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ABSTRACT 

Three methods of land preparation, (i) partial clearance with hand held tools (Manual 

Regrowth), (ii) partial clearance with heavy machinery (Mechanical Regrowth) and (iii) 

total land clearance with heavy machinery (Complete Clearance), were investigated for 

their effects on soil physical and chemical properties, nutrient dynamics and the survival 

and growth of Terminalia ivorensis in a tropical lowland rainforest at an altitude of 650 

m in Cameroon. 

The soils of the study site are ultisols, with a sandy to sandy clay surface soil 

texture. They are highly weathered, acid, with an average topsoil (0-20 cm) pH of 4.3, 

and poor in nutrients. Total N and P contents of the 0-20 cm topsoil were 0.12% and 

0.015% respectively, exchangeable base values were, 0.11 cmol kg 4  for K, 0.28 cmol 

kg1  for Ca, and 0.20 cmol kg for Mg. Subsoils (20-40 cm) showed low 

concentration of nutrient elements but a slightly elevated pH (4.4). 

The small litter fraction on the forest floor was estimated at 3.8 t ha 4 . Three 

months after clearance (August, 1987), there were increased litter amounts in the Control 

(5.23 t ha 1 ) and Manual Regrowth (5.89 t ha1 ) plots, and a reduction in the 

Mechanical Regrowth (2.70 t ha 4 ) and Complete Clearance (0.95 t ha4) plots. Fifteen 

months later, litter amounts had increased in all the plots. The Manual Regrowth and 

Mechanical Regrowth plot had increased twofold to 10.6 t ha 1  and 5.16 t 

respectively, while there was almost a fourfold increase in the Complete Clearanc4plot 

(3.14 t ha 1 ). 

The pattern of soil nutrient dynamics (total N, P and exchangeable bases K, Ca, Mg) 

and pH in the Mechanical Regrowth and Complete Clearance plots showed an initial 

increase at three months after clearance before dropping one year later. In contrast, the 

Manual Regrowth plot showed an opposite pattern for exchangeable bases. 

Bulk density results showed significant and very significant soil compaction, 1.34 ± 

0.19 g cm 3  and 1.52 . 0.08 g cm 3  in the Mechanical Regrowtlind Complete 

Clearance plots respectively, as opposed to 1.31 ± 0.06 g cm 3  in the Manual Regrowth 

plot and 1.16 ± 0.07 g cm 3  in the Control plot. 

Total fine litter-fall over the one year study period was significantly affected by the 

mechanized methods, Mechanical Regrowth plot 6.93 t ha 4  and Complete Clearance 

plot 1.83 t ha4  as opposed to 9.9 t ha4  for the Manual Regrowth and 12.09 t ha 4  for 

the Control plots. No significant differences were observed in nutrient concentrations of 

these litters. However, there were significant differences in total nutrient (N, P, K. Ca, 
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Mg) inputs in the Mechanical Regrowth and Complete Clearance'plots, 240 kg ha 1  yf 1  

and 63 kg ha4  yr respectively, as against 463 kg ha 4  yr4  in the Control and 349. 

kg ha yr4in the Manual Regrowth plots. 

Decomposition of leaf litter was studied using litter bags. Percentage weight 

remaining after six months was significantly different in the Mechanical Regrowth and 

Complete Clearance plots, 4% and 21% respectively. K values (yr) ranged from 3.0 

in the Complete Clearance plot to 6.6 in the Mechanical Regrowth plot with similar 

values of 4.4 and 4.6.record4 in the Control and Manual Regrowth plots respectively. 

There was a net accumulation of N and P, and decrease in K and Ca concentrations in 

the leaves over the study period. Ca showed a pattern of decline at the end of the study 

but its values were. high, around levels of original concentration. Nutrient content 

followed a general pattern of decline similar to that of leaf litter weight loss. 

Percentage survival of trees was similar in the Manual Regrowth (90%) and 

Mechanical Regrowth (89%) plots and low in the Complete Clearance (82%). However, 

average tree growth after 23 months was, 178 cm in height and 29.1 mm in diameter in 

the Manual Regrowth plot, 299 cm in height and 47,3 mm in diameter in the Mechanical 

Regrowth plot and 343 cm in height and 44.1 mm in diameter in the Complete Clearance 

plot. Other factors being equal, the growth of Terminalia ivorensis was favoured by high 

light conditions. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.0 	Introduction 

Large areas of forest are currently being cleared for development in the tropics 

principally for, agriculture but also for 'a number of purposes including a relatively 

small proportion for silviculture (Boerma, 1975; Boer, 1977; Thijsse 1977a, 1977b). 

It is therefore important that there should be appropriate methods of land clearance and 

management aimed at conserving the soils as a resource and creating a favourable 

environment for the establishment of young trees (Cunningham, 1963; Synnott and 

Kemp, 1976; Sanchez, 1979; Lal and Cummings, 1979; Lal, 1986). 

Land clearing in tropical rain-forests involves the modification of complex 

ecosystems by the partial or complete removal of existing vegetation so that the land 

may be used for purposes other than management of natural forest. Generally 

speaking, the issues surrounding tropical land clearance are more complex than 

corresponding issues in temperate regions. Higher temperatures, which accelerate 

degradation of soils and high rates of precipitation which are instrumental in removing 

soil and soil nutrients by leaching and erosion, create potentially unstable 

environmental conditions. Tropical rainforests are especially vulnerable, for in them 

the effects of a particular method of clearing can cause greater harm than in the drier 

forests of the tropics (Ross and Donovan, 1986) or in non-tropical forests. Land 

clearance, the first step in plantation establishment, can cause irreversible damage to 

soils and the plant environment when not properly planned. The consequences of 

natural forest conversion into plantations in the tropics is poorly understood. The 

complexity of these forests makes land clearing a dramatic ecological event with 

far-reaching implications on, for example, the soil conditions of the site (Lundgren, 
1978). 

Ecological studies in tropical rainforests have focused almost entirely on the 

natural ecosystem. With extensive deforestation and a growing interest in the 

'establishment of forest plantations, it is becoming increasingly important to extend 

these ecosystem studies into man-made forests. 

The lack of ecological research into the dynamics of these forest plantations 

makes it virtually impossible to make positive recommendations to foresters as to the 



probable environmental and silvicultural benefits or dangers of establishing plantations 

using different forms of site preparation (Mason et al. 1989) 

The present study, lays the foundation for a long term ecological study, 

concerning the nature and effects of three land clearing methods used for silviculture in 

Cameroon. These methods (Manual Regrowth, Mechanical Regrowth and Complete 

Clearance abbreviated henceforward to Man. Reg., Mech. Reg., and Comp. C. 

respectively) were believed to have differing effects on soil physical and chemical 

properties and on the growth of Terminalia ivorensis, the major planted tree crop. An 

understanding of the impact of these different systems was' considered at the onset of 

this research to be very important for the planning of future land clearance and 

subsequent management of plantations. The general lack of such information and data 

on silvicultural activities has accounted for many of the mistakes that have been made 

in the planning of major planting projects (Synnott, 1975). 

The extent of the importance can be judged by the attention that plantations have 

received in tropical forest management in recent years. After briefly appraising the 

nature of tropical forests, this introduction will serve to review silvicultural activities 

and their implications with particular reference to plantation establishment. In 

addition, increasing concern has been shown by conservationists and soil scientists 

about land clearance since heavy equipment mounted on crawler tracks became 

available from 1945 onwards. 

1.1 	Appraisal of tropical rainforests 

The world's tropical rainforests (TRFs), considered to lie in a belt centred on the 

equator and extending 23* north and south to the tropics of Cancer and Capricorn 

comprise one of the most diversified ecosystems found on earth, perhaps,matched in 

cothplexity only by the underwater life of some coral reefs (Longman and Jenik, 

1987). 

The total extent of tropical moist forests, which include both tropical rainforests 

and tropical moist deciduous forests, is not known accurately, but was recently 

estimated at 1,081 million hectares over half of which is found in Latin America 

(Sommer, 1976; Lanly, 1979, 1982; Grainger, 1984). The relative proportions of 

tropical rainforest and tropical moist deciduous forests were estimated by Persson 

(1974) at 2:1 and upon this basis the area of tropical rainforests is estimated at between 

600 and 700 million hectares (Grainger, 1988). 

The importance of TRFs, enhanced by their richness and species diversity, has 
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been extensively reviewed by many authors (such as, Poore, 1976; Myers, 1980, 

1983; Evans, 1986; Kwesiga, 1984; Ramdass, 1987). Despite the importance and 

significant socio-economic contribution of these forests to the peoples of these 

regions, their rate of deforestation in the last 10-20 years has caused considerable 

concern (Grainger, 1980, 1983; Myers 1980b). In some countries, loss of forest has 

gone on steadily for over thousands of years; in others, it is a recent occurrence. But 

only in the last 150-200 years has net destruction of forest taken place in almost every 

country, and over the past 10-20 years, the rate of disappearance has increased sharply 

(Evans, 1986). 

The reasons for TRF deforestation are abundant and have been extensively 

reviewed (Poore, 1976; Myers, 1979, 1980a; Caufield, 1982; Steinlin, 1982; 

Kwesiga, 1984; Jordan, 1985; Evans, 1986). They can be briefly summarized as:- 

the pressures exerted by the expanding population of peasant farmers and their 

practice of shifting agriculture, 

the need of many tropical countries for the capital gained from the export of 

timber and agricultural products grown in previously forested areas, 

ili) 	logging by multinational corporations and 

iv) improved means of access and communication that have opened up inaccessible 

areas for exploitation and land development. 

In response to the great concern about TRF destruction, many suggestions and 

propositions for better management have been made and several other initiatives taken 

by both international agencies and local institutions (see the review by Kwesiga, 

1984). The most obvious and on-the-spot solutions are those concerned with:- 

increased research and development of TRF resources, 

increased education and public awareness about the importance of TRFs, 

development of alternative technologies to reduce demands on tropical products 

and lands and 

an attack on the causes of the pressures upon these forests including 

unemployment, food and energy deficiencies and uncontrolled population 

growth. 

One solution for the future of TRFs which seems to be rapidly gaining ground is 

the establishment of artificial forest plantations to relieve pressure on the natural forest 

by providing timber, fuelwood and other primary products normally obtained from 

natural forests. 
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1.2 	Plantation forests in the tropics 

Interest in plantations in the tropics is increasing rapidly. Table 1 shows that the 

area of plantations increased almost three times between 1965 and 1980 and that the 

forecast rate of planting in the 1980s is double that of the 1970s. 

Region 1965 1980 1985 

Africa 1,423 2,595 3,643 

Asia including southern china 4,420 10,323 15,862 

Australia + Pacific Islands 70 262 384 

Central America + Carribbean 218 510 759 

• South America 570 4,211 6,901 

Estimated area between about 

27
0
NandSoftheequator. 6,701 17,901 27,549 

Table 1: 	Areas of plantations in the tropics by continents in thousands of hectares. 

(After Evans. 1986). 

The reasons for the interest and rapid increase in plantation establishment are 

reviewed by Evans (1986) and can be summarized as:- 

Past and continuous destruction of the natural forests, 

problems of access to existing forests, 

unsatisfactory rates of natural regeneration, 

land availability, 

high productivity of plantations, 

plantations as a tool of development and 

environmental forestry. 



It is naive to assume that all plantation schemes develop only for the above 

suggested reasons. Large regular plantations are politically impressive, they are clear 

evidence of development in perhaps otherwise remote areas. In the Amazon for 

example, 'development' signified changing the forest to more productive land use. A 

good number of projects have developed more from political motives than for reasons 

of silviculture (Evans, 1986). 

Forest plantations in the tropics will clearly play a very important role in future 

world wood supply. Moreover, if the rate of afforestation is substantially increased, 

plantations can begin to relieve the pressure on the dwindling reserves of the natural 

forest. As recommended by the Eleventh Commonwealth Forestry Conference 

(1980), production of wood for industrial purposes and for fuel will have to increase 

in the coming decade and will increasingly rely on plantations and other intensive 

forestry practices. 

1.2.1 	Development of plantation forestry 

Between 1965 and 1980 the area of forest plantations (mostly with exotic 

species) in the tropics has trebled. Most countries have undertaken some planting and 

many more are now committed to large afforestation programmes. Though some 

countries commenced plantation establishment earlier than others, the recent upsurge in 

planting has occurred nearly everywhere (Evans, 1986). The expansion in recent 

years, cannot be viewed in isolation since projects today draw on silvicultural 

information from scattered trial plots and small plantations established in the past. In 

addition over the last 30 years, much stimulus has come from the rising of nationhood 

and independence (economic as well as political) across the developing world. Also 

this period has seen a new internationalism in world affairs particularly in aid and 

development such as the United Nations Organization for Food and Agriculture 

(FAO), the Development Programme (UNDP), and the World Food Programme 

(UNWFP), the development banks, bilateral aid programmes between poor and rich 

countries, and direct investment by industrial nations in developing countries. All 

these moves have shifted the emphasis from exploitative to a more sustained spectrum 

of management techniques. 



1.3 	Silviculture in the Tropics 

Because most tropical countries were once the colonies of various European 

powers, their present silvicultural practices have developed along lines similar to 

European schools of thought and principles, but the application of these principles 

revealed that they were inapplicable to a large extent and led to silvicultural mistakes 

• 	(Stracey, 1959), primarily because tropical ecosystems are so complex and little 

• 	understood. Faced with such a heterogeneous and multi-aged structure, the first 

reaction of foresiers has been to simplify the composition of the forest by reducing the 

number of species to the most valuable ones. The second reaction was then to convert 

the forest intoas regular a stand as possible for the easier treatment and management 

which this form permits. It was thought that these actions would simplify the 

problems of natural regeneration and assure its perpetuation. The silvicultural systems 

which have been applied to tropical rainforests belong to one of two kinds which are, 

the polycyclic and monocyclic systems respectively (Troup, 1952; Dawkins, 1958). A 

number of the most relevant systems are considered briefly below. 

1.3.1 	The Selection System 

It is a polycyclic system based on the repeated removal of selected trees in a 

continuing series of felling cycles, whose length is less than the rotation age of the 

trees. The aim is to remove trees before they begin to stagnate and deteriorate from old 

age, leaving all appreciated stems to swell the future yield. Because of the very rich 

nature of most tropical rainforests, and the relatively small numbers of species with 

timber which is commercial by current standards, extraction on a polycyclic system 

tends to result in the formation of scattered small gaps in the forest canopy (Whitrnore, 

1985). This system, called' the selection system, because of the selective nature of the 

felling has had many variants. 

In Asia, this form of silviculture in the early days consisted of the removal of 

commercially valuable trees with little attention to possible stand degradation or 

regeneration. It was assumed that enough seeds were available on the forest floor for 

regeneration purposes. In some places, a minimum girth limit was established for 

exploitation, while in other places a proper selection developed as foresters gained a 

better perception of their actions on the structure of the forests. Some foresters 

express satisfaction in the proper selection system, while others have misgivings about 

the attention paid to the natural regeneration and the effect of increased mechanization 
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(Rosayro 1954). 

In Africa where silvicultural activities started in 1900-1905 in Nigeria and 

1925-1980 in other regions, early commercial exploitation was also similar, without 

much or any concern for the condition and quality of the residual stand. Aubreville 

(1949) and speakers at the first International Forestry Conference (Anon, 1951) both 

pointed out the inevitable impoverishment that can result from such a policy, in terms 

of degradation and loss of speëies. 

1.3.2 	The Shelterwood System 

The most widely practiced monocyclic system and still in very common use in 

the tropics is the shelterwood system. In contrast to the polycyclic systems, 

monocyclic systems remove all saleable trees at a single operation, and the length of 

the cycle is more or less equal to the rotation age of the trees. Except in those cases 

where there are few saleable trees, damage to the forest is more drastic than under the 

polycyclic systems, the canopy is more extensively destroyed and bigger gaps are 

formed. The shelterwood system involves the establishment of young tree crops 

under the shelter of the old one, before final felling of the main tree crop (Troup, 

1952). 

In Asia, progressive coupés were introduced as in Europe. This system 

involved several fellings at intervals of a few years, with poisoning and girdling of 

unwanted stems. The main crop was harvested when regeneration was 5-10 years 

old, and after one or more clearing and girdling the area was passed as regenerated. 

This system had its problems. The first was inadequate amounts of commercial 

species that were available and secondly, there were technical and economic problems 

of extraction. But the most crucial problem was with regeneration. The commercial 

species had great competition with unwanted species, lianas and weeds. To avoid 

weeding expenses, the canopy was kept more closed to reduce light in the stand. 

However, because the majority of the valuable species were light demanders, canopy 

closure affected their growth. 

In Africa in 1944, the British foresters introduced a sequence of cutting 

operations under the title Tropical shelterwood system (TSS) (Lancaster, 1961; Lowe 

1978), based on success of similar practice in India and Burma (Catinot, 1965; Lowe, 

1978). The system consisted of canopy opening, by poisoning unsaleable trees to 

promote survival and growth of seedlings of desirable species, and also climbers and 

herbaceous weeds. The treatments were begun 5 years before exploitation. Originally 
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the felling cycle was fixed at 100 years, and a final crop of 25 fully grown trees per 

hectare was regarded as acceptable, compared with actual removals at the time of 5 

trees per hectare on average. Satisfactory regeneration was regarded as a minimum of 

100 well grown seedlings per hectare. The general effect of this method was to 

increase the amount of regeneration ( Donis, 1954; Foggie eta!, 1952). Since the trees 

aimed at in the regeneration process in this case were shade-tolerant, the problems 

encountered in Asia with the light demanders were absent. 

The French on the other hand, who arrived in Ivory Coast later, instituted 

enrichment planting in lines, bands and blocks, with natural regeneration being 

applied only in some special areas and forest types (Catinot, 1965). The reason for 

having to plant was that the forest had very few individuals of the valuable species and 

not enough seedlings of these species, occurring as natural regeneration. The usual 

practice was to cut parallel strips 5 metres wide at 20-25 metres apart and seedlings of 

desired species are planted at spacings of 2-5 metres apart. The problem with these 

techniques was the fierce competition from strong light demanders and line invasion 

by lianas which have to be removed constantly - an expensive operation. The system 

was also introduced on a trial basis in Cameroon. 

The shelterwood system was also introduced in tropical America around 1930 

for most of the areas where attention was paid to natural regeneration (Fanshawe, 

1952). Here as in Africa, no light problem was posed to species as they were shade 

tolerant. In most of the tropics these systems have been abandoned or modified and 

new systems have been introduced. 

1.3.3 	Present Systems 

Present silvicultural systems have evolved as a result of some of the problems 

summarized in section 1.2 above and have developed along different lines relating to 

specific conditions and structure of the forests, tree species and policies of the country. 

For example, in Malaya, because of increased mechanization, more species utilization 

and the necessity to obtain adequate returns, the shelterwood system gave way to the 

Malayan Uniform System, which involves extracting all the marketable species in a 

single felling (monocyclic system) (Whitmore, 1985). The canopy opening in this 

case favours the commercial light demanders, but it works well only when there are 

adequate seedlings and if advance growth is removed. However, with the prospect of 

exhaustion of the forest resources in Malaya in the mid- 1970s, the Malayan Uniform 

System was incorporated into the Selective Management System (Mok, 1977). This 



involves a pre-felling inventory after which one of three procedures is chosen - thus 

the term selection. The areas richest in adolescent trees of commercial species are 

managed on a polycyclic system with an intermediate felling; the areas without these 

are managed by the Malayan Uniform System; and areas with poor natural 

regeneration of desired species are to be enriched by planting or replaced by closed 

'compensatory' plantations. 

In Africa, the TSS has been abandoned in most places and replaced by 

monoculture plantations of fast growing indigenous and exotic species. However, it is 

intended that after a complete inventory of the remaining natural TRFs there could be a 

reintroduction of a modified form of TSS (Ramdass, 1987). 

1.3.4 	Silvicultural Activities in Cameroon 

1.3.4.1 Brief Outline of Development 

Silvicultural activities in Cameroon started in the forest Reserves of Ottotomo 

and Makak in 1930 and 1936 respectively. They have followed a similar trend to that 

of most of the TRF countries in Africa, as reviewed by Catinot (1965). Many 
silvicultural techniques have been tried in Cameroon (Catinot, 1965; Mbandji 1985) 
including:- 

Tropical shelterwood system 

This was tried in Mbalmayo but later abandoned because of many problems and 

difficulties, such as insufficient and irregular plant growth as a result of 

inadequate light reaching the ground. This poor illumitiation did not favour 

growth of light demanders. Perhaps more important, however, was the 

lack of fmance to ensure the expensive weeding and plant maintenance. 
Merhodes des placeaux 

This method of natural forest enrichment was tried in Kribi (1947) and 

Bonepoupa (1956) using two species, Okoumé (Okoumea kianeana) and 
Ilomba (Pycnanthus angolensis) respectively. An inventory of these forests 

revealed they contained very few commercial species to enable adequate natural 

regeneration. Small blocks of 4x4 m were marked out at regular distances of 10 

m in these forests. Lianas and herbaceous undergrowth were removed before 

nursery stock was planted as close together as possible. After the establishment 

of the plants, shrubs inside the blocks were progressively removed including 

some understorey trees. The trials were, however, abandoned and no results 
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are available about the outcome of these plantations. 

Taungya 

This is an agro-forestry system that was first introduced in Burma in 1956. It is 

the practice of establishing artificial forest tree plantations using a farmer or paid 

labour to clear land and plant both annual food crops and forest tree nurse 

stocks. The farmer is then responsible for the early tending of the forest trees 

alongside the food crops. This system was introduced in the South West and 

North West Provinces of Cameroon in early 1958 (Ngeh, 1985) and later in the 

Littoral and Central Provinces. It is still currently practiced in the latter 

provinces and the North West Province though on a very small scale. 

Methodes des Layons (Line Planting) 

This method recommended by Aubreville and first used in Gabon between 1932 

-1949, was extensively used in Cameroon but was abandoned in 1968. 

Initially, this method consisted of cutting 2 m wide strips at distances of 5 m 

apart in a N-E direction in the forest. Trees were then planted at distances of 3-5 

m within these lines. The initial 5 m interbands were progressively increased to 

10 m and then 20-25 m. Also the initial 2 m wide strips were later considered 

too narrow to allow adequate light to the soil and hence enlarged to 4 m by 

Catinot and renamed Methodes des grandes layons. This method was used 

mostly for mixed planting trials. Although no longer in use, results of some 

plantations in Ottotomo, Bonepoupa and Makak forest reserves seem 

satisfactory (Mbandji, 1985) 

1.3.4.2 Present Silvicultural Systems 

Currently, silvicultural activities in the rainforest zone of Cameroon are based on 

two systems, the Methode reçru (Manual Regrowth) and the Mechanical Regrowth 

which are infact just methods of partial land clearance. In other parts of West Africa 

e.g Ivory Coast, complete clearance of the plantation site is done by bulldozer. This 

method, still under consideration for future use in Cameroon, is investigated in this 

study. 
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1.3.4.2.1 Manua' Regrowth method (Methode reçru) 

This method was first introduced in Cameroon in 1968 - 1969 and declared as 

the official silvicultural system for regeneration in the rainforest zone in 1973. The 

method was first introduced in Gabon in 1958 in order to reduce plantation costs on 

one hand and on the other hand reduce soil baring by heavy machinery in the Methode 

Okoumé (see below), that favoured land invasion by Musanga (Musanga cecropio ides) 

and noxious weeds. Generally this method aims at giving the plants adequate light 

conditions by the progressive removal of the existing forest cover. The method 

consists of cutting back the undergrowth with hand tools (matchets and axes) and 

poisoning the dominant vegetation. Depending on the light requirements of the planted 

species (shade-tolerant or light demanding) poisoning is done at once or progressively 

with plant establishment. Basically this method aims at:- 

protecting the soil by cutting back the undergrowth and small trees 

(diameters !!~ 30 cm) at 40-50 cm above ground, 

preventing the possible invasion of Musanga and Eupatoriwn through the rapid 

revegetation of the undergrowth which reduces seed input to the soil and 

prevents light reaching the soil for their growth, 

enhancing plant growth by creating ambient conditions (temperature and 

humidity) similar to those of the natural forest (plate 1). The work procedure can 

be briefly summarized in five stages as illustrated in figure 1A. 

Location and demarcation of treatment plots. 

Cutting of shrubs, lianas, lower canopy vegetation and small trees. The soil is 

left undamaged. 

Pegging, line opening, digging of holes for planting (pitting) (approximately 30 

cm wide and 30 cm deep) and planting. 

Poisoning of big trees, alongside weeding and plantation maintenance. 

Weeding, plantation maintenance and abandonment once the planted trees 

completely dominate the surrounding vegetation. 
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Plate 1: Situation of site after clearing using the Manual Regrowth method. The 

dry forest floor litter, not burned, together with the big trees provide soil 

protection and is also a source of plant nutrients. Rapid revegetation of the 

slashed undergrowth create around plants ambient conditions similar to 

those of the natural forest. 
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Figure 1: Diagrammafic i llustration of the different me thods of land clearance. (A), Manual Regmwth, (B), Mechanical Regrowth, (C), Complete Clearance. The desired result 
in about 10 years is a complete dominance of the suriunding vegetation by the planted Framiré trees, piobably with treatment effects evident in their growth. 
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1.3.4.2.2 Mechanical Regrowth method 

The Mechanical Regrowth Method was introduced in the Mbalmayo forest 

reserve in 1985 as a modification of the Manual Regrowth method. It was designed to 

accelerate land clearance and had been long used in Gabon for the establishment of 

Okoumé plantations (Methode Okoumé) but later abandoned in favour of the Manual 

Regrowth method (Catinot, 1965) for reasons explained above. The main difference 

in technique with the Manual Regrowth method is that the undergrowth and smaller 

trees are cleared using a bulldozer (a straight rake D8 bulldozer in Mbalmayo - plate 2) 

and pushed to form windrows. This results in soil baring (plate 3) and, as was the 

case in Gabon, land invasion not only by Musanga but also Eupatorium which is 

causing some concern and making weeding very expensive even though it is 

semi-mechanized (using strimmers). This problem of weed invasion raises the 

question about how much the foresters knew about this method and what solutions 

were envisaged to counter the problem. 

The work procedure is generally very similar to that of the Manual Regrowth 

method and can be briefly summarized as above in five main stages (Figure 1B). 

Location and demarcation of treatment piots. 

Clearing of undergrowth and small trees and pushing to form windrows using 

heavy machinery. Big trees are left behind and subsequently poisoned. Soil is 

left bare with an undulating surface as a result of scraping and deposition. 

Pegging, 'pitting', and planting. 

Poisoning of big trees, alongside weeding and plantation maintenance. 

Weeding, plantation maintenance and abandonment once the planted trees 

completely dominate the surrounding vegetation. 
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Plate 2: The 23.51 tonnes, D8 straight rake, bulldozer used in the clearance of the 

Mechanical Regrowth and Complete Clearance plots. Topsoil 

displacement was mostly by the felled slash and trees being pushed to form 

windrows. 
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Plate 3: Site situation after clearing using the Mechanical Regrowth technique. The 

soils are relatively disturbed, but the big trees offer some soil protection as 

well as providing it with nutrients. A fairly random distribution of organic 

litter is left behind. Slighly visible to the right of the picture is the edge of 

a windrow. 
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1.3.4.2.3 Complete Clearance method 

As mentioned earlier, this method is not yet in use in the rainforest zone of 

Cameroon but is extensively used in Ivory Coast. However, it is under consideration 

for future regeneration projects, hence it is important that the implications of the 

technique are well understood and mastered. This method is identical to the method 

of conventional bulldozing commonly used in agriculture and consists of the complete 

removal of the vegetation with heavy machinery enabling the possible mechanization 

of subsequent silvicultural operations. It has drastic consequences through complete 

soil baring and compaction and removal of organic litter from the site (very different 

from previous systems) (plate 4). Land invasion by Musanga and Eupatorium is more 

intense as a result of the more complete exposure of the soils. 

The work procedure in this method though different in many aspects to the 

above methods can similarly be summarized in five stages (Figure 1C). 

Location and demarcation of treatment plots. 

Complete vegetation removal and pushing to form windrows with heavy 

machinery. This leaves a completely bare and very undulating soil surface as a 

result of topsoil scraping and deposition. 

Pegging, 'pitting and planting. 

Weeding and plantation maintenance. 

Weeding, plantation maintenance and abandonment once the planted tree crop 

completely dominates the surrounding vegetation. 
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Plate 4: Land situation after clearing using the Complete Clearance method. Soils 

are completely exposed to maximum climatic and environmental effects. 

Note the compaction resulting from the bulldozer tread lines. 
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Many techniques of land clearance are in use in the tropics with varying effects 

on the soils in particular, and the ecosystem as a whole, depending on a number of 

factors such as the soils, vegetatipn type, clearing implements, knowledge and 

experience of labourers. Lal (1986) has extensively reviewed the different methods 

used in tropical land clearance, which can be grouped by intensity of disturbance as 

follows:- 

Manual Clearing without burning - causes slight physical and moderate but 

short term chemical and biological impact. 

Manual Clearing with burning - burning has greater chemical and biological 

impacts as a result of high temperatures and more physical disturbance due to 

soil baring. 

Semi-mechanized clearing - basically manual clearance but with a more complete 

canopy opening by tree felling with chain saws. Disturbance is more intense 

than in the manual methods and varies according to the amount of exposure 

and whether debris is burnt or not. 

Mechanized Clearance - there are various types of mechanized clearance using 

heavy machinery with accessory attachments such as, shear blades, straight 

- blade, root rake, stump removers, tree pushers, tree crushers, chains etc. All 

these generally cause drastic disturbance to the soils. 

Chemical Clearance - this is not very common in the moist tropics but 

sometimes appropriate for savannah regions with sparse trees. 

Most of the various forms of mechanized clearance are more extensively used in 

agriculture than forestry where liming, fertilization and other expensive soil 

improvement measures are envisaged in subsequent management operations. 

1.4 	Review of effects of land clearing methods on tropical forest 
ecosystems 

Numerous studies have reported effects of different land clearing methods on 

tropical forest ecosystems (Seubert et al, 1977; Lundgren, 1978; Sanchez et al, 1983, 

1985; Jordan, 1985; Fölster, 1986; Lal, 1986; Lawson, 1986; Mambani, 1986; Palm 
et a!, 1986; Ross and Donovan, 1986; Soane, 1986). These effects are summarized in 

Table 2 and their changes with time are summarized in Lundgren's model (section 

4.0). 



Land clearing 
0b jec ye 

Environmental 	 impact 
Manual 	methods I 	Mechanical 	methods procedure 

To cut shrubs, vines and 
Underbrushing 

lower canopy vegetation. 
m Disturbs lower levels, 	cluding ground surface, of forest ecosystem 

Removal of tree stumps and boles with tree 
Felling trees To bring down trees and Tree stumps and roots are left in place. pushers results in large holes which must 

larger woody vegetation. be filled, uaially with surrounding topsoil 

Felling with blades (KG) leaves roots in 

place lessening soil disturbance. second 
compaction process begins. 

Unless correct attachments are used, topsoil 
To rake felled debris into Not done, debris is left to dry 

Windrowing long piles for ease of where it falls. 
is removed with debris, subsoil is bared, 

 
soil is compacted for the third time. 

burning. 

Drying of To reduce moisture content In situ drying of debris is most 	effective. Debris at the bottom of the pile insufficiently 
vegetation in vegetation and facilitate dried thus hindering burn. 

burning.  

To remove as much vegeti- Extensive burning can remove up to 95% of Piling resulis in very hot burns in small 
Burning ye debris as possible, also debris, reduces soil micro-organisms, areas; concentrate ash to high levels not 

release of nutrients. leaves incomplete burnt stems and stumps, immediately useful to plants; subseqently 
evenly distributes ash over the area. leaching by erosion in the first downpour 

wastes potential nutrients. 

Removal of vegetation and humus bares soil to direct impact of sun's rays and heavy 

tropical rainfall. Heavy rains on bare soils may result in wide spread erosion. 

Table 2: Impact of various land clearing methods on soil and site conditiciis in tropical rainforests (After Ross and Donovan, 1986) 

0 
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Some other important ecosystem effects of tropical deforestation are on climate 

and hydrology. The destruction of tropical forest produces the major part of carbon 

dioxide release to the átmosphëre (Palm et al, 1986). Thornthwaite (1956) observed 

that climates owe their individual character to the nature of the exchange of 

momentum, heat and moisture between the earth's surface and the atmosphere. On the 

basis of these interactions between the air and the underlying surface, it may be 

deduced that changes in the surface properties have an inherent potential to induce 

changes or modifications in climate (Lawson, 1986). Drastic effects on soil hydrology 

can occur when forest is removed through alterations of infiltration and evaporation 

rates as a result of soil disturbance. The most important effect of land clearance which 

has been widely investigated is its effect on plant nutrient availability and dynamics. 

