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Abstract

T'he equivalent wavefield concept relates diffusive electromagnetic propagation to non-diffusive
propagation, provided equivalent source and boundary conditions are satisfied. This well-known
concept 1s a special case of a more general theorem, proven here, relating the solutions of two
systems of partial differential equations that have the same spatial, but different temporal
derivatives. In the case we consider, the velocity of the equivalent wavefield is proportional
to the square root of the resistivity of the diffusive electromagnetic medium. The use of the
concept has two advantages: first, analytical results may be derived more easily in the equiva-
lent wavetield domain; second, interpretation of data is easier after mapping to the equivalent
wavefield domain.

In general, electromagnetic fields have an irrotational component that is equivalent to P-
wave propagation, and a solenoidal component that is equivalent to S-wave propagation. Us-
Ing a moment tensor and a dipole moment to represent electromagnetic dipole sources allows
comparison with seismic sources. For example, the equivalent wavefield of the magnetic field
generated by an electric current dipole in a whole space is generated by a point source of torque,
generating shear waves only.

The electric field generated by a switch-off electric current dipole at the surface of a half-
space has an equivalent wavefield at the interface equal to a triangle with origin at the switch-oft
time, peak at the arrival time and zero thereafter. When graphed as a function of space versus
time, arrivals in the equivalent wavefield lie on straight lines and can be interpreted using
straightforward concepts from the seismic refraction method.

Diffusive to propagative mapping of numerical data requires regularisation to stabilise what-
ever numerical inversion procedure is used. Approaches include matrix inversion and a new algo-
rithm which uses deconvolution in log time. The latter approach is computationally inexpensive
and permits analysis of the distortion of the recovered waveform which is caused by regular-
isation. Both approaches successfully extract several arrivals when these are well-resolved 1n
the original diffusive synthetic. Diffusive to propagative mapping applied to synthetic elec-
tromagnetic responses calculated for a horizontal electric current dipole source over a uniform
half-space or simple layered-Earth models yields equivalent wavefields which are interpretable

after calibration for waveform regularisation.
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Conventions, Notation and

Definitions

In general the terminology and conventions presented here follow Hobbs (1992). The term
primary field refers to a source field which is generated externally to the Earth’s surface. A
time-varying primary field induces an associated secondary field. The normal field consists
of the primary field plus the secondary field induced in a one-dimensional or layered Earth
approximation. The total field includes any anomalous field, additional to the normal field,

which arises due to additional heterogeneities.

Scalar and Vector Quantities

Vector quantities are written in a bold typeface, for example F', and scalar quantities in normal

typeface, for example F..

Space and Time

Let € = (x1,z2,...,zN) denote the position vector in RY. and e; the ith unit vector so that

T = Zf_f__l r;e;. Let r denote ||x||2 = Zjlv x? The direction cosine y; = z;/r is widely used.

Let t denote time.

Differential Operators

Where F is a function only of a single variable, v say, let F'(v) denote the derivative of F' with

respect to v.

Let 8, denote the partial derivative with respect to time, so that

OF (x,t)
- 1 0.1
and 5 F (e, )
. xT,
O F(x,t) = 5 (0.2)



Let O; denote the partial derivative with respect to the ith spatial conmponent z;, so that

OF (x,t)
GtF r,t)= —_ 7
(@) = == (03)
and
- O F(x,t
0 F(x,t) = (j ) (0.4)
oz
It P is a polynomial with coefficients a;,j = 1,...,m let
P(3)[F(x,t)] = ) a;0, F(x,t) (0.5)
1=1
and similarly for polynomials in 9;.
Transforms
Denote the Laplace transform of F(x,t) with respect to t with transform parameter s as
F(x,s) = LIF(x,t)](s) (0.6)
= / F(x,t)exp(—st)dt (0.7)
0

provided this integral converges. The complex inversion formula for the Laplace transform is

o,

1 C+100
F(x,t) = %/ F(x, s)exp(st)ds, (0.8)

C—100

when this integral converges. The Laplace transform of the nth derivative of a function F(x,t)

1S

~,

n—1
L[0,"F(x,1)](s) = s"F(x,s) — ) s'8," ' 'F(z,0). (0.9)
i=0
Denote the Fourier transform of F(x,t) with respect to ¢t with transform parameter w as

F(z,w) FlF(z,t)](w) (0.10)

/-00 F(x,t)exp(iwt)dt (0.11)

provided this integral converges. Using this convention the inversion formula for the Fourier

transform 1s .
1 .
F(x,t) = 2—/ F(x,w)exp(—iwt)dw. (0.12)
T J_—c0



T'he Fourier transform of the nth derivative of a function F(x,t) is

Special Functions

P

FlO"F(x,t)|(w) = (—iw)"F(z,w).

o(v) ff; o(x —n)f(x)dx = f(n) the Dirac delta function

the 3D Dirac delta function

0i; 0ijG; = a; the Kronecker delta function
erf(x) —\/2—; fox exp(—t*) dt the error function

erfc(z) 1 — erf(x)

complementary error function

0 t<0 -
H(t) Heaviside or unit step function
1 ¢t>0
[(z) [, exp(—t)t*—1dt Gamma function
L)yvt2m : : :
Z.(z) > _, m—EWT) modified Bessel function of the first kind

}CV (Z) T T _(z)—~1,(z)

2 sin(vm)

SI Base Units

modified Bessel function of the third kind

Quantity Unit
Name Symbol

length metre m
mass kilogram kg
time second S

electric current ampere A

(0.13)



SI Derived Units

Quantity

frequency
tforce

pressure
energy

power

electric potential
resistance
conductance
magnetic flux
inductance
electric charge

capacitance

Name

hertz
newton
pascal
joule
watt
volt
ohm
siemens
weber
henry
coulomb

farad

Unit

Symbol

Equivalent

S—l

kgm/s?
N /m?
kgm? /s
J/s
W/A
V/A
A/V
Vs
Wb/A
As
C/V




Vi, Vi
Uu;, U,

u;, Vi

Description

a matrix

magnetic induction
electric displacement
moment of electric dipole

electric field

component of the electric field parallel to the transmitter dipole

component ot the electric field orthogonal to the transmitter dipole
a diffusive field

V7 exp(v) F(z, 3 exp(2v))

source density of strain

magnetic field

source volume density of electric current
source volume density of magnetic current

rate of change with time of the component of magnetic field parallel
to the z axis

deconvolution (inverse) filter for W (v)

R(x,v) = U(x,exp(v)), a resampled version of the wavefield U
matrices

a wavetield

4 exp(—2v) exp(— exp(—2v)), the kernel for the formulation of the
Q) transform as a convolution equation

8exp(—2v)exp(—exp(—2v))(exp(—2v) — 1), the derivative of W (v)
deconvolution (inverse) filter for W'(v)

dielectric permittivity

magnetic permeability

[.amé’s constants

conductivity

resistivity

volume density of mass
displacement

strain tensor

source volume density of force
Laplace transform parameters
q = exp(v) = 2Vt

v = In(2v/t)

singular values

left and right singular functions

left and right singular vectors

Units



f(Vg) + g(Vf)

f(V.A) + A(Vf)

f(VxA)+(VFixA

(AV)B + (BV)A + Ax(VxB) + Bx(V x A)
B.(VxA)— A(Vx B)

A(V.B) — B(V.A) + (BV)A — (AV)B

(035 — YiY;5)

5 (035 — 27i7;5)
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s f(7)dr 1/s£(s)
5(t — a) exp(—as)
f(t - a) exp(—as) f(s)
H(t) 1/s
tH () nlg—n=1

H(t—a) | < exp(—as)
erfc(5%-) . 5 €Xp(—ay/s)

/2 exp(~ % L= /7 exp(—ay/5)
t=3/2 exp(— ) =/ exp(—a/s)

(£ - L)t exp(- %) V3V exp(—ay/s)
t=5/2 exp(—2;) 2z(V/s + 1/a)y/mexp(—ay/s)
pr—1 e}_;p(—g—i-) 2(3%2) Ko (F)

Table 0.1: Some time domain functions and their Laplace transtorms.
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Table 0.2: Some time domain functions and their ¢ domain equivalents.



Chapter 1

Introduction

(Geophysical methods, such as electromagnetic or seismic surveying of the subsurface, are applied
by several industries including hydrocarbons, waste storage, geotechnical, water, minerals, coal
and geo-thermal energy. Recent advances have delivered multichannel transient electromagnetic
(MTEM) acquisition systems which simultaneously record from one source into several receivers.
This i1s in contrast to the seismic method where development and deployment of systems for
multichannel acquisition, processing and interpretation has been ongoing for decades.

Electromagnetic propagation in the Earth is diffusion-dominated over the frequency range
which is useful in deep surveying. The equivalent wavefield concept relates diffusive propagation
to an equivalent non-diffusive, wave propagation, provided equivalent source and boundary con-
ditions are satisfied. This concept has found application in analysis of the diffusive propagation
of electromagnetic, thermal and pressure helds.

This thesis applies the equivalent wavefield concept to relate diffusive electromagnetic prop-
agation in the Earth to a (fictional) equivalent wavefield. The purpose is to enable wave propa-
gation theory and interpretation techniques developed for the seismic method to be applied to
the analysis of MTEM surveying.

This chapter introduces electromagnetic surveying, explains the motivation tor applying the
equivalent wavefield concept and summarises the structure ot the rest of this thesis. Further
chapters introduce seismic and electromagnetic propagation and apply the equivalent wavehield
concept to calculate electromagnetic responses and their equivalent wavetields. Then, using a

calibrated numerical calculation, synthetic responses from half-space and layered Earth models

are mapped to the equivalent wavefield domain and interpreted using concepts from seismic

refraction.



1.1 Electromagnetic Surveying

1.1.1 Industrial Applications

Electromagnetic (EM) methods of surveying the Earth’s subsurface have demonstrated their
utility to the hydrocarbons industry by providing information on subsurface structure in re-
gions where conditions are unfavourable for the seismic method, and by providing information
complementary to that available from the seismic method.

EM methods have been successfully applied to investigations underneath volcanics and in
other situations not favourable for the seismic method (Newman, Hohmann & Anderson 1986.
Withers, Eggers, Fox & Crebs 1994, Zhdanov & Keller 1994, Warren 1996, Yan, Su & Hu 1997).
Replacement ot hydrocarbons with saline water, which is often injected into a reservoir during
secondary hydrocarbon recovery, causes conductivity changes which may be mapped by EM
surveys (Newman & Alumbaugh 1995, Alumbaugh & Morrison 1995a). Conductivity changes
caused by steam flooding (Vaughan, Udell & Wilt 1993, Butler & Knight 1995) may also be
mapped by surface electromagnetic surveys (Wayland, Lee & Cabe 1985, Wayland, Lee & Cabe
1987, Daily & Ramirez 1995, Lee, Xie, Hoversten & Pellerin 1995).

