Fig. 1.8 and the sign convention defined by
Livesley and shown in Fig. 2.8. The beams are assumed to have
torsional stiffness, hut warping effects are neglected. Tt is
further assumed that there are no forces applied in the plane of
the grillage and that no moments are applied ahout vertical axes,
so that the displacement vector at each joint consists of a vertical
displacement and rotation about two horizontal axes. In the
generalised method given by Livesley, the special condition of
supporting the corners of the grillage on spherical rollers is
provided for by assuming each corner joint to consist of two nodes,
one of which, joint R, is connected to the main structure and_the
other, joint S, to the support. The stiffness matrices are then
formed for the grillage, with zero or null matrices to denote that
there is no member connecting the two joints R and S at the
supports. This apparent complication is necessary as the method
developed by Livesley and adapted by Lightfoot and Sawko is for

multi-heam systems making use of a general computer technique
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applicable to all conditions. Fixity at the corners, for example,
is the most straightforward case with solution of a 3n x 3n, or

(6 x 6) matrix for the frame being investigated, where n = number
of joints; for the four corners supported on spherical rollers,
the size of the matrix increases to (25 + n)3 x (2s + n)3 where

S = number of supports and n = numher of joints, = (30 x 30) in

this case. The load displacement equations are then set up using

the following conditions, for example at joint A:—

(1) e = 0
xS, i

(ll) @ZSA = QZRA

(iii) SysA = 0

The resultant matrix is non-symmetric and wasteful of
computer storage space, and although the latter may not be
important with the objective of a gsneralised procedure for all
structural problems, further mathematical manipulation is required
to remove the lack of symmetry.

The author, using the same approach but from first
principles for the particular grillage under investigation, obtains
the solution using the same conditions but with no imaginary dual
node at the supports. The conditions reduce therefore to:i-

(1) dya = o0
and the size of the matrix to (2s + 3n) x (2s + 3n) or 14 x 14 in
this case.

A Computer programme and results for the two load conditions
applied in Series B are given in Appendix E. This method can now
be used for grillages with any combination of beam system by
increasing the size of the matrix, and for any load condition hy

including the appropriate applied moments and applied loads at
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the joints in the right-hand side of the equations. Thus, for
B/2/3 and 4 in which the loads are applied at the joint B and six
inches along the transverse heam 'g', the values which are substi-
tuted are the direct load? consisting of applied load and reaction,
at B; the direct load, equal to the reaction, at %, and the fixing
moments acting at B and E due to the load applied on the transverse
heam and six inches from B,

Each grid-frame is analysed in the same way and a summary

of the analysis is now given for the solution of B/2/1 and B/2/2:~

The expression relating the unknown displacement vector, 'd', and
the known loading condition, 'p!, in terms of the stiffness matrix
of the beam system|is given in Fig. 3.8; the calculations for the
matrix are given in Tables 1.8, 2,8 and 3.8, and the final values
are included in the general Computer programme in Appendix I,

The solution of the simultaneous equations is obtained on
a XDF 9 Computer and these values, which are tabulated in
Table 4.3, are now substituted in the equation for each beam

member relating end-load to end-displacement. An example of

this procedure is given for member Tglom

(i):= Py, = K21g.dB + K22g.dE
MEX = |1.186 ~0.197 O 1.95472.5372 0,197 0 ° 1.9547
Py = 0,197 -0.022 O 6/,.809340.197 0,022 O 23,8636

0 0 -0,209(| O 0 0 0.309 .0

B
N
1l

2.3183 = 12.7670 + O + 4,6365 + 4.7011 + 0 = - 1,1112

&=
>
s}
i

0.3%51 + 1.4258 + 0 + 0.3851 + 0.5250 + O - 0,1306

il

&
|

Mg = 0+0+0+0+0+0 = 0
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Table 2.8:~
I E J G L | | 2] w
ins¥ Tbs/ins? | ins.? lbs/ins’? ins.| ins?| ins?| -
10.666| 1 x 106 13.333 | 0.417 x 106 18 324 | 5832 | 0.2
I_@le E. :—
2EI/L I/ | e/ | 12E1/17 | I/L
Ibs ins 1bs ins 1hs 1bs/ins lbs ins
1.186 2372 0.197 0.022 0,309
all values x 106
Table A.8:-
Joint 0 ) 6
ragé. ing. rads.
A 0.156 0 5.031
D 0.156 0 2,333
T 1.955 | 23.864 0
B 1.955 64.809 0
F 0.156 0 ~2.333
C 0.156 0 -5.031
%

all values are for unit load (lb.)'x 10
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(11)  py, = Kllg. dg * Kppoedy
Moxg = |R+372 0.197 0 || 1.9547| | 1.186 0.197 O 1.9547
Py, = [0.197 0.022 0 *ll64.80931+10.197 0.022 © 23.8636
MBZg =10 o 0.30911 0 0 0 -0.309 0

i.e.

MBXg = 46365 - 12,767/ + 0 + 2,3183 + 4.7011 + 0 = -1,1112
Py, ~0.3851 + 1,/258 + 0 - 0,3851 = 0,5250 + 0 = 0,1306
Mppg = 0 T O YO+ 0¥ 0¥ 0O = 0

The calculated values for grillages B/2/1 and B/2/2 are
given in Figs. 4.8, 5.8, 6.8; and for grillages B/2/3 and B/2//
in Figs. 7.8, 8.8, 9.8, using the values for displacement vector,
14!, given in Tahles 4.8 and 5.8 respectively. All values are
calculated for a unit load in pounds and the values used for
the elastic constants, G and E, are the average values froam the
control tests to siaplify the amount of calculationj the values
for T and J are for a rectangular concrete section and no account
is taken of the effect of the reinforcement in this preliminary
study.

Assuming the equilibrium theory to he true up to initial
cracking of the beam, values of deflection can he compared and
the practical and theoretical valucs, calculated using the measured
applied load at cracking, are given for the Series B tests in
Table 6.8. These results show a satisfactory correlation, despite
the approximations made, and the values of applied load defining
initial cracking of the beam are now assumed as the arbitrary

1imit of working load. Thus, using the values of internal



Table 5483

ot ri%%. igg. rszs.
A 0.488 0 9.336
D ~0,005 0 5,393
E 1.825 58,754 0
B 44211 118,591 0
F ~0,005 0 ~5.393
c 0.488 0 ~9.336

£
all values are for unit load (1b.),x 107°

Table 6.8:-
Juint Deflection (ins.)
Grillage 3 5 6 g
B/2/1 theory | 0.01425 0.0285 0.081 0.0405
practical | 0,0092 0.0184 0.0736 0.0368
B/2/2 theory | 0,0160 0.0321  0.0871 0.0436
practical | 0.0200 0.0401  0.0992  0,0496
B/2/3 theory | 0.0250 0.0500  0.1010  0,0505
practical | 0.0283 0.0566 0.,1142 0,0579
B/2/4 theory | 0,02/2 0.0483 0.0975 0.04875
practical | 0,0216 0.0432  0.1044  0.0522
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bending moment and torsion moment given in Figs. 4-9.8, the beam
sections can he designed to Code requirements.

Knowing the position of the maximum moments in the grid-
frame, and assuming uniform cross—section, the location of nlastic
hinges can be specified for investigation of the grid-frame at
ultimate load. Also, the application of the theory derived by
the author for the failure mechanism in the longitudinal bheam of
a grid system at the location of the maximum combined moment can
bhe considéred, since the ratio of bending moment to torsion moment
is also given at working load by the equilibrium method.

5.4 Ultimate Load Method:

An investigation of the “ehaviour of the grid~frame at
ultimate load is now made on the btasis of the solution given by
the elastic analysis,

The limit-desipgn method descrihed by Greenberg and Prager
utilises the formation of plastic hinges so that the ultimate
load is calculated from the principle of virtual work by equating
the work done hy the ultimate load, Pu’ in causing rotation of
the structure to the work done by the plastic moments, Mb and Tp,
acting at the hinges forming the mechanism, This upper bhound
solution is then used to examine the structure statically for
calculation of a lower bound value for Pu' At the same time,
the assumed values for Mb and Tp are checked to give a statically‘
admissahle system. The method 1is the;efore dependent on an
initial assessment of the location of the plastic hinges and the
evaluation of the moments Mp and Tp for the beam system.

Reynolds illustrates this approach to prestressed concrete
griliages but simplifies the problem by assuming rotation of the

transverse beams at the joints. The range of grid-~frames
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investigated includes multi-beam grillages for both normal and
skew systems.

The author's method for calculation of the ultimate bending
and torsion moments of the component heams is now examined since
evaluation of the ultimate moments is possible using the ratios
of bending to torsion moment found from the elastic analysis.

In particular, the application of the design equations derived

in Chapter & can be considered for a failure mechanism occurring
at the location of maximum combined moment in the frame and given
by the working load solution.