1.4 	Nutrient Cycling in tropical forests 

Nutrient cycling is one of the most important topics of tropical forest ecology. 

The highly weathered profile of tropical soils is poor in nutrients. Thus the usual 

explanation for the frequent presence of tall trees, strikingly luxuriant forest 

communities and high production lies in the existence of very efficient mechanisms for 

capturing and retaining nutrients within these ecosystems. This includes both the 

limited resources of nutrients contained in the soil, and those entering from the 

atmosphere. Such efficient nutrient cycling implies rapid uptake, economic utilization 

and conservation against loss from the ecosystem. Efficient cycling of nutrients has 

been recognized as one of the most striking characteristics of mature tropical forests 

(Golley.  1983; Jordan, 1985; Longman and Jenik, 1987; Proctor et al, 1983). 

The movement of nutrient elements within the forest ecosystem is governed 

primarily by its biotic components or by the presence of particular producers, 

consumers and reducers (Longman and Jenik, 1987). Although the rates of flow of 

non-volatile nutrient elements through the ecosystem differ, as do their stocks in given 

ecosystem compartments, the pathways and storage compartments of all non-volatile 

nutrients are similar (Figure 2). Site preparation disrupts these flows and 

compartments and some methods may be more disruptive than others and the system 

may have only a limited capability of 'repair'. It is very difficult if not impossible, to 

study all the ecosystem compartments at any given point in time. This study is 

interested in investigating, and where possible quantifying, the effects of the three land 

clearing techniques on litter-fall and ground litter amounts, and selected properties of 

surface and subsoils, (compartments 1, 2 and 3, Figure 2). 
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Figure 2: 	A diagrammatic model of the cycling of materials in an ecosystem. 

(After Golley, 1983). Compartments 1, 2 and 3 are investigated in 

this study. 
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1.6 	Justification of the present study 

Deforestation in the moist belt of the countries of West Africa (Sierra Leone to 

Congo), is running at 772,000 ha 1  and Cameroon accounts for 10% of this area 

(Mason et a!, 1989). In Cameroon more than 45% of the forest area is open to 

exploitation and the contribution of forest to the gross national product is very 

significant (Foaham, 1982). The rate of deforestation was recently estimated at 

100,000 ha an', with an estimated forest area of 16.5 million hectares remaining, 

these forests would disappear in about a century and a half if present rates continue. 

This has given rise to much concern and the government is taking appropriate 

measures to relieve the pressures on these forests. These include personnel training 

recycling programmes with special emphasis laid on plantation establishment under 

the responsibility of a government agency ONAREF (Office National des 

Régénerations des Fôrets) created in 1982. 

Total re-afforestation in the West African belt has been only 331,000 ha in this 

century and over 80% of this with exotic species. Most of the indigenous hardwood 

plantations are small with low levels of survival and poor growth. In Cameroon, the 

total plantation area, since silvicultural activities began in 1930 in the forest zone was 
estimated in 1986 at 535,816 ha. The sixth five year plan currently under execution 

envisaged annual plantation creation by ONAREF at 3000 ha. It is therefore important 

that appropriate methods of land clearance are used and adequate management 

techniques envisaged in order to achieve this objective. 

Land clearing methods have a strong impact on short and long term soil and 

nutrient dynamics of the site and its environment. Variation in the response of soil to 

clearing and plant establishment is related to the initial soil properties, land clearing 

methods, intensity of burn, rainfall distribution and post clearing management 

practices. The type of crop whether an annual crop, pasture or tree crop, is somewhat 

irrelevant at this stage. The most important factor is the rate at which plants establish a 

ground cover. The soil therefore is the main support for plant survival during the early 

stages of plantation establishment, hence the need for appropriate methods of forest 
clearance. 

Fully-cleared sites like those of SODEFOR (Societe des Dévélopement des 

Fôrets) in Ivory Coast and the complete clearance (this study) are thought to be 

extremely damaging to soil structure and to fertility because of soil exposure to rain 

impact, erosion and leaching and fine root destruction. This damage may have serious 

effects on the growth and on the re-establishment of a balanced ecosystem, and yet this 



24 

form of site preparation for forest plantation is common. By contrast, where the 

natural vegetation is retained in harmony with the planted crop (Manual Regrowth of 

ONAREF), the trees can grow well, the invasion of Musanga and noxious weeds like 

Eupatorium is minimized, the nutrients which might otherwise be leached out are 

retained in the fine root fraction and input from remaining trees continues through 

litter-fall. In addition the diverse ground flora may provide a source of mycorrhizal 

innoculum, while also forming part of the food chain within the ecosystem. 

As plantation forests are increasing rapidly it is important to ensure that failures 

and disasters do not occur.. Thus it is crucial to -understand the way in which land 

preparation influences the fertility of the site, the extent of establishment of young trees 

and their growth. 

1.7 Aims of the present study 

The general purpose of this study is to assess the effects of the three methods of 

site preparation on soil physical and chemical properties, nutrient dynamics and the 

subsequent growth of the planted tree crop. Specifically, the study aims at:- 

i) 	studying and where possible quantifying changes in soil physical and chemical 

properties when natural forest is converted into plantations using different 

clearing methods, (compartments 2 and 3, Figure 2) 

quantifying the effects of land clearing methods on the transfer and flow of 

materials and energy from the vegetation to the litter phase of the ecosystem, 

and subsequently to the other organisms and the soil, (compartment 1, Figure 

2) 

investigating and where possible quantifying some of the causal mechanisms of 

the observed changes, 

identifying changes occurring in the plantations with time and, 

finally, identifying the site preparation method(s) most appropriate for 

afforestation projects with Terminalia ivorensis in Cameroon and similar 

ecological zones. The judgement for the best method will be based on the best 

compromise between; achieving the highest rates of establishment and fastest 

growth of young planted trees, the minimum disturbance to the ecosystem 

(especially the physical and chemical properties of the soil) and the most 

economic system of site preparation. 
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To achieve effectively the above objectives, the study site should be relatively 

homogeneous.- The forest should be relatively undisturbed and should have similar 

topography, geology, hydrology and climate. As would be expected such ideal 

situations are often very scarce in practice. After an initial consultation, literature 

review and map study, the Mbalmayo forest reserve classified in 1947 with generally 

uniform properties to enable a satisfactory comparative study was selected for the 

investigation of these clearing methods. 

The study outlined in the succeeding chapters consists of four main sections. 

Section one focuses on the effects of the clearing methods on the soils and the 

subsequent changes in soil properties with time. The second section investigates the 

amount of disruption the clearing methods have on soil nutrient inputs through 

litter-fall and the extent to which turnover rates are affected by the different treatments. 

In section three interest is focused on the response of the planted crop to the different 

treatments and possible reasons for any observed differences investigated. In the last 

section, a synthesis of the preceding chapters is attempted and recommendations are 

put forward for the successful establishment of future plantation programmes. 

Preceding these substantive sections, it is considered important to highlight the 

environmental characteristics of the study area. 
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CHAPTER TWO 

Description of study area 

2.1 	Location 

Cameroon is centrally located on the shoulder of Africa. It is bounded by 

Nigeria to the West, the Atlantic Ocean to the South West, Equatorial Guinea, Gabon 

and Congo to the South, Central African Republic to the East and Lake Chad to the 

North (Figure 3). The site of the present study is located at Ebogo in the Mbalmayo 

forest reserve (Figure 4) in the southern region of Cameroon at a distance of about 62 

km from the capital Yaoundé (Figure 3). 

The Mbalmayo area is in the Nyong-midstream catchment area, with a level to 

undulating and rolling plateau surface (650 m above sea level), belonging probably to 

the Africa 1 (Under-middle Tertiary) erosional surface (Segalen, 1967). The 

Mbalmayo forest reserve (Figure 4) lies between longitude 11° 25' and 11° 31' East 

and latitude 30  23' and 30  31' North of the equator. Mbalmayo pertains to the central 

administrative province (Figure 3). 

2.2 	Climate 

The climate of the area is sub-equatorial (Suchel, 1972). According to the 

modified Köpen classification (Trewartha, 1954) the climate is AWl:- 

A - stands for tropical wet climate with the mean air temperature of the coldest 

month higher than 18 °C. 

W - indicates two rainy seasons separated by two dry seasons 

I - 	indicates that the mean temperature differences of the warmest and coldest 

months is less than 5 °C. 

2.2.1 	Rainfall 

The average annual rainfall in the Mbalmayo area (1934-1972) ranges from 

1016 mm to 1990 mm with an average of 1522 mm. The rainfall pattern within the 

area is bimodal. The mean monthly values are given in Table 3. 
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Figure 3: Map of the Central Province showing the study area 
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Figure 4: Map of the Mbalmayo forest reserve showing site location 



Month j F M A M  J A S 0 N D 

Pm (mm) 27.5 47.7 147.9 177.8 201.3 139.6 62.9 64.4 188.0 288.3 141.5 33.5 

SD 27.9 33.4 .60.3 67.4 51.2 61.9 50.5 49.3 73.0 77.9 69.2 29.3 

CV% 101.6 70.0 40.7 37.9 25.4 	1  44.3 80.3 76.5 38.8 27.0 48.9 87.6 

Table 3: Average monthly rainfall for the Mbalmayo area for the period 1934-1972. (After Njib, 1987). 

Pm average monthly rainfall 
SD standard deviation 
CV% coeffocient of variation 



is 

In both the Emberger-Gaussens climatic classification and in the Birot scheme, 

the Yaoundé area has two dry months (In the former, the mean precipitation of the 

month, Pm, measured in mm, must be less than twice the temperature, measured in 

celsius degrees, i e Pm <2 T; whereas in the Birot scheme a dry month is defined as 

Pm < 100 mm). The two dry months are December and January (Figure 5). 

The first rainy season extends from March to June with the maximum in May 

and the second one from mid-August to November with an absolute peak in October 

(see figure 5). 
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Figure 5: Mean monthly rainfall (mm) and temperatures (SC) distribution in the 
Mbalmayo area after Emberger - Gaussen. 

2.2.2 	Temperature 

The variation of average atmospheric temperatures during the year are 

summarised in Table 3. The hottest month is February (25.5 °C) the coolest is August 
(22.6 C) with an amplitude of 3 °C over the year. 
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2.2.3 	Relative Humidity 

Table 5 summarizes the mean monthly values of humidity and ranges from 73% 

to 84%. However daily variations masked by these averages can be relatively wide, 

ranging from close to 100% in mid-day and dropping to values of around 60% in the 

mornings. These values, recorded at the Yaoundé airport are likely to be applicable to 

the study area, which is 62 km south of the airport. 



Month J F M A M j J A S 0 N D 

Tm OC 24.4 25.2 25.2 24.7 24.4 23.3 22.5 22.6 23.2 23.4 23.7 23.8 

SD .0.5 0.9 0.8 0.8 0.4 0.3 0.3 0.4 0.2 0.2 0.4 0.5 

CV% 2.1 3.3 3.1 3.1 1.6 1.0 1.5 2.0 1.0 1.0 1.5 1.9 

Max. 31.5 32.8 32.2 32.2 30.9 29.9 28.6 28.6 29.2 29.8 29.8 30.1 

Mm. 16.5 17.7 17.7 17.9 17.6 17.2 17.1 17.9 17.2 17.3 17.5 16.5 

Table 4: Mean monthly temperatures in degrees Celcius of the Yoaundé airport located in the same, geographic zone as 
the study area. After Njib, 1987. 

Tm average monthly temperatures 
Max. maximum temperature 
Mm. minimum temperatures 

CA) 
F\) 



Month  F M A M  j A s o N D 

RL% 16.2 73.2 77.0 79.9 81.4 82.6 83.5 83.9 82.5 82.0 79.2 77.6 

SD 1.8 2.2 1.8 1.0 0.9 1.2 1.3 0.9 1.2 0.9 1.7 1.4 

CV% 2.3 2.9 2.3 1.2 1.1 1.4 1.5 1.1 1.5 1.1 2.1 1.7 

Table 5: Mean monthly relative air humidity in percentage at the Yaoundé airport located in the same geographic 
zone as the study area. RL% - average monthly relative humidity. After Njib 1987. 

C) 
c) 
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2.3 	Vegetation 

The vegetation in the study area was classified by Letouzey (1985), as a climax, 

semi-deciduous forest which occupies an extensive area of the southern Cameroon 

plateau (Figure 6). Its southern limit is the atlantic forest and the Dja forest, while the 

north stretches right up to the foothills of the Adamawa plateau. In the North West it 

encounters the mountainous massifs of West Cameroon but isolated patches may be 

found in the valleys of the region. 

The floristic composition of this forest is diverse. However on the basis of 

drainage condition, this forest vegetation can be subdivided into floristic units as 

follows:- 

the riverine or raphiale forest of imperfectly to poorly drained valley floors. The 

main species are raphiale-bamboos, Mirragyna ciliata, Uapaca paludosa, with 

various shrubs (Euphorbiaceae Spp, and Rubiaceae Spp) and ferns. 

the well drained forest vegetation (selected for this study) is primarily 

characterized by the Sterculiaceae and Ulmaceae families represented 

respectively by cola (Mansonia altissima), Ayous (Triplochiton scieroxylon) and 
celtis (Trerna orienralis). Also encountered in this area are ILomba (Pycnanrhus 
angolensis) and Frake (Terminalia superba) a Combretaceae-like Framiré, the 

preferred species for plantations in the Mbalmayo area. 

Below is a list of the families and some of the species identified in the study area 

at Mbalmayo (Mason et al, 1989). 

Family 	 Species* 

Anacardiaceae 	Antrocaryon sp, Trichoscypha aculninata, Trichoscypha 
arborea, 

Annonaceae 	Anonidium mannii, Polyalthia suaveolens, Hexapolus 

crispiflorus, Xylopia aethiopica, Xylopia hypolampra, 
Xylopia penrassi, Xylopia quintassi. 

Apocynaceae 	Aisronia boonei, Aistonia congensis, Funtumia africana, 
Funtwnia elastica. 

Bignoniaceae 	Markhamia lutea. 
Bombacaceae 	Bombax buonopozense. 
Boraginaceae 	Cordia aurantica, Cordia playthyrsa. 
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Figure 6: 	Map of Cameroon showing vegetation distribution. Modified after 

FAO, (1988). 



Burseraceae 	Canarium schweinfurthii, Dacryodes igaganga, Santiria trimera 

Caesalpiniaceae 	Afzelia bipindensis, Amphimas pterocarpoides, Erythrophleum 

ivorense, Erythrophleum mannii, Guibourtia macrocarpa, 

Guibourtia tessmannii, Hylodendon gabunense. 

Chiysobalanaceae 	Maranthes gabunensis. 
Combretaceae 	Pteleopsis hylodendron, Terminãlia superba. 
Ebenaceae 	Diospyros bipendensis, D iospyros crasszflora, D iospyros 

suaveolens 

Euphorbiaceae 	Drypetes sp, Ricinodendron heudelorii, Uapaca guineensis. 
Flacoutiaceae 	Scottelia coriacea 

Guttiferae Allanbiackiafloribunda, Allanbiackia gabonensis. 
Jrvingiaceae Desbordesia glaucescens, Desbordesia oblonga, Irvin gia 

gabonensis, Irvingia grandzfolia, Klainedoxa gabonensis, 
Klainedoxa microphylla. 

Lauraceae Beilschmiedia obscura, Beilsch,niedia sp. 
Lecythiadaceae Petersianthus macrocaipus. 	 / 
Longaniaceae Anthocleista macrophylla. 	 J 

Meliaceae Entandrophragma candollei, Enfandrophragma cylindricum, 
Guarea cedrata, Khaya ivorensis, Lovoa trichilioides, Trichilia 
rubescens, Trichilia tessmannii, Trichilia zenkeri, 

Mimosaceae Albizia zygia, Albizia sp, Calpocalyse denclagii, Calpocalyse 

heitzii, Parkia bicolor, Pentaclethra macrophylla, Pentaclethra 
sp, Tetrapleura tetraptera. 

Moraceae Chiorophora excelsa, Musanga cecropioides, Ficus mucuso. 
Myristicaceae Staneltia gabunensis, Staudtia, kamerunensis, Pycnanthus, 

angolensis. 
Myrtaceae 	Syzigiwn sp. 

Ochnaceae 	Lop hira alata. 

Oleaceace 	 OngOkea gore, Coula edulis. 
Papilionaceae 	Erythrina excelsa, Milletia excelsa, Prerocarpus ,nildbraedii, 

Pterocarpus soyauxii. 
Rcimnaceae 	Maesopsis eminii. 
Rubiaeae 	Canthiwn palma, Nauclea diderrichii, PaiLsinystalia yohiinbe, 

Pausinystalia macroceras. 
Rutaceae 	 Fagara rnacrophylla, Fagara tessmanii. 
Sapotaceae 	Baillonella toxisperina, Gambeya africana, Gambeya 
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Sterculiaceae 	Cola acuminata, Cola cordfolia,  Cola lateriria, Eribroma 

oblongwn, Triplochiton scieroxylon, Sterculia rhinopetala, 

Sterculia tragacantha. 
Ulmaceae 	 Celtis aldolfi-friderici, Celtis mildbraedii, Celtis tessmanhi, 

Celtis zenkeri, Hoiptelea grandis. 

Verbenaceae 	Vitex grandfolia. 

*Specjes nomenclature follows that of (Irvine, 1966; Letouzey, 1986). 

2.4 	Geology 

Mbalmayo belongs to the Mbalmayo-Bengbis-Ayos series of Intermediate 

Precambrian Formation that extends into the Central African Republic. It is a slightly 

metamorphic series formed of greenish schists and micaschists some of them with 

garnets. Hornblend schists, amphibolites and gneiss have also been reported. An 

ORSTOM (Office de la Recherche Scientifique et Techniques Outre Mer) map at a 

scale of 1:1,000,000 locates Mbalmayo on yellow desaturated ferruginous sesquioxide 

soils which are likely to be Ultisols or Oxisols according to the USDA Soil Taxonomy 

(1975). A detailed pedological study by Sarlin (1968/69) mentioned by Foaham 

(1982) distinguishes four main soil types; 

Hydromorphic soils in valleys, 

Intermediate (between i and iii) weathered grey soils developed in situ, 

Highly weathered deep red or yellow, well drained, acid soils of low base 

status with generally excellent soil structure, loamy or clay texture. 

Lateritic soils, not linked to topography. They seem to be the remains of an 

ancient cuirasse formed under a different climate. 

Soils of the study area detailly investigated in the next chapter fall under the third 
category above. 

2.5 	Location of the study site 

The ideal site for this study mentioned earlier, would be one of relative 

homogeneity and easy accessibility. The forest should be old and relatively 

undisturbed with uniform topography, geology, hydrology and climate. 



An initial map study of the Mbalmayo forest reserve (Figure 4) enabled the 

selection of possible study sites for investigations. Field investigations of the selected 

sites revealed the reserve was littered with patches of peasant farmlands and that the 

general land form was undulating with many streams and swampy areas. Faced with 

these difficulties some modifications of the ideal conditions were made but keeping 

them as close as possible to the ideal case. The site was to be well drained and 

located on level land or mid-slope (avoiding valley bottoms), the forest was to be 

relatively undisturbed (absence of big gaps, many footpaths and major animal 

disturbances), and old (determined from date of classification and floristic 

composition). The site had to be easily accessible , but must be located at least 100 m 

away from any main access roads into the reserve to minimize site invasion by 

Eupatorium. All peasant cultivations were to be avoided. 

Guided by the above criteria an L-shaped four hectare forest area (figure 4 and 

7), was demarcated for treatment and subsequent studies. One hectare plots were 

considered very appropriate scientifically as treatment units, but the disposition of the 

treatments was governed by technical considerations. From the parking ground 

(figure 7), access to the mechanized plots by the heavy machinery was easy without 

disturbance to either the manual plot or the undisturbed natural forest. 

It was considered necessary, prior to land treatment, to carry out a pilot study 

of the selected site in order to obtain base line data of the original situation of some 

selected properties of the natural forest. 
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CHAPTER THREE 

PILOT STUDIES 

3.1 	Introduction. 

Synnott (1975) studying the physical environment and biological effects of 

logging and silvicultural operations of tropical moist forests concluded that repeated 

mistakes in the management, and in the conversion from forest to other forms of land 

use, were caused by the lack of quantitative information on (i) floristic changes (ii) 

processes of growth and (iii) short term changes in soil properties. 

The succeeding chapters of this thesis will be examining the effects of land 

clearing methods on soil physical and chemical properties, nutrient dynamics and the 

growth of the planted tree crop Terminalia ivorensis. It was therefore considered 

important for a better appreciation of any resulting changes, to establish a baseline for 

future comparison and reference through the investigation of these properties in the 

natural forest prior to clearing. 

The tropical rainforest is a complex ecosystem, poor in nutrients with the 

lushness of its vegetation widely attributed to nutrient storage in the above ground 

biomass and an efficient recycling within a tight nutrient cycle. These forests have 

been found to possess many nutrient conserving mechanisms which are integral parts 

of the natural forest (Jordan, 1985). Land clearing and other less severe kinds of 

disturbance may have the effect of disrupting these mechanisms with varying 

consequences on the ecosystem, thus directly affecting any attempts to establish a tree 

crop. 

Tropical forest soils are reputed for their acidity, fragility and low nutrient 

contents. They have been shown to deteriorate rapidly when denuded of vegetation 

cover. In this study, emphasis was placed on soil chemical and physical properties 

and the surface litter amounts particularly affected by land clearing methods. Beside 

these investigations, this chapter reports some of the inherent characteristics of the 

soils which may determine vulnerability to degradation. Basically this study aims at:- 

documenting those processes which are generally assumed responsible for 

the rapid degradation and decreasing productivity of tropical soils shortly after 

land clearance, 

investigating the forest floor, a very important nutrient pathway and reservoir by 



quantifying the fine litter amounts on the soil and their nutrient content, 

studying and where possible, quantifying soil physical and chemical properties 

which are often drastically affected especially after mechanized clearing, 

investigating soil fertility, in a bioassay experiment with soils from the study site 

planted with Terminalia ivorensis. 

3.1 	Characteristics of tropical soils 

Our knowledge of soil properties and distribution in the humid and sub-humid 

tropics has increased substantially during the last decade (Drosdoff, 1972; Sanchez 

and Buol, 1975; Lundgren, 1978; IRRI, 1980; Cochrane and Sanchez, 1981; Lal, 

1986) and considerable advances have also been made in understanding the soil 

processes involved in sustained management systems for the production of annual 

crops, pasture and perennial crops in the tropics (Sanchez, 1976; Pushparajah and 

Amin, 1977; Alvim, 1981; Greenland, 1981; Sanchez et. al, 1983) 

The soils of the tropics are not uniquely different from those of the more 

temperate regions (Lathwell and Grove, 1986), but the processes which are at work in 

humid areas affect the rate and nature of, pedogenesis in unique ways. Soil scientists 

traditionally have recognized the importance of climatic factors in the formation of 

soils. Although the soils of the equatorial regions vary greatly, climate indeed controls 

most of the key properties. - 

At low and intermediate elevations within the tropics, temperatures are high 

throughout the year, and there are no substantial seasonal variations. In these high 

isothermic regions, soil forming processes occur faster than in the temperate regions, 

particularly leading to advanced weathering stages of parent materials (Aubert and 

Tavernier, 1972). High temperatures also accelerate the turnover of organic matter in 

the tropical soils, this process may build up humic complexes, the composition of 

which largely depend on the extent of the dry season. At high elevations, where the 

mean temperature drops to below 22 C, considerable organic matter may accumulate 

within the solum. Soils vary in their properties throughout the humid tropics at least 

as widely as those soils found in other regions and, as elsewhere, are often site 

dependent (Richards, 1952; Ahn, 1970; Lundgren, 1978; Evans, 1986). Many but 

by no means all, fit the old concept of being highly weathered and strongly leached 

and often very old (Sanchez, 1980; Kang and Juo, 1986). Age is a significant variable 

that determines many attributes of soils in the tropics and generally sets them apart 

from the temperate soils. The largest land areas of the tropics belong to continental 
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shields and table lands, which have not been subject to recent folding. Soil erosion 

has not been strong enough to remove the products of weathering on the relatively 

smooth, stable areas, and no moving ice have scraped the waste mantles away, almost 

all soils have developed from deeply weathered materials (Aubert and Tavernier, 

1972). Parent materials may range in age from very recent volcanic ash or 

alluvial/colluvial accumulation, to the oldest land surfaces on earth, and in composition 

from ultra-basic to very felsic rocks, and in genesis from vast alluvial deposition to 

deep sedimentary soils (Aubert and Tavèrnier, 1972; Lundgren, 1978; Sanchez, 

1980). 

Though varied in many of their properties, the majority of the soils in areas with 

sufficient rainfall for sustained agriculture and forest production share certain 

important common characteristics; they are bright red and yellow in colour, generally 

have ioamy or clay texture but often sandy in the superficial layers, they are frequently 

deficient in bases and other plant nutrients in general, they are almost invariably acid, 

their humus contents tends to be low and confined to the uppermost horizons, they are 

highly weathered and their clay fraction is relatively rich in aluminium and poor in 

silica (Richards, 1952; Sanchez and Buol, 1975; Sanchez, 1983; Kamprath, 1979; 

Kang and Juo, 1986). 

Three of theseproperties, considered to be fundamental in the rapid deterioration 

of tropical soils after clearance, are reviewed in sections 3.2.2 and 3.2.3, while in 

section 3.2.1 the forest floor and its properties is examined. 

3.2.1 	Forest floor 

The term 'forest floor' is generally used to designate all organic matter, 

including litter and decomposing organic layers, resting on the mineral soil surface. 

These organic layers and their characteristic micro fauna and flora, are perhaps the 

most dynamic biological arena of the forest environment. They also form the most 

important criterion for distinguishing forest soils from agricultural soils (Pritchett, 

1979). The litter of the ecosystem is made up of fractions at various stages of decay. 

Two categories of forest floor litter are usually distinguished. 'Coarse litter', 

consisting of fallen branches and boles is very heterogeneous in both space and in 

time. This fraction constitutes the largest percentage of total forest floor litter - 60% in 

a lowland rainforest at Kerigoma, New Guinea and 90% in another rainforest in 

Pasoh, Malaya, (Whitmore, 1985). 'Fine litter', the other fraction , is composed of 

small twigs, leaves, flowers, fruits and frass from invertebrate herbivores. It is more 
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unifomily distributed than the coarse fraction. 

As earlier mentioned, the forest floor is an important nutrient reservoir and 

pathway in nutrient cycling. In the tropics, the forest floor layer is often very thin 

compared to that of temperate forests as a result of more rapid rates of litter 

decomposition favoured by all-year-round warm and humid conditions. Most land 

clearing methods in the tropics have the effect of removing debris and reducing forest 

floor micro-organisms either through burning in the typical slash and burn method or 

by displacement and compaction in mechanized methods. Removal of vegetation and 

debris exposes the soil to direct irradiation and heavy tropical rainfall. Heavy rains on 

bare soils may result in leaching and erosional losses of nutrients in the run-off water. 

These effects are closely related to the organic surface and the immediate mineral 

subsurface properties of tropical soils. 

3.2.2 	Soil fragility and acidity 

The fragility of tropical forest ecosystems is well documented (Aubert and 

Tavernier 1972; May, 1976, 1979). Most of the studies indicate that the high 

complexity of the ecosystem makes for dynamic fragility rather than robustness. By 

virtue of this complexity and fragility, these forests may rapidly degrade when 

disturbed. The surface properties of Oxisols and Ultisols (main soil types in the humid 

tropics) supporting this luxurious forest have been seen to deteriorate rapidly when 

the vegetation is cleared and the soils are subjected to mechanized agriculture or 

silviculture. There is often a rapid decline in soil physical and chemical properties in 

the A horizon; erosion, fertility and tilth problems usually increase quickly and so in 

this sense, the soils are described as being fragile (Lal, 1986). 

The acidity of tropical soils is as a result of continuous release of organic acids 

during the decomposition of the litter layer and the subsequent leaching of bases from 

the surface soil, two processes favoured by the warm and wet conditions of the 

tropics. Land clearing is often seen to reduce soil acidity temporary through the 

buffering effect of released nutrients, but the accompanying leaching losses render this 

effect short lived. 
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3.2.3 	Soil fertility 

Tropical rainforests have great stature and the appearance of unbridled growth. 

This led colonists and colonial entrepreneurs from the temperate world to believe that 

such mighty rainforest must be a sign of great soil fertility, but almost everywhere 

yields of agricultural crops after clearing soon became very low (Whitmore, 1985). 

The idea grew up, and is still widely accepted, that this is because most of the plant 

nutrients are held in the forest, not the soil and are dissipated when it is felled and 

burned for cultivation (Hardy, 1936; Richards, 1952; Barney, 1980; Gradwohl and 

Greenberg, 1988). However, it has been shown that this is not always the case and 

that some soils (Inceptisols and Entisols) are sufficiently young to retain their primary 

minerals, and in some cases parent materials exert a dominant influence on base 

saturation (Alfisols). 

There is an abundant literature on the low fertility of tropical soils (Cunningham, 

1963; Ahn, 1970; Young, 1976; Pritchett, 1979; Sanchez, 1980). Most tropical soils, 

at least those in the wet regions, lie on top of ancient parent material that has 

undergone millions of years of weathering (Gradwohi and Greenberg, 1988). The 

all-year round warm and wet conditions of well drained tropical soils favour processes 

that have the potential to contribute to the continuous cation leaching and phosphorus 
immobilization (Jordan, 1985). 

The complete weathering of all common minerals except quartz, to kaolinitic 

- clay and oxides and hydroxides of iron and aluminium, leads to soils richer in clay 

with low silt/clay ratio. Kaolinite has low cation exchange capacity, especially at low 

pH. The role of clay in the cation exchange capacity can be significant where the clay 

proportion rises, but this can also lead to impermeability and anaerobism. In soils of 
the humid tropics, nutrient holding capacity is mainly a function of humus content and 
is low where humus content is low, as is usual in the subsoils. In many cases, more 

than half of the adsorbed bases in the soils is found in the top 25 cm (Nye and 
Greenland, 1960; van Baren, 1961; Lathwell and Grove, 1986). Deep, intense 

weathering and leaching combined with low nutrient retention are the main 

contributing factors to the low soil fertility of tropical humid soils on stable 
landscapes. 

Not all tropical soils fit the above pattern. Relatively nutrient rich soils covering 

about 18% of the tropics, have become densely populated major agricultural centres 

where no significant expansion of forestry is likely to occur. They include recently 

formed (Inceptisols and Entisols) volcanic rock and floodplain soils whose nutrients 



are still replenished through annual floods, like the alluvial soils (Fluvents) mainly in 

India; 'padi' soils, S. E. Asia; vertisolic soils, Sudan and India; floodplains of the 

great Amazon, Mekong and Congo rivers and many volcanic soils (Andepts) in Java, 

Philipines, Sumatra, Papua New Guinea as well as parts of Central America, the 

Caribbean and the highlands of Cameroon and Central Africa around the lake region, 

and some old soils developed on basic rocks in moist seasonal climates (Nigeria, 

Ghana, S. Brazil) (Lundgren, 1978; Gradwohi and Greenberg, 1988; Sanchez, 1980). 

Low base status soils cover by far the largest area of the tropics (5 1%) (Lundgren, 

1978) and, include areas in which man-made forests have been implanted and on 

which forests will continue to be established at a significant scale. 

Climatic factors of tropical regions (high temperatures and moisture) have been 

indicated above as very important in the poor nutrient status of tropical soils. Removal 

of the forest canopy further exposes soil to these climatic effects resulting in rapid 

deterioration usually observed shortly after land clearance. 

The work carried out in the subsequent sections of this chapter aimed at 

obtaining background information for later studies on the effects of the three land 

clearing methods under examination. 

3.3 	Materials and Methods 

The four hectares delimited for subsequent treatment (Figure 7) were considered 

here as a single entity and sampled to represent the natural forest from which treatment 

results will be later compared. Sampling procedure for the studying of the selected 

properties was carried out as described in sections 3.3.1 to 3.3.3 below. 
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3.3.1 	Fine litter fraction on the forest floor 

On randomly selected areas in each of the four uncleared plots (Figure 7), three 

replicate samples of the litter layer were collected (February 1987) using a 100 x 100 

cm wooden quadrat. After land clearance (March 1987), five replicate samples were 

collected (August 1987) using a 50x50 cm wooden quadrat as each plot was now 

treated individually. Litter sampling was carried out three times during the study 

period, beforeland clearance and at three and fifteen months after clearing. At each 

period, all loose material of recognizable identity was collected within the quadrat. 

Finely fragmented unidentifiable material was judged to be a component of the soil 

organic matter fraction rather than litter and was not collected. Material from each 

quadrat was oven-dried at 105 °C overnight, separated into two fractions, leaves and 

the rest (woody material :! ~ 2 cm in diameter and reproductive organs) and weighed. 

