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SYNOPSIS »

Wind loads constitute one of the major forms of structural loading. The
calculation of the dynamic response of structures to wind loads requires
the use of specialised techniques due to the complexity of wind excited
oscillating systems. Current techniques are at an early stage of
development and the need for more research in this field is recognised,
An analytical investigation of the dynamic behaviour of structures
subjected to simulated wind loads is carried out using a conventional
spectrum analysis technique. The relative importance of parameters
relating to the wind and the structures are discussed and the insensitivity
of the spectrum analysis to variations in structural data is demonstrated.
The fact that the non-linearity of the systems and the inertia of the
structures are neglected is suggested as reason for this.

A further analytical investigation, using an energy technique developed
by the author, is described and the importance of making an allowance
for the non-linearity of the systems and of structural inertia is
demonstrated., The energy method is reduced to a dimensionless form so as
to be suitable for general application in design and its use as a
substitute for the spectrum analysis is suggested.

Appendix 1 contains the analytical development of power spectrum analysis
theory while Appendix 2 deals with detailed aspects of the energy
analysis.

Appendices 3, 4 and 5 are concerned with the development of a metﬁod for
calculating the natural frequencies and mode shapes of multi-storey

shear wall structures. This was carried out concurrently with the main
topics./



topicss Appendix 3 contains the analysis of a shear wall building

using a continuum theory adapted by the author for use in dynamic analysis.
The results predicted by the continuum theory are compared with those
ebtained from more approximate methods and a model test oarried eut to
confirm the theoretical results. The continuum theory is reduced to

a set of dimensionless design curves from which the natural frequencies

of shear wall structures may be determined after the evaluation of simple
structural parameters. Appendices L and 5 describe the solution of
equations and the evaluation of certain constants used in the shear

wall analysis,



CHAPTER 1

SHORT HISTORY OF WIND LOADING RESEARCH




The effect which wind loading has on a structure is an enigma
which has troubled engineers for centuries and which assumed
importance in the latter half of the eighteenth and beginning of
the nineteenth centuries, with the advent of structural analysis
and a more rational approach to design. The need for new types
of structure Erought about by the industrial revolution, together
with the development of the techniques of structural mechanics
and stress analysis, led to a change in emphasis of design
criteria from those of aesthetics to those of economy and
efficiency. The ocalculation of stresses became a standard part
of design procedures for engineering structures and the dimen-
sions of their ocomponents were arrived at on the basis that the
maximum stresses should not exceed certain specifiied limits,

The maximum loading condition had therefore to be known, and it
was the problem of determining this which constituted a major
difficulty in the case of wind loads,.

Although it was recognised that the wind was highly turbulent

and that it gave rise to forces which werelfar from steady, it
was considered that the worst loading condition to which a
structure would be subjected would result from the highest
velooity gust which struck it in its lifetime, and that this could
be regarded as a static phenomenon., Early investigators were
concerned with the problem of predicting the velocity of the worst
gust which would blow.over a particular structure, and the

resulting pressure which this would produce on its surface.
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The controversy as to what design wind pressure ought to be
adopted for general use went on throughout the nineteenth century
and consisted of arguments which were based more on inspired
guesswork than on the result of scientific investigation. The
matter was brought to a head after the collapse of the Tay
Railway Bridge in a gale in 1879. This bridge had been designed
to resist a maximum wind pressure of 10 1lbs./sq. ft., a figure
which was recommended by the Astronomer Royal of the day, but
which appears to have been based on recommendations made by
Smeaton in a letter to the Royal Society in 1759. Smeaton
advocated pressures of 6 1b./sq. ft. for high winds, 8-=9 1b./sq. ft.
for very high winds and 12 1b./sq. ft. for storms or tempests.

As a result of the Tay Bridge disaster and the investigation which
followed, the Board of Trade issued a regulation that a pressure
of 56 1b./sqe. ft. be used in future for the design of engineering
structures. This brought Britain into line with other countries,
where typical accepted values at the time were 55 1b./sq. ft. in
France and 50 1b./sq. ft. in the U.S.A.

One of the first scientific studies of wind pressure was made by
Baker in connection with the design and construction of the Forth
Railway Bridge in the 1880'51 Baker erected four wind pressure
gauges on an island in the River Forth near the intended site of
the bridge. These consisted of a square board of area 300 sq. ft.
and three circular boards approximately 1.5 sq.ft. in area.
Readings were taken continuously between 1883 and 1890, ana
maximum pressures recorded were 31 1b./sq.ft. for the small

boards and 19 1b./sq.ft. for the large board. Baker also con-
ducted wind tunnel experiments to obtain the drag properties of
the proposed bridge by comparing the force on a model of the

bridge with that on plane laminae of different areas.
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Perhaps the most important result from Baker's experiment was the
discovery that the average pressure over a large area is much less
than the maximum load pressure due to a gust, and that high in-
tensity gusts appeared to have a small spatial extent, This
question of the difference in the average pressure between
surfaces of different area now became one of the main problems
attracting the interest of investigators.

By the begimmning of the twentieth century, a large number of
meteorological stations had been set up all over Great Britain
and these were keeping continuous records of fhe wind velocity.

It was therefore possible for the designer to get some idea of the
naximum wind velocity which was likely to occur in the area of a
proposed structure, and the problem of estimating the maximum

gust pressure on a structure was on the way to being solved. As
civil engineering structures usually presented a large area to the
wind, however, the new problem of estimating the extent to which
this maximum pressure ought to be reduced to allow for the small
spatial extent of gusts now assumed some importance. The extent
of the interest in this issue can be.gauged from the discussion
which followed a paper on wind pressure which was presented to the
Institution of Civil Engineers in 1924 by Stanton, Stanton's
paper described an experiment to measure average wind pressures
across different areas, at a site near the National Physical
Laboratory at Teddington and another on Tower Bridge in London.

A comparison was also made between anemometer readings taken on
these sites and readings taken at the nearest meteorological
station at Kew, Stanton found that while average pressures were

lower than local pressures for the Teddington experiment, this was



7

not the case on the Tower Bridge site. On the basis of his

results Stanton made the following recommendations for design:

1. That for the purposes of assessing the maximum design velocity
for a structure, an anemometer should be erected on the site
of a proposed structure to facilitate a comparison between
the wind at the site and the wind at the nearest meteorological

.. &atation, The design wind should then be found by extra-
polating the maximum velocity recorded at the meteorological
station to the site.

2. That no reduction should be made from the maximum gust pressure
to allow for the fact that the gust may not totally envelope
the structure.

The second of these recommendations was criticised during the

discussion and it was suggested that the result obtained at Tower

Bridge was not typical of most structures and could be attributed

to peculiarities in the topography surrounding the Tower Bridge

site and to the positioning of the pressure gauges in the structure
of the bridge. The general practice at the time seems to have
been that reductions were made for average pressures over large
areas, and typical values are:=-
3007 8qefts  swawes 067D
40 8qefte oseesse 079
10 8gefte  aessss 0,89

where p is the local pressure due to the highest gust likely to

occur at the site.

The general state of knowledge at this time was not very far

advanced, however, especially so far as application to design was

concerned. One of the main shortcomings was the lack of accurate
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data on the wind itself., The Dine's pressure tube anemometer,
for instance, which was used at most meteorological stations, was
incapable of recording gusts of short duration due to its long
response time, and it was realised that the maximum gust wvelocity
recorded by this instrument was probably considerably less than
the maximum gust velocity which would actually occur at a given
site. It was also realised that the extent to which the average
pressure over a large area became reduced from the maximum local
pressure depended on the characteristics of the turbulence at the
site in question and that this depended on local topography.
Sites in open country where there were few obstructions and where
the air stream was comparatively smooth were distinguished from
those in urban areas where the intensity of turbulence was much
greater and gusting more prevalent. No quantitative data was
available, however, to help a designer to decide what allowance
ought to be made for the variation in the characteristiocs of
turbulence at different sites. The situation was, therefore,
that while the general principles of the effect of wind on
buildings were understood, the crudity of the available data was
such that large safety factors were required for design.
As the use of steel and concrete-framed buildings became more
widespread during the first half of this century, the tendency
in the building industry was to use ever lighter material for the
purpose of cladding. Concern became concentrated on wind=induced
failure of building components and not, as previously, on failure
of the whole structure due to wind loading. The emphasis in
research therefore shifted away from a consideration of the

overall stability of a structure, and investigations were begun
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on the pressure distribution over a building due to the wind.

In 1942, Bailey and Vincent published a paper entitled "Wind
Pressure on Buildings including the effect of Adjacent Buildings":“
This paper described a series of wind tunnel tests carried out

on model buildings in which pressure distributions were measured.
Graphs of pressure distribution for many building shapes were
given. Also, as previous investigators had done, they re-
commended that the maximum gust velocity recorded at meteor-
ological stations should be the criterion for design. Perhaps
the most significant result of their work, however, was their
appreciation of the effect which the internal pressure in a
building has on panel loads. Bailey and Vincent realised that
the load on a cladding panel depended on the difference in
pressure across the pasnel, and that the pressure inside the
building was as important as that outside. They also realised
that the internal pressure depended on the location of the
dominant openings in the building and their position with respect
to the direction of the wind. A large opening on the leeward
side of a building, for instance, would give rise to a negative
pressure inside which would greatly increase the load on the
windward wall as it would then be subjected to a positive pressufe
on one side and a negative one on the other, Bailey and Vincent,
therefore, illustrated that care was needed in the design of walls
and roof's of buildings and that the location and sizes of windows
and doors, as well as the wind velocity, had to be taken into
account during design.

One aspect of the wind loading problem which has not yet been

touched on so far is the variation in wind speed with height.



10
This has been found to be dependent on the temperature gradient

and ground roughness. Attempts were made in the 1930's to find
empirically, a formula which would define the variation in mean
velocity with height and early work in the field was mainly based

on the formula,

Vz = alogZ+ b
where Vz = mean velocity at height &
a, b = constants

More recent work has concentrated on the simpler "Power Law"
profile given by,
'
vZ 5 vo(% )b‘
0

where ?0 is a referenee velocity at height Zo andcn;a constant
dependent on ground roughness. The "Bower Law" formula is not
altogether satisfactory, however, especially for areas near
changes in ground roughness such as occur at city boundaries, but
its simplicity has led to its adoption in the wind loading field
and values of o< have been tabulated for a range of ground rough-
nesses.
The Code of Practice CP 3 (Ch., 5), which was published in 1952,
formilated the procedure for design to resist wind loads, and
followed more or less the lines of the Bailey and Vincent paper.
One possible shortcoming, however, was that although the variation
in wind speed with height was allowed for in the Code and higher
loadings were recommended for high buildings, the pressure co-
efficients given were based on wind tunnel tests carried out in a
uniform air stream. Later work has suggested that the neglect

of the velocity profile leads to incorrect modelling of the flow
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around buildings and to an inaccurate assessment of the pressure

coefficients, A further oriticism of the model tests is that
they were carried out on solid models. Recent work by Newberry
on full scale buildings has suggested that buildings are much more
permeable than was previously assumed and that this has a con-
siderable effect on the pressure distribution across their
surfaces., 4inother aspect of the 1952 Code, which was perhaps
rather surprising, was the adoption of the maximum one minute
mean wind speed for design purposes rather than the maximum gust
speed. This gave lower loadings than had previously been used
and may be criticised in retrospect in the light of the many
cladding failures which have occurred since the introduction of
this standard. The new Code, which was published in draft form
in 1968, reverts to the older usage of maximum gust velocities
and generally brings the 1952 Code up to date by the use of more
recent data on pressure coefficients and the introduction of a
more detailed procedure for assessing the internal pressure of
buildings. The method suggested for checking the overall
stability of a structure is to sum the cladding loads vectorially
to obtain an overturning moment.

Throughout the development of methods for assessing wind loads,
it has always been assumed that the consideration of the wind as
a static form of loading would give a good enough approximation
for design purposes, although the turbulent nature of the wind
had always been appreciated. In recent years, however, it has
been realised that slender structures, such as lattice towers or
tall buildings, are capable of responding dynamically to the

wind, and vibrations of such structures have been recorded, both
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the along wind and across wind directions, Vibrations in the
lateral direction are usually due to the phenomenon of vortex
shedding. This is a problem which is particularly prevalent
with tall chimneys and it has been the subject of a considerable
research effort at the National Physical Laboratory by Scruton
and others. Vibration due to vortex shedding may be controlled
either by designing the structure so that its natural frequency
does not correspond to the frequency of vortex shedding, or by
preventing the vortices from forming by the attashment of spoilers
to the surface of the structure which break up the air strean.
Vibration of slender structures in the along wind direction as
a result of buffeting by high frequency gusts presents a more
difficult problem from the point of view of design. It is
unlikely that such vibrations could be eliminated by suitable
design, although the possibility of limiting the amplitude by
the introduction of damping devices does exist. The feasibility
of this remedy is discussed in a later chapter, but it may be
noted here that there are many structures for which it would
probably not be an economic solution to the problem.
For the calculation of stresses in a vibrating structure, there
is needed an assessment of the amplitude of vibration, and to
obtain this a dynamic analysis must be performed. This, in
addition to being a rather complicated operation, requires a
detailed knowledge of the loading conditions and fairly precise
data on the nature of wind turbulence are therefore necessary,
Wind turbulence is a highly complex phenomenon which has to be
dealt with on a statistical basis. Investigations during the

past two decades into the spectral density of wind velocity,
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notably by Van der Hoveﬁf‘Panofsky, MoCormi&ﬁ: Davenpor? and Harris'9
have yielded promising results, however, and Davenport and Harris
in particular have evolved empirical formulae from which the
spectrum of wind turbulence at any site may be approximated if
certain elementary parameters associated with ground roughness are
known, On the basis of these formulae, Davenport has developed

a method for predicting the statistical properties of the response
of cantilever~like structures to wind turbulence, and has presented
it in a form which is suitable for general application in design.
This is the only method available at present in a simplified form,
for assessing the stability of a slender structure, which is likely
to respond dynamically to the wind.,

The present state of knowledge on the subject of wind loading of
structures, after approximately a century of research is therefore
as follows. TFairly comprehensive data is available on the static
effect of wind and on the distribution of pressure over buildings.
It is possible, as a result of this, to make fairly accurate pre-
dictions of the loads on building components such as cladding
panels, and of the general overall stability of stiff structures
which are unlikely to respond dynamically. The study of the
dynamic effects of wind, however, is still in its infancy. The
Davenport method, by which the stresses due to wind induced
vibration may be estimated, uses rather a crude mathematical model
for what is a highly complicated dynamic system. This was in-
evitable when one considers the gaps in the existing knowledge on
wind turbulence and its interaction with vibrating structures, and
also the necessity to keep the method simple enough for general

use. The answers given by it probably constitute no more than a



very rough approximation to the real situation. There is, there-
fore, a need for further research on this topic, and the in-
vestigation presented here consists of a theoretical study of the
parameters which affect a vibrating system and the relative

importance of these so far as the wind loading problem is concerned,
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GHAPTER 2

DESCRIPTION OF RELEVANT BACKGROUND WMATERTAL
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2.1 STRUCTURE OF THE WIND
Wind is the result of differential heating of the earth's surface

by the sun which causes pressure gradients to be set up in the
atmosphere. These give rise to air movement, and the velocity
of the wind, at heights above approximately 1500 ft., where it
is unaffected by the ground, is dependent on the magnitude of
these pressure gradients., This: air movement at heights large
enough to be unaffected by the ground is called the gradient
wind., HMovement of the layers of atmosphere immediately
adjacent to the ground is retarded by the friﬁtion associated
with ground roughness. The mean velocity at ground level is,
therefore, lower than the gradient wind velocity and it increases
with height, up to the gradient velocity, which is reached at
what is called the gradient height. The rate of increase in
mean velocity with height, and the gradient height itself, are
functions of the ground roughness. The mean velocity profile
is generally taken.to follow a simple power law given by,

e
Vz = ( %é) Vg where, V = mean velocity at height 2
Vg = gradient velocity
Zg = gradient height

e<'= soefficient dependent on
ground roughness

The shearing effect between the ground and the air in contact
with its surface, and between adjacent layers above the surface,
gives risc to turbulence. The intensity of turbulence is
defined as the ratio of the rm.s.of the Lime vorying

component of \sdoc\tu‘ Lo the meon veloctyand this too depends
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on the ground roughness. In urban areas, where buildings
generate large efidies, the intensity of turbulence is high,
while over a smooth surface (open grassland for instance) where
the surface drag is much less, the air stream near the ground
is much more uniform and the intensity of turbulence less.
The nature of the wind at a particular time and place, therefore,
depends on the pressure differences in the atmosphere, which
determine the gradient wind speed, and the topography and ground
roughness surrounding the site in question, which determine the
gradient height, mean velocity profile and turbulence character-
istics. The pressure differences in the atmosphere are
associated with the passage of weather systems and give rise to
variations in wind speed which occur slowly over comparatively
long periods of time, in the region of days. The fluctuations
caused by ground roughness, however, are high frequency -
variations with periods of from five minutes to fractions of a
second. The different effects caused by these two mechanisms
is clearly illustrated if a spectrum* of wind velocity for a
particular site is examined. The wind velocity spec*rum is the
breakdown of the time varying wind velocity function into ..
frequency components as in a Fourier analysis. It may be found
by converting the veloecity function into its electrical analogue
(eegs by hot wire anemometer), passing this through a range of
filters with different frequency characteristics and measuring
the root mecan square output at each frequency., The graph of
root mean square output against frequency gives the spectrum
of the signal.