The conclusions given in Chapter 6 suggest the use of
Design ©guation C as the most flexible of the three expressions,
although for this application any one of the equations can be
used since the ratio @ is taken as MZ/MX and given by Figs. 4.8,
5.3; and 7.8, 8.8. Applying Design Equation C to grillages
B/2/1 and B/2/2, the failure zone is taken at the joint B- this
is substantiated by the experimental investigation as reported
in Chapter 7.

The revised expression, in terms of § = MBZ/MBX’ is

@ . Mo T,

My, =
. \ﬁTu.ﬁ)2+(Mu)2

or,
for calculation of ultimate torque,

. T
1 u

Méxu ) 2 2
\/(Tu.ﬁ) + (1)

where M _ and Tu are, as defined in Chapter 6, the ultimate resistance
u

noments of the beam to pure hending and pure torsion respectively.



- 120 -~

For example, for grillage B/2/1, taking the average values

of Mu and Tu'for the Series, we have

g = Mg,/ = 6.8/0.556 = 12.23

M, = 15.9; T = 344;
. | _ 12.23 x 15,9 x 3.4
ultimate moment, MEZ = V/kl49.6 112 + 250)
= 14.89
cracking moment, Mﬁzc = 6.8 x 1.255
= 8.53

(all values expressed in inch~pounds x 103),

Thus, the design load factor for the grid-frame, using

the above values is given as
M : = 9 =
l%zu/MéZC 1/,.89/%.53 1.63

The calculated values for Series B are given in Tabhle 7.8

Table 7.5:.~

Grillage Cracking Ultimate Load
M, M M. M Factor

B/2/1 3.53 0.69 14,.89 1.21 1.63
B/2/2 9.14 0.74 14459 1.21 1.75
B/2/3 10.42 0.97 15.00 1.0 1.40
B/2/4 10.01 0.94 15.00 1.40 1.49

all values in inch~lbs. x 103

2.5 Conclusions:--

Chapter & outlincs the main application of the author!s
work to beams as elements of a grid-frame system. The invest-
igation of a grid-frame at ultimate necessarily includes an initial
elastic analysis and conclusions are given for a method of solution

utilising a Computer to solve the simultaneous equations. Using
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this information, the author's ultimate moment équation is applied
to the solution at ultimate and preliminary conclusions made on a
method for evaluating the design factor of the grid~frame. These
conclusions are given as follows:=-
1. The Equilibrium method is a well established technique and a
powerful tool for the engineer in solving linear elastic problems
associated with rigid jointed frames at working load. The method
given by Livesley is extremely comprehensive but unnecessarily
complicated for grillages, in particular the grid-frames tested
by the author. A simpler expression has been used and gives a
solution, the deflection wvalues of which compare satisfactorily
with values measured experimentally. The corresponding applied
loads are then used to evaluate the internal hending and torsion
moments for design at working load,
2. The information provided ny an elastic analysis is utilised
in the analysis of the grid-frame at ultimate load as follows:-
(a) The position of the maximum moment values occurring
in the grid-frame indicate the location of potentiai plastic
hinges at ultimate - these positions are required for analysis
hy the Greenberg-Prager limit design approach.
(b) Using a method of analysis derived by the author,
the location in the grid-frame of the maximum combined moments
defines the area of beam about which failure wiil take place.
The design ecuation for ultimate moment is applied to this area
using the ratio of bending moment to torsion moment calculated
at working load to evaluate the ultimate bending moment of the
beam and therefore of the grid system. The ultimate torsion-

moment is similarly calculated.
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3. A design load factor for the erid~frame is found by comparing
the calculated value of ultimate moment to the working load moment
given by the elastic analysis.

4« The application of the author's design ecuation is dependent

on the ratio of bending to torsion moment remaining constant, that
is, the theory assumes a uniform distributed lond increase from
working to ultimate load. For example in ¢rillage B/2/1, only
continued ircrease in the applied load 2t joint B can he considered.
5. The author's theory does not take into account the effects of
shear which exists in the grid-frame at all times as shown by the
elastic analysis, This, together with other noints raised in the

investigation are discuscsed in Chapter 9.
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CHAPTER 9O
CONCLUS TONS

2.l Summary:

In Chapter 9 it is proposed to review the main conclusions
given in detail in the previous Chapters so that an overall assess=—
ment can be made of the experimental and analytical investigation.
These conclusions are classified into three main sections as
follows: -

1. The study of a reinforced concrete beam during the
initial stages of loading to establish a theory for the angle of
eracking.,

2. The study of a reinforced concrete beam at ultimate
load to estahlish theory for calculating the ultimate bending
moment of a beam subjected to a known applied torsion moment, or
the ultimate torsion moment for a known applied bending moment,
although the latter case is less common in practice.

3. The extension of this investigation to congider the
moments in reinforced concrete grillages loaded normally to the
plane of the grillage at ultimate, This study includes the
analysis of the frame at working load.

Although sections 1 and 2 form the major part of the
investigation, the author feels that the main application of these
conclusions is to the study uf the beam as a member of a frame
system and section 3 thus illustrates the practical application of
this study.

9.2 General Conclusions:

9.2,1 The following are the general conclusions for
section 1, dealing with cracking of a reinforced concrete beam

over a range of applied loading up to working load:-
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1. The initial angle of crack depends on the following:-

(a) the ratio of applied bending moment to applied torsion
moment,

(b) the stress-strain relationship for a rectangular section
of plain concrete subjected to pure bending - in this study, a
semi-plastic relation is assumed.

(¢c) the stress-strain relationship for a rectangular section
of plain concrete subjected to pure torsion - in this study, a
completely plastic relation is assumed.

2. The initial angle of crack is not dependent on the
following: -

(a) the dimensions of the heam-section for the range of
section investigated in this study, that is for ratios of depth/
breadth between two and one.

(b) whether the beam is holleow or solid

(c) the nature of the steel reinforcement,

3. For the stress-strain relations assumed in this invest-
igation, and over the range of section up to "k" (= d/b) equal to
three, the depth of the neutral-axis is constant for all "k" ratios
during the stage of loading prior to initial cracking, this being
true for both solid and hollow sections.

4. Prior to cracking,

(1) the moment of resistance of the heam to pure bending
is defined by

(a) the maximum tensile strength of the concrete

(b) the geometric shape of the section

(ii) the moment of resistance of the beam to pure torsion

is defined by

(a) the maximum torsional strength of the concrete



- 125 -

(b) the geometrical shape of the section .
and these statements.are trie for both solid and hollow sections.,
222 The following are the conclusions for the behaviour
of the beam beyond initial cracking: -
1. This investigation is restricted to beams of under-
reinforced design; as a result, the position of the neutral-axis
at ultimate differs from its position prior to cracking, At the
load stage when the longitudinal reinforcement reaches its yield-
stress, a condition of constant stress in the steel is assumed
(this property having been specially selected for the steel used in
the experimental investigation) so that further increase in the
moment of resistance of the beam is achieved by increase in the
length of the lever--arm with resultant decrease in the value uf 'n'.
2. The ultimate stage is defined in this study by the
load stage at which the neutral-axis .intercepts the vertical side
cracks on the front and rear faces of the heam. An expression for
the horizontal angle of inclination of the neutral-axis at ultimate
is then obtained in terms of (a) the vertical angle of crack
(b) the dimensions of the beam sectiun
(¢) the neutral-axis depth at ultimate
3. The mechanism of failure assumed in this study is that
given by the Russian Ultimate Equilibrium Theory, whereby rotation
in the failure area of the beam takes place about a fulcrum in the
compression zone and along the neutral-axis, inclined at an angle
to the longitudinal axis of the beam, The author is of the opinion
that this mechanism agrees best with the actual behaviour of
reinforced concrete beams subjected to combined bending and torsion.
4+ The failure of the heam under investigation is caused

by the raising of the neutral-axis and eventual crushing of the



- 126 -

concrete on the upper surface of the beam, Two failure schemes

are possible and only the case of a horizontal neutral-axis is

considered.

5. The theory based upon an exact mathematical analysis
using the Principle of Least Work is complicated so that design
equations and later modifications are complex and depend on a known
value for the ratio of bending moment to torsion moment at ultimate,
@#. A first simplification made by previous authors is to consider
a constant value for 'n' over the section.

6. The author reduces the original equations further hy
using expressions derived in the first part of the study for the
vertical angle of crack and the angle of inclination of the
compression fulcrum. Three design equations are derived:-

(a) Design Equation A, obtained by assuming a constant
angle of crack up to the neutral-axis depth at ultimate, gives a
simplified expression for the transverse steecl moment terams, but
the equation is dependent on a known value for (.

(b) Design Equation B, derived from A by using a relation
between @ and o¢ and hence B for a given section, contains no
trigonometrical terms but is still dependent on @, and in eliminat-
ingoc , three equations must he considered over the specified
range of #. The assumption that the depth uf the neutral-axis at
wltimate is negligible compared to the depth of the section permits
further simplification and calculations show that this assumption
is justified for beams of under-reinforced desigh.