Samples were then ground to fine powder and subsamples collected for chemical 

analysis after thorough mixing. 

	

3.3.2 	Fresh Leaves 

In order to obtain a rough estimate of nutrient concentration of fresh leaves, to 

better appreciate the flow of nutrients in the ecosystem, a quick sampling of litter in 

and around the forest floor litter sampling points was carried out. At each of the these 

points, fresh leaves were randomly harvested from the surrounding vegetation. 

Leaves from bigger trees were sampled by throwing sticks into the canopy. After 

oven-drying at 105 °C overnight, samples were ground to fine powder and 

subsamples collected for analysis. 

	

3.3.3 	Soils 

In each of the four hectares (Figure 7), 15 auger samples were randomly 

collected at two depths 0-20 and 20-40 cm. These were then bulked for each depth per 

hectare. In addition, a 50 x 50 m plot was randomly selected well inside the hectare 

plots and marked out for intensive sampling. It was further subdivided into 25, 10 x 

10 m subplots; then ten of these were randomly sampled (Figure 7) and bulked as 

described above for the two depths. Soil sampling was carried out simultaneously 

with litter. 

After thoroughly mixing the composite samples using two large plastic bins, 
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two subsamples were collected, one for pH analysis at the 'Institute de Recherches 

Agronomique' (IRA) at Yaounde (Cameroon) and the other air-dried for nutrient 

analysis. The air-dried samples were further sieved to pass through a 2 mm mesh and 

subsamples collected in self-sealing polythene bags for transportation and analysis in 

Edinburgh (see appendix 1 for labo ratory methods). 

Soil profile description was made from two pedological pits measuring 1.5 m x 

1.5 m and 1.75 m deep, dug at randomly selected points over the four hectares 

(Figure7). At four depths in each of the pits (0, 50, 100, 150 cm) soil samples were 

collected from the four sides and bulked for pH and granulometric analysis. 

3.3.4 	Bioassay of Soils 

After collecting the two subsamples for analysis, the remaining soil was put in 

polythene film pots, 15 cm internal diameter and 30 cm high, for a replicated bioassay 

for fertility in which Terminalia ivorensis seeds were sown and germinated. In 

another bioassay experiment using well mixed soils collected from depths 0-15 cm in 

the forest, two treatments were investigated - addition of compound fertilizer and 

decomposing litter plus humus collected from the forest floor. 

A total of 84 soil samples were potted for the two depths, 42 replicates per 

depth. The second, experiment had a total of 23 pots. To seven of them chosen at 
olioJ-ô) 

random, was spread 5 g of granulated compound fertilizer (N, P, K,{, eight others also 

randomly selected were covered with 25 g of decomposing litter and humus, the 

remaining eight with no treatment, served as a control. In each of the 107 pots was 

sown two seeds of Terminalia ivorensis collected under a single matured tree and 

immersed in water for three days to accelerate germination. The pots were laid out 

randomly on relatively flat ground under a temporary shade-screen at a nursery site at 

Mbalmayo on the 14th of March 1987. Weekly assessment of height and leaf 

production was carried out when germination started and continued for twelve weeks. 

At the end of the twelfth week, plants were harvested, oven-dried at 105 °C overnight, 

separated into three fractions (leaves, stems, roots) and ground into fine powder 

before subsamples were collected for nutrient analysis. 

NB: Potted plants were watered with tap water. This might have effected results of the fertilized 
treatment. 



3.4 	Results and Discussions 

3.4.1 	Fine litter amounts on the forest floor 

The result for the total fine litter fraction on the forest floor for the Mbalmayo 

area plus the standard error was estimated at 3.77 ± 0.48 t ha'. This result lieswell 

within the range of values for tropical lowland rainforests, of 0.61 t ha in the Banco 

valley in the Ivory Coast (Bernhard, 1970) to 14.8 t ha 1  for a riverine forest in Lamto 

in the Ivory Coast (Devineau, 1976), reviewed by Devineau (1976) and Proctor et al 

(1983). The great variation in these values js a direct consequence of the variation in 

the vegetation formation of this ecosystem and are generally linked to latitude, altitude, 

precipitation and turnover rates. John (1973), reported values of 4.86 t ha and 2.99 

t ha4  for total fine litter and leaf litter, similar to the 3.77 t ha 4  and 2.54 t ha' for 

this study, in Kade (Ghana) with a turnover rate of 0.7 and 2.5 respectively. 

Bernhard-Reversat (1976), found values of 3 t ha' to 4 t ha 4  for total fine litter 

amounts on the forest floor in a rainforest in the Ivory Coast with decomposition 

constants 3.3 and 4.2 respectively. In his experimental plots in a semi-deciduous 

forest also in the Ivory Coast, Devineau (1976), found that total floor litter varied 

between 9.3 t ha4  and 14.8 t ha4  with plots at different sampling periods. Proctor et 

al (1983) working in four contrasting lowland rainforesis in Sarawak, observed some 

seasonal and between plot changes in the fine litter standing crop ranging from 4.7 t 

ha4  in an alluvial forest in March to 7.5 t ha4  in a limestone forest in February. 

Spain (1984) also found seasonal, annual and between site variation in the standing 

crop of litter in four Australian rainforests with a minimum of 3.0 t ha -1  and a 

maximum of 10.5 t ha . Maldague (1970), reported a very high value of 20.7 t ha' 

for the total fine litter amounts on the forest floor of a transitional semi-deciduous 

forest with an evergreen forest, characterized by Scrodophleus zenkeri, with a 
decomposition constant of 0.7. 
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3.4.2 	Nutrient composition of litter and fresh organic tissue 

Results of nutrient concentration and content of fine litter on the forest floor, and 

fresh leaves from the vegetation are summarized in Table 6. 

Fraction N P K Ca Mg 

Fresh leaves 2.31 ± 0.11 0.17 ± 0.07 0.92 ± 0.12 1.14± 0.06 0.65± 0.12 

Leaflitter 1.86 ± 0.07 0.08±0.004 0.16± 0.02 1.15±0.05 0.38± 0.01 

Rest 1.16± 0.06 0.04 ±0.006 0.20± 0.06 1.04±0.09 0.26± 0.03 
Nutrient 

content 56.9± 2.27 2.3 ± 0.19 6.79 ± 0.51 141 - 09 ± 2.64 1 12.06±0.75 

Table 6: Nutrient concentration (%dry weight) of fresh leaves and fine litter 

fractions and, on the final line, elemental content (kg ha 4) of total fine 

litter amounts on the forest floor before land clearance. Results are means 

± standard errors. 

The results for the fresh leaves fall within the range for tropical forests reviewed 

by Dommerques (1963) and Vitousek and Sanford (1986). They are very similar to 

those reported by Bartholomew et a! (1953) in Yangambi (Ivory Coast), Greenland 

and Kowal (1960) in Kade (Ghana), and Hase and Fölster (1982) in Venezuela. The 

observed differences in all nutrient elements (except Ca) in fresh leaves and leaf litter 

of the fme litter fraction is probably due to resorption of nutrients from the leaves prior 

to abscission. It is well known that elements may be transported from leaves to other 

tissues at different rates depending on their mobility. Mature leaves are more likely to 

lose elements than are young leaves, probably because of the high demand for cations 

in the growing tissues and the lower concentrations in the translocation stream 

(Golley, 1983). Bray and Gorham (1964) working on two different species in a 

greenhouse, found that the dry weight of leaf just before abscission was about 8 1 % of 

the normal dry weight and inferred that one-fifth of the weight of the leaf is 
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translocated out of the leaf before leaf fall. Studies in New Guinea rainforest on leaf 

weight before and after abscission, showed that loss of weight before and after leaf fall 

varied with species but in general was about 10%. This difference was thought to be 

probably the result of nutrient resorption (Edwards, 1977). Primary consumers were 

estimated by Bray and Gorham (1964) to account for about 7.5% of leaf area loss. In 

addition to these losses are leaching losses of the very mobile elements at the initial 

stages of decomposition. 

Calcium, a structural component in plant tissue, is very immobile. Burges 

(1956) and Tew (1970) found that the amount of Ca in leaves increased throughout the 

growing season and the element is retained until major structural breakdown of leaves 

occurred. This might account for its immobility in the leaves (Table 6). 

Most studies of litter on the forest floor report generally on their amounts with 

little or no information on their nutrient contents. The results obtained for this study 

are similar to those reported by Proctor et al (1983) for a limestone forest in Sarawak, 

except for the very high calcium value (270 kg ha 1)  which is expected of such soils. 

Land clearance in which this ecosystem compartment is removed will lead to an 

important loss of nutrients from the system while at the same time exposing the 

mineral soils to other direct environmental effects. 

3.4.3 	Soils 

Previous work on the soils of the Mbalmayo area by Njib (1987) with a view to 

evaluating the dominant soil forming processes under the influence of soil forming 

factors (climate, parent material, topography, drainage and time), suggested an 

apparent homogeneity in both physical and chemical properties. However, 

differences existed in soil colour and texture especially for the soils in the valley 

bottoms. The investigation over the 4 ha area of this study site revealed small scale 
variations in some selected soil properties. 

3.4.3.1 Physical properties 

Soils of the study area are generally dark brown to dark yellow brown in colour. 

They have a sandy clay texture with a decrease in sand and an increase in clay as depth 

increases. The silt fraction is low and almost constant down the profile (Table 7). The 
silt/clay ratio is also low 0.13 - 0.24:1. 
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Depth 

(cm) pH % Clay % Silt % Sand 

0 4.4 36.9 9.5 53.6 

50 4.7 54.4 10.2 35.4 

100 4.9 55.1 9.2 35.7 

150 4.9 55.5 8.2 36.3 

Table 7: Average soil pH and particle size distribution down two pedological pits 

in the undisturbed forest before land clearance. 

The trend of particle size distribution down pedological pits falls well within the 

range found by Njib (1987), for eighteen pedological pits over an area of 100,00 ha in 

the Mbalmayo region. The soils are well drained, highly weathered and generally with 

a sandy to sandy loam topsoil texture on flat and mid-slope. They present a high 

porosity with a good structure that does not impede permeability at least on the flat and 

mid-slopes. This might not be true for the steep and hydromorphous valley bottoms 

soils avoided during site selection for this study. A morphological description (colour 

structure, texture and porosity) of two soil profiles in the study area prior to clearance 

are summarized in Appendix 2, i and ii. The descriptions are typical of the well 

drained soils of the Mbalmayo region reported by Njib (1987) and Tchienkoua (1987). 
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3.4.3.2 	Chemical Properties 

3.4.3.2.1 Acidity and Organic Carbon 

The soils of the study area, like most humid tropical soils are acidic. Average 

topsoil pH is 4.3 (Table 8). Samples from the soil pits showed that acidity declined 

with increasing depth (Table 7). Soils of the Mbalmayo area have a wide range of 

acidity. Tchienkoua (1987), evaluating an area of 100,000 ha in Mbalmayo, measured 

pH values of 4.1- 6.7 (topsoil) between the well drained soils of the slopes and flat 

lands and the hydromorphous valley soils. 

The organic carbon percentage of the soils is low (Table 8). The C/N ratio is 

also low, 9.2:1 and 8.8:1 for depths 0-20 cm and 20-40 cm respectively. Low C/N 

ratios generally indicate higher microbial population and more rapid mineralization. 

Njib (1987) and Tchienkoua (1987) estimated topsoil organic carbon ranges of 1.02 to 

2.88 and C/N ratios, of 10-16:1 for the Mbalmayo area. In West African rainforests 

the topsoil C/N ratio usually stabilizes at about 10 to 12:1 (Ahn, 1970). The low 

organic matter of the study area and of most tropical soils result from rapid 

mineralization favoured by all year round high temperatures and humidity permitting 

continuous microbial activity. 

3.4.3.2.2 Nutrients 

Soils of the study area are poor in nutrients with highest concentration in the 

topsoil, presumably enriched with bases as a result of biotic cycles (Table 8). The 

results are similar to other tropical studies (Sanchez et al, 1985; Alegre et a!, 1986; 

Kang and Juo, 1986; Lathwell and Grover, 1986). These soils have developed from 

deeply weathered materials and therefore possess very low mineral reserves for plant 

nutrition. Their low cation adsorption capacities, have made them susceptible to 

leaching. The reported cation exchange capacity values for the Mbalmayo region are 

low (Table 9). 

The exchangeable aluminium content of the soils is high 5.8 emol kg-i and 5.6 
cmol kg4  for the two soil depths indicating the soils to be very toxic with respect to 

aluminium saturation (about 70% Al saturation from Table 10). During the 1950s 

considerable research established that acid soils were toxic as a result of exchangeable 

Al rather than hydrogen ion (Coleman and Thomas, 1967 mentioned by Kamprath, 

1979). Toxic levels of aluminium in acid soils, therefore are an important factor in 
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poor plant growth. Kamprath (1979) compiled values for exchangeable Al and Al 

saturation of soils in the tropics and subtropics (Table 10). The average exchangeable 

Al content was greater than 1 cmol kg-i for soils with pH < 5. For all soils except 

those from South West Africa (Table 10) the average percentage Al saturation of the 

effective CEC was > 50. When Al Saturation is > 60%, the concentration of soil 

solution Al generally exceeds 1 .tg g1 , a lve1 detrimental to many crop species 
(Kamprath, 1979). 

Soils of the study site and Mbalmayo. area are characterized by strong 

weathering - high clay content > 50%, low ratio values of silt/clay and intense leaching 

of bases and silica [low base saturation and low CEC (pH 7) values Njib (1987)]. The 

above properties are similar to those of the soils classified as Oxisols (U S D A soil 

Taxonomy, 1975) and are as a result of ferralization processes (Njib, 1987). 



Depth 
Extractable nutrients Total nutrients 

 (%) mgJlOOg  cmol kg-I 

(cm) 
N P K Ca Mg N p C P11  

0-20 1.79 ±0.18 0.02 ±0.007 0.11±0.06 0.28± 0.32 0.2 ±0.18 0.12 ±0.012 0.015 ±0.0008 1.1 ± 0.06 4.3 ± 0.04 

2040 1.15 ±0.07 0.02 ±0.00 0.09±0.09 0.24±0.23 0.17±0.15 0.10 ±0.00 0.016±0.0006 0.88± 0.07 4.4± 0.04 

Table 8 : Selected soil properties of the natural forest before land clearance (February 1987). Standard errors are for means of 
fourteen samples 

(ii 
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Soil property 
Depth(cm) 

0-25 25-40 

pH 4.1-6.7 4.5-6.4 

%Moisture 1.3-11.9 1.1-3.9 

%Organiccarbon 1.02-2.88 1.58-1.78 

• Nitrogen 0.05-0.23 0.04-0.13 

P (available) mg/bOg. 0.2-1.1 0.1-0.7 

K (exchangeable) cmol kg 	1 0.09-0.64 0.01-0.11 

Ca 0.31-16.16 0.25-7.21 

Mg 	to 	

of 
0.3-49 0-1.96 

Na 	t 	 it 0.05-0.19 0.01-0.15 

Al 	to 0-5.14 0-3.35 

CE C (effective) cmol kg 1 1.65-20.26 1.4-12.9 

Table 9: Range of selected soil properties over 100,000 ha in the Mbalmayo 

region surveyed and evaluated by Njib (1987) and Tchienkoua (1987), 

respectively. Range values are for a total of sixteen pedological pits. 



Exchangeable Al Al saturation 

Region Soils 
pH j cmolk1  

range average range average range 
R. Y. latoso 4.0-4.6 1.8-3.2 1.7 38-90 74 

Bnizi 
Redlatosol. 4.1-4.2 0.7-1.9 1.2 83-90 88 

Colombia Oxisols 4.2-5.1 0.6-5.8 3.1 26-86 68 
Malaysia Oxisols 3.6-4.2 0.7-12.4 3.4 34-86 61 
Panama Latosol 4.8-5.2 0.3-5.8 44-68 
Puerto Rico Ultisols 3.9-4.6 4.5-9.9 6.6 36-70 57 

5.1-5.4 0-2.0 0.5 0-43 13 
Southwest Ultisols and 4.5-5.0 0.1-3.7 1.3 2-69 41 
Africa Affisols 4.4-4.4 0.1-2.8 1.2 1-67 35 

4.5-4.7 0.9-4.2 2.1 54-82 72 

Table 10: Exchangeable Al and Al saturation of soils in tropical and sub-tropical 

regions . After Kampratth (1970). (R.Y.=red yellow). 

Cii 
0) 
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3.4.3.3 	Bioassay of Soils 

3.4.3.3.1 Germination and Growth 

Generally, the germination of Terminalia ivorensis was poor, only 53%. 
However, compared to the general results of < 40% reported for Ter,ninalia ivorensis 

germination (Voorhoeve, 1965), this result was relative good. A supply of seedlings 

from seeds sown in the nursery bed was used to ensure that every pot contained a 

seedling. Progressive plant mortality with diminishing replication (Table 11), was the 

reason why the experiment was terminated after only three months of growth , with a 

total mortality of 43%. 

Treatment 

Total 

planted 

Total 

survived 

Percentage 

mortality 

0-20cm 42 23 45 

20-40cm 42 20 52 

Litter 8 6 25 

Fertilized 7 4 43 

Control 7 4. 50 

Table 11: Plant survival after three months of growth in soils from two depths 

(0-20 and 20-40 cm) from the natural forest, and soils treated with 

fertilizer and decomposing leaf litter 

Plant growth (height and leaf production) was better on soils from the 0-20 cm 

depth (Figure 8a & b). This may be expected from the nutrient results in Table 8 

which show higher concentration in this layer than in the 20-40 cm depth. The initial 

small differences in growth gradually increased with time as nutrients of the subsoil 

rapidly depleted through plant uptake and leaching loses (Figure 8a). 

The litter-treated plants performed slightly better than the other treatments 

(Figure 8c & d). The leaf litter added as a source of nuthents, had the additional 

advantage of reducing evaporation rates and protecting the soil against direct solar 



irradiation and rainfall impaction - at least as long as it lasted. Plant response to 

fertilizer was only slightly evident after seven weeks of growth. It is thought initial 

soil watering compounded with rainfall dissolved and leached fertilizer nutrients to 

lower regions of the pot. Plants therefore, had to develop sufficient root systems to 

attain and absorb these nutrients which may account for the observed delay in 

response. 
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Figure 8: (a and b) Mean effects on plant height and leaf production of soils taken at two depths (0-20 cm and 20-40 cm) 
from the natural forest before land clearance. 

(c and d) Mean effects on plant height and leaf production of added (i) fertilizer and (ii) leaf litter to soils taken 
at depth 0-15 cm from the natural forest before land clearance. Data points are means± SE. 



3.4.3.3.2 Nutrient concentration of plants 

Nitrogen and phosphorus concentrations in plants grown in soil from the top 

0-20 cm soils of the profile were higher than those grown in soil from 20-40 cm 

(Table 12). High nitrogen concentrations are expected since the topsoil contained 

higher values of available and total nitrogen (Table 8) as well as organic matter, the 

primary component of soil nitrogen. Available and total phosphorus ëontents of both 

soil depths are identical (Table 8), therefore, the high P content of topsoil plants must 

result from the breakdown and release from organic matter contained in larger amounts 

in the topsoil. The similarities in cation concentration of plants from both depths 

(Table 12) indicates the ability of plants to absorb and concentrate some elements even 

though they maybe in short supply in the soils. 

Litter-treated plants contained higher nutrient concentrations than the fertilized 

plants which had identical concentrations (except for K and Mg) with the control 

(Table 12). As mentioned above, the added litter did not only serve as a nutrient 

source but is likely to have offered soil protection against direct sunlight and rainfall 

impaction and reduced evaporation rates from the soil, factors which might help 

reduces volatization and leaching losses of nutrients. The similarity in the fertilized 

and controlled plant nutrient concentrations could be as in section 3.4.2.3.1 caused by 

a slow response to the applied fertilizer or as above by the ability of plants to absorb 

and concentrate nutrients, respectively. Nutrient concentration in the various plant 

parts (leaves, stem and roots) are given in appendix 3. 
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Treatment N P K Ca Mg 

Depth 

0-20cm 1.83 0.18 1.55 0.63 0.20 

Depth 

20-40cm 1.23 0.13 1.52 0.65 0.23 

Litter 1.80 0.22 1.71 0.70 0.29 

Fertilized 1.78 0.16 1.64 0.51 0.17 

Control 1.77 0.17 1.39 0.61 0.25 

Table 12: 	Nutrient concentration (% dry weight ) of plants from the bioassay. 

Nutrient concentration of plant parts (Leaves, stems, and 

roots) are given in appendix 3. 

3.5 Conclusion 

The well drained soils of the study site are likely to be Oxisols or Ultisols. 

Previous work in this region showed that the soils exhibited properties of Oxisols (low 

CEC, acidity, low base saturation, excellent granular structure with little contrast 

between horizons and the presence of an argillic horizon in the subsoil). The results of 

the investigation, over the 4 ha study area, agree with most of these findings but for 

the fact that the soils showed a marked clay increase with depth a property exhibited by 

Ultisols. Therefore, although Oxisols may be the dominant soil type, as revealed by 

the extensive study by Njib (1987) and Tchienkoua (1987), detailed small scale studies 

might reveal interesting and important differences. 

The sandy soils of the study site are acidic with a surface soil pH range of 4.3 - 

4.4, and poor in nutrients with high levels of aluminium. These results are quite 

typical of the well drained soils of the Mbalmayo region reported by Njib (1987) and 

Tchienkoua (1987). 

The precarious conditions of the soils revealed by this study are very important 

for future land use and management. The results indicate that much care should be 
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taken in the conversion of these forests, to other land use purposes, to avoid losses of 

the already low nutrient amounts tied up mostly in the surface soils. 

The bioassay experiment showed that, Terminalia ivorensis grew well in the 

forest soils from the 0 - 20 cm depth and that growth was stimulated by adding litter 

and fertilizer to the pots. 

Fine litter amounts on the forest floor had significant amounts of nutrients and 

hence play an important role in the nutrient cycling chain in tropical forests. However, 

this ecosystem compartment, together with the relatively high base topsoil, are shown 

to suffer particularly when forest is opened for cultivation to tree crops using 

mechanized clearance. This is discussed in the next chapter. 
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CHAPTER FOUR 

EFFECTS OF LAND CLEARING METHODS ON SOIL PHYSICAL 
AND CHEMICAL PROPERTIES 

4.0 	Introduction 

After a thorough review of the effects of fast-growing tree plantations on soil 

dynamics in tropical and sub-tropical highland regions, Lundgren (1978) proposed a 

conceptual model (Figure 9) of the dynamics of soil organic matter, nutrients and bulk 

density during seven different stages of plantation development. According to the 

model, soil organic matter content decreases after clearing, burning and plantation 

establishment. After canopy closure - the fallow enrichment phase - organic matter 

increases but then decreases during the maximum production phase, which terminates 

with the harvest of the first rotation. Organic matter further decreases after felling, 

logging, burning, and the start of the second rotation. Bulk density follows a pattern 

opposite to that of organic matter. Mineral nutrients increase after clearing, but then 

decrease throughout the three stages of the first rotation. Following harvest and 

burning, prior to the second rotation nutrient levels increase again. Lundgren (1978) 

considered this model to be a working hypothesis and urged researchers to develop 

hypotheses about the quality and direction of soil changes under man-made forests for 

specific ecosystems, soils, tree species and management practices. 

The present study, which could be considered to some extent as a response to 

Lundgren!s appeal was only able, due to limited observation period,to examine three 

stages of this model. Stage one was investigated as part of the pilot studies and stages 

two and three are presented in sections 4.1 and 4.2. 



Cultivation Maximum Felling 
Second 

Natural Clearing and Fallow production and 

orest young plants enrichment phase logging  
rotation 

ORGANIC MA1ITER 

MINERAL NUTRIENTS 

BULK DENSITY 

3-5 	5-10 	5-10 	 years -. 

Figure 9: Effects of clearing natural forest and growing fast-growing tree species on selected soil 
properties in the tropics. After Lundgren (1978). 
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4.1 	Physical Properties 

4.1.1 	Introduction 

Forest soil investigators have long recognized the profound influence of soil 

physical properties on the growth and distribution of trees (Watanabe et al.,1960; 

Barber, 1964; Pritchett, 1979). Recently, much attention has been directed toward the 

equally important influence of chemical and biological properties and the interaction of 

all three groups of properties on each other and on site production. Soil physical 

properties such as texture and structure and soil colour have more indirect than direct 

effects on plant growth. Their influence on soil moisture, temperature, aeration and 

nutrient availability affects the growth and survival of trees (Pritchett, 1979). 

The proportion of rain water that can be stored in the root zone for plant use is 

greatly influenced by the soil particle size distribution (Peters, 1957; Robins, 1957; 

Gardner, 1960, 1964; Denmead and Shaw, 1962; Miller, 1973), organic matter 

content (Biswas and Ali, 1967; Lal and Kang, 1982) and mineralogical composition 

(Opara-Nadi et al., 1986). Soil structure and texture play an important role in water 

availability through their influence on infiltration and evaporation rates . Closely 

related to soil water retention capacity, are soil water transmission characteristics, two 

properties that determine soil water behaviour in the rooting zone of most plant habitats 

and therefore the supply of water and nutrients to plant roots (Opara-Nadi et al., 

1986). Surface horizons of sandy texture are known to have most rapid infiltration 

rates during rainfall of high intensity, once a continuous water column has been 

established (Herbel and Gile, 1973). Conversely, low infiltration rates significantly 

affect soil detachment and the velocity and sediment carrying capacity of run-off water 
(Lal, 1981). 

Drastic alterations in soil physical properties can occur when the forest is 

removed, and the effects vary according to the nature and intensity of clearance. The 

direct effects of disturbance are on the soil air-water system and on soil strength 

properties affecting root penetration. The physical properties affected by disturbance 

also affect the chemical and microbial soil conditions indirectly and, thus, they can be 

said to directly affect soil fertility and productivity (Pritchett, 1979; Sanchez, 1985). 
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4.1.2 	Materials and methods 

Three months after land clearance (August, 1987), 50 x 50 m plots were 

subdivided into 25, 10 x 10 m subplots to form a sampling matrix in the centres of 

each of the treatment areas (Figure 10). Pedological pits each measuring 1.5 x 1.5 m 

and 1.75 m deep were dug per treatment plot for soil morphological description and 

particle size analysis. The soil physical properties investigated were colour, texture, 

structure, particle size distribution and bulk density. 

4.1.2.1 Soil profile study. 

Particle size distribution was determined by the pipette method (appendix 1) on 

samples taken at four depths (0, 50, 100, 150 cm) from the pits . Profile samples were 

taken at horizons distinguished by soil colour and all the field observations were made 

at these depths. 

4.1.2.2. Bulk density 

Bulk density was measured on undisturbed cores (6 cm long and 6 cm internal 

diameter). Soil-core samples for bulk density determination were taken at randomly 

selected points in fifteen of the 25, 10 x 10 m subplots. Four replicated soil-core 

samples were also taken at four depths (0, 25, 50, 100 cm) from the pedological pits 

for bulk density determination. After carefully cutting clean the soil-core edges and 

cleaning the sides of the corer free of soils, the soil-cores were put in paper bags and 

oven-dried for forty-eight hours at 105 °C. Samples were weighed after cooling and 

bulk density calculated (Black, 1965). A small scale experiment was set up to study 

the effects of repeated passes of a heavy machinery on soil compaction, using a D8 

bulldozer equipped with a straight rake, exerting a pressure, on the soil, of 66 k Pa at 

each pass. 

NB: Plots were cleared in the month of May corresponding to the short rainy season. However, 
clearance wth heavy machinery actually took place only after long rainless periods. 
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4.1.3 	Results 

4.1.3.1 Site preparation 

The most apparent effect of the treatments was gross soil disturbance on the 

Mechanical Regrowth and Complete Clearance plots. Almost all the topsoil on the 

Complete Clearance plot and most of that on the Mechanical Regrowth plot was 

displaced, not by the the bulldozer rake, which was kept above the soil, .but,by the 

pushing and dragging of uprooted trees and logs. There was further exposure of the 

soil surface on these two plots to the direct action of sun and rain. Topsoil scraping in 

high places and accumulation in low spots and root holes, and mixing of topsoil with 

lower layers as a result of track spin was commonly observed. 

Topsoil scraping and displacement on these two plots exposed the subsoil with 

a high clay content (Table 13). Marked increases in the clay fraction with depth in the 

Control, Manual Regrowth and Complete Clearance plots (Table 13), indicate the 

presence of an argillic subsurface horizon suggesting the soils are Ultisols. 



APO  

Depth 

(cm) 

Soil 

property 

Treatment 

Control Man. Reg. Mech Reg Comp. C. 

0 

pH 4.3 4.5 4.6 4.5 

%Clay 29.1 36.1 44.6 41.6 

• Silt 15.8 15.6 10.9 11.6 

• Sand 55.1 48.3 44.5 46.8 

50 

pH 4.9 4.8 4.8 4.6 

• Clay 53.7 45.3 43.2 52.3 

%Silt 11.6 14.1 15.7 11.6 

%Sand 34.7 40.5 41.1 36.1 

• 

100 

pH 5.2 5.3 4.8 4.9 

% Clay 50.6 43.6 40.4 54.4 

%Silt 11.6 12.6 16.6 11.6 

% Sand 37.8 43.8 43.0 34.0 

150 

pH - 5.4 5.2 5.0 

% Clay - 21.0 47.8 53.2 

% Silt - • 	14.5 13.2 12.5 

% Sand - 64.5 39.0 34.3 

Table 13: Average soil pH and particle size distribution down pedological pits in 

the different treatment plots three months after land clearance (see also 

Figure 10), 
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4.1.3.2 Soil compaction 

Conventional bulldozing of the complete clearance plot resulted in drastic effects 

on soil compaction. Analysis of variance of data from the surface layer showed highly 

significant (p=O.Ol) differences in bulk density between the Complete Clearance and 

the Manual Regrowth plot. The bulk density of the Mechanical Regrowth plot was not 

significantly different from that of the Manual Regrowth plot but was significantly 

different from the Control plot. The observed differences in bulk density of the 

Control and Manual plots could have possibly resulted from soil compaction by the 

felled trees or it is simply a result of soil variability. Table 14, shows that significant 

effects of soil compaction occuired in the Mechanical Regrowth and Complete 

Clearance plots to the depths of 50 cm. 

• 	Pepth.. 
.Buikdensity_.gcm 3  

.. 

(cm) Control Man Reg Mech Reg Cmp C 

.1• . 	..**_ . 	. 

0-10 116 1 30 1 38 1 53 
* 

1.34 1:43 	. . 	1.48 
* 

4555 134 	.1.38 1.44 	. .1.42 

.95 7 105 	. . 1.76 1.39 1:40 	. .L40 

LSD 

0;O94 

0.35 

.0.041 

.0.07.1 

Table 14: Effects of land clearing methods on soil compaction in the treatment 

plots. Means of 0-10 cm arefor nine amples and those of lower depths 

for four. • . • • 

+ high bullc.densit.y may be as aresult ofparent material. Digging was 

very difficult. beypnd this depth due to the presence of a hard 

lateritic crust (probably a buried palaeoso1). 

• * significant at p<O.OS 

** significant atp<0.01 
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Morphological description of soil profiles, given in appendix 2, iii - iv, show 

that compaction eliminated voids and visible pores and left the soils (top compacted 

areas) structureless. 

The selective nature of the Mechanical Regrowth technique of land clearance 

resulted in a high coefficient of variation for the bulk density of the 0 - 10 cm depth 

(CV=14%). The CVs for the other plots were low, Control - 6%, Manual Regrowth - 

5%, and Complete Clearance - 5%. The similarity in the variation coefficient of the 

Manual Regrowth and the Control plot is an indication of the mild effect of this 

technique on the ecosystem. In the contrary, the low value recorded in the Complete 

Clearance plot indicates the extensive and even distribution of the compaction effect 

over the plot. 

The results of the effects of different passes of heavy machinery on soil 

compaction (figure 11) can be divided into three main phases. As the number of 

passes increased, there was an initial sharp rise in bulk density, followed by a gradual 

increase and finally reaching an asymptote where there was little or no further 

compaction with increased passes. Only four passes of the D8 bulldozer were 

sufficient to cause severe damage to the soils of the study area. 

1.5 

e 	1.4 

E 

a 	1.3 

-' 

1.2 

3 	1.1 

1.0 

0 	 5 	 10 	 15 
Number of passes 

Figure 11: Effects of number of passes of a D8 straight rake bulldozer, weighing 

23.51 tonnes (plate 2), on soil compaction in the Mbalmayo forest 

reserve. Bars are standard errors of means. 
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4.1.4 	Discussion 

4.1.4.1 Site preparation 

Most forest soils concentrate nutrients in a shallow topsoil layer and their 

removal can significantly affect production. In Nigeria, Lal et al. (1975), observed 
that corn yields decreased by 50% when the top 2.5 cm of an Alfisol was removed. 