* For explanation of spectrum see Appendix 1.
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Fig. (1) shows a wind velocity spectrum obtained by Van der Hoven
and it shows the maxima corresponding to the fluctuations caused
by the basic mechanisms mentioned above. It is significant that
no large fluctuation occurs with a period of between five hours
and five mintues. This is thought to be due to the fact that no
mechanism exists for generating turbulence in this frequency rangee.
As a result of this gap in the spectrum it is possible to regard
the wind as consisting of a mean velocity with turbulence super-
imposed on it. Long term variations are seen as movements of
the mean with high frequency variations regarded as fluctuations
about this mean.
In the design of structures to resist wind loads, the worst wind
conditions which will uccour in the vicinity of the structure in
its lifetime are' those which are of interest. These occur as a
result of a high mean velocity and the superimposed turbulence
caused by ground roughness. The estimation of the worst load on
the structure is essentially a prediction of the future so the
problem becomes a statistical one requiring the examination of
past records.
In Britain we are fortunate in having a large number ef meteor-
ological stations throughout the country which keep a continuous
record of the wind. The continuous records are split up into
hour long portions and hourly means taken. The worst hourly
mean on each day is recorded together with the highest gust
speed. This is taken to be a three second gust as three seconds
is the minimum response time of the equipment used. The length

of record varies from sixty years to ten years approximately.
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With such records at their disposal, the meteorological office
are in a position to meke fairly reliable predictions of the
worst hourly mean wind speed and the worst three second gust
speed which are likely to occur in a particular area for any re-
turn period. Predictions of velecities with averaging periods
other than one hour or three seconds have to be interpolated from
these results. Work on the relationship between the magnitudes
of mean wind ?elocities for different averaging periods has been
carried out by the meteorological effice, notably by Shellard,
and values for one minute, fifteen second and ten second periods,
together with the likely spatial extent of such gusts are
availebles The British Code of Practice on wind loading is
based on this 'worst gust' approach. Structures are designed
to resist the worst single gust which is likely to blow over them
in their lifetime, and this is considered as a static load. The
fact that the wind is a dynamic form of lead and may cause a
structure to respond in a dynamic way is not taken into account.
For the majority of stiff, low rise structures, this is probably
a goed enough approach to design but in the case of slender
structures which respond dynamically to the wind a check on
pessible amplitude of vibration should be made.
In a dynamic analysis, the concern is not so much with the worst
single gust to which a structure is likely to be subjected as
with the worat'sequence of gusts and the time varying properties
of the wind load on a structure must be known if the amplitude
of resulting vibrations are to be calculated. If a vibration
analysis were to become part of a standard design procedure suit-

able for incorporation into a code of practice, a mathematical/
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model of turbulence, which could be used to predict the character=-
istics of turbulence at different sites, would have to be availables
Attempts have been made to provide this and work on the topic has
been concentrated mainly on trying to provide a means of predicting
the spectrun of turbulence at any site. Notable contributions in
this field have been made by Davenport and Harris who have both
produced empirical formulae for the spectrum of horizontal wind
speed.

Davenport splits the wind velocity function at a site into its

mean and turbulent components. The turbulence is considered as

a fluctuation about zero mean and is regarded as a steady state
phenomenon dependant on the mean velocity and the ground rough-
ness. In a given mean wind speed, the roughness is considered

to generate a particular size of eddy which is dispersed to smaller
eddies, which are in turn dispersed, the energy finally being dis-
sipated as hezt. Davenport considers that the rate at which
eddies are broken down and dispersed is the same as the rate at
which new eddies are createds The proportion of large to small

to smaller eddies in a particular batch of wind is therefore always
the same. The size of an eddy, combined with the mean wind speed,
déterminea the frequency of a particular component of turbulence.
If the proportion of different sizes of eddy in the wind remains
the same, the distribution of components of turbulence with respect
to frequency will be constant and will not be a function of time.
The spectral density of wind velocity will therefore also be
constant, A site of particular roughness, should, therefore,
always yield the same wind spectrum in the same mean wind speed

and this should be similar to spectra from other sites with the/
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same roughness characteristics.

To develop this theory, Davenport examined data from a large
number of sites with different roughness and for different mean
wind speeds. By aperating on the spectra of turbulence at these
various sites, with parameters pertaining to ground roughness and
mean wind speed, he was able to fit all the spectra ont> one
curve called the reduced spectrum, and he also derived an em-
pirical formula for this curve.

It is possible, with the use of this formula and appropriate
roughness parameters, to predict the turbulence spectrum at any
site for any mean wind speedy The availability of a reduced
spectrum, therefore, enables a picture of the worst wind which

is likely to occur at a particular site to be built ups The
mean velocity of the worst hour of wind can be found from meteor-
ological office data, and an idea of the nature of the turbulence
during this hour, obtained from the reduced spectrum. This is
of course a limited amount of information. The spectrum gives
only the distribution with frequency of the various components

of turbulence in the wind and it applies only to one point in
space, It gives no indication of the spatial extent of any of
the components of turbulence or of the way in which different
components are related to one another in the time domain.

The size of a component of turbulence in relation to the size

of a structure with which it is interacting is an important
consideration so far as calculation of structural response is
concerned. Some idea of the area over which a gust sequence

is likely to be effective can be obtained if the cross-cors

relation properties of the wind with respect to frequency are/
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known. The cross-correlation between two signals is a measure
of the extent to which they are similar., Two identical signals
would have a cross—correlation coefficient of one, while com=-
pletely dissimilar signals would have a cross—correlation co=-
efficient of zero. The extent to which the wind at two points
in space is similar depends on the distance between the points
and on the frequency of the component of turbulence which is being
examined. High frequency turbulence, resulting from small
eddies, has high correlation only over small areas while low
frequency turbulence, which results from much larger eddies, is
correlated highly over larger areas.

The cross=correlation coefficient between two points in space for
a particular component of turbulence, therefore, depends on the
eddy size of the turbulence. This may be related to the more
easily measured parameters of frequency and mean wind velocity.
By analysing data so as to determine the extent to which wind
signals, recorded at points with different separation distances
were correlated, Davenport evolved an empirical formula for the
cross-correlation coefficient of wind turbulence as a function

of separation distance, frequency, and mean wind speed. This
may be used in conjunction with the turbulence spectrum to obtain
the frontal area over which particular components of turbulence
are likely to be effective,

The time varying properties of the wind function cannot be obtained
from the spectrum, which gives only the statistical properties of
the turbulence. By dealing with the basic parameters of turb-
ulence, however, it does have the great advantage of enabling the

the statistical properties of turbulence at any site at which/
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these parameters are known, to be predicted. This is an
essential requirement of any design method. Wind velocity
spectra are the only data on wind loading, available at present,
which give enough detail on the loading conditions for a dynamic
analysis to be carried out. The information which can be obtained
from such an analysis is, of course; restricted to the statistical
properties of the response of a structure to turbulence. This
is a limited amount of information but it is sufficient for the
purposes of checking the suitability of a design. By dealing
with turbulence on a statistical basis, along the lines shown by
Davenport, it is possible to reduce the computations involved in
a dynamic analysis to a manageable level and still obtain a use-
ful result.

2,2 RESPONSE OF STRUCTURES TO DYNAMIC LOADING

When a structure is loaded it deflects. Work is done on it and
it is therefore given energy in the form of strain energy. This
is potential energy which is returned to the loading mechanism if
the load is subsequently released. The speed with which the
structure can be returned to its original position depends on the
acceleration which the force due to its stiffness can impose on
the mass of the structure. If the load is withdrawn faster than
the recovery speed of the structure, the strain energy will not
be returned to the forcing mechanism and will remain in the
structure in the form of kinetic energy. In the absence of a
dissipative mechanism this energy is not destroyed and through
inertia is reconverted into strain energy by the deflection of

the structure in the reverse direction to the original dis-
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placements An oscillatory system is therefore set up in which
‘efergy is continuously being converted and re-converted from the
potential to the kinetic form. The frequency of the resulting
motion depends on the mass and the stiffness of the structure
and-is therefore one of its fundamental properties. It is
called the natural frequency.

If a structure is forced by a load varying sinusoidally at its
‘natural frequency, energy is added at each cycle and the amp=
1itude of vibration increases with each cycle. In the absence
of ‘any dissipative forces, such a system is theoretically capable
of reaching an infinite amplitude. In practice, dissipative
forces are always present and a steady state equilibrium is
~redched when the amplitude is such that the energy being supplied
to the structure per cycle is exactly balanced by the energy
‘being dissipated by damping forces. The amplitude reached by

‘& structure which is being forced to vibrate at its natural
¥requency is therefore dependent on the amount of damping present.
'If a structure is subjected to a sinusoidally varying load with
& frequency which is lower than its natural frequency the rate of
‘%hloading in each cycle is not so great that the strain energy
‘dannot be returned to the forcing mechanism. Energy may there-
‘fore be continuously added to and subtracted from the system and
Mo accumulation of energy occurs. The amplitude of the de-
?aection is dependent on the relationship between the stiffness
of the structure and the load, as in a static system. If a
structure is forced at a frequency above its natural frequency,

the inertia forces become so great that the amplitude of
vibration is minimal,
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It is possible to distinguish between two types of system

which undergo time varying loading conditions therefore.

One is the truly dynamic system where the structure is ex-
cited at its natural frequency, inertia forces play a sig-
nificant role and the ultimate deflection depends on the
dampinge The other is a quasi-stetic system where, although
the load is a function of time, the frequencies are low
enough to meke inertia forces insignificant resulting in the
deflection being controlled by the stiffness of the structure.
The deflection at any instant is directly related to the load
at that instant.

A1l vibrating systems may be described in roughly the same
way mathematically., The basic equation may be derived by
considering the forced vibration of a simple spring-mass-

dashpot system.

F k
e ™ ____nmvﬁ\/\Jiﬁ___

D 2 S AR S

G O R R S PR

F= P Cos wt

Fig, 2
Single degree of freedom system
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The force exerted by the spring is proportional to the dis-
placement, and by the dashpot to the velocity of the motione

The equation of motion is, therefore,

2
nsE + o 41z = PCoswt (241)
2
at
The complete solution to this equation consists of a com=
plementary function, which describes the free vibration of
the starting transient, and the particular integral which re-
lates to the steady state forced vibration. In most mechanical
vibration problems it is the steady state vibration which is

of interest and the complementary function is usually neglected.

The particular integral solution to equation (241) is,

& P Cos(wt 7) (2.2)
&k@- mw ) + e w]
ten @ e
(kg ~ mw®)
The substitution W, = %? can be made where - is the

natural frequency of the system in which case,
P Cos(wt - ¢)

qlo-D % e F

(o)

If x

B X
ok E; is the displacement for a static force P, and

X dis the amplitude of the steady forced vibration
(x = X Cos(wt - ) ) the magnification due to the load being
applied dynamically is given by,

M = L = 1 4

SIS M2 =
* o). @]
o]

S



27

MQ = magnification factor or frequency response function

A™s

Fig. 3 Frequency response function for single degree
of freedom system,
The graph shows Mg plotted against frequency and it illustrates
the fundamental properties of a single degree of freedom, forced
vibration system which are:-
1) That a high magnification ocours at a particular
frequency iy which depends on the ratio of the mass
to the stiffness of the structure.
2) That at frequenciss below , ‘the deflection of the
system is quasi-static, i.e., there is a distinct re-

lationship between deflection and force at any

instant. P Cos(wt - )
X ]
kg
3) That the amplitude of the vibration at the natural
frequency @, depends on the damping value. %@ub)=

ks

cw
Thus, the qualitative assessment of the behaviour of a

vibrating structure, stated previously, can be completely/
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described mathematically by the magnification factor.
Equation (2.1) describes the motion of a single degree of
freedom vibration system and one displacement variable is
sufficient for this purpose. A simple approximation to a
tall building is a cantilever which is a multi-degree of
freedom system. If vibration in one plane only is considered
the motion of any part may be defined by the co-ordinate y
(see fige 4) which is a function of x and t. Both the
natural frequency of the structure and the shape into which
it deflects must be determined before the motion may be com=-

pletely described.

Fige L

The strain energy at the point of maximum deflection depends
on the shape into which the structure deflects, and the kinetic
energy at the mean position on the natural frequency, so that
a unigue relationship between deflection shape and natural
frequency, would be expected.

The following equation may be derived to describe the free

vibration of a cantilever.

4 2
Exg-mg—t%=o (243)
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where:- E = Young's Modulus, I = Second Moment of Area of

section, M « generalised mass  y(x, t) may be expressed as a
product of a shape vector f(x) and a time dependant function
g(t)e If a vibrational solution is assumed as in the single
degree of freedom case, g(t) will be a trigonometric function

and the substitution g(t) = G, sin(wrt) may be made where @

is the natural frequency of the systems The equabion then
becomes,

L
ET ﬁ(x) - Mnfj #(x) = O (2.4)

The solution to this equation contains five unknowns, four

constants of integration and . As there are only four

boundary conditions a complete solution is impossible and
y(x, t) can only be found in terms of an arbitrary constant.

The general solution to equation (2.3) is,

yix, t) = g(t) £(x)
where,

£(x) = A Sinkx + B Cos AX + C Sinh N\ % + D Gosh Nx.
3

)\ £} E.a.wx.
7 P EI
The eigenvalues, (w1, W W) wr) may be found by applying
the boundary conditions to equation (2.4). Then, for a

cantilever,
fr(x) = Fr [Cosh .er - Cos )\rx - kr(S:'uh .7\rx - Sin)\rx):l

Cos>\r1 + Cosh’ }\rl

where, k e o
Sin)qu + Sirh )\rl

r = 1, 2, 3, sees M
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Fr is an arbitrary constant. The modes are usually

1 ;
v $ '
normalised! such that fo fi(x)i & Ay A value for Fr is

found from this equation.
The multi degree of freedom system, therefore, has meny natural
frequencies and for each natural frequency there is a specific
shape of deflection called the mode shape. This unique re-
lationship between «, and fr(x) results from the necessity
for each deflected shape to be related to a specific frequency
so that the maximum kinetic and strain energies of vibration
are equals It is possible to regard the vibration of the
structure in each mode as a single degree of freedom system
and the total motion of the structure as a superposition of
these uncoupled single degree of freedom motions,
The forced vibration of a cantilever under the action of a
distributed harmonic load P(x, t) may be dealt with by this
'normal mode' approach. If P(x, t) =zr pr(t) f‘r(x)

and y(x, t) =3, &.(t) £ (x)

the equation of motion (2. 3) becomes,
d S
w &0 1 ¢ iy ———1‘ £(x) =), o (t) £.(x)  (2.5)

This may be written as an infinite set of uncoupled- equations,

L. 2
g (t) 2% + MZE  =p (0)2(x)
axt at?

4 2
BL g (N £.(x) + uEE £ (x) = p (+) £ (x)
dt r r r
dzgr B ol 1
—;;'2- o X g.(t) = ¢ Pr(t)
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Assuming viscous damping of magnitude ¢ g; (t) this becomes,

2
dgr [¢] dg
w5 9B L Bk 1
o B A RACOIEE $XO ()

Equation (2.6) has the same solution as equation (2.1). The
motion of a multi-degree of freedom system such as a cantilever

is therefore given by,
y(x, 8) =2, £.(x) g (t) (2.7)
pr(t)Cos.@Jt)

2 2 > 1
ila-% @
w.
r

where gr(t) =

The response characteristics of a multi degree of freedom
system are evident if :Elgr(t) is plotted against frequency

as in Fig(5).

bl k)

Fig. 5 Frequency response function for multi degree of

(9]

freedom system
As with the single degree of freedom case the height of the

resonance peaks depends on the value of c. Excitation at
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frequencies above about 5 Hz is very small in the case of
wind loading and if the second mode natural frequencies for
cantilever structures are quite high (>>10 Hz), it
is usual to consider the first mode only in wind load cal-
culations.

Summary of response characteristics of slender structures

For the purposes of assessing the effeot of wind loading it

is possible to split the response of a slender structure into

three parts:-

1) The static response which results from the static effect
of the mean wind., The magnitude of this is proportional
to the stiffness of the structure.

2) The quasi-static response. This results from all the
time varying loads including harmonic loads, which do not
have the same frequency as the natural frequency of the
structure. The deflection at any instant is proportional
to the load at that instant and depends on the stiffness
of the structure.

3) The dynamic response. This is periodic and occurs at the
natural frequency of the structure. It is due to the
component of the load which occurs at the natural frequency
and its magnitude, once steady state conditions have been
reached, depends on the amount of damping in the structure.

Fig. (6) shows a record of the deflection of a 30 ft. high

lattice tower (natural frequency 3.3 Hz) with a simultaneous

wind recording. The trace is one of many results of an ex-
periment to measure the response of a slender structure to the

wind, which was carried out at Edinburgh University by/
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M.J. Daresu(see ref. 6) and it illustrates the three types

of response mentioned above. The graph shows the mean wind,
mean deflection, the good correlation between the load vari-
ations and the quasi-static response, ard the dynamic response

superimposed on this.

. 2.3 BESIGH METHODS

The object of a design method is to predict the worst loading
condition which will ocour during the lifetime of a structure
and determine the stresses which will result from this. As
wind loading is a natural phenomenon statistical techniques
have to be applied to existing records in order to achieve
this,

There are two approaches to the problem. One is to apply
extreme value statistics to existing wind records in order
to define the worst single gust to which a structure is
likely to be subjected in its lifetime. This is then used
as a static load and an accurate conventional analysis per-
formed to evaluate deflections and stresses. The advantage
of this method, which has been adopted for the new Code of
Practice, is that it uses existing techniques of static an-
alysis which are known to be reliable. It suffers from the
disadvantage, however, that it deals solely with the static
and quasi-static components of the response of a structure
and makes no allowance for any additional deflection which
might occur due to resonance. Its validity, therefore,
depends on whether or not a particular structure undergoes
its state of maximum distress as a result of the action of

one single gust or the combined effect of a sequence of gusts.
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The second approach to the wind loading problem is to post-
pone the use of extreme value statistics until after the
analysis of the structural response has been carried out.

The overall behaviour of a structure in :'esponse to all
components of turbulence in the worst average conditions (1.ee
the worst hour of wind) is first assessed. Once the
characteristics of the worst average deflection are known,
extreme value statistics are then used to predict the most
likely maximum deflection. The use of this method eliminetes
the need to specify exactly the worst gust or seguence of
gusts to which a structure is likely to be subjected.

4L general assessment of the response of a structure to turb-
ulence however, inevitably involves some sort of dynamic
analysis. The second of the two methods, therefore, which
must be able to deal with static, quasi-static and dynamic
components of deflection, uses techniques of analysis which
are comparatively new so far as wind loading problems are
concerned and their reliability is still not proven.

The spectral method of Davenport.is based on the second of
these two approaches. It is the only method available at
present which takes account of resonant vibration, and which
is presented in a form which could be used by a design
engineer. A brief 6utline of the method, which is fully de=
soribed in references (9), (10) and (14) will be given here.
Davenport realised that a rigorous dynamic analysis could not
be contemplated as part of a standard design procedure and has

attempted to formulate a simple method for determining the/
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ratio of maximum dynamic to static deflection due to wind.

This is then used in conjunction with a conventional static
analysis to get the maximum stresses due to the combined
effects of static and dynamic loading. The method is pre-
sented in the form of a set of design curves from which the
required ratios of dynamic to stati: loading (called 'gust
factors') may be derived.

Davenport works from the worst mean wind condition whieh is
likely to occur in the lifetime of a structure. In Britain,
the available data limits this to the worst hourly mean. He
therefore deals with the worst hour of wind which a structure
will be called upon to withstand. The problem is to asaess
the additional deflection which will oocur due to turbulence

in this hour. Davenport aplit the wind velocity function into
its mean and turbulent components, The turbulence is regarded
as a fluctuation about zero mean,.

V(t) = V+ v(t) where V = mean wind speed

v(t)

The deflection of the structure is also regarded as the sum of

turbulence comp.

mean and dynamic components.