(c) Design fiquation C overcomes the disadvantage of
including ¢ in the expression since only one of the applied moments
at ultimate need be known. This final expression therefore

reflects the original concept of the ultimate squilibrium theory
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since it is independent of the values of the applied loadings up
to ultimate. The main advantages of this equation are:-

(1) the @ value is not used and so the equation is applicable
to all loading conditioné, including pure bending moment or pure
torsion moment.

(i1) the load condition is applied as a final step in the
calculation for ultimate moment so that the preliminary calculation
may be used for the beam section subjected to a range of applied
locadings.

(iii) the form of representation of the design equation as
an ellipse allows the use of charts to extend the application to
include variations in material properties such as, for example,
concrete strength and selection of a moment capacity for in this
case a specified mix proportion.

7. The application of the three design equations to the
series of experimental investigations considered gives anh assess-
ment of the amount of calculation required for each; also, a
comparison of results for ultimate mnoments, between the practical
values measured from the tests and those calculated using the
design equations, can he made. The following main conclusions
are glvens-

(a) Results of equal accuracy are obtained from the three
design equations.  Assuming that the experimental error in any
one series of tests is constant (the conclusions are drawn from
results in which differences between practical and theoretical
values greater that 25% are not included), the assumptions made
in progressive derivation of the three equations are valid within

the range of accuracy accepted in reinforced concrete design.
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(b) The three design equations can he applied to the
experimental results considered in this study since both values
Of‘moment at ultimate arc known. In the practical application
to a beam subjected to a known torsion moment at ultimate, only
design equation C can be used unless additional assumptions are
made with regard to the nature of the load increments up to ultimate.

(¢) For the experimental investigation, a check is made
that the failure mechanism conforms to that assumed in the
theoretical investigation by using design equation C to calculate
hoth the ultimate hending and torsion moments since the ratios of
theoretical to practical moments, Fb and Ft’ are equal. A large
difference therefore indicates a heam failure other than as
specified in the theoretical investigation; for example, premature
failure due to bond slip of the reinforcement does not satisfy
this condition.

(d) The three design equations can %e applied only to
under-reinforeed design sections, The preliminary calculation
for désign equation C includes evaluating the moments of resistance
of the heam subjected to btending load only and to torsion load
only so that a check is made at this stage on vhether the theory
is appiicable to the given section,

9.2.3 The application of the theory derived in the main
part of the study to grid-frames is discussed in Chapter &, together
with a method for solution uf the moments in the frame at working
load., The following conclusions are made:-

1, A solution for the elastic behaviour of a rigid jointed frame
is necessary hefore applying existing ultimate load theories to

the frame to caleculate ultimate moment,
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2. The equilibrium method, as outlined by Livesley, and using a
Computer for solution of the simultaneous equations, provides an
elastic analysis for skeletal structures in general and the
application of this method to multi-beam systems is well eétablished.
3. Applying the method to the grid-frames investigated experimentally
by the author, the amount of computation is reduced to a minimum

and theoretical values are obtained for the internal moments in

the beam members. In addition, satisfactory agreement between
practical and theoretical deflections at various points along the
grid~frame is found at working load.,

4. The elastic solution suppiies the following information required
for an ultimate load analysis:-

(a) Using the Greenberg-Prager limit design method, the
position of the plastic hinges can he located more exactly.

(b) For the calculation of ultimate moments using the
author's equations, the failure-zone about which the ultimate
equilibrium principle is applied is located gt the position of
maximum combined bending and torsion moments; also, the ratio of
the bending and torsion moments at that point is deduced at working
load,

5., Using the latter approach, a value for load factor is found
for each of the heams tested by comparing the working moment
capacity of the beam given by the equilibrium method and the
ultimate moment capacity of the heam given by the ultimate
equilibrium method. This value thus defines the design factor
for the grid-frame as a whole.

6. The author's experimental investigation of reinforced concrete
frames is extremely limited and further study is 'required to

jnvestigate the behaviour of the rigid jointed frame loaded at
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Tight angles to its plane at ultimate. Suggestions for future
research are therefore given in Section 9.3.

2.3 Future Research:

The author's exnerimental and analytical investigation,
and in particular the extension of the main theory to grid-frames,
has raised a number of allied problems which require further study
and these are now listed as suggestions for future research.

In the study of the beam hehaviour prior to cracking and
eventual formation of the failure crack, the author considers that
these points are worthy of further study:-

(a) The angle of inclination of the compression fulcrum
has not heen defined in terms of the stress condition of the
concrete in the compression zone. Further study is necessary
to examine the compressive strength of the concrete subjected to
combined stresses especially towards ultimate., The value of/G
is of importance for application of the ultimate ecuilibrium
principle to reinforced concrete heams subjected to combined
hending and torsion,

(b) A satisfactory theory for representing the combined
bending and torsion moments at ultimate load has heen developed.
A similar theory may define the moment capacity of the beam at
working load so that both relations conld be represented on the
game basis for load factor calculation. Also, the defining of
the arbitrary limit of working load by width of crack will require
further research on the formation of cracks in full scale becams,

The effects of shear have not heen considered by the
author. Morice and Lewis(7o) have indicated that shear effects

can be neglected for investigating the ultimate strength of

prestressed concrete heams,
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The author, hewever, is of the opinion that more research into the
problem in reinforced concrete beams is required. As indicated
in Chapter 8, shear effects are appreciable and cannot be

eliminated as was possible in the Series C and D tests carried
out by the author.

Finally, the problem of combined bending and torsion in
grid-frames with rigid joints has only heen introduced by the
author., No atbtempt is made to assess accurately the stiffness
property of the reinforced elements of the frame; only approximate
values are used in the elastic analysis for G, J, I and E; and
the effect of variable rigidity of the beams has not heen invest-
igated.

The final conclusion, therefore, is that only a preliminary
study has been made into a problem which the author feels is an

extremely interesting and worthwhile field of research,
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APPENDTX A
ANGIL OF INCLINATION OF COMPRESSION _FULCRUM

The problem of evaluating Je , the angle of inclination
of the compression fulerum, is now discussed in greater detail
than in Chapter 4. The value for this angle is of particular
importance in calculations for ultimste moment using the theory
outlined in Chapter 5 of this thesis.

The author has adopted a geometric relation for ﬂ on the
assumption that the ineclined neutral-axis intercepts the vertical
cracks on the sides of the beam at ultimate so that an expression
is derived and given as

cotﬁ = cot® (2jk + 1) where o = vertical angle of crack,
and k = geometric constant = d/b; and for j = 1, cot B = cotoc(2k+ 1)
so that cotﬁ > cot o, and B <€ since for the rectangular
sections considered,; k is always greater than unity, This is a
necessary concition due to the change in direction of the vertical
cracks on the front and bhack faces of the heam, The relative
values of ¢ and B are of particular sigrnificance in the expression
for the internal moment provided hy the vertical transverse steel
since the sign of the moment will change, for example in the case
of pure torsion, according to the value ofﬂ adopted,

(50)

The approach used by Evans and Sarkar is hased on the

same principle as that given for evaluating o¢, that is by
resolving the torsion stress, T , and the compressive stress in
bending, f,, as shown in Fig. 1.A. to obtain the principal stress,
fp, acting normal to the fulerum, and hence £ . Using this
approach, the value of ﬁ must lie hetween 450 and 900, and for
T= fc, /3 = 58.50; therefore the two theories agree only for

o
the casge of pure hending since /8 = o =90 .
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Fig‘ loA.

N
I\

A true value forJA? will only he found hy considering the

stress condition in the compression zone at ultimate, Furtﬁer
research is necessary to investigate the condition of stress in
the concrete in the compression zone at the stage when the fulcrum
is formed.

The results given in Table l.A and Tahle 2.i are for
selected values of‘/g =.450, 60° aad the geometric expression
adopted by the author, applied to calculations of ultimate moment
for the Series C and D tests. Significant differences are shown,
and for the pure torsion case, D/2/4, as mentioned above, a
considerable difference is obtained due to the value ofd/? given

by the geometric expression being less than 450.