4.1.4.2 Soil compaction 

Only rarely are measurements of soil physical responses to machinery in land 

clearing operations extended to sufficient depth and with sufficient replication to allow 

a full description of the responses obtained (Soane, 1986). Studies by van der Weert 

and Lenselink (1972) showed that changes in bulk density attributable to clearing may 

extend to a depth of about 70 cm. 

The observed pattern of soil compaction as a result of different passes of heavy 

machinery could be explained by variation in soil porosity (macropores). The initial 

sharp increase in bulk density could presumably have resulted from a rapid reduction 

in macropores and voids. As the number of pores decreased, the rise became gradual 

finally attaining a platform when almost all compactible pores were eliminated. Soil 

- water conditions are also very critical in soil compaction analysis. In some soils of 

very high compactability (Soane, 1986) a single pass may be as damaging as many 
passes. 

A common effect of land clearance (especially with heavy machinery) is 

increased soil heterogeneity. This was evident from the CV values for the four plots. 

In contrast to the low soil compaction of the Control and Manual Regrowth plots, the 

low CV of the Complete Clearance plot depicts the drastic effects of the method of 

conventional bulldozing resulting in almost all topsoil removal and complete plot 

compaction from the numerous and repeated passes of the machinery. 

Land clearing with heavy machinery is rapid and results in an increased 

heterogeneity of substrate forplant growth (Alegre et al., 1986a, 1986b; Alegre and 

Cassel, 1986), but evidence from several locations in the tropics confirm that it can 

result in severe compaction with concomitant reduction in macroporosity, infiltration 

rate and available moisture and soil aeration (Seubert,1977; Lal and Cummings, 1979; 

Sanchez and Salinas, 1981; Gent et al., 1983,1984; Alegre et al. 1986b; Soane, 

1986). In Surinam,mechanized clearing resulted in increases of bulk density to a depth 
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of 80 cm at two sites and 60 cm at another with macroporosity (>80 tim) totally 

eliminated to depths 15 and 25 cm respectively (van der Weert and Lenselink, 1972; 

van der Weert, 1974). These changes were accompanied by a large reduction in basic 

infiltration rate and in rooting depth of the crop. 

Soil compaction by heavy machinery in the Mechanized plots probably resulted 

because of the action of the machinery tracks, including back and forth movement 

(occasionally up to 20 times) in the process of stump and tree removal, the removal of 

the highly porous root mass and the exposure of bare soil to the impaction of high 

intensity rains. In contrast, the Manual Regrowth plot retained its root mass and was 

protected from the rain by the mass of leaves, twigs, branches and logs from the 

unburnt and unremoved slash. 

The effects of compaction can persist for long periods on some soils as 

evidenced by stunted growth of trees on skid trials, machinery tracks and log landings 

(Pritchett, 1979; Mason et al.,1989). Clearly the risks of compaction in mechanized 

land clearing are so high that every possible means of avoiding the problem must be 

explored. The detrimental effects of mechanical land clearance can be and have been 

lessened to a great extent by choosing correct accessory implements on the machinery. 

In a study conducted in an Alfisol in Nigeria, bulldozing with a shear blade followed 

by zero tillage caused less run-off and erosional losses, than bulldozing with a 

combined tree pusher and root rake (Sanchez, 1980; Sanchez et a!, 1985). Soil 

compaction can also be minimized by careful supervision of operations; by working in 

the drier seasons or on dry days and by the early establishment of beneficial cover 

crops. 

4.1.5 Conclusion 

The effects of the clearing methods on the soils were proportionate to the 

intensity of disturbance caused during clearance. 

The Manual  Regrowth method caused the least disturbance 'and 

consequently had the least effects on the soils as depicted by the similarities in 

results with the Control plot. 

The most drastic effects on the soils were recorded in the Complete Clearance 

plot. This resulted mainly from the repeated passage of heavy machinery hence 

compacting the soilexposing them to rain impaction and erosion. 

The Mechanical Regrowth method caused intermediate effects to the two 

extremes above, through the selective nature of vegetation removal. The big 
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trees provided the soils with some protection against direct solar irradiance and direct 

rain fall impaction. However, some soil damage (compaction and soil 

disturbance) was caused in the process of clearing and windrow creation. 

The effects of land clearance on soil physical properties indirectly affect plant 

growth through the influence on soil moisture, temperature, aeration and, nutrient 

availability often reported to be loss in great quantities after clearing. 

4.2 	Chemical Properties 

4.2.1 	Introduction 

Human interference with the natural forest causes a series of long- or short-term 

changes most of which are detrimental to secondary land use (Fölster, 1986). In many 

environments, the preparation of land for agriculture and silviculture by means of 

clearing will, of necessity, modify the existing balance between soil, climate and 

vegetation. Agricultural and silvicultural activity creates a new physico-chemical status 

of the soil, which may be grossly different from its initial state and may deteriorate 

very rapidly under the influence of unstable cultivation and management techniques 

(Martin, 1986). 

One of these changes is the unavoidable loss of nutrients caused by disturbance. 

Such losses occur whether the disturbance consists only of partial extraction or of 

more radical transformation of forest into plantations, shifting cultivation or permanent 

fields or pastures. One can recognize two overlapping and interconnected steps; one 

being the cutting and disposal of the forest biomass and its important nutrient store and 

the second, the gradual adaptations of the chemical soil properties to the dynamics of 

the land use system adopted (Fölster, 1986). These losses are generally rapid in 

Oxisols and Ultisols in humid tropical climates because the surface horizon is generally 

shallow and contains most of the nutrient reserves (Sanchez, 1980; Martin, 1986). 

The problem is also aggravated by harsh climatic factors. For example, frequent high 

intensity rain that destroys surface soil structure, and which may cause erosion and 

accelerate leaching of the clay and nutrient elements. 

The potential fertility of tropical forests is often overestimated because of the 

apparent lush vegetation. In fact, the forest 'feeds' on its own debris and reuses the 

nutrients which are concentrated on the soils surface for various biological activities 
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(Whitmore, 1985; Jordan, 1985; Roose, 1986). Once the organic matter store has 

been mineralized, the ferrallitic soil cover is nomore than a weathered skeleton devoid 

of nutrient reserves (Roose, 1986). As soon as the forest disappears, the carbon 

content in soils decreases, nutrients weakly held by 1:1 layer kaolinitic clays are 

leached, biological activities are reduced, macroporosity declines and soil structure is 

degraded (Nye and Greenland, 1964; Fauk et al, 1969; Charreau and Fauk 1970; 

Roose, 1979-1980). 

The measurement of inorganic nutrients in the soil involves the problem that the 

amounts estimated by chemical analyses are not necessarily a measure of the amounts 

available to plants. The total amount is generally an overestimate and the 'available' or 

'exchangeable' amounts are underestimates of what is available to plants in the long 

term. Roots may possess surface phosphatases that release phosphate from organic 

matter. In highly organic soils much of the N may not be available, especially under 

acid conditions (Whitmore, 1985). Different analytic procedures give different results 

even when supposedly measuring the same component and this can invalidate detailed 

comparisons between different studies. One way to make biologically meaningful 

measures of plant-available nutrients in a range of soil is to compare the growth in 

them of a standard plant (a 'phytometer' or bioassay). This has seldom been attempted 

for rainforest soils (Whitmore, 1985). Here this idea was exploited in the bioassay 

experiment described in chapter three. 

In the part of the work described in sections 4.2.2 the hypothesis under 

examination is that site preparation causes sufficient disturbance to the soil to influence 

the chemical properties in the rooting zone. To test this hypothesis, chemical analysis 

were carried out three and fifteen months after the sites had been prepared and planted 

with young Terminalia ivorensis. 

4.2.2 	Materials and Methods 

Soil sampling three months after land clearance was carried out in the centrally 

marked Out and subdivided 50 x 50 m plots (Fig.iO) as described in section (3.4.4). 

Although auger samples were obtained for the two depths before and three months 

after clearance to try and eliminate effects of soil scraping and deposition in the 

Mechanical Regrowth and Complete Clearance plots, nevertheless great differences 

exist in surface soil and subsoil nutrients. After fifteen months from clearance and 

with the soil surface looking relatively leveled out in the Mechanical Regrowth and 

Complete Clearance plots, a detailed examination of the soils was carried out in small 



76 

rectangular pits measuring 100 x 50 cm and 40 cm deep. Fifteen of these rectangular 

pits were dug at randomly selected points in fifteen of the 25, 10 x 10 m subplots per 

treatment area (Figure 10). Soils were collected at three depths from each pit; below 

the litter layer, and at 15 and 30 cm from the pit. The samples were thoroughly mixed 

and subsamples collected for analyses. Pre-treatment and sample analysis for chemical 

properties was carried out as described in section (3.4.4). 

4.2.3 	Results 

4.2.3.1 Chemical properties three months after clearance 

The chemical properties of the two soil depths sampled at three months after 

clearance are summarized in Table fifteen. The topsoil (0-20 cm) contained higher 

nutrient concentration than the subsoil (20-40 cm) and is the layer largely discussed 

here. All treatment plots showed increases in inorganic nitrogen but only the 

Mechanical Regrowth and Complete Clearance plots showed significant increases in 

exchangeable K and Ca. On the contrary, the Manual Regrowth plot showed 

significant decreases in exchangeable Ca and Mg. Available P increased only in the 

Mechanical Regrowth plot. There was no clear pattern for total P in all treatment plots, 

but there was a reduction in total nitrogen and organic carbon and an increase in pH in 

the Mechanical Regrowth and the Complete Clearance plots. 



Extractable. 	Nutrients  Total 	Nutrients 	(%) 

freatment N P K Ca Mg 

 N P C pH mg/IOOg cmol kg-i 

Depth 	0-20cm 

Control 1 	1.54 ±0.01 0.04 ±0.012 0.10 ±0.005 0.21 ±0.025 0.26 ±0.018 0.13 ±0.006 0.017±0.0006 1.3±0.07 4.4±0.06 

Man.Reg. 1.86 ±0.13 0.02 ±0.004 0.01 ±0.009 0.11 ±0.011 0.13 ±0.011 0.13±0.006 0.016±0.0005 1.3±0.06 4.4±0.05 

MechReg 2.25 ±0.16 0.04 ±0.014 0.16 ±0.031 0.41 ±0.018 0.22 ±0.018 0.10±0.005 0.015±0.0007 1.0±0.11 4.8±0.06 

Comp. C. 2.03 ±0.15 0.02 ±0.008. .0.18 ±0.026 0.36 ±0.011 0.18 ±0.011 0.11  ±0.013 0.016±0.0005 1.1±0.11 4.7±0.05 

Depth 	20 -40 cm  

Control 0.95 10.09 0.01 ±0.003 0.08 ±0.005 0.19 ±0.03 0.21 ±0.030 .0.11 ±0.006 0.016±0.0006 0.91 ±0.06 4.8±0.06 

Man. Reg 1.18 ±0.08 0.02 ±0.006 0.08 ±0.005 0.09 ±0.009 0.09 ±0.009 0.11 ±0.005 0.015±0.0004 0.97 ±0.01 4.6±0.04 

MechReg 2.00 ±0.15 0.04 ±0.010 0.10 ±0.008 0.27 ±0.024 0.27 ±0.024 0.10 ±0.004 0.017±0.0004 0.78 ±0.07 4.8 ±0.04 

Comp. C. 1.61 ±0.10 0.05 ±0.015 0.13 ±0.009 0.26 ±0.03 0.26 ±0.030 0.11±0.005 0.014±0.0011 1.20  ±0.06  4.6  ±0.05 

Table 15: Selectecd soil properties of the different treatment plots three months after land clearance (August 1987). Standard errors are for means of eleven 
samples. 



4.2.3.2 Chemical properties fifteen months aftere clearance 

There was a striking similarity in topsoil nutrient concentration of the control 

and the Manual Regrowth plots (Table 16). Topsoil nutrient concentration of the 

Mechanical Regrowth and Complete Clearance plots were lower than those for the 

Manual Regrowth and Control plots. 

Topsoil organic carbon was highest in the Manual Regrowth plot and decreased 

with depth for all the treatment plots. Soil acidity in the Mechanical Regrowth and 

Complete Clearance plots was still lower than in the Manual Regrowth plot. There 

was a slight increase in subsoil total P in all the treatment plots. 



Depth 

(cm) 
Treament 

Extractable nutrients Total nutrients 

(%)  

PH 

mgIlOOg  cmol kg 1  

 N P K Ca Mg N P C 
Control 4.90 ±0.27 0.122 ±0.009 0.22±0.012 0.56±0.055 0.40+0.04 0.19 ±0.02 0.012 ±0.0004 1.3 ±0.14 4.3±0.25 

01 

Man. reg. 3.49 ±035 0.121 	±0.011 0.23±0.014 0.61±0.075 0.42±0.06 0.14 ±0.02 0.011 ±0.0002 1.3 ±0.11 4.4±0.06 
Mech.Reg 4.40 ±1.09 0.034 ±0.013 0.11±0.017 0.39±0.091 0.29±0.04 0.17 ±0.07 0.011 ± 0.0004 0.82 ±0.4 4.7±0.04 
Comp. C. 2.73 ±0.47 0.025 ±0.006 0.15 ±0.018 0.42 ±0.070 0.27±0.04  0.39 ±0.11 0.011 ± 0.0002 0.81 ±0.11 4.7±  0.05 
Control 3.40 ±0.27 0.014 ±0.002 0.07±0.004 0.03 ±0.003 0.11±0.02 0.13 ±0.06 0.012 ± 0.0002 0.59 ±0.06 4.3±  0.23 

15 
Man.Reg. 1.27 ±0.18 0.021 ±0.003 0.08±0.004 0.05±0.012 0.11±0.02 0.05 ±0.01 0.010 ±0.0003 0.87 ±0.16 4.4±0.04 

Mech.Reg. 4.00±1.22 0.043 ±0.011 0.11±0.024 0.41±0.108 0.29±0.06 0.25 ±0.07 0.011 ± 0.0001 0.68 ±0.19 4.5±0.04 
Comp.0 1.04±0.08 0.031 .j0.015 0.07±0.004 0.08±0.019 0.09±0.01 0.32 ±0.12 0.010 ±0.0002 0.64 ±0.09 4.5±0.03 
Control 2.14 ±0.29 0.013 ±0.004 0.07 ±0.007 0.03±0.004 0.11±0.01 0.05 ±0.001 0.011 ± 0.0002 0.51 ±0.13 4.4±  0.14 

30 
Man. Reg. 1.12 ±0.19 0.033 ±0.005 0.07±0.017 0.03±0.010 0.09±0.01 0.07 ±0.02 0.013 ± 0.0002 0.48 ±0.0 8 4.7±0.05 

Mech.Reg. 4.28 ±1.08 0.064 ±0.017 0.13±0.021 0.32±0.070 0.25±0.04  0.24 ±0.06 0.012± 0.0004 0.58 ±0.21 4.6±0.04 
Comp. C. 1.06 ±0.06 0.027 ±0.012 0.06±0.004 0.07 ±02.! 0.07±0.01 0.36 ±0.12 0.012 ± 0.0002 0.45 ±0.06 4.6± 0.05 

Table 16: Selected soil properties at three depths (0, 15, 30 cm) in the different treatment plots fifteen months after land clearance (August 1988). Standard errors 
are for means of fifteen samples. 
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4.2.3.3 Nutrient dynamics 

In order to establish a time series and compare results of topsoils in the different 

treatment plots (although in fact samples are not strictly comparable due to the 

difference in sampling techniques) the average nutrient concentration of the 0 cm and 

fifteen cm depths at fifteen months after clearance was calculated and compared with 

those of the 0-20 cm depth before and three months after clearance (Fig. 12a and 12b) 

Inorganic nitrogen 

The Mechanical Regrowth and Complete Clearance plots showed increased 

nitrogen concentration at three months after clearance, but this decreased slightly 

at fifteen months for the Complete Clearance plot. On the other hand, the 

Manual Regrowth plot showed no change at three months but increased 

slightly one year later. 

Base status 

Exchangeable Ca and Mg decreased at three months in the Manual Regrowth 

plot before rising rapidly at fifteen months. Exchangeable K, Ca and Mg in the 

Mechanical Regrowth plot increased at three months but K decreased one year 

later, while in the Complete Clearance plot K and Ca rose at three months 

before declining to levels in the natural forest at fifteen months but magnesium 

decreased at three months and remained unchanged at fifteen months. 

Available phosphorus 

The Manual Regrowth plot showed no change in 'available' P at three months 

but increased rapidly twelve months later. In the Mechanical Regrowth plot 

'available' P increased at three months and was unchanged one year later. 

There was no change in 'available' P in the Complete Clearance plot at three 

months and only a slight increase was recorded at fifteen months. 

pH 

The pH of the Mechanical Regrowth and Complete Clearance plots increased by 

an average of 0.3 units as against 0.1 for the Manual Regrowth plot. There was 

little or no influence of the Manual Regrowth Clearance on soil acidity. 

Organic Carbon 

The general trend of organic carbon in all the treatment plots was in decline 

with time, except for atemporary increase in the Manual Regrowth plot at three 

months after clearance. 
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Figure 12a: Effects of land clearing methods on topsoil (0 - 20 cm) nutrients (N, P, K, Ca, Mg), 'at three and fifteen 
months after land clearance. Data points are means ± SE. 
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Figure 12b: Effects of land clearing methods on topsoil (0 - 20 cm) total N and P, organic carbon, 
and pH at three and fifteen months after land clearance. Data points are means ±SE. 
(P values for Man. Reg. and Comp. C. are identical). 



4.2.4 	Discussion 

4.2.4.1 	Chemical properties at three and fifteen months after 
clearance 

High nutrient concentration in the topsoil 0-20 cm at three months after clearance 

(Table 15) was expected since tropical soils have been shown to concentrate nutrients 
in the surface soils. Increases in bases in the Complete Clearance and Mechanical 

Regrowth plots may be attributed to the increases in soil temperature and moisture 

conditions as a result of the complete and partial removal of the canopy in these plots 

respectively, thus giving rise to rapid mineralization. 

The high and similar nutrient concentrations of topsoil nutrients in the Control 

and Manual Regrowth plots (Table 16) at fifteen months after clearance indicates the 

mildness of the Manual method of land clearance. As explained above, most nutrients 

in tropical forest soils are contained in the surface layer with a dense root mass 

considered as an adaptive mechanism for nutrient conservation., and this remains intact 

in the Manual Regrowth plot. 

Lower topsoil nutrient concentration of the Mechanical Regrowth and Complete 

Clearance plots at fifteen months may be attributed to the partial and complete removal 

of the canopy and substrata in these plots respectively, and the destruction of the. 

protective root mass probably increasing leaching and erosional losses of elements. 

The high subsoil nutrient content of the Mechanical Regrowth plot may indicate 

probable leaching losses of topsoil elements to lower depths, but the high bulk density 

values of the Complete Clearance plot (Table 14) and the low subsoil nutrients suggest 

losses could most probably have occurred through erosion rather than leaching. Field 

observations showed the Complete Clearance plot had the greatest soil erosion perhaps 

aggravated by a relatively steep slope of 7% in part of the plot One could see 

channels and mini-anastomosed streams systems with sediment banks where water 

had run down the slope during rain storms. 

The increased subsoil total nitrogen of the Mechanical Regrowth and Complete 

Clearance plots may have resulted from increased mineralization and nitrification and 

subsequent losses through leaching. This could also have accounted for increased 

subsoil values for P.. 



4.2.4.2 	Nutrient dynamics 

4.2.4.2.1 	Inorganic nitrogen 

The release of ammonium from decomposing organic material provides the 

major source of biologically available nitrogen in forest soils, and ammoniurn and 

nitrate uptake by micro-organisms and plants are the largest sinks of this element. 

Other processes, including atmospheric inputs, leaching and denitrification, also add 

or remove available nitrogen, but they are generally a small fraction (<10%) of annual 

mineralization and uptake in intact-forests (Rosswall, 1976). Biological uptake of 

available nitrogen is relatively rapid in most intact forests and consequently the pool 

sizes of ammonium and nitrate are small and turnovers are rapid (Vitousek and 

Matson, 1985). Numerous studies have reported increased nitrogen mineralization 

and nitrification and nitrate loss during forest disturbances and several reasons have 

been suggested for this rise:- 

Increases in soil temperature and soil moisture availability caused by forest 

clearance is often suggested to cause increased decomposition, nitrogen 

mineralization and nitrification (Dominiski, 1971; Stone, 1973; Bormann et al, 

1974; Aber et al 1978; Likens et al, 1979; Vitousek and Melillo, 1979; 

Vitousek, 1980). The direct effect of temperature and moisture on rates of both 

mineralization and nitrification are well documented (Focht and Verstraete, 

1977). 

Changes in substrate availability and quality following clearing could also 

cause increased mineralization and thus increase potential nitrification. 

A reduction in plant uptake of mineral nitrogen following clearing could 

cause increased nitrate availability and loss even where rates of 

mineralization are unaltered by the clearing. The reduced uptake of nitrogen 

by roots and mycorrhizae and decreased competition with decomposers for 

nutrients could also cause an increase in decomposition and nitrogen 

mineralization by increasing nitrogen availability to heterotrophs (Gadgil and 

Gadgil, 1978) 

The removal of sources of potential inhibitors of nitrifying bacteria produced 

by the natural forest vegetation could also increase nitrification in the cleared 

plots. 
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These reasons are not mutually exclusive, any combination of them could be 

important in the treatment plots. 

The decrease of nitrogen in the Complete Clearance plot at fifteen months could 

be attributed to leaching and erosional losses and to the uptake and use by the new 

vegetation. Boring et al (1979) found the vegetation produced in the first year after 

cutting a deciduous forest in the Appalachain mountains distinguished especially by the 

increased concentration of nitrogen and potassium, indicating that this process 

minimizes hydrological losses of nutrients and is the initial phase of their new cycling. 

4.2.4.2.2 	Base status 

The observed initial decrease in Ca and Mg in the Manual Regrowth plot may 

have resulted from the temporary accumulation in this plot of large amounts of unburnt 

logs and slash, which has the effect of reducing the amounts of rains as well as solar 

irradiation reaching the soil surface. It was observed that very little or no water got to 

the soils of this plot after light rains. These means therefore, that the soils were 

deprived of nutrient inputs from rain, throughfall and possible stemfiow. 

Considerable amounts of elements, especially potassium, have been found to exist in 

throughfall (Fassbender and Grimm, 1981; Edwards, 1982). In addition, a reduction 

in these vital factors (moisture and sunlight-temperature) for microbial activity could 

probably reduce decomposition rates accounting for the observed decrease in nutrients. 

The gradual decomposition of the slash with time coupled with silvicultural activities 

like line opening, 'pitting', planting, and weeding, probably opened the soils to more 

moisture and solar irradiation, consequently increasing decomposition activities thus 

accounting for the subsequent nutrient increases at fifteen months. 

The recorded base increases in the Mechanical Regrowth and COmplete. 

Clearance plots may be attributed as in section (4.2.4.2.1) to increases in 

decomposition rates and mineralization as a result of increases in soil moisture content 

and temperatures. The later decrease in K may be as a result of losses through 

leaching enhance by its high mobility and erosion but most likely as in section 

(4.2.4.2.1), and especially for the Complete Clearance plot, to uptake and use by the 

revegetation. 
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4.2.4.2.3 	AvailabLe phosphorus 

The rapid rise in P at fifteen months after stability for three months in the 

Manual Regrowth plot following clearance may be as a result of mineralization of 

organic phosphorus from leaves of the felled vegetation. The observed increase in the 

Mechanical Regrowth plot could be explained as above and also by increased soil pH 

which has been found to improve P availability in acid soIls (Jordan, 1985). 

The relative stability of P in the Complete Clearance plot over the study period 

may be as a result of the removal of most organic debris from this plot, an important 

store of organic phosphorus. 

4.2.4.4 	pH and organic carbon 

The decrease in soil acidity of the Mechanical Regrowth and Complete Clearance 

plots may have resulted from the neutralizing effect of added nutrients from increased 

mineralization and decomposition processes. Many studies on land clearing especially 

in the slash and burn technique report pH increases as a result of ash incorporation into 

the soils (Sanchez, 1979; Sanchez et al, 1983; Jordan, 1985). 

The temporary increase in organic carbon in the Manual Regrowth plot at three 

months may be explained as in section 4.2.4.2.2 by a reduction in decomposition rate 

by the accumulated slash but the general decline in organic carbon on all plots may be 

attributed in part to accelerated rate of decomposition. The dynamics of forest floor 

organic matter are controlled by a complex interaction of factors; decomposition rates, 

leaf litter input; wood litter input and decomposability (Covington, 1981). Any 

alteration to these factors would indirectly affect the organic carbon percentage of the 

site. 

4.2.5 	Conclusion 

Land clearance inevitably affected soil nutrient concentration and dynamics in all 

the treatment plots, and differences were detected between treatments. 

The general pattern of nutrient change in the Mechanical Regrowth and 

Complete Clearance plots was similar to that reported for most land clearing methods 

elsewhere. This consists of an initial rise immediately after clearance, attaining a peak 

at about six months and then declining. However, the concentration of nutrients in the 

Mechanical Regrowth plot were generally higher than those of the Complete Clearance 



plot as a result of the less drastic effects of the former method on the ecosystem.. 

At fifteen months, topsoil nutrient concentrations in the Mechanical Regrowth 

and Complete Clearance plots, where the root mass had been destroyed, were lower 

than those for the Manual Regrowth and Control plots with intact root mass. The 

higher subsoil nutrient concentrations in the Mechanical Regrowth and Complete 

Clearance plots might have resulted from leaching losses probably due to the abscence 

of the root mass, which has been shown to be an efficient nutrient conserving 

mechanism of tropical forests. 

The most striking effect of the methods was the decrease in bases at three 

months in the mild Manual Regrowth method as opposed to the increases in the other 

two plots. The pattern of change, in topsoil nutrient concentration, shown in the 

Manual Regrowth plot is advantageous to tree crops where growth is slow and plants 

take a long time to be established. In such a situation a late release of nutrients as in 

the Manual Regrowth method, rather than the early, and abundant releases in the 

mechanized methods often followed by heavy losses, is preferable. 

The fact that a high proportion of nutrients are contained in the vegetation 

necessitates not only a consideration of the nutrient status of the soil under forest 

during plantation creation but also underline the need for a cautious operation with the 

vegetational nuthent store. On poor sites, like most of the tropical soils, the nutrient 

store of the vegetation is 'capital', the loss of which should be avoided in site 

preparation. Regrettably, there has been a shortage of data in published reports on 

how site factors like precipitation, slope, soil properties and vegetation as well as 

operational methods of clearance act to influence the nutrient capital of the ecosystem. 

The results of the soils studies have highlighted the effects of the three clearing 

methods on soil physical and chemical properties and their changes with time. Many 

factors are responsible for the observed changes such as, nutrient input through 

litter-fall, and the rate of decomposition of organic matter discussed in chapter five. 



CHAPTER FIVE 

EFFECTS OF CLEARING METHODS ON NUTRIENT 

DYNAMICS 

5.0 	Introduction 

Through the work of many scientists such as Nye and Greenland, (1960); 

Cunningham, (1963); it is widely recognized by soil scientists and ecologists that the 

luxuriant and tall tropical forests may grow on relatively nutrient poor, highly 

weathered substrates. In these conditions tropical forests have evolved mechanisms to 

utilize the nutrients in the soil solution efficiently as well as those entering the forest 

from the atmosphere and to recycle nutrients (Golley and Clement, 1978; Golley, 

1983). Adaptations to nutrient poor environments occur in any region where soils are 

infertile and would vary with the nature of nutrient stress. Since poor soils are 

common in the tropical regions, nutrient conserving mechanisms are commonly 

associated with tropical species (Jordan, 1985). Among the many adaptive and 

nutrient conserving mechanisms to nutrient poor soils are; mycorrhizae, long lived 

resistant leaves, thick bark and most conspicuously the production of a relatively large 

root mass (Hermann, 1977) and the concentration of this mass on or near the soil 

surface (Golley and Clement, 1978; Jordan and Harrera, 1981; Golley, 1983). 

All the nutrient conserving and cycling mechanisms are integral parts of 

undisturbed, native forests. When such forests are cleared and thd site used for 

agriculture, silviculture, pasture or other reasons, these mechanisms are affected 

proportionately to the intensity and extent of the disturbance. Changes in nutrient 

cycles due to different types of disturbances can be classified using three criteria 

(Jordan, 1985). 

i) 	Intensity 

The intensity of disturbance can be light, moderate or severe. A light 

disturbance is considered as one which does not disrupt the basic structure of 

the ecosystem. For example, a tree gap created by the fall of a large tree. 

A moderate disturbance is one in which the structure of the forest is destroyed, - 

but the soil is not degraded. For example the cutting of primary forest, 
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retaining a proportion of the trees and preserving the organic surface, 

and planting with tree crops. 

A severe disturbance is one in which forest structure is destroyed and the soil is 

severely degraded. An example is the clearing of land with heavy machinery 

and scraping off the surface organic matter. 

Size 

The factor used to classify disturbance here is the ease with which seeds that 

initiate the recovery can enter the disturbed site. In small disturbances (tree-fall 

gaps), seeds from surrounding trees fall directly into the gaps or were already in 

the soil before gap formation. 

In intermediate size disturbances, seed dispersing animals can freely traverse 

the disturbed area (usually one to a few hectares). 

In large disturbances, the distance from undisturbed forest to the middle of the 

disturbed area is beyond the normal range of the animals which carry seeds and 

mycorrhizal spores. Revegetation may be by windborne seeds. 

Duration 

A short duration is a single- discrete occurrence, -such as a logging 

operation, which is over in a matter of days or less and after which recovery 

begins immediately. 

Disturbance of intermediate duration can be a series of events such as planting, 

weeding and harvesting during shifting cultivation. When the disturbance 

ceases, as when an agricultural or plantation plot is abandoned, recovery occui4 
without interruption. 

A long-term disturbance is one in which disruptive effects continue long beyond 

the cessation of the original disturbance event. For example, soil compaction by 

heavy machinery or nutrient depletion beyond a rapid recovery level or soil 

erosion out of the area can persist for a long time. 

Changes during the various types of disturbances revealed several patterns of 

nutrient cycling and vegetation dynamics in different regions and under different 

circumstances. Changes range from virtually undetectable (in small, short and non 

intense disturbances such as natural tree-falls) to almost total (in areas denuded by 

landslides or volcanic activity). Most of the disturbances caused by man fall 

somewhere in between the two extremes. 

In this chapter we will consider changes in fine litter-fall, the fine litter fraction 

of the forest floor and decomposition rates of leaf litter and their nutrient contents as 



affected by three types of disturbances; low intensity, intermediate size and short 

duration (Manual Regrowth); moderate intensity, intermediate size and intermediate 

duration (Mechanical Regrowth), severe intensity, intermediate size and long duration 

(Complete Clearance). 

5.1 Fine litter-fall 

Litter-fall, the organic debris shed by forest vegetation upoti the surface of the 

soil, has long engaged the attention of ecologists (Bray and Gorham, 1964). The 

study of the quantitative aspects of litter-fall continues to be an important part of forest 

ecology (Proctor, 1983, 1984). The study of litter aspects of an ecosystem is 

essential, in any study of productivity and dynamics of the ecosystem, as litter 

production represents the major pathway in the transfer of energy and materials within 

the system (Tsai, 1978):  It is also the principal source of energy for the saprobiota of 

the forest floor and soil (Spain, 1984). This transfer of material and energy is 

especially important in the tropical rainforest ecosystem where the soils are generally 

poor and it is mainly through litter-fall that not only the vegetation can benefit from the 

nutrient elements released but also other organisms which contribute to the diversity 

that the tropical rainforest ecosystem is well known for (Tsai, 1978). Much has been 

and can be said about the usefulness of the study of litter production , however, some 

of the more relevant purposes for studying it are:- 

To give a gross estimate of primary productivity (Bray and Gorham, 1964; 

John, 1973; Klinge, 1978; Ogawa, 1978; Proctor et al, 1983; Singh et al, 1984; 

Songwe et al, 1988). 

To quantify the transfer or flux of materials and energy from the vegetative 

phase of the ecosystem to the litter phase (Bray and Gorham, 1964; Bernhard, 

1970; Klinge, 1978; Ogawa, 1978; Proctor et al, 1983; Dantas and Philipson, 

1989). 

ill) To identify ecosystems and plant communities. As different ecosystems have 

different litter-fall, it cbuld be used as an attribute in the description of plant 

communities (see review Bray and Gorham, 1964; Devineau, 1976; Klinge, 

1978; Spain, 1984). 

iv) To give information (when combined with forest floor litter measurements) on 

decomposition rates (Olson, 1963; Bernhard, 1970; UNESCO/UNEP/FAO, 

1978; Proctor et al, 1983). 
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Because litter-fall is an important component of net primary production 

(Chapman, 1986), authors have often attempted to compare litter-fall at their study 

sites with that in other regions (Tanner, 1980; Lam and Dudgeon, 1985) but this study 

compares the amount of litter-fall of plots in the same area cleared using different 

techniques. 