Y(t) = Y+ y(t) where Y = mean deflection

y(t) dynamic component
of deflection

It is the most probable maximum deflection rather than the
time varying properties of the deflection which are required

and Davenport derives this from the equation,

=Y+ ko where Y
max

St ¥ most probable

maximum deflection
¥

mean deflection
(worst hour)
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where @ = TreMa.Se
Y geflection
during worst
hour.
k. = a statistical
coeffioient
- h —-—
= = . 2.8
Y o= Y1+ ) = T (2.8)
G = 1+'k;?'qq

where G is the gust factor.
To evaluate the gust factor it is necessary to find values
for k. and %‘f. k. is called the 'peak factor' by Davenport

and is given by the equation,
: . o 5
k., = ,12 In.vT + ﬂf57ﬁfgiih

where, N = %o T = averaging period of V

2K
The information required about the time varying part of the
response (i.es the combined quasi-static and dynamic com=-
ponents) is its root mean square or variance., This may be
obtained from the spectrum of response, which, as is explained
in appendix (1), is a measure of the frequency distribution of
the various components of the response.

Ozy i Sy(i) AR (2.9)

(=]

The distribution of the load components with respect to fre-
quency is given by the wind velocity spectrum which may be

obtained for any site and any mean wind speed from Davenport's/

* Derivation of k. given in referenez (11).
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empirical formula. The response characteristics of a structure
are given as a function of frequency by the frequency response
function. The response spectrum may therefore be evaluated

from these functions as in equation (2.10).

2 2
_s%(_g) = 4% X sir:) (2410)
vV
where,
Sy(n) = deflection spectrum
X, SE 'aerodynamic admittance' - this function
is a measure of the freguency distribution
of the drag properties of the structure.
The following formula for it is suggested by
Davenport.
2
2 R‘ 2
X, -—-0(6) = § ne(E)
5 (0)
where,
CD = drag coefficient
Gm = virtual mass coefficient
= 2 '
5=%

D = diameter of object

X = ‘'mechanical admittance' = this is the square
of the frequency response function.

Sv(n) = The wind velocity spectrum, given by,
s(n) = _Lkix®
4
2 xf8
n(1 + X )

000
X = 400 nO k= surface c.l.!'as coc.{:_

——

Equation (2.,10) is applicable to a single degree of freedom
structure which occupies a point in space. It is therefore

not a very practical equation but may be used as an approx=
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imation for such structures as floodlighting towers,lwhere

most of the drag is concentrated in one place, and only the
motion in the first mode is of importance. For more complex
structures such as tall buildings a more sophisticated equation
is required. As only the first mode of vibration is considered
significant for most wind loading problems the single degree of
freedom 'mechanical admittance' is considered adequate for use
with multi degree of freedom structures. A more complicated
'aerodynamic admittance' is used however to allow for the
variation in the spatial extent of gusts with frequency and

the size of the various components of turbulence in relation

to the sige of the structure under consideration. The de-
rivation of this function is given in Chapter 3 and it will

only be quoted here. For multi degree of freedom structures,

I

SyCyom) X2, v(n) . - (o)

V
2 | 4 (uC | x-x'In £l W i
—_— exp --'—T—-—-— - ff()() lf(xjdx dx .
N.-D ) e (2.12) o0

= 4
N e = f ) dx
o

n

£.(x)

C,

mode shape

constant dependant on ground roughness

The Davenport method, therefore, provides a means of assessing
the behaviour of a structure in the wind, which takes all com=-
ponents of deflection into account. The use of spectral ‘
analysis enables this to be done from‘the very limited data

which are available on the characteristics of wind tur-
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bulence. The mathematical model used to describe a vibrating
system, however, is highly simplifiei 80 as to be applicable
to a wide range of structures and the method is probably only
capable of giving a rough indication of the possible extent

of the dynamic response of any particular structure. It

cannot be considered as a rigorous design method.

2.4 APPRATISAL OF THE PRESENT SITUATION

0f the two approaches to the wind loading problem outlined in
the preceding seotion, the one which takes account of all
mechanisms of deflection must be considered fundamentally the
better. The ultimate solution is a reliable design method
which takes dynamic response into account and which could

be applied to all structures as a standard procedure. This
is not feasible at present due to lack of data on wind tur-
bulence and to the difficulty of reducing the dynamic part of
the analysis to a simple procedure capable of general
applications The current Code of Practice on wind loading
therefore mekes allowance for only the static and quasi-static
components of deflection. There is no doubt, however, that
some structures do respond dynamicelly to wind loads and that
in certain cases the amplitude of resonant vibration of a
structure constitutes a significant part of its total de-
flections Such structures should be subjected to some form
of dynamic analysis at the design stage if their subsequent
perfofmance is not to be unsatisfactory or even dangerous.
The rigorous dynamic analysis of structures is without the

scope of general civil engineering practice and there is,/
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in the absence of a general design method, a need for a sim-

plified procedure for predicting the response of slender

structures to dynamic wind loads., It is felt that the pro-
vision of the following might fulfil this requirement:-

1. A simple test which would help a designer to deécide whether
a structure was likely to respond dynamically tc wind tur-
bulence or not.s Structures which were found to be safe
against a vibratéry response could then be analysed for
static and quasi-static loads only, as prescribed by the
Code of Practice.

2. A procedure for assessing the additional deflection which
might occur in a structure due to resonant vibration.
This would be carried out in conjunction with the static
and quasi-static analysis and would only be applied to
structures which were thought to be liable to have a
dynamic response.

Bef'ore either of these flacilities can be provided much more

will have to be known about the parameters upon which the be=-

haviour of wind excited vibrating systems depend. Much of
this information will ultimately have to be obtained exper=
imentally but the present state of knowledge is such that it
is diffiocult to know along which lines an experimental in-
vestigation should proceed. The scope of an experiment is
bound to be limited and once the general pattern has been set
it is often difficult to alter.

It was felt that at this stage much useful information could

be obtained from a theoretical study, provided its limitations

were recognised, and it was decided to try and simulate the/
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process of wind excited oscillation of structures on a digital
computers It was thought that if a suitable mathematical model
were chosen it would be possible to vary important parameters over
wide ranges and also to maintain great flexibility. The object
was to gain an insight into the relative importance of the wvarious
parameters in the wind excited system in the hope that this would
provide an indication of the lines along which any further ex-

perimental investigation should proceed.
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CHAPTER 3

INVESTIGATION OF THE MAIN PARAMETERS IN WIND EXCITED
OSCILLATION SYSTEMS USING SPECTRAL ANALYSIS
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3,1  INTRODUCTION.

The preliminary investigation consisted ef an attempt to
simulate the behaviour of a wind driven vibrating system on a
digital cemputer. The ebject was to study the effects of
variations in the system parameters on the predicted overall
behaviour of a slender structure vibrating in response to wind
turbulence. Of particular interest was the ratio of the dynamic
to the quasi-static components of response. This was considered
to be a good indication of the response characteristics of a
structure to wind loads and it was also regarded as a measure of
the difficulty which the structure is likely to present so far
as wind loading calculations are concerned because it is the
calculation of the dynamic part of the response which presents
the greatest difficulty to the designer of a structure.

Most of the data currently available on the characteristies of
wind turbulence are in the form of wind spectra. Any mathematical
simulation of a wind driven vibrating system must therefore be
based on a mathematical model of the wind which can be built up
from the information obtainable from a spectrum. The investi-
gator is therefore forced to assume that the wind velocity
function is a stochastic variable with constant statistical
properties. If the deflection function of the structure is

also assumed/



also assumed to be stochastic a deflection spectrum may be found
from which statistical information concerning the deflection of
the structure may be obtained. The area under the deflection
spectrum gives the root mean square deflection and the contri-
bution of any component of deflection with a specific bandwidth
may also be obtained. It is therefore possible to calculate the
ratio of the resonant component of response to the total broad
band response and hence find the extent to which the dynamic
part of the response of the structure contributes to the total
time varying response.
Spectrum analysis was therefore adopted as the best technique
for conducting the preliminary investigation. The Davenport
reduced spectrum was used as the mathematical model of the wind
and transfer functions similar to those formulated by Davenport
were derived and used to convert from the wind velocity spectrum
to the pressure and deflection spectra of the various structures
analyseds The quasi-static component of the deflection of each
structure was found by direct area measurement of the spectrum,
as suggested by Davenport. The area of the resonance peak was
found from the formula,
R
Area of peak = .ignordlnate of the force spectrum at
the resonant frequency

where 5 = the logarithmic damping decrement
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3.2 DEVECOPLINT OF TRGISVER VFULCLTUHS

Aeredynamic admittance.

A rectangular structure was assumed

“V(z) = mean wind velecity
— 5v(z) = fluctuatien in velecity
P = air density
B C = ceefficient of drag
V S x P(z) = mean pressure :
-—-L’ 5-p(z) = fluctuation in pressure
e
Fig. 7

P(z2) = 1/z§cv2(z)
If the fluctuation in pressure is considered te occﬁr abcut
?'(z) , then,
§p(z,t)
§p(z,t)

® cv(z) Sv(z,t)
z ?vz("‘) [20 vvzzt] yee(361)

A "normal mede' analysis was msed to evaluate the structural

response. This necessitated the splitting »f the pressure
function into medal cempcnents. The pressure over the whole
structure at any time is a function ef 2 and t. It may be
subdivided into medal compenents and represented as a series:-
P(z,%) = py(8)£,(2) + p()2,(2) + wovu p ()£ (2) . ,...(3.2)
where fr(z) are the nirmal medes of the structure.
The cemponents pr(t) may be evaluated as follows. If (3.2)
is multiplied by fr(z) and integrated with respect to z from
0 to { (where .l is the height ef the structure), it becomes: -

¢ L
LP(z,t)fr(z)h= j:pﬁ(t)a(z)frcz)az +-ﬁr(t>fr2<z)az \eavadl3sa)
Due/ 2
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Due te the erthegenal properties of the mode functions,
£
jfl(z)fm(z)dz
(o]
T

A
/P(Z,t)fr(z)dz = pr(t)f f'rz(z)dz = p(rt-.)Nr
& )

p.(t) =-§ﬁ(z,t)fr(z)dz ees(3e)
(o]

O where 1 # m

i

= N " 1 = mn

The load component causing excitatien in each mode is given
by (3.4). The mean square of each load compenent with respect

to time is given by,

_ L
$p2(t) = 52 }P(z,t)éP(z',t)fr(z)j:fr(z')dzaz' e++(3.5)
r Volo

where the bar denotes a time average. The mean square of the

fluctuating part of the lead only is given by,
.E- ;

§p.2= % ) J_P(z',t)fr(Z)fr(z')dzdz' oe+(346)

(-]
= y)
SPM= — EL vafacse S
Ne [ EEVHE Ve

H—Iz- ?V(ZQE?_C -\-ff';-)ﬂ f.f (2)dzdz" .

1 1-1 (J 'E g
_ 43 Sicvo] [ f Ve vE) Sv, Sv, f@f2)dz gz
N-:- o“o Vé V: : .

where V. is the mean velocity at a reference height.

£
i T '
R v:z-ﬂ;f )‘T(o- 2 B L EAOLACDLELIRIRER)

If the forced pr(t) is assumed to be a stationary random
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function of time the above equation may be written in terms

of spectra as followi -

(n) = L" Fo Jj@ nS. (z,2'n) £.(2)f,(2")dzdz’ ee(3.8)

where Svfz,z’;n) is the cross spectrum of the velocity function

at z and z'.

nS (z,2';n) = nS . (n).R(z,2';n) eee(3:9)
Yo

 where Sv (n) is the spectrum of velocity fluctuation at the
o

reference point on the structure and R(z,z';n) the normalised

cross spectral de.r\%ltt{ function.

S -2.P°'| Z
n R_(“) oot o ns‘ﬂn)j/’ V& V¢ )R(Z,zjn)f('z.')ffz.)dz.dz

(2.10)

. -2 . :
n Sf(n) _ [ 2Rk J(n) n SvoCn). . CA T

I

002 s ' :
where Jo(n) f / VE) ¥z R(z,z',n) f@fEDdzdz’ (».12)
A :

T

and is called the !'joint acceptance function'.

the spectrum of the r th modal. load compcnent,

n.SEr(n)

nSvo (n) = the spectrum of wind velecity at a reference peint

on the structure

4 Vx?
(1 + 23
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Vo

k

ground roughness coefficient.

the shape of the wind velscity spectrum can be seen in Fig.1Q.

The !'joint acceptance' is a frequency dependent function which
converts the velecity speotrum into any of the modal pressure
spectra. The variation with frequency is due to different
degrees of correlatien between different frequensy components of
the load, The functien also makes allowance for variations in
the characteristics of turbulence at different sites. This
property may be seen if the eonstituents of the function are
examined. The  fonction R(z,z';n) has

been studied by Davenport who has suggested the following

formula.
e Azn
R(Z’Z' ;n) = e c vO l.l(3t1}+)
where k, = a coefficient dependent on ground roughness
n = frequency
bz = |z = z"
The velecity ratios Eéi). and 1(2_'1 may be found from the pewer
0., Vo
law equation V() =/z_ | where oc’is a coefficient dependent
Vo Z¢g
on ground roughness. Thus, both the RCz,2'5n)

fonetior: and the velocity ratio censtituents of the 'joint
acceptance' function are dependent on ground roughness
coefficients.

Mechanical
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It was assumed that there would be no interaction between
the modes of vibration and that each mode could be
considered as a single degree of freedom system. The motion
of the structure in each mode is therefore described by

the equation: -

L% -
my + o F 4k y=p (t) ees(3.15)

The 'particular integral' solution to this equation gives the

response characteristics of the mode as a function of frequency.

g = pr(t) £r(z)
r AR n 2t 2Rnop \2 1
r -(= 2
EL ( nr) }-’-( kr ) _l / 000(3.16)
This gives the well known frequency response function,
-1
| 2 /2
s {1-(%)2 & (chr ¥
-,  « k
e
£
where, k = generalised stiffness = BI ffrz @z)
o
c. = ‘generalised damping ceefficient
14
s 2
m, = generalised mass =f?Afr (&z)
(-]

The mechanical admittance is the square of the frequency

response function.

e [f-@T T e

.0 = |1 ]® s, ) (o (3.18)
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3.3 COMPUTER ANALYSIS.®

Table (1) shews the preperties of the structures used in
the spectral analysis. They were selected te give a
range of natural frequency and mass per unit length. As
the object of the analysis was to investigate the
relationship between the resonant and quasi-static
components of deflection for each structure it was felt
that a range of drag properties was not required. The
flow diagram for the computer program is shown in fig.(9)
along with the relevant functions for each step in the
calculation.

Except where specifically mentioned the input spectrum
was kept the same for all structures. The input spectrum
parameters were chosen to be relevant to a high wind

condition in a city centre. They were,

v, = 100 ft/sec
X = 0.05

o<’ = 0.41

L = 4000 £t
B = 42 1b/£t°

344  RESULTS

The deflection spectra obtained from the analysis are

shown in : graphical form. As the mode functions
were normalised with respect to an arbitrary constant it
was not possible to ebtain the actual magnitudes of the

deflections/

¥ See over
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The computer simulation was carried out in order that a
comparison could be made between the relative magnitudes of the
resonant to quasi-static ratios of response of the structures
concerned. As this could be obtained from the ratio of the areas
under the relevant parts of the response spectra, which depended on the
shapes of the spectra only, it was considered unnecessary to ensure
that the magnitudes of the spectra were correct. To simplify the
analysis, therefore, the constant k., which does not affect the
- shape of a response spectrum, was omitted from equation (3.18),

and the response spectra found from the equation,

S, = X[ S CR)




Type of Struoture'

B I m a1 E noy
in :th 1b/in | £t 1‘t:|f/in2 Hz
Tattice Tower T1 [ 120 30¢2 11458 30 30 x 106 0106
" n T2} 120 2L55 +0 2436 30 | 30x 106 0+ 76
" " 1 120 121420 |2+36 30 30 x 106 171
" v gl 92 121420 |0e72 30 |30=x 106 958
n n 751 120 07 x 106 630 {100 30 x 106 072
n n 76| 120 02 x 106 Le0O {200 30 x 106 012
" "o T7§ 120 05 x 106 Le60 | 200 30 x 106 018
6 6
n " 18§ 120 | 740 x 10°§3+51 {200 { 30 x 10 1.76
n! n 79! 120 82 x 106 3+51 | 200 30 x 106 251
Shéar Wall 6 - 6
building Bl| 120 155 x 10°]220 100 L x 10 0+65
1 0 6
. B2] 120 155 x 10" L5 200 L x 10 011
Concrete () 6 £
Chimeny B3 120 155 x 107} 10 200 L x 10 1476
TABLE 1 Properties of structures used in spectrum

analysis.,
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deflections of the structures from the response spectra

shown in graphs 1 to 12. Neither was it possible to make
direct comparisons between the spectra, The ratio of the
resonant to the quasi-static deflection for each structure was,
nhowever, given by the ratio of the area under the resonance
peak to the area under the background turbulence part of eaeh
spectrums Graph 13 is a chart which shows the relationship
between this ratio and the natural frequency for each structure.
The effects of the various system parameters on the dynamic
behaviour of the structures in the wind may be dsduced from
this chart.,

Structural Parameters

1. Natural Frequency

Graph 13 shows that the ratio of resonant to quasi-static
deflection is highly sensitive to variations in the natural
frequency parameter and that the predicted dynamic component
of response increases as the natural frequency decreases.
This effect may be attributed almost entirely to the shape of
the excitation spectrum which has a peak at around 0.05Hz

and diminishes rapidly with rising frequency.

The predicted ratio for structures with a natural frequency
around 1Hz (typical of most slender structures) suggests

that for such structures the resonant component of deflection
may be of the same erder or larger than the quasi-static
component,

Ess iDanping

As would be expected, the predicted dynamic response of the

structures/
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structures was very much dependant on the degree of damping.
For values of 1% critical damping or lower, which is typical
of most slender structures, the analysis predicted that the
dynamic component of response constitutes a significant prop-
ortion of the overall time varying response for all the structures
analysed.

3. Height of Structure.

For structures with similar natural frequencies a slight
variation in the dynamic/quasi-static ratio of response was
observed with variation in the height of structure. Smaller
structures tended to have & higher component of response at
the resonant frequency. The effect was due to the cross-
correlation coefficient function which allews for the fact
that the higher frequency gusts have greater influence on
smaller structures. The effect of this function was very
small, however, compared to that of the previous parameters.

L. Mass and Stiffness of Structure.

The mass and stiffness of the structures enly affected the
results in so far as their ratio determined the natural
frequency of each structure. This was due to the fact that

the frequency response function was taken to represent fully

the dyramic characteristics of each structure. The predicted
response of structures as different as latticetowers and tall
buildings were therefore almost identical provided their natural
frequencies and damping coefficients were the same.

Wind Parameters.-

Two wind parameters appear in the input spectrum. These are

v,/
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V, the mean velocity, and k, the ground roughness coefficient.
Both of these parameters affect the overall size of the spectrum
without affecting its shape. This has the effect of increasing
the size of the time varying part of the reponse in relation to
the mean response but has no effect on the dynamic to quasi-
gtatic ratio of response."'

The V parameter is one of the constituants of the x
variable in the input spectrum, however, and so affects the
position of the spectral peak in the frequency domain., Vardations
in V therefore have an effect on the dynamic/quasi-static ratio of
response of each structure similar to that of a variation in
the natural frequency parameter. V is consequently one of the
most important parameters in the system.