Iable 1,A:~ values are in inchelbs. x lO3
Beam ¢ Ultimate Bending Moment, Mb

B=145" | B=60° | B=cot™(2k +1)| actual
¢/2/1 10,92 8,013 6,08 5,746 AL
C/2/2 |11.18 9.473 9.678 9.360 9.240
c/2/3 8.98 | 11.998 | 12.298 14,424 13.921
C/2/4 | 6.03 | 12,603 | 13.191 12,746 11.614
C/2/5 - - 9,778 9,240
c/2/6 3.56 12.683 14,028 11.832 8.911
Table 2,A:- values are in inch-lbs, x 103

Ultimate Bending Moment, Mb

Beam o} : 5 a

A= 45° ﬂ= 60" | B=cot (Rk + 1)| actual
D/2/1 6.43 14,.067 14.558 14.227 9.913
D/2/2 3.04 | 15.115 14.197 12.110 5.345
D/2/3 5,96 | 14.362 14.935 14.475 15,047
D/2/4L | O 12.244 - 6.328 4.295
D/2/5 7.08 14.805 15.222 15,045 12,560
D/2/6 L.665] 13,761 14,504, 13.575 13.399
D/2/2/R| 8.08 | 14.487 | 14.806 144713 14.250
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APFENDIX B

TORSION _OMENT FACTOR

Apnendix B deals with the statement made in Section 5.5,

Chapter 5, regarding the torsion moment factor, 'p,' and defined as

M, applied (actual) = Py x M, applied (as measured).
In the Ellipse Theory, derivation of the ultimate load curve is
dependent on the ult;mate resistance of the heam to pure bending
and pure torsion, or Mu and Tll respectively, and the eguation of the
curve 1s given as

(x/M )% + (y/1 P = 1
u u

It is true to say, therefore, that at any intermediate point (x,5)
on the curve, the resistance of the beam is defined by the ratio
of x, the resistance to the applied bending moment, to y, the res-~
istance to the anplied torsion moment. This can now be applied as
the Design Zquation C in vhich the substitution of an applied torsion
moment, y, given hy Ht’ into the eguation enables calculation of
the ultimate resistance bending moment, Mb. As a result, any error
in the measurement of the applied torsion moment, M, , will produce
an error in the calculated result, Mb; similarly, for applied bending
moment, an error in calculated Mt.

Or, since the beam resists only the effective moments bheing
applied to it, the calculated result is in error vhen the measured
applied and actnal apnlied are not the same.

ilo definite conclusion can be nade from the work covered
in this investigation, hut it is suggested that the variation in the
Ft values are ;reater than those for F in Tahles 10 - 16,6, and in
particular, in those teste where application.of the torsion moment

is through loading arms rigidly fixed to the concrete; for example,
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compare 3 . P s S ‘
P Series D, Table 12.%, in which the mean values for the Series,

ool ins
xcluding beams D/2/1 and D/2/2, are F, = 1.05 and F, = 1.25, and

b t
the Russian heams, Table 15,56, in which the torsion load is applied
directly to the beam, and the corresponding values are F13 = 1,00
and Ft = 1.01. |

Further research is necessary and is proceeding in this
field with the object of investigating the effect of the rigidity of
the loading aras.

However, applying the factor ’pt‘ to the Design Equation B

gives the following modified equations, for 2 < @ < 8:-

£ A .¢2 + 0o64-(/>c)2(2k+/)3—§i7b3
£.6(8% oet(pf(ee+))

n

- / ,
Mo osg k) L £bn*s £a(d-m]|

rosa(pf k) £
+O- 64@"{2k+1)£g—4—rb3 (d-ds-7)

i +0- 64 (,tg_)z Ji.Ar d.dz

Similarly, expresslons are evolved for the whole range of @, and in
all casés the effect of p, on the calculated Mb is dependent on the
F=value.

The effect of 1 is more clearly defined in the mllipse

Theory, and the modified expression for Tu is given as,

-—

2
(1 + (21 + 1)7) o 2
. fc h n~ 4+ fL AL(dl -n)
fTA
_ 1 ] LI -a_ -
To T TpEx+ 1) + (2 + 1) - pyla = dg =)
f A
TI
i + 3 a d3 1
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APPENDTX G

CAICUIATIONS FOR _ULTIMATE :OriiNT

Calculations are given in Appendix C for a heam section
selected from the Leeds series of tests, heam 5, as given in
Tables 1.6, 7.6, 13.6, and in addition, results are given using
the original equations<5o).

The actual applied moments are, in inch Ihas, x 103,

M, = 81.5; M, = 13.2; so that ¢ = 6,17, and f° = 38.118

(i) Design Eauation 1 (original equation):~

The working details are given in Fig., 1.C

Fig. 1.C
-
e _
/‘r————'iE? Aol g
Q
.« | o> s
o | b © |9
O | AN
[ ] [} b
~6'o \dﬂ S 3
S <~
¥ F= ”
b,=5

f1 = 5,056; f''h = 30,336
c ¢

£ 4
£_A. = 12,98 A

| 0
1. Trom Fig. 7.4, for @ =6.17, o&=53.8

cot ¢ = 0,109
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12,98 + 0,564 x 5 x 0,109
2 x 30,336

2. Assume = 45°, then calculate

1

0.219 ins,

3+ Caleulate M, using the value of 'n' from '2',

— 6.1 [~ o3 ]
M= "7.“1'% X 30.336 x 0,048
+ 12,98 (6.6875 - 0,219)
+ 0,307 (7.5 - 0.5 - 0,219)
- 0,564 x 6,5 (0.6 x 0,109 + 0,4)
L (7.5 x 0446 + 6 (0,109 ~ 1))
6'1 e
= 7‘1‘; (1.455 + 83.961 + 2.089 + 3.164)
= 78.066
Lo Caleulate if, = 78,066/6.17 = 12.65

(ii) Design Equation 2:-
This equation differs from Design Ffcuation 1 only in the term for
the vertlcal transverse steel, and is included to justify state-
ments made in Section 5.4 of Chapter 4 and used in deriving the
Design Ecuations A, B and C.

’_

= 54,8, cotel! = 0,091; ¢¥= 52,5°, cot ¢ = 0,767

vertical transverse steel term:i-

C.554 x 6.5 (0.6 x 0,091 + 0.4 x 0,767)
(7.5 x 0.446 + 5 (~0.891))
= 2,272

6‘1 v
300 = 23k x 88,777

= 76.431
bhe M, = 76.437/6.17 = 12.4

(iii) Desipgn Bquation A:-

The calculation procedure outlined in Section 6.3(a), Chapter 6,

is now avplied to the same becm section, using equations 'Al!' and

1420,
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1, For ¢ = 6.17, from Fig. 7.4, o= 83.80, cot o = 0.109,‘ cot?'oc = 0,012
'k! for the givgn beam section = 1,25
cot B = 0,109 (2 x 1,25 + 1) = 0,382
hence,
sinJB= 0.934, cosyg = 0,357, cosecﬂ = 1,07

3. Calcuate 's' from equation 'A2!

0= 12,98 x 0.934 + 0.564 x 5 x 0.109 x 0.357
30,336 x 1,07

= 0.377 ins.

4. From equation 'Al', using calculated 'nt,

v - 5,174 [
/[b - 0.357 + 5-767 l5o168 X 0014,2 X 1.0:7 7

+ 12,98 (6.6875 - 0.377) 0.934
+ 0.307 (7.000 ~ 0.377)

+ 0,564 x 6,5 x 7.5 x 0.934 x 0,012

= 81.797

t

o My = AT T

(iv) Design Eguation B:i=

According to the procedure outlined in section 5.3(bh), Chapter 6,
and applying the equations given in sectlon 6,3(iv), for the
given bheam section,

1., Select eguations for k = 1.25, ¢ > 2, < 8.

2. Calculate n:-
12,98 x 35,118 + 2,24 X U564 X 5
30,336 (35.118 + 7.84)

n =

il

0.359 ins,
3. Calculate b%, using calculated n:~
(38,1125 + 2.8) M,
| = 15.168 x 0.129 + 12,98 (6.6875 ~ 0.359) 35,118

+ 3,92 x 3.914
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+ 2,24 x 0.564 (7.500 = 0.500 ~ 0.359)
+ 0,64 x 0,564 x 7,00 x 6,50

M, = 80,176

_ 80,176 _
ac Mpo= S = 1209

Lxl_Design Bauation C: -~

The calculation procedure outlined in general in Section 6.3(c),
Chopter 6, is now applied to the beam section using the equations
1C1Y, C2', 'C3' and 'C4',

1. using equations 'Cl!' and 'CR1',

_ 12,98 _ N
0 =35.336 0.428 ins;

n2 = 0.183 insg.

M 15.168 % 0.183 + 12.98 (5.6875 - 0.4280)

1l

1

84,024

2. for k 1

1.25, cot ot
cot B =1(2 x 125 +1) = 3.5

sin B = 0.274, cos B =0.962, cosec B = 3.649
using equations C3 and C4

12,96 x 0,274 * 0,564 x 5 x 0,962

S 30.336 % 3.649
= 0.057 ins.
n? = 0,003 ins®
T, = 3%5 6.625 % 30,33 x 0,003 + 12.98 (6.6875 — 0.057)
+ 3,5 x 0.564 x 5 (7.5 = 0.5 = 0.057)
+ 0,564 x 7.5 % 6
= 51.594

3. Applying the load condition,

M, = 51,594 \/;— (81.5/84.024)?
= 12.5%

M, = 84024 \//14; (13.2/51.594)
= §lL.251
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or, alternatively, using the graphical construction, and an
ellipse of equation, |
/(84,0240 + y2/(5L.594)° = 1
for, M o= 13.2, M, = 81,251
and for Mb = 8l.5, Mt = 12,537
The latter application is general for any applied N%,

or Mb’ for beanm 5.