	

5.1.1 	Materials and methods 

Fine litter-fall measurements were carried Out by catching litter in 50 x 50 cm 

wooden frame traps with 15 cm deep sides and a plastic mesh attached at the bottom. 

These traps stood on wooden frames at approximately 75 cm above the ground. 

Fifteen traps were randomly located at permanent positions in fifteen randomly 

selected subplots of the 50 x 50 m areas (Figure 10). Litter was collected at two and 

four weekly intervals depending on the season. After each collection, samples were 

oven-dried at 105 °C for 12 hours and sorted into three fractions, leaves, woody 

materials (twigs :5 2 cm in diameter and barks :52 cm thick), and others which included 

reproductive parts and unrecognizable particles. The subsamples were bulked on 

monthly bases before grinding and subsamples collected for analysis. 

	

5.1.2 	Results 

5.1.2.1 Fine litter-fall amounts 

The mean monthly fine litter-fall amounts in the different plots over the one year 

study period (June 1988 - May 1989), are shown in Figure 13. All plots showed 

similar seasonal litter-fall trends with two peaks more visible in the Control plot than 

the three cleared plots. The highest peak occurred between the months of February 

and April which is the period of first rains and the smaller peak between August and 

October corresponding to the period of second rains. 

An analysis of variance (ANOVA) of litter-fall data over the study period, 

showed a significant difference (p = 0.05) between the Control and Mechanical 

Regrowth plots and a very significant difference (p = 0.01) with the Complete 

Clearance plot. No significant difference was observed with the Manual Regrowth 

plot. It was noted that there was a significant difference between the Mechanical 

Regrowth and Complete Clearance plots. 
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Total annual fine litter-fall summarized in Table 17, show clear treatment effects. 

The Complete Clearance plot had the lowest amount of litter-fall, only one sixth of the 

amount caught in the Control plot, depicting the drastic effects of this method of 

clearance. The Manual Regrowth plot on the other hand was 2 tonnes short of the 

Control plot's value as a result of the mild effects of the method on the ecosystem. 

There was a big difference of 5 tonnes between the Mechanical Regrowth and the 

Control plot. 

In all the plots, leaves accounted for the highest percentage of total litter-fall 

(Table 17). In the Control plot, 58% of total litter-fall was leaves, 72% for the Manual 

Regrowth , 70% for the Mechanical Regrowth and 82% for the Complete Clearance 

plot. 

20 

10 

Months 

Figure 13: Effects of land clearing methods on fine litter-fall in the Mbalmayo 

forest reserve (June 1988 - May 1989). Bars are standard errors of 

means of fifteen samples. Litter-fall studies started. 14 months after 

land clearance. 
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Treatment 
Fine litterfall 

fraction Control Man. Reg. Mech. Reg. Comp. C. 

7.05 7.12 4.85 1.51 
Leaves (58) (72) (70) (83) 

3.08 1.70 1.14 0.08 
Woody material (25) (17) (16) (4) 

1.96 1.08 0.94 0.23 
Others (16) (11) (9) (12) 

Total 12.09 9.9 6.93 1.83 

Table 17: Annual fine litter-fall fractions (t ha 4 ) and their percentages (in brackets) 

in the different plots (June 1988 - May 1989). Mean monthly 

litter-fall fractions are given in appendix 4. 

5.1.2.2 	Nutrient composition of fine litter-fall 

Nutrient concentrations of fine litter-fall during the observation period of one 

year, revealed no fundamental differences between the treatment plots (Figure 14). 

Nitrogen and calcium concentrations were variable throughout the year in all the plots 

with no seasonal tendency. The concentration of phosphorus and to a lesser extent 

magnesium, showed some seasonal pattern with peaks in the dry season and the 

lowest ,  values in the raining season. The only consistent seasonal trend was in 

potassium concentration, which showed two peaks corresponding to the two dry 

seasons. 

The nutrient content of litter-fall calculated by multiplying each nutrient 

concentration by the corresponding litter-fall mass is given in Table 18. The mean 

annual nutrient concentrations are similar in all the plots, hence the differences in 

nutrient content resulted from differences in the litter-fall amounts. 
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Figure 14: Effects of land clearing methods on nutrient concentrations (%dry weight) of tine litter-fall 
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Treatment 

Concentration 

Weight 

Content 

N 	P 	K 	Ca 	Mg N 	P 	K 	Ca 	Mg Total 

Control 1.93 0.07 0.36 1.18 0.29 12.1 233 8 44 143 35 463 

Man. Reg. 1.65 0.07 0.43 1.11 0.30 9.9 163 7 42 110 30 352 

Mech.Reg 1.58 0.07 0.35 1.17 0.31 6.9 109 5 24 81 21 240 

Comp. C. 1.60 0.06 0.42 1.12 0.29 1.8 29 1 8 20 5 63 

Table 18: Average nutrient concentration of fine litter-fall (%dry wt.), annual fine litter-fall amounts (t ha 1  yrl), and annual nutrient 
content of fine litter-fall (kg ha-i) in the different plots over the 12 months study period (June 1988 - May 1989). Results of 
monthly fine litter-fall fractions and monthly nutrient concentrations of fine litter-fall are given in appendix 4 and Figure 12 
respectively. 
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5.1.3 	Discussion 

5.1.3.1 Litter-fall amounts 

The annual fine litter-fall amount for the study area (considering the Control 

plot), lie within the range of values for other tropical forests reviewed and studied by; 

UNESCO/UNEP/FAO (1978), Proctor et al (1983), Spain (1984), Vitousek (1984), 

Songwe et al (1988), Dantas and Philipson (1989). In many of these studies, peak 

litter-fall has been related to period of water stress with the maximum occurring during 

the dry season. However, results in Figure 13 show peak litter-fall in the wet season 

in the Mbalmayo area. The occurrence of exceptional high winds often observed prior 

to rainfall in this area might have partially contributed to the litter-fall peaks. Hopkins 

(1966) and John (1973) associated litter-fall rates with wind activity. A few studies 

have also reported maximum litter-fall during the wet season in the tropics, Cornforth 

(1970) in Trinidad, Edwards (1977) in NewGuinea, Jackson (1978) in Brazil, 

Enright (1979) in New Guinea,. Proctor et a!, (1983) in Sarawak. Hopkins (1966) 

working in the tropical forest and Proctor (1983) after examining a large number of 

tropical forest litter-fall values, concluded that there was no simple relationship 

between litter-fall and a single environmental factor. 

The low litter-fall amount observed in the Complete Clearance plot was expected 

since all the original vegetation had been removed in the clearing process. All litter 

input therefore, came from the new vegetation (still very young) and possibly from 

wind transport from the surrounding vegetation. In addition to input from the new 

'vegetation, the Manual Regrowth and Mechanical Regrowth plots benefited from 

continuous input from the big trees. A total of 95 and 122 trees remained in the 

Manual Regrowth and Mechanical Regrowth plots respectively, after clearance. From 

field observations, trees in the Manual Regrowth plot had larger crowns than those in 

the Mechanical Regrowth plot. This probably accounted for the lower light reaching 

the soils in this plot .(Leakey, 1987) and could explain the higher litter-fall amounts 

observed, in spite of the fewer trees. 

5.1.3.2 Nutrients 

The concentration of nitrogen and calcium in the litter-fall was found to be fairly 

constant throughout the year. Similar studies by Bernhard (1970), Cornforth (1970) 

and Brassel et al, (1980) found no seasonal variation in nutrient concentration of 
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tropical rainforest litter-fall. However, the concentrations of potassium, phosphorus 

and to a lesser extent magnesium, showed some seasonal tendency. The decrease in 

the concentration of these elements during the wet season might have resulted from 

leaching from the canopy before litter-fall and leaching from the litter in the collection 

traps. This is particularly true for potassium, a great deal of which has been shown to 

be leached by rain from the living crown (Nye and Greenland, 1960; 

Bernhard-Reversat, 1976; Fassbender and Grimm, 1981; Edwards, 1982). The 

increase observed in the dry season is likely to have resulted from the accumulation of 

the elements on the litter surfaces. 

A comparative analysis of Table 18 and 19, show that the total litter-fall amounts 

in the Control and Manual Regrowth plots lie within the range for tropical forests in 

Africa. The litter-fall amounts of the other two plots, lie below this range as a result of 

the significant disturbance caused to the ecosystem during their clearance. 

The nitrogen content of the Control plot is slightly higher than the range for the 

Africa tropical forests. This may be as a result of the high nitrogen concentration of 

this flora. However while the nutrient contents of litter in the Mechanical Regrowth 

plot are just slightly below the ranges for Africa tropical forests, those for the 

Complete Clearance plot lie far below these ranges, reflecting the intensity of the 

disturbance caused to the ecosystem by this technique of land clearance. 



Continent Lifa11 N 	P 	K 	Ca 	Mg 

Africa 
mean 11.7 165.0 7.4 60.1 105.0 40.7 

range 8.0-15.3 10-224 40-14.0 26-104 61-206 22-53 

Asia mean 7.8 87.7 4.4 24.9 100.7 17.9 

range 3.9-11.5 44-110 1.2-7.0 17-33 13-290 9-24 
Central and 

south mean 7.2 71.4 3.0 27.3 69.5 18.5 
America 

range 4.4-13.0 28-169 0.8-8.6 8-130 8.0-240 564 

Table 19: Annual litter-fall (t ha7 1  yr -1)  and nutrient content (kg ha -1 ) from different tropical rainforests 
(After Dantas and Philipson, 1989) 
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5.2 	Effects of clearing methods on the fine litter fraction of the 

forest floor 

The definition and importance of the forest floor compartment of the ecosystem 

was briefly reviewed in section 3.2.1. The materials and methods used in its 

investigation are outlinin section 3.4.1. In section 3.5.1.1, the results of the 

investigation in the natUral forest before land clearance are given and discussed. In 

this section, results of the investigation carried out at three and fifteen months after 

land clearance (six and nineteen months after first sampling) are presented and 

discussed. 

5.2.1 	Results 

5.2.1.1 Fine litter amounts 

The results of fine litter amounts on the forest floor in the various plots 

measured before clearance (February 1987), at three months (August 1987) and at 

fifteen months (August 1988) after clearance, are summarized in Table 20. An 

ANOVA of these data showed significant (p = 0.05) and very significant (p = 0.01) 

effects of the Mechanical Regrowth and the Complete Clearance methods respectively, 

on this ecosystem compartment three months after clearance. 

The amount of litter in the Complete Clearance plot at three months was only 

one fifth that of the control plot, but at fifteen months, it was just one tonne short of 

the Control plot value. In the Mechanical Regrowth plot, the amount at three months 

was one half that in the Control plot but at fifteen months, it had exceeded this value. 

The Manual Regrowth plot on the contrary, showed increased litter amounts at three 

months, and at fifteen months was more than double the amount in the Control plot. 
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Treatment Febuary 1987 August 1987 August 1988 

Control 3.77 ±0.48 5.23 ±0.29 4.31 ±0.40 

Man. Reg. 3.77 ±0.48 5.89 ± 0.64 10.6 ± 2.30 

Mech. Reg. 3.77 ±0.48 2.70 ± 0.53 5.16 ± 1.36 

Comp. C. 3.77 ±0.48 0.95 ±0.50 3.14 ± 1.15 

Table 20: Amount of fine litter fraction (t ha -1)  on the floor in the treatment plots 
before and after land clearance. The value for the natural forest (before 
clearance, February 1987) is the average of 12 samples and values after 
clearance are results of 5 samples each ± SE. 

5.2.1.2 	Nutrient composition 

The nutrient concentration of the fine litter fraction on the forest floor 1 

summarized in Table 21, show, low concentrations of potassium, calcium and 

magnesium in the Mechanical Regrowth and Complete Clearance plots at three months 

after clearance (August, 1987). At fifteen months after clearance (August, 1988), the 

Complete Clearance plot still showed low potassium, calcium and magnesium 

concentrations, but only potassium concentration in the Mechanical Regrowth plot was 

still low. The Control and Manual Regrowth plots showed similar nutrient 

concentrations. The nutrient content also shown in Table 21 illustrates a similar trend 

to that of litter weight at the different sampling times. 

5.2.2 	Discussion 

5.2.2.1 	Fine litter mass 

The fine litter fraction of the forest floor measured in the study area before 

clearance (February 1987) was discussed in section 3.5.1.1. The high litter amount 

observed in August (1987) for the Control (natural forest) plot is as a result of 



101 

increased litter-fall in this area during this period (this study). 

The decrease in litter amounts in the Mechanical Regrowth and Complete 

Clearance plots ( August 1987) resulted from the partial and total removal of the 

vegetation during clearing. The increase later observed in the Complete Clearance plot 

(August 1988) came mainly from the weeds of the dominant pioneer species, 

particularly Musanga and Euparorium, which invaded this plot. The Mechanical 

Regrowth plot, other than the input from weeding operations, benefited from 

additional input from the big trees stifi to be poisoned. The large amount of litter in the 

Manual Regrowth plot in August (1988), came from weeding operations, the big trees 

still to be poisoned and the gradual dropping off of,dead leaves and twigs from the 

felled, slashed and unburnt trees. This plot contains a large amount of logs and 

branches that were not measured in this study. The eventual decomposition of these 

larger litter fraction is an important long term aspect of this method. This would 

assure gradual: but continuous nutrient supply, very important for plant growth and 

sustainability. 

5.2.24 Nutrient composition 

Low potassium, calcium and magnesium concentrations at three months resulted 

probably from leaching losses as a result of increased moisture reaching the soils due 

to the partial and total destruction of the protective vegetation cover. Fifteen months 

after clearance, the new vegetation in the Mechanical Regrowth plot coupled with the 

shade from the big trees reduced rain input into the forest floor hence reducing 

leaching activity. This probably accounted for the increase in concentrations of 

calcium and magnesium. The persistent low concentration of potassium is most likely 

a consequent of its high mobility. In the Complete Clearance plot, rainfall input was 

still important after fifteen months since the only forest floor protection was from the 

young vegetation frequently weeded. Therefore, there was continuous nutrient loss 

through leaching though at a reduced rate than at three months, which explains the low 

concentrations of potassium, calcium and magnesium still observed at this period. 

The similarity in the amount of litter and its nutrient concentration and content in 

the Control and Manual Regrowth plots once again, is evidence of the moderate 

disturbance caused by this method on the ecosystem. 



Treatment 

Nutrient concentration 
(August 1987) 

Nutrient content 
(August 1987) 

N 	P 	K 	Ca 	Mg N 	P 	K 	Ca 	Mg 

Control 1.42 0.06 0.15 0.87 0.25 74.3 3.14 7.8 45.5 13.1 

Man. Reg. 1.42 .0.05 0.15 0.91 0.23 83.6 2.90 8.8 53.6 13.5 

Mech.Reg 1.18 0.05 0.13 0.55 0.14 31.9 1.30 4.0 14.8 3.8 

Comp. C. 1.50 0.05 0.06 0.50 0.13 14.9 0.47 0.57 4.7 1.2 

(August 1988) (August 1988) 

Control 1.34 0.04 0.23 0.90 0.19 57.7 1.7 9.9 388 8.2 

Man. Reg. 1.02 0.03 0.38 0.86 0.18 108 3.2 40.1 90.8 19.0 

Mech. Reg. 0.95 0.03 0.18 . 	 0.90 0.18 49 1.5 9.3 46.4 9.3 

Comp. C. 1.0 0.04 0.18 0.55 0.12 31.4 1.2 5.6 17.3 3.8 

- 

0 

Table 21: 	Nutrient concentration (% dry weight) and nutrient content (kg ha-i) of fine litter on thefloor at three 
and fifteen months after land clearance in the different treatment plots. 
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5.3 	Leaf litter decomposition 

5.3.1 	Introduction 

Decomposition is the complex process through which plant and animal remains 

are broken down into their constituent parts. In forest ecosystems, litter 

decomposition represents the major pathway for the supply of plant nutrients to soil. 

Particularly for tropical rainforests growing in nutrient poor soils with relatively low 

external inputs, the turnover of bioelements is an important step (Staaf and Berg, 

1982). The energy and nutrients released in this recycling process are utilized by flora 

and fauna which make up food webs on which ultimately most living àrganisms 

depend, and thus the decomposition system forms a dynamic interface between the 

abiotic and biotic components of the ecosystem (see review by Swift et al, 1979). The 

breakdown of organic materials occurs through leaching, catabolism and 

comminution. This leads to a reduction in weight of the original substrate and 

reduction in total nutrient content (in the absence of fixation) although not necessarily 

to a reduction in percent nutrient c44i.  Overall, these three processes lead to 

substrate weight reduction and changes in quality of the substrate with time. The rate 

of weight loss provides a useful index of the rate of decomposition once an initial 

leaching phase is past. 

- 	Litter decomposition rates and concomitant mobilization of nutrients are 

determined by a variety of interelated variables such as moisture, temperature, activity 

of micro-organisms and substrate quality (Witkamp, 1971; Meentemeyer, 1978; 

Melillo et al, 1982). Substrate quality includes not only the concentration and 

availability of nutrients and of carbon and energy sources but also modifiers, such as 

taA'ins which affect the activity of heterotroph. Clear-felling causes changes in the soil 

environment by increasing the water table and soil moisture content (Lundin, 1979). 

Loss of canopy protection leads to loss of interception of precipitation (Gash et al 

1980) and increased temperature extremes (Bjor, 1972; Cochran, 1975). 

Decomposition processes accelerate with increasing soil moisture (Sommers et 

al, 1980) and temperature (Theodorou and Bowen, 1983; Clark and Gilmour, 1983), 

and increased leaching of nutrients from tree litter in laboratory studies has been 

observed with increasing temperature (Witkamp, 1969; Buldgen and Remade, 1981). 

While fungal populations have been observed to decrease and bacterial populations to 

increase on clearfelling (BâAth, 1980; Hendrickson et al, 1982), overall community 
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biomass and respiration can increase (Niemela and Sundman, 1977, Sundman et al, 

1978). It has also been suggested that the loss of mycorrhizae can increase litter 

decomposition (Gadgil and Gadgil, 1971; Berg and Lindberg, 1980). Substrate 

quality also changes on felling with the large input of green material rather than 

senescent or abscinded tissue. 

All the above observations suggest that decompostion processes increase on 

feffing, and that litter weight loss and nutrient mobilization is more rapid from leaves 

on clearfelled sites than from leaves in the natural forest. At Mbalmayo, interest was 

not simply on rates of decomposition as affected by clearing but on how these rates are 

affected by different types of clearing methods. 

Although an increasing amount of information on litter decomposition and 

nutrient cycling in tropical rainforest ecosystems has been made available during the 

past few years (Olson, 1963; Jordan and Jerry, 1972; Edwards, 1982; Edwards and 

Grubb, 1982; Klinge, 1978; Aber et al, 1978; Aber and Melillo, 1980; Irmier and 

Firch, 1980; Tanner, 1980; Krause, 1982; Anderson and Swift, 1983; Anderson et al, 

1983; Golley, 1983; Gong and Ong, 1983; Proctor et al, 1983; Adedeji, 1984; 

Binkley, 1984; kirmise and Malechek, 1987), comparative studies on decomposition 

between disturbed and undisturbed rainforests, are relatively few (Jordan et al, 1983; 

Maheswaran and Gunatilleke, 1988). No studies have yet been reported on effects of 

different types of disturbances on decomposition processes and turnover rates. 

The extent of disruption of decomposition in modified sites may have 

implications for the regrowth and establishment of forest tree crops and seedlings. 

Therefore studies of the effects of disturbance on turnover rates and on soil biological 

processes are important for better forest management and soil nutrient conservation. 

Several techniques have been used in studying litter decomposition, and can be 

broadly classified as direct methods (e.g. litter bags, tethered leaves, radioisotope 

tagging) where known quantities of litter are placed in the field and retrieved after set 

time intervals, or indirect methods (e.g. harvest data, paired-plot, decomposition 

constants) where balance sheets of organic remains on two different collection dates 

estimate assumed losses through decomposition (see reviews by Singh and Gupta, 

1977; Woods and Raison, 1982). The litterbag technique is the one that has been most 

widely used in forest decomposition study, despite several drawbacks (Witkamp and 

Olson, 1963; Wiegert and Evans, 1964; St John, 1980), and objections that it creates 

an artificial environment within the bag where the rate of decomposition will differ 

from that of the surrounding litter. Although this method may under- or overestimate 

actual decomposition, results from litter bag studies are assumed to reflect trends 
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characteristic of unconfined decompositing litter and, as such, allow for comparisons 

among species, sites and experimental manipulations (Wieder and Lang, 1982). 

However, various reviews have examined comparisons of different mesh sizes, 

tethered litter versus enclosed litter and litterbag results versus indirect method results 

(e.g. Singh and Gupta, 1977; Woods and Raison, 1982; Wessen, 1983) and generally 

conclude that the evidence for objections to the use of litterbags for field incubations is 

contradictory. On balance, the choice of method must depend on the nature of the litter 

and particular ecosystem in question as well as the objectives and duration of the study 

(Titus, 1985). 

5.3.2 	Materials and Methods 

Treatment effects on rates of decomposition were investigated using mixed leaf 

litter enclosed in bags measuring 30 cm x 25 cm constructed with 2 mm nylon screen. 

Freshly fallen leaves were collected from the forest floor in the natural forest and 

air-dried in the laboratory for two weeks to approximately constant weight. 

Approximately 10 .g of the air-dried leaves were weighed into each bag. Three of the 

bags were selected at random for subsequent determination of initial percentage dry 

weight and mineral nutrient content. The remainder were assigned at random locations 

within the 50 x 50 m areas marked out in each plot. To fifteen of the subplots chosen 

at random in these areas was assigned 15 bags. The bags were placed so that the 

lower surface was in contact with the soil and the upper surface approximately level 

with the surrounding natural litter, (except for the complete clearance plot with very 

little litter) then anchored in position with small sharp sticks inserted obliquely through 

the outer sections, of the stitched margins, into the soil. 

The bags were collected after decomposition had proceeded for three periods of 

time, two months, four months and six months. At each collection time, five bags 

were randomly harvested, put into plastic bags and transported to the laboratory where 

they were carefully transferred into paper bags and oven-dried at 105 °C for 12 hours. 

The oven-dried samples were carefully separated from soils and other foreign organs 

before they were weighed, ground and subsamples collected after thorough mixing for 

chemical analysis as described in Appendix I. 

NB: Litter bags were put out in the field in the month of June corresponding to the short rainy 
season. Results would have probably been different if studies took place during the dry season. 
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5.3.3 	Results 

5.3.3.1 	Litterbag weight loss and decomposition rates 

Litterbags from each of the treatment plots lost weight from an initial oven dry 

weight of 8.74 g. The simplest model that describes the weight loss over time of litter 

that does not readily decompose is that of a constant fraction loss of the type e 

However, this model assumes that the material being decomposed contains only one 

substrate, and that no product of decomposition is inhibiting to further decomposition 

of the substrate. This model does not take into account either the complexity of the 

composition of the litter or of decomposition processes, but can still serve as a good 

useful 'first approximation' of decomposition weight loss (Swift et al, 1979). 

Olson (1963), describes this model as follows: 

in xIx0  = -Kt 

Where x = the fraction remaining after time (t). 

x0  = original weight 

K = decay parameter 

t = time (in years) 

Solving the equation for K indicates that: 

K = slope of a regression of in (fraction remaining) with time. 

in x=inx0  - Kt 

= a - Kt where a is a constant 

A plot of the mean percent dry weight remaining with time and in (mean percent 

weight remaining) is given in figures 15a and 15b. The regression of in (percent 

weight remaining) over time for the treatment plots are given in Table 22. 
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Figure iSa: Percent weight remaining over time of decomposing leaf litter in the treatment plots. Control plot (i) 
Manual Regrowth plot (ii), Mechanical Regrowth plot (iii), Complete Clearance plot (iv). 
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Treatment a b r n K (yr) 

Control 9.46 -0.012 -0.96 15 4.4 

Man.Reg. 9.31 -0.013 -0.97 15 4.6 

Mech. Reg. 9.59 -0.0 18 -0.96 16 6.6 

Comp.C. 9.36 -0.008 -0.96 16 3.0 

Table 22: 	Statistics and K values for regressions of in (mean percent x 102  litter 
bag weight remaining) çyer time (days) for each of the treatment plots. 
K is obtained by multipng b by 365. 

The pattern of weight loss was very similar in the Control and Manual Regrowth 

plots throughout the study period (Figure 15a i and ii). Differences with the 

Mechanical Regrowth plot (Figure iSa iii) were observed only after six months. 

However, an ANOVA showed significant (p = 0.05) differences between the 

Complete Clearance plot (Figure 15a iv) and all the other plots at four months but only 

with the Mechanical Regrowth plot at the end of the study (after 6 months). 

At the end of the study, the highest percent weight loss was observed in the 

Mechanical Regrowth plot (96%), and the lowest in the Complete Clearance plot 

(79%). The Control and Manual Regrowth plots lost the same percent weights (86%) 

Relative rates of decomposition at each harvest time were calculated and are 

shown graphically in figure 16. The rates for the Control and Manual Regrowth plots 

showed a more or less constant decomposition pattern throughout the study period. 

The Mechanical Regrowth plot showed a remarkable linear increasing decomposition 

rate throughout the same period. The Complete Clearance plots, beside having the 

lowest rates, showed no clear pattern during the observation period. These results 

suggest that the Manual Regrowth method does not have significant effects on 

ecosystem processes. On the other hand the differences observed between the Control 

plot and the Mechanical Regrowth and Complete Clearance plots, are evidence of the 

effects of these methods on ecosystem functions. 
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Figurel6: 	Relative rates of decomposition of leaf litter in the treatment plots at 

each harvest time. 

5.3.3.2 Nutrient composition of decomposing litter in bags 

Mean nutrient concentration data (percent initial concentration) and nutrient 

content for all collection dates over the study period were calculated for all the 

treatment plots and are shown graphically in figures 17 and 18. 

a) 	Nitrogen 

Nitrogen concentration of decomposing leaf litter showed a general increased 

pattern over the study period in all the treatment plots. At the end of six months, 

increases recorded ranged from 58% for the Mechanical Regrowth plot to 103 % for 

the Control plot with increases of 62% and 67% observed in the Manual Regrowth 

and Complete Clearance plots respectively. No significant differences were 

determined between the various treatments. 

Nitrogen content showed a pattern opposite to that of its concentration. Once 

again there was close similarity in leaf litter contents of the Control andManual 

Regrowth plots. An ANOVA of these data showed significant (p = 0.05) treatment 



C)) 

160 

120 
C) 

80 

40 

WO 

120 

80 

40 

0 
0 	60 	120 

120 

80 

40 

0 

120 

80 

40 

0 
180 	 0 HE 120 	180 

200 

60 	120 	180 

Cl) 

160 

120 

80 

C) 

•; 40 
z 

0 	60 	120 	180 	 0 	60 	120 	180 
Time (days) 	 Time (days) 

Figure 17: 	Percentae of initial concentration of elements (N, P, K, Ca, Mg) remaining with time in 
decomposing leaf litter in the different plots. o 	o Control, x— 	- x Man. Reg., 
13—.— - —D Mech. Reg,, + 	+ Comp. C. 



1-. 

40 

120 

80 

0 -1-- I 	I 	1 	1 	I 	1 	I 	I 	I1 

0 	40 	80 120 160 200 

• 120 
to 

80 
II) 
14 

03 

40 

I 60 	120 	180 

120 

er.] 

80 

ks 

60 	120 	180 

120 

[:11] 

40 

I 

120 

40 

01 	 1 	 01 
0 	60 	120 	180 	 0 	60 	120 	180 

Time (days) 	 Time (days) 

Figure 18: 	Percentage of initial mass of elements (N, P, K, Ca, Mg) remaining with time in 
decomposing leaf litter in the different plots. o 	o Control, x— - —x Man. Reg. 
o- -- -ci Mech. Reg., 	+ Comp. C. 



113 

effects at four months between the Complete Clearance plot and all the other 

treatments, but at six months significant differences were only recorded between the 

Complete Clearance and Mechanical Regrowth plots. 

Phosphorus 

Phosphorus concentration showed a similar pattern in alL the treatment plots and 

was similar to that of nitrogen. There was a more significant drop in the first four 

months compared to the almost constant situation shown by nitrogen. Final increases 

at the end of the study period were far lower than those for nitrogen. The leaf litter in 

the Control plot had the highest concentration of 34%, Complete Clearance 32%, - 

Mechanical Regrowth 29% and Manual Regrowth 19%. 

Phosphorus content also showed a pattern similar to that of nitrogen over the 

study period but with smaller differences between treatments. As with nitrogen, 

ANOVA results showed significant (p = 0.05) differences between the Complete 

Clearance plot and all the other treatments at four months, but at six months significant 

differences were recorded only with the Mechanical Regrowth plot. 

Potassium 

Like nitrogen and phosphorus, the pattern for potassium concentration was 

similar in all the treatment plots but unlike them, it declined throughout the study 

period. There was a very sharp uniform drop in the first two months during which 

time about three quarters of the total potassium was lost. In the last four months plots 

showed slightly variable concentration patterns. The concentrations of leaves in the 

Mechanical and Complete Clearance plots increased at four months before declining 

correspondingly at six months. The concentrations of those in the Control plot 

declined further at four months then rose almost to the level at two months. On the 

other hand, the concentration of leaves in the Manual Regrowth plot was more or less 

constant over this period. Unlike nitrogen and phosphorus, potassium concentration 

was positively correlated (not strongly) with weight loss in all the plots; Control r = 

0.87; Manual Regrowth r = 0.82; Mechanical Regrowth r = 0.74; Complete Clearance 

r = 0.78. 

Potassium content showed a decline pattern over the study period very similar to 

that of its concentration. At the end of the study period, all the decomposing leaf litter 

in the plots had lost more than 90% of their original potassium content. The highest 

loss was recorded in the Mechanical Regrowth plot of 99%, Manual Regrowth, 96%, 

Control , 95% and Complete Clearance, 93%. 
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Calciwn 

Calcium concentration also showed a similar pattern in all treatment plots 

throughout the study period. There was an initial very sharp increase in the first two 

months of decomposition followed by a sharp decline (to almost initial levels), in the 

Control and Mechanical Regrowth plots, in the sixth month. The Manual Regrowth 

and Complete Clearance plots showed a corresponding sharp decline in the fourth 

month then remained almost constant (at levels above initial concentration) in the sixth 

month. Considerable differences were observed between treatments at the end of the 

study; from a gain of 48% in the Complete Clearance plot to a loss of 2% in the 

Mechanical Regrowth plot. The concentration in the Manual Regrowth plot increased 

by 29% while that of the Control plot increased by only 3% . None of these 

differences were found to be significant. 

Calcium content also showed a similar pattern in all the treatment plots. After an 

initial rise in the first two months, it declined sharply at four months and then more 

gradually in the sixth month , except in the Complete Clearance plot where the decline 

was more or less constant. 

Magnesium 

Magnesium concentration showed a pattern of decline in all the plots in reverse 

order to that of potassium, decreasing gradually in the first four months and then 

sharply in the last two months. As was the case with potassium, the decline pattern 

during the gradual stage was more variable than in the fast stage. The decline in 

magnesium concentration, like that of potassium, was positively correlated with dry 

weight loss. The strongest correlation was observed in the Complete Clearance plot, r 
= 0.997; Mechanical Regrowth r = 0.77; Manual Regrowth r = 0.87; and Control r = 

0.86. Magnesium content showed a similar and almost linear decline pattern in all the 

plots. The decomposing leaf litter had lost almost all its magnesium content at the end 

of the study period. The lowest loss of 93% was recorded in the Complete Clearance 

plot. In the other plots losses were above 95%, Mechanical Regrowth 99%, Manual 

Regrowth 97% and Control 99%. 



115 

5.3.4 	Discussion 

The effects of land clearance on decomposition has been extensively studied and 

reviewed (Stone, 1973; Bormann et al, 1974; Aber et al, 1978; Likens et al, 1979; 

Maheswaran and Gunatilleke, 1988) and the general conclusion has been that, land 

clearance or disturbance favoured decomposition processes for reasons cited in section 

4.2.4.2. Swift et al (1979), stated three groups of variables that could have regulatory 

effects on decomposition processes; substrate quality, and macro and microclimate. 

The substrate was similar on all the treatment plots (mixed leaves from the natural 

forest). As the study site was in the same area, microclimate and the soil organisms of 

the treatment plots were the variables that differed. 

