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SYNOPSIS,

Wind loads constitute one of the major forms of structural loading. The

calculation of the dynamic response of structures to wind loads requires

the use of specialised techniques due to the complexity of wind excited

oscillating systems. Current techniques are at an early stage of

development and the need for more research in this field is recognised.

An analytical investigation of the dynamic behaviour of structures

subjected to simulated wind loads is carried out using a conventional

spectrum analysis technique. The relative importance of parameters

relating to the wind and the structures are discussed and the insensitivity

of the spectrum analysis to variations in structural data is demonstrated.

The fact that the non-linearity of the systems and the inertia of the

structures are neglected is suggested as reason for this,

A further analytical investigation, using an energy technique developed

by the author, is described and the importance of making an allowance

for the non-linearity of the systems and of structural inertia is

demonstrated. The energy method is reduced to a dimensionless form so as

to be suitable for general application in design and its use as a

substitute for the spectrum analysis is suggested.

Appendix 1 contains the analytical development of power spectrum analysis

theory while Appendix 2 deals with detailed aspects of the energy

analysis.

Appendices 3, U and 5 are concerned with the development of a method for

calculating the natural frequencies and mode shapes of multi-storey

shear wall structures. This was carried out concurrently with the main

topics,/
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topics. Appendix 3 contains the analysis of a shear wall building

using a continuum theory adapted by the author for use in dynamic analysis.

The results predicted by the continuum theory are compared with those

obtained from more approximate methods and a model test oarried out to

confirm the theoretical results. The continuum theory is reduced to

a set of dimensionless design curves from which the natural frequencies

of shear wall structures may be determined after the evaluation of simple

structural parameters. Appendices i; and $ describe the solution of

equations and the evaluation of certain constants used in the shear

wall analysis.
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CHAPTER 1

SHORT HISTORY OF WIND LOADING RESEARCH
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The effect which wind loading has on a structure is an enigma

which has troubled engineers for centuries and which assumed

importance in the latter half of the eighteenth and beginning of

the nineteenth centuries, with the advent of structural analysis

and a more rational approach to design. The need for new types

•f structure brought about by the industrial revolution, together

with the development of the techniques of structural mechanics

and stress analysis, led to a change in emphasis of design

criteria from those of aesthetics to those of economy and

efficiency. The calculation of stresses became a standard part

of design procedures for engineering structures and the dimen¬

sions of their components were arrived at on the basis that the

maximum stresses should not exceed certain specified limits.

The maximum loading condition had therefore to be known, and it

was the problem of determining this which constituted a major

difficulty in the case of wind loads.

Although it was recognised that the wind was highly turbulent

and that it gave rise to forces which were far from steady, it

was considered that the worst loading oondition to which a

structure would be subjected would result from the highest

velocity gust which struck it in its lifetime, and that this could

be regarded as a static phenomenon. Early investigators were

concerned with the problem of predicting the velocity of the worst

gust which would blow over a particular structure, and the

resulting pressure which this would produce on its surface.
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The controversy as; to what design wind pressure ought to be

adopted for general use went on throughout the nineteenth century

and consisted of arguments which were based more on inspired

guesswork than on the result of scientific investigation. The

matter was brought to a head after the collapse of the Tay

Railway Bridge in a gale in 1879. This bridge had been designed

to resist a maximum wind pressure of 10 lbs./sq. ft., a figure

which was recommended by the Astronomer Royal of the day, but

which appears to have been based on recommendations made by

Smeaton in a letter to the Royal Society in 1759. Smeaton

advocated pressures of 6 lb./sq. ft. for high winds, 8-9 lb./sq. ft.

for very high winds and 12 lb./sq. ft. for storms or tempests.

As a result of the Tay Bridge disaster and the investigation which

followed, the Board of Trade issued a regulation that a pressure

of 56 lb./sq. ft. be used in future for the design of engineering

structures. This brought Britain into line with other countries,

where typical accepted values at the time were 55 lb./sq. ft. in

France and 50 lb./sq. ft. in the U.S.A.

One of the first scientific studies of wind pressure was made by

Baker in connection with the design and construction of the Forth
I

Railway Bridge in the 1880's. Baker erected four wind pressure

gauges on an island in the River Forth near the intended site of

the bridge. These consisted of a square board of area 300 sq. ft.

and three circular boards approximately 1.5 sq.ft. in area.

Readings were taken continuously between 1883 and 1890, and

maximum pressures recorded were 31 lb./sq.ft. for the small

boards and 19 lb./sq.ft. for the large board. Baker also con¬

ducted wind tunnel experiments to obtain the drag properties of

the proposed bridge by comparing the force on a model of the

bridge with that on plane laminae of different areas.
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Perhaps the most important result from Baker's experiment was the

discovery that the average pressure over a large area is much less

than the maximum load, pressure due to a gust, and that high in¬

tensity gusts appeared to have a small spatial extent. This

question of the difference in the average pressure between

surfaces of different area now became one of the main problems

attracting the interest of investigators.

By the beginning of the twentieth century, a large number of

meteorological stations had been set up all over Great Britain

and these were keeping continuous records of the wind velocity.

It was therefore possible for the designer to get some idea of the

maximum wind velocity which was likely to occur in the area of a

proposed structure, and the problem of estimating the maximum

gust pressure on a structure was on the way to being solved. As

civil engineering structures usually presented a large area to the

wind, however, the new problem of estimating the extent to which

this maximum pressure ought to be reduced to allow for the small

spatial extent of gusts now assumed some importance. The extent

of the interest in this issue can be gauged from the discussion

which followed a paper on wind pressure which was presented to the

Institution of Civil Engineers in 1924 by Stanton. Stanton's

paper described an experiment to measure average wind pressures

across different areas, at a site near the National Physical

Laboratory at Teddington and another on Tower Bridge in London.

A comparison was also made between anemometer readings taken on

these sites and readings taken at the nearest meteorological

station at New. Stanton found that while average pressures were

lower than local pressures for the Teddington experiment, this was



7

not the case on the Tower Bridge site. On the basis of his

results Stanton made the following recommendations for design:

1. That for the purposes of assessing the maximum design velocity

for a structure, an anemometer should be erected on the site

of a proposed structure to facilitate a comparison between

the wind at the site and the wind at the nearest meteorological

station. The design wind should then be found by extra¬

polating the maximum velocity recorded at the meteorological

station to the site.

2. That no reduction should be made from the maximum gust pressure

to allow for the fact that the gust may not totally envelope

the structure.

The second of these recommendations was criticised during the

discussion and it was suggested that the result obtained at Tower

Bridge was not typical of most structures and could be attributed

to peculiarities in the topography surrounding the Tower Bridge

site and to the positioning of the pressure gauges in the structure

of the bridge. The general practice at the time seems to have

been that reductions were made for average pressures over large

areas, and typical values are:-

300 sq.ft 0.67p

40 sq.ft 0.7^p

10 sq.ft. ...... 0.8%>

where p is the local pressure due to the highest gust likely to

occur at the site.

The general state of knowledge at this time was not very far

advanced, however, especially so far as application to design was

concerned. One of the main shortcomings was the lack of accurate
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data on the wind itself. The Dine's pressure tube anemometer,

for instance, which was used at most meteorological stations, was

incapable of recording gusts of short duration due to its long

response time, and it was realised that the maximum gust velocity

recorded by this instrument was probably considerably less than

the maximum gust velocity which would actually occur at a given

site. It was also realised that the extent to which the average

pressure over a large area became reduced from the maximum local

pressure depended on the characteristics of the turbulence at the

site in question and that this depended on local topography.

Sites in open country where there were few obstructions and where

the air stream was comparatively smooth were distinguished from

those in urban areas where the intensity of turbulence was much

greater and gusting more prevalent. No quantitative data was

available, however, to help a designer to decide what allowance

ought to be made for the variation in the characteristics of

turbulence at different sites. The situation was, therefore,

that while the general principles of the effect of wind on

buildings were understood, the crudity of the available data was

such that large safety factors were required for design.

As the use of steel and concrete-framed buildings became more

widespread during the first half of this century, the tendency

in the building industry was to use ever lighter material for the

purpose of cladding. Concern became concentrated on wind-induced

failure of building components and not, as previously, on failure

of the whole structure due to wind loading. The emphasis in

research therefore shifted away from a consideration of the

overall stability of a structure, and investigations were begun
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on the pressure distribution over a building due to the wind.

In 1942, Bailey and Vincent published a paper entitled "Wind
z.

Pressure on Buildings including the effect of Adjacent Buildings".

This paper described a series of wind tunnel tests carried out

on model buildings in which pressure distributions were measured.

Graphs of pressure distribution for many building shapes were

given. Also, as previous investigators had done, they re¬

commended that the maximum gust velocity recorded at meteor¬

ological stations should be the criterion for design. Perhaps

the most significant result of their work, however, was their

appreciation of the effect which the internal pressure in a

building has on panel loads. Bailey and Vincent realised that

the load on a cladding panel depended on the difference in

pressure across the panel, and that the pressure inside the

building was as important as that outside. They also realised

that the internal pressure depended on the location of the

dominant openings in the building and their position with respect

to the direction of the wind. A large opening on the leeward

side of a building, for instance, would give rise to a negative

pressure inside which would greatly increase the load on the

windward wall as it would then be subjected to a positive pressure

on one side and a negative one on the other. Bailey and Vincent,

therefore, illustrated that care was needed in the design of walls

and roofs of buildings and that the location and sizes of windows

and doors, as well as the wind velocity, had to be taken into

account during design.

One aspect of the wind loading problem which has not yet been

touched on so far is the variation in wind speed with height.
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This has been found to be dependent on the temperature gradient

and ground roughness. Attempts were made in the 1930's to find

empirically, a formula which would define the variation in mean

velocity with height and early work in the field was mainly based

on the formula,

Vg = a log Z + b

where = mean velocity at height Z

a, b = constants

More recent work has concentrated on the simpler "Power Law"

profile given by,
I

- V! >
o

where V is a reference velocity at height Z and<x a constant
o o

dependent on ground roughness. The "Bower Law" formula is not

altogether satisfactory, however, especially for areas near

changes in ground roughness such as occur at city boundaries, but

its simplicity has led to its adoption in the wind loading field
$

and values of <X have been tabulated for a range of ground rough¬

nesses.

The Code of Practice CP 3 (Ch. 5), which was published in 1952,

fornttllatod the procedure for design to resist wind loads, and

followed more or less the lines of the Bailey and Vincent paper.

One possible shortcoming, however, was that although the variation

in wind speed with height was allowed for in the Code and higher

loadings were recommended for high buildings, the pressure co¬

efficients given were based on wind tunnel tests carried out in a

uniform air stream. Later work has suggested that the neglect

of the velocity profile leads to incorrect modelling of the flow



11

around buildings and to an inaccurate assessment of the pressure

coefficients. A further oriticisni of the model tests is that

they were carried out on solid models. Recent work by Newberry

on full scale buildings has suggested that buildings are much more

permeable than was previously assumed and that this has a con¬

siderable effect on the pressure distribution across their

surfaces. Another aspect of the 1952 Code, which was perhaps

rather surprising, was the adoption of the maximum one minute

mean wind speed for design purposes rather than the maximum gust

speed. This gave lower loadings than had previously been used

and may be criticised in retrospect in the light of the many

cladding failures which have occurred since the introduction of

this standard. The new Code, which was published in draft form

in 1968, reverts to the older usage of maximum gust velocities

and generally brings the 1952 Code up to date by the use of more:

recent data on pressure coefficients and the introduction of a

more detailed procedure for assessing the internal pressure of

buildings. The method suggested for checking the overall

stability of a structure is to sum the cladding loads vectorially

to obtain an overturning moment.

Throughout the development of methods for assessing wind loads,

it has always been assumed that the consideration of the wind as

a static form of loading would give a good enough approximation

for design purposes, although the turbulent nature of the wind

had always been appreciated. In recent years, however, it has

been realised that slender structures, such as lattice towers or

tall buildings, are oapable of responding dynamically to the

wind, and vibrations of such structures have been recorded, both
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the along wind and across wind directions. Vibrations in the

lateral direction are usually due to the phenomenon of vortex

shedding. This is a problem which is particularly prevalent

with tall chimneys and it has been the subject of a considerable

research effort at the National Physical Laboratory by Scruton

and others. Vibration due to vortex shedding may be controlled

either by designing the structure so that its natural frequency

does not correspond to the frequency of vortex shedding, or by

preventing the vortices from forming by the atta&hment of spoilers

to the surface of the structure which break up the air stream.

Vibration of slender structures in the along wind direction as

a result of buffeting by high frequency gusts presents a more

difficult problem from the point of view of design. It is

unlikely that such vibrations could be eliminated by suitable

design, although the possibility of limiting the amplitude by

the introduction of damping devices does exist. The feasibility

of this remedy is discussed in a later chapter, but it may be

noted here that there are many structures for which it would

probably not be an economic solution to the problem.

For the calculation of stresses in a vibrating structure, there

is needed an assessment of the amplitude of vibration, and to

obtain this a dynamic analysis must be performed. This, in

addition to being a rather complicated operation, requires a

detailed knowledge of the loading conditions and fairly precise

data on the nature of wind turbulence are therefore necessary.

Wind turbulence is a highly complex phenomenon which has to be

dealt with on a statistical basis. Investigations during the

past two decades into the spectral density of wind velocity,
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notably by Van der HovenJ Panofsky, McCormick, Davenport* and Harris

have yielded promising results, however, and Davenport and Harris
in particular have evolved empirical formulae from which the

spectrum of wind turbulence at any site may be approximated if

certain elementary parameters associated with ground roughness are

known. On the basis of these formulae, Davenport has developed

a method for predicting the statistical properties of the response

of cantilever-like structures to wind turbulence, and has presented

it in a form which is suitable for general application in design.

This is the only method available at present,in a simplified form5

for assessing the stability of a slender structure, which is likely

to respond dynamically to the wind.

The present state of knowledge on the subject of wind loading of

structures, after approximately a century of research is therefore

as follows. Fairly comprehensive data is available on the static

effect of wind and on the distribution of pressure over buildings.

It is possible, as a result of this, to make fairly accurate pre¬

dictions of the loads on building components suoh as cladding

panels, and of the general overall stability of stiff structures

which are unlikely to respond dynamically. The study of the

dynamic effects of wind, however, is still in its infancy. The

Davenport method, by which the stresses due to wind induced

vibration may be estimated, uses rather a crude mathematical model

for what is a highly oomplioated dynamic system. This was in¬

evitable when one considers the gaps in the existing knowledge on

wind turbulence and its interaction with vibrating structures, and

also the necessity to keep the method simple enough for general

use. The ansy/ers given by it probably constitute no more than a
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very rough approximation to the real situation. There is, there¬

fore, a need for further research on this topic, and the in¬

vestigation presented here consists of a theoretical study of the

parameters which affect a vibrating system and the relative

importance of these so far as the wind loading problem is concerned.
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CHAPTER 2

DESCRIPTION OF RELEVANT BACKGROUND MATERIAL
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2.1 STRUCTURE OF THE WIND

Wind is the result of differential heating of the earth's surface

by the sun which causes pressure gradients to be set up in the

atmosphere. These give rise to air movement, and the velocity

of the wind, at heights above approximately 1fjOO ft., where it

is unaffected by the ground, is dependent on the magnitude of

these pressure gradients. This air movement at heights large

enough to be unaffected by the ground is called the gradient

wind. Movement of the layers of atmosphere immediately

adjacent to the ground is retarded by the friction associated

with ground roughness. The mean velocity at ground level is,

therefore, lower than the gradient wind velocity and it increases

with height, up to the gradient velocity, which is reached at

what is called the gradient height. The rate of increase in

mean velocity with height, and the gradient height itself, are

functions of the ground roughness. The mean velocity profile

is generally taken to follow a simple power law given by,
z C5<,

Vz = ( Vg where, V = mean velocity at height z

Vg = gradient velocity
Zg = gradient height
CK.'= •oefficient dependent on

ground roughness

The shearing effect between the ground and the air in contact

with its surface, and between adjacent layers above the surface,

gives rise to turbulence. The intensity of turbulence is

defined as tho ratio of the r.rrps. of- tHe t\»v\e

component oS1 \ieloc.\U| to the n\e<x*\ cx«\el this too depends
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on the ground roughness. In urban areas, where buildings

generate large eddies, the intensity of turbulence is high,

while over a smooth surface (open grassland for instance) where

the surface drag is much less, the air stream near the ground

is much more uniform and the intensity of turbulence less.

The nature of the wind at a particular time and place, therefore,

depends on the pressure differences in the atmosphere, which

determine the gradient wind speed, and the topography and ground

roughness surrounding the site in question, which determine the

gradient height, mean velocity profile and turbulence character¬

istics. The pressure differences in the atmosphere are

associated with the passage of weather systems and give rise to

variations in wind speed which occur slowly over comparatively

long periods of time, in the region of days. The fluctuations

caused by ground roughness, however, are high frequency

variations with periods of from five minutes to fractions of a

second. The different effects caused by these two mechanisms

is clearly illustrated if a spectrum* of wind velocity for a

particular site is examined. The ?and velocity spectrum is the

breakdown of the time varying wind velocity function into ..

frequency components as in a Fourier analysis. It may be found

by converting the velocity function into its electrical analogue

(e.g. by hot wire anemometer), passing this through a range of

filters with different frequency characteristics and measuring

the root moan square output at each frequency. The graph of

root mean square output against frequency gives the spectrum

of the signal.

* For explanation of spectrum see Appendix 1.
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Pig. (l) shows a wind velocity spectrum obtained by Van der Hoven

and it shows the maxima corresponding to the fluctuations caused

by the basic mechanisms mentioned above. It is significant that

no large fluctuation occurs with a period of between five hours

and five mintues. This is thought to be due to the fact that no

mechanism exists for generating turbulence in this frequency range.

As a result of this gap in the spectrum it is possible to regard

the wind as consisting of a mean velocity with turbulence super¬

imposed on it. Long term variations are seen as movements of

the mean with high frequency variations regarded as fluctuations

about this mean.

In the design of structures to resist wind loads, uhe worst wind

conditions which will occur in the vicinity of the structure in

its lifetime are those which are of interest. These occur as a

result of a high mean velocity and the superimposed turbulence

caused by ground roughness. The estimation of the worst load on

the structure is essentially a prediction of the future so the

problem becomes a statistical one requiring the examination of

past records.

In Britain we are fortunate in having a large number #f meteor¬

ological stations throughout the country which keep a continuous

record of the wind. The continuous records are split up into

hour long portions and hourly means taken. The worst hourly

mean on each day is recorded together with the highest gust

speed. This is taken to be a three second gust as three seconds

is the minimum response time of the equipment used. The length

of record varies from sixty years to ten years approximately.



nSen)

Fig.ISpectrumofhorizontalwindspeed,(VanderHoven).
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With such records at their disposal, the meteorological office

are in a position to make fairly reliable predictions of the

worst hourly mean wind speed and the worst three second gust

speed which are likely to occur in a particular area for any re¬

turn period. Predictions of velocities with averaging periods

other than one hour or three seconds have to be interpolated from

these results. Work on the relationship between the magnitudes

of mean wind velocities for different averaging periods has been

carried out by the meteorological office, notably by Shellard,

and values for one minute, fifteen second and ten second periods,

together with the likely spatial extent of such gusts are

available. The British Code of Practice on wind loading is

based on this 'worst gust' approach. Structures are designed

to resist the worst single gust which is likely to blow over them

in their lifetime, and this is considered as a static load. The

fact that the wind is a dynamic form of load and may cause a

structure to respond in a dynamic way is not taken into account.