Hith reference to comaents made in Chapter 6 and Fig, 1.6,

the results for beam 5 are given below in the same form, where

Mb = 81,5, Mﬁ' = 81,251, Mt =13.2, M, ' = 12.537.

‘t
Fig, 2.C:
.7%)
":: (/"b’ﬂt)
G/ A 0ﬁ”ﬂ69

1,9

The results given for Design Equation C (81.251, 12.537) are for
hoth Mt and ME known respectively, so that bhoth design equations
are used. The final results now involve the errors in the
substituted values so that the result does not lie on the

ellipse as explained in Chapter 6. The values are however

. s
comparable with those given by the other design equations, as



Shown

in Tahle 1,0,

...]_4_’7_

Table 1.C - summary of results.

M actual = 81,5

M

actual = 13,2

t
Design Equation n M My

1 0.219® 78,066 12.65
2 0,219% 76 437 12,40
A 0.377™ 81797 13.26
B 0.359™% | 80.176 12.90
C - 8L,251 12.54

X B = 450

XX_;? = cot_l (2% + 1)

Eﬁﬁjg = cot™t (2k + 1) expressed in terms of @,
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APPENDIX D

EXPERIMENTAL _DATA

Appendix D contains a typical set of data for the series
of tests carried out in the experimental investigation and
reported on in Chapter 7. The data given is for beam D/2/6,
and is representative of the information available for each of
the test bedms in Series B, C and D.

The large numher of calculations and drawings concerned
with the control-tests the final results of which are summarised
in Tables 2.7 and 4.7 have not been included as these are of a
standard form and dealt with by any text-book on concrete-
technology(l).

The observations of crack-propogation and "Demec" readings
taken for beam D/2/6 are given in Tables 1D and 2D respectively,
and reference to this information has been made in Chapter 7.

Pig. 1.D illustrates the increase in Demec readings with load

and the effect of cracking of the concrete as it reaches the gauge
length, Tig. 2.D is a plot of these readings over the constant
moment length of the beam to assess the upward movement of the
neutral axis, (Figs., 1.D and 2.D are included in the folder-
pocket at the end of the thesis). As stated in Chapter 7, only
locations 'a', 'e', and 'i! represent true average strain readings,
and the remaining data is used to locate more exactly the crack
propogation at different noints along the heam. Table 1.D and

Fig. 1.D thus correlate the sequence of cracking through the load

stages up to ultimate.

(l)A.M. NEVILIE Properties of Concrete, Pitman, London, 1963.
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Table 3,D gives details of the heam-sections as required
Pl . . . . . s
tOr substitution in the various design equations used for

calculating the ultimate moments of Series C and D in Chapter 6.



Table 1.D:-

e T

~ 150 -

Load stage

1.
24

3.

5.

s
8.

9.

Front Back
(D.1) - -
(T,L1) - -
(O.IST) (1) 8—9d-B,i.e. crack in
durafix, diagonal .
between 8 and 9,reaching B
(O-BOT) (1) 8—9d, 9~102 reaching A
(i1) 563 reaching B
(iii) O—ld reaching B -
(iv) 12-139 reaching C
(v) 10-129 reaching C
(O.AST) (1) 8—9—10d - top of beam
(i1) 0-1% - o/B
(1i1) 3-47 - B/a -
(iv) 2-3~4 - C/B
(v) 13 - C/B
(0.67) (1) 2-3-4 - B (1) 12-
(i1) 10-11% - B (11) 5-4-B
(0.75) - -
(0.9%) (1) 2-3-4-A -
(1.05%) (i) major failure (1) major failure

crack, 2-3~4 - top

craclk 2-3-4—=top




TABLE 2D :

LOAD-STAGE /. LOAD-STAGE 2 LOAD-STAGE 3
A 8 | ¢ 2] A 8 C O A 8 C D

o ~R02| ~l0/ —:2.9-2 ~00%|-303 | ~404|-/il |-I5/5 |-202|+302| O
TeOb| ~404| ~(01 | +/0:/ | ~60%|~60% | /01 |+707 |-1313 |-808 | +404 |+2020
/515 | 202 | -303 |-60% |-/4/14 | ~101 |-303 | 803 |-1n9 | 0 |wor |+poe
“PF | o4 |-202 |~604% |-s010 | 202 | o 0 |-1615 |-303 |40/ |+/04
303 | 303 |-202 | 303 [-202 |-303 | -/0/ | -pf |-505 |-do4 |+908 |wre
=0 | ~fo1 |~10 |+303 o o) Po) +/0+ | +101 [ +¥T07 |+1010 |*~/818
-/0") | -R02 | +To7 | +303 O [-505 |+/010 |+/¥0 | +30-3 | +F0-9 |+2222{r2/2/
*0R | +/OY | IO | +30B | +Of | +/0/ *595 +707 |+10:) |+808 |+ ) |+2323
+/0+/ O [-308 | +/01 |+303 [+202 | =101 | +7077 |+505 |+T07 | +404 |#/0/0

LOAD - STAGE 4 Zvo -STAGE & LOAD-STAGE @

A 8 C O A | 8 C D A 8 C O
~/81-8 | =303 | +90F |#/3/3 F2323 | +50-5 [+ 2626 |» 22| =3/3-/ |+/41-4 |+565¢ +i3-3
~2020|-606 |+/9/-9 [+3333 |-2222 | */0'! |+3737 |+797F |~3/3-1 |+12/2 +6J69 |#,373¢
~REVS| +RO4 |+ /44 |+ 4PEP|-262:0|+/515 | +3535|+292F|-353-5 |+/9/-F + 6568 +3434
-2020|~40-4 |+ 808 [+2626|-26026~ 707 | *909 [r2/ 2/ 3737|1813 |+/0/-0 |+292-9
1010 [-303 #2929 |+t b -1515 | -404 |+3634 | +3333-292:4| ~T07 raoso|s2g4 8

o) &Ml #1919 | #2525 -60¢ | +/0]O | +-2535 «4:1%2 ot |*+80 B |+202¢|+5252
~4OG | +4O4 |+3434(+3333 | ~/TI7 | r50-5 |+ FOFO+5555-/9+9 | 909 | +5050(+787-8
+70 7 |# /1] #2828 |+448 4| -50.5 |+/01.0 | #3535 | #5656 | ~/5/.5 |+/01-0 | ndeR $|+787.8
HIOA | #18]-4 |+/515 | 44598 =707 |+/3/3 | +2080|+46P 0| ~/815 |+/p/ - |rdo40\+767-¢




TABLE 2D (conti)

LOAD -STAGE 7 LOAD -STAGE 8 LOAD -STAGE 9
A 8 c [2) A 8 c D A -] c D

~414-1| +2828|+/,0100|+/,8483| -5353 |+ 660w |+2,0099 *HAO3 |-/, 37341+ 2,45431+6,97/|+1/, 373
~H/41 | #RT2T \#1/8IT PR/ TS | <5151 |+ 5652, 81-6|#3 807T|~1,191-8 | +2,5854+7, 3023 2,211
~#2424+3333 [+/,/4/3|+4/4/ | ~5050|+6 969 *2 )08 |54 5 |-949 -4 72,7068 7,261-9| +4343
~47471 =717 |+/212|+3737 —5454f /1D | #iE)E (#4434 L5959 |-/F/9 7919 |rSese
+3434|~/010 4494 4| +p56:5| 2141 |- 1202 | +5050+7979 |-4898 |-131.3 145353 |+9292)
-262¢ +303 (+3030 (0L 0|-3333 | v/0/ 13333 i:‘~707-O “3737| /0 |+3630|+ 7575
-2929 1‘40"4' # 5954|9373 "33 | t4o T 6060 ﬁ,o%~8;4/4~/ O #6868 |+/,2019

—2525|+/010 | +5/5-/|+709-.0|-33331+80-8 [+565 ¢ | 1,020 ~$04.0| +303 [t5353|+9797

~2/ 2 | +202 01+ 595 9| #,/009-323-2 |* 2424+ 828 2|+/,4342| -353.5|+3030 1»/,04»0::-;-/,5'»7-7l