EM methods are also applied in the search for minerals, the characterisation of waste storage
and disposal sites, geotechnical investigations, and the detection and monitoring of resistivity

anomalies assoclated with pollutants.

1.1.2 Acquisition Systems

Of the possible acquisition configurations sub-aerial, surface-source-to-surface-receiver methods
are perhaps the easiest to implement and have received the greatest attention. Many controlled-
source, surface-to-surface systems have been developed for various applications. Commercial
manufacturers such as Geonics now offer a wide range of systems. Developments principally
for mineral exploration include the University of Toronto UTEM system (West, Macnae &
Lamontagne 1984) and the SIROTEM system developed at CSIRO in Australia (Buselli &
O’Neill 1977). More recent has been the commercialisation of deep-Earth sounding systems,
such as TEAMEX from DMT (Strack 1992, Chapter 5) and the Geonics EM42 and PROTEM
systems, which are capable of penetrating to depths of interest to hydrocarbon exploration.
Controlled-source, sub-marine studies have been carried out using the electric dipole trans-
mitter, electric dipole receiver configuration in both the frequency domain (Cox, Constable,
Chave & Webb 1986, Constable, Cox & Chave 1986, Constable, Cox & Chave 1987) and the
time domain (Evans, Cairns & Edwards 1993). The time domain magnetic dipole transmitter,
magnetic dipole receiver configuration has also been used sub-marine (Cheesman, Edwards &

Law 1990, Webb, Edwards & Yu 1993).

Most down-hole EM development has focused on cross-hole acquisition (Sena & Toksoz 1990,
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Figure 1.1: Electromagnetic sources and receivers. Grounded wires are used to provide an
electric bipole source or receiver. Current flowing in loops of wire generate or measure magnetic

hields. Multi-turn coils are often used to give a compact magnetic field transponder with a large
equivalent area.

Sakashita & Shima 1993, Nekut 1994, Sakashita, Shima & Gasnier 1994, Alumbaugh, Becker,
Deszcz-Pan, Lee, Morrison, Nichols & Wilt 1994, Alumbaugh & Morrison 19955, Alumbaugh &

Morrison 1995a, Newman & Alumbaugh 1995, Wilt, Morrison, Becker, Teng, Lee, Torres-Verdin
& Alumbaugh 1995, Wilt, Alumbaugh, Morrison, Becker, Lee & Deszczpan 1995). Work has

also been published on the borehole to surface configuration (Spies & Greaves 1991), examining
what can be detected through a metal well casing (Schenkel & Morrison 1994, Wu & Habashy
1994) and proposals for insertion of insulating collars into a steel well casing which allow it to

be used as both source and receiver electrode (Nekut 1995).

1.1.3 Surveying Configurations

Electromagnetic surveying may be used for preliminary investigation of an area or a more

intensive survey can be designed to delineate an already-identified target.

An electromagnetic sounding system generates a pattern of subsurface current which is

changed by the presence of an anomaly. Lateral profiling (Figure 1.2) deploys an EM surveying

system at a series of locations across the Earth’s surface to identity the lateral location of an

anomaly.
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depth

Figure 1.2: The horizontal location of isolated anomalies in a uniform background can be

identified by deploying the EM surveying system at a series of locations across the Earth’s
surface. This allows a lateral profile to be built up, which indicates the lateral location of a
targets such as faults, dikes, buried objects or other anomalies.

Spies (1989) demonstrates that the volume
and depth of investigation of an EM survey
system increases with the foot-print (source-
receiver dimensions) of the system and the
wavelength of the EM fields employed. Depth
profiling (Figure 1.3) deploys an EM system
with increasing wavelength and/or foot-print
over the same location.

Depth profiling is suitable for detecting geo-
electric variations in depth such as the thick-
ness of the weathered layer, the depth to the
water-table or a layer of clay.

To delineate a target in both horizontal and ver-
tical dimensions the EM surveying system must
be deployed at many different lateral locations
and with many different depths of investiga-
tion. The long offset transient electromagnetic
(LOTEM) method is designed to penetrate to
depths which are of interest in mineral and hy-
drocarbon exploration and to detect both re-
sistive and conductive targets. LOTEM sur-
veys employ a grounded electric bipole source
at the Earth’s surface and a number of surface
receivers measuring both electric and magnetic
fields. In the LOTEM method the distance be-
tween transmitter and receiver is approximately

equal to or greater than the exploration depth.
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Figure 1.3: The depth of investigation of an EM
sounding tool can be varied by altering its configura-
tion. Changes in Earth properties with depth can be
inferred from variations in the EM response measured

using different configurations.



1.1.4 Data Processing and Interpretation

Apparent Resistivity Transforms

Apparent resistivity transforms offer a quick, simple and computationally Inexpensive method

of converting a measured voltage into a figure more directly related to a possible Earth model.

One definition of apparent resistivity is given by Sheriff (1984)

The resistivity of homogeneous isotropic ground which would give the same voltage-

current relationship as measured.

Because apparent resistivity transforms attempt to account for effects of source strength,
recelver sensitivity, and source-receiver orientation and offset, they are extremely helpful as a

pre-processing step prior to first presentation of data.

Iterative Forward Modelling

Iterative forward modelling is a model-based approach to data interpretation which relies upon
the iterative refinement ot a model through forward modelling until a good fit with the experi-
mentally acquired data is achieved. Iterative forward modelling (also widely known as inverse
modelling) is the mainstay of many EM processing and interpretation schemes despite well
understood limitations of the approach.

In many locations a 1D, layered, Earth model is not inappropriate and interpretation using
a layered Earth model gives useful results. 1D iterative forward modelling is tractable using
moderate amounts of computer power and has become a routine process. Well-understood
procedures are available for estimating the degree of confidence with which features in the
resulting interpretation, such as the thickness or resistivity of a layer, are resolved by the data
(Strack 1992, Chapter 4)(Jupp & Vozoff 1975, Vozoff & Jupp 1975, Lines & Treitel 1984).

Goldman, Tabarovsky & Rabinovich (1994) investigate the interpretation of synthetic LOTEM
data calculated for Earth models consisting of two layers with an additional cylindrical basement
high or depression and conclude that interpretation of transients from the LOTEM configura-
tion using 1D inversion pseudo-sections does not give reliable results for such situations.

Regions of more complex geology demand the use of a 2D or 3D Earth model. Unfortu-
nately 2D and 3D EM modelling programs are often computationally expensive and dithicult to
use (Hordt, Druskin, Knizhnerman & Strack 1992). This makes 2D and 3D iterative forward
modelling a slow and painful task. The problem is exacerbated by the dramatic increase in
data volumes resulting from the multichannel surveys required to resolve 2D and 3D teatures
(Schnegg & Sommaruga 1995, Hordt, Vozotl & Neubauer 1995). Consequently the production
of pseudo-sections, by piecing together results from many 1D inversions to give a 2D picture, re-

mains a common technique despite its limitations (Cooper & Swift 1994, Schnegg & Sommaruga

1995).
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[terative forward modelling is probably the most popular development in processing of
synthetic and field data for complex geology. However even the most aggressive attacks on
the 3D problem, which bring to bear massively parallel supercomputers rated in the top 20

in the world (Newman & Alumbaugh 1996), have not yet tackled large MTEM surveys in the

frequency ranges of interest in hydrocarbon exploration and production.

Tomographic Methods

Tomographic inversion methods aim to estimate directly an image of the distribution of sub-
surtface properties as a function of depth. Recently much progress has been made for the
magnetotelluric (Journal of Geomagnetism and Geoelectricity 1993) and cross-borehole elec-
tromagnetic tomography configurations (Nekut 1994, Sakashita & Shima 1993, Sakashita et
al. 1994, Alumbaugh et al. 1994, Alumbaugh & Morrison 1995b, Alumbaugh & Morrison
1995a, Wilt, Morrison, Becker, Teng, Lee, Torres-Verdin & Alumbaugh 1995, Wilt, Alum-
baugh, Morrison, Becker, Lee & Deszczpan 1995, Cote, Degauque, Lagabrielle & Levent 1995).
The EM tomography formulation can be applied to surface TEM data (Eaton 1989), however
little work has been published applying this to field data, perhaps because the backscattered
field i1s weaker and more difficult to image than the direct field, perhaps because noise levels are
higher, and possibly because the proximity of the Earth’s surface complicates both modelling
and imaging processes.

One of the main difficulties encountered in electromagnetic tomography is the complexity
of the phenomena of propagation involved, and, in particular how to take into account the
heterogeneous medium. Tomographic methods are usually regarded as expensive in terms of
computer time. Computational expense can be reduced by assuming a simplified geometry
and /or by employing a simplified propagation theory. The limitations on resolution which are
imposed by ignoring diffraction effects are becoming more well appreciated. Cote et al. (1995)
demonstrate for a cross-hole EM system that the ray theory approximation may be such a bad
approximation that it results in predicting an anomaly of opposite sign to that observed.

Full waveform tomographic inversion of transient electromagnetic data is likely to be ex-
tremely computationally expensive and its application to surface-to-surface dipole-dipole EM

has not yet been published.

Electromagnetic Migration

. . . . v . 1
Electromagnetic migration schemes analogous to pre-stack wave equation migration have been

proposed independently by groups originating in the former Soviet Union (Velikov, Zhdanov &

I ﬂ-

lGeismic migration algorithms can be categorised into two classes: Kirchoff integral methods and wave
equation-based methods. Kirchoft integral methods are based around the concept of a travel time from source to
receiver. Use of this approximation gives increased flexibility and reduced computational cost. EM propagation
- the Earth is diffusive: each frequency in a pulse travels at a different velocity. Therefore the concept of
4 travel time is more difficult to define for EM propagation and so EM migration schemes analogous to the

Kirchoff integral approach may be more difficult to develop.
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Frenkel 1987, Zhdanov & Frenkel 1983, Zhdanov & Frenkel 1988, Zhdanov, Traynin & Port-
niaguine 1994, Zhdanov, Traynin & Booker 1996) and the United States of America (Lee,
McMechan & Aiken 1987). These schemes downward continue the surface EM observations to
construct a two-dimensional resistivity image of the medium that produced them.