For the majority of stiff, low rise structures, this is probably

a good enough approach to design but in the case of slender

structures which respond dynamically to the wind a oheck on

possible amplitude of vibration should be made.

In a. dynamic analysis, the concern is not so much with the worst

single gust to which a structure is likely to be subjected as

with the worst sequence of gusts and the time varying properties

of the wind load on a structure must be known if the amplitude

of resulting vibrations are to be calculated. If a vibration

analysis were to become part of a standard design procedure suit¬

able for incorporation into a code of practice, a mathematical/
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model of turbulence, which could be used to predict the character—

istics of turbulence at different sites, would have to be available!

Attempts have been made to provide this and work on the topic has

been concentrated mainly on trying to provide a means of predicting

the spectrum of turbulence at any site. Notable contributions in

this field have been made by Davenport and Harris who have both

produced empirical formulae for the spectrum of horizontal wind

speed.

Davenport splits the wind velocity function at a site into its

mean and turbulent components. The turbulence is considered as

a fluctuation about zero mean and is regarded as a steady state

phenomenon dependant on the mean velocity and the ground rough¬

ness. In a given mean wind speed, the roughness is considered

to generate a particular size of eddy which is dispersed to smaller

eddies, which are in turn dispersed, the energy finally being dis¬

sipated as heat, Davenport considers that the rate at which

eddies are broken down and dispersed is the same as the rate at

which new eddies are created. The proportion of large to small

to smaller eddies in a particular batch of wind is therefore always

the same. The size of an eddy, combined with the mean wind speed,

determines the frequency of a particular component of turbulence.

If the proportion of different sizes of eddy in the wind remains

the same, the distribution of components of turbulence with respect

to frequency will be constant and will not be a function of time.

The spectral density of wind velocity will therefore also be

constant. A site of particular roughness, should, therefore,

always yield the same wind spectrum in the same mean wind speed

and this should be similar to spectra from other sites with the/
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same roughness characteristics.

To develop this theory, Davenport examined data from a large

number of sites with different roughness and for different mean

wind speeds. By operating on the spectra of turbulence at these

various sites, with parameters pertaining to ground roughness and

mean wind speed, he was able to fit all the spectra onto one

curve called the reduced spectrum, and he also derived an em¬

pirical formula for this curve.

It is possible, with the use of this formula and appropriate

roughness parameters, to predict the turbulence spectrum at any

site for any mean wind speed, The availability of a reduced

spectrum, therefore, enables a picture of the worst wind which

is likely to occur at a particular site to be built up. The

mean velocity of the worst hour of wind can be found from meteor¬

ological office data, and an idea of the nature of the turbulence

during this hour, obtained from the reduced spectrum. This is

of course a limited amount of information. The spectrum gives

only the distribution with frequency of the various components

of turbulence in the wind and it applies only to one point in

space. It gives no indication of the spatial extent of any of

the components of turbulence or of the way in which different

components are related to one another in the time domain.

The size of a component of turbulence in relation to the size

of a structure with which it is interacting is an important

consideration so far as calculation of structural response is

concerned. Some idea of the area over which a gust sequence

is likely to be effective can be obtained if the cross-cors*

relation properties of the wind with respect to frequency are/
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known. The cross-correlation between two signals is a measure

of the extent to which they are similar. Two identical signals

would have a cross-correlation coefficient of one, while com¬

pletely dissimilar signals would have a cross-correlation co¬

efficient of zero. The extent to which the wind at two points

in space is similar depends on the distance between the points

and on the frequency of the component of turbulence which is being

examined. High frequency turbulence, resulting from small

eddies, has high correlation only over small areas while low

frequency turbulence, which results from much larger eddies, is

correlated highly over larger areas.

The cross-correlation coefficient between two points in space for

a particular component of turbulence, therefore, depends on the

eddy size of the turbulence. This may be related to the more

easily measured parameters of frequency and mean wind velocity.

By analysing data so as to determine the extent to which wind

signals, recorded at points with different separation distances

were correlated, Davenport evolved an empirical formula for the

cross-oorrelation coefficient of wind turbulence as a function

of separation distance, frequency, and mean wind speed. This

may be used in conjunction with the turbulence spectrum to obtain

the frontal area over which particular components of turbulence

are likely to be effective.

The time varying properties of the wind function cannot be obtained

from the spectrum, which gives only the statistical properties of

the turbulence. By dealing with the basic parameters of turb¬

ulence, however, it does have the great advantage of enabling the

the statistical properties of turbulence at any site at which/



23

these parameters are known, to be predicted. This is an

essential requirement of any design method. Wind velocity

spectra are the only data on wind loading, available at present,
which give enough detail on the loading conditions for a dynamic

analysis to be carried out. The information which can be obtained

from such an analysis is, of course* restricted to the statistical

properties of the response of a structure to turbulence. This

is a limited amount of information but it is sufficient for the

purposes of checking the suitability of a design. By dealing

with turbulence on a statistical basis, along the lines shown by

Davenport, it is possible to reduce the computations involved in

a dynamic analysis to a manageable level and still obtain a use¬

ful result.

2.2 RESPONSE OF STRUCTURES TO DYNAMIC SOAPING

When a structure is loaded it deflects. Work is done on it and

it is therefore given energy in the form of strain energy. This

is potential energy which is returned to the loading mechanism if

the load is subsequently released. The speed with which the

structure can be returned to its original position depends on the

acceleration which the force due to its stiffness can impose on

the mass of the structure. If the load is withdrawn faster than

the recovery speed of the structure, the strain energy will not

be returned to the forcing mechanism and will remain in the

structure in the form of kinetic energy. In the absence of a

dissipative mechanism this energy is not destroyed and through

inertia! .is reconverted into strain energy by the deflection of

the structure in the reverse direction to the original dis-
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jalacement. An oscillatory system is therefore set up in which

energy is continuously being converted and re—converted from the

potential to the kinetic form. The frequency of the resulting

motion depends on the mass and the stiffness of the structure

and-is therefore one of its fundamental properties. It is

called the natural frequency.

Tf a structure is forced by a load varying sinusoidally at its

natural frequency, energy is added at each cycle and the amp¬

litude of vibration increases with each cycle. In the absence

of any dissipative forces, such a system is theoretically capable

of reaching an infinite amplitude. In practice, dissipative

forces are always present and a steady state equilibrium is

^reached when the amplitude is such that the energy being supplied

to the structure per cycle is exactly balanced by the energy

-being dissipated by damping forces. The amplitude reached by

a structure which is being forced to vibrate at its natural

frequency is therefore dependent on the amount of damping present.

1If a structure is subjected to a sinusoidally varying load with

a frequency which is lower than its natural frequency the rate of

unloading in each cycle is not so great that the strain energy

-cannot be returned to the forcing mechanism. Energy may there¬

fore be continuously added to and subtracted from the system and

'ho accumulation of energy occurs. The amplitude of the de-

flection is dependent on the relationship between the stiffn&ss

of the structure and the load, as in a static system. If a

structure is forced at a frequency above its natural frequency,

the inertia forces become so great that the amplitude of

vibration is minimal.
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It is possible to distinguish between two types of system

which undergo time varying loading conditions therefore.

One is the truly dynamic system where the structure is ex¬

cited at its natural frequency, inertia forces play a sig¬

nificant role and the ultimate deflection depends on the

damping. The other is a quasi-static system where, although

the load is a function of time, the frequencies are low

enough to make inertia forces insignificant resulting in the

deflection being controlled by the stiffness of the structure.

The deflection at any instant is directly related to the load

at that instant.

All vibrating systems may be described in roughly the same

way mathematically. The basic equation may be derived by

considering the forced vibration of a simple spring-mass-

dashpot system.

/

/ / 7

F = P Cos <ot

Fig. 2

Single degree of freedom system
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The force exerted by the spring is proportional to the dis¬

placement, and by the dashpot to the velocity of the motion.

The equation of motion is, therefore,

m + c + l§x = P Cos wt (2.1)
dt

The complete solution to this equation consists of a com¬

plementary function, which describes the free vibration of

the starting transient, and the particular integral which re¬

lates to the steady state forced vibration. In most mechanical

vibration problems it is the steady state vibration which is

of interest and the complementary function is usually neglected.

The particular integral solution to equation (2.1) is,

x =
P Cos(wt -f) ± (2>2)

[(ks- mw2) + oV] 2
tat* - -^—2

(kg- mw )
k

The substitution w = —'5 can be made where w is the
0 m o

natural frequenoy of the system in which case,

P Cos(wt - fiO
x = r 2 2 21 i4(1 - ag) ♦ (f) j^ iar

p
If xg^. = ^ is the displacement for a static force P, and
X is the amplitude of the steady forced vibration

(x = X Cos(wt - ft) ) the magnification due to the load being

applied dynamically is given by,
x 1
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= magnification factor or frequency response function

A Ma

-£>»•
UJ

Fig. 3 Frequency response function for single degree

of freedom system.

The graph shows Mg plotted against frequency and it illustrates
the fundamental properties of a single degree of freedom, forced

vibration system which are:-

1) That a high magnification ocours at a particular

frequency
^ which depends on the ratio of the mass

to the stiffness of the structure.

2) That at frequencies below the deflection of the

system is quasi-static, i.e., there is a distinct re¬

lationship between deflection and force at any

instant.
x =

P Cos (tot - 0)

3) That the amplitude of the vibration at the natural

frequency depends on the damping value.

kg.
CCD

Thus, the qualitative assessment of the behaviour of a

vibrating structure, stated previously, can be completely/
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described mathematically by the magnification factor.

Equation (2.1) describes the motion of a single degree of

freedom vibration system and one displacement variable is

sufficient for this purpose. A simple approximation to a

tall building is a oantilever which is a multi-degree of

freedom system. If vibration in one plane only is considered

the motion of any part may be defined by the co-ordinate y

(see fig. 4) which is a function of x and t. Both the

natural frequency of the structure and the shape into which

it deflects must be determined before the motion may be com¬

pletely described.

The strain energy at the point of maximum deflection depends

on the shape into which the structure deflects, and the kinetic

energy at the mean position on the natural frequency, so that

a unique relationship between deflection shape and natural

frequenoy, would be expected.

The following equation may be derived to describe the free

vibration of a cantilever.

1
Tig. h

EI 0 (2.3)
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where:- E = Young's Modulus, I = Second Moment of Area of

section, M «■'generalised ataais y(x, t) may be expressed as a

product of a shape vector f(x) and a time dependant function

g(t). If a vibrational solution is assumed as in the single

degree of freedom case, g(t) will be a trigonometric function

and the substitution g(t) = G-^ sinCw^t.) may be made where
is the natural frequency of the system. The equation then

becomes,
4 / \

EI f(x) = 0 (2.4)
dx

The solution to this equation oontains five unknowns, four

constants of integration and As there are only four

boundary conditions a complete solution is impossible and

y(x, t) can only be found in terms of an arbitrary constant.

The general solution to equation (2.3) is,

y(x, t) = g(t) f(x)

where,

f(x) = A SinXx + B Cos Xx + C Sink X X + D Cosh \x

The eigenvalues, (w^, w^, my w^) may be found by applying
the boundary conditions to equation (2.4). Then, for a

cantilever,

fr(x) = Erj^Cosh - CosXrx - k^Sirii Xrx - SinXrx) J
where, k = + Coah V

r
Sin X 1 + Sirii \ 1
t r

r — 2, 3, •••• in•
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F is an arbitrary constant. The modes are usually

'normalised1 such that f .^2/ ^ A value for F_^ isJo PW
found from this equation.

The multi degree of freedom system, therefore, has many natural

frequencies and for each natural frequency there is a specific

shape of deflection called the mode shape. This unique re¬

lationship between and fr(x) results from the necessity
for each deflected shape to be related to a specific frequency

so that the maximum kinetic and strain energies of vibration

are equal. It is possible to regard the vibration of the

structure in each mode as a single degree of freedom system

and the total motion of the structure as a superposition of

these uncoupled single degree of freedom motions.

The forced vibration of a cantilever under the action of a

distributed harmonic load P(x, t) may be dealt with by this

'normal mode' approach. If P(x, t) Pr(^) ^r(x)
and y(x, t) gr(t) f^x)

the equation of motion (2.3) becomes,

4 d2
+ C. -% fr« Pr(t) fr(x) (2.5)

dx4 dt

This may be written as an infinite set of uncoupled- equations,

EI ejt) th. + (*)*<*)
dx4 dt2

EI g(t)X f (x) + M^f f (x) = p (t) f (x)r r dt2 r r r

a2g
r EI \4 /j.\ I /. \

dt2 M X gr(t) = jj pp(t)



31

Assuming viscous damping of magnitude c g^ (t) this becomes,

a2g.
dfr

* s % * ¥ >^V> ■ 1 p,w (2.6)

Equation (2.6) has the same solution as equation (2.1). The

motion of a multi- degree of freedom system such as a oantilever

is therefore given by,

y(x, t) =£jr fr(x) gr(t) (2.7)
p (t) Cos (tot)

where g_(t) = 2 2

<i-*W *<£>
00

The response characteristics of a multi degree of freedom

system are evident if ^ gr("t) is plotted against frequency
as in *ig(5).

Fig. 5 Frequency response function for multi degree of

freedom system

As with the single degree of freedom case the height of the

resonance peaks depends on the value of o. Excitation at
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frequencies above about 5 Hz is very small in the case of

wind loading and if the second mode natural frequencies for

cantilever structures ate quite high (])>10 Hz), it
is usual to consider the first mode only in wind load cal¬

culations .

Summary of response characteristics of slender structures

For the purposes of assessing the effeot of wind loading it

is possible to split the response of a slender structure into

three parts:-

1) The static response which results from the static effect

of the mean wind. The magnitude of this is proportional

to the stiffness of the structure.

2) The quasi-static response. This results from all the

time varying loads including harmonic loads, which do not

have the same frequency as the natural frequency of the

structure. The deflection at any instant is proportional

to the load at that instant and depends on the stiffness

of the structure.

3) The dynamic response. This is periodic and occurs at the

natural frequency of the structure. It is due to the

component of the load which occurs at the natural frequency

and its magnitude, once steady state conditions have been

reaohed, depends on the amount of damping in the structure.

Fig. (6) shows a record of the deflection of a 30 ft. high

lattice tower (natural frequency 3.3 Hz) with a simultaneous

wind recording. The trace is one of many results of an ex¬

periment to measure the response of a slender structure to the

wind, which was carried out at Edinburgh University by/



Fig.6.Deflectionof30ft.highlatticetowerwithsimultaneouswindrecord.
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M*J. Dareau(see ref. 6) and it illustrates the three types

of response mentioned above. The graph shows the mean wind,

mean deflection, the good correlation between the load vari¬

ations and the quasi-static response, and the dynamic response

superimposed on this.

2.3_ BESIQH METHODS

The object of a design method is to predict the worst loading

condition which will occur during the lifetime of a structure

and determine the stresses which will result from this. As

wind loading is a natural phenomenon statistical techniques

have to be applied to existing records in order to achieve

this.

There are two approaches to the problem. One is to apply

extreme value statistics to existing wind records in order

to define the worst single gust to which a structure is

likely to be subjected in its lifetime. This is then used

as a static load and an accurate conventional analysis per¬

formed to evaluate deflections and stresses. The advantage

of this method, which has been adopted for the new Code of

Practice, is that it uses existing techniques of static an¬

alysis which are known to be reliable. It suffers from the

disadvantage, however, that it deals solely with the static

and quasi-static components of the response of a structure

and makes no allowance for any additional deflection which

might occur due to resonance. Its validity, therefore,

depends on whether or not a particular structure undergoes

its state of maximum distress as a result of the action of

one single gust or the combined effect of a sequence of gusts.
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The second approach to the wind loading problem is to post¬

pone the use of extreme value statistics until after the

analysis of the structural response has been carried out.

The overall behaviour of a structure in response to all

components of turbulence in the worst average conditions (i.e.
the worst hour of wind) is first assessed. Once the

characteristics of the worst average deflection are known,

extreme value statistics are then used to predict the most

likely maximum deflection. The use of this method eliminates

the need to specify exactly the worst gust or sequence of

gusts to which a structure is likely to be subjected.

A general assessment of the response of a structure to turb¬

ulence however, inevitably involves some sort of dynamic

analysis. The second of the two methods, therefore, which

must be able to deal with static, quasi-static and dynamic

components of deflection, uses techniques of analysis which

are comparatively new so far as wind loading problems are

concerned and their reliability is still not proven.

The spectral method of Davenport.is based on the second of

these two approaches. It is the only method available at

present which takes account of resonant vibration, and which

is presented in a form which could be used by a design

engineer, A brief outline of the method, which is fully de¬

scribed in references (9), (10) and (14) will be given here.

Davenport realised that a rigorous dynamic analysis could not

be contemplated as part of a standard design procedure and has

attempted to formulate a simple method for determining the/
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ratio of maximum dynamic to static deflection due to wind.

This is then used in conjunction with a conventional static

analysis to get the maximum stresses due to the combined

effects of static and dynamic loading. The method is pre¬

sented in the form of a set of design curves from which the

required ratios of dynamic to static loading (called *gust

factors') maybe derived.

Davenport works from the worst mean wind condition which is

likely to occur in the lifetime of a structure. In Britain,

the available data limits this to the worst hourly mean. He

therefore deals with the worst hour of wind which a structure

will be called upon to withstand. The problem is to assess

the additional deflection which will ooour due to turbulence

in this hour. Davenport split the wind velocity function into

its mean and turbulent components. The turbulence is regarded

as a fluctuation about zero mean.

V(t) = V + v(t) where V = mean wind speed

v(t) = turbulence comp.

The deflection of the structure is also regarded as the sum of

mean and dynamic components.

Y(t) = Y + y(t) where Y = mean deflection

y(t) = dynamic component
of deflection

It is the most probable maximum deflection rather than the

time varying properties of the deflection which are required

and Davenport derives this from the equation,

- Y + kcr where Y = most probablemax j max .

maximum deflection

t Y = mean deflection
(worst hour)
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where O = r.m.s.
y deflection

during worst
hour.

kc = a statistical
coefficient

Y = Y(1 + ^&) = Y.& (2.8)
max Y

6 =

Y

where & is the gust factor.