- Table z‘D;_

dimension detail in ins. in.lbs x 103

Boan T byl @ [ag|a | dy | A fT:T £1b | oM T,
¢/2/1 ;5-115 - '1‘16 S R - - 5,162| -
C/2/2 %f}; - 4—1% - | - |3 |2.98] - | 7.704]10.02 |2.41
0/2/3 22| - |32 |- | - | 3% |4e90| - | 9.553 |15.09 |3.02
c/2/4 |24 | - 3%-2 - | - | 3% | 4.90| = | 10.301 |15.99 |3.42
C/2/5 RE | - 3% |- |- |32 |2.98 - 8.446 | 9.718) -
¢/2/6 |23 | - 331:2- | - | 3% |4.90] - | 9.821|15.62 |3.36
D/2/1 |2k |23 (3% |3%|¢| 33 |49 | 0.3 | 9.922 |15.33 |5.48
p/2/2 | 2% | 13|32 |3 2| 3| 4.9 | 0.3 | 12,177 | 15.86 |5.58
D/2/3 | 2% | 13 |552 |3 2| 3 | 4.9 | 0.3 | 12.694 | 17.12 | 5.58
b/2/h | 2% | 183|332 | 3| & | 35| 49 | 03 | a2 | - [6.15
D/2/5 | 23| 1|4 |3k |3 | 4.9 | 04| 9.399 |15.87 |6.30
D/2/6 2x | 12 3;1% 3% —156- 3% 4e9 | 0.4 | 9.562 | 15,59 | 6.58
D/2/2/R| 2+ | 1% (3% |3} fg & | 4.9 | 0.4 | 9.816|15.31 |6.21
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APPENDIX B

COMPUTER _ PROGRAMMES

Appendix B lists the. computer programmes and results used

in the study, and classified as follows:-—

1. Torsion theory for a rectangular section

(a) St. Venant
Programme 1 -~ IOV 2, n = 20,

Programme 2 - IOV 2, n = 40,

(b) Membrane Theory

Programme GOODTIM, n

il

9.
These programmes have been raferred to in Chapter 3.
2. Grid-Frames
Programme MATRIX SOLVE ~ B/2/1 and 2.
Programmé MATRIX SOLVE - B/2/3 and 4.
These programmes have been referred to in Chapter 8.
A1l the above programmes, plus results, are included in the folder-

pocket at the end of the thesis.






127047467

22,284,158

EptnpurGH UNIVERSITY ATLAS AyTOCODE 1670174y
U Eprn, Leps3281 G000 FAIRBAIRM CIvIL Enb6
0 BEGTH

46 ExND OF PROGRAW

» GQOD TlM,%;g

ProgrAH (+PER%) GCCUPIES 2569 WORDS
PROGRAM DUMPED
COMPILING TIHE 34 SEC /s 8 SEC 0e000000 0
Ne000000 04000000 05000000 |, 04000000 -0,4056299 T4 0000000 0
2000000 ~0s121332 0e121332 OumoRGE 0,000000 -0,205] o’aaaéso 04000000 )
000000 ~00320244 04320244 04000000 04000000 -0,483260 1040244 04000000 0
2000000 ~0e71522] 0e715221 0,00004 - 0,000000 «1,040244 .
«200000 -)e486744 10486744 Q;NMOgg g
39002 =84376950
Naddalngb 0,000000 Dad440n4k6 LARG 0,435907 "00052036 2’242697 -2:‘01992 Q
2422809 -Del12178 Ned37437 :3”%9085 04398858 “0‘159362 0.542236 ~0e676593 0
«360742 ~00296711 0e467089 “L2lsa0. 04303857 =0edas 0.989026 ~04119735 0
$223343 ~00668567 0704885 LO.munéz 04117581 -0,98201 ot
«000000 ~1e410482 16410482 0,00000¢ o
_ ~224475557
0911775 3.000000 0.911775 | ,reg 04904067 '°'939522 3‘223338 -5.730849 0
sB79764 ~Gs086009 00883958  =10,22470¢ 04835171 ~0.145732 0742381 -14878175 0
0763674 ~1e228699 0a797184 34339204 0,655287 -0,345??5 0. 848156 -04347802 0
2497148 -0e528074 0e725272 20,941 43¢ 0.278629 -0,801 T
2200000 12214319 1214319 04000000 \
~624659588
123635881 0.,000000 1,363581 LARGE 14353481 -09021601 :Q:‘igg:g ___,15:956732 1
+321592 ~GeU46631 19322414 ~28,341417 le262878 '0’079135 1.039424 -54323198 0
$167989 ~0e124680 10174625 -94367883 1021554 -0»191238 0,665181 ~04973452 0
2799167 ~02296791 De852469 224692691 00463985 «0,476
o 000N00 (0349397 0sB49397 0,000000 38
7683 LARGE 1273
19779330 0,000000 14779330  LARGE 14768385 0,000000 10050 ‘*122625 1.566656 O
07 0,000000 12733807 LARGE {,670050 0,000000 l.bARGE 14156318 0,000000
000000 14566656  LARGE 14405790 04000000 Led0oro0 N e000000 04000000 0.0000
fel56318 LARGE De754872 04000000 04754872 LARGE ’ |
on LARGE
X0 Y.
X1 YQ‘ ¥i vl X1 v2
X2 ¥o ¥2 vl X2 ¥2
STOFRED AT LINE 44
U eEpInN, LPs32sl 2000 FAIRBAIRN CIVIL enG, 600D TIM

ne&lines (3)
caption x 0 8 yj

newlines(4)
caption x1 £ yO; spaces(5); caption x1 # y1; spaces(5); caption x1 2
newlines(4) ’ 5% £y

caption x2 # yO ; spaces(5); caption x2 £ y1 ; spaces(5); caption x2 g y:

end of program

4 8 4 8

*KRZ,



I (B). PROGRAM GOODTIN, 7L = D

sk A

‘JoB

U EDIN, LP/3281 0000 FAIRBAIRN CIVIL ENG, GOOD TIM
COMPUTING 2000 INSTRUCTI(NS

OUTPUT

O LINE PRINTER 2000 LINES

STORE 25 BL(CKS

CMPILER AA

begin

real a,b,k,p,q,cosh,sinh,cosht,tl,tm,1,m,z,tan,cs,sn,c
integer n,x,y,i,j

read (a,b,i,j)

k=a/b

cycle x=0,1,i
cycle y=0,1,]
t1=0; tm=0

p=x/a; q=y/b
cycle n=1,2,9

c=n*r/2

cosh=%(exp(c*q/k) + exp(-c*q/k))
sinh=} (exp(c*q/k) - exp(-c*q/k))
coshl=} (exp(ec/k)+ exp(~-c/k))

sn sin(c*p)

cs = cos{e*p)

1= (16/(7%2))(1/(n¥2))((~1)¥((n-1)/2))(1-(cosh/cosh 1))(sn)
m=-(16/ (r¥2))(1/(n*¥2) ) ((-1)*¥((n-1)/2) ) (sinh/cosh 1)(cs)
tl=t1l+1l; tm=tm+m;

z=s5q rt({(t1¥2)+(tm*2))

~>2 unless tm > -0,000001

tan=4000

-> &

2: tan=(tl/tm)

8: ->30 unless n=q
print(tl,4,6)
spaces(2)
print(tm,4,6)
spaces(4)
print(z,4,6)
spaces(2)

->4 unless tan<3438
print(tan,4,6)

-6
4: caption $4 large

6: spaces(4)

50: repeat
reEeat

newlines(2)



/@). PROQGRAMME /. - LOV 2R, 7 =20.

* k]

JoB
CIE 003/00000000/ DR FAIRBAIRN LOV2Z N 20

CMMPUTING 2000 INSTRUCTICNS
OUTPUT

0 LINE PRINTER 2000 LINES
STORE 25 BL(CKS

CMPILER AA

begin

real a,b,k,p,q,cosh,sinh,coshi,tl,1,tm,m,z,tan,cs,s8n,c,Tl,s
integer n,x,y,i,Jj

read (a,b,i,j)

k=a/b

cycle x=0,1,i
cycle y=0,1,j

t1=0; tm=0;
p=x/a; q=y/b;

cycle n=0,1,20

c=((2*n+1)(r/2))

sinh=} (exp(c*k*p)-exp(-c*k*p))
cosh=% (exp(c*k*p)+exp(-c*k*p))
coshl=% (exp(c*k)+exp(-c*k))
sn=s8in(c*q)

cs=cos(c*q)

s=—(2%q)

1=(16/(7%2)) (((~1)#¥n)/(((2*n)+1)*2)) ((cosh*sn)/coshl)
m=(16/(7¥2)) (((~1)#n)/(((2*n)+1)*2) ) ({sinh*cs)/coshl)

tl=tl+1l; tm=tm+m;
->2 unless n=20

2: rxepeat

Tl=t1l+s
print(T1,4,6)
spaces(2)
print(tm,4,6)
spaces(4)

z= 8q rt ((T1¥2) + (tm¥2))
print(z,4,6)
spaces (2)