3.5 DISCUSSION OF RESULTS

Although the preliminary analysis cannot be considered comprehensive
it is possible to draw a number of tentative conclusions from the
resﬁlts. These may be divided into two categories. The first concerns
the pin-pointing of important parameters which significantly effect

the wind driven vibrating system and which will have to be known
accurately if an accurate prediction of its behaviour is to be made,
The second concerns the ability of the transfer functions in the
spectrum to represent faithfully the behaviour of the system and of

the spectrum method as a whole to predict its response.

__Ir_rgn_or'bant. Parameters

It is evident from the large variation in the results with
variation in the natural frequency parameter that the position

of the natural frequency of the structure with respect to
the/
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the high frequency t8il in the excitation spectrum is of

great importance. It follows from this that it is alse
essential for the profile of this steeply sloping part of

the spectrum to be correct. A glance at Davenport's own

graph showing the experimental curves superimposed on the
theoretical spectrum curve (reproduced in fig 10) illustrates
the magnitude of the variation which is possible between

theory and practice in this part of the spectrum. Some
experimental curves are well above the theoretical curve in
this region while others are below it.

At the 0.01 wave numbe;t for instance, the value of the reduced
spectrum according to the theoretical curve is 0.8 whereas the
lewest and highest measured values, corresponding to data

from Brookhaven and Sale, are 0.4 and 0.95 respectively. The
use of the theoretical value fbr the Brookhaven site could
therefore lead to an estimation of the dynamic component of
respoense of a structure which was in error by a factor of two.
If a mean wind speed of 100 ft/sec. were assumed the wave
number used in this illustration weuld correspond to a frequency
of 0.28 H . This is probably lower than the natural frequency
of most structures and, as can be seen from fig 10, the
discrepancy between theoretical and trus values of the reduced
spectra is likely to be larger at higher frequencies.

This result suggest, that the reduced spectrum formula in its
present form may not be sophisticated eneugh te be capable of
predicting reliably the spectrum of turbulence at any site. The
result ealls into question the validity of dynamic wind

leading/
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leading calculations based on the limited data which is

currently available and suggests that before a prediction of
the response cf a structure will be able to be carried out
with any confidence, much more data will have to be acgquired
on wind turbulence. In particular, the acquisition of data
covering a range of ground roughness parameters is required so
that the validity of existing empirically derived reduced
spectrum formulae may be checked.

It is also evident that before a spectrum analysis may be
atterpted, correct values must be obtained for tkhe natural
frequency and damping parameters of the structure concerned
as these have also been demonstrated to be critical factors.
Transfer Functions.

It is possible from the results to make a ecritical appraisal
of the ability of the transfer functions to represent the
behaviour of the varicus structures analysed. Two points

are worth commentipg on.

The first concerns the fact that for all the structures
analysed the dynamic component of deflection was either of the
same order of magnitude or larger than the quasi-static
component. The predicted dynamic components were, in the opinion
of the author, higher than would be expected in practice,
especially for the heavier structures. The second point is
that although the group of structures investigated was chesen
so as to provide a range of structural properties the results
obtained were all fairly similar. The transfer function used
to convert from the pressure te the deflection spectra

(mechanical/
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(mechanical admittance) was insensitive to variations in
structural parameters other than natural frequency and damping.
In practice some variation in the response characteristics
would be expected for different types of structure. Large
vibration amplitudes can be envisaged to nceur . with light
slender structures such as lamp posts and lattice towers but
this type of behaviour is not generally associated with large
buildings. The effect is probably partly -due to the fact
that buildings are likely to be more heavily damped than
lightier structures but the author believes that other factors
may be important.
One of the main structural differences between buildings and
lattice towers is that the mass per unit length and stiffness
of buildings are much greater than those of lattice towers.
Because the natural frequency of a cantilever type structure
depends en the ratio of mass to stiffness, however, these
two types of structure may have natural frequencies very close
to one another and their frequency response functions may be
almost identical. If the frequency response function is taken
as the sole criterion of dynamic response, the spectrom method -

of Qna\x{sm may yield the same qust facter for strpctures ""\

(

as dissimilar oas lattice towers anocd Tall bmlo\mas.

The frequency response function is the particular integral
solution of the vibration equation and it is a mathematical
treatment which has been widely applied in mechanical vibratien

problems. The following conditions must be satisfied for

3t/



57

it to be valid.
1. The load function must be presented in the form

of harmonic components of constant phase and amplitude.
2. The system must have reached a steady state condition.
3« The system must be linear.
These conditions are satisfied by most mechanical systems
but the author believes that they may not be satisfied by all
wind driven systems. The first is satisfied if a wind
spectrum is available. The second is satisfied mathematically
if a stochastic appreach is made but is only valid if' the
structure concerned is capable of instantaneous response to
high frequency gusts.
Physically the wind velecity is a random function of time and
the assumption that its statistical properties are constant with
time can be Jjustified. If the velecity function is split
into components which have a fixed bandwidth, the root mean
square amplitude of each component is theoretically independ-
ent ef its averaging period. A graph éf these average
amplitudes against the frequency on which each bandwidth is
centred gives the wind velocity spectrum. In a spectrum
analysis the average emplitude of any component of the response
function is found by multiplying the corresponding
orddmate in the velocity spectrum, first by a coefficient
which converts it to a pressure and then by the appropriate
value of the frequency response function.
The assumption that the structure responds instantaneously to

any variation in the input function is implicit in this step.

The/
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The argument that the average response is related to the
average input by a simple transfer function such as the
frequency response function~gannot be justified unless the
response of the structure is assumed to follow faithfully
the input function.
Such a situation can be envisaged for components of
turbulence and response whese bandwidths are centred on fre-
quencies below the natural frequency of the structure. This
is the quasi-static case and the response and excitation
functions are related by the stiffness of the structure. The
stiffness acts as a simple transfer function from which the
response may be obtained from the input,
At the natural frequency, however, the situation is more
complicated. A single impulse of duration 3, , for instance,
would cause a structure to defleet to an amplitude which would
be defined by the stiffness of the structure in the same way
as for a quasi-static impulse. The energy imparted to the
structure would be stored, however, and such an impulse would
cause the structure to vibrate for a short period until the
energy had been dissipated by damping. A chain of such impulses
(i.e. a sinusoidal input of constant amplitude) would cause an
accumlation of energy in the structure and lead to an ampli-
tude of vibration dictated by the ratio of input to damping
energies per cycle and not by the stiffness of the structure

alone. The relationship between input and response/
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response in this case is given by the frequency response
function. A finite number of cycles is required, however,
for a steady state amplitude, as defined by this function, to
be reached.
The forcing function, in the case of wind loading, is a com-
ponent of turbulence, of narrow bandwidth, which is centred
on the natural frequency of the structure. The amplitude of
this forecing function is constantly varying, as observation
of a spectrum analyser operating en wind data will show. It
is probable that its phase is varying also. A structure
excited by wind turbulence to vibrate at its natural frequency
therefore, does so subject to a forcing function whose ampli-
tude and phase are constantly changing. In such a situation
the steady state condition as defined above is probably
never achieved and the system is in a s*ate of continuous
transition. Under such conditions, the inertia of a structure
must influence its behaviour.
A light structure is likely to respond very quickly to any
high intensity batch of turbulence and may reach a high
amplitude in a few cycles. Similarly, if the intensity of
turbulence drops suddently, or.the phase changes, the struct-
ural response will be quickly damped by the aerodynamic forces
which now act in reverse. The response therefore follows the
forcing function fairly closely and the averages of the
foreing and response functions are probably linked by a simple
relationship such as the frequency response function. A heavy

structure/



60
structure, however; may need so much energy for vibration as
t¢ require a batch of turbulence to maintain a constant
phase and amplitude for a large number of cycles before any
appreciable amplitude can be built up. The average response
of such a structure is unlikely to be greatly affected by any
large fluctuation or series of large fluctuations in the
input function unless they last for sufficient time for the
full structural response to become established. Short
duration batches ef turbulence,even if they are of high
intensity, may have very little effect on the average respon-
S0,
It is possible, therefore, that the inertia of a structure has
a significant influence on its response to a random forcing
function such as wind turbulence and that the average of
the resonant component of response is not related to the
average input in the simple way suggested by the frequency
response function. Whether or not the inertia of a structure
is important depends on the relationship between the energy
which can be imparted to the structure frem the wind and
the energy eof vibration of the structure itself. If the ratio
of input energy te energy of vibration is high then the inertia
is probably unimportant. If it is low, however, it is possible
that the frequency response function does not constitute a
sufficiently accurate mathematical model of the system to
provide a reliable prediction of the response. It was thought
that further investigation of this question was required and

Chapter/
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Chapter 4 describes an attempt to evaluate the energy levels
concerned in order to assess the importance of this factore.

The third condition upon which the spectrum analysis, in its
present form, is based,is that the system concerned should

be linear. In erder that the wind can exert a force on a
structure there must be a relative velocity between the air

and the structure. To cause resonance this relative velecity
must be maintained throughout the cycle ef deflection. It

must, therefore, be periodic and in phase with the structure.
If wind turbulence is regarded as a fluctuation about zero
mean, as in the spectrum analysis, resonance would be expected
to result from the action of the component of turbulence which
has the same frequency as the natural frequency of the strucure.
Once a structure begins to vibrate in response to a wind

load, however, it has a periodic velocity of its own, so

that the relative velocity and consequently the force on it
decrease. If the amplitude builds up to the extent that the
velocity of the structure approaches the velocity of the wind
component causing the vibration,the energy input to the structure
will tend to zero and further increase in amplitude will be
impossible

The use of a conventional frequency response function presumes
that the amplitude of the periedic force is independent of the
amplitude of vibration; e ocerdition which is not satisfied

in the case of a periodic wind load. It is possible, therefors,

that even if high vibration amplitudes do develop in response

to/
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to wind loads, the maximum defleotion is controlled, not by
the degree of damping in the structure, as would be expected
from a frequency response analysis,bubty the omset of the zero
relative velocity condition described above., The use of the
frequency response function could, therefore, lead to the
prediction of higher amplitudes at resonance than would occur
in practice.
Returning to the two points which were made at the beginning
of this section which were firstly that the predicted
dynamic components of response given by the spectrum method
seemed to be too high and secondly that the method was
insensitive to the differences between different types of
structure, it may be said in conclusion that the first of
these could be due to the fact that, in its present form,
the spectrum analysis neglects the non-linearity of the wind
dri'ven system and the second to the fact that ¥he inertia of
a structure being analysed is neglected despite the fact
that the randomness of the lead may necessitate its being

taken into account,.

3.6 CONCLUSIONS

Wind turbulence is a highly complex phenomena and in the
present state of knowledge a stochastic approach to the
problem of predicting structural response to wind loads is
probably the only one feasible. An analysis to obtain the
dynamic respomse of a structure must therefore be based on
the wind velocity spectrum. In the light of the foregoing

investigation/
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investigation four observations can be made about this
type of analysis.
1e The reduced wind velocity spectrum, in its present
form, is not sophisticated enough to be capable of providing
a sufficiently reliable prediction of the wind conditions
at any site. Much more data are required on the character-
istics of turbulence at sites of different roughness and
for different mean wind speeds so that the reduced spectrum
may be improved.
2. The most important structural parameter is the natural
frequency. A correct value for this parameter is an essential
prerequisite to the successful prediction of the response of
a structure to wind turbulence. The problem of obtaining the
natural frequency is particularly difficult for tall buildings
which usually have a highly complicated structural form and
mass distribution. Several empirical formulae based on simple
parameters such as the overall dimensions of buildings are
currently in use but these are approximate and are not likely
to be capable of producing results within the accuracy
required for wind loading calculations.
More work is therefore required in this field so as to provide
a method for predicting the natural frequency of a building
which is both accurate and simple enough flor general use.
An attempt to do this for a particular type of multi-storey
structure had been carried out by the author. A description
of this is given in Appendix 3.
%s The/



- 6l
3 The spectrum analysis technique,in its present form ,
is insensitive to variations in structural parameters other
than the natural frequency and damping. Although there is a
slight distinction between structures of different height, all
structures with the same natural frequency and demping are
regarded as being identical. It is felt that the behmviour
of structures with different stiffness and inertia properties
may not necessarily be the same, especially if the excitation
is of a random nature, and that an investigation into the
effect of these parameters should be carried out to determine
whether or not the transfer function used in the present
spectrum analyses is capable of producing reliable results.
L. A wind driven vibrating system is non-linear due to the
fact tgat the forcing function is influenced by the amplitude
of the vibration, This fact is neglected by the spectrum
analysis in its present form and it is felt that the possible
effect of this on the reliability of the method should be

investigated.

Chapter 4 describes further computer simulation of a wind
driven vibrating system using a mathematical model designed te
highlight the effects of the two points raised in 3 and 4
above.

1'The dynamic to quasi-static ratio of response is affected by
the &4 wind parameter, which appears in the joint acceptance
function, The extent of the influence of this parameter may
be judged from graph 5.
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CHAPTER L

ENERGY ANALYSIS
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L.1  INTRODUCTION

The energy analysis was carried out with a view to investigating
the effects on a vibrating system of the two points raised at the
end of Chapter 3. The first of these was the suggestion that the
relative levels of energy input and energy of vibration in a wind
driven vibrating structure may oe such that the transient part

of the response will be of sufficient duration to influence the
long term behaviour of the system:. It was considered that this
factor might be of importance when the forcing function was
random as is thne case with turbulent wind loads. The second
point re‘sed in Chapte: 3 was that a wind driven vibrating
structure is not a linear system. It was thought that this fact
might lead to an overestimation of the predicted vibration amplitude
of a structure if an analytical technique was used in which no
allowance for the non-linearity was made.

The object of the analysis which follows was to try and estimate
the extent of the error which neglect of these two factors might
cause s0 as to determine whether an allowance for them ought to
be made as a standard part of a dynamic wind loading analysis.
4.2 DEVELOPMENT OF ENERGY FUNCTIONS.

There are two main energy transfer mechanisms in a wind griven
vibrating system. One is the energy exchange which takes place
between the wind and the structure and which provides the excitation
energy for the system. The other is the energy dissipation which
occurs due to mechanical damping. In a given wind situation the
relationship between these two energy mechanisms,which is a

function/
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function of the amplitude of vibration, defines the net energy

input to the structure. The zero net energy input condition

defines the maximum amplitude of vibration which can occur in

that wind.

A vibrating structure stores enmergy'in the form of strain energy

(potential energy) and kinetic energy. The proportion of strain

energy to kinetic energy at any instant depends on the displacement

and velocity of the structure i.e. on the position of the structure

in the vibration cycle. The total energy stored is a function

of the amplitude of vibration. The relationship between the total

energy nd the input- energy ot any amplitude governs the rate of

build wp of the vibration.

In order that the behaviour of a structure in the wind could be

simulated mathematically, expressions were derived for excitation

energy, damping energy and energy stored in vibrating structures.

These expressions deal solely with the resonant component of

structural response.

Bxcitation Energy

In the derivation of the expression for the excitation energy a

very simple mechanism was assumed as an approximation to the

interaction between a structure and the wind. The initial assumpt-

ions were:=-

1. The structure is a cantilever

24 The component of turbulence which has the same frequency as
the natural frequency of the structure is the only one which
contributes to the resonant component of response.

3e ThiB/
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3 This component varies sinusoidally with time, has constant
amplitude and envelops the whole structure.

Lo The maximum energy transfer occurs when the wind velocity is
in phase with the velocity of the structure.

No allowance was made for the variation in wind speed with height.

If the y and z axes are defineu as in Fig (11) the deflection of

the structure is given by the expression,

y = Agt¢ f(z) ginwt
e Vo = st £(z) coswt
ab top
where, Agt = amplitude of vibration r\Of structure

Vep = velocity of structure
Pressure per unit width,on the structure, P(z,t) = 3 P cd Vrz
and length
where lo = density of air
Cd = drag coefficient

V.. = velocity of wind relative to structure

r
P = Pap = %?Gd(v +vr)2
1 v2 : = 1 2
= ﬁ:ﬂd + ?Cder+ 2)00!17::-
where P = mean pressure
p = fluctuating component of pressure
V = mean velocity of wind
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vy = fluctuating component of velocity of
wind relative to structure.
The last two terms in this equation give the time varying component

of pressure and neglecting the term in vrz,

but v = Vo = Vg4
where Vi =  fluctuating component of wind velocity.

e v = A, sinwt - £(z) WAgt sincat

]

(hw - £(2)whAst ) sinwt

i p = pea T (& - £(x)wohgy )sinest

where Ay amplitude of wind turbulence component,

The force per unit width on an element Jz of the structure is given
by: -

S8 = pds = pea T (4 - £(2)eydgy) Sinest Sz
The work done on the element in moving a small distance Sy,

éEe P :SZ dry

P vstéz C{t

§ca T (4, - £(z)whgy) £(2)cobst SinZat 8§z &t

Energy input to the whole structure in one cycle,

8 ri >
e I f p Ca T (By - £(z)st) £(z )l Sin%t dz at

=
n
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= BPGdeK f o £(z)Agt) £(z2)hgy az
w

[o ]

where B = width of structure

This equation applies to a structure subjected to a wind component
which totally envelops it. To allow for the faect that gusts may be
of small spatial extent, Aw was multiplied by a vertical cross-
correlation coefficient given by,

o - o 2o

4 v

This expression is based on the coherence or co-spectrum of wind
velocity and it was derived empirically by Davenport. A discussion
concerning its applicability in this situation is given in appendix 2.
Full correlation was assumed across the face of the structure in the
horizontal direction. The energy input to the structure in one

oycle is therefore given by the expression

o
E, = B‘.,ca\'?w_rf("i—'ﬂw - £(z)Agt) £(z) Agt a2 eee(lel)
o

Equation (4.1) gives the energy transfer per cycle between a structure
and the wind and as would be expected it is a function of the amplitude
of vibration. The non-linearity in the system can be seen from an
examination of the parameter Qg? - £(z)Agt)s This is positive when
the periodic wind velocity is greater than the structural velocity

and the structure is being excited and negative when the structural
velocity is greater than the wind velocity. In the latter case the

energy transfer is from structure to wind and a condition of aero-

dynamic/
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dynamic damping exists. The maximum possible amplitude of vibration
for a given Ay occurs when the net energy transfer given by equation
(L.‘I) is zero., This value cannot be exceeded no matter how light the
mechanical damping.
If the system is assumed to be linear, the corresponding excitation
energy equation is,

¢

EB = e Ccd ?xf GS Aw Ast f(z)dz .00(24-02)
[+]

The maximum possible amplitude in this case gsannot be deduced from
examination of the relationship between Ay and Agt but depends solely

on the amount of mechanical damping in the system.

Damping Energy
The deflection of the structure may be represented by,

v (z,t) = {(2) e

where g(t) is a generalised co-ordinate. _
The time varying properties of the system are described by the

equation,

n

K& + cg& +Mg P

The damping force is therefore given by c§ .