To evaluate the gust factor it is necessary to find values

for kcand . Iq. is called the 'peak factor' by Davenport

and is given by the equation,

= n|"
' 0.57 *

2 In. V T - ?l+

^2 ln.S T1

where, ^ T = averaging period of V
2%

The information required about the time varying part of the

response (i.e. the combined quasi-static and dynamic com¬

ponents) is its root mean square or variance. This may be

obtained from the spectrum of response, which, as is explained

in appendix (l), is a measure of the frequency distribution of

the various components of the response.

= JX(4) 141 (2.9)
The distribution of the load components with respect to fre¬

quency is given by the wind velocity spectrum which may be

obtained for any site and any mean wind speed from Davenport's/

* Derivation of k^ given in referenda (11).
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empirical formula. The response characteristics of a structure

are given as a function of frequency by the frequency response

function. The response spectrum may therefore be evaluated

from these functions as in equation (2.10).

S (n) = 4-X2 Xm2 Sy(n) (2.10)

where,

S (n) = defleotion spectrum
y

2
X = 'aerodynamic admittance' - this function

is a measure of the frequency distribution
of the drag properties of the structure.
The following formula for it is suggested by
Davenport.

\2 ■ s2cs>+ i

where,
= drag coefficient

C = virtual mass coefficient
m

nD
V? -

D = diameter of object

2
X^ = 'mechanical admittance' - this is the square

of the frequency response function.

Sv(n) = The wind velocity spectrum, given by,
S(m) = iikVx2
v

n(l + xz )
^3

4-000 n , . rX = O -k = surtace dr-aa coet

?

Equation (2.10) is applicable to a single degree of freedom

structure which occupies a point in space. It is therefore

not a very practical equation but may be used as an approx-
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imation for such structures as floodlighting towers, where

most of the drag is concentrated in one place, and only the

motion in the first mode is of importance. For more complex

structures such as tall buildings a more sophisticated equation

is required. As only the first mode of vibration is considered

significant for most wind loading problems the single degree of

freedom 'meohanical admittance' is considered adequate for use

with multi degree of freedom structures. A more complicated

•aerodynamic admittance' is used however to allow for the

variation in the spatial extent of gusts with frequency and

the size of the various components of turbulence in relation

to the size of the structure under consideration. The de-
•7

rivation of this function is given in Chapter 3 and it will

only be quoted here. For multi degree of freedom structures,

f (x).' = mode shape

C1 = constant dependant on ground roughness

The Davenport method, therefore, provides a means of assessing

the behaviour of a structure in the wind, which takes all com¬

ponents of deflection into account. The use of spectral

analysis enables this to be done from the very limited data

which are available on the characteristics of wind tur-
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bulenoe• The mathematical model used to describe a vibrating

system, however, is highly simplifiei ao as to be applicable
to a wide range of structures and the method is probably only

capable of giving a rough indication of the possible extent

of the dynamic response of any particular structure. It

cannot be considered as a rigorous design method.

2.1* APPRAISAL OF THE PRSSSHT SITUATION

Of the two approaches to the wind loading problem outlined in

the preceding section, the one which takes account of all

mechanisms of deflection must be considered fundamentally the

better. The ultimate solution is a reliable design method

which takes dynamic response into account and which could

be applied to all structures as a standard procedure. This

is not feasible at present due to lack of data on wind tur¬

bulence and to the difficulty of reducing the dynamic part of

the analysis to a simple procedure capable of general

application. The current Code of Practice on wind loading

therefore makes allowance for only the static and quasi-static

components of deflection. There is no doubt, however, that

some structures do respond dynamically to wind loads and that

in certain cases the amplitude of resonant vibration of a

structure constitutes a significant part of its total de¬

flection. Such structures should be subjected to some form

of dynamic analysis at the design stage if their subsequent

performance is not to be unsatisfactory or even dangerous.

The rigorous dynamic analysis of structures is without the

scope of general civil engineering practice and there is,/



ho

in the absence of a general design method, a need for a sim¬

plified procedure for predicting the response of slender

structures to dynamic wind loads. It is felt that the pro¬

vision of the following might fulfil this requirement:-

1. A simple test which would help a designer to decide whether

a structure was likely to respond dynamically tc wind tur¬

bulence or not. Structures which were found to be safe

against a vibratory response could then be analysed for

static and quasi-static loads only, as prescribed by the

Code of Practice.

2. A procedure for assessing the additional deflection which

might occur in a structure due to resonant vibration.

This would be carried out in conjunction with the static

and quasi-static analysis and would only be applied to

structures which were thought to be liable to have a

dynamic response.

Before either of these facilities can be provided much more

will have to be known about the parameters upon which the be¬

haviour of wind excited vibrating systems depend. Much of

this information will ultimately have to be obtained exper¬

imentally but the present state of knowledge is such that it

is difficult to know along which lines an experimental in¬

vestigation should proceed. The scope of an experiment is

bound to be limited and once the general pattern has been set

it is often difficult to alter.

It was felt that at this stage much useful information could

be obtained from a theoretical study, provided its limitations

were recognised, and it was decided to try and simulate the/



11

process of wind excited oscillation of structures on a digital

computer. It was thought that if a suitable mathematical model

were chosen it would be possible to vary important parameters over

wide ranges and also to maintain great flexibility. The object

was to gain an insight into the relative importance of the various

parameters in the wind excited system in the hope that this would

provide an indication of the lines along which any further ex¬

perimental investigation should proceed.
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CHAPTER 3

INVESTIGATION OF THE MAIN PARAMETERS IN WIND EXCITED
OSCILLATION SYSTEMS USING SPECTRAL ANALYSIS
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3.1 Pg'RODUCT ION.

The preliminary investigation consisted »f an attempt to

simulate the behaviour of a wind driven vibrating system on a

digital computer. The •bject was to study the effects of

variations in the system parameters on the predicted overall

behaviour of a slender structure vibrating in response to wind

turbulence. Of particular interest was the ratio of the dynamic

to the quasi-static components of response. This was considered

to be a good indication of the response characteristics of a

structure to wind loads and it was also regarded as a measure of

the difficulty which the structure is likely to present so far

as wind loading calculations are concerned because it is the

calculation of the dynamic part of the response which presents

the greatest difficulty to the designer of a structure.

Most of the data currently available on the characteristics of

wind turbulence are in the form of wind spectra. Any mathematical

simulation of a wind driven vibrating system must therefore be

based on a mathematical model of the wind which can be built up

from the information obtainable from a spectrum. The investi¬

gator is therefore forced to assume that the wind velocity

function is a stochastic variable with constant statistical

properties. If the deflection function of the structure is

also assumed/
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also assumed to be stochastic a deflection spectrum m^y be found

from which statistical information concerning the deflection of

the structure may be obtained. The area under the deflection

spectrum gives the root mean square deflection and the contri¬

bution of any component of deflection with a specific bandwidth

may also be obtained. It is therefore possible to calculate the

ratio of the resonant component of response to the total broad

band response and hence find the extent to which the dynamic

part of the response of the structure contributes to the total

time varying response.

Spectrum analysis was therefore adopted as the best technique

for conducting the preliminary investigation. The Davenport

reduced spectrum was used as the mathematical model of the wind

and transfer functions similar to those formulated by Davenport

were derived and used to convert from the wind velocity spectrum

to the pressure and deflection spectra of the various structures

analysed. The quasi-static component of the deflection of each

structure was found by direct area measurement of the spectrum,

as suggested by Davenport. The area of the resonance peak was

found from the formula,

Area of peak = -r- x ordinate of the force spectrum at
the resonant frequency

where £ = the logarithmic damping decrement
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Aer*<1711011110 admittance.

A rectangular structure was assumed

V(z)
*V(z)

V Sv
C

Pz(■)
<S'P(z)

mean wind velocity-
fluctuation in velocity
air density
coefficient of drag
mean pressure

fluctuation in pressure

fig. 7

P(*> = 1/2^CT2(2)
If the fluctuation in pressure is considered to occur abcut

7/ then,(z)

£p(z,t) - ^ CV(z) & v(z,t)
Sv(z,t)$p(z,t) = i(QV2(z)

A 'normal mode' analysis was used to evaluate the structural

...(3.1

response. This necessitated the splitting of the pressure

function into modal components. The pressure over the whole

structure at any time is a function of z. and t. It may be

subdivided into modal components and represented as a series:-

P(z,t) = p.,(t)f+ P2(t)f2(z) + .... pr(t)fr(z). . (3#2
where fr(z) are the normal modes of the structure.
The components pp(t) may be evaluated as follows. If (3-2)
is multiplied by fr(z) and integrated with respect to z from
0 to ^ (where ^ is the height of the structure), it becomes:-

Jp(z,t)fr(z)dx = Jp^(t)f1(z)fr(z)dz +-Jp^(t)fr2(z) dz ■ (3.3
Due/ °
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Due to the orthogonal properties of the mode functions,

.i
I f^(z)fm(z)dz = 0 where 1 /

</q

m

= N " 1 = m
r

nt
/ P(z,t)fr(z)dz = pr(t) / fr2(z)dz = p(.t)N,Jo J0

Pr^ =N / P(z,t)f*^(z)dz ...(3.4)

The load component causing excitation in each mode is given

by (3.4). The mean square of each load component with respect
to time is given by,

&pr2(t) = 2J JSp(z,t)&P(z' ,t)fr(z)} fr(z' )dzdzt ...(3.5)
where the bar denotes a time average. The mean square of the

fluctuating part of the load only is given by,

£p 2 = ^ 2]Lpi«,t) J p(z',t)f (z)f (z')dzdz' ...(3.6)

SPir"= "Fir ff 5 v2 " ^CzX^CzOdz dz'
o o

^ nQA
= [ f ■' -vfalvfe') .y fa)f,a')dra^'

< 11 v° v.1
where V is the mean velocity at a reference height.

_ 4 P»2 l^fv(7,)V(lxi)
Vo ~ ^(zJ^Cz') fr^z^fr(z'^dzdz' •••'(3.7)

If the forced p (t) is assumed to be a stationary random
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function of time the above equation may be written in terms

of spectra as follows:-
2 C* n i

nSpr(n) = ^ nSv(z,z'jn) fr(z)fr(z')dzdz' ..(3.8)
r odj0 o 0

where S (z,z';n) is the cross spectrum of the velocity function
at z and z'.

nS (z,z';n) = nS (n).R(z,z';n) •••(3»9)
v vo

where (n) is the spectrum of velocity fluctuation at the

reference point on the structure and R(z,z';n) the normalised

cross sptc+ro^ ciensit<-| function.

o o

n spj^ = n Sv<Cn). C3.. I 0

( i
where -Un) = -L f f ^6,0 dz.1 <3. \Z)

KJ / V„ V
o Jo

and is called the 'joint acceptance function'.

nS|,r(n) = the spectrum of the r th modal", load component.
nS (n) = the spectrum of wind velocity at a reference p»int

vo

on the structure
24k Vtx-

(1 + X2)U/3
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vo

k = ground roughness coefficient,

the shape of the wind velocity spectrum can he seen in Fig.10.

The 'joint acceptance' is a frequency dependent function which

converts the velocity speotrum into any of the modal pressure

spectra. The variation with frequency is due to different

degrees of correlation between different frequency components of

the load. The function also makes allowance for variations in

the characteristics of turbulence at different sites. This

property may be seen if the constituents of the function are

examined. The. S-otNC.'Ton R(z,z'jn) has

been studied by Davenport who has suggested the following

formula.

v &2n
R(z,z'jn) = e c Vq ...(3.14)

where kQ = a coefficient dependent on ground roughness
n = frequency

&z = j z - z'j
The velocity ratios Ihl and Ilsh may be found from the power

Iv v°law equation =/z'\ where oc'is a coefficient dependent
V0 Uo/

on ground roughness. Thus, both the PkCzjZ.^ rv\
?-or»c.-\vc>t-v and the velocity ratio constituents of the 'joint

acceptance' function are dependent on ground roughness

coefficients.

Mechanical/
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Mechanical__admittance.

It was assumed that there would he no interaction between

the modes of vibration and that each mode could be

considered as a single degree of freedom system. The motion

of the structure in each mode is therefore described by

the equation:-

,2
+ o.

r at
+ kry = Pr(t) ...(3.15)

The 'particular integral' solution to this equation gives the

response characteristics of the mode as a function of frequency.

*r =
_ Pr(t) fr(z)

n \2)*- /27tacr \2 ~
r n+c )' 1/2 ...(3.16)

This gives the well known frequency response function,

-1

-kr
1 - (f )2

r

+ (iii
72

rz2
where, = generalised stiffness = EI / f (5z)

o

°r = generalised damping coefficient
/•£ 2 T

m^ = generalised mass = JoAf (<>z)

The mechanical admittance is the square of the frequency

response function.

2 '{x-(-y2} + (2^)2J1
syr(n) " i^[2 spr«

...(3.17)

...(3.18)
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3.3 COMPUTER ANALYSIS/*

Table (l) shews the properties of the structures used in

the spectral analysis. They were selected te give a

range of natural frequency and mass per unit length. As

the object of the analysis was to investigate the

relationship between the resonant and quasi-static

components of deflection for each structure it was felt

that a range of drag properties was not required. The

flow diagram for the computer program is shown in fig.(9)

along with the relevant functions for each step in the

calculation.

Except where specifically mentioned the input spectrum

was kept the same for all structures. The input spectrum

parameters ware chosen to be relevant to a high wind

condition in a city centre. They were,

V =100 ft/sec
o

k = 0.05

c<' = 0,41

L = 4000 ft

P =12 lb/ft2
o

3.4 RESULTS

The deflection spectra obtained from the analysis are

shown in graphical form. As the mode functions

were normalised with respect to an arbitrary constant it

was not possible to ebtain the actual magnitudes of the

deflections/

^ "S e-e.



The computer simulation was carried out in order that a

comparison could he made between the relative magnitudes of the

resonant to quasi-static ratios of response of the structures

concerned. As this could be obtained from the ratio of the areas

under the relevant parts of the response spectra, which depended on the

shapes of the spectra only, it was considered unnecessary to ensure

that the magnitudes of the spectra were correct. To simplify the

analysis, therefore, the constant k*,, which does not affect the

shape of a response spectrum, was omitted from equation (3.18),

and the response spectra found from the equation,

S/nl =



Type of Structure B

in

I

in^
m

Lb/In

1

ft

E

lbf/in2
PC, |
Hz

Lattice Tower Tl 120 30*2 1*58 30 30 x 106 0*106

■« n T2 120 21*55 *o 2*36 30 30 x 106 0*76

ii it T3 120 1211*2*0 2*36 30 30 x 106 1*71

II it 5^ 12 1211*2*0 0*72 30 30 x 106 9*58

ii it 120 0*7 x 106 6*30 100 30 x 106 0*72

it it 120 0*2 x 106 1*« 00 200 30 x 106 0*12

ii ii y{ 120 0*5 x 106 if 00 200 30 x 106 0*18

ii ii j® 120 7*0 x 106 3*51 200 30 x 106 1*76

it' ii 120 8*2 x 106 3*51 200 30 x 106 2*51*

Shearimll
building B1 120 155 x 106 220 100 1* x 10^ 0*65

" B2 120 155 x 106 1*1*5 200 1* x 106 0*11

Concrete
Chimeny B3

120 155 x 106 10 200 1* x 106 1*76

TABLE 1 Properties of structures used in spectrum
analysis.
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Fig 9. Flow chart for spectrum analysis programme.



deflections of the structures from the response spectra

shown in graphs 1 to 12. Neither was it possible to make

direct comparisons between the spectra. The ratio of the

resonant to the quasi-static deflection for each structure was,

however, given by the ratio of the area under the resonance

peak to the area under the background turbulence part of ea«h

spectrum. Graph 13 is a chart which shows the relationship

between this ratio and the natural frequency for each structure.

The effects of the various system parameters on the dynamic

behaviour of the structures in the wind may be deduced from

this chart,

Structural Parameters

1. Natural Frequency

Graph 13 shows that the ratio of resonant to quasi-static

deflection is highly sensitive to variations in the natural

frequency parameter and that the predicted dynamic component

of response increases as the natural frequency decreases.

This effect may be attributed almost entirely to the shape of

the excitation spectrum which has a peak at around 0.05Hz

and diminishes rapidly with rising frequency.

The predicted ratio for structures with a natural frequency

around 1H,z (typical of most slender structures) suggests

that for such structures the resonant component of deflection

may be of the same erder or larger than the quasi-static

component.

2. Damping

As would be expected, the predicted dynamic response of the

structures/
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structures was very much dependant on the degree of damping.

For values of 1% critical damping or lower, which is typical

of most slender structures, the analysis predicted that the

dynamic component of response constitutes a significant prop¬

ortion of the overall time varying response for all the structures

analysed.

3. Height_of Structure.

For structures with similar natural frequencies a slight

variation in the dynamic/quasi-static ratio of response was

observed with variation in the height of structure. Smaller

structures tended to have a higher component of response at

the resonant frequency. The effect was due to the cross-

correlation coefficient function which allows for the fact

that the higher frequency gusts have greater influence on

smaller structures. The effect of this function was very

small, however, compared to that of the previous parameters.

4. Mass and Stiffness of Structure.

The mass and stiffness of the structures only affected the

results in so far as their ratio determined the natural

frequency of each structure. This was due to the fact that

the frequency response function was taken to represent fully

the dynamic characteristics of each structure. The predicted

response of structures as different as latticetowers and tall

buildings were therefore almost identical provided their natural

frequencies and damping coefficients were the same.

Wind Parameters. -'

Two wind parameters appear in the input spectrum. These are

V,/
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V, the roean velocity, and k, the ground roughness coefficient.

Both of these parameters affect the overall size of the spectrum

without affecting its shape. This has the effect of increasing

the size of the time varying part of the reponse in relation to

the mean response but has no effect on the dynamic to quasi-

static ratio of response.

The V parameter is one of the constituents of the x

variable in the input spectrum, however, and so affects the

position of the spectral peak in the frequency domain. Variations

in V therefore have an effect on the dynamic/quasi-static ratio of

response of each structure similar to that of a variation in

the natural frequency parameter. V is consequently one of the

most important parameters in the system.

3.5 DISCUSSION OF RESULTS

Although the preliminary analysis cannot be considered comprehensive

it is possible to draw a number of tentative conclusions from the

results. These may be divided into two categories. The first concerns

the pin-pointing of important parameters which significantly effect

the wind driven vibrating system and which will have to be known

accurately if an accurate prediction of its behaviour is to be made.

The second concerns the ability of the transfer functions in the

spectrum to represent faithfully the behaviour of the system and of

the spectrum method as a whole to predict its response.

Important Parameters

It is evident from the large variation in the results with

variation in the natural frequency parameter that the position

of the natural frequency of the structure with respect to

the/
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the high frequency tail in the excitation spectrum is of

great importance. It follows from this that it is also

essential for the profile of this steeply sloping part of

the spectrum to be correct. A glance at Davenport's own

graph showing the experimental curves superimposed on the

theoretical spectrum curve (reproduced in fig 10) illustrates
the magnitude of the variation which is possible between

theory and practice in this part of the spectrum. Some

experimenta.l curves are well above the theoretical curve in

this region while others are below it.
*

At the 0.01 wave number, for instance, the value of the reduced

spectrum according to the theoretical curve is 0.8 whereas the

lowest and highest measured values, corresponding to data

from Brookhaven and Sale, are 0.4 and 0.95 respectively. The

use of the theoretical value fer the Brookhaven site could

therefore lead to an estimation of the dynamic component of

response of a structure which was in error by a factor of two.