The downward continuation operator is constructed by drawing a parallel hetween the EM
and acoustic wave equations. Unfortunately this results in an EM downward continuation oper-
ator which is unstable and small amounts of noise are amplified by the downward extrapolation.

In order to achieve stability Lee et al. (1987) chose to specify the values of the EM fields on
two orthogonal edges of their 2D mesh, thus converting an unstable initial value problem to a
stable boundary value problem. This stabilisation is achieved at the cost of requiring subsurface
field values to be known a priori.

Zhdanov et al. (1994) apply a regularisation procedure to prevent amplification of noise.

Alternatively they propose a migration scheme which has the advantage of being stable, but

the disadvantage of giving the wrong amplitudes: information on structure is extracted from

phases which are correct.

Both these approaches require an estimate of the background resistivity model. An accurate

background resistivity model is important in obtaining accurate results.

Jomnt Interpretation

Sonic and resistivity logs often show a strong correlation, suggesting that electromagnetic and
seismic surveys see the same major geological interfaces (Ziolkowski, Peet, Strack, Andrieux &
Vozoff 1992, Nelson & Johnston 1994). The integrated interpretation of seismic and EM surveys
to yield improved results over seismic alone has been presented by several authors including
(Nagy 1992, Jones 1987, Withers et al. 1994, Warren 1996). The use of seismic reflection data to
constrain iterative forward modelling of transient electromagnetic data has been demonstrated

on large-scale geological units in areas of relatively simple geological structure (Strack, Hanstein,

Brocq, Moss, Vozoff & Wolfgram 1989, Strack, Hordt, Vozoft & Wolfgram 1991, Strack & Vozoft
1992).

1.2 The Equivalent Wavefield Concept in Multichannel

Transient Electromagnetic Surveying

Recent adaption of technology from multichannel seismic acquisition systems has delivered
multichannel transient electromagnetic (MTEM) acquisition systems, which have the capac-
ity to investigate both resistive and conductive targets at depths of interest in hydrocarbon
exploration and production. EM explorationists are now presented with systems capable of col-

lecting an unprecedented abundance of data and require to develop a supporting methodology
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tor designing, acquiring, processing and interpreting such surveys.

The iterative forward modelling, tomography and migration approaches to EM interpreta-
tion are active areas of research. To a greater or lesser extent their effectiveness for interpreting
a large MTEM survey, probing to depths of interest in hydrocarbon exploration, remains un-
proved. All are expected to be computationally expensive when applied to a large MTEM
survey over a complex geological target.

The equivalent wavefield concept relates diffusive electromagnetic propagation to non-diffusive
propagation, provided equivalent source and boundary conditions are satisfied. This thesis ap-
plies the equivalent wavefield concept to yield novel analysis, processing and interpretation
methods for use in MTEM surveying.

T'he essential advantage of the equivalent wavefield is that pulses in the equivalent wavefield
domain do not disperse. In addition to simplifying analytic calculation, this means that the

concepts of wavefield ray theory and travel-times may be applied to produce interpretation

approaches which do not require iterative forward modelling.

Following Tournerie & Gibert (1995) we call the process of calculating the equivalent wave-
field from the measured EM signals, diffusive to propagative mapping (DPM). DPM is well
understood to be an ill-posed problem and the development of efficient algorithms for imple-
menting DPM is an area of active research.

There i1s no suggestion that DPM can somehow lend electromagnetic surveying the high
resolution enjoyed by seismic methods; fundamental limitations on resolution remain. However

the equivalent wavefield may be significantly easier to interpret than the original diffusive data.

1.3 Outline of This Thesis

After this opening chapter the theory of the propagation of seismic and EM energy in the Earth
is introduced. In general, EM fields have an irrotational component that is equivalent to P-wave
propagation, and a solenoidal component that is equivalent to S-wave propagation.

The equivalent wavefield concept is introduced and followed by an informal derivation of the
Q transform, which is a prescription for calculating a diffusive field from its equivalent wavefield.
The method of derivation is a special case of a more general theorem relating the solutions ot
two systems of partial differential equations that have the same spatial, but different temporal
derivatives. This more general theorem is presented in an appendix.

Using the equivalent wavefield concept, and results from wave theory, the response to a
directed impulsive point source is calculated for uniform, isotropic media. The response for
physically realistic sources is then calculated by combination with the source description. A
moment tensor and a dipole moment are used to model EM sources commonly used in field data
acquisition. This representation also allows comparison with seismic sources. For example, the

equivalent wavefield of the magnetic field generated by an electric current dipole in a whole
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Space 1s generated by a point source of torque, generating shear waves only.
T'he equivalent wavefield of a grounded horizontal electric current dipole source located

at the surface of a uniform half-space is calculated for receivers located at the surface of the

half-space.

Following this introduction to the theory of EM and seismic propagation, MTEM field
data acquisition methods are discussed for a surface survey employing the new TEAMEX data
acquisition system, including source and receiver configuration, pre-processing, noise levels,
signal distortions and repeatability.

The problem of transforming a diffusive field to an equivalent wavefield is analysed and
seen to be an inherently ill-posed problem. Regularisation methods aim to modify ill-posed
problems to yield a solution method which is stable in the presence of noise and and also gives
a solution which is as close as possible to the “true” solution of the original ill-posed problem.
Results are presented from the application of two techniques for numerically estimating the
equivalent wavefield, applied to MTEM synthetics generated for half-space Earth models. In
both cases the regularisation introduced to stabilise the solution method causes the numerically
recovered equivalent wavefield to be smoothed. The simplicity of one technique, deconvolution
in log time, allows analysis of this smoothing. When combined with the analytically calculated
equivalent wavefield for a source and receivers on the surface of a half space, this calibrates the
numerical calculation.

An appendix describes numerical modelling studies using layered Earth models to investigate
the feasibility of using MTEM surveys to detect and monitor hydrocarbon reservoirs. These
indicate that when drawing an analogy between diffusive EM surveying and the seismic method
it is more appropriate to consider wide-angle, refraction seismic than near-offset, reflection
seismic surveying.

Using a calibrated numerical calculation synthetic responses from half-space and layered
Earth models are mapped to the equivalent wavefield domain and interpreted using concepts
from seismic refraction. This interpretation approach exploits, indeed requires, the multi-
channel nature of the acquisition.

Discussion of techniques for applying high performance (parallel) computers to numerical
simulation of the EM response of a target body is relegated to an appendix. The automatic
parallelisation of such MTEM data processing is outlined in an appendix.

Time-lapse MTEM acquisition with the TEAMEX system was demonstrated by field ex-

periment, conducted over an underground gas storage site in the Paris basin. The first of these

two surveys is described in an appendix.
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Chapter 2

Propagation of Seismic and

KElectromagnetic Energy in the

Earth

The propagation of seismic energy through the Earth can be accurately modelled by the propa-
gation of mechanical disturbances in elastic media. Starting from basic concepts of deformation,

strain and stress this chapter derives the elastic wave equation for a homogeneous, isotropic

and perfectly elastic solid.

The fundamental empirical relations of electromagnetism for general media and general
sources are described by Maxwell’s equations. In this chapter Maxwell’s equations are intro-
duced and specialised for the case of the diffusion-dominated response of a linear, homogeneous
and isotropic imperfect conductor such as is often used to model the EM response of the Earth.
From these the equation describing diffusion of the electric and magnetic fields in such media
1s derived.

When solving the elastic wave equation it is common to divide the wavefield into irrotational
(P-wave) and solenoidal (S-wave) components characterised by potentials. The completeness
theorem for elastic media asserts that every solution of the elastic wave equation can be written
in this way and gives a prescription for calculating these potentials from source terms.

The diffusive field can also be separated into irrotational and solenoidal components char-

acterised by potentials. A completeness theorem for diffusive media is presented here.
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2.1 Governing Equations

2.1.1 Waves in Elastic Media

A solid body can be deformed by applying forces to its external faces. The external forces
are opposed by internal forces which resist the deformation. As a consequence the body tends
to return to its original state when the external forces are removed. This property to resist
detormation is called elasticity. A perfectly elastic body is one which recovers completely after
being detormed without loss of energy to frictional or viscous forces. To a good approximation
rocks can be accurately modelled as perfectly elastic under small deformations.

The displacement vector u is defined as the vector distance of a particle of the solid body
at time ¢ tfrom 1ts position at some reference time 3. Displacement does not necessarily imply
detormation. For instance, if all the particles in a body are displaced by the same amount, or if
the body 1s rotated, then displacement occurs without deformation. Deformation occurs when
the displacements of particles in a body vary from place to place. Displacement is a vector

quantity with components (u1,u2,u3) and each component is a function of space and time. As

a shorthand we use u; to denote the component in the e; direction where j = 1,2 or 3. Each
component of displacement u; varies as a function of space. For compactness we write the rate

of change of component u; with respect to the e; direction as J;u; — see Box 1.

The equation of deformation of an elastic solid is

1
Eij = '2"(31’{113 + 0ju;) + hy; (2.1)

where €;; is the symmetric' strain tensor, u is the particle displacement and h;; is the source
density of strain (Zou 1993, Equation 3.1.3).
The constitutive equation for an elastic solid is a generalisation of Hooke’s law and describes

the linear relationship between stress and strain as

(2.2)

Tij = CijpqCpg

(Nye 1957) where c;;p, is the stiffness tensor of the elastic solid. From the conservation of

angular momentum it follows that the stress tensor 7;; is symmetric (Achenbach 1973, Section

2.3.2 pp 51-52).

For an isotropic and perfectly elastic solid
Cijpg = A0ijOpq + 1(8ipdjq + digip) (2.3)

where A\ and p are Lamé coefficients and §;; is the Kronecker delta function (Achenbach 1973).

1The strain tensor can be divided into its anti-symmetric component which corresponds to rotation and 1ts
symmetric component which corresponds to deformation. In this discussion only the symmetric, rotation-free,
strain tensor, sometimes also called the displacement tensor, will be needed.
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Box 1 Elasticity, Tensors and the Summation Convention

Consider the process of hanging a weight from a string, which stretches slightly under the
Increased tension. Adding or removing a little weight changes the tension in the string causing
a change in its extension. Hooke’s law models the extension of the string as proportional to the

tension in the string. That is, extension is a linear function of tension. This is a good model
for many materials provided the changes in extension are small.

ror a 3D medium the concept of tension generalises to stress 7;; and the concept of extension
generalises to strain €;;. Stress and strain are examples of a tensor: a mathematical object
which is characterized by a number of indices (the order or rank of the tensor) and which
obeys well-defined rules for how the tensor components change when there is a transformation
of coordinates. Tensors are often used to represent physical quantities. For example, scalars

like mass are zero-order tensors, vectors are first-order tensors and stress and strain are second
order tensors.