Work dorme by damping force = cg dg
= cg2 dt

Work done / cycle by damping force,

2>
Sse
Eq = fogd‘b

o
but/
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but g = Ag¢ sinwt
2x
By = A% o f‘“’ sin‘wt dt
o
=Ai cK
w

The damping coefficient ¢ can be expressed as,

c = V¥ o,
where 4 = critical damping ratio
¢y = oritical damping coefficient
and cp = 2Mw
(.2
= 2(m J £°(z)dz
()
where m = mass/unit length of structure
= 2 2 2
Ed = 2A§t .3 '9 w m f (Z)d.z ooo(l]-aj)
o

Equation (4.3) gives the energy dissipated per cycle by mechanical
damping.

Energy of Vibration

The energy stored in the structure exists in the form of strain
energy and kinetic energy.

Totel Stored Energy = strain energy + kinetic energy

If a cantilever type structure is assumed the following expressions,
which relate the strain and kinetic energies to the deflection at the

top/
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top of the structure may be derived.

Kinetic energy of an element Sz of the structure,

SBc = bumvt ds
v = y1 f(z)a coswt
where y; =  deflection at the top of the structure

cH
PE'LJ
[}

+m ylz fz(z) wz Coszwt dz

Total kinetic energy,

4

im y12 ;,,.5‘-2 Coszmt j fz(z) dz
©

()

2BI

u

By

|

Strain energy E,

where M(z) = bending moment at z
"
= Zli}Iy:L £ (z)
E = Young's Modulus
I = 2nd Moment of area of cross-~section
1 f 1
E, = 7 EIy f (z) dz
Q
24 '
Y By = % mylzwz 0052(._31: ‘Lf(z) dz + %EIylj;!f' (z) dz

As B = 0 when ¥y, =Agt and E;, = @ when vy is a maximum the total

energy stored is also given by the equations,

Eg /
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b me” Agh ffz (z) az oou(lal)
(2}

=
i
o}

o}

2 {
Bs = % EI Agt f :f.'”2(z) dz eee(leB)
o

ko3 COMPUTER SIMULATION

A digital compu.er was used to evaluate the vibration energy levels
for a numter of structures. The analysis was carried out in tke form
of a simulation of the build up of vibration in a structure from a
small initial amplitude to the r.m.s. value. The net energy input

in each cycle was calculated from equations (4.1) and (4.3) and this
was added to the total energy of vibration (given by equation 4.5) at
the end of each cycle. The amplitudes of successive cycles were
computed from equation (4.5)

This procedure allowed energy levels to be obtained over a range of
amplitudes and the format of a vibration build up allowed an estimation
to be made of the probable quickness of response of the respective
structures to batches of high intensity turbulence. This gave an
indication of the ability of the frequency response function of each
structure to yredict its r.m.s. response from the r.m.s. excitation.
The simulation was also carried out using equation (4.2) to calculate
the excitation energy so that tae linear case could be compared with
the non-linear case.

The computer used for the analysis was an I.B:Ma 360:50 which was
programmed in Atlas Autocode. A flow chart for the program is shown
in Fig (12).

The wind input parameters used were relevant to a 70 m.p.h. mean wind

speed in city centre conditions of roughness. The root mean square

of/
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Type of Structure Arz ) : L ;i 2 i : *
in in in 1bf/in“ | 1b/in ft| H

Lattice Tower Tl 836|110 | 2,455 30 x 106 * 005 30 | 1610
" mooTr2 | Be36|10 2,1;‘55 30 x 10° <005 | 60 | LeO2
n w3 | 836|10 | 2,55 | 30x10° | «005 [100 | 145
’ woomy | 836]10 | 2,u55 | 30x10° | +005 [1m0 | o7l
" w15 | 72001 10 | 20,000 30x1° | w6 | 60 | Lel6
" n 76| 72.00] 10 % x'106 30 x 108 Q46 | 200 | 2453
" w717 | 7200|110 | 32,400 30 x 106 «Qi6 | 200 OeLi5
" nw  mg | 72.00| 10 | 32,400 30 x10° | <ai6 100 | 1093
" n 719 | 7200} 10 T x 100 30 x 100 046 | 100 1o-oq
" n 110} 72+00]10 | 21,500 30 x 100 «046 1180 | 116
" n T111| 72+00] 10 2 x10° | 30 x 1 | 6 |200 | 3.52
" n T112]622000 10 5x 109 30 x 10° 1e40  |150 | @6k

Shear Wall 6 6

Building B11 |6220.00§ 10 5x10 L x10° {140 [100 | 1:45
" Br2 |6220.00{ 10 5x 106 L x 10° 140 200 | 035
n 13 |622000{ 10 [155 x10° | 4 x1® |10 200 | 2.0k

Table 2

Properties of Structures used in energy analysis
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of the wind velecity component at the natural frequency of each

strueture was computed from the Davenport reduced wind spectrum.

The bandwidth used was obtained from the follewing expression,

A . Area under resonance peak in frequency response
“ function

height of resonance peak

It was, therefore, the width of a rectangular resonance peak with the
same area and height as the resonance peak for the structure as given
by the frequency response function. The reasons for the adoption

of a bandwidth calculated in this manner are given in appendix 2.

The properties of the structures for which the vibration simulation
was carried out are given in table (2).

The static response of the structures to the mean wind was also
estimated. This was done by calculating the mean wind pressure from

the equation,

2
P=1§?v
and assuming this to be uniformly distributed ever the face of the
structure. The deflection at the top of the structure was found from

the equation,

deflection = g%é‘
where w = total load
= PBl
' § = height of structure

4.4  RESULTS/
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L.  RESULTS
A summary of the results is given in table (3). The results are
shown in detail in graphs (14) to (28) in which the levels of excit-
ation energy and damping energy are plotted against amplitude of
vibration. Both the linear and non-linear cases are shown. The
ordinates between the excitation and damping energy curves denote the
net energy input to the various structures at each amplitude. Graphs
(29) to (43) show the net energy input curves for the non-linear
case added to the curves of total vibration energy. These illustrate
the relative 1 vels of input energy to energy of vibration for the
structures and show their variation with amplitude.
The number of cycles required for a given build up of vibration may
be deduced from these curves. For example, at amplitude A in graph
(31) the energy of vibration is given by AB and the net input energy
by BC. The total energy in the next cycle is therefore AC and the
amplitude of this cycle is found by moving horizontally from G until
the total energy curve is cut at D. The operation may be repeated
and a stepping procedure developed to obtain the number of cycles
required for the amplitude te build up to the root mean square value.

4.5 DISCUSSION OF RESULTS

The object of the study was to evaluate the levels of energy input

and energy eof vibration in strucsures vibrating in response to wind
loads. in order that their relative magnitudes could be compared. Of

particular interest were the relative levels of input energy calculated

using linear and nen-linear theories and the relationship between

the levels of input energy and energy of vibration. These two topics

are/
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are dlecussed separately.

Before discussing the results in detail, however, it is appropriate
te mention the question of the accuracy with which the analytical
simulation is capable of represemting a full scale system and the
effect which any errors may have en the validity of the conclusions.
As the investigation was a comparative study it was felt that it was
necessary to ensure only that the calculated energy levels were of
the correct order cf magnitude. The use of standard equations of
strain energy and damping energy in conjunction with highly simplified
structural models(cantilevers with uniform distribution of mass and
stiffness) was therefore considered Jjustified and the ocalculated
levels of damping energy and energy vibration are considered to be of
the correct order of magnitude.

The calculated levels of input energy from the wind to the structures
are of more doubtful validity. As with the structural models a highly
simplified syster was ascumed. It is felt that the initial assumptiens
of constant phase input, non random cross-correlation etc. are likely
to cause overestimation of the input energy levels. The extent of
the errors is difficult to determine, however, without more detailed
data on the interaction ef the wind with vibrating structures. It is
only possible at thiy stage to note that sueh errors are likely te

occur and to bear this in mind when considering the conclusions.

Comparison of Input Energies ealculated from linear and non-linear theories
It can be seen from table (3) and graphs (14) to (28) that the error
in the calculated roet mean square deflection, which is incurred if
linearity is assumed, can be large, especially in the ecase of light

structures/
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structures such as lattice towers. The discrepancy betwesen cthe
energy input curves increases with amplitude of vibration because
the aerodynamic damping energy, which is allowed for in the non-
linear case, is a function of the velocity of the structure and this
increases with amplitude. As the root mean square deflection is
determined by the relationship between the excitation energy and mechan-
ical damping energy curves,the error in the cslculated r.m.s. deflection
depends on the amount of mechanical damping in the system. The
lighter the damping, the larger the error is likely to be.
The relationship between the mechanical damping energy and the total
energy of vibration is alse impertant because, for a particular value
of the critical damping ratio, the mechanical damping energy is related
to the mass of the structure. For large, heavy structures, such as the
buildings simulated in this study, the energy dissipated per cycle by
mechanical damping is relatively high, even at lew structural velocitiese.
As a result of this, the mechanical damping energy curve crosses the
excitation energy curve at a low amplitude, even when the critical
damping ratio is small., The error due to the assumption of linearity
is therefore small.
With light structures, however, large amplitudes, and consequently large
structural velocities, are possible before the damping energy approaches
the exocitation energy level. The errors fer these structures are
therefore considerable.
The discrepancy between the linear and non-linear cases depends on the
velocity of the structure: in question. This is a function of the
amplitude and frequency of the vibration. The calculated r.m.s. deflect-

ien in/
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in both the cases depends on the value of the mechanical damping
ratio: , is a function of the total energy of vibration. A measure of
the total energy is the stiffness of the structure EI. The discrepancy
between the linear and non-linear theories could therefore be expected to
be a function of the parameter %-_:’I- s for a range of structures for which
the critical damping ratio is constant. The ratios of linear to non-
linear r.m.s. deflections calculated for the structures in this
investigation were plotted against % o« The resulting curve is shown
in graph (44).
It can be seen that there is a relationship between the ratio ef cal-
culated r.m.s. deflections and the parameter %%. A considerable
discrepancy between the linear and non-linear cases is evident for values

of f% below 1 x 1611 The error decreases with rising %% and

13

tends to zero at values of EE greater than 1 x 10 “ where the ratio

w
of rem.s. deflections approaches unity.
The significance of this curve is that it suggests that slender structures
which are sufficiently light to have a high natural frequency are
likely to suffer quite high degrees of aerodynamic damping and that an
allewance for the non-linearity of the system should be made when
calculating their response to turbulent winds. The curve shown in
graph (44.) was compiled from data relevant to structures with a critical
damping ratio of 0.01. In practice, light lattice structures are
likely to have lower damping ratios and the error involved in assuming
linearity could be expected to be greater than those indicated here.
The results also suggest that in the case of structures which have a low

natural frequency or in which the vibration energy level is high (i.e.

structures /
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. EI 13 y ;
structures for which o > 1 x 10 7), the error involved in assuming
linearity is likely te be small.
It is thought that a series of curves such as graph (44), plotted fer
a range ef critical damping ratios, could be used in design te
distinguish between those structures fer which an allowance for the
non-linearity is necessary and those for which it is not.

Comparison of Input Energy with Energy of Vibration

The energy input from the wind te a structure is determined by the

drag fecrces which the wind can induce to act on its surface. In

the foregeing analysis the drag per unit length of the structures was
calculated from a drag coefficient (assumed unity for all the
structures analysed) and the breadth of the structures B (in addition
to the wind velocity and air density). From table (2) it can be

seen that B was not increased in proportion to EI over the range of
structures analysed. It was thought that this was representative of
the full scale situation. It resulted in the ratio of energy input te
energy of vibration decreasing as the mass and stiffness of the structures
were increased. The effect was a large variation in the energy input
to energy of vibration ratio with mass ef the structures.

The results show that for light structures, such as lattice towers, the
ratio of energy input to vibration energy was high causing the number
of cycles required for the amplitude of vibration to build up from a
small initial value te the root mean square deflection to be small.
With the heavier structures, however, this ratio was low, and a large
number of cycles was required before the vibration build up was

complete.

In/
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In practice a structure in a turbulent wind is in a state of continuous
vibration in response to a periodic forcing function whose amplitude

is continually chenging. ILight struotures, with high input energy to
vibration energy ratios, are likely to follow variations in the wind
closely. When the turbulence intensity increases the vibration
amplitude will rise fairly rapidly and when the wind decreases the aero-
dynamic damping forces, which are high relative to the total vibration
energy are capable of quickly reducing the vibration amplitude. The
result is that a light structure can be expected to undergo a

response which follows wind deviations closely and the excitation

and response are related by the frequency response function at almost
all times. In this situation, the root mean square response may be
calculated from the root mean square excitation using the frequency
response function.

The heavier structures, however, require time to respond to increases
in the intensity of bturbulence and unless a batch of high intensity
turbulence lasts for sufficient time for the transient part of the
response to be completed, the vibration amplitude will not reach the
level which would be predicted by multiplying the amplitude of the
excitation function by the frequency response function, Similarly,
when the turbulence intensity decreases the structure will tend to carry
on vibrating through the period of lull because the aerodynamic

forces acting on it are small compared to the total energy of vibration,
Heavy structures are therefore likely to have a much smoother response
to wind turbulence than light structures and their amplitudes of
vibration are likely to remain more steady.

The analysis presented in this investigation represents a physical

system/
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system which is much simpler than the one which occurs in
practice. It does show, however, that there is likely to be a
considerable variation, in the ratio of input to vibration energy
for different structures and it demonstrates that this ratio
is likely to be small for heavy structures such as tall buildings.
The ability of the frequency response function to represent the
mechanical properties of a structure in 2 dynamic wind loading
calculation depends on whether or not the transient parts of the
response are of significant duration. This depends on the mass
of the structure and on the characteristics of the tmrbulence.
If the turbulence is fairly steady the effect of neglecting the tran-
sients may be slight but if the turbulence is of high intensity with
large randomly spaced fluctuations in wind speed the effect of neglect—
ing the transients may be considerable for certain types of structure.
The important parameters are the duration of constant phase sequences
in the component of turbulence causing the vibration and the relation-
ship between these and the lengths of the transients of the structure
concerncd. Litile data are available at present on the detailed
characteristics of turbulence or on the possible duration of
constant phase batches and it is therefore difficult to estimate
the importance of the transient components of response. It seems
likely, however, that in the case of tall buildings, subjected to
high intensity random turbulence, a more sophisticated technique than
that of simply multiplying the excitation function by the frequency
response function may be required for the accurate prediction of
their dynamic response.

L.6  CONCLUSIONS/
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4.6 _ CONCLUSIONS

The investigation presented here was a theoretical study in which
a number of simplifying assumptions were made. It is felt that the
principal effect of these was to cause an overestimation of
the predicted levels of input energy. It is likely that this
caused the predicted errors due to the assumption of linearity to
be ex;&urated but diminished the predicted lengths of the transients
in the response and thus reduced the apparent importance of these.
The author believes that the effects described here are nevertheless
of the correct order of magnitude and that the following conclusions
may be drawn.
1. The non-linearity of the wind driven vibrating system
must be taken into account when predicting the dynamic
response of slender structures. This is especially true
for light structures with high natural frequencies.
2e The energy stored in a vibrating structure is usually con-
siderably greater than the energy input from the wind/cytle.
In this situation the frequency response function is not
capable of giving a reliable prediction of the dynamic
response of a structure to the wind and a more
sophisticated mathematical model, which takes account
of the inertia of the structure, is required to represent

its mechanical properties.
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CHAPTER 5

USE OF ENERGY METHOD IN DESIGHN
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5,1  INTRODUCTION

It was seen in Chapter L that an energy analysis provided a
comparatively simple means of calculating tne R.M.S. deflection
of a structure vibrating in response to the buffeting effect
of wind turbulence. The (nly existing method for predicting
the dynamic response of structures to buffeting by gusts,
which is suitable for general application in design, is the
spectrum analysis in the form proposed by Davenport. Two
sources of error which might lead to inaccurate results with
th's method were (lscussed in Chapter L. These are the neglect
of the non-linearity in the system and of the inertia of the
structures concerned. It is felt that the energy analysis

mey be capable of giving a more accurate prediction than the
spectrum technique in cases where these effects may be large.
Two techniques whereby the energy analysis can be used as

part of a design procedure for tall structures are now outlined,
The first is a rigorous analysis, performed on a computer,

and intended for use only if preliminary checks indicate that
large errors might be incurred if the spectrum analysis were
employed. The second is a simplified method using energy
equations which are reduced to a dimensionless form, It is
thought that this technique could be used, as a substitute for
spectral analysis, to obtain quickly, gust factors for use in
equivalent static analysis.

It/
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It may be said at the outset that while the energy analysis, in
both forms, is capable of incorporating an allowance for the
effect of the transient part of the response, where this may

be considered to affect the overall performance of a structure,
the data currently available on the structure of wind turbulence
are not sufficiently detuiled for this type of analysis to be
carried out. The proposed analyses are therefore seen, at
present; only as means of overcoming the problem of allowing
for the non-linearity in a wind driven vibrating system although
the simplified technique may be cansidered as a direct
g.bstitute for ti.z spectrum analysis in the form suggested for

code of practice use.

542 USE OF COMPUTER TO DETERMINE R.M.S. OF RESONANT

COMPONENT OF RESPONSE .

The most satisfactory means of calculating the dynamic component
of response of a structure from the energy equations is to

solve these equations on a computer, This was carried out in
Chapter i and the programme used for the energy investigation

has been modified so as to be suitable for more general application
in design. A flow chart for the altered programme is given in

Fig (13)e The principal modifications are discussed below,

The computer programme used in Chapter U was designed to
simuilate the build up in vibration of a structure from a

small initial amplitude to the reme.s. value. It was necessary
to specify a starting value for Ast and the programme was in
effect/
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Fig I3 Flow chart for ammended enerqy programme, suitable for
use in design.
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effect an itterative process for solving the energy equations,
For design purposes, it is the r.m.s. value only which is
required, In the design programme an itterative technique is
again used and it is still necessary to spcecify an initial value
of AS Lo The program has been written, however, so that rapid
convergence on the r.m.s. deflection is obtained and the aszcuracy
of the initial guess is not importent.

In Chapter L, it was assumed that a cantilever was a good
approximation to a tall structure and that the first mode of
vibration was the only one of importance., It is felt that, in
provtice, these ap;roximations will provide a satisfactory
solution for a wide range of structures., As will be seen from
Appendix 3, however, the assumption that a building acts like

a cantilever can lead to errors in the calculated natural
frequency. The programme has therefore been written in such

a way that substitution of expressions for mode shape and
natural frequency other than the cantilever formulae can
easily be made. Provision is also made for determining the
r.m,s. value of the deflection in the higher modes as well as
the first. The formulae used in the programme as it stands

are,

mode shape fr(z) = cosh 8 % - COS 87 = kr(sinh. arz-sin arz)
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cos arl + cosh . arl
T aina;I + sinh . arl

34516 } EI
w = e N ]
1 12 FAr

22403 ET
w = e e tcr——
2 12 f'.&r

_ 6170 EI
m =
3 12 ) f FAI'

As in the research programme the wind parameters are based on the
Davenport reduced spectrum and crems—-correlation coefficient,
The programme was written in Atlas Autocode and its compiling
time on the I.BuMs 360/50 is 3¢90 seconds. The running time

for an average job is 7¢T seconds.