If a mean wind speed of 100 ft/sec. were assumed the wave

number used in this illustration would correspond to a frequency

of 0.28 H. This is probably lower than the natural frequency

of most structures and, as can be seen from fig 10, the

discrepancy between theoretical and true values of the reduced

spectra is likely to be larger at higher frequencies.

This result suggest, that the reduced spectrum formula in its

present form may not be sophisticated enough to be capable of

predicting reliably the spectrum of turbulence at any site. The

result calls into question the validity of dynamic wind

loading,/

* *=35©W.
>
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leading calculations based on the limited data ?/hich is

currently available and suggests that before a prediction of

the response cf a structure will be able to be carried out

with any confidence, much more data will have to be acquired

on wind turbulence. In particular, the acquisition of data

covering a range of ground roughness parameters is required so

that the validity of existing empirically derived reduced

spectrum formulae may be checked.

It is also evident that before a spectrum analysis may be

attempted, correct values must be obtained for the natural

frequency and damping parameters of the structure concerned

as these have also been demonstrated to be critical factors.

Transfer functions.

It is possible from the results to make a critical appraisal

of the ability of the transfer functions to represent the

behaviour of the various structures analysed. Two points

are worth commenting on.

The first concerns the fact that for all the structures

analysed the dynamic component of deflection was either of the

same order of magnitude or larger than the quasi-static

component. The predicted dynamic components were, in the opinion

of the author, higher than would be expected in practice,

especially for the heavier structures. 3?he second point is

that although the group of structures investigated was chosen

so as to provide a range of structural properties the results

obtained were all fairly similar. The transfer function used

to convert from the pressure to the deflection spectra

(mechanical/
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(mechanical admittance) was insensitive to variations in

structural parameters other than natural frequency and damping.

In practice some variation in the response characteristics

would be expected for different types of structure. Large

vibration amplitudes can be envisaged to occur . with light

slender structures such as lamp posts and lattice towers but

this type of behaviour is not generally associated with large

buildings. The effect is probably partly due to the fact

that buildings are likely to be more heavily damped than

lighter structures but the author believes that other factors

may be important.

One of the main structural differences between buildings and

lattice towers is that the mass per unit length and stiffness

of buildings are much greater than those of lattice towers.

Because the natural frequency of a cantilever type structure

depends on the ratio of mass to stiffness, however, these

two types of structure may have natural frequencies very close

to one another and their frequency response functions may be

almost identical. If the frequency response function is taken

as the sole criterion of dynamic response, the. spectrum method

of analysis. woij v^\eid th«- Same <^us.t factor for structures
as. <Aiss\rvw\ac as lattice tavoCrs atiol Yc\U Y>oi loUrv^s.

The frequency response function is the particular integral

solution of the vibration equation and it is a mathematical

treatment which has been widely applied in mechanical vibration

problems. The following conditions must be satisfied for

it/
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it to be valid.

1. The load function must be presented in the form

•f harmonic components of constant phase and amplitude.

2. The system must have reached a steady state condition.

3. The system must be linear.

These conditions are satisfied by most mechanical systems

but the author believes that they may not be satisfied by all

wind driven systems. The first is satisfied if a wind

spectrum is available. The second is satisfied mathematically

if a stochastic approach is made but is only valid if the

structure concerned is capable of instantaneous response to

high frequency gusts.

Physically the wind velocity is a random function of time and

the assumption that its statistical properties are constant with

time can be justified. If the velocity function is split

into components which have a fixed bandwidth, the root mean

square amplitude of each component is theoretically independ¬

ent of its averaging period. A graph of these average

amplitudes against the frequency on which each bandwidth is

centred gives the wind velocity spectrum. In a spectrum

analysis the average amplitude of any component of the response

function is found by multiplying the corresponding

orcto&te in the velocity spectrum, first by a coefficient

which converts it to a pressure and then by the appropriate

value of the frequency response function.

The assumption that the structure responds instantaneously to

any variation in the input function is implicit in this step.

The/
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The argument that the average response is related to the

average input by a simple transfer function such as the

frequency response function :'oannot be justified unless the

response of the structure is assumed to follow faithfully

the input function.

Such a situation can be envisaged for components of

turbulence and response whose bandwidths are centred on fre¬

quencies below the natural frequency of the structure. This

is the quasi-static case and the response and excitation

functions are related by the stiffness of the structure. The

stiffness acts as a simple transfer function from which the

response may be obtained from the input.

At the natural frequency, however, the situation is more

y
complicated. A single impulse of duration > for instance,

would cause a structure to deflect to an amplitude which would

be defined by the stiffness of the structure in the same way

as for a quasi-static impulse. The energy imparted to the

structure would be stored, however, and such an impulse would

cause the structure to vibrate for a short period until the

energy had been dissipated by damping. A chain of such impulses

(i.e. a sinusoidal input of constant amplitude) would cause an

accumulation of energy in the structure and lead to an ampli¬

tude of vibration dictated by the ratio of input to damping

energies per cycle and not by the stiffness of the structure

alone. The relationship between input and response/
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response in this case is given by the frequency response

function. A finite number of cycles is required, however,

for a steady state amplitude, as defined by this function, to

be reached.

The forcing function, in the case of wind loading, is a com¬

ponent of turbulence, of narrow bandwidth, which is centred

on the natural frequency of the structure. The amplitude of

this forcing function is constantly varying, as observation

of a spectrum analyser operating an wind data will show. It

is probable that its phase is varying also. A structure

excited by wind turbulence to vibrate at its natural frequency

therefore, does so subject to a forcing function whose ampli¬

tude and phase are constantly changing. In such a situation

the steady state condition as defined above is probably

never achieved and the system is in a state of continuous

transition. Under such conditions, the inertia of a structure

must influence its behaviour.

A light structure is likely to respond very quickly to any

high intensity batch of turbulence and may reach a high

amplitude in a few cycles. Similarly, if the intensity of

turbulence drops suddently, or„the phase changes, the struct¬

ural response will be quickly damped by the aerodynamic forces

which now act in reverse. The response therefore follows the

forcing function fairly closely and the averages of the

forcing and response functions are probably linked by a simple

relationship such as the frequency response function. A heavy

structure/
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structure, however^ may need so much energy for vibration as

ttr require a batch of turbulence to maintain a constant

phase and amplitude for a large number of cycles before any

appreciable amplitude can be built up. The average response

of such a structure is unlikely to be greatly affected by any

large fluctuation or series of large fluctuations in the

input function unless they last for sufficient time for the

full structural response to become established. Short

duration batches ef turbulence,even if they are of high

intensity, may have very little effect on the average respon¬

se.

It is possible, therefore, that the inertia of a structure has

a significant influence on its response to a random forcing

function such as wind turbulence and that the average of

the resonant component of response is not related to the

average input in the simple way suggested by the frequency

response function. Whether or not the inertia of a structure

is important depends on the relationship between the energy

which can be imparted to the structure fr»m the wind and

the energy »f vibration of the structure itself. If the ratio

of input energy t« energy of vibration is high then the inertia

is probably unimportant. If it is low, however, it is possible

that the frequency response function does not constitute a

sufficiently accurate mathematical model of the system to

provide a reliable prediction of the response. It was thought

that further investigation of this question was required and

Chapter/
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Chapter 4 describes an attempt to evaluate the energy levels

concerned in order to assess the importance of this factor.

The third condition upon which the spectrum analysis, in its

present form, is based^is that the system concerned should

be linear. In #rder that the wind can exert a force on a

structure there must be a relative velocity between the air

and the structure. To cause resonance this relative velocity

must be maintained throughout the cycle #f deflection. It

must, therefore, be periodic and in phase with the structure.

If wind turbulence is regarded as a fluctuation about zero

mean, as in the spectrum analysis, resonance would be expected

to result from the action of the component of turbulence which

has the same frequency as the natural frequency of the strucure.

Once a structure begins to vibrate in response to a wind

load, however, it has a periodic velocity of its own, so

that the relative velocity and consequently the force on it

decrease. If the amplitude builds up to the extent that the

velocity of the structure approaches the velocity of the wind

component causing the vibration^the energy input to the structure
will tend to zero and further increase in amplitude will be

impossible

The use of a conventional frequency response function presumes

that the amplitude of the peri#die force is independent of the

amplitude of ribratiom; a condition which is not satisfied

in the case of a periodic wind load. It is possible, therefore,

that even if hi$i vibration amplitudes do develop in response

to/
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to wind loads, the maximum defleotion is controlled, not by

the degree of damping in the structure, as would be expected

from a frequency response analysis,btlfcty the onset of the zero

relative velocity condition described above. The use of the

frequency response function could, therefore, lead to the

prediction of higher amplitudes at resonance than would occur

in practice.

Returning to the two points which were made at the beginning

of this section which were firstly that the predicted

dynamic components of response given by the spectrum method

seemed to be too high and secondly that the method was

insensitive to the differences between different types of

structure, it may be said in conclusion that the first of

these could be due to the fact that, in its present form,

the spectrum analysis neglects the non-linearity of the wind

driYen system and the second to the fact that the inertia of

a structure being analysed is neglected despite the fact

that the randomness of the l#ad may necessitate its being

taken into account,

3„C <LOKtCL-UStO^S

Wind turbulence is a highly complex phenomena and in the

present state of knowledge a stochastic approach to the

problem cf predicting struotural response to wind loads is

probably the only one feasible. An analysis to obtain the

dynamic response of a structure must therefore be based on

the wind velocity spectrum. In the light of the foregoing

investigation/
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investigation four observations can be made about this

type of analysis.

1. The reduced wind velocity spectrum, in its present

form, is not sophisticated enough to be capable of providing

a sufficiently reliable prediction of the wind conditions

at any site. Much more data are required on the character¬

istics of turbulence at sites of different roughness and

for different mean wind speeds so that the reduced spectrum

may be improved.

2. The most important structural parameter is tha natural

frequency. A correct value for this parameter is an essential

prerequisite to the successful prediction of the response of

a structure to wind turbulence. The problem of obtaining the

natural frequency is particularly difficult for tall buildings

which usually have a highly complicated structural form and

mass distribution. Several empirical formulae based on simple

parameters such as the overall dimensions of buildings are

currently in use but these are approximate and are not likely

to be capable of producing results within the accuracy

required for wind loading calculations.

More work is therefore required in this field so as to provide

a method for predicting the natural frequency of a building

which is both accurate and simple enough for general use.

An attempt to do this for a particular type of multi-storey

structure had been carried out by the author. A description

of this is given in Appendix 3.

3. The/
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3. The spectrum analysis technique,in its present form ,

is insensitive to variations in structural parameters other

than the natural frequency and damping. Although there is a

slight distinction between structures of different height, all

structures with the same natural frequency and damping are

regarded as being identical. It is felt that the behaviour

of structures with different stiffness and inertia properties

may not necessarily be the same, especially if the excitation

is of a random nature, and that an investigation into the

effect of these parameters should be carried out to determine

whether or not the transfer function used in the present

spectrum analyses is capable of producing reliable results.

4. A wind driven vibrating system is non-linear due to the

fact that the forcing function is influenced by the amplitude

of the vibration. This fact is neglected by the spectrum

analysis in its present form and it is felt that the possible

effect of this on the reliability of the method should be

investigated.

Chapter 4 describes further computer simulation of a wind

driven vibrating system using a mathematical model designed t»

highlight the effects of the two points raised in 3 and 4

above.

"T The dynamic to quasi-static ratio of response is affected by

theOC*wind parameter, which appears in the joint acceptance

function. The extent of the influence of this parameter may

be judged from graph £.
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Graph6DeflectionandpressurespectraStructureT6
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4.1 INTRODUCTION

The ennrgy analysis was carried out with a view to investigating

the effects on a vibrating system of the two points raised at the

end of Chapter 3« The first of these was the suggestion that the

relative levels of energy input and energy of vibration in a wind

driven vibrating structure may oe such that the transient part

of the response will be of sufficient duration to influence the

long term behaviour of the system; It was considered that this

factor might be of importance when the forcing function was

random as is the case with turbulent wind loads. The second

point re-'.sed in Chapte: 3 was that a wind driven vibrating

structure is not a linear system. It was thought that this fact

might lead to an overestimation of the predicted vibration amplitude

of a structure if an analytical technique was used in which no

allowance for the non-linearity wa3 made.

The object of the analysis which follows was to try and estimate

the extent of the error which neglect of these two factors might

cause so as to determine whether an allowance for them ought to

be made as a standard part of a dynamic wind loading analysis.

4.2 DEVELOPMENT CP ENER&Y FUNCTIONS.

There are two main energy transfer mechanisms in a wind driven

vibrating system. One is the energy exohange which takes place

between the wind and the structure and which provides the excitation

energy for the system. The other is the energy dissipation which

occwrs due to mechanical damping. In a given wind situation the

relationship between these two energy mechanisms,which is a

function/
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function of the amplitude of vibration, defines the net energy

input to the structure. The zero net energy input condition

defines the maximum amplitude of vibration which can occur in

that wind.

A vibrating structure stores energy in the form of strain energy

(potential energy) and kinetic energy. The proportion of strain

energy to kinetic energy at any instant depends on the displacement

and velocity of the structure i.e. on the position of the structure

in the vibration cycle. The total energy stored is a function

of the amplitude of vibration. The relationship between the total

energy aid tho input • energy at any amplitude governs the rate of

build up of the vibration.

In order that the behaviour of a structure in the wind could be

simulated mathematically, expressions were derived for excitation

energy, damping energy and energy stored in vibrating structures.

These expressions deal solely with the resonant component of

structural response.

Excitation Energy

In the derivation of the expression for the excitation energy a

very simple mechanism was assumed as an approximation to the

interaction between a structure and the wind. The initial assumpt¬

ions were:-

1• The structure is a cantilever

2. The component of turbulence which has the same frequency as

the natural frequency of the structure is the only one which

contributes to the resonant component of response.

3. This/
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3« This component varies sinusoidally with time, has constant

amplitude and envelops the whole structure.

4, The maximum energy transfer occurs when the wind velocity is

in phase with the velocity of the structure.

No allowance wa3 made for the variation in wind speed with height.

If the y and z axes are defineu as in Fig (11) the deflection of

the structure is given by the expression,

y = Aa.fc f(z) sincot

4*. Vst = OJ.-Ast f(z) cosoot

a.t
where, As-t = amplitude of vibration^of structure

Vst velocity of structure

Pressure per unit width^on the structure, P(z,t) = ■§• p Cd Vr£

where P =
Cd =

vr =

density of air

drag coefficient

velocity of wind relative to structure
.2

= p + p = Cd (V + vr)'

= jf Cd V2 + y CdVvr + ip Cd vr2
where P

P

V

vr/

mean pressure

fluctuating component of pressure

mean velocity of wind



Fig 11 Reference axes in energy analysis.
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vr = fluctuating component of velocity of

wind relative to structure.

The last two terms in this equation give the time varying component
p

of pressure and neglecting the term in vr ,

= pCd V vr

hut Vr = Vw- v8t

where Vw = fluctuating component of wind velocity.

vr = A^ sincjt - f(z) c»jA.st sinajt

= (Aw - f(z)ci>Ast ) sinu>t

.". p = pCd V (Ajy - f(x)oj"As-t )sino>t

where Av; = amplitude of wind turbulence component.

The force per unit width on an element cfz of the structure is given

by:-

= P 6Z ~ pCd V (Aw - f(z)cjAst) Sinurt 6z
The work done on the element in moving a small distance &y,

<£Ee = p £z <£y

= P Vat £*>
= p' Cd V (A^ - f(z)coAst) f(z)c*>Ast Sinca"t oz <$t

Energy input to the whole structure in one cycle,
rlOs r ^ ?

Ee = i J B»pCd f (Aw - f(z)mA8t) Sinoo^t dz dt

= B/
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= Baea.7 CO X 1 & - f (z)Ast) f(z)Ast dz

'o

where B = width of structure

This equation applies to a structure subjected to a wind component

which totally envelops it. To allow for the fact that gusts may be

of small spatial extent, Aw was multiplied by a vertical cross-

correlation coefficient given by,

„ e -7.7(*-.)n
s V

This expression is based on the coherence or co-spectrum of wind

velocity and it was derived empirically by Davenport. A discussion

concerning its applicability in this situation is given in appendix 2.

Bull correlation was assumed across the face of the structure in the

horizontal direction. The energy input to the structure in one

aycle is therefore given by the expression

ft CgA^y
Ee = BpCdVgo X / (— - f(z)Agt) f(z) Ast dz ...(4.1)

Equation (4.1) gives the energy transfer per cycle between a structure

and the wind and as would be expected it is a function of the amplitude

of vibration. The non-linearity in the system can be seen from an

examination of the parameter (—® - f(z)As-fc). This is positive when
CO

the periodic wind velocity is greater than the structural velocity

and the structure is being excited and negative when the structural

velocity is greater than the wind velocity. In the latter case the

energy transfer is from structure to wind and a condition of aero¬

dynamic/
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dynamic damping exists. The maximum possible amplitude of vibration

for a given Aw occurs when the net energy transfer given by equation

(4.1) is zero. This value cannot be exceeded no matter how light the

mechanical damping.

If the system is assumed to be linear, the corresponding excitation

energy equation is,

.

Eq — Cd V7C | Gg A-jy As£ f(z)dz ...(4.2)*
O

The maximum possible amplitude in this case aannot be deduced from

examination of the relationship between Aw and Ast but depends solely

on the amount of mechanical damping in the system.

Damping Energy

The deflection of the structure may be represented by,

y (z,t) = £ (z) g(t)

where g(t) is a generalised co-ordinate.

The time varying properties of the system are described by the

equation,

Kg* + eg +Mg = P

The damping force is therefore given by eg -

Work done by damping force = eg dg
eg2 dt

Work done / cycle by damping force,

fSI °6Ed = j eg2 <tb

but/
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but, g = Ast sin cat
A*?

2 co 2
Ed = Ast o / sin cat dt

_ -A-st c X
CO

The damping coefficient c can be expressed as,

c = >) or

where Si = critical damping ratio

cr = critical damping coefficient

and cr = 2Mvco

2"(jjm I f2(z)dz
Jq

where m = mass/unit length of structure

Ed = ^st "* ^ tO*2m f f2 (z)dz ...(4.3)
Jo

Equation (4«3) gives the energy dissipated per cycle by mechanical

damping.

Energy of Vibration

The energy stored in the structure exists in the form of strain

energy and kinetic energy.

Total Stored Energy = strain energy + kinetic energy

Es - Eu ♦ ^

If a cantilever type structure is assumed the following expressions,

which relate the strain and kinetic energies to the deflection at the

top/
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top of the structure may be derived.