Of the possible linear relationships between stress and strain the most general is that the stress
In any given direction is a weighted sum of each component of strain. That is

Tij — E : E : Cijpg€pq

p=1,2,3 ¢g=1,2,3

in which c¢;;p4 1s called the stiffness tensor. For compactness it is common to assume that a
repeated index implies summation and to drop the summation signs:

Tij = Cijpq€pq-

This shorthand notation i1s sometimes called the Einstein summation convention.
Further Reading

H. Jeftreys (1931) Cartesian tensors Cambridge University Press, UK.

Substituting (2.3) into (2.2) gives

(A‘sij‘qu + U((Sipéjq T 5if15jp))5pq (2-4)

Tij

A0iiEkk + 2UE; (2.5)

where e, is the cubic dilatation. Substituting the equation of deformation (2.1) into (2.5)

yields the relationship between stress and displacement:

Tij = AOij€kk + 2UEj; (2.6)
1

— /\51;3'(%(319?14; + E)kuk) + hkk) -+ 2g(-§(6,;uj + 83"11,,;) -+ hij) (2.7)

= Adi; (Okuk + hir) + p(Oiu; + Oju;) + 2phi;. (2.8)

The linearised equation of motion of an elastic solid can be written as
Bjn-j — gafuz — —fi (29)

where p is the density of the solid and f is the volume source density of volume force (Achenbach

1973).

19



Substituting (2.8) into (2.9) gives

0j [ A0i; (Okuk + hik) + p(O;u; + Ojui) + 2ph;; | — Qc'?fuz- = —f; (2.10)
AO; Ok Uy + AO;hir + g,aj&;uj + gajéijui + 3j2ghij — Q@fui = —f; (2.11)
(A ~+ y)ai(?kuk + gc’?j@jui — Q@fui — —fi — A@ihkk — anjhij. (2.12)

Rewriting Equation (2.12) in our usual notation we have the elastic wave equation (Aki &
Richards 1980, Equation 4.1, page 64)
0%u

(A + ) V(Va) + uViu — o = —f — AVtrace(H) - 2uVH (2.13)

where trace(H) = hyj is the trace of the source density of strain H.

2.1.2 Maxwell’s Equations

In this section the equations which describe the behaviour of electromagnetic fields are set out.
Beginning from the fundamental empirical relations for general media and general sources, the
governing equations are derived for media and sources of interest to this study. Ultimately this
yields a vector diffusion equation in the electric or magnetic field.

Maxwell’s equations are the fundamental relations which have been demonstrated by exper-

iment to describe macroscopic electromagnetic phenomena. They are

V.D(z,t) = py (2.14)
V.B(xz,t) = 0 (2.15)
VxE(x,t) = _6__B_§f_ﬁ_)_ — K?(x,t) (2.16)
VxH(x,t) = ?—%—Q+J‘:($,t) + J%(x,1) (2.17)

where D(x,t) is the electric displacement, ps is the volume density of free charge, B(z,t) is
the magnetic induction, E(x,t) is the electric field, H(x,t) is the magnetic field, K" (x,t) is
the source volume density of magnetic current, J°(x,t) is the source volume density of electric

current, J¢(x,t) is the conduction current and by analogy Qé(iﬂl is called the displacement

current (Slob 1994).

We assume that all media are linear, isotropic and homogeneous, and that their electrical

properties do not vary over the time scales on which our electromagnetic investigations take

place. Thus we write

o = 47 x 107 "Hm™! (2.18)

=
|

B(zx,t) uH (z,t) (2.19)
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D(x,t)

eE(x,t) (2.20)
J(x,t)

cFE(x,t) (2.21)

where € is the dielectric permittivity and ¢ is the electrical conductivity. These assumptions are

routi ) ] '
ne for exploration over volcanics, sedimentary and metamorphic rocks and target bodies

in hydrogeological and oil and gas exploration.?

Substituting equation (2.19) in (2.16) yields

Vx E(x,t) = —u?ﬂé—f—’ﬁ — K*(z,1). (2.22)

Substituting equations (2.20) and (2.21) in (2.17) we obtain

OF (x,t
VxH(x,t) = e——-—-—éz—-—) +oFE(x,t)+ J°(x,t). (2.23)
Taking the curl of (2.22) yields
OV xH (x,t) S
VXV xE(x,t)=—u— T — - VxK°(z,1). (2.24)

Substituting for V x H from (2.23) in (2.24) gives

VxVxE(x,t)+ ue-(z?—ggﬁ + ua?—}-@——g’tz = —p?—%l—?—tl —~ VxK?(z,t). (2.25)
Similarly, taking the curl of (2.23) yields
VxVxH(m,t)=e—a-y—>iéE—t@-ﬁl+JVxE(a:,t)+Vst(:c,t). (2.26)
Substituting for V x E from (2.22) in (2.26) yields
VxVxH(z,t) +ue-(23£{5§—2w +anI—-%-?—t-)- = _EQEC‘_;(E‘EQ —oK°(x,t) +VxJ’(x,t). (2.27)

The left hand side of equation (2.25) or (2.27) may be written as

OCF@t) OFt)

542 + Uo 57 (2.28)

VxVxF(x,t)+ pe
where F(zx,t) is now one of E(z,t) or H(z,t). The behaviour of this differential operator

over the frequency range of interest to transient EM surveying can be analysed in the Fourier

2 These assumptions are widely ma
However it is important to be aware O
results in an anisotropic bulk response.

de because usually they are good approximations of the Earth we encounter.
f anisotropy effects which can arise where fine layering is not resolved but
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domain. Taking the Fourier transform of (2.28) with respect to time gives
UxVxF(z,w)+ iwu(iwe — o)F(z,w) (2.29)

In the Earth, the ratio o /¢ is unlikely to be below 108S F ! (Keller 1987), and so for frequencies
below, say, 10° Hz it is reasonable to make the diffusive approximation and drop the term

w?peF(x,w) in (2.29). This is equivalent to dropping the term ue%rim’tl in (2.28) or the

displacement current term, QDJ&“:’—”, in (2.17).

Similarly the source term —e%ﬂl — oK’ (z,t) from Equation (2.27) has a Fourier trans-

form

iweK (z,w) — oK' (z,w) (2.30)

and for the frequencies of interest it is reasonable to discard the term iwe K S(:c, w).

Atter dropping these terms, equations (2.22), (2.23), (2.25) and (2.27) become

VXE(x,t) = - 7 K’ (x,t) (2.31)
VxH(xz,t) = oFE(x,t)+ J°(x,t) (2.32)

OF(x,t ®
VXVxFE(x,t)+ puo- gf—’——)- = —u@%ﬁ)— — VX K*(x,t) (2.33)

H
VxVxH(z,t)+ HUa égff-)- = —oK°(x,t) + VxJ(x,t). (2.34)
Using the vector identity
VxVxF(x,t)=VV.F(z,t) — V°F(x,t), (2.35)
equations (2.33) and (2.34) become

VZE(z,t) — ua?—Eg:’—t—)- = u-aié(%ﬂ + VxK’(z,t) + VV.E(x,1) (2.36)
ViH (z,t) - W?Egﬂ = oK®%(z,t) - VxJ*(x,t)+ VV.H(x,t). (2.37)

From equations (2.31) and (2.32) expressions can be derived for VV.E(z,t) and VV.H (z, t)

in terms of the electric and magnetic sources. Taking the divergence of (2.31) gives

OV.H (x,t)

—V.K°(x,t). 2.38
Py V.K’(x,t) (2.38)

VVxE(xz,t)=—pu

Using the result that, for all twice differentiable functions F, V.V X E = 0 gives

u@V.Igt(:c,t) = —-V.K°(x,t) (2.39)
t
V.H(z,t) = —-2; V.K*(x,T)dr. (2.40)
T=0
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Taking the divergence of (2.32) gives
V.V xH(z,t) =0cV.E(x,t) + V.J’(x,t). (2.41)
Using the result that, for all twice differentiable functions H, V.V x H = ( gives

oV.E(x,t)

|

~-V.J (x,t) (2.42)

V.E(x, t) —%V.Js(a:, ). (2.43)

Substituting (2.43) into (2.36) and (2.40) into (2.37) yields

OF(x,t oJ’(x,t 1
V?E(x,t) — ua———g——l = U 2, ) + VxK*(x,t) — —VV.J’(x,t) (2.44)
ot Ot o
OH (x,t ] 1 /!
V?H (x,t) — p,a——-—égT——)- = oK’(x,t) — VxJ*(x,t) — ;/ VV.K*(x,T)dr. (2.45)
0

Equations (2.44) and (2.45) can be written as

V2F(z,t) — WQ_F((;;:J) = S(z, 1) (2.46)

the vector diffusion equation in F' with source function S(x,t). When F represents the electric

field

(x,t
S(x,t) = u?—'—j—(;)(—;:—’—) + VXK’ (zx,t) — g—VV.JS(a:,t); (2.47)
when F' represents the magnetic field
1 '$
S@,t) = oK*(@,t) = VxJ*(@,1) = - / VV.K*(z,7)dr (2.48)
0

The vector diffusion equation (2.46) is derived from the fundamental empirical relations for
general media and general sources, by considering linear, isotropic and homogeneous media.
It is also possible, and useful, to consider an anisotropic conductivity tensor (Yu & Edwards

1992). However this is beyond the scope of this study.
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Box 2 James Clerk Maxwell ) i

At Maxwell’s centenary Elnstem called Ma,xwell’s contributions e
to physics “the most fruitful that physics has experienced since
the time of Newton.”
Maxwell was born in 1831 at number 14 India Street, Edinburgh. #
A member of the Scottish landed gentry, he never lacked the |
means for a comfortable life. He was not actually a Maxwell §
at all but belonged to the Clerk family, from Penicuik near §
Edinburgh. His father John Clerk had to adopt the surname §
Maxwell when he inherited an estate in “Maxwell territory” near
Dumfries, and took up his residence there. Maxwell grew up §
at Glenlair and returned there throughout his career and again 23
after his death in 1879 at the age of 48. L
Despite his contributions to a remarkable variety of subjects it Flgure 2.1: James  Clerk
is the electromagnetic field that is Maxwell’s crowning legacy. Maxwell

Most of the work on his Treatise on Electricity and Magnetism was done at Glenlair during
three years of relative seclusion after his withdrawal from academia in 1868 following a less
than illustrious teaching career. He returned to the academic world in 1871 to become the

first professor of experimental physics at Cambridge University and the first director of the
subsequently famous Cavendish Laboratory.