->3 unless tm=0
tan=4000

->4

3: tan=Tl/tm

print(tan,4,6)
4: caption 444 large



12/04767 21,53.52
EninsunGH UNIVERSITY ATLAS AyTOCODE 16/01767

CIle 003,000000600, DR FAIRPBAIRN LoOv2 7=20.
O BEGIwN
47 END oF PROGRAM

PROGRAN («PERM) QCCUPIES 2541 WORDS
PeofinAM DUMPED

CoMPILING TIME 12 SEC s 7 sEC
0+000000 06000000 0s000000 LARGE ~00028149 0000000 0,028149 LARGE ~0,06
o6ee 0009000 0e060666 LARGE 0102554 04000000 04102554 LARGE -0.160122
0.000000 Gelt122 LARGE =02241630 0,000000 0s241630 LARGE -0,357409 0.0000
00 Deds760% LARGE =04520084 0,000000 0e520054 LARGE =0,739432 0000000
0.739432 LLARGE
1000000 042232%4 0.223254 0,000000 LLARGE ~0e026018 De221175 0,222700 “0o11
7637 LARGE ~0,054089 0,214626 D.221834 =0e261334 LARGE =0,0945880 0,202650 04
223762 =3.468197 LARGE ‘=04148355 0183592 0e234041) =0,808069 LARGE =0,224550 Oe
185150 e272936 ~1:447307  LARGE ~00334284 e114892 04353477 -20909552  LARGE -
0.451045 Ca061952 0,494927 mw7e226216 LARGFE ~0,708000 0000000 0,708000 49600605094

0195864,180612 LAKGE

N.000000 N.450646 0,450546 0,000000 LARGE ~De019935 0e444712 Oed447157 -0,04
4624 LARGE 0043005 D,434540 0,436643 =04098064) LARGE 0072864 Ded412264 0,
418454 «0, 176747 LARGE -0al14350 Na376516 De393497 ~0,303705 LARGE =0,174448 Oy
322322 De3665802 =a.541222 LARGE ~0e264038 0e243254 0.359010 =10085443 LARGE -
0,400594 Da134068 0s422425 =22988004 LARGE =0,608125 «-0e000000 0.608125 68210716682

22430.162131 LARGE

fe00000C 1.b85392 N.685392 . 0.000000 LARGE -0s010800 0eb680342 0.680428 =0,01
5e74 LARGE =0,023315 Na664297 Na664806 0035093 LARGE -0,039572 0,635041 0,
634272 -0,062314 LARGE ~a0s2340 D,58759% De590894 =0,106093 LARGE =0,095953 0,
514379 De523252 -N,186542 LARGE -0s148394 06403186 : De429628 =0e3468055 LARGE -
0,23a209 De235604 0335042 -la011054 LARGE ~0,4156395 ~0e000000 0.416395 65534837982

559110969 LARGE

Be000000 0,930519 0.930519 0,000000 LARGE 0,000430 0.924405 0,924405 0,00
0446 LARGE ~0,000358 N,906955 De906955 ~0,000394 LARGE =0,0001958 0.875936 0,
875936 -0,000222 ILARGE 02000647 D.,823693 0e823693 0,000785 LARGE -0,000367 O,
7425885 Da742555 -0,000494 LARGE «0,000738 0s619478 0e615479 -0,0011%2 LARGE
0,002210 0,418082 0.418088 0.005287 LARGE ~0,019296 «0+000000 0,01929¢ 15292394683

347083 LARGE

X0 ¥
X1 Yy

STOPPED AT LINE 47
Cie fan3,00000000, DR FAIRBAIRN  LOV2
RUNMTING TIME 1a sEC /7 9 SgC



2. QRID-FRAMES.

LI Ty

Jas

CIE 003/00000000/ D R FAIRBAIRN MATRIX SOLVE B/2/3 AND B/2/4
EXECUTI(N 30 SECINDS

COMPILER AA

begin
integer i, j,ctr,r,y
read(r,y)

begin

array A(l:y,1:y),B(1l:y),X(1:y)

integer array PERM (1:y)

routine spec MRLINEQ(array name A,B,X, integer array name PERM, integer n,Q)

comment r is the number of matrices to be solved ¢
y is the size of the matrix
ctr= 1
1: cycle i= 1,1,y
cycle j= 1,1,y
read (A(i,3j))
repeat
repeat
cycle j= 1,1,y
read (B(j))
repeat

MRLINEQ(A,B,X,PERM,y,1)
caption $4d4#$4 SOLUTIN
newlines (2)

cycle i= 1,1,y

newline

print £1 (X(i),7)

repeat

cetr= ctr 4+ 1
if etr > r then ->2

-> 1

routine MRLINEQ(array name A,B,X, integer array name PERM, integer n,Q)
real AMAX,CHANGE

integer i, j,jMAX,s

switch ENTER(1:2)

if n>1then ->ENTER(Q)

if n<Othen->2
X(1)=B(1)/A(1,1)

return

2:caption MRLINEQ@datagfauult,n<0;stop
ENTER(1): cycle i=1,1,n-1
AMAX=0j JMAX=0

cycle j=i,1,n

if mod(A(j,i))<AMAX then ->1
AMAX=mod(A(j,1)); JMAX=j
1:repeat

PERM (1) =3MAX

cycle j=i,1,n
CHANGE=A(i, j)

A(i, j)=A(jMAX, )

A(JMAX, j)=CHANGE

repeat

eycle j=i+l,1l,n
A(j,i)=A(j,i)/A(i,i)

cycle s=i+l,1i,n
A(j,8)=A(j,8)-A(i,s)*A(j,1)
repeat

reggat
roggat

ENTER(2) icycle i=1,1,n
X(i)=B(1i)

repeat

cycle i=1,1,n-1

CHANGE=X(PERM(i))
X(PERM(i))=X(i)
X(1i)=CHANGE

cycle j=i+l,1l,n
X(3)=X(F)=-A(j,i)*X(1i)
regeat

remat
X(n)=X{(n)/A(n,n)

cycle i=n-1,-1,1
cycle j=i+l,1,n
X(i)=Xx(1i)-A(i, j)*X(Jj)
repeat
X(i)=X(i)/A(i,i)
repeat

end

2t end

end of program

&k R

0 1,186 0000 ~-0,300 000000

2,681 0 -0,309 0 0 0 0 -0,197 1,186 0 0 0 0

186 0 2,681 0 ~0,30 000000000

0 -0,309 0 2,681 0 -0,197 1,186 00 00000

0 0 -0,309 0 2,09 0,197 0 1,186 -0,197 0 ~0,309 0 O O
0 0 0 -0,197 0,197 0,066 0 0,197 -0,022 0 0 0,197 O O
000 1,186 0 0 5,053 0 0 -0,309 O 1,186 0 0

-0,300 0 0 0 1,186 0,197 0 2,09 -0,197 0 O O -0,3

0 -0,197 0 0 -0,197 -0,022 O -0,197 0,066 0 0 0 O
1,186 0 0 0 0 -0,309 0 0 5,053 0 0 O 1,186
000-0,30000000 2,081 01,1860

000,197 1,186 0 0 0 0 2,681 0 -0,309

0000 -0,309 00 1,186 0 2,681 0

00000 0,197 1,186 0 -0,309 0 2,681

o -1,333 0,333 0 2,607 1,667 00000

09 0
0,197

00 QOO0

(VN
o0
00
o0

*kk 7,



Q7/04/67 18,5357
ERINRURGH UNIVERSITY ATLAS AUTOCODE la/0y1/67

C1E 003,/00000000/ D R FAIRBAIRN MATRIx §OLVE B/2/3 AND B/2/4

0 BEGIN

3 BEGIN

27 ROUTINE MRLINESD
73 END OF ROUTINE
74 enD oF BLOCK

75 END OoF PROGRAM

ProGgaAM (+PERM) QCCUPIESR 2682 WORDS

PROGRAM DUMPEDR

COMPILING TIME 18 SEC » 10 SEC
SOLUTION

428777899, =]
54335469560 O
m54,4337453, =3
543932764, ©
148250421, ©
EeB754538, i
-2¢73541960n=12
44211297%, 0O
1218508126, 2
749917384, =12
=5,4337453, =23
543932764y, 0
408777899, =1
=0o33549540 O

STOPPER AT LINE 75 _
C1E 003/00000000/ D R FAIRBAIRN MATRIx SOLVE B/2/3 AND B/2/4.

RUNMING TIME 3 SEC s 2 SEC



/(3. PROGRAMME 21 - (ov 2, 72 =40.

L2 2.7

JB

CIE  003/00000000/ DR FAIRBAIRN LOVZ N40
COMPUTING 2000 INSTRUCTIONS

OUTPUT

0 LINE PRINTER 2000 LINES

STORE 25 BLOCKS

COMPILER AA

begin

real a,b,k,p,q,cosh,sinh,coshi,tl,1,tm,m,z,tan,cs,sn,c,Tl,s
integer n,x,y,i,j

read (a,b,i,j)

k=a/b

cycle x=0,1,i
cycle y=0,1,j

t1=0; tm=0;
p=x/a; q=y/b;

cvcele n=0,1,40

e=((2*n+1)(7/2))

sinh=3% (exp(c*k*p)~exp(~c*k*p))
cosh=} (exp(c*k*p)+axp(~-c*k*p))
coshl=3 (exp(c*k)+exp(-c*k))
sn=s8in(c*q)

es=cos(c*q)

s=-(2*q)

1=(16/(7*2) ) (((~1)¥n)/(((2*n)+1)*¥2) ) ((cosh*sn)/coshi)
m=(16/(74#2) ) (((~1)#¥n)/(((2*n)+1)%2) ) ((sinh*cs)/coshl)

ti=tl+l; tm=tmim;
=>2 unless n=40

2: repeat

Tl=tl+s
print(T1,4,6)
spaces(2)
print(tm,4,6)
spaces{(4)

z= 8q rt ((T1¥2) + (tm¥2))
print(z,4,6)
spaces(2)

->3 unlesg tm=0
tan=4000



07/04/47 18,51.28
ERDINBURGH UNIVERSITY ATLAS AUTOCODE 1as01767

ClE n03,00000000/ DR FAIRBAIRN LOy2 , N =40.