Kinetic energy of an element £z of the structure^

2<SEk - 5 n vst dz

v = yi f(z) CjJ coscot

where y^ = deflection at the top of the structure

C^E^ = ■§■ m y-^f2(z) c0'2 Cos2ojt dz

Total kinetic energy,

/
E^ = j m y^2 Cos2cot / f2(z) dz

Strain energy Eu = j az

where M(z) = bending moment at z

= Elyi f'"( z)
E - Young's Modulus

I = 2nd Moment of area of cross-section

£
Eu = I EI y± f f"(z) dzJo |

Es = ■§■ m y^2o>2 Cos2«»j/t dz + gEIJc f (z) dz

As E^ = 0 when y-^ = Ag^ and E = • when vs^. is a maximum the total
energy stored is also given by the equations,

Es /
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E 2 mco -^-st ^ ^ «•»(4.4)s

to

2 /%£
Es = |-EIAst J f" 2(z) dz ...(4.5)

4.3 COMPUTER SIMULATION

A digital computer was used to evaluate the vibration energy levels

for a number of structures. The analysis was carried, out in the form

of a simulation of the build up of vibration in a structure from a

small initial amplitude to the r.m.s. value. The net energy input

in each cycle was calculated from equations (4.1) and (4.3) and this

was added to the total energy of vibration (given by equation 4.5) at

the end of each cycle. The amplitudes of successive cycles were

computed from equation (4 «5)

This procedure allowed energy levels to be obtained over a range of

amplitudes and the format of a vibration build up allowed an estimation

to be made of the probable quickness of response of the respective

structures to batches of high intensity turbulence. This gave an

indication of che ability of the frequency response function of each

structure to jredict its r.m.s, response from the r.m.s. excitation.

The simulation was also carried out using equation (4.2) to calculate

the excitation energy so that tne linear case could be compared with

the non-linear case.

The computer used for the analysis was an 360:50 which was

programmed in Atlas Autocode. A flow chart for the program is diown

in Pig (12).

The wind input parameters used were relevant to a 70 m.p.h. mean wind

speed in city centre conditions of roughness. The root mean square

of/



Fig 12a Flow chart for energy analysis programme.
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Type of Structure
A
r

in2
B

in

I

ln^
E

lbf/in2
m

lb/in

1

ft

no

Hz

Lattice Tower T *1 8*36 10 2,1+55 30 x 106 •005 30 16*10

ri ii T12 8*36 10 2,1+55 30 x 106 •0Q5 60 l+*02

II II J!3 8*36 10 2,1+55 30 x 106 •005 100 1*1+5

it » Ttij. 8*36 10 2,1+55 30 x 106 •005 11+0 0*71+

II II n5 72*00 10 20,000 j 30 x 106 *01+6 60 1+.1+6

ll II y+6 72*00 10 1 x 10^ 30 x 106 • Qt+6 200 2*53

it ii j»7 72*00 10 32,1+00 30 x 106 • 0L+6 200 0*1+5

it it n8 72*00 10 32,1+00 30 x 106 •Ql+6 100 1*93

II it 72*00 10 1 x 106 30 x 106 • Ql+6 100 10*00

ii ii 0 72*00 10 21,500 30 x 106 •0l+6 180 1*16

ii n Jin 72*00 10 2 x 106 30 x 106 • Ql+6 200 3*52

ii ii T'12 6220*00 10 5 x 106 30 x 106 1*1+0 150 9*61+

Shear Wall
Building B'l 6220*00 10 5 x 106 1+ x 106 1*1+0 100 1*1+5

it B»2 6220*00 10 5 X 106 1+ x 106 1*1+0 200 0*35

II B'3 62 2000 10 155 X 106 1+ x 106 1*1+0 200 2*01+

Table 2 Properties of Structures used in energy analysis
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of the wind velocity component at the natural frequency of each

structure was computed from the Davenport reduced wind spectrum.

The bandwidth used was obtained from the following expression,

a
_ Area under resonance peak in frequency response
~

function

height of resonance peak

It was, therefore, the width of a rectangular resonance peak with the

same area and height as the resonance peak for the structure as given

by the frequency response function. The reasons for the adoption

of a bandwidth calculated in this manner are given in appendix 2.

The properties of the structures for which the vibration simulation

was carried out are given in table (2).

The static response of the structures to the mean wind was also

estimated. This was done by calculating the mean wind pressure from

the equation,

P = £ V2

and assuming this to be uniformly distributed over the face of the

structure. The deflection at the top of the structure was found from

the equation,

wl"5
deflection = 8eT"

where w = total load

= PB1

1 = height of structure

4.4 RESULTS/
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if «2f RESULTS

A summary of the results is given in table (3). The results are

shown in detail in graphs (''if) to (28) in which the levels of excit¬

ation energy and damping energy are plotted against amplitude of

vibration. Both the linear and non-linear cases are shown. The

ordinates between the excitation and damping energy curves denote the

net energy input to the various structures at each amplitude. Graphs

(29) to (43) show the net energy input curves for the non-linear

case added to the curves of total vibration energy. These illustrate

the relative 1< vels of input energy to energy of vibration for the

structures and show their variation with amplitude.

The number of cycles required for a given build up of vibration may

be deduced from these curves. For example, at amplitude A in graph

(31) the energy of vibration is given by AB and the net input energy

by BC. The total energy in the next cycle is therefore AC and the

amplitude of this cycle is found by moving horizontally from G until

the total energy curve is cut at D. The operation may be repeated

and a stepping procedure developed to obtain the number of cycles

required for the amplitude to build up to the root mean square value.

4.5 DISCUSSION OF RESULTS

The object of the study was to evaluate the levels of energy input

and energy of vibration in struccures vibrating in response to wind

loads, in order that their relative magnitudes could be compared. Of

particular interest were the relative levels of input energy calculated

using linear and non-linear theories and the relationship between

the levels of input energy and energy of vibration. These two topics

are/



are discussed separately.

Before discussing the results in detail, however, it is appropriate

to mention the question of the accuracy with which the analytical

simulation is capable of representing a full scale system and the

effect which any errors may have en the validity of the conclusions.

As the investigation was a comparative study it was felt that it was

necessary to ensure only that the calculated energy levels were of

the correct order cf magnitude. The use of standard equations of

strain energy and damping energy in conjunction with highly simplified

structural model,s(cantilevers with uniform distribution of mass and

stiffness) was therefore considered justified and the calculated

levels of damping energy and energy vibration are considered to be of

the correct order of magnitude.

The calculated levels of input energy from the wind to the structures

are of more doubtful validity. As with the structural models a highly

simplified system was assumed. It is felt that the initial assumptions

of constant phase input, non random cross-correlation etc. are likely

to cause overestimation of the input energy levels. The extent of

the errors is difficult to determine, however, without more detailed

data on the interaction of the wind with vibrating structures. It is

only possible at thi^ stage to note that sueh errors are likely to

occur and to bear this in mind when considering the conclusions.

Comparison of Input Energies calculated from linear and non-linear theories

It can be seen from table (3) and graphs (14) to (28) that the error

in the calculated root mean square deflection, which is incurred if

linearity is assumed, can be large, especially in the case of light

structures/



78

structures such as lattice towers. The discrepancy between cthe

energy input curves increases with amplitude of vibration because

the aerodynamic damping energy, which is allowed for in the non¬

linear case, is a function of the velocity of the structure and this

increases with amplitude. As the root mean square deflection is

determined by the relationship between the excitation energy and mechan¬

ical damping energy curves,the error in the calculated r.m.s. deflection

depends on the amount of mechanical damping in the system. The

lighter the damping, the larger the error is likely to be.

The relationship between the mechanical damping energy and the total

energy of vibration is alse important because, for a particular value

ef the critical damping ratio, the mechanical damping energy is related

to the mass of the structure. For large, heavy structures, such as the

buildings simulated in this study, the energy dissipated per cycle by

mechanical damping is relatively high, even at low structural velocities.

As a result of this, the mechanical damping energy curve crosses the

excitation energy curve at a low amplitude, even when the critical

damping ratio is small. The error due to the assumption of linearity

is therefore small.

With light structures, however, large amplitudes, and consequently large

structural velocities, are possible before the damping energy approaches

the excitation energy level. The errors for these structures are

therefore considerable.

The discrepancy between the linear and non-linear cases depends on the

velocity of the structures in question. This is a function of the

amplitude and frequency of the vibration. The calculated r.m.s. deflect¬

ion in/
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in both the cases depends on the value of the mechanical damping

ratio: , is a function of the total energy of vibration. A measure of

the total energy is the stiffness of the structure EI. The discrepancy

between the linear and non-linear theories could therefore be expected to
EI

be a function of the parameter 77 , for a range of structures for whichCO

the critical damping ratio is constant. The ratios of linear to non¬

linear r.m.s. deflections calculated for the structures in this

EI
investigation were plotted against -7 . The resulting curve is shownCO

in graph (44).

It can be seen that there is a relationship between the ratio »f cal-
EI

culated r.m.s. deflections and the parameter ™. A- considerable

discrepancy between the linear and non-linear cases is evident for values
EI 11 EI

•f — below 1 x 10 « The error decreases with rising —- and
CO CO

EI 13
tends to zero at values of 77 greater than 1 x 10 where the ratioCO

of r.m.s. deflections approaches unity.

The significance of this curve is that it suggests that slender structures

which are sufficiently light to have a high natural frequency are

likely to suffer quite high degrees of aerodynamic damping and that an

allowance for the non-linearity of the system should be made when

calculating their response to turbulent winds. The curve shown in

graph (44) was compiled from data relevant to structures with a critical

damping ratio of 0.01. In practice, light lattice structures are

likely to have lower damping ratios and the error involved in assuming

linearity could be expected to be greater than those indicated here.

The results also suggest that in the case of structures which have a low

natural frequency or in which the vibration energy level is high (i.e.
structures /
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EX 13
structures for which — ^1x10 ), the error involved in assuming

linearity is likely to be small.

It is thought that a series of curves such as graph (44)> plotted for

a range of critical damping ratios, could be used in design to

distinguish between those structures for which an allowance for the

non-linearity is necessary and those for which it is not.

Comparison of Input Energy with Energy of Vibration

The energy input from the wind to a structure is determined by the

drag forces which the ?idnd can induce to act on its surface. In

the foregoing analysis the drag per unit length of the structures was

calculated from a drag coefficient (assumed unity for all the

structures analysed) and the breadth of the structures B (in addition

to the wind •"'elocity and air density). From table (2) it can be

seen that B was not increased in proportion to EI over the range of

structures analysed. It was thought that this was representative of

the full scale situation. It resulted in the ratio of energy input to

energy of vibration decreasing as the mass and stiffness of the structures

were increased. The effect was a large variation in the energy input

to energy of vibration ratio with mass of the structures.

The results show that for light structures, such as lattice towers, the

ratio of energy input to vibration energy was high causing the number

of cycles required for the amplitude of vibration to build up from a

small initial value to the root mean square deflection to be small.

With the heavier structures, however, this ratio was low, and a large

number of cycles was required before the vibration build up was

complete.

In/
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In practice a structure in a turbulent wind is in a state of continuous

vibration in response to a periodic forcing function whose amplitude

is continually changing. Light structures., with high input energy to

vibration energy ratios, are likely to follow variations in the wind

closely. When the turbulence intensity increases the vibration

amplitude will rise fairly rapidly and when the wind decreases the aero-

dynamio damping forces, which are high relative to the total vibration

energy are capable of quickly reducing the vibration amplitude. The

result is that a light structure can be expected to undergo a

response which follows wind deviations closely and the excitation

and response are related by the frequency response function at almost

all times. In this situation, the root mean square response may be

calculated from the root mean square excitation using the frequency

response function.

The heavier structures, however, require time to respond to increases

in the intensity of turbulence and unless a batch of high intensity

turbulence lasts for sufficient time for the transient part of the

response to be completed, the vibration airplitude will not reach the

level which would be predicted by multiplying the amplitude of the

excitation function by the frequency response function. Similarly,

when the turbulence intensity decreases the structure will tend to carry

on vibrating through the period of lull because the aerodynamic

forces acting on it are small compared to the total energy of vibration.

Heavy structures are therefore likely to have a much smoother response

to wind turbulence than light structures and their amplitudes of

vibration are likely to remain more steady.

The analysis presented in this investigation represents a physical

system/
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system which is much simpler than the one which occurs in

practice. It does show, however, that there is likely to be a

considerable variation, in the ratio of input to vibration energy

for different structures and it demonstrates that this ratio

is likely to be small for heavy structures such as tall buildings.

The ability of the frequency response function to represent the

mechanical properties of a structure in a dynamic wind loading

calculation depends on whether or not the transient parts of the

response are of significant duration. This depends on the mass

of the structure and on the characteristics of the turbulence.

If the turbulence is fairly steady the effect of neglecting the tran¬

sients may be slight but if the turbulence is of high intensity with

large randomly spaced fluctuations in wind speed the effect of neglect¬

ing the transients may be considerable for certain types of structure.

The important parameters are the duration of constant phase sequences

in the component of turbulence causing the vibration and the relation¬

ship between these and the lengths of the transients of the structure

concerned. Little data are available at present on the detailed

characteristics of turbulence or on the possible duration of

constant phase batches and it is therefore difficult to estimate

the importance of the transient components of response. It seems

likely, however, that in the case of tall buildings, subjected to

high intensity random turbulence, a more sophisticated technique than

that of simply multiplying the excitation function by the frequency

response function may be required for the accurate prediction of

their dynamic response.

4.6 CONCLUSIONS/
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l.6 conclusions

The investigation presented here was a theoretical study in which

a number of simplifying assumptions were made. It is felt that the

principal effect of these was to cause an overestimation of

the predicted levels of input energy. It is likely that this

caused the predicted errors due to the assumption of linearity to

be exadurated but diminished the predicted lengths of the transients

in the response and thus reduced the apparent importance of these.

The author believes that the effects described here are nevertheless

of the correct order of magnitude and that the following conclusions

may be drawn.

1. The non-linearity of the wind driven vibrating system

must be taken into account when predicting the dynamic

response of slender structures. This is especially true

for light structures with high natural frequencies.

2. The energy stored in a vibrating structure is usually con¬

siderably greater than the energy input from the wind^c/cle .

In this situation the frequency response function is not

capable of giving a reliable prediction of the dynamic

response of a structure to the wind and a more

sophisticated mathematical model, which takes account

of the inertia of the structure, is required to represent

its mechanical properties.



Struct no

Hz

m

lb/in

No. of cycles
to reach r.m.s.
deflection

non-lin lin

r.m.s.
deflection

in

non-lin lin

lin,
non-lin

static
deflection

! in

T'1 16.10 «003 3 1+8 0.013 0.379 1+1+-3 0«28

T'2 i+« 02 • 0051 7 1+8 0»13 1 *60 12»3 1+-1+3

T'3 1*1+3 • 003 13 31+ 0*72 3*30 1+ *86 .33*0

T'l+ 0* 72+ • 003 21 1+3 3*20 9*31 2«98 136-0

T'3 1+-1+6 • C4+6 21+ 38 j O'Ql+3 0*10 ; 203
t

o»36

T'6 2*33 • QL+6 29 39 0*061 0»11 1*8 1.39

T«7 o»l+3 • QL+6 1+1 36 0.77 0.87 1*13 1+2.30

T»8 1*93 • Ql+6 32 60 0.096 0.13 1*37 2-63

T'9 10»00 • Ql+6 13 33 0.011 O.Ql+3 1+-0 0-086

T'10 1.16 • Ql+6 36 1+1+ 0.33 0.1+7 1*31+ 1+-18

T'11 3*32 »0l+6 26 39 0*036 0.076 2-11 0-69

T'12 0*62+ 1*1+0 1+2 1+1+ 0*023 0.021+ 1.Q1+ 0*087

B«1 1*1+3 1.1+0 1+1 1+1+ 0»013 0-013 1»00 0-0023

B»2 0.35 1*1+0 1+3 1+1+ 0.033 0.033 1*00 0*036

B'3 2» 01+ 1.1+0 38 1+3 o.ool+3 O.*0Ql+6 1*01 0-0089

Table 3 Summary of results of energy analysis.
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5.1 INTRODUCTION

It was seen in Chapter U that an energy analysis provided a

comparatively simple means of calculating the R.M.S. deflection

of a structure vibrating in response to the buffeting effect

of wind turbulence. The rnly existing method for predicting

the dynamic response of structures to buffeting by gusts,

which is suitable for general application in design, is the

spectrum analysis in the form proposed by Davenport. Two

sources of error which might lead to inaccurate results with

this method were discussed in Chapter I4. These are the neglect

of the non-linearity in the system and of the inertia of the

structures concerned. It is felt that the energy analysis

may be capable of giving a more accurate prediction than the

spectrum technique in cases where these effects may be large.

Two techniques whereby the energy analysis can be used as

part of a design procedure for tall structures are now outlined.

The first is a rigorous analysis, performed on a computer,

and intended for use only if preliminary checks indicate that

large errors might be incurred if the spectrum analysis were

employed. The second is a simplified method using energy

equations which are reduced to a dimensionless form. It is

thought that this technique could be used, as a substitute for

spectral analysis, to obtain quickly, gust factors for use in

equivalent static analysis.

It/
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It may be said at the outset that while the energy analysis, in

both forms, is capable of incorporating an allowance for the

effect of the transient part of the response, where this may

be considered to affect the overall performance of a structure,

the data currently available on the structure of wind turbulence

are not sufficiently detailed for this type of analysis to be

carried out. The proposed analyses are therefore seen, at

present, only as means of overcoming the problem of allowing

for the non-linearity in a wind driven vibrating system although

the simplified technique may be considered as a direct

substitute for the spectrum analysis in the form suggested for

code of practice use.

5.2 USE OF COMPUTER TO DETERMINE R.M.S. OF RESONANT

COMPONENT OF RESPONSE.

The most satisfactory means of calculating the dynamic component

of response of a structure from the energy equations is to

solve these equations on a computer. This was carried out in

Chapter U and the programme used for the energy investigation

has been modified so as to be suitable for more general application

in design. A flow chart for the altered programme is given in

Fig (13). The principal modifications are discussed below.

The computer programme used in Chapter I), was designed to

simulate the build up in vibration of a structure from a

small initial amplitude to the r.m.s. value. It was necessary

to specify a starting value for A^ and the programme was in
effect/
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effect an itterative process for solving the energy equations.

For design purposes., it is the r.m.s. value only which is

required. In the design programme an itterative technique is

again used and it is still necessary to specify an initial value

of . The prograxa has been written, however, so that rapid

convergence on the r.m.s. deflection is obtained and the accuracy

of the initial guess is not important.