5.3 _USE OF REDUCED ENERGY EQUATIONS TO DETERMINE THE R.M.Se

OF THE RESONANT COMPONENT OF DEFLECTION

It was considered that, in addition to a computer analysis,

there was a need for a simple method for determining approximately
the re.m.s. deflection of the resonant component of response, In
an attempt to satisfy this the energy equations have been
simplified, reduced to a non-dimensional form and solved

directly for As The resulting expression may be used to

t.

determine As % from two dimensionless coefficients. The analysis

was carried out for the first mode of vibration only, but
extension to include higher modes is possible although more

complicated/



89

complicated.

The excitation energy per cycle is given by the equation

dw  =Te7(l-z)n
E = BepCd —_
e ? Vs [m B. v - £(z )A%]

©

f(Z) Ast dz Illl‘!‘ (S.l)

The part under the integral sign may be made non-dimensional

by means of the substitution WoE e

1
Then z = 1lu
dz = 1du
u = 0 whenz = 0
u = 1 when z = 1

o"e the limits of integration become O to 1.

In
5" 727(1-z)n - o s7(l-ulh  _ 6-7'7(1—u) -_‘;-
v T
Equation (5.1) becomes,
1
A n
Ee = B?GdVQ‘K [_(_;_" 5 -707(1-11)-9'. - f£(u) A f(u)As_b du
i In
2 1 e A W A
& B?Gdﬁht 1A, i‘}-?"f“-‘l)v - f(u) ;t ] f(u)g__Stw du
W o g sl
2 .
. _ BeCdVR1A.- - Te7(1-u )%
CE, = X [ [a - f(u)P] f(u)F du
o-oco(502)

where/
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A, D
PO P Y
T Avr
To make equation (5.2) applicable to a range of structures the

reduced excitation energy Ere is defined by,

= &3 E

BPCdV'xlAw.z e

fiE-7-7(1 - u)s% f(u)P) £(u) P du

(o]

re

n

EI‘G

Assuming that modes higher than the first may be neglected

and making a straight line approximation,

vl
R ™ LL [e_7.7(1 W u P} uP du soese(53)

Equation 53 may be integrated without difficulty and

becomes,

1 1 2 =T T0% - 12
Ere = P [7—.—7-& - ( W) (1 =-e ﬂ 3F ---.-(50’4)

The damping energy per cycle is given by the equation,
2 apin 2
By = ZABt AV m f i‘z(z)dz
Q

2

1
assumed this eguation becomes,

If the substitution u = is made and a linear mode shape



1
2 2 2
B, = 2Ast\)m mlj u du
Q
‘* E, = 242V’ m1 (5.5)
e d st ssseelle

The condition for Aat = r.m.S. amplitude is

e d s
2
., BPCTR 1A . B -3A4,°Ya ml = o0
w
A 2 2
o.. E - % m‘)m LY LR =0
re 8 pca? S
o-. Ere - %;}%’ . P 2 =0 .onoo(5.6)

Substituting (5.4) for E__ in (5.6) gives

-7 7“ 2 m))w 2 =
[‘Fﬁ« o) (- e JP 3p° - fapear P °
la_ —_6'.—)- + L) - [ ( ) (1 - =7 7“) =0 .llll(S.?)
3890«:1? P ToTee - 7_ ° ]

The solutions to equation 5+7 are,

- ( )2(1 "7 7“))
F: 0 and F [ Tox. R
Bf'CdV

i 1 B 7
A : =Te
by e e [m"‘ﬁi’“'e i

00100(508)

where/
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where o< = n—:-'-'-

8 - % m YV w
B?de
The remes. of the resonant component may be obtained directly

from equation (5.8) after evaluation of the dimensionless

parametersok and ¥ . The equation may also be written,

A~ \ :
A’t = —-“T K _ -c.-.(5.9)
[ 1 42 =T Te%
where K . t?n?a( + (T.F) (1 - e )J
5 - 3

Graph (L6) gives values of K'i‘or a range of Xand ¥ .

A, may be evaluated from the Davenport reduced spectrum if a
bandwidth is specified. An approximation to the bandwidth which
excites a structures to resonate is given by the frequency
separation of the "half-power points" in the resonance peak.
This is given by the formula,

On = 29n
A, , may be obtained from the equation,
. 2 _ S, k Vz On
w n

o



o (2
) - o0 ——
WheI'zE! E‘F v A
2 i
v
' . Y .
A curve of S, ageinst ] - is showm in graph (L5 ).

A worked example illustrating the use of the reduced energy
formuia to calculate ﬂs % is now given, Structure T6 from the

energy analysis of Chapter L is used.
The appropriate input parameters are:

100 ft/sec ' 1 = 200 ft = 2400 ins

T -

k = 005 m = 0045 slug/in

e =1 x 10" slug/in’ o= o0
B = 10in
I = 103 x1 i b
L = 30x 10° 1b/in?
6d = 1

- 3516 } EI
Wo 12

m

_ 30516 J3o x 1+03 x 10
21,00° 0+ 0L5

L}

15«85 rad/sec

n = 2453 Hz,



=1
-~

9k

o = 2 X = 3 ™49
v BFCd?
= 2953 %200 = 2 x +045 x +01 x 1585
335103{1‘3—9_310—6]{13{1'06](12
= 506 = 0285
(R R NV e B b |
¥ =T (s 00 - 1T
¥ + 3%
1 = ( 1 )2 (1 - e—?‘? X 5.06)
= [°7T__x 506 7-7_x 5+06
0+2085 + 0333

=0,0h];

An = 2n09

= 2 x 253 x 001

= 0+506

From graph (L45).

S, = 025

S kv2 n
... A =j—?—.———-
W n

o

L4

- [0-25::-05::1002 x *506 .

N

2053

= 1+58 ft/sec

= 18+ 95 in/sec

A =i“‘"
st wx

1895 x 0 QU1
1585

0° 049 in
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The value of Ast obtained from the computer analysis was
0,061 in,

Table (L) shows a comparison between the values of Ay
calculated using the reduced energy equation and the computer
analysis for the other structures in Chapter Lis It may be

seen that the agreement is fairly good.

5.1  FINAL COMMENT

Both the techniques outlined here are designed to caleculate

the remss. of the resonant component of deflection. If the
extoeme value is required a final calculation must also be

made using extreme value statistics,

Neither of the techniques proposed here is capable of giving
more than a rough approximation to the vibration amplitudes
which would occur in practice., It is felt, however, that they
constitute a realistic approach to the problem, As with the
conventional spectral approach the weakest feature of the metheds
is their relience on inadequate wind data.

The techniques presented here are the result of a theoretical
analysis and the examples are intended to be illustrative. It
is not suggested that they be adopted for design without further
study. It is felt, however, the the approach is capable of
development into a practical method for assessing the behaviour

of slender structures in the wind,



A
A st
Structure )
e 8 in/ (reduced
sec Ireduc
equation) (computer)

-1 Ne i n.
T L+82 |0e05 140 0+039 0013
T12 2¢1 | 0003 1840 0180 0¢130
T13 1el5 | 0e02 230 00650 0+ 720
T 1s04 | 001 10e0 3¢19 3420
Tt5 2068 | 0451 1000 0e 020 0s 043
T16 5e06 | 0029 1940 0+ Q49 0¢ 061
17 0090 | 001 5000 7+80 077
T8 1493 | 002 20:0 04320 0096
T19 10000 | 0+12 13+0 0+ 006 0+ 011
T110 2410 | 0+01 3000 075 0-35
711 7400 | Oelil 170 0+ 039 0+ 036
T2 0096 | 202 2840 0370 0¢023
B 1e45 | 5+10 230 O Q42 0:013
B12 070 | 120 35+0 1900 0035
B!3 Le08 | 7410 150 0+ 005 0+ 005

Table li Comparison of results from computer and reduced energy equatione
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CHAPTER 6

CONCLUSIONS
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o1

6.1 SUMMARY OF CONCLUSIONS

The investigation presented in this thesis consisted of an
analytical simulation of the response of slender structures to
turbulent wind loads. It was carried out in two parts, the first
being a conventional spectrum analysis and the second an evaluation
of the levels of transfer and vibration energies in wind driven
vibrating systems using a technique developed by the author. The

main conclusions may be summarised as follows:-

Spectrum Analysis.

The spectrum analysis suggested that slender structures, exposed

in turbulent winds were likely to be severely buffetted and that the
dynamic component of response was likely to be a major constuent

of the total response. The magnitude of the dynamic component of
respanse was found to be largely dependent on the natural frequency of
the structure due to the fact that the intensity of excitation was dependent
on frequency., The spectrum analysis was found to be insensitive to
variations in input data, especially those concerning the mechanical
properties of the structures, and it was concluded that the mechanical
admittance function might not provide a sufficiently accuratfe
mathematical model of a structure for this type of analysis. It was
thought that this factor, cambined with the fact that the spectrum
analysis, in the form usually applied to wind loading calculations,
makes no allowance for the non-linearity in the system, might lead to

an overestimation of the dynamic component of response./
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response.

Energy fAnolysis.,

In the energy analysis, the levels of input energy and energy

of vibration per cycle were calculated for a number of structures
considered 1o be vibrating in i1esponse to sirmmlated wind loads.
The analysis was carried out in such a way that the effect of
neglecting the non-linearity in the system could be evaluated.

It was found that for most types of structure the level of input
energy was very low compared to the energy of vibration. It

was felr that in this s.tuation the inertia of the structures
would affect the extent of their dynamic response, especially to
a random form of load such as wind turbulence, and that some
allowance for this should be made when attempting to predict the
megnitude of the dynamic response.

It was also found that certain types of structure were likely to
be subjected to large amounts of zerodynamic damping when buffeted
by turbulence and that the non-linecrity in such systems could

not be ignored when predicting dynamic response.

6.2 DESIGN FOR DYNAMIC WIND LOADS.

In recent years considerable advances have been made in the field of
assessing the effects of wind loads on buildings and the current
CP3 Chapter 5 enebles reliable predictions of the static and
quasi-static effects of wind to be made. The problem of determin-
ing the dynamic response has still not been satisfactorily resolved,

however/
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however, and further work is required in this field. Of the
several wind induced excitation mechanisms which are capable of
causing a dynamic response in a structure, the buffeting of
structures by gusts is the one which has been considered in this
investigation. The following comments refer only to this form of
excitations

It is likely that there are many structures for which a large
dynamic response to buffeting by gusts will not occur and in such
cases the inclusion of a dynamic analysis as part of the design
procedure is not justified. It is felt that there is a need for
a quick means of testing, at the beginning of a design, whether
or not a structure is in this category. From the results of this
study two criteria are suggested. The first is the natural
frequency of the structure concerned. A chart euch as graph (13)
could be used to determine whether or not the natural frequency

of the structure was low enough to make large dynamic response
possible. If the natural frequency were found to be greater than
a specified velue a dynamic analysis could be considered
unnecessary.

The second criterion suggested is the mass or inertia of the
structure. Due to the fact that the ratio of energy input to
energy of vibration is very low for tall buildings and that wind
turbulence is a random form of loading, the author believes that
many slender structures, especially tall buildings, will have a
negligible dynemic component of response even though their natural
frequencies may be low. The important parameter is the ratio of
the/
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the maximmm duration of & constant phase batch of turbulence to
the length of the transient part of the response of a structure.
The present state of knowledge is such that a meaningful assessment
of the duration of a canstant phase bateh of turbulence is not
possibles The author believes that research into this property of
wind turbulence would be valuabic and a suggested procedure is
given in section 8.3.

If preliminary checks indicate that a structure is likely to be
adversely affected by dynamic loading a designer may be able to
reduce its effect by altering the design, either to increase the
natural f.squency or the damping., It seems likely, however, that
for some structures the prevention of dynamic response will not

be possible and there is a need for a method for caleulating the

extent of this component of the overall response.

The spectrum analysis, in the form suggested by Davenport, provides
such a technique but it suffers from a number of drawbacks. In
addition to those already discussed o further inconvenience with
this method is that the static, quasi-static and dynamic components
of response rmust be dealt with together, in one all-embracing
calculating to produce a gust factor. The designer who uses this
method is, therfore, forced to calculate the non~dynamic part

of the response from wind spectrum data. Bettear data are now
available, however, for calculating the static and quasi-static
components of response, than the spectrun, which is still in an
early stage of developments. The author believes that a more
logical approach is to evaluate the static and quasi-static

response/
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response by the method suggested in CP3 Chapter 5 and to perform
a separate analysis to determine the dynamic response.,

The energy analysis proposed in Chapter 5 of #H.s thesis lends
itself to this approach and the simplified form enables the R «M.S.
deflection of the resonant component of response of a structure to
be calculated directly from twe dimensionless coefficients., The
dynamic part of the analysis is therefore kept separate from the
static and quasi-static parts and in no way interferes with

their accuracy.

6.3 _ FURTHER RESEARCH

One of the objects of the investigation presented in this thesis
was to determine which were the parameters in a wind excited
vibrating system, which required further experimental investigation.
From the results of the study a number of suggestions may be made
concerning the direction in which further research should proceed.
T« The splitting of the wind velocity function into mean and
time varying components and the reduction of the latter to

the format of a reduced spectrum and roughness coefficients

is a feasible approach to the problem of devising a mathematic-

al model of wind turbulence., The spectrum undergoes large

variations with frequency, however, in the range of frequencies

likely to excite tall structures. A study is now required to
obtain accurate data so that the reliability of the reduced
spectrum may be improved. This will require the collection
of data on a large scale over the whole range of roughness

conditions/
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conditions but it is an essential prerequisite to any code
of practice which attempts to deal with the buffeting effect
of wind turbulence.

One of the conclusions reached from the energy analysis

was that some structures may not achieve high amplitudes of
vibration in response to w:iad loads because the relatively
constant conditiors required for a lerge build up in energy
mey never occur with this random form of loading. Data on
the average lengths of constant phase batches of turbulence
would be useful so that the possible extent of energy build
up 1. large structi.~es cculd be assessed. An insight into
orders of magnitude of the duration of constant phase
sequences could be geined from examination of records guch
as that shown in Fig. 6. The structure in that case was

30 £t high and had a netural frequency of 3.3 Hz. From the
records, the average leagth of constant phase sequences, for
that component of turbulence, could be deduced. If many
such records, for different strctures, were examined, an
assessment of the lengths of turbulence components at their
frequencies, could be made, If data from a variety of

conditions were analysed the parameters on which the lengths

of constant phase sequences depend, could possibly be evaluated

It is possible that the cost of collecting the data necessary
for acourate dynamic wind load analysis would be such that
other solutions to the wind load problem should be examined.

One such possibility is the elimination of resonant vibration
in/
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in structures by the introduction of additional damping.
This could be done, either by building in damping (e.g. friction
joints) or by attaching damping devices to structures. The
structures which are worst affected by dynamic loads are those
which are light as well as slender, such as lattice towers.
The energy dissipative capacity of damping devices attached
to such structures would nocthave to be high to bring about a
significant reduction in vibration amplitude. A study of
the feasibility of such an approach to the problem,including
an evaluation of required damping energy levels, would be
useful at this stage.
The energy method proposed in Chapter 5, for predicting the
dynamic response of structures to wind loads, has not been
checked experimentally. Wind tunnel studies on asrcelastic
models in a turbulent airstream are now being planned so that
the ability of this technique to model the behaviour of a
wind driven vibrating system may be determined. It is hoped
that the results will also enable an assessment of the

accuracy of the conventional spectrum analysis to be made.



104

APPENDIX 1

POWER SPECTRUM ANALYSIS THEORY
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If a function x(t) is periodic, it may be expanded as a series

of harmonically varying quantities in the form,

(%]
x(t) a + 2 (ar Cos rg\ﬁt o+ br Sin ru.;.lt)
where,
1 %
- f:
2 iy
&, = = j x(t) Cos rat dt
L%
= 2 (-
b, = = uf% x(t) Sin vt dt
T = period of x(t)
- 20
W T

The camponents of the series are sinusoids whose frequencies are

multiples of the fundamental frequency, Wy The amplitudes of the

components can be plotted against frequency to give a discrete
spectrum in which the spectral lines have spacing Ly

The series may also be expressed in the complex form,

g..? irm.lt
x(t) = L, cpe
-3
' T
1 "2 -irwgt
where, O ™ 9 x(t) e dt
%
-2

It is possible to express the mean square value of x(t) in terms

of the coefficient as 8. and b,,,

xz/
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T oo

£ —
2 1 2 2 2 2 2
x(t) = T -J\-r x(,t) dt = a~ + % - (ar + br ¥e

A non-periodic function may be expressed as a Fourier Series if
it is considered to be periodic with infinite period. The
fundamental frequency is then infinitely small and the discrete
spectrum becomes continuous  Assuming thatcu1 is very small
(D) the equation may be written,

%

oo
~es ~irbwt irdwt
x(t) = Z ) x(t)e dt e
-06

b
2
As A« = derthis becomes,
oo oo "—
f’ )
x(t) = ] --g—c_,% | ~/>:{(1;)e'i ot af e+ PP
Too Yoo
which may be written,
o0
&
x(t) = 5= J A @ )t g
oo [o'a)
where, A(iwo ) = }f :c(t)e"'j‘("‘j boak
oo

These equations give the Fourier Integral expression for x(t).
A(1 ws ) is called the Fourier Transform of x(t). The equations

may also be written,

[»¥5]

x(t) = j A(if) SeEY g
-G
(6%

AAe) - ()R EE g

Mso/ e
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Also,
0o o
| 2w - j x(t (6 )b
-\-JOO -0
S I s ]
« | =) J a(r)e?2 ™ b g as
J»t'x:- E ~ Q0 =
20 P Q0 . -
= f A(if) f x(t)e2 ™Y g arf
e | e .
} A(if )Ax(if)af
- 00
where A(if) and Ax(if) are complex conjugates.
) oo
% i -
S A OR - 'A(if)l af
-0 -0

A (if ‘ : is an even function of f this may be written,

|
ﬁw
sz(t)dt = 2 Flﬂ(ii‘)l 2 ar
- o0

A random signal is not periodic and cannot be expressed as a
Fonrier Series. It cannot be expressed as a Fourier Integral
either because to have stationary properties a random signal must
be assumed to extend over an infinite time. The Fourier
Tranaform A(if) of a signal which begins at t =-ow

and continues until t = ©o cannot be defined. It is possible,

however, to obtain the Fourier Transform of a signal Jgr(t)

T

which is defined as equel to . x(t) over the interval - <t < 5

and zero at other times.

Jsrz(t)/
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x?z(t) fzxrz(t) dt
-'[E .