0 REGIN
47 END oF PROGRAM

PROGRAM (+PERM) OCCUPJES 2544 WORDS
PROGRAM DUMPED

CoMpPILING TIME 27 SEC , 8 SEC 3
Ne000000 0.,000000 0,000000 LARGE =0e028149 D«000000 0,028149 LARGE =0.06
Dabéa 0.000000 Da060666 LARGE 02102584 De000000 0s102554 LARGE -0e160122
0,000000 Del60122 LARGE w0r241630 04000000 0241630 LARGE =04357609 0.,0000
ne De357609 ILARGE =04520054 0,000000 0s520054 LARGE =0,739432 0+000000
0a73%432 LARGE
0000000 Re223254 0,223254 0,000000  LARGE ‘=0aD26018 0s221175 04222700 =0a.11
7637  LARGE ~0,054089 Na214426 D.2218234 =04261334  LARGE =0,094880 0e202650 O
223742 =0,468197  LARGE «04148355 0.183592 De23604) =0,808069  LARGE =0,224550 0,
155150 0s272935 =12447307 | ARgE =~02334284 Dall4a92 0e353477 =20909552 | ARGE -

Da491045 O.041952 0.494937 —72926216 LARGE =0,708000 =0+000000 0,708000 49600645187

4631643,295288 LARGE

0.000000 0,450566 0.450566 0,000000  LARGE ~Ne019935 De446712 0ed447157 0,04
4626 LARGE ~0,043005 0,434540 0.,436683 =0s098061 LARGE =0.072866 02412264 0.
418654 =0 1746747 LARGE =0s114350 N,376516 De393467 ~-0,303708 LARGE «0,174448 D,
322322 0a366502 =0,541222 | ARGE =0e264038 De243254 " De359010 12085443 | ARGE -
0,4005964 Ds134068 0,422435 ~22928004 LARGE =0,608125 -04000000 D,608125 568217398785
491244114215  LARGE

0.000000 Na685292 D.685392 2000000 LARGE =0a010800 D,680342 Dabp0428 -~0,01
5875  LARGE -0,023315 0,664397 D.664806 =0,035093  |ARGE =0,039572 0635040 Oe
636272 ~0,062314 L ARGE =0s062340 0,587596 De590894 =0,106093 LARGE -0,095953 0,
514379 0.523252 ~0,186542 LARGE =04148394 0s403186 De429627 ~0e368055 LARGE -
0,23r209 0,235605 0.335042 =1:011055  LARGE ~0,4163¢5 «00000000 N0e416395 66030616934
B76,888990 | ARGE

0,000000 0,9301a] 0,930181 0.000000 LARGE =0,000048 0e924474 De924474 «0,00
0051 LARGE 0,000093 0,907390 0,907390 0.000103  |ARGE =0,000135 048753647 0,
875347 =0,000154 LARGE Qa.000170 0.823719 D,823719 0,000207 LARGE =0,000197 0,
743380 0e743380 =0.000265 | ARgE 0,000209 0e618318 De618318 06000337 L ARGE -
0.000164 0.418284 0,418284 ~0.000393 LARGE -0,009885 ~02000000 0,009885 10219188829

0069025 LARGE

X0 v,
X1 ¥y

X1 vy

STOPPER AT LINE 47
Cie nN03,00000000, DR FAIRBAIRN LOV2
RUNNING TIME 19 SEC / 18 SEC



Q. @R/D-FRAMES,

L2\

JB

CIE 0©03/00000000/ D R FAIRBAIRN MATRIX SOLVE B/2/1 AND B/2/2
EXECUTIN 30 SEC(NDS

CMPILER AA

begin

integer 1i,j,ctr,r,y

read{r,y)

begin

array A(1:y,1:y),B(1:y),X(1:y)

integer array PERM (1:y)

routine spec MRLINEQ(array name A,B,X, integer array name PERM, integer n,Q)

comment » is the number of matrices to be solved ¢
v is the size of the matrix
ctr= 1
1: cyecle i= 1,1,y
cycle j= 1,1,y
read (A{i,j))
ropeat
repeat
cycle j= 1,1,y
read (B(j))
repeat

MRLINEG(A ,B,X ,PERM,y,1)
caption 444444 SOLUTIWN
newlines (2)

cvele i= 1,1,y

newline

print £1 (X(i),?)

repoat

ctr= ctr 4+ 1
iﬁ ctr > r theg ->2

-> 1

routine MRLINEQ(arraZ name A,B,X, integer array name PERM, integer n,Q)
real AMAX,CHANGE
integer i,j,jMAX,s
switch ENTER(1:2)
if n>1then ~>ENTER(Q)
if n<Othen->2
X{(1)=B(1)/A(1,1)
return

2:caption MRLINEQgdatagfauult,n<0;stop
ENTER(1): cyecle i=1,1,n-1

AMAX=03 jFMAX=0 -
cycle j=i,l,n

if mod(A(j,i))<AMAX then ->1

AMAX=mod(A(j,1)); JMAX=j

l:repeat

PERM (i)=jMAX

cycle j=i,i,n

CHANGE=A(i, j)

A(i, 3)=A(MAX, )

A(JMAX, j)=CHANGE

repeat

cyele j=i+l,1,n

A(j,1)=A(3,1i)/A(i,i)

cycle s=i+l,1,n

A(j,8)=A(j,8)~A(i,8)*A(j,1)

ropeat

repeat

repeat

ENTER(2) :cycle i=1,1,n

X(i)=B(1i)

repeat

cycle i=1,1,n-1

CHANGE=X{PERM (1))
X(PERM(1))=X(1)
X{(i)=CHANGE

eycle j=i+l,1l,n
X(3)=X(3)-A(j,3i)*x (i)
ropeat

repesat
X(n)=X{(n)/A(n,n)

cycle i=n~-1,-1,1
cycle j=i+l,1i,n
X(1)=X(1)-A(i, j)*X(j)
repeat

- X(1)=X(i)/A(i,i)
repeat

end

2: end

end of program

* kR

1

2,681 01,186 0000 -0,30g 000000

0 2,681 0 -0,300 0 000 -0,197 1,186 00 0 0

1,186 0 2,681 0 -0,300 00 0000 00O

0 -0,309 0 2,681 0 -0,107 1,186 0 0000 0 0

0 0 -0,309 0 2,99 0,197 0 1,186 -0,197 0 -0,309 O O O

0 0 0 -0,197 0,197 0,066 0 0,197 -0,022 0 0 0,17 0 O

000 1,186 0 0 5,053 0 0 -0,300 O 1,186 0 0

-0,300 0 0 0 1,186 0,197 0 2,00 -0,197 0 O 0 -0,309 O

0 -0,197 0 0 -0,197 -0,022 0 ~0,197 0,066 0 0 0 0 0,197

01,186 000 0 -0,300 0 0 5,053 0 0 0 1,186

0000 -0,309 00000 2,681 01,186 0

00000,197 1,18 0 0 0 0 2,681 0 -0,309
00000-0,309 00 1,18 0 2,681 0

0000O0O0O0,197 1,186 0 -0,309 0 2,681

000

¢
(4]
(0]
(4] 000100000

(=] =]

dokk 7



10/04/767 1713019
EDINBURGH UNIVERS!ITY ATLAS AUTOCODE 16701767

CIE 003/00000000/ D R FAIRBAIRN MATRIX SOLVE B/z/1 AND B/R/2 .

0 BEGIN

3 BEGIN

27 ROUTINE MRLINEGQ
73 END OF ROUTINE
74 END OF 8LoCK

758 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2482 WORDS

PROGRAM DUMPED

COMPILING TIMg 21 SEC , 10 SEC
SOLUTION

1056194130 =1
E4.03112383, ©
1e5419413p =1
243333626 O
169547013, Q
243868595,
'4.539166Qm”13
1495470134 ©
hehBQ0u303n
443729505,=12
145410413, =1
=2033324626, 0
128619413, =
=»540311233s n

STOPPED AT LINE 75

CtE 0n3/00000000/ D R FAIRBAIRN MATRIX SOLVE B/2/1 AND 8/2/2-
RUNNING TIME 3 SEC , 2 SEC