5.3.4.1 Weight loss and decomposition rates 

The results of weight remaining at the end of six months showed distinctive 

differences between the three treatments. The similarity in weight loss in the Control 

and Manual plots is probably as a result of the little disturbance caused by this 

technique on the vegetation and soils, but perhaps most important is tFe fact that slash 

was not burned. The results suggest that factors affecting decomposition activity 

remained unaffected or were very little affected to cause any significant change in 

decomposition. 

The comparatively small weight remaining in the Mechanical Regrowth plot was 

probably as a result of increased decomposition generally reported to be favoured by. 

increased solar irradiation and soil moisture content after land clearance. The most 

striking results were the high weight recorded in the Complete Clearance plot and the 

significant difference (p = 0.05) in weights between this plot and the Mechanical 

Regrowth plot. These results were unexpected since the Complete Clearance plot 

received the highest solar irradiation (100% of total solar irradiation as against 18.9% 

in the Mechanical Regrowth and 3.5% for the Manual Regrowth plots (Leakey 1987), 

and rainfall, factors favourable to increased decomposition processes. The following 

reasons could have contributed to the observed results:- 

change in substrate quality and quantity as a result of total vegetation removal, 

production of new species of micro-organisms or adaion of existing species to 

the new vegetation, in which case the decomposition of the leaf litter in the bags 

from the old vegetation (substrate) will be affected. Musoko (in prep) studying 
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the effects of these methods on mycorrhiza population, found that the 

dominant species in the natural forest (before clearance) was in decline in this 

plot while there was a significant increase in one of the less represented species. 

In addition, a new and fast increasing species, originally absent in the natural 

forest, was discovered. These results as hypothesis above are most likely an 

effect of the change in substrate quality. 

reduced population of micro-organisms through top soil scraping and 

compaction during clearing. 

high temperatures on exposed soils, give rise to rapid loss of moisture and 

hence soil and leaf desiccation, thereby reducing decomposition processes. Soil 

and air temperature measurements carried out after clearance Mason et al (1989) 

showed an increase of 5.2 °C and 4.6 °C respectively in this plot. On 

the other hand the big trees in the other plots provided some shade to the soils 

hence moderating temperature variations. The soil temperatures recorded for 

the plots where as follows; Control plot, 22.2 °C; Manual Regrowth plot, 23.2 

°C; Mechanical Regrowth plot, 23.2 °C and Complete Clearance plot, 28.4 °C. 

In contrast the air temperatures in general where slightly higher, 23° C in the 

Control and Manual Regowth plots, 23.8 °C in the Mechanical Regrowth plot 

and 27.6 °C in the Complete Clearance plot (Mason et al 1989). 	 - 

to a lesser extent as a result of soil erosion. A few of the litter bags harvested in 

this plot where covered with eroded soils and their leaves where observed to be 

less decomposed compared to uncovered bags. 

The above reasons are not mutually exclusive, any combination of them could 

possibly account for the observed results. Differences between the treatments were 

also apparent from the calculated decomposition constant values (K) for each harvest 

time and from regression equations. The K-values for the Control, Manual Regrowth 

and Complete Clearance plots, from the regression analysis, fall well within the range 

of values for tropical lowland forests given by UNESCO/UNEPIFAO (1978) and 

Anderson and Swift (1983) (K = 0.9 - 4.7). The values for the Control and Manual 

Regrowth plot are similar to those reported by Nye (1961), K = 4.7 for an evergreen 

forest in Kade (Ghana) and Bernhard (1970), K = 4.2, for another evergreen forest 

situated in a valley in Banco, Ivory Coast. That for the Mechanical Regrowth plot 

(6.5) is by far higher than values reported for tropical forests elsewhere. 

NB: K-values derived here are not strictly comparable with those in most literature which are often 
calculated from litter-fall and standing crop data. 
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5.3.4.2 Nutrients 

The release  of nutrients from decomposing litter is an important internal pathway 

of nutrient flux in forested ecosystems. The release of nutrients from decomposing 

litter controls their subsequent availability for plant uptake or loss from the ecosystem, 

and affects ecosystem primary productivity (Blair, 1988). Nutrients may be released 

from litter by leaching or by mineralization (Swift et al, 1979). The rate at which the 

nutrients are released depend on several factors including the composition of the litter 

(including the initial concentration of the nutrient in the litter), the structural nature of 

the nutrient in the litter matrix, microbial demand for the nutrient, the availability of 

exogenous sources of the nuthent (Seastedt, 1984) and the moisture and temperature 

amounts in the environment. The release of elements that are not limiting to microbial 

decomposers and are not structurally bound in the litter may exceed mass loss. 

However, elements which are in short supply relative to microbial demand may be 

released at a rate slower than mass loss or may even accumulate in the litter during 

early phases of decomposition (Berg and Staaf, 1981). 

Nitrogen 

The increased nitrogen concentration in decomposing litter observed in all the 

treatment plots is a well established phenomenon (Bocock, 1963; Gosz et al, 1973) 

and explained as caused by nitrogen fixation (Granhall and Lindberg, 1977; 

Maheswaran and Gunatilleke, 1988; Blair, 1988); uptake from the surroundings by 

fungal hyphae growing in litter (Berg and Soderstrom, 1979); or atmospheric 

precipitation, insect frass, and plant material falling from the tree canopy (Bocock, 

1963). 

The general decrease in nitrogen content seemed to be associated with weight 

loss. A comparative analysis of the percentage weight remaining and percentage 

nitrogen content remaining showed that the faster the weight loss the greater the drop 

in nitrogen content. In a similar study in a lowland rainforest and deforested area in 

Srilanka, Maheswaran and Gunatilleke (1988) obtained similar results using two 

species Cullenia ceylanica and Dicranopreris linearis. 

Phosphorus 

The initial drop in phosphorus concentration in the first four months was 

presumably a result of leaching losses. The results at two months varied according to 

the intensity of disturbance of the plots, but at four months there was a sharp 
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unexplained drop in the Control plot. The final increase in phosphorus concentration 

may be as a result of inputs from flowers, pollen and green materials from the canopy 

or surrounding vegetation. Decomposition studies carried out by Blair. (1988, 

showed that the concentrations of nitrogen, phosphorus and sulphur increased during 

decomposition, following an initial leaching loss, and that there was a net 

immobilization of these elements in some of the litter types examined. A similar 

pattern for phosphorus to that of this study was obtained in studies by Gosz et al, 

(1973) in Hubbard Brook forest New Hampshire, and Maheswaran and Gunatilleke 

(1988) in Sri-Lanka. 

The decreased phosphorus content could be explained similarly to that of 

nitrogen, by loss of dry weight. Lousier and Parkinson (1978) looking at elemental 

dynamics in decomposing leaf litter, found good correlation between dry weight and 

loss of phosphorus r = 0.995. 

Potassium 

The sharp drop in potassium concentration early in decomposition is a 

commonly observed phenomenon (Attiwill, 1968; Gosz et al, 1973; Lousier and 

Parkinson, 1978; Blair, 1988; Maheswaran and Gunatilleke, 1988). Potassium is not 

a structural component of plant litter and is subject to removal by leaching. 

Additionally, potassium inputs to the forest floor via canopy leaching are considerable 

and often exceed inputs in litter-fall (Swank, 1986). Therefore, potassium release is 

not strongly dependent on biotic activity (Alexander, 1977). This might explain the 

very close similarity in potassium loss in all the plots. The above explanations for 

potassium concentration possibly accounted for the similarly and corresponding fast 

decrease in its content in all the plots. 

Calcium 

Calcium is a structural component of plant tissue. Therefore, the release of 

calcium during decomposition is more dependent on biotic activity than leaching 

(Attwill, 1968; Thomas, 1969, 1970; Gosz et al, 1973; Blair, 1988), i. e. the loss 

pattern of calcium is similar to dry weight loss of plant tissue. However, some studies 

like the present study, have reported increased calcium concentrations during 

decomposition resulting from greater retention or even accumulation of calcium during 

the early phases of decomposition (Vogt et al, 1983; Bockheim and Leide, 1986; 

Yavitt and Fahey, 1986; Blair, 1988). Some of the retention or accumulation of 

calcium in litter has been attributed to the formation of calcium oxalate by certain fungi 
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(Cromack et al, 1975). Although the concentrations after six months in all the plots 

were generally greater than initial concentrations, they all showed a decline pattern. 

The differences between treatments were due probably to differences in the rates of 

decomposition. 

Results of calcium content showed generally that calcium loss tracked pattern of 

weight loss in all the plots. The results at six months showed some similarity to those 

of weight loss. Net  fluxes of calcium have been reported by, Thomas (1969), Gosz 

(1973), Staaf and Berg (1982), to follow pattern of mass loss. 

e) 	Magnesium 

Leaching does not appear to play a very important role in the release of 

magnesium which might explain the gradual decline observed in the first two months 

of decomposition. The sharp drop in the last two months could be as a result of 

differential removal by decomposers of tissue parts with relatively high concentration 

of magnesium. Unlike the other elements, magnesium content at six months did not 

seem to track weight loss pattern. This strengthens the hypothesis of possible 

preferential removal of plant tissues relatively rich in this element. 

The pattern of magnesium release, like that of all other elements reported in 

decomposition studies, is variable depending on the substrate quality, quantity, 

microbial population and enviromental conditions. 

5.4 conclusion 

The results of fine litter-fall, fine litter fraction on the forest floor and leaf litter 

decomposition studies showed that land clearing had effects on the flux of materials 

and nutrients in the ecosystem. Secondly, it was evident from the results that the 

extent of the effects depended on the intensity of the disturbance caused by the method 

on the ecosystem. 

The similarity in results of the Control and Manual Regrowth plots (except for 

the huge accumulation of litter from the unburnt slash), showed the mildness and the 

little disturbance caused by this clearing technique to the ecosystem. The Mechanical 

Regrowth and Complete Clearance methods respectively, significantly (p = 0.05) and 

very significantly (p = 0.01) affected nutrient dynamics in the ecosystem. For 

example, only one seventh of the total nutrient input in the Control plot was recorded 

in the Complete Clearance plot and about one half in the Mechanical Regrowth plot 
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over the one year study period (Table 18). 

Nutrient concentration of fine litter-fall was not affected by the clearing 

methods, though litter caught in the Complete Clearance plot was composed mainly of 

leaves from the new and young vegetation. On the contrary , low nutrient 

concentrations were observed in the fine litter fraction of the forest floor in the 

Mechanical Regrowth and Complete Clearance plots. This was attributed to increased 

leaching from increased rainfall as a result of the partial and complete vegetation 

removal during clearing. 

Decomposition processes increased in the Mechanical Regrowth plot hence the 

low leaf litter weight remaining and the high K - value. The high leaf litter weight 

remaining in the Complete Clearance plot and low K - value was most probably as a 

result of decrease in decomposition activity. The identical weight remaining and 

similar K - values observed in the Control and Manual Regrowth plots indicate no 

change in decomposition activity as a result of the mild effects of the Manual Regrowth 

technique. 

No consistent pattern in nutrient concentration was shown by the decomposing 

leaves in the treatment plots, except for calcium and magnesium where the Complete 

Clearance plot showed the highest concentration at six months. In terms of mobility, 

the plots showed a similar trend of, K> Mg > Ca> P > N, obtained by Blair (1988). 

The dynamics of nutrient amounts in decomposing leaf litter, followed weight loss 

pattern. The greatest amount loss was in the Mechanical Regrowth plot with the 

lowest weight remaining and the highest K - value, and the lowest was in the 

Complete Clearance plot with the highest weight remaining and the lowest K - value. 

The Control and Manual Regrowth plots once again had similar values. However, 

significant differences were observed only for nitrogen, phosphorus and calcium and 

between' the Mechanical Regrowth and Complete Clearance plots. 

From the above results , it was clear that land clearance does not always result in 

increased decomposition activity. Based on these results, it can be concluded that 

the extent and direction of any change resulting from land clearing in a given 

ecosystem, depends among other things on the method of clearance and the intensity 

of the disturbance it causes to the ecosystem. 
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CHAPTER SIX 

EFFECTS OF CLEARING METHODS ON THE GROWTH OF 
Terminalia ivorensis (A. Chev.) 

6.1 	Introduction 

The tropical rainforest is a very complex and heterogeneous ecosystem in which 

natural evolution has not always been advantageous to man. He therefore has to 

intervene to achieve precise goals such as; the maintenance of sustained production 

with the highest possible yield, rational land occupation and the formation of high 

quality products. 

Silviculture constitutes the principal means of attaining these goals. It offers 

man the necessary methods and techniques for the production of ligneous materials. 

Silvicultural activities are usually focused on tree species for which qualities and 

technological properties are well known. Terminalia ivorensis, is a member of th 

group of species and has long been in use for regeneration purposes. The first 

Terminalia ivorensis plantations were created in Nigeria in 1928; As a result of its 

rapid growth and technological properties, it was extensively planted in Wcst Africa 

(Nigeria, Ghana, Ivory Coast, Sierra Leone and Bénin). It was also introduced and 

extensively planted in Trinidad, Fiji, Uganda and Zimbabwe (then Rhodesia) 

(Foaham, 1982). In Cameroon, other than its natural habitat (south west Province), it 

was introduced in Bulk and Kribi. Its introduction in Bulk (Mbalmayo) about 5 km 

from the site of the present study was very recent (1972) and was aimed at studying its 

adaptability and growth in this environment. The importance and reasons for 

increased interest in regeneration in general and in Cameroon in particular had been 

reviewed in the first chapter of this study. 

This chapter concerns the growth of Framiré planted in the three differently 

cleared plots studied in the preceding chapters of this study. Land clearance was 

carried out in the month of May, 1987, not a very appropriate time for this activity 

(because of the rains) even though clearing was done only after prolonged rain 

stoppages and when the soils were relatively dry, and planting took place in September 

(1987). The plots were planted with potted Framiré plants with heights ranging 

between 0.5-1.5 mat distances of 5x5 m apart. 

The succeeding sections of this chapter are not simply concerned with the effects 

of the different land clearing methods on the growth of the planted Framiré. They go 
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further to investigate within-plot variations in plant growth, studying and where 

possible quantifying some of the causes of any observed differences. 

6.1.1 	Nomenclature 

Family 	I 	 Combretaceae (Combretum family) 

Species 	 Terminalia ivorensis. A. Chev. 

Trade names 	 Framiré, Black Afara. 

Local names 	 Idigbo. (Nigeria), Lidia (Cameroon), Emeri (Ghana), Bassi 

(Sierra Leone, Liberia). 

6.1.2 	Geographical characteristics of Framiré 

6.1.2.1 Distribution 

Framiré is a closed forest species, extending from Guinea (Conakry) to 

Cameroon (south west) (Figure 19). It is found both in high and in secondary 

formations, in the latter it seems to be more common. It prefers moist conditions but 

grows in various sites (Voorhoeve, 1965; Irvine, 1966). It is often found in old 

agricultural plantations like Fraké (Terminalia superba) with which it is often 

associated. 

6.1.2.2 Climate 

Framiré grows well in areas of abundant precipitation, well distributed 

throughout the year with an optimum of 1270 mm per annum. It is very susceptible to 

drought especially in the young stages of growth. Average temperatures in its natural 

habitat vary between 20 °C - 23 °C, and relative humidity generally exceeds 50%. 

6.1.2.3 Altitude 

Framiré is a low elevation plant. In Ghana it grows well up to 610 m of 

elevation while in Cameroon it can be found as high as 1219 m, considered as the 

maximum altitude for good growth. Trial plantations of Framiré at 1524 m in 

Nyamuka (Uganda) produced very poor results, while those at altitudes between 732 - 

1219 m in the same area were very satisfactory. In general, Framiré is a species likely 
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to do best below 1200 m above sea level. 

6.1.2.4 Edaphic factors 

Framiré has been found to grow well in a variety of soil types. Upland lateritic 

barns in Sierra Leone, sandy loam in western Nigeria, clay barns in Tanzania (Willan, 

1966) volcanic soils of British Solomon Island (Leggate, 1966) and Carneroon are 

most suitable soils for Framiré growth. It has also been found to grow well in sandy 

clay soils in the Mbalrnayo forest reserve (Carneroon). It is very sensitive to water 

logging, and does not grow well in porous (sandy) soils or soils with long flood 

periods. 
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6.1.3 	Description 

Framiré is a large emergent tree. It may reach a height of 45 m and a diameter of 

1.20 m. The base of the tree is straight when young, but it has heavy root swellings 

of up to 1 m high, sometimes extending in heavy surface roots, and is rather fluted 

when older. The bole is usually straight, rather angular near the base, cylindrical 

higher up (Figure 20b), and may reach a height of 25 - 30 m to the first branches. The 

bark on young trees is smooth and ashy brown, fairly thin, but when older (15-20 

years) it becomes longitudinally fissured, then deeply grooved nearly black (in high 

forest, grey in secondary forest). The slash is fairly soft and fibrous, sometimes 

slightly brittle and brown outside, dark or bright yellow inside, paler near the 

cambium, soon turning ochre yellow or dirty light brown on exposure. Overmature 

trees may often have a swollen and defective lower half of the bole and brittle heart. 

The crown of younger trees is formed by wide-spreading, whorled branches, forming 

characteristic, horizontal storeys, but when the trees grow older the branches become 

more ascending and the storey character is more or less lost. 

The leaves are simple, alternate, in tufts at the end of the branches (Figure 20a), 

tomentellous when young on petiole, rachis and nerves, glabrescent, shiny, medium 

green above, paler beneath, coriaceous. Petioles are 0.7-1.5 cm long, slender. Blade 

is (narrowly) obovate, 5-10 cm long, 2.5-4.5 cm wide. Midrib and nerves are 

impressed above, prominent beneath. Nerves 6-9 are on each side of the midrib 

steeply arching upwards but not looping (Figure 20a). 

The tree is deciduous and sheds its leaves for about three months during the dry 

season. The new leaves appear around April, with the inflorescence. Flowering is in 

May and June. The young fruits soon appear, but are not ripe before December and 

January. They remain attached to the tree for a considerable time. The fruits are 

small; longitudinally winged nuts on slender (about 1 cm) long stalks, including the 

wing 5-10 cm long and 1.5-2.5 cm wide (Figure 20a). 

Regeneration is abundant on such open sites as abandoned farms and logging 

roads. The tree is very self pruning and soon grows a clean straight bole. It coppices 

easily. 

In the young stage Framiré and Fraké are very similar. The seedlings are easily 

distinguished because the first pair of leaves is alternate in the present species, 

opposite in Fraké. 
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Figure 20: (a) Branchiet with leaves and winged fruits and, (b) Trunk base of 
Termjnalja ivorensjs 
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6.1.4 	Importance 

A yellow dye obtained from the bark of this tree is used in Sierra Leone for 

dying cloth. It is largely used for roofing shingles and lasts 15-20 years. It takes nails 

and glues well and will produce high polish, but is most difficult to treat with 

preservatives. Easy to work, it is superior in quality to the timber of Fraké and is 

suitable for house building, green-house, cabinet and interior work, school handwork, 

furniture, panelling and for carriage fittings. It is useful for door and window frames, 

panelled doors, and stair treads. Its local uses include carpentry and mortars. The 

wood is useful as fuel (Irvine, 1961; Nepveau, 1976). 

	

6.1.5 	Silviculture 

Framiré posses good silvicultural properties that makes it an interesting species 

for large scale regeneration such as; fast growth, abundant fruit production, self 

pruning. In addition, it has a straight bole and is not subject to serious parasitic 

attacks. It is a light demander and does not tolerate shade after germination (Lamb and 

Ntima, 1971). It is oftenfound in the tropical moist forest conditions, but it is 

predornonantly a tree of the seasonal forest zones and is often found mixed with Fraké 

where it shows some of the latter's characteristics, being a strong (aggressive) light 

demander and a good colonizer of abandoned farms. Because of its nature of light 

demander, its distribution in the natural forest and growth in plantations may reflect on 

the density of shade in the high forest or the amount of light reaching the plantation. 

6.1.5.1 Fruiting 

Frarré produce abundant fruits but the fruiting period varies from place to 

place. In Sierra Leone, seeds are available between February and April. In Ghana the 

period of fruit production is situated between May and August (Foaham, 1982), while 

in Nigeria it extends from December to March. However, it was noted by Cooper and 

Bramwell (cited by Foaham, 1982) that viable seeds were those harvested after the 

month of January. In the artificial Framiré plantations at Bilik (Cameroon), seeds are 

mature between January and February, but the most viable seeds are those harvested 

between the months of March and April (Foaham, 1982). One kilogram contains 

5,500-6,200 winged seeds (Voorhoeve, 1965). 
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6.1.5.2 Germination 

The germination period for Framiré seeds varies between 15 and 50 days 

(Voorhoeve, 1965; Foaham, 1982) owing to the hard coat. The period was fourteen 

days for the bioassay experiment carried out in this study. The rate of germination is 

poor, generally between 30-50%. MacGregor mentioned by Foaham, (1982) obtained 

30% germination while Cooper and Bramwell also mentioned by Foaham, (1982) 

obtained germination percentages between 25-50%. Taylor and Kinloch mioned by 

Voorhoeve (1965) reported that germination could be raised to about 40% when the 

seeds are pre-treated for a week by alternate soaking and sun-drying. Bibani 

mentioned by Foaham (1982) obtained 50% germination when seeds were soaked for 

48 hours before sowing. In the bioassay experiment of this study, soaking seeds for 

72 hours produced a similar result to that of Bibani (53%). Another common problem 

with Framiré seeds is attack from insect borers. 

The seedlings are susceptible to drought therefore nursery beds need to be 

lightly shaded until seedlings are well established. 

6.1.5.3 Plantation 

a,) 	Type of plant 

For transplanting either stripped plants or stumps may be used, but nursery 

stock should not be planted out until the second rainy season, when the plants 

may be about 1.5 m high . As the trees are susceptible to drought, they should 

be planted when the soil is moist, ie not before the rainy season has actually 

started. Roots should not be heavily pruned (Voorhoeve, 1965). 

b) Method 

Since Framiré is a light demander, the silvicultural method used should be 

one that enables sufficient plant lighting. In Nigeria large plantations of Framiré 

were successfully established using the taungya method. Generally, most of the 

old Framiré plantations were established using this technique where and when 

conditions were favourable (available agricultural labour force and land scarcity) 

or the typical slash and burn technique of shifting agriculture. The line method 

has been utilized very little and the Manual Regrowth method is a very recent 

technique. 
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Framiré is a very fast growing species and tends to suppress other vegetation. 

With a spacing of 3x3 m an area may be covered in three years. Hence it should not 

be mixed unless with good shade bearers (Voorhoeve, 1965). The drawback to the 

cultivation of Framiré is that after a certain age, the trees are attacked by an insect 

which causes severe damage to the plantation. Therefore, monoculture plantations are 

too great a risk, but wide line plantings in young secondary forest, or mixed 

plantations may be successful (Voorhoeve, 1965). 

At Bilik in 1972), 15.9 ha of land walanted with Framiré using two 

silvicultural methods, Manual Regrowth method (4.5 ha) and line method (11.4 ha). 

Foaham (1982), carried out growth and adaptation analysis of these planations and 

reported they were doing well ten years after planting. At the age of six years, the 

average annual growth of the trees was > 4 cm in diameter and >200 cm in height. A 

comparative analysis of the results showed significant differences between the two 

methods, with better growth observed in trees of the two line method plots. This 

difference was probably due to differences in initial plant densities of the plots (250 

plants ha in the Manual Regrowth plot and 111 plants and 83 plants ha' in the two 

line method plots). At the age of nine years , three years after thinning, trees of the 

thinned subplot in the Manual Regrowth method showed significant growth increases. 

- However, those of the thinned subplots in the two line method plots on the other 

hand were not affected by the thinning operation. 

In another growth analysis study, this time on Fraké, with very similar 

characteristics to those of Framiré, in the Congo and Zaire, similar results to those of 

Bilik (the natural habitat of Fraké) were reported (Memento du forestier, 1978). At the 

age of fifteen years, average annual increase was between 2.5-3.1 cm in diameter and 

1.4-1.8 m in height. Total volume was estimated at 20-25 m 3  with trees at distances 

of 6x6 m apart. The average increase in diameter was found to decrease with plant age 

and at the end of plantation revolution was estimated at 1.1-1.5 mm. It was estimated 

that plantation exploitation would take place at the age of 50 years and at this stage, the 

plantation would comprise 60 trees with average diameter of 70 cm and total volume of 

270 m3  (Memento du forestier, 1978). 
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6.2 	Materials and methods 

Eleven months after planting and plant establishment (July,. 1988), monthly. 

assessment of tree survival and growth in the centrally marked out 50x50 m areas in 

each treatment plot (Figure 10) was commenced and carried out for thirteen months 

(July, 1989). Tree growth was assessed by measuring tree heights, from the ground 

to the apex of the principal shoot, and diame.ters at a height of 5 cm above ground. 

The number of dead and destroyed trees at each sampling time were also recorded for 

tree survival analysis. Since Framiré is a light demander, light measurements of the 

trees enclosed by the central 50x50 m areas were taken in an attempt to investigate their 

relationship with growth. With the assistance of Grace and Furley, the light amount 

reaching each tree in the Manual Regrowth and Mechanical Regrowth plots was 

measured above the crown and expressed as a fraction of readings taken in the open 

(Complete Clearance plot). Height measurements were taken simultaneously with 

those of light. 

In addition, detailed sampling of the ten best and worst growing trees in each of 

these areas (judging from heights) was carried out to determine within plot treatment 

effects. The soils under these trees were sampled and analysed for pH, nutrients, bulk 

density and water content. Soils for pH and nutrient analysis were collected at five 

random points under the tree crown just below the litter layer (horizon H 0), and 

bulked before subsamples were collected, after thorough mixing, for analysis as 

described in appendix 1. Soil cores were collected under each tree and bulk densities 

determined as described in section 4.1.2.2. Soil water content was roughly estimated 

by measuring the difference in the fresh and oven-dry weight of soils, to enable a 

quick estimation of the effect of compaction. Light amounts received by each of these 

trees were also measured by Mason (pers. comm.) in March (1989), simultaneously 

with their heights and diameters. Light measurements, this time, due to plant heights, 

were taken at a height of about 2 m above ground close to each tree but in the open to 

avoid effects of tree crown. The photon flux density measurements 

(photosynthetically active radiation-PAR) were taken with a SKP 200/2 15 Quantum, 

Radiation Sensor and measuring Unit, manufactured by Skye Instruments, 

LLandrindod Wells (UK). 

Leaves were randomly harvested from these trees and after oven drying at 105 

over night were analysed for nutrients as described in appendix 1. 
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6.3 	Results 

6.3.1 	Tree survival 

The results of tree survival twenty three months after planting are summarized in 

Table 23 below. 

Treatment Total number of 
trees planted 

Number of trees 
dead or destroyed 

Number 
survived 

(%) 
Survival 

Man. Reg. 108 11 97 90 

Mech.Reg. 118 13 105 89 

Comp. C. 117 21 96 82 

Table 23: Percentage survival of Framiré trees in the different treatment plots twenty 

three months after planting (September 1987 - July 1989) in the 

Mbalmayo forest reserve. 

These results show similar percent survival in the Manual Regrowth and 

Mechanical Regrowth plots, but the Mechanical Regrowth plot had more planted and 

has more surviving trees. The highest number of dead (especially) and destroyed trees 

were encountered in the Complete Clearance plot with the least survival percentage. 

The lowest number of planted trees was recorded in the Manual Regrowth plot, a 

direct effect of the big trees and tree stumps left behind during clearing. 

6.3.2 	Tree growth 

The average monthly heights and diameters of Framiré in the centrally marked 

out areas in each plot for the period July (1988) to July (1989), are represented in 

Figure 21. The best results of tree growth (both height and diameter) were shown by 

the Mechanical Regrowth plot, followed by the Complete Clearance plot, with trees of 

the Manual Regrowth plot unexpectedly showing the worse growth. Trees of the 

Complete Clearance plot showed very fast growth over the study period, increasing 

from a similar average height to those trees of the Manual Regrowth plot in September 
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(1988) and attaining that of plants in the Mechanical Regrowth plot in July (1989). 

The pattern of diameter increase in these two plots was almost constant throughout the 

study period. The differences in growth (height and diameter) between the Manual 

Regrowth plot and the other two plots increased continuously over the thirteen months 

observation period. 

Average growth of Framiré over the thirteen months study period is summarized 

in Table 24 below. 

Treatment Height (cm) Diameter (mm) 

Manual Regrowth 178 29.1 

Mechanical Regrowth 299 47.3 

Complete Clearance 343 44.1 

Table 24: 	Average growth of Framiré in the different treatment plots over the 

thirteen months study period. 

These results like those of monthly tree growth (Figure 21) show trees of the 

Complete Clearance plot to grow faster in height than those of the other two plots. 

The growth rate (height) in the Manual Regrowth plot was about half that in the 

Complete Clearance plot over this period. 

The relationship between plant heights and diameters (Figure 22 (a), (b), (c)) of 

the different plots is linear with identical coefficients of correlation (r = 0.77), but with 

different slopes. 

The frequency distribution of tree heights and diameters illustrated in Figure 23, 

revealed very poor growth of the trees in the Manual Regrowth plot. Only 9% of the 

trees in this plot had attained or exceeded 4 m in height while the number with 

diameters ~! 60 mm were only 11% of the total surviving trees at the end of the study 

period. The Mechanical Regrowth and Complete Clearance plots had similar 

percentage trees with heights ~! 4 m, 60% and 59% respectively. Howeyer they 

differed slightly in their percentage diameters ( ~ 60 mm) 59% and 54% respectively. 
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6.3.3 	Light measurements 

The first light measurements taken in the month of July (1988), corresponding 

to the period of rain break, showed that the trees in the Manual Regrowth plot received 

26% and Mechanical Regrowth 33% of the light amount recorded in the open 

(Complete Clearance plot). 

A plot of the plant heights against their relative light fractions for these two plots 

is illustrated in Figure 24. No relationship was revealed by thetresults between plant 

height and light, but there was a more even distribution of light in the Mechanical 

Regrowth than in the Manual Regrowth plot. 
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6.3.4 	Within plot treatment effects on the growth of Framiré 

(based on ten best and worsk growing trees) 

6.3.4.1 	Average height and diameter 

Figure 25 shows the average heights and diameters of the ten best and worse 
growing trees per treatment plot after twenty three months of planting. These results 

reveal very significant differences in the growth of these two sets of plants. Once 

again between plot comparison showed the worse results in the Manual Regrowth plot 

and the best in the Mechanical Regrowth plot closely followed by the Complete 

clearance plot, which showed slightly better results for the best trees. 

6.3.4.2 	Selected properties of soils 

Results obtained from the analysis of soils collected under the ten best and 

worse growing trees are given in Table 25. The best and worse growing trees in the 

Manual Regrowth and Mechanical Regrowth plots were found to be growing in soils 

with similar nutrients, hence the differences in growth were not due to the lack of 

nutrients. The differences did not seem either to be caused by soil compaction or 

water stress, results of which were found to be very similar in the soils from under 

these two sets of plants. On the contrary, there were significant differences in the 

nutrients, soil compaction and water content of soils collected below the best and 

worse growing trees in the Complete Clearance plot, suggesting these factors might be 

responsible for the observed differences in growth. 

6.3.4.3 	Nutrient composition of tree leaves 

The nutrient concentration of leaves harvested from the ten best and worse 

growing trees in each of the treatment plots are presented in Table 26. The results in 

general are a direct reflection of the results of the soils in which the trees are growing. 

No differences were therefore, observed in the nutrient concentrations of leaves from 

the best and worse growing trees in the Manual Regrowth and Mechanical Regrowth 

plots. Similarly, there were differences in the nutrient concentrations (except K) of 

leaves harvested from the best and worse growing trees in the Complete Clearance plot 

though at a smaller scale than in the soils. 
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Figure 25: Average height (cm) of the ten best (A) and worsi (B) growing trees, and their corresponding average diameters (mm) C and D, 
respectively in the different plots twenty three months after planting. Bars are standard errors of means. (a) Manual Regrowth 
plot, (b) Mechanical Regrowth plot, (c) Complete Clearance plot. 



Freatment 

1b' cniol kg-1 
ni-i 

Bulk  
density 

 (gcm 3 ) 

(%) 

Water 
content 

N P K Ca Mg 

Best (tallest) trees  

Man. Reg 5.3±0.86 0.07 ±0.017 0.12 ±0.01 0.37 ±0.10 0.28 ±0.05 4.5±0.19 1.10 ±0.03 23.9 ±2.72 

Mech. Reg 3.3 ±0.72 0.05 ±0.014 0.13 ±0.01 0.48 ±0.04 0.35 ±0.03 4.8±0.18 1.23 ±0.03 20.8± 1.06 

Cornp. C. 1.5±0.43 0.04 ±0.007 0.12 ±0.01 0.28 ±0.09 0.20 ±0.03 4.6±0.17 1.18 ±0.03 19.3 ±2.53 

Worst (shortest) trees.  