')
f ‘(Ar(if)\ 2 ar
o

The 1limit of this as T ~» ©0 gives the mean-square value of

x(t),
2 . 2 2
x“(4) = L_ﬁ[ﬁ | 4,0 | :l af
SO

= f S(£) daf

o

[}

-

1
3iro

The power spectrum of the signal is defined by,

S(£) = 1im ?f |Ar(1f)]2]
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APFENDIX 2

DETERMIIATION OF A, AND THE USE OF A CROSS«CORRELATION

COEFFTICIENT IN THE ENERGY ANALYSES
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A 2,1 DETERMINATION OF 4,

The equation for excitation energy which is derived in

Chapter L is, 8
Awr
Ee = B? (VTR [ . f(z).ﬂ.s;l f(z)ﬂst dg.  sessellial)
(o)

This equation is based on the assumption that the exciting
force is one of constant phaé.e and amplitude and in response to
this type of erciting force a structure would achieve a steady
state condition of vibration, In practice, however, the
amplitudes of narrow bandwidth components of wind turbulence
fluctuate erratically, even over short periods of time, and

in such a situation the concept of a steady state response

has little meaning. Equations Le1 and L.2 therefore constitute
a much simplified model of the real system and a realistic
value for the input parameter A, .. is impossible to obtain
because it has no equivalent in the real system.

The object of the analysis was to compare the relative levels
of the three main energy forms, however, and this may be done
using the root mean square value of the turbulent velocity
components, This can be considered to remain constant with time.
The energy levels calculated from the rem.s. velocities are
not true energy levels but a comparison of them is still a
valid exercise for the purposes of assessing the effects of

non-linearity and of possible rate of build up of vibration.

The/
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The r.mes. value of a narrow band component of turbulence

may be obtained from a wind velocity spectrums To do this it
is necessary to specify the bandwidth. All components of
turbulence within the bandwidth in which the frequency response
function of a structure is greater than one are capable of
inducing a dynamic responie in that structure, All such
components should therefore be included in the bandwidth which
is specified to obtain A, from the spectrum.

The response of the structure within this bandwidth varies

with frequency in proportion to the variation in the frequency
response function. Hquation l.1, however, applies only to

that component of response which occurs at the natural frequency
of the structure. Use of a value for A,, obtained from the
spectrum using a bandwidth for which the frequency response
function is greater than one would be equivalent to assuming
that all the energy in the wind in this bandwidth is concentrated
at a discrete frequency. This would lead to an overestimation
of the dynamic response of the structure.

An approximation to the real situation is obtained if the band-
width is selected such that,

. Area under resonance peak in frequency response function
On height of resonance peak

where . =  bandwidth

This is the width of the rectangular resonance peak with the
same area and height as the resonance peak from the frequency

response/
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response function. By reducing B in this way the energy
input to the system is reduced proportionately so as to allow
for the fact that different components of turbulence, within
the bandwidth for which the frequency response function is

greater than one, exeite the structure by different amounts.
A, 1s therefore given by,

W ' SPV. (n)

2 2
LkV%%An

=
1t

Spy (n)

n(1 + x2)l3

1,000n
7

k = roughness coefficient

A2,2 USE OF CROSS-CORRELATION COEFFICIENT

The value for A,, obtained from a spectrum of horizontal wind
velocity applies to one point in space only. One of the initial
assumptions of the preceeding analysis is that the resonant
frequency turbulence component is effective over the. whole
structure, This assumes that all gusts are large enough to
fully envelop the structure and that full correlation occurs in
both the horizontal and vertical directions.

The constituant gusts of high frequency turbulence are

usually of small spatial extent, however, This is due to the

fact/



113
fact that the vertical and longitudinal dimensions of eddies
in a turbulent airstream are usually of the same order of
magnitude., The extent to which the wind velocity at two
points in space across an airstream are correlated depends,
therefore, on the frequency of the turbulence being examined.
It has been shown that tl.- extent to which high frequency
turbulence (n> 1+0 Hz) is correlated is small campared to
the dimensions of most engineering structures. In practice even
slender structures have relatively high natural frequencies
(eround % Hz) and it is unlikely that the turbulence components
which excite such structures to vibrate at their natural
frequencies will be fully correlated over their surfaces. Input
energy calculations based on the assumption that full correlation
exists are therefore likely to err on the high side.
It was considered that an allowance for lack of full correlation
in the vertical direction was essential in the energy analysis
but it was felt that, as the hypothetical structures used in
the analysis were considered to be of small width, full
correlation in the horizontal direction could be assumed.
In order to comply with the other assumptions in the analysis
the vertical cross-correlation properties of wind turbulence
components for zero time lag are required. These are given by
the co-gpectrum of wind velocity, which is a measure of the contri-
bution made by different frequency components to the co-varience
between the velocity functions at two points in an airstream for
zero time lag.

Most/
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Most of the work on the cross-correlation properties of wind
turbulence has been centred on a complex quantity known as

the Cross-Correlation Spectrum. This is given by the

expression,
Cross~Correlation _ _Cf:l2(n> v & Q12(n)
Spectrum s, (n) S.(n)
1 2
where 0012 = co-spectrum of velocity fluctuations at
points 1 and 2
Q12 = quadrature spectrum of velocity fluctuations

at points 1 and 2.

81 (n) and Sz(n) spectra at points 1 and 2 respectively
The quadrature spectrum is similar to the co-spectrum.

The difference is that in “theo Quadrature speetrum, the
velocities at points 1 and 2 are compared for a time lag of %
period, instead of zero time lag.

Davenport has derived an expression for the modulus of the
cross-correlation spectrum, based on data from a number of scites.

The Davenport formula is,

Modulus of Cross- Correlation E a sof S0
Spectrum, s @ s
where ¢! = a constant dependent on ground roughness.

In the spectrum analysis, Davenport uess this function to

represent the co-spectrum of wind velocity and computes an

amended excitation spectrum by multiplying the ordinates in
the/
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the wvelocity spectrum by Cye Da.venpoft Justifies this by
demonstrating that the modulus of the cross-correlation
spectrum and the co~spectrum are almost identical for most
frequencies, Fig. A2,1, which is taken from Davenport,

shows the co-and quadrature spectra plotted agoeinst wave
number, It can be seen that the quadrature spectrum rises to
one meximum, at a wave number of approximately 04002, then dies
away to almost zero., This means that the cross~correlation
spectrum is dominated by the co-spectrum at almost all wave
numbers and is only slightly affected Ly the quadrature
spactrum, The 0, function, used by Davenport, is therefore
quite a good epproximation to the co-spectrum., Davenport, in
his 1962 paper, justifies its use in spectrum analysis by saying
"In spite of the non-zero quadrature component it is nevertheless
small, and it seems adequate for practical purposes to use the
square root of the coherence* as a measure of the cross
correlation",

The existance of the maximum in the quadrature spectrum does
however indicate that there is a slight correlation between
wind turbulence at two points across an airstream for a %
phase time lag.

In the energy analysis, the cross-correlation properties of the
wind are allowed for, in the same way as in the Davenport
analysis, by multiplying the A, term by Cge The use of

e in this application is less easily Jjustified. There are

two main sources of error. Firstly, by appearing under the

integral/
% coherence is square of cross=-correlation spectrum
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integral sign in equation L.1 it has the effect of making

the first term in this equation very small at the base of the
structure, wherez = 0, and causes it to rise to a maximum
&t the top. This situation is the same for all the cycles of
vibration and the correlation is therefore assumed to remain
fixed spatially for every cycle. This is equivalentto assuming
that all the constituant gusts of the resonant component of
turbulence hit the top of the structure and while it represents
the worst case it is not a true representation of the full
scale situation in which the turbulence is random in space.
Ti.c second sourc. of error is the neglect of the quadrature
spectrum, The fact that some correlation is possible between
gusts hitting different parts of the structure % period out

of phase, as is suggested by Fig A2.1 could increase the
aerodynamic damping. No allowance for this is made in the
energy analysis.

The C function cannot, therefore, be considered an ideal
expression for the cross-correlation properties of the wind
but it does give an indication of the orders of magnitude
involved. The errors due to its use in this application are
likely to be on the conservative side and the calculated
levels of excitation energy are likely to be larger than would
occur in practice. This should be kept in mind when inter-

preting the results.
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A¥PENDIX 3

AMNLYSIS OF MULTI-STOREY SHEAR WALL STRUCTURES
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A3.1 _ SUMMARY

As was stated in Chapter 3, the dominant structural parameter
so far as dynamic wind loading is concerned is the natural
frequency., For a complicated structure such as a building a
rigorous analysis to find this tends to be beyond the scope of
a design engineer and it has become common practice to regard
such structures as simple cantilevers. It was decided to
examine a particular type of building in some detail so as to
establish whether such an approximation was likely to lead to
large errors. This appendix is devoted to the analysis of a
milti-storey shear wall type structure to find its natural
frequencies. The purpose was firstly to try and check the
accuracy of simpler and more approximate methods which have
previously been used and secondly to provide a better means of
determining such an important structural parameter should the
previously used methods prove inaccurate. A mathematical model
was chosen such that any resulting design method would be applicable
to all buildings of the shear wall types

The analysis was carried out using the continuum theory which
has been widely applied in the case of static loadings on such
structures, A solution was obtained in terms of constants which
are simple to evaluate and a number of hypothetical buildings
were analysed by the continuum theory and more approximate
methods so that comparisons could be made., A set of simple
experiments was carried out on model structures to confirm the

conclusions reached from the theoretical results.

A3-2/
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A3~2  THEORY

The type of building analysed was of the multi-storey shear
wall type, a typical example of which is shown in Fig. A3.1.

The main structural elements of these buildings are load bearing
walls which act both as the main vertical supporting members and
as wind bracing. They are connected to one another at each
storey level, either by continuous floor slebs or by floor
beams. Each building usually consists of a number of similar
bays, each of which contains elements to provide stiffness along
the two principal axes of the building. The walls therefore tend
to be Ty, L, H or E shaped in plan. The buildings vibrate

about different axes with different natural frequencies and it
is convenient to split the analysis into two parts and deal with
each axis separately. Soane has shown that for the static case,
a wall with a complicated plan shape can be replaced in the
analysis, without loss of accuracy, by one of rectangular cross-
section, which has an equivalent second moment of area about

the axis concerned., This simplified approach is used here,

Fig A3.2 illustrates how the building in Fig. A3.1 would be
simplified for further analysis.

To simplify the problem further it is assumed that all bays in
the building are of identical mass and stiffness and that
individually they will have the same natural frequency as the
whole building. i.e. the natural frequency of bay abed in Fig.
3.2, vibrating about the x-x axis, will be the same as that of
the whole building, vibrating about the same,axis. It was decided

that/
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that in order to achieve versatility of application, any resulting

design method would have to be capable of dealing with buildings

with different numbers of walls. The mathematical model of one

bay, therefore, is a plane structure with n walls and (n-1)

interconnecting sets of beams or slabs, (Fig. A3.3).

The analysis has been carried out in accordance with the

following assumptions:-

(a) That the mass of the structure is uniformly distributed
along its length.

(b) That all behaviour is elastic. Shear wall structures are
normally constructed of reinforced concrete or brickwork
and this is approximately trwe in the range of design
stresses used.

(c) That a condition of complete fixity exists at foundation
level.

(d) That the deformation of the connecting elements due to
normal forces in the connecting elements themselves are
negligible. i.e., the lateral deformations of the walls
are the same at any given level., This has been verified
experimentally for the static case.

(e) That the points of inflection of the connecting elements
are at their centres,

The discrete connecting elements were replaced by cantinuous

media having appropriate stiffness properties and the meodel

split up into individual free standing centilevers. The effect
of the media on these was represented by equivalent external

forces/
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Plane array of n walls interconnected by n-1 sets
of beams or slabs.
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Equivalent array of walls interconnected by continuous media.

Fig A3.3.
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forces and moments, distributed along the edges of the walls,
The i th wall is shown in Fig., (A3.L) and a section of this in

Fig. A3,5. The notation used in these figures is:-

m = the bending moment per unit length transmitted from
mediunm i,
t. = the normal force per unit length transmitted from
medium i.
r, = the shear force per unit length transmitted from
~medium 1.
=  the bending moment in wall i.

= the normel force in wall i.

= the cross-sectional area of wall i.

Ny
W, = the width of wall i.
A
§> = the density of the material.

Considering the element of wall i shown in Fig A3.5 and taking

moments:~
W W.
dx dx 3 Tt
Mi+%- -é—+Qi—2—+riT +r§-12-+ midx-i-mjdx-
o1,
Mi - -S—X dx - 0 ..o-.(ABo1)

If higher powers of increments are neglected this simplifed to:-

b S ol
Qi + (mi + IllJ', ) + (ri + I‘j_ )T - 'E-:'C'— =0 .--o-(ﬂsgz)

Resolving/
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Resolving horizontally and vertically leads tos=

3 c)zyi
e + % = > + A =0 -00..(-&303)
Ao : X ts ? i S xﬁ

A

-5—;:- + ri - r‘_';, = O oootc(ABah)

It has been shown by Chitty that the effect of the normal forces
in the walls is negligible, and so equation A3.L was considered

redundant. Differentiating equation (/43.2) and substituting in

£33 gives:
32}1_{ (“é}mi . ) (ari +ar3 ) Wy ,
S;E \Ox 9 x dx dx :
623’:-,_ i
ti - tj + ?Ai -g;—g = 0 coo.i(-ﬁso;)

An equation similar to (A3.5) can be derived for each wall in
the structure. Assuming there are n walls of equal width, and
adding all such equations, the terms in t cancel out and the
equation simplified to:-

- %y oom g
- 2 ———rri e
L3P L3 R
- 3%
G}'lﬂi ﬂ& = 0 UOIOC(AOBG)
n ét

The assumption of equal wall widths involves a loss of generality

but this can easily be restored once the differential equation has

been/
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been solved, as is demonstrated later,

6mi o ari
0x 9 X

to derivatives of y. This is done by examining the moments and

To simplify (A3.6) it is necessary to relate

reactions in one of the connecting elements, A diagram of the
forces involved is shown in Fig. A3.,6, In accordance with
assumption (d), the walls deflect equally but AB does not remain
perpendicular to them. The connecting element is constrained
to remain at right angles to the walls at its ends, and this
imposes resultant moments and forces on the walls. The end
displacement of the connecting element is the sum of the
longitudinel strains in the walls and the relative displacement
of the walls due to bending. As was previously stated, the
former of these has been proved negligible by Chitty. The
bending moment in the connecting elements can therefore be

directly related to the end displacement, as in equation (A3.7).

ZHi
R = P N
ci ei ..-..(IB.T)
Thus at a distance q from A:z-
62 2Mci
ELs --L;- = =Ny * “
oq v %
M 2
@ r) B - ci
oo BEL. Qq Moi q T —'éfg__ ® ¥
=M 2 M 3
. - ciq ci q W
e o EIG:L P 5 +* ﬁi + Vg + ---.-(&3-8)

P= 0 atA where = 0, o« W =0
From/



Fig A3.6. A connecting element in space i.
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From assumption (e), P = 0 when gq = ..£2’.§-.
Y018y
o.. Vv =
- dp M3a8y
Thus when q= O, the slope at the end, 56 = m:i
oo, =SB d7
é o4
i
md R ) 12EIci 3 p
i e'i 0q

cosse(A3.9)

oo.i.(A.Bo‘iO)

According to the sign convention adopted, a positive end moment

results from a positive wall slope, thus

" i 6EIci d vy
el e O X
_ N 12EIci Po) vy
el 8. 2 Qx

1

If the height between connecting elements is hi’

\
_ GBI Oy
mi h.a.. ox
b= S

r S r—
i hie'i ox

Thus,
d 6EI,, °
= ci Iy
QX h@, o xf
Or

.c.os(ﬂso‘i‘l)

senes(l3:12)

!'OIC(J’BO‘IB)

-oo.l(Mc“-l-)

cesses(A3415)
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or 12EI , O¥.
Ti = M——.—gé‘. * al.ld(ﬁe¢16)
- i3 Ox
The following relationship may also be derived,
o 82yi
5 = - B3
O x
2
I, L
... """"‘":2-' = . EIi a Yi ...i.(-ﬂs"i?)
Oz >

Substituting (A3.15), (A3.16) and (43.17) in (43.6) and simplifying

TR S w
\l ClL i 2
Sy, MLEs (1 * ei) %,

+ cicl _
axh Ii a x2
2
P E Ai a I3 _ 8
= 5 L 5 0 eeres(A3.18)

Assuming a vibrational solution of the form y(x,y) = f(x)g(t)
where g(t) = Sin (>t + ©< ) and ¢u is an eigenvalue, (4.318)

can be rewritten,

12 ...E?E: (1 + _"‘f_)
ak, ). B, 5 ) a2
dx* I, dx? 55

= 0 qoo.o(A3019)

whioh/
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which simplifies to,

L 32
Cf;-f # a‘l 3:2 ¥ b'} w2 £ = 0 .....(-&3-20)
-};i X

with a.l and b.! constant

: % e
='2>:‘h—§i ( 1) R
Z\' Ii Bk E 211

The boundary conditions of equation (A3.20) are found by examining

|

the end conditions of the walls. According to assumption (c),

the deflection and slope at the base of each wall will be zero.

f = 0 when X = 0 i.t.l(i)‘
%i-‘ = 0 when X = 0 ct.o.(ii)

At the free ends of the walls it may be assumed that the bending

moments and shear forces will be zero, Thus,
a'z.f " 0 when X = H o-l.c(iii)

a2

ke

ax’

where H is the total height of the walls.

= 0 when X = H aoo..(i?)

The caleulation is simplified if (43.20) is made non-dimensional,

This may be done with a substitution of the form,
f = HE? a = H a

x = bie 4 b =H_’h'b

(43.20)/
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(13420) becomes,

L -2
-—-—Hj_-xfl + a_-c-;(li-‘% + Uz bt £
1

with boundary conditions,

hig} = 0 when xt
‘é—é - 0 when 5
2
éi-f:'— = 0 when x
d £
13
ot = 0 when x

A power series solution to (A3.20) may be

method suggested by Frobenius. A detailed description of this

obtained using the

is given in fppendix (L) and it is only dealt with briefly

here, If the substitution,
or  u z Jre
z Un

is made in (A3.21) the equation becomes,

:n:]:n(n+c)(n+c-1)(n+c-2)(n.;c_3)xn+c—h .

a E—;?n n+e)n+c-1)x

By equating coefficients, expressions can be found from which

the coefficients of the terms in each power series may be

determined./

ceees(A3.21)

n+c =2 +E'-€I,nxn 7% 2 U eesesln3e22)
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determined., This leads to the four serdies below.
2 N 6
¢ = 0. f.'I =1+a§—! +(Lw2+a2)zﬁ-!-+(2bw2a+a3)]g—! -

8
(b2wh + 3-\)0\)2&2 + a3) %T R ST T w* ...'..(AB.23)

+

e

c =1 £, =x+a§3—!-+ ('b;,.)Q +32)§-§r+ (2bw2a + 8o

1

(Bzmh + 3])20.)2&2 + a3) g

Y

T ' ---o-(AB,Zh)
1
c=2; 1'3 = x2 + a/12xh + 3%)'5 ('bwz + 32)}:6 + mx

(z-bwza + aB)xB iy T R A 00000(5025)

¢c = 3. .t‘h = x3-|-a/20:|:5 +Bilw-(b&)2+a2)x7 +

(2Bw2a + aBQx9+ = B Bhoww 2 cases(L3626)

6e x 1

The mode shape,
£ = M‘I + Bf2 + Gf3 + Df,-l o-o.‘(ﬂBia?‘)

where A, B, C and D are arbitrary constants, Application of the

boundary conditions gives,

fé' (1) xfﬂ”(1) ! fé' (1) X f’l” (1) =0 .u"(AB.ZB)_

£/
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If the derivatives of (A3.25) and (43.26) are substituted in
(A3.28), an equation is obtained which is a polynomial in ¢u .