Maxwell took Faraday’s rudimentary qualitative ideas, put them into mathematical form
and extended them into a complete theory with equations by which all interactions between
electricity and magnetism could be expressed and understood. This was not merely a
unification of things already known. The theory predicts the velocity at which electromagnetic
radiation travels through space. Although this speed could not be directly measured it could
be calculated. The result turned out to be the same as the measured speed of light, which
was previously thought to be an unrelated phenomenon. Thus Maxwell’s theory led directly
to the discovery that light must be a form of electromagnetic radiation and ended centuries
of controversy over the nature of light. “Great guns,” Maxwell called it in a letter, with
uncharacteristic lack of modesty.

Further Reading

J. C. Maxwell (1891) A treatise on Electricity and Magnetism Clarendon Press, UK. Repub-
lished by Dover, 1954

J. C. Maxwell edited by W. D. Niven (1890), The Scientific Papers of James Clerk Mazwell,
Cambridge University Press.

Tanford, C. & Reynolds, J. (1992), The Scientific Traveller, Wiley.

Zhdanov, M. S. & Keller, G. V. (1994), The Geoelectrical Methods in Geophysical Ezploration,
number 31 in ‘Methods in Geochemistry and Geophysics’, Elsevier.

e ———— e ——————
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2.2 Solution Using Irrotational and Solenoidal Compo-

nents

2.2.1 The Completeness Theorem

It 1s useful to separate the elastic wavefield u into its irrotational (longitudinal- or pressure-

wave) component uP and solenoidal (transverse- or shear-wave) component u®. By definition

u = uP+uf
Vxuf = 0 (2.49)
Vu® = 0.

Box 3 P-Wave and S-Wave Components

A little rearrangement of the elastic wave equat?i_(—)n motivates the separation of the elastic
wavefield u into P- and S-wave components u” and u®. Beginning from Equation (2.13) and
using the identity VxV xu = V(V.u) — Vu

(A + 2u)V (V) — p(V(Vau) — Vi) — ,Q%—Qg— = —f — AVtrace(H) — 2uVH (2.50)
00°V(V.u) — oB°V xV xu — g%%— =fP+ f° (2.51)

a?V(V.(uP 4+ u®)) — B2V x V x (uP + u®) - 62(“;; w) _ —z(fp + £°) (2.52)

> V(V.uP) — B2V x V x (u®) — ‘9;:‘;? - ?;;f- = -z(fp + ) (2.53)

where a? = (A + 2u) /0, 5% = u/o, trace(H) = hyy is the trace of the source density of strain

H and f? and f° are the P and S components of the source force field. Taking insight from
this we could define u? and u® by equations (2.49) and

O*uP 1
o’V (V.uP) 3:; = ‘éfp (2.54)
2,.,8 1
—3°V xV x (u®) 36{':;_ = Efs- (2.995)

Using the identity —V xV xu = V?u — V(V.u) and remembering that by definition V.u® = 0
we can re-write these as

1 O%u?

. 1 0%u® g
Viu® — Fog - T (2.57)

It is quite easy to see that if u? and u® satisfy (2.56) and (2.57) then they' satisty t':he elastic
wave equation. However to find such u? and u*® from (2.56) and (2.57) requires solution of two
second order partial differential equations which are coupled at sources and interfaces through
Equation (2.49). Substitution to remove this coupling results in a fourth-orqer syste_m. The
utility of the completeness theorem is that it provides a solution method which requires only

un-coupled second order differential equations to be solved.
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Every irrotational field can be expressed as the gradient ot a scalar potential, and every

solenoidal field has a vector potential. We seek such potentials ¢ and 1 such that

u? = Vo
u’ = Vxv (2.58)
Vg = 0

Given a suitable description of the initial conditions the completeness theorem for elastic me-
dia® (Achenbach 1973, page 85, theorem 3.4.2) asserts that every solution of the elastic wave
equation can be written in terms of irrotational and solenoidal components characterised by
such potentials ¢ and 1 and that these potentials obey uncoupled second-order partial differ-
ential equations. The completeness theorem is useful because the individual potentials obey

partial differential equations which are simpler than the partial differential equation obeyed by

the elastic wavefield.?

If the displacement field u satisfies the elastic wave equation

52

O+ )V (V) + uViu — g-gt-g— —T (2.59)
with source terms and initial conditions specified by

T = Vd+VxWP (2.60)
u(x,0) = VA+VXY (2.61)
————81"&;1;’ Y~ vot+vxz (2.62)
V¥ = 0 (2.63)
V.Z = 0 (2.64)
VY = 0 (2.65)

the completeness theorem for elastic media states that there exist potentials ¢ and ¥ such that

u = Vo¢+Vx (2.66)

Vi = 0 (2.67)

2, 10 1 2.68

v a2 o2 gaQ(I) (265
1 8% 1

Vi — FaE - E@‘I’ (2.69)

3The completeness theorem for elastic media is also sometimes called Lamé’s theorem (Aki & Richards 1930,
page 68, theorem 4.1.1). | |

AThe essential difference between the Helmholtz theorem and the completeness theorem 1is that, while the
Helmholtz decomposition provides a recipe for caliculating the scalar and vector potentials from a given vector
field (Aki & Richards 1980, Box 4.2, page 69), the completeness theorem allows a wave{ield to be calculated
through the use of scalar and vector potentials which obey given partial differential equations.
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where a® = (A+2u)/p and 32 = i/ 0. The completeness theorem may be proved by constructing
¢ and 1 as

o(x,t) = A+ tC + /0 (t — T)[-é—@(.I,T) + CIQV.’U.(:L’,T)]dT (2.70)
Y(x,t) =Y +tZ + / (t — T)[—l-‘Il(.r,'r) — 62qu($,7)]dr (2.71)
0 4

(Aki & Richards 1980, page 69).

2.2.2 Separation of the Diffusive Response into Irrotational and Solenoidal

Components

Although it is common in exploration seismology to separate the wavefield u into its irrotational
(pressure- or P-wave) component uP and solenoidal (shear- or S-wave) component u® this is
not usually done in electromagnetic surveying. Note that equations (2.33) and (2.34) are very
similar to the elastic wave equation (2.13). While equation (2.57) is formally similar to (2.46)
note that the source term in (2.57) is by definition solenoidal whereas this may not be true of
equation (2.46).

In this section a general diffusive field® F is separated into its irrotational (longitudinal- or
P-wave) component F'” and solenoidal (transverse- or S-wave) component F'°. The irrotational
component is expressed as the gradient of a scalar potential, and the solenoidal component
1s expressed as the curl of a vector potential. It is then proven that these scalar and vector
potentials obey un-coupled, second-order diftferential equations. This theorem is analogous to,
and inspired by, the completeness theorem for elastic media. As with the completeness theorem
for elastic media, its utility is that it provides a solution method which requires only un-coupled
second order differential equations to be solved.

By definition

F = FP 4+ F°
V.F° = (

Every irrotational field can be expressed as the gradient of a potential, and every solenoidal

field has a vector potential. We seek such potentials ¢ and v such that

FP = V¢ (2.73)

5Physically realisable electromagnetic fields E and H are not merely solutions to the diffusion equation (2.46)
they must in also satisty Equations (2.14) and (refe:M2). If the diffusive field F' represents one of EE or H then
these additional constraints are manifested in the source term S. The decomposition presented here holds for a
general diffusive field, and is later applied to calculate the diffusive response for a directed poipt source term.
This provides a usetul intermediate mathematical construct but does not correspond to a physically realisable

EM field.
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F° = Vxuy (2.74)

Theorem 2.1 A Completeness Theorem for Diffusive Media
If the field F(x,t) satisfies

ViF(z,t) - 5 ———— = S(a, 1) (2.75)

with source terms and initial conditions specified by

S = Ve +VUxP (2.76)
F(z,0) = VA+VxY (2.77)
Vo = 0 (2.78)
VY = 0 (2.79)
then there exist potentials ¢, ¥ such that
F(x,t) = V¢+ Vxu (2.80)
Vy = 0 (2.81)
1 O0¢
2 _
Vo 25 o (2.82)
1 O
2y — — = = _ 2.
V Ry ¥ (2.83)

Proof
Proof of Theorem 2.1 is by construction of the potentials ¢ and 1. We define

b(x, t) A+ / t[V.F(a:, 1) — &(z,7)|dr (2.84)
0

W(x,t) Y + 02/0 -V x F(x,7) — ¥(z,7)|dr (2.85)

and now prove each of the properties (2.80), (2.81), (2.82) and (2.83) in turn.
Taking the gradient of (2.84) we have

Vé(z,t) = Vo /0 t[V.F(CU,T) — ®(z,7)|dr + VA (2.86)
= ¢ /O t[V(V.F(a:,T)) _ V&(z,7)]dr + VA (2.87)
taking the curl of (2.85) we have
Vxp(z,t) = Vi /Ot[-v < F(z,7) — ®(z,7)]dr + VXY (2.88)
= /;[—VXVXF(:B,T) _ U xU(z,7)|dr + VXY (2.89)
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hence

Vo(x,t)+ Vxy(x,t)

= 02/(; V(V.F(x,7)) = V&(z,7) -~ VxVxF(z,7) — Vx W(z,7)|dr

+VA+ VXY (2.90)
t
= c* /o (VeF(z,7) = V®(x,7) — V XW(z,7)|dr + VA+ VXY (2.91)
‘1 0F(x, )
— c2/0 [—63— 5 + S(x,7) = V®(x,7) — Vx¥(z, 7)|dr
+VA+ VXY (2.92)
“OF (z, 1)
= F(x,t) - F(z,0)+ VA+VxY (2.94)
= F(x,t) (2.95)

this proves property (2.80).
Taking the divergence of equation (2.85)

Va(z,t) = V. / -V xF(x,7) — ¥(z,7)|dr + V.Y (2.96)
0

= ¢ /t[—V.V xF(x,7) — V.¥(z,7)ldr + V.Y (2.97)

= /0 0 — 0]dr + 0 (2.98)

— 0 (2.99)

this proves property (2.81).

From(2.80), which is proven above, we can see that
Vo = F(x,t) — V x. (2.100)
Taking the divergence of this relation gives

V.(F(z,t) — Vx1) (2.101)
V.F(x,1). (2.102)

V.(V9)

Taking the derivative of (2.84), the definition of ¢, and bearing mind that A is a constant

8¢g;’t) = 2%{02 /t[V.F(:B,T) — ®(x, 7)|dr} + %% (2.103)
0

= c*[V.F(z,t) — ®&(x,t)] (2.104)

_élé_c’?qﬁi;:,ﬂ = V.F(x,t) — ®(x,t) (2.105)

29



Property (2.82) is now easy to demonstrate using (2.102) and (2.105) to substitute into the left
hand side.