In Chapter b3 it was assumed that a cantilever was a good

approximation to a tall structure and that the first mode of

vibration was the only one of importance. It is felt that, in

pr tice, these a^ roximations will provide a satisfactory

solution for a wide range of structures. As will be seen from

Appendix 3, however, the assumption that a building acts like

a cantilever can lead to errors in the calculated natural

frequency. The programme has therefore been written in such

a way that substitution of expressions for mode shape and

natural frequency other than the cantilever formulae can

easily be made. Provision is also made for determining the

r.m.s. value of the deflection in the higher modes as well as

the first. The formulae used in the programme as it stands

are,

mode shape f (z) = cosh a z - cos a z - k (sirih - a z-sin a z)* r r rr r r

■01

V
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k
cos a 1 + cosh . a 1

r r

r sina 1 + sinh . a 1
r r

3*516

CO 61*70 / EI
3 l2 V fAr

As in the research programme the wind parameters are based on the

Davenport reduced spectrum and crocs-correlation coefficient.

The programme was written in Atlas Autocode and its compiling

time on the I.RJ.1; 360/50 is 3*90 seconds. The running time

for an average job is 7*7 seconds.

5.3 USE OF REDUCED ENERGY EQUATIONS TO DETERMINE THE R.M.S.

OF THE RESONANT COMPONENT OF DEFLECTION

It was considered that, in addition to a computer analysis.,

there was a need for a simple method for determining approximately

the r.m.s. deflection of the resonant component of response. In

an attempt to satisfy this the energy equations have been

simplified, reduced to a non-dimensional form and solved

directly for A^. The resulting expression may be used to
determine A

^ from two dimensionless coefficients. The analysis
was carried out for the first mode of vibration only, but

extension to include higher modes is possible although more

complicated/
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complicated.

The excitation energy per cycle is given by the equation

d

Eg = BoCd^cOTJr
&L » -T7(l-z)n
CO ^ - f(z)A,st

f(z) Agt dz . (5-0

The part under the integral sign may be made non-dimensional

by means of the substitution u =
z

1

Then z

dz

u

u

1 u

1 du

0 when z

1 when z

0

1

.*• the limits of integration become 0 to 1

- 7-7(1-^
7

= e
-7'7(l-ul)a -7*7(1-a)

In

V

Equation (5.1 ) becomes,

E = BpCdW*
e \

p e"7*7^1"u^ - f(u) Vbl f(u)Ae+ du
Jo

2 A

•] st

A .CO n A , COSt 1 f(u)st_ du,B?Cd7*lAj f j;-7-7(1-u)? _f(u)_s£Lj
...Bb = B?cd7*IAjj* re-7*7(1-«)»<.f(u)pjf(u)p

W

du

>(5.2)

where/
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where o< nl a A3t^
5 p A,

To make equation (5.2) applicable to a range of structures the

reduced excitation energy Erg is defined by,

E = — E
re

B Cd 1A e

E
re

w

^ ~

duJt6"7'70 "u)" p
C

Assuming that modes higher than the first may be neglected

and making a straight line approximation,

*re -/|>7<1-U)~-e] -

Equation $• 3 may be integrated without difficulty and

becomes,

E
re

* f ~ e"7'70t] - if
The damping energy per cycle is given by the equation,

I
Ed = 2 Aet.2 TvSjc^2 m / f2 (z) dzL

2
If the substitution u = j is made and a linear mode shape
assumed this equation becomes,

Ed/
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E, 2A 2 ^
st

,2 i f1 *U) m 1 l u du

• • Ed I Agt2 >) w2 m 1 .(5.5)

The condition for Ag^ ■= r.m.s. amplitude is

E_ E,

i.a. BfCdTXwJ
CO

E -■•§ A . V « m 1re 3 st w
= 0

E
re

2 nri) CO
-

3

A
2 2

st o>

fCdf

2 m>) CO A 2
3 7- • » = 0 .(5.6)

CdV

Substituting (5.U) for E in (5.6) gives
P6

t1 ' 1 0-7*7°*3a ift2 2 a
7*7ck ~ ( 7*7»< ( Jp" 3P " 3ftpCd? P

P! ".Is * » -Pp • ' Ail'n - •■"'-3'lot. 7*7«* .(5.7)

The solutions to equation 5*7 are,

p> = 0 and = ^7«7oi (-7S7g^2C - e
.7.70c )]

mVtO

thus,

A
'st

w

CO

r^_. (_uI 7.70c v7»7<x,
I X + *

BfCdV

>20 - e"7'7^
.(5.8)

where/
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nT
where ^ = —

1:

2 mVw

B^CdV
The r.m.s. of the resonant component may be obtained directly

from equation (5.8) after evaluation of the dimensionless

parameters Ot. and . The equation may also be written,

W \y 1

V * — * «•»>

where ^1
1

. (2 \2 c\ 0-7»7c*N
7»7<x ^ " e '

+ %8

Graph (J46) gives values of for a range of <Xand 2S .

may be evaluated from the Davenport reduced spectrum if a

bandwidth is specified. An approximation to the bandwidth which

excites a structures to resonate is given by the frequency

separation of the "half-power points" in the resonance peak.

This is given by the formula,

iV « 2»n

A^, may be obtained from the equation,
S k V2 &n

A 2 » —
w n

o

where/
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n L 2
(-*-*>

V

n L
1 +

V

3

A curve of S against
v °

V3
*n is shown in graph (1+5 ).

A worked example illustrating the use of the reduced energy-

formula to calculate A
^ is now given. Structure T6 from the

energy analysis of Chapter 1+ is used.

The appropriate input parameters are;

? =100 ft/sec 1 == 200 ft = 21+00 ins

k = 0-05 m == 0- Ql+5 slug/in

? =1*39 x 10~6 slug/in^ » 0-01
1

B «■ 10 in

I «= 1*03 x 106 in ^
E «= 30 x 106 lb/in2
Cd == 1

CaJ 0

_ 3-516 [
"TjT" J

El

m

_ 3-516
21+00

730 x 1-03 x 10
'

0-01+5

u'

= 15*85 rad/sec

n

CX =

2*53 "Hz.

/
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cx X - I J?13V B Cd?

- 2*53 x 200 = 2 x .01*5 X .01 x 15*85
100 3 X 10 X 1*39 x 1Q-6 X 1 x 100 x 12

= 5*06 = 0*285

1 -7*7<*i
X ' = 7»7oc ~ (7»7oc)C(1 " 6 ' ' ^

* * 7
1 1 n2 m -7*7 x 5*06s

W x 5*06 " ^7*7 x 5*06' (1 ~ e J
~

Q^2B5 + 0*333

= oot*J

An = 2

2 x 2*53 x 0*01

0*506

Erom- graph (1*5). Sy = 0*25

A
(Syk inr

w / n
o

/0»25 x «05 x 100^ x *506
"F5T

■= 1*58 ft/sec

= 18*95 in/sec

Aw 18.95 x OOU1
Ast S ~ li-85

0*01*9 in

The/
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The value of A
^ obtained from the computer analysis was

0.061 in.

Table (b) shows a comparison between the values of A ,St

calculated using the reduced energy equation and the computer

analysis for the other structures in Chapter iu It may be

seen that the agreement is fairly good.

5.U FINAL COMMENT

Both the techniques outlined here are designed to calculate

the r.m.s. of the resonant component of deflection. If the

extreme value is required a final calculation must also be

made using extreme value statistics.

Neither of the techniques proposed here is capable of giving

more than a rough approximation to the vibration amplitudes

which would occur in practice. It is felt, however, that they

constitute a realistic approach to the problem. As with the

conventional spectral approach the weakest feature of the methods

is their reliance on inadequate wind data.

The techniques presented here are the result of a theoretical

analysis and the examples are intended to be illustrative. It

is not suggested that they be adopted for design without further

study. It is felt, however, the the approach is capable of

development into a practical method for assessing the behaviour

of slender structures in the wind.



Structure
ex. 3

A

in/sec

A +st

(reduced
equation)

i r>.

(computer)

< r.

t«1 l+*82 o«o5 1l+«0 0»039 0*013

t'2 2*1+1 003 18«0 0*180 0*130

t'3 1*1+5 0»02 23*0 0*650 0*720

T'»l+ 1*01+ 0*01 l+0«0 3*19 3*20

t«5 2*68 0*51 10»0 0*020 0*01+3

t»6 5*06 0*29 19*0 0*01+9 0*061

t'7 0*90 001 50*0 7*80 0*77

T'8 1 *93 0»02 20« 0 0*320 0*096

t'9 10*00 0*12 13*0 0*006 0*011

t'10 2*10 0»01 30»0 0*75 0*35

T*11 7*oo 0*1+1+ 17*0 0*039 0*036

t'12 0*96 2* 21+ 28.0 0*370 0*023

b»1 1*1+5 5*10 23*0 0*01+2 0*013

b«2 0*70 1«20 35*0 1*900 0.035

b«3 l+*08 7*10 15*0 0* 0q5 o*oc5

Table 1+ Comparison of results from computer and reduced energy equation.



Graph45Reducedspectrumofhorizontalwindspeed.



Graph46Relationshipbetweenconstantsinreducedenerqysolution.



CHAPTER 6

CONCLUSIONS
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6.1 SUMMARY OF CCMCmSIQMS

The investigation presented in this thesis consisted of an

analytical simulation of the response of slender structures to

turbulent wind loads. It was carried out in two parts, the first

being a conventional spectrum analysis and the second an evaluation

of the levels of transfer and vibration energies in wind driven

vibrating systems using a technique developed by the author. The

main conclusions may be summarised as follows

Spectrum Analysis.
The spectrum analysis suggested that slender structures, exposed

in turbulent winds were likely to be severely buffetted and that the

dynamic component of response was likely to be a major constuent

of the total response. The magnitude of the dynamic component of

response was found to be largely dependent on the natural frequency of

the structure due to the fact that the intensity of excitation was dependent

on frequency. The spectrum analysis was found to be insensitive to

variations in input data, especially those concerning the mechanical

properties of the structures, and it was concluded that the mechanical

admittance function might not provide a sufficiently accurate

mathematical model of a structure for this type of analysis. It was

thought that this factor, combined with the fact that the spectrum

analysis, in the form usually applied to wind loading calculations,

makes no allowance for the non-linearity in the system, might lead to

an overestimation of the dynamic component of response./
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response.

Energy Analysis.

In the energy analysis, the levels of input energy and energy

of vibration per cycle were calculated for a number of structures

considered to be vibrating in response to simulated wind loads.

The analysis was carried out in such a way that the effect of

neglecting the non-linearity in the system could be evaluated.

It was found that for most typos of structure the level of input

energy was very low compared to the energy of vibration. It

was felx that in this bxtuation the inertia of the structures

would affect the extent of their dynamic response, especially to

a random form of load such as wind turbulence, and that some

allowance for this should be made when attempting to predict the

magnitude of the dynamic response.

It was also found that certain types of structure were likely to

be subjected to large amounts of aerodynamic damping when buffeted

by turbulence and that the non-linearity in such systems could

not be ignored when predicting dynamic response.

6,2 DESIGN FOR DYNAMIC WIND LOADS.

In recent years considerable advances have been made in the field of

assessing the effects of wind loads on buildings and the current

CP3 Chapter $ enables reliable predictions of the static and

quasi-static effects of wind to be made. The problem of determin¬

ing the dynamic response has still not been satisfactorily resolved,

however/
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however, and further work is required in this field. Of the

several wind induced excitation mechanisms which are capable of

causing a dynamic response in a structure, the buffeting of

structures by gusts is the one which has been considered in this

investigation. The following comments refer only to this form of

excitation;

It is likely that there are many structures for which a large

dynamic response to buffeting by gusts will not occur and in such
cases the inclusion of a dynamic analysis as part of the design

procedure is not justified. It is felt that there is a need for

a quick means of testing, at the beginning of a design, whether

or not a structure is in this category. From the results of this

study two criteria are suggested. The first is the natural

frequency of the structure concerned. A chart such as graph (13)

could be used to determine whether or not the natural frequency

of the structure was low enough to make large dynamic response

possible. If the natural frequency were found to be greater than

a specified value a dynamic analysis could be considered

unnecessary.

The second criterion suggested is the mass or inertia of the

structure. Due to the fact that the ratio of energy input to

energy of vibration is very low for tall buildings and that wind

turbulence is a random form of loading, the author believes that

many slender structures, especially tall buildings, will have a

negligible dynamic component of response even though their natural

frequencies may be low. The important parameter is the ratio of

the/
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the maxiinrum duration of a constant phase batch of turbulence to

the length of the transient part of the response of a structure.

The present state of knowledge is such that a meaningful assessment

of the duration of a constant phase batch of turbulence is not

possible. The author believes that research into this property of

wind turbulence would be valuabi e and a suggested procedure is

given in section 6.3.

If pre!1minary checks indicate that a structure is likely to be

adversely affected by dynamic loading a designer may be able to

reduce its effect by altering the design, either to increase the

natural f_equency or the damping. It seems likely, however, that

for some structures the prevention of dynamic response will not

be possible and there is a need for a method for calculating the

extent of this component of the overall response.

The spectrum analysis, in the form suggested by Davenport, provides

such a technique but it suffers from a number of drawbacks. In

addition to those already discussed a further inconvenience with

this method is that the static, quasi-static and dynamic components

of response must be dealt with together, in one all-embracing

calculating to produce a gust factor. The designer who uses this

method is, therfore, forced to calculate the non-dynamic part

of the response from wind spectrum data. Better data are now

available, however, for calculating the static and quasi-static

components of response, than the spectrun, which is still in an

early stage of development. The author believes that a more

logical approach is to evaluate the static and quasi-static

response/
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response by the method suggested in CP3 Chapter 5 and to perform

a separate analysis to determine the dynamic response,

The energy analysis proposed in Chapter 5 of this thesis lends

itself to this approach and the simplified form enables the r'*m.s.

deflection of the resonant component of response of a structure to

be calculated directly from two dimensionless coefficients. The

dynamic part of the analysis is therefore kept separate from the

static and quasi-static parts and in no way interferes with

their accuracy,

6.3 rtpther research

One of the objects of the investigation presented in this thesis

was to determine which were the parameters in a wind excited

vibrating system, which required further experimental investigation.

Prom the results of the study a number of suggestions may be made

concerning the direction in which further research should proceed,

1. The splitting of the wind velocity function into mean and

time varying components and the reduction of the latter to

the format of a reduced spectrum and roughness coefficients

is a feasible approach to the problem of devising a mathematic¬

al model of wind turbulence. The spectrum undergoes large

variations with frequency, however, in the range of frequencies

likely to excite tall structures. A study is now required to

obtain accurate data so that the reliability of the reduced

spectrum may be improved. This will require the collection

of data on a large scale over the whole range of roughness

conditions/
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conditions but it is an essential prerequisite to any code

of practice which attempts to deal with the buffeting effect

of wind turbulence.

2. One of the conclusions reached from the energy analysis

was that some structures may not achieve high amplitudes of

vibration in response to w;nd loads because the relatively

constant conditions required for a large build up in energy

may never occur with this random form of loading. Data on

the average lengths of constant phase batches of turbulence

would be useful so that the possible extent of energy build

up i_i large structures could be assessed. An insight into

orders of magnitude of the duration of constant phase

sequences could be gained from examination of records such

as that shown in Pig. 6. The structure in that case was

30 ft high and had a natural frequency of 3.3 Hz. From the

records, the average length of constant phase sequences, for

that component of turbulence, could be deduced. If many

such records, for different strictures, were examined, an

assessment of the lengths of turbulence components at their

frequencies, could be made. If data from a variety of

conditions were analysed the parameters on which the lengths

of constant phase sequences depend, could possibly be evaluated

3. It is possible that the cost of collecting the data necessary

for accurate dynamic wind load analysis would be such that

other solutions to the wind load problem should be examined.

One such possibility is the elimination of resonant vibration

in/
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in structures by the introduction of additional damping.
This could be done, either by building in damping (e.g. friction

joints) or by attaching damping devices to structures. The

structures which are worst affected by dynamic loads are those

which are light as well as slender, such as lattice towers.

The energy dissipative capacity of damping devices attached

to such structures would not have to be high to bring about a

significant reduction in vibration amplitude. A study of

the feasibility of such an approach to the problem, including

an evaluation of required damping energy levels, would be

useful at this stage.

The energy method proposed in Chapter $, for predicting the

dynamic response of structures to wind loads, has not been

checked experimentally. Wind tunnel studies on aeroelastic

models in a turbulent airstream are now being planned so that

the ability of this technique to model the behaviour of a

wind driven vibrating system may be determined. It is hoped

that the results will also enable an assessment of the

accuracy of the conventional spectrum analysis to be made.
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If a function x(t) is periodic, it may be expanded as a series

of harmonically varying quantities in the form,

x(t) = a + ) (a Cos ruo-it + b Sin r<u,t)o «—i r t r i
1

where,

rh
% " ¥ ,L x(t) dt

-r2

a.. = — I * x(t) Cos raj.t dt
r

^ I * x(t) Cos rgj.t

b = 7n \ x(t) Sin roJ..t dtr J- JJ/% '

T = period of x(t)

2 71
CO-] j

The components of the series are sinusoids whose frequencies are

multiples of the fundamental frequency, • The amplitudes of the

components can be plotted against frequency to give a discrete

spectrum in which the spectral lines have spacing ov-] •

The series may also be expressed in the complex form,

x(t)

where, c
r

QQ

/U c e
r

-co

1
T

J T
i.

ira^t

-ircj-it
x(t) e dt

It is possible to express the mean square value of x(t) in terms

of the coefficient a , a , and b ,
o r r*

x2 /
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x2(t)
\

rv
CO

1
T

■J

2/ . \ j. 2 i \ / 2 , 2 *x(.t)dt = aQ + i (ar + br ).

A non-periodic function may be expressed as a Fourier Series if

it is considered to be periodic with infinite period. The

fundamental frequency is then infinitely small and the discrete

spectrum becomes continuous Assuming thataj^ is very small
(A eo) the equation may be written,

oo

*(t) V ~

- oc
2K

rlI x(t)e
—ir

dt
ir /I u>t

As £>s«.o -J dc -.this becomes,
DO

r>

x(t) =

which may be written,

dpj
2 rv

too

©o

x(t)e
-i oo t

_oc

_©o

x(t) =
1

2 A
/
f OO oo

where, A(iuo ) r

di e'
i u)t

A(i GO )e"1031 d CO

J
x(t)e~iWt dt

oo

These equations give the Fourier Integral expression for x(t).

A(i us ) is called the Fourier Transform of x(b). The equations

may also be written,

c>o

x(t) A(if) e12 A f t df

r»oo

A(if)

Also/

X(t)e"12^ f 4 dt
-OO
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Also,
o©
/*\

i 2*

<&j

x (t)dt
J
-t3O

J

job

x(t )x(t)dt

/ x(t)
CiO

_oo
r
I A(if)el2 * ft df
_oo

A(if)
-oo

r

j x(t)e
*0 oo

i2 7^ ft
dt

dt

df

r,(SO

A(if)A*(if)df
-go

where A(if) and A*(if) are complex conjugates.