The roots of this give the eigenvalues of equation (A3.21),
which are the natural frequencies of the system. By substituting
these in turn in equation (A3.27) and again applying the boundary
anditiions, £(x) may be found in terms of one arbitrary constant.
The resulting expressions give the mode shapes of the system ,
corresponding to the various natural frequencies.

By this method, therefore, it is possible to calculate the
natural frequencies and mode shapes of shear wall buildings from
two constancs, a and bs As can be seen from the formulae,

these are easily calculable functions of the buildings' dimensions
and of the properties of the construction material. a, is
dependent on the stiffness of the connecting elements, on there
separation distance and on the ratio of wall width to wall
spacing, It therefore represents the extent to which the
behaviour of each wall is influenced by the action of adjacent
walls and ultimately the extent to which the connecting elements
influence the overall behaviour of the building. The value of

b depends on the mass and stiffness of the walls themselwsy, b
would therefore be expected to be the dominant of the two
onstants, a decrease in the value of which should lead to an
inerease in natural frequency. a will have a lesser effect;

a decrease in its value should bring ebout a decrease in natural
frequency. That the two constants do hehave in this way can be
seen from graph (A3.7).

It/
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It was found that for values of a less than 10, which covers
a wide range ®f buildings, the fifth and larger terms in each
series became negligible and only the first four terms in
each series were required for an accurate solution., This
results in the polynomial in <o being a quadratic which is
simple to solve. For some types of building, a is greater
than 10, in which case more terms in each series are required
and the polynomial becomes more involved., More work is envisaged
to provide an itterative method by which these polynomials may
be solved with the aid of a digital computer.
The expressions given for a and b are applicable to buildings
with any number of walls of equal width, The formulation of
expressions for buildings with different wall widths is easily

carried out and is demonstrated in appendix (5).

Ae3s3  COMPARISON OF CONTINUUM THEORY WITH MORE APPROXIMATE METHODS

As was stated previously, it has become common practice to use
simple cantilever approximations to buildings for the purposes

of calculating their natural frequencies, For a building such

as that shown in Fig (A3.1), there are two possible approximations.
One is to assume complete interaction between the walls, and to
consider the combined section to act as a cantilever. This is

the most favoured approach, as the overall dimensions of the
building are usually considered to have the major influence on

its natural frequency. Another approximation is to assume no
interaction between the walls, and to consider the stiffness of

one/
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ane wall to be a good indication of the stiffness of the

whole building. Clearly, these are limiting cases and the true
situation lies somewhere between them.

In order to compare the results obtained using the continuum
theory outlined previously with those from cantilever approxim-
ations, a number of two wall buildings were analysed. Graphs
(A341) and (A3.2) show typical results.

It can be seen that the dominant parameters in ths case of the
continuum theory are the actual wall widths, while in the
"combined section" cantilever approximation it is the overall
width of the building which is important. Also, in every case
the continuum theory predicts a much lower natural frequency
tl.mn the"combined section" camtilever approximation. In fact,
the values given by the continuum theory are nearer those
appropriate to one wall in the section, given by the '"no
interaction" approximation rather than the "combined section',
This suggests that the connecting effect of the beams is relatively
small and that the walls, while constrained to vibrate together,
exhibit more or less the same dynamic characteristics as they
would do if acting separately. It would appear, therefore, that
the ™o interaction" case gives a better indication of what is
likely to happen in practice than the "cambined section"
approximation. It tends to underestimate the total stiffness of
the building however, because it fails to take account of the
stiffness of the eross beams.

The effect of the cross beams is shown in Graph (A3.3), which

demonstrates/
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demonstrates that the natural frequency decreases slightly
with decreasingstiffness of the cross beams and tends to a
imit equivalent to the "™no interaction" case., This means
that the natural frequency falls slightly as the distance

between the walls is increased,

A3.s  VMODEL INVESTIGATION

According to the continuum theory the natural frequency of a
building tends to be affected only slightly by a variation in
its overall dimensions if the dimensions of the walls remain the
same, A simple experiment was carried out to try and verify
this, Three perspex models of twoewall structures were
constructeds The wall widths in each of them were kept the

same and the wall spacing varied., A diagram showing the
dimensions is given in Fig. (A3.7), and the test set up is shown
in Fige (A3.8). Fixity at the base of the models, was attempted
by bolting them through 2" x 2" steel angles to a 2' 9" square,
2n thick steel base plate. The models were excited by an
electrical vibrator dfiven by a power oscillator. The amplitude
of the vibration was measured by an accelerometer fixed to the
top of each model, the output of which was fed through an
oscilloscope.

The procedure adopted to find the natural frequency of each
model was to sweep through a range of frequencies with the
oscillator and note at which frequency resonance occurred. To

verify that the resonance peak found was that of the first mode,

the/
/
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the accelerometer was then moved gradually down the model

so that the mode shape could be checked. In practice the
resonance peaks were very sharp and the resonant frequency
could be determined to within 3 Hz. Each model was canstructed
15 storeys high and was subsequently shortened, one storey at a
time, so that readings appropriate to a number of building
heights could be obtained. A plane cantilever sheet of perspex
witth the same outside dimensions as the medium sized model was
also testeds The results of these t_;es*ts are shown in tubles
(A341) and (A3.2) and Graphs (A3.h4) to (43.6).

The dynamic modulus of elasticity of perspex was found by
testing 3/8" thick cantilever strips of different length in a

similar monner to the shear wall models, The standard formula
_ 3516 EL

12 A §F
relate E tocy « The results of these tests are shown in table

for a vibrating cantilever, W was used to

(A3+2) and Graph (43.5)
A3.5 RESULTS AND CONCLUSIONS.

As can be seen from Graph (A3.L ), altering the wall spacing
appeared to have little effect on the natural frequencies of the
models, If anything the tendency was for wider spacing to lead
to lower natural frequencies as predicted by the continuum
theorys In this respect, therefore, the continuum theory gives
a better representation of what happens in practice than the
cantilever approximation. Also, the plane cantilever of perspex
was much stiffer than the shear wall models., In fact, when

allowance is made for the change in E value, evident . frpm
Graph/



NATURAL FREQUENCY (Wz)
Building No of
Height storeys
Model 1 Model 2 Model 3 Cantilever
in e = 15| e & 201 e =27
L7 16 385
L5 15 3140 2940 295
L2 gn 33«5 330 3145 410
39 13 3740 3740 3520
36 12 L1e0 420 39+0 53+0
33 11 Lhe0 50¢0 Llye0
30 10 5040 53«0 Li8e0 760
17 9 65+0 65¢0 66+ 0
2l 8 780 800 86+0 1100
21 7 98¢0 10000 980
TABLE A3.1
Length Natural Frequency Dynamic
of Young'!s Mod-
SEEI; Hz. Rad/s ??3511:/1&
6 1100 691 2429
9 57+0 358 6+116
12 330 207 6+ 80
1L 29+0 182 9+70
20 2140 131 210
21 195 122 18+0
29 1540 96 49«0
42 1+5 80 147
L5 2+0 110 =0
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Greph (A3.5), the experimental curves for cantilever and shear
walls bear much the same relationship to one anofher as do the
theoretical curves for cantilever approximation and continuum
theory.
Graph (A3.5) illustrates the large variation in dynamic modulus
of elasticity of perspex measured, in the range of frequencies
used in the tesls. This large variation made direct comparison
of theoretical with experimental results difficult. Two sets
of theoretical results appropriate to E values of 6 x 105 1b/
sq in and 8 x ‘IOS 1b/sq in were calculated as being representative
of conditions at the ends of the experimental curves, These
are shown in conjunction with the experimental points in fGraph
(A3.6)e From this graph it can be seen that the values predicted
by the continuum theory match the experimental values well.
Coneddering that the range of E values is from approximately
9 x 105 1b/sq in at 25 Hz to 55 x 105 1b/sq in at 100 Hz and
that most of the variation occurs from 25 Hz to L5 Hz, if
each point on the theoretical curve was worked out for its
correct E value, the theoretical and experimental curves would
coincide almost exactly.
One disturbing aspect, however, is the lack of agreement of the
cantilever results with those predicted by the cantilever
approximation, although the discrepancy appears worse than it is,
due to the fact that the theoretical curves were worked out for
constant E values. The explanation of this is thought to be
that the end condition of complete fixity at the base was not in
fact achieved with the models and that as a result the experimental
curves, were displaced dowwards, If this were the case, then the

agreement between the experimental/
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curves in the case of the continuum theary is not as good as it
seems and the conclusion is that the continuum theory predicts
values which are too low. Whether or not this is the case could
only be established by further investigation.

The results of the experiments, therefore, were rather incon-
clusive, Good qualitative agreement was achieved, however,
between the theoretical and the experimental results in the
case of the shear walls and the tests do show that the natural
frequencies of the models were not dependent on their overall
dimensionse Further tests are envisaged to try and verify the

relationship between natural frequency and wall width.

43,6 FINAL CONCLUSIONS

By analysing shear wall type buildings with the continuum
theory, the natural frequency can be obtained in terms of two
constants a and b. These are simple expressions involving
only the elementary properties of the building components. A
chart similar to Graph (A3.7) may be constructed for design
purposes. To find the natural frequency of a building, a
designer has only to evaluate a and be The theory therefore
provides a method which is simple enough for design office use.
It is not considered that Graph (43.7) itself should be used
for design purposes. Before the method could be used, tests
on full scale buildings would be required in conjunction with
more model tests to establish properly the validity of the
theory.

The most significant conclusion is that a simple spproximation

to/
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to a building, such as a cantilever, can lead to misleading
results when used in dynamic calculations. The natural

frequency of a building is not necessarily a function of its
overall dimensions as has often been suggested. The investigation
demonstrates that while the height is an important parameter, for
multi storey shear wall strictures, the natural frequency is
dependent on the size of individual structural components. Thus,
for dynamic wind loading calculations, which are highly sensitive
to the value obtained for natural frequency, such rough approx-
imations as have previously been made could lead to large

errorSe



10
Nall
\ __—___—_—_——
"29s{'ppa T
& ‘Das{_'p_i;—i___
¥ 'DQSJ'PDJ 17_-:
o -
9 -
%m "23s5)'ppA G
Yo
e g .
=
2
K j
K 2295/'pDl O -—-9
\ ST
"23s/'po1 O 1
Das/pot gy
o
LA L A 3 A ) ALt 3 4 3 -Hllll.ll_l_ ' A =
o) - Q Q

A3.28.

Natural frequency curves plotted from equation

Graph A3.7



137

APPENDIX L

FORIULATION OF 'a' CONSTANT FOR A BUILDING WITH WALLS OF

UNEQUAL WIDTH.
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A three-wall building was chosen to illustrate the analysis.

Let the walls be A, B and C and the spaces 1 and 2,

IR IR NS

A

8

c

Applying equations(A3 ,1) and ({3.2) to each wall,

M
QH + :I'|1.1 + I‘1 % -a—'—% = 0 -oooo(i)
W i
QB +m1 +1n2 + (r1 +h2)?3- % = 0 l..Il(ii)
G e ”'2? -%—M-J% = 0 svaae124)
Differentiating these gives,
) 2
09  dm dry W,  OM,
a X + ax +a}c - T - ax = 0 .-oo.(i'?)
A% dmy dmy Oy Vg OT2 g 62M'lzs
dx 3x T ox "2_3;”2_'6?_
= 0 .lll.(v)
0 4 dm, T, W DM
T tiosE Y% TR °° seses(W)



139

From oquation (A3.2).

X s

3% C h ey 52 = e
d 2

JC:B 5 v e AB%? = 0 deeea(viii)
% az_
-—du—-- + tz + S& Ac-a—-b% = O .I.II(H)

Substituting in (vii), (viii) and (ix) from (iv), v) and (vi)

and adding gives,

3% . 3% om oM 8T h:
”§+§M}§+—8—-C_ ox  “ox dx (? T
Ox O x =

ar L) 32
R D ey TS 7O

Substituting for ‘%’:ﬂc j % and %‘2" glves,

EI, +1I +Ic)§—iﬁ 12EE;'11'%1 +;§§J g_} )
o 2 - ponwiF-
“3¥ -flate-begey)

o T
1 ¢2 1

Thus a = g |m=— (L+=) +e= (1, +=)

] T \'h‘le‘l ©4 h2e2 i 92}
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APPENDIX 5

SOLUTION OF EQUATION (A3.20) BY THE METHOD OF FROBENIUS




1

Equation (43.20) is of the form,

L 2

(6 15 4 d-f 2

_E + 'a—-z- + W "bf =0
dx dx

where a and b are constants, and (yan eigenvalue. The boundary

conditions are,

£ = 0 when x = O
%mo, when x = O
2

a°f
= 0, when x = 1
&
3
5=O, when x = 1

A power series solution may be obtained by means of the substitution,

; n+e
f = E, pnx
mn

Equation (6.21) becomes

Jmrcdnto-2)mrs -3 0T 4 a Tp (are)(atent w102
M

21

+bw22pn]{n+c = 0
"

Writing out the first few terms in each series, (6.21) becomes,
p_(0)(e-1)(0-2)(c-33° "4 + p(e + 1)(e)e = 1)(e - 21 73

L



L2
+ pylo + 2)(e )(e)(e = 17 4 p3(e + 3)(c + 2)(c + Wex® =2 % ..

E apo(c)(c -1 T 24 apl(c +1)(e)x’ - * apz(c +2) (c+ 1)x3+ oo

+ bo2p0xc F b"")zp"xc - + bwzpzxc *e + o 0000 =0
Equating coefficients,

c-L

x - Po(c)(c - 1) (c - 2) (c - 3) = 0, * ° ) (A)

(B)

i
(@]
.

L ]
L ]
°

272 e py(e+ D)o - 1) - 2)

Four independent solutions may therefore be obtained by letting

c =0, 1,2and3withp1 =Oa.ndpo = 0,

c =2 at
x = Py = G2 (o) . 5 F % . (8)

a! b!
Ph+ 2 © Tom+2)(cm+) Fn * (cm+2 ){(cm+l ){c+n )(cim=-1) Pn-2 ®)
where a! = -a and b! = -b

The coefficients for each series are found by substituting the

appropriate value for ¢ in equations (C) and (D).

The four series are,

c=0=/



143

2 L 6
c=0= £y =1 +at -éx—, + (b'wzmlz)f—, + (2b'02a'+a'3)%“7

8
2 .4 2.2 L\x
+ (b1 ™ +3b1ey %a% + at X g . .

2 2. 7

c +1 -=f2==x+a'§-,- + (btex € + at )BT +(2b'w2a'+a'3).?—,

L

+~(1::h'2(;._1h +3b'<,aza2 + alhg + . . .

S0 s P wel o 2tL 1 2 2, 6 1
c =2 f3 X + 7'-2-3[ -I-%B (b'm + at )x +§.:.b_ml

(2breo®ar 4 a®pyb . . . .«
c=3=f =3 + E'—'xs e (a2+b¢g2)x7+ L X
L 20 8Lo Gxcly, 50
(a'3 + 2afbw2) e i = . o

The solution ‘to (A3.20) is given by,

f(x) = Af1

where A, B, C and D are constants,

Applying the boundary conditions,

A:f.l(O) + Bf2(0) +Ci‘3(0) + th(O) = 0

Ai'{(o) + Bfé(D) + Ci‘3'(0) + Dfﬁ(o) = 0
A.f.[l(‘l) + sz"(ﬂ + 0f51(1) + nfﬂr(n = 0
Af{nu )+ szm('t )+ cr:;n(*r )+ Dfﬁ'l(‘!) = 0

The/
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The eigenvalues are found by setting the determinant to zero.

£, (0) £, (0) £, (0) £, (0) | = O
£ (0) 4 (@ 2 () z (0)
gt (1) g (1) g ()
f{ll (1) féli (1) f:;” (1) f)ili (1)
the determinant becomes,
1 9 0 0 = Q
0 1 0 0
i‘,"(l) i‘é'(l) i‘é'(l) f)_'"(l)
f{”(l) fa'"(l) fj“(l) f}l”(l)
Thus :E'?:'(l)x fﬁ"(l) e fﬁ'(l) xfé“(l) =0

The solution to this equation gives the eigenvalues of the system
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PRINCIPAL NOTATION

o+ ¢ Q

P
§

dimensionless coefficient used in energy analysis
index ef power law profile

area of cross-section

amplitude of structural vibration

amplitude of resonant fr?,quency component of wind turbulence
breadth of structure

dimensionless coefficient used in energy analysis
drag coefficient

virtual mass coefficient

coefficient dépendent on ground roughness
critical damping coefficient

cross-correlation coefficient

diameter of structure

logarithmic damping decrement

modulus of elasticity

damping energy per cycle

reduced damping energy per cycle

axcitation energy per cycle

reduced excitation energy per cycle

kinetic energy

strain energy

force

mode shape

gust factor

generalised/
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G(£) generalised displacement co-ordinate
L second moment of area

J(n) joint acceptance function

k ground roughness coefficient

Icc peak factor

kr generalised stiffness

L scale of turbulence

1 height of structure

M,mr generalised mass

m mass per unit length

Nr normalised mode function

n frequency

@ circular frequency

Py mean pressure at reference height
Py modal component of forcing function
P(z) mean pressure at height z

!‘0 | density

R(z,2'3n) (cross-correlation coefficient

(co-spectrum of wind velocities at z and z!
8¢ (1) spectrum of wind velocity

S (z,2':n) oross-spectrum of wind velocity at z and z!

Sp(n) spectrum of wind pressure

Sy(n) spectrum of structural deflection
root mean square deflection

Qv

¥,7, | mean wind velocity at reference height

v 22V, mean wind velocity at height z

Ve gradient wind velocity

v(t) /
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wind velocity

fluctuating component of wind velocity
relative velocity between wind and a structure
fluctuating component of relative velocity
velocity of a structure

aerodynamic admittance

mechanical admittance

deflection

mean deflection

fluctuating component of deflection

maximum deflection