1 O¢
Vi — ——L=
c? Ot

V.F(x,t) — (V.F(z,t) — ®(z, 1)) (2.106)

¢(x,t) (2.107)

Taking the curl of (2.80), which is proven above,

VxF(z,t) = VxV¢(x,t)+VxVx (2.108)
= 0+ V(Vy) — V2 (2.109)
= —Vy. (2.110)

Taking the derivative of (2.85), the definition of ¥, and bearing in mind that Y is a constant

?l’b—(g:;’—t) — %CQ/O —VxF(x,7) — ¥(x,7)|dr + 861; (2.111)
= |-V xF(zx,t) — ¥(z,t)] (2.112)
é..‘?ﬂ%ﬁ _  _VUxF(z,t) - ¥z, 1), (2.113)

Property (2.83) is now quite easy to demonstrate using (2.107) and (2.113) to substitute into
the left hand side.

2.1 _;l__ 8"/)(33a t)
v c? Ot

~-VxF(x,t) - (—-VxF(z,t) - ¥(x,t)) (2.114)

V(x,t) (2.115)
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Box 4 Representation and Calculation of The Electromagnetic Field Using Potentials

The calculation of analytical expressions for the electromagnetic field can be eased by represent-
ing the electric and magnetic fields in terms of potentials. Several representations are possible
including the Schelkunoff potentials which employ two vector and two scalar potentials (Ward
& Hohmann 1987, Schelkunoff 1943), the Debye potentials which employ two scalar potentials
(Strack 1992) and in this thesis F, the electric or magnetic field, is divided into its irrotational
and solenoidal components and represented using a scalar and vector potential

F = V¢o+Vxvy (2.116)
vy = 0. (2.117)

The standard representation employing a scalar and vector potential is

B = VxA (2.118)
0A
F = ——— —
& — Ve (2.119)
VA = —uocd (2.120)

(Weaver 1994, Morse & Feshbach 1953). These potentials can in turn be represented using the
electric Hertz vector 11 and the magnetic Hertz vector I', defined in uniform regions as

o —VII (2.121)
A = poll+VxT (2.122)

(Weaver 1994). In terms of the Hertz vectors the electric and magnetic fields are

OI1 oI
FE = —HO - = VXE)—E--}-V{VH} (2.123)
B = puoVxH+VxVxTI (2.124)

Considering the source terms for the electric and magnetic fields given by Equations (2.47) and
(2.48) and comparing these with Equations (2.123) and (2.124) we recognise that the electric
and magnetic Hertz vectors are closely related to the solution of the vector diffusion equation
(2.46) with source terms corresponding to, respectively, the volume density of electric source
current and magnetic dipole moment.

Chapter 3 develops methods for solving the the vector diffusion equation and these are applied
in Chapter 4 to find the solutions for a directed point source term.

Further Reading

Morse, P. M. and Feshbach H. (1953) Methods of Theoretical Physics, McGraw-Hill.
Schelkunoff, S. A. (1943), Electromagnetic Waves, Van Nostrand.
Strack, K. M. (1992), Ezploration with Deep Transient Electromagnetics, Elsevier.

Ward, S. H. & Hohmann, G. W. (1987), Electromagnetic theory for geophysical applications, in
M. N. Nabighian, ed., ‘Electromagnetic Methods in Applied Geophysics’, Investigations 1n

Geophysics, SEG, pp. 131-311. Volume 1, Theory.

Weaver, J. T. (1994), Mathematical methods for geo-electromagnetic induction, Wiley.
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2.3 Conclusions

The propagation of mechanical disturbances in a homogeneous, isotropic and perfectly elastic

solid is described by the elastic wave equation

0°u

A+ u)V(V. Viu — p——
A+ u)V(Vu) + pViu 055

= f — AVtrace(H) - 2uVH (2.125)

where A and p are Lamé coefficients, u is the particle displacement, g is the density of the solid.

f is the volume source density of volume force and trace(H) is the trace of the source density

of strain H.

The diffusion-dominated response of a linear, homogeneous and isotropic imperfect conduc-
tor 1s described by the vector diffusion equation
OF (x,t)

VF(x,t) — o ——— = S(x,t) (2.126)

where F'(x,t) is one of either the electric field E(x, t) or magnetic field H(x, t), p is the magnetic
permeapbility, o is the conductivity and S(x, t) is a source term appropriate to either the electric
or magnetic field. The special form of physically realisable diffusive electromagnetic fields (i.e.
that they are diffusive responses which satisfy all of Maxwell’s equations) are manifested in
constraints on the form of the source term S.

The elastic wavefield u© can be divided into irrotational (P-wave) and solenoidal (S-wave)

components characterised by potentials ¢ and 1 such that

The completeness theorem for elastic media asserts that every solution of the elastic wave
equation can be written in this way and gives a prescription for calculating the potentials ¢
and v from source terms.

A general diffusive field can also be separated into irrotational and solenoidal components.
A completeness theorem for diffusive media, analogous to the completeness theorem for elastic
media, is presented here. As with the completeness theorem for elastic media, 1ts utility is that
it provides a solution method which requires only un-coupled second-order differential equations
to be solved.

The completeness theorem is later applied to calculate the diffusive response for a directed
point source term. This useful intermediate mathematical construct is closely related to the

Hertz vector, but does not correspond to a physically realisable EM field.
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Chapter 3

The Diffusive Response and its
Equivalent Wavefield

The equivalent wavefield concept relates diffusive propagation to an equivalent non-diffusive,
wave propagation, provided equivalent source and boundary conditions are satisfied. The equiv-
alent wavefield concept is applied here to relate diffusive electromagnetic propagation to an
equivalent wavefield. This equivalent wavefield is a concept not a physically occuring phe-
nomenon.

The properties of the equivalent medium, equivalent sources, equivalent receivers and equiv-
alent boundary conditions are determined by their electromagnetic counterparts. In this case
the velocity of the equivalent wavefield is proportional to the square root of the resistivity of
the diffusive electromagnetic medium.

Knowledge of the equivalent wavefield allows calculation of the corresponding diftusive field.
This approach may seem circuitous, however the solution of the wave equation for appropriate
media, sources and boundary conditions, may be simpler than the direct solution of the diftusion

equation. In addition the study of the differences and equivalences between wave propagation

and diffusion gives insights into both processes.
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3.1 The Equivalent Wavefield Concept

The equivalent wavefield concept relates diffusive propagation to an equivalent non-diffusive,
wave propagation, provided equivalent source and boundary conditions are satisfied. The equilv-

alent wavefield concept is applied here to relate diffusive electromagnetic propagation to an

equivalent wavefield.

The Q transform is a prescription for calculating a diffusive response from its equivalegt

wavefield. To motivate the derivation of the Q transform and give a specific example of the Q
transtorm in action, we consider the response to a directed impulsive point source term.

In Figures 3.1a and 3.1b, and similar figures which follow, time is increasing down the page
and offset from the source is increasing across the page from left to right. Figures 3.1a and
3.1b depict respectively the response to a directed impulsive point source term in propagative
and diffusive media; these are an impulse travelling with constant velocity, and a pulse whose

profile gradually changes, dispersing and broadening with increasing time.

Wave Propagation Diffusion
1 9°U(x,t) 2 OF (x,t)
ViU (x,t) — S5 = Di(x)d(t) ViF(z,1) = po—7— = Di(x)d(¢)
r - 1§ >
T H i e _
_;____ : | N - _
I r__—r - — -
—— -
t — — ! t
S | .
— — ‘ -
i 5 pm——— -
e ; e :
| | | | | F
a b
—D || -D 1 |z x| 1
U t) = —5 t — — F ’t — — — - exD| — —— —
(@) 47| ( C ) (@ ¢) Am|x| 2+/7t3 /1o o LLO 4t)

Figure 3.1: Response to a directed impulsive point source term in propagative and diffusive
media.

After taking a Laplace transform with respect to time the responses in propagative and

diffusive media are

) ~D
exp<—gp> F(z,5) = 7 exp(-r/fos’) (3.1)

A _D
U(xz,p) = —

47T

where p and s are the Laplace transform parameters for the wave and diffusive domains re-

spectively, r = |z|, F' is the diffusive field and U is the equivalent wavefield. The diftusive

. . ¢, = o —9 o 2
response can be converted into the propagative response simply by writing po = ¢, s = p

and F(z,s) = U(z,p).

This result is more general. In the Laplace transform domain the (source-free) wave and
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1.) ""'"-

(V2 = 5)U(z,p) = (V7 = spo)F(z,s) = 0. (3.2)

0 e

Lt

To convert the diffusion equation into the wave equation we simply write s = p?, F(x,s) =

Fa

U(x,p) and po = c¢~*. This gives the Q transform in the Laplace transform domain

L P

F(x,p*) = U(z,p). (3.3)

T'he time domain form of the Q transform is easily calculated by taking the inverse Laplace

transtorm ot equation 3.3 to yield

1 >0 q°
F({x,t) = — / exp(—— )U (x, q)dqg, 3.4
(z, 1) Werll N A daer AL (3.4)

which 1s known as the Q transform (Lee, Liu & Morrison 1989) or wave transform (Oliver 1994).
Note that the equivalent wavefield is a concept not a physically occurring phenomenon.

While the velocity of a physical wavefield will have units of m/s the equivalent velocity ¢ =

1/./po has units of m/4/s.

Box 5 Calculating the Diflusive field of an Equivalent Wavefield

Given an analytic expression for an equivalent wavefield component U{(q) a simple recipe may
be followed to find the equivalent diffusive field F'(t) without calculating the integral

P) = = [ qew(- LU

Given the equivalent wavefield U(q)

1. calculate its Laplace transform U (p),

~,

2. set F(s) = U(Vs),
3. calculate the inverse Laplace transform to yield F'(1).

Although this recipe is simple, its execution requires the calculation of an inverse Laplace
transform which is not always triv_ial.

3.1.1 How the Q Transform Works

Diffusive responses may usefully be expressed as a sum ot exponentially decaying components.

Taking the Laplace transform of one such component we obtain

L{exp(—at)}(s) = p _Il_ - a > 0. (3.5)

Setting s = p? and taking the inverse Laplace transform from the transform variable p to
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the time-like variable ¢ yields

P A wmiver) (3.6)

Thus the Q transform relates a decaying exponential and a sine wave. A list of some time

domain functions and their equivalents in the ¢ domain is presented in Table 0.2.