Man. Reg. 4.9±0.80 0.08 ±0.012 0.13 ±0.01 0.37 ±0.10 0.33 ±0.05 4.5±0.23 1.14 ±0.03 24.4 ±1.89 

Mech Reg. 2.8±0.87 0.06 ±0.01 0.15 ±0.01 0.62 ±0.10 0.40 ±0.05 4.9±0.24 1.10 ±0.03 19.0 ±1.87 

Comp. C. 1.1 ±0.34 0.01 ±0.003 0.08 ±0.01 0.09 ±0.04 0.11 ±0.02 4.6±0.16 1.32 ±0.03 16.3 ± 1.87 

0 

Table 25: Selected properties of soils taken under the ten best and worse growing trees in the different plots. Results are means ±SE. 
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Treatment N p I 	K Ca Mg 

Best (tallest) trees 

Man. Reg. 2.0±.0.15 0.15 ± 0.03 0.57 ±0.05 0.79 ± 0.07 '0.30 ±0.03 

Mech. Reg 2.3 ±0.08 0.16 ±0.01 0.81 ±0.07 0.75 ±0.04 0.30 ±0.02 

Comp. C. 2.3 ±0.06 0.13 ±0.01 0.51 ±0.04 0.72 ±0.14 0.21 ±0.05 

Worsb (shortest) trees 

Man. Reg. 2.3 ±0.08 0.16 ±0.01 0.67 ±0.08 0.71 ±0.10 0.29 ±0.03 

Mech.Reg 2.3±0.08 0.15 ±0.01 0.61 ±0.05 0.58 ±0.04 0.26 ±0.02 

Comp. C. 1.6 ±0.13 0.10 ±0.01 0.59 ±0.04 0.51 ±0.04 0.12 ±0.01 

Table 26: 	Nutrient concentration (% dry weight) of leaves harvested from ten of 

the best and worse growing trees in each of the treatment plots. 

Results are means ± standard errors. 
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6.3.4.4 Light measurements 

The results of light measurements taken at about 2 m above ground in the open 

close to each tree are summarized in Table 27. Similar amounts of light were received 

by the best and worst growing trees in the Mechanical Regrowth and Complete 

Clearance plots. In the Manual Regrowth plot on the other hand, there were 

significant differences in the light amounts reaching the best and worse growing trees, 

suggesting this might be a probable cause of the differences in plant growth. Between 

plot comparison showed the following light reception pattern, Complete Clearance plot 

> Mechanical Regrowth plot> Manual Regrowth plot. 

Treatment 

Photon flux density (PAR) 

.1mo1 m 2  s' 

Best (tallest) trees 

Man. Reg 302± 44.9 

Mech. Reg. 477 ± 94.7 

Comp. C 908 ± 30.9 

Wors 	(shortest) trees 

Man. Reg 156± 38.9 

Mech.Reg 442± 114 

Comp. C. 1002±43.1 

Table 27: 	Average light amounts (quantity) received by the ten best 

(tallest) and worsb (shortest) growing trees in each of the treatment 

plots nineteen months after planting (March 1989). 
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The relationship between the average heights of the best and wor* growing 

trees and the photon flux densities is illustrated in Figure 26. Also shown on this 

graph, in brackets, is the average nitrogen concentration of leaves randomly harvested 

from these trees. 
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Figure 26: Speculative relationship between PAR and tree height, when data for 
nitrogen concentration ~! 2% are considered. It is presumed that at PAR 
=0, tree height =0. Data points are average results for the ten best (a) and 
worse () growing trees in the different treatment plots nineteen months 
after planting (March 1989). Ma. (Manual Regrowth), Me. (Mechanical 
Regrowth), C. (Complete Clearance) plot. 

There is evidence from Figure 26 of a relationship between light and tree height. 

Results of plant heights illustrated in Figure 25, four months later (July, 1989), show 

that the best growing trees in the Complete Clearance plot had caught up with those in 

the Mechanical Regrowth plot and the worse trees in the Complete clearance plot were 

growing slightly better than their cOunterparts in the Manual Regrowth plot. 
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6.4 	Discussion 

	

6.4.1 	Tree survival 

The results of tree survival revealed some disadvantages of the land clearing 

methods. The Manual Regrowth method for example had the least number of planted 

trees. This was a direct consequence of leaving big trees and stumps of felled trees 

behind during clearing, thereby reducing eventual planting space. In the Mechanical 

Regrowth plot, there was a similar problem with the big trees, but since the felled trees 

were uprooted and pushed away, this created more planting space than in the Manual 

Regrowth plot, hence the higher number of planted trees. The space problem faced in 

the Complete Clearance plot was not with the big trees but with their stumps which 

could not be uprooted by the D8 straight rake bulldozer used in its clearance. This 

explains the similarity in the number of planted trees with the Mechanical Regrowth 

plot. 

In the Manual Regrowth and Mechanical Regrowth plots, the main danger to 

tree survival was from falling branches. A total of 97 trees were alive and growing 

well in the Manual Regrowth plot twenty three months after planting. Eleven of the 

original 108 trees planted were missing, eight of which were damaged by fallen 

branches. In the Mechanical Regrowth plot, the thirteen missing trees were either 

damaged by fallen branches or appeared to have died from water stress due to the 

effects of soil compaction. In addition, shading from the big trees could have 

contributed to the observed mortality rates. All the missing trees (twenty one) in the 

Complete Clearance plot were killed from water stress as a result of soil compaction 

due the repeated passage of heavy machinery (section 4.1.4.1) or water logging, 

observed in some cases. 

Although the highest percentage of tree survival was recorded in the Manual 

Regrowth plot, the Mechanical Regrowth plot (1% short of the former) had the highest 

number of planted and surviving trees which is an important factor in determining the 

best method of land clearance for plantation establishment. 

	

6.4.2 	Tree growth 

Results of average monthly heights and diameters of trees (Figure 21) and 

frequency distribution of tree heights and diameters twenty three months after planting 

(Figure 23), show the plants in the Mechanical Regrowth plot to have the best growth 
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with the worse results shown by plants in the Manual Regrowth plot. The relationship 

between plant heights and diameters (Figure 22) is linear with identical correlation 

coefficients but different slopes which suggest how the conditions prevailing in the 

different plots may influence the form of the tree stem a very important end product of 

the plantation. 

The increasing differences in growth over time between the plants in the Manual 

Regrowth plot and the other two plots (Figure 21) is probably as a result of differences 

in plant growth rates (Table 24). 

Results of average monthly plant growth (Figure 21), average growth of trees 

over the study period (Table 24) and the slopes of the regression analysis of tree 

heights and diameters, show. fastest growth of trees (height) in the Complete Clearance 

plot. These results were unexpected considering results of the physical and chemical 

properties of soils in the three plots reported in chapter 4 which showed the most 

drastic ecosystem effects and unfavorable growth conditions in the Complete 

Clearance plot. It is thought these results could be an indirect effect of the revegetation 

of this plot resulting in increase nutrient inputs and the amelioration of soil properties. 

But perhaps the most important suggestion is that, plant growth is a complex process 

and is not conditioned simply by the physical and chemical properties of the 

environment. 

6.4.3 	Nutrients in soils and leaves of selected trees 

Within plot analysis of nutrients showed similarities in the soils (Table 25) and 

leaves (Table 26) of the best and worse growing trees in the Manual Regrowth and 

Mechanical Regrowth plots.' This suggest therefore, that the observed differences in 

growth of these trees were not due to nutrient deficiencies. The results of their soil 

pH, bulk density and water content did not seem to account for these differences 

either, which strengthens the above hypothesis about the complexity of growth. In 

contrast, the drastic effects of the Complete clearance method seemed to have had an 

effect on the growth of the two set of plants studied. The significant compaction of the 

soils under the worse growing trees probably resulted in the observed significant 

differences in their water content, nutrient contents and leaf nutrient concentrations. 

The accumulation of these effects could have probably accounted for the differences in 

the growth of the two set of plants within this plot. 

There is lack of scientific information on the nutrient needs of Framiré. Aluko 

and Aduaji (1983) reported on the response of Franiiré to varying levels of nitrogen 
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and phosphorus fertilizers with little indication of amounts needed for good growth. 

Between plot comparison of these results revealed the following general pattern 

for the soil properties and leaf nutrient concentration of the planted Framiré, Manual 

Regrowth > Mechanical Regrowth > Complete Clearance. However, comparative 

analysis of the growth of Framiré showed a different pattern to the above; Mechanical 

Regrowth> Complete Clearance> Manual Regrowth. This implies therefore that the 

measured soil properties do not limit or totally determine the growth of Framiré 

6.4.4 	Light measurements 

Results of light measurements in the different treatment plots so far was the only 

parameter (except bulk density) that showed the Complete Clearance plot with a 

consistently higher value than the other plots. Figure 24, showed no apparent 

relationship between plant heights and diameters and the relative light fractions. This 

suggest that though Framiré is a light demander, light alone is not sufficient to 

condition its growth. It could also be possible that it was too early for anygrowth 

factors to significantly affect plant processes. This second hypothesis was more or 

less verified eight months later when trees were assessed for within plot treatment 

effects. Results of this study illustrated in Figure 26 show some relationship between 

plant growth and light amounts under similar conditions of nutrients. 

Framiré is a light demander commonly found in old secondary forests and 

classified among species of primary vegetation succession. This characteristic of 

Framiré might possibly account for its relative good growth in the Complete Clearance 

plot (at least at this stage) in spite of the drastic effects on its soils and the relative low 

nutrient amounts and inputs (Chapter 4 and 5). Similarly, the significant differences in 

• the light amounts reaching the best and worst growing trees in the Manual Regrowth 

plot could be the underlying cause of the observed differences in their growth. 

None of the above measured parameters seem to have been responsible for the 

significant differences in growth between the best and worst growing trees in the 

Mechanical Regrowth plot. This once more is in line with the hypothesis that growth 

is a complex process that depend on the interaction of many factors, environmental as 

well as physiological. 
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6.5 	Conclusion 

The results of the tree survival assessment revealed some inconveniences of the 

different methods of land clearance. The relatively slight vegetation disturbance in the 

Manual Regrowth plot (big trees and stumps of felled trees left behind during clearing) 

reduced available planting space. Secondly, the big trees provided a source of danger 

to the young Framirés through branch fall. In the Mechanical Regrowth plot the big 

trees left behind, like in the Manual Regrowth plot, also provided a source of danger 

through branch fall. However, the uprooting of smaller trees during clearing opened 

up more planting space but led to some soil compaction. In the Complete Clearance 

plot, there was still some space problem this time from the stumps of the felled big 

trees that could not be uprooted. Hcwever, the most important disadvantage of this 

method was perhaps soil compaction from the repeated passage of heavy machinery 

during clearing causing high plant mortality from water stress and water logging. 

A comparative analysis of the number and percentage of surviving trees 

showed the Mechanical Regrowth plot > Manual Regrowth plot > Complete Clearance 

plot. However, results of plant growth illustrated in Figure 21 and 22 and 

summarized in Table 24, revealed fastest growth in the Complete Clearance plot. This 

was thought to be a response of the plants to the continuous increase nutrient input and 

amelioration of soil properties through the growth and maturity of the revegetation. 

The significant difference in soil compaction between the best and the worst 

growing trees in the Complete Clearance plot, was probably responsible for the 

observed differences in water content and nutrients and consequently the differences in 

the growth of these plants. In the Manual Regrowth plot the significant difference in 

the growth of the best and worse trees was attributed to the significant differences in 

light amounts reaching these trees, considering the light demanding characteristic of 

Framiré. However, in the Mechanical Regrowth plot, none of these factors differed 

significantly between the best and the wors trees, suggesting that these parameters 

were not the only growth determining factors. 

Generally, the results of the various analysis show the Mechanical Regrowth 

method to be the most appropriate land clearing method for the regeneration of 

Framiré. However, plants of the Complete Clearance method with the most drastic 

and adverse effects on the ecosystem performed better than those of the Manual 

Regrowth method with the mildest effect on the ecosystem and are fast catching up 

with plants in the Mechanical Regrowth plot. If attention was to be focused entirely on 

growth rates, then the tendency at this stage is in favour of the Complete Clearance 
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method of land clearance. However, since other factors are usually taken into 

consideration such as the sustainability of the method (a very fundamental factor of 

land use and plantation creation) discussed in the next chapter, this method still has to 

stand its test in tropical silviculture. 

However, based on the results obtained after twenty three months of planting, it 

can be concluded that, Framiré (plant) growth is a complex process that does not 

depend entirely on the physical and chemical properties of the soils nor the light 

amounts reaching the plant. 
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CHAPTER SEVEN 

GENERAL DISCUSSION AND CONCLUSIONS 

This project was designed to investigate the effects of different site preparation 

methods on the ecosystem of a tropical lowland rainforest in Cameroon, and how the 

indigenous tree species Terminalia ivorensis performed under these different 
conditions. 

An ecosystem is made up of a series of complex and interacting components, as 

illustrated earlier in Figure 2, through which materials and nutrients circulate. The 

effects of each clearing method was investigated on the highlighted compartments. The 

results have been presented and discussed in chapters 3 to 5. This chapter summarizes 

the discussion and conclusions and makes some suggestions for improvements to the 

methods of silviculture being practiced in Cameroon, in particular, and West Africa in 

general. In particular it considers ways to enhance and sustain tree crop productivity. 

7.1 	A critical evaluation of the project 

The most regrettable aspect of this ecological study and most other studies 

conducted in tropical forests, is the lack of plot replication. Most ecosystem studies 

which cover a considerable length of time (eg several years) are restricted in space, 

while those which are extensive in space usually represent only one point in time. A 

combination of both approaches, though very expensive, is the most appropriate 

scientific approach to studies aimed at establishing the effects of site disturbance on 

nutrient cycling during reforestation with indigenous hardwoods. 

Another point of concern is the short time scale of the study (3 years), which 

does not permit final recommendations or conclusions to be drawn as regard the 

application of the methods of site preparation on the end of rotation yield (30-40 

years). 

The lack of replication hindered the determination of variations within treatment 

plots, some of which could be very important especially with soils. Soil analysis 

would have provided better information if sampling had been done at closer time 

intervals in the first year, which is the most crucial period of change. There are many 

important aspects which, if studied, could have thrown more light on the effects of the 
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site clearance methods. One such aspect whose complete investigation was hindered 

by lack of time was the small scale effects of land clearance. For example the retention 

of trees and tree stumps in the mechanized plots resulted in the accumulAon  of soils 

around them during clearance. This increased soil depth at the base of the trees and 

resulted in enhanced vegetation growth. These soils were sampled in a series of 

transects to determine the effects of micro-variation within the plots, but unfortunately 

it has not been possible to analyse and present the results in this thesis. Other 

parameters like, through-fall, stem-flow, and nutrient inputs in rainfall could have 

given extra information about the nutrient cycle had these been investigated. 

In spite of these constraints and mistakes, the study has revealed some very 

interesting results which enable me to make recommendations for a landclearing 

method that allows the successsful, early establishment of Framiré plantations in the 

Mbalmayo Forest Reserve. 

7.2 Discussion on the effects of methods on soil physical 

and chemical properties 

The scientific literature contains much information on the effects of land clearing 

methods on soil physical and chemical properties especially in agricultural systems 

(van der Weert, 1974; Lal, 1975; Foister, 1976; Sanchez, 1976; Seubert et al, 1977; 

Mambani, 1986; Alegre et al, 1986). These include comparative analysis of the 

changes with time. This topic has been extensively reviewed by Sanchez (1980, 

Sanchez et al, 1985). Most comparative studies have contrasted various forms of 

mechanization (Lal, 1986) with the typical slash and burn technique of shifting 

agriculture. The latter is generally considered to be superior to the former because of 

the value of the ash as a fertilizer and the absence of soil compaction and topsoil 

displacement, which are common with mechanization. The advantages presented by 

the slash and burn technique to agricultural crops, with short production circles, might 

not apply to forest tree crops where growth is slow and rotations are very long. For 

example, increased nutrient input from ash has been shown to last for less than a year 

(generally up to the first rains), a period long enough for many agricultural crops to 

complete their rotation. However, most tree crops which have long rotations (15 - 50 

years) are only becoming established within this timescale. 

The effects on soil chemical properties of land clearance by the Manual 

Regrowth method, show a pattern generally opposite to that reported for the slash and 
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burn technique. After slash and burn, the concentration of elements increase (rapidJy 

and attains a maximum after six months) before subsequently declining (see review by 

Sanchez 1980). In the Manual Regrowth method, the unburnt litter and logs provide a 

long term source of nutrients for the growth of the planted trees. This represents an 

important aspect for the sustainability of this system of plantation establishment, 

which contrasts strongly with those of the slash and burn. 

The general effects of the mechanized methods of site preparation were similar 

to those reported in agricultural literature. For example, soil compaction, disturbance 

and displacement of topsoil and its exposure to erosion were all consequences of 

mechanized clearance. The consequences of these effects were also similar to those 

reported elsewhere (Seubert et al, 1977; Lal and Cummings, 1979; Sanchez, 1980; 

Soane, 1986; Moreau, 1986; Alegre et al, 1986). However, the selective nature of the 

Mechanical Regrowth method had the advantage of slightly reducing both vegetation 

and soil damage. Consequently, the resultant effects on soil nutrients and their 

changes with time were less drastic than in the method of conventional bulldozing used 

in the Complete Clearance plot. 

In the study of the effects of different passes (each with a pressure of 66 K Pa) 

of heavy machinery on Soil compaction, four passes were sufficient to cause damage 

to the soils of the site. These two factors (machinery weight and number of passes) 

are very important in any attempts to alleviate soil compaction effects. The 

minimization of soil damage can be achieved to some extent by hiring operators who 

are sensitive to the potential damage of soil compaction and topsoil displacement. 

Alternatively, training programmes can be initiated for bulldozer drivers in the 

techniques for mechanical land clearance operations. This latter approach would be the 

most relevant to ONAREF which is aiming at the extensive utilization of the 

Mechanized methods in its plantation programme. 

7.3 	Discussion on the effects of 	methods on nutrient 
dynamics 

Although the study of litter-fall was carried out over only a one year period, it 

provided adequate data to compare the amount of damage caused to the vegetation by 

each clearing method and the repercussion on nutrient inputs. Most work on litter-fall 

has been carried out on the natural forest or established plantations (Gorham, 1964; 

Proctor et al, 1983). The effects of land clearing methods on material and nutrient 
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inputs through litter-fall, forest floor litter amounts and litter decomposition rates in the 

tropics is generally recognized, but there is a general lack of data of these aspects. For 

example, it is clear that in the traditional slash and burn technique, the big trees left 

behind provide continuous nutrient input through litter-fall to the site before and after 

revegetation and plant growth. The amount of litter on the floor after burning, if any, 

will depend on the intensity of the burn. 

In the Manual Regrowth plot, the litter from the slashed vegetation and logs 

from the felled trees was neither burned nor removed from the plot. This therefore 

minimized nutrient losses, from leaching and water runoff after rainfall, often 

encountered after slash and burn and mechanized land clearance. In addition, the big 

trees provided a source of continuous nutrient supply. In the Mechanical Regrowth 

plot, soil disturbance and exposure created favourable conditions for nutrient loss. 

However, the maintenance of some big trees provide a source for continuous nutrient 

input. 

In the Complete Clearance plot, the effects on nutrient dynamics were very 

drastic since, soil litter as well as the vegetation was completely removed during land 

clearance. Nutrient inputs were virtually non-existent, for sometime after clearance, 

except for meagre inputs blown in from nearby forest. This was reflected in the 

meagre twofold increase in nutrient amounts recorded in this plot over the obaervation 

period of one year (started ti. after land clearance). On the contrary, results of 

litter-fall studies over the same observation period show a remarkable recovery in 

nutrient input amounts in Mechanical Regrowth plot, where a twentyfold increase was 

recorded at the end of the study period. Similar results were revealed by nutrient 

amounts of the fine forest floor litter fraction. 

The amount of soil disturbance and consequently floor litter left behind after 

mechanized land clearance can vary depending on the type of machinery and its 

accessory attachments. For example, a shear blade with a flat bottom, kept above 

ground, would leave more litter plus roots and stumps in the soil than a dozer blade or 

root rake. However, the type of clearing implements are usually conditioned by the 

vegetation type and tree densities. 

In spite of the fact that all the litter input in the Complete Clearance plot and most 

of that in the Mechanical Regrowth plot came from new vegetation in these sites, no 

differences were observed in nutrient concentrations. The differences recorded in 

nutrient content, summarized below in Figure 27 were due solely to dirences in litter 

dry weight. Although differences were observed in the fine litter fractions on the 

forest floor, differences in litter amounts was the dominant factor which acOounted for 
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the differences in nutrient amounts summarized in Figure 28. 

Control 

463 

Man. Reg 	 Mech. Reg. 	 Comp. C. 

349 	I 	 I 	240 	I 	 I 	63 

Figure 27: Effects of land clearing methods on total nutrient (N, P. K, Ca, Mg) 

amounts (kg ha -1)  of fine litter-fall in the different plots (June 1988 - 

May 1989). 

Control 	Man. Reg. 	Mech. Reg. 	Comp. C. 

144 	 162 	 56 	 22 	August 1987 

IF _ I F  _ 

116 	 261 	 115 	 59 	August 1988 

Figure 28: : Effects of land clearing methods on total nutrient (N, P, K, Ca, Mg) 

content (kg had) of the fine litter fraction on the forest floor in the 

different plots. 

The recovery of ecosystem properties, like fertility, after land clearance will 

depend, from above results, on the intensity of the original ecosystem disturbance. 

Another aspect of tropical forest that has received relatively little attention is litter 

decomposition, and like litter-fall, most of the studies have been confined to the natural 

forest or established plantations. The few studies on effects of land clearance (slash 

and burn, and mechanized) have generally indicated increases in soil moisture and 
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temperatures leading to increase mineralization and decomposition and hence increase 

nutrient release and loss to soils. Results from the current study have shown that this 

is not always true. The summary of total elements (N, P, K, Ca, Mg) remaining in the 

decomposition bags presented in Figure 29 below, showed the lowest loss, similar to 

that of dry matter, in the Complete Clearance plot. This suggests that decomposition 

processes were negatively affected in this plot. It seems therefore that there is a limit 

to the amount of disturbance that will create favourable conditions for increased 

decomposition. 

Most of the results of the clearing methods presented, so far, show the most 

unfavourable growth conditions in the Complete Clearance plot. However, actual tree 

growth results discussed below contradicts this expectation. 

Time (days) 

Figure 29: Total nutrient (N, P, K, Ca, Mg) amounts (mg) remaining with time in 

decomposing leaf litter in the different plots. 
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7.4 	Discussion on the effects of methods on tree survival and 
growth 

The comparative analysis of tree survival and growth (June 1988 - May 1989) 

shows highest mortality in the Complete Clearance plot, as expected, but surprisingly, 

trees in this plot showed slightly better growth than those in the other two plots. If the 

only factor determining the choice of an appropriate method was plant growth, then 

this method seems the most appropriate to date from the present results. However, 

there are many more important factors to be considered. One such factor concerns 

the sustainability of production from the system. The drastic disturbance of the 

Complete Clearance method on the ecosystem raises the question of its sustained use. 

It could be argued that after 30 years (the approximate rotation period for Framiré) the 

ecosystem should be sufficiently reconstituted to enable continuous and sustained 

productivity, but this of course needs to be verified. 

The Manual Regrowth plot unexpectedly, in spite of its large nutrient inputs and 

good soil physical conditions, had the poorest tree growth. It is possible that this poor 

growth is due to inadequate levels of irradiance for light demanding species like 

Terminalia ivorensis, and that changes will occur once the poisoning of the big trees 

(after plant establishment) left behind during clearing begins. 

In many ways the Mechanical Regrowth method showed intermediate results, 

generally better than the Complete Clearance plot, but with some ecological damage. 

Tree survival and growth was satisfactory. The big trees left behind will serve as a 

source of continuous nutrient input, at least until they are poisoned, and soil 

compaction and topsoil displacement was less drastic providing this treatment with a 

better prospect for suStained production than the Complete Cleared plot. 

The greatest concern for Framiré plantations is that of extensive damage caused 

by insect attack between the ages of 20 -30 years (Voorhoeve, 1961) or plantation die 

back (Ofosu-Asiedu and Cannon, 1976). Outbreaks of die back occurred in Ghana and 

the Ivory Coast between 1958-1966 causing widespread and highly destructive 

damage (Ofosu-Asiedu and Cannon, 1976). The cause of this problem is as yet 

undetermined. It could be a pathogen in rotting stumps, nutrient starvation due to high 

tannin content of the leaves prhaps made worse by mycorrhizal population changes 

(Musoko, in prep). The fact that healthy trees were found between rows of affected 

trees seem to suggest transmission was not through tree roots (Ofosu-Asiedu and 

Cannon, 1976). No cases have been reported in Cameroon as yet. Pure plantations 
tibr. 

in general are,yulnerable to attacks and disease explosions than mixed ones. It is 
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therefore advisable to maintain the interline bands of vegetation in the plantations to 

create a mix stand conditions. In the case of an outbreak this might provide a 

substitute nutrient source thereby reducing the intensity of the attack and the rapid 

spread among the planted trees. Alternatively, leaves and barks of some species in the 

mix stand might contain poisonous substances which might help slow the spread of 

pests or check them when fed upon by the predators. 

Another important factor that affect plantation creation is the cost of land 

clearance. The cost of the same technique may vary from one place to another 

depending on, the density of the forest, the type of machinery used and the clearing 

implements. The Manual Regrowth method of this study took 29 man-hours, while 

the Mechanical Regrowth method took 11 man-hours and 5.5 hours of the bulldozer. 

The Complete Clearance method on the other hand, took 24 hours with the bulldozer 

team, 12 hours of the bulldozer and 30 man-hours with a chain-saw gang. The 

intervention of the chain-saw gang to help fell the big trees in the Complete Clearance 

plot was necessary since the bulldozer, equiped only with a root rake, could not do so. 

7.5 	Recommendations 

Ideally, recommendations should only be made at the end of at least one 

plantation rotation period when all the elements for an objective evaluation have been 

obtained. Results of subsequent silvicultural operations such as, poisoning of big 

trees and thinning are most likely to create significant changes in the present results, 

from which any recommendations will be based. The unexpectedly good growth of 

the trees in the Complete Clearance plot, for example, renders predictions and results 

extrapolation very difficult. However, one of the objectives of this study was to help 

propose a suitable method of site preparation for the regeneration of Terminalia 
ivorensis and other fast growing tree species. The results of the investigations have 
shown that Terminalia ivorensis , in plantation, like maximum light conditions as well 

as adequate nutrients for good growth. These factors cannot be viewed in isolation 

from the cost at which they must be achieved (cost of land clearance). 

Based entirely on the results presented in this thesis, the Mechanical Regrowth 

method seems to present the best compromise between, cost, plant growth and 

ecological stability for the early establishment of Terminalia ivorensis plantations. 

The subsequent results of this study are very important for future 

recommendations and the success of plantation forests. However, this can only be 

achieved through Continuous monitoring of these plantations, which is an aspect with a 
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very poor history in the tropics. 	 -. 

A simpl monitoring programme could be established, by ONAREF, in which 

less demanding aspects (tree survival and growth, litter-fall, Ittter standing crop) are 

measured at one yearly intervals whiksL detaikstudies of soils for nutrients, 

mycorrhizal population, micro-organism etc could take place on a five yearly basis. 

The general lack of information on plantation trials in the tropics is generally attributed 

to lack of monitoring or monitoring over very short time periods. The consequence is 

that the same mistakes are made over and over again because of the lack of sufficiently 

long run of information for guidance. 

7.6 	Future research 

As mentioned at the beginning, this study aimed at laying the foundation for a 

long-term ecological study of plantation forests with indigenous hardwoods in 

Cameroon. In the process, many questions have been created some of which need 

urgent and immediate answers, whil: others need the full rotation period of tree 

growth for answers. This project has opened up many new and interesting fields of 

research, some of which were carried out simultaneously with this study. This 

involved the determination of the effects of the different clearing methods on 

mycorrhizal population (Musoko, in prep). Terminalia ivorensis, the investigated 
species, is known to be an aggressive light demander. It would therefore be important 

and necessary to find out the behaviour of other plantation species of different light 

demands, especially shade tolerant species under these conditions. The current study 

has revealed changes in soil physical and chemical properties as affected by different 

conditions of canopy opening and soil disturbance. There is need for more research to 

explain the processes from which these changes evolved. The variously cleared plots 

with their new vegetation presents numerous research opportunities like the 

determination of the early successional vegetation types, influence of the vegetation 

types on insect populations, micro-fauna and flora, and herbivores. Questions relating 

to the sustainability of the system have to wait for at least one plantation rotation 

before verification, so at moment we can only hypothesise as to the long-term effects. 
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7.7 	Conclusion 

It can be concluded at this early stage of plantation establishment that:- 

The Manual Regrowth method is the best ecological method of site preparation 

but it does not offer sufficient light conditions for the good growth of light 

demanding species like Framiré 

Although the Complete Clearance method had the most drastic effects on the 

ecosystem it provided sufficient light conditions which favoured 

good growth of Framiré in areas with adequate nutrients and mild soil 

compaction effects. The major problem about the method concerns its sustained 

use. 

Total land clearance, contrary to the generally accepted hypothesis suggesting 

increased decomposition, can create unfavourable environmental conditions that 

give rise to a decrease in turnover rates. 

The Mechanical Regrowth method (after the two years study period) presents 

the best compromise between cost, plant growth and ecological stability for the 

regeneration of fast growing indigenous hardwoods species like Terminalia 

ivorensis. 

Site preparation generally has adverse effects on the ecosystem but the degree 

and the extent of the effects depend on the intensity of ecosystem disturbance and may 

be reflected in plant growth, 

The development of a sound silvicultural system for forest regeneration with 

indigenous hardwoods, requires a greater understanding and mastering of land 

clearing techniques. Such knowledge would enable optimum canopy opening to 

allow sufficient light for the tree crop without causing too much damage to the soil and 

vegetation. The move towards highly productive, genetically-improved, clonal 

plantations of indigenous hardwoods necessitates the maintenance of a stable 

ecosystem and the development of sound silvicultural systems. The results of this 

study suggest that with proper technical skills and careful execution of operations 

under the guidance of a good silviculturalist, one can achieve increased productivity 

and ecological stability by suitable systems of site preparation. 

This study has laid the baseline for furtherwork to understand fully the various 

processes involved in plant growth in the different treatment plots, and how these 

processes are changed with time. This information is considered very important to 



159 

help avoid the many mistakes made in project planning and to ensure long-term 

sustainable tree crop production and the conservation of the tropical forest. 
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Appendix 1: Laboratory Methods of soils and plant material analysis. 

In the laboratory at Mbalmayo, soils were air-dried and sieved through a 2 mm 

sieve. Samples for particle size determination were analysed in the soils laboratory at 

Yaoundé. The remaining samples were transported and analysed for chemical 

properties in the University of Edinburgh. 

Plant materials were oven dried at 105 °C overnight, in the laboratory of the 

Ecole Nationale des Eaux at Fôrets Mbalmayo, ground to fine powder and subsamples 

collected after thorough mixing in self-sealing polyethene bags. These, subsamples, 

were transported and analysed for nutrients in the University of Edinburgh. 

Details of the methods used can be found in (Metson, 1961; Black et al 1965, 

Allen et al, 1974). 

1.1 Soils 

pH: The pH-H20 was measured potentiometrically using a glass electrode in a 1:2.5 

fresh- soil: water suspension after stirring and allowing to stand for 30 minutes. 

Carbon: Organic carbon was determined by an absorptiometric modification of the 

Waildey and Black method (Metson, 1961). 1 g of fine soil (75 tm mesh size) was 

weighed into 250 ml erlenmmeyer flasks. 15 ml of 4N sodium dichromate solution 

was gently added and to this mixture was immediately added 30 ml of concentrated 

sulphuric acid. After swirling for a few minutes the solution was allowed to stand for 

10 minutes then distilled water (100 ml) was added and allowed to stand for 2 hours. 

Some of the solution was then centrifuged (2000 rpm) for 10-15 minutes and the 

absorption measured in a EEL colorimeter using filters (760 nm). The carbon 

percentage was then read from standard curves. 

Particle size analysis: Analysis for particle size determination was done by the pipette 

method. 20 g of soil (fine earth :5 2 mm) was treated with 20% hydrogen peroxide to 

destroy organic matter and dispersed with sodium hexametaphosphate. The mixture 

was made up to 500 ml with distilled water and shaken in a 1000 ml cylinder overnight 

before determination of particle size. 
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1.1.1 	Extractable nutrients 

1.1.1.1 Nitrogen and aluminium 

10 g of air dried soil was measured into 250 ml erlenmeyer flasks. To these was 

added 100 ml of IN KC1 and extracted for 2 hours in an orbital shaker before filtering 

through a Whitman No. 42 filter paper. The leachate was then analysed for NH 4-N, 

NO3-N, and Al, colorimetrically in an autoanalyser. 