„es>a

j x2(t) dt
-CO

P

A(if) df

As A (if

x2 (t )dt
-

is an even function of f this may be written,

dfA(if)

oo

A random signal is not periodic and cannot be expressed as a

Fourier Series. It cannot be expressed as a Fourier Integral

either because to have stationary properties a random signal must

be assumed to extend over an infinite time. The Fourier

Transform A(if) of a signal which begins at t =-ca

and continues until t = o© cannot be defined. It is possible,

however, to obtain the Fourier Transform of a signal ^(t)
T T

which is defined as equal to A x(t) over the interval - £.<t <

and zero at other times.

xT2(t)/



The limit of this as T gives the mean-square value

x(t),

c>o

X2(t) f lim.
d- T-) 00 I 1 y«) i df

The power spectrum of the signal is defined by,

— —1

S(f) lim

T-?>oO
1

00

x2(t) S(f) df
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APPENDIX 2

DETERMINATION OP Aw, AND THE USE OF A GROSS-CORRELATION

COEFFICIENT IN THE ENERgT ANALYSES
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A 2.1 DETERMINATION OF Aw

Hie equation for excitation energy which is derived in

Chapter it. is, I
E = Bp CaftooT
e

- -f(z)Ast f(s)AstdZ cu.1)

This equation is based on the assumption that the exciting

force is one of constant phase and amplitude and in response to

this type of exciting force a structure would achieve a steady

state condition of vibration. In practice, however, the

amplitudes of narrow bandwidth components of wind turbulence

fluctuate erratically, even over short periods of time, and

in such a situation the concept of a steady state response

has little meaning. Equations I;.1 and U.2 therefore constitute

a much simplified model of the real system and a realistic

value for the input parameter AV/>r is impossible to obtain

because it has no equivalent in the real system.

The object of the analysis was to compare the relative levels

of the three main energy forms, however, and this may be done

using the root mean square value of the turbulent velocity

components. This can be considered to remain constant with time.

The energy levels calculated from the r.m.s. velocities are

not true energy levels but a comparison of them is still a

valid exercise for the purposes of assessing the effects of

non-linearity and of possible rate of build up of vibration.

Hie/



111

The r.m«s. value of a narrow band component of turbulence

may be obtained from a wind velocity spectrum. To do this it

is necessary to specify the bandwidth. All components of

turbulence within the bandwidth in which the frequency response

function of a structure is greater than one are capable of

inducing a dynamic response in that structure. All such

components should therefore be included in the bandwidth which

is specified to obtain A^. from the spectrum.

The response of the structure within this bandwidth varies

with frequency in proportion to the variation in the frequency

response function. Equation Jj..1, however, applies only to

that component of response which occurs at the natural frequency

of the structure. Use of a value for A^ obtained from the

spectrum using a bandwidth for which the frequency response

function is greater than one would be equivalent to assuming

that all the energy in the wind in this bandwidth is concentrated

at a discrete frequency. This would lead to an overestimation

of the dynamic response of the structure.

An approximation to the real situation is obtained if the band¬

width is selected such that,

Area under resonance peak in frequency response function
^n height of resonance peak

where * = bandwidthl\n

This is the width of the rectangular resonance peak with the

same area and height as the resonance peak from the frequency

response/
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response function. By reducing in this way the energy

input to the system is reduced proportionately so as to allow

for the fact that different components of turbulence, within

the bandwidth for which the frequency response function is

greater than one, excite the structure by different amounts.

is therefore given by,

- J Spv (n)
2 2

Spy,(n) = h k 7 *
n(1 +x2)U/3

x = UOOQn
V

k = roughness coefficient

A2.2 USE OF CROSS-CORRELATKE COEFFICIMT

The value for lw obtained from a spectrum of horizontal wind

velocity applies to one point in space only. One of the initial

assumptions of the preceeding analysis is that the resonant

frequency turbulence component is effective over the whole

structure. This assumes that all gusts are large enough to

fully envelop the structure and that full correlation occurs in

both the horizontal and vertical directions.

The constituent gusts of high frequency turbulence are

usually of small spatial extent, however. This is due to the

fact/
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fact that the vertical and longitudinal dimensions of eddies

in a turbulent airstream are usually of the same order of

magnitude. The extent to which the wind velocity at two

points in space across an airstream are correlated depends,

therefore, on the frequency of the turbulence being examined.

It has been shown that th extent to which high frequency

turbulence (n> 1*0 Hz) is correlated is small compared to

the dimensions of most engineering structures. In practice even

slender structures have relatively high natural frequencies

(around 'i Hz) and it is unlikely that the turbulence components

which excite such structures to vibrate at their natural

frequencies will be fully correlated over their surfaces. Input

energy calculations based on the assumption that full correlation

exists are therefore likely to err on the high side.

It was considered that an allowance for lack of full correlation

in the vertical direction was essential in the energy analysis

but it was felt that, as the hypothetical structures used in

the analysis were considered to be of small width, full

correlation in the horizontal direction could be assumed.

In order to comply with the other assumptions in the analysis

the vertical cross-correlation properties of wind turbulence

components for zero time lag are required. These are given by

the co-spectrum of wind velocity which is a measure of the contri¬

bution made by different frequency components to the co-varience

between the velocity functions at two points in an airstream for

zero time lag.

Most/



111).

Most of the work on the cross-correlation properties of wind

turbulence has been centred on a complex quantity known as

the Cross-Correlation Spectrum. This is given by the

expression,

Cross-Correlation c°-|2(n) * 1 Q,2(iO
Spectrum a,(n)S2<n)

where Co^ ^ = co-spectrum of velocity fluctuations at
points 1 and 2

Q.J2 = quadrature spectrum of velocity fluctuations
at points 1 and 2.

S.j (n) and Sg (n) = spectra at points 1 and 2 respectively
The quadrature spectrum is similar to the co-spectrum.

The difference is that in the quadrature spectrum, thjs '•

velocities at points i and 2 are compared for a time lag of J

period, instead of zero time lag.

Davenport has derived an expression for the modulus of the

cross-correlation spectrum, based on data from a number of sites.

The Davenport foimnla is,

Modulus of Cross- Correlation
^ _ -c' ~2n

Spectrum, s c 1?

where c' = a constant dependent on ground roughness.

In the spectrum analysis, Davenport uses this function to

represent the co-spectrum of wind velocity and computes an

amended excitation spectrum by multiplying the ordinates in

the/



115

the velocity spectrum by c . Davenport justifies this bys

demonstrating that the modulus of the cross-correlation

spectrum and the co-spectrum are almost identical for most

frequencies. Pig. 112.1, which is taken from Davenport,

shows the co-and quadrature spectra plotted against wave

number. It can be seen that the quadrature spectrum rises to

one maximum., at a wave number of approximately O 002, then dies

away to almost zero. This means that the cross-correlation

spectrum is dominated by the co-spectrum at almost all wave

numbers and is only slightly affected by the quadrature

spectrum. The o function, used by Davenport, is therefore

quite a good approximation to the co-spectrum. Davenport, in

his 1962 paper, justifies its use in spectrum analysis by saying

"In spite of the non-zero quadrature component it is nevertheless

small, and it seems adequate for practical purposes to use the

square root of the coherence-* as a measure of the cross

correlation".

The existance of the maximum in the quadrature spectrum does

however indicate that there is a slight correlation between

wind turbulence at two points across an airstream for a J

phase time lag.

In the energy analysis, the cross-correlation properties of the

wind are allowed for, in the same way as in the Davenport

analysis, by multiplying the term by c . The use ofs

c in this application is less easily justified. There ares

two main sources of error, firstly, by appearing under the

integral/
* coherence is square of cross-correlation spectrum
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integral sign in equation Iw1 it has the effect of making

the first term in this equation very small at the base of the

structure, where z = 0, and causes it to rise to a maximum

at the top. This situation is the same for all the cycles of

vibration and the correlation is therefore assumed to remain

fixed spatially for every cycle. This is equivalent to assuming

that all the constituant gusts of the resonant component of

turbulence hit the top of the structure and while it represents

the worst case it is not a true representation of the full

scale situation in which the turbulence is random in space.

TLo second sourc_ of error is the neglect of the quadrature

spectrum. The fact that some correlation is possible between

gusts hitting different parts of the structure \ period out

of phase, as is suggested by Tig A2.1 could increase the

aerodynamic damping. No allowance for this is made in the

energy analysis.

The c function cannot, therefore, be considered an ideal
s

expression for the cross-coirelation properties of the wind

but it does give an Indication of the orders of magnitude

involved. The errors due to its use in this application are

likely to be on the conservative side and the calculated

levels of excitation energy are likely to be larger than would

occur in practice. This should be kept in mind when inter¬

preting the results.
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AffPEUDIX 3

AMLYSIS OF MULTI-STOREY SHEAR WALL STRUCTURES
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A3.1 SUMMARY

As was stated in Chapter 3, the dominant structural parameter

so far as dynamic wind loading is concerned is the natural

frequency. For a complicated structure such as a building a

rigorous analysis to find this tends to be beyond the scope of

a design engineer and it has become common practice to regard

such structures as simple cantilevers. It was decided to

examine a particular type of building in some detail so as to

establish whether such an approximation was likely to lead to

large errors. This appendix is devoted to the analysis of a

multi-storey shear wall type structure to find its natural

frequencies. The purpose was firstly to try and check the

accuracy of simpler and more approximate methods which have

previously been used and secondly to provide a better means of

determining such an important structural parameter should the

previously used methods prove inaccurate. A mathematical model

was chosen such that any resulting design method would be applicable

to all buildings of the shear wall type.

The analysis was carried out using the continuum theory which

has been widely applied in the case of static loadings on such

structures. A solution was obtained in terms of constants which

are simple to evaluate and a number of hypothetical buildings

were analysed by the continuum theory and more approximate

methods so that comparisons could be made. A set of simple

experiments was carried out on model structures to confirm the

conclusions reached from the theoretical results.

A3-2/
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A3-2 THEORY

The type of building analysed was of the multi-storey shear

wall type, a typical example of which is shown in Fig. A3.1.

The main structural elements of these buildings are load bearing

walls which act both as the main vertical supporting members and

as wind bracing. They are connected to one another at each

storey level, either by continuous floor slabs or by floor

beams. Each building usually consists of a number of similar

bays, each of which contains elements to provide stiffness along

the two principal axes of the building. The walls therefore tend

to be T, L, H or E shaped in plan. The buildings vibrate

about different axes with different natural frequencies and it

is convenient to split the analysis into two parts and deal with

each axis separately. Soane has shown that for the static case,

a wall with a complicated plan shape can be replaced in the

analysis, without loss of accuracy, by one of rectangular cross-

section, which has an equivalent second moment of area about

the axis concerned. This simplified approach is used here.

Tig A3.2 illustrates how the building in Fig. A3.1 would be

simplified for further analysis.

To simplify the problem further it is assumed that all bays in

the building are of identical mass and stiffness and that

individually they will have the same natural frequency as the

whole building, i.e. the natural frequency of bay abed in Tig.

3.2, vibrating about the x-x axis, will be the same as that of

the whole building, vibrating about the same,axis. It was decided

that/



"Fig'A3.1 Typical shear wall building.

i

z-z axis

[1
y_y axis

Fig A3.2 Building simplified for analysis.
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that in order to achieve versatility of application, any resulting

design method would have to be capable of dealing with buildings

with different numbers of walls. The mathematical model of one

bay, therefore, is a plane structure with n wails and (n-1)

interconnecting sets of beams or slabs, (Fig. A3.3).

The analysis has been carried out in accordance with the

following assumptions s-

(a) That the mass of the structure is uniformly distributed

along its length.

(b) That all behaviour is elastic. Shear wall structures are

normally constructed of reinforced concrete or brickwork

and this is approximately tru© in the range of design

stresses used,

(c) That a condition of complete fixity exists at foundation

level.

(d) That the deformation of the connecting elements due to

normal forces in the connecting elements themselves are

negligible, i.e., the lateral deformations of the walls

are the same at any given level. This has been verified

experimentally for the static case.

(e) That the points of inflection of the connecting elements

are at their centres.

The discrete connecting elements were replaced by continuous

media having appropriate stiffness properties and the model

split up into individual free standing cantilevers. The effect

of the media on these was represented by equivalent external

forces/



Plane array of n walls interconnected by n-i sets
of beams or slabs.

Equivalent array of walls interconnected by continuous media.

Fig A 3.3..
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forces and moments, distributed along the edges of the walls.

The i th wall is shown in Fig. (A3 .I;) and a section of this in

Fig. A3.5. The notation used in these figures iss-

m. = the bending moment per unit length transmitted from

medium i.

t^ = the normal force per unit length transmitted from
medium i.

r^ = the shear force per unit length transmitted from
medium i.

1-L = the bending moment in wall i.

= the normal force in wall i.

w^ = the width of wall i.
A. = the cross-sectional area of wall i.
1

ij> = the density of the material.

Considering the element of wall i shown in Fig A3.5 and taking

moments

, , w. w.

Fh + QLj_ T+ ^ T + ri T +r*T + midx + mj ^ -

z) M.

\ -s-z**■ ■ 0

If higher powers of increments are neglected this simplifed tos-

.(A3.1)

w. \ M.

Qi + + m- ) + (r± + rj. = 0 (A3.2)

Resolving/



Fi9 A3.5. An clcmcni- of wall
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Resolving horizontally and vertically leads tos-

b% h2j.
\ + tj^ — t^ + ^5 A^ 2 = 0 • • • • • (A3 »3)^ x

j 2c + *" = ^ (A3.U)

It lias been shown by Chitty that the effect of the normal forces

in the walls is negligible, and so equation A3.U was considered

redundant. Differentiating equation (A3.2) and substituting in

A3.3 gives %

_ _ f
>x~ \6x & x J wx

+

,6:

, w.3 ) 1

d2y.
t. - t| + £>A. --—i = 0 .....(A3.5)1 j } x ^ .ct'

An equation similar to (A3.5) can be derived for each wall in

the structure. Assuming there are n walls of equal width, and

adding all such equations, the terms in t cancel out and the

equation simplified to s-

v iih „ r H „c <>ri/ 1 s 2 / \ £■—' \7^ o x -vi cx y\ ox
+

v2
x-1 A ay*piA —r - 0 (a*36'
TK & t

The assumption of equal wall widths involves a loss of generality

but this can easily be restored once the differential equation has

been/
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been solved, as is demonstrated later.
6 m.. 3 r.

To simplify (A3.6) it is necessary to relate ~5"x~"

to derivatives of y. This is done by examining the moments and

reactions in one of the connecting elements. A diagram of the

forces involved is shewn in Pig* A3.6, In accordance with

assumption (d), the walls deflect equally but AB does not remain

perpendicular to them. The connecting element is constrained

to remain at right angles to the walls at its ends, and this

imposes resultant moments and forces on the walls. The end

displacement of the connecting element is the sum c£ the

longitudinal strains in the walls and the relative displacement

of the walls due to bending. As was previously stated, the

former of these has been proved negligible by Chitty. The

bending moment in the connecting elements can therefore be

directly related to the end displacement, as in equation (A3.7)•

2Mi
Rci = ~ (A3.7)

Thus at a distance q from As-

2M .

EI . = - M . + ■ "C1 a
ci —%■ cx .

\ u V. •

©q i

S M . 2
EI . -%£• = - M . + + Vcx d q cx q

-M . 2 M . 3
.\ EIci P = -2|-a_ + -£^SL + vq + W (A3.8)

= 0 at A where ^ = 0, W =0

Erom/
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12l±
e .

/ \ ci
From assumption (e), p = 0 when q =

M .a.
• TT _ ci i

• • 7 = -~r~

d ? _ joifiThus when q= 0, the slope at the end,
'̂cx

M„. = 6 EIci o?
CX ——-—— —

a 4
e.
x

12EI . \

and r. . Si -£LE
x e.. d q

According to the sign convention adopted, a positive end moment

results from a positive wall slope, thus

M .

6EIci ^ yi
cx e_ fj x

12EI . & y.cx •'i
ci e..2 c)z

X

If the height between connecting elements is In,

6EI0l iy±
™1 " hX~ ST"

X X

r.
12Elcl

i h3e1

Thus,

d m± = 6eic1 b2y±
^ x hjfi d x

ari
Ti /
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^ ^ <y.16)

The following relationship may also be derived,

y,-
% " " =1

Ox

. *\
_ _ A1*:

- EI , ^ yl (A3.17)'

d *2 ~i-F7
Substituting (A3.15)* (A3.16) and (A3.17) in (A3.6) and simplifying

121' (1 * |) ^
"*51? i. ^ 21 w X

f E Ai 5 y±
E n xi a t2

, (A3.18)

Assuming a vibrational solution of the form y(x,y) = f(x)g(t)

where g(t) = Sin (cot + ) and CO is an eigenvalue, (A.318)

can be rewritten,

dUf 12 Vi" ( 1 ~°l) A2f +w2 ? r,Ai
d I± clx2 E £Ji

0 (A3.19)

which/
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which simplifies to.,

O^f d-2f 2
' v + ai 2 2 + bl U> £ = 0 .....(A3.20)d-x O-x

with and constant

12£hi'. ( 1 + P y;i.iiv i' ^ _ r L i

^ ' "1 - *
The boundary conditions of equation (A3.20) are found by examining

the end conditions of the walls. According to assumption (c),

the deflection and slope at the base of each wall will be zero.

f = 0 when x = 0 .....(i)

= 0 when x = 0 .•••• (ii)

At the free ends of the walls it may be assumed that the bending

moments and shear forces will be zero. Thus,

3-2f = 0 when x H .....(iii)
&x2

13r
S-4 = 0 when x = H .....(iv)
a*3

where H is the total height of the walls.

The calculation is simplified if (A3.20) is made non-dimensional.

This may be done with a substitution of the form,

f = igf a = H"2a
1

x = Ej£» b = ifVj
(A3.20)/
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(A3.20) becomes,

c^f i 2
=r- + w b' f» =0

dx»u cbc

with boundary conditions,

f' =» 0 when x' = 0

= 0 when x' = 0
dx

S2£
di2
sh
db?

when

when x = 1

A power series solution to (A3.20) may be obtained using the

method suggested by Frobenius. A detailed description of this

is given in Appendix (I4.) and it is only dealt with briefly

here. If the substitution,

f' = > . P xn+C£ ?»
n

is made in (A3.21 ) the equation becomes,

^'Pn(n + c)(n + c - 1 )(n + c - 2)(n + c-3)xn + c~^ +

1vn + c-2+ xn + c = 0a 2_.p (n + c)(n + c - 1 ) x An
n

By equating coefficients, expressions can be found from which

the coefficients of the terms in each power SBries may be

determined./
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determined. This leads to the four series below.

c = 01 fjj = 1 + &2"T + (To ao + a ) jjy + (2\>co a + a3 )^"f" +

(bV ♦ 3Wa2 + a3) - * to>23)

_3 £ 7
c = 1. f2 = x + ayp + ( bcA) + + C02a + a3)yy +

("b2^ + 3"b2C02a2 + a3) -t- • • • ■ U3,2U)

0 = 2; f3 =x2+a/12xU +yl-(W2 + a2)x6 Hr 2>Q1 x 1Qt|X

(2~b oo2a + a3)x8 ♦ - - - * (A3.25)

c = 3 *. f^ = x3 +a/20 XT' + (T><*>2 + a2)x7 +

1 ■ * 1—~"t- (2t><j£a + a3Jx^ + - * ----- A3.26)
6*Cr x 1Cr

The mode shape,

f = Af1 + Bf2 + Cf3 + Dfj^ .....(A3.27)

where A, B, C and D are arbitrary constants. Application of the

boundary conditions gives,

fit (1) xfj'i(l) . fj» (1) x fjtit (i) =0 •••••(A3.28)

If/
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If the derivatives of (A3.25) and (A3.26) are substituted in

(A3.28), an equation is obtained which is a polynomial in w«

The roots of this give the eigenvalues of equation (A3.21),

whioh are the natural frequencies of the system. Ely substituting

these in turn in equation (A3.27) and again applying the boundary

omtSfionfi, f(x) may be found in terms of one arbitrary constant.