Box 6 The History ot the Q Transform

[t is perhaps unclear how to assign credit for the first derivation of the Q transform. Certainly
It appears that more than one group may have independently derived equivalent results.

(Bragg & Dettman 1968a, Bragg & Dettman 1968b) present an early statement of the trans-
torm in a generalised form in a short communication to the American Mathematical Society.
Almost concurrently (Filippi & Frisch 1969a, Filippi & Frisch 19695) present their results on the
other side of the Atlantic. Soon after these short, abstract, mathematical notes an equivalent

result appears, albeit in the frequency domain, with application to inversion of electromagnetic
induction data (Weidelt 1972, equation 5.1).

The running then seems to have been taken up by mathematicians in Eastern Europe
(Lavrent’ev, Romanov & Shishatskii 1980, Filatov 1984). The Q transform seems to disappear
from the Western literature until taken up in a series of papers by Ki Ha Lee and co-authors.
These demonstrated its usefulness both in forward modelling (Lee et al. 1989) and inversion (Lee
1988, Lee & Xie 1993). This work should not be confused with the ‘electromagnetic migration’
work of Seunghee Lee (Lee et al. 1987) and (Zhdanov & Frenkel 1988). Work continues on Q
transtorm inversion of EM data in the frequency domain (Levy, Oldenburg & Wang 1988, Gibert
& Virieux 1991, Gibert, Tournerie & Virieux 1994, Tournerie & Gibert 1995) and time domain
(Gershenson 1993, Becker, Lee & Wang 1994, Wilson 1994, Slob, Habashy & Torres-Verdin
1995, Becker, Das & Lee 1997, Gershenson 1997).

The Q transform is now becoming more widely known and publicised (De Hoop 1992, De Hoop
19966, De Hoop 1996a) and is attracting interest in diverse fields which deal with diffusion
problems, including non-destructive testing of metal components (Zorgati, Duchene, Lesselier &
Pons 1991, Zorgati, Lesselier, Duchene & Pons 1992), transmission tomography of thermal waves
(Mandelis 1991), the investigation of hydrocarbon reservoirs through pressure pulse transients
(Oliver 1994), detection of water-borne metallic hazards (Gershenson 1993, Gershenson 1997)
and transmission characteristics of fractal media (Hargreaves 1996).

3.1.2 A More Rigorous Derivation

This section provides a more rigorous derivation of the Q transform, which also takes account
of source terms. The approach taken is a special case of the much wider derivation in Appendix
B. but is carried out in full to allow this section to be read independently.

Considering the obvious similarities between the vector diftfusion equation (2.46)

OF (x,t)

V2F(z,t) — po ——"— = S(zx,t) (3.7)
and the vector wave equation
1 0°U(xz,q)
V2U(:1:, q) — -(—33-—5?]—2-——— = T(x,q), (3.8)
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we set up our 1nitial value problems as follows

VeF(zx,t) — ua&mw = S(x,t), € V,t>0
F(z,0) = alz), = € V (3.9)
F(z,t) = f(x,t), = € 9V, t>0

and

V2U(z,q) — L LY &0

C aq

H
b
8
=
&
(M
<
S
v
-

U(x,0) = 0 r €V

(3.10)
TEI = afz), w eV
U(x,q) = wu(x,q), = € 3V,q>0

In these equations F(x,t) is a diffusive field, and S(x,t) is a source term representing,
In our case, either a current or magnetic dipole source. Similarly U (x,q) is a wavefield with
T(x,q) as source term. The independent variable ¢ in equation (3.10) is a time-like variable.
The equations are postulated to hold in some homogeneous, isotropic region V with boundary
oV.

Taking the Laplace transform of problems (3.9) and (3.10) with respect to ¢ and ¢ with
transform parameters s and p respectively we obtain

V2F(z,s) — sucF(z,s) S(z,s)—a(x), © € V

(3.11)
F(x,s) = f(x,s), x € 0OV

and

et ¥

VQI?(map) o %U(Q},p) T(Cl?,p) o CI(;B)’ r € V

(3.12)

o

U(x,p) = u(z,p), r € 0V

We now require that ¢=2 = po, where c is the velocity term in equation (3.8), and make the

substitution! p = /s in (3.11) and the definition

R(z,s) = F(z,s) - Ul(x,s) (3.13)

I'Since p is a Laplace transtorm parameter, we require p > 0, or at the very least Re(p) > 0. ‘Tpis requ.irement
selects the positive square root of s. Happily, this choice ensures that valid, physically realistic solutions are

obtained.
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then by subtracting equations (3.11) from (3.12) we see that R(zx, s) obeys

”~

. V2R(ZD,S) o S/CQR(:B&S) S(CD,S) o T(:B? \/E) T €V

(3.14)
R(z,s) = f(z,s)—-a(z,\s), = € aV.
Let us require that the boundary, and source terms in (3.14) match. i.e.
f(z,q) — a(z,/s) =0 (3.15)
and

so that all terms on the right hand side of equations (3.14) are identically zero. Then, we may

cite a uniqueness theorem and declare that R(x, s) = 0 must be the only solution and in this

CasSe

M M

F(x,s) =U(x,s). (3.17)

By the definition of the Laplace transform (0.7) this implies that

F(z,s) = /0 " Uz, q) exp(—/59)dg. (3.18)

an equation which has been studied for some time (Weidelt 1972, equation 5.1).

Using the result that for real ¢ > 0

2

q
. [2\/7?73 (=)

} = exp(—v/sq) (3.19)

(Erdélyi 1954, equation (1), page 245) we take the inverse Laplace transform of equation (3.18)

and obtain our result

2

F(z,t) = 2\/1;; /quexp(—%;)U(:r,Q)dQ- (3.20)

This result has been derived here for a homogeneous, isotropic region. De Hoop (1996a)

establishes the Q transform between a diffusive electromagnetic field in an arbitrarily inhomoge-
neous and anisotropic medium and an equivalent non-diffusive electromagnetic field propagating
in an equivalent medium. Considering individual electric or magnetic fields, a generalised form
of the Q transform is derived between the responses to point-transmitter excitations for either

electric- or magnetic-current sources. In this case the resistivity of the diffusive medium 1s

related to the permittivity of the equivalent lossless medium, while the permeabilities of the

two are the same.
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Box 7 Calculating the Equivalent Wavefield of a Diffusive Field

Given an analytic expression for the strength of a diffusive field cornlz;onegt F (t) at a partricular

point in space; a simple recipe maybe followed to find the equivalent wavefield. Given the
diffusive field F'(t)

1. calculate its Laplace transform F(s),

F

2. set U(p) = F(p?),

3. calculate the inverse Laplace transform from transform variable p to the time like variable
q to yield U(q).

Although this recipe is simple, its execution requires the calculation of an inverse Laplace
transform which is not always trivial.

3.1.3 Correspondence of Sources

Recall equation (3.16) which stated that for source functions to match we require

o

S(z,q) = T(z,/s), (3.21)

which by the definition of the Laplace transform (0.7) implies that

5(z,s) = /0 " T(x, q) exp(—+/39)da. (3.22)

If S(x,t) = Q(x)é(t —0") then the Laplace transform of S(x,t) with respect to ¢t and with

Fal

transform parameter s is S(zx,s) = Q(x). The crucial point here is that S(zx, s) is independent

of 5. Substituting S(z, s) in (3.22) we obtain

Q(x) = /0 " exp(—v/5q)T(x, q)da (3.23)

which implies

T(x,q) = Q(x)é(g —0T) (3.24)

since otherwise the right hand side of equation (3.23) cannot be independent of s.

3.1.4 The Effect of the Choice of the Time Origin

Let u(g) be the equivalent wavefield corresponding to a diftusive response f(t), and define v(g)

by

g =] WY 1> (3.25)
0 g <a

where a > 0. The diffusive response g(t) of the delayed equivalent wavetield v(q) is calculated

by applying the recipe outlined in Box o.
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I'he Laplace transform of v(q) is

0(s) = exp(—as)u(s) (3.26)

(Erdélyi 1954, Equation (4), page 129). By definition

9(s) = 0(Vs) (3.27)
= exp(—a/s)u(V/s) (3.28)
= exp(—av/s)f(s) (3.29)

where u(q) is the equivalent wavefield of f(t). Using the results

t
E_l [’&1(8)’&2(8)](@ — / Ul(T)UQ (t — T) dr (330)
0
(Erdélyi 1954, Equation (20), page 131)
2
E—l - _ a —3/2 ____a’_ ‘
exp(~avA))(r) = 5or T exp(- ) (3.31)
(Erdélyi 1954, Equation (28), page 146)
glves
a3 i d 3.32
) = o — : :
o) = [ Go=r " exp(— St =) dr (3.32

Hence a simple shift of the time origin in the equivalent wavetield domain results in a more

complex change in the corresponding diffusive response.
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3.2 Conclusions

T'he equivalent wavefield concept relates diffusive propagation to an equivalent non-diffusive.
wave propagation, provided equivalent source and boundary conditions are satisfied. The equix-

alent wavefield concept is applied here to relate diffusive electromagnetic propagation to an

equivalent wavefield. This equivalent wavefield is a concept not a physically occuring phe-

NnOomenorn.

In this case the velocity of the equivalent wavefield is proportional to the square root of the

resistivity ot the diffusive electromagnetic medium.

Knowledge ot the equivalent wavefield U allows calculation of the corresponding diffusive

electromagnetic held F' using the QQ transform

o0 2
F(z,t) = -2--\71m3/0 qexp(—%—)U(w,q)dq (3.33)

where ¢ is the time-like variable, with dimensions /s, in the equivalent wave domain. The
equlvalent sources, equivalent receivers and equivalent boundary conditions are similarly linked

to their EM counterparts by the ) transform.

The Q transtorm is equivalent to a non-linear warping of the Laplace transform variable

et F

F(z,p’) = U(z,p) (3.34)

and can also be thought of as a mapping between decaying exponentials and sine waves.
A simple shift of the time origin in the equivalent wavefield domain results in a more complex
change in corresponding diffusive response. Specifically, if u(g) is the equivalent wavefield

corresponding to a diffusive response f(t), and v(q) is defined by

o(q) = u(@—a) q¢>a (3.35)
0 g<a

where a > 0 then the diffusive response g(t) of the delayed equivalent wavefield v(q) is

g(t) = /(; 2\0/’%7‘_3/2 exp(—%)f(t — 7)dT. (3.36)
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Chapter 4

Point Sources 1in Infinite Media

Chapter 2 developed the completeness theorem for diffusive media, which states that the dif-
fusive response may be divided into irrotational and solenoidal components each characterised
by a potential which itself is the solution of a diffusion equation. In this chapter the equiva-
lent wavefield concept is used to find diffusive responses by first calculating the potentials and
components of the equivalent wavefield response.