NH4-N: Determination of ammonium nitrogen was by flow injection analysis and 

gas diffusion using sodium hydroxide as reagent plus an indicator (acid base). The 

Sample was injected into a carrier stream and was merged with NaOH stream. In the 

resulting alkaline stream, gaseous ammonia was formed which can diffuse through a 

gas permeable membrane into an indicator stream reacting and increasing the ion 

concentration of the indicator. A colour shift results which was measured 

photometrically. 

NO3-N and No2-N: Determination of the sum of nitrate and nitrite nitrogen was by 

flow injection analysis, using 2 reagents, acidic suiphanilamide (Ri), and 

N-(1-Napth)-ethylenediamine dihydrochioride (R2). The sample was injected into a 

carrier stream where the nitrate is reduced to nitrite in a cadium reductor. On addition 

of R 1, a diazo compound was formed which then reacts with R2 provided from a 

second merging stream. A purple azo dye was formed, the intensity of which was 

proportionate to the sum of the nitrate and nitrite concentrations. 

Al: Aluminium was determined by flow injection analysis, using 3 reaghents: R1 

50 ml of a solution of, 5.6 g hydroylammonium chloride and 0.56 g 

1.10-phenanthroline monohydrate dissolved in 100 ml, diluted to 500 ml; R2= 50 ml 

of a solution of, 0.125 g of pyrocatecholviolet dissolved in lOOmi, diluted to 500 ml. 

R3= 39 g of hexamethylentetramine dissolved in 350 ml of distilled water plus 2.28 g 

of sodium hydroxide, diluted to 500 ml. The patassium chloride soil extract was 

injected into a carrier stream which had the same matrix composition as the sample 

matrix and merged with a masking solution for iron (Ri) and subsequently with the 

colour reagent for aluminium (R2) and a buffer (R3). The coloured complex between 

aluminium and pyrocartecholviolet was measured at 585 nm. 
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1.1.1.2 Phosphorus 

10 g of air dried soil was extracted as described above using a solution of 2% acetic 

acid. The extractant was determined c olorimetric ally for phosphorus in an 

autoanalyser using ammonium molybdate and stannous chloride as reagents. 

Ammonium molybdate reacts with orthophosphate to form heteropoly 

molybdophosphoric acid , which was reduced to blue phosphomolybdeum by 

stannous chloride in a sulphoric acid medium. The colour formed was measured at 

690 nm. 

1.1.1.3 Exchangeable bases 

Soil extraction for the determination of exchangeable bases was similar to that 

described above for nitrogen but using a solution of iN ammonium acetate at pH 7.0. 

Potassium is determined by flame photometry and Magnesium and Calcium by atomic 

absorption spectrophotometry. 

1.1.2 	Total nutrients 

1.1.2.1 Nitrogen 

Total nitrogen was determined using kjeldahl digestion method. 1 g of air dried soil 

(2 mm mesh size) was weighed into 300 ml kjeldahl digest flasks. Distilled water (4-5 

ml) was added to the sample and swirled before allowing to stand for 30 minutes 

Two kjeldahl tablets and 20 ml of concentrated sulphuric acid was added to the 

mixture. Flasks were then fitted to the condensation outlets and heated, cautiously at 

first, till frothing c,utA then the mixture was gently boiled until digestion became pale 

green, after which heating continued for 1 hour. The digestion was then filtered and 

made up to 500 ml with distilled water. Nitrogen was determined colorimetrically 

based on the princip.e. described above. 

1.1.2.2 Phosphorus 

Total phosphorus was determined by dry ashing. 0.5 g of oven dried soil was treated 

with 20% magnesium acetate and oven dried overnight before ashing in a furnace at 

450 C. After cooling in a desiccator, samples were put in a steam bath. 5 ml of 
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concentrated hydrochloric acia (HC1) was added and solution heated for 15 minutes, 

covered with wash glasses. 1 ml of nitric acid (HNO3) was added to the mixture and 

heated to dryness, after which heating continued for 1 hour. 1 ml of distilled water 

and 1 ml HCl was added and swirl to dissolve residue before complete dissolution 

with 10 ml of distilled water. Samples were then filtered and made up to 50 ml with 

distilled water. P was determined colorimetrically as described above. 

1.2 Plant material 

Approximately 0.1 g of the ground plant material was accurately weighed to four 

decimal places and placed in a digest tube. Sulphuric acid (2 ml concentrated) was 

added and vigorously shaken. In a fume cupboard, 1 ml of H 202  (Hydrogen 

peroxide) was added to the nuure in two stages. 0.5 ml was added slowly and given 

a gently shake. After the initial vigorous reaction has suided, the other 0.5 ml was 

added and tubes were heated in blocks at 340 °C until all samples had cleared (about 5 
hours). After cooling,.samples were made up to 50 ml and then chemically analysed. 

N and P were determined colorimetrically as above, K by flame photometry and Mg 

and Ca by atomic absorption spectrophotometry. 
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Appendix 2: Field Profile descriptions (After ORSTOM, 1969) 

Profile i 

Date of examination: 	07/03/8 7 

Location: 	 Ebogo (Mbalmayo forest reserve) 

Slope: 	 5% 

Vegetation: 	 old secondary semi-deciduous forest (Aistonia 

con gensis, Albizzia sp, Fagara sp, Miranthus sp, 

Musanga cercopioides, Rhicenodendron) 

Drainage: 	 Moderately well drained 

Parent matrial: 	Alluviuni/colluvium 

Geomorphology: 	Riverine plains or palaeoriver plains 

0-5 cm 	Dark yellowish brown (10 YR 4/4), sandy clay; very weak fine and 

medium angular to subangular blocky, breaking into weak fine and 

medium granular; slightly sticky; slightly plastic; friable; many fine, 

medium and coarse pores; many fine, medium and coarse roots; clear 

and smooth boundary. 

5-25 cm 	Dark yellowish brown (10 YR 4/6); sandy clay; weak fine and 

medium angular to subangular, blocky, breaking into weak and 

medium granular; slightly sticky; slightly plastic; friable; few 

fine interstitial pores; few medium and coarse tubular pores; many 

fine and medium roots; clear and smooth boundary. 

25-60 cm 	Dark brown (7.5 YR 4/4), with few medium yellowish red (5 YR 

4/8) mottles; sandy clay, with a few gravels in the form of nodules 2 

to 5mm in diameter; weak fine and medium angular to subangular 

blocky; breaking into weak and medium granular; sticky; plastic; 

friable; many fine and medium tubular pores; few interstitial pores; 

few fine roots; gradual and smooth boundary. 

60-130 cm 	Strong brown (7.5 YR 4/6), with few medium yellowish brown 
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(10 YR 5/6) mottles; clay; weak fine and medium angular to 

subangular blocky, breaking into weak and medium granular; sticky; 

plastic; friable; many fine tubular pores; few interstitial pores; few 

fine roots; gradual and smooth boundary. 

130-170 cm 	Strong brown (7.5 YR 5/6) with few distinct yellowish brown (10 

YR 5/6) mottles, clay; weak fine and medium angular to subangular 

blocky, breaking into weak and medium granular; sticky; plastic; 

friable; many fme and medium tubular pores; very few roots. 

Profile ii 

Date of examination: 	7/03/87 

Location: 	 Ebogo (Mbalmayo forest reserve) 

Slope: 	 5% 

Vegetation: 	 Old secondary semi-deciduous forest (Musanga cercopioides 
Voacanga sp. and Terminalia superba) 

Drainage: 	 moderately well drained 

Parent material: 	Alluviuni/colluvium 

Geomorphology: 	Riverine plains or palaeoriver plains 

0-17 cm 	Dark yellowish brown (10 YR 4/4), sandy clay; very weak fine and 

medium angular to subangular blocky, breaking into weak fine and 

medium granular; slightly sticky;  slightly plastic; friable; many fine, 

medium and coarse pores;.many fine, medium and.coarse roots; 

gradual and smooth boundary. 

17-44 cm 	Dark yellowish brown (10 YR 4/6); clay; weak fine and angular to 

subangular blocky, breaking into weak and medium granular; sticky; 

plastic; friable; many fine and medium tubular pores; many fine and 

medium roots; gradual and smooth boundary. 

44-105 cm 	Yellowish browm (10 YR 5/6); clay; weak fine and medium angular 

to subangular blocky, breaking into weak and medium granular; 

sticky; plastic; friable; many tubular pores; few fine roots; gradual and 
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smooth boundary. 

105-130 cm 	(7.5 YR 5/6), with few medium yellowish red (5YR 4/8) mottles; 

clay; weak fine and medium angular to subangular blocky, 

breaking into weak to moderate fine and medium granular; few 

medium and coarse tubular pores; very few roots; gradual and smooth 

boundary. 

130-170 cm 	Strong brown (7.5 YR 5/8), with many gravels, quartz and yellowish 

brown (10 YR 5/6) mottles and few distinct red (2.5 YR 4/8) mottles; 

clay; very weak fine and medium angular to subangular blocky, 

breaking into weak fine and medium granular; sticky; plastic; friable; 

few fine and tuber pores, very few fine and medium roots. 

Profile iii 

Date of examination: 	21/08/87 

Location: 	 Control 

Slope: 	 2% 

Vegetation: 	 Old secondary semi-deciduous forest (Musanga cercopiodes, 

Afromomum sp, Peptadena sp) 
Drainage: 	 Moderately well drained 

Parent material: 	Alluvium/Colluvium 

Geomorphology: 	Riverine plains or palaeoriver plains 

0-5 cm 	Dark brown (10 YR 4/3); sand clay, very weak fine and medium 

angular to subangular blocky, breaking into weak fine and medium 

granular; slightly sticky; slightly plastic; friable; many fine, medium 

and coarse pores; many fine, medium and coarse roots; clear smooth 

boundary. 

5-20 cm 	Dark yellowish brown (10 YR 4/4), sandy clay; weal fine an medium 

angular to subangular blocky, breaking into weak and medium 

granular; slightly sticky; slightly plastic; friable; many fine and 

medium pores; many fine and medium roots; clear and smooth 
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boundary. 

20-50 cm 	Dark brown (7.5 YR 4/4), with few medium yellowish red (5 YR 

4/8) mottles; clay; weak fine and medium angular to subangular, 

breaking into weak and medium granular; slightly sticky; slightly 

plastic; friable; many fine and medium tubular pores; few fine and 

medium roots; gradual and smooth boundary. 

50-100 cm 	Strong brown (7.5 YR 4/6); clay; weak fine and medium 

angular to subangular blocky, breaking into weak and 

medium granular; sticky; very friable; many fine and medium 

tubular pores; few fine roots; gradual and smooth boundary. 

100-125 cm 	Reddish brown (5 YR 4/4) clay; weak fine and medium angular to 

subangular blocky; breaking into weak and medium granular; many 

coarse elements, gravels, laterites, quartz; sticky; friable; many fine 

and tubular pores; few roots; clear and distinct boundary. 

125-150 cm 	Yellowish red (50 YR 4/6); clay; strong and course angular to 

subangular blocky, breaking into strong and medium granular; many 

gravels, few stones, lateriles; sticky friable; few tubular pores; few 

roots. 

Profile iv 

Date of examination: 	21/08/97 

Location: 	 Manual regrowth plot Ebogo (Mbalmayo forest reserve) 

Slope: 	 7% 

vegetation: 	 undergrowth and small trees cut, presence of big trees 

(Petersianthus sp,Voacanga sp.) 

Parent material 	Alluvium/Calluvium 

Geomorphology: 	Riverine plains or palaeoriver plains 

0-15 cm 	Dark brown (10 YR 4/3), sndy clay; very weak fine and medium 

angular and subangular blocky, breaking into weak fine and medium 



granular; slightly sticky; slightly plastic, friable; many fine, medium 

and coarse pores; many fine, medium and coarse roots, clear amd 

wavy boundary. 

	

15-24 cm 	Dark yellowish brown (10 YR 4/4); sandy clay; strong and medium 

angular to subangular blocky breaking into strong and medium 

granular, sticky; friable; many fine and medium pores; few fine and 

medium roots; clear and smooth boundary. 

	

24-40 cm 	Dark yellowish brown (10 YR 4/6), with many yellowish brown 

(10 YR 5/6) mottles; sandy clay; strong and medium angular to 

subangular blocky, breaking into strong and medium granular; sticky; 

plastic; friable; few tubular pores; few roots; sharp and smooth 

boundary. 

	

40-70 cm 	Dark brown (7.5 YR 4/4); clay; strong and medium angular to 

subangular blocky, breaking into strong and medium granular; sticky, 

plastic; friable; many fine tubular pores; few fine and medium roots; 

gradual and smooth boundary. 

	

70-110 cm 	Strong brown (7.5 YR 4/6), with common strong brown (7.5 YR 

4/6) mottles; clay, with many coarse elements; gravels, laterites, 

quartzs; weak fine and medium angular to subangular blocky 

breaking into strong and medium granular; slightly sticky; slightly 

plastic; friable; few fine and medium pores; few roots; clear and 

smooth boundary. 

	

110-14 0cm 	Yellowish red (5 YR 4/6), clay, with many course elements (as 

above); weak fine and medium angular to subangular blocky; 

breaking into strong and medium granular; slightly sticky, slightly 

plastic; friable; few fine and tubular pores, few roots, clear and 

smooth boundary. 

	

140-170 cm 	Prominent red (2.5 YR 4/6) with common yellowish brown (10 YR 

5/6) mottles; clay loam; weak fine and medium angular to subangular 

blocky, breaking into weak and medium granular; slightly sticky; 
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slightly plastic; friable; few fine and medium pores; very few roots; 

Profilev 

Date of examination: 	2 1/08/87 
Location: 	 Mechanical Regrowth plot - Ebogo (Mbalmayo forest 

reserve) 

Slope: 	 1% 

Vegetation: 	 No ground vegetation, cleared with bulldozer, presence of 

big trees (Terminalia surpeba); topsoil partly scraped. 
Drainage: 	 Moderately well drained 

Parent material: 	Alluvium/Colluvjum 

Geomorphology: 	Riverine plains oi palaeoriver plains 

0-20 cm 	Dark brown (10 YR 4/3); sandy clay; structureless due to compaction; 

slightly sticky; slightly plastic, friable; very few faintly visible pores; 

few fine to medium roots, clear and smooth boundary. 

20-40 cm 	Dark yellowish brown (10 YR 4/4) sandy clay with many coloured 

quartz; strong and medium angular to subangular blocky, breaking 

into strong and medium granular; sticky, slightly plastic; friable; few 

tubular pores due to compaction, few fine and medium roots; clear 

and smooth boundary. 

40-60 cm 	Dark yellowish brown (10 YR 4/6); clay; weak fine and medium 

angular to subangular blocky, breaking into weak and medium 

granular; slightly sticky; slightly plastic; friable; few fine and medium 

tubular pores; few fine and medium roots; gradual and smooth 

boundary. 

60-125 cm 	Dark brown (7.5 YR 4/4); clay, with few coloured quartz; very weak 

fine and medium angular to subangular blocky, breaking into weak 

fine and medium granular; sticky; friable; few tubular pores, few 

roots; gradual and smooth boundary. 

125-180 cm 	Strong brown (7.5 YR 5/6); clay, with few course sand; very weak 
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fine and medium angular to subangular blocky, breaking into weak 

fine and medium granular; sticky; friable; very many tubular pores; 

very few roots. 

Profile vi 

Date of examination: 	2 1/08/87 
Location: 	 Complete clearance plot - Ebogo (Mbalmayo forest reserve). 

Slope: 	 1-2% 

Vegetation: 	 Non, cleared using bulldozer, topsoil scraped 

Drainage: 	 Moderately well drained 

Parent material: 	Alluviuni/Colluvium 

Geomorphology: 	Riverine plains or palaeoriver plains 

0-10 cm 	Dark brown (10 YR 4/3); sandy clay; structureless, due to 

compaction; slightly sticky; slightly plastic; friable; few faintly 

visible pores; few fine medium and coarse roots, clear and smooth 

boundary. 

10-15 cm 	Dark yellowish brown (10 YR 4/4); clay; structureless due to 

compaction; sticky, plastic friable; few fairly visible tubular pores; 

few medium and coarse roots; gradual and smooth boundary. 

15-25 cm 	Dark yellowish brown (10 YR 4/6) with few medium strongbrown 

(7.5 YR 4/6) mottles; sandy clay, with many quartz; weak fine and 

medium angular to subangular blocky, breaking into weak and 

medium granular; slightly sticky; slightly plastic; friable; very many 

fine and medium tubular pores, few fine roots; gradual and smooth 

boundary. 

25-125 cm 	Yellowish brown (10 YR 5/6) with few coarse light yellowish (10 

YR 6/4) and medium strong brown (7.5 YR 5/6) mottles; sandy clay; 

very weak fine and medium angular to subangular blocky; sticky; 

plastic; many fine and medium tubular pores, very few roots; gradual 

and smooth boundary. 
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125-170 cm 	Strong brown (7.5 YR 4/6) with few medium prominent red (2.5 YR 

4/6) mottles, sandy clay, with many coarse elements (many coarse 

gravel and medium quartz); weak fine and medium angular to 

subangular blocky, breaking into weak and medium granular; slightly 

sticky, slightly plastic; friable; few tubular pores; very few roots; 

abrupt and smooth boundary. 

170-185 cm 	Strong brown (7.5 YR 5/6) with many medium dark red (2.5 YR 3/6) 

mottles; clay, with many coarse elements (as above); very weak fine 

and medium angular to subangular blocky, breaking into weak fine 

and medium granular; slightly sticky; slightly plastic; less friable; very 

few pores; very few roots. 

Profile vii 

Date of examination: 	2 1/08/87 

Location: 	 complete clearance plot - Ebogo (Mbalmayo Forest reserve) 

Slope: 	 5% 

Vegetation 	 Non, cleared using bulldozer, topsoil scraped. 

Drainage: 	 moderately well drained 

Parent material: 	Alluviuni/colluvium 

Geomorphology 	Riverine plains or palaeoriver plains 

0-5 cm 	Dark brown (10 YR 4/3); sandy clay; structureless due to compaction; 

slightly sticky; slightly plastic; less friable; very few faintly visible 

pores; few fine, medium and coarse roots; clear and smooth 

boundary. 

5-25 cm 	Dark yellowish brown (10 YR 4/4); sandy clay; structureless due to 

compaction; sticky plastic; less friable; few faintly visible tubular 

pores; few fine and medium roots; abrupt and smooth boundary. 

25-55 cm 	Dark brown (7.5 YR 4/4); sandy clay; strong and medium angular to 

subangular blocky, breaking into strong and medium granular; sticky; 
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plastic; less friable; many fine and medium tubular pores; few fine 

and medium roots, gradual and smooth boundary. 

55-130 cm 	Strong brown (7.5 YR 4/6); clay; weak fine and medium angular to 

subangular blocky, breaking into weak and medium granular; sticky; 

plastic; friable; many fine and medium tubular pores; few fine and 

medium roots; gradual and wavy boundary. 

130-150cm 	Strong brown (7.5 YR 5/6); clay, with' many coarse elements, 

gravels in form of nodules, laterites, quartz; very weak fine and 

medium angular to subangular blocky, breaking into weak fine and 

medium granular; slightly sticky; slightly plastic; friable; few fine and 

medium tubular pores; few fine roots; abrupt and smooth boundary. 

150-175 cm 	Yellowish red (5 YR 4/6); clay; very weak fine and medium angular 

to subangular blocky, breaking into weak fine and medium granular; 

many coarse elements (as above); sticky, plastic; friable; very few 

tubular pores; very few roots. 
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Appendix 3: Percentage nutrient concentration of plant parts from the bioassay 

experiment 

Treatment 

Leaves 

N P K Ca Mg 

Depth 1 3.09 0.25 1.75 0.91 0.27 

Depth2 1.50 0.14 1.76 1.01 0.27 

Litter 2.88 0.25 1.63 1.15 0.29 

Fertilized 2.69 0.21 1.42 0.84 0.23 

Control 2.98 0.27 1.69 1.00 0.27 

Stems 
Depth 

0-20 cm 1.31 0.19 1.55 0.65 0.22 
Depth 

20-40 cm 1.10 0.17 1.54 0.57 0.22 

Litter 1.46 0.28 1.97 0.65 0.35 

Fertilized 1.20 0.15 1.90 0.45 0.15 

Control 1.14 0.14 1.34 0.53 0.25 

Roots 

Depth 
0-20 cm 1.09 0.09 1.34 0.34 0.19 
Depth 

20-40 cm 1.09 0.09 1.26 0.36 0.20 

Litter 1.06 0.13 1.52 0.30 0.23 

Fertilized 1.45 0.12 1.61 0.23 0.13 

Control 1.20 0.10 1.15 0.31 0.23 



Appendix 4: Mean monthly litter-fall fractions (g rn 1 ) in the different plots over the one year study period (June, 1988 - May, 1989) 

Treatment Fraction j j A S o N D J F M A M 

Leaves 65.9 35.7 50.2 55.0 77.1 39.9 35.6 72.7 113 94.1 34.6 31.2 

Control WM 28.9 5.7 4.2 19.4 10.6 16.7 16.0 27.4 36.0 46.8 66.9 29.9 

Others 7.7 2.9 24.4 1 	15.8 1.9 9.0 8.4 1.2 9.8 25.7 1 	58.9 30.0 

Total 102.5 44.3 78.8 90.2 89.6 63.4 60.0 101.3 159.0 166.6 160.4 91.1 

Leaves 31.2 24.3 27.2 37.9 41.5 47.0 63.0 114.9 114.3 100.9 77.8 31.7 

Man. Reg. WM 8.2 7.7 4.6 4.0 4.9 21.8 12.1 9.0 10.3 28.8 41.2 17.7 

Others 8.7 1.0 4.5 6.7 0.35 8.2 6.1 3.1 7.9 20.5 20.2 20.7 

Total 48.1 33.0 36.3 48.6 46.8 75.5 78.0 127.1 132.6 150.2 139.3 70.1 

Leaves 18.3 12.0 21.3 30.8 47.3 32.9 36.2 61.7 62.5 56.0 56.2 49.5 

MechReg. WM 11.4 8.7 10.1 4.1 8.6 6.6 5.6 3.6 14.5 12.2 13.8 15.0 

Others 3.6 0.0 7.8 8.2 0.54 8.6 4.4 2.9 17.4 21.2 10.2 9.3 

Total 33.3 20.7 39.1 43.1 56.4 46.7 45.2 68.3 94.3 89.4 79.4 73.8 

Leaves 1.6 2.4 11.4 14.9 10.1 8.2 5.5 16.9 24.0 25.9 14.7 15.5 

Comp. C WM 0.03 0.0 0.0 0.01 0.0 0.97 0.42 1.6 0.0 0.0 1.4 3.5 

Others 0.18 0.11 2.6 0.31 	1  0.18 0.05 0.39 1.2 3.2 7.7 3.9 2.8 

Total 1.8 2.5 14.0 15.2 	1  10.3 9.2 6.0 19.7 27.2 1 	33.6 20.0 21.7 

-L 

(0 



Appendix 5: Nutrient concentration (%dry weight) of monthly fine liuer-fall fractions in the different plots over the one year study period (June 1988- May 1989) 

in the Mbalmayo forest reserve. (Eli. = element) 

Treatment Eli. Fraction J J A S 0 N D J F M A M 

N 

L 1.59 

1.16 

1.84 

2.19 

1.46 

2.14 

2.19 

1.12 

3.00 

2.34 

1.16 

2.75 

1.47 

1.40 

1.02 

2.07 

1.80 

1.55 

2.32 

1.47 

2.30 

2.04 

1.60 

2.02 

1.83 

2.24 

2.25 

1.86 

1.91 

2.37 

2.37 

2.02 

2.36 

2.17 

1.59 

2.46 

WM 

o 

P 

L 0.048 

0.034 

0.052 

0.050 

0.037 

0.070 

0.061 

0.040 

0.077 

0.058 

0.037 

0.070 

0.035 

0.031 

0.033 

0.073 

0.061 

0.083 

0.090 

0.060 

0.110 

0.09 

0.08 

0.19 

0.08 

0.10 

0.15 

0.08 

0.08 

0.12 

0.10 

0.05 

0.11 

0.10 

0.07 

0.14 

WM 

o 
- 

K 

L 0.41 

0.20 

0.33 

0.44 

0.29 

0.93 

0.39 

0.13 

0.14 

0.37 

0.19 

0.31 

0.276 

0.20 

0.29 

0.28 

0.25 

0.38 

0.30 

0.19 

0.39 

0.44 

0.10 

1.09 

0.49 

0.42 

0.71 

0.24 

0.21 

0.31 

0.24 

0.47 

0.28 

0.39 

0.20 

0.30 

WM 

o 
- 

Ca 

L 1.31 

1.00 

0.79 

1.09 

1.30 

0.96 

1.18 

0.77 

0.76 

0.79 

1.33 

0.85 

1.07 

0.89 

0.36 

1.42 

1.01 

0.91 

1.23 

1.48 

1.33 

1.36 

2.09 

1.37 

1.04 

98 

1.10 

1.43 

0.78 

1.21 

2.30 

0.90 

1.36 

1.70 

1.31 

WM 

o 
- 

Mg 

L 0.38 

0.29 

0.29 

0.32 

0.32 

0.32 

0.35 

0.21 

0.22 

0.24 

0.21 

0.23 

0.30 

0.19 

0.10 

0.38 

0.25 

0.19 

0.38 

0.32 

0.29 MO 42 

36 

30 

0.30 

0.32 

0.22 

0.30 

0.42 

0.21 

0.36 

0.30 

0.32 

WM 

0 

N 

L 1.55 

1.41 

2.84 

1.56 

1.30 

2.18 

1.32 

1.56 

1.85 

1.30 

0.82 

1.39 

1.56 

0.97 

2.12 

1.53 

1.11 

2.12 

1.55 

1.32 

2.42 

1.51 

1.20 

2.16 

1.46 

1.56 

1.83 

1.53 

1.51 

2.40 

2.02 

1.61 

2.30 

1.85 

1.55 

2.21 

WM 

0 

0 
O 

- 

p 

L 0.029 

0.040 

0.090 

0.047 

0.030 

0.035 

0.035 

0.035 

0.049 

0.035 

0.026 

0.081 

0.027 

0.032 

0.061 

0.058 

0.038 

0.106 

0.07 

0.06 

0.15 

0.07 

0.09 

0.18 

0.07 

0.08 

0.13 

0.07 

0.04 

0.15 

0.10 

0.09 

0.11 

0.09 

0.06 

0.18 

WM 

O 

- 

K 

L 0.36 

0.19 

0.69 

0.46 

0.30 

0.54 

0.37 

0.29 

0.71 

0.28 

0.37 

0.45 

0.33 

0.29 

0.37 

0.34 

0.22 

0.46 

0.46 

0.22 

0.52 

0.61 

1.08 

1.04 

0.48 

0.60 

0.86 

0.34 

0.09 

0.46 

0.23 

0.33 

0.22 

0.26 

0.27 

0.49 

WM 

o 
- 

Ca 

L 1.09 

1.36 

0.19 

0.91 

1.37 

0.74 

1.21 

2.03 

1.13 

1.17 

1.33 

1.05 

1.14 

1.32 

1.03 

0.86 

1.28 

0.96 

1.27 

1.30 

0.78 

1.44 

1.53 

0.71 

0.98 

1.29 

0.89 

0.91 

1.14 

0.55 

0.83 

1.20 

1.07 

0.84 

1.45 

0.81 

WM 

O 

- 

Mg 

L 0.35 

0.34 

0.24 

0.29 

0.34 

0.24 

0.34 

0.31 

0.22 

001 

0.24 

0.24 

0.32 

0.28 

0.23 

0.35 

0.22 

0.32 

0.45 

0.30 

0.28 

0.41 

0.50 

0.27 

0.27 

0.29 

0.33 

0.30 

0.16 

0.22 

0.27 

0.28 

0.36 

0.27 

0.34 

0.34 

WM 

0 

ID 



Appendix 5: Continued 

Treatment Eli. Fraction J J A S 0 N D J F M A M 

N 

L 1.50 

1.15 

2.47 

1.51 

1.18 

- 

1.14 

0.95 

2.37 

1.22 

1.09 

1.58 

2.16 

1.45 

2.00 

1.74 

1.32 

2.61 

1.22 

1.02 

2.40 

1.28 

0.004 

2.21 

1.49 

1.12 

2.36 

1.66 

1.28 

2.20 

1.91 

0.69 

2.37 

1.83 

1.25 

- 

WM 

0 

P 

L 0.042 

0.023 

0.099 

0.051 

0.036 

- 

0.034 

0.021 

0.055 

0.043 

0.028 

0.050 

0.059 

0.030 

0.069 

0.064 

0.050 

0.156 

0.07 

0.04 

0.17 

0.07 

0.01 

0.17 

0.07 

0.06 

0.22 

0.07 

0.04 

0.14 

0.08 

0.06 

0.11 

0.07 

0.07 

- 

WM 

0 

- 

K 

L 0.24 

0.14 

0.50 

0.42 

0.27 

- 

0.33 

0.22 

0.53 

0.28 

0.19 

0.38 

0.32 

0.23 

0.36 

0.34 

0.18 

0.68 

0.38 

0.38 

0.36 

0.42 

0.41 

0.96 

0.39 

0.37 

1.12 

0.29 

0.18 

0.37 

0.30 

0.18 

0.19 

0.28 

0.33 

- 

WM 

0 

- 

Ca 

- 

L 1.09 

0.16 

1.07 

1.13 

1.03 

- 

1.08 

0.78 

0.91 

1.18 

1.23 

0.90 

1.31 

0.94 

0.68 

1.14 

2.50 

1.01 

1.42 

1.19 

1.02 

1.33 

0.33 

1.46 

1.16 

1.15 

1.19 

1.13 

1.17 

0.88 

0.95 

1.39 

1.37 

1.23 

1.24 WM 

o 

Mg 

L 0.35 

0.37 

0.30 

0.40 

0.22 

- 

0.34 

0.16 

0.31 

0.32 

0.25 

0.28 

0.34 

0.30 

0.22 

0.38 

0.25 

0.45 

0.43 

0.24 

0.35 

0.38 

0.05 

0.44 

0.29 

0.25 

0.38 

0.26 

0.20 

0.26 

0.31 

0.37 

0.26 

0.39 

0.28 

- 

kM 

0 

- 

N 

L 2.60 

0.96 

1.75 

2.03 

- 

- 

1.45 

- 

1.66 

1.67 

- 

1.11. 

1.06 

1.21 

- 

1.45 

0.60 

1.87 

2.14 

0.77 

2.22 

1.52 

0.76 

2.18 

1.56 

. 

2.46 

1.56 

- 

2.22 

1.76 

1.24 

2.26 

1.69 

1.25 

2.29 

WM 

0. 

- 

P 

L 0.041 

0.032 

0.060 

0.080 

- 

- 

0.042 

- 

0.057 

0.033 

- 

0.030 

0.035 

0.026 

- 

0.062 

0.033 

0.150 

0.09 

0.03 

0.10 

0.07 

0.05 

0.12 

0.07 

. 

0.15 

0.06 

. 

0.09 

0.06 

0.04 

0.12 

0.06 

0.04 

0.11 

WM 

0 

- 

K 

L 0.69 

0.11 

0.22 

0.35 

- 

- 

0.33 

- 

0.79 

0.16 

- 

0.43 

0.20 

0.19 

. 

0.31 

0.25 

0.48 

0.43 

0.70 

0.83 

0.71 

0.96 

0.97 

0.57 

- 

1.22 

0.25 

- 

0.18 

0.17 

0.14 

0.16 

0.17 

0.13 

0.21 

WM 

0 

- 

Ca 

- 

L 0.96 

1.33 

1.38 

0.99 

- 

- 

1.04 

- 

1.09 

0.94 

- 

0.86 

1.17 

1.42 

- 

0.95 

0.63 

0.79 

1.46 

1.47 

1.02 

1.34 

1.90 

1.30 

1.25 

- 

1.19 

1.16 

. 

1.05 

1.15 

1.04 

1.08 

1.29 

0.63 

1.07 

WM 

0 

Mg 

L 0.32 

0.18 

0.19 

0.19 

- 

- 

0.33 

- 

0.25 

0.27 

- 

0.23 

0.28 

0.23 

- 

0.34 

0.29 

0.27 

0.38 

0.38 

0.29 

0.41 

0.54 

0.44 

0.35 

- 

0.47 

0.24 

- 

0.30 "03 

0.35 

0.25 

0.33 

WM 

0 