The resulting expressions give the mode shapes of the system ,

corresponding to the various natural frequencies.

By this method, therefore, it is possible to calculate the

natural frequencies and mode shapes of shear wall buildings from

two constants, a and b. As con be seen from the formulae,

these are easily calculable functions of the buildings' dimensions

and of the properties of the construction material, a, is

dependent on the stiffness of the connecting elements, on there

separation distance and on the ratio of wall width to wall

spacing. It therefore represents the extent to which the

behaviour of each wall is influenced by the action of adjacent

walls and ultimately the extent to which the connecting elements

influence the overall behaviour of the building. The value of

b depends on the mass and stiffness of the walls themselvas^, b

would therefore be expected to be the dominant of the two

constants, a decrease in the value of which should lead to an

inorease in natural frequency, a will have a lesser effectj

a decrease in its value should bring about a decrease in natural

frequency. That the two constants do hehave in this way can be

seen from graph (A3.7).

It/
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It was found that for values of a less than 10, which covers

a wide range at buildings, the fifth and larger terras in each

series became negligible and only the first four terms In

each series were required for an accurate solution. This

results in the polynomial in co being a quadratic which is

simple to solve. For some types of building, a is greater

than 10, in which case more terms in each series are required

and the polynomial becomes more involved. More work is envisaged

to provide an itterative method by which these polynomials may

be solved with the aid of a digital computer.

The expressions given for a and b are applicable to buildings

with any number of walls of equal width. The formulation of

expressions for buildings with different wall widths is easily

carried out and is demonstrated in appendix (5).

A.3.3 COMPARISON OF CCMTINUUM THEOHI WITH MORE APPROXIMATE METHODS

As was stated previously, it has become common practice to use

simple cantilever approximations to buildings for the purposes

of calculating their natural frequencies. For a building such

as that shown in Fig (A3.1), there are two possible approximations.

One is to assume complete interaction between the walls, and to

consider the combined section to act as a cantilever. This is

the most favoured approach, as the overall dimensions of the

building are usually considered to have the major influence on

its natural frequency. Another approximation is to assume no

interaction between the walls, and to consider the stiffness of

one/
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cue wall to be a good indication of the stiffness of the

whole building* Clearly, these are limiting cases and the true

situation lies somewhere between them.

In order to compare the results obtained using the continuum

theory outlined previously with those from cantilever approxim¬

ations, a number of two wall buildings were analysed. Graphs

(A3.1) and (A3.2) show typical results.

It can be seen that the dominant parameters in the case of the

continuum theory are the actual wall widths, while in the

"combined section" cantilever approximation it is the overall

width of tne building which is important. Also, in every case

the continuum theory predicts a much lower natural frequency

than the"combined section" cantilever approximation. In fact,

the values given by the continuum theory are nearer those

appropriate to one wall in the section, given by the "no

interaction" approximation rather than the "combined section".

This suggests that the connecting effect of the beams is relatively

small and that the walls, while constrained to vibrate together,

exhibit more or less the same dynamic characteristics as they

would do if acting separately. It would appear, therefore, that

the "no interaction" case gives a better indication of what is

likely to happen in practice than the "combined section"

approximation. It tends to underestimate the total stiffness of

the building however, because it fails to take account of the

stiffness of the ores© beams.

The effect of the cross beams is shown in Graph (A3.3), which

demonstrates/



GraphA3.1Variationinnaturalfrequencywithbuildin-qheightandwallspacing.
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demonstrates that the natural frequency decreases slightly

with decreasing stiffness of the cross beams and tends to a

limit equivalent to the "no interaction" case. This means

that the natural frequency falls slightly as the distance

between the walls is increased.

A3.ll MODEL INVESTIGATION

According to the continuum theory the natural frequency of a

building tends to be affected only slightly by a variation in

its overall dimensions if the dimensions of the walls remain the

same. A simple experiment was carried out to try and verify

this. Three perspex models of twowuall structures were

constructed. The wall widths in each of them were kept the

same and the wall spacing varied. A diagram showing the

dimensions is given in Tig. (A3.7), and the test set up is shown

in Tig. (A3.8). Fixity at the base of the models, was attempted

by bolting them through 2" x 2" steel angles to a 2' 9" square,

■§" thick steel base plate. The models were excited by an

electrical vibrator driven by a power oscillator. The amplitude

of the vibration was measured by an accelerometer fixed to the

top of each model, the output of which was fed through an

oscilloscope.

The procedure adopted to find the natural frequency of each

model was to sweep through a range of frequencies with the

oscillator and note at which frequency resonance occurred. To

verify that the resonance peak found was that of the first mode,

the/
/
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the accelerometer was then moved gradually down the model

so that the mode shape could be cheoked. In practice the

resonance peaks were very sharp and the resonant frequency

could be determined to within \ Hz. Each model was constructed

15 storeys high and was subsequently shortened, one storey at a

time, so that readings appropriate to a number of building

heights could be obtained. A plane cantilever sheet of perspex

with the same outside dimensions as the medium sized model was

also tested. The results of these tests are shown in tables

(A3.1 ) and (A3.2) and Graphs (A3.il-) to (A3.6).

The dynamic modulus of elasticity of perspex was found by

testing 3/8" thick cantilever strips of different length in a

similar manner to the shear wall models. The standard formula

for a vibrating cantilever, GJ = ^ ^ J was used to
relate E toco . The results of these tests are shown in table

(A3.2) and Graph (A3,5)

A3>5 RESULTS AND CONCLUSIONS.

As can be seen from Graph (A3.A ), altering the wall spacing

appeared to have little effect on the natural frequencies of the

models. If anything the tendency was for wider spacing to lead

to lower natural frequencies as predicted by the continuum

theory. In this respect, therefore, the continuum theory gives

a better representation of what happens in practice than the

oantilever approximation. Also, the plane cantilever of perspex

was much stiffer than the shear wall models. In fact, when

allowance is made for the change in E value, evident • frpm

Graph/



Building
Height

in

No of

storeys

NATURAL FREQUENCY (Hz.) 1

Model 1
e =1*5

Model 2
e • 2*1

Model 3
e = 2*7

Cantilever

1*7 16 38*5
1*5 15 31 *0 29*0 29*5
1*2 111. 33*5 33*0 31*5 2+1 • 0

39 13 37-0 37*0 35*0
36 12 2+1 »0 2+2*0 39*0 ! 53*0 |
33 11 2|i+-0 5o*o 2+1+* 0
30 10 £0*0 53*o 1+8*0 76*0
17 9 65*0 65*o 66* 0

22* 8 78*0 80*0 86*0 110*0

21 7 98*0 100*0 98*0

TABLE A3.1

Length
of

Strip
(in)

Natural Frequency Dynamic
Young's Mod¬
ulus^ 9
x 1Crlb/inH*. Rad/s

6 110*0 691 2*29

9 57*o 358 6*2+6
12 33*0 207 6*80

12+ 29*0 182 9*70

20 21*0 131 21*0

21 19*5 122 18*0

29 15*0 96 2*9*0

1*2 1*5 80 1*2*7

1*5 2*0 110 2+-0
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A.ModelI o"2 x»3 &>Cantilever
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40modelheight.On)50

GraphA3.4.Resultsoftestsonshearwallandcantilevermodels.
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Graph (A3.5), the experimental curves for cantilever and shear

walls bear much the same relationship to one another as do the

theoretical curves for cantilever approximation and continuum

theory.

Graph (A3.5) illustrates the large variation in dynamic modulus

of elasticity of perspex measured, in the range of frequencies

used in the tests. This large variation made direct comparison

of theoretical with experimental results difficult. Two sets

of theoretical results appropriate to E values of 6 x 10"* lb/

sq in and 8 x 10^ lb/sq in were calculated as being representative

of conditions at the ends of the experimental curves. These

are shown in conjunction with the experimental points in Graph

(A3.6). Prom this graph it can be seen that the values predicted

by the continuum theory match the experimental values well.

Considering that the range of E values is from approximately

9 x 10** Ib/sq in at 29 Hz to j?*i? x 10"* lb/sq in at 100 Hz and

that most of the variation occurs from 2$ Hz to Hz, if

each point on the theoretical curve was worked out for its

correct E value, the theoretical and experimental curves would

coincide almost exactly.

One disturbing aspect, however, is the lack of agreement of the

cantilever results with those predicted by the cantilever

approximation, although the discrepancy appears worse than it is,

due to the fact that the theoretical curves were worked out for

constant E values. The explanation of this is thought to be

that the end condition of complete fixity at the base was not in

fact achieved with the models and that as a result the experimental

curves., were displaced downwards. If this were the case, then the

agreement between the experimental/
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curves In the case of the continuum theory is not as good as it

seems and the conclusion is that the continuum theory predicts

values which are too low. Whether or not this is the case could

only be established by further investigation.

The results of the experiments, therefore, were rather incon¬

clusive. Good qualitative agreement was achieved, however,

between the theoretical and the experimental results in the

case of the shear walls and the tests do show that bhe natural

frequencies of the models were not dependent on their overall

dimensions. Further tests are envisaged to try and verify the

relationship between natural frequency and wall width.

A3.6 FINAL CONCLUSIONS

E|y analysing shear wall type bull dings with the continuum

theory, the natural frequency can be obtained in terms of two

constants a and b. These are simple expressions involving

only the elementary properties of the building components. A

chart similar to Graph (A3.7) may be constructed for design

purposes. To find the natural frequency of a building, a

designer has only to evaluate a and b. The theory therefore

provides a method which is simple enough for design office use.

It is not considered that Graph (A3.7) itself should be used

for design purposes. Before the method could be used, tests

on full scale buildings would be required in conjunction with

more model tests to establish properly the validity of the

theory.

The most significant conclusion is that a simple approximation

to/



136

to a building, such as a cantilever, can lead to misleading

results when used in dynamic calculations. The natural

frequency of a building is not necessarily a function of its

overall dimensions as has often been suggested. The investigation

demonstrates that while the height is an important parameter, for

multi storey shear wall structures, the natural frequency is

dependent on the size of individual structural components. Thus,

for dynamic wind loading calculations, which are highly sensitive

to the value obtained for natural frequency, such rough approx¬

imations as have previously been made could lead to large

errors.



GraphA3.7NaturalfrequencycurvesplottedfromequationA3.28
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APPENDIX h

FOIMILATION OP 'a' CONSTMT PGR A BUILDING ¥ITH WALLS OF

UNEQUAL WIDTH.
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A three-wall building was chosen to illustrate the analysis

Let the walls be A, B and C and the spaces 1 and 2.

a, a

Applying equations(A3 .1 ) and ($3.2) to each wall,

Qj ♦ n, »r,7-
WA ^MA

d x

WB
Qj ♦ m, ♦ ♦ (r, * -JT~°

h +h2 + r2S -£5S
c. ^ X

= 0

Differentiating these gives,

c> Qa ^ d r-] WA
7TS + T3T + 3T" ' T

^>2mA
c> x2

0

Q)QB ^ "h ^ "2 ^ r1
I » I ■ + U 1 11 + 1 t " + *■■ ■ I

<3 x ox ox d>x
WB ir2 WB ^"B
T SF ' T

X

= 0

6 Qr ^">2 ^r2 wr d\
& X £>X

From/
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Erom equation (A3.2).

^QA „ ^
-rr~ - t„ + «'D A. ^~2
dx 1 +'fAA <3>t2 = 0 —..(rLL)

C> a 2y
"5x" " t1 " t2 + f = 0 A-...(vUi.)

A QP 2
IT * 'z -o (ix)

Substituting in (vii), (viii) and (ix) from (iv), v) and (vi)

and adding gives,

+ ~b\ + _ 2 A ^B }
TT T7 ^x 2 ~ 2dx -<53T 4 2 ;
CX a y? ax

ar? WU Wr hz-rr
-S3T <T + "F> + ?<aa +jsB "°dt£

... „ 5a or , a2M
Substituting for and gives,

e(ia + h + Vfj" "
iAi *

12E
I I ou e2

Lh1e1 V»2 j f#
12E

o1

h1e1
c2

h2e2
a

g * f<AAtAB + Va^ = 0

bk:t? '#l^7(1 + V + 3- a + i>
V2 v.

d2y
X

x 4|_4£1 at2B

Thus, a = 1_2
Ti

cl

ka,
(1 +1 > + rr (1>+1'e1 2 2 2
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APPENDIX 5

SOLUTION OF EQUATION (A3.2Q) BY THE METHOD OF FROBMIUS
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Equation (A3.20) is of the form,

d^f d2f 2
+ • aS-i + CO bf =0

dx dx

where a and b are constants, and <^an eigenvalue. The boundary-

conditions are,

f = 0, when x = 0

cLf
= 0, when x = 0

= 0, when x = 1
dx

d^f
—= 0, when x = 1

A power series solution may be obtained by means of the substitution,

V n + c

pnX
y\

Equation (6.21) becomes

^pn(n +cXn + e- 2)(n + jJ-3)xn+C~k + a Pn(n+c )(n*c-1 )xn+c"2
■n ^

, 2 V n + c .
+ b co Pnx = 0

y\

Writing out the first fevj terms in each series, (6.21 ) becomes,

P0(o)(c-1 )(c-2)(c-3)xc ~ ^ + p1 (c + 1)(c)(c - 1)(c - 2)xc " 3
+ /
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+ P2(c + 2)(c +1 )(c)(c m 1 )xC~2 + p^(c + 3)(c + 2)(c +1 )(c)xC ^ * • •

+ ap0(c)(c - 1)*° - 2 ♦ ap^c ♦ 1 )(o)x° - 1 + ap2(o + 2) (o + 1)x3+ • •

+ b co2pQXC + b02p^xc + ^ + bo2p2xC + 2 +. =0

Equating coefficients,

x° ~ k PQ(c)(c - 1) (c - 2) (c - 3) » 0 . . . . (A)

x° " 3 p1 ( c + 1 )(c)(c - 1 )(c - 2) = 0 . . . . (B)

Four independent solutions may therefore be obtained by letting

c = 0, 1, 2 and 3 with p^ = 0 and pQ = 0,

c — 2 a«
X s" p2 " (o + 2) (c+1 fo

pn+ 2 ~ (c+n+2 )(c+n+1 ) *n + (c+n+2 )(c+n+1 )(c+n)(c+n-1 ) pn-2
*

where a' = -a and b' = -b

The coefficients for each series are found by substituting the

appropriate value for c in equations (C) and (D).

The four series are,

c = 0 = /
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2 [j. 6c«0 = f1=1+a'~ + (b»o>32+a'2)|7 + (2b'to 2a'+a»3)^-

+ (b'2cO ^ +3b "do 2a2 +
o + • • •

3
7c + 1 « f2 - X + a'jp + (b'co 2 + a'2)^ + (2b'a>2a' + a'3)^

+(b'to ^ + 3b'co2a2 + a»k)j£ +

- x2 ♦ ^(̂b'M2 + a>2)*6 ♦

(2b'cj2a« + a'3)x6 +

e •

c = 2 = f.

• •

<= - 3 - fu - x3 + §5 ** + SIS (a2*b"2>*7 + — 1 i, *6*0U +io

(a»3 + 2a»bco2)

The solution to (13,20) is given by,

f(x) «= Af1 + Bf2 + Cf3 + Df^

where A, B, C and D are constants.

Applying the boundary conditions,

Af1(0) + Bf2(0) + Cf3(0) + Gf^(O) - 0

Af^(O) + Bf^(O) + Gfj(O) + DfjJ(O) = 0

Aq»(1 ) + Bf£*(1 ) + Cfj'(1 ) + Df£'(1) = 0

Af^»»(1 )+ Bf£"(1 )+ Cfj"(1 )+ Dfj»««(1)= 0

The/



lUk

The eigenvalues are found by setting the determinant to zero.

f, (0)

q (0)

f\x (1)

fj" (1)

(0)

f< (0)

q' (1)

f3 (o) f^ (o)
ft (o) fj» (o)

(D f£f (D

fM« (1) fjfl (1) fjJM (1)

o

the determinant becomes.

1

0

qt(i)

qn(D

q'd)

q"(D

o

o

0

0

fjl(l) f£'(l)

qtt(i) fj».(i)

- O

Thus fj"(l) f^CDxfM'Cl) = 0

The solution to this equation gives the eigenvalues of the system
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PRINCIPAL NOTATION

CX dimensionless coefficient used in energy analysis

O"-' index ®f power law profile

area of cross-section
r

A . amplitude of structural vibration

A^ amplitude of resonant frequency component of wind turbulence

B breadth of structure

p dimensianless coefficient used in energy analysis
C, Cd drag coefficient

C virtual mass coefficient
m

c.j coefficient dependent on ground roughness

c^ critical danping coefficient
c cross-correlation coefficient
s

D diameter of structure

£ logarithmic damping decrement

E modulus of elasticity

E^ danping energy per cycle
E^ reduced danping energy per cycle
E excitation energy per cycle
6

Ere reduced excitation energy per cycle
E^ kinetic energy

Eu strain energy
F force

f(z) mode shape

G gust factor

g(f) generalised/
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G(f) generalised displacement co-ordinate

I second moment of area

J(n) joint acceptance function

k ground roughness coefficient

peak factor

k^ generalised stiffness
L scale of turbulence

1 height of structure

M,m generalised mass

m mass per unit length

N normalised mode function
r

n frequency

circular frequency

Pq mean pressure at reference height
Pr modal component of forcing function
P(z ) mean pressure at height z

fp density
R(z,z'jn) (cross-correlation coefficient

(co-spectrum of wind velocities at z and z»

Sv (n) spectrum of wind velocity

S (z,z'sn) cross-spectrum of wind velocity at z and z'

Sp(n) spectrum of wind pressure
S (n) spectrum of structural deflection
y

root mean square deflection
<2Ty
V , V mean wind velocity at reference heighto' o •„

mean wind velocity at height z

Vg gradient wind velocity

V(t) /
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V(t) wind velocity

V v(t) fluctuating component of wind velocity

relative velocity between wind and a structure

v^ fluctuating component of relative velocity

Vg^. velocity of a structure

XQ aerodynamic admittance
1 mechanical admittance
m

Y(t) deflection

I mean deflection

y(t) fluctuating component of deflection

maximum deflection
max