Initially the response to a point source term is calculated. The response for physically
realistic sources is then calculated by combining this response with the source description.
Using a moment tensor and a dipole moment to represent electromagnetic dipole sources allows
comparison with seismic sources. For example, the equivalent wavefield of the magnetic field
generated by an electric current dipole in a whole space is generated by a point source ot torque,

generating solenoidal waves only.
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4.1 EM Responses to Point Sources in Infinite Media

Section 2.1.2 developed Maxwell’s equations, which describe the diffusion of electromagnetic
(EM) energy through an imperfect conductor such as the Earth. The differential equations
which describe electric and magnetic fields in linear, isotropic, homogeneous regions differ only
in the source terms. The different source terms are given by Equations (2.47) and (2.48).

In these equations derivatives of the source volume density of electric current J° and the

source volume density of magnetic current K°* are taken with respect to space and/or time.
Consequently even a simple source current density leads to a complicated source term.

This section begins by calculating the response to a directed impulsive point source term.

T'he response to more general sources is then calculated by combining this with the appropriate

source description.

4.1.1 Response to a Directed Point Source Term

Starting from the vector diffusion equation in uniform media, this section calculates the diffusive
and equivalent wavefield responses to a directed impulsive point source term. The directed
impulsive point source term does not correspond to a physically realisable electromagnetic
source. Hence these responses are only intermediate results; building blocks from which the
responses for physically realistic sources are calculated in later sections.

The novel method of calculation employed here divides the diffusive field into irrotational
and solenoidal components, and uses the method of Theorem 2.1 to specify difterential equations
in potentials for each component. These equations are solved using the equivalent wavefield
concept, to yield the irrotational and solenoidal components of the equivalent wavehield. From
these the equivalent wavefield, and finally the diffusive response are easily calculated. At times
it is easier to employ subscript notation and the summation convention — see Box 1.

We seek to solve the vector diffusion equation in F' for a directed point source term aligned
in the D direction and located at the origin of an infinite, homogeneous, isotropic medium of

equivalent velocity ¢. That is, we seek to solve

VF(z,t) -(:12 8Fg-:—£-)- = S(x,t) (4.1)

with source function S(x,t) = Dé(z1)d(z2)d(x3)I(t) = Di(x)I(t).
Following the method of Theorem 2.1, the first step in the calculation is to construct

Helmholtz potentials & and ¥ such that

Dé(x) Ve 4+ Vx WP (4.2)

|
-
—~

A

%
S’

V. W
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To construct ® and ¥ it is enough to solve the vector Poisson equation VEW(z) = Di(x),

since then we can choose potentials ® = V.W and ¥ = —V x 1" (Aki & Richards 1980, Box

4.2). The solution for the vector Poisson equation is

= || 7 i (1.4

Following this recipe to find & and ¥

D 0 (1)
W - N
() y /// 7 nldn (1.5)
_ D
- 47z (4.6)
— _D .
B 47r (4.7)
where r = |z| and then
b = VW (4.8)
D
= V() (4.9
1
— Y .
47r? b (4.10)
v = —-VxW (4.11)
1
— 4.12
47r'r27x,D (4.12)

where ¥V = x/r.

The second step in the calculation is to solve for potentials ¢ and ). In the case that we

are solving for a diffusive field the equations to be solved are

1 8¢
Vg — 25 = I(t) (4.13)
N 1oy

Ve — 25 - W(t) (4.14)

where I(t) is the source current time profile.

In the case that we are solving for the equivalent wavefield the equations to be solved are

2 123? _ 415
V<o F9E ® X (q) ( )
2.0 _1_32 ¢_ _ 4.16
VALY Z 5 = WX(q) ( )

where X (q) is the equivalent wavefield source profile.

Considering this second case and calculating o(zx, q) the response to a source term o(x)X{(q)
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1S
—1

g(z,q) = 7—X(g—r/c). (4.17)

(Ak1 & Richards 1980, Equation 4.4). The solution of Equation (4.15) is the spatial convolution

ot g, defined in Equation (4.17) above, with the spatial directivity of the source term in Equation
(4.15)

o(x,q) = g(z,q)* 2(x)X(q) (4.18)
1
- 47r7‘27’D (4.19)

/// —X(g-r/e) : YDAV (4.20)
///X (g /) T3’Y’D 4V (4.21)

The integral can be simplified by integrating over the volume V via a system of concentric

shells S, each centred on the origin and with radius r = e7.

o(x,q) = '12 ///X(q—r/c)%’XD dV ' (4.22)
— ///X —r/c) TB’Y’Dder (4.23)
— A;Tl) /T O/T CTX qg—T) ’Y’DdScd'r (4.24)
_ (47:; /OO - 7) (// ——-’Y’DdS) dr (4.25)
Using the result
/ / 2% dS = H(r/c — )4 s ;15% (4.26)

(Aki & Richards 1980, Box 4.3) we have

b(x,q) = (:)2 /T:o Xlg=7) (// —’YDdS) dr (4.27)
_ (;) / i .)f_T" ) ( (r/c — 7)dnc*T %W'D) dr (4.28)
_ (4 1)247rc 2 2D iX( _VrH(r e — 7) dr (4.29)
S " 4D / X(q — 7)rH(r/c — 7)dr (4.30)

After following a similar calculation for 1 we conclude

P o0

O = =7.D X(g—T1)TH(r/c —T)dT (4.31)
4rrr +—0
c* >
v = 157xD [ X@-mrH(r/e=)dr (432
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compare with Equations (4.21), (4.22) (Aki & Richards 1980).

The third step in the calculation is to form U = V¢ + V x . A result which is useful in
this step is that

8(?51- [4;};?2 T: X(q—7)TH(r/c — 1)dT
B Bi [47’32] TOOOX(Q —7)TH(r/c — 7)dr
i U Ag=T)TH(r/c =) dr J (4.33)
— 4737',3“(513 — 37i7;) /T:OX _VrH(r)e — ) dr
+ 5 X(g=1/0 s

Using this result we can now calculate V¢ and V x ).

Vé = V [47TT2’7’D/ X(q—7)rH(r/c —T) 7—] (4.35)
_ 6‘; [4;22 2D, :OX(q CArH (e — 1) dT] (4.36)

- 4;i236 D, (6;; 3%73—)[:0 X(q—1)TH(r/c — 7)dr
—E}T;e Djvinj X (g —r/c) (4.37)

— 4W:3 (D — 3(YD)7) :X(q —7)TH(r)c — T)d7
—ﬁ(’)’.'D)’YX(q —7/c) (4.38)
Vxtyp = Vx K ;;-’YX’D j X(q—7)TH(r/c —T) dr} (4.39)
_ D (v [4_7:27 O: X(q—7)TH(r/c — ) dTD

+(D.V) l ;;'7 TiOOX(q —7VTH(r/c —T) } (4.40)

(using the result that Vx(Ax B) = -B(V.A) + (B.V)A for a constant B)

V.A
73/ X(q—1)TH(r/c —T) d’rl

0
D(Tﬂ‘; [47”'2

0 [ c > 4.41)
+Dj— Yi€i X(g—m)TH(r[c—T)dT (4.
Or; {4mr? =0
= D - (05 — 37i75) X(g—7)TH(r/c—T)dT
4mrs r=0
1
-—DZE;’YJ’YjX( - T/C)
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1

gy i€ X (g /) (4.42)
1
= =D -X (g —
X (g—r/c)
+47;‘?°3 (D - 3(7.D)7) /.,.:0 X(q—-—1)TH(r/c— 1) dr
1
+47r’r (YD)YX(q—1/c) (4.43)
(4.44)
Combining these results we conclude that
U = Vo+Vxy (4.45)
~D
= —AX(@-r/c) (4.46)

compare with Equation (4.23)(Aki & Richards 1980)."! This completes the calculation of the
equivalent wavefield.

The diftusive response can be calculated from the equivalent wavefield, using the Q transform

Fot) = = [ qea(-D)U(@qd (4.47)
N = s el ,q) dq -
T Anr o/7t3 /0 lep(_fﬁ)X(q —r/c)dg (4.48)

4.1.2 A Shorter Derivation

We seek to solve the vector diffusion equation in F for a directed point source term aligned

in the D direction and located at the origin of an infinite, homogeneous, isotropic medium of

equivalent velocity ¢. That is, we seek to solve

V2F(z,t) — 215-@((9?2 — Dé(x)I(t) (4.49)

where I(t) is the source current time profile.

Following the method of Section 3.1, the first step in the calculation is to find the equivalent

wavefield U (x, q) which satishes
VU (z,q) — 5 —F5— = Di(x)X(q) (4.50)

where the equivalent wavefield source profile X(q) is related to the source current time profile

by the Q transform.

1In isotropic media both the irrotational and solenoidal components diffuse at the same rat.e. Hence the
massive cancellation observed in Equation (4.46). In contrast the irrotational (P-wave) and solenoidal (S-Wave)

components of the elastic wavefield do not have the same velocity.
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T'he solution of Equation (4.50) is

Uz, q) = :—?-X(q—-r/c)- (4.51)

4mr

(Aki & Richards 1980, Equation 4.4) and from this the diffusive response can be calculated

using the Q) transform to be

F(x,t) = D! - s X
: = Tmrodam ) qexp(—z{) (g —T1/c)dg. (4.52)

4.1.3 Representation of EM Sources

T'his section develops a concise notation for the representation of sources, which eases the
calculation of the equivalent wavefield, and hence the diffusive EM field. Beginning by returning

to a directed point source term, the resulting equivalent wavefield is expressed in terms of a

2

source function and a tensor.” More complicated sources are then represented in terms of a

source tensor.

We introduce G(x,q), a second order tensor such that the equivalent wavefield response

U(zx,q) to a directed point source term Dd(x)d(q) is
U; = D,Gi;. (4.53)

Section 4.1.1 calculated that the equivalent wavefield response to a source term Do(x)X (q) is

—D

— — . 4.54
U(x,q) 4MX(q r/c) (4.54)
Hence we have the result that
-1
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We can see that the equivalent wavefield response to a source function T' = DX (g)d(x) is

where * denotes convolution in space and time. Since we assume a linear response from the

physical system under consideration, the response for extended sources can be calculated by a
convolution of the extended source density with G(x, g) the response to a directed point source
term.
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